
http://www.cambridge.org/9780521881715

This page intentionally left blank

Classical and Quantum Information Theory

An Introduction for the Telecom Scientist

Information theory lies at the heart of modern technology, underpinning all communi-
cations, networking, and data storage systems. This book sets out, for the first time, a
complete overview of both classical and quantum information theory. Throughout, the
reader is introduced to key results without becoming lost in mathematical details.

The opening chapters deal with the basic concepts and various applications of
Shannon’s entropy. The core features of quantum information and quantum computing
are then presented. Topics such as coding, compression, error correction, cryptography,
and channel capacity are covered from both classical and quantum viewpoints. Employ-
ing an informal yet scientifically accurate approach, Desurvire provides the reader with
the knowledge to understand quantum gates and circuits.

Highly illustrated, with numerous practical examples and end-of-chapter exercises,
this text is ideal for graduate students and researchers in electrical engineering and
computer science, and also for scientists and practitioners in the telecommunications
industry.

Further resources and instructor-only solutions are available at www.cambridge.
org/desurvire.

Emmanuel Desurvire is Director of the Physics Research Group at Thales Research
and Technology, and has held previous positions at Stanford University, AT&T Bell
Laboratories, Columbia University, and Alcatel. With over 25 years’ experience in the
field of optical communications, he has received numerous recognitions for his scientific
contributions, including the 1994 Prize from the International Commission for Optics,
the 1998 Benjamin Franklin Medal in Engineering, the 2005 William Streifer Scientific
Achievement Award, and, in 2007, the IEEE/LEOS John Tyndall Award, Engineer of
the Year Award, and the France-Telecom Prize of the Académie des Sciences. He is also
Laureate of the 2008 Millennium Technology Prize.

Classical and Quantum
Information Theory
An Introduction for the Telecom Scientist

EMMANUEL DESURVIRE
Thales Research & Technology, France

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-88171-5

ISBN-13 978-0-511-50684-0

© Cambridge University Press 2009

2009

Information on this title: www.cambridge.org/9780521881715

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521881715

Contents

Foreword page xi
Introduction xvii
Acknowledgments xxi

1 Probability basics 1

1.1 Events, event space, and probabilities 1
1.2 Combinatorics 8
1.3 Combined, joint, and conditional probabilities 11
1.4 Exercises 18

2 Probability distributions 20

2.1 Mean and variance 20
2.2 Exponential, Poisson, and binomial distributions 22
2.3 Continuous distributions 26
2.4 Uniform, exponential, and Gaussian (normal) distributions 26
2.5 Central-limit theorem 33
2.6 Exercises 35

3 Measuring information 37

3.1 Making sense of information 38
3.2 Measuring information 40
3.3 Information bits 43
3.4 Rényi’s fake coin 45
3.5 Exercises 49

4 Entropy 50

4.1 From Boltzmann to Shannon 50
4.2 Entropy in dice 53
4.3 Language entropy 57
4.4 Maximum entropy (discrete source) 63
4.5 Exercises 67

vi Contents

5 Mutual information and more entropies 69

5.1 Joint and conditional entropies 69
5.2 Mutual information 75
5.3 Relative entropy 79
5.4 Exercises 82

6 Differential entropy 84

6.1 Entropy of continuous sources 84
6.2 Maximum entropy (continuous source) 90
6.3 Exercises 94

7 Algorithmic entropy and Kolmogorov complexity 96

7.1 Defining algorithmic entropy 96
7.2 The Turing machine 97
7.3 Universal Turing machine 107
7.4 Kolmogorov complexity 111
7.5 Kolmogorov complexity vs. Shannon’s entropy 123
7.6 Exercises 125

8 Information coding 127

8.1 Coding numbers 127
8.2 Coding language 129
8.3 The Morse code 132
8.4 Mean code length and coding efficiency 136
8.5 Optimizing coding efficiency 138
8.6 Shannon’s source-coding theorem 142
8.7 Exercises 149

9 Optimal coding and compression 151

9.1 Huffman codes 151
9.2 Data compression 156
9.3 Block codes 162
9.4 Exercises 177

10 Integer, arithmetic, and adaptive coding 179

10.1 Integer coding 179
10.2 Arithmetic coding 185
10.3 Adaptive Huffman coding 192
10.4 Lempel–Ziv coding 200
10.5 Exercises 207

Contents vii

11 Error coszrrection 208

11.1 Communication channel 208
11.2 Linear block codes 210
11.3 Cyclic codes 217
11.4 Error-correction code types 219
11.5 Corrected bit-error-rate 226
11.6 Exercises 230

12 Channel entropy 232

12.1 Binary symmetric channel 232
12.2 Nonbinary and asymmetric discrete channels 234
12.3 Channel entropy and mutual information 238
12.4 Symbol error rate 242
12.5 Exercises 244

13 Channel capacity and coding theorem 245

13.1 Channel capacity 245
13.2 Typical sequences and the typical set 252
13.3 Shannon’s channel coding theorem 255
13.4 Exercises 263

14 Gaussian channel and Shannon–Hartley theorem 264

14.1 Gaussian channel 264
14.2 Nonlinear channel 277
14.3 Exercises 282

15 Reversible computation 283

15.1 Maxwell’s demon and Landauer’s principle 283
15.2 From computer architecture to logic gates 288
15.3 Reversible logic gates and computation 297
15.4 Exercises 302

16 Quantum bits and quantum gates 304

16.1 Quantum bits 304
16.2 Basic computations with 1-qubit quantum gates 310
16.3 Quantum gates with multiple qubit inputs and outputs 315
16.4 Quantum circuits 322
16.5 Tensor products 327
16.6 Noncloning theorem 330
16.7 Exercises 331

viii Contents

17 Quantum measurements 333

17.1 Dirac notation 333
17.2 Quantum measurements and types 343
17.3 Quantum measurements on joint states 351
17.4 Exercises 355

18 Qubit measurements, superdense coding, and quantum teleportation 356

18.1 Measuring single qubits 356
18.2 Measuring n-qubits 361
18.3 Bell state measurement 365
18.4 Superdense coding 366
18.5 Quantum teleportation 367
18.6 Distributed quantum computing 374
18.7 Exercises 376

19 Deutsch–Jozsa, quantum Fourier transform, and Grover quantum database
search algorithms 378

19.1 Deutsch algorithm 378
19.2 Deutsch–Jozsa algorithm 381
19.3 Quantum Fourier transform algorithm 383
19.4 Grover quantum database search algorithm 389
19.5 Exercises 398

20 Shor’s factorization algorithm 399

20.1 Phase estimation 400
20.2 Order finding 405
20.3 Continued fraction expansion 408
20.4 From order finding to factorization 410
20.5 Shor’s factorization algorithm 415
20.6 Factorizing N = 15 and other nontrivial composites 417
20.7 Public-key cryptography 424
20.8 Exercises 429

21 Quantum information theory 431

21.1 Von Neumann entropy 431
21.2 Relative, joint, and conditional entropy, and mutual information 437
21.3 Quantum communication channel and Holevo bound 450
21.4 Exercises 454

Contents ix

22 Quantum data compression 457

22.1 Quantum data compression and fidelity 457
22.2 Schumacher’s quantum coding theorem 464
22.3 A graphical and numerical illustration of Schumacher’s

quantum coding theorem 469
22.4 Exercises 474

23 Quantum channel noise and channel capacity 475

23.1 Noisy quantum channels 475
23.2 The Holevo–Schumacher–Westmoreland capacity theorem 481
23.3 Capacity of some quantum channels 487
23.4 Exercises 493

24 Quantum error correction 496

24.1 Quantum repetition code 496
24.2 Shor code 503
24.3 Calderbank–Shor–Steine (CSS) codes 509
24.4 Hadamard–Steane code 514
24.5 Exercises 521

25 Classical and quantum cryptography 523

25.1 Message encryption, decryption, and code breaking 524
25.2 Encryption and decryption with binary numbers 527
25.3 Double-key encryption 532
25.4 Cryptography without key exchange 534
25.5 Public-key cryptography and RSA 536
25.6 Data encryption standard (DES) and advanced encryption

standard (AES) 541
25.7 Quantum cryptography 543
25.8 Electromagnetic waves, polarization states, photons, and

quantum measurements 544
25.9 A secure photon communication channel 554
25.10 The BB84 protocol for QKD 556
25.11 The B92 protocol 558
25.12 The EPR protocol 559
25.13 Is quantum cryptography “invulnerable?” 562

Appendix A (Chapter 4) Boltzmann’s entropy 565
Appendix B (Chapter 4) Shannon’s entropy 568
Appendix C (Chapter 4) Maximum entropy of discrete sources 573
Appendix D (Chapter 5) Markov chains and the second law of thermodynamics 581
Appendix E (Chapter 6) From discrete to continuous entropy 587

x Contents

Appendix F (Chapter 8) Kraft–McMillan inequality 589
Appendix G (Chapter 9) Overview of data compression standards 591
Appendix H (Chapter 10) Arithmetic coding algorithm 605
Appendix I (Chapter 10) Lempel–Ziv distinct parsing 610
Appendix J (Chapter 11) Error-correction capability of linear block codes 614
Appendix K (Chapter 13) Capacity of binary communication channels 617
Appendix L (Chapter 13) Converse proof of the channel coding theorem 621
Appendix M (Chapter 16) Bloch sphere representation of the qubit 625
Appendix N (Chapter 16) Pauli matrices, rotations, and unitary operators 627
Appendix O (Chapter 17) Heisenberg uncertainty principle 635
Appendix P (Chapter 18) Two-qubit teleportation 637
Appendix Q (Chapter 19) Quantum Fourier transform circuit 644
Appendix R (Chapter 20) Properties of continued fraction expansion 648
Appendix S (Chapter 20) Computation of inverse Fourier transform

in the factorization of N = 21 through Shor’s algorithm 653
Appendix T (Chapter 20) Modular arithmetic and Euler’s theorem 656
Appendix U (Chapter 21) Klein’s inequality 660
Appendix V (Chapter 21) Schmidt decomposition of joint pure states 662
Appendix W (Chapter 21) State purification 664
Appendix X (Chapter 21) Holevo bound 666
Appendix Y (Chapter 25) Polynomial byte representation and

modular multiplication 672
Index 676

Foreword

It is always a great opportunity and pleasure for a professor to introduce a new text-
book. This one is especially unusual, in a sense that, first of all, it concerns two fields,
namely, classical and quantum information theories, which are rarely taught altogether
with the same reach and depth. Second, as its subtitle indicates, this textbook primar-
ily addresses the telecom scientist. Being myself a quantum-mechanics teacher but
not being conversant with the current Telecoms paradigm and its community expecta-
tions, the task of introducing such a textbook is quite a challenge. Furthermore, both
subjects in information theory can be regarded by physicists and engineers from all
horizons, including in telecoms, as essentially academic in scope and rather difficult to
reconcile in their applications. How then do we proceed from there?

I shall state, firsthand, that there is no need to convince the reader (telecom or physi-
cist or both) about the benefits of Shannon’s classical theory. Generally unbeknown to
millions of telecom and computer users, Shannon’s principles pervade all applications
concerning data storage and computer files, digital music and video, wireline and wire-
less broadband communications altogether. The point here is that classical information
theory is not only a must to know from any academic standpoint; it is also a key to
understanding the mathematical principles underlying our information society.

Shannon’s theory being reputed for its completeness and societal impact, the telecom
engineer (and physicist within!) may, therefore, wonder about the benefits of quantum
mechanics (QM), when it comes to information. Do we really need a quantum informa-
tion theory (QIT), considering? What novel concepts may be hiding in there, really, that
we should be aware of? Is quantum information theory a real field with any engineer-
ing worth and perspectives to shape the future, or some kind of fashionable, academic
fantasy?

The answer to the above questions first comes from realizing the no-less phenomenal
impact of quantum physics in modern life. As of today, indeed, there is an amazing
catalog of paradigms, inventions, applications, that have been derived from the quantum
physics of the early twentieth century. Suffice it to mention the laser, whose extraordinary
diversity of applications (global communications, data storage, reprography, imaging,
machining, robotics, surgery, energy, security, aerospace, defense . . .) has truly revolu-
tionized our society and – already – information society. As basic or innocuous as it
may now seem to anyone, the laser invention yet remains a quantum physics jewel, a
man-made wonder, which finds no explanation outside quantum mechanics principles.
How did all this happen?

xii Foreword

Following some 20 years of experimental facts, intuitions and hypotheses, and first
foundations, by mind giants, such as Planck, Einstein, or Bohr, the structure of quantum
mechanics was finally laid down within a pretty short period of time (1925–1927). At this
time, the actual fathers of this revolutionary “worldview” formalism, e.g., de Broglie,
Heisenberg, Schrödinger, or Dirac, could certainly not foresee that future armies of
physicists and engineers would use quantum mechanics as an “Everest base camp” to
conquer many higher summits of knowledge and breakthroughs.

There is practically no field of physics and advanced engineering that has not been
revolutionized from top to bottom by quantum mechanics. Nuclear and particle physi-
cists used quantum mechanics principles to foresee (and then discover experimentally)
the existence of new elementary particles, thus lifting some of the microscopic world
mysteries. Astrophysics and cosmology were also completely rejuvenated as quantum
mechanics formalism proposed explanations for new macroscopic objects, such as white
dwarfs or supernovae. Black body emission, one of the earliest experimental evidences
of the very origin of quantum physics, was also found to explain the electromagnetic
signature of the background of our Universe, telling us about the history of the Big
Bang. The discipline where quantum mechanics had more impact on today’s life was,
however – by and large – solid-state physics. Quantum theory led to the understand-
ing of how electrons and nucleons are organized in solids, how this microscopic world
can evolve, interact with light or X-rays, transport heat, respond to magnetic fields, or
self-organize at atomic scales. Nowadays, quantum chemistry explores the energy lev-
els of electrons in complex molecules, and explains its spectroscopic properties in full
intimacy. Mechanical, thermal, electric, magnetic, and optical properties of matter were
first understood and then engineered. In the second half of the last century, transistors,
storage disks (magnetic and optical), laser diodes, integrated semiconductor circuits
and processors were developed according to an exponential growth pattern. Computers,
telecommunication networks, and cellular phones changed everyone’s life. All sectors
of human activity were deeply influenced by the above technologies. Globalization and
a booming of economy were observed during these decades. Neither a physicist, nor an
economist, nor the last mad sci-fi novel writer, could have foreseen, one century ago,
such a renewal of knowledge, of production means, and of global information sharing.
This consideration illustrates how difficult it is to anticipate the future of mankind, since
major changes can originate from the most basic or innocuous academic discoveries.

In spite of the difficulty of safe predictions, it is the unwritten duty of a physicist to
try to probe this dark matter: the future. While quantum mechanics were revealed to be
phenomenally beneficial to humankind, some physicists believe today that all this history
is nothing but a first, inaugural, chapter. The first chapter would have “only” consisted of
rethinking our world and engineering by introducing a first class of quantum ingredients:
quantification of energy or momentum, wave functions, measurement probabilities,
spin, quarks . . . Alain Aspect from France’s Institut d’Optique, for example, envisions a
“second revolution” of quantum mechanics. This second revolution paradigm will move
the perspective one step further thanks to the ambitious introduction of a new stage of
complexity. A way to approach such a complexity is entanglement, as I shall further
explain.

Foreword xiii

Entanglement, which is the key to understanding the second quantum mechanics
paradigm, is, in fact, an old concept that resurfaced only recently. Although entanglement
was questioned by the famous 1935 joint paper by Einstein, Podolski, and Rosen,1 it
became clear over recent years that the matter represented far more than an academic
discussion, and, furthermore, that it offered new perspectives. What is entanglement?
This property concerns a group of particles that cannot be described separately, despite
their physical separation or difference. A classical view of entanglement is provided
by the picture of two magic dice, which always show up the same face. You may roll
the pair of dice at random as many times as wished, but you will get the same result
as with any single die, namely, a probability of 1/6 each to show up any spot patterns
between 1 and 6, but with a strange property: the same random result is obtained by
the two dice altogether. If one die comes out with six spots, so does the other one.
Although this phenomenon of entanglement has no equivalent in the classical world
as we normally experience it, it becomes real and tangible at the atomic scale. And
unbeknown to large and even scientifically cultivated audiences, physicists have been
playing with entanglement for about 20 years.

By means of increasingly sophisticated tools making it possible to manipulate sin-
gle atoms, electrons, or photons, physicists are now beginning, literally, to “engineer”
entangled states of matter. The Holy Grail they are after is building a practical toolbox
for quantum entanglement. It is not clear at present which approach may show efficient,
resilient, and environment-insensitive entanglement, while at the same time remaining
“observable” and, furthermore, lending itself to external manipulation. To darken the
picture, it is not at all clear either what could be the maximum size of an entangled
system. Such questions come close to the actual definition of the boundary between the
quantum and classical worlds, as emphasized by the famous Schrödinger’s cat paradox.
We may find ourselves in a situation similar to that of solid-state physics after World
War II: quantum physics and many solid-state physics concepts were duly established,
but the transistor remained yet to be invented. To the same extent that the revolution-
ary concepts of electronic wave functions, band theory, and conductivity led to the
development of modern electronics and computers, the concept of entanglement, which
stands at the core of quantum information, is now waiting for a revolutionary outcome.
The parallel evolution between the different constitutive elements of entangled sys-
tems indeed offers huge opportunities to build radically new computing machines, with
unprecedented characteristics and performance.

What does entanglement have to do with complexity? Whereas basic mechanics laws
can predict the trajectory of a ball, the oscillation period of a pendulum, the lift of a plane,
complexity characterizes systems where the overall properties cannot be derived from
that of the constituent subsystems. For the philosopher Edgar Morin, it is not the number
of the components that defines the complexity of any system. More components certainly
call for more computing power to calculate the system’s behavior, but the problem
remains tractable in polynomial time (e.g., quadratic in the number of components): it

1 A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be consid-
ered complete? Phys. Rev., 47 (1935), 777–80.

xiv Foreword

is referred to as a “P” problem. Complexity is another story: “complex” has a different
meaning here from “complicated.” It is, rather, the intimate nature of the interaction
between the different components (including, for instance, recursion) that governs the
emergence of novel types and classes of macroscopic behavior. Complex systems show
properties that are not predictable from the single analysis of their constitutive elements,
just as the properties of entangled particles cannot be understood from the simple
inference of single particule behaviors.

In the last decades, complex systems have caused many developments in fields as
varied as physics, astrophysics, chemistry, and biology. New mathematical tools, chaos,
nonlinear physics, have been introduced. From the dynamics of sand dunes to schools
of fishes, from ferrofluids to traffic jams, complexity never results from a simple extrap-
olation of classical individual behaviors. Hence, the challenge of understanding and
harnessing entanglement is the possibility of extending the perspectives of quantum
mechanics in the same way that macroscopic physics was renewed by the introduction
of complexity. Entanglement is the complexity of quantum mechanics.

Considering this, it is not surprising that Shannon’s classical theory of information
(CIT) and quantum physics, with the emerging field of quantum information theory
(QIT), have many background concepts in common. The former classical theory of
information was a revolution in its own times, just as quantum mechanics, but with
neither conceptual links, nor the least parallelism whatsoever with the latter. The great
news is that the two fields have finally reached each other, in most unexpected and
elegant ways. It is at the very interface of these two fields and cultures, classical and
quantum information theory, that this textbook takes a crucial place and also innovates in
the descriptive approach. I have spent so much time as Head of the Physics Department
in my University convincing students and researchers to kick against the partitioning
between physics and science in general, that I am very pleased to welcome this work of
Emmanuel Desurvire, which is a model of scientific “hybridization.”

Combining the cultures of a physicist (as a researcher), an academic (as a former
professor and author of several books), and an engineer (as a developer and project
manager) from the telecom industry, Emmanuel Desurvire attempts here to bridge the gap
between the CIT and QIT cultures. On the CIT side, fundamentals, such as information,
entropy, mutual entropy, and Shannon capacity theorems, are reviewed in detail, using a
wealth of practical and original application examples. Worth mentioning are the reputedly
difficult notions of Kolmogorov complexity and Turing machines, which were developed
independently from Shannon during the same historical times, described herewith with
thrust and clarity, again with original examples and illustrations. The mind-boggling (and
little-known) conclusion to be retained is that Kolmogorov complexity and Shannon
entropy asymptotically converge towards each other, despite fundamentally different
ground assumptions. Then, under any expectation for a textbook in this subject, comes
a detailed (and here quite vivid) description of various principles of data compression
(coding optimality, integer, arithmetic, and adaptive compression) and error-correction
coding (block and cyclic codes). Shannon’s classical theory of information then moves on
and concludes with the channel-capacity theorems, including the most elegant Shannon–
Hartley theorem of incredibly simple and universal formulation, C = log(1 + SNR),

Foreword xv

which relates the channel capacity (C) to the signal-to-noise ratio (SNR) available at the
channel’s end.

The second part of Emmanuel Desurvire’s book is about quantum information theory.
This is where the telecom scientist, together with the author, is taken out to a work
tour that she or he may not forget, hopefully a most stimulating and pleasurable one.
With the notion of reversible computation and the Landauer Principle, the reader gets
a first hint that “information is physical.” It takes a quantum of heat kT to tamper with
a single classical bit. From this point on, we begin to feel that quantum mechanics
realities are standing close behind. Then come the notions of quantum bits or qubits and
their logic gates to form elementary quantum circuits. Such an innocuous introduction,
in fact, represents the launching pad of a rocket destined to send the reader into QIT
orbit. In this adventurous journey, no spot of interest is neglected, from superdense
coding, teleportation, the Deutsch–Jozsa algorithm, quantum Fourier transform and
Grover’s Quantum Database Search, to the mythical Shor factorization algorithm. Here,
the demonstration of Shor’s algorithm turns out to be very interesting and useful. Most
physicists have heard about this incredible possibility, offered by quantum computing, of
factorizing huge numbers within a short time, but have rarely gone into the explanatory
detail. Shor’s algorithm resembles the green flash: heard of by many, seen by some,
but understood by few. The interest continues with a discussion of the computing times
required for factorization with classical means, and to meet the various RSA challenges
offered on the Internet.

The conclusive chapter on cryptography is also quite original in its approach and con-
clusions. First, it includes both classical and quantum cryptography concepts, according
to the author’s view that there is no point in addressing the second if one has not mastered
the first. Cryptography, a serious matter for network security and privacy, is treated here
with the very instructive and specific view of a telecom scientist. Forcefully and crudely
stated, “The world is ugly out there,” in spite of Alice and Bob’s “provably secure” key
exchanges (quantum key distribution, QKD). Let one not be mistaken as to the author’s
intent. Quantum key distribution is most precious as an element in the network security
chain; Emmanuel Desurvire is only reminding the community, now with the authority
of a telecom professor, that Alice and Bob are exposed, in turn, to higher-level network
attacks, and that unless the Internet becomes quantum all the way through, there is no
such a thing as “absolute” network security. It is only with this type of cross-disciplined
book that elementary truths of the like may be spelled out.

A pervasive value and flavor of this book is that the many practical examples and illus-
trations provided help the reader to think concrete. Both the classical and quantum sides
of information theory may seem difficult, rusty, oblivious, if not forthright mysterious
to many engineers and scientists since long-past school graduation. More so with the
quantum side, which is actually a recent expansion of knowledge (as dated after the Shor
algorithm “milestone”), and that only a few engineers and scientists had the privilege
to be exposed to so far, prior to beginning their professional careers. Hence, this book
represents a first attempt at reconciling old with new knowledge, as destined primarily to
mature engineers and scientists, particularly from, but not limited to, the telecom circle.
Decision makers from government and industry, investors, and entrepreneurs may also

xvi Foreword

reap some benefit by being better acquainted with the reality of quantum mechanics and
the huge application potentials of QIT, apart from any timeliness consideration. Progress
in quantum information theory may be a (very) long-term view indeed, but its future is
confined to today’s humble steps; called awareness, discipline, imagination, creativity
and patience.

Thanks to Emmanuel Desurvire’s book, many concepts such as quantum information
theory, and the reconciliation and familiarity thereof, will be shared by both engineers
and physicists, within the telecom community and hopefully far beyond. It is our deep
conviction that such cross-border knowledge sharing is necessary to engage in this
second revolution of quantum physics.

Professor Vincent Berger
Université Paris-Diderot, Paris 7
February 29, 2008

Introduction

In the world of telecoms, the term information conveys several levels of meaning. It
may concern individual bits, bit sequences, blocks, frames, or packets. It may represent
a message payload, or its overhead; the necessary extra information for the network
nodes to transmit the message payload practically and safely from one end to another.
In many successive stages, this information is encapsulated altogether to form larger
blocks corresponding to higher-level network protocols, and the reverse all the way
down to destination. From any telecom-scientist viewpoint, information represents this
uninterrupted flow of bits, with network intelligence to process it. Once converted into
characters or pixels, the remaining message bits become meaningful or valuable in terms
of acquisition, learning, decision, motion, or entertainment. In such a larger network
perspective, where information is well under control and delivered with the quality of
service, what could be today’s need for any information theory (IT)?

In the telecom research community indeed, there seems to be little interest for infor-
mation theory, as based on the valid perception that there is nothing new to worry
about. While the occasional evocation of Shannon invariably raises passionate group
discussions, the professional focus is about the exploitation of bandwidth and network
deployment issues. The telecom scientist may, however, wonder about the potentials of
quantum information and computing, and their impact. But not only does the field seem
intractable to the nonspecialist, its applications are widely believed to belong to the far-
distant future. Then what could be this community’s need for any quantum information
theory (QIT)? While some genuine interest has been raised by the outcome of quantum
cryptography, or more accurately, quantum key distribution (QKD), there is at present
not enough matter of concern or driving market factor to bring QIT into the core of
telecoms.

The situation is made even more confused through the fact that information theory
and quantum information theory appear to have little in common, or that the parallels
between the two can be established only at the expense of advanced specialization.
The telecom scientist is thus left with unsolved questions. For instance, what is quantum
information, and how is it different from Shannon’s theorem? How is information carried
by qubits, as opposed to classical bits? How do IT theorems translate into QIT? What
are the ultimate algorithms for quantum information compression, error correction, and
encryption, and what benefit do they provide, compared with classical approaches? What
are the main conceptual realizations of quantum information processing? The curious
might peruse reference books, key papers, or Internet cross-references and tutorials, but

xviii Introduction

this endeavor leaves little chance of reaching satisfying conclusions, let alone acquiring
solid grounds for pointing to future research directions.

To summarize, on one hand, we find the old-and-forgotten IT field, with its wealth of
very mature applications in all possible areas of information processing. On the other
hand, we find the more recent and poorly known QIT field, showing high promise,
but little potential of application within reasonable sight. In between, the difficulty for
nonspecialists to make sense of any parallels between the two, and the lack of motivation
to dig into what appears an austere or intractable bunch of mathematical formalism.

The above description suggests the reason why this book was written, and its key
purpose. Primarily, it is my belief that IT is incomplete without QIT, and that the
second should not be approached without a fair assimilation of the first. Secondly,
the mathematical difficulties of IT and QIT can, largely, be alleviated by making the
presentation less formal than in the usual academic reference format. This does not mean
oversimplification, but rather skipping many academic caveats, which flourish in most
reference textbooks, and which make progression a tedious and risky adventure. Our
portrayed telecom scientist only needs the fundamental concepts, along with supporting
proof at a satisfactory level. Also, IT and QIT can be made far more interesting and
entertaining by use of many illustrations and application examples.

With these goals in mind, this book has been organized as a sequence of chapters,
each of which can be presented in two or three hour courses or seminars, and which the
reader should be able to teach in turn! Except at the beginning, the sequence of chapters
presents a near-uniform level of difficulty, which rapidly assures the reader that she or
he will be able to make it to the very end. For the demanding, or later reference, the most
advanced demonstrations have been relegated into as many Appendices. To lighten the
text, an extensive use of footnotes is made. These footnotes also contain useful Internet
links, and sometimes bibliographical references. Finally, lots of original exercises with
difficulty levels graded as basic (B), medium (M), or tricky (T) are proposed, the set
of solutions being available to class teachers from Cambridge University Press. As to
the Internet links, one is aware that they do not have the value of permanent references,
owing to the finite lifetime of most websites or their locators or addresses (URL). To
alleviate this problem, the Publisher has agreed with the author to keep up an updated
list of URLs on the associated website: www.cambridge.org/9780521881715, along with
errata information.

What about the book contents?
The first two chapters (1 and 2) concern basic recalls of probability theory. These are

purposefully entertaining to read, while the advanced reader might find useful teaching
ideas for undergraduate courses.

Chapter 3 addresses the tricky concept of information measure. We learn something
that everyone intuitively knows, namely, that there is no or little information in events
that are certain or likely to happen. Uncertainty, on the other hand, is associated with
high information contents.

When several possible events are being considered, the correct information measure
becomes entropy (Chapters 4–6). As shown, Shannon’s entropy concept in IT is not with-
out strong but subtle connections with the world of Boltzmann’s thermodynamics. But

Introduction xix

IT goes a step further with the key notion of mutual information, and other useful entropy
definitions (joint, conditional, relative), including those related to continuous random
variables (differential). Chapter 7, on algorithmic entropy (or equivalently, Kolmogorov
complexity), is meant to be a real treat. This subject, which comes with its strange Turing
machines, is, however, reputedly difficult. Yet the reader should not find the presenta-
tion level different from preceding material, thanks to many supporting examples. The
conceptual beauty and reward of the chapter is the asymptotic convergence between
Shannon’s entropy and Kolmogorov’s complexity, which were derived on completely
independent assumptions!

Chapters 8–10 take on a tour of information coding, which is primarily the art of
compressing bits into shorter sequences. This is where IT finds its first and everlasting
success, namely, Shannon’s source coding theorem, leading to the notion of coding opti-
mality. Several coding algorithms (Huffmann, integer, arithmetic, adaptive) are reviewed,
along with a daring appendix (Appendix G), attempting to convey a comprehensive flavor
in both audio and video standards.

With Chapter 11, we enter the magical world of error correction. For the scientist,
unlike the telecom engineer, it is phenomenal that bit errors coming from random
physical events can be corrected with 100% accuracy. Here, we reach the concept of
a communication channel, with its own imperfections and intrinsic noise. The chapter
reviews the principles and various families of block codes and cyclic codes, showing
various capabilities of error-correction performance.

The communication channel concept is fully disclosed in the description going through
Chapters 12–14. After reviewing channel entropy (or mutual information in the channel),
we reach Shannon’s most famous channel-coding theorem, which sets the ultimate limits
of channel capacity and error-correction potentials. The case of the Gaussian channel,
as defined by continuous random variables for signal and noise, leads to the elegant
Shannon–Hartley theorem, of universal implications in the field of telecoms. This closes
the first half of the book.

Next we approach QIT by addressing the issue of computation reversibility
(Chapter 15). This is where we learn that information is “physical,” according to Lan-
dauer’s principle and based on the fascinating “Maxwell’s demon” (thought) experiment.
We also learn how quantum gates must differ from classical Boolean logic gates, and
introduce the notion of quantum bit, or qubit, which can be manipulated by a “zoo” of
elementary quantum gates and circuits based on Pauli matrices.

Chapters 17 and 18 are about quantum measurements and quantum entanglement,
and some illustrative applications in superdense coding and quantum teleportation. In
the last case, an appendix (Appendix P) describes the algorithm and quantum circuit
required to achieve the teleportation of two qubits simultaneously, which conveys a
flavor of the teleportation of more complex systems.

The two former chapters make it possible in Chapters 19 and 20 to venture further into
the field of quantum computing (QC), with the Deutsch–Jozsa algorithm, the quantum
Fourier transform, and, overall, two famous QC algorithms referred to as the Grover
Quantum Database Search and Shor’s factorization. If, some day it could be implemented
in a physical quantum computer, Grover’s search would make it possible to explore

xx Introduction

databases with a quadratic increase in speed, as compared with any classical computer. As
to Shor’s factorization, it would represent the end of classical cryptography in global use
today. It is, therefore, important to gain a basic understanding of both Grover and Shor QC
algorithms, which is not a trivial task altogether! Such an understanding not only conveys
a flavor of QC power and potentials (as due to the property of quantum parallelism), but
it also brings an awareness of the high complexity of quantum-computing circuits, and
thus raises true questions about practical hardware, or massive or parallel quantum-gates
implementation.

Quantum information theory really begins with Chapter 21, along with the intro-
duction of von Neumann entropy, and related variants echoing the classical ones. With
Chapters 22 and 23, the elegant analog of Shannon’s channel source-coding and channel-
capacity theorems, this time for quantum channels, is reached with the Holevo bound
concept and the so-called HSW theorem.

Chapter 24 is about quantum error correction, in which we learn that various types of
single-qubit errors can be effectively and elegantly corrected with the nine-qubit Shor
code or more powerfully with the equally elegant, but more universal seven-qubit CSS
code.

The book concludes with a hefty chapter dedicated to classical and quantum cryptog-
raphy together. It is the author’s observation and conviction that quantum cryptography
cannot be safely approached (academically speaking) without a fair education and aware-
ness of what cryptography, and overall, network security are all about. Indeed, there is a
fallacy in believing in “absolute security” of one given ring in the security chain. Quan-
tum cryptography, or more specifically as we have seen earlier, quantum key distribution
(QKD), is only one constituent of the security issue, and contrary to common belief, it
is itself exposed to several forms of potential attacks. Only with such a state of mind can
cryptography be approached, and QKD be appreciated as to its relative merits.

Concerning the QIT and QC side, it is important to note that this book purposefully
avoids touching on two key issues: the effects of quantum decoherence, and the physical
implementation of quantum-gate circuits. These two issues, which are intimately related,
are of central importance in the industrial realization of practical, massively parallel
quantum computers. In this respect, the experimental domain is still at a stage of infancy,
and books describing the current or future technology avenues in QC already fill entire
shelves.

Notwithstanding long-term expectations and coverage limitations, it is my conviction
that this present book may largely enable telecom scientists to gain a first and fairly
complete appraisal of both IT and QIT. Furthermore, the reading experience should
substantially help one to acquire a solid background for understanding QC applications
and experimental realizations, and orienting one’s research programs and proposals
accordingly. In large companies, such a background should also turn out to be helpful to
propose related positioning and academic partnership strategy to the top management,
with confident knowledge and conviction.

Acknowledgments

The author is indebted to Dr. Ivan Favero and Dr. Xavier Caillet of the Université
Paris-Diderot and Centre National de la Recherche Scientifique (CNRS, www.cnrs.
fr/index.html) for their critical review of the manuscript and very helpful suggestions
for improvement, and to Professor Vincent Berger of the Université Paris-Diderot and
Centre National de la Recherche Scientifique (CNRS, www.cnrs.fr/index.html) for his
Foreword to this book.

1 Probability basics

Because of the reader’s interest in information theory, it is assumed that, to some extent,
he or she is relatively familiar with probability theory, its main concepts, theorems, and
practical tools. Whether a graduate student or a confirmed professional, it is possible,
however, that a good fraction, if not all of this background knowledge has been somewhat
forgotten over time, or has become a bit rusty, or even worse, completely obliterated by
one’s academic or professional specialization!

This is why this book includes a couple of chapters on probability basics. Should
such basics be crystal clear in the reader’s mind, however, then these two chapters could
be skipped at once. They can always be revisited later for backup, should some of the
associated concepts and tools present any hurdles in the following chapters. This being
stated, some expert readers may yet dare testing their knowledge by considering some
of this chapter’s (easy) problems, for starters. Finally, any parent or teacher might find
the first chapter useful to introduce children and teens to probability.

I have sought to make this review of probabilities basics as simple, informal, and
practical as it could be. Just like the rest of this book, it is definitely not intended to be a
math course, according to the canonic theorem–proof–lemma–example suite. There exist
scores of rigorous books on probability theory at all levels, as well as many Internet sites
providing elementary tutorials on the subject. But one will find there either too much or
too little material to approach Information Theory, leading to potential discouragement.
Here, I shall be content with only those elements and tools that are needed or are used in
this book. I present them in an original and straightforward way, using fun examples. I
have no concern to be rigorous and complete in the academic sense, but only to remain
accurate and clear in all possible simplifications. With this approach, even a reader who
has had little or no exposure to probability theory should also be able to enjoy the rest
of this book.

1.1 Events, event space, and probabilities

As we experience it, reality can be viewed as made of different environments or situations
in time and space, where a variety of possible events may take place. Consider dull
and boring life events. Excluding future possibilities, basic events can be anything
like:

2 Probability basics

� It is raining,
� I miss the train,
� Mom calls,
� The check is in the mail,
� The flight has been delayed,
� The light bulb is burnt out,
� The client signed the contract,
� The team won the game.

Here, the events are defined in the present or past tense, meaning that they are known
facts. These known facts represent something that is either true or false, experienced
or not, verified or not. If I say, “Tomorrow will be raining,” this is only an assumption
concerning the future, which may or may not turn out to be true (for that matter, weather
forecasts do not enjoy universal trust). Then tomorrow will tell, with rain being a more
likely possibility among other ones. Thus, future events, as we may expect them to come
out, are well defined facts associated with some degree of likelihood. If we are amidst
the Sahara desert or in Paris on a day in November, then rain as an event is associated
with a very low or a very high likelihood, respectively. Yet, that day precisely it may
rain in the desert or it may shine in Paris, against all preconceived certainties. To make
things even more complex (and for that matter, to make life exciting), a few other events
may occur, which weren’t included in any of our predictions.

Within a given environment of causes and effects, one can make a list of all possible
events. The set of events is referred to as an event space (also called sample space).
The event space includes anything that can possibly happen.1 In the case of a sports
match between opposing two teams, A and B, for instance, the basic event space is the
four-element set:

S =

team A wins
team A loses

a draw
game canceled

 , (1.1)

with it being implicit that if team A wins, then team B loses, and the reverse. We can
then say that the events “team A wins” and “team B loses” are strictly equivalent, and
need not be listed twice in the event space. People may take bets as to which team is
likely to win (not without some local or affective bias). There may be a draw, or the
game may be canceled because of a storm or an earthquake, in that order of likelihood.
This pretty much closes the event space.

When considering a trial or an experiment, events are referred to as outcomes. An
experiment may consist of picking up a card from a 32-card deck. One out of the 32
possible outcomes is the card being the Queen of Hearts. The event space associated

1 In any environment, the list of possible events is generally infinite. One may then conceive of the event space
as a limited set of well defined events which encompass all known possibilities at the time of the inventory.
If other unknown possibilities exist, then an event category called “other” can be introduced to close the
event space.

1.1 Events, event space, and probabilities 3

with this experiment is the list of all 32 cards. Another experiment may consist in
picking up two cards successively, which defines a different event space, as illustrated in
Section 1.3, which concerns combined and joint events.

The probability is the mathematical measure of the likelihood associated with a given
event. This measure is called p(event). By definition, the measure ranges in a zero-to-one
scale. Consistently with this definition, p(event) = 0 means that the event is absolutely
unlikely or “impossible,” and p(event) = 1 is absolutely certain.

Let us not discuss here what “absolutely” or “impossible” might really mean in
our physical world. As we know, such extreme notions are only relative ones! Simply
defined, without purchasing a ticket, it is impossible to win the lottery! And driving
50 mph above the speed limit while passing in front of a police patrol leads to absolute
certainty of getting a ticket. Let’s leave alone the weak possibilities of finding by chance
the winning lottery ticket on the curb, or that the police officer turns out to be an old
schoolmate. That’s part of the event space, too, but let’s not stretch reality too far. Let us
then be satisfied here with the intuitive notions that impossibility and absolute certainty
do actually exist.

Next, formalize what has just been described. A set of different events in a family
called x may be labeled according to a series x1, x2, . . . , xN , where N is the number of
events in the event space S = {x1, x2, . . . , xN }. The probability p(event = xi), namely,
the probability that the outcome turns out to be the event xi, will be noted p(xi) for
short.

In the general case, and as we well know, events are neither “absolutely certain” nor
“impossible.” Therefore, their associated probabilities can be any real number between
0 and 1. Formally, for all events xi belonging to the space S = {x1, x2, . . . , xN }, we
have:

0 ≤ p(xi) ≤ 1. (1.2)

Probabilities are also commonly defined as percentages. The event is said to have
anything between a 0% chance (impossible) and a 100% chance (absolutely certain) of
happening, which means strictly the same as using a 0–1 scale. For instance, an election
poll will give a 55% chance of a candidate winning. It is equivalent to saying that the
odds for this candidate are 55:45, or that p(candidate wins) = 0.55.

As a fundamental rule, the sum of all probabilities associated with an event space S
is equal to unity. Formally,

p(x1) + p(x2) + · · · p(xN) =
i=N∑
i=1

p(xi) = 1. (1.3)

In the above, the symbol � (in Greek, capital S or sigma) implies the summation of the
argument p(xi) with index i being varied from i = 1 to i = N , as specified under and
above the sigma sign. This concise math notation is to be well assimilated, as it will
be used extensively throughout this book. We can interpret the above summation rule
according to:

It is absolutely certain that one event in the space will occur.

4 Probability basics

This is another way of stating that the space includes all possibilities, as for the game
space defined in Eq. (1.1). I will come back to this notion in Section 1.3, when considering
combined probabilities.

But how are the probabilities calculated or estimated? The answer depends on whether
or not the event space is well or completely defined. Assume first for simplicity the first
case: we know for sure all the possible events and the space is complete. Consider
then two familiar games: coin tossing and playing dice, which I am going to use as
examples.

Coin tossing

The coin has two sides, heads and tails. The experiment of tossing the coin has two
possible outcomes (heads or tails), if we discard any possibility that the coin rolls on the
floor and stops on its edge, as a third physical outcome! To be sure, the coin’s mass is
also assumed to be uniformly distributed into both sides, and the coin randomly flipped,
in such a way that no side is more likely to show up than the other. The two outcomes
are said to be equiprobable. The event space is S = {heads, tails}, and, according to the
previous assumptions, p(heads) = p(tails). Since the space includes all possibilities, we
apply the rule in Eq. (1.3) to get p(heads) = p(tails) = 1/2 = 0.5. The odds of getting
heads or tails are 50%. In contrast, a realistic coin mass distribution and coin flip may
not be so perfect, so that, for instance, p(heads) = 0.55 and p(tails) = 0.45.

Rolling dice (game 1)

Play first with a single die. The die has six faces numbered one to six (after their number
of spots). As for the coin, the die is supposed to land on one face, excluding the possibility
(however well observed in real life!) that it may stop on one of its eight corners after
stopping against an obstacle. Thus the event space is S = {1, 2, 3, 4, 5, 6}, and with the
equiprobability assumption, we have p(1) = p(2) = · · · = p(6) = 1/6 ≈ 0.166 666 6.

Rolling dice (game 2)

Now play with two dice. The game consists in adding the spots showing in the faces.
Taking successive turns between different players, the winner is the one who gets the
highest count. The sum of points varies between 1 + 1 = 2 to 6 + 6 = 12, as illustrated
in Fig. 1.1. The event space is thus S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, corresponding
to 36 possible outcomes. Here, the key difference from the two previous examples is
that the events (sum of spots) are not equiprobable. It is, indeed, seen from the figure
that there exist six possibilities of obtaining the number x = 7, while there is only one
possibility of obtaining either the number x = 2 or the number x = 12. The count of
possibilities is shown in the graph in Fig. 1.2(a).

Such a graph is referred to as a histogram. If one divides the number of counts by
the total number of possibilities (here 36), one obtains the corresponding probabilities.
For instance, p(x = 2) = p(x = 22) = 1/36 = 0.028, and p(x = 7) = 6/36 = 0.167.
The different probabilities are plotted in Fig. 1.2(b). To complete the plot, we have

1.1 Events, event space, and probabilities 5

Figure 1.1 The 36 possible outcomes of counting points from casting two dice.

7
6
5
4
3
2
1

2 3 4 5 6 7 8 9 10 11 12

(a)

(b)

0.000
0.020
0.040
0.060
0.080

0.100
0.120
0.140
0.160
0.180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count

P
ro

ba
bi

lit
y

Figure 1.2 (a) Number of possibilities associated with each possible outcome of casting two dice,
(b) corresponding probability distribution.

included the two count events x = 1 and x = 13, which both have zero probability.
Such a plot is referred to as the probability distribution; it is also called the probability
distribution function (PDF). See more in Chapter 2 on PDFs and examples. Consistently
with the rule in Eq. (1.3), the sum of all probabilities is equal to unity. It is equivalent
to say that the surface between the PDF curve linking the different points (x, p(x)) and

6 Probability basics

the horizontal axis is unity. Indeed, this surface is given by s = (13 − 1)∗p(x = 7)/2 =
12∗(6/36)/2≡ 1.

The last example allows us to introduce a fundamental definition of the probability
p (xi) in the general case where the events xi in the space S = {x1, x2, . . . , xN } do not
have equal likelihood:

p(xi) = number of possibilities for event i

number of possibilities for all events
. (1.4)

This general definition has been used in the three previous examples. The single coin
tossing or single die casting are characterized by equiprobable events, in which case the
PDF is said to be uniform. In the case of the two-dice roll, the PDF is nonuniform with
a triangular shape, and peaks about the event x = 7, as we have just seen.

Here we are reaching a subtle point in the notion of probability, which is often
mistaken or misunderstood. The known fact that, in principle, a flipped coin has equal
chances to fall on heads or tails provides no clue as to what the outcome will be. We may
just observe the coin falling on tails several times in a row, before it finally chooses to
fall on heads, as the reader can easily check (try doing the experiment!). Therefore, the
meaning of a probability is not the prediction of the outcome (event x being verified) but
the measure of how likely such an event is. Therefore, it actually takes quite a number
of trials to measure such likelihood: one trial is surely not enough, and worse, several
trials could lead to the wrong measure. To sense the difference between probability and
outcome better, and to get a notion of how many trials could be required to approach a
good measure, let’s go through a realistic coin-tossing experiment.

First, it is important to practice a little bit in order to know how to flip the coin with a
good feeling of randomness (the reader will find that such a feeling is far from obvious!).
The experiment may proceed as follows: flip the coin then record the result on a piece
of paper (heads = H, tails = T), and make a pause once in a while to enter the data in
a computer spreadsheet (it being important for concentration and expediency not to try
performing the two tasks altogether). The interest of the computer spreadsheet is the
possibility of seeing the statistics plotted as the experiment unfolds. This creates a real
sense of fun. Actually, the computer should plot the cumulative count of heads and tails,
as well as the experimental PDF calculated at each step from Eq. (1.4), which for clarity
I reformulate as follows:

p(heads) = number of heads counts

number of trials

p(tails) = number of tails counts

number of trials
.

(1.5)

The plots of the author’s own experiment, by means of 700 successive trials, are shown
in Fig. 1.3. The first figure shows the cumulative counts for heads and tails, while the
second figure shows plots of the corresponding experimental probabilities p(heads),
p(tails) as the number of trials increases. As expected, the counts for heads and tails are
seemingly equal, at least when considering large numbers. However, the detail shows that
time and again, the counts significantly depart from each other, meaning that there are
more heads than tails or the reverse. But eventually these discrepancies seem to correct

1.1 Events, event space, and probabilities 7

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

Number of trials

C
ou

nt

Heads

Tails

0

50

0 100

(a)

0.4

0.5

0.6

0 100 200 300 400 500 600 700
Number of trials

P
ro

ba
bi

lit
y

Heads

Tails

(b)

Figure 1.3 Experimental determination of the probability distribution of coin flipping, by means
of 700 successive trials: (a) cumulative count of head and tails outcomes with inset showing
detail for the first 100 trials, (b) corresponding probabilities.

themselves as the game progresses, as if the coin would “know” how to come back to
the 50:50 odds rule. Strange isn’t it? The discrepancies between counts are reflected
by the wide oscillations of the PDF (Fig. 1.3(b)). But as the experiment progresses,
the oscillations are damped to the point where p(heads) ≈ p(tails) ≈ 0.5, following an
asymptotic behavior.2

2 Performing this experiment and obtaining such results is not straightforward. Different types of coins must
be tested first, some being easier to flip than others, because of size or mass. Some coins seem not to lead

8 Probability basics

The above experiment illustrates the difference between event probabilities and their
actual outcomes in the physical world. The nice thing about probability theory is that
the PDF gives one a sense of the unknown when it comes to a relatively large number
of outcomes, as if the unknown, or “chance,” were domesticated by underlying mythical
principles. On the other hand, a known probability gives no clue about a single event,
just a sense of what it is most likely to be. A fair way to conceive of a 10% odds is that
the corresponding event “should be observed” at least once after ten outcomes, and at
least ten times after 100 outcomes, and very close to Q/10 times after Q outcomes, the
closeness being increasingly accurate as Q becomes larger. The expression “should be
observed” progresses towards “should be absolutely certain.” To top off this statement,
we can say that an event with a finite, nonzero probability is absolutely certain to
occur at least once in the unbounded future. Such a statement is true provided the
physics governing the event (and its associated PDF) remain indefinitely the same, or is
“invariant by time translation” in physicists’ jargon.

1.2 Combinatorics

The examples in the previous section concerned events whose numbers of possible
occurrences in a given trial are easily defined. For instance, we know for certain that a
single die has exactly six faces, with their corresponding numbers of spots. But when
adding spots from two dice (rolling dice, game 2), we had to go through a kind of
inventory in order to figure out all the different possibilities. While this inventory was
straightforward in this example, in the general case it can be much more tedious if not
very complex. Studying the number of different ways of counting and arranging events is
called combinatorial analysis or combinatorics. Instead of formalizing combinatorics at
once, a few practical examples are going to be used to introduce its underlying concepts
progressively.

Arranging books on a shelf

This is a recurrent problem when moving into a new home or office. A lazy solution is
to unpack the books and arrange them on the shelf from left to right, as we randomly
pick them up from the box. How many different ways can we do this?

Answer: Say the shelf can hold ten books, and number the book position from the
left. Assume that the box fits in ten different (or distinguishable) books. The number
of ways to pick up the first book to place in position 1 is, therefore, Q = 10. For the
second book to put in position 2, there remain nine possibilities. So far, there have
been Q = 10 × 9 possibilities. Positioning next the third book, the count of possibilities
becomes Q = 10 × 9 × 8. And so on, until the last book, for which there is only a single

to equiprobable outcomes, even over a number of trials as high as 1000 and after trying different tossing
methods. If the coin is not 100% balanced between the two sides in terms of mass, nonuniform PDFs can
be obtained.

1.2 Combinatorics 9

choice left, which gives for the total number of possibilities: Q = 10 × 9 × 8 × 7 ×
6 × 5 × 4 × 3 × 2 × 1. By definition, this product is called the factorial of 10 and is
noted 10!

More generally, for any integer number n we have the factorial definition:

n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1. (1.6)

Thus

1! = 1,

2! = 2 × 1 = 2,

3! = 3 × 2 × 1 = 6,

and so on. One can easily compute 10! (using, for instance, the factorial function of a
scientific pocket calculator) to find

10! = 3 628 800 ≈ 3.6 million.

There is an impressive number of ways indeed to personalize one’s office shelves!
When it comes to somewhat greater arguments (e.g., n = 100), the factorials cannot

be computed by hand or through a pocket calculator, owing to their huge size. To provide
an idea (as computed through a spreadsheet math function up to a maximum of 170!):

50! ≈ 3.0 × 1064,

100! ≈ 9.3 × 10157,

170! ≈ 7.2 × 10306.

In this case it is possible to use Stirling’s approximation theorem, which is written as

n! ≈ nne−n
√

2πn. (1.7)

Remarkably, the Stirling theorem is accurate within 1.0% for arguments n ≥ 10 and
within 0.20% for arguments n ≥ 40.

To summarize, the factorial of n is the number of ways to arrange n distinguishable
elements into a given orderly fashion. Such an arrangement is also called a permutation.
What about the factorial of the number zero? By convention, mathematicians have set
the odd property

0! = 1.

We shall accept here that 0! = 1 without advanced justification. Simply put, if not a
satisfactory explanation, there is only one way to arrange/permute a set containing zero
element.3

Consider next a second example.

3 For the math-oriented reader, it is interesting to mention that the factorial function can be generalized to
any real or even complex arguments x, i.e., x! = �(x + 1), where � is the gamma function, which can be
computed numerically.

10 Probability basics

Arranging books on a shelf, with duplicates

Assume that some of the books have one or even several duplicate copies, which can-
not be distinguished from each other, as in a bookstore. For instance, the series of
10 books includes two brand-new English–Russian dictionaries. Having these two in
shelf positions (a, b) or (b, a) represents the same arrangement. So as not to count this
arrangement twice, we should divide the previous result (10!) by two (2!), which is the
number of possible permutations for the duplicated dictionaries. If we had three identical
books in the series, we should divide the result by six (3!), and so on. It is clear, then,
that the number of ways of arranging n elements containing p indistinguishable elements
and n − p distinguishable ones is given by the ratio:

Ap
n = n!

p!
. (1.8)

The above theorem defines the number of possible arrangements “without repetition”
(of the indistinguishable copies). Consistently, if the series contains n indistinguishable
duplicates, the number of arrangements is simply An

n = n!/n! = 1, namely, leaving a
unique possibility.

The next example will make us progress one step more. Assume that we must make
a selection from a set of objects. The objects can be all different, all identical, or partly
duplicated, which does not matter. We would only like to know the number of possibilities
there are to make any random selection of these objects.

Fruit-market shopping

In a fruit market, the stall displays 100 fruits of various species and origins. We have
in mind to pick at random up to five fruits, without preference. There are 100 different
possibilities to pick up the first fruit, 99 possibilities to pick up the second, and so
on until the last fifth, which has 96 possibilities left. The total number of possibilities
to select five specific fruits out of 100 is therefore Q = 100 × 99 × 98 × 97 × 96.
Based on the definition of factorials in Eq. (1.6), we can write this number in the form
Q = 100!/95! = 100!/(100 − 5)! But in each selection of five fruits we put into the
bag, it does not matter in which order they have been selected. All permutations of these
five specific fruits, (which are 5!), represent the same final bag selection. Therefore, the
above count should be divided by 5! because of the 5! possible redundancies. The end
result is, therefore, Q = 100!/[5!(100 − 5)!]. Most generally, the number of ways to
pick up p unordered samples out of a set of n items is

C p
n = n!

p!(n − p)!
. (1.9)

The number C p
n , which is also noted (n

p) or nC p or C(n, p) is called the binomial
coefficient.4

4 Since the factorial is expandable to a continuous function (see previous note), the binomial coeff-
icient is most generally defined for any real/complex x, y numbers as C y

x = � (x + 1) /

� (y) [� (x − y + 1)]. Beautiful plots of C y
x in the real x, y plane, and more on the very rich binomial

1.3 Combined, joint, and conditional probabilities 11

A final example is going to show how we can use the binomial coefficient in probability
analysis.

Scooping jellybeans

A candy jar contains 20 jellybeans, of which three quarters are green and one quarter is
red. If one picks up ten jellybeans at random, what is the probability that all beans in
the selection will be green?

Answer: By definition, the number of ways to pick up 10 green beans out of 15 is C10
15 .

The total number of possible picks, i.e., a selection of 10 out of 20, is C10
20 . Applying the

probability definition in Eq. (1.4), with the event being “all picked beans are green,” we
obtain:

p(all green) = C10
15

C10
20

= 15!

10!5!
× 10!10!

20!
= 15!10!

20!5!
(1.10)

= 10 × 9 × 8 × 7 × 6

20 × 19 × 18 × 17 × 16
= 0.016.

The result shows that the likelihood of getting only green jellybeans is relatively low
(near 1.5%), even if 3/4 of the jar are of this type. Interestingly, if the jar had only one
red jelly bean and 19 green ones, the event probability would be p(all green) = 0.5, as
the reader should easily verify. It is also easy to show as an exercise that for a jar of
one red jelly bean and N − 1 green jelly beans, the probability p(all green) becomes
asymptotically close to unity as N reaches infinity, which is the expected result.

1.3 Combined, joint, and conditional probabilities

We have learnt that probabilities are associated with certain events xi belonging to an
event space S = {x1, x2, . . . , xN }. Here, we further develop the analysis by associating
events from different subspaces of S, and establish a new set of rules for the corresponding
probabilities.

Assume first two subspaces containing a single event, which we note A = {a} and
B = {b}, with a, b being included in the space S = {a, b, . . .}. Let me now introduce
two definitions:5

� The combined event is the event corresponding to the occurrence of either a or b or
both; it is also called the union of a and b and is equivalently noted a ∪ b or a ∨ b;

� The joint event is the event corresponding to the occurrence of both a and b; it is also
called the intersection of a and b, and is equivalently noted a ∩ b or a ∧ b.

coefficient properties can be found in http://mathworld.wolfram.com/BinomialCoefficient.html or
www.math.sdu.edu.cn/mathency/math/b/b219.htm.

5 The symbols ∪ and ∩ are generally used to describe union and intersection of sets, while the symbols ∨ and
∧ apply to logical or Boolean variables. If a is an element of the event set, then the Boolean correspondence
is “event a = verified or true” For simplicity, I shall use the two notations indifferently.

12 Probability basics

(b)(a)

SS

A ∪ B

A ∪ BA ∩ B

A

B

Figure 1.4 Venn diagrams showing event space S and its subspaces A and B, with: (a) the
intersection A ∩ B and (b) the union A ∪ B and its complement A ∪ B.

A visual representation of these two definitions is provided by Venn diagrams, as illus-
trated in Fig. 1.4.

In the figure, the circle S represents the set of all possible occurrences. Its surface
is equal to unity. The rectangles A and B represent the set of occurrences for the two
events a, b, respectively, and their surfaces correspond to the associated probabilities.
The intersection of the two rectangles, A ∩ B, defines the number of occurrences (the
probability) for the joint event, a ∩ b. The union of the two rectangles, A ∪ B, defines
the number of occurrences (the probability) of the combined event, a ∪ b. If we note
n(x), the number of occurrences for the event x, then we have

n(a ∪ b) = n(a) + n(b) − n(a ∩ b). (1.11)

The term that is subtracted in the right-hand side in Eq. (1.11) corresponds to events
that would be otherwise counted twice.

Two events are said to be mutually exclusive if n(a ∩ b) = 0, meaning that the second
cannot be observed if the first occurs, and the reverse. In this case, we have the property
n(a ∪ b) = n(a) + n(b).

As a third definition, the complementary event of x is the event that occurs if x does
not occur. It is noted x̄ or sometimes ¬x . In Fig. 1.4, the complementary event of a ∪ b,
which is noted a ∪ b, is represented by the shaded surface spreading inside the space S
and outside the surface of a ∪ b.

Since any event probability p(x) is proportional to its number of occurrences, x, the
previous relation can also be written under the form:

p(a ∪ b) = p(a) + p(b) − p(a ∩ b), (1.12)

which is also usually written as

p(a + b) = p(a) + p(b) − p(a, b), (1.13)

1.3 Combined, joint, and conditional probabilities 13

where p(a ∪ b) ≡ p(a + b) is the combined probability of the two events a, b and
p(a ∩ b) ≡ p(a, b) is the corresponding joint probability (one must be careful to read
the + sign in p(a + b) as meaning “or” and not “and”).

Finally, the probability p(x̄) of the complementary event of x (x = a, b, a ∪ b,

a ∩ b..) is given by

p(x̄) = 1 − p(x). (1.14)

Let us apply now the above properties with two illustrative examples.

Taking exams

Two students, John and Peter, must take an exam. The probability that John passes is
p(John pass) = 0.7 and for Peter it is p(Peter pass) = 0.4. The probability that they both
pass is p(John pass ∩ Peter pass) = 0.3. What are the probabilities that:

(a) At least one of the two students passes the exam?
(b) The two students fail the exam?
(c) At least one of the two students fails the exam?

Answer: In the event (a), we have

p(John pass ∪ Peter pass) = p(John pass) + p(Peter pass) − p(John pass ∩ Peter pass)

= 0.7 + 0.4 − 0.3 = 0.8.

The event (b) is the complement of event (a), since the two are mutually exclusive (at
least one passing excludes both failures). Therefore

p(John fail ∩ Peter fail) = 1 − p(John pass ∪ Peter pass)

= 1 − 0.8 = 0.2.

The probability of the event (c) can be calculated as follows:

p(John fail ∪ Peter fail) = p(John fail) + p(Peter fail) − p(John fail ∩ Peter fail)

= (1 − 0.7) + (1 − 0.4) − 0.2 = 0.7.

To conclude this example, we should take note of an interesting feature. Indeed, we
have

p(John pass) ∪ Peter pass = 0.3

>p(John pass) × p(Peter pass) = 0.7 × 0.3 = 0.21,

which means that the probability of both students passing the exam is greater than the
product of their respective probabilities of succeeding. This means that the events of their
individual successes are correlated. This notion of event correlation will be clarified
further on.

14 Probability basics

Sharing birthdays

Given a group of people, the issue is to find how many persons may share your birthday
(assuming that birth events are independent):

(a) In a group of n people, what is the probability of finding at least one person who
shares your birthday?

(b) How many people n should be in the group so that this probability is 50%?
(c) How many people n should be in the group so that the probability to find at least two

persons sharing the same birthday is 50%?

Answer: The probability that any person met at random shares your birthday is 1/365
(since your birthday is one date out of 365 possibilities6), which is relatively small
(1/365 = 0.27%). The probability that this person does not share your birthday is thus
364/365 = 99.7%, which is relatively high, as expected.

To answer question (a), we consider the complementary event x̄ = nobody in this
group shares your birthday. The probability that two persons selected at random do
not share your birthday is (364/365)2, thus for a group of n people we have p(x̄) =
(364/365)n . The probability that at least one person shares your birthday is, therefore,
p(x) = 1 − p(x̄) = 1 − (364/365)n .

Question (b) is answered by finding the value of n for which p(x) ≈ 0.5. With
a pocket calculator, one easily finds after a few trials that n = 253 (or alternatively
by computing n = log(0.5)/ log(364/365)). As expected, this is a relatively large
group.

Question (c) leads to a nonintuitive result, as we shall see. The number of ways of
selecting a pair of persons in a group of n people is C2

n = n(n − 1)/2. The probability
that two people do not share birthdays is 364/365. Thus, the probability of finding no
matching pair in the whole group is p(x̄) = (364/365)n(n−1)/2, and the probability of
finding at least one matching pair is p(x) = 1 − p(x̄) = 1 − (364/365)n(n−1)/2. Solving
for p(x) ≈ 0.5 (or n(n − 1)/2 = 253) yields n = 23. Thus, a group as small as 23 people
has a 50% chance of including at least two persons sharing the same birthday. Such a
result is indeed far from intuitive!

I address next the concept of conditional probabilities. By definition, the conditional
probability p(b |a) is the probability that event b occurs given the fact that event a has
occurred. The factual knowledge regarding the first event thus provides a clue regarding
the likelihood of the second.

The conditional probability is calculated according to what is called Bayes’s theorem:

p(b |a) = p(a, b)

p(a)
. (1.15)

6 For simplicity, we excluded here people born on February 29th (which only happens every four years). It is
also assumed that birthday events are independent, which is not true in real life, for instance, due to seasonal
peaks (i.e., observed peaks in the summer months) and effects of induced labor (i.e., a majority of births
happen on weekdays). A full analysis of the different ways to analyze and solve the Birthday paradox can
be found in http://en.wikipedia.org/wiki/Birthday paradox.

1.3 Combined, joint, and conditional probabilities 15

Alternatively, we can write

p(a, b) = p(b |a)p(a) = p(a |b)p(b), (1.16)

which defines the fundamental relation between joint and conditional probabilities.
If there is no correlation whatsoever between two events a and b, the events are said to

be uncorrelated or independent. This means that the probability of b knowing a (or any
other event different from b) is unchanged, which implies that p(b |a) ≡ p(b). Likewise,
the probability of a knowing b must also be unchanged, or p(a |b) ≡ p(a). Replacing
these two results in Eq. (1.16) yields a fundamental property for the joint probability of
independent/uncorrelated events:

p(a, b) = p(a)p(b). (1.17)

In the opposite case to correlated or dependent events, we have p(a, b) �= p(a)p(b),
which means that either p(a, b) > p(a)p(b) or p(a, b) < p(a)p(b), representing two
possibilities (the second case is being referred to as anti-correlation).

Let us play with conditional probabilities through an illustrative example.

Party meetings

Assume that the probabilities of meeting two old friends, Alice and Bob, in a party are
p(Alice) = 0.6 and p(Bob) = 0.4, respectively. The probability of meeting Bob if we
know that Alice is there is p(Bob |Alice) = 0.5. Then what are the probabilities of:

(a) Meeting at least one of them?
(b) Meeting both Alice and Bob?
(c) Meeting Alice if we know that Bob is there?

Answer: For question (a), let’s apply the theorem in Eq. (1.13) combined with Bayes’s
theorem in Eq. (1.16) to get:

p(Alice + Bob) = p(Alice) + p(Bob) − p(Alice, Bob)

= p(Alice) + p(Bob) − p(Bob |Alice)p(Alice).

= 0.6 + 0.4 − 0.5∗0.6 = 0.7

For question (b), we directly calculate the joint probabilities as follows:

p(Alice, Bob) = p(Bob |Alice)p(Alice) = 0.5∗0.6 = 0.3.

For question (c), we apply Bayes’s theorem to get:

p(Alice |Bob) = p(Alice, Bob)

p(Bob)
= 0.3

0.4
= 0.75.

We see from the results that the most likely outcome is to meet at least one of them,
(p(Alice + Bob) = 0.7), meaning either Alice or Bob or both. The less likely outcome is
to meet both (p(Alice, Bob) = 0.3). But if Alice is first seen there, it is much more likely
to see Bob (p(Bob |Alice) = 0.7 > p(Bob) = 0.4) and if Bob is first seen there, it is a bit
more likely to see Alice (p(Alice |Bob) = 0.75 > p(Alice) = 0.6). These last two facts

16 Probability basics

illustrate the correlation between the respective presences of Alice and Bob. If their
presence were not correlated, we would have p(Alice, Bob) = p(Alice) × p(Bob) =
0.6∗0.4 = 0.24, which is a lower probability than found here (p(Alice, Bob) = 0.3). This
shows that the known presence of either one increases the chances of seeing the other,
a fact that is usually verified in parties or social life! Incidentally, the probability that
neither Alice nor Bob be seen at the party is p(Alice + Bob) = 1 − p(Alice + Bob) =
1 − 0.7 = 0.3. Thus, there exist equal chances of seeing them both or of seeing neither
of them, but this is only coincidental to this example.

I shall conclude this section and chapter by considering the probabilities associated
with a succession of independent or uncorrelated events. As we have seen, if x1, x2

are independent events with probabilities p(x1), p(x2), their joint probability is simply
given by the product p(x1, x2) = p(x1) × p(x2). Thus for three independent events, we
have p(x1, x2, x3) = p(x1, x2) × p(x3) = p(x1)p(x2)p(x3), and so on.

Consider a few examples to illustrate the point.

Tossing the coin

What is the probability that a flipped coin lands three times on the same side?

Answer: The probability of getting either three tails or three heads is q = (1/2)3 = 0.125.
But there is a trick: since either succession of events is possible (i.e., getting three heads
or three tails), the total probability is actually 0.125 + 0.125 = 0.250 = 1/4.

Double six

Rolling two dice, what is the number of trials required to obtain a double six with a
chance of at least 50%?

Answer: The probability of getting a six from a single die is p(6) = 1/6. Since the two
dice are independent (their outcome is uncorrelated), the joint probability for a double
six is p(6, 6) = p(6) × p(6)(1/6)2 = 1/36. The probability of not getting a double six
is therefore q = 1 − p(6, 6) = 1 − 1/36 = 35/36 = 0.97222 . . . The probability of not
getting a double six after N trials is qN. We must then find the number N, such that qN ≤
0.5, meaning that the complementary event (not getting any double six) has the proba-
bility 1 − q N ≥ 0.5, or greater than 50%. Solving this equation for N is straightforward
using the successive steps: N log q = N log(35/36) ≤ 0.5, then −N log(36/35) ≤ 0.5,
then N ≥ 0.5/ log(36/35). The equation can also be solved using a computer spread-
sheet. Either method yields the solution N = 25, for which 1 − q N = 0.5055.

Drawing cards

Five cards are successively drawn at random from a 32-card deck. What are the
probabilities for the resulting hand to:

(a) Have only red cards?
(b) Include at least one ace?

1.3 Combined, joint, and conditional probabilities 17

Answer: Recall first that a 32-card deck has four series (red hearts, red diamonds, black
clubs, and black spades) of eight cards each, including an ace, a king, a queen, a jack
and four cards having the values 10, 9, 8, and 7.

Considering question (a), we must calculate the probability of drawing five red cards
successively. We first observe that half of the cards (16) have the same (red or black)
color. The probability of drawing a red card is thus 1/2, or, more formally, p(x1 =
red) = C1

16/C1
32 = 16/32 = 1/2. For the second draw, we have 31 cards left, which by

definition include only 15 red cards. Thus, p(x2 = red) = C1
15/C1

31 = 15/31, and so on
for the other three selections. The final answer for the joint probability is, therefore:

p(red, red, red, red, red) = 16

32

15

31

14

30

13

29

12

28
= 0.021.

Question (b) concerns a hand having at least one ace. We could go through all the
possibilities of successively drawing five cards with one, two, three, or four aces, but
we can proceed much more quickly. Indeed, we can instead calculate the probability of
the complementary event “no ace in hand,” then use the property p(at least one ace) =
1 – p(no ace). The task is to use combinatorics to evaluate the probabilities of having
no ace at each draw. The number of ways of drawing a first card that is not an ace
is C1

32−4 = C1
28 = 28. The probability of having no ace in the first draw is, therefore,

28/32. With similar reasoning for the next four draws, it is straightforward to obtain
finally:

p(no ace) = 28

32

27

31

26

30

25

29

24

28
= 0.488,

and p(at least one ace) = 1 − 0.488 = 0.511. We see that the probability of eventually
having at least one ace in the five-card hand is a little over 50%, which was not an
intuitive result. The lesson learnt is that successive events may be independent, but their
respective probabilities keep evolving according to the outcome of the preceding events.
Put otherwise, each occurring event affects the space of the next series of events, even
if all events are 100% independent.

To complete this first chapter, I must introduce the summing rule of conditional
probabilities, also called the law of total probability. Assume two complete and disjoint
event spaces S = {a, b} and T = {x, y, z}, with S ∩ T = ∅ (the symbol ∅ meaning an
empty set or a set having zero elements) and with, by definition of probabilities p(a) +
p(b) = 1, and p(x) + p(y) + p(z) = 1. Then the following summing relations hold:

{
p(x) = p(x |a)p(a) + p(x |b)p(b)

p(y) = p(y |a)p(a) + p(y |b)p(b)
(1.18)

and {
p(a) = p(a |x)p(x) + p(a |y)p(y) + p(a |z)p(z)

p(b) = p(b |x)p(x) + p(b |y)p(y) + p(b |z)p(z).
(1.19)

18 Probability basics

Thus with the knowledge of the conditional probabilities p(· |·) relating the two event
space causalities, one is able to compute the probabilities from one space to the other.7

It is important to note that while the conditionalp(· |·) are true probabilities, they do not
sum up to unity, a mistake to avoid by firmly memorizing any of the above summing
relations.

1.4 Exercises

1.1 (B): Flipping two coins simultaneously, what are the probabilities associated with
the following events:
(a) Getting two heads?
(b) Getting one heads and one tails?
(c) Getting either two heads or two tails?

1.2 (B): Rolling three dice, one wins if the outcome is 4, 2, 1 in any order. What is the
probability of winning in the first, the second, and the third dice roll? What is the
number of rolls required to have at least a 50% chance of winning?

1.3 (B): A lotto game has 50 numbered balls, out of which six are picked at random.
What is the probability of winning by betting on any six-number combination?

1.4 (B): Three competing car companies, A, B, and C, have market shares of 60%, 30%,
and 10%, respectively. The probabilities that the cars will show some construction
defects are 5% for A, 7% for B, and 15% for C. What is the probability for any car
bought at random to show some construction defect?

1.5 (M): A bag contains ten billiard balls numbered from one to ten. If two balls are
picked at random from the bag, what is the probability of getting:
(a) Two balls with even numbers?
(b) At least one ball with an odd number?
(c) Ball number eight in the selection?
You must propose two different methods of solving the exercise.

7 The summing rule can be generalized, assuming X = {x1, x2, . . . xN } and Y = {y1, y2, . . . yM }, into the
following:

p(yi) = p(yi |x1)p(x1) + p(yi |x2)p(x2) + · · · p(yi |xN)p(xN) =
N∑

j=1

p(yi |x j)p(x j),

which can also be expressed as a matrix–vector relation, PY = Ũ PX with PX = {p(x1), . . . , p(xN)} and
PY = {p(y1), . . . , p(yM)} being column vectors, and U the M × N “conditional” or “transition” matrix:

Ũ =

p (y1|x1) p (y1|x2) · · · p (y1|xN)

p (y2|x1) · · · · · ·
...

... · · · · · ·
...

p (yM |x1) · · · · · · p (yM |xN)

.

1.4 Exercises 19

1.6 (M): The American roulette has 36 spots numbered 1, 2, . . . , 36, which are alterna-
tively divided into 18 red spots (odd numbers) and 18 black spots (even numbers),
plus two green spots, called 0 and 00. The roulette’s outcome is any single number.
It is possible to bet on any number (single or combination), or on red, black, odd,
even, the first 12 (numbers 1–12), the second 12 (numbers 13–24), and the third 12
(numbers 25–36). The roulette payoffs are 35 to 1 for a winning number, 2 to 1 for
a winning red/black/even/odd number and 3 to 1 for a winning first/second/third
12 number. What are the odds of winning any of these bets? Comments? What
is the probability of winning at least once after playing single numbers 36 times
successively?

1.7 (T): In the lotto game of Exercise 1.3, what are the probabilities of having either
exactly one or exactly two winning numbers in the six-number combination?

1.8 (T): This is a television game show where the contestant may win a car. The car
is standing behind one of three doors. The payer first designates one of the three
doors. The host then opens another door, which reveals . . . a goat! Then the host
asks the contestant: “Do you maintain your choice?” The question here is: what is
in the contestant’s interest? To maintain or to switch his or her choice? Clue: The
answer is not intuitive!

2 Probability distributions

Chapter 1 enabled us to familiarize ourselves (say to revisit, or to brush up?) the concept
of probability. As we have seen, any probability is associated with a given event xi from
a given event space S = {x1, x2, . . . , xN }. The discrete set {p(x1), p(x2), . . . , p(xN)}
represents the probability distribution function or PDF, which will be the focus of this
second chapter.

So far, we have considered single events that can be numbered. These are called
discrete events, which correspond to event spaces having a finite size N (no matter
how big N may be!). At this stage, we are ready to expand our perspective in order
to consider event spaces having unbounded or infinite sizes (N → ∞). In this case,
we can still allocate an integer number to each discrete event, while the PDF, p(xi),
remains a function of the discrete variable xi . But we can conceive as well that the event
corresponds to a real number, for instance, in the physical measurement of a quantity,
such as length, angle, speed, or mass. This is another infinity of events that can be
tagged by a real number x . In this case, the PDF, p(x), is a function of the continuous
variable x .

This chapter is an opportunity to look at the properties of both discrete and continuous
PDFs, as well as to acquire a wealth of new conceptual tools!

2.1 Mean and variance

In this section, I shall introduce the notions of mean and variance. I will consider first
discrete then continuous PDFs, with illustrative examples from the physical world. I
will then show that in the limit of a large number of events, the discrete case can be
approximated by the continuous case (the so-called asymptotic limit).

Consider then the discrete case, as defined by the sample/event space S =
{x1, x2, . . . , xN }, where N can be infinite (notation being N → ∞). The associated
PDF is called p(x), which is a function of the random variable x , which takes the
discrete values xi (i = 1, . . . , N). When writing p(xi), this conceptually means “the
probability that event x takes the value xi .” The mean, which is noted <x>, or also x̄ ,
or E(x), is given by the weighted sum

<x> =
N∑

i=1

xi p(xi). (2.1)

2.1 Mean and variance 21

The mean represents what is also called the expectation value, hence the notation E(x).
Contrary to what the word “expectation” would suggest, E(x) is not the value one should
expect for the outcome of event x after some sufficient number of trials. Rather, it is the
mean value of x that one should expect to become, independent of the number of trials
N , as this number indefinitely increases, and assuming that the PDF is constant over
time.

As an illustration, take the event space S = {1, 2, 3, 4, 5, 6} corresponding to the
outcomes of rolling a single die. As we know, the PDF is p(x) = 1/6 for all events x .
The mean value is, therefore,

<x> =
6∑

i=1

xi p(xi) =
6∑

i=1

i
1

6
= 1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5. (2.2)

This example illustrates what should be understood by “expected value.” In no way would
a die fall on x = 3.5, and nobody would “expect” such a result! The number simply
represents the average count of spots, were we to perform an infinite (say, sufficiently
large) number of die rolls. Looking back at Fig. 1.2 (counting spots from two dice), we
observe that the PDF is centered about x = 7, which represents the mean value of all
possibilities. The mean value should, therefore, not be interpreted as representing the
event of highest probability, i.e., where the PDF exhibits a peak value, although this
might be true in several cases, like the PDF in Fig. 1.2.

But the mean does not tell the whole story about a PDF. I introduce a second parameter
called PDF variance. The variance, typically noted σ 2, is defined as the expected value
of (x − <x>)2. Thus, using basic algebra:

σ 2 = <(x − <x>)2>

= <x2 − 2x<x> + <x>2>

= <x2> − 2<x><x> + <<x>2> (2.3)

= <x2> − 2<x>2 + <x>2

= <x2> − <x>2

(noting that <<x>2> = <x>2, since <x>2 is a number, not a variable). The variance
is the difference between the expected value of x2 and the square of the mean. It is always
a positive number. We can thus take its square root, which is called the PDF standard
deviation:

σ =
√

σ 2 ≡
√

<x2> − <x>2. (2.4)

How does one calculate the mean square <x2>? Consistent with the earlier definition
in Eq. (2.1), we have

<x2> =
N∑

i=1

x2
i p(xi). (2.5)

22 Probability distributions

0.000
0.020
0.040
0.060
0.080

0.100
0.120
0.140
0.160
0.180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count

P
ro

ba
bi

lit
y

<x >

2s

s

Figure 2.1 Same probability distribution function (PDF) as in Fig. 1.2(b), illustrating the
concepts of mean (<x> = 7) and standard deviation (σ = 2.415).

As an illustration, let us then calculate the standard deviations of the one-die and two-dice
PDF. In the one-die case, we have

<x2> =
6∑

i=1

i2 1

6
= 1

6
(12 + 22 + 32 + 42 + 52 + 62) = 15.166. (2.6)

The one-die PDF variance is, thus, σ 2 = <x2> − <x>2 = 15.166 − 3.52 = 2.916, and
the standard deviation is σ = √

2.916 = 1.707.
We can get a better sense of the meaning of such a “deviation” with the two-dice

example. It takes a computer spreadsheet (or pocket-calculator patience) to com-
pute <x2> with the PDF shown in Fig. 1.2(b), but the reader will easily check that
the result is <x2> = 54.833, hence σ 2 = <x2> − <x>2 = 54.833 − 72 = 5.833, and
σ = √

5.833 = 2.415.
Reproducing, for convenience, the same PDF plot in Fig. 2.1, we see that the interval

[<x> − σ,<x> + σ] ≈ [4.5, 9.5], of width 2σ , defines the PDF region where the
probabilities are the highest, i.e., about greater or equal to half the peak value. In other
words, the outcome of the two-dice roll is most highly likely to fall within the 2σ

region.
Statistics experts familiarly state that the event to be expected is <x> with a ±σ

accuracy or trust interval. However, such a conclusion does not apply with other types
of PDF, for instance, with the uniform distribution, as I will show further below.

2.2 Exponential, Poisson, and binomial distributions

I shall now consider three basic examples of discrete PDFs. As we shall see, these
PDFs govern many physical phenomena and even human society! They are the

2.2 Exponential, Poisson, and binomial distributions 23

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15
n

p(
n)

0

1

2

3

4

0 5 10 15

n
Lo

g[
p(

n)
]

Figure 2.2 Plots of discrete-exponential or Bose–Einstein probability distribution corresponding
to mean values <n> = N = 1, 2, 3, 4, 5 (open symbols corresponding to the case <n> = 1).
The inset shows the same plots in decimal logarithmic scale.

discrete-exponential distribution, the Poisson distribution, and the binomial distribu-
tion. To recall that these three PDFs concern discrete random variables, I will use the
notations <n> and p(n), instead of <x> and p(x), which we reserve for continuous
distributions.

The discrete-exponential distribution, also referred to as the Bose–Einstein (BE)
distribution, is defined according to

p(n) = 1

N + 1

(
N

N + 1

)n

, (2.7)

where <n> = N is the mean value. This PDF variance is simply σ 2 = N + N 2.
Figure 2.2 shows plots of the exponential distribution for various values of N , in both

linear and logarithmic scales. The continuous lines linking the data are only shown to
guide the eye, recalling that the PDF applies to the discrete variable n. The PDF is seen to
be linear in the logarithmic plot, which allows a better visualization of the evanescent tail
at high n. As the figure also illustrates, the peak value of the exponential/BE distribution
is reached at the origin n = 0, with p(0) = 1/(N + 1).

In the physics world, such a distribution is representative of thermal processes. Such
processes concern, for instance, the emission of photons (the electromagnetic energy
quanta) by hot sources, such as an incandescent light bulb or a star, like the sun, or the
distribution of electrons in atomic energy levels, and many other physical phenomena.
As we shall see in the forthcoming chapters, the discrete-exponential distribution is
important in information theory. We will also see that the exponential PDF is commonly
found in human society, for instance, concerning the distribution of alphabetic characters
in Western languages.

Let us consider next another PDF of interest, which is the Poisson distribution. This
PDF is used to predict the number of occurrences of a discrete event over a fixed

24 Probability distributions

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14
n

p(
n)

N = 9

Figure 2.3 Plots of the Poisson distribution corresponding to mean values
<n> = N = 1, 3, 5, 7, 9 (open symbols corresponding to the case <n> = 1).

time interval. If N is the expected number of occurrences over that time interval, the
probability that the count is exactly n is

p(n) = e−N N n

n!
. (2.8)

As a key property, the Poisson PDF variance is equal to the PDF mean, i.e., σ 2 = N .
Figure 2.3 shows plots of the Poisson PDF for various values of the mean N .

It is seen from the figure that as N increases, the distribution widens (but slowly,
according to σ = √

N). Also, the line joining the discrete points progressively takes the
shape of a symmetric bell curve centered about the mean, as illustrated for N = 9 (the
mean coinciding with the PDF peak only for N → ∞). This property will be discussed
further on, when considering continuous distributions.

There exist numerous examples in the physical world of the Poisson distribution,
referred to as Poisson processes. In atomic physics, for instance, the Poisson PDF
defines the count of nuclei decaying by radioactivity over a period t . Given the decay
rate λ (number of decays per second), the mean count is N = λt , and the Poisson PDF
p(n) gives the probability of counting n decays over that period. In laser physics, the
Poisson PDF corresponds to the count of photons emitted by a coherent light source, or
laser. Poisson processes are also found at macroscopic and human scales: for instance,
the number of cars passing under a highway bridge over a single lane, the number of
phone calls handled by a central office, the number of Internet hits received by a website,
the number of bonds traded in the stock exchange, or the number of raindrops falling on
a roof window. Each of these counts, being made within a given amount of time, from
seconds to minutes to hours to days, obeys Poisson statistics.

The binomial distribution, also called the Bernoulli distribution, describes the number
of successes recorded in a discrete sequence of independent trials. Here, let’s call k the
random variable, which is the number of successes, and n the fixed number of trials,
with k ≤ n. If the probability of success for a single independent trial is q, the binomial

2.2 Exponential, Poisson, and binomial distributions 25

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
k

p
(k

)

Figure 2.4 Plots of the binomial or Bernoulli distribution corresponding to parameters
q = 0.1, 0.25, 0.5 with n = 10 mean (open symbols corresponding to the case q = 0.1).

PDF is defined according to:

p(k) = Ck
n qk(1 − q)n−k ≡ n!

k!(n − k)!
qk(1 − q)n−k . (2.9)

Such a definition makes sense, considering that the probability of obtaining k indepen-
dent successes is qk and the probability of failure for the remaining n − k events is
(1 − q)n−k . The product of the two is the joint probability of the group of measurements,
as observed in any specific order. The combinatorial factor Ck

n is the number of possible
orders for successive success or failure measurements. The mean and variance of the
binomial distribution is N = nq and σ 2 = N (1 − q), respectively. Figure 2.4 shows
plots of the binomial PDF for n = 10 and different values of q. We observe that the PDF
is asymmetric except when q = 0.5, in which case the peak value is exactly centered
about N .

A physical illustration of the Bernoulli distribution is the passing, one at a time, of a
stream of individual particles (like light quanta or photons) through a piece of absorbing
material. These particles may either successfully pass through the material (success,
probability q), or absorbed by it (failure, probability 1 − q). Assuming an ideal particle
counter, the probability of counting k particles after the stream has passed though the
material is effectivelyp(k), as defined by Eq. (2.9). See also Section 2.5 in the bean
machine example.

We note that the binomial distribution is defined over the finite random-variable
interval 0 ≤ k ≤ n. Since there is no restriction on the size of the sampling space defined
by n, the PDF can be extended to the limit n → ∞. It can be shown that in this infinite
limit, the binomial PDF is equal to the Poisson PDF previously described. It can also be
shown that, for large mean numbers N , the Poisson (or binomial) PDF asymptotically
converges towards the Gaussian or normal distribution, which is described in the next
section.

26 Probability distributions

2.3 Continuous distributions

At the beginning of this chapter, I discussed the possibility that the events form a con-
tinuous and infinite suite of real numbers, which, in the physical world, represent the
unbounded set of measurements of a physical quantity. The likelihood of the measure-
ment then corresponds mathematically to a continuous probability distribution. Like
discrete PDF, a continuous PDF p(x) must satisfy the property

0 ≤ p(x) ≤ 1 (2.10)

for all values x belonging to the event space �xmin, xmax� within which the events
are defined. By definition, the sum of all probabilities must be equal to unity. With a
continuous variable, such a sum is an integral, i.e.,

∫ x=xmax

x=xmin

p(x)dx = 1. (2.11)

Consistent with the above definition, the PDF mean or expected value <x> and the
mean square are defined as follows:

<x> =
∫ x=xmax

x=xmin

xp(x)dx (2.12)

<x2> =
∫ x=xmax

x=xmin

x2 p(x)dx, (2.13)

with the variance being σ 2 = <x2> − <x>2, just as in the discrete-PDF case. Note
that for any continuous PDF one can replace the interval [xmin, xmax] by [−∞,+∞],
with the convention that p(x) = 0 for x /∈ [xmin, xmax].

2.4 Uniform, exponential, and Gaussian (normal) distributions

In the following, we shall consider three basic types of continuous distribution: uniform,
exponential, and Gaussian (normal).

The most elementary type of continuous PDF is the uniform distribution. It gives a
good pretext to open up our integral-calculus toolbox. Such a distribution is defined as
p(x) = const. over a certain interval [xmin, xmax] and p(x) = 0 elsewhere. The constant
is found by applying Eq. (2.11), i.e.,

∫ x=xmax

x=xmin

p(x)dx = const.
∫ x=xmax

x=xmin

dx = const.(xmax − xmin) ≡ const.�x = 1,

(2.14)

where �x = xmax − xmin is the sample-space width, which gives const. = 1/�x .
Figure 2.5 shows a plot of the uniform distribution thus defined. The figure also illus-
trates that the PDF is actually defined over the infinite space [−∞,+∞], while being

2.4 Uniform, exponential, and Gaussian distributions 27

p(x)

xxmin xmax

∆x

∆x
1

0

<x>

s

Figure 2.5 Uniform probability distribution of the continuous variable x , see text for description.

identically zero outside the relevant sample interval [xmin, xmax]. It is left as an exer-
cise for the reader to show that the mean and standard deviation of a continuous,
uniform PDF are:

<x> == xmax + xmin

2
, (2.15)

σ = �x√
12

. (2.16)

We see from the above results that for a uniform PDF the mean <x> corresponds to the
mid-point (xmax + xmin)/2 of the interval [xmin, xmax]. This was expected, since all events
x in this interval are equally probable. However, the deviation σ is different from the
half width of the distribution, �x/2, which was not intuitive! This is because (as defined
earlier, and to recall) the variance is the mean value of the square of the difference
x − <x>, i.e., σ 2 = <(x − <x>)2>. Thus, the quantity 2σ = �x/

√
3 does not define a

specific interval where the continuous events x are more likely to be observed, although
the contrary is true for most other types of nonuniform PDF.

Uniform continuous distributions, which take the shape of square or step functions, are
not generally found in the physical world. One remarkable example, however, is provided
by the so-called Fermi function in semiconductors while under absolute-zero temperature
(T = 0 kelvin). Such a function is the probability f (E) of having an electron at a given
energy E . The physics shows that, at zero temperature, f (E) = 1/EF for 0 ≤ E ≤ EF

and f (E) = 0 for E ≥ EF, where EF is referred to as the Fermi energy level. To
take a simpler example, assume that one is able to measure some physical parameter
within an absolutely defined range. For instance, the distribution of frequencies F from
microwave or sunlight radiation, as analyzed through a perfect, square-shaped bandpass
filter (suppose that measurements outside that filter range are not observed or irrelevant
to the test). If the filter is not too large (or is sufficiently narrow!), and under some
circumstances, then one may, indeed, observe that the measurement probability p(F) is
uniformly distributed. In any case, this would not mean that the probability is uniform
in the absolute definition, but in a local-domain sense, as defined by the observation
window of measurement apparatus.

28 Probability distributions

Next, we consider the continuous-exponential distribution. The PDF is defined for
x ≥ 0 as follows:

p(x) = λe−λx , (2.17)

where λ is a strictly positive constant called the rate parameter. The mean and variance
of the exponential PDF are <x> = 1/λ and σ 2 = 1/λ2, respectively (this is left as an
exercise).

Between the discrete-exponential and the continuous-exponential PDFs, there is no
one-to-one correspondence, except in the limit of large means. Indeed, setting N = 1/λ

in Eq. (2.17), we can redefine the discrete-exponential PDF (x = n integer) under the
form

p(n) = λ

λ + 1
e−n log(1+λ). (2.18)

Such a definition corresponds to that of the continuous PDF (Eq. 2.17) only in the limit
λ → 0 (for which log(1 + λ) → λ), which corresponds to the limit N → ∞.

The continuous-exponential PDF is used to model the timing of physical events that
happen at a constant average rate. If x = t is a time variable, the event occurs at exact
time t with probability p(t) = λ exp(−λt). We note that in this case, λ has the dimension
of an inverse time (e.g., inverse seconds or inverse days), meaning that the PDF is a
probability rate (in /s or /day units) rather than being dimensionless. The exponential
PDF is a maximum for t = 0 and decays rapidly as time increases. On average, the
events occur at time <t> = 1/λ ≡ τ , where τ is a characteristic time constant. In
atomic physics, τ is called the decay constant, or also the 1/e lifetime. For radioactive
atoms or for atoms used in laser materials, this means that the disintegration or photon
emission occurs in average at the time t = τ . The probability that any atom decays at a
time after t is given by

p(T > t) =
∫ +∞

t
p(t ′)dt ′ =

∫ +∞

t
τ exp(−t ′/τ)dt ′

(2.19)

= τ

[
−exp(−t/τ)

τ

]+∞

t

= exp(−t/τ).

The integration expresses the fact that the probability p(T > t) is given by the continuous
sum of all probabilities p(t ′) where t ′ belongs to the time interval [t,+∞]. The result
shows that the probability that any atom decays after t = τ is p(T > τ) = e−1 = 1/e ≈
0.36, hence the name 1/e lifetime. The probabilities that atoms decay after times t =
2τ, 3τ, . . ., etc., are 13%, 5%, etc., illustrating that there is always a finite number of
“surviving” atoms remaining in their original state and awaiting decay, but their number
decreases exponentially over time.

Other applications of the exponential PDF can be found in daily life. For instance, if
a person regularly drives above the speed limit and if the highway patrol makes regular
controls, the probability of getting a speeding ticket only after a given time t , i.e.,
p(T > t) = exp(−t/τ), is rapidly vanishing, just like the drivers’ luck. The probability
that he or she will get a ticket before time t , i.e., p(T < t) = 1 − exp(−t/τ), is rapidly

2.4 Uniform, exponential, and Gaussian distributions 29

increasing towards unity, representing a situation reaching 100% likelihood. If τ = 1
year represents the mean time for bad drivers to get a speeding ticket, the probability of
only getting a ticket 2 to 3 years after that time is only 13% to 5%, meaning that there
is an 87% to 95% chance of getting it well before then!

The exponential distribution is also used to characterize reliability and failure in
manufactured products or systems, such as TV sets or car engines. Given the mean time
to observe a given failure, τ (now called mean time to failure or MTTF), the probabilities
that the failure will be observed before or after time t are p(T <t) = 1 − exp(−t/τ) or
p(T >t) = exp(−t/τ), respectively. The function p(T >t) is generally referred to as the
reliability function. Its complement, p(T <t) = 1 − p(T >t) is referred to as the failure
function. For instance, if τ = 5 years represents the mean time to get a car-engine
problem, the probability of getting the problem within one year is p(T <1 year) =
1 − exp(−1/5) = 0.18, and after one year p(T >1 year) = 1 − p(T < 1 year) = 0.82.
This means that there is close to a 20% chance of having the problem before one year,
even if the car engine (or driving safety) is supposed to be problem-free for a mean
period of 5 years. On the other hand, the odds of having a problem after one year are
82%, but this prediction covers an infinite amount of time. It is possible to make a more
detailed failure prediction for a given period spanning times t1 to t2 > t1. Indeed, the
probability of getting a failure between these two times is:

p(t1 < T < t2) = 1 − [p(T < t1) + p(T > t2)]

= 1 − [1 − exp(−λt1) + exp(−λt2)] (2.20)

= exp(−λt1) − exp(−λt2).

With the above formula, one can determine the failure probabilities concerning any
specific periods defined by [t1, t2].

Next, we consider as a last but key example, another continuous PDF, which is the
Gaussian or normal distribution. With a mean <x> = N and a variance σ 2, it is formally
defined according to:

p(x) = 1

σ
√

2π
exp

[
− (x − N)2

2σ 2

]
. (2.21)

Since the function exp(−u2) is symmetrical with a peak value centered at u = 0, we
see that the Gaussian PDF is centered about its mean, <x> = N , with a peak value of
p(N) = ppeak = 1/(σ

√
2π). For values x = N ± σ

√
2, we observe from the definition

that the probability drops to e−1 ppeak = ppeak/e ≈ 0.367ppeak. Figure 2.6 shows plots of
Gaussian PDFs with mean N = 0 and different standard deviations.

The characteristic bell shape has justified over time the popular name of bell distri-
bution, which is well known to a large public. The surface S under the curve, which is
defined by two points x1, x2, i.e.,

S = p(x1<x<x2) =
∫ x2

x1
p(x)dx, (2.22)

represents the probability of event x taking a value in the interval [x1, x2]. It can be
shown by integration in Eq. (2.22) that p(N − σ < x < N + σ) ≈ 0.682, meaning that

30 Probability distributions

0

0.2

0.4

0.6

0.8

1

3210
x

p(
x)

<x> = N = 0

0.75

2

1

σ 0.5=

Figure 2.6 Gaussian probability distribution with mean <x> = N = 0 and standard deviations
σ = 0.5, 0.75, 1, and 2.

68.27% of the bell surface concerns events falling within two standard deviations (±σ)
of the mean (N). Likewise, for the intervals 2σ and 3σ about the mean, the surfaces
represent 95.4% and 99.7 of the total bell surface, respectively.

A physical parameter obeying a Gaussian PDF, for instance, electrical noise in radio
or TV signals, is experimentally characterized through discrete sampling, even if the
measurement apparatus (e.g., an analog oscilloscope) provides a continuous signal. It
is interesting to see what a succession of such sampling measurements looks like in
the real world. Figure 2.7 shows the plot of a series of 200 samplings of a random
variable x following a Gaussian distribution with <x> = 0 and σ = 0.1, as generated
by a computer program. We observe that, as expected, the values of x are randomly
distributed above and below the x axis. The sampling points form a cloud that is denser
near the axis, defining a region of width 2σ . The figure also includes the corresponding
plot of x2, which shows that most of the sampling points are found between x2 = 0
and x2 = <x2> = σ . It is important to distinguish the discrete sampling points (here
numbering 200) from the continuous, Gaussian PDF. To compare the two, we can draw
a histogram of the sampling points, as shown in Fig. 2.8. The histogram represents the
counts of points corresponding to the different values of x in Fig. 2.7. For clarity, I have
multiplied the sampled variable x by a hundredfold and truncated the result (y = 100x)
to an integer, which gives values ranging from y = −23 to y = +29.

As seen from Fig. 2.8, the envelope of the histogram is quite different from that
of the actual Gaussian distribution, also plotted in the figure for comparison (with
σy = 100 × σx = 10). The reason for this discrepancy is twofold. First, once gathered
into a histogram, the discrete samplings do not have a sufficient number (here 200) to
reproduce the smooth and continuous features of the Gaussian PDF. Second, the data
were arbitrarily arranged into truncated integer bins, which enhances the discontinuity
of the histogram’s envelope. To show how this truncation changes the envelope, a second
histogram was made with z = 50x (see inset in Fig. 2.8). This second histogram has
a smoother envelope, because there are more data in each of the integer bins. For this

2.4 Uniform, exponential, and Gaussian distributions 31

0

0.1

0.2

0.3

.0

0.1

0.2

0.3

200150100500

x

x2

p(x)

x

< x > =

< x2>

0.00

0.05

0.10

200150100500

s

s

Figure 2.7 Example of discrete samplings (200 events) of a Gaussian distribution
(<x> = 0, σ = 0.1), showing the outcome for random variables x (top) and x2 (bottom).

0

2

4

6

8

10

12

14

2 6 9 13 17 21 31

Counts
p(y)

y = 100x

0

5

10

15

20

2471013 1 5 8 15

0.04

z = 50x

Figure 2.8 Histogram of the 200 sampling points x shown in Fig. 2.7, as converted into
y = 100x , and corresponding Gaussian distribution envelope p(y). The inset shows a denser
histogram corresponding to the same x data with z = 50x .

32 Probability distributions

reason, the envelope shape is closer to that of a bell. To obtain a smooth histogram
envelope that would closely fit the Gaussian bell curve, one would need to acquire
104–105 sampling points and arrange them into hundreds of histogram bins.

The lesson learnt is that experimental statistics require large numbers of samplings
in order to reflect a given probability law, for instance, the Gaussian PDF (but it is not
limited to this case). We have previously reached a similar conclusion from our earlier
coin-flipping experiment, for which the associated probability distribution is discrete
and quite elementary (p(heads) = p(tails) = 1/2), see Chapter 1 and Fig. 1.3. To recall,
it took no less than 700 samples to approach the expected uniform distribution with
reasonable accuracy.

The Gaussian or normal probability distribution characterizes a large variety of ran-
dom processes found in physics, in engineering, and in many other domains of science.
In most random processes indeed, the uncertainty associated with continuous param-
eters, which is also referred to as noise, obeys a Gaussian (normal) PDF. Here is a
nonlimitative list of Gaussian (normal) processes:

� Experimental measurement errors (the mean <x> being taken as the value to be
retained);

� Manufacturing, in the distribution of production yields and quality scoring;
� Telecommunications, in the distribution of 1/0 bit errors in digital receivers;
� Photonics, to approximate the transverse or spatial distribution of light intensity in

optical fibers or in laser beams;
� Education and training, in the distribution of intelligence (IQ) test scores, or profes-

sional qualifications and performance ratings;
� Information theory, which will be developed in Chapter 4 when analyzing continuous

channels with noise.
� Medicine, in the distribution of blood pressure and hair length, or of the logarithm of

body weight or height;
� Economics and finance, in the distribution of the logarithm of interest rates, exchange

rates, stock returns, and inflation.

Processes that are associated with a Gaussian (normal) distribution are said to respond
to normality. If normality is satisfied only with the logarithm of the variable x (as seen
in the last two above examples), the process is said to be log-normal.1 By way of a
simplified explanation, normality comes from the additive effect of independent random
factors, while log-normality comes from their multiplicative effect.

Generally, the Gaussian (normal) law represents a good approximation of most con-
tinuous distributions, provided the number of events or samples is relatively large. This
will be shown in the next section. Furthermore, the Gaussian (normal) law represents
the asymptotic limit of most discrete probability distributions with large mean <k>,
two key examples being the binomial and the Poisson PDFs described in the previous
section. As we have seen, the binomial distribution pk = Ck

n qk(1 − q)n−k , which is

1 For advanced reference, the log–normal distribution is defined as: p(x) = 1
xσ

√
2π

exp
[
− (log x−µ)2

2s2

]
. Its

mean and variance are N = exp(µ + s2/2) and σ 2 = [
exp

(
s2

) − 1
]

exp
(
2µ + s2

)
, respectively.

2.5 Central-limit theorem 33

defined for integers k = 0, . . . , n, Eq. (2.9) converges towards the Poisson distribution,
Eq. (2.8) in the limit of large n. In the same limit, it can be shown that both distri-
butions converge towards a Gaussian (normal) PDF of same mean <k> and variance
σ 2 = nq(1 − q).

2.5 Central-limit theorem

In probability theory, there exist several central-limit theorems, which show that the sum
of large numbers of independent random variables, each having a different probability
distribution, asymptotically converges towards some kind of limiting PDF.

Remarkably, this limiting PDF is the same, regardless of the initial distribution of
these variables. The most well known of these theorems is referred to as the central-limit
theorem (CLT). The CLT states that if the variance of the initial distribution is finite,
the limiting PDF is the Gaussian (normal) distribution. The CLT thus explains why the
Gaussian (normal) distribution is found in so many random processes: such processes
usually stem from the additive effect of several independent or uncorrelated random
variables, which individually obey any PDF type.

A simplified formulation of the CLT is as follows. Let x be a random variable of a
given parent distribution pparent(x). The parent distribution is characterized by a mean
<x> = N and a finite variance σ 2. Let x1, x2, . . . , xk be a series of k independent
samples from this distribution. Define the sum

Sk = x1 + x2+, . . . , xk . (2.23)

Since the random variables (or samples) are independent, the mean and the variance of
the sum in Eq. (2.23) are <SK > = k N and σ 2

k = kσ 2, respectively.
The CLT simply states that the probability distribution of Sk asymptotically becomes

Gaussian (normal) as the number of samples k increases, or k → ∞. A more general
formulation of the CLT assumes a set of independent random variables X1 X2, . . . , Xk .
Each of these variables Xi has a different probability distribution pi (x). Each distribution
pi (x) has a mean Ni and a variance σ 2

i . Define the sum Sk = X1 + X2 +, . . . , Xk . Since
the variables X1 X2, . . . , Xk are independent, the mean and variance of the sum are
<SK > = N1 + N2+, . . . , Nk and σ 2

k = σ 2
1 + σ 2

2 +, . . . , σ 2
k , respectively. Just as in the

previous formulation, the CLT simply states that the probability distribution of the sum
Sk is asymptotically Gaussian (normal).

I will not expand on the formal proof of the CLT, which is beyond the scope of
this book.2 However, for both clarification and fun purposes, the reader might check
up this proof through some nicely illustrated online experiments using interactive Java

2 Formal demonstrations of the CLT can be found in many academic books and in some websites. See, for
instance: http://mathworld.wolfram.com/CentralLimitTheorem.html.

34 Probability distributions

applets.3 I consider here an experimental example of CLT proof, using one such web
tool.4

Rolling dice and adding spots

This is an experiment similar to that described earlier in Chapter 1 and illustrated in
Figs. 1.1 and 1.2. As we know, each individual die has a uniform discrete distribution
defined by p(x) = 1/6 with xi = 1, 2, 3, 4, 5, 6 being the event space. If we roll two
dice and sum up the spots, the event space is xi = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and the
probability distribution has a triangular (or witch’s hat) shape centered about <x> = 7,
see Fig. 1.2. Interestingly, the CLT does not apply to the two-dice case, the limiting
PDF being still the witch hat, as can be easily verified. As a simplified explanation, this
is because the event space is too limited. But when using three dice or more, the CLT
is observed to apply, as illustrated in Fig. 2.9. The figure shows results obtained with
five dice for k = 10, 100, 1000, 10 000, and 100 000. It is seen that as k increases, the
resulting histogram envelope progressively takes a bell shape. Ultimately, the histogram
takes a symmetrical (discretized) bell shape limited to the 26 = 30 – 5 + 1 integer
bins of the event space. A 1000-dice experiment with an adequate number of trials k
would yield a similar histogram with 5001 = 6000 − 1000 + 1 discrete bins, which
is much closer to the idea of a smooth envelope, albeit the resulting PDF is discrete,
not continuous. Only an infinite number of dice and an infinite number of rolls could
provide a histogram match of the limiting Gaussian (normal) envelope.

To complete the illustration of the CLT, consider the school game of a pegboard matrix,
also known as a pinball machine, bean machine, quincunx, or Galton box, and whose
principle is at the root of the Japanese gambling parlors called Pachinko. At each step
of the game, a ball bounces on a peg (or a nail) to choose a left or right path randomly,
according to a uniform, two-valued distribution. The triangular arrangement of pegs or
nails makes it possible to repeat the ball’s choice as many times as there are rows (n)
in the matrix. At the bottom and after the final row, the ball rests in a single bin, which
is associated with some reward or gain. It is easily established that the probability for
the ball to be found in a given bin k follows the binomial distribution, Eq. (2.9). If the
number n of rows becomes large, and for a sufficiently large number of such trials,
the histogram distribution of balls into the bottom bins takes a Gaussian-like envelope,
which represents a nice, mechanical schoolroom illustration of the CLT.

This concludes the second chapter on probability basics. Most of the mathematical
tools that are required to approach information theory have been described in these two
chapters.

3 See, for instance:
www.stat.sc.edu/∼west/javahtml/CLT.html,
www.rand.org/statistics/applets/clt.html,
www.math.csusb.edu/faculty/stanton/m262/central limit theorem/clt old.html,
www.ruf.rice.edu/%7Elane/stat sim/sampling dist/index.html,
www.vias.org/simulations/simusoft cenlimit.html.

4 I am grateful to Professor Todd Ogden for permission to reproduce the simulation results obtained from his
web tool in www.stat.sc.edu/∼west/javahtml/CLT.html.

2.6 Exercises 35

k = 10

5

5 10 15 20 25 30 5 10 15 20 25 30

10 15 20 25 30

k = 1000k = 100

Roll the dice Number of rolls:5 dice 10

Roll the dice Number of rolls:5 dice 100 Roll the dice Number of rolls:5 dice 1000

5 10 15 20 25 30 5 10 15 20 25 30

k = 10000 k = 100000

Roll the dice Number of rolls:5 dice 10000 Roll the dice Number of rolls:5 dice 10000

(a)

(b)

Figure 2.9 Proof of the central-limit theorem, through five-dice rolling experiment, (a) from k =
10 to k = 1000 trials, (b) from k = 10 000 to k = 100 000 trials, showing asymptotic
convergence of histogram shape towards a Gaussian or normal distribution envelope.

2.6 Exercises

2.1 (B): Calculate the mean and standard deviation of a discrete uniform distribution
defined over the integer interval [1, 5].

2.2 (B): A radioactive substance has a decay rate of 0.1 events per second. Taking a
group of ten atoms, what is the probability that half of the atoms have decayed
after one minute?

36 Probability distributions

2.3 (B): What is the probability of counting five heads after tossing a coin ten times?

2.4 (B): Assume that 10% of the population contracted the flu. Taking 20 people at
random, what is the probability of finding three people with the flu? What is the
probability of finding not more than three?

2.5 (M): Show that the mean and standard deviation of a uniform, continuous PDF
defined over the real interval [xmin, xmax] of finite width �x are <x> = (xmax +
xmin)/2 and σ = �x/

√
12, respectively.

2.6 (B): Calculate the mean and variance of the exponential distribution p(x) = λe−λx

(x ≥ 0, λ > 0).

2.7 (B): A brand of TV set has a mean time to failure (MTFF) of five years with a
warranty of one year. What is the probability that the TV set will fail before the
warranty expires? What is the probability of a failure happening between one and
five years?

2.8 (B): Assume that, every year, there are 50 car accidents per 1000 new drivers,
following an exponential law. What is the probability that a new driver will:
(a) Have one car accident after 2 years?
(b) Have no accident over 5 years?
(c) Have at least one accident between 2 and 5 years?

2.9 (T): Prove that the mean and variance of the Bose–Einstein distribution are
<n> = N and σ 2 = N + N 2, respectively.

2.10 (T): Prove that the mean and variance of the Poisson distribution satisfy <n> =
N = σ 2.

3 Measuring information

In effect, the concept of information is obvious to anyone in life. Yet the word captures so
much that we may doubt that any real definition satisfactory to a large majority of either
educated or lay people may ever exist. Etymology may then help to give the word some
skeleton. Information comes from the Latin informatio and the related verb informare
meaning: to conceive, to explain, to sketch, to make something understood or known,
to get someone knowledgeable about something. Thus, informatio is the action and art
of shaping or packaging this piece of knowledge into some sensible form, hopefully
complete, intelligible, and unambiguous to the recipient.

With this background in mind, we can conceive of information as taking different
forms: a sensory input, an identification pattern, a game or process rule, a set of facts or
instructions meant to guide choices or actions, a record for future reference, a message
for immediate feedback. So information is diversified and conceptually intractable. Let
us clarify here from the inception and quite frankly: a theory of information is unable
to tell what information actually is or may represent in terms of objective value to
any of its recipients! As we shall learn through this series of chapters, however, it
is possible to measure information scientifically. The information measure does not
concern value or usefulness of information, which remains the ultimate recipient’s
paradigm. Rather, information theory provides mathematical methods for informatio,
in the ancestral Latin sense, but, since the twentieth century, using powerful computer
technologies, which make it possible to handle phenomenal amounts of raw information
messages.

This chapter will help us to conceive the “measure of information” in the Shannon
or “classical” definition, which represents the central axiom in information theory. We
will do this in two steps. First, we will analyze in what ways information might “make
sense,” but without any philosophical pretence. It is important in our view to go through
this preliminary reflection before approaching information theory. No doubt, it has
the potential to open up many interesting discussions and stimulate a brainstorming
session, which could eventually get everyone lost in the class. However, the benefit of
the reflection is to acquire the right focus, and safely engage us on the information-theory
journey, which is a more practical and useful goal than that of philosophically mastering
the information concept.

38 Measuring information

3.1 Making sense of information

In ordinary life and circumstances, information represents any piece of knowledge
concerning facts, data, descriptions, characterizations, rules, or means to perform tasks,
which can be transmitted, exchanged, or acquired in many ways. Such information can be
transmitted through sounds, images, signals, notices, messages, announcements, voice,
mails, memos, documents, books, encyclopedias, tutorials, chapters, training, and news
media. There exist a seemingly boundless number of possible channels for information.

According to the above description, information has no intrinsic meaning in itself.
The notion of meaningfulness is tangible only to the person or the entity to which the
information is destined. For instance, long-band radio stations or foreign newspapers
are meaningful only to those who speak the tongue. Within such channels, information
makes sense only to the populations who have an interest in the acquisition or the use of
the corresponding information.

What one usually calls intelligence is the faculty to relate together separate pieces of
information,1 to make sense of them in a specific context or with respect to a higher
level of information knowledge. One may refer to intelligence as the means coherently
to integrate information into a vital, self-preserving, or self-evolving way.

Another (but somewhat very specific) definition of intelligence is the systematic
collection of information on target subjects by states, agencies, or private consultants.
This activity is made in the purpose of gaining some strategic or economic advantage,
of gaining a higher perspective on a business, a market, a competitor, or a country. The
goal is to acquire or to maintain a competitive edge, for reasons of security and superior
decision-making. The collected information can also represent a product for sale, as in
the proliferating consultancy businesses.

Most people are concerned with the first type of intelligence, a skill whose acquisition
and development begins in early school through the apprenticeship of language, then
writing, math, literature, geography, history, and other knowledge. At a later stage,
we eventually specialize into some form of integrated knowledge, which defines our
situation, responsibility, wealth, and fate in society. Yet, the intelligent acquisition and
processing of information never ceases, whether in private or in professional life. It
is a commonplace to say that we are controlled by information. From a materialistic
viewpoint, the primary goal of life is to collect the information that is useful for various
personal reasons, such as societal compliance, mind growth, satisfaction, self-image,
empowerment, standard of living, or material survival.

Fortunately, intelligence does act as an information filter. It is able to control the
flow of information and to select what is relevant to any of the above needs. The rest
represents “useless” information, like spam mail. Its fate is to vanish into oblivion. On
the other hand, “useful” information is what intelligence looks after, with various degrees
of expectation and priorities. The last notion of priority implies a personal investment to
acquire and integrate information. If information must guide decisions and actions and,
overall, future growth, this effort is of vital importance. The need to deploy effort in the

1 The word intelligence comes from the Latin inter-ligere, literally meaning “linking things together.”

3.1 Making sense of information 39

acquisition and integration of information is too often overlooked, because of the fallacy
that one could get informed through the news media, or just by browsing the Internet
from a cell phone. To get informed is not only to access raw information, but also to
make sense of it; this is where the effort comes. Intelligence may be a gift, but it takes
some effort to make intelligent use of information.

As we all know, the principle of so-called computers is to process information,
as reduced into data.2 Computers perform this data processing at higher speeds and
with larger amounts than the human brain can handle, which reflects a man-made
form of higher intelligence. But this intelligence is not that of a machine. It is that of
the designers who have conceived the machine and developed the code that is operated
by the machine. Hence, the old-fashioned appellation of artificial intelligence, which,
despite its phenomenal information-processing power, only emulates human intelligence.
The man–machine intelligence challenge is well illustrated by chess contests, where the
latter often wins but only for reasons of memory (having registered all champions’
strategies in chess history) and computing power (having the possibility to analyze
several moves in advance). The chances to win over the machine are higher if the
player adopts some tactics that the machine has not prerecorded or cannot figure out the
rationale thereof. One may recall Arthur C. Clarke’s 2001: A Space Odyssey (of which
S. Kubrick made the famous movie), in which HAL,3 the mightiest supercomputer ever
designed in history, is eventually defeated by Dave, the more intelligent astronaut. For
those who do not know the story, HAL could not compute the possibility that Dave
would take a life chance by forcing his way back to the space station without wearing a
helmet. The computer’s intelligence may be virtually unbounded, but it is also exposed
to some gaps in which human beings may easily compete. Computer hackers are here to
illustrate that the most sophisticated firewalls can be broken into by means of exploiting
such gaps. But that is another debate.

Since information is not about intelligence, what would be the use of an information
theory? Could information theory ever be a science, as information science is to com-
puters? Let us look at this question more closely. In accurate terminology, information
science (or informatics), is a branch of computer science. Corresponding definitions go
as follows:4

� Information science is primarily concerned with the structure, creation, management,
storage, retrieval, dissemination, and transfer of information. It also includes study-
ing the application of information in organizations, on its usage and the interaction
between people, organizations, and information systems.

� Computer science encompasses a variety of topics that relate to computation, such
as abstract analysis of algorithms, (. . .) programming languages, program design,
software and computer hardware. It is knowledge accumulated through scientific
methodology by computation or by the use of a computer.

2 The word compute comes from the Latin com (together) and putare (to root, reckon, number, appraise,
estimate).

3 The name HAL stems from a one-letter shift of the IBM (Information Business Machines) company acronym.
4 http://en.wikipedia.org/wiki/information_science, http://en.wikipedia.org/wiki/Computer_science.

40 Measuring information

We observe from the above definitions that information science, a branch of computer
science, is not concerned in assessing the value within information, other than taking
care of it for some user benefit (acquiring, storing, transferring, retrieving, sharing . . .).
In this view, the Internet is a perfect application of information science. It is left to the
user to find the value and derive the benefits of information through intelligent use.

In contrast with the above, information theory is a branch of applied mathematics.
It is concerned with the issues of coding, transmitting, and retrieving information. The
three key applications of information theory are the transmission of data through special
codes that enable error correction (transmission accuracy), compression (transmission
and storage conciseness), and encryption (secrecy and security of transmission). Again,
we observe that information theory is not meant to assess the value of information,
or its relevance in terms of intelligent use. Internet communications depend heavily
on these three applications: error correction, to preserve data integrity after multiple
switching or routing and global transport; data compression, to accelerate uploading
and downloading of web pages, text, and image files; and cryptography, to secure
transactions or to protect privacy. Yet the intelligent use of the Internet information is left
to the end users, discussion groups, web-content managers, and developers of websites.
In this respect, information theory could be viewed as a misnomer, just like information
science, because there is neither theory nor science that can assess how one can properly
deal with information and its contents, in the broadest sense of the recipient’s benefit.
The future may reveal new theories of information, which could empower the user with
some automatic assessment of the information usefulness or value in terms of scientific,
societal, personal, and global impact. Without a shadow of a doubt, this would lead to a
worrisome information computer, with Internet pervasiveness in both professional and
private areas, taking care of everything in order for us not to worry about anything, just
like the space companion HAL. This might also change the face of the Internet, with
more and more intelligent browsers and search engines to present us the information the
way we may appreciate it the most. Maybe we are not that far from such a frightening
reality. Nevertheless, this only remains a matter of philosophical debate and speculation.

To close this preliminary discussion, we may simply conclude that information theory
is neutral about information content and its subjective value. Its purpose is to derive
mathematical algorithms for measuring, coding, and processing information, as reduced
to immaterial data. The rest of this chapter is dedicated to the issue of measuring
information, which is central to information theory. The nice and exciting thing indeed,
is that information can be measured, and this will be our starting point in the information-
theory journey.

3.2 Measuring information

Haven’t we experienced rushing to the mailbox, the newsstand, or the TV? This excep-
tional interest in the mail or the news has many possible reasons: appointment confir-
mation, contract signature, conclusion of litigation, events of nationwide impact, such
as disasters, elections, sports, but also house hunting, job classifieds, favorite rubrics,

3.2 Measuring information 41

or, for children, Sunday cartoons! We have all also noticed that the value attributed to
the mail or the newspaper decreases relatively quickly. Once read, both usually go to the
recycling bin. This indicates that the information in these types of news has a special
meaning in terms of being new or unexpected, which sharpens our interest.

In a scale of information interest, unexpected facts are what give information its
highest scores. In contrast, there is decreasing interest in hearing or reading again the
same news, except for the purpose of memorizing the information details. Jokes provide
a good example here. The real information hidden in the joke is not the story but the
conclusion or punch line. The joke may be a good one for various complex reasons, but
an important common element is that the meaning of the punch line must be completely
unexpected. A joke for which everyone in the audience already knows the conclusion
is of little interest. This observation leads to a sense that the interest of information
is the highest when it is fully unexpected to the recipient. The intrinsic importance of
information is thus intimately associated with some degree of uncertainty. If an event is
very likely, we gain little information in learning that it finally occurred. The converse
is also true: unlikely or surprising events are those containing the highest information
potential. Thus, information and event probabilities are connected, which bring us on
track towards a measure definition. Consider next a practical example.

A lotto surprise

Assume that I play the lotto, and the information I am looking after is the lotto’s results.
The official information finally comes as the following message:

x = The winning combination is 7, 13, 17, 18.

The meaningful part of this information is the four-number set. After I compare these
numbers with the ones printed on my ticket, the information reduces to either x = I have
won, or x = I have lost. Concisely expressed, the two possible information events are
x = W or x = L , respectively, with X = {W, L} representing the event set. To each of
these events (x = W or x = L) is associated a probability, noted p(x). For simplicity,
we shall note p(x = W) = p(W) and p(x = L) = p(L).

To recall from Chapter 1, a probability is a positive number taking any value between
0 (impossible event) and 1 (absolutely certain event). The sum of all probabilities, which
represent the combined likelihood of all possible events in X , is equal to unity.

With the lotto, we know from experience that the odds of winning are quite
small, and the odds of losing are, therefore, substantially high. For instance, we may
assume:

p(W) = 0.000001, (3.1)

p(L) = 1 − p(W) = 0.999999, (3.2)

meaning that the odds of winning are 1/1 000 000 or 1 in a million.
How much information do I get when hearing the lotto result? Obviously, my expec-

tations of winning being not very high, I won’t learn much upon realizing that I have,
indeed, lost. But in the contrary case, if I win, this is quite a phenomenal surprise! There

42 Measuring information

is a lot of information in the winning event, to the same extent there is little information
in the losing event.

Now we are looking for a formal way of defining the amount of information, which
we could use as an objective measure reference I (x) for each possible event x . We
may postulate that I (x) should approach zero for events close to absolute certainty
(p(x) → 1), and infinity for events reaching impossibility (p(x) → 0). We must also
require that for two events x1, x2 such that p(x1) < p(x2), we have I (x1) > I (x2),
meaning that the less likely event is associated with greater information. An information
measure I (x) that satisfies all these properties is the following:

I (x) = log

(
1

p(x)

)
= −log[p(x)]. (3.3)

In the above, the function log represents the natural logarithm, with the unit of I (x)
being called a nat. Note the minus sign in the definition’s right-hand side, which ensures
that the measure of information I (x) is a positive number. This definition only applies
to events of nonzero probability (p(x) > 0), meaning that the definition does not apply
to impossible events (p(x) = 0), or only in the sense of a limit.

In our lotto example, we have

I (W) = −log(0.000001) = 13.8 nats, (3.4)

I (L) = −log(0.999999) = 0.000001 nat. (3.5)

Thus, to win this lotto game represents some 14 nats of information, while losing means
negligible information, namely, orders of magnitude below (10−6 nat).

In the definition of I (x), it is also possible to choose base-two or base-ten logarithms.
This changes the information scale, but the qualitative result remains the same: infor-
mation continuously increases as the likelihood of events decrease. I will come back to
this issue later.

Next, let us explore some more properties of the proposed information measure.
Consider two unrelated or independent events A and B, with probabilities p(A) and
p(B). We define the joint probability p(A, B) as the probability that both events A
and B occur. As we have seen in Chapter 1, if A and B are independent events, then
p(A, B) = p(A)p(B). The information associated with the joint events is, therefore,5

I (A, B) = −log[p(A, B)]

= −log[p(A)p(B)]

= −log[p(A)] − log[p(B)] (3.6)

≡ I (A) + I (B).

The result shows that the information measure of the joint event is the sum of the
information measures associated with each event considered separately. Information is,
thus, an additive quantity. Such a property holds true only if the events are independent.
The more complex case where events are not independent will be addressed later on.

5 Using the rule for logarithms: log(XY) = log X + log Y (X and Y being positive).

3.3 Information bits 43

In the following, I will refer to information measure simply as information, in the IT
meaning of the word.

What if the two events A and B are not independent? Then we know from Bayes’s the-
orem that p(A, B) = p(A |B)p(B) = p(B |A)p(A). The information associated with
the joint event is, therefore,

I (A, B) = −log[p(A, B)]

= −log[p(A)p(B |A)]

= −log[p(A)] − log[p(B |A)] (3.7)

≡ I (A) + I [p(B |A)].

The result shows that the information of the joint event is the sum of the information
concerning event A and the information concerning event B – knowing that event A
occurred. The term I [p(B |A)] is referred to as conditional information.

3.3 Information bits

Since we have established that information can be measured according to its degree of
surprise, it is interesting to find the minimal information measurement one can make.
This concept is encapsulated in the familiar coin-tossing game.

Since a coin has two sides (heads and tails), the probabilities that it falls on either
side are equal (overlooking here any other material possibility). This feature is translated
mathematically into the relation p(x = heads) = p(x = tails) = 1/2. Consistent with
the definition in Eq. (3.3), the information that one gets from tossing a coin is I (x) =
− log[p(x)] or, in this case, I (heads) = I (tails) = − log(1/2) = 0.693 nat. We may
choose logarithms in base 2 to make this information value an integer, namely, defining6

I (x) = −log2 p(x), (3.8)

which gives I (heads) = I (tails) = −log2(2−1) = −(−1) log2(2) = 1. The unit of this
new measure of information is the bit, as short for binary digit.

What a bit represents is, thus, the exact amount of elementary information necessary
to describe the outcome of a coin tossing. The property I = 1 bit means that the message
used to transmit the information only requires a single symbol, out of a source of 2I = 2
possible symbols. We can thus use any character pair, for instance, tails = 0 and heads =
1, for simplicity. The conclusion is that the smallest information message is a bit, namely,
containing either 0 or 1 as a symbol.7 The information regarding the outcome of the
coin tossing can thus be communicated through a single message bit, which represents
the minimum amount of measurable information.

6 The conversion between natural and base-2 logarithms is given by the relation log2 x = log x/ log 2 ≈
1.442 log x .

7 We could also have used base-3 or base-4 logarithms, defining the “trit” or the “quad,” as representing
three-valued or four-valued units of information. But the bit is the most elementary unit that cannot be sliced
down into a smaller dimension.

44 Measuring information

If we toss the coin several times in a row, the information concerning the succession
of outcomes is described by a string of as many single bits. For instance, the message
consisting in the string 1101001101 . . . means that the first two outcomes are heads, the
third is tails, and so on.

To illustrate the concept of minimal information measure further, consider the case of
a die. As we know, a die is a cube with six spotted faces, corresponding to the event source
X = {1, 2, 3, 4, 5, 6}. The faces have equal probabilities of showing up as the die rolls
out and stops (assuming no other physical possibility). The equiprobability translates into
the relation p(x = 1) = p(x = 2) = . . . = p(x = 6) = 1/6. The information contained
in any die-roll measurement is, therefore,

I (X) = −log2(1/6) = log2(6) ≈ 2.584 bits. (3.9)

The above result is puzzling because it shows that the bit information can be a noninteger,
i.e., any positive real number. But how can one form a message string with 2.584 bits?
The explanation is not to confuse between the information measure (the bit) and the
number n of 1/0 symbols that is actually required to form the message. What the above
result tells us is that the die-roll information can be coded by any string of n symbols,
satisfying n ≥ 2.584. This means that the minimum string length is n = 3. It does,
indeed, take three binary bits to represent all numbers from one to six, using the same
symbol or block length.8

Next, we are going to show that binary coding is not the only way to encapsulate this
information. Indeed, the full information of a single die roll can also be coded through
a block of three YES or NO symbols, which provide the answer to three independent
questions Q1, Q2, and Q3. Here is an example of the three questions:

Q1: Is the result x even?

If YES, then x ∈ {2, 4, 6} = U1, if NO, then x ∈ {1, 3, 5} = U2.

Q2: Is the result x strictly greater than 3?

If YES, then x ∈ {4, 5, 6} = V1; if NO, then x ∈ {1, 2, 3} = V2.

Q3: Is the result x divided by 3?

If YES, then x ∈ {3, 6} = W1; if NO, then x ∈ {1, 2, 4, 5} = W2.

The combined answers to the three questions yield the value of x (in ensemble language,
one writes x = Ui ∩ Vj ∩ Wk , with i, j, k = 1 or 2). For instance, we have 5 = U2 ∩
V1 ∩ W2. It is straightforward to verify that the code correspondence is:

1 = NO/NO/NO,

2 = YES/NO/NO,

8 The choice of code being arbitrary; we can use the binary representation, 1 = 001, 2 = 010, 3 = 011, 4 =
100, 5 = 101, 6 = 110, noting that the blocks 000 and 111 are unused.

3.4 Rényi’s fake coin 45

3 = NO/NO/YES,

4 = YES/YES/NO,

5 = NO/YES/NO,

6 = YES/YES/YES,

while the two messages YES/NO/YES and NO/YES/YES are unused (in ensemble lan-
guage, U1 ∩ V2 ∩ W1 = U2 ∩ V1 ∩ W1 = ∅, meaning that these ensembles are empty).

Regardless of the code, we see that the symbol blocks require three symbols of
binary value bits (YES/NO or 1/0), while the information carried by the message is
only 2.584 bits. Why do we have an extra 0.416 bit of information in the message?
The explanation for this mystery is in fact quite simple. Assume a source that has
eight equiprobable symbols, i.e., Y = {1, 2, 3, 4, 5, 6, 7, 8}, which can also be written
Y = X ∪ {7, 8}. The information of Y is I (Y) = −log2(1/8) = log2 23 = 3 log2 2 =
3 bits. Since our previous messages describe the outcome of a die roll, the symbols
(7, 8), which have a probability of zero, are never used. The consequence of never using
these two symbols is that the actual probabilities of the six other symbols are raised by a
factor of 8/6. This increase in likelihood corresponds to a relative information decrease
(or less surprise!) of �I = −log(8/6) = −0.416 bit. Thus, the net information in the
message is Inet = I (Y) + �I = 3 − 0.416 = 2.584 bits.

One may justly argue that we get noninteger information because of the arbitrary
choice of a base-2 logarithm. For the die roll, we could equally well choose a base-
6 logarithm, i.e., I (X) = −log6(x) = log6(6) = 1 sit (for “six-ary digit”). Then the
information of the die roll can be given by a single sit symbol, instead of three bits.
However, the sit is six-valued, which requires six different symbols per elementary
information, as opposed to the two-valued bit, which only requires two symbols. Which
of the two message blocks is better: one made of a single six-valued symbol, or one made
of three two-valued symbols (bits)? Obviously, the first type is the shortest possible, but
the symbol is more complex to identify. The second type is longer, but the symbol
interpretation the most straightforward. Actually, the choice of symbol representation,
by the use of multivalued symbol alphabets, is fully arbitrary. However, for computer
implementation, the bit remains the most practical way of coding information.

The lesson learnt is that information messages always require an integer number of
symbols, the 1/0 bit being the simplest or most elementary type. The bit-measure of
information (I), however, is any real positive number. Since the number of required
message bits n cannot be less than the information I to be conveyed (n ≥ I); it is,
therefore, given by the integer equal to or immediately greater than I .

3.4 Rényi’s fake coin

The “fake-coin” determination problem was originally described by the mathematician
A. Rényi.9 It brilliantly illustrates for the purposes of this entry-level chapter how

9 A. Rényi, A Diary on Information Theory (New York: John Wiley & Sons, 1984), p. 10.

46 Measuring information

the information measure can be applied to find the solution of complex optimization
problems, in particular, where the outcomes are ternary or multivalued. Let’s move
directly onto the fun stuff.

Assume that a medieval jeweler was presented with 27 gold coins, all looking strictly
identical, but with one of them being fake, being made of a lighter metal. The jeweler
only has a scale with two pans. What is the minimum number of weight measurements
needed for the jeweler to figure out which coin is the fake?

Answer: A first hunch comes from realizing that the problem is wholly similar to the
2-faced coin or the 6-faced die examples. All coins presented have equal probabilities,
p(1/27), of being the fake one. According to our information-theory knowledge, we
conclude that the number of information bits required to identify one out of 27 coins
is I = log2 27 = log2 33 = 3 log2 3 bit. We just need to find a technique to acquire the
information I through a minimum number of trials or weighting measurements.

A painstaking approach but not the smartest, as we shall see, consists in comparing
the weights of all coins with respect to a same reference coin, which the jeweler would
initially pick up at random. If he happens to pick up for reference the fake coin, he
gets the answer right away with the first measurement. The probability for this lucky
conclusion is 1/27, or 3.7%. In the worst case, where all of his successive measurements
balance out, it would take 25 operations to conclude the test.10 Yet, we may observe that
this is not a bad method if the scale is too delicate and cannot take more than one coin in
each pan. Let us assume that the scale is robust and sufficiently accurate to weigh groups
of ten coins or so. Consider then the outcome of any scale measurement with groups of
several coins with equal numbers, as selected at random. There are three possible, and
equiprobable outcomes:

(a) Left pan heavier;
(b) Right pan heavier;
(c) Pans balanced.

The outcome is a ternary answer (YES/NO/NEUTRAL) with equiprobable outcomes.
Each of these single measurements (a), (b), (c), thus, yields an information of Im =
−log2(1/3) = log2 3 bit, and n such independent measurements yield the information
nIm = n log2 3 ≡ nI/3. This result shows that the minimum number of measurements
required to sort the fake coin from the group is n = 3, since 3Im = I . This is a second
hunch towards the problem solution. However, we don’t know anything yet about how
to proceed, in order to get the answer through this “theoretical” minimum of three
operations.

The solution provided by Rényi is illustrated in Fig. 3.1. It consists in making a
succession of selective measurements, first with two groups of nine coins, then two
groups of three coins, then with two groups of one coin, each one identifying where the
fake coin is located. This solution proves that three measurements indeed are sufficient
to get the answer!

10 Indeed, if the first 25 measurements with coin numbers 2–26 balance out, the reference coin (number 1)
cannot be fake, so coin number 27 is the fake one.

3.4 Rényi’s fake coin 47

A B C

A = B select C
A < B select A
A > B select B

Step 1 Step 2

A B C

A = B select C
A < B select A
A > B select B

A = B select C
A < B select A
A > B select B

A B C

Step 3

Split
into

Split
into

Figure 3.1 Solution of Rényi’s fake-coin problem: the 27 coins are split into three groups (A, B,
C). The scale first compares weights of groups (A, B), which identifies the group X = A, B, or C
containing the fake (lighter) coin. The same process is repeated with the selected group, X being
split into three groups of three coins (step 2), and three groups of one coin (step 3). The final
selection is the fake coin.

There exists at least one other way to solve Rényi’s fake-coin determination problem,
which to the best of my knowledge I believe is original.11 The solution consists in making
the three measurements only using groups of nine coins. The idea is to assign to each
coin a position in space, forming a 3 × 3 coin cube, as illustrated in Fig. 3.2.

The coins are thus identified or labeled with a coefficient ci jk , where each of the indices
i, j, k indicates a plane to which the coin belongs (coin c111 is located at bottom-left
on the front side and coin c333 is located at top-right on the back side). To describe the
measurement algorithm, one needs to define nine groups corresponding to all possible
planes. For the planes defined by index i = const., the three groups are:

Pi=1 = (c111, c112, c113, c121, c122, c123, c131, c132, c133) ≡ {
c1 jk

}
Pi=2 = (c211, c212, c213, c221, c222, c223, c231, c232, c233) ≡ {

c2 jk

}
(3.10)

Pi=3 = (c311, c312, c313, c321, c322, c323, c331, c332, c333) ≡ {
c3 jk

}
.

The other definitions concerning planes j = const. and k = const. are straightforward.
By convention, we mark with an asterisk any group containing the fake coin. If we put
then Pi=1 and Pi=2 on the scale (step 1), we get three possible measurement outcomes
(the signs meaning group weights being equal, lower, or greater):

Pi=1 = Pi=2 → P∗
i=3

Pi=1 < Pi=2 → P∗
i=1 (3.11)

Pi=1 > Pi=2 → P∗
i=2.

We then proceed with step two, taking, for instance, Pj=1 and Pj=2, which yields either

11 As proposed in 2004 by J.-P. Blondel of Alcatel (private discussion), which I have reformulated here in
algorithmic form.

48 Measuring information

i

1 2 3

j

1

2

3

1

2

3

k

111
c

333c

Figure 3.2 Alternative solution of Rényi’s fake-coin problem: each of the 27 coins is assigned a
coefficient ci jk , corresponding to its position within intersecting planes (i, j, k = 1, 2, 3) forming
a 3 × 3 cube. The coefficients c111 and c333, corresponding to the coins located in
front-bottom-left and back-top-right sides (respectively) are explicitly shown.

of the outcomes:

Pj=1 = Pj=2 → P∗
j=3

Pj=1 < Pj=2 → P∗
j=1 (3.12)

Pj=1 > Pj=2 → P∗
j=2.

We then finally proceed with step three, taking, for instance, Pk=1 and Pk=2, which yields
either of the outcomes:

Pk=1 = Pk=2 → P∗
k=3

Pk=1 < Pk=2 → P∗
k=1 (3.13)

Pk=1 > Pk=2 → P∗
k=2.

We observe that the three operations lead one to identify three different marked groups.
For instance, assume that the three marked groups are P∗

i=3, P∗
j=1, P∗

k=2. This immedi-
ately tells us that the fake-coin coefficient c∗

i jk is of the form c3 jk and ci1k and ci j2, or
in mathematical notation, using the Kronecker symbol,12 c∗

i jk = ci jkδi3δ j1δk2 ≡ c312.

12 By definition, δi j = δ j i = 1 for i = j and δi j = 0 otherwise.

3.5 Exercises 49

In ensemble-theory language, this solution is given by the ensemble intersection
c∗

i jk = {P∗
i=3 ∩ P∗

j=1 ∩ P∗
k=2}. Note that this solution can be generalized with N = 3p

coins (p ≥ 3), where p is the dimension of a hyper-cube with three coins per side.
The alternative solution to the Rényi fake-coin problem does not seem too practical

to implement physically, considering the difficulty in individually labeling the coins,
and the hassle of regrouping them successively into the proposed arrangements. (Does
it really save time and simplify the experiment?) It is yet interesting to note that the
problem accepts more than one mathematically optimal solution. The interest of the
hyper-cube algorithm is its capacity for handling problems of the type N = m p, where
both m and p can have arbitrary large sizes and the measuring device is m-ary (or gives
m possible outcomes). While computers can routinely solve the issue in the general
case, we can observe that the information measure provides a hunch of the minimum
computing operations, and eventually boils down to greater speed and time savings.

3.5 Exercises

3.1 (B): Picking a single card out a 32-card deck, what is the information on the
outcome?

3.2 (B): Summing up the spots of a two-dice roll, how many message bits are required
to provide the information on any possible outcome?

3.3 (B): A strand of DNA has four possible nucleotides, named A, T, C, and G. Assume
that for a given insect species, the probabilities of having each nucleotide in a
sequence of eight nucleotides are: p(A) = 1/4, p(T) = 1/16, p(C) = 5/16, and
p(G) = 3/8. What is the information associated with each nucleotide within the
sequence (according to the information-theory definition)?

3.4 (M): Two cards are simultaneously picked up from a 32-card deck and placed face
down on a table. What is the information related to any of the events:
(a) One of the two cards is the Queen of Hearts?
(b) One of the two cards is the King of Hearts?
(c) The two cards are the King and Queen of Hearts?
(d) Knowing that one of the cards is the Queen of Hearts, the second is the King

of Hearts?
Conclusions?

3.5 (T): You must guess an integer number between 1 and 64, by asking as many
questions as you want, which are answered by YES or NO. What is the minimal
number of questions required to guess the number with 100% certainty? Provide
an example of such a minimal list of questions.

4 Entropy

The concept of entropy is central to information theory (IT). The name, of Greek origin
(entropia, tropos), means turning point or transformation. It was first coined in 1864 by
the physicist R. Clausius, who postulated the second law of thermodynamics.1 Among
other implications, this law establishes the impossibility of perpetual motion, and also
that the entropy of a thermally isolated system (such as our Universe) can only increase.2

Because of its universal implications and its conceptual subtlety, the word entropy has
always been enshrouded in some mystery, even, as today, to large and educated audiences.

The subsequent works of L. Boltzmann, which set the grounds of statistical mechan-
ics, made it possible to provide further clarifications of the definition of entropy, as
a natural measure of disorder. The precursors and founders of the later information
theory (L. Szilárd, H. Nyquist, R. Hartley, J. von Neumann, C. Shannon, E. Jaynes, and
L. Brillouin) drew as many parallels between the measure of information (the uncer-
tainty in communication-source messages) and physical entropy (the disorder or chaos
within material systems). Comparing information with disorder is not at all intuitive.
This is because information (as we conceive it) is pretty much the conceptual opposite
of disorder! Even more striking is the fact that the respective formulations for entropy
that have been successively made in physics and IT happen to match exactly. A legend
has it that Shannon chose the word “entropy” from the following advice of his colleague
von Neumann: “Call it entropy. No one knows what entropy is, so if you call it that you
will win any argument.”

This chapter will give us the opportunity to familiarize ourselves with the concept of
entropy and its multiple variants. So as not to miss the nice parallel with physics, we
will start first with Boltzmann’s precursor definition, then move to Shannon’s definition,
and develop the concept from there.

4.1 From Boltzmann to Shannon

The derivation of physical entropy is based on Boltzmann’s work on statistical mechanics.
Put simply, statistical mechanics is the study of physical systems made of large groups of

1 This choice could also be attributed to the phonetic similarity with the German Energie (energy, or energia
in Greek), so the word can also be interpreted as “energy turning point” or “point of energy transformation.”

2 For a basic definition of the second law of thermodynamics, see, for instance, http://en.wikipedia.org/
wiki/Entropy.

4.1 From Boltzmann to Shannon 51

Energy

Number of particles Ni

Em

E3

E2

E1

. .
 .

Em−1

Nm = 2

N3 = 4

N2 = 3

N1 = 8

Nm−1 = 1

Figure 4.1 Energy-level diagram showing how a set of N identical particles in a physical
macrosystem can be distributed to occupy, by subsets of number Ni , different microstates of
energy Ei (i = 1 . . . m).

particles, for which it is possible to assign both microscopic (individual) and macroscopic
(collective) properties.

Consider a macroscopic physical system, which we refer to for short as a macrosystem.
Assume that it is made of N particles. Each individual particle is allowed to occupy
one out of m possible microscopic states, or microstates,3 which are characterized by
an energy Ei (i = 1 . . . m), as illustrated in Fig. 4.1. Calling Ni the number of particles
occupying, or “populating,” the microstate of energy Ei , the total number of particles in
the macroscopic system is

N =
m∑

i=1

Ni , (4.1)

and the total macrosystem energy is

E =
m∑

i=1

Ni Ei . (4.2)

Now let’s perform some combinatorics. We have N particles each with m possible energy
states, with each state having a population Ni . The number of ways W to arrange the N
particles into these m boxes of populations Ni is given by:

W = N !

N1!N2! . . . Nm!
(4.3)

3 A microscopic state, or microstate, is defined by a unique position to be occupied by a particle at atomic
scale, out of several possibilities, namely, constituting a discrete set of energy levels.

52 Entropy

(see Appendix A for a detailed demonstration). When the number of particles N is large,
we obtain the following limit (Appendix A):

H = lim
N→∞

log W

N
= −

m∑
i=1

pi log pi , (4.4)

where pi = Ni/N represents the probability of finding the particle in the microstate
of energy Ei . As formulated, the limit H can thus be interpreted as representing the
average value (or “expectation value” or “statistical mean”) of the quantity −log pi ,
namely, H = −〈log p〉. This result became the Boltzmann theorem, whose author called
H “entropy.”

Now let us move to Shannon’s definition of entropy. In his landmark paper,4

Shannon seeks for an improved and comprehensive definition of information measure,
which he called H . In the following, I summarize the essential steps of the demonstration
leading to Shannon’s definition.

Assuming a random source with an event space, X , comprising N elements or sym-
bols with probabilities pi (i = 1 . . . N), the unknown function H should meet three
conditions:

(1) H = H (p1, p2, . . . , pN) is a continuous function of the probability set pi ;
(2) If all probabilities were equal (namely, pi = 1/N), the function H should be

monotonously increasing with N ;5

(3) If any occurrence breaks down into two successive possibilities, the original H
should break down into a weighed sum of the corresponding individual values of
H .6

Shannon’s formal demonstration (see Appendix B) shows that the unique function sat-
isfying the three requirements (1)–(3) is the following:

H = −K
N∑

i=1

pi log pi , (4.5)

where K is an arbitrary positive constant, which we can set to K = 1, since the logarithm
definition applies to any choice of base (K = logp x/ logq x with p �= q being positive
real numbers). It is clear that an equivalent notation of Eq. (4.5) is

H (X) = −
∑
x∈X

p(x) log p(x) ≡
∑
x∈X

p(x)I (x), (4.6)

where x is a symbol from the source X and I (x) is the associated information measure
(as defined in Chapter 3).

4 C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27 (1948), 379–423, 623–56.
This paper can be freely downloaded from http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

5 Based on the fact that equally likely occurrences provide more choice, then higher uncertainty.
6 Say there initially exist two equiprobable events (a, b) with p(a) = p(b) = 1/2, so H is the function

H (1/2, 1/2); assume next that event (b) corresponds to two possibilities of probabilities 1/3 and 2/3,
respectively. According to requirement (3), we should have H = H (1/2, 1/2) + (1/2)H (1/3, 2/3) with the
coefficient 1/2 in the second right-hand-side term being justified by the fact that the event (b) occurs only
half of the time, on average.

4.2 Entropy in dice 53

The function H , which Shannon called entropy, is seen to be formally identical to
the function of entropy defined by Boltzmann. However, we should note that Shannon’s
entropy is not an asymptotic limit. Rather, it is exactly defined for any source having a
finite number of symbols N .

We observe then from the definition that Shannon’s entropy is the average value of the
quantity I (x) = −log p(x), namely, H = 〈I 〉 = −〈log p〉, where I (x) is the information
measure associated with a symbol x of probability p(x). The entropy of a source is,
therefore, the average amount of information per source symbol, which we may also call
the source information.

If all symbols are equiprobable (p(x) = 1/N), the source entropy is given by

H = −
∑
x∈X

p(x) log p(x) = −
N∑

i=1

1

N
log

1

N
≡ log N , (4.7)

which is equal to the information I = log N of all individual symbols. We will have
several occasions in the future to use such a property.

What is the unit of entropy? Were we to choose the natural logarithm, the unit of H
would be nat/symbol. However, as seen in Chapter 3, it is more sensible to use the base-2
logarithm, which gives entropy the unit of bit/symbol. This choice is also consistent with
the fact that N = 2q equiprobable symbols, i.e., with probability 1/N = 1/2q , can be
represented by log2 2q = q bits, meaning that all symbols from this source are made of
exactly q bits. In this case, there is no difference between the source entropy, H = q, the
symbol information, I = q, and the symbol bit length, l = q. In the rest of this book, it
will be implicitly assumed that the logarithm is of base two.

Let us illustrate next the source-entropy concept and its properties through practical
examples based on various dice games and even more interestingly, on our language.

4.2 Entropy in dice

Here we will consider dice games, and see through different examples the relation
between entropy and information. For a single die roll, the six outcomes are equiprob-
able with probability p(x) = 1/6. As a straightforward application of the definition, or
Eq. (4.7), the source entropy is thus (base-2 logarithm implicit):

H = −
6∑

i=1

1

6
log

1

6
≡ log 6 = 2.584 bit/symbol. (4.8)

We also have for the information: I = log 6 = 2.584 bits. This result means that it takes
3 bits (as the nearest upper integer) to describe any of the die-roll outcomes with the
same symbol length, i.e., in binary representation:

x = 1 → x100 x = 2 → x010 x = 3 → x110
x = 4 → x001, x = 5 → x101, x = 6 → x011,

54 Entropy

Table 4.1 Calculation of entropy associated with the result of rolling two dice. The columns show the
different possibilities of obtaining values from 2 to 12, the corresponding probability p and the product
−p log2 p whose summation (bottom) is the source entropy H , which is equal here to 3.274 bit/
symbol.

Sum of dice numbers Probability (p) −p log2(p)

2 = 1 + 1 0.027 777 778 0.143 609 03
3 = 1 + 2 = 2 + 1 0.055 555 556 0.231 662 5
4 = 2 + 2 = 3 + 1 = 1 + 3 0.083 333 333 0.298 746 88
5 = 4 + 1 = 1 + 4 = 3 + 2 = 2 + 3 0.111 111 111 0.352 213 89
6 = 5 + 1 = 1 + 5 = 4 + 2 = 2 + 4 = 3 + 3 0.138 888 889 0.395 555 13
7 = 6 + 1 = 1 + 6 = 5 + 2 = 2 + 5 = 4 + 3 = 3 + 4 0.166 666 667 0.430 827 08
8 = 6 + 2 = 2 + 6 = 5 + 3 = 3 + 5 = 4 + 4 0.138 888 889 0.395 555 13
9 = 6 + 3 = 3 + 6 = 5 + 4 = 4 + 5 0.111 111 111 0.352 213 89

10 = 6 + 4 = 4 + 6 = 5 + 5 0.083 333 333 0.298 746 88
11 = 6 + 5 = 5 + 6 0.055 555 556 0.231 662 5
12 = 6 + 6 0.027 777 778 0.143 609 03

∑ = 1.
Source entropy

∑ = 3.274.

where the first bit x is zero for all six outcomes. Nothing obliges us to attribute to each
outcome its corresponding binary value. We might as well adopt any arbitrary 3-bit
mapping such as:

x = 1 → 100 x = 2 → 010 x = 3 → 110
x = 4 → 001, x = 5 → 101, x = 6 → 011.

The above example illustrates a case where entropy and symbol information are equal,
owing to the equiprobability property. The following examples illustrate the more general
case, highlighting the difference between entropy and information.

Two-dice roll

The game consists in adding the spots obtained from rolling two dice. The minimum
result is x = 2 (= 1 + 1) and the maximum is x = 12 (= 6 + 6), corresponding
to the event space X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The probability distribution
p(x) was described in Chapter 1, see Figs. 1.1 and 1.2. Table 4.1 details the 11 differ-
ent event possibilities and their respective probabilities p(x). The table illustrates that
there exist 36 equiprobable dice-arrangement outcomes, giving first p(1) = p(12) =
1/36 = 0.027. The probability increases for all other arrangements up to a maximum
corresponding to the event x = 7 with p(7) = 6/36 = 0.166. Summing up the values
of −p(x) log p(x), the source entropy is found to be H = 3.274 bit/symbol. This result
shows that, on average, the event can be described through a number of bits between 3
and 4. This was expected since the source has 11 elements, which requires a maximum
of 24 = 4 bits, while most of the events (namely, x = 2, 3, 4, 5, 6, 7, 8, 9) can be coded

4.2 Entropy in dice 55

in principle with only 23 = 3 bits. The issue of finding the best code to attribute a symbol
of minimal length to each of the events will be addressed later.

The 421

The dice game called 421 for short was popular in last century’s French cafés. The
game uses three dice and the winning roll is where the numbers 4, 2, and 1 show up,
regardless of order. The interest of this example is to illustrate Shannon’s property (3),
which is described in the previous section and also in Appendix B. The probability
of obtaining x = 4, 2, 1, like any specific combination where the three numbers are
different, is p(421) = (1/6)(1/6)(1/6) × 3! = 1/36 = 0.0277 (each die face has 1/6
chance and there are 3! possible dice permutations). The probability of winning is, thus,
close to 3%, which (interestingly enough) is strictly equal to that of the double six winner
(p(66) = (1/6)(1/6) = 1/36) in many other games using dice. The odds on missing a
4, 2, 1 roll are p(other) = 1 − p(421) = 35/36 = 0.972. A straightforward calculation
of the source entropy gives:

H (421, other) = −p(421) log2 p(421) − [1 − p(421)] log2[1 − p(421)]
(4.9)

= 1

36
log2 36 + 35

36
log2

36

35
≡ 0.183 bit/symbol.

The result shows that for certain sources, the average information is not only a real
number involving “fractions” of bits (as we have seen), but also a number that can
be substantially smaller than a single bit! This intriguing feature will be clarified in a
following chapter describing coding and coding optimality.

Next, I shall illustrate Shannon’s property (3) based on this example. What we did
consisted in partitioning all possible events (result of dice rolls) into two subcate-
gories, namely, winning (x = 4, 2, 1) and losing (x = other), which led to the entropy
H = 0.183 bit/symbol. Consider now all dice-roll possibilities, which are equiprobable.
The total number of possibilities (regardless of degeneracy) is N = 6 × 6 × 6 = 216,
each of which is associated with a probability p = 1/216. The corresponding informa-
tion is, by definition, I (216) = log 216 = 7.7548 bits.

We now make a partition between the winning and the losing events. This gives
n(421) = 3! = 6, and n(other) = 216 − 6 = 210. According to Shannon’s rule (3), and
following Eq. (B17) of Appendix B, we have:

I (N) = H (p1, p2) + p1 I (n1) + p2 I (n2)

= H (421, other) + p(421)I [n(421)] + p(other)I [n(other)]

= 0.1831 + (1/36)I (6) + (35/36)I (210) = 0.1831 + 0.0718 + 7.4999

≡ 7.7548 bits, (4.10)

which is the expected result.
One could argue that there was no real point in making the above verification, since

property (3) is ingrained in the entropy definition. This observation is correct: the
exercise was simply meant to illustrate that the property works through a practical

56 Entropy

example. Yet, as we shall see, we can take advantage of property (3) to make the rules
more complex and exciting, when introducing further “winning” subgroups of interest.
For instance, we could keep “4, 2, 1” as the top winner of the 421 game, but attribute 10
bonus points for any different dice-roll result mnp in which m + n + p = 7. Such a rule
modification creates a new partition within the subgroup we initially called “other.” Let’s
then decompose “other” into “bonus” and “null,” which gives the source information
decomposition:

I (N) = H (421, bonus, null) + p(421)I [n(421)]
(4.11)

+ p(bonus)I [n(bonus)] + p(null)I [n(null)].

The reader can easily establish that there exists only n(bonus) = 9 possibilities for the
“bonus” subgroup (which, to recall, excludes any of the “421” cases), thus p(bonus) =
9/216, and p(null) = 1 − p(421) − p(bonus)= 1 − 1/36 − 9/216= 0.9305 (this alter-
native rule of the 421 game gives about 7% chances of winning something, which more
than doubles the earlier 3% and increases the excitement). We obtain the corresponding
source entropy;

H (421, bonus, null)

= −p(421) log2[p(421)] − p(bonus) log2[p(bonus)] − p(null) log2[p(null)]

≡ 0.4313 bit/symbol. (4.12)

We observe that the entropy H (421, bonus, null) ≡ 0.4313 bit/symbol is more than the
double of H (421, other) = 0.183 bit/symbol, a feature that indicates that the new game
has more diversity in outcomes, which corresponds to a greater number of “exciting”
possibilities, while the information of the game, I (N), remains unchanged. Thus, entropy
can be viewed as representing a measure of game “excitement,” while in contrast infor-
mation is a global measure of game “surprise,” which is not the same notion. Consider,
indeed, two extreme possibilities for games:

Game A: the probability of winning is very high, e.g., pA(win) = 90%;

Game B: the probability of winning is very low, e.g., pB(win) = 0.000 01%.

One easily computes the game entropies and information:

H (A) = 0.468 bit/symbol Iwin(A) = 0.152 bit,

H (B) = 0.000 002 5 bit/symbol Iwin(B) = 23.2 bit.

We observe that, comparatively, game A has significant entropy and low information,
while the reverse applies to game B. Game A is more exciting to play because the player
wins much more often, hence a high entropy (but low information). Game B has more
of a surprise potential because of the low chances of winning, hence a high information
(but low entropy).

4.3 Language entropy 57

4.3 Language entropy

Here, we shall see how Shannon’s entropy can be applied to analyze languages, as
primary sources of word symbols, and to make interesting comparisons between different
types of language.

As opposed to dialects, human languages through history have always possessed some
written counterparts. Most of these language “scripts” are based on a unique, finite-size
alphabet of symbols, which one has been trained in early age to recognize and manipulate
(and sometimes to learn later the hard way!).7 Here, I will conventionally call symbols
“characters,” and their event set the “alphabet.” This is not to be confused with the
“language source,” which represents the set of all words that can be constructed from
said alphabet. As experienced right from early school, not all characters and words are
born equal. Some characters and words are more likely to be used; some are more rarely
seen. In European tongues, the use of characters such as X or Z is relatively seldom,
while A or E are comparatively more frequent, a fact that we will analyze further down.

However, the statistics of characters and words are also pretty much context-
dependent. Indeed, it is clear that a political speech, a financial report, a mortgage
contract, an inventory of botanical species, a thesis on biochemistry, or a submarine’s
operating manual (etc.), may exhibit statistics quite different from ordinary texts! This
observation does not diminish the fact that, within a language source, (the set of all
possible words, or character arrangements therein), words and characters are not all
treated equal. To reach the fundamentals through a high-level analysis of language, let
us consider just the basic character statistics.

A first observation is that in any language, the probability distribution of characters
(PDF), as based on any literature survey, is not strictly unique. Indeed, the PDF depends
not only on the type of literature surveyed (e.g., newspapers, novels, dictionaries, tech-
nical reports) but also on the contextual epoch. Additionally, in any given language
practiced worldwide, one may expect significant qualitative differences. The Continen-
tal and North-American variations of English, or the French used in Belgium, Quebec,
or Africa, are not strictly the same, owing to the rich variety of local words, expressions,
idioms, and literature.

A possible PDF for English alphabetical characters, which was realized in 1942,8 is
shown in Fig. 4.2. We first observe from the figure that the discrete PDF nearly obeys an
exponential law. As expected, the space character (sp) is the most frequent (18.7%). It is
followed by the letters E, T, A, O, and N, whose occurrence probabilities decrease from
10.7% and 5.8%. The entropy calculation for this source is H = 4.065 bit/symbol. If we
remove the most likely occurring space character (whose frequency is not meaningful)
from the source alphabet, the entropy increases to H = 4.140 bit/symbol.

7 The “alphabet” of symbols, as meaning here the list of distinct ways of forming characters, or voice sounds,
or word prefixes, roots, and suffixes, or even full words, may yet be quite large, as the phenomenally rich
Chinese and Japanese languages illustrate.

8 F. Pratt, Secret and Urgent (Indianapolis: The Bobbs-Merrill Book Company, 1942). Cited in J. C. Hancock,
An Introduction to the Principles of Communication Theory (New York: McGraw Hill, 1961).

58 Entropy

0

5

10

15

20

sp E T A O N R I S H D L F C M U G Y P W B V K X J Q Z

P
ro

ba
bi

lit
y

(%
)

Figure 4.2 Probability distribution of English alphabetical characters, as inventoried in 1942.
The source entropy with or without the space character is H = 4.065 bit/symbol and
H = 4.140 bit/symbol, respectively.

Figure 4.3 shows the probability distributions for English, German, French, Italian,
Spanish, and Portuguese, after inventories realized in 1956 or earlier.9 For comparison
purposes, the data were plotted in the decreasing-probability sequence corresponding
to English (Fig. 4.2). We observe that the various distributions exhibit a fair amount of
mutual correlation, together or by subgroups. Such a correlation is more apparent if we
plot in ordinates the different symbol probabilities against the English data, as shown in
Fig. 4.4. The two conclusions are:

(a) Languages make uneven use of symbol characters (corresponding to discrete-
exponential PDF);

(b) The PDFs are unique to each language, albeit showing a certain degree of mutual
correlation.

Consider next language entropy. The source entropies, as calculated from the data in
Fig. 4.3, together with the 10 most frequent characters, are listed in Table 4.2. The
English source is seen to have the highest entropy (4.147 bit/symbol), and the Italian one
the lowest (3.984 bit/symbol), corresponding to a small difference of 0.16 bit/symbol.
A higher entropy corresponds to a fuller use of the alphabet “spectrum,” which creates
more uncertainty among the different symbols. Referring back to Fig. 4.3, we observe
that compared with the other languages, English is richer in H, F, and Y, while German
is richer in E, N, G, B, and Z, which can intuitively explain that their source entropies are
the highest. Compared with the earlier survey of 1942, which gave H (1942) = 4.140 bit/
symbol, this new survey gives H (1956) = 4.147 bit/symbol. This difference is not really
meaningful, especially because we do not have a basis for comparison between the
type and magnitude of the two samples that were used. We can merely infer that the
introduction of new words or neologisms, especially technical neologisms, contribute

9 H. Fouché-Gaines, Cryptanalysis, a study of ciphers and their solutions (New York: Dover Publications,
1956).

4.3 Language entropy 59

Figure 4.3 Probability distributions of character symbols for English, German, French, Italian,
Spanish and Portuguese, as inventoried in 1956 or earlier and as ordered according to English.
The corresponding source entropy and 10 most frequent letters are shown in Table 4.2.

over the years to increase entropy. Note that the abandonment of old-fashioned words
does not necessarily counterbalance this effect. Indeed, the old words are most likely to
have a “classical” alphabet structure, while the new ones are more likely to be unusual,
bringing a flurry of new symbol-character patterns, which mix roots from different
languages and technical jargon.

What does an entropy ranging from H = 3.991 to 4.147 bit/symbol actually mean for
any language? We must compare this result with an absolute reference. Assume, for the
time being, that the reference is provided by the maximum source entropy, which one can
get from a uniformly distributed source. The maximum entropy of a 26-character source,
which cannot be surpassed, is thus Hmax = I (1/26) = log 26 = 4.700 bit/symbol. We
see from the result that our European languages are not too far from the maximum
entropy limit, namely, within 85% to 88% of this absolute reference. As described in
forthcoming chapters, there exist different possibilities of coding language alphabets

60 Entropy

Table 4.2 Alphabetical source entropies H of English, German, French, Italian,
Spanish, and Portuguese, and the corresponding ten most frequent characters.

H (bit/symbol) Ten most frequent characters

English 4.147 E T O A N I R S H D
German 4.030 E N I R S T A D U H
French 4.046 E A I S T N R U L O
Italian 3.984 E A I O N L R T S C
Spanish 4.038 E A O S N I R L D U
Portuguese 3.991 A E O S R I N D T M

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

English symbol-character probability (%)

O
th

er
 la

ng
ua

ge
 s

ym
bo

l-c
ha

ra
ct

er
 p

ro
ba

bi
lit

y
(%

)

German

French

Italian

Spanish

Portuguese

Figure 4.4 Correlation between English character symbols with that of other European
languages, according to data shown in Fig. 4.3.

with more compact symbols, or codewords, in such a way that the coded language
source may approach this entropy limit.

Table 4.2 also reveals that there exist substantial differences between the ten most
frequent symbol characters. Note that this (1956) survey yields for English the sequence
ETOANIRSHD, while the earlier data (1941) shown in Fig. 4.2 yields the sequence
ETAONRISHD. This discrepancy is, however, not significant considering that the prob-
ability differences between A and O and between R and I are between 0.1% and 0.4%,
which can be considered as an effect of statistical noise. The most interesting side of

4.3 Language entropy 61

these character hierarchies is that they can provide information as to which language is
used in a given document, in particular if the document has been encrypted according to
certain coding rules (this is referred to as a ciphertext). The task of decryption, recover-
ing what is referred to as the plaintext, is facilitated by the analysis of the frequencies (or
probabilities) at which certain coded symbols or groups of coded symbols are observed
to appear.10 To illustrate the effectiveness of frequency analysis, let us perform a basic
experiment. The following paragraph, which includes 1004 alphabetic characters, has
been written without any preparation, or concern for contextual meaning (the reader
may just skip it):

During last winter, the weather has been unusually cold, with records in temperatures, rainfalls
and snow levels throughout the country. According to national meteorology data, such extreme
conditions have not been observed since at least two centuries. In some areas, the populations of
entire towns and counties have been obliged to stay confined into their homes, being unable to take
their cars even to the nearest train station, and in some case, to the nearest food and utility stores.
The persistent ice formation and accumulation due to the strong winds caused power and telephone
wires to break in many regions, particularly the mountain ones of more difficult road access. Such
incidents could not be rapidly repaired, not only because these adverse conditions settled without
showing any sign of improvement, but also because of the shortage of local intervention teams,
which were generally overwhelmed by basic maintenance and security tasks, and in some case
because of the lack of repair equipment or adequate training. The combined effects of fog, snow
and icing hazards in airports have also caused a majority of them to shut down all domestic
traffic without advanced notice. According to all expectations, the President declared the status of
national emergency, involving the full mobilization of police and army forces.

A rapid character count of the above paragraph (with a home computer11) provides the
corresponding probability distribution. For comparison purposes, we shall use this time
an English-language probability distribution based on a more recent (1982) survey.12

This survey was based on an analysis of newspapers and novels with a total sample
of 100 362 alphabetic characters. The results are shown in Figs. 4.5 and 4.6 for the
distribution plot and the correlation plot, respectively. We observe from these two plots a
remarkable resemblance between the two distributions and a strong correlation between
them.13 This result indicates that any large and random sample of English text, provided
it does not include specialized words or acronyms, closely complies with the symbol-
distribution statistics. Such compliance is not as surprising as the fact that it is so good
considering the relatively limited size of the sample paragraph.

10 It is noteworthy that frequency analysis was invented as early as the ninth century, by an Arab scientist and
linguist, Al-Kindi.

11 This experiment is easy to perform with a home computer. First write or copy and paste a paragraph on
any subject, which should include at least N = 1000 alphabetical characters. Then use the find and replace
command to substitute letter A with a blank, and so on until Z. Each time, the computer will indicate how
many substitutions were effected, which directly provides the corresponding letter count. The data can then
be tabulated at each step and the character counts changed into probabilities by dividing them by N. The
whole measurement and tabulating operation should take less than ten minutes.

12 S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (New
York: Anchor Books, 1999).

13 The reader may trust that this was a single-shot experiment, the plots being realized after having written
the sample paragraph, with no attempt to modify it retroactively in view of improving the agreement.

62 Entropy

0

2

4

6

8

10

12

14

E T A O I N S H R D L C U M W F G Y P B V K J X Q Z

S
ym

bo
l-c

ha
ra

ct
er

 p
ro

ba
bi

lit
y

(%
)

English reference

Sample paragraph

Figure 4.5 Probability distributions of symbol-characters used in English reference (as per a
1982 survey) and as computed from the author’s sample paragraph shown in the text.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

English-symbol reference probability (%)

S
am

pl
e-

sy
m

bo
l p

ro
ba

bi
lit

y
(%

)

Figure 4.6 Correlation between English reference and author’s sample probability distributions.

4.4 Maximum entropy (discrete source) 63

As an interesting feature, the entropy of the 1982 English symbol-character source
is computed as H (1982) = 4.185 bit/symbol.14 This is larger than the 1956 data
(H (1956) = 4.147 bit/symbol) and the 1942 data (H (1942) = 4.140 bit/symbol). If
we were to attribute equal reference value to these data, a rapid calculation shows that
the English source entropy grew by 0.17% in 1942–1956, and by approximately 0.9% in
1956–1982. This growth also corresponds to 1.1% over 40 years, which can be linearly
extrapolated to 2.75% in a century, say a growth rate of 3%/century. Applying this rate up
to the year of this book writing (2005), the entropy should be at least H (2005) = 4.20 bit/
symbol. One century later (2105), it should be at least H (2105) = 4.32 bit/symbol. In
reference to the absolute A–Z source limit (Hmax = 4.700 bit/symbol), this would rep-
resent an efficiency of alphabet use of H (2105)/Hmax = 92%, to compare with today’s
efficiency, i.e., H (2005)/Hmax = 89%. We can only speculate that a 100% efficiency
may never be reached by any language unless cultural influence and mixing makes it
eventually lose its peculiar linguistic and root structures.

4.4 Maximum entropy (discrete source)

We have seen that the information related to any event x having probability p(x) is defined
as I (x) = − log p(x). Thus, information increases as the probability decreases or as the
event becomes less likely. The information eventually becomes infinite (I (x) → ∞) in
the limit where the event becomes “impossible” (p(x) → 0). Let y be the complementary
event of x , with probability p(y) = 1 − p(x). In the previous limit, the event y becomes
“absolutely certain” (p(y) → 1), and consistently, its information vanishes (I (y) =
− log p(y) → 0).

The above shows that information is unbounded, but its infinite limit is reached only for
impossible events that cannot be observed. What about entropy? We know that entropy is
the measure of the average information concerning a set of events (or a system described
by these events). Is this average information bounded? Can it be maximized, and to
which event would the maximum correspond?

To answer these questions, I shall proceed from the simple to the general, then to the
more complex. I consider first a system with two events, then with k events, then with
an infinite number of discrete events. Finally, I introduce some constraints in the entropy
maximization problem.

Assume first two complementary events x1, x2 with probabilities p(x1) = q and
p(x2) = 1 − q, respectively. By definition, the entropy of the source X = {x1, x2} is
given by

H (X) = −
∑
x∈X

p(x) log p(x)

= −x1 log p(x1) − x2 log p(x2) (4.13)

= −q log q − (1 − q) log(1 − q) ≡ f (q).

14 The entropy of the sample paragraph is H = 4.137 bit/symbol, which indicates that the sample is reasonably
close to the reference (H (1982) = 4.185 bit/symbol), meaning that there is no parasitic effect due to the
author’s choice of the subject or his own use of words.

64 Entropy

Note the introduction of the function f (q):

f (q) = −q log q − (1 − q) log(1 − q) ≡ f (q), (4.14)

which will be used several times through these chapters.
A first observation from the definition of H (X) = f (q) is that if one of the two

events becomes “impossible,” i.e., q = ε → 0 or 1 − q = ε → 0, the entropy remains
bounded. Indeed, the corresponding term vanishes, since ε log ε → 0 when ε → 0. In
such a limit, however, the other term corresponding to the complementary event, which
becomes “absolutely certain,” also vanishes (since u log u → 0 when u → 1). Thus, in
this limit the entropy also vanishes, or H (X) → 0, meaning that the source’s information
is identical to zero as a statistical average. This situation of zero entropy corresponds to a
fictitious system, which would be frozen in a state of either “impossibility” or “absolute
certainty.”

We assume next that the two events are equiprobable, i.e., q = 1/2. We then obtain
from Eq. (4.13):

H (X) = f

(
1

2

)
= −1

2
log

1

2
−

(
1 − 1

2

)
log

(
1 − 1

2

)
= −log

1

2
= 1. (4.15)

The result is that the source’s average information (its entropy) is exactly one bit. This
means that it takes a single bit to define the system: either event x1 or event x2 is observed,
with equal likelihood. The source information is, thus, given by a simple YES/NO
answer, which requires a single bit to formulate. In conditions of equiprobability, the
uncertainty is evenly distributed between the two events. Such an observation intuitively
conveys the sense that the entropy is a maximum in this case. We can immediately verify
this by plotting the function H (X) ≡ f (q) = −q log q − (1 − q) log(1 − q) defined in
Eq. (4.14), from q = 0(x1 impossible) to q = 1(x1 absolutely certain). The plot is shown
in Fig. 4.7. As expected, the maximum entropy Hmax = 1 bit is reached for q = 1/2,
corresponding to the case of equiprobable events.

Formally, the property of entropy maximization can be proved by taking the derivative
dH/dq and finding the root, i.e., dH/dq = log[(1 − q)/q] = 0, which yields q = 1/2.

We now extend the demonstration to the case of a source with k discrete events,
X = {x1, x2, . . . , xk} with associated probabilities p(x1), p(x2), . . . , p(xk). This is a
problem of multidimensional optimization, which requires advanced analytical methods
(here, namely, the Lagrange multipliers method).

The solution is demonstrated in Appendix C. As expected, the entropy is maximum
when all the k source events are equiprobable, i.e., p(x1) = p(x2) = · · · = p(xk) = 1/k,
which yields Hmax = log k. If we assume that k is a power of two, i.e., k = 2M , then
Hmax = log 2M = M bits. For instance, a source of 210 = 1024 equiprobable events has
an entropy of H = 10 bits.

The rest of this chapter, and Appendix C, concerns the issue of PDF optimization for
entropy maximization, under parameter constraints. This topic is a bit more advanced
than the preceding material. It may be skipped, without compromising the understanding
of the following chapters.

4.4 Maximum entropy (discrete source) 65

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability q

E
nt

ro
py

 H
(q

),
 b

it

Figure 4.7 Plot of the entropy H (X) = f (q) for a source with two complementary events with
probabilities q and 1 − q (Eq. (4.14)), showing maximum point Hmax = H (0.5) = 1 where
events are equiprobable.

In Appendix C, I also analyze the problem of entropy maximization through PDF
optimization with the introduction of constraints.

A first type of constraint is to require that the PDF have a predefined mean value
〈x〉 = N . In this case, the following conclusions can be reached:

� If the event space X = {x1, x2, . . . , xk} is the infinite set of integer numbers
(x1 = 0, x2 = 1, x3 = 2 . . .), k → ∞, the optimal PDF is the discrete-exponential
distribution, also called the Bose–Einstein distribution (see Chapter 1);

� If the event space X = {x1, x2, . . . , xk} is a finite set of nonnegative real numbers, the
optimal PDF is the (continuous) Boltzmann distribution.

The Bose–Einstein distribution characterizes chaotic processes, such as the emission of
light photons by thermal sources (e.g., candle, light bulb, Sun, star) or the spontaneous
emission of photons in laser media. The Boltzmann distribution describes the random
arrangement of electrons in discrete atomic energy levels, when the atomic systems are
observed at thermal equilibrium.

As shown in Appendix C, the (maximum) entropy corresponding to the Boltzmann
distribution, as defined in nats, is:

Hmax = 〈m〉 hν

kBT
, (4.16)

where hν is the quantum of light energy (photon), kBT is the quantum of thermal
energy (phonon) and 〈m〉 is the mean number of phonons at absolute temperature T
and oscillation frequency ν (h = Planck’s constant, kB = Boltzmann’s constant). The
quantity �E = 〈m〉hν is, thus, the mean electromagnetic energy or heat that can be
radiated by the atomic system. The ratio �E/(kBT) is the number of phonons required
to keep the system in such a state. The maximal entropy Hmax, which represents the
average information to define the system, is just equal to this simple ratio! This feature

66 Entropy

establishes a nice connection between information theory and atomic physics. Letting
S = kB Hmax, which is consistent with the physics definition of entropy, we note that
S = �E/T , which corresponds to the well known Clausius relation between system
entropy (S), heat contents (�E), and absolute temperature (T).15

Consider next the possibility of imposing an arbitrary number of constraints on the
probability distribution function (PDF) moments, 〈x〉, 〈x2〉, . . . , 〈xn〉.16 The general PDF
solution for which entropy is maximized takes the nice analytical form (Appendix C):

p j = exp
(
λ0 − 1 + λ1x j + λ2x2

j + · · · + λn xn
j

)
, (4.17)

where λ0, λ1, λ2, . . . , λn are the Lagrange multipliers, which must be computed numeri-
cally. The corresponding (maximum) entropy is simply given by:

Hmax = 1 − (
λ0 + λ1〈x〉 + λ2〈x2〉 + · · · + λn〈xn〉) = 1 −

n∑
i=0

λi 〈xi 〉. (4.18)

Maximization of entropy is not limited to constraining PDF moments. Indeed, any set
of known functions gk(x) and their mean 〈gk〉 (k = 1, . . . , n) can be used to define and
impose as many constraints. It is easily established that, in this case, the optimal PDF
and maximum entropy takes the form:

p j = exp[−1 + λ0g0(x j) + λ1g1(x j) + · · · + λngn(x j)], (4.19)

Hmax = 1 −
n∑

i=0

λi 〈gi 〉. (4.20)

From the observation in the real world of the functions or parameters gk(x), 〈gk〉, it is
thus possible heuristically to infer a PDF that best models reality (maximum entropy
at macroscopic scale), assuming that a large number of independent microstates govern
the process. This is discussed later.

Entropy maximization leads to numerically defined PDF solutions, which are essen-
tially nonphysical. Searching for such solutions, however, is not a matter of pure academic
interest. It can lead to new insights as to how the physical reality tends to exist in states
of maximum entropy.

For instance, I showed in previous work17 that given constraints in 〈x〉, σ 2 = 〈x2〉 −
〈x〉, the entropy of amplified coherent light is fairly close to that of the optimal-numerical
PDF giving maximal entropy. For increasing photon numbers 〈x〉, the physical photon-
statistics PDF and the optimal-numerical PDF are observed to converge asymptotically
towards the same Gaussian distribution, as a consequence of the central-limit theorem
(Chapter 1).

15 It is beyond the scope of these chapters to discuss the parallels between entropy in Shannon’s information-
theory and entropy in physics. Further and accessible considerations concerning this (however com-
plex) subject can be found, for instance, in: www.tim-thompson.com/entropy1.html, www.panspermia.
org/seconlaw.htm, http://en.wikipedia.org/wiki/Entropy.

16 A moment of order k is, by definition, the mean value of xk , namely, 〈xk〉 = ∑
xk

i pi .
17 E. Desurvire, How close to maximum entropy is amplified coherent light? Opt. Fiber Technol., 6 (2000),

357. See also, E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers: Device
and System Developments (New York: John Wiley & Sons, 2002), p. 202.

4.5 Exercises 67

The fact that several discrete (and continuous) random physical processes are ruled
by exact or near-maximum entropy distributions can be explained by the following: if a
system X offers a large number of possible random arrangements xi (called microstates),
and if such arrangements are equally probable (all independent of each other or past
microstate history), then the system’s entropy H (X) is a maximum, as I have shown
earlier. In some physical processes (like amplification of coherent light), there is no
reason for microstates to be equiprobable, which explains the discrepancy between
observed and maximal entropies. The discrepancy, however, vanishes when the number
of possible microstates becomes infinite. In some other physical processes (such as the
electron occupation of atomic energy levels, or the spontaneous emission of photons
by single atoms), the microstates are strictly equiprobable and the system’s entropy is
maximum, as we have seen.

The so-called maximum entropy principle,18 is used in several domains of statisti-
cal sciences, from engineering and physics to computer vision, image processing and
reconstruction, language analysis, urban design, marketing, elections, business, eco-
nomics, and finance! The underlying motivation of maximum-entropy models (MEM) is
to derive, heuristically, the PDF of a complex random process by using available data
samples observed from reality. These experimental data are then used as constraints to
compute the maximum-entropy PDF, elegantly referred to as epistemic. The philosophy
and rationale of the maximum-entropy principle approach is: “Given facts or relations
concerning events, which are verified in the physical world, what is the best statistical
model available to predict the rest?”

The issue of maximizing entropy is revisited in Chapter 5 when considering continuous
sources.

4.5 Exercises

4.1 (B): What is the entropy in the action of picking, at random, one card out of a
32-card deck? What is the entropy for picking a hand of four cards?

4.2 (B): A bag contains eight balls, including one red, two blue, two green, and three
yellow ones. The events consist in picking, at random, a ball from the bag, seeing
the color, and then replacing the ball. What is the entropy of the source?

4.3 (M): Download from any website the text of the US Declaration of Independence,

www.ushistory.org/declaration/document/index.htm,

www.law.indiana.edu/uslawdocs/declaration.html,

www.loc.gov/rr/program/bib/ourdocs/DeclarInd.html,

www.archives.gov/exhibits/charters/declaration.html,

18 See, for instance: www.answers.com/topic/principle-of-maximum-entropy?cat=technology&hl?function=
hl?derivation=&hl?partition=, www.answers.com/maximum+entropy+probability+distribution?cat=
technology.

68 Entropy

from, “When in the Course of human events . . . ” to “ . . . our Fortunes and our
sacred Honor.” What is the entropy of the selected text, as viewed as a source of
26 + 1 characters (including space)?

What is the entropy of the selected text, without the space character? (Computing
method clue: see Chapter 4, note 11.)

4.4 (M): Copy into a text file a “very big” prime number, for instance, a large
“Mersenne,” which you can download from the websites:

www.mersenne.org/,

www.isthe.com/chongo/tech/math/prime/mersenne.html#M32582657,

http://primes.utm.edu/largest.html.

For expediency, reduce the text source to only a few ten thousand digits. Compute
the entropy of the source. Could the result have been guessed directly? (Computing
method clue: see Chapter 4, note 11.)

5 Mutual information and
more entropies

This chapter marks a key turning point in our journey in information-theory land.
Heretofore, we have just covered some very basic notions of IT, which have led us,
nonetheless, to grasp the subtle concepts of information and entropy. Here, we are
going to make significant steps into the depths of Shannon’s theory, and hopefully
begin to appreciate its power and elegance. This chapter is going to be somewhat more
mathematically demanding, but it is guaranteed to be not significantly more complex
than the preceding materials. Let’s say that there is more ink involved in the equations
and the derivation of the key results. But this light investment will turn out well worth it
to appreciate the forthcoming chapters!

I will first introduce two more entropy definitions: joint and conditional entropies,
just as there are joint and conditional probabilities. This leads to a new fundamental
notion, that of mutual information, which is central to IT and the various Shannon’s
laws. Then I introduce relative entropy, based on the concept of “distance” between two
PDFs. Relative entropy broadens the perspective beyond this chapter, in particular with
an (optional) appendix exploration of the second law of thermodynamics, as analyzed
in the light of information theory.

5.1 Joint and conditional entropies

So far, in this book, the notions of probability distribution and entropy have been
associated with single, independent events x , as selected from a discrete source X = {x}.
With the example of written language (Chapter 4), we have seen that the occurrence of
single characters from the alphabetical-character source X = {A, . . . , Z} is bound to a
quasi-exponential PDF, which varies according to language, context, and time.

Considering the fact that language is made out of words, and not single characters,
we realize that the previous analysis is incomplete. For instance, we could make an
inventory of all words made of two, three, or more characters, and derive a new set of
statistics. We could then say how often in English the letter E appears next to the letter
A, or what the probability is that a given English word of five characters simultaneously
contains the letters A, T, and N, and, given the knowledge that the first two letters
are TH, what the probability is that the third one is E, to form the ubiquitous word
THE.

70 Mutual information and more entropies

This observation leads us to defining the entropy associated with joint events, on
one hand, or conditional events on the other hand. To do this, let us briefly recall the
properties of joint and conditional probabilities, which have been outlined in Chapter 1,
and give them further attention here.

Consider two events x ∈ X and y ∈ Y , where X, Y are two random sources. The two
events can occur simultaneously, regardless of any sequence order: we just observe x
and y, or y and x , which conveys the same information. Alternatively, we can observe
x then y, but for some reason we seem never to get y then x . Our observation could also
be that whenever x happens, we are likely to see y happen as well. Alternatively, the fact
that x happens could have no incidence on the outcome of y. For instance, define the
following event sources:

X = {quarterly results of a major telecom company},

Y = {stock market},

Z = {weather forecast},

W = {outbound city traffic}.

It is safe to say (scientifically speaking!) that events x from X and have no impact
whatsoever on events z or w from Z or W . Thus events x and z (or x and w) are
independent. The probabilities p(x) that x = excellent, and p(z) that z = cold and rainy
also have different and unrelated PDFs. As we know from Chapter 1, the joint probability
that we observe both events simultaneously is given by the mere product:

p(x, y) = p(excellent, cold and rainy) = p(x)p(y). (5.1)

In Eq. (5.1), the function p(x, y) is called the joint probability or joint distribution of
events (x, y). The meaning of the “,” in the argument is that of the logical AND.1 The
joint distribution is, thus, always symmetrical, i.e., p(x, y) = p(y, x), because the joint
events x AND y and y AND x are strictly same. Since p(x, y) is a probability, we have
the summing properties

∑
y∈Y

p(x, y) = p(x)

∑
x∈X

p(x, y) = p(y)∑
x∈X

∑
y∈Y

p(x, y) = 1.

(5.2)

But the relation concerning any event pairs (x, y) or (z, w) of the above-defined sets is
not at all this straightforward. This is because we should expect that these events are
not independent: good or bad quarterly results do affect the stock market, good or bad
weather forecasts do affect the outbound city traffic.

One then defines the conditional probability p(a|b) as representing the probability
of observing event a given the observation or knowledge of event b. If p(a|b) = p(a),
this means that event a occurs regardless of b, or that the two are independent. Of

1 Joint probabilitiesp(x, y) can also be written in the logical form p(x ∧ y) where the sign ∧ stands for the
logical or Boolean operation AND.

5.1 Joint and conditional entropies 71

course, the same conclusion applies if p(b|a) = p(b). As we have seen in Chapter 1,
the fundamental relation between joint and conditional probabilities, is given by Bayes’s
theorem:

p(a, b) = p(a|b)p(b) = p(b|a)p(a). (5.3)

Using the summing properties in Eq. (5.2), we also have

∑
b∈B

p(a|b)p(b) = p(a)

∑
a∈A

p(b|a)p(a) = p(b)

∑
a∈A

∑
b∈B

p(b|a)p(a) = ∑
a∈A

∑
b∈B

p(a|b)p(b) = 1,

(5.4)

noting that conditional probabilities p(a|x) do not sum over x up to unity, unlike the
probabilities p(x) associated with single events.2 It is straightforward to verify from
the above relations that if the events a and b are independent, then p(a|b) = p(a) and
p(b|a) = p(b). I provide next a numerical example of joint and conditional probabilities,
which we will also use further on to introduce new entropy concepts.

Stock exchange

Let the first event source be three possible conclusions for the quarterly sales report from
a public company, namely:

x ∈ X = {good, same, bad} ≡ {x1, x2, x3},
meaning that the results are in excess of the predictions (good), or on target (same), or
under target (bad). The second event source is the company’s stock value, as reflected
by the stock exchange, with

y ∈ Y = {up, steady, down} ≡ {y1, y2, y3}.
Then we assume that there exists some form of correlation between the company’s
results (x ∈ X) and its stock value (y ∈ Y). A numerical example of joint and con-
ditional probability data, p(xi , y j), p(xi |y j) and p(y j |xi), is shown in Table 5.1. The
first group of numerical data, shown at the top of Table 5.1 corresponds to the joint
probabilities p(y j , xi) ≡ p(xi , y j). Summing up the data by rows (i) or by columns
(j) yields the probabilities p(xi) or p(y j), respectively. The double checksum (bottom
right), which yields unity through summing by row or by column, is also shown for
consistency. The two other groups of numerical data in Table 5.1 correspond to the
conditional probabilities p(xi |y j) and p(y j |xi). These are calculated through Bayes’s
theorem p(xi |y j) = p(xi , y j)/p(y j) and p(y j |xi) = p(xi , y j)/p(xi). The intermediate
columns providing the data p(xi |y j)p(y j) = p(y j |xi)p(xi) ≡ p(xi , y j) and their check-
sums by column are shown in the table for consistency.

2 Yet we have the property
∑

a∈A p(a|b) = 1 for any event b ∈ B, summing over all possible events a ∈ A.

72 Mutual information and more entropies

Table 5.1 Example of joint and conditional probability distributions constructed from the two event sources x ∈
X = {good, same, bad} ≡ {x1, x2, x3} for a company’s quarterly sales results and y ∈ Y = {up, steady, down}
≡ {y1, y2, y3} for its stock value. The table on top shows the joint probability p(xi , yj), consistent with the probabilities
p(xi) and p(yj) of the individual events xi and yj (values given in column or line p, respectively). The right column and
bottom line provide the different checksums. The two other tables (middle and bottom) show the conditional probabilities
p(yj |xi) and p(xi |yj), along with their different checksums.

y1 (up) y2 (steady) y3 (down)
p(xi , y j) p 0.300 0.500 0.200

∑ =
x1 (good) 0.160 0.075 0.075 0.010 0.160
x2 (same) 0.750 0.210 0.400 0.140 0.750
x3 (bad) 0.090 0.015 0.025 0.050 0.090∑ = 0.300 0.500 0.200 1.000

y1 (up) p(y1, xi) y2 (steady) p(y2, xi) y3 (down) p(y3, xi)
p(y j , xi) p 0.300 = p(y1|xi)p(xi) 0.500 = p(y2|xi)p(xi) 0.200 = p(y3|xi)p(xi)

x1 (good) 0.160 0.469 0.075 0.469 0.075 0.063 0.010
x2 (same) 0.750 0.280 0.210 0.533 0.400 0.187 0.140
x3 (bad) 0.090 0.167 0.015 0.278 0.025 0.556 0.050∑ = 0.300 0.500 0.200 1.000

x1 (good) p(x1y j)p(y j) x2 (same) p(x2, y j) x3 (bad) p(x3, y j)
p(xi , y j) p 0.160 = p(x1|y j)p(y j) 0.750 = p(x2|y j)p(y j) 0.090 = p(x3|y j)p(y j)

y1 (up) 0.300 0.250 0.075 0.700 0.210 0.050 0.015
y2 (steady) 0.500 0.150 0.210 0.800 0.400 0.050 0.025
y3 (down) 0.200 0.010 0.015 0.700 0.1 0.250 0.050∑ = 0.300 0.750 0.090 1.000

We define the joint entropy, or the entropy H (X, Y) associated with the joint distri-
bution p(x, y) with x ∈ X and y ∈ Y , namely:3

H (X, Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y). (5.5)

This joint entropy represents the average information derived from joint events occurring
from two sources X and Y . The unit of H (X, Y) is bit/symbol.

We then define the conditional entropy H (X |Y) through:

H (X |Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x |y). (5.6)

The conditional entropy H (X |Y) corresponds to the average information conveyed by
the conditional PDF, p(x |y). Put simply, H (X |Y) represents the information we learn
from source X , given the information we have from source Y . Its unit is also bit/symbol.

3 Or, equivalently, H (X, Y) = −∑
i

∑
j p(xi , y j) log2 p(xi , y j).

5.1 Joint and conditional entropies 73

In the joint and conditional entropy definitions, note that the two-dimensional aver-
aging over the event space {X, Y } consistently involves the joint distribution p(x, y).

As a property, the conditional entropy H (X |Y) is generally different from H (Y |X),
which is defined as

H (Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x), (5.7)

since in the general case, p(x |y) �= p(y|x). The conditional entropy H (X |Y) or H (Y |X)
is sometimes referred to by the elegant term equivocation.

It is easily verified that if the sources X, Y represent independent events, then

(a) H (X, Y) = H (X) + H (Y), (5.8)

(b) H (X |Y) = H (X)m and H (Y |X) = H (Y). (5.9)

As it can also be easily established, the joint and conditional entropy are related to each
other through the chain rule:{

H (X, Y) = H (X |Y) + H (Y)
H (X, Y) = H (Y |X) + H (X).

(5.10)

We may find the chain rule easier to memorize under the form{
H (X |Y) = H (X, Y) − H (Y)
H (Y |X) = H (X, Y) − H (X),

(5.11)

which states that, given a source X or Y , any advance knowledge (or “conditioning”)
from the other source Y or X reduces the joint entropy “reserve” H (X, Y) by the net
amount H (Y) or H (X), respectively; these are positive quantities. In other words, the
prior information one may gain from a given source is made at the expense of the
information available from the other source, unless the two are independent.

We can illustrate the above properties through our stock-exchange PDF data from
Table 5.1. We want, here, to determine how the average information from the com-
pany’s sales, H (X), is affected from that concerning the stocks, H (Y), and the reverse.
The computations of H (X), H (Y), H (X, Y), H (Y |X) and H (X |Y) are detailed in
Table 5.2. It is seen from the table that the results and stock entropies compute to H (X) =
1.046 and H (Y) = 1.485, respectively (for easier reading, I omit here the bit/symbol
units). The joint entropy is found to be H (X, Y) = 2.466, which is lower than the sum
H (X)+ H (Y)= 2.532. This proves that the two sources are not independent, namely, that
they have some information in common. We find indeed that the conditional entropies
satisfy:

H (Y |X) = 1.418 < H (Y) = 1.485,

H (X |Y) = 0.980 < H (X) = 1.046,

or, equivalently, (using four decimal places, for accuracy (see Table 5.2):

H (Y) − H (Y |X) = 1.4855 − 1.4188 = 0.0667,

H (X) − H (X |Y) = 1.0469 − 0.9802 = 0.0667.

74 Mutual information and more entropies

Table 5.2 From top to bottom: calculation of entropies H (X), H (Y), H (X , Y), H (Y|X) and H (X |Y), as based on the
numerical example of Table 5.1. The two equations shown at the bottom of the table prove the fundamental relations
between single-event entropies, conditional entropies, and the joint entropy.

ui = p(xi)
v j = p(y j)

ui −ui log ui v j −v j log v j

x1(good) 0.160 0.423 y1(up) 0.300 0.521
x2(same) 0.750 0.311 y2(steady) 0.500 0.500
x3(bad) 0.090 0.313 y3(down) 0.200 0.464

H(X) = 1.0469 H(Y) = 1.4855

H (X) + H (Y) = 2.5324
ui j = p(xi , y j)

ui1 −ui1 log ui1‘ ui2 −ui2 log ui2 ui3 −ui3 log ui3

x1 0.075 0.280 0.075 0.280 0.010 0.066
x2 0.210 0.473 0.400 0.529 0.140 0.397
x3 0.015 0.091 0.025 0.133 0.050 0.216∑ = 0.844

∑ = 0.942
∑ = 0.680

H (X, Y) = 2.4657
v j i = p(y j |xi)

v1i ui1 −ui1 log v1i v2i ui2 −ui2 log v2i v3i ui3 −ui3 log v3i

x1 0.469 0.075 0.082 0.469 0.075 0.082 0.063 0.010 0.040
x2 0.280 0.210 0.386 0.533 0.400 0.363 0.187 0.140 0.339
x3 0.167 0.015 0.039 0.278 0.025 0.046 0.556 0.050 0.042∑ = 0.506

∑ = 0.491
∑ = 0.421

H (Y |X) = 1.4188
wi j = p(xi |y j)

w1 j u1 j −ui1 log w1 j w2 j u2 j −ui2 log w2 j w3 j u3 j −ui3 log w3 j

y1 0.250 0.075 0.150 0.700 0.210 0.108 0.050 0.015 0.065
y2 0.150 0.075 0.205 0.800 0.400 0.129 0.050 0.025 0.108
y3 0.050 0.010 0.043 0.700 0.140 0.072 0.250 0.050 0.100∑ = 0.398

∑ = 0.309
∑ = 0.421

H (X |Y) = 0.9802
H (X, Y) = H (Y |X) + H (X)
2.4657 = 1.4188 + 1.0469
= H (X |Y) + H (Y)
= 0.9802 + 1.4855.

These two results mean that the prior knowledge of the company’s stocks contains an
average of 0.0667 bit/symbol of information on the company’s quarterly result, and the
reverse is also true. As we shall see in the next section, the two differences above are
always equal and they are called mutual information. Simply put, the mutual information
is the average information that two sources share in common.

5.2 Mutual information 75

5.2 Mutual information

I introduce yet another type of entropy definition, which will bring us to some closing
point and our final reward. We can define the mutual information of two sources X and
Y as the bit/symbol quantity:

H (X ; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (5.12)

We may note the absence of a minus sign in the above definition, unlike in
H (X, Y), H (Y |X), and H (X |Y). Also note the “;” separator, which distinguishes mutual
information from joint entropy H (X, Y). Mutual information is also often referred to in
some textbooks as I (X ; Y) instead of H (X ; Y).

Since the logarithm argument is unity when the two sources are independent
(p(x, y) = p(x)p(y)), we immediately observe that the mutual information is equal
to zero in this case. This reflects the fact that independent sources do not have any
information in common.

It takes a bit of painstaking but straightforward computation to show the following
three equalities:

H (X ; Y) = H (X) − H (X |Y)

= H (Y) − H (Y |X) (5.13)

= H (X) + H (Y) − H (X, Y).

The first two equalities above confirm the observation derived from our previous numer-
ical example. They can be interpreted according to the following statement: mutual
information is the reduction of uncertainty in X that we get from the knowledge of Y
(and the reverse).

The last equality, as rewritten under the form

H (X, Y) = H (X) + H (Y) − H (X ; Y), (5.14)

shows that the joint entropy of two sources is generally less than the sum of the source
entropies. The difference is the mutual information that the sources have in common,
which reduces the net uncertainty or joint entropy.

Finally, we note from the three relations in Eq. (5.13) that the mutual information
is symmetrical in the arguments, namely, H (X ; Y) = H (Y ; X), as is expected from its
very meaning.

The different entropy definitions introduced up to this point may seem a bit abstract
and their different relations apparently not very practical to memorize! But the situation
becomes different after we draw an analogy with the property of ensembles.

Consider, indeed, two ensembles, called A and B. The two ensembles may be united
to form a whole, which is noted F = A ∪ B (A union B). The two ensembles may or
may not have elements in common. The set of common elements is called G = A ∩ B
(A intersection B). The same definitions of union and intersection apply to any three
ensembles A, B, and C . Figure 5.1 shows Venn diagram representations of such ensemble
combinations. While Venn diagrams were introduced in Chapter 1, I shall provide further

76 Mutual information and more entropies

C

A B

A ∩ B

A
B

A ∪ B ∪ C

A ∩ ¬B

B ∩ ¬A

A ∩ B ∩ ¬C

A ∩ ¬B ∩ ¬C
A ∩ B ∩ C

A ∪ B

Figure 5.1 Venn diagrams representing two (A, B) or three (A, B, C) ensembles with their
unions (A ∪ B or A ∪ B ∪ C) and their intersections (A ∩ B or A ∩ B ∩ C). The intersections
defined by A ∩ ¬B, B ∩ ¬A, and A ∩ ¬B ∩ ¬C , A ∩ B ∩ ¬C are also shown.

related concepts here. In the case of two ensembles, there exist four subset possibilities,
as defined by their elements’s properties:

Elements common to A or B: A ∪ B,

Elements common to A and B: A ∩ B,

Elements from A and not B: A ∩ ¬B,

Elements from B and not A: B ∩ ¬A.

In the conventional notations shown at right, we see that the symbol ∪ stands for a logical
OR, the symbol ∩ stands for a logical AND, and the symbol ¬ stands for a logical
NO. These three different symbols, which are also called Boolean operators,4 make
it possible to perform various mathematical computations in the field called Boolean
logic. In the case of three ensembles A, B, C , we observe that there exist many more
subset possibilities (e.g., A ∩ B ∩ C , A ∩ B ∩ ¬C); it is left as an exercise to the reader
to enumerate and formalize them in terms of Boolean expressions. The interest of the
above visual description with the Venn diagrams is the straightforward correspondence
with the various entropy definitions that have been introduced. Indeed, it can be shown

4 To be accurate, Boolean logic uses instead the symbol ∨ for “or” (the equivalent of ∪ in ensemble language),
and the symbol ∧ for “and” (the equivalent of ∩ in ensemble language).

5.2 Mutual information 77

H(X) H(Y)

H(X;Y) H(X,Y)

H(X;Y Z)

H(X,Y,Z)

H(Z)

H(X;Y;Z)

H(X Y)

H(X Y,Z)

H(X)

H(Y)

H(Y X)

H(Z X,Y)

H(Y X,Z)

Figure 5.2 Venn diagram representation of entropy H (U), joint entropy H (U, V), conditional
entropy H (U |V), and mutual information H (U ; V), for two (U = X, Y) or three
(U, V = X, Y, Z) sources.

that the following equivalences hold:

H (X, Y) ↔ H (X ∪ Y)
H (X ; Y) ↔ H (X ∩ Y)
H (X |Y) ↔ H (X ∩ ¬Y)
H (Y |X) ↔ H (Y ∩ ¬X).

(5.15)

The first equivalence in Eq. (5.15) means that the joint entropy of two sources is the
entropy of the source defined by their combined events.

The second equivalence in Eq. (5.15) means that the mutual information of two
sources is the entropy of the source containing the events they have in common.

The last two equivalences in Eq. (5.15) provide the definition of the conditional
entropy of a source U given the information on a source V . The conditional entropy is
given by the contributions of all the events belonging to U but not to V . This property
is far from obvious, unless we can visualize it. Figure 5.2 illustrates all the above logical
equivalences through Venn diagrams, using up to three sources.

Considering the two-source case, we can immediately visualize from Fig. 5.2 to which
subsets the differences H (X) − H (X ; Y) and H (Y) − H (X ; Y) actually correspond.
Given the identities listed in Eq. (5.15), we can call these two subsets H (X |Y) and
H (Y |X), respectively, which proves the previous point. We also observe from the Venn

78 Mutual information and more entropies

diagram that H (X |Y) ≤ H (X) and H (Y |X) ≤ H (Y), with equality if the sources are
independent.

The above property can be summarized by the statement according to which condi-
tioning reduces entropy. A formal demonstration, using the concept of “relative entropy,”
is provided later.

The three-source case, as illustrated in Fig. 5.2, is somewhat more tricky because it
generates more complex entropy definitions with three arguments X, Y , and Z . Con-
ceptually, defining joint or conditional entropies and mutual information with three (or
more) sources is not this difficult. Considering the joint probability p(x, y, z) for the
three sources, we can indeed generalize the previous two-source definitions according
to the following:

H (X, Y, Z) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) logp(x, y, z), (5.16)

H (X ; Y ; Z) = +
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(x, y, z)

p(x)p(y)p(z)
, (5.17)

H (Z |X, Y) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) logp(z|x, y), (5.18)

H (X, Y |Z) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) logp(x, y|z). (5.19)

These four definitions correspond to the joint entropy of the three sources X, Y, Z (Eq.
(5.16)), the mutual information of the three sources X, Y, Z (Eq. (5.17)), the entropy of
source Z given the known entropy of X, Y (Eq. (5.18)), and the joint entropy of X, Y
given the known entropy of Z (Eq. (5.19)). The last two definitions are seen to involve
conditional probabilities of higher orders, namely, p(z|x, y) and p(x, y|z), which are
easily determined from the generalization of Bayes’s theorem.5 Other entropies of the
type H (X ; Y |Z) and H (X |Y ; Z) are more tricky to determine from the above definitions.
But we can resort in all confidence to the equivalence relations and the corresponding
two-source or three-source Venn diagrams shown in Fig. 5.2. Indeed, a straightforward
observation of the diagrams leads to the following correspondences:

H (X ; Y |Z) = H (X ; Y) − H (Z), (5.20)

H (X |Y ; Z) = H (X) − H (Y ; Z). (5.21)

Finally, the Venn diagrams (with the help of Eq. (5.15) make it possible to establish the
following properties for H (X, Y |Z) and H (X |Y, Z). The first chain rule is

H (X, Y |Z) = H (X |Z) + H (Y |X, Z), (5.22)

5 As we have

p(x, y, z) = p(z|x, y)p(x)p(y) → p(z|x, y) ≡ p(x, y, z)/[p(x)p(y)]

and p(x, y, z) = p(x, y|z)p(z) → p(x, y|z) =≡ p(x, y, z)/p(z).

5.3 Relative entropy 79

which is easy to memorize if a condition |z is applied to both sides of the definition of
joint entropy, H (X, Y) = H (X) + H (Y |X). The second chain rule,

H (X, Y |Z) = H (Y |Z) + H (X |Y, Z), (5.23)

comes from the permutation in Eq. (5.22) of the sources X, Y , since the joint entropy
H (X, Y) is symmetrical with respect to the arguments.

The lesson learnt from using Venn diagrams is that there is, in fact, little to
memorize, as long as we are allowed to make drawings! The only general rule to
remember is:

H (U |Z) is equal to the entropy H (U) defined by the source U (for instance, U = X, Y or
U = X ; Y) minus the entropy H (Z) defined by the source Z , the reverse being true for H (Z |U).
But the use of Venn diagrams require us not to forget the unique correspondence between the
ensemble or Boolean operators (∪ ∩ ¬) and the separators (, ; |) in the entropy-function arguments.

5.3 Relative entropy

In this section, I introduce the notion of distance between two event sources and the
associated concept of relative entropy.

The mathematical concept of distance between two real variables x, y is famil-
iarly known as the quantity d = |x − y|. For two points A, B in the plane, with
coordinates (xA, yA) and (xB, yB), respectively, the distance is defined as d =√

(xA − xB)2 + (yA − yB)2.
More generally, any definition of distance d(X, Y) between two entities X, Y must

obey four axiomatic principles:

(a) Positivity, d(X, Y) ≥ 0;
(b) Symmetry, d(X, Y) = d(Y, X);
(c) Nullity for self, d(X, X) = 0;
(d) Triangle inequality, d(X, Z) ≤ d(Y, X) + d(Y, Z).

Consider now the quantity D(X, Y), which we define as

D(X, Y) = H (X, Y) − H (X ; Y). (5.24)

From the visual reference of the Venn diagrams in Fig. 5.2 (top), it is readily verified
that D(X, Y) satisfies at least the first three above distance axioms (a), (b), and (c). The
last axiom, (d), or the triangle inequality, can also be proven through the Venn diagrams
when considering three ensembles X, Y, Z , which I leave here as an exercise. Therefore,
D(X, Y) represents a distance between the two sources X, Y .

It is straightforward to visualize from the Venn diagrams in Fig. 5.2 (top) that

D(X, Y) = H (X |Y) + H (Y |X), (5.25)

80 Mutual information and more entropies

or using the definition for the conditional entropies, Eq. (5.6), and grouping them
together,

D(X, Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log[p(x |y)p(y|x)]. (5.26)

We note from the above definition of distance that the weighted sum involves the joint
distribution p(x, y).

The concept of distance can now be further refined. I shall introduce the relative
entropy between two PDFs, which is also called the Kullback–Leibler (KL) distance or
the discrimination. Consider two PDFs, p(x) and q(x), where the argument x belongs
to a single source X . The relative entropy, or KL distance, is noted D[p(x)||q(x)] and
is defined as follows:

D[p(x)‖q(x)] =
〈
log

p(x)

q(x)

〉
p =

∑
x∈X

p(x) log
p(x)

q(x)
. (5.27)

In this definition, the continuity limit ε log(ε) ≡ 0 (ε → 0) applies, while, by convention,
we must set ε log(ε/ε′) ≡ 0(ε, ε′ → 0).

The relative entropy is not strictly a distance, since it is generally not symmetric
(D(p‖q) �=D(q‖p), as the averaging is based on the PDF p or q in the first argument)
and, furthermore, it does not satisfy the triangle inequality. It is, however, zero for
p = q (D(q‖q) = 0), and it can be verified as an exercise that it is always nonnegative
(D[p‖q] ≥ 0).

An important case of relative entropy is where q(x) is a uniform distribution. If the
source X has N events, the uniform PDF is thus defined as q(x) ≡ 1/N . Replacing this
definition in Eq. (5.27) yields:

D[p(x)‖q(x)] =
∑
x∈X

p(x) log
p(x)

1/N
= log N

∑
x∈X

p(x) +
∑
x∈X

p(x) log p(x) (5.28)

≡ log N − H (X).

Since the distance D(p‖q) is always nonnegative, it follows from the above that H (X) ≤
log N . This result shows that the entropy of a source X with N elements has log N for
its upper bound, which (in the absence of any other constraint) represents the entropy
maximum. This is consistent with the conclusion reached earlier in Chapter 4, where I
addressed the issue of maximizing entropy for discrete sources.

Assume next that p and q are joint distributions of two variables x, y. Similarly to
the definition in Eq. (5.27), the relative entropy between the two joint distributions is:

D[p(x, y)‖q(x, y)] =
〈
log

p(x, y)

q(x, y)

〉
p

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

q(x, y)
. (5.29)

We note that the expectation value is computed over the distribution p(x, y), and,
therefore, D[p(x, y)‖q(x, y)] �= D[q(x, y)‖p(x, y)] in the general case.

5.3 Relative entropy 81

The relative entropy is also related to the mutual information. Indeed, recalling the
definition of mutual information, Eq. (2.37), we get

H (X ; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
≡ D[p(x, y)‖p(x)p(y)], (5.30)

which shows that the mutual information between two sources X, Y is the relative
entropy (or KL distance) between the joint distribution p(x, y) and the distribution
product p(x)p(y). Since the relative entropy (or KL distance) is always nonnegative
(D(.‖.) ≥ 0), it follows that mutual information is always nonnegative (H (X ; Y) ≥ 0).

This is consistent with results obtained in Section 5.2. Indeed, recalling the chain
rules in Eq. (5.13) and combining them with the property of nonnegativity (obtained in
section herein) yields:

H (X ; Y) = H (X) − H (X |Y) = H (Y) − H (Y |X) ≥ 0, (5.31)

which thus implies the two inequalities

{
H (X |Y) ≤ H (X)
H (Y |X) ≤ H (Y).

(5.32)

The above result can be summarized under the fundamental conclusion, which has
already been established: conditioning reduces entropy.

Thus, given two sources X, Y , the information we obtain from source X given the
prior knowledge of the information from Y is less than or equal to that available from
X alone, meaning that entropy has been reduced by the fact of conditioning. The strict
inequality applies in the case where the two sources have nonzero mutual information
(H (X ; Y) > 0). If the two sources are disjoint, or made of independent events, then the
equality applies, and conditioning from Y has no effect on the information of X .

Next, I shall introduce another definition, which is that of conditional relative entropy,
given the joint distributions p and q over the space {X, Y }:

D[p(y|x)‖q(y|x)] =
〈
log

p(y|x)

q(y|x)

〉
p

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(y|x)

q(y|x)
, (5.33)

noting that averaging is made through the joint distribution, p(x, y). This definition is
similar to that of the relative entropy for joint distributions, Eq. (5.29), except that it
applies here to conditional joint distributions.

From Eqs. (5.27), (5.29), and (5.33), we can derive the following relation, or chain
rule, between the relative entropies of two single-variate distributions p(x), q(x) and
their two-variate or joint distributions p(x, y), q(x, y):

D[p(x, y)‖q(x, y)] = D[p(x)‖q(x)] + D[p(y|x)‖q(y|x)]. (5.34)

82 Mutual information and more entropies

This chain rule can be memorized if one decomposes p(x, y) and q(x, y) through Bayes’s
theorem, i.e., p(x, y) = p(y|x)p(x) and q(x, y) = q(y|x)q(x), and rearranges the four
factors into two distance terms D [∗‖∗]. A similar chain rule thus also applies with x
and y being switched in the right-hand side.

The usefulness of relative entropy and conditional-relative entropy can only be appre-
ciated at a more advanced IT level, which is beyond the scope of these chapters. To satisfy
a demanding student’s curiosity, however, an illustrative example concerning the second
law of thermodynamics is provided. For this, one needs to model the time evolution of
probability distributions, which involves Markov chains. The concept of Markov chains
and its application to the second law of thermodynamics are described in Appendix D,
which is to be regarded as a tractable, bur somewhat advanced topic.

5.4 Exercises

5.1 (B): Given all possible events a ∈ A, and the conditional probability p(a|b) for
any event b ∈ B, demonstrate the summation property:∑

a∈A

p(a|b) = 1.

5.2 (M): If two sources X, Y represent independent events, then prove that
(a) H (X, Y) = H (X) + H (Y),
(b) H (X |Y) = H (X) and H (Y |X) = H (Y).

5.3 (M): Prove the entropy chain rules, which apply to the most general case:{
H (X, Y) = H (Y |X) + H (X)
H (X, Y) = H (X |Y) + H (Y).

5.4 (M): Prove that for any single-event source X , H (X |X) = 0.

5.5 (M): Prove that for any single-event source X , H (X ; X) = H (X).

5.6 (M): Establish the following three equivalent properties for mutual information:

H (X ; Y) = H (X) − H (X |Y)

= H (Y) − H (Y |X)

= H (X) + H (Y) − H (X, Y).

5.7 (M): Two sources, A = {a1, a2} and B = {b1, b2}, have a joint probability distri-
bution defined as follows:

p(a1, b1) = 0.3, p(a1, b2) = 0.4,

p(a2, b1) = 0.1, p(a2, b2) = 0.2.

Calculate the joint entropy H (A, B), the conditional entropy H (A|B) and
H (B|A), and the mutual information H (A; B).

5.4 Exercises 83

5.8 (B): Show that D(X, Y), as defined by

D(X, Y) = H (X, Y) − H (X ; Y),

can also be expressed as:

D(X, Y) = H (X |Y)H (Y |X).

5.9 (T): With the use of the Venn diagrams, prove that

D(X, Y) = H (X, Y) − H (X ; Y)

satisfies the triangle inequality,

d(X, Z) ≤ d(Y, X) + d(Y, Z),

for any sources X, Y, Z .

5.10 (M): Prove that the Kullback–Leibler distance between two PDFs, p and q, is
always nonnegative, or D[p‖q] ≥ 0. Clue: assume that f = p/q satisfies Jensen’s
inequality,

〈 f (u)〉 ≤ f (〈u〉).

6 Differential entropy

So far, we have assumed that the source of random symbols or events, X , is discrete,
meaning that the source is made of a set (finite or infinite) of discrete elements, xi . To
such a discrete source is associated a PDF of discrete variable, p(x = xi), which I have
called p(x), for convenience. In Chapter 4, I have defined the source’s entropy according
to Shannon as H (X) = −∑

i p(xi) logp(xi), and described several other entropy vari-
ants for multiple discrete sources, such as joint entropy, H (X, Y), conditional entropy,
H (X |Y), mutual information, H (X ; Y), relative entropy (or Kullback–Leibler [KL]
distance) for discrete single or multivariate PDFs, D[p‖q], and conditional relative
entropy, D[p(y|x)‖q(y|x)]. In this chapter, we shall expand our conceptual horizons
by considering the entropy of continuous sources, to which are associated PDFs of
continuous variables. It is referred to as differential entropy, and we shall analyze here its
properties as well as those of all of its above-listed variants. This will require the use of
some integral calculus, but only at a relatively basic level. An interesting issue, which is
often overlooked, concerns the comparison between discrete and differential entropies,
which is nontrivial. We will review different examples of differential entropy, along with
illustrative applications of the KL distance. Then we will address the issue of maximiz-
ing differential entropy (finding the optimal PDF corresponding to the upper entropy
bound under a set of constraints), as was done in Chapter 4 in the discrete-PDF case.

6.1 Entropy of continuous sources

A continuous source of random events is characterized by a real variable x and its
associate PDF, p(x), which is a continuous “density function” over a certain domain
X . Several examples of continuous PDFs were described in Chapter 2, including the
uniform, exponential, and Gaussian (normal) PDFs.

By analogy with the discrete case, one defines the Shannon entropy of a continuous
source X according to:

H (X) = −
∫
X

p(x) log p(x)dx . (6.1)

As in the discrete case, the logarithm in the integrand is conventionally chosen in
base two, the unit of entropy being bit/symbol. In some specific cases, the defini-
tion could preferably involve the natural logarithm, which defines entropy in units of
nat/symbol. The entropy of a continuous source, as defined above, is referred to as

6.1 Entropy of continuous sources 85

differential entropy.1 Similar definitions apply to multivariate PDFs, yielding the joint
entropy, H (X, Y), the conditional entropy, H (X |Y), the mutual information, H (X ; Y),
and the relative entropy or KL distance, D(p‖q) with following definitions:

H (X, Y) = −
∫
X

∫
Y

p(x, y) log p(x, y)dxdy, (6.2)

H (X |Y) = −
∫
X

∫
Y

p(x, y) log p(x |y)dxdy, (6.3)

H (X ; Y) =
∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (6.4)

D[p(x)‖q(x)] =
∫
X

p(x) log
p(x)

q(x)
dx, (6.5)

D[p(y|x)‖q(y|x)] =
∫
X

∫
Y

p(x, y) log
p(y|x)

q(y|x)
dxdy. (6.6)

The above definitions of differential entropies appear to come naturally as the generaliza-
tion of the discrete-source case (Chapter 5). However, such a generalization is nontrivial,
and far from being mathematically straightforward, as we shall see!

A first argument that revealed the above issue was provided by Shannon in his seminal
paper.2 Our attention is first brought to the fact that, unlike discrete sums, integral sums
are defined within a given coordinate system. Considering single integrals, such as in
Eq. (6.1), and using the relation p(x)dx = p(y)dy, we have

H (Y) = −
∫
X

p(y) log[p(y)]dy

= −
∫
X

p(x)
dx

dy
log

[
p(x)

dx

dy

]
dy

= −
∫
X

p(x)

[
log p(x) + log

dx

dy

]
dx (6.7)

= H (X) −
∫
X

p(x) log

[
dx

dy

]
dx

≡ H (X) − C.

1 The term “differential” comes from the fact that the probability P(x ≤ y) is defined as P(x ≤ y) =∫ y
xmin

p(x)dx , meaning that the PDF p(x), if it exists, is positive and is integrable over the interval considered,
[xmin,y], and is also the derivative of P(x ≤ y) with respect to y, i.e.,

p(x) = d

dy

y∫
xmin

p(x)dx .

2 C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27 (1948), 79–423, 623–56.
This paper can be freely downloaded from http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

86 Differential entropy

This result establishes that the entropy of a continuous source is defined within some
arbitrary constant shift C , as appearing in the last RHS term.3 For instance, it is easy to
show that the change of variable

y = ax,

(a being a positive constant) translates into the entropy shift

H (Y) = H (X) + log a.

The shift can be positive or negative, depending on whether a is greater or less than two
(or than e, for the natural logarithm), respectively.

A second observation is that differential entropy can be nonpositive (H (X) ≤ 0)
unlike in the discrete case where entropy is always strictly positive (H (X) > 0).4 A
straightforward illustration of this upsetting feature is provided by the continuous uni-
form distribution over the real or finite interval x ∈ [a, b];

p(x) = 1

b − a
. (6.8)

From the definition in Eq. (6.1), it is easily computed that the differential entropy is
H (X) = log2(b − a). The entropy is zero or negative if b − a ≤ 2 (or b − a ≤ e, for the
natural logarithm).

The difference between discrete and differential entropy becomes trickier if one
attempts to connect the two definitions. This issue is analyzed in Appendix E. The
comparison consists in sampling, or “discretizing” a continuous source, and calculating
the corresponding discrete entropy, H ′′. The discrete entropy is then compared with the
differential entropy, H ′. As the Appendix shows, the two entropies are shifted from each
other by a constant n = − log �, or H ′′ = H ′ + n. The constant n corresponds to the
number of extra bits required to discretize the continuous distribution with bins of size
� = 1/2n . The key issue is that in the integral limit n → ∞ or � → 0, this constant
is infinite! The conclusion is that an infinite discrete sum, corresponding to the integral
limit � → 0, is associated with an infinite number of degrees of freedom, and hence,
with infinite entropy.

The differential entropy defined in Eq. (6.1), as applying to any integration domain X ,
is always finite, however. This proof is left as an (advanced) exercise. In the experimental
domain, calculations are always made in discrete steps. If the source is continuous,
the experimentally calculated entropy is not H ′, but its discretized version H ′′, which
assumes a heuristic sampling bin �. The constant n = − log � should then be subtracted
from the discrete entropy H ′′ in order to obtain the differential entropy H ′, thus ensuring
reconciliation between the two concepts.

3 For multivariate expressions, e.g., two-dimensional, this constant is

C =
∫
X,

∫
Y

p(x, y) log

[
J

(
x

y

)]
dxdy,

where J (x/y) is the Jacobian matrix.
4 Excluding the case of a discrete distribution where p(xi) = δi j (Kronecker symbol).

6.1 Entropy of continuous sources 87

The various relations and properties that were obtained in the discrete case between
entropy, conditional entropy, joint entropy, relative entropy, and mutual information
also apply to the continuous case. To recall, for convenience, these relations and
properties are: {

H (X, Y) = H (Y |X) + H (X)
H (X, Y) = H (X |Y) + H (Y),

(6.9)

H (X ; Y) = H (X) − H (X |Y)

= H (Y) − H (Y |X) (6.10)

= H (X) + H (Y) − H (X, Y),

D(X, Y) = H (X, Y) − H (X ; Y)

= H (X |Y) + H (Y |X), (6.11)

D(p‖q) ≥ 0, (6.12)

H (X ; Y) = D[p(x, y)‖p(x)p(y)] ≥ 0, (6.13)

D[p(x, y)‖q(x, y)] = D[p(x)‖q(x)] + D[p(y|x)‖q(y|x)]. (6.14)

In particular, it follows from Eqs. (6.13) and (6.10) that H (X |Y) ≤ H (X) and
H (Y |X) ≤ H (Y), with equality if the sources are independent. Thus for continuous
sources, conditioning reduces differential entropy, just as in the discrete case.

I shall describe next a few examples of PDFs lending themselves to closed-form, or
analytical definitions of differential entropy, with some illustrations regarding relative
entropy and KL distance.

Consider first the continuous uniform distribution, defined over the real interval of
width u = b − a, Eq. (6.8). As we have seen, the corresponding bit/symbol entropy
is Huniform = log2(b − a). We note that the entropy Huniform is nonpositive if u ≤ 1.
The result shows that the entropy of a continuous uniform distribution of width u
increases as the logarithm of u. In the particular cases where u = 2N , with N being
integer, then Huniform = N bit/symbol. In the limit u, N → ∞, or p(x) = 1/u = 2−N →
0, corresponding to a uniform distribution of infinite width, the entropy is infinite,
corresponding to an infinite number of degrees of freedom for source events having
themselves an infinite information, I (x) = − log[p(x)] = N bits. We thus observe that,
short of any constraints on the definition interval, or PDF mean, the entropy is unbounded,
or Huniform → +∞ as N → ∞.

We may compute the relative entropy, or KL distance, between any continuous PDF
p(x) defined over the domain X = [a, b] with u = (b − a) = 2N and the corresponding
uniform PDF, which we now call q(x) = 1/u = 2−N , according to Eq. (6.5):

D[p(x)‖q(x)] =
∫
X

p(x) log
p(x)

q(x)
dx

=
∫
X

p(x) log
[
2N p(x)

]
dx

=
∫
X

p(x)
[
log(2N) + log p(x)

]
dx (6.15)

88 Differential entropy

= N

∫
X

p(x)dx +
∫
X

p(x) log p(x)dx

≡ N − Hp(X),

where Hp(X) is the entropy of the source X and p(x) is the associated PDF. Since the
KL distance is nonnegative, D(p‖q) ≥ 0, the above result implies that Hp(X) ≤ N ,
meaning that N = log u represents the upper bound, or maximum entropy for all PDF
defined over X .

Consider next the continuous-exponential distribution, which is defined as p(x) =
λe−λx with x ≥ 0 (nonnegative real), λ = 1/〈x〉 ≡ 1/τ a strictly positive constant, and
τ = 〈x〉 the PDF mean, also called the 1/e lifetime (Chapter 2). An elementary calcu-
lation (see Exercises) while taking the natural logarithm in the entropy definition yields
the nat/symbol entropy:

Hexp = ln
(e

λ

)
= ln(eτ) = 1 + ln τ. (6.16)

Thus, the entropy of a continuous-exponential distribution Hexp can be negative or null
if τ ≤ 1/e and increases as the logarithm of the lifetime τ . Short of any constraints on
the mean or lifetime, the entropy is unbounded, or Hexp → +∞ as τ → ∞.

Assuming τ = eN−1, where N is an integer, we obtain Hexp = N nat/symbol, which
compares with the entropy of the uniform distribution, Huniform = N bit/symbol, for
a source defined over any real interval x ∈ [a, b] having the width u = (b − a) = 2N .
We may compute the relative entropy, or KL distance, between any continuous PDF
p(x) defined over the domain x ≥ 0 and the exponential PDF, which we now call
q(x) = λe−λx , according to Eq. (6.5), and using natural logarithms:

D[p(x)‖q(x)] =
∫
X

p(x) log
p(x)

q(x)
dx

=
∫
X

p(x) ln

[
p(x)

λe−λx

]
dx

=
∫
X

p(x) {ln[p(x)] − ln(λ) + λx} dx (6.17)

=
∫
X

p(x) ln[p(x)]dx − ln(λ)
∫
X

p(x)dx + λ

∫
X

xp(x)dx

≡ λ〈x〉p − ln(λ) − Hp(X),

where Hp(X) is the entropy of X with PDF p(x) and 〈x〉p is the PDF mean value.
From this result, we can determine the relative entropy or KL distance between two
exponential PDFs, i.e., pexp(x) = µe−µx (µ > 0) and qexp(x) = λe−λx , which gives

D[pexp(x)‖qexp(x)] = λ

µ
− ln(λ) − ln

(
e

µ

)
≡ λ

µ
− 1 + ln

(µ

λ

)
. (6.18)

6.1 Entropy of continuous sources 89

Setting u = λ/µ, we have D = u − ln(eu). It can easily be checked that D reaches a
minimum of zero for u = 1 (λ = µ, or p(x) = q(x)), as expected. In the limits λ → 0
(p(x) → φ(x)) or µ → 0 (p(x) → φ(x)), the KL distance D is infinite, but φ(x), which
emulates a step or uniform distribution over the interval x ∈ [0,+∞], is not a valid PDF.
It is left as an exercise to study an exponential PDF variant that is defined over a finite
interval x ∈ [0, m], and to reconcile the infinite limit with the uniform-distribution case.

Consider next the case of the normal or Gaussian distribution, p(x), as defined in
Eq. (2.21). Using first natural logarithms, the differential entropy calculation yields:

Hnormal = −
∫

p(x) ln

{
1√

2πσ 2
exp

[
− (x − x0)2

2σ 2

]}
dx

=
∫

p(x)
(x − x0)2

2σ 2
dx −

∫
p(x) ln

(
1√

2πσ 2

)
dx (6.19)

= 1

2σ 2
〈(x − x0)2〉 + 1

2
ln(2πσ 2)

∫
p(x)dx

= 1

2σ 2
σ 2 + 1

2
ln(2πσ 2) ≡ 1

2
ln(2πeσ 2),

where we used the property 〈(x − x0)2〉 = 〈x2〉 − 〈x2
0 〉 = σ 2. In bit/symbol units, this

result gives

Hnormal ≈ 2.047 + 0.72 log σ 2 = 2.047 + 1.44 log σ. (6.20)

We thus find that the entropy of the normal or Gaussian distribution can be negative or
zero if σ ≤ 1/

√
2πe, and increases as the logarithm of its variance or deviation. Short

of any constraints on the variance σ , the entropy is unbounded, or Hnormal → +∞ as
σ → ∞.

We may compute the relative entropy, or KL distance, between any continuous PDF
p(x) and the normal or Gaussian PDF, qnormal(x), according to Eq. (6.5) with mean and
variance (x0, σ

2
0) and using natural logarithms:

D[p(x)‖qnormal(x)] =
∫
X

p(x) ln

[
p(x)

qnormal(x)

]
dx

≡ −Hp(X) + 1

2
ln
(
2πσ 2

0

) + 1

2σ 2
0

[〈x2〉p − 2x0〈x〉p + x2
0

]
,

(6.21)

where Hp(X) is the entropy of the source X with associated PDF p(x). We may apply
the above definition to the case where p(x) is also a normal or Gaussian PDF with mean
and variance (x1, σ

2
1) and obtain (see Exercises):

D [pnormal(x)‖qnormal (x)] = 1

2

[
σ 2

1

σ 2
0

+
(

x0 − x1

σ0

)
− 1 − ln

(
σ 2

1

σ 2
0

)]
. (6.22)

As expected, the relative entropy or KL distance D vanishes if the two PDFs are
identical, (x0, σ

2
0) = (x1, σ

2
1). Setting u = σ 2

1 /σ 2
0 and v = [(x0 − x1)/σ0]2, we have

D = (u2 − ln u − 1 + v)/2. It is easily checked that D reaches a minimum for u = 1,

90 Differential entropy

namely, Dmin = v/2, which is zero for v = 0. Also, D is infinite in the two lim-
iting cases u → 0(σ1 → 0) or u → +∞(σ0 → 0), which correspond to p(x) →
δ(x − x1), or q(x) → δ(x − x0), respectively, where δ(x) is the Dirac or delta distri-
bution.5

There are plenty of continuous-PDF types for which differential entropy comes out
in closed-form or analytical expressions. A list of the most important PDFs comprises:6

� Uniform,
� Normal or Gaussian,
� Exponential,
� Rayleigh,
� Beta,
� Cauchy,
� Chi,
� Chi-squared,
� Erlang,
� F,
� Gamma,
� Laplace,
� Logistic,
� Log-normal,
� Maxwell–Boltzmann,
� Generalized normal,
� Pareto,
� Student’s t,
� Triangular,
� Weibull,
� Multivariate normal.

6.2 Maximum entropy (continuous source)

In Chapter 4, we addressed the problem of finding the maximum entropy. For discrete
sources, this problem can be resolved with or without making restricting assumptions
regarding the PDF, i.e., with or without assuming constraints. Without constraints, the
straightforward result is that maximum entropy is reached with the uniform (discrete)
PDF with N equiprobable events, i.e., p = 1/N yielding Hmax = log N . Introducing

5 The Dirac or delta distribution, which is not a function (except to the physicists!), satisfies the properties

δ(x − u) = 0 for x �= u, lim
x→u

δ(x − u) = +∞,

+∞∫
−∞

δ(x)dx = 1, and

+∞∫
−∞

δ(x − u) f (x)dx = f (u).

6 See table and PDF definition links at bottom of web page http://en.wikipedia.org/wiki/Differential_entropy.
See also T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons,
1991), Table 16.1, pp. 486–7.

6.2 Maximum entropy (continuous source) 91

constraints, such as the PDF mean, the entropy is found to be maximized by the discrete-
exponential, or Bose–Einstein distribution. We are now facing a similar problem, this
time with continuous distributions and associated differential entropy. The previous
examples in this chapter have illustrated that without constraints (such as the PDF
mean), entropy is, in this case, virtually unbounded. It just takes a normal (Gaussian), a
uniform, or an exponential PDF with the appropriate limits to reach entropy infinity!

In the continuous-PDF case, the issue of maximizing entropy is, therefore, bounded to
the introduction of constraints. Given such constraints, the problem consists in determin-
ing the optimal PDF for which entropy is maximized, this maximum entropy represent-
ing the upper bound for all possible PDFs under the same constraints. Albeit seemingly
abstract or fuzzy, this last statement should become crystal clear after we have gone
through the optimization problem.

The continuous PDF, which maximizes entropy under certain given constraints, can
be found through the Lagrange-multipliers method, as previously used in Chapter 4,
and described in Appendix C for the discrete PDF case. Here we are going to explore
the method more extensively, but let us not be scared, this development should remain
relatively basic and accessible, if the reader or student has made it this far!

First of all, let us see how we can find the PDF, which may obey some set of
assumed constraints. Let us also make the problem the most general possible. Let
g0(x), g1(x), . . . , gn(x) be the assumed sets of n + 1 constraint functions of the variable
x and their mean values and 〈g0〉, 〈g1〉, . . . , 〈gn〉 defined by

〈gk〉 =
∫
X

gk(x)p(x)dx . (6.23)

It is implicitly assumed that 〈g0〉, 〈g1〉, . . . , 〈gn〉 are all finite, which is an issue to be
discussed later on. The first constraint g0(x) = 1 is there to impose the PDF normaliza-
tion condition, or

∫
X p(x)dx = 1. Using the entropy definition in Eq. (6.1), the method

consists in minimizing the “functional” f as defined as:

f =
∫
X

[
−p(x) log p(x) +

n∑
k=0

λk gk(x)p(x)

]
dx, (6.24)

where λ0, λ1, . . . , λn are the unknown Lagrange multipliers. Minimizing f yields:

d f

dp
= d

dp

∫
X

[
−p(x) log p(x) +

n∑
k=0

λk gk(x)p(x)

]
dx

=
∫
X

d

dp

[
−p(x) log p(x) +

n∑
k=0

λk gk(x)p(x)

]
dx

=
∫
X

[
−log p(x) − 1 + λ0 +

n∑
k=1

λk gk(x)

]
dx = 0 (6.25)

⇒ −log p(x) − 1 + λ0 +
n∑

k=1

λk gk(x) = 0,

92 Differential entropy

which yields the general, but unique, PDF solution:

p(x) = exp

[
λ0 − 1 +

n∑
k=1

λk gk(x)

]
. (6.26)

Nicely, the solution is exclusively defined by the discrete set of parameters λ0, λ1, . . . , λn ,
which we must now find by using the n + 1 constraints defined in Eq. (6.23). Integrating
in Eq. (6.24), and equating the result with f = 0, yields the corresponding expression
of maximum entropy:

Hmax = 1 − (λ0 + λ1〈g1〉 + λ2〈g2〉 +, . . . , λn〈gn〉) . (6.27)

As previously mentioned, however, an implicit condition is that the means
〈g0〉, 〈g1〉, . . . , 〈gn〉 be finite. This condition is of consequence in the possible values for
the parameters λ0, λ1, . . . , λn , as we see next.

Assume, for instance, that our constraint functions are defined by gk(x) = xk for all
k, or 〈gk〉 = 〈xk〉, which corresponds to the PDF moments of order k. The PDF solution
takes then the form:

p(x) = A exp(λ1x + λ2x2 + λ3x3 + λ4x4 + λ5x5 + · · · + λn xn), (6.28)

with A = exp(λ0 − 1). Substituting the PDF solution into the constraints in Eq. (6.23)
yields:

∫
X

p(x)dx = A
∫
X

exp(λ1x + λ2x2 + λ3x3 + λ4x4 + λ5x5 + · · · + λn xn)x = 1∫
X

xk p(x)dx = A
∫
X

xk exp(λ1x + λ2x2 + λ3x3 + λ4x4 + λ5x5 + · · · + λn xn)dx =〈xk〉

(k = 1, . . . , n).
(6.29)

For any of the integrals involved in Eq. (6.29) to converge, a certain number of additional
conditions should be met, depending on the integration domain X and the number of
constraints n + 1:

(a) X is finite, or X = [xmin, xmax] ⇒ no extra conditions;
(b) X has an infinite upper or lower bound:

(i) X = [xmin,+∞] ⇒ condition is λn < 0,
(ii) X = [−∞, xmax] ⇒ condition is λn < 0.

(c) X is unbounded, or X = [−∞,+∞]:
(i) n is even ⇒ condition is λn < 0,

(ii) n is odd ⇒ condition are λn = 0 and λn−1 < 0.

The above shows that in the situations corresponding to (a), (b), and (c(ii)), it is possible
to find the set of Lagrange parameters λ0, λ1, . . . , λn that define the optimal PDF and
its maximal entropy. Except for n ≤ 2 (as we shall see), this takes an iterative numerical
resolution in which the above assumptions are explicitly introduced from the start in
order to ensure convergence. The situation (c(ii)) poses a specific problem. Indeed, if
we must set λn = 0, we are left with n + 1 equations (Eq. (6.29)) to determine the

6.2 Maximum entropy (continuous source) 93

n Lagrange parameters λ0, λ1, . . . , λn−1. In the general case, this problem cannot be
solved. However, numerical computation makes it possible to find an upper bound to
the entropy under said constraints, and to determine an ad-hoc PDF whose entropy
approaches it with arbitrary accuracy. While the exact optimal PDF solution does not
exist, it can yet be approximated with very high numerical precision.

Consider next two simple cases of interest which correspond to gk(x) = xk in the two
situations (b(i)) with n = 1 and xmin = 0, and (c(i)) with n = 2, respectively.

In the first case, the PDF and maximum entropy solutions are:

p(x) = exp(λ0 − 1 + λ1x), (6.30)

Hmax = 1 − (λ0 + λ1〈x〉), (6.31)

with the convergence condition λ1 < 0.
The solution defined in Eq. (6.30) corresponds to the continuous-exponential dis-

tribution. It is easily established from the constraints in Eq. (6.23) that λ0 = 1 −
ln〈x〉 and λ1 = −1/〈x〉, which gives p(x) = (1/〈x〉) exp(−x/〈x〉) and Hmax = ln(e〈x〉),
as the expected result, see Eq. (6.16).

In the second case (n = 2), the PDF and maximum entropy solutions are:

p(x) = exp(λ0 − 1 + λ1x + λ2x2), (6.32)

Hmax = 1 − (
λ0 + λ1〈x〉 + λ2〈x2〉), (6.33)

where λ2 < 0.
Compared to the previous case, the analytical computation of the three Lagrange

parameters λ0, λ1, . . . , λ2 from the constraints in Eq. (6.23) is a bit tedious, albeit
elementary, which I leave as a good math-training exercise. We eventually find

exp(λ0 − 1) = 1√
2πσ 2

exp

[
−〈x〉2

2σ 2

]

λ1 = 〈x〉
σ 2

λ2 = − 1

2σ 2
.

(6.34)

Substitution of the above Lagrange parameters in Eqs. (6.32)–(6.33) yields:

p(x) = 1√
2πσ 2

exp

[
− (x − 〈x〉)2

2σ 2

]
(6.35)

and with σ 2 = 〈x2〉 − 〈x〉2, as defined in nat/symbol:

Hmax = ln
√

2πeσ 2. (6.36)

We recognize in Eq. (6.35) the definition of the Gaussian (normal) distribution. It is a
fundamental result in information theory that the optimal continuous PDF for which
entropy is maximized, under a constraint in the first two moments (〈x〉, σ 2), is precisely
the Gaussian (normal) distribution. The entropy of any continuous PDF (as defined over
the event space X = [−∞,+∞]), therefore, has Hmax = ln

√
2πeσ 2 as an upper bound.

94 Differential entropy

The issue of entropy maximization is key to the solution of several problems in
statistical physics and engineering (and many other fields as well) where the PDF is
unknown, while a certain set of constraints gk(x), 〈gk〉 are known from real-life or
experimental observation. See previous discussion in Chapter 4 regarding the maximum
entropy principle.

6.3 Exercises

6.1 (B): Calculate the differential entropy of the continuous source defined over the
real interval X = [a, b], with a �= b, assuming a uniform PDF.

6.2 (B): Calculate the differential entropy associated with an exponential PDF.

6.3 (T): Show that the differential entropy

H (X) = −
∫
X

p(x) log p(x)dx

with 0 < p(x) ≤ 1, is always finite.

6.4 (T): Assume the probability distribution

p(x) = αe−λx ,

which is defined for x ∈ [0, m],m, α, λ being nonnegative real.
(a) Determine the PDF constant α, the PDF mean 〈x〉 and the PDF entropy H .
(b) Show that in the limit λ → 0 the PDF becomes uniformly distributed with

p(x) → 1/m.
(c) Calculate the relative entropy, or KL distance D[p‖q] between the two PDFs,

q(x) = αe−λx

and

p(x) = βe−µx .

(d) Determine the KL distance D[p‖q] in the limit λ → 0 or q(x) → 1/m.
(e) Show that in the limit λ,µ → 0 the distance D[p‖q] vanishes.

6.5 (M): Show that the relative entropy, or KL distance, between any continuous PDF
p(x) and the normal (Gaussian PDF),

q(x) = 1√
2πσ 2

exp

[
− (x − x0)2

2σ 2

]

is given by

D[p(x)‖q(x)] = −Hp(X) + 1

2
ln(2πσ 2) + 1

2σ 2

[〈x2〉p − 2x0〈x〉p + x2
0

]
,

where Hp(X) is the source entropy associated with the distribution p(x).

6.3 Exercises 95

6.6 (B): Determine the two parameters λ0, λ1 and the domain x ∈ X to make the
function

p(x) = exp(λ0 − 1 + λ1x)

a probability distribution.

6.7 (T): determine the three parameters λ0, λ1, λ2 to make the function

p(x) = exp(λ0 − 1 + λ1x + λ2x2)

a probability distribution over the domain x ∈ X = [−∞,+∞].

Clues: where appropriate, effect the variable substitution x = y − λ1/(2λ2), set
λ2 = −α(α > 0), and use the result

+∞∫
−∞

exp(−αx2) ≡
√

π/α.

7 Algorithmic entropy and
Kolmogorov complexity

This chapter will take us into a world very different from all that we have seen so
far concerning Shannon’s information theory. As we shall see, it is a strange world
made of virtual computers (universal Turing machines) and abstract axioms that can be
demonstrated without mathematics merely by the force of logic, as well as relatively
involved formalism. If the mere evocation of Shannon, of information theory, or of
entropy may raise eyebrows in one’s professional circle, how much more so that of
Kolmogorov complexity! This chapter will remove some of the mystery surrounding
“complexity,” also called “algorithmic entropy,” without pretending to uncover it all.
Why address such a subject right here, in the middle of our description of Shannon’s
information theory? Because, as we shall see, algorithmic entropy and Shannon entropy
meet conceptually at some point, to the extent of being asymptotically bounded, even if
they come from totally uncorrelated basic assumptions! This remarkable convergence
between fields must make integral part of our IT culture, even if this chapter will only
provide a flavor. It may be perceived as being somewhat more difficult or demanding
than the preceding chapters, but the extra investment, as we believe, is well worth it. In
any case, this chapter can be revisited later on, should the reader prefer to keep focused
on Shannon’s theory and move directly to the next stage, without venturing into the
intriguing sidetracks of algorithmic information theory.

7.1 Defining algorithmic entropy

The concept of information, which has been described extensively in Chapter 3, also
evolved beyond Shannon’s view, and independently of his classical theory. An alternative
definition, which is referred to as algorithmic information, is attributed to G. Chaitin,
R. Solomonoff, and A. Kolmogorov.1 Algorithmic information opened the way to the
field of algorithmic information theory (AIT).

From AIT’s perspective, any source event x is treated as an object variable. The event
may consist in any symbol sequence, whether random or deterministic. The focus of
AIT is not on the source X , the statistical ensemble of all possible events or symbolic
sequences, but on this particular sequence x .

1 See, for instance: http://home.mira.net/∼reynella/debate/informat.htm and useful links therein.

7.2 The Turing machine 97

Entering the AIT domain simply requires one to acknowledge the following three
basic definitions:

(a) The complexity K (x) is defined as the smallest size of a program q(x) necessary to
generate the sequence x .

(b) Such a program is a finite set of binary instructions with a length of |q(x)| bits.
(c) The program can be implemented by a Turing machine (TM).

The smallest program size, min |q(x)| = K (x), which is called the complexity of x ,
is equivalently referred to as algorithmic information content, algorithmic complexity,
algorithmic entropy, or Kolmogorov complexity (also called Kolmogorov–Chaitin com-
plexity and sometimes noted KC(x) instead).2 The Turing machine, which is named after
its inventor, A. Turing,3 can be viewed as the most elementary and ideal implementation
of a computer, and is, as we shall see, of infinite computation power (due to speed, not
memory size).

To clarify and develop all of the above, we ought first to understand what a Turing
machine looks like and how it works; this is addressed in the next section. Then we will
investigate Kolmogorov complexity and its properties. Interestingly, I will show that
Kolmogorov complexity is in fact incomputable! Finally, I will show that Kolmogorov
complexity and Shannon’s entropy are symptotically bounded, a most remarkable feature
considering the previous property.

7.2 The Turing machine

The Turing machine (TM) is an abstract, idealized, or paper version of the simplest and
most elementary computing device. As Fig. 7.1 illustrates, it consists of a tape and a
read/write head. The tape is of indefinite length and it contains a succession of memory
cells, into which are written the bit symbols 0 or 1.4 By convention, cells that were never
written or were left blank are read as containing the 0 bit. The tape can be made to move
left or right by one cell at a time.

The operations of the head and tape are defined by a table of instructions
{I1, I2, . . . , IN } of finite size N , also called an action table. The action table is not
a program to be read sequentially. Rather, it is a set of instructions corresponding to dif-
ferent possibilities to be considered by the machine, as I shall clarify. At each instruction
step, the machine’s head is initially positioned at a single tape cell.

2 See, for instance: http://en.wikipedia.org/wiki/Kolmogorov_complexity, http://szabo.best.vwh.net/
kolmogorov.html.

3 See, for instance: http://plato.stanford.edu/archives/spr2002/entries/turing-machine/, http://en.wikipedia.
org/wiki/Universal_Turing_machine, www.turing.org.uk/turing/, www.alanturing.net/, www.cs.usfca.edu/
www.AlanTuring.net/turing_archive/pages/Reference%20Articles/What%20is%20a%20Turing20Machine.
html.

4 More generally, the symbols that can be put into the cells, including a conventional blank symbol, could be
selected from any finite alphabet.

98 Algorithmic entropy and Kolmogorov complexity

1 0 1 1

I1 I2 I3 I4Instructions

Cells

TapeTape

Head

State 3

…

……

Figure 7.1 Schematic representation of Turing machine.

The machine is said to be in an input state si , which corresponds to a specific
instruction in the action table. This instruction tells the machine to perform three basic
operations altogether:

(a) Given the cell’s content, what new content (namely, 1 or 0) is to be written into the
cell;

(b) In what direction the tape should be moved, namely, left or right;
(c) Into what new state s j the machine should be moved.

For instance, given the input state s1 the corresponding instruction could be:

(a) If reading 0 then write 1,
(b) Move tape to the left,
(c) Go into state s3.

If the cell reading is 0, the machine changes the contents, then moves according to
the two other actions, (b) and (c). If the cell reading is 1, then it halts. To cover
this other possibility, a second instruction can be introduced into the action table, for
instance;

(a) If reading 1 then write 0,
(b) Move tape right,
(c) Go into state s2.

These two sets of instructions in the action table can be summarized as follows:

s1; 0 → 1; L; s3 (7.1)
s1; 1 → 0; R; s2.

Since the instructions move the TM into new states s2, s3, the instructions corresponding
to input states s2, s3 should also be found in the table. There are no restrictions concerning

7.2 The Turing machine 99

Table 7.1 Example of action table for Turing machine.

Input state Change of cell contents Move tape (R, right; L, left) Output state

s1 0 → 1 R s2

s2 0 → 1 R s3

s3 0 → 0 R s4

s4 0 → 1 R s5

s5 0 → 1 L s1

Table 7.2 Tape changes during Turing machine computation, using the action table defined
in Table 7.1. The input tape is blank, representing a string of 0 bits or 0000000 . . . The
initial position of the head is on the leftmost zero bit. At each step, the position of the head
on the tape is shown by the bold, underlined bit. The machine halts at step 6, leaving the
codeword 1101100 . . . on the output tape.

Step Input state Tape contents Output state

1 s1 0 0 0 0 0 0 0 . . . s2

2 s2 1 0 0 0 0 0 0 . . . s3

3 s3 1 1 0 0 0 0 0 . . . s4

4 s4 1 1 0 0 0 0 0 . . . s5

5 s5 1 1 0 1 0 0 0 . . . s1

6 s1 1 1 0 1 1 0 0 . . . ?
Halt

the possibility of returning to a state previously used as an input (e.g., s1; 0 → 1; R; s1).
If there is no output state corresponding to the instruction, the machine halts. The same
happens if the cell reading is not a case covered by the action table given a new input
state.

To summarize, the tape and machine keep on moving, as long as the combination
of initial state and cell reading have a matching definition in the action table. The final
output of the program is the bit sequence written on the tape, which is left at the point
where the machine halted. To illustrate how the TM works, consider next a few program
examples including the basic operations of addition, subtraction, multiplication, and
division.

Example 7.1
This is a TM program that creates the 5-bit sequence 11011 out of an initially blank
tape with equivalent sequence 00000 . . . Table 7.1 shows the action table instructions
and Table 7.2 shows the step-by-step implementation on the tape. It is assumed that the
first initial state is s1 and that the head is located at the leftmost cell, as underlined. As
Table 7.2 illustrates, each of the computation steps is characterized by a left-to-right tape
move (or equivalently, right-to-left head move, as viewed from the tape) with a possible
change in the cell contents. It is seen that the machine halts at step 6, because there is
no instruction in the action table concerning an input state s1 with a cell reading of 1.

100 Algorithmic entropy and Kolmogorov complexity

Table 7.3 Example of action table for Turing machine defining
the addition of two numbers in the unary system.

Input Change of cell Move Output
state contents tape state

s1 1 → 1 R s2

s2 0 → 0 R s3

1 → 1 R s2

s3 0 → 0 L s5

1 → 0 L s4

s4 0 → 1 R s2

Example 7.2
This is a TM program that adds two integers. Such an operation requires one to use the
unary system. In the unary system, the only symbol is 1 (for instance) and an integer
number n is represented by a string of n consecutive 1s. The decimal numbers 3 and 7
are, thus, represented in unary as 111 and 1111111, respectively. Adding unary numbers
is just a matter of concatenating the two strings, namely, 3 + 7 ≡ 111 + 1111111 =
1111111111 ≡ 10. Because we are manipulating two different numbers, we need an
extra blank symbol, 0, to use as a delimiter to show where each of the numbers ends.
Thus, the two numbers, 2 and 3, must be noted as the unary string 1101110. We use this
string as the TM input tape.

The action table and the step-by-step implementation of its instructions are shown
in Table 7.3 and 7.4, respectively. It is seen that the TM halts at step 14. The output
tape then contains the string 1111100 ≡ 5, which is the expected result. It is left to the
reader as an exercise to show that the program also works with other integer choices,
meaning that this is a true adding machine! We note that the program only requires four
states with two symbols, which illustrates its simplicity. The output state s5, which is
undefined, forces the TM to halt. Analyzing the tape moves line by line in Table 7.4, we
can better understand how the algorithm works.

� Basically, each time the head sees a 1 in the cell, the only action is to look at the next
cell to the right, and so on, until a 0 input is hit (here, at step 3). The head then inspects
the next cell with input state s3.

� If the result is another 0, then the output state is s5, meaning that the machine must
halt at the next step, the output tape remaining as it is. This is because reading two
successive 0 means that either (a) the second operand is equal to zero, or (b) that the
addition is completed.

� If the result is a 1, then the program flips the two cell values from 01 to 10, and
the same inspection as before is resumed, until another 0 is hit (here, at step 12). If
the sequence 00 is identified from there, the TM halts, meaning that the addition is
completed.

7.2 The Turing machine 101

Table 7.4 Tape changes during Turing machine computation, using the action table
in Table 7.3, which defines the addition of two numbers. The input tape is set to
1101110, which in unary corresponds to the two numbers 2≡ 11 and 3≡ 111, as
delimited by the blank symbol 0. The initial position of the head is on the leftmost
bit. The output tape is seen to contain the string 1111100≡ 5.

Step Input state Tape contents Output state

1 s1 1101110 s2

2 s2 1101110 s2

3 s2 1101110 s3

4 s3 1101110 s4

5 s4 1100110 s2

6 s2 1110110 s3

7 s3 1110110 s4

8 s4 1110010 s2

9 s2 1111010 s3

10 s3 1111010 s4

11 s4 1111000 s2

12 s2 1111100 s3

13 s3 1111100 s5

14 s5 1111100 Halt

Performing the addition of large numbers only increases the number of computation
steps and the overall computation time. But since the tape is infinite, there is no problem
of overflow. The TM is, however, not capable of handling infinite numbers, or real
numbers with an infinity of decimal places, as I shall discuss later.

Example 7.3
This concerns the operation of subtraction. It is performed in a way similar to addi-
tion, e.g., 7 − 3 ≡ 1111111 − 111 = 1111 ≡ 4. Assume first that the first operand (i)
is greater than or equal to the second operand (j). Table 7.5 shows an action table
performing the subtraction and outputting k = i − j . It is left as an exercise to verify
how the proposed algorithm (call it Sub0) effectively works.

If the first operand (i) is strictly less than the second (j), or i < j , we must use
a subtraction algorithm different from Sub0; call it Sub1. The problem is now to
determine which out of Sub0 or Sub1 is relevant and must be assigned to the TM. We
must then define a new algorithm, call it Comp, which compares the two operands (i, j)
and determines which of the two cases, i ≥ j or i < j , applies. It is left as an exercise
to determine an action table for implementing Comp. Based on the output of Comp, the
TM can be then assigned to perform either Sub0 or Sub1, with the additional information
from Comp that the result of the subtraction is nonnegative (k = i − j ≥ 0) or strictly
negative (k = i − j ≤ 0). Note that the case i = j (k = 0) is implicit in the output of
Sub0.

102 Algorithmic entropy and Kolmogorov complexity

Table 7.5 Example of action table for Turing machine defining the
subtraction of two numbers i, j (i ≥ j) in unary system.

Change of Move Output
Input state cell contents tape state

s1 0 → 0 R s2

1 → 1 R s1

s2 0 → 0 R s2

1 → 0 L s3

B → B R s5

s3 0 → 0 L s3

1 → 0 R s2

I will not develop the analysis further here, or a full TM program for subtraction.
Suffice it to realize that Sub1 can be implemented as a mirror algorithm of Sub0,
proceeding from right to left, or performing the operation k ′ = j − i . The information
printed by Comp on the tape tells whether the output of the subtraction is positive or
negative (noting that the case i = j (k = 0) is implicit in the output of Sub0). The lesson
learnt is that the TM is capable of performing subtraction in the general case, should the
algorithm and corresponding action table cover all possible cases, with the TM halting
on completion of the task. It is left as an exercise to analyze how such a program can
be implemented. This exercise, and the preceding ones, should generate a feeling of
intimacy with the basic TM. As we will see, the TM reserves some surprises, and this is
why we should enjoy this exploration.

Example 7.4
This concerns the operation of multiplication. A TM program performing the multipli-
cation of two integers,5 is shown in Table 7.6.

The directions of the move are either > (right) or < (left). As in previous examples,
the two numbers to multiply and written in the input tape must be expressed in the
unary system, with the convention that integer n is represented by a string of n + 1 1s
(0 ≡ 1, 1 ≡ 11, 2 ≡ 111, 3 ≡ 1111, etc.). Here, I have introduced a supplemental start
instruction (1,_,1,_,>) to position the head to the second cell to the right and the TM in
input state 1. This instruction ensures that the program can be run with various simulators
available on the Internet.6 It is seen from Table 7.6 that the multiplication program
requires as much as 15 states, plus the undefined “halt” state. Also, the TM must be able
to handle (or read and write) six different symbols including the “blank” underscore,
which corresponds to an absence of read/write action (and is not to be confused with

5 See www.ams.org/featurecolumn/archive/turing_multiply_code.html and the line-by-line comments to ana-
lyze the corresponding algorithm. This program can be tested in Turing machine simulators avail-
able on the Internet, see for instance: http://ironphoenix.org/tril/tm/, www.turing.org.uk/turing/scrapbook/
tmjava.html, www.cheransoft.com/vturing/index.html.

6 See, for instance: http://ironphoenix.org/tril/tm/, www.turing.org.uk/turing/scrapbook/tmjava.html, www.
cheransoft.com/vturing/index.html.

7.2 The Turing machine 103

Table 7.6 Action table for Turing machine multiplication program. The table contains
38 instructions using 15 states numbered 1, . . . , 15, plus the halt state (H), and
six symbols noted 1, X, Y, Z, W plus the underscore _, which stands for blank. The
instruction nomenclature is “input state, read symbol, output state, write symbol, move
right (>) or left (<).” The numbers m, n to be multiplied are entered in the input tape
under the string form M N , where M and N are strings of m+ 1 and n + 1
successive 1s, respectively. The head is initially located to the leftmost (blank) symbol.
The output tape takes the form M N P , where P is the unary representation of
mn = p (P is a string of p + 1 successive 1s).

1 1, , 1, , > 20 10, , 11, , <

2 1, 1, 2, W, > 21 10, 1, 12, Z, >

3 2, 1, 2, 1, > 22 12, 1, 12, 1, >

4 2, , 3, , > 23 12, , 13, , >

5 3, 1, 4, Y, > 24 13, 1, 13, 1, >

6 4, 1, 4, 1, > 25 13, , 14, 1, <

7 4, , 5, , > 26 14, 1, 14, 1, <

8 5, , 6, 1, < 27 14, , 14, , <

9 6, , 6, , < 28 14, Z, 10, Z, >

10 6, 1, 6, 1, < 29 14, Y, 10, Y, >

11 6, Z, 6, Z, < 30 11, 1, 11, 1, <

12 6, Y, 6, Y, < 31 11, , 11, , <

13 6, X, 7, X, > 32 11, Z, 11, 1, <

14 6, W, 7, W, > 33 11, Y, 6, Y, <

15 7, , 8, , > 34 8, Y, 8, 1, <

16 7, 1, 9, X, > 35 8, , 8, , <

17 9, 1, 9, 1, > 36 8, X, 8, 1, <

18 9, , 9, , > 37 8, W, 15, 1, <

19 9, Y, 10, Y, > 38 15, , H, , >

an erase/blank character). The table also shows that 38 different instructions, or TM
transitions, are necessary to complete the multiplication of the two input numbers.
To recall, such an operation can be performed with any numbers of any size, without
limitation in size, since the TM tape is theoretically infinite in length. I will come back
to this point later.

Example 7.5
This concerns the operation of division, which is also relatively simple to implement
with a TM. Given two integers m, n, the task is to find the quotient [m/n] and the
remainder r = m − n[m/n], where the brackets indicate the integer part of the ratio
m/n. A first test consists in verifying that n > 0, i.e., that the field containing n has at
least two 1s (with the convention 1decimal ≡ 110unary). This test can be performed through
the above-described Comp program, which is also derived in an exercise. If n = 0, a
special character meaning “zero divide” must be output to the tape and the TM must
be put into the halt state. A second test consists in checking whether m ≥ n or m < n,
which is again performed by the Comp program. In the second case (m < n), the TM
must output [m/n] = 0 and r = 0, and then halt. In the first case (m ≥ n), the TM must

104 Algorithmic entropy and Kolmogorov complexity

compute the value of the quotient [m/n] ≥ 1. Computing [m/n] is a matter of iteratively
removing a string copy of n from m, while keeping count of the number of removals,
k. This is equivalent to performing the subtraction m − n through the above-described
program Sub0, iterated as many times (k) as the result of Sub0 is nonnegative. The
remainder r is the number of 1s remaining in the original m field after this iteration. See
Exercise 7.5 for a practical illustration of this algorithm.

A key application of division concerns data conversion from unary to binary (or to
decimal). It is a simple exercise to determine the succession of divisions by powers of
two (or powers of ten) required to retrieve the digits (or decimals) of a given unary
number. Similarly, multiplication and addition can be used to convert data from binary
(or decimal) into unary. It is given as an exercise to determine an algorithm involving
a succession of multiplications and additions necessary to perform such a conversion,
given a binary (or decimal) number. The key conclusion is that both input and output
TM tapes can be formatted into any arbitrary M-ary number representation (assuming
that the head has the capability to read/write the corresponding M symbol characters),
while the unary system is used for the TM computations. The TM is, thus, able to
manage all number representations for input and output, which illustrates that it is a
truly fundamental computing machine, as we may realize increasingly through the rest
of this chapter.

It is most recommended to explore the previously referenced Internet sites, which
present live TM simulators, and thus make it possible to visualize that Turing machine
at work. Some of these simulators include Java applets, from which ready-made TM
programs may be selected through pop-up menus and then executed. Some of these sites
make it possible to create and test one’s own programs, with the option to run them
either step by step or at some preselected speed. It is quite fascinating to observe in
real-time the execution of a TM program, as it conveys the impression of an elementary
intelligence. But let us not be mistaken, the intelligence is not that of the machine, but
of the human logic that built the action table!

We may wonder how long it takes the TM to perform big operations, or operations
involving big operands. Actually, we ought to measure it not by mere execution time,
but by the number of required TM transitions from start to halt states. Such transitions
are the elementary tape moves from one TM state to the next TM state, passing through
one cell at a time. Recalling that the TM is not a physical machine, it can be made
with arbitrarily small size and arbitrarily high speed, so that the execution time for any
single transition is not a relevant parameter. The number of states defined in the action
table provides a measure of the complexity of the algorithm (the word “complexity”
is not chosen here by chance, as we shall see later on). But as we know, the TM can
use any of these states several times before reaching the halt state, therefore, a simple
algorithm may have a long execution length. Also, the size of the input and of the output
data affects the execution length. For instance, a simple character-erasure algorithm may
take as many transitions as there are symbol characters in the input data. Therefore, the
relevant parameter to measure the execution length is the number of transitions required

7.2 The Turing machine 105

106

105

104

103

102

10

1
0 2 4 6 8 10 12 14 16 18 20

Integer to be squared

N
um

be
r

of
 tr

an
si

tio
ns

0

100 000

200 000

10 12 14 16 18 20

Figure 7.2 Number of Turing-machine transitions to compute the square of small integers,
according to action-table program defined in Table 7.6. The dots correspond to results obtained
with a Turing-machine simulator up to n = 10, the smooth line corresponds to a sixth-order
fitting and extrapolation polynomial up to n = 20. The inset shows the same data from n = 10
to n = 20 in linear plot with a fourth-order fitting.

to execute the full algorithmic computation, and depends on the sizes of the input and
of the output.

To provide a sense of computation length, let us look at a practical example. Consider,
for instance, the following question: “Given two numbers of maximum size n, how
many TM transitions are required to perform their multiplication?” We may answer
this question by analyzing the operation of squaring integers, as ranging from n = 0 to
n = 20, and each time count the number of transitions. The action table corresponds to
that of Table 7.6, with n, n for the two input operands. Figure 7.2 shows a plot of the
transition counts, as obtained from a TM simulator up to a maximum computation power
of n = 10. Polynomial extrapolation makes it possible to evaluate the result up to n = 20,
either in logarithmic or linear scales. It is observed from the figure that the number of
transitions to compute n2 is subexponential to the integer size n. For n = 0 − 1, the
computation requires 12–35 transitions; for n = 10, it requires 11 825 transitions, and
for n = 20 the result is evaluated to be 170 851. The fact that the trend is subexponential
can be simply explained by the following argument: for sufficiently large n, the TM is
essentially found in the states that move the machine towards (state 13) and back to (state
14) the right-hand side of the tape in order to store the 1 symbols defining the result.
Each time the trip is one cell longer. With the relation 2

∑N
k=1 k = N (N + 1), where k

is the number of cell moves to the result field to write 1 and N = n2 the total number
of round-trips, we can evaluate the number of transitions as asymptotically ≈ N 2 = n4.
This is precisely why the linear curve in Fig. 7.2 is very well fitted by a fourth-order

106 Algorithmic entropy and Kolmogorov complexity

polynomial. We can thus conclude that for squaring an integer n, the number of TM
computations (or transitions) is asymptotically n4: the result of squaring integer n is a
string of n2 + 1 symbols, but it takes n4 head moves to write the result onto the tape.

In the preceding five application examples, I have illustrated how the TM can perform
various types of basic computations. In all cases, integers were used. But what about real
numbers? Can Turing machines also perform computations with real numbers? These
are the questions we address next.

Considering real numbers, we ought first to distinguish two cases. First, a real number
n is associated with a size |n|, which ranges from zero to infinity. Second, some real
numbers are nonintegers, and, therefore, are defined through a certain suite of decimal
places. The suite can be of finite size, such as 5/4 = 1.25 (the other decimal places
being zero), or of infinite size, such as 1/3 = 0.333333 . . . or 13/11 = 1.181818 . . .

(decimals, or patterns of decimals, being infinitely repeated). We will consider later on
the case of numbers whose infinite decimal suites do not exhibit patterns (irrational
and transcendental numbers, whose decimals may or may not be computable through a
polynomial equation).

Just as with our physical computers, real numbers with finite size and finite numbers of
decimal places can be handled by the TM through the exponent format n = pn × 10qn or
more generally through any type of floating-point representation. For instance, 203.5 =
2.0350 × 102 = 20.350 × 101 = 2035.0 × 10−1 are three possibilities for the same real
number 203.5. The case where the number of decimal places is infinite can also be
processed by a TM, but only up to some truncation level, just as with any physical
computer. For instance:

13/11 = 1.1181818 . . . ≈ 1.11818 × 101 ≈ 1.1181 × 101

≈ 1.118 × 101 . . . , and so on.

Concerning transcendental numbers,7 like π or e, we may think that because of its
infinite memory size, the TM could have an advantage over a physical computer. Alas,
the number of decimals for such numbers being infinite, the TM would also never halt
in the task of performing its infinite computation, and this points to the same problem
of truncation. It is then possible to devise a TM program that outputs the decimal places
of π or e, and stores them on the TM tape, but the machine would never halt unless the
program included an algorithmic counter to set a limit to the output’s size. The same
restriction applies to physical computers, with the difference that the limit is intrinsically
defined by memory size and execution time.

It would appear from the above analysis and conclusions that any real number having
an infinite number of decimal places, including transcendental or irrational numbers,
such as π, e,

√
2 . . . , is TM computable, at least up to some truncation level. But it turns

out to our surprise that this is not the case!

7 Meaning numbers that are not a solution of any polynomial equation; not to be confused with irrational
numbers (such as

√
2) which apply to this case (namely, here, the solution of x2 − 2 = 0). See for instance

http://en.wikipedia.org/wiki/Transcendental_number.

7.3 Universal Turing machine 107

7.3 Universal Turing machine

Indeed, Turing showed that for some numbers there exists no table of instructions
that is capable of generating the nth digit of its representation for any arbitrary n.
Such numbers are said to be incomputable numbers. Now we are entering the core
of the subject of “algorithmic complexity,” where our mind is going to be further
challenged!

For starters, we shall note the following:

� The number of computable numbers is relatively small compared with the number of
incomputable ones;

� Computable numbers with an infinite set of decimal places can be computed by a TM
program of finite size.

See further for a discussion regarding computable numbers.
We have seen that the TM needs an action table, call it a program, to perform

computations. But where would such a program be physically located? The answer is
that we can use the input tape as a way to store this program. It may be written in the
form of a symbol string of finite length, followed by a delimiter symbol. The rest of the
tape thus contains the input data string to be processed by this program. Thus, the first
string in the input tape instructs the TM on how to process the second string in the input
tape. Let us refer to this implementation as an enhanced TM. Nicely enough, Turing
has shown that not only can such an enhanced TM be implemented, but it also has the
capability to simulate the behavior of any other TM. For the second reason, it is called a
universal Turing machine or UTM.

Basically, a UTM is a TM that executes a program stored in its input tape. Sim-
ple UTMs can be built with a surprisingly small number of states and small alpha-
bet sizes. The smallest known UTM uses two states and 18 symbols, and is noted
UTM 2 × 18, or is conventionally referred to as UTM(2, 18). Other well known
small UTMs are UTM(3, 10), UTM(4, 6), UTM(5, 5), UTM(7, 4), UTM(10, 3), and
UTM(22, 2), the latter being the smallest known binary UTM.

As we have seen in the previous section, and its related exercises, the TM is able to
emulate all basic operators (+,−,×,÷,≤,>, . . .) and, thus, to execute any algorithm
that a real computer can perform. The internal TM variables are identified by specific
symbol markers, as first initialized or assigned from the input tape data, and then
processed by means of these operators. All features of a high-level computer program can
be implemented by a TM: loops with conditional blocks (IF . . . , THEN . . . , ELSE . . . ,
GOTO), function calling, variable retrieval, or procedures or subroutines (which we
can conceive as representing a subset of instructions within the action table and having
specific enter and exit states).

The so-called Church–Turing thesis states that a UTM is capable to solve all problems
that have a solution under an “algorithm” or an “effective computation method,” as these

108 Algorithmic entropy and Kolmogorov complexity

terms are usually understood, provided sufficient storage space and computing time are
provided.8 The Church–Turing thesis can be formulated as follows:

Any computation process or algorithm that can be devised by a mathematician can be effectively
implemented on a Turing machine.

Or, equivalently:

Anything a real computer can compute, a Turing machine can compute.9

As mentioned, there are, however, a few qualitative differences between a TM and a
real computer. A first key difference is that the TM’s memory is theoretically infinite.
A real computer can be equipped with whatever amount of memory space is required.
But the need to manage this finite-size memory space affects the program structure and
algorithms. A real computer also efficiently accesses and manages its memory space by
indexing and virtual caches. But this is difficult, if not impractical, to implement in a
TM. A TM can be built with several parallel tapes (and read/write heads), but it can
be shown that this only partly alleviates the problem of memory access. A second key
difference is that the TM algorithms are usually more general or universal than those
implemented in real computers. The main reason is that they are not bounded to data
type or format limits and, therefore, do not encounter unexpected program failures or
crashes. The only peculiar situation to be encountered with a TM is that where it would
run forever or never halt. Given a table of instructions, and a specific input tape or all
possible input tapes, the question of whether or not a TM will eventually halt is known
as the halting problem.

Turing showed that, in the general case, the halting problem cannot be solved. In
algorithmic information-theory jargon, the problem is said in this case to be undecidable.
The term “undecidable” means that the YES/NO answer to the question, “Can it be
solved?” is neither formally provable nor unprovable. Given all possible instructions
and input data there is no universal algorithm enabling one to determine whether a TM
would halt. It has been shown, however, that the halting problem is solvable for TMs
having fewer than four states, the four-state case being still an open issue. The five-state
case has been shown to be almost certainly undecidable.

It is not in the scope of this chapter to venture into the details of this rather complex
and abstract domain of mathematical science. However, it is possible to provide here a

8 See: http://en.wikipedia.org/wiki/Church-Turing_thesis, http://www.cs.princeton.edu/introcs/76universality/.
In particular (as abridged from http://en.wikipedia.org/wiki/Church-Turing_thesis), an algorithm must
satisfy the following requirements:

(a) It must consist of a finite set of simple and precise instructions described with a finite number of
symbols;

(b) It must always produce the result in a finite number of steps;
(c) In principle, it could be carried out by a human being with paper and pencil;
(d) Its execution requires no intelligence of the human being except that which is needed to understand and

correctly execute the instructions.

9 http://en.wikipedia.org/wiki/Universal_Turing_machine.

7.3 Universal Turing machine 109

simple sketch of proof of the insolvability of the halting problem in the general case, as
the following illustrates.10

As we know, any TM is uniquely defined by its action table or program. Such a
program can be encoded into a string of symbols, for instance, in the binary system
with 0 and 1 bits. According to the coding rules, each individual instruction k in the
table takes the form of a binary number sk of defined size. Concatenating the coded
instructions gives the string s = s1s2s3 . . . sk . . . sN #, where N is the total number of
instructions in the table, and # is an end delimiter, e.g., s = 110101110 . . . 1000010#.
Because of the coding rules, not every binary string picked at random defines a TM,
but the contrary is true: for any TM there is a corresponding unique binary string s. We
can then index each TM according to its unique string value and put these TMs into
an ordered list. Although there exists an infinity of such strings, it is said that they are
countable, just like integer numbers,11 but unlike real numbers. Let this counter index
be n, and call T (n) the TM that uses this program. We now have an infinite catalog of
TM, which can be listed as T (1), T (2), T (3), . . .

Consider next the input data on the TM tape. The data also form a string of finite size,
which corresponds to any binary number. Likewise, we can index and order these data
into a list, forming the infinite, but countable, set of all possible input data strings, with
p as the index. Call T (n, p) the unique Turing machine T (n), which has the data string
p on its input tape. If T (n, p) halts, call the output data T ∗(n, p). The halting problem
is summarized by the question: “Given a Turing machine T (n, p), is there any rule to
determine whether it will halt?” With the previous definitions, we can now prove the
undecidability of the halting problem. I shall do this by assuming that such a rule (call it
the halting rule) does exist; then I will show that this assumption leads to an intractable
contradiction!

With the halting rule, we know for sure whether or not a given machine T (n, p)
does halt. In all the favorable cases (halting TMs), we can safely run the computa-
tions to a conclusion, and tabulate the output data T ∗(n, p). We can, thus, fill in a
two-dimensional array of T ∗(n, p) such as that in Table 7.7. In the unfavorable cases
(nonhalting TMs), there is no point in running the machines, since the halting rule
tells us that they never halt. In this case, we just enter a × mark in the corresponding
array cell. This array is infinite in two dimensions, so it can never be physically com-
pleted, but this does not matter for the demonstration. The halting rule yields a Boolean
answer to the statement “T (n, p) halts,” under the form q = true or q = false. We can,
therefore, design another universal Turing machine H (t) with a program t that does the
following:

� In the favorable case (q = true), emulate T (p, p) to compute T ∗(p, p); the output is
then T ∗(p, p) + 1 (to differentiate from the output of machine T (p, p)).

� In the unfavorable case (q = false), skip calculation and output 0.

10 See http://pass.maths.org.uk/issue5/turing/, and also http://en.wikipedia.org/wiki/Halting_problem.
11 Integers are countable, because given any two integer bounds (n1, n2 ≥ n1), there exists a finite number

n2 − n1 − 1 of integers between the two bounds.

110 Algorithmic entropy and Kolmogorov complexity

Table 7.7 Array representing the infinite sets of Turing machines T (n) having p for input data,
with examples of corresponding output data T∗(n, p) returned when the machine T (n, p) halts,
expressed as decimal numbers. The arrangements known by the rule not to halt are indicated
with a cross. The bottom row defines a hypothetical machine H (t), which always halts, returns
T∗(p, p) + 1 if T (p) halts and 0 otherwise.

1 2 3 4 . . . p . . .

T (1) 17 640 25 × . . . 201
T (2) 28 × 33 11 . . . 44 . . .

T (3) × 8 × 73 . . . 3000 . . .

T (4) 4 × 3 54 . . . × . . .

...
...

...
...

...
...

T (n) 650 13 × 27 . . . 5 . . .

...
...

...
...

...
...

H (t) 18 0 0 55 . . . T ∗(p, p) + 1 or 0 . . .

The various outputs of H (t), based on the values of T (p, p), are shown in the bottom
row of Table 7.7. The new TM H (t), thus, always halts, since in either case (q = true
or q = false), and over the infinite set of possible input data p, it has a definite output.
We have, thus, identified a TM that always halts, regardless of the input. Since it is a
TM, it should appear somewhere in the array. But H (t) is nowhere to be found. Indeed,
the machine H (t, t) has an output H∗(t, t), which, by definition, is different from the
outputs T ∗(t, t) of any known machines T (t, t). The paradox can be summarized as
follows:

If a halting rule existed for any Turing machine, one could build another Turing machine that
always halts for any possible input. But such a machine appears nowhere in the infinite list of
possible Turing machines.

It can be concluded, therefore, (but only as a proof sketch) that, in the general case,
the halting rule does not exist, and that the halting problem is generally undecidable.
The fact that there is no solution to the halting problem in the general case does not
preclude an intuitive, if not formal solution in any given particular case. It is trivial,
indeed, to define Turing machines that for any data input (a) either certainly halt or (b)
certainly never halt.12

At this point, we shall leave the halting problem and the puzzling universe of Turing
machines, in order to resume our focus in information theory. With what we have
learnt about universal Turing machines, we are now able to broaden our appreciation
of information theory with the new concept of algorithmic entropy or algorithmic
complexity, or Kolmogorov complexity.

12 It is sufficient to include in the TM program an instruction that is certain to be called regardless the input
data, and in which the output state is undefined (TM certain to halt), or an instruction creating a nested
loop (TM certain never to halt).

7.4 Kolmogorov complexity 111

7.4 Kolmogorov complexity

In Section 7.1, I introduced, without discussion, the definition of complexity, which
I equivalently referred to as algorithmic information content, algorithmic complexity,
algorithmic entropy, or Kolmogorov–Chaitin complexity.

In what is called algorithmic information theory, the object variable x represents
any symbol sequence from an events source X , whether random or deterministic. The
underlying concept is that there must exist one, several, or an infinity of universal Turing-
machine (UTM) programs, q, which are capable of outputting the sequence x , and then
halt. We shall note any such programs as q(x). As mentioned earlier, the Kolmogorov
complexity of x , noted K (x), is defined as the minimum size of q(x), i.e.:

K (x) = min |q(x)|, (7.2)

where the symbol |·| stands for the program length, i.e., the number of bits defining the
program.

The concept of Kolmogorov complexity nicely parallels that of information in
Shannon’s theory. Recall from Chapter 3 that, given a source event x ∈ X , the cor-
responding information is

I (x) = −log p(x). (7.3)

Shannon’s information provides the minimum number of bits required to describe this
event. More accurately, the minimum length of the description is given by the integer
�I (x)�, where the symbol means the closest integer greater than or equal to I (x). As we
have seen in Chapter 4, Shannon’s entropy H (X) represents the statistical average of the
source information, i.e.,

H (X) = 〈I (x)〉X =
∑
x∈X

p(x)I (x) = −
∑
x∈X

p(x) log p(x). (7.4)

Thus, the entropy (or strictly �H (x)� for a rounded integer) provides the minimum num-
ber of bits required on average to describe the source events. In algorithmic information
theory, the Kolmogorov complexity (or algorithmic entropy) represents the minimum
UTM program size required to describe the source event x , without any knowledge of
its probability p(x).

Thus, complexity measures the absolute information contents of an individual event
from a source, in contrast to Shannon entropy, which measures the average information
contents of the whole event source. In the following, I shall establish that the average
minimum size of programs describing a random source, 〈K (x)〉X , is approximately equal
to the source’s entropy H (X). As can be authoritatively stated:13

It is an amazing fact that the expected length of the shortest binary computer description of
a random variable is approximately equal to its [source] entropy. Thus, the shortest computer
description acts as a universal code, which is uniformly good for all probability distributions. In
this sense, algorithmic complexity is a conceptual precursor of entropy.

13 T. M. Cover and J. A. Thomas, Elements of information theory (New York: John Wiley & Sons, 1991).

112 Algorithmic entropy and Kolmogorov complexity

The following examples will convey a practical understanding of Kolmogorov com-
plexity and its close relation to Shannon entropy, as events become increasingly random:

Example 7.6
Consider the event sequence x = ABABABABAB from the source alphabet Xn with
X = {A, B, C, . . . , Z}. If we want to save this sequence for a permanent archive, we
might just write down ABABABABAB on a piece of paper. But if the sequence had 1000
characters with 500 repeats of AB, we would not do that. Instead, we would write down
“repeat AB 500 times.” It then takes only 19 alphanumeric characters (including spaces)
instead of 1000, to describe x exactly. The statement

q(x) = repeat AB 500 times (7.5)

is thus a Turing machine program. As encoded into ASCII, which takes seven bits
per alphanumeric character, the program length is |q| = 19 × 7 = 133 bits, as opposed
to 7000 bits if the sequence was crudely encoded “as is.” But this is not the shortest
possible program. For instance, we could also define it under the more concise form
q(x) = A = 1, B = 0, R 10 × 500, where R stands for “repeat” and × for “as
many times as.” The length of q(x) is now 15 characters or 15 × 7 = 105 bits. If this
program represent the absolutely minimal way to describe such a sequence, the sequence
complexity is K (x) = 105 bits.

Example 7.7
Consider the following binary sequence:

x = 11.00100100 00111111 01101010 10001000 10000101 10100011 00001000 11010

011 00010011 00011001 10001010 00101110 00000011 01110000 01110011 0100010

0 10100100 00001001 00111000 00100010 00101001 10011111 00110001 11010000

00001000 00101110 11111010 10011000 11101100 01001110 01101100 10001001,

which is made of 258 bits, i.e., 149 0s and 109 1s, plus a radix point (the equivalent of the
decimal point in the binary system). Such a sequence has no recognizable pattern and is
close to random. But, as it happens, it corresponds to the exact binary expansion of the
number π = 3.141592653589 . . . up to 256 digital places14 (or eight decimal places).
Since there are various algorithms to calculate π up to any arbitrary precision, one could
replace the above string by the shortest such algorithm. For instance, one definition of
π is given by the series

πn = 4
n∑

k=1

(−1)k+1

2k − 1
, (7.6)

14 See binary expansion of π over 30 000 digits in www.befria.nu/elias/pi/binpi.html.

7.4 Kolmogorov complexity 113

with πn → π as n → ∞. It can be shown that the error |π − πn| is of the order of 1/(2n),
so it takes about one billion terms (n = 109) to achieve an accuracy of 1/(2 × 109) =
5 × 10−10, which is better than eight decimal places. Based on the above formula,
the TM algorithm could then be packaged under the form (operand symbols being
straightforward to interpret):

q(x) = 4 × S[k, 1, n; P(−1; k + 1)/(2 × k − 1)], (7.7)

which, in this general form, takes only 27 ASCII characters or 189 bits, plus the number
of bits to define the truncation parameter, n. As the number of bits required to represent
n sufficiently large is approximately log2 n, we conclude that |q| ≈ 189 + log2(n). For
n = 109, we have log2(n) ≈ 30, and the program length is approximately |q| ≈ 189 +
30 ≈ 220 bits, which is about 40 bits shorter than the length of the sequence x , i.e.,
| x | = 258 bits. The TM is capable of outputting x with a program length that is some-
what shorter. As it happens, the series formula in Eq. (7.6) converges relatively slowly,
in contrast to several alternative definitions. With a definition having a more rapid
convergence (e.g., ≈ 1/n3),15 we may thus obtain the condition |q| � |x |, illustrating
that the algorithmic definition must rapidly pay off for strings with relatively large
sizes. It is quite a remarkable feature that long random sequences from transcenden-
tal numbers, such as π , e, log 2,

√
2, . . . , may be so defined in only a few bits of

TM instructions, which conveys a flavor of the elegance of algorithmic information
theory.

Example 7.8
Consider the following string of 150 decimal symbols:

x = 4390646281 3640989838 1872779754 1099387485 5579862843 0145920705

9431329445 6125451990 7325732423 7580094766 7581012661 2285404850

7226973202 5731849141 4938800048.

As in the previous example, the above string has no recognizable pattern, but it is closer
to a truly random sequence (the frequencies corresponding to the 0, 1, 2, . . . , 9 symbols
being 16, 13, 16, 13, 19, 15, 10, 15, 17, 16, respectively, which is close to 150/10). The
string actually corresponds to a sampling of the decimal expansion of

√
2, starting from

its millionth decimal.16 While we observe that the sequence is nearly random, we know,
because of its finite size, that it is computable, no matter how complex the algorithm.
Therefore, there must exist a TM program that outputs x , given the information that x

15 For instance,

πn = 3 + 4
n∑

k=1

(−1)k+1

2k(2k + 1)(2k + 2)
.

See also: http://mathworld.wolfram.com/PiFormulas.html, www.geom.uiuc.edu/∼huberty/math5337/
groupe/expresspi.html, http://en.wikipedia.org/wiki/Pi.

16 See expansion of
√

2 to 1 000 000 decimals in http://antwrp.gsfc.nasa.gov/htmltest/gifcity/sqrt2.1mil.

114 Algorithmic entropy and Kolmogorov complexity

represents the decimals of
√

2 from n = 1 000 000 to 1 000 149. It is, thus, possible to
shrink the string information to less than the string’s bit length, or using a four-bit code
for decimals, to less than 4∗(150 + ⌈

log2 n
⌉

) = 680 bits. This number can be viewed as
representing an upper bound for the minimum program length required to output x .

Example 7.9
Consider the following 150-decimal string:

x = 1406859655 4459325754 8112159013 6078068662 8894754577 4091431997

5387666328 2313491092 3281754384 6809379687 2005607612 0145807590

2895743612 9022633078 1424279313.

This string is very close to a purely random sequence. It was generated from the previous
example’s sequence after performing two operations: (a), replacing, at random, symbols
appearing more often by symbols appearing less often, so that they all appear exactly 15
times in the sequence; and (b), several successive random shufflings of blocks of symbols
of decreasing size. Just considering the second operation, the number of possible random
rearrangements is calculated to be n = 150!/(10!)10, which, from Stirling’s formula,
yields n ≈ e120.2 ≈ 1052.2. It would take, therefore, up to some 1052 trials for a TM to
find the right computing parameters to reproduce the above string, short of knowing the
shuffling algorithm that was used.17 To imagine the size of 1052, assume that a TM is
capable of computing at the amazing speed of 1 billion trials per second. It is easy to
find that the computation time is about 1035 years, or 1026 billion years! Any hint of
the operations (a) and (b) could reduce the computing time to the same order as in the
previous example. But since the author has chosen to destroy irremediably the records
of his (b) operations, one may consider that x is definitely incomputable and taken as
a random sequence for which no algorithm can be found within reasonable computing
time. To define the above sequence, the only alternative for the TM is to describe it
symbol by symbol, or bit by bit. By definition, a truly random sequence of 150 bits
should have a descriptive complexity of, at the very least, 150 bits. It represents the
minimal length of a TM program capable of outputting this sequence.

The lesson learnt from these examples is that a complexity K (x) can be associated to
any symbol string x , which is defined as the minimum program length for a universal
Turing machine to output it. What happens if one uses a nonuniversal Turing machine?
The answer is that the complexity of x increases. It is possible to show this property

17 Yet, sophisticated computer algorithms may be able to reconstruct the sequence, based on the hint that it
represents a shuffling of a selection of the decimals of some computable number. What we did here is similar
to cryptographic coding. With such a hint, cryptographic analysis can perform various “attacks” on the
encrypted sequence and eventually output the original plain sequence. It is simply a matter of computation
time and memory, but Turing machines are not limited in this respect. Therefore, the proposed example is
not an “incomputable” string, even if it may take a maximum of 1052 ≈ 2173 trials to output the original
sequence and TM code. Consistently, cryptographists refer to the complexity of an attack problem as being
of size 2n , where n is the space of possibilities to try.

7.4 Kolmogorov complexity 115

through a relatively simple demonstration (by “simple,” I mean “simple to understand,”
as long as the delicate reasoning is carefully followed).

Call U a universal TM and O any other machine. The programs to output x are qU (x)
and qO (x), respectively, which yields the outputs U [qU (x)] = x and O[qO (x)] = x .
The complexity of x is, thus, dependent on which machine is used. By definition,
we have KU (x) = minU |qU (x)| and KO (x) = minO |qO (x)|, where the minima minU,O

correspond to the two different machine types.
Now comes the argument whereby the two complexities can be related. Since U is

universal, by definition it has the capability of simulating the behavior of O . Therefore,
there must exist a program sO , independent of x , which we can input to U to instruct U
how to simulate O . The U tape can thus be loaded with the program sO , followed by the
program qO , so that we obtain the “simulation” output U [sOqO (x)] ≡ U [q∗

U (x)] = x .
The length of the simulation program q∗

U is simply
∣∣q∗

U

∣∣ = |sO | + |qO (x)|, which we can
write |q∗

U | = cO + |qO (x)|, where cO is a positive constant. The associated complexity
is given by

KU (x) = min
U

|q∗
U (x)| = min

U
|qU (x)| ≤ min

O
|q∗

U (x)|
= min

O
|qO (x) + cO | = min

O
|qO (x)| + cO ≡ KO (x) + cO . (7.8)

In the above, I have introduced the property minU |qU (x)| ≤ minO

∣∣q∗
U (x)

∣∣, which reflects
the fact that the program q∗

U includes the additional features of the O machine simulation
that qU (x) does not have. So its minimum length in O is expected to be somewhat
greater than the minimum length of qU in U . The above results thus establish the
inequality:

KU (x) ≤ KO (x) + cO , (7.9)

which shows that the minimum complexity is obtained from the universal machine U .
The result in Eq. (7.9) applies to all machines O different from U (otherwise, equality

stands, along with cO = 0). But what if O was also a universal machine? The result in
Eq. (7.9) still applies since there are an infinite number of possible universal machines
other than U . Then let us use O to simulate each U in turn. The same reasoning as above
leads to the inequality

KO (x) ≤ KU (x) + cU , (7.10)

where cU is a positive constant independent of x . From Eqs. (7.9) and (7.10) it is seen
that the case KU = KO implies cO = cU = 0, meaning that U and O are identical
machines. Assume, in the general case, that KU �= KO . This condition also implies
cO �= cU and sup(cO , cU) > 0. Combining Eqs. (7.9) and (7.10) and omitting the variable
x for simplicity, yields:

cO ≥ KU − KO ≥ −cU , (7.11)

116 Algorithmic entropy and Kolmogorov complexity

which gives a final condition on the absolute complexity difference,18

0 < |KU − KO | ≤ sup(cO , cU) ≡ c, (7.12)

with c = sup(cO , cU) > 0. Since KU , KO , cO , cU are program description lengths, their
minimum value is unity (one bit), so the double inequality

1 < |KU − KO | ≤ c (7.13)

also holds. The conclusion is that it is possible to find two different universal Turing
machines capable of outputting x , and the minimum difference in the complexities is at
least one bit.

We consider next the issue of determining the complexity of a string x with a known
length l(x). In Example 7.9, we have seen that if the string x is incomputable, but
has a finite length l(x), one can devise a halting program q0 that defines x as a mere
symbol-by-symbol or bit-by-bit description. The length of such a program (or descrip-
tive length) is |q(x)| = l(x) + c, where c is a constant taking care of TM instructions,
such as “print” or “stop on string delimiter #.” We conclude, therefore, that the associ-
ated complexity is K (x) = minU |q(x)| = l(x) + minU c ≡ l(x) + c′ (in the following,
I will use c or c′ to mean any nonzero positive constants). The fact that the string
length l(x) is known a priori is an important piece of information in the definition
of the program q(x). In this condition, it is sensible to call this complexity the con-
ditional complexity of x , which we note K [x | l(x)]. Conditional complexity literally
means

The descriptive length of the program that outputs x with knowledge of the length of x .

Based on the above, we have established the following property for any string of
known length l(x):

K [x | l(x)] ≤ l(x) + c (7.14)

(the sign ≤ being introduced instead of = to signify any arbitrary constant c), which
provides an upper bound for conditional complexity.

Assume next the case of strings whose lengths are unknown a priori but can be
defined by some algorithm (or through any computable analytical or iterative formula).
Thus (because there is an algorithm), there must exist a TM program q such that
|q(x)| ≤ l(x) + c. Since an algorithm is generally not able to tell the string length l(x),
therefore, the upper bound in Eq. (7.14) does not apply for K (x). If we want a machine
to output a string of definite length l(x) = n, the program must contain this information
in the form of an instruction. A possible way of encoding this instruction is:

� Convert n into a binary number of log n bits (strictly,
⌈

log2 n
⌉

);
� Form a string m, where the bits are repeated twice;
� Append a delimiter such as 01 or 10.

18 This is shown as follows:

(a) If KU > KO , then −cU ≤ 0 < |KU − KO | ≤ cO ≤ sup(cO , cU);
(b) If KU < KO , then −cO ≤ 0 < |KU − KO | ≤ cU ≤ sup(cO , cU).

7.4 Kolmogorov complexity 117

For instance, n = 11, or 1011 in binary, is encoded as m = 1100111101. This is not a
minimal-length code (as compression algorithms exist), but it surely defines n. We see
that this code length is 2 log n + 2 = 2 log l(x) + 2. The basic program that describes x
and that can tell the TM to halt after outputting n bits is the same as that which prints x bit
by bit (q0), but with an additional instruction giving the value of n. Based on Eq. (7.14)
and the above result, the length of such a program is, therefore, |q0(x)| = K [x | l(x)] +
c + 2 log l(x) + 2 ≈ K [x | l(x)] + 2 log l(x) + c for sufficiently long sequences. But
as we know, if x can be described by some algorithm, the corresponding program
length is such that |q(x)| ≤ |q0(x)|, meaning that the complexity of x has the upper
bound

K (x) ≤ K [x | l(x)] + 2 log l(x) + c. (7.15)

We have established that the complexity K (x) of any string x has an upper bound defined
by either Eq. (7.14) or Eq. (7.15).

The knowledge of an upper bound for complexity is a valuable piece of information,
but it does not tell us in general how to measure it. An important and most puzzling
theorem of algorithmic information theory is that complexity cannot be computed. This
theorem can be stated as follows:

There exists no known algorithm or formula that, given any sequence x , a Turing machine can
output K (x).

This leads one to conclude that the problem of determining the Kolmogorov complexity
of any x is undecidable! The proof of this surprising theorem turns out to be relatively
simple,19 as shown below.

Assume that a program q exists such that a UTM can output the result U [q(x)] = K (x)
for any x . We can then make up a simple program which, given x , could find at least
one string having at least the same complexity as x , which we call K (x) ≡ K . Such a
program r is algorithmically defined as follows:

Input K ,

For n = 1 to infinity,

Define all strings s of length n,

If K (s) ≥ K print s then halt,

Continue.

This program has a length |r | = |q| + 2 log l(K) + c. Since the program length grows
as the logarithm of K , there exists a value K for which |r (K)| < K . The program
eventually outputs a string s of complexity K (s) ≥ K > |r |, which is strictly greater
than the program size! By definition, the complexity K (s) of s is its minimum descriptive
length. By definition, however, there is no TM program that can output s with a length
shorter that K (s). Therefore, the hypothetical program q, which computes K (x) given
x , simply cannot exist. Complexity cannot be computed by Turing machines (or, for that
matter, by any computing machine).

19 As adapted from http://en.wikipedia.org/wiki/Kolmogorov_complexity.

118 Algorithmic entropy and Kolmogorov complexity

∅ 1, 0 00, 01, 10, 11

1 2 4

k =

n(k) =

0 21 1

…, 1010111…, …

2K−1

…

…

… K

Figure 7.3 Enumeration of bit strings of size k = 0 to k = K − 1.

While complexity cannot be computed, we can show that it is at least possible to
achieve the following:

(a) Given a complexity K , to tell how many strings x have a complexity less than K ,
i.e., satisfying K (x) < K ;

(b) For a string of given length n, to define the upper bound of its complexity, namely,
to find an analytical formula for the upper bound of K [x | l(x)] in Eq. (7.15).

To prove the first statement, (a), is a matter of finding how many strings x have a
complexity below a given value K , i.e., satisfying K (x) < K . This can be proven by
the following enumeration argument. Figure 7.3 shows the count of all possible binary
strings of length k, from k = 0 (empty string) to k = K − 1. The sum of all possibilities
illustrated in the figure yields

K−1∑
k=0

n(k) =
K−1∑
k=0

2k = 1 − 2K

1 − 2
= 2K − 1 < 2K . (7.16)

Each of these possible strings represents a TM program, to which a unique output x
corresponds. There are fewer than 2K programs smaller than K , therefore there exists
fewer than 2K strings of complexity < K .

The statement in (b) can be proven as follows. Given any binary string x of length n, we
must find the minimal-length program q that outputs it. Assume first that the string has k
bits of value 1, thus n − k bits of value 0, with 0 < k < n. We can then create a catalog of
all possible strings containing k 1s, and index them in some arbitrary order. For instance,
with n = 4 and k = 2, we have x1 = 1100, x2 = 1010, x3 = 1001, x4 = 0101, x5 =
0011, x6 = 0110. Having this catalog, we can simply define any string xi according to
some index i . Given n and k, the range of index values i is Ck

n = n!/[k!(n − k)!], which
represents the number of ways to assign k 1s into n bit positions. The program q defining
x must contain information on both k and i . As we have seen, it takes 2 log k + 2 bits
to define k by repeating its bits, with a two-bit delimiter at the end (noting that fancier
compression algorithms of shorter lengths also exist). The second number i can be
defined after the delimiter, but without repeating bits, which occupies a size of log Ck

n

bits. We must also include a generic program, which, given k, generates the catalog.
Assume that its length is c, which is independent of k. The total length of the program
q is, therefore,

|q(k, n)| = 2 log k + 2 + log Ck
n + c ≡ 2 log k + log Ck

n + c′. (7.17)

7.4 Kolmogorov complexity 119

The next task is to evaluate log Ck
n . Using Stirling’s formula,20 it is possible to show that

for sufficiently large n:21

log Ck
n ≈ log

1√
2π

+ n f

(
k

n

)
, (7.18)

where the function f is defined by f (u) = −u log u − (1 − u) log(1 − u), and, as usual,
all logarithms are in base 2. The function f (k/n) is defined over the interval 0 < k/n <

1. To include the special case where all bits are identical (k/n = 0 or k/n = 1) we can
elongate the function by setting f (0) = f (1) = 0, which represents the analytical limit
of f (y) for real y. We note that f (u) is the same function as defined in Eq. (4.14) for
the entropy of two complementary events. Its graph is plotted in Fig. 4.7, showing a
maximum of f (1/2) = 1 for u = 1/2.

Substituting Eq. (7.18) into Eq. (7.17), we, thus, obtain:

|q(k, n)| ≈ 2 log k + n f

(
k

n

)
+ c′′, (7.19)

where c′′ is a constant. Consistently, this program length represents an upper bound to
the complexity of string x with k 1s, i.e.,

K (x | kones) ≤ 2 log k + n f

(
k

n

)
+ c′′. (7.20)

In the general case, a string x of length n can have any number k of 1 bits, with 0 <

k/n < 1. We first observe that the integer k is defined by the sum of the a j bits forming
the string, namely, if x = anan−1 . . . a2a1 (a j = 0 or 1) we have k = ∑n

j=1 a j . Second,
we observe that since k < n we have log k < log n. Based on these two observations,
the general approximation formula giving the upper bound for the complexity K (x |n)
of any binary string of length n defined by x = anan−1 . . . a2a1 (a j = 0 or 1), is:

K (x | n) ≤ 2 log n + n f

1

n

n∑
j=1

a j

 + c′′. (7.21)

To recall, Eq. (7.21) represents the Stirling approximation of the exact definition:

K (x | n) ≤ 2 log n + log Ck
n + c. (7.22)

20 See Eq. (A9) in Appendix A.
21 Applying Stirling’s formula yields, after some algebra:

Ck
n ≈ 1√

2π
exp

{
n

[(
1 + 1

2n

)
ln(n) −

(
k

n
+ 1

2n

)
ln(k) −

(
1 − k

n
+ 1

2n

)
ln

[
n

(
1 − k

n

)]]}
.

In the limit n � 1, and after regrouping the terms, the formula reduces to:

Ck
n ≈ 1√

2π
exp

{
n

[
− k

n
ln

(
k

n

)
−

(
1 − k

n

)
ln

(
1 − k

n

)]}
= 1√

2π
2n f (k/n),

where

f (u) = −u
ln u

ln 2
− (1 − u)

ln u

ln 2
(1 − u) ≡ −u log2 u − (1 − u) log2(1 − u).

120 Algorithmic entropy and Kolmogorov complexity

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100 110 120 130
String x

C
om

pl
ex

ity

n = 2

n = 3

n = 4
n = 5

n = 7n = 6

Figure 7.4 Upper bound of conditional complexity K (x | n) for each binary string x of exactly n
bits (n = 2 to n = 7), as defined by Eq. (7.21) with the Stirling approximation (open symbols),
and as defined by Eq. (7.22) without approximation (dark symbols). In each series of size n, the
strings x are ordered according to their equivalent decimal value.

Figure 7.4 shows plots of the upper bound of K (x | n) for each binary string of exactly n
bits, according to (a) the Stirling approximation in Eq. (7.21) with c′′ = log(1/

√
2π) + c

(taking c = 0), and (b) the corresponding exact definition in Eq. (7.22), also taking c = 0.
For each series of length n, the strings x are ordered according to their equivalent decimal
value (e.g., x = 11 corresponds to x = 1011 in the series n = 4, x = 01011 in the series
n = 5, x = 001011 in the series n = 6, etc.).

We first observe from the figure that the upper bound of K (x | n) oscillates between
different values. For even bit sequences (n even), the absolute minima are obtained
for f (u) = 0 or Ck

n = 1, and correspond to the cases where all bits are identical. The
absolute maxima are obtained for f (u) = 1 or Ck

n = 0.5, which corresponds to the cases
where there is an equal number of 0 and 1 bits in the string. For odd bit sequences (n
odd), the conclusions are similar with all bits identical but one (minima) or with an
approximately equal number of 0 and 1 bits in the string.

Second, we observe that the approximated definition (Eq. (7.21)) and the exact defini-
tion (Eq. (7.22)) provide nearly similar results. It is expected that the difference rapidly
vanishes for string lengths n sufficiently large.

Third, we observe that the complexity is generally greater than the string length
n, which appears to be in contradiction with the result obtained in Eq. (7.14), i.e.,
K [x | l(x) = n] ≤ n + c. Such a contradiction is lifted if we rewrite Eq. (7.21) in the
form:

K (x | n) ≤ n

[
2 log n

n
+ f

(
k

n

)
+ c′′

n

]
(7.23)

7.4 Kolmogorov complexity 121

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

String x

C
om

pl
ex

ity

Figure 7.5 Upper bound of conditional complexity for each binary strings x of length n = 7:
K (x | n), as defined by Eq. (7.22) (dark symbols) and K (x | n, k), as defined by Eq. (7.24) (open
symbols) with k being the number of 1s in the string.

and take the limit for large n, which gives K (x | n) ≤ n f (k/n) ≤ n = l(x). The upper
bound n = l(x) stems from the fact that f (u) varies from zero to unity. It is a maximum
for u = k/n = 0.5, which corresponds to the case where there is an equal number of 0
or 1 bits in the string. In the case where the number of 1 bits in the string is known, we
have also established from the above that

K (x | n, kones) ≤ 2 log k + log Ck
n + c. (7.24)

It is exactly the same result as in Eq. (7.22) with log n replaced by log k (k ≥ 1). Since
k ≤ n, the upper bound of K (x | n, kones) is, therefore, lower than that of K (x | n). The
comparison between the two definitions is shown in Fig. 7.5 for n = 7. We observe from
the figure that K (x | n, kones) has a finer structure than K (x | n) as we scan the string
catalog from x = 0000000 to x = 1111111, which reflects the periodic changes in the
number of 1 bits within each of the strings.

Consider next the following problem: given two strings x and y, what is the size of
the smallest program that can output both x and y simultaneously?

A first possibility is that x and y are algorithmically independent, i.e., there is no
algorithm q that is capable of computing both x and y. Let qx and qy (qx �= qy) be
the two programs describing x and y, respectively, from the same universal Turing
machine U (i.e., U [qx] = x, U [qy] = y). We can then chain the two programs to form
qxy = qx qy , a program that computes x then y. There is no need for any additional
instruction to the machine. Therefore, the program length is simply |qxy | = |qx | + |qy|.
The minimal length of such a program is:

K (x, y) = min
U

| qxy | = min
U

| qx | + min
U

| qy | ≡ K (x) + K (y), (7.25)

122 Algorithmic entropy and Kolmogorov complexity

which shows that if two strings are algorithmically independent their joint complexity
K (x, y) is given by the sum of their individual complexities. It is clear that K (x, y) =
K (y, x). What if x and y are not algorithmically independent? This means that the
computation of x provides some clue as to the computation of y. A program calculating
y could be qy = qx qy| x . The machine U first computes x then uses the program qy| x to
compute y.

Next, we shall define the conditional complexity K (y | qx) , which represents the
minimal size of a program describing y given the program describing x . It is also noted
K (y | x∗), with x∗ = qx , or, for simplicity, K (y | x). This last notation should be used
with the awareness that | x is a condition on the program qx , not on the string x .

The issue of finding the minimal size of qy = qx qy| x is far from trivial. Chaitin
showed22 that

K (x, y) ≤ K (x) + K (y | x) + c

↔ (7.26)

K (y | x) = K (x, y) − K (x) + c′,

where c represents a small overhead constant, which is one bit for sufficiently long
strings. The second inequality stems from the first, with c′ ≥ 0 being a nonnegative
constant.23 Since the joint complexity K (x, y) is symmetrical in the arguments x, y, we
also have

K (x | y) = K (x, y) − K (y) + c′. (7.27)

If x and y are algorithmically independent, it is clear that qy| x = qy (there is no clue
from x to compute y), or equivalently K (y | x) = K (y), and likewise, K (x | y) = K (x).
In this case, K (x, y) = K (x) + K (y) + c′.

We can now define the mutual complexity K (x; y) of x and y (note the delimiter “;”)
according to either of the following:

K (x ; y) = K (x) + K (y) − K (x, y)
K (x ; y) = K (x) − K (x | y) + c′

K (x ; y) = K (y) − K (y | x) + c′,
(7.28)

where c′ is a nonnegative constant. In Eq. (7.28), the last two definitions stem from the
first one and the properties in Eqs. (7.26) and (7.27).

The above results represent various relations of algorithmic complexity between two
strings x, y. We immediately note that such relations bear a striking resemblance with
that concerning the joint or conditional entropies and mutual information of two random-
event sources X, Y according to classical IT.

22 See: G. J. Chaitin, A theory of program size formally identical to information theory. J ACM, 22 (1975), 329–
40, www.cs.auckland.ac.nz/CDMTCS/chaitin/acm75.pdf. See also: G. J. Chaitin, Algorithmic information
theory. IBM J. Res. Dev., 21 (1977), 350–9, 496, www.cs.auckland.ac.nz/CDMTCS/chaitin/ibm.pdf.

23 From the first definition in Eq. (7.26) we obtain K (y | x) ≥ K (x) − K (x, y) − c, therefore, there exists a
constant c′ ≥ 0 for which K (y | x) = K (x) − K (x, y) + c′.

7.5 Kolmogorov complexity vs. Shannon’s entropy 123

Indeed, to recall from Chapter 5, the conditional and joint entropies are related
through

H (X | Y) = H (X, Y) − H (Y) (7.29)

and

H (Y | X) = H (X, Y) − H (X), (7.30)

which are definitions similar to those in Eqs. (7.26) and (7.27) for the conditional
complexity. From Chapter 5, we also have, for the mutual information,

H (x ; y) = H (X) + H (Y) − H (X, Y)
H (x ; y) = H (X) − H (X | Y)
H (x ; y) = H (Y) − H (Y | X),

(7.31)

which are definitions similar to that in Eq. (7.28) for the mutual complexity. It is
quite remarkable that the chaining relations of conditional or joint complexities and
conditional or joint entropies should be so similar (except in algorithmic IT for the
finite constant c′, which is nonzero in the general case), given the conceptual differences
between Kolmogorov complexity and Shannon entropy! As a matter of fact, such a
resemblance between algorithmic and classical IT is not at all fortuitous. As stated at
the beginning of this chapter, complexity and entropy are approximately equal when it
comes to random events or sequences: the average size of a minimal-length program
describing random events or sequences x from a source X is, indeed, approximately
equal to the source entropy, or 〈K (x)〉X ≈ H (X). The conceptual convergence between
algorithmic entropy and Shannon entropy is formalized in the next section.

7.5 Kolmogorov complexity vs. Shannon’s entropy

As we have seen, complexity can be viewed as a measure of information, just like
Shannon’s entropy. The key difference is that complexity K (x) measures the information
from an individual event x , while entropy H (X) measures the average information from
an event source X . Despite this important conceptual difference, I have shown in the
previous section the remarkable similarity existing between chain rules governing the
two information measures. In this section, I shall formally establish the actual (however
approximate) relation between Shannon’s entropy and Kolmogorov complexity.

Consider a source X of random events xi with associated probabilities p(xi). For
simplicity, we will first assume that the source is binary, i.e., the only two possible
events are x1 = 0 or x2 = 1, thus p(x2) = 1 − p(x1). We can record the succession
of n such events under the form of a binary string of length n, which we define as
x = x (1)

i x (2)
i x (3)

i . . . x (n)
i with i = 1, 2.

124 Algorithmic entropy and Kolmogorov complexity

We can then estimate the upper bound of the conditional complexity of K (x | n)
according to Eq. (7.21), which I repeat here with the new notations:

K (x | n) ≤ 2 log n + n f

1

n

n∑
j=1

x (j)
i

 + c, (7.32)

where (to recall) f (u) = −u log2 u − (1 − u) log2(1 − u).
Next, we take the expectation value24 of both sides in Eq. (7.32) to obtain:

〈K (x | n)〉 ≤
〈

2 log n + n f

1

n

n∑
j=1

x (j)
i

 + c

〉

= 2 log n + c + n

〈
f

1

n

n∑
j=1

x (j)
i

〉

≤ 2 log n + c + n f

1

n

n∑
j=1

〈
x (j)

i

〉 (7.33)

= 2 log n + c + n f (q)

≡ 2 log n + c + nH (X).

To get the above result, we have made use of three properties.

� First, we have applied Jensen’s inequality, which states that for any concave25 function
F , we have 〈F(u)〉 ≤ F(〈u〉);

� Second, we made the substitution 〈x (j)
i 〉 = 〈xi 〉 = x1 p(x1) + x2 p(x2) ≡ q;

� Third, we have used the property F (q) = H (X), which is the definition of the entropy
of a binary, random-event source X , see Eq. (4.13).

In the limit of large n, the result in Eq. (7.33) yields:

〈K (x | n)〉
n

≤ 2 log n

n
+ c

n
+ H (X) ≈ H (X). (7.34)

This result means that for strings of sufficiently long length n, the average “per bit”
complexity 〈K (x | n)〉 /n has the source entropy H (X) as an upper bound. This can
be equivalently stated: the average complexity of a random bit string, 〈K (x | n)〉, is
upper-bounded by the entropy nH (X) of the source that generates it. Note that the same
conclusion is reached concerning nonbinary sources having M-ary symbols.26

24 Since all events are independent, the probability of obtaining the string x = x (1)
i x (2)

i x (3)
i . . . x (n)

i is p(x) =∏n
j=1 p(x (j)

i). The expectation value 〈K (x)〉 thus means
∑

x p(x)K (x), or the statistical average over all
possibilities of strings x.

25 Jensen’s inequality applies to concave functions, which have the property that they always lie below any
chord (such as

√
x , −x2, or log(x)).

26 T. M. Cover and J. A. Thomas, Elements of information theory (New York: John Wiley & Sons, 1991).

7.6 Exercises 125

Next, we try to find a lower bound to 〈K (x | n)〉 /n. To each string x corresponds a
minimal-length program q, which is able to output x from a universal Turing machine U ,
i.e., U (q, n) = x . It will be shown in Chapter 8 that the average length L = 〈l(q)〉 of such
programs cannot exceed the source entropy, nH (X). Equivalently stated, the source’s
entropy is a lower bound of the mean program length, i.e., nH (X) ≤ L . It is also
shown there that if the program length for each q is chosen such that l(q) = − log p(x),
then the equality stands, i.e., L = nH (X). Here, I shall conveniently use this property
to complete the demonstration. As we know, the conditional complexity K (x | n) is
precisely the shortest program length that can compute x . Thus, we have 〈K (x | n)〉 =
〈l(q)〉 = L ≥ nH (X), and

H (X) ≤ 〈K (x | n)〉
n

. (7.35)

Combining the results in Eqs. (7.34) and (7.35), we obtain the double inequality

H (X) ≤ 〈K (x | n)〉
n

≤ 2 log n

n
+ c

n
+ H (X). (7.36)

It is seen from the final result in Eq. (7.36) that as the string length n increases, the
two boundaries converge to H (X), and thus the per-bit complexity 〈K (x | n)〉 /n and the
source entropy H (X) become identical. For the purpose of the demonstration, we needed
to consider “bits” and “strings.” But we could also consider X∗ as a random source of
strings x with probability p(x) and entropy H (X∗). Thus, we have 〈K (x)〉 ≈ H (X∗) as
the asymptotic limit, which eliminates the need to refer to a “per-bit” average complexity.

The above result, thus, establishes the truly amazing and quite elegant property
according to which Kolmogorov complexity and Shannon’s entropy give very similar
measures of information. Such an asymptotic relationship holds despite the profound
conceptual difference existing between algorithmic and Shannon information theories.

7.6 Exercises

7.1 (M): Use a Turing machine to add the two numbers i = 4 and j = 2, using the
action table in Table 7.3.

7.2 (B): Use a Turing machine to subtract the two numbers i = 4 and j = 3, using the
action table in Table 7.5.

7.3 (T): Solve Exercise 7.2 first. Then complete the subtraction algorithm by introduc-
ing a new TM state aiming to clean up the useless 0 in the output tape sequence,
in the general case with i ≥ j .

7.4 (T): Define, for a Turing machine, an algorithm Comp, and a corresponding action
table, whose task is to compare two integers i, j , and whose output is either
Comp(i ≥ j) = 0 or Comp(i < j) = 1. Clue: begin the analysis by solving Exer-
cise 7.2 first.

126 Algorithmic entropy and Kolmogorov complexity

7.5 (T): Determine the number of division or subtraction operations required to convert
the unary number

N1 = 11 1111 1111 1111 0

into its decimal (N10) representation. Notes: (a) separators _ have been introduced
in the definition of N1 for the sake of reading clarity; (b) the convention of the
unary representation chosen here is 110 = 10.

7.6 (T): Show how a Turing machine can convert the binary number

M2 = 1001

into its unary (M1) representation. Note: use the convention for the unary repre-
sentation 110 = 10.

8 Information coding

This chapter is about coding information, which is the art of packaging and formatting
information into meaningful codewords. Such codewords are meant to be recognized by
computing machines for efficient processing or by human beings for practical under-
standing. The number of possible codes and corresponding codewords is infinite, just
like the number of events to which information can be associated, in Shannon’s meaning.
This is the point where information theory will start revealing its elegance and power.
We will learn that codes can be characterized by a certain efficiency, which implies that
some codes are more efficient than others. This will lead us to a description of the first
of Shannon’s theorems, concerning source coding. As we shall see, coding is a rich
subject, with many practical consequences and applications; in particular in the way we
efficiently communicate information. We will first start our exploration of information
coding with numbers and then with language, which conveys some background and fla-
vor as a preparation to approach the more formal theory leading to the abstract concept
of code optimality.

8.1 Coding numbers

Consider a source made of N different events. We can label the events through a set of
numbers ranging from 1 to N , which constitute a basic source code. This code represents
one out of N ! different possibilities. In the code, each of the numbers represents a code-
word. One refers to the list of codewords, here {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . , N }
as a dictionary.

We notice here that our N codewords use decimal numbers. In fact, these codewords
are generated by some unique combinations of characters, as selected from a smaller
dictionary, here {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}. The smallest dictionary is referred to as a
codeword alphabet. In Roman antiquity, one would have used instead the alphabet

{I, II, III, IV, V, VI, VII, VIII, IX, X, L, C, D, M},
which corresponds to Roman numerals. As we know from school, the corresponding
codewords are formed according to certain rules1 (can we recognize in MDCCLXXXIX

1 The correspondence being {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100, 500, 1000} ≡ {I, II, III, IV, V, VI, VII, VIII,
IX, X, L, C, D, M}, which does not include any character for zero. Note the subtractive rule 9 ≡ IX and

128 Information coding

the date of the French Revolution?). Despite the oddity of their code rules, it is noteworthy
that Roman numerals are still in use, for instance to represent the hours on clock
dials, number pages in book prefaces, express copyright dates, enumerate cases in
mathematical descriptions, or count series in games, such as US football. It is also
interesting to note that the Roman-numeral system was in fact inspired by the Greek
system in use in 400 BC.2

The ten-character dictionary of our decimal system, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} was first
used by the Hindus in 400 BC, and then transmitted later to the West by the Arabs, hence
the misnomer Arabic numerals, which should rather be Hindu-Arabic numerals. The
introduction of a 0 character made it possible to greatly simplify numerals. Indeed, with
only two- or three-character codewords (00–99 or 000–999), up to 100 or 1000 numerals
can be generated. The hexadecimal system is based on the 16-character alphabet

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}.

The advantage of the hexadecimal system is that the codeword length is shorter than
in the decimal case, at the expense of using a greater number of alphabet characters. The
drawback of both decimal and hexadecimal codes is that they are based on relatively
large alphabets. In practice, such characters may not be simple to generate, write, or
faithfully interpret, as we all know from handwriting experience. Such characters need,
in turn, to be coded through a simpler alphabet. The most basic code (and number
representation) corresponds to the binary system, which uses the two-character {0, 1}
alphabet.3 A single-character, binary codeword is referred to as a bit, short for binary
digit. In the following, we will equivalently refer to codewords as “numbers.”

Binary and decimal numbers are conventionally written as the ordered charac-
ter sequences B = . . . b3b2b1b0 and D = . . . d3d2d1d0, respectively. The conversion
between decimal and binary numbers is given by the following power expansion:

. . . d3d2d1d0 ≡ . . . d3 × 103 + d2 × 102 + d1 × 101 + d0 × 100

= . . . b3 × 23 + b2 × 22 + b1 × 21 + b0 × 20 (8.1)

≡ . . . b3b2b1b0.

not 9 ≡ VIII. To generate numbers greater than 10 ≡ X, the rule is as follows: 11 ≡ XI, 12 ≡ XII, . . . ,
18 ≡ XVIII, 19 ≡ XIX, and 20 ≡ XX, and. Then 30 ≡ XXX, 31 ≡ XXXI, . . . , up to 39 ≡ XXXIX. Because
of the absence of a zero, the powers of ten would be character-consuming should they have to be repeated by
as many X. To make numbers more compact, the Romans chose to represent 50, 100, 500, and 1000 by the
symbols L, C, D, and M, respectively, with the subtractive rule 40 ≡ XL, 400 ≡ CD, 90 ≡ XC, 900 ≡ CM.
Thus, 2006 is represented by MMVI, while 1999 is represented by MCMXCIX. There are additional rules
for representing greater numbers, see for instance:

http://en.wikipedia.org/wiki/Roman_numerals#IIII_or_IV.3 F, and
http://ostermiller.org/calc/roman.html.

For more on the numeral systems used by different civilizations through history, see
http://en.wikipedia.org/wiki/Arabic_numerals.

2 See: http://en.wikipedia.org/wiki/Greek_numerals.
3 The unary system uses a single-character alphabet {1}. Numbers are represented by this character’s repeti-

tion, starting from zero: 0 = 1, 1 = 11, 2 = 111, 3 = 1111, etc. Albeit not practical, such a code can have
interesting applications, for instance, in Turing machines (see Chapter 7).

8.2 Coding language 129

Thus, the decimal number D = 3 = 1 × 21 + 1 × 20 corresponds to the binary number
B = 11, and the decimal

D = 1539

= 1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25

+ 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20

corresponds to the binary B = 11 000 000 011, for instance. It is easy to establish that
the maximum decimal value for an n-bit binary number is D = 2n − 1. For instance,
D = 7 = 23 − 1 corresponds to B = 111, and D = 15 = 24 − 1 corresponds to B =
1111, which represent the maximum decimal values for 3-bit and 4-bits binary numbers,
respectively.

For practical handling, long binary numbers are usually split into subgroups of eight
bits, which are called bytes. The byte itself can be divided into two subgroups of four
bits. Since B = 1111 is equal to D = 15, one can represent a byte through a two-
character codeword based on the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F},
which corresponds to the hexadecimal representation. For instance, the hexadecimal
H = 7A corresponds to the binary B = 01111010 and the decimal D = 122. The
hexadecimal system is just a convenient way of representing binary numbers through a
16-character alphabet. It is also a base-16 representation, which immediately translates
into the binary system by blocks of four bits. A byte thus covers the decimal-number
range 28 − 1 = 255, which is also conveniently represented by hexadecimal numbers
from 00 to FF. Note that with the zero, the number of symbols that can be represented
by n bits is actually 2n .

8.2 Coding language

In Chapter 4, we have analyzed the entropy in language. Languages, especially the
ones we can’t read, can be viewed as random sources of alphabet characters. As
we have seen, alphabet characters do not have the same probability of occurrence,
because words make preferential use of certain letters, like E, T, A, O, N . . . in English.
The probability distribution of most languages’ alphabets is exponential (see Fig. 4.3).
The distribution varies according to geographic derivatives, and the type of commu-
nication (e.g., informal, technical, literary). The language dictionary slowly evolves
through generations, as new words are introduced, and older ones are abandoned. Even
the alphabet somewhat evolves, for instance with the new character @, which became
much more common with the Internet generation. In this section, we shall consider the
issue of coding language by substituting the conventional A–Z alphabet with a decimal,
and then a binary coding system.

A first coding approach could consist in attributing a decimal number to each alphabet
character: for instance, A = 1, B = 2, and so on, down to Z = 26. This requires 26
codewords with two decimal symbols varying from 0 to 9, i.e., going from 00 to 99. This
makes 100 coding possibilities, leaving extra room for 100 – 26 = 74 other alphabetical

130 Information coding

or alphanumerical symbols. This reserve would be adequate to code other symbols, such
as lower-case a–z characters, characters with accents and alterations (é, è, à, ä, ç, ù, ü,
ñ . . .), space and punctuation characters, parentheses and quotes, math operands and
symbols (+, −, ×, ÷, =, >, <), the decimals 0–9, and other special characters (∗, %,
#, §, &, ‘, ∼, ∧, .., ◦, _, |, /, \, [,], {, }, $, €, £, @ . . .). This whole character bank
forms our computer-keyboard alphabet, to be completed with several other computer
commands. It can, thus, be theoretically coded through 100 decimal numbers (00 to
99). But such a decimal coding has never been of any practical use, except in the early
times of cryptography, with the unique character–decimal correspondence representing
the “secret code.”4

A second and more powerful coding approach consists in converting the whole key-
board alphabet into binary codewords. The advantage is that the latter can be processed
by computers, without any other form of encoding. Since we have 27 = 128, we observe
that codewords of only seven-bit length are more than sufficient to cover a full keyboard-
symbol alphabet. This is the reason why most computers use ASCII,5 a standard code
invented in 1961 and based on seven-bit codewords. Note that ASCII is not the only
possible code for computers: indeed, EBCDIC 6 is another standard based on eight-bit
codewords, or bytes. The extra bit of EBCDIC makes it possible to code twice as many
alphabet characters as in ASCII, namely 28 = 256 codewords. In the 1970s, ASCII was,
in fact, extended to eight-bit codewords, which, in particular, makes it possible to include
all language-specific characters. The correspondence table between ASCII and keyboard
characters can be found on the Internet.7 Table 8.1 illustrates the correspondence for the
most commonly used keyboard characters. For instance, the letter A is coded as 1000001,
the letter b is coded as 1100010, and the character @ is coded as 1000000. We observe
from the table that all alphabetical characters or letters (lower or upper case) begin with
1 as the leftmost (highest-weight or seventh) bit. We also observe that all upper-case
letters have 0 in the second leftmost (or sixth) bit position, while lower-case letters have
1 instead. Thus, the 2 × 26 = 52 upper and lower-case letter alphabet is actually using
six-bit codewords, while the 26-letter alphabet is using five-bit codewords.

A five-bit codeword can cover 25 = 32 characters, which is apparently not sufficient
for representing the 26 letters and the 10 numbers, unless numbers can be written
as words (e.g. 3 = three). To increase the possibilities of a five-bit code, a trick is to
introduce two shift characters, one to announce a shift from letters to figures (concerning
codewords to follow) and the other for the reverse operation. The introduction of these
two shift characters, thus, virtually permits one to re-use the set of 26 letter codewords
as another set of 26 figure codewords, including numbers and punctuation, leaving four
extra symbols to use for space, carriage return, line feed, and blank. This is the principle

4 For a detailed introduction to early secret codes and cryptography, see for instance E. Desurvire, Wiley
Survival Guide in Global Telecommunications, Broadband Access, Optical Components and Networks, and
Cryptography, (New York: J. Wiley & Sons, 2004).

5 American Standard Code for Information Interchange.
6 Extended Binary Coded Decimal Interchange Code.
7 See, for instance, http://–wikipedia.org/wiki/ASCII.

8.2 Coding language 131

Table 8.1 ASCII code table for common keyboard characters (extract).

← Bit word 7 0 0 0 0 1 1 1 1
6 0 0 1 1 0 0 1 1

4 3 2 1 5 0 1 0 1 0 1 0 1

0 0 0 0 space 0 @ P \ p
0 0 0 1 ! 1 A Q a q
0 0 1 0 " 2 B R b r
0 0 1 1 # 3 C S c s
0 1 0 0 $ 4 D T d t
0 1 0 1 % 5 E U e u
0 1 1 0 & 6 F V f v
0 1 1 1 ' 7 G W g w
1 0 0 0 (8 H X h x
1 0 0 1) 9 I Y i y
1 0 1 0 ∗ : J Z j z
1 0 1 1 + ; K [k {
1 1 0 0 ′ < L \ l |
1 1 0 1 - = M] m }
1 1 1 0 . > N ∧ n ∼
1 1 1 1 / ? O − o

of the Baudot code, now better known as International Alphabet IA2 and still in use in
telex machines.

Consider now the code-source entropy. If all ASCII codewords were equally likely
(having a uniform probability distribution), the corresponding entropy would be H =
log 128 = log 27 ≡ 7 bit/symbol, which is precisely the codeword length. In the case
where the codeword length matches the entropy of the code source, it is said that the code
is optimal. This important concept of code optimality will be met repeatedly throughout
this chapter.

But, as we are aware, language characters do not have a uniform probability, and,
therefore, the source entropy must be less than the above maximum (7 bit/symbol). For
ordinary text files, the most likely symbols are spaces and lower-case letters, which follow
an exponential distribution. In Chapter 4, we established that the plain 26-character
English alphabet (A–Z) has an entropy of 4.185 bit/symbol (1982 survey). We would
then expect the entropy of the ASCII source to be somewhat greater than this value,
considering the greater diversity of characters, but substantially less than 7 bit/symbol,
because of the nonuniformity of the code source. Thus, as applied to language, ASCII
can be regarded as being a nonoptimal code, since its codeword length is greater than
the actual source entropy! For computer files, like tabulated data, source programs, or
HTML Internet pages, however, the character statistics are quite different from that of
the English language, and the corresponding probability distribution is somewhat closer
to uniform. In this respect, ASCII is closer to code optimality.

Once a codeword length has been fixed, and is, by definition, the same for all code-
words, there is no possibility of further optimizing the code. On the other hand, code
optimization seeks for optimal codes which are based on variable-length codewords.

132 Information coding

We will look at the issue of code optimization in the next two sections, starting with an
analysis of the Morse code.

8.3 The Morse code

Another approach for coding language is to use codewords with variable lengths. The
rationale is to make the length of the most frequently-used characters the shortest
possible, and the reverse for the least frequently used ones. With this approach, the
average codeword length is shorter than that of a fixed-length code, and this will bring
us closer to coding optimality.

The Morse code is a historical illustration of the above concept. Such a code has been
widely used in pre-computer ages for military communications (from the American Civil
War to the First World War), for the early beginnings of the public telegraph, which, as
a true revolution of the time, brought the telegram,8 and for maritime communications
and safety.9 Today, its use is only restricted to nostalgic amateur groups.10 The Morse
code is a binary-like or pseudo-binary code based on the two character values dit = •
and da = ___ (or dot and dash, respectively). While anybody knows the meaning of
SOS, fewer people know that it actually means “Save Our Souls,” and maybe even fewer
people know the Morse transcription:

• • •/−−−/ • • • (dit dit dit/da da da/dit dit dit),

as repeated several times.
As symbolized above by the slash, each Morse codeword must in fact be separated by

short pauses. Such pauses are meant for unambiguous identification of the codewords.
This is because Morse messages are meant to be generated, to be written, and to be read
in real time by human operators, and not by a machine.

Table 8.2 shows the “Continental” international correspondence of the 44 Morse
symbols with alphanumerical characters and various punctuation signs. The list is com-
pleted with another five symbols for messaging commands. Note that there is no Morse
symbol for “space,” for consideration of economy. Morse messages make sense with-
out spaces, just like HELLOHOWAREYOU or HAPPYBIRTHDAYTOYOU. It does not
preclude that the sending operator may use the “wait” symbol once in a while, to take
a breath or if he is accidentally interrupted whilst broadcasting a message. Yet full
texts can be coded with all punctuation marks (except the exclamation point, !), which
makes the Morse code very complete as a communication means. As one observes from
Table 8.2, the shortest Morse symbols are attributed to the most common letters in

8 The first telegram was sent from Baltimore to Washington, DC over electrical wires by Morse in 1844, see
http://en.wikipedia.org/wiki/Electrical_telegraph.

9 According to international maritime safety regulations, ships at sea no longer need to be equipped with
Morse-based alarm systems with SOS signaling as in the past. Since 1999, indeed, the regulatory alter-
native is now the Global Maritime Distress and Safety System (GMDSS), which uses satellite and other
communication principles.

10 The Morse code still has fans world-wide, who collect and use old machine and even organize High Speed
Telegraphy Championships.

8.3 The Morse code 133

Table 8.2 Correspondence of the Continental International Morse code with alphanumerical characters,
punctuation, and other command characters. The nine letters most frequently used in European languages
are placed at the left.

E • B − • • • . • − • − • − 0 −−−−− call T − • −
T − C − • − • , −− • • − − 1 • − −−− error • • • • • • •
A •− D − • • ? • • − − • • 2 • • − −− wait • − • • •
N − • F • • − • : −−− • • • 3 • • • − − end M • − • − •
I • • G −− • ; − • − • − • 4 • • • • − end B • • • − • −
M −− H • • • • - − • • • − 5 • • • • •
S • • • J • − −− / − • • − • 6 − • • • •
O −−− K − • − " • − • • −• 7 −− • • •
R • − • L • − • • 8 −−− • •

P • − −• 9 −−−− •
Q −− •−
U • • −
V • • •−
W • − −
X − • •−
Y − • −−
Z −− • •

call T = call to transmit, end M = end message, end B = end broadcasting.

European languages, i.e., E, T, A, N, I . . . while the longest symbols are attributed to
the least frequent letters, such as J, Q, X, Y, Z. In this way, operators save lots of time
when generating or writing down Morse codewords.

Another trick in the Morse code is that letter symbols take a maximum of four dit/da
characters, while number symbols are exactly five characters long. This makes it easier for
operators to distinguish between letters and numbers, and avoids any risk of confusion for
numbers (mistakes in numbers having potentially more important consequences, unlike
with letters, which can be intuitively corrected, or whose mistakes are immediately
noticeable). The Morse code has proven quite efficient for rapid messaging between
“human entities” having limited telecommunications equipment. Certain civilian and
military boats still carry on-board Morse machines as light guns: in adverse conditions
when the radio is down because of power failure or enemy scrambling, a point-to-point
and “radio-silent” Morse communication by day or by night may be the only solution.
And even a small piece of mirror with the sun or a flashlight works very well to
communicate over distances of kilometers, and can be included as part of any survivor’s
equipment, for vital SOS messaging.

The Morse is, thus, a first example of a variable-length code. Since the codeword
length is decreased in proportion to the symbol frequency, we should expect that the
entropy of Morse-code source is quite smaller than that of an ASCII code reduced to the
same A–Z letters. In fact, the entropy analysis of the Morse code is not as straightforward
as it may first appear. Earlier, I referred to the code as being pseudo-binary, even if it uses
only two characters, which provided a hint. Indeed, the code makes use of short pauses
or blanks between two codewords, without which the code would be unintelligible. For

134 Information coding

instance, the beginning message HELLO

• • • • / • / • − • •/ • − • •/ −− −
transmitted without blanks would look like

• • • • • • − • • • − • • − − −,

which from Table 8.2 can be interpreted in several different ways (e.g., 5ELRJ or
SVEFAM or EEEEEETIA2, etc.). This illustrates the property that, without such blanks,
the Morse code is not uniquely decodable and is useless (say, except for mere SOS
purposes). This notion of unique decodability will be further addressed in the next
section. Here, we shall analyze what these information-less, but indispensable blanks
represent in terms of code entropy.11

The idea to begin our analysis is to look at the blanks (/) as representing an extra
symbol character in the Morse code, which is systematically present at the end of any
codeword. Thus dit/ and da/ actually form digrams (two-character symbols) as opposed
to monograms (single-character symbols). Two possibilities exist for introducing this
extra blank symbol.

The first possibility is to set the blank to a binary-code (dit/da) value, which must
meet two requirements: (a) it is not already taken by any Morse code symbol, and (b) the
concatenation of the blank to any Morse codeword, forming the new “digram” codeword,
should be uniquely decodable. Referring to Table 8.2, the smallest binary symbol for
“blank” should be −−−−−−. With such a convention, whenever one hears six das,
it is definitely a blank without ambiguity or error, and one knows for sure which other
conventional Morse codeword precedes or follows. The detection of −−−−− − as
a new symbol is also an indication that blanks are now being coded! But we now have
a tax to pay: the minimum symbol size of this new Morse code is 7 (digram symbols
“E-blank” and “T-blank”), and the maximum size is 13 (digram symbol “error-blank”).
We shall therefore discard this effective, but poorly economical approach.

The second possibility is to convert the pseudo-binary Morse code into a ternary one.
In base three, the characters are 0, 1, and 2, which are called trits for ternary digits).12

A single trit, thus, codes three numbers, and n trits make up 3n coding possibilities. Our
extended Morse code having 49 + 1 = 50 symbols, we see that n = 4 trits are required,
although 34 = 81 is far in excess of what we actually need. Here, we shall not attempt
to optimize the length of this ternary coding system, but only to use the property offered
by a third alphabet character to represent blanks uniquely. Setting the convention da = 0,
dit = 1, we can only have blank = 2. The ternary codeword is simply generated by
appending 2 at the end of the binary Morse codeword. The first two columns in Table 8.3
show the ternary codeword correspondence with the A–Z letters of the Morse code. For
instance R = • − • becomes 1012 in the proposed ternary representation. Actually, this
alternative Morse code is not different from the conventional one, if one conceives of

11 To my knowledge, the following (including in the next section) constitutes an original information-theory
analysis of the Morse code.

12 Likewise, in the base-4 or quaternary system, the characters 0, 1, 2, and 3 are called quads.

8.3 The Morse code 135

Table 8.3 Ternary representation of the Morse-code letters into trit codewords (CW), with the introduction of a character,
2, to signal the blank immediately following conventional Morse symbols (• = 1, − = 0, blank = 2), as shown in
the first two columns. Column 3 shows the source probability distribution p (x), which is the same as used in Fig. 4.5
for English-language reference (1982 survey). Columns 4 and 5 show the detailed calculation of the bit/symbol (H2)
and trit/symbol (H3) entropy, using base-2 and base-3 logarithms, respectively. Column 6 shows the codeword length
l (x) associated with each trit symbol, and Column 7 shows the calculation of the mean codeword length L (effective
code entropy). The last two columns represent the same as Columns 6 and 7, but with a different coding solution with
codeword length l ′(x) yielding the mean L′ (see text for description). The calculation results (source entropy, effective
code entropy, and coding efficiency) are shown at bottom.

Morse trit CW Mean Other Mean CW
Morse CW length CW CW length
symbol (x) p(x) p log2(p) p log3(p) l(x) l(x)p(x) l ′(x) l ′(x)p(x)

E 12 0.127 0.378 0.239 2 0.254 2 0.254
T 02 0.091 0.314 0.198 2 0.181 2 0.181
A 102 0.082 0.295 0.186 3 0.245 2 0.64
O 0012 0.075 0.280 0.177 4 0.299 2 0.150
I 112 0.070 0.268 0.169 3 0.209 2 0.140
N 012 0.067 0.261 0.165 3 0.200 2 0.134
S 1112 0.063 0.251 0.158 4 0.51 3 0.188
H 11112 0.061 0.246 0.155 5 0.304 3 0.182
R 1012 0.060 0.243 0.153 4 0.239 3 0.179
D 0112 0.043 0.195 0.123 4 0.171 3 0.129
L 10112 0.040 0.185 0.117 5 0.199 3 0.120
C 01012 0.028 0.144 0.091 5 0.140 3 0.084
U 1102 0.028 0.144 0.091 4 0.112 4 0.112
M 002 0.024 0.129 0.081 3 0.072 4 0.096
W 1002 0.024 0.129 0.081 4 0.096 4 0.096
F 11012 0.022 0.121 0.076 5 0.110 4 0.088
G 0012 0.020 0.113 0.071 4 0.080 4 0.080
Y 11102 0.020 0.113 0.071 5 0.100 4 0.080
P 10112 0.019 0.108 0.068 5 0.095 5 0.095
B 01112 0.015 0.091 0.057 5 0.075 5 0.075
V 11102 0.010 0.066 0.042 5 0.050 5 0.050
K 0102 0.008 0.056 0.035 4 0.032 5 0.040
J 10002 0.002 0.018 0.011 5 0.010 5 0.010
X 01102 0.002 0.018 0.011 5 0.010 5 0.010
Q 00102 0.001 0.010 0.006 5 0.005 5 0.005
Z 00112 0.001 0.010 0.006 5 0.005 5 0.005∑

1.000
Entropy H2 = 4.185 H3 = 2.640 L = 3.544 L ′ = 2.744

bit/symbol trit/symbol trit/symbol trit/symbol
(source) (source) (code) (code)

Coding 74.49% 96.23%
efficiency

136 Information coding

the last character 2 in each codeword as another sound, which is different from dit or
da (say, do or du). For the purposes of entropy analysis, we shall consider here only
the symbols x corresponding to A–Z, for which we know the probability distribution,
p(x), taking the English-language PDF described in Chapter 4. It is easily established
that the PDF of the trit codewords is the same as that of the bit (or conventional Morse)
codewords.13 Table 8.3 also shows the source entropy in either base-2 (bit/symbol) or
base-3 (trit/symbol) logarithms. By convention, entropy in logarithm base M will be
called here HM . Consistently, it is defined according to:

HM = −
∑

x

p(x) logM p(x). (8.2)

Recalling that logM x = ln x/ ln M , where ln is the natural logarithm, the relation
between base-M entropy and conventional (base-2) entropy is the following:

ln(M)HM = ln(2)H2. (8.3)

Looking at Table 8.3, the calculations for base 2 and base 3 source entropies yield
H2 = 4.185 bit/symbol (English-language entropy) and H3 = 2.640 trit/symbol, respec-
tively. The next step in our analysis is to define a way to measure how efficient a given
code is in using the most concise codewords, regardless of the logarithmic base. This
issue is addressed in the next section, which will also use our new Morse code by way
of an illustrative example.

8.4 Mean code length and coding efficiency

Let’s introduce the mean codeword length (also called expected length) according to the
definition

L(X) = 〈l〉X =
∑
x∈X

p(x)l(x), (8.4)

where l(x) is the codeword length corresponding to symbol x from source X . With a
binary code, the unit of L is bit/symbol. This defines the mean or expected codeword
length as effective code entropy.14

We shall, again, use the ternary Morse code as an illustrative example. In this case,
L is in units of trit/symbol. Columns 6 and 7 in Table 8.3 detail the calculation of
the mean codeword length, as based on the above definition, the ternary codewords
previously introduced (Column 2) and the distribution p(x). As Table 8.3 shows,
the mean codeword length is L = 3.544 trit/symbol. Since L has the dimensions of
entropy, we can compare it with the codeword source, using the ratio η = H3/L, with

13 This is because the joint and conditional probabilities of the Morse/blank digrams x/y satisfy p(y =
blank | x) = p(x) and p(y = blank, x) = p(x), with p(y = blank) = 1.

14 More accurately the unit of the mean codeword length is bit/codeword or trit/codeword, but, for simplicity
and clarity, I shall use here the names bit/symbol or trit/symbol, it being understood that there is a one-to-one
correspondence between codewords and symbols.

8.4 Mean code length and coding efficiency 137

H3 = 2.640 trit/symbol. We, thus, find that η = 74.5%. As we shall see further in this
chapter, such a ratio defines coding efficiency, a parameter that cannot exceed unity. Put
simply:

The mean codeword length (or effective code entropy) cannot exceed the source entropy.

This is a fundamental property of codes, which was originally demonstrated by Shannon.
We can thus conclude that with a 74% coding efficiency, the Morse code (analyzed as

a ternary code) is a reasonably good choice. Yet, despite its popularity and usefulness
in the past (and until as recently as 1999), the Morse code is quite far from optimal.
The main reason for this is the use of the blank, which is first required for the code to
be uniquely decodable, and second for being usable by human operators. Such a blank,
however, does not carry any information whatsoever, and it takes precious codeword
resources! This observation shows that we could obtain significantly greater coding
efficiencies if the Morse code was uniquely decodable without making use of blanks.
This improved code could be transmitted as uninterrupted bit or trit sequences. But it
would be only intelligible to machines, because human beings would be too slow to
recognize the unique symbol patterns in such sequences. Considering then both binary
and ternary codings (with source entropies Hsource shown in Table 8.3), and either fixed
or variable symbol or codeword sizes, there are four basic possibilities:

(i) Fixed-length binary codewords with l = 5 bit (25 = 32), giving L ≡ 5.000 bit/
symbol, or Hsource/L = 83.7%;

(ii) Fixed-length ternary codewords with l = 3 trit (33 = 27), giving L ≡ 3.000 trit/
symbol, or Hsource/L = 88.0%;

(iii) Variable-length binary codewords with lengths between l = 1 and l = 10 bits, gi-
ving L ≡ 4.212 bit/symbol, or Hsource/L = 99.33% (with optimal codes using
3 ≤ l ≤ 9 bits);

(iv) Variable-length ternary codewords with lengths between l = 1 and l = 3 trits,
giving L ≡ 2.744 trit/symbol or Hsource/L = 96.2%.

The result shown in case (iii) is derived from an optimal coding approach (Huffmann
coding) to be described in Chapter 9. The result shown in case (iv) will be demonstrated
in the next section. At this stage, we can just observe that all the alternative solutions
(i)–(iv) have coding efficiencies significantly greater than the Morse code. We also note
that the efficiency seems to be greater for the multi-level (M-ary) codes with M > 2,
but I will show next that it is not always true.

Consider, for simplicity, the case of fixed-length M-ary codes, for which it is straight-
forward to calculate the coding efficiency. For instance, quaternary codewords, made
with n quad characters, called 0, 1, 2, and 3, can generate 4n symbol possibilities.
Since 42 < 26 < 43 = 64, codewords with 3 quads are required for the A–Z alpha-
bet. The mean codeword length is, thus, L = 3 quad/symbol. The source entropy is
H4 = (ln 2/ln 4) H2 = 2.092 quad/symbol. Thus, the coding efficiency is η = H4/L =
69.7%, which is lower than that of ternary, fixed-length coding (88.0%), as seen in case
(ii). The reason is that going from ternary to quaternary coding does not reduce the
codeword length, which remains equal to three. The situation would be quite different

138 Information coding

if we used variable-length codewords, since a single quad can represent four possibil-
ities, instead of three for the trit. Let us look at the extreme case of a 26-ary coding,
i.e., a coding made of 26 alphabet characters (called 26-its) which can be represented,
for instance, by an electrical current with 26 intensity levels. Each codeword is, thus,
made of a single 26-it, and the mean codeword length is L = 1 26-it/symbol. The source
entropy is H26 = (ln 2/ ln 26)H2 = 0.890 26-it/symbol. The coding efficiency is, there-
fore, η = H26/L = 89.0%, which represents the highest efficiency for a fixed-length
coding (one character/symbol) of the A–Z source. However, if we relate this last result
to the efficiency of a variable-length binary or ternary code, cases (iii) and (iv) above,
we see that the second yields higher performance.

The main conclusions of the above analysis are:

(1) The Morse code can be viewed as being a variable-length ternary code; it is quite
efficient for human-operator use, but not for binary or ternary machines;

(2) One can code symbols through either fixed-length or variable-length codewords,
using any M-ary representation (M = number of different code characters or code
alphabet size);

(3) The mean codeword length (L) represents the average length of all possible source
codewords; it cannot be smaller than the source entropy (H), which defines a coding
efficiency (L/H) with a maximum of 100%;

(4) For fixed-length codewords, one can increase the coding efficiency by moving from
binary to M-ary codes (e.g., ternary, quaternary, . . .), the efficiency increasing with
M , continuously or by steps;

(5) The coding efficiency can be increased by moving from fixed-length to variable-
length codewords (the shortest codewords being used for the most likely source
symbols and the reverse for the longest codewords).

The property (3), known as Shannon’s source coding theorem, and the last property (5)
will be demonstrated next.

8.5 Optimizing coding efficiency

In this chapter so far, we have learnt through heuristic arguments that coding efficiency is
substantially improved when the code has a variable length. It makes economical sense,
indeed, to use short codewords for the most frequently used symbols, and keep the
longer codewords for the least frequently used ones, which is globally (but not strictly)
the principle of the old Morse code. We must now establish some rules that assign the
most adequate codeword length to each of the source symbols, with the purpose of
achieving a code with optimal efficiency.

Consider a basic example. Assume a source with five symbols, called A, B, C, D, and
E, with the associated probabilities shown below:

x = A B C D E
p(x) = 0.05 0.2 0.05 0.4 0.3

8.5 Optimizing coding efficiency 139

A

C

D

E

B

0.4

0.6
0.3

0.3
0.2

0.1 0.05

0.05

Codewords

0

10

110

1110

0

1

0

1

0

0

1

1
1111

Figure 8.1 Coding tree for the source x = {A, B, C, D, E} with associated probability
distribution p(x) = {0.05, 0.2, 0.05, 0.4, 0.3}.

This source entropy is easily calculated to be H = 1.946 bit/symbol. One method of
assigning a code to each of these symbols is to draw a logical coding tree, as shown in
Figs. 8.1 and 8.2.

The two figures show that each leaf of the coding tree represents a unique codeword. In
both figures, the symbols shown at the right are placed in decreasing order of probability.
The coding tree thus assigns each codeword according to successive choices between
0 and 1 as the branches split up. In Fig. 8.1, for instance, symbol D is assigned the
codeword 0, meaning that the other source symbols, A, C, B, and E, should be assigned
codewords beginning with a 1, and so on. Alternatively (Fig. 8.2), we can assign 0
as the leftmost codeword bit of symbols D, and E, and 1 to all others, and so on. It
is straightforward to calculate the mean codeword length from Eq. (8.4), which gives
L = 2.0 bit/symbol and L = 2.3 bit/symbol, for the two coding trees, respectively.
The coding efficiencies are found to be 97.3% and 84.6%, respectively, showing that
the first code (Fig. 8.1) is much closer to optimality that the second code (Fig. 8.2). In the
last case, the efficiency is relatively low because we have chosen a minimum codeword
length of 2 bits, as opposed to one bit in the first case.

In these examples, the choice of codewords (not codeword lengths) seemed to be
arbitrary, but in fact such a choice obeyed some implicit rules.

First, different symbols should be assigned to strictly different codewords. In this
case, the code is said to be nonsingular.

Second (and as previously seen), the code should be uniquely decodable, meaning that
an uninterrupted string of codewords leads to only one and strictly one symbol-sequence

140 Information coding

Table 8.4 Different types of codes for a 5-ary source example made of a binary codeword
alphabet.

Nonsingular, not Uniquely decodable,
Source Singular uniquely decodable not prefix Prefix

A 00 0 101 101
B 01 1 1011 100
C 10 01 110 110
D 00 10 1101 00
E 10 11 10110 01

A

C

D

E

B

0.4

0.2

0.05

Codewords

00

01

100

110

0

1

0

01

1 111

0

1
0.3

1

0

0.05

101

Dummy

0

Figure 8.2 Alternative coding tree for the source in Fig. 8.1.

interpretation. Indeed, consider the code sequence 1101110010 . . . made from a string
of codewords from the code in Fig. 8.1. Scanning from left to right, since 1 and 11 are not
codewords, the first matching codeword is 110, or symbol B. The same analysis continues
until we find the meaning BADE. The code is, thus, uniquely decodable. We also note
that under this last condition, no codeword represents the beginning bits or prefix of
another codeword. This means that the codeword can be instantaneously interpreted
after reading a certain number of bits (this number being known from the identified
prefix), without having to look at the codeword coming next in the sequence. For this
reason, such codes are called prefix codes or instantaneous codes. Note that a code
may be uniquely decodable without being of the prefix or instantaneous type. Table 8.4
shows examples of singular codes, nonsingular but nonuniquely decodable, uniquely

8.5 Optimizing coding efficiency 141

0 1 2

00 01 02 10 11 12

0 1 2 0 1 2

200 201 202

1 20

0

210 211 212

1 20

1

1 20

2

1 20 1 20 1 20

2200 2201 2202 2210 2211 2212

22200 22222

22211
2221222210

1 20

Figure 8.3 Coding tree for A–Z letter source, using ternary codewords (see also Table 8.3).

decodable but not prefix, and prefix, in the case of a 5-ary code alphabet made of five
different binary codewords.

We shall now use the coding-tree method to see if we might improve the cod-
ing efficiency of the A–Z English-character source, using a ternary alphabet with
variable size (case (iv) in Section 8.4). Figure 8.3 shows a possible coding tree
for a 27-symbol source (26 letters, plus a dummy). The method consists of assign-
ing the first group of 2-bit codewords (00, 01, 02, 10, 11, 12) to the first six
most frequent characters, then the second group of 3-bit codewords (200, 201,
202, 210, 211, 212) to the following six most frequent characters, and so on,
until all attributions are exhausted (except for a dummy 22222 codeword, which is
never used). The codeword length corresponding to this character–codeword map-
ping is shown in Table 8.3 in Column 8 as l ′(x). Column 9 of Table 8.3 details
the calculation of the mean codeword length L ′. The result is L ′ = 2.744 trit/
symbol, which corresponds to a coding efficiency of η = H3/L = 96.23%. This coding
efficiency is far greater than any efficiency obtained so far with fixed and variable-length
codes for the English A–Z character source.

What we have learnt from the above examples is that there exist many possibilities
for assigning variable-length codewords to a given symbol source. Also, we have seen
that the coding tree can be used as a tool towards generating codes with shorter mean
codeword length. We must now formalize our approach, in order to determine the
shortest mean codeword length achievable for any given source, and a method of finding
the corresponding optimal code, which is described next.

142 Information coding

8.6 Shannon’s source-coding theorem

In this section, we address the following question:

Given a symbol source, what is the smallest mean codeword length achievable?

The answer is provided by a relatively simple demonstration. Let HM (X) be the entropy
of a M-ary source X = {x} with codeword lengths l(x) and corresponding probability
p(x). The mean codeword length is L(X) = ∑

l(x)p(x). We then estimate the difference
� = L(X) − HM (X) according to:

� = L(X) − HM (X)

=
∑
x∈X

l(x)p(x)+
∑
x∈X

p(x) logM p(x) (8.5)

=
∑
x∈X

p(x)[l(x) + logM p(x)]

≡ 〈 l + logM p〉X .

A sufficient (but not necessary) condition for the difference � to vanish is that each l(x)
takes the specific value l∗(x), as defined by

l∗(x) = −logM p(x). (8.6)

The above result means that if the codeword length l(x) of symbol x is chosen to be
specifically equal to l∗(x) = −logM p(x), then �= 0 and the mean codeword length
L equals the source entropy HM . We note that this optimal length l∗(x) represents
the information contained in the symbol x , which was defined in Chapter 3 as being
I (x) = −logM p(x), and which is a measure of the symbol uncertainty. Thus, the
codeword lengths are short for symbols with less information (more frequent, or less
uncertain) and are long for symbols with more information (less frequent, or more
uncertain). Since the codeword lengths must be integer numbers, the optimal condi-
tion l∗(x) = −logM p(x) can only be approximately satisfied in the general case. The
codeword lengths must then be chosen as the integer number greater than but closest to
l∗(x).

The above demonstration does not prove that the choice of codeword length l∗(x)
minimizes the mean codeword length L . We don’t know, either, if the difference �

is positive or negative in the general case. To establish both properties, we must use
the so-called Kraft–McMillan inequality, which is demonstrated in Appendix F. This
inequality, which applies to prefix codes,15 states∑

x∈X

M−l(x) ≤ 1. (8.7)

Let’s prove first that l∗(x) is the minimum mean codeword length. For this, we apply
the Lagrange-multipliers method, which we have already used in Chapters 4 and 6 to

15 As it turns out, the Kraft inequality also applies to the greater class of uniquely decodable codes (McMillan
inequality), hence the name Kraft–McMillan inequality.

8.6 Shannon’s source-coding theorem 143

maximize the entropy of discrete and continuous sources. To recall, this method makes
it possible to find the function lopt(x) for which any function L(l) is minimized (or
maximized), given the constraint that C(l) = u, where L , C are any derivable functions
of l and u is a constant. Formally, one first defines:

J (l) = L(l) + λC(l), (8.8)

where L(l) = ∑
x p(x)l(x) and C(l) = ∑

x M−l(x) ≡ ∑
x e−l(x) ln M = u. The derivation

of Eq. (8.8) with respect to l(x) leads to

∂ J

∂l(x)
= p(x) − λl M−l(x)l(x) ln M. (8.9)

Setting the result in Eq. (8.9) to zero, we obtain the parameter λ, which, with the
constraint, yields the optimum function lopt(x) :16

lopt(x) = −logM p(x) − logM u. (8.10)

Since by definition u ≤ 1, the smallest codeword-length for any x is given by

l∗(x) = −logM p(x), (8.11)

which we had previously found in Eq. (8.6) to be the function for which L(X) = H (X).
The above demonstration proves that the codeword length distribution l∗(x) yields the

shortest mean codeword length L(X). We can now prove that the source entropy H (X)
represents an absolute lower bound for L(X). Indeed,

� = L(X) − HM (X)

=
∑
x∈X

p(x)[l(x) + logM p(x)]

=
∑
x∈X

p(x)[logM p(x) − logM M−l(x)]

=
∑
x∈X

p(x)[logM p(x) − logM (AM−l(x)) + logM A] (8.12)

=
∑
x∈X

p(x) logM

[
p(x)

AM−l(x)

]
+

∑
x∈X

p(x) logM A

≡ D(p‖AM−l(x)) + logM A.

In the above development, we have introduced the constant A = 1/
∑

x M−l(x), which
makes the function AM−l(x) a probability distribution. Thus D(p‖AM−l(x)) is a
Kullback–Leibler distance, which, from Chapter 5, we know to be always nonnega-
tive. Because of the Kraft–McMillan inequality, we also have A ≥ 1, or logM A ≥ 0.
The conclusion is that we always have � ≥ 0, which leads to Shannon’s source-coding

16 Namely, λ = 1/(u ln M), which comes from substituting the result M−l(x) = p(x)/(λ ln M) into the con-
straint C(l) = ∑

x M−l(x) = u, and using
∑

x p(x) = 1. This leads to p(x) = M−l(x)/u, from which we
obtain l(x) ≡ lopt(x) = −logM p(x) − logM u.

144 Information coding

theorem:

L(X) ≥ HM (X). (8.13)

The theorem translates into the following:

The mean codeword length cannot be shorter than the source entropy: equality is achieved when
the codeword lengths are chosen such that l(x) = l∗(x) = −logM p(x).

In the general case, there is no reason for l∗(x) to be an integer. In this case, a
compromise is to take the smallest integer value greater than or equal to l∗(x), which
is noted �l∗(x)�. Such a realistic code assignment is called a Shannon code, which
is also known as Shannon–Fano code. We, thus, have l∗(x) = �l∗(x)� − ε(x), with
0 ≤ ε(x) < 1. This relation gives the realistic minimal value of the mean codeword
length, which we shall call here L∗∗, and define according to:

L∗∗(X) =
∑
x∈X

p(x)�l∗(x)�

=
∑
x∈X

p(x) [l∗(x) + ε(x)] (8.14)

≡ HM (X) + 〈ε〉X .

Since 0 ≤ 〈ε〉X < 1, it immediately follows that

HM (X) ≤ L∗∗(X) < HM (X) + 1, (8.15)

which represents another fundamental property of minimal-length codes (or Shannon–
Fano codes). The result can be restated as follows:

There exists a code whose mean codeword length falls into the interval [HM , HM + 1]; it is equal
to the source entropy HM if the distribution l∗ = −logM p has integer values (dyadic source).

This source-coding theorem was the first to be established by Shannon, which explains
its other appellation of Shannon’s first theorem.

By definition, we call redundancy the difference ρ = L − H . We call ρbound the upper
bound of the redundancy, i.e., ρ < ρbound is always satisfied. The Shannon–Fano code
redundancy bound is therefore ρbound = 1 bit/symbol, which means that in the general
case, L∗∗ < H + 1, consistently with Eq. (8.15). In the specific case of dyadic sources
(l∗ = −logM p is an integer for all x), we have L∗ = H , and ρ = 0 bit/symbol.

We have seen from the preceding demonstration of Shannon’s source-coding theorem,
that there exists an optimum codeword-length assignment (l∗(x), or more generally,
l∗∗(x)) for which the mean codeword length is minimized. What if we were to use a
different assignment? Assume that this assignment takes the form l̂(x) = �−logM q(x)�,
where q(x) is an arbitrary distribution. It follows from this assignment that the mean
codeword length becomes:

L̂(X) =
∑
x∈X

p(x)l̂(x)

=
∑
x∈X

p(x)

⌈
logM

1

q(x)

⌉

8.6 Shannon’s source-coding theorem 145

=
∑
x∈X

p(x)

[
logM

1

q(x)
+ ε(x)

]

=
∑
x∈X

p(x)

[
logM

p(x)

q(x)p(x)
+ ε(x)

]
(8.16)

=
∑
x∈X

p(x)

[
logM

p(x)

q(x)

]
−

∑
x∈X

p(x)[logM p(x)] + 〈ε〉X

≡ D(p‖q) + HM (X) + 〈ε〉X .

Since 0 ≤ 〈ε〉X < 1, it immediately follows from the above result that

HM (X) + D(p || q) ≤ L̂(X) (8.17)

< HM (X) + D(p || q) + 1.

The result illustrates that a “wrong” choice of probability distribution results in
a “penalty” of D(p ‖ q) for the smallest mean codeword length, which shifts
the boundary interval according to L̂(X) ∈ [HM (X) + D, HM (x) + D + 1]. Such a
penalty can, however, be small, and a “wrong” probability distribution can, in
fact, yield a mean codeword length L̂(X) smaller than L∗∗(X). This fact will be
proven in Chapter 9, which concerns optimal coding, and specifically Huffman
codes.

Since the above properties apply to any type of M-ary coding, we may wonder (inde-
pendently of technological considerations for representing, acquiring, and displaying
symbols) whether a specific choice of M could also lead to an absolute minimum for the
expected length L(X). Could the binary system be optimal in this respect, considering
the fact that the codewords have the longest possible lengths? A simple example with
the English-character source (X = {A − Z}, 1982 survey, see Chapter 4) provides a first
clue. Table 8.5 shows the mean codeword lengths L∗∗(X) for various multi-level codes:
binary, ternary, quaternary, and 26-ary, with the details of their respective code-length
assignments.

We observe from Table 8.5 that the binary code has the smallest mean codeword length
relative to the source entropy, i.e., L∗∗(x)= 4.577 bit/symbol, yielding the highest coding
efficiency of η = 91.42%. This result is better than the value of η = 83.70% found for
a fixed-length binary code with 5 bit/symbol (such as ASCII reduced to lower-case
or upper-case letters). Moving from binary to ternary is seen to decrease the coding
efficiency to η = 84.37%. The efficiency increases somewhat with the quaternary code
(η = 84.63%.), but apart from such small irregularities due to the integer truncation
effect, it decreases with increasing M . For M = 26, the efficiency has dropped to
η = 72.63%. This last result is substantially lower than the value of η = 89.0%, which
we found earlier for fixed-length, 26-ary coding having one character/symbol. The
conclusion of this exercise is that the Shannon code does not necessary yield better
efficiencies than a fixed-length code, against all expectations. In the example of the
English-character source, the Shannon code is better with binary codewords, but it is

146 Information coding

Table 8.5 Shannon codes for the English-character source, using binary, ternary, quaternary, and 26-ary codewords.

Binary coding Ternary coding

Ideal Real Mean Ideal Real Mean
CW CW CW CW CW CW
length length length length length length

x p(x) p log2(p) l∗(x) l∗∗(x) l∗∗(x)p(x) p log3(x) l∗(x) l∗∗(x) l∗∗(x)p(x)

E 0.127 0.378 2.9771 3 0.381 0.239 1.8783 2 0.254
T 0.091 0.314 3.4623 4 0.363 0.198 2.1845 3 0.272
A 0.082 0.295 3.6126 4 0.327 0.186 2.2793 3 0.245
O 0.075 0.280 3.7413 4 0.299 0.177 2.3605 3 0.224
I 0.070 0.268 3.8408 4 0.279 0.169 2.4233 3 0.209
N 0.067 0.261 3.904 4 0.267 0.165 2.4632 3 0.200
S 0.063 0.251 3.9928 4 0.251 0.158 2.5192 3 0.188
H 0.061 0.246 4.0394 5 0.304 0.155 2.5486 3 0.182
R 0.060 0.243 4.0632 5 0.299 0.153 2.5636 3 0.179
D 0.043 0.195 4.5438 5 0.214 0.123 2.8668 3 0.129
L 0.040 0.185 4.6482 5 0.199 0.117 2.9327 3 0.120
C 0.028 0.144 5.1628 6 0.167 0.091 3.2573 4 0.112
U 0.028 0.144 5.1628 6 0.167 0.091 3.2573 4 0.112
M 0.024 0.129 5.3851 6 0.144 0.081 3.3976 4 0.096
W 0.024 0.129 5.3851 6 0.144 0.081 3.3976 4 0.096
F 0.022 0.121 5.5107 6 0.132 0.076 3.4768 4 0.088
G 0.020 0.113 5.6482 6 0.120 0.071 3.5636 4 0.080
Y 0.020 0.113 5.6482 6 0.120 0.071 3.5636 4 0.080
P 0.019 0.108 5.7222 6 0.114 0.068 3.6103 4 0.076
B 0.015 0.091 6.0632 7 0.105 0.057 3.8255 4 0.060
V 0.010 0.066 6.6482 7 0.070 0.042 4.1945 5 0.050
K 0.008 0.056 6.9701 7 0.056 0.035 4.3976 5 0.040
J 0.002 0.018 8.9701 9 0.018 0.011 5.6595 6 0.012
X 0.002 0.018 8.9701 9 0.018 0.011 5.6595 6 0.012
Q 0.001 0.010 9.9701 10 0.010 0.006 6.2904 7 0.007
Z 0.001 0.010 9.9701 10 0.010 0.006 6.2904 7 0.007∑

1.000
Entropy H2 = 4.185 L∗∗ = 4.577 H3 = 2.640 L∗∗ = 3.19

bit/symbol bit/symbol trit/symbol trit/symbol
(source) (code) (source) (code)

Coding 91.42% 84.37%
efficiency

Quaternary coding 26-ary coding

Ideal Real Mean Ideal Real Mean
CW CW CW CW CW CW
length length length length length length

x p(x) p log4(p) l∗(x) l∗∗(x) l∗∗(x)p(x) p log26(x) l∗(x) l∗∗(x) l∗∗(x)p(x)

E 0.127 0.189 1.4885 2 0.254 0.080 0.6334 1 0.127
T 0.091 0.157 1.7312 2 0.181 0.067 0.7366 1 0.091
A 0.082 0.148 1.8063 2 0.164 0.063 0.7686 1 0.082

(cont.)

8.6 Shannon’s source-coding theorem 147

Table 8.5 (cont.)

Quaternary coding 26-ary coding

Ideal Real Mean Ideal Real Mean
CW CW CW CW CW CW
length length length length length length

x p(x) p log4(p) l∗(x) l∗∗(x) l∗∗(x)p(x) p log26(x) l∗(x) l∗∗(x) l∗∗(x)p(x)

O 0.075 0.140 1.8706 2 0.150 0.060 0.7959 1 0.075
I 0.070 0.134 1.9204 2 0.140 0.057 0.8171 1 0.070
N 0.067 0.130 1.952 2 0.134 0.055 0.8306 1 0.067
S 0.063 0.125 1.9964 2 0.126 0.053 0.8495 1 0.063
H 0.061 0.123 2.0197 3 0.182 0.052 0.8594 1 0.061
R 0.060 0.122 2.0316 3 0.179 0.052 0.8644 1 0.060
D 0.043 0.097 2.2719 3 0.129 0.041 0.9667 1 0.043
L 0.040 0.093 2.3241 3 0.120 0.039 0.9889 1 0.040
C 0.028 0.072 2.5814 3 0.084 0.031 1.0984 2 0.056
U 0.028 0.072 2.5814 3 0.084 0.031 1.0984 2 0.056
M 0.024 0.064 2.6926 3 0.072 0.027 1.1457 2 0.048
W 0.024 0.064 2.6926 3 0.072 0.027 1.1457 2 0.048
F 0.022 0.060 2.7553 3 0.066 0.026 1.1724 2 0.044
G 0.020 0.056 2.8241 3 0.060 0.024 1.2016 2 0.040
Y 0.020 0.056 2.8241 3 0.060 0.024 1.2016 2 0.040
P 0.019 0.054 2.8611 3 0.057 0.023 1.2174 2 0.038
B 0.015 0.045 3.0316 4 0.060 0.019 1.2899 2 0.030
V 0.010 0.033 3.3241 4 0.040 0.014 1.4144 2 0.020
K 0.008 0.028 3.4851 4 0.032 0.012 1.4829 2 0.016
J 0.002 0.009 4.4851 5 0.010 0.004 1.9084 2 0.004
X 0.002 0.009 4.4851 5 0.010 0.004 1.9084 2 0.004
Q 0.001 0.005 4.9851 5 0.005 0.002 2.1211 3 0.003
Z 0.001 0.005 4.9851 5 0.005 0.002 2.1211 3 0.003∑

1.000
Entropy H4 = 2.092 L∗∗ = 2.472 H26 = 0.890 L∗∗ = 1.226

quad/symbol quad/symbol 26-it/symbol 26-it/symbol
(source) (code) (source) (code)

Coding 84.63% 72.63%
efficiency

worse for any other M-ary codewords. This property17 can easily be explained through
the definition of coding efficiency:

1

η
= L∗∗

HM

=
∑
x∈X

p(x)�− logM x�
HM

17 To my knowledge, this is not found in any textbooks.

148 Information coding

=
∑
x∈X

p(x)[−logM x + εM (x)]

HM
(8.18)

=
− ∑

x∈X
p(x) logM x + ∑

x∈X
p(x)εM (x)

HM

≡ 1 + 〈εM 〉X

HM
,

which gives, using the relation HM ln M = H2 ln 2,

η ≡ 1

1 + ln M

H2 ln 2
〈εM 〉X

. (8.19)

It is seen that the coding efficiency decreases in inverse proportion to ln M , which for-
mally confirms our previous numerical results. However, this decrease is also a function
of 〈εM 〉X , which represents the mean value of the truncations of −logM p(x). Both
depend on M and the distribution p(x), therefore, there is no general rule for estimating
it. We may, however, conservatively assume that for most probability distributions of
interest we should have 0.25 ≤ 〈εM 〉X ≤ 0.5, which is well satisfied in the example in
Table 8.5,18 and which yields the coding efficiency boundaries:

1

1 + ln M

2H2 ln 2

≤ η ≤ 1

1 + ln M

4H2 ln 2

. (8.20)

This last result confirms that the efficiency of Shannon codes is highest for binary
codewords and decreases as the reciprocal of the number of alphabet characters used for
the codewords (ln M/ ln 2).

I will show next that the Shannon code is generally optimal when considering individ-
ual (and not average) codeword lengths, which we have noted l∗∗(x). Consider, indeed,
any different code for which the individual codeword length is l(x). A first theorem states
that the probability P for which l∗∗(x) ≥ l(x) + n (n = number of excess bits between
the two codes) satisfies P ≤ 1/2n−1.19 Thus, the probability that the Shannon code
yields an individual codeword length in excess of two bits (or more) is 1/2 at maximum.
Using the property P(l∗∗ ≥ l) = 1 − P(l∗∗ < l), we can express this theorem under the
alternative form:

P [l∗∗(x) < l(x) + n] ≥ 1 − 2

2n
, (8.21)

which shows that the probability of the complementary event (l∗∗ < l + n) becomes
closer to unity as the number of excess bits n increases. Such a condition, however, is
not strong enough to guarantee with high probability that l∗∗(x) < l(x) in the majority
of cases and for any code associated with l(x).

18 The detailed calculation yields 〈ε2〉X ≈ 0.39, 〈ε3〉X ≈ 0.48, 〈ε4〉X ≈ 0.38, 〈ε5〉X ≈ 0.47, and 〈ε26〉X ≈
0.33.

19 See T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991).

8.7 Exercises 149

A second theorem of Shannon codes yields an interesting and quite unexpected prop-
erty. It applies to probability distributions for which l∗∗ = l∗, meaning that −log p(x)
is an integer for all x . As we have seen earlier, such a distribution is said to be
dyadic. This theorem states that for a dyadic source distribution (see proof in previous
note):20

P [l∗(x) < l(x)] ≥ P [l∗(x) > l(x)], (8.22)

where (to recall) l∗(x) is the individual codeword length given by Shannon coding and
l(x) is that given by any other code. It is, therefore, always more likely for dyadic
sources that the Shannon code yields strictly shorter individual codeword lengths than
the opposite. This is indeed a stronger statement than in the previous case, concerning
nondyadic sources. It should be emphasized that these two theorems of Shannon-coding
optimality concern individual, and not mean codeword lengths. As we shall see in the
next chapter, there exist codes for which the mean codeword length is actually shorter
than that given by the Shannon code.

The different properties that I have established in this section provide a first and
vivid illustration of the predictive power of information theory. It allows one to know
beforehand the expected minimal code sizes, regardless of the source type and the coding
technique (within the essential constraint that the code be a prefix one). This knowledge
makes it possible to estimate the efficiency of any coding algorithm out of an infinite
number of possibilities, and how close the algorithm is to the ideal or optimal case. The
following chapter will take us one step further into the issue of coding optimality, which
stems from the introduction of Huffman codes.

8.7 Exercises

8.1 (B): Consider the source with the symbols, codewords and associated probabilities
shown in Table 8.6:

Table 8.6 Data for Exercise 8.1.

Symbol Codeword x Probability p(x)

A 1110 0.05
B 110 0.2
C 1111 0.05
D 0 0.4
E 10 0.3

Calculate the mean codeword length, the source entropy and the coding efficiency.

8.2 (M): Provide an example of a dyadic source for a dictionary of four binary code-
words, and illustrate Shannon’s source-coding theorem.

20 See T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991).

150 Information coding

8.3 (M): Assign a uniquely decodable code to the symbol-source distribution given in
Table 8.7.

Table 8.7 Data for Exercise 8.3.

Symbol x Probability p(x)

A 0.302
B 0.105
C 0.125
D 0.025
E 0.177
F 0.016
G 0.250∑

1.000

and determine the corresponding coding efficiency.

8.4 (M): Assign a Shannon–Fano code to the source defined in Exercise 8.3, and deter-
mine the corresponding coding efficiency η = H (X)/L∗∗(X) and code redundancy
L∗∗(X) − H (X).

9 Optimal coding and compression

The previous chapter introduced the concept of coding optimality, as based on variable-
length codewords. As we have learnt, an optimal code is one for which the mean
codeword length closely approaches or is equal to the source entropy. There exist several
families of codes that can be called optimal, as based on various types of algorithms.
This chapter, and the following, will provide an overview of this rich subject, which finds
many applications in communications, in particular in the domain of data compression.
In this chapter, I will introduce Huffman codes, and then I will describe how they can
be used to perform data compression to the limits predicted by Shannon. I will then
introduce the principle of block codes, which also enable data compression.

9.1 Huffman codes

As we have learnt earlier, variable-length codes are in the general case more efficient
than fixed-length ones. The most frequent source symbols are assigned the shortest
codewords, and the reverse for the less frequent ones. The coding-tree method makes it
possible to find some heuristic codeword assignment, according to the above rule. Despite
the lack of further guidance, the result proved effective, considering that we obtained
η = 96.23% with a ternary coding of the English-character source (see Fig. 8.3,
Table 8.3). But we have no clue as to whether other coding trees with greater coding
efficiencies may ever exist, unless we try out all the possibilities, which is impractical.

The Huffman coding algorithm provides a near-final answer to the above code-
optimality issue. The coding algorithm consists in four steps (here in binary imple-
mentation, which is easy to generalize to the M-ary case1):

(i) List the symbols in decreasing order of frequency/probability;
(ii) Attribute a 0 and a 1 bit to the last two symbols of the list;

(iii) Add up their probabilities, make of the pair a single symbol, and reorder the list (in
the event of equal probabilities, always move the pair to the highest position);

(iv) Restart from step one, until there is only one symbol pair left.

1 In ternary coding, for instance, the symbols must be grouped together by three; in quaternary coding, they
should be grouped by four, and so on. If there are not enough symbols to complete the M groups, dummy
symbols having zero probabilities can be introduced at the end of the list to complete the tree.

152 Optimal coding and compression

CodeProbabilitySymbol

 0.50.50.5
 0.50.30.2

 0.20.2

 0.1

x1
x2

x3

x4

1

01

000

001
0

1

0

1

0
1

Figure 9.1 Implementation of Huffman coding for the source x = {x1, x2, x3, x4} with associated
probability distribution p(x) = {0.5, 0.2, 0.2, 0.1}.

An example of Huffman-coding implementation is provided in Fig. 9.1. The source is
X = {x1, x2, x3, x4}, with respective probabilities p(x) = {0.5, 0.2, 0.2, 0.1}. The figure
shows how the above-described pairs are formed and their probability sums replaced in
the next list. We see that the last two symbols (x3, x4) represent a probability of 0.3,
which comes in second position, after x1 and before x2. Then the pair [x2, (x3, x4)]
represents the same probability as x1, but we place it on top of the next list, according to
the above rule. The groundwork is now complete. The code assignment simply consists
in following the arrows and writing down the 0 or 1 bits encountered in the path. The
codeword is the same word but with the bits written in the reverse order. For instance, we
find for x4 the bit path 100, so the codeword is 001. For x2, we find 10, so the codeword
is 01, and so on.

How efficient is Huffman coding? It is easy to calculate that in the above example, the
mean codeword length L is 1.80 bit/word. The entropy H is 1.76 bit/symbol. The coding
efficiency is, therefore, η = 1.76/1.8 = 97.8%, which is nearly ideal. For comparison,
if we had attributed to each of the symbols the same codeword length of two bits, we
would have L = 2 and η = 1.76/2 = 88%. If we used the Shannon–Fano code, it is
easily verified that the mean length L∗∗ is 2.1 bit/word, and the efficiency drops to
η = 1.76/2.1 = 83%.

To become further convinced of the merits of Huffman coding, consider again the
English-character source, for which we have already explored several coding possibilities
(namely, 5-bit ASCII, Morse, and Shannon–Fano). It is a patient exercise (although not
without fun, as the reader should experience) to proceed by hand through the successive
steps of the Huffman algorithm on a large piece of paper or a blackboard.2 The results
are shown in Table 9.1 (codeword assignment) and Fig. 9.2 (coding tree). As the table
shows, the minimum codeword length is three bits (two symbols) and the maximum
is nine bits (four symbols). The mean codeword length is 4.212 bit/symbol, yielding
a remarkably high efficiency of η = 4.184/4.212 = 99.33%. A comparison between
Table 9.1 (Huffman code) and Table 8.5 (Shannon code, binary) only reveals apparently
small differences in codeword length assignments. The remarkable feature is that such
apparently small differences actually make it possible to increase the coding efficiency
from 91.42% (Shannon code) to 99.33% (Huffman code).

2 A recommended class project is to write a computer program aiming to perform a Huffman-coding assign-
ment, with team competition for the fastest and most compact algorithm, while taking sources with a large
number of symbols for test examples.

9.1 Huffman codes 153

Table 9.1 Binary Huffman code for English-letter source, showing assigned codeword and calculation of mean
codeword length, leading to a coding efficiency of η= 99.33%. The two columns at far right show the new
probability distribution q(x) = − log(2−l(x)) and the Kullback–Leibler distance D (p‖q).

Length
x p(x) −p(x)log2(x) Codeword l(x) p(x)l(x) q(x) D(p‖q)

E 0.127 0.378 011 3 0.380 0.125 0.002
T 0.091 0.314 111 3 0.272 0.125 −0.042
A 0.082 0.295 0001 4 0.327 0.063 0.032
O 0.075 0.280 0010 4 0.299 0.063 0.019
I 0.070 0.268 0100 4 0.279 0.063 0.011
N 0.067 0.261 0101 4 0.267 0.063 0.006
S 0.063 0.251 1000 4 0.251 0.063 0.000
H 0.061 0.246 1001 4 0.243 0.063 −0.002
R 0.060 0.243 1010 4 0.239 0.063 −0.004
D 0.043 0.195 00000 5 0.214 0.031 0.020
L 0.040 0.185 00110 5 0.199 0.031 0.014
C 0.028 0.144 10110 5 0.140 0.031 −0.005
U 0.028 0.144 10111 5 0.140 0.031 −0.005
M 0.024 0.129 11001 5 0.120 0.031 −0.009
W 0.024 0.129 11010 5 0.120 0.031 −0.009
F 0.022 0.121 11011 5 0.110 0.031 −0.011
G 0.020 0.113 000010 6 0.120 0.016 0.007
Y 0.020 0.113 000011 6 0.120 0.016 0.007
P 0.019 0.108 001110 6 0.114 0.016 0.005
B 0.015 0.091 001111 6 0.090 0.016 −0.001
V 0.010 0.066 110001 6 0.060 0.016 −0.006
K 0.008 0.056 1100000 7 0.056 0.008 0.000
J 0.002 0.018 110000100 9 0.018 0.002 0.000
X 0.002 0.018 110000101 9 0.018 0.002 0.000
Q 0.001 0.010 110000110 9 0.009 0.002 −0.001
Z 0.001 0.010 110000111 9 0.009 0.002 −0.001∑

1.000 1.000
Source entropy

H2

4.184
bit/symbol

Coding
efficiency η

99.33%

Mean codeword
length L

4.212

KL distance 0.028

Looking next at Fig. 9.2, the coding tree is seen to be of order nine, meaning that
there are nine branch splits from the root, corresponding to the maximum codeword size.
A complete tree of order 9 has 29 = 512 terminal nodes, and 210 − 1 = 1023 nodes in
total. Our coding tree, thus, represents a trimmed version of the complete order-9 tree.
One says that the first is “embedded” into the second. Note that the symbol/codeword
assignment we have derived here is not unique. For instance, the codewords of letters E
and T can be swapped, and any codeword of length l can be swapped within the group of

154 Optimal coding and compression

0100 I
0101 N

011 E

0010 O
00110 L

001110 P
001111 B

0001 A

00000 D

000010 G

000011 Y

1000 S

1001 H
1010 R

10110 C

10111 U

0

1

0

0

0 0

1

1
111 T

11010 W

11011 F

11001 M

110001 V

110000111 Z

1100000 K

110000110 Q

110000101 X

110000100 J

Figure 9.2 Coding tree for A–Z English-character source and binary codeword assignment (see
also Table 8.5). The convention is that branches pointing upwards are labeled 0 and branches
pointing downwards are labeled 1.

m symbols assigned the same length (representing m! possible substitutions, for instance
7! = 5040 for symbol groups numbering m = 7). Additionally, all bits can be logically
inverted, which generates a duplicated set of codewords.

From the coding tree in Fig. 9.2, one calculates that the number of possible sym-
bol/codeword assignments yielding the same coding efficiency is, in fact:

N = 2 × (2! × 7! × 7! × 5! × 1! × 4!) = 292 626 432 000 = 2.92 1011, (9.1)

which represents no less than some 300 billion possibilities!
The two previous examples illustrate that Huffman coding is an optimal code that

brings coding efficiency relatively close to the 100% limit. However, such a conclu-
sion appears to be in contradiction with a key result obtained in Chapter 8 concern-
ing the Shannon–Fano code. Indeed, we have seen that any codeword-length assign-
ment l̂(x) = �−log q(x)� that is different from that of the Shannon–Fano code, namely,
l∗∗(x) = �−log p(x)�, results in a “penalty” for the mean codeword length, L̂(X). Such
a penalty is equal to the Kullback–Leibler (KL) distance D ≡ D(p‖q), or, after Eq.
(8.17), L̂(X) ∈ [HM (X) + D, HM (x) + D + 1]. Yet, we should not conclude from this
result that L̂(X) > L∗∗(X). As a matter of fact, the situation is exactly opposite for our
English-letter coding example. Indeed, we find from Table 9.1 that D(p‖q) = 0.028
(and, incidentally, 〈ε〉X ≡ 0 since q(x) is of the form 2−m). Referring to the results in

9.1 Huffman codes 155

both Table 8.5 and Table 9.1, we obtain from Eq. (8.15) and Eq. (8.17):

L∗∗(X) = 4.577 ∈ [4.184, 4.184 + 1] ≡ [4.184, 5.184]

L̂(X) = 4.212 ∈ [4.184 + 0.028, 4.184 + 0.028 + 1] ≡ [4.212, 5.212],

which shows not only that the Huffman code is more efficient (or closer to optimal) than
the Shannon code (L̂(X) < L∗∗(X)) but also that in this example the penalty D(p‖q)
is very close to the difference � = L̂(X) − H2(X). Incidentally, it appears here that
� = 0, but this is only an effect of number accuracy.3

How does the Huffman code perform with dyadic sources? It is easy to establish from
any basic example with source p(x) = 2−n(x) (n(x) = integer) that, in such a case, the
Huffman-code algorithm assigns the individual codeword length l∗(x) = −log 2−n(x) =
n(x). This is the same result as for the Shannon–Fano code and, as we have seen earlier,
the resulting mean length is the absolute minimum, or L̂(X) = L∗∗(X) ≡ H (X). It is a
nice exercise to prove directly the general property according to which Huffman coding
of dyadic sources is 100% efficient.

The important lesson and general conclusion to retain from the above analysis is that
the mean codeword length of Huffman codes L̂(X) is the smallest achievable, regardless
of the source distribution. One can also state that Huffman coding is optimal with respect
to any other code, meaning that the latter always yields longer or equal codeword lengths.
Such a property of optimality can be stated as follows:

If L(X) is the mean codeword length of any code different from the Huffman code, then
L(X) ≥ L̂(X).

The reader may refer to most IT textbooks for a formal proof of Huffman codes
optimality. As we have seen in Chapter 8, however, the individual codeword lengths,
l∗(x) ≡ �−log p(x)� assigned by the Shannon–Fano code are generally shorter than that
provided by any other codes, including Huffman codes. Formally, this property can be
written under the form

l∗(x) ≤ l̂(x), most often

L∗∗(X) ≥ L̂(x), always. (9.2)

The secondary conclusion is that for individual codeword lengths, the Shannon code is
optimal in most cases, while for mean codeword lengths, the Huffman code is optimal in
all cases.4 This represents a most important property for data compression applications,
to be described in the next section.

As we have seen earlier, the redundancy bound of Shannon–Fano codes is ρbound = 1,
meaning that in the general case, ρ = L∗∗ − H < 1. It can be shown that for Huffman
codes,5 the redundancy bound is ρbound = pmin + log2[(2 log2 e)/e] ≈ pmin + 0.08607,

3 The detailed calculation to five decimal places shows that H2(X) = 4.18396, L(X) = 4.21236, D(p‖q) =
0.02840, and � = 0.05680, which represents a small nonzero difference.

4 Note that the English-letter example (see Tables 8.5 and 9.1) corresponds to the case where the Huffman
code is also optimal for individual codeword lengths.

5 See: D. J. C. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge, UK: Cambridge
University Press, 2003).

156 Optimal coding and compression

where pmin is the smallest source-symbol probability. The Huffman coding efficiency,
η = H/L̂ , is, thus, guaranteed to be strictly greater than 1 − ρ/L̂ . In the example of
Table 9.1, for instance, we find L̂ − H = 4.212 – 4.184 = 0.028, which is lower than
ρbound = pmin + 0.08607 ≡ 0.001 + 0.08607 = 0.0877, and η = 99.33%, which is
greater than 1 − 0.0877/4.212 = 97.9%. Even tighter redundancy bounds can also be
found for specific probability distributions.6

9.2 Data compression

Any information source, such as texts, messages, recordings, data files, voice or music
recordings, still or motion pictures, can be coded into sequences of binary codewords. As
we have learnt, the encoding conversion can use either fixed-length or variable-length
codes. In the first case, the bit size of the resulting sequence length is a multiple of
the codeword length. In the second case, the sequence can be made shorter through an
adequate choice of code, or through a second coding conversion, from a first fixed-length
code to a better, variable-length code. Converting a binary codeword sequence into a
shorter one is called data compression.

Since the advent of the Internet and electronic mail, we know from direct personal
experience what data compression means: if compression is not used, it may seem to take
forever to upload or download files like text, slides, or pictures. Put simply, compression
is the art of packing a maximum of data into a smallest number of bits. It can be
achieved by the proper and optimal choice of variable-length codes. As we have learnt,
Shannon–Fano and Huffman codes are both optimal, since, in the general case, their
mean codeword length is shorter than the fixed-length value given by L = log2 N (N =
number of source symbols to encode).

The compression rate is defined by taking a fixed-length code as a reference, for
instance the ASCII code with its 7 bit/symbol codewords. If, with a given symbol source,
a variable-length code yields a shorter mean codeword length L < 7, the compression
rate is defined as r = 1 − L/7. The compression rate should not be confused with coding
efficiency. The latter measures how close the mean codeword length is to the source
entropy, which we know to be the ultimate lower bound. This observation intuitively
suggests that efficient codes do not lend themselves to efficient compression. Yet, this
correct conclusion does not mean that further compression towards the limits given by
the source entropy is impossible, as we will see in the last section in this chapter, which
is concerned with block coding.

The previous examples with the A–Z English-character source shown in Table 8.5
(Shannon–Fano coding) and Table 9.1 (Huffman coding) represent good illustrations
of the data compression concept. Here, we shall take as a comparative reference the
codeword length of five bits used by ASCII to designate the restricted set of lower case
or upper case letters. With the results from the two aforementioned examples, namely

6 See: R. G. Gallager, Variations on a theme by Huffman. IEEE Trans. Inform. Theory, 24 (1978), 668–74.

9.2 Data compression 157

L∗∗ = 4.577 bit/symbol and L̃ = 4.212 bit/symbol, respectively, we obtain:

r∗∗ = 1 − L∗∗

5
= 1 − 4.577

5
= 8.46% (Shannon–Fano),

r̃ = 1 − L̃

5
= 1 − 4.212

5
= 15.76% (Huffman).

The above compression rates may look modest, and indeed they are when considering
the specific example of the English language. Recall that the mean codeword length
cannot be lower than the source entropy H . Thus, there exists no code for which L < H .
Since, in this example, the source entropy is H = 4.185 bit/symbol, we see that the
compression rate is intrinsically limited to r = 1 − 4.185/5 = 16.3%. But this limit
cannot be reached, since no code can beat the Huffman code, and r̃ = 15.76%, thus,
represents the really achievable compression limit for this source example.

Here we come to a fine point in the issue of data compression. It could have been
intuitively concluded that, given a source, the compression rate is forever fixed by the
coding algorithm that achieves compression. But as it turns out, the compression rate also
depends on the source distribution itself. To illustrate this point, consider four different
ASCII text sources and check how Huffman compression works out for each of them.
Here are three English sentences, or “datafiles,” which have been made (ridiculously so)
nontypical:

Datafile 1: “Zanzibar zoo zebra Zazie has a zest for Jazz”

Datafile 2: “Alex fixed the xenon tube with wax”

Datafile 3: “The sass of Sierra snakes in sunny season”

The above sentences are nontypical in the fact that certain letters are unusually redundant
for English. Therefore, the frequency distributions associated with the symbol-characters
used are very different from average English text sources. For comparison purposes, we
introduce a fourth example representing an ordinary English sentence of similar character
length:

Datafile 4: “There is a parking lot two blocks from here”

We shall now analyze how much these four sources (or datafiles) can be compressed
through Huffman coding. Table 9.2 shows the corresponding symbol-character fre-
quencies and distributions (overlooking spaces and upper or lower case differences),
codeword assignment, mean codeword length, and compression rate, taking for ref-
erence the fixed-codeword length L ref = �log2 26� = 5, corresponding to a restricted,
five-bit ASCII code.

It is seen from the results in Table 9.2 that the compression ratio varies from 20%
(datafile 4) to about 35% (datafile 3). The difference in compression ratio cannot be
attributed to the datafile length: the best and the worst results are given by datafiles
having the same length of 34–35 characters. With only 28 characters, the shortest
datafile (datafile 2) has a compression ratio of only 27%. The number of different
characters is about the same for datafiles 1–3, but the compression ratio varies from 27%

Ta
bl

e
9.

2
Ex

am
pl

es
of

fil
e

co
m

pr
es

si
on

th
ro

ug
h

Hu
ffm

an
co

di
ng

ba
se

d
on

th
e

fo
ur

se
nt

en
ce

s
sh

ow
n

in
th

e
te

xt
.F

or
ea

ch
fil

e,
th

e
ta

bl
es

lis
tt

he
ch

ar
ac

te
rs

(x
),

th
ei

r
fre

qu
en

cy
(f

),
th

ei
r

pr
ob

ab
ili

ty
(p

(x
)),

th
e

co
de

w
or

d
as

si
gn

m
en

t(
CW

),
an

d
th

e
co

de
w

or
d

le
ng

th
(l

(x
)).

D
at

afi
le

1
(z

eb
ra

)
D

at
afi

le
2

(x
en

on
)

D
at

afi
le

3
(s

na
ke

s)
D

at
afi

le
4

(p
ar

ki
ng

)

x
f

p(
x)

C
W

l(
x)

l(
x)

p(
x)

x
f

p(
x)

C
W

l(
x)

l(
x)

p(
x)

x
f

p(
x)

C
W

l(
x)

l(
x)

p(
x)

x
f

p(
x)

C
W

l(
x)

l(
x)

p(
x)

Z
9

0.
25

00
10

2
0.

50
0

E
5

0.
17

86
11

2
0.

35
7

S
9

0.
26

47
01

2
0.

52
9

E
4

0.
11

43
10

0
3

0.
34

3
A

7
0.

19
44

11
2

0.
38

9
X

4
0.

14
29

00
0

3
0.

42
9

N
5

0.
14

71
00

0
3

0.
44

1
O

4
0.

11
43

01
1

3
0.

34
3

E
3

0.
08

33
00

01
4

0.
33

3
T

3
0.

10
71

00
10

4
0.

42
9

A
4

0.
11

76
11

0
3

0.
35

3
R

4
0.

11
43

01
0

3
0.

34
3

O
3

0.
08

33
00

10
4

0.
33

3
A

2
0.

07
14

01
01

4
0.

28
6

E
4

0.
11

76
11

1
3

0.
35

3
T

3
0.

08
57

11
10

4
0.

34
3

R
3

0.
08

33
00

11
4

0.
33

3
H

2
0.

07
14

01
10

4
0.

28
6

I
2

0.
05

88
10

01
4

0.
23

5
A

2
0.

05
71

00
11

4
0.

22
9

B
2

0.
05

56
10

10
4

0.
22

2
I

2
0.

07
14

01
11

4
0.

28
6

O
2

0.
05

88
10

10
4

0.
23

5
H

2
0.

05
71

00
10

4
0.

22
9

I
2

0.
05

56
10

11
4

0.
22

2
N

2
0.

07
14

10
00

4
0.

28
6

R
2

0.
05

88
10

11
4

0.
23

5
I

2
0.

05
71

00
01

4
0.

22
9

S
2

0.
05

56
00

00
0

5
0.

27
8

W
2

0.
07

14
10

01
4

0.
28

6
F

1
0.

02
94

00
10

0
5

0.
14

7
K

2
0.

05
71

00
00

4
0.

22
9

F
1

0.
02

78
00

00
1

5
0.

13
9

B
1

0.
03

57
10

10
4

0.
14

3
H

1
0.

02
94

00
10

1
5

0.
14

7
L

2
0.

05
71

11
11

1
5

0.
28

6
H

1
0.

02
78

10
00

0
5

0.
13

9
D

1
0.

03
57

10
11

4
0.

14
3

K
1

0.
02

94
00

11
0

5
0.

14
7

S
2

0.
05

71
11

11
0

5
0.

28
6

J
1

0.
02

78
10

00
1

5
0.

13
9

F
1

0.
03

57
00

11
0

5
0.

17
9

T
1

0.
02

94
00

11
1

5
0.

14
7

B
1

0.
02

86
11

01
1

5
0.

14
3

N
1

0.
02

78
10

01
0

5
0.

13
9

L
1

0.
03

57
00

11
1

5
0.

17
9

U
1

0.
02

94
10

00
0

5
0.

14
7

C
1

0.
02

86
11

01
0

5
0.

14
3

T
1

0.
02

78
10

01
1

5
0.

13
9

O
1

0.
03

57
01

11
1

5
0.

17
9

Y
1

0.
02

94
10

00
1

5
0.

14
7

F
1

0.
02

86
11

00
1

5
0.

14
3

C
0

0.
00

00
U

1
0.

03
57

01
00

1
5

0.
17

9
B

0
0.

00
00

G
1

0.
02

86
11

00
0

5
0.

14
3

D
0

0.
00

00
C

0
0.

00
00

C
0

0.
00

00
M

1
0.

02
86

10
11

1
5

0.
14

3
G

0
0.

00
00

G
0

0.
00

00
D

0
0.

00
00

N
1

0.
02

86
10

11
0

5
0.

14
3

K
0

0.
00

00
J

0
0.

00
00

G
0

0.
00

00
P

1
0.

02
86

10
10

1
5

0.
14

3
L

0
0.

00
00

K
0

0.
00

00
J

0
0.

00
00

W
1

0.
02

86
10

10
0

5
0.

14
3

M
0

0.
00

00
M

0
0.

00
00

L
0

0.
00

00
D

0
0.

00
00

P
0

0.
00

00
P

0
0.

00
00

M
0

0.
00

00
J

0
0.

00
00

Q
0

0.
00

00
Q

0
0.

00
00

P
0

0.
00

00
Q

0
0.

00
00

U
0

0.
00

00
R

0
0.

00
00

Q
0

0.
00

00
U

0
0.

00
00

V
0

0.
00

00
S

0
0.

00
00

V
0

0.
00

00
V

0
0.

00
00

W
0

0.
00

00
V

0
0.

00
00

W
0

0.
00

00
X

0
0.

00
00

X
0

0.
00

00
Y

0
0.

00
00

X
0

0.
00

00
Y

0
0.

00
00

Y
0

0.
00

00
Z

0
0.

00
00

Z
0

0.
00

00
Z

0
0.

00
00

∑
36

1.
00

00
28

1.
00

00
34

1.
00

00
35

1.
00

00
M

ea
n

C
W

le
ng

th
(b

it
/s

ym
bo

l)

3.
30

6
3.

64
3

3.
26

5
4.

00
0

C
om

pr
es

si
on

ra
ti

o
33

.8
9%

27
.1

4%
34

.7
1%

20
.0

0%

9.2 Data compression 159

to 34.7%. A closer look at the table data shows that the factor that appears to increase the
compression ratio is the frequency spread in the top group of most frequent characters.
If the most frequent characters have dissimilar frequencies, then shorter codewords can
be assigned to a larger number of symbols. We observe that the first three datafiles,
corresponding to nontypical English texts, lend themselves to greater compression than
the fourth datafile, corresponding to ordinary English. There is no need to go through
tedious statistics to conclude beforehand that increasing the length of such English-text
datafiles would give compression ratios increasingly closer to the limit of r̃ = 15.76%.
Clearly, this is because the probability distribution of long English-text sequences will
duplicate with increasing fidelity the standard distribution for which we have found this
compression limit. On the other hand, shorter sequences of only a few characters might
have significantly higher compression ratios. To take an extreme example, the datafile
“AAA” (for American Automobile Association) takes 1 bit/symbol and, thus, has a
compression ratio of r = 1 − 1/5 = 80%. If we take the full ASCII code for reference
(7 bit/character), the compression becomes r = 1 − 1/7 = 85.7%.7

The above examples have shown that for any given datafile, there exists an optimal
(Huffman) code that achieves maximum data compression. As we have seen, the code-
word assignment is different for each datafile to be compressed. Therefore, one needs to
keep track of which code is used for compression in order to be able to recover the orig-
inal, uncompressed data. This information, which we refer to as overhead, must then be
transmitted along with the compressed data, which we refer to as payload. Since the over-
head bits reduce the effective compression rate, it is clear that the overhead size should
be the smallest possible relatively to the payload. In the previous examples, the overhead
is simply the one-to-one correspondence table between codewords and symbols. Using
five-bit (ASCII) codewords to designate each of the character symbols, and a five-bit
field to designate the corresponding compressed codewords makes a ten-bit overhead
per datafile symbol. Taking, for instance, datafile 3 (Table 9.2), there are 13 symbols,
which produces 130 bits of overhead. It is easily calculated that the payload represents
111 bits, which leads to a total of 130 + 111 = 241 bits for the complete compressed
file (overhead + payload). In contrast, a five-bit ASCII code for the same uncompressed
datafile would represent only 170 bits, as can also be easily verified. The compressed
file thus turns out to be 40% bigger than the uncompressed one! The conclusion is that

7 This consideration illustrates the interest of acronyms. Their primary use is to save text space, easing up
reading and avoiding burdensome redundancies. This is particularly true with technical papers, where the
publication space is usually limited. An equally important use of acronyms is to capture abstract concepts into
small groups of characters, for instance ADSL (asymmetric digital subscriber line) or HTML (hypertext
markup language). The most popular acronyms are the ones that are easy to remember, such as FAQ
(frequently asked questions), IMHO (in my humble opinion), WYSIWYG (what you see is what you get),
NIMBY (not in my backyard), and the champion VERONICA (very easy rodent-oriented netwide index to
computerized archives), for instance. The repeated use of acronyms makes them progressively accepted as
true English words or generic brand names, to the point that their original character-to-word correspondence
is eventually forgotten by their users, for instance: PC for personal computer, GSM for global system for
mobile [communications], LASER for light amplification by stimulated emission of radiation, NASDAQ for
National Association of Securities Dealers Automated Quotations, etc. Language may thus act a natural self-
compression machine, which uses the human mind as a convenient dictionary. In practice, this dictionary is
only rarely referred to, since the acronym gains its own meaning by repeated use.

160 Optimal coding and compression

compression can be efficient with a given datafile, but it is a worthless operation if the
resulting overhead (needed to decompress the data) is significantly larger than the pay-
load. But the “overhead tax” is substantially reduced when significantly longer datafiles
are compressed. The case of plain English-text datafiles is not the best example, because
as their size increases the symbol probability distribution becomes closer to that of the
standard English-source reference, for which (as we have shown) the compression ratio
is limited to r̃ = 15.76%.8

One can alleviate the overhead tax represented by the coding-tree information by
using a standard common reference, which is called the codebook. Such a codebook
contains different optimal coding trees for generic sources as varied as standard lan-
guages (English, French, German, etc.), programming-language source codes (C++,
Pascal, FORTRAN, HTML, Java, etc.), tabulated records (students, payroll, company
statistics, accounting, etc.), or just raw binary datafiles, for instance. An optimal cod-
ing tree devised for all inventoried source types can also be included in the codebook.
Choosing a specific coding tree from the codebook is called semantic-dependent coding.
This choice means that one has prior knowledge of the type of source or source semantics
considered, and this knowledge guides the choice of the most appropriate code to select
from the codebook menu.

If the codebook contains N coding trees for these different sources, the overhead
only represents log2 N bits. This overhead must be included at the beginning of the
compressed file, to indicate which coding tree (or source mapping) has been used for
compression. The coding efficiency (or compression ratio) obtained with a codebook is
never greater than that obtained with a case-specific Huffman coding. However, if one
includes the overhead bits in the compressed file, the conclusion could be the opposite.
Indeed, a 1985 experiment consisted in comparing results obtained by compressing
different types of programming-language source codes (out of 530 programs), using
either a codebook or case-by-case Huffman coding, the corresponding overheads being
included into each computation.9 The result was that the codebook approach always
produced higher compression ratios. The conclusion is that, taking into account the
overhead, a nonoptimal coding tree picked from a generic codebook may yield a better
compression performance than a case-specific Huffman coding tree. Other studies have
sought to generate a universal codebook tree, which could apply indifferently to English,
French, German, Italian, Spanish, or Portuguese, for instance. The spirit of the approach
and procedure can be described as follows. First, an optimal coding tree is computed
with all sources combined (taking for database reference the full contents of a number of
recent newspapers, magazines, books, and so on from each language). Second, optimal
coding trees are computed for each individual source. The task then is to identify what
the different trees share in common and devise the universal tree accordingly, subject to
certain constraints to be respected for each language source.

8 Under the simplifying assumption of a single A–Z alphabet without spaces, punctuation, or any other
symbols.

9 See R. M. Capocelli, R. Giancarlo, and I. J. Taneja, Bounds on the redundancy of Huffman codes. IEEE
Trans. Infor. Theory, 32 (1986), 854–7.

9.2 Data compression 161

Uncompressed
source

X kx
Symbol Input Comparison

Look-up memory
(compression)

sc
an

start

stop

CLK

AND

Control

0 Continue

1 Extract

...
...

...
look

...

Codeword

Symbol Codeword

1y
1x

kykx

nx ny

Output

ky
Compressed

source

Extract

Y

Figure 9.3 Generic implementation of data compression from source X (uncompressed source
symbols xk) into source Y (compressed codewords yk) through a memory look-up system. The
operation of decompression is the same, with the roles of Y and X being interchanged.

The same code-compression techniques and conclusions apply to data sources far
more complex than text, such as digital sound and still or motion pictures. Such sources
contain large amounts and varieties of random symbols, whose frequency distributions
significantly depart from the uniform and exponential generic types. As we have seen,
this makes compression algorithms all the more efficient. Since the files can be made
arbitrarily large, the overhead tax can become relatively insignificant. Case-specific
compression based on Huffman coding (referred to as Huffman compression) is widely
used in telecom devices such as faxes and modems, and in multimedia applications with
well known standards for music, images, and video, known as MP3, JPEG, and MPEG,
for instance. A brief overview of common compression standards is given in Appendix G.
The task of compressing sound and pictures is, however, made more complex because
the source’s probability distribution is inherently unknown, and no generic codebook
may exist or prove effective. A solution to this problem is referred to as adaptive coding,
where optimal coding trees are devised “on the fly” as new source symbols come in the
sequence. This will be described in Chapter 10.

The reverse operation of back-translating a coded datafile or a codeword sequence,
is called decompression. Figure 9.3 illustrates the generic system layout used for code
compression or decompression. As the figure shows, a dedicated memory provides the
one-to-one correspondence between source symbols and codewords (compression) or
the reverse (decompression). The operation of extracting the information stored in the

162 Optimal coding and compression

memory is called table look-up. The memory is scanned address by address, until the
symbol (or codeword) is found, in which case the corresponding codeword (or symbol)
is output from the memory. It is, basically, the same operation as if we look at Table 9.1
(the memory) to find the codeword for the source character U (the output or answer
being 10111), or to find the source character for the codeword 110000100 (the output or
answer being J). Note that decompression with a Huffman code is easier than with any
other code, because we know from the codeword length and prefix where to look at in the
memory. For a machine, it takes a simple program to determine at what memory location
to start the look-up search, given the codeword size and prefix bits. For block codes (see
next section), the compression/decompression operation is similar, but compression
first requires arranging the input symbols into sequences of predefined size (e.g., bytes
for binary data). As Fig. 9.3. illustrates, the compression/decompression apparatus is
completed with a control subsystem ensuring a certain number of generic functions,
including synchronization between the input symbol or codewords and the memory.

Assigning individual codewords to each source symbol, in a way that is uniquely
decodable, corresponds to what is called lossless compression. The idea conveyed by
this adjective is that no information is lost through the compression. Assuming that
the compressed source remains unaltered by storage or transmission conditions, the
reverse operation of code decompression results in a perfect restitution of the original
symbol sequence, with no alteration or error. In contrast, lossy compression algorithms
cause some information loss, which translates into errors upon decompression. This
information loss, and the restitution errors, is sufficiently minor to remain unnoticed, as
in a sound track or a movie picture. Such lossy compression algorithms are inherently
not applicable to data files, where absolute exactness is a prerequisite, as in any text
document (press, literature, technical) or tabulated data (services, finance, banking,
records, computer programs).

9.3 Block codes

So far in this chapter, I have described different codes with either fixed-length or variable-
length codewords. In this section, we shall consider yet another coding strategy, which
consists in encoding the symbols by blocks. The result is a block code, a generic term,
which applies to any code that manipulates groups of codewords, either by concatenation
or by the attribution of new codewords for specific groups of source symbols.

Most generally, block codes can be attributed different “sub-blocks” or fields. For
instance, a given field can be reserved for the payload (the sequence of codewords to be
transmitted) and another field to the overhead (the information describing how to handle
and decompress the payload). Block codes are used, for instance, in error-correction,
which will be described in Chapter 11. Here, we shall focus on the simplest type of
block codes, which make it possible to encode source symbols with higher bit/codeword
efficiency. As we shall see, block coding results in significantly longer codewords, and
the codeword dictionary is also significantly greater. The key advantage is that the mean
bit/codeword is considerably reduced, which enables much more data to be packed per

9.3 Block codes 163

Block
symbol

p Block
codeword

0.25x1x1 0.600.400.35 1 1.00 10
0.350.250.200.200.190.160.100.10x1x2 1 0.40 0 010

0.200.200.190.160.100.100.10x1x3 1 0.25 0 001
0.190.160.100.100.100.10x2x1 1 0.20 0 000

0.100.100.100.100.10x3x1 1 0.16 0 1111
0.100.100.100.090.080.080.050.05x1x4 1 0.10 0 0110

0.100.090.080.080.050.050.05x4x1 1 0.10 0 11101
0.080.080.050.050.050.040.04x2x2 1 0.09 0 11011

0.050.050.050.040.040.04x2x3 1 0.08 0 11010
0.050.040.040.040.04x3x2 1 0.05 0 11001

0.040.040.040.04x3x3 1 0.04 0 11000
0.040.040.030.02x2x4 1 0.04 0 01110

0.030.020.02x3x4 1 0.04 0 111001
0.020.02x4x2 1 0.02 0 111000

0.02x4x3 1 0.02 0 011111
0.01x4x4 0 011110

Figure 9.4 Block coding by symbol pairs xi x j of the source X = {x1, x2, x3, x4}, with respective
probabilities p(x) = {0.5, 0.2, 0.2, 0.1} through the Huffman-coding algorithm. The column at
left shows the block codeword probabilities in decreasing order. The column at right shows the
block codeword assignment resulting from the algorithm implementation.

transmitted bit. I shall illustrate this property with three examples, which have also been
designed to make the subject entertaining.

Example 9.1: Four-event source
Consider the four-event source X = {x1, x2, x3, x4} previously analyzed in Fig. 9.1,
which is defined by the distribution p(x) = {0.5, 0.2, 0.2, 0.1}. As we have seen,
its entropy is H (X)= 1.76 bit/symbol, and its optimal mean length (Huffman
coding) is L(X)= 1.80 bit/symbol. The corresponding coding efficiency is η =
1.76/1.80 = 97.8%. We shall now implement block-coding by grouping the sym-
bols in ordered pairs (xi x j), forming the new and extended 16-event source
X ′ = {x1x1, x1x2, x1x3, . . . , x4x2, x4x3, x4x4} with associated probabilities p(xi x j) =
p(xi)p(x j), the events being assumed to be independent. It is a patient exercise to
determine the Huffman code for X ′. The result is shown in Fig. 9.4, with details and
results summarized in Table 9.3. We find that the extended source entropy is H (X ′) =
3.522 bit/symbol, which is equal to 2H (X), as expected for a source of joint independent
events. Then we find that the mean codeword length is L(X ′) = 3.570 bit/word. The cod-
ing efficiency is, therefore, η = 3.522/3.570 = 98.65%, which is an improvement on the
previous efficiency η = 97.77% of the single-codeword Huffman code. Since each block
code represents a pair of symbols, the actual mean symbol length is L(X ′)/2 = 1.78 bit/
symbol. This reduction in symbol length may look small with respect to L(X) =
1.80 bit/symbol for the single-symbol code but, as we have seen, it has a noticeable
impact on coding efficiency.

We can continue to improve the coding efficiency by grouping symbols in ordered
triplets (xi x j xk), quadruplets (xi x j xk xl), or n-tuplets (xi x j xk, . . . , x#) of arbitrary large
sizes, corresponding to a source X (n) assigned with 4n individual codewords. The source
X (n) is referred to as the nth extension of the source X .

As we know well from Shannon’s source-coding theorem, (Chapter 8), the mean code-
word length is L̂(X (n)) ≥ H (X (n)) = nH (X). For large n, we have L̂(X (n)) ≈ nH (X),

Ta
bl

e
9.

3
Bl

oc
k

co
di

ng
by

sy
m

bo
lp

ai
rs

x i
x j

of
th

e
so

ur
ce

X
=

{x 1
,
x 2

,
x 3

,
x 4

},w
ith

re
sp

ec
tiv

e
pr

ob
ab

ili
tie

s
p

(x
)=

{0
.5

,
0.

2,
0.

2,
0.

1}
th

ro
ug

h
th

e
Hu

ffm
an

co
di

ng
al

go
rit

hm
.T

he
ta

bl
e

at
le

ft
sh

ow
s

th
e

bl
oc

k
co

de
w

or
d

pr
ob

ab
ili

tie
s

an
d

th
e

co
rr

es
po

nd
in

g
en

tro
py

of
th

e
ex

te
nd

ed
so

ur
ce

X
′ =

{x 1
x 1

,
x 1

x 2
,
x 1

x 3
,
..

.x
4
x 2

,
x 4

x 3
,
x 4

x 4
}.

Th
e

ta
bl

e
at

rig
ht

sh
ow

s
th

e
bl

oc
k

sy
m

bo
ls

or
de

re
d

in
de

cr
ea

si
ng

pr
ob

ab
ili

tie
s

w
ith

th
ei

rH
uf

fm
an

bl
oc

k-
co

de
w

or
d

as
si

gn
m

en
t.

B
lo

ck
p i

j
=

B
lo

ck
B

lo
ck

S
ym

bo
li

S
ym

bo
lj

p(
x i

)
p(

x
j)

sy
m

bo
l

p(
x i

)p
(x

j)
−

p i
p

j
lo

g 2
p i

j
sy

m
bo

l
p i

j
co

de
w

or
d

l(
x i

x
j)

p i
jl

(x
ix

j)

x 1
x 1

0.
5

0.
5

x 1
x 1

0.
25

0
0.

50
0

x 1
x 1

0.
25

0
10

2
0.

50
0

x 2
0.

5
0.

2
x 1

x 2
0.

10
0

0.
33

2
x 1

x 2
0.

10
0

01
0

3
0.

30
0

x 3
0.

5
0.

2
x 1

x 3
0.

10
0

0.
33

2
x 1

x 3
0.

10
0

00
1

3
0.

30
0

x 4
0.

5
0.

1
x 1

x 4
0.

05
0

0.
21

6
x 2

x 1
0.

10
0

00
0

3
0.

30
0

x 2
x 1

0.
2

0.
5

x 2
x 1

0.
10

0
0.

33
2

x 3
x 1

0.
05

0
11

11
4

0.
40

0
x 2

0.
2

0.
2

x 2
x 2

0.
04

0
0.

18
6

x 1
x 4

0.
04

0
01

10
4

0.
20

0
x 3

0.
2

0.
2

x 2
x 3

0.
04

0
0.

18
6

x 4
x 1

0.
04

0
11

10
1

5
0.

25
0

x 4
0.

2
0.

1
x 2

x 4
0.

02
0

0.
11

3
x 2

x 2
0.

02
0

11
01

1
5

0.
20

0
x 3

x 1
0.

2
0.

5
x 3

x 1
0.

10
0

0.
33

2
x 2

x 3
0.

10
0

11
01

0
5

0.
20

0
x 2

0.
2

0.
2

x 3
x 2

0.
04

0
0.

18
6

x 3
x 2

0.
04

0
11

00
1

5
0.

20
0

x 3
0.

2
0.

2
x 3

x 3
0.

04
0

0.
18

6
x 3

x 3
0.

04
0

11
00

0
5

0.
20

0
x 4

0.
2

0.
1

x 3
x 4

0.
02

0
0.

11
3

x 2
x 4

0.
02

0
01

11
0

5
0.

10
0

x 4
x 1

0.
1

0.
5

x 4
x 1

0.
05

0
0.

21
6

x 3
x 4

0.
05

0
11

10
01

6
0.

12
0

x 2
0.

1
0.

2
x 4

x 2
0.

02
0

0.
11

3
x 4

x 2
0.

02
0

11
10

00
6

0.
12

0
x 3

0.
1

0.
2

x 4
x 3

0.
02

0
0.

11
3

x 4
x 3

0.
02

0
01

11
11

6
0.

12
0

x 4
0.

1
0.

1
x 4

x 4
0.

01
0

0.
06

6
x 4

x 4
0.

01
0

01
11

10
6

0.
06

0

∑
1.

00
0

1.
00

0
E

xt
en

de
d

so
ur

ce
en

tr
op

y
3.

52
2

M
ea

n
bl

oc
k

le
ng

th
3.

57
0

bi
t/

w
or

d
E

ffi
ci

en
cy

98
.6

5%

9.3 Block codes 165

or L̂(X (n))/n ≈ H (X) = 1.76 bit/symbol and for the coding efficiency, η ≈ 100%. This
example shows that one can reach the theoretical limit of 100% coding efficiency with
arbitrary accuracy, but at the price of using an extended dictionary of codewords, most
with relatively long lengths.

Example 9.2: 26-event source; the English-language characters
Block coding may not be so practical when applied to sources having more than two
events. This is because Huffman coding is very close to being the most efficient, and the
extra complexity introduced by using an extended source with a long list of variable-
length codewords is not so much worth it. To illustrate this point, consider the case
of the English language. For simplicity, it can be viewed as a 26-event source, namely
producing the A–Z symbol characters, which we call X (1). The key question we want
to address here is: “Could one use a different alphabet and its associated block code
to convey more information in any length of text?” Indeed, is it possible to squeeze
a piece of English text by means of a super-alphabet? One may conceive of such a
super-alphabet as being made from character pairs (also called digrams), representing
altogether 26 × 26 = 676 new symbol characters. Thus, all English books and written
materials using this super-alphabet would be twice as short as the originals! This would
reduce their production costs, their price and weight, and possibly they could be faster to
read. But such improvements would be at the expense of having to learn and master the
use of 676 different characters.10 Here, the point is not to propose changing the English
alphabet, but rather to analyze how text information could be compressed for saving
memory space and speeding up transmission between computers. To build this new
code, we ought to assign the shortest codewords to the most frequently used digrams,

10 Two illustrative examples of “super-alphabets” are the symbolic/ideographic/logogram kanjis of the Chinese
and Japanese languages. In Japanese, children must learn 1006 kanjis (Gakushuu) over a six-year elementary
school cycle. To read Japanese newspapers one must master 1945 official kanjis (Jōyō). The Jōyō extends
to 2928 kanjis when including people’s names. Note that written Japanese is completed with two syllabary
alphabets (Hiragana and Katakana), each having 46 different characters. In modern Chinese, literacy
requires mastering about 3000 kanjis, while educated people may know between 4000 and 5000 kanjis.
Comprehensive Chinese dictionaries include between 40 000 and 80 000 kanjis. These impressive figures
should not obscure the fact that Western languages also have phenomenal inventories of dictionary words,
despite their limited 26-character (or so) alphabets. Apart from technical literature, a few thousand words
are required to master reading and writing English, with up to 10 000 for the most educated people. The
inventories of French and German come to 100 000 to 185 000 words, while English is credited with a
whopping 500 000 words (750 000 if old English is included). As with oriental languages, it is not clear,
however, if such a profusion of language “codewords” is truly representative of any current or relevant
use. Another consideration is that words in Western languages are usually recognized “at once” by the
educated human brain, without detailed character-by-character analysis, which in fact makes alphabetical
codewords similar to super-alphabetical symbols, just like Chinese or Japanese kanjis. The latter might
be more complex to draw and to memorize (especially concerning their individual phonetics!), but they
have a more compact form than the alphabet-based Western “codewords.” However, the key advantage
of languages using limited-size alphabets (such as based on 26 characters, and 28 or 29 for Swedish or
Norwegian) is the easiness to learn, read, pronounce, and write words, especially in view of handwriting
skills and adult personalization. With super-alphabets, these different tasks are made far more difficult
(without considering complex spelling and pronunciation rules).

166 Optimal coding and compression

1

3

5

7

9

11

13

15

17

19

21

23

25

S1

S4

S7

S10

S13

S16

S19

S22

S25

0.000

0.005

0.010

0.015

0.020

0.025

C
o

n
d

it
io

n
al

 c
o

u
n

t

Figure 9.5 Two-dimensional histogram of the 26 × 26 = 676 English-letter digrams. Each row,
corresponds to the distribution of counts c(y|x), where x is the first letter of the digram. The
front row corresponds to the distribution c(A|x). The most frequent English digram, TH,
corresponding to c(H |T) is highlighted.

and the longest codewords to the less frequently used ones. A two-dimensional histogram
obtained by counting the frequency of English digrams xy out of a 10 000-letter text
is shown in Fig. 9.5.11 Each of these counts is noted c(y|x), see note.12 We can view
these digrams as forming an extended language source X (2), with virtually independent
super-alphabet symbols of probability p(xy) = c(y|x)/10 000.13 We can then rearrange
them in order of decreasing frequency, as shown in Fig. 9.6 for the leading group
(c(y|x) ≥ 100).14 From the figure, we observe that the three most frequent digrams are
TH, HE, and AN. It immediately comes to the mind that one could readily change these

11 Plotted after analyzing raw data from: H. Fouché-Gaines, Cryptanalysis, a Study of Ciphers and Their
Solutions (New York: Dover Publications, 1956).

12 The conversion of the histogram data c(y|x) into conditional probabilities p(y|x) is given
by the property N

∑
x c(y|x)p(x) ≡ p(y) ≡ ∑

x p(y|x)p(x), which gives p(y|x) = Nc(y|x) =
c(y|x)p(y)/

∑
x c(y|x)p(x).

13 For simplicity, the 27th “space” character was omitted in this count, as reflecting a tradition of old
cryptography; single letters are, therefore, not included, but this does not change the generality of the
analysis, since they can be coded as digrams with “space” as a second character.

14 It is no surprise that we find TH, HE, AN, and IN as the most frequent digrams in English, suggesting an
inflation of words and word prefixes, such as THE, THEN, THERE, HE, HERE, AN, AND, IN, and so on.

9.3 Block codes 167

0

50

100

150

200

250

300

350

TH HE AN IN ER RE ON ES EA TI AT ST EN AR ND OR TO NT ED IS

Fr
eq

ue
nc

y

Digram

Figure 9.6 Arranging the leading English-letter digrams in order of decreasing frequency out of
a 10 000-letter count. The corresponding probability distribution is obtained by normalizing this
histogram by 10 000 (from data in Fig. 9.5 with c(y|x) ≥ 100).

into single characters, calling them, for instance,
.

T , Ĥ , or Ã, respectively.15 Ancient
scriptures include lots of such symbolic digram contractions, also called ligatures, which
helped the early writers, sculptors, or printers to produce their works more effectively or
artistically.16 Figure 9.7 shows a logarithmic-scale plot of the 676 digrams in decreas-
ing order of frequency. The distribution is seen to be very nearly exponential, as the
numerical fit indicates. The digram counts that were found to be zero in the reference
were changed to 0.5 and 0.1, to allow and to optimize this exponential fit. The fact that
the distribution is exponential suggests that Shannon–Fano coding should be a good
approximation of an optimal (Huffman) code, considering the relatively large size of the
source.

The digram-source entropy is calculated to be H (X (2)) = 7.748 bit/digram. Interest-
ingly, it is smaller than H ′′ = 2 × H (X (1)) = 8.368, where H (X (1)) = 4.185 bit/character
is the entropy of the English-language source. This fact is a positive indication that the

15 These are not to be confused with phonetics, which uses other super-alphabet codes in an attempt to emulate
and classify foreign-language sounds and vocal spelling.

16 A surviving contemporary example of digram ligatures is the symbol character &, called amper-
sand (or esperluette in French). It is in all computer keyboards, and is now used internationally as
the word contraction of “and”; see for reference: http://en.wikipedia.org/wiki/Ligature_(typography),
www.adobe.fr/type/topics/theampersand.html. The graphics of the ampersand character actually come from
the Latin word et. While the French use the same word as Latin, et, the Italian and Spanish use the shorter
words e and y, respectively, which do not call for symbol contraction, in contrast with most other languages.
A second example of a ligature, also in all computer keyboards, is the “at sign” character @, a contraction
for at, as used in e-mail addresses to indicate the domain name. Interestingly, its origins can be traced back
to the Middle Ages to designate weight or liquid capacity (in Spanish and Portuguese, amphora is arroba,
which yields the current French name of arobase). The character has also been commonly used in English
as a contraction of at to designate prices. See http://en.wikipedia.org/wiki/At_sign.

168 Optimal coding and compression

y = 113.12e 0.0116x

0.1

1.0

10.0

100.0

1000.0

7006005004003002001000

Digram

lo
g 1

0
fr

eq
ue

nc
y

Figure 9.7 Plot of the 676 English-letter digram frequencies (logarithmic scale) out of a
10 000-letter count, showing that the distribution is very nearly exponential (from data in
Fig. 9.5).

English digrams contain less information, or uncertainty, than the mere concatenation
of letters by pairs. For the probability distribution, this implies that p(xy) ≥ p(x)p(y),
most generally for any symbol pair x, y, meaning that English letters are most often cor-
related to a certain extent, and correlation means less information. For instance, we find
for the first four leading digrams (xy = TH, HE, AN, IN) in Fig. 9.6 (dividing counts
by 10 000), the following probabilities:

p(TH) = 0.0313 > p(T)p(H) = 0.0055,

p(HE) = 0.0249 > p(H)p(E) = 0.0077,

p(AN) = 0.0171 > p(A)p(N) = 0.0054,

p(IN) = 0.0168 > p(I)p(N) = 0.0055,

which indeed illustrates a strong correlation attached to the four digrams TH, HE, AN,
and IN.

We shall consider next the coding of English digrams through binary codewords. This
will provide a good test for comparing the efficiencies of Shannon–Fano and Huffman
codes.

Owing to the size of the source, the calculation of the Huffman coding-tree must be
performed with a computer.17 From my own computer program and test runs I found
that the Shannon–Fano and Huffman codeword lengths for the English-digram source
vary from l = 5 to l = 17 (but obviously with different assignments), leading to the

17 Different algorithms and source programs can be found in the Internet, see for instance,
www.compressconsult.com/huffman/#codelengths and www.cs.mu.oz.au/∼alistair/inplace.c.

9.3 Block codes 169

following results:

Shannon–Fano code: L∗∗ = 8.262 bit/digram η = 93.78%,

Huffman code: L̃ = 7.778 bit/digram η = 99.617%,

where for the source entropy the reference used is H = 7.748 bit/digram.
As expected, the Huffman code is found to be more efficient than the Shannon–

Fano code. It is close to 0.3% of the source entropy, which represents a record value
for the examples described so far in these chapters! For comparison, we found ear-
lier (Table 9.1) that the efficiency of the English monograms is η = 99.33% (L∗∗ =
4.212 bit/monogram), which is close to 0.6% of the source entropy. The efficiency of
monogram coding is, therefore, not significantly different from that of digram coding.
Were we to compress an English book with Huffman codes, while assuming five bits per
character in the original book, we would get the following compression rates:

r̃ = 1 − L̃

5
= 1 − 4.212

5
= 15.76% (monogram code),

r̃ = 1 − L̃

10
= 1 − 8.262

10
= 17.38% (digram code).

The above figures are, in fact, quite conservative, because we took five-bit coding for
arbitrary reference. As we know, uncompressed texts use seven-bit ASCII. Overlooking
capitals, punctuation, and numbers (these being less frequent than lower-case letters),
and neglecting spaces, we can make a rough estimate of the compression rates with
respect to ASCII, as follows:

r̃ = 1 − L̃

7
= 1 − 4.212

7
= 39.82% (monogram code),

r̃ = 1 − L̃

14
= 1 − 8.262

14
= 40.98% (digram code),

which are the values typically found in standard data-compression software based on
Huffman coding.18

The first lesson learnt from this whole exercise is that block-coding makes it possible to
improve the compression rate. In the case of English, however, the improvement from
using digram blocks instead of monogram characters is not very significant. Note that
the performance could be further improved by using longer blocks (trigrams, quadri-
grams, etc.), but at the expense of manipulating enormous dictionaries with codewords
having relatively long average lengths. The second lesson is that block codes also make
it possible to increase the coding efficiency when the events in the original source exhibit
a fair amount of mutual correlation, as we have seen with English digrams. However,
we should not conclude that block codes are more efficient with such sources, and are
less efficient with sources of mutually uncorrelated events. The last example shall prove
this point.

18 See, for instance, www.ics.uci.edu/∼dan/pubs/DC-Sec4.html.

170 Optimal coding and compression

Example 9.3: Two-event source; the roulette game
We analyze the roulette game, as inspired by previous work,19 but which is further
developed here. This game originated in France in the seventeenth century, and was
later imported to America with minor modifications, hence, the alternative expressions
of French wheel or American wheel. To recall, the principle of the roulette is to make
various types of bets on the ball landing at random in one of 36 spots, numbered from
1 to 36, of the rotating wheel. If the ball stops on the right spot number, the gain is
36 times the amount that was bet. To increase the odds on winning anything, bets can
also be made on one, two, or four numbers at once, but this reduces the gain in the
same proportion. To increase the variety of betting possibilities further, the wheel spots
are also divided into families: (a) numbers 1–18 and 18–36, (b) odd and even numbers,
(c) red or black, and (d) numbers 1–12, 13–24, and 25–36.20 A key feature of the roulette,
which is not friendly to the players, is the existence of an extra green number, called 0 in
the French wheel. The American wheel also has this number 0 plus a second one, called
00. When the ball lands on either 0 or 00, all bet proceeds go directly to the “bank.” It
is easy to establish that the odds on winning in the roulette game are relatively low, no
matter how hard one may try with any playing strategy.21

Here, we shall simplify the game by assuming that the gambling exclusively concerns
a single number selected from 1 to 36. The corresponding probability of winning is
p (win) = p (no 0 or 00) ×p (number selected) = (1 − 2/38) × (1/36) = 1/38 = 0.0263,
and the probability of losing is p (lose) = 1 − p (win).22 This is a two-event source

19 See B. Osgood, Mathematics of the Information Age (2004), p. 64, at www-ee.stanford.edu/∼osgood/
Sophomore%20College/Math%20of%20Info.htm.

20 See interactive example, while safely taking bets with “free money” at (for instance) www.mondo-
casinos.com/gratuit/roulette/index.php (note: this reference is for study purposes and does not constitute
in any way a recommendation of gambling).

21 If the roulette outcome is strictly random (can one always be sure of this?), the odds on the bank to pocket
all the bets with the 0 or 00 outcomes are 1/37 = 2.7% (French) and 2/38 = 5.4% (American). For the
individual player, the odds on winning any single-number bet are (1 − 1/37)/36 = 1/36 = 2.7% (French) and
(1 − 2/38)/36 = 1/38 = 2.6%. This means that (with respect to this player) the bank wins with probabilities
97.3% (French) and 97.4% (American). The odds on winning are obviously greater with the other bets
(a)–(c), namely (1 − 1/37)/2 = 48.6% (French) and (1 − 2/38)/2 = 47.3% (American) for (a)–(c) and
(1 − 1/37)/3 = 32.4% (French) and (1 − 2/38)/3 = 31.5% (American) for (d), but we note that they are
lower than 50% (a)–(c) or 33% (d), which, on average, is always in favor of the bank.

22 We note that in the real game, the odds on winning are less than 1/36, which makes the player’s situation
“unfair.” It is possible to play with a high probability of making zero gains, but this comes with a low
probability of making maximal loss. Indeed, if we place one token on each of the 36 numbers, two events
can happen:

(a) One of the 1–36 numbers comes out: we win 36 tokens, which is the exact amount we bet, and the net
gain is zero; this has a high probability of 36/38 = 94.75 % < 100%.

(b) The 0 or 00 comes out, the bank wins the 36 tokens (our loss is maximum); this has a low probability
of 2/38 = 5.25% > 0%.

Similar conclusions apply when tokens are placed in equal numbers in the “odd/even,” “red/black,” or
“1–12, 13–24, 25–36” fields. The first lesson learnt is that even the least risky gambling options, which
have zero gain, most likely come with a small chance of maximal loss. Even in this extreme gambling
option, the game definitely remains favorable to the bank! Consider now the odds of winning if one plays
the same number 36 times in a row. The probability to lose all games is (1 − 1/38)36 = 38.3%, so there

9.3 Block codes 171

with entropy defined by H (X) ≡ f (p) = −p log p − (1 − p) log(1 − p), as described
in Chapter 4. Substituting p (win) in this definition yields H (X) = 0.17557 bit/symbol.
As we shall see later, we will need such a high accuracy to be able to analyze the code
performance.

Call the two source events W and L for the outcomes “win” and “lose.” A succession
of n roulette bets can, thus, be described by the sequence LLLLLWLL . . . , which is
made of n symbols of the L/W type. As we have learnt so far in this chapter, it would
be a waste to represent such a sequence with an n-bit codeword. Rather, we should
seek for a variable-length codeword assignment, which uses the shortest codewords
for the most likely sequences, and the longest codewords for the least likely ones.
We should expect the mean codeword length to approach the extended source entropy
H (X (n)) = nH (X) ≡ 0.17557n = n/5.69, which is indeed significantly shorter than n.
To find such a code, we may proceed step by step, considering sequences with increasing
lengths, and determining a corresponding block code. We will compare the block code
efficiency with that of a Huffman code.

Consider first a sequence of four games (n = 4). Overlooking the order of the indi-
vidual outcomes, there exist five types of possible sequences, in decreasing likelihood:
LLLL (complete loss), LLLW (one win), LLWW (two wins), LWWW (three wins), and
WWWW (four wins). We must then take into account the exact order of the individual
W/L associated to a given sequence type. For instance, the sequence types we called
LLLW and LWWW actually correspond to four possible unique outcomes:

LLLW, LLWL, LWLLL, WLLL;

LWWW, WLWW, WWLW, WWWL.

The sequence type LLWW is associated with six unique outcomes:

LLWW, LWLW, LWWL, WLWL, WWLL, WLLW,

while the sequences LLLL and WWWW have only one unique possibility. Most gener-
ally, the number of ways of selecting k slots from a sequence of n slots is given by the
combinatorial coefficient Ck

n (see Chapter 1):

Ck
n = n!

k!(n − k)!
, (9.3)

which is also written
(k

n

)
, and where q! = 1 × 2 × 3 × · · · × (q − 1) × q is called the

factorial of the integer q (by convention, 0! = 1). Consistently, we find for LLLW or
LWWW the number C1

4 = 4!/(1!3!) = 4, and for LLWW the number C2
4 = 4!/(2!2!) =

6. Calling p the probability of winning a single game in the sequence, we can associate

is a 61.7% chance of winning one way or another, which looks a reasonable bet. But this number assumes
that we play 36 games, regardless of their outcome. The most likely possibility to win is that our number
comes once (and only once), which has the probability C1

36(1/38)1(1 − 1/38)35 = 37.2%. In this event, we
win 36 tokens, but the price to pay is to lose 35 tokens for the other 35 games. The net result is that, with
61.7% chances and in the most favorable case, we have not gained anything at all! Furthermore, there are
38.3% chances that we lose 36 tokens. The second lesson learnt is the same as the first lesson!

172 Optimal coding and compression

Table 9.4 Construction of variable-length block code for the American roulette, considering a succession of n = 4
independent games for which the outcome is lose (L) or win (W). The sequence LLLL (type A) corresponds to four wins,
the sequence LLLW (type B) to three losses and one win, and so on. Each sequence type has a probability p1 and a
number of ordered possibilities N , yielding a net probability p = Np1. Each ordered possibility is labeled by a block
code made of a header and a trailer block. The header is coded with the uniquely decodable word of length HB, which
indicates the sequence type. The trailer field has the minimum number of bits TB required to code N . The resulting
codeword length is M = HB + TB. At bottom are shown the total number of extended-source events, the mean
codeword length L = 〈M〉, the extended-source entropy nH and the coding efficiency η= H/L .

N = 4 games

No of
No of bits
trailer No of required,

Sequence Possibilities, bits, Probability, header M = H B
Type type Probability, p1 N TB p = Np1 Header bits, HB + T B Mp

A LLLL 0.89881955 1 0 0.89881955 1 1 1 0.89882
B LLLW 0.02429242 4 2 0.09716968 01 2 4 0.38868
C LLWW 0.00065655 6 3 0.00393931 001 3 6 0.02364
D LWWW 1.7745 × 10−5 4 2 7.0979 × 10−5 0001 4 6 0.00043
E WWWW 4.7959 × 10−7 1 0 4.7959 × 10−7 0000 4 4 0.00000∑

16 1.0000 × 1000

L 1.31156

Extended source entropy nH = 0.70226.
Efficiency η = 53.544%.

each of the above sequence types with the corresponding probabilities:

p(LLLL) = C0
4 (1 − p)4

p(WWWW) = C0
4 p4

p(LLLW) = C1
4 p(1 − p)3

p(WWWL) = C1
4 p3(1 − p)

p(LLWW) = C2
4 p2(1 − p)2,

(9.4)

recalling that each of these types is associated with N = Ck
4 unique outcomes. Table 9.4

lists the data computed with p = 1/38 = 0.0263, the resulting probabilities being shown
in decreasing order, with the sequence types referred to as A, B, C, D, and E. To label
each of the sequence outcomes, we shall construct a variable-length block code made
with the concatenation of a header block with a trailer block. The header block is
coded with a uniquely decodable word of length H B, which indicates the sequence type
(A, B, C, D, or E). The trailer block has the minimum number of bits T B required
to code N . For instance, the outcome LLLL (type A) has the header 1 and an empty
trailer. The outcome LLLW (type B) has the header 01 and a trailer of two bits (namely
00, 01, 10, and 11) which labels each of the four unique possibilities in the type-B
sequence (namely LLLW, LLWL, LWLLL, and WLLL). The resulting codeword length
is, therefore, M = H B + T B. Table 9.4 shows the mean codeword length L = 〈M〉
and the coding efficiency η = nH/L , where nH is the entropy of the extended source
corresponding to the n independent outcomes of the n successive games. The results

9.3 Block codes 173

indicate that our block code takes L = 1.311 bit/word to describe any game sequence
uniquely, corresponding to a coding efficiency of η = 53.544%.

The efficiency of our block code (η = 53.544%) is not outstanding, indeed, but we
can measure the progress made by comparing it to that given by a fixed-length code.
Indeed, if we use a four-bit codeword to describe any of the game sequences (e.g., 1010
for WLWL), the efficiency drops to η = 4H/4 = 0.1755 or 17.5%. The use of our
variable-length block code has, in fact, more than doubled the coding efficiency! With
respect to four-bit codewords, the compression rate obtained with the block code is r =
1 − 1.311/4 = 67.2%.

This first example with sequences of n = 4 games illustrates that the efficiency of the
block code increases with the length of the sequence. Indeed, long sequences of events
contain more information than short sequences of events, because their associated prob-
abilities are lower.23 Therefore, we can infer that our block coding becomes increasingly
efficient with longer sequences, which we shall now verify. Table 9.5 shows the results
obtained with sequences of length n = 32. As the table first shows, the number of events
is dramatically increased to a whopping 4 294 967 296 or about 4.3 billion possibilities!
The code is seen to have an average length of L = 5.771 bit/word, corresponding to
a coding efficiency of η = 97.34%. The corresponding compression rate is r = 1 −
5.771/32 = 81.9%.

The results obtained for n = 32 games seem to confirm the previous observation,
according to which the code becomes increasingly efficient with ever-longer sequences.
As it turns out, however, this is not the case! Figure 9.8 shows a plot of the coding
efficiency η, as computed with sequence lengths from n = 1 to n = 129. From the
figure, we observe that the efficiency increase exhibits some irregularities, with local
peaks appearing whenever n is a power of two (n = 2k), but also for other intermediate
values. The irregularity observed between the peaks is explained by the fact that the
trailer bits, which label all outcome possibilities within a sequence type, are generally not
fully used. The use is optimal whenever n = 2k , which yields a local peak in efficiency.
Looking at Table 9.4 and Table 9.5, we observe indeed that it takes exactly two trailer bits
to describe the four possibilities of the sequence LLLW, and it takes exactly four trailer
bits to describe the 16 possibilities of the sequence LLLL LLLL LLLL LLLW. This
is not chance, since the number of possibilities is C1

n = n = 2k . Since these sequences
always come in second position in the distribution, this feature has a major impact
in reducing the mean codeword length. Other sequences with 2k < n < 2k+1 require
an extra trailer bit, which explains the efficiency drops observed in Fig. 9.8 each time
where n = 2k + 1 (n ≥ 8). The figure also shows that, unexpectedly, the efficiency peaks
decrease past a maximum point obtained for n = 32. This effect can be attributed to the
fact that the number of possibilities Cq

n (1 < q < n) grows exponentially with length.24

Such a growth dramatically increases the number of codewords with inefficient use

23 Isn’t this observation counterintuitive? We would, indeed, expect that there is more uncertainty (or entropy)
in shorter game series than in longer ones. But there is more information contained in the succession of
repeated events than in any single event taken separately.

24 It can easily be verified that for even values of n, the maximum of Ck
n is reached at k = n/2. Using Stirling’s

formula, we obtain Cn/2
n ≈ 2n+1/

√
2πn.

Ta
bl

e
9.

5
As

fo
rT

ab
le

9.
4

bu
tw

ith
n
=

32
.

N
o

of
N

o
of

N
o

of
bi

ts
tr

ai
le

r
he

ad
er

re
qu

ir
ed

,
bi

ts
,

P
ro

ba
bi

li
ty

,
bi

ts
,

M
=

C
as

e
E

ve
nt

s
P

ro
ba

bi
li

ty
,p

1
Po

ss
ib

il
it

ie
s,

N
T

B
p

=
N

p 1
H

ea
de

r
H

B
H

B
+

T
B

M
p

A
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
0.

42
59

71
04

4
1

0
0.

42
59

71
04

1
1

1
0.

42
59

71
04

4
B

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

LW
0.

01
15

12
73

1
32

5
0.

36
84

07
39

01
2

7
2.

57
88

51
72

6
C

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
0.

00
03

11
15

5
49

6
9

0.
15

43
32

83
00

1
3

12
1.

85
19

93
90

4
D

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

LW
W

W
8.

40
95

9
×

10
−6

4
96

0
13

0.
04

17
11

57
00

01
4

17
0.

70
90

96
76

5
E

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

W
W

W
W

2.
27

28
6
×

10
−7

35
96

0
16

0.
00

81
73

21
00

00
1

5
21

0.
17

16
37

49
2

F
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

6.
14

28
7
×

10
−9

20
1

37
6

18
0.

00
12

37
03

00
00

01
6

24
0.

02
96

88
64

7
G

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
1.

66
02

4
×

10
−1

0
90

6
19

2
20

0.
00

01
50

45
et

c.
7

27
0.

00
40

62
12

9
H

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

LW
W

W
W

W
W

W
4.

48
71

2
×

10
−1

2
3

36
5

85
6

22
1.

51
03

×
10

−5
8

30
0.

00
04

53
09

I
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
W

W
W

W
W

W
W

W
1.

21
27

4
×

10
−1

3
10

51
8

30
0

24
1.

27
56

×
10

−6
9

33
4.

20
94

5
×

10
−5

J
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

3.
27

76
6
×

10
−1

5
28

04
8

80
0

25
9.

19
35

×
10

−8
10

35
3.

21
77

1
×

10
−6

K
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

LW
W

W
W

W
W

W
W

W
W

8.
85

85
5
×

10
−1

7
64

51
2

24
0

26
5.

71
49

×
10

−9
11

37
2.

11
45

×
10

−7

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

2.
39

42
×

10
−1

8
12

9
02

4
48

0
27

3.
08

91
×

10
−1

0
12

39
1.

20
47

5
×

10
−8

M
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
W

W
W

W
W

W
W

W
W

W
W

W
6.

47
08

2
×

10
−2

0
22

5
79

2
84

0
28

1.
46

11
×

10
−1

1
13

41
5.

99
03

7
×

10
−1

0

N
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

1.
74

88
7
×

10
−2

1
34

7
37

3
60

0
29

6.
07

51
×

10
−1

3
14

43
2.

61
23

×
10

−1
1

O
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

LW
W

W
W

W
W

W
W

W
W

W
W

W
W

4.
72

66
8
×

10
−2

3
47

1
43

5
60

0
29

2.
22

83
×

10
−1

4
15

44
9.

80
46

3
×

10
−1

3

P
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

1.
27

74
8
×

10
−2

4
56

5
72

2
72

0
30

7.
22

7
×

10
−1

6
16

46
3.

32
44

2
×

10
−1

4

Q
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
3.

45
26

5
×

10
−2

6
60

1
08

0
39

0
30

2.
07

53
×

10
−1

7
17

47
9.

75
4
×

10
−1

6

R
L

L
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

9.
33

14
9
×

10
−2

8
56

5
72

2
72

0
30

5.
27

9
×

10
−1

9
18

48
2.

53
39

4
×

10
−1

7

S
L

L
L

L
L

L
L

L
L

L
L

L
L

LW
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

2.
52

20
2
×

10
−2

9
47

1
43

5
60

0
29

1.
18

9
×

10
−2

0
19

48
5.

70
70

6
×

10
−1

9

T
L

L
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

6.
81

62
8
×

10
−3

1
34

7
37

3
60

0
29

2.
36

78
×

10
−2

2
20

49
1.

16
02

2
×

10
−2

0

U
L

L
L

L
L

L
L

L
L

L
L

L
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
1.

84
22

4
×

10
−3

2
22

5
79

2
84

0
28

4.
15

96
×

10
−2

4
21

49
2.

03
82

2
×

10
−2

2

V
L

L
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

4.
97

90
2
×

10
−3

4
12

9
02

4
48

0
27

6.
42

42
×

10
−2

6
22

49
3.

14
78

4
×

10
−2

4

W
L

L
L

L
L

L
L

L
L

LW
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

1.
34

56
8
×

10
−3

5
64

51
2

24
0

26
8.

68
13

×
10

−2
8

23
49

4.
25

38
3
×

10
−2

6

X
L

L
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

3.
63

69
8
×

10
−3

7
28

04
8

80
0

25
1.

02
01

×
10

−2
9

24
49

4.
99

86
3
×

10
−2

8

Y
L

L
L

L
L

L
L

L
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
9.

82
96

6
×

10
−3

9
10

51
8

30
0

24
1.

03
39

×
10

−3
1

25
49

5.
06

61
8
×

10
−3

0

Z
L

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

2.
65

66
7
×

10
−4

0
3

36
5

85
6

22
8.

94
2
×

10
−3

4
26

48
4.

29
21

4
×

10
−3

2

A
A

L
L

L
L

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
7.

18
01

8
×

10
−4

2
90

6
19

2
20

6.
50

66
×

10
−3

6
27

47
3.

05
81

1
×

10
−3

4

A
B

L
L

L
L

LW
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
1.

94
05

9
×

10
−4

3
20

1
37

6
18

3.
90

79
×

10
−3

8
28

46
1.

79
76

2
×

10
−3

6

A
C

L
L

L
L

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

5.
24

48
3
×

10
−4

5
35

96
0

16
1.

88
6
×

10
−4

0
29

45
8.

47
19

×
10

−3
9

A
D

L
L

LW
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
1.

41
75

2
×

10
−4

6
4

96
0

13
7.

03
09

×
10

−4
3

30
43

3.
02

32
9
×

10
−4

1

A
E

L
LW

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
3.

83
11

4
×

10
−4

8
49

6
9

1.
90

02
×

10
−4

5
31

40
7.

60
09

9
×

10
−4

4

A
F

LW
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
1.

03
54

4
×

10
−4

9
32

5
3.

31
34

×
10

−4
8

32
37

1.
22

59
7
×

10
−4

6

A
G

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

2.
79

85
×

10
−5

1
1

0
2.

79
85

×
10

−5
1

32
32

8.
95

51
9
×

10
−5

0

∑
4

29
4

96
7

29
6

1.
00

00
×

10
00

L
5.

77
18

00
33

5

E
xt

en
de

d
so

ur
ce

en
tr

op
y

nH
=

5.
61

80
81

.
E

ffi
ci

en
cy

η
=

97
.3

4%
.

9.3 Block codes 175

0

10

20

30

40

50

60

70

80

90

100

1301201101009080706050403020100

Number of games n

C
od

in
g

ef
fic

ie
nc

y
(%

)

n = 1

n = 2

n = 4

n = 8

n = 16
n = 32 n = 64 n = 128

n = 9

Figure 9.8 Coding efficiency of variable-length block code describing a sequence of n roulette
game outcomes. The data corresponding to n = 2k (where k is an integer) are shown in dark. The
continuous curve corresponds to the envelope of ideal Huffman coding, as computed up to n = 9
and extrapolated beyond n = 9.

of trailer bits, which progressively reduces the maximum compression effect obtained
each time that n = 2k . Concerning the curve envelope (n = 9), which is also plotted in
Fig. 9.8, see further.

The above example illustrates that block coding can be quite efficient and yield high
data compression, but care should be given to find the optimum sequence length, if it
exists. A relevant question is: how does block coding compare with Huffman coding?
The second solution, which we know to be optimal in terms of compression power,
involves coding all events of the extended source X (n) through the coding-tree procedure
described earlier. If the number of extended-source events is reasonably small, the proce-
dure is easily and rapidly implemented. But it becomes impractical or prohibitive when
the number of source events grows exponentially with the block size n. In the case where
n = 16, for instance, the number of events is 216 = 4 294 967 296 or 4 billion. In the
case where n = 64, the number of events becomes 264 = 18 446 744 073 709 500 000,
or 18 billion billion! It does not make any sense to implement Huffman coding in
such a case. Yet, we have been able here to determine a block code and to calculate
its performance up to 2129 = 6.8 × 1038 = 680 × 109 × 109 × 109 × 109. The explana-
tion is that the block-code assignment only takes the analysis of n + 1 block types, as
opposed to 2n individual events. With a home computer, we can easily compute Huff-
man codes up to a few thousand elements. What about Shannon–Fano coding? As we
know, the codeword assignment is straightforward in this case. As with block codes,
we do not have to consider the 2n events individually to compute the mean codeword
length.

176 Optimal coding and compression

0

10

20

30

40

50

60

70

80

90

987654321

Number of games n

E
ffi

ci
en

cy
 (

%
)

Figure 9.9 Comparison between Huffman coding (diamonds), block-coding (open circles), and
Shannon–Fano coding (triangles) in the roulette-game example of Fig. 9.8, with data calculated
up to n = 9.

The results for both Huffman coding and Shannon–Fano coding, as applied to the
roulette-game example, are shown in Fig. 9.9 for game sequence lengths n ≤ 9. We
observe from the figure that, as expected, the efficiency of the Huffman code is greater
than that of any other codes. Unlike the block code, both Huffman and Shannon–
Fano codes grow smoothly with the sequence length n. Interestingly, the block-code
performance is observed to be bounded by the two envelopes made by the Huffman
code (upper boundary) and the Shannon–Fano code (lower boundary). The Huffman-
code data in Fig. 9.9 have also been plotted in Fig. 9.8. In this previous figure, an
arbitrary, yet conservative extrapolation of what the Huffman-code performance should
look like for sequences beyond n = 9 is also shown. We expect that there is no optimal
sequence length, and know that the coding efficiency at n = 32 is greater than that
of our proposed block code (η = 97.34%). It would take the power of a workstation
or mainframe computer to determine the exact curve and find the values of n for
which the Huffman-code efficiency approaches η = 99%, 99.9%, 99.99%, 99.999%,
etc.

The Shannon–Fano code efficiency, computed up to n = 90, is plotted in Fig. 9.10,
along with the previous data from Fig. 9.8. We observe that the initially smooth behavior
of the Shannon code breaks near N = 16, leading to aperiodic oscillations similar to
that of the block code. Interestingly, the efficiency of the Shannon–Fano code is seen
to increase globally towards the upper limit set by the Huffman code. As expected,
the Shannon–Fano code does not exhibit any optimum sequence length, apart from the
existence of local maxima.

9.4 Exercises 177

0

10

20

30

40

50

60

70

80

90

100

9080706050403020100
Number of games n

C
od

in
g

ef
fic

ie
nc

y
(%

)

Figure 9.10 As in Fig. 9.9, with additional results from Shannon–Fano coding up to n = 90 (bold
line), showing a global convergence trend towards Huffman-coding efficiency.

In this example, we pushed the investigation relatively far, but this was for the sake
of mathematical curiosity. In practice, there is little interest nor anything practical to
implement Huffman or Shannon–Fano codings when the source has a number of events
significantly greater that 216 = 65 536. Should we take this number as a reference,
this means that compression codes may not be applied to binary sources with lengths
greater that n = 16, for which the uncompressed representation is 16 bits (two bytes).
In contrast, a block code such as used in this roulette example can be reasonably
and efficiently applied to sources up to 232 = 4 294 967 296 elements, which requires
the incredibly shorter length of 5.77 bit/word on average to encode, as opposed to
32 bit/word! How this last solution can be effectively implemented is a question of
memory space (i.e., 232 addresses for table look-up) and considerations of computer
speed, both having economical impacts in practical applications. Block coding remains
advantageous because of the possibility of splitting events into many categories and
types, which separates the tasks of code assignment between a header and a trailer.
Each of these code sub-blocks has fewer bits to handle, and this is what makes the
approach more practical when dealing with sources with relatively large numbers of
events.

9.4 Exercises

9.1 (M): Assign a Huffman code to the two-dice roll distribution described in Chapter
1 (as listed in Table 9.6 overleaf), with the results of the roll {2, 3, 4, . . . , 12} being
symbolized by the characters {A, B, C, . . . , K} and calculate the coding efficiency.

178 Optimal coding and compression

Table 9.6 Data for Exercise 9.1.

Symbol x Probability p(x)

A = 2 0.028
B = 3 0.056
C = 4 0.083
D = 5 0.111
E = 6 0.139
F = 7 0.167
G = 8 0.139
H = 9 0.111
I = 10 0.083
J = 11 0.056
K = 12 0.028∑

1.000

9.2 (T): Prove that Huffman coding for uniformly distributed sources of N = 2n sym-
bols (n an integer) yield a mean codeword length of l(x) = n.

9.3 (T): Show that for dyadic sources, the Huffman code is 100% efficient.
Clue: Prove this first using two-element and three-element sources, then conclude
in the general case.

9.4 (M): Find a block code to describe the outcome of five successive coin tosses, and
determine the corresponding coding efficiency.

10 Integer, arithmetic, and
adaptive coding

This second chapter concludes our exploration tour of coding and data compression.
We shall first consider integer coding, which represents another family branch of opti-
mal codes (next to Shannon–Fano and Huffman coding). Integer coding applies to
the case where the source symbols are fully known, but the probability distribution is
only partially known (thus, the previous optimal codes cannot be implemented). Three
main integer codes, called Elias, Fibonacci, and Golomb–Rice, will then be described.
Together with the previous chapter, this description will complete our inventory of static
codes, namely codes that apply to cases where the source symbols are known, and the
matter is to assign the optimal code type. In the most general case, the source sym-
bols and their distribution are unknown, or the distribution may change according to
the amount of symbols being collected. Then, we must find new algorithms to assign
optimal codes without such knowledge; this is referred to as dynamic coding. The three
main algorithms for dynamic coding to be considered here are referred to as arithmetic
coding, adaptive Huffman coding, and Lempel–Ziv coding.

10.1 Integer coding

The principle of integer coding is to assign an optimal (and predefined) codeword to a
list of n known symbols, which we may call {1, 2, 3, . . . , n}. In such a list, the symbols
are ranked in order of decreasing frequency or probability, or mathematically speaking,
in order of “nonincreasing” frequency or probability. This ranking assumes that at least
the ranks of the most likely symbols are known beforehand; the remaining less-likely
symbols being arranged in the list in any order. In this case, neither Shannon–Fano coding
nor Huffman coding can be implemented, and we must then be looking for new types
of “heuristic” code, which will exhibit minimal redundancy (the difference between the
obtained mean codeword length and the source entropy). Such is the rationale for integer
coding. The most frequently used algorithms are given by the Elias, Fibonacci, and
Golomb–Rice codes, which I shall describe next.

Elias codes come in two different types, which are named Elias-gamma and Elias-
delta. The correspondence between the first 32 integers, their uncompressed binary
representation, and the Elias-gamma or delta codewords is shown in Table 10.1. An
explanation of the codeword assignment follows.

180 Integer, arithmetic, and adaptive coding

Table 10.1 Various types of integer coding: (a) nonparameterized with Elias codes (gamma and delta) and (b) parame-
terized with Fibonacci code (m = 2) and Golomb code (simple with m = 8 and actual with m = 6).

Elias codes Fibonacci Golomb
m = 2

i �log2 i� Uncompressed Gamma Delta Simple Actual
m = 8 m = 6

1 0 0000 0001 1 1 11 1 000 1 00
2 1 0000 0010 0 10 0 100 011 1 001 1 01
3 1 0000 0011 0 11 0 101 0011 1 010 1 100
4 2 0000 0100 00 100 0 1100 1011 1 011 1 101
5 2 0000 0101 00 101 0 1101 00011 1 100 1 110
6 2 0000 0110 00 110 0 1110 10011 1 101 1 111
7 2 0000 0111 00 111 0 1111 01011 1 110 01 00
8 3 0000 1000 000 1000 00 100000 000011 1 111 01 01
9 3 0000 1001 000 1001 00 100001 100011 01 000 01 100

10 3 0000 1010 000 1010 00 100010 010011 01 001 01 101
11 3 0000 1011 000 1011 00 100011 001011 01 010 01 110
12 3 0000 1100 000 1100 00 100100 101011 01 011 01 111
13 3 0000 1101 000 1101 00 100101 0000011 01 100 001 00
14 3 0000 1110 000 1110 00 100110 1000011 01 101 001 01
15 3 0000 1111 000 1111 00 100111 0100011 01 110 001 100
16 4 0001 0000 0000 10000 00 1010000 0010011 01 111 001 101
17 4 0001 0001 0000 10001 00 1010001 0001011 001 000 001 110
18 4 0001 0010 0000 10010 00 1010010 1001011 001 001 001 111
19 4 0001 0011 0000 10011 00 1010011 0101011 001 010 0001 00
20 4 0001 0100 0000 10100 00 1010100 1101011 001 011 0001 01
21 4 0001 0101 0000 10101 00 1010101 00000011 001 100 0001 100
22 4 0001 0110 0000 10110 00 1010110 10000011 001 101 0001 101
23 4 0001 0111 0000 10111 00 1010111 01000011 001 110 0001 110
24 4 0001 1000 0000 11000 00 1011000 00100011 001 111 0001 111
25 4 0001 1001 0000 11001 00 1011001 00010011 0001 000 00001 00
26 4 0001 1010 0000 11010 00 1011010 00001011 0001 001 00001 01
27 4 0001 1011 0000 11011 00 1011011 10001011 0001 010 00001 100
28 4 0001 1100 0000 11100 00 1011100 01001011 0001 011 00001 101
29 4 0001 1101 0000 11101 00 1011101 11001011 0001 100 00001 110
30 4 0001 1110 0000 11110 00 1011110 00101011 0001 101 00001 111
31 4 0001 1111 0000 11111 00 1011111 10101011 0001 110 000001 00
32 5 0010 0000 00000 100000 00 11000000 11101011 0001 111 000001 01

The Elias-gamma codeword of an integer i is given by its binary representation
up to the 1 bit of highest weight, prefaced by a number of zeros equal to �log2 i�.
The expression �x� (floor(x)) means the smallest integer near or equal to x . Thus, we
have �log2 1� = 0, �log2 2� = 1, �log2 3� = 1, �log2 4� = 2, and so on. According to
the above rules, the Elias-gamma codewords for i = 4 and i = 13 are gamma(4) =
00 100 and gamma(13) = 000 1101, respectively (the underscore _ being introduced
for clarity).

The Elias-delta codeword is defined by gamma(�log2 i� + 1), followed by the minimal
binary representation of i with the most significant 1 bit being removed. With i = 4,

10.1 Integer coding 181

for instance, we have i = 100 2 and gamma(�log2 4� + 1) = 011, which, with this rule,
yields delta(4) = 011 00. With i = 14, we have i = 1110 2 and gamma(�log2 14� +
1) = gamma(4) = 00100, which, with this rule, gives delta(14) = 00100 110. Table
10.1 shows that for small integers (except i = 1) the Elias-delta codewords are longer
than the gamma codewords. The lengths become equal for i = 16 to i = 31. The situation
is then reversed for i ≥ 32. This shows that Elias-delta coding is preferable for sources
with i ≤ 31, while Elias-gamma coding is preferable for larger sources. The important
difference between the two codes is their asymptotic limit when the source entropy goes
to infinity. It can be checked, using a short tabulating program, that the asymptotic limit
of the coding efficiency, η = H/L , is equal to 50% for the Elias-gamma code, while it is
equal to 100% for the Elias-delta code.1 Therefore, the Elias-delta code is asymptotically
optimal.

The fact that the two Elias codes are not optimal (except asymptotically for Elias-
delta) does not preclude their use for data compression. For instance, taking the English-
language source with the distribution listed in Table 8.3 and the corresponding entropy
H = 4.185 bit/symbol, we find that both Elias-gamma and Elias-delta codings have a
mean codeword length of L = 5.241 bit/word, corresponding to an efficiency of η =
H/L = 79.83%. For comparison, Huffman coding yields L̂ = 4.212 bit/word and η =
99.33%. The Elias codes, thus, make it possible to achieve a nonoptimal but acceptable
coding performance on limited-size sources. The same conclusion applies to Elias-delta
coding for large sources, with the advantage of being straightforward to implement, in
contrast with Huffman coding. An Elias-delta variant, known as Elias-omega or recursive
Elias coding makes it possible to shorten the codeword lengths, but with limited benefits
as the source size increases.2

The Elias coding approach is referred to as nonparameterized. This means that the
symbol–codeword correspondence is fixed with the code choice (gamma, delta, recur-
sive). In parameterized coding, an integer parameter m is introduced to create another
degree of freedom in the choice and optimization of codeword lengths. This is the case
of the Golomb codes and the Fibonacci codes, which I describe next.

The Fibonacci codes are based on the Fibonacci numbers of order m ≥ 2.
Fibonacci numbers form a suite of integer numbers F(−m + 1), F(−m + 2), . . . , F(0),
F(1) . . . F(k), which are defined as follows:

(a) The number F(k) with k ≥ 1 is equal to the sum of all preceding m numbers;
(b) The numbers F(−m + 1) to F(0) are all equal to unity.

Taking, for instance, m = 2, we have F(−1) = F(0) = 1, thus, F(1) = F(−1) +
F(0) = 2, F(2) = F(1) + F(0) = 3, and so on, which yields the Fibonacci-number
suite 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . The construction of a Fibonacci code based on
the m = 2 parameter for the integer set {1, 2, . . . , 34} is illustrated by the example
shown in Table 10.2. As the table indicates, the integer set {1, 2, . . . , 34} is first listed

1 As intermediate values, we find for a 64-element, uniformly distributed source (H = log 64 = 6), the coding
efficiencies of η(gamma) = 64.8% and η(delta) = 68.8%.

2 See, for instance: http://en.wikipedia.org/wiki/Elias_omega_coding.

182 Integer, arithmetic, and adaptive coding

Table 10.2 Construction of a Fibonacci code of order m = 2
from the suite of Fibonacci numbers shown at the bottom.

i F(i)

1 1 11
2 1 0 011
3 1 0 0 0011
4 1 0 1 1011
5 1 0 0 0 00011
6 1 0 0 1 10011
7 1 0 1 0 01011
8 1 0 0 0 0 000011
9 1 0 0 0 1 100011

10 1 0 0 1 0 010011
11 1 0 1 0 0 001011
12 1 0 1 0 1 101011
13 1 0 0 0 0 0 0000011
14 1 0 0 0 0 1 1000011
15 1 0 0 0 1 0 0100011
16 1 0 0 1 0 0 0010011
17 1 0 0 1 0 1 0001011
18 1 0 1 0 0 0 1001011
19 1 0 1 0 0 1 0101011
20 1 0 1 0 1 0 1101011
21 1 0 0 0 0 0 0 00000011
22 1 0 0 0 0 0 1 10000011
23 1 0 0 0 0 1 0 01000011
24 1 0 0 0 1 0 0 00100011
25 1 0 0 0 1 0 1 00010011
26 1 0 0 1 0 0 0 00001011
27 1 0 0 1 0 0 1 10001011
28 1 0 0 1 0 1 0 01001011
29 1 0 1 0 0 0 0 11001011
30 1 0 1 0 0 0 1 00101011
31 1 0 1 0 0 1 0 10101011
32 1 0 1 0 1 0 0 11101011

Fibonacci: 21 13 8 5 3 2 1

in increasing order. The suite of Fibonacci numbers, {1, 2, 3, 5, 8, 13, 21}, starting with
F(0) = F(1) = 1 up to F(7) = 21, is written at bottom, from right to left, defining seven
columns. It is easily checked that all integer numbers are given by a sum of the Fibonacci
numbers, for instance:

7 = 5 + 2 = 1 × F(4) + 0 × F(3) + 1 × F(2) + 0 × F(1),

12 = 8 + 3 + 1 = 1 × F(5) + 0 × F(4) + 1 × F(3) + 0 × F(2) + 1 × F(1),

which can be coded as 710 ≡ 1010Fibonacci and 1210 ≡ 10101Fibonacci, respectively.3

The second column in Table 10.2 shows the codewords obtained according to such

3 It is left as an exercise to show that a Fibonacci code of order m = 3 requires level-three coding.

10.1 Integer coding 183

a decomposition into Fibonacci numbers. The actual Fibonacci code is obtained by
taking the mirror image of this initial codeword and appending a 1 postfix, as seen
from the last column at right: thus f (i = 1) = 11, f (i = 2) = 011, f (i = 3) = 0011,

f (i = 5) = 00011, and so on. The result of this operation is a prefix code, i.e., a code
for which no codeword is the prefix of another codeword. This code example is also
listed in Table 10.1, for comparison with the Elias codes. The comparison shows that
the Fibonacci codewords are significantly shorter. Using the English-language source
(Table 8.3), we find that our Fibonacci code has a mean codeword length of L =
4.928 bit/word, which corresponds to an efficiency of η = H/L = 4.184/4.928 =
84.90%, and represents an improvement on the previous Elias-gamma and delta codes
(η = 79.83%).

It can be shown that Fibonacci codes are not asymptotically optimal, like Elias-gamma
codes but unlike Elias-delta codes. Higher-order Fibonacci codes (m > 2) have better
compression rates, provided that the source size is large and the probability distribution
nearly uniform. Even if the Elias-delta codes are asymptotically optimal, Fibonacci codes
of order two perform better with any source of size up to 106/2 (precisely, n = 514 228).4

This fact illustrates that asymptotic code optimality is not the only criterion for selecting
the most efficient code. Such a feature was also illustrated in the previous example. The
comparative code performance also depends on the type of source distribution. Recalling
that the Fibonacci code is parameterized by an integer m ≥ 2, one must find an optimal
value of m for each source distribution under consideration. Such an optimization is
advantageous, but case-specific. This represents both an advantage and a drawback, in
comparison with nonparameterized codes (such as Elias codes), which are fixed once
and for all.

The Golomb codes constitute a second important category of parameterized codes.
For a Golomb code with parameter m, the codeword G(i) of integer i is made of two
parts:

(a) A prefix, which is made of 1 preceded by q zero bits, with q being the quotient
q = �(i − 1)/m�,

(b) A suffix, which is the binary representation in �log2 m� bits of the remainder r =
i − 1 − qm.

The first rule (a) can also be changed with the definition q = �i/m� if, by convention,
the list of integers i is made to start from zero. The second rule (b) represents a simplified
version and is not the one actually used in Golomb codes. However, we shall use it as
a first step for easily introducing the concept. To provide a practical example, assume
m = 4. We have, for the first 12 integers:

i = 1, . . . , 4 → q = 0 → prefix = 1,

i = 5, . . . , 8 → q = 1 → prefix = 01,

i = 9, . . . , 12 → q = 2 → prefix = 001, etc.,

4 D. A. Lelewer and D. S. Hirschberg, Data compression. Computing Surveys, 19 (1987), 261–97, see
www.ics.uci.edu/∼dan/pubs/DataCompression.html.

184 Integer, arithmetic, and adaptive coding

and

i = 1, . . . , 4 → r = 0, 1, 2, 3 → suffix = 00, 01, 10, 11,

i = 5, . . . , 8 → r = 0, 1, 2, 3 → suffix = 00, 01, 10, 11,

i = 9, . . . , 12 → r = 0, 1, 2, 3 → suffix = 00, 01, 10, 11.

We, thus, observe that the prefix increases by one bit at each multiple of m = 4 and that
the suffix has a constant length and changes with a periodicity of m = 4. From the above
rules and with this example we obtain G(3) = 1 10, G(5) = 01 00 and G(12) = 001 11,
for instance (the underscore being introduced for clarity). Note the prefix rule of 1
preceded by q zero bits is only conventional.5 We can also define the prefix as 0 preceded
by q one bits, which represents the complement of the previous prefix (e.g., G(3) = 0 10,
G(5) = 10 00, and G(12) = 110 11). Another convention for the suffix is to take the
smallest number of bits for the binary representation of r , which only changes 00 into
0. Thus, we have G(3) = 1 0 instead of 1 00, G(5) = 01 0 instead of 01 00, and so on.
This convention reduces the code length by one bit each time i = km + 1 (k an integer).
With their prefix increase by blocks of m and their suffix m periodicity, the Golomb
codes are straightforward to generate. Table 10.1 shows the nonoptimized Golomb code
for m = 8.

Consider next the actual Golomb code, which uses a more complicated rule (b) for
defining the suffix. This rule consists of coding the suffix with c = �log2 m� bits for the
first c values of r (with 0 as the leading bit), and with c + 1 bits for the other values
(with 1 as the leading bit). Consider, for instance, m = 5. We have c = �log2 5� = 2.
Thus, we have, for the first 15 integers:

i = 1, . . . , 5 → q = 0 → prefix = 1,

i = 6, . . . , 10 → q = 1 → prefix = 01,

i = 11, . . . , 15 → q = 2 → prefix = 001, etc.,

and

i = 1, . . . , 5 → r = 0, 1, 2, 3, 4 → suffix = 00, 01, 100, 101, 110,

i = 6, . . . , 10 → r = 0, 1, 2, 3, 4 → suffix = 00, 01, 100, 101, 110,

i = 11, . . . , 15 → r = 0, 1, 2, 3, 4 → suffix = 00, 01, 100, 101, 110,

showing that in each period, the first two suffixes are coded with two bits with a leading
0, and the other suffixes are coded with three bits with a leading 1. We note that the
three-bit suffix codes do not correspond to a binary representation of r , unlike with our
previous definition. Table 10.1 shows the actual Golomb code corresponding to the case
m = 6. We observe that the second definition makes it possible to shorten the length of

5 Coding a number n by n − 1 zeros followed by a one bit is referred to as unary coding. For instance, the
numbers n = 2, n = 5, and n = 7 are represented in unary coding as 01, 00001, and 0000001, respectively.
This definition should not be confused with the “unary number representation,” which uses only one
symbol character (e.g., 1) and is defined according to the rule 0decimal ≡ 1unary, 1decimal ≡ 11unary, 2decimal ≡
111unary, etc.

10.2 Arithmetic coding 185

most codewords in the list. If we apply the Golomb code to the English-symbol source
(Table 8.3), we obtain mean codeword lengths of

L = 4.465 bit/word (first, simple definition with m = 8),

L = 4.316 bit/word (second, actual definition with m = 6),

corresponding to efficiencies (η = H/L ≡ 4.184/L) of η = 93.69% and η = 96.94%,
respectively. These two results represent a significant improvement on the previous Elias
(gamma or delta) codes (η = 79.83%) and second-order Fibonacci codes (η = 84.90%).
It is clear that the Golomb-code parameter m must be optimized according to the source
size and distribution type. Golomb codes with low m have relatively small codewords
for the first few integers (owing to the short suffix of length log2 m), but the length
rapidly increases because of the fast prefix increment. On the contrary, Golomb codes
with high m have relatively large codewords for the first few integers (owing to the long
suffix), but the length increases slowly because of the slow prefix increment. Golomb
codes with m = 2k (k an integer) have also been known as Rice codes. For this reason
one generally refers to Golomb–Rice codes to designate them altogether (with m = 2k

corresponding to Rice codes). For sources of specific distribution types, it is possible
to determine the optimal exponent parameter k that minimizes the mean codeword
length. In the general case, this parameter can also be determined through heuristic
methods.

Integer coding based on various Elias or Golomb–Rice derivatives finds many applica-
tions in the field of database management, ensuring rapid access to and optimal indexing
of library files. An illustrative application is the indexing of very large databases, such
as the inventories of nucleotide sequences in biology. Golomb–Rice codes are also used
in sound compression standards (see Appendix G).

10.2 Arithmetic coding

In static codes (Shannon–Fano, Huffman, block, and integer codings), it is implicitly
assumed that the source characteristics (events and probabilities) are known, with the
exception of integer coding, which only requires knowledge of the most likely events. In
any case, these codes are fixed and optimized once and for all, so this approach is called
defined-word coding. In the general case, one may not have such a prior knowledge. It is
also possible that the source properties change from time to time (nonstationary source),
in which case static codes lose their optimality or become inadequate. Nontypical English
texts, such as those analyzed in Chapter 9 (Table 9.2), provide an illustrative example
of deviation from the stationary source reference.6 As we saw in that chapter, we

6 A famous example of a very unusual English-text source is the 1939 novel Gadsby (E. V. Wright), which, in
over 50 000 words, does not contain any character E whatsoever! Here is an extract from page 1:

If youth, throughout all history, had a champion to stand up for it; to show a doubting world that a child
can think; and, possibly, do it practically; you wouldn’t constantly run across folks today who claim that
“a child don’t know anything.” A child’s brain starts functioning at birth; and has, amongst its many infant

186 Integer, arithmetic, and adaptive coding

can use universal codebooks, which contain libraries of best codes for a variety of
sources, such as text, programming-language codes, or datafiles, or a statistical mix
of all possible combinations thereof. But the codebook approach is inadequate if the
source under investigation escapes any of these known types. Static coding is, therefore,
intrinsically limited, although it is most convenient because the symbol or codeword
correspondence only requires a one-time calculation and optimization. While Huffman
coding is ultimately optimal (overlooking overhead information), it is computationally
intensive for large sources. Block codes have been shown in Chapter 9 to offer some
simplification advantage by coding symbols into “super-symbol” groups, but with the
drawback that the number of codewords rapidly becomes intractable with increasing
group sizes, for basic considerations of memory space and read–write times.

In the general situation, where the source characteristics are unknown, one must
implement what is equivalently referred to as dynamic or adaptive or stream coding,
which evokes the time-changing character of the codeword assignment according to the
evolving source characteristics. The basic philosophy of dynamic coding is to devise an
optimal code “on the fly” for any sequence of incoming symbols, while minimizing the
number of operations required at each intermediate step. One does not need to know the
distribution of the single symbols forming the sequence, or the length of the sequence to
encode, which represents a significant advantage over static coding. The symbol alphabet
and the distribution may also radically change from one input sequence to the next, and
the code is able to dynamically adapt to this. Arithmetic coding, which is described in
this section, represents an intermediate case where the code is dynamically configured
from the source, but the resulting codeword dictionary is then kept for extensive use,
just as in a static code. Two other approaches, referred to as adaptive Huffman coding,
and Lempel–Ziv (LZ) coding, are truly dynamically adaptive coding algorithms. These
are described in the following two sections.

In arithmetic coding, it is assumed that both encoding and decoding machines have
identical programs, which make it possible to compute the source’s probability dis-
tribution and associated joint probabilities of all orders (see further). A specificity of
arithmetic coding is that a specific “end-of-sequence” symbol is always required, as I
shall illustrate.

convolutions, thousands of dormant atoms, into which God has put a mystic possibility for noticing an adults
act, and figuring out its purport.

Also well known in this genre is the later 1969 French novel La Disparition (G. Perec), translated into
English in 1995 as A Void, while fully respecting the author’s spirit and using no E. Other translations of
Perec’s novel also exist in German and Danish, although the stunt was too hard in this last case for a full
translation. To complete the story of such literary oddities, an early pioneer of the genre is reportedly H.
Holland, who wrote a short 1928 novel called Eve’s Legend, which uses no vowels other than E. In the same
style, the author Perec also published Les Revenentes (1972). Here is a sample of Eve’s Legend:

Men were never perfect, yet the three brethren Veres were ever esteemed, respected, revered, even when the
rest, whether the select few, whether the mere herd, were left neglected . . .

See:
www.webrary.org/Maillist/msg/2001/2/Re.missingletterquotEquot.html,
www.ling.ed.ac.uk/linguist//issues/11/11-1701.html#?CFID=18397914&CFTOKEN=46891046.

10.2 Arithmetic coding 187

Consider the basic example of a source X = {a, b, c} with probabilities pX (xi) =
{0.4, 0.4, 0.2}. We assume that symbol c is exclusively used to signal the end of message.
The interval containing all real values p such that 0 ≤ p < 1 is noted [0, 1). Our encoder’s
program then proceeds as follows (Fig. 10.1):

� Step 1: The interval [0, 1) is first divided into three subintervals [0.0, 0.4), [0.4, 0.8),
and [0.8, 1.0), corresponding to the symbol events a, b, and c, respectively. The interval
[0,1) is also divided into two equal regions, labeled in binary with prefixes 0 and 1,
as shown in the right-hand side. We observe from the figure that the prefix 1 so far
corresponds to either a or b, and the prefix 0 to either b or c.

� Step 2: Each of the previous subintervals, except the last one [0.8, 1.0), corresponding
to event c, is divided into three subintervals, the widths of which correspond to
the joint probabilities p(x1, x2) = p(x2|x1)p(x1) of either joint events aa, ab, ac, or
ba, bb, bc. The regions corresponding to labels 0 and 1 are also divided into two
equal parts, which are labeled with prefixes 00, 01, 10, and 11. We observe from the
figure that:
◦ The prefix 11 corresponds to either aa or ab;
◦ The prefix 10 corresponds to either ab, ac, or ba;
◦ The prefix 01 corresponds to either ba, bb, or bc;
◦ The prefix 00 corresponds to either bc or c;

� Step 3: Each of the previous subintervals, except the last ones corresponding to final
events c, is divided again into three subintervals, the widths of which correspond to
the joint probabilities p(x1, x2, x3) = p(x3| x1, x2)p(x3) of joint events aaa, aab, aac,
aba, abb, abc, baa, bab, bac, bba, bbb, bbc. The region corresponding to prefixes
00, 01, 10, and 11 are also divided into two equal parts, which are labeled 000 to
111 and correspond to different joint-event possibilities, except for 000 which is
exclusively attached to event c.

The encoder is capable of executing the above steps an arbitrary number of times in
order to find the prefix attached to a string of any length and ending in c. To clarify
this point, assume that the string (or joint event) to encode is bc. We observe from
Fig. 10.1(a) that the unique subinterval which is fully contained in the region defined
by string bc has the prefix 00111. We can then use this prefix as the unique codeword
for string bc. The same observation applies, for instance, to the string aac, which
gets 11001 as a unique prefix and codeword. Assume next that the machine must
encode the string babc. The magnification in Fig. 10.1(b) shows that the subinterval
corresponding to prefix 1000001 is the only one to be fully contained in the region
defined by string babc, and, therefore, it should be used as the unique codeword. In
summary, the encoder assigns a unique codeword to any symbol string (or joint event)
x1x2, . . . , xnc by slicing down the interval [0, 1) into as many subintervals of widths
p(x1, x2, . . . , xn, c) = p(c|x1, x2, . . . , xn)p(c). The algorithm to perform this operation
is described in detail in Appendix H. Our description represents a simplification of the
more general algorithm described in MacKay (2003).7

7 D. J. C. MacKay, A Short Course in Information Theory (Cambridge, UK: Cambridge University Press,
2003).

1.0

0.0

0.8

0.4

a

b

c[0.8, 1.0)

[0.4, 0.8)

[0.0, 0.4)

bb

bc

aa

ab

ac

bac

baa
bab

bbc

bba

bbb

abc

aba
abb

aac

aaa
aab

ba

000000000000000
00001

 000100010
00011

001001000100
00101

001100110
00111

01010010001000
01001

010101010
01011

011011001100
01101

011101110
01111

110100100010000
10001

100110010
10011

101101010100
10101

101110110
10111

11110110011000
11001

110111010
11011

11111100
11101
11110
11111

Codeword
(a)

baa

bab

bac

babc

babb
baba

0111100 011110 01111
0111101
0111110 011111
0111111
1000000 100000 10000
1000001
1000010 100001
1000011
1000100 100010 10001
1000101
1000110 100011
1000111
1001000 100100 10010
1001001
1001010 100101
1001011

Codeword(b)

Figure 10.1 Principle of arithmetic coding for the symbol sequence babc from event source
X = {a, b, c}, showing coding of joint probabilities: (a) up to three events with five-bit
codewords; (b) up to four events with seven-bit codewords.

10.2 Arithmetic coding 189

Given a source X = {x1, x2, . . . , xn} and its probability characteristics, the coding
algorithm enables the encoding machine (encoder) to calculate rapidly the subinterval
[uN , vN) corresponding to any sequence a1a2, . . . , aN−1xn , where the symbols ak can
take any value, save xn . If the message source and characteristics are unknown, the
encoder must acquire the entire sequence a1, a2, . . . , aN−1, identify the different sym-
bols used (xi), and calculate the corresponding probability distribution p(xi) attached
to each of the message symbols specifically used in this sequence. We can, however,
assume that the incoming messages always use the same type of source (e.g., English
text, programming-language source code, bank datafiles, etc.), in which case, such an
operation simply consists of prior calibration work. In this sense, the code is adap-
tive, but it is supposed to be extensively used once it has been thus defined, just like
any other variable-length static code. The key difference here with a purely static code
is that the codewords are not calculated symbol by symbol (or by symbol blocks of
predefined length), but by symbol sequences having any arbitrary length. The max-
imum sequence length is defined by the precision of the coding arithmetic, namely
the maximum number of bits that the machine can handle for any given codeword.
As we have seen, the use of m-bit codewords makes it possible to represent proba-
bilities with an accuracy of 1 × 2−m . Referring to Fig. 10.1, for instance, the five-
bit codewords define subintervals having a minimum width of 2−5 = 1/32 = 0.03125,
exactly. This number defines the minimum difference allowed between symbol-sequence
probabilities.

As previously explained, the source’s probability distribution, including joint proba-
bilities up to some maximum order, must be calculated at first by the encoding machine.
As soon as this initial calibration round is complete, encoding can then be performed
on the fly, meaning that the codeword assignment (encoding) is performed almost at the
same rate as the message-sequence symbols a1, a2, . . . , aN−1 are input to the encoder.
Such a construction consists of building up the right codeword prefix corresponding to
the beginning of the received sequence. Referring to Fig. 10.1, for instance, the reception
of a1 = b as the first sequence symbol does not make it possible to conclude between
00, 01, or 10 as possible two-bit prefixes. If the next symbol is a2 = b, the machine
can make the choice of 01, since the interval of the sequence bb is described by this
prefix, as the figure indicates. If the next symbol is a3 = a, the prefix is changed to
011, and so on. This shows that the encoder builds the codeword prefix practically at
the same rate as symbols come in, because more than one symbol may be required to
make the choice of the next prefix bit. If the choice is unique, this means that the
codeword is complete, and basically, that the sequence is ended. For instance, the
three-symbol sequence bbc in Fig. 10.1 yields the final five-bit codeword 01001. In
contrast, the three-symbol sequence bbb is still at a two-bit 01 prefix level, and the
encoding machine is waiting for a fourth symbol to choose between the 010 or 011
prefixes.

As we have seen, on reaching the maximum codeword size, the termination symbol
c = xn is used by the encoder to close the message sequence, or to complete the code-
word. A nice feature is that the encoding process does not need to halt at this point.
Indeed, encoding can resume with the next incoming sequence, without any interruption.

190 Integer, arithmetic, and adaptive coding

Therefore, the encoding process may continue indefinitely over time. As another feature,
the encoder may append two termination symbols cc = xn xn at the end of a codeword,
to instruct the decoder that the probability distribution characteristics are being main-
tained in the following message. Special terminations, or cc′c′′ . . . = xn xn+1xn+2 . . .,
whose symbols are not used by the original message source, may also be appended to
the sequence for other signaling purposes, such as instructing a change in probability
distribution or in the source alphabet.

Having identical and exact knowledge of the message-source characteristics, the
decoding machine (decoder) can compute all possible subintervals [uN , vN) to arbitrary
small widths, as permitted by the arithmetic resolution, and store them in its memory.
How this knowledge can be extracted from a program, and without communicating with
the encoder, is a complex issue. As with the encoding process, the determination of the
probability distribution is a matter of initial calibration, using the same program as the
encoder (see later). The successive message bits input to the decoder are interpreted as
codeword prefixes. The decoder performs the same task as reading Fig. 10.1 from right
to left. Each codeword prefix points to a group of subintervals stored in the decoder’s
memory. As soon as a full codeword is identified (e.g., 01001 in the figure), the memory
outputs the corresponding string (e.g., bbc). Therefore, decoding is also performed on
the fly, since the memory pointer can move as fast as the message bits are received.
Like encoding, but as the reverse operation, retrieving the next symbol in the sequence
is not done on a bit-by-bit basis but out of progressive choices according to the prefix
patterns.

As we have seen, arithmetic coding and decoding need to compute the source’s prob-
ability distribution, with conditional probabilities of arbitrary order. A possibility is that
both encoder and decoder use the same codebook reference, but such a solution is gen-
erally not optimal, and also lacks any flexibility. Rather, the system should be adaptable
to any source type, for which the characteristics may change over time, including the
size and definition of the symbol alphabet (e.g., changing from English-text language to
computer datafiles or digital images). The initial encoder and decoder calibration, which
provides the source’s probability distribution and conditional probabilities, requires some
initial computation steps. Let me describe here how such a computation works. From the
encoder side, the first process consists of identifying the symbols xi and their distribution
p(xi). The idea is to monitor a sufficient number of “symbol events,” in order to convert
the raw frequency histogram into an actual PDF. Because the encoder introduces the
extra termination symbol c, which is not part of the message source, the corresponding
probability p(c) must be fixed to some arbitrary value, for instance, p(c) = 0.1. The first
incoming symbol identified, say x1, is assigned the initial probability p(x1) = 0.9 (which
satisfies p(x1) + p(c) = 1). If the second incoming symbol is different, say x2, the prob-
ability distribution becomes p(x1) = p(x2) = 0.45. This calibration process continues
until a full distribution p(xi) is obtained, with

∑
i p(xi) = 1 and c ≡ xn . As for the

conditional probabilities, p(ak = xi |a1a2 . . . ak−1), they can be assigned according to
the Laplace or the Dirichlet models. To explain the Laplace model, consider two events,
x and y. Let Fx be the number of times that the event x has been counted in the sequence
a1a2 . . . ak−1, and Fy the count for event y. The Laplace rule defines the conditional

10.2 Arithmetic coding 191

probability as

p(ak = x |a1a2 . . . ak−1) = Fx + 1

Fx + Fy + 2
, (10.1)

with the same relation applying for p(ak = y|a1a2 . . . ak−1), being obtained by inter-
changing x and y (we note that consistently, the sum of the two conditional probabilities
is equal to unity). For instance, considering the sequence xxyxxxy, we have Fx = 5 and
Fy = 2, thus p(a8 = x |a1a2 . . . a7) = 6/9 = 2/3 and p(a8 = y|a1a2 . . . a7) = 3/9 =
1/3. For an n-event source X = {x1, x2, . . . , xn}, Laplace’s rule is:

p(ak = xi |a1a2 . . . ak−1) = Fxi + 1∑
xi

(Fxi + 1)
. (10.2)

Note that the Laplace rule only represents a model to determine the conditional proba-
bilities heuristically. Such an assignment is arbitrary and does not need to be exact or
accurate. What matters is that both encoder and decoder use the same definition. It can
yet be refined using the Dirichlet model:

p(ak = xi |a1a2, . . . , ak−1) = Fxi + α∑
xi

(Fxi + α)
, (10.3)

where α is an adjustable constant, for instance α = 0.05 − 0.01. With the knowledge
of the distributions p(xi) and p(xi |a1a2, . . . , ak−1), the encoder can then implement
the arithmetic-coding algorithm described in Appendix H. From the decoder’s side, the
calibration process is similar, except that it operates in the opposite way. The decoder,
which has the same resolution as the encoder, identifies the different message codewords
received and assigns a probability interval to each possible prefix, as Fig. 10.1 illustrates,
reading from right to left. The correspondence between the identified codewords and
the original source symbols is only a matter of convention, like the A–Z sequence of
characters in the English alphabet.

It can be shown that arithmetic coding is near optimal, as the codeword length, l(s),
for a given symbol sequence, s, closely approaches the Shannon limit −log p(s), which
represents the information contents of the sequence. Owing to its versatility with respect
to source types and its capability of coding and decoding “on the fly,” arithmetic coding
is used in many still or motion image-compression standards, such as JPEG and MPEG
(see Appendix G).

Another interesting application of arithmetic coding concerns the generation of ran-
dom numbers. Indeed, random-bit strings can be generated by feeding an arithmetic
decoder with uniformly distributed bit streams, such as produced by a pseudo-random
word generator.8 The decoder then outputs what it interprets to be a suite of sym-
bol sequences picked up within the [0, 1) probability interval. The symbol sequences
form random bit streams having probability-distribution characteristics departing from
uniformity, i.e., p(x1 = 0) �= p(x2 = 1).

8 A pseudo-random word can be a pre-established bit pattern with uniform 1/0 bit distribution, which is
cyclically repeated by bit translation or permutation.

192 Integer, arithmetic, and adaptive coding

Arithmetic coding can also be used for fast data-entry devices. The principle is for
a human operator to acquire information and produce a maximum of information bits
through a minimal number of body gestures. A computer keyboard only provides the one-
to-one correspondence between alphanumerical characters and their ASCII codewords.
The keyboard is designed to have the most frequently used letters in specific locations
that the ten fingers learn to reach automatically, without searching. Let us imagine
instead a fancy dynamic keyboard, where the most frequently used letters and most
likely letter groups would always be found near the last character that was entered, like
finding he immediately after typing t or nd after a, corresponding to the words the and
and, respectively. Ready-made word terminations, like cept, dition, stitute, tinue, vey,
and vention, would show up as soon as the text con had been input to the keyboard, for
instance. These word terminations could also be arranged according to their frequent
use in the specific message context. Such a dynamic keyboard would make it possible
to achieve rapid text acquisition using a single-click, perhaps with a mouse or an optical
or eye pointer or tracker. A representative application of this principle is provided by the
project Dasher (European languages), also named Daishoya (Japanese).9 It consists of
a text-entry interface, which can be driven by natural pointing gestures, using a joystick,
a touch-screen, a tracker or roller ball, a mouse, or even an eye tracker. Experienced
readers can perform text acquisition with a single finger or eye motion at rates of 20 to 40
words per minute, which is nearly as fast as the normal writing rate and even faster in the
last case. Practical device applications concern palmtop computers, wearable computers,
one-handed computers, and hands-free computers for various working environments and
for the disabled.

10.3 Adaptive Huffman coding

Adaptive Huffman coding is also known as FGK, after Faller, Gallager and Knuth, and
as algorithm V, after improvements of FGK from Vitter.10

The FGK principle represents a dynamic implementation of Huffman coding trees,
which is based on a running estimate of the symbol probability distribution. The code
is optimal but only within the context of a given source message. Both encoder and
decoder adapt themselves to the changing probability distribution, which makes the
method suitable to encode or decode time-evolving or nonstationary sources.

The key advantage of adaptive vs. static Huffman coding is that the data encoding
and decoding is, indeed, performed “on the fly,” through a single-pass conversion pro-
cess. In contrast, the static scheme requires two passes: the first one for the coding-tree
determination, the second for the coding. However, if the source’s characteristics are
time-invariant, this operation only needs to be performed once, and the other incom-
ing message sequences are coded and decoded through a single pass. If the source’s

9 See details with animated screenshot demonstrations in www.inference.phy.cam.ac.uk/dasher; the software
is freely available.

10 See: D. A. Lelewer and D. S. Hirschberg, Data compression. Computing Surveys, 19 (1987), 261–97,
www.ics.uci.edu/∼dan/pubs/DataCompression.html.

10.3 Adaptive Huffman coding 193

A

B
0

Root
0.6

0.3

0.10

C

0.3

0.4

F0.04

E0.06

D0.20

0.17

0.13
A

B

1

Root
0.6

0.37

0.2

C

0.23

0.4

E0.06

F0.04

D

0.17

0.13

0.10

(a) (b)
1

2

3

4

5

6

7

8

9

10

11

Figure 10.2 Example of source coding tree (a) without sibling property, and (b) with sibling
property (Huffman tree). The number shown inside each node’s circle is the corresponding
probability, and in case (b) the nodes are labeled 0 to 11.

characteristics evolve rapidly, however, then the coding tree must be re-evaluated for
each message sequence, which justifies the interest of the single-pass adaptive method.

The FGK algorithm uses what is called the sibling property of coding trees, as
introduced by Gallager.11 This algorithm is defined as follows:

A coding tree has a sibling property in the case where all nodes, except the root and the terminal
(leaf) nodes, have a sibling node and can be listed in order of nondecreasing weights.

To grasp the meaning of this seemingly obscure definition, and understand
the concept of “sibling property,” consider the two illustrative examples shown
in Fig. 10.2. The two coding trees shown in Fig. 10.2 are associated with the
same source X = {A, B, C, D, E, F}, whose probability distribution is p(xi) =
{0.4, 0.2, 0.17, 0.13, 0.06, 0.04}. The weights (or combined probabilities) of each of
the nodes are indicated. Except for the root node at left, and the leaf nodes at right,
intermediate nodes are seen to come with a sibling of equal or lower weight. Looking
at the tree (a) in the figure, we observe that there are five sibling pairs responding to
this description. However, the group formed by the pairs (0.2–0.1) and (0.17–0.13) is
not ordered according to increasing or decreasing weights. The above-stated “sibling
property” rule requires that the nodes be arranged by successive pairs of nondecreasing
weights, (0.1–0.13) then (0.17–0.2), and this is precisely the case of the second tree
(b) shown in Fig. 10.2. Not surprisingly, this rule “compliant” tree is a Huffman tree,
as one may easily check. Also, Gallager showed another powerful property, according
to which

A binary prefix code is a Huffman code if and only if its coding tree has the sibling property.

11 See: R. G. Gallager, Variations on a theme by Huffman. IEEE Trans. Inform. Theory, 24 (1978), 668–74.

194 Integer, arithmetic, and adaptive coding

The implementation of the FGK algorithm proceeds as follows. At the start, the tree
is a single leaf node, which is referred to as the Ø-node. Assume that there are n symbols
in the message sequence to be encoded. The encoder does not need to know what n
might be. The idea is always to keep the ∅-node for the n − m symbols that have not
been observed yet by the encoder, and to compute the Huffman coding tree for the other
m symbols, out of an observed sequence of k symbols. The resulting coding tree is a
Huffman tree h(k), which has k + 1 leaves: one leaf is the ∅-node (probability or weight
zero) and the other k leaves represent the k symbols (nonzero probabilities or weights),
ordered by siblings of nondecreasing weights, and labeled in that order. Whenever a
new or previously unobserved symbol is identified, the ∅-node is split into a new ∅-node
and a new leaf node is created for this symbol. The coding tree is also reconfigured.
Figure 10.3 illustrates the evolution of the coding tree, as recomputed at each step for
the 12-symbol sequence example GOODTOSEEYOU, from step k = 1(G) to step k = 6
(GOODTO).

From the orderly sequence of node weights, we observe that all trees in Fig. 10.3
have the sibling property. The evolving codeword assignment for each different symbol
(G, O, D, T, S, E, Y, U,∅), as determined by both encoder and decoder from the same
static Huffman algorithm, is also shown in the figure. The symbol codewords up to step
k = 12 are shown in Table 10.3. We observe from the table that, as expected, the codeword
assignment changes at each computational step k. The table also shows, for each step
k, the value of entropy H , the mean codeword length L , and the corresponding coding
efficiency η. The entropy and coding efficiency are plotted in Fig. 10.4. We observe from
the figure that the entropy increases with the message length, following a sawtooth pat-
tern. The entropy’s slope progressively decreases while remaining globally positive. The
occasional downward slope changes correspond to the accidental occurrence of repeated
symbols, which decreases the mean uncertainty or Shannon information. Clearly, the
drops observed at k = 6 and k = 11 can be attributed to the repeated occurrences of O
in the GOODTOSEEYOU message sequence. For a sufficiently long message sequence,
it is expected that the entropy reaches the limit of that of the English-language source,
which was shown in Chapter 4 (1982 poll) to be H = 4.185 bit/symbol. Such a con-
vergence must be quite rapid, since a message as short as GOODTOSEEYOU has the
entropy of H = 2.751 bit/symbol (Table 10.3), which represents 66% of this limit.
We also observe from Fig. 10.4 that the coding efficiency rapidly converges to 100%
as new symbols come in, although with a similar saw-tooth progression for entropy.
With this message-sequence example, the efficiency reached at k = 12 is η = 91.72%
(Table 10.3), a relatively high performance due to the optimality of the Huffman coding
(the mean codeword length L always remaining within one bit of the source entropy H ,
as the table data also indicate).

As we have seen, the encoder dynamically updates its coding tree at each step k,
starting with a single ∅-node leaf. From the receiving side, the decoder just has to
perform the same operation. However, for the decoder to update its coding tree, it needs
the following basic information:

(a) For a new symbol: the ∅-node’s current codeword and the new symbol definition;
(b) For a symbol previously observed: the symbol’s current codeword.

10.3 Adaptive Huffman coding 195

1

Root
0

1

k = 1

∅

G

1

2

1

0

(G)

0

1

2

1
2

1

1

k = 2

G

3

4

1

∅ 01

O 00
(GO) k = 3

0

1

2

1

3

1

2

G
3

4
0

∅ 11

O

10

(GOO)

2

6

1O

0

1

1

2

k = 4

1

1

4

3

4

2

G
5

∅ 001

01

(GOOD)

D 000
(a)

k = 5

(GOODT)

3

8

1O

5

2

7

(GOODTO)

0

1

1

2

1

2

6

5

G

∅ 011

000

T 010

D 0011

1

3

4

k = 6

3

8

100

O

6

3

7

0

1

1

2

1

2

6

5

G

∅

0

T

D1

1

3

4

111

110

101

(b)

Figure 10.3 Evolution of the adaptive Huffman coding tree with the message example
GOODTOSEEYOU. The index k is the number of symbols received: (a) k = 1–4; (b) k = 5–6.
Nodes are relabeled according to the sibling-property rule. The number inside each node’s circle
is the corresponding weight. The steady or changing codewords associated with each symbol are
shown at the right. The evolution of the coding tree and codeword assignment up to k = 12 is
shown in Table 10.3.

Ta
bl

e
10

.3
Ev

ol
ut

io
n

of
co

di
ng

tre
e

ac
co

rd
in

g
to

th
e

ad
ap

tiv
e

Hu
ffm

an
co

di
ng

al
go

rit
hm

w
ith

th
e

12
-s

ym
bo

lm
es

sa
ge

ex
am

pl
e

G
O

O
D

TO
S

E
E

Y
O

U
.T

he
in

de
x

k
is

th
e

nu
m

be
r

of
sy

m
bo

ls
re

ce
iv

ed
.A

po
ss

ib
le

co
de

w
or

d
as

si
gn

m
en

t
to

ea
ch

sy
m

bo
l,

in
cl

ud
in

g
th

at
of

th
e

∅
-n

od
e,

is
sh

ow
n

fo
r

ea
ch

st
ep

.S
ee

Fi
g.

10
.3

fo
r

th
e

co
rr

es
po

nd
in

g
co

di
ng

tre
es

up
to

st
ep

k
=

6.
Th

e
en

tro
py

an
d

co
di

ng
ef

fic
ie

nc
y

ar
e

pl
ot

te
d

in
Fi

g.
10

.4
.

S
ym

bo
l

k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

6
k
=

7
k
=

8
k
=

9
k
=

10
k
=

11
k
=

12

G
0

1
10

01
1

11
1

00
1

01
0

01
1

10
0

10
0

10
1

O
00

0
1

00
0

0
1

00
00

01
00

01
D

00
0

00
1

11
0

01
0

01
1

10
0

10
1

10
1

10
T

01
0

10
1

01
1

10
0

10
1

11
0

11
0

11
1

S
00

00
10

1
01

0
11

1
11

1
00

00
E

11
0

11
00

0
01

0
00

1
Y

00
10

01
10

00
01

U
10

00
∅

1
01

11
00

1
01

1
10

0
00

01
11

1
01

01
00

11
00

11
10

01

S
ou

rc
e

en
tr

op
y

H
(b

it
/s

ym
bo

l)
0

0.
5

0.
91

8
1.

5
1.

92
1

1.
79

2
2.

12
8

2.
40

5
2.

41
9

2.
64

6
2.

55
0

2.
75

1
m

ea
n

co
de

w
or

d
le

ng
th

L
(b

it
/w

or
d)

1
1.

5
1.

33
3

1.
75

2.
20

0
2.

00
0

2.
28

5
2.

62
5

2.
77

7
2.

80
0

2.
72

7
3.

00
0

C
od

in
g

ef
fi

ci
en

cy
η

(%
)

0.
00

33
.3

3
68

.8
7

85
.7

1
87

.3
6

89
.6

2
93

.1
0

91
.6

4
87

.1
0

94
.5

2
93

.5
1

91
.7

2

10.3 Adaptive Huffman coding 197

0

1

2

3

121110987654321
Number of message symbols k

E
nt

ro
py

 E

ffi
ci

en
cy

Figure 10.4 Evolution of entropy H and coding efficiency η in adaptive Huffman coding as a
function of the number of symbols received k, which corresponds to the example in Fig. 10.3 and
Tables 10.3 and 10.4.

In case (a), the ∅-node’s current codeword acts as a signal to the decoder that a new
symbol must be entered in the tree (initially, the ∅-node codeword is set to zero). The
previous ∅-node is split into a new ∅-node and a new leaf for this symbol. The other
information concerns the symbol description, for instance its ASCII value. In case (b),
the weight of the symbol’s terminal node (leaf) simply needs to be incremented by one
unit, which is sufficient to recompute the coding tree. Note that the information in case
(b) is pure payload (previously-seen symbol transmission), while that in case (a) is both
payload and overhead (new symbol transmission with definition). The data listed in Table
10.4 represent the information provided by the encoder to the decoder for the message
string GOODTOSEEYOU, as based on the codewords of Table 10.3, to be sequentially
used by the decoder for coding-tree updating and decoding. The table also shows the
number of information bits that the encoder outputs at each step. Assume that a fixed-
length codeword with n bits is required to define a new symbol, for instance n = 7 for
the reduced ASCII code. As this table indicates, the seven-bit codes for symbols G and
O are 〈1000111〉 and 〈1001111〉, respectively. So in Table 10.4, the encoder, thus, needs
to output

〈0〉〈1000111〉 = 〈01000111〉 at stage k = 1 (new symbol G),

〈1001111〉 = 〈11001111〉 at stage k = 2 (new symbol O),

〈00〉 at stage k = 3 (old symbol O),

and so on. Since the first part of each of these codewords is a prefix code known by
the decoder (from the previous stage) and the second part is a standard fixed-length
code, the decoder can make sense of the codewords as an uninterrupted stream, without

Ta
bl

e
10

.4
(T

op
)i

nf
or

m
at

io
n

pr
ov

id
ed

by
th

e
en

co
de

ra
te

ac
h

co
di

ng
st

ep
k

fo
rt

he
GO

OD
TO

SE
EY

OU
ex

am
pl

e
de

sc
rib

ed
in

Ta
bl

e
10

.3
,w

ith
co

rr
es

po
nd

in
g

co
de

w
or

ds
an

d
sy

m
bo

ld
efi

ni
tio

ns
x.

Fo
rc

la
rit

y,
th

e
la

st
tw

o
lin

es
in

di
ca

te
w

he
th

er
th

e
in

co
m

in
g

sy
m

bo
ls

in
th

e
m

es
sa

ge
st

rin
g

ar
e

ne
w

or
ol

d,
an

d
th

e
m

es
sa

ge
st

at
us

;(
Bo

tto
m

)
nu

m
be

ro
fb

its
re

qu
ire

d
to

co
nv

ey
th

e
in

fo
rm

at
io

n
at

ea
ch

st
ep

,w
he

re
n

is
th

e
fix

ed
co

de
w

or
d

le
ng

th
us

ed
to

de
fin

e
th

e
sy

m
bo

ls
.

k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

6
k
=

7
k
=

8
k
=

9
k
=

10
k
=

11
k
=

12

0
1

00
11

01
1

00
0

10
0

00
01

11
0

01
01

01
00

11
G

O
D

T
S

E
Y

U
N

ew
N

ew
O

ld
N

ew
N

ew
O

ld
N

ew
N

ew
O

ld
N

ew
O

ld
N

ew
G

G
O

G
O

O
G

O
O

D
G

O
O

D
T

G
O

O
D

T
O

G
O

O
D

T
O

S
G

O
O

D
T

O
S

E
G

O
O

D
T

O
S

E
E

G
O

O
D

T
O

S
E

E
Y

G
O

O
D

T
O

S
E

E
Y

O
G

O
O

D
T

O
S

E
E

Y
O

U
1

+
n

1
+

n
2

2
+

n
3

+
n

3
3

+
n

4
+

n
3

4
+

n
2

4
+

n

10.3 Adaptive Huffman coding 199

needing any codeword delimiters or blanks. The data shown at the bottom of Table 10.4
indicate that the total information required to encode GOODTOSEEYOU takes 32 + 8n
bits, which, for n = 7, comes to 88 bits.

For comparison purposes, consider the case of static Huffman coding. In this case, the
encoder first reads the full message GOODTOSEEYOU and then computes the Huffman
coding tree, which yields the same codeword assignment as shown in Table 10.3, except
that the symbol ∅ is not used. The encoder must then define the coding tree as overhead
information. From the table data, and assuming n bits to define each of the eight symbols
(G, O, D, T, S, E, Y, U), the overhead size comes to 2x(2 + n) + 3x(3 + n) + 3x(4+
n) = 29 + 8n. With n = 7, the overhead size is, therefore, 85 bits. On the other hand, the
GOODTOSEEYOU message payload represents 2x(2) + 3x(3) + 3x(4) = 25 bits. The
total message length (overhead + payload) is, therefore, 85 + 25 = 110 bits. This result
compares with the 88-bit full message length of the adaptive FGK coding, which is 20%
shorter. The FGK performance can be even further improved by decreasing the size of
the overhead information, namely the definition of the N identified source symbols. Such
a definition requires N log2 N bits. Using seven-bit ASCII, the source alphabet size is
27 = 128, which covers more than the ensemble of computer-keyboard characters. If
the message to be encoded uses fewer than 128 symbols, the overhead can be reduced
to fewer than seven bits. Regardless of the source size, it is possible to make a list of
all possible symbols and to attribute to each one a code number of variable length, for
instance defined by �−log p(xi)�, where p(xi) is a conservative estimate of the symbol
probability distribution with long messages. With this approach, the average overhead
size is minimal, the most frequent symbols having shorter code-number definitions,
and the reverse for the least frequent ones. Both encoder and decoder must share this
standard symbol codebook.

We conclude from this tedious but meaningful exercise that when taking into account
the overhead, adaptive coding may yield a performance significantly greater than that
of static coding. Such an advantage must be combined with the fact that encoding
and decoding can be performed dynamically “on the fly,” unlike in the static case.
Furthermore, changes in the source’s characteristics (symbol alphabet and distribution)
do not affect the optimality of the code, which, as its name indicates, is adaptive. The
price to pay for these benefits is the extensive computations required (updating the coding
tree for each symbol received). In contrast, static Huffman coding is advantageous as
the message-source characteristics are fixed, or only slowly evolving in time. In this
case, significantly longer messages can be optimally encoded with the same coding
tree, without needing updates. Static-coding-tree updates can, however, be forwarded
periodically, representing a negligible loss of coding performance, due to the large
information-payload size transmitted in between.12 As an example of an application,
FGK is used for dynamic data compression and file archival in a UNIX-environment
utility known as compact.

12 It is an interesting class project to perform the comparison between static and adaptive Huffman codings,
based on the same English-text message but considering extracts of different sizes. The goal is to find
the break-even point (message size) where the performance of adaptive coding, taking into account the
overhead of transmitting the 26-letter alphabet codeword, becomes superior to that of static coding.

200 Integer, arithmetic, and adaptive coding

An improvement on FGK is provided by the Vitter algorithm, or “algorithm V.”
The difference with FGK is that the coding tree recomputations are subject to certain
constraints. The nodes are still numbered according to the sibling rule, but in the
numbering all leaves of weight w are put under the internal node of the same weight.
The ensemble of nodes of the same weight is said to form a block, always with an
internal node as the leader with the highest number. The coding-tree update can be seen
as moving certain nodes from one block to another with greater weight. The rule is that
moving nodes automatically take the place of the leading node of the target block. A
second constraint concerns the codeword assignment. The algorithm seeks to minimize
both functions defined by s = ∑

l(xi) (called external path length) and m = max[l(xi)]
(called tree height), where l(xi) is the codeword length assigned to symbol xi . Note that
the decoder is equipped with the same program, and is, therefore, able to reconfigure the
coding tree and codeword assignment in a way strictly identical to that of the encoder.
The above constraints guarantee a coding tree with minimal height and the minimal
number of codeword bits. This Vitter tree is then best suited to the next update, but only
under the assumption that the next symbol in the message sequence is not new (or is not
already a tree leaf) and that all symbols are nearly equally probable. For these reasons,
algorithm V generally outperforms FGK in terms of number of transmitted bits, and it
can be shown that this number is, at worse, one extra bit greater than that of the static
Huffman code payload.

10.4 Lempel–Ziv coding

The adaptive coding devised in 1977 by Lempel and Ziv, now widely referred to as
Lempel–Ziv (LZ), or Ziv–Lempel, or more commonly LZ77, is fundamentally different
from the previous Huffman/FGK/algorithm-V approach. In a way that recalls the prin-
ciple of static arithmetic coding, the LZ codewords are generated by symbol blocks. As
previously described, arithmetic coding is a defined-word scheme: it maps all possible
source-symbol blocks into a final codeword set, as allowed by the maximum codeword
size (or arithmetic resolution). With LZ, symbol blocks are dynamically analyzed and
corresponding codewords are generated on the fly. One sometimes refers to LZ as a
free-parse algorithm, meaning that codewords are generated as the incoming message
sequence is parsed.

Here, the word parsing defines the action of breaking up a message string into different
substring patterns, which are called phrases. The term distinct parsing refers to the case
where no two phrases are identical.

Basically, the LZ algorithm consists of analyzing the source-message string by blocks
of variable size (substrings). The maximum block size is defined by some prescribed
integer L1, for instance L1 = 16 bits. The substring analysis makes it possible to identify
previously observed patterns or phrases. These phrases are assigned a codeword whose
length, called L2, is fixed, for instance L2 = 8 bits. The phrases are defined so that their
probabilities of occurrence are nearly equal. As a result, the most frequently occurring
symbols are grouped into longer phrases, and the reverse for the least frequently occur-
ring ones. Therefore, the same codeword length is used indifferently to represent long

10.4 Lempel–Ziv coding 201

or short phrases (and even single symbols), all of them having nearly equal occurrence
probability. This should not be confused with the principle of block codes (Chapter 9)
where the codeword length is fixed but the corresponding distribution is nonuniform.
Another key difference is that LZ is an adaptive algorithm, which is capable of learning
from the source’s characteristics (the most frequently used symbol-sequence patterns,
like English words or their fractions) and to generate optimal codewords on the fly,
without having to parse the entire message sequence, or to assume any probabilistic
model for the source.

We shall now analyze the details of the LZ algorithm by considering a binary sequence
and parsing it into distinct phrases. In the following, we shall use binary message strings
with 1 and 0 bits as the symbol alphabet, but this does not remove the generality of the
LZ algorithm in terms of alphabet size. As a working example, assume the following
25-bit sequence:

0101101101001000101101100.

Parsing the sequence consists of generating a list of all distinct phrases that can be
identified in the sequence, each one being different from any one previously observed.
Each phrase is then assigned an address number k = 1, 2, 3, . . . , which is called a
pointer. Using the above sequence, this parsing action gives:

Phrase:

0 1 01 10 11 010 0100 0101 101 100;

Pointer (decimal):

1 2 3 4 5 6 7 8 9 10;

Pointer (binary):

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010.

We note that the 10 identified phrases have equal probability, namely p = 1/10. We
also note that each phrase is the prefix of some other phrase coming up in the list: for
instance, phrase k = 3 (01) is the prefix of phrase k = 6 (010); in turn, phrase k = 6
is the prefix of phrases k = 7 (0100) and k = 8 (0101), and so on. We can, therefore,
associate a prefix phrase with the two other phrases that differ only by the last bit,
for instance 7 ↔ (6, 0) and 8 ↔ (6, 1), where the first number is the prefix pointer
and the second number is the differing bit (referred to as extension character). The LZ
codeword is given by concatenating the pointer and the extension character, with the
pointer expressed in binary. The first two phrases, which are made of a single bit, are
concatenated with pointer k = 0, which corresponds to the empty phrase. From these
rules, we obtain from our example:

Phrase:

0 1 01 10 11 010 0100 0101 101 100;

Pointer (decimal):

1 2 3 4 5 6 7 8 9 10;

(Prefix pointer, bit), decimal:

(0, 0) (0, 1) (1, 1) (2, 0) (2, 1) (3, 0) (6, 0) (6, 1) (4, 1) (4, 0).

202 Integer, arithmetic, and adaptive coding

Table 10.5 Lempel–Ziv (LZ) codeword dictionary generated from
the message example 0101101101001000101101100. The last
bit of the LZ codewords is highlighted for reading clarity.

Pointer Phrase (Prefix pointer, bit) Codeword

0 ∅ – –
1 0 (0, 0) 00000
2 1 (0, 1) 00001
3 01 (1, 1) 00011
4 10 (2, 0) 00100
5 11 (2, 1) 00101
6 010 (3, 0) 00110
7 0100 (6, 0) 01100
8 0101 (6, 1) 01101
9 101 (4, 1) 01001

10 100 (4, 0) 01000

The sequence is, thus, coded into the following decimal representation:

(0, 0) (0, 1) (1, 1) (2, 0) (2, 1) (3, 0) (6, 0) (6, 1) (4, 1) (4, 0),

which must be converted into a string of binary codewords, as listed in Table 10.5. The
set of LZ codewords is referred to as a dictionary. Given the fixed codeword length
L2, which is the number of pointer or address bits plus one, the maximum dictionary
size is, therefore, 2L(2)−1. In this example, we allot four bits to the pointer, which limits
the dictionary size to 24 = 16 codewords of length L2 = 5 bits. Based on Table 10.5,
the initial 25-bit message is thus converted into the following coded string (underscores
being introduced for reading clarity):

00000 00001 00011 00100 00101 00110 01100 01101 01001 01000,

which is 50 bits long. The LZ code, thus, realizes a twofold expansion of the source
message, which is a characteristic feature of the initialization stage. As the message
length increases, the bit phrases become more redundant, and the benefits of LZ coding
for data compression begin to appear, as discussed later.

Decoding an LZ sequence is straightforward. A nice feature is that the decoder does
not need to know the codeword size. As we have seen, the LZ algorithm imposes the
constraint that the first two codewords in the sequence be of the form 000 . . . 00 or
000 . . . 01, namely a 0 or 1 bit preceded by a prefix of size L2 − 1 bits. This information
automatically provides the codeword length L2. The decoder then registers successive
codewords up to rank 2L2−1, which represent the LZ code alphabet, and puts them into
a dictionary along with their corresponding source-message contents. For instance, the
codeword 10001 at line 10 of the decoder’s memory (pointer = 10) means 1 preceded by
the message contents of line 10002 ≡ 810 (pointer = 8). According to the same rule, this
content has been established to be 0101, so the content of line 10 is 0101 + 1 = 01011.
The whole process is strictly equivalent to reconstructing the equivalent of Table 10.5
from top to bottom, but starting from each new codeword received up to 2L2−1. It
is a remarkable feature that the decoder is able to interpret the LZ code without any
dictionary being ever transmitted.

10.4 Lempel–Ziv coding 203

01011011010010001010100101011010010010111010010101
01110010111010101110001001010101110001011101010111
00010110101110101011101001001011101010111010100101
01011100010111010111000100101010111000101110101011

01-12-013-104-115-0106-01007-01018-010019-0101110-01001011-

01011112-010010113-010111014-0101110115-0101110016-

0100101-01011100-01011101-01011100-01011-01011101-

010111-010010-01011101-01011101-0100101-01011100-

010111-01011100-0100101-01011100-01011101-01011-

(a)

(b)

00000000010001100100001010011001100011010111110001
10010101011011111000111011110010111111001110111100
10001111011010110010111011110110111111001010111100
10111111001110110001

(c)

Figure 10.5 Coding a message bit sequence with the Lempel–Ziv (LZ) algorithm:

(a) Input message (200 bits including 95 0s and 105 1s);
(b) Parsing of message (a) into distinct phrases, as shown in alternative black and gray colors; the
first 16 phrases generate the LZ codewords (see correspondence in Table 10.6); the 16 subscripts
correspond to pointer addresses;
(c) LZ code sequence (five-bit codewords) representing 25% compressed version of source
message (a).

If the LZ code must be reconfigured, the encoder can send either of the two codewords
000 . . . 00 or 000 . . . 01, recalling that these two have only appeared once at the very
beginning of the coded sequence. In our example (Table 10.5), note that only 00001
can be used for this purpose.13 Receiving an unexpected codeword is an anomaly,
which instructs the LZ decoder that a new dictionary has been used in the sequence
bits to follow. The decoder then reads the next codeword to check out the (possibly
new) codeword size, and the process of reconstructing the dictionary from scratch starts
again. Because the dictionary construction is sequential and as rapid as the codeword
acquisition, the flow of message or code data remains uninterrupted, even in the process
of dictionary reconstruction. This feature makes LZ coding a truly dynamic, adaptive,
and “free-parse” algorithm.

A puzzling question remains: how is a code with fixed-length codewords ever
able to achieve any data compression? Before going through the details of a formal

13 Indeed, 00000 may appear several times in the sequence, since we don’t have a codeword for the contents
00, and 00 is the prefix of no codeword in the dictionary. In the event that any of the 16 source-message
phrases is followed by 00x, the code necessarily uses 00000 to represent the first and single 0. The next
codeword depends on the third bit x. If x = 0, the code uses again 〈00000〉 to represent the second and single
0. If x = 1, the second and third bits, 01 form the prefix of several content possibilities in the dictionary,
including the stand-alone 01 (Table 10.5).

204 Integer, arithmetic, and adaptive coding

Table 10.6 Lempel–Ziv (LZ) codeword dictionary generated from distinct parsing of the 200-bit
message example shown in Fig. 10.5. The codeword frequency is also shown.

Pointer Phrase (Prefix pointer, bit) Codeword Frequency

0 ∅ – – 0
1 0 (0, 0) 00000 1
2 1 (0, 1) 00001 1
3 01 (1, 1) 00011 1
4 10 (2, 0) 00100 1
5 11 (2, 1) 00101 1
6 010 (3, 0) 00110 1
7 0100 (6, 0) 01100 1
8 0101 (6, 1) 01101 1
9 01001 (7, 1) 01111 1

10 01011 (8, 1) 10001 3
11 010010 (9, 0) 10010 2
12 010111 (10, 1) 10101 3
13 0100101 (11, 1) 10111 4
14 0101110 (12, 0) 11000 1
15 01011101 (14, 1) 11101 6
16 01011100 (14, 0) 11100 6

demonstration, let us consider a significantly longer message, for instance the 200-
bit-long sequence shown in Fig. 10.5. In this second example, I have purposefully
overemphasized the bit-pattern redundancy at the beginning of the message to obtain 16
individual phrases of rapidly increasing size. The corresponding LZ codeword dictionary,
as based on four-bit pointer addresses, is shown in Table 10.6. I have also continued the
rest of the message by preferentially using the longest phrases previously identified and
repeating them once in a while, again to emphasize redundancy. As a result, we obtain
34 phrases. Since each phrase corresponds to a five-bit LZ codeword (Table 10.6),
the total LZ sequence length is 34 × 5 = 170 bits, as shown in Fig. 10.5. Thus, the
LZ code has achieved a compression equal to 1 − 170/200 = 25% of the initial, 200-
bit source message. From the codeword frequency analysis (Table 10.6), we can also
calculate the entropy of the compressed-message source. As easily calculated from the
table data, the result turns out to be H = 3.601 bit/word. Since the codeword length is
L2 = 5 bits, this result corresponds to a coding efficiency of η = 3.601/5 = 70.03%.

In this example, we have first generated a LZ codeword dictionary until the number
of available pointer addresses was exhausted. We have then re-used the dictionary as a
“static code” to process the rest of the message, which provided the compression effect.
In reality, compression occurs even as the dictionary is generated and before memory-
size exhaustion, but this effect is only observed in relatively long message sequences
(see further). To emphasize, the LZ algorithm is not meant to be implemented as a
static code past the point of memory saturation (although this remains a valid option),
but to work as a dynamic code, regardless of the sequence length. Since the number of
codeword entries increases indefinitely, the process of updating the dictionary should be
periodically reinitiated. A new dictionary can be reconstructed from scratch, or cleaned
up from the earlier entries to make up new space.

10.4 Lempel–Ziv coding 205

Given the maximum codeword size L2, the LZ algorithm can identify as many as 2L2−1

individual phrases, for instance 215 = 32 768 phrases with L2 = 16. Such a number is
more than sufficient to cover all possible patterns in a redundant source message and,
therefore, ensure effective code compression. This remains true in the case where the
source characteristics evolve over time. If the memory size is assumed to be sufficiently
large to fit a virtually unlimited number of entries, a key question is whether or not the
coded sequence can ever be shorter than the original message. To answer this question,
we need to know the number of possible phrases, c(n), and the LZ codeword size, L2,
given a message length of n bits. The Lempel and Ziv analysis of distinct parsing, which
provides the answer, is detailed in Appendix I, and we shall use the result here. Given
a message of n bits, the operation of distinct parsing yields c(n) phrases to which c(n)
unique codewords are associated. The number of pointer-address bits required to define
such a parsing is log c(n), which gives L2(n) = log c(n) + 1 for the codeword size.14

Therefore, the coded version of the message has a full sequence length of:

Ls(n) = c(n)[log c(n) + 1]. (10.4)

The code compression (or expansion) is given by the ratio:

R(n) = Ls(n)

n
= c(n)

n
[log c(n) + 1]. (10.5)

The issue now is to determine the upper bound of ηn in the limit of infinitely long
messages (n → ∞). In Appendix I, it is shown that the number of distinct-parsing
phrases c(n) is bounded according to:

c(n) ≤ n

(1 − εn) log n
, (10.6)

where εn vanishes as n → ∞. We, thus, observe that the growth of the number of phrases
with message size is sublinear, with an absolute upper bound of n/ log n. Another useful
information is that the codeword size is bounded according to

L2(n) = log c(n) + 1 ≤ log

[
n

(1 − εn) log n

]
+ 1 ≤ log(2n). (10.7)

The codeword length, thus, increases somewhat slower than the logarithm (base 2) of
the message length n. Both properties concerning the growth of c(n) and L2(n) are
advantageous for memory size considerations. Replacing next the property in Eq. (10.6)
in Eq. (10.5) yields for the compression ratio:

R(n) ≤ 1

(1 − εn) log n

{
log

[
n

(1 − εn) log n

]
+ 1

}

≡ 1

(1 − εn)

{
1 + 1 − log log n − log(1 − εn)

log n

}
.

(10.8)

Taking the infinite limit in Eq. (10.8) leads to the conclusion R(n → ∞) ≤ 1,
which proves that compression is possible (the compression rate being defined as
r = 1 − R(n)). Yet, we don’t know exactly how much compression can be achieved.

14 In the example of Fig. 10.5, for instance, we have n = 71 bits, c(n) = 16 and L2 = 5.

206 Integer, arithmetic, and adaptive coding

A more general and finer-grain analysis, which requires a very involved demonstration,
is provided in.15 Here, I shall just provide the conclusion, which takes the form

lim sup
n→∞

R(n) ≤ H (X), (10.9)

where H (X) is the entropy of the binary source X = {0, 1} from which the message
string is generated.16 This property shows that the LZ code is asymptotically optimal.

In Section 3.2, indeed, we have seen that a code is optimal if, given the source entropy
H (X), the mean codeword length L̄ satisfies:

H (X) ≤ L̄ < H (X) + 1. (10.10)

This inequality also applies to any optimal block code with fixed length Ls(n), as applied
to an n-bit message from extended source X (n):

H (X (n)) ≤ Ls(n) < H (X (n)) + 1. (10.11)

Dividing Eq. (10.11) by n and taking the limit n → ∞ yields:

lim
n→∞

H (X (n))

n
≤ lim

n→∞
Ls(n)

n
< lim

n→∞
H (X (n))

n
+ lim

n→∞
1

n
, (10.12)

or, equivalently,

lim
n→∞

Ls(n)

n
= lim

n→∞
H (X (n))

n
= H (X). (10.13)

The last equality in Eq. (10.13) is made under the assumption that, in the infinite limit,
the extended source becomes memoryless. This concept means that the source events
become asymptotically independent as their number increases, which justifies the limit.

Returning to the earlier issue, we can, thus, conclude from the result in Eq. (10.9)
that LZ coding is asymptotically optimal, with an average codeword length (bit/source-
symbol) ultimately no greater than the source entropy.

The original LZ77 algorithm (also called LZ1) was further developed into a LZ78 ver-
sion (also called LZ2). The latter version corresponds to the dictionary-based approach
that I have described. The original LZ77 uses, instead, a sliding-window approach. The
LZ77 algorithm checks out the input symbol sequence, and searches for any match in a
sliding-window buffer (the dictionary equivalent). The algorithm output, called a token,
is made of three numbers: the offset of the sliding window, where the matched sequence
is found to begin; the length of the matched sequence; and the unique code of the last
unmatched symbol. Both LZ77 and LZ78 have generated a prolific family of variants
(and related patents), which can be listed as:

� (For LZ77): LZR, LZSS (Lempel–Ziv–Storer–Szymanski), LZB, and LZH (Lampel–
Ziv–Haruyasu);

� (For LZ78): LZW (Lempel–Ziv–Welch), LZC, LZT, LZMW, LZJ, and LZFG.

15 T. M. Cover and J. A. Thomas Elements of Information Theory (New York: John Wiley & Sons, 1991).
16 Recall that the entropy of a binary source is bounded to the maximum Hmax(X) = 1, which corresponds to

a uniformly distributed source.

10.5 Exercises 207

The LZ algorithm family has led to several data-compression standards and file-archival
utilities known as Zip (from LZC), GNU zip or gzip (from LZ77), PKZIP (from LZW),
PKARK, Bzip/Bzip2, ppmz, pack, lzexe (a MS-DOS utility), and compress (from LZC
and LZW, a UNIX utility), for instance. Such programs make it possible to compress
most ASCII-source files by a factor of two, and sometimes up to three, but with differ-
ent performance and computing speeds.17 The algorithm LZW is also used for image
compression in the well-known formats called GIF (graphic interchange format) and
TIFF (tagged image file format); for instance, GIF has become a leading standard for
the exchange of graphics on the World Wide Web. The original LZ77 algorithm is used
in the patent-free image format PNG (portable network graphics). See Appendix G for
a more detailed description of data and image compression standards.

10.5 Exercises

10.1 (B): Determine the coding efficiency corresponding to the symbol source defined
in Table 10.7, using Elias-gamma and Elias-delta codes.

Table 10.7 Data for Exercise 10.1.

Symbol x p(x)

A 0.302
B 0.105
C 0.125
D 0.025
E 0.177
F 0.016
G 0.125
H 0.125

10.2 (T): Determine the Fibonacci code of order m = 3 up to the first 31 integers
(Clue: use level-three coding and be sure to obtain a prefix code).

10.3 (M): Determine the Golomb code with parameter m = 3 for integers i = 0 to
i = 12.

10.4 (M): Determine the step-by-step coding assignment in dynamic Huffman coding
for the message sequence AABCABB and the resulting coding efficiency.

10.5 (M): Determine a Lempel–Ziv code for the 30-symbol sequence

ABBABBBABABAAABABBBAABAABAABAB

and the corresponding compression rate.

17 See: D. A. Lelewer and D. S. Hirschberg, Data compression. Computing Surveys, 19 (1987), 261–97,
www.ics.uci.edu/∼dan/pubs/DataCompression.html and D. J. C. MacKay, Information Theory, Inference
and Learning Algorithms (Cambridge: Cambridge University Press, 2003).

11 Error correction

This chapter is concerned with a remarkable type of code, whose purpose is to ensure that
any errors occurring during the transmission of data can be identified and automatically
corrected. These codes are referred to as error-correcting codes (ECC). The field of
error-correcting codes is rather involved and diverse; therefore, this chapter will only
constitute a first exposure and a basic introduction of the key principles and algorithms.
The two main families of ECC, linear block codes and cyclic codes, will be considered.
I will then describe in further detail some specifics concerning the most popular ECC
types used in both telecommunications and information technology. The last section
concerns the evaluation of corrected bit-error-rates (BER), or BER improvement, after
information reception and ECC decoding.

11.1 Communication channel

The communication of information through a message sequence is made over what
we shall now call a communication channel or, in Shannon’s terminology, a channel.
This channel first comprises a source, which generates the message symbols from
some alphabet. Next to the source comes an encoder, which transforms the symbols or
symbol arrangements into codewords, using one of the many possible coding algorithms
reviewed in Chapters 9 and 10, whose purpose is to compress the information into the
smallest number of bits. Next is a transmitter, which converts the codewords into physical
waveforms or signals. These signals are then propagated through a physical transmission
pipe, which can be made of vacuum, air, copper wire, coaxial wire, or optical fiber.
At the end of the pipe is a receiver, whose function is to convert the received signals into
the original codeword data. Next comes a decoder, which decodes and decompresses
the data and restitutes the original symbol sequence to the message’s recipient. In an
ideal communications channel, there is no loss, nor is there any alteration of the message
information thus communicated. But in realistic or nonideal channels, there is always
a finite possibility that a part of this information may be lost or altered, for a variety of
physical reasons, e.g., signal distortion and additive noise, which will not be analyzed
here. The only feature to be considered here is that a fraction of the received codewords
or symbols may differ from the ones that were transmitted. In this case, it is said that
there exist symbol errors.

11.1 Communication channel 209

Figure 11.1 Basic layout of error-correction (EC) coding and decoding within a communication
channel (OH = overhead).

We may just see ECC as another type of coding step or “coding layer,” which is to be
inserted in the message transmission chain. More specifically, error-correction encoding
should be performed after data encoding (prior to transmission) and decoding (error
correction) should be performed before data decoding (after reception), as illustrated in
Fig. 11.1. As the figure indicates, the coded message to be transmitted is now referred
to as a payload. Let us refer to the originator’s message as the data payload. The key
purpose of ECC is to ensure that the payload arrives at the destination with the smallest
possible probability of symbol errors. The tax to pay for ECC implementation is that
some additional information must be included in the message code, referred to as control
bits. Such control bits, which disappear after ECC decoding, correspond to what is called
overhead information, or “overhead” for short.

How does ECC work? A first and most basic approach consists of appending a certain
number of redundancy bits to the payload data. The decoder then uses these redundancy
bits to decide whether (a) the payload bits have been properly detected, and (b) any
resulting corrective action is required to restore the “errored” bit (as telecom jargon
goes) to their correct initial value. An obvious redundancy scheme is to repeat the

210 Error correction

information a certain number of times. It is just like communicating a phone number or
someone’s name over a poor telephone connection or in noisy surroundings. By repeating
the information two or three times, the hope is that the number or the name spelling is
going to be unambiguously communicated. For instance, one can transmit 0000 instead
of a single 0 symbol, and 1111 instead of a single 1 symbol. According to this code, the
received sequence (underscores introduced for clarity)

0010 1111 0111 1011

is interpreted as very likely to represent the payload message:

0000 1111 1111 1111.

In the above guess of the correct message, we have followed an intuitive rule of majority
logic. The bit errors were automatically corrected based on the fact that the three bit
anomalies in the four-bit groups were easily identifiable. However, there is no absolute
certainty that such an intuitive “majority-rule” decoding may yield the actual payload.
Indeed, if two errors occur in any of the above four-bit words (however less likely the
event), receiving 1100 or any other permutation thereof could be decoded as 1111 or
0000, while the correct codeword could have been either 0000 or 1111, which represents
an undecidable problem. In such a case, majority logic fails to correct errors, unless more
redundancy bits are used. Clearly, decoding reliability grows with increasing information
redundancy and overhead, but at the expense of wasting the channel transmission capacity
(a concept that we will have to develop in the next chapter).

The two following sections describe efficient and far smarter ways to correct bit errors
with minimal redundancy or overhead, as based on the two main ECC families called
linear block codes and cyclic codes.

11.2 Linear block codes

A first possible strategy for error correction is to transmit the information by slicing
it into successive blocks of a fixed, n-bit length. By convention, the first segment of
the block is made of k payload bits, corresponding to 2k possible (payload) message
sequences. The second segment is made of m = n − k bits, which we shall call parity
bits, and which will be used for EC coding. These m parity bits represent the overhead
information. We thus have an (n, k) block made of n bits, which contains k payload bits,
and n − k parity bits. This arrangement is most generally referred to as a linear block
code.

By definition, the bit rate B is the number of payload bits generated or received per
unit time (e.g., B = 1 Mbit/s). It is also the rate at which payload bits are encoded by the
transmitter and decoded by the receiver, in the absence of ECC. The code rate is defined
as the ratio R = k/n, which represents the proportion of payload bits in the block (1 − R
representing the redundancy or overhead proportion). To provide decoded or corrected
data at the initial payload-bit-rate B, the encoded-block bit rate should be increased by
a factor 1/R, corresponding to a percent additional bandwidth of 1/R − 1, which is

11.2 Linear block codes 211

referred to as the percent bandwidth expansion factor. The rate at which bit errors are
detected is called the bit error rate (BER). The key effect of ECC is, thus, to reduce the
BER by orders of magnitude, literally! The intriguing fact, however, is that there is no
such a thing as “absolute” error correction, which would provide BER = 0 × 100 to all
orders. The reality is that ECC may provide BER reduction to any arbitrary order, but
there is a tax to pay for reaching this “absolute” by means of increasingly sophisticated
ECC algorithms with increasingly longer overheads.

How do ECC linear block codes work? The task is to find out an appropriate coding
algorithm for the parity bits, making it possible, on EC decoding, to detect and correct
errors in the received block, with adequate or target precision. Because such an algorithm
begins with the input data, the approach is called forward error correction, or FEC.1

The following description requires some familiarity with basic matrix-vector formalism.
We focus now on how linear block codes are actually generated. Define first the input

message/payload bits by the k-vector X = (x1 . . . xk), and the block code (EC encoder
output) by the n-vector Y = (y1 . . . yn). The block-code bits yi are calculated from the
linear combination:

yi = g1i x1 + g2i x2 + · · · + gki xk, (11.1)

where glm (l = 1 . . . k, m = 1 . . . n) are binary coefficients. This definition can be put
into a vector-matrix product, Y = XG̃, or, explicitly,

Y = (y1 . . . yn) = (x1 x2 . . . xk)

g11 g12 . . . g1n

g21 g22
...

...
...

gk1 gkn

 ≡ XG̃. (11.2)

The matrix G̃ is called the generator matrix. It is always possible to rewrite the generator
matrix under the so-called systematic form:

G̃ = [Ik |P] =

1 0

0 1
...

...
...

0 1

∣∣∣∣∣∣∣∣∣∣

p11 p21 . . . p1m

p12 p22
...

...
...

p1k pkm

 , (11.3)

where Ik is the k × k identity matrix (which leaves the k message bits unchanged) and
P is an m × k matrix which determines the redundant parity bits. Thus the encoder
output Y = XG̃ = X [Ik |P] is a payload block of k bits followed by a parity block of
m = n − k bits.2 This arrangement, where the payload bit-sequence is left unchanged
by the EC encoder, is called a systematic code.

1 There exist possibilities for backward error correction (BEC), but the approach means some form of
backward-and-forward communication between the two ends of the channel, at the high expense of channel
use or bandwidth waste.

2 Note that in another possible convention for the systematic form/code, as described in some textbooks, the
parity bits may instead precede the payload bits.

212 Error correction

For future use, we define the n × m parity-check matrix:

H̃ = [PT|Im] =

p11 p12 . . . p1k

p21 p22
...

...
...

p1m pmk

∣∣∣∣∣∣∣∣∣∣

1 0

0 1
...

...
...

0 1

 , (11.4)

where PT is the transposed matrix of P (note how their coefficients are symmetrically
permuted about the diagonal elements). We note then the important property

H GT = G H T = 0, (11.5)

which stems from

H GT = [PT|Im] ·
[

Ik

PT

]
= PT + PT ≡ 0 = (H GT)T = G H T. (11.6)

In this expression, we have used the property that for binary numbers x , the sum x + x
is identical to zero (0 + 0 = 1 + 1 ≡ 0). From the property in Eq. (11.5), we have

Y H̃ T = 0, (11.7)

which stems from Y H̃ T ≡ XG̃ H̃ T = X (G̃ H̃ T) = 0.
We consider now the received block code, which we can define as the n-vector Z .

Since the received block code is a “contaminated” version of the original block code Y ,
we can write Z in the form:

Z = Y + E, (11.8)

where E is an error vector whose ith coordinate is 0 if there is no error and 1 otherwise.
Post-multiplying Eq. (11.8) by H̃ T and using the property in Eq. (11.7), we obtain

S = Z H̃ T = (Y + E)H̃ T = E H̃ T. (11.9)

The m-vector S is called the syndrome. The term “syndrome” is used to designate the
information helping to diagnose a “disease,” which, here, is the error “contamination”
of the signal. A zero-syndrome vector means that the block contains no errors (E = 0).
As the example described next illustrates, single-error occurrences (E has only one
nonzero coordinate) are in one-to-one correspondence with a given syndrome S. Thus
when computing the syndrome S = Z H̃ T at the receiver end, one immediately knows
two things:

(a) Whether there are errors, as indicated by S �= 0 ;
(b) In the assumption that it is a single-error occurrence, where it is located.

At this point, we should illustrate the process of error detection and error correction
through the following basic example.

Consider the block code (n, k) = (7, 4), which has k = 4 message bits and m = 3
parity bits. Such a block, which is of the form n = 2m − 1 and k = n − m, with m ≥ 3,

11.2 Linear block codes 213

Table 11.1 Message words and corresponding block
codes in an example of a Hamming code (7.4).

Message word X Block code Y

0000 0000 000
0001 0001 111
0010 0010 011
0011 0011 100
0100 0100 101
0101 0101 010
0110 0110 110
0111 0111 001
1000 1000 110
1001 1001 001
1010 1010 101
1011 1011 010
1100 1100 011
1101 1101 100
1110 1110 000
1111 1111 111

is referred to as a Hamming code. According to the definition in Eq. (11.3), we define
the following generator matrix (out of many other possibilities)

G̃ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1 1 0
1 0 1
0 1 1
1 1 1

 , (11.10)

which gives, from Eq. (11.4), the parity-check matrix

H̃ =

1 1 0 1

1 0 1 1
0 1 1 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 (11.11)

and its transposed version

H̃ T =

1 1 0
1 0 1
0 1 1
1 1 1

1 0 0
0 1 0
0 0 1

. (11.12)

The 2k = 16 possible message words X and their corresponding block codes Y , as
calculated from Eqs. (11.2) and (11.10), are listed in Table 11.1. For clarity, the parity
bits are shown in bold numbers. As expected, the block codes are made of a first sequence

214 Error correction

x
(1,0)

(1,1)

(0,1)

(0,0)

(1,1,0)

(1,0,0)(0,0,0)

(0,1,0)

(1,1,1)(0,1,1)

z

x

y

(1,0,1)(0,0,1)

y

Figure 11.2 Placing codewords of two or three bits in the vertices of a square or a cube,
respectively, to illustrate Hamming distance.

of four (original) messages bits followed by a second sequence of three parity bits. For
instance, the message codeword 0111 is encoded into the block code 0111 001, where
the three bits on the right are the parity bits.

For future use, I introduce the following definitions in ECC formalism:

� Hamming weight w(X): number of 1 bits in a given (block) codeword X .
� Hamming distance d(X, Y) between two codewords X, Y : number of bit positions

in which the two codewords differ; consequently, the Hamming weight w(X) is the
distance between a given codeword X and the all-zero codeword; also note the property
d(X, Y) = w(X + Y) = w(X − Y).

� Minimum Hamming distance dmin: minimum number of 1 bits in the block codewords
(excluding the all-zero codeword). Consequently, dmin is also the minimum number
of bit positions by which any codeword differ. It is readily checked from the example
in Table 11.1 that dmin = 3, which is a specific property of Hamming codes.

It should be noted that the Hamming distance is a mathematical distance in the strict
definition of the term, as described in Chapter 5, when introducing the Kullbach–
Leibler distance between two probability distributions. To illustrate the meaning of
Hamming distance, Fig. 11.2 shows that it is possible to place all the different two-
bit or three-bit codewords ((ai a j) or (ai a j ak)) on the vertices of a square or a cube,
following the Cartesian coordinate system x = ai , y = a j , z = ak , which corresponds
to the vectors (x, y, z) = (ai , a j , ak). According to definition, the Hamming distance
between codeword (0, 0) and (1, 0) or (1, 1) is d = 1 or d = 2, respectively. Likewise,
the distance between (0, 0, 0) and (1, 0, 0) or (1, 0, 1) or (1, 1, 1) is d = 1 or d = 2 or

11.2 Linear block codes 215

Table 11.2 Syndrome vector S = (s1, s2, s3)
associated with single-error patterns E =
(e1, e2, e3, e4, e5, e6, e7) in the Hamming block
code (7, 4) defined in Table 11.1.

Error pattern E Syndrome S

0000000 000
1000000 110
0100000 101
0010000 011
0001000 111
0000100 100
0000010 010
0000001 001

d = 3, respectively. We see from the illustration that the Hamming distance does not
correspond to the Euclidian distance, but rather to the smallest number of square or cube
edges to traverse in order to move from one point to the other.

Going back to our (n, k) = (7, 4) block code example, assume next that the received
block Z contains a single bit error, whose position in the block is unknown. If the error
concerns the first bit of Z = Y + E , this means that the value of the first bit of Y has been
increased (or decreased) by 1, corresponding to the error vector E = (1, 0, 0, 0, 0, 0, 0).
For an error occurring in the second bit, we have E = (0, 1, 0, 0, 0, 0, 0), and so on,
to bit seven. For each single-error occurrence, we can then calculate the corresponding
syndrome vector using the relation S = E H̃ T in Eq. (11.9). The result of the computation
is shown in Table 11.2. It is seen that a unique syndrome corresponds to each error
occurrence. For instance, if the syndrome is S = (0, 1, 1), we know that a bit error
occurred in the third position of the block sequence, and correction is made by adding 1
to the bit (equivalently, by switching its polarity, or by adding E to Z). Thus any single-
error occurrence (whether in payload or in parity bit fields) can be readily identified and
corrected.

What happens if there is more than one error in the received block? Consider the
case of double errors in our (n, k) = (7, 4) example. The possibilities of a single bit
error correspond to seven different error patterns. For double errors, the number of
possibilities is C2

7 = 7!/[2!(7 − 2)!] = 21, corresponding to 21 different error patterns.
Since the syndrome is only three bits, it can only take 23 − 1 = 7 configurations. Thus,
the syndrome is no longer associated with a unique error pattern. Here, the seven
syndrome configurations correspond to 7 + 21 = 28 error patterns of either one- or two-
bit errors. It is an easy exercise to determine the actual number of error patterns associated
with each syndrome. For instance, the results show that S = (0, 0, 0), S = (0, 0, 1), S =
(0, 1, 1) and S = (1, 0, 1) are associated with one, two, three and four patterns of two-bit
errors, respectively. Thus, syndrome decoding can only detect the presence of errors, but
cannot locate them with 100% accuracy, since they are associated with more than one
error pattern. It is clear that with Hamming codes having greater numbers of parity bits,
this imperfect correction improves in effectiveness, as the mapping E → S becomes

216 Error correction

less redundant. The approach is, however, costly in bandwidth use, and error correction
is, as we have announced, not “absolutely” efficient. This situation illustrates the fact that
in most cases, syndrome decoding cannot determine the exact error pattern E , but only
the one that is most likely to correspond to the syndrome, E0. The Hamming distance
between E and E0 is minimized but is nonzero. Therefore, the substitution Z → Z + E0

represents a best-choice correction rather than an exact corrective operation. This is
referred to as maximum-likelihood decoding.

As we have seen, the 2n−k different syndromes allow the absolute identification of
any single bit error in the (n, k) block code. Yet, each of these vectors corresponds to a
finite number of multiple bit errors, albeit such occurrences are associated with lower
and rapidly decreasing probabilities. For a block code of length n, there actually exist 2n

possible error patterns (from zero to n bit errors). Out of these sets of error possibilities,
syndrome decoding is able to detect and correct 2k single bit errors, as we have seen
earlier. What about the remaining error patterns, which contain more than one bit error?
These are of two kinds. Since the block code has 2k block codewords, there exist:
(a) 2k error patterns that exactly match any of the block codewords or belong to the
block codeword set, and (b) 2n − 2k error patterns that do not belong to the block
codeword set. In case (a), the syndrome vector is identical to zero (S = (0, 0, 0)), which
means that the errors remain undetected (and for that matter, uncorrected). In case (b),
the syndrome vector is nonzero (S �= (0, 0, 0)), which indicates the existence of errors,
but, as we have seen, such multiple bit errors cannot be corrected. Consider the first
case (a) where the code fails to detect any error, and let us estimate the corresponding
probability, q(E). It is easily established that this probability is given by

q(E) =
n∑

i=1

Ai pi (1 − p)n−i , (11.13)

where p is the probability of a single bit error and Ai is the number of block codewords
having a Hamming weight of i (to recall, having i bits equal to one). We note that Ai for
i = 1, . . . , dmin − 1. It is left as an exercise that in our (n, k) = (7, 4) code example, we
have q(E) < 10−8 for p ≤ 10−3, and q(E) < 10−14 for p ≤ 10−5, which illustrates that
the likelihood of the code to fail in detecting any errors is comparatively small, even at
single-bit-error rates as high as p = 10−5 − 10−3.

In view of the above, the key question coming to mind is: “Given a block code, what
is the maximum number of errors that can be detected and corrected with absolute
certainty?” The rigorous answer to this question is provided by a fundamental property
of linear block codes. This property states that the code has the power to correct any
error patterns of Hamming weight w (or any number of w errors in the block code),
provided that

w ≤
{

dmin − 1

2

}
, (11.14)

where dmin is the minimum Hamming distance, and where the brackets {x} indicate the
largest integer contained in the argument x , namely {(dmin − 1)/2} = �(dmin − 1)/2�.
A formal demonstration of this property is provided in Appendix J. What about error

11.3 Cyclic codes 217

detection? It is simpler to show that the code has the capability to detect up to dmin − 1
errors. Indeed, dmin represents the minimum number of bit positions by which any two
codewords differ. If the distance d(X, Y) between a received codeword Y and a message
code X is such that d(X, Y) < dmin, or equivalently, d(X, Y) ≤ dmin − 1, then Y differs
from X by fewer than dmin positions and, hence, does not belong to the code. The
code is, thus, able to recognize that there exists a number of d(X, Y) errors up to a
maximum of dmin − 1. As we have seen, the code is, however, able to correct up to
{(dmin − 1)/2} of these errors. In the case of Hamming codes, we have seen that dmin =
3. This gives for these codes an error-detection capability of up to dmin − 1 = 2 errors
and an error-correction capability of up to w = 1 errors, independently of the block-code
size.

11.3 Cyclic codes

Cyclic codes represent a subset of linear block codes that obey two essential properties:

(a) The sum of two codewords is also a block codeword;
(b) Any cyclic permutation of the block codeword is also a block codeword.

Cyclic codes corresponding to (n, k) block codes can be generated by polynomials
g(p) of degree n − k. Here, I shall briefly describe the principle of this encoding
method.

Assume a block code Y = (y0 . . . yn−1) of n bits yi , which are now labeled from 0 to
n − 1. From this codeword, we can generate a polynomial

Y (p) = y0 + y1 p + y2 p2 + · · · + yn−1 pn−1, (11.15)

where p is a real variable. We multiply Y (p) by p and perform the following term
rearrangements:

pY (p) = y0 p + y1 p2 + y2 p3 + · · · + yn−1 pn

= y0 p + y1 p2 + y2 p3 + · · · + yn−1(pn + 1) − yn−1 (11.16)

=
[

yn−1 + y0 p + y1 p2 + y2 p3 + · · · + yn−2 pn−1

pn + 1
+ yn−1

]
(pn + 1).

To derive the above result, we have used the property that for binary numbers, subtraction
is the same as addition. Equation (11.16) can then be put in the form:

pY (p)

pn + 1
= yn−1 + Y1(p)

pn + 1
, (11.17)

where

Y1(p) = yn−1 + y0 p + y1 p2 + y2 p3 + · · · + yn−2 pn−1 (11.18)

is the reminder of the division of pY (p) by M = pn + 1, or

Y1(p) = pY (p) mod[M], (11.19)

218 Error correction

where mod[M] stands for “modulo M” (the same way one writes 6:3 = 0 mod[3], or
8:3 = 2 mod[3]). It is seen from the definition in Eq. (11.17) that Y1(p) is a codeword
polynomial representing a cyclically shifted version of Y (p) (Eq. (11.15)). Likewise, the
polynomials Ym(p) = pmY (p) mod[M] are all cyclically shifted versions of the code
Y (p). It is then possible to use the Y (p) polynomials as a new way of encoding messages,
as I show next.

Define g(p) as a generator polynomial of degree n − k, which divides pn + 1. As an
example for n = 7, we have the irreducible polynomial factorization:3

p7 + 1 = (p + 1)(p3 + p2 + 1)(p3 + p + 1)
≡ (p + 1)g1(p)g2(p),

(11.20)

showing that g1(p) = p3 + p2 + 1, g2(p) = p3 + p + 1, (p + 1)g1(p) and
(p + 1)g2(p) are possible generator polynomials for k = 4 (first two) and k = 3
(last two). Define next the message polynomial X (p) of degree k − 1:

X (p) = x0 + x1 p + x2 p2 + · · · xn−1 pk−1. (11.21)

We can now construct a cyclic code for the 2k possible messages X (p) according to the
definition:

Y (p) = X (p)g(p), (11.22)

where g(p) is a generator polynomial. Equation (11.21) represents a polynomial version
of the previous matrix definition in Eq. (11.2), i.e.,Y = XG̃. Although we will not make
use of it here, one can define the parity-check polynomial h(p) from the relation

g(p)h(p) = 1 + pn, (11.23)

or equivalently, g(p)h(p) = 0 mod[1 + pn], which is the polynomial version of the
matrix Eq. (11.5), i.e., H GT = G H T = 0.

I illustrate next the polynomial encoding through the example of the (n, k) = (7, 4)
Hamming block code. From Eq. (11.20), we can choose g(p) = p3 + p + 1 as the
generator polynomial (which divides by p7 + 1). The coefficients of the polynomial
Y (p), as calculated from Eq. (11.22) for all possible message polynomials X (p), are
listed in Table 11.3.

It is seen from Table 11.3 that the obtained code representation is not systematic, i.e.,
the message bits no longer represent a separate word at the beginning or end of the code,
unlike in the linear block codes previously seen (Table 11.1). For instance, as the table
shows, the original four-bit message 0111 is encoded into 01100011.

Next, I show how error detection and correction is performed in cyclic codes. Assume
that Z (p) is the result of transmitting Y (p) through a noisy channel. We divide the result
by g(p) and put it in the form:

Z (p) = q(p)g(p) + s(p), (11.24)

3 An irreducible polynomial, like a prime number, can be divided only by itself or by unity.

11.4 Error-correction code types 219

Table 11.3 Message polynomial coefficients and correspond-
ing cyclic codeword polynomial coefficients in the (7, 4) block
code example, as corresponding to the generator polynomial
g(p) = p3 + p + 1.

Message word Cyclic code
X (p) x3x2x1x0 Y (p) y6y5y4y3y2y1y0

0000 0000000
0001 0001011
0010 0010110
0011 0011101
0100 0101100
0101 0100111
0110 0111010
0111 0110001
1000 1011000
1001 1010011
1010 1001110
1011 1000101
1100 1110100
1101 1111011
1110 1100010
1111 1101001

where q(p) and s(p) are the quotient and the remainder of the division, respectively.
If there were no errors, we would have Z (p) = Y (p) = X (p)g(p), meaning that the
quotient would be the original message, q(p) = X (p), and the remainder would be
zero, s(p) = 0. As done previously, we call s(p) the syndrome polynomial. A nonzero
syndrome means that errors are present in the received code. As previously shown
for the vectors E, S, it is possible to map the error polynomial e(p) into s(p), which
makes it possible to associate syndrome and error patterns. Looking at Table 11.3,
we observe that the minimum Hamming distance for this cyclic code is dmin = 3.
According to Eq. (11.14), the Hamming weight of error patterns that can be corrected is
w ≤ {(dmin − 1)/2} = 1, meaning that only single errors can be corrected. As previously
discussed, this is a general property of Hamming codes, which is not affected by the
choice of cyclic coding. The capabilities of error detection and correction of various
cyclic codes are discussed next.

11.4 Error-correction code types

So far, this chapter has provided the basic conceptual tools of ECC principles and
coding or decoding algorithms. Here, I shall complete this introduction by review-
ing different ECC types used in information technologies (data standards) and
telecommunications (packet or frame standards), as well as their error-correction
capabilities.

220 Error correction

Hamming codes

As we have seen in Section 11.2, these are linear block codes of the form (n, k) =
(2m − 1, n − m), with m ≥ 3. The minimum distance of a Hamming code was shown to
be dmin = 3, giving a correction capability of one-bit error.

Hadamard codes

These are linear block codes of the form (n, k) = (2m, m + 1), whose 2m+1 codewords
are generated by Hadamard matrices.4 It is left as an exercise to verify this statement and
property. The minimum distance is dmin = n/2 = 2m−1, yielding a correction capability
of {(2m−1 − 1)/2} or 3–7 bit errors for m = 4 − 5.

Cyclic redundancy check (CRC) codes

This is the generic name given to any cyclic code used for error detection. Most data
packet or framing standards include a “CRC” trailer field, which ensures error correction
for the packet or frame payload. Binary CRC codes (n, k) can detect error bursts of
length ≤ n − k, as well as various other error-burst patterns, such as combinations of
errors up to a maximum of dmin − 1. CRC codes can correct all error patterns of odd
Hamming weight (odd numbers of bit errors) when the generator polynomial has an
even number of nonzero coefficients.

Golay code

This can be viewed equivalently as a (23, 12) linear block code, or a (23, 12) cyclic code.
In the last case, the code is generated by either of the two polynomials

g(p) = 1 + p2 + p4 + p5 + p6 + p10 + p11,

4 By definition, a Hadamard matrix Mn is an nxn binary matrix (n = 2m), in which each row is different
from all the others by exactly n/2 positions. One row must contain only 0 bits, thus all other rows have n/2
zeros and n/2 ones. The smallest Hadamard matrix (out of four possibilities) is:

M2 =
(

0 0
0 1

)
.

A property of the Hadamard matrices is that it is possible to construct M2n from Mn , as follows:

M2n =
(

Mn Mn

Mn M̄n

)
,

where M̄n is the complementary matrix of Mn (meaning that all bits values are switched). Thus, for M4 we
obtain:

M4 =
(

M2 M2

M2 M̄2

)
≡

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 .

The key property is that the rows of Mn and M̄n form a complete set of 2n codewords, which correspond to
a linear block code (n, k) of length n = 2m with k = m + 1 and minimum distance dmin = n/2 = 2m−1.

11.4 Error-correction code types 221

or

g(p) = 1 + p + p5 + p6 + p7 + p9 + p11,

which are both dividers of 1 + p23. The corresponding minimum distance is dmin = 7,
corresponding to a correction capability of three-bit errors.

Maximum-length shift-register codes

These are cyclic codes of the form (2m − 1, m) with m ≥ 3, which are generated by
polynomials of the form g(p) = (1 + pn)/h(p), where h(p) is a primitive polynomial of
degree m (meaning an irreducible polynomial dividing 1 + pq with q = 2m − 1 being
the smallest possible integer). The minimum distance for this code is dmin = 2m−1,
indicating the capability of correcting a maximum of w = {2m−1 − 1/2} simultaneous
errors. For instance, the code (15, 4) has a three-bit-error correction capability. The code
rate (number of message-payload bits divided by the block length) is R = 4/15 = 26%,
which is relatively poor in terms of bandwidth use. The maximum-length code sequences
are labeled as “pseudo-noise,” owing to their auto-correlation properties, which closely
emulate white noise.

Bose–Chaudhuri–Hocquenghem (BCH) codes

These are cyclic codes of the form (2m − 1, k) with m ≥ 3, n − k ≤ mt , where m is an
arbitrary positive integer, and t is the number of errors that the code can correct (not all
m, t values being yet eligible). The BCH codes are generated by irreducible polynomials
dividing 1 + p2m−1. The first of these polynomials is g(p) = 1 + p + p2, corresponding
to the block (7, 4) with t = 1. The minimum distance for BCH codes is dmin = 2t + 1
= 3, 5, 7, . . . corresponding to error-correcting capabilities of t = 1, 2, 3, . . . , respec-
tively. For instance, the block (31, 11) with t = 5 can be corrected for a number of errors
corresponding to almost half of the 11 message bits, while the code rate is R = 11/31 =
35.5%. Table 11.4 lists the possible parameter combinations (m, n, k, t) for BCH codes
up to m = 6 corresponding to block lengths 7 ≤ n ≤ 63, and their generating polyno-
mials, as expressed in octal form.5 Extended lists of BCH codes and polynomials for
m ≤ 8 and m ≤ 34 can be found in.6

5 The octal representation of a polynomial is readily understood by the following two examples, showing first
the representation of the polynomial coefficients in binary, then in decimal, then, finally, in octal:

Q1(p) = p3 + p + 1

= 1 × p3 + 0 × p2 + 1 × p + 1 ≡ 1011binary

≡ 19decimal

= 2 × 81 + 3 × 80 = 23octal,

Q2(p) = p9 + p7 + p6 + p4 + 1 ≡ 101101001binary

≡ 721decimal

= 3 × 83 + 5 × 82 + 2 × 81 + 1 × 80 ≡ 3521octal.

6 J. G. Proakis, Digital Communications (New York: McGraw Hill, 2001), pp. 438–9, and other related
references, therein.

222 Error correction

Table 11.4 List of BCH codes with block lengths 7 ≤ n ≤ 63, and their generating polynomials g(p),
expressed in octal.

m n k t g(p) m n k t g(p)

3 7 4 1 13 6 63 57 1 103
4 15 11 1 23 51 2 12471

7 2 721 45 3 1701317
5 3 2467 39 4 166623567

36 5 1033500423
5 31 26 1 45 30 6 157464165547

21 2 3551 24 7 17323260404441
16 3 107657 18 10 1363026512351725
11 5 5423325 16 11 6331141367235453
6 7 313365047 10 13 472622305527250155

7 15 5231045543503271737

Reed–Solomon (RS) codes

These represent a subfamily of BCH codes based on a specific arrangement, noted
RS(N , K). The code block is made of N symbols comprising K message symbols
and N − K parity symbols. The message or parity symbols of length m are nonbinary
(e.g., m = 8 for byte symbols). The total block length is, thus, Nm. The RS code
format is RS(N = 2m − 1, K = N − 2t). Its minimum distance is dmin = N − K + 1,
corresponding to a symbol error-correction capability of t = (N − K)/2. The code rate
is R = (N − 2t)/N = 1 − 2t/N . For instance, the RS(255, 231) code having N = 255
symbols (m = 8) and t = 12 (K = 231) corresponds to a code rate of 90% (or a
relatively small bandwidth expansion factor of N/K − 1 = 10.4%. Thus, symbol errors
can be corrected up to about 1/20 of the block length with only N − K = 24 symbols,
representing an ECC overhead of nearly 10%. This example illustrates the power of RS
codes and justifies their widespread use in telecommunications.

Concatenated block codes

It is possible to concatenate, or use two different ECCs successively. This is usually done
with a nonbinary ECC (outer code), which is labeled (N , K) and a binary ECC (inner
code), which is labeled (n, k). The message coding begins with the outer code and ends
with the inner code, yielding a block of the form (nN , kK), meaning that each of the K
nonbinary symbols is encoded into k binary symbols, and similarly for the parity bits.
At the receiving end, the block successively passes through the inner decoder and then
the outer decoder. The corresponding code rate and minimum Hamming distance are
given by R′ = kK/nN and d ′

min = dmin Dmin, meaning that both parameters are given
by the products of their counterparts for each code. Since the code rates k/n and K/N
are less than unity, the resulting code rate is substantially reduced. However, the error-
correction capability w = {(dmin Dmin − 1)/2} is substantially increased, approximately
as the square of that of the individual codes. Using for instance the concatenation of

11.4 Error-correction code types 223

Figure 11.3 Two examples of rate 1/2 convolutional encoders: (a) systematic, with constraint
length m = 2; (b) nonsystematic, with constraint length m = 4.

two RS codes of the previous example, RS(255, 231), the code rate is 81% (bandwidth
expansion factor 22%) while the correction capability is 71 bit errors, representing 31%
of the initial message block length.

Convolutional codes

These are linear (n, k) block codes with rate R = k/n, using a transformation rule,
which is a function of the m last transmitted bits. The number m is called the code’s
constraint length. The m − 1 input bits are memorized into shift registers, which are
all initially set to zero. Two examples of rate 1/2 convolutional encoders are provided
in Fig. 11.3. The first example corresponds to an encoder with constraint length m =
2. It outputs one bit, which is identical to the input (y(1)

i = xi), and a second bit,
which is the sum (modulo 2) of the last two input bits (y(2)

i = xi + xi−1). Because
the input message is reproduced in the output, this convolutional code is said to be
systematic. The second example in Fig. 11.3 corresponds to a nonsystematic, m = 4
convolutional code. Another possibility is to feedback the output of one or several shift
registers to the encoder input. This is referred to as a recursive convolutional encoder.
The code examples shown in Fig. 11.3 are said to be nonrecursive. For relatively small
values of m, decoding is performed through the Viterbi algorithm,7 which is based on
a principle of optimal decision for block error correction. It is beyond the scope of this
introduction to enter the complexities of decoding algorithms for convolutional codes.
Suffice it here to state that their error-correction capabilities can be tabulated according
to their code rate k/n.8 For 1/n codes with constraint length m, an upper bound for the

7 See, for instance: http://en.wikipedia.org/wiki/Viterbi_algorithm.
8 J. G. Proakis, Digital Communications (New York: McGraw Hill, 2001), pp. 492–6.

224 Error correction

Encoder 1

Encoder 2

xi

Input Outputs

Interleaver

Systematic

Output I

Output II

Figure 11.4 Generic layout of turbo encoder.

minimum Hamming distance dmin is given by the following formula:

dmin ≤ min
p≥1

{
2p−1

2p − 1
(m + p − 1)n

}
. (11.25)

It is easily checked that with n = 2 and m = 3, for instance, the distance is bounded
according to dmin ≤ 5, corresponding to a maximum of two-bit-error correction. Con-
volutional codes are commonly used in mobile-radio and satellite communications, and
in particular in the wireless-connection standard called Bluetooth.

Turbo codes

These high-performance codes represent a relatively recent (1993) and significant
advance in the field of ECC. The principle is that the turbo encoder generates three
sub-blocks, as illustrated in Fig. 11.4. As the figure shows, the first sub-block is the k-bit
block of payload data that is output as uncoded and, thus, representing the systematic
output. The second sub-block (output I) contains m/2 parity bits for the payload, com-
puted using a convolutional code. The third sub-block (output II), also computed through
a convolutional code, contains m/2 parity bits for a known or fixed pseudo-random per-
mutation of the input payload bits. Such a permutation is effected through an interleaver,
as seen in the figure. This pseudo-random interleaving makes the output I and output II
sub-blocks substantially different from each other, at least in a large majority of input
payload cases. The rationale in this approach is to ensure that one of these two sub-blocks
has a high Hamming weight, or more ones than zeros, which (as it can be shown) makes
the codeword identification and decoding easier than in the low-weight case. Thus, hav-
ing two parallel encoders with substantially different or virtually uncorrelated outputs,
corresponds to a “divide-and-conquer” ECC strategy. Here, we will not venture into the
advanced principles of turbo decoding, but it is worth providing a high-level description

11.4 Error-correction code types 225

of the corresponding strategy. The main task of the convolutional decoder is to compute
an integer number I for each received bit. This number, called a soft bit, which is output
in the interval [−127, 127], measures the likelihood for the received bit to be a 0 or a 1.
The likelihood is measured as follows: I = −127 means certainly 0, I = −100 means
very probably 0, I = 0 means equally likely to be either 0 or 1, I = +100 means very
likely to be 1, and I = +127 means certainly likely to be 1. In the implementation, two
parallel convolutional decoders are used to generate such likelihood measures for each of
the m/2 bit parity sub-blocks and for the k-bit payload sub-block. Using their likelihood
data, the two decoders can then construct two hypotheses for the k-bit payload pattern.
These bit-pattern hypotheses are then compared. If they do match exactly, the bit pattern
is output as representing the final decision. In the opposite case, the decoders exchange
their likelihood measures. Each decoder includes the likelihood measure from the other
decoder, which makes it possible for each of them to generate, once again, a new payload
hypothesis. If the hypothesis comparison is not successful, the process is continued; it
may take typically up to 15 to 18 iterations to converge! For turbo code designers, the
matter and mission is to optimize the convolutional codes for efficient error correction,
with maximal code rates (or minimal redundancy) and coding gains. In wireless-cellular
applications, for instance, the two convolutional encoders are typically recursive, with
a constraint length m = 4 and a code rate 1/3, yielding overheads better than 20%.
To quote some representative figures, the coding gain of turbo codes at BER = 10−6

and after 10 iterations may be over 2 dB better than that of concatenated codes, 4.5 dB
better than that of convolutional codes, and represent a 10 dB SNR improvement with
respect to the uncoded BER case.9 As two illustrative examples, suffice it to mention
here the significant applications of turbo codes in the fields of aerospace and satellite
communications10 and 3G/cellular telephony (UMTS, cdma2000).11

This completes our “high-level” overview of the various ECC types and families.
Since ECCs can only correct error patterns with up to w = {(dmin − 1)/2} bit errors,
it is clear that, in the general case, the bit-error rate (BER) is never identical to zero.
Bit errors are generated when the receiver makes the “wrong decision,” namely out-
puts a 1 when the payload bit under consideration was a 0, and the reverse. Here, I
shall not describe the different types of receiver architectures and decision techniques.
Both are intimately dependent upon the type of signal modulation formats, the method
of encoding bits into actual physical signal waveforms, whether electrical, radio, or
optical. The ECC algorithms pervade all communication and information systems, and
at practically all protocol layers: in point-to-point radio links (ground, aeronautical,
satellite, and deep-space), in optical links (from fiber-to-the-home to metropolitan or
core networks and undersea cable systems), in mobile cellular networks (GSM, GPRS,
CDMA, UMTS/3G), in broadband wireless or wireline access (ADSL, 802.11/WiFi),
in metropolitan, regional, and global voice or data transport (Ethernet, ATM, TCP/IP, or

9 www.aero.org/publications/crosslink/winter2002/04.html.
10 www.aero.org/publications/crosslink/winter2002/04.html.
11 See, for instance: http://users.tkk.fi/∼pat/coding/essays/turbo.pdf; http://www.csee.wvu.edu/∼mvalenti/

documents/valenti01.pdf.

226 Error correction

Internet), and in global positioning systems (GPS, Galileo), to quote a few representative
examples.

11.5 Corrected bit-error-rate

As we have seen in this chapter, ECCs can only correct error patterns having up to w =
{(dmin − 1)/2} bit errors. It is clear, then, that in the general case, the bit error rate (BER)
is always nonzero. This is despite the fact that it can be made arbitrarily close to zero
through the appropriate ECC and under certain channel limiting conditions, as will be
described in Chapter 12. Here, I will not detail the optimum receiver decision techniques,
usually referred to as hard-decision and soft-decision decoding, respectively. Suffice it
to state that in the soft-decision decoding approach, the receiver decision is optimized
for each 1/0 symbol type (e.g., use of different matching filters in multilevel signaling),
which eventually minimizes symbol errors. On the other hand, hard-decision decoding
consists of making a single choice between 1 and 0 values for each of the received
symbols. Here, we shall first derive a simple expression for the hard-decision-decoding
BER, which represents a general upper bound, regardless of the type of code used.

The uncorrected BER is defined by the function p(x), which is the probability of mis-
reading 1 or 0 symbols. In the modulation and detection format referred to as intensity-
modulation/direct-detection (IM-DD) or, equivalently, ON–OFF keying (OOK), the
parameter x is the Q-factor.12 Simply defined, the Q-factor is a function of the mean
received signal powers, 〈P0〉 and 〈P1〉, which are associated with the 0 and 1 bit symbols,
respectively, and of the corresponding Gaussian noise powers with standard deviations

σ0 =
√

σ 2
0 , σ1 =

√
σ 2

1 , respectively. The Q-factor thus takes the simple form:13

Q = 〈P1〉 − 〈P0〉
σ1 + σ0

. (11.26)

12 See, for instance: E. Desurvire, Survival Guides Series in Global Telecommunications, Signaling Principles,
Network Protocols and Wireless Systems (New York: J. Wiley & Sons, 2004), Ch. 1; E. Desurvire, Erbium-
Doped Fiber Amplifiers, Device and System Developments (New York: J. Wiley & Sons, 2002), Ch. 3.

13 One can also define the received signal-to-noise ratio (SNR) as follows:

SNR = PS/PN,

where PS ≡ (P1 + P0)/2 is the time-average signal power (assuming pseudo-random bit sequences), and
PN is the total additive noise power. It can be shown (E. Desurvire, Erbium-Doped Fiber Amplifiers, Device
and System Developments (New York: J. Wiley & Sons, 2002), Ch. 3.) that the SNR and the Q-factor are
related through

SNR = Q(Q +√
2)

2
,

or, equivalently, Q = 2
√

2
SNR

1 + √
1 + 4(SNR)

.

For high SNR, the second formula can be approximated by SNR ≈ Q2/2. In optical communications, only
half of the noise power is taken into account, because noise exists in two electromagnetic-field polarizations.
In this case, the above definition reduces to SNR ≈ Q2.

11.5 Corrected bit-error-rate 227

20
18
16
14
12
10

8
6
4
2
0

20191817161514131211109

Q2 (dB)

Lo
g(

B
E

R
)

Figure 11.5 Bit error rate (BER) as a function of the Q-factor expressed as Q2
dB, showing

BER = 10−9 for Q2 = +15.5 dB.

The probability of bit error (BER) is then given by the analytical expression and approx-
imation:

p(Q) = 1

2
erfc

(
Q√

2

)
≈ 1

Q
√

2π
e−

Q2

2 , (11.27)

where erfc(u) is the complementary error function, and where the approximation in
the right-hand side is very accurate for Q ≥ 2. It is easily checked that for Q = 6
we have BER = p(6) ≈ 10−9, corresponding to one mistaken bit out of one billion
received bits. One may also use the decibel definition for the Q-factor according to
Q2

dB = 20 log10 Q, which gives Q2 =+15.5 dB for Q = 6, or BER = 10−9. Figure 11.5
shows a plot of BER = p(Q) = f (Q2

dB). Long before the massive development and
ubiquitous implementation of ECC in optical telecommunications systems, the values
of BER = 10−9 or Q2 = +15.5 dB have been considered the de facto standard for
“error-free” transmission.

Having, thus, defined the bit error probability, p, we can now analyze to what extent
a BER can be corrected, or reduced, by ECC, using a simple demonstration.14 For
simplicity, we shall assume that the communication channel is memoryless. This means
that there is no patterning effect within the possible bit sequences, or between codewords,
namely that bit errors are uncorrelated. In a single transmission event, if m errors
occur in a block of n bits, the corresponding error probability is, therefore, given by
pm(1 − p)n−m . The number of ways the m errors can be arranged in the block is
Cm

n = n!/[m!(n − m)!]. The total error probability is then Cm
n pm(1 − p)n−m .

Consider now the corrected BER. To evaluate the upper bound for the corrected
BER, we must take into account all error possibilities, but include the fact that all error
patterns with a maximum of w = {(dmin − 1)/2} have been effectively corrected. The
corresponding BER is then given by the summation over all error-pattern possibilities

14 Such a simplified demonstration makes no pretence of being accurate or unique.

228 Error correction

from m = w + 1 to m = n, representing the minimum and maximum numbers of incor-
rect bits, respectively, i.e.,

BERcorr ≤
n∑

m=w+1

Cm
n pm(1 − p)n−m . (11.28)

It is seen from Eq. (11.28) that the BER upper-bound in the right-hand side can be
expressed as the finite sum

BERcorr ≤ BERw+1 + BERw+2 + · · · + BERn (11.29)

with

BERm = Cm
n pm(1 − p)n−m . (11.30)

In such a sum, each term corresponds to events of increasing numbers of bit errors,
which have fast-decreasing likelihoods. It is, therefore, possible to approximate the BER
bound by the first few terms in the sum. The accuracy of such approximation wholly
depends on the block length, the value of w and the uncorrected bit-error probability, p.
We shall consider a practical and realistic example, which also illustrates the powerful
impact of ECC in BER correction.

Assume the block code RS(n = 27 − 1 = 127, k = 119), which corresponds to the
minimum Hamming distance dmin = (n − k)/2 = 4. We are, therefore, interested in
evaluating the BER contributions BER5, BER6, etc., in Eq. (11.29), which correspond
to over four bits of noncorrectable errors. We choose a realistic-case situation where the
bit error probability is p = 10−4. From Eq. (11.30), we get, for the first three uncorrected
BER contributions:

BER5 = C5

127 p5(1 − p)122 ≈ 2.5 × 10−12

BER6 = C6
127 p6(1 − p)121 ≈ 4.9 × 10−15

BER7 = C7
127 p7(1 − p)120 ≈ 8.5 × 10−18.

(11.31)

From the above evaluations, it is seen that the series BERm is very rapidly converging,
and that only the first contribution BER5 is actually significant. This means that for
the corrected code, the primary source of errors is the “extra” bit error out of five
error events, which cannot be corrected by the code. It is seen, however, that the ECC
has reduced the BER from p = 10−4 to p = 2.5 × 10−12, which represents quite a
substantial improvement! Figure 11.6 shows plots of the uncorrected and corrected
BER, using in the latter case the definition of BER5 in Eq. (11.31). which illustrates the
BER improvement due to ECC.

Considering ON–OFF keying, and the above example, the uncorrected and corrected
BER correspond to Qunc ≈ 3.73 (Q2

unc = 11.4 dB) and Qcorr ≈ 6.91 (Q2
corr = 16.8 dB).

One can then define the coding gain as the decibel ratio γ = 20 log10[Qcorr/Qunc],
or the decibel difference γ = Q2

corr − Q2
unc, which, in this example, yields γ =

20 log10[6.91/3.73] = 16.4 − 11.8 = 5.4 dB. This coding gain is indicated in Fig. 11.6
through the horizontal arrow. As a matter of fact, a 5.4 dB coding gain means that an
identical BER can be achieved through ECC when the signal-to-noise ratio or SNR is
decreased by 5.4 dB, as the figure illustrates. As mentioned in the previous section, the

11.5 Corrected bit-error-rate 229

20
18
16
 14
12
 10

 8
 6
4
2
0

20191817161514131211109
Q2 (dB)

Lo
g(

B
E

R
)

Coding gain

BER
improvement

Figure 11.6 Uncorrected BER (open circles) and corrected BER (closed circles) as a function of
Q2

dB, showing BER improvement from 10−4 to 2.5 × 10−12, and corresponding coding gain of
5.4 dB.

BER

10−2

10−4

10−6

10−8

10−10

10−12

7 8 9 10 11 12
2
dBQ

Uncorrected

RS(255,239)RS(255,239)
+ RS(255,239)

RS(255,239)
+ RS(255,223)

Figure 11.7 Measured experimental data for uncorrected BER (open circle) and corrected BERs
using RS(255, 239) Reed–Solomon ECC (dashed line), and two concatenations RS(255, 239) +
RS(255, 239) and RS(255, 239) + RS(255, 223).

coding gain can be increased by the concatenation of two ECC codes, one serving as
a first outer code, and the other as a second inner code. This feature is illustrated by
the experimental data15 shown in Fig. 11.7, where Reed–Solomon codes RS(255, k) are
used. As the figure shows, the implementation of a single RS(255, 239) code, which
has a redundancy of 255/239 − 1 = 6.7%, provides a coding gain of about 1.5 dB at
BER = 10−4. The corrected BER is, however, less than BER = 10−12. When this RS

15 Experimental data from: O. Ait Sab and J. Fang, Concatenated forward error correction schemes for long-
haul DWDM optical transmission systems. In Proc. European Conference on Optical Communications,
ECOC’99, Vol. II (1999), p. 290.

230 Error correction

code is concatenated twice, i.e., using RS(255, 239) + RS(255, 239) with a redundancy
of (255/239)2 − 1 = 13.8%, the coding gain is 5.4 dB at BER = 10−5. Alternatively,
one can increase the number of parity bits in the inner code, i.e., using RS(255, 223),
which corresponds to the concatenated code RS(255, 239) + RS(255, 223), which has
a redundancy of 2552/(239 × 223) − 1 = 22.0%. The resulting coding gain is seen to
improve with respect to the previous ECC concatenation, corresponding to 5.8 dB at
BER = 10−5. We also note from the figure that the BER is reduced by more than two
orders of magnitude. Such data illustrate the powerful effect of ECC on error control.
As I have mentioned earlier in this chapter, the BER is always nonzero, meaning that
there is no such thing as an absolute error correction or BER = 0.0 × 100 to infinite
accuracy. Two key questions are: (a) how much a corrected BER can be made close to
zero, and (b) whether there is a SNR (or Q2

dB) limit under which ECCs are of limited
effect in any BER correction? Such questions are answered in Chapter 13, through one
of the most famous Shannon theorems.

11.6 Exercises

11.1 (B): Tabulate the block codewords of the Hamming code (n, k) = (7, 4) defined
by the following generator matrix:

G̃ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1 0 1
1 1 1
0 1 0
1 1 0

 .

11.2 (B): Assuming the Hamming code (n, k) = (7, 4) with the parity-check matrix

H̃ =

1 0 1 1

1 1 0 1
1 1 1 0

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 ,

determine the single errors and corrected codewords from the three received
blocks that are defined as follows:

Z1 = 1010111,

Z2 = 0100001,

Z3 = 0011110.

11.3 (M): With the Hamming code (n, k) = (7, 4) described in the text, whose block
codewords are listed in Table 11.1 and syndrome vectors are listed in Table 11.2,
assume two bit errors in the received blocks. To how many possible error patterns
do each of the syndrome vectors correspond?

11.4 (M): Calculate the probability that the Hamming code (n, k) = (7, 4) described
in the text (with block codewords listed in Table 11.1) fails to detect any multiple

11.6 Exercises 231

bit errors, while assuming single-bit-error probabilities of p = 10−2, 10−3, 10−4,
and 10−5.

11.5 (T): Define a Hadamard code generated from a 4 × 4 matrix, then calculate the
corresponding generator and parity-check matrices.

11.6 (M): Construct a cyclic code from the generator polynomial

g(p) = p3 + p2 + 1

and tabulate the corresponding codewords.

11.7 (M): Construct the systematic nonrecursive convolutional code (n, k) = (3, 1) of
constraint length m = 3 corresponding to the encoder

Xi−1Xi Xi−2

yi
(1) = Xi

yi
(2) = Xi + Xi−2

yi
(3) = Xi + Xi−1 + Xi−2

Draw the corresponding coding tree for up to four input bits a, b, c, d.

12 Channel entropy

This relatively short chapter on channel entropy describes the entropy properties of
communication channels, of which I have given a generic description in Chapter 11
concerning error-correction coding. It will also serve to pave the way towards probably
the most important of all Shannon’s theorems, which concerns channel coding, as
described in the more extensive Chapter 13. Here, we shall consider the different basic
communication channels, starting with the binary symmetric channel, and continuing
with nonbinary, asymmetric channel types. In each case, we analyze the channel’s entropy
characteristics and mutual information, given a discrete source transmitting symbols and
information thereof, through the channel. This will lead us to define the symbol error
rate (SER), which corresponds to the probability that symbols will be wrongly received
or mistaken upon reception and decoding.

12.1 Binary symmetric channel

The concept of the communication channel was introduced in Chapter 11. To recall
briefly, a communication channel is a transmission means for encoded information.
Its constituents are an originator source (generating message symbols), an encoder, a
transmitter, a physical transmission pipe, a receiver, a decoder, and a recipient source
(restituting message symbols). The two sources (originator and recipient) may be discrete
or continuous. The encoding and decoding scheme may include not only symbol-to-
codeword conversion and the reverse, but also data compression and error correction,
which we will not be concerned with in this chapter. Here, we shall consider binary
channels. These include two binary sources X = {x1, x2} as the originator and Y =
{y1, y2} as the recipient, with associated probability distributions p(xi) and p(yi), i =
1, 2. The events are discrete (as opposed to continuous); hence binary channels are one
elementary variant of discrete channels.

A binary channel can be represented schematically through the diagram shown in
Fig. 12.1. Each of the four paths corresponds to the event that, given a symbol xi from
originator source X , a symbol y j is output from the recipient source Y . The conditional
probability of this event is p(y j |xi).

12.1 Binary symmetric channel 233

1x

2x

1y

2y

ε−=1)(11 xyp

ε=)(12 xyp

ε=)(21 xyp

ε−= 1)(22 xypOriginator
source

Noisy channel

Recipient
source

−

−
=

εε
εε

1

1
)(XYP

X Y

Figure 12.1 Binary symmetric channel showing the originator source X = {x1, x2}, the recipient
source Y = {y1, y2}, the conditional probabilities p(y j |xi), and the corresponding transition
matrix P(Y |X).

In the ideal case of a noiseless channel, the two sources are 100% correlated,1 i.e.,

p(y j |xi) = 1 for i = j,
(12.1)

p(y j |xi) = 0 for i �= j,

or p(y j |xi) = δi j , with δi j being the Kronecker symbol. In this case, the channel is ideal
indeed, since the transmission is 100% deterministic, which causes no corruption of
information.

The set of conditional probabilities p(y j |xi) associated with the channel defines a
j × i transition matrix. This matrix, noted P(Y |X), can be written as2

P(Y |X) =
(

p(y1|x1) p(y1|x2)
p(y2|x1) p(y2|x2)

)
. (12.2)

1 Since there is no reason to have a one-to-one correspondence between the symbols or indices, we can also
have p(y j |xi) = 1 for i �= j and p(yi |x j) = 0 for i = j . Thus, a perfect binary symmetric channel can
equivalently have either of the transition matrixes (see definition in text):

P (Y |X) =
(

1 0
0 1

)

or

P (Y |X) =
(

0 1
1 0

)
Since in the binary system, bit parity (which of the 1 or 0 received bits represents the actual 0 in a given
code) is a matter of convention, the noiseless channel can be seen as having an identity transition matrix.

2 According to the transition-matrix representation, one can also define for any source Z = X, Y the prob-
ability vector P (Z) = [p (z1), p (z2)] to obtain the matrix-vector relation P (Y) = P (Y |X) P (X), which
stems from the property of conditional probabilities: p(y j) =

∑
i p(y j |xi)p (xi).

234 Channel entropy

To recall from Chapter 1, the properties of the transition-matrix elements are twofold:

(a) p(y j |x1)p(x1) + p(y j |x2)p(x2) = p(y j);
(b) p(y1|xi) + p(y2|xi) = 1 (column elements add to unity).

The channel is said to be symmetric if its transition matrix P(Y |X) is symmetric, i.e.,
[P(Y |X)]kl = [P(Y |X)]lk , or the matrix elements are invariant by permutation of row
and column indices, i.e.,T P(Y |X) ≡ P(Y |X).

In the case of the ideal or noiseless channel, we have, according to Eqs. (12.1) and
(12.2):

P(Y |X) =
(

1 0
0 1

)
, (12.3)

which is the identity matrix. In the general, or nonideal, case, where the channel is
corrupted by noise, we have p(yi |xi) = 1 − ε and, hence, p(y j �=i |xi) = ε, where ε is a
positive real number satisfying 0 ≤ ε ≤ 1. The smaller ε, the closer the channel is to
ideal or noiseless. The degree of noise “corruption” is, thus, defined by the parameter ε,
which, as we shall see later in this chapter, defines the symbol error probability.

According to the definition in Eq. (4.2), in the most general case the transition matrix
of the binary symmetric channel takes the form:

P(Y |X) =
(

1 − ε ε

ε 1 − ε

)
. (12.4)

A limiting case is given by the parameter value ε = 0.5. In this case, the elements
of the transition matrix in Eq. (12.4) are all equal to p(y j |xi) = 0.5. Thus, given the
knowledge of the originator symbol xi (namely, x1 or x2), there is an equal probability
that the recipient will output any of the symbols y j (namely, y1 or y2). It does not
matter which originator symbol is fed into the channel, the recipient symbol output
being indifferent, as in a perfect coin-flipping guess. In this case, the channel is said to
be useless.

12.2 Nonbinary and asymmetric discrete channels

In this section, I provide a few illustrative examples of discrete communication channels,
which, contrary to those described in the previous section, are asymmetric, and in some
cases, nonbinary. These are referred to as the Z channel, the binary erasure channel, the
noisy typewriter, and the asymmetric channel with nonoverlapping outputs.

Example 12.1: Z channel
This is illustrated in Fig. 12.2. The Z channel is a binary channel in which one of the
two originator symbols (say, x1) is unaffected by noise and ideally converted into a
unique recipient symbol (say, y1), which implies p(y1|x1) = 1 and p(y2|x1) = 0. But
the channel noise affects the other symbols, giving p(y1|x2) = ε and p(y2|x2) = 1 − ε.

12.2 Nonbinary and asymmetric discrete channels 235

1y

2y

1)(11 =xyp

0)(12 =xyp

ε=)(21 xyp

ε−= 1)(22 xyp

Originator
source

Noisy channel

Recipient
source

−

=
ε

ε
10

1
)(XYP

1x

2x

X Y

Figure 12.2 Z channel showing the originator source X = {x1, x2}, the recipient source
Y = {y1, y2}, the conditional probabilities p(y j |xi), and the corresponding transition matrix
P(Y |X).

The corresponding transition matrix is, therefore:

P (Y |X) =
(

1 ε

0 1 − ε

)
. (12.5)

Note that stating that symbol x1 is ideally transmitted through the channel and received
as symbol y1, does not mean that receiving symbol y1 entails certainty of symbol x1

being output by the originator.

Example 12.2: Binary erasure channel
This is illustrated in Fig. 12.3. In the erasure channel, there exists a finite probability
that the recipient source Y outputs none of the symbols from the originator source
X . This is equivalent to stating that Y includes a supplemental symbol y3 = “void,”
which we shall call ∅. We, thus, define the probability of Y having y3 = ∅ for output as
p(∅|x1) = p(∅|x2) = ε. It is easily established that the transition matrix corresponding
to input P(X) = [p(x1), p(x2)] and output P(Y) = [p(y1), p(∅), p(y2)] is defined as
follows:

Y = {y1, y2, y3 = ∅},

P(Y |X) =

 1 − ε 0

ε ε

0 1 − ε

 . (12.6)

236 Channel entropy

1x

2x

1y

= ∅3y

ε−=111p(y x)

ε=∅=∅ 21 x)p(x)p(

01221 == p(y x)p(y x)

ε−= 122 x)p(y
Originator

source

Noisy channel

Recipient
source

−

−
=

ε
εε

ε

10

01

P (Y X)

2y

X Y

Figure 12.3 Binary erasure channel, showing the originator source X = {x1, x2}, the recipient
source Y = {y1, y2}, the conditional probabilities p(y j |xi), and the corresponding transition
matrix P(Y |X), with the recipient source.

Example 12.3: Noisy typewriter
This corresponds to a “typewriter” version of the binary symmetric channel, called the
noisy typewriter, which is illustrated in Fig. 12.4. As seen from the figure, the source
symbols are the characters {A, B, C, . . . , Z}, arranged in a linear keyboard sequence.
When a given symbol character is input to the keyboard, there are equal chances of
outputting the same character or one of its two keyboard neighbors. For instance, letter B
as the input yields either A, B, or C as the output, with p(A | B) = p(B | B) = p(C | B) =
1/3, and so on for the 26 letters (input A yielding Z, A, or B), as illustrated in the figure.
The corresponding transition matrix (reduced here for clarity to six input/output symbol
characters, is the following:

P(Y |X) = 1

3

1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1

. (12.7)

Example 12.4: Asymmetric channel with nonoverlapping outputs
This corresponds to an asymmetric channel with nonoverlapping outputs, which maps
source X = {x1, x2} to source Y = {y1, y2, y3, y4} according to the transition proba-
bilities defined in Fig. 12.5. The property of this channel is that each of the outputs

12.2 Nonbinary and asymmetric discrete channels 237

A

B

C

D

X

Y

Z

…

A

B

C

D

X

Y

Z
…

p(y x) = 1/3

x y

X Y

Originator
source

Recipient
source

Figure 12.4 Noisy typewriter, showing the originator source X = {x1, x2}, the recipient source
Y = {y1, y2}, the conditional probabilities p(y j |xi), and the corresponding transition matrix
P(Y |X), with X, Y = {A, B, C, . . . , Z}.

1x

2x

1y121 1 == p(y x) 0.5p(y x)

Originator
source

Noisy channel

Recipient
source

=

0 1
0 1
1 0
1 0

2
1P (Y X)

2y

X Y

4
y

3y

2423 ==p(y x) 0.5p(y x)

× × =p() 0

Figure 12.5 Asymmetric channel with nonoverlapping outputs, showing the originator source
X = {x1, x2}, the recipient source Y = {y1, y2}, the conditional probabilities p(y j |xi), and the
corresponding transition matrix P(Y |X), with X = {x1, x2} and Y = {y1, y2, y3, y4}.

238 Channel entropy

{y1, y2, y3, y4} has only one corresponding input {x1, x2}. While the output symbols are
random, the input symbols are deterministic, which represents a special case of noisy
channel where uncertainty does not increase, as discussed later in this chapter. It is easily
established that the corresponding transition matrix is:

P(Y |X) = 1

2

1 0
1 0
0 1
0 1

 . (12.8)

The four above examples of asymmetric, nonbinary channels will be used again in
Chapter 13 to illustrate the concept of channel capacity.

12.3 Channel entropy and mutual information

With the examples of the previous section, we can now make a practical use of the abstract
definitions introduced in Chapter 5 concerning conditional entropy (also called equiv-
ocation), H (Y |X), joint entropy, H (X, Y), and mutual information, H (Y ; X), between
two sources X, Y . It is useful to recall here the corresponding definitions and their
relations:

H (Y |X) =−
∑

j

∑
i

p(xi , y j) log p(y j |xi), (12.9)

H (X, Y) = H (Y, X)

= −
∑

j

∑
i

p(xi , y j) log p(xi , y j)

= H (X) + H (Y |X)
= H (Y) + H (X |Y),

(12.10)

H (X ; Y) = H (Y) − H (Y |X)
= H (X) − H (X |Y)
= H (X) + H (Y) − H (X, Y).

(12.11)

We consider first the elementary case of the symmetric binary channel, which was
previously analyzed and illustrated in Fig. 12.1. The input probability distribution is,
thus, defined by p(x1) = q and p(x2) = 1 − q, where q is a nonnegative real num-
ber such that 0 ≤ q ≤ 1. According to definition, the entropy of the input source is
H (X) = −p(x1) log p(x1) − p(x2) log p(x2) ≡ f (q), where

f (q) = −q log q − (1 − q) log(1 − q). (12.12)

The function f (q), which was first introduced in Chapter 4, is plotted in Fig. 4.7. It is seen
from the figure that it has a maximum of f (q) = 1 for q = 0.5, which corresponds to
the case of maximal uncertainty in the source X . The output probabilities are calculated

12.3 Channel entropy and mutual information 239

as follows:

p(y1) = p(y1|x1)p(x1) + p(y1|x2)p(x2)

= (1 − ε)q + ε(1 − q)

= q + ε − 2εq

≡ r

p(y2) = 1 − r.

(12.13)

We find, thus, the entropy of the output source:

H (Y) = f (q + ε − 2εq). (12.14)

Using next the transition matrix P(Y |X) defined in Eq. (12.4) and Bayes’s theorem,
p(x, y) = p(y|x)p(x), we find the joint probabilities p(y1, x1) = (1 − ε)q, p(y1, x2) =
(1 − q)ε, p(y2, x1) = εq and p(y2, x2) = (1 − ε)(1 − q). Replacing these results into
Eq. (12.9), it is easily found that

H (Y |X) = −ε log ε − (1 − ε) log(1 − ε) ≡ f (ε), (12.15)

and, hence,

H (X, Y) = H (X) + H (Y |X) (12.16)

= f (q) + f (ε),

H (X ; Y) = H (Y) − H (Y |X)

= f (q + ε − 2εq) − f (ε). (12.17)

These results can be commented on as follows.
First, we observe that the entropy of the output source H (Y) = f (q + ε − 2εq) is

different from that of the input source H (X) = f (q). Both reach the same maximum of
H = 1 for q = 0.5. Furthermore, for any values of the noise parameter ε,3 the output
source entropy satisfies

H (Y) = f (q + ε − 2εq) ≥ f (q) = H (X), (12.18)

which is illustrated by the family of curves shown in Fig. 12.6, for ε = 0 to ε = 0.35
(noting that the same curves are obtained with ε ↔ 1 − ε). As seen from the figure, the
uncertainty introduced by channel noise (ε) increases the output source entropy H (Y),
which was expected. In the cases q = 0 or q = 1, which correspond to a deterministic
source X (p(x1) = 0 and p(x2) = 1, or p(x1) = 1 and p(x2) = 0), the output source
entropy is nonzero, or H (Y) = f (ε) = f (1 − ε). The corresponding entropy can, thus,
be seen as representing the exact measure of the channel’s noise. It is inferred from
the family of curves in Fig. 12.6 that in the limit ε → 0.5, the output source entropy

3 The parameter ε defines the amount of noise in the binary symmetrical communications channel through
the conditional probabilities p(y j |xi). However, it should be noted that because of the symmetry of the
transition matrix, the same amount of noise is associated with both ε and 1 − ε. Thus, noise increases
for increasing values of ε in the interval [0, 1/2], and decreases for increasing values of ε in the interval
[1/2, 1].

240 Channel entropy

0

0.2

0.4

0.6

0.8

1

10.90.80.70.60.50.40.30.20.10
Probability q

 E
nt

ro
py

 H
(X

),
 H

(Y
)

0.00

0.10

0.15

0.05

0.20

0.25

0.30

0.35=ε

H(X)

H(Y)

Figure 12.6 Input H (X) and output H (Y) source entropies of binary symmetric channel, as
functions of the probability q = p(x1) and channel noise parameter ε.

reaches the uniform limit H (Y) = 1, regardless of the input probability (q). The case
ε = 0.5 corresponds to a maximum uncertainty in the output symbols, i.e., according
to Eq. (12.13): p(y1) = q + ε − 2εq ≡ 0.5 = p(y2), which is independent of the input
probability distribution. It is correct to call this communication channel useless, because
the output symbols are 100% uncorrelated with the input symbols.

Second, we observe from the result in Eq. (12.15) that the equivocation H (Y |X) =
f (ε) is independent of the input probability distribution. This was expected, since
equivocation defines the uncertainty of Y given the knowledge of X . It represents a
measure of the channel’s noise, i.e., H (Y |X) = f (ε). In the limit ε → 0, we have
H (Y |X) → 0, which means that the communication channel (CC) is ideal or noiseless.
The transition matrix of the ideal or noiseless channel is defined in Eq. (12.3). In this case,
Eqs. (12.14)–(12.17) show that all entropy measures are equal, i.e., H (X) = H (Y) =
H (X, Y) = H (X ; Y) = f (q).

Third, we consider the mutual information H (X ; Y) of the binary symmetric channel,
which is defined in Eq. (12.17). Figure 12.7 shows plots of H (Y ; X) as a function of the
input probability parameter q and the channel noise parameter ε for ε = 0 to ε = 0.35
(noting that the same curves are obtained with ε ↔ 1 − ε). The input source entropy
H (X) is also shown for reference.

We observe from Fig. 12.7 that the mutual information H (X ; Y) is never greater
than the input source entropy H (X). This is expected, since, by definition, H (X ; Y) =
H (X) − H (X |Y) ≤ H (X), Eq. (12.11), with the upper bound a result of the fact that
H (X |Y) ≥ 0. When the channel is noiseless or ideal (ε = 0), the mutual information
equals the source entropy and, as we have seen earlier, all entropy measures are equal:

12.3 Channel entropy and mutual information 241

0

0.2

0.4

0.6

0.8

1

10.90.80.70.60.50.40.30.20.10
Probability q

M
ut

ua
l i

nf
or

m
at

io
n

H
(X

;Y
)

0.00

0.10

0.15

0.05

0.20

0.25
0.30

=ε
H(X)

0.35

Figure 12.7 Mutual information H (X ; Y) of binary symmetric channel, as a function of the
probability q = p(x1) and channel noise parameter ε. The input source entropy H (X) is also
shown.

H (X) = H (Y) = H (X, Y) = H (X ; Y) = f (q). As the channel noise (ε) increases, the
mutual information is seen to decrease with 0 ≤ H (X ; Y) < H (X). When the chan-
nel noise reaches the limit ε → 0.5, the mutual information uniformly vanishes or
H (X ; Y) → 0, regardless of the input probability (q). This is the case of the useless
channel.

Finally, we observe from Fig. 12.7 that the mutual information is always maximum
for q = 0.5, regardless of the channel noise ε. The conclusion is that for noisy binary
symmetric channels, the probability distribution that maximizes mutual information is
the uniform distribution.

The above demonstration, based on the example of the binary symmetric channel,
illustrates that in noisy channels the entropy of the output source H (Y) is not a correct
measure of the information obtained from the recipient’s side. This is because H (Y)
also measures the uncertainty introduced by the channel noise, which is not information.
Thus, noise enhances the output source uncertainty without contributing any supple-
mental information according to the definition in Chapter 3. The right measure of the
information available to the recipient is mutual information, i.e., the uncertainty of the
output source H (Y) minus the equivocation H (Y |X). As we have seen, equivocation
is the absolute measure of channel noise, and it is independent of the input probability
distribution. The second important conclusion we have reached is that mutual informa-
tion depends on the input probability distribution. Hence, given a noisy channel, there
must exist an input probability distribution for which the channel’s mutual information
is maximized, meaning that the information obtained by the recipient is maximized. This

242 Channel entropy

conclusion anticipates Shannon’s definition of channel capacity, which will be described
in Chapter 13.

12.4 Symbol error rate

In this last section, we consider channels with sources X, Y having equal sizes (i.e.,
numbers of symbol events), and analyze the effect of channel noise in the transmission
of information from originator to recipient.

As previously established, the effect of channel noise is to increase the uncertainty in
the recipient source Y , as translated by the entropy inequality H (Y) ≥ H (X) with respect
to the input source entropy H (X). As also observed, this increase of uncertainty does
not correspond to additional information. Rather, it corresponds to an uncertainty in the
effective transmission of information from originator to recipient. In noisy symmetric
channels, the transition matrix P(Y |X) is different from identity, which means that there
is no deterministic (or one-to-one) correspondence between the input symbols xi and
the output symbols yi . Short of this unique correspondence between input and output
symbols, any received message (i.e., sequence of symbols) is likely to be corrupted by
a finite amount of symbol errors.

Given xi as input, a symbol error is defined as any discrepancy between the recipient
output symbol yi , which would have been expected with certainty in a noiseless channel,
and the symbol y∗

i actually output by the recipient. For messages of sufficient size (or
number of symbols), the mean error count is called the symbol error rate (SER).

Let us now formalize the SER concept. Given the fact that the two sources X, Y have
equal size N , there exists a one-to-one symbol correspondence xi ↔ yi between them.
To each input message or input symbol sequence xi x j xk, . . ., thus, corresponds a unique
output message or output symbol sequence yi y j yk, . . . , of matching size, in which each
symbol is the faithful counterpart of the symbol of same rank in the input sequence.
With the noisy channel, any error concerning the received symbol yi corresponds to
the joint event (y j , xi �= j). The probability associated with this specific symbol error is
p(y j , xi �= j).

The total channel SER is given by the sum of all possible symbol error probabilities
according to:

SER =
N∑

j=1

p(y j , xi �= j)

=
N∑

j=1

p(y j |xi �= j)p(xi)

= 1 −
N∑

i=1

p(yi |xi)p(xi)

= 1 −
N∑

i=1

p(yi , xi).

(12.19)

12.4 Symbol error rate 243

The second line in Eq. (12.19) expresses the fact that the SER is the probability of
the event complementary to that of the “absolutely zero error” event, the latter being
defined as the sum of all possible “no error” events (yi , xi) of associated probability
p(yi , xi).

According to Eq. (12.19), the SER of the binary symmetric channel is defined as

SER = p(y1|x2)p(x2) + p(y2|x1)p(x1)

= εp(x2) + εp(x1)

= ε
[

p(x1) + p(x2)
]

= ε.

(12.20)

The noise parameter ε, which we used in the earlier section to characterize the binary
symmetric CC noise, thus, corresponds to the channel SER. Given any string of
N input symbols xi x j xk, . . . , xN and the corresponding string of N output symbols
yi y j yk, . . . , yN , the SER gives the probability of any count of errors. For with N suf-
ficiently large, the average error count effectively measured is close to the SER. For
instance, SER = 0.001 = 10−3 corresponds to an average of one error in 1000 trans-
mitted symbols, two errors in 2000 transmitted symbols, etc. This estimation becomes
accurate for sufficiently long sequences, such that N � 1/SER.

More accurately, the SER should refer to a “mean error ratio” rather than an “error
rate.” The term comes from communication systems where symbols are transmitted at
a certain symbol rate, i.e., the number of symbols transmitted per unit time. Given a
symbol transmission rate of N symbols per unit time, the corresponding channel error
rate (or mean error count per unit time) is, thus, N × SER.

In binary channels, the SER is referred to as bit error rate or BER. For sufficiently
long and random bit sequences, the bit probabilities become very nearly equal, i.e.,
p(x1 = “0”) ≈ p(x2 = “1”) = 1/2. According to Eq. (12.20), we have, in this case,

BER ≈ 1

2

[
p(y1|x2) + p(y2|x1)

]

≡ 1

2
[p(0|1) + p(1|0)] .

(12.21)

Most real-life binary channels are asymmetric, meaning that usually, p(0|1) �= p(1|0).
Then the smallest BER is achieved when the sum p(0|1) + p(1|0) is minimized.

As an easy illustration of SER (or BER) minimization, consider the case of the “Z
channel,” which was described earlier. To recall for convenience, the Z channel has the
transition matrix

P(Y |X) =
(

1 ε

0 1 − ε

)
. (12.22)

According to Eq. (12.19), the corresponding symbol error rate is SER = εp(x2) + 0 ×
p(x1) = εp(x2). The SER, thus, only depends on the probability p(x2). Minimizing
the SER is, therefore, a matter of using an input probability distribution such that
p(x2) � p(x1) < 1. In terms of coding, this means that the message sequences to be
transmitted through the communications channel should contain the smallest possible

244 Channel entropy

number of symbols x2, or a number that should not exceed some critical threshold. For
instance, given the constraint ε = p(y1|x2) = 0.25 and a target error rate of SER = 10−2,
we should impose for the code p(x2) ≤ SER/ε = 10−2/0.25 = 0.04. The corresponding
code should not have more than 4% of x2 symbols in any input codeword sequence.
Such a code has no reason to be optimal in terms of the efficient use of bits to transmit
information. The point here is simply to illustrate that given a noisy communication
channel, the SER can be made arbitrarily small through an adequate choice of input
source coding. This conclusion anticipates Shannon’s definition of channel capacity,
which is described in Chapter 13.

Through the above example, we have seen that the channel SER can be minimized
by the adequate choice of source code. The issue of SER minimization should not be
confused with the principle of error-correction codes (ECC), which were described in
Chapter 11. The principle of ECC codes is to reduce the channel SER to an arbitrarily
small or negligibly small level. As we have learnt, error detection and correction are
performed by means of extra redundancy or parity bits, which are included in block
codewords. Such bits represent overhead information, which is meant to detect and cor-
rect errors automatically (up to some maximum), and which is removed once these tasks
are accomplished. Error-correction codes, thus, make it possible to achieve transition
matrices effectively approaching the identity matrix in Eq. (12.3) or Eq. (12.4) with ε

being made arbitrarily small.

12.5 Exercises

12.1 (B): Show that any binary symmetric channel with X, Y as input and output
sources has an invariant probability vector P(X) such that P(Y) = P(X).

12.2 (B): Determine the transition matrix of a channel obtained by cascading two
identical binary symmetric channels, and show that the result is also a binary
symmetric channel.

12.3 (B): A binary channel successfully transmits bit 0 with a probability of 0.6 and
bit 1 with a probability of 0.9. Assuming an input distribution P(X) = (q, 1 − q)
with q = 0.2, determine the output source entropy H (Y).

12.4 (M): A binary symmetric channel with noise parameter ε is used to transmit code-
words of five-bit length. Determine the probabilities of transmitting codewords
with:
(a) One error;
(b) Two errors;
(c) At least two errors;
(d) One burst of two successive errors.

Application: provide in each case the numerical result, assuming that ε = 0.1.

13 Channel capacity and coding theorem

This relatively short but mathematically intense chapter brings us to the core of
Shannon’s information theory, with the definition of channel capacity and the subse-
quent, most famous channel coding theorem (CCT), the second most important theorem
from Shannon (next to the source coding theorem, described in Chapter 8). The formal
proof of the channel coding theorem is a bit tedious, and, therefore, does not lend itself
to much oversimplification. I have sought, however, to guide the reader in as many steps
as is necessary to reach the proof without hurdles. After defining channel capacity, we
will consider the notion of typical sequences and typical sets (of such sequences) in
codebooks, which will make it possible to tackle the said CCT. We will first proceed
through a formal proof, as inspired from the original Shannon paper (but consistently
with our notation, and with more explanation, where warranted); then with different,
more intuitive or less formal approaches.

13.1 Channel capacity

In Chapter 12, I have shown that in a noisy channel, the mutual information,
H (X ; Y) = H (Y) − H (Y |X), represents the measure of the true information contents
in the output or recipient source Y , given the equivocation H (Y |X), which measures the
informationless channel noise. We have also shown that mutual information depends
on the input probability distribution, p(x). Shannon defines the channel capacity C as
representing the maximum achievable mutual information, as taken over all possible
input probability distributions p(x):

C = max
p(x)

H (X ; Y). (13.1)

As an illustrative example, consider first the case of the binary symmetric channel with
noise parameter ε. As we have seen, the corresponding mutual information is given by
Eq. (12.17), which I reproduce here for convenience:

H (X ; Y) = f (q + ε − 2εq) − f (ε), (13.2)

where q = p(x1) = 1 − p(x2), and f (q) = −q log q − (1 − q) log(1 − q). According
to Shannon’s definition, the capacity of this channel corresponds to the maximum of

246 Channel capacity and coding theorem

H (X ; Y) as defined above. It is straightforward to find this maximum by differentiating
this definition with respect to the variable q and finding the root:

dH (X ; Y)

dq
= d

dq
[f (q + ε − 2εq) − f (ε)]

= 0,

(13.3)

which, with u = q + ε − 2εq and the definition of the function f (q) leads to

d

dq
f (q + ε − 2εq) = (1 − 2ε)

d f (u)

du

= (1 − 2ε) log
1 − u

u
, (13.4)

= 0,

or u = 1/2 and, hence, q = 1/2 = p(x1) = p(x2).
This first result shows that the mutual information of a binary symmetric channel is

maximized with the uniform input distribution. We have previously reached the same
conclusion in Chapter 12, when plotting the mutual information H (X ; Y) as a function of
the parameter q, see Fig. 12.7. With q = 1/2 we obtain f (q + ε − 2εq) = f (1/2) = 1
and finally the capacity of the noisy binary channel:

C = 1 − f (ε)

= 1 + ε log ε + (1 − ε) log(1 − ε).
(13.5)

With the binary symmetric channel, the “maximization problem” involved in the defini-
tion of channel capacity, Eq. (13.1), is seen to be relatively trivial. But in the general case,
the maximization problem is less trivial, as I shall illustrate through a basic example.

Consider next the class of binary channels whose transition matrix is defined as:

P(Y |X) =
(

a 1 − b
1 − a b

)
, (13.6)

where a, b are real numbers belonging to the interval [0, 1]. Such a transition matrix
corresponds to any binary channel, including the asymmetrical case, where a �= b. It has
been shown,1 albeit without demonstration, that the channel capacity takes the form

C = log(2U + 2V), (13.7)

where

U = (1 − a) f (b) − b f (a)

a + b − 1

V = (1 − b) f (a) − a f (b)

a + b − 1
.

(13.8)

1 A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory and Error-Correction (New York: John
Wiley & Sons, 2005). Note that in this reference, the transition matrix is the transposed version of the one
used here.

13.1 Channel capacity 247

1.00.90.80.70.60.50.40.30.20.10.0

Parameter a

0.3

0.4

0.5

0.6

1.00.90.80.70.60.50.40.30.20.10.0

Parameter a

P
ro

ba
bi

lit
y

q

0.05

0

0.95

1
0.990.01

b = 0.5 b = 0.5

Figure 13.1 Optimal input probability distribution q = p(x1) = 1 − p(x2), corresponding to
capacity C of binary channel, plotted as a function of the two transition-matrix parameters a and
b (step of 0.05).

The demonstration of the above result, which is elementary but far from straightfor-
ward, is provided in Appendix K. This Appendix also shows that the corresponding
optimal distribution is given by p(x1) = q, p(x2) = 1 − q with the parameter q defined
according to:

q = 1

a + b − 1

(
b − 1 + 1

1 + 2W

)
, (13.9)

with

W = f (a) − f (b)

a + b − 1
= V − U. (13.10)

It is straightforward to verify that in the case a = b = 1 − ε (binary symmetric channel),
the channel capacity defined in Eqs. (13.7)–(13.8) reduces to C = 1 − f (ε) and the
optimal input distribution reduces to the uniform distribution p(x1) = p(x2) = q = 1/2.

The case a + b = 1, which seemingly corresponds to a pole in the above definitions,
is trickier to analyze. Appendix K demonstrates that the functions U, V, W , and q
are all continuously defined in the limit a + b → 1 (or for that matter, over the full
plane a, b ∈ [0, 1]). In the limit a + b → 1, it is shown that H (Y ; X) = C = 0, which
corresponds to the case of the useless channel. The fact that we also find, in this case,
q = 1/2 (uniform input distribution) is only a consequence of the continuity of the
function q. As a matter of fact, there is no optimal input distribution in useless channels,
and all possible input distributions yield C = 0.

Figures 13.1 and 13.2 show 2D and 3D plots of the probability q = p(x1) = 1 − p(x2)
as a function of the transition-matrix parameters a, b ∈ [0, 1] (sampled in steps of 0.05),
as defined from Eqs. (13.9) and (13.10). It is seen from the figures that the optimal input
probability distribution is typically nonuniform.2 The 3D curve shows that the optimal

2 Yet for each value of the parameter b, there exist two uniform distribution solutions, except at the point
a = b = 0.5, where the solution is unique (q = 1/2).

248 Channel capacity and coding theorem

Pa
ra

m
et

er
 a

Parameter b

0.6

0.5

Distribution
q = p(x1) = 1 − p(x2)

0.4
1.0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 13.2 3D representation of the data shown in Fig. 3.1..

distribution has a saddle point at a = b = 1/2, which, as we have seen earlier, is one
case of a useless channel (a + b = 1).

Figure 13.3 shows the corresponding 3D surface plot of the channel capacity C , as
defined in Eqs. (13.7) and (13.8). It can be observed from the figure that the channel-
capacity surface is symmetrically folded about the a + b = 1 axis, along which C = 0
(useless channel). The two maxima C = 1 located in the back and front of the figure
correspond to the cases a = b = 0 and a = b = 1, which define the transition matrices:

P(Y |X) =
(

0 1
1 0

)
or

(
1 0
0 1

)
, (13.11)

respectively. These two matrices define the two possible noiseless channels, for which
there exists a one-to-one correspondence between the input and output symbols with
100% certainty.3

3 Since there is no reason to have a one-to-one correspondence between the symbols or indices, we can also
have p(y j |xi) = 1 for i �= j and p(y j |xi) = 0 for i = j . Thus, a perfect binary symmetric channel can
equivalently have either of the transition matrixes (see definition in text):

P(Y |X) =
(

1 0

0 1

)
,

or

P(Y |X) =
(

0 1

1 0

)
.

Since in the binary system, bit parity (which of the 1 or 0 received bits represents the actual 0 in a given
code) is a matter of convention, the noiseless channel can be seen as having an identity transition matrix.

13.1 Channel capacity 249

0.5

1.0

Parameter b

Pa
ra

m
et

er
 a

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

a + b = 1

a = b

0.
1

0.
2

0.
30.

40.
50.

60.
70.

80.
9

Channel
capacity C

Figure 13.3 Binary channel capacity C as a function of the two transition-matrix parameters a
and b. The diagonal line a + b = 1 corresponds to the useless-channel capacity C = 0. The
diagonal line a = b corresponds to the binary symmetric-channel capacity C = 1 − f (a).

The other diagonal line in Fig. 13.3 represents the channel capacities for which a = b
corresponds to the binary symmetric channel. Substitution of b = a in Eq. (13.8) yields
U = V = − f (a) and, thus, C = 1 − f (a) from Eq. (13.7, which is the result obtained
earlier in Eq. (13.5). We also obtain from Eq. (13.10) W = 0, and, from Eq. (13.9),
q = 1/2, which is the uniform distribution, as expected from the analysis made in
Chapter 12.

To provide illustrations of channel capacity, we shall consider next the four discrete-
channel examples described in Chapter 12. As usual, the input probability distribution
is defined by the single parameter q = p(x1) = 1 − p(x2).

Example 13.1: Z channel
The transition matrix is shown in Eq. (12.5), to which the parameters a = 1 and b = 1 − ε

correspond. It is easily obtained from the above definitions that U = 0 and V = W =
− f (ε)/(1 − ε), which gives

C = log
(

1 + 2− f (ε)
1−ε

)
, (13.12)

q = 1

1 − ε

(
ε + 1

1 + 2− f (ε)
1−ε

)
. (13.13)

250 Channel capacity and coding theorem

The case ε = 0, for which a = b = 1, corresponds to the noiseless channel with identity
transition matrix, for which C = 1 and q = 1/2. The limiting case ε → 1 (a = 1 and
b = 0) falls into the category of useless channels for which a + b = 1, with C = 0
and q = 1/2 (the latter only representing a continuity solution,4 but not the optimal
distribution, as discussed at the end of Appendix K).

Example 13.2: Binary erasure channel
The transition matrix is shown in Eq. (12.6). One must then calculate the entropies
H (Y) and H (Y |X), according to the method illustrated in Appendix K (see Eqs.
(K4)–(K5) and (K7)–(K8)). It is left to the reader as an easy exercise to show that
H (Y) = f (ε) + (1 − ε) f (q) and H (Y |X) = f (ε). The mutual information is, thus,
H (X ; Y) = H (Y) − H (Y |X) = (1 − ε) f (q) and it is maximal for q = 1/2 (d f/dq =
[log(1 − q)/q]). Substituting this result into H (X ; Y) yields the channel capacity
C = 1 − ε. The number 1 − ε = p(y1|x1) = p(y2|x2) corresponds to the fraction of
bits that are successfully transmitted through the channel (a fraction ε being erased).
The conclusion is that the binary-erasure channel capacity is reached with the uniform
distribution as input, and it is equal to the fraction of nonerased bits.

Example 13.3: Noisy typewriter
The transition matrix is shown in Eq. (12.7) for the simplified case of a six-character
alphabet. Referring back to Fig. 12.4, we observe that each of the output characters,
y = A, B, C, . . . , Z, is characterized by three nonzero conditional probabilities, e.g., for
y = B: p(B|A) = p(B|B) = p(B|C) = 1/3. The corresponding probability is:

p(y = B) = p(B|A)p(A) + p(B|B)p(B) + p(B|C)p(C)

= [p(A) + p(B) + p(C)]/3.
(13.14)

The joint probabilities are

p(B, A) = p(B|A)p(A) = p(A)/3
p(B, B) = p(B|B)p(B) = p(B)/3
p(B, C) = p(B|C)p(C) = p(C)/3.

(13.15)

Using the above definitions, we obtain

H (Y) = −
∑

j

p(y j) logp(y j)

= − p(A) + p(B) + p(C)

3
log

p(A) + p(B) + p(C)

3
+ ↔,

(13.16)

4 As shown in Appendix K, the continuity of the solutions C and q stems from the limit 1/(1 + 2W) ≈
a − η/2, where a + b = 1 − η and η → 0. This limit yields q = 1/2, regardless of the value of a, and
C = − log(a) → 0 for a → 1

13.1 Channel capacity 251

where the sign ↔ means all possible circular permutations of the character triplets (i.e.,
BCD, DEF, . . . , XYZ, YZA). The mutual information is given by:

H (Y |X) = −
∑

i

∑
j

p(xi , y j) logp(y j |x j)

= −[p(B, A) log p(B|A) + p(B, B) log p(B|B) + p(B, C) log p(B|C) ↔]

= −
[

p(A) + p(B) + p(C)

3
log

1

3
+ ↔

]

= −3
p(A) + p(B) + · · · + p(Z)

3
log

1

3

= log 3. (13.17)

The channel capacity is, therefore:

C = max
p(x)

{H (Y) − H (Y |X)}

= max
p(x)

{
− p(A) + p(B) + p(C)

3
log

p(A) + p(B) + p(C)

3
+ ↔

}
− log 3. (13.18)

The expression between brackets is maximized when for each character triplet, A, B, C,
we have p(A) = p(B) = p(C), which yields the optimal input distribution p(x) = 1/26.
Thus, Eq. (13.18) becomes

C = −
{

1

26
log

1

26
+ ↔

}
− log 3

= 26

26
log

1

26
− log 3

= log 26− log 3

= log
26

3
.

(13.19)

This result could have been obtained intuitively by considering that there exist 26/3
triplets of output characters that correspond to a unique input character.5 Thus 26/3
symbols can effectively be transmitted without errors as if the channel were noiseless.
The fact that 26/3 is not an integer does not change this conclusion (an alphabet of 27
characters would yield exactly nine error-free symbols).

Example 13.4: Asymmetric channel with nonoverlapping outputs
The transition matrix is shown in Eq. (12.8). Since there is only one nonzero element
in each row of the matrix, each output symbol corresponds to a single input symbol.
This channel represents another case of the noisy typewriter (Example 3), but with

5 Namely, outputs Z, A, B uniquely correspond to A as input, outputs C, D, E uniquely correspond to D as
input, etc. Such outputs are referred to as “nonconfusable” subsets.

252 Channel capacity and coding theorem

nonoverlapping outputs. Furthermore, we can write

p(y1 or y2) ≡ p(y1) + p(y2)

= p(y1|x1)p(x1) + p(y1|x2)p(x2) + p(y2|x1)p(x2) + p(y2|x2)p(x2)

= 1

2
[p(x1) + p(x2)] ≡ 1

2
= p(y3 or y4). (13.20)

Define the new output symbols z1 = y1 or y2, z2 = y2 or y3. It is easily established
that the conditional probabilities satisfy p(z1|x1) = p(z2|x2) = 1/2. The corresponding
transition matrix is, thus, the identity matrix. This noisy channel is, therefore, equivalent
to a noiseless channel, for which C = 1 with the uniform distribution as the optimal
input distribution. This conclusion can also be reached by going through the same formal
calculations and capacity optimization as in Example 3.

With the above examples, the maximization problem of obtaining the channel capacity
and the corresponding optimal input probability distribution is seen to be relatively
simple. But one should not hastily conclude that this applies to the general case! Rather,
the solution of this problem, should such a solution exist and be unique, is generally
complex and nontrivial. It must be found through numerical methods using nonlinear
optimization algorithms.6

13.2 Typical sequences and the typical set

In this section, I introduce the two concepts of typical sequences and the typical set.
This concept is central to the demonstration of Shannon’s second theorem, known as the
channel coding theorem, which is described in the next section.

Typical sequences can be defined according to the following. Assume an originator
message source Xn generating binary sequences of length k.7 Any of the 2k possible
sequences generated by Xn is of the form x = x1x2x3, . . . , xk , where xi = 0 or 1 are the
message bits. We assume that the bit events xi are independent. The entropy of such a
source is H (Xk) = k H (X).8 Assume next that the probability of any bit in the sequence

6 A summary is provided in T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John
Wiley & Sons, 1991), p. 191.

7 The notation Xk refers to the extended source corresponding to k repeated observations or uses of the source
X .

8 Such a property comes from the definition of joint entropy, assuming two sources with independent events:

H (X, Y) = −
∑
xy

p(x, y) log [p(x, y)]

= −
∑
xy

p(x)p(y) log [p(x)p(y)]

= −
∑

x

p(x)
∑

y

p(y) [log p(x) + log p(y)]

= −
∑

x

p(x) log p(x)
∑

y

p(y) −
∑

x

p(x)
∑

y

p(y) log p(y)

= −
∑

x

p(x) log p(x) −
∑

y

p(y) log p(y)

≡ H (X) + H (Y).

With the extended source X2, we obtain H (X2) = 2H (X), and consequently H (Xk) = k H (X).

13.2 Typical sequences and the typical set 253

being one is p(xi = 1) = q. We, thus, expect that any sequence roughly contains kq bits
equal to one, and k(1 − q) bits equal to zero.9 This property becomes more accurately
verified as the sequence length k is sufficiently large, as we shall see later. The probability
of a sequence θ containing exactly kq 1 bits and k(1 − q) 0 bits is

p(θ) = mqkq (1 − q)k(1−q), (13.21)

where m = Ckq
k is the number of possible θ sequences. Taking the minus logarithm (base

2) of both sides in Eq. (13.21) yields

− log p(θ) = − log m− log qkq− log(1 − q)k(1−q)

= log
1

m
− kq log q − k(1 − q) log(1 − q)

= log
1

m
− k [−q log q − (1 − q) log(1 − q)]

≡ log
1

m
+ k f (q) ≡ log

1

m
+ k H (X)

≡ log
1

m
+ H (Xk).

(13.22)

The result obtained in Eq. (13.22) shows that the probability of obtaining a sequence θ

is

p(θ) = m2−k H (X) = m2−H (Xk). (13.23)

Thus, all θ sequences are equiprobable, and each individual sequence in this set of size
m has the probability p(x) ≡ p(θ)/m = 2−k H (X) = 2−H (Xk). We shall now (tentatively)
call any θ a typical sequence, and the set of such sequences θ , the typical set.

An example of a typical set (as tentatively defined) is provided in Fig. 13.4.
In this example, the parameters are chosen to be k = 6 and q = 1/3. For each
sequence θ containing j bits equal to one (j = 0, 1, . . . , 6), the corresponding proba-
bility was calculated according to p(x) = q j (1 − q)k− j . The source entropy is calcu-
lated to be H (Xk) = k H (X) = k f (q) = 6 f (1/3) = 6 × 0.918 = 5.509 bit. The typical
set, thus, comprises m = Ckq

k = C2
6 = 15 typical sequences with equal probabilities

p(x) = p(θ)/m = 2−H (Xk) = 2−5.509 = 0.022. The figure shows the log probabilities of
the entire set of 26 = 64 possible sequences, along with the relative size of the typi-
cal set and associated probabilities. As seen in the figure, there exist two neighboring
sets, A and B, with probabilities close to the typical set, namely −logp(xA) = 6.509
and −logp(xB) = 4.509, respectively. The two sets correspond to sequences similar to
the θ sequences with one 1 bit either in excess (A) or in default (B). Their log prob-
abilities, therefore, differ by ±1 with respect to that of the θ sequence. In particular,

9 For simplicity, we shall assume that kq is an integer number.

254 Channel capacity and coding theorem

0

2

4

6

8

10

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

Sequence x

Sequence x

−l
og

 p
(x

)
−l

og
 p

(x
)

0

2

4

6

8

10

(a)

(b)
Typical set

) = 5.509(6XH

A

B

Figure 13.4 Illustration of a tentative definition of the typical set for a binary sequence with
length k = 6 and probability of 1 symbol q = 1/3 (source entropy k H (X) = 5.509 bit: (a)
probabilities (− log2 p(x)) of each sequence x as ordered from x = 000000 to x = 111111; (b)
same as (a) with sequences ordered in increasing order of probability. The typical set corresponds
to sequences having kq = 2 bits equal to 1, with uniform probability −log2 p(x) = k H (X) =
5.509. The two neighboring sets, A and B, with similar probabilities are indicated.

we have ∣∣∣∣− log p(xA or B)

k
− H (X)

∣∣∣∣ =
∣∣∣∣−k H (X) ± 1

k
− H (X)

∣∣∣∣
=

∣∣∣∣±1

k

∣∣∣∣
= 1

k
= 1

6
= 0.16.

(13.24)

Because the absolute differences defined by Eq. (13.24) are small, we can now extend
our definition of the typical set to include the sequences from the sets A and B, which
are roughly similar to θ sequences within one extra or missing 1 bit. We can state that:

� The sequences from A and B have roughly kq 1 bits and k(1 − q) 0 bits;
� The corresponding probabilities are roughly equal to 2−H (Xk).

According to this extended definition of the typical set, the total number of typical
sequences is now N = 15 + 6 + 20 = 41. We notice that N ≈ 2H (Xk) = 45.5, which
leads to a third statement:

� The number of typical sequences is roughly given by 2H (Xk).

13.3 Shannon’s channel coding theorem 255

The typical set can be extended even further by including sequences differing from the
θ sequences by a small number u of extra or missing 1 bits. Their log probabilities,
therefore, differ by ±u with respect to H (Xk), and the absolute difference in Eq. (13.24)
is equal to u/k. For long sequences (k � u > 1), the result can be made arbitrarily
small.

The above analysis leads us to a most general definition of a typical sequence: given
a message source X with entropy H (X) = f (q) and an arbitrary small number ε, any
sequence x of length k, which satisfies∣∣∣∣1

k
log

1

p(x)
− H (X)

∣∣∣∣ < ε, (13.25)

is said to be “typical,” within the error ε. Such typical sequences are roughly equiproba-
ble with probability 2−k H (X) and their number is roughly 2k H (X). The property of typical
sequences, as defined in Eq. (13.25), is satisfied with arbitrary precision as the sequence
length k becomes large.10 Alternatively, we can rewrite Eq. (13.25) in the form[

1

k
log

1

p(x)
− H (X)

]2

< ε2

↔
2−k[H (X)+ε] < p(x) < 2−k[H (X)−ε],

(13.26)

which shows the convergence between the upper and lower bounds of the probability
p(x) as k increases.

Note that the typical set does not include the high-probability sequences (such as,
in our example, the sequences with high numbers of 0 bits). However, any sequence x
selected at random is likely to belong to the typical set, since the typical set (roughly)
has 2k H (X) members out of (exactly) 2k sequence possibilities. The probability p that x
belongs to the typical set is, thus, (roughly):

p = 2k[H (X)−1] = 2−k[1−H (X)], (13.27)

which increases as H (X) becomes closer to unity (q → 0.5).11

13.3 Shannon’s channel coding theorem

In this section, I describe probably the most famous theorem in information theory, which
is referred to as the channel coding theorem (CCT), or Shannon’s second theorem.12 The

10 This property is also known as the asymptotic equipartition principle (AEP). This principle states that
given a source X of entropy H (X), any outcome x of the extended source Xk is most likely to fall into the
typical set roughly defined by a uniform probability p(x) = 2−k H (X).

11 In the limiting case H (X) = 1, q = 0.5, p = 1, all possible sequences belong to the typical set; they are
all strictly equiprobable, but generally they do not have the same number kq = k/2 of 1 and 0 bits. Such a
case corresponds to the roughest possible condition of typicality.

12 To recall, the first theorem from Shannon, the source-coding theorem, was described in Chapter 8, see
Eq. (8.15).

256 Channel capacity and coding theorem

CCT can be stated in a number of different and equivalent ways. A possible definition,
which reflects the original one from Shannon,13 is:

Given a noisy communication channel with capacity C , and a symbol source X with entropy
H (X), which is used at an information rate R ≤ C , there exists a code for which message symbols
can be transmitted through the channel with an arbitrary small error ε.

The demonstration of the CCT rests upon the subtle notion of “typical sets,” as
analyzed in the previous section. It proceeds according to the following steps:

� Assume the input source messages x to have a length (number of symbols) n.
With independent symbol outcomes, the corresponding extended-source entropy is
H (Xn) = nH (X). The typical set of Xn roughly contains 2nH (X) possible sequences,
which represent the most probable input messages.

� Call y the output message sequences received after transmission through the noisy
channel. The set of y sequences corresponds to a random source Y n of entropy
H (Y n) = nH (Y).

� The channel capacity C is the maximum of the mutual information H (X ; Y) =
H (X) − H (X |Y). Assume that the source X corresponds (or nearly corresponds)
to this optimal condition.

Refer now to Fig. 13.5 and observe that:

� The typical set of Y n roughly contains 2nH (Y) possible sequences, which represent the
most probable output sequences y, other outputs having a comparatively small total
probability.

� Given an output sequence y j , there exist 2nH (X |Y) most likely and equiprobable input
sequences x (also called “reasonable causes”), other inputs having comparatively
small total probability.

� Given an input sequence xi , there exist 2nH (Y |X) most likely and equiprobable output
sequences y (also called “reasonable effects”), other outputs having comparatively
small total probability.

Assume next that the originator is using the channel at an information (or code) rate
R < C per unit time, i.e., R payload bits are generated per second, but the rate is strictly
less than C bits per second. Thus n R payload bits are generated in the duration of each
message sequence of length n bits. To encode the payload information into message
sequences, the originator chooses to use only the sequences belonging to the typical set
of X . Therefore, 2n R coded message sequences (or codewords) are randomly chosen
from the set of 2nH (X) typical sequences, and with a uniform probability. Accordingly,
the probability that a given typical sequence xi will be selected for transmitting the
coded message is:

p(xi) = 2n R

2nH (X)
= 2n[R−H (X)]. (13.28)

13 C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27 (1948), 379–423, 623–56,
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.

13.3 Shannon’s channel coding theorem 257

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•

Source X Source Y

)(2 XnH

typical
inputs

2nH(Y)

typical
outputs

x y

most likely
origins for each

)(2 XYnH

(2 Y)XnH

most likely
outcomes for each

ix

jy

ix

jy

Figure 13.5 Noisy communication channel relating input source X (sequences x) and output
source Y (sequences y), showing the numbers of most likely inputs x (typical set of X), of most
likely outputs y (typical set of Y), of most likely origins for given output y j , and of most likely
outcomes for given input xi .

Assume next that a particular output sequence y j is received. What is the no-error
probability, p̃, that y j exclusively corresponds to the message xi ? As we have seen, for
any given output message y j there exist α = 2nH (X |Y) most likely origins xi . On the other
hand, the probability that the originator message is not xi is p̄ = 1 − p(xi). Thus, we
obtain from Eq. (13.28) the no-error probability:

p̃ = p̄α = [1 − p(xi)]
α = {1 − 2n[R−H (X)]}2nH (X |Y)

. (13.29)

Since we assumed R < C = H (X) − H (X |Y), we have R − H (X) < −H (X |Y) or
R − H (X) = −H (X |Y) − ε where ε is a positive nonzero number (ε > 0). Replacing
this relation into Eq. (13.29) yields

p̃ = {1 − 2−n[H (X |Y)+ε]}2nH (X |Y)
. (13.30)

We now take the limit of the probability p̃ for large sequence lengths n. We substitute
u = 2nH (Y |X) and v = 2−nε into Eq. (13.30) and take the limit of large n to obtain:

p̃ =
(

1 − v

u

)u
= eu log(1− v

u)

≈ eu(− v
u) = e−v

≈ 1 − v = 1 − 2−nε.

(13.31)

In the limit n → ∞, we, thus, have p̃ → 1, which means that any output message y j

corresponds exclusively to an input message xi . The error probability, pe = 1 − p̃,

258 Channel capacity and coding theorem

becomes identically zero as the sequence length n becomes large, which means that,
under the above prerequisites, any original message can be transmitted through a noisy
channel with asymptotically 100% accuracy or zero error.

Concerning binary channels, the above conclusion can be readily reformulated in
terms of the “block code” concept introduced in Chapter 11, according to the following:

Given a noisy binary communication channel with capacity C , there exists a block code (n, k)
of 2k codewords of length n, and code rate R = k/n ≤ C , for which message codewords can be
transmitted through the channel with an arbitrary small error ε.

The above constitutes the formal demonstration of the CCT, as in accordance with
the original Shannon paper. Having gone through this preliminary, but somewhat math-
ematically abstract, exercise, we can now revisit the CCT through simpler approaches,
which are more immediately intuitive or concrete. The following, which includes three
different approaches is inspired from reference.14

Approach 1

Recall the example of the “noisy typewriter” channel described in Chapter 12 and
illustrated in Fig. 12.4. The noisy typewriter is a channel translating single-character
messages from keyboard to paper. But any input character xi (say, J) from the keyboard
results in a printed character y j , which has equal chances of being one of three possible
characters (say, I, J, K). As we have seen earlier (Section 13.1, Example 3), it is possible
to extract a subset of triplets from all the 26 possible output messages. If we add
the space as a 27th character, there exist exactly 27/3= 9 such triplets. Such triplets are
called nonconfusable outputs, because they correspond to a unique input, which we call
distinguishable. The correspondence between this unique input and the unique output
triplet is called a fan. Thus in the most general case, inputs are said to be distinguishable
if their fans are nonconfusable or do not overlap.

We shall now use the concept of distinguishable inputs to revisit the CCT.
Figure 13.5 illustrates the correspondence between the typical set of input sequences
(2nH (X) elements) and the typical set of output sequences (2nH (Y) elements). It is seen
that a fan of 2nH (Y |X) most likely (and equiprobable) output sequences of the typical set
of Y n corresponds to any input sequence xi of the typical set of Xn . Define M as the
number of nonconfusable fans, i.e., the fans that are attached to distinguishable input
sequences. The number of output sequences corresponding to the M distinguishable
inputs is, thus, M2nH (Y |X). In the ideal case, where all inputs are distinguishable (or all
fans are nonconfusable), we have M2nH (Y |X) = 2nH (Y). If some of the fans overlap, we
have M2nH (Y |X) < 2nH (Y). The most general case, thus, corresponds to the condition

M2nH (Y |X) ≤ 2H (Y), (13.32)

14 A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory and Error-Correction (New York:
John Wiley & Sons, 2005), Ch. 12.

13.3 Shannon’s channel coding theorem 259

or, equivalently,

M ≤ 2nH (Y)−nH (Y |X) = 2n[H (Y)−H (Y |X)]

↔
M ≤ 2nH (X ;Y) ≤ 2nC ,

(13.33)

where C = max H (X ; Y) is the binary-channel capacity (nC being the capacity of the
binary channel’s nth extension, i.e., using messages of n-bit length). If one only chooses
distinguishable input sequences to transmit messages at the information or code rate
R, one has M = 2n R possible messages, which gives R = (log M)/n. Replacing this
definition into Eq. (13.33) yields the condition for the channel rate:

R ≤ C. (13.34)

The fundamental property expressed in Eq. (13.34) is that the channel capacity represents
the maximum rate at which input messages can be made uniquely distinguishable,
corresponding to accurate transmission. We note here that the term “accurate” does
not mean 100% error free. This is because the M2nH (Y |X) nonconfusable fans of the
M distinguishable input messages are only most likely. But by suitably increasing the
message sequence length n, one can make such likelihood arbitrarily high, and thus
the probability of error can be made arbitrarily small.

While this approach does not constitute a formal demonstration of the CCT (unlike
the analysis that preceded), it provides a more intuitive and simple description thereof.

Approach 2

This is similar to the first approach, but this time we look at the channel from the
output end. The question we ask is: what is the condition for any output sequence to be
distinguishable, i.e., to correspond to a unique (nonconfusable) fan of input sequences?
Let us go through the same reasoning as in the previous approach. Referring again to
Fig. 13.5, it is seen that a fan of 2nH (X |Y) most likely (and equiprobable) input sequences
of the typical set of Xn corresponds to any output sequence y j of the typical set of Y n .
Define M as the number of nonconfusable input fans, i.e., the fans that are attached to
distinguishable output sequences. The number of input sequences corresponding to the
M distinguishable outputs is, thus, M2nH (X |Y). Since there are 2nH (X) elements in the
typical set Xn , we have M2nH (X |Y) ≤ 2nH (X) and, hence,

M ≤ 2n[H (X)−nH (X |Y)]

= 2nH (Y ;X) = 2nH (X ;Y) ≤ 2nC ,
(13.35)

where we used the property of mutual information H (Y ; X) = H (X ; Y). The result in
Eq. (13.35) leads to the same condition expressed in Eq. (13.34), i.e., R ≤ C , which
defines the channel capacity as the maximum rate for accurate transmission.

260 Channel capacity and coding theorem

Approach 3

The question we ask here is: can one construct a code for which the transmission
error can be made arbitrarily small? We show that there is at least one such code.
Assume a source X for which the channel capacity is achieved, i.e., H (X ; Y) = C , and
a channel rate R ≤ C . We can define a code with a set of 2n R codewords (2n R ≤ 2nC),
chosen successively at random from the typical set of 2nH (X) sequences, with a uniform
probability. Assume that the codeword xi is input to the channel and the output sequence y
is received. There is a possibility of transmission error if at least one other input sequence
xk �=i can result in the same output sequence y. The error probability pe ≡ p(x �= xi) of
the event x �= xi occurring satisfies:

pe = p(x1 �= xi or x2 �= xi or . . . x2n R �= xi)

≤ p(x1 �= xi) + p(x2 �= xi) + · · · p(x2n R �= xi).
(13.36)

Specifying the right-hand side, we obtain:

pe ≤ (2n R − 1)
2nH (X |Y)

2nH (X)
. (13.37)

This result is justified as follows: (a) there exist 2n R − 1 sequences xk �=i in the codeword
set that are different from xi , and (b) the fraction of input sequences, which output in y
is 2nH (X |Y)/2nH (X). It follows from Eq. (13.37) that

p < 2n R 2nH (X |Y)

2nH (X)

= 2n R2n[H (X |Y)−H (X)] = 2−n(C−R),

(13.38)

which shows that since R < C the probability of error can be made arbitrarily small
with code sequences of suitably long lengths n, which is another statement of the
CCT.

The formal demonstration from the original Shannon paper, completed with the three
above approaches, establishes the existence of codes yielding error-free transmission,
with arbitrary accuracy, under the sufficient condition R ≤ C . What about the proof
of the converse? Such a proof would establish that error-free transmission codes make
R ≤ C a necessary condition. The converse proof can be derived in two ways.

The first and easier way, which is not complete, consists of assuming an absolute
“zero error” code, and showing that this assumption leads to the necessary condition
R ≤ C . Recall that the originator source has 2n R possible message codewords of n-bit
length. With a zero-error code, any output bit yi of a received sequence must correspond
exclusively to an input message codeword bit xi . This means that the knowledge of
yi is equivalent to that of xi , leading to the conditional probability p(xi |yi) = 1, and
to the conditional channel entropy H (X |Y) = 0. As we have seen, the entropy of the
n-bit message codeword source, Xn , is H (Xn) = nH (X). We can also assume that
the message codewords are chosen at random, with a uniform probability distribution
p = 2−n R , which leads to H (Xn) = n R and, thus, H (X) = R. We now substitute the

13.3 Shannon’s channel coding theorem 261

above results into the definition of mutual information H (X ; Y) to obtain:

H (X ; Y) = H (X) − H (Y |X) ↔
H (X) = H (X ; Y) + H (Y |X) ↔ (13.39)

R = H (X ; Y) + 0 ≤ max H (X ; Y) = C,

which indeed proves the necessary condition R ≤ C . However, this demonstration does
not constitute the actual converse proof of the CCT, since the theorem concerns codes that
are only asymptotically zero-error codes, as the block length n is increased indefinitely.

The second, and formally complete way of demonstrating the converse proof of the
CCT is trickier, as it requires one to establish and use two more properties. The whole
point may sound, therefore, overly academic, and it may be skipped, taking for granted
that the converse proof exists. But the more demanding or curious reader might want
to go the extra mile. To this intent, the demonstration of this converse proof is found in
Appendix L.

We shall next look at the practical interpretation of the CCT in the case of noisy,
symmetric binary channels. The corresponding channel capacity as given by Eq. (13.5),
is C = 1 − f (ε) = 1 + ε log ε + (1 − ε) log(1 − ε), where ε is the noise parameter or,
equivalently, the bit error rate (BER). If we discard the cases of the ideal or noiseless
channel (ε = f (ε) = 0) and the useless channel (ε = 0.5, f (ε) = 1), we have 0 <

| f (ε)| < 1 and, hence, the capacity C < 1, or strictly less than one bit per channel
use. According to the CCT, the code rate for error-free transmission must satisfy R <

C , here R < C < 1. Thus block codes (n, n) of any length n, for which R = n/n =
1 are not eligible. Block codes (n, k) of any length n, for which R = k/n > C are
not eligible either. The eligible block codes must satisfy R = k/n < C . To provide
an example, assume for instance ε = 0.01, corresponding to BER = 1 × 10−3. We
obtain C = 0.9985, hence the CCT condition is R = k/n < 0.9985 . . . Consider now
the following possibilities:

First, according to Chapter 11, the smallest linear block code, (7, 4), has a length
n = 7, and a rate R = 4/7 = 0.57. We note that although this code is consistent with
the condition R < C , it is a poor choice, since we must use n − k = 3 parity bits
for k = 4 payload bits, which represents a heavy price for a bit-safe communication.
But let us consider this example for the sake of illustration. As a Hamming code of
distance dmin = 3, we have learnt that it has the capability of correcting no more than
(dmin − 1)/2 = 1 bit errors out of a seven-bit block. If a single error occurs in a block
sequence of 1001 bits (143 blocks), corresponding to BER ≈ 1 × 10−3, this error will
be absolutely corrected, with a resulting BER of 0. If, in a block sequence of 2002 bits,
exactly two errors occur within the same block, then only one error will be corrected,
and the corrected BER will be reduced to BER ≈ 0.5 × 10−3 = 5 × 10−4. Since the
condition BER ≈ 0 is not achieved when there is more than one error, this code is,
therefore, not optimal in view of the CCT, despite the fact that it satisfies the condition
R < C . Note that the actual corrected error rate (which takes into account all error-event
possibilities) is BER < 4 × 10−6, which is significantly smaller yet not identical to zero,
and is left as an exercise to show.

262 Channel capacity and coding theorem

Second, the CCT points to the existence of better codes (n, nR) with R < 0.9985 . . . ,
of which (255, 231), with R = 231/255 = 0.905 < C , for instance, is an eligible one.
From Chapter 11, it is recognized as the Reed–Solomon code RS(255, 231) = (n =
2m − 1, k = n − 2t) with m = 8, t = 12, and code rate R = 231/255 = 0.905 < C. As
we have seen, this RS code is capable of correcting up to t = 12 bit errors per 255-
bit block, yielding, in this case, absolute error correction. Yet the finite possibility of
getting 13 errors or more within a single block mathematically excludes the possibility
of achieving BER = 0. The probability p(e > 12) of getting more than 12 bit errors in
a single block is given by the formula

p(e > 12) =
255∑

i−13

Ci
255ε

i (1 − ε)255−i

= p(13) + p(14) + · · · + p(255),

(13.40)

with (as assumed here) ε = 10−3. Retaining only the first term p(13) of the expansion
(13 errors exactly), we obtain:

p(13) = C13
255ε

13(1 − ε)255−13

= 255!

13! 242!
10−13×3(1 − 10−3)242,

(13.41)

which, after straightforward computation, yields p(13) ≈ 1.8 × 10−18. Because of the
rapid decay of other higher-order probabilities, it is reasonable to assume, without
any tedious proof, that p(e > 12) < 1.0 × 10−18, corresponding to an average single-
bit error within one billion billion bits, which means that this RS code, with rate
R = 0.905 < 0.9985 = C , is pretty much adequate for any realistic applications. Yet
there surely exist better codes with rates close to the capacity limit, as we know with
error-correction capabilities arbitrarily close to the BER = 0 absolute limit.

To conclude this chapter, the CCT is a powerful theorem according to which we know
the existence of coding schemes enabling one to send messages through a noisy chan-
nel with arbitrarily small transmission errors. But it is important to note that the CCT
does not provide any indication or clue as to how such codes may look like or should
even be designed! The example code that we have used as a proof of the CCT con-
sists in randomly choosing 2n R codewords from the input typical set of size 2nH (X).
As we have seen, such a code is asymptotically optimal with increasing code lengths
n, since it provides exponentially decreasing transmission errors. However, the code
is impractical, since the corresponding look-up table (y j ↔ xi), which must be used
by the decoder, increases in size exponentially. The task of information theorists is,
therefore, to find more practical coding schemes. Since the inception of the CCT, sev-
eral families of codes capable of yielding suitably low transmission errors have been
developed, but their asymptotic rates (R = (log M)/n) still do not approach the capacity
limit (C).

13.4 Exercises 263

13.4 Exercises

13.1 (M): Consider the binary erasure channel with input and output PDF,

p(X) = [p(x1), p(x2)],

P(Y) = [p(y1), p(φ), p(y2)],

and the transition matrix,

P(Y |X) =

1 − ε 0

ε ε

0 1 − ε

 .

Demonstrate the following three relations:

H (Y) = f (ε) + (1 − ε) f (q),

H (Y |X) = f (ε),

H (X ; Y) = H (Y) − H (Y |X) = (1 − ε) f (q),

where q = p(x1) and the function f (u) is defined as (0 ≤ u ≤ 1):

f (u) = −u log u − (1 − u) log(1 − u).

13.2 (M): Determine the bit capacity of a four-input, four-output quaternary chan-
nel with quaternary sources X = Y = {0, 1, 2, 3}, as defined by the following
conditions on conditional probabilities:

p(y|x) =
{

0.5 if y = x ± 1 mod 4
0 otherwise.

13.3 (T): Determine the capacity of the four-input, eight-output channel characterized
by the following transition matrix:

P(Y |X) = 1

4

1 0 0 1
1 0 0 1
1 1 0 0
1 1 0 0
0 1 1 0
0 1 1 0
0 0 1 1
0 0 1 1

.

13.4 (M): Assuming an uncorrected bit-error-rate of BER ≈ 1 × 10−3, determine the
corrected BER resulting from implementing the Hamming code (7, 4) in a binary
channel. Is this code optimal in view of the channel coding theorem?

13.5 (B): Evaluate an upper bound for the corrected bit-error-rate when using the
Reed–Solomon code RS(255, 231) over a binary channel with noise parameter
ε = 10−3 (clue: see text).

14 Gaussian channel and
Shannon–Hartley theorem

This chapter considers the continuous-channel case represented by the Gaussian chan-
nel, namely, a continuous communication channel with Gaussian additive noise. This
will lead to a fundamental application of Shannon’s coding theorem, referred to as the
Shannon–Hartley theorem (SHT), another famous result of information theory, which
also credits the earlier 1920 contribution of Ralph Hartley, who derived what remained
known as the Hartley’s law of communication channels.1 This theorem relates channel
capacity to the signal and noise powers, in a most elegant and simple formula. As a
recent and little-noticed development in this field, I will describe the nonlinear channel,
where the noise is also a function of the transmitted signal power, owing to channel
nonlinearities (an exclusive feature of certain physical transmission pipes, such as opti-
cal fibers). As we shall see, the modified SHT accounting for nonlinearity represents
a major conceptual progress in information theory and its applications to optical com-
munications, although its existence and consequences have, so far, been overlooked in
textbooks. This chapter completes our description of classical information theory, as
resting on Shannon’s works and founding theorems. Upon completion, we will then be
equipped to approach the field of quantum information theory, which represents the
second part of this series of chapters.

14.1 Gaussian channel

Referring to Chapter 6, a continuous communications channel assumes a continuous
originator source, X , whose symbol alphabet x1, . . . , xi can be viewed as representing
time samples of a continuous, real variable x , which is associated with a continuous
probability distribution function or PDF, p(x). The variable x can be conceived as
representing the amplitude of some signal waveform (e.g., electromagnetic, electrical,
optical, radio, acoustical). This leads one to introduce a new parameter, which is the
signal power. This is the power associated with the physical waveform used to propagate
the symbols through a transmission pipe. In any physical communication channel, the
signal power, or more specifically the average signal power P , represents a practical

1 Hartley established that, given a peak voltage S and accuracy (noise) �S = N , the number of distinguishable
pulses is m = 1 + S/N . Taking the logarithm of this result provides a measure of maximum available
information: this is Hartley’s law. See: http://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem.

14.1 Gaussian channel 265

constraint, which (as we shall see) must be taken into account to evaluate the channel
capacity.

As a well-known property, the power of a signal waveform with amplitude x is pro-
portional to the square of the amplitude x2. Overlooking the proportionality constant,
the corresponding average power (as averaged over all possible symbols) is, thus, given
by

P =
∫

X
x2 p(x)dx = 〈x2〉X . (14.1)

Chapter 6 described the concept and properties of differential entropy, which is the
entropy H (X) of a continuous source X . It is defined by an integral instead of a discrete
sum as in the discrete channel, according to:

H (X) = −
∫

X
p(x) log p(x)dx ≡ 〈log p(x)〉X . (14.2)

As a key result from this chapter, it was established that under the average-power
constraint P , the Gaussian PDF is the one (and the only one) for which the source
entropy H (X) is maximal. No other continuous source with the same average power
provides greater entropy, or average symbol uncertainty, or mean information contents.
In particular, it was shown that this maximum source entropy, Hmax(X), reduces to the
simple closed-form expression:

Hmax(X) = log
√

2πeσ 2, (14.3)

where σ 2 is the variance of the source PDF.
By sampling the signal waveform, the originating continuous source is actually trans-

formed into a discrete source. Thus the definition of discrete entropy must be used,
instead of the differential or continuous definition in Eq. (14.2), but the result turns
out to be strictly identical.2 In the following, we will, therefore, consider the Gaussian

2 As can be shown through the following. Assume the Gaussian PDF for the source X

p(x) = 1

σin
√

2π
exp

(
− x2

2σ 2
in

)
,

where x is the symbol-waveform amplitude, and σ 2
in = 〈x2〉 = PS is the symbol variance, with PS being the

average symbol or waveform power. By definition, the source entropy corresponding to discrete samples xi

is
H (X) = −

∑
i

p(xi) log2 p(xi),

which can be developed into

H (X) = −
∑

i

1

σin
√

2π
exp

(
− x2

i

2σ 2
in

)[
log2

(
1√

σ 2
in2π

)
− x2

i

2σ 2
in

log2(e)

]

≡ 1

2
log2

(
2πσ 2

in

)∑
i

p(xi) + 1

2σ 2
in

log2(e)
∑

i

x2
i p(xi).

The samples xi can be chosen sufficiently close for the following approximations to be valid:
∑

i p(xi) = 1,
and

∑
i x2

i p(xi) = 〈x2〉 = σ 2
in. Finally, we obtain

H (X) = 1

2
log2

(
2πσ 2

in

)
+ 1

2σ 2
in

log2(e) = 1

2
log2

(
2πeσ 2

in

)
= log

√
2πeσ 2

in.

266 Gaussian channel and Shannon–Hartley theorem

channel to be discrete, which allows for considerable simplification in the entropy com-
putation. However, I shall develop in footnotes or as exercises the same computations
while using continuous-channel or differential entropy definitions, and show that the
results are strictly identical. The conclusion from this observation is that there is no need
to assume that the Gaussian channel uses a discrete alphabet or samples of a continuous
source.

The Gaussian channel is defined as a (discrete or continuous) communication channel
that uses a Gaussian-alphabet source as the input, and has an intrinsic additive noise,
also characterized by a noise source Z with Gaussian PDF. The channel noise is said to
be additive, because given the input symbol x (or xi , as sampled at time i), the output
symbol y (or yi) is given by the sum

y = x + z,
or

yi = xi + zi ,

(14.4)

where z (or zi) is the amplitude of the channel noise.
Further, it is assumed that:

(a) The average noise amplitude is zero, i.e., 〈z〉 = 0;
(b) The noise power is finite, with variance σ 2

ch = 〈z2〉 = N ;
(c) There exists no correlation between the noise and the input signal.

These three conditions make it possible to calculate the average output power σ 2
out of the

Gaussian channel, as follows:

σ 2
out = 〈y2〉 = 〈(x + z)2〉 = 〈x2 + 2xz + z2〉

= 〈x2〉 + 2〈x〉〈z〉 + 〈z2〉 (14.5)

= σ 2
in + σ 2

ch ≡ P + N ,

where σ 2
in = 〈x2〉 = P is the (average) input signal power. Consistently with the defi-

nition in Eq. (14.3), the entropies of output source Y and the noise source Z are given
by:

H (Y) = log2

(√
2πeσ 2

out

)
(14.6)

and

H (Z) = log2

(√
2πeσ 2

ch

)
, (14.7)

respectively.
The mutual information of the Gaussian channel is defined as:

H (X ; Y) = H (X) − H (X |Y) = H (Y) − H (Y |X), (14.8)

where H (Y |X) is the equivocation or conditional entropy. Given a Gaussian-distributed
variable y = x + z, where x, z are independent, the conditional probability of measuring

14.1 Gaussian channel 267

y at the output given that x is the input is p(y|x) = p(z). Substituting this property in
the definition of conditional entropy H (Y |X), we obtain:

H (Y |X) = −
∑

j

∑
i

p(xi , yi) log p(y j |xi)

= −
∑

j

∑
i

p(y j)p(y j |xi) log p(y j |xi)

= −
∑

j

∑
i

p(y j)p(zi) log p(zi) (14.9)

= −
∑

j

p(y j)
∑

i

p(zi) log p(zi)

= H (Z)

= log
√

2πeσ 2
ch.

As previously stated, the same result as in Eq. (14.9) can be obtained using the differential
or continuous definition of conditional entropy, i.e., to recall from Chapter 6:

H (Y |X) = −
∫ ∫

p(y|x)p(x) log p(y|x)dxdy. (14.10)

The computation of the double integral in Eq. (14.10) is elementary, albeit relatively
tedious to carry out, so we shall leave it here as a “math” exercise.

We consider next the capacity of the Gaussian channel. By definition, the channel
capacity C is given by the maximum of the mutual information H (X ; Y) = H (Y) −
H (Y |X). Using the previous results in Eqs. (14.6) and (14.7) for H (Y) and H (Y |X) =
H (Z), we obtain:

H (X ; Y) = H (Y) − H (Y |X) = H (Y) − H (Z)

= 1

2
log

(
πeσ 2

out

) − 1

2
log

(
2πeσ 2

ch

)
= 1

2
log2

(
σ 2

out

σ 2
ch

)
= 1

2
log2

(
σ 2

in + σ 2
ch

σ 2
ch

)
,

(14.11)

and using σ 2
out = σ 2

in + σ 2
ch, σ 2

in = P , σ 2
ch = N :

H (X ; Y) = 1

2
log2

(
1 + P

N

)
. (14.12)

The mutual information H (X ; Y) defined in Eq. (14.12) also corresponds to the channel
capacity C . This is because (given the signal power constraint P) the Gaussian distribu-
tion maximizes the source entropies H (X) or H (Y), making H (X ; Y) an upper bound
for mutual information. Thus, we can write, equivalently:

C = 1

2
log2

(
1 + P

N

)
. (14.13)

In the above, the quantity P/N is called the signal-to-noise ratio, or SNR. The funda-
mental result in Eq. (14.13), which establishes that the capacity of a “noisy channel”
is proportional to log(1 + SNR) is probably the most well known and encompassing

268 Gaussian channel and Shannon–Hartley theorem

nP

x

nN

y

Hypersphere surfa
ce

x

y

(a)

(b)

nP

n(P+N)

Figure 14.1 (a) Location of input message x , defined by vector x , and likely location of output
message y, defined by vector y, on the surface of a hypersphere of dimension n; (b) as (a), but
for n = 2.

conclusion of all Shannon’s information theory. Given the SNR characteristics of a com-
munication channel with noise and signal power limitation, it provides an upper bound
for the code rate at which information can be transmitted with arbitrarily small errors.
Before expanding on the implications of this result for communication systems, it is
worth providing a plausibility argument for the existence of the corresponding codes
with low error probability. The argument immediately following can be found with
different variants in most IT textbooks.

Consider an input message (or codeword) consisting of a sequence of n discrete
waveform samples with random amplitudes xi of zero mean and mean power 〈x2

i 〉 = P .
This message defines a vector x = (x1, x2, . . . , xn) in an n-dimensional space, which

is characterized by a length | x | =
√

x2
1 + x2

2 + · · · + x2
n = √

n P . Thus, we can view
the input message as lying on any point x = (x1, x2, . . . , xn), which is most probably
located close to the surface of a hypersphere centered about the origin and having a
radius of

√
n P . Likewise, the received or output message corresponds to an n-vector

 y = (y1, y2, . . . , yn) with yi = xi + zi , where 〈zi 〉 = 0 and 〈z2
i 〉 = N . Thus, the output

vector y has the length | y| = √
n(P + N) with deviation

√
nN . The output message is

likely to fall on any point y = (y1, y2, . . . , yn) inside a small hypersphere centered about
x = (x1, x2, . . . , xn) and having a radius of

√
nN , as illustrated in Fig. 14.1.

For any output message y to represent nonconfusable input messages x (i.e., most
likely to correspond to a unique input message x), the small spheres should be nonin-
tersecting or disjoint. Here comes the key question: how many such disjoint spheres can
be fitted inside the hypersphere of radius

√
n(P + N)?

14.1 Gaussian channel 269

The answer comes as follows. The volume Vn of a hypersphere with dimension n and
radius r is given by the formula Vn = Anrn , with the coefficient An defined by:

An = πn/2

�
(
1 + n

2

) , (14.14)

where �(m) is the gamma function.3 The maximum number M of disjoint spheres that
can be fitted inside the volume Vn is, thus,

M = An

(√
n(P + N)

)n

An

(√
nN

)n =
(

1 + P

N

)n/2

≡ 2
n
2 log2(1+ P

N). (14.15)

The result in Eq. (14.15) shows that there exist M = 2n R possible messages with non-
confusable inputs, corresponding to the channel or code rate

R = 1

2
log2

(
1 + P

N

)
. (14.16)

Since R is the maximum rate for which the messages have nonconfusable inputs (mean-
ing that receiving and decoding errors can be made arbitrarily small), the value found
in Eq. (14.16) represents an upper bound, which corresponds to the channel capacity.
Thus, the demonstration confirms the fundamental result found in Eq. (14.13).

The unit of channel capacity is bits or, more accurately, bits per channel use.4 Then how
does channel capacity relate to channel bandwidth? We shall now address this question
as follows. Define B as the signal bit rate. To recover bits from signal waveforms, a basic
engineering principle states that the waveform must be sampled at the Nyquist sampling
rate of f = 2B per unit time (i.e., twice the bit rate). A continuous communication
channel with a capacity Cbit, which is used at the rate f = 2B, gives us the capacity per
unit time Cbit/s = 2BCbit.

Substituting the above result into Eq. (14.13), we obtain

Cbit/s = B log2

(
1 + P

N

)
. (14.17)

By dividing both sides in Eq. (14.17) by B, we obtain another definition of channel
capacity, which now has the dimensionless unit of (bit/s)/Hz:

C(bit/s)/Hz = log2

(
1 + P

N

)
. (14.18)

The results in either Eq. (14.17) or Eq. (14.18) are known as the Shannon–Hartley the-
orem (SHT), based on an earlier contribution from Hartley to Shannon’s analysis (see
previously). The SHT is also referred to as the Shannon–Hartley law, the information

3 The gamma function has the property �(m + 1) = m!, with �(1/2) = √
π , �(3/2) = √

π/2, and �(m +
1/2) = �(1/2) 1.3.5,...,(2m−1)

2m . It can readily be checked that Vn = Anrn with the definition in Eq. (14.14)
yields V2 = πr2, V3 = (4/3)πr3, etc.

4 Channel capacity is conceptually similar to the capacity of transportation means. Thus, if for instance an
airplane or a truck can transport 300 passengers or 20 tons, respectively, this corresponds to capacities of
300 passengers or 20 tons per single use of the airplane or of the truck. Using these transportation means
several times does not increase the capacity per use, as was also shown in Appendix L.

270 Gaussian channel and Shannon–Hartley theorem

capacity theorem, or the band-limited capacity theorem. To recall, SHT or its different
appellations relate to Shannon’s “second theorem” or “[noisy] channel-capacity theo-
rem.” As expressed in Eq. (14.17), the SHT provides the maximum bit rate achievable
(Cbit/s) given the channel bandwidth, additive noise background, and signal power con-
straint, for which information can be transmitted with an arbitrarily small BER. The
SHT variant in Eq. (14.18) provides the maximum bit rate achievable per unit of band-
width (Hz), under said conditions. The bit rate normalized to bandwidth is referred to as
information spectral density, or ISD. The (bit/s)/Hz ISD, is often referred to as spectral
efficiency. This would be a correct appellation if the ISD was bounded to a maximum
of unity, corresponding to 100% efficiency, or 1 (bit/s)/Hz. However, there are a variety
of modulation formats, which make it possible to encode more than 1 bit/s in a single
Hz of frequency spectrum, as discussed further on. Regardless of the possible existence
of such modulation formats, the SHT states that the ISD is actually unbounded. In
the limit of high signal-to-noise ratios (SNR = P/N), we find C ≈ log2(SNR). This
result means that every twofold increase (or 3 dB, in the decibel scale5) of the SNR
corresponds to an ISD increase of one additional (bit/s)/Hz. For instance, SNR = 210 =
1024 = +30.1 dB corresponds to an ISD of log2(1 + 210) ≈ 10 (bit/s)/Hz. The SHT,
thus, states that given any SNR constraint, there exist some codes (and associated
modulation formats) for which error-free transmission is possible within an ISD limit
of C(bit/s)/Hz = log2(1 + SNR). As with the (discrete) channel coding theorem (Chapter
13), how to find or to design such codes is, however, not specified by the theory.

In the above SHT formulation, it is possible to introduce another important parameter
overlooked so far, which is the noise bandwidth. Assume a communication channel with
a capacity per unit time of Cbit/s and a signal bandwidth B. The mean signal power, P ,
and the mean energy per bit, ES, are related through P = ESCbit/s. The noise power, N ,
and the mean noise energy per bit, EN, are related through N = EN BHz. Thus, the SNR
can also be expressed in the form

SNR = P

N
= ESCbit/s

EN B
, (14.19)

which explicitly relates the bit SNR to the bandwidth B. Replacing the above result in
Eq. (14.17) yields

Cbit/s = B log2

(
1 + ESCbit/s

EN B

)
, (14.20)

then

Cbit/s = log2

(
1 + ES

EN
C(bit/s)/Hz

)
. (14.21)

5 For any nonnegative real number qlinear, the decibel scale is defined as qdB = 10 log10(qlinear). For instance,
20 dB = 100linear, −10 dB = 0.1linear, and, in particular, 3.0102 dB ≈ 3 dB = 2linear.

14.1 Gaussian channel 271

0 5 10 15 20

SNRbit (dB)

ISD ((Bit/s)/Hz)

0.01

0.1

−5

1

10
−1.6 dB

R = C
R > C

R < C

Shannon limit

Figure 14.2 Bandwidth-efficiency diagram plotting information spectral density (ISD) vs.
signal-to-noise ratio (bit SNR), according to Eq. (14.22). The two regions R < C and R > C,
corresponding to bit rate R and channel capacity Cbit/s, which are separated by the capacity-
boundary curve (R = C) are also shown. The Shannon limit corresponds to SNR = −1.6 dB.

Base-two exponentiation of both sides of Eq. (14.21), and the introduction of SNRbit =
ES/EN as defining the bit SNR,6 we finally obtain:

SNRbit = 2C(bit/s)/Hz − 1

C(bit/s)/Hz
. (14.22)

This formula now provides an explicit and universal relation between the bit SNR
(SNRbit) and the channel ISD (C(bit/s)/Hz). It is, thus, possible to plot the function
C(bit/s)/Hz = f (SNRbit), as shown in Fig. 14.2, which is referred to as the bandwidth-
efficiency diagram.

As observed from Fig. 14.2, the boundary curve C(bit/s/Hz) = f (SNRbit) defines two
regions in the plane. If Rbit/s is the bit rate, these two regions correspond to Rbit/s < Cbit/s

and Rbit/s > Cbit/s, respectively. The interpretation of the bandwidth-efficiency diagram
is then:

� In the region Rbit/s < Cbit/s, there exist codes for which transmission can be achieved
with arbitrary low error (BER);

� In the region Rbit/s > Cbit/s, there is no code making transmission possible at arbitrarily
low error.

To avoid any misinterpretation, it is always possible to transmit information with some
finite or nonzero BER in any location of the diagram. However, only in the lower-right
region Rbit/s < Cbit/s of the diagram can the BER be made arbitrarily small with a proper
code choice code, leading to arbitrarily error-free transmission.

6 The ratio SNRbit = ES/EN is often referred to in textbooks as Eb/N0, where Eb = ES is the bit energy and
N0 = EN is the noise energy or noise spectral density.

272 Gaussian channel and Shannon–Hartley theorem

We also observe from Fig. 14.2 that the boundary curve C(bit/s)/Hz = f (SNRbit) has an
asymptotic limit at SNRbit = −1.6 dB, which is referred to as the Shannon limit. As the
figure indicates, when the SNR approaches this lower bound, the ISD rapidly vanishes
to become asymptotically zero as SNRbit → −1.6 dB. On the right-hand side of the
boundary curve, there exist some codes for which error-free transmission is possible.
But as observed from the figure, the closer one approaches the Shannon-limit SNR, the
lower the ISD and the smaller the number of bits that can be effectively transmitted per
unit time and unit bandwidth. The limiting condition SNRbit = −1.6 dB corresponds to
a useless channel with an ISD of 0 (bit/s)/Hz.

The bandwidth-efficiency diagram suggests two strategies for optimizing the trans-
mission of information:

� Horizontally, or at fixed ISD, by increasing the bit-SNR to reduce the BER;
� Vertically, or at fixed SNR, to increase the ISD and, hence, to increase the bit rate.

At this point, we, thus, need to address two issues: (a) the relation between the waveform
modulation format and the ISD, and (b) for a given modulation format, the relation
between SNR and BER (or symbol error rate, SER, for multi-level formats). With such
knowledge, we will then be able to fill out the diagram with different families of points,
i.e., to plot iso-format or iso-SER/BER curves, and observe the corresponding tradeoffs.

An overview of the different types of modulation formats is beyond the scope of this
book. Here, we shall use a limited selection of modulation formats and their ISD, SNR,
or SER properties to provide illustrative cases of bandwidth-efficiency tradeoffs. The
following assumes some familiarity with telecommunications signaling (i.e., intensity,
frequency, phase, amplitude, and multi-level waveform modulation).7

Nonreturn-to-zero (NRZ) format

The nonreturn-to-zero (NRZ) format, also called on–off keying (OOK), corresponds to
the most basic and common modulation scheme. Bit encoding consists of turning the
signal power on or off during each bit period, to represent 1 or 0, respectively. Its ISD is
intrinsically limited to 1 (bit/s)/Hz8 and its BER is given by the generic formula:

BER = 1

2
erfc

(
1

2

√
SNRbit

2

)
, (14.23)

where erf(x) is the complementary error function.9

7 S. Haykin, Digital Communications (New York: J. Wiley & Sons, 1988), J. G. Proakis, Digital Communica-
tions, 4th edn. (New York: McGraw Hill, 2001).

8 Actually, the 1 (bit/s)/Hz ISD for NRZ/OOK signals represents the asymptotic limit of channel capacity,
which is rapidly reached for SNRbit ≥ 5 dB. The demonstration of such a result is left as an exercise.

9 By definition, erfc(x) = 1 − erf(x) with erf(x) = 2√
π

∫ x
0 e−y2

dy being the error function. The latter can
be approximated through the expansion: erf(x) = 1 − (a1t + a2t2 + a3t3 + a4t4 + a5t5) exp(−x2), with
t = 1/(1 + px), p = 0.3275, a1 = 0.2548, a2 = −0.2844, a3 = 1.4214, a4 = −1.4531 and a5 = 1.0614.
Consistently with the exact definition, in the limit x → 0 we have erf(x) = 0. It is customary to define
Q = 1

2

√
SNRbit, hence from Eq. (14.23), BER = erfc(Q/

√
2)/2 with erfc(x) = 1 − erf(x). For Q > 2,

14.1 Gaussian channel 273

−10

−8

−6

−4

−2

0

−10 −5 0 5 10 252015

SNRbit (dB)

lo
g

10
B

E
R

BER = 10 −9

21.6 dB
S

ha
nn

on
 li

m
it

−1.6 dB

Figure 14.3 Bit error rate (BER) as a function of bit signal-to-noise ratio (SNRbit) for NRZ- or
OOK-modulated signals.

Figure 14.3 shows the plot BER = f (SNRbit), along with the Shannon limit. It is
seen from the figure that the specific value SNRbit = +21.6 dB yields a BER of 10−9,
corresponding to one bit error (on average) for every one billion bits transmitted. For
a long time in the modern history of telecommunications, such a BER has been con-
sidered to represent the standard for “error-free” transmission. In the limit of vanishing
signals, or SNRbit → 0 or SNRbit(dB) → −∞, the erf function vanishes and we have
BER = 1/2. Since the BER is a probability, this result means that the bits 0 and 1 have
equal probabilities of being detected, regardless of the input message sequence, which
corresponds to a useless communication channel.

The shaded region in Fig. 14.3 defines the impossibility of finding error-correction
codes (ECC) able to improve the BER at a given SNRbit value, while right-hand side
region indicates that the possibility exists. A detailed introduction to the subject of ECC
is provided in Chapter 11. Here, I shall provide a heuristic example illustrating the actual
effect of error correction on the (otherwise uncorrected) BER performance.

Figure 14.4 shows an example of ECC implementation where the physically achiev-
able signal-to-noise ratio is SNRbit = 16.6 dB. At the receiver level, and before error-
correction decoding, the bit error rate is about BER = 10−3.5. After correction, the
bit error rate is seen to improve BER = 10−9. As the figure indicates, the horizontal
translation between the two BER curves (uncorrected on top, and corrected at bottom)
corresponds to a virtual, but effective SNR shift of +5 dB. As formally described in
Chapter 11, this SNR shift is referred to as the coding gain.

the BER can be approximated by BER = exp(−Q2/2)/(Q
√

2π), which yields BER = 10−9 for Q = 6 or
SNRbit = 4Q2 = 144 =+21.58 dB. Note that different SNR definitions apply to optical telecommunication
systems. A standard definition is SNR ≈ Q2, which gives SNR ≈ +15.5 dB for BER = 10−9.

274 Gaussian channel and Shannon–Hartley theorem

−2

−4

−6

−8

−10
−10 −5 0 5 10 15 20 25

0

Before
correction

SNRbit (dB)

lo
g

10
B

E
R

BER = 10 −9

Coding gain
= +5 dB

After
correction

Operating
SNR = 16.6 dB

BER = 10 −3.5

Figure 14.4 Illustration of the effect of error-correction coding (ECC) on the BER performance
(NRZ/OOK), showing a coding gain of +5 dB improving the BER from BER = 10−3.5 to BER =
10−9.

M-ary frequency-shift-keying (M-FSK) format

The M-ary frequency-shift-keying (M-FSK) format is based on multi-level frequency
modulation, where M is a power of two, and coherent detection. The ISD asso-
ciated with M-ary FSK modulation is given by ISD = (2 log2 M)/M . Hence, for
M = 2, 4, 8, 16, 32, 64, 128 we have ISD = 1, 1, 0.75, 0.5, 0.31, 0.18, 0.1 (bit/s)/Hz,
respectively. The ISD, thus, decreases as the number of modulation levels M increases,
which is a drawback specific to this modulation format, which is not bandwidth efficient.
The symbol error rate (SER) of M-FSK signals is given by the following approximation
(valid for SER ≤ 10−3):

SER ≈ M − 1

2
erfc

(√
SNRbit

2
log2 M

)
. (14.24)

M-ary phase-shift-keying (M-PSK) format

The M-ary phase-shift-keying (M-PSK) format is based on multi-level phase modula-
tion. Like M-FSK, it requires coherent detection. The ISD associated with M-ary PSK
modulation is given by ISD = log2 M , which shows that it increases with M . Hence,
for M = 2, 4, 8, 16, 32, 64, 128 we have ISD = 1, 2, 3, 4, 5, 6, 7 (bit/s)/Hz, respectively.
The SER of M-PSK signals is given by:

SER = erfc
[
sin

(π

M

)√
SNRbit × log2 M

]
. (14.25)

14.1 Gaussian channel 275

M-ary quadrature amplitude modulation (M-QAM) format

The M-ary quadrature amplitude modulation (M-QAM) format is based on coherent
multi-level amplitude modulation, using the combination of two quadratures.10 As in
the previous case, the ISD associated with M-ary QAM modulation is ISD = log2 M .
The SER of M-QAM signals is given by:

SER = 2

(
1 − 1√

M

)
erfc

[√
3〈SNRbit〉
2(M − 1)

log2 M

]
, (14.26)

where 〈SNRbit〉 represents the average bit SNR. This averaging is required because
the waveform energy depends on the particular symbol being transmitted, unlike the
previous modulation formats.

Using Eqs. (14.23)–(14.26), and the numerical approximation for erfc(x), one can
compute the SER associated with each modulation format for different values of M.
Since we are interested in iso-SER plots, we may choose, for instance, SER = 10−3,
10−5, 10−11 for each of these plots and find the corresponding SNRbit values numerically
in each case.11 The result is shown in Fig. 14.5.12 One observes from the figure that
there exist qualitative differences between the different formats. Comparing first binary
formats (M = 2, SER ≡ BER), it is seen that at equal BERs, NRZ requires substantially
higher SNRs than any other format. This feature is explained by the fact that the other
formats use coherent receivers, which have higher sensitivity: for equal SNRs, coherent
receivers yield lower BERs than the direct-detection receivers used in NRZ. All binary
formats have an ISD of 1 (bit/s)/Hz.13 Therefore, the only two degrees of freedom are
the format and the BER. Binary QAM is seen to have the lowest SNR requirement at
given BER. The choice of a modulation format being primarily dictated by practical
engineering considerations (complexity of transmitter or receiver, feasibility, reliability,
cost), the BER is not necessarily a decisive factor. Furthermore, we know from the
SHT that for any SNR satisfying SNRbit > −1.6 dB, there exist (error-correction) codes
making it possible to reduce the BER to arbitrarily small values. How practical such
codes are to implement, and how powerful (coding gain) remain two key questions for
system design.

Consider next the M-ary format plots shown in Fig. 14.5. An additional degree
of freedom is provided by the number of modulation levels, M , which makes it
possible to modify the ISD. As previously seen, M-FSK is not bandwidth-efficient

10 The modulated signal has the form f (t) = a(t) cos(ωt) + b(t) sin(ωt), where a(t), b(t) are independently
modulated with M levels, forming a set of M2 coding possibilities or constellations.

11 This computation can be simply achieved by using a computer spreadsheet to tabulate the SER vs. SNR
functions, and then by finding the SNRs corresponding to the three reference SERs.

12 Figure originally published in E. Desurvire, Survival Guides Series in Global Telecommunications, Sig-
naling Principles, Network Protocols and Wireless Systems (New York: J. Wiley & Sons, 2004). See also
S. Haykin, Digital Communications (New York: J. Wiley & Sons, 1988), J. G. Proakis, Digital Communi-
cations, 4th edn. (New York: McGraw Hill, 2001) for other data points.

13 A note at the end of this chapter shows that the capacity is asymptotically C → 1 bit for increasing SNRs;
convergence is rapid, thus the approximation C ≈ 1 bit is valid for SNRs greater than 5 dB.

276 Gaussian channel and Shannon–Hartley theorem

−1

0

0.8

0.6

0.4

0.2

−0.2

−0.4

−0.6

−0.8

1

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

B it S NR (dB)

M=

2

4

8

16
32

64
128

128

64

32

16

8
4

FS K

PS K

QAM

BER = 10-3 to 10 -11

SHT boundary

In
fo

rm
at

io
n

sp
ec

tr
al

 d
en

si
ty

 (
(b

it/
s)

/H
z)

bit SNR (dB)

FSK

PSK

QAM

SER = 10 −3 to 10−11

NRZ
xxx

Shannon limit

Figure 14.5 Bandwidth-efficiency diagram showing (bit/s)/Hz ISD (in log10) as a function of bit
SNR (in dB) for different coherent M-ary modulation formats, M-QAM, M-PSK, and M-FSK,
and for error rates of SER = 10−3 (dark symbols), SER = 10−5 (shaded symbols), and SER =
10−11 (open symbols). For clarity, the symbols are not shown for M-PSK (the ISD being identical
to that of QAM for each M). The crosses (×) on the horizontal axis correspond to NRZ/OOK
modulation for BER = 10−3, 10−5, 10−11.

and multi-level modulation decreases the ISD: a 128-FSK format has an ISD of 0.1
(bit/s)/Hz, which is ten times less than NRZ. Compared with M-QAM and M-PSK,
however, M-FSK is seen to have a lower SNR requirement for a given BER, but this
advantage does not compensate for the large bandwidth inefficiency. It is also note-
worthy that the M-FSK iso-SER curves move away from the SHT boundary as M
increases.

Focusing now on M-QAM and M-PSK, we observe from the figure that increasing ISD
(though increasing M) requires higher SNRs. The SNR requirement increases far more
rapidly with M-PSK. For instance, at SER = 10−3, the formats 64-PSK and 64-QAM
approximately require SNR = 26 dB and SNR = 15 dB, respectively, corresponding to
an SNR difference of more than 10 dB. From this analysis, M-QAM appears to be the
champion format in combined terms of ISD and SNR requirements. It is noteworthy
that as M is increases, the iso-SER curves of M-QAM and M-PSK move closer to
the SHT boundary, contrary to M-FSK. The closer any point in these curves get to

14.2 Nonlinear channel 277

the SHT boundary, the more sensitive the system SER is to SNR and signal power.
Also, the more complex the error-correction codes to bring the BER to low values.
Given constraints in power and noise, in BER requirement after code correction, in
code-correction complexity, and, finally, in modulation-format technologies, the difficult
task for communications engineers is to find the right tradeoffs between academic and
practical engineering solutions.

14.2 Nonlinear channel

Shannon’s information theory and all its subsequent developments have always been
based on the assumption of channel linearity. The principle of channel linearity can be
summarized by two basic conditions:

(a) Assuming signal input to the channel with power P , the signal output power is of
the form P ′ = λP , where λ is a real constant that is power independent (λ < 1 for
lossy channels, λ = 1 for transparent or lossless channels, and λ > 1 for channels
with internal amplification or gain);

(b) The channel noise N is added linearly to the signal power (additive noise), namely
the total output power is of the form P ′′ = κ P + µN , where µ is a real constant
that is power independent.

Condition (a) implies that the signal can be increased to an arbitrarily high power level,
without any changes in the channel’s properties, as provided by information theory.
Condition (b) implies that the transmission pipe in the channel is free from any power-
dependent signal degradation effects. In the physical world, such effects are referred to
as nonlinearities. Such nonlinearities are usually not observed in vacuum or atmospheric
space.14 However, they are observed in transmission media such as optical fibers, for
instance. The advent of high-speed optical telecommunications in the last 20 years has
come with the discovery of various types of nonlinearity, namely, Raman and Brillouin
scattering, self- and cross-phase modulation, and four-wave mixing. Such nonlinearities
cause power limitations (hence SNR and BER limitations) in fiber-optic systems. In
the following, I shall focus on fiber-optic systems as an illustration of the nonlinear
communications channel.

An optical fiber is a highly transparent transmission medium. However, optical signals
are attenuated on propagation therein, according to an exponential law P ′ = λP =
P exp(−αL), where L is the fiber length and α the attenuation coefficient. For lengths
of 50 km and 100 km, the relative signal attenuation or power loss is typically 90%
(λ = 0.1) or 99% (λ = 0.01) respectively. To compensate for fiber loss, fiber-optic
systems use in-line optical amplifiers. Such amplifiers are periodically placed every
50–100 km (depending on applications) to produce a signal gain g = 1/λ, such that the

14 At least with the power levels used in telecommunications. The atmosphere is made of atomic and molecular
matter, which may exhibit nonlinear absorption or scattering at certain frequencies and powers, and a vacuum
is nonlinear from the high-energy physics or quantum-electrodynamics viewpoint.

278 Gaussian channel and Shannon–Hartley theorem

signal power at the amplifier output is P ′ = gλP ≡ P . The amplified fiber-optic link is
said, therefore, to be transparent. However, the amplification process produces additive
noise, which accumulates linearly along the transparent link, each amplification stage
contributing to a noise increment.

Overlooking any effect contributed by the optical fiber, an amplified fiber-optic link
is intrinsically linear.15 A simple justification comes as follows. At the end of the
link, the optical signal is converted by the receiver into a photocurrent. It can be
shown that the dominant noise component in the receiver photocurrent output is of the
form:

σ 2 = 2P N , (14.27)

where P is the optical power input to the (transparent) link and, hence, to the end
receiver, and N is the optical amplifier noise accumulated along the link, which is
power-independent.16 The electrical signal power is of the form

Pe = P2. (14.28)

The electrical signal-to-noise ratio (SNR) is, thus,

SNR = Pe

σ 2
= P2

2P N
≡ P

2N
, (14.29)

whose noise denominator is now seen to be independent of the signal power. Thus, the
SNR scales linearly with the input (optical) power, which is the linearity condition for the
communication channel. But the transmission medium, the optical fiber, is intrinsically
nonlinear. It is beyond the scope of this book to detail the different types and causes of
fiber nonlinearities.

The introduction of channel nonlinearity in the field of information theory is relatively
recent (2001).17 As we shall see, this new hypothesis is rich in implications in the analysis
of channel capacity, in particular for optical transmission systems. We shall, thus, assume
that the nonlinear channel noise, N ∗, has the power-dependent form

N ∗(P) = N + s P, (14.30)

where N is the linear channel noise (P = 0) and s P is the power-dependent contribution
to the channel noise, which is attributed to optical fiber nonlinearities. The nonlinearity
parameter s can be written as

s = 1 − exp

[
−

(
P

Pth

)2
]

, (14.31)

15 As in any amplifiers, the amplification factor (gain) of optical amplifiers saturates with increasing signal
power. However, optical amplifiers deployed in transmission systems are designed to yield constant gain
regardless of signal power changes.

16 See, for instance: E. Desurvire, Erbium-Doped Fiber Amplifiers, Devices and System Developments (New
York: J. Wiley & Sons, 2002), Ch. 3.

17 P. P. Mitra and J. B. Stark, Nonlinear limits to the information capacity of optical fiber communications.
Nature, 411 (2001), 1027; for a tutorial introduction, see also E. Desurvire, Erbium-Doped Fiber Amplifiers,
Devices and System Developments (New York: J. Wiley & Sons, 2002), Ch. 3.

14.2 Nonlinear channel 279

where Pth is the power threshold at which nonlinearity comes into effect. The exact
definition of Pth in relation to the various fiber-optics link parameters can be found in the
aforementioned references. The above definition of the nonlinearity parameter s shows
that nonlinearity is negligible, or the optical channel is linear, for P � Pth or s → 0
(or s P � N), which, according to Eq. (14.30) gives the power-independent, additive
channel noise N ∗(P) ≈ N . In the general case, we see from the relation N ∗(P) =
N + s P that a fraction s P of signal power is effectively converted into nonlinear noise.
Because of energy conservation, the received signal power at the end of the link is not P ,
but rather P∗ = P(1 − s). The actual SNR is now SNR∗ = P∗/N ∗, which reduces to
SNR∗ = P/N in the linear limit P � Pth (s → 0). We can now evaluate the nonlinear
channel capacity. According to the Shannon–Hartley theorem (SHT), Eq. (14.18), the
channel capacity ((bit/s)/Hz) is given by:

C = log

(
1 + P∗

N ∗

)

= log

(
1 + P(1 − s)

N + s P

)
(14.32)

= log

1 + P

N

1 − s

1 + s
P

N

 .

Replacing the definition of the nonlinearity parameter s in the above yields:

C = log

1 + P

N

exp

[
−

(
P

Pth

)2
]

1 + P

Pth

Pth

N

(
1 − exp

[
−

(
P

Pth

)2
])

= log

1 +
P

N

exp

(
P

Pth

)2

+ P

Pth

Pth

N

(
exp

(
P

Pth

)2

− 1

)

.

(14.33)

The result in Eq. (14.33) shows that in the high-power limit P/Pth → ∞, the channel
capacity reduces to C = log(1 + ε) with ε → 0, or C → 0. Nonlinearity, thus, asymptot-
ically obliterates channel capacity. Since in the linear regime channel, capacity increases
with signal power, we then expect that a maximum can be reached at some power value.
It can be shown that such a maximum capacity is reached for the optimal signal power
Popt as analytically defined:

Popt =
(

N P2
th

2

) 1
3

. (14.34)

280 Gaussian channel and Shannon–Hartley theorem

Replacing this definition of Popt into Eq. (14.33) yields the maximum achievable channel
capacity Cmax:

Cmax = 2

3
log

(
2

3
√

3

Pth

N

)
. (14.35)

A different model that I developed,18 which takes into account the quantum nature of
amplifier noise leads to an alternative definition C ′ of the channel capacity:

C ′ = log

1 + P(1 − s)

1 + 2N + s

(
1 + 1

1 − s

)
P

= log

1 + P

N

1 − s

2 + 1

N
+ s

(
1 + 1

1 − s

)
P

N

 .

(14.36)

The new definition of capacity in Eq. (14.36) yields different expressions for the optimal
power and maximum capacity, namely P ′

opt and C ′
max, as defined by:

P ′
opt =

[
(1/2 + N)P2

th

2

] 1
3

, (14.37)

C ′
max = 2

3
log

[
2
√

2Pth

3
√

3(1 + 2N)

]
. (14.38)

We note from Eqs. (14.34)–(14.35) and Eqs. (14.37)–(14.38) that the optimal powers
Popt, P ′

opt and maximal capacities Cmax, C ′
max actually have very similar values. With

respect to the classical model, the quantum model of the nonlinear channel provides a
small correction to the maximum SNR of the order of 2−1/3 ≈ 0.8, which, in base-2
logarithms, represents about 30%.

Figure 14.6 shows plots of thee nonlinear-channel capacities C , C ′ (according to the
two above models), as plotted vs. the linear SNR, i.e., SNR = P/N , as expressed in
decibels,19 with different parameter choices for N and Pth. The SHT capacity corre-
sponding to the linear-channel case is also shown. Figure 14.6(a) corresponds to the
worst case of a channel with a nonlinear threshold relatively close to the linear noise
(N = 5 and Pth = 15). In contrast, Figure 14.6(b) corresponds to the case of a compara-
tively low linear-noise channel having a relatively high nonlinear threshold (N = 1 and
Pth = 100). It is seen from the figure that in both cases, and regardless of the nonlinear
model (classical or quantum), the channel capacity is bounded to a power-dependent
maximum, unlike in the linear information theory where from SHT the capacity increases
as log(SNR).

18 E. Desurvire, Erbium-Doped Fiber Amplifiers, Devices and System Developments (New York: J. Wiley &
Sons, 2002), Ch. 3.

19 With SNR(dB) = 10 log10(SNR).

14.2 Nonlinear channel 281

0

1

2

3

−10 −5 0 5 10

SNR (dB)

C
ha

nn
el

 c
ap

ac
ity

 C
,C

´
((

bi
t/s

)/
H

z)

Linear c
hannel (S

HT)

C
´C

(a)

0

1

2

3

4

5

6

7

−10 −5 0 5 201510

SNR (dB)

C
ha

nn
el

 c
ap

ac
ity

 C
,C

´
((

bi
t/s

)/
H

z)

Linear channel (S
HT)

C

´C

(b)

Figure 14.6 Nonlinear channel capacities C, C′, as functions of linear signal-to-linear-noise ratio
P/N according to classical and quantum models with SHT linear-channel capacity shown for
reference (thick line), with dimensionless parameters (a) N = 5 and Pth = 15, and (b) N = 1
and Pth = 100.

The consequences of these developments concerning nonlinear channels remain to
be fully explored. It is important to note that the assumption of channel nonlinearity
does not affect the key conclusions of Shannon’s (linear) information theory, namely the
channel coding theorem and the SHT. Indeed, error-correction codes are used in realistic
(nonlinear) optical communication systems to enhance SNR and BER performance. The
fact that in these nonlinear optical channels the noise is power-dependent does not affect
the effectiveness of such codes. The key conclusion is that the capacity limits imposed
by Shannon’s information theory still apply, despite the new complexities introduced
by channel nonlinearity, which introduces yet another upper bound. It should not be
interpreted, however, that nonlinearity defines an “ultimate capacity limit” for optical
communication channels, present or future. Indeed, optical fiber design makes it possible
effectively to reduce fiber nonlinearity by increasing the fiber core size (referred to as the
“effective area”), so as to decrease the nonlinearity threshold, Pth, and, hence, effectively
achieve the operating conditions P � Pth (s → 0). Furthermore, there exist several
types of “countermeasures” and power–SNR tradeoffs to alleviate optical nonlineari-
ties, which it is beyond the purpose of this chapter to describe. Overall, the key conclusion

282 Gaussian channel and Shannon–Hartley theorem

is that the optical communication channel, albeit nonlinear, can be made to operate as a
linear channel, which is, therefore, essentially compliant to the capacity limits set up by
Shannon’s coding theorem.

14.3 Exercises

14.1 (M): The signal-to-noise ratio in a continuous channel is SNR =+12.5 dB. What
is the channel capacity? Suggest a Reed–Solomon block code for which the
capacity could be approached within approximately one bit.

14.2 (T): Show that the differential conditional entropy

H (Y |X) = −
∫∫

p(y|x)p(x) log p(y|x)dxdy

reduces after analytical computation to

H (Y |X) = log
√

2πeσ 2
ch.

14.3 (T): Show that the capacity of a Gaussian channel with NRZ/OOK modulation
rapidly converges with increasing signal power to the upper limit:

C = 1 (bit/s)Hz.

Clues:
(a) Assume a binary input signal xi ∈ X = {x1, x2} taking the values x1 = a and

x2 = −a, and a continuous output y ∈ Y ,
(b) Define the mutual information as

H (X ; Y) =
∑

i

∫
Y

dyp(xi , y,) log

[
p(xi , y)

p(xi)p(y)

]
,

(c) Define the conditional probability p(y|xi) as:

p(y|xi) = 1

σ
√

2π
exp

[
− (y − xi)2

2σ 2

]
,

where σ 2 is the channel noise variance.
(d) Show that the channel capacity is a function of the “bit SNR” parameter

S2 ≡ a2/(2σ 2) and numerically determine the limit for increasing S2.

15 Reversible computation

This chapter makes us walk a few preliminary, but decisive, steps towards quantum
information theory (QIT), which will be the focus of the rest of this book. Here, we shall
remain in the classical world, yet getting a hint that it is possible to think of a different
world where computations may be reversible, namely, without any loss of information.
One key realization through this paradigm shift is that “information is physical.” As we
shall see, such a nonintuitive and striking conclusion actually results from the age-long
paradox of Maxwell’s demon in thermodynamics, which eventually found an elegant
conclusion in Landauer’s principle. This principle states that the erasure of a single bit
of information requires one to provide an energy that is proportional to log 2, which,
as we know from Shannon’s theory, is the measure of information and also the entropy
of a two-level system with a uniformly distributed source. This consideration brings
up the issue of irreversible computation. Logic gates, used at the heart of the CPU in
modern computers, are based on such computation irreversibility. I shall then describe the
computers’ von Newman’s architecture, the intimate workings of the ALU processing
network, and the elementary logic gates on which the ALU is based. This will also
provide some basics of Boolean logic, expanding on Chapter 1, which is the key to the
following logic-gate concepts. As I shall describe, a novel concept for logic gates (and,
hence, their associated circuits or networks), can be designed to provide truly reversible
computation.

15.1 Maxwell’s demon and Landauer’s principle

The QIT story begins with a strange machine devised in 1871 for a thought experiment
by the physicist J. C. Maxwell. Such a machine – if one were ever able to construct it –
would violate the second principle of thermodynamics! As Maxwell describes in his
theory of heat:1

One of the best established facts in thermodynamics is that it is impossible in a system enclosed
in an envelope which permits neither change of volume nor passage of heat and in which both the
temperature and the pressure are everywhere the same, to produce any inequality of temperature
or of pressure without the expenditure of work. This is the second law of thermodynamics, and

1 See http://en.wikipedia.org/wiki/Maxwell%27s_demon; http://users.ntsource.com/∼neilsen/papers/demon/
node3.html.

284 Reversible computation

T T

(a)

(b)

T ́ <T T ́ ´>T

A B

A B

Figure 15.1 Maxwell’s demon thought experiment: (a) initially, the gas molecules are evenly
spread between two parts A and B (dark = fast, clear = slow), with homogeneous temperature
T , and (b) after the demon sorted molecules according to speed, showing lower temperature T ′ in
part A and higher temperature T ′′ in part B.

it is undoubtedly true as long as we can deal with bodies only in mass, and have no power of
perceiving or handling the separate molecules of which they are made up. But if we conceive
a being, whose faculties are so sharpened that he can follow every molecule in its course, such
a being, whose attributes are still as essentially finite as our own, would be able to do what is
at present impossible to us. For we have seen that molecules in a vessel full of air at uniform
temperature are moving with velocities by no means uniform, though the mean velocity of any
great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that
such a vessel is divided into two portions, A and B, by a division in which there is a small hole,
and that a being, who can see the individual molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from A to B, and only the slower molecules to pass from B to
A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in
contradiction to the second law of thermodynamics.

A basic illustration of Maxwell’s machine is provided in Fig. 15.1. As Maxwell
describes it, the machine consists of a gas container or “vessel,” which is separated
by a wall into two chambers, A and B. The gas absolute temperature T is uniform,2

2 To recall, the absolute temperature is expressed in units of kelvin (K). It has a one-to-one correspondence
with the Celsius (C) temperature scale, with absolute zero being 0 K = −273 ◦C and the melting-ice
temperature being 0 ◦C = +273 K.

15.1 Maxwell’s demon and Landauer’s principle 285

and is given by the formula E = (3/2)kBT , where E is the average kinetic energy of
the gas molecules (kB = Boltzmann’s constant). Both temperature and energy represent
macroscopic measures, as individual molecules don’t have a “temperature” and have
different velocities of their own, some moving slower and some moving faster. As the
figure shows, an imaginary, witty but not malicious creature (later dubbed “Maxwell’s
demon”) guards a trapdoor, which allows individual molecules to pass from A to B or
the reverse, without friction or inertia. The demon checks out the molecules’ velocities
and allows only the faster ones (E ′ > E) to pass from A to B, and only the slower ones
(E ′ < E) to pass from B to A. After a while, most of the fast molecules are found in B,
while most of the slow ones are in A. As a result, the gas temperature in A (T ′) is lower
than that in B (T ′′), with T ′ < T < T ′′.

The simultaneous heating of part B and cooling of part A, which is accomplished by
the demon without deploying energy or work, is in contradiction to the second law of
thermodynamic. This second law stipulates, in its simplest formulation, that: “Heat does
not flow spontaneously from a cold to a hot body of matter.” Since heat is a measure
of the average kinetic energy of the gas, it has a natural tendency to diffuse from hot to
cold bodies, and not the reverse. Another formulation of the second law is that: “In an
isolated system, entropy as a measure of disorder or randomness can only increase.” Let
us have a closer look at this entropy notion. In Appendix A, we have seen that a system
of particles that can be randomly distributed in W arrangement possibilities into a set
of distinct boxes, called “microstates,” is characterized by an entropy H . This entropy
represents the infinite limit, normalized to the number of particles, of the quantity log W .
Hence, the greater W or H , the more randomly distributed the system, which justifies
the notion of entropy as a physical measure of disorder. By separating and ordering the
gas molecules into two distinct families (slow and fast), the demon decreases the global
randomness of the system, since there is a smaller number of microstate arrangements W
for each of the initial molecules, the system’s entropy log W is, thus, decreased, which is
indeed in contradiction to the second law because the demon apparently did not perform
any work.

At the time, the conclusion reached by Maxwell to solve this paradox was that the
second principle only applies to large numbers of particles as a statistical law, i.e., to
be used with certain confidence at a macroscopic, rather than at a microscopic level.
In the first place, Maxwell’s paradox was never intended to challenge the second law.
Yet, it kept puzzling scientists for generations with many unsolved issues. In 1929, for
instance, L. Szilárd observed that in order to measure molecular velocities, the demon
should spend some kind of energy, such as that of photons from a flashlight, to spot the
slow or fast molecules, and then decide from the observation whether or not to open the
trapdoor. Each of such measurements and the generation of photons would then increase
the system’s entropy, which should balance out the other effect of entropy decrease.
In 1951, L. Brillouin observed that in order to distinguish molecules by use of light
photons, the photon energy would have to supersede that of the ambient electromagnetic
radiation, thus bringing a quantum of heat kBT into the system. To move the trapdoor,
the “demon” must also be material. Thus, some form of heat transfer should occur during
the process, resulting in the heating of both the demon and the gas, canceling the cooling

286 Reversible computation

effect of molecule separation. In 1963, R. Feynmann observed that the demon would
not be able to get rid of the heat gained in his molecule measurements, ending up in
“shaking into Brownian motion” with the inability to perform the task!

Most of the above conjectures, along with the multiplication of improved “demon
engines,” contributed to turn Maxwell’s initial paradox into an ever-deepening enigma.
This is how the concept of information entropy came into the picture. Szilárd considered
a demon engine processing just a single gas molecule. If the demon knew where the
molecule was located, then he could move a frictionless piston to confine it where
it belonged, without any work expenditure! Then the pressure effect of the molecule
on the piston could be used to generate work, such as lifting a weight. The intuitive,
yet not consolidated idea, was that the entropy bookkeeping could be balanced should
some positive entropy be associated with the information concerning molecules or the
demon’s memory itself. Either the demon keeps track of any of its binary decisions
(open trapdoor to molecule coming from A or B) or it erases them. In the first case,
the demon’s memory space expands, which goes together with an entropy increase
(number of accessible memory states in the demon’s mind). At some point, however,
the memory space is exhausted, and information must be erased. In the second case,
the memory is cleared one bit at a time prior to the next binary decision. Whether the
memory is cleared at once or bit after bit after each demon operation, the action of
erasure is irreversible.3 According to thermodynamics, irreversible processes generate
positive entropy. Therefore, the erasure of information must increase the entropy of
the surrounding environment. Such a revolutionary concept was initially suggested by
J. von Neumann4 and then formalized in 1961 by R. Landauer. The key conclusion
takes the form of Landauer’s principle (or the Landauer bound or limit, or the von
Neumann–Landauer bound):

The energy dissipated into the environment by the erasure of a single bit of information is at least
equal to kBT log 2. The environment entropy increases by at least kB log 2.

Landauer’s principle, thus, provides a lower bound on the energy dissipation and
entropy increase associated with information erasure. It is not coincidental that this
minimum is proportional to log 2 (natural logarithm). Without pretending to provide a
formal demonstration of this result, consider the following. The memory to be erased
can be viewed as a binary source X = {1, 0} having a uniform distribution, i.e., p(1) =
p(0) = 1/2 (the probability that the memory bit is either 1 or 0). As we have seen in
Chapter 3, the self-information associated with any of the two events x ∈ X is I (x) =
− loge[p(x)] ≡ − loge(1/2) = loge 2, as expressed in nats. The source’s entropy H (X)
corresponds to the average information

〈I (x)〉 = −p(1) loge[p(1)] − p(0) loge p[(0)]

= 0.5 loge 2 + 0.5 loge 2 = loge 2,

3 For a given memory address, the initial state is the bit value 0 or 1. Once cleared, the bit value is reset to 0
(for instance). From this final state, it is not possible to decide whether the initial state was the bit value 0
or 1, and so on for all previously recorded states, which illustrates the irreversibility of the erasure process.

4 See http://en.wikipedia.org/wiki/Landauer%27s_principle.

15.1 Maxwell’s demon and Landauer’s principle 287

with H (X) = kB〈I (X)〉 = kB loge 2 in the units of physics. According to Landauer’s prin-
ciple, clearing the memory, thus, corresponds to the conversion into energy of the mem-
ory’s average information, which corresponds to the heat Q = kBT 〈I 〉 = kBT loge 2.
The cleared memory can be viewed as a single-event source X ′ = {0} with probabil-
ity p(0) = 1, corresponding to zero information (I (0) = − loge[p(0)] = − loge(1) = 0)
and zero entropy H ′ = kB〈I (0)〉 = 0. The difference in memory entropy before and
after erasure is, thus, �H = H ′ − H = −kB loge 2. This is the amount of entropy that
is communicated to the environment. These values represent a lower bound because the
physical erasure process must also generate some form of heat, for instance passing a
current through a memory transistor gate. The key conclusion of Landauer’s principle
can be summarized into the following statement:

Information is physical.

This means that the creation, erasure, manipulation, or processing of information
involves physical laws. This represents a new awareness, which contrasts with the classi-
cal background of Shannon’s information theory, and calls for more questions, answers,
and paradoxes. These are to be found in quantum information theory (QIT), which will
be addressed shortly. At this stage, we must at least be convinced that there is more to
information than a mere mathematical or ethereal definition, as we have been used and
trained through education to believe intuitively.

Landauer’s principle brings up another interesting question, which concerns com-
puting. When one performs hand calculations on a blackboard, one is obliged at some
point to erase it, while saving the last results and other useful parameters somewhere in
the corner of the blackboard. Very large blackboards, with different folding or sliding
panels, could fit a full math course. But the information must be cleared for the next
course. This shows that processing information (computation) requires information era-
sure, because of the finite size of the memory. A computer that would keep and store
the information regarding all of its intermediate calculation steps (namely the memory
contents at each step, or the full record of the memory changes) would rapidly “choke on
its own garbage.” Such a necessary erasure yet obliterates the information of the com-
puting history, which makes the computation irreversible. For computation, the term
“irreversible” means that the computed information output cannot lead one to know the
information input to the computation.5

The concept of computing irreversibility, however, seems to be in contradiction with
the laws of physics. Indeed, if one fully knows the state of a system at a given time
t , for instance, the distribution of molecules and their velocities inside a closed box,

5 For instance, the addition of two integer numbers a and b, given the fact that the input information (a, b)
is then erased, is irreversible: to any output c correspond c + 1 possible input pairs. If a and b are real
numbers, the number of input-pair possibilities is infinite. Another example of irreversibility is the opera-
tion of functional derivation: given any input function fin = f (x), the output is fout = f ′(x). Reversing the
algorithm yields f ∗(x) = ∫ x

x0
f ′(x)dx = f (x) + C where C = − f (x0) is an arbitrary constant. The knowl-

edge of fout = f ′(x), thus, makes it possible to know f ∗ = f (x) + C = fin(x) + C . This may represent
useful information, but f ∗ and fin differ from each other by an infinity of possible real constants C, which
illustrates the irreversibility of the computation algorithm.

288 Reversible computation

A

B

Memory

Instructions

Data

Control unit

Registers

In Out

ALU

Figure 15.2 Von Neumann’s generic computer architecture.

the laws of mechanics make it possible to compute the system at any time prior to t .
This is like playing a video of a billiard ball game in reverse. From this perspective, a
physicist should suspect that it is possible to effect reversible computations, without any
heat dissipation or entropy increase. This brings the issue of the existence of reversible
logic. In the next two sections, I shall describe logic gates, which are used in the heart of
computer microcircuits, and then show that it is possible to define reversible logic gates
and circuits.

15.2 From computer architecture to logic gates

According to the 1945 design of computer architecture by von Neumann (VN),6 the core
of a standard computer is made of a memory, and of an algorithmic and logical unit
(ALU), as illustrated in Fig. 15.2. It is seen that the VN architecture is completed with a
control unit and the interfaces enabling the computer to communicate with the outside
word and its peripherals. The memory is a device containing the instructions to initialize
and run the computer with its interfaces and peripherals. It includes the program to be
performed, in the form of a stack of instructions, and the data before, during, and after

6 See, for instance, http://en.wikipedia.org/wiki/Von_Neumann_architecture.

15.2 From computer architecture to logic gates 289

computation. As the figure shows, the ALU works with two dedicated memory buffers,
called registers, or sometimes “accumulators.” The two registers (A and B) are input
from the memory with binary data words a1a2, . . . , ak and b1b2, . . . , bk of identical size,
typically k =32 bits, 64 bits, and, today, 128 bits. This size is the same as that of the cells
in the memory, and also of the address used to index the memory cells (the memory,
thus, has 2k different addresses). Registers are literally used as scratchpads for the ALU
to perform various logical operations between the two data words {ai } and {bi }, such as
addition, subtraction, multiplication, division, comparison, complementation, rotational
permutation, overflow test, and zero-divide test, for the main ones. These operations are
performed by an internal circuit of the ALU, which is formed of a complex network of
logic gates, whose functions can be switched at will through a set of control bits. A basic
example of a four-bit ALU circuit is provided later in this chapter (one may yet have a
look at Fig. 15.6 for a flavor), which will come after I have described the principles of
the elementary logic gates themselves.

All logical operations between the register data and the ALU are instructed from a
“micromachine” program, which decodes the higher-level instructions fed by the com-
puter memory into micro-instructions making the ALU capable to handle the register
bits. The ALU is complete with an internal buffer register. Today, the integrated version
of the ALU, internal buffer, and micromachine decoder represents what is referred to as a
CPU, for central processing unit.7 The CPU is, thus, a machine to “crunch bits” from the
higher-level instructions of the central memory, hence the popular name “computer,”
which today means far more than just a calculator, although the appellation remains
conceptually exact. Note that the VN architecture is not the only one possible. Indeed,
several VN machines, or CPUs can be set to work in parallel, each being dedicated
to an independent fraction of the computing algorithm, or more simply being assigned
a share of the number-crunching groundwork. This is referred to as parallel or multi-
processor architecture, to be viewed either as a magnified VN master machine ruling
over many CPU slaves, or a “democratic” group of VN machines putting their effort
towards some common-interest goals. The VN architecture yet remains crucial to the
orchestration of the ensemble, whether the master is a ruling dictator or simply a discreet
facilitator.

Before taking a closer look at the characteristics of binary logic gates forming the
ALU circuitry, it is worth considering the Turing machine (TM), which was described
in Chapter 7. To recall, the generic TM architecture, which is illustrated in Fig. 7.1,
consists of a bidirectional tape of infinite length, and a head, which is able to read and
write bits or symbols onto the tape. The TM is set into motion according to a stack of
instructions, called an “action table.” This action table is the program from which the
tape input data are processed bit by bit (or symbol by symbol), resulting in the generation
of output data, which are recorded on the tape. It includes a “halting instruction,” which
forces the machine to halt on completion of the task. The tape is a memory of infinite
size, which puts no restriction as to the complexity of the task, the corresponding
computing algorithm and the amount of data to be processed. Finally, a universal Turing

7 See http://en.wikipedia.org/wiki/Central_processing_unit.

290 Reversible computation

machine (UTM) belongs to a class of TMs, which, through a minimal set of action table
instructions, are able to emulate any other TM, which is achieved by means of a tape
program. The most important conclusion about TMs (and for that matter, UTMs) is that
they can compute “anything that a real computer can compute.” Namely, any problem
that can be solved through some form of computing process or algorithm devised by
a mathematician can be solved by a TM. This stunning statement is referred to as the
Church–Turing thesis. Thus, TMs, and more so UTMs, represent the most elementary
form of computing machine ever conceivable. In this view, why are modern computers
based on VN architecture instead of that of a TM? As discussed in Chapter 7, the TM
implementation is comparatively impractical, for two main reasons. First, as we have
seen, the TM requires an infinite memory space, which is not physically possible. Second,
the finite size of a realistic computer memory puts a constraint on the management
of the memory space, which in turn impacts on the program structure and algorithms.
The TM algorithms may be more general or universal, but their implementation in a
computing machine of finite memory size may in some cases be intractable, if not
physically impossible. We can now see some key differences and similarities between
TM and VN computers. While the UTM represents the most universal and elementary
computer architecture, the VN machine represents its conceptual approximation in the
real world. Both have programs based on man-thought algorithms, and physical input–
output interfaces. We may think of the ALU as a TM that uses parts of its memory as an
input–output tape, and the other part as the place where the action table is located. But
this does not resolve the problem of memory finiteness. Finally, another key difference
is that the VN machine is not subject to the “halting problem,” whereby a TM could
run forever. As discussed in Chapter 7, the halting problem is generally “undecidable,”
meaning that given an action table and an input tape, there exists no formal proof that a
TM will necessarily halt! In contrast, a VN machine does not have a halting problem. We
may not attempt to prove the point here, but simply stated, the finite size of the memory
must eventually cause the VN machine to “choke on its own garbage,” unlike the TM,
which may run indefinitely! But unlike the idealized TM, the realistic VN computer
can be programmed to stop automatically if caught in an infinite loop, or trespassing a
preset CPU time limit. As a matter of fact, modern VN computers are fully capable of
emulating any universal TM, and for this reason they are said to be Turing complete,
Turing equivalent, or computationally universal.8 This does not mean that such a UTM
emulation would be any quicker, more efficient, or easier; probably to the contrary
in most general cases. The key difference remains the finiteness of the VN computer
memory.

We shall now focus on the VN computer and look in more detail at the ALU and
its elementary computing circuits. As we have seen, the ALU processes the codeword
bits that are loaded in the two registers A and B. The ALU is able to interpret high-
level instructions from the memory into basic micromachine operations. In short, a
high-level instruction may be stated in a form such as “c = a + b,” which the ALU
interprets as “load the operands a, b pointed by the corresponding memory addresses

8 See http://en.wikipedia.org/wiki/Turing-complete.

15.2 From computer architecture to logic gates 291

into the registers A and B, perform the addition of the two, and return the result c
to the dedicated memory address. Such an operation calls for a microprogram, which
must process the two binary operands a, b (a = a1a2, . . . , ak , b = b1b2, . . . , bk) on a
bit-by-bit (ai , bi) basis.9 Another possible instruction may be “IF a > b, THEN.” Here,
the ALU is asked to verify indeed if a > b, so that in the event the answer is yes (or
TRUE, or 1 in logic language) the high-level program may jump to another instruction.
The ALU must then subtract b from a, and return TRUE, or 1, if z = a − b is identified
as being neither negative nor zero. It is clear that such a test requires a microprogram,
which sequentially compares every bit in the two registers A, B. The same is true for
operations such as multiplication and division, for which the ALU must also return
the extra information “overflow = TRUE/FALSE” and “zero divide = TRUE/FALSE.”
Here, we will not tarry on the micromachine programming concept and structure, but
rather focus on the bit-to-bit operations (ai ↔ bi) in the registers A, B, which are per-
formed by a preset circuitry of logic gates, acting as a controlled network. As mentioned
earlier, a basic example of such a network is provided later in this chapter (Fig. 15.6).
But to understand how the network operates under any micro-instructions, it is essen-
tial to review the different types of logic gate, as well as their possible basic circuit
arrangements.

The three most elementary logic gates, which may have one or two input bits, but
have a single output bit, are called NOT, AND, and OR, as illustrated in Fig. 15.3.
Calling a, b the bit operands, these gates correspond to the three Boolean operators
noted, respectively and equivalently (see Chapter 1):

¬a, ā for NOT a,

a ∨ b, a + b for a OR b,

a ∧ b, a × b for a AND b.

The “truth tables” shown in the figure list all possible outcomes of any logical operation.
For instance, the output c = a ∧ b (AND gate) is nonzero only in the case a = b = 1.
The three other cases, (a, b) = (00), (10), (01) yield c = 0. Thus, the result c = 1 has
only one cause while the result c = 0 has three indistinguishable causes, illustrating that
the AND operation is effectively nonreversible. It is observed from the truth tables in
Fig. 15.3 that only the NOT gate performs a reversible computation (the output to input
bit correspondence being unique).

The three gates NOT, OR, and AND make it possible to build a second group of ele-
mentary logic gates, shown in Fig. 15.4, called NAND (NOT AND) and XOR (eXclusive

9 Let A = a0a1, . . . , an and B = b0b1, . . . , bn be two binary numbers. Proceeding from the lowest-weight
bit (i = 0) to the highest-weight bit (i = n), a first Boolean circuit computes both xi = ai ⊕ bi and
c(1)

i = ai ∧ bi . The output c(1)
i provides a “carry” bit, which is 1 if the two bits (ai , bi) are equal to 1, and

0 otherwise. A second circuit stage then computes yi = xi ⊕ ci−1, c(2)
i = xi ⊕ ci−1 and ci = c(1)

i + c(2)
i ,

where ci−1 is the carry bit resulting from the previous addition stage (by convention, c−1 = 0). The result yi
represents the ith bit of A + B and the result ci is the carry to use for the next computation stage i + 1. It is
left to the reader as an exercise to draw the Boolean circuits corresponding to these different computations
stages, as well as the circuit for a full k-bit binary adder.

292 Reversible computation

a

a

b

NOT a

a AND b

a OR b
a

b

a b
1 1 1
1 0 0
0 1 0
0 0 0

a b
1 1 1
1 0 1
0 1 1
0 0 0

a
1 0
0 1

NOT a

a AND b

a OR b

Figure 15.3 The three elementary logic gates: NOT, AND, and OR, along with their
corresponding truth tables.

a NAND b

a XOR b
a

b

a b a NAND b
1 1 0
1 0 1
0 1 1
0 0 1

a

b

a b
1 1 0
1 0 1
0 1 1
0 0 0

a XOR b

Figure 15.4 Second group of elementary logic gates, NAND and XOR, along with their
corresponding truth tables, as built from the first group shown in Fig. 15.3.

15.2 From computer architecture to logic gates 293

OR). In Boolean logic, the corresponding operators are:

x ∧̄ y for x NAND y,

x ⊕ y for x XOR y,

respectively. Note the small open circle, or “bubble,” which indicates the logical com-
plementation at the gate’s output (in some cases, the bubble can be placed at the input to
complement some of the input data bits). The figure shows that the NAND gate is built
through a succession of AND and NOT gates. The XOR gate is an essential function for
performing modulo-2 addition of two binary numbers. This gate can be built in many
different ways. The figure shows one possible Boolean circuit utilizing AND, NAND,
and OR gates, according to the heuristic formula

a ⊕ b = (a ∧̄ b) ∧ (a ∨ b). (15.1)

Here are three other possible ways to effect a XOR computation, which the reader can
check out using truth tables:

a ⊕ b = (a ∨ b) ∧ (ā ∨ b̄)
= (a ∧ b̄) ∨ (ā ∧ b)
= (a ∧̄ b̄) ∧̄ (ā ∧̄ b).

(15.2)

It is seen that the last solution in this equation makes exclusive use of NAND (∧̄) and
NOT (x̄) operations. The NOT can also be realized with NAND, taking into account the
property ā = a ∧̄ a. Thus, we obtain from Eq. (15.2)

a ⊕ b = [a ∧̄ (b ∧̄ b)] ∧̄ [(a ∧̄ a) ∧̄ b], (15.3)

which shows that an XOR gate can be built exclusively with a Boolean circuit of NAND
gates. It is easily established that the NAND gate can be used as a universal building block
in Boolean circuits to construct all elementary logic gates. This property is illustrated in
Fig. 15.5.

We have, thus, identified the basic constitutive elements of computation: logic gates
(NOT, AND, OR, XOR) with NAND representing a universal building block, and wires
to realize any Boolean circuit, from elementary to complex. We can then consider other
types of logic gates derived from these.

First, the XOR gate can also be used to perform yet another logical function called
controlled-NOT, corresponding to the CNOT gate. Given (a, x) as inputs, with a being
called the control bit, the output of CNOT is a ⊕ x . For a = 0, we have a ⊕ x = x ; and
for a = 1, we have a ⊕ x = x̄ . Thus the value of x is flipped if the control bit is set to
a = 1 and is left unchanged otherwise, hence the name “controlled-NOT” gate.

Another Boolean-circuit component, which was only implicitly introduced, is the
wire splitter that enables one to use the same bit to feed different gate inputs. This
logical splitting function is referred to as FANOUT. Another logical function of interest
is CROSSOVER (also called SWAP), which consists of switching two bits (a, b) into

294 Reversible computation

XOR

a

b

AND

a
b

ba

OR

a

b

NOT

a a

>

ba >

Figure 15.5 Construction of logic gates NOT, AND, OR, and XOR from Boolean circuits of
NAND gates.

(b, a), depending on the value of a control bit c. As we shall see later, the function
CROSSOVER is the key to building reversible logic gates. Here, we shall overlook
more complex logical-gate arrangements, whereby the wires can form circuit loops,
thus enabling output bits to be fed back into the circuit that computes them. Such
feedback loops are used to create “bistable” or two-state logical devices. The corre-
sponding devices are called FLIP-FLOP gates, and are activated by a clock signal. A
FLIP-FLOP gate can have different output possibilities, or states, depending on (a) the
input bits, and (b) the previous state in which it is found at each clock cycle. There
exist several types of elementary FLIP-FLOP gates,10 which find many applications for
data registers and counters, and computer memories. Finally, any single-port logic gate
whose output is equal to the input performs the function REPEAT, as does a “repeater”
in digital electronics. This is the case of the CNOT gate with the control bit set to
a = 0.

Having, now, an understanding of the various logic gates and functions, it is well
worthwhile to provide a basic example of ALU (algorithmic and logical unit) circuitry.
Figure 15.6 shows the impressive logical circuit of a four-bit ALU, an integrated circuit
from the TTL (transistor-transistor logic) family referred to as 74181.11

The following does not represent any authoritative description of the ’181 (as profes-
sionals call it), but simply a brief academic overview. As may be counted from the figure,
this ALU network includes 67 logic gates (namely: 38 AND, 12 NOR, 4 XOR, 4 NAND,
and 9 NOT). The four-bit inputs Ā = (Ā0Ā1Ā2Ā3), B̄ = (B̄0 B̄1 B̄2 B̄3) (top) and output

10 See, for instance: http://en.wikipedia.org/wiki/Flip-flop_(electronics), http://computer.howstuffworks.com/
boolean3.htm, www.eelab.usyd.edu.au/digital_tutorial/part3/fl-types.htm.

11 See (in French): http://fr.wikipedia.org/wiki/Unit%C3%A9_arithm%C3%A9tique_et_logique. Also see
datasheet in (for instance):

www.ac-nancy-metz.fr/enseign/ssi/ressourcesP/Documentation/GE/TTL/74hc181.pdf.

15.2 From computer architecture to logic gates 295

Cn M A0 B0 A1 B1 A2 A3

F3F2A = BF1F0

B2 B3

S0−3S0
S1S2

S3

GP Cn+4

Figure 15.6 Basic example of a four-bit ALU (inputs Ā0 Ā1 Ā2 Ā3, B̄0 B̄1 B̄2 B̄3, output F̄0 F̄1 F̄2 F̄3).

F̄ = (F̄0 F̄1 F̄2 F̄3) (bottom) are shown in open circles (note that, here, the operands are
conventionally input in complemented logic). On top left, the “mode-control” input M
selects the type of computation to perform, namely logic with M = H (for high voltage
level) and arithmetic with M = L (for low voltage level). The logic mode (M = H)
performs individual bit–bit logical operations between the two inputs Ā, B̄, with carry
inhibition. The arithmetic mode (M = L) transfers carries at each individual bit–bit oper-
ation to the higher bit level. For instance, this is the difference between performing the
operation A ⊕ B, which consists in logically XORing the two operands on an individual
bit-by-bit basis (without carry), and performing the operation A + B, which represents
the arithmetic addition (with carry transfer) of the two binary numbers A, B. The cir-
cuit can perform either 16 logical operations or 16 arithmetic operations. Shown at the
top right in Fig. 15.6 are four “mode select” bits S = (S0S1S2S3). These bits control
the 24 = 16 possible functions, which may be either logical or arithmetic, according
to the computational mode M. Also shown at the top left of the figure, an input cn

and output cn+4 (high or low values) are provisioned to enable the cascading of arith-
metic computations over larger word sizes, for instance to form a 16-bit ALU network.
Table 15.1 shows the 16 logical functions (M = H) performed by the ALU according to
the 16 different selection modes S.

296 Reversible computation

Table 15.1 Logical functions F = f (Ā, B̄) performed from four-bit operands Ā, B̄ by the ALU network shown in
Fig. 15.6, as defined by the 16 selection modes S = (S0 S1 S2 S3), with Si = 0 for “low” and Si = 1 for “high” voltage
levels.

S0 S1 S2 S3 F = f (Ā, B̄) S0 S1 S2 S3 F = f (Ā, B̄)

0 0 0 0 Ā 1 0 0 0 Ā ∧ B
0 0 0 1 A ∧ B 1 0 0 1 A ⊕ B
0 0 1 0 Ā ∨ B 1 0 1 0 B
0 0 1 1 1 1 0 1 1 A ∨ B
0 1 0 0 A ∨ B 1 1 0 0 0
0 1 0 1 B̄ 1 1 0 1 A ∧ B̄

0 1 1 0 Ā ⊕ B̄ 1 1 1 0 A ∧ B
0 1 1 1 A ∨ B̄ 1 1 1 1 A

A detailed demonstration of the 74181-TTL and other higher-level network arrange-
ments (e.g., 16-bit ALU), which is animated through Java applets, is available on the
Internet.12 This basic example only provides a hint of the computing capabilities of
logical circuits and more complex network arrangements. It just suffices to illustrate that
the ALU can compute anything corresponding to a VN program, as decomposed into
a series of micro-instructions and bit processing through such complex logic networks.
We shall now move on to the core of the issue: the reversibility of computing and the
need to find alternative ways to process information.

As we have learnt, the above description constitutes a basic inventory of classical logic
gates and circuit networks, which (except for NOT gate) we know perform nonreversible
operations. According to Landauer’s principle, which was described earlier, the infor-
mation erasure of each input bit corresponds to a minimum heat and entropy generation
of Q = kBT log 2 and H = kB log 2, respectively. The power consumption of the logic
gates and of the various electronic circuits (including digital amplifiers to compensate
for signal propagation or splitting loss) also represents a source of heat and entropy,
whose measures are orders of magnitude greater than Landauer’s bound. The heat dis-
sipation is estimated to be Q′ = 500kBT log 2 ≡ 500Q for elementary logic gates, and
Q′′ = 108kBT ≈ 108 Q for the CPU in ordinary home computers.13 Most of this heat,
of resistive origin, could be alleviated if computers would be run at ultra-low tempera-
tures (T → 0), using “superconducting” electronics. If such a computer could ever be
built, then one would reach the ultimate limits predicted by Landauer’s bound. The key
question, then, is whether or not it is possible to build computers with reversible logic.
As previously hinted, physicists, who are attached to the concept of reversible processes,
intuitively suspect that it should be possible to manipulate information in a reversible

12 See: http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/20-arithmetic/50-74181/
demo-74181-ALU.html.

13 See (respectively): M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information
(Cambridge: Cambridge University Press, 2000) and V. Vedral and M. B. Plenio, Basics of quantum
computation. Prog. Quant. Electron., 22 (1998), 1–39.

15.3 Reversible logic gates and computation 297

way, without heat dissipation or entropy increase. The corresponding computer should
exclusively use reversible gates, which we shall analyze next.

15.3 Reversible logic gates and computation

In this section, I shall describe a new class of logic gates, which make it possible to build
a variety of reversible-computing circuits. The first two elementary gates having such a
property are called the Fredkin and the Toffoli gates, which we shall consider now.

The Fredkin gate is illustrated in Fig. 15.7, along with its truth table. It is seen from
the figure that the Fredkin gate has three input ports (a, b, c) and three output ports
(a′, b′, c′). Two input ports are used for the operand data (a, b), the third port being used
for a control bit (c). The gate operates according to the following logic (see also the
Figure’s truth table):

� If c = 0, then a, b remain unchanged (a′ = a, b′ = b);
� If c = 1, then a, b are swapped (a′ = b, b′ = a);
� The control bit c remains unchanged (c′ = c).

Figure 15.8(a) and (b) illustrate the first two basic operations of the Fredkin gate:
REPEAT (c = 0) and CROSSOVER or SWAP (c = 1). But the gate can be configured
to perform other functions of interest, as shown in Fig. 15.8(c) and (d): setting a =
1, b = 0, c = x yields a′ = x̄ (NOT x) and b′ = c′ = x (FANOUT x). Setting a =
0, b = y, c = x yields a′ = x ∧ y (x AND y) and b′ = x̄ ∧ y (x̄ AND y). The input
bits a, b, which are preset to constant values 0 or 1 in the Fredkin gate, as shown in
Fig. 15.8(c) and (d), are referred to as ancilla bits. Such ancilla bits, which are the key
to the operation of reversible gates, represent a novel concept in computational logic.
Another novelty is that reversible gates produce extra or garbage bits, which are not
useful to the rest of the computation (e.g., the bit b′ = x̄ ∧ y in Fig. 15.8(d). Last but
not least, we notice from the Fredkin gate truth table (Fig. 15.7) that each output port
configuration (a′, b′, c′) exclusively corresponds to a unique input port configuration
(a, b, c). Thus, there exists a mutual and unique correspondence between the input and
the output information, hence, computation through the Fredkin gate is reversible.

Because the Fredkin gate can perform both NOT and AND logical functions, it can
be used as a universal building block to construct any other logic gate. To prove this
point, we need to introduce De Morgan’s law (or theorem).14 Such a theorem can be put
in the form of the following equations:

a ∨ b = ā ∧ b̄,

a ∧ b = ā ∨ b̄.
(15.4)

In ensemble theory, De Morgan’s law equivalently translates into the relations A ∪ B =
Ā ∩ B̄ and A ∩ B = Ā ∪ B̄, which can be readily verified from Venn diagrams (see
Fig. 1.4). Using Eq. (15.4) we observe that the OR function can be generated through

14 See http://en.wikipedia.org/wiki/De_Morgan%27s_laws.

298 Reversible computation

a

b

c

´a

´b

´c

a b c a´ b´ c´
1 1 0 1 1 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 0
1 1 1 1 1 1
1 0 1 0 1 1
0 1 1 1 0 1
0 0 1 0 0 1

Figure 15.7 Fredkin gate diagram, with corresponding truth table.

x

y

0

x

y

0

x

y

1

y

x

1

(a) (b)

1

0

x

x

x

x

0

y

x

yx

x

(c) (d)

<

yx <

Figure 15.8 Fredkin gate configurations (a) REPEAT, (b) CROSSOVER, (c) NOT [port a′] and
FANOUT [ports b′ and c′], (d) AND [port a′] and NOT x AND y [port b′].

the identity

a ∨ b = a ∨ b = ā ∧ b̄, (15.5)

which exclusively uses the NOT and AND gates. Using the above property and the
relations in Eq. (15.1) (with a ∧̄ b = a ∧ b), we observe that the function XOR can
be constructed either with NOT and AND gates or with NOT, AND, and OR gates.15

Here, the key difference with the previous “classical” logic of the ALU in the VN

15 It is left as an exercise to construct different possibilities of XOR circuits exclusively based on Fredkin
gates.

15.3 Reversible logic gates and computation 299

a

b

c x

a´ = a

b´ = b

a b c a´ b´ c´

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Figure 15.9 Toffoli gate diagram, with corresponding truth table, showing bit-flipping of c if the
two control bits are set to a = b = 1.

computer is that all gate circuits constructed from Fredkin gates perform fully reversible
computations, by virtue of the gate’s reversible logic.

We consider next a second type of elementary reversible-logic gate, which is called
the Toffoli gate. Its diagram and corresponding truth table are shown in Fig. 15.9. Like
the Fredkin gate, the Toffoli gate has three input ports (a, b, c) and three output ports
(a′, b′, c′). The difference is that a, b are control bits (a′ = a, b′ = b) and c is the target
bit. By convention, control bits are marked with a dot (•) and the target bit with a cross
(×). The Toffoli gate outputs c′ = c ⊕ (a ∧ b), or c′ = c ⊕ ab for short. The truth table
in the figure shows that the value of c is flipped (function NOT) when the two control bits
are set to a = b = 1, and is left unchanged otherwise (function REPEAT). The Toffoli
gate can, thus, be conceived as a controlled-controlled-NOT (CCNOT) gate. As we shall
see next, the inputs (a, b, c) can also play different roles of variable, control, or ancilla
bits, with c′ remaining the gate’s functional output bit, by definition.

Figure 15.10 illustrates that the logical functions NOT, AND, NAND, XOR, and
FANOUT can be built from single Toffoli gates. The function OR can be built with two
NOT and one NAND gates using the relation a ∨ b = ā ∧̄ b̄. The figure also shows
the CNOT gate, which can be viewed as a simplified representation of the XOR gate.
The Toffoli gate, like the Fredkin gate, thus, represents a universal building block in the
construction of reversible-logic circuits.

I shall now provide an example of a complex circuit exclusively constructed from
CNOT and Toffoli gates, which is called the plain adder. A plain adder performs the
addition of two binary numbers A = a0a1, . . . , an and B = b0b1, . . . , bn . This function
entails not only the bit-by-bit addition operations (ai ⊕ bi with i = 0 . . . n) but also the
computation and addition of the carry bit ci−1 at each stage i . To construct a plain adder,
one, thus, needs two new gate circuits, which we call SUM and CARRY, and which are
illustrated in Fig. 15.11. It is seen from the figure that SUM is built from a cascade of
two CNOT gates.

The plain-adder circuit performs the double sum x = a ⊕ b (bit-by-bit addition of
order i) and y = x ⊕ c (addition of the result with carry c of order i − 1), with indices
being omitted here for clarity. The circuit CARRY outputs the carry bit c′ = (ab) ⊕
c(a ⊕ b), where c is the carry from order i − 1. It is easily checked that c′ is the carry of

300 Reversible computation

NOT

1

x

x

1

1

x

x=

AND

x

y

0

x

y

xy=

x

NAND

x

y

x

y

1

xy=

x

XOR

1

y

1

y

x

=

x

FANOUT

1

x

1

x

0

x=

x

CNOT

a a

x x

Figure 15.10 Logic gates NOT, AND, NAND, FANOUT, and XOR, as built from single Toffoli
gates. The gate CNOT is also shown.

SUM

c

x

a

c

a

b x

CARRY

c

x

a

c

a

b x

x0 ´c

Figure 15.11 Gate circuits SUM and CARRY, built from CNOT and Toffoli gates.

order i of the sum a ⊕ b ⊕ c.16 The plain-adder circuit, which performs the computation
D = A + B of two binary numbers A = a0a1, . . . , an and B = b0b1, . . . , bn , chosen
here with n = 2 for simplicity,17 is shown in Fig. 15.12.

The interpretation of the V-shaped circuit shown in the figure goes as follows. Consider
first the CARRY gates. In the left part of the circuit (the descending branch of the V),
we observe that the carry is computed through a cascade of three CARRY gates, up

16 Indeed, (a) if a = b = 0 then c′ = 0 ⊕ 0c = 0; (b) if a = b = 1 then c′ = 1 ⊕ 0c = 1; (c) if a �= b then
c′ = 0 ⊕ 1c = c.

17 As adapted from V. Vedral and M. B. Plenio, Basics of quantum computation. Prog. Quant. Electron., 22
(1998), 1–39.

15.3 Reversible logic gates and computation 301

a0

a1

a2

b2

b1

b0

a0

a1

a2

d0

d1

d2

d3
0

C

C

C x

C
S

C
S

S
0

0

0

0

0

0

Figure 15.12 Plain-adder gate circuit, performing the addition of two binary numbers
A = a0a1a2 and B = b0b1b2, with output A = a0a1a2 and D = A + B = d0d1d2d3. The gates
C and S with a thick bar to the right correspond to the CARRY and SUM gates shown in
Fig. 15.11. The gate C with a thick bar to the left effects the reverse operation of CARRY.

to the highest order (i = 3), which yields c3 = d3 (highest-weight bit of D = A + B).
In the right part of the circuit (ascending branch of the V), the reverse operation is
effected,18 which resets the bit values initially input to the previous CARRY gate in
the sequence. Second, consider the three SUM gates in the right part of the circuit.
These gates are seen to compute di = ai ⊕ bi ⊕ ci−1 in descending order (from i = 2 to
i = 0), with c0 = 0. At the bottom of the V, one observes that the reverse CARRY gate
is substituted with a CNOT gate. An easy verification shows that such an arrangement
makes it possible to initiate the descending summation di = ai ⊕ bi ⊕ ci−1 from the last
CARRY gate outputs.

As expected from the property of its universal, reversible-logic gate components, the
above plain-adder circuit is fully reversible, meaning that no information is lost (the
simultaneous knowledge of A and D = A + B giving knowledge of B). The function of
the circuit (also referred to as a “quantum network” in QIT jargon), can by symbolized
by the notation

(A, B) → (A, A + B). (15.6)

In the same jargon, the operands A, B are also called registers, by analogy with the
classical or von Neumann (VN) computer, which was described in the previous section.
A remarkable feature of the (A, B) → (A, A + B) network is that the many “garbage
bits,” which are generated by the intermediate computation steps, are eventually disposed
of. Furthermore, the ancilla bits 0 used at the input (see Fig. 15.12) are all reset to their
initial values, which makes them available for any future use in a larger quantum network.

18 The reverse operation of CARRY is effected by the same gate as shown in Fig. 15.12, but with the operations
performed in the reverse order, as in a mirror version of the circuitry, or reading the diagram from right to
left.

302 Reversible computation

But we aren’t finished yet with the plain-adder network: it also reserves some interesting
surprises!19

First, the plain-adder network can be used in the reverse order, i.e., feeding input-
register data A, B from right to left in Fig. 15.12, which yields the operations

(A, B) → (A, A − B) for A ≥ B (15.7)

and

(A, B) → [A, 2n+1 − (B − A)] for A < B (15.8)

where n + 1 is the size of the second output register. In both cases (A ≥ B or A < B),
the network performs the subtraction function. In the second case it can be shown that
the bit of highest weight is always 1, which represents a “negative-sign bit” for the result
of the difference A − B.

Second, the plain-adder network also makes it possible to perform modular algebra
with the functions of multiplication, and exponentiation. Indeed, modular multiplication
and exponentiation, i.e., (A, B) → (A, A × B) and (A, B) → (A, AB), respectively,
can be performed using the properties

A × B mod m = (A + A + · · · + A)
B times

mod m, (15.9)

AB mod m = (A × A × · · · × A)
B times

mod m, (15.10)

which apply given any modulus m. Modular algebra is the key to solving quantum-
computation problems, such as the factorization of integers into primes (see
Chapter 20).

In the forthcoming chapters, reversible-logic gates and their networks will not be
used with “classical bits,” but rather with “quantum bits,” or qubits, which hold more
interesting properties and surprises.

15.4 Exercises

15.1 (B): Prove the following alternative definitions for XOR gates:

a ⊕ b = (a ∨ b) ∧ (ā ∨ b̄)
= (a ∧ b̄) ∨ (ā ∧ b)
= (a ∧̄ b̄) ∧̄ (ā ∧̄ b).

15.2 (B): Prove De Morgan’s law:

(a ∧ b) = ā ∨ b̄,

(a ∨ b) = ā ∧ b̄.

19 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press, 2000); V. Vedral and M. B. Plenio, Basics of quantum computation. Prog. Quant. Electron.,
22 (1998), 1–39.

15.4 Exercises 303

15.3 (T): Prove by Boolean algebra that the definition of XOR

a ⊕ b = (a ∧̄ b) ∧ (a ∨ b)

is formally equivalent to any of the following three definitions:

a ⊕ b = (a ∨ b) ∧ (ā ∨ b̄)
= (a ∧ b̄) ∨ (ā ∧ b)
= (a ∧̄ b̄) ∧̄ (ā ∧̄ b).

(Clue: use the distributive property according to which a ∧ (b ∨ c) = (a ∧ b) ∨
(a ∧ c)).

15.4 (B): What is the Boolean function of the gate circuit?

15.5 (B): Through Boolean logic, show that the circuit arrangement of three successive
CNOT gates, ACNOT, BCNOT, ACNOT,

a

x

x

x

ACNOT CNOT CNOTAB

b

b

a

is equivalent to a SWAP gate.

16 Quantum bits and quantum gates

This chapter represents our first step into quantum information theory (QIT). The key
to operating such a transition is to become familiar with the concept of the quantum
bit, or qubit, which is a probabilistic superposition of the classical 0 and 1 bits. In the
quantum world, the classical 0 and 1 bits become the pure states |0〉 and |1〉, respec-
tively. It is as if a coin can be classically in either heads or tails states, but is now
allowed to exist in a superposition of both! Then I show that qubits can be physi-
cally transformed by the action of unitary matrices, which are also called operators.
I show that such qubit transformations, resulting from any qubit manipulation, can be
described by rotations on a 2D surface, which is referred to as the Bloch sphere. The
Pauli matrices are shown to generate all such unitary transformations. These trans-
formations are reversible, because they are characterized by unitary matrices; this
property always makes it possible to trace the input information carried by qubits.
I will then describe different types of elementary quantum computations performed
by elementary quantum gates, forming a veritable “zoo” of unitary operators, called
I, X, Y, Z , H, CNOT, CCNOT, CROSSOVER or SWAP, controlled-U , and controlled-
controlled-U . These gates can be used to form quantum circuits, involving any number
of qubits, and of which several examples and tools for analysis are provided. Finally, the
concept of tensor product, as progressively introduced through the above description, is
eventually formalized. The chapter concludes with the intriguing noncloning theorem,
according to which it is not possible to duplicate or “clone” a quantum state.

16.1 Quantum bits

In computer science, the binary digit, or bit, represents the elementary unit of infor-
mation. It is a scalar with two possible values, 0 and 1. The bit can also be viewed as
a two-state variable, which can be in either the state 0 or the state 1, with no possible
other or intermediate states. In Shannon’s theory, the bit is also the unit of information,
but is a real number satisfying 0 ≤ x ≤ 1, which expresses the average information
available from a random binary source, which is called entropy. The results of Shan-
non’s information theory, in fact, concern any information sources, including multi-level
or multisymbolic ones, up to any integer number M . In these cases, the bit informa-
tion available from the source is bounded according to 0 ≤ x ≤ log2 M . When M is
a power of two (M = 2k), it is possible to encode the different symbols into as many

16.1 Quantum bits 305

binary codewords, and the corresponding sources can be conceived as an extension of
a binary source. Thus, each bit in a given codeword is allowed one out of two pos-
sible states, and this corresponds to the most fundamental representation of classical
information.

In quantum information theory (QIT), and its derivative, quantum computation (QC),
the elementary unit of information is the quantum bit or qubit. As we shall see, the
striking property of the qubit is to escape any definition of being 0 or 1. It is correct,
however, to say that it can be either 0 or 1. To clarify, somewhat, such a mystery, consider
a closed box with a coin inside. We shake the box. The coin must then be resting in
the heads or tails position (excluding here any other possibility, for simplicity). The
question is, “What is the coin’s position?” The intuitive and classical answer is, “It must
be either heads or tails.” According to the quantum definition, the coin is described by
a qubit. The answer is that the coin position, or state, is “neither heads nor tails, but a
superposition of both.” As long as we do not open the box, we cannot know in which
state the coin actually exists. By opening the box, we make a measurement of the coin
state, and the outcome is a classical bit of information, namely heads or tails. This basic
example provides an intuitive notion of the nature of the qubit, which I shall formalize
through this chapter.

In the above, we have used different new terms, such as state, superposition of states,
and measurement, which (to some readers) represents as many hints of the domain
of quantum mechanics. In this introductory chapter, we shall approach the notion of
qubit without approaching quantum mechanics any closer. Indeed, there is no need to
present a more complicated picture if we can introduce the qubit and its properties and
formalism by simpler means. We have realized from the preceding explanation that the
qubit is a piece of information that combines in some ways the information of both 0
and 1. Therefore, we may simply view the qubit as a two-dimensional (2D) vector, with
one dimension defining the 0 information component, and the other dimension the 1
information component.

We shall now formalize the 2D vector representation of the qubit. Given a 2D vector
space with basis u, v, one can then define the qubit state, q , under the linear combination

 q = α u + β v, (16.1)

where α, β are complex numbers,1 which represent the vector’s coordinates in the
2D space. Assuming that (u, v) is an orthonormal basis,2 and using the column

1 To recall essential basics, complex numbers z are defined as z = a + ib, where (a, b) are real numbers
and i the “pure imaginary” basis having the property i2 = −1. The real numbers a and b are called the
real and the imaginary parts of z, respectively. The length or modulus of z is defined as |z| = √

a2 + b2.
Complex numbers can be equivalently written as z = |z|eiθ where θ = tan−1(b/a) is the argument of
z, and where eiθ ≡ cos θ + i sin θ is the imaginary-exponential function. The complex-conjugate of z,
indifferently called z∗ or z̄, is defined as z∗ = z̄ = a − ib = |z|e−iθ . A key property is z∗z = zz̄ = |z|2 =
a2 + b2.

2 To recall from vector-space algebra, an orthonormal basis is any set of n vectors u1, u2, . . . , un , which
satisfy for all i, j = 1, . . . , n the scalar-product condition ui · u j = δi j , where δi j is the Kronecker symbol
(δi j = 1 for i = j and δi j = 0 for i �= j). For i = j , the condition gives u2

i = | ui |2 = 1, or | ui | = 1.

306 Quantum bits and quantum gates

representation for vectors, we have

 q = α u + β v = α

(
1
0

)
+ β

(
0
1

)
. (16.2)

As detailed further on in this chapter, in QIT a vector or qubit state q is noted instead
as |q〉, where the arrow | 〉 is called a ket (as in the second half of the word bracket).
Consistently, and by analogy with classical bits, the two elementary states u and v
are noted |0〉 and |1〉, respectively. The qubit can, thus, be defined as the vector linear
combination:

|q〉 = α|0〉 + β|1〉. (16.3)

This shows that a qubit can be conceived as a superposition of the two elementary
orthogonal states |0〉 and |1〉. In QIT jargon, the complete set of states |0〉, |1〉 is referred
to as the computational basis. The two complex coordinates α, β, are also called the
qubit amplitudes.

It is seen from the above that, contrary to the classical information bits, the qubit can
be both 0 and 1, or, more accurately, a linear superposition of states 0 and 1. Unlike
classical bits, which correspond to only two possible points on a line (x = 0 or x = 1),
qubits can correspond to an infinity of points in a 2D space. We shall see later how such
points can be represented visually.

As we have seen from Chapter 15, the classical or von Neumann computer retrieves
information by reading the bit contents in its inner memory. Any such reading operation
is, thus, analogous to a physical measurement of the memory contents. Likewise, the
information carried by qubits can be measured. The key difference between the classical
bit and the qubit is that, as we have seen, the latter is a superposition of the states |0〉 and
|1〉 in a 2D space. It is not possible to physically measure the two complex amplitudes
α, β, which define the qubit state. This amounts to saying that it is not possible to
“measure” a qubit state. Rather, any physical measurement of a qubit yields a classical
bit, which must be either 0 or 1. Such a measurement is not deterministic, but associated
with certain probabilities. The probability that the qubit measure yields the bit 0 is
proportional to |α|2, and that of yielding the bit 1 is proportional to |β|2. Since there
exist only two measurement possibilities, we must have

|α|2 + |β|2 = 1. (16.4)

Since |α|2 + |β|2 is the length or magnitude of the qubit vector, this result expresses
the property that the qubit is a unitary vector. Thus a qubit with α = 0 or β = 0 exists
in the pure state |0〉 or |1〉. The corresponding measurements yield the exact result 0
with probability |α2| = 1, or 1, with probability |β2| = 1, respectively. Another case
of interest is |α|2 = |β|2 = 1/2, where the measurement outcome has equal chances of
being 0 or 1. In general, there is no way to tell the measurement outcome, even if the
qubit state is known, because the measurement is probabilistic. Given the property in
Eq. (16.4) concerning the qubit amplitudes, the most general definition of the qubit is,

16.1 Quantum bits 307

therefore,

|q〉 = α′√
|α′|2 + |β ′|2

|0〉 + β ′√
|α′|2 + |β ′|2

|1〉, (16.5)

where α′, β ′ are any complex numbers.
To provide an illustration, let us come back to the analogy of the closed box containing

a coin, and tell the story again with the qubit formalism. The box has been shaken to the
point that it is impossible to tell on which side, heads or tails, the coin may be found.
We can assume without loss of generality that the coin is “fair,” and that it must rest on
either side at the bottom of the box, so that the probabilities of the coin being on heads
or on tails are strictly equal. This defines two equiprobable “coin states;” call them here
|H〉 and |T 〉. As long as we don’t open the box, the coin remains in the superposition of
states corresponding to the qubit:

|q〉 = 1√
2
|H〉 + 1√

2
|T 〉 (16.6)

with the amplitudes satisfying |α|2 = |β|2 =(1/
√

2)2 ≡ 1/2. Thus, from the quantum
viewpoint, the coin inside the closed box does exist in both heads and tails states. The
action of opening the box and checking the physical position of the coin yields the qubit
projection |H〉 or |T 〉, which corresponds to either of the classical bits 0 = heads or 1
= tails, respectively, with equal probabilities. This measurement is seen to collapse the
coin state |q〉 into one of its elementary states |H〉 or |T 〉, which yields the observable
value referred to as heads or tails. The counterintuitive, or nonclassical, conclusion
is that as long as no measurement (or state collapse) is effected, the coin dwells in
the superposition of states defined by Eq. (16.6). Note that this superposition is often
referred to as |+〉, or “cat state,” as I shall explain.

It is possible to think of many other examples of superpositions of states. For instance,
consider a toddler in her room on an early Sunday morning. Is she still sleeping (state
|S〉) or is she awake and playing (state |A〉)? By 8 a.m. the parents know that there
is a fair chance that she must be asleep, say 90%. By 9 a.m., they know that the
odds are 50%. But if the parents don’t get up and check, the quantum view is that
by 8 a.m., the child must be in the state |S〉/√0.9 + |A〉/√0.1 and by 9 a.m. in the
state (|S〉 + |A〉)/√2, which we have called the state |+〉. Only by opening the child’s
bedroom door can the actual measurement be made, which results in the state collapse
into |S〉 or |A〉, giving the classical information 0 = sleeping or 1 = awake. As uncanny
as this example may sound, it illustrates the quantum concept of “superposition of
states,” now with the notion of a time evolution from the initial pure state |S〉 to the
final pure state |A〉. One may view our example as a gentler, yet conceptually equivalent,
version of the Schrödinger’s cat thought experiment.3 The stories of the tossed coin,

3 In a thought experiment, Schrödinger imagines a cat that is placed inside a sealed box. The box contains a
can of poison gas, a radioactive substance, and a Geiger counter. The decay rate of the radioactive substance
is such that after one hour, there is a 50% chance that one atom decays, which is recorded by the Geiger
counter. In this event, the counter activates the opening of the poison-gas can, resulting in the cat’s instant
death. At any time, the (poor) cat’s state can be viewed as a superposition of the pure states |dead〉 or |alive〉,

308 Quantum bits and quantum gates

of the sleeping toddler, and of Schrödinger’s cat illustrate the same paradox: does the
state of a macroscopic object or system require an outside observer to be defined, or is
it self-defined independent of outside observation? Our intuition tells us that such an
object or system cannot exist in two states at the same time, and, therefore, it must be its
own “observer.” The quantum-mechanics viewpoint breaks with intuition and affirms
the contrary: that objects or systems can, indeed, exist in multiple states, and that only
the observer intervention defines what the actual state turns out to be. About elementary
information, our classical mind training requires that a bit is absolutely defined as either
being 0 or 1 (regardless of possible measurement mistakes). With the qubit, we must
now retrain our mind to accept the fact that a quantum of information (the qubit) is in
a 0/1 superposition state, whose outcome in observed reality remains undefined until
some measurement is performed. The next two chapters will clarify and further develop
such a most intriguing notion!

To summarize the above description so far, a qubit must be conceived as a two-
dimensional bit, whose coordinates in that space represent probability amplitudes. Since
two coordinates define the qubit, it is possible to represent it as a unique point on the sur-
face of a sphere of unity radius, called a Bloch sphere, which is described in Appendix M.
In this appendix, it is shown that the most general definition of the qubit, within an unob-
servable phase factor, is

|q〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ |1〉. (16.7)

The two angles θ, ϕ, thus, uniquely define the position of a point on the surface of a
sphere, just like latitude and longitude on the Earth, and as illustrated in Fig. 16.1. It
is seen from the figure that the pure qubits |0〉 or |1〉 correspond to the cases θ = 0 or
θ = π , respectively, which occupy the north and south poles of the Bloch sphere. The
key conclusion is that the qubit information corresponds to an infinite number of states,
which are continuously distributed onto the surface of the Bloch sphere.

The above description concerned single qubits, corresponding to single classical bits.
It is possible to define higher-order qubits, which correspond to two classical bits or
to even longer binary codewords. Since there exist four possible pairs of classical bits,

which begins from a certain |alive〉 and evolves over time towards a certain |dead〉. After the 1-hour delay,
the probabilities of the two states are equal, and the cat dwells in the state superposition

|+〉 = |dead〉 + |alive〉√
2

,

hence, the name “cat state.” At any time, one cannot be sure if the cat is dead or alive, and this infor-
mation requires one to make a measurement by opening the box. Such a measurement results into the
collapse of the cat’s state into either of the pure states |dead〉 or |alive〉. The initial purpose of Schrödinger’s
though experiment was to illustrate that such a quantum view must be incomplete: the cat cannot be both
dead and alive at the same time! And there is no need for someone to open the box to define in which
state the cat actually exists. Yet such a view is consistent with the so-called “Copenhagen interpreta-
tion,” according to which systems can exist in such a superposition of states until reaching state collapse
through physical observation. A fine argument, which reconciles this interpretation with Schrödinger’s
cat paradox, is the fact that a cat is a macroscopic or classical system, and, therefore, the microscopic
quantum interpretation may not apply. See discussion, and more puzzling arguments in (for instance):
http://en.wikipedia.org/wiki/Schr%C3%B6dinger’s_cat.

16.1 Quantum bits 309

a

0

q

1

q

Figure 16.1 Representation of qubit |q〉 by a point on the surface of the Bloch sphere, as defined
by the “colatitude” angle θ and the “longitude” angle ϕ. The north and south poles correspond to
the pure qubit states |0〉 and |1〉, respectively.

namely 00, 01, 10, and 11, we can call the corresponding elementary two-qubit (or
2-qubit) states |00〉, |01〉, |10〉, and |11〉, and, similarly to Eq. (16.3), we obtain the most
general definition for any 2-qubit state:

|q〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉. (16.8)

In this definition, the complex amplitudes αi j must satisfy the property∑
i j

∣∣αi j

∣∣2 = 1. (16.9)

From the previous description concerning 1-qubits, it is clear that each of the terms
|αi j |2 in the above summation represents the probability of finding the 2-qubit in the
state |i j〉, or, equivalently, of measuring the classical bit pair i j . We shall note here that
the notation |i j〉 for a pair of qubits |i〉, | j〉, or 2-qubit |i〉| j〉 actually anticipates the
concept of tensor state, which is explained in the last section of this chapter.

We can even simplify the picture of a 2-qubit by looking at it as a “four-sided die,” such
as a tetrahedron, hidden in the box. Such a die has four classically measurable outcomes
(00, 01, 10, and 11), but in the quantum world there exist an infinity of superpositions
of 2-qubit pairs, as I shall now establish.

Indeed, the 2-qubit state defined in Eq. (16.8) can also be rewritten in the form

|q〉 =
√
|α00|2 + |α01|2

(
α00|00〉 + α01|01〉√

|α00|2 + |α01|2

)

+
√
|α10|2 + |α11|2

(
α10|10〉 + α110|11〉√

|α10|2 + |α11|2

)
(16.10)

≡ β0|q0〉 + β1|q1〉,

310 Quantum bits and quantum gates

with β0 =
√
|α00|2 + |α01|2 and β1 =

√
|α10|2 + |α11|2, and

|q0〉 = 1√

|α00|2 + |α01|2
(α00|00〉 + α01|01〉) ≡ γ00|00〉 + γ01|01〉

|q1〉 = 1√
|α10|2 + |α11|2

(α00|10〉 + α01|11〉) ≡ γ10|10〉 + γ01|11〉.
(16.11)

The development in Eq. (16.11) illustrates that any 2-qubit state can be conceived as the
superposition of two 2-qubits, which we call here |q0〉 (a 2-qubit with the first bit 0),
and |q1〉 (a 2-qubit with the first bit being 1), respectively. According to all expectation,
should we have fully assimilated the earlier story of the 1-qubit measurement, if we
attempt to measure only the first bit of any 2-qubit state, the latter must collapse into
|q0〉 or |q1〉, according to the outcome of the measurement being the 0 or 1 classical bits,
with associated probabilities |β0|2 and |β1|2, respectively. The resulting states |q0〉 or
|q1〉, which represent superposition of 2-qubit states (with either 0 or 1 as the first bit),
are referred to as post-measurement states.

The above has shown that any 2-qubit state can actually be decomposed into a variety
of possible superposition of 2-qubit pairs, as selected from the family {|00〉, |01〉, |10〉,
|11〉}. Of particular interest is the specific subgroup of 2-qubit pair superpositions
|i j〉 ± |kl〉, where i �= k or j �= l, conventionally defined according to:

|β00〉 ≡ 1√
2

[|00〉 + |11〉]

|β01〉 ≡ 1√
2

[|01〉 + |10〉]

|β10〉 ≡ 1√
2

[|00〉 − |11〉]

|β11〉 ≡ 1√
2

[|01〉 − |10〉] .

(16.12)

The family of 2-qubit superpositions defined in the above inventory is referred to as Bell
states or EPR pairs, the EPR acronym being short for the names Einstein, Podolsky, and
Rosen. The Bell or EPR states exhibit quite intriguing and useful properties for quantum
computing, as will be described in Chapter 18.

The key lesson we have learnt so far is that, unlike classical bits, qubits are not
physically observable. But, as I shall describe next, qubits can be physically manipu-
lated! Such a manipulation, which transforms the qubit state, is of consequence in the
measurable or experimental domain. Hence, we may conceive of a quantum computer,
a machine that processes information not from bits but from qubits. The fact that qubits
are a probabilistic superposition of states introduces new dimensions and perspectives
in computing power, which represents a key justification for QIT.

16.2 Basic computations with 1-qubit quantum gates

In Chapter 15, we have described the principles of reversible-logic gates, as based on
classical bit inputs and controls. Here, we shall explore how such gates can perform

16.2 Basic computations with 1-qubit quantum gates 311

elementary computations by exclusive use of qubits, instead of classical bits. As we
will discover, quantum computation based on these two principles is quite different in
nature and in power, when compared with classical computation obtained from mere
Boolean-logic gates. We shall first consider operations with single qubit states, and then
move to more complex ones involving two and three qubit states.

As we have seen earlier in this chapter, a single qubit (or 1-qubit), |q〉, is defined
through its complex amplitudes (α, β) with respect to a given orthonormal base or pure
states (|0〉, |1〉), also referred to as computational basis. A quantum gate, call it A, has
the effect of transforming an input qubit state |q〉 into an output qubit state |q ′〉, using
predefined control qubits. Thus, the relation between the input and output states can be
expressed in the equivalent matrix-vector relation:

|q ′〉 = A|q〉. (16.13)

In quantum vocabulary, the entity A that transforms |q〉 into |q ′〉 is referred to as an
operator. Since the vector |q ′〉 must remain on the Bloch sphere surface (so that its
squared amplitudes correspond to actual probabilities), it must be a unitary vector. For
this reason, the transformation from |q〉 to |q ′〉 is called unitary, and A must be a unitary
operator. We shall now further develop the notion of unitary transformation and the
relation between unitary operator and matrix.

For simplicity and to escape any further conceptual burden, so far we have assumed
that qubits are equivalent to vectors in a 2D space. This view is simplistic, but accurate.
Consistently, we may assume that the transformation operator A may be defined through
a 2 × 2 matrix, whose coefficients are defined by four complex numbers, ai j . From the
definitions Eq. (16.3) and Eq. (16.13), we, thus, obtain the matrix-vector equation in the
|0〉, |1〉 base:

|q ′〉 = A|q〉
=

(
a11 a12

a21 a22

)(
α

β

)

=
(

a11α + a12β

a21α + a22β

)
≡ (a11α + a12β) |0〉 + (a21α + a22β) |1〉
≡ α′|0〉 + β ′|1〉.

(16.14)

Such a relation between the input (α, β) and output (α′, β ′) amplitudes does not account
for the control qubits in the quantum gate, but for the time being this will suffice for our
description.

The result in Eq. (16.14) shows that the action of the quantum gate, or that of
the quantum operator A, modifies the state amplitudes of the initial superposition,
according to the transformations α → α′ = a11α + α12β and β → α21α + α22β. Since
the output state amplitudes (α′, β ′) must correspond to probabilities, it is required that

312 Quantum bits and quantum gates

|α′|2 + |β ′|2 = 1. As I have mentioned earlier, such a transformation and the associated
operator/matrix, must be unitary.4

In the following, we shall consider five examples of 2× 2 unitary operators or matrices
and their effect on qubit transformation, namely: the Pauli matrices (called I, X, Y, and
Z-gates) and the Hadamard matrix (also called a H-gate).

Pauli matrices or I, X, Y, Z-gates

The Pauli matrices (named after the physicist W. Pauli) or I, X, Y, Z-gates are defined
as:

I ≡ σ0 =
(

1 0
0 1

)

X ≡ σx = σ1 =
(

0 1
1 0

)

Y ≡ σy = σ2 =
(

0 −i
i 0

)

Z ≡ σz = σ3 =
(

1 0
0 −1

)
.

(16.15)

The different notations I = σ0, X = σx = σ1, Y = σy = σ2 and Z = σz = σ3 are usually
found in the related literature for historical reasons. It is easily established that the squares
of all the above matrices are equal to unity or X2 = Y 2 = Z2 = (σi)2 = I 2 = I .

The first matrix I is the identity matrix, which corresponds to the classical REPEAT
gate and leaves the input qubit |q〉 = α|0〉 + β|1〉 invariant, according to

|q ′〉 = I |q〉
=

(
1 0
0 1

)(
α

β

)

=
(

α

β

)
≡ α|0〉 + β|1〉 ≡ |q〉.

(16.16)

The second matrix X (or X-Pauli) corresponds to the classical NOT gate. Indeed, we
obtain

|q ′〉 = X |q〉
=

(
0 1
1 0

)(
α

β

)
(16.17)

=
(

β

α

)
≡ β|0〉 + α|1〉,

4 A transformation and associated matrix A is unitary if the following identity is satisfied A−1 = (AT)∗ ≡ A+.
In this definition, A−1 is the inverse matrix of A (such that A−1 A = AA−1 = I), AT is the transposed matrix
of A (with coefficients ai j → a ji), and ∗ denotes complex conjugation (ai j → a∗

i j). The symbol + stands
for Hermitian conjugation, which combines both transposition and complex conjugation (ai j → a∗

j i), i.e.,

A+ is the Hermitian conjugate of the matrix A.

16.2 Basic computations with 1-qubit quantum gates 313

showing that the elementary qubits |0〉, |1〉 are switched into their counterparts |1〉, |0〉,
which for a state superposition |q〉 = α|0〉 + β|1〉 amounts to swapping the amplitude
probabilitie according to (α, β) → (β, α). Thus, if the input |q〉 is in the pure state, for
instance |q〉 = |0〉 (or α = 1, β = 0), the output state is |q ′〉 = |1〉, and the reverse with
|q〉 = |1〉, which gives |q ′〉 = |0〉. In these two limiting cases, this operation, indeed,
corresponds to that of a classical NOT gate. But generally, it is also correct to call
X, σ1, σx a quantum NOT gate.

The action of the Y-gate is both to swap the amplitudes and to introduce a π phase
shift between the two states of the initial superposition,5 according to

|q ′〉 = Y |q〉
=

(
0 −i
i 0

)(
α

β

)

=
(−i β

i α

)
= −i(β|0〉 − α|1〉) ≡ eiγ (β|0〉 + eiπα|1〉),

(16.18)

where γ = −π/2 is an immeasurable, or “unobservable” phase constant.
Finally, the action of the Z -gate is only to introduce a π phase shift between the two

states of the initial superposition, according to

|q ′〉 = Z |q〉
=

(
1 0
0 −1

)(
α

β

)

=
(

α

−β

)
≡ α|0〉 − β|1〉 ≡ α|0〉 + eiπβ|1〉.

(16.19)

As can also be easily checked, the three Pauli matrices X, Y, Z exhibit the following
properties:

σ1σ2 = iσ 3

σ2σ3 = iσ 1

σ3σ1 = iσ 2

σiσ j = −σ j σi (i �= j).

(16.20)

One defines the commutator of two operators or matrices A, B as [A, B] = AB − B A.
Two operators or matrices are said to commute if [A, B] = 0. Then we observe from
the last equation in Eq. (16.20) that for i �= j the Pauli matrices do not commute, i.e.,
�σi , σ j� = σiσ j − σ jσi = 2σiσ j , and, in the general case

�σi , σ j� = 2δi jσiσ j , (16.21)

where δi j is the Kronecker symbol.6 We, thus, have [σ1, σ2] = 2σ1σ2 = 2iσ3, [σ2, σ3] =
2σ2σ3 = 2iσ1 and [σ3, σ1] = 2σ3σ1 = 2iσ2. The commutator between any two Pauli

5 With complex numbers, a change of sign corresponds to a phase shift of ±π , or a multiplying factor of
e±iπ = −1, since e±iπ = cos(±π) + i sin(±π) = −1.

6 Namely: δi j = 1 for i = j , and δi j = 0 for i �= j .

314 Quantum bits and quantum gates

matrices can be generalized in the formula

[σi , σ j] = 2iεi jkσk, (16.22)

where εi jk is the Levi–Civita symbol.7 Likewise, using the property (σi)2 = I , we can
generalize Eq. (16.20) in the formula:

σiσ j = iεi jkσk + δi j I. (16.23)

These properties of the Pauli matrices or I, X, Y, Z -gates are used extensively in quantum
computing, as will be illustrated. In Appendix N, I show that the Pauli matrices constitute
a universal base, making it possible to generate any unitary 2 × 2 matrices or unitary
operators U , which represent the universal building blocks for 2-qubit quantum gates
and circuits.

Hadamard matrix gate or H-gate

The Hadamard matrix gate, or H-gate, is defined as:

H = 1√
2

(
1 1
1 −1

)
≡ 1√

2
(X + Z). (16.24)

Using results in Eqs. (16.17) and (16.19), we can interpret the action of the Hadamard
gate as follows:

|q ′〉 = H |q〉

= 1√
2

(X + Z)|q〉

= 1√
2

(X |q〉 + Z |q〉)

= 1√
2

[(β|0〉 + α|1〉) + (α|0〉 − β|1〉)]

= α
|0〉 + |1〉√

2
+ β

|0〉 − |1〉√
2

≡ α|+〉 + β|−〉.

(16.25)

It is seen from the above that the Hadamard gate transforms any input qubit |q〉 =
α|0〉 + β|1〉 into the superposition |q〉 = α|+〉 + β|−〉, where |+〉, |−〉 represent a new
pure states basis. As we shall see later, the two pure-state bases |0〉, |1〉 and |+〉, |−〉
play a fundamental role in quantum computing.

The action of the above 2 × 2 quantum gates on input qubits is summarized in
Table 16.1.

7 With the following definition (see http://en.wikipedia.org/wiki/Levi-Civita_symbol)

εi jk =

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),
0 otherwise: i = j or j = k or k = i.

16.3 Quantum gates with multiple inputs and outputs 315

Table 16.1 Action of the elementary 2 × 2 quantum gates on input qubit |q〉 = α|0〉 + β|1〉.

Gate U Output |q ′〉 = U |q〉 Action

Identity, I, σ0 α|0〉 + β|1〉 Invariant
X, σ1, σx β|0〉 + α|1〉 Swaps amplitudes
Y, σ2, σy β|0〉 + eiπα|1〉 Swaps amplitudes and π shift between amplitudes
Z , σ3, σz α|0〉 + eiπβ|1〉 π shift between amplitudes
Hadamard, H α|+〉 + β|−〉 Switches to |+〉, |−〉 basis

For illustration purposes, consider two examples showing the action of cascades of
2 × 2 quantum gates:

U = X Z X →
U |q〉 = X Z X (α|0〉 + β|1〉)

= X Z (β|0〉 + α|1〉)
= X (β|0〉 + eiπα|1〉)
= eiπα|0〉 + β|1〉
= eiπ (α|0〉 + e−iπβ|1〉)
≡ α|0〉 − β|1〉,

(16.26)

U = H X →
U |q〉 = H X (α|0〉 + β|1〉)

= H (β|0〉 + α|1〉)
≡ β|+〉 + α|−〉.

(16.27)

Finally, we must note that the 2 × 2 Pauli and Hadamard matrix gates correspond
to reversible 1-qubit computations. Indeed, any input qubit can be retrieved through
the double operations X2 = Y 2 = Z2 = H 2 = I 2 = I . More generally, any gate cor-
responding to a unitary matrix or operator U is reversible by the application of the
Hermitian conjugate U+, since, by definition, U+U = I . This property also applies to
gate cascades U V W . . . of unitary operators, which have for their Hermitian conjugate
(U V W . . .)+ = · · · W+V +U+, thus,

(U V W . . .)+U V W = · · · W+V +U+U V W = · · · W+V +V W = · · · W+W = · · · I.

16.3 Quantum gates with multiple qubit inputs and outputs

With the background from the previous section on 2 × 2 quantum gates and that
from reversible logic gates introduced in Chapter 15, we can now describe the matrix
representation and operation of various higher-order quantum gates, which have two
or more 1-qubit inputs and outputs. The elementary gates of this type are called
CNOT, CROSSOVER, controlled-U , controlled-SWAP, Toffoli, and CCNOT, which
I shall review in the following.

316 Quantum bits and quantum gates

CNOT

0

10a b a b+=x

10a b+=x

x

0

1

x

1

10´ +=x

b a10´ +=x

|a> |x> |a >́ |x >́
0 1 0 1
0 0 0 0
1 1 1 0
1 0 1 1

Figure 16.2 CNOT gate with control qubit |a〉 and target qubit |x〉, with truth table and gate
output |a〉, |x ′〉 resulting from target qubit superposition |x〉 = α|0〉 + β|1〉.

CNOT gate

Consider first the CNOT gate, whose diagram is shown in Fig. 16.2. The gate has a
control qubit |a〉 = |0〉 or |a〉 = |1〉, and a target qubit |x〉 = α|0〉 + β|1〉. Here, we
shall assume that the control qubits are in pure states, namely, |0〉, |1〉. The figure
shows the action of the CNOT gate with the corresponding truth table. It is seen
from the figure that the target qubit |x〉 is left unchanged when the control qubit is
|a〉 = |0〉 while in the case |a〉 = |1〉 the amplitudes α, β of |x〉 are swapped which,
as we have seen in the previous section, represents the quantum NOT version of a
qubit.

But how can we define the CNOT gate matrix, since here we have a control qubit?
To answer this, recall that in the case of 1-qubit gates, the matrix is defined in the
computational base |0〉, |1〉. In the case of the CNOT gate, the matrix must be defined in
the extended computational base, noted {|a〉|x〉} = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}, which
covers all possible gate inputs according to the truth table shown in Fig. 16.2, with |a〉 =
|0〉 or |a〉 = |1〉 and |x〉 = |0〉 or |x〉 = |1〉 (the matrix applying to any superposition
thereof). As will be described further on in this chapter, the state |a〉|x〉 is referred to as
the tensor product of the kets |a〉 and |x〉. In the computational base {|0〉|1〉}, the input
tensor state |a〉|x〉 is represented by a four-dimensional column-vector with coordinates
u1, u2, u3, u4,

|a〉 |x〉 =

u1

u2

u3

u4

 , (16.28)

which satisfies |u1|2 + |u2|2 + |u3|2 + |u4|2 = 1. The output state of the gate is then
given by the matrix-vector relation |a′〉|x ′〉 = A|a〉|x〉, where A is the gate’s 4 ×
4 matrix. In the case of the CNOT gate, and as expressed in the tensor base

16.3 Quantum gates with multiple inputs and outputs 317

Table 16.2 Transformation of input qubit |a〉|x〉 of coordinates (u1, u2, u3, u4) in computational basis
{|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} into output qubit |a′〉|x′〉 = ACNOT|a〉|x〉.

u1 u2 u3 u4 |a〉|x〉 |a′〉|x ′〉 Observations

1 0 0 0 |0〉|0〉 |0〉|0〉 Invariant

0 1 0 0 |0〉|1〉 |0〉|1〉 Invariant

0 0 1 0 |1〉|0〉 |0〉|1〉 xqubit flipped

0 0 0 1 |1〉|1〉 |1〉|0〉 xqubit flipped

1 1 0 0
1√
2

(|0〉|0〉 + |0〉|1〉) = |0〉|+〉 1√
2

(|0〉|0〉 + |0〉|1〉) = |0〉|+〉 Invariant

0 0 1 1
1√
2

(|1〉|0〉 + |1〉|1〉) = |1〉|+〉 1√
2

(|1〉|0〉 + |1〉|1〉) = |1〉|+〉 Invariant

α β 0 0
α|0〉|0〉 + β|0〉|1〉
= |0〉(α|0〉 + β|1〉)

α|0〉|0〉 + β|0〉|1〉
= |0〉(α|0〉 + β|1〉) Invariant

0 0 α β
α|1〉|0〉 + β|1〉|1〉
= |1〉(α|0〉 + β|1〉)

β|1〉|0〉 + α|1〉|1〉
= |1〉(β|0〉 + α|1〉) x qubit amplitudes

swapped

{|a〉|x〉} = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}, the matrix takes the form:

ACNOT =
[

I 0
0 X

]
≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (16.29)

The 2 × 2 reduced form of the above gate matrix shows that states of the form |0〉|x〉
are invariant (sub-matrix I), while states of the form |1〉|x〉 have the target qubit |x〉
flipped (sub-matrix X). Although somewhat tedious, it is useful to verify now the above
result by applying the gate matrix ACNOT to the input state |a〉|x〉. From Eqs. (16.28) and
(16.29), we obtain:

|a′〉|x ′〉 = ACNOT|a〉|x〉 =

u′
1

u′
2

u′
4

u′
3

 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

u1

u2

u3

u4

= u1|0〉|0〉 + u2|0〉|1〉 + u4|1〉|0〉 + u3|1〉|1〉.

(16.30)

The right-hand side of Eq. (16.30) can now be developed according to different input
possibilities for |a〉|x〉, i.e., concerning the control qubit |a〉 and the target qubit |x〉.
Table 16.2 shows the result with the target qubit |x〉 as being in either a pure state
(first four lines) or a superposition of states (last four lines). As expected, the table
illustrates that the CNOT gate leaves the target qubit |x〉 = |0〉 or |1〉 invariant when the
control qubit is set to |a〉 = |0〉. If the target qubit is a superposition |x〉 = α|0〉 + β|1〉,
the amplitudes (α, β) are either conserved (|a〉 = |0〉) or swapped (|a〉 = |1〉). In the
specific case α = β = 1, the target qubit remains invariant regardless of the control
qubit |a〉, as expected. It is left as an exercise to analyze the action of the CNOT gate

318 Quantum bits and quantum gates

a

b x

b

a

x

x

ACNOT ACNOTBCNOT

x

x

(a) (b)

Figure 16.3 (a) Quantum gate circuit based on the concatenation of three CNOT gates, with
corresponding matrices ACNOT (control qubit at top) and BCNOT (control qubit at bottom).
(b) Equivalent circuit representation (CROSSOVER or SWAP).

with the control qubit |a〉 being now in a superposition of states, and show that for
certain combinations of input qubits |a〉|x〉, the CNOT gate can generate any of the four
EPR or Bell states, as defined in Eq. (16.2).

It is easily verified that the matrix ACNOT is unitary and that its inverse matrix is
A−1

CNOT = ACNOT, or A2
CNOT = I (I= 4 × 4 identity matrix). This last result is expected,

since the repeated action of CNOT (with same control qubit, by inherent circuit con-
struction) must leave the target qubit invariant.

CROSSOVER or SWAP gate

It is also possible to build circuits made of concatenated CNOT gates, where the control
and target qubits exchange roles, i.e., an output target qubit from a first gate serving
as an input control qubit for the next gate. Consider, for instance, the three-gate circuit
shown in Fig. 16.3, which (as we shall see) corresponds to the CROSSOVER or SWAP
operator. The circuit is seen to include in the middle a CNOT gate arranged upside
down, thus, using the target output qubit of the first CNOT gate as a control for the
second CNOT gate. For simplicity, we assume that the control qubits that are input to
CNOT gates must be in a pure state. Under this assumption, this whole circuit must be
input only with pure states |a〉, |b〉 = |0〉, |1〉. The matrix representation of the CNOT
gate makes it possible to construct the circuit shown in Fig. 16.3, with care to properly
define the matrix BCNOT corresponding to the reversed arrangement. As an exercise, one
may show that in the computational base {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} the matrix BCNOT

takes the form

BCNOT =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (16.31)

A second exercise is to compute the circuit matrix ASWAP = ACNOT BCNOT ANOT from
the matrix definitions in Eqs. (16.29) and (16.30). The computation yields

ASWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (16.32)

16.3 Quantum gates with multiple inputs and outputs 319

U

X

01
10 Y

 −
0

0
i

i Z

−10
01

S

i0
01H

−11
11

2
1

(a) (b)

Figure 16.4 (a) Controlled-U gate, (b) corresponding matrix gate possibilities U = X, Y, Z , H ,
and S.

It is seen from the coefficients in the matrix ASWAP that the input tensor states |0〉|0〉 and
|1〉|1〉 are left invariant (owing to the 1 coefficients in the matrix-diagonal), while the
input tensor states |0〉|1〉 and |1〉|0〉 are swapped (owing to the 1 off-diagonal coefficients).
The circuit gate thus corresponds to a CROSSOVER or SWAP function, as Fig. 16.3
indicates with the outputs |b〉, |a〉. The equivalent gate representation is also shown at
right in the figure.

Controlled-U gates

In the category of controlled-U gates, U stands for any quantum gate with a 2 × 2
unitary (but not necessarily Hermitian) matrix. For instance, U = X, Y, Z , H (Pauli and
Hadamard gates) and S (π/2 phase gate), as illustrated in Fig. 16.4 with their 2 × 2
matrices represented in the |0〉, |1〉 state basis. The gate controlled-X is the same as
CNOT and its matrix (previously called ACNOT) is shown in Eq. (16.29). We notice again
from this equation that this 4 × 4 matrix can also be represented in the reduced form

controlled-X = ACNOT =
[

I 0
0 X

]
, (16.33)

where the top-left side corresponds to the REPEAT or invariant function (control qubit set
to |0〉, corresponding to 2 × 2 identity matrix I) and the bottom-right side corresponds to
the NOT function (control qubit set to |1〉, corresponding to 2× 2 matrix X). Thus, we can
most generally define the matrix of any controlled-U gate (e.g., U = X, Y, Z , H, S . . .)
according to

controlled-U =
[

I 0
0 U

]
. (16.34)

Most generally, any controlled-U gate corresponds to a target qubit rotation characterized
by U = R n(θ), where R n(θ) is the rotation operator associated with the transformation
U on the Bloch sphere, as characterized by a rotation angle θ about the axis parallel to
the unitary vector n (see Appendix N for related definition and properties).

320 Quantum bits and quantum gates

Controlled-SWAP

c

a

b x

c

´ax

´b

|c > |a > |b > |c ́> |a ́> |b ́>
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Figure 16.5 Controlled-SWAP gate with truth table.

Controlled-SWAP gate

The schematic representation of a controlled-SWAP gate and its qubit truth table are
shown in Fig. 16.5. This gate represents a particular case of the Fredkin gate previously
described in Chapter 15, and represented in Fig. 15.7 (with the control qubit c at the
bottom). Since this is a 3 × 3 gate, the state basis has eight tensor elements {|c〉|a〉|b〉} =
{|0〉|0〉|0〉, |0〉|0〉|1〉, . . . , |1〉|1〉|1〉}, with the first state |c〉 corresponding to the control
qubit. In this basis, and using the definition of ASWAP in Eq. (16.32), the 8 × 8 matrix
AC-SWAP takes the reduced and explicit forms:

AC-SWAP =
[

I 0
0 ASWAP

]
≡

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

. (16.35)

Toffoli or CCNOT gate

In Chapter 15, we have seen that the Toffoli gate corresponds to the logical function
controlled-controlled-NOT, or CCNOT. To recall, in the classical version of the Toffoli
gate, a, b are two control bits, and c is the “target” bit to process. The gate then outputs
a, b, c′ with c′ = c ⊕ ab, meaning that, classically, the Toffoli gate is an XOR gate
with ab and c as inputs, together with the conservation of the control bits a, b, to ensure
computational reversibility. Here, consider that the input–output information is not about
“bits” but “qubits.” Defining the two control qubits as |c1〉, |c2〉, and the target bit as
|a〉, it is easily established that in the basis {|c1〉|c2〉|a〉} the corresponding 8 × 8 matrix

16.3 Quantum gates with multiple inputs and outputs 321

X

=

X

I
CCNOT

0

0

Figure 16.6 Controlled-controlled-X or CCNOT or Toffoli gate.

U

=

U

I
CCU

0

0

Figure 16.7 Controlled-controlled-U , or CCU , gate with corresponding 8 × 8 matrix in reduced
form.

takes the form

AToffoli =
[

I 0
0 X

]
≡

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

, (16.36)

where I is the 6 × 6 identity matrix and X is the 2 × 2 quantum NOT matrix. The
quantum circuit representation of the CCNOT gate and its reduced matrix are provided
in Fig. 16.6. It is clear that the CCNOT gate transforms the target qubit |a〉 into X |a〉, if
and only if |c1〉 = |c2〉 = |1〉 and leaves |a〉 invariant when |c1〉 = |c2〉 = |0〉.

Controlled-controlled-U or CCU gate

This is a 3-qubit gate similar to the CCNOT or Toffoli gate, except that one uses any
unitary transform U for the 2 × 2 operator, see Fig. 16.7, along with the corresponding
reduced matrix. It is clear that the CCU gate transforms the target qubit |a〉 into U |a〉,
if and only if |c1〉 = |c2〉 = |1〉 and leaves |a〉 invariant when |c1〉 = |c2〉 = |0〉.

322 Quantum bits and quantum gates

R

=

R

I
CCR

0

0

Figure 16.8 Deutsch gate or CCR gate, with corresponding 8 × 8 matrix in reduced form, where
R is a unitary rotation operator.

Deutsch or CCR gate

A particular type of CCU gate, called the Deutsch gate, is obtained when one chooses
U ≡ R n(θ), as shown in Fig. 16.8. To make the Deutsch gate, a restriction applies to
the rotation angle θ . Indeed, in the Deutsch gate the angle θ should be incommensurate
with π , which means that θ/π is not a rational fraction.8 With such a property, any qubit
|v〉 on the Bloch sphere that lies at an angle ±xθ from the gate’s target qubit |u〉 can
be reached with arbitrary precision by applying the CCR gate a finite number of times
k, i.e., |w〉 = Rk(±θ)|u〉 = R(±kθ)|u〉 can be made arbitrarily close to |v〉 if k/x ≈ 1.
In particular, the rotation angle kθ can be made arbitrarily close to π/2, which makes
the Deutsch gate closely similar to a Toffoli gate (R(π/2) = X). Consider, finally, that
single 2 × 2 rotations defined as R ≡ R n(θ) make it possible to transform any input
qubit |u〉 into any output qubit |v〉 on the Bloch sphere. A controlled-R gate has the same
complete transformation capability on the 2-qubit space, and a CCR or Deutsch gate
on the 3-qubit space. It is beyond the scope of this chapter to establish formally that,
actually, quantum circuits based only on 3-qubit CCR or Deutsch gates and CCNOT
gates are capable of achieving any n-qubit transformations in the n-qubit space.

16.4 Quantum circuits

The matrix representation of 2- and 3-qubit gates may look somewhat impractical to
handle, except in generic cases when they can be put in some reduced form. Therefore,
it would seem that quantum-gate circuits with multiple gates and control qubits are not
easy to model and analyze. In reality, however, gate circuits are far simpler to handle! I
shall illustrate this through a few examples. Consider first the 2-qubit quantum circuit
involving single-qubit gates (J, K) and controlled-U gates as shown in Fig. 16.9, with,
for instance, J = X . The circuit is seen to involve two different controlled-U gates
(U, U ′) and two single-qubit gates (X, K), where U, U ′, K are any unitary gates. We
do not need to calculate the corresponding matrix. Instead, consider the evolution of the

8 A rational fraction or rational number can be expressed as the ratio a/b of two integers a, b.

16.4 Quantum circuits 323

X

U

a a

x ´

´

xK ´U
Figure 16.9 Basic example of 2-qubit quantum circuit.

input tensor state |a〉|x〉 through the circuit, assuming separately |a〉 = |0〉 and |a〉 = |1〉,
with each of the arrows (→) representing the crossing of a gate:

|0〉|x〉 → |0〉|x〉 → X |0〉K |x〉 = |1〉U ′K |x〉
|1〉|x〉 → |1〉U |x〉 → X |1〉KU |x〉 = |0〉KU |x〉. (16.37)

If, for instance, we let U = Y , K = S and U ′ = Z (according to the standard definitions
of Y, Z , S in Fig. 16.4), we obtain:

|0〉|x〉 → |1〉Z S|x〉 = |1〉Z S(α|0〉 + β|1〉)
= |1〉Z (α|0〉 + iβ|1〉)
= |1〉(α|0〉 − iβ|1〉)
= α|1〉|0〉 − iβ|1〉|1〉

|1〉|x〉 → |0〉SY |x〉 = |0〉SY (α|0〉 + β|1〉)
= |0〉S(β|0〉 − α|1〉)
= |0〉(β|0〉 − iα|1〉)
= β|0〉|0〉 − iα|0〉|1〉.

(16.38)

Letting β = 0 or α = 1 in Eq. (16.38), we obtain the transformation:

u1|0〉|0〉 + u2|0〉|1〉 + u3|1〉|0〉 + u4|1〉|1〉
→ u1|1〉|0〉 − iu2|1〉|1〉 − iu3|0〉|1〉 + u4|0〉|0〉
= u4|0〉|0〉 − iu3|0〉|1〉 + u1|1〉|0〉 − iu2|1〉|1〉,

(16.39)

which corresponds to the circuit matrix and its reduced form:

A =

0 0 0 1
0 0 −i 0
1 0 0 0
0 −i 0 0

 ≡

[
0 −iSX
S+ 0

]
. (16.40)

As a second illustrative example, consider next the 2-qubit quantum circuit shown in
Fig. 16.10, which involves two CNOT gates, three gates A, B, C , and a δ-phase gate S.9

It is further assumed that ABC = I . As before, the evolution of the input tensor state

9 A δ-phase gate has for matrix S =
(

1 0
0 eiδ

)
.

324 Quantum bits and quantum gates

C

a ´a

x ´xB A

S

Figure 16.10 Two-qubit quantum circuit with ABC = I and δ-phase gate S.

V

b ´b

x ´x+V V

a ´a

Figure 16.11 Three-qubit quantum circuit with V 2 = U .

|a〉|x〉 through the circuit is calculated through the following:

|0〉|x〉 → |0〉C |x〉 → |0〉C |x〉 → |0〉BC |x〉 → |0〉BC |x〉 → S|0〉ABC |x〉 = |0〉|x〉
|1〉|x〉 → |1〉C |x〉 → |1〉XC |x〉 → |1〉B XC |x〉

→ |1〉X B XC |x〉 → eiδ|1〉AX B XC |x〉.
(16.41)

Letting U = eiδ AX B XC , the above transformation reduces to

|0〉|x〉 → |0〉|x〉
|1〉|x〉 → eiδ|1〉e−iδU |x〉 = |1〉U |x〉. (16.42)

The result shows that when |a〉 = |0〉 the circuit leaves the target qubit |x〉 invariant, and
when |a〉 = |1〉 the target qubit is transformed into U |x〉. This is the definition of the
controlled-U gate. Actually, the equivalence of the circuit shown in Fig. 16.10 and the
controlled-U gate stems from Euler’s theorem, which is demonstrated in Appendix N.
The theorem states that for any 2 × 2 unitary transformation U , there exist three matrices
A, B, C satisfying ABC = I and for which U = eiδ AX B XC , where δ is an arbitrary
phase.

As a third illustrative example, consider next the 3-qubit quantum circuit shown in
Fig. 16.11, which involves two CNOT gates, and three controlled-U gates based on
a unitary operator V and its Hermitian conjugate V +. The property V 2 = U is also
assumed. Let us walk the input state |a〉|b〉|x〉 through the quantum circuit, considering
the four possibilities for the control qubits |a〉|b〉 = |0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉. This

16.4 Quantum circuits 325

H T+T +T T H

+T +T S

T

Figure 16.12 Three-qubit quantum circuit with Hadamard gates (H), ±π/4-phase gates (T, T +),
and a single π/2-phase gate (S), which is equivalent to a CCNOT or Toffoli gate.

gives:

|0〉|0〉|x〉 → |0〉|0〉|x〉 → |0〉|0〉|x〉 → |0〉|0〉|x〉 → |0〉|0〉|x〉 → |0〉|0〉|x〉
|0〉|1〉|x〉 → |0〉|1〉V |x〉 → |0〉|1〉V |x〉 → |0〉|1〉V +V |x〉

= |0〉|1〉|x〉 → |0〉|1〉|x〉 → |0〉|1〉|x〉
|1〉|0〉|x〉 → |1〉|0〉|x〉 → |1〉|1〉|x〉 → |1〉|1〉V +|x〉 → |1〉|0〉V +|x〉 → |1〉|0〉V V +|x〉

= |1〉|0〉|x〉
|1〉|1〉|x〉 → |1〉|1〉V |x〉 → |1〉|0〉V |x〉 → |1〉|0〉V |x〉 → |1〉|1〉V |x〉 → |1〉|1〉V V |x〉

≡ |1〉|1〉U |x〉. (16.43)

We observe from the above result that when |a〉|b〉 �= |1〉|1〉 the circuit leaves the target
qubit |x〉 invariant, and when |a〉|b〉 = |1〉|1〉 the target qubit is transformed into U |x〉.
This is the definition of a controlled-controlled-U , or CCU gate, whose representation
and matrix are shown in Fig. 16.7. It is straightforward to verify that in the case

V = 1 − i

2
(I + iX) = 1 − i√

2
ei π

4 X , (16.44)

we have U = V 2 = X , and the CCU gate reduces to the previously described CCNOT
or Toffoli gate (Fig. 16.6).10

As another example, consider the elaborate quantum circuit shown in Fig. 16.12,
which includes Hadamard gates (H), ±π/4-phase gates (T, T +), and a single π/2-
phase gate (S). It is left as an exercise to establish that this quantum circuit is actually a
possible equivalent realization of a Toffoli or CCNOT gate.

As a final example of complex quantum circuits, consider the plain-adder circuit
described in Chapter 15 for reversible computation with classical bits. We can now
conceive of it as a quantum circuit capable of performing plain addition with qubits. The
corresponding building blocks are the quantum gate circuits SUM and CARRY, which
are based on CNOT and CCNOT or Toffoli gates, as shown in Fig. 16.13. Given two
qubit operands |x〉, |y〉 and a carry qubit |c〉, the outputs |x ⊕ y〉, |x ⊕ y ⊕ c〉 represent
the quantum equivalents of XOR or modulo-2 addition. Note the qubit output |c′〉 in
the CARRY gate circuit; this represents the carry result of the plain addition between

10 For the exponential-operator representation in the right-hand side, see Appendix N.

326 Quantum bits and quantum gates

SUM

c

x

x

y x cyx

CARRY

x

x

x0

c

x x

y

c

x

c

yx

´c

Figure 16.13 Quantum gate circuits SUM and CARRY, built from CNOT and CCNOT or Toffoli
gates.

0b
C

C

x

∗C
S

∗C
S

S

0

0a

0

1b

1a

0

2b

2a

0

C

0d

0

0a

0

1d

1a

0

2d

2a

0

Figure 16.14 Quantum plain-adder for two qubit registers |a0〉|a1〉|a2〉, |b0〉|b1〉|b2〉, as based on
gate circuits SUM (S) and CARRY (C) shown in Fig. 16.13. The gate C∗ corresponds to the
reverse operation of the CARRY gate.

|x〉, |y〉 and |c〉. Also note the ancilla bit |0〉 at the CARRY gate input. A 10-qubit
plain-adder circuit, which is homologous to that described in Chapter 15 for classical
computing, is shown in Fig. 16.14. This circuit performs the quantum addition of two
qubit registers containing 3-qubits each, namely |a0〉|a1〉|a2〉, |b0〉|b1〉|b2〉, and outputs
the result as |d0〉|d1〉|d2〉. As discussed in Chapter 15, this circuit architecture can be
extended to perform plain addition with registers of any size.11 As also discussed in the
previous chapter, the circuit can be reversed (i.e., traversed from right to left) to perform
subtraction, including the generation of a “negative sign” qubit. Furthermore, the con-
catenation of the circuit makes it possible to perform operations such as multiplication
and exponentiation in modular algebra. One must not conclude, however, that quan-

11 As adapted from V. Vedral and M. B. Plenio, Basics of quantum computation. Prog. Quant. Electron., 22
(1998), 1–39.

16.5 Tensor products 327

tum algorithms simply emulate classical ones, with qubits instead of bits! (Chapter 19
and 20 will prove far differently).

16.5 Tensor products

In previous sections, we made use of the notion of tensor product for qubits, to describe
quantum gates with more than one qubit input. This section will make it possible to
clarify such a notion, which is fundamental to the understanding of quantum computing
with multiple states. In the description, we shall proceed gradually, from elementary to
advanced.

Given two qubits |a〉, |b〉 we called the tensor product the 2-qubit |a〉|b〉. From now
on, we shall write the result with the new notation |a〉|b〉 ≡ |a〉 ⊗ |b〉, with the sign ⊗
standing for the tensor-product operation. Given the computational base V = {|0〉, |1〉},
which defined a 2D qubit space, we can form the 4D extended base defining a 4D 2-qubit
space V ⊗ V according to:

V ⊗ V = {|0〉, |1〉} ⊗ {|0〉, |1〉}
= {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}
≡ {|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}.

(16.45)

In the extended base, |a〉 ⊗ |b〉 is represented by four complex coordinates
(u1, u2, u3, u4) to be determined. Assuming that |a〉 = a0|0〉 + a1|1〉 and |b〉 = b0|0〉 +
b1|1〉, we obtain

|a〉 ⊗ |b〉 = (a0|0〉 + a1|1〉) ⊗ (b0|0〉 + b1|1〉)
= a0b0|0〉 ⊗ |0〉 + a0b1|0〉 ⊗ |1〉 + a1b0|1〉 ⊗ |0〉 + a1b1|1〉 ⊗ |1〉, (16.46)

hence (u1, u2, u3, u4) ≡ (a0b0, a0b1, a1b0, a1b1). In the above, we have implicitly made
use of the linearity and distribution-over-addition properties of the tensor product:{

λ(|x〉 ⊗ |y〉) = λ|x〉 ⊗ |y〉 = |x〉 ⊗ λ|y〉
|x〉 ⊗ (|y〉 + |z〉) = |x〉 ⊗ |y〉 + |x〉 ⊗ |z〉. (16.47)

The notion of tensor product, along with the same properties, applies to any two nD
and m D spaces defined by computational basis V = {|α1〉, |α2〉, . . . , |αn〉} and W =
{|β1〉, |β2〉, . . . , |βm〉}. Hence, given

|a〉 =
n∑

i=1

ai |αi 〉, |b〉 =
m∑

j=1

b j |β j 〉, (16.48)

we have

|a〉 ⊗ |b〉 =
n∑

i=1

m∑
j=1

ai bi |αi 〉 ⊗ |βi 〉. (16.49)

A qubit |a〉 that is tensored with itself n times will be noted |a〉⊗n , namely,

|a〉⊗n = |a〉 ⊗ |a〉⊗, . . . ,⊗|a〉n times. (16.50)

328 Quantum bits and quantum gates

The tensor state |a〉 ⊗ |b〉, often noted |a, b〉 for simplification, is also referred to as a
joint state. Such a joint state corresponds to the description of two quantum systems,
themselves being in the states |a〉 and |b〉, respectively. Thus, |a〉 ⊗ |a〉 corresponds to
the description of two systems being in the same state |a〉. However, such a possibility
should not lead one to the conclusion that given a quantum system in state |a〉, it is
possible to duplicate this state into a second quantum system, so as to obtain the joint
state |a〉 ⊗ |a〉. It simply cannot be achieved. This is a result of the noncloning theorem,
which is described in Section 16.6.

Next, I shall introduce the notion of tensor product for linear operators (which so
far have been referred to as matrices operating on the qubit vector space). Assume an
operator A defined on the |a〉 qubit space and an operator B defined on the |b〉 qubit
space. The operator tensor product A ⊗ B applies to the tensor states |a〉 ⊗ |b〉 and is
defined according to the following distribution rule:

A ⊗ B(|a〉 ⊗ |b〉) = A|a〉 ⊗ B|b〉. (16.51)

An operator A that is tensored with itself n times will be noted A⊗n , namely,

A⊗n = A ⊗ A⊗, . . . ,⊗An times. (16.52)

The operator tensor product A ⊗ B also satisfies the useful properties according to which
conjugation, transposition, and Hermitian conjugation12 are distributive. Namely:

(A ⊗ B)∗ = A∗ ⊗ B∗

(A ⊗ B)T = AT ⊗ BT

(A ⊗ B)+ = A+ ⊗ B+.

(16.53)

These three properties stem from the definition of the operator tensor product in
Eq. (16.51), in which the operations of transposition and complex or Hermitian conju-
gation are clearly distributive.

How can we derive the matrix of the tensor operator A ⊗ B? The rule, which is
referred to as the Kronecker product, is quite simple. Assume that A is represented by a
n × m matrix (n lines, m columns), with coefficients Ai j (i = 1, . . . , n, j = 1, . . . , m).
We have, by definition

A ⊗ B =

A11 B A12 B · · · A1m B
A21 B A22 B · · · A2m B
...

... · · ·
An1 B An2 B · · · Anm B

 . (16.54)

Thus, in the above reduced form, A ⊗ B is an n × m matrix with coefficients Ai j B. If B
is represented by a p × q matrix (p lines, q columns), then A ⊗ B is clearly an np × mq
matrix. The Kronecker-product rule also applies to single-column matrices, or vectors,

12 To recall, for any operator A of matrix coefficients Ai j , the conjugate operator A∗ has for coefficients
A∗

i j (complex conjugate of Ai j), the transposed operator AT has for coefficients A ji , and the Hermitian-

conjugate (or adjoint) operator A+ has for coefficients A∗
j i . Also, the transposed and Hermitian conjugate

of the product AB are (AB)T = BT AT and (AB)+ = B+ A+, respectively.

16.5 Tensor products 329

which enables one to calculate the tensor product |a〉 ⊗ |b〉. Let us next examine some
illustrative examples.

First, consider the case of the qubit tensor product |a〉 ⊗ |b〉 in bases V = {|α1〉, |α2〉}
and W = {|β1〉, |β2〉, |β3〉}. The corresponding matrices are single column, with Ai1 =
ai and Bi1 = bi . We obtain:

|a〉 ⊗ |b〉 =
(

a1|b〉
a2|b〉

)
=

a1

b1

b2

b3

a2

b1

b2

b3

=

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

, (16.55)

which is the expected result.
Second, consider the tensor product X ⊗ Y of the two Pauli matrices X, Y . We obtain:

X ⊗ Y =
(

0 × Y 1 × Y
1 × Y 0 × Y

)

=
(

0 Y
Y 0

)
=

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 .

(16.56)

It is left as an easy exercise to verify the property X ⊗ Y (|a〉 ⊗ |b〉) = X |a〉 ⊗ Y |b〉,
which, as we have seen, applies to any pairs of operators A, B and qubits |a〉, |b〉.

An interesting case of n-tensored operator is provided by H⊗n , where H is the
Hadamard gate. Assume the extended computational base V n = {|0〉, |1〉}n = {|a〉}, with
|a〉 symbolizing any of the n-qubits base element generated by the n-tensor product |a〉 =
|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 where vi = 0 or vi = 1 (i = 1, . . . , n). As a general property,
it can be shown that

H⊗n|a〉 = 1√
2n

∑
V n

(−1)a∗b|b〉, (16.57)

where |b〉 = |w1〉 ⊗ |w2〉 ⊗ · · · |wn〉 is any base element of V n , and a∗b is a scalar
defined as:

a∗b = v1w1 + v2w2 + · · · + vnwn =
n∑

i=1

viwi . (16.58)

With the tensor-product tools developed in this section, it is proposed as a closing
exercise to establish the property in Eq. (16.57) for the case n = 2, then by induction
for the general case.

330 Quantum bits and quantum gates

16.6 Noncloning theorem

Given a quantum system A, in any state |ψ〉, and a second quantum system B, in any
pure state |s〉, is it possible to duplicate the first state into the second? Such a “cloning”
operation would correspond to the transformation:

|ψ〉 ⊗ |s〉 → U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 ≡ |ψ,ψ〉, (16.59)

where U is a unitary tensor operator. Assume that such an operator U exists and applies
to any state |ψ〉 of A. Let |φ〉 be another state of A such that |φ〉 �= |ψ〉. We must also
be able to duplicate it into B according to:

U (|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉 ≡ |φ, φ〉. (16.60)

By linearity of the transformation, we must also have for any state mixture |χ〉 =
λ|ψ〉 + µ|φ〉 of A, where λ,µ are two complex numbers:

U (|χ〉 ⊗ |s〉) = |χ〉 ⊗ |χ〉 ≡ |χ, χ〉. (16.61)

If we develop the left-hand side of Eq. (16.61) we obtain:

U (|χ〉 ⊗ |s〉) = U (λ|ψ〉 + µ|φ〉) ⊗ |x〉
= λ|ψ〉 ⊗ |ψ〉 + µ|φ〉 ⊗ |φ〉
≡ λ|ψ,ψ〉 + µ|φ, φ〉,

(16.62)

while the right-hand side in Eq. (16.61) yields:

|χ〉 ⊗ |χ〉 = (λ|ψ〉 + µ|φ〉) ⊗ (λ|ψ〉 + µ|φ〉)
= λ2|ψ〉 ⊗ |ψ〉 + µλ(|ψ〉 ⊗ |φ〉 + |φ〉 ⊗ |ψ〉) + µ2|φ〉 ⊗ |φ〉
≡ λ2|ψ,ψ〉 + µλ|ψ, φ〉 + µλ|φ,ψ〉 + µ2|φ, φ〉.

(16.63)

Equating Eqs. (16.62) and (16.63) yields

λ(λ − 1)|ψ,ψ〉 + µλ|ψ, φ〉 + µλ|φ,ψ〉 + µ(µ − 1)|φ, φ〉 ≡ 0. (16.64)

Assuming that |ψ〉, |φ〉 are pure states, the above equation implies that µλ = 0 and,
thus, |χ〉 = |ψ〉 or |χ〉 = |φ〉. This result means that if there exists an operator U that
can clone two pure states |ψ〉, |φ〉, this operator cannot clone any of their mixtures
|χ〉 = λ|ψ〉 + µ|φ〉, which is a quite restrictive conclusion.

We are then left with the open question: does any cloning operator U exist in the
first place? The answer is straightforward, but it requires one to use the inner product
of states, which is introduced in Chapter 17. Suffice it here to provide the result: there
always exist a unitary operator U capable of cloning a pure state |ψ〉, or any pair of
pure states |ψ〉 and |ψ̄〉 (see Chapter 17 for proof). As we have previously seen, however,
such an operator cannot clone the mixture |χ〉 = λ|ψ〉 + µ|ψ̄〉. The key conclusion is
that, except for the limiting case of pure-state pairs, it is not possible to clone quantum
states in the general case. This fundamental result is known as the noncloning theorem.

In the specific case of qubits, the two possible bases of pure states are {|s1〉, |s2〉} ≡
{|0〉, |1〉}, {|+〉, |−〉}. With our knowledge of quantum gates, it is trivial that we can find
operators capable of “cloning” pure states into each other. Thus the exception about

16.7 Exercises 331

pure states does not weaken in any sense the generality of the noncloning theorem. In
particular, there is no quantum gate capable of executing the equivalent of the classical
FANOUT gate (Chapter 15), for any state other than a pure state.

16.7 Exercises

16.1 (B): Show by two different methods that the Hadamard gate H corresponds to
a unitary transformation.

16.2 (T): Prove the property according to which the three operators Rk(γ) (k =
x, y, z) rotate any qubit |q〉 on the Bloch sphere by an angle γ about the axis k,
in the counterclockwise direction.

16.3 (B): Prove the following properties of the rotation operators:

Ri (2θ)Ri (−2θ) = I

[Ri (2θ), R j (2θ ′)] = −2iεi jk sin θ sin θ ′ + sin(θ − θ ′)

[Ri (2θ), σ j] = 2εi jkσk sin θ.

16.4 (B): Determine the parameters n, θ associated with any unitary transformation
U according to the definition:

U = exp[i(n · σ)θ].

Clue: use the generic definition of unitary matrices for U :

U = eiδ

(
a b
−b̄ ā

)
.

16.5 (M): Prove that any 2 × 2 unitary matrix U can be expressed from the two
rotation operators Ry, Rz according to the product:

U = eiδ Rz(α)Ry(β)Rz(γ),

where α, β, γ, δ are real numbers (Euler’s theorem).

16.6 (M): Considering the quantum-gate circuit

x

x

xx

x

xx

x

xx

x

x

ACNOT ACNOTBCNOT

show first that the matrix of the intermediate BCNOT gate takes the form

BCNOT =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,

332 Quantum bits and quantum gates

assuming the computational base {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}. Then prove by
matrix multiplication that the circuit is equivalent to a CROSSOVER or SWAP
gate.

16.7 (M): Analyze the action of a CNOT gate with control qubit |a〉 in a superposition
of states (assume |a〉 = γ |0〉 + δ|1〉 and |x〉 = α|0〉 + β|1〉). Consider then the
two cases γ = δ = 1/

√
2 and γ = −δ = 1/

√
2 for the control qubit. What are

the possible output states? Show that the same result is obtained with all inputs
in pure states and with a Hadamard gate placed on the control input path.

16.8 (T): Prove that the quantum circuit

Y, Z

H T+T +T T H

+T +T S

T

HH TT+T +T +T +T TT HH

+T +T +T +T SS

TT

which includes Hadamard gates (H), ±π/4-phase gates (T, T +), and a single
π/2-phase gate (S), is an equivalent realization of a CCNOT or Toffoli gate.

16.9 (B): Given the Pauli matrices Y, Z , calculate the tensor product Y ⊗ Z . Given
two qubits |a〉, |b〉 and their tensor product |a〉 ⊗ |b〉, show that

Y ⊗ Z (|a〉 ⊗ |b〉) = Y |a〉 ⊗ Z |b〉.
16.10 (T): Given the computational base V = {|0〉, |1〉} and the Hadamard operator

H , show that the two-fold tensor product H⊗2 = H ⊗ H satisfies

H⊗2|a〉 = 1

2

∑
V n

(−1)a∗b|b〉,

where |a〉 = |v1〉 ⊗ |v2〉 and |b〉 = |w1〉 ⊗ |w2〉 are any elements of V 2 (with
vi , w j = 0, 1) and

a∗b = v1w1 + v2w2.

Then prove by induction that, in the general case,

H⊗n|a〉 = 1√
2n

∑
V n

(−1)a∗b|b〉,

with

a∗b = v1w1 + v2w2 + · · · + vnwn =
n∑

i=1

viwi .

17 Quantum measurements

This chapter is concerned with the measure of quantum states. This requires one to
introduce the subtle notion of quantum measurement, an operation that has no counterpart
in the classical domain. To this effect, we first need to develop some new tools, starting
with Dirac notation, a formalism that is not only very elegant but is relatively simple
to handle. The introduction of Dirac notation makes it possible to become familiar with
the inner product for quantum states, as well as different properties for operators and
states concerning projection, change of basis, unitary transformations, matrix elements,
similarity transformations, eigenvalues and eigenstates, spectral decomposition and
diagonal representation, matrix trace and density operator or matrix. The concept of
density matrix makes it possible to provide a very first and brief hint of the analog of
Shannon’s entropy in the quantum world, referred to as von Neumann’s entropy, to be
further developed in Chapter 21. Once we have all the required tools, we can focus
on quantum measurement and analyze three different types referred to as basis-state
measurements, projection or von Neumann measurements, and POVM measurements.
In particular, POVM measurements are shown to possess a remarkable property of
unambiguous quantum state discrimination (UQSD), after which it is possible to derive
“absolutely certain” information from unknown system states. The more complex case
of quantum measurements in composite systems described by joint or tensor states is
then considered. Although of a more abstract and formal character than any previous
ones, this chapter is crucial to the understanding of the rest of these chapters, which are
concerned with the manipulation of qubits. This is not only because of the importance of
being comfortable with the Dirac formalism, but also of the need to have conceptually
assimilated the basics of quantum measurement.

17.1 Dirac notation

In this section, I shall introduce so-called Dirac notation, which are used in quantum
mechanics. When compared with the basic math formalism used in engineering, Dirac
notation looks quite esoteric, if not highly involved and complex. But as we shall see, such
notation is straightforward to assimilate, and quite easy to handle after familiarization.
Dirac notation is used to recapitulate the basic properties of linear operators and their
action on quantum states (here, qubits), which leads to a simple formalization of the
concept of quantum measurement.

334 Quantum measurements

In Chapter 16, we defined the qubit as a 2D vector noted |q〉. In the orthonormal
basis of pure states V = {|0〉, |1〉}, the qubit has complex coordinates α, β, so that
|q〉 = α|0〉 + β|1〉. As we have seen, higher-dimension qubits can be defined from the
extended basis V n = {|x〉}, where |x〉 is the nth tensor product of the pure state |δi 〉 = |0〉
or |1〉, namely:

|x〉 = |δ1〉 ⊗ |δ2〉 ⊗ · · · ⊗ |δn〉
≡ |δ1, δ2, . . . , δn〉 ≡ |δ1δ2 · · · δn〉,

(17.1)

where the two equivalent notations in the right-hand side can be used for lightening
purposes. In this extended space, the qubit |q〉 can, thus, be expanded into

|q〉 =
∑
x∈V n

x |x〉, (17.2)

where x represents the complex coordinate of |q〉 with respect to the n-qubit basis
element |x〉.

Regardless of any basis dimension n, the qubit or vector |q〉 is also referred to as a
“ket.” Actually, the ket represents the Dirac notation for a quantum state in the space
defined by V = {|0〉, |1〉}, which is referred to as Hilbert space. Here, we do not need
to elaborate further on the notions of quantum state (as related to the physical world)
and of Hilbert space (as defining the continuum of such quantum states). As it turns out,
the concept of qubit as a vector, rather than as a quantum state, even as representing an
oversimplification, is accurate and wholly sufficient to grasp Dirac formalism.

Inner product

In a 2D vector space, the scalar product of two vectors x = (x1, x2) and y = (y1, y2) is
defined as the real number x · y = x1 y1 + x2 y2. In particular, the self-product x · x =
x2

1 + x2
2 ≡ |x |2 corresponds to the vector’s length or modulus. In the qubit space V

(meaning “defined by any orthogonal basis such as V ”), we can introduce the concept of
the inner product of two qubits, |q〉 = α|0〉 + β|1〉 and |q ′〉 = α′|0〉 + β ′|1〉 according
to:

|q〉 · |q ′〉 = ᾱα′ + β̄β ′, (17.3)

where ᾱ, β̄ are the complex conjugates of the coordinates α, β, respectively. In particular,
we have |q〉 · |q〉 = |α|2 + |β|2, which as a real number, represents the modulus of the
qubit |q〉. In vector notation, Eq. (17.3) can be written as a line-vector–column-vector
product:

|q〉 · |q ′〉 = |q〉T|q ′〉 = (ᾱ, β̄)

(
α

β

)
= ᾱα′ + β̄β ′, (17.4)

where |q〉T
is the conjugate-transposed of |q〉. Here is a first opportunity to show

how Dirac notation comes in handy. Indeed, define the “bra” 〈q| as representing the

17.1 Dirac notation 335

conjugate-transposed vector |q〉T
. With this notation, Eq. (17.4) becomes the “bra-ket:”

〈q|q ′〉 = ᾱα′ + β̄β ′ (17.5)

And, hence, for the qubit modulus, 〈q|q〉 = |α|2 + |β|2. As another property, we note
from Eq. (17.5) that 〈q|q ′〉 = 〈q ′|q〉, namely that the inner product of qubit states is
noncommutative, unlike the scalar product of 2D vectors with real coordinates.

As we shall see next, there is more in the “bra” notation than just a convenient way to
express the inner product between two qubit states. Indeed, consider n-qubits |q〉, |q ′〉 in
the space V n , with, for |q ′〉, the expansion in Eq. (17.2) and, for the bra, 〈q| (consistently
with definition):

〈q| =
∑
x∈V n

x̄〈x |. (17.6)

We can now develop the inner product 〈q|q ′〉 according to

〈q|q ′〉 =
(∑

x∈V n

x̄〈x |
)(∑

x ′∈V n

x ′|x ′〉
)

=
∑
x∈V n

∑
x ′∈V n

x̄ x ′〈x |x ′〉. (17.7)

Since |x〉, |x ′〉 are pure states from the orthonormal basis V n , we have 〈x |x ′〉 = δss ′

where δss ′ is the Kronecker symbol (δss ′ = 1 for x = x ′ and δss ′ = 0 otherwise). Hence
the explicit definition of inner product when the two qubits are expressed in the same
basis V n:

〈q|q ′〉 =
∑
x∈V n

∑
x ′∈V n

x̄ x ′δxx ′ . (17.7)

Which, for |q ′〉 = |q〉, reduces to the modulus:

〈q|q〉 =
∑
x∈V n

|x |2. (17.8)

In particular, effecting a left product by 〈x | to Eq. (17.2) we have

〈x |q〉 =
∑

x ′∈V n

x〈x |x ′〉 =
∑

x ′∈V n

xδxx ′ = x, (17.9)

which shows that, expectedly, 〈x |q〉 = x is the projection of |q〉 over the pure state |x〉.
Substituting this result into the definition in Eq. (17.2), we obtain

|q〉 =
∑
x∈V n

x |x〉 =
∑
x∈V n

〈x |q〉|x〉 ≡
∑
x∈V n

|x〉〈x |q〉, (17.10)

which represents another way of expanding |q〉 over the basis V n .
In Chapter 16, we have shown that it is generally not possible to “clone” quantum

states, a property referred to as the noncloning theorem. As was mentioned without

336 Quantum measurements

proof, the only exceptions to this theorem concern any pure state, or any pair of pure
states. With the inner product introduced above, it is quite easy to show this.1

Projection operators

In view of the expansion of |q〉 in Eq. (17.10), we can introduce Ux = |x〉〈x | as the
operator projecting any qubit onto the state |x〉. To show this, we first observe that

Ux |x〉 = (|x〉〈x |)|x〉 = |x〉〈x |x〉 = |x〉δxx ≡ |x〉 (17.11)

and

Ux |q〉 = (|x〉〈x |)
∑

x ′∈V n

x ′|x ′〉

=
∑

x ′∈V n

x ′|x〉〈x |x ′〉 = |x〉
∑

x ′∈V n

x ′δxx ′ ≡ x |x〉, (17.12)

which shows that |x〉 is invariant by Ux and also that |q〉 is projected on its basis
component x |x〉. With such a definition of projector operator, we also have from
Eq. (17.10):

|q〉 =
(∑

x∈V n

|x〉〈x |
)
|q〉, (17.13)

from which we obtain ∑
x∈V n

|x〉〈x | = I. (17.14)

The above property, which is referred to as the completeness (or closure) relation,
expresses the fact that the complete sum of all projection operators over the pure states
of V n is the identity operator. More generally, a unitary operator U is a projector if it
satisfies the property U 2 = U (projecting twice is the same as projecting once). In the
case of Ux = |x〉〈x |, we have, indeed,

U 2
x = UxUx = (|x〉〈x |)(|x〉〈x |)
= |x〉〈x |x〉〈x | = |x〉δxx 〈x | = |x〉〈x | ≡ Ux

(17.15)

1 Referring to Section 16.6, given three pure states |s〉, |ψ〉, |φ〉, we assume a unitary operator U capable to
achieve the following cloning transformations:

U (|ψ〉 ⊗ |x〉) = |ψ〉 ⊗ |ψ〉,
U (|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉.

Taking the inner product of the two right-hand sides and using the properties U+U = I and 〈s|s〉 = 1,
yields:

(〈φ| ⊗ 〈s|)U+U (|ψ〉 ⊗ |x〉) = (〈φ| ⊗ 〈φ|)(|ψ〉 ⊗ |ψ〉) ↔ 〈φ|ψ〉〈s|s〉
= 〈φ|ψ〉〈φ|ψ〉 ↔ 〈φ|ψ〉 = 〈φ|ψ〉2,

which shows that either 〈φ|ψ〉 = 1 or 〈φ|ψ〉 = 0, corresponding to |φ〉 = |ψ〉 or |φ〉, |ψ〉 being orthogonal
states.

17.1 Dirac notation 337

and

Ux |x ′〉 = (|x〉〈x |)|x ′〉 = |x〉〈x |x ′〉 = δxx ′ |x〉. (17.16)

These two results confirm that Ux = |x〉〈x | is the unique projector on the pure state |x〉.
It is clear that for any state |q〉 of unity length (such as a qubit), the operator |q〉〈q| is
the projector over the state |q〉, which is left as an easy exercise to demonstrate.

Change of basis

Let W n = {|y〉} be a new orthonormal basis. Consistently, we can expand |q〉 over W n ,
using a new system of coordinates y defined over the states |y〉. How can we relate the
new coordinates y to the old coordinates x? Here again, Dirac notations turn out to be
quite handy. First, let us insert the completeness relation of W n into the V n expansion
according:

|q〉 =
∑
x∈wn

x |x〉 =
∑
x∈V n

x

∑

y∈V n

|y〉〈y|

 |x〉

=
∑
y∈V n

(∑
x∈V n

x〈y|x〉
)
|y〉 ≡

∑
y∈V n

y|y〉.
(17.17)

The result in Eq. (17.17), thus, yields the definition of the new y coordinates with respect
to the old x coordinates:

y =
∑
x∈V n

〈y|x〉x . (17.18)

Unitary transformations

As seen in Chapter 16, a unitary transformation is characterized by an operator U
satisfying the property U+U = I , where U+ is the Hermitian conjugate of U . Define
|q ′〉 = U |q〉 as the output state resulting from the transformation of input state |q〉.
Consistently with previous definition of the “bra,” we can equivalently write 〈q ′| =
〈q|U+ as the transformation of 〈q| into 〈q ′|. Developing the inner product 〈q ′|q ′〉 and
using the unitary condition U+U = I yields

〈q ′|q ′〉 = (〈q ′|U+)(U |q〉)
= 〈q|U+U |q〉 = 〈q|I |q〉 ≡ 〈q|q〉,

(17.19)

which shows that unitary transformations conserve the state modulus. Furthermore,
unitary transformations also conserve the inner product. This is readily verified given
|a′〉 = U |a〉 and |b′〉 = U |b〉, which yields 〈a′|b′〉 = 〈a|U+U |b〉 ≡ 〈a|b〉.

Operator matrix elements

Given the basis V n = {|x〉}, the action of operator U on the qubit or state |q〉, which
yields |q ′〉 = U |q〉, can be characterized by a change of coordinates from x to x ′, as

338 Quantum measurements

follows:

|q ′〉 = U |q〉 = U

(∑
x∈V n

x |x〉
)

=
∑
x∈V n

xU |x〉

=
∑
x∈V n

x

(∑
x ′∈V n

|x ′〉〈x ′|
)

U |x〉 =
∑
x∈V n

x
∑

x ′∈V n

|x ′〉〈x ′|U |x〉

=
∑

x ′∈V n

(∑
x∈V n

〈x ′|U |x〉x
)
|x ′〉 ≡

∑
x ′∈V n

x ′|x ′〉

(17.20)

with

x ′ =
∑
x∈V n

〈x ′|U |x〉x . (17.21)

In Eq. (17.21), the complex coefficients 〈x ′|U |x〉 represents the matrix elements of the
operator U , as expressed in the basis V n .

Assume next a different orthonormal basis W n = {|y〉}. What are the matrix elements
of U in this new basis? To answer this question, we effect the following development:

〈y′|U |y〉 = 〈y′|
(∑

x ′∈V n

|x ′〉〈x ′|
)

U

(∑
x∈V n

|x〉〈x |
)
|y〉

=
∑

x ′∈V n

∑
x∈V n

〈y′|x ′〉〈x ′|U |x〉〈x |y〉 ≡
∑
x∈V n

∑
x ′∈V n

Ty′x ′Ux ′x Txy

(17.22)

with

Tyx = Txy = T +
yx = 〈y|x〉, (17.23)

where T is called the transition operator. The result in Eq. (17.22) shows that the matrix
U in basis W n (call it Ũ) can be calculated from the matrix U in basis V n according to
the transformation:

Ũ = T U T +, (17.24)

which is referred to as similarity transformation. It is easily established that T +T =
T T + = I in any basis (noticing that Tyx = T +

yx does not imply T = T +, which is left as
an exercise to show).

Eigenvalues and eigenstates

Given an operator A, any state |v〉 such that A|v〉 = λ|v〉, with λ being a complex
number, is called an eigenstate of A. The corresponding number λ is called the
eigenvalue of |v〉. The eigenvalues are the solutions of the characteristic equation
|A − λI | = 0, where |Q| (also sometimes noted det |Q|) is the determinant of the
matrix Q.2 It is customary to label the eigenstates after their eigenvalues, thus, the
eigenstate |λi 〉 implicitly satisfies A|λi 〉 = λi |λi 〉. Two or more eigenstates may have

2 For a 2 × 2 matrix Q =
(

a c
b d

)
, the determinant is |Q| = ad − bc. For a general definition see, for

instance, http://en.wikipedia.org/wiki/Determinant.

17.1 Dirac notation 339

the same eigenvalue, in which case the eigenvalue is said to be degenerate (in this
case the corresponding eigenstates may be labeled as |λ(1)

i 〉, |λ(2)
i 〉 · · ·). We also have

〈λi |A+ = λ̄i 〈λi |, thus, 〈λi |A+ A|λi 〉 = |λi |2〈λi |λi 〉. If A is Hermitian (A = A+), we
have 〈λi |A+ A|λi 〉 = 〈λi |AA|λi 〉 = λ2

i 〈λi |λi 〉, which shows that λ2
i = |λi |2, or that the

eigenvalues of a Hermitian operator are real. It can be shown that any linear operator
has at least one eigenvalue and eigenvector (the characteristic equation having at least
one root). The complete set of eigenstates defines the operator’s eigenspace. A key prop-
erty of the eigenstates |λi 〉 of any operator A is that they form an orthonormal basis, i.e.,
〈λi |λ j 〉 = δi j . Therefore, the completeness relation applies to the set of eigenstates:∑

i

|λi 〉〈λi | = I. (17.25)

Using the completeness relation, we can write the matrix elements of A in the form:

〈x ′|A|x〉 = 〈x ′|A
(∑

i

|λi 〉〈λi |
)
|x〉 =

∑
i

〈x ′|A|λi 〉〈λi |x〉

=
∑

i

〈x ′|λi |λi 〉〈λi |x〉 ≡ 〈x ′|
(∑

i

λi |λi 〉〈λi |
)
|x〉,

(17.26)

which gives

A =
∑

i

λi |λi 〉〈λi |. (17.27)

The definition in Eq. (17.27), which decomposes A into a sum of eigenstate projectors
|λi 〉〈λi |, is called the diagonal representation, or spectral decomposition of A. For
instance, the diagonal-operator representation of the Pauli matrix Z is:

Z =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1|. (17.28)

It is left as an easy exercise to determine the eigenstates and diagonal representations
of the Pauli matrix Y and the Hadamard matrix H . More generally, in the diagonal
representation of A, the matrix elements 〈λi |A|λ j 〉 can be developed as follows:

〈λi |A|λ j 〉 = 〈λi |
(∑

k

λk |λk〉〈λk |
)
|λ j 〉 =

∑
k

λk〈λi |λk〉〈λk |λ j 〉

=
∑

k

λkδikδk j ≡ λiδi j ,
(17.29)

which shows that all nondiagonal elements of the matrix are identically zero, while the
diagonal elements are equal to the eigenvalues λi , i.e.,

A =

λ1 0 · · · 0

0 λ2 · · · ...
...

...
. . . 0

0 · · · 0 λn

 . (17.30)

340 Quantum measurements

An operator matrix that can be transformed into the diagonal form shown in Eq. (17.30)
is said to de diagonalizable. For this, its n × n matrix must have n eigenstates. Clearly, if
the matrix has fewer than n eigenstates, it cannot be diagonalized, as there remain some
nonzero off-diagonal elements in the matrix. An operator is said to be normal if it satisfies
AA+ = A+ A. A remarkable property: any normal operator is diagonalizable, and any
diagonalizable operator is normal.3 Consequently, since they are normal, Hermitian
operators are diagonalizable.

Matrix trace

The trace of a matrix A, noted tr(A) is the sum of all its diagonal elements Aii , according
to

tr(A) =
n∑

i=1

Aii . (17.31)

It is easily established that for any two operators A, B and complex number α, we have
the properties:

tr(αA) = α tr(A)
tr(A + B) = tr(A) + tr(B)
tr(AB) = tr(B A).

(17.32)

In the diagonal representation (Eq. (17.30)), it is clear that the trace of a matrix is the
sum of its eigenvalues. But the trace of a matrix does not depend on the choice of the

3 This can be shown through the following. Since A is a linear operator, it must have at least one eigenvalue,
say λ. Define P = |λ〉〈λ| as the projector on the corresponding eigenspace |λ〉 (where AP = λP), and
Q = I − P the projector on the orthogonal subspace (hence P + Q = I and P Q = Q P = 0). We also
have P2 = P , Q2 = Q, and P, Q are both Hermitian (P+ = P , hence Q+ = Q). We develop A according
to the following:

A = (P + Q)A = (P + Q)A(P + Q) = P AP + Q AP + P AQ + Q AQ

= PλP + λQ P + P AQ + Q AQ = λP + P AQ + Q AQ.

Next we can show that P AQ = 0 if A is normal. Indeed, we have AA+|λ〉 = A+ A|λ〉 = λA+|λ〉, which
shows that |λ′〉 = A+|λ〉 is also an eigenstate of A and belongs to its eigenspace. Therefore, Q A+ = 0,
hence, Q A+ P = (P AQ)+ = 0 = P AQ. We, thus, obtain A = λP + Q AQ. Finally, we can show that
Q AQ is normal. We have

(Q AQ)(Q A+Q) = Q AQ Q A+Q

= Q AQ A+Q = Q A(I − P)A+Q

= Q A(I − P)A+Q = Q AA+Q − Q AP A+Q

= Q A+ AQ − λQ P A+Q = Q A+ AQ

= Q A+(P + Q)AQ = Q(A+ P)AQ + Q A+Q AQ

= Q A+Q Q AQ = (Q A+Q)(Q AQ),

which proves that Q AQ is normal. We have found that A is decomposed as the sum A = λP + A′, with P
being diagonal in the eigenspace |λ〉, and A′ = Q AQ being normal. Since A′ is a linear operator, it must
have at least one eigenvalue, say λ′, thus, it can be decomposed into A′ = λ′ P ′ + A′′, where P ′ is diagonal
in the eigenspace |λ′〉, and A′′ is normal. By induction, we conclude that there exists an orthonormal basis
{|λ〉, |λ′〉 . . .} of the same dimension as A for which the matrix A is diagonal.

17.1 Dirac notation 341

basis representation. Indeed, using the basis transformation in Eq. (17.24), and the third
property in Eq. (17.32), we obtain:

tr(Ũ) = tr(T U T +) = tr(T +T U) ≡ tr(U). (17.33)

Density operator or matrix

Let V n = {|xi 〉} = {|x1〉, |x2〉, . . . , |xn〉} an orthonormal basis for the space of quantum
states |ψ〉, i.e., satisfying 〈xi |x j 〉 = δi j . In this basis, the states have a unique decompo-
sition, which takes the form

|ψ〉 = x1|x1〉 + x2|x2〉 + · · · + xn|xn〉 =
n∑

i=1

xi |xi 〉, (17.34)

where xi (i = 1, . . . , n) represents the complex coordinates. If the modulus or length of
|ψ〉 is unity, we have

〈ψ |ψ〉 =
n∑

i=1

n∑
j=1

x̄i x j 〈xi |x j 〉 =
n∑

i=1

|xi |2 = 1. (17.35)

As we have seen in Chapter 16, for qubits, the number pi = |xi |2 represents the probabil-
ity of finding (or measuring) the state |ψ〉 in the basis state |xi 〉. Hence, the coordinates
xi represent complex amplitude probabilities. We can now define the density operator
or matrix associated with the state |ψ〉 as:

ρ = |x1|2|x1〉〈x1| + |x2|2|x2〉〈x2| + · · · + |xn|2|xn〉〈xn|
=

n∑
i=1

|xi |2|xi 〉〈xi |. (17.36)

The density matrix is diagonal, since its elements ρi j are given by

ρi j = 〈xi |ρ|x j 〉
= 〈xi |

(
n∑

k=1

|xk |2|xk〉〈xk |
)
|x j 〉

=
n∑

k=1

|xk |2〈xi |xk〉〈xk |x j 〉

=
n∑

k=1

|xk |2δikδk j ≡ |xi |2δi j .

(17.37)

Hence, the density matrix operator takes the diagonal matrix representation:

ρ =

|x1|2 0 · · · 0

0 |x2|2 · · · ...
...

...
. . . 0

0 · · · 0 |xn|2

 =

p1 0 · · · 0

0 p2 · · · ...
...

...
. . . 0

0 · · · 0 pn

 . (17.38)

342 Quantum measurements

It is immediately noted that the trace of the density matrix is unity, since

tr(ρ) =
n∑

i=1

|xi |2 =
n∑

i=1

pi = 1. (17.39)

We now have the tools to make a short hint at quantum information theory. This may
also constitute a nice reward for having gone through the lengthy description of Dirac
notation!

Let us introduce a new operator, called U log U , where U is assumed to be diagonal
with nonnegative coefficients. To calculate the matrix coefficients of U log U , we must
first define log U . Assume, then, a linear operator V , which satisfies U = exp(V), which
defines V = log U . Formally, the exponential operator is determined by the infinite
series:

U = exp(V) =
∞∑
n

V n

n!
. (17.40)

Since U is diagonal, any of the powers V n must be diagonal. The diagonal coefficients of
U are, thus, given by Uii = exp(Vii) or Vii = log(Uii). The matrix W = U V = U log U
is also diagonal. It is clear that its coefficients are given by Wii = Uii Vii = Uii log(Uii).
This result shows that the matrix W = U log U is analytically defined for any diagonal
matrix U with coefficients Uii ≥ 0.4 We conclude that the density matrix U = ρ, for
which the coefficients are nonnegative, is an eligible candidate for the operator U log U .
We, thus, have (ρ log ρ)i i = ρi i log ρi i and the matrix definition

ρ log ρ =

|x1|2 log |x1|2 0 · · · 0

0 |x2|2 log |x2|2 · · · ...
...

...
. . . 0

0 · · · 0 |xn|2 log |xn|2

=

p1 log p1 0 · · · 0

0 p2 log p2 · · · ...
...

...
. . . 0

0 · · · 0 pn log pn

 .

(17.41)

Finally, we find that the trace of ρ log ρ is given by the expression:

tr(ρ log ρ) =
n∑

i=1

|xi |2 log |xi |2 =
n∑

i=1

pi log pi . (17.42)

Based on our background of Shannon’s information theory (Chapter 4), we can heuris-
tically define an “entropy” H for the quantum state described by the density matrix ρ in
the form

H = −
n∑

i=1

pi log pi , (17.43)

4 By application of the property limx→0(x log x) = 0, which defines the function x log x analytically for any
real x ≥ 0.

17.2 Quantum measurements and types 343

which, from Eq. (17.42), yields:

H = −tr(ρ log ρ). (17.44)

The above result quite elegantly connects the concept of Shannon’s entropy to the corre-
sponding “notion” in quantum information theory, which is based on the density-matrix
operator. The definition H = −tr(ρ log ρ) is referred to as von Neumann’s entropy, as I
shall describe in Chapter 21. Anticipating a key result, the entropy corresponding to a
qubit state |q〉 = α|0〉 + β|1〉, with p = |α|2 = 1 − |β|2, is given by

H = −|α|2 log |α|2 − |β|2 log |β|2
= −p log p − (1 − p) log(1 − p) ≡ f (p).

(17.45)

In the result in Eq. (17.45), we recognize the Shannon entropy of a two-event source
X2 = {0, 1}, corresponding to the two possible states of a classical information bit. As
we have seen, however, the qubit is a superposition of both information states, which
we referred to as |0〉, |1〉, with corresponding probabilities |α|2, |β|2. We now have the
required conceptual tools to analyze the notion of quantum measurement.

17.2 Quantum measurements and types

In this section, I introduce and analyze the concepts associated with different types
of quantum measurement. A general definition for quantum measurement operators
will first be introduced. This definition will then be applied to measurements in the
orthonormal basis, to the projective (or von Neumann) measurements and to the so-
called POVM measurements.

Through Dirac notation we have made a formal description of the quantum states and
their various transformation properties through the action of linear operators. Such a
description did not require any quantum-mechanics background, because in Chapters 15
and 16 we obtained a solid view of the world of qubits, as described by 2D complex
vectors, and their operator transformations, as described by unitary rotations on the
Bloch sphere. The simpler world of qubits, thus, offers a convenient introduction to
the greater view of quantum states |ψ〉 and their linear operator transformations |ψ ′〉 =
A|ψ〉. In the same spirit of conceptual simplification, we can view a quantum system as
being a physical system with which one can associate a quantum state |ψ〉, as expressed
onto some pure-state basis V n = {|x〉}, and a set of linear operators {A}. We are now
interested in learning about what can be physically measured in such a system, and how
it may possibly be measured.

The following will show that there are different approaches for performing physical
measurements in quantum systems. Assume, first, that for a quantum system with n
pure states, there exist a certain number n of possible measurements, which we index
by m (m = 1, . . . , n). We then introduce the most general definition of a measurement
operator, Mm , the collection of which forms the finite operator set {Mm}. Calling p(m)

344 Quantum measurements

the probability of measuring m, we have by postulate:

p(m) = 〈ψ |M+
m Mm |ψ〉. (17.46)

Since the probabilities must sum to one, we also have

n∑
m=1

p(m) =
n∑

m=1

〈ψ |M+
m Mm |ψ〉

= 〈ψ |
(

n∑
m=1

M+
m Mn

)
|ψ〉 = 1,

(17.47)

which implies the “completeness” relation:

∑
m

M+
m Mm = I. (17.48)

As a second postulate, the measurement Mm causes the system state |ψ〉 to be trans-
formed into the post-measurement state |ψ ′〉 = γ Mm |ψ〉, where γ is a complex number.
The probability q that the system is in the post-measurement state |ψ ′〉 is unity. We,
thus, obtain

q = 〈ψ ′|ψ ′〉 = 〈ψ |γ̄ M+
m Mmγ |ψ〉

= |γ |2〈ψ |M+
m Mm |ψ〉 ≡ |γ |2 p(m) = 1,

(17.49)

which shows that |γ | = 1/
√

p(m), hence γ = eiδ|γ | = eiδ/
√

p(m). Within an “unob-
servable” phase term eiδ , which we shall overlook here, we can set γ = 1/

√
p(m), and

the post-measurement state is now completely defined as:

|ψ ′〉 = 1√
p(m)

Mm |ψ〉 = 1√
〈ψ |M+

m Mm |ψ〉
Mm |ψ〉. (17.50)

Using the expansion in Eq. (17.34) of the input state |ψ〉, we obtain the expansion of the
post-measurement state |ψ ′〉 according to

|ψ ′〉 = 1√
〈ψ |M+

m Mm |ψ〉
Mm |ψ〉

= 1√
〈ψ |M+

m Mm |ψ〉
Mm

n∑
i=1

xi |xi 〉

=
n∑

i=1

xi√
〈ψ |M+

m Mm |ψ〉
Mm |xi 〉.

(17.51)

We have, thus, obtained a general expression for the post-measurement state |ψ ′〉,
given the quantum measurement operator Mm . What could be the result of two
successive measurements from different operators Mm and Ll? The answer is that

17.2 Quantum measurements and types 345

the two successive measurements (in this order) are equivalent to a single mea-
surement of operator definition Klm = Ll Mm , which is left as an exercise to
demonstrate.

An important consequence of the above general definition for the quantum-
measurement operator Mm is that two states |ψ〉 and eiδ|ψ〉, which differ by the phase
factor eiδ , have the same measurement properties and outcome. Hence such a phase
factor is said to be “unobservable.” It should not be concluded, however, that in quan-
tum mechanics, phase is definitely unobservable, with no corresponding measurement
operator. Indeed, more recent (1989) and less known work has shown that Hermitian
phase-measurement operators and phase eigenstates can truly be defined.5 Here, we
shall overlook this academic note, and abide by the above general definition of quantum-
measurement operators, for which phase (and multiplying factors eiδ in quantum states)
is indeed “unobservable.”

We shall consider next three possibilities for the measurement operator Mm .

Quantum measurements in the orthonormal basis

We look for a quantum measurement operator Mm that projects the input state |ψ〉
into the pure state |xm〉 from the orthonormal basis V = {|x〉} = {|x1〉, |x2〉, . . . , |xn〉},
namely, having the action |ψ ′〉 = Mm |ψ〉 = µ|xn〉, where µ is a complex number. As we
know, the projector over |xm〉 is defined as Pm = |xm〉〈xm |, with P+

m Pm = Pm . The set of
Hermitian operators {Pm = |xm〉〈xm |} satisfies the completeness relation, hence Mm =
|xm〉〈xm | is a valid measurement operator. We first derive the bracket 〈ψ |M+

m Mm |ψ〉
according to

〈ψ |M+
m Mm |ψ〉 = 〈ψ |Pm |ψ〉

=
(

n∑
i=1

x̄i 〈xi |
)
|xm〉〈xm |

 n∑

j=1

|x j 〉x j

=
n∑

i=1

n∑
j=1

x̄i x jδimδ jm ≡ |xm |2,

(17.52)

which shows that the probability of measuring m (or equivalently, the probability that
|ψ〉 is in the state |xm〉) is p(m) = |xm |2. Then, with substitution of Mm = |xm〉〈xm | into

5 See, for background reference: E. Desurvire, Erbium-Doped Fiber Amplifiers, Device and System Devel-
opments (New York: J. Wiley & Sons, 2002), pp. 97–111. As an advanced topic for quantum-mechanics
specialists, attention is drawn to phase states |δm〉, which have eigenvalues δm , and which are defined for
electromagnetic fields by

|δm〉 = 1√
s + 1

s∑
k=0

eikδm |k〉,

where |k〉 is a photon-number state, and the series applies in the limit s → ∞. For full description, see:
S. M. Barnett and D. T. Pegg, On the Hermitian phase operator. J. Modern Optics, 36 (1989), 7–19 and D. T.
Pegg and S. M. Barnett, Phase properties of the quantized in single-mode electromagnetic field. Phys. Rev.
A, 39 (1989), 1665.

346 Quantum measurements

Eqs. (17.51) and (17.52), we obtain

|ψ ′〉 = 1√
〈ψ |M+

m Mm |ψ〉
Mm |ψ〉

= 1√
|xm |2

|xm〉〈xm |
n∑

i=1

xi |xi 〉

=
n∑

i=1

xi

|xm | |xm〉〈xm |xi 〉

=
n∑

i=1

xi

|xm | |xm〉δmi ≡ xm

|xm | |xm〉.

(17.53)

The result in Eq. (17.53) indicates that the post-measurement state is indeed of the form
µ|xm〉, but with µ = xm/|xm | being a complex number of unity modulus, or µ = eiδm

being an “unobservable” phase term that can be overlooked.
We will use the above results in Chapter 18, which concerns qubit measurements in

the orthonormal basis.

Projective or von-Neumann measurements

Another type of quantum measurement whose operator satisfies the above two postulates
is referred to as projective or von-Neumann measurement. As we shall see, it is not
formally different from a measurement in an orthonormal basis, except that we shall
now take for this basis the one formed by the eigenstates {|λm〉} of a given Hermitian
operator A. Define the corresponding eigenvalues as {λm}. Since A is Hermitian, we
know from the previous section that the eigenvalues are real numbers. For this reason,
the operator A could be associated with “real” physical quantities to characterize the
system, hence the operator A is referred to as an observable.

Given the set of projectors Pm = |λm〉〈λm |, the spectral decomposition of A is given
in Eq. (17.27), which I reproduce for convenience:

A =
n∑

m=1

λm Pm =
n∑

m=1

λm |λm〉〈λm |. (17.54)

As we have previously established, the projector Pm = |λm〉〈λm | is a valid measurement
operator and, hence, the probability of measuring the eigenvalue λm from a system in
the state |ψ〉, as decomposed in the eigenstates basis {|λm〉} is given by

p(λm) = 〈ψ |Pm |ψ〉, (17.55)

and we have for the post-measurement state:

|ψ ′〉 = 1√
p(λm)

Pm |ψ〉

= 1√〈ψ |Pm |ψ〉 Pm |ψ〉.
(17.56)

17.2 Quantum measurements and types 347

Substituting the expansion of |ψ〉, with complex coordinates xi , over the eigenstate
basis {|λi 〉}, we obtain for the measurement probability p(λm) and corresponding post-
measurement state |ψ ′〉:

p(λm) = 〈ψ |Pm |ψ〉

=
(

n∑
i=1

〈λi |x̄i

)
|λm〉〈λm |

 n∑

j=1

x j |λ j 〉

=
n∑

i=1

n∑
j=1

x̄i x jδimδ jm = |xm |2,

(17.57)

|ψ ′〉 = 1√
p(λm)

Pm |ψ〉

= 1

xm
|λm〉〈λm |

n∑
i=1

xi |λi 〉

= 1

xm
|λm〉

n∑
i=1

xiδim ≡ |λm〉.

(17.58)

We will use the above two results in Chapter 18, which concerns projective qubit
measurements.

Let us now analyze some interesting properties of the projective or von-Neumann
measurement.

Since each eigenvalue λm has an associated measurement probability, p(λm), we can
define the average value or mean of the observable measurement as follows:

〈A〉 ≡ 〈λ〉 =
n∑

m=1

λm p(λm) =
n∑

m=1

λm〈ψ |Pm |ψ〉

= 〈ψ |
n∑

m=1

λm Pm |ψ〉 ≡ 〈ψ |A|ψ〉.
(17.59)

The nice conclusion from the above result is that the average value of an observable A is
defined as the bracket 〈ψ |A|ψ〉. Likewise, we can define the mean-square and variance
of the observable as follows:

〈A2〉 ≡ 〈λ2〉 =
n∑

m=1

λ2
m p(λm) ≡ 〈ψ |A2|ψ〉, (17.60)

�A2 ≡ 〈λ2〉 − 〈λ〉2 = 〈A2〉 − 〈A〉2 (17.61)

(the notation �A corresponds to a real number, not an operator). We have, thus, obtained
the definitions of the two main statistical parameters characterizing any observable
measurement, namely the mean and the variance of the observed physical quantity. We
call the uncertainty of the observable A the measured standard deviation

√
�A2 = �A.

Similar measurements can be performed with any other observable quantity B, with
uncertainty �B. A fundamental result in quantum mechanics, known as the Heisenberg
uncertainty principle, states that given two Hermitian operators A, B the product of their

348 Quantum measurements

uncertainties measured in the system state |ψ〉 must satisfy:

�A�B ≥ 1

2
|〈ψ |[A, B]|ψ〉|, (17.62)

where [A, B] = AB − B A is the commutator of A, B (see demonstration in Appendix
O). In the particular case (called conjugate observables) where [A, B] = ±i , and where
|ψ〉 has a modulus of unity, we have

�A�B ≥ 1

2
, (17.63)

which represents the more well-known form of the uncertainty principle. The key con-
clusion of this principle could be stated as follows: two independent measurements of
noncommuting observables cannot both reach arbitrary accuracy. The product of the
corresponding uncertainties has a nonzero lower bound given by the right-hand side of
Eq. (17.62), which we may call ε. Thus, a relatively accurate measurement of A, e.g.,
�A = 1/N where N may be any large number, implies that the accuracy in the measure-
ment of B cannot be better than Nε. Thus, if N → ∞, we have �A → 0, corresponding
to absolute accuracy in the observable A, while we have �B → ∞, corresponding to
an absolute “indetermination” of the observable B. It would be incorrect, however, to
conclude that in any case, a first measurement of A actually influences that of B, and the
reverse. The two measurements are assumed to be independent, both in terms of time
and order sequence. Only in the case where the two observables commute can the two
measurements reach arbitrary accuracy.

POVM measurements

A third type of measurement is referred to as positive-operator-valued-measure, or
POVM. Define a finite set of Hermitian operators {Em} with any Em being a posi-
tive operator (meaning 〈ψ |Em |ψ〉 ≥ 0 for any normalized state |ψ〉), and altogether
satisfying the completeness relation ∑

m

Em = I. (17.64)

The operators Em that satisfy the above conditions are then said to be POVM operators.
As we have seen in the previous section, any Hermitian operator A can be represented
by a diagonal matrix with nonnegative coefficients, hence, there exists a diagonal oper-
ator B = √

A, such that B2 = A, and which is also Hermitian (B2
i i is real, so Bii is).

Therefore, for each Em we can associate a Hermitian operator Mm = √
Em that satisfies

M+
m Mm = Em , and consequently the two above POVM conditions. According to the

general definition, the set {Mm} is, thus, a truly eligible set of measurement operators,
even if their number, with respect to the number n of pure states, is not specified. The
projection or von-Neumann measurements, with the set {Mm = |λm〉〈λm |} being defined
by the n eigenstates of an observable, represent a specific case of POVM set.

I shall now illustrate an important application of POVM, which no other measurement
type can provide. Consider a simple example in the basis V = {|0〉, |1〉}. Assume the

17.2 Quantum measurements and types 349

Table 17.1 Probabilities associated with different POVM measurement possibilities when the input
state is either |ψ〉 = |0〉 (left) or |ψ〉 = |+〉 (right).

Input state |ψ〉 = |0〉 Input state |ψ〉 = |+〉

p(1) = 〈0|E1|0〉 = 0 p(1) = 〈+|E1|+〉 = u

2
p(2) = 〈0|E2|0〉 = u

2
p(2) = 〈+|E2|+〉 = 0

p(3) = 〈0|(I − E1 − E2)|0〉 = 1 − u

2
p(3) = 〈−|(I − E1 − E2)|−〉 = 1 − u

2

three POVM operators:

E1 = u|1〉〈1|
E2 = u

|0〉 − |1〉√
2

〈0| − 〈1|√
2

≡ u|−〉〈−|
E3 = I − E1 − E2,

(17.65)

with u = √
2/(1 +√

2). By summation of the above three equations, we immediately
observe that the completeness relation is satisfied. It is also easily verified that the three
operators E1, E2, E3 are positive (it is left as an exercise to prove that in the general
case, the condition u ≤ 2/3 must be satisfied). We have, thus, defined a valid POVM set
of three measurement operators from the two-element basis V .

The following will show how the above POVM measurement can be applied. Assume
that the system state |ψ〉 has been prepared in such a way that it is certain to be either
|ψ〉 = |0〉 or |ψ〉 = |+〉, to the exclusion of any other possibility. It is also assumed
that we have this key information about the two system-state possibilities, prior to any
measurement, but we don’t know, a priori, which ones the system chooses to be in. The
probabilities associated with our three possible measurements associated to each case
are summarized in Table 17.1.

First, the table indicates that our measurement fails to convey any information in two
cases:

� If we use E1 when the input is |ψ〉 = |0〉;
� If we use E2 when the input is |ψ〉 = |+〉.
This is because, in each case, the measurement operators project the input state on its
orthogonal counterpart, namely |1〉 or |−〉, respectively, resulting in the measurement
probabilities for E1 of p(E1) = 〈0|E1|0〉 = 0 or p(E2) = 〈+|E2|+〉 = 0, and showing
that these measurement have no possible outcomes.

Second, the table indicates that there is a finite probability u/2 that we obtain a
measurement

� Of E1, if we use E1 when the input is |ψ〉 = |+〉;
� Of E2, if we use E2 when the input is |ψ〉 = |0〉.
Then comes a nice subtlety in the interpretation of these two measurement possibilities.
Indeed, if we happen to measure E1 the system cannot be in state |ψ〉 = |0〉, since E1 is

350 Quantum measurements

a projector on |1〉. In this case, we reach the absolute conclusion that the system must
have been in state |ψ〉 = |+〉. Likewise, if we happen to measure E2, the system cannot
be in state |ψ〉 = |+〉, since E2 is a projector on |−〉. In this case, we reach the absolute
conclusion that the system must have been in state |ψ〉 = |0〉. However, we obtain this
absolute information only with probability u/2, meaning that there is a finite probability
1 − u/2 that the two measurements fail to convey any information.

If we were to use the measurement E3, Table 17.1 shows that the measurement works
in all cases (|ψ〉 = |0〉 or |+〉), but with a probability 1 − u/2. By definition, E3 is a
projector on all states that are neither |1〉 or |−〉. Thus, the positive outcome of any E3

measurement only tells us that the system state is neither |1〉 or |−〉, but we already know
this for a fact, which represents no information! Therefore, there is no point in using E3

as a means to measure the system state.
Let me, then, clarify what is meant by “positive outcome” and “failure” of any of the

above measurements, using a figurative analogy with a physical measurement. Compare
the system state |ψ〉 to a light source that randomly emits in two possible color tones,
either A or B (standing for |0〉 or |+〉, respectively), these tones being invisible to the
naked eye. Our measurement consists of determining which color tone is emitted by the
source by observing it through a set of “magic filters,” called 1, 2, 3, (for E1, E2, E3).
Such filters have the following strange properties: filter 1 does not react to tone A,
while it makes tone B visible to the eye with probability p (or u/2); filter 2 does not
react to tone B, while it makes tone A visible to the eye with same probability p; and
filter 3 does not react to any tone other than A, B (but this is not useful here) but
makes tone A, B visible with probability 1 − p (or 1 − u/2). Basically, if we choose
either filter 1 or filter 2, we have a chance p of seeing something, and 1 − p of seeing
nothing!

Figure 17.1 shows what we can see through the magic filters, according to the twelve
possible cases, namely, determined by the two source-tone possibilities A, B and our
three possible magic-filter choices 1, 2, 3. A bright spot indicates that we observe some-
thing, corresponding to a “positive” measurement. The absence of a spot, or dark image
indicates a “negative” or “failed” measurement. The figure shows that the combina-
tions (A, 1) and (B, 2) are certain to fail, while the other combinations (A, 2) (B, 1)
or (A, 3) (B, 3) have a finite chance, p or 1 − p, respectively, of succeeding. The suc-
cessful measurements in the two cases (A, 2) or (B, 1), as marked with a cross (×),
correspond to absolute certainty that the source tone is A or B, respectively. The other
two successful measurements (A, 3) (B, 3), like all failed measurements, do not convey
any information, as mentioned earlier. The success of our measurement and the absolute
conclusion therein, is, thus, dependent on our filter choice (1 or 2), which is essentially
a matter of guesswork.

From any academic standpoint, it remains debatable whether the above fictitious
“physical measurement” through a set of “magic filters” may, in some way, help clarify
the essence of a true quantum POVM measurement. If it has any merit, however, it
helps to stress the point that quantum measurements are based on the observer’s choice
of a measurement operator (the magic filter). The measurement or observation of an
outcome may either succeed or fail (seeing or not seeing a spot). In the case of success,

17.3 Quantum measurements on joint states 351

A

1

2

3

1

p

p

B

p 1 − p

1 − p1 − p

1 − p

p

x

x
0

1 0

Figure 17.1 Fictitious analogy of POVM measurement of tones A, B and a magic-filter set 1, 2, 3
to characterize a source. Given the tones A, B and choices 1, 2, 3, a positive observation of the
tone is characterized by the bright spot on the images shown, with various probabilities
0, 1, p, 1 − p. The two images marked with a cross (×) correspond to absolutely certain
measurements that the source tone is A or B.

the observer may or may not be able to derive an absolute conclusion as to what state
was observed (the source tone), depending on his or her choice.

Leaving fiction behind, we can conclude that POVM measurements make it pos-
sible to get absolutely certain information about the input state |ψ〉, despite the fact
that it is, a priori, unknown, just as the right measurement operators are unknown.
We have noted that while the corresponding measurements may sometimes fail, the
conclusion is never wrong when they succeed. This remarkable property is referred to
as unambiguous quantum state discrimination, of UQSD. Remarkably, while UQSD
has no classical explanation, or no counterpart in classical physics, it can be imple-
mented in actual physical measurements, for instance, in quantum cryptography (see
Chapter 25).

17.3 Quantum measurements on joint states

In Chapter 16, we introduced the concept of tensor states, which correspond to systems
being described by more than one quantum state, e.g., |ψ1〉 and |ψ2〉. Here, we shall
call such systems composite systems. As we have seen, the corresponding state can be
written in the tensor form |ψ〉 = |ψ1〉 ⊗ |ψ2〉, or |ψ〉 = |ψ1〉|ψ2〉, or, for short |ψ〉 =
|ψ1, ψ2〉, and even, sometimes, |ψ〉 = |ψ1ψ2〉, e.g., the notations |ψ〉 = |i〉 ⊗ | j〉 ≡
|i〉| j〉 ≡ |i, j〉 ≡ |i j〉 are all equivalent. These tensor states are also referred to as joint
states. Regardless of the notation conciseness for joint states, however, it is important to

352 Quantum measurements

keep in mind the underlying tensor product concept, which is also associated with that
of tensor operators. Thus, the tensor operator U = A ⊗ B acts on the joint state |ψ〉 =
|ψ1〉 ⊗ |ψ2〉 according to the rules U |ψ〉 = A|ψ1〉 ⊗ B|ψ2〉 and 〈ψ |U+ = 〈ψ1|A+ ⊗
〈ψ2|B+, hence, the imperative need of keeping the single quantum state notation in the
right order sequence inside the ket |·〉, and choose the appropriate notation for the tensor
products when operators are being used.

We are now interested in defining a generic measurement operator for joint states. The
following may look complicated at first but, as we shall see, the result makes complete
sense in view of what we have learnt from the previous section. Assume first a single-state
space V , as defined by the orthonormal basis V n = {|xi 〉} (for simplicity we identify
here the “space” and one corresponding “basis” with the same letter V). Assume next
that {Mm} represents a valid set of measurement operators for V (meaning that M+

m Mm

are positive and verify the completeness relation). For the set {Mm} there is a space
M of orthonormal states {|m〉}, corresponding to each of the different possibilities of
post-measurement states resulting from the action of Mm . I shall refer to M as an ancilla
space. Let |m̃〉 be a fixed state of M , to be used as an arbitrary reference, which we
might index |m̃〉 = |0〉. We can now work with the joint states |ψ〉|0〉 = |ψ, 0〉 from the
extended space V ⊗ M of joint states |ψ〉|m〉 = |ψ, m〉. Next, define the tensor operator
U whose action on |ψ, 0〉 results in:

U |ψ, 0〉 =
∑

m

Mm |ψ, m〉. (17.66)

We then have for any two states |ψ〉, |ψ ′〉:

〈ψ ′, 0|U+U |ψ, 0〉 =
∑

k

∑
m

〈ψ ′, k|M+
k Mm |ψ, m〉

=
∑

k

∑
m

〈ψ ′|M+
k Mm |ψ〉δkm

=
∑

m

〈ψ ′|M+
m Mm |ψ〉

= 〈ψ ′|
∑

m

M+
m Mm |ψ〉 ≡ 〈ψ ′|ψ〉.

(17.67)

The above result shows that the transformation U preserves the inner product of all
states |ψ, 0〉 as a unitary operator for the subspace V ⊗ {|0〉}. Actually, we can make
U a unitary operator for the entire space V ⊗ M , which applies to any state |ψ, m〉,6

6 Indeed, define U ′ as the sum of two projectors on the two orthogonal spaces V ⊗ {|0〉} and V ⊗ {|m �= 0〉}
for any state |ψ〉 ∈ V , as follows: U ′ = U |ψ, 0〉〈ψ, 0| + ∑

m �=0 |ψ, m〉〈ψ, m|. It is clear that since U
is unitary, U ′ is unitary. We also have U ′|ψ, 0〉 = U ′|ψ, 0〉 and, for k �= 0, U ′|ψ, k〉 = U |ψ, 0〉〈ψ, k| +∑

m �=0 |ψ, m〉〈ψ, m|ψ, k〉 = Uδ0k + ∑
m �=0 |ψ, m〉δmk ≡ |ψ, k〉.

17.3 Quantum measurements on joint states 353

according to the alternative definition:

Uk |ψ, k〉 =
∑

m

(Mm ⊗ |k〉〈m|)|ψ, k〉

=
∑

m

Mm |ψ〉 ⊗ (|k〉〈m|k〉)

=
∑

m

Mm |ψ〉 ⊗ (|k〉δmk)

=
∑

m

Mm |ψ, m〉 ⊗ (|k〉δmk).

(17.68)

As an exercise, it is possible to check that 〈ψ ′, k ′|U+
k ′ Uk |ψ, k〉 ≡ 〈ψ ′|ψ〉δkk ′ which shows

that the new definition of U (i.e., Uk) in Eq. (17.68) is indeed unitary over V ⊗ M . Having
found the above unitary operator U that conserves the inner product of all joint states
|ψ, k〉 in V ⊗ M , we can now introduce the joint-state measurement (JSM) operator Em

as

Em = U+PmU, (17.69)

with

Pm = IV ⊗ |m〉〈m|, (17.70)

where IV is the identity operator on V and |m〉〈m| the projector over |m〉 ∈ M .7 Next, we
shall calculate the bracket function p(m) = 〈ψ, k|Em |ψ, k〉, which, using Eq. (17.66)
with |0〉 = |k〉, is:

p(m) = 〈ψ, k|U+PmU |ψ, k〉
=

(∑
p

〈ψ, p|M+
p

)
(IV ⊗ |m〉〈m|)

(∑
q

Mq |ψ, q〉
)

=
∑

p

∑
q

〈ψ |M+
p Mq |ψ〉〈p|m〉〈m|q〉

=
∑

p

∑
q

〈ψ |M+
p Mq |ψ〉δpmδmq

≡ 〈ψ |M+
m Mm |ψ〉.

(17.71)

We immediately recognize from the result that p(m) is the measurement probability
associated with the operator Mm on the state |ψ〉 ∈ V , as defined in Eq. (17.46). After
Eq. (17.50), and writing the JSM operator Em = (U+P+

m)PmU , we obtain the joint
post-measurement state as the result of the transformation:

|ψ ′, k ′〉 = 1√
p(m)

PmU |ψ, k〉

= 1√
〈ψ |M+

m Mm |ψ〉
Mm |ψ, m〉.

(17.72)

7 The full definition of the JSM operator actually being Em = (PmU)+ PmU = U+ P+
m PmU ≡ U+ PmU ,

where we used the projector and Hermitian properties of Pm .

354 Quantum measurements

This final result shows that after the measurement, the state |ψ〉 of space V is transformed
into

|ψ ′〉 = 1√
〈ψ |M+

m Mm |ψ〉
Mm |ψ〉, (17.73)

while the ancilla state |k〉 is transformed into |m〉. In the rest of this book, we will not
have to be concerned about the ancilla space M . Such a space is just used here as a
mathematical tool to allow the construction of a quantum measurement operator for joint
states. Bearing this in mind, we can now expand the conclusion to measurements of joint
states of any dimension from V ⊗n ⊗ M⊗n , by means of the n-ancilla space, M⊗n , i.e.,

|ψ1, ψ2, . . . , ψn, k1, k2, . . . , kn〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 ⊗ |k1〉 ⊗ k2 ⊗ · · · ⊗ |kn〉.
.(17.74)

We, thus, know that it is possible to define a measurement operator Eim that can act on
the subspace pair |ψi 〉, |ki 〉 and collapse it into the pair Mm |ψi 〉, |m〉, such that

Eim |ψ1, ψ2, . . . , ψi , . . . , ψn, k1, k2, . . . , ki , . . . , kn〉

=

|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ Mm√
〈ψi |M+

m Mm |ψi 〉
|ψi 〉 ⊗ · · · |ψn〉

⊗|k1〉 ⊗ k2 ⊗ · · · ⊗ |ki−1〉 ⊗ |m〉 ⊗ |ki+1〉 ⊗ · · · |kn〉

 .

(17.75)

We may just forget now about the ancilla bits and consider simply that

Eim |ψ1, ψ2, . . . , ψi , . . . , ψn〉≡|ψ1〉⊗|ψ2〉⊗· · ·⊗ Mm√
〈ψi |M+

m Mm |ψi 〉
|ψi 〉⊗· · ·⊗|ψn.〉

(17.76)

To provide an illustration, assume that Mm = |m〉〈m|. Letting |ψi 〉 =
∑

n x (i)
n |n〉, we

obtain

Eim |ψ1, . . . , ψn〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ x (i)
m∣∣x (i)
m

∣∣ |m〉 ⊗ · · · ⊗ |ψn〉

= x (i)
m∣∣x (i)
m

∣∣ |ψ1, . . . , ψi−1, m, ψi+1, . . . , ψn〉
≡ |ψ1, . . . , ψi−1, m, ψi+1, . . . , ψn〉,

(17.77)

as obtained within an unobservable phase factor eiδ = x (i)
m /|x (i)

m |.
Finally, consider for simplicity two joint states in 2-state space V ⊗ V , namely |φ〉 =

|φ1, φ2〉 and |ψ〉 = |ψ1, ψ2〉, and their superposition |χ〉 with complex coefficients α, β

(satisfying |α|2 + |β|2 = 1):

|χ〉 = α|φ〉 + β|ψ〉 = α|φ1, φ2〉 + β|ψ1, ψ2〉. (17.78)

Owing to the linearity and distributiveness of the measurement operators, we have

E1|χ〉 = E1(α|φ〉 + β|ψ〉) = αE1|φ1, φ2〉 + βE1|ψ1, ψ2〉 = α|1, φ2〉 + β|1, ψ2〉
E2|χ〉 = E2(α|φ〉 + β|ψ〉) = αE2|φ1, φ2〉 + βE2|ψ1, ψ2〉 = α|φ1, 2〉 + β|ψ1, 2〉

(17.79)

17.4 Exercises 355

and

E1 E2|χ〉 = E2 E1|χ〉 = α|1, 2〉 + β|1, 2〉 ≡ (α + β)|1, 2〉, (17.80)

which actually illustrates the great simplicity of joint-state measurements and their
properties. These can now be applied to the case of single and multiple qubit systems,
which are described in Chapter 18.

17.4 Exercises

17.1 (B): Calculate the moduli and scalar products of the 2-qubits

|q〉 = i|00〉 + |01〉 − |11〉,
|q ′〉 = |00〉 + |01〉 − i|10〉 + |11〉.

17.2 (B): Show that |q〉〈q| is the projector operator over the qubit |q〉.
17.3 (B): Determine the eigenstates and diagonal representations of the Pauli matrix

Y and Hadamard matrix H .

17.4 (T): Show that the transition operator T defined by its matrix element

Txy = 〈x |y〉
in different orthogonal bases V n = {|x〉} and W n = {|y〉} satisfies the property

T +T = T T + = I.

Then show that T �= T + in the general case.

17.5 (M): Show that two successive measurements from different operators Mm and
Ll (in this order) are equivalent to a single measurement of operator definition
Klm = Ll Mm .

17.6 (T): Show that the three operators {E1, E2, E3} defined by

E1 = u|1〉〈1|,
E2 = v(|0〉 − |1〉)(〈0| − 〈1|),
E3 = I − E1 − E2,

form a complete POVM set over the space V = {|0〉, |1〉} if the constants u, v

satisfy the two conditions

0 < u ≤ 2

3
, v = u

2
.

18 Qubit measurements, superdense
coding, and quantum teleportation

This chapter is concerned with the measure of information contained in qubits. This can
be done only through quantum measurement, an operation that has no counterpart in the
classical domain. I shall first describe in detail the case of single qubit measurements,
which shows under which measurement conditions “classical” bits can be retrieved. Next,
we consider the measurements of higher-order or n-qubits. Particular attention is given
to the Einstein–Podolsky–Rosen (EPR) or Bell states, which, unlike other joint tensor
states, are shown being entangled. The various single-qubit measurement outcomes from
the EPR–Bell states illustrate an effect of causality in the information concerning the
other qubit. We then focus on the technique of Bell measurement, which makes it possible
to know which Bell state is being measured, yielding two classical bits as the outcome.
The property of EPR–Bell state entanglement is exploited in the principle of quantum
superdense coding, which makes it possible to transmit classical bits at twice the classical
rate, namely through the generation and measurement of a single qubit. Another key
application concerns quantum teleportation. It consists of the transmission of quantum
states over arbitrary distances, by means of a common EPR–Bell state resource shared
by the two channel ends. While quantum teleportation of a qubit is instantaneous, owing
to the effect of quantum-state collapse, it is shown that its completion does require
the communication of two classical bits, which is itself limited by the speed of light.
We then briefly consider the possibility of denser teleportation schemes, taking, for
example, the case of two qubits. Quantum entanglement is also shown to be applicable
to the teleportation quantum gates. This opens the perspective of distributed quantum
computing: the possibility to manipulate qubits from a distance, or, in a futuristic view,
to share the resources of remote quantum networks.

18.1 Measuring single qubits

This section describes the effect of quantum measurements on qubits. We shall first
recall some key results obtained in previous chapters, and apply the principles to the
case of single qubits and then joint qubit states, including the intriguing case of entan-
gled qubits.

In Chapter 17, we learnt that given a space of quantum states |ψ〉 defined
by an orthonormal base V n = {|xi 〉}, there exist different possibilities of quantum-
measurement operator sets, called {Mm}, corresponding to a number n of possible

18.1 Measuring single qubits 357

measurements indexed by m (m = 1 . . . n). To recall, the two requirements for any such
set are (a) that all operator products M+

m Mm should be positive (which result in the
unitarity of M+

m Mm), and (b) that they satisfy the completeness relation
∑

M+
m Mm = I .

The two key results are, first, that the probability of measuring m is given by the bracket:

p(m) = 〈ψ |M+
m Mm |ψ〉, (18.1)

and, second that the measurement projects the input state |ψ〉 into the post-measurement
state |ψ ′〉 defined as

|ψ ′〉 = 1√
p(m)

Mm |ψ〉 = 1√
〈ψ |M+

m Mm |ψ〉
Mm |ψ〉. (18.2)

Out of many possibilities for any quantum measurement, we can use the measurement in
the state basis, where Mm = |xm〉〈xm | is the projector on the pure state |xm〉. Given the
state |ψ〉 = ∑

xi |xi 〉, it is clear from the definition in Eq. (18.1) with M+
m Mm = |xm〉〈xm |

that the probability that the measurement finds |ψ〉 in the state |xm〉 is p(m) = |xm |2. As
we have seen in Chapter 17, the post-measurement state is

|ψ ′〉 = xm

|xm | |xm〉. (18.3)

Let the input state be a qubit |q〉 = α|0〉 + β|1〉, as defined from the orthonormal base
V = {|0〉, |1〉}, and where (to recall) α, β are complex numbers satisfying |α|2 + |β|2 =
1. It is clear that α, β represent the complex probability amplitudes of the qubit state, and
that |α|2 or |β|2 represent the probabilities of the qubit being found in either pure state
|0〉 or |1〉 of the base V . According to Eq. (18.3), the corresponding post-measurement
states are

α

|α| |0〉 = eiδα |0〉
β

|β| |1〉 = eiδβ |1〉,
(18.4)

where eiδα , eiδβ are unobservable phase factors, which can be omitted.
Since the qubit is a superposition of states |q〉 = α|0〉 + β|1〉, the action of any

measurement in the state-base V , as defined by the operators M0 = |0〉〈0| or M1 = |1〉〈1|,
is, thus, to project, or collapse it into one of the two states |0〉 or |1〉. Using M0, the
probability that |q〉 collapses into |0〉 is p(0) = |α|2. Using M1, the probability that
|q〉 collapses into |1〉 is p(1) = |β|2 = 1 − |α|2. We can interpret the result of such
a measurement as reducing the qubit information into the classical bit values 0 or
1, respectively. But unlike the classical case, there is no absolute certainty that the
resulting information is, indeed, 0 or 1, when using measurement operators M0, M1, since
either outcome is associated with some finite probabilities. For illustration, consider the
following possibilities:

(a) α = 0, β = 1, yielding p(0) = 0, p(1) = 1;
(b) α = β = 1/

√
2, yielding p(0) = p(1) = 1/2;

(c) α = 1/
√

3, β = 2/
√

3, yielding p(0) = 1/3, p(1) = 2/3;
(d) α = 0.9, β= 0.1, yielding p(0) = 0.99, p(1) = 0.01.

358 Qubit measurements, coding, and teleportation

It is clear that in case (a), there is absolute certainty that the qubit measurement will
result in the bit information 1. In case (b), the outcome has equal chances of being
0 or 1. In case (c) the odds on measuring 1 are twice those of measuring 0. In case
(d), the odds are 99% for 0 and 1% for 1. It must be emphasized here that the above
figures concern the measurement outcomes obtained by using the corresponding opera-
tors M0, M1. Here comes a subtlety: in case (c), for instance, we know that we have a
1/3 chance of measuring 0 when using M0. This means that there is a 2/3 chance that
this measurement fails. Likewise, there is a 1/3 chance that the measurement of 1 fails
when using M1. But what does “measurement failure” mean? Basically, that whenever
we choose to use a given measurement projector Mm , the input state is not absolutely
certain of collapsing into the corresponding state |xm〉. It will only happen “successfully”
with probability |xm |2. If this collapse does not happen (with probability 1 − |xm |2), then
nothing is measured, and the measurement is, thus, failed. Also, the quantum state col-
lapses into nothingness, which here means qubit annihilation and irreversible loss of its
information. We can mathematically define such an annihilated, informationless state as
|q ′〉 = ∅.

To clarify the picture, or to alleviate some possible unease with the notions of “suc-
cessful” and “failed” qubit measurements, consider the following (fictitious) physical
analogy, which we have already used in Chapter 17 for POVM measurements.

Compare the qubit |q〉 with a source that has two possible tones, A or B (standing for
the states |0〉 or |1〉, respectively), and which are not visible to the eye. Our measurement
consists of determining the color tones by observing this source through a set of two
“magic filters,” called 0, 1 (for M0, M1). As we have seen earlier, such filters have
strange properties. Indeed, filter 0 does not react to tone B, while it makes tone A
visible to the eye, but only with probability p (or |α|2). Filter 1 does not react to tone
A, while it makes tone B visible to the eye, but only with probability q = 1 − p (or
|β|2). Even stranger here (than the description in Chapter 17) is that the two filters
A, B are of complementary nature, since their probabilities of positive reaction are now
complementary (q = 1 − p). Figure 18.1 shows the eye images obtained in the eight
possible cases, according to the two pure-tone possibilities A or B (but not both) and
their mixture A, B, and the two filter options 0, 1. The observation of a bright spot
indicates a positive, or successful, measurement (seeing something). The absence of a
spot indicates a negative, or failed, measurement (not seeing anything).

Considering first the case of pure tones (A or B), the figure indicates that there are
actually two “successful” measurement outcomes, as characterized by the presence of
the bright spot with nonzero probability. These successes correspond to the two input or
filter cases (A, 0), (B, 1), which positively identify the tones to be A or B with absolute
certainty (p = 1 for A, or q = 1 − p = 1 for B). In the two other cases, (A, 1), (B, 0),
we never see any spot, or the measurement is always “failed.” But here comes a subtlety:
if we know prior to the measurement that the color tones are pure, the failed measurement
is also a positive indication. Indeed, a failure to measure A means an absolute certainty
that the input is B, and the reverse. The certainty is the same regardless of our filter choice
(0 or 1). In this case, the classical bit measurement from the qubit is 100% accurate. The

18.1 Measuring single qubits 359

A

0

1

1

B

x
0 p0 1 1 − p

1 − p1 0 1 0

A, B

p

Figure 18.1 Fictitious analogy of qubit measurement of tones A, B, or their mixture, and a
magic-filter set 0, 1 to characterize a source. Given the tones A, B and choices 1, 2, a positive
observation of the tone is characterized by the bright spot on the images shown, with various
probabilities 1, 0, p, 1 − p.

information gained is a 0 or 1 classical bit, in 100% correspondence with the qubit pure
state. But to achieve this performance without any concern for the measurement option
(M0, M1), it costs the tax of one bit of advance information (i.e., “pure input state?” =
YES, NO). In the case of the tone mixture (Fig. 18.1, right) we observe only two
measurement “successes,” with probability p when using the filter 0, and probability
1 − p when using the filter 1. The information obtained in these two cases is a classical
bit of information 0 or 1, as we have projected the qubit onto the corresponding pure
states. But, as the figure indicates, there is a finite probability 1 − p or p that using
either filter 0 or 1 results in a measurement failure, and in these cases we do not get any
classical bit information. There is one exception to this, however: if we know in advance
that the qubit is in the superposition α = β = 1/

√
2 (case (b)), there are equal chances

of success or failure, regardless of the measurement operator (or tone filter). There is no
point in making any measurement, since we know for a fact that a successful outcome
will give either a 0 or a 1 classical bit, with equal likelihood. We may just pick a bit
value at random. The tax to pay for this result is one bit of advance information (i.e.,
“case (b)?” = YES, NO).

The above description, despite its questionable usefulness from a purist or academic
standpoint, made it possible to “visualize” somewhat and get a better feel of the nature of
quantum measurements, when applied to single qubits. It is noteworthy, however, that the
fictitious “magic-filter” experiment can actually be implemented in the physical world,
as described in Chapter 25 in the part concerning quantum cryptography. The lesson
learnt is that any “successful” qubit base-state measurement results in its collapse into
one of the pure states, and the reduction of its intrinsic information into a classical 0 or
1 bit.

In Chapter 17, we have also described another type of measurement referred to as
projective or von Neumann measurement. In this approach, we can define the Hermitian
observable A according to its spectral decomposition over the eigenstates |λ0〉, |λ1〉

360 Qubit measurements, coding, and teleportation

forming an orthonormal base V = {|λ0〉, |λ1〉}:

A =
2∑

m=1

λm Pm =
2∑

m=1

λm |λm〉〈λm |

≡ λ0|λ0〉〈λ0| + λ1|λ1〉〈λ1|,
(18.5)

where λ0, λ1 are the corresponding eigenvalues, and Pm = |m〉〈m| the measurement
operators. Next, we recall the two key results obtained in Chapter 17, while applying
them to the case of qubits. First, given a qubit |q〉 = x0|λ0〉 + x1|λ1〉 as expressed
in the eigenstate base V , the probability of measuring the eigenvalue λm is given
by p(λm) = |xm |2. With the usual qubit notations |q〉 = α|λ0〉 + β|λ1〉, we, thus,
obtain:

p(λ0) = |α|2, p(λ1) = |β|2. (18.6)

Second, the post-measurement state |q ′〉 is

|q ′〉 = |λm〉. (18.7)

We may conclude from the two above results that the projective measurement of qubits is
essentially similar to the previously described base measurement in the pure states, except
that the measurements project the qubit onto the eigenstates of A. Such a conclusion
is true, but it fails to convey an important property. Indeed, if we know prior to the
measurement that the qubit must be in one of the eigenstates, then we are in the same
situation as in the previous pure-state case. No matter whether we use P0 = |λ0〉〈λ0| or
P1 = |λ1〉〈λ1| for the qubit measurement, we always retrieve a classical 0 or 1 bit. To
recall, if we use P0 when the qubit is in state |λ0〉 or P1 when the qubit is in state |λ1〉,
the measurements are certain to “succeed,” yielding the classical 0 or 1 bits, and the
collapsed qubit state remains invariant. But if we use the wrong operator (e.g., P0 when
the qubit is |λ1〉), the measurement “fails,” and the qubit state is annihilated. However,
such a failure indicates that the qubit must have been in the other orthogonal state, and,
therefore, we can conclude with certainty the value of the corresponding classical bit.
The only penalty in this event is that we have lost the qubit, and it cannot be reused for
another quantum computation, for instance as an input to a subsequent quantum gate
within a quantum circuit. The key conclusion is that measurements can be destructive
(even when informative) and, therefore, it is safer to proceed to quantum measurements
only at the end of a purposeful computational chain. If intermediate measurements are
required, one must ensure that these are always nondestructive, so that the collapsed
qubit may be reused in the rest of the circuit computation.

In quantum-gate circuits (Chapter 16), any quantum measurement is conventionally
represented by an “ammeter” symbol, as illustrated in Fig. 18.2. The two output lines
shown at the right correspond to the collapsed or post-measurement state (|λm〉) and
to the measurement value λm . In the case where the measurement fails, we may write
|q ′〉 = ∅ for the input state annihilation.

18.2 Measuring n-qubits 361

q mq =´

m

mM
l

l

Figure 18.2 Quantum-circuit representation of measurement apparatus to measure qubits with
operator Mm , yielding measurement value λm .

18.2 Measuring n-qubits

In this section, I describe quantum measurements of higher-order or n-qubits, which
have fundamental implications in both QIT and quantum computing (QC). This is a
turning point, where we shall begin to grasp the strange beauty (and the oddity!) of the
quantum properties of qubits.

As we have seen in Chapter 17, any base-state measurement Eim on an n-state |ψ〉
from V ⊗n results in the collapsing effect

Eim |ψ〉 = Eim |ψ1, . . . , ψn〉
= |ψ1, . . . , ψi−1, m, ψi , . . . , ψn〉.

(18.8)

In the case of an n-qubit |q〉 = |x1, x2, . . . , xn〉, with xi = 0, 1, we have:

Eim |q〉 = Eim |x1, x2, . . . , xn〉
= |x1, x2, . . . , xi−1, m, xi+1, . . . , xn〉.

(18.9)

With this measurement tool in hand, we can now perform measurements on any qubit
superpositions or mixtures in the subspace V ⊗2 (for instance), such as:

|q〉 = u|x1, x2〉 + v|x1, x2〉, (18.10)

with u, v being complex amplitudes satisfying |u|2 + |v|2 = 1, so that |r〉 has a modulus
of one. For each qubit i in the subspace V , there are two possible measurement operators,
namely Ei1 and Ei2. To illustrate the action of these operators, consider the following
example (using the compact notation |xi , x j 〉 ≡ |xi x j 〉):

|q〉 = 1√
3

(|00〉 + |01〉 + |10〉). (18.11)

If we want to measure a classical bit 0 in the first qubit position (i = 1), we use E10 and
obtain

E10|q〉 = 1√
3

(E10|00〉 + E10|01〉 + E10|10〉)

= 1√
3

(|00〉 + |01〉 + ∅)

= 1√
3

(|00〉 + |01〉).

(18.12)

362 Qubit measurements, coding, and teleportation

Thus, the probability of measuring 0 in the first qubit is:

pi=1(0) = 〈q|E10|q〉 = 1

3
(〈00| + 〈01|)(|00〉 + |01〉) ≡ 2

3
. (18.13)

It is now a straightforward exercise to evaluate mentally the other probabilities:

pi=1(1) = 1

3
, pi=2(0) = 2

3
, pi=2(1) = 1

3
. (18.14)

Next, we shall look at a peculiar family of some 2-qubits, which are of utmost interest for
qubit measurements and for the “quantum manipulation” of information. In Chapter 15,
we identified four state superpositions, referred to as Einstein–Podolsky–Rosen (EPR)
or Bell states (or pairs), and defined:

|β00〉 ≡
1√
2

(|00〉 + |11〉)

|β01〉 ≡
1√
2

(|01〉 + |10〉)

|β10〉 ≡
1√
2

(|00〉 − |11〉)

|β11〉 ≡
1√
2

(|01〉 − |10〉).

(18.15)

These EPR–Bell states may seem innocuous at first glance, but they actually reserve
a certain number of interesting properties, and as we shall see further down, really
“stunning” applications.

As a first property, there exists no tensor product of pure states or of qubits that is
capable of generating any of the EPR–Bell states. This is left as a straightforward exercise
to check. Because the EPR–Bell states cannot be decomposed as a qubit tensor product,
they are called entangled states. A faster way to realize the nature of entanglement is to
observe that none of the states in Eq. (18.15) can be factorized into a pure-state product
of the form |i〉| j〉 = |0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉. Thus, it is not possible to tell what the
states of the first and the second qubits are.

While the EPR–Bell states are not tensor products of qubit states, they can, however, be
generated by means of quantum gates. The circuit shown in Fig. 18.3, which comprises
a Hadamard gate and a CNOT gate (Chapter 16) represents one possibility for the
generation of EPR–Bell states. As we saw in that earlier chapter, the Hadamard gate
transforms the input qubit |0〉 into the mixed state |+〉 = (|0〉 + |1〉)/√2, and the input
qubit |1〉 into the mixed state |−〉 = (|0〉 − |1〉)/√2. Thus, for the quantum gate in
Fig. 18.3, the tensor input |0〉 ⊗ |y〉 results in

(H |x〉) ⊗ |x ⊕ y〉 = (|x = 0〉 + |x = 1〉) ⊗ |x ⊕ y〉/√2
= (|0〉 ⊗ |0 ⊕ y〉 + |1〉 ⊗ |1 ⊕ y〉)/√2
≡ (|0, y〉 + |1, 1 ⊕ y〉)/√2.

(18.16)

Hence, |0〉 ⊗ |0〉 → (|0, 0〉 + |1, 1〉)/√2 ≡ |β00〉 and |0〉 ⊗ |1〉 → (|0, 1〉 + |1, 0〉)/√
2 ≡ |β01〉. The two other results for the inputs |1〉 ⊗ |y〉 are also readily verified.

18.2 Measuring n-qubits 363

Hx

xy

y

b

Figure 18.3 Quantum circuit for the generation of EPR–Bell states |βxy〉 as defined in Eq. (18.15).

As a second property, the EPR–Bell states form an orthonormal basis for any 2-qubit
|kl〉 and any superposition thereof. Indeed, it is straightforward to see from Eq. (18.15)
that

|00〉 = 1√
2

(|β00〉 + |β10〉)

|01〉 = 1√
2

(|β01〉 + |β11〉)

|10〉 = 1√
2

(|β01〉 − |β11〉)

|11〉 = 1√
2

(|β00〉 − |β10〉),

(18.17)

hence, any 2-qubit superposition of the above pure |i j〉 states accepts a unique decom-
position over the EPR–Bell states.

Third, we notice from the definitions in Eq. (18.5) that the EPR–Bell states represent a
mix of 2-qubits |i j〉 and |kl〉 satisfying i = 0, k = 1, and j, l = 0, 1. For the measurement
probabilities, this leads to the following property (as is easily mentally checked):

pi=1(0) = pi=1(1) = pi=2(0) = pi=2(1) = 1

2
. (18.18)

This result shows that any measurement Eim of the EPR–Bell states has a 50% chance
of successfully projecting into any of the pure states. The 16 possible measurements
resulting in the corresponding state collapses (phase factors e−iπ/2 being omitted) are
summarized in Table 18.1. As expected, we observe from the table that the EPR–Bell
states collapse into any of the pure states |00〉, |01〉, |10〉, |11〉. We see that using a
positive measurement E1m necessarily collapses the EPR–Bell pair into the pure state
|m〉 ⊗ |x〉, and a positive measurement E2m necessarily collapses the EPR–Bell pair into
the pure state |x〉 ⊗ |m〉, where x = 0, 1. This has the consequence that regardless of the
four possible EPR–Bell pairs, a single positive measurement yields absolute information
on one of the two qubits in the collapsed state.

Because the first measurement gives only one qubit information, a second measure-
ment would be necessary to get the missing information concerning the other qubit. But
we do not need to make a second measurement if we know in advance the initial EPR–Bell
pair. Indeed, Table 18.1 illustrates that the advance knowledge of |β00〉, |β01〉, |β10〉, |β11〉

364 Qubit measurements, coding, and teleportation

Table 18.1 State collapses resulting from single-qubit measurements Eim

on the EPR–Bell states |β00〉, |β01〉, |β10〉, |β11〉.

|β00〉 |β01〉 |β10〉 |β11〉
E10 |00〉 |01〉 |00〉 |01〉
E11 |11〉 |10〉 |11〉 |10〉
E20 |00〉 |10〉 |00〉 |10〉
E21 |11〉 |01〉 |11〉 |01〉

()1001
2

1
01 +=b

Alice

Bob

10

Measures

20E

Collapse
11E

Measures

Figure 18.4 Two successive measurements by Alice then Bob in an entangled quantum state, here
|β01〉.

and the choice of a single-measurement operator E10, E11, E20, E21 absolutely defines
the collapsed state and, hence, the value of the two entangled qubits. For instance, if
we use |β11〉, the single measurement E21 yields the 2-qubit |01〉 = |0〉 ⊗ |1〉 and the
absolute information therein. Thus, given the knowledge of the system EPR–Bell pair,
any positive measurement of one of the two qubits conditions the information knowledge
of the other qubit. Because the information of one qubit measurement conditions that
of the second qubit measurement, the EPR–Bell states are said to be entangled. In QIT
jargon, EPR–Bell states are also referred to as ebits, for “entanglement bits” (one ebit =
one single entangled pair).

To provide a visual illustration of this, imagine two people A and B, who are tradi-
tionally named Alice and Bob, and who live far apart. However, both have access to a
quantum system, which is in the entangled EPR–Bell state |β01〉, as represented by a
cloud in Fig. 18.4. The state remains in |β01〉 until Alice unilaterally takes the initiative
to measure the first qubit, through the operator E11, for instance. This measurement
immediately results in the EPR–Bell pair collapsing into the pure state |10〉. Bob’s mea-
surement of the second qubit can only yield |0〉 as a positive outcome. Bob and Alice
can exchange roles. For instance, Bob may first measure the second qubit through E20,
resulting in the system collapsing into the state |01〉, and leaving |0〉 to Alice as the only
positive measurement for the first qubit. In each case, the measurement of the first qubit
conditions the measurement of the second, because of the effect of state collapse that
occurs in between.

18.3 Bell state measurement 365

Table 18.2 Outcome of Bell measurement with EPR–Bell states as input (normalization
factor being overlooked).

Input state |xy〉 Pre-measurement state Cbit output m, m ′

|β00〉 = |00〉 + |11〉 |00〉 0 0
|β01〉 = |00〉 + |11〉 |01〉 0 1
|β10〉 = |00〉 − |11〉 |10〉 1 0
|β11〉 = |01〉 − |10〉 |11〉 1 1

Hx

y

´m

m

Figure 18.5 Principle of Bell measurement or measurement in Bell states.

From any physical perception of our “classical world,” the effect of state entanglement
seems rather nonintuitive. We may illustrate it through a figurative experiment. Assume
that we place two coins in two separate boxes. In each box, the position (or states) of
the coins can be either heads or tails, but we have no awareness of which one. In the
classical world, opening a box tells us only that the coin is heads or tails, but we cannot
know of the other coin until we open the other box. In the quantum world, the coin states
may be entangled. This means that opening only one box conditions the state of the coin
in the other box. The point here is not about the advance knowledge of the entanglement
possibilities, as represented by the four possible EPR–Bell states. Rather, it is the matter
that a single measurement in one physical system determines “for absolute certain”
the state of the other physical system. As described later in this chapter, the properties
of EPR–Bell state entanglement are the key to applications called quantum superdense
coding and quantum teleportation, both of which having no counterpart in the classical
world.

18.3 Bell state measurement

In this section, I describe a 2-qubit measurement scheme, referred to as measurement in
the Bell basis, or Bell state measurement. The principle is illustrated in Fig. 18.5. The
circuit includes a Hadamard gate and a CNOT gate, followed by two qubit measurements.

366 Qubit measurements, coding, and teleportation

U
00b

Bob

Alice

H m

´m

Figure 18.6 Circuit used for superdense coding.

The measurements, which are made in the base {|00〉, |01〉, |10〉, |11〉}, output the clas-
sical bits m, m ′. What happens if we input to this gate circuit any of the EPR–Bell states
|βmm ′ 〉? It is left as a simple exercise to check that the pre-measurement states are |mm ′〉
and the resulting measurement cbits (short for “classical bits”) are m, m ′, as shown in
Table 18.2. This means that the apparatus is able to positively single out or identify any of
the four EPR–Bell states, hence, the name “measurement in the Bell basis” or “Bell state
measurement.” Such a denomination may sound confusing, since the measurement is
actually performed in the {|00〉, |01〉, |10〉, |11〉} basis. The point is that while the circuit
represents a true EPR–Bell state measurement apparatus, it can be used for other types
of application, as will be shown next when describing superdense coding and quantum
teleportation.

18.4 Superdense coding

In this section, I describe a first application of quantum entanglement, which enables
quantum superdense coding. The key concept behind this appellation is the possibility
for Alice to send to Bob two classical bits m, m ′, which she has in her possession, by
means of communicating only a single qubit. The generic circuit for superdense coding
is represented in Fig. 18.6. Alice and Bob must share an EPR–Bell state, for instance
|β00〉. Alice controls a gate U , which she can change at will into I, Z , X , and iY . Bob
has the control of a Bell-state measurement apparatus, as shown by the shaded subsystem
in the figure. It can be checked as an easy exercise that the choice of U transforms |β00〉
into any EPR–Bell state |β00〉, |β10〉, |β01〉, |β11〉, according to

I |β00〉 = |β00〉; X |β00〉 = |β01〉
Z |β00〉 = |β10〉; iY |β00〉 = |β11〉.

(18.19)

Thus, by switching the U gate into I , Z , X , and iY , Alice can send Bob the classical
bit pairs 00, 01, 10, and 11, respectively, at an information rate of two bits per qubit,
which represents twice the classical information rate, hence the name superdense coding.
Note that from any realistic telecom viewpoint, twofold improvements in information-
rate capacities do not deserve such superlatives as “super” or “dense,” or, worst of
all, “superdense,” notwithstanding the conceptual importance of the potential capacity
expansion of the “old-fashioned” classical bit.

18.5 Quantum teleportation 367

Hq

00b Bob

Alice

´m

´mX mZ

m

1 2 3 4

q

Figure 18.7 Circuit used by Alice and Bob for quantum teleportation.

18.5 Quantum teleportation

The strange technique referred to as quantum teleportation (QT) makes it possible to
transmit an unknown qubit instantaneously over any distance. Here, “distance” means
any range spanning from next door’s office to the opposite end of the Solar System, or
even beyond in the Universe, despite the limitations imposed by Einstein’s theory of
relativity, the physical finiteness of the speed of light, and its invariance regardless of
any reference frame.

To a wider audience, the word “teleportation” may raise false expectations in terms of
the capability of moving physical objects, which we may call here “macrosystems,” such
as a coin, a cat or a human being (see Chapter 15)! The expectations are high indeed
if public audiences “buy in” the quantum state superposition concept as applicable
to the macroscopic world. At a microscopic scale, however, the notions of QT and
“nonlocality” implications, are absolutely correct. Suffice it to recall here that in the
quantum world, any elementary object, such as an atom or a particle, is, to all intents and
purposes, a quantum system, and there are no conceptual limitations involved therein,
both in terms of locality and physical distance. As we shall see, however, there is
no contradiction between QT and relativity laws, when it comes to measuring actual
information.

In this book, QT is, thus, our first quantum algorithm to “transport” quantum states,
whose most elementary description is the qubit. The key to the QT algorithm is the
use of an EPR–Bell state (or ebit), as a resource commonly shared between Alice and
Bob, and making it possible for Alice to send any qubit to Bob. As we shall see,
teleportation also requires the communication of two classical bits (cbits), using any
classical communication channel, such as the telephone, or the Internet, for instance.
This preliminary observation is completely sufficient to justify that indeed, teleportation
does not violate relativity laws.

The principle of the generic QT circuit is illustrated in Fig. 18.7. As the figure shows,
this is a 3-qubit circuit, which includes a Bell-state measurement apparatus (as shaded),

368 Qubit measurements, coding, and teleportation

which outputs the two cbits m, m ′, and two gates (X, Z), which are used according to
the powers of m, m ′. The two top wires are connected to Alice’s side, while Bob uses
the bottom wire for final measurements. The qubit that Alice wants to transmit to Bob
is |q〉 = α|0〉 + β|1〉, as shown at top left. Alice and Bob also share the resource of an
EPR–Bell state, here, for instance, |β00〉. The end result of the QT is that Bob is able to
retrieve the qubit |q〉 = α|0〉 + β|1〉, as shown at bottom right. At first glance, this QT
circuit looks somewhat involved but, as we shall see, its operation turns out relatively
easy to grasp, should one proceed step by step using the corresponding numbers shown
in Fig. 18.7.

The initial state of the system, marked ➀, is |q〉 ⊗ |β00〉, namely, using the simplified
3-qubit notation:

|q〉 ⊗ |β00〉 = (α|0〉 + β|1〉) ⊗ 1√
2

(|00〉 + |11〉)

≡ 1√
2

(α|000〉 + α|011〉 + β|100〉 + β|111〉).
(18.20)

Next, we evaluate the system state at ➁. As seen from the figure, the CNOT gate
controls the second qubit from the first qubit, with the equivalent of the logical XOR,
i.e., |x, y, z〉 #→ |x, x ⊕ y, z〉. Hence, we have at ➁:

1√
2

(α|000〉 + α|011〉 + β|100〉 + β|111〉)

#→ 1√
2

(α|000〉 + α|011〉 + β|110〉 + β|101〉).
(18.21)

Next, we evaluate the system state at ➂. The only change is the passing of the first
qubit through the Hadamard gate H . To recall, H |0〉 = (|0〉 + |1〉)/√2 and H |1〉 =
(|0〉 − |1〉)/√2. This transforms the 3-qubits in Eq. (18.20) according to the following
(the underline to stress the qubit being acted on):

|000〉 #→ 1√
2

(|000〉 + |100〉)

|011〉 #→ 1√
2

(|011〉 + |111〉)

|110〉 #→ 1√
2

(|010〉 − |110〉)

|101〉 #→ 1√
2

(|001〉 − |101〉).

(18.22)

Hence we have at ➂:

1√
2

(α|000〉 + α|011〉 + β|110〉 + β|101〉)

#→ 1

2
{α|000〉+ α|100〉 + α|011〉 + α|111〉 + β|010〉− β|110〉 + β|001〉 − β|101〉}

≡
{
|00〉α|0〉 + β|1〉

2
+ |01〉α|1〉 + β|0〉

2
+ |10〉α|0〉 − β|1〉

2
+ |11〉α|1〉 − β|0〉

2

}
.

(18.23)

18.5 Quantum teleportation 369

Table 18.3 State collapse resulting from Alice’s 2-qubit measurements
(m, m′), and corresponding gates X m′

Zm to be used by Bob in order to
retrieve the original qubit |q〉 = α|0〉 + β|1〉.

Alice measures

m m ′ Alice measures Bob’s 1-qubit Xm′
Zm

0 0 |00〉 α|0〉 + β|1〉 I
0 1 |01〉 α|1〉 + β|0〉 Z
1 0 |10〉 α|0〉 − β|1〉 X
1 1 |11〉 α|1〉 − β|0〉 X Z

In the last expression in the right-hand side, the first two qubits, which are controlled
by Alice, and the last qubit, which is Bob’s, have been regrouped for clarity. Then come
Alice’s measurements of the first two qubits, with the corresponding classical-bit results
m, m ′ (respectively) obtained at ➃. The rule has it that Alice must communicate the two
classical bits, or cbits, m, m ′ to Bob. It is clear that if Alice measures |00〉, the system
state collapses into the qubit |00〉(α|0〉 + β|1〉), as shown in Eq. (18.23), and so on for
each of the four possible measurements. The outcomes of Alice’s measurements, and the
resulting state of Alice and Bob’s qubits, are summarized in Table 18.3. The two cbits
m, m ′ communicated to Bob make it possible to define the gates Xm ′

Zm on Bob’s wire
(Fig. 18.7), as also shown in Table 18.3. It is seen from the table that in the first case
(Alice measures |00〉) Bob’s qubit has collapsed into the state |q〉 = α|0〉 + β|1〉. Thus,
Alice’s original qubit |q〉 has been successfully “teleported” to Bob. From the two cbits
m, m ′ = 0, 0, Bob is, thus, instructed to use the gates X0 Z0 = I , namely, to leave his
qubit unchanged. In the second case (Alice measures |01〉), Bob’s qubit is α|1〉 + β|0〉,
and the application of X0 Z1 = Z swaps the amplitudes α, β to yield |q〉 = α|0〉 + β|1〉.
The last two cases are also straightforward to analyze.

The principle of QT can, thus, be summarized as follows: (a) Because Alice and
Bob share an ERP–Bell state, Alice’s measurements cause the system to collapse and
condition Bob’s qubit; (b) Alice communicating the two classical bits describing her
measurement makes it possible for Bob to retrieve Alice’s qubit |q〉. Remarkably, Alice
has no knowledge of the teleported |q〉. This point is quite important. Indeed, if Alice had
this knowledge, she could communicate to Bob the full information required (amplitudes,
base) for him to re-create the same qubit locally, and, therefore, they both would not need
this QT apparatus. However, such a communication is complicated and quite resource
consuming, should Bob need lots of qubits for his computations. And, most importantly,
Alice would be able to communicate only qubits known to her, which is utterly restrictive
in view of the QT potential. As a second observation, we note that QT does not violate the
noncloning theorem. Indeed, the initial qubit |q〉 is collapsed by Alice’s first measurement
into the pure state |m〉, as seen from the top wire in Fig. 18.7.

The benefits of QT being now understood, we may then have a few legitimate ques-
tions. First, why use classical bits to determine which gates Bob should use? Indeed,
Alice’s measurements result in the collapse of her two qubits into the pure tensor state

370 Qubit measurements, coding, and teleportation

Hq

00b ´m

X Z

m

´m

q

m

Figure 18.8 Principle of quantum teleportation with an all-quantum gate circuit.

|m〉|m ′〉, and each of the |m〉, |m ′〉 qubits could be used as “automatic remote controls”
for Bob’s gates, i.e., controlled-X and controlled-Z . This would give the all-quantum-
gate QT circuit illustrated in Fig. 18.8. While such a circuit is logically equivalent to
that of the QT shown in Fig. 18.7, it has several drawbacks. First, controlled-U gates are
more complex than simple 2 × 2 U gates. But this is not as important as the fact that
if Alice and Bob were located far apart, the control qubits |m〉, |m ′〉, even as known to
Alice, must be transported over this distance! It is, thus, far more sensible and straight-
forward for Alice to send the two bits m, m ′ to Bob through any classical channel, such
as the telephone or the Internet. On the other hand, if Bob is located nearby, or directly
on Alice’s premises, this whole qubit manipulation has no point, and the circuit shown
in Fig. 18.8 reduces to an elegant, but needless CROSSOVER circuit (a circuit that just
accurately transmits quantum information between Alice and Bob, who are in immediate
reach of each other!). Regardless of these different observations, the QT circuits shown
in the literature either use representations of Fig. 18.7 or of Fig. 18.8, or of both (the two
outputs of any of Alice’s measurement connecting to Bob’s gates).

Two other legitimate questions are whether it is possible to use EPR–Bell states
different from |β00〉, and how Alice and Bob can set up an EPR–Bell state to share.
Concerning the first question, the answer is yes, which is left as an exercise to show. In
that case, however, the classical bits to be transmitted to Bob are different from m, m ′ and
Alice must use a logic look-up table to transform m, m ′ into the right combinations, which
depends on which EPR–Bell state has been used. Apart from this minor complication, the
QT principle using the three EPR–Bell states |β01〉, |β10〉, |β11〉 remains strictly identical.
The answer to the second question is provided in Fig. 18.9. Both Alice and Bob must
supply a qubit |0〉 of their own, for Alice to use as an ancilla qubit, and for Bob to use as
a target qubit. The Hadamard–CNOT circuit shaded in the figure corresponds to that of
Fig. 18.3, which, as we have seen, generates the entangled state |β00〉, when input with
the two qubits |0〉, |0〉.

As a summary and conclusion, we have learnt that it is possible to achieve the
teleportation of a single unknown qubit through a quantum channel. For the two ends of
the channel (Alice and Bob) the requirement is to share one EPR pair and two classical

18.5 Quantum teleportation 371

Hq

´m

m

q

0

0

H

X Z
Figure 18.9 Full implementation of quantum teleportation circuit with ancilla and target qubits
|0〉, |0〉 at input.

bits of information. The fact that Alice must communicate the two classical bits to Bob
shows that QT cannot operate faster than the speed of light, which is in agreement with
a fundamental principle of the theory of relativity. However, we have seen that Alice’s
measurements instantaneously collapse the system into any of the four 3-qubit states
given by Eq. (18.23), namely,

|00〉(α|0〉 + β|1〉);
|01〉(α|1〉 + β|0〉);
|10〉(α|0〉 − β|1〉);
|11〉(α|1〉 − β|0〉);

(18.24)

which can be summarized in the general form: |mm ′〉|ψ〉 with |ψ〉 = Zm ′
Xm |q〉 being

the qubit accessible to Bob. It is clear that without any knowledge of the two bits
m, m ′, Bob is not able to make any sense of his qubit |ψ〉, other than performing
meaningless random-measurement guesses. Bob cannot have any certainty either of
Alice’s measurement, through any prior agreement between them. No such agreement
is possible, since by definition any of Alice’s measurement of any of the four pure states
|mm ′〉 has 1/4 chance of being successful. Alice and Bob could agree that only the
measurement |00〉 will be systematically performed, which already represents one bit of
advance information. Alice must then tell Bob if the measurement succeeded, and this is
another bit of information, resulting in m, m ′ = 0, 0. Only then can Bob be certain that
|ψ〉 = |q〉. The key conclusion is that for successful qubit teleportation, Bob needs the
two classical bits m, m ′ from Alice. Should the QT apparatus use qubits instead of cbits
to control Bob’s gates, the conclusion remains the same: Alice’s qubits |m〉, |m ′〉 must be
transmitted over the distance separating her from Bob. Any physical channel supporting
qubits can be used for this transmission (for instance an optical fiber or a radio link), but
the communication cannot be faster than the speed of light.1

1 In any physical medium, the speed of an electromagnetic (EM) wave is given by c = c0/n, where n ≥ 1 is
the medium’s refractive index and c0 is the speed of light in absolute vacuum. Thus, the condition c ≤ c0 is
always satisfied for any EM-wave transmission.

372 Qubit measurements, coding, and teleportation

q

´q

B

X

B
1

2

3

4

c y

5

6

X

Z

Z

´B

X

Z

q

´q

Bob

Alice

Alice

Bob

Figure 18.10 Circuit implementation for simultaneous quantum teleportation of two qubits.

What about the possibility of teleporting an arbitrary number N of different qubits
simultaneously or, even better, teleporting at once an N -qubit, also called quNit or,
equivalently, qudit, for d-qubit? The second case would achieve the “dream” of tele-
porting to another location any complex quantum system, like an atom, a molecule, a
crystal, or even a fragment of DNA, as may be already envisioned by some futurists. It
is beyond the scope of this chapter to address this issue and analyze, even superficially,
what type of protocol and resources would be required to achieve quNit teleportation,
in terms of shared entangled states and exchange of classical bits. We may, however,
venture one step further in the description by considering the teleportation of two qubits.
This description should suffice to illustrate the complexity of teleporting more than one
qubit, and also to satisfy a legitimate curiosity about the potentials of teleporting an
ensemble of quantum states.

A proposed circuit for the simultaneous teleportation of two qubits |q〉, |q ′〉 from
Alice is shown in Fig. 18.10, as an original, symmetrical variant of that shown in
Gottesman and Chuang (1999).2 As seen from the figure, Alice and Bob share a 4-qubit
entangled resource, |χ〉, which I shall specify later. The two boxes labeled B, with two
cbit outputs each, correspond to Bell-state measurements. The rest of the circuit includes
three controlled-X and controlled-Z gates with Alice’s four cbits as control signals, to be
communicated to Bob via a classical channel. The circuit output, as received remotely
by Bob, is defined as |ψ〉 = C43|q〉3|q ′〉4 with |q ′〉4 controlling |q〉3. To retrieve |q〉, |q ′〉,
Bob simply needs to pass the two qubits through the same CNOT gate, as shown at the
very right of Fig. 18.10. A possible circuit implementation to generate the entangled
state |χ〉 is illustrated in Fig. 18.11. The circuit is seen to use two identical EPR–Bell
states |β00〉 and one CNOT gate. Labeling the four quantum wires in Fig. 18.11 one to

2 From D. Gottesman and I. L. Chuang, Quantum teleportation is a universal computational primitive. Nature,
402 (1999), 390–3, http://arxiv.org/PS_cache/quant-ph/pdf/9908/9908010v1.pdf.

18.5 Quantum teleportation 373

b00

b00

c

Figure 18.11 Possible circuit implementation for generating the entangled state |χ〉 in Fig. 18.10.

four, from top to bottom, we easily obtain the definition of |χ〉:
1

2
|β00〉12 ⊗ |β00〉34 = 1

2

(|00〉12 + |11〉12√
2

)
⊗

(|00〉34 + |11〉34√
2

)

= 1

4
(|00〉12 ⊗ |00〉34 + |00〉12 ⊗ |11〉34

+ |11〉12 ⊗ |00〉34 + |11〉12 ⊗ |11〉34)

≡ 1

4
(|0000〉 + |0011〉 + |1100〉 + |1111〉)1234.

(18.25)

Note the factor 1/2, which was introduced to ensure proper normalization of the resulting
tensor state. The subsequent application of the CNOT gate C32 with qubit 3 as control,
and qubit 2 as target finally yields:

|χ〉 = 1

4
C32(|0000〉 + |0011〉 + |1100〉 + |1111〉)1234

≡ 1

4
(|0000〉 + |0111〉 + |1100〉 + |1011〉)1234.

(18.26)

It is seen from the above definition that |χ〉 is a 4-qubit entangled state, which cannot be
expressed as any tensor product of the form |a〉i ⊗ |bcd〉 jkl or |ab〉i j ⊗ |cd〉kl , with any
permutations of the indices i, j, k, l = 1, 2, 3, 4.

It is a rather involved and tedious task to check that the circuit in Fig. 18.10, together
with the communication to Bob of Alice’s measured cbits n, m, n′, m ′, actually results
in the simultaneous teleportation of the two qubits |q ′〉, |q〉. However, this represents
an excellent test case to apply all that we have learnt in this chapter, and the previous
ones as well, in terms of Pauli gates, tensor states, entangled states, measurements in the
Bell-state basis and quantum teleportation. For this specific reason, the full details of
the demonstration have been outlined in Appendix P. Going through this appendix, it is
observed that the 6-qubit pre-measurement state, |�′′〉, involves no less than 64 terms!
But the twin measurement executed thereupon from Alice results in the instant collapse
of |�′′〉 into a single state of the form |nmn′m ′〉1256 ⊗ |θ〉34. After hearing from Alice
what the four cbits n, m, n′, m ′ are, it is just a routine for Bob to set up his gate circuit
according to the sequence Xn′

3 Xn′
4 Xn

3 Zm ′
4 Zm

3 Zm
4 , as indicated in Fig. 18.10. If the whole

exercise shows that teleporting a number of qubits greater than one is possible, it certainly

374 Qubit measurements, coding, and teleportation

illustrates that the corresponding quantum circuits become increasingly complex as this
number increases.

Superdense quantum teleportation is about maximizing the information contents
that can be communicated through a quantum channel, along with the necessary tax
of classical information of cbits. As evoked earlier, there exist many sophisticated
quantum circuits for the teleportation of single quNits of dimension n, as defined over
an orthonormal base V = {|i〉}i=0...n−1 by

|q〉 = γ0|0〉 + γ1|1〉 + γ2|2〉 + · · · + γn−1|n − 1〉, (18.27)

where γi (i = 0 . . . n − 1) are complex numbers. The first candidate immediately above
the qubit is the qutrit |q〉 = γ1|1〉 + γ2|2〉 + γ3|3〉, which is a quantum superposition
of the classical trit or three-level information with values 0, 1, 2. Teleporting a single
qutrit requires Alice and Bob to share entangled 3-qutrit states, for instance the one
defined as |�+〉 = (|000〉 + |111〉 + |222〉)/√3, which is known as a three-level GHZ
(Greenberger–Horne–Zeilinger) state (the two-level being the first of the four Bell states,
|β00〉). The extra dimension opens up a large variety of approaches for teleportation
algorithms, in particular where a third party, called Charles, comes into the picture! The
mediation from Charles simplifies Alice’s task in terms of Bell-basis measurements, this
time in a 2-qutrit base. These considerations, which are beyond the scope of this book,
show at least that, mathematically speaking, teleportation in N dimensions knows no
actual limits.

18.6 Distributed quantum computing

The principle of quantum teleportation by means of EPR–Bell states can also be extended
to quantum gates. The basic concept is to act on remote qubits from a distance, which
is referred to as distributed quantum computation. One way to achieve this would
be for Alice and Bob to have their own independent quantum circuits, and use qubit
teleportation back and forth to perform computations on each other’s qubits. For this,
they would use a classical channel to exchange cbits, not only to teleport their qubit
data successfully, but also to instruct each other of the computations they want to see
the other party performing. For instance, if Alice wants to remotely execute a CNOT
operation onto Bob’s qubit, Bob needs first to send Alice his qubit, and Alice to send the
qubit resulting from her CNOT gate back to Bob. The single operation of this “remote”
CNOT computation, thus, consumes two EPR–Bell states (or ebits), and four classical
bits (or cbits).

Would it be possible to avoid such a complicated procedure, and instead conceive of
quantum gates being capable of acting directly on remote qubits? The answer is yes, and
the corresponding technique is called quantum gate teleportation. Within the scope of
this chapter, we may not venture into the complex details of quantum gate teleportation,
but I provide a generic example to show that it is possible, and also to show how this

18.6 Distributed quantum computing 375

a

´m

Z
m

x

1

2

3

4

12C

34C

X
Bob

Alice

14C

(a) (b)

b00

Figure 18.12 (a) 4-qubit circuit used for quantum teleportation of CNOT gate; (b) equivalent
distributed CNOT gate.

can work. Here, I shall describe the quantum teleportation of a CNOT gate,3 which as
we have learnt from Chapter 16, is one of the universal building blocks for quantum
circuits. The principle of CNOT-gate teleportation is illustrated in Fig. 18.12. Locally,
Alice and Bob have the control of two qubits each, which are labelled 1 and 2 for Alice
(the first being called |a〉), and 3 and 4 for Bob (the last being called |x〉). As the figure
indicates, the qubits 2 and 3 are entangled through the EPR–Bell state |β00〉, thus, qubits
3 and 4 represent a shared ebit. Both Alice and Bob have local CNOT gates, called C12

and C34, respectively. Furthermore,

� Alice first measures qubit 3 in the base {|0〉, |1〉}, yielding a cbit m (namely, m = 0 if
the qubit is |0〉 and m ′ = 1 if the qubit is |1〉);

� Bob then measures qubit 3 in the different base {|+〉, |−〉}, yielding a cbit m ′ (namely,
m ′ = 0 if the qubit is |+〉 and m ′ = 1 if the qubit is |−〉).

Alice and Bob then use a classical channel to communicate to each other their respective
cbit measurement. To ensure the proper sequence order, Bob won’t proceed with his
own measurement until he has received cbit m from Alice. The cbit data m, m ′ are then
used locally by Alice and Bob to control their Z or X gates placed on the 1 or 4 qubit
paths, respectively, as indicated in Fig. 18.12.

Now I shall explain why the whole circuit shown in Fig. 18.12 is equivalent to
a distributed CNOT or C14 gate, which uses Alice’s qubit 1, or |a〉, as the control,
and Bob’s qubit 4, or |x〉, as the target. Call |ψi j 〉 the initial qubit pairs, labeled by
i, j . Hence, ψ14 = |a〉 ⊗ |x〉 ≡ |ax〉 (tensor state) and ψ23 ≡ |β00〉 (entangled state).
Call |0+〉23, |0−〉23, |1+〉23, |1−〉23, or |0+〉, |0−〉, |1+〉, |1−〉, for simplicity, the post-
measurement states generated by Alice and Bob’s measurements on the qubit pair 2 and
3. The demonstration of the circuit equivalence into a C14 gate holds into the ad-hoc

3 See: Y.-F. Huang, X.-F. Ren, Y.-S. Zhang, L.-M. Duan, and G.-C. Guo, Experimental teleportation of a
quantum controlled-NOT gate. Phys. Rev. Letts., 93 (2004), id. 240501; see: http://arxiv.org/abs/quant-ph/
0408007.

376 Qubit measurements, coding, and teleportation

formula:

C34C12(|ψ14〉 ⊗ |β00〉) =

|0+〉 ⊗ Z0 X0C14|ψ14〉
+ |0−〉 ⊗ Z1 X0C14|ψ14〉
+ |1+〉 ⊗ Z0 X1C14|ψ14〉
− |1−〉 ⊗ Z1 X1C14|ψ14〉

. (18.28)

The proof of this equation is left as a tedious, yet relatively easy exercise. From the
background of quantum teleportation we have gained in the previous section, and taking
the result for granted, the interpretation is, however, straightforward. Indeed, assume for
instance that Alice and Bob’s measurements result in the 2–3 state collapse into |0+〉,
yielding the cbits 0, 0. The result indicates that the 4-qubit output is |0+〉 ⊗ C14|ψ14〉
and, in particular, that the qubit pair 1 and 4 is C14|ψ14〉 ≡ CNOT |ax〉 ≡ |a, a ⊕ x〉.
Alice does not know Bob’s target qubit |x〉, and Bob does not know Alice’s control
qubit |a〉, but both know for certain that the CNOT operation has been duly executed.
Likewise, in the case of a |0−〉 collapse, it is found from the formal proof that the output
is X4C14|ψ14〉, with X4 being carried upon the qubit 4, hence the need to apply X again
on this qubit (recalling that X2 = I), to transform the result into C14|ψ14〉. The same
reasoning applies to the other two collapse cases |1+〉 and |1−〉.

In summary, the above description exemplifies that it is possible to achieve the quan-
tum teleportation of a CNOT gate, with the only resource of one shared ebit and two
cbits. Various teleportation schemes exist for other gate types, for instance controlled-Z
(also called CSIGN for “controlled sign”), which involve somewhat more gate-intensive
quantum circuits and ebit resources.4

18.7 Exercises

18.1 (B): Show that there exists no tensor product of single qubits able to generate any
of the Bell–EPR states:

|β00〉 ≡
1√
2

(|00〉 + |11〉),

|β01〉 ≡
1√
2

(|01〉 + |10〉),

|β10〉 ≡
1√
2

(|00〉 − |11〉),

|β11〉 ≡
1√
2

(|01〉 − |10〉).

18.2 (M): Show that quantum teleportation is possible with EPR–Bell states
|β01〉, |β10〉, |β11〉.

4 See, for instance: www.iqc.ca/activities/projects/msilva01.php.

18.7 Exercises 377

18.3 (B): Show that a Bell measurement of any of the Bell states |βmm ′ 〉 outputs the
two classical bits m, m ′.

18.4 (B): Given the EPR–Bell states |β00〉, |β01〉, |β10〉, |β11〉 and the Pauli operators
X, Y, Z acting on the first qubit, show the following identities used for superdense
coding:

X |β00〉 = |β01〉
iY |β00〉 = |β11〉
Z |β00〉 = |β10〉.

18.5 (T): Given the 4-qubit circuit

1414

1

C12

C34

b00

2

3

4

with |ψi j 〉 as the input qubit pairs labeled with |ψ23〉 ≡ |β00〉 (EPR–Bell state),
show that the following equality holds:

C34C12(|ψ14〉 ⊗ |β00〉) = 1

2

|0+〉 ⊗ Z0 X0C14|ψ14〉
+ |0−〉 ⊗ Z1 X0C14|ψ14〉
+ |1+〉 ⊗ Z0 X1C14|ψ14〉
−|1−〉 ⊗ Z1 X1C14|ψ14〉

 ,

where
(i) |0+〉, |0−〉, 1+〉, |1−〉 are tensor products of the |0〉, |1〉 states with the

|+〉, |−〉 states (|±〉 = (|0〉 ± |1〉)/√2);
(ii) X, Z are the usual Pauli matrices, used here to the powers 0 or 1, and applying

on qubit 1 for Z and qubit 4 for X ;
(iii) Ci j is the CNOT gate for the 2-qubit |ψi j 〉, with i as the control qubit and j

as the target qubit.

19 Deutsch–Jozsa, quantum Fourier
transform, and Grover quantum
database search algorithms

This mathematically intensive chapter takes us through our first steps in the domain of
quantum computation (QC) algorithms. The simplest of them is the Deutsch algorithm,
which makes it possible to determine whether or not a Boolean function is constant
for any input. The key result is that this QC algorithm provides the answer at once,
whereas in the classical case it would take two independent calculations. I describe next
the generalization of the former algorithm to n qubits, referred to as the Deutsch–Jozsa
algorithm. Although they have no specific or useful applications in quantum computing,
both algorithms represent a most elegant means of introducing the concept of quantum
computation parallelism. I then describe two most important QC algorithms, which
nicely exploit quantum parallelism. The first is the quantum Fourier transform (QFT),
for which a detailed analysis of QFT circuits and quantum-gate requirements is also
provided. As will be shown in the next chapter, a key application of QFT concerns the
famous Shor’s algorithm, which makes it possible to factor numbers into primes in terms
of polynomials. The second algorithm, no less famous than Shor’s, is referred to as the
Grover quantum database search, whose application is the identification of database
items with a quadratic gain in speed.

19.1 Deutsch algorithm

Our exploration of quantum algorithms shall begin with the solution of a very basic
problem: finding whether or not a Boolean function f (x) is a constant. The solution is
given by the Deutsch algorithm, which illustrates a fundamental property of quantum
computing, namely parallelism. As we shall indeed see, quantum computation makes
it possible to evaluate f (x) simultaneously for all values of the variable x , in contrast
to classical computing (i.e., von Neumann architecture, Chapter 15) where such an
evaluation must be performed one variable at a time, or through as many computers
working in parallel.

Assume then a Boolean function f (x) where x is a binary variable. We can con-
ceive of a 2-qubit quantum circuit based on a unitary operator U f that achieves the
transformation

U f |x, y〉 = |x, y ⊕ f (x)〉, (19.1)

19.1 Deutsch algorithm 379

H0

1 H

Hx

y

x

fU

1 2 3 4

Figure 19.1 Quantum circuit for implementing the Deutsch algorithm.

where the simplified notation |u, v〉 = |u〉 ⊗ |v〉 stands for tensor product. Consider next
the quantum circuit arrangement shown in Fig. 19.1, where H are Hadamard gates and
|0〉, |1〉 are two ancilla qubits. We call x, y the inputs resulting from the Hadamard
transforms on the two ancilla qubits, and note that the action of the “black box” gate U f

on x, y results in the outputs x, y ⊕ f (x). Let us now analyze the evolution of the tensor
state, from left to right, through the locations marked ➀➁➂➃ in the figure, starting from
|ψ1〉 = |01〉 = |0〉 ⊗ |1〉 at ➀:

➁ : |ψ2〉 = H1 H2 |ψ1〉
= H1|0〉 ⊗ H2|1〉
= |+〉 ⊗ |−〉

= 1

2

|0〉 + |1〉√
2

⊗ |0〉 − |1〉√
2

= 1

4
(|00〉 − |01〉 + |10〉 − |11〉)

(19.2)

(note the factor 1/2 introduced in the right-hand side, to ensure normalization of the tensor
product of mixed states). Then, using the definition in Eq. (19.1):

➂ : U f |ψ2〉 = 1

4
U f (|00〉 − |01〉 + |10〉 − |11〉)

≡ 1

4
(|0, 0 ⊕ f (0)〉 − |0, 1 ⊕ f (0)〉 + |1, 0 ⊕ f (1)〉 − |1, 1 ⊕ f (1)〉) .

(19.3)
Then, ➃:

|ψ3〉 = H1 |ψ2〉
= 1

4
H1 (|0, 0 ⊕ f (0)〉 − |0, 1 ⊕ f (0)〉 + |1, 0 ⊕ f (1)〉 − |1, 1 ⊕ f (1)〉)

= 1

4
(|+, 0 ⊕ f (0)〉 − |+, 1 ⊕ f (0)〉 + |−, 0 ⊕ f (1)〉 − |−, 1 ⊕ f (1)〉)

380 Quantum database search algorithms

= 1

4
√

2
(|0, 0 ⊕ f (0)〉 + |1, 0 ⊕ f (0)〉 − |0, 1 ⊕ f (0)〉 − |1, 1 ⊕ f (0)〉

+ |0, 0 ⊕ f (1)〉 − |1, 0 ⊕ f (1)〉 − |0, 1 ⊕ f (1)〉 + |1, 1 ⊕ f (1)〉)

= 1

4
√

2
{|0〉 (|0 ⊕ f (0)〉 + |0 ⊕ f (1)〉 − |1 ⊕ f (0)〉 − |1 ⊕ f (1)〉) (19.4)

+ |1〉 (|0 ⊕ f (0)〉 − |0 ⊕ f (1)〉 − |1 ⊕ f (0)〉 + |1 ⊕ f (1)〉)}

≡ 1

2
√

2

{
|0〉

(| f (0)〉 + | f (1)〉
2

− |1 ⊕ f (0)〉 + |1 ⊕ f (1)〉
2

)

+ |1〉
(| f (0)〉 − | f (1)〉

2
− |1 ⊕ f (0)〉 − |1 ⊕ f (1)〉

2

)}
.

Next consider the two cases (a) a = f (0) = f (1), and (b) a = f (0) �= f (1) = ā. From
Eq. (19.4), we obtain:

|ψ3〉 f (0)= f (1)

= 1

2
√

2

{
|0〉

(|a〉 + |a〉
2

− |1 ⊕ a〉 + |1 ⊕ a〉
2

)
+ |1〉

(|a〉 − |a〉
2

− |ā〉 − |ā〉
2

)}

= |0〉 (|a〉 − |ā〉)
2
√

2
|ψ3〉 f (0)�= f (1)

= 1

2
√

2

{
|0〉

(|a〉 + |ā〉
2

− |ā〉 + |a〉
2

)
+ |1〉

(|a〉 − |ā〉
2

− |ā〉 − |a〉
2

)}

= |1〉 (|a〉 − |ā〉)
2
√

2
. (19.5)

Finally, we note that f (0) ⊕ f (1) = 0 if f (0) = f (1) and f (0) ⊕ f (1) = 1 if f (0) �=
f (1). Using this property, and the definition of a Boolean variable |a〉 − |ā〉 =
± (|0〉 − |1〉), we obtain from Eq. (19.5) within an unobservable phase eiπ = −1:

|ψ3〉 ≡ | f (0) ⊕ f (1)〉 |0〉 − |1〉√
2

. (19.6)

The result shows that measuring the first qubit, namely, | f (0) ⊕ f (1)〉, provides the
answer “at once” to Deutsch’s problem. Indeed, if we measure | f (0) ⊕ f (1)〉 = |0〉, we
conclude that f (0) = f (1) and, therefore, that f (x) is a constant, and if we measure
| f (0) ⊕ f (1)〉 = |1〉, we conclude the opposite. Thus, Deutsch’s algorithm makes it
possible to solve the problem without having to compute f (0), f (1) separately, unlike in
the classical case. This simple problem magnifies the property of quantum parallelism,
which is the key to quantum computing.

19.2 Deutsch–Jozsa algorithm 381

nH
n

H

H

H

1

2

n

Figure 19.2 Equivalent representation for n-qubit wires, with H gates deployed in parallel.

0

1 H

x

y f (x)

x

fU

1 2 3 4

nH
n nH

Figure 19.3 Quantum circuit for implementing the Deutsch–Jozsa algorithm.

19.2 Deutsch–Jozsa algorithm

In this section, we consider the generalization of Deutsch’s algorithm, which is
referred to as the Deutsch–Jozsa algorithm. Now f (x) is a function of any inte-
ger x ∈ {0, 1, 2 . . . 2n−1}, which outputs a Boolean f (x) ∈ {0, 1}. What is known as
Deutsch’s problem is to find a way to tell, for all possible values of x , whether f (x)
is constant, or f (x) is balanced, meaning in this last case that the output is 0 or 1 for
exactly one half of the possible inputs. The answer to Deutsch’s problem takes the form
of a quantum algorithm, whose circuit is similar to the previous one. The difference is
that x is not a single Boolean but a binary number, which we shall distribute over as
many qubits. As a new convention for quantum circuits, we shall represent n-qubit wires
with H gates deployed in parallel, according to Fig. 19.2. The Deutsch–Jozsa circuit
is represented in Fig. 19.3 (recalling from Chapter 17 the notation A⊗n for n-tensored
operators A). The circuit is seen to have n ancilla qubits |0〉 and one ancilla qubit |1〉
as inputs, which pass together through n + 1 parallel Hadamard gates. The input tensor
state at ➀ is |ψ1〉 = (|0〉 ⊗ |0〉 . . . ⊗ |0〉)n times ⊗ |1〉 ≡ |0〉⊗n ⊗ |1〉. At ➁ in Fig. 19.3,

382 Quantum database search algorithms

we obtain1

|ψ2〉 = H⊗n H2|ψ1〉
= H⊗n|0〉⊗n ⊗ H |1〉
= |+〉⊗n |−〉
= 1√

2n
(|0〉 + |1〉)⊗n |0〉 − |1〉√

2

= 1√
2n

 ∑

xi∈{0,1}
|x1x2 . . . xn〉

 |0〉 − |1〉√

2

= 1√
2n

[
2n−1∑
x=0

|x〉
]

|0〉 − |1〉√
2

.

(19.7)

We call |x〉 the query register, similarly to the “register” in the classical von Neumann
architecture (Chapter 15) the difference being that it is made of qubits. At ➂, we obtain2

|ψ3〉 = U f |ψ2〉
=

∑
x

|x〉√
2n

|0 ⊕ f (x)〉 − |1 ⊕ f (x)〉√
2

≡
∑

x

(−1) f (x)|x〉√
2n

|−〉 .

(19.8)

And at ➃, after passing the top n-qubit through the parallel gate H⊗n , we obtain:

|ψ4〉 = H⊗n |ψ3〉

= 1√
2n

[∑
x

(−1) f (x) H⊗n|x〉
]
|−〉 .

(19.9)

To develop the right-hand side in Eq. (19.9), we must calculate H⊗n|x〉 =
H⊗n |x1x2 . . . xn〉. It is an easy exercise to establish that:

H⊗n|x〉 =
∑

z

(−1)x ·z |z〉, (19.10)

where x · z = x1z1 + x2z2 + · · · + xnzn is a scalar product modulo 2. Combining
Eqs. (19.9) and (19.10), we then obtain:

|ψ4〉 = 1

2n

[∑
z

∑
x

(−1) f (x)+x ·z |z〉
]
|−〉

≡ |�〉 |−〉 ,

(19.11)

1 In the last two equations, I have introduced the equivalent n-qubit notations
∑

x |x〉 = ∑
xi
|x1x2 . . . xn〉 =

(|0〉 + |1〉)⊗n with xi = 0, 1 and x = 0, 1, 2 . . . 2n−1. The correspondence is easily checked with n = 2 and
then by induction.

2 The last equality in Eq. (19.8) is straightforward: given x , if f (x) = 0 then |0 ⊕ f (x)〉 − |1 ⊕ f (x)〉 = |0〉 −
|1〉 ≡ (−1)0 (|0〉 − |1〉); if f (x) = 1 then |0 ⊕ f (x)〉 − |1 ⊕ f (x)〉 = 1 − |0〉 ≡ (−1)1 (|0〉 − |1〉); hence,
|0 ⊕ f (x)〉 − |1 ⊕ f (x)〉 ≡ (−1) f (x) (|0〉 − |1〉) ≡ (−1) f (x) |−〉 in the general case.

19.3 Quantum Fourier transform algorithm 383

with

|�〉 = 1

2n

∑
z

uxz |z〉, (19.12)

uxz =
∑

x

(−1) f (x)+x ·z . (19.13)

The n-qubit |�〉 defined in Eqs. (19.11) and (19.12) represents the output query
register. As we shall see, the corresponding amplitudes uxz contain all the information
needed to answer Deutsch’s problem. To show this, consider the two cases of interest:
f (x) is constant, or f (x) is balanced. If f (x) = a (a = ±1 being a constant), all the
amplitudes uxz of |z〉 = |0〉⊗n are equal to ux0 = (−1) f (x) = (−1)a = ±1. Since |�〉
has a length of unity, this means that all other amplitudes ux,z �=0 must be zero. The
query registers thus displays |�〉 = |0〉⊗n , i.e., all output qubits are equal to |0〉. A single
measurement by projecting the register over |0〉⊗n , yielding 〈�|�〉⊗n = 1, suffices to
prove the point. Consider next the second case: if f (x) is balanced, this means that the
amplitude ux0 of |z〉 = |0〉⊗n is zero, as the terms (−1) f (x)+x ·0 = (−1) f (x) in the sum in
Eq. (19.3) cancel each other (one half yielding +1, the other half yielding −1). For any
x we thus have the property

∑
x (−1) f (x) = 0, indicating that f (x) is, indeed, balanced.

In this case, the query register cannot output |�〉 = |0〉⊗n , meaning that at least one of
the register qubits must be |1〉. A single projection test yielding 〈� | 0〉⊗n = 0 suffices
to prove the point.

In summary, the Deutsch–Jozsa algorithm demonstrates the capability of quantum
parallelism over an arbitrary number of qubits n. It takes a single calculation and a single
measurement of the output register |�〉 to obtain the answer to Deutsch’s problem. In
contrast, a classical computation would require at least “2n/2 plus one” measurements
with random inputs to obtain the same answer within reasonable confidence, and 2n

measurements for absolute confidence.
While this discussion makes a point about the power of quantum parallelism, it

should not be concluded that evaluating the properties of the function f (x) is of any
particular interest to quantum computing algorithms. Rather, the Deutsch and Deutsch–
Jozsa algorithms must be regarded as representing a most elegant introduction to the
concept.

19.3 Quantum Fourier transform algorithm

In this section, I shall describe the quantum Fourier transform (QFT), which lies at
the root of several important quantum-computing algorithms, for some revolutionary
applications to be developed in Chapter 20. To avoid any misconception, QFT was not
developed with the purpose of boosting the speed of Fourier transforms, as they can
be implemented with classical bits in a von Neumann computer through the so-called
fast Fourier transform (FFT) algorithm. Rather, QFT opens up some new perspectives
in quantum computation, and we may realize this only through the next chapter. Here,

384 Quantum database search algorithms

I shall outline the formal concept and show how QFT can be practically implemented
through relatively simple circuits based on 2 × 2 and controlled 2 × 2 quantum-gates.

Let us begin by recalling the definition of the Fourier transform, as it applies to
a discrete function or N -vector. In elementary calculus, and electrical and telecom
engineering, the discrete Fourier transform (DFT) of an N -vector x = (x0, x1 . . . xN−1)
with complex coefficients xk is a well known operation. It results in the generation of N
Fourier components, yn (k = 0, 1 . . . N − 1), as defined by the linear expansion:3

yn = 1√
N

N−1∑
k=0

xkeik 2nπ
N . (19.14)

It is seen that for each index k the terms contributing to the series expansion in
Eq. (19.14) involve powers of the discrete frequency (or tone) fn = 2nπ/N , which
range from f0 = 0 to fN−1 = 2π (N − 1)/N . Thus, yn is the complex amplitude of
the Fourier component at frequency fn , the ensemble of which forms the frequency
spectrum of x . Similarly, the inverse discrete Fourier transform (IDFT) is defined as:

xk = 1√
N

N−1∑
k=0

yne−in 2kπ
N . (19.15)

From this background, we can now introduce the quantum Fourier transform (QFT) of
an orthonormal basis {|k〉}k=0...N−1 ≡ {|0〉, |1〉 . . . |N − 1〉}. Such a transform is enabled
by a unitary operator, which we call QFT, and which acts on the N basis states |k〉 in a
way exactly similar to that in Eq. (19.14):

QFT |n〉 = 1√
N

N−1∑
k=0

eik 2nπ
N |k〉. (19.16)

It is left as a nontrivial, but elementary exercise to show that the QFT transformation is,
indeed, unitary. Next, let |ψ〉 be a qubit of dimension N with coordinates xk in the basis
{|k〉}, i.e.,

|ψ〉 =
N−1∑
k=0

xk |k〉. (19.17)

The quantum Fourier transform of the qubit |ψ〉, which we note |ψ̃〉, is defined as:

|ψ̃〉 = QFT |ψ〉

≡ 1√
N

N−1∑
n=0

N−1∑
k=0

xk eik 2nπ
N |k〉.

(19.18)

This result establishes the formal correspondence between |ψ̃〉 and |ψ〉. The inverse
QFT, noted QFT+, is similarly defined through Eq. (19.15), which gives:

|ψ〉 = QFT+|ψ̃〉

≡ 1√
N

N−1∑
k=0

N−1∑
n=0

yne−in 2kπ
N |n〉. (19.19)

3 See, for instance, http://en.wikipedia.org/wiki/Discrete_Fourier_transform.

19.3 Quantum Fourier transform algorithm 385

As a matter of fact, the QFT is far simpler than the above formulas make it appear. Let
us show this by considering the elementary cases N = 2 and N = 3. Applying the QFT
definition for the basis transformation, we obtain in the first case:

|yn〉 = 1√
2

1∑
k=0

eik 2nπ
2 |xk〉

= 1√
2

(|0〉 + eikπ |1〉) ,

(19.20)

hence:

|y0〉 = 1√
2

(|0〉 + |1〉) ≡ |+〉

|y1〉 = 1√
2

(|0〉 + eiπ |1〉) = 1√
2

(|0〉 − |1〉) ≡ |−〉 .

(19.21)

This result indicates that in the case N = 2, the QFT reduces to the Hadamard transfor-
mation with quantum matrix gate H . In the case N = 3, we obtain:

|yn〉 = 1√
3

2∑
k=0

eik 2nπ
3 |xk〉

= 1√
3

(
|0〉 + ei 2nπ

3 |1〉 + ei 4nπ
3 |2〉

)
,

(19.22)

hence:

|y0〉 = 1√
3

(|0〉 + |1〉 + |2〉)

|y1〉 = 1√
3

(
|0〉 + ei 2π

3 |1〉 + ei 4π
3 |2〉

)

|y2〉 = 1√
3

(
|0〉 + ei 4π

3 |1〉 + ei 8π
3 |2〉

)
.

(19.23)

We may represent the above results through a symmetric matrix M with coef-
ficients Mnk = Mkn = exp(i2nkπ/N)/

√
N ≡ ωnk/

√
N , where ω = exp(2iπ/N) and

n, k = 0 . . . N − 1. The N = 3 matrix, thus, takes the form:

M = 1√
3

 1 1 1

1 ω ω2

1 ω2 ω4

 . (19.24)

It is clear that, in general, the matrix M takes the following form, referred to as the
Vandermonde matrix:

M = 1√
N

1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

1 ω3 ω6 · · · ω3(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

. (19.25)

386 Quantum database search algorithms

1n

2n

3n

1−Kn

Kn

1

2

3

K − 1

K 1

2

3

1−K

K

2−Kn

H

H 2R

H 2R 3R

H 2R 3R KR

K−1R

K − 2

Figure 19.4 Quantum circuit for QFT implementation.

Substituting the Vandermonde matrix into the definitions in Eqs. (19.18) and (19.19) we
also obtain the general definition of the QFT, QFT+ qubit transformations:

|ψ̃〉 = QFT |ψ〉 =
N−1∑
k=0

N−1∑
n=0

xk Mnk |k〉

|ψ〉 = QFT+|ψ̃〉 =
N−1∑
n=0

N−1∑
k=0

yn M̄kn|n〉,
(19.26)

or, equivalently, for the relations between Fourier and inverse-Fourier components
yn, xk :

yn = 〈n|ψ̃〉 =
N−1∑
k=0

Mnk xk

xk = 〈k|ψ〉 =
N−1∑
n=0

M̄kn yn.

(19.27)

We have, thus, obtained the most general and very simple definition of the quantum
Fourier operator through its corresponding matrix and its inverse, as applying to a
single qubit of dimension N . We must now find an appropriate quantum circuit, taking
|ψ〉 = (x0, x1, . . . xN−1) as the input, and yielding |ψ̃〉 = (y0, y1, . . . yN−1) as the output,
which would also represent an N -qubit QFT gate. To this purpose, we want to avoid the
complicated implementation of an N × N Vandermonde-matrix gate, and rather seek
for a greatly simplified circuit based on 2 × 2 gates. As this search is a bit tedious and
somewhat tricky in formal derivation, here I shall directly give the conclusion, while the
complete derivation is detailed in Appendix Q. However, the result turns out to be rela-
tively simple. The QFT circuit and its constituent 2 × 2 gates are represented in Fig. 19.4.
As a first observation, there are only K = log2 N qubit inputs, and as many qubit outputs,
labeled in the reverse order. To explain the reduced circuit size, consider, for simplicity,
the case K = 3 (N = 8). The relation between the K = 3 inputs {|n1〉, |n2〉, |n3〉} and

19.3 Quantum Fourier transform algorithm 387

the N = 8 basis states {|0〉, |1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉} is given by the binary–tensor
representation of the latter, namely, {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉,
|111〉}. Thus, the QFT of the basis state |6〉 = |110〉 is given by the circuit input
{|0〉, |1〉, |1〉}, for instance (starting from the bit of lower weight). As it turns out, the
order of the output qubits is reversed, and the full implementation of the QFT requires
an additional series of SWAP gates. Such a SWAP operation can be performed by a
cascade of three CNOT gates (see Fig. 16.3).

The second observation is that the circuit in Fig. 19.4 is exclusively made of unitary
gates, namely Hadamard (H) and controlled-phase (Rn) gates. This establishes the fact
that QFT is both a unitary and reversible transformation (using the circuit from left to
right corresponding to the inverse QFT). As shown in Appendix Q, the controlled-phase
gates are defined as follows:

Rn =
(

1 0
0 e2i π

2n

)
, (19.28)

noting that this 2 × 2 representation is a reduced one (from Chapter 16, we know that
a controlled-U gate has a 4 × 4 matrix). As detailed in Appendix Q, the output of the
QFT circuit corresponds to the overall tensor product

QFT|n〉 = 1

2K/2
(|0〉1 + e2iπ�1 |1〉1) ⊗ (|0〉2 + e2iπ�2 |1〉2) ⊗ . . . ⊗ (|0〉K + e2iπ�K |1〉K),

(19.29)

where each output |m〉 = (|0〉m + e2iπ�m |1〉m) is characterized by the phase factor:

�m =
m∑

l=1

nK−m+l

2l
. (19.30)

I shall now provide two examples, to illustrate how the QFT circuit operates. Consider
first the case K = 2 (N = 4), corresponding to a 2-qubit quantum circuit. Figure 19.5
shows the corresponding layout, consistent with that shown in Fig. 19.4. The SWAP gate
to restore the order of qubits is also included for QFT circuit completion. According to
Eq. (19.30), and after the swapping operation, the circuit output is:

QFT |n1n2〉 = 1

2
(|0〉2 + e2iπ�2 |1〉2) ⊗ (|0〉1 + e2iπ�1 |1〉1)

= 1

2
(|00〉 + e2iπ�1 |01〉 + e2iπ�2 |10〉 + e2iπ(�1+�2)|11〉)21

= 1

2
(|00〉 + e2iπ�1 |10〉 + e2iπ�2 |01〉 + e2iπ(�1+�2) |11〉)12

= 1

2

(
|00〉 + e2iπ n2

2 |10〉 + e2iπ(n1
2 + n2

4) |01〉 + e2iπ(n2
2 + n1

2 + n2
4) |11〉

)
12

≡ 1

2

(|00〉 + ω2n2 |10〉 + ω2n1+n2 |01〉 + ω2n1+3n2 |11〉)
12

,

(19.31)

where I have introduced ω = exp(2iπ/2K) ≡ exp(iπ/2). In the orthonormal basis
{|n1n2〉} = {|00〉, |01〉, |10〉, |11〉} (taking note here of the binary ordering), we obtain

388 Quantum database search algorithms

1n

2n

1

2

1

2H
H 2R

Figure 19.5 QFT circuit for K = 2 (N = 4).

from Eq. (19.31) the following matrix representation of the QFT circuit:

M = 1

2

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

≡ 1√
22

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 .

(19.32)

The right-hand side of Eq. (19.32) is recognized as the 4 × 4 Vandermonde matrix, which
was defined in Eq. (19.25) in the general case, i.e., for all K , with ω = exp(2iπ/2K).
This result is, therefore, consistent with all QFT definitions previously derived in this
section. An interesting application example is the quantum Fourier transform of the
EPR–Bell states,

∣∣βi j

〉
, which is left as a straightforward exercise to calculate, using the

above matrix (there is no big point about the result, except for the conclusion that QFT
maintains a state of entanglement, under a more complex state mixture).

The QFT circuit shown in Fig. 19.6 corresponds to the case K = 3 (N = 8), including
the SWAP ordering operation. There is no point in expanding Eq. (19.29) again to define
the 3-qubit circuit output explicitly. We simply need to substitute ω = exp(2iπ/23) ≡
exp(iπ/4) into the 8 × 8 Vandermonde matrix in Eq. (19.25), which, taking into account
the ω periodicity yields:

M = 1√
23

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49

≡ 1

2
√

2

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

.

(19.33)

19.4 Grover quantum database search algorithm 389

1n

2n

3n

1

2

3

1

2

3H

H 2R
H 2R 3R

Figure 19.6 QFT circuit for K = 3 (N = 8).

Is the QFT algorithm any faster than its classical counterpart, which is known as fast
Fourier transform (FFT)? To answer this question, let us analyze the number of gates
traversed by the signals for each circuit type. Referring back to Fig. 19.4, we observe that a
K circuit requires crossing a number of gates of K + (K − 1) + (K − 2) + . . . 2 + 1 =∑K

k=1 k = K (K + 1)/2, plus K/2 or (K − 1)/2 (K even or odd) twin gates to perform
the SWAP operation, each amounting to three CNOT gates. We can conclude that the
computation time for a QFT circuit of K inputs to generate the output is of the order
of K 2, noted O(K 2). In computer language, it is said that this algorithm (or decision
problem) belongs to the complexity class P , as the implementation in a sequential
machine can be performed in polynomial time.4

In contrast, the number of gates required in a classical FFT circuit for the same
computation (data size N = log2 K) is K log K = 2N log2 2N = N2N . Thus, the FFT
computation time is of the order O(N2N), which is exponential in circuit size, as opposed
to quadratic in the QFT case. Such a comparison remains, however, questionable, because
the quantum circuit does not operate on data bits, but quantum states. Further processing
circuits would be required to measure the “classical bit” or cbit counterparts, but even
this observation fails to convey any equitable comparison, as such measurements are,
by nature, indeterministic. Simply put, the QFT is exponentially faster than FFT, but the
signal amplitudes cannot be measured, unlike in the classical case. The picture becomes
even darker if we consider that there is currently no known technique to prepare the
input states |nk〉 of the QFT circuit, except in the very limiting cases K = 1 or K = 2.

The quantum Fourier transform may, thus, appear to be fully impractical, or just an
interesting mathematical curiosity. As we shall see in Chapter 20, however, the QFT
algorithm is the key to solving one of the major computation problems, namely the
factoring of numbers into primes, famously known as the Shor algorithm.

19.4 Grover quantum database search algorithm

In this section, I describe another famous QC algorithm, known after its conceiver as
the Grover quantum database search (GQDS). Like the previously described QFT, this
algorithm nicely exploits the property of quantum parallelism.

4 This notion is not to be confused with the time required for solution verification, which is referred
to as an NP (indeterministic polynomial time) problem. See more on this topic, for instance in:
http://en.wikipedia.org/wiki/Complexity_classes_P_and_NP.

390 Quantum database search algorithms

The problem to solve here is quite basic: how to identify an item out of an unsorted
database of N distinct elements? On average, such a task would require N/2 searches,
with a worst case of N searches and a luckiest case of one single search. The computation
time to find any item is, therefore, of the order of N , or O(N). As we shall see, the beauty
in the GQDS algorithm is that the complexity of the search task becomes O(

√
N), which

means a quadratic increase in computing speed.
Here, I shall first describe the GQDS algorithm and then analyze its elementary

quantum-circuit implementation and requirements.5

There is no loss in generality in assuming that the size of the database is N = 2n ,
where n is some nonzero integer. We require a quantum space V of dimension N ≥ 2,
and a known observable � on this space. This observable defines an orthonormal
basis of N eigenstates |x〉 labeled |0〉, |1〉, . . . , |N − 1〉, and known eigenvalues labeled
λ0, λ1, . . . , λN−1. Then we shall associate a unique eigenstate or eigenvalue with each
item in the database. The database search problem is now a matter of measuring an
eigenvalue of interest, call it λω, associated with the state |ω〉, which represents some
specific item ω in the original database, and which we want to find through the search
algorithm.

As I will show further on, it is possible to construct the eigenstate superposition

|s〉 = 1√
N

N−1∑
x=0

|x〉, (19.34)

noting that 〈s|s〉 = 1 since the eigenstate basis {|x〉}x=0...N−1 is orthonormal. Any eigen-
state |ω〉 has the same projection 〈ω|s〉 = 1/

√
N , and given our item ω, the probability

of measuring λω (or finding |s〉 in the state |ω〉) is |〈ω|s〉|2 = 1/N , consistently with a
classical database search algorithm. Let us then introduce a unitary operator Uω, referred
to as the “oracle,” and defined by

Uω = I − 2|ω〉〈ω|. (19.35)

It is immediately verified that the oracle has the following properties: Uω|x〉 = −|ω〉 if
x = ω and Uω|x〉 = |x〉 if x �= ω. Thus, the action of the oracle on the superposition |s〉
is to change the sign of the amplitude of the component |ω〉 in |s〉, namely:

|ψ〉 = Uω|s〉

= Uω

(
1√
N

N−1∑
x=0

|x〉
)

= 1√
N

Uω

N−1∑

x=0
x �=ω

|x〉 + |ω〉

5 See, for instance, http://en.wikipedia.org/wiki/Grover’s_algorithm with notations consistent with those used
in this section. The description here is inspired from the tutorial paper: C. Lavor, L. R. U. Manssur,
and R. Portugal, Grover’s algorithm: quantum database search, (2003), which can be downloaded from
http://arxiv.org/abs/quant-ph/0301079.

19.4 Grover quantum database search algorithm 391

= 1√
N

N−1∑

x=0
x �=ω

Uω|x〉 + Uω|ω〉

≡ 1√
N

N−1∑
x=0
x �=ω

|x〉 − 1√
N

|ω〉. (19.36)

We can also rewrite the result in Eq. (19.36) in the form:

|ψ〉 = Uω|s〉 = |s〉 − 2√
N

|ω〉. (19.37)

We can then interpret the action of the oracle Uω of the state |s〉 as a small rotation
through an angle θ . Indeed, we have

cos θ = 〈s|ψ〉

= 〈s|s〉 − 2√
N

〈s|ω〉

= 1 − 2√
N

1√
N

≡ 1 − 2

N

(19.38)

(the angle θ being small, if one assumes that the database size, N , is large). Next we
introduce a second operator Us according to

Us = 2 |s〉〈s| − I, (19.39)

and define the Grover operator as G = UsUω. Let us see next the action of this operator
on |s〉, which we shall refer to as a Grover iteration. From Eq. (19.37), we have:

|ψ1〉 = G|s〉 = UsUω|s〉 = Us |ψ〉 = Us

(
|s〉 − 2√

N
|ω〉

)
= Us |s〉 − 2√

N
Us |ω〉

= (2|s〉〈s| − I) |s〉 − 2√
N

(2|s〉〈s| − I) |ω〉

= 2|s〉〈s|s〉 − |s〉 − 4√
N

|s〉〈s|ω〉 + 2√
N

|ω〉

= |s〉 − 4√
N

1√
N

|s〉 + 2√
N

|ω〉

≡
(

1 − 4

N

)
|s〉 + 2√

N
|ω〉.

(19.40)

We observe from the result in Eq. (19.40) that the action of G on |s〉 is to increase
the amplitude of the eigenstate component |ω〉, again by rotation. The corresponding

392 Quantum database search algorithms

rotation angle θ ′ is given by

cos θ ′ = 〈s|ψ1〉 = 〈s|
[(

1 − 4

N

)
|s〉 + 2√

N
|ω〉

]

=
(

1 − 4

N

)
〈s|s〉 + 2√

N
〈s|ω〉

= 1 − 4

N
+ 2√

N

1√
N

≡ 1 − 2

N
≡ cos θ,

(19.41)

and according to Eq. (19.38), which shows that the rotation angles θ, θ ′ due to Uω and
G are equal in absolute value. It is easy to show that |ψ〉 = Uω|s〉 and |ψ1〉 = G|s〉 are,
in fact, rotating by that same absolute angle θ = θ ′ in opposite directions away from |s〉,
forming an angle θ ′′ = 2θ . Indeed, from Eqs. (19.37) and (19.40) we obtain:

cos θ ′′ = 〈ψ |ψ1〉 =
[
〈s| − 2√

N
〈ω|

] [(
1 − 4

N

)
|s〉 + 2√

N
|ω〉

]

=
(

1 − 4

N

)
〈s|s〉 − 2√

N

(
1 − 4

N

)
〈ω|s〉 + 2√

N
〈s|ω〉 − 2√

N

2√
N

〈ω|ω〉

= 1 − 4

N
− 2√

N

(
1 − 4

N

)
1√
N

+ 2√
N

1√
N

− 4

N

≡ 1 − 8

N
+ 8

N 2
≡ 2

(
1 − 2

N

)2

− 1 ≡ 2 cos2 θ − 1 ≡ cos 2θ. (19.42)

Finally, it is straightforward from the definitions in Eq. (19.40) that the cosine projection
of |ψ1〉 over the target state |ω〉 takes the value 〈ω|ψ1〉 = (3 − 4/N)/

√
N , to compare

with the initial projection 〈ω|s〉 = 1/
√

N . The angle relations of the different states
|s〉, |ψ〉, |ψ1〉, and |ω〉 and relevant projections 〈ω|s〉, 〈ω|ψ1〉 are illustrated in Fig. 19.7.
We observe from the figure that G has rotated |s〉 into a state |ψ1〉, which is closer to
the target state |ω〉, hence a projection being increased by a factor 3 − 4/N (which is
greater than unity if N > 2). Should a measurement in the state |ψ1〉 be made through
the observable �, the probability of measuring λω would be

|〈ω|ψ1〉|2 = 1

N

(
3 − 4

N

)2

= 1

N

(
9 − 24

N
+ 16

N 2

)
≈ 9

N
, (19.43)

the upper limit on the right-hand side being obtained for large values of N . This result
shows that in a single Grover iteration, the probability of finding the searched item
through a single-shot measurement has been increased by about tenfold with respect to
the classical case.

It is now tempting to iterate the Grover operation as many times as required to rotate the
system state closer to the target state |ω〉, thus, increasing the probability of successfully
measuring λω to the required accuracy. For this, we must establish an iterative formula
that defines the state |ψk〉 after k Grover iterations, and the corresponding success
probability.

For the purpose of deriving the iteration formula, let us redefine the original eigenstate
superposition in Eq. (19.34) by sorting out the |ω〉 state from the series. Define first the

19.4 Grover quantum database search algorithm 393

'θ

θ

ω

s

sUωψ =

sG=1ψ

N

1

−
NN

4
3

1

Figure 19.7 Effect of the unitary operators Uω and G = UsUω on initial state |s〉, showing
rotation by angles θ and θ ′ = θ (respectively) corresponding to new states |ψ〉 = Uω|s〉 and
|ψ〉 = G|s〉 (respectively). The cosine-projections of states |s〉 and |ψ1〉 over the reference state
|ω〉 of the search algorithm are also indicated.

state |u〉 spanning the hyperspace orthogonal to |ω〉 according to

|u〉 ≡ 1√
N − 1

N−1∑
x=0
x �=ω

|x〉

=
√

N

N − 1
|s〉 − 1√

N − 1
|ω〉.

(19.44)

We can then write |s〉 according to the superposition of its two orthogonal component
states |u〉, |ω〉:

|s〉 = 1√
N

N−1∑
x=0

|x〉 ≡
√

1 − 1

N
|u〉 + 1√

N
|ω〉

≡ cos
θ

2
|u〉 + sin

θ

2
|ω〉,

(19.45)

where θ is the rotation angle previously defined through cos θ = 1 − 2/N (it is easily
checked that cos θ/2 = √

1 − 1/N). It is then an elementary (albeit nontrivial) exercise
to show that k Grover iterations result in the state

Gk |s〉 = (GG . . . G)k times |s〉

= cos

[
(2k + 1)

θ

2

]
|u〉 + sin

[
(2k + 1)

θ

2

]
|ω〉.

(19.46)

This result shows that k applications of the Grover operator results in the rotation of the
state |s〉 by an angle kθ , as illustrated in Fig. 19.8. The probability p(ω) of finding the
state Gk |s〉 in |ω〉, and, hence, of measuring the eigenvalue λω with the observable �, is

394 Quantum database search algorithms

θ

2/θ

ω

u

sG

s
θ

sG2

θ

sG3

Figure 19.8 Effect of successive applications (here from k = 1 to k = 3) of the Grover operator
G onto the initial state |s〉, showing incremental rotations by angle θ in the direction of state |ω〉.

given by

p(ω) = ∣∣〈ω|Gk |s〉∣∣2 = sin2

[
(2k + 1)

θ

2

]
. (19.47)

The probability p(ω) reaches a maximum for

kmaxθ + θ

2
= π

2
, (19.48)

or

kmax =
⌊

π − θ

2θ

⌋
. (19.49)

From the definition in Eq. (19.45), sin θ/2 = 1/
√

N , which for large N yields the
approximation θ ≈ 2/

√
N and, hence, the maximum number of iterations kmax:

kmax ≈
⌊

π

4

√
N − 1

2

⌋
≈

⌊π

4

√
N
⌋

. (19.50)

Clearly, the Grover search algorithm must be stopped after reaching the number of
iterations k = kmax, corresponding to the probability p(ω) ≈ 1. Figure 19.9 shows plots
of the probability p(ω), a function of the number k of Grover iterations, from quantum
database sizes N = 26 = 64 to N = 214 = 16 384. Thanks to the

√
N dependence of kmax,

it is seen that quantum databases as large as N ≈ 16 000 can successfully be searched
with only kmax ≈ 100 Grover iterations, which represents a computation complexity in
O(

√
N), to compare with O(N) in the classical case.

Now that we are convinced of the benefits of the Grover algorithm, the next step is to
analyze its quantum-circuit implementation. Consider first how the quantum database
can be generated. In Section 19.2, concerning the Deutsch–Jozsa algorithm, we have

19.4 Grover quantum database search algorithm 395

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

number of measurements k

P
ro

ba
bi

lit
y

p(
w)

64
128
256
512
1.024
2.048
4.096
8.192
16.384

=N

Figure 19.9 Probability p(ω) of finding the state in |ω〉 (or of measuring the eigenvalue λω) as a
function of the number k of Grover iterations, from quantum database sizes N = 26 = 64
(leftmost curve) to N = 214 = 16 384 (rightmost curve).

established and used in Eq. (19.7) the property according to which

|s〉 = 1√
N

N−1∑
x=0

|x〉

= H⊗n|0〉 =
(|0〉 + |1〉√

2

)⊗n

= |+〉 ⊗ |+〉 ⊗ . . . ⊗ |+〉n times ,

(19.51)

where H⊗n is the n-tensor application of the Hadamard gate H . For instance, we have,
for N = 23 = 8:

|s〉 = 1√
23

7∑
x=0

|x〉

= H⊗3|0〉

=
(|0〉 + |1〉√

2

)
⊗

(|0〉 + |1〉√
2

)
⊗

(|0〉 + |1〉√
2

)

≡ 1√
23

(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉).

(19.52)

Thus, the state superposition |s〉, which is to become the quantum database, can be
generated by using n ancilla qubits |0〉 and 2 × 2 Hadamard gates H .

The second task is to define a quantum circuit for the “oracle” operator Uω. To recall,
the oracle has the following properties: Uω|x〉 = −|ω〉 if x = ω and Uω|x〉 = |x〉 if
x �= ω. Let f (x) be a function defined over x = {0, 1, . . . , N − 1} with binary output
f (x) = 1 if x = ω and f (x) = 0 if x �= ω. Assume that it is possible to build a quantum
circuit (or quantum operator Uω) acting on the tensor state |x〉|i〉 (with |i〉 = |0〉 or |1〉

396 Quantum database search algorithms

being an ancilla qubit) yielding the following output:

Uω|x〉|i〉 = |x〉|i ⊕ f (ω)〉. (19.53)

It is clear from the above definitions that Uω|x〉 |i〉 = |x〉 |i〉 if x �= ω and Uω|x〉 |i〉 =
|x〉|i ⊕ 1〉 if x = ω. More generally, if we let |i〉 = |−〉 = (|0〉 − |1〉) /

√
2, we obtain

Uω|x〉|−〉 = Uω|x〉 |0〉 − |1〉√
2

= |x〉 |0 ⊕ f (ω)〉 − |1 ⊕ f (ω)〉√
2

= |x〉 | f (ω)〉 − |1 ⊕ f (ω)〉√
2

=

|x〉 |0〉 − |1〉√
2

, if x �= ω

|x〉 |1〉 − |0〉√
2

, if x = ω

≡ (−1) f (ω) |x〉|−〉.

(19.54)

Call the tensor state |R〉 = |s〉|−〉 the “register” in the GQSD algorithm. If we apply
the oracle Uω to the register |R〉, and use the definitions in Eqs. (19.34) and (19.54), we
obtain:

Uω |R〉 = Uω|s〉|−〉

= Uω

(
1√
N

N−1∑
x=0

|x〉|−〉
)

= 1√
N

Uω

(
N−1∑
x=0

|x〉|−〉
)

= 1√
N

N−1∑

x=0
x �=ω

Uω|x〉|−〉 + Uω|ω〉|−〉

= 1√
N

N−1∑

x=0
x �=ω

(−1)0|x〉|−〉 + (−1)1|ω〉|−〉

≡ 1√
N

N−1∑

x=0
x �=ω

|x〉|−〉 − |ω〉

 |−〉,

(19.55)

which is precisely the oracle operation defined in Eq. (19.36). Since we have assumed
that the oracle operator Us = I − 2|ω〉〈ω| can be thus realized, we can also assume that
similarly, one can realize the unitary transformation Us = 2|s〉〈s| − I , in similar ways
(this being beyond the scope of this book).

19.4 Grover quantum database search algorithm 397

0

1 H

ψ

ωU

nH ⊗n

−

sU 1ψ

−

R

RG

G

s

−

Figure 19.10 Quantum-gate circuit showing the initialization of the register state |R〉 = |s〉|−〉
from n|0〉 ancilla qubit and one |1〉 ancilla qubit, and n + 1 Hadamard gates H . The circuit
shown in the dashed-line box is the iterative Grover operator G = UsUω, with Us = 2|s〉〈s| − I .

0

1 H

G

nH ⊗
n

1

R

G G

maxk

H

RGkmax

ωλ
ω

times

Figure 19.11 Quantum-gate circuit architecture for the full Grover quantum database search
algorithm implementation up to iteration k = kmax showing eventual measurement of eigenvalue
λω through the observable � (with success probability p(ω) ≈ 1).

The basic GQDS quantum-gate circuit architecture is shown in Fig. 19.10. From
the figure, we observe the initialization of the register state |R〉 = |s〉|−〉 from n |0〉
ancilla qubits, one |1〉 ancilla qubit, and n + 1 Hadamard gates H . The circuit shown in
the dashed-line box is the iterative Grover operator G = UsUω, with Us = 2|s〉〈s| − I ,
which now acts on the register state |R〉 = |s〉. It is only necessary to cascade the
Grover circuit G shown in Fig. 19.10 kmax times to obtain the full GQDS circuit shown
in Fig. 19.11. As the figure shows, the algorithm implementation is complete with a
measurement (eigenvalue λω) of the observable � with success probability p(ω) ≈ 1.

This description of the GQDS algorithm hopefully conveys the elegance of parallel
computing through quantum circuits. Yet there are many questions remaining on the
possible or even optimal circuit architectures for the “oracle” and Grover operators,

398 Quantum database search algorithms

let aside the practical physical implementation of the circuit at very large scales (N ≈
103−109), where the GQDS algorithm brings superior value. This reservation being
stated, in a rising twenty-first century dominated by Internet communications, with its
billions of host addresses, web pages, references, and databases, the physical possibility
of implementing GQDS algorithms through practical quantum computers would, beyond
any doubt, represent a most significant breakthrough. It would mean the possibility of
elaborate search algorithms over the Internet with relatively fast access times and, in
some applications, near-instantaneous access to practical information, however complex
or remote!

19.5 Exercises

19.1 (M): Show that for any n-qubit |x〉 = |x1x2 . . . xn〉, xi ∈ {0, 1}, and Hadamard
gate H , we have:

H⊗n|x〉 = 1√
2n

∑
z

(−1)z·x |z〉,

where |z〉 = |z1z2 . . . zn〉 and x · z = x1z1 + x2z2 + · · · + xnzn is a scalar product
modulo 2.

19.2 (M): Given the orthonormal basis {|xk〉}k=0...N−1, show that the transformation
QFT, as defined by

|yn〉 = 1√
N

N−1∑
k=0

eik 2nπ
N |xk〉,

is unitary.

19.3 (B): Calculate the quantum Fourier transform of the qubit:

|ψ〉 = 1√
14

|0〉 + 2i√
14

|1〉 + 3√
14

|2〉.

19.4 (B): Calculate the quantum Fourier transform of four EPR–Bell states |β00〉,
|β01〉, |β10〉, |β11〉, as expressed in the ordered basis V = {|00〉, |01〉, |10〉, |11〉}.

19.5 (M): Given the definitions of G, |u〉, |ω〉, |s〉, and |ψ1〉 = G|s〉 in the text, demon-
strate by induction the result in Eq. (19.45) concerning the k action of the Grover
operator G on the state |s〉:

Gk |s〉 = cos

[
(2k + 1)

θ

2

]
|u〉 + sin

[
(2k + 1)

θ

2

]
|ω〉.

20 Shor’s factorization algorithm

This chapter describes what is generally considered to be one of the most important and
historical contributions to the field of quantum computing, namely Shor’s factorization
algorithm. As its name indicates, this algorithm makes it possible to factorize numbers,
which consists in their decomposition into a unique product of prime numbers. Other
classical factorization algorithms previously developed have a complexity or computing
time that increases exponentially with the number size, making the task intractable if
not hopeless for large numbers. In contrast, Shor’s algorithm is able to factor a number
of any size in polynomial time, making the factorization problem tractable should a
quantum computer ever be realized in the future. Since Shor’s algorithm is based on
several nonintuitive properties and other mathematical subtleties, this chapter presents
a certain level of difficulty. With the previous chapters and tools readily assimilated,
and some patience in going through the different preliminary steps required, such a
difficulty is, however, quite surmountable. I have sought to make this description of
Shor’s algorithm as mathematically complete as possible and crack-free, while avoiding
some academic considerations that may not be deemed necessary from any engineering
perspective. Eventually, Shor’s algorithm is described in only a few basic instructions.
What is conceptually challenging is to grasp why it works so well, and also to feel
comfortable with the fact that its implementation actually takes a fair amount of trial and
error. The two preliminaries of Shor’s algorithm are the phase estimation and the related
order-finding algorithms. Both represent the purely quantum part of the approach: it
cannot be implemented classically. Basically, phase estimation allows one to find the
periodicity r of a modular function by means of a multi-qubit quantum-gate circuit
(Hadamard, controlled-U gates, inverse-Fourier transform), followed by a probabilistic,
quantum-mechanical measurement of the resulting qubit state, which yields a phase esti-
mate ϕ. Order finding, from which the period r is determined with high probability and
(the measurement being successful) without ambiguity, represents a particular case of
quantum phase estimation. Such a determination eventually rests on the implementation
of continued fraction expansion, a classical algorithm that is straightforward to run with
a computer. The requirement for r to be the period is that the phase estimation ϕ = s/r ,
with s an integer, is such that s, r are co-prime. Since this does not happen systematically,
there is a finite chance that the endeavor may fail. Any such event is not a failure of Shor’s
algorithm, but rather a call for another try in this specific implementation step. Such con-
ditions of trial and error leading to factorizing success may sound strange to engineers –
but they are really embedded in the algorithm game! The key feature to grasp is that the

400 Shor’s factorization algorithm

probability of such intermediate failures remains comparatively small, or innocuous for
computing logistics, and that the chances of success, after only a few trials in the worst of
all cases, are relatively high. As we shall see, all of the above steps are of polynomial-time
complexity. A comparison is made with nonpolynomial algorithms, such as the general
number field sieve (GNFS) approach, which is shown to require decades of CPU comput-
ing time to factorize numbers of 100-bits long! We then establish the connection between
order finding and factorization of composite (or nonprime) numbers by using two basic
theorems. The first theorem yields the two factors N ′, N ′′ of any given composite N such
that N = N ′ × N ′′, given the knowledge of the period. The second theorem establishes
that the probability of the period meeting certain eligibility criteria is at least 75% for
any composite. These two theorems combined validate and conclude Shor’s factorization
algorithm. The factorization of the composite N = 15 = 3 × 5 is found in textbooks as
the only illustrative example of Shor’s algorithm. Here, we shall investigate the whole
space of nontrivial composites N ≤ 100, as an emulation of the quantum computer. It
is possible to do this based on the fact that for such relatively small numbers, we can
compute (with a basic home computer) all the possibilities associated with each step
of Shor’s algorithm, namely what the period-finding quantum circuit should yield, and
the associated probabilities of success or failure. The result of this investigation is an
original plot showing the probability � of successfully concluding the factorization of
nontrivial composites N ≤ 100 in a single run. The exercise helps one to grasp how
Shor’s algorithm would work when taking greater composite numbers. The last section,
which briefly describes public key cryptography (PKC), is not completely out of place in
this chapter. The purpose of this addition is to show how the PKC algorithm works, as
based on the product N = pq of two prime numbers p, q, whose factorization is indeed
considered intractable by classical means. Should a quantum computer of corresponding
computing power be implemented someday, the whole field of PKC-based cryptography,
and Internet security for that matter, would be compromised overnight! Fortunately, this
remains a distant perspective, while from this chapter, we know that the theory works
mathematically.

20.1 Phase estimation

This section considers an algorithm referred to as phase estimation. The word “esti-
mation” is correct, because the outcome of the algorithm is only what can be called a
good estimate of the phase in a quantum system. This phase estimation will enable us
to move another step further in our progression towards Shor’s factorization algorithm,
the second step being the order-finding algorithm, to be considered in the next section.
These two steps are critical in the final understanding of Shor’s algorithm, and this is
why we ought to pay extra attention to the following. While based on lessons from
previous chapters with no new conceptual difficulty, the quantum phase estimation and
its application to order finding involve a few nontrivial properties and results, which
must be fully assimilated at each step of the description.

20.1 Phase estimation 401

Assume a unitary operator U , with eigenstate |u〉 of dimension L , and of unknown
complex eigenvalue λφ = e2iπϕ , where ϕ is a real number such that 0 ≤ ϕ ≤ 1,
is to be determined through the aforementioned “phase estimation” algorithm. Also
assume that we are capable of building a family of controlled-U p operators, where
p = 20, 21, . . . , 2K−1 is any power of two up to K − 1. The phase-estimation (PE) cir-
cuit comes in two stages, which we shall call here “front-end” and “back-end” modules,
respectively. The PE front-end module is shown in Fig. 20.1. As we observe, its embod-
iment includes an input register of K ancilla qubits |0〉, and the eigenstate |u〉, which is
an L-qubit. Each of the qubits in the input register is submitted to a Hadamard transform
(H), the output of which drives an individual controlled-U p gate, according to the array
sequence shown at the bottom of the figure. It is easily established that the output register
consists of K qubits of the form |0〉 + e2iπpφ|1〉 with p = 20, 21, . . . , 2K−1 and leaves
invariant the L-qubit |u〉, as indicated in Fig. 20.1.1 The tensor-product output can also
be rewritten as a sum of K + L qubits of the form e2iπkϕ|k〉 ⊗ |u〉:2

1

2K/2

(|0〉 + e2iπ2K−1ϕ|1〉)(|0〉 + e2iπ2K−2ϕ|1〉) . . .
(|0〉 + e2iπ21ϕ|1〉)

×(|0〉 + e2iπ20ϕ|1〉) ⊗ |u〉 = 1√
N

N−1∑
k=0

e2iπkϕ|k〉 ⊗ |u〉,
(20.1)

with N = 2K . This result, in the summation form, will be used later. We shall now
interpret the product form. Recall that ϕ is a real number, such that 0 ≤ ϕ ≤ 1. Any
such number can be represented in binary form, which is noted ϕ = 0.ϕ1ϕ2ϕ3 . . . ϕK . . . ,
according to the definition:

ϕ = 0.ϕ1ϕ2ϕ3 . . .

= ϕ1

2
+ ϕ2

4
+ ϕ3

8
+ · · · + ϕK

2K
+ · · · , (20.2)

1 To show this, consider the effect of a controlled-U p gate, noted CU p , at any stage in the circuit in
Fig. 20.1. In each gate, the control qubit is H |0〉 = |0〉 + |1〉, within the factor 1/

√
2. The tensor-product

output is CU p[(|0〉 + |1〉) ⊗ |u〉] or, identically, |0〉 ⊗ |u〉 + |1〉 ⊗ U p |u〉 = |0〉 ⊗ |u〉 + |1〉 ⊗ e2iπpϕ |u〉
≡ (|0〉 ⊗ e2iπpϕ |1〉) ⊗ |u〉. Clearly, the first and second terms in this tensor product belong to the first
and second registers, respectively.

2 This is established by developing the tensor product in the left-hand side, starting from the last two terms
(or considering K = 2):

(
|0〉 + e2iπ21ϕ |1〉

)(
|0〉 + e2iπ20ϕ |1〉

)
= |0〉|0〉 + |0〉e2iπ20ϕ |1〉 + e2iπ21ϕ |1〉|0〉 + e2iπ21ϕ |1〉e2iπ20ϕ |1〉
= |00〉 + e2iπ20ϕ |01〉 + e2iπ21ϕ |10〉 + e2iπ (21+20)ϕ |11〉
≡ e2iπ0ϕ |0〉 + e2iπ1ϕ |1〉 + e2iπ2ϕ |2〉 + e2iπ3ϕ |3〉

=
3∑

k=0

e2iπkϕ |k〉,

noting that the tensor products |i j〉, with i, j = 0, 1, are noted |i × 20 + j × 21〉. It is clear that the full
product yields the summation shown in the right-hand side in Eq. (20.1).

402 Shor’s factorization algorithm

0

u

H

02U

0

0

0

H

H

H

…

12U
22U

12 −K

U
L

u

10
122 φπ −

+
Kie

10 22 φπ+
1

2ie

10 22 φπ+ ie
0

10 22 φπ+ ie

K

L

. . .

. .
 .

Figure 20.1 Quantum circuit for phase estimation (front-end module).

where ϕi = 0, 1 are bits. In particular, we have

2K−1ϕ = 2K−1
(ϕ1

2
+ ϕ2

4
+ ϕ3

8
+ · · · + ϕK

2K
+ · · ·

)
= {ϕ12K−2 + ϕ22K−3 + · · · + ϕK−120} + ϕK

2
+ ϕK+1

4
+ · · ·

(20.3)

and

2K−2ϕ = 2K−2
(ϕ1

2
+ ϕ2

4
+ ϕ3

8
+ · · · + ϕK

2K
+ · · ·

)
= {ϕ12K−3 + ϕ22K−4 + · · · + ϕK−220} + ϕK−1

2
+ ϕK

4
+ ϕK+1

8
+ · · ·

(20.4)
Noting that the terms within braces { } in the right-hand side in Eqs. (20.3) and (20.4)
are integers, we have for the imaginary exponentials:

e2iπ2K−1ϕ = e2iπ(ϕK
2 + ϕK+1

4 +···)

e2iπ2K−2ϕ = e2iπ(ϕK−1
2 + ϕK

4 + ϕK+1
8 +···)

...

e2iπ20ϕ = e2iπ
(

ϕ1
2 + ϕ2

4 +··· ϕK
2K + ϕK+1

2K+1 +···
)
.

(20.5)

Introduce the definition

�m =
m∑

l=1

ϕK−m+l

2l
, (20.6)

and substitute it into Eq. (20.5) to obtain

e2iπ2K−1ϕ = e2iπ�1 e2iπ(ϕK+1
4 +···)

e2iπ2K−2ϕ = e2iπ�2 e2iπ(ϕK+1
8 +···)

...

e2iπ20ϕ = e2iπ�K e2iπ
(

ϕK+1
2K+1 +···

)
.

(20.7)

We then consider the specific case where ϕ is exactly defined by K bits, meaning that
all bits ϕK+1, ϕK+2, . . . are identically zero. Substituting the results in Eq. (20.7) into

20.1 Phase estimation 403

Eq. (20.1) under this assumption, and overlooking the output qubit |u〉, yields the first
register output:

1

2K/2
(|0〉 + e2iπ�1 |1〉) ⊗ (|0〉 + e2iπ�2 |1〉) ⊗ · · · ⊗ (|0〉 + e2iπ�K |1〉). (20.8)

As based on Eqs. (19.29) and (19.30), the result in Eq. (20.8), together with the definition
in Eq. (20.6), is immediately identified as being the quantum Fourier transform of the
“phase” qubit |ϕ〉 = |ϕ1ϕ2 . . . ϕK 〉. We can, thus, recover |ϕ〉, by performing the inverse
Fourier transform of the output register, followed by a measurement in the computational
basis, which yields the K classical bits ϕ1ϕ2 . . . ϕK defining the phase. The “back-end”
module of the PE circuit, thus, consists first of an inverse Fourier transform circuit, noted
FT+. This circuit is shown in Fig. 19.4, while conceived as being traversed from right
to left. The second component of the back-end module is a K -qubit measurement gate,
which restitutes the ϕ1ϕ2 . . . ϕK bits. The full PE circuit including front and back ends,
is represented schematically in Fig. 20.2, assuming that the phase ϕ is exactly defined
by K bits, or 2K ϕ is an integer.

Consider next the more general case where 2K ϕ is not an integer. Let us calculate the
state of the output register after the circuit shown in Fig. 20.2. Starting from the input
|0〉⊗K |u〉, and based on the result in Eq. (20.1) followed by the inverse Fourier transform,
we have the following state evolution:

|0〉⊗K |u〉 → 1√
N

N−1∑
k=0

e2iπkϕ|k〉|u〉

→ 1√
N

N−1∑
k=0

e2iπkϕ

(
1

2K/2

N−1∑
n=0

e−
2iπkn

N |n〉
)
|u〉

= 1

N

N−1∑
n=0

N−1∑
k=0

e−
2iπkn

N e2iπkϕ|n〉|u〉

= 1

N

N−1∑
n=0

{
N−1∑
k=0

[
e2iπ(ϕ− n

N)
]k

}
|n〉|u〉

= 1

N

N−1∑
n=0

{
1 − e2iπ(ϕ− n

N)N

1 − e2iπ(ϕ− n
N)

}
|n〉|u〉.

(20.9)

The probability of measuring n from the output register (or the probability of the
N -qubit register being in state |n〉) is given by the square modulus of the corresponding
amplitude, namely, from Eq. (20.9):

p(n) = 1

N 2

∣∣∣∣∣1 − e2iπ(ϕ− n
N)N

1 − e2iπ(ϕ− n
N)

∣∣∣∣∣
2

≡ 1

N 2

sin2
[
π

(
ϕ − n

N

)
N
]

sin2
[
π

(
ϕ − n

N

)] .

(20.10)

404 Shor’s factorization algorithm

u

KH

jU
L

u

K
Kϕϕ . . .1

+FT
K

0

(a) (b)

Figure 20.2 Full quantum circuit for phase estimation, with (a) front-end and (b) back-end
modules.

The measurement of n, with associated probability p(n), corresponds to the phase
estimation ϕ̃ = n/N . The probability is maximal when δ = ϕ − ϕ̃ is minimal. The
probability defined in Eq. (20.10) rapidly vanishes as the error δ departs from this
minimum. The conclusion is that the measurement has the highest probability of yielding
the closest approximation of the phase ϕ. Based on the results in Eqs. (20.9) and (20.10),
it is also established that the circuit output is of the form |ϕ̃〉|u〉, where |ϕ̃〉 is a state
superposition which, when measured, yields a fair approximation of the phase ϕ.

It is an academic issue, which I shall not address here, to determine the size of K
required for obtaining a phase accuracy of 2−l (or l bits) with an arbitrary high probability
of success. Suffice it to provide the result of the analysis: for this probability to be at
least 1 − ε, the rule is that the control register size must be K = l + �log2[2 + 1/(2ε)]�.
It is readily checked that the probability’s lower bound increases from 50% (ε = 0.5)
to 99% (ε = 0.01) and 99.9% (ε = 0.001) with K = l + 2, K = l + 6, and K = l + 9,
respectively, which illustrates the very rapid probability convergence with register size
K , given the desired number of bits accuracy, l.

The above phase-estimation algorithm requires one to prepare the eigenstate |u〉 of the
operator U as the target register. What about the case where we have no prior knowledge
of this eigenstate? The remaining possibility is to input to the circuit some other N -qubit
|ψ〉, which we know how to prepare. This state can be uniquely decomposed over the
orthonormal eigenstate, basis {|u〉}, according to |ψ〉 = ∑

u cu |u〉. By the principle of
linearity of quantum gates, we then obtain for the circuit output |ψ ′〉 = ∑

u cu |ϕ̃u〉⊗ |u〉.
On measuring the first register, we obtain a fair estimation of the phase ϕu , but this time
associated with one possible eigenstate |u〉, with measurement probability |cu |2. Such
a way to proceed, thus, yields a fair estimation of ϕu from an unknown eigenstate
|u〉 selected at random in the eigenstate basis. Stated without demonstration, but as
intuitively expected, the probability of success for a phase-estimation accuracy of 2−l

(or l bits) is at least |cu |2 (1 − ε) when the size register K is chosen according to this
rule.

The phase-estimation circuit, and, in particular, the “successful phase-approximation”
algorithm, including the case of unknown eigenstates, are the key to solving the so-called
order-finding problem, as we shall see in the next section.

20.2 Order finding 405

Table 20.1 Successive powers of x = 4 modulo N = 13, showing order r = 6.

p 4p 4p mod 13 p 4p 4p mod 13 p 4p 4p mod 13

0 1 1 6 4 096 1 12 16 777 216 1
1 4 4 7 16 384 4 13 67 108 864 4
2 16 3 8 65 536 3 14 268 435 456 3
3 64 12 9 262 144 12 15 1 073 741 824 12
4 256 9 10 1 048 576 9 16 4 294 967 296 9

20.2 Order finding

In this section, I shall describe the order-finding algorithm, which is based on the concept
of number order in modular algebra. It will then be shown that there exists a unitary
operator U that allows one to determine this order through the previously described
phase-estimation circuit. Let us introduce the “order” concept first. In the foregoing, we
shall call M = 2K the number of Fourier components, and from now on use N as the
integer number that Shor’s algorithm will attempt later to factorize into prime numbers.

Assume, then, two positive integer numbers x, N , such that x < N , with the two
numbers having no common divisor other than unity. It is said that their greatest common
divisor (GCD) is unity, or equivalently, that the two numbers are co-prime. By definition,
the order of x modulo N is the smallest nonzero integer r satisfying

xr = 1 mod N . (20.11)

The order of x can also be conceived as the period of the powers x0, x1, x2 . . . , modulo
M . To give an example, let x = 4 and N = 13. The successive powers of 4 modulo 13
are listed in Table 20.1. It is seen that the period of the power series is r = 6, which also
corresponds to the smallest nonzero integer for which 4r = 1 mod 13, according to the
order definition in Eq. (20.11).

Next, I shall describe how the quantum phase-estimation circuit makes it possible to
determine r , the order of x modulo N , with a high probability of success and accuracy. For
this, we first need to introduce the appropriate unitary operator U and its corresponding
eigenstates and eigenvalues. We assume that given two integers x, N , satisfying x < N
and x being co-prime to M , there exists some operator Ux,N , which acts on the qubit
|y〉 = |0〉, |1〉 as:

Ux,N |y〉 = |xy mod N 〉. (20.12)

In the following, I shall just note Ux,N = U for simplicity.
Second, let {|us〉}s=0,1...r−1 be the set of r eigenstates of U , with associated eigenvalues

exp(2iπs/r), namely, satisfying

U |us〉 = e
2iπs

r |us〉 (20.13)

406 Shor’s factorization algorithm

KH

jU
L

K

r
s

s =ϕ+FT
K

0

1

1 2 3 4

su
r

1

Figure 20.3 Quantum circuit for order finding.

and with the phase ϕs = s/r satisfying 0 ≤ ϕs ≤ 1. Such eigenstates are defined accord-
ing to

|us〉 = 1√
r

r−1∑
k=0

e−
2iπks

r |xk mod N 〉, (20.14)

which is left as an easy exercise to prove. Finally, we shall observe that the above-defined
eigenstates {|us〉} satisfy the properties

1√
r

r−1∑
s=0

|us〉 = |1〉 (20.15)

and

1√
r

r−1∑
s=0

e
2iπks

r |us〉 = |xk mod N 〉, (20.16)

which are also left as easy exercises to prove. The property in Eq. (20.15) is rather
convenient, since we do not know how to define the state |us〉, which is a function of the
unknown parameter r to be estimated! Recall, indeed, from the previous section, that
if we do not know the eigenstate to input to the phase-estimation circuit, we can still
use an eigenstate superposition, here, namely, a known state |1〉 of some arbitrary qubit
dimension L . The nice additional feature is that the coefficients in the superposition
correspond to a uniform probability distribution p(s) = |cs |2 = 1/r , for the register
measurement and phase estimation.

The next step will show that using |1〉 as the input to the second register of the phase-
estimation circuit yields, as the output of the front-end module, a K superposition of the
states |k〉 ⊗ |xk mod N 〉. The property in Eq. (20.16) then makes it possible by inverse
Fourier transform (back-end module) to obtain a fair estimation ϕ̃s of the actual phase
ϕs = s/r . Let us see now in detail how the state evolves step by step through the phase-
estimation circuit, which is represented in Fig. 20.3. We assume that the first, control,
and second, target, register sizes are K and L = �log2 N�, respectively, with the relation
between the two to be specified later on. The controlled-U j gates perform the application

20.2 Order finding 407

of operator U , as defined in Eq. (20.12), to the power j = 20, 21 . . . 2K−1 = 1 . . . K .
Consistently, we have for the target qubit |1〉{

CU j (|0〉 ⊗ |1〉) = |1〉
CU j (|1〉 ⊗ |1〉) = |x j mod N 〉. (20.17)

As seen from Fig. 20.3, the combined register input (➀) is

|ψ1〉 = |0〉⊗K ⊗ |1〉. (20.18)

After passing through the Hadamard gate (➁) the state has evolved into3

|ψ2〉 = 1√
M

(|0〉 + |1〉)⊗K ⊗ |1〉

= 1√
M

M−1∑
j=0

| j〉 ⊗ |1〉,
(20.19)

with M = 2K , as a recall. After application of the controlled-U j gate (➂) we obtain the
state

|ψ3〉 = 1√
M

M−1∑
j=0

CU j | j〉 ⊗ |1〉

= 1√
M

M−1∑
j=0

| j〉 ⊗ |x j mod N 〉.
(20.20)

Substituting then the property in Eq. (20.16), effecting the index change j → k for
reading convenience, and introducing ϕs = s/r , we obtain, equivalently:

|ψ3〉 = 1√
M

M−1∑
k=0

|k〉 ⊗ 1√
r

r−1∑
s=0

e2iπk s
r |us〉

=
r−1∑
s=0

(
1√
M

M−1∑
k=0

e2iπkϕs | j〉
)

⊗ 1√
r
|us〉.

(20.21)

Next, in ➃ we apply the inverse Fourier transform to the first register, whose contents are
expressed in parenthesis in Eq. (20.21). In this expression, we recognize the same state
superposition as in Eq. (20.9). As we have previously seen, the inverse Fourier transform
of this superposition leads to a fair approximation |ϕ̃s〉 of the state |ϕs〉. Therefore, the

3 For the tensor product to the summation conversion, see previous note, while setting ϕ = 0. In Eq. (20.20),
we also used the property according to which

CU j | j〉 ⊗ |1〉 =
∣∣∣x j12K−1

mod N
〉∣∣∣x j22K−2

mod N
〉
· · ·

∣∣∣x jK 20
mod N

〉
=

∣∣∣x j12K−1 × x j22K−2 × · · · × x jK 20
mod N

〉
=

∣∣∣x j12K−1+ j22K−2+···+ jK 20
mod N

〉
≡ |x j mod N 〉.

408 Shor’s factorization algorithm

circuit output can be expressed in the form:

|ψ4〉 = 1√
r

r−1∑
s=0

|ϕ̃s〉 ⊗ |us〉 . (20.22)

A measurement of the first register projects the superposition in Eq. (20.22) into one
of the r states |ϕs〉, with uniform probability p(s) = 1/r , which then yields the ratio
s/r , corresponding to the phase estimation ϕ̃s ≈ ϕs = s/r associated with the eigenstate
|us〉.

As discussed in the previous section, if the control register size, K , is set to K =
l + �log2[2 + 1/(2ε)]�, the measurement ϕ̃s is an approximation of ϕs = s/r that is
accurate up to 2−l , with a probability of success of at least 1 − ε. Assume here that we
require an accuracy of l = 2L + 1 bits, a specific but most useful condition that will be
justified later. The control register size is, thus, set to K = 2L + 1 + �log2[2 + 1/(2ε)]�.

The next step consists in the evaluation of the number r , given the knowledge of the
ϕ̃s measurement, with s ∈ {0, 1, 2, . . . , r − 1} being random, and the fact that s/r < 1
is a rational number, i.e., the ratio of two bounded integers, p, q. The determination of
r requires a classical computation, which is based on the continued fraction expansion
algorithm described in the next section.

20.3 Continued fraction expansion

In this section, I introduce the continued fraction expansion (or continued fraction
algorithm), and show how it can be applied to determine an integer r from a given
rational number s/r < 1.

The principle of the expansion is to express a rational number a = p/q, with p, q
having no common factor, into a unique and finite suite, or expansion of positive integers
[a0, a1, . . . , an] and satisfying

a = a0 + 1

a1 + 1

a2 + 1

· · · + 1

an

. (20.23)

To provide an example, take a = 57/21. We obtain

57

21
= 2 + 15

21
= 2 + 1

21

15

= 2 + 1

1 + 6

15

= 2 + 1

1 + 1
15

6

= 2 + 1

1 + 1

2 + 3

6

≡ 2 + 1

1 + 1

2 + 1

2

,
(20.24)

20.3 Continued fraction expansion 409

which yields the expansion [2, 1, 2, 2]. We note that the iteration of this “split and
invert” expansion always stops at some point, since the numerator in the last fraction at
the bottom at each step decreases, eventually reducing to one. The lesson learnt is that
any rational number a = p/q lends itself to a continued fraction expansion having a
unique signature suite [a0, a1, . . . , an].

Given the measurement ϕ̃ = x , with x being some approximation of ϕ = s/r , our
task is now to identify a rational number s/r , called convergent of x , which may closely
approach x . To do this, we must use some key properties of the continued fraction
expansion, which are described in Appendix R. Here, we shall only need the final
property. This property states that given a rational number x , and two co-prime integer
numbers s, r satisfying ∣∣∣ s

r
− x

∣∣∣ ≤ 1

2r2
, (20.25)

the ratio s/r is convergent on x . This is where the choice of register size and phase
accuracy we made in the previous section comes into the picture and becomes justified.
With such a choice, indeed, we know that the phase estimation x is accurate up to
2−l = 1/22L+1. Since we inherently have r ≤ N , and also N ≤ 2L by definition, we
have r ≤ N ≤ 2L , thus, 1/(2r2) ≤ 1/22L+1 and, therefore, the condition in Eq. (20.25)
applies. The continued fraction expansion of ϕ̃ = x , can be computed classically through
the algorithm described in Appendix R, as also illustrated with a practical numerical
example. The algorithm yields a finite series of rational numbers s ′/r ′, which from the
above condition, are known to be convergent on s/r . The convergent s ′/r ′ that most
closely approaches the upper bound defined in Eq. (20.25) is the one for which r ′ = r ,
concluding the search.

The following discussion, which can be skipped to keep the focus on this chapter,
addresses some fine points about the success probability and the implementation cost
of the order-finding algorithm. Suffice it to state that the algorithm efficiently yields the
order of N and that the complexity or cost is O(L3), namely, that the answer can be
obtained in polynomial time.

Discussion

(i) Since the above determination of s/r (and hence of r) is only probabilistic, there
exists a finite chance that it may fail. As we have seen, the probability of failure is,
at most, ε, which can be made arbitrarily small through an adequate choice of the
control register size, K . Independently of such probability considerations, checking
whether or not the determination is successful is immediate: it is only necessary
to calculate xr ′

mod M and verify that the result is unity. In case of failure, the
algorithm may be repeated, with the probability of failing again being, at most, ε2.
Another possibility of failure (xr ′

mod M �= 1) is that s and r turn out to have a
common factor, or be not co-prime. In this case the continued fraction algorithm
yields a multiple of r . Recall that the phase estimation produces an estimate of s/r
with s ∈ {0, 1, 2, . . . , r − 1} being a uniformly distributed random number. There

410 Shor’s factorization algorithm

is, indeed, a finite chance that s, r is not co-prime. It has been established from theory
that the number of primes under a given integer r is at least r/ ln r .4 This means that
any positive number less than r , as selected at random, has a probability of at least
1/ ln r of being prime. Therefore, the probability that s, r (0 < s < r, r < N) are
co-prime is at least 1/ ln r > 1/ ln N . Hence, it takes one to implement the phase
measurement up to ln N times to obtain with reasonably high probability a co-prime
pair s ′, r ′ for which r ′ = r .

(ii) What is the cost of implementing the order-finding algorithm? Looking at
Fig. 20.3, we observe that the corresponding quantum circuit includes (a) K
Hadamard gates (H⊗K), (b) an L-qubit modular-exponentiation circuit (U j),
and (c) a K -qubit inverse Fourier transform circuit (FT+). Since K = 2L + 1 +
�log2[2 + 1/(2ε)]�, given ε the number of required gates in case (a) is of the order
O(L), and in case (c) it is of the order O(K 2) = O(L2), as established in Chapter
19. The modular exponentiation in case (c) requires a number of gates of the
order of O(L3). This is explained by the fact that computing |x j mod N 〉, with
j = 0, 1 . . . 2K , requires up to K − 1 modulo N squaring operations (x21 = (x20

)2,
x22 = (x21

)2, . . . , x2K−1 = (x2K−2
)2, with each squaring operation having a cost of

O(K 2) gates,5 resulting in an overall cost of O(K 3) ≡ O(L3) gates. Finally, the con-
tinued fraction expansion, which is to be implemented with a classical computer,
has a cost of O(L3) elementary operations. This is because the algorithm takes L
split-and-invert steps, since s, r are L-bit integers, each of these steps requiring a
number of basic arithmetic operations of the order O(L2) (see Appendix R, namely,
the operations un = 1/(un−1 − an−1) and the validation test 1/2q2

n − � in Table
R1). The key conclusion is that the order-finding algorithm has a complexity of
O(L3) and, therefore, can be run in polynomial time.

20.4 From order finding to factorization

In this section, we describe how the quantum order-finding algorithm makes it possible to
factorize composite numbers into primes, a problem also known as prime decomposition.
Before going into the mathematical detail of the description, it is useful to outline the
problem of factorizing composite numbers and its difficulty, as viewed from a classical
computation perspective.

It is a fundamental property that all integer numbers can be uniquely generated by
products of prime numbers and their powers. This is illustrated in Table 20.2 for numbers
up to N = 30.6 By definition, a composite number is a product of at least two prime
numbers. For numbers up to a few hundreds, the task of factorizing can be performed

4 The number of primes less than x corresponds to the heuristic function called π (x). The “prime number
theorem” states that the number of primes not exceeding x is asymptotic to x/ ln x . Actually, a finer approx-
imation to π (x) is x/(ln x − 1). For reference, see, for instance, http://primes.utm.edu/howmany.shtml.

5 Indeed, it is easily checked that multiplying two numbers with N and M decimals (or bits) requires N × M
individual multiplications and N × M − 1 additions of the resulting terms. The number of gates is thus
O(N × M), or O(N 2) for a squaring operation (N = M).

6 A complete list of prime factors up to N = 1000 is available at http://en.wikipedia.org/wiki/Table_
of_prime_factors.

20.4 From order finding to factorization 411

Table 20.2 Factorization of integers into primes up to N = 30.

N N N N N N

1 – 6 2 × 3 11 11 16 24 21 3 × 7 26 2 × 13
2 2 7 7 12 22 × 3 17 7 22 2 × 11 27 33

3 3 8 23 13 13 18 2 × 32 23 23 28 22 × 7
4 22 9 32 14 2 × 7 19 19 24 23 × 3 29 29
5 5 10 2 × 5 15 3 × 5 20 22 × 5 25 52 30 2 × 3 × 5

mentally. This is because we have our multiplication tables memorized, which leaves
out a list of the first prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, . . . It only takes a few divisions to hit one or two numbers from such a short list. For
greater numbers that can be entered into a pocket calculator or a computer spreadsheet,
the problem of factorizing is also elementary. The basic approach consists of the routine
of successively attempting to divide N by all known prime numbers lower than

√
N , and

repeating such a trial division until complete prime factoring is obtained. Extensive lists
of the known prime numbers, up to 15 million, are available on the Internet,7 making
it possible to implement such a trial division algorithm. More practical and efficient
algorithms exist, however, named after Pollard, William, Lenstra, Fermat, Dixon, and
Shank, and also under different variants of the so-called “number field sieve.”8 The
most efficient one is the general number field sieve (GNFS) algorithm, which applies
to numbers having more than 100 binary digits. It is not the point here to describe the
GNFS algorithm and its variants, but only to mention that its complexity (the minimum
computing program length, see Chapter 7) is defined by:9

C = exp
{
[const + O(1)] × (ln N)

1
3 (ln ln N)

2
3
}
. (20.26)

It can be shown that the best GNFS algorithm variant has a computational order of

O

{
exp

[
64

9
(ln N)

1
3 × (ln ln N)

2
3

]}
= O

{
exp

[
64

9
k

1
3 × (ln k)

2
3

]}
, (20.27)

where k ≈ log N is the binary size of the number N to be factorized. Thus, classical
implementation of prime decomposition is subexponential, but superpolynomial in num-
ber (bit) size. To show that the above conclusion is not innocuous, assume that the size is
k = 100. We obtain from Eq. (20.27) the result O [f (N)] ≈ 4.7 × 1039. For k = 1000,
we obtain O [f (N)] ≈ 1.0 × 10112. For a classical computer having the computing power
of one Giga (109) operations per second, or 3 × 1016 operations per year, just factoring a
k = 100 number according to GNFS would require some 23 years, or, say, implementing
about 100 such computers running in parallel for a duration of three months. We should
now be convinced, if needed, that the factoring problem is nontrivial when it comes to
relatively large numbers. This point is illustrated by the RSA challenge.10 The company

7 See, for instance: http://en.wikipedia.org/wiki/List_of_prime_numbers; www.math.utah.edu/∼pa/math/
primelist.html; http://primes.utm.edu/lists/small/1000.txt; http://primes.utm.edu/lists/small/millions/.

8 See http://en.wikipedia.org/wiki/Integer_factorization.
9 See http://en.wikipedia.org/wiki/General_number_field_sieve.

10 See www.rsa.com/press_release.aspx?id=3520.

412 Shor’s factorization algorithm

RSA offers substantial prizes for teams who may succeed in factoring composite num-
bers of various sizes, i.e., given N , finding primes p, q such that N = pq. The latest
challenge to be solved, called RSA_640, was reported on November 2005.11 The number
to be factorized had 193 digits, corresponding to 640 bits:

N = 3 107 418 240 490 043 721 350 750 035 888 567 930 037 346 022 842 727 545

720 161 948 823 206 440 518 081 504 556 346 829 671 723 286 782 437 916 272

838 033 415 471 073 108 501 919 548 529 007 337 724 822 783 525 742 386 454

014 691 736 602 477 652 346 609,

which decomposes into the two primes:

p = 1 634 733 645 809 253 848 443 133 883 865 090 859 841 783 670 033 092 312 181

110 852 389 333 100 104 508 151 212 118 167 511 579,

q = 1 900 871 281 664 822 113 126 851 573 935 413 975 471 896 789 968 515 493 666

638 539 088 027 103 802 104 498 957 191 261 465 571.

The computation of p, q took the equivalent of 30 CPU years, using 80 processors
at 2.2 GHz clock cycle, and spread over 5 months of calendar time. The highest and
yet unsolved challenge, RSA-2048, is a 2048-bit or 617-digit number. According to
Eq. (20.27), its factorization is of the order O [f (N)] ≈ 8.5 × 10151. It is clear that
solving this last challenge will require even more substantial computing power and
resources, along with new and significant progress in factorization algorithms, which
may take a few decades. It is tempting to speculate that, by that time, factorization of
such big numbers might be routinely performed by quantum computers through Shor’s
algorithm! Only history will tell.

We now return to the core subject of this section, which is the connection between
order finding and factoring. This connection requires two key theorems, which I am
going successively to describe, comment, and illustrate with examples. It is assumed
that N is a composite number of size L bits, and that x is an integer number such that
1 ≤ x ≤ N − 1. The notation GCD(n, m) corresponds to the greatest common divider
between two integers n, m.

T 20.1 If x is a nontrivial solution of x2 = 1 mod N, then either
GCD(x − 1, N) or GCD(x + 1, N) is a factor of N; such a factor is computable in
O(L2) operations.

In the above, the two trivial solutions of x2 = 1 mod N to be discarded are x =
±1 mod N corresponding to x = 1 and x=N−1. By assumption, therefore, the solution
x is in the range 1 < x < N − 1. We have x2 − 1 = 0 mod N, which shows that N
divides by x2 − 1 = (x + 1)(x − 1), or, equivalently, that N has a common factor with
either x − 1 or x + 1. We note that such a common factor cannot be N itself, since
x − 1 < x + 1 < N. Thus the factor is found by computing both GCD(x − 1, N) and
GCD(x + 1, N).

I shall now illustrate Theorem 1 through two basic examples.

11 See http://mathworld.wolfram.com/RSANumber.html.

20.4 From order finding to factorization 413

Table 20.3 Values of x2 = z mod N for N = 35 and 1 < x < N − 1.

x z x z x z x z x z

1 8 29 15 15 22 29 29 1
2 4 9 11 16 11 23 4 30 25
3 9 10 30 17 9 24 16 31 16
4 16 11 16 18 9 25 30 32 9
5 25 12 4 19 11 26 11 33 4
6 1 13 29 20 15 27 29 34
7 14 14 21 21 21 28 14 35

As a first example, assume the composite number N = 35. The values of x2 =
z mod 35 are listed in Table 20.3. We observe from the table that x2 = 1 mod 35 has two
nontrivial solutions x1 = 6 and x2 = 29 ≡ −6 mod 35, or, equivalently, x = ±6 mod
35. With the solution x1 = 6, we obtain GCD(x1 − 1, N) = GCD(5, 35) ≡ 5 and
GCD(x1 + 1, N) = GCD(7, 35) ≡ 7. With the other equivalent solution x2 = 29, we
obtain GCD(x2 − 1, N) = GCD(28, 35) = 7 and GCD(x2 + 1, N) = GCD(30, 35) ≡
5. Thus, any of the solutions yield two GCDs that are both factors of N = 35.

As a second example, assume the composite number N = 561. With a tabulating
spreadsheet, we find the solutions x2 = 1 mod 561 to be x1 = 67, x2 = 188, x3 = 254,
x4 = 307, x5 = 373, and x6 = 494, or, equivalently, x = ±67, ±188, ±254. We can find
GCD(xi ± 1, N) by means of the extended Euclidian algorithm.12 Given two numbers
a, b such that a > b, the algorithm can be summarized through the iterated operation:

(a, b) → (a′, b′) = (b, a mod b), (20.28)

which at the stage where b′ = 0 yields a′ = GCD(a,b). Let us illustrate the algorithm
through a basic example. Considering a = 561 and b = 189 for instance, we obtain the
following iteration:

(561, 189) → (a′, b′) = (189, 183)
(189, 183) → (a′, b′) = (183, 6)

(183, 6) → (a′, b′) = (6, 3)
(6, 3) → (a′, b′) = (3, 0).

The result obtained in the final iteration (where b′ = 0) shows that GCD(561, 189) = 3.
Using the algorithm and a computing spreadsheet, we easily obtain for the solutions
x1, x2, x3:

GCD(x1 − 1, N) = GCD(66, 561) ≡ 33
GCD(x1 + 1, N) = GCD(68, 561) ≡ 17
GCD(x2 − 1, N) = GCD(187, 561) ≡ 187
GCD(x2 + 1, N) = GCD(189, 561) ≡ 3
GCD(x3 − 1, N) = GCD(253, 561) ≡ 11
GCD(x3 + 1, N) = GCD(255, 561) ≡ 51.

12 See, for instance: http://en.wikipedia.org/wiki/Euclidean_algorithm.

414 Shor’s factorization algorithm

It is readily checked that 561 = 33 × 17 = 3 × 187 = 11 × 51 ≡ 3 × 11 × 17, which
shows that GCD(xi ± 1, N) is always a factor of N . We also observe that given a single
solution xi , one of the two corresponding GCD, i.e., GCD(xi ± 1, N), is a prime factor
of N (namely, 3, 11, or 17). The calculation of the six GCDs corresponding to the three
solutions x1, x2, x3, namely, GCD(x1 ± 1, N), GCD(x2 ± 1, N), and GCD(x3 ± 1, N),
thus, makes it possible to factorize N completely.

The lesson learnt from Theorem 1 and these two illustrative examples is that the
knowledge of any single (nontrivial) solution of x2 = 1 mod N yields two factors of N .
The complete factorization of N can, thus, be achieved by repeating the process with the
remaining factors (call any of these N ′), provided that for each we can find a solution
of x2 = 1 mod N ′. What is the computation cost of the algorithm used to determine the
GCDs? There exist several possible answers to this question, depending on the algorithm
choice and its implementation. It can be shown that for L digit numbers, the extended
Euclidian algorithm complexity is of the order of O(L2) or better and, furthermore, that
there exist other algorithms for which finding the GCD is reduced to O[L(ln L)2 ln ln L].
The continued fraction expansion algorithm, which was described in Section 20.3, can
be also implemented for this purpose but, as we have seen, its complexity is O(L3). Here,
we may only retain that finding the GCD through the extended Euclidian algorithm is,
at most, of the order of O(L2).

While Theorem 1 enables one to factorize a given composite number N rapidly, it
exclusively relies on prior knowledge of at least one nontrivial solution of x2 = 1 mod N .
But how can we get this knowledge? This is where the order-finding algorithm, which
was described in Section 20.2, nicely comes to the rescue. As we have seen, given
any integer x , such that 1 ≤ x ≤ N − 1, the order of x modulo N is the smallest
number r for which xr = 1 mod N . In the case where r is even, let y = xr/2. We, thus,
have y2 = 1 mod N , which shows that y is a solution of the Theorem 1 equation. If
y �= ±1 mod N , then y is a nontrivial solution of the equation and, according to the
theorem, GCD(y ± 1, N) = GCD(xr/2 ± 1, N) is a factor of N . In this case, the order-
finding algorithm successfully yields a determination of a factor of N . If y is a trivial
solution, the algorithm fails, and the order-finding algorithm must be implemented again,
using a different trial value for x . The same conclusion applies when r turns out to be
odd. The fact that the algorithm may fail should not be perceived as an embarrassing
weakness of the factoring endeavor. It just takes a finite number of order-finding trials
(each of O(L3)) to lead to a successful and conclusive step, and as many such trials
to eventually achieve the full factorization. Actually, a second theorem shows that the
convergence of the algorithm is strong. This theorem states:

T 20.2 Given N, an odd composite integer with the factorization N =
pα1

1 pα2
2 . . . pαk

m , where pi are prime numbers (αi integers), and given an integer x chosen
at random in the interval [1, N − 1] and co-prime to N, the probability that r is even
and y = xr/2 is a nontrivial solution of y2 = 1 mod N satisfies

p ≥ 1 − 1

2m
. (20.29)

20.5 Shor’s factorization algorithm 415

This second theorem shows that the probability of successfully obtaining a factor of N
rapidly increases with the number m of prime factors. In the most basic case m = 2 (as in
the above-described RSA challenge), we have p ≥ 1 − 1/22 = 0.75. This corresponds
to a 25% probability of failure, which reduces to less than 0.5% in four successive
trials! Since any composite is at least the factor of two primes, this failure probability
actually represents an upper bound for all possible composites. Theorem 2 is also a
very strong one: to implement the order-finding algorithm and find the factors of N if
successful, we are allowed to choose at random any integer x , provided it be co-prime
to N . The test is only a matter of calculating GCD(x, N), at a mere O(L2) cost. It is an
academic issue to prove Theorem 2, which I shall not address here. The key lesson learnt
is that the order-finding algorithm leads to efficient and rapid factorization of composite
numbers. Basically, this whole description constitutes the essence and ingredients of
Shor’s factorization algorithm, to be summarized and illustrated in the next section.

20.5 Shor’s factorization algorithm

The rewards of going through the preceding sections and tedious developments are now
at hand. In fact, this section does not bring any new concept in this respect. It only consists
in the formalization of Shor’s factorization algorithm. There are many possible ways
to formalize an algorithm, from a list of practical steps with programming flow charts,
to more mathematically abstract and academic definitions. Here, I shall follow the first
approach and also provide some illustrations. It is brought to the reader’s attention that to
date, there exists no classical computer algorithm making it possible to implement order-
finding in polynomial time. The order-finding algorithm, the key constituent in Shor’s
factorization, is to be implemented in a hypothetical quantum-computing or quantum-
phase-estimation circuit, as illustrated in Fig. 20.3. As we have seen, the rest is only a
matter of classical computation with an overall O(L3) or O[(log N)3] complexity.

We may first make a few assumptions to simplify the algorithm description. First,
the composite number N must be odd. The test is immediate, based on the value
of the last or lowest-weight binary digit. Second, it must not be a trivial product of
small prime numbers and their powers. For instance N = 15, 27, 39, 144 are trivial
composites for the human brain. For a supercomputer, which has in its memory the list
of the first 1000 prime numbers (for instance), and look-up tables of the type shown
in Table 20.2 giving the basic factorizations, thereof, there exist millions of “trivial”
composites that can be factorized in milliseconds or faster. In such cases, there is no
point whatsoever in considering Shor’s algorithm! Another trivial case (as viewed from
a computer perspective) is when there exist two integers a ≥ 1 and b ≥ 2, such that
N = ab. It is an academic issue, not addressed here, to establish that the solution a, b
can be classically obtained in O(L3) time. The problem is, thus, reduced to the factoring
of a. It can be assumed that given N , all of the above tests, forming a “preamble” prove
negative, and this is where Shor’s algorithm must be implemented, as described in the
following.

416 Shor’s factorization algorithm

quantum

1- Randomly chose

STEP

[]2,2 −∈ Nx

),(NxGCDCalculate , and if , redo1>

2- Find , the order of modulo x Nr

> Make measurement of quantum phase '/'~ rs=ϕ
> Get through the continued fraction expansion of ϕ~r

> Check that , and if not redoNx r mod1=

3- Calculate

> Check that is even and , if not go to 1 Nx r mod12/ −≠r

() ()NyGCDNNyGCDN ,1",,1' −=+=

4- Factorize (as applicable) ",' NN

Figure 20.4 Step-by-step implementation of Shor’s algorithm for nontrivial composite number N
of bit size L , returning all factors of N ′.

Shor’s algorithm

Here is a step-by-step description, which is also schematically illustrated in Fig. 20.4.

Step 1 Choose at random x ∈ [2, N − 2] and test if x, N are co-prime. If the test fails,
then another x must be selected.

Step 2 Find r , the order of x modulo N . This is done through the quantum phase
measurement or estimation, ϕ̃ = s ′/r ′, and the continued fraction expansion
algorithm, which yields r ′ = r , as described in Section 20.3. We then check
that xr ′ = 1 mod N . As we have seen, there exists a small yet finite probability
that this operation may fail, in which case this test is negative, and we may just
try another phase measurement to obtain a different phase estimate, ϕ̃. Then we
must ensure that r is even, and also that y = xr/2 �= −1 mod N is a nontrivial
solution.13 If the test is negative, the whole process may be restarted at Step 1
(Theorem 2 ensures, however, that the success probability is high).

Step 3 Calculate GCD(y ± 1, N), which yields two factors of N , call them N ′, N ′′.
Then N ′, N ′′ can be submitted to the aforementioned “preamble” tests, to
identify whether further factorizing through Shor’s algorithm may be warranted.

Step 4 As applicable, N ′, N ′′ may be factorized in turn, starting again from step 1.

According to the above rendition of Shor’s algorithm, the end result is a prime
decomposition of two factors of N , according to N = pα1

1 pα2
2 M . In the case where

M > 1, the “preamble” tests may be implemented for the possibility of trivial factoriza-

13 As a matter of fact, given r being even, the test xr/2 �= 1 mod N does not need to be performed, as this
condition is implicitly verified should x be selected from the interval [2, N − 1], or x �= 1. This is because
r is, by definition, the smallest integer verifying xr = 1 mod N . Since r is even, then r/2 is an integer.
Then if we had xr/2 = 1 mod N with x �= 1, the period of x would be r/2 and not r , which proves the
point.

20.6 Factorizing N = 15 and other nontrivial composites 417

tion. As applicable, Shor’s algorithm may otherwise be called upon again to factorize
M , and so on until we obtain the full prime-factor decomposition N = pα1

1 pα2
2 . . . pαk

m .

20.6 Factorizing N = 15 and other nontrivial composites

In this section, I shall consider illustrative examples of Shor’s factorization algorithm,
using nontrivial composite cases (the notion of trivial composites will be specified
further down). This will also show how one can simplify the inverse Fourier transform
operation (FT+) in the quantum phase-estimation circuit, and estimate the probability
distribution function of the phase measurement.

Assume, for instance, the composite number N = 15. We must set L = �log2 N� = 4
for the size of the second or target register, and for an error probability of at most
ε = 0.25, we must also set K = 2L + 1 + �log2[2 + 1/(2ε)]� = 11 for the size of the
first or control register. Thus, M = 2K = 211 = 2048. We then select “at random” from
the interval [2, N − 2] the value x = 8, which meets the requirement of being co-prime
to N . The qubit tensor input to the phase-estimation circuit in Fig. 20.3 is |ψ1〉 =
|0〉⊗K ⊗ |1〉, Eq. (20.18). After passing through the Hadamard gate, it is transformed
into (Eq. (20.19)):

|ψ2〉 = 1√
M

M−1∑
j=0

| j〉 ⊗ |1〉

= 1√
213

(|0〉 + |1〉 + |2〉 + · · · + |M − 1〉) .

(20.30)

After application of the controlled-U j gate, we obtain the state (Eq. (20.20)):

|ψ3〉 = 1√
M

M−1∑
j=0

| j〉 ⊗ |x j mod N 〉

= 1√
M

M−1∑
j=0

| j〉 ⊗ |8 j mod 15〉

= 1√
M

|0〉|1〉 + |1〉|8〉 + |2〉|4〉 + |3〉|2〉
+ |4〉|1〉 + |5〉|8〉 + |6〉|4〉 + |7〉|2〉
+ |8〉|1〉 + |9〉|8〉 + |10〉|4〉 + |11〉|2〉 + · · ·

= 1√
M

(|0〉 + |4〉 + |8〉 + · · ·) |1〉
+ (|1〉 + |5〉 + |9〉 + · · ·) |8〉
+ (|2〉 + |6〉 + |10〉 + · · ·) |4〉
+ (|3〉 + |7〉 + |11〉 + · · ·) |2〉

 .

(20.31)

The state |ψ3〉 in Eq. (20.31) can also be put in the form:

|ψ3〉 = |u1〉 ⊗ |1〉 + |u2〉 ⊗ |8〉 + |u3〉 ⊗ |4〉 + |u4〉 ⊗ |2〉, (20.32)

418 Shor’s factorization algorithm

k

0 512 1024 1536 2048 = M

2047 = M − 1p(k)

0.25

Figure 20.5 Plot of the distribution p(k) = |αk |2 in the definition interval k ∈ [0, M − 1].

with

|u1〉 = 1√
M

(|0〉 + |4〉 + |8〉 + · · ·)

|u2〉 = 1√
M

(|1〉 + |5〉 + |9〉 + · · ·)

|u3〉 = 1√
M

(|2〉 + |6〉 + |10〉 + · · ·)

|u4〉 = 1√
M

(|3〉 + |7〉 + |11〉 + · · ·).

(20.33)

If at this stage (➂ in Fig. 20.3) we perform a measurement of the second register, which
is no longer used, Eq. (20.32) shows that we may obtain at random any of the values
z = 1, 8, 4, or 2, with a uniform probability of 1/4. Such a measurement causes the
first register to collapse into the corresponding state |u1〉 , |u2〉 , |u3〉, or |u4〉 with a new
normalization factor of 1/

√
4. We could also make the same measurement at ➃, namely,

after the first register has been submitted to the inverse Fourier transform, FT+, and even
further down in the circuit, i.e., after the first register has been measured. Intuitively, the
measurement statistics of the second register are not affected by the transformation and
measurement of the first register, and the reverse. This principle can be stated as “any
quantum wires whose qubits are not measured at the end of a quantum circuit may yet
be assumed to be also measured, without affecting any other measurement statistics.”
It remains a fine point to analyze this principle academically, but here we shall take
its validity for granted. Assume, then, that our measurement of the second register
would be z = 8 (any other value giving identical results as the conclusion). Thus, in
the first register, the input to the inverse Fourier transform circuit would be |u2〉. After
transformation, the first register output is

FT+ |u2〉 =
M−1∑
k=0

αk |k〉, (20.34)

where p(k) = |αk |2 represents the probability distribution of the final measurement of the
first register. The detailed computation of the distribution p(k) is given in Appendix S.
The resulting distribution is plotted in Fig. 20.5. As we see from the figure, the
distribution exhibits four equiprobable peaks (pmax = 0.25) at the register locations
k = 0, 512, 1024, 1536, with any other measurement probabilities being zero. This

20.6 Factorizing N = 15 and other nontrivial composites 419

probability distribution represents the ideal measurement conditions with zero failure.
As we have learnt, the actual measurement is successful only within some error proba-
bility ε, which is a function of the register size K , and which has been set in this example
to ε = 0.25. To recall, this failure probability can be made as small as desired, hence
making the measurement reality closer to the ideal probability distribution shown in Fig.
20.5. The existence of four equiprobable probability peaks betrays the periodicity of the
function xn mod N , which is of the order r = 4. But the experimentalist has no precon-
ceived idea of this, and is allowed to make only a few measurement attempts. Then it is
equally likely for each of the measurements to hit the values ki = 0, 512, 1024, or 1536.
To recall, these measurements correspond to the phase ϕ̃ ≈ ϕ = s/r , with 0 ≤ ϕ ≤ 1
being defined in K bits. The measurement, thus, corresponds to the rational numbers
ki/M = ki/2K = ki/213 = ki/2048, corresponding to the four possible determinations
ϕ̃:

0

2048

∣∣∣∣
ki=0

,
512

2048

∣∣∣∣
ki=512

,
1024

2048

∣∣∣∣
ki=1024

,
1536

2048

∣∣∣∣
ki=1536

.

The first determination, ki = 0, does not give any clue as to the order r . Measur-
ing it is, therefore, a failed attempt. Consider the next two other determinations, i.e.,
ki = 512, 1024. We have k1 = 512/2048 = 1/4 and k2 = 1024/2048 = 1/2. These two
rational numbers do not meet the condition in Eq. (20.25) since (1, 4) and (1, 2) are not
co-prime. Therefore, they cannot be convergent on ϕ. The last possible measurement,
k3 = 1536 lends itself to the continued fraction expansion:

k3 = 1536

2048
= 1

1 + 1

3

,

which, according to the algorithm (see Appendix R) gives the series of fractions p0/q0 =
0/1, p1/q1 = 1/1, and p2/q2 = 3/4. Since (3, 4) are co-prime, the fraction 3/4 is a
convergent of ϕ and thus r = q2 = 4 is of the order of x . Luckily, r = 4 is even,
and, furthermore, we have xr/2 mod N = 82 mod 15 = 4 mod 15 �= ±1 mod 15, which
shows that the solution xr/2 = 82 = 64 is valid (it can also be checked that xr = 84 =
1 mod 15, but this test does not need to be made). Therefore, two factors N ′, N ′′ of
N = 15 are

N ′ = GCD(xr/2 − 1, N) = GCD(63, 15) ≡ 3,

N ′′ = GCD(xr/2 + 1, N) = GCD(65, 15) ≡ 5,

which concludes Shor’s factorization algorithm. Since both factors N ′, N ′′ are prime,
the factorization of N is also complete! As we have seen, however, the algorithm
succeeded in this example because (a) one of the four possible measurements yielded
a valid convergent of ϕ, (b) the order r turned out to be even, and (c) the condition
xr/2 �= −1 mod 15 was satisfied. In the case where any of these prerequisites is not met,
the algorithm would have failed. Provided we obtained a convergent of ϕ, it turned out
that the random selection x = 8 was a “lucky” one. Then what are the other alternatives

420 Shor’s factorization algorithm

Table 20.4 Possibilities of selecting x towards the factorization
of N = 15 through Shor’s algorithm, with corresponding order
r, test xr/2 �= ±1 mod N , and number m of convergents.

x r xr/2 mod N m

2 4 4 1
4 2 4 0
7 4 4 1
8 4 4 1

11 2 11 0
13 4 4 1

and chances of failure under any other random selection for x? The answer is provided
in the following discussion.

Discussion

To factorize N = 15, we must randomly select x in the interval x ∈ [2, N − 2], with
the condition that (x, N) be co-prime. This leaves x = 2, 4, 7, 8, 11, 13 as the only six
possibilities of fully implementing the algorithm. We then use a computer spread-
sheet to obtain the order r “classically” (this being not part of Shor’s algorithm,
but just a computing means for the purpose of the analysis). The results are listed
in Table 20.4, along with the test xr/2 mod N and the number m of convergents.
It is seen from the table that the order of x is either r = 2 (x = 4, 11) or r = 4
(x = 2, 7, 8, 13), and that both pass the test xr/2 �= ±1 mod N . Consider the case
r = 4, and assume the register size K = 211 = 2048 (L = 4 bits). This case is wholly
identical to the previously described example where x = 8 was assumed. Then if we
implement Shor’s algorithm (namely without any prior knowledge of r), we have equal
probabilities of measuring k = 0, 512, 1024, 1536, corresponding to the determinations
ϕ̃ = 0/2048, 512/2048, 1024/2048, 1536/2048. As we have seen, only the fourth one,
ϕ̃ = 1536/2048 = 3/4, is a convergent of ϕ. Thus, only one measurement in four pos-
sibilities leads to a successful answer. If, on the other hand, our random selection is
x = 4, 11, the probability distribution has only two peaks corresponding to the determi-
nations ϕ̃ = 0/2048 and ϕ̃ = 1024/2048 = 1/2. Since none is a convergent of ϕ, the
algorithm fails, and we must try it again with a different value of x . To summarize,
the chances of randomly selecting the lucky values x = 2, 7, 8, 13 out of N − 3 = 12
possibilities in the interval x = [2, N − 2] are p(1)

1 = 4/12 = 1/3, and the chances that
the output measurement leads to a convergent are p(1)

2 = 1/4. On the other hand, the
chances of randomly selecting the “unlucky” values x = 4, 11 are p(1)

1 = 2/12 = 1/6,
and the chances that the output measurement leads to a convergent are p(1)

2 = 0. Over-
all, the chances of the algorithm concluding successfully in a single run, based on any
random selection of x are given by the probability indicator

� =
2∑

i=1

p(i)
1 p(i)

2 = p(1)
1 p(1)

2 + p(2)
1 p(2)

2 , (20.35)

20.6 Factorizing N = 15 and other nontrivial composites 421

Table 20.5 First group of composite numbers N = pq (p, q = 3, 5, 7, . . . , 37) eligible for factorization,
up to N = 1147, eliminating N = ab (as shaded).

3 5 7 11 13 17 19 23 29 31 37

3 9 15 21 33 39 51 57 69 87 93 111
5 25 35 55 65 85 95 115 145 155 185
7 49 77 91 119 133 161 203 217 259

11 121 143 187 209 253 319 341 407
13 169 221 247 299 377 403 481
17 289 323 391 493 527 629
19 361 437 551 589 703
23 529 667 713 851
29 841 899 1073
31 961 1147
37 1369

which gives here � = (1/3) × (1/4) + 0 ≡ 1/12 = 8.3%. But the discussion does not
end here. Indeed, this result actually assumes that the initial phase estimation ϕ̃ is
infinitely accurate (ε � 1). As we chose K = 2L + 1 + �log2[2 + 1/(2ε)]� = 11, cor-
responding to an estimation success of at least p = 1 − ε = 3/4, the overall success
chances in these global conditions are finally p� = (3/4) × (1/12) = 1/16 = 6.2%.
As the register size K is increased, the chances of success asymptotically reach the
limit �. The key conclusion of this discussion is that, regardless of register size, the
implementation of Shor’s algorithm is a trial and error process: some values of x do not
work out, and in the best case, some register measurements fail to yield any convergent,
as we have seen with the N = 15 factorization example.

This discussion leads to another question: are some composites easier to factorize
than others under Shor’s algorithm, corresponding to higher values of the � indi-
cator? In an attempt to address this question, we may analyze the periods of the
first composite numbers and see which ones may present the least factoring diffi-
culty or the highest �. Consider, then, the composites of the type N = pq (with
p, q primes), which satisfy the two conditions: (a) N is not even, and (b) there are
no integers a, b (a, b ≥ 2), such that N = ab. With a list of the first primes limited
to p, q = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}, excluding p, q = 2, the set of eligible
composites comes to 55 numbers ranging from N = 15 to N = 1147, as illustrated
in Table 20.5. The selection listed in the table, thus, justifies that N = 15 is the first
composite candidate to implement Shor’s algorithm. Considering the highest number
of the selection, N = 1147, determining the period would require one to compute
the successive powers of 1145p, which scale as 10p×ln(1145)/ ln(10) ≈ 103p and, thus,
rapidly leads to an overflow. If, on the other hand, we limit the scope to N ≤ 100, i.e.,
max(N) = 91, the computation remains tractable (89p ≈ 101.9p), at least with a personal
computer. A period-finding computer program can easily be implemented,14 yielding a
tabulation of r for each value x ∈ [2, N − 2], along with the validation tests {xr/2 even

14 A free executable for period finding (FINDPRIM.EXE) can also be downloaded from: http://users.
pandora.be/nicvroom/progrm19.htm.

422 Shor’s factorization algorithm

=N

15

21

33

35

39

0

2

4

2 3 4 5 6 7 8 9 10 11 12 13

0

5

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

6

12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0

6

12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0

2

4

6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x

r

Figure 20.6 Values r of the order of x modulo N (x, N co-prime) for composites
N = 15, 21, 33, 35, 39. The hashed bars correspond to odd values of r, the shaded bars
correspond to r values for which xr/2 = −1 mod N .

and xr/2 �= ±1 mod N }. The results for N = 15, 21, 33, 35, 39 are shown in Fig. 20.6.
The darkened data correspond to odd values of r , while the shaded data correspond to r
values for which xr/2 = −1 mod N . The graph, thus, makes it possible to calculate the
probabilities p(i)

1 , p(i)
2 for each subset of x satisfying the algorithm requirements, and the

indicator � = ∑
i p(i)

1 p(i)
2 . In the case N = 21, for instance, we find x = {2, 10, 11, 19}

for r = 6 and x = {8, 13} for r = 2, corresponding to p(1)
1 = 4/18 = 2/9 and p(1)

2 =
2/18 = 1/9, respectively. The associated values of r give p(1)

2 = 1/3 and p(2)
2 = 0,

respectively, yielding �= (2/9) × (1/3) + 0 ≡ 2/27 = 7.4% .

Considering next the case N = 33, we find x = {5, 7, 13, 14, 19, 20, 26, 28} for r =
10, x = {10, 21, 23} for r = 2, corresponding to p(1)

1 = 8/30 = 4/15 and p(2)
1 = 3/30 =

1/10, respectively. For r = 10, the probability distribution exhibits 10 peaks at the k
locations:

0

10
,

1

10
,

2

10
,

3

10
,

4

10
,

5

10
,

6

10
,

7

10
,

8

10
,

9

10
,

corresponding to the irreducible fractions p/q

0

10
,

1

10
,

1

5
,

3

10
,

2

5
,

1

2
,

3

5
,

7

10
,

4

5
,

9

10
,

in which only six have p, q as co-prime numbers. We, thus, have p(1)
2 = 6/10 = 3/5

and also p(2)
2 = 0, yielding � = (4/15) × (3/5) + 0 ≡ 4/25 = 16.0%.

20.6 Factorizing N = 15 and other nontrivial composites 423

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

Composite N

(N
)

Figure 20.7 Indicator function �(N), corresponding to the probability of successfully factoring
N in a single run of Shor’s algorithm.

Similar analysis of the other N values leads to the indicator function �(N). To
recall, such a function represents the probability of successfully factorizing N based
on a single random selection of x ∈ [2, N − 2]. The function �(N) is plotted in
Fig. 20.7 for N ≤ 100. We observe from the plot that �(N) increases with N accord-
ing to a logarithmic fit, along with some scattering. Such scattering is explained by
either “lucky” or “unlucky” composites. For instance, N = 15 and N = 51 are lucky
in the sense that all periods r satisfy the two conditions of being even and such that
xr/2 �= 1 mod N for any x ∈ [2, N − 1]. This property maximizes the probability p(i)

1 .
In contrast, for N = 93 (next to last point at right in Fig. 20.7) these conditions are not
met for 1/3 of all the possible r values, which explains the drop from the global trend.
Given an eligible r , and independently of N , the second “luck” factor comes from the
number of associated convergents, as measured by the probability p(i)

2 . For instance,
r = 2 has no associated convergent, r = 4 has only one convergent with probabil-
ity p(i)

2 = 1/4 = 25%, r = 10 has 6 convergents with probability p(i)
2 = 6/10 = 60%,

and r = 28 has 24 convergents with probabilityp(i)
2 = 24/28 = 85.7%. The product

p(i)
1 p(i)

2 , thus, determines the weight taken by a given period r out of the possibili-
ties indexed by i in the sum in Eq. (20.35) yielding �(N). For N ≤ 100, Fig. 20.7
shows that the maximum is found at N = 85 with �(85) = 41.4%. The logarithmic fit
shown in the figure (y = 0.14 ln×− 0.306) suggests that a probability of � = 50%
would be reached for x = 316, in the vicinity of the composites N = 319 = 11 × 29
and N = 323 = 17 × 19. As I am not aware that any plot similar to that shown in
Fig. 20.7 has ever been published. It remains a reasonable conjecture that for com-
posites larger than N = 100, �(N) asymptotically reaches 100%, with some scatter
due to the aforementioned effects, with the contribution of p(i)

2 becoming negligi-
ble as N increases, as s, r in the phase estimate ϕ = s/r become more likely to be
co-prime.

424 Shor’s factorization algorithm

20.7 Public-key cryptography

This concluding section is about public-key cryptography (PKC). Such a topic is not
completely out of place in this chapter on Shor’s factorization algorithm because, as
I shall describe, the secrecy involved in PKC heavily relies on the fact that factoriz-
ing large numbers is a task that is essentially intractable, which is true according to
the best computing means and algorithms currently available. Since PKC is widely
used for different applications in the Internet, and since its principle is relatively sim-
ple to understand, it is worthwhile to describe it briefly here in the context of this
chapter.

Public-key cryptography was invented and developed by R. Rivest, A. Shamir and L.
Adleman, a trio of people who gave the name to the RSA standard. The RSA principle
feeds on the current fact that it is extremely difficult, if not completely intractable, to
factorize large composite numbers, or decompose them into a product of primes. Given
N , factorization (or prime decomposition) consists of finding the unique set of prime
numbers p1, p2, . . . , pm and powers α1, α2, . . . , αm such that pα1

1 pα2
2 . . . pαm

m = N . For
instance, N = 1000 accepts the unique factorization or decomposition 23 × 53 = 1000.
For the purpose of PKC, we may just use two sufficiently large (and assumedly dif-
ferent!) prime numbers p, q to generate a “big” composite number N = pq, rest-
ing on the confidence that if anyone in the public domain knows N , that a person
or entity would have a hard time or find it impossible to figure out the two primes
p, q.

For instance, consider the number N = 62 615 533. To find its factorization, we need
to divide it by prime numbers, trying them out one after another. In this example, the
answer is p = 7919 and q = 7907, which are the highest two primes to be found at the
top of a list of the first thousands.15 This unfortunate choice made the factorization easy,
since anyone can figure it out from such a list as representing the biggest product. What
about n = 15 773 077? The answer (p = 2383, q = 6619) is less immediate, since it
takes 200 division tests to find q starting from the top of this first-thousand-prime list.
Assume next that p, q are selected from a huge list of known primes, for instance up to
109, yielding composites N = pq up to the order of 1018. Even at a rate of 109 division
tests per second (a state-class computing power that only a few may afford), this would
leave about 109 seconds or 31.7 years to find the prime factors!

I shall now focus on the RSA standard and algorithm specifics, after recalling the basic
underlying principle of cryptography. The principle of cryptography is to encode (or
encrypt) a given “open-text” message, called plaintext, into a “secret” message, called
ciphertext. Such words come from cryptology, the science, and history of cryptography,16

15 For various lists of prime numbers, see, for instance: http://primes.utm.edu/lists/small/1000.txt, http://
en.wikipedia.org/wiki/List_of_prime_numbers; http://primes.utm.edu/; www.prime-numbers.org/; www.
rsok.com/∼jrm/printprimes.html.

16 For riveting and historical accounts of cryptology, see S. Singh, The Code Book (New York: Anchor Books,
1999), S. Levy, Crypto (Harmondsworth: Penguin Books, 2001), and D. Kahn, The Codebreakers, the
Story of Secret Writing (New York: Scribner, 1967). For an easy but detailed overview of crypto-algorithms

20.7 Public-key cryptography 425

whereby text messages were encrypted for the purposes of military, state, security, trade,
or simply private communications. In the computer age, however, any “text” to be so
encrypted may be anything from email to computer files, sensitive data, up to the payload
of Internet frames (as used in the so-called IPv6 standard or other secure-communication
protocols). Note that the word “cipher” indifferently designates the algorithm specifically
used for encryption, or the ciphertext material itself.

The destinee of the ciphertext (and only this person or entity), should be able to
make sense of it and translate it back into readable plaintext, an operation which is
called decryption. For this, he or she must use a secret key. By definition, the secret
key must be difficult to find or figure out, just like the combination of a bank safe, or a
“good” computer or network password.17 Traditional cryptography, thus, requires that
the sender does communicate, by some indirect means, his or her key to the destinee,
so that the latter may be able to complete the decryption. In contrast, PKC came as a
revolution to this age-long principle by offering the possibility that the sender does not
know or use any secret key. Indeed, PKC is based on the “asymmetric” principle of using
two different cipher keys, one for encryption (public sender, call him Bob) and one for
decryption (individual destinee, call her Alice). I shall now describe how this puzzling
approach can make sense.

Define the two following keys:

� For encryption: a number e, such that it is relatively prime with φ(N) = (p − 1)
(q − 1);

� For decryption: the number d, which satisfies ed = 1 mod φ, or d = e−1 mod φ.

We shall call e the public key and d the private key. As its name indicates, the public
key should be available to anyone (Bob) who wants to send an encrypted message to
Alice. On the other side, Alice keeps her “private” key in absolute secrecy. The number
N = pq (also called the RSA modulus) is known or accessible to the general public,
Bob, or anyone else.

The operation of encryption with the public key e consists first of decomposing the
plaintext message into as many numerical blocks smaller than N . In the binary system,
a 64-bit block represents a maximum number of 1.8 × 1019, therefore, it is an eligible
block size if N ≥ 2 × 1019. For messages of arbitrary or random length, it is always
possible to “pad” the blocks with zeros on the left (called “nulls” in crypto jargon), so
that they fit a convenient standard size. Encryption of each of these blocks with number
value m is performed by calculating the (cipher) number

c = me mod N . (20.36)

used from history to now, see E. Desurvire, Global Telecommunications, Broadband Access, Optical
Components and Networks, and Cryptography (New York: J. Wiley and Sons, 2004), Ch. 3, pp. 345–478,
from which this section on PKC is partially inspired. For an advanced description, see, for instance, B.
Schneier, Applied Cryptography (New York: J. Wiley and Sons, 2006).

17 If the key is easy or likely to be figured out by any third party, it is called a weak key.

426 Shor’s factorization algorithm

For Alice, who is the only one to own and know the private key d, the operation of
block-by-block decryption consists of computing

m ′ = cd mod N . (20.37)

Let’s now look at the modular-arithmetic value of the m ′ that Alice gets. It takes a few
substitutions to figure out that the result comes to:

m ′ = cd mod N
= (me)d mod N
= med mod N
= mk(p−1)(q−1)+1 mod N
= m × mk(p−1)(q−1) mod N
= m × [m(p−1)(q−1) mod N]k mod N
= m × 1k mod N
= m.

(20.38)

The result in Eq. (20.38) shows that Alice has fully and unambiguously retrieved the
original plaintext block m. Note that for the above demonstration, we used different
properties of modular arithmetic, and in particular Euler’s theorem, as described in
Appendix T.

We also used the pre-set property of Alice’s key, ed = 1 mod φ, from which we have
ed = k(p − 1)(q − 1) + 1. Alice is, thus, able to decrypt any message sent to her from
various “Bob” correspondents who may use her public key for this very purpose.

For illustration, consider a full example of RSA encryption and decryption.18 First,
here is Bob’s private and intimate declaration to Alice:

Plaintext I l o v e y o u

PT-ASCII 1001001 1101100 1101111 1110110 1100101 1111001 1101111 1110101

Consistently with the RSA approach, Bob may encrypt his plaintext by blocks, which
represent for instance two letters each. With the above ASCII message, a two-letter block
is a number of 2 × 7 = 14 bits, corresponding to a maximum size of 214 – 1 = 16 383.
Let us assume that this is the standard. On her part, Alice also chose two primes p, q
whose product is greater or equal to 16 383, for instance p = 73 and q = 227, which
gives N = pq = 16 571, and φ = (p − 1)(q − 1) = 72 × 226 = 16 272. To be effective,
Alice made the number N = 16 571 known to everyone, just like a phone number in the
directory. Of course, the numbers p, q, φ remain only known to her.

18 This example was previously published in E. Desurvire, Global Telecommunications, Broadband Access,
Optical Components and Networks, and Cryptography (New York: J. Wiley and Sons, 2004).

20.7 Public-key cryptography 427

Following the standard, Bob must convert his message into 2-letter blocks and the
resulting blocks into decimal numbers, as follows:

Plaintext I l o v e y o u

PT-ASCII 1001001 1101100 1101111 1110110 1100101 1111001 1101111 1110101
Block 10 01 00 11 10 11 00 11 01 11 11 11 01 10 11 00 10 11 11 10 01 11 01 11 11 11 01 01
Decimal 9452 14 326 13 049 14 325

Alice has also chosen her public key, e. This public key must be co-prime with φ =
16 272. To be able to perform the encryption and decryption computations with a
pocket calculator (just for this example’s sake!), assume that Alice picked for her public
key e = 5, a number that represents the smallest eligible value (3 and 4 divide into
16 272). Going to the public directory or Alice’s website, Bob, like any other visitor,
may read, “Alice’s encryption instructions: please kindly use two-ASCII block encryption
modulo 16 571 as the standard; my public key is number 5.” No more instructions are
needed for Bob to proceed to encryption.

Bob then proceeds to encrypt his love declaration according to the formula ci =
me

i mod N , where mi is the decimal block number i in Bob’s message sequence
m1m2m3m4. This gives

c1 = m5
1 mod 16 571 = 94525 mod 16 571 = 3704

c2 = m5
2 mod 16 571 = 14 3265 mod 16 571 = 766

c3 = m5
3 mod 16 571 = 13 0495 mod 16 571 = 475

c4 = m5
4 mod 16 571 = 14 3255 mod 16 571 = 372.

(20.39)

In the above computations, it is absolutely essential that Bob make no truncation errors.19

Having finished these computations, Bob emails his cipher message

c1c2c3c4 = 3704 − 766 − 475 − 372

to Alice; he may possibly include a few more words in order to identify himself (e.g.,
“Bob your classmate.”), but this is not the point of the endeavor.

Alice is then the only person who is able to decrypt Bob’s message. Her private key, d, is
defined by the formula ed = 1 mod φ, or d = e−1 mod φ, namely d = 5−1 mod 16 272.
Thus, Alice needs to find the inverse of 5 modulo 16 272. Since 16 272 is not the product
of two primes (16 272 = 16 × 9 × 113), she can’t use Euler’s theorem. Instead, she

19 For instance, with a pocket calculator the function 94525 yields 7.544293311 × 1019, but the last ten
digits are missing! To avoid truncations from the pocket calculator, the trick is to use the modulus-
arithmetic formula |m5|N = |m2|N × |m2|N × |m|N |N , in which the different terms and their suc-
cessive products (after reducing each one to their modulo N residue) fit in the calculator display
size.

428 Shor’s factorization algorithm

uses the extended Euclidian algorithm, which is described in Appendix T. It is not a
coincidence that, in this appendix, I use the above numbers to illustrate this algorithm
principle. The result is d = 6509. Such a big, 13-bit private key is the price for Alice
to pay for having chosen a public key as small as e = 5, but this does not affect the
generality of the demonstration. Alice then uses her private key to compute the following
blocks:20

m1 = c6509
1 mod 16 571 = 37046509 mod 16 571 = 9452

m2 = c6509
2 mod 16 571 = 7666509 mod 16 571 = 14 326

m3 = c6509
3 mod 16 571 = 4756509 mod 16 571 = 13 049

m4 = c6509
4 mod 16 571 = 3726509 mod 16 571 = 14 325.

(20.40)

Then Alice converts the decimal numbers m1m2m3m4 into four 14-bit binary words,
splits each word into two 7-bit groups, and finally translates the resulting blocks into
ASCII, which yields and finally displays on Alice’s screen:

Decimal 9452 14 326 13 049 14 325

Binary 10 01 00 11 10 11 00 11 01 11 11 11 01 10 11 00 10 11 11 10 01 11 01 11 11 11 01 01
ASCII 1001001 1101100 1101111 1110110 1100101 1111001 1101111 1110101
Plaintext I l o v e y o u

Bob and Alice both having computers to perform RSA and a connection to the Inter-
net, the entire operation of encryption, transmission, and decryption of Bob’s message
(possibly completed with a few more statements!) took, in fact, milliseconds, as slowed
down by the IP routing protocol and other switching bottlenecks. This is the same
amount of time that after composing her reply, Alice will take to send Bob a PKC
message using Bob’s public key and Bob to retrieve into plaintext through his private
key.

20 One may wonder whether it is physically possible to compute numbers as monstrous as 1006509 or 10006509

exactly with a personal computer or even worse, a pocket calculator. Indeed, if we make the conversion
through the formula ax = 10x log a/ log 10, we get for the first block 37046509 = 1023 228.4794 ≈ 3.01 ×
1023 228, namely a number with a whopping 23 229 digits! But surprisingly enough, such a computation can
be performed with a cheap pocket calculator! Here is how to proceed. Consider, for instance, the last cipher
block, 3726509. It takes a few minutes to calculate the following power series (modulo 16571): 3722 = 5816,
3724 = 4445, 3728 = 5393, etc., up to 3724096 = 8695. Thus, 3726509 is the product 3724096 × 3721024 ×
3721024 × 372256 × 37264 × 37232 × 3728 × 3724 × 3721. The result of each successive product must
be reduced to its residue so that no truncation occurs. The same procedure must be followed with the
other blocks 37046509, 7666509 and 4756509. This point being made, there is no reason not to develop a
simple computer program that can perform all these successive reduction tasks in a wink. With the present
example, we have chosen a block format (214 − 1 = 16 383) whose decimal size allows computing any
power of two, i.e., (214 − 1)2 = 268 402 689, and its successive multiples, with a pocket calculator. But
with a personal computer, larger coding formats to encrypt four to eight ASCII or EBCDIC characters (i.e.,
232 − 1 = 4 294 967 295 or 264 − 1 ≈ 2 × 1019) are possible, provided the program is designed to handle
numbers up to (232 − 1)2 or (264 − 1)2 without truncation errors.

20.8 Exercises 429

As we have learnt, the key feature of the PKC algorithm is that the composite N = pq
is definitely too “big” to be readily factorized by any third party maliciously attempting
to intercept the communications between Alice and Bob. This is the reason why, so
long as no large-scale quantum computer able to factorize N is demonstrated, or no
state-grade computer is assigned to the task, Alice and Bob can exchange their thoughts,
safe from any third-party scrutiny.

20.8 Exercises

20.1 (M): Show that for any two integers x, N , satisfying x < N and any integer s,
the state

|us〉 = 1√
r

r−1∑
k=0

e−
2iπks

r |xk mod N 〉

is an eigenstate of the operator defined by

Ux,N |y〉 = |xy mod N 〉

with eigenvalue exp(2iπs/r).

20.2 (M): Given the eigenstates |us〉 defined as

|us〉 = 1√
r

r−1∑
k=0

e−
2iπks

r |xk mod N 〉,

show that

1√
r

r−1∑
s=0

|us〉 = |1〉.

20.3 (M): Given the eigenstates |us〉 defined as

|us〉 = 1√
r

r−1∑
k=0

e−
2iπks

r |xk mod N 〉,

show that

1√
r

r−1∑
s=0

e
2iπks

r |us〉 = |xk mod N 〉.

430 Shor’s factorization algorithm

20.4 (B): Show by induction that the two reals defined by

pn = an pn−1 + pn−2

qn = anqn−1 + qn−2

for n ≥ 2, and

p0 = a0, q0 = 1, p1 = 1 + a0a1, q1 = a1

for n = 0, 1, satisfy the relation

qn pn−1 − pnqn−1 = (−1)n.

21 Quantum information theory

This chapter sets the basis of quantum information theory (QIT). The central purpose
of QIT is to qualify the transmission of either classical or quantum information over
quantum channels. The starting point of the QIT description is von Neumann entropy,
S(ρ), which represents the quantum counterpart of Shannon’s classical entropy, H (X).
Such a definition rests on that of the density operator (or density matrix) of a quantum
system, ρ, which plays a role similar to that of the random-events source X in Shannon’s
theory. As we shall see, there also exists an elegant and one-to-one correspondence
between the quantum and classical definitions of the entropy variants relative entropy,
joint entropy, conditional entropy, and mutual information. But such a similarity is
only apparent. Indeed, one becomes rapidly convinced from a systematic analysis of
the entropy’s additivity rules that fundamental differences separate the two worlds. The
classical notion of information correlation between two event sources for quantum states
shall be referred to as quantum entanglement. We then define a quantum communication
channel, which encodes and decodes classical information into or from quantum states.
The analysis shows that the mutual information H (X ; Y) between originator and recipient
in this communication channel cannot exceed a quantity χ , called the Holevo bound,
which itself satisfies χ ≤ H (X), where H (X) is the entropy of the originator’s classical
information source. It is shown that the Holevo bound is maximal (χ = H (X)) when
the set of density operators used for coding the message have orthogonal supports or
eigenspaces.

21.1 Von Neumann entropy

The concept of source entropy, as introduced in Shannon’s classical information theory,
has been extensively described and developed in Chapters 4 to 6. To recall, a source
X of n random events labeled i (I = 1 . . . n) and having associated probabilities pi

(corresponding to the discrete probability distribution p), is characterized by an entropy
H (X), defined by

H (X) = −
n∑

i−1

pi log pi =
〈
log

1

p

〉
, (21.1)

432 Quantum information theory

with the continuity property x log x = 0 in the limit x → 0 and the logarithm conven-
tionally being in base two. Such entropy represents the average measurement of the
source’s information contents log(1/pi) associated with each event. As we have seen in
Chapter 4, the entropy is maximum when all the source events are equiprobable, namely
when pi = 1/n, which yields Hmax ≡ log n.

Consider now a quantum system. This system may exist in a quantum state |ψ〉,
which we shall assume here represents a statistical mixture of pure states |xi 〉.1 Such
pure states, which cannot be defined by any other mixtures of pure states, are orthogonal
to each other and have unit length, such that 〈xi |x j 〉 = δi j . The set of pure states {|xi 〉} =
{|x1〉, |x2〉, . . . , |xn〉}, thus, defines an orthonormal basis for the n-dimensional space V n

of all possible quantum states |ψ〉 defining the system. Consistently, any state |ψ〉 of V n

accepts a unique decomposition of the form

|ψ〉 = x1|x1〉 + x2|x2〉 + · · · + xn|xn〉 =
n∑

i=1

xi |xi 〉, (21.2)

where xi (i = 1 . . . n) are complex coordinates. We may choose to represent the quantum
system with a state |ψ〉 of unit length, i.e., 〈ψ |ψ〉 = ∑

i |xi |2 = 1, in which case the real
number pi = |xi |2, represents the probability of finding the state |ψ〉 in the pure state
|xi 〉. In the quantum world, the system in the quantum state |ψ〉, thus, plays the role of a
“random event” source and, naturally, the concepts of “information” and “entropy” may
be associated with such a system.

To establish such a connection, we need to use the concept of density operator (or
density matrix), which was introduced in Chapter 17. As we have learnt, the density
operator or matrix ρ is an alternative way to define a quantum system in a given state
|ψ〉. Formally,

ρ =
n∑

i=1

pi |xi 〉〈xi |, (21.3)

where |xi 〉〈xi | is the projector (or measurement) operator on the basis state |xi 〉. It is
clear that ρ|xi 〉 = pi |xi 〉, which shows that |xi 〉 is an eigenstate of ρ with associated
eigenvalue pi . In the case where |ψ〉 is a pure state, e.g., |ψ〉 = |xk〉 with pi = δik , and
only in such a case, the density operator is simply given by ρ = |ψ〉〈ψ |. As a general
definition, a pure state is a state that has 100% probability of being observed in a
quantum system, or which is exactly known. A given basis state (for instance |0〉 or |1〉
in a 2D space) may or may not be a pure state, according to whether this condition is
fulfilled or not (see more on this further on).

As we have also seen in Chapter 17, the matrix elements ρi j of the density operator
satisfy ρi j = 〈xi |ρ|x j 〉 ≡ |xi |2δi j = piδi j , showing that the matrix is diagonal in the
computational basis {|xi 〉}, as expected from the fact that it is the basis of eigenstates.

1 The assumption according to which a system may be accurately or completely defined through a quantum
state |ψ〉, is equivalent to the assumption that the system is closed, meaning that it is neither coupled nor
entangled to any other unknown external system.

21.1 Von Neumann entropy 433

The matrix representation of ρ is, thus:

ρ =

p1 0 · · · 0

0 p2 · · · ...
...

...
. . . 0

0 · · · 0 pn

 . (21.4)

A key property is that the sum of diagonal elements, or the trace of the density matrix
satisfies tr(ρ) = 1, as for the definition of the probability distribution p = {pi }. As
shown in Chapter 17, the trace of any matrix or operator is independent of the choice
of the base representation {|xi 〉}, or is invariant by unitary base transformation (see
Eq. (17.33)).

A useful property is that tr(ρ2) ≤ 1 applies for any density operator ρ, with equality
only for the case of pure states (ρ = |ψ〉〈ψ |), which is left as an exercise to establish.
We may note that such a property does not depend on the choice of basis. This is in spite
of the fact that a pure state may appear to be a mixed state in another basis! For instance,
given |0〉 assumed a pure state in basis {|0〉, |1〉}, the same state appears to be “mixed”
in the basis {|+〉, |−〉} according to the equality |0〉 = (|+〉 + |−〉)/√2. But if |0〉 is a
pure state, the system has ρ = |0〉〈0| for density operator. It is then an easy exercise to
show that ρ = |0〉〈0| is actually transformed into ρ̃ = |+〉〈+| in this new basis, which
illustrates that pure states remain pure states, independent of basis representation and
conserve their properties in any basis transformation. It is important, therefore, not to
confuse basis states (as a projection possibility for the system) and pure states (as the
only system state possibility).

Assume, next, an operator U corresponding to a physical observable (meaning that U
is Hermitian or has real, nonzero eigenvalues, see Chapter 17). Let us now take a close
look at the operator ρU , and its diagonal matrix elements in the basis {|xi 〉}, namely
(ρU)i i =〈xi |ρU |xi 〉. From Eq. ((21.3)), we obtain

(ρU)i i = 〈xi |ρU |xi 〉

= 〈xi |
(

n∑
k=1

pk |xk〉〈xk |
)

U |xi 〉

=
n∑

k=1

pk〈xi |xk〉〈xk |U |xi 〉

=
n∑

k=1

pkδik〈xk |U |xi 〉

= pi 〈xi |U |xi 〉 ≡ pi 〈U 〉i .

(21.5)

It is seen from this result that (ρU)i i represents the expectation value 〈Ui 〉 =
〈xi |U |xi 〉 of the observable U , should the system be measured in the state |xi 〉 (see
Eq. (17.57)), affected by the corresponding probability weight pi of such a measure-
ment event. The summation over all event possibilities, which is the trace of ρU , takes

434 Quantum information theory

the form

tr(ρU) =
n∑

i=1

(ρU)i i

=
n∑

i=1

pi 〈xi |U |xi 〉

≡ 〈U 〉ψ.

(21.6)

This result shows that given a physical system in state |ψ〉 with associated density matrix
ρ, the expected value 〈U 〉ψ of the observable U is simply given by the trace tr(ρU).
Actually, this result enormously simplifies the perspective on quantum measurements
gained from Chapter 17. It will also be used to analyze the tricky issue of composite
quantum systems, as described later.

In Chapter 17, we have also established that for any operator U having a diagonal
matrix with nonnegative coefficients, it is possible to associate an operator U log U
with diagonal coefficients (U log U)i i = Uii log Uii . In the case U = ρ, we obtain the
matrix:

ρ log ρ =

p1 log p1 0 · · · 0

0 p2 log p2 · · · ...
...

...
. . . 0

0 · · · 0 pn log pn

 . (21.7)

From the above definition, the trace of ρ log ρ, with a minus sign, is given by:

S(ρ) = −tr(ρ log ρ)

= −
n∑

i=1

pi log pi .
(21.8)

A comparison between Eqs. (21.8) and (21.1) shows that S(ρ) = −tr(ρ log ρ) is strictly
analogous to Shannon’s classical entropy, H (X), with X = {i}i=1...n being a random-
event source characterized by the probability distribution {pi }. The key difference
between S(ρ) and H (X) is that, in the former, the source is a quantum system, char-
acterized not by a probability distribution, like the latter, but by a density operator ρ.
We shall refer to S(ρ) as von Neumann entropy. The von Neumann (VN) entropy, thus,
represents a quantum measure of the information contents in the quantum system or state
under consideration, referred to as a quantum source ρ. Since the VN entropy measure
is always equivalent to that of a classical source, H (X), it is nonnegative, or S(ρ) ≥ 0
always applies.

In Chapter 17, it was shown that the trace of any operator is independent of the
basis representation. Thus, the density operator transformation under change of basis,
i.e., ρ → ρ̃ = TρT + where T is a unitary operator, is of no effect on the VN entropy.
Formally:

S(ρ̃) = S(TρT +) = S(ρ). (21.9)

21.1 Von Neumann entropy 435

This result shows that quantum information, as defined by the VN entropy, represents an
incompressible feature in quantum systems, as is also the case for classical information
in random-event sources, as defined by Shannon entropy. What is the quantum infor-
mation contained in a qubit? The answer is straightforward. Assume a qubit of general
definition

|q〉 = α|0〉 + β|1〉, (21.10)

where |0〉, |1〉 are two pure states in the 2D quantum space V 2, and p = |α|2 = 1 − |β|2.
From the definitions in Eqs. (21.3) and (21.4), we have

ρ = |α|2|0〉〈0| + |β|2|1〉〈1| = p|0〉〈0| + (1 − p)|1〉〈1|, (21.11)

ρ =
(|α|2 0

0 |β|2
)

=
(

p 0
0 1 − p

)
, (21.12)

and

S(ρ) = −(|α|2 log |α|2 + |β|2 log |β|2)
= −p log p − (1 − p) log(1 − p) ≡ f (p).

(21.13)

In the result in Eq. (21.13), we recognize the Shannon entropy of a two-event source
X = {0, 1}, corresponding to the two possible “states” of a classical bit (see Eqs. (4.13)
and (4.14)). The average qubit information is, thus, equivalent to that of two classical
bits, the amount depending on the weights p0, p1 in the state mixture. As described in
Chapter 4, the function f (p) has a maximum of unity for p = 1/2, corresponding to
|α| = |β| = 1/

√
2 (phases being arbitrary) or a uniform distribution p0 = p1 = 1/2,

and for the VN entropy, Smax(ρ) ≡ log 2 = 1. In this case, the quantum information
amounts to exactly one classical bit. The minimum of f (p) is zero, which is reached
either when p0 = 1, p1 = 0 or when p0 = 0, p1 = 1, meaning that the qubit is in a pure
state, i.e., |q〉 = |0〉 or |q〉 = |1〉, giving Smax(ρ) ≡ 0. In this case, there is no quantum
information in the system, as there is no information in a single, deterministic classical
bit.

It is clear that the VN entropy of an n-qubit (or quNit) in the quantum space V n always
has the maximum Smax(ρ) ≡ log n when the system is in the most homogeneous state
superposition with a uniform probability distribution pi = 1/n, hence corresponding to
maximum quantum information. In the general case, we have 0 ≤ S(ρ) ≤ log n.

It is a generally possible that the state |ψ〉 can be a mixture of nonorthogonal states.
In this case, the corresponding density matrix ρ is nondiagonal. How, then, can we
determine the VN entropy of the system? The answer is that we know it is possible to
express the density operator in the computational basis of eigenstates, where the matrix
is diagonal. Given the eigenvalues λi (i = 1 . . . n) corresponding to the eigenstates
{|λi 〉}i=1...n , the VN entropy, thus, takes the form

S(ρ) = −
n∑

i=1

λi log λi . (21.14)

436 Quantum information theory

As an illustration (see also the exercises), assume the following density operator:

ρ = 2

3
|0〉〈0| + 1

3
|−〉〈−|

= 2

3
|0〉〈0| + 1

3

(|0〉 − |1〉√
2

)(〈0| − 〈1|√
2

)
.

(21.15)

In the computational basis {|0〉, |1〉}, it is easily established that the corresponding
matrix is

ρ =
(〈0|ρ|0〉 〈0|ρ|1〉
〈1|ρ|0〉 〈1|ρ|1〉

)
≡ 1

6

(
5 −1
−1 1

)
. (21.16)

As recalled in Chapter 17, the eigenvalues λi are given by the solutions λ of the char-
acteristic equation, i.e., det(ρ − λI) = 0. By definition, each eigenvalue corresponds to
an eigenvector |λi 〉, for which ρ|λi 〉 = λi |λi 〉, with {|λi 〉} constituting an orthonormal
basis. In the example, the solutions of the characteristic equation are easily found to be
λ = (3 ±√

5)/6, which, in the eigenstate-basis representation {|λi 〉}, yields the diagonal
density matrix:2

ρ̃ =
(〈λ1|ρ|λ1〉 0

0 〈λ2|ρ|λ2〉
)

≡ 1

6

(
3 +√

5 0
0 3 −√

5

)
.

(21.17)

We can then determine the VN entropy of the associated quantum system, which is in
the state now represented as |ψ〉 = √

λ1|λ1〉 +
√

λ2|λ2〉, as follows:

S(ρ̃) = −tr(ρ̃ log ρ̃)

= −
(

3 +√
5

6
log

3 +√
5

6
+ 3 −√

5

6
log

3 −√
5

6

)

≡ 0.55004.

(21.18)

This result concludes that this system contains quantum information amounting to about
0.55 classical bits, as measured when using the eigenstate basis {|λi 〉}.

The connection between classical and quantum information, as measured by Shannon
and von Neumann entropies, appears to be elegant and complete, almost to the extent
of hiding the fundamental differences between their respective worlds. As the follow-
ing sections will show, however, it would be largely erroneous to conclude from this
connection that QIT brings nothing new to information theory.

2 It is easily checked that the same density operator ρ̃ is obtained by starting from the computational basis
{|+〉, |−〉} instead of {|0〉, |1〉}.

21.2 Relative, joint, and conditional entropy, and mutual information 437

21.2 Relative, joint, and conditional entropy, and mutual information

The properties of VN entropy (henceforth to be referred to simply as “entropy”) are
listed in this section, along with those of related entropy variants that represent the
quantum counterparts of similar definitions in classical theory.

To recall the basics, the previous section showed that the VN entropy is nonneg-
ative (S(ρ) ≥ 0), is zero for systems in pure states (S(ρ) = S(|ψ〉〈ψ |) = 0), and has
a maximum of log n for systems of dimension n made of a uniform superposition of
states (S(ρ) = log n). Finally, the entropy is invariant under basis transformation, i.e.,
S(TρT +) = S(ρ), where T is a unitary matrix, which illustrates that quantum informa-
tion is an incompressible feature in quantum systems.

I shall now describe more properties of VN entropy.

Relative entropy

Our starting point in the investigation is the definition of relative entropy. This notion is
the quantum equivalent to the classical relative entropy, or Kullback–Leibler distance,
described in Chapter 5. Assume two quantum systems with density operators ρ and σ .
The relative entropy between these two systems, noted S(ρ‖σ) is given by:

S(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ). (21.19)

For any operator, the kernel is the space described by the set of eigenvectors having zero
for eigenvalues, and the support is the space described by the set of eigenvectors with
nonzero eigenvalues (the union of kernel and support being the complete eigenvector
space). In the definition in Eq. (21.17), the term tr(ρ log σ) is finite only in the case
where the support of ρ does not intersect with the kernel of σ , or is fully included in the
support of σ (meaning (ρ log σ)i i ≥ 0 for all diagonal matrix elements). In the contrary
case, we have −tr(ρ log σ) = +∞, and the relative entropy is infinite. As a key property
of relative entropy, we have

S(ρ‖σ) ≥ 0, (21.20)

where the equality stands uniquely for the case ρ = σ . Such a property is referred to as
Klein’s inequality. The basic proof of Klein’s inequality is provided in Appendix U. The
consequence is that for two quantum systems with density operators ρ and σ , we have
S(ρ) = tr(ρ log ρ) ≥ tr(ρ log σ), a property that we shall use later when considering
additivity rules for entropy.

Composite system in pure state

Consider, next, a composite system made of two subsystems A, B in states |ψA〉, |ψB〉,
and assume that it is in a pure joint state, namely |ψ〉 = |ψA〉|ψB〉. Call ρA, ρB the
density operators of the subsystems A, B. Then we have the property

S(ρA) = S(ρB). (21.21)

438 Quantum information theory

The proof of this property is based on the Schmidt decomposition, as described in
Appendix V. According to the Schmidt decomposition (which remains to be familiarized
with from this appendix), any pure joint state of a composite system can be expressed
in the form

|ψ〉 =
∑

i

xi |i A〉|iB〉, (21.22)

where xi (i = 1 . . . n) are nonnegative numbers (called Schmidt coefficients) satisfy-
ing the property

∑
i x2

i = 1, and where {|i A〉}, {|iB〉} are some orthonormal basis for
the subsystems A, B. Since |ψ〉 is a pure state, its density operator is |ψ〉〈ψ |. From
Eq. (21.20), we obtain

|ψ〉〈ψ | =
(∑

i

xi 〈i A|〈iB |
)(∑

k

xk |kA〉|kB〉
)

=
∑

ik

xi xk |kA〉〈i A| ⊗ |kB〉〈iB |.
(21.23)

We now need to make sense of this result by introducing the notion of partial trace,
which applies to composite systems. Let |i A〉, | jA〉 be any two basis states in the system
A, and likewise, let |kB〉, |lB〉 be any two basis states in the system B. The partial trace
trA(U) of the tensor operator U = |i A〉〈 jA| ⊗ |kB〉〈lB | is then defined as:

trAU = trA(|i A〉〈 jA| ⊗ |kB〉〈lB |)
≡ tr(|i A〉〈 jA|) × |kB〉〈lB |. (21.24)

Likewise, the partial trace trB(U) is defined as

trBU = trB(|i A〉〈 jA| ⊗ |kB〉〈lB |)
≡ tr(|iB〉〈 jB |) × |kA〉〈lA|. (21.25)

It should also be noted that for any pair of orthogonal states |i〉, | j〉, and by definition
of the tensor operator |i〉〈 j |, we have tr(|i〉〈 j |) = 〈i | j〉 = δi j . We now apply the above
definitions and this last property to calculate trA|ψ〉〈ψ | and trB |ψ〉〈ψ | based on the
result in Eq. (21.23). We obtain:

trA|ψ〉〈ψ | = trA

(∑
ik

xi xk |kA〉〈i A| ⊗ |kB〉〈iB |
)

=
∑

ik

xi xk trA(|kA〉〈i A|) × |kB〉〈iB |

=
∑

ik

xi xk〈i A|kA〉 × |kB〉〈iB |

=
∑

ik

xi xkδik |kB〉〈iB |

=
∑

i

x2
i |iB〉〈iB |

≡ ρB,

(21.26)

21.2 Relative, joint, and conditional entropy, and mutual information 439

trB |ψ〉〈ψ | = trB

(∑
ik

xi xk |kA〉〈i A| ⊗ |kB〉〈iB |
)

=
∑

ik

xi xk |kA〉〈i A| × trB(|kB〉〈iB |)

=
∑

ik

xi xk |kA〉〈i A| × 〈kB |iB〉

=
∑

ik

xi xkδik |kA〉〈i A|

=
∑

i

x2
i |i A〉〈i A|

≡ ρA.

(21.27)

In these two equations, the identification in the right-hand side with the subsystem density
operators ρA, ρB comes from the aforementioned property of the Schmidt coefficients,
i.e.,

∑
i x2

i = 1, making, de facto, {x2
i } the corresponding probability distribution. We

must now realize that this result is quite interesting. Indeed, the only assumption that a
composite system is in a pure state, thus, implies that ρA = ρB , and hence the property
S(ρA) = S(ρB), as was claimed in Eq. (21.21). The examples described at the end of
this section provide more opportunities to apply the technique of partial tracing to the
determination of subsystem entropy.

Subadditivity inequality and quantum joint entropy

Assume a composite system AB made of two subsystems A, B. Let ρAB, ρA, ρB be
the density operators of the system and its subsystems. The corresponding entropies
S(ρAB), S(ρA), S(ρB) are then linked by the subadditivity inequality:

S(ρAB) ≤ S(ρA) + S(ρB), (21.28)

where the equality stands when ρAB = ρA ⊗ ρB , which corresponds to two subsystems
with uncorrelated information. The entropy of the composite system, S(ρAB), which is
the quantum joint entropy, is, therefore, less than or equal to the sum of the subsys-
tem entropies. There is no surprise here, since this property appears to be the quan-
tum equivalent of that concerning the Shannon entropy H (X, Y) of joint sources (see
Chapter 5), i.e.

H (X, Y) ≤ H (X) + H (Y). (21.29)

The apparent equivalence between the classical and quantum definition of joint entropy,
as intuitive and innocuous as it may appear, is in fact deceiving. We shall immediately
realize this fact by considering the case where AB is in a pure state. From the previous
property, we must have S(ρA) = S(ρB), but also S(ρAB) = 0, since AB is in a pure
state. Thus, regardless of the information contained in subsystems A or B, which may
be finite, the joint system AB contains no information! Such a possibility is definitely
nonclassical and counterintuitive. Indeed, referring to the Venn diagrams in Fig. 5.2,

440 Quantum information theory

where H (X), H (Y) are represented by sets with H (X, Y) = H (X) ∪ H (Y) there is no
possibility for H (X, Y) = ∅ (empty set), except in the limiting case H (X) = H (Y) = ∅.

I shall now prove the subadditivity inequality introduced in Eq. (21.28). Basically, it
is a consequence of Klein’s inequality, which was discussed previously. We have shown
that for any pair of quantum systems of equal dimension and having density operators
ρ, σ , Klein’s inequality can be translated into

−S(ρ) = tr(ρ log ρ) ≥ tr(ρ log σ)
↔ S(ρ) ≤ −tr(ρ log σ).

(21.30)

Substituting ρ = ρAB and σ = ρA ⊗ ρB into the last inequality yields:

S(ρAB) ≤ −tr[ρAB log(ρA ⊗ ρB)]. (21.31)

It is left as a relatively easy exercise to show that:

log(ρA ⊗ ρB) = log(ρA) ⊗ IB + IA ⊗ log(ρB), (21.32)

where IA, IB are the identity matrices of the subsystems A, B. Using this property
in Eq. (21.31), and also the additive and commutative properties of the trace (see
Eq. (17.32)) we obtain:

S(ρAB) ≤ −tr{ρAB[log(ρA) ⊗ IB + IA ⊗ log(ρB)]}
= −tr[ρAB log(ρA) ⊗ IB] − tr[IA ⊗ log(ρB)ρAB].

(21.33)

We must now make sense of the traces involved in the right-hand side of this equation.
Recall first that ρAB is the density operator of the composite system in state |ψ〉. From the
discussion in the previous section, and in particular the result in Eq. (21.6), we have learnt
that the expectation value of any observable U , is given by 〈U 〉AB = tr(ρABU). There is
no reason to assume that the same outcome would be obtained by the same measurement
applied just to subsystem A separately, namely 〈U 〉A = tr(ρAU) �= tr(ρABU) = 〈U 〉AB .
This is because in the joint system AB, the subsystem B may also contribute to positive
outcomes for the same observable. On the other hand, intuition dictates that there must
exist an operator U ′ such that the expected value of U ′ in the joint system AB and that
of U in the subsystem A do coincide, i.e.,

〈U ′〉AB = 〈U 〉A ↔ tr(ρABU ′) = tr(ρAU). (21.34)

It is a fine academic issue to show that U ′ = U ⊗ IB , which expands U to the full system
space, is, in fact, the only candidate to solve such a measurement reconciliation problem.
Here, we may just accept it as an intuitive postulate. Hence,{

tr[ρAB log(ρA) ⊗ IB] = tr(ρA log ρA) ≡ −S(ρA)
tr[IA ⊗ log(ρB)ρAB] = tr(ρB log ρB) ≡ −S(ρB),

(21.35)

to be followed by substitution in Eq. (21.33) to yield the inequality S(ρAB) ≤ S(ρA) +
S(ρB), as claimed in Eq. (21.28), which is now established.

As also claimed earlier, the equality in Eq. (21.28) stands when (and only when)
ρAB = ρA ⊗ ρB , meaning that the entropies of the subsystems are additive, according

21.2 Relative, joint, and conditional entropy, and mutual information 441

to:

S(ρAB) ≡ S(ρA) + S(ρB). (21.36)

Proving this equality is straightforward. Indeed, since ρAB = ρA ⊗ ρB , we can now
write S(ρAB) ≡ −tr[ρAB log(ρA ⊗ ρB)], and as we have seen from the results in
Eqs. (21.32) to (21.35), the right-hand side is identical to S(ρA) + S(ρB).

Quantum mutual information

As we have learnt from Chapter 5, the mutual information H (X ; Y) measures the amount
of information correlation between the two event sources X, Y , as defined by

H (X ; Y) = H (X) + H (Y) − H (X, Y). (21.37)

If the sources are uncorrelated, the equality in Eq. (21.29) stands and H (X ; Y) in
Eq. (21.37) is zero. We may define quantum mutual information S(ρA; ρB) through

S(ρA; ρB) = S(ρA) + S(ρB) − S(ρAB). (21.38)

As in the classical case, S(ρA; ρB) represents the measure of information correlation
between the two quantum subsystems A, B. In the absence of any correlation (ρAB =
ρA ⊗ ρB), the equality in Eq. (21.28) stands, and S(ρA; ρB) is zero. From Eq. (21.28),
we note that S(ρA; ρB) ≥ 0 in all cases, meaning that the quantum mutual information
is always nonnegative. In the case where the joint system AB is in a pure state, we have
S(ρAB) = 0 and S(ρA) = S(ρB), which implies that S(ρA; ρB) = 2S(ρA) = 2S(ρB).
Such a result is definitely nonclassical. Indeed, referring to the Venn diagrams in
Fig. 5.2, where H (X), H (Y) are represented by sets with H (X ; Y) = H (X) ∩ H (Y),
there is no possibility for H (X ; Y) = 2H (X) or H (X ; Y) = 2H (Y), except in the limit-
ing case H (X) = H (Y) = ∅.

If two quantum systems have correlated information, we shall say from now on that
their quantum states are entangled. The end of this section will provide examples of
entangled states.

Conditional entropy

Given two subsystems A, B and their composite system AB, the conditional entropy
S(ρA|ρB) is defined as

S(ρA|ρB) = S(ρAB) − S(ρB), (21.39)

and, likewise, S(ρB |ρA) = S(ρAB) − S(ρA). This definition is the quantum equivalent
of the classical case concerning joint events from two sources X, Y , namely (see
Chapter 5):

H (X |Y) = H (X, Y) − H (X), (21.40)

442 Quantum information theory

and, likewise, H (Y |X) = H (X, Y) − H (Y). Where the information in the two subsys-
tems is uncorrelated (S(ρAB) ≡ S(ρA) + S(ρB)), we have, from Eq. (21.39):

{
S(ρA|ρB) = S(ρA)
S(ρB |ρA) = S(ρB),

(21.41)

which translates that the information of one subsystem is not affected by the knowledge
of the information in the other subsystem, as expected in the uncorrelated case. Again,
while we observe a nice parallel between the classical and the quantum definitions
for conditional entropy, we should know for a fact (from preceding analysis) that it is
deceptive! Indeed, in the case where AB is in a pure state, we have S(ρAB) = 0 and, from
Eq. (21.39), S(ρA|ρB) = −S(ρB) ≤ 0 (as per the nonnegativity of S(ρB)) and, likewise,
S(ρB |ρA) = −S(ρA) ≤ 0. Hence, the quantum conditional entropy can be negative,
which is definitely a nonclassical feature. Since, in this case, S(ρA) = S(ρB), we also
have {

S(ρA|ρB) = −S(ρA)
S(ρB |ρA) = −S(ρB),

(21.42)

which contrast with the correlated case expressed in Eq. (21.41).

Triangle inequality

The subadditivity inequality in Eq. (21.28) provided an upper bound to the joint entropy
S(ρAB), namely S(ρAB) ≤ S(ρA) + S(ρB). The triangle inequality, also referred to as
the Araki–Lieb inequality, provides a lower bound to S(ρAB), according to

|S(ρA) − S(ρB)| ≤ S(ρAB). (21.43)

To prove this property, assume the existence of a third system R, such as the composite
system AB R in a pure state. The system R is referred to as a purifying system for AB
(see Appendix W). From the subadditivity inequality we find

S(ρAR) ≤ S(ρA) + S(ρR). (21.44)

Because AB R is in a pure state, we also find that S(ρAB) = S(ρR) and S(ρAR) =
S(ρB) (see earlier subsection on composite system in pure state). Substituting these
last two equalities into Eq. (21.44) we obtain S(ρAB) ≥ S(ρB) − S(ρA). Since A and B
play a symmetric role, we also have S(ρAB) ≥ S(ρA) − S(ρB), and, hence, S(ρAB) ≥
±|S(ρA) − S(ρB)|, which proves the property in Eq. (21.43). It can be shown (but the
proof is not to be considered here) that the equality in Eq. (21.43) is given by the
condition ρAR = ρA ⊗ ρR , which means that the A, R information is uncorrelated and,
therefore, that all possible correlation of A information with the rest of the world is
exclusively with B.

21.2 Relative, joint, and conditional entropy, and mutual information 443

Concavity of entropy and entropy of system in random states

Assume a quantum system that can be in any random mixed state |ψi 〉, according to
some known probability distribution pi . Each of these random states is associated with
a density operator ρi . The concavity of a function f (x) corresponds to the property
〈 f (x)〉 ≤ f (〈x〉). Here, I shall establish that entropy is a concave function of the density-
operator variable ρi , namely,

〈S(ρ)〉 ≤ S(〈ρ〉), (21.45)

or, formally:

∑
i

pi S(ρi) ≤ S

(∑
i

piρi

)
. (21.46)

Furthermore, if one assumes that the set of operators ρi has support on orthogonal
subspaces (meaning that the set of all possible eigenstates form an orthonormal basis),
an exact relation also exists between S(〈ρ〉) and 〈S(ρ)〉, which nicely relates to the
Shannon entropy of a classical source H (X) = −∑

i pi log pi , according to:

S(〈ρ〉) = 〈S(ρ)〉 + H (X), (21.47)

or, formally:

S

(∑
i

piρi

)
=

∑
i

pi S(ρi) + H (X). (21.48)

The property expressed in Eq. (21.47) or Eq. (21.48) can easily be interpreted as follows:
the quantum information of a system whose states are random equals the mean infor-
mation, as averaged over the individual states, plus the information on the probability
distribution, which is the Shannon entropy. Note that since H (X) is nonnegative, this
property also establishes the concavity of the entropy, as expressed in Eq. (21.45) or
Eq. (21.46). In the case where the probability distribution is uniform, the Shannon
entropy H (X) is maximal, meaning that there is maximal uncertainty as to which quan-
tum state the system is in. Such a situation also maximizes the entropy S(〈ρ〉) of the
system. The deterministic case where the system has only one possible quantum state
corresponds to H (X) = 0 and a minimum entropy.

The demonstration of the property expressed in Eq. (21.48) is relatively simple.
Indeed, let |λk

i 〉 and λk
i be the eigenstates and eigenvalues for each quantum state

associated with the density operator ρi . Hence ρi has diagonal matrix elements (ρi)kk =
λk

i . Next, given any i, k we observe that |λk
i 〉 and piλ

k
i are eigenvectors and eigenvalues of

444 Quantum information theory

〈ρ〉 = ∑
j p jρ j ,3 making {|λk

i 〉} an orthonormal basis for 〈ρ〉, regardless of the choice
of i . Hence, 〈ρ〉 has diagonal matrix elements 〈ρ〉kk = piλ

k
i and (log〈ρ〉)kk = log(piλ

k
i).

Using these different properties, we obtain

S(〈ρ〉) = −tr(〈ρ〉 log〈ρ〉)
= −

∑
k

[(∑
i

piρi

)
kk

(log〈ρ〉)kk

]
= −

∑
ik

[
pi (ρi)kk (log〈ρ〉)kk

]
= −

∑
ik

[
piλ

k
i log

(
piλ

k
i

)]
= −

∑
ik

λk
i pi log pi −

∑
ik

[
piλ

k
i log λk

i

]
= −

∑
i

pi log pi

∑
k

λk
i +

∑
i

pi

(
−

∑
k

λk
i log λk

i

)
≡ H (X) +

∑
i

pi S(ρi),

(21.49)

which proves Eqs. (21.46) and (21.47). As we have seen, the property thus estab-
lished rests on the assumption that the set of operators ρi has support on orthog-
onal subspaces. If such a condition is not met, the equality in Eq. (21.47) or
Eq. (21.48) does not hold and the originator-source entropy H (X) is only an upper bound,
namely:

S(〈ρ〉) − 〈S(ρ)〉 ≤ H (X), (21.50)

or, formally:

S

(∑
i

piρi

)
−

∑
i

pi S(ρi) ≤ H (X). (21.51)

Here, for the sake of conciseness and to keep the momentum, we shall not go through
the detailed demonstration of the inequalities in Eqs. (21.50) and (21.51). The key point
is to remember that the equality in these relations is not guaranteed, except in the case
where the subspaces defined by ρi are orthogonal. In all cases, the entropy H (X) remains
the upper bound. This general property for the concavity of entropy shall be used in the
next section, concerned with the so-called Holevo bound.

This tedious inventory of entropy properties, which has been limited here to the most
elementary ones, now calls for a few illustrative examples. I shall consider three basic
possibilities for a composite quantum system AB made of two subsystems A, B, namely:

3 Indeed, we have ∑
j

p j ρ j |λk
i 〉 =

(∑
jl

p j λ
l
j|λl

j 〉〈λl
j |
)
|λk

i 〉

=
∑

jl

p j λ
l
j |λl

j 〉〈λl
j |λk

i 〉

=
∑

jl

p j λ
l
j |λk

i 〉δi j δkl

≡ pi λ
k
i |λk

i 〉.

21.2 Relative, joint, and conditional entropy, and mutual information 445

(1) when the subsystem information is uncorrelated, (2) when it is correlated, and
(3) when the composite system is in a pure state. The last two examples will also
highlight the interest and implications of using partial tracing, and illustrate the concept
of state entanglement.

Example 21.1: Subsystems with uncorrelated information
Consider, for instance, two subsystems A, B in respective qubit states:4

|ψA〉 = 1√

2
(|0〉 + |1〉)A

|ψB〉 = 1√
3

(|0〉 + |1〉 + |2〉)B .

(21.52)

The joint state of the composite system is assumed to be

|ψAB〉 = |ψA〉 ⊗ |ψB〉

= 1

2
(|0〉 + |1〉)A ⊗ (|0〉 + |1〉 + |2〉)B

= 1√
6

(|00〉 + |01〉 + |02〉 + |10〉 + |11〉 + |12〉)AB .

(21.53)

It is clear from the above definitions that the three systems A, B, AB are expressed in
their respective eigenstate bases and, thus, have density matrices of ρA = IA/2, ρB =
IB/3, and ρAB = IAB/6, respectively, with the property ρAB = ρA ⊗ ρB . We therefore
have

S(ρA) = −tr[(IA/2) log(IA/2)] = −2 × 1

2
log

1

2
≡ 1

S(ρB) = −tr[(IB/3) log(IB/3)] = −3 × 1

3
log

1

3
≡ 1.584

S(ρAB) = −tr[(IAB/6) log(IAB/3)] = −6 × 1

6
log

1

6
≡ 2.584,

(21.54)

which shows that S(ρAB) = S(ρA) + S(ρB) and illustrates that entropy is additive
for subsystems with uncorrelated information (namely satisfying ρAB = ρA ⊗ ρB or
|ψAB〉 = |ψA〉 ⊗ |ψB〉), or, equivalently, whose quantum states are not entangled.

Example 21.2: Subsystems with correlated information
Consider, for instance, a composite system AB with the joint state

|ψAB〉 = 1√
6

(|00〉 + 2|10〉 + |11〉)AB, (21.55)

4 For each subsystem, it is possible to choose the eigenstate basis {|i〉} in which each component 〈ψ |i〉 is in
phase with |i〉, hence 〈ψ |i〉 ≥ 0, meaning that the example where all components are positive is actually not
restrictive.

446 Quantum information theory

which corresponds to the density operator

ρAB = 1

6
(|00〉〈00| + 4|10〉〈10| + |11〉〈11|). (21.56)

It is straightforward to check that tr(ρ2
AB) = 1/2 < 1, which illustrates that |ψAB〉 is

not a pure state. It is also a basic exercise to show that |ψAB〉, like other states having
similar decomposition with any other nonzero coefficients, cannot be decomposed into
a tensor product of two subsystem states |ψA〉, |ψB〉. Because of this, we conclude that
the information in the two subsystems is correlated, or that the subsystem states are
entangled.

So far, we only know that the quantum information in system AB is:

S(ρAB) = −2 × (1/6) log(1/6) − 0 × log(0) − 1 × (4/6) log(4/6)
≡ 1.251.

(21.57)

Given the above assumptions, can we get any knowledge of the quantum information in
subsystems A, B? The answer is yes, if we use the tool of partial tracing. Indeed, we
may rewrite Eq. (21.55) as a sum of tensor products:

ρAB = 1

6
(|0〉〈0|A ⊗ |0〉〈0|B + 4|1〉〈1|A ⊗ |0〉〈0|B + |1〉〈1|A ⊗ |1〉〈1|B). (21.58)

Applying partial tracing over A from the definition in Eq. (21.24), while using the
property tr(|i〉〈i |) = 〈i | i〉 ≡ 1, we obtain:

trA(ρAB) = 1

6
trA(|0〉〈0|A ⊗ |0〉〈0|B + 4|1〉〈1|A ⊗ |0〉〈0|B + |1〉〈1|A ⊗ |1〉〈1|B)

= 1

6
[trA(|0〉〈0|A ⊗ |0〉〈0|B) + 4trA(|1〉〈1|A ⊗ |0〉〈0|B) + trA(|1〉〈1|A ⊗ |1〉〈1|B)]

= 1

6
[trA(|0〉〈0|A) × |0〉〈0|B + 4trA(|1〉〈1|A) × |0〉〈0|B + trA(|1〉〈1|A) × |1〉〈1|B]

= 1

6
(|0〉〈0|B + 4|0〉〈0|B + |1〉〈1|B)

= 1

6
(5|0〉〈0|B + |1〉〈1|B) ≡ ρ̂B . (21.59)

The operator ρ̂B = trA(ρAB) is referred to as the reduced density operator of subsystem
B. Likewise, we obtain

trB(ρAB) = 1

6
(|0〉〈0|A + 5|1〉〈1|A) ≡ ρ̂A. (21.60)

For the sake of curiosity, let us now calculate the tensor product ρ̂A ⊗ ρ̂B from
Eqs. (21.59) and (21.60). We obtain

ρ̂A ⊗ ρ̂B = 1

36
(|0〉〈0|A + 5|1〉〈1|A) ⊗ (5|0〉〈0|B + |1〉〈1|B)

= 1

36
(5|00〉〈00| + |01〉〈01| + 25|10〉〈10| + 5|11〉〈11|)AB .

(21.61)

21.2 Relative, joint, and conditional entropy, and mutual information 447

It is clear by comparison with Eq. (21.56) that ρAB �= ρ̂A ⊗ ρ̂B , meaning that, in the
present example, the tensor product ρ̂A ⊗ ρ̂B of the reduced density operators ρ̂A, ρ̂B

does not correspond to the density operator of the composite system. This is not a
surprise, since we established earlier that the joint state |ψAB〉 cannot be reduced to a
tensor product.

Pushing curiosity further, we may calculate the quantum information,
S(ρ̂A), S(ρ̂B), S(ρ̂A ⊗ ρ̂B) associated with the reduced density operators ρ̂A, ρ̂B , and
ρ̂A ⊗ ρ̂B , to find:

S(ρ̂A) = S(ρ̂B)
= −(1/6) log(1/6) − (5/6) log(5/6)
≡ 0.650,

S(ρ̂A ⊗ ρ̂B) = −2 × (5/36) log(5/36) − (1/36) log(1/36) − (25/36) log(25/36)
≡ 1.300
≡ S(ρ̂A) + S(ρ̂B). (21.62)

Based on the information knowledge of the composite system, S(ρAB) = 1.251, as
established in Eq. (21.56), we find that:

S(ρAB) = 1.251
< S(ρ̂A) + S(ρ̂B)
= 1.300.

(21.63)

This result is consistent with the subadditivity inequality established earlier and for-
malized in Eq. (21.28). It is also consistent with the triangle inequality defined in
Eq. (21.43). We may, thus, conclude, as a postulate but not as a formal demonstration,
that S(ρ̂A), S(ρ̂B) indeed represent the quantum information contents of the two subsys-
tems A, B, despite the fact that the density operator of the composite system, ρAB , does
not reduce to the tensor product ρ̂A ⊗ ρ̂B .

Without realizing it, this example and postulate helped make great progress in the
analysis of information correlation! Indeed, we can now apply the definition of quantum
mutual information in Eq. (21.38) to obtain in this example:

S(ρA; ρB) = S(ρ̂A) + S(ρ̂B) − S(ρAB)
= 1.300 − 1.251
= 0.049.

(21.64)

We can, thus, conclude that quantum information in subsystems A, B is correlated, as
expressed by the mutual information S(ρA; ρB) = 0.049, corresponding to about 0.05
classical bit. From Eq. (21.39), we find the conditional entropy:

S(ρA|ρB) = S(ρAB) − S(ρ̂B)
= 1.251 − 0.650
= 0.601

(21.65)

with S(ρB |ρA) = S(ρA|ρB). The knowledge of the information in one of the sub-
systems, thus, decreases the information (or uncertainty) in the other system by the

448 Quantum information theory

amount S(ρA) − S(ρB |ρA) = 0.650 − 0.601 = 0.049 = S(ρA; ρB), which corresponds
to the mutual information in the composite system.

Example 21.3: Composite system in pure state
As a final example, consider the joint state

|ψAB〉 = 1√
2

(|00〉 + |11〉)AB . (21.66)

This state, which is also noted |β00〉, is one of the four Bell–EPR states (see Eqs. (16.2)
and (18.15)). As we have learnt, the Bell–EPR states cannot be generated by the tensor
product of two qubits, and they also form an orthonormal basis in the 2-qubit space
(referred to as {|β00〉, |β01〉, |β10〉, |β11〉}). In this basis, |ψAB〉 = |β00〉 is, thus, a pure
state and its density operator is, therefore, equal to ρAB = |ψAB〉〈ψAB |. Substitution
of the definition in Eq. (21.66) and rearrangement of the different terms into tensor
products yields:

ρAB = |ψAB〉〈ψAB |
= 1

2
(|00〉 + |11〉)AB ⊗ (〈00| + 〈11|)AB

= 1

2
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)AB

= 1

2

(|0〉〈0|A ⊗ |0〉〈0|B + |0〉〈1|A ⊗ |0〉〈1|B

+ |1〉〈0|A ⊗ |1〉〈0|B + |1〉〈1|A ⊗ |1〉〈1|B

)
.

(21.67)

Next, we calculate the reduced density operators ρ̂A = trB(ρAB) and ρ̂B = trA(ρAB),
while using the property with the property tr(|i〉〈 j |) = 〈i | j〉 ≡ δi j , to obtain:

ρ̂A = trB(ρAB)

= 1

2

[|0〉〈0|Atr(|0〉〈0|B) + |0〉〈1|Atr(|0〉〈1|B)
+| 1〉〈0|Atr(|1〉〈0|B) + |1〉〈1|Atr(|1〉〈1|B)

]

= 1

2
(|0〉〈0|A + |1〉〈1|A)

≡ IA

2
.

(21.68)

ρ̂B = trA(ρAB)

= 1

2
[tr(|0〉〈0|A) × |0〉〈0|B + tr(|0〉〈1|A) × |0〉〈1|B + tr(|1〉〈0|A)

× |1〉〈0|B + tr(|1〉〈1|A) × |1〉〈1|B]

= 1

2
(|0〉〈0|B + |1〉〈1|B)

≡ IB

2
,

(21.69)

where IA, IB are the identity matrices of subsystems A, B. We observe that tr(ρ̂2
A) =

tr(ρ̂2
B) = 1/2 < 1, which shows that ρ̂A, ρ̂B correspond to mixed states. For the sake of

21.2 Relative, joint, and conditional entropy, and mutual information 449

curiosity, let us now calculate the tensor product ρ̂A ⊗ ρ̂B from Eqs. (21.68) and (21.69).
We obtain

ρ̂A ⊗ ρ̂B = IA

2
⊗ IB

2

= IAB

4

≡ 1

4
(|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|).

(21.70)

Comparison between Eq. (21.70) and Eq. (21.67) shows that, as expected, ρAB �= ρ̂A ⊗
ρ̂B . This provides an indication that the information in the subsystems A, B is correlated
or, equivalently, that the subsystem states are entangled.

Next, we calculate the quantum information, S(ρ̂A), S(ρ̂B) associated with the reduced
density operators ρ̂A, ρ̂B , to find:

S(ρ̂A) = S(ρ̂B) = −2 × (1/2) log(1/2) ≡ 1. (21.71)

Thus, each of the subsystems A, B has a quantum information equivalent to exactly
one classical bit, which corresponds to the qubit state |q〉 = (|0〉 ± |1〉)/√2 of maximal
uncertainty. Such a conclusion is also consistent with our previous observation according
to which the two subsystems A, B must be in mixed states (tr(ρ̂2

A) = tr(ρ̂2
B) = 1/2 < 1).

The situation of the two subsystems, A, B, contrasts with that of the composite system,
AB, which is in the pure state |β00〉. By definition, this state is known exactly and,
therefore, it has zero quantum information, meaning that S(ρAB) = 0. This is a most
intriguing feature, without any counterpart in the classical world: there is no information
in the composite system, while there is maximal information in the two subsystems!
Formally, we obtain for the mutual information and the conditional entropy:

S(ρA; ρB) = S(ρ̂A) + S(ρ̂B) − S(ρAB)
= 1 + 1 − 0 = 2,

(21.72)

S(ρA|ρB) = S(ρAB) − S(ρ̂B) = 0 − 1 ≡ −1
S(ρB |ρA) = S(ρAB) − S(ρ̂A) = 0 − 1 ≡ −1.

(21.73)

These results show that the two subsystems have the equivalent of two classical bits
(two cbits) for mutual information, which shows that the 1-cbit information they each
possess in fact constitute shared property! On the other hand, knowledge of the infor-
mation contents of one subsystem removes one cbit from the information in the other
subsystem, as the conditional entropy is negative. Since the other subsystem has one
cbit of information content, there is actually no information left to measure! This obser-
vation means that knowledge of one subsystem exactly conditions that of the other,
which illustrates the principle of quantum entanglement. Another way to understand
this conditioning property is to consider the effect of measuring the information in one
of the two subsystems. Assume, for instance, that our measurement finds subsystem A
in the state |0〉. The post-measurement state, which now characterizes subsystem B, is
the pure state |ψB〉 = |0〉B . If our measurement finds subsystem A in the state |1〉, the
post-measurement state is the pure state |ψB〉 = |1〉B . Either measurement in subsystem

450 Quantum information theory

A, thus, results in the collapse of subsystem B into a pure state. The same conclusion
strictly applies if subsystem B is measured first. Thus, in all possible cases, a measure-
ment of one subsystem collapses the other into a pure state, which, as we know, contains
zero information.

As we have seen in Chapter 18, quantum entanglement, as a characteristic property
of the Bell–EPR states, can be used for the purpose of quantum teleportation. See more
illustrations of the effect of quantum entanglement in the exercises.

21.3 Quantum communication channel and Holevo bound

We may now conceive a quantum version of Shannon’s communication channel
(Chapter 11), with the purpose of transmitting information from an originator entity
to a recipient entity. Here, the words “communication” and “transmission” should not
be interpreted in the engineering meaning of sending information through a wire from
one point to another over some distance. Instead, the strict meaning is that of a message
being communicated in some coded form, from an originator to a recipient, regardless
of the physical transmission means, the overall channel being a quantum system. Let me
now clarify how such a channel may be operated.

As in the classical case, the information is encapsulated into a message X , which
represents a succession of symbols (or letters, or codewords), x , to be encoded by
the originator from a possible alphabet (or code) of size n. The message symbols are
associated with a probability px . After passing through a physical “transmission pipe,”
the symbols are then decoded by the recipient, to restore the classical information therein.
In the quantum case, however, the information is to be carried by quantum states, which
will now be referred to by their density operators ρx . From the simplest perspective, the
operation of encoding consists, for the originator, of the “preparation” of the quantum
states, ρx , which is made according to the message’s probability distribution px . Here,
the word “preparation” means setting up the conditions for a given quantum system to
be exactly in the state ρx . The operation of decoding is, for the recipient, the action
of performing “measurements” on each of the received quantum states. According
to Chapter 17, such measurements can be made through a collection of n Hermitian
operators {Em}m=1...n referred to as a POVM set. The outcome of any measurement is a
real positive number y belonging to some alphabet Y of size n. We note that from this
description, X, Y are classical sources with x, y as associated random events, while the
communication channel is quantum.

I shall now focus on the mutual information, H (X ; Y) associated with the above-
described quantum communication channel. A key property is that the mutual informa-
tion is bounded by a maximum, χ , referred to as a Holevo bound, and defined by

H (X ; Y) ≤ S(ρ) −
∑

x

px S(ρx) = χ, (21.74)

21.3 Quantum communication channel and Holevo bound 451

where ρ = ∑
x pxρx = 〈ρ〉 is the mean density operator, as averaged over the coding

possibilities. Based on this notation, and combining Eq. (21.74) with the general property
of concavity of entropy in Eqs. (21.50) and (21.51), the Holevo bound condition also
gives

H (X ; Y) ≤ χ ≤ H (X), (21.75)

where H (X) is the Shannon entropy of the originator message source. In a clas-
sical communication channel, the mutual information cannot exceed the entropy of
the originator source, namely H (X ; Y) = H (X) − H (X |Y) with H (X |Y) ≥ 0 (see
Chapter 5), hence, H (X ; Y) ≤ H (X). Thus, Eq. (21.74) is granted. However, the inter-
mediate Holevo bound χ in this equation is nontrivial, except in the case χ = H (X),
corresponding to the specific situation where ρx have support on orthogonal states. In
the contrary case, we have χ < H (X) and, hence, the condition H (X ; Y) < H (X). In
such a condition, there exists no possibility for the recipient to completely recover the
originator’s information H (X) through any set of measurements on Y . This constitutes
a nonintuitive situation that cannot be experienced from any “classical viewpoint.”

The formal proof of the Holevo bound is presented in Appendix X. The proof is
tractable but, unfortunately, only to a certain extent! As described in this appendix,
indeed, the full proof requires the introduction of an additional entropy property referred
to as strong subadditivity.5 Such a property, which has not be described in the earlier
subsection, rests on two additional theorems, whose demonstration is rather mathe-
matically involved. For this reason, and for the purpose of these chapters, we shall
take “strong subadditivity” as a granted postulate. Going through the derivations in
Appendix X, however, should not be viewed as a vain exercise. Rather, in addition to
coming very close to an intuitive (albeit incomplete) proof of the Holevo bound, it also
represents an opportunity to familiarize oneself with the concept of quantum operations,
of which quantum measurements with POVM operators represent a very representative
illustration.

I shall now illustrate the consequences of the Holevo bound through a few basic
examples.

Example 21.4: A “useless” quantum communication channel
Assume that the originator is able to prepare a quantum system in two possible orthog-
onal states |q1〉 = (|0〉 + |1〉)/√2 and |q2〉 = (|0〉 − |1〉)/√2, but with some relative
uncertainty, according to a probability law defined by p1 = p and p2 = 1 − p. Not
being 100% certain, these two states are mixed states, having the corresponding and

5 The property of “strong subadditivity” states that for any three quantum systems A, B, C , the following
inequalities hold:

S(A) + S(B) ≤ S(A, C) + S(B, C)

S(A, B, C) + S(B) ≤ S(A, B) + S(B, C).

452 Quantum information theory

equal density operators:

ρ1 = ρ2 = 1

2
(|0〉〈0| + |1〉〈1|) = 1

2

(
1 0

0 1

)
. (21.76)

The mean density operator is ρ = pρ1 + (1 − p)ρ2 = ρ1 = ρ2. Clearly, the VN
entropy is the same for the three states ρ, ρ1, ρ2, i.e., S(ρ) = S(ρ1) = S(ρ2) = −2 ×
(1/2) log(1/2) = 1, hence, the Holevo bound χ is zero, meaning H (X ; Y) = 0. Such
a quantum communication channel has no mutual information available whatsoever in
reserve and, in the sense of information theory, is, therefore, useless. Formally, this use-
lessness characteristic is because the qubit states used for the message quantum states,
albeit orthogonal as “symbols,” have strictly identical supports (or eigenstate spaces).
Basically, the originator does not have any control on his or her source to prepare any
“communicable” information. Based on the fact that each of the proposed qubits con-
tain exactly one classical bit (cbit), and that the two are orthogonal, this conclusion of
uselessness sounds like a disillusionment concerning the communication potential. But
it is now clear that their mixed-state nature render the communication attempt useless,
no matter what the distribution defined by the parameter p.

Example 21.5: A quantum communication channel reduced to classical
The originator (based on the previous experience) is now able to prepare his or her
quantum system with the same orthogonal qubits, i.e., |q1〉 = (|0〉 + |1〉)/√2 and |q2〉 =
(|0〉 − |1〉)/√2, but this time as pure states, contrary to the previous example. This
means that in each possible preparation, there is absolute certainty that the outcome
is either |q1〉 or |q2〉, as required. Then the two preparations that can be chosen have
corresponding density-operators:

ρ1 = 1

2
(|0〉 + |1〉)(〈0| + 〈1|) = 1

2

(
1 1
1 1

)
→

(
1 0
0 0

)

ρ2 = 1

2
(|0〉 − |1〉)(〈0| − 〈1|) = 1

2

(
1 −1
−1 1

)
→

(
0 0
0 1

)
.

(21.77)

In the above, the arrows mean in each case that the density matrix is transformed
from the basis {|0〉, |1〉} into the eigenstate basis {|+〉, |−〉} = {|q1〉, |q2〉}. The origi-
nator then selects the qubits according to the message’s probability law, here defined
by p1 = p and p2 = 1 − p, where p is a parameter. The mean density operator is,
therefore,

ρ = pρ1 + (1 − p)ρ2 =
(

p 0
0 1 − p

)
. (21.78)

Clearly, we have for the VN entropy S(ρ) = −[p log p − (1 − p) log(1 − p)] = f (p) ≡
H (X) and S(ρ1) = S(ρ2) = 0 (pure states). Thus, the Holevo bound is χ = f (p) =
H (X) meaning H (X ; Y) ≤ H (X) as in the case of a classical communication channel.
We note that the strict equality for the Holevo bound, χ = H (X), stems from the fact that

21.3 Quantum communication channel and Holevo bound 453

the message states ρ1, ρ2 have orthogonal support. This result shows that the quantum
communication channel is able to convey information that can be up to H (X), which
is the classical entropy of the originator’s message source. Interestingly, the quantum
“symbols” carry no information by themselves, since S(ρ1) = S(ρ2) = 0 are pure states.
As we know, H (X) is maximized for the choice p = 0.5, corresponding to a coin-tossing
probability law.

Example 21.6: General case
This example represents an interesting generalization of the previous situation. The
originator is able to prepare single qubits as pure states, and the message to be encoded
is a long string of 1 or 0 cbits with a uniform probability distribution. If the cbit is 0, the
qubit symbol is chosen, for instance, to be |0〉, and if the cbit is 1, the qubit symbol is
chosen to be cos θ |0〉 + sin θ |1〉, where θ ∈ [0, π] is an arbitrary parameter. The density
operators of the message’s qubit symbols are

ρ1 = |0〉〈0| =
(

1 0
0 0

)
ρ2 = (cos θ |0〉 + sin θ |1〉)(cos θ〈0| + sin θ〈1|)

= cos2 θ |0〉〈0| + cos θ sin θ |0〉〈1| + cos θ sin θ |1〉〈0| + sin2 θ |0〉〈0|
=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

(21.79)

Each qubit symbol having the same probability p1 = p2 = 1/2, we obtain for the mean
density operator:

ρ =
2∑

i=1

piρi = 1

2

(
1 0
0 0

)
+ 1

2

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)

≡ 1

2

(
1 + cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

(21.80)

It is easily found through the characteristic equation that the eigenvalues of ρ are
λ1,2 = (1 ± cos θ)/2, or λ1 = cos2(θ/2) and λ2 = sin2(θ/2) = 1 − λ1. The VN entropy
of the originator’s quantum source (ρ) is, therefore:

S(ρ) = −λ1 log λ1 − λ2 log λ2

= −λ1 log λ1 − (1 − λ1) log(1 − λ1)
≡ f (λ1)
≡ f [cos2(θ/2)].

(21.81)

Since S(ρ1) = S(ρ2) = 0 (pure states) the Holevo bound is

χ = S(ρ) = f

(
cos2 θ

2

)
. (21.82)

A plot of the above-defined Holevo bound is provided in Fig. 21.1. It is seen that a
maximum is reached for x = 0.5 or θ = π/2, which corresponds to a choice for the

454 Quantum information theory

q/p
0

0

1

0.1

0.2

0.4

0.6

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 21.1 Holevo bound χ as a function of the argument θ , showing a maximum at θ = π/2.

second qubit of |q2〉 = |1〉 or ρ2 = |1〉〈1|. In this case, H (X ; Y) ≤ χ = H (X) = 1,
meaning that information can be transmitted through the quantum channel up to
1 bit, corresponding to the originator’s source entropy. In any other case, or θ �= π/2,
the Holevo bound is less than unity (the originator’s source entropy) and there is no
possibility for the original information to be fully retrieved by the recipient. Clearly,
such a limitation is attributable to the fact that the set of density operators used to code
the symbols does not have orthogonal support, meaning that they have a finite overlap,
defined formally as |〈q1|q2〉|2 = cos2 θ �= 0. The case θ = π/2, where the two states
|q1〉, |q2〉 are orthogonal, reduces the quantum channel to a classical one, as described
in Example 2.

In summary, the key lesson to retain from the above description and examples is
that it is possible to transmit (or “convey”) classical information through a quantum
communication channel. A prerequisite is that the alphabet of quantum symbols used to
code information must be made of pure states, in which case the Holevo bound χequals
the VN entropy or average quantum information per symbol (χ = S(ρ)). A second,
optional, requirement is that the alphabet states be orthogonal, in which case the Holevo
bound is maximized and is equal to the originator’s source entropy (χ = H (X)). In any
case, the mutual information H (X ; Y), i.e., the amount of information that the originator
and the recipient may be able to share, satisfies H (X ; Y) ≤ χ .

The concept of the quantum communication channel will be revisited in Chapter 23,
which considers the effect of channel corruption by quantum noise.

21.4 Exercises

21.1 (B): Show that the quantum system with density matrix (basis representation
{|0〉, |1〉})

ρ = 1

2

(
1 1
1 1

)

21.4 Exercises 455

corresponds to the pure state

|+〉 = 1√
2

(|0〉 + |1〉).

21.2 (B): Show that the density operator ρ = |0〉〈0| of a pure state |0〉 can be trans-
formed into the basis {|+〉, |−〉} with the definition (using here the sign ⊕ for
clarity in the summation):

ρ̃ = 1

2
(|+〉〈+| ⊕ |+〉〈−| ⊕ |−〉〈+| ⊕ |−〉〈−|)

= |+〉 ⊕ |−〉√
2

⊗ 〈+| ⊕ 〈−|√
2

.

21.3 (B): Show that for any density operator ρ, the property

tr(ρ2) ≤ 1

applies with equality only for the case of pure states.

21.4 (M): Given a quantum system with the density matrix

ρ = 1

3

(
2 1
1 1

)
,

determine the corresponding state |ψ〉 in the eigenstate basis and the von Neu-
mann entropy.

21.5 (M): Given the density matrices ρA, ρB and identity matrices IA, IB of two subsys-
tems A, B with dimensions n × n and p × p, respectively, and the density matrix
ρAB of the joint system with dimension n × p, show the following relations:
(1) ρA ⊗ ρB = (ρA ⊗ IB)(IA ⊗ ρB),
(2) log(ρA ⊗ ρB) = log(ρA) ⊗ IB + IA ⊗ log(ρB),

and

(3)
{

tr[ρAB log(ρA ⊗ IB)] = tr(ρA log ρA)
tr[ρAB log(IA ⊗ ρB)] = tr(ρB log ρB),

using for (3) the property valid for any observable UX in a composite system XY

tr[ρXY (UX ⊗ IY)] = tr(ρXUX)

with a similar relation applying to any observable UY .
(Clue: start from the operator tensor-product definition in Eq. (16.54), and assume,
for simplicity and without loss of generality, that n = 2, p = 3)

21.6 (B): Show that the 2-qubit state

|ψ〉 = 1√
3

(|00〉 + |10〉 + |11〉)

456 Quantum information theory

(a) Is not a pure state;
(b) Cannot be decomposed as a tensor product |ψA〉 ⊗ |ψB〉 of some subsystem

states |ψA〉, |ψB〉.
21.7 (M): Determine the von Neumann entropy of the composite system having density

operator

ρ = 1

4
(|00〉〈00| + |00〉〈11| + 2|10〉〈10| + |11〉〈00| + |11〉〈11|).

22 Quantum data compression

This chapter describes the principle of compression in quantum communication chan-
nels. The underlying concept is that it is possible to convey “faithfully” a quantum
message with a large number of qubits, while transmitting a compressed version of
this message with a reduced number of qubits through the channel. Beyond the mere
notion of fidelity, which characterizes the quality of quantum message transmission,
the description brings the new concept of typicality in the space defined by all possi-
ble “quantum codewords.” The theorem of Schumacher’s quantum compression states
that for a qubit source with von Neumann entropy S, the message compression factor
R has S + ε for the lower bound, where ε is any nonnegative parameter that can be
made arbitrarily small for sufficiently long messages (hence, R ≈ S is the best possible
compression factor). An original graphical and numerical illustration of the effect of
Schumacher’s quantum compression and the evolution of the typical quantum-codeword
subspace with increasing message length is provided.

22.1 Quantum data compression and fidelity

In this chapter, we have reached the stage where it is possible to start addressing the
issues that are central to information theory, namely, “How efficiently can we code
information in a quantum communication channel?” both in terms of economy of means –
the concept of data compression – and accuracy of transmission – the concept of message
integrity or minimal data error, referred to here as fidelity. In QIT, the concepts of
compression and fidelity are, in fact, intimately and nicely related, as described in this
section.

As described in the previous chapter, a quantum communication channel requires
an alphabet of pure states, which are used to encode the classical information con-
tained in message bits, letters, or codewords. In the classical case, a message like
m = 1001110101000110 can be viewed either as a sequence of 16 individual bits that
are transmitted one at a time, or as a single “block” of two-byte size (one byte is an
eight-bit sequence). Similarly, we may conceive of a full quantum message not as a
time sequence of n qubit symbols, but as a “block” represented by the tensor state
|M〉 = |x1x2 . . . xn〉, with each qubit |xi 〉 being randomly selected from a given symbol
alphabet {|ak〉}k=1...N of size N . Since each symbol |ak〉 is associated with an occurrence

458 Quantum data compression

probability pk , we can define a symbol density operator as:

ρ =
N∑

k=1

pk |ak〉〈ak |. (22.1)

Consistently, the full symbol block is characterized by the message density operator:

ρM = ρ ⊗ ρ ⊗ · · · ⊗ ρ ≡ ρ⊗n. (22.2)

I shall now provide a basic illustration of the above, which will also enable me to introduce
the concept of fidelity. Assume a quantum communication channel with messages based
on a two-symbol alphabet of pure states {|a〉, |b〉}, defined as:

|a〉 = |0〉 =

(
1
0

)

|b〉 = 1√
2

(|0〉 + |1〉) = 1√
2

(
1
1

)
.

(22.3)

The classical message source, X , is assumed to be uniformly distributed, so the two
quantum symbols have equal probabilities pa = pb = 1/2. Thus, the symbol density
operator is given by

ρ = pa|a〉〈a| + pa|b〉〈b|

= 1

2

(
1 0
0 0

)
+ 1

4

(
1 1
1 1

)

≡ 1

4

(
3 1
1 1

)
.

(22.4)

The eigenvalues of ρ are easily found to be λa = (1 + 1/
√

2)/2 ≡ cos2(π/8) and λa =
(1 − 1/

√
2)/2 ≡ sin2(π/8), respectively. The corresponding eigenvectors |λa〉, |λb〉 are

|λa〉 =

 cos

π

8

sin
π

8

 ,

|λb〉 =

 sin

π

8

− cos
π

8

 .

(22.5)

and in the eigenstate basis {|λa〉, |λb〉}, the density operator ρ has the diagonal form:

ρ =
(

λa 0
0 λb

)
=

cos2 π

8
0

0 sin2 π

8

 . (22.6)

Finally, the VN entropy associated with any message symbol, or per-qubit entropy is

S(ρ) = −λa log λa − λb log λb

= −λa log λa − (1 − λa) log(1 − λa)
≡ f

[
cos2(π/8)

]
≡ 0.6008.

22.1 Quantum data compression and fidelity 459

Let us now calculate the overlap between the eigenstates |λa〉, |λb〉 and the quantum
symbols |a〉, |b〉. Using Eqs. (22.3) and (22.5), we obtain:

|〈λa|a〉|2 = |〈λa|b〉|2 = cos2 π

8
= λa ≈ 0.8535

|〈λb|a〉|2 = |〈λb|b〉|2 = sin2 π

8
= λb ≈ 0.1465.

(22.7)

The overlap between the subspaces defined or “spanned” by either |λa〉 or |λb〉 and the
full space defined or spanned by |a〉, |b〉 is, thus, observed to be significantly greater in
the first case (i.e., 85% vs. 15%, or λa vs. λb).

We may now introduce the concept of fidelity, defined by

F = 〈ψ |ρ|ψ〉 ≡ pa|〈ψ |a〉|2 + pb|〈ψ |b〉|2, (22.8)

where |ψ〉 is an arbitrary measurement state. Here, since pa = pb = 1/2, the fidelity
reduces to F = (|〈ψ |a〉|2 + |〈ψ |b〉|2)/2. From Eq. (22.7), it is clear that the fidelity is
a maximum for the measurement choice |ψ〉 = |λa〉, regardless of whether |a〉, |b〉 was
sent by the originator, which gives F = 0.853. Hence, {|ψ〉} = {|λa〉} corresponds to
a one-dimensional “likely subspace” with which any message symbol is most strongly
overlapping.

Let us now extend the above notion of “likely subspace” to the case of a message of
three qubits long. The eight equally-likely message outcomes |M〉 are

|M〉 = |aaa〉, |aab〉, |aba〉, |abb〉, |baa〉, |bab〉, |bba〉, |bbb〉. (22.9)

Let |ψ〉 = |λiλ jλk〉 be an arbitrary measurement state with λi , λ j , λk = λa, λb. Using
the property |〈ψ |M〉|2 = |〈λiλ jλk |xyz〉|2 = |〈λi |x〉|2|〈λ j |y〉|2|〈λk |z〉|2, together with
the result in Eq. (22.7), we obtain the space overlaps applicable to any message |M〉:

|〈λaλaλa|M〉|2 = λ3
a = cos6 π

8
= 0.6219, (22.10)

|〈λaλaλb|M〉|2 = |〈λaλbλa|M〉|2
= |〈λbλaλa|M〉|2 = λ2

aλb = cos4 π

8
sin2 π

8
= 0.1067,

(22.11)

|〈λaλbλb|M〉|2 = |〈λbλaλb|M〉|2
= |〈λbλbλa|M〉|2 = λaλ

2
b = cos2 π

8
sin4 π

8
= 0.0183,

(22.12)

|〈λbλbλb|M〉|2 = λ3
b = sin6 π

8
= 0.0031. (22.13)

It is seen that the subspace defined by � = {|λaλaλa〉, |λaλaλb〉, |λaλbλa〉, |λbλaλa〉}
is the most likely, while its orthogonal subspace complement, �⊥ = {|λaλbλb〉,
|λbλaλb〉, |λbλbλa〉, |λbλbλb〉}, is the least likely. Such a statement means that mak-
ing any measurement of the message using a state |ψ〉 from the eigenstate basis � =
{|λa〉, |λb〉}⊗3 is more likely to project the state in the subspace � than in the subspace �⊥,
the corresponding probabilities being p(�) = λ3

a + 3λ2
aλb = 0.6219 + 3 × 0.1067 =

0.942 ≡ 1 − δ and p(�⊥) = 3λaλ
2
b + λ3

b = 3 × 0.0183 + 0.0031 = 0.058 ≡ δ, respec-
tively. We may then define E as the projector on the likely four-dimensional subspace

460 Quantum data compression

�, according to

E =
∑

|λi λ j λk 〉∈�

|λiλ jλk〉〈λiλ jλk |

= |λaλaλa〉〈λaλaλa| + |λaλaλb〉〈λaλaλb|
+ |λaλbλa〉〈λaλbλa| + |λbλaλa〉〈λbλaλa|,

(22.14)

or as expressed in the eigenstate basis �:

E =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

. (22.15)

In the same eigenstate basis, the message’s density operator ρM = ρ⊗n takes the diagonal
form:

ρM =

λ3
a 0 0 0 0 0 0 0

0 λ2
aλb 0 0 0 0 0 0

0 0 λ2
aλb 0 0 0 0 0

0 0 0 λ2
aλb 0 0 0 0

0 0 0 0 λaλ
2
b 0 0 0

0 0 0 0 0 λaλ
2
b 0 0

0 0 0 0 0 0 λaλ
2
b 0

0 0 0 0 0 0 0 λ3
b

. (22.16)

Based on the definitions in Eqs. (22.15) and (22.16), we clearly have

tr(ρM E) = p(�) = 1 − δ. (22.17)

We shall now refer to � as the typical subspace, which is reminiscent of the typical set of
classical information theory described in Chapter 13. Likewise, any message of the type
|ψtyp〉 = |λaλaλa〉, |λaλaλb〉, |λaλbλa〉, |λbλaλa〉 represents the quantum analog of the
typical sequences described in that chapter. We shall now refer to them as typical states.
At this stage, it is only an intuitive notion that as the message length n is increased,
the probability associated with the typical subspace � asymptotically increases and
that associated with �⊥ asymptotically decreases, meaning that the uncertainty δ may
become arbitrarily small, and from Eq. (22.17), we may be able to achieve the condition
tr(ρM E) = p(�) ≈ 1. These observations will be discussed again.

We are now going to exploit the possibility of partitioning the space into typical and
atypical subspaces in order to achieve quantum compression in the message. Assume, for
instance, that we want to reduce the 3-qubit message to a 2-qubit, compressed, message.
The following describes how the originator must proceed. First, the originator should
apply a unitary transformation U , such that the four typical states (indifferently called

22.1 Quantum data compression and fidelity 461

|ψtyp〉) are transformed into states of the form |xy0〉 = |xy〉 ⊗ |0〉, and the other four
(atypical) states are transformed into states of the form |xy1〉 = |xy〉 ⊗ |1〉. This is just a
specific way of re-encoding the original message |ψ〉. Call |ψ ′〉 = U |ψ〉 the result of this
re-encoding. With the knowledge of the re-encoding transformation U , the recipient is
then able to retrieve the original message state |ψ〉 by performing the reverse operation,
namely |ψ〉 = U−1|ψ ′〉.

This above notion of message re-encoding being understood, consider now that the
originator has the option of implementing the following trick. Assume indeed that she
or he performs a measurement on the third qubit of |ψ ′〉:
� If the outcome of the fuzzy measurement is 0, then the message state (and its post-

measurement) is of the form |xy0〉, a typical state;
� If the outcome of the fuzzy measurement is 1, then the message state (and its post-

measurement) is of the form |zk1〉, an atypical state.

Based on these two fuzzy measurement outcomes, the originator then takes the corre-
sponding actions:

� If the outcome is 0, the remaining two qubits |xy〉, which we call |ψcomp1〉, are sent
through the quantum channel;

� If the outcome is 1, a 2-qubit state |ψcomp2〉 is sent through the quantum channel; such
that U−1 (|ψcomp2〉 ⊗ |0〉) = |λaλaλa〉, which is the most likely typical state.

From the recipient’s end, it is understood as a rule that the qubit |0〉 must be appended
to the incoming message, which, thus, becomes either |ψcomp1〉 ⊗ |0〉 or |ψcomp2〉 ⊗
|0〉. The rule also has it that the inverse transform U−1 must be applied. From this
“decompression” operation, the recipient, thus, obtains either one of the two states:{ |ψ ′′〉 = U−1(|ψcomp1〉 ⊗ |0〉) = U−1U |xy0〉 = |ψtyp〉

|ψ ′′′〉 = U−1(|ψcomp2〉 ⊗ |0〉) = |λaλaλa〉.
(22.18)

On decompression, the recipient is, thus, able to retrieve the original message state
|ψtyp〉, while occasionally getting a “junk” or “best-guess” message |λaλaλa〉. This
coding trick, along with the agreed rules, has, thus, made it possible for the originator to
transmit the 3-qubit original message to the recipient in a compressed, 2-qubit message,
and for the recipient to uncompress it into a 3-qubit message. But how faithful is this
whole operation? To answer this question, we must express the density operator ρ̃ of
the uncompressed message, after reconstruction by the recipient. The original message,
|ψ〉, has density operator |ψ〉〈ψ |. Its projection on the typical space � is E |ψ〉〈ψ |E+ =
E |ψ〉〈ψ |E , which provides a first component of ρ̃, corresponding to the typical message
states |ψtyp〉. The second component of ρ̃, corresponding to the other atypical message
states, can be heuristically written ρ̃junk = 〈ψ |(I − E)|ψ〉|λaλaλa〉〈λaλaλa|, where I =
I⊗3 is the identity matrix. Clearly, I − E is the projector on the atypical space �⊥.
Thus, 〈ψ |(I − E)|ψ〉 equals one if |ψ〉 is an atypical state, with corresponding projector
|λaλaλa〉〈λaλaλa|, and 〈ψ |(I − E)|ψ〉 is equal to zero otherwise. The transmitted and

462 Quantum data compression

reconstructed message, thus, has the complete density operator

ρ̃ = E |ψ〉〈ψ |E + 〈ψ |(I − E)|ψ〉|λaλaλa〉〈λaλaλa|
= E |ψ〉〈ψ |E + ρ̃junk.

(22.19)

From the definition in Eq. (22.8), we obtain the fidelity

F̃ = 〈ψ |ρ̃|ψ〉
= 〈ψ |E |ψ〉〈ψ |E |ψ〉 + 〈ψ |ρ̃junk|ψ〉
= |〈ψ |E |ψ〉|2 + 〈ψ |(I − E)|ψ〉|〈ψ |λaλaλa〉|2
= P(�)2 + P(�⊥) × |〈ψ |λaλaλa〉|2
≡ (1 − δ)2 + δ|〈ψ |λaλaλa〉|2.

(22.20)

Substituting δ = 0.058 and |〈λaλaλa|ψ〉|2 = λ3
a = 0.6219 from Eq. (22.10) into

Eq. (22.20), we obtain

F̃ = (1 − 0.058)2 + 0.058 × 0.629 ≡ 0.923. (22.21)

The result F̃ = 0.923 compares well with the fidelity value F = 0.853 obtained earlier.
To recall, this is the fidelity obtained by “guessing” any missing qubit is likely to be
|λa〉. Thus, the alternate approach of transmitting only the first two qubits as uncoded,
and leaving the recipient the task of “guessing” the third missing one (likely to be |λa〉)
is F = 0.853. Such a guess-based coding for compression does not have a fidelity as
high as that of the above coding, for which F̃ = 0.923.

The example has shown that it is possible to compress a quantum message of
n-qubit size (n = 3) into a coded version of m-qubit size (m = 2), with relatively
high fidelity. Here, the compression factor that was achieved is η = m/n = 2/3 =
0.666 . . . = 66.66%. The next section will establish that for messages of asymptotically
increasing length, the achievable compression factor is bounded according to

η ≥ S(ρ), (22.22)

where S(ρ) is the VN entropy carried by each of the message symbols. This result
is known as Schumacher’s (quantum coding) theorem. In this example, the per-qubit
entropy is S(ρ) = 0.6008, corresponding to a best compression factor of η = 60.08%.
Therefore, for 3-qubit messages based on the symbol density matrix defined in
Eq. (22.6), there is no code capable of achieving compression down to a single
qubit (η′ = 0.333 . . .) with any high fidelity. Such a compression factor would require
S(ρ) ≤ 0.333 . . . Based on Schumacher’s theorem, the key conclusion is that the lower
the VN entropy per qubit, the higher the message compression potential. We may, thus,
view the VN entropy as representing redundant information, meaning susceptible to
compression. In the limiting case S(ρ) = 1 (or ρ = I/2), no compression is possible.
This density operator corresponds to the qubit of the type |±〉 = (|0〉 ± |1〉) /

√
2, where

the information randomness is evenly distributed between 0 and 1 cbits, as with a clas-
sical source having the maximal entropy H (X) = 1 bit. This observation is consistent
with the fact that there is no code that is capable of compressing a purely random bit
sequence as generated by a classical source H (Xn) = n. But as soon as randomness
is no longer evenly distributed between 0 and 1 bits (H (Xn) < n), there is information
redundancy and, hence, the possibility of reducing the sequence to a size m < n.

22.1 Quantum data compression and fidelity 463

Table 22.1 Probabilities associated with quantum messages of length n = 4, defining the typical space
� = {|λaλaλaλa〉, |λaλaλaλb〉, |λaλaλbλb〉, | ↔〉} with likelihood 1 − δ = 0.9888.

Codeword type Probability p Number N Probability Np 1 − δ δ

|λaλaλaλa〉 0.5308 1 0.5308

|λaλaλaλb〉 0.0911 4 0.3643

|λaλaλbλb〉 0.0156 6 0.0937 0.9888

|λaλbλbλb〉 0.0027 4 0.0107

|λbλbλbλb〉 0.0005 1 0.0005 0.0112

16 1.0000

I have stated earlier that as the message length n is increased, the probability associated
with the typical subspace � asymptotically increases, and that associated with �⊥

asymptotically decreases. This suggests that given a compression factor η = S(ρ), the
fidelity F asymptotically increases with the message length n. Here, I shall heuristically
verify this property by considering messages longer than three qubits, and evaluating
the corresponding fidelity, while assuming S(ρ) = 0.6008 with the eigenvalues λa =
0.8535, λb = 0.1465.

The probabilities associated with messages of 4-qubit length (n = 4) are defined in
Table 22.1. This table reads as follows. We call “codeword” any 4-qubit |λiλ jλkλl〉
with λi , λ j , λk, λl = λa, λb. We call “codeword type” any 4-qubit obtained by per-
mutation of the same values λi , λ j , λk, λl . Each type has a probability p = λiλ jλkλl

and a number N given by the associated combinatorics. For instance, the codeword
type |λaλaλbλb〉 has p = λ2

aλ
2
b = 0.0156 and N = C2

4 = 6, as shown in Table 22.1.
The product N p, also shown in the table, corresponds to the likelihood of all
messages based on a given codeword type. We define the typical space as � =
{|λaλaλaλa〉, |λaλaλaλb〉, |λaλaλbλb〉, | ↔〉}, where ↔ stands for all possible permuta-
tions of the index i, j, k, l, corresponding overall to 1 + 4 + 6 = 11 “typical” code-
words. We observe from the table that � has a total likelihood of P(�) = 1 − δ =
0.5308 + 0.3643 + 0.0937 = 0.9888, while for the complementary space �⊥, the like-
lihood is p(�⊥) = δ = 0.0112. Similarly to the definition in Eq. (22.20), we obtain the
fidelity:

F̃n=4 = P(�)2 + P(�⊥) × |〈ψ | λaλaλaλa〉|2
= (1 − δ)2 + δλ4

a

= (0.9888)2 + 0.0112 × (0.8535)4

≡ 0.983.

(22.23)

This result compares favourably with the fidelity F̃n=3 = 0.923 obtained earlier for the
compression of quantum messages of length n = 3, which illustrates the property that
fidelity increases with message length. In the case n = 4, however, the compression
factor is ηn=4 = 3/4 = 0.75, which represents less compression than in the previous
case, where ηn=3 = 2/3 = 0.66. On the other hand, we cannot compress the 4-qubit
message into a 2-qubit one, because �S(ρ) × 4� = �2.40� = 3 bits, meaning that the
minimum length of the compressed message is three qubits.

464 Quantum data compression

Consider, next, the case n = 5, based on the same assumptions for S(ρ), λa, λb.
We have �S(ρ) × 5� = �3.004� = 4 bits, which means that the minimum length of
the compressed message is four qubits. The associated compression factor is ηn=5 =
4/5 = 0.80, to compare with ηn=4 = 3/4 = 0.75 and ηn=3 = 2/3 = 0.66 in the previous
cases. Thus, as we expect the fidelity to be higher with messages of length n = 5, the
compression performance is poorer than in the previous cases.

Consider, next, the case n = 6, based on the same assumptions for S(ρ), λa, λb.
We have �S(ρ) × 6� = �3.608� = 4 bits, which means that the minimum length of the
compressed message is four qubits. Thus, a compression factor of ηn=6 = 4/6 = 0.66
is achievable, which represents compressing the 6-qubit original message into a
4-qubit one. As the next section describes, the compression code requires the recip-
ient to manipulate the transmitted states |ψcomp1〉 ⊗ |00〉 or |ψcomp2〉 ⊗ |00〉, with the
first case corresponding to the typical or most likely subspace. I will also clarify how
the dimension of the typical subspace can be defined formally.

22.2 Schumacher’s quantum coding theorem

In this section, I shall formalize Schumacher’s quantum coding theorem. The driving
concept is that it is possible to encode a message with high fidelity when using quantum
states from the typical subspace �. The key property of � is that it asymptotically reaches
a dimension close to 2nS(ρ). It is useful to look back at Section 13.2 concerning typical
sets. To recall, the typical set represents roughly 2nH (X) bit strings of length n, referred
to as typical sequences. Such typical sequences roughly contain nq 1 bits and n(1 − q)
0 bits, with H (X) = f (q) being the source entropy of the sequence bits, assumed to be
generated independently, (H (Xn) = nH (X)). The fundamental property is that when n
becomes large, any typical sequence asymptotically has the probability 2−nH (X)of being
observed. Thus, there is a one-to-one conceptual correspondence between the typical set
of classical bit sequences, of size 2nH(X), and the typical subspace � of quantum state
messages, of dimension close to 2nS(ρ).

Consider, now, the quantum message block ρM = ρ⊗n of length n defined in
Eq. (22.2), where ρ is the density operator associated with any of the individual mes-
sage symbols, as defined in Eq. (22.1). The 2n eigenvalues and eigenstates of ρM are
µ1, µ2 . . . µn and |µ1〉, |µ2〉 . . . |µn〉, respectively. To recall, the eigenvalues µi represent
the probability that the message is in the state |µi 〉. Formally, the typical subspace � is
defined by the set of eigenstates {|µi 〉} for which the eigenvalues µi satisfy the double
inequality:

2−n(S+ε) ≤ µi ≤ 2−n(S−ε), (22.24)

where S ≡ S(ρ) and ε is a given positive real, which can be arbitrary small. We note that
this double inequality is conceptually identical to that in Eq. (13.26), corresponding to
the formal definition of typical sequences.

Let me immediately illustrate this definition of the typical subspace by means of
the n = 3 example used in the previous section. For reading clarity, we recall here the

22.2 Schumacher’s quantum coding theorem 465

Table 22.2 Lower bounds for the parameter ε, defining different
possibilities for the typical subspace � and its complement �⊥.

Typical subspace (�)
µi ε and complement (�⊥)

λ3
a 0.6219 0.372 �1

λ2
aλb 0.1067

�2
λ2

aλb 0.1067 0.475

λ2
aλb 0.1067 �3

λaλ
2
b 0.0183 1.323 �⊥

1

λaλ
2
b 0.0183

�⊥
2

λaλ
2
b 0.0183

λ3
b 0.0031 2.171 �⊥

3

density matrix of ρM :

ρM =

λ3
a 0 0 0 0 0 0 0

0 λ2
aλb 0 0 0 0 0 0

0 0 λ2
aλb 0 0 0 0 0

0 0 0 λ2
aλb 0 0 0 0

0 0 0 0 λaλ
2
b 0 0 0

0 0 0 0 0 λaλ
2
b 0 0

0 0 0 0 0 0 λaλ
2
b 0

0 0 0 0 0 0 0 λ3
b

, (22.25)

which shows that the 2n eigenvalues µi of ρM are of the form µi=u,v = λu
aλ

v
b with

u + v = n. Taking the base-2 logarithm of Eq. (22.24), we have

S + ε ≥ 1

n
log

1

µi
≥ S − ε

↔ |1

n
log

1

µi
− S| ≤ ε.

(22.26)

We note that the inequality is conceptually identical to that in Eq. (13.25), correspond-
ing to the formal definition of typical sequences. Substituting n = 3, S = 0.6008, λa =
cos2 π/8 = 0.853, λb = sin2 π/8 = 0.146, µ1 = λ3

a , µ2 = µ3 = µ4 = λ2
aλb, µ5 =

µ6 = µ7 = λaλ
2
b, and µ8 = λ3

b in Eq. (22.26), we obtain the lower bounds for ε listed in
Table 22.2. We observe that ε = 0.372 (eigenvalue µ1 = λ3

a) defines a first, 1D typical
subspace �1, spanned by |λaλaλa〉. A second possible boundary, ε = 0.475 (eigen-
values µ1 and µ2 = µ3 = µ4 = λ2

aλb), defines a 4D typical subspace �2 spanned by
{|λaλaλa〉, |λaλaλb〉, |λaλbλa〉, |λbλaλa〉}. A third possible boundary, ε = 0.475 (eigen-
values µ1, µ2 and µ5 = µ6 = µ7 = λaλ

2
b) defines a 7D typical subspace �3 spanned by

{|λaλaλa〉, |λaλaλb〉, |λaλbλa〉, |λbλaλa〉, |λaλbλb〉, |λbλbλa〉, |λbλaλb〉}. The remain-
ing subspace, spanned by |λbλbλb〉, corresponds to the smallest atypical subspace,
�⊥ = �⊥

3 .

466 Quantum data compression

Table 22.3 Parameter δ and fidelity F̃ corresponding to the typical
subspace choices for � and related dimension dim(�).

� dim(�) p(�) = ∑
i µi δ F̃

�1 1 0.6219 0.378 0.622
�2 4 0.9419 0.058 0.923
�3 7 0.9969 0.003 0.996

In the previous section, we heuristically used �2 as “the” typical subspace, but it
is now clear that the other subspaces �1 and �3 are also eligible under the intrinsic
boundary definition in Eq. (22.24) or Eq. (22.26) for the corresponding eigenvalues,
as defined by the parameter ε. Given the highest value of ε in the typical subspaces
� = �1,�2,�3, we shall call any “codeword” |µi 〉 = |λ jλkλl〉 ∈ � as “ε-typical.”

To recall, the probability p(�) that any message belongs to the typical subspace � is
given by the sum of the associated eigenvalues µi . Formally, if E is the projector onto
�, we have

p(�) =
dim(�)∑

i=1

µi = tr(ρM E) ≥ 1 − δ, (22.27)

where δ is a positive real and smaller than unity. Table 22.3 shows the values of the
parameter δ corresponding to the typical subspaces shown in Table 22.2, and the corre-
sponding fidelity as defined in the previous section by F̃ = (1 − δ)2 + δλ3

a , Eq. (22.20).
It is seen from the table that the fidelity increases as the parameter δ decreases and
as the dimension of the typical subspace dim(�) = tr(E), or the number of ε-typical
codewords increases. We note that the case � = �1, which has only one codeword, is
a poor choice, since the fidelity is F̃ = 62.2%, corresponding to a “useless channel”
almost half of the time. And what valuable information can be transmitted with only
one codeword, independently of this consideration? The best choice is � = �3, which
has seven codewords (out of 23 = 8 codeword possibilities), since the fidelity reaches
the maximum; F̃ = 99.6%. But we have now reached a confusing situation where there
apparently exist several possible choices for the typical subspace, which are all consistent
with previous eligibility criteria. We, thus, need to develop the analysis further, bearing
in mind that we want to show that the dimension of the typical subspace is close to2nS(ρ).
In the above n = 3 example, we have 2nS(ρ) = 23×0.6008 = 3.488 ≈ 4 = dim(�2), which
indicates that �2 is, in fact, the correct choice! But to reach such a conclusion, we
must consider messages of asymptotically increasing length, and we will have to forget
the previous n = 3 example, despite its usefulness in demonstrating the possibility of
message compression.

As we have seen earlier, the two parameters ε, δ, defined in Eqs. (22.26) and (22.27),
determine a lower bound for the probability p(�) = tr(ρM E) of a given message
codeword to be ε-typical. More generally, we may state that given the two parame-
ters ε, δ, there exists a message length n sufficiently long to provide the condition that
p(�) is at least 1 − δ. To keep the focus, we shall not worry here about formally

22.2 Schumacher’s quantum coding theorem 467

demonstrating such a statement. Suffice it to take for granted as a postulate that, given ε,
it is possible to make p(�) arbitrarily close to unity (with δ chosen sufficiently small),
if the message length n is sufficiently large. Consistently, the dimension of the typical
subspace, dim(�) = tr(E), also increases. But can we show to what extent?

To answer the above question, I shall now introduce a key theorem concerning the
dimension of the typical subspace. Given a message length n, the VN entropy S(ρ) of
the quantum-symbol source, the two parameters ε, δ, then the dimension dim(�) of the
corresponding typical subspace � is bounded according to:

(1 − δ)2n(S−ε) ≤ dim(�) ≤ 2n(S+ε). (22.28)

The proof for this is actually straightforward. First, we sum each term in the double
inequality in Eq. (22.24) from i = 1 to i = dim(�) to obtain

dim(�)∑
i=1

2−n(S+ε) ≤
dim(�)∑

i=1
µi ≤

dim(�)∑
i=1

2−n(S−ε)

↔
dim(�)2−n(S+ε) ≤ p(�) ≤ dim(�)2−n(S−ε).

(22.29)

Second, we substitute the two properties 1 − δ ≤ p(�) and p(�) ≤ 1 into Eq. (22.29)
and then obtain {

dim(�)2−n(S+ε) ≤ p(�) ≤ 1
1 − δ ≤ p(�) ≤ dim(�)2−n(S−ε)

↔{
dim(�) ≤ 2n(S+ε)

dim(�) ≥ (1 − δ)2n(S−ε)

↔
(1 − δ)2n(S−ε) ≤ dim(�) ≤ 2n(S+ε),

(22.30)

which is in Eq. (22.28) and, thus, proves the typical subspace theorem.
Our exploitation of the above theorem will be made purposefully simple, the goal

being to convey only an intuitive proof of Schumacher’s quantum coding theorem (usually
called Schumacher’s noiseless channel coding theorem) and, thus, avoid lengthier and
more academically involved developments.

Define the parameter R such that R = S + ε, with the condition R ≤ 1 (or 0 < ε ≤
1 − S). From the typical subspace theorem, the dimension of the typical subspace �

satisfies dim(�) ≤ 2nR . Thus, we may use up to 2nR, ε-typical codewords, such that
for any δ > 0 the condition p(�) ≥ 1 − δ is satisfied for message lengths n sufficiently
large. In this case, we may say that the compression scheme is “reliable,” i.e., corresponds
to arbitrary high fidelity. Under these conditions, Schumacher’s quantum coding theorem
states that there exists a reliable compression code, with arbitrarily high transmission
fidelity, and compression factor η = R. We note that R is strictly higher than the VN
entropy S, which sets an ultimate limit to the achievable compression factor (R > S).
The second part of the theorem is that any compression code with R < S is not reliable.
Here, again to avoid lengthy mathematical developments, I shall only concentrate on the
reliable compression code, and provide a simple description.

468 Quantum data compression

The quantum symbols forming the message are now assumed to be the eigenstates
|λi 〉 of the density operator ρ, and the possible messages are the eigenstates |µi 〉 of
the operator ρM = ρ⊗n . The originator then proceeds to encode these into states of the
form

|µ′
i 〉 = U |µi 〉 = |µcomp1〉 ⊗ |0rest〉, (22.31)

where |µcomp1〉 is a compressed state of n R < n qubits, and |0rest〉 = |00 . . . 0〉 = |0〉⊗q

represents the remainder of the block, of length q = n(1 − R) qubits. The originator
then makes “fuzzy” measurements on each of the qubits from the remainder state. If
the outcome is 00 . . . 0, then |µ′

i 〉 has been projected onto the typical subspace �, and
|µcomp1〉 is sent through the quantum channel. If the outcome is anything different,
the originator sends an nR qubit message |ψcomp2〉, as a “junk” substitute, which is
determined by the same rotation U such that U−1 (|ψcomp2〉 ⊗ |0rest〉) = |µjunk〉 ∈ �. As
in the previous (n = 3) example, the recipient just needs to append |0rest〉 to the received
message, followed by the inverse transformation U−1 on this n-qubit state. If E is the
projector onto the typical subspace �, and |µi 〉 the original message that has been sent,
the corresponding density operator ρ̃i of the received/uncompressed message takes a
form similar to that in Eq. (22.19):

ρ̃i = E |µi 〉〈µi |E + 〈µi |(I − E)|µi 〉|µjunk〉〈µjunk|
= E |µi 〉〈µi |E + ρ̃junk.

(22.32)

The fidelity of the transmission must be averaged over all the message possibilities, each
with probability µi , as follows:

F̃ =
2n∑

i=1

µi 〈µi |ρ̃i |µi 〉, (22.33)

which, by substituting the result in Eq. (22.32), yields

F̃ =
2n∑

i=1

µi 〈µi |(E |µi 〉〈µi |E)|µi 〉 +
2n∑

i=1

µi 〈µi |ρ̃junk|µi 〉

=
2n∑

i=1

µi (〈µi |E |µi 〉)2 + tr (ρ̃junk)

≥
2n∑

i=1

µi (〈µi |E |µi 〉)2.

(22.34)

The last inequality is caused because the junk contribution is nonnegative; i.e.,
tr(ρ̃junk) ≥ 0. Then we use the property that for any real x we have x2 ≥ 2x − 1
because (x − 1)2 ≥ 0. Thus, each term x2 = (〈µi |E |µi 〉)2 in the above right-hand side

22.3 A graphical and numerical illustration 469

summation is greater than or equal to 2x − 1 = 2〈µi |E |µi 〉 − 1, which yields

F̃ ≥
2n∑

i=1

µi (2〈µi |E |µi 〉 − 1)

= 2
2n∑

i=1

〈µi |µi E |µi 〉 −
2n∑

i=1

µi

≡ 2tr(ρM E) − 1

≡ 2p(�) − 1.

(22.35)

From Schumacher’s (quantum coding) theorem, for any δ > 0 and sufficiently long
messages we have p(�) ≥ 1 − δ, therefore

F̃ ≥ 2p(�) − 1 ≥ 2(1 − δ) − 1 = 1 − 2δ. (22.36)

This final result indicates that for sufficiently long messages, the fidelity F̃ can be made
arbitrarily close to unity (consistent with the limit δ → 0), which establishes that the
compression code is “reliable.” It is possible to show (but not described here for the sake
of brevity) that any other coding choice, namely with R < S, or R = S − ε (with ε > 0,
δ > 0), makes the fidelity of sufficiently long messages to be asymptotically bounded
according to F̃ < δ, which is essentially zero as δ → 0.

22.3 A graphical and numerical illustration of Schumacher’s quantum
coding theorem

In this section, I shall provide an original illustration of Schumacher’s quantum coding,
both graphical and numerical. This will help visualize how the dimension of the typical
subspace � asymptotically converges towards 2nS , as the message length n increases
and if the parameter ε may be chosen to be arbitrarily small. The numerical application
will also illustrate that there is still a large degree of freedom over the choice of ε and
the typical subspace possibilities to compress quantum messages.

Here, we shall assume the same parameters as in the example used in the two previous
sections, i.e., S(ρ) = 0.6008 for the per-symbol VN entropy, and the two eigenval-
ues λa = 0.8535, λb = 0.1465. For a message length n = 3, we have 23 = 8 possible
messages defining an 8D eigenspace �. Any of these messages are based on the qubit
permutations of four codeword types of the form |λaλaλa〉, |λaλaλb〉, |λaλbλb〉, |λbλbλb〉
with the respective measurement probabilities λ3

a, λ
2
aλb, λaλ

2
b, λ

3
b, in descending order.

Such probabilities also correspond to the eigenvalues: µ1 = λ3
a, µ2 = µ3 = µ4 = λ2

aλb,

µ5 = µ6 = µ7 = λaλ
2
b, and µ8 = λ3

b. According to Eq. (22.37), which I reproduce here
for convenience, we can associate a parameter ε with each of these four groups of
eigenvalues: ∣∣∣∣1

n
log

1

µi
− S(ρ)

∣∣∣∣ ≤ ε. (22.37)

470 Quantum data compression

Message length n

P
ar

am
et

er
 ε

(n
,p

)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(n, n)ε

(n, 0)ε

Figure 22.1 Lower bound for the parameter ε(n, p), calculated from Eq. (22.39), in the range
n = 1 to n = 20.

Substituting the above values of µi with n = 3 and S(ρ) = 0.6008, we obtain four lower
bounds for ε, namely, to call them by the same letter: ε = 0.372, 0.475, 1.322, 2.170.
As we have seen in the previous section, this calculation does not tell us much as to
how to define a typical subspace. Furthermore, only the first value ε = 0.372 gives a
parameter R < 1 (namely R = S + ε = 0.6008 + 0.3724 = 0.9732 < 1), and there is
nothing that we can conclude about any compression potential from such a result! But if
we increase the message length n, and calculate all possible ε values from Eq. (22.37),
we obtain a much broader range of possibilities for the parameter R.

Given the message length n, it is straightforward to tabulate the suite of n + 1 eigen-
values according to the definition

λn
a

λn−1
a λb

λn−2
a λ2

b
...
λ2

aλ
n−2
b

λn
b.

(22.38)

The parameter ε(n, p) corresponds to each eigenvalue µi (n, p) = λ
n−p
a λ

p
b , as defined

by ∣∣∣∣1

n
log

1

µi (n, p)
− S(ρ)

∣∣∣∣ ≤ ε(n, p). (22.39)

Figure 22.1 shows the values of the parameter ε(n, p) in the range n = 1 to n = 20. The
values are connected by full lines to guide the eye. The top and bottom horizontal lines
correspond to ε(n, n) = ε(µi = λn

b) and ε(n, 0) = ε(µi = λn
a), respectively. The two sets

circled at n = 3 and n = 19 help visualize the effect according to which an increasing

22.3 A graphical and numerical illustration 471

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Message length

P
ar

am
et

er
ε (n

,p
)

Figure 22.2 Lower bound for the parameter ε(n, p), calculated from Eq. (22.39), with zoom in
the region 0 < ε(n, p) ≤ 0.4.

fraction of the ε(n, p) values progressively form a cluster in the region between ε = 0
and ε(n, 0) ≤ 0.4. This effect is also illustrated in Fig. 22.2, which shows a zoom in
this region. It is clear that for a message length n sufficiently large, any value ε > 0 can
be reached by ε(n, p). Furthermore, we observe that given a message length n and any
ε > 0 it is always possible to define a subset of codewords satisfying ε(n, p) ≤ ε, as
indicated in the figure by the circled clusters. In the case n = 19, for instance, the cluster
consists of a subset of five codewords satisfying ε(19, p) ≤ 0.29681, and this group of
codewords is precisely the ε-typical subspace � we have been looking for! Let us take
a closer look at the corresponding data. Table 22.4 shows, for each codeword type µ of
length n = 19, from left to right: the individual codeword probabilityp(µ), the number of
possible permutations N of the codeword type µ, the codeword-type probability N p(µ),
the codeword parameter ε, and the associated value R = S + ε. We have defined our
ε-typical subspace � as generated by the five codeword types for which ε(19, p) ≤
0.29681. As the table shows, these codeword types are of the form |λ18

a λ1
b〉, |λ17

a λ2
b〉,

|λ16
a λ3

b〉, |λ15
a λ4

b〉, and |λ14
a λ5

b〉. Summing the Ndata, it can be found that there exist 16 663
such codewords, out of 524 288 possibilities, representing only about 3% of the codeword
space �. Summing the values N p(µ) in the table, one finds that the probability of any
received codeword belonging to this typical subspace is p(�) = 0.90208, which is
relatively high. This result yields the lower bound δ = 1 − p(�) = 0.09792 and hence,
using λa = 0.8535, the transmission fidelity F̃ = (1 − δ)2 + δλ19

a = 0.81859 ≈ 82%,
which is fair. From the table, we also find that the maximum value of R, or the best
compression factor achievable under this coding scheme, is given by the highest value
of ε in the subspace �, namely εmax = 0.29681, or R = 0.89769 ≈ 89%.

Having defined the ε-typical subspace � (with the choice ε ≤ 0.29681), the next
step is to analyze the effect of increasing the message length n. It is only a matter of
tabulating a spreadsheet that outputs the same data as shown in Table 22.4, along with
the values p(�), δ = 1 − p(�), and F̃ = (1 − δ)2 + δλn

a , for each value of n. Care must
be taken to effect the summation yielding p(�) only in the spreadsheet domain where
0 < ε ≤ 0.29681. The fidelity F̃ calculated for message lengths from n = 19 to n = 100

472 Quantum data compression

Table 22.4 Defining an ε-typical subspace � with ε ≤ 0.29681, in the case n = 19, corresponding to
a maximum compression R = 0.89769.

Codeword
type µ p(µ) N N p(µ) ε R = S + ε

λ19
a λ0

b 4.936 × 10−2 1 – 0.37243 0.97330

λ18
a λ1

b 8.469 × 10−3 19 1.609 × 10−1 0.23858 0.83946

λ17
a λ2

b 1.453 × 10−3 171 2.485 × 10−1 0.10473 0.70561

λ16
a λ3

b 2.493 × 10−4 969 2.416 × 10−1 0.02911 0.62999

λ15
a λ4

b 4.277 × 10−5 3876 1.658 × 10−1 0.16296 0.76384

λ14
a λ5

b 7.339 × 10−6 11628 8.534 × 10−2 0.29681 0.89769

λ13
a λ6

b 1.259 × 10−6 27132 – 0.43066 1.03153

λ12
a λ7

b 2.160 × 10−7 50388 – 0.56451 1.16538

λ11
a λ8

b 3.707 × 10−8 75582 – 0.69835 1.29923

λ10
a λ9

b 6.359 × 10−9 92378 – 0.83220 1.43308

λ9
aλ

10
b 1.091 × 10−9 92378 – 0.96605 1.56692

λ8
aλ

11
b 1.872 × 10−10 75582 – 1.09990 1.70077

λ7
aλ

12
b 3.212 × 10−11 50388 – 1.23375 1.83462

λ6
aλ

13
b 5.511 × 10−12 27132 – 1.36759 1.96847

λ5
aλ

14
b 9.455 × 10−13 11628 – 1.50144 2.10232

λ4
aλ

15
b 1.622 × 10−13 3876 – 1.63529 2.23616

λ3
aλ

16
b 2.783 × 10−14 969 – 1.76914 2.37001

λ2
aλ

17
b 4.775 × 10−15 171 – 1.90298 2.50386

λ1
aλ

18
b 8.193 × 10−16 19 – 2.03683 2.63771

λ0
aλ

19
b 1.406 × 10−16 1 – 2.17068 2.77156

is shown in Fig. 22.3. It is seen that convergence towards 100% fidelity is relatively rapid
(e.g., F̃ ≈ 99% or better, for n ≥ 70). Interestingly, such a convergence goes through
sawtooth-like oscillations. These are explained by the irregular variations of the ε(n, p)
cluster size and amplitude previously observed in Fig. 22.2.

The last open issue to discuss is the dimension of the typical subspace, dim(�), corre-
sponding to a given message length n. From Eq. (22.28), we know that dim(�) is bounded
according to (1 − δ)2n(S−ε) ≤ dim(�) ≤ 2n(S+ε), which asymptotically becomes 2nS as
δ, ε → 0 and with sufficiently long messages. In the most general case (ε > 0, any
message length n), we have

S − ε + log2(1 − δ)

n
≤ log2[dim(�)]

n
≤ S + ε.

(22.40)

22.3 A graphical and numerical illustration 473

0.7

0.8

0.9

1.0

1.1

10 30 50 70 90 110

e=<0,29681

Message length

F
id

el
ity

29681.0≤ε

Figure 22.3 Fidelity as a function of message length (n = 19 to n = 100), assuming the ε-typical
subspace � with ε ≤ 0.29681.

Message length

P
ar

am
et

er
ξ(

n,
Ω

)

0.3

0.1

0
0 100 200 300 400 500

0.2

29681.0=ε

Figure 22.4 Evolution of the parameter ξ (n,�) with increasing message length n.

Using the property log2(1 − δ)/n ≈ δ/n(ln 2) ≈ 0, we can introduce the parameter ξ

for which the double inequality in Eq. (22.40) is very nearly equivalent to:

ξ (n,�) =
∣∣∣∣ log2[dim(�)]

n
− S

∣∣∣∣ ≤ ε. (22.41)

Figure 22.4 shows the evolution of the parameter ξ (n,�) with the message length n,
as calculated from our previous example, up to n = 500. For each n, the value dim(�)
is estimated by summing the values of N (number of ε-typical codewords for which
ε ≤ 0.29681), displayed in the third column in Table 22.4. For clarity, the plot shows
successive data with an increment of one up to n = 100, then with an increment of
10 up to n = 200, then with an increment of 50. The figure shows that the parameter
ξ (n,�) asymptotically converges towards the limit ε = 0.29681, which defines the
typical subspace � for each n. We may, thus, write

lim
n→∞ ξ (n,�) = ε

↔
lim

n→∞
log2[dim(�)]

n
= S + ε = R (22.42)

↔
lim

n→∞ dim(�) = en(S+ε) = en R

and since ε can be chosen arbitrarily small, the limiting value for dim(�) is enS .

474 Quantum data compression

To summarize, the numerical example developed in this section has shown that given
a message of length n, and any ε > 0 such that ε = S − R (with R < 1), there exists a
typical subspace �, spanned by a subset of corresponding ε-typical codewords, where
message compression is possible with high fidelity F̃ . Consistently with the formal
description, the example also showed that (a) for messages of increasing length, the
fidelity F̃ can be made arbitrarily high, and (b) the dimension of the typical subspace
dim(�) asymptotically converges towards en(S+ε). As the parameter ε can be chosen to be
arbitrarily small, the limiting value for the subspace dimension is enS , which corresponds
to the best achievable compression factor R ≈ S.

22.4 Exercises

22.1 (T): Given two tensor states |abc〉, |de f 〉, where |a〉, |b〉, |c〉, |d〉, |e〉, | f 〉 are
qubits, provide a general formula for the space-overlap factor

|〈abc | de f 〉|2

and apply this formula to all the nine possible cases:

|a〉, |b〉, |c〉 =
(

1
0

)
≡ |α1〉 or

1√
2

(
1
1

)
≡ |α2〉

|d〉, |e〉, | f 〉 =
(

cos α

sin α

)
≡ |λ1〉 or

(−sin α

cos α

)
≡ |λ2〉,

where α is a parameter.
(Clue: refer to the qubit tensor-product definition in Eq. (16.55) as applied to

the present case.)

22.2 (B): What is the best achievable compression factor for a quantum message of
arbitrary long length, whose qubits are generated by the density operator

ρ = 1

3

(
1 3
0 2

)
?

22.3 (M): A qubit source is characterized by the density operator

ρ = 1

3

(
1 0
0 2

)
.

Assuming a quantum message length of n = 5 qubits, determine the ε-typical
subspace and corresponding quantum codewords for which ε = 0.3.

23 Quantum channel noise and
channel capacity

This chapter introduces the notion of noisy quantum channels, and the different types
of “quantum noise” that affect qubit messages passed through such channels. The
main types of noisy channel reviewed here are the depolarizing, bit-flip, phase-flip,
and bit-phase-flip channels. Then the quantum channel capacity χ is defined through
the Holevo–Schumacher–Westmoreland (HSW) theorem. Such a theorem can conceptu-
ally be viewed as the elegant quantum counterpart of Shannon’s (noisy) channel coding
theorem, which was described in Chapter 13. Here, I shall not venture into the complex
proof of the HSW theorem but only provide a background illustrating the similarity
with its classical counterpart. The resemblance with the channel capacity χ and the
Holevo bound, as described in Chapter 21, and with the classical mutual information
H (X ; Y), as described in Chapter 5, are both discussed. For advanced reference, a hint
is provided as to the meaning of the still not fully explored concept of quantum coherent
information. Several examples of quantum channel capacity, derived from direct appli-
cations of the HSW theorem, along with the solution of the maximization problem, are
provided.

23.1 Noisy quantum channels

The notion of “noisiness” in a classical communication channel was first introduced in
Chapter 12, when describing channel entropy. Such a channel can be viewed schemat-
ically as a probabilistic relation between two random sources, X for the originator, and
Y for the recipient. These sources are defined by symbol alphabets, X = {x1, x2} and
Y = {y1, y2} for instance, and their associated probabilities p(xi), p(y j). An originator
message is, thus, a string of n symbols xi ∈ X randomly selected from X according
to the distribution p(xi), which is transformed at the recipient’s end into a string of n
symbols yi ∈ Y randomly selected from Y according to the distribution p(yi). An ideal
or noiseless channel is such that the knowledge of any symbol xi input from the origi-
nator absolutely conditions the knowledge of the symbol y j obtained at the recipient’s
end. Thus, for any originator symbol xi , there must be a recipient symbol y j , such that
p(y j |xi) = 1 and p(y j |xi ′�=i) = 0. The set of conditional probabilities p(y j |xi) can be
put in the form of a transition matrix P(Y |X) and in the case of a noiseless channel with

476 Quantum channel noise and channel capacity

a two-symbol alphabet (binary channel) we must have

P(Y |X) =
(

1 0
0 1

)
or

(
0 1
1 0

)
. (23.1)

In the nonideal case where the channel is corrupted by noise, we have p(y j |xi) = 1 − ε,
where 0 < ε < 1 defines the symbol error probability (the probability of mistaking one
symbol for another). The error probability can be the same for the two symbols (binary
symmetric channel), which gives, for instance,

P(Y |X) =
(

1 − ε ε

ε 1 − ε

)
. (23.2)

The above recall from the classical information theory will now help to conceive of the
effect of noise in a quantum communication channel.

As we have seen in Chapter 22, a quantum message M is a “block” represented by
the tensor state |M〉 = |q1q2 . . . qn〉, with each qubit |qi 〉 being randomly selected from
a given symbol alphabet {|xk〉}k=1...N of size N . Given the fact that each symbol |xk〉 is
associated with an occurrence probability pk , it is possible to define a symbol density
operator according to:

ρ =
N∑

k=1

pk |ak〉〈ak |. (23.3)

Consistently, the full symbol block of length n is characterized by the density operator:

ρM = ρ ⊗ ρ ⊗ . . . ⊗ ρ ≡ ρ⊗n, (23.4)

which represents the originator’s message M . As with the definition of a density operator,
we have tr(ρM) = 1. Consequently, some message σM may be received at the recipient’s
end. The correspondence between the originator’s and the recipient’s messages may be
defined through a transformation, or quantum operation, ε, such that

σM = ε(ρM). (23.5)

Such a quantum operation ε must be trace preserving, so that σM is a density operator
with tr(σM) = 1. Since the message transformation from originator to recipient is fully
defined by the operation ε, it is customary to refer to ε as the quantum channel itself.

In the ideal or “noiseless” case, one would expect that the quantum channel ε corre-
sponds to some unitary (trace-preserving) transformation U , which gives

σM = ε(ρM) = U+ρMU. (23.6)

Thus, according to the above operation the message is not invariant by transmission
through the quantum channel (σM �= ρM), but its integrity is fully conserved. Indeed,
it only takes the recipient to apply the inverse operation ε−1 defined by U−1 = U+ to
the received message σM , to obtain σ ′

M = ε−1(σM) = UσMU+ ≡ ρM and, hence, fully
retrieve the originator’s message. A trivial case of ideal or noiseless channel is given
by U = I⊗n , where I is the 2 × 2 identity matrix. A more general definition for any

23.1 Noisy quantum channels 477

quantum channel ε is

ε(ρM) =
∑

k

U+
k ρMUk . (23.7)

The definition in Eq. (23.7) is referred to as the operator-sum representation of the
channel, with Uk being the channel-operator elements.

Consider next the case of nonideal, or noisy quantum channels. Clearly, such channels
can be modeled by a quantum operation ε(ρM), whose outcome σM must be random.
Here, I shall describe four basic types of noisy quantum channels, assuming that the
message is made of a single qubit.

Depolarizing channel

The first type of noisy quantum channel, called a depolarizing channel, is defined as
follows:

ε(ρ) = p
I

2
+ (1 − p)ρ, (23.8)

where p is some probability distribution and I is the identity matrix. According to this
definition, there is a probability 1 − p that the originator message ρ is left invariant by
the channel, and a probability p that it is transformed into the message σ = I/2. Thus,
the messages ρ ′ = |0〉〈0| and ρ ′′ = |1〉〈1|, corresponding to the pure basis states |0〉 and
|1〉, are transformed into

σ ′ = ε(ρ ′′) = p

2

(
1 0
0 1

)
+ (1 − p)

(
1 0
0 0

)
=

 1 − p

2
0

0
p

2

σ ′′ = ε(ρ ′′) = p

2

(
1 0
0 1

)
+ (1 − p)

(
0 0
0 1

)
=

 p

2
0

0 1 − p

2

 .

(23.9)

The above-defined quantum operation ε is referred to as the “depolarizing” channel,
because it transforms a pure basis state ρ ′, ρ ′′ into a uniformly mixed state σ = I/2
with a certain probability p. From the above results, it would appear that the operation
ε(ρ) is in fact equivalent to the following pure-state transformation:

|0〉 →

√
1 − p

2
|0〉 ±

√
p

2
|1〉

|1〉 →
√

p

2
|0〉 ±

√
1 − p

2
|1〉.

(23.10)

However, in view of the recipient’s qubit definitions in Eq. (23.10), such an interpre-
tation is ambiguous, since the relative phases (±) between the |0〉 and |1〉 qubits are
undefined. Then which are the actual recipient qubits? The answer can be obtained
by analyzing the quantum operation defined in Eq. (23.8). We observe that there is a
probability ε = 1 − p that the communication channel accurately transmits the original
message ρ. Thus, ε represents the probability of the recipient obtaining nonerrored states

478 Quantum channel noise and channel capacity

|q〉in = |q〉out = |0〉, |1〉, corresponding to original states. The probability that the recip-
ient states are errored is p. In this event, the communication channel “ignores” ρ and
“chooses” instead to transmit σ = I/2, which is associated with the uniform mixed
states |±〉 = (|0〉 ± |1〉)/√2. In this event, the channel randomly outputs the errored
states |q〉out = |+〉, |−〉, regardless of the input states |q〉in = |0〉, |1〉. The conclusion is
that there is a probability p that there is no mathematically defined relation between the
channel input (|q〉in) and output (|q〉out) qubits. Such an event corresponds to a loss of
coherence, a unique quantum effect referred to as decoherence. It is beyond the scope
of this book to analyze further the meaning and implication of quantum decoherence,
as introduced by random channel noise. The only (but important!) lesson to be learnt
here is twofold: (a) the quantum-channel transformation is accurately defined by the
density matrix operation σ = ε(ρ); (b) without supplemental information, the output
states of the quantum channel cannot be accurately or predictably retrieved, because of
the decoherence effect. However, it is possible to implement quantum error correction,
and hence retrieve the input quantum message (ρ) and associated qubit symbols (|q〉in),
as will be described in Chapter 24.

Let us now look at the VN entropy change through the depolarizing channel. For
any pure-state message ρ, we have, by definition, S(ρ) = 0 (there is no uncertainty as
to what message is being sent). From the recipient’s end, and based on the result in
Eq. (23.9), we have

S(σ) = S(σ ′) = S(σ ′′) = − tr (σ log σ)

= p

2
log

p

2
−

(
1 − p

2

)
log

(
1 − p

2

)
≡ f

(p

2

)
.

(23.11)

Thus, the quantum channel has an uncertainty of the amount S(σ) = f (p/2), which
as we know from earlier chapters is maximal for the argument p/2 = 1/2 or p = 1,
which gives S(σ) = 1 bit. Clearly, this limiting case corresponds to a useless quan-
tum channel, where the received message is deterministically σ = I/2 and, no mat-
ter what the original message information is, the net uncertainty is one classical
bit!

To conclude this example formally, it is left as a basic exercise to show that the
depolarizing channel can be put in the operator-sum representation

ε(ρ) = p
I

2
+ (1 − p)ρ

≡ q

3
(XρX + YρY + ZρZ) + (1 − q)ρ,

(23.12)

where q = 3p/4 and X, Y, Z are the Pauli matrices (see Chapter 16). This expres-
sion, which also holds in the general case where ρ is nondiagonal, shows that
the effect of noise is to transform with equal probability q/3 the originator’s mes-
sage ρ into either XρX , or YρY or ZρZ , and to leave it invariant with probability
1 − q.

23.1 Noisy quantum channels 479

Bit-flip channel

As a second type of noisy quantum operation, I introduce next the bit-flip channel, as
defined in the operator-sum representation:

ε(ρ) = pXρX + (1 − p) ρ

≡ U0ρU0 + U1ρU1,
(23.13)

where, as usual, p is some probability distribution, and where we have the following
channel-operator elements:

U0 = √

pX = √
p

(
0 1
1 0

)

U1 = √
1 − pI = √

1 − p

(
1 0
0 1

)
.

(23.14)

It is straightforward to establish that the action of the first operation term XρX in
Eq. (23.13) is to transform the originator’s message ρ into the recipient message σ =
ε(ρ) with the flipped coefficients σ11 = ρ22 and σ22 = ρ11. Such a transformation has
probability p of occurring, while the originator’s message is left unchanged (σ = ρ) with
probability 1 − p. Effecting the calculation with the qubit message |q〉 = α|0〉 + β|1〉
(α = √

ρ11, β = √
ρ22), it is also straightforward to obtain the channel transformation:

|q〉 → |q ′〉 =
√

(1 − p)|α|2 + p|β|2|0〉 +
√

p|α|2 + (1 − p)|β|2|1〉. (23.15)

Thus, if the originator’s message is the pure-state qubit |0〉 (i.e., α = 1, β = 0), the
recipient receives the message

|q ′〉 =
√

1 − p|0〉 + √
p|1〉. (23.16)

Clearly, the symbol-error (or cbit-error) probability is ε = p, meaning that the channel
has the probability p of outputting the errored message |1〉 when |0〉 was sent. The
same conclusion applies in the opposite case, which illustrates the notion of bit flipping
as a noise effect in quantum channels. It is left as an interesting exercise to analyze
the effect of bit-flip transformation in the case where ρ is nondiagonal. As expected,
the outcome of the exercise is that an originator’s qubit message |q〉 = α|0〉 + β|1〉 is
“flipped” through the noisy channel into a recipient’s message |q〉 = β|0〉 + α|1〉 under
an outcome probability p. Finally, the entropy difference between a pure-state originator’s
message ρ = |0〉〈0| and the recipient’s message σ = (1 − p)|0〉〈0| + p|1〉〈1| is

�S = S(σ) − S(ρ) = [−(1 − p) log(1 − p) − p log p] − 0

≡ f (1 − p) = f (p),
(23.17)

with the same result being obtained with ρ = |1〉〈1|. The maximum uncertainty (�S = 1
or one cbit), corresponds to the case p = 0.5, meaning that, according to Eq. (23.13),
there is a 50% chance that the qubit amplitudes are flipped when passing through the
channel. Interestingly, there is no entropy change (�S = 0) if the qubit amplitudes are
deterministically flipped (p = 1). This is because there is no difference in information

480 Quantum channel noise and channel capacity

contents if the cbit polarity (the definition of 0 and 1, or |0〉 and |1〉) is systematically
flipped.

Phase-flip channel

As a third example of noisy quantum operation, I define next the phase-flip channel in
the operator-sum representation:

ε(ρ) = pZρZ + (1 − p) ρ ≡ U0ρU0 + U1ρU1, (23.18)

with the corresponding elements:

U0 = √
pZ = √

p

(
1 0
0 −1

)

U1 = √
1 − pI = √

1 − p

(
1 0
0 1

)
.

(23.19)

It is again left as an exercise to show that the originator’s message |q〉 = α|0〉 + β|1〉 is
transformed into |q ′〉 = α|0〉 − β|1〉 with probability p and is left invariant otherwise.
Thus, the action of the noisy channel is to flip (with probability p) the relative phase
eiδ randomly between the complex amplitudes α, β from ei0 to eiπ . In the case of qubit
states |q〉 = |0〉, |1〉 it is found that the entropy change is zero (�S = 0), clearly because
no phase change can affect a single qubit. In the case |q〉 = |+〉, or ρ = |+〉 〈+|, one
finds the recipient’s message:

σ = p |−〉 〈−| + (1 − p)|+〉 〈+| , (23.20)

which in the basis {|+〉, |−〉} is diagonal, i.e.,

σ =
(

p 0
0 1 − p

)
, (23.21)

hence, the net entropy difference �S = S(σ) − S(ρ) = f (p) − 0 ≡ f (p), with the same
result being obtained with ρ = |−〉〈−|. The maximum uncertainty (�S = 1 or one cbit),
corresponds to the case p = 0.5, meaning that, according to Eq. (23.18), there is a 50%
chance that the relative qubit phase is flipped by eiπ when passing through the channel.
Interestingly, there is no entropy difference (�S = 0) if the phase is deterministically
changed (p = 1). This is because there is no difference in information contents if the
cbit polarity (the definition of 0 and 1 or |+〉 and |−〉) is systematically flipped.

Bit-phase-flip channel

As a fourth example of noisy quantum operation, we define next the bit-phase-flip
channel in the operator-sum representation:

ε(ρ) = pYρY + (1 − p) ρ

≡ U0ρU0 + U1ρU1,
(23.22)

23.2 The Holevo–Schumacher–Westmoreland capacity theorem 481

with the corresponding elements:

U0 = √
pY = √

p

(
0 −i
i 0

)

U1 = √
1 − pI = √

1 − p

(
1 0
0 1

)
.

(23.23)

It is again left as an exercise to show that the originator message |q〉 = α|0〉 + β|1〉 is
transformed into |q ′〉 = β|0〉 − α|1〉 with probability p and is left invariant otherwise.
The action of the noisy channel is to flip both the phase and the complex amplitudes.
It is easily found that for any originator messages ρ = |0〉〈0|, ρ = |1〉〈1|, ρ = |+〉〈+|
or ρ = |−〉〈−|, the net entropy difference is �S = S(σ) − S(ρ) = f (p). It is clear that
for ρ = |0〉〈0|, ρ = |1〉〈1| this difference is only attributable to the bit-flipping effect,
while for ρ = |+〉〈+| or ρ = |−〉〈−| it is attributable to the phase-flipping effect.1

Other noise processes, which are beyond the scope of these chapters but very important
in the analysis of time evolution of qubits in quantum channels, concern amplitude
damping and phase damping.

23.2 The Holevo–Schumacher–Westmoreland capacity theorem

In this section, I shall introduce the concept of quantum channel capacity, based on
the Holevo–Schumacher–Westmoreland (HSW) theorem. The HSW theorem defines
the channel capacity χ under which, at a rate R < χ , it is possible to transmit quan-
tum messages with arbitrary small probability of error or information loss. It can be
viewed conceptually as the elegant quantum counterpart of Shannon’s channel cod-
ing theorem, which was described in Chapter 13. Here, the term “capacity” refers,
in fact, to the same concept as in classical information, while assuming that such
information is encoded in quantum messages that are passed through noisy quantum
channels.

The formal demonstration of the HSW theorem being particularity involved and
tedious, it will not be considered here. For the general interest and purpose of this
chapter, it will suffice to state the HSW theorem “as is:” given a quantum-symbol
source {ρi } with associated probability distribution {pi = p(ρi)}, the capacity χ of a
noisy quantum channel ε providing the operation σi = ε(ρi) is given by the maximum
difference:

χ = max[S〈σ 〉 − 〈S(σ)〉]
= max

{pi }
{S[ε (〈ρi 〉)] − 〈S [ε (ρi)]〉}, (23.24)

1 Flipping complex amplitudes leave |+〉 = (|0〉 + |1〉) /
√

2 invariant, while resulting in a global phase factor
eiπ = −1, for |−〉 = (|0〉 − |1〉) /

√
2, which does not modify the definition of |−〉.

482 Quantum channel noise and channel capacity

where the brackets 〈 〉 indicate an averaging over the distribution {pi }. This definition
can be put into the more explicit or complete formulation:

χ = max
{pi }

[
S

(∑
i

piσi

)
−

∑
i

pi S (σi)

]

= max
{pi }

{
S

[
ε

(∑
i

piρi

)]
−

∑
i

pi S [ε (ρi)]

}
.

(23.25)

As with Shannon’s channel coding theorem, the capacity χ represents the maximum
code rate for which the probability of transmission error can be made arbitrarily small,
assuming sufficiently long message lengths. The following provides a background and
a basic interpretation for the HSW theorem, showing how it nicely parallels Shannon’s
channel coding theorem.

As we have seen in Chapter 22, a quantum message of length n can be conceived
as an n-qubit “block” represented by the tensor state |M〉 = |x1x2 . . . xn〉, with each
qubit |xk〉 being randomly selected with an occurrence probability pi , from a given
symbol alphabet {|ai 〉}i=1...N of size N . We assume that the originator chooses among
2n R message possibilities, where R > 0. This limited set of “quantum codewords” of
length n can be referred to as a “code,” and R as a code rate. A symbol density operator
ρmk can be associated with any message qubit in position k, where mk is an index selected
from the alphabet i = 1, 2, . . . , N . Hence, the originator’s message block or codeword
is characterized by a density operator ρM constructed from the n-tensor product:2

ρM = ρm1 ⊗ ρm2 ⊗ · · · ⊗ ρmn . (23.26)

We note that since the message block is defined as an n-tensor product, there is no
entanglement between any of the qubits therein. The recipient message, or codeword is
received as

σM = σm1 ⊗ σm2 ⊗ · · · ⊗ σmn , (23.27)

where

σmk = ε(ρmk). (23.28)

Following the description in Chapter 22 (but not being concerned here about compres-
sion), it is clear that a specific codeword σM corresponds to a set of N ′ = N n eigen-
values �M K = λm1k1λm1k2 . . . λm1kn1 and eigenvectors |�M K 〉 = |λm1k1λm1k2 . . . λm1kn1〉,
such that σM has the diagonal form

σM =
∑

K

�M K |�M K 〉〈�M K |

=

�M1 0 · · · 0
0 �M2 · · · 0
...

...
. . .

...
0 0 · · · �M N ′

 ,

(23.29)

2 For instance, |M〉 = |a1a2a2a3〉 is represented by the density operator ρM = ρ1 ⊗ ρ2 ⊗ ρ2 ⊗ ρ3.

23.2 The Holevo–Schumacher–Westmoreland capacity theorem 483

with
∑

K �M K = 1. Next, define 〈S〉 = 〈S(σ)〉 as the mean value of the per-symbol VN
entropy of the received codeword, according to:

〈S〉 =
∑

i

pi S(σi). (23.30)

Given any parameter ε > 0, and based on the concept described in Chapter 22, we can
define the ε-typical subspace � for σM , based on the parameters �MK , 〈S〉 and spanned
by the eigenvectors |�M K 〉 according to the condition:∣∣∣∣1

n
log

1

�M K
− 〈S〉

∣∣∣∣ ≤ ε. (23.31)

Let PM be the projector onto this ε-typical subspace �. Based on Eq. (22.30), we know
that the dimension of this subspace, tr(PM), is upper-bounded according to

tr(PM) ≤ 2n(〈S〉+ε). (23.32)

We also know that for any σM with sufficiently long length n and for any δ such that
0 < δ < 1, the probability p = p(σM ∈ �) of projecting onto the typical subspace is
lower-bounded according to:

p = 〈tr(σM PM)〉 ≥ 1 − δ = pmin, (23.33)

where the brackets have the meaning of an expectation value, i.e., the projection prob-
ability as averaged over all possible message codewords σM . This result shows that the
probability that any received codeword σM belongs to the typical subspace has a lower
bound pmin, which is nonzero. I shall now introduce the notion of error probability,
which is the probability that a POVM measurement of σM by the recipient fails to
identify σM as one of the codewords from the typical set �.

Consider, indeed, that given the typical set � = {σM} of size 2n R , there is a corre-
sponding set {EM} of POVM measurement operators (see Chapter 17) of the same size.
The POVM set is completed with the measurement operator E0 for all other possible
codewords, defined as

E0 = I⊗n −
∑
M �=0

EM . (23.34)

The probability pM of the recipient identifying a specific message M in � while using
a POVM measurement EM is given by

pM = tr(σM EM) (23.35)

and in the opposite case, where such identification is unsuccessful, the error probability
perror

M is:

perror
M = 1 − pM = 1 − tr(σM EM). (23.36)

484 Quantum channel noise and channel capacity

If we assume that the originator uniformly selects the messages from the codeword set
{ρM}, it is then possible to define an average error probability p̄error through

p̄error = 1

2n R

∑
M

perror
M . (23.37)

Define 〈 p̄error〉 as the expectation value of p̄error over all possible codewords. The formal
demonstration of the HSW theorem then leads to the following result, which I shall here
provide “as is:”

〈 p̄error〉 ≤ 4δ + (2n R − 1)2−n(χ−2ε), (23.38)

with

χ = S (〈σ 〉) − 〈S(σ)〉. (23.39)

The result in Eq. (23.38) shows that provided the condition for the code rate R,

R < S (〈σ 〉) − 〈S(σ)〉 = χ, (23.40)

and for long message lengths (n → ∞) the expected error probability is upper-bounded
according to 〈 p̄error〉 ≤ δ′ = 4δ with δ being any real such that 0 < δ < 1, i.e., which can
be chosen arbitrarily close to zero. The maximization of χ , which yields the quantum
channel capacity, is an issue at least as complex as in the case of classical communication
channels. Suffice it here to infer that under the condition R < max(χ) it is possible to
find another class of quantum codes for which p̄error < δ′′, with δ′′ being arbitrarily close
to zero. The key conclusion is, therefore:

Given a quantum channel ε, there exist quantum codes with long codeword size n and code rate
R < max(χ), for which the error probability p̄error (of the recipient failing to identify a codeword
σM = ε(ρM) given an originator codeword ρM) can be made arbitrarily small.

This conclusion defines the key condition under which “error-free” transmission of
quantum messages through noisy quantum channels can be achieved. It is also possible
to show the converse, namely: “for R > χ there exists no quantum code of any codeword
size able to achieve error-free transmission,” meaning that p̄error is irremediably bounded
away from zero.

As stated earlier, there exists a nice parallel between the HSW “capacity” theorem
and Shannon’s coding theorem for classical, noisy communication channels. To recall
from Chapter 13, the classical channel capacity C is defined as the mutual information
maximum:

C = max
p(x)

H (X ; Y). (23.41)

The coding theorem states that:

Given a noisy transmission channel, there exist binary codes of sufficiently long codeword size,
with 2n R codewords of sufficient length n, and code rate R < C , for which an originator message
can be transmitted to a recipient with arbitrary low error probability.

23.2 The Holevo–Schumacher–Westmoreland capacity theorem 485

It is clear that Shannon’, coding theorem and the HSW theorem are conceptually very
similar. As in QIT, the typical set of codewords (or of typical sequences) is defined under
the condition (Eq. (13.25)): ∣∣∣∣1

n
log

1

p(x)
− H (X)

∣∣∣∣ ≤ ε, (23.42)

where p(x) is the codeword probability distribution associated with the symbol source X ,
and the entropy H (X). This condition parallels that in Eq. (23.29), with p(x) → �M K

and H (X) → 〈S〉. In the classical case, the dimension of the typical set is upper-
bounded by 2n(H+ε), while in the quantum case, the bound is 2n(〈S〉+ε), see Eq. (23.30).
Because of this analogy, it is clear that the HSW theorem owes a great deal to Shannon’s
classical analysis, even if its background assumptions are hardly reducible to any classical
conception. Then we may ask: “Is quantum channel capacity in any way reducible to
Shannon’s original concept?” The following discussion, although with no pretence at
providing any academic proof, may guide towards some form of a satisfactory answer;
we expected no!

We may now conclude this section with a discussion about the connection between
the HSW theorem and the Holevo bound described in Chapter 21, and clarifying the
difference between χ and the classical channel capacity C . Indeed, letting χ ′ = S (〈σ 〉) −
〈S(σ)〉, we recognize from Chapter 21 that χ ′ is exactly the definition of the Holevo
bound for the quantum source σ , and the HSW theorem seems simply to state that the
channel capacity is given by χ = max χ ′. Then, apart from the maximization issue,
we may wonder what is conceptually new and useful in this HSW theorem that has
not already been captured into the Holevo bound concept. The answer to this apparent
paradox is quite simple. In Chapter 21, we have considered the action of encoding and
decoding classical information into or from a suite of quantum symbols ρx from an
alphabet {ρi }, to be conveyed through some ideal quantum channel. The operation of
encoding is the “preparation” of the state ρx , which means that the originator sets up the
quantum system in the state ρx . The operation of decoding is the “measurement” by the
recipient of any received symbol ρy , using the adequate POVM set for the identification
of each symbol possibility. The full encoding and decoding operation can be virtually
reduced into a classical information channel that relates two random sources X and Y .
As we have learnt, the mutual information H (X ; Y) is bounded by H (X), just as in the
purely classical case, but the quantum channel introduces the extra (Holevo) bound χ

such that

H (X ; Y) ≤ χ ≤ H (X). (23.43)

As we have also seen, if the symbols ρi have orthogonal support in {ρi }, meaning that
different qubit symbols are necessarily orthogonal, then χ = H (X) and the Holevo
bound is reduced to the originator source entropy, which obliterates any particularity of
using a quantum channel as opposed to a purely classical one.

Consider next the case of the noisy quantum channel. The encoding and decoding oper-
ations are conceptually the same as previously, except that decoding (POVM measure-
ment) is performed onto message codewords, defined by σM = σm1 ⊗ σm2 ⊗ · · · ⊗ σmn ,

486 Quantum channel noise and channel capacity

given the originator codeword ρM = ρm1 ⊗ ρm2 ⊗ · · · ⊗ ρmn . In the received message
σM , each symbol σmk is the result of a quantum operation ε such that σmk = ε(ρmk).
From statistical measurements, the recipient may then compute χ ′ = S(〈σ 〉) − 〈S(σ)〉 =
S[〈ε(ρ)〉] − 〈S[ε(ρ)]〉 for the source σ , but it is irrelevant to call this quantity a “Holevo
bound,” because of the quantum operation ε introduced by the channel, which, for each
recipient symbol σmk , has corrupted the reference symbol ρmk . If ε is not a “noiseless”
constant, therefore, the action of decoding is conceptually quite different from that
assumed in the Holevo bound derivation. Furthermore, however tempting, we ought not
to view χ ′ as representing some elaborated definition of “quantum mutual information”
between the sources ρ and σ of two quantum systems Q (originator) and Q′ (recipi-
ent). In Chapter 21, we have described the quantum mutual information S(ρ̂A; ρ̂B) for a
composite system AB as

S(ρ̂A; ρ̂B) = S(ρ̂A) + S(ρ̂B) − S(ρAB), (23.44)

where ρ̂A = trB(ρAB) and ρ̂B = trA(ρAB) are the partial-traced operators. Life in QIT
would be so much simpler if max�S(ρ̂Q ; ρ̂Q′)� could represent the quantum channel
capacity χ , but this is definitely not the case! To cut through any other explanation, it
is not possible to define the composite system Q Q′ with density operator ρQ Q′ , simply
because after the operation ε the original system Q does not exist anymore as it has
been transformed into Q′! The physical parameter that can make sense is the difference
�S = S(ρQ′) − S(ρQ) ≡ S(σ) − S(ρ), see further on.

The quantum counterpart of mutual information is, indeed, far more complex, and
its description is beyond the scope of this chapter. Here, to quench our thirst, I may
provide just a brief hint of a new concept referred to as quantum coherent information.
Appendix W shows that given a quantum system Q in a mixed state |ψQ〉 with density
operator ρQ ≡ ρ, it is possible to define a reference quantum system R, such that the
composite system QR is in a pure state |ψQR〉, namely, for which ρQR = |ψQR〉〈ψQR|.
Such an operation is referred to as state purification. Upon the action of the quantum
operation ε, the systems Q, R are then transformed into the systems Q′, R′ with, in
particular, ρQ′ ≡ σ = ε(ρ). One defines the entropy exchange of the action of ε on the
composite system QR that transforms it into the composite system Q′R′ as

SE(ρ, ε) = S(ρQ′ R′). (23.45)

Then one defines the quantum coherent information as the difference

I (ρ, ε) = S(σ) − SE(ρ, ε). (23.46)

In today’s state of the art of QIT, the quantum coherent information I (ρ, ε) is only
“conjectured” as playing the same role as the mutual information

H (X ; Y) = H (Y) − H (Y |X) (23.47)

does in Shannon’s classical theory. In particular, it can be shown that given the entropy
difference between source and originator,

�S = S(σ) − S(ρ), (23.48)

23.3 Capacity of some quantum channels 487

the following property is always satisfied:

�S + SE(ρ, ε) ≥ 0. (23.49)

This last result shows that the entropy change caused by the quantum operation ε on
both the quantum channel and the “outside world” is always nonnegative, which recalls
the second law of thermodynamics, according to which the entropy of a closed system
may only increase on any physical transformation or evolution from its initial state.

23.3 Capacity of some quantum channels

In this section, I apply the HSW theorem to evaluate the capacity of different types of
quantum channel. We assume that the originator source has, for symbols, the pure states
ρi = |ψi 〉〈ψi | which are associated within a quantum message (or codeword) with some
probability distribution pi . For convenience, we introduce

χ ′ = S

[
ε

(∑
i

piρi

)]
−

∑
i

pi S [ε (ρi)], (23.50)

to which, after the HSW theorem, the channel capacity χ = max(χ ′) corresponds.
Before touching upon any examples, it is interesting to consider the case of ideal,

constant or “noiseless” channels. This is the case where ε (ρi) = ρi and, hence, from
Eq. (23.50):

χ ′
ideal =

(∑
i

piρi

)
−

∑
i

pi S (ρi) ≡ S

(∑
i

piρi

)
, (23.51)

where we used the property that for any pure state ρi the VN entropy S(ρi) is zero. The
result in Eq. (23.49) shows that in this ideal case, χ ′ actually represents the VN entropy
of the originator’s message source S(ρ) = S(〈ρi 〉). The “ideal channel” capacity is given
by χideal = max(χ ′

ideal), or

χideal = max(χ ′
ideal) = max

pi

[
S

(∑
i

piρi

)]
≡ max S(ρ). (23.52)

This maximization problem, thus, addresses the question of how much classical infor-
mation can be conveyed through any given message ρ before transmission through any
quantum channel. Intuitively, we expect that for nonideal channels we have the property

χ ≤ χideal, (23.53)

meaning that, obviously, noisy transmission does not improve the information of the
message source. This is just like in the classical case, with the mutual information satis-
fying H (X ; Y) ≤ H (X), and with the capacity C = max[H (X ; Y)] ≤ max[H (X)] = 1
bit. The following examples will illustrate the fact that the quantum channel capacity
χ cannot, indeed, exceed the highest-possible VN entropy of the originator source, i.e.,
χideal = max[S(ρ)].

488 Quantum channel noise and channel capacity

Example 23.1: Depolarizing channel
In Eq. (23.8) we have seen that this channel is defined by the operation

ε(ρi) = p
I

2
+ (1 − p)ρi . (23.54)

Assuming the orthogonal symbols ρ1 = |0〉〈0| and ρ2 = |1〉〈1|, we obtain

ε

(∑
i

piρi

)
= ε [p1ρ1 + (1 − p1)ρ2]

= p
I

2
+ (1 − p) [p1ρ1 + (1 − p1)ρ2]

= p

2

(
1 0
0 1

)
+ (1 − p)p1

(
1 0
0 0

)
+ (1 − p)(1 − p1)

(
0 0
0 1

)

= p

2

(
1 0
0 1

)
+ (1 − p)

(
p1 0
0 1 − p1

)

≡

 p

2
+ (1 − p)p1 0

0
p

2
+ (1 − p)(1 − p1)

 , (23.55)

and the corresponding VN entropy

S

[
ε

(∑
i

piρi

)]
= −

p + 2(1 − p)p1

2
log

p + 2(1 − p)p1

2

+ p + 2(1 − p)(1 − p1)

2
log

p + 2(1 − p)(1 − p1)

2

 .

(23.56)

As we have seen in the previous section, the VN entropy of the recipient symbols is
S[ε(ρ1)] = S[ε(ρ2)] = f (p/2), hence,∑

i

pi S [ε(ρi)] = p1 f
(p

2

)
+ (1 − p1) f

(p

2

)
≡ f

(p

2

)
. (23.57)

From Eq. (23.50), we finally obtain

χ ′(p, p1) = S

[
ε

(∑
i

piρi

)]
−

∑
i

pi S [ε(ρi)]

= −

[p

2
+ (1 − p)p1

]
log

[p

2
+ (1 − p)p1

]
+

[p

2
+ (1 − p)(1 − p1)

]
log

[p

2
+ (1 − p)(1 − p1)

]

 − f

(p

2

)
.

(23.58)
In the above equation, it is clear that the first term in braces, corresponding to the
definition in Eq. (23.56), is maximized if we choose the two symbols to have equal
probabilities p1 = 1 − p2 = 1/2, which gives

S

[
ε

(∑
i

piρi

)]
= −

(
1

2
log

1

2
+ 1

2
log

1

2

)
= f

(
1

2

)
= 1. (23.59)

23.3 Capacity of some quantum channels 489

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability p

Q
ua

nt
um

 c
ha

nn
el

 c
ap

ac
ity

 χ

Figure 23.1 Quantum capacity χ (p) of the depolarizing channel as a function of the depolarizing
parameter p.

Thus, we obtain the channel capacity χ :

χ (p) = max χ ′
(

p,
1

2

)
≡ 1 − f

(p

2

)
. (23.60)

As expected from the analysis in the previous section, the capacity vanishes for p = 1,
which corresponds to a “useless channel,” projecting any random symbol ρi onto
σ = ε(ρi) = I/2 as shown from Eq. (23.54). The highest capacity χ (0) = 1 bit is
obtained for p = 0, in which case the quantum channel ε is constant or “ideal,” or
“noiseless,” i.e., σ = ε(ρi) = ρi , but this case is of no interest here. Figure 23.1 shows
a plot of the depolarizing channel capacity as a function of the depolarizing proba-
bility parameter p. It is seen from the figure that, as expected, the channel capacity
monotonously decays as the depolarizing parameter increases from p = 0 to p = 1. To
provide a practical engineering interpretation of the above result, assume, for instance,
that p = 0.1, which yields f (p/2) ≈ 0.25 (see Fig. 4.7), and, thus, defines a channel
capacity of χ = 0.75 bit. The HSW theorem states that it is possible to transmit code-
words of sufficient lengths with arbitrary error probability provided the code rate satisfies
R < χ = 0.75. Given a block code (n, k), the code rate must satisfy R = k/n < 0.75,
which means that the code must include 25% redundancy bits and 75% payload
bits.

The exercises provide other application examples of the depolarizing channel capac-
ity. Here, it is worth showing the results obtained when assuming the codeword sym-
bols |0〉, |+〉 instead of |0〉, |1〉. It is a tedious but tractable exercise to show that the
corresponding capacity takes the form:

χ (p) = max
p1

−1 + (1 − p)
√

1 − 2p1(1 − p1)

2
log

1 + (1 − p)
√

1 − 2p1(1 − p1)

2

−1 − (1 − p)
√

1 − 2p1(1 − p1)

2
log

1 − (1 − p)
√

1 − 2p1(1 − p1)

2

+(1 − p1)
1 + √

1 − p(2 − p)

2
log

1 + √
1 − p(2 − p)

2

+(1 − p1)
1 − √

1 − p(2 − p)

2
log

1 − √
1 − p(2 − p)

2
− p1 f

(p

2

)

.

(23.61)

490 Quantum channel noise and channel capacity

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Depolarizing parameter p

=1p 0.5
0.4
0.3
0.2
0.1
0.05
0.025
0.01

),(́max 1
1

pp
p

χχ =
0.6
0.7
0.8
0.9
0.95
0.975
0.99

χ
 ́(

p,
p 1

)

Figure 23.2 Plots of χ ′(p, p1) as a function of the depolarizing parameter p in
depolarizing-channel, and corresponding channel capacity χ (p) = max χ ′(p, p1) (codewords
formed by pure states |0〉, |+〉 with probabilities p1,1 − p1, respectively).

The expression in brackets {χ ′(p, p1)} in Eq. (23.61) can be maximized by numer-
ically solving the transcendental equation ∂χ ′(p, p1)/∂p1 = 0. But we may as well
directly infer the answer, as it will be shown further on. First, we may just plot
the function χ ′(p, p1) for different values of the parameter p1 (probability associ-
ated with |0〉), as illustrated in Fig. 23.2. From the figure, we first note the property
χ ′(p, p1) = χ ′(p, 1 − p1). Second, we observe that in all cases, the functionχ ′(p, p1)
is maximal at p = 0 (constant or noiseless channel) and zero at p = 1 (useless chan-
nel). Third, we see that the channel capacity χ (p) = max χ ′(p, p1) is achieved for
p1 = 0.5. This was expected, since this condition corresponds to maximum uncer-
tainty in the occurrence of the |0〉, |+〉 qubits forming the codewords. From the
property in Eq. (23.53), the constant or noiseless capacity, χ (0), must correspond
to the (maximum possible) VN entropy of originator’s source, max[S(ρ)] = χideal,
as discussed earlier and also formally established in the exercise. Substituting
p1 = 0.5 into Eq. (23.61), we obtain the following analytical form of the channel
capacity:

χ ≡ χ ′
(

p,
1

2

)

=

−
1 + 1 − p√

2
2

log

1 + 1 − p√
2

2

−
1 − 1 − p√

2
2

log

1 − 1 − p√
2

2

+ 1 + √
1 − p(2 − p)

4
log

1 + √
1 − p(2 − p)

2

+ 1 − √
1 − p(2 − p)

4
log

1 − √
1 − p(2 − p)

2
− 1

2
f
(p

2

)

.

(23.62)

23.3 Capacity of some quantum channels 491

Substituting p = 0 in the above, we get the upper bound for the channel capacity, which
corresponds to the originator’s maximum source entropy max[S(ρ)]:

χideal = max S(ρ)

= χ ′
(

0,
1

2

)

≡ −
{

2 +√
2

4
log

2 +√
2

4
+ 2 −√

2

4
log

2 −√
2

4

}
.

(23.63)

This example, thus, provides an illustration of the HSW maximization problem, leading,
in this case, to a tractable analytical solution. It also illustrates the property χ (p) ≤
χideal = max S(ρ), which can be used to guide the maximization problem solving.

Example 23.2: Bit-flip channel
The quantum operation of this channel is defined in Eq. (23.13). Assuming the orthogonal
symbols ρ1 = |0〉〈0| and ρ2 = |1〉〈1|, we obtain

ε

(∑
i

piρi

)
= ε [p1ρ1 + (1 − p1)ρ2]

= pX [p1ρ1 + (1 − p1)ρ2] X + (1 − p) [p1ρ1 + (1 − p1)ρ2]

= pp1 Xρ1 X + p(1 − p1)Xρ2 X + (1 − p)p1ρ1 + (1 − p)(1 − p1)ρ2

=

pp1

(
0 1
1 0

)(
1 0
0 0

)(
0 1
1 0

)
+ p(1 − p1)

(
0 1
1 0

)(
0 0
0 1

)(
0 1
1 0

)

+ (1 − p)p1

(
1 0
0 0

)
+ (1 − p)(1 − p1)

(
0 0
0 1

)

= pp1

(
0 0
0 1

)
+ p(1 − p1)

(
1 0
0 0

)
+

(
(1 − p)p1 0

0 0

)
+

(
0 0
0 (1 − p)(1 − p1)

)

≡
(

p + p1 − 2pp1 0
0 1 − [p + p1 − 2pp1]

)
. (23.64)

and the corresponding VN entropy

A = S

[
ε

(∑
i

piρi

)]

= −
{

(p + p1 − 2pp1) log (p + p1 − 2pp1)

+ [1 − (p + p1 − 2pp1)] log [1 − (p + p1 − 2pp1)]

}

≡ f (p + p1 − 2pp1) .

(23.65)

492 Quantum channel noise and channel capacity

Next, we calculate the quantum operation ε onto ρ1 and ρ2 along with the corresponding
entropies:

ε(ρ1) = pXρ1 X + (1 − p)ρ1

≡ p

(
0 0
0 1

)
+ (1 − p)

(
1 0
0 0

)

≡
(

1 − p 0
0 p

)
→

S [ε(ρ1)] = −[(1 − p) log(1 − p) + p log p]
≡ f (1 − p)
≡ f (p)

, (23.66)

ε(ρ2) = pXρ2 X + (1 − p)ρ2

≡ p

(
1 0
0 0

)
+ (1 − p)

(
0 0
0 1

)

≡
(

p 0
0 1 − p

)
→

S [ε(ρ2)] ≡ f (p).

(23.67)

Hence, we obtain

B =
∑

i

pi S [ε (ρi)]

= p1 f (p) + (1 − p1) f (p)
≡ f (p) .

(23.68)

Combining the results in Eqs. (23.65) and (23.68), we finally obtain the channel capacity

χ (p, p1) = max
p1

(χ ′)

≡ max
p1

(A − B)

≡ max
p1

[f (p + p1 − 2pp1) − f (p)].

(23.69)

We note that the argument satisfies the property χ ′(p, p1) = χ ′(p, 1 − p1). The max-
imization problem can be solved analytically by studying the partial derivatives
∂χ ′(p, p1)/∂p1 and ∂2χ ′(p, p1)/∂p2

1, but we may observe, again, that the capacity
cannot exceed the amount χideal = max S(ρ). Using the definition of the symbol density
operator ρ = p1ρ1 + (1 − p1)ρ2, we clearly have S(ρ) = f (p1), and χideal = max S(ρ),
yielding p1 = 1/2, as expected (maximum VN entropy is obtained for a uniform
message-symbol distribution). Thus, we have for all p the channel capacity:

χ (p) = χ ′
(

p,
1

2

)
= [f (p + 1/2 − 2p/2) − f (p)]

≡ 1 − f (p) .

(23.70)

23.4 Exercises 493

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

0 0.2 0.4 0.6 0.8 1
0

0,2

0,4

0,6

0,8

1

=
1

p 0.5
0.4
0.3
0.2
0.1
0.05
0.01

0.6
0.7
0.8
0.9
0.95
0.99

χ
(p

,p
1)

),(́max 1
1

pp
p

χχ =

0

1

Bit-flip parameter p

´

Figure 23.3 Plots of χ ′(p, p1) as a function of the bit-flipping parameter p in the bit-flip channel,
and corresponding channel capacity χ (p) = max χ ′(p, p1) (codewords formed by pure states
|0〉, |+〉 with probabilities p1, 1 − p1, respectively).

Figure 23.3 shows plots of χ ′(p, p1) for p1 = 0 to p1 = 1 through different incre-
ments (recalling that χ ′(p, p1) = χ ′(p, 1 − p1)), with the top curve χ (p) = χ ′(p, 1/2)
representing the channel capacity. Interestingly, the channel capacity is seen to have
two maxima, i.e., for p = 0 and p = 1. These two limiting cases correspond to the
noiseless channel, and the “deterministic” bit-flip channel, respectively. A determin-
istic bit-flipping is simply a change of code polarity, meaning that the classical cbit
codewords from originator to recipient are exactly inverted or complemented, which
entails no information degradation or error. The other limiting situation is obtained for
p = 1/2, meaning that the qubit has a 50% chance of being flipped and a 50% chance of
being conserved in its integrity. The recipient’s measurement amounts to a coin-flipping
experiment, and all initial information is lost, which is the situation of the useless
channel.

23.4 Exercises

23.1 (B): Given the Pauli matrices X, Y, Z (see definition in Chapter 16), show that for
any 2 × 2 operator A with unity trace, and for q = 3p/4, the following relation
holds:

q

3
(XAX + YAY + ZAZ) + (1 − q)A = p

I

2
+ (1 − p)A.

23.2 (M): Analyze the effect of the bit-flip quantum channel defined by

σ = ε(ρ) = pXρX + (1 − p)ρ,

with p being a probability distribution and X the Pauli matrix

X =
(

0 1
1 0

)
,

494 Quantum channel noise and channel capacity

in the case where the density operator ρ is nondiagonal. Determine the entropy
change �S = S(σ) − S(ρ) in the case ρ = |0〉〈0| and ρ = |1〉〈1|.

23.3 (M): Analyze the effect of the phase-flip quantum channel as defined by

σ = ε(ρ) = pZρZ + (1 − p) ρ,

with p being a probability distribution and Z the Pauli matrix

Z =
(

1 0
0 −1

)
,

in the case where the density operator ρ is nondiagonal. Determine the entropy
change �S = S(σ) − S(ρ) in the four cases ρ = |0〉〈0|, ρ = |1〉〈1|, ρ = |+〉〈+|
and ρ = |−〉〈−|.

23.4 (M): Analyze the effect of the bit-phase-flip quantum channel as defined by

σ = ε(ρ) = pYρY + (1 − p)ρ,

with p being a probability distribution and Y the Pauli matrix

Y =
(

0 −i
i 0

)
,

in the case where the density operator ρ is nondiagonal. Determine the entropy
change �S = S(σ) − S(ρ) in the four cases ρ = |0〉〈0|, ρ = |1〉〈1|, ρ = |+〉〈+|,
and ρ = |−〉〈−|.

23.5 (M): Determine the quantum channel capacity corresponding to the depolarizing
channel

ε(ρi) = p
I

3
+ (1 − p)ρi ,

assuming the three-symbol alphabet

ρ1 = |0〉〈0|, ρ2 = |1〉〈1|, ρ3 = |2〉〈2|
associated with probabilities p1, p2, p3. Provide a plot of the capacity as a function
of the depolarizing parameter p.

23.6 (T): Determine the quantum channel capacity corresponding to the depolarizing
channel

ε(ρ) = pZρZ + (1 − p)ρ,

assuming the two-symbol alphabet

ρ1 = |0〉〈0|, ρ2 = |+〉 〈+| = |0〉 + |1〉√
2

associated with probabilities p1, p2.

23.4 Exercises 495

Hint: plot

χ ′(p) = S(〈ε〉) − 〈S(ε)〉
as a function of p, for different values of p1 and justify that the capacity χ =
max(χ ′) is achieved for p1 = p2 = 1/2; also show that χ (p) ≤ χ (0) = S(ρ),
where χ (0) is the capacity of the constant or noiseless quantum channel and S(ρ)
is the VN entropy of the originator source.

24 Quantum error correction

This chapter deals with the subject of quantum error correction and the related codes
(QECC), which can be applied to noisy quantum channels and quantum memories with
the purpose of preserving or protecting the information integrity. I first describe the
basics of quantum repetition codes, as applicable to bit-flip and phase-flip quantum
channels. Then I consider the 9-qubit Shor code, which has the capability of diagnosing
and correcting any combination of bit-flip and phase-flip errors, up to one error of each
type. Furthermore, it is shown that the Shor code is, in fact, capable of fully restoring
qubit integrity under a continuum of bit or phase errors, a property that has no counterpart
in the classical world of error-correction codes. But the exploration of QECC does not
stop here! We shall discover the elegant Calderbank–Shor–Steane (CSS) codes, which
have the capability of correcting any number of errors t , both bit-flip and phase-flip.
As an application of the CSS code, I then describe the 7-qubit Hadamard–Steane code,
which can correct up to one error on single qubits. A corresponding quantum circuit,
based on an original generator-matrix example, is presented.

24.1 Quantum repetition code

In Chapter 11, we saw that the simplest form of error-correction code (ECC) is the
repetition code, based on the principle of majority logic. The background assumption is
that in a given message sequence, or bit string, the probability of a bit error is sufficiently
small for the majority of bits to be correctly transmitted through the channel. It then
suffices to repeat each of the bits a certain number of times, at the cost of wasting
the channel resource or “bandwidth.” For instance, if one repeats each of the bits four
times, the original bit sequence 0111 is encoded into (underscores introduced for reading
clarity):

0000 1111 1111 1111,

which may yield at the channel output

0010 1111 0111 1011.

Clearly, a single bit error occurred in the first and last two blocks of the transmitted
message, and the simple rule of majority logic suffices to detect such errors and revert
the bits to the correct values. If p is the probability of error for a single bit, the probability

24.1 Quantum repetition code 497

that there is more than one error in a single four-bit block is

p(4) = C2
4 p2(1 − p)2 + C3

4 p3(1 − p) + C4
4 p4(1 − p)0

= 6p2(1 − p)2 + 4p3(1 − p) + p4

≡ 4p3 + 6p2 − 9p4.

(24.1)

It is easily checked that p(4) < p for p < 0.155, and p(4) ≤ p/10 for p ≤ 0.0165, hence,
this repetition code is reliable (i.e., errors can be reliably corrected) provided p is chosen
to be sufficiently small.

Here, we shall apply the principle of repetition codes to quantum channels, which
defines the new notion of quantum error-correction coding (QECC). We may conceptu-
ally expand our view of a “quantum channel” beyond that of a quantum communication
system and conceive that it may also correspond to that of a quantum memory. Whether
information is transmitted or stored, the principle remains the same: an originator must
encode the information and input the result into a physical system, and a recipient
must do the reverse operation. We may, thus, equivalently refer to either transmission
or storage “fidelity” to qualify the quantum channel or system into or through which
information is being passed. Such a notion will be developed later.

As an example of a noisy quantum system, consider the bit-flip channel described
in Chapter 23. To recall, the bit-flip channel converts the qubits |0〉 and |1〉 into each
other with probability p. Hence, the original qubit |q〉 = α|0〉 + β|1〉 has probability
p of being transformed by the quantum channel into |q〉 = α|1〉 + β|0〉. Based on the
principle of the four-bit repetition code, it is then sensible to encode the input qubit |q〉
into

|q̂〉 = α|0000〉 + β|1111〉, (24.2)

for instance (we could have chosen a 3-qubit repetition code as well). This is equivalent
to encoding the basis states |0〉, |1〉 in the form

{ |0〉 → |0̂〉 = |0000〉
|1〉 → |1̂〉 = |1111〉,

(24.3)

where |0̂〉, |1̂〉 have the meaning of the logical |0〉, |1〉 qubits. The quantum circuit
for this repetition code, which is based on three CNOT gates (see Chapter 15), is
shown in Fig. 24.1. After passing through the bit-flip channel, the 4-qubit basis states
|0000〉, |1111〉 might have experienced zero, one, two, three, or four qubit flips or errors.
We consider here the first two possibilities, whose detailed outcomes are summarized in
Table 24.1. From the recipient’s end, the detection and correction of errors is a matter of
syndrome diagnosis. The notion of “syndrome” for linear block codes and cyclic codes
was described in Chapter 11. Here, it is similarly applied to quantum error correction.
The first step is to detect the existence of errors, namely of the occurrence of single
qubit flips in the received codeword, which is achieved by means of an error syndrome
measurement. Such a measurement consists of projecting the received codeword using

498 Quantum error correction

Table 24.1 Outcome possibilities for the basis states |0000〉, |1111〉 on
passing through a bit-flip channel, assuming up to one flip.

Input Output Event

|0000〉, |1111〉 |0000〉, |1111〉 No bit flip
|1000〉, |0111〉 Bit flip on 1st qubit
|0100〉, |1011〉 Bit flip on 2nd qubit
|0010〉, |1101〉 Bit flip on 3rd qubit
|0001〉, |1110〉 Bit flip on 4th qubit

10 βα +=q

x0

x

x
44

10

11110000

1̂0̂ˆ

+=

+=

+=

βα

βα

βαq

0

0

Figure 24.1 Quantum circuit for encoding a qubit |q〉 into a 4-qubit repetition codeword |q̂〉
before transmission to a bit-flip channel.

the following projector set:

P0 = |0000〉 〈0000| + |1111〉 〈1111|
P1 = |1000〉 〈1000| + |0111〉 〈0111|
P2 = |0100〉 〈0100| + |1011〉 〈1011|
P3 = |0010〉 〈0010| + |1101〉 〈1101|
P4 = |0001〉 〈0001| + |1110〉 〈1110| .

(24.4)

Assume that the received qubit is |q̂ ′〉 = α|0010〉 + β|1101〉. It is clear that a pro-
jection measurement through P3 yields the certain outcome, or “expectation value”
〈P3〉 = 〈q̂ ′|P3|q̂ ′〉 = 1, with the post-measurement state being |q̂∗〉. We note that the
measurement does not yield any information about the amplitudes α, β, thus, leaving
the codeword unknown. Yet the measurement tells which type of error is to be corrected,
and the original codeword can be restored to its full integrity by flipping again the errored
qubit i should any Pi=1,2,3,4 measurement yield 〈q̂ ′|Pi |q̂ ′〉 = 1, while the measurement
〈q̂ ′|P0|q̂ ′〉 = 1 indicates with certainty that there are no errors.

The effectiveness of a quantum error-correction code can be qualified through fidelity,
a notion which was introduced in Chapter 22. Assuming a noisy channel ε with the
encoded originator message ρ = |q̂〉〈q̂| and the recipient message ε(ρ) = ρ ′, the fidelity
can be defined as follows:

F =
√
〈q̂|ρ ′|q̂〉. (24.5)

24.1 Quantum repetition code 499

In the case of the bit-flip channel, we have (Eq. (23.11)):

ρ ′ = ε(ρ)
= pXρX + (1 − p)ρ
= pX |q̂〉〈q̂|X + (1 − p)|q̂〉〈q̂|.

(24.6)

From the definition in Eq. (24.5), the corresponding fidelity of the code is

F = √〈q̂|ρ ′|q̂〉
= √〈q̂|pX |q̂〉〈q̂|X |q̂〉 + (1 − p) 〈q̂|q̂〉 〈q̂|q̂〉
≡

√
p |〈q̂|X |q̂〉|2 + (1 − p).

(24.7)

Consider now some cases of interest. If we use no error correction, the two basic sets
of pure-state symbols we can use are |q〉 = |0〉, |1〉 and |q〉 = |+〉, |−〉. As we know,
the action of the Pauli matrix X is to flip the states |0〉, |1〉 or X |0〉 = |1〉 and X |1〉 =
|0〉, yielding 〈q|X |q〉 = 0 and F = √

1 − p in the first case. The fidelity, thus, ranges
from F = 1 (noiseless channel, p = 0) to F = 0 (“certain” bit-flip channel, p = 1).
In the second case, the action of X leaves the states |+〉, |−〉 invariant, i.e., X |+〉 =
(X |0〉 + X |1〉)/√2 = (|1〉 + |0〉)/√2 ≡ |+〉 and X |−〉 = (X |0〉 − X |1〉)/√2 = (|1〉 −
|0〉)/√2= eiπ |−〉 ≡ |−〉, which yields |〈q|X |q〉| = 1 and, hence, F = 1. The fidelity
is, thus, maximal, even if the channel is “noisy” and no error-correction coding is
implemented! Consider, next, the case with the error-correction code implementation
according to Eq. (24.2), i.e., |q̂〉 = α|0̂〉 + β|1̂〉, with ρ = |q̂〉〈q̂|. We now have a noisy
quantum channel that has the capability of corrupting one, two, or more qubits, which
calls for a definition of ε(ρ) that is, in fact, different from Eq. (24.6). For each corruption
pattern x , we need to introduce the corresponding quantum operation εx (ρ). Here are
the different corruption patterns with their operations:

No error: ε0(ρ) = (1 − p)4 I⊗4ρ I⊗4, (24.8)

Exactly one error: εa(ρ) = p(1 − p)3

X ⊗ I⊗3ρX ⊗ I⊗3

+ I ⊗ X ⊗ I⊗2ρ I ⊗ X ⊗ I⊗2

+ I⊗2 ⊗ X ⊗ Iρ I⊗2 ⊗ X ⊗ I
+ I⊗3 ⊗ Xρ I⊗3 ⊗ X

 , (24.9)

Exactly two errors: εb(ρ) = p2(1 − p)2

X⊗2 ⊗ I⊗2ρX⊗2 ⊗ I⊗2

+ X ⊗ I ⊗ X ⊗ IρX ⊗ I ⊗ X ⊗ I
+ X ⊗ I⊗2 ⊗ XρX ⊗ I⊗2 ⊗ X
+ I ⊗ X⊗2 ⊗ Iρ I ⊗ X⊗2 ⊗ I
+ I ⊗ X ⊗ I ⊗ Xρ I ⊗ X ⊗ I ⊗ X
+ I⊗2 ⊗ X⊗2ρ I⊗2 ⊗ X⊗2

,

(24.10)

Exactly three errors: εc(ρ) = p3(1 − p)

X⊗3 ⊗ IρX⊗3 ⊗ I
+ X⊗2 ⊗ I ⊗ XρX⊗2 ⊗ I ⊗ X
+ X ⊗ I ⊗ X⊗2ρX ⊗ I ⊗ X⊗2

+ I ⊗ X⊗3ρ I ⊗ X⊗3

 ,

(24.11)

Exactly four errors: εd (ρ) = p4 X⊗4ρX⊗4, (24.12)

500 Quantum error correction

which makes up the overall channel definition

ρ ′ = ε(ρ) = ε0(ρ) + εa(ρ) + εb(ρ) + εc(ρ) + εd (ρ). (24.13)

Here, there is no point in developing the full expression of the recipient’s qubit by
substituting ρ = |q̂〉〈q̂| = (α|0̂〉 + β|1̂〉)(ᾱ〈0̂| + β̄〈1̂|), which generates no less than 4 ×
16 = 64 operator terms! Rather, it is sensible to conclude directly that after error-
correction decoding, which would ideally detect and correct all possible error patterns,
the transmitted qubit state takes the form:

(ρ ′)∗ = ε∗(ρ)
= [(1 − p)4 + 4p (1 − p)3 + 6p2 (1 − p)2 + 4p3 (1 − p) + p4]|q̂〉〈q̂|
≡ |q̂〉〈q̂|.

(24.14)

If the QECC only has the capability of correcting up to a single error (using the projectors
Pi=1,2,3,4), we may write

ε∗(ρ) = [(1 − p)4 + 4p (1 − p)3 + . . .]|q̂〉〈q̂|, (24.15)

with the missing terms corresponding to patterns of more than one error (see further
in discussion about correcting higher-order error patterns). In this case, the fidelity is
given by

F(p) = √〈q̂|ε∗(ρ)|q̂〉
≡

√
(1 − p)4 + 4p (1 − p)3 + . . . ≥

√
(1 − p)4 + 4p (1 − p)3

= Fmin.

(24.16)

In the above, Fmin represents a lower bound for the fidelity corresponding to an error-
correction capability of up to one qubit. We may compare the minimum fidelity Fmin to
that corresponding to the transmission of |0〉, |1〉 without error-correction coding, and
for which F = √

1 − p, as established earlier. It is found numerically that Fmin > F
under the condition p < pmax = 0.23, as illustrated in Fig. 24.2. This result means that
for channels with p ≥ 0.23, there is no point or merit whatsoever in implementing this
quantum repetition code! In comparison, the 3-qubit repetition code yields a minimum
fidelity of Fmin =

√
(1 − p)3 + 3p(1 − p)2 (which is straightforward to establish), to

which the condition p < 0.5 = pmax corresponds. The fact that the channel bit-flip prob-
ability p may not exceed some threshold value pmax, and that this threshold decreases as
we may increase the number of repeated qubits, nicely illustrates the intrinsic limitations
of the quantum repetition code.

As we have seen from the above description, implementing the repetition code with
longer codewords increases the chance of obtaining more than one (bit-flip) error.
How about the possibility of correcting these higher-order error patterns? We may
easily convince ourselves that, unfortunately, the repetition code does not offer such a
possibility. Indeed, consider, for instance, the projection operator P = |0011〉〈0011| +
|1100〉〈1100|. Using such a projection will tell with certainty that there are two errors.
But there is no way of telling whether these errors occurred on the first two or the last two

24.1 Quantum repetition code 501

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability p

F
id

el
ity

minF

F

max
p

Figure 24.2 Fidelity of 4-qubit repetition coding in bit-flip channel for no error correction (F),
and up to one error correction (Fmin), showing improvement in the region p < pmax = 0.23.

qubits, these two events being equiprobable. The same ambiguity prevails with the two
other possible projectors, P = |0101〉〈0101| + |1010〉〈1010| and P = |0110〉〈0110| +
|1001〉〈1001|. The detection of three errors would take the same projectors as Pi=1,2,3,4

defined in Eq. (24.4), but this time with an ambiguity in favor of a single-error event. This
shows that the quantum repetition code is inadequate for higher-order error detection
and correction.

How about implementing the quantum repetition code in the phase-flip channel? In
Chapter 11, we saw that the phase-flip channel transforms a qubit |q〉 = α|1〉 + β|0〉
into |q〉 = α|1〉 − β|0〉, or introduces a dephasing factor eiπ between the two complex
amplitudes α, β. Clearly, the effect of this channel is to flip the states |+〉 and |−〉 into
each other. Therefore, we can apply the same repetition-code principle as described
previously, using, this time (and for instance), the 4-qubit encoding scheme:{ |+〉 → ∣∣+̂〉 = |+ +++〉

|−〉 → ∣∣−̂〉 = |− −−−〉 ,
(24.17)

where |+̂〉, |−̂〉 have the meaning of the logical |+〉, |−〉 qubits. In the basis representation
{|+〉, |−〉}, there is strictly no difference between this quantum repetition code and that
applying to the bit-flip channel in the basis representation {|0〉, |1〉}. But we may use the
code in Eq. (24.17) in the latter basis by means of Hadamard gates. As we have seen in
Chapter 15, the Hadamard gate H performs the following transformations:

H |0〉 = |+〉
H |1〉 = |−〉
H |+〉 = |0〉
H |−〉 = |1〉.

(24.18)

The encoding circuit for this repetition code is similar to the one concerning the bit-flip
channel (Fig. 24.1) with the inclusion of three Hadamard gates to effect this conversion,
as shown in Fig. 24.3. The originator qubit |q〉 = α|1〉 + β|0〉 is, thus, transformed into
|q〉 = α|+̂〉 + β|−̂〉.

502 Quantum error correction

10 βα +=q

x0

x

x

44

ˆˆˆ

−++=

−++=

βα

βαq
0

0

H

H

H

H

Figure 24.3 Quantum circuit for encoding a qubit |q〉 into a 4-qubit repetition codeword |q̂〉
before transmission to a phase-flip channel.

The error syndrome measurement can be performed with the same projector set
Pi=1,2,3,4 as defined in Eq. (24.4), but with the 1, 0 symbols inside the bra–kets 〈·| / |·〉
being switched into +,−, namely, P0 = |+ +++〉〈+ +++| + |− −−−〉〈− −−−|,
and so on. Another possibility is to pass each of the received codeword qubits through
a Hadamard gate, corresponding to the operation H⊗4ε(|q̂〉〈q̂|), which allows one to
perform the error syndrome measurement through the same projector set Pi=1,2,3,4 as in
the bit-flip channel. Clearly, the fidelity characteristics and limitations of the quantum
repetition code for the phase-flip channel are strictly the same as in the case of the bit-flip
channel.

I shall conclude this section by showing an important property, according to which the
projector set Pi=1,2,3,4 is not the only tool to perform error syndrome measurements in bit-
or phase-flip channels. This will be very useful in the next section, concerning the Shor
code. Consider indeed that we have the possibility of performing partial measurements
with the aim of comparing qubit pairs. For instance, we may compare the first and the
second qubit, or the second and the third, or the first and the third, and so on. Should
any comparison reveal a difference, then an error is detected. One must then perform as
many such comparisons as necessary to obtain an unambiguous error syndrome, leading
to certain error correction. Let us see how this approach can be implemented. With
a 3-qubit bit-flip code, comparing qubit pairs consists of projecting the received state
σ̂ = ε(|q̂〉〈q̂|) by using the following “observable” operators:

Z12 = (|00〉〈00| + |11〉〈11|) ⊗ I − (|01〉〈01| + |10〉〈10|) ⊗ I
Z23 = I ⊗ (|00〉〈00| + |11〉〈11|) − I ⊗ (|01〉〈01| + |10〉〈10|)
Z13 = |0〉〈0| ⊗ I ⊗ |0〉〈0| + |1〉〈1| ⊗ I ⊗ |1〉〈1|

− (|0〉〈0| ⊗ I ⊗ |1〉〈1| + |1〉〈1| ⊗ I ⊗ |0〉〈0|) .

(24.19)

It is clear that the expectation value 〈Zi j 〉 = 〈q̂|Zi j |q̂〉 for any of the above three operators
Zi j is equal to +1, should the qubits i and j match (no error), while it is equal to −1,
should they not match (error). Let us leave here the consideration of being capable of
physically measuring observables, such as ±1. The matter is simply that the partial
measurement yields two possible logical answers: error or no error on the pair of qubits
considered, corresponding to classical YES or NO information. Such information is the
key to the elaboration of an error diagnostic, leading to corrective action. Since a single
measurement (or YES or NO information) is not sufficient to tell which of the two qubits

24.2 Shor code 503

is actually errored (or flipped), we may perform as many successive measurements as
required to reach an unambiguous error diagnostic. The nice feature of the approach is
that these projective measurements do not alter the codeword, i.e., they leave it in the
same post-measurement state! In the 3-qubit coding example, let us see that it merely
suffices to perform two such measurements in a row. Indeed, assume we obtain the two
measurements 〈Z12〉 and 〈Z13〉. If 〈Z12〉 = 〈Z13〉 = 1, there is no error and, therefore, no
action is required. If 〈Z12〉 = 1 and 〈Z13〉 = −1, we have detected an error on the third
qubit and, therefore, the corrective action is to flip it. We may reach the same conclusion
for the measurement pair 〈Z12〉, 〈Z23〉 or 〈Z13〉, 〈Z23〉. Thus, any arbitrary choice of only
two successive measurements of this type altogether yields 22 = 4 possible syndrome
diagnostics, covering all patterns from zero error to one single error concerning any of
the three qubits. The result is the same as using the measurement set Pi=1,2,3,4, except
that only two projection operators instead of four have been used. In any case, it is
important to recall that the output codeword |q ′〉 and the post-measurement states Pi |q ′〉
or Zi j |q ′〉 are identical.

It is now only a straightforward technical matter to describe how the Zi j projectors
defined in Eq. (24.19) can be realized. We recall from Chapter 16 the Z -gate, also
referred to as the σ3 or σz Pauli matrix, whose action is to introduce a π phase flip
between the qubit amplitudes (see Table 16.2). It is left as an easy exercise to show that
the measurement projector Zi j , as defined in Eq. (24.19), in fact summarizes into the
simultaneous application of Z onto the qubits i and j in the codeword to be analyzed.
Namely,

Z12 = Z ⊗ Z ⊗ I ≡ Z⊗2 ⊗ I
Z23 = I ⊗ Z ⊗ Z ≡ I ⊗ Z⊗2

Z13 = Z ⊗ I ⊗ Z .

(24.20)

We may write the above definitions in the compact form: Z12 ≡ Z1 Z2 I3 ≡ Z1 Z2, Z23 ≡
I1 Z2 Z3 ≡ Z2 Z3, and Z13 ≡ Z1 I2 Z3 ≡ Z1 Z3, with the indices in the right-hand side
referring to the action of the operator onto the corresponding qubits, and with the
identity matrix applying to the remaining qubit being overlooked.

24.2 Shor code

In this section, I describe the Shor code, a QECC that concatenates the features of the
bit-flip and phase-flip repetition codes, as implemented with 9-qubit codewords. The
nice feature of the Shor code is that it can correct any single bit-flip or phase-flip error,
and as a matter of fact, any error, as will be established. The encoding principle proceeds
as follows. First, consider the 3-qubit phase-flip repetition code. The quantum circuit is
the same as shown in Fig. 24.3, with the last wire removed. As we have seen earlier, this
code performs the following transformation:{

|0〉 → |0̂〉 = |+ + +〉
|1〉 → |1̂〉 = |− − −〉 .

(24.21)

504 Quantum error correction

10 βα +=q

x0

x

1̂̂0̂̂ˆ βα +=q

0

0

0

x

x

0

0

x

x

0

0

x

x

H

H

H

Figure 24.4 Quantum circuit for encoding a qubit |q〉 into a 9-qubit repetition codeword | ˆ̂q〉
before transmission to a bit-phase-flip channel.

In a second stage, we consider the 3-qubit bit-flip repetition code. The quantum circuit
is the same as shown in Fig. 24.1, with the last wire removed. Clearly, such a circuit
encodes the qubits |+〉 = (|0〉 + |1〉)/√2 and |+〉 = (|0〉 − |1〉)/√2 according to

|+〉 → |+̂〉 = |000〉 + |111〉√
2

|−〉 → |−̂〉 = |000〉 − |111〉√
2

.

(24.22)

We notice from the above definition that the two qubits |+̂〉, |−̂〉 are entangled. They
represent the 3-qubit extension of the EPR or Bell states |β00〉 = (|00〉 + |11〉) /

√
2 and

|β10〉 = (|00〉 − |11〉) /
√

2, which were described in Chapter 18. Such a property will be
used later, when considering error correction. The end result of applying successively,
or concatenating the two encoding phases, as defined in Eqs. (24.19) and (24.20), is the
following:

|0〉 →

∣∣∣ ˆ̂0〉 = |000〉 + |111〉√
2

|000〉 + |111〉√
2

|000〉 + |111〉√
2

|1〉 →
∣∣∣ ˆ̂1〉 = |000〉 − |111〉√

2

|000〉 − |111〉√
2

|000〉 − |111〉√
2

.

(24.23)

The corresponding encoding circuit is shown in Fig. 24.4. The first stage of the circuit,
which includes two CNOT and three H gates, performs the phase-flip repetition coding
as defined in Eq. (24.19). The second stage, which includes six CNOT gates, performs
the bit-flip repetition coding as defined in Eq. (24.20). For clarity, the ancillary qubits
used for the second stage are shown with dashed lines.

24.2 Shor code 505

Table 24.2 Corrective actions in Shor code from phase-flip syn-
drome diagnostic based on measurements of (X 123456, X 456789)
and the principle of majority logic.

〈X123456〉AB 〈X456789〉BC Corrective action

1 1 None
1 −1 Flip phase in block C

−1 1 Flip phase in block A
−1 −1 Flip phase in block B

In the Shor code, syndrome diagnosis and error correction works in a way conceptually
similar to that in the bit-flip and phase-flip repetition codes described in the previous
section, except that here we want to identify and correct both types of error. The task

appears a bit tedious because the codewords are made of the 9-qubit states, | ˆ̂0〉 and | ˆ̂1〉,
defined in Eq. (24.23). I shall first consider the occurrences of phase-flip and bit-flip
separately, and eventually show that both types of event can be corrected.

Phase-flip error

For instance, calling the three 3-qubit blocks A, B, C , if a single phase-flip occurs on
any qubit within block A, the channel outputs:

| ˆ̂0〉 → | ˆ̂0′〉 = |000〉 − |111〉√

2

∣∣∣∣
A

|000〉 + |111〉√
2

∣∣∣∣
B

|000〉 + |111〉√
2

∣∣∣∣
C

| ˆ̂1〉 → | ˆ̂1′〉 = |000〉 + |111〉√
2

∣∣∣∣
A

|000〉 − |111〉√
2

∣∣∣∣
B

|000〉 − |111〉√
2

∣∣∣∣
C

.

(24.24)

The first step in the syndrome diagnosis consists of comparing the relative phase of
blocks A, B then of blocks B, C (or any other two pair selection), just like in the
1-qubit phase-flip channel case described earlier. Majority logic then dictates which
block may have been corrupted and where the phase correction applies. It is left as an
(easy) exercise to show that comparing the signs of A, B blocks can be performed by
measuring X123456 = X1 X2 X3 X4 X5 X6, and likewise for the B, C blocks with X456789 =
X4 X5 X6 X7 X8 X9, where Xi is the Pauli matrix X applied to the qubit i . The entire
syndrome diagnostic, leading to the proper corrective action on the concerned block
phase, thus, consists of performing the two measurements (X123456, X456789), while the
other possibility is (X123456, X123789), both being applicable in any measurement order.
Table 24.2 summarizes the corrective actions from the syndrome diagnostic based on
(X123456, X456789).

To restore the phase in the corrupted block, say, for instance, A, the corrective action
is to apply the operator Z1 Z2 Z3. Indeed, because of the properties Z |0〉 = |0〉 and
Z |1〉 = −|1〉, the phase of the 3-qubit block A is flipped according to

Z1 Z2 Z3 (|000〉 − |111〉) = |000〉 − (−1)3|111〉
≡ |000〉 + |111〉. (24.25)

506 Quantum error correction

Bit-flip error

The syndrome diagnosis for bit-flip errors is basically the same as described in the earlier
section. As in the phase-flip case, the diagnosis may proceed by blocks, considering
successively the blocks A, B, C . As we have seen, the procedure consists of comparing
qubit pairs i, j and j, k by means of Zi j = Zi Z j and Z jk = Z j Zk measurements.
Considering any block U = A, B, C , assume for instance a bit-flip error happening on

the second qubit of | ˆ̂0〉U , such that the channel outputs:

∣∣∣ ˆ̂0′
〉
U

= |010〉 + |101〉√
2

. (24.26)

We ought to notice that a single bit-flip error in (|000〉 + |111〉) /
√

2 corrupts not only one
but both qubit terms in the sum, because the state is entangled, as we have mentioned ear-
lier. Thus, there is no possibility to have an error pattern of the type (|010〉 + |111〉) /

√
2

where the second term would remain uncorrupted. This is a nice feature of the Shor
code, which is going to be exploited in the syndrome diagnostic. To show this, we first
apply Z12 on block U to obtain:

Z12

∣∣∣ ˆ̂0′
〉
U

= [(|00〉〈00| + |11〉〈11|) ⊗ I − (|01〉〈01| + |10〉〈10|) ⊗ I]
|010〉 + |101〉√

2

= (|00〉〈00| + |11〉〈11|) ⊗ I
|010〉 + |101〉√

2
− (|01〉〈01| + |10〉〈10|) ⊗ I

|010〉 + |101〉√
2

=

|00〉〈00| ⊗ I
|010〉 + |101〉√

2
+ |11〉〈11| ⊗ I

|010〉 + |101〉√
2

− |01〉〈01| ⊗ I
|010〉 + |101〉√

2
− |10〉〈10| ⊗ I

|010〉 + |101〉√
2

= 0 + 0 − |010〉√
2

− |101〉√
2

≡ −|010〉 + |101〉√
2

.

(24.27)

Hence, the measurement

〈Z12〉U =
〈
ˆ̂0′
∣∣∣ Z12

∣∣∣ ˆ̂0′
〉
U

= 〈010| + 〈101|√
2

(
−|010〉 + |101〉√

2

)
≡ −1.

(24.28)

We notice here that the post-measurement state is the same as the measured state

| ˆ̂0′〉, within an unobservable phase factor eiπ . Hence, the possibility of continuing the

24.2 Shor code 507

Table 24.3 Corrective actions in Shor code from bit-
flip syndrome diagnostic based on measurements of
(Z12, Z23) in entangled 3-qubit block U, and the prin-
ciple of majority logic.

〈Z12〉U 〈Z23〉U Corrective action

1 1 None
1 −1 Flip 3rd qubit

−1 1 Flip 1st qubit
−1 −1 Flip 2nd qubit

syndrome measurements! Next, we can apply Z23 on block U to obtain, in turn:

Z23

∣∣∣ ˆ̂0′
〉
U

= [I ⊗ (|00〉〈00| + |11〉〈11|) − I ⊗ (|01〉〈01| + |10〉〈10|)] |010〉 + |101〉√
2

=

I ⊗ |00〉〈00| |010〉 + |101〉√
2

+ I ⊗ |11〉〈11| |010〉 + |101〉√
2

− I ⊗ |01〉〈01| |010〉 + |101〉√
2

− I ⊗ |10〉〈10| |010〉 + |101〉√
2

= 0 + 0 − |101〉√
2

− |010〉√
2

≡ −|101〉 + |010〉√
2

≡ Z12

∣∣∣ ˆ̂0′
〉
U

.

(24.29)
Hence, the measurement

〈Z23〉U = 〈Z12〉U ≡ −1. (24.30)

The above two measurements, each yielding −1, are sufficient to diagnose that the
second qubit in block U is corrupted. If we are not convinced, we may perform a third
measurement with Z13, which, according to expectation, will yield +1 (this being left
as an exercise). Such a result indicates that the first and third qubits are the same, which
confirms the previous diagnostic. Table 24.3 summarizes the different diagnostic and
corrective action possibilities in the general case. Clearly, the complete diagnostic and
error-correction procedure requires one to perform the two comparative measurements
Z12, Z23 on each of the three blocks A, B, C , representing altogether six measurements
and 43 = 64 possible bit-flip error diagnostics. It is also clear that a bit flip error occurring

on any block U of | ˆ̂0〉 replicates on the same block U of | ˆ̂1〉 (observing from Eq. (24.23)
that these two blocks only differ by their relative phase factor).

The above description concerned the detection and correction of either phase-flip or

bit-flip errors occurring in the encoded 9-qubits | ˆ̂0〉 and | ˆ̂1〉. It is clear that since the
syndrome measurements leave the qubit invariant, both error types can be corrected in

508 Quantum error correction

any order. What about error correction on encoded 9-qubits of the form∣∣∣ ˆ̂q
〉
= α

∣∣∣ ˆ̂0〉 + β

∣∣∣ ˆ̂1〉 , (24.31)

corresponding to an originator message |q〉 = α|0〉 + β|1〉? To answer this question, we
may first define the channel output qubit as∣∣∣ ˆ̂q ′

〉
= α

∣∣∣ ˆ̂0′
〉
+ β

∣∣∣ ˆ̂1′
〉
. (24.32)

As we have seen earlier, the phase-flip syndrome diagnosis consists of making two
successive measurements of the type (ijklmn = 123456, 123789, 456789):〈

Xi jklmn

〉 = 〈
ˆ̂q ′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂q ′
〉

=
(
ᾱ
〈
ˆ̂0′
∣∣∣ + β̄

〈
ˆ̂1′
∣∣∣) Xi jklmn

(
α

∣∣∣ ˆ̂0′
〉
+ β

∣∣∣ ˆ̂1′
〉)

=

 |α|2

〈
ˆ̂0′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂0′
〉
+ ᾱβ

〈
ˆ̂0′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂1′
〉

+αβ̄
〈
ˆ̂1′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂0′
〉
+ |β|2

〈
ˆ̂1′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂1′
〉

≡ |α|2
〈
ˆ̂0′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂0′
〉
+ |β|2

〈
ˆ̂1′
∣∣∣ Xi jklmn

∣∣∣ ˆ̂1′
〉

≡ ±1. (24.33)

In the above result, we first used the property that the measurement Xi jklmn leaves
the state invariant, therefore, the nondiagonal elements in the right-hand side in Eq.

(24.33) are zero. Since the same phase-flip error must be found in the two qubits | ˆ̂0′〉
and | ˆ̂1′〉, the two nonzero matrix elements must be equal, and considering the property
|α|2 + |β|2 = 1, we finally have 〈Xi jklmn〉 = ±1, corresponding to no (+1) or one (−1)
phase-flip error between the blocks A, B. Thus, syndrome diagnostic and error correction

can be implemented on the encoded qubit | ˆ̂q ′〉 = α| ˆ̂0′〉 + β| ˆ̂1′〉 in exactly the same way

as described earlier for the qubits | ˆ̂0′〉 and | ˆ̂1′〉. Clearly, the same conclusion applies to
the case of bit-flip errors with two successive measurements Zi j (i j = 12, 23, 13) on
the individual blocks U = A, B, C , yielding measurement outcomes 〈Zi j 〉U = ±1. The
key conclusion is that the Shor code can be implemented to correct both phase-flip and
bit-flip errors on any qubit of the general form |q〉 = α|0〉 + β|1〉.

The powerful error-correction capability of the Shor code does not end here. Indeed,
we may conceive of this code as being able to correct a true continuum of error events,
while simply using the discrete set of the above-described syndrome operators!

To show, this recall from Chapter 23 that a noisy quantum channel can be described
by a trace-preserving quantum operation ε of the form

ε(ρM) =
∑

k

U+
k ρMUk, (24.34)

which is referred to as its operator-sum representation. In this definition,
ρM = |ψM 〉〈ψM | is the originator message density matrix, which most generally is an nth

24.3 Calderbank–Shor–Steine (CSS) codes 509

tensor product of symbol states ρi = |qi 〉〈qi | selected from a qubit symbol alphabet
{|qi 〉}. The operators Uk , called channel-operator elements, are responsible for vari-
ous sources of noise impairment. For single qubits (ρi), the operator elements take
the form: U1 = √

p1 X for the bit-flip channel, U2 = √
p2 Z for the phase-flip channel,

U3 = √
p3Y for the bit-phase-flip channel, and U0 = √

p0 I = √
1 − p1 − p2 − p3 I for

the noiseless channel, with {pn} representing the corresponding probability distribution.
We may define Uki as the operator of noise-type k acting on the qubit i in the Shor
codeword | ˆ̂q〉. Thus, we have:

| ˆ̂q ′〉i = ∑
k

Uki | ˆ̂q〉i

= (p0i Ii + p1i Xi + p2i Zi + p3i Yi) | ˆ̂q〉i ,
(24.35)

with {pni } being the corresponding probability distribution. We observe that through the
weighted action of the operator I, X, Y, Z , the above-defined quantum channel defines
a continuous qubit transformation onto the Bloch sphere. As we have seen, the Shor
code makes it possible to perform syndrome diagnosis and corrections onto any discrete,
single-error type, as caused by the operator elements Uki . Therefore, any qubit passed
through this channel, and corrupted by an “error continuum,” can be effectively restored
in its full original integrity. This remarkable property has no counterpart in the classical
world of error-correction codes.

24.3 Calderbank–Shor–Steine (CSS) codes

In this section, I describe a new class of quantum error-correction codes referred to as
the Calderbank–Shor–Steine (CSS) codes, which have the capability of correcting up
to t bit-flip and phase-flip qubit errors. The construction of CSS codes is based on the
use of two classical linear block codes, as described in Chapter 11. To recall, a linear
block code C is defined as a set (n, k) of |C | = 2k codewords x of bit length n. It is
characterized by:1

(i) A generator matrix G, of dimension n × k, which, for any n-vector z to be encoded,
yields the corresponding codeword x = Gz;

(ii) A parity-check matrix H , of dimension n × (n − k), which satisfies H x = 0 for all
codewords x ∈ C .

Let (n, k1) and (n, k2), with k1 > k2 define two linear block codes C1, C2 of sizes
|C2| < |C1|. To construct a CSS code, we require the following two conditions:

(a) C2 ⊂ C1: all codewords of C2 belong to C1;
(b) C1 and C⊥

2 have a bit-error correction capability of t .

1 In Chapter 11, we used the left vector-matrix multiplication yTU , where yT is a line vector, instead of the
right vector-matrix multiplication U y, where y is a column vector, which is only a matter of convention.
Also we previously called x the vectors to be encoded and y the resulting codewords, while in this chapter
we shall use x and y to designate codewords from two different linear block codes.

510 Quantum error correction

In condition (b), C⊥
2 is called the dual of C2. Given a block code with G, H as generator

and parity-check matrices, respectively, the dual of C, noted C⊥, is a unique block code
having H T, GT for generator and parity-check matrices, respectively (the matrix U T is
the transposed matrix of U).

Given two linear block codes C1, C2 satisfying the above conditions, we can construct
a CSS code as follows. Let x, y be two n-bit codewords, such that x ∈ C1 and y ∈ C2. It
is possible to define a quantum state |x + y〉, where + indicates here bit-wise addition
modulo 2 (or in Boolean logic, the exclusive OR, noted ⊕). For instance, if x = 00101
and y = 10111, we have |x + y〉 = |10010〉. With such a definition at hand, given x ∈ C1

we are able to construct all possible quantum states |x + y〉 with y ∈ C2 as well as the
normalized sum:

|x + C2〉 ≡ 1√|C2|
∑
y∈C2

|x + y〉. (24.36)

Given the number 2k1 = |C1| of codewords x in C1, how many orthogonal quantum states
|x + C2〉 can be, thus, generated? The answer to this question is |C1|/|C2| = 2k1−k2 ,
which stems from group theory (GT) and the fine notion of cosets.2 Here, I shall not
venture into GT, but leave it as an interesting exercise to establish that the C = (7, 4)
Hamming code, (described in Chapter 11) forms a group (C,⊕) under the bit-wise
addition ⊕ and to make the inventory of its various cosets.

A key property is that any element x ∈ C1 must belong to one and only one coset of
C2. The same coset x + C2 = x ′ + C2 corresponds to two different elements x, x ′ ∈ C1

satisfying the property x − x ′ ∈ C2 and, hence |x + C2〉 = |x ′ + C2〉.3 It is clear that
if two different elements x, x ′ ∈ C1 do not belong to the same coset (x + C2 �= x ′ +
2 I provide here a simplified description of cosets, which also explains the notation x + C2. First, it is impor-

tant to be familiar with, or to quickly revisit the basics of groups and subgroups, for instance through the
links: http://en.wikipedia.org/wiki/Group_%28mathematics%29, http://en.wikipedia.org/wiki/Subgroup.
Then assume two commutative groups C1 and C2 with additive operation +, such that C2 ⊂ C1 is a
subgroup of C1. The cosets of C2 in C1, noted xi + C2, are defined for all elements xi ∈ C1 as follows

xi + C2 ≡ {
xi + y j

}
y j ∈C2

.

Taking an illustrative example, assume C1 = (0, 1, 2, 3), with + representing the addition modulo 4, and
which has the only “nontrivial” subgroup C2 = (0, 2). The cosets of C2 in C1 are

0 + C2 ≡ (0, 2) = C2

1 + C2 ≡ (1, 3)

2 + C2 ≡ (2, 0) = (0, 2) = C2

3 + C2 ≡ (3, 1) = (1, 3) = 1 + C2.

It is seen that there are two distinct cosets of C2 in C1, including C2 itself, which are (0, 2) and (1, 3).
In the general case with groups and subgroups of finite sizes |C1|, |C2|, Lagrange’s theorem states
that the number of cosets is given by the ratio |C1|/|C2|. See also http://en.wikipedia.org/wiki/Coset,
http://en.wikipedia.org/wiki/Lagrange%27s_theorem_%28group_theory%29, and Exercise (24.4), which
studies the (7, 4) Hamming code as a group under the bit-wise addition operation.

3 Indeed, taking into account that 0 ∈ C2 (C2 is a subgroup with the identity element under ⊕) and assuming
x − x ′ ∈ C2, we have

x + C2 = {x + 0, x + (x − x ′), . . .} = {x, x ′, . . .}
x ′ + C2 = {x ′ + 0, x ′ + (x − x ′), . . .} = {x ′, x, . . .},

24.3 Calderbank–Shor–Steine (CSS) codes 511

C2) there is no y, y′ ∈ C2 such that x + y = x ′ + y′ and, therefore, |x + C2〉 must be
orthogonal to |x ′ + C2〉. Based on GT, the number of distinct cosets is |C1|/|C2|, hence
the quantum space spanned by the states |x + C2〉, as generated from the codewords
x ∈ C1, has a dimension |C1|/|C2| = 2k1−k2 . This quantum space corresponds to a new
class of quantum code, noted CSS(C1, C2), which is to be pronounced, “CSS code of
C1 over C2.”

Next, I shall describe how the CSS(C1, C2) code can correct up to t bit-flip (X) and
phase-flip (Z) errors. Just as in the classical ECC case, the signature of errors, whether
of the X - or Z -type, is an n-vector with 1 s indicating the position where any error
occurred. Define eX and eY as the corresponding vectors. If x is an n-bit codeword
and |x〉 the corresponding quantum state, the applications of the combined error pattern
eX , eY shall transform the state |x〉 into the errored state |x∗〉 according to:

|x∗〉 = (−1)x ·eY |x + eX 〉, (24.37)

where x · eY is the dot product of x and eY . For instance, |x〉 = |10011〉, eX =
(0, 1, 0, 1, 0) (X errors on the second and fourth qubits) and eY = (1, 0, 0, 1, 1) (Z
errors on the first and last two qubits) yield x · eY = 1.1 + 0.0 + 0.0 + 1.1 + 1.1 ≡ 3
and |x + eX 〉 = |1 + 0〉|0 + 1〉|0 + 0〉|1 + 1〉|1 + 0〉 ≡ |11001〉, and the errored state
|x∗〉 = (−1)3|11001〉 ≡ −|11001〉. When the error pattern eX , eY is applied to the CSS
codeword |x + C2〉 defined in Eq. (24.36), the resulting errored state is

|(x + C2)∗〉 ≡ 1√|C2|
∑
y∈C2

(−1)(x+y)·eY |x + y + eX 〉. (24.38)

The next step consists of the introduction of the parity-check matrix H̃ to detect the t
errors of the X type (not to be confused here with the Hadamard gate H). This is achieved
by appending an n-qubit ancilla |0〉 to the recipient’s codeword |x∗〉 = |x + eX 〉, and
passing the result through a quantum circuit that achieves the transformation |x∗〉|0〉 →
|x∗〉|H̃ x∗〉. Recall from Chapter 11 that if x is a codeword, then H̃ x = 0, and hence
|H̃ x∗〉 = |H̃ (x + eX)〉 ≡ |H̃eX 〉. Measuring each of the qubits in the ancilla |H̃eX 〉
yields the syndrome vector H̃eX and, hence, the full error diagnosis eX , which is
common to each of the series terms in Eq. (24.38). The ancilla can then be discarded
and each of the errored qubits can be corrected (or back flipped) by applying X gates in
the corresponding circuit wires, to obtain the X -corrected state

∣∣(x + C2)∗
〉
X
≡ 1√|C2|

∑
y∈C2

(−1)(x+y)·eY |x + y〉. (24.39)

A quantum circuit performing the operation |z〉|0〉 → |z〉|U z〉 for any n × n matrix
U (here with U ≡ H̃ and |z〉 ≡ |(x + C2)∗〉) can be realized by exclusively using
CCNOT (controlled-CNOT) gates, as illustrated in Fig. 24.5. The design concept of
such a circuit can be grasped by analyzing the basic functionality |z〉 → |U z〉 with U

where we used the (equivalent) bit-wise addition properties x + x = 0 and x ′ = −x ′. The same result is
obtained with the assumption x + x ′ ∈ C2. It shows that the cosets x + C2 and x ′ + C2 have two elements
in common, which necessarily implies that x + C2 = x ′ + C2 and, hence, |x + C2〉 = |x ′ + C2〉.

512 Quantum error correction

11u

12u

nu1

21u

1

1z

2z

x
nn zu

zuzu

1

212111

...
x

x

x

z

Uz

nz

…
1z

2z

nz

nu2

nnu

… …
x

x

x

22u

…
…

x
nn zu

zuzu

2

222121

...

nnn

nn

zu

zuzu

...
2211x

…

Figure 24.5 Quantum circuit to achieve the transformation |z〉 |0〉 → |z〉 |U z〉, given an n-qubit
|z〉 and an n × n matrix U with binary coefficients.

being a 2 × 2 matrix with binary coefficients, which is left as an interesting exercise.
The figure actually shows that the binary coefficients ui j = 0, 1 of U can be directly
used as corresponding ancilla qubits |ui j 〉 = |0〉, |1〉, with the input state of the circuit
being |z〉 |1〉|u11 . . . u1n〉|u21 . . . u2n〉 . . . |un1 . . . unn〉. After discarding the useless (or
“garbage”) computation qubits, the circuit output is indeed |z〉 |U z〉. To summarize, we
have shown that the CSS(C1, C2) code can correct all t errors of the X type, as allowed by
the C1 linear block code, and the syndromes |H̃eX 〉 and H̃eX , can be generated through
a basic quantum circuit of CCNOT gates (Fig. 24.5), followed by the corresponding
qubit measurements and bit-flip corrections.

The correction of phase-flip, or Z -type errors, is achieved by first passing each qubit
of the X -corrected state |(x + C2)∗〉X through a Hadamard gate, i.e., to obtain the state
H⊗n|(x + C2)∗〉X . In Chapter 19, when describing the Deutsch–Joszsa algorithm, we
have established (as supported through Exercise 19.1) that the action of H⊗n on any
n-qubit |x〉 yields the transformation

H⊗n|x〉 = 1√
2n

∑
z

(−1)z·x |z〉 , (24.40)

where z is any possible n-bit combination. Applying this property to the state
|(x + C2)∗〉X in Eq. (24.39), namely, for each of the terms |x + y〉 in the sum, we

24.3 Calderbank–Shor–Steine (CSS) codes 513

obtain:

H⊗n|(x + C2)∗〉X ≡ 1√|C2| 2n

∑
z

∑
y∈C2

(−1)(x+y)·(z+eY) |z〉. (24.41)

By introducing z′ = z + eY , we may rewrite the above in the form

H⊗n|(x + C2)∗〉X ≡ 1√|C2| 2n

∑
z′

∑
y∈C2

(−1)(x+y)·z′ |z′ + eY 〉. (24.42)

To reduce the right-hand side in Eq. (24.42) to a single summation, we first isolate the
term involving the dot-product y · z′ as follows

H⊗n|(x + C2)∗〉X ≡ 1√|C2| 2n

∑
z′

∑

y∈C2

(−1)y·z′

 (−1)x ·z′ |z′ + eY 〉. (24.43)

It can be shown through a (not so trivial but tractable) exercise that the sum in brackets
[·] is equal to |C2| for all z′ ∈ C⊥

2 (C⊥
2 being the dual of the C2 code), and zero otherwise

(z′ /∈ C⊥
2). Hence, the simplification of the definition in Eq. (24.43):

H⊗n|(x + C2)∗〉X ≡
√

|C2|
2n

∑
z′∈C⊥

2

(−1)x ·z′ |z′ + eY 〉. (24.44)

Except for the normalization factor and the phase terms, the above expression is similar
to that in Eq. (24.38) concerning the bit-flip errored state, but here with eY as the error
pattern and C⊥

2 as the code (as opposed to eX and C2, respectively). A similar error-
correction procedure can, thus, be implemented. First, we append an n-qubit ancilla |0〉
to this state, transforming each term in the sum in Eq. (24.44) into |z′ + eY 〉|0〉, then
pass the result through a quantum circuit to achieve the transformation

|z′ + eY 〉|0〉 → |z′ + eY 〉|H̃⊥(z′ + eY)〉 = |z′ + eY 〉|H̃⊥z′ + H̃⊥eY)〉
≡ |z′ + eY 〉|H̃⊥eY)〉, (24.45)

where H̃⊥ is the parity-check matrix of the code C⊥
2 , for which H̃⊥z′ = 0. Measuring

each qubit in the ancilla |H̃⊥eY 〉 yields the syndrome vector H̃⊥eY and, hence, the full
error diagnosis eY , which is common to each of the series terms in Eq. (24.44). The
ancilla can then be discarded and each of the errored qubits can be corrected (or back
flipped) by applying Y gates in the corresponding circuit wires, to obtain the Y -corrected
state

H⊗n|(x + C2)∗〉XY ≡
√

|C2|
2n

∑
z′∈C⊥

2

(−1)x ·z′ |z′〉. (24.46)

The final step consists of passing each qubit in the above state through a Hadamard gate,
i.e., to obtain the state H⊗n H⊗n|(x + C2)∗〉XY . Here, there is no point in going through
the detailed calculation of such an operation, because as a useful property, H and H⊗n

are self-inverse operators (H H = I, H⊗n H⊗n = I⊗n). If we let eY = 0 in Eq. (24.44),

514 Quantum error correction

we obtain

H⊗n|(x + C2)∗〉X ≡
√ |C2|

2n

∑
z′∈C⊥

2

(−1)x ·z′ |z′〉

≡ H⊗n|x + C2〉,
(24.47)

which is precisely the same state as H⊗n|(x + C2)∗〉XY , and also the H⊗n transform of
the error-free state |x + C2〉! Thus, a second application of H⊗n on the states defined in
either Eq. (24.46) or Eq. (24.47) yields

H⊗n H⊗n|(x + C2)∗〉XY = H⊗n H⊗n|(x + C2)∗〉X

= |x + C2〉
≡ 1√|C2|

∑
y∈C2

|x + y〉,
(24.48)

which yields our initial CSS-encoded state |x + C2〉. Thus, the second round of correc-
tion concerning Z -errors has successfully restored the CSS codeword in its full integrity.

The next section concerning the Steane code provides an applied illustration of the
CSS(C1, C2) codes.

24.4 Hadamard–Steane code

The Hadamard–Steane code, also sometimes called the Steane code, belongs to the
CSS(C1, C2) family. It has the same bit-flip and phase-flip error correction capability
as the earlier-described Shor code, namely, up to one error in either or both cases, but
it uses 7-qubit codewords as opposed to nine qubits in the second case. It is based on
the Hamming code C1 = C = (7, 4), which was described in Chapter 11, and its dual
C2 = C⊥. To recall, a possible parity-check matrix H̃ for the (7, 4) Hamming code,
which we used in that chapter,4 is defined as:

H̃ =

 1 1 0 1 1 0 0

1 0 1 1 0 1 0
0 1 1 1 0 0 1

 . (24.49)

4 Some other possible parity-check matrices H̃ for the (7, 4) Hamming code commonly used in the literature
or the Internet are

H̃ =

 1 0 0 1 0 1 1

0 1 0 1 1 0 1
0 0 1 0 1 1 1

 ,

H̃ =

 1 1 0 1 0 0 1

0 1 0 1 1 1 0
1 1 1 0 0 0 0

 ,

H̃ =

 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

24.4 Hadamard–Steane code 515

Table 24.4 Block codewords Y of the
Hamming code C1 = (7, 4), as pro-
duced from the generator matrix G̃ = H̃ T,
according to Y = X G̃. The parity bits are
shown in bold.

Message word X Block code Y

0000 0000 000
0001 0001 111
0010 0010 011
0011 0011 100
0100 0100 101
0101 0101 010
0110 0110 110
0111 0111 001
1000 1000 110
1001 1001 001
1010 1010 101
1011 1011 010
1100 1100 011
1101 1101 100
1110 1110 000
1111 1111 111

In the convention of left matrix-vector multiplication, the corresponding generator matrix
G̃ is:5

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 . (24.50)

Note that the above definitions correspond to a code expressed in a systematic form, as
shown by the fact that the right 3 × 3 sub-matrix of H̃ and the left 4 × 4 sub-matrix of
G̃ are identity matrices. The |C1| = 2k = 24 = 16 block codewords Y = XG̃ of C1 =
(7, 4), which were already listed in Chapter 11, are reproduced here for convenience in
Table 24.4.

Consider next the dual code C2 = C⊥. By definition, its parity-check matrix is Ĥ =
G̃T, with corresponding generator matrix Ĝ = H̃ T. From the definitions in Eqs. (24.49)

5 In Chapter 11 we used the convention of left vector-matrix multiplication. Thus, the codewords are generated
according to the product Y = XG̃, see Eq. (11.2) in Chapter 11. Under this convention, for an (n, k) code
with m = n − k, the systematic form of the generator and parity-check matrices are G̃ = [Ik |Pk×m] and
H̃ = [(PT)m×k |Im], respectively. Thus, for the (7, 4) Hamming code (m = 3), G̃ is a 4 × 7 matrix and H̃
is a 3 × 7 matrix.

516 Quantum error correction

Table 24.5 Block codewords Y of the dual
code C2 = C⊥

1 = (7, 3) of the Hamming
code C1 = (7, 4), as produced from the gen-
erator matrix Ĝ = H̃ T, where H̃ is the parity-
check matrix of C1, according to Y = ĜX .
The parity bits are shown in bold.

Message word X Block code Y

000 0000 000
001 0111 001
010 1011 010
011 1100 011
100 1101 100
101 1010 101
110 0110 110
111 0001 111

and (24.50), we obtain:

Ĥ = G̃T =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1

, (24.51)

Ĝ = H̃ T =

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

. (24.52)

As defined in Eq. (24.52), the 7 × 3 generator matrix Ĝ of the dual code C2 generates
seven-bit codewords from three-bit message words, this time using the right vector-
matrix multiplication, i.e., Y = Ĝ X . Since Ĝ has the systematic form Ĝ = [P4×3|I3],
and since Ĝ Ĥ T = H̃ TG̃ = 0 = G̃ H̃ T = Ĥ TĜ, the dual code is a valid (n, k) = (7, 3)
code (note that it is not a Hamming code since n �= 2n−k − 1). The |C2| = 2k = 23 = 8
block codewords Y = Ĝ X are listed in Table 24.5.

Analyzing Table 24.5, we first note that, as expected, the code C2 is in systematic form,
with the four parity bits appearing at the left of the codewords Y and the three message
bits (X) appearing at the right. Next, it is easily checked that the bit-wise sum ⊕ of any
two codewords in C2 belongs to C2; since C2 contains the identity element 0000000,
(C2,⊕) is a group. Then, we observe that the minimum Hamming distance (the minimum
difference in bit positions between any two codewords) is dmin = 3. This indicates that

24.4 Hadamard–Steane code 517

x Code word 0000 000 0111 001 1011 010 1100 011 1101 100 1010 101 0110 110 0001 111 Coset Equals

0 0000 000 0000 000 0111 001 1011 010 1100 011 1101 100 1010 101 0110 110 0001 111 0 + C2
1 0001 111 0001 111 0110 110 1010 101 1101 100 1100 011 1011 010 0111 001 0000 000 1 + C2 2 + C2

1 + C2 2 + C2
2 0010 011 0010 011 0101 010 1001 001 1110 000 1111 111 1000 110 0100 101 0011 100 2 + C2
3 0011 100 0011 100 0100 101 1000 110 1111 111 1110 000 1001 001 0101 010 0010 011

4 0100 101 0100 101 0011 100 1111 111 1000 110 1001 001 1110 000 0010 011 0101 010
5 0101 010 0101 010 0010 011 1110 000 1001 001 1000 110 1111 111 0011 100 0100 101

6 0110 110 0110 110 0001 111 1101 100 1010 101 1011 010 1100 011 0000 000 0111 001 6 + C2 0 + C2
7 0111 001 0111 001 0000 000 1100 011 1011 010 1010 101 1101 100 0001 111 0110 110 7 + C2 0 + C2

8 1000 110 1000 110 1111 111 0011 100 0100 101 0101 010 0010 011 1110 000 1001 001
9 1001 001 1001 001 1110 000 0010 011 0101 010 0100 101 0011 100 1111 111 1000 110

10 1010 101 1010 101 1101 100 0001 111 0110 110 0111 001 0000 000 1100 011 1011 010 10 + C2 0 + C2
11 1011 010 1011 010 1100 011 0000 000 0111 001 0110 110 0001 111 1101 100 1010 101 11 + C2 0 + C2

12 1100 011 1100 011 1011 010 0111 001 0000 000 0001 111 0110 110 1010 101 1101 100 12 + C2 0 + C2
13 1101 100 1101 100 1010 101 0110 110 0001 111 0000 000 0111 001 1011 010 1100 011 13 + C2 0 + C2

14 1110 000 1110 000 1001 001 0101 010 0010 011 0011 100 0100 101 1000 110 1111 1111
15 1111 111 1111 111 1000 110 0100 101 0011 100 0010 011 0101 010 1001 001 1110 000

Dual code C2 = (7,3)

C
od

e
C

1
=

 (7
,4

)

14 + C2 2 + C2
15 + C2 2 + C2

9 + C2 2 + C2
8 + C2 2 + C2

5 + C2 2 + C2
4 + C2 2 + C2

3 + C2 2 + C2

Figure 24.6 Cosets of C2 = (7, 3) in C1 = (7, 4). The codewords of C2 are listed in the top row,
while the codewords of C1 (called x = 0, 1, 2, . . . , 15) are listed in the left column. The
elements of C1 that are in C2 are highlighted with a dark background. The two rightmost
columns show the coset names and identify their equivalences, the only two different cosets
being captured in 0 + C2 and 2 + C2.

the code C2 has the same correction capability as C1, namely t = (dmin − 1)/2 = 1 bit
(see Section 11.2). Then comparing the codes listed in Table 24.4 (C1 = (7, 4)) and Table
24.5 (C2 = C⊥

1 = (7, 3)), we observe that the second is included in the first, namely the
property C2 ⊂ C1, i.e., C2 is a subgroup of C1. According to the previous section,
such a condition (along with the condition that C2 must have the same error-correction
capability t as C1) makes the dual code C2 fully eligible to construct a CSS(C1, C2)
quantum code of dimension 2k1−k2 = 24−3 = 2.

The construction of CSS(C1, C2) is made by applying the definition in Eq. (24.36),
which, given x ∈ C1, requires one to determine all the |C2| = 8 binary codewords x + y
forming the cosets x + C2, and to sum up the |x + y〉 quantum states thus defined.
Figure 24.6 provides the full list of cosets of C2 in C1. The top row lists the codewords
of C2, while the left column lists the codewords of C1 (called x = 0, 1, 2, . . . , 15) and
whose elements that are in C2 have been highlighted with a dark background. From
the table information, it is readily observed that all the common elements x ∈ C1, C2

belong to the same coset 0 + C2, while all elements x ′ ∈ C1, x ′ /∈ C2 belong to the same
coset 2 + C2 (which could as well be called 15 + C2, for instance). Therefore, taking
any codeword pair x, x ′ with such properties is sufficient to generate and define the

two codewords of CSS(C1, C2), which we shall call |�0〉, |�1〉. For instance, we can use
x = 0000000 (x ∈ C1, C2) and x ′ = 1111111(x ′ ∈ C1, x ′ /∈ C2). We, thus, obtain:

|�0〉 ≡ |0000000 + C2〉

= 1√
8

(
|0000000〉 + |0111001〉 + |1011010〉 + |1100011〉
|1101100〉 + |1010101〉 + |0110110〉 + |0001111〉

)
,

(24.53)

518 Quantum error correction

Table 24.6 Defining a rule for the codeword bits of C2 (Table 24.5); see text for description.

1 2 3 4 5 6 7

x1 + x2 x1 + x3 x2 + x3 x1 + x2 + x3 x1 x2 x3

0 0 0 0 0 0 0
0 1 1 1 0 0 1
1 0 1 1 0 1 0
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 0 1 0 1 0 1
0 1 1 0 1 1 0
0 0 0 1 1 1 1

|�1〉 ≡ |1111111 + C2〉

= 1√
8

(
|1111111〉 + |1000110〉 + |0100101〉 + |0011100〉
|0010011〉 + |0101010〉 + |1001001〉 + |1110000〉

)
.

(24.54)

To recall, to construct the Steane code {|�0〉, |�1〉}we have used a generator matrix Ĝ = H̃ T

in systematic form, as shown in Eq. (24.52). As previously mentioned, there exist several
other possibilities for defining the parity-check matrix H̃ T of the (7, 4) Hamming code.

It is left as an easy exercise to determine the Steane code {|�0〉, |�1〉} obtained with a matrix
Ĝ ′ = H̃ ′T different from that used in this chapter. It does not matter that the resulting

codewords |�0〉, |�1〉 differ from those defined in Eqs. (24.53) or (24.54), because in any
(n, k) block code the choice of generator and parity-check matrices is only a matter of
convention.

How can we realize a quantum circuit capable of encoding the above-defined |�0〉, |�1〉
Steane codewords, which represent finely crafted superpositions of eight 7-qubits? Short
of a rule to predict the values of the individual qubits within each of these 7-qubit
superpositions, the task of designing such a circuit seems rather complex! But here
comes a bit of magic in the way we can define a rule for the two codewords. As a

starting point, we have seen that each 7-qubit |Y 〉 in the definition |�0〉 refers to the block
codeword Y , which is an element of the coset 0 + C2. To find the rule governing the
bit values of Y , we first list the codewords in seven columns, as shown in Table 24.6.
Because the code is in systematic form, the first four columns 1234 represent parity bits,
while the last three columns 567 represent the message bits. If we call x1, x2, x3 these
three bits, we observe from the table that the parity bits in columns 1234 are defined by
the sums x1 + x2, x1 + x3, x2 + x3, and x1 + x2 + x3, respectively.

The Steane codeword |�0〉 is, thus, defined by the three message bits x1, x2, x3, as:

|�0〉 = 1√
8

∑
y∈C2

|x + y〉

≡ 1√
8

∑
x1,x2,x3

|x1 + x2〉 |x1 + x3〉 |x2 + x3〉 |x1 + x2 + x3〉 |x1〉 |x2〉 |x3〉.
(24.55)

24.4 Hadamard–Steane code 519

As shown in Eq. (24.54), the other Steane codeword |�1〉 is generated by the bitwise
addition of z = 1111111 to each of the elements in C2/0 + C2, which yields the alternate
definition:

|�1〉 = 1√
8

∑
y∈C2

|x + y + z〉

≡ 1√
8

∑
x1,x2,x3=0,1

(|x1 + x2 + 1〉|x1 + x3 + 1〉|x2 + x3 + 1〉

⊗ |x1 + x2 + x3 + 1〉|x1 + 1〉|x2 + 1〉|x3 + 1〉).

(24.56)

Letting the bit variable a = 0, 1 we finally obtain a common definition for the Steane
codewords:

|�

a〉 ≡ 1√
8

∑
x1,x2,x3=0,1

(|x1 + x2 + a〉|x1 + x3 + a〉|x2 + x3 + a〉

⊗ |x1 + x2 + x3 + a〉|x1 + a〉|x2 + a〉|x3 + a〉). (24.57)

We may simplify the above definition even further by setting the bit variables y1 =
x1 + a, y2 = x2 + a and y3 = x3 + a, which gives

|�

a〉 ≡ 1√
8

∑
y1,y2,y3=0,1

(|y1 + y2 + a〉|y1 + y3 + a〉|y2 + y3 + a〉

⊗ |y1 + y2 + y3〉|y1〉|y2〉|y3〉). (24.58)

(where the modulo-2 addition property u + u = 0 is applied for any bit u = xi , y, a =
0, 1). As we shall see next, the general definition of |â〉 in Eq. (24.57) represents the
“magic formula” needed to build a complete Steane encoder circuit!

Indeed, consider the first qubit in |â〉, namely |y1 + y2 + a〉. The most elementary
subcircuit that can be implemented to generate |y1 + y2 + a〉 with y1, y2 = 0, 1 is shown
in Figure 24.7. It is seen from the figure that the two Hadamard gates produce two
|yi 〉 = |+〉 states that can act as control qubits on the target qubit |a〉 through CNOT
gates (recalling that |y〉CNOT|x〉 = |y ⊕ x〉 ≡ |x + y〉). We observe that |a〉, which
represents the originator’s message qubit to be encoded, is not limited to the basis states
|0〉 or |1〉; most generally, it can be of the form |a〉 = α|0〉 + β|1〉, where, as usual, α, β

are complex amplitudes satisfying |α|2 + |β|2 = 1.
Based on the above, it is not at all difficult to conceive the full Steane-code encoding

circuit shown in Fig. 24.8, which represents only one possible implementation out of
many other variants, let alone the flexibility associated with the many other choices
for generator matrix Ĝ in the (7, 4) code. Note that the same circuit, as traversed
from right to left, can be used for decoding, i.e., retrieving the message qubit |a〉 =
α|0〉 + β|1〉 from the 7-qubit |â〉, as obtained from the recipient after implementing error
correction.

This concludes this chapter on quantum error correction. An eerie feeling may rise
from realising that the above-described CSS codes only represent another conceptual
subspace within a grander space of the so-called stabilizer codes. Such codes, which
are, by and large, not limited to error correction but rather are at the root of advanced

520 Quantum error correction

a

0

0

H

H

x

iy=
+
2

10

1y

2y

ay +1

x ayy ++ 21

1y

2y

Figure 24.7 Elementary circuit to generate the quantum state |y1 + y2 + a〉 given bit values
α, y1, y2 = 0, 1, as based on H (Hadamard) and CNOT gates. The states obtained at
intermediate stages are shown and pointed to by dotted arrows.

)(∑
=

++++++++≡
1,0,,

321321323121

321
8

1

yyy

yyyyyyayyayyayya

a

0

0

x x ayy ++ 21

1y

2y

0 3y

H

H

H

0

0

0

ayy ++ 31xx x

x x x ayy ++ 32

x x x 321 yyy ++ a

Figure 24.8 Possible circuit implementation for encoding the |â〉 = |0̂〉, |1̂〉 Steane code example,
as defined in Eq. (24.58).

quantum computing, represent yet another field by itself. Within the framework of these
chapters, hopefully the reader has grasped the essentials to exercise his or her curiosity
towards this direction. If the reader has gone this far in these chapters, there are no more
conceptual difficulties involved, except for the never-ending work of specialization in
the field. The last chapter, concerning quantum cryptography should complete our basic
training towards the impossible or ill-defined grander picture, whether or not we elect to
become a specialist!

24.5 Exercises 521

24.5 Exercises

24.1 (B): Establish the following three operator definitions

Z12 = Z ⊗ Z ⊗ I = (|00〉〈00| + |11〉〈11|) ⊗ I − (|01〉〈01| + |10〉〈10|) ⊗ I,

Z23 = I ⊗ Z ⊗ Z = I ⊗ (|00〉〈00| + |11〉〈11|) − I ⊗ (|01〉〈01| + |10〉〈10|) ,

Z13 = Z ⊗ I ⊗ Z = |0〉〈0| ⊗ I ⊗ |0〉〈0| + |1〉〈1| ⊗ I ⊗ |1〉〈1|
− (|0〉〈0| ⊗ I ⊗ |1〉〈1| + |1〉〈1| ⊗ I ⊗ |0〉〈0|),

where Z is the Pauli matrix,

Z =
(

1 0
0 −1

)
.

24.2 (M): Given the 9-qubit quantum error-correction (Shor) code

| ˆ̂0〉 = |000〉 + |111〉√
2

∣∣∣∣
A

|000〉 + |111〉√
2

∣∣∣∣
B

|000〉 + |111〉√
2

∣∣∣∣
C

| ˆ̂1〉 = |000〉 − |111〉√
2

∣∣∣∣
A

|000〉 − |111〉√
2

∣∣∣∣
B

|000〉 − |111〉√
2

∣∣∣∣
C

,

show that a single qubit phase-flip error in any of the three blocks A, B, C can
be detected through the successive measurements

X123456 = X1 X2 X3 X4 X5 X6,

X456789 = X4 X5 X6 X7 X8 X9,

where X is the Pauli matrix,

X =
(

0 1
1 0

)
.

24.3 (M): Assuming a 3-qubit entangled block with the second qubit being flipped,

| ˆ̂q〉 = |010〉 + |101〉√
2

,

show that the syndrome measurement Z13 of the last two qubits yields the expec-
tation value

〈Z13〉 = +1.

24.4 (T): Establish that the set C of 16 elements shown in Table 24.7 (underscore “–”
being for reading clarity), together with bitwise addition ⊕, form a group (C,⊕).
Then determine the different subgroups of (C,⊕) and possible cosets of C ′ in C .

522 Quantum error correction

Table 24.7 Elements for Exercise 24.4.

Number Element Number Element

0 0000 000 8 1000 110
1 0001 111 9 1001 001
2 0010 011 10 1010 101
3 0011 100 11 1011 010
4 0100 101 12 1100 011
5 0101 010 13 1101 100
6 0110 110 14 1110 000
7 0111 001 15 1111 111

24.5 (T): Given the 2 × 2 matrix,

U =
(

u11 u12

u21 u22

)
,

with coefficients having the bit values ui j = 0, 1 and a 2-qubit state |x〉, where x is
a two-bit codeword, determine a quantum circuit that achieves the transformation

|x〉|0〉 → |x〉 |U x〉 ,

uniquely based on CNOT gates. Show that a more compact circuit can be elabo-
rated with CCNOT gates.

24.6 (T): Given a linear block code C with codewords x = x1x2 . . . xn , show that for
any y such that y ∈ C⊥ (dual of C), we have

(a)
∑
x∈C

(−1)x ·y = |C |,

and otherwise (y /∈ C⊥)

(b)
∑
x∈C

(−1)x ·y = 0,

where x · y = x1 y1 + x2 y2 + · · · + xn yn is the binary scalar product.

24.7 (M): Given the parity-check matrix of the C = (7, 4) Hamming code,

H̃ =

 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ,

determine the codewords of the corresponding C⊥ = (7, 3) dual code, as gener-
ated by the matrix Ĝ = H̃ T.

Then determine the two codewords |�0〉, |�1〉 of the CSS(C, C⊥) code.

25 Classical and quantum cryptography

This final chapter concerns cryptography, the principle of securing information against
access or tampering by third parties. Classical cryptography refers to the manipulation
of classical bits for this purpose, while quantum cryptography can be viewed as doing
the same with qubits. I describe these two approaches in the same chapter, as in my view
the field of cryptography should be understood as a whole and appreciated within such
a broader framework, as opposed to focusing on the specific applications offered by
the quantum approach. I, thus, begin by introducing the notions of message encryption,
message decryption, and code breaking, the action of retrieving the message information
contents without knowledge of the code’s secret algorithm or secret key. I then consider
the basic algorithms to achieve encryption and decryption with binary numbers, which
leads to the early IBM concept of the Lucifer cryptosystem, which is the ancestor of
the first data encryption standard (DES). The principle of double-key encryption, which
alleviates the problem of key exchange, is first considered as an elegant solution but
it is unsafe against code-breaking. Then the revolutionary principles of cryptography
without key exchange and public-key cryptography (PKC) are considered, the latter also
being known as RSA. The PKC–RSA cryptosystem is based on the extreme difficulty
of factorizing large numbers. This is the reason for the description made earlier in
Chapter 20 concerning Shor’s factorization algorithm. Here, the discussion is expanded
to qualify the difficulty of the factorization problem by classical computing means, with a
detailed analysis of the time and memory requirements, yielding predictions for solving
the various RSA challenges. I then briefly describe DES with its double- and triple-
implementation variants (2DES, 3DES), and the innovative features of the advanced
encryption standard (AES). Then follows a discussion of the other applications of
modern cryptography, including signature and authentication, which are based on the
principle of one-way encryption or hashing. I then move to quantum cryptography, which
is now placed in the global context of communication security, rather than addressed as
a separate field.

Quantum cryptography is widely believed to provide “provably secure” means to
exchange information, based on fundamental quantum-mechanics principles. This is the
introductory concept of secure communication channel. As we shall see in this chapter,
the concept boils down to that of quantum key distribution (QKD), solving the age-long
issue of key exchange, without interception risks, as an absolute, “quantum” competitor
to PKC–RSA. I then describe the three hero protocols, referred to as BB84, B92, and
EPR protocols for QKD. As it turns out, and contrary to widespread belief, none of

524 Classical and quantum cryptography

these protocols is provably safe unless extra security steps are implemented. Indeed,
classical-coding means, “esoterically” referred to as information reconciliation, privacy
amplification, or secret key distillation (SKD), are necessary to achieve “ultimate”
(albeit exponential) security confidence in the protocol. The closing section discusses
the eventual vulnerability of quantum cryptosystems, when replaced in the realistic
network environment, with its various forms of attack. The conclusion is that assuming
all attacks are possible (as opposed to sheltering under “postulates” that these remain
out of the picture), quantum cryptography represents just another, albeit very elegant,
technique for key exchange. Despite its exponential degree of safety, QKD must be
situated within the grander domain of global network security, where there cannot be
“absolute” confidence in any cryptosystem.

25.1 Message encryption, decryption, and code breaking

This section reviews the elementary basics of cryptography principles, definitions, and
jargon.

There exist several instances where some private, confidential, sensitive, or even
classified information must be conveyed through a communication channel. Examples
abound, from online tax declaration and business reports on company’s intranets to
military and government communications. The driving concept for protecting such
contents is cryptography, which comes from the Greek kryptos (secret) and graphein
(writing). Thus, cryptography is the art of transforming a message into a self-contained
secret, while ensuring a practical technique for the destinee to retrieve the information
contents.

The action of encryption is to transform an original text, or plaintext, into a ciphertext.
Nowadays, “plaintexts” are raw computer data, namely blocks of bits, but the spirit is
exactly similar. The word cipher refers to the coding algorithm or method of encryption.
An equivalent, fancier, definition of cipher is cryptosystem. The reverse operation, i.e.,
resolving a ciphertext into the original plaintext, is called decryption. Decryption is
based on the principle of a secret key. Throughout cryptographic history, the secret key
could have been any method of encryption and decryption based on correspondence
tables, squares, or grids, kept secret between the corresponding parties. Alternatively,
the secret key could have been a codeword (named keyword), usually simple to pass on
and memorize, but more or less difficult to guess. Nowadays, full and public knowledge
of the algorithm used in cryptographic standards poses no threat whatsoever to security.
Rather, secrecy is based entirely on the secret key, its type, length, means of exchange,
and rapid renewal (the last two points to be addressed later).

A third party who may try to make sense of a ciphertext without the key must resolve
the enigma through more or less extensive labor. Such a task is referred to as cryptoanal-
ysis (or, for short, cryptoanalysis). The goal of cryptanalysis, also called code breaking,
is to “break” the cipher or ciphertext (familiarly called “code”), meaning recovering
the plaintext by practical, inexpensive, hopefully rapid, and effortless methods. Note

25.1 Message encryption, decryption, and code breaking 525

that code breaking should not be confused with the nobler, academic notion of code
cracking.1 In any case, the task of trying either to “break” or “crack” a code is referred
to as an attack, giving a military flavor. Codes may be attacked either by sophisti-
cated cryptanalysis algorithms or, more directly, by sheer “brute force” (hence the name
brute-force attack in crypto jargon). This latter approach refers to various techniques of
guessing keys at random, exploring what is referred to as the keyspace. For an N -bit
key size, the keyspace corresponds to 2N possibilities. In code breaking, rapidity of
execution is essential, because the plaintext is generally not only content-sensitive but
also time-sensitive. This is the reason why successive generations of cryptosystems and
key sizes have been designed to make it virtually impossible to a third party, even a
state with powerful cryptanalysis and computing means, to break them. With a key size
of N = 64 bits, the keyspace is 264 = 1064 log 2/ log 10 = 1.8 × 1019. At a rate of trying
out one billion keys per second, a brute-force attack would, thus, require 1.8 × 1010

seconds, or some 570 years to explore the full keyspace! Clearly, each extra bit of key
size doubles the number of key possibilities. Nowadays, some cryptosystems may use
key sizes as large as N = 512 bits or N = 1024 bits, corresponding to huge keyspaces
of 10154 and 10308, respectively. However, one should not conclude that cryptosystems
become absolutely safe against attacks when the key size is sufficiently large. This sub-
ject being beyond the scope of this chapter, suffice it to state here that one should not
underestimate the power of cryptanalysis, and also that the generation of truly random
keys is not technically simple. If a code breaker can guess the algorithm used to generate
the random keys, his or her task is simplified. But the most straightforward approach
is to intercept the key itself, at the time the communicating parties are doing what is
referred to as the key exchange.

Indeed, the weakness of cryptography lies in the fact that, in order to work, the secret
key must be communicated one way or another to the recipient. Such an exchange is
not without risk of interception, no matter how rapid and periodically changing. Clearly,
the worst situation is to be confident in the safety of a cryptosystem, while the channel
used to exchange the keys is in fact being wired! As a matter of fact, cryptography faces
a double security problem: transmitting the secret key without any measurable risk of
interception, and remaining virtually invulnerable to cryptanalysis.

The history of cryptography, or cryptology, represents a succession of increasingly
sophisticated cryptoalgorithms, which have invariably been broken at some point by
sheer cryptanalysis.2 Most ancient and pre-computer-era algorithms have been based

1 The concept of code cracking is somewhat different. It could be defined as breaking a code for the first
time. Put simply, code crackers are “champion” code breakers. The goal of code crackers is not so much
to retrieve secret messages (for which they usually cannot care less) as to prove to history that they have
been able to “crack” a previously reputed “invulnerable” or “unbreakable” cipher. Code cracking may be
viewed as a noble academic attempt to explore the limits of cryptosystem security, with a view to improve
the algorithms, or just as an engineering challenge to test security and standards.

2 For fascinating accounts of cryptology, from ancient to modern times, see, for instance: D. Kahn, The
Code Breakers (New York: Scribner, 1967); S. Singh, The Code Book (New York: Anchor Books, 1999);
S. Levy, Crypto, (New York: Penguin Books, 2001).

526 Classical and quantum cryptography

on the principle of alphabetic substitution.3 We may simplistically view any alphabetic-
substitution code as representing a one-to-one table correspondence between plaintext
and ciphertext letter symbols. There exist 26! possible permutations between the 26
letters, namely 26! = 1 × 2 × 3 × . . . × 25 × 26 = 4.0 × 1026. Assuming that each
code possibility could be checked every second, breaking the code would take some
13 billion billion years, i.e., about one billion times the age of our Universe! And with
a rate of one billion checks per second, we still have the age of the Universe. Hence
brute-force attack is not a code-breaking solution. Older cryptanalysis would, rather,
attempt to guess which table, square, or grid algorithm and keys were used, based on
the fact that human beings at the time needed to keep the encryption and decryption
process simple and practical (as done by paper and pencil!), and the secret keys easy
to memorize. No matter how sophisticated, however, with mainframe computer power,
such alphabetic-substitution codes may now be broken in milliseconds or seconds. This
is because all possible algorithms and table, square, or grid combinations of past history
can be systematically explored, and also mainly because the keyword sizes remain
relatively small. Overall, cryptanalysis is facilitated by the detection of frequencies,
the repeated occurrences of certain ciphertext symbols and associations. The frequency
properties of the English language were described in Chapter 9. We have seen that the
two most likely letter associations are TH and HE, making THE the most likely three-
letter word in English. Thus, any frequent two-symbol or three-symbol occurrence in a
ciphertext is likely to correspond to these plaintext letter associations. In cryptography
jargon, the word fragments, identified are called cribs. Based on a few cribs, the rest of
the guess can progress very fast, should the context of the message (most likely words,
e.g., in wartime) also be known to the code breaker. Frequency analysis and identification
of cribs are basically the spirit of cryptanalysis as far as ancient (alphabetic-substitution)
cryptosystems are concerned.

Cryptography is over 2000 years old. The ingenuity and skills that were deployed
through the ages to conceive and then break ever-complex ciphers are both phenom-
enal and mind boggling. It is beyond the scope of this chapter to make even a brief
survey of cipher development. I shall just mention here the intriguing Enigma machine,
which was used by the German army during World War II.4 It represented a major
turn in the history of cryptography, not solely because it was the first “cryptographic
computer,” but because of its highly sophisticated encryption and decryption algorithm.
Probably one had never believed so much in cryptosystem invulnerability! The Enigma
cipher used only 26 typewriter characters with a three-rotor system, yielding as many
as 10 586 916 764 424 000 or 10 million billion (or 10 peta) polyalphabetic substitution

3 For a detailed and illustrated review of historical alphabetic-substitution algorithms, see, for instance, my
previous work: E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access,
Optical Components and Networks, and Cryptography (New York: J. Wiley & Sons, 2004), Ch. 3,
pp. 345–477.

4 There exist many excellent websites dedicated to the Enigma machine, see for instance:
http://en.wikipedia.org/wiki/Enigma machine,
www.codesandciphers.org.uk/enigma/index.htm,
www.mlb.co.jp/linux/science/genigma/enigma-referat/enigma-referat.html,
www.enigmahistory.org/simulators.html.

25.2 Encryption and decryption with binary numbers 527

possibilities. Yet the code was eventually cracked in 1932, again illustrating the unlimited
resource of human ingenuity!

A second historical turn in cryptography history was marked by the advent of digital
computers and, hence, the possibility not only to substitute letter symbols into each other,
but to intermingle their bits, and intermingle all the bits of all plaintext symbols, notwith-
standing the extended keyboard alphabet of 28 = 256 ASCII word symbols. Moreover,
binary operations can be introduced (such as XOR and polynomial multiplication) to
make cryptanalysis even more intractable. These new classes of cryptosystem yield
ciphertexts under the form of near-perfect pseudo-random bit sequences, thus, betraying
no specific patterns or block frequencies on which previous cryptanalysis fed.

A third historical turn was marked by the invention of public-key cryptography or
PKC (see further), which is basically cryptography without key exchange. As we shall
see, the strength or confidence in PKC is based on the difficulty of factorizing large
numbers into primes. But, as we already know, the difficulty could be alleviated, should
practical quantum computing be developed, with Shor’s factorization algorithm, which
was described in Chapter 20.

The above illustrates that the notion of cryptosystem invulnerability is all relative,
especially considering the power of supercomputers and the ever-increasing sophistica-
tion of cryptanalysis.

25.2 Encryption and decryption with binary numbers

This section reviews the basics of what could be called “modern” cryptography. As we
shall see, the principles used in modern cryptography are not just the same older ones
implemented with powerful computers and bigger keys, like “super-Enigma” machines.
Rather, and as mentioned earlier, they represent a third phase of history with the intro-
duction of new algorithms, leading to ciphers that are hopelessly hard to crack with
current-generation supercomputers. Although digital cryptography may appear a tricky
subject (and it really is!), the elementary basics are surprisingly simple to describe.
Here, I will first look at how encryption and decryption work with binary numbers, from
simple transposition to more complex algorithms, which opened the way to modern
standards.

Alphanumeric characters, including spaces, punctuation, numbers, and other signs,
which we use as a written language, are seen by computers in the form of standard
binary-number codes. As mentioned earlier, the two main alphanumerical codes used in
computer communications are ASCII (American standard code for information inter-
change),5 and its extension EBCDIC (extended binary coded decimal interchange code).
These two standard codes use seven-bit and eight-bit (one byte) words, respectively. The

5 Standard ASCII tables providing the corresponding alphanumeric/binary conversion can be found, for
instance, in:

http://en.wikipedia.org/wiki/ASCII,
www.webopedia.com/quick ref/asciicode.asp,
www.neurophys.wisc.edu/comp/docs/ascii/.

528 Classical and quantum cryptography

Table 25.1 Ciphering by switching bit positions by pairs.

Plaintext I m i s s y o u

PT-ASCII 1001001 1101101 1101001 1110011 1110011 1111001 1101111 1110101
CT-ASCII 0110001 1110011 1110001 1101101 1101101 1111001 1110111 1101011
Ciphertext 1 s q m m y w k

Table 25.2 Ciphering by taking characters by pairs and swapping their center bits.

Plaintext I m i s s y o u

PT-ASCII 1001001 1101101 1101001 1110011 1110011 1111001 1101111 1110101
CT-ASCII 1001001 1101101 1100001 1111011 1111011 1110001 1100111 1111101
Ciphertext I m a { { q g }

ASCII and EBCDIC codes have 27 = 128 and 28 = 256 possible alphanumerical charac-
ter and other keyboard-command possibilities, respectively. For cryptography purposes,
this represents a huge extension of the previous 26-letter alphabet from earlier times.

How to construct ciphers from binary-numbers? The answer is that there is an unlim-
ited number of ways to proceed, even in the simplest cases. Instead of 26 symbol char-
acters, we now have only two symbols, namely 0 and 1. Since each group of seven bits
(ASCII) represents one plaintext character, there is a wide variety of possible schemes
for transposition, substitution, or permutations. The number of ways in which any single
seven-bit word can be modified into any other seven-bit word is 27 = 128, as opposed
to only 26 with the ordinary alphabet. But the interesting feature of the binary system
is that now we can code the bits not only within a single seven-bit block, but over the
entire message sequence, which scrambles the blocks between themselves. For instance,
the (four bit per character) sequence

a3a2a1a0b3b2b1b0c3c2c1c0d3d2d1d0 . . .

can be transformed by switching the bit positions by pairs, which gives

a2a3a0a1b2b3b0b1c2c3c0c1d2d3d0d1 . . .

Alternatively, we can take characters by pairs and swap their center bits, i.e., for five bit
per character sequences:

a4a3b2a1a0b4b3a2b1b0c4c3d2c1c0d4d3c2d1d0 . . .

Clearly, the decryption algorithms consist of performing the reverse substitutions from
the above ciphertexts. Let us see now what these two approaches produce as cipher
texts (CT). Consider the example in Tables 25.1 and 25.2 (ASCII, seven-bit characters),
noting that we can now use capital characters in the alphabetical plaintext (PT).

In the first case, we observe that the last bit (a0) of each character is unchanged (since
the number of bits is odd), and that the character y is invariant. In the second case,
the first two characters, I and m, are invariant. But if we were to swap more bits up

25.2 Encryption and decryption with binary numbers 529

to a complete permutation algorithm, we would achieve most perfect scrambling. For
an eight-character or 56-bit codeword, the number of possible permutations is 56! =
7.1 × 1074, although with a sufficiently complex substitution algorithm, this approach
would seemingly yield undecipherable messages. But the drawback is that its key (the
scrambling algorithm) is fixed once and for all. No matter how complex, a fixed-key
cryptoalgorithm is, in fact, very vulnerable to attack. The key can be intercepted during
its communication (over the Internet, for instance) without the two parties being ever
aware of it. The key can be retrieved from the software used to encrypt or decrypt, should
one of the terminal computers be intruded by a third party. The alternative is to use a
different key (referred to as a one-time-pad cipher) for each new message. This means
that the two parties have agreed beforehand on a list of different keys (here, substitution
algorithms) to be used only once. This approach is not at all practical for any routine
use, such as in an army central command. If the list of keys is to be communicated over
the Internet (or any other wide-range transmission medium), or listed in a book (as in the
case of the Enigma machine), it is also extremely vulnerable. The solution to this issue,
which is not trivial, is to be addressed in the next two subsections. In the following, we
will prepare ourselves further by considering how secret keys can be used in the binary
system.

In the binary system, a secret key is made of a single codeword of any desirable
length, which must remain known only to the two parties. In contrast, the encryption and
decryption algorithm can be known to anyone. If the secret key is to be memorized, so as
to leave no paper or computer-file trace of it, it must be plain English (or any language
for that matter); for instance, a “codeword,” a “passphrase” or even the first paragraph
or page of a book text commonly used and secretly agreed on. In the last case, the key
may simply be the page number of the book, which is easy to memorize. By itself, this
requirement of easy memorization or that the key be in plain English represents a built-in
weakness, because it exposes the cryptosystem to frequency analysis. Nowadays, this is
no longer an issue, since random binary keys are used. The remaining issue is how to
safely exchange and renew such keys, which is discussed later.

Mixing the secret key with the plaintext provides a means for both encryption and
decryption. Such mixing is performed by simple Boolean operations. In the binary
system, the four operations, called Boolean, are NO (logical inversion), AND (multi-
plication), OR (addition or subtraction), and XOR (exclusive OR). The rules of these
operations on one (NO) or two (AND, OR, XOR) bits or “operands” have been intro-
duced in Chapter 15. We note that with binary numbers, addition and subtraction are
the same (1 + 1 = 1 – 1 = 0, 1 + 0 = 1 – 0 = 0 + 1 = 0 − 1). We also note that
XOR is the same as OR, except for the rule 1 + 1 = 0, which is similar to 9 + 1 = 0
in the ordinary digital system. The operators (NO, AND, OR, and XOR) are also noted
by mathematicians ¬, ∧, ∨, and ⊕, respectively. Thus NO a, a AND b, and a XOR b
are noted ¬a, a ∧ b, and a ⊕ b, respectively. The other basic Boolean operators are ≤
(noted →) and = (noted ↔). Thus, a → b is zero if a > b, and one otherwise. Similarly,
a ↔ b is zero if a �= b, and one if a = b. It is easily checked that the binary result of the
operation (a → b) ∧ (b ↔ c) is unity if and only if the condition a ≤ b = c is fulfilled.
In this chapter, we will not be concerned by Boolean logic other than just using XOR.

530 Classical and quantum cryptography

Table 25.3 Ciphering with the (case-sensitive) key sAXOPHON.

Plaintext I m i s s y o u

Key s A X O P H O N
PT-ASCII 1001001 1101101 1101001 1110011 1110011 1111001 1101111 1110101
K-ASCII 1110011 1000001 1011000 1001111 1010000 1001000 1001111 1001110
CT-ASCII 0111010 0101100 0110001 0111100 0100011 0110001 0100000 0111011
Ciphertext ; ‘ 1 < # 1 space ;

An interesting property of XOR is that its double application to a with the same
operand b restores operand a, i.e., a ⊕ b ⊕ b = a. We can, thus, use this property for
the purpose of encryption with a key. Indeed, if we perform XOR between each bit of
the plaintext and the key, we obtain a ciphertext. If we repeat the operation, this time
between the ciphertext (CT) and the key (K), we obtain the plaintext (PT). Table 25.3
shows an example, with sAXOPHON as a (case-sensitive) key.

We see from this example that the same ciphertext character may correspond to
different plaintext characters, namely the ;s corresponds to I and u and the 1s corresponds
to i and y, respectively. We may, therefore, rapidly conclude that this XOR operation
with a key as long as the plaintext (or sufficiently long and repeated) and as many as
128 possible characters would produce quite a strong cipher. But this is not the case. To
provide here a simple explanation, consider indeed the first codeword of the ciphertext,
0111010. Because of the XOR operation, it is certain that

(1) For bit numbers 7, 3, and 1: the operands must be of the same parity, namely coming
from the operations 0 XOR 0 or 1 XOR 1;

(2) For bit numbers 6, 5, 4, and 2: the operands must be of opposite parities, namely,
coming from the operations 0 XOR 1 or 1 XOR 0.

Since there are two operand choices for each bit, the number of possibilities is 27 =
128. But we can reduce this number by correlating the two different conditions for each
bit. To establish such a correlation, we can tabulate all correspondence possibilities
between each seven-bit ciphertext block and key block in the form of a 128 × 128 =
16 384 element array, where the cases that violate the two conditions are left empty.
A straightforward frequency analysis of both plaintext and key, searching for the most
common letters, digrams, trigrams, and other most commonly used English words will
allow a small computer to finish the job in seconds! This description suggests that in the
binary system, encryption with a secret key on a one-to-one character basis is unsafe,
unless complex random keys are used.

As we saw earlier, the binary system offers a tremendous advantage, which is the
possibility of mingling the characters together in the coding process, on a bit-by-bit
or block-by-block basis (a block being a string of bits of any prescribed length). This
is the principle used by the first attempt at a standard cipher, developed in the 1960s
by IBM and called Lucifer (as a pun on cipher). Figure 25.1 shows the Lucifer coding
procedure. In the first step, the plaintext is converted into a string of binary digits
(not necessarily ASCII). Then the string is split into 64-bit blocks (step 2) which are

25.2 Encryption and decryption with binary numbers 531

Plaintext

1100101011100010111101000101011110110001Step 1

11001010Step 2 11100010 11110100 01010111 10110001

01000100 10100111 10100010 11111101 01011000Step 3

00100001Step 4

Step 5 0010 0001
Left 0 Right0

Step 6
0110

0110
XOR

0010

0001 1110
Left1 Right1

Round 1

1010 0111
Left16 Right16

Round 16...

1010 0111
Left16 Right16

1101 1111 1001 0100 1110 0110 0000 1001Cipher

Figure 25.1 Principle of the Lucifer encryption algorithm, as described in the text.

individually encrypted (step 3). The resulting blocks are shuffled (step 4), then split into
two 32-bit elements called left0 and right0 (step 5). The next step is called a round,
and this round will be repeated sixteen times. Call these two elements L0 and R0,
respectively. The round first passes R0 through a mangler, which performs a complex
bit substitution according to a mangling function. The result is XORed with L0 to give
R1. The original R0 becomes L1. The next round does the same with the pair (L1, R1),
and so on until one gets (L16, R16). The cipher is then formed with the concatenated
string of (L16, R16) elements.

We see that this new approach for encryption is quite complex and definitely harder
to break than any previous scheme. Even with public knowledge of the encryption
algorithm, the code breaker must know which mangling function (the key) has been
used for the 16 rounds, which shuffling algorithm is used in step 4, and which encryp-
tion algorithm is used in step 3. The combination of these three unknowns presents a
formidable obstacle to code-breaking attempts. But when these different elements are
known, decryption is “straightforward” for any computer. The cipher is decomposed into
32-bit block pairs representing as many L16, R16 groups. The element L16 becomes
R15. The element R16 is then XORed with L15, then the result is passed through the
inverse mangling function (the key), which yields R15. And so on until L0 and R0 are
obtained. The L0 and R0 elements are then concatenated into a 64-bit block.

The bits are then reordered, according to the inverse of the shuffling algorithm.
The resulting block is decrypted. Then all decrypted blocks are concatenated together
and converted into plaintext. We can infer that the whole decrypting operation can be
performed in a few milliseconds of computer time, depending on the complexity of
the step-3 cipher and the mangling function. As I have stated it, the mangling function
represents the key to the encryption and decryption process. Such a key can be defined by

532 Classical and quantum cryptography

a number, which represents the different integer parameters to be used for generating the
mangling function. Thus, the number of possible keys is virtually infinite. To prevent any
possibility that this code became absolutely unbreakable, it was agreed that the number
of keys should be 215 ≈ 72 × 1015, which corresponds to a 56-bit key. Twenty-five years
later, the principle of the Lucifer system with a 56-bit key was officially endorsed in the
USA to become the data encryption standard (DES), which is still widely in use today,
albeit superseded by its own variants and other standards, such as AES (see further).

25.3 Double-key encryption

In spite of the tremendous levels of protection offered by algorithms like DES and
Lucifer, a major weakness remains, which is the obligation for the originator to com-
municate the key to the destinee. Like the Germans with Enigma, both parties could
keep a secret copy of the same book, where the key to be used is indicated for each
day of a month or year. A new set of books must be created and exchanged on this
monthly or yearly basis. But a malicious third party may intercept the book and rapidly
copy the contents, while making sure that no one notices anything. As a result, all secret
communications based on this book’s keys could be read “in the open” by this third
party, the worst being that the two ends are unaware of it.

In cryptography, the tradition has it to call the originator Alice and the destinee Bob.
The malicious interceptor, who eavesdrops, is Eve. From this point, I will use these three
nicknames. For Alice, the encryption task is like putting a message into a locked steel
box and sending it to Bob through the mail. If Bob does not have a copy of Alice’s key
to open the lock, then he can’t retrieve Alice’s message. Alice must then provide Bob a
copy of her key, for instance by meeting regularly in some agreed time and place. But
this way of proceeding amounts to the same thing as passing on and hiding key books,
notwithstanding the time and effort required.

This intractable problem of key exchange caused cryptographers to search for new
directions in the way message “boxes” could be locked and unlocked. They found that
one simple solution could be to use two locks instead of one! To visualize how this can
work, assume that both Alice and Bob have different keys of their own. Alice locks her
message box and sends it to Bob (step 1). Bob cannot open it, since he does not have
Alice’s key. What he does is to put a second lock on the box, lock it with his own key,
and send the box back to Alice (step 2). Then Alice opens the first lock with her key. She
then sends back the box to Bob (step 3). Now Bob can open the box, since he has the key
of the remaining lock (step 4). Such a process is referred to as double-key encryption.
The remarkable result is that the message is safely communicated without Alice and
Bob exchanging any key whatsoever. Consider now a practical illustration. Table 25.4
shows the different steps of double-key encryption, using the principle of adding (XOR)
a same-length key (since the purpose is just to prove the point through successive XOR
additions, I have chosen random keys for Alice and Bob).

We see from the above example that at the end of this double-key encryption process,
Bob is able to retrieve the plaintext unaltered (step 4). We note again that in the different

25.3 Double-key encryption 533

Table 25.4 Double-key encryption.

Plaintext I m i s s y o u

PT 1001001 1101101 1101001 1110011 1110011 1111001 1101111 1110101
Alice’s key 0001001 1010100 0101011 0111101 0111010 0001001 1001001 1100100

Step 1 1000000 0111001 1000010 1001110 1001001 1110000 0100110 0010001
Bob’s key 1011001 1000111 0111010 1111101 0101110 0011001 1001000 0001011

Step 2 0011001 1111110 1111000 0110011 1100111 1101001 1101110 0011010
Alice’s key 0001001 1010100 0101011 0111101 0111010 0001001 1001001 1100100

Step 3 0010000 0101010 1010011 0001110 1011101 1100000 0100111 1111110
Bob’s key 1011001 1000111 0111010 1111101 0101110 0011001 1001000 0001011

Step 4 1001001 1101101 1101001 1110011 1110011 1111001 1101111 1110101
Plaintext I m i s s y o u

Table 25.5 Intercepting the message in Table 25.4.

Step 1 1000000 0111001 1000010 1001110 1001001 1110000 0100110 0010001
Step 2 0011001 1111110 1111000 0110011 1100111 1101001 1101110 0011010
XOR 1011001 1000111 0111010 1111101 0101110 0011001 1001000 0001011
Step 3 0010000 0101010 1010011 0001110 1011101 1100000 0100111 1111110
XOR 1001001 1101101 1101001 1110011 1110011 1111001 1101111 1110101
Plaintext I m i s s y o u

steps, Alice and Bob only used their own keys. The explanation of this successful
retrieval is the following. Call M the plaintext message block and A, B the keys from
Alice and Bob. The cipher in step 1 is, thus, M XOR A, or M ⊕ A. The cipher in
step 2 is M ⊕ A ⊕ B. That in step 3 is M ⊕ A ⊕ B ⊕ A = M ⊕ B (using the above-
described property of XOR). Finally, the result in step 4 is M ⊕ B ⊕ B = M , which is
the plaintext.

While the previous double-key encryption surely works without any key exchange, it
is absolutely unsafe! Indeed, if Eve is ever able to intercept all three messages (ciphers
in step 1, step 2, and step 3 in the above), the only thing she has to do to retrieve the
plaintext is to XOR these together, as shown in Table 25.5.

There is nothing surprising in this result if we consider from the previous definitions
that what Eve does is the operation

(M ⊕ A) ⊕ (M ⊕ A ⊕ B) ⊕ (M ⊕ B) = M ⊕ M ⊕ M = M.

Since Eve can so effortlessly retrieve the plaintext, without even any cryptanalysis, we
conclude that this “no key exchange” approach based on the addition of independent
keywords is, by and large, the worst possible and riskiest way to proceed.

A safer solution for Alice and Bob could consist in using substitution algorithms
instead. But the problem is that substitution algorithms have no reason to be commutative.
If Alice first encrypts the message with her own substitution-key algorithm, then Bob
does the same with his own, and then Alice and Bob again, the end result would be

534 Classical and quantum cryptography

nonsense. A fancier approach had to be devised, which led to the breakthroughs of
cryptography without key exchange, and public-key cryptography (PKC), which are
described in the next two subsections.

25.4 Cryptography without key exchange

The seemingly intractable problem of cryptography without key exchange was eventually
solved in the mid 1970s. The ground-breaking idea was to use the principle of one-way
functions in modular arithmetic. Here is the first proposed algorithm (now referred to as
Diffie–Hellman or Diffie–Hellman–Merkle, after the inventors).

Step 0 Alice and Bob call each other (or send an email) to agree on a choice of two
numbers (m, n), regardless of the possibility that Eve could have wired the line;
they can even make this choice openly public.

Step 1 Alice chooses a large integer A and keeps it secret. Then she computes

a = m A mod n

and sends the result (e.g., by phone or email) to Bob.
Step 2 Bob chooses a large integer B and keeps it secret. Then he computes

b = m B mod n

and sends the result (e.g., by phone or email) to Alice;
Step 3 At her end, Alice computes

k = bA mod n.

Step 4 At his end, Bob computes

k ′ = aB mod n.

As it turns out, the results of these last two computations are equal, i.e., k = k ′ = m AB

(modulo n). This means that both Alice and Bob have the same number, which they can
use as a common key. Eve is not able to get this information, even if she has intercepted
the information on the (a, b) values that Alice and Bob communicated to each other.
Although Eve also knows m, n, she has no clue as to the exponent AB of the key. And
since Alice and Bob chose large secret numbers, AB is also very large! For instance, if
A and B are of the order of 1000, the exponent of the key is of the order of 1 000 000,
representing a 20-bit key in the binary system. They might as well choose numbers in
the order of 10 000, which generate 100 000 000 different key possibilities (26-bit key).
Note that from Alice’s or Bob’s ends, the whole procedure actually involves only two
steps (1 and 3 and 2 and 4, respectively), which I have decomposed here for clarity.

It is completely remarkable and counterintuitive that two persons can mutually agree
on a secret key by openly exchanging information via a public communication channel
(even an eavesdropped line!) without this secret ever being known. The Diffie–Hellman–
Merkle algorithm of “key generation without key exchange” can even be generalized to

25.4 Cryptography without key exchange 535

parties of three or more. Consider the following sequence with Alice, Bob, and Cindy,
now grouped into simultaneous steps:

Step 1 Alice chooses a large integer number A and keeps it secret; she computes
a = m A mod n and sends the result to Bob;
Bob chooses a large integer number B and keeps it secret; he computes b =
m B mod n and sends the result to Cindy;
Cindy chooses a large integer number C and keeps it secret; she computes
c = mC mod n and sends the result to Alice.

Step 2 Alice computes c′ = cA mod n and sends the result to Bob;
Bob computes a′ = aB mod n and sends the result to Cindy;
Cindy computes b′ = bC mod n and sends the result to Alice.

Step 3 Alice computes k = (b′)A mod n;
Bob computes k ′ = (c′)A mod n;
Cindy computes k = (a′)A mod n.

As immediately checked, the three results k, k ′, k ′′, computed separately by Alice, Bob,
and Cindy, are all identical to m ABC , which now represents their secret key. Note that the
initial secret numbers A, B, C don’t need to be as large as in the previous case. Numbers
of the order of 1000 generate as many as 1 billion keys. But there is no reason not to use
greater numbers to give a trillion possibilities.

Here is another variant of the Diffie–Hellman–Merkle algorithm (referred to as
Hughes), where Alice wants the secret key to be some specific number, k.

Step 1 Alice chooses a large integer number A and keeps it secret; she computes

k = m A mod n.

Step 2 Bob chooses a large integer number B and keeps it secret; he computes

b = m B mod n

and sends the result to Alice.
Step 3 Alice computes

a = bA mod n

and sends the result to Bob.
Step 3 Bob computes

c = 1/B

and

k ′ = ac mod n.

The result of Bob’s operation is k ′ = a1/B = a1/B = (bA)1/B = (m AB)1/B = m A = k
(modulo n). Thus, Alice has successfully communicated her preferred key choice to
Bob. The advantage of the Hughes algorithm is that Alice can initiate the communication

536 Classical and quantum cryptography

of encrypted messages herself, not only to Bob but to any group of persons. She can
send them the key at a later time.

These approaches concern secret-key cryptography, which, except for the absence of
key exchange, resort to the same classical approach when it comes to encryption and
decryption. Furthermore, the two parties share the same (secret) key, therefore, they can
both encrypt and decrypt with that key. In the communication channel, their relationship
is symmetric, hence, the name symmetric-key cryptography. An interesting alternative
would be to have different keys for encryption and decryption: Bob can send Alice
encrypted messages using a shared key, but only Alice is able to decrypt them, using
her own secret key. Bob’s and Alice’s communication being, thus, asymmetric, they are
using a new form of asymmetric-key cryptography. In the next section, we shall see
that modular arithmetic opened the path to asymmetric cryptography, better known as
public-key cryptography (PKC).

25.5 Public-key cryptography and RSA

The approach of public-key cryptography (PKC) led to the RSA standard, named after
its inventors R. Rivest, A. Shamir, and L. Adleman. A detailed description of PKC and
RSA was presented in Chapter 20 concerning Shor’s (quantum) factorization algorithm,
along with modular-algebra basics shown in Appendix T. The reason for describing PKC
and RSA in that earlier chapter is to illustrate that the cryptoalgorithm would be readily
“cracked” overnight should, one day, Shor’s factorization be successfully implemented
in quantum computers. Fortunately for PKC and RSA, such a horizon still lies in the
far distant future, but in the timescale of cryptology, how “distant” is that? Here, I
assume that the reader is already familiar with PKC and RSA, or will refer back to
Chapter 20 and, therefore, I shall only further develop the discussion about factorizing
large numbers.

The PKC and RSA cryptosystem is, indeed, based on the fact that it is extremely
difficult to factorize large numbers. To recall, given a number n, factorization consists
of finding the unique set of prime numbers (p1, p2, . . . , pk) whose product p1 × p2 ×
. . . × pk is equal to n. Note that these prime factors are not generally all different. For
instance, the number 1000 is factorized into 2 × 2 × 2 × 5 × 5 × 5 = 23 × 53. We can
then use just two sufficiently large and different prime numbers (p, q) to generate a
bigger number n = pq, knowing that someone who knows n would have a hard time
figuring out the two primes (p, q), and this is basically the essence of the PKC and RSA
safety assumption. For instance, consider n = 62 615 533. To find its factorization, we
need to divide it by prime numbers, trying them out one after another. In this specific
case, the answer is p = 7919 and q = 7907, which are the highest two primes in the first-
thousand prime list.6 This choice made factorization easy with any pocket calculator.

6 See lists of the first 1000 primes in, for instance:
http://primes.utm.edu/lists/small/1000.txt
www.math.utah.edu/∼pa/math/primelist.html.

25.5 Public-key cryptography and RSA 537

But what about n = 15 773 077? The answer (p = 2383, q = 6619) is less immediate,
since it takes 200 division tests to find q in this first-thousand-prime list, but this is still
within reach of a home computer having this list as a database. Assume next that we
select (p, q) from a huge list of known primes, for instance up to 109, yielding numbers
of the order of 1018. Even at a rate of 109 division tests per second (a computing power
that only a few states are able to afford), this would take about 109 seconds or 31.7 years
to check!

With large PKC and RSA key sizes (e.g., n ≈ 264 ≈ 1019, n ≈ 2128 ≈ 1038), the prob-
lem of factorization is no longer within easy reach, and rather requires both extended
computing facilities and time effort. To promote the advancement and security of cryp-
tography, the company RSA Security offers challenges to the public, which take the form
of huge modulus numbers to factorize (namely, given n, find the two primes p and q
such that n = pq).7 The current challenges concern different numbers with lengths from
704 to 2048 bits. Here is the RSA-2048 number, which has 617 decimal digits:8

2519590847565789349402718324004839857142928212620403202777713783604366202070
7595556264018525880784406918290641249515082189298559149176184502808489120072
84499268739280728777673597141834727026189637501497182469116507761337985909570
00973304597488084284017974291006424586918171951187461215151726546322822168699
8754918242243363725908514186546204357679842338718477444792073993423658482382
42811981638150106748104516603773060562016196762561338441436038339044149526344
32190114657544454178424020924616515723350778707749817125772467962926386356373
28991215483143816789988504044536402352738195137863656439121201039712282
2120720357

Two of the earlier challenges, named RSA-140 (140 decimal digits, 465 bits) and
RSA-155 (155 decimal digits, 512 bits), were successfully met by international teams of
researchers from both academy and industry in February and August 1999, respectively.
Note that RSA-155 was renamed RSA-512 so that the number defines bit size rather
than decimal-digit size.

Factorizing RSA-140 required 125 workstations (175 MHz) and 60 personal comput-
ers (300 MHz) to run for about one month, a combined 8.9 years of CPU time.
Including the preparation work, the total elapsed time was actually 2.2 months.

Factorizing RSA-512 (previously RSA-155) required 160 workstations (175–400
MHz) and 120 personal computers (300–450 MHz) to run for 3.7 months, repre-
senting a combined 35.7 years of CPU time. The total elapsed time was about 7.4
months.

The two latest challenges, which were successfully met in 2003 and 2005, concerned
RSA-576 and RSA-640, respectively. The latter took a combined 30 CPU years, repre-
senting 5 months of elapsed time at a 2.2 GHz computing rate per machine! As for the
RSA-2048, it may remain unchallenged not only in this current decade (2008–2020),
but possibly over this century, as the estimates below illustrate.

7 See: www.rsa.com/rsalabs/node.asp?id=2093.
8 Exact reproduction in the printed form of this book is not guaranteed.

538 Classical and quantum cryptography

The general method of “attack” for the factorization problem (and also finding log-
arithms A from a = m A mod n) is known as GNFS (general number field sieve), or
NFS. The word “sieve” comes from Erathosthenes (240 BC). This is the same person
who estimated the circumference of the Earth (tens of centuries before the Earth was
proven to be a sphere), based on the observation that, at the same time of year, the
sun casts shadows with different angles for different latitudes. His nonintuitive “sieving
algorithm” for sorting out prime numbers can be described as follows: “List all integers
less than n and remove multiples of all primes less than or equal to the square root of n;
the numbers that are left are the primes below n.” The NFS algorithm is implemented
in two stages.9 The first stage, called “sieving,” requires moderate computation power
(hence, the use of multiple personal computers and workstations in parallel), and leads to
a set of equations referred to as the “matrix.” The second stage requires a supercomputer
with massive internal CPU-memory use (e.g., 0.8 Mbytes for RSA-140 and 3.2 Gbytes
for RSA-155–RSA-512). Finding the solution of the matrix might take as much time as
the sieving stage, or just a fraction thereof. Once found, this solution leads to instant fac-
torization or logarithm definition. The two parameters of interest for attacking a number
n (as defined by its bit length, also referred to as “field size”) are the requirements in
time (L) and memory space (S). It can be shown that these requirements are defined by

L(n) = exp
[
C × (log n)

1
3 (log log n)

2
3

]
, (25.1)

S(n) =
√

L(n), (25.2)

where C is a constant. Knowing these requirements for a smaller number n′, we get the
relative estimates

ln/n′ = L(n)

L(n′)
= exp

{
const ×

[
(log n)

1
3 (log log n)

2
3

− (log n′)
1
3 (log log n′)

2
3

]}
, (25.3)

ss/n′ = S(n)

S(n′)
=

√
L(n)

L(n′)
. (25.4)

Table 25.6 provides the numbers (ln/n′ , sn/n′) corresponding to the different values of
(n, n′). The first row corresponds to the data provided by RSA,10 i.e., where estimates
are relative to n′ = 512. Analyzing these data, the constant C involved in the definition
in Eq. (25.1) is observed to follow a heuristic rule C = 64.11 × (n/n′)0.2542. We can
use this rule to compute other estimates with n′ = 576, 640, 704, 768, 1024, and 2048.
The new dataset we, thus, obtain heuristically provides some estimates for the time
and memory size increase factors required to reach larger-number sizes from the best
previous achievement. We, thus, see from the table that the time increase from RSA-
512 to RSA-576 represents about an 11-fold factor, corresponding to a raw computing
time of 11 × 7.4 months = 81.4 months, or 6 years and 9 months! But if about 1000

9 See RSA Bulletin 13 (2000), www.rsa.com/rsalabs/node.asp?id=2088.
10 See RSA Bulletin 13 (2000), www.rsa.com/rsalabs/node.asp?id=2088.

25.5 Public-key cryptography and RSA 539

Table 25.6 Relative time and memory space increases for factoring number n or solving a logarithm
problem of same field size (top row) in reference to the corresponding data for smaller number n′ (left
columns). The numbers are expressed in bit size.

Time increase Memory-space increase

576 640 704 768 1024 2048 576 640 704 768 1024 2048

512 10.9 101 835 6000 7×106 9×1015 3.3 10 29 77 2650 9×107

576 1.1 8.2 390 3×105 2×1014 2.8 7.7 20 550 1×107

640 6.5 39 3×1010 3×1012 2.5 6 2×105 2×106

704 5.5 2400 1×1011 2.5 50 4×105

768 335 9×109 20 9×104

1024 3×106 1750

workstations and personal computers were used along with (say) five supercomputers,
this delay could be reduced to a single year. The corresponding increase factor for
the CPU memory space is 3.3, corresponding to 3.3 × 3.2 Gbytes = 10.5 Gbytes.
Consider now that RSA-576 was solved in 2003. We see from our estimates that to
reach the ballpark of RSA-768, the time and memory-space requirements are increased
by about 400-fold and 20-fold, respectively. With the conventional approach, this would
require some 400 000 workstations and 100 supercomputers. As far as RSA-1024 and
RSA-2048 are concerned, it is hard to make any sense of the projections in both time
and memory space!

Another way to analyze time projections for the factorization or logarithm prob-
lem is to consider the progress actually realized over the last 30 years. Remarkably,
the progress in key size and time is very closely linear, like another Moore’s law. Note,
however, that Moore’s law is linear but in a logarithmic performance scale, unlike in the
present case. From the aforementioned reference, the law can be expressed using the
phenomenological formula

sizedec = 4.23 × (Y − 1970) + 23, (25.5)

where Y is the current year and the modulus size is expressed in the number of decimal
digits. This linear law has been verified over the past 30 years. The projected years for
solving 1024-bit keys (309 decimal digits) and 2048-bit keys (617 decimal digits) are
2037 and 2110, respectively. Other investigators have suggested a model, according to
which the size should be dictated by a cubic law

sizedec =
(

Y − 1928

13.25

)3

, (25.6)

which gives the years 2017 or 2018 for reaching 1024-bit keys, and 2041 for reaching
2048-bit keys. We see that both laws predict that 1024-bit keys won’t be solved before
20 years at the very least. Keys as large as 2048 bits might take 40 years (2040) or
over a century (2110). It is important to note that such estimates are only based on
publicly available data. Throughout history, it has always been assumed that government

540 Classical and quantum cryptography

agencies have always been ahead of any progress in this field, and the market implications
of cryptography do not exclude the possibility that private, yet unpublicized, efforts,
have already reached substantially higher performance. One final remark: there is no
mathematical proof that breaking RSA absolutely requires factorization of the modulus
n, it is just what is currently conjectured, until new breakthroughs may happen. But even
this remark represents a conjecture by itself.

The above facts, data, and estimates help one to grasp (at the very least) what the
problem of factorization of large numbers (or finding logarithms) mean in terms of
resource, time, and effort. The fact that teams were able to complete the factorization of
RSA-140 and RSA-155/512 does not mean that the RSA cryptosystem is now broken
or “cracked.” Instead, these successful experiments provided valuable information on
the state of the art in factorization, from algorithms and methods to hardware and time
requirements. It is still safe for Alice and Bob to use 512-bit RSA keys (even more so with
1024-bit keys), knowing the costs in personnel, capital investment, and time that Eve
would have to support. Another important consideration is the lifetime of the data to be
protected. This lifetime can range from the scale of a single day (e.g., certified signature,
restricted-access broadcast, stock-exchange instructions) to several years (e.g., business
and financial contracts, long-term strategy).

With very large scale integration (VSLI), integrated components (IC) technology has
produced chips capable of performing RSA encryption and decryption with various
modulus sizes (namely 32, 120, 256, 272, 298, 512, 593, 1024). Compared with DES
(see the next section), RSA is 1000 times slower from the hardware perspective. From
the software perspective, RSA is only 100 times slower. Encryption is always faster
than decryption. Using a workstation, the encryption and decryption tasks require 30
ms and 160 ms, respectively, for 512 bits and 80 ms and 930 ms for 1024 bits.11 The
process can be speeded up by an appropriate choice of public key. Appropriate values
are those which have binary words of value 2N + 1, which in binary have the form
(100 . . . 01) with N + 1 bits and only two 1 bits. This choice reduces the operation of
exponentiation to only N + 1 successive multiplications. Referring back to the PKC
parameters introduced in Section 20.7, the standard recommendations are e = 3(11),
e = 17(10001), and e = 65537(100001). Such a selection avoids e = 5(101) and e =
9(1001) because of the fact that the public key must be relatively prime with φ. And as it
nicely turns out, the numbers 3, 17, and 64 537 are all primes, therefore, more likely to
be relatively prime with φ. To complicate Eve’s task, the recommendation is also that the
private key be sufficiently large and that the choice of modulus be broad (“sufficiently”
and “broad” being here left to professional appreciation). It is not recommended to
use the same private key for encrypted signature and authentication. It can be shown
that malicious Eve can retrieve Alice’s private key by sending her a specially prepared
document and asking her candidly to sign or certify it with her private key! Several
variants and extensions of PKC and asymmetric-key cryptography can be also found in
the footnote reference.

11 See B. Schneir, Applied Cryptography, 3rd edn. (New York: John Wiley and Sons, 1996).

25.6 Data encryption standard (DES) and advanced encryption standard (AES) 541

25.6 Data encryption standard (DES) and advanced encryption standard (AES)

The previous sections have introduced the reader to some aspects of cryptography
standardization, which concern the encryption and decryption algorithms as well as the
formats to be used for keys and ciphers. In this section, I shall briefly describe two
leading standard cryptosystems, referred to as DES (data encryption standard) and AES
(advanced encryption standard).

As we have seen, the story began in the 1960s under IBM’s Lucifer initiative, which
set the grounds for the adoption, in the 1970s, of DES. The initial DES version had a
56-bit key, a reduction from the proposed 128-bit format, which was meant to facili-
tate cracking the code should government authorities need access for national-security
reasons. Rumors have circulated about the existence in DES of embedded trapdoor
functions, which could enable direct decryption by state-class parties, but such rumors
did not prevent its eventual standardization and widespread adoption. At the time, it was
considered that cracking DES by brute-force attack, i.e., trying all possible keys at ran-
dom over the entire 256 − 1 keyspace, would require about 1000 years of CPU time. The
rapid progress in computer speed proved this belief utterly wrong. In 1997, the company
RSA Security issued a public challenge to crack DES. The challenge was successfully
met that same year after only 96 days of computation, using a network of no less than
14 000 computers. In the two following years, other teams succeeded in cracking DES
in 41 days, then in 56 hours, then in 22 hours and 15 minutes! The machine used for the
56-hour record, nicknamed Deep Crack, used 27 parallel motherboards, each one with
64 processor chips (1728 total) capable altogether of performing 90 billion key tests per
second.

The simple way to improve DES strength and security was to achieve double and triple
encryption with two and three independent secret keys, respectively. These double-
DES (2DES) and triple-DES (3DES) approaches, which bring the effective key size
to 2 × 56 = 112 bits and 3 × 56 = 168 bits, respectively, were endorsed in 1999 by
NIST (National Institute of Standards and Technologies), the new name of the original
standardization body that launched DES.12

In 2DES, the DES algorithm is implemented just twice in a row with two independent
secret keys, which brings the effective key length to 56 + 56 = 112. Note that doubling
the key length squares the complexity (the size of the keyspace), namely, (256)2 = 2112 =
1033.7 ≈ 5 × 1033. Thus, Deep Crack, which is able to check out 109 keys per second
would now require 5 × 1024 seconds of CPU time, corresponding to 1 × 1017 years or
about 15 centuries! Even after an improbable increase of CPU power by one billionfold,
this brute-force attack would require 1 × 108 years or four centuries! But Diffie and
Hellman once proved that the effective number of keys is not given by the above figures;
the 2DES keyspace is merely doubled, namely 257, which does not increase safety so
much with respect to standard DES.

12 Note that DES was also approved by ANSI (American Standards Institute) under the name of data encryption
algorithm (DEA) and by ISO (International Standards Organization) under the name of DEA-1.

542 Classical and quantum cryptography

In 3DES, three independent secret keys are used; one can simply iterate DES with
three keys. A different approach, referred to by ANSI as TDEA (triple data encryp-
tion algorithm) is to use a combination of encryption and decryption with the three
keys: if K1, K2, K3 are the three keys and EK and DK the encryption and decryp-
tion functions with a given key K , the cipher C and message M are defined by
C = EK 3 {DK 2 [EK 1 (M)]} and M = DK 1 {EK 2 [DK 3 (C)]}, respectively. With 3DES,
the complexity is really a whopping 2112.

In spite of the improvements introduced by double and triple encryption, DES further
evolved into the advanced encryption standard (AES), with the prospect of lasting use
in future decades. It is beyond the scope of this chapter to enter into the algorithmic
features of DES and AES. For a rapid but detailed introduction of the DEA and AES,
see, for instance, my earlier publication.13 However, it is worthwhile highlighting here
some of the innovating features of AES. Basically, AES is a symmetric encryption
algorithm using blocks of 128 bit (twice the size of DES), and key sizes of 128, 192 or
256 bits (twice or four times the 64-bit DES key size). The ground-breaking innovation
in AES is the introduction of byte-to-byte multiplication, which comes as a supplemental
operation resource to the Boolean XOR addition of previous DES. For the bytes to keep
a constant size under multiplication, the operation requires the bytes to be expressed
in a polynomial representation, and the multiplication to be performed modulo some
irreducible polynomial. Although we will not have any use of polynomial multiplication
in this chapter, its principle is described in Appendix Y, for the sake of education and
also for the curious or demanding. The AES algorithm is completed by various stages
of mingling together the plaintext and key “sub-bytes,” shifting the result by rows and
columns, and effecting complex permutations thereof through an “S-box” look-up table.
Cryptanalysts have shown that with a 256-bit key, AES has a complexity of 2100 (and
not 2256), which comes close, so to speak, to that of 3DES, which is about three orders
of magnitude greater (2112).

As a concluding statement, it should be stressed herewith that cryptography is hardly
limited to encryption, decryption and key exchange protocols. Indeed, to communicate
messages safely through any of the above-described cryptosystems is not all that mat-
ters in real cryptospace. There exists a broad catalog of other severe issues and more
immediate threats, which academics focusing on quantum alternatives generally tend
to overlook, while these represent far more serious exposures to attacks, even at basic
network layers. For instance, how can Bob be confident that Alice is the real Alice, and
the reverse? How are they confident that their messages, as received, are the ones they
intended to share? This is the realm of digital signatures and message authentication.
As the name indicates, a digital signature is a way of certifying, within reasonable
confidence, that the message originator Alice is really the person claimed, or that her
signature is technically unforgeable. Authentication is different. It ensures that nothing
in the message was altered, even to the level of a single punctuation mark. This protec-
tion is important in all matters pertaining to official records, such as titles, patents, or

13 E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Optical Components
and Networks, and Cryptography (New York: John Wiley and Sons, 2004), Ch. 3, pp. 345–477.

25.7 Quantum cryptography 543

tax declarations (contents and time stamping), contracts, authorizations, and confidential
orders, for instance. The key to these processes is the use of hash functions, which can be
viewed as one-way encryption. For short, and to convey a flavor, a 10 000-page plaintext
book can be “hashed” into a 512-bit signature (the “hash”). The same plaintext with a
single comma being altered would yield a fully different hash, immediately betraying
any forgery. The hashing algorithm also makes it extremely difficult for Eve to forge a
plaintext while yielding the same hash (referred to as hash attack). For a basic introduc-
tion to PKC-based signature, authentication, and hash algorithms, see my earlier book.14

As also outlined in the reference, there exist many futuristic applications of cryptogra-
phy, which are likely to mark the next generations, starting with present times: certified
email, anonymous digital cash, simultaneous secret exchange, and contract signature
and global electronic polling or voting, to quote a few. Such not-so-distant applications
of cryptography are only a hint of the vastness and complexity of the subject, especially
when it comes to the border of individual rights and privacy protection issues. It would
be naive to trust that rights and privacy would be better protected if under the full control
of computing systems. The two examples of electronic voting and digital cash point to
future controversies and new forms of potential abuse. A so-called perfect electronic
voting or digital cash system could be hacked, causing the nullity of elections or cash
transactions, and putting democracy and private rights at an unprecedented level of risk.
And this observation remains true and accurate despite any means of “provably secure”
transmission of data!

Quantum cryptography, to be described in the next section, should, therefore, be
addressed within the full scope of communications security and its applications, a
field that relies essentially on classical cryptoalgorithms. While quantum cryptography
represents a true revolution in the field, it only solves some of the many issues faced
by communications security. This is the correct perception I seek to convey here by
having made this chapter a comprehensive description of cryptography from classical to
quantum, rather than exclusively focusing on the second, which would have missed the
global application context.

25.7 Quantum cryptography

In this section, and the following ones, we shall venture into the intriguing and tricky
subject of quantum cryptography (QC). After having reviewed the vast array of possi-
bilities offered by classical cryptosystems (DES, AES, PKC) and being convinced that
a would-be “Eve” would face extreme difficulties in code-breaking attempts, we may
first wonder about or challenge the usefulness of QC approaches. It is possible to answer
such a question straight away. First, from any current knowledge, it must be stated that
QC is not a means of encrypting and decrypting information; rather, it is a means of
distributing secret keys over a public channel; moreover, such an approach, referred to

14 E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Optical Components
and Networks, and Cryptography (New York: John Wiley and Sons, 2004), Ch. 3, pp. 345–477.

544 Classical and quantum cryptography

as “quantum key distribution” (QKD), is provably, absolutely secure according to the
laws of quantum mechanics.

The above important statements will serve as a conceptual background for the fol-
lowing description of QC and QKD and avoid raising other expectations. Here, we
shall not venture into the debate of assessing whether or not absolute security (vs. that
offered by PKC, for instance) is at all required in any secret-key exchange, or its impact
on global communications security. The purpose of this chapter is only to convey the
principle of how QKD works and not to try measuring the pros and cons of the approach
from industrial and realistic network-environment standpoints. This being said, provable
absolute security in the process of key exchange may only be seen as a desirable “extra”
feature, especially if proven practical to implement and compatible with higher-layer
network standards. The main difficulty is that academics involved in PKC may fail to
recognize several other forms of network-security threats, particularly at the level of
Alice and Bob, who just manipulate classical bits at a bottom network-layer level. The
main argumentation in favor of PKC is the impossibility of Eve’s capturing the secret
key without Alice’s and Bob’s awareness, and this is true as long as Eve’s attack only
concerns the quantum channel over which the key is exchanged. It is assumed that Alice’s
and Bob’s computers and local networks cannot be approached by Eve and be physically
tapped, including by wireless means. This is the main assumption to keep in mind while
discovering the extraordinary elegance of QKD and accepting the “absoluteness” of its
security.

In the forthcoming sections, we shall consider several QKD approaches, referred to
as QKD protocols. Since QKD is about key exchange, the quantum channel must be a
communication channel involving physical distance. Thus, its implementation requires
one to use light and its quantum constituents, photons. It is important, therefore, to
describe beforehand the properties of electromagnetic waves and the associated quantum
measurements, which are both at the root of QKD. In the description, I shall also develop
the necessary parallels with QIT and qubit and operator formalism.

25.8 Electromagnetic waves, polarization states, photons, and quantum
measurements

In this section, we review the basic physical properties of light, and how these properties
can be conceptually, and quite nicely, related to that of quantum states.

The elementary particles of light, or equivalently, light energy quanta, are called
photons. The particle-like characteristics of light only appear at relatively low light
powers, where the number of quanta approaches the order of unity.15 At macroscopic
scales, with large numbers of quanta, such photon granularity vanishes, and light appears
to the physical observer in the form of an electromagnetic (EM) wave. The EM wave is

15 More specifically, the average number of photons 〈n〉 emitted per second (units of photon/s) by a light source
of power P (units of W) at electromagnetic frequency ν (units of Hz or s−1) is defined as 〈n〉 = P/(hν),
where h = 6.62 × 10−34 J/s is Planck’s constant.

25.8 Electromagnetic waves, polarization states, photons, and quantum measurements 545

Ray
direction

E (t)

M (t)

Figure 25.2 Electromagnetic wave associated with a light ray, showing electric (E) and magnetic
(M) components oscillating in orthogonal planes

made up of two oscillating field components, one electrical (E) and one magnetic (M),
as illustrated in Fig. 25.2. The two EM field components oscillate in planes orthogonal
to the direction of the EM-wave propagation, which is that of the associated light ray.
The direction pointed to by either the E-field or the M-field oscillation is referred to
as light polarization. When the E-field direction is orthogonal to the ray direction, one
refers to the light beam as being transverse-electric, or TE-polarized. In the other case,
where the M-field is orthogonal to the ray, the light is called transverse-magnetic, or
TM-polarized. When the polarization is either TE or TM, light is said to be linearly
polarized. For short, we can say that linearly polarized light is either vertically (TE) or
horizontally (TM) polarized. As a first hint of quantum mechanics, one refers to the TE
and TM possibilities as polarization states. Consistently, the TE and TM polarization
states are said to be orthogonal. Occasionally, I shall designate the TE and TM states by
the symbols � and ↔, respectively.

Linear polarization, in fact, represents a special case where the E-field component
oscillates with a constant direction in space, meaning that its oscillation plane is fixed. In
the most general case, we may conceive of the E-field as resulting from the superposition
of two orthogonally polarized components E1, E2, each one being characterized by its
own phase, ϕ1, ϕ2. If the two components are in phase (ϕ1 = ϕ2), then the resulting
E-field is linearly polarized. If not (ϕ1 �= ϕ2), the resulting E-field direction rotates over
time. To see this more clearly, define an orthonormal basis �u1, �u2 associated with the
two E-field components. It is then possible to express the resulting E-field in this basis
as a vector with two complex coordinates Ekeiϕk , k = 1, 2 according to:

E =
(

E1eiφ1

E2eiφ2

)
eiωt , (25.7)

where ω = 2πν is the oscillation frequency in radian/s. In the case ϕ1 = ϕ2 ≡ ϕ, we
have from the above definition

E = eiφ

(
E1

E2

)
eiωt , (25.8)

546 Classical and quantum cryptography

which corresponds to a time-invariant direction, (or oscillation plane) of the E-field.
With the appropriate basis rotation (the choice being conventional), we may also
write

E = eiφ

|E |
(

1
0

)
eiωt , (25.9)

which corresponds to a TE-polarized state. Such a representation is immediately rem-
iniscent of a quantum state, namely here the qubit |0〉 from the basis {|0〉, |1〉}. We
may, thus, identify the TE polarization state with the quantum state |0〉. Consistently,
we identify the TM polarization with the quantum state or qubit |1〉, but with an E-field
relative phase to be determined later on.

Consider next the case ϕ1 �= ϕ2 or δϕ = ϕ1 − ϕ2 �= 0. Let us rewrite Eq. (25.7) as

E = ei ϕ1+ϕ2
2

(
E1ei δϕ

2

E2e−i δϕ

2

)
eiωt , (25.10)

where we have overlooked the common phase factor ei(ϕ1+ϕ2)/2. Taking the real part of
the E-field, we obtain:

E =

⎡
⎢⎢⎣

E1 cos

(
ωt + δϕ

2

)

E2 cos

(
ωt − δϕ

2

)
⎤
⎥⎥⎦ . (25.11)

The result in Eq. (25.11) shows that the two E-field components alternatively reach maxi-
mal amplitudes at times t = 2nπ − δϕ/(2ω) and t ′ = 2nπ + δϕ/(2ω), respectively, with
n being an integer. The E-field direction, thus, periodically rotates about the light ray
axis at the frequency ω = 2πν. Consider the special case δϕ = π/2, and for simplicity
assume E1 = E2 = 1. From Eq. (25.11), and after basic trigonometry we obtain (within
an arbitrary phase ϕ):

E ≡
[

cos (ωt + ϕ)
sin (ωt + ϕ)

]
. (25.12)

The result in Eq. (25.12) shows that the E-field periodically rotates about the ray axis at
the frequency ω = 2πν, the vector end describing a corkscrew-like trajectory. It is easily
established that for an observer looking at an incoming light ray, the E-field appears to
rotate in the clockwise (cw) direction. In the case δϕ = −π/2, we obtain a similar
conclusion, except that the E-field rotates in the counterclockwise (ccw) direction. In
both cases, light is said, therefore, to be circularly polarized. Conventionally, one refers to
the ccw case as representing right-circular polarization and the cw case as representing
left-circular polarization.16 As in the linear-polarization case, we may view the two
circular polarizations as representing two orthogonal states (orthogonality to be shown

16 This convention is easy to remember when looking at one’s right or left hands, the thumb pointing up and
the fingers bent. With the right hand, the fingers indicate a ccw direction, while with the left hand, they
indicate a cw direction.

25.8 Electromagnetic waves, polarization states, photons, and quantum measurements 547

hereafter). Occasionally, I shall designate the right- and left-circular polarization states
by the symbols ∪ and ∩, respectively.

Back to complex notation, we may represent the circularly polarized E-fields according
to the decomposition:

E = 1

|E |

(
ei δϕ

2

e−i δϕ

2

)
eiωt

= ei δϕ

2

|E |
(

1
0

)
eiωt + e−i δϕ

2

|E |
(

0
1

)
eiωt

= eiϕ

[
1

|E |
(

1
0

)
eiωt + e−iδϕ

|E |
(

0
1

)
eiωt

]
,

(25.13)

where ϕ = δϕ/2 is an arbitrary phase factor. For circularly polarized E-fields we have

E± = eiϕ

[
1

|E |
(

1
0

)
eiωt + e±i π

2

|E |
(

0
1

)
eiωt

]

≡ eiϕ

[
1

|E |
(

1
0

)
eiωt ± i

1

|E |
(

0
1

)
eiωt

]
.

(25.14)

The decomposition in Eq. (25.13) is immediately reminiscent of a quantum state super-
position! Indeed, if we define the second term in the decomposition as ± |1〉, the super-
position is equal to |0〉 + |1〉 ≡ √

2 |+〉 in the upper case (+, or cw, or left-circular
polarization, or ∩), and to |0〉 − |1〉 ≡ √

2 |−〉 in the lower case (−, or ccw, or right-
circular polarization, or ∪). Within a normalization factor of 1/

√
2, we see that the two

circularly polarized states ∩,∪ are equivalent to the quantum states or qubits |+〉, |−〉.
We can now check the states orthogonality by effecting the (Hilbert-space) scalar
product:

E+ · (
E−)∗ = eiϕ

|E |
[(

1
0

)
+ i

(
0
1

)]
eiωt ·

{
eiϕ

|E |
[(

1
0

)
− i

(
0
1

)]
eiωt

}∗

= 1

|E |2
(

1
i

)
·
(

1
i

)

= 1

|E |2
(
1 + i2

)
≡ 0,

(25.15)

which is the expected result, just as |+〉, |−〉 are orthogonal states. It is left as an easy
exercise to show that the superposition of two circularly polarized E-fields having oppo-
site directions (i.e., E+ ± E−) yield linearly polarized E-fields. This result is expected,
since within a 1/

√
2 normalization factor, we know for a fact that |+〉 + |−〉 = |0〉 and

|+〉 − |−〉 = |1〉. Thus, circular polarization states can be viewed as the superposition
of two linear polarization states (oscillating in quadrature), and the reverse.

The above demonstration, albeit somewhat tedious, was very well worth it: it made
it possible to reach a major conclusion: there exist four special states of polarization
for the classical E-field, which form two orthogonal bases, namely {�,↔} and {∩,∪},
respectively. Furthermore, there exists a one-to-one correspondence between these two

548 Classical and quantum cryptography

bases and the quantum bases {|0〉, |1〉} and {|+〉, |−〉}, respectively. We must notice
that in order to reach this conclusion we did not need to make any assumption about
the quantum nature of light. Such an assumption will come into the picture later, when
considering single-photon measurements. It will turn out, however, that the EM field
associated with the photon is essentially described by the same {�,↔}, {∩,∪} bases
and, therefore, the above conclusion remains fully valid at quantum scales.

Next, I shall introduce an optical component referred to as a quarter-wave plate
(QWP). As the name suggests, it is a piece of flat material, and it is transparent to
light. The material, however, is a special type of crystal exhibiting the property of
birefringence. A material is said to be birefringent if the speed of light varies according
to the polarization orientation of the incident light ray (assumed linearly polarized). Thus,
the speed of light is faster in some polarization direction (referred to as the fast axis)
and slower in the orthogonal direction (referred to as the slow axis). If the incident light
ray is parallel to either the fast or slow axes, the light polarization remains unchanged.
However, if the fast (or slow) axis forms a 45◦ angle with the incident polarization,
the E-field component that projects onto the fast axis propagates faster than the E-field
component that projects onto the slow axis, thus, introducing a phase delay �ϕ between
the two components and, hence, making the state of polarization of the ray evolve as it
traverses the plate. The additional feature of the QWP is that its thickness is precisely
calculated in order for this net phase delay to be �ϕ = π/2 (corresponding to a quarter
wavelength, hence, the name). Intuitively, we may already infer that the QWP transforms
the input polarizations from linear to circular and the converse, and this inference is
absolutely correct! Let us prove such a property now. Assuming a linearly polarized
incident E-field, as defined in Eq. (25.8), and the QWP axes oriented at 45◦ (cw) from
the vertical axis, the incident E-field is projected along the QWP fast and slow axes
according to the definition:

Ein = eiφ 1√
2

(
E1 + E2

E1 − E2

)
eiωt . (25.16)

After traversing the QWP, the output E-field has become

Eout = eiφ 1√
2

[
E1 + E2

ei�ϕ (E1 − E2)

]
eiωt

≡ eiφ 1√
2

[
E1 + E2

i (E1 − E2)

]
eiωt .

(25.17)

Substituting E1 = 1, E2 = 0 (incident ray in the � orientation, or aligned with the fast
axis, or, conventionally, |0〉), we obtain:

Eout = eiφ 1√
2

(
1
i

)
eiωt

= eiφ 1√
2

[(
1
0

)
+ i

(
0
1

)]
eiωt ,

(25.18)

which is immediately identified as the left-circular polarization state, or ∩, or |+〉. Clearly,
the case E1 = 0, E2 = 1, corresponding to an incident ray in the ↔ orientation (or

25.8 Electromagnetic waves, polarization states, photons, and quantum measurements 549

aligned with the slow axis, or, conventionally, |1〉), yields the right-circular polarization
state, or ∪, or |−〉. Thus, the QWP converts linear polarization states into circular
polarization states, according to the transformations |0〉 → |+〉 and |1〉 → |−〉.

Let us show next the converse operation. Assume an incident ray that is circularly
polarized, according to the base ∩ or ∪ (equivalently, |+〉 or |−〉). It suffices it to substitute
E1 = 1 and E2 = ±i in Eqs. (25.16) and (25.17) to obtain for the output E-field:

Eout = eiφ 1√
2

[
1 ± i

i (1 ∓ i)

]
eiωt = eiφ 1√

2

[
1 ± i
i ± 1

]
eiωt

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eiφ 1√
2

(
1 + i
1 + i

)
eiωt ≡ eiφ+ π

4

(
1
1

)
eiωt

eiφ 1√
2

[
1 − i

− (1 − i)

]
eiωt ≡ eiφ− π

4

(
1

−1

)
eiωt .

(25.19)

As expressed in the vertical or horizontal basis (i.e., after rotating the reference axes by
45◦ ccw), the output E-field is, finally,

Eout ≡

⎧⎪⎪⎨
⎪⎪⎩

eiφ+ π
4

(
1
0

)
eiωt

eiφ− π
4

(
0
1

)
eiωt ,

(25.20)

which (within arbitrary phase factors) corresponds to the linearly polarized states � (top)
and ↔ (bottom), respectively. Thus, the QWP converts circular polarization states into
linear polarization states, according to the transformations |+〉 → |0〉 and |−〉 → |1〉,
as previously announced.

We may summarize all of the above conclusions by recalling from Chapter 16 that the
Hadamard matrix, H, precisely achieves the four transformations

⎧⎪⎪⎨
⎪⎪⎩

H |0〉 = |+〉
H |1〉 = |−〉
H |+〉 = |0〉
H |−〉 = |1〉.

(25.21)

This observation establishes that a QWP device transforms the polarized EM states
(�,↔,∩,∪) in a way strictly equivalent to that of the Hadamard matrix, H, on the
quantum states (|0〉, |1〉 |+〉, |−〉).

From the above description, we have seen that it is possible to manipulate the polar-
ization states of the EM field. To progress further, we must, at this stage, take into
account the quantum nature of light, namely the particle-like behavior of the photon.
Such behavior can be readily understood by considering the two experiments illustrated
in Figs. 25.3 and 25.4. In the first experiment (Fig. 25.3), we divide an incident EM
light beam with E-field E into two beams of equal E-field amplitudes; this is achieved
through a 50:50 beamsplitter. Since the incident EM power is given by P = |E |2, the
E-field amplitudes of the two output beams are E/

√
2. Two detectors placed on the

550 Classical and quantum cryptography

D2

D1

50 : 50
Beamsplitter

Light source

E 2

E

2

E

Detector

Detector

Figure 25.3 Dividing an EM light beam (electrical field E , power P = |E |2) through a 50:50
beamsplitter, resulting in two beams (electrical fields E/

√
2) of detected powers both equal to

P ′ = P/2.

SPD2

SPD1

50 : 50
Beamsplitter

SP source

Detector

Detector

Figure 25.4 Same experimental apparatus as Fig. 25.3 with single photons (SP) being emitted
and detected.

output beam paths measure equal EM powers of P ′ = P/2, as expected. The picture
becomes very different if we reduce the EM power to the point of reaching the level of
photon granularity, i.e., the number of photons emitted per second by the light source is
of the order of unity. The experimental apparatus shown in Fig. 25.4 is basically identical
to the previous one, except that now the light source produces single photons17 (SP) and
that the two detectors are capable of detecting such single photons. Since photons are
particle-like energy quanta, they cannot be split. On reaching the 50:50 beamsplitter,
therefore, they “choose” at random to follow one of the two possible beam paths.18

17 The sequence of single photons emitted by a light source can be visualized as individual drops falling in a
sink from a leaking tap, or individual cars passing on a highway lane: one at time, but at random times.

18 The choice for photons to take one path or the other is dictated by the random fluctuations of the “vacuum
field,” which enters through the fourth or unused port of the 50:50 beamsplitter.

25.8 Electromagnetic waves, polarization states, photons, and quantum measurements 551

The two choices have exact and equal probabilities of P = 0.5. As seen from the
figure, the key difference from the previous experiment is that the photon stream is
randomly partitioned. Each single-photon detector (SPD) receives one photon at a time,
which generates a “ping” count. A ping from detector SPD1 means that the photon
has chosen the straight-through path, while a ping from detector SPD2 means that
it has chosen the reflection path, as shown. If the straight-through and the reflection
paths have strictly equal lengths, there is no possibility of the detectors SPD1, SPD2

generating two pings or counts simultaneously. The two-count histogram is the same
as in a coin-flipping experiment (see, for instance, Fig. 1.3). Over a sufficient period
of time, the numbers of counts from SPD1 and SPD2 become about equal. This is
equivalent to saying that with a sufficiently large number of photons, the light beam
has been divided into two beams of equal power, as in the previous experiment with
classical light. The second experiment, which is routinely done in the laboratory, rep-
resents one of the many physical proofs of the quantum nature of light and its photon
granularity.

From this point on, we shall assume that we are dealing with single photons, and
that the associated E-fields are in any of the four polarization states {�,↔}, {∩,∪} or
equivalently {|0〉, |1〉}, {|+〉, |−〉}, respectively. For short, we may say that the photon “is”
in any of these quantum states. Next, I introduce two other components: the half-wave
plate (HWP) and the polarization beamsplitter (PBS).

As its name indicates, the HWP is similar to the previously described QWP, except
that the net phase delay experienced by two orthogonal E-field components is now π

or one half of a wavelength. As in the QWP case, the fast axis of the plate must be
oriented at 45◦ of the incident E-field polarization direction, assumed linear. Since the
phase shift corresponds to a factor eiπ = −1, the sign of one of the two polarization
components is reversed, and the result is a 90◦ rotation of the incident linear polarization.
Thus, the HWP swaps the basis states {�,↔} into each other, which is equivalent to
the transformations |0〉 → |1〉 and |1〉 → |0〉, corresponding to the action of the Pauli
matrix X on the states |0〉, |1〉 (see Chapter 16). If the incident E-field polarization is
circular, the HWP axis orientation is unchanged, but the direction of rotation is reversed.
Thus, the effect of the HWP is to swap the basis states {∩,∪} into each other, which
is equivalent to the transformations |+〉 → |−〉 and |−〉 → |+〉, corresponding to the
action of the Pauli matrix Z on the states |+〉, |−〉 (see Chapter 16). Thus, placing a
HWP next to a linearly polarized SP source and orienting it at either 0◦ or 45◦ makes
it possible to generate single photons into either the |0〉 or the |1〉 linear-polarization
state. The PBS is a special assembly of birefringent crystal prisms whose effect, as the
name indicates, is to separate an incident light beam into two orthogonally polarized
components. As shown in Fig. 25.5, a detector SPD1 placed in the straight-through path
only detects vertically polarized, or |0〉 photons, while a detector SPD2 placed in the
“reflection” path only detects horizontally polarized, or |1〉 photons. The PBS–SPD1–
SPD2 set-up, thus, constitutes a quantum measurement apparatus to determine the state
of linearly polarized photons. If a count is obtained from SPD1 or from SPD2, we may
attribute the values +1 or –1, respectively, to these two possible measurements. Recall
from Chapter 16 that |0〉, |1〉, and ±1 are the eigenvectors and eigenvalues of the Pauli

552 Classical and quantum cryptography

SPD2

SPD1

001

1

PBS

Figure 25.5 Splitting a light beam of single, linearly polarized photons through a polarization
beamsplitter (PBS). The apparatus corresponds to a measurement of photon states in the Z basis.

SPD2

SPD1

PBS
0+−

1

QWP

Figure 25.6 Splitting a light beam of single, circularly polarized photons through a polarization
beamsplitter (PBS) preceded by a quarter-wave plate (QWP). The apparatus corresponds to a
measurement of photon states in the X basis.

matrix Z , according to:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z |0〉 = |0〉 ↔
(

1 0
0 −1

) (
1
0

)
=

(
1
0

)

Z |1〉 = − |1〉 ↔
(

1 0
0 −1

)(
0
1

)
= −

(
0
1

)
.

(25.22)

Thus, measuring linearly polarized photons is equivalent to “observing” Z , or equiv-
alently, to operating in the measurement basis {|0〉, |1〉}, or, for short, in the Z
basis.

A different set-up, which involves circularly polarized photons, is shown in Fig.
25.6. The generation of left- or right-circularly polarized photons is achieved by plac-
ing a QWP (quarter-wave plate) next to a linearly polarized SP source, with its fast
axis at 45◦ cw or ccw, respectively. A way to tell whether a photon is left- or right-
circularly polarized is to convert its polarization into a linear polarization, followed by the

25.8 Electromagnetic waves, polarization states, photons, and quantum measurements 553

Table 25.7 Probabilities p(±1) of measuring eigenvalues ±1 (counts in detectors SPD1 or SPD2)
according to input photon state (�, ↔, ∩,∪ or |0〉, |1〉, |+〉, |−〉) and measurement apparatus (X , Z).

Input photon state � or |0〉 ↔ or |1〉 ∩ or |+〉 ∪ or |−〉

Measurement basis X Z X Z X Z X Z

p(+1) 0.5 1 0.5 0 1 0.5 0 0.5
p(−1) 0.5 0 0.5 1 0 0.5 1 0.5

PBS–SPD1–SPD2 apparatus, as illustrated in the figure. The QWP–PBS–SPD1–SPD2

set-up, thus, constitutes a quantum measurement apparatus to determine the state of
circularly polarized photons. If a count is obtained from SPD1 or from SPD2, we may
attribute the values +1 or –1, respectively, to these two possible measurements. Recall
from Chapter 16 that |+〉, |−〉, and ±1 are the eigenvectors and eigenvalues of the Pauli
matrix X , according to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X |+〉 = |+〉 ↔
(

0 1
1 0

)
1√
2

(
1
1

)
= 1√

2

(
1
1

)

X |−〉 = − |−〉 ↔
(

0 1
1 0

)
1√
2

(
1

−1

)
= − 1√

2

(
1

−1

)
.

(25.23)

Thus, measuring circularly polarized photons is equivalent to “observing” X , or equiv-
alently, to operate in the measurement basis {|+〉, |−〉}, or, for short, in the X basis.

Assume, next, that we have no knowledge of the input photon states. For the mea-
surement, we have the possibility of using either the X or the Z bases. What happens
if we choose the wrong one (namely X for linearly polarized photons, and Z for cir-
cularly polarized photons)? There are two ways to answer such a question. The first
one is a classical answer. It has been established for a fact that circular polarization is
the superposition of two orthogonal linear polarizations (oscillating in quadrature), and
the reverse. Thus, a circularly polarized E-field incident on a PBS is decomposed into
its two linear-polarization components. Likewise, a linearly polarized E-field incident
on a QWP–PBS apparatus is first transformed by the QWP into a circularly polarized
E-field, and then decomposed by the PBS into its two linear components. But this expla-
nation is valid only for classical E-fields! Indeed, consider now the case of polarized
single photons. A circularly polarized photon incident onto a PBS cannot be physi-
cally split into two linearly polarized photons. Since the photon is associated with two
linear-polarization states (oscillating in quadrature) it has to “choose” one or the other,
and such a choice comes with a 50% probability, as in the photon-beam partitioning
experiment described earlier. The same conclusion applies to the case of linearly polar-
ized photons incident on a QWP–PBS apparatus. The key conclusion is that measuring
photons with the wrong basis, i.e., circularly polarized photons with basis Z or linearly
polarized photons with basis X , produces equiprobable, random outcomes. The different
measurement possibilities are summarized in Table 25.7.

554 Classical and quantum cryptography

We now have all the necessary tools to describe the principle of quantum cryptogra-
phy, or, more precisely, the QKD protocols. Before proceeding to a formal description
of such protocols, it is useful to consider a communication link between Alice and
Bob, and how they may be able to communicate “secret” information by means of X -
and Z -basis photon-state preparations and measurements; this is described in the next
section.

25.9 A secure photon communication channel

In this section, we assume that Alice and Bob can send light signals to each other
by means of free-space-optics or an optical fiber link, which we refer to as a photon
communication channel. Both have single-photon sources that are capable of producing
photons in any polarization states (�,↔,∩,∪ or |0〉, |1〉, |+〉, |−〉), and independent
photon-measurement apparatus in the X and Z bases. What is possible for Alice is the
same as for Bob, so here we only need to consider the case of Alice transmitting photons
to Bob.

As a starting point, Alice generates a random 16-bit sequence from her end, say, for
instance:

1010 0011 1110 0100.

Then Alice prepares a sequence of 16 photons, which she randomly polarizes according
to the following selection rule (for instance):

For the 1 bit, use either � or ∩ polarizations at random;

For the 0 bit, use either ↔ or ∪ polarizations at random.

Consistently with the above bit sequence and random-selection rule, Alice’s preparation
yields (for instance) the following polarized-photon sequence:

�↔ ∩∪ ↔↔ ∩ �� ∪∩ ↔ ∪ ∪ ∩ � .

Alice then inputs the above photon sequence through the link. At the other end, Bob
receives the photon sequence and makes 16 corresponding measurements, according
to his own random choice of X and Z basis. Table 25.8 shows Bob’s basis choices
and the outcome of each of Bob’s measurements. Conventionally, and unless otherwise
specified, a +1 eigenvalue measurement will be now called a 1 bit of information,
and a −1 measurement will be called a 0 bit of information, respectively. The table
shows that Bob’s random choices of X and Z measurement bases are either “right” or
“wrong.” The right basis choices correspond to measuring �,↔ with Z , and ∩,∪ with
X . Comparing the top and bottom lines of the table, we notice that the right choices give
Bob information bits that are always correct with respect to Alice’ initial sequence. In
the other case of wrong basis choice, Bob’s information bits are inherently random and,
therefore, not correlated with those of Alice’s sequence.

25.9 A secure photon communication channel 555

Table 25.8 Alice’s 16-bit and corresponding photon-state sequence, Bob’s choice of X and Z measurement basis, and
the outcome of the measurements in terms of eigenvalues and corresponding 1 or 0 information bits. The outcomes
shown in bold correspond to Bob’s accidentally correct choices of measurement basis.

Alice’s bit sequence 1010 0011 1010 0011

Alice’s photon state sequence �↔ ∪∩ ↔↔ ∩ � � ∪∩ ↔ ∪ ∪ ∩ �
Bob’s measurement basis choice Z X Z X X Z Z X X Z X X X X Z Z
Bob’s measurement outcome (eigenvalue) +1 +1 −1 −1 +1 −1 +1+ 1 −1 −1+1+1 −1 −1 −1 +1
Bob’s measurement outcome (bit) 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1

Bob’s next move is to communicate to Alice, using a public channel like telephone or
email, not the bits he has measured, but his measurement-basis sequence, namely from
Table 25.8:

ZXZX XZZX XZXX XXZZ.

Such information will tell Alice Bob’s right choices in the measurement, since she is the
only one to know how she has coded the photon polarizations. She then uses the same
public channel to give Bob her answer, which comes in the form:

YesNoNoYes NoYesNoNo NoNoYesNo YesYesNoYes.

This information tells Bob where his measurements were right and, therefore, which
information bits are valid and which other ones are to be discarded.19 Thus, Bob and
Alice keep as valid the following bit sequence (− meaning discarded bit):

1 − −0/ − 0 − −/ − −1 − /00 − 1 ≡ 1001001,

which amounts to nine valid bits altogether. Since the probability of Bob choosing
the right measurement basis is 50%, it is clear that for longer sequences Bob would
obtain about 50% valid bits. Thus, if Alice sends a 1000 bit sequence to Bob, the whole
operation will result in obtaining a valid bit sequence of a length of nearly 500 bits. Such
a sequence can then be used by both Alice and Bob as a shared secret key to encrypt
and decrypt messages over a public channel, using DES or AES cryptoalgorithms, for
instance.20

19 Note that the same result can be obtained the other way around: over a public channel, Alice tells Bob
which bases she used to code each of the polarized photons, namely ZZXX ZZXZ ZXXZ XXXZ, and then
Bob tells Alice which of his measurements were right. What matters is that both Alice and Bob know which
bits are to be discarded in the sequence.

20 Here, I am not addressing the issue of photon loss due to effects such as atmospheric or fiber absorption. Put
simply, all photons must be generated within a certain time slot. The absence of photons in a given time slot
does not mean a measurement failure, but rather an absence of measurement (or a global, zero SPD1–SPD2

count). It is a basic engineering issue to predict the probability that, given the link budget and the photon
generation and measurement apparatus used by Alice and Bob, a polarized photon is successfully measured
from either end. Alice and Bob, thus, have an accurate knowledge of the photon-transmission capability
of their link, namely, how many photons can be successfully transmitted on average. Hence, any observed
deviation from this communication quality immediately betrays any wiretapping action on the link.

556 Classical and quantum cryptography

One may wonder how “safe” the above-described key-distribution approach is. How
can Alice and Bob be certain that no malicious Eve is able to intercept the key? The
answer is, in fact, quite simple: there is no possibility whatsoever for Eve to eavesdrop
the key-distribution channel. The proof of this statement is also quite simple: photons
cannot be split. The photon communications channel is, therefore, reputed “absolutely
invulnerable,” according to this fundamental law of quantum mechanics. There are many
subtleties associated with such a concept of “invulnerability,” which I reserve for the
reader to the end, see Section 25.13.

25.10 The BB84 protocol for QKD

In this section, I describe the BB84 protocol, named after its inventors C. H. Bennet and
G. Brassard, and the year of publication, 1984. The description made in the previous
section is essentially that of the BB84 protocol. Here, it just needs to be formalized
further and generalized to any key sizes. Note that the role of Alice and Bob can be
interchanged, each one being capable of generating a QKD session, which is also a
potential means for authentication and other security tests.

Alice uses a random-bit generator to produce two sequences A = (a1, a2, . . .) and
B = (b1, b2, . . .), each of N = (4 + �) n bits length, with � being a small integer
number playing the role of a reserve, and 2n being the desired key length (the explanation
for the factor of two comes later). Then she produces an N -qubit block sequence |ψ〉,
which can be expressed in the form:

|ψ〉 = ∣∣ψa1b1

〉 ⊗ ∣∣ψa2b2

〉 ⊗ · · · ⊗ ∣∣ψaN bN

〉
≡ N⊗

k=1

∣∣ψak bk

〉
.

(25.24)

For each cbit pair ak, bk the corresponding single qubit
∣∣ψak bk

〉
is generated according to

the following (possible) convention:⎧⎪⎪⎨
⎪⎪⎩

|ψ00〉 = |0〉
|ψ01〉 = |+〉
|ψ10〉 = |1〉
|ψ11〉 = |−〉 .

(25.25)

We observe that the random value of the bit bk determines the choice of either state,
|0〉, |+〉 (or �,∩ with polarized photons) to represent ak = 0, and the same with |1〉, |−〉
(or ↔,∪ with polarized photons) to represent ak = 1. We may also state that bk = 0
encodes the ak bit in the quantum basis Z , and bk = 1 encodes the ak bit in the quantum
basis X . This generalizes the description made in the previous section.

The N -qubit block |ψ〉 is then input to the quantum communication channel by Alice,
and Bob receives the state ρ = ε (|ψ〉 〈ψ |). Such a formulation recalls that the channel
is characterized by a quantum operation ε, which includes any effects such as quantum
noise and Eve’s wiretapping.

25.10 The BB84 protocol for QKD 557

At his end, Bob uses a random-bit generator to produce a sequence B ′ = (b′
1, b′

2, . . .)
of N = (4 + �) n bits length. This is the random sequence he uses to determine the
choice of measurement basis, X or Z , for each of the received qubit. For instance, Bob
can choose conventionally that if b′

k = 0, the measurement basis is Z , and if b′
k = 1

the measurement basis is X . In any case, there is a 50% chance of this measurement
choice being “right” or “wrong,” according to the description in the previous section.
The outcome of Bob’s measurement is, thus, a random sequence A′ = (a′

1, a′
2, . . .) of

length N = (4 + �) n.
Using a public channel, either Bob announces to Alice his sequence of state-

measurement bases (ZXZX . . .), or Alice announces to Bob her sequence of state-
preparation bases (ZZXX . . .). The other person then tells which bits are to be discarded,
according to the fact that either measurement or preparation was made in the “wrong”
basis. The wrong bits being discarded, the two bit sequences A (from Alice) and A′ (from
Bob) are, thus, reconciled. With a sufficiently large bit sequence length N = (4 + �) n,
there is a high probability that there are at least 2n valid bits in A, A′. In the contrary
event, the protocol session must be aborted and restarted with new random sequences
A, B, B ′.

We may conclude too quickly that the above protocol wholly suffices to guarantee
the strict equality of Alice’s and Bob’s bit strings, or A = A′. Indeed, there is yet a
possibility that the quantum channel used by Alice and Bob is corrupted by the effects
of random quantum noise and also Eve’s tampering actions (e.g., suppressing, injecting,
or modifying some of the qubits). In this last event, Eve is capable of obtaining partial
information about the secret key and, therefore, a higher level of security is required from
Alice and Bob. This is where the techniques of secret key distillation (SKD) through
information reconciliation and privacy amplification come into the picture. It is beyond
the scope of this chapter to venture into the mathematical details of SKD algorithms.
Here, it will suffice to convey a rough idea of the underlying principle.

At this point, Alice and Bob have validated two 2n bit sequences, A, A′, but have no
reason to believe that these do perfectly match. Further, they suspect that some of the
bits might have been corrupted by quantum noise and eavesdropping. Their next step is
to effect “information reconciliation.” Alice selects a random subset X of n bits from
her sequence A, sends X to Bob over a public channel (assumedly error-free) and also
informs Bob which bits she has selected. Bob receives a sequence Y , which he is then
able to compare with the corresponding n-bit selection from his A′ sequence. Bob then
deduces the error syndrome E (as defined by Y = X + E), deducts the number of errors
e and tells Alice the value over the public channel. If e is over a certain commonly agreed
threshold t , the QKD protocol is immediately aborted. In the favorable case (e ≤ t), Alice
and Bob use a secret classical code, C1, having an error-correction capability of t , and
unknown to Eve. This makes it possible for each to determine a common codeword
W = X ′ = Y ′ corresponding to the correction of X and Y under this code. Yet it can
be shown that Eve is able to possess partial information about W . Then the next step
is for Alice and Bob to perform “privacy amplification,” which consists of extracting
from W a smaller secret key S of size m < n, based on their remaining n bits. How they
achieve this and why, in this process, Eve’s information about the reduced key S is lost

558 Classical and quantum cryptography

to an arbitrarily high level of confidence, is beyond the scope of this chapter to describe.
The lesson to retain from the obligation for Alice and Bob to perform SKD is that QKD
alone is not as “absolutely secure” a protocol as is commonly believed.

25.11 The B92 protocol

A simpler version of the BB84 protocol, referred to as B92 (after its inventor, C. H.
Bennet, and the year, 1992), uses only two reference qubits. Alice uses a random-bit
generator to produce a single sequence A = (a1, a2, . . .) of N = (4 + �) n bits length.
Then she produces an N -qubit block sequence |ψ〉, which can be expressed in the form:

|ψ〉 = |ψa1〉 ⊗ |ψa2〉 ⊗ · · · ⊗ |ψaN 〉
≡ N⊗

k=1
|ψak 〉.

(25.26)

For each cbit ak the corresponding single qubit |ψak 〉 is generated according to the
following convention: ⎧⎨

⎩
|ψ0〉 = |0〉
|ψ1〉 = |+〉 = |0〉 + |1〉√

2
.

(25.27)

On receiving the block |ψ〉, Bob uses a random-bit generator to produce a sequence
A′ = (a′

1, a′
2, . . .) of N = (4 + �) n bits length. Conventionally, Bob chooses that if

a′
k = 0, the qubit measurement basis is Z , and if a′

k = 1 it is X . The outcome of
Bob’s eigenvalue measurement is a random-bit sequence B = (b1, b2, . . .) of length
N = (4 + �) n. Here, I shall use the convention according to which the eigenvalue +1
corresponds to bk = 0 and −1 corresponds to bk = 1.21 Bob’s different measurement
outcomes (eigenvalues and cbits bk as functions of cbits ak, a′

k) are summarized in
Table 25.9. We first observe from the table that if the “right” bases for Bob to measure
|ψ0〉 and |ψ1〉 are Z and X , respectively, the outcome is deterministic, since in either cases
Bob certainly obtains bk = 0, corresponding to ak = a′

k . Therefore, contrary to the BB84
protocol, the information about which are the “right” bases is surely not to be publicly
exchanged! Consider now the use of the “wrong” bases, which correspond to the cases
a′

k = 1 − ak . We observe from the table that Bob’s measurements randomly yield the
cbits bk = 0 or bk = 1 with equal chances. Thus, it is a matter of Bob communicating
his cbit sequence B = (b1, b2, . . . bN) to Alice over a public channel, while keeping
A′ = (a′

1, a′
2, . . . a′

N) secret. Only the bit pairs ak, a′
k yielding bk = 1 are retained by

Alice and Bob. Clearly, such public knowledge does not tell Eve anything about the
values of ak, a′′

k = 1 − ak , which have equal chances of being 0 or 1. This operation
yields two common subsets of A, A′′ with at least 2n valid bits (Bob needs to complement
his own bits, according to a′′

k = 1 − a′
k = ak , so that his subset matches Alice’s). The

21 The opposite convention, introduced earlier, is applicable to the B92 protocol if Alice chooses instead
|ψ0〉 = |1〉.

25.12 The EPR protocol 559

Table 25.9 Outcomes of Bob’s measurements (eigenvalues and cbits) according to Alice’s qubits and
Bob’s measurement basis Z, X .

Alice

ak = 0 ak = 1
|ψ0〉 = |0〉 |ψ1〉 = |+〉

a′
k = 0 Z |0〉 = |0〉 Z |+〉 = |0〉 or |1〉, 50% chances

Z Eigenvalue +1, bk = 0 bk = 0, 1
a′

k = 1 X |0〉 = |0〉 or |1〉, 50% chances X |+〉 = |+〉
X bk = 0, 1 Eigenvalue +1, bk = 0

Bob

rest of the B92 protocol follows the same path as that of BB84, i.e., using information
reconciliation and privacy amplification or SKD.

25.12 The EPR protocol

The EPR protocol, named after entangled EPR pairs or Bell states (see Chapter 16) was
invented by A. K. Eckert in 1991. The idea is that Alice and Bob share, over a quantum
channel, an ensemble of N = (4 + �) n such EPR pairs, based, for instance, on one of
the four EPR–Bell states:22

|β00〉 = |00〉 + |11〉√
2

. (25.28)

Prior to any measurement, the quantum state of Alice’s and Bob’s system is, thus, defined
by the N -EPR tensor:

|ψ〉 = |β00〉1 ⊗ |β00〉2 ⊗ · · · ⊗ |β00〉N

≡ N⊗
k=1

|β00〉k

= 1√
2N

(|00〉 + |11〉)⊗N .

(25.29)

As with previous protocols, Alice and Bob use random-bit generators to produce bit
sequences A = (a1, a2, . . .) and A′ = (a′

1, a′
2, . . . a′

N), of length N = (4 + �) n bits.
The bit values ak, a′

k determine their choice of measurement basis, for instance Z for
ak = 0 (Alice’s side) or a′

k = 0 (Bob’s side), and X in the other case, as applicable to
the first (Alice) and second (Bob) qubits, respectively, of any of the EPR pairs from
the above N -EPR tensor. The cbit outcomes of Alice or Bob measurements generate
random bit sequences B = (b1, b2, . . . , bN) and B = (b′

1, b′
2, . . . , b′

N), respectively.

22 EPR–Bell states can be physically generated through pairs of entangled photons. See, for instance:
http://physicsworld.com/cws/article/print/11360/1/smallphotons,
http://physicsworld.com/cws/article/news/24358,
www.quantum.at/research/quantum-teleportation-communication-entanglement/

entangled-photons-over-144-km.html.

560 Classical and quantum cryptography

How does an eigenvalue measurement with X or Z apply in the case of a single EPR
pair, such as |β00〉? The answer is simple, if one considers that the entangled state can
also be written in the form23

|β00〉 = |++〉 + |−−〉√
2

. (25.30)

If Alice uses X for her first qubit measurement of |β00〉, she obtains equally likely
eigenvalues ±1 with corresponding post-measurement or collapsed states |ψ〉B =
|+〉 or |−〉, and cbits bk = 0 or bk = 1, respectively (using the same convention
as in B92); or

If Alice uses Z for her first qubit measurement of |β00〉, she obtains equally likely
eigenvalues ±1 with corresponding post-measurement or collapsed states |ψ〉B =
|0〉 or |1〉, and cbits bk = 0 or bk = 1, respectively.

We note here that Alice’s measurements of the first qubits of the EPR pair |β00〉
result in the instant collapse of the state into one of the qubits, |ψ〉B = |+〉, |−〉,
|0〉, or |1〉, depending on the measurement type and its eigenvalue outcome. Such a
collapse is instant indeed, as a result of the intriguing property of entangled states
called nonlocality. This term is attached to any widely separated systems, which can-
not be treated as behaving independently, regardless their physical separation. It is
thought-provoking that the action of Alice (on her qubit) instantly affects the system
(hence, Bob’s qubit) without consideration of wave propagation subjected to the speed of
light, c. As in quantum teleportation (Chapter 18), there is no violation of Einstein’s
theory of special relativity, according to which information cannot travel faster than
c. The nonlocality of entangled states, which permits their instant collapse, does

23 To recall, the states |±1〉 are given by the qubit superpositions

|+〉 = 1√
2

(|0〉 + |1〉) , |−〉 = 1√
2

(|0〉 − |1〉) .

Thus,

|0〉 =
√

2

2
(|+〉 + |−〉) = 1√

2
(|+〉 + |−〉) , |1〉 =

√
2

2
(|+〉 − |−〉) = 1√

2
(|+〉 − |−〉)

and, hence,

|β00〉 = 1√
2

(|00〉 + |11〉)

= 1√
2

(|0〉 |0〉 + |1〉 |1〉)

= 1√
2

[(|+〉 + |−〉√
2

)
⊗

(|+〉 + |−〉√
2

)
+

(|+〉 − |−〉√
2

)
⊗

(|+〉 − |−〉√
2

)]

= 1√
2

[(|++〉 + |+−〉 + |−+〉 + |−−〉
2

)
+

(|++〉 − |+−〉 − |−+〉 + |−−〉
2

)]

≡ |++〉 + |−−〉√
2

.

25.12 The EPR protocol 561

not violate such a principle, because actually no information is exchanged in the
process.24

Next comes the clever thing about the EPR protocol. Indeed, if Bob then performs
a measurement on his remaining qubit (the post-measurement state) |ψ〉B , incidentally
at random with the same basis choices as Alice’s, there is absolute certainty that his
eigenvalues or cbits (b′

k) exactly match those of Alice’s (bk), just as with the BB84
protocol. Over a public channel, Alice and Bob only need to compare the bases they used
(namely the cbits ak, a′

k), and retain as valid only their secret cbits bk, b′
k corresponding

to the matching cases ak = a′
k .

The same conclusion applies should Bob perform his measurement before Alice,
or even at the same time! Indeed, the outcome of their measurements is independent
of their sequence order, as is an easy exercise to verify. In this perspective, the EPR
protocol is not a matter of mere key “exchange,” since, in fact, the key remains fully
undetermined until both measurements from Alice and Bob have been duly performed,
results compared, and valid cbits finally identified.

In view of making an inventory of common secret bits, by sharing measurement
bases over a public channel, the EPR protocol appears to be very similar to BB84.
The difference, however, is that Alice and Bob must share beforehand a wealth of
entangled states. This allows them to perform independent measurements, regardless of
time sequence and their roles as originator or recipient in the quantum channel. With
BB84, one or the other must agree on their roles (originator Alice or recipient Bob)
and about the protocol sequence, and only single qubits are “exchanged.” Although it
is more complex to implement, because of the need for entangled EPR–Bell states as
opposed to single qubits, EPR can be viewed as the conceptual “crown jewel” of QKD.
Like the other protocols, however, information reconciliation and privacy amplification
by SKD is required, to eliminate the effects of quantum noise and eavesdropping.

Another major issue, which concerns all QKD protocols, is distance. The different
quantum states that are exchanged (BB84, B92) or shared (EPR) by Alice and Bob must,
throughout the process, remain immune to various forms of physical perturbation, so as to
keep their coherence, a term to mean their initial qubit description. Those perturbations
introduce decoherence, whose nature is to ruin the protocol implementation and its

24 Here is a classical analogy (or Gedanken experiment) to illustrate the concept of nonlocality, which may
provoke animated discussions. Assume that Alice prepares two different envelopes, each including either a
picture of a cat or that of a dog, and seals them. Alice asks a third party to pick up one of the two envelopes.
This envelope is to be sent to Bob, an astronaut on a mission somewhere in the Solar System (meaning several
light-hours away). We may conceive of the system represented by the two envelopes altogether forming the
entangled superposition |β〉 = (|cat〉A |dog〉B + |dog〉A |cat〉B

)
/
√

2, where only the qubit |·〉X (X = A, B)
is accessible and measurable by Alice (A) or Bob (B). The outcome of either measurement is equally likely to
be cat or dog. Alice may wait until Bob receives his envelope to open hers, or alternatively she may decide to
do it beforehand, hours ahead or just a few minutes before. Opening her envelope, Alice finds the dog! Then
she gets the instant knowledge that Bob will find, or has already found, the cat. And this despite the need for
the information to propagate for several hours through space. It may well be that Alice and Bob perform their
openings at the same universal time. They both instantly know who has the cat and who has the dog, without
exchanging information. This is an illustration of the principle of nonlocality of the combined system.
But it took Bob’s envelope to travel at (somewhere under) the speed of light to reach him, therefore, putting
a physical limit to the information flow from Alice to Bob, which is consistent with relativity.

562 Classical and quantum cryptography

magic. This is where quantum error correction (Chapter 24) may come to the rescue, but
as an additional burden to an approach otherwise presumed to be fairly straightforward in
implementation. It is important to recall here that error-correction in the quantum domain
requires fully operational quantum-gate circuits with qubit dimensions of seven to nine in
the quantum channel (as applicable to BB84, B92). Other techniques have been proposed
to purify, distil, or swap EPR pairs, making it possible to expand the channel reach in the
presence of quantum noise. Such considerations illustrate that it is theoretically possible
to implement both local and nonlocal QKD algorithms at global scales, but at the expense
of increased complexity in quantum processing and gate circuits. In contrast, classical
cryptography can pretend to globality – the key requirement of truly seamless network
security – while lacking the “provable invulnerability” of the quantum cryptosystem.

25.13 Is quantum cryptography “invulnerable?”

In this concluding section, I shall analyze how a malicious Eve may be able to tamper
with Alice’s and Bob’s secure photon communication (or QKD) channel and, hence,
threaten the concept of absolute secrecy in key exchange and message communication.

Assume, first, that a malicious Eve puts a “wire tap” somewhere inside Alice and
Bob’s photon communication channel. To access the information originally destined for
Bob, Eve must perform photon measurements. But like Bob, she does not know, for each
of the incoming photons, which measurement basis, X or Z, could be the correct one.
Eve may perform the measurement anyway, but she now has to generate new photons in
replacement, so that Bob does not notice anything. But this is where Eve is tricked: she
does not know in which basis-state Alice generated the input photon (X or Z), so she has
to make a guess with a 50% chance of being right. When Bob measures Eves’ photon
substitute, he also has a 50% chance of choosing the right measurement basis. At the
end of the process, when Bob communicates his measurements to Alice over the public
channel, it immediately appears that he has been only 25% successful! And this is the
signature of Eve’s wiretap. Eve may try to outsmart Alice and Bob by not measuring all of
Alice’s photons, but only a few at random, in the hope that her tampering is not detected,
and retrieve at least some part of the secret key. But even this approach cannot succeed.
This is because Alice will immediately detect that Bob does not get the right proportion
of correct bits. The widely known conclusion is that it is not possible to eavesdrop a
photon communication channel without Alice and Bob becoming immediately aware of
it. To remain undetectable, however, Eve may choose instead to tamper with only a few
photons amongst a long sequence. She may even occasionally luck out in intercepting
and re-emitting some of the photons in the right bases. This approach is referred to as a
man-in-the-middle attack (MIMA), see more later. It may be justly argued that MIMA
would not give Eve sufficient information to figure out the whole key. However, the key
is weakened to some extent, and this fact justifies the need for SKD. Thus, contrary to
widespread acceptance (except in the expert community), QKD alone is not absolutely
secure, while QKD + SKD provably is, as far as the key-exchange protocol is concerned.
See further for more discussion on how such a notion as “absolute security” may be
otherwise challenged.

25.13 Is quantum cryptography “invulnerable?” 563

If Eve is capable of eavesdropping Alice’s and Bob’s public communication channel,
can she derive any useful information about their secret key? At a first level of analysis,
the answer is definitely no. All the information that Eve has access to is ZXZX . . . from
Bob’s side, and YesNoNoYes . . . from Eve’s side. Such information does not reveal in
any way the outcome of Bob’s valid measurements (±1 eigenvalues, or 1 and 0 bits). The
fact that Eve knows which of Bob’s measurements were right does not tell her, in any way,
which are the measured and valid bits. At a second level of analysis, however, the tapped
information makes it possible for Eve to analyze the possible algorithms according to
which Alice and Bob choose their random basis and measurement sequences. Thus,
rather than trying to wiretap the key, Eve may figure out Alice’s and Bob’s random-
sequence generation algorithms and, thus, reconstruct or predict, with some potential
success, the key exchange. Should Eve access the technology used by Alice and Bob
for random-key generation, she does not need to eavesdrop their photon communication
channel anymore, having a powerful tool for key attacks on the classical DES and AES
ciphers. This is referred to as random-number generator attack (RNGA).

A second possibility for Eve is to impersonate Bob, which is the spirit of MIMA. Eve,
a central office (CO) or point-of-presence (POP) network employee, may, indeed, figure
out how to take over the public communication channel used by Alice and Bob to finalize
their key exchange. Basically, the operation results in a key exchange K between Alice
and Eve (and not Alice and Bob), all without Alice’s and Bob’s awareness. Eve may
then impersonate Alice by proceeding to a key exchange K ′ with Bob, again without
their awareness. Eve must also be able to intercept the encrypted messages, but this is an
easier task, considering her CO or POP access prerogatives. Assuming that Eve has been
successful in implementing such a complex arrangement altogether, she has become the
“man in the middle” (so to speak). Consider, indeed, Eve’s following course of action:

Intercept Alice’s encrypted message M , along with K as the secret key (that Alice
thought she was sharing with Bob), call it EAlice

K (M), and perform decryption, i.e.,
generate M = DEve

K (EAlice
K (M));

Possibly change Alice’s message M into some other message M ′ and perform re-
encryption with Eve’s new key K ′, i.e., generate EEve

K ′ (M ′);

Perform key exchange with Bob, resulting in shared secret key K ′;

Send Bob the encrypted message EEve
K ′ (M ′).

The above appears as a perfect MIMA of the reputedly “invulnerable” channel. No
quantum-mechanical principles have been violated in the process, only the confidence
that Alice and Bob are the only, exclusive, communicating parties. To achieve such a
success in “breaking” the QKD channel and value chain, however, Eve must completely
control both photon and public communication channels, to prevent them to “compare
notes” and detect any anomaly. This would assume another level of verification protocol,
which can, in turn, be attacked by malicious Eve.

It is noteworthy to mention the giant-pulse attack (GPA). Alice’s and Bob’s transmitter
and receiver photon-measurement terminals are obviously protected from any optical
reflections in their shared link, a concept referred to as a return loss. Such a return
loss, which expresses the probability that a single photon will be reflected might range

564 Classical and quantum cryptography

between 10−2 and 10−6. A “giant” light pulse, with 102 − 106 photons, may provide
Eve some information about Alice’s and Bob’s choices of X and Z bases, as based on
the polarization state (�,↔,∩,∪) of the reflected pulse. Additionally, such a probing
is performed at a wavelength different from that used by Alice and Bob, so that Eve’s
probing action may remain essentially unnoticed. This type of “side-channel” attack
illustrates that QKD’s absolute security may be challenged by classical means, and
that great care must be taken in any physical inplementation of QKD to eliminate the
possibility of any side channels.

Another form of attack, which is far more straightforward, is for Eve to sever the
photon communication channel physically. This is referred to as the denial-of-service
attack (DoSA). The contingency plan for Alice and Bob would be to resort to classical
cryptosystems and network means, exposing themselves to ordinary forms of classical
security attack. Finally, the weakest point in a quantum cryptosystem is not the link,
which, as we have seen, cannot be tampered with, without triggering alarms, but the
terminals themselves. Since these terminals must be connected to a network of some
kind, they are potentially exposed to attacks, for instance “spy” viruses, which can detect
the keys that are exchanged between Alice and Bob. Considering these possibilities, is
it possible to state that a quantum cryptosystem is absolutely secure? The answer is yes,
but only within a certain set of assumptions regarding the security of the other elements
in which the cryptosystem is embedded. The worst situation for Alice and Bob would be
to trust, in absolute confidence, a system that could be wired without their awareness.

An element that remains central to the discussion about cryptosystem security is the
criticality of the application: what information must be protected, and how critical is the
communication success? In situations of conflict, where all the communications means
(civilian or military) may be disabled, denied, or destroyed, there must always remain
one way or another for communicating critical information. The cryptosystem must be
able to borrow multiple, if not redundant, paths, just as with the Internet protocol. It must
also be able to reach Alice or Bob anywhere they may happen to be, supposedly not in a
predefined place. Notwithstanding its inherent strength, QKD remains a point-to-point,
local cryptosystem whose extension at global scales and possibilities for path redundancy
seem impractical. Furthermore, a classical communication channel is always required
for Alice and Bob to compare measurements and agree on the secret key. The main
assumption of QKD is that such a channel is always available, and resilient against any
form of attack, and in realistic conflict situations this fact cannot be taken for granted!

Finally, it is important to stress that despite the availability of provably-secure QKD
protocols, the core cryptosystems eventually used in any classical message/ciphertext
channels (DES, AES, and future upgrades) remain 100% exposed to conventional attacks
(cryptanalysis, code-cracking . . .). Thus, channel security ultimately rests upon the
classical notion of “code invulnerability”, which represents a “reasonable conjecture”
within a cryptosystem’s lifetime.

This discussion leads to the closing conclusion that despite its awesome conceptual
elegance, quantum cryptography (or QKD) only represents a supplemental technique of
information protection, to be situated somewhere within the grander domain of global
network security, where there exists no such a thing as “absolute” confidence in any
cryptosystems.

Appendix A (Chapter 4) Boltzmann’s
entropy

Task 1

Show that the number of ways W of arranging N particles into m boxes with populations
Ni is given by

W = N !

N1!N2! . . . Nm!
. (A1)

Let us proceed as follows: we first apply the property according to which the number of
ways of selecting n objects out of m objects (m ≥ n) is Cn

m = m!
n!(m−n)! , with ! representing

the factorial function:

1! = 1, 2! = 1 × 2, 3! = 1 × 2 × 3, . . . , n! = 1 × 2 × · · · (n − 1) × n,

with, by convention, 0! = 1. The number of ways of selecting N1 particles out of m
particles is, thus,

C N1
m = m!

N1!(m − N1)!
. (A2)

The number of ways of selecting N2 particles out of m − N1 particles is then

C N2
m−N1

= (m − N1)!

N2!(m − N1 − N2)!
, (A3)

and so on until the box of energy Em−1, which has a number of ways

C Nm−1

m−N1−N2−...Nm−2
= (m − N1 − N2 − · · · − Nm−2)!

Nm−1!(m − N1 − N2 − · · · − Nm−1)!

= (m − N1 − N2 − · · · − Nm−2)!

Nm−1!Nm!

(A4)

of being filled up. Multiplying all these possibilities together, we get

W = m!

N1!(m − N1)!

(m − N1)!

N2!(m − N1 − N2)!
· · · (m − N1 − N2 − · · · − Nm−2)!

Nm−1!Nm!
(A5)

and crossing out terms appearing in both numerator and denominator, two by two, leads
to the result in Eq. (A1).

566 Appendix A

Task 2

Show that (1/N) log W takes the following limit when the number of particles N (N =∑m
i=1 Ni) becomes infinite:

lim
N→∞

log W

N
= H, (A6)

where

H =
m∑

i=0

pi log pi , (A7)

and pi = Ni/N is the probability of finding Ni particles in the microstate of energy Ei .
To demonstrate the above result, notice first that from Eq. (A1), we have

log W

N
= 1

N
log

(
N !

N1!N2! · · · Nm!

)

= 1

N
log

N !
m∏

i=1

Ni !

 .

(A8)

Assuming x = N , Ni , is large, we use Stirling’s approximation formula:

x! = x x e−x
√

2πx

(
1 + 1

12x
+ a

x2
+ · · ·

)
, (A9)

where the series in parenthesis can be approximated to unity. Thus,

log W

N
≈ 1

N
log

N N e−N
√

2π N
m∏

i=1

N Ni
i e−Ni

√
2π Ni

= 1

N
log

(
N N e−N

√
2π N

) − 1

N
log

(
m∏

i=1

N Ni
i e−Ni

√
2π Ni

)

= log(N N)

N
+ log(e−N)

N
+ log

(√
2π N

)
N

− 1

N

m∑
i=1

{
log

(
N Ni

i

) + log(e−Ni) + log
(√

2π Ni

)}

Boltzmann’s entropy 567

= log N

(
1 + 1

2N

)
− 1 + log (2π)

2N

−
m∑

i=1

{
Ni

N
log Ni − Ni

N
+ log Ni

2N
+ log (2π)

N

}

≈ log N − 1 −
m∑

i=1

Ni

N
log Ni +

m∑
i=1

Ni

N
−

m∑
i=1

log Ni

2N

= −
m∑

i=1

Ni

N
log

Ni

N
−

m∑
i=1

log Ni

2N

≈ −
m∑

i=1

Ni

N
log

Ni

N

≡ −
m∑

i=1

pi log pi . (A10)

Appendix B (Chapter 4) Shannon’s
entropy1

Consider a source with N elements of occurrence probability pi (i = 1 . . . N). We look
for an information measure H, which should meet three conditions:

(1) H = H (p1, p2, . . . , pN) is a continuous function of the probability set pi ;
(2) If all probabilities were equal (namely pi = 1/N), the function H should increase

monotonously with N ;
(3) If any occurrence breaks down into two successive possibilities, the original H

should break down into a weighed sum of the corresponding individual values of H .

Step 1

We first define A(N) = H (1
N , 1

N , . . . , 1
N), which is the value taken by H when prob-

abilities are equal. Consider now A(2) = H (1
2 , 1

2), which is the mean information of
two equiprobable events. After condition (3), if the second event represents two equal
possibilities, the new information measure is given by the weighted sum

H

(
1

2
,

1

4
,

1

4

)
= H

(
1

2
,

1

2

)
+ 1

2
H

(
1

2
,

1

2

)

= A(2) + 1

2
A(2).

(B1)

The first term in the left-hand side represents the information contribution of the two
events, and the second term represents the extra information contained in the second
event (which occurs half of the time). If the first event also represents two equal possi-
bilities, we have

H

(
1

4
,

1

4
,

1

4
,

1

4

)
= H

(
1

2
,

1

4
,

1

4

)
+ 1

2
H

(
1

2
,

1

2

)

= A(2) + 1

2
A(2) + 1

2
A(2)

↔ A(4) = 2A(2)

↔ A(22) = 2A(2),

(B2)

1 This is a more detailed description of Shannon’s demonstration. See C. E. Shannon, A mathematical theory
of communication. Bell Syst. Tech. J., 27 (1948), 79–423, 623–56. This paper can be downloaded from
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

Shannon’s entropy 569

where we used the result in Eq. (B1). We can indefinitely repeat this operation of breaking
down each of the single events into two other possibilities, and finally obtain the general
rule:

A(2m) = m A(2). (B3)

Consider next A(S) = H (1
S , 1

S , . . . , 1
S), representing the information contained in S

equiprobable events. It is clear from the previous demonstration that we also have the
property:

A(Sm) = m A(S), (B4)

meaning that the gain of information obtained by splitting the S initial events m times is
precisely m.

Since the result in Eq. (B4) applies for any integer S, we also have, for any integer
T �= S and n �= m,

A(T n) = n A(T). (B5)

Step 2

With a given choice of n (sufficiently large), it is possible to find m for which we have
the double inequality

Sm ≤ T n < Sm+1. (B6)

To convince ourselves of the validity of this result, we take the logarithm of both
inequalities to obtain the following condition on the existence of m (given n, S, T):

u − 1 < m ≤ u, (B7)

with u = n log T/ log S. If n is large enough, we have u > 0, regardless of the values of
S and T . According to Eq. (B7); the only two possibilities for m are

(i) u is an integer: m = u,
(ii) u is not an integer: m = E(u),

where E(x) means the integer part of real x (e.g., E(2.75) = 2). The first case is
straightforward. The second case is demonstrated by first setting u = E(u) + x and
u − 1 = E(u − 1) + x where x is a real number satisfying 0 < x < 1. Substituting these
two definitions in Eq. (B7) yields 0 < x < m − E(u − 1) ≤ 1 + x . Since m − E(u − 1)
is nonzero, we have m > E(u − 1). Since m − E(u − 1) is an integer; we also have
m − E(u − 1) ≤ 1. The only integer solution is m = E(u), since E(u) − E(u − 1) = 1.
The general solution of Eq. (B6) is, thus, m = E(u) = E(n log T/ log S).

570 Appendix B

Having shown that the property in Eq. (B6) is always valid for n sufficiently large, we
perform the following operations:

m log S ≤ n log T < (m + 1) log S

m

n
≤ log T

log S
<

m

n
+ 1

n
.

(B7)

Since n can be chosen arbitrarily large, the last result means that

0 ≤ log T

log S
− m

n
< ε, (B8)

with ε being made arbitrarily small (ε = 1/n → 0).
We now use the property that the function A(N) is monotonically increasing, as per

requirement (2). With Eq. (B9), this property gives

A(Sm) ≤ A(T n) < A(Sm+1) (B9)

and with Eq. (B5):

m A(S) ≤ n A(T) < (m + 1)A(S)

↔ m

n
≤ A(T)

A(S)
<

m

n
+ 1

n

↔ 0 ≤ A(T)

A(S)
− m

n
< ε,

(B10)

ε being made arbitrarily small. Combining Eqs. (B8) and (B10), we get⎧⎪⎪⎨
⎪⎪⎩

0 ≤ log T

log S
− m

n
< ε

0 ≤ A(T)

A(S)
− m

n
< ε.

(B11)

This result shows that, as n becomes large (ε → 0), the distance between the function
m/n and the two quantities log T/ log S and A(T)/A(S) vanishes. The only possibility
of verifying this property is that we have:

log T

log S
≡ A(T)

A(S)
, (B12)

or

A(T) = K log T, (B13)

where K is an arbitrary constant, which must be positive to satisfy condition (2).
We can also derive this result more formally using the previously established relation
m = E(u) = E(n log T/ log S), which gives:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(i) 0 ≤ log T

log S
− 1

n
E

(
n

log T

log S

)
< ε

(ii) 0 ≤ A(T)

A(S)
− 1

n
E

(
n

log T

log S

)
< ε,

(B14)

Shannon’s entropy 571

There exist two possible cases:

� u is an integer: then E(u) = u = n log T/ log S, and the first inequality in Eq. (B12)
intrinsically holds regardless of the size of n. The second inequality converts to

A(T)

A(S)
− log T

log S
< ε, (B15)

which, in the limit of large n, leads to the conclusion expressed in Eqs. (B12) and
(B13);

� u is not integer: then E(u) = u + x = n log T/ log S + x , where 0 < x < 1. In this
case, the first inequality intrinsically holds regardless of the size of n, and the second
inequality converts to

A(T)

A(S)
− log T

log S
< ε(1 + x) < 2ε (B16)

which leads to the same conclusion.2

Step 3

Assume that the source now contains N equiprobable possibilities. Its information mea-
sure is, therefore, H (1/N , 1/N , . . . , 1/N) = A(N) = K log N . We can arbitrarily group
these possibilities into m subgroups having ni elements each, and whose associated prob-
abilities are pi = ni/N . According to condition (3), if we define a first partition of two
subgroups of length n1 and n2 = N − n1, with probabilities p1 = n1/N and p2 = n2/N ,
respectively, we have

A(N) = H (p1, p2) + p1 A(n1) + p2 A(n2). (B17)

In the right-hand development of Eq. (B17), the first term corresponds to the information
provided by this partition and the second two terms corresponds to the information
contained in the two subgroups (weighted by their respective occurrence probabilities
p1, p2). Note that if any subgroup has only one element (e.g., n1 = 1), the corresponding
information vanishes, since A(1) = 0.

We can then continue this partitioning by splitting the second subgroup into two new
subgroups with n2 and n3 elements (n2 + n3 = N − n1) and respective probabilities
p2 = n2/N , p3 = n3/N , yielding the information decomposition:

A(N) = H (p1, p2, p3) + p1 A(n1) + p2 A(n2) + p3 A(n3). (B18)

2 It is interesting to note that the Appendix in C. E. Shannon, A mathematical theory of communication.
Bell Syst. Tech. J., 27 (1948), 79–423, 623–56 proceeds differently: Eqs. (B8) and (B11) are written in
the alternative forms |log T/ log S − m/n| < ε and |A(T)/A(S) − m/n| < ε, respectively. From there, it is
directly concluded that |A(T)/A(S) − log T/ log S| < 2ε, which is far from obvious (as the reader might
easily check). As a matter of fact, this last inequality summarizes at once the results in Eqs. (B15) and (B16)
without providing any of the details. This apparent omission could be explained by the author’s concern to
save room in a very mathematically intensive paper or, as another possibility, to challenge the reader with
the proof.

572 Appendix B

Iteration of the above partitioning into m subgroups under the condition
∑m

i=1 ni = N
finally yields:

A(N) = H (p1, p2, . . . , pm) +
m∑

i=1

pi A(ni). (B19)

A general definition of the function H (p1, p2, . . . , pm) is, thus, obtained from Eq.
(B19):

H (p1, p2, . . . , pm) = A(N) −
m∑

i=1

pi A(ni)

= K log N − K
m∑

i=1

pi log ni

= −K

(
log

1

N
+

m∑
i=1

pi log ni

)

= −K
m∑

i=1

pi log
ni

N

≡ −K
m∑

i=1

pi log pi .

(B20)

For an m-symbol source, the only function that satisfies the requirements (1) to (3) is,
therefore:

H = −K
m∑

i=1

pi log pi . (B21)

Appendix C (Chapter 4) Maximum
entropy of discrete sources

In this appendix, I show first that for a discrete source of k independent events, X =
{x1, x2, . . . , xk}, the source entropy is maximized when all events are equiprobable,
corresponding to the uniform distribution. Second, I derive the discrete distribution for
which entropy is maximized when there is a constraint on the mean N = 〈x〉. With this
constraint, I show that in the case where the events take integer values (x1 = 0, x2 =
1, . . . with k → ∞) the entropy is maximized for the discrete exponential distribution of
mean N (Bose–Einstein or thermal distribution). In the case of a discrete source of finite
size, X = {x1, x2, . . . , xk}, where the events take nonnegative real values, I show that the
distribution maximizing entropy is the Maxwell–Boltzmann distribution. I then analyze
the effect of other additional constraints in the determination of maximum entropy and
of the corresponding distributions.

Uniform distribution solution

By definition, the entropy of the source X = {x, x2, . . . , xk} is:

H (X) = −
k∑

i=1

p(xi) log p(xi), (C1)

or, with simplified notation:

H (X) = −
∑

i

pi log pi . (C2)

For convenience, I shall use natural logarithms; this does not affect the generality of the
following demonstrations.

Using the method of Lagrange multipliers, we first define the function with parameter
λ as:

f = H (X) + λ
∑

i

pi , (C3)

while assuming the constraint:

s0 = 1 −
∑

i

pi = 0. (C4)

574 Appendix C

This constraint ensures that the sum of all probabilities pi is equal to unity. The task is
to minimize f with respect to pi , namely, to find the solution of:

d f

dp j
= d f

dp j

[
H (X) + λ

∑
i

pi

]
= 0, (C5)

which yields:

d f

dp j
= d

dp j

(
−

∑
i

pi logpi + λ
∑

i

pi

)

= d f

dp j
(−p j log p j) + λ

= − log p j − 1 + λ

= 0,

(C6)

which yields the solution p j = exp(λ − 1). Since λ is a constant, the distribution is
uniform. Substituting this result into the constraint s0 defined in Eq. (C4) gives

s0 = 1 −
∑

i

pi

= 1 −
k∑

i=1

= exp(λ − 1)1 − k exp(λ − 1)

= 0,

(C7)

which yields the solution exp(λ − 1) = 1/k (or λ = 1 − log k), which finally gives
pi = 1/k. The conclusion is that the PDF that maximizes the entropy of any discrete
source of k independent events, X = {x1, x2, . . . , xk}, is the uniform distribution defined
by p(xi) = 1/k.

Discrete-exponential (Bose–Einstein) distribution solution

We consider next a second problem, which can be formulated as follows: what is the
discrete distribution of given mean N that maximizes entropy? We note that if a mean
N is specified, the source events must correspond to a discrete set of real values, i.e.,
x1 = m1, x2 = m2, . . . , xk = mk with mi �= m j for i �= j . Whether the values mi are
real or integer, or equally spaced or ordered (i.e., mi+1 > mi) is not important in the
derivation of the general solution to this maximization problem.

The solution comes again from the Lagrange-multipliers method, this time with the
following function to be minimized:

f = H (X) + λ
∑

i

pi + µ
∑

i

xi pi , (C8)

and with the additional constraint:

s1 = N −
∑

i

xi pi = 0, (C9)

Maximum entropy of discrete sources 575

which ensures that the PDF mean is 〈x〉 = N . The minimum of f is found by solving:

d f

dp j
= d

dp j

[
H (X) + λ

∑
i

pi + µ
∑

i

xi pi+
]

= 0,

(C10)

or

d f

dp j
=

[
−
∑

i

pi log pi + λ
∑

i

pi + µ
∑

i

xi pi +
]

= − log p j − 1 + λ + µx j

= 0,

(C11)

which yields

d f

dp j
=

[
−
∑

i

pi log pi + λ
∑

i

pi + µ
∑

i

xi pi +
]

= −log p j − 1 + λ + µx j

= 0,

(C12)

and the PDF solution

p j = exp(λ − 1 + µm j)

= exp(λ − 1)[exp µ]m j

≡ P Qm j ,

(C13)

with P = exp(λ − 1) and Q = exp µ. To define P, Q, one must then find the two
unknown parameters λ,µ by substituting the result in Eq. (C13) into the two constraints
in Eqs. (C4) and (C9):

s0 = 1 −
∑

i

pi = 1 − P
∑

i

Qmi = 0, (C14)

s1 = N − P
∑

i

mi Qmi = 0, (C15)

which, considering that Q > 0, yields

P = 1∑
i

Qmi
, (C16)

∑
i

(mi − N)Qmi = 0. (C17)

Given an arbitrary set of real or integer values m1, m2, . . . , mk , the solution for Q in
must be computed numerically, since Eq. (C17) is a transcendental equation of the form

a1 Qm1 + a2 Qm12 + · · · + ak Qm1k = 0, (C18)

where ai = mi − N . Here, I will not discuss the conditions for which a real solution
Q > 0 may exist in the general case. The only conclusion we can reach is that if such a

576 Appendix C

solution Q exists, the PDF defined in Eq. (C13) takes the form:

pi = Qm j∑
i

Qm j
. (C19)

I show next that this PDF matches the discrete exponential distribution (see Chapter 1),
provided we assume that:

(a) m1, m2, . . . , mk are ordered integers with m1 = 0, m2 = 1, . . . , mi = i − 1;
(b) k is infinite;
(c) µ < 0 (for which Q < 1, the condition for the denominator in Eq. (C19) to be finite).

With these assumptions, the solution is Q = N/(N + 1) and P = 1/(N + 1), which
gives

pi = 1

N + 1

(
N

N + 1

)i

, (C20)

which is known as the Bose–Einstein (BE) distribution (see Chapter 1).1 It is shown in
particular that in the limit of large means (N � 1), we have H ≈ log N . Incidentally,
this is the same entropy as that of a uniform distribution of N discrete events (N an
integer). The BE distribution corresponds to the photon statistics of incoherent light,
such as those emitted from thermal sources (e.g., candle, light bulb, Sun, stars). It is also
characteristic of spontaneous emission in optical amplifiers.2

Maxwell–Boltzmann distribution solution

I consider next another case of interest for the solution in Eq. (C19), where:

1 With these assumptions, all summations in the definitions carry from i = 0 to infinity. We then use the
property of the geometrical series

∑∞
i=0 Qi = 1

1−Q to get the result pi = (1 − Q)Qi from Eq. (C19). To
solve for Q, we calculate the mean as defined by N = ∑

i pi , which develops into:

N = (1 − Q)
∞∑

i=0

i Qi

= (1 − Q)Q
∞∑

i=0

i Qi−1 = (1 − Q)Q
d

dQ

(∞∑
i=0

Qi

)

= (1 − Q)Q
d

dQ

(
1

1 − Q

)

= (1 − Q)Q
1

(1 − Q)2
= Q

1 − Q
,

which yields Q = N
N+1 , then P = 1

N+1 and proves Eq. (C20). The entropy of the BE distribution is defined

by: H = −∑
PQi log(PQi). Elementary calculation and substitution of the definitions of P and Q yields

H = (N + 1) log(N + 1) − N log N , which can also be written H = log N�(1 + 1
N)N+1�. In the limit of

large N (or 1/N = ε → 0), we have H ≈ log{N [1 + (N + 1)ε]} ≈ log N .
2 E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (New York: John Wiley & Sons,

1994), Ch. 3, p. 154. E. Desurvire, How close to maximum entropy is amplified coherent light? Opt. Fiber
Technol., 6 (2000), 357.

Maximum entropy of discrete sources 577

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 50.1 3.9 7.1 11.5 15.3

im

)(iii mxpp ==

Figure C1 PDF obtained with |µ| = 0.1, k = 5, and m1 = 0.1, m2 = 3.9, m3 = 7.1,

m4 = 11.5, m5 = 15.3.

(a) m1, m2, . . . , mk are ordered positive real numbers with m1 = 0;
(b) k is finite;
(c) µ < 0 (again to ensure denominator convergence in Eq. (C19).

In this case, the PDF solution is

pi =
e−m j |µ|

k∑
i=1

e−m j |µ|
. (C21)

Figure C1 shows a plot of this PDF obtained, for example, with |µ| = 0.1, k = 5, and
m1 = 0.1, m2 = 3.9, m3 = 7.1, m4 = 11.5, m5 = 15.3.

In physics, this distribution characterizes the atomic populations of electrons within
a set of k energy levels, when the atoms are in a state of thermal equilibrium. To be
specific, let µ = −hν/kBT , with:

hν = photon energy at frequency ν (h = Planck’s constant),
kBT = phonon energy at absolute temperature T (kB = Boltzmann’s constant),
mi = energy of atomic level i divided by hν.

The distribution in Eq. (C21) then takes the form:

pi =
e−m j

hν
kBT

k∑
i=1

e−m j
hν

kBT

, (C22)

which is known as the Maxwell–Boltzmann distribution. This distribution shows that at
thermal equilibrium, the electron population is highest in the lowest energy level, and
decreases exponentially as the energy of the level increases. In particular, the population

578 Appendix C

ratio between two atomic levels i and j is given by

pi

p j
= e−m j

hν
kBT

e−m j
hν

kBT

= e−(m j−m j)
hν

kBT ≡ e−
�Ei j
kBT , (C23)

where �Ei j = (mi − m j)hν is the energy difference between the two levels. The inter-
esting conclusion of this analysis is that at thermal equilibrium electrons randomly
occupy the atomic energy levels according to a law of maximal entropy. It can be shown
that:3

Hmax = 〈m〉 hν

kBT

=
hν

kBT

exp

(
hν

kBT

)
− 1

.

(C24)

This results expresses in nats (1 nat = 1.44 bit) the average information contained in
an atomic system at temperature T with energy levels separated by �E = hν, with
hν � kBT . The same result holds for a two-level atomic system (k = 2). The quantity
〈m〉hν represents the mean thermal energy stored in the atomic system. The ratio
〈m〉hν/kBT represents the mean number of thermal phonons required to bring the atom
into this mean-energy state.
3 By definition, the source entropy is H = −∑

i pi logpi . By convention, we take here the natural logarithm
so that the unity of entropy is the nat. With solution pi = Qmi /P (and P = ∑

i Qmi), we obtain:

H = −
∑

i

Qmi

P
log

Qmi

P
= −

∑
i

Qmi

P
(log Qmi − log P)

= −
∑

i

Qmi

P
mi log Q +

∑
i

Qmi

P
log P,

which gives H = −〈m〉 log Q + log P . We now develop the second term:

log P = log

(
k∑

i=1

Qmi

)

= log(Qm1 + Qm2 + · · · + Qmk)

= log[Qm1 (1 + Qm2−m1 + · · · + Qmk−m1)].

Substituting Q = exp(− hν
kBT) and �Ei j = (mi − m j)hν into the preceding, we obtain:

H = 〈m〉 hν

kBT
+ log

{
exp

(
−m1

hν

kBT

)[
1 + exp

(
−�E21

kBT

)
+ · · · + exp

(
−�Ek1

kBT

)]}
.

For simplicity, we can assume that the energy levels are all equidistant, i.e. �Ei j ≡ �E = hν and �Ek1 ≡
(k − 1)hν. Using the geometric series formula 1 + q + q2 + · · · + qk−1 = (1 − qk/1 − q), the entropy is:

H = 〈m〉 hν

kBT
+ log

1 − exp

(
−k

hν

kBT

)

1 − exp

(
− hν

kBT

)

 .

Maximum entropy of discrete sources 579

Discrete distributions maximizing entropy under additional constraints

In this last section, we consider a general method of deriving discrete PDFs, which
maximize entropy while being subject to an arbitrary number of constraints.

Assume, for instance, that the constraints correspond to the different PDF moments
〈x0〉 = 1, 〈x〉 = N , 〈x2〉, . . . , 〈xn〉, which can be expressed according to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 = 1 −
∑

i

pi = 0

s1 = N −
∑

i

xi pi = 0

s1 = 〈x2〉 −
∑

i

x2
i pi = 0

. . .

sn = 〈xn〉 −
∑

i

xn
i pi = 0.

(C25)

The functional f to be minimized with the Lagrange multipliers λ0, λ1, λ2, . . . , λn is
then

f = H (X) + λ0

∑
i

pi + λ1

∑
i

xi pi + λ2

∑
i

x2
i pi + · · · + λn

∑
i

xn
i pi . (C26)

Taking the derivative of f with respect to p j yields the development:

d f

dp j
= d

dp j

{
H (X) + λ0

∑
i

pi + λ1

∑
i

xi pi + λ2

∑
i

x2
i pi + · · · + λn

∑
i

xn
i pi

}

= − d

dp j

∑
i

pi log pi + λ0
d

dp j

∑
i

pi + λ1
d

dp j

∑
i

xi pi + λ2
d

dp j

∑
i

x2
i pi

+ · · · + λn
d

dp j

∑
i

xn
i pi

= −log p j − 1 + λ0 + λ1x j + λ2x2
j + · · · + λn xn

j

= 0, (C27)

Considering a two-level atomic system (k = 2), we have, in particular;

H = 〈m〉 hν

kBT
+ log

⎡
⎢⎢⎣

1 − exp

(
−2

hν

kBT

)

1 − exp

(
− hν

kBT

)
⎤
⎥⎥⎦

= 〈m〉 hν

kBT
+ log

[
1 + exp

(
− hν

kBT

)]
.

If we assume as well that hν/(kBT) is large enough that the exponential can be neglected, we obtain
H ≈ 〈m〉 hν

kBT , which is valid for all systems with k ≥ 2. It is then straightforward to determine 〈m〉, from

the definition 〈m〉 = m1 p1 + m2 p2. The result is the well known “mean occupation number” of Boltzmann’s
distribution:

〈m〉 = 1

exp

(
hν

kBT

)
− 1

.

580 Appendix C

which corresponds to the general PDF solution

p j = exp
(
λ0 − 1 + λ1x j + λ2x2

j + · · · + λn xn
j

)
, (C28)

or

p j = A0 A
x j

1 A
x2

j

2 . . . A
xn

j
n (C29)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0 = exp(λ0 − 1)

A1 = exp(λ1)

A1 = exp(λ2)
. . .

An = exp(λn).

(C30)

The solutions in Eq. (C29) and (C30) for λ0, λ1, λ2, . . . , λn using the n + 1 constraints
in Eq. (C25) can only be found numerically. An example of a resolution method and
its PDF solution in the case n = 2, the event space X being the set of integer numbers,
can be found in.4 In these references, it is shown that the photon statistics of optically
amplified coherent light (i.e., laser light passed through an optical amplifier) is very
close to the PDF solution of maximal entropy.

It is straightforward to show that in the general case, the maximum entropy is given
by the following analytical formula:5

Hmax = 1 − (λ0 + λ1〈x〉 + λ2〈x2〉 + · · · + λn〈xn〉)
= 1 −

n∑
i=0

λi 〈xi 〉. (C31)

Further discussion and extensions of the continuous PDF case of the entropy-
maximization problem can be found in.6

4 E. Desurvire, How close to maximum entropy is amplified coherent light? Opt. Fiber Technol., 6 (2000),
357. E. Desurvire, Erbium-Doped Fiber Amplifiers, Device and System Developments (New York: John
Wiley & Sons, 2002), Ch. 3, p. 202.

5 We have

H = −
∑

j
p j log p j

= −
∑

p j log
(

A0 A
x j
1 A

x2
j

2 . . . A
xn

j
n

)
= −

∑
p j

(
log A0 + x j log A1 + x2

j log A2 + · · · + xn
j log An

)
.

= −
(

log A0

∑
p j + log A1

∑
x j p j + log A2

∑
x2

j p j + · · · + log An

∑
xn

j p j

)
= −(λ0 − 1 + λ1〈x〉 + λ2〈x2〉 + · · · + λn〈xn〉)

6 T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991),
Ch. 11, p. 266.

Appendix D (Chapter 5) Markov chains
and the second law of
thermodynamics

In this appendix, I shall first introduce the concept of Markov chains, then use it with
the results of Chapter 5 concerning relative entropy (or Kullback–Leibler distance) to
describe the second law of thermodynamics.

Markov chains and their properties

Consider a source X of N random events x with probability p(x). If we look at a
succession of these events over time, we then observe a series of individual outcomes,
which can be labeled xi (i = 1 . . . n), with xi ∈ Xn . The resulting series, which is, thus,
denoted x1 . . . xn , forms what is called a stochastic process.

Such a process can be characterized by the joint probability distribution
p(x1, x2, . . . , xn). In this definition, the first argument x1 represents the outcome
observed at time t = t1, the second represents the outcome observed at time t = t2,
and so on, until observation time t = tn . Then p(x1, x2, . . . , xn) is the probability of
observing x1, then x2, etc., until xn . If we repeat the observation of the n events, but
now starting from any time tq (q > 1), we shall obtain the series labeled x1+q . . . xn+q ,
which corresponds to the joint distribution p(x1+q , x2+q , . . . , xn+q). By definition, the
stochastic process is said to be stationary if for any q we have

p(x1+q , x2+q , . . . , xn+q) = p(x1, x2, . . . , xn), (D1)

meaning that the joint distribution is invariant with time translation. Note that such an
invariance does not mean that x1+q = x1, x2+q = x2, and so on! The property only means
that the joint probability is time invariant, or does not depend at what time we start the
observation and which time intervals we use between two observations.

What is a Markov process? Simply defined, it is a chain process where the event
outcome at time tn+1 is only a function of the outcome at time tn , and not of any other
preceding events. Such a property can be written formally as:

p(xn+1|xn, xn−1, . . . , x1) ≡ p(xn+1|xn). (D2)

This means that the event xn+1 is statistically independent, in the strictest sense,
from all preceding events but xn . Using Bayes’s formula and the above property,

582 Appendix D

we get:

p(x1, x2) = p(x2|x1)p(x1)
p(x1, x2, x3) = p(x3|x1, x2)p(x1, x2) = p(x3|x2)p(x2|x1)p(x1)

etc.,
(D3)

and consequently

p(x1, x2, . . . , xn) = p(xn|xn−1)p(xn−1|xn−2) . . . p(x2|x1)p(x1). (D4)

A Markov chain is said to be time invariant if the conditional probabilities p(xn|xn−1) do
not depend on the time index n, i.e., they are themselves time invariant. For instance, if a
and b are two specific outcomes, we have p(xn = b|xn−1 = a) = p(xn−1 = b|xn−2 = a)
= · · · = p(x2 = b|x1 = a). If we recall the property of conditional probabilities:

p(y) =
∑
x∈X

p(y|x)p(x), (D5)

then we have for time-invariant Markov chains (as applying to any time tn+1):

p(xn+1) =
∑
xn∈X

p(xn+1|xn)p(xn), (D6)

or equivalently

p(xn+1) =
∑
xn∈X

p(xn)Pxn xn+1 , (D7)

where we define Pxn xn+1 ≡ p(xn+1|xn) as being the coefficients of a certain transition
matrix P (note the reverse order of the coefficient subscripts). Such a transition matrix
uniquely defines the Markov chain, and defines the evolution of any other probability
distribution q, namely:

q(xn+1) =
∑
xn∈X

q(xn)Pxn xn+1 . (D8)

The expressions in Eqs. (D7) or (D8) correspond to a matrix-vector equation. The matrix
P is, thus, applied to transform the N -vector of coordinates p(x = xn), x ∈ X , which we
call µ. The result of such a transformation is an N -vector of coordinates p(x = xn+1),
x ∈ X , which we call µ′. The matrix-vector equation (Eq. (D7)) is, thus, summarized in
the form:

µ′ = µP. (D9)

To take a practical example, consider the 2 × 2 transition matrix that corresponds to a
two-state Markov chain (X being made of two events):

P =
(

P11 P12

P21 P22

)
=

(
α 1 − α

β 1 − β

)
, (D10)

Markov chains and the second law of thermodynamics 583

where α, β are real constants. This means that this Markov process is time invariant.
Replacing this definition in Eq. (D10), we obtain:

µ′ ≡ (µ′
1, µ

′
2)

= µP

= (µ1, µ2)

(
α 1 − α

β 1 − β

)

≡ [αµ1 + βµ2, (1 − α)µ1 + (1 − β)µ2].

(D11)

Since the input coordinates satisfy µ1 + µ2 = 1 (being probabilities), we observe that
the sum of the output coordinates is also unity, µ′

1 + µ′
2 = µ1 + µ2 = 1, which justifies

our choice for the time-invariant transition matrix P (it is easily shown that this is
actually the only one).

This example will help us to illustrate yet another important concept. We have seen
that a Markov process can be time invariant, meaning that the transition matrix has
constant or unchanging coefficients. But this time invariance does not mean that the
probability distribution does not change over time: we have just seen from our previous
example that in the general case µ′ �= µ, which means that p(x) at time tn+1 is generally
different from p(x) at time tn . But nothing forbids the distribution from remaining
unchanged over time. By definition, we shall say that the distribution µ is stationary if
the following property is satisfied:

µ′ = µP = µ. (D12)

With the previous example, it is easily established that the stationary solution satisfies:

µ1 = p(x1) = β

1 − α + β

µ2 = p(x2) = 1 − α

1 − α + β
,

(D13)

with the condition α − β �= 1. Such a distribution is of the type p(x1) = β/M and
p(x2) = 1 − β/M , where M = 1 − α + β, meaning that it is generally nonuniform.
The specific case of a uniform stationary distribution is given by β = M/2, which gives
p(x1) = p(x2) = 1/2.

The lesson learnt from the above example is that time-invariant Markov processes
have stationary solutions. If the process is initiated at time t1 with a stationary solution,
then the process is also stationary, meaning that the probability distribution p(x) at time
tn+1 is the same as at time tn or tn−1 or t1. Note that such a stationary solution is not
necessarily unique. Two conditions for uniqueness of the stationary solution,1 which we
will assume here without demonstration, are:

(a) The process is aperiodic (i.e., the evolution of p(x) does not show periodic oscilla-
tions with equal or increasing amplitudes);

(b) There exists a nonzero probability that the variable x ∈ X will be reached within a
finite number of steps (the process is then said to be irreducible).

1 T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991),
Ch. 2.

584 Appendix D

Under these two conditions, the stationary solution is unique. Moreover, the distri-
bution at time tn in the limit n → ∞ asymptotically converges towards the stationary
solution, regardless of the initial distribution at time t1. This property will be demon-
strated in the second part of this appendix.

Assuming that the conditions of uniqueness are satisfied in the previous example, the
entropy H (X)t=tn converges towards the limit:

H (X)t=t∞ ≡ H∞

= −µ1 log µ1 − µ2 log µ2

= − β

M
log

β

M
−

(
1 − β

M

)
log

(
1 − β

M

)
.

(D14)

It is easily verified that when the stationary solution is uniform (β = M/2), then
H∞ = Hmax = log 2 ≡ 1 bit/symbol, which represents the maximum possible entropy
for a two-state distribution (Chapter 4). In the general case where the stationary solution
is nonuniform (β �= M/2), we have, therefore, H∞ < Hmax. This means that the system
evolves towards an entropy limit that is lower than the maximum. Here comes the inter-
esting conclusion for this first part of the appendix: assuming that the initial distribution
is uniform and the stationary solution nonuniform, the entropy will converge to a value
H∞ < Hmax = H (X)t=t1 . This result means that the entropy of the system decreases
over time, in apparent contradiction with the second law of thermodynamics. Such a
contradiction is lifted by the argument that a real physical system has no reason to be
initiated with a uniform distribution, giving maximum entropy for initial conditions. In
this case, and if the stationary distribution is uniform, then the entropy will grow over
time, which represents a simplified version of the second law, as we shall see in the
second part. Note that the stationary distribution does not need to be uniform for the
entropy to increase. The condition H∞ > H (X)t=t1 is sufficient, and it is in the domain
of physics, not mathematics, to prove that such a condition is representative of real
physical systems.

Proving the second law of thermodynamics

The second part of this appendix provides an elegant information-theory proof of the
second law of thermodynamics.2 The tool used to establish this proof is the concept
of relative entropy, also called the Kullback–Leibler distance, which was introduced in
Chapter 5.

Considering two joint probability distributions p(x, y), q(x, y), the relative entropy
is defined as the quantity:

D[p(x, y)‖q(x, y)] =
〈
log

p(x, y)

q(x, y)

〉
X,Y

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

q(x, y)
.

(D15)

2 T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991),
Ch. 2.

Markov chains and the second law of thermodynamics 585

In particular, it was shown that the relative entropy obeys the chain rule:

D[p(x, y)‖q(x, y)] = D[p(x)‖q(x)] + D[p(y|x)‖q(y|x)]

= D[p(y)‖q(y)] + D[p(x |y)‖q(x |y)],
(D16)

where D[p(.|.)‖q(.|.)] is a conditional relative entropy. Finally, an important property
is that the relative entropy is always positive (regardless of the arguments being joint
or conditional probabilities), except in the specific case p = q, where it is zero (thus,
D[p‖q] > 0 if p �= q and D[p‖p] = D[q‖q] = 0).

We shall apply the above properties to the case of Markov chains. In this analysis, the
variables xn and xn+1 are substituted for the variables x and y, which define the system
events from a single source X that can be observed at two successive instants (xn , xn+1

∈ X). Let us assume now that the system evolution is characterized by a time-invariant
Markov process. Such a process is defined by a unique transition probability matrix R,
which has the time-independent elements Rxn xn+1 = r (xn+1|xn). Consistently with the
property in Eq. (D2), the conditional probabilities are uniquely defined for p and q:

{
p(xn+1|xn) ≡ r (xn+1|xn)

q(xn+1|xn) ≡ r (xn+1|xn),
(D17)

Next, we apply the chain rule in Eq. (D16):

D[p(xn+1, xx)‖q(xn+1, xx)] = D[p(xx)‖q(xx)] + D[p(xn+1|xn)‖q(xn+1|xn)]

= D[p(xx+1)‖q(xx+1)] + D[p(xn|xn+1)‖q(xn|xn+1)].
(D18)

Substituting Eq. (D17) in Eq. (D18), we obtain

D[p(xx)‖q(xx)] + D[r (xn+1|xn)‖r (xn+1|xn)]

= D[p(xx+1)‖q(xx+1)] + D[p(xn|xn+1)‖q(xn|xn+1)],
(D19)

or equivalently, since D[r‖r] = 0:

D[p(xx+1)‖q(xx+1)] = D[p(xx)‖q(xx)] − D[p(xn|xn+1)‖q(xn|xn+1). (D20)

Considering the property D[p‖q] ≥ 0, Eq. (D20) shows that D[p(xx+1)‖q(xx+1)] ≤
D[p(xx)‖q(xx)]. This result means that in a time-invariant Markov process, the relative
entropy or distance between any two distributions can only decrease over time.

In particular, we can choose q = qst to be a stationary solution of the Markov process.
If this solution is unique, then its distance for any other distribution p decreases over
time. This means that p converges to the asymptotic limit defined by qst (it can be shown,
although it is not straightforward, that D[p‖qst] = 0 or p ≈ qst in this limit).

Assume next that the stationary solution of the Markov process is a uniform distri-
bution, which we shall call ust (namely, ust(x) = 1/N , x ∈ X). From the definition of

586 Appendix D

distance (Eq. (D15) applied to single-variable distributions), we obtain

D[p‖ust)] =
∑
x∈X

p log
p

1/N

=
∑
x∈X

p log p +
∑
x∈X

p log N

≡ Hmax − H (X),

(D21)

with Hmax = log N . Since the distance decreases over time while staying positive, the
above result means that the system entropy H (X) increases over time towards the upper
limit Hmax.

This demonstration could be considered to represent one of several possible proofs of
the second law of thermodynamics. We should not conclude that the second law implies
that the stationary solution of any physical system must be uniform! What was shown is
simply that this condition is sufficient, short of being necessary.

Appendix E (Chapter 6) From discrete
to continuous entropy

In this appendix, we find how the two entropy definitions in the discrete-source and
continuous-source cases connect.1 For the discrete case, we have, by definition:

H (X) = −
∑
xi∈X

p(xi) log p(xi), (E1)

and for the continuous case:

H (X ′) = −
∫
X

p′(x) log p′(x)dx, (E2)

where the discrete and continuous distributions, which relate to the sources X (discrete)
and X ′ (continuous) are called p(xi) and p′(x), respectively.

Considering the continuous function p(x), we can decompose its integration domain
into small bins of width �, which we label with the index j . The variable x belongs to
the bin if the condition j� ≤ x < (j + 1)� is satisfied. The width � is chosen small
enough so that in any bin j there exists a value x j , for which

(j+1)�∫
j�

p′(x)dx ≡ p′(x j)� (E3)

(note that there is no functional relation between the discrete distribution p(xi) and the
continuous distribution p′(x j) at points x j of the integration domain). Equation (E3),
however, defines a discrete distribution, which we shall call p′′(x j) = p′(x j)�. Such
a distribution carries over the discrete set X ′′ = {x j }, for which Eq. (E3) is satisfied.
According to the additivity property of the integrals, this distribution satisfies:∑

x j∈X ′′
p′′(x j) =

∫
X ′

p′(x)dx = 1 (E4)

(we note that the left-hand side of this equation is called the Riemann integral of the
continuous function p′(x)). We have, thus, obtained a strict equivalence between the
continuous distribution p′(x) and a discrete distribution p′′(x j). We, thus, expect that

1 See also: T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons,
1991). D. Feldmann, A Brief Tutorial On: Information Theory, Excess Entropy and Statistical Complexity
(2002), available online at http://hornacek.coa.edu/dave/Tutorial/index.html.

588 Appendix E

their respective entropies become very nearly equal if the bin interval � is chosen
sufficiently small. The surprise is that it this not all the case, as I show next.

The entropy H (X ′′) of the discrete distribution p′′ related to the source X ′′ is defined
according to Eq. (E1):

H (X ′′) = −
∑

x j∈X ′′
p′′(x j) log p(x j) (E5)

Substituting in Eq. (E5) the definition p′′(x j) = p′(x j)�, and using the property in
Eq. (E4), we obtain:

H (X ′′) = −
∑

x j∈X ′′
p′(x j)� log[p′(x j)�]

= −�
∑

x j∈X ′′
p′(x j) log p′(x j) − log �

∑
x j∈X ′′

p′(x j)�

≡ −�
∑

x j∈X ′′
p′(x j) log p′(x j) − log �.

(E6)

In Eq. (E6), the first term represents the Riemann integral of the function−p(x) log p′(x).
This Riemann integral converges to the integral − ∫

p(x) log p′(x)dx = H (X ′) as the
bin size is made to vanish (� → 0), which is the continuous entropy. But in such a
limit, the second term in −log � becomes infinite! This divergence reflects the fact that
what we have done is an n-bit quantization of the continuous function p′(x). In such a
quantization, the number of bits is n = − log � (or � = 2−n). Thus, the result in Eq.
(E6) shows that the relation between the discrete entropy H (X ′′) and what we have
defined to be the continuous entropy H (X ′) is actually

H (X ′′) = H (X ′) + n. (E7)

The quantity H (X ′) + n can be interpreted as the number of bits required (on average)
to describe the continuous random variable X ′ with n-bit accuracy. To understand what
“n-bit accuracy” means, consider that � = 1, or n = 0, corresponds to integers. Then
� = 1/2, or n = 1, corresponds to numbers increasing by steps of 0.5. It takes 1 bit of
extra accuracy to specify whether x is rounded to an integer I or to I + 0.5. Then � =
1/4 or n = 2 corresponds to numbers increasing by steps of 0.25. It takes 2 bits of extra
accuracy to specify the value of x out of the four rounded cases I, I + 0.25, I + 0.5,

or I + 0.75. Thus, n-bit accuracy corresponds to the number of extra bits required to be
accurate within any incremental power of 1/2. The divergence in − log �, which makes
the discrete-case entropy infinite, reflects the fact that it takes an infinite number of bits
to discretize a continuous set of variables accurately.

Appendix F (Chapter 8) Kraft–McMillan
inequality

Assume a prefix code made of a set of N codewords c1, c2 . . . cN of various lengths
l1, l2 . . . lN satisfying l1 ≤ l2 ≤ · · · ≤ lN .

If the code is binary, the Kraft–McMillan inequality is

N∑
k=1

2−lk ≤ 1, (F1)

and for M-ary code:

N∑
k=1

M−lk ≤ 1. (F2)

To prove this inequality, I shall use the demonstration of Proakis (2001),1 one of several
other variations to be found in the literature. For simplicity, we consider the case M = 2,
but the arguments developed are valid for all M .

We first construct a binary tree of order l = lN , as shown in Fig. F1 (assuming here,
for instance, l = 4).

As the figure illustrates, the tree has 2l terminal nodes or “leaves” (here 24 = 16
terminal nodes). The tree also has 24 − 1 = 15 branching nodes. Each node is located
on a uniquely defined path, labeled by the 0 and 1 signs at each splitting. For instance,
the location of terminal node A is defined by the path labeled 1011. We call the node
order the length of its path label (e.g., node A is of order four). The idea is to assign each
of the codewords ck (length lk) to any of the nodes of the tree (branching or terminal),
which is of order lk . Such an assignment is continued until there is no codeword left.
Assume that there are only five codewords (N = 5), with lengths l1 = 1, l2 = 2, l3 = 3,
and l4 = l5 = 4. As shown in Fig. F2, the codeword c1 could, thus, be assigned (for
instance) to the order-1 node defined by the path 1.

Because the code is a prefix code, c1 cannot be the prefix to any other codewords,
meaning that this choice eliminates all the subsequent nodes found in the path beginning
with 1 (connected in the figure by dashed lines). We continue by assigning c2 to any
available order-2 node, and so on until c5, as illustrated in the figure. Based on this
example, it is easy to observe that each assignment of codeword ck with length lk

eliminates 2l−lk terminal nodes. The total number of terminal nodes eliminated is,

1 J. G. Proakis, Digital Communications, 4th edn. (New York: McGraw Hill, 2001).

590 Appendix F

Branching node

0

1

0

Terminal node

1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1
0

1

0

1
0

1
0

1
0

1

A

Figure F1 Binary tree of order l = lN .

0

1

0

1

1c

2c

3c
0

1
0

1

4c
5c

Figure F2 Binary tree for codewords c1, c2, c3, c4, and c5.

therefore,

N∑
k=1

2l−lk ≤ 2l , (F3)

where 2l (to recall) is the total number of terminal nodes. The result of (F3) gives
N∑

k=1

2−lk ≤ 1, (F4)

which is the Kraft–McMillan inequality.

Appendix G (Chapter 9) Overview of
data compression standards

This appendix provides a brief overview of common data compression standards used for
sounds, texts, files, images, and videos. The description is just meant to be introductory
and makes no pretense of comprehensively defining the actual standards and their current
updated versions. The list of selected standards is also indicative, and does not reflect the
full diversity of those available in the market, as freeware, shareware, or under license.
It is a tricky endeavor to attempt a description here in a few pages of a subject that
would fill entire bookshelves. The hope is that the reader will get a flavor and will be
enticed to learn more about this seemingly endless, yet fascinating subject. Why put this
whole matter into an appendix, and not a fully fledged chapter? This is because this set
of chapters is primarily focused on information theory, not on information standards.
While the first provides a universal and slowly evolving background reference, like
science, the second represents practically all the reverse. As we shall see through this
appendix, however, information standards are extremely sophisticated and “intellectually
smart,” despite being just an application field for the former. And there are no telecom
engineers or scientists who may ignore or will not benefit from this essential fact and
truth!

Sounds

Speech is historically the first type of information that has been subject to coding
and compression. The need for speech coding has first come from the development
of telephony, with the introduction of digitally sampled voice progressively replacing
the old analog telephone service. The benefits of digital voice are essentially twofold:
(a) a better sound quality for the users, perceived as free from background noise and
interference, and (b) owing to the high fidelity of the transmission, and in particular
to error-correction coding, the possibility for the telephone operator to compress and
multiplex together several voice channels in the same time slot (referenced to as time-
division multiplexing, or TDM). But there are even more important benefits for the
telephone operator, for managing the voice traffic, in terms of switching, multiplexing,
provisioning, and servicing. Another key application is the possibility to mix voice and
computer data in the same telephone line, which first appeared under the name of ISDN
(integrated services digital networks), as the precursor of our current Internet.

592 Appendix G

2-channel audio (2 ¥ 2 bytes)

CRC

Bytes 24 8 1 = 33

S
ub

co
de

Figure G1 Schematic representation of standard audio-CD frame.

The standard of digital voice for telephony, which was released by ITU-T in 1972,
is referred to as G.711.1 Analog-to-digital (A–D) voice conversion is based on the
technique of pulse-code modulation (PCM).2 It is an uncompressed, lossless code,
which converts 8000 samples per second into eight-bit codewords, resulting in a channel
rate of 8 × 8000 = 64 kbit/s. The two main sampling algorithms used in PCM are the
A-law,3 as used in Europe, and the µ-law,4 as used in North America and Japan. My
earlier work gives more details about these sampling algorithms and their elaborated
variants.5 This book also describes the digital-voice multiplexing (TDM) standards used
by telephone operators, from the early plesiosynchronous digital hierarchy (PDH), to the
current synchronous digital hierarchy (SDH or SONET). While the original bit rate has
been set to 64 kbit/s, voice channels can also be encoded into 16–32 kbit/s, with the same
perceived sound quality, and, using more sophisticated algorithms, even down to some
2 kbit/s, with reasonably acceptable quality. There exist many algorithms to perform
digital-voice compression, for instance removing the silences in phone conversation
(a 40% bandwidth saving!), or predicting coding of voice patterns. Nowadays, the
majority of developed countries use digital telephony, whether based on wireline or
wireless network systems. With today’s Internet, digital telephony is almost a mere
commodity, which a number of operators offer for free, regardless of connection time
and reach.

Music represents a second major application area of digital coding. The revolution,
called by some the “big bang” in digital audio, came in the late 1970s with the audio CD
(compact disk), as originated from a joint standardization effort of Sony and Philips.6

The resulting audio-CD standard has been published in the Red Book.7 As with speech,
the A–D conversion is achieved with PCM, here with a two-channel (stereo effect), each
made of 16-bit or two-byte codewords, at a sampling rate of 44.1 kHz. The first level of
block code is called a frame. As illustrated in Fig. G1, the audio-CD frame includes six
stereo samplings (2 × 2 × 6 = 24 bytes), an eight-byte error-correction field (CRC), a
“subcode” byte for control and display purposes, e.g., telling to the CD player which

1 See, for instance: http://en.wikipedia.org/wiki/G.711.
2 See, for instance: http://en.wikipedia.org/wiki/Pulse-code_modulation.
3 See, for instance: http://en.wikipedia.org/wiki/A-law_algorithm.
4 See, for instance: http://en.wikipedia.org/wiki/Mu-law_algorithm.
5 E. Desurvire, Wiley Survival Guides in Global Telecommunications, Signaling Principles, Network Proto-

cols, and Wireless Systems (New York: J. Wiley & Sons, 2004).
6 See, for instance: http://en.wikipedia.org/wiki/Compact_disk; http://searchstorage.techtarget.com/

sDefinition/0,,sid5_gci503642,00.html; www.answers.com/topic/compact-disc-2.
7 See, for instance: www.mpeg.org/MPEG/DVD/Red_Book/CD.html.

Overview of data compression standards 593

song or track is currently being read. This makes the frame 24 + 8 + 1 = 33 bytes
long altogether, as seen from the figure. The frame is then processed according to
the following. Each audio byte is first converted into a 14-bit EFM codeword (eight-
to-fourteen modulation, also called 8/14 code).8 The EFM code expansion ensures
that each 1 bit to be physically recorded on the CD is surrounded by at least two
0 bits (up to a maximum of ten 0 bits), which is a necessary condition for mechanical
tracking, phase-locking, and synchronization purposes.9 The 14-bit EFM codeword is
then interleaved with a three-bit merging word, and finally appended with a unique,
24- or 27-bit synchronization codeword, acting as a frame delimiter. The whole frame
conversion results in 33 × (14 + 3) + 27 = 588 bits. Like any computer disk, the CD is
organized into sectors, each sector containing 98 frames. The aforementioned one-byte
subcode, thus, provides eight channels with 98 bit/sector to ensure various functions,
like track monitoring and timing or indexing information within tracks. The standard
reading speed being set to 75 sectors per second, we obtain the channel rate:

588 bit/frame × 98 frame/sector × 75 sector/second = 4.32180 Mbit/s.

After EFM demodulation and decoding, overhead removal, and error correction, the
user (or payload) channel rate is reduced to 2 × 16 bit × 44.1 kHz = 1.4112 Mbit/s.
The physically recorded program area is 86.05 cm2, with a track pitch of p = 1.5–
1.6 µm. Thus, the full length of the track (referred to as the “recordable spiral”) is
l = 86.05 cm2/p × 10−4 cm = 5.73–5.38 km. With a standard scanning velocity of v =
1.2 m/s, the corresponding playing time is t = l/v = 75–80 minutes. At the user rate,
this corresponds to 1.470 (Mbit/s) × t(s) = 6615–7056 Mbit or 826–882 Mbyte, which,
after some extra sector or error-correction overhead (representing 13%),10 yielding 720–
767 Mbytes, is quite close to the storage capacity offered by current CD-ROM vendors
(750–800 Mbytes). The CD-ROM standard will be described later under the heading
“Files.” Why this 75–80 minute duration for audio CDs? One alleged explanation is that
CDs had to be able to play the entire Beethoven’s 9th symphony, which took exactly
74 minutes in the slowest recording at the time.11

Any program that performs digital encoding and decoding is referred to as a codec
(short for coder–decoder, compressor–decompressor, or compression–decompression
algorithm). Thus, audio codecs represent the family of codes and algorithms that generate
digital audio files and restore the sound to the human ear. As we have seen earlier, the
audio codec used in CDs is based on PCM with 44.1 kHz sampling rate and 2 × 16-
bit codewords (the factor of two being for stereo-effect purposes). To recall, PCM is
an uncompressed, lossless code, which yields maximum sound quality (referred to as
CD-quality) for professionals or audiophiles, but necessarily comes with relatively large
sizes for the digital-audio files. Microsoft and IBM have adapted this uncompressed-
PCM audio codec for use in home computers, under the brand name WAV (short for

8 See, for instance: http://en.wikipedia.org/wiki/Eight-to-Fourteen_Modulation.
9 See, for instance: www.physics.udel.edu/∼watson/scen103/efm.html.

10 See, for instance: http://en.wikipedia.org/wiki/A-law_algorithm.
11 http://en.wikipedia.org/wiki/Compact_disk; http://searchstorage.techtarget.com/sDefinition/0,,sid5_

gci503642,00.html; www.answers.com/topic/compact-disc-2.

594 Appendix G

waveform). The data are recognized by the .wav filename extension. Any audio file can
be compressed using lossy codecs, typically up to an 80% compression rate,12 with the
original sound quality being lost forever, yet producing acceptable sound restitution,
depending on the music, audience, and utilization. See further on for this topic. In
contrast, lossless audio compression fully preserves the original CD quality. Two key
examples of lossless compression codes that can be used for music are the popular ZIP
(see further), which can achieve 10–20% compression, and FLAC (short for free lossless
audio codec), which can achieve over 40% compression.13 In short, FLAC is based on
two algorithms: linear predictive coding (LPC)14 and run-length encoding (RLE).15 The
first makes it possible to decompose acoustic spectra into a reduced list of parameters,
which in the reverse implementation can faithfully reproduce the original sounds. Linear
predictive coding was originally developed for speech analysis, low bit-rate compression
and re-synthesis. Key applications of LPC include cellular telephony (GSM), speech
recognition, and electronically synthesized music. The principle of RLE is to replace
sequences of repeated codewords (called “runs”) with the codewords preceded by their
counts. For instance, the sequence XXXXXXXXXXYYYYYY is readily compressed
into 10X6Y. This provides additional sound compression, for instance with silent or
monotone passages. The LPC parameters are stored by means of Rice–Golomb codes,
which are described in Chapter 10. Next to FLAC, there actually exists a wealth of
lossless audio codecs with compression rates near 40% or better, such as: WavPack,
ALAC, Monkey’s Audio, OptimFROG, Shorten, WMA, LA, TTA, LPAC, MPEG4 ALS,
Real Lossless, Shorten, MUSICompress/WaveZIP, AudioZip, WaveArc, Pegasus SPS
(ELS-Ultra), Sonarc, WavPack, and RKAU. Several comparative-merit lists for these
different codecs are available.16

Lossy data compression17 turns out most useful in any application where the full
integrity of the original information does not have to be preserved. The key benefits
that outweigh integrity are manifold: reduced file sizes (or fuller use of available stor-
age or disk space); faster file transmission (or up- and downloading on the Internet);
faster encoding and decoding processing for real-time or streaming applications. Key
applications of lossy compression concern audio, images, and video files. Concerning
audio files, an underlying principle of lossy compression is based on psychoacoustic

12 Meaning that the size S of the compressed data is 20% of the size U of the uncompressed, source data.
Note that the general convention is to define the compression as the ratio S/U , not 1 − S/U , which scales
the opposite way as the ratio.

13 The compression rate is in fact dependent on the type of music source. It can be 30–40% for pop,
rock, techno, and other loud, noisy music, and 40–60% for quieter choral and orchestral pieces, see:
www.firstpr.com.au/audiocomp/lossless/#Links.

14 There exist many Internet sites and tutorials for LPC, see for instance: www.data-compression.com/
speech.shtml; www.answers.com/topic/linear-predictive-coding; http://cnx.org/content/m12473/latest/.

15 See: http://flac.sourceforge.net/features.html; www.answers.com/topic/flac; http://en.wikipedia.org/wiki/
FLAC.

16 http://wiki.hydrogenaudio.org/index.php?title=Lossless_comparison; http://flac.sourceforge.net/
comparison.html; www.compression-links.info/Lossless_Audio_Coding; http://members.home.nl/w.
speek/comparison.htm.

17 http://en.wikipedia.org/wiki/Lossy_data_compression.

Overview of data compression standards 595

DataHeader

…M

MP3 frameMetadata
ID3/APEv2

4 bytes (418 bytes)

Figure G2 MP3 frame sequence.

analysis,18 which capitalizes on the limitations of the human ear and the subjective
perception and interpretation of sounds. For instance, sounds can obscure or mask each
other in both time (forward or backward time masking) and frequency (frequency mask-
ing). Also, weak sounds in the frequency spectrum may be masked by louder sounds
at other frequencies. In all cases, the information concerning masked sounds can safely
be removed without any audible loss of quality. The compression algorithm may also
give priority to the sounds situated well within the audible range, which conveys an
idea of the power of psychoacoustic modeling. Most lossy audio codecs, which include
MP3, Ogg Vorbis, WMA, Musicam, LAME, and ATRAC, for instance, are based on such
principles. The resulting compressed files typically represent 10–12% of the original
audio recordings. Such an unparalleled feature opened new perspectives for broadcast-
ing, downloading, and peer-to-peer sharing music over the Internet (overlooking, here,
tricky issues of copyright, illegal copying, and piracy!), and in consumer electronics,
such as portable music players. The key differences between these codecs are not only
measured in compression and quality performance, or by their operating-system com-
patibility, but also in the fact that they are either “proprietary,” to be implemented under
license, or alternatively offered as open-source programs, left to any manufacturer or
private user to implement freely or even to modify.

As of today (2006), the patented and standardized MP3,19 which appeared in the
mid 1990s, is still by far the most popular. The name is short for MPEG-1/2 audio
layer 3. The encoded MP3 files (having the filename extension .mp3) are made of a
sequence of independent of MP3 frames, as illustrated in Fig. G2. A given sequence
may be “encapsulated” by heading metadata file (whose format is referred to as ID3
or APEv2). This tag contains information, such as the music title, author, artist, and
track number. Each frame has an MP3 header field and an MP3 data field. The four-
byte header contains a sync-marker word (12 bits), the number of the MPEG and
layer versions (3 bits), the bit rate (4 bits, e.g., 1010 = 160 bit/s, for instance), the
sampling frequency (2 bits, e.g., 00 = 44.1 kHz), and other size information. There are
lots of available bit rates in the two MPEG-1/2 standards, with B = 128 kbit/s or B =
192 bit/s being most often chosen as de facto values. The bit rate can also be varied from

18 http://en.wikipedia.org/wiki/Psychoacoustic_model; www.sfu.ca/sonic-studio/handbook/Psychoacoustics.
html; www.binaural.com/serendipity/index.php?/archives/62-Tutorial-The-Psychoacoustics-of-
Multichannel-Audio.html.

19 See, for instance: http://en.wikipedia.org/wiki/MP3; www.mp3-tech.org/; www.mpeg.org/MPEG/mp3.
html#overview; www.pcmag.com/encyclopedia_term/0,,t=mp3&i=47286,00.asp.

596 Appendix G

one MP3 frame to the next, which allows one to allocate more bits to the most dynamic
music segments (i.e., with more complex spectral movements) and fewer bits in the
less dynamic ones. Thus, a rate of 224 kbit/s would be used for a symphonic orchestra,
while 48 kbit/s is sufficient for music made of pure frequency tones. These figures are
to be compared with the bit rate of uncompressed CD-quality recording, which, as
we have seen is 1.411 Mbit/s, which explains the aforementioned 10× to 12× average
compression improvement. As for the MP3 data field, the size depends on the number of
time-frequency samples or the sampling rate. For the S = 44.1 kHz sampling-rate case,
there are exactly 1152 one-byte samples in the data field.20 The byte size is eventually
given by the formula 1152 × B/(8 × S), or 418 bytes with B = 128 kbit/s. However, the
data are then compressed through Huffman coding (see Chapter 9), which is optimized
for each individual frame’s payload. This does not allow one to predict the actual byte
size of the resulting MP3 data field, or the actual compression rate, which is payload
dependent.

Datafiles

Unlike with digital audio, image, and video files, which can suffer lossy compression
without loss of perceived quality, most computer data require 100% fidelity in compres-
sion processing. Hence, the importance of lossless compression, each with algorithms
being ideally suited to the type of source for the most efficient file squeezing. We are
now talking about file archiving and packaging, to make the best use of our computer
memory space and save time in loading and transmitting files, in particular when it
comes to email. The inventory of existing licensed or open-source datafile compres-
sion standards is quite substantial.21 Most home-computer users, regardless of operating
systems, are familiar with the shareware ZIP (file extension .zip and many other vari-
ants), which has evolved from a complex IP-litigation history.22 The 1989-originated
root algorithm, PKZIP, is now used in programs with mutually supported formats called
WinZip, BOMArchiveHelper, KGB Archiver, PicoZip, Info-Zip, WinRar, 7-Zip, Izarc,
and ALZip, to quote only a few.23 Zooming in further, PKZIP is based on the algo-
rithms DEFLATE (for compression) and INFLATE (for decompression), which both
use a combination of Lempel–Ziv coding (LZ77, see Chapter 10) and Huffman coding
(see Chapter 9). Based on DEFLATE, the file archiver GZIP (short for GNU ZIP, with
filename extensions .gz, .tgz, .tar.gz, not to be confused with ZIP)24 was developed
in the early 1990s as a freeware, circumventing its patented predecessors. Its format
includes a ten-byte header (version, timestamp), some optional extra headers (e.g., to
include the original file name), a DEFLATE body of compressed data, and an eight-byte

20 See for instance: www.compuphase.com/mp3/sta013.htm#MP3FRAMEHDR.
21 See, for instance: http://en.wikipedia.org/wiki/List_of_archive_formats; for a full list, see: http://en.

wikipedia.org/wiki/List_of_file_archivers.
22 See, for instance: http://en.wikipedia.org/wiki/ZIP_%28file_format%29.
23 See, for instance: http://en.wikipedia.org/wiki/ZIP_file_format.
24 See, for instance: http://en.wikipedia.org/wiki/Gzip.

Overview of data compression standards 597

CRC trailer for error correction. The archive freeware IZArc supports an impressive list
of archive file formats, including applications for CD and DVD images. It also pro-
vides 256-bit AES encryption, repairing corrupted archives, and several other advanced
features.25

Understandably, the achievable compression rate of any file-archiving programs is
strongly dependent on the datafile type (e.g., text, slides, tabulated data, HTML web page,
executables, etc.) and anything of a different format that the file might also contain (e.g.,
raw or uncompressed pictures, equation fields, and other types of embedded additions).
An approximate comparison is shown in.26 This study indicates that pure text files can
be zipped down to 19–27% of their original sizes (compression rates of 73–81%), the
leaders seemingly being 7-ZIP and RAR, with 19–20% rates. For executables, 7-ZIP
champions with 27% squeezing (the other competitors confined to 36–40% ratios), and
for raw images this performance is reduced to 50–60%. These figures must, however,
be weighted against the coding and decoding times, obviously coming with a higher tax
for the champions, but not systematically. Thus, each case is a tricky matter of finding
the right trade-off between minimal archival size, the time required to squeeze the file,
and the time taken to recover the data as uncompressed. Ideally, compression should be
performed as a systematic background routine, in such a way as not to slow down other
computer tasks.

The external and permanent storage of computer files is popularly based on the CD-
ROM (compact-disk, read-only memory),27 which is wholly similar to the previously
described audio-CD, both in terms of looks and storage space (700–800 Mbytes). A
key difference is that the CD-ROM is primarily designed for computer data and, hence,
it includes the function of error-correction, which is achieved through Reed–Solomon
(RS) encoding (see Chapter 11). The CD-ROM can be “burnt” according to three preset
modes: audio (for music tracks or copying audio-CDs), and mode 1 and mode 2 for PC
data. The CD-ROM has 333 000 sectors of 2352 bytes length (which gives a capacity
783.2 Mbytes). In the audio mode, no error correction is used, thus, the full sector
length (2352 bytes) can be used for storing audio files. Both mode 1 and mode 2 use
a 16-byte header in each sector, for the purposes of synchronization and identification.
Unlike in mode-1, mode-2 does not include error correction, which leaves 2352 − 16 =
2336 bytes for payload. In mode 1, the 288-byte trailer for error correction leaves a
payload of 2336 − 288 = 2048 bytes. CD-ROMs are characterized by three different
possible read and write speeds: A = write-once, B = rewrite and C = read-only. By
definition, the 1× speed rating corresponds to 150 kbyte/s. Thus, a 32× write-only speed
corresponds to 4.8 Mbyte/s. A 700 Mbyte CD-ROM can, thus, be copied in approximately
700/4.8 = 146 s or approximately 2 min 30 s. The different speed ratings for the A, B,
and C functions are then identified under the generic label A×, B×, C×, for instance
12×, 10×, 32×.28

25 See, for instance: http://en.wikipedia.org/wiki/Izarc; www.izarc.org/.
26 See, for instance: http://en.wikipedia.org/wiki/Comparison_of_file_archivers.
27 See, for instance: http://en.wikipedia.org/wiki/CD-ROM.
28 See, for instance: http://en.wikipedia.org/wiki/Izarc; www.izarc.org/.

598 Appendix G

0 50

75 100

0

100

Figure G3 Effect of JPEG compression from 0% to 100% with close-ups shown at right.

Images

With the development and popularity of digital photography, and the multiplication
of Internet websites, the compression of images is playing an increasingly important
role. Not only does it save memory space, but its also make it possible to speed up
the downloading of web pages or email picture attachments, up to the point of instant
gratification. The most commonly used standard, JPEG, is the creation of the Joint
Photographic Expert Group, which was launched in the mid 1980s under the ISO
standardization body.29 The JPEG standard, which is defined through various filename
extensions .jpg, .jpeg, .jpe, .jfif, and .jif, is a lossy compression codec. This feature is
illustrated in Fig. G3. The original file size corresponding to the top-left image (as
converted for simplicity into a grayscale one) is 683 kbyte. Compressing the same image
through a photo editor by command factors of 50%, 75%, and 100% reduced the file
size to 102 kbyte, 65 kbyte, and 15 kbyte, respectively. A look at the close-ups reveals
that the effect of lossy compression is not noticeable at a 50% factor (nicely, the file
size has, however, been reduced to 15% of the original). At a 75% factor and above, the
loss of pixel information becomes apparent, to the point of yielding an image of poor
quality, with observed “blocky and blurry” artifacts. Clearly, the amount of compression
is a matter of subjectively determining the trade-off between file size and image quality,
which depends on the final application, for instance either a screen wallpaper, a web
banner, or a file icon.

29 See, for instance: http://en.wikipedia.org/wiki/JPEG; www.imaging.org/resources/jpegtutorial/index.cfm.

Overview of data compression standards 599

4:4:4 4:2:2 4:2:0

Figure G4 Compressing the two 8 × 8 chroma blocks of 4:4:4, resulting in 1/3 size (4:2:2) and 1/2
size (4:2:0) reductions.

It is beyond the scope of this appendix to run into the complex details of image
analysis and the JPEG encoding algorithm. Here, I shall just provide a brief summary of
the main concepts and features of JPEG. Digital images are made of two-dimensional
(2D) pixel arrays, sometimes referred to as bitmaps. Each pixel is defined through
3 × 8 = 24-bit codewords, with eight bits defining the intensity of each of the red, blue,
and green (RBG) components, on a 0–255 scale. This code makes up to 256 × 256 ×
256 = 16 777.216 or about 16.7 million possible colors! This original pixel is then
analyzed and decomposed into a new color space, which considers three components:
one for luminance (or brightness, or “luma”), and two for chrominance (or “chroma”).
Chrominance is another way of labeling colors according to their hue (position in a
linear color scale) and saturation (intensity). The reason for such a conversion is that the
luminance and chrominance data offer more possibilities for compression, as we shall
see. The JPEG algorithm first transforms the 2D-RBG pixel array into three 2D arrays,
one for luminance and two for chrominance. Each of these arrays is then decomposed into
blocks of 64 pixels, which equivalently form 8 × 8 pixel arrays (each pixel being eight
bits). As the human eye sees more details in luminance, it is possible to throw out some
information in the chrominance blocks. This is referred to as downsampling or chroma
subsampling.30 There exist many different possibilities of achieving downsampling, of
which I will only mention two. Let us name 4:4:4 the original three-block set, as shown
in Fig. G4. As seen from the figure, halving the horizontal data in the last two 8 × 8
(chroma) blacks results in a set called 4:2:2, which is one-third smaller.31 Halving the
chroma data in both horizontal and vertical directions results in the set 4:2:0, which is
one-half smaller. This 4:2:0 compression is the scheme used in most JPEG images, and
also in digital video (DV) and high-definition DV (HDV), in MPEG (including MPEG-2
for the digital video disk or DVD).

However, the JPEG compression algorithm does not stop there! The 8 × 8 blocks (or
their reduced versions) are then submitted to discrete cosine transform (DCT), which
is analogous to a 2D discrete Fourier transform.32 The DCT maps each block into its
frequency version containing the Fourier coefficients. The coefficients are then subjected
to a quantizer, which uses variable step or “quantum” sizes (smaller for low frequencies,
and the reverse). Each coefficient is scanned through a zigzag pattern, then divided by

30 See for instance: http://en.wikipedia.org/wiki/YUV_4:2:2.
31 The figure does not have the purpose of explaining how the halving in both horizontal and vertical directions

is actually performed.
32 See: www.imaging.org/resources/jpegtutorial/jpgdct1.cfm; http://en.wikipedia.org/wiki/Discrete_cosine_

transform; http://rnvs.informatik.tu-chemnitz.de/∼jan/MPEG/HTML/mpeg_tech.html.

600 Appendix G

its quantum size and the result rounded off to an integer. It is not unusual that more
than half of the resulting coefficients end up being zero. Then it is possible to further
compress the blocks through run-length encoding (RLE), as described earlier with
sound compression. The RLE algorithm outputs the number of previous zeros and the
nonzero coefficient amplitude, forming a sequence of pairs. Each pair is then encoded
through a lossless, variable-length codeword such as generated by Huffman coding (see
Chapter 9). The more powerful arithmetic coding (see Chapter 10) is also possible, but
is covered by patents. On completion, JPEG writes an end-of-block codeword, and after
processing the three blocks, an end-of-sequence codeword. Decoding the JPEG image
is basically the same succession of operation in the inverse-function order.

The JPEG standard later evolved to JPEG-2000 (filename extensions .jp2 and .j2c).33

The key difference from the former JPEG is the use of the discrete wavelet transform
(DWT) algorithm34 instead of DCT. The interest of DWT is not only the possibility of
achieving greater compression rates (typically 20% higher) while making imperceptible
the characteristic “blocky and blurry” artifacts of the JPEG described earlier. As a major
optional feature, JPEG2000 also provides lossless compression, owing to the reversibility
of DWT. The long list of many other benefits can be explored in the references given in
the footnotes.

What about other image-coding standards? Let me briefly describe first GIF and
PNG. Short for graphic interchange format,35 GIF (filename extension .gif) is a lossless
image-compression codec, which is also popular in websites. Its inherent simplicity
stems from the limited palette of 256 (eight-bit) preset colors extracted from the 24-bit
RBG space. While such a palette is too limited for image-photography applications, it is
fully adequate for continuous-color pictures, such as line-art, graphics, and logos, and all
sorts of animations or advertising, which abound in Internet pages or email attachments,
such as e-cards. The key feature of GIF is the use of Lempel–Ziv–Welch (LZW) for
compression algorithm, see description in Chapter 10, which is far more efficient than
run-length encoding (RLE). As LZW turned out later to be bound to certain patents
(the issue having become obsolete, from 2006), the PNG format, short for portable
network graphics,36 was then developed as freeware, eventually to become the third most-
preferred image file for Internet use, despite varieties in web-browser support, versions,
and related compatibility problems. Like its GIF predecessor, PNG (filename extension
.png) is a lossless image-compression codec. Its RBG color palette is, however, increased
from 24 bits to 32 bits and 48 bits. One of the interesting features of PNG is object
transparency (also available to some more limited extent in GIF), i.e., the possibility
of making certain image objects appear translucent over their background, as achieved
through a supplementary “alpha” channel. The core PNG compression algorithm is
based on the license-free DEFLATE which, as we have seen earlier, combines LZ77 and

33 See, for instance: http://en.wikipedia.org/wiki/JPEG_2000. See also, the JPEG-2000 official website:
www.jpeg.org/jpeg2000/.

34 See, for instance: http://en.wikipedia.org/wiki/Wavelet; http://en.wikipedia.org/wiki/Discrete_wavelet_
transform.

35 See, for instance: http://en.wikipedia.org/wiki/GIF.
36 See, for instance: http://en.wikipedia.org/wiki/Portable_Network_Graphics.

Overview of data compression standards 601

Huffman coding. Under its MNG extension, PNG also supports graphic animation,37

although it is more complex and not widely supported on the Internet.
Two other image formats are TIFF (tagged image file format)38 and BMP (short for

bitmap)39. In short, TIFF (filename extension .tiff) was originally designed as a common
standard for image scanners; with a 32-bit uncompressed format albeit with the option
of lossless LZW (Lempel–Ziv–Welch) compression. Its specificity, hence, its name, is
the capability of handling multiple images and data in a single file with as many header
“tags.” The format BMP (filename extensions .bmp or .dib) offers a variety of coloring
depths (1, 2, 4, 8, 16, or 32 bits) with an uncompressed image format. Owing to their
redundancy, BMP files lend themselves to efficient lossless compression, for instance
through ZIP (see above).

Video

The most generic standard to encode video data is known as MPEG (short for
motion pictures expert group),40 more accurately defined under MPEG-1, MPEG-2, and
MPEG-4. It is beyond the scope of this overview to approach such standards in the
appropriate level of detail but, as in the previous sections, I shall focus on the key
features and on the central role of data compression algorithms.

MPEG-1

This is the early standard for digital video (DV), and is also videoCD/DVD compat-
ible (see later).41 It achieves audio and video multiplexing, synchronization, and data
compression. The video quality is primarily defined according to the pixel resolution
of the 2D image frame, namely 352 × 240 (NTSC system, used in North America)
and 352 × 288 (PAL-SECAM system, used in Europe). The corresponding frame rates
are 29.97 ≈ 30 frame/s and 25 frame/s, respectively. There are four types of MPEG-1
frame: I, for intra-coded frames, which are individually compressed; P, for predictive
frames, which code the frame image as a difference from that of the previous one in
the sequence, B, for bidirectionally predictive frames, which codes the image as a dif-
ference from both the previous and the next image, and D, which uses block coding on
an average image from several successive frames. This type of low-quality resolution is
only used for fast-forwarding visualization. A group of pictures (GOP)42 is then typi-
cally formed by the 12-frame sequence IBBPBBPBBPBB, which always begins with an
I-frame. The above sequencing makes it possible to encode movie pictures at rates

37 See, for instance: http://en.wikipedia.org/wiki/Multiple-image_Network_Graphics.
38 See, for instance: http://en.wikipedia.org/wiki/Tagged_Image_File_Format.
39 See, for instance: http://en.wikipedia.org/wiki/Windows_bitmap.
40 See: www.mpeg.org; www.chiariglione.org/mpeg/.
41 See, for instance: http://en.wikipedia.org/wiki/MPEG-1; www.chiariglione.org/mpeg/standards/mpeg-

1/mpeg-1.htm.
42 See, for instance: http://en.wikipedia.org/wiki/Group_of_pictures; http://rnvs.informatik.tu-chemnitz.

de/∼jan/MPEG/HTML/mpeg_tech.html.

602 Appendix G

between 1.2 Mbit/s and 1.5 Mbit/s. A main drawback of MPEG-1 is that it is based on
the principle of progressive (or noninterlaced) image scanning. Images are scanned line
by line, which provides good vertical resolution, but does not allow for smooth motion
restitution in the case of fast-changing scenes. As seen earlier, in the sound compression
section, MPEG-1 remains the underlying standard for the most popular MP3 (short for
MPEG-1/2 layer 3).

MPEG-2

This comes as an enhancement of MPEG-1 in both audio and video.43 To recall from
the previous section on sound, the MPEG-2 audio layer 3 is also an underlying standard
for MP3, which allows us here to encode more than just one stereo track. As for the
video, just like in MPEG-1, the I-frames are processed according to the JPEG image-
compression algorithm (see previous description in the image section). The P-frame
offers more compression potential than the I-frame, because it only encodes succes-
sive image differences. The comparison algorithm considers macroblocks of 16 × 16
pixels. The differences are then described by the translation of similar groups of pix-
els within these macroblocks, characterized by a “motion vector.” If the algorithm
fails satisfactorily to code the transition with the appropriate motion vector and addi-
tional predictive corrections, then the output frame is an unaltered I-frame. The B-
frame encoding works according to the same principle as the P-frame, except that it
uses the information of the two surrounding images. A supplemental feature is that
(unless otherwise specified) frames are interlaced on display or scanning (unlike in
MPEG-1), which allows smooth transitions in the case of fast-moving pictures. Here,
we shall overlook the supplemental notions of “transport stream” and “program stream,”
which are more application focused. In terms of image resolution, frame rate and bit
rate, MPEG-2 offers a broad variety of possible configurations. One first refers to an
MPEG-2:

� Profile, through (a) the type of frames in the GOP [I-P or I-P-B], (b) the JPEG luma
or chroma sampling [4:2:0 or 4:2:2] used for the images, and (c) the stream range [1,
1–2, or 1–3]. The simplest profile, called SP, is thus defined by [I, P][4:2:0][1], and
the highest one, called HP, by [I, P, B][4:2:2][1–3];

� Level, through (a) the number of pixels per line [325 to 1920], (b) the number of
lines [288 to 1152], at a rate of 30 frames per second. The lowest level, called LL, is
[352][288], and the highest one, called HL, is [1920][1152].

� Profile@level, through (a) the 2D motion-picture pixel resolution [176 × 144
to 1920× 1080 with many intermediate variants], (b) the frame rate [15 to 60],
(c) the sampling [4:2:0 or 4:2:2], and (d) the bit rate [0.096 to 300 Mbit/s]. The
lowest option, called SP@LL, is, thus, [176× 144][15][4:2:0][0.096], while the high-
est one (a potential for future applications), called 422P@HL, is either [1920 ×
1080][30][4:2:2][300] or [1280× 720][60][4:2:2][300].

43 See, for instance: http://en.wikipedia.org/wiki/MPEG-2.

Overview of data compression standards 603

It is clear that each of the standard profile@level options has been designed to meet spe-
cific consumer-electronics applications and requirements, such as: wireless mobile hand-
sets (3G cellular telephony), personal digital assistants (PDA), set-top boxes (STB), dig-
ital versatile disk (DVD), digital video broadcast (DVB), high-definition video (HDV),
high-definition television (HDTV), and many other professional-imaging applications,
present and future. A key application of MPEG-2, which is interesting to consider here
as an illustrative example, is the DVD.44 As users know, commercial DVDs now come in
several capacity options, including read-and-write versions (known as DVD ± R, DVD
± RW, DVD-RAM),45 namely, 4.7/9.4 Gbytes (single-layer) and 8.5/17.1 Gbytes (double
layer). The video channel has a variable bit rate that peaks at 9.8 Mbit/s, yielding a total
bit rate (audio + video) varying between 300 kbit/s and 10.08 Mbit/s. A 4.7 Gbyte DVD
can store movies with 90 −120 min running times.

MPEG-4

This is a format patented by ISO/IEC, which includes no less than 23 standards or
“parts.”46 These allow for audio and video compression enhancement and a wide range
of novel multimedia applications, including object-oriented coding, virtual-reality mod-
eling, user graphic interactivity, computer-generated video and audio, and digital rights
management and protection. The MPEG-4 audio codec, which is described in Part 3,
is referred to as advanced audio coding (AAC).47 The key intent of AAC is to provide
better sound compression without affecting quality, or better quality with a given stream
rate. The claim is that in sound quality a 48 kbit/s AAC stream would outperform a
128 kbit/s MP3 stream, while the consensus concerns more the AAC superiority over
any other 32–64 kbit/s audio codec, and its improved compression with respect to MP3.
The MPEG-4 video codecs are described in Part 2 and Part 10. The first (Part 2) concerns
image compression through DCT in view of the simplest implementation “profiles,” see
further. The second (Part 10), is also referred to as H.264 (the ITU-T denomination) or
advanced video coding (AVC).48 The key intent of this advanced codec is to reduce the
bit rate without affecting the picture’s end quality. This is enabled by several feature, of
which only a few can be mentioned or make sense within the scope of this overview.
For instance, inter-picture prediction is not limited to B-frames (as in MPEG-2) but up
to 32 neighboring reference frames. A variable macroblock size ranging from 4 × 4 to
16 × 16 enables more precise mapping and tracking of moving regions in still back-
grounds. Compression is introduced by context-adaptive binary arithmetic coding and
variable-length (Huffman) coding (Chapter 10), referred to as CABAC and CAVLC,

44 See, for instance: http://en.wikipedia.org/wiki/DVD.
45 See, for instance: http://en.wikipedia.org/wiki/DVD_Formats.
46 See, for instance: http://en.wikipedia.org/wiki/MPEG-4; www.chiariglione.org/mpeg/standards/mpeg-4/

mpeg-4.htm; www.apple.com/quicktime/technologies/mpeg4/.
47 See, for instance: http://en.wikipedia.org/wiki/MPEG-4_Part_3; www.mpeg.org.
48 See, for instance: http://en.wikipedia.org/wiki/H.264.

604 Appendix G

respectively, which are completed by default with exponential-Golomb coding.49 The
key result is that the combined features of H.264/AVC make it possible to obtain the
same quality as MPEG-2 at half the bit rate or even less. As with MPEG-2, there exist a
range of “profiles” and “levels” adapted for each consumer-electronics or professional
application: 3G mobile, video telephony, videoconferencing, broadcast television, Inter-
net video streaming, CD storage, etc. The controversial format DivX, which has been
dubbed “the MP3 of video,” was designed in early 2000. It capitalizes on the afore-
mentioned MPEG-4 Part 2 video compression features, balancing video quality against
file size.50 The end result is the possibility of squeezing an entire DVD content into a
(700–800 Mbyte) data CD, without perceptible loss of quality.

49 See, for instance: http://en.wikipedia.org/wiki/Exponential-Golomb_coding.
50 See, for instance: http://en.wikipedia.org/wiki/DivX.

Appendix H (Chapter 10) Arithmetic
coding algorithm

In this appendix, I derive a generic algorithm1 to compute the real intervals [u, v)N

corresponding to the arithmetic coding of any string of N symbols defined by a1a2 . . . aN ,
where ak belongs to the n-events source X = {x1, x2, . . . , xn}with associated probability
distribution pX = {p(x1) . . . p(xn)}. I will use index k to designate the symbol position
in the string, and index i to designate the value xi of this symbol. By convention, the
symbol xn is exclusively used for signaling string termination. For easier reading, I shall
use the notation 〈u, v〉 to designate the intervals instead of the cumbersome [u, v).

To build the algorithm, consider first the simple example of a source X = {x1, x2, x3}
and strings with lengths up to N = 2. According to the arithmetic coding, and as shown
in Fig. H1, the initial interval I = [0, 1) ≡ 〈0, 1〉 is divided into the three subintervals

I1 = 〈0, p(x1)〉, (H1)

I2 = 〈p(x1), p(x1) + p(x2)〉, (H2)

I3 = 〈p(x1) + p(x2), 1〉, (H3)

with I1 + I2 + I3 = I .
By convention, all complete strings should end with the symbol x3. The three possible

strings are, therefore, x3, x2x3, and x1x3. Figure H1 shows how each of the intervals I1

and I2 is divided in turn into three subintervals (I11, I12, I13 and I21, I22, I23). The
subintervals of interest for complete strings, I3, I23, and I13, are highlighted in Fig. H1.
For future use, we define the interval width of I = 〈u, v〉 as w(I) = v − u. In particular,

w(I) = 1, (H4)

w(I1) = p(x1), (H5)

w(I3) = p(x2). (H6)

The single-symbol string, x3, which, according to our convention, is useless or has zero
message payload, is, thus, defined by the interval I3 = 〈u, v〉. The start and stop (values
of this interval are, according to Eq. (H3):{

u = p(x1) + p(x2)
v = p(x1) + p(x2) + p(x3).

(H7)

1 D. J. C. MacKay, A Short Course in Information Theory (1995), www.inference.phy.cam.ac.uk/mackay/info-
theory/course.html; see also D. J. C. MacKay, Information Theory, Inference and Learning Algorithms
(Cambridge, UK: Cambridge University Press, 2003), p. 113.

606 Appendix H

1x

3x

12xx

)()(21 xpxp +

0

2x

)(1xp

1

22xx

32xx

11xx
21xx
31xx

23I

13I

3I

2I

1I

I
22I

21I

12I

11I

Figure H1 Source and strings to build algorithm from successive subinternal division.

Although it looks a bit useless and complicated, it is accurate to rewrite the definition in
Eq. (H7) in the general form:

u(I3) = p(x1|s)p(s) + p(x2|s)p(s) ≡ u(I) + w(I)
2∑

i=1

p(xi |s)

v(I3) = p(x1|s)p(s) + p(x2|s)p(s) + p(x3|s)p(s) ≡ u(I) + w(I)
3∑

i=1

p(xi |s),

(H8)

where the argument s refers to all preceding symbols in the string (since there are none
here, p(s) = 1 = w(I) and p(x1,2,3|s) ≡ p(x1,2,3)), where u(I) = 0 is the start value of
the interval corresponding to all preceding symbols (I).

Consider next the interval I23, which is the last subdivision of I2 and corresponds to
the string x2x3, as shown in Fig. H1. Consistently with the subdivision, the start and the
stop values of this interval are:

{
u = p(x1) + p(x1|x2)p(x2) + p(x2|x2)p(x2)

v = p(x1) + p(x1|x2)p(x2) + p(x2|x2)p(x2) + p(x3|x2)p(x2),
(H9)

which can be rewritten in the form:

u(I23) ≡ u(I2) + w(I2)
2∑

i=1

p(xi |x2)

v(I23) = u(I2) + w(I2)
3∑

i=1

p(xi |x2).

(H10)

Arithmetic coding algorithm 607

x2x2x3
x2x2x2
x2x2x1

x2x1x3
x2x1x2
x2x1x1

x1x2x3
x1x2x2
x1x2x1

x1x1x3
x1x1x2
x1x1x1

1x

3x

12xx

)()(21 xpxp +

0

2x

)(1xp

1

22xx

32xx

11xx
21xx
31xx

23I

13I

3I

2I

1I

I
22I

21I

12I

11I

223I

213I

123I

113I

Figure H2 Symbol strings with lengths up to N = 3.

The same results as in Eqs. (H9) and (H10) can be obtained for the interval I13, corre-
sponding to the string x1x3 (Fig. H1), with the argument I2 changed into I1.

Consider next the case of symbol strings with lengths up to N = 3, which correspond
to all the intervals that have been highlighted in Fig. H2.

The strings with lengths N = 3, namely x1x1x3, x1x2x3, x2x1x3, and x2x2x3, are
associated with the subintervals I113, I123, I213, and I223. We do not need to consider all
of them to prove the general relation that defines the start and stop values of each of
these subintervals. Take, for instance, I223. Looking at Fig. H2, we readily obtain:

u(I223) = p(x1) + p(x1|x2)p(x2) + p(x1|x2, x2)p(x2, x2) + p(x2|x2, x2)p(x2, x2)

= p(x1) + p(x1, x2) + p(x2, x2) [p(x1|x2, x2) + p(x2|x2, x2)]

≡ u(I22) + w(I22)
2∑

i=1

p(xi |x2, x2)

v(I223) = p(x1) + p(x1|x2)p(x2) + p(x1|x2, x2)p(x2, x2) + p(x2|x2, x2)p(x2, x2)
+ p(x3|x2, x2)p(x2, x2)

= p(x1) + p(x1, x2) + p(x2, x2)[p(x1|x2, x2) + p(x2|x2, x2) + p(x3|x2, x2)]

≡ u(I22) + w(I22)
3∑

i=1

p(xi |x2, x2).

(H11)
In this derivation, we used the property p(x2, x2) = w(I22) = v(I22) − u(I22), according
to which the width of the subinterval corresponding to a preceding string sequence xi x j

is equal to the joint probability p(xi , x j) = p(x j |xi)p(xi). We also used the fact that, by
definition, u(I22) = p(x1) + p(x1, x2).

608 Appendix H

The previous analysis makes it possible to rewrite Eq. (H11) concerning any three-
symbol string of the type xm xn x3 (m, n = 1 . . . 2) in the general form:

u(Imn3) = u(Imn) + w(Imn)
2∑

i=1

p(xi |xm, xn)

v(Imn3) = u(Imn) + w(Imn)
3∑

i=1

p(xi |xm, xn).

(H12)

In turn, Eq. (H12) suggests a general recurrence formula defining the interval I =
〈uN , vN 〉 corresponding to any string a1a2 . . . ak . . . aN of length N made from a source
X = {x1, x2, . . . , xi , . . . , xn} of size n, with the string being terminated by symbol xn .
The start and stop values of the corresponding interval are computed by successive
iterations from k = 2 to k = N according to the following recurrence relations:

uk = uk−1 + wk−1 Q(X, a1, a2, . . . , ak−1)

vk = uk−1 + wk−1 R(X, a1, a2, . . . , ak−1)

wk = vk − uk,

(H13)

with

Q(X, a1, a2, . . . , ak−1) =
n−1∑
i=1

p(xi |a1, a2, . . . , ak−1)

R(X, a1, a2, . . . , ak−1) =
n∑

i=1

p(xi |a1, a2, . . . , ak−1) = 1,

(H14)

and with the initial conditions

given a1 = x j :

u1 =

0; j = 1
j−1∑
i=1

p(xi); j > 1

v1 = u1 + p(x j).

(H15)

We note that R(X, a1, a2, . . . , ak−1) = 1, by application of the property∑
x∈X p(x |y) = 1 for any event y (see Chapter 5), therefore, the sum involved in

the definition of R does not need to be computed. From this property, we also have
1 = R(X, a1, a2, . . . , ak−1) = Q(X, a1, a2, . . . , ak−1) + p(xn|a1, a2, . . . , ak−1), which
eliminates the need to compute the sum involved in the function Q as well. We can
then redefine the algorithm in Eq. (H13) according to the much simpler form:

uk = uk−1 + wk−1 [1 − p(xn|a1, a2, . . . , ak−1)]

vk = wk−1

wk = vk − uk .

(H16)

Arithmetic coding algorithm 609

It is easily verified that Eqs. (H15) and (H16) yield the correct values uN , vN for the
strings of lengths N = 1 . . . 3 previously analyzed. Note that the algorithm defined by
these equations is valid only for the case of interest where the last symbol of the message
string, aN , is equal to xn . This algorithm represents a simpler variant of that described
in the reference2, which is valid for any symbol values of aN (namely all subintervals).
The generalization of the above algorithm to the general case (aN = x j) simply consists
of modifying Eq. (H14) to:

Q(X, a1, a2, . . . , ak−1) =
j−1∑
i=1

p(xi |a1, a2, . . . , ak−1)

R(X, a1, a2, . . . , ak−1) =
j∑

i=1

p(xi |a1, a2, . . . , ak−1),

(H17)

with, by convention, Q being set to zero when j = 1.

2 D. J. C. MacKay, A Short Course in Information Theory (1995), www.inference.phy.cam.ac.uk/mackay/info-
theory/course.html; see also D. J. C. MacKay, Information Theory, Inference and Learning Algorithms
(Cambridge, UK: Cambridge University Press, 2003), p. 113.

Appendix I (Chapter 10) Lempel–Ziv
distinct parsing

In this appendix I show, based on the demonstration of Cover and Thomas (1991)1 and
a few useful explanations, that for a given string sequence (or message) of length n, the
number of distinct-parsing phrases c(n) is bounded according to:

c(n) ≤ n

(1 − εn) log n
, (I1)

where εn vanishes as n → ∞.

Distinct parsing

This is the action of partitioning a given message into different substrings, or phrases,
with variable length m. Assume that the maximum phrase length allowed is K . The
number of distinct phrases having m bits is 2m . The length L K of a sequence made from
concatenating all possible phrases of length ≤K is, therefore,

L K =
K∑

m=1

m2m . (I2)

In a note at the end of this appendix, I show that this length is equal to

L K = (K − 1)2K+1 + 2. (I3)

Consider first the simple case where the message length is n = L K . The number of
phrases c(n) in this message is maximized when the phrases are as short as possible,
meaning that there are 2m phrases of size m for each m. This yields an upper bound for
c(n), which can be developed according to:

c(n) ≤
K∑

m=1

2m

= 1 − 2K+1

1 − 2
− 20

= 2K+1 − 2,

(I4)

1 T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991),
p. 320–1.

Lempel–Ziv distinct parsing 611

< 2K+1

≤ L K − 2

k − 1

<
L K

k − 1

where K > 1 is assumed.
Consider next the more complex case where the message length satisfies L K ≤ n <

L K+1. We can write n = L K + �K , where �K is bounded by the difference L K+1 −
L K = K 2K+2 + 2 − [(K − 1)2K + 2] = (K + 1)2K , or �K < (K + 1)2K . The parsing
generates a certain number of phrases of length ≤K , with the rest being of length K + 1.
The maximum number of phrases of length K + 1 is 2K+1, which is strictly greater than
�K /(K + 1). Thus, the upper bound for c(n) is now given by:

c(n) <
L K

k − 1
+ �K

K + 1

= L K + �K

k − 1
+ �K

K + 1
− �K

K − 1

= L K + �K

k − 1
+ �K (K − 1) − �K (K + 1)

K 2 − 1

= L K + �K

k − 1
− 2�K

K 2 − 1

≤ L K + �K

k − 1

≡ n

k − 1
.

(I5)

The next step is to bound K (find the maximum value of K) with respect to n. Assume
most generally that L K ≤ n ≤ L K+1. The first inequality with Eq. (I3) gives

n ≥ Lk

= (K − 1)2K+1 + 2

≥ 2K .

(I6)

The lower bound 2K in Eq. (I6) is found by setting K = 1 then K > 1. There is equality
in the first case, and in the second case we have

(K − 1)2K+1 + 2 > 2K+1 + 2 > 2K+1 > 2K .

The result in Eq. (I6) implies:

K ≤ log n. (I7)

612 Appendix I

The second inequality with Eqs. (I3) and (I7) gives

n ≤ Lk+1

= K 2K+2 + 2

≥ K 2K+2 + 2.2K+2

= (K + 2)2K+2

≤ (log n + 2)2K+2.

(I8)

Hence,

K + 2 ≥ log
n

log n + 2
, (I9)

which, with the condition n > 1, develops into

K − 1 ≥ log
n

log n + 2
− 3

= log n − log(log n + 2) − 3

=
(

1 − log(log n + 2) + 3

log n

)
log n.

(I10)

If we assume n ≥ 4, we have log n + 2 ≤ 2 log n and, consequently, log(log n + 2) ≤
log(2 log n) = log log n + 1. Substituting this inequality in Eq. (I10) yields

K − 1 ≥
(

1 − log(log n) + 4

log n

)
log n

≡ (1 − εn) log n,

(I11)

with

εn = log(log n) + 4

log n
. (I12)

We now require that K − 1 > 0 (a condition which has been overlooked in the refer-
ence).2 Since we already assumed n ≥ 4 (log n ≥ 2), this extra requirement is equivalent
to εn < 1. Letting n = 2q (q > 0 and real) and substituting in Eq. (I12), we obtain the new
condition log q < q − 4. As easily checked, a sufficient condition is q ≥ 8 or n ≥ 128
(the exact condition being n ≥ 109).

Under the condition εn < 1 (or K − 1 > 0), substituting the inequality in Eq. (I11)
into that in Eq. (H5) to obtain the final result:

c(n) ≤ n

K − 1

≤ n

(1 − εn) log n
.

(I13)

2 T. M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons, 1991),
p. 320–1.

Lempel–Ziv distinct parsing 613

Proof of Eq. (I3)

Setting q = 2, we write the sum in Eq. (I2) in the form

Lk =
K∑

m=1

mqm

= q
K∑

m=1

mqm−1

= q
d

dq

K∑
m=1

qm

= q
d

dq

(
K∑

m=0

qm

)
.

Since the sum involved in the last right-hand side is equal to (1 − q K+1)/(1 − q), we
get

Lk = q
d

dq

(
1 − q K+1

1 − q

)

= −(K + 1)q K (1 − q) − (1 − q K+1)(−1)

(1 − q)2

≡
q=2

q[1 − q K+1 + (K + 1)q K]

= q[1 − q K+1 + (K + 1)q K

= q + q K+1(1 − q) + K q K+1

≡
q=2

2 + (K + 1)q K+1.

Appendix J (Chapter 11)
Error-correction capability of linear
block codes

In this appendix, I show that linear block codes have the capability of correcting any
error patterns of Hamming weight w(E) = e, or any number of e errors in the received
block code, provided that

e ≤
{

dmin − 1

2

}
, (J1)

where dmin is the minimum Hamming distance, and with the brackets corresponding to
the integer-floor definition, i.e., {(dmin − 1)/2} ≡ �(dmin − 1)/2� corresponding to the
highest integer contained in the argument.1

To show this, assume a block code C , with a minimum Hamming distance dmin. To
recall, dmin represents the minimum number of bit positions for which two codewords
differ in C . Let X be any codeword belonging to C , and Y any received block code,
which may contain errors. Define the Hamming distance between vectors X and Y as
d(X, Y). It is clear that if d(X, Y) < dmin, or equivalently,

d(X, Y) ≤ dmin − 1, (J2)

the block code Y does not belong to C . In this case, any possible error pattern is detected
by the code.

Assume next that X and Y are the transmitted and received vectors, respectively. Since
the minimum Hamming distance dmin is either an odd or an even integer, we can write

2t + 1 ≤ dmin ≤ 2t + 2, (J3)

where t ≥ 0 is an integer. I am now going to show that the code is capable of correcting
all error patterns having t or fewer errors. Let Z be another vector in C . Using the
distance property referred to as triangle inequality (see Chapter 5), we have

d(X, Z) ≤ d(X, Y) + d(Y, Z). (J4)

Suppose now that the number of errors in the received vector Y is w(E) = e. This means
that

d(X, Y) = e. (J5)

1 The following demonstration is inspired and adapted from S. Lin and D. J. Costello, Error Control Coding
(Englewood Cliffs, NJ: Prentice-Hall, 1983).

Error-correction capability of linear block codes 615

Since both vectors X and Z belong to the code, their Hamming distance satisfies
d(X, Z) ≥ dmin, or using the left-hand side inequality in Eq. (J3):

d(X, Z) ≥ dmin ≥ 2t + 1. (J6)

Combining Eqs. (J4), (J5), and (J6), we then obtain:

2t + 1 ≤ dmin

≤ d(X, Z)

≤ e + d(Y, Z)

⇒ d(Y, Z) ≥ 2t + 1 − e

⇒ d(Y, Z) > 2t − e.

(J7)

To interpret the last inequality, consider the two possible cases: (a) e ≤ t , and (b) e > t .
In case (a), we obtain 2t − e > t , thus, d(Y, Z) > t . Since in this case and from

Eq. (J5) we also have d(Y, X) = e ≤ t , this means that the received vector Y is closer to
the transmitted vector X than any other vector Z in the code. The principle of maximum
likelihood decoding (see Chapter 11) ensures that the code will necessarily correct the
received block Y to the transmitted block X . Using Eq. (J3), with e ≤ t , we also have

2e + 1 ≤ 2t + 1

≤ dmin

⇒ e ≤ dmin − 1

2

⇒ e ≤
⌊

dmin − 1

2

⌋
.

(J8)

The last inequality in the above result, thus, establishes that the code is capable of
correcting all error patterns E having up to �(dmin − 1)/2� errors.

Consider next case (b), where e > t . I am going to show that the code is not capable of
correcting all the corresponding possible error patterns, because there exists at least one
case where the received vector Y is closer to an incorrect vector Z than to the transmitted
vector X . To show this, let X and Y be the transmitted and received vectors, respectively,
and assume that:

(1) Z is another vector in the code C such that d(X, Z) = dmin;
(2) E1 and E2 are two different error patterns satisfying the properties:

(i) E1 + E2 = X + Z ,
(ii) E1 and E2 do not have nonzero bits in the same positions.

Defining w(U) as the Hamming weight of the block or vector U , the consequences of
the above assumptions are summarized by:

w(E1 + E2) = w(X + Z)
w(E1 + E2) = w(E1) + w(E2)
w(X + Z) = d(X, Z) = dmin.

⇔w(E1) + w(E2) = w(X + Z) = d(X, Z) = dmin

(J9)

616 Appendix J

The first and second equalities in Eq. (J9) obviously stem from properties (i) and (ii),
respectively. The third equality, w(X + Z) = d(X, Z), comes from the definition of the
Hamming distance, which represents the number of bit positions by which two blocks or
vectors differ from each other; each of the nonzero bits in the vector X + Z represents
such positions, which number as w(X + Z).

Assume next that E1 is the error vector of the transmitted vector X . The received
vector is, therefore:

Y = X + E1. (J10)

The Hamming distances d(X, Y) and d(X, Z) are found using results in Eq. (J10) and
property (i), respectively, as follows:

d(X, Y) = w(X + Y) = w(X − Y) = w(E1), (J11)

d(Y, Z) = w(Y + Z) = w(X + E1 + Z) = w(X − E1 + Z) = w(E2). (J12)

We assume next that the error pattern associated with E1 corresponds to a number of
errors w(E1) = e strictly greater than t , i.e., e > t or e ≥ t + 1. Based on this assumption
and after Eqs. (J3) and (J9), we have

dmin = w(E1) + w(E2) ≤ 2t + 2

t + 1 + w(E2) ≤ w(E1) + w(E2) ≤ 2t + 2
⇒ w(E2) ≤ t + 1. (J13)

Substituting w(E1) ≥ t + 1 and w(E2) ≤ t + 1 in Eqs. (J11) and (J12), we obtain
finally: {

d(X, Y) ≥ t + 1
d(Y, Z) ≤ t + 1

⇒ d(Y, Z) ≤ d(X, Y). (J14)

The above result indicates that there exists an error pattern with e > t errors, which
results in a transmitted vector Y closer to an incorrect vector Z than the transmitted vector
X . As a consequence, based on the principle of maximum-likelihood decoding, the code
will output an incorrectly decoded block. This provides the proof that the code is capable
of correcting any error pattern with number of errors e ≤ t , or e ≤ {(dmin − 1)/2}, where
the brackets indicate the integer contained in the argument.

Appendix K (Chapter 13) Capacity of
binary communication channels

In this appendix, I provide the solution of the maximization problem for mutual infor-
mation, which defines the channel capacity:

C = max
p(x)

H (X ; Y), (K1)

as applicable to the general case of a binary communication channel (symmetric or
asymmetric), whose transition matrix is defined according to

P(Y |X) =
(

p(y1|x1) p(y1|x2)
p(y2|x1) p(y2|x2)

)

=
(

a 1 − b
1 − a b

)
,

(K2)

where a, b are real numbers in the interval [0, 1]. To recall, the channel mutual infor-
mation H (X ; Y) is given by

H (X ; Y) = H (Y) − H (Y |X). (K3)

Thus, we must first calculate the output-source entropy H (Y) and the equivocation
entropy H (Y |X). For this, we need the output probability distribution p(y1), p(y2),
which is obtained from the transition-matrix elements in Eq. (K2) as follows:

p(y1) = p(y1|x1)p(x1) + p(y1|x2)p(x2)

= aq + (1 − b)(1 − q)

p(y2) = p(y2|x1)p(x1) + p(y2|x2)p(x2)

= (1 − a)q + b(1 − q)

≡ 1 − p(y1).

(K4)

In Eq. (K4), we have defined the input probability distribution according to p(x1) = q
and p(x2) = 1 − q. From Eq. (K4), we can calculate the output-source entropy:

H (Y) = −p(y1) log p(y1) − p(y2) log p(y2)

= −p(y1) log p(y1) − [1 − p(y1)] log[1 − p(y1)]

= f [p(y1)]

= f [aq + (1 − b)(1 − q)],

(K5)

618 Appendix K

where the function f is defined by

f (u) = f (1 − u)

= −u log u − (1 − u) log(1 − u),
(K6)

noting that, as usual, the logarithms are in base two.
The next step consists of calculating the equivocation H (Y |X). For this, we need

the joint distribution p(x, y). Using Bayes’s theorem and the conditional probabilities
shown in Eq. (K2) we obtain:

p(y1, x1) = p(y1|x1)p(x1) = aq

p(y1, x2) = p(y1|x2)p(x2) = (1 − b)(1 − q)

p(y2, x1) = p(y2|x1)p(x1) = (1 − a)q

p(y2, x2) = p(y2|x2)p(x2) = b(1 − q).

(K7)

The results in Eq. (K5) now make it possible to calculate the equivocation H (Y |X):

H (Y |X) = −
2∑

i=1

2∑
j=1

p(xi , y j) logp(y j |xi)

= −[aq log a + (1 − a)q log(1 − a)
+ (1 − b)(1 − q) log(1 − b) + b(1 − q) log b]

≡ q f (a) + (1 − q) f (b).

(K8)

Substituting Eqs. (K7) and (K8) in Eq. (K3), we obtain the mutual information H (X ; Y):

H (X ; Y) = f [aq + (1 − b)(1 − q)] − q f (a) − (1 − q) f (b). (K9)

Setting q = 0 or q = 1 in the result in Eq. (K9) yields, in both cases, H (X ; Y) = 0. The
case a = 1 − b (or a + b = 1) corresponds to H (X ; Y) = 0, as can easily be verified
from Eq. (K9). This means that, regardless of the input probability distribution, the
mutual information is zero. As discussed in the main text, such a channel is useless.
The condition a = 1 − b in the transition matrix (Eq. (K2)) represents the most general
definition of useless channels, i.e., including but not limited to the case a = b = ε = 1/2.

In the general case, we have H (X ; Y) ≥ 0, and the function is concave (meaning that
a cord between any two points is always below the maximum). Therefore, the maximum
of H (X ; Y) ≥ 0 is given by the root of the derivative dH (X ; Y)/dq. Thus, we must
solve

dH (X ; Y)

dq
= d

dq
{ f [aq + (1 − b)(1 − q)] − q f (a) − (1 − q) f (b)}

= 0.

(K10)

Using the definition of f in Eq. (K8) and going through elementary calculations yields
the following solution for q:

q = 1

a + b − 1

(
b − 1 + 1

1 + 2W

)
, (K11)

Capacity of binary communication channels 619

with

W = f (a) − f (b)

a + b − 1
. (K12)

Concerning the continuity of the above solution in the case a + b = 1, see the note at
the end of this appendix.

The optimal distribution defined in Eqs. (K11) and (K12) can now be substituted into
Eq. (K10). After elementary calculation, we obtain:

C = max
q

H (X ; Y)

= log(1 + 2W) − W
2W

1 + 2W
− q[f (b) − f (a)] − f (b)

= log(1 + 2W) + (1 − a) f (b) − b f (a)

a + b − 1
.

(K13)

Define

U = (1 − a) f (b) − b f (a)

a + b − 1
(K14)

and substitute U in Eq. (K13) to get the channel capacity:

C = log(1 + 2W) + U

= log[(1 + 2W)2U]

= log(2U + 2U+W)

≡ log(2U + 2V),

(K15)

with

V = U + W = (1 − b) f (a) − a f (b)

a + b − 1
. (K16)

Note

The optimal probability distribution q = p(x1) = 1 − p(x2) defined in Eqs. (K11) and
(K12) seemingly has a pole in a + b = 1. I show herewith that it is actually defined over
the whole plane a, b ∈ [0, 1], namely, that it is analytically defined in the limiting case
a + b = 1. I shall establish this by first setting a + b = 1 − ε in Eq. (K11), then using
the Taylor expansion of the function f (a + ε) to the second order, i.e.,

f (a + ε) = f (a) + ε log
1 − a

a
+ ε2 1

2a(1 − a)
,

which gives

W = log
1 − a

a
+ ε

1

2a(1 − a)
.

By substituting this result in Eq. (K11), and expanding the exponential term, one
easily finds 1/(1 + 2W) ≈ a − ε/2, which gives the limit q = 1/2, corresponding to

620 Appendix K

the uniform distribution. However, such a distribution does not maximize the mutual
information H (Y ; X), since we have seen that in the limiting case a + b = 1 we have
H (Y ; X) = 0.

I show next that the channel capacity is also defined over the plane a, b ∈ [0, 1],
including the limiting case a + b = 1. Indeed, using the same Taylor expansion as
previously, we easily obtain

U = (1 − a) log
a

1 − a
− f (a) + ε

2a

= log a + ε

2a

≈ log a.

Substituting this result and 1/(1 + 2W) ≈ a − ε/2 ≈ a into Eq. (K15) yields C =
log(1 + 2W) + U ≈ − log a + log a = 0, which is the expected channel capacity in the
limiting case a + b = 1. The function V is also found to take the limit V ≈ log(1 − a),
which, from Eq. (K15), also gives C = log(2U + 2V) ≈ 0.

Appendix L (Chapter 13) Converse
proof of the channel coding theorem

This appendix provides the converse proof of the CCT.1 The converse proof must show
that to achieve transmission with arbitrary level accuracy (or error probability), the
condition R ≤ C must be fulfilled. The demonstration seeks to establish two properties,
which I shall name A and B.

Property A

To begin with, we must establish the following property, referred to as Fano’s inequality,
according to which:

H (Xn|Y n) ≤ 1 + pen R, (L1)

where pe is the error probability of the code (pe = 1 − p̃), i.e., the probability that the
code will output a codeword that is different from the input message codeword.

To demonstrate Fano’s inequality, we define W = 1 . . . 2n R as the integer that labels
the 2n R possible codewords in the input-message codebook. We can view the code
as generating an output integer label W ′, to which the label W of the input message
codeword may or may not correspond. We can, thus, write pe = p(W ′ �= W). We then
define a binary random variable E , which tells whether or not a codeword error occurred:
E = 1, if W ′ �= W , and E = 0, if W ′ = W . Thus, we have p(E = 1) = pe and p(E =
0) = 1 − pe. We can then introduce the conditional entropy H (E, W |Y n), which is the
average information we have on E, W , given the knowledge of the output codeword
source, Y n . Referring back to the chain rule in Eqs. (5.22) and (5.23), we can expand
H (E, W |Y n) in two different ways:

H (E, W |Y n) = H (E |Y n) + H (W |E, Y n)

= H (W |Y n) + H (E |W, Y n).
(L2)

Since E is given by the combined knowledge of label W and output source Y n , we
have H (E |W, Y n) = 0. We also have H (E |Y n) = H (E), since the only knowledge of
Y n does not condition the knowledge of E . Substituting these results into Eq. (L2), we

1 Inspired from M. Cover and J. A. Thomas, Elements of Information Theory (New York: John Wiley & Sons,
1991), pp. 203–9.

622 Appendix L

obtain

H (W |Y n) = H (E) + H (W |E, Y n). (L3)

We shall now find an upper bound for H (W |Y n). First, we can decompose the second
term in the right-hand side in Eq. (L3) as follows:

H (W |E, Y n) = p(E = 0)H (W |Y n, E = 0) + p(E = 1)H (W |Y n, E = 1)

= (1 − pe)H (W |Y n, E = 0) + pe H (W |Y n, E = 1).
(L4)

We have H (W |Y n, E = 0) = 0, since knowing Y n and that there is no codeword error is
equivalent to knowing the input codeword label W . Second, we have H (W |Y n, E = 1) ≤
log(2n R − 1) < log(2n R) = n R, since knowing Y n and that there is a codeword error,
the number of mistaken codeword possibilities is 2n R − 1, with uniform probability
q = 1/(2n R − 1); hence the entropy can be upper bounded by H ′ = − log(q) < n R.
Finally, we have H (E) ≤ 1, since E is a binary random variable. Substituting the two
upper bounds into Eq. (L3) yields:

H (W |Y n) ≤ 1 + pen R (L4)

and

H (Xn|Y n) ≤ 1 + pen R, (L5)

since the knowledge of the input message source Xn and the codeword label W are
equivalent. Equation (L5) is Fano’s inequality.

Property B

The second tool required for the converse proof of the CCT is the property according
to which the channel capacity per transmission is not increased by passing through
the data several times. Note that this property is true if one assumes that the channel
is memoryless, namely that there is no possible correlation between errors concerning
successive bits or successive codewords.

As I established earlier, the channel capacity for an n-bit codeword is nC , where C
is the capacity of the binary channel, corresponding to a single bit transmission. The
proposed new property can be restated as

H (Xn; Y n) ≤ nC. (L6)

The corresponding proof of Eq. (L6) is relatively straightforward. Indeed, we have, by
definition

H (Xn; Y n) = H (Y n) − H (Y n|Xn). (L7)

Converse proof of the channel coding theorem 623

Let us now develop the second term in the right-hand side in Eq. (L7) as follows:

H (Y n|Xn) = H (y1|Xn) + H (y2|y1, Xn) + · · · + H (yn|y1, y2, . . . , yn−1, Xn)

=
n∑

i=1

H (yi |y1, y2, . . . yi−1, Xn)

=
n∑

i=1

H (yi |xi).

(L8)

The first equality stems from substituting the extended output source Y n = y1, Y n−1,
Y n−1 = y2, Y n−2, etc., (here yk means the binary source of bit or rank k in the codeword),
into the chain rule (Eq. (5.22)) as follows:

H (Y n|Xn) ≡ H (y1, Y n−1|Xn)

= H (y1|Xn) + H (Y n−1|y1, Xn)

= H (y1|Xn) + H (y2Y n−2|y1, Xn)

= H (y1|Xn) + H (y2|y1, Xn) + H (Y n−2|y1, y2, Xn)
= · · ·
≡ H (y1|Xn) + H (y2|y1, Xn) + · · · + H (yn|y1, y2, . . . , yn−1, Xn).

(L9)

The last equality in Eq. (L8) stems from the fact that, assuming a memoryless chan-
nel, all received bits y1, y2, . . . , yi−1 are uncorrelated with the received bit yi , hence
H (yi |y1, y2, . . . , yi−1, Xn) = H (yi |Xn). Furthermore, the knowledge of yi is not con-
ditioned to that of the input message bits x1, x2, . . . , xn except for the bit xi of the same
rank i in the codeword, hence H (yi |y1, y2, . . . , yi−1, Xn) = H (yi |xi). Substituting the
result in Eq. (L8) into Eq. (L7) yields:

H (Xn; Y n) = H (Y n) −
n∑

i=1

H (yi |xi). (L10)

Next, we look for an upper bound in the right-hand side in Eq. (L8). We observe that
H (Y n) ≤ ∑n

i=1 H (yi), the equality standing if the distribution p(yi) was uniform, in
which case we would have H (yi) ≡ H (Y) and H (Y n) = nH (Y). Applying the inequality
to Eq. (L10) we finally obtain

H (Xn; Y n) ≤
n∑

i=1

H (yi) −
n∑

i=1

H (yi |xi)

=
n∑

i=1

[H (yi) − H (yi |xi)]

≡
n∑

i=1

H (xi ; yi).

(L11)

This result shows that the mutual information between the two transmitted or received
codeword sources is less than or equal to the sum of mutual information between the
transmitted or received bits in the binary channel. Since, by definition, H (xi ; yi) ≤

624 Appendix L

max H (xi ; yi) = C , where C is the binary-channel capacity, we also have

H (Xn; Y n) ≤ nC. (L12)

This result establishes that the mutual information between extended sources Xn, Y n ,
where bits are passed through the channel n times, is no greater than n times the binary-
channel capacity.

The two properties A and B can now be used (finally!) to establish the converse proof
of the CCT. As before, we assume that the 2n R input message codewords are chosen at
random with a uniform distribution, hence H (Xn) = n R. By definition of the mutual
information, H (Xn; Y n), and introducing the majoring properties A and B, we obtain

H (Xn; Y n) = H (Xn) − H (Xn|Y n)
↔

n R = H (Xn) = H (Xn; Y n) + H (Xn|Y n)

n R ≤ nC + 1 + pen R
↔

R ≤ pe R + 1

n
+ C.

(L13)

Since the starting assumption is that the error probability of the code, pe, vanishes for
n → ∞, the above result asymptotically becomes:

R ≤ C, (L14)

which represents a necessary condition and, hence, proves the converse of the CCT.

Appendix M (Chapter 16) Bloch sphere
representation of the qubit

In this appendix, I show that qubits can be represented by a unique point on the surface
of a sphere, referred to as a Bloch sphere.

As seen from the main text, any qubit can be represented as the vector linear super-
position

|q〉 = α|0〉 + β|1〉, (M1)

where |0〉, |1〉 form an orthonormal basis in the 2D vector space, and α, β are complex
numbers, which represent the qubit coordinates in this space. The length of the qubit
vector |q〉 is, therefore, given by |α|2 + |β|2. Since any two complex numbers α, β

can be defined in the exponential representation as α = |a|eiθ1 and β = |β|eiθ2 , one can
write, from Eq. (M1):

|q〉 = α|0〉 + β|1〉 = |a|eiθ1 |0〉 + |β|eiθ2 |1〉 (M2)

Assume next that the qubit vector is unitary, i.e., |α|2 + |β|2 = 1. Substituting this
property and with the definition tan(θ/2) = |β|/|α|, we obtain from Eq. (M2):

|q〉 = |α|√|α|2 + |β|2
eiθ1 |0〉 + |β|√|α|2 + |β|2

eiθ2 |1〉

= 1√
1 + tan2(θ/2)

eiθ1 |0〉 + tan2(θ/2)√
1 + tan2(θ/2)

eiθ2 |1〉

≡ cos
θ

2
eiθ1 |0〉 + sin

θ

2
eiθ2 |1〉,

(M3)

with 0 ≤ θ ≤ π/2.
Finally, introducing γ = θ1 and ϕ = θ2 − θ1, the qubit takes the form

|q〉 = eiγ

(
cos

θ

2
|0〉 + sin

θ

2
eiϕ|1〉

)
. (M4)

Overlooking the argument γ , which only represents an arbitrary (said “unobservable”)
phase shift, we finally obtain

|q〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ|1〉. (M5)

626 Appendix M

0

1

θ q

ϕ
x

y

z

Figure M1 Qubit represented as point of coordinates (θ, ϕ) on Bloch sphere.

The qubit can, thus, be represented through two angular coordinates θ, ϕ, which define
the unique position of a point on a sphere of unit radius, which is the Bloch sphere
illustrated in Fig. M1.

It is seen from Fig. M1 that the pure qubits |0〉 or |1〉 correspond to θ = 0 or θ = π ,
respectively, which occupy the north and south poles of the Bloch sphere. The qubit
representation of quantum information, thus, corresponds to an infinity of states located
on the surface of the Bloch sphere. See more on this topic in Appendix N.

Appendix N (Chapter 16) Pauli matrices,
rotations, and unitary operators

In this appendix, I provide further conceptual background concerning Pauli matrices.
It is shown that Pauli matrices make it possible to define any 2 × 2 unitary matrix
U (namely, satisfying the property U+U = I , where the upper symbol (+) stands for
Hermitian conjugation, and I is the identity matrix. The different results or theorems
obtained in this appendix will be usefully applied to other chapters.

Recall first the definitions of the four Pauli matrices:

I ≡ σ0 =
(

1 0
0 1

)
X ≡ σx = σ1 =

(
0 1
1 0

)

Y ≡ σy = σ2 =
(

0 −i
i 0

)
Z ≡ σz = σ3 =

(
1 0
0 −1

)
.

(N1)

Note that the different notations σ0,1,2,3, σ0,x,y,z , and I, X, Y, Z are equivalent. We
progress in several steps, which recall the properties of unitary operators, their complex-
exponential representation, and, finally, the representation of unitary operators through
rotations on the Bloch sphere.

Hermitian conjugation and unitary matrices

Given an operator A, whose matrix representation is characterized by the complex coef-
ficients ai j , the Hermitian conjugate of A, called A+, is defined by the coefficients ā j i ,
corresponding to the complex-conjugate, transposed matrix. By definition, an operator
or matrix is called unitary if it satisfies the property A+ A = I .

Exponential representation of complex numbers

A complex number z = a + ib has modulus or length |z| = zz∗ = √
a2 + b2. It is pos-

sible to represent a complex number in the form

z = |z|
(

a√
a2 + b2

+ i
b√

a2 + b2

)
≡ |z| (cos θ + i sin θ) ,

(N2)

628 Appendix N

where θ = tan−1(b/a) is the argument of z. One may also write:

z = |z| (cos θ + i sin θ) ≡ |z| eiθ , (N3)

where eiθ = cos θ + i sin θ is a complex number called an imaginary exponential.
Such notation is justified if one considers the definition of the real exponential
exp(x) = ex :

ex =
∞∑

n=0

xn

n!

= 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
+ · · ·

(N4)

Substituting x = iθ into Eq. (N4) yields

eiθ =
∞∑

n=0

(iθ)n

n!
= 1 + iθ + (iθ)2

2!
+ (iθ)3

3!
+ · · · + (iθ)n

n!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+ · · ·

=
∞∑

n=0

(−1)nθ2n

(2n)!
+ i

∞∑
n=0

(−1)nθ2n+1

(2n + 1)!

≡ cos θ + i sin θ,

(N5)

where the two series corresponding to the real and imaginary parts of eiθ have been
substituted with their exact function definitions cos θ and sin θ , respectively. Noteworthy
are the two identities

exp(iπ) = −1, (N6)

exp(iπ/2) = i. (N7)

Exponential operator

Assume an operator A satisfying the property A2 = I . We then define the exponential
operator exp(iAθ) according to

exp(iAθ) = cos(θ)I + i sin(θ)A. (N8)

Note in Eq. (N8) that the real part of the exponential involves the operator I and
the imaginary part involves the operator A. One proves the above development by
substituting the argument x = iAθ in the series expansion in Eq. (N4) and using the

Pauli matrices, rotations, and unitary operators 629

property A2 = I :

eiAθ =
∞∑

n=0

(iAθ)n

n!

= I + iAθ + (iAθ)2

2!
+ (iAθ)3

3!
+ · · · + (iAθ)n

n!
+ · · ·

= I + iAθ − θ2 I

2!
− i

θ3 A

3!
+ · · ·

=
∞∑

n=0

(−1)nθ2n

(2n)!
I + i

∞∑
n=0

(−1)nθ2n+1

(2n + 1)!
A

≡ cos(θ)I + i sin(θ)A

(N9)

(in the above, the two series expansions are recognized to correspond to the functions
cos θ and sin θ , respectively).

Rotation operators

We now have the mathematical tools to introduce a new class of unitary operators
generated by the three Pauli matrices X, Y, Z , and called rotation operators. Such
operators are defined according to:

Rx (γ) = e−i γ

2 X = e−i γ

2 σ1

Ry(γ) = e−i γ

2 Y = e−i γ

2 σ2

Rz(γ) = e−i γ

2 Z = e−i γ

2 σ3 .

(N10)

The above exponential-operator definitions are relevant, since Pauli matrices satisfy the
condition X2 = Y 2 = Z2 = σ 2

i = 1. Substituting the definitions in Eqs. (N1) and (N8)
into Eq. (N10) yields (as easily checked):

Rx (γ) = cos
γ

2
I − i sin

γ

2
X =

 cos

γ

2
−i sin

γ

2

−i sin
γ

2
cos

γ

2

Ry(γ) = cos
γ

2
I − i sin

γ

2
Y =

cos

γ

2
−sin

γ

2

sin
γ

2
cos

γ

2

Rz(γ) = cos
γ

2
I − i sin

γ

2
Z =

exp

(
−i

γ

2

)
0

0 exp
(

i
γ

2

)

 .

(N11)

630 Appendix N

0

1

θ q

ϕ
x

y

z

Figure N1 Qubit represented as point of coordinates (θ, ϕ) on Bloch sphere.

I shall now interpret the effect of the three above rotation operators on qubits. As we
have seen from the main text, the general definition of a qubit |q〉 is

|q〉 = α|0〉 + β|1〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ|1〉. (N12)

The above definition shows that any qubit can be represented by a single point of
angular coordinates (θ, ϕ) on the surface of the Bloch sphere (with θ = 0 → π and
ϕ = 0 → 2π), which is show in Fig. N1 for convenience.

It is left as an exercise to show that the three operators Rk(γ) (k = x, y, z) rotate the
qubit by an angle γ about the axis k, in the counterclockwise direction.

Consider next a more general form of the rotation operator. First, we define the Pauli
vector in the Cartesian reference frame (x, y, z)) according to

 σ = σ1 x + σ2 y + σ3 z
= (σ1, σ2, σ3).

(N13)

Given a unitary vector n = (nx , ny, nz), the scalar product n · σ corresponds to the
matrix operator defined by U = n · σ = nxσ1 + nyσ2 + nzσ3. It is easily established
that U is unitary or U 2 = I . Indeed, we have

U 2 = UU

= (nxσ1 + nyσ2 + nzσ3)(nxσ1 + nyσ2 + nzσ3)

= (
n2

x + n2
y + n2

z

)
I + nx ny(σ1σ2 + σ2σ1) + nynz(σ2σ3 + σ3σ2)nznx (σ3σ1 + σ1σ3)

= I. (N14)

Pauli matrices, rotations, and unitary operators 631

In the above result, we have applied the property in Eq. (16.19) from the text, namely
σiσ j = −σ jσi for i �= j and our assumption that n is unitary (n2

x + n2
y + n2

z = 1). Since
U 2 = 1, the exponential-operator definition in Eq. (N9) is valid for the operator U , and
we have, for any real θ :

exp(iUθ) = I cos θ + iU sin θ

↔
exp[i(n · σ)θ] = I cos θ + i(n · σ) sin θ.

(N15)

We recognize in this result a more general expression from which the elementary rotation
operators Rk(γ) (k = x, y, z) defined in Eq. (N10) can be derived, i.e., by setting n = x ,
 n = y, or n = z with θ = −γ /2. The general expression corresponds to a qubit rotation
of (counterclockwise) angle γ about the axis defined by the unit vector n = (nx , ny, nz).

Since the result of any 2 × 2 unitary transformation A is to move a qubit on the
surface of the Bloch sphere, there exists a unique rotation associated with such a move
(like taking a direct flight from city to city on the Earth). This unique rotation is defined
through the operator exp[i(n · σ)θ] = A (within an unobservable phase factor). We can
make this operator more explicit, by developing the definition in Eq. (N15), according
to

exp[i(n · σ)θ] = I cos θ + i(n · σ) sin θ

= σ0 cos θ + i sin θ (nxσ1 + nyσ2 + nzσ3)
(N16)

or

A ≡ eiδ exp[i(n · σ)θ]

≡
3∑

i=0

µiσi .
(N17)

where µi are complex numbers defined by

µ0 = cos θ, µ1 = inx sin θ, µ2 = iny sin θ, µ3 = inz sin θ, (N18)

which, in particular, satisfy
∑

i |µi |2 = 1. To summarize this result, any 2 × 2 unitary
transformation, or rotation on the Bloch sphere, can be expressed as a linear com-
plex expansion of Pauli matrices. It is left as an elementary exercise to determine the
parameters n, θ associated with any unitary transformation A.

Euler’s theorem

This theorem states that every 2 × 2 unitary matrix U can be expressed from the two
rotation operators Ry, Rz and a set of four real numbers α, β, γ, δ, according to the
product:

U = eiδ Rz(α)Ry(β)Rz(γ). (N19)

632 Appendix N

To show this, we first substitute the corresponding definitions of Ry, Rz from Eq. (N11)
to obtain:

U = eiδ

e−i α+γ

2 cos
β

2
−e−i α−γ

2 sin
β

2

ei α−γ

2 sin
β

2
ei α+γ

2 cos
β

2

 . (N20)

It is left as an exercise to prove that the unitary condition U+U = 1 is both necessary
and sufficient for the above matrix coefficients to represent any unitary matrix U .

Euler’s theorem, as defined in Eq. (N19), is referred to as Z-Y decomposition of
rotations. In fact Z-X decomposition, according to U = eiδ Rz(α)Rx (β)Rz(γ), is also
possible, as well as any decomposition involving two different Pauli operators. Most
generally, given any two nonparallel unitary vectors n, m

U = eiδ R n(α)R m(β)R n(γ), (N21)

where R p(θ) = exp[i(p · σ)θ] is the rotation operator of angle θ about the axis defined
by the unitary vector p.

Decomposition of 2 × 2 unitary matrices

A general property stemming from Euler’s theorem is that any 2 × 2 unitary matrix can
be decomposed according to

U = eiδ AX B XC, (N22)

where A, B, C are 2 × 2 unitary matrices satisfying ABC = I and X = σ1.
To prove this property, we must find at least one set of three matrices A, B, C that

satisfies ABC = I and correspond to the unique decomposition of U in Eq. (N22).
Assume heuristically, for instance,

A = Rz(2ψ)Ry(−2χ)
B = Ry(2χ)Rz(2ω)
C = Rz(2φ),

(N23)

where φ, χ,ψ are rotation angles to be determined (the factor of two will lighten the
calculations). It is clear that Eq. (N23) satisfies the condition ABC = I , or

ABC = Rz(2ψ)Ry(−2χ)Ry(2χ)Rz(2ω)Rz(2φ)
≡ Rz(2ψ)Rz(2ω)Rz(2φ)
= I,

(N24)

if we impose the angle condition

ψ + ω + φ = 0. (N25)

Pauli matrices, rotations, and unitary operators 633

We shall now develop the product AX B XC to obtain

AX B XC = AX B X Rz(2φ)

= AX B

(
0 1
1 0

)(
e−iφ 0

0 eiφ

)

= AX B

(
0 eiφ

e−iφ 0

)

= AX Ry(2χ)Rz(2ω)

(
0 eiφ

e−iφ 0

)

= AX Ry(2χ)

(
e−iω 0

0 eiω

)(
0 eiφ

e−iφ 0

)

= AX Ry(2χ)

(
0 e−i(ω−ϕ)

ei(ω−ϕ) 0

)

= AX

(
cos χ −sin χ

sin χ cos χ

)(
0 e−i(ω−ϕ)

ei(ω−ϕ) 0

)

= AX

(−sin χei(ω−ϕ) cos χe−i(ω−ϕ)

cos χei(ω−ϕ) sin χe−i(ω−ϕ)

)

= A

(
0 1
1 0

)(−sin χei(ω−ϕ) cos χe−i(ω−ϕ)

cos χei(ω−ϕ) sin χe−i(ω−ϕ)

)

= A

(
cos χei(ω−ϕ) sin χe−i(ω−ϕ)

−sin χei(ω−ϕ) cos χe−i(ω−ϕ)

)

= Rz(2ψ)Ry(−2χ)

(
cos χei(ω−ϕ) sin χe−i(ω−ϕ)

−sin χei(ω−ϕ) cos χe−i(ω−ϕ)

)

= Rz(2ψ)

(
cos χ sin χ

−sin χ cos χ

)(
cos χei(ω−ϕ) sin χe−i(ω−ϕ)

−sin χei(ω−ϕ) cos χe−i(ω−ϕ)

)

= Rz(2ψ)

(
[cos2 χ − cos2 χ]ei(ω−ϕ) 2 cos χ sin χe−i(ω−ϕ)

−2 cos χ sin χei(ω−ϕ) [cos2 χ − cos2 χ]e−i(ω−ϕ)

)

= Rz(2ψ)

(
cos 2χei(ω−ϕ) sin 2χe−i(ω−ϕ)

−sin 2χei(ω−ϕ) cos 2χe−i(ω−ϕ)

)

=
(

e−iψ 0
0 eiψ

)(
cos 2χei(ω−ϕ) sin 2χe−i(ω−ϕ)

−sin 2χei(ω−ϕ) cos 2χe−i(ω−ϕ)

)

=
(

cos 2χei(ω−ϕ−ψ) sin 2χe−i(ω−ϕ+ψ)

−sin 2χei(ω−ϕ+ψ) cos 2χe−i(ω−ϕ−ψ)

)

≡
(

cos 2χe−2i(ϕ+ψ) sin 2χe2iϕ

−sin 2χe−2iϕ cos 2χe2i(ϕ+ψ)

)
.

(N26)

634 Appendix N

Identifying this result with the definition in Eq. (N20), we obtain

e−i α+γ

2 cos
β

2
−e−i α−γ

2 sin
β

2

ei α−γ

2 sin
β

2
ei α+γ

2 cos
β

2

 =

(
cos 2χe−2i(φ+ψ) sin 2χe2iφ

−sin 2χe−2iφ cos 2χe2i(φ+ψ)

)
(N27)

and, thus,

2χ = −β

2
, 2φ + 2ψ = α + γ

2
= −2ω, −2φ = α − γ

2
↔

2χ = −β

2
, 2ψ = α, 2ω = −α + γ

2
, 2φ = γ − α

2
.

(N28)

The three unitary operators are then fully defined according to

A = Rz(α)Ry

(
β

2

)

B = Ry

(
−β

2

)
Rz

(
−α + γ

2

)

C = Rz

(
γ − α

2

)
.

(N29)

Commutation properties of rotation operators

Two rotation operators Ri (θ), R j (ϕ) do not commute except when i = j . It is left as an
easy exercise to verify that

[Ri (2θ), R j (2ϕ)] = −2iεi jkσk sin θ sin ϕ. (N30)

Consider, for instance, the triple rotation A = Ri (−θ)R j (ϕ)Ri (θ), with i �= j . We would
intuitively think that the last rotation Ri (−θ) cancels the effect of the first rotation Ri (θ)
and, therefore, that A = R j (ϕ) but, as we shall see, this is not the case. Indeed:

A = Ri (−θ)R j (ϕ)Ri (θ)

= Ri (−θ){Ri (θ)R j (ϕ) + [R j (ϕ), Ri (θ)]}
= Ri (−θ)Ri (θ)R j (ϕ) + Ri (−θ)[R j (ϕ), Ri (θ)]

= R j (ϕ) − 2iεi jk Ri (−θ)σk,

(N31)

which proves that, except for i = j (εi jk = 0), in the general case A �= R j (ϕ).
It is also straightforward to show that the commutation of the rotation operators with

the Pauli matrices satisfy

[Ri (2θ), σ j] = 2iεi jk sin θσk . (N32)

This result expresses the fact that the two operators Ri (2θ), σ j do not commute, except
in the specific cases i = j (εi ik = 0) and 2θ = 0, 2π (Ri (0) = Ri (2π) = I).

Appendix O (Chapter 17) Heisenberg
uncertainty principle

In this appendix, I provide a demonstration of the Heisenberg uncertainty principle.1

According to this principle, the uncertainties �A,�B associated with two observables
A, B, measured in the state |ψ〉, must satisfy the inequality:

�A�B ≥ 1

2
|〈ψ |[A, B]|ψ〉|. (O1)

To prove Eq. (O1), define

|ϕ〉 = (A + iλB) |ψ〉, (O2)

where λ is a real parameter. We then obtain

〈ϕ|ϕ〉 = 〈ψ |(A + iλB)+(A + iλB)|ψ〉
= 〈ψ |(A+ − iλB+)(A + iλB)|ψ〉
= 〈ψ |A+ A|ψ〉 + iλ〈ψ |(A+B − B+ A)|ψ〉 + 〈ψ |B+B|ψ〉
≡ 〈ψ |A2|ψ〉 + iλ〈ψ |[A, B]|ψ〉 + λ2〈ψ |B2|ψ〉
≥ 0,

(O3)

where we used the commutator definition [A, B] = AB − B A and the fact that the
observables are Hermitian. The property 〈ϕ|ϕ〉 ≥ 0 (with 〈ϕ|ϕ〉 real) is inherent to
the definition of inner product. We also have the property 〈ψ |X2|ψ〉 ≥ 0 for any
observable X = A, B and state |ψ〉, see note. Hence, i〈ψ | [A, B] |ψ〉 must be real,
with i〈ψ | [A, B] |ψ〉 = ±|〈ψ | [A, B] |ψ〉|, and Eq. (O3) is of the polynomial form
P(λ) = aλ2 ± bλ ≥ c ≥ 0 with real coefficients a, b, c satisfying a, b, c ≥ 0. Since
P(λ) ≥ 0, it can only have zero or one root, which corresponds to a discriminant
δ = b2 − 4ac ≤ 0. We, thus, have

δ = |〈ψ | [A, B] |ψ〉|2 − 4〈ψ |B2|ψ〉〈ψ |A2|ψ〉
≤ 0,

(O4)

1 See, for instance: C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (Paris: Hermann, 1977),
Vol. 1, pp. 28–7.

636 Appendix O

which can be put in the inequality form:

〈ψ |A2|ψ〉〈ψ |B2|ψ〉 ≡ 〈A2〉〈B2〉

≥ 1

4
|〈ψ |[A, B]|ψ〉|2.

(O5)

Now define the new observables Ã, B̃ from the previous observables A, B according to{
A = Ã − 〈ψ | Ã|ψ〉 ≡ Ã − 〈 Ã〉
B = B̃ − 〈ψ |B̃|ψ〉 ≡ B̃ − 〈B̃〉. (O6)

It is easily verified that [A, B] = [Ã, B̃]. Substituting the definitions in Eq. (O6) into
Eq. (O5), we obtain

〈A2〉〈B2〉 = 〈(Ã − 〈 Ã〉)2〉〈(B̃ − 〈B̃〉)2〉, (O7)

or

� Ã
2
�B̃2 ≥ 1

4
|〈ψ |[Ã, B̃]|ψ〉|2, (O8)

or

� Ã�B̃ ≥ 1

2
|〈ψ |[Ã, B̃]|ψ〉|. (O9)

It is also easily verified that �X2 = �X̃2 for any operator X = A, B defined by
Eq. (O6). Hence, we finally obtain the Heisenberg uncertainty relation:

�A�B ≥ 1

2
|〈ψ |[A, B]|ψ〉|. (O10)

Note

The property 〈ψ |X2|ψ〉 ≥ 0 for any observable X and state |ψ〉 is shown as follows.
Because X is an observable, there exists an orthonormal or eigenstate base {|λi 〉}, whose
state elements satisfy X |λi 〉 = λi |λi 〉, where λi are the corresponding real eigenvalues.
The state |ψ〉 can, thus, be uniquely decomposed into this base with coordinates µi ,
according to

|ψ〉 =
∑

i

xi |λi 〉.

Hence, we obtain:

〈ψ |X2|ψ〉 =
(∑

i

µ̄i 〈λi |
)

X X

∑

j

µ j |λ j 〉

=
∑

i

∑
j

µ̄iµ jλiλ jδi j

=
∑

i

λ2
i |µi |2

≥ 0.

Appendix P (Chapter 18) Two-qubit
teleportation

In this appendix, I formally demonstrate the possibility of simultaneously teleporting two
qubits from Alice’s location to Bob’s. The proposed six-qubit quantum circuit, shown in
Fig. P1, is an original, symmetrical variant of that described in Gottesman and Chuang
(1999).1 Such an example also represents a test case for the analysis of quantum circuits
and Bell measurements, as a full illustration of the concepts and formalism described in
Chapter 18, hence, the detailed calculations presented here.

In the circuit shown in Fig. P1, the boxes B, B ′ stand for Bell-state measurements
and Xn, Xn′

, Zn, Zn′
are Pauli gates controlled by classical bits n, m, n′m ′. The inputs

|q〉1, |q ′〉6 are two qubits from Alice, who accesses the quantum wires 1, 2, 5, and 6. Bob
only has access to the quantum wires 3 and 4, where he retrieves the teleported qubits
under the tensor state |ψ〉 = CNOT|q〉3|q ′〉4 = C43|q〉3 ⊗ |q ′〉4, as illustrated in Fig. P1
(applying a second CNOT, allowing Bob to retrieve Alice’s individual qubits |q〉3, |q ′〉4).
For the teleportation, Alice and Bob share a 4-qubit entangled state |χ〉, defined by

|χ〉 = 1

4
(|0000〉 + |0111〉 + |1100〉 + |1011〉)2345 (P1)

(the circuit used to generate |χ〉, which entangles two Bell states |β00〉 is shown in
Fig. 18.11).

We proceed now to the formal demonstration of the 2-qubit teleportation effect that
is achieved through the above-described circuit. To analyze the qubit evolution in pre-
and post-measurement stages, we need first to detail the Bell-state measurement circuits
B, B ′. Such circuits are shown in Fig. 18.5, and reproduced in Fig. P2 according to the
circuit notations.

In the figure, the term Ci j designates CNOT gates where i is the control qubit, j is
the target qubit, and Hk are Hadamard gates placed on the quantum wire k. The two
Bell-measurement apparatuses B, B ′ output the post-measurement classical bits n, m
and n′m ′, respectively, which correspond to pure states |nmn′m ′〉1256, to be defined later.
Our task now is to calculate the 6-qubit state situated just past the two Hadamard gates
in B, B ′ and ahead of Alice’s two measurements. This will allow us to know what post-
measurement states |nmn′m ′〉 ⊗ |∗〉23 are to be expected, and hence, the action of the
Xn, Xn′

, Zn, Zn′
gates based on Bob’s knowledge of the four classical bits n, m, n′m ′.

1 D. Gottesman and I. L. Chuang, Quantum teleportation is a universal computational primitive. Nature, 402
(1999), 390–3, http://arxiv.org/PS_cache/quant-ph/pdf/9908/9908010v1.pdf.

638 Appendix P

q

χ

´q

B

´
4
nX

ψ

B
1

2

3

4

5

6

m

n

´n

´m

´
3
nX

mZ4

mZ3

´B

nX3

´
4
mZ

q

´q
ψ

Figure P1 Six-qubit quantum circuit for teleporting two qubits.

1H1
q

2
χ

n

m

B

5H

6
´q

5
χ

´m

´n´B

12C
56C

Figure P2 Principle of Bell measurement or measurement in Bell state.

We then define Alice’s two qubits as:{|q〉1 ≡ α|0〉 + β|1〉
|q ′〉6 ≡ α′|0〉 + β ′|1〉, (P2)

and based on the definition of |χ〉 in Eq. (P1), we develop the 6-qubit tensor |�〉 that is
input to the circuit, as follows (overlooking normalization factors):

|�〉 = |q〉1 ⊗ |χ〉2345 ⊗ |q ′〉6

= (α|0〉1 + β|1〉1) ⊗ (|0000〉 + |0111〉 + |1100〉 + |1011〉)2345 ⊗ |q ′〉6

=
(

α|00000〉 + α|00111〉 + α|01100〉 + α|01011〉 +
β|10000〉 + β|10111〉 + β|11100〉 + β|11011〉

)
12345

⊗ |q ′〉6

=
(

α|00000〉 + α|00111〉 + α|01100〉 + α|01011〉 +
β|10000〉 + β|10111〉 + β|11100〉 + β|11011〉

)
12345

⊗ (α′|0〉6 + β ′|1〉6)

=

αα′(|000000〉 + |001110〉 + |011000〉 + |010110〉) +
αβ ′(|000001〉 + |001111〉 + |011001〉 + |010111〉) +
α′β(|100000〉 + |101110〉 + |111000〉 + |110110〉) +
ββ ′(|100001〉 + β|101111〉 + |111001〉 + |110111〉)

123456

.

(P3)

We must then apply the action of the two CNOT gates C12, C56 in B, B ′, noted C12, C56

respectively, with the first and second indices representing the control and target qubits.

Two-qubit teleportation 639

For any binary combinations a, b, c, d, e, f = {0, 1} in a 6-qubit state |abcde f 〉, it is
clear that the gates have the corresponding action:

C12|0abcde〉 = |0abcde〉
C12|1abcde〉 = |1ābcde〉
C56|abcd0e〉 = |abcd0e〉
C56|abcd1e〉 = |abcd1ē〉.

(P4)

Effecting the above rules in Eq. (P3), we obtain |�′〉 = C56C12|�〉 as:

|�′〉 =

αα′(|000000〉 + |001111〉 + |011000〉 + |010111〉) +
αβ ′(|000001〉 + |001110〉 + |011001〉 + |010110〉) +
α′β(|110000〉 + |111111〉 + |101000〉 + |100111〉) +
ββ ′(|110001〉 + |111110〉 + |101001〉 + |100110〉)

123456

. (P5)

Next, we must calculate the action of the subsequent Hadamard gates H1, H5 acting on
qubits 1 and 5, respectively, recalling first that

H |0〉 = |+〉 = |0〉 + |1〉√
2

H |1〉 = |−〉 = |0〉 − |1〉√
2

,

(P6)

and, hence, for any binary combination a, b, c, d, e = {0, 1}:

H1|0abcde〉 = |+abcde〉 = |0abcde〉 + |1abcde〉√
2

H1|1abcde〉 = |−abcde〉 = |0abcde〉 − |1abcde〉√
2

H5|abcd0e〉 = |abcd + e〉 = |abcd0e〉 + |abcd1e〉√
2

H5|abcd1e〉 = |abcd − e〉 = |abcd0e〉 − |1abcd1e〉√
2

.

(P7)

Applying the two Hadamard gates H1, H5 onto |�′〉 in Eq. (P5), and overlooking the
normalization factor, we obtain |�〉 = H5 H1|�′〉, as:

|�〉 =

αα′(|+000 + 0〉 + |+011 − 1〉 + |+110 + 0〉 + |+101 − 1〉)+
αβ ′(|+000 + 1〉 + |+011 − 0〉 + |+110 + 1〉 + |+101 − 0〉)+
α′β(|−100 + 0〉 + |−111 − 1〉 + |−010 + 0〉 + |−001 − 1〉)+
ββ ′(|−100 + 1〉 + |−111 − 0〉 + |−010 + 1〉 + |−001 − 0〉)

123456

, (P8)

640 Appendix P

where the states |±〉 are defined in Eq. (P6). Substituting these definitions in Eq. (P8),
but in two steps to avoid mistakes, the result decomposes itself into 64 6-qubits:

|�′′〉 =

α α′

|0000 + 0〉 + |1000 + 0〉+
|0011 − 1〉 + |1011 − 1〉+
|0110 + 0〉 + |1110 + 0〉+
|0101 − 1〉 + |1101 − 1〉

 + aβ ′

|0000 + 1〉 + |1000 + 1〉+
|0011 − 0〉 + |1011 − 0〉+
|0110 + 1〉 + |1110 + 1〉+
|0101 − 0〉 + |1101 − 0〉

+α′β

|0100 + 0〉 − |1100 + 0〉+
|0111 − 1〉 − |1111 − 1〉+
|0010 + 0〉 − |1010 + 0〉+
|0001 − 1〉 − |1001 − 1〉

 + β β ′

|0100 + 1〉 − |1100 + 1〉+
|0111 − 0〉 − |1111 − 0〉+
|0010 + 1〉 − |1010 + 1〉+
|0001 − 0〉 − |1001 − 0〉

123456

=

α α′

|000000〉 + |000010〉 + |100000〉 + |100010〉+
|001101〉 − |001111〉 + |101101〉 − |101111〉+
|011000〉 + |011010〉 + |111000〉 + |111010〉+
|010101〉 − |010111〉 + |110101〉 − |110111〉

+α β ′

|000001〉 + |000011〉 + |100001〉 + |100011〉+
|001100〉 − |001110〉 + |101100〉 − |101110〉+
|011001〉 + |011011〉 + |111001〉 + |111011〉+
|010100〉 − |010110〉 + |110100〉 − |110110〉

123456

+

α′ β

|010000〉 + |010010〉 − |110000〉 − |110010〉+
|011101〉 − |011111〉 − |111101〉 + |111111〉+
|001000〉 + |001010〉 − |101000〉 − |101010〉+
|000101〉 − |000011〉 − |100101〉 + |100111〉

+β β ′

|010001〉 + |010011〉 − |110001〉 − |110011〉+
|011100〉 − |011110〉 − |111100〉 + |111110〉+
|001001〉 + |001011〉 − |101001〉 − |101011〉+
|000100〉 − |000110〉 − |100100〉 + |100110〉

123456

. (P9)

Note that the above development is far more easily obtained using a math-equation
editor than through handwriting calculation. Yet, the operation requires extreme care
in the different character substitutions. I shall now regroup the 64 terms in Eq. (P9)
according to the 16 possible base elements |mnm ′n′〉1256 for the combined Bell-
measurement bases, which, for clarity, I order in binary progression of the indices
mnm ′n′ = 0000, 0001, 0010, 0011 . . . , as:

|mn〉12 ⊗ |m ′n′〉56 ≡ |mnm ′n′〉1256

=

|0000〉1256, |0001〉1256, |0010〉1256, |0011〉1256,

|0100〉1256, |0101〉1256, |0110〉1256, |0111〉1256,

|1000〉1256, |1001〉1256, |1010〉1256, |1011〉1256,

|1100〉1256, |1101〉1256, |1110〉1256, |1111〉1256,

. (P10)

Note that I choose here to label the base states according to |mnm ′n′〉1256, which is
arbitrary but will make sense further on. To lighten the notations, in the following I shall
write

|mnabm ′n′〉123456 ≡ |mnm ′n′〉|ab〉34. (P11)

Two-qubit teleportation 641

Factoring the terms, first according to |ab〉34, and then according to |mnm ′n′〉 we obtain:

|�〉 =

α α′

(|0000〉 + |0010〉 + |1000〉 + |1010〉)|00〉34 +
(|0001〉 + |0011〉 + |1001〉 + |1011〉)|11〉34 +
(|0100〉 + |0110〉 + |1100〉 + |1110〉)|10〉34 +
(|0101〉 + |0111〉 + |1101〉 + |1111〉)|01〉34

+αβ ′

(|0001〉 + |0011〉 + |1001〉 + |1011〉)|00〉34 +
(|0000〉 + |0010〉 + |1000〉 + |1010〉)|11〉34 +
(|0101〉 + |0111〉 + |1101〉 + |1111〉)|01〉34 +
(|0100〉 + |0110〉 + |1100〉 + |1110〉)|01〉34

α′β

(|1000〉 + |0110〉 + |1100〉 + |1110〉)|00〉34 +
(|0101〉 + |0111〉 + |1101〉 + |1111〉)|11〉34 +
(|0000〉 + |0010〉 + |1000〉 + |1010〉)|10〉34 +
(|0001〉 + |0011〉 + |1001〉 + |1011〉)|01〉34

+β β ′

(|0101〉 + |0111〉 + |1101〉 + |1111〉)|00〉34 +
(|0100〉 + |0110〉 + |1100〉 + |1110〉)|11〉34 +
(|0001〉 + |0011〉 + |1001〉 + |1011〉)|10〉34 +
(|0000〉 + |0010〉 + |1000〉 + |1010〉)|01〉34

=

|0000〉(α α′|00〉 + α β ′|11〉 + α′β|10〉 + β β ′|01〉34)+
|0001〉(α β ′|00〉 + α α′|11〉 + β β ′|10〉 + α′ β|01〉34)+
|0010〉(α α′|00〉 − α β ′|11〉 + α′β|10〉 + β β ′|01〉34)+
|0011〉(α β ′|00〉 − α α′|11〉 + β β ′|10〉 + α′ β|01〉34)+
|0100〉(α′ β|00〉 + β β ′|11〉 + α α′|10〉 + α β ′|01〉34)+
|0101〉(β β ′|00〉 + α′ β|11〉 + α β ′|10〉 + α α′|01〉34)+
|0110〉(α′ β|00〉 − β β ′|11〉 + α α′|10〉 + α β ′|01〉34)+
|0111〉(β β ′|00〉 − α′ β|11〉 + α β ′|10〉 + α α′|01〉34)

+

|0000〉(α α′|00〉 + α β ′|11〉 − α′β|10〉 − β β ′|01〉34)+
|0001〉(α β ′|00〉 + α α′|11〉 − β β ′|10〉 − α′ β|01〉34)+
|0010〉(α α′|00〉 − α β ′|11〉 − α′β|10〉 + β β ′|01〉34)+
|0011〉(α β ′|00〉 − α α′|11〉 − β β ′|10〉 + α′ β|01〉34)+
|1100〉(−α′ β|00〉 − β β ′|11〉 + α α′|10〉 + α β ′|01〉34)+
|1101〉(−β β ′|00〉 − α′ β|11〉 + α β ′|10〉 + α α′|01〉34)+
|1110〉(−α′ β|00〉 + β β ′|11〉 + α α′|10〉 − α β ′|01〉34)+
|1111〉(−β β ′|00〉 + α′ β|11〉 + α β ′|10〉 − α α′|01〉34)

(P12)

(for clarity, I have divided the 16 lines into two groups, m = 0 and m = 1, appearing
within the two columns in brackets [], respectively).

The result in Eq. (P12) reveals the details of the 16 post-measurement states, which
have the form

|mnm ′n′〉1256|θ〉34 = |mnm ′n′〉1256(w|00〉 + x |11〉 + y|10〉 + z|01〉)34. (P13)

642 Appendix P

Thus, each measurement from Alice that yields |mnm ′n′〉1256 results in a corresponding
system collapse on Bob’s two wires |θ〉34. Last but not least, we must show that the 16
collapsed states |θ〉34 indeed correspond to the proposed circuit shown in Fig. P1, and
involve the gates Xn, Xn′

, Zn, Zn′
corresponding to the cbits m, n, m ′, n′. Formally, the

circuit corresponds to a tensor operator Umnm ′n′ effecting the transformation

Umnm ′n′ |θ〉34 = |ψ〉 (P14)

and defined as:

Umnm ′n′ = Zm
4 Zm

3 Zm ′
4 Xn

3 Xn′
4 Xn′

3 . (P15)

We must show that after passing through these gates, the resulting qubit is |ψ〉 =
C43|q〉3 ⊗ |q ′〉4. Substituting |q〉3 and |q ′〉4 from Eq. (P2) into the definition of |ψ〉, we
obtain:

|ψ〉 = C43|q〉3 ⊗ |q ′〉4

= C43(α|0〉 + β|1〉)3 ⊗ |α′|0〉 + β ′|1〉〉4

= C43(αα′|00〉 + αβ ′|01〉 + α′β|10〉 + ββ ′|11〉)34

≡ (αα′|00〉 + αβ ′|11〉 + α′β|10〉 + ββ ′|01〉)34.

(P16)

It is then easily verified that Umnm ′n′ |θ〉34 = |ψ〉 for any of the 16 post-measurement
states:

Umnm ′n′ |θ〉34 = Z0
4 Z0

3 Z0
4 X0

3 X0
4 X0

3(αα′|00〉 + αβ ′|11〉 + α′β|10〉 + ββ ′|01〉)34

= Z0
4 Z0

3 Z0
4 X0

3 X1
4 X1

3(αβ ′|00〉 + αα′|11〉 + ββ ′|10〉 + α′β|01〉)34

= Z0
4 Z0

3 Z1
4 X0

3 X0
4 X0

3(αα′|00〉 − αβ ′|11〉 + α′β|10〉 − ββ ′|01〉)34

= Z0
4 Z0

3 Z1
4 X0

3 X1
4 X1

3(αβ ′|00〉 − αα′|11〉 + ββ ′|10〉 − α′β|01〉)34

= Z0
4 Z0

3 Z0
4 X1

3 X0
4 X0

3(α′β|00〉 + ββ ′|11〉 + αα′|10〉 + αβ ′|01〉)34

= Z0
4 Z0

3 Z0
4 X1

3 X1
4 X1

3(ββ ′|00〉 + α′β|11〉 + αβ ′|10〉 + αα′|01〉)34

= Z0
4 Z0

3 Z1
4 X1

3 X0
4 X0

3(α′β|00〉 − ββ ′|11〉 + αα′|10〉 − αβ ′|01〉)34

= Z0
4 Z0

3 Z1
4 X1

3 X1
4 X1

3(ββ ′|00〉 − α′β|11〉 + αβ ′|10〉 − αα′|01〉)34

= Z1
4 Z1

3 Z0
4 X0

3 X0
4 X0

3(αα′|00〉 + αβ ′|11〉 − α′β|10〉 − ββ ′|01〉)34

= Z1
4 Z1

3 Z0
4 X0

3 X1
4 X1

3(αβ ′|00〉 + αα′|11〉 − ββ ′|10〉 − α′β|01〉)34

= Z1
4 Z1

3 Z1
4 X0

3 X0
4 X0

3(αα′|00〉 − αβ ′|11〉 − α′β|10〉 + ββ ′|01〉)34

= Z1
4 Z1

3 Z1
4 X0

3 X1
4 X1

3(αβ ′|00〉 − αα′|11〉 − ββ ′|10〉 + α′β|01〉)34

= Z1
4 Z1

3 Z0
4 X1

3 X0
4 X0

3(−α′β|00〉 − ββ ′|11〉 + αα′|10〉 + αβ ′|01〉)34

= Z1
4 Z1

3 Z0
4 X1

3 X1
4 X1

3(−ββ ′|00〉 − α′β|11〉 + αβ ′|10〉 + αα′|01〉)34

= Z1
4 Z1

3 Z1
4 X1

3 X0
4 X0

3(−α′β|00〉 + ββ ′|11〉 + αα′|10〉 − αβ ′|01〉)34

= Z1
4 Z1

3 Z1
4 X1

3 X1
4 X1

3(−ββ ′|00〉 + α′β|11〉 + αβ ′|10〉 − αα′|01〉)34 = |ψ〉.

.

(P17)

Two-qubit teleportation 643

The first equality in Eq. (P17), corresponding to |mnm ′n′〉 = |0000〉 is immediately
established by comparison with Eq. (P16). All the other equalities can be verified
with the understanding that they hold within an occasional (unobservable) phase factor
eiπ = −1. As an illustration of the verification, consider, for instance, the last equality
in Eq. (P16), and apply the Pauli operators as defined:

Umnm ′n′ |θ〉34 = Z1
4 Z1

3 Z1
4 X1

3 X1
4 X1

3(−ββ ′|00〉 + α′β|11〉 + αβ ′|10〉 − αα′|01〉)34

= Z1
4 Z1

3 Z1
4 X1

3(−ββ ′|11〉 + α′β|00〉 + αβ ′|01〉 − αα′|10〉)34

= Z1
4 Z1

3 Z1
4(−ββ ′|01〉 + α′β|10〉 + αβ ′|11〉 − αα′|00〉)34

= Z1
4 Z1

3(ββ ′|01〉 + α′β|10〉 − αβ ′|11〉 − αα′|00〉)34

= Z1
4(ββ ′|01〉 − α′β|10〉 + αβ ′|11〉 − αα′|00〉)34

= (−ββ ′|01〉 − α′β|10〉 − αβ ′|11〉 − αα′|00〉)34

= −(αα′|00〉 + αβ ′|11〉 + α′β|10〉 + ββ ′|01〉)34

≡ eiπ |ψ〉. (P18)

The operation of the quantum circuit, together with Alice transmitting her four measured
cbits m, n, m ′, n′ to Bob, thus, result in the successful teleportation of the tensor state
|ψ〉, as defined in Eq. (P16). As mentioned at the beginning of this appendix, Bob can
retrieve Alice’s qubits |q〉, |q ′〉 by effecting a final CNOT operation on |ψ〉, as described
by the operator C34. Indeed,

|ψout 〉 = C43|ψ ′〉
= C43(αα′|00〉 + αβ ′|11〉 + α′β|10〉 + ββ ′|01〉)34

= (αα′|00〉 + αβ ′|01〉 + α′β|10〉 + ββ ′|11〉)34

= (α|0〉 + β|1〉)3 ⊗ |α′|0〉 + β ′|1〉〉4

≡ |q〉3 ⊗ |q ′〉4,

(P19)

which shows that |ψ ′〉 is the unique tensor product of the qubits |q〉, |q ′〉.

Appendix Q (Chapter 19) Quantum
Fourier transform circuit

In this appendix, I develop a simplified tensor-product expression for the components
resulting from the quantum Fourier transform (QFT) of N -qubits. This expression leads
to the conception of a corresponding QFT circuit based on simple 2 × 2 quantum gates.

The starting point is the fundamental QFT definition (Eq. (19.16)), which transforms
the orthonormal basis |n〉 according to

QFT |n〉 = 1√
N

N−1∑
k=0

eik 2nπ
N |k〉. (Q1)

The goal is to reduce the right-hand side in this expression into a tractable tensor product,
from which a simple QFT gate circuit can be constructed. I focus on the imaginary-
exponential terms in Eq. (Q1), namely exp(2iπkn/N), where k, n = 0 . . . N − 1. From
this point on, we assume that N is exactly a power of two, i.e., N = 2K , where K ≥ 1 is
an integer. We now expand the integer k according to the possible binary representation
k ≡ k12K−1 + k22K−2 + · · · + kK 20, where kp = 0, 1 and k = 1, 2 . . . K , and express
the ratio k/N according to

k

N
= k

2K

= k12−1 + k22−2 + · · · + kK 2−K

=
K∑

p=1

kp

2p
.

(Q2)

Substituting this representation into the exponential in Eq. (Q1), and introducing next
the tensor notation |k〉 = |k1k2 . . . kK 〉 we obtain

QFT|n〉 = 1

2K/2

2K −1∑
k=0

exp

2iπn

K∑
p=1

kp

2p

|k〉, (Q3)

Quantum Fourier transform circuit 645

QFT|n〉 = 1

2K/2

∑
k1,k2,...,kK =0,1

exp

2iπn

K∑
p=1

kp

2p

 |k1k2 . . . kK 〉

= 1

2K/2

∑
k1=0,1

∑
k2=0,1

· · ·
∑

kK =0,1

exp

2iπn

K∑
p=1

kp

2p

 |k1k2 . . . kK 〉

≡ 1

2K/2

∑
k1=0,1

e2iπn
k1
21 |k1〉 ⊗

∑
k2=0,1

e2iπn
k2
22 |k2〉 ⊗ · · · ⊗

∑
kK =0,1

e2iπn kK
2K |kK 〉.

(Q4)

This result shows that QFT |n〉 can be decomposed indeed into a K -tensor product. In
this decomposition, each term, indexed by p, is actually made of the two contributions:

∑
kp=0,1

e2iπn
k p
2p |kp〉 = |0〉 + e

2iπn
2p |1〉. (Q5)

Hence, we can develop Eq. (Q5) according to:

QFT|n〉 = 1

2K/2

(|0〉1 + e
2iπn
21 |1〉1

) ⊗ (|0〉2 + e
2iπn
22 |1〉2

) ⊗ · · · ⊗ (|0〉K + e
2iπn
2K |1〉K

)
.

(Q6)

The next step is to simplify further each of the exponential terms in Eq. (Q6). To do
this, we substitute the binary expansion for integers n, namely, n = n12K−1 + n22K−2 +
· · · + nK−121 + nK 20, where nq = 0, 1, in each of the exponents, which gives

2iπ
n

21
= 2iπ

[(
n12K−2 + n22K−3 + · · · + nK−1

) + nK

21

]
2iπ

n

22
= 2iπ

[(
n12K−3 + n22K−4 + · · · + nK−2

) + nK−1

21
+ n

kK

22

]
...

2iπ
n

2K−1
= 2iπ

[
(n1) + n2

21
+ · · · + nK−1

2K−2
+ nK

2K−1

]
2iπ

n

2K
= 2iπ

[n1

21
+ n2

22
+ · · · + nK−1

2K−1
+ nK

2K

]
.

(Q7)

In the above, I have put in parentheses all the integer terms, to separate them from the
other terms that are defined as fractions of powers of two. Clearly, the integer terms do
not contribute to the imaginary exponential. The consequence of this can be generalized
under the formula

exp

(
2iπ

n

2m

)
= exp (2iπ�m)

�m =
m∑

l=1

nK−m+l

2l
.

(Q8)

646 Appendix Q

1n

2n

3n

1−Kn

Kn 10 12 Ω+ πie

10 22 Ω+ πie

10 2 Kie Ω+ π

10 12 −Ω+ Kie π

10 22 −Ω+ Kie π

1

2

3

1−K

K 1

2

3

1−K

K

2−Kn 10 32 Ω+ πie
2−K

H

H 2R

H 2R 3R

2−K

Figure Q1 Gate circuit corresponding to first three output qubits.

From Eqs. (Q6)–(Q8), we finally obtain a nice closed-formed expression for the QFT
tensor product:

QFT|n〉 = 1

2K/2

(|0〉1 + e2iπ�1 |1〉1
) ⊗ (|0〉2 + e2iπ�2 |1〉2

) ⊗ · · · ⊗ (|0〉K + e2iπ�K |1〉K

)
.

(Q9)
With |n〉 = |n1n2 . . . nK 〉, we have the following relation for each of the gate outputs

QFT|n〉p = 1

2K/2

(|0〉p + e2iπ�p |1〉p

)
. (Q9)

Considering the first output qubits we have

QFT|n〉1 = 1

2K/2
(|0〉1 + e2i�1 |1〉1)

= 1

2K/2
(|0〉1 + eiπnK |1〉1) ,

(Q10)

which shows that (within the normalization factor 2K/2) the QFT circuit wire corresponds
either to the identity gate I (with input nK = 0) or the Hadamard gate H (with input nK =
1). We can then proceed to construct the QFT circuit from bottom to top, numbering
the output qubits from 1 to K, accordingly. As for the second output qubit, we have
2iπ�2 = iπ (nK−1 + nK /2) and then:

QFT|n〉2 = 1

2K/2

(|0〉2 + e2i�2 |1〉2
) = 1

2K/2

(|0〉2 + eiπnK−1 ei π
2 nK |1〉2

)
. (Q11)

We can immediately identify the above transformation as built from a Hadamard gate on
the output wire 2 with input nK−1, and a controlled-phase gate (call it R2), with phase
πnK /2 and nK as the control qubit. The next output qubit is

QFT|n〉3 = 1

2K/2

(|0〉3 + e2i�3 |1〉3
)

= 1

2K/2

(|0〉3 + eiπnK−2 ei π
2 nK−1 ei π

4 nK |1〉3
)
. (Q12)

Quantum Fourier transform circuit 647

We can immediately identify the above transformation as built from a Hadamard gate
on the output wire 3 with input nK−2, the controlled-phase gate R2, with nK−1 as the
control qubit, followed by a second gate (call it R3), with phase πnK /4 and nK as the
control qubit.

The gate circuit corresponding to the first three output qubits is illustrated in Fig. Q1.
It is clear from the above description and the definition of �m in Eq. (Q8) that the whole
QFT circuit represents a generalization of that shown in Fig. Q1, with a sequence of
controlled-phase gates defined by the matrix

Rn =
(

1 0

0 e2i π
2n

)
. (Q13)

On the top quantum wire, the gate sequence from left to right is thus: H R2 R3 . . . RK

(see Fig. 19.4 in main text for a complete view of the QFT circuit).

Appendix R (Chapter 20) Properties of
continued fraction expansion

This appendix provides the proof of three key properties of the continued fraction
expansion.

First, define the real number xn through a suite of positive real numbers [a0, a1, . . . , an]
according to the continued fraction

xn = a0 + 1

a1 + 1

a2 + 1

a3 + · · · 1

an

, (R1)

with n ≤ N . Each real number in the set {x0, x1, . . . , xN−1, xN } is called a convergent
of xN , while xn is called the nth convergent of xN .

Property 1

The finite suite [a0, a1, . . . , an] of positive real numbers corresponds to the ratio xn =
pn/qn , as defined through: {

pn = an pn−1 + pn−2

qn = anqn−1 + qn−2,
(R2)

with n ≥ 2, p0 = a0, q0 = 1, p1 = 1 + a0a1, and q1 = a1 for n = 0, 1.
The proof of these relations comes by induction. Indeed, for n = 0, 1, we have:{

p0 = a0

q0 = 1
→ p0

q0
= a0

1
≡ a0, (R3)

{
p1 = 1 + a0a1

q1 = a1
→ p1

q1
= 1 + a0a1

a1
≡ a0 + 1

a1
. (R4)

We then observe that:

x2 = a0 + 1

a1 + 1

a2

x3 = a0 + 1

a1 + 1

a2 + 1

a3

,
(R5)

Properties of continued fraction expansion 649

which illustrates that [a0, a1, a2] and [a0, a1, a2 + 1/a3] correspond to x2 and x3, which
are the 2nd and the 3rd convergents of xN , respectively. Assume next that the relations in
Eq. (R2) apply to any order n ≥ 1. We must then show that the relations also apply to the
order n + 1. Then given the nth convergent xn , i.e., [a0, a1, . . . , an−1, an], the (n + 1)th
convergent xn+1 is of the form [a0, a1, . . . , an−1, an + 1/an+1]. Applying Eq. (R2), to
the latter, we obtain

x̃n+1 =

(
an + 1

an+1

)
pn−1 + pn−2(

an + 1

an+1

)
qn−1 + qn−2

. (R6)

Multiplying the numerator and denominator in Eq. (R6) by an+1 and reordering terms
yields

x̃n+1 = an+1 (an pn−1 + pn−2) + pn−1

an+1 (anqn−1 + qn−2) + qn−1

= an+1 pn + pn−1

an+1qn + qn−1

≡ pn+1

qn+1

= xn+1.

(R7)

The result in Eq. (R7) shows that x̃n+1 = xn+1, corresponding to the suite
[a0, a1, . . . , an+1], which proves that the relations in Eq. (R2) apply at order
n + 1.

If the suite [a0, a1, . . . , aN] is made of positive integers, then pn, qn are also positive
integers and xn = pn/qn is a rational number for 0 ≤ n ≤ N .

Property 2

The real numbers pn, qn defined in Eq. (R2) are co-prime, and satisfy the relation
(n ≥ 1):

qn pn−1 − pnqn−1 = (−1)n. (R8)

It is left as an easy exercise first to prove the above by induction. Next, we must
show that pn, qn are co-prime, meaning that their greatest common divisor (GCD) is
one.

Assume that k ≥ 1 is some common divisor of pn, qn , i.e., pn = k p̃n and qn = kq̃n ,
with pn/qn = p̃n/q̃n . Likewise, assume that k ′ ≥ 1 is some common divisor of
pn−1, qn−1, i.e., pn−1 = k ′ p̃n−1 and qn−1 = k ′q̃n−1, with pn−1/qn−1 = p̃n−1/q̃n−1. Sub-
stituting these definitions into Eq. (R8) yields:

kk ′ (q̃n p̃n−1 − p̃nq̃n−1) = (−1)n. (R9)

650 Appendix R

Clearly, p̃n/q̃n has the same continued fraction expansion as pn/qn at all orders n ≥ 1,
meaning that from Eq. (R8) we also have q̃n p̃n−1 − p̃nq̃n−1 = (−1)n and, hence, from
Eq. (R9):

kk ′ = 1. (R10)

Consider next the case n = 1. Since q0 = 1, we have k ′ = 1 (hence p0, q0 are co-prime)
and from Eq. (R10), we have k = 1 (hence p1, q1 are co-prime). The same conclusion
applies to the case n = 2 (p2, q2 are co-prime, since p1, q1 are co-prime), and so on,
which proves Property 2, according to which pn, qn are co-prime at all orders n ≥ 1.

Property 3

Given a rational number x , if two integers p, q are such that∣∣∣∣ p

q
− x

∣∣∣∣ ≤ 1

2q2
, (R11)

then p/q is a convergent of x .
We can prove this property as follows. First, we know from the above description

that there exists a finite fraction expansion of the rational number x , as defined by the
convergents xn = pn/qn (n = 0, 1, . . . , N). We shall assume, without loss of generality,
that n is even. We then define the error 0 ≤ δ ≤ 1 corresponding to the convergent xn

according to

x − pn

qn
= δ

2q2
n

. (R12)

We introduce

λ = 2
qn pn−1 − pnqn−1

δ
− qn−1

qn
, (R13)

for which (according to Eq. (R13)) we have

x = λpn + pn−1

λqn + qn−1
. (R14)

The result in Eq. (R14) shows that λ = an+1 in the continued fraction expansion
[a0, a1, . . . , an, λ] that exactly defines x . Applying Property 2 in Eq. (R13), with n
being even, we obtain

λ = 2

δ
− qn−1

qn

> 2 − qn−1

qn
.

(R15)

Since by definition qn−1/qn is a rational number and also qn−1/qn < 1, the result in
Eq. (R15) implies that λ > 1, and also that λ is a rational number. Consequently, λ can
be exactly expressed through a finite, continued fraction expansion [b0, b1, . . . , bM], and,

Properties of continued fraction expansion 651

thus, the fraction expansion [a0, a1, . . . , an, b0, b1, . . . , bM] exactly defines x . The key
conclusion is that the condition in Eq. (R9) is necessary and sufficient for any rational
number p/q to be convergent on x .

I shall now illustrate Property 3 through a numerical example, which links to the
problem to be solved in the main text. As described in the text, the phase measurement
circuit yields the value x = ϕ̃, which is a fair approximation of the exact phase ϕ = p/q,
where p, q are integers. The problem is that given x , we must find the exact integer q.

Assume, for instance, that the exact phase ϕ = p/q is

ϕ = 711

413

≡ 1.72154963680387,

of which we obtain the following measurement value, and which we know (by choice of
the register size) to be accurate to 10−6:1

ϕ̃ = 1.721549(. . .).

Our task is now to obtain the exact value q = 413 by implementing the continuous
fraction expansion algorithm for the measurement ϕ̃. For reference purposes, let us
expand ϕ first. It is straightforward to obtain:

ϕ = 711

413
= 1 + 1

1 + 1

2 + 1

1 + 1

1 + 1

2 + 1

4 + 1

5

,

which shows that the suite [1, 1, 2, 1, 1, 2, 4, 5] is the expansion of ϕ. We shall now
expand ϕ̃ step by step, being careful to effect no truncation in the successive results. For
the first three steps, we obtain

ϕ̃ = 1.721549

= 1 + 0.721549

= 1 + 1
1

0.721549

= 1 + 1

1.385907263401380

1 More precisely, the corresponding accuracy is ε = |ϕ − ϕ̃| = 3.69901547059293 × 10−7, representing in
the binary system (to be actually used for the algorithm implementation), an accuracy of up to 10 bits, since
2−11 = 1.2 × 10−7 < ε < 2−10 = 5.4 × 10−7.

652 Appendix R

Table R1 “Split and divide” expansion up to 12 steps.

un = 1/

n an (un−1 − an−1) pn qn pn/qn � 1/2q2
n 1/2q2

n − � Valid

0 1 1.721549000000000 1 1 1.00000000000000 7.215×10−1 5.00×10−1 −2.215×10−1 No

1 1 1.385907263401380 2 1 2.00000000000000 2.785×10−1 5.00×10−1 2.215×10−1 Yes

2 2 2.591296134687970 5 3 1.66666666666667 5.488×10−2 5.56×10−2 6.726×10−4 Yes

3 1 1.691199961128960 7 4 1.75000000000000 2.845×10−2 3.13×10−2 2.800×10−3 Yes

4 1 1.446759340620720 12 7 1.71428571428571 7.264×10−3 1.02×10−2 2.940×10−3 Yes

5 2 2.238341561276870 31 18 1.72222222222222 6.726×10−4 1.54×10−3 8.706×10−4 Yes

6 4 4.195659349727770 136 79 1.72151898734177 3.065×10−5 8.01×10−5 4.947×10−5 Yes

7 5 5.110923660900250 711 413 1.72154963680387 0.000×100 2.93×10−6 2.931×10−6 Yes

8 9 9.015209125664090 6535 3796 1.72154899894626 6.379×10−7 3.47×10−8 −6.032×10−7 No

9 65 65.749999183803000 425486 247153 1.72154900001214 6.368×10−7 8.19×10−12 −6.368×10−7 No

10 1 1.333334784351880 432021 250949 1.72154899999602 6.368×10−7 7.94×10−12 −6.368×10−7 No

11 2 2.999986940889930 1289528 749051 1.72154900000133 6.368×10−7 8.91×10−13 −6.368×10−7 No

= 1 + 1

1 + 0.385907263401380

= 1 + 1

1 + 1
1

0.385907263401380

= 1 + 1

1 + 1

2.591296134687970

= 1 + 1

1 + 1

2 + 0.591296134687970

= . . .

The results of this “split and divide” expansion up to 12 steps are summarized in
Table R1. For each step n, the table lists the expansion coefficient an = �un�, the ratio
un = 1/(un−1 − an−1), starting from u0 = x , the integer numbers pn, qn as defined
by Eq. (R2), the ratio pn/qn , the error � = |pn/qn − ϕ|, the upper bound 1/2q2

n in
Eq. (R11), and the difference 1/2q2

n − �. If this difference is negative, this means that
the condition in Eq. (R11) is not valid, and hence that pn/qn is not convergent on ϕ. We
observe from Table R1 that for n ≥ 1 the condition is valid up to the order n = 7, which
yields six convergents. The last convergent, p7/q7 = 711/413, is the exact definition
of ϕ. The algorithm has, thus, made it possible to determine ϕ = p/q unambiguously
given the approximation ϕ̃ and its known accuracy.

Appendix S (Chapter 20) Computation
of inverse Fourier transform in the
factorization of N = 21 through
Shor’s algorithm

In this appendix, I detail the computation of the inverse Fourier transform involved
in the factoring of N = 15 through Shor’s algorithm. To recall the parameters used in
Section 20.5, we have K = 11 for the first register size and, thus, M = 211 = 2048.
After a measurement in the second register (z = 8), the state |u2〉 of the first register,
which is input to the inverse Fourier transform circuit, is

|u2〉 = 1√
4M

(|1〉 + |5〉 + |9〉 + |13〉 + · · ·). (S1)

By definition (see Chapter 19) the inverse Fourier transform FT+ acts on the M-qubit
state |n〉 according to

FT+|n〉 = 1√
4M

M−1∑
k=0

e−k 2iπn
M |k〉. (S2)

Thus, from the above definition of |u2〉, we obtain and develop the transformation as:

FT+|u2〉 = 1√
4M

FT+(|1〉 + |5〉 + |9〉 + |13〉 + · · ·)

= 1

2M

M−1∑
k=0

(
e−k 2iπ1

M |k〉 + e−k 2iπ5
M |k〉 + e−k 2iπ9

M |k〉 + e−k 2iπ13
M |k〉 + · · ·)

= 1

2M

M−1∑
k=0

(
e−k 2iπ1

M + e−k 2iπ5
M + e−k 2iπ9

M + e−k 2iπ13
M + · · ·)|k〉

= 1

2M

M−1∑
k=0

e−k 2iπ
M

[(
e−k 8iπ

M
)0 + (

e−k 8iπ
M
)1 + (

e−k 8iπ
M
)2 + (

e−k 8iπ
M
)3 + · · ·

]
|k〉

= 1

2M

M−1∑
k=0

e−k 2iπ
M

M−1∑
m=0

(
e−k 8iπ

M
)m |k〉

≡ 1

2M

M−1∑
k=0

e−k 2iπ
M

1 − e−8iπk

1 − e−k 8iπ
M

|k〉

= 1

2M

M−1∑
k=0

e−k 2iπ
M

1 − e−8iπk

e−k 4iπ
M

(
ek 4iπ

M − e−k 4iπ
M

) |k〉

654 Appendix S

≡ 1

4i M

M−1∑
k=0

ek 2iπ
M

1 − e−8iπk

sin

(
4πk

M

) |k〉

= 1

4i M

M−1∑
k=0

ek 2iπ
M

e−4iπk
(
e4iπk − e−4iπk

)
sin

(
4πk

M

) |k〉

≡ 1

2M

M−1∑
k=0

e−k 2iπ
M (2M−1) sin(4πk)

sin

(
k

4π

M

) |k〉. (S3)

We can rewrite the result in Eq. (S3) in the form

FT+|u2〉 =
M−1∑
k=0

αk |k〉, (S4)

where the amplitude coefficient αk is defined by

αk = 1

2M
e−k 2iπ

M (2M−1) sin(4πk)

sin

(
k

4π

M

) . (S5)

The corresponding probability distribution p(k) = |αk |2 corresponding to the output
measurement k is, therefore:

p(k) = 1

4M2

sin2(4πk)

sin2

(
k

4π

M

) . (S6)

We observe that for any integer k = 0, 1, . . . , M − 1, the numerator in Eq. (S6) is zero.
So is the denominator whenever 4πk/M is an integer multiple of π , or

4πk

M
= n × π

↔
k = n × M

4
= n × 27 = n × 512,

(S7)

where n is an integer. In this last case, the numerator: denominator ratio is analytically
undetermined, but setting k = nM/4 + ε and taking the limit:

lim
ε→0

sin2(4πk)

sin2

(
k

4π

M

) = lim
ε→0

sin2

[
4π

(
nM

4
+ ε

)]

sin2

[
4π

M

(
nM

4
+ ε

)]

Factorization of N = 21 through Shor’s algorithm 655

k

0 512 1024 1536 M=2048

12047 −= Mp (k)

25.0

Figure S1 Plot of p(k).

= lim
ε→0

sin2(nMπ + 4πε)

sin2

(
nπ + 4π

M
ε

)

= lim
ε→0

sin2(4πε)

sin2

(
4π

M
ε

)

= (4πε)2(
4π

M
ε

)2

≡ M2,

(S8)

which, from Eq. (S6), yields pmax = 1/4. In the range k = 0, 1, 2, . . . , M − 1, the
maxima of p(k) are thus located at k = 0 (n = 0), k = 512 (n = 1), k = 1024 (n = 2)
and k = 1536 (n = 3). The plot of p(k) is shown in Fig. S1.

Appendix T (Chapter 20) Modular
arithmetic and Euler’s theorem

In this appendix, we shall review some basic principles and properties of modular
arithmetic. As Section 20.7 shows, modular arithmetic is at the root of public key
cryptography (PKC).

Let m and x be two integers, with m being nonzero. Define [x/m] as the integer part
of the division of x by m. If we consider, for instance, m = 3 and the ratios 2/3 = 0.66,
4/3 = 1.33, 6/3 = 2 and 11/3 = 3.66, we, thus, obtain [2/3] = 0, [4/3] = 1, [6/3] = 2,
and [11/3] = 3. It is then possible to express any integer number x in the form:

x = m[x/m] + r, (T1)

where r stands for residue. With the previous examples, we have:

2 = 3[2/3] + 2

4 = 3[4/3] + 1

6 = 3[6/3] + 0

11 = 3[11/3] + 2.

(T2)

We observe that the residues are positive integers that range from r = 0 to r = m − 1.
We can define such residues in the form

r = x − m[x/m]. (T3)

By convention, one designates the residues according to any of the following equivalent
notations:

r = |x |m
r = x mod m

x ≡ r [m]

x = r (mod m),

(T4)

which reads as, “r equals x modulo m,” or “x equals r modulo m,” it being understood
which one is the residue. Here, we shall mainly use the second definition, with the
convention that “mod m” carries over the entire right-hand side expression or even
the full line (this to avoid a parenthesis inflation, unless parentheses are introduced

Modular arithmetic and Euler’s theorem 657

otherwise). The following are basic examples:

(3 + 4) mod 6 = 7 mod 6 = 1
(8 + 7) mod 15 = 15 mod 15 = 0
(7 − 4) mod 4 = 3 mod 4 = 3
(2 × 3) mod 4 = 6 mod 4 = 2
(7 × 9) mod 11 = 63 mod 11 = 8.

(T5)

In modular arithmetic, addition and multiplication are commutative, associative, and
distributive operations, meaning the following properties:

(a ± b) mod m = (a mod m) ± (b mod m) mod m, (T6)

(a × b) mod m = (a mod m) × (b mod m) mod m, (T7)

[a × (b + c)] mod m = (a × b) mod m + (a × c) mod m) mod m. (T8)

Here are two other obvious or less trivial properties (k = integer):

(−a) mod m = (m − a) mod m = [(m − 1) × a] mod m, (T9)

(k × m) mod m = 0, (T10)

(k × a) mod (k × m) = k × (a mod m). (T11)

While addition and multiplication are straightforward in modular arithmetic, division is
not. For instance, what is the residue r as defined through r = (11/5) mod 3? In modular
arithmetic, r should be the number that satisfies 5 × r = 11 mod3 = 2. The only solution
to this equation is r = 1, since 5 × 1 mod 3 = 5 mod 3 = 2. We, thus, see that |11/5|3 =
1, which is not at all intuitive. One can also define the number (11/5) mod 3 as the
product (11 × 1/5) mod 3 or, equivalently, (11 mod 3) × (1/5 mod 3) = 2 × (1/5 mod
3) mod 3. According to the same procedure, we find that |1/5|3 = 2, since 5 × 2 =
10 mod3 = 1. We, thus, obtain 2 × (1/5 mod 3) mod 3 = 2 × 2 mod 3 = 4 mod 3 =
1 = (11/5) mod 3, which is consistent with the previous definition of division. Since
inverses can be defined in modular arithmetic, there is no need to use the division
operation. However, a restriction applies to the relation between the number to be
inverted and the modulus: they should be co-prime, meaning that they should have one
as their greatest common divider (see further).

The conversion between x and its residue r (modulo m) is called modular reduction.
Such a reduction operation corresponds to a one-way function. This term refers to the fact
that the correspondence that is established is not reversible, since there is an infinity of
numbers with the same residue. Powers and exponentials of the type y = x p and y = ax

(a, p = integers) are also one-way functions, since the result y is associated with an
infinity of possible values x . Here is an important property concerning the commutation
of exponents, which is the same as in ordinary arithmetic, and which we will have the
opportunity to exploit:

(a p mod m)q mod m = (aq mod m)p mod m = a pq mod m. (T12)

658 Appendix T

Having introduced modular arithmetic basics, I can describe two fundamental theorems
that have been derived by Fermat and Euler.

Two numbers are said to be relatively prime, or co-prime to each other, if they do not
divide each other, or if their greatest common divider (GCD) is unity. For instance, (3,4),
(2,9), and (5,12) are co-prime. Clearly, two prime numbers are co-prime. Primes and
co-primes play a central role in modular arithmetic, as the Fermat and Euler theorems
and applications illustrate.

Fermat’s theorem states that if m is prime and (a, m) are co-prime, then

am−1 mod m = 1, (T13)

which can be put into the equivalent form: am mod m = a. Thus, we have a mod 2 = 1
or a2 mod 3 = 1 for any a that is prime with number two or number three, and so on
with any prime modulus, for instance 1123−1 mod 23 = 1. We see that as a first benefit,
Fermat’s theorem makes it possible to considerably simplify calculations in modular
arithmetic.

Euler’s theorem (named after the Swiss mathematician) states that if p and q are two
primes and N = pq is their product, then we have for any integer a which is prime
with n:

a(p−1)(q−1) mod N = 1. (T14)

The factor (p − 1)(q − 1) with pq = N is also called φ(N). A consequence of Euler’s
theorem is that the inverse 1/a is readily defined as

1

a
= a−1 = aφ(n)−1 mod N . (T15)

For instance, what is the inverse of 5 modulo 21? We have 21 = 3 × 7, so φ(21) = (3 −
1) × (7 − 1) = 12 and 1/5 = 512−1 mod 21 = 48 828 125 mod 21= 17. Thus, |1/5|21 =
17, which is readily verified as (17 × 5) mod 21 = 85 mod 21 = 1. We see that the
calculation of an inverse through Euler’s theorem is quite straightforward, compared
with the method previously described. But the requirement is that the modulus N is
defined by the product of two primes, which represents a special or fortuitous case.

It is important to note that if (a, N) are not co-prime to each other, the inverse a−1

does not exist. If the two are co-primes but Euler’s theorem cannot apply, the inverse a−1

can be found using the extended Euclidian algorithm. Here, I shall explain this algorithm
through two representative examples: for instance, find the inverse of 7 in modulus 39,
and the inverse of 5 in modulus 16 272, i.e., the values of 7−1 mod 39 and 5−1 mod
16 272. Taking the first example, the algorithm proceeds as shown in Table T1, with the
steps as numbered in the first column.

In steps 1 and 2, we fill out the table as shown. We first divide 39 by 7, to find that
the integer part of the result is [39/7] = 5. In step 3, we multiply line 2 by 5, and in
step 4 we subtract the result of line 3 from that of line 1. This completes the first round.
Consider next the ratio 7/4, whose integer part is [7/4] = 1. In step 5, we multiply the
results of line 4 by 1, and in step 6, we subtract the result of line 5 from that of line 2.
This completes the second round. Consider next the ratio 4/3, whose integer part is

Modular arithmetic and Euler’s theorem 659

Table T1 Extended Euclidian algorithm to find 7−1 mod 39.

1 39 39
2 7 1
3 5 × 7 = 35 5 × 1 = 5
4 39 − 35 = 4 39 − 5 = 34
5 1 × 4 = 4 1 × 34 = 34
6 7 – 4 = 3 1 – 34 = −33
7 1 × 3 = 3 1 × (−33) = −33
8 4 – 3 = 1 34 − (−33) = 67 = 28

Table T2 Extended Euclidian algorithm to find 5−1 mod 16 272.

1 16 272 16 272
2 5 1
3 3 254 × 5 = 16 270 3 254 × 1 = 3 254
4 16 272 – 16 270 = 2 16 272 − 3254 = 13 018
5 2 × 2 = 4 2 × 13 018 = 26 036
6 5 − 4 = 1 1 − 26 036 = −26 035

[4/3] = 1. In step 7, we multiply the results of line 6 by 1, and in step 8, we subtract
the result of line 7 from that of line 4. If we have obtained 1 in the first column (line
8), we have finished. When positive, the number to the right is the inverse we have been
looking for. Here, we find that the inverse of 7 is 28. Proof: 7 × 28 = 196 = 1 (modulo
39).

Consider next the example in Table T2, which concerns the search of 5−1 mod
16 272.

In steps 1 and 2, we fill out the table as shown. We first divide 8064 by 7, to find
that the integer part of the result is [16 272/5] = 3254. In step 3, we multiply line 2 by
1612, and in step 4 we subtract the result of line 3 from that of line 1. This completes
the first round. Consider next the ratio 5/2, whose integer part is [5/2] = 2. In step 5,
we multiply the results of line 4 by 2, and in step 6, we subtract the result of line 5 from
that of line 2. This completes the search, since we have obtained 1 in the first column
(line 6). However, the number in the right column, b =−26 035 is negative. In this case,
the inverse is the complement km + b, namely 5−1 = 2 × 16 272 – 26 035 = 6509.
The proof is that 5 × 6509 = 32 545 = (2 × 16 272) + 1 = 1 (modulo 16 272). This
numerical value will be used in the main text concerning my numerical illustration of
the PKC algorithm.

Appendix U (Chapter 21) Klein’s
inequality

This appendix provides a basic demonstration of Klein’s inequality, according to which
the relative entropy S(ρ‖σ) between two quantum systems characterized by the density
operators ρ and σ is nonnegative.

Assume the following eigenstate-basis decompositions for the density operators:

ρ =
∑

i

pi |i〉〈i |

σ =
∑

k

pk |k〉〈k|.
(U1)

Substituting the first of the above definitions into the relative entropy, we obtain

S(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ)

=
∑

i

〈i |ρ log ρ|i〉 −
∑

i

〈i |ρ log σ |i〉

=
∑

i

pi log pi−
∑

i

〈i |ρ log σ |i〉.
(U2)

The last term in the right-hand side can then be developed using the eigenstate property
〈i |ρ = 〈i |pi , which gives 〈i |ρ log σ |i〉 = pi 〈i | log σ |i〉. Furthermore, since σ is diagonal
we have, from the second definition in Eq. (U1), log σ = ∑

k log qk |k〉〈k| and, therefore,

〈i | log σ |i〉 = 〈i |
(∑

k

log qk |k〉〈k|
)
|i〉

=
∑

k

〈i |k〉〈k|i〉 log qk

=
∑

k

|〈i |k〉|2 log qk .

(U3)

Substituting these results into Eq. (U2), we obtain

S(ρ‖σ) =
∑

i

pi log pi−
∑

i

pi

∑
k

|〈i |k〉|2 log qk

=
∑

i

pi

(
log pi −

∑
k

|〈i |k〉|2 log qk

)
.

(U4)

Klein’s inequality 661

Then we use the property according to which 〈log y〉 ≤ log〈y〉 for any function y or,
in the discrete case,

∑
xk log yk ≤ log

∑
xk yk , where {xk} is a probability distribution.

Such a property stems from the concavity of the logarithm function (see Exercise 5.10).
Letting xk(i) = |〈i |k〉|2, we note that xk(i) ≥ 0 and

∑
k xk(i) = 1, which makes xk(i) a

probability distribution. Thus, we have

∑
k

|〈i |k〉|2 log qk ≤ log

(∑
k

|〈i |k〉|2qk

)

≡ log ri .

(U5)

Combining, then, Eqs. (U4) and (U5) we finally obtain

S(ρ‖σ) ≥
∑

i

pi (log pi − log ri)

=
∑

i

pi log
pi

ri

≥ 0.

(U6)

In the term
∑

pi log(pi/ri), we recognize the classical definition of relative entropy
or the Kullback–Leibler distance D(p‖r) between two discrete probability distributions
{pi }, {ri }. As we have seen in Chapter 5, D(p‖r) is nonnegative, which justifies the last
inequality introduced in the right-hand side in Eq. (U6). The above, thus, proves Klein’s
inequality or the nonnegativity of S(ρ‖σ).

Appendix V (Chapter 21) Schmidt
decomposition of joint pure states

This appendix describes the so-called Schmidt decomposition. Such a decomposition
applies to the case of a composite system made of two subsystems A, B, which is in a
pure joint state |ψ〉, namely, |ψ〉 = |ψA〉 ⊗ |ψB〉 ≡ |ψA〉|ψB〉 ≡ |ψAψB〉. According to
Schmidt decomposition, the joint state can be expressed in the form

|ψ〉 =
∑

i

xi |i A〉|iB〉, (V1)

where xi (i = 1 . . . n) are nonnegative numbers, called Schmidt coefficients, satisfying
the property

∑
i x2

i = 1, and where {|i A〉}, {|iB〉} are some orthonormal basis for the
subsystems A, B.

The proof that the decomposition in Eq. (V1) exists and is unique proceeds as follows.
Let {| j〉} and {|k〉} be two orthonormal bases for the subsystems A and B, respectively.
The joint state can most generally be defined through the expansion

|ψ〉 =
∑

jk

ω jk | j〉|k〉, (V2)

where ω jk are the complex coefficients of some matrix �. According to the principle of
singular value decomposition,1 it is possible to express � in the form � = U DV , where
U, V are unitary matrices, and D is a diagonal matrix having nonnegative elements.
The diagonal elements xi = dii of D are called the singular values of �. The matrix
elements of �, thus, decompose as follows

ω jk =
∑

i

u ji diivik =
∑

i

xi u jivik, (V3)

which we substitute into Eq. (V2) to obtain:

|ψ〉 =
∑
i jk

xi u jivik | j〉|k〉

=
∑

i

xi

∑

j

u ji | j〉
∑

k

vik |k〉

.

(V4)

1 See, for instance: http://mathworld.wolfram.com/SingularValueDecomposition.html; http://en.wikipedia.
org/wiki/Singular_value_decomposition.

Schmidt decomposition of joint pure states 663

We then introduce the definitions

|i A〉 =
∑

j

u ji | j〉

|iB〉 =
∑

k

vik |k〉.
(V5)

The states |i A〉, |iB〉 form orthonormal sets, because of the unitarity of the matrices U, V .
Considering |i A〉, for instance, we have

〈lA|i A〉 =
(∑

k

u∗
kl〈k|

)
∑

j

u ji | j〉

=
∑

jk

u∗
klu ji 〈k| j〉

=
∑

jk

u∗
klu jiδk j

=
∑

j

u∗
jlu ji

= (U+U)li

= Ili

= δli ,

(V6)

which proves the orthonormality of the set {|i A〉}, and likewise for {|iB〉}. Substituting
Eq. (V5) into Eq. (V4) yields Eq. (V1), i.e., the Schmidt decomposition of |ψ〉. Because
|ψ〉 is a pure state, we also have 〈ψ |ψ〉 = ∑

i x2
i = 1, which completes the proof.

Here are two examples of Schmidt decomposition according to Eq. (V1):

|ψ〉 = 1√
2

(|10〉 + |01〉)

≡ 0 × |0A〉|0B〉 + 1√
2
|0A〉|1B〉 + 1√

2
|1A〉|0B〉 + 0 × |1A〉|1B〉

(V7)

and

|ψ〉 = 1√
2

(|00〉 − |11〉)

≡ 1√
2
|0A〉|0̃B〉 + 0 × |0A〉|1̃B〉 + 0 × |1A〉|0̃B〉 + 1√

2
|1A〉|1̃B〉,

(V8)

with the other choice of orthonormal basis {|0̃B〉, |1̃B〉} = {|0B〉,−|1B〉} for the subsys-
tem B.

Appendix W (Chapter 21) State
purification

This appendix describes the operation of state purification. The operation consists of
associating a pure joint state |ψAR〉 with a system A that is in a mixed state |ψA〉. The
benefit of the operation is the possibility of deriving the density operator ρA directly from
the partial trace of the pure-state density operator ρAR = |ψAR〉〈ψAR|. The term state
purification, thus, means expanding the system A in mixed state |ψA〉 into a composite
system AR, whose joint state |ψAR〉 is a pure state. The state |ψAR〉 is referred to as the
purification of |ψA〉, or the purification of ρA.

The principle of state purification is relatively simple to explain. First, assume for the
mixed state |ψA〉 the following decomposition over the orthonormal basis {|i A〉}:

|ψA〉 =
∑

i

√
pi |i A〉. (W1)

Second, assume a reference system R of same dimension of A and same basis {|iR〉},
meaning 〈iR| jA〉 = δi j . Then define the joint state |ψAR〉:

|ψAR〉 =
∑

i

√
pi |i A〉|iR〉. (W2)

The above-defined joint state |ψAR〉 is a pure state, because it cannot be defined by any
other possible state |φAR〉 of AR. We can show this by using the most general definition
for |φAR〉:

|φAR〉 =
∑

i

∑
j �=i

αi j |i A〉| jR〉. (W3)

Then we have

〈ψAR|φAR〉 =
(∑

k

√
pk〈kA|〈kR|

)
∑

i

∑
j �=i

αi j |i A〉| jR〉

=
∑

k

∑
i

∑
j �=i

αi j 〈kA|i A〉〈kR| jR〉

=
∑

k

∑
i

∑
j �=i

αi jδkiδk j

=
∑

i

∑
j �=i

αi jδi j

≡ 0,

(W4)

which establishes that |ψAR〉, |φAR〉 are, indeed, orthogonal.

State purification 665

Since |ψAR〉 is a pure state, the density operator of the composite system AR is

ρAR = |ψAR〉〈ψAR|
≡

∑
i j

√
pi p j |i A〉〈 jA| ⊗ |iR〉〈 jR|. (W5)

As the next step, we execute the partial tracing over R according to the generic definition
in Eq. (21.25), which here reads (B = R):

trRU = trR(|i A〉〈 jA| ⊗ |kR〉〈lR|)
≡ |i A〉〈 jA| × tr(|kR〉〈lR|),

(W6)

hence,

trR(ρAR) = trR

∑

i j

√
pi p j |i A〉〈 jA| ⊗ |iR〉〈 jR|

=
∑

i j

√
pi p j tr(|i A〉〈 jA| ⊗ |iR〉〈 jR|)

=
∑

i j

√
pi p j |i A〉〈 jA|×tr(|iR〉〈 jR|)

=
∑

i j

√
pi p j |i A〉〈 jA| × δi j

=
∑

i

pi |i A〉〈i A|

≡ ρA.

(W7)

This result shows that the partial trace over R of the composite system AR yields the
density operator ρA, which corresponds to the definition of state purification.

Appendix X (Chapter 21) Holevo bound

In this appendix, I formally establish that the mutual information H (X ; Y) in a quantum
communication channel is bounded by a maximum, χ , referred to as Holevo bound, and
defined by

H (X ; Y) ≤ S(ρ) −
∑

x

px S(ρx)

= χ

(X1)

where ρ = ∑
x pxρx = 〈ρ〉. In the above definition, ρx represents the density matrix of

any quantum state used for the transmission, as selected from an “alphabet” X according
to some probability distribution {px }. The retrieval of information is made by POVM
measurements, which define a source of random outcomes Y of size n.

The formal proof of the Holevo bound requires one to assume three quantum systems,
P, Q, R. The first system, P , corresponds to the quantum source used by the originator
to “prepare” the states ρx , namely with density operator:

ρP =
∑

x

px |x〉〈x |, (X2)

with {|x〉} being the orthonormal basis where ρ is diagonal. The composite system P Q,
as described by the tensor product

ρP Q =
∑

x

px |x〉〈x | ⊗ ρx , (X3)

represents the joint state of the system after the preparation of the states ρx , based on
the definition of partial tracing, i.e.,

trP (ρP Q) = trP

(∑
x

px |x〉〈x | ⊗ ρx

)

=
∑

x

trP (px |x〉〈x | ⊗ ρx)

=
∑

x

tr(px |x〉〈x |) × ρx

=
∑

x

pxρx

≡ ρ,

(X4)

Holevo bound 667

trQ(ρP Q) = trQ

(∑
x

px |x〉〈x | ⊗ ρx

)

=
∑

x

trQ (px |x〉〈x | ⊗ ρx)

=
∑

x

px |x〉〈x |tr (ρx)

=
∑

x

px |x〉〈x |
≡ ρP .

(X5)

The third system, R, is a fictitious auxiliary system representing, together with Q, the
measuring apparatus of the recipient. We assume that before measurement, R is in the
pure state |0〉, corresponding to ρR = |0〉〈0|. Thus, the initial state of the whole system
(or quantum communication channel) is described by the density operator

ρP Q R =
∑

x

px |x〉〈x | ⊗ ρx ⊗ |0〉〈0|. (X6)

Next, we need to define the effect of the recipient’s POVM measurement. As seen in
Chapter 17, the POVM measurement is defined as a set of Hermitian operators, {Ey},
which satisfy the completeness relation (Eq. (17.62)), and which correspond to a set of
measurement operators, {My = √

Ey}, satisfying the property My M+
y = Ey . Applying

any single measurement labeled y to a system in state ρ is a quantum operation that
leaves the system in the post-measurement state ρ ′ = MyρM+

y . Here, we shall use a
somewhat different quantum operation. It consists of effecting the POVM measurement
in system Q and storing the result in system R. The corresponding quantum operation
leaves the composite system Q R in the post-measurement state

ρ ′
Q R =

∑
y

Myρx M+
y ⊗ |y〉〈y|. (X7)

This definition is justified by the partial tracing over system Q to yield, for system R:

ρ ′
R = trQ(ρ ′

Q R)

= trQ

(∑
y

Myρx M+
y ⊗ |y〉〈y|

)

=
∑

y

trQ

(
Myρx M+

y ⊗ |y〉〈y|)
=

∑
y

tr
(
Myρx M+

y

) × |y〉〈y|

=
∑

y

tr
(
M+

y Myρx

) × |y〉〈y|

=
∑

y

tr
(
Eyρx

) × |y〉〈y|

≡
∑

y

〈Ey〉x |y〉〈y|,

(X8)

668 Appendix X

where 〈Ey〉x = tr(Eyρx) represents the expectation value of the measurement Ey , given
the input state ρx . Note that tr(ρ ′

R) �= 1. To get the actual final state of R we need to
effect the normalization

ρ̃ ′
R = trQ(ρ ′

Q R)

tr[trQ(ρ ′
Q R)]

≡

∑
y

〈Ey〉x |y〉〈y|
∑

y′
〈Ey′ 〉x

,

(X9)

or, in the matrix form in base {|y〉}:

ρ̃ ′
R = 1∑

y

〈Ey〉x

〈E1〉x 0 0 0 0
0 〈E2〉x 0 · · · 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 · · · 0 〈En〉x

. (X10)

The coefficients in this density-matrix definition, thus, provide the conditional probabil-
ity of obtaining 〈Ey〉x as the outcome of the measurement, given the input state ρx . This
justifies the definition in Eq. (X7) of the proposed quantum operation (not normalized,
for simplicity).

In summary, our measurement operation leaves the composite system P Q R in the
state

ρ ′
P Q R =

∑
xy

px |x〉〈x | ⊗ Myρx M+
y ⊗ |y〉〈y|. (X11)

We may now trace out the system over Q to obtain ρ ′
P R and, hence, to be able to derive

later on the mutual information S(ρP ; ρR) existing after the measurement. This tracing
gives

ρ ′
P R = trQ

(∑
xy

px |x〉〈x | ⊗ Myρx M+
y ⊗ |y〉〈y|

)

=
∑
xy

px |x〉〈x | × tr(Myρx M+
y) ⊗ |y〉〈y|

=
∑
xy

px |x〉〈x | × tr(Eyρx) ⊗ |y〉〈y|.

(X12)

In the above, we may substitute tr(Eyρx) = p(y|x) as a conditional probability, because
{Ey} form a POVM operator set satisfying the completeness relation. Using Bayes’s
theorem (see Chapter 1), we havep(x, y) = p(y|x)px for the joint probability, which,

Holevo bound 669

from Eq. (X12), yields:

ρ ′
P R =

∑
xy

px p(y|x)|x〉〈x |P ⊗ |y〉〈y|R

=
∑
xy

p(x, y)|x〉〈x |P ⊗ |y〉〈y|R .
(X13)

Because of the above tensor-operator form, we might as well express the post-
measurement joint state in the tensor-state form:

|ψ ′〉P R =
∑
xy

p(x, y)|xy〉. (X14)

It is clear, then, that the joint VN entropy S′(ρP , ρR) and mutual information S′(ρP ; ρR)
of the post-measurement system are simply given by{

S′(ρP , ρR) ≡ H (X, Y)
S′(ρP ; ρR) ≡ H (X ; Y),

(X15)

just as in a classical communication channel with an originator source X and a recipient
source Y , correlated together with joint probability p(x, y).

The next and final step is to relate the post-measurement mutual information
S′(ρP ; ρR) to that characterizing the system before the measurement, which we call
S(ρP ; ρQ). To this effect, we shall first assume the following inequality (the proof being
provided at the end of this appendix):

S′(ρP ; ρR) ≤ S(ρP ; ρQ). (X16)

This property states that in quantum channels, mutual information may not necessarily
be conserved, neither be increased by measurement. We obtain S(ρP ; ρQ) as:

S(ρP ; ρQ) = S(ρP) + S(ρQ) − S(ρP , ρQ), (X17)

with (from Eqs. (X2) and (X3)):

S(ρP) = S

(∑
x

px |x〉〈x |
)

≡ H (X)

S(ρQ) = S

[
trP

(∑
x

px |x〉〈x | ⊗ ρx

)]
= S

[∑
x

px |x〉〈x | × tr (ρx)

]

(X18)1

= S

(∑
x

px |x〉〈x |
)

≡ S(ρ)

S(ρP , ρQ) = S

(∑
x

px |x〉〈x | ⊗ ρx

)
≡ H (X) +

∑
x

px S(ρx).

1 To obtain this result, define Rx = |x〉〈x | ⊗ ρx . We have, then,

S

(∑
x

px |x〉〈x | ⊗ ρx

)
= S

(∑
x

px Rx

)
.

670 Appendix X

From Eqs. (X17) and (X18), we obtain

S(ρP ; ρQ) = S(ρ) −
∑

x

px S(ρx). (X19)

Combining the results in Eqs. (X15), (X16), and (X19), we finally obtain

H (X ; Y) ≤ S(ρ) −
∑

x

px S(ρx) = χ, (X20)

which establishes the proof of the Holevo bound stated in Eq. (X1).
To reach such a conclusion, the inequality in Eq. (X16), namely, S′(ρP ; ρR) ≤

S(ρP ; ρQ), was made as a key assumption. The following discussion, destined for the
demanding, provides the key elements proving such an assumption. This proof is, how-
ever, not complete, because it eventually rests on an additional property, referred to as
strong subadditivity. Proving strong subadditivity requires no less than two theorems, of
which the proofs are quite mathematically involved! Therefore, and for the purpose of
these chapters, such a property shall be taken here as a given postulate.

Proof of the inequality in Eq. (X16), with discussion

In the following, I simplify the notation by setting S(ρA) ≡ S(A), S(ρA; ρB) ≡ S(A; B),
and the like for A, B = P, Q, R. By definition, S(A; B, C) refers to the mutual infor-
mation between system A and composite system BC . Then I shall observe and discuss
the three following properties:

(i) S(P; Q) = S(P; Q, R), since prior to measurement, R is uncorrelated to P Q and,
thus, does not contribute to P Q mutual information;

(ii) S(P; Q, R) ≥ S′(P; Q, R), since the measurement between P and R has no reason
to increase the mutual information between P and Q R;

(iii) S′(P; Q, R) ≥ S′(P; R), since discarding the reference system Q between P and
R has no reason to increase the mutual information between P and R.

The first property (i) is obvious. The second property (ii) can be established as fol-
lows. Let S(A; B) and S′(A; B) be the mutual information before and after the mea-
surement between any systems A and B (here, A plays the role of system P and
B plays the role of the composite system Q R). We introduce another system C in

By application of the property in Eq. (21.47), we have

S

(∑
x

px Rx

)
≡

∑
x

px S(Rx) + H (X).

And because Rx is a tensor operator, we have

S(Rx) = S(|x〉〈x | ⊗ ρx) = S(|x〉〈x |) + S(ρx) = 0 + S(ρx) ≡ S(ρx),

which, finally, yields

S

(∑
x

px |x〉〈x | ⊗ ρx

)
= H (X) +

∑
x

px S(ρx).

Holevo bound 671

a pure state (e.g., |0〉 or |1〉). We then have S(A; B) = S(A; B, C), because of prop-
erty (i). A measurement on B with the information being transferred to C must not
change mutual information between A and BC , therefore, S(A; B, C) = S′(A; B, C).
But on discarding C , we must have S′(A; B) ≤ S′(A; B, C), according to property (iii),
which states that discarding a system cannot increase mutual information. We must
now focus on this property (iii), rewriting the inequality as S(A; B) ≤ S(A; B, C) for
any systems A, B, C . According to the definition of mutual information, we have
S(A; B) = S(A) + S(B) − S(A, B) and S(A; B, C) = S(A) + S(B, C) − S(A, B, C),
which yields by substitution S(A, B, C) + S(B) ≤ S(A, B) + S(B, C). This last prop-
erty is referred to as strong subadditivity inequality. Its demonstration requires no less
than two additional theorems (including the so-called Lieb’s theorem), both being rather
mathematically involved! Therefore, here we shall take the “strong subadditivity” prop-
erty as a given postulate, which closes the loop. Combining properties (i)–(iii) we finally
obtain S(P; Q) ≥ S′(P; R), which is the inequality in Eq. (X16).

Appendix Y (Chapter 25) Polynomial
byte representation and modular
multiplication

The novelty introduced by the AES cryptosystem is the use of modular multiplication by
byte blocks, which is described in this appendix. For multiplied bytes to remain within
a one-byte size, this multiplication must be defined modulo a certain “prime” number.
This requires one to introduce another representation for binary numbers, which is the
polynomial (byte) representation.

A polynomial is an element that can be defined according to the expression
m(x) = cn xn + cn−1xn−1 + · · · + c1x + c0, where cn, cn−1 . . . c1, c0 are called the poly-
nomial coefficients and n is the polynomial’s degree. Since a byte is the eight-bit
word c7c6c5c4c3c2c1c0 (ck = 0 or 1), its equivalent polynomial representation is
m(x) = c7x7 + c6x6 · · · + c1x + c0. Let’s look now at the XOR operation between
two polynomials. Consider the two numbers {1010 0010} = {A3} and {0101 1111} =
{5 F}. In binary, hexadecimal, and polynomial representations, we get

{1010 0010} ⊗ {0101 1111} = {1111 1101}, (Y1)

{A3} ⊗ {5F} = {FD}, (Y2)

{x7 + x5 + x} ⊕ {x6 + x4 + x3 + x2 + x + 1}
= {x7 + x6 + x5 + x4 + x3 + x2 + 1}. (Y3)

The operation of polynomial multiplication, modulo a polynomial m(x), which we label
with the symbol •, is no more difficult to grasp. The idea is that the reduction modulo
m(x) should give a polynomial whose degree (here) is strictly less than eight, so that
the result of the multiplication can always be represented by a one-byte word. The
modulus m(x) = x8 + x4 + x3 + x + 1, which is used in the AES cryptosystem, meets
such a requirement. This specific polynomial is also irreducible, meaning that it has no
dividers other than 1 and itself. It is the conceptual equivalent of a prime number in the
polynomial field. The polynomial dividers of m(x) are any numbers u(x), v(x) that verify
u(x) × v(x) = m(x), where × is the usual algebraic multiplication. Let us look now at
how multiplications × and • work through a simple example. Take u(x) = x3 + x2 + 1
and v(x) = x2 + x . Following usual algebra, we first get the product

u(x) × v(x) = (x3 + x2 + 1)(x2 + x)

= (x5 + x4 + x2) ⊕ (x4 + x3 + x)

= x5 + x3 + x2 + x .

(Y4)

Polynomial byte representation and modular multiplication 673

To obtain this result, we use ⊕ to perform the addition between the polynomial coef-
ficients of the same order, since this is the operation used in the corresponding binary
representation. The second task is to reduce the above result modulo a given polynomial,
say, m(x) = x4 + 1. By definition, we have for any polynomial p(x),

p(x) = q(x) × m(x) + r (x), (Y5)

where q(x) is the quotient and r (x) is the remainder, also noted p(x) mod m(x). Note
that the degree of the remainder must be lower than that of m(x), otherwise it could
divide it. Taking the previous example, we must find the polynomials q(x) and r (x) that
satisfy

x5 + x3 + x2 + x = p(x) × (x4 + 1) + q(x). (Y6)

From the above relation, we must conclude that p(x) = ax + b and q(x) = cx3 + dx2 +
ex + f , where a, b, c, d, e, f are the unknowns. Substituting these two definitions into
the right-hand side yields a = c = d = 1, b = e = f = 0, which gives p(x) = x and
q(x) = x3 + x2. Thus,

x3 + x2 = x5 + x3 + x2 + x mod x4 + 1, (Y7)

which illustrates how modulus reduction is performed.
With the modulus-reduction tool in hand, we can now consider an example that uses

the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Take, for instance, the two
numbers {4A} and {18}. What is p(x) = {4A} • {19}? The conversion into polynomial
representation gives

p(x) = {01001010} • {00011001}
= (x6 + x3 + x) × (x4 + x3 + 1) mod m(x)

= x10 + x9 + x7 + x5 + x4 + x3 + x mod m(x)

= x7 + x6 + x5 mod m(x)

= {11100000}
= {E0},

(Y8)

which is the result of the operation. Since we have defined a multiplication law for
polynomials (modulo m(x)), we must also introduce the corresponding concept of inverse
polynomials. The inverse polynomial of a nonzero polynomial, p(x), is noted p−1(x)
and is defined by the equivalent identities{

p(x) • p−1(x) = 1

p−1(x) = p(x) mod m(x).
(Y9)

We also know that the inverse exists because m(x) is irreducible, i.e., p(x) and m(x) do
not have a common divider. As with modular arithmetic, the search for the inverse can
be performed by the extended Euclidian algorithm (EEA).

Let me explain the EEA through two representative examples: for instance, find
(1) the inverse of 7 in modulus 39, i.e., the value of 7−1 mod 39 and (2) the inverse
of 5 in modulus 16 272, i.e., the value of 5−1 mod 16 272. Considering example (1),

674 Appendix Y

Table Y1 Extended Euclidian algorithm to find 7−1 mod 39.

1 39 39
2 7 1
3 5 × 7 = 35 5 × 1 = 5
4 39 − 35 = 4 39 − 5 = 34
5 1 × 4 = 4 1 × 34 = 34
6 7 − 4 = 3 1 − 34 = −33
7 1 × 3 = 3 1 × (−33) = −33
8 4 − 3 = 1 34 − (−33) = 67 = 28

Table Y2 Extended Euclidian algorithm to find 5−1 mod 16 272.

1 16 272 16 272
2 5 1
3 3254 × 5 = 16 270 3254 × 1 = 3254
4 16 272 − 16 270 = 2 16 272 − 3254 = 13 018
5 2 × 2 = 4 2 × 13 018 = 26 036
6 5 − 4 = 1 1 − 26 036 = −26 035

the algorithm proceeds as shown in Table Y1, with the steps as numbered in the first
column.

In steps 1 and 2, we fill out the table as shown. We first divide 39 by 7, to find that
the integer part of the result is [39/7] = 5. In step 3, we multiply line 2 by 5, and in
step 4 we subtract the result of line 3 from that of line 1. This completes the first round.
Consider next the ratio 7/4, whose integer part is [7/4] = 1. In step 5, we multiply the
results of line 4 by 1, and in step 6, we subtract the result of line 5 from that of line
2. This completes the second round. Consider next the ratio 7/3, whose integer part is
[4/3] = 1. In step 7, we multiply the results of line 6 by 1, and in step 8, we subtract
the result of line 7 from that of line 4. If we have obtained 1 in the first column (line
8), we have finished. When positive, the number to the right is the inverse that we have
been looking for. Here, we find that the inverse of 7 is 28. Proof: 7 × 28 = 196 ≡ 1
(modulo 39).

Consider the second example, which concerns the search of 5−1 mod 16 272. We
obtain Table Y2.

In steps 1 and 2, we fill out the table as shown. We first divide 16 272 by 5, to find
that the integer part of the result is [16 272/5] = 3254. In step 3, we multiply line 2 by
3254, and in step 4 we subtract the result of line 3 from that of line 1. This completes
the first round. Consider next the ratio 5/2, whose integer part is [5/2] = 2. In step 5,
we multiply the results of line 4 by 2, and in step 6, we subtract the result of line 5 from
that of line 2. This completes the search, since we have obtained 1 in the first column
(line 6). However, the number in the right column, b =−26 035 is negative. In this case,
the inverse is the complement km + b (k > 1), namely 5−1 = 16 272 – 26 035 = 6509.
Proof: 5 × 6509 = 32 545 = (2 × 16 272) + 1 ≡ 1 (modulo 16 272).

Polynomial byte representation and modular multiplication 675

I shall now implement the EEA with polynomials modulo m(x). For instance,
we want the inverse of p(x) = x5 + x3 + 1 modulo m(x) = x8 + x4 + x3 + x + 1.
Table Y3 shows the different calculation steps:

Table Y3 The steps in calculating p−1(x).

1 x8 + x4 + x3 + x + 1 x8 + x4 + x3 + x + 1
2 x5 + x3 + 1 1
3 (x3 + x)(x5 + x3 + 1) = x8 + x4 + x3 + x (x3 + x) × 1 = x3 + x
4 (x8 + x4 + x3 + x + 1) ⊕ (x8 + x4 + x3 + x) (x8 + x4 + x3 + x + 1) ⊕ (x3 + x)

= 1 = x8 + x4 + 1

Since we obtained 1 in the last line of left column, the result in the right column,
x8 + x4 + 1, is the inverse p−1(x). We can readily check that

p(x) • p−1(x) = (x5 + x3 + 1) × (x8 + x4 + 1) mod m(x)

= x13 + x11 + x9 + x8 + x7 + x5 + x4 + x3 + x mod m(x)

≡ 1 mod m(x).

Index

A-law, 592
Action table (Turing machine), 97, 107
Adaptive coding, see Coding
Adder (plain), 299
Addition (quantum operation), 326
Additive noise, see Noise
Adleman L., 424, 536
ADSL, 225
Advanced encryption standard, see AES
AES (advanced encryption standard), 523, 541–3,

555, 563, 597, 672
Ait Sab O., 229
Algebra/arithmetic (modular), see Modular
Algorithm

continued fraction expansion, 399, 408–10,
648–52

Deutsch, 378–80
Deutsch–Jozsa, xv, xix, 378, 381, 394, 512
Diffie–Hellmann–Merkle algorithm, 534, 535,

541
Dixon, 411
extended Euclidian, 413, 428, 658, 673
Fermat, 411
general number field sieve, 400, 411, 538
Grover quantum database search, xv, xix, 378,

389–98
Hughes, 535
Lenstra, 411
order-finding (-), 399, 400, 405–8, 414
Pollard, 411
Shank, 411
Shor factorization (-), xv, xix, 327, 329, 378, 389,

399, 415–17, 523, 527, 536, 653–5
triple data encryption (TDEA), 542
V (code), see Code
William, 411

Algorithmic
and logical unit, see ALU
complexity, see Kolmogorov
entropy, see Entropy
independence, 121
information theory, see Information

Alphabet (symbol), 57, 127
Alphabetic

poly (-) substitution, 526
substitution, 526

ALU (algorithmic and logical unit), 283, 288, 289
American

Automobile Association (AA), 159
Civil War, 132
wheel, 170

Ammeter, 360
Ampersand
Amplified coherent light, see Coherent
Analog-to-digital voice conversion, see Speech
Ancilla

bit, see Bit
qubit, see Qubit
space, 352
state, 354

AND (logical/Boolean), 70, 76, 291, 293, 299, 529
ANSI (Americal National Standards Institute), 541,

542
Arabic numerals, see Numerals
Araki–Lieb inequality, 442
Architecture

multi-processor, 289
parallel processor (-), 289
von Neumann, see Von Neumann

Arithmetic coding, see Coding
Arobase, 167
Arrangement without repetition, 10–11
Artificial intelligence, see Intelligence
ASCII (American standard code for information

exchange), 112, 113, 130, 131, 133, 152,
156, 157, 159, 169, 192, 197, 426–8, 527,
528, 530

Aspect, A., xii
At sign or @, 167
Attack, see Cryptosystem

brute-force, see Cryptosystem
cryptosystem, see Cryptosystem
denial of service (DoS), 564
giant pulse, 563
impersonation, 563
key, see Key
man-in-the-middle (-), 562, 563
random-number generator, 563

Index 677

ATM, 225
Atomic physics, 28
Authentication, 523, 542

B92 protocol, 523, 562
Backward error correction, 211
Balanced function, 381
Bandwidth

channel, see Channel
efficiency diagram, 271
expansion factor, 211

Basis
change of (-), 333, 337
computational, 306, 311, 432
orthonormal, 334, 337–9, 343, 345, 346,

363
Baudot code, 131
Bayes’s theorem, see Theorem
BB84 protocol, 523, 556–62
BCH codes, see Code
Bean machine, 34
Bell

distribution, 29–30
state, see State
System Technical Journal (BSTJ), 85, 87

Bennet, C. H., 556, 558
BER, see Bit error rate
Berger, Vincent, xxi
Bernoulli distribution, see Probability
Beta probability distribution, see Probability
Binary

digit, see Bit
number, 128
pseudo (-), 132, 133
system, 128

Binomial
coefficient, 10, 25, 171
distribution, see Probability

Birefringence, 548
Birthday (sharing), 14
Bit, xvii, 43, 44, 128, 304

ancilla (-), 301
classical, 306, 357, 366
control (-), 209
error, 32
error rate, see Bit error rate
errored (-), 209
flip channel, see Quantum channel
parity (-), 210
payload (-), 210
phase-flip channel, see Quantum channel
rate, 210
redundancy (-), 209
single (-) error, 215
soft (-), 225
undetected (-) error, 216

Bit error rate, 208, 211, 243
corrected (-), 208, 226–30
uncorrected, 228

Bloch sphere, 304, 308, 311, 319, 322, 343, 509,
625–7, 630, 631

Block, 210
code, see Code
coding, see Coding
field, 162
header, 172, 177
length, 44
trailer, 172, 177

Blondel, Jean-Pierre, 47
Bluetooth, 224
Bohr, xii, xiii
Boltzmann, L., 50
Boltzmann’s

constant, 65, 285
entropy, see Entropy
theorem, see Theorem

Books
arranging on a shelve, 8–10

Boolean
gate, see Gate
function, 378
logic, 76, 283
operators/operations, 76, 291,

529
variable, 11

Bose
Chaudhuri–Hocquenghem (BCH) codes, see

Code
Einstein distribution, see Probabilty

Bra, 334
Brassard, G., 556
Brillouin, L., 285
Brownian motion, 286
Bruen, A. A., 246, 258
Brute-force attack, see Cryptosystem
Byte, 129

Caillet, X., xxi
Calderbank–Shor–Steane (CSS) error correction

code, see Quantum error correction
Capacity

classical channel (-), see Channel capacity
quantum channel (-), see Quantum channel

Cards (pulling), 16–17
Carry, 295
CARRY gate, 299, 300, 325
Cat

Schrödinger’s (-), 307
state, see State

Cauchy probability distribution, see Probability
Cbit, 367, 369, 449
CCNOT gate, 299, 320, 323–5

678 Index

CD, 592–3
CD-ROM, 593, 597
Cdma2000, 225
Cellular telephony (GSM), 594
Central

limit theorem, see Theorem
office, 563

Chain rule, 73, 78, 79, 81
Chaitin, G., 96, 122
Channel

asymmetric (-) with non-overlapping outputs,
236, 251

bandwidth, 269, 270
binary (-), 232
binary erasure (-), 235, 250
binary symmetric (-), 232–4, 238, 241, 245,

249
capacity, xix, 242, 244, 245, 250–2, 267, 269,

617–20
capacity theorem, see Theorem
coding theorem, see Theorem
communication (-), 208, 232
continuous, 32
discrete, 232
entropy, see Entropy
error rate, 243
Gaussian, 264–7, 269–75
ideal, 208, 234, 475
linearity, 277
memoryless, 227, 622
nonideal, 208
nonlinear/nonlinearity, 264, 277, 278, 281
noiseless, 233, 234, 248
noisy typewriter (-), 236, 250, 258
public, 557, 560, 561, 563
quantum, see Quantum
rate, 269
realistic, 208
secure (or absolutely secure) communication (-),

523, 556, 558, 562–4
symmetric, 234
useless, 234, 240, 241, 247, 273, 618
Z (-), 234, 243, 249

Character (symbol), 57, 58
Characteristic equation, 338, 436
Chi/Chi-squared probability distribution, see

Probability
Chuang, I. L., 296, 372, 637
Church–Turing thesis, 107, 290
Cipher, 425
Ciphertext, 61, 424
Circular polarization, see Polarization
Clarke, A., 39
Clausius, R., 50
Clausius relation, 66
Closed quantum system, 432

Closure relation, see Completeness
CLT, see Theorem
Compact (UNIX), 199
CNOT gate, 293, 299, 316–18, 362, 365, 368, 372,

374, 375, 387, 389, 497, 504, 519, 637
CNRS, xxi
Co-prime, see Number
Code (see also Coding)

algorithm V, 192, 200
attack, see Cryptosystem
breaking, 524, 525
cracking, 525, 536
block (or linear block), xix, 44, 151, 162–77, 186,

208, 210–17, 509, 592, 614
Bose–Chaudhuri–Hocquenghem (BCH), 221
breaking, 523
concatenated (block), 222, 229
convolutional, 223
Calderbank–Shor–Steine (CSS), see Quantum

error correction
cyclic, xix, 208, 217–19
cyclic redundancy check (CRC), see Cyclic
dual, 515
eight-to-fourteen modulation (8/14), 593
Elias, 179–81
Elias-delta, 179, 180, 183, 185
Elias-gamma, 179, 183, 185
Elias-omega, 181
Elias recursive, 181
entropy (effective), see Entropy
error correction, see Error (classical) or

Quantum
Faller, 192
FGK, 192, 193
Fibonacci, 179, 181, 185
fixed-length, 145
gain, 225, 228
Gallager, 192
Golay, 220
Golomb, 183
Golomb–Rice, 179, 185, 594
Hadamard, see Hadamard
Hadamard–Steane, see Quantum error correction
Hamming, see Hamming
Huffmann, see Huffmann
instantaneous, 140
Knuth, 192, 193
maximum-length shift-register, 221
Morse (-), see Morse
non

recursive, 223
singular, 139
systematic, 223

optimal/optimality, see Coding
optimization, 131
prefix, 140, 142, 183

Index 679

quantum
compression (-), see Quantum
repetition (-), see Quantum error correction

rate, 210, 269, 482
redundancy, 144, 210
Reed–Solomon (RS), 222, 229, 262, 597
Rice, 185
Rice–Golomb, see Code/Golomb–Rice
Shannon, see Shannon
Shor, see Quantum error correction
singular, 140
static, 179
systematic, 211, 218, 223, 515, 518
turbo, 224–5
uniquely decodable, 134, 139, 140, 162
variable-length (-), 131, 133, 138, 141, 156

Codebook, 160, 186, 190
Codec, 593
Codeword, 127, 130, 183

block, 217, 261
length, 131, 136
mean (-) length, 138, 142–4
prefix, 140, 183
quantum, see Quantum

Coding (see also Code)
adaptive, 161, 186, 199, 201, 203
adaptive Huffmann, 179, 186, 192–200
arithmetic, 179, 185–92, 603, 605–9
block, 156, 175
defined-word, 185
dynamic, 179, 186, 203
efficiency, 127, 137–9, 141, 145, 148, 149, 156
free-parse, 203
gain, see Code
Huffmann, see Huffmann
information, see Information
integer, 179–85
language, 129–32
linear-predictive (LPC), 594
Lempel–Ziv (LZ), 179, 186, 200–7

distinct parsing, 610
Haruyasu (LZH), 206
Storer–Szymansky (LZR/LZSS), 206
Welch (LZW), 206, 600, 601

LZ1, LZ2, 206
LZ77, 200, 206
LZ78, 206
music, 592
non-parameterized, 181, 183
optimality, xix, 127, 131, 138, 151, 154, 179, 183,

192, 206
parameterized, 181, 183
run-length (RLE), 594, 600
semantic-dependent, 160
source (-) theorem, see Theorem
static, 199

stream, 186
superdense, see Superdense
tree, 139, 141, 151, 160, 192–4, 199, 200

Cohen-Tannoudji, C., 635
Coherence (quantum), see Quantum
Coherent amplified light, 66
Coin

fake (Rényi’s experiment), 45–9
quantum superposition of (-) state, 304, 307, 365
tossing, 4, 6–7, 16, 43, 365, 453

Collapse (state), see State
Combinatorial

analysis, 8
coefficient/factor, see Binomial coefficient

Combinatorics, 8, 51
Combined

event, see Event
probability, see Probability

Commutator, 313, 634, 635
Commuting (operators/matrices), 313, 635
Compact disk, see CD
Complementary

error function, 227, 272
event, see Event

Completeness (or closure) relation, 336, 337, 339,
344, 345, 357, 667

Complex number, see Number
Complexity, see Kolmogorov

polynomial-time (-), see Polynomial
Composite

number, 400
system, 333, 353

Compress (program), 207
Compression

audio, 594
data, 40, 151, 156–62, 596–7
Huffmann, 161
image, 207, 598–601
lossless, 162
lossy, 594
picture, 191
quantum, see Quantum
rate/factor, 156, 205, 462, 467
sound, see Sound
speech, see Speech
standards, 161
video, 601–4

Computable number, 107
Computation

irreversible/non-reversible, 283, 287, 296
quantum, see Quantum
reversible xv, xix, 283, 288, 296, 297, 304

Computational basis, see Basis
Computationally universal (computer), 290
Computer/computing, 39, 283, 287, 289, 290, 296
Computer science, 39

680 Index

Concatenated (block) codes, see Code
Concavity

entropy, see Entropy
function, 443

Conditional
complexity, see Kolmogorov
entropy, see Entropy
probability, see Probability

Conditioning reduces entropy, 77, 78, 81, 85, 87
Conjugation/conjugate

complex, 328
Hermitian, 328, 337, 627
observable, see Observable

Constraint length (of code), 223
Consultant business, 38
Continued fraction expansion algorithm, see

Algorithm
Continuous variable, 20
Controlled

controlled-NOT gate, see CCNOT
controlled-U gate (CCU), 321, 399
NOT gate, see CNOT
phase gate, 387, 646
Sign (CSIGN), 376
SWAP gate, 320
U gate, 319, 322, 401

Convergent of integer, 409, 648
Convolutional codes, see Code
Copenhagen interpretation, 308
Corrected bit-error-rate, see Bit error rate
Correction, see Error
Correlated events, see Events
Correlation, 58
Coset, 510
Costello, D. J., 614
Cover, T. M., 90, 111, 148, 206, 252, 578, 583, 587,

610, 621
CPU (central processing unit), 283, 289, 412,

537–9, 541
CRC, see Cyclic redundancy check
Crib, 526
CROSSOVER (or SWAP) gate, 293, 297, 318, 370,

387–9
Cryptanalysis, see Cryptoanalysis
Cryptoanalysis (or cryptanalysis), 524, 526
Cryptography, xv, xx, 130, 523

asymmetric key (-), 536, 541
public-key (-) or PKC, 400, 424–9, 523, 524, 527,

536–40, 543
quantum, 520, 523, 543–4, 564, 656, 659
symmetric key (-), 536
without key exchange, see Key

Cryptology, 424, 525
Cryptosystem, 524, 564

attack, 525
brute-force attack, 525, 526, 541

Cyclic
code, see Code

redundancy check (CRC) code, 220

Daishoya project, 192
Damping (amplitude/phase), 481
Dasher project, 192
Data

compression, see Compression
encryption, see Encryption
encryption standard, see DES
entry device (fast), 192

Database management, 185
De Broglie, L., xii
De Morgan’s law, 298, 302
Decimal number, 128
Decision (receiver), 226
Decoder/decoding, 190, 208

hard-decision, 226
maximum-likelihood (-), 216, 615, 616
soft-decision, 226

Decoherence (quantum), see Quantum
Decompression, 161

error, 162
Decryption, 61, 425, 523, 524
Deep Crack, 541
Degenerate eigenvalue, see Eigenvalue
Delta distribution, 90
Denial-of-service (attack), see Attack
Density matrix, see Matrix
Density operator, see Operator
Depolarizing channel, see Quantum channel
DES (data encryption standard), 523, 532, 540–3,

555, 563
double (-), 523, 541
triple (-), 523, 541, 542

Desurvire, E., xiv–xvi, 51, 66, 130, 226, 275, 278,
345, 425, 426, 526, 542, 576, 578, 592, 603

Determinant, see Matrix
Deutsch

algorithm, see Algorithm
gate (or CCR gate), 322
Jozsa algorithm, see Algorithm
problem, 378, 380, 381, 383

Diagonal matrix, see Matrix
Diagonalizable, 340
Dice/die, see Rolling
Dictionary, 127, 201, 204
Diffie–Hellmann–Merkle algorithm, see Algorithm
Digital

cash, 543
high-definition (-) video, see HDV
signature, 523, 542
sound, see Sound
video (DV), see DV
video disk (DVD), see DVD

Index 681

Digram, 134, 165, 166
Dirac, Paul, xii
Dirac

distribution, 90
notations, 333–43

Dirichlet model, 190, 191
Discrete

events, see Events
exponential distribution, see Probability
Fourier transform, see Fourier transform
variable, 20

Discrimination, 80
Disorder, 50
Distance

between PDF, 69, 79
definition, 79
Kullback–Leibler, 80, 81, 84, 85, 87–9, 143, 154,

214, 437, 584, 661
Distinct parsing, see Parsing
Distribution

exponential, see Probability
probability, see Probability
uniform, see Probability

Distributivity, 328
Diu, B., 635
Dixon algorithm, see Algorithm
DNA, 372
Double-key encryption, see Encryption
DV (digital video), 599
DVD (digital video disk), 603, 605–9
Dyadic (source, distribution), 149, 155
Dynamic coding, see Coding

Email, 596
Eavesdropping, 556, 561, 562
EBCDIC (extended binary coded decimal

interchange code), 130, 527
Ebit, 364, 367, 374–6
ECC, see Error-correction/correcting code
Eckert, A. K., 559, 560
Efficiency

alphabet use, 63
coding, see Coding

Eigenspace, 339, 437
Eigenstate/eigenvector, 333, 338–40, 360, 390, 432,

435, 437, 458
Eigenvalue, 209, 333, 338–40, 437, 458

degenerate (-), 339
Eight-to-fourteen modulation (8/14) code, see Code
Einstein, xii–xiv

theory of relativity, 367, 371, 559, 560
Einstein–Podolsky–Rosen (state), 310, 356, 362
Electromagnetic (EM) wave, 544
Electronic voting/polling, 543
Elias code, see Code
Encoder, 208

Energy
kinetic, 285
quantum, see Quanta

Encryption, 40, 424, 523, 524
double or two-key (-), 523, 532–4
one-way, 523, 543

English
character source, 57, 58, 60, 61, 63, 151, 156,

159, 160, 165, 167, 183, 185, 189–91, 194
character/letter coding, 154

Enigma machine, 526, 527, 532
Ensemble, 75
Entangled qubits, see Qubit
Entanglement/entangled, xii–xiv, xix, 362, 364, 431,

441, 445, 446, 449, 504, 506, 559–61, 637
Entropia, 50
Entropy, xviii, xix, 97, 111, 123, 232, 304, 342, 343,

431, 434, 435, 443, 475, 568–72
algorithmic, xix, 96, 97, 110, 111
as measure of disorder, 285
Boltzmann’s (-), 565–6
complexity and (-), 111
concavity, 443–4, 451
conditional (classical), 58, 69, 72, 77, 78, 85, 122,

238
conditional (quantum), 441–2
conditional relative (-), 81
continuous or differential, see Entropy

(differential)
continuous source, 84
convergence with Kologorov complexity, 123–5
differential, 84, 85, 90, 265, 559–62
definition, 50, 52
effective code (-), 136
infinite, 85, 86
joint (classical), 61, 69, 72, 77, 122, 238
joint (quantum), 439–41
language, 57–63, 129
maximum/maximizing, 63–7, 80, 88, 91, 94, 246,

252, 265, 578
maximum (-) model (MEM), 67
maximum (-) principle, 67
relative (classical), 52, 69, 78–80, 85, 87–9, 584,

661
relative (quantum), 437
Shannon’s, see Entropy
von Neumann (VN), xx, 333, 343, 431–7, 458,

462, 478, 487, 488, 490, 491, 669
Epistemic, 67
EPR

pair, 310
protocol, 523, 559–62
state (or Bell state), see State

Equiprobability, 4
Equivocation, 73, 238, 240, 245, 618
Erathosthenes, 538

682 Index

Erlang (-) distribution, see Probability
Error correction/correcting

classical, xix, 40, 162, 273, 591
code, 208, 244
function, see Complementary
quantum, see Quantum

Error
backward (-) correction, see Backward
bit (-) rate, see Bit error rate
decompression (-), see Decompression
forward (-) correction, see Forward
quantum (-) correction, see Quantum
symbol, 208, 209, 234, 242
symbol (-) rate (SER), 232, 242–4,

476
Esperluette, 167
Ethernet, 225
Euler’s theorem, see Theorem
Event(s)

anti-correlated, 15
combined, 11
complementary, 12
conditional, 70
correlated, 13, 15
correlation, 13
discrete, 20, 84
independent, 15, 16, 70
joint, 11, 70
mutually exclusive, 12
outcome, 2
probabilistic, 1–3
probability, see Probability
space/set, 2, 41
uncorrelated, 15, 16

Exams (taking), 13
Expectation value, 21, 433, 483, 502
Expected (codeword) length, 136
Exponential

distribution, see Probability
imaginary, 628
operator, see Operator

Exponentiation operation
classical, 302
quantum, 326

Extended
Euclidian algorithm, see Algorithm
source, see Source

F (probability distribution), see Probability
Factorial, 9
Factorization/factoring

into primes, 302, 389, 523
N = 12

Faller (code), see Code
Fang, J., 229
Fano’s inequality, 621

FANOUT gate, 293, 297, 299, 330, 331
Fast Fourier transform, see Fourier transform
Favero I., xxi
FEC, see Forward error correction
Feldmann, D., 587
Fermat

algorithm, see Algorithm
theorem, see Theorem

Fermi
energy level, 27
function, 27

Feynmann, R., 286
FGK (code/algorithm), see Code
Fibonacci

code, see Code
numbers, 181, 182

Fidelity, 457, 458, 462, 466, 497, 498,
500

FLIP-FLOP gate, 294
Forcinito, M. A., 246, 258
Forward error correction, 211
Fouché-Gaines, H., 58, 69, 116
Fourier transform

discrete, 384
fast (FFT), 383, 389
inverse, 384, 399
quantum, see Quantum

Frame (audio-CD), 592
Fredkin gate, 297, 320
French

language source, 58, 160
revolution, 128
wheel, 170

Frequency analysis (cryptography), 526
Fruit-market shopping, 10–11
Function

failure, 29
reliability, 29

Gadsby (novel), 185
Galileo, 226
Gallager, R. G., 156, 193
Gallager (code), see Code
Galton box, 34
Gamma

function, 9
probability distribution, see Probability

Gate
CNOT, see CNOT
controlled, see Controlled
Hadamard, 312, 314, 362, 365, 379, 381, 385,

387, 395, 399, 401, 407, 410, 417, 501, 504,
511, 512, 519, 637

logic or Boolean, xx, 283, 291, 293, 311
quantum, see Quantum
reversible/logic (-), 288, 296–302, 310

Index 683

Gaussian
channel, see Channel
distribution, see Probability

General number field sieve (GNFS) algorithm, see
Algorithm

Generalized normal (-) probability distribution, see
Probability

Generator
matrix, see Matrix
polynomial, see Polynomial

German language source, 58, 160
Giant pulse attack, see Attack
GIF, 207, 600
GNU zip, 207
Golay code, see Code
Golomb–Rice code, see Code
Gottesmann, D., 372, 637
GPRS, 225
GPS, 226
Greatest common divisor (GCD), 405
Grenberger–Horne–Zeilinger (GHZ) state, see State
Group theory, 510
Grover

iteration, 391
operator, see Operator
quantum database search algorithm, see

Algorithm
GSM, 225
Gzip, 207

Hacker, 39
Hadamard

codes, 220
gate, see Gate
matrix, see Matrix
Steane code, see Quantum error-correction

code
HAL, 39, 40
Halting

problem, 108–10, 290
rule, 109, 110

Hamming
code, 213, 220, 261, 510, 514
distance, 214, 516
minimum (-) distance, 214, 216, 614
weight, 214, 216, 614

Hartley, R., 50, 264
Hartley’s law, 264
Hash

attack, 543
function, 543

Hashing, 523
Haykin, S., 272
HDV (high-definition video), 599, 603
Header (block), see Block
Heat, 285

Heisenberg, xii
uncertainty principle, 347, 348, 635

Hermitian
conjugation, see Conjugation
operator, see Operator

Hexadecimal system, 128, 129
Hilbert space, 334
Hindu-Arabic numerals, see Numerals
Hirschberg, D. S., 183, 192, 207
Histogram, 4, 30–2
Holevo bound, xx, 431, 444, 450–4, 475, 485,

666–71
HSW Theorem, see Theorem
HTML, 131
Huang, Y.-F., 375
Huffmann

code/coding, xix, 137, 145, 151–7, 160–3, 168,
169, 176, 179, 181, 186, 192, 193, 200, 600

compression, see Compression

IA2 (International Alphabet), 131
IBM (Lucifer cryptosystem), 523, 530, 532, 541
Image/picture compression, see Compression
Imaginary exponential, see Exponential
IMDD, see Intensity-modulation
Impersonation attack, see Attack
Independent

events, see Event
sources, 75

Informatio (Latin), 37
Informatics, 39
Information, xi

algorithmic, 96, 97, 111
algorithmic (-) theory, 96, 111
bit, see Bit
classical, 305, 306
coding, xix, 127
concept, 37, 111
conditional, 43
contents, 40, 432
uncorrelated, 431, 441, 445–7, 449
definition, xvii
entropy concept, 286
erasure, 287
loss, 162
meaning, 38
measure/measuring, xviii, 37, 40, 50, 52, 53
mutual (classical), xix, 69, 74, 75, 77, 81, 85, 122,

238, 240, 241, 245, 266, 267, 624
mutual (quantum), 441, 447, 450, 475, 484, 486,

669
overhead, see Overhead
physical nature of (-), 283, 287
reconciliation, 524, 557
quantum, 435, 436, 441, 443
quantum coherent (-), 475, 486

684 Index

Information (cont.)
science, 39, 40
self (-), 286
spectral density, 270
standards, 591
theory (Shannon’s), xi–xii, xiv, xvii, 37, 39, 40,

96, 287, 304, 342, 431
uncorrelated (-), 445

Inner product of states, 330, 333–7
distinguishable, 258, 259
non-confusable (-) fan, 259

Instantaneous code, see Code
Integer coding, see Coding
Intelligence

artificial, 39
definition, 32, 38–9

Intensity-modulation/direct-detection (IMDD)
format, 226

Interleaver, 224
International Alphabet, see IA2
Internet, 39, 40, 129–31, 226, 367, 398, 411, 424,

428, 529, 564, 592
Inverse Fourier transform, see Fourier transform
IPv6, 425
Irreversible computation, see Computation
ISDN (integrated services digital network), 591
Italian language source, 58, 160
ITU-T, 592

Jaynes, E. T., 50
Jelly beans, 11
Jensen’s inequality, 124
Joint

entropy, see Entropy
events, see Event
probability/distribution, see Probability

Jokes, 41
JPEG, 161, 191, 598–600

Kahn, D., 525
Kernel, 437
Ket, 306, 334
Key

asymmetric (-) cryptography, see Cryptography
attack, 563
double or two (-) encryption, see Encryption
exchange, 523, 525, 532, 561
private, 425
public, 425
secret, 425, 523, 524, 529, 536, 541, 543,

555
secret (-) distillation, 524, 557
space, 525, 536, 541, 542
symmetric (-) cryptography, see Cryptography
without (-) exchange, 523, 527, 534–6

Keyspace, see Key
Klein’s inequality, 437, 440, 660

Knuth (code), see Code
Kolmogorov

A., 96
complexity xiii–xv, xix, 96, 97, 107, 110, 111,

123, 411
conditional complexity, 116, 119, 122
convergence with Shannon’s entropy, 123–5
un-computationability of complexity, 117,

118
upper bound, 117

Kolmogorov–Chaitin complexity, see Kolmogorov
Kraft inequality, 142
Kraft–McMillan inequality, 142, 143, 589–90
Kronecker

product, 328
symbol, 233, 313, 335

Kubrick, S., 39
Kullback–Leibler distance, see Distance

Lagrange
multiplier/parameter method, 64, 66, 91, 92, 142,

573, 574, 579
theorem, see Theorem

Laloe, F., 635
Landauer, R., 286
Landauer

bound/limit, 286
principle, xv, xix, 283–8, 296

Language
coding, see Coding
entropy, see Entropy

Laplace
distribution, see Probability
model, 190
rule, 191

Laser, 32, 65
Lavor, C., 390
Lelewer, D. A., 183, 192, 207
Lempel, A., 200
Lempel–Ziv coding, see Coding
Length (codeword), see Codeword
Lenstra algorithm, see Algorithm
Levi, S., 424, 525
Levi–Civita (symbol), 314
Lieb theorem, see Theorem
Lifetime (1/e), 28, 88
Ligature, 167
Limiting PDF, 33
Lin, S., 614
Linear

block codes, see Code
polarization, see Polarization

Locality, 367
non (-), see Non

Logic gate, see Gate
Logistic (-) distribution, see Probability
Log-normal distribution, see Probability

Index 685

Lossless compression, see Compression
Lossy compression, see Compression
Lotto, 41
Lucifer cryptosystem, see IBM
LZ1/LZ2, see Coding
LZ77/LZ78, see Coding

M-ary modulation format
M-FSK, 274
M-PSK, 274
M-QAM, 275

MacKay, D. J. C., 155, 187, 207, 605
Macrosystem, 51, 367
Majority logic, 210, 496
Man-in-the-middle attack, see Attack
Mangler, 531
Mangling function, 531
Markov chain, 82, 581–4
Matrix

commutator/commuting, see Commuting
conditional, 18
density, 333, 341–3, 431, 432, 465
determinant, 338
diagonal form/representation, 333, 339, 341,

432–4, 460
elements, 337
generator, 212, 509, 515
Hadamard, 58, 220, 312, 314, 315, 319, 329, 339,

549
Hermitian-conjugate, 312, 627
identity, 304, 312
inverse, 312
operator (-) elements, 333, 337–8
parity-check, 212, 509, 514
partial trace/tracing, 438, 445, 446, 665
Pauli, xix, 304, 312–15, 319, 327, 329, 339, 478,

499, 503, 505, 551, 627, 631
trace, 333, 340–1, 433
transition, 18, 475, 582
transposed, 312
unitary, 304, 312, 627, 632
Vandermonde, 385, 386

Maximizing entropy, see Entropy
Maximum

entropy, see Entropy
length shift-register codes, see Code
likelihood decoding, see Decoding

Maxwell, J. C., 283
Maxwell–Boltzmann probability distribution, see

Probability
Maxwell’s demon, xix, 283–8
Mean

codeword length, see Codeword
continuous-variable, 26
discrete-variable, 20
of observable, see Obervable
time to failure (MTTF), 29

Measurement, 305, 343
basis-states (-), 333, 337
Bell states (-), 365–7
failure, 358
N-qubit (-), 361–5
operator, see Operator
post (-) state, see State
POVM (-), 333, 343, 348–51, 450, 451, 483,

666
projection/projective (-), 333, 346,

359
quantum (-), xix, 306, 333, 341, 343–51, 356,

418, 451, 459, 502
single qubit (-), 356–60
state, 341
success, 358
von Neumann (-), 333, 343, 346, 348,

359
Measuring information, see Information
MEM, see Entropy
Memory

computer, 287–90
space, 108

Memoryless
channel, see Channel
source, see Source

Microscopic state, 51
Microstate, 51, 66, 67, 285
Mitra, P. P., 278
Mobile/radio/cellular/wireless/3G communications,

224, 225, 371, 592, 603
Modular

algebra/arithmetic, 302, 656–8
reduction, 657

Modulation format, 225
Modulus of vector, see Vector
Moment (PDF), 66
Monogram, 134, 169
Moore’s law, 539
Morin, E., xii, xiii
Morse

code, 132–6, 138, 152
symbols, 132

Motion picture, see Picture
MPEG, 161, 191, 599, 601–4
MP3, 161, 595–6
MS-DOS, 207
MTTF, see Mean
Mu-law (or µ-law), 592
Multiplication operation

classical, 302
quantum, 326

Multivariate normal probability distribution, see
Probability

Music coding, see Coding
Mutual information, see Information
Mutually exclusive events, see Events

686 Index

NAND (logical/Boolean), 291, 293, 299
Nat, 42, 52, 53, 84, 578
Neologism, 58
Nielsen, M. A., 296
NIST (National Institute of Standards and

Technologies), 541
NO (logical/Boolean), 76, 529
Noise, xix, 32

additive, 9
optical amplifier, 278, 280
quantum, see Quantum

Non
cloning theorem, see Theorem
locality, 367, 560, 562
observable phase, 625
trivial composites, 417

Nonlinear channel, see Channel
Normal

distribution, see Probability
operator, see Operator

Normality, 32
NOT (logical/Boolean), 291, 299

controlled (-), 293
quantum gate, 312, 313, 319

NRZ format, see On-off
Nucleotide sequence, 185
Null (cryptographic), 425
Number

co-prime, 405, 649, 658
complex, 305, 307, 627, 653–5
prime, 302, 672
rational, 649
relatively prime, 658

Numerals
Arabic, 128
Hindu-Arabic, 128
Roman, 127–8

Nyquist, H., 50
Nyquist sampling rate, 269

Observable, 307, 346, 359, 433, 440, 502, 635
conjugate, 348
mean, 347
non (-), 313, 344, 345, 357
variance, 347

Octal representation, 221
On-off keying (OOK), 226, 228, 272
One

time-pad cipher, 529
way function, 534, 657

OOK, see On-off
Operator, 311

density, 333, 341–3, 431, 432, 434, 450, 458, 476,
482, 665

diagonal representation, 333
exponential, 628–9

Grover (-), 391, 397
Hermitian, 339
joint-state measurement (-), 353
matrix elements, see Matrix
measurement, 343, 348, 356
normal, 340
projection/projector, 333, 336–7, 461, 500
reduced density (-), 446
rotation, 319, 357, 629–31, 634
spectral decomposition, 333, 339, 346
sum representation, 477, 479, 480, 508
tensor, 352
transformation, 343
transition, 338
unitary, 311, 312, 314, 357, 384, 476

Optical
amplifier, 277
communications/telecommunications, 227
fiber, 32, 208, 277, 371

Optimal/optimality (coding), see Coding
OR

exclusive, see XOR
logical/Boolean, 76, 291, 293, 529

Oracle, 390, 396, 397
Order

finding algorithm, see Algorithm
of (integer) modulo N, 405

Orthonormal basis, see Basis
Osgood, B., 170
Outcome, see Event
Output (non-confusable), 258
Overhead (information), 159, 160, 162, 199, 209,

210

Parallellism (quantum), see Quantum
Pareto probability distribution, see Probability
Parity

bit, see Bit
check matrix, see Matrix
check polynomial, see Polynomial

Parsing, 200
distinct (-), 200, 205, 610

Partial trace/tracing, see Matrix
Party (meeting), 15–16
Pauli, W., 312
Pauli

matrices, see Matrix
vector, 630

Payload, 162, 209
bit, see Bit
pattern, 225

PDA (personal digital assistant), 603
PDF, see Probability
PDH (plesiosynchronous digital hierarchy), 592
Perec, G., 186
Permutation, 9

Index 687

Personal digital assistant, see Personal
Phase, 345

eigenstates, 345
estimation, 399–404
flip channel, see Quantum channel
measurement operator, 345
non-observable (-) factor, 625, 631

Philips, 592
Phonon, 65
Photocurrent, 278
Photon, 65, 544, 549, 551, 556

circularly-polarized, 552
communication channel, 551, 554–8
energy, 577
statistics, 576

Photonics, 32
Picture

compression, see Compression
motion, 161, 191
still, 191

PKARK, 207
PKZIP, 207
Plaintext, 61, 424
Planck, xii, xiv
Planck’s constant, 65
Plenio, M. B., 296, 300, 326
PNG, 207, 600
Podolski, xiii
Point or presence (POP), 563
Poisson

distribution, see Probability
process, 24

Polarization
beamsplitter, 551
circular, 546, 549, 552
EM state, 549
horizontal (TM), 545
left-circular, 546
light, 545
linear, 545, 549
orthogonal, 545
right-circular, 546
state, 545, 547
vertical (TE), 545

Pollard algorithm, see Algorithm
Polynomial

generator, 218
irreductible, 218, 542, 672
multiplication, 672
parity-check, 218
representation (byte), 542, 672–5
syndrome, 219
time, 399, 410
time complexity, 400

Portuguese language source, 58, 160
Post-measurement state, see State

POVM measurement, see Measurement
Prefix, see Codeword
Prefix code, see Code
Prime

decomposition into (-), 410, 424
factorization/factoring into (-), see Factorization
number, see Number
relatively, see Number

Privacy amplification, 524, 557
Proakis, J. G., 221, 223, 589
Probability distribution

Bernoulli, 24, 25
beta, 90
binomial, 24, 25, 32
Boltzmann, 65
Bose–Einstein (BE), 23, 65, 91, 573, 574,

576
Cauchy, 90
character, 57
Chi/Chi-squared, 90
combined, 13
conditional, 14, 15, 70
continuous, 26
distance between (-), see Distance
Erlang, 90
exponential

continuous, 28, 88, 90, 93
discrete, 23, 57, 58, 65, 69, 91, 573, 574, 576

density function (PDF), 5, 20, 264
F, 90
Gamma, 90
Gaussian, 25, 29–33, 66, 89, 90, 93
generalized normal, 90
joint, 13, 15, 42, 70, 73, 80, 81, 581
Laplace, 90
law of total (-), 17
log-normal, 32, 90
logistic, 90
Maxwell–Boltzmann, 90, 573, 576, 577
moments, see Moment
multivariate normal, 90
normal, 25, 29, 33, 89, 90, 93
of event, 3
optimization constraints, 65
Pareto, 90
Poisson, 23, 25, 32
Rayleigh, 90
stationary, 583
Student’s t, 90
theory, xviii
thermal (or Bose–Einstein), 573
triangular, 90
uniform

discrete, 6, 22, 26, 80, 90, 573, 583
continuous, 86, 87, 90, 241, 246

Weibull, 90

688 Index

Projection/projector
measurement, see Measurement
operator, see Operator

Pseudo-binary code, see Binary
Psychoacoustics analysis, 595
Public-key cryptography, see Cryptography
Pulse code modulation (PCM), 592
Pure state, see State
Purification, see State
Purifying system, 442

Q-factor, 226
QIT, see Quantum information theory
QKD, see Quantum key distribution
Quanta (energy), 544
Quantum

bit, see Qubit
channel, 431, 450–4, 475, 476, 497, 559, 561,

667
capacity, 482, 487–93
communication, 476
bit-flip, 475, 479–80, 491–3, 496, 497
bit-phase-flip, 475, 480–1
depolarizing, 475, 477–8, 488–91
ideal or noiseless, 475, 476, 489
nonideal or noisy, 477, 481, 498
phase-flip, 475, 480, 496, 501
useless, 478, 493

channel capacity, 475
circuit, xx, 304, 314, 322–7
code, 484
codeword, 457
coherence, 561
coherent information, see Information
compression, 457–64
computation/computing, xix, 305, 310, 311, 356,

378, 380
computer, xx, 310, 398, 399, 536
cryptography, see Cryptography
decoherence, xx, 561
distributed (-) computing, 356
energy/light (quanta), 23, 25, 65
entanglement, see Entanglement
error, 457

bit-flip (-), 506, 507
phase-flip (-), 505, 507

error correction, xx, 496, 497, 562
Calderbank–Shor–Steane (CSS), 496, 509,

511, 513
Hadamard–Steane, 496, 514–20
Shor (-) code, xx, 496, 503–9

Fourier transform, xv, xix, 378, 383–9, 403,
644–7

gate, xx, 311, 314, 374
gate teleportation, see Teleportation
information, see Information

information theory (QIT), xii, xiv, xvii–xviii, 264,
283, 287, 304, 305, 342, 343, 431

inverse Fourier transform, 403
key distribution (QKD), xv, xvii, xx, 523, 544,

556–8, 561, 562, 564
measurement, see Measurement
mechanics, 305
memory, 497
network, 356
noise, 475, 557, 561
noisy (-) channel, 475
operation, 451, 476, 477, 481, 488, 491, 492, 499,

508, 556, 667
parallelism, 378, 380, 383
repetition code, 496–503
state, see State
teleportation, see Teleportation
wire, 381

Quarter-wave plate, see Wave plate
Qubit, xix, 304–10, 334, 435

amplitude, 306
ancilla, 370, 379, 401
control, 316
entangled, 356
joint, 356
target, 316, 370
teleportation, see Teleportation
two (-), 309
vector, 334
wire, 381

Qudit, 372
Quincunx, 34
QuNit/qunit, 372, 435
Qutrit, 374

Random-number generation, 191, 563
Rate

bit error (-), see Bit error rate
code (-), see Code
compression (-), see Compression
parameter, 28

Rational number, 408
Rayleigh distribution, see Probability
Receiver, 208
Recipient, 37, 40, 41
Red Book, 592
Redundancy (code), see Code
Reed–Solomon codes, see Code
Register, 289, 290, 301, 382
Relative entropy, see Entropy
Relativity (theory), see Einstein
Reliability function, see Function
Rényi, A., 45
REPEAT gate, 294, 297, 312
Residue, 656
Return loss, 563

Index 689

Reversible computation/transformation, see
Computation

Rice codes, see Code
Riemann integral, 587
Rivest, R., 424, 536
Rolling dice, 4, 16, 21, 22, 34, 44, 53–6
Roman numerals, see Numerals
Rosen, xiii
Rotation operator, see Operator
Roulette game, 170
Round (DES), 531
RSA

challenges, xv, 411, 415, 523, 537,
541

cryptosystem, 523, 536–40
modulus, 425
Security, 537
standard, 424, 428

S-box, 542
Sample space, 2
Satellite communications, 224, 225
Schmidt

coefficients, 438, 439, 662
decomposition, 438, 662–3

Schneier, B., 425, 540
Schrödinger’s cat, see Cat
SDH (or SONET), 592
Second law/principle of thermodynamics, see

Thermodynamics
Secret

exchange (simultaneous), see Simultaneous
key, see Key

Semantic-dependent coding, see Coding
Shamir, A., 424, 536
Shank algorithm, see Algorithm
Shannon, C. E., 50, 52, 69, 85, 86, 256, 283,

568
Shannon

code, 144, 145, 148, 149, 152, 155
Fano code, 144, 152, 154–6, 167, 168, 175, 176,

179
first theorem, see Theorem, source-coding
entropy, see Entropy
information definition, 37
information theory, see Information
limit, 272
second theorem, see Theorem, channel coding
source-coding theorem, see Theorem

Shannon–Hartley
law, see Theorem
theorem, see Theorem

Shift register, 223
Shor

factorization algorithm, see Algorithm
quantum error-correction code, see Quantum

Shumacher’s
quantum coding theorem, see Theorem
quantum compression, 457, 469–74

Sibling property (rule), 193
Signal-to-noise ratio, 226, 267, 278
Similarity transformation, 333, 338
Simultaneous secret exchange, 543
Singh, S., 61, 69, 424
Sit, 45
Solomonoff, R., 96
SONET, 592
Sony, 592
Sound

compression, 185
digital, 161

Source
coding theorem, see Theorem
continuous, 84
discrete, see Events
extension, 163, 206
information, 53
language, 57
memoryless, 206
quantum, 434
random, 52, 53

Space Odyssey (2001), 39
Spanish language source, 160
Spectral

decomposition of operator, see Operator
density, see Information spectral efficiency

Speech/voice
analog-to-digital (A–D), 592
compression, 591

Speed of light, 356, 371
Standard

audio and video, xix
compression, see Compression
deviation, 21

Stark, J. B., 278
State

ancilla, 354
Bell or EPR (-), 310, 318, 356, 362–5, 367, 369,

370, 374, 388, 448, 559–61, 637
cat (-), 307
collapse, 307, 357, 358, 363, 371, 559–62
eigen (-), see Eigenstate
entangled, see Entanglement
EPR, see State (Bell)
GHZ, 374
joint, 328, 351, 353, 437
joint post-measurement (-), 353
mixed, 448
orthogonal, 306, 435
polarization, see Polarization
post-measurement (-), 310, 344, 346, 352, 353,

357, 360, 498, 558–60, 641, 667

690 Index

State (cont.)
pure, 304, 314, 330, 331, 432–4, 452, 454, 487,

664
pure joint, 437, 445, 448
purification, 486, 664–5
quantum, 334, 343, 432, 450
superposition, 305, 306
tensor (-), see Tensor
transport of quantum (-), 367
unambiguous quantum state discrimination

(UQSD), 333, 351
Static

code, see Code
coding, see Coding

Statistical mechanics, 50
Steane code, see Quantum error correction
Stirling’s formula or approximation theorem, 9, 119,

566
Stock exchange, 71, 73
Stream coding, see Coding
Student’s t probability distribution, see Probability
Subadditivity

inequality, 439–41, 447
strong (-), 451, 671

Subtraction (quantum operation), 326
SUM gate, 299, 325
Superdense

coding, xv, xix, 356, 366
teleportation, 374

Superposition of states, see State
Support space, 437, 443, 444, 452
Surprise, 41, 43, 45
Symbol, 44–5, 53

error, see Error
Syndrome, 212, 215

polynomial, see Polynomial
quantum, 497, 503, 505, 506, 508,

511
Systematic

code representation, see Code
output, 224

SWAP gate, see CROSSOVER
Szilárd, L., 50, 285, 286

Table
look-up, 162
of instructions (Turing machine), see Action

table
truth, 291

TCP/IP, 225
Telecommunications, 32
Teleportation, xv, xix, 356, 450, 559,

560
of quantum gates, 356
of quNits, 372
of two qubits, 372–4, 637–43

Temperature (absolute), 284
Tensor

operator, see Operator
product, 304, 316–19, 327–9
state, 309, 316, 327–9, 351

Ternary code, 134
Theorem

band-limited capacity (-), 270
Bayes’s, 14, 15, 43, 71, 78, 239, 618
Boltzmann’s, 52
central limit (CLT), 32–4, 66
channel capacity, xiv
channel coding (-), 232, 245, 252, 255–62, 264,

475, 481, 482, 484, 621–4
Euler, 426, 631–4, 656–9
Fermat, 658
Holevo–Schumacher–Westmoreland (HSW), xx,

475, 481–7
information capacity (-), 269
Lagrange, 510
Lieb, 671
noncloning (-), 304, 328, 330–1, 335, 369
Schumacher’s quantum coding (-) or noiseless

channel coding (-), 462, 464–9
Shannon–Hartley, xiv, xix, 264, 269, 279
Shannon’s second (-), 255
source-coding (-), xix, 127, 138, 142–9, 163, 245
Stirling, see Stirling
typical subspace (-), 467

Theory of information, see Information
Thermal process, 23
Thermodynamics, 286

second law/principle, 50, 69, 82, 283, 285, 581,
584–6

Thomas, J. A., 90, 111, 148, 206, 252, 578, 583,
587, 610, 621

TIFF, 207, 601
Time

constant, 28
division multiplexing (TDM), 591
stamping, 543

Todd, Odgen, 34
Toffoli gate, 298, 299, 320, 322, 325
Tongue, 57
Tossing coins, see Coin
Trace (matrix), see Matrix
Trailer (block), see Block
Transistor-transistor logic, see TTL
Transition

matrix, 233
operator, see Operator

Transmission pipe, 208
Transmitter, 208
Transposition (matrix/operator), 328
Trapdoor function, 541
Tree, see Coding

Index 691

Triangle inequality, 442
Triangular probability distribution, see Probability
Trit, 134, 136
Trust interval, 22
Truth table, see Table
TTL, 294
Turbo codes, see Code
Turing, A., 97, 107
Turing

complete computer, 290
equivalent computer, 290
machine, xiv, xix, 97, 108, 110, 111, 289
universal (-) machine (UTM), 96, 107, 114, 116,

289
Typewriter (noisy channel), see Channel
Typical

sequence (classical), , 245, 252–5
sequence (quantum), 460, 464, 465
set, 245, 252–5
state (quantum), 460
subspace (quantum), 465, 469, 471–3, 483
subspace theorem, see Theorem

Typicality, 457

UMTS (3G), 225
Unambiguous quantum state discrimination

(UQSD), see State
Unary number representation/system, 100, 128
Uncertainty, 347

Heisenberg (-) principle, see Heisenberg
Uncomputable number, 107
Uncorrelated events, see Event
Undecidable problem, 108, 110, 117, 290
Uniform distribution, see Probability
Uniquely decodable (code), see Code
Unitary

matrix, see Matrix
operator, see Operator
transformation, 311, 333, 337, 631
vector, 306

Universal Turing machine, see Turing
Universe, 50
UNIX, 199
UTM, see Turing

Vandermonde matrix, see Matrix
Variance, 21, 26

of observable, see Observable
Vector length/modulus, 334
Vedral, V., 296, 300, 326
Venn diagram, 12, 76, 79
Video compression, see Compression
Viterbi algorithm, 223
Vitter algorithm, 200
VLSI (very large scale integration), 540
Von Neumann, J., 50, 286
Von Neumann

architecture/computer, 283, 288, 290, 301, 306,
378, 382, 383

entropy, see Entropy
Landauer bound, 286

Wave plate
half, 551
quarter, 548

Weibull probability distribution, see Probability
Wi-Fi (802.11), 225
William algorithm, see Algorithm
World

War (first), 132
War (second), 526
Wide Web, 207

XOR (logical/Boolean), 291, 293, 299, 368, 529

Z channel, see Channel
Zip, 207, 596–7
Ziv, J., 200
Ziv–Lempel coding, see Coding

	Cover
	Half-title
	Title
	Copyright
	Contents
	Foreword
	Introduction
	Acknowledgments
	1 Probability basics
	1.1 Events, event space, and probabilities
	Coin tossing
	Rolling dice (game 1)
	Rolling dice (game 2)

	1.2 Combinatorics
	Arranging books on a shelf
	Arranging books on a shelf, with duplicates
	Fruit-market shopping
	Scooping jellybeans

	1.3 Combined, joint, and conditional probabilities
	Taking exams
	Sharing birthdays
	Party meetings
	Tossing the coin
	Double six
	Drawing cards

	1.4 Exercises

	2 Probability distributions
	2.1 Mean and variance
	2.2 Exponential, Poisson, and binomial distributions
	2.3 Continuous distributions
	2.4 Uniform, exponential, and Gaussian (normal) distributions
	2.5 Central-limit theorem
	Rolling dice and adding spots

	2.6 Exercises

	3 Measuring information
	3.1 Making sense of information
	3.2 Measuring information
	A lotto surprise

	3.3 Information bits
	3.4 Rényi's fake coin
	3.5 Exercises

	4 Entropy
	4.1 From Boltzmann to Shannon
	4.2 Entropy in dice
	Two-dice roll
	The 421

	4.3 Language entropy
	4.4 Maximum entropy (discrete source)
	4.5 Exercises

	5 Mutual information and more entropies
	5.1 Joint and conditional entropies
	Stock exchange

	5.2 Mutual information
	5.3 Relative entropy
	5.4 Exercises

	6 Differential entropy
	6.1 Entropy of continuous sources
	6.2 Maximum entropy (continuous source)
	6.3 Exercises

	7 Algorithmic entropy and Kolmogorov complexity
	7.1 Defining algorithmic entropy
	7.2 The Turing machine
	Example 7.1
	Example 7.2
	Example 7.3
	Example 7.4
	Example 7.5

	7.3 Universal Turing machine
	7.4 Kolmogorov complexity
	Example 7.6
	Example 7.7
	Example 7.8
	Example 7.9

	7.5 Kolmogorov complexity vs. Shannon's entropy
	7.6 Exercises

	8 Information coding
	8.1 Coding numbers
	8.2 Coding language
	8.3 The Morse code
	8.4 Mean code length and coding efficiency
	8.5 Optimizing coding efficiency
	8.6 Shannons source-coding theorem
	8.7 Exercises

	9 Optimal coding and compression
	9.1 Huffman codes
	9.2 Data compression
	9.3 Block codes
	Example 9.1: Four-event source
	Example 9.2: 26-event source; the English-language characters
	Example 9.3: Two-event source; the roulette game

	9.4 Exercises

	10 Integer, arithmetic, and adaptive coding
	10.1 Integer coding
	10.2 Arithmetic coding
	10.3 Adaptive Huffman coding
	10.4 Lempel–Ziv coding
	10.5 Exercises

	11 Error correction
	11.1 Communication channel
	11.2 Linear block codes
	11.3 Cyclic codes
	11.4 Error-correction code types
	Hamming codes
	Hadamard codes
	Cyclic redundancy check (CRC) codes
	Golay code
	Maximum-length shift-register codes
	Bose–Chaudhuri–Hocquenghem (BCH) codes
	Reed–Solomon (RS) codes
	Concatenated block codes
	Convolutional codes
	Turbo codes

	11.5 Corrected bit-error-rate
	11.6 Exercises

	12 Channel entropy
	12.1 Binary symmetric channel
	12.2 Nonbinary and asymmetric discrete channels
	Example 12.1: Z channel
	Example 12.2: Binary erasure channel
	Example 12.3: Noisy typewriter
	Example 12.4: Asymmetric channel with nonoverlapping outputs

	12.3 Channel entropy and mutual information
	12.4 Symbol error rate
	12.5 Exercises

	13 Channel capacity and coding theorem
	13.1 Channel capacity
	Example 13.1: Z channel
	Example 13.2: Binary erasure channel
	Example 13.3: Noisy typewriter
	Example 13.4: Asymmetric channel with nonoverlapping outputs

	13.2 Typical sequences and the typical set
	13.3 Shannons channel coding theorem
	Approach 1
	Approach 2
	Approach 3

	13.4 Exercises

	14 Gaussian channel and Shannon–Hartley theorem
	14.1 Gaussian channel
	Nonreturn-to-zero (NRZ) format
	M-ary frequency-shift-keying (M-FSK) format
	M-ary phase-shift-keying (M-PSK) format
	M-ary quadrature amplitude modulation (M-QAM) format

	14.2 Nonlinear channel
	14.3 Exercises

	15 Reversible computation
	15.1 Maxwells demon and Landauer's principle
	15.2 From computer architecture to logic gates
	15.3 Reversible logic gates and computation
	15.4 Exercises

	16 Quantum bits and quantum gates
	16.1 Quantum bits
	16.2 Basic computations with 1-qubit quantum gates
	Pauli matrices or I, X, Y, Z-gates
	Hadamard matrix gate or H-gate

	16.3 Quantum gates with multiple qubit inputs and outputs
	CNOT gate
	CROSSOVER or SWAP gate
	Controlled-U gates
	Controlled-SWAP gate
	Toffoli or CCNOT gate
	Controlled-controlled-U or CCU gate
	Deutsch or CCR gate

	16.4 Quantum circuits
	16.5 Tensor products
	16.6 Noncloning theorem
	16.7 Exercises

	17 Quantum measurements
	17.1 Dirac notation
	Inner product
	Projection operators
	Change of basis
	Unitary transformations
	Operator matrix elements
	Eigenvalues and eigenstates
	Matrix trace
	Density operator or matrix

	17.2 Quantum measurements and types
	Quantum measurements in the orthonormal basis
	Projective or von-Neumann measurements
	POVM measurements

	17.3 Quantum measurements on joint states
	17.4 Exercises

	18 Qubit measurements, superdense coding, and quantum teleportation
	18.1 Measuring single qubits
	18.2 Measuring n-qubits
	18.3 Bell state measurement
	18.4 Superdense coding
	18.5 Quantum teleportation
	18.6 Distributed quantum computing
	18.7 Exercises

	19 Deutsch–Jozsa, quantum Fourier transform, and Grover quantum database search algorithms
	19.1 Deutsch algorithm
	19.2 Deutsch–Jozsa algorithm
	19.3 Quantum Fourier transform algorithm
	19.4 Grover quantum database search algorithm
	19.5 Exercises

	20 Shor's factorization algorithm
	20.1 Phase estimation
	20.2 Order finding
	20.3 Continued fraction expansion
	Discussion

	20.4 From order finding to factorization
	20.5 Shor's factorization algorithm
	Shor's algorithm

	20.6 Factorizing N = 15 and other nontrivial composites
	Discussion

	20.7 Public-key cryptography
	20.8 Exercises

	21 Quantum information theory
	21.1 Von Neumann entropy
	21.2 Relative, joint, and conditional entropy, and mutual information
	Relative entropy
	Composite system in pure state
	Subadditivity inequality and quantum joint entropy
	Quantum mutual information
	Conditional entropy
	Triangle inequality
	Concavity of entropy and entropy of system in random states
	Example 21.1: Subsystems with uncorrelated information
	Example 21.2: Subsystems with correlated information
	Example 21.3: Composite system in pure state

	21.3 Quantum communication channel and Holevo bound
	Example 21.4: A “useless” quantum communication channel
	Example 21.5: A quantum communication channel reduced to classical
	Example 21.6: General case

	21.4 Exercises

	22 Quantum data compression
	22.1 Quantum data compression and fidelity
	22.2 Schumacher's quantum coding theorem
	22.3 A graphical and numerical illustration of Schumacher's quantum coding theorem
	22.4 Exercises

	23 Quantum channel noise and channel capacity
	23.1 Noisy quantum channels
	Depolarizing channel
	Bit-flip channel
	Phase-flip channel
	Bit-phase-flip channel

	23.2 The Holevo–Schumacher–Westmoreland capacity theorem
	23.3 Capacity of some quantum channels
	Example 23.1: Depolarizing channel
	Example 23.2: Bit-flip channel

	23.4 Exercises

	24 Quantum error correction
	24.1 Quantum repetition code
	24.2 Shor code
	Phase-flip error
	Bit-flip error

	24.3 Calderbank–Shor–Steine (CSS) codes
	24.4 Hadamard–Steane code
	24.5 Exercises

	25 Classical and quantum cryptography
	25.1 Message encryption, decryption, and code breaking
	25.2 Encryption and decryption with binary numbers
	25.3 Double-key encryption
	25.4 Cryptography without key exchange
	25.5 Public-key cryptography and RSA
	25.6 Data encryption standard (DES) and advanced encryption standard (AES)
	25.7 Quantum cryptography
	25.8 Electromagnetic waves, polarization states, photons, and quantum measurements
	25.9 A secure photon communication channel
	25.10 The BB84 protocol for QKD
	25.11 The B92 protocol
	25.12 The EPR protocol
	25.13 Is quantum cryptography "invulnerable?"

	Appendix A (Chapter 4) Boltzmann's entropy
	Task 1
	Task 2

	Appendix B (Chapter 4) Shannon's entropy
	Step 1
	Step 2
	Step 3

	Appendix C (Chapter 4) Maximum entropy of discrete sources
	Uniform distribution solution
	Discrete-exponential (Bose–Einstein) distribution solution
	Maxwell–Boltzmann distribution solution

	Appendix D (Chapter 5) Markov chains and the second law of thermodynamics
	Markov chains and their properties
	Proving the second law of thermodynamics

	Appendix E (Chapter 6) From discrete to continuous entropy
	Appendix F (Chapter 8) Kraft–McMillan inequality
	Appendix G (Chapter 9) Overview of data compression standards
	Sounds
	Datafiles
	Images
	Video
	MPEG-1
	MPEG-2
	MPEG-4

	Appendix H (Chapter 10) Arithmetic coding algorithm
	Appendix I (Chapter 10) Lempel–Ziv distinct parsing
	Distinct parsing
	Proof of Eq. (I3)

	Appendix J (Chapter 11) Error-correction capability of linear block codes
	Appendix K (Chapter 13) Capacity of binary communication channels
	Note

	Appendix L (Chapter 13) Converse proof of the channel coding theorem
	Property A
	Property B

	Appendix M (Chapter 16) Bloch sphere representation of the qubit
	Appendix N (Chapter 16) Pauli matrices, rotations, and unitary operators
	Hermitian conjugation and unitary matrices
	Exponential representation of complex numbers
	Exponential operator
	Rotation operators
	Euler’s theorem
	Decomposition of 2 × 2 unitary matrices
	Commutation properties of rotation operators

	Appendix O (Chapter 17) Heisenberg uncertainty principle
	Note

	Appendix P (Chapter 18) Two-qubit teleportation
	Appendix Q (Chapter 19) Quantum Fourier transform circuit
	Appendix R (Chapter 20) Properties of continued fraction expansion
	Property 1
	Property 2
	Property 3

	Appendix S (Chapter 20) Computation of inverse Fourier transform in the factorization of N = 21 through Shor's algorithm
	Appendix T (Chapter 20) Modular arithmetic and Euler's theorem
	Appendix U (Chapter 21) Klein's inequality
	Appendix V (Chapter 21) Schmidt decomposition of joint pure states
	Appendix W (Chapter 21) State purification
	Appendix X (Chapter 21) Holevo bound
	Proof of the inequality in Eq. (X16), with discussion

	Appendix Y (Chapter 25) Polynomial byte representation and modular multiplication
	Index

