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Foreword

It is often difficult to persuade undergraduate students of the importance of
mathematics. Engineering students in particular, geared towards the prac-
tical side of learning, often have little time for theoretical arguments and
abstract thinking. In fact, mathematics is the language of engineering and
applied science. It is the vehicle by which ideas are analyzed, developed, and
communicated. It is no accident, therefore, that any undergraduate engi-
neering curriculum requires several mathematics courses, each one designed
to provide the necessary analytic tools to deal with questions raised by en-
gineering problems of increasing complexity, for example, in the modeling
of physical processes and phenomena. The most effective way to teach stu-
dents how to use these mathematical tools is by example. The more worked
examples and practice exercises a textbook contains, the more effective it
will be in the classroom.

Such is the case with Solution Techniques for Elementary Partial Differ-
ential Equations by Christian Constanda. The author, a skilled classroom
performer with considerable experience, understands exactly what students
want and has given them just that: a textbook that explains the essence
of the method briefly and then proceeds to show it in action. The book
contains a wealth of worked examples and exercises (half of them with an-
swers). An Instructor’s Manual with solutions to each problem and a .pdf
file for use on a computer-linked projector are also available. In my opin-
ion, this is quite simply the best book of its kind that I have seen thus
far. The book not only contains solution methods for some very important
classes of PDEs, in easy-to-read format, but is also student-friendly and
teacher-friendly at the same time. It is definitely a textbook that should be
adopted.

Professor Peter Schiavone
Department of Mechanical Engineering
University of Alberta
Edmonton, AB, Canada





Preface to the Second Edition

In direct response to constructive suggestions received from some of the
users of the book, this second edition contains a number of enhancements.

• Section 1.4 (Cauchy–Euler Equations) has been added to Chapter 1.

• Chapter 3 includes three new sections: 3.3 (Bessel Functions), 3.4
(Legendre Polynomials), and 3.5 (Spherical Harmonics).

• The new Section 4.4 in Chapter 4 lists additional mathematical models
based on partial differential equations.

• Sections 5.4 and 7.4 have been added to Chapters 5 and 7, respectively,
to show—by means of examples—how the methods of separation of
variables and eigenfunction expansion work for equations other than
heat, wave, and Laplace.

• Supplementary applications of the Fourier transformations are now
shown in Section 8.3.

• The method of characteristics is applied to more general hyperbolic
equations in the additional Section 12.4.

• Chapter 14 (Complex Variable Methods) is entirely new.

• The number of worked examples has increased from 110 to 143, and
that of the exercises has almost quadrupled—from 165 to 604.

• The tables of Fourier and Laplace transforms in the Appendix have
been considerably augmented.

• The first coefficient of the Fourier series is now 1
2 a0 instead of the pre-

vious a0. Similarly, the direct and inverse full Fourier transformations
are now defined with the normalizing factor 1/

√
2π in front of the inte-

gral; the Fourier sine and cosine transformations are defined with the
factor

√
2/π .

While I still believe that students should be encouraged not to use elec-
tronic computing devices in their learning of the fundamentals of partial
differential equations, I have made a concession when it comes to exam-
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ples and exercises involving special functions, transcendental equations, or
exceedingly lengthy integration. The (new) exercises that require compu-
tational help because they are not solvable by elementary means have been
given italicized numerical labels. Their answers are worked out with the

Mathematica R software and are given in the form that package produces
with full simplification. I have also included a few extra formulas in table
A1 in the Appendix to assist with the evaluation of some basic integrals
that occur frequently in the solution of the exercises.

The material in this edition seems to exceed what can normally be covered
in a one-semester course, even when taught at a brisk pace. If a more
leisurely pace is adopted, then the material might be stretched to provide
work for two semesters.

I wish to thank all the readers who sent me their comments and urge
them to continue to do so in the future. It is only with their help that this
book may undergo further improvement.

I would also like to thank Sunil Nair, Sarah Morris, Karen Simon, and
Kevin Craig at Taylor & Francis for their professional and expeditious han-
dling of this project.

Christian Constanda
The University of Tulsa
March 2010



Preface to the First Edition

There are many textbooks on partial differential equations on the market.
The great majority of them are well written and very rigorous, with full
background explanations, detailed proofs, and lots of comments. But they
also tend to be rather voluminous and daunting for the average student.
When I ask my undergraduates what they want from a book, their most
common answers are (i) to understand without excessive effort most of what
is being said; (ii) to be given full yet concise explanations of the essence of
the topics discussed, in simple words; (iii) to have many worked examples,
preferably of the type found in test papers, so they could learn the var-
ious techniques by seeing them in action and thus improve their chances
of passing examinations; and (iv) to pay as little as possible for it in the
bookstore. I do not wish to comment on the validity of these answers, but
I am prepared to accept that even in higher education the customer may
sometimes be right.

This book is an attempt to meet all the above requirements. It is designed
as a no-frills text that explains a number of major methods completely but
succinctly, in everyday classroom language. It does not indulge in multi-
page, multicolored spiels. It includes many practical applications with so-
lutions, and exercises with selected answers. It has a reasonable number of
pages and is produced in a format that facilitates digital reproduction, thus
helping keep costs down.

Teachers have their own individual notions regarding what makes a book
ideal for use in coursework. They say—with good reason—that the perfect
text is the one they themselves sketched in their classroom notes but never
had the time or inclination to polish up and publish. We each choose our
own material, the order in which the topics are presented, and how long we
spend on them. This book is no exception. It is based on my experience
of the subject for many years and the feedback received from my teaching’s
beneficiaries. The “use in combat” of an earlier version seems to indicate
that average students can work from it independently, with some occasional
instructor guidance, while the high flyers get a basic and rapid grounding in
the fundamentals of the subject before progressing to more advanced texts
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(if they are interested in further details and want to get a truly sophisticated
picture of the field). A list, by no means exhaustive, of such texts can be
found in the Bibliography.

This book contains no example or exercise that needs a calculating device
in its solution. Computing machines are now part of everyday life and we
all use them routinely and extensively. However, I believe that if you really
want to learn what mathematical analysis is all about, then you should
exercise your mind and hand the long way, without any electronic help. (In
fact, it seems that quite a few of my students are convinced that computers
are better used for surfing the Internet than for solving homework problems.)
The only prerequisites for reading this book are a first course in calculus
and some basic knowledge of certain types of ordinary differential equations.

The topics are arranged in the order I have found to be the most con-
venient. After some essential but elementary ODEs, Fourier series, and
Sturm–Liouville problems are discussed briefly, the heat, Laplace, and wave
equations are introduced in quick succession as mathematical models of
physical phenomena, and then a number of methods (separation of vari-
ables, eigenfunction expansion, Fourier and Laplace transformations, and
Green’s functions) are applied in turn to specific initial/boundary value
problems for each of these equations. There follows a brief discussion of
the general second-order linear equation with two independent variables.
Finally, the method of characteristics and perturbation (asymptotic expan-
sion) methods are presented. A number of useful tables and formulas are
listed in the Appendix.

The style of the text is terse and utilitarian. In my experience, the
teacher’s classroom performance does more to generate undergraduate en-
thusiasm and excitement for a topic than the cold words in a book, however
skillfully crafted. Since the aim here is to get the students well drilled in
the main solution techniques and not in the physical interpretation of the
results, the latter hardly gets a mention. The examples and exercises are
formal, and in many of them the chosen data may not reflect plausible real-
life situations. Due to space pressure, some intermediate steps—particularly
the solutions of simple ODEs—are given without full working. It is assumed
that the readers know how to derive them, or that they can refer without
difficulty to the summary provided in Chapter 1. Personally, in class I al-
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ways go through the full solution regardless, which appears to meet with
the approval of the audience. Details of a highly mathematical nature, in-
cluding formal proofs, are kept to a minimum, and when they are given,
an assumption is made that any conditions required by the context (for
example, the smoothness and behavior of functions) are satisfied.

An Instructor’s Manual containing the solutions of all the exercises is
available. Also, on adoption of the book, a .pdf file of the text can be
supplied to instructors for use on classroom projectors.

My own lecturing routine consists of (i) using a projector to present a
skeleton of the theory, so the students do not need to take notes and can
follow the live explanations, and (ii) doing a selection of examples on the
board with full details, which the students take down by hand. I found that
this sequence of “talking periods” and “writing periods” helps the audience
maintain concentration and makes the lecture more enjoyable (if what the
end-of-semester evaluations say is true).

Wanting to offer students complete, rigorous, and erudite expositions is
highly laudable, but the market priorities appear to have shifted of late.
With the current standards of secondary education manifestly lower than in
the past, students come to us less and less equipped to tackle the learning
of mathematics from a fundamental point of view. When this becomes
unavoidable, they seem to prefer a concise text that shows them the method
and then, without fuss and niceties of form, goes into as many worked
examples as possible. Whether we like it or not, it seems that we have
entered the era of the digest. It is to this uncomfortable reality that the
present book seeks to offer a solution.

The last stages of preparation of this book were completed while I was
a Visiting Professor in the Department of Mathematical and Computer
Sciences at the University of Tulsa. I wish to thank the authorities of
this institution and the faculty in the department for providing me with
the atmosphere, conditions, and necessary facilities to finish the work on
time. Particular thanks go to the following: Bill Coberly, the head of the
department, who helped me engineer several summer visits and a couple
of successful sabbatical years in Tulsa; Pete Cook, who heard my daily
moans and groans from across the corridor and did not complain about

it; Dale Doty, the resident Mathematica R wizard who drew some of the
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figures and showed me how to do the others; and the sui generis company
at the lunch table in the Faculty Club for whom, in time-honored academic
fashion, no discussion topic was too trivial or taboo and no explanation too
implausible.

I also wish to thank Sunil Nair, Helena Redshaw, Andrea Demby, and
Jasmin Naim from Chapman & Hall/CRC for their help with technical
advice and flexibility over deadlines.

Finally, I would like to state for the record that this book project would
not have come to fruition had I not had the full support of my wife, who,
not for the first time, showed a degree of patience and understanding far
beyond the most reasonable expectations.

Christian Constanda



Chapter 1
Ordinary Differential
Equations: Brief Review

In the process of solving partial differential equations (PDEs) we usually
reduce the problem to the solution of certain classes of ordinary differential
equations (ODEs). Here we mention without proof some basic methods for
integrating simple ODEs of the types encountered later in the text. We
restrict our attention to real solutions of ODEs with real coefficients. In
what follows, the set of real numbers is denoted by R.

1.1. First-Order Equations

Variables separable equations. The general form of this type of ODE is

y′ =
dy

dx
= f(x)g(y).

Taking standard precautions, we can rewrite the equation as

dy

g(y)
= f(x)dx

and then integrate each side with respect to its corresponding variable.

1.1. Example. For the equation

y2y′ − 2x = 0

the above procedure leads to∫
y2dy = 2

∫
xdx,

which yields
1
3 y

3 = x2 + c, c = const,

or
y(x) = (3x2 + C)1/3, C = const.
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Linear equations. Their general (normal) form is

y′ + p(x)y = q(x),

where p and q are given functions. Computing an integrating factor μ(x)
by means of the formula

μ(x) = exp
{∫

p(x)dx
}
,

we obtain the general solution

y(x) =
1

μ(x)

∫
μ(x)q(x)dx.

An equivalent formula for the general solution is

y(x) =
1

μ(x)

[ x∫
a

μ(t)q(t)dt + C

]
, C = const,

where a is any point in the domain where the ODE is satisfied.

1.2. Example. The normal form of the equation

xy′ + 2y − x2 = 0, x �= 0,

is

y′ +
2
x
y = x.

Here
p(x) =

2
x
, q(x) = x,

so an integrating factor is

μ(x) = exp
{

2
∫
dx

x

}
= elnx2

= x2.

Then the general solution of the equation is

y(x) =
1
x2

∫
x3 dx =

1
4
x2 +

C

x2
, C = const.
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1.2. Homogeneous Linear Equations with
Constant Coefficients

First-order equations. These are equations of the form

y′ + ay = 0, a = const.

Such equations can be solved by means of an integrating factor or separation
of variables, or by means of the characteristic equation

s+ a = 0,

whose root s = −a yields the general solution

y(x) = Ce−ax, C = const.

1.3. Example. The characteristic equation for the ODE

y′ − 3y = 0

is

s− 3 = 0;

hence, the general solution of the equation is

y(x) = Ce3x, C = const.

Second-order equations. Their general form is

y′′ + ay′ + by = 0, a, b = const.

If the characteristic equation

s2 + as+ b = 0

has two distinct real roots s1 and s2, then the general solution of the given
ODE is

y(x) = C1e
s1x + C2e

s2x, C1, C2 = const.

If s1 = s2 = s0, then

y(x) = (C1 + C2x)es0x, C1, C2 = const.
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Finally, if s1 and s2 are complex conjugate—that is, s1 = α+iβ, s2 = α−iβ,
where α and β are real numbers—then the general solution is

y(x) = eαx[C1 cos(βx) + C2 sin(βx)], C1, C2 = const.

1.4. Remark. When s1 = −s2 = s0, s0 real, the general solution of the
equation can also be written as

y(x) = C1y1(x) + C2y2(x), C1, C2 = const,

where y1(x) and y2(x) are any two of the functions

cosh(s0x), sinh(s0x), cosh
(
s0(x − c)

)
, sinh

(
s0(x− c)

)
and c is any nonzero real number. Normally, c is chosen as the point where
a boundary condition is given.

1.5. Example. The characteristic equation for the ODE

y′′ − 3y′ + 2y = 0
is

s2 − 3s+ 2 = 0,

with roots s1 = 1 and s2 = 2, so the general solution of the ODE is

y(x) = C1e
x + C2e

2x, C1, C2 = const.

1.6. Example. The general solution of the equation

y′′ − 4y = 0
is

y(x) = C1e
2x + C2e

−2x, C1, C2 = const,

since the roots of its characteristic equation are s1 = −s2 = 2. Accord-
ing to Remark 1.4, we have alternative expressions in terms of hyperbolic
functions. Thus, if y(0) and y(1) are prescribed, then the general solution
should be written in the form

y(x) = C1 sinh(2x) + C2 sinh
(
2(x− 1)

)
, C1, C2 = const;
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if y(0) and y′(3) are prescribed, then the preferred form is

y(x) = C1 sinh(2x) + C2 cosh
(
2(x− 3)

)
, C1, C2 = const;

and so on.

1.7. Example. The roots of the characteristic equation for the ODE

y′′ + 4y′ + 4y = 0

are s1 = s2 = −2; therefore, the general solution of the ODE is

y = (C1 + C2x)e−2x, C1, C2 = const.

1.8. Example. The general solution of the equation

y′′ + 4y = 0
is

y = C1 cos(2x) + C2 sin(2x), C1, C2 = const,

since the roots of its characteristic equation are s1 = 2i and s2 = −2i.

1.9. Remark. The characteristic equation method can also be applied to
find the general solution of homogeneous linear ODEs of higher order.

1.3. Nonhomogeneous Linear Equations with
Constant Coefficients

The first-order equations in this category are of the form

y′ + ay = f, a = const;

the second-order equations can be written as

y′′ + ay′ + by = f, a, b = const.

Here f is a given function. The general solution of such equations is the sum
of the complementary function (the general solution of the corresponding
homogeneous equation) and a particular integral (a particular solution of
the nonhomogeneous equation). The latter is usually guessed from the
structure of the function f or may be found by some other method, such as
variation of parameters.
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1.10. Example. The complementary function for the ODE

y′ − 3y = e−x

is
y

CF
= Ce3x, C = const.

Seeking a particular integral of the form y
P I

= ae−x, a = const, we find
from the equation that a = −1/4. Consequently, the general solution of the
given ODE is

y = Ce3x − 1
4 e

−x, C = const.

1.11. Example. If the function on the right-hand side in Example 1.10
is replaced by e3x, then we cannot find a particular integral of the form
ae3x, a = const, since this is a solution of the corresponding homogeneous
equation. Instead, we try y

P I
= axe3x and deduce, by replacing in the

ODE, that a = 1; consequently, the general solution is

y = Ce3x + xe3x = (C + x)e3x, C = const.

1.12. Example. For the equation

y′′ + 4y = 4x2

we seek a particular integral of the form

y
PI

= ax2 + bx+ c, a, b, c = const.

Direct substitution into the equation yields a = 1, b = 0, and c = −1/2.
Since the complementary function is

y
CF

= C1 cos(2x) + C2 sin(2x),

it follows that the general solution of the given ODE is

y = C1 cos(2x) + C2 sin(2x) + x2 − 1
2 , C1, C2 = const.

1.4. Cauchy–Euler Equations

These are second-order linear equations of the form

x2y′′ + αxy′ + βy = 0, α, β = const,
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where, for simplicity, we assume that x > 0. The solution is sought in the
form

y = xr, r = const.

Substituting in the equation, we arrive at

r2 + (α− 1)r + β = 0.

If the roots r1 and r2 of this quadratic equation are real and distinct, which
is the case of interest for us, then the general solution of the given ODE is

y = C1x
r1 + C2x

r2 , C1, C2 = const.

1.13. Example. Following the above procedure, we see that the differential
equation

2x2y′′ + 3xy′ − y = 0

yields
r1 = 1, r2 = − 1

2 ,

so its general solution is

y = C1x+ C2x
−1/2, C1, C2 = const.

1.5. Functions and Operators

Throughout this book we refer to a function as either f or f(x), although,
strictly speaking, the latter denotes the value of f at x. To avoid compli-
cated notation, we also write f(x) = c to designate a function f that takes
the same value c = const at all points x in its domain. When c = 0, we
sometimes simplify this further to f = 0.

In the preceding sections we mentioned linear equations. Here we clarify
the meaning of this concept.

1.14. Definition. Let X be a space of functions, and let L be an operator
acting on the functions in X according to some rule. The operator L is
called linear if

L(c1f1 + c2f2) = c1(Lf1) + c2(Lf2)

for any functions f1, f2 in X and any numbers c1, c2. Otherwise, L is called
nonlinear.
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1.15. Example. The operators of differentiation and definite integration
acting on suitable functions of one independent variable are linear, since

L(c1f1 + c2f2) = (c1f1 + c2f2)′ = c1f
′
1 + c2f

′
2 = c1(Lf1) + c2(Lf2),

L(c1f1 + c2f2) =

b∫
a

[
c1f1(x) + c2f2(x)

]
dx

= c1

b∫
a

f1(x)dx + c2

b∫
a

f2(x)dx = c1(Lf1) + c2(Lf2).

1.16. Example. Let α, β, and γ be given functions. In view of the pre-
ceding example, it is easy to verify that the operator L defined by

Lf = αf ′′ + βf ′ + γf

is linear.

1.17. Example. Let L be the operator defined by

Lf = ff ′.

Since

L(c1f1 + c2f2) = (c1f1 + c2f2)(c1f1 + c2f2)′

= c21f1f
′
1 + c1c2(f1f ′

2 + f ′
1f2) + c22f2f

′
2

and

c1(Lf1) + c2(Lf2) = c1f1f
′
1 + c2f2f

′
2

are not equal for all functions f1, f2 and all numbers c1, c2, the operator L
is nonlinear.

1.18. Definition. A differential equation of the form

Lu = g,

where L is a linear differential operator and g is a given function, is called
a linear equation. If the operator L is nonlinear, then the equation is also
called nonlinear.
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The following almost obvious result forms the basis of what is known as
the principle of superposition.

1.19. Theorem. If Lu = g is a linear equation and u1 and u2 are solutions
of this equation with g = g1 and g = g2, respectively, then u1 + u2 is a
solution of the equation with g = g1 + g2; in other words, if

Lu1 = g1, Lu2 = g2,

then
L(u1 + u2) = g1 + g2.

Exercises

In (1)–(22) find the general solution of the given equation.

(1) (x2 + 1)y′ = 2xy.
(2) y′ − 3x2(y + 1) = 0.
(3) (x − 1)y′ + 2y = x, x �= 1.
(4) x2y′ − 2xy = x5ex.

(5) 2y′ + 5y = 0.
(6) 3y′ − 2y = 0.
(7) y′′ − 4y′ + 3y = 0.
(8) 2y′′ − 5y′ + 2y = 0.
(9) 4y′′ + 4y′ + y = 0.

(10) y′′ − 6y′ + 9y = 0.
(11) y′′ + 2y′ + 5y = 0.
(12) y′′ − 6y′ + 13y = 0.
(13) y′ + 2y = 2x+ e4x.

(14) 2y′ − 3y = −3x− 4 + ex.

(15) 2y′ − y = ex/2.

(16) y′ + y = −x+ 2e−x.

(17) y′′ − y = x2 − x+ 2.
(18) y′′ − 2y′ − 8y = 4 + 4x− 8x2.

(19) y′′ − 25y = 30e−5x.

(20) 4y′′ + y = 8cos(x/2).
(21) 2x2y′′ + xy′ − 3y = 0.
(22) x2y′′ + 2xy′ − 6y = 0.
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In (23)–(26) verify whether the given ODE is linear or nonlinear.

(23) xy′′ − y′ sinx = xex.

(24) y′ + 2xsiny = 1.
(25) y′y′′ − xy = 2x.
(26) y′′ +

√
xy = lnx.



Chapter 2
Fourier Series

It is well known that an infinitely differentiable function f(x) can be ex-
panded in a Taylor series around a point x0 in the interval where it is
defined. This series has the form

f(x) ∼
∞∑

n=0

cn(x − x0)n, (2.1)

where the coefficients cn are given by

cn =
f (n)(x0)

n!
, n = 1,2, . . . , f (n) =

dnf

dxn
.

If certain conditions are satisfied, then the above series converges to f point-
wise (that is, at every point x) in an open interval centered at x0, and we
can use the equality sign between the two sides in (2.1).

In this chapter we discuss a different class of expansions, which are par-
ticulary useful in the study and solution of PDEs.

2.1. The Full Fourier Series

This is an expansion of the form

f(x) ∼ 1
2
a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (2.2)

where L is a positive number and a0, an, and bn are constant coefficients.

2.1. Definition. A function f defined on R is called periodic if there is a
number T > 0 such that

f(x+ T ) = f(x) for all x in R.

The smallest number T with this property is called the fundamental period
(or, simply, the period) of f . It is obvious that a periodic function also
satisfies

f(x+ nT ) = f(x) for any integer n and all x in R.
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2.2. Example. As is well known, the functions sinx and cosx are periodic
with period 2π since, for all x ∈ R,

sin(x + 2π) = sinx,

cos(x + 2π) = cosx.

We see that for each positive integer n = 1,2, . . . ,

cos
nπ(x + 2L)

L
= cos

(
nπx

L
+ 2nπ

)
= cos

nπx

L
,

sin
nπ(x + 2L)

L
= sin

(
nπx

L
+ 2nπ

)
= sin

nπx

L
,

so the right-hand side in (2.2) is periodic with period 2L. This suggests
the following method of construction for the full Fourier series of a given
function.

Let f be defined on [−L,L] (see Fig. 2.1).

�L L

Fig. 2.1. f(x), −L ≤ x ≤ L.

We construct the periodic extension of f from (−L,L] to R, of period 2L
(see Fig. 2.2). The value of f at x = −L is left out so that the extension is
correctly defined as a function.

�3L �2L �L L 2L 3L

Fig. 2.2. f(x+ 2L) = f(x) for all x in R.

For the extended function f it now makes sense to seek an expansion of
the form (2.2). All that we need to do is compute the coefficients a0, an,
and bn, and discuss the convergence of the series.



THE FULL FOURIER SERIES 13

It is easy to check by direct calculation that

L∫
−L

cos
nπx

L
dx = 0,

L∫
−L

sin
nπx

L
dx = 0, n = 1,2, . . . , (2.3)

L∫
−L

cos
nπx

L
cos

mπx

L
dx =

{
0, n �= m,
L, n = m, n, m = 1,2, . . . , (2.4)

L∫
−L

sin
nπx

L
sin

mπx

L
dx =

{
0, n �= m,
L, n = m, n, m = 1,2, . . . , (2.5)

L∫
−L

cos
nπx

L
sin

mπx

L
dx = 0, n, m = 1,2, . . . . (2.6)

Regarding (2.2) formally as an equality, we integrate it term by term over
[−L,L] and use (2.3) to obtain

a0 =
1
L

L∫
−L

f(x)dx. (2.7)

If we multiply (2.2) by cos(mπx/L), integrate the new relation over [−L,L],
and take (2.3), (2.4), and (2.6) into account, we see that all the integrals on
the right-hand side vanish except that for which the summation index n is
equal to m, when the integral is equal to Lam. Replacing m by n, we find
that

an =
1
L

L∫
−L

f(x)cos
nπx

L
dx, n = 1,2, . . . . (2.8)

Clearly, (2.8) incorporates (2.7) if we allow n to take the value 0 as well;
that is, n = 0,1,2, . . . .

Finally, we multiply (2.2) by sin(mπx/L) and repeat the above procedure,
where this time we use (2.3), (2.5), and (2.6). The result is

bn =
1
L

L∫
−L

f(x)sin
nπx

L
dx, n = 1,2, . . . , (2.9)

which completes the construction of the (full) Fourier series for f . The num-
bers a0, an, and bn given by (2.7)–(2.9) are called the Fourier coefficients
of f .
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The series on the right-hand side in (2.2) is of interest to us only on
[−L,L], where the original function f is defined, and may be divergent, or
may have a different sum than f(x).

2.3. Definition. A function f is said to be piecewise continuous on an
interval [a,b] if it is continuous at all but finitely many points in [a,b],
where it has jump discontinuities—that is, at any discontinuity point x the
function has distinct right-hand side and left-hand side (finite) limits f(x+)
and f(x−).

If both f and f ′ are continuous on [a,b], then f is called smooth on [a,b].
If at least one of f, f ′ is piecewise continuous on [a,b], then f is said to be
piecewise smooth on [a,b].

2.4. Remarks. (i) The function shown on the left in Fig. 2.3 is piece-
wise smooth; the one on the right is not, since f(0−) does not exist: the
graph indicates that the function increases without bound as the variable
approaches the origin from the left.

(ii) If f is piecewise continuous on [−L,L], then the values of f at its
points of discontinuity do not affect the construction of its Fourier series.

More precisely,
L∫

−L

f(x)dx exists for such a function and is independent of

the values assigned to it at its (finitely many) discontinuity points.

�L L �L L

Fig. 2.3. Left: both f(0−) and f(0+) exist. Right: f(0−) does not exist.

2.5. Theorem. If f is piecewise smooth on [−L,L], then its (full) Fourier
series converges pointwise to

(i) the periodic extension of f to R at all points x where this extension
is continuous;

(ii) 1
2

[
f(x−) + f(x+)

]
at the points x where the periodic extension of

f has a discontinuity jump.
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This means that at each x in (−L,L) where f is continuous, the sum of
series (2.2) is equal to f(x). Also, if the function f is continuous on [−L,L]
and such that f(−L) = f(L), then the sum of (2.2) is equal to f(x) at all
points x in [−L,L].

2.6. Example. Consider the function defined by

f(x) =
{
x+ 2, −2 ≤ x < 0,
0, 0 ≤ x ≤ 2,

whose graph is shown in Fig. 2.4. Clearly, here L = 2.

2

�2 2

Fig. 2.4. f(x), −2 ≤ x ≤ 2.

The periodic extension of period 4 of f , defined by f(x + 4) = f(x) for
all x in R, is shown in Fig. 2.5.

2

�6 �4 �2 2 4 6

Fig. 2.5. f(x+ 4) = f(x) for all x in R.

Using (2.7)–(2.9) with L = 2 and integration by parts, we find that

a0 =
1
2

2∫
−2

f(x)dx =
1
2

0∫
−2

(x+ 2)dx = 1,

an =
1
2

2∫
−2

f(x)cos
nπx

2
dx =

1
2

0∫
−2

(x+ 2)cos
nπx

2
dx =

[
1 − (−1)n

] 2
n2π2

,

bn =
1
2

2∫
−2

f(x)sin
nπx

2
dx =

1
2

0∫
−2

(x + 2)sin
nπx

2
dx = − 2

nπ
, n = 1,2, . . . ,



16 FOURIER SERIES

so (2.2) yields the Fourier series

f(x) ∼ 1
2

+
∞∑

n=1

{[
1 − (−1)n

] 2
n2π2

cos
nπx

2
− 2
nπ

sin
nπx

2

}
.

By Theorem 2.5, on −2 ≤ x ≤ 2

(series) =

⎧⎨
⎩
x+ 2, −2 ≤ x < 0,
1, x = 0,
0, 0 < x ≤ 2;

that is, the series converges to f(x) for −2 ≤ x < 0 and 0 < x ≤ 2, where
the periodic extension of f (see Fig. 2.5) is continuous; at the point x = 0,
where that extension has a jump discontinuity, the series converges to

1
2

[
f(0−) + f(0+)

]
= 1

2 (2 + 0) = 1.

The graph of the function defined by the sum of the above series is shown
in Fig. 2.6.

2

�6 �4 �2 2 4 6

Fig. 2.6. Graphic representation of the sum of the series.

The manner in which the series approximates f is shown, with increased
magnification for clarity, in Fig. 2.7, where the series has been truncated
after n = 5.

2

�2 2

1

Fig. 2.7. The graph of u (heavy line) and of its 5-term
approximation (light line).
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2.2. Fourier Sine Series
For some classes of functions, series (2.2) has a simpler form.

2.7. Definition. A function f defined on an interval symmetric with re-
spect to the origin is called odd if f(−x) = −f(x) for all x in the given
interval; if, on the other hand, f(−x) = f(x) for all x in that interval, then
f is called an even function.

2.8. Examples. (i) The functions sin(nπx/L), n = 1,2, . . . , are odd. The
functions cos(nπx/L), n = 0,1,2, . . . , are even.

(ii) The function on the left in Fig. 2.8 is odd (its graph is symmetric with
respect to the origin). The one on the right is even (its graph is symmetric
with respect to the y-axis). The function graphed in Fig. 2.4 is neither odd
nor even.

�L L �L L

Fig. 2.8. Left: an odd function. Right: an even function.

2.9. Remarks. (i) It is easy to verify that the product of two odd functions
is even, the product of two even functions is even, and the product of an
odd function and an even function is odd.

(ii) If f is odd on [−L,L], then

0∫
−L

f(x)dx =

0∫
L

f(−x)d(−x) = −
L∫

0

f(x)dx;

hence,
L∫

−L

f(x)dx =

0∫
−L

f(x)dx +

L∫
0

f(x)dx = 0.

If f is even on [−L,L], then
0∫

−L

f(x)dx =

0∫
L

f(−x)d(−x) =

L∫
0

f(x)dx;
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consequently,
L∫

−L

f(x)dx =

0∫
−L

f(x)dx +

L∫
0

f(x)dx = 2

L∫
0

f(x)dx.

(iii) If f is odd, then so is f(x)cos(nπx/L) and, in view of (2.7), (2.8),
and (ii) above, we have

an = 0, n = 0,1,2, . . . ;

that is, the Fourier series of an odd function on [−L,L] contains only sine
terms. Similarly, if f is even, then, by Remark 2.9(i), f(x)sin(nπx/L) is
odd, so (2.9) implies that

bn = 0, n = 1,2, . . . ,

which means that the Fourier series of an even function on [−L,L] has only
cosine terms, including the constant term.

Remark 2.9(iii) implies that if f is defined on [0,L], then it can be ex-
panded in a Fourier sine series. Let f be the function whose graph is shown
in Fig. 2.9.

L

Fig. 2.9. f(x), 0 ≤ x ≤ L.

We construct the odd extension of f from (0,L] to [−L,L] by setting
f(−x) = −f(x) for all x in [−L,L], x �= 0, and f(0) = 0 (see Fig. 2.10).

�L L

Fig. 2.10. f(−x) = −f(x), −L ≤ x ≤ L.
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Next, we construct the periodic extension with period 2L of this odd
function from (−L,L] to R, by requiring that f(x+ 2L) = f(x) for all x in
R (see Fig. 2.11).

�3L �2L �L L 2L 3L

Fig. 2.11. f(x+ 2L) = f(x) for all x in R.

Finally, we construct the Fourier (sine) series of this last function, which
is of the form

f(x) ∼
∞∑

n=1

bn sin
nπx

L
,

where, according to Remarks 2.9(ii),(iii) and formula (2.9), the coefficients
are given by

bn =
2
L

L∫
0

f(x)sin
nπx

L
dx, n = 1,2, . . . . (2.10)

2.10. Example. Consider the function

f(x) = 1 − x, 0 ≤ x ≤ 1,

graphed in Fig. 2.12.

1

1

Fig. 2.12. f(x), 0 ≤ x ≤ 1.

As explained above, the odd extension of this function to [−1,1] is defined
by f(−x) = −f(x) for all x in [−1,1], x �= 0, and f(0) = 0, and is shown in
Fig. 2.13.
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1

�1

�1 1

Fig. 2.13. f(−x) = −f(x), −1 ≤ x ≤ 1.

The periodic extension to R, of period 2L = 2, of the function in Fig. 2.13,
defined by f(x+ 2) = f(x) for all x in R, is shown in Fig. 2.14.

1

�1

�3 �2 �1 1 2 3

Fig. 2.14. f(x+ 2) = f(x) for all x in R.

Using (2.10) with L = 1 and integration by parts, we find that

bn = 2

1∫
0

(1 − x)sin(nπx)dx =
2
nπ

, n = 1,2, . . . ;

hence,

f(x) ∼
∞∑

n=1

2
nπ

sin(nπx).

By Theorem 2.5, for 0 ≤ x ≤ 1,

(series) =
{

0, x = 0,
1 − x, 0 < x ≤ 1;

that is, the series converges to f(x) for 0 < x ≤ 1, where the periodic
extension of f to R is continuous, and to

1
2

[
f(0−) + f(0+)

]
= 1

2 (−1 + 1) = 0

at x = 0, where the periodic extension has a jump discontinuity.
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2.3. Fourier Cosine Series

By Remark 2.9(iii), a function defined on [0,L] can also be expanded in a
Fourier cosine series. The construction is similar to that of a Fourier sine
series.

Let f be a function defined on [0,L] (see Fig. 2.15).

L

Fig. 2.15. f(x), 0 ≤ x ≤ L.

We extend f to an even function on [−L,L] by setting f(−x) = f(x) for
all x in [−L,L] (see Fig. 2.16).

�L L

Fig. 2.16. f(−x) = f(x), −L ≤ x ≤ L.

Next, we construct the periodic extension of this even function from
(−L,L] to R, of period 2L, which is defined by f(x + 2L) = f(x) for all x
in R (see Fig. 2.17).

�3L �L L 3L

Fig. 2.17. f(x+ 2L) = f(x) for all x in R.

Finally, we write the Fourier (cosine) series of this last function, which is
of the form

f(x) ∼ 1
2
a0 +

∞∑
n=1

an cos
nπx

L
,
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where, according to (2.7), (2.8), and Remark 2.9(ii),

a0 =
2
L

L∫
0

f(x)dx,

an =
2
L

L∫
0

f(x)cos
nπx

L
dx, n = 1,2, . . . .

(2.11)

As noticed earlier, the first equality (2.11) is covered by the second one if
we let n = 0,1,2, . . . .

2.11. Example. Consider the function

f(x) = 1 − x, 0 ≤ x ≤ 1,

graphed in Fig. 2.18.

1

1

Fig. 2.18. f(x), 0 ≤ x ≤ 1.

The even extension of f to [−1,1], defined by f(−x) = f(x) for all x in
[−1,1], is shown in Fig. 2.19.

1

�1 1

Fig. 2.19. f(−x) = f(x), −1 ≤ x ≤ 1.

The periodic extension of period 2L = 2 of this even function to R, which
is defined by f(x+ 2) = f(x) for all x in R, is shown in Fig. 2.20.

1

�3 �1 1 3

Fig. 2.20. f(x+ 2) = f(x) for all x in R.
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By (2.11) with L = 1 and integration by parts,

a0 = 2

1∫
0

f(x)dx = 2

1∫
0

(1 − x)dx = 1,

an = 2

1∫
0

f(x)cos(nπx)dx = 2

1∫
0

(1 − x)cos(nπx)dx

=
[
1 − (−1)n

] 2
n2π2

, n = 1,2, . . . ,

so the Fourier cosine series of f is

f(x) ∼ 1
2

+
∞∑

n=1

[
1 − (−1)n

] 2
n2π2

cos(nπx).

By Theorem 2.5,
(series) = 1 − x for 0 ≤ x ≤ 1,

because the periodic extension of f to R is continuous everywhere.

2.4. Convergence and Differentiation

There are several important points that need to be made at this stage.

2.12. Remarks. (i) It is obvious that a function f defined on [0,L] can
be expanded in a full Fourier series, or in a sine series, or in a cosine series.
While the last two are unique to the function, the first one is not: since
the full Fourier series requires no symmetry, we may extend f from [0,L] to
[−L,L] in infinitely many ways. We usually choose the type of series that
seems to be the most appropriate for the problem. A function defined on
[−L,L] can be expanded, in general, only in a full Fourier series.

(ii) Earlier we saw that we cannot automatically use the equality sign
between a function f and its Fourier series. According to Theorem 2.5, for
a full series we can do so at all the points in [−L,L] where f is continuous;
we can also do it at x = −L and x = L provided that f is continuous at these
points from the right and from the left, respectively, and f(−L) = f(L).
For a sine series, this can be done at x = L if f is continuous there from
the left and f(L) = 0. For a cosine series this is always possible if f is
continuous from the left at x = L. Similar arguments can be used for
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the sine and cosine series at x = 0. In what follows we work exclusively
with piecewise smooth functions; therefore, to avoid cumbersome notation
and possible confusion, we will use the equality sign in all circumstances,
assuming tacitly that equality is understood in the sense of Theorem 2.5,
Remark 2.4(ii), and the above comments.

In practical applications we often need to differentiate Fourier series term
by term. Consequently, it is important to know when this operation may
be performed.

2.13. Theorem. (i) If f is continuous on [−L,L], f(−L) = f(L), and
f ′ is piecewise smooth on [−L,L], then the full Fourier series of f can be
differentiated term by term and the resulting series is the Fourier series
of f ′, which converges to f ′(x) at all x where f ′′(x) exists.

(ii) If f is continuous on [0,L], f(0) = f(L) = 0, and f ′ is piecewise
smooth on [0,L], then the Fourier sine series of f can be differentiated term
by term and the resulting series is the Fourier cosine series of f ′, which
converges to f ′(x) at all x where f ′′(x) exists.

(iii) If f is continuous on [0,L] and f ′ is piecewise smooth on [0,L], then
the Fourier cosine series of f can be differentiated term by term and the
resulting series is the Fourier sine series of f ′, which converges to f ′(x) at
all x where f ′′(x) exists.

2.14. Remark. In the PDE problems that we discuss in the rest of the
book, the conditions laid down in Theorem 2.13 will always be satisfied and
we will formally differentiate the corresponding Fourier series term by term
without explicit mention of these conditions.

Exercises

In (1)–(16) construct the full Fourier series of the given function f . In each
case discuss the convergence of the series on the interval [−L,L] where f is
defined and sketch the function to which the series converges pointwise on
the interval [−3L,3L].

(1) f(x) =
{

1, −1 ≤ x ≤ 0,
0, 0 < x ≤ 1.
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(2) f(x) =
{

0, −π ≤ x ≤ 0,
−3, 0 < x ≤ π.

(3) f(x) =
{−2, −1 ≤ x ≤ 0,

3, 0 < x ≤ 1.

(4) f(x) =
{

1, −π/2 ≤ x ≤ 0,
2, 0 < x ≤ π/2.

(5) f(x) = x+ 1, −1 ≤ x ≤ 1.

(6) f(x) = 1 − 2x, −2 ≤ x ≤ 2.

(7) f(x) =
{−1, −2 ≤ x ≤ 0,

2 − x, 0 < x ≤ 2.

(8) f(x) =
{

1 + 2x, −1/2 ≤ x ≤ 0,
4, 0 < x ≤ 1/2.

(9) f(x) =
{
x, −1 ≤ x ≤ 0,
2x− 1, 0 < x ≤ 1.

(10) f(x) =
{
x− 1, −π ≤ x ≤ 0,
2x+ 1, 0 < x ≤ π.

(11) f(x) = x2 − 2x+ 3, −1 ≤ x ≤ 1.

(12) f(x) =
{
x2, −1 ≤ x ≤ 0,
1 + 2x, 0 < x ≤ 1.

(13) f(x) = ex, −2 ≤ x ≤ 2.

(14) f(x) =
{

1, −π/2 ≤ x ≤ 0,
sinx, 0 < x ≤ π/2.

(15) f(x) =
{

0, −2 ≤ x ≤ −1,
1 + x, −1 < x ≤ 2.

(16) f(x) =
{

3, −π ≤ x ≤ π/2,
1, π/2 < x ≤ π.

In (17)–(30) construct the Fourier sine series and the Fourier cosine series
of the given function f . In each case discuss the convergence of the series
on the interval [0,L] where f is defined and sketch the functions to which
the series converge pointwise on [−3L,3L].

(17) f(x) =
{

0, 0 ≤ x ≤ 1,
1, 1 < x ≤ 2.

(18) f(x) =
{

2, 0 ≤ x ≤ π,
0, π < x ≤ 2π.
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(19) f(x) =
{

1, 0 ≤ x ≤ 1,
−1, 1 < x ≤ 2.

(20) f(x) =
{−2, 0 ≤ x ≤ π/2,

3, π/2 < x ≤ π.

(21) f(x) = 2 − x, 0 ≤ x ≤ 1.

(22) f(x) = 3x+ 1, 0 ≤ x ≤ 2π.

(23) f(x) =
{
x, 0 ≤ x ≤ 1,
−2, 1 < x ≤ 2.

(24) f(x) =
{

2x− 1, 0 ≤ x ≤ 1,
2x+ 1, 1 < x ≤ 2.

(25) f(x) =
{

2 + x, 0 ≤ x ≤ 1,
1 − x, 1 < x ≤ 2.

(26) f(x) = x2 + x− 1, 0 ≤ x ≤ 2.

(27) f(x) =
{
x+ 1, 0 ≤ x ≤ 1,
x2 − 2x, 1 < x ≤ 2.

(28) f(x) = 1 + ex, 0 ≤ x ≤ 1.

(29) f(x) = x+ sinx, 0 ≤ x ≤ π.

(30) f(x) =
{

cosx, 0 ≤ x ≤ π/2,
−1, π/2 < x ≤ π.



Chapter 3
Sturm–Liouville Problems

There is a class of problems involving second-order ODEs, which plays an
essential role in the solution of partial differential equations. Below we
present the main results concerning such problems, thus laying the founda-
tion for the methods of separation of variables and eigenfunction expansion
developed in Chapters 5 and 7.

3.1. Regular Sturm–Liouville Problems

To avoid complicated notation, in what follows we denote intervals generi-
cally by I, regardless of whether they are closed, open, or half-open, finite
or infinite. Specific intervals are described either in terms of their endpoints
or by means of inequalities. The functions defined on such intervals are
assumed to be integrable on them.

3.1. Definition. Let X be a space of functions defined on an interval I.
A linear differential operator L acting on X is called symmetric on X if∫

I

[
f1(x)(Lf2)(x) − f2(x)(Lf1)(x)

]
dx = 0

for any functions f1 and f2 in X .

3.2. Example. Consider the space X of functions that are twice continu-
ously differentiable on [0,1] and equal to zero at x = 0 and x = 1. If L is
the linear operator defined by L ≡ d2/dx2, then, using integration by parts,
we find that for any f1 and f2 in X ,

1∫
0

[
f1(Lf2) − f2(Lf1)

]
dx =

1∫
0

(f1f ′′
2 − f2f

′′
1 )dx

=
[
f1f

′
2

]1
0
−

1∫
0

f ′
1f

′
2dx− [

f2f
′
1

]1
0

+

1∫
0

f ′
1f

′
2dx = 0.

Hence, L is symmetric on X .
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3.3. Remark. An operator may be symmetric on a space of functions but
not on another. If no restriction is imposed on the values at x = 0 and
x = 1 of the functions in Example 3.2, then L is not symmetric on the new
space X .

3.4. Definition. Let σ be a function defined on I, with the property that
σ(x) > 0 for all x in I. Two functions f1 and f2, also defined on I, are
called orthogonal with weight σ on I if∫

I

f1(x)f2(x)σ(x)dx = 0.

If σ(x) = 1, then f1 and f2 are simply called orthogonal. A set of functions
that are pairwise orthogonal on I is called an orthogonal set.

3.5. Example. The functions f1(x) = 1 and f2(x) = 9x−5 are orthogonal
with weight σ(x) = x+ 1 on [0,1] since

1∫
0

(9x− 5)(x+ 1)dx =

1∫
0

(9x2 + 4x− 5)dx = 0.

Alternatively, we can say that the functions f1(x) = x+1 and f2(x) = 9x−5
are orthogonal on [0,1].

3.6. Example. The functions sin(3x) and cos(2x) are orthogonal on the
interval [−π,π] because

π∫
−π

sin(3x)cos(2x)dx =

π∫
−π

1
2

[
sin(5x) + sinx

]
dx = 0.

3.7. Definition. Let L be a linear differential operator acting on a space
X of functions defined on (a,b). An equation of the form

(Lf)(x) + λσ(x)f(x) = 0, a < x < b, (3.1)

where λ is a (real) parameter and σ is a given function such that σ(x) > 0
for all x in (a,b), is called an eigenvalue problem. The numbers λ for which
(3.1) has nonzero solutions in X are called eigenvalues; the corresponding
nonzero solutions are called eigenfunctions.
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3.8. Theorem. If the operator L of the eigenvalue problem (3.1) is sym-
metric, then

(i) all the eigenvalues λ are real;

(ii) the eigenvalues form an infinite sequence λ1 < λ2 < · · · < λn < · · ·
such that λn → ∞ as n→ ∞;

(iii) eigenfunctions associated with distinct eigenvalues are orthogonal
with weight σ on (a,b).

3.9. Definition. Let [a,b] be a finite interval, let p, q, and σ be real-valued
functions, and let κ1, κ2, κ3, and κ4 be real numbers such that

(i) p is continuously differentiable on [a,b] and p(x) > 0 for all x in [a,b];
(ii) q and σ are continuous on [a,b] and σ(x) > 0 for all x in [a,b];
(iii) κ1, κ2 are not both zero and κ3, κ4 are not both zero.

An eigenvalue problem of the form

[
p(x)f ′(x)

]′ + q(x)f(x) + λσ(x)f(x) = 0, a < x < b, (3.2)

with the boundary conditions (BCs)

κ1f(a) + κ2f
′(a) = 0, (3.3)

κ3f(b) + κ4f
′(b) = 0, (3.4)

is called a regular Sturm–Liouville (S–L) eigenvalue problem.

3.10. Example. The choice

p(x) = 1, q(x) = 0, σ(x) = 1,

κ1 = 1, κ2 = 0, κ3 = 1, κ4 = 0, a = 0, b = L

generates the regular S–L problem

f ′′(x) + λf(x) = 0, 0 < x < L,

f(0) = 0, f(L) = 0.

3.11. Example. If p, q, σ, a, and b are as in Example 3.10 but κ1 = 0,
κ2 = 1, κ3 = 0, and κ4 = 1, then we have the regular S–L problem

f ′′(x) + λf(x) = 0, 0 < x < L,

f ′(0) = 0, f ′(L) = 0.
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3.12. Example. Taking p, q, σ, a, and b as in Example 3.10 and the coef-
ficients

κ1 = 1, κ2 = 0, κ3 = h, κ4 = 1,

we obtain the regular S–L problem

f ′′(x) + λf(x) = 0, 0 < x < L,

f(0) = 0, f ′(L) + hf(L) = 0.

3.13. Example. The eigenvalue problem

f ′′(x) + 2f ′(x) + λf(x) = 0, 0 < x < 1,

f(0) = 0, f(1) = 0

is, in fact, a regular Sturm–Liouville problem. Adopting an “integrating
factor”-type technique and using the coefficient of f ′, we choose the func-
tions

p(x) = σ(x) = exp
{∫

2dx
}

= e2x, q(x) = 0.

These functions satisfy the requirements of Definition 3.9 and, as can im-
mediately be verified, the equality

(
e2xf ′(x)

)′ + λe2xf(x) = 0, 0 < x < 1,

is equivalent to the given equation.

3.14. Theorem. The operator

Lf = (pf ′)′ + qf (3.5)

defined by the left-hand side in (3.2) and acting on a space X of functions
satisfying (3.3) and (3.4) is symmetric on X .

Proof. Suppose, for simplicity, that κ1 �= 0 and κ4 �= 0. Then, by (3.3)
and (3.4), any function f in X satisfies

f(a) = −κ2

κ1
f ′(a), f ′(b) = −κ3

κ4
f(b).
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Consequently, using (3.5) and integration by parts, we find that for any f1
and f2 in X ,

b∫
a

[
f1(Lf2) − f2(Lf1)

]
dx

=

b∫
a

{
f1

[
(pf ′

2)
′ + qf2

] − f2
[
(pf ′

1)
′ + qf1

]}
dx

=
[
f1(pf ′

2)
]b

a
−

b∫
a

pf ′
2f

′
1dx− [

f2(pf ′
1)

]b

a
+

b∫
a

pf ′
1f

′
2dx

= p(b)
[
f1(b)f ′

2(b) − f2(b)f ′
1(b)

] − p(a)
[
f1(a)f ′

2(a) − f2(a)f ′
1(a)

]

= p(b)
[
− κ3

κ4
f1(b)f2(b) +

κ3

κ4
f2(b)f1(b)

]

− p(a)
[
− κ2

κ1
f ′
1(a)f

′
2(a) +

κ2

κ1
f ′
2(a)f

′
1(a)

]
= 0,

as required. All other combinations of nonzero constants κ1, κ2, κ3, and κ4

are treated similarly.

3.15. Corollary. The eigenvalues and eigenfunctions of a regular Sturm–
Liouville problem have all the properties listed in Theorem 3.8.

Before actually computing the eigenvalues and eigenfunctions of specific
Sturm–Liouville problems, we derive a very useful formula relating these
quantities. Multiplying (3.2) by f and integrating over (a,b), we easily see
that

0 =

b∫
a

[
f(pf ′)′ + qf2

]
dx+ λ

b∫
a

σf2dx

=

b∫
a

[
(pff ′)′ − p(f ′)2 + qf2

]
dx + λ

b∫
a

σf2dx

=
[
pff ′]b

a
−

b∫
a

[
p(f ′)2 − qf2

]
dx+ λ

b∫
a

σf2dx.
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Since f is an eigenfunction (nonzero solution) and σ(x) > 0 for a < x < b,
the coefficient of λ in the last term is strictly positive. Hence, we can solve
for λ and obtain

λ =

b∫
a

[
p(f ′)2 − qf2

]
dx− [

pff ′]b

a

b∫
a

σf2 dx

. (3.6)

This expression is known as the Rayleigh quotient.

3.16. Example. For the regular S–L problem considered in Example 3.10
we have

b∫
a

[
p(x)(f ′)2(x) − q(x)f2(x)

]
dx =

L∫
0

(f ′)2(x)dx ≥ 0,

[
p(x)f(x)f ′(x)

]b

a
=

[
f(x)f ′(x)

]L

0
= 0,

b∫
a

σ(x)f2(x)dx =

L∫
0

f2(x)dx > 0,

so (3.6) yields

λ =

L∫
0

(f ′)2(x)dx

L∫
0

f2(x)dx
≥ 0. (3.7)

It is clear that λ = 0 if and only if f ′(x) = 0 on [0,L], which means that
f(x) = const. But this is unacceptable because, according to the BCs, the
only constant solution is the zero solution. Consequently, λ > 0, and the
general solution of the equation in Example 3.10 is

f(x) = C1 cos
(√
λx

)
+ C2 sin

(√
λx

)
, C1, C2 = const. (3.8)

Using the condition f(0) = 0, we find that C1 = 0. Then the condition
f(L) = 0 leads to

C2 sin
(√
λL

)
= 0.
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We cannot have C2 = 0 because this would imply that f = 0 and we are
seeking nonzero solutions; therefore, we must conclude that sin

(√
λL

)
= 0,

from which we obtain
√
λL = nπ, n = 1,2, . . . , or

λn =
(
nπ

L

)2

, n = 1,2, . . . .

These are the eigenvalues of the problem. The corresponding eigenfunctions
(nonzero solutions) are

fn(x) = sin
nπx

L
, n = 1,2, . . . .

For convenience, we have taken C2 = 1; any other nonzero value of C2 would
simply produce a multiple of sin(nπx/L).

It is easy to see that the properties in Theorem 3.8 are satisfied. The
orthogonality of the eigenfunctions on [0,L] follows immediately from (2.5)
since the integrand is an even function.

3.17. Example. The same technique is used to compute the eigenvalues
and eigenfunctions of the S–L problem in Example 3.11. Inequality (3.7)
remains valid, but now we cannot reject the case λ = 0 since the functions
f(x) = c = const corresponding to it satisfy both BCs. Taking, say, c = 1/2,
we conclude that the problem has the eigenvalue-eigenfunction pair

λ0 = 0, f0(x) = 1/2.

As in Example 3.16, for λ > 0 the general solution of the equation is
(3.8), so

f ′(x) = −C1

√
λsin

(√
λx

)
+ C2

√
λcos

(√
λx

)
.

The condition f ′(0) = 0 immediately yields C2 = 0; therefore, f ′(L) = 0
implies that

C1

√
λ sin

(√
λL

)
= 0.

Since we want nonzero solutions, it follows that sin
(√
λL

)
= 0. This means

that
√
λL = nπ, n = 1,2, . . . , so, by (3.8) with C2 = 0 and C1 = 1, the

eigenvalue-eigenfunction pairs are

λn =
(
nπ

L

)2

, fn(x) = cos
nπx

L
, n = 1,2, . . . .
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We remark that the full set of eigenvalues and eigenfunctions of the problem
can be written as above, but with n = 0,1,2, . . . .

Once again, we note that the eigenvalues and eigenfunctions satisfy the
properties in Theorem 3.8. The orthogonality of the latter on [0,L] follows
from the first formula (2.3) and (2.4).

3.18. Example. Suppose that h > 0 in the S–L problem considered in
Example 3.12. Then, writing the second BC of that problem in the form
f ′(L) = −hf(L), we see that

[
p(x)f(x)f ′(x)

]b

a
=

[
f(x)f ′(x)

]L

0
= f(L)f ′(L) − f(0)f ′(0) = −hf2(L).

Consequently, (3.6) yields

λ =

L∫
0

(f ′)2(x)dx + hf2(L)

L∫
0

f2(x)dx
≥ 0,

with λ = 0 if and only if f ′(x) = 0 on [0,L] and f(L) = 0. But this implies
that f = 0, which is not acceptable. Hence, the eigenvalues of this S–L
problem are positive. To find them, we note that the general solution of
the equation is again given by (3.8) and that the condition f(0) = 0 leads
to C1 = 0. Using the second BC, namely, f ′(L) + hf(L) = 0, we arrive at

C2

[√
λ cos

(√
λL

)
+ hsin

(√
λL

)]
= 0.

For nonzero solutions we must have C2 �= 0; in other words,

√
λcos

(√
λL

)
+ hsin

(√
λL

)
= 0.

Since cos
(√
λL

) �= 0 (otherwise sin
(√
λL

)
would be zero as well, which is

impossible), we can divide the above equality by cos
(√
λL

)
and conclude

that λ must be a solution of the transcendental equation

tan
(√
λL

)
= −

√
λ

h
= − 1

hL

(√
λL

)
.

Setting
√
λL = ζ, we see that ζ is given by the points of intersection of the

graphs of the functions y = tanζ and y = −ζ/(hL).
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Π�2 3Π�2 5Π�2Ζ1 Ζ2

Fig. 3.1. The graphs of y = tanζ (heavy line) and y =−ζ/(hL) (light line).

As Fig. 3.1 shows, there are countably many such points ζn, so this
S–L problem has an infinite sequence of positive eigenvalues

λn =
(
ζn
L

)2

, n = 1,2, . . . , λn → ∞ as n→ ∞,

with corresponding eigenfunctions (given by (3.8) with C1 = 0 and C2 = 1)

fn(x) = sin
(√

λnx
)

= sin
ζnx

L
, n = 1,2, . . . .

By Theorem 3.8(iii), the set
{
fn

}∞
n=1

is orthogonal on [0,L].

3.19. Example. For the S–L problem introduced in Example 3.13 we use
a slightly modified approach. Here the roots of the characteristic equation
s2 + 2s+ λ = 0 are

s1 = −1 +
√

1 − λ, s2 = −1 −√
1 − λ.

Since the nature of the roots changes according as λ < 1, λ = 1, or λ > 1,
we consider these cases individually.
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(i) If λ < 1, then 1 − λ > 0; hence, s1 and s2 are real and distinct, and
the general solution of the equation is

f(x) = C1e
s1x + C2e

s2x, C1, C2 = const.

Using the conditions f(0) = 0 and f(1) = 0, we arrive at

C1 + C2 = 0, C1e
s1 + C2e

s2 = 0.

Since s1 �= s2, this system has only the solution C1 = C2 = 0; consequently,
f = 0, and we conclude that there are no eigenvalues λ < 1.

(ii) If λ = 1, then

f(x) = (C1 + C2x)e−x, C1, C2 = const.

The condition f(0) = 0 yields C1 = 0, while f(1) = 0 gives C2e
−1 = 0,

which means that C2 = 0. This generates f = 0, so λ = 1 is not an
eigenvalue.

(iii) If λ > 1, then the general solution of the equation is

f(x) = e−x
[
C1 cos

(√
λ− 1x

)
+ C2 sin

(√
λ− 1x

)]
, C1, C2 = const.

Since f(0) = 0, we find that C1 = 0, and from the other condition, f(1) = 0,
it follows that

C2e
−1 sin

√
λ− 1 = 0.

For nonzero solutions we must have

sin
√
λ− 1 = 0;

in other words, √
λ− 1 = nπ, n = 1,2, . . . .

This implies that the eigenvalues of the problem are

λn = n2π2 + 1, n = 1,2, . . . ,

with corresponding eigenfunctions

fn(x) = e−x sin
(√

λn − 1x
)

= e−x sin(nπx), n = 1,2, . . . .

Regular Sturm–Liouville problems have two important additional prop-
erties.
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3.20. Theorem. (i) Only one linearly independent eigenfunction fn exists
for each eigenvalue λn, n = 1,2, . . . .

(ii) The set
{
fn

}∞
n=1

of eigenfunctions is complete; that is, any piece-
wise smooth function u on [a,b] has a unique generalized Fourier series (or
eigenfunction) expansion of the form

u(x) ∼
∞∑

n=1

cnfn(x), a ≤ x ≤ b, (3.9)

which converges pointwise to 1
2

[
u(x−)+u(x+)

]
for a ≤ x ≤ b (in particular,

to u(x) if u is continuous at x).

3.21. Remarks. (i) The coefficients cn are computed by means of the prop-
erties mentioned in Theorem 3.20(i) and Theorem 3.8(iii). Thus, treating
(3.9) formally as an equality, multiplying it by fm(x)σ(x), and integrating
over [a,b], we obtain

b∫
a

u(x)fm(x)σ(x)dx =
∞∑

n=1

cn

b∫
a

fn(x)fm(x)σ(x)dx

= cm

b∫
a

f2
m(x)σ(x)dx.

Replacing m by n, we can now write

cn =

b∫
a

u(x)fn(x)σ(x)dx

b∫
a

f2
n(x)σ(x)dx

, n = 1,2, . . . . (3.10)

The denominator in (3.10) cannot be zero for any n since the fn are nonzero
solutions of (3.2)–(3.4) and σ(x) > 0.

(ii) In the case of the S–L problems discussed in Examples 3.10 and 3.16,
and in Examples 3.11 and 3.17, expansion (3.9) coincides, respectively, with
the Fourier sine and cosine series of u, and (3.10) yields formulas (2.10) and
(2.11). (For the problem in Examples 3.11 and 3.17, n = 0,1,2, . . . .)

(iii) Using the method in Example 3.19, we can show that the eigenvalues
and eigenfunctions of the more general regular S–L problem
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f ′′(x) + af ′(x) + bf(x) + λcf(x) = 0, 0 < x < L,

f(0) = 0, f(L) = 0,

where a, b, and c > 0 are constants, are, respectively,

λn =
1
4c

(
4n2π2

L2
+ a2 − 4b

)
, fn(x) = e−(a/2)x sin

nπx

L
, n = 1,2, . . . .

3.22. Example. Suppose that we want to expand the function

u(x) = x+ 1, 0 ≤ x ≤ 1,

in the eigenfunctions of the regular S–L problem discussed in Examples
3.12 and 3.18 with L = h = 1. The first five positive roots of the equation
tanζ = −ζ mentioned in the latter are, approximately,

ζ1 = 2.0288, ζ2 = 4.9132, ζ3 = 7.9787, ζ4 = 11.0855, ζ5 = 14.2074.

Then, using (3.10) with σ(x) = 1, we find the approximate coefficients

c1 = 1.9184, c2 = 0.1572, c3 = 0.3390, c4 = 0.1307, c5 = 0.1696,

so (3.9) takes the form

u(x) ∼ 1.9184sin(2.0288x) + 0.1572sin(4.9132x) + 0.3390sin(7.9787x)

+ 0.1307sin(11.0855x) + 0.1696sin(14.2074x) + · · · .

3.23. Example. Consider the function

u(x) = e−x, 0 ≤ x ≤ 1.

If fn are the eigenfunctions of the regular S–L problem discussed in Exam-
ples 3.13 and 3.19, that is,

fn(x) = e−x sin(nπx), n = 1,2, . . . ,

then (3.10) with σ(x) = e2x yields the coefficients

cn =
[
1 − (−1)n

] 2
nπ

, n = 1,2, . . . ,

so expansion (3.9) is

u(x) ∼
∞∑

n=1

[
1 − (−1)n

] 2
nπ

e−x sin(nπx).
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3.2. Other Problems

Many important Sturm–Liouville problems are not regular.

3.24. Definition. With the notation in Definition 3.9, an eigenvalue prob-
lem that consists in solving equation (3.2) with the conditions

f(a) = f(b), f ′(a) = f ′(b) (3.11)

is called a periodic Sturm–Liouville problem.

3.25. Remark. It can be shown that the differential operator L intro-
duced in (3.5) is also symmetric on the new space of functions defined by
conditions (3.11), so Theorem 3.8 is again applicable. However, in contrast
to regular S–L problems, here we may have two linearly independent eigen-
functions for the same eigenvalue. Nevertheless, we can always choose a
pair of eigenfunctions that are orthogonal with weight σ on [a,b]. For such
a choice, Theorem 3.20(ii) remains valid.

3.26. Example. Consider the periodic Sturm–Liouville problem where
p(x) = 1, q(x) = 0, σ(x) = 1, a = −L, and b = L, L > 0; that is,

f ′′(x) + λf(x) = 0, −L < x < L,

f(−L) = f(L), f ′(−L) = f ′(L).

Using the Rayleigh quotient argument and the above BCs, we arrive again
at inequality (3.7). We accept the case λ = 0 since, as in Example 3.17, the
corresponding constant solutions satisfy both BCs; therefore, the problem
has the eigenvalue-eigenfunction pair

λ0 = 0, f0(x) = 1
2 .

For λ > 0, the general solution of the equation is

f(x) = C1 cos
(√
λx

)
+ C2 sin

(√
λx

)
, C1, C2 = const,

with derivative

f ′(x) = −C1

√
λsin

(√
λx

)
+ C2

√
λcos

(√
λx

)
.
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From the BCs and the fact that cos(−α) = cosα and sin(−α) = −sinα it
follows that C1 and C2 satisfy the system

C1 cos
(√
λL

) − C2 sin
(√
λL

)
= C1 cos

(√
λL

)
+ C2 sin

(√
λL

)
,

C1 sin
(√
λL

)
+ C2 cos

(√
λL

)
= −C1 sin

(√
λL

)
+ C2 cos

(√
λL

)
,

which reduces to

C1 sin
(√
λL

)
= 0, C2 sin

(√
λL

)
= 0.

Since we want nonzero solutions, we cannot have sin
(√
λL

) �= 0 because
this would imply C1 = C2 = 0, that is, f = 0; hence, sin

(√
λL

)
= 0. As we

have seen in previous examples, this yields the eigenvalues

λn =
(
nπ

L

)2

, n = 1,2, . . . .

Given that both C1 and C2 remain arbitrary, from the general solution we
can extract (by taking C1 = 1, C2 = 0 and then C1 = 0, C2 = 1) for every
λn the two linearly independent eigenfunctions

f1n(x) = cos
nπx

L
, f2n(x) = sin

nπx

L
, n = 1,2, . . . ,

which, as seen in Chapter 2, are orthogonal on [−L,L]. Expansion (3.9) in
this case becomes

u(x) ∼ 1
2
c0 +

∞∑
n=1

[
c1nf1n(x) + c2nf2n(x)

]

=
1
2
c0 +

∞∑
n=1

(
c1n cos

nπx

L
+ c2n sin

nπx

L

)
,

which we recognize as the full Fourier series of u. The coefficients c0, c1n,
and c2n, computed by means of (3.10) with σ(x) = 1, a = −L, b = L, and
n = 0,1,2, . . . (to allow for the additional eigenfunction f0), coincide with
those given by (2.7)–(2.9).

3.27. Definition. An eigenvalue problem involving equation (3.2) is called
a singular Sturm–Liouville problem if it exhibits one or more of the following
features:
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(i) p(a) = 0 or p(b) = 0 or both;

(ii) any of p(x), q(x), and σ(x) becomes infinite as x→ a+ or as x→ b−
or both;

(iii) the interval (a,b) is infinite at a or at b or at both.

3.28. Remark. In the case of a singular Sturm–Liouville problem, some
new boundary conditions need to be chosen to ensure that the operator L
defined by (3.5) remains symmetric. For example, if p(a) = 0 but p(b) �= 0,
then we may require f(x) and f ′(x) to remain bounded as x → a+ and
to satisfy (3.4). If the interval where the equation holds is of the form
(a,∞), then we may require f(x) and f ′(x) to be bounded as x → ∞ and
to satisfy (3.3). Other types of boundary conditions, dictated by analytic
and/or physical necessity, may also be considered.

3.29. Example. The eigenvalue problem

(x2 + 1)f ′′(x) + 2xf ′(x) + (λ − x)f(x) = 0, x > 1,

f ′(1) = 0, f(x), f ′(x) bounded as x→ ∞,

is a singular S–L problem: the ODE can be written in the form (3.2) with
p(x) = x2 + 1, q(x) = −x, σ(x) = 1, and (a,b) = (1,∞), and the boundary
conditions are of the type indicated in the latter part of Remark 3.28.

A number of singular S–L problems occurring in the study of mathemat-
ical models give rise to important classes of functions. We discuss some of
them explicitly.

3.3. Bessel Functions

Consider the singular S–L problem

x2f ′′(x) + xf ′(x) + (λx2 −m2)f(x) = 0, 0 < x < a, (3.12)

f(x), f ′(x) bounded as x→ 0+, f(a) = 0, (3.13)

where a is a given positive number and m is a nonnegative integer. Writing
(3.12) in the form [

xf ′(x)
]′ − m2

x
f(x) + λxf(x) = 0,

we verify that this is (3.2) with p(x) = x, q(x) = −m2/x, and σ(x) = x.
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First, we consider the case m = 0, when q = 0 and (3.12) reduces to

xf ′′(x) + f ′(x) + λxf(x) = 0, 0 < x < a.

Taking (3.13) into account, we see that

p(x)(f ′)2(x) − q(x)f2(x) = x(f ′)2(x) ≥ 0, 0 < x < a,[
p(x)f(x)f ′(x)

]a

0
=

[
xf(x)f ′(x)

]a

0
= af(a)f ′(a) − lim

x→0+
xf(x)f ′(x) = 0;

consequently, according to the Rayleigh quotient (3.6),

λ =

a∫
0

x(f ′)2(x)dx

a∫
0

xf2(x)dx
≥ 0.

In fact, as this formula shows, we have λ = 0 if and only if f ′(x) = 0,
0 < x ≤ a; that is, if and only if f(x) = const. But this is impossible, since
the boundary condition f(a) = 0 would imply that f is the zero solution,
which contradicts the definition of an eigenfunction. We must therefore
conclude that λ > 0.

Now let m ≥ 1. Multiplying (3.12) by f(x) and integrating from 0 to a,
we arrive at

a∫
0

[
x2f ′′(x)f(x) + xf ′(x)f(x) + λx2f2(x) −m2f2(x)

]
dx = 0. (3.14)

Integration by parts, the interpretation of f(x) and f ′(x) at x = 0 in the
limiting sense as above, and (3.13) yield the equalities

a∫
0

xf ′(x)f(x)dx =

a∫
0

1
2
x(f2(x))′ dx =

1
2

[
xf2(x)

]a

0
− 1

2

a∫
0

f2(x)dx

= −1
2

∫ a

0

f2(x)dx,

a∫
0

x2f ′′(x)f(x)dx =
[
x2f ′(x)f(x)

]a

0
−

a∫
0

[
x2(f ′(x))2 + 2xf ′(x)f(x)

]
dx

= −
a∫

0

[
x2(f ′(x))2 − f2(x)

]
dx,
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which, replaced in (3.14), lead to

λ =

a∫
0

[
x2(f ′(x))2 +

(
m2 − 1

2

)
f2(x)

]
dx

a∫
0

x2f2(x)dx
≥ 0.

The same argument used for m = 0 rules out the value λ = 0; hence, λ > 0.
Let ξ =

√
λx and f(x) = f

(
ξ/
√
λ

)
= g(ξ). By the chain rule,

f ′(x) =
√
λg′(ξ), f ′′(x) = λg′′(ξ),

and (3.12) becomes

ξ2g′′(ξ) + ξg′(ξ) + (ξ2 −m2)g(ξ) = 0, (3.15)

which is Bessel’s equation of order m. Two linearly independent solutions
of this equation are the Bessel functions of the first and second kind and
order m denoted by Jm and Ym.

3.30. Remarks. (i) For m ≥ 1, the Jm satisfy the recurrence relations

Jm−1(x) + Jm+1(x) = (2m/x)Jm(x), Jm−1(x) − Jm+1(x) = 2J ′
m(x),

from which we deduce that

[
xmJm(x)

]′ = xmJm−1(x).

Similar equalities are satisfied by the Ym.

(ii) The Jm and Ym can also be computed by means of the Bessel integrals

Jm(x) =
1
π

π∫
0

cos(mτ − xsinτ)dτ =
1
2π

π∫
−π

e−i(mτ−x sinτ) dτ,

Ym(x) =
1
π

π∫
0

sin(xsinτ −mτ)dτ − 1
π

∞∫
0

[
emτ + (−1)me−mτ

]
e−x sinhτ dτ.

(iii) As x→ 0+,

J0(x) → 1, Jm(x) → 0, m = 1,2, . . . ,

Ym(x) → −∞, m = 0,1,2, . . . .
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(iv) Jm has the Taylor series expansion

Jm(x) =
∞∑

k=0

(−1)k

k!(k +m)!

(
x

2

)2k+m

.

(v) The Bessel functions can be defined for any real, and even complex,
order m. For example, when the order is a negative integer −m, we set

J−m(x) = (−1)mJm(x).

(vi) When the order is an integer, the Jm are generated by the function

e(x/2)(t−1/t) =
∞∑

m=−∞
Jm(x)tm.

The graphs of J0, J1 and Y0, Y1 are shown in Fig. 3.2.

15

�0.4

1

15

�1

0.5

Fig. 3.2. Left: J0 (light line) and J1 (heavy line).
Right: Y0 (light line) and Y1 (heavy line).

Going back to (3.15), we can write its general solution as

g(ξ) = C1Jm(ξ) + C2Ym(ξ), C1, C2 = const,

from which

f(x) = C1Jm

(√
λx

)
+ C2Ym

(√
λx

)
.

In view of Remark 3.30(iii), the first condition (3.13) implies that C2 = 0.
The second one then yields C1Jm

(√
λa

)
= 0. Since we want nonzero solu-

tions, we must have Jm

(√
λa

)
= 0. The function Jm has infinitely many

positive zeros, which form a sequence ξmn, n = 1,2, . . . , such that ξmn → ∞
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as n → ∞ for each m = 0,1,2, . . . ; therefore, the singular S–L problem
(3.12), (3.13) has the eigenvalue-eigenfunction pairs

λmn = (ξmn/a)2, fmn(x) = Jm(ξmnx/a), n = 1,2, . . . .

It turns out that
{
fmn

}∞
n=1

is a complete system for each m = 0,1,2, . . . ,
and that

a∫
0

Jm(ξmnx/a)Jm(ξmpx/a)xdx

=
{

0, n �= p,
1
2 a

2J2
m+1(ξmn), n = p, m = 0,1,2, . . . . (3.16)

These orthogonality (with weight σ(x) = x) relations allow us to expand
any suitable function u in a generalized Fourier series of the form

u(x) ∼
∞∑

n=1

cmnJm(ξmnx/a) (3.17)

for each m = 0,1,2, . . . . To find the coefficients cmn, we follow the procedure
described in Remark 3.21(i) with (a,b) replaced by (0,a), cn by cmn, fn(x)
by Jm(ξmnx/a), and σ(x) by x. Making use of (3.16), in the end we find
that

cmn =

a∫
0

u(x)Jm(ξmnx/a)xdx

1
2 a

2J2
m+1(ξmn)

, n = 1,2, . . . . (3.18)

3.31. Remark. Series (3.17) converges to u(x) at all points x where u is
continuous in the interval (0,a). If m = 0, the point x = 0 is also included.
If m > 0, then x = 0 is included if u(0) = 0. The point x = a is included
for any m ≥ 0 if u(a) = 0.

3.32. Example. Let

u(x) = 2x− 1,

and let a = 1 and m = 0. Keeping the computational approximation to
four decimal places, we find that the first five zeros of J0(ξ) are

ξ01 = 2.4048, ξ02 = 5.5201, ξ03 = 8.6537,

ξ04 = 11.7915, ξ05 = 14.9309,
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which, when used in (3.18), generate the coefficients

c01 = 0.0329, c02 = −1.1813, c03 = 0.7452,

c04 = −0.7644, c05 = 0.6146.

Therefore, by (3.17), we have the approximate expansion

u(x) ∼ 0.0329J0(2.4048x)− 1.1813J0(5.5201x) + 0.7452J0(8.6537x)

− 0.7644J0(11.7915x) + 0.6146J0(14.9309x) + · · · . (3.19)

We now construct a second expansion for u by taking m = 1. With the
same type of approximation, the zeros of J1 are

ξ11 = 3.8317, ξ12 = 7.0156, ξ13 = 10.1735,

ξ14 = 13.3237, ξ15 = 16.4706,

so, by (3.18), we arrive at the coefficients

c11 = 0.3788, c12 = −1.3827, c13 = 0.4700,

c14 = −0.9199, c15 = 0.4248

and the corresponding approximate expansion

u(x) ∼ 0.3788J1(3.8317x)− 1.3827J1(7.0156x) + 0.4700J1(10.1735x)

− 0.9199J1(13.3237x) + 0.4248J1(16.4706x) + · · · . (3.20)

In Fig. 3.3 the given function u (heavy line) is graphed together with the
functions defined by the sum of the first five terms on the right-hand side
in (3.19) and (3.20), respectively.

1

�1

1

1

�1

1

Fig. 3.3. Left: the approximation constructed with J0.
Right: the approximation constructed with J1.



LEGENDRE POLYNOMIALS 47

3.4. Legendre Polynomials

Consider the singular S–L problem

(1 − x2)f ′′(x) − 2xf ′(x) + λf(x) = 0, −1 < x < 1, (3.21)

f(x), f ′(x) bounded as x→ −1+ and as x→ 1−. (3.22)

Since (3.21) can be written as

[
(1 − x2)f ′(x)

]′ + λf(x) = 0,

it is clear that p(x) = 1 − x2, q(x) = 0, and σ(x) = 1.
A detailed analysis of problem (3.21), (3.22), which is beyond the scope

of this book, shows that its eigenvalues are

λn = n(n+ 1), n = 0,1,2, . . . ,

and that the general solution of (3.21) with λ = λn is of the form

fn(x) = C1Pn(x) + C2Qn(x), C1, C2 = const, (3.23)

where Pn are polynomials of degree n, called the Legendre polynomials.
They are computed by means of the formula

Pn(x) =
1
2n

s∑
k=0

(−1)k

k!
(2n− 2k)!

(n− 2k)!(n− k)!
xn−2k, n = 0,1,2, . . . ,

where

s =
{
n/2, n even,
(n− 1)/2, n odd.

The Qn, called the Legendre functions of the second kind, have the rep-
resentation

Qn(x) = Pn(x)
∫

dx

(1 − x2)P 2
n(x)

, n = 0,1,2, . . . .

3.33. Remarks. (i) The Pn are given by the Rodrigues formula

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n, n = 0,1,2, . . . ;
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thus, for n = 0,1, . . .5,

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (−1 + 3x2),

P3(x) = 1
2 (−3x+ 5x3), P4(x) = 1

8 (3 − 30x2 + 35x4),

P5(x) = 1
8 (15x− 70x3 + 63x5).

(ii) The Pn may also be computed by means of the generating function

(1 − 2tx+ t2)−1/2 =
∞∑

n=0

Pn(x)tn, |x| < 1, |t| < 1.

(iii) The Pn satisfy the recursive relation

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) + nPn−1(x) = 0, n = 1,2, . . . .

(iv) The set {Pn}∞n=0 is orthogonal over [−1,1]; specifically,

1∫
−1

Pn(x)Pm(x)dx =
{

0, n �= m,
2/(2n+ 1), n = m. (3.24)

(v)
{
Pn

}∞
n=0

is a complete system.

(vi) Qn(x) becomes unbounded as x→ −1+ and as x→ 1−.

The graphs of P4, P5 and Q4, Q5 are shown in Fig. 3.4.

�1 1

�0.5

1

�1 1

�1

1

2

Fig. 3.4. Left: P4 (light line) and P5 (heavy line).
Right: Q4 (light line) and Q5 (heavy line).

In view of Remark 3.33(vi), fn given by (3.23) satisfies the BCs (3.22)
only if C2 = 0; therefore, the eigenfunctions of the Sturm–Liouville problem
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(3.21), (3.22) are

fn(x) = Pn(x), n = 0,1,2, . . . .

As before, Remark 3.33(v) allows us to expand any suitable function u in
a series of the form

u(x) ∼
∞∑

n=0

cnPn(x), (3.25)

where, applying the technique described in Remark 3.21(i) and taking (3.24)
into account, we see that the coefficients cn are computed by means of the
formula

cn =
2n+ 1

2

1∫
−1

f(x)Pn(x)dx, n = 0,1,2, . . . . (3.26)

3.34. Remark. If u is piecewise smooth on (−1,1), series (3.25) converges
to u(x) at all points x where u is continuous, and to 1

2

[
f(x−) + f(x+)

]
at

the points x where u has a jump discontinuity.

3.35. Example. Consider the function

u(x) =
{

2x+ 1, −1 ≤ x ≤ 0,
3, 0 < x ≤ 1.

By (3.26) and the expressions of the Pn in Remark 3.33(i), we find the
coefficients

c0 = 3
2 , c1 = 5

2 , c2 = − 5
8 , c3 = − 7

8 ,

c4 = 3
16 , c5 = 11

16 ,

so (3.25) yields the expansion

u(x) ∼ 3
2 P0(x) + 5

2 P1(x) − 5
8 P2(x) − 7

8 P3(x)

+ 3
16 P4(x) + 11

16 P5(x) + · · · . (3.27)

The graphs of u and of the function defined by the sum of the first six
terms on the right-hand side in (3.27) (the approximation of u) are shown
for comparison in Fig. 3.5.
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1

�1 1

�1

3

Fig. 3.5. The graphs of u (heavy line) and its approximation (light line).

3.5. Spherical Harmonics

A more general form of the singular S–L problem (3.21), (3.22) is obtained
if (3.21) is replaced by the associated Legendre equation

[
(1 − x2)f ′(x)

]′
+

(
λ− m2

1 − x2

)
f(x) = 0, −1 < x < 1, (3.28)

where m is a nonnegative integer. Obviously, here we have p(x) = 1 − x2,
q(x) = −m2/(1 − x2), and σ(x) = 1.

It can be shown that the eigenvalue-eigenfunction pairs of problem (3.28),
(3.22) are

λn = n(n+ 1), n = m,m+ 1, . . . ,

fn(x) = Pm
n (x) = (1 − x2)m/2 d

m

dxm
Pn(x)

=
(−1)m

2nn!
(1 − x2)m/2 d

n+m

dxn+m

[
(x2 − 1)n

]
.

(3.29)

For each m = 0,1, . . . ,n, the Pm
n , called the associated Legendre functions,

satisfy the orthogonality formula

1∫
−1

Pm
n (x)Pm

k (x)dx =

⎧⎨
⎩

0, n �= k,
2(n+m)!

(2n+ 1)(n−m)!
, n = k. (3.30)

The definition of the Pm
n can be extended to negative-integer superscripts

by means of the last expression on the right-hand side in (3.29). A straight-
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forward computation shows that

P−m
n (x) =

(−1)−m

2nn!
(1 − x2)−m/2 d

n−m

dxn−m

[
(x2 − 1)n

]
= (−1)m (n−m)!

(n+m)!
Pm

n (x). (3.31)

The spherical harmonics are complex-valued functions that occur in prob-
lems formulated in terms of spherical coordinates, which, as is well known,
are linked to the Cartesian coordinates x, y, z by the expressions

x = r cosθ sinϕ, y = r sinθ sinϕ, z = r cosϕ.

Here, r, r ≥ 0, is the radius, θ, 0 ≤ θ < 2π, is the azimuthal angle, and ϕ,
0 ≤ ϕ ≤ π, is the polar angle. The spherical harmonics are defined by

Y m
n (θ,ϕ) = Pm

n (cosϕ)eimθ, n = 0,1,2, . . . ,

where m = 0,1, . . . ,n and, by Euler’s formula, eimθ = cos(mθ) + isin(mθ).
In view of (3.30), it is not difficult to verify that

2π∫
0

π∫
0

Y m
n (θ,ϕ)Ȳ l

k (θ,ϕ)sinϕdϕdθ =

⎧⎨
⎩

4π(n+m)!
(2n+ 1)(n−m)!

, m = l, n = k,

0 otherwise,

where the superposed bar denotes complex conjugation. The above equality
allows us to normalize the Y m

n by writing

Yn,m(θ,ϕ) =
[
(2n+ 1)(n−m)!

4π(n+m)!

]1/2

Pm
n (cosϕ)eimθ. (3.32)

This is the form in which the spherical harmonics are usually known.
The Yn,m satisfy the orthonormality formula

2π∫
0

π∫
0

Yn,m(θ,ϕ)Ȳk,l(θ,ϕ)sinϕdϕdθ =
{

1, m = l, n = k,
0 otherwise.

(3.33)

In view of (3.31), we can also define

Yn,−m(θ,ϕ) = (−1)mȲn,m(θ,ϕ). (3.34)
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3.36. Example. By the second formula (3.29), (3.32), and (3.34),

Y0,0(θ,ϕ) =
1
2

√
1
π
,

Y1,−1(θ,ϕ) =
1
2

√
3
2π

e−iθ sinϕ =
1
2

√
3
2π

x− iy

r
,

Y1,0(θ,ϕ) =
1
2

√
3
π

cosϕ =
1
2

√
3
π

z

r
,

Y1,1(θ,ϕ) = −1
2

√
3
2π

eiθ sinϕ = −1
2

√
3
2π

x+ iy

r
,

Y2,−2(θ,ϕ) =
1
4

√
15
2π

e−2iθ sin2ϕ =
1
4

√
15
2π

(x− iy)2

r2
,

Y2,−1(θ,ϕ) =
1
2

√
15
2π

e−iθ sinϕcosϕ =
1
2

√
15
2π

(x − iy)z
r2

,

Y2,0(θ,ϕ) =
1
4

√
5
π

(3cos2ϕ− 1) =
1
4

√
5
π

2z2 − x2 − y2

r2
,

Y2,1(θ,ϕ) = −1
2

√
15
2π

eiθ sinϕcosϕ = −1
2

√
15
2π

(x+ iy)z
r2

,

Y2,2(θ,ϕ) =
1
4

√
15
2π

e2iθ sin2ϕ =
1
4

√
15
2π

(x+ iy)2

r2
.

3.37. Remark. Any suitable function u defined on a sphere can be ex-
panded in a spherical harmonics series of the form

u(θ,ϕ) ∼
∞∑

n=0

n∑
m=−n

cn,mYn,m(θ,ϕ), (3.35)

which converges to u(θ,ϕ) at all points where u is continuous. To find the
coefficients ck,l, we multiply every term in (3.35) by Ȳk,l(θ,ϕ)sinϕ, integrate
over [0,2π]× [0,π], and take (3.33) into account. This (after k, l are replaced
by n,m) leads to

cn,m =

2π∫
0

π∫
0

u(θ,ϕ)Ȳn,m(θ,ϕ)sinϕdϕdθ. (3.36)
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3.38. Example. Let v(x,y,z) = x2 + 2y be defined on the sphere with
center at the origin and radius 1. In terms of spherical coordinates, this
becomes u(θ,ϕ) = cos2 θ sin2ϕ + 2sinθ sinϕ. Then, using (3.36) and the
explicit expressions of the Yn,m given in Example 3.36, we find that

c0,0 =
2
√
π

3
, c1,0 = 0, c1,1 = c1,−1 =

2
√

2π
3

i,

c2,−1 = c2,1 = 0, c2,0 = −2
3

√
π

5
, c2,2 = c2,−2 =

√
2π
15
,

so, by (3.35),

u(θ,ϕ) =
2
√
π

3
Y0,0(θ,ϕ) +

2
√

2π
3

iY1,−1(θ,ϕ) +
2
√

2π
3

iY1,1(θ,ϕ)

+

√
2π
15
Y2,−2(θ,ϕ) − 2

3

√
π

5
Y2,0(θ,ϕ) +

√
2π
15
Y2,2(θ,ϕ).

This is a terminating series because f is a linear combination of the spherical
harmonics listed in Example 3.36.

3.39. Example. If the function in Example 3.38 is replaced by

v(x,y,z) =
{
x, z ≥ 0,
yz, z < 0,

then its equivalent form in spherical coordinates is

u(θ,ϕ) =
{

cosθ sinϕ, 0 ≤ ϕ ≤ π/2,
sinθ sinϕcosϕ, π/2 ≤ ϕ ≤ π.

In this case, (3.36) yields the coefficients

c0,0 = c1,0 = 0, c1,1 = −c̄1,−1 = −
√
π

6

(
2 +

3
8
i

)
,

c2,−2 = c2,−2 = c2,2 = 0, c2,1 = −c̄2,−1 = −
√

π

30

(
15
4

− i

)
,

so expansion (3.35) becomes

u(θ,ϕ) ∼
√
π

6

(
2 − 3

8
i

)
Y1,−1(θ,ϕ) −

√
π

6

(
2 +

3
8
i

)
Y1,1(θ,ϕ)

+
√

π

30

(
15
4

+ i

)
Y2,−1(θ,ϕ) −

√
π

30

(
15
4

− i

)
Y2,1(θ,ϕ) + · · · .
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3.40. Remark. A very general class of what we have called “suitable”
functions in this chapter consists of square-integrable functions, namely,
functions u such that ∫

D

|u(x)|2 dx <∞,

where D is the domain where the functions are defined and x and dx are,
respectively, a generic point in D and the element of length/area/volume, as
appropriate. If series (3.9), (3.17), (3.25), and (3.35) are written collectively
in the form

u(x) ∼
∞∑

n=1

cnfn(x),

then they are convergent in the sense that

lim
N→∞

∫
D

∣∣∣∣u(x) −
N∑

n=1

cnfn(x)
∣∣∣∣
2

dx = 0.

As already mentioned, when u is sufficiently smooth, the series also converge
to u(x) in the classical pointwise sense at every x in D where u is continuous.
To keep the notation simple, since the functions of interest to us meet the
smoothness requirement, from now on we use the equality sign between
them and their generalized Fourier series representations, although, strictly
speaking, equality holds only at their points of continuity.

Exercises

In (1)–(6) verify that the given problem is a S–L eigenvalue problem and
specify whether it is regular or singular.

(1) f ′′(x) + λf(x) = 0, 0 < x < 1,
f(0) + 2f ′(0) = 0, f ′(1) = 0.

(2) f ′′(x) − xf(x) + λ(x2 + 1)f(x) = 0, 0 < x < 1,
f(0) = 0, f ′(1) = 0.

(3) (x− 2)f ′′(x) + f ′(x) + (1 + λ)f(x) = 0, 0 < x < 2,
f ′(0) = 0, f(x), f ′(x) bounded as x→ 2 − .
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(4) f ′′(x) − f ′(x) + λf(x) = 0, 0 < x < 2,
f ′(0) = 0, f(2) − f ′(2) = 0.

(5) 2f ′′(x) + f ′(x) + (λ+ x)f(x) = 0, 0 < x <∞,

f(0) = 0, f(x), f ′(x) bounded as x→ ∞.

(6) x2f ′′(x) + xf ′(x) + (2λx− 1)f(x) = 0, 0 < x < 1,
f(x), f ′(x) bounded as x→ 0+, f(1) − f ′(1) = 0.

In (7)–(16) compute the eigenvalues and eigenfunctions of the given regular
S–L problem.

(7) f ′′(x) + λf(x) = 0, 0 < x < π,

f(0) = 0, f ′(π) = 0.

(8) f ′′(x) + λf(x) = 0, 0 < x < 1,
f ′(0) = 0, f(1) = 0.

(9) f ′′(x) + λf(x) = 0, 0 < x < 1,
f ′(0) − f(0) = 0, f(1) = 0.

(10) f ′′(x) + λf(x) = 0, 0 < x < 1,
f ′(0) = 0, f ′(1) + f(1) = 0.

(11) f ′′(x) + λf(x) = 0, 0 < x < 1,
f ′(0) − f(0) = 0, f ′(1) = 0.

(12) 2f ′′(x) + (λ − 1)f(x) = 0, 0 < x < 2,
f(0) = 0, f(2) = 0.

(13) f ′′(x) + 4f ′(x) + 3λf(x) = 0, 0 < x < 1,
f(0) = 0, f(1) = 0.

(14) f ′′(x) − f ′(x) + λf(x) = 0, 0 < x < 1,
f ′(0) = 0, f ′(1) = 0.

(15) 2f ′′(x) + 3f ′(x) + λf(x) = 0, 0 < x < 1,
f(0) = 0, f ′(1) = 0.

(16) f ′′(x) − 5f ′(x) + 2λf(x) = 0, 0 < x < π/2,
f ′(0) = 0, f(π/2) = 0.

In (17)–(24) construct the generalized Fourier series expansion for the given
function u in the eigenfunctions

{
sin

(
(2n−1)x/2

)}∞
n=1

of the S–L problem
in Exercise 7.
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(17) u(x) = 1, 0 ≤ x ≤ π. (18) u(x) = 2x− 1, 0 ≤ x ≤ π.

(19) u(x) = 3x+ 2, 0 ≤ x ≤ π. (20) u(x) =
{−1, 0 ≤ x ≤ π/2,

2, π/2 < x ≤ π.

(21) u(x) =
{

2, 0 ≤ x ≤ π/2,
−3, π/2 < x ≤ π.

(22) u(x) =
{

2x− 1, 0 ≤ x ≤ π/2,
−1, π/2 < x ≤ π.

(23) u(x) =
{

2, 0 ≤ x ≤ π/2,
x+ 1, π/2 < x ≤ π.

(24) u(x) =
{

2x+ 1, 0 ≤ x ≤ π/2,
3 − 2x, π/2 < x ≤ π.

In (25)–(32) construct the generalized Fourier series expansion for the given
function u in the eigenfunctions

{
cos

(
(2n−1)πx/2

)}∞
n=1

of the S–L problem
in Exercise 8.

(25) u(x) = 1/2, 0 ≤ x ≤ 1. (26) u(x) = x+ 1, 0 ≤ x ≤ 1.

(27) u(x) = 2 − x, 0 ≤ x ≤ 1. (28) u(x) =
{

3, 0 ≤ x ≤ 1/2,
4, 1/2 < x ≤ 1.

(29) u(x) =
{−2, 0 ≤ x ≤ 1/2,

1, 1/2 < x ≤ 1.
(30) u(x) =

{
3 − 2x, 0 ≤ x ≤ 1/2,
2, 1/2 < x ≤ 1.

(31) u(x) =
{

1, 0 ≤ x ≤ 1/2,
2x− 3, 1/2 < x ≤ 1.

(32) u(x) =
{

1 − x, 0 ≤ x ≤ 1/2,
2x+ 1, 1/2 < x ≤ 1.

In (33)–(40) compute the first five terms of the generalized Fourier series
expansion for the given function u in the eigenfunctions of the S–L problem
in Example 3.18 with h = 1 and the interval for x as indicated.

(33) u(x) = 1, 0 ≤ x ≤ 1. (34) u(x) = 1 − 2x, 0 ≤ x ≤ 1.

(35) u(x) = 2 − x, 0 ≤ x ≤ 2. (36) u(x) =
{

1, 0 ≤ x ≤ 1/2,
−3, 1/2 < x ≤ 1.

(37) u(x) =
{−2, 0 ≤ x ≤ 1/2,

4, 1/2 < x ≤ 1.
(38) u(x) =

{−1, 0 ≤ x ≤ 1,
x+ 2, 1 < x ≤ 2.

(39) u(x) =
{

2x, 0 ≤ x ≤ 1/2,
1, 1/2 < x ≤ 1.

(40) u(x) =
{

1 − x, 0 ≤ x ≤ 1/2,
1 + x, 1/2 < x ≤ 1.

In (41)–(48) compute the first five terms of the generalized Fourier series
expansion for the given function u in the eigenfunctions

{
e−2x sin(nπx)

}∞
n=1

of the S–L problem in Exercise 13.

(41) u(x) = 1, 0 ≤ x ≤ 1. (42) u(x) = x, 0 ≤ x ≤ 1.
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(43) u(x) = 2x+ 1, 0 ≤ x ≤ 1. (44) u(x) =
{−2, 0 ≤ x ≤ 1/2,
−1, 1/2 < x ≤ 1.

(45) u(x) =
{

1, 0 ≤ x ≤ 1/2,
−3, 1/2 < x ≤ 1.

(46) u(x) =
{

2, 0 ≤ x ≤ 1/2,
2x+ 1, 1/2 < x ≤ 1.

(47) u(x) =
{
x− 1, 0 ≤ x ≤ 1/2,
−1, 1/2 < x ≤ 1.

(48) u(x) =
{
x+ 1, 0 ≤ x ≤ 1/2,
3 − 2x, 1/2 < x ≤ 1.

In (49)–(56) compute the first five terms of the generalized Fourier series
expansion for the given function u in the eigenfunctions constructed with
the Bessel functions (i) J0 and (ii) J1.

(49) u(x) = 1, 0 ≤ x ≤ 1. (50) u(x) = 2x+ 1, 0 ≤ x ≤ 1.

(51) u(x) = 1 − 3x, 0 ≤ x ≤ 1. (52) u(x) =
{

3, 0 ≤ x ≤ 1/2,
1, 1/2 < x ≤ 1.

(53) u(x) =
{−1, 0 ≤ x ≤ 1/2,

2, 1/2 < x ≤ 1.
(54) u(x) =

{
x+ 3, 0 ≤ x ≤ 1/2,
2, 1/2 < x ≤ 1.

(55) u(x) =
{

1, 0 ≤ x ≤ 1/2,
2 − 2x, 1/2 < x ≤ 1.

(56) u(x) =
{
x− 2, 0 ≤ x ≤ 1/2,
x+ 1, 1/2 < x ≤ 1.

In (57)–(64) compute the first six terms of the generalized Fourier series
expansion for the given function u in the Legendre polynomials Pn.

(57) u(x) = x2 − 3x+ 4, −1 ≤ x ≤ 1.
(58) u(x) = x3 + 2x2 − 3, −1 ≤ x ≤ 1.

(59) u(x) =
{−3, −1 ≤ x ≤ 0,

1, 0 < x ≤ 1.
(60) u(x) =

{
2, −1 ≤ x ≤ 0,
−5, 0 < x ≤ 1.

(61) u(x) =
{−2, −1 ≤ x ≤ 0,
x− 1, 0 < x ≤ 1.

(62) u(x) =
{

2x+ 3, −1 ≤ x ≤ 0,
1, 0 < x ≤ 1.

(63) u(x) =
{

2x+ 3, −1 ≤ x ≤ 0,
1 − 2x, 0 < x ≤ 1.

(64) u(x) =
{

3x+ 1, −1 ≤ x ≤ 0,
x+ 4, 0 < x ≤ 1.

In (65)–(72) the given function v is defined on the sphere with center at the
origin and radius 1. Writing it as u(θ,ϕ) in terms of spherical coordinates,
compute the first nine terms of its expansion in the spherical harmonics.
(Use the spherical harmonics listed in Example 3.36.)

(65) v(x,y,z) = y2 − 2z2.

(66) v(x,y,z) = 3x2 + xz.
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(67) v(x,y,z) =
{

0, −1 ≤ z < 0,
1, 0 ≤ z ≤ 1.

(68) v(x,y,z) =
{

1, −1 ≤ z < 0,
−2, 0 ≤ z ≤ 1.

(69) v(x,y,z) =
{
x− y, −1 ≤ z < 0,
2, 0 ≤ z ≤ 1.

(70) v(x,y,z) =
{−1, −1 ≤ z < 0,

2x+ z, 0 ≤ z ≤ 1.

(71) v(x,y,z) =
{
x2 − 3y, −1 ≤ z < 0,
2y + yz, 0 ≤ z ≤ 1.

(72) v(x,y,z) =
{
xy, −1 ≤ z < 0,
xz + z2, 0 ≤ z ≤ 1.



Chapter 4
Some Fundamental Equations
of Mathematical Physics

The great majority of processes and phenomena in the real world are studied
by means of mathematical models. An investigation of this kind generally
comprises three stages.

(i) The model is set up in terms of mathematical expressions describing
the quantitative relationships between the physical quantities involved.

(ii) The equations of the model are solved by means of various mathe-
matical methods.

(iii) The mathematical results are interpreted from a physical point of
view in relation to the original process.

In this chapter we show how three simple but fundamental mathemati-
cal models are derived, which involve partial differential equations. These
models are important because each of them is representative of an entire
class of linear second-order PDEs.

4.1. Definition. A partial differential equation is an equation that contains
an unknown function of several variables and one or more of its partial
derivatives.

To simplify the notation, we will denote the partial derivatives of functions
almost exclusively by means of subscripts; thus, for u = u(x,t),

ut ≡ ∂u

∂t
, utt ≡ ∂2u

∂t2
, ux ≡ ∂u

∂x
, uxx ≡ ∂2u

∂x2
, etc.

4.1. The Heat Equation

Heat conduction in a one-dimensional rod. Consider a heat-conduct-
ing rod in the shape of a thin cylinder described by the following physical
parameters:

L : length;

A : cross-sectional area, assumed constant;
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E(x,t) : heat energy density (heat energy per unit volume);

ϕ(x,t) : heat flux (heat energy per unit area, flowing to the right
per unit time);

q(x,t) : heat sources or sinks (heat energy per unit volume, gen-
erated or lost inside the rod per unit time).

Throughout what follows we assume that the lateral (cylindrical) surface
of the rod is insulated; that is, no heat exchange takes place across it. We
also use the generic term “sources” to describe both sources and sinks.

The physical law we are using to set up the mathematical model in this
case is the law of conservation of heat energy, which states that

rate of change of heat energy in body

= heat flow across boundary per unit time

+ heat generated by sources per unit time.

��a,t� ���b,t�
x

Fig. 4.1. An arbitrary segment of rod.

For an arbitrary length of rod between x = a and x = b on the x-axis
(see Fig. 4.1), this law translates as

d

dt

b∫
a

E(x,t)Adx =
[
ϕ(a,t) − ϕ(b, t)

]
A+

b∫
a

q(x,t)Adx

= −
b∫

a

ϕx(x,t)Adx +

b∫
a

q(x,t)Adx, t > 0.

Dividing through by A and moving all the terms to the left-hand side, we
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find that for t > 0 and any a, b, 0 < a < b < L,

b∫
a

[
Et(x,t) + ϕx(x,t) − q(x,t)

]
dx = 0.

In view of the arbitrariness of a and b, this means that

Et(x,t) = −ϕx(x,t) + q(x,t), 0 < x < L, t > 0. (4.1)

We need to introduce further physical parameters for the rod; thus,

u(x,t) : temperature;

c(x) : specific heat (the heat energy that raises the temper-
ature of one unit of mass by one unit), assumed, for
simplicity, to be independent of temperature;

K0(x) : thermal conductivity, also assumed to be independent
of temperature;

ρ(x) : mass density.

Then the total heat energy in the section of rod between x = a and x = b is

b∫
a

E(x,t)Adx =

b∫
a

c(x)ρ(x)u(x,t)Adx, t > 0;

as above, this means that

E(x,t) = c(x)ρ(x)u(x,t), 0 < x < L, t > 0. (4.2)

At the same time, according to Fourier’s law of heat conduction,

ϕ(x,t) = −K0(x)ux(x,t), 0 < x < L, t > 0. (4.3)

Using (4.2) and (4.3), we can now write the conservation of heat energy
expressed by (4.1) as

c(x)ρ(x)ut(x,t) =
(
K0(x)ux(x,t)

)
x

+ q(x,t), 0 < x < L, t > 0. (4.4)
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Assuming that the rod is uniform (c, ρ, and K0 are constants) and that
there are no internal heat sources (q = 0), we see that (4.4) reduces to

ut(x,t) = kuxx(x,t), 0 < x < L, t > 0, (4.5)

where k = K0/(cρ) = const is the thermal diffusivity of the rod. Equation
(4.5) is called the heat (diffusion) equation.

If sources are present in the rod, then this equation is replaced by its
nonhomogeneous version

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0,

where q now incorporates the constant 1/(cρ).
Initial condition. Since (4.5) is a first-order equation with respect to
time, it needs only one initial condition, which is normally taken to be

u(x,0) = f(x), 0 < x < L.

This means prescribing the initial distribution of temperature in the rod.

Boundary conditions. The equation is of second order with respect to
the space variable, so we need two boundary conditions. There are three
main types of physically meaningful conditions that are usually prescribed
at the “near” endpoint x = 0 and “far” endpoint x = L.

(i) The temperature may be given at one endpoint; for example,

u(0, t) = α(t), t > 0.

(ii) If the rod is insulated at an endpoint, then the condition must mean
that the heat flux there is zero. In view of (4.3), this is equivalent to the
derivative ux being equal to zero; for example,

ux(L,t) = 0, t > 0.

More generally, if the heat flux through the endpoint x = L is prescribed,
the above condition becomes

ux(L,t) = β(t), t > 0.
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(iii) When one of the endpoints is in contact with another medium, we use
Newton’s law of cooling, which states that the heat flux at that endpoint is
proportional to the difference between the temperature of the rod and the
temperature of the external medium; for example,

K0ux(0, t) = H
[
u(0, t) − U(t)

]
, t > 0,

where U(t) is the (known) temperature of the external medium and H > 0
is the heat transfer coefficient. Owing to the convention concerning the
direction of the heat flux, at the far endpoint this type of condition becomes

−K0ux(L,t) = H
[
u(L,t) − U(t)

]
, t > 0.

4.2. Remarks. (i) Only one boundary condition is prescribed at each end-
point.

(ii) The boundary condition at x = 0 may differ from that at x = L.

(iii) It is easily verified that the heat equation is linear.

(iv) The one-dimensional heat equation is the simplest example of a so-
called parabolic equation.

The model. As we have seen, the mathematical model for heat conduction
in a rod consists of several elements.

4.3. Definition. A partial differential equation (PDE) and the initial con-
ditions (ICs) and boundary conditions (BCs) associated with it form an
initial boundary value problem (IBVP). If only initial conditions or bound-
ary conditions are present, then we have an initial value problem (IVP) or
a boundary value problem (BVP), respectively.

4.4. Example. The IBVP modeling heat conduction in a one-dimensional
uniform rod with sources, insulated lateral surface, and temperature pre-
scribed at both endpoints is of the form

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = α(t), u(L,t) = β(t), t > 0, (BCs)

u(x,0) = f(x), 0 < x < L, (IC)

where q, α, β, and f are given functions.
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4.5. Example. If the near endpoint is insulated and the far one is kept in
a medium of constant zero temperature, and if the rod contains no sources,
then the corresponding IBVP is

ut(x,t) = kuxx(x,t), 0 < x < L, t > 0, (PDE)

ux(0, t) = 0, ux(L,t) + hu(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), 0 < x < L, (IC)

where f is a given function and h is a known positive constant.

4.6. Definition. By a classical solution of an IBVP we understand a func-
tion u(x,t) that satisfies the PDE, BCs, and ICs pointwise everywhere in
the region where the problem is formulated. For brevity, in what follows
we will refer to such functions simply as “solutions”. It is obvious that
an IBVP will have solutions in this sense only if the data functions have a
certain degree of smoothness.

4.7. Example. Suppose that q, α, β, and f in Example 4.4 are continuous
functions. Then a solution of that IBVP has the following properties:

(i) it is continuously differentiable with respect to t and twice continuously
differentiable with respect to x at all points in the domain (semi-infinite
strip) in the (x,t)-plane defined by

G =
{
(x,t) : 0 < x < L, t > 0

}
,

and satisfies the PDE at all points in G;

(ii) its continuity extends to the “spatial” boundary lines of G, that is,
to the two half-lines

∂Gx =
{
(x,t) : x = 0, t > 0 or x = L, t > 0

}
,

and it satisfies the appropriate BC at every point on ∂Gx;

(iii) its continuity also extends to the “temporal” boundary line of G

∂Gt =
{
(x,t) : 0 < x < L, t = 0

}
,

and it satisfies the IC at all points on ∂Gt.
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4.8. Remarks. (i) We note that nothing is said in Example 4.7 about the
behavior of u at the “corner” points (0,0) and (L,0) of G. If, for example,

lim
t→0

u(0, t) = lim
x→0

u(x,0),

that is, if

lim
t→0

α(t) = lim
x→0

f(x),

then u can be defined at (0,0) by the common value of the above limits.
If, on the other hand, the two limits are distinct, then u cannot be defined
at (0,0) in the classical sense. In the applications that follow we will not
concern ourselves with these two “corner” points.

(ii) Suppose that f has a jump discontinuity at a point (x0,0) on ∂Gt.
In this case it is impossible to find a solution u that satisfies the IC at this
point in the classical sense; however, we might find a type of solution that
does so in some “average” way.

(iii) The definition of a solution can be generalized in the obvious manner
to IBVPs with more than two independent variables.

4.9. Theorem. If the functions α, β, and f are sufficiently smooth to
ensure that u, ut, ux, and uxx are continuous in G and up to the boundary
of G, including the two “corner” points, then the IBVP in Example 4.4 has
at most one solution.

Proof. Suppose that there are two solutions u1 and u2 of the problem in
question. Then, owing to linearity, it is obvious that u = u1 − u2 is a
solution of the fully homogeneous IBVP; that is, for any arbitrarily fixed
number T > 0 the function u satisfies

ut(x,t) = kuxx(x,t), 0 < x < L, 0 < t < T,

u(0, t) = 0, u(L,t) = 0, 0 < t < T,

u(x,0) = 0, 0 < x < L.

Multiplying the PDE by u, integrating over [0,L], and using the BCs, the
smoothness properties of the solutions for 0 ≤ x ≤ L and 0 ≤ t ≤ T , and
integration by parts, we find that
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0 =

L∫
0

(uut − kuuxx)dx

=

L∫
0

[
1
2 (u2)t + ku2

x

]
dx − k

[
uux

]x=L

x=0
=

L∫
0

[
1
2 (u2)t + ku2

x

]
dx;

therefore,

1
2
d

dt

L∫
0

u2dx = −k
L∫

0

u2
xdx ≤ 0, 0 ≤ t ≤ T,

which means that the function

W (t) =

L∫
0

u2(x,t)dx, 0 ≤ t ≤ T,

is nonincreasing. Since W (t) ≥ 0 and W (0) = 0 (because of the IC sat-
isfied by u), this is possible only if W (t) = 0, 0 ≤ t ≤ T . In view of the
nonnegative integrand in the definition of W above and the arbitrariness of
T > 0, we then conclude that u = 0; in other words, the solutions u1 and
u2 coincide.

4.10. Remarks. (i) Theorem 4.9 states that if the IBVP in Example 4.4
has a solution, then that solution is unique. The existence issue is resolved
in Chapter 5, where we actually construct the solution.

(ii) The properties required of the solution in Theorem 4.9 are stronger
than those mentioned in Example 4.7.

(iii) Uniqueness can also be proved for the solutions of IBVPs with other
types of BCs.

(iv) It is easily seen that the change of variables

ξ =
x

L
, τ =

k

L2
t, u(x,t) = u(Lξ,L2τ/k) = v(ξ,τ)

reduces the heat equation to the form

vτ (ξ,τ) = vξξ(ξ,τ), 0 < ξ < 1, τ > 0.

Hence, without loss of generality, in most of our applications we consider this
simpler version, with x, t, and u in place of ξ, τ , and v, respectively.
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4.2. The Laplace Equation

The higher-dimensional heat equation. For simplicity, we study the
case of two space dimensions. Consider a heat-conducting body occupying
a finite region D in the (x,y)-plane, bounded by a smooth, simple, closed
curve ∂D, and let R be an arbitrary element of D with a smooth boundary
∂R (see Fig. 4.2). We adopt the same notation for the physical parameters
of this body as in Section 4.1.

Heat flow depends on direction, so here the heat flux is a vector �ϕ, which
we can write in the form

�ϕ = normal component + tangential component

= (�ϕ · �n)�n+ (�ϕ · �τ )�τ , |�n| = |�τ | = 1,

where �n and �τ are the unit normal and tangent vectors to ∂R, directed as
shown in Fig. 4.2. Clearly, the tangential component makes no contribution
to the heat exchange between R and the rest of the body.

��
�
.Τ
�
�Τ
�

�
�

��
�
.n
�
�n
�

D

�D

R

�R

Fig. 4.2. A two-dimensional body configuration.

As in the case of a rod, the conservation of heat energy states that

rate of change of heat energy

= heat flow across boundary per unit time

+ heat generated by sources per unit time.

This translates mathematically as

d

dt

∫
R

E(x,y,t)dA = −
∫

∂R

�ϕ(x,y,t) · �n(x,y)ds+
∫
R

q(x,y,t)dA,
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where dA and ds are, respectively, the elements of area and arc length.
Taking (4.2) into account and applying the divergence theorem, that is,∫

R

(div �ϕ)(x,y,t)dA =
∫

∂R

�ϕ(x,y,t) · �n(x,y)ds,

we can rewrite the above equality as∫
R

[
c(x,y)ρ(x,y)ut(x,y,t) + (div �ϕ)(x,y,t) − q(x,y,t)

]
dA = 0.

In view of the arbitrariness of R, we conclude that for (x,y) in D and t > 0,

c(x,y)ρ(x,y)ut(x,y,t) = −(div �ϕ)(x,y,t) + q(x,y,t). (4.6)

Once again, we now use Fourier’s law of heat conduction, which in two
dimensions is

�ϕ(x,y,t) = −K0(x,y)(gradu)(x,y,t);

consequently, (4.6) becomes

c(x,y)ρ(x,y)ut(x,y,t) = div
(
K0(x,y)(gradu)(x,y,t)

)
+ q(x,y,t).

For a uniform body (c, ρ, and K0 are constants) with no internal sources
(q = 0), the last formula reduces to

ut(x,y,t) = k(divgradu)(x,y,t), k =
K0

cρ
= const,

or
ut(x,y,t) = k(Δu)(x,y,t), (x,y) in D, t > 0, (4.7)

where the differential operator Δ, defined for smooth functions v(x,y) by

(Δv)(x,y) = vxx(x,y) + vyy(x,y),

is called the Laplacian. Equality (4.7) is the two-dimensional heat (diffusion)
equation.

If the body contains sources, then (4.7) is replaced by its nonhomogeneous
counterpart

ut(x,y,t) = k(Δu)(x,y,t) + q(x,y,t), (x,y) in D, t > 0,

where, as before, q now incorporates the factor 1/(cρ).
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Initial condition. Here this takes the form

u(x,y,0) = f(x,y), (x,y) in D,

and represents the initial distribution of temperature in the body.

Boundary conditions. The main types of BCs are similar in nature to
those for a rod.

(i) When the temperature is prescribed on the boundary,

u(x,y,t) = α(x,y,t), (x,y) on ∂D, t > 0.

This is called a Dirichlet boundary condition.

(ii) If the flux through the boundary is prescribed, then

(gradu)(x,y,t) · �n(x,y) = β(x,y,t), (x,y) on ∂D, t > 0,

or, equivalently,

un(x,y,t) = β(x,y,t), (x,y) on ∂D, t > 0,

where �n is the unit outward normal to ∂D and un = ∂u/∂n. This is called a
Neumann boundary condition. In particular, when the boundary is insulated
we have

un(x,y,t) = 0, (x,y) on ∂D, t > 0.

(iii) Newton’s law of cooling takes the form

−K0un(x,y,t) = H
[
u(x,y,t) − U(x,y,t)

]
, (x,y) on ∂D, t > 0.

This is referred to as a Robin boundary condition.

Sometimes we may have one type of condition prescribed on some part
of the boundary, and another type on the remaining part.

Equilibrium temperature. An equilibrium (steady-state) temperature is
a time-independent solution u = u(x,y) of (4.7); in other words, it is a
function satisfying the Laplace equation

(Δu)(x,y) = 0, (x,y) in D,
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and a time-independent boundary condition, for example,

u(x,y) = α(x,y), (x,y) on ∂D.

If steady-state sources q(x,y) are present in the body, then the equilibrium
temperature satisfies the Poisson equation

(Δu)(x,y) = −1
k
q(x,y), (x,y) in D.

In what follows, when we discuss the Poisson equation—that is, the nonho-
mogeneous Laplace equation—we omit the factor −1/k on the right-hand
side, regarding it as incorporated in the source term q.

An equilibrium temperature may, or may not, exist.

4.11. Remarks. (i) Problems in three space variables are formulated sim-
ilarly, with u = u(x,y,z, t).

(ii) In polar coordinates x = r cosθ, y = r sinθ, for u = u(r,θ) we have

Δu = r−1(rur)r + r−2uθθ = urr + r−1ur + r−2uθθ.

(iii) In cylindrical coordinates x = r cosθ, y = r sinθ, z, the Laplacian of
u = u(r,θ,z) takes the form

Δu = r−1(rur)r + r−2uθθ + uzz.

(iv) In circularly (axially) symmetric problems the function u is indepen-
dent of θ, so

Δu = r−1(rur)r + uzz = urr + r−1ur + uzz.

(v) In spherical coordinates x = r cosθ sinϕ, y = r sinθ sinϕ, z = r cosϕ,
for u = u(r,θ,ϕ) we have

Δu = r−2(r2ur)r + (r2 sin2ϕ)−1uθθ + (r2 sinϕ)−1((sinϕ)uϕ)ϕ.

(vi) It is obvious that the Laplace and Poisson equations are linear.

(vii) The Laplace equation is the simplest example of a so-called elliptic
equation.
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4.12. Example. The equilibrium temperature distribution in a thin, uni-
form finite plate with sources, insulated upper and lower faces, and pre-
scribed temperature on the boundary is modeled by the BVP

(Δu)(x,y) = q(x,y), (x,y) in D, (PDE)

u(x,y) = α(x,y), (x,y) on ∂D, (BC)

where ∂D is a simple closed curve. The Laplacian is written either in Carte-
sian or in polar coordinates, depending on the geometry of the plate. When
polar coordinates are used, the nature of the ensuing PDE may require us
to consider additional “boundary” conditions, suggested by the physics of
the process.

4.13. Remark. A (classical) solution of the BVP in Example 4.12 has the
following properties:

(i) it is twice continuously differentiable in D and satisfies the PDE at
every point in D;

(ii) it is continuous up to the boundary ∂D of D and satisfies the BC at
every point of ∂D.

As mentioned in Remark 4.8(ii), a boundary data function with discon-
tinuities may generate a less smooth solution.

4.14. Theorem. If u is a solution of the BVP in Example 4.12, then u

attains its maximum and minimum values on the boundary ∂D of D.

Proof. We anticipate a result established in Section 5.3, according to which
(see Remark 5.16) the temperature at the center of a circular disk is equal
to the average of the temperature on its boundary circle.

Suppose that the maximum of the solution u occurs at a point P inside D.
Regarding P as the center of a small disk lying within D, we deduce that
the value of u at P is the average of all the values of u on the boundary
circle of that disk, and so it cannot be greater than all of those values. We
have thus arrived at a contradiction, which implies that u must attain its
maximum on the boundary ∂D. Considering v = −u, we also conclude that
u attains its minimum on ∂D.

This assertion is known as the maximum principle for the Laplace equa-
tion.
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4.15. Corollary. If a solution u of the BVP in Example 4.12 is identically
zero on ∂D, then u is also identically zero in D.

Proof. By Theorem 4.14, the maximum and minimum of u are zero, since
they occur at points on ∂D. Hence, u is zero in D.

4.16. Theorem. The BVP in Example 4.12 has at most one solution.

Proof. Suppose that there are two solutions u1 and u2. Because of the
linearity of the PDE and BC, the difference u = u1 − u2 is a solution of the
fully homogenous BVP

(Δu)(x,y) = 0, (x,y) in D,

u(x,y) = 0, (x,y) on ∂D;

therefore, by Corollary 4.15, u = 0, which means that u1 and u2 are the
same function.

4.17. Definition. A solution of a BVP (IVP, IBVP) is said to depend
continuously on the data (or to be stable) if a small variation in the data
(BCs, ICs, nonhomogeneous term in the PDE) induces only a small variation
in the solution.

4.18. Theorem. The solution of the BVP in Example 4.12 depends con-
tinuously on the boundary data.

Proof. Consider the BVPs

(Δu)(x,y) = q(x,y), (x,y) in D,

u(x,y) = α(x,y), (x,y) on ∂D,

and
(Δv)(x,y) = q(x,y), (x,y) in D,

v(x,y) = α(x,y) + ε(x,y), (x,y) on ∂D,

where ε is a small perturbation of the boundary function α. Then, taking
the linearity of the PDE and BC into account, we see that w = u−v satisfies

(Δw)(x,y) = 0, (x,y) in D,

w(x,y) = ε(x,y), (x,y) on ∂D.
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By Theorem 4.14,

minε(x,y) ≤ w(x,y) = u(x,y) − v(x,y) ≤ maxε(x,y), (x,y) in D;

that is, the perturbation of the solution u is small.

4.19. Remark. A BVP (IVP, IBVP) is said to be well posed if it has
a unique solution that depends continuously on the data. In the following
chapters we construct a solution for the BVP in Example 4.12. According to
Theorem 4.16, this will be the only solution of that problem. Furthermore,
by Theorem 4.18, this solution depends continuously on the boundary data.
Thus, we conclude that the Dirichlet problem for the Laplace equation is
well posed.

4.3. The Wave Equation

Vibrating strings. Consider the motion of a tightly stretched elastic
string, in which the horizontal displacement of the points of the string is
negligible (see Fig. 4.3).

F�x,t�

F�x�	x,t�

x x�	x

Θ�x�	x,t�

Θ�x,t�

Fig. 4.3. Arbitrary small segment of an elastic string.

We define the following physical parameters for the string:

L : length;

u(x,t) : vertical displacement;

ρ0(x) : mass density (mass per unit length);

F (x,t) : tension;

q(x,t) : vertical component of the body force per unit mass.
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Assuming that the vertical displacement from the equilibrium position
(segment [0,L] along the x-axis) is small and writing Newton’s second law

force = mass × acceleration

in vertical projection for the string segment between two close points cor-
responding to x and x+ Δx, we obtain the approximate equality

ρ0(x)(Δx)utt(x,t) ∼= F (x+ Δx,t)sin
(
θ(x + Δx,t)

)
− F (x,t)sin

(
θ(x,t)

)
+ ρ0(x)(Δx)q(x,t).

If we divide by Δx and then let Δx→ 0, we arrive at the equality

ρ0(x)utt(x,t) =
[
F (x,t)sin

(
θ(x,t)

)]
x

+ ρ0(x)q(x,t). (4.8)

For a small angle θ, the slope of the string satisfies

ux = tanθ =
sinθ
cosθ

=
sinθ

1 − 1
2θ

2 + · · ·
∼= sinθ,

so we can rewrite (4.8) in the form

ρ0(x)utt(x,t) =
(
F (x,t)ux(x,t)

)
x

+ ρ0(x)q(x,t). (4.9)

Assuming that the string is perfectly elastic (that is, when θ is small we
may take F (x,t) = F0 = const) and homogeneous (ρ0 = const), and that
the body force is negligible compared to tension (q = 0), we see that (4.9)
becomes

utt(x,t) = c2uxx(x,t), 0 < x < L, t > 0, (4.10)

where c2 = F0/ρ0. This is the one-dimensional wave equation, in which
c has the dimensions of velocity. If the body force is not negligible, then
(4.10) is replaced by

utt(x,t) = c2uxx(x,t) + q(x,t), 0 < x < L, t > 0.

Initial conditions. Since (4.10) is of second order with respect to time,
we need two initial conditions. These usually are

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L;

that is, we are prescribing the initial position and velocity of the points in
the string.
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Boundary conditions. As in the case of the heat equation, there are
three main types of BCs for (4.10) that are physically meaningful.

(i) The displacement may be prescribed at an endpoint; for example,

u(L,t) = β(t).

(ii) An endpoint may be free (no vertical tension):

F0 sinθ ∼= F0 tanθ = F0ux = 0,

so we may have a condition of the form

ux(0, t) = 0, t > 0.

(iii) An endpoint may have an elastic attachment, described by

F0ux(0, t) = ku(0, t) or F0ux(L,t) = −ku(L,t), t > 0,

where k = const.

4.20. Remarks. (i) There is an obvious analogy between the BCs associ-
ated with the wave equation and those associated with the heat equation.

(ii) The condition prescribed at one endpoint may be different from that
prescribed at the other.

(iii) It is clear that the wave equation is linear.

(iv) The one-dimensional wave equation is the simplest example of a linear
second-order hyperbolic equation.

The model. As we have seen, the vibrations of an elastic string are gov-
erned by the wave equation and appropriate BCs and ICs.

4.21. Example. The IBVP for a vibrating string with fixed endpoints
when the effect of the body force is taken into account is of the form

utt(x,t) = c2uxx(x,t) + q(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = 0, u(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L, (ICs)

where q, f , and g are given functions.
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4.22. Example. If the string in Example 4.21 has an elastic attachment
at its near endpoint, a free far endpoint, and a negligible body force, then
the corresponding IBVP is

utt(x,t) = c2uxx(x,t), 0 < x < L, t > 0, (PDE)

ux(0, t) − ku(0, t) = 0, ux(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L, (ICs)

where k is a known positive constant.

4.23. Remark. Let the domain G and its boundary lines ∂Gx and ∂Gt be
as defined in Example 4.7. A (classical) solution u of the IBVP in Example
4.21 has the following properties:

(i) it is twice continuously differentiable with respect to x and t in G and
satisfies the PDE at every point in G;

(ii) it is continuous up to ∂Gx and satisfies the BCs at every point on
∂Gx;

(iii) it is continuous together with its first-order time derivative up to ∂Gt

and satisfies the ICs at every point on ∂Gt.

As in the case of the heat equation and the Laplace equation, the presence
of jump discontinuities in the data functions leads to a solution with reduced
smoothness.

4.24. Theorem. If the functions q, f , and g are such that u and all its
first-order and second-order derivatives are continuous up to the boundary of
G, including the “corner” points (0,0) and (L,0), then the IBVP in Example
4.21 has at most one solution.

Proof. Suppose that the given IBVP has two solutions u1 and u2. Then
their difference u = u1 − u2 satisfies the fully homogeneous IBVP

utt(x,t) = c2uxx(x,t), 0 < x < L, t > 0,

u(0, t) = 0, u(L,t) = 0, t > 0,

u(x,0) = 0, ut(x,0) = 0, 0 < x < L.

Multiplying the PDE by ut, integrating the result with respect to x over
[0,L] and with respect to t over [0,T ], where T > 0 is an arbitrarily fixed
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number, using integration by parts, and taking the BCs and the smoothness
properties of u into account, we see that

0 =

T∫
0

L∫
0

(uttut − c2uxxut)dxdt

=

T∫
0

L∫
0

(uttut + c2uxuxt)dxdt − c2
T∫

0

[
uxut

]x=L

x=0
dt

=
1
2

T∫
0

L∫
0

(u2
t + c2u2

x)t dxdt =
1
2

L∫
0

[
u2

t + c2u2
x

]t=T

t=0
dx;

hence, for any T > 0,

L∫
0

[
u2

t (x,T ) + c2u2
x(x,T )

]
dx =

L∫
0

[
u2

t (x,0) + c2u2
x(x,0)

]
dx,

which implies that

V (t) =

L∫
0

[
u2

t (x,t) + c2u2
x(x,t)

]
dx = κ = const ≥ 0, t ≥ 0.

From the ICs and the smoothness properties of u it follows that V (0) = 0,
so κ = 0; in other words, V = 0. Since the integrand in V is nonnegative,
we see that this is possible if and only if

ut(x,t) = 0, ux(x,t) = 0, 0 ≤ x ≤ L, t ≥ 0.

Consequently, u is constant in G and on its boundary lines. Since u is zero
on these lines, we conclude that u = 0; thus, u1 and u2 coincide.

4.25. Remark. (i) As for the heat and Laplace equations, in what fol-
lows we construct a solution for the IBVP mentioned in Example 4.21. By
Theorem 4.24, this will be the only solution of that problem.

(ii) Uniqueness can also be proved for the solutions of IBVPs with other
BCs.
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(iii) The substitution

ξ =
1
L
x, τ =

c

L
t, u(x,t) = u(Lξ,Lτ/c) = v(ξ,τ)

reduces the wave equation to

vττ (ξ,τ) = vξξ(ξ,τ), 0 < ξ < 1, τ > 0.

It is mostly this simpler form that we will use in applications.

4.4. Other Equations

Below is a list of other linear partial differential equations that occur in im-
portant mathematical models. Their classification as parabolic, hyperbolic,
or elliptic is explained in Chapter 11.

Brownian motion. The function u(x,t) that specifies the probability that
a particle undergoing one-dimensional motion in a fluid is located at point
x at time t satisfies the second-order parabolic PDE

ut(x,t) = auxx(x,t) − bux(x,t),

where the coefficients a, b > 0 are related to the average displacement of the
particle per unit time and the variance of the observed displacement around
the average.

Diffusion–convection problems. The one-dimensional case is described
by the second-order parabolic PDE

ut(x,t) = kuxx(x,t) − aux(x,t) + bu(x,t),

where u(x,t) is the temperature and the coefficients k, a > 0 and b are
expressed in terms of the physical properties of the medium, the heat flow
rate, and the strength of the source.

When a = 0 and b > 0, the above equation describes a diffusion process
with a chain reaction.

Stock market prices. The price V (S,t) of a derivative on the stock market
is the solution of the second-order parabolic PDE

Vt(S,t) + 1
2 σ

2S2VSS(S,t) + rSVS(S,t) − rV (S,t) = 0,
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where S is the price of the stock, σ is the volatility of the stock, r is the con-
tinuously compounded risk-free interest per annum, and time t is measured
in years. This is known as the Black–Scholes equation.

Evolution of a quantum state. In quantum mechanics, the wave func-
tion ψ(x,t) that characterizes the one-dimensional motion of a particle under
the influence of a potential V (x) satisfies the Schrödinger equation

i�ψt(x,t) = − �
2

2m
ψxx(x,t) + V (x)ψ(x,t).

This is a second-order parabolic PDE where � is the reduced Planck con-
stant, m is the mass of the particle, and i2 = −1.

Motion of a quantum scalar field. The wave function ψ(x,y,z, t) of a
free moving particle in relativistic quantum mechanics is the solution of the
(second-order hyperbolic) Klein–Gordon equation

ψtt(x,y,z, t) = c2Δψ(x,y,z, t) − m2c4

�2
ψ(x,y,z, t),

where c is the speed of light.
The one-dimensional version of this equation is of the form

utt(x,t) = c2uxx(x,t) − au(x,t),

where a = const > 0.

Loss transmission line. The current and voltage in the propagation of
signals on a telegraph line satisfy the second-order hyperbolic PDE

autt(x,t) + but(x,t) + cu(x,t) = uxx(x,t),

where the coefficients a, b > 0 and c ≥ 0 are expressed in terms of the re-
sistance, inductance, capacitance, and conductance characterizing the line.
This is known as the telegraph (or telegrapher’s) equation.

Dissipative waves. In the one-dimensional case, the propagation of such
waves is governed by a second-order hyperbolic PDE of the form

utt(x,t) + aut(x,t) + bu(x,t) = c2uxx(x,t) − dux(x,t),

where the coefficients a, b, d ≥ 0 are not all zero and c > 0.
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Transverse vibrations of a rod. The deflection u(x,t) of a generic point
in the rod satisfies the fourth-order PDE

utt(x,t) + c2uxxxx(x,t) = 0,

where c is a physical constant related to the rigidity of the rod material.

Scattered waves. The Helmholtz equation

Δu(x,y,z) + k2u(x,y,z) = 0,

where k = const, plays an important role in the study of scattering of
acoustic, electromagnetic, and elastic waves. It is a second-order elliptic
PDE.

The equation
Δu(x,y,z) − k2u(x,y,z) = 0

is called the modified Helmholtz equation.

Steady-state convective heat. In the two-dimensional case, the tem-
perature distribution u(x,y) governing this process satisfies a second-order
elliptic PDE of the form

Δu(x,y) − aux(x,y) − buy(x,y) + cu(x,y) = 0,

where the coefficients a, b ≥ 0, not both zero, and c are related to the ther-
mal properties of the medium, the heat flow rates in the x and y directions,
and the strength of the heat source.

Plane problems in continuum mechanics. The Airy stress function
in plane elasticity and the stream function in the slow flow of a viscous
incompressible fluid are solutions of the elliptic fourth-order biharmonic
equation

ΔΔu(x,y) = uxxxx(x,y) + 2uxxyy(x,y) + uyyyy(x,y) = 0.

Plane transonic flow. The transonic flow of a compressible gas is de-
scribed by the Euler–Tricomi equation

uxx(x,y) = xuyy(x,y),

where u(x,y) is a function of speed. This is a second-order PDE of mixed
type: it is hyperbolic for x > 0, elliptic for x < 0, and parabolic for x = 0.
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Exercises

(1) Show that Theorem 4.9 also holds for the IBVP in Example 4.4 with
the BCs replaced by

(i) ux(0, t) − hu(0, t) = α(t), u(L,t) = β(t), t > 0;

(ii) ux(0, t) = α(t), ux(L,t) + hu(L,t) = β(t), t > 0,

where α and β are given functions and h = const > 0.

(2) Verify the statements in Remarks 4.10(iv) and 4.25(iii).

(3) Show that any (classical) solution of the Poisson equation Δu = q in D
which is continuously differentiable, rather than merely continuous, up
to the boundary ∂D satisfies∫

D

(u2
x + u2

y)dA+
∫
D

uqdA =
∫

∂D

uunds.

Using this formula, show that

(i) each of the Dirichlet and Robin BVPs for the Poisson equation in
D have at most one solution of this type;

(ii) any two such solutions of the Neumann BVP for the Poisson equa-
tion in D differ by a constant.

(4) Show that Theorem 4.24 also holds for the IBVP in Example 4.21 with
h = const > 0 and the BCs replaced by

(i) ux(0, t) − hu(0, t) = 0, u(L,t) = 0, t > 0;

(ii) ux(0, t) = 0, ux(L,t) + hu(L,t) = 0, t > 0.

In (5)–(8) find real numbers α and β such that the function substitution
u(x,t) = eαx+βtv(x,t) reduces the given diffusion–convection equation to
the heat equation for v.

(5) ut(x,t) = 2uxx(x,t) − 3ux(x,t) − u(x,t).
(6) ut(x,t) = uxx(x,t) − 6ux(x,t) − 2u(x,t).
(7) ut(x,t) = 1

2 uxx(x,t) − 4ux(x,t) − 2u(x,t).
(8) ut(x,t) = 3uxx(x,t) − 2ux(x,t) − 3u(x,t).
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In (9)–(12) determine if there are real numbers α and β such that the func-
tion substitution u(x,t) = eαx+βtv(x,t) in the given dissipative wave equa-
tion eliminates (i) both first-order derivatives; (ii) the unknown function
and its first-order t-derivative; (iii) the unknown function and its first-order
x-derivative. (In all cases, the coefficients of the reduced equation must sat-
isfy the restrictions mentioned in Section 4.4.) When such a substitution
exists, write out the reduced equation.

(9) utt(x,t) + ut(x,t) + u(x,t) = uxx(x,t) − 2ux(x,t).
(10) utt(x,t) + 3ut(x,t) + u(x,t) = 2uxx(x,t) − ux(x,t).
(11) utt(x,t) + 2ut(x,t) + 1

2 u(x,t) = 2uxx(x,t) −√
2ux(x,t).

(12) utt(x,t) + 2ut(x,t) + 2u(x,t) = uxx(x,t) − ux(x,t).

In (13)–(16) find real numbers α and β such that the function substitution
u(x,y) = eαx+βyv(x,y) reduces the given steady-state convective heat equa-
tion to the Helmholtz (modified Helmholtz) equation. In each case, write
out the reduced equation.

(13) uxx(x,y) + uyy(x,y) − 2ux(x,y) − 4uy(x,y) + 7u(x,y) = 0.
(14) uxx(x,y) + uyy(x,y) − ux(x,y) − 2uy(x,y) − u(x,y) = 0.
(15) uxx(x,y) + uyy(x,y) − 3ux(x,y) − uy(x,y) + 2u(x,y) = 0.
(16) uxx(x,y) + uyy(x,y) − 2ux(x,y) − 3uy(x,y) + 4u(x,y) = 0.



Chapter 5
The Method of Separation
of Variables

Separation of variables is one of the oldest and most efficient solution tech-
niques for a certain class of PDE problems. Below we show it in application
to initial boundary value problems for the heat and wave equations, and to
boundary value problems for the Laplace equation.

5.1. The Heat Equation

Rod with zero temperature at the endpoints. Consider the IBVP

ut(x,t) = kuxx(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = 0, u(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), 0 < x < L, (IC)

where f �= 0. We remark that the PDE and BCs are linear and homogeneous
and seek a solution of the form

u(x,t) = X(x)T (t).

Substituting into the PDE, we obtain the equality

X(x)T ′(t) = kX ′′(x)T (t).

It is clear that neither X nor T can be the zero function: if either of them
were, then so would u, which is impossible, because the zero solution does
not satisfy the nonhomogeneous IC. Hence, we may divide the above equal-
ity by kX(x)T (t) to arrive at

1
k

T ′(t)
T (t)

=
X ′′(x)
X(x)

.

Since the left-hand side above is a function of t and the right-hand side a
function of x alone, this equality is possible if and only if both sides are
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equal to one and the same constant, say, −λ. Thus, we must have

1
k

T ′(t)
T (t)

=
X ′′(x)
X(x)

= −λ,

where λ is called the separation constant. This leads to separate equations
for the functions X and T :

X ′′(x) + λX(x) = 0, 0 < x < L, (5.1)

T ′(t) + λkT (t) = 0, t > 0. (5.2)

From the first BC we see that

u(0, t) = X(0)T (t) = 0 for all t > 0.

As T �= 0, it follows that

X(0) = 0. (5.3)

Similarly, the second BC yields

X(L) = 0. (5.4)

We are now ready to find X and T . We want nonzero functions X that
satisfy the regular Sturm–Liouville problem (5.1), (5.3), and (5.4), in other
words, the eigenfunctions Xn corresponding to the eigenvalues λn, both
computed in Example 3.16:

λn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . . (5.5)

For each λn, from (5.2) we find the corresponding time component

Tn(t) = e−k(nπ/L)2t. (5.6)

We have taken the arbitrary constant of integration equal to 1 since these
functions are used in the next stage with arbitrary numerical coefficients.

Combining (5.5) and (5.6), we conclude that all functions of the form

un(x,t) = Xn(x)Tn(t) = sin
nπx

L
e−k(nπ/L)2t, n = 1,2, . . . ,
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satisfy both the PDE and the BCs. By the principle of superposition, so
does any finite linear combination

N∑
n=1

bnun(x,t) =
N∑

n=1

bn sin
nπx

L
e−k(nπ/L)2t, (5.7)

where bn are arbitrary numbers. The IC is satisfied by such an expression
if

f(x) =
N∑

n=1

bn sin
nπx

L
.

But this is impossible unless f is a finite linear combination of the eigen-
functions, which, in general, is not the case. This implies that (5.7) is not a
good representation for the solution u(x,t) of the IBVP. However, we recall
(see Section 2.2) that if f is piecewise smooth, then it can be written as an
infinite linear combination of the eigenfunctions (its Fourier sine series):

f(x) =
∞∑

n=1

bn sin
nπx

L
, 0 < x < L, (5.8)

where, by (2.10),

bn =
2
L

L∫
0

f(x)sin
nπx

L
dx, n = 1,2, . . . . (5.9)

Therefore, the solution is given by the infinite series

u(x,t) =
∞∑

n=1

bn sin
nπx

L
e−k(nπ/L)2t (5.10)

with the coefficients bn computed from (5.9).

5.1. Example. Consider the IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = sin(3πx) − 2sin(5πx), 0 < x < 1.

Here k = 1, L = 1, and the function on the right-hand side in the IC is a
linear combination of the eigenfunctions. Using (5.8) and Theorem 3.20(ii),
we find that

b3 = 1, b5 = −2, bn = 0 (n �= 3,5);
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so, by (5.10), the solution of the problem is

u(x,t) = sin(3πx)e−9π2t − 2sin(5πx)e−25π2t.

Equally, this result can be obtained from (5.9) and (5.10).

5.2. Example. To find the solution of the IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = x, 0 < x < 1,

we first use (5.9) with f(x) = x and L = 1 and integration by parts to
compute the coefficients bn:

bn = 2

1∫
0

xsin(nπx)dx = (−1)n+1 2
nπ

, n = 1,2, . . . ;

then, by (5.10),

u(x,t) =
∞∑

n=1

(−1)n+1 2
nπ

sin(nπx)e−(nπ)2t

is the solution of the IBVP.

Rod with insulated endpoints. The heat conduction problem for a uni-
form rod with insulated endpoints is described by the IBVP

ut(x,t) = kuxx(x,t), 0 < x < L, t > 0, (PDE)

ux(0, t) = 0, ux(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), 0 < x < L. (IC)

Since the PDE and BCs are linear and homogeneous, we again seek a solu-
tion of the form

u(x,t) = X(x)T (t).

Just as in the case of the rod with zero temperature at the endpoints, from
the PDE and BCs we now find that X and T satisfy, respectively,

X ′′(x) + λX(x) = 0, 0 < x < L,

X ′(0) = 0, X ′(L) = 0,
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and

T ′(t) + kλT (t) = 0, t > 0,

where λ is the separation constant.
The nonzero solutions X are the eigenfunctions of the above Sturm–

Liouville problem, which were computed in Example 3.17:

λn =
(
nπ

L

)2

, Xn(x) = cos
nπx

L
, n = 0,1,2, . . . . (5.11)

Integrating the equation satisfied by T with λ = λn, we obtain the associ-
ated time components

Tn(t) = e−k(nπ/L)2t. (5.12)

In view of (5.11), (5.12), and the argument used in the preceding case, we
now expect the solution of the IBVP to have the series representation

u(x,t) =
1
2
a0 +

∞∑
n=1

an cos
nπx

L
e−k(nπ/L)2t, (5.13)

where each term satisfies the PDE and the BCs. The IC is satisfied if

u(x,0) = f(x) =
1
2
a0 +

∞∑
n=1

an cos
nπx

L
, 0 < x < L.

This shows that 1
2 a0 and an are the Fourier cosine series coefficients of f ,

given by (2.11):

an =
2
L

L∫
0

f(x)cos
nπx

L
dx, n = 0,1,2, . . . . (5.14)

Therefore, (5.13) with the an computed by means of (5.14) is the solution
of the IBVP.

5.3. Example. The solution of the IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = x, 0 < x < 1,
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is obtained from (5.13) and (5.14) with L = 1 and f(x) = x. Specifically,

a0 = 2

1∫
0

xdx = 1,

an = 2

1∫
0

xcos(nπx)dx =
[
(−1)n − 1

] 2
n2π2

, n = 1,2, . . . ;

so, as in Example 5.2,

u(x,t) =
1
2

+
∞∑

n=1

[
(−1)n − 1

] 2
n2π2

cos(nπx)e−n2π2t.

Rod with mixed homogeneous boundary conditions. The method of
separation of variables can also be used in the case where one endpoint is
held at zero temperature while the other one is insulated.

5.4. Example. Consider the IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = 1, 0 < x < 1.

Since the PDE and BCs are linear and homogeneous, we seek a solution of
the form

u(x,t) = X(x)T (t).

Proceeding as in the other cases, from the PDE and BCs we find that X
and T satisfy, respectively,

X ′′(x) + λX(x) = 0, 0 < x < 1,

X(0) = 0, X ′(1) = 0,
(5.15)

and

T ′(t) + λT (t) = 0, t > 0,

where λ is the separation constant.
To find X , we go back to the Rayleigh quotient (3.6) for the regular

Sturm–Liouville problem (5.15). As in Example 3.16,

[
p(x)f(x)f ′(x)

]b

a
=

[
X(x)X ′(x)

]1

0
= 0,
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and we arrive at inequality (3.7), from which, in view of the BCs in (5.15), we
deduce that λ > 0. Hence, the general solution of the differential equation
in (5.15) is

X(x) = C1 cos(
√
λx) + C2 sin(

√
λx), C1, C2 = const.

Since X(0) = 0, it follows that C1 = 0. Using the condition X ′(1) = 0, we
now find that cos

√
λ = 0; therefore,

√
λ =

(2n− 1)π
2

, n = 1,2, . . . .

This means that the eigenvalue-eigenfunction pairs of (5.15) are

λn =
(2n− 1)2π2

4
, Xn(x) = sin

(2n− 1)πx
2

, n = 1,2, . . . ,

and that the corresponding time components are

Tn(t) = e−(2n−1)2π2t/4.

Consequently, the functions

un(x,t) = Xn(x)Tn(t) = sin
(2n− 1)πx

2
e−(2n−1)2π2t/4, n = 1,2, . . . ,

satisfy the PDE and the BCs. Considering the usual arbitrary linear com-
bination of all the (countably many) functions un, that is,

u(x,t) =
∞∑

n=1

cnun(x,t) =
∞∑

n=1

cn sin
(2n− 1)πx

2
e−(2n−1)2π2t/4, (5.16)

we see that the IC is satisfied if

u(x,0) = 1 =
∞∑

n=1

cn sin
(2n− 1)πx

2
. (5.17)

In other words, (5.16) is the solution of the given IBVP if cn are the coef-
ficients of the generalized Fourier series for the function f(x) = 1. These
coefficients are computed by means of (3.10) with, according to (5.17),

u(x) = 1, σ(x) = 1, fn(x) = sin
(2n− 1)πx

2
.
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Direct calculation shows that

1∫
0

sin2 (2n− 1)πx
2

dx =
1
2
, n = 1,2, . . . ,

so

cn = 2

1∫
0

sin
(2n− 1)πx

2
dx =

4
(2n− 1)π

, n = 1,2, . . . .

Thus, the solution of the IBVP has the series representation

u(x,t) =
∞∑

n=1

4
(2n− 1)π

sin
(2n− 1)πx

2
e−(2n−1)2π2t/4.

5.5. Example. The solution of the IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = x, 0 < x < 1,

is constructed just as in Example 5.4 except that here the BCs and the
Rayleigh quotient yield the eigenvalue-eigenfunction pairs

λn =
(2n− 1)2π2

4
, Xn(x) = cos

(2n− 1)πx
2

, n = 1,2, . . . .

Since
1∫
0

cos2
(
(2n − 1)πx/2

)
dx = 1/2, n = 1,2, . . . , the coefficients of the

generalized Fourier series for the IC function, given by (3.10) with u(x) = x,
σ(x) = 1, k = 1, and L = 1, are

cn = 2

1∫
0

xcos
(2n− 1)πx

2
dx

= (−1)n+1 4
(2n− 1)π

− 8
(2n− 1)2π2

, n = 1,2, . . . .

Consequently, the solution of the IBVP is

u(x,t) =
∞∑

n=1

[
(−1)n+1 4

(2n− 1)π
− 8

(2n− 1)2π2

]

× cos
(2n− 1)πx

2
e−(2n−1)2π2t/4.
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Rod with an endpoint in a zero-temperature medium. Consider the
problem of heat flow in a uniform rod without internal sources, when the
near endpoint is kept at zero temperature and the far endpoint is kept in
open air of zero temperature. The corresponding IBVP (see Section 4.1) is

ut(x,t) = kuxx(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = 0, ux(L,t) + hu(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), 0 < x < L, (IC)

where h = const > 0.
Since the PDE and BCs are linear and homogeneous, we use separation

of variables and seek a solution of the form

u(x,t) = X(x)T (t).

In the usual way, from the PDE and BCs we find thatX satisfies the regular
S–L problem

X ′′(x) + λX(x) = 0, 0 < x < L,

X(0) = 0, X ′(L) + hX(L) = 0,
(5.18)

and that T is the solution of the equation

T ′(t) + kλT (t) = 0, t > 0.

The eigenvalue-eigenfunction pairs of (5.18) were computed in Example
3.18:

λn =
(
ζn
L

)2

, Xn(x) = sin
ζnx

L
, n = 1,2, . . . ,

where ζn are the positive roots of the equation

tanζ = −ζ/(hL).

Hence,

Tn(t) = e−k(ζn/L)2t,

so we expect the solution of the IBVP to have a series representation of the
form

u(x,t) =
∞∑

n=1

cnXn(x)Tn(t) =
∞∑

n=1

cn sin
ζnx

L
e−k(ζn/L)2t. (5.19)
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The coefficients cn are found from the IC, according to which

u(x,0) = f(x) =
∞∑

n=1

cn sin
ζnx

L
.

Since the eigenfunctions of (5.18) are orthogonal on [0,L], the cn are com-
puted by means of (3.10):

cn =

L∫
0

f(x)sin(ζnx/L)dx

L∫
0

sin2(ζnx/L)dx
, n = 1,2, . . . . (5.20)

Therefore, the solution of the IBVP is (5.19) with the cn given by (5.20).

5.6. Example. Consider the IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) + u(1, t) = 0, t > 0,

u(x,0) =
{

0, 0 < x < 1/2,
1, 1/2 < x < 1.

From Examples 3.18 and 3.22 with L = h = 1 we know that the eigenvalue-
eigenfunction pairs associated with this problem are

λn = ζ2
n, Xn(x) = sin(ζnx), n = 1,2, . . . ,

where, to four decimal places,

ζ1 = 2.0288, ζ2 = 4.9132, ζ3 = 7.9787, ζ4 = 11.0855, ζ5 = 14.2074.

Using (5.20) and f(x) =
{

0, 0 < x < 1/2,
1, 1/2 < x < 1, we now compute the coefficients

cn to the same degree of accuracy:

c1 = 0.8001, c2 = −0.3813, c3 = −0.1326, c4 = 0.1160, c5 = 0.1053.

Consequently, by (5.19), we obtain the approximate solution

u(x,t) = 0.8001sin(2.0288x)e−4.1160t − 0.3813sin(4.9132x)e−24.1395t

− 0.1326sin(7.9787x)e−63.6597t + 0.1160sin(11.0855x)e−122.8883t

+ 0.1053sin(14.2074x)e−201.8502t + · · · .
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Heat conduction in a thin uniform circular ring. Physically, the ring
of circumference 2L shown in Fig. 5.1 can be regarded as a rod of length
2L that, for continuity reasons, has the same temperature and heat flux at
the two endpoints x = −L and x = L.

0�L L

L�ΠR

Fig. 5.1. Representation of a circular ring as a rod.

Thus, the corresponding IBVP is

ut(x,t) = kuxx(x,t), −L < x < L, t > 0, (PDE)

u(−L,t) = u(L,t), ux(−L,t) = ux(L,t), t > 0, (BCs)

u(x,0) = f(x), −L < x < L. (IC)

The PDE and BCs are homogeneous, so, as before, we seek a solution of
the form u(x,t) = X(x)T (t). Then from the PDE and BCs we find by the
standard argument that

X ′′(x) + λX(x) = 0, −L < x < L,

X(−L) = X(L), X ′(−L) = X ′(L),
(5.21)

and
T ′(t) + λkT (t) = 0, t > 0. (5.22)

For a nonzero solution u of the IBVP, X must be a nonzero solution of the
periodic Sturm–Liouville problem (5.21), which was discussed in Example
3.26. The eigenvalues of this S–L problem are

λ0 = 0, λn =
(
nπ

L

)2

, n = 1,2, . . . ,
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with corresponding eigenfunctions

X0(x) =
1
2
, X1n(x) = cos

nπx

L
, X2n(x) = sin

nπx

L
, n = 1,2, . . . .

Therefore, the time components given by (5.22) with λ = λn are

Tn(t) = Ce−k(nπ/L)2t, C = const,

so we consider a series solution of the form

u(x,t) =
1
2
a0 +

∞∑
n=1

[
anX1n(x) + bnX2n(x)

]
Tn(t)

=
1
2
a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
e−k(nπ/L)2t. (5.23)

The IC requires that

u(x,0) = f(x)

=
1
2
a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, −L < x < L.

As mentioned in Example 3.26, the coefficients of this full Fourier series of
f are computed by means of formulas (2.7)–(2.9):

an =
1
L

L∫
−L

f(x)cos
nπx

L
dx, n = 0,1,2, . . . ,

bn =
1
L

L∫
−L

f(x)sin
nπx

L
dx, n = 1,2, . . . .

(5.24)

Consequently, the solution of the IBVP is given by (5.23) and (5.24).

5.7. Example. Consider the IBVP

ut(x,t) = uxx(x,t), −1 < x < 1, t > 0,

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t), t > 0,

u(x,0) = x+ 1, −1 < x < 1.
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Here L = 1 and f(x) = x+ 1, so, by (5.24),

a0 =

1∫
−1

(x+ 1)dx = 2,

an =

1∫
−1

(x+ 1)cos(nπx)dx = 0,

bn =

1∫
−1

(x+ 1)sin(nπx)dx = (−1)n+1 2
nπ

.

Hence, by (5.23), the solution of the IBVP is

u(x,t) = 1 +
∞∑

n=1

(−1)n+1 2
nπ

sin(nπx)e−n2π2t.

5.2. The Wave Equation

Generally speaking, the method of separation of variables is applied to
IBVPs for the wave equation in much the same way as for the heat equa-
tion. Here, however, the time component satisfies a second-order ODE,
which introduces a second IC.

String with fixed endpoints. We know from Section 4.3 that the corre-
sponding IBVP is

utt(x,t) = c2uxx(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = 0, u(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L. (ICs)

Since, as in the earlier problems, the PDE and BCs are linear and homoge-
neous, we seek a solution of the form

u(x,t) = X(x)T (t),

where, as in the case of the heat equation, neither X nor T can be the zero
function. Replacing this in the PDE, we obtain

X(x)T ′′(t) = c2X ′′(x)T (t),
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which, divided by c2X(x)T (t), yields

1
c2
T ′′(t)
T (t)

=
X ′′(x)
X(x)

= −λ, (5.25)

where λ = const is the separation constant. At the same time, it can be
seen that the BCs lead to

X(0) = 0, X(L) = 0;

hence, X satisfies

X ′′(x) + λX(x) = 0, 0 < x < L,

X(0) = 0, X(L) = 0.

This regular S–L problem was solved in Example 3.16, where it was shown
that its eigenvalue-eigenfunction pairs are

λn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . . (5.26)

From (5.25) we deduce that for each eigenvalue λn we obtain a function
Tn that satisfies the equation

T ′′
n (t) + c2λnTn(t) = 0, t > 0,

whose general solution (since λn > 0) is

Tn(t) = b1n cos
nπct

L
+ b2n sin

nπct

L
, b1n, b2n = const. (5.27)

In view of (5.26) and (5.27), we assume that the solution of the IBVP has
the series representation

u(x,t) =
∞∑

n=1

Xn(x)Tn(t)

=
∞∑

n=1

sin
nπx

L

(
b1n cos

nπct

L
+ b2n sin

nπct

L

)
. (5.28)
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Each term of this series satisfies the PDE and the BCs. To satisfy the
ICs, we set t = 0 in (5.28) and in the expression of ut(x,t) obtained by
differentiating (5.28) term by term:

u(x,0) = f(x) =
∞∑

n=1

b1n sin
nπx

L
,

ut(x,0) = g(x) =
∞∑

n=1

b2n
nπc

L
sin

nπx

L
.

We see that the numbers b1n and b2n(nπc)/L are the Fourier sine series
coefficients of f and g, respectively; so, by (2.10),

b1n =
2
L

L∫
0

f(x)sin
nπx

L
dx, n = 1,2, . . . ,

b2n =
2
nπc

L∫
0

g(x)sin
nπx

L
dx, n = 1,2, . . . .

(5.29)

Therefore, the solution of the IBVP is given by (5.28) with the b1n and b2n

computed from (5.29).

5.8. Remark. The terms in the expansion of u are called normal modes
of vibration. Solutions of this type are called standing waves.

5.9. Example. We notice that in the IBVP

utt(x,t) = uxx(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = 3sin(πx) − 2sin(3πx),

ut(x,0) = 4π sin(2πx), 0 < x < 1,

the functions f and g are linear combinations of the eigenfunctions. Setting
c = 1 and L = 1 in their eigenfunction expansions above, from Theorem
3.20(ii) we deduce that

b11 = 3, b13 = −2, b1n = 0 (n �= 1,3), b22 = 2, b2n = 0 (n �= 2).

Hence, by (5.28), the solution of the IBVP is

u(x,t) = 3sin(πx)cos(πt) − 2sin(3πx)cos(3πt) + 2sin(2πx)sin(2πt).
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5.10. Example. If the initial conditions in the IBVP in Example 5.9 are
replaced by

u(x,0) =
{
x, 0 < x ≤ 1/2,
1 − x, 1/2 < x < 1,

ut(x,0) = 0, 0 < x < 1,

then, using (5.29) (with c = 1 and L = 1) and integration by parts, we find
that

b1n = 2
{ 1/2∫

0

f(x)sin(nπx)dx +

1∫
1/2

f(x)sin(nπx)dx
}

= 2
{ 1/2∫

0

xsin(nπx)dx +

1∫
1/2

(1 − x)sin(nπx)dx
}

=
4

n2π2
sin

nπ

2
,

b2n =
2
nπ

1∫
0

g(x)sin(nπx)dx = 0, n = 1,2, . . . ;

so, by (5.28), the solution of the IBVP is

u(x,t) =
∞∑

n=1

4
n2π2

sin
nπ

2
sin(nπx)cos(nπt).

Vibrating string with free endpoints. The IBVP corresponding to this
case is (see Section 4.3)

utt(x,t) = c2uxx(x,t), 0 < x < L, t > 0, (PDE)

ux(0, t) = 0, ux(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L. (ICs)

Separating the variables, we are led to the eigenvalue-eigenfunction pairs

λn =
(
nπ

L

)2

, Xn(x) = cos
nπx

L
, n = 0,1,2, . . . .

For λ0 = 0, the general solution of the equation satisfied by T is

T0(t) =
1
2
a10 +

1
2
a20t, a10, a20 = const,
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while for λn, n ≥ 1, the functions Tn are given by (5.27). Hence, we expect
the solution of the IBVP to be of the form

u(x,t) =
1
2
a10 +

1
2
a20t

+
∞∑

n=1

cos
nπx

L

(
a1n cos

nπct

L
+ a2n sin

nπct

L

)
, (5.30)

where the a1n and a2n, n = 0,1,2, . . . , are constants. Every term in (5.30)
satisfies the PDE and the BCs.

To satisfy the ICs, we require that

u(x,0) = f(x) =
1
2
a10 +

∞∑
n=1

a1n cos
nπx

L
,

ut(x,0) = g(x) =
1
2
a20 +

∞∑
n=1

a2n
nπc

L
cos

nπx

L
;

consequently, by (2.11),

a10 =
2
L

L∫
0

f(x)dx,

a1n =
2
L

L∫
0

f(x)cos
nπx

L
dx, n = 1,2, . . . ,

a20 =
2
L

L∫
0

g(x)dx,

a2n =
2
nπc

L∫
0

g(x)cos
nπx

L
dx, n = 1,2, . . . ,

(5.31)

and we conclude that the solution of the IBVP is given by (5.30) with the
a1n and a2n computed by means of (5.31).

5.11. Example. To find the solution of the IBVP

utt(x,t) = uxx(x,t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = cos(2πx), ut(x,0) = −2π cos(πx), 0 < x < 1,
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we remark that c = 1 and L = 1, and that the initial data functions f and
g are linear combinations of the eigenfunctions; thus,

a12 = 1, a1n = 0 (n �= 2), a21 = −2, a2n = 0 (n �= 1),

so, by (5.30), the solution of the IBVP is

u(x,t) = −2cos(πx)sin(πt) + cos(2πx)cos(2πt).

5.12. Example. Consider the IBVP

utt(x,t) = uxx(x,t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = 0, ut(x,0) =
{−1, 1/4 ≤ x ≤ 3/4,

0 otherwise.

Again, here we have c = 1 and L = 1; so, by (5.31),

a1n = 0, n = 0,1,2, . . . ,

a20 = 2
{ 1/4∫

0

g(x)dx +

3/4∫
1/4

g(x)dx +

1∫
3/4

g(x)dx
}

= 2

3/4∫
1/4

(−1)dx = −1,

a2n =
2
nπ

{ 1/4∫
0

g(x)cos(nπx)dx +

3/4∫
1/4

g(x)cos(nπx)dx

+

1∫
3/4

g(x)cos(nπx)dx
}

=
2
nπ

3/4∫
1/4

(−1)cos(nπx)dx = − 4
n2π2

sin
nπ

4
cos

nπ

2
, n = 1,2, . . . .

Hence, by (5.30), the solution of the IBVP is

u(x,t) = −1
2
t−

∞∑
n=1

4
n2π2

sin
nπ

4
cos

nπ

2
cos(nπx)sin(nπt).

5.13. Remark. IBVPs with mixed BCs are handled similarly.
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5.3. The Laplace Equation

In this section we discuss the solution of two types of problems: one for-
mulated in terms of Cartesian coordinates, and one where the use of polar
coordinates is more appropriate.

The Laplace equation in a rectangle. Consider the equilibrium tem-
perature in a uniform rectangle

D = {(x,y) : 0 ≤ x ≤ L, 0 ≤ y ≤ K}, L, K = const}

with no sources and with temperature prescribed on the boundary.
The corresponding problem is (see Section 4.2)

uxx(x,y) + uyy(x,y) = 0, 0 < x < L, 0 < y < K,

u(0,y) = f1(y), u(L,y) = f2(y), 0 < y < K,

u(x,0) = g1(x), u(x,K) = g2(x), 0 < x < L.

Although this is a boundary value problem, it turns out that the method
of separation of variables can still be applied. However, since here the BCs
are nonhomogeneous, we need to do some additional preliminary work.

By the principle of superposition (see Theorem 1.19), we can seek the
solution of the above BVP as

u(x,y) = u1(x,y) + u2(x,y),

where both u1 and u2 satisfy the PDE, u1 satisfies the BCs with f1(y) = 0,
f2(y) = 0, and u2 satisfies the BCs with g1(x) = 0, g2(x) = 0; thus, the
BVP for u1 is

(u1)xx(x,y) + (u1)yy(x,y) = 0, 0 < x < L, 0 < y < K, (PDE)

u1(0,y) = 0, u1(L,y) = 0, 0 < y < K,

u1(x,0) = g1(x), u1(x,K) = g2(x), 0 < x < L.
(BCs)

We seek a solution of this BVP of the form

u1(x,y) = X(x)Y (y).
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Clearly, for the same reason as in the case of the heat and wave equations,
neither X nor Y can be the zero function. Replacing in the PDE, we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0,

from which, on division by X(x)Y (y), we find that

X ′′(x)
X(x)

= −Y
′′(y)
Y (y)

= −λ,

where λ = const is the separation constant.
The two homogeneous BCs yield

X(0)Y (y) = 0, X(L)Y (y) = 0, 0 < y < K.

Since, as already mentioned, Y (y) cannot be identically zero, we conclude
that

X(0) = 0, X(L) = 0.

Hence, X is the solution of the regular Sturm–Liouville problem

X ′′(x) + λX(x) = 0, 0 < x < L,

X(0) = 0, X(L) = 0.

From Example 3.16 we know that the eigenvalue-eigenfunction pairs of
this problem are

λn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . . (5.32)

Then for each n = 1,2, . . . we seek functions Yn that satisfy

Y ′′
n (y) −

(
nπ

L

)2

Yn(y) = 0, 0 < y < K.

By Remark 1.4, the general solution of the equation for Yn can be written
as

Yn(y) = C1n sinh
nπ(y −K)

L
+ C2n sinh

nπy

L
, C1n, C2n = const. (5.33)
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In view of (5.32) and (5.33), it seems reasonable to expect u1 to be of the
form

u1(x,y) =
∞∑

n=1

Xn(x)Yn(y)

=
∞∑

n=1

sin
nπx

L

(
C1n sinh

nπ(y −K)
L

+ C2n sinh
nπy

L

)
, (5.34)

where each term satisfies the PDE and the two homogeneous BCs. To
satisfy the two remaining, nonhomogeneous BCs, we must have

u1(x,0) = g1(x)

=
∞∑

n=1

(
− C1n sinh

nπK

L

)
sin

nπx

L
=

∞∑
n=1

b1n sin
nπx

L
,

u1(x,K) = g2(x)

=
∞∑

n=1

(
C2n sinh

nπK

L

)
sin

nπx

L
=

∞∑
n=1

b2n sin
nπx

L
;

in other words, we need the Fourier sine series of g1 and g2. By (2.10), for
n = 1,2, . . . ,

b1n = −C1n sinh
nπK

L
=

2
L

L∫
0

g1(x)sin
nπx

L
dx,

b2n = C2n sinh
nπK

L
=

2
L

L∫
0

g2(x)sin
nπx

L
dx;

therefore,

C1n = − b1n

sinh(nπK/L)
= − 2

L
csch(nπK/L)

L∫
0

g1(x)sin
nπx

L
dx, (5.35)

C2n =
b2n

sinh(nπK/L)
=

2
L

csch(nπK/L)

L∫
0

g2(x)sin
nπx

L
dx. (5.36)

This means that the function u1(x,y) is given by (5.34) with the coefficients
C1n and C2n computed from (5.35) and (5.36).

The procedure for finding u2 is similar, with the obvious modifications.
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5.14. Example. For the BVP

uxx(x,y) + uyy(x,y) = 0, 0 < x < 1, 0 < y < 2,

u(0,y) = 0, u(1,y) = 0, 0 < y < 2,

u(x,0) = x, u(x,2) = 3sin(πx), 0 < x < 1,

we have

L = 1, K = 2, f1(y) = 0, f2(y) = 0, g1(x) = x, g2(x) = 3sin(πx).

First, integrating by parts, we see that

1∫
0

xsin(nπx)dx = (−1)n+1 1
nπ

;

so, by (5.35),

C1n = (−1)n 2
nπ

csch(2nπ), n = 1,2, . . . .

Second, using (5.36), we easily convince ourselves that

C21 = 3csch(2π), C2n = 0, n = 2,3, . . . .

Consequently, by (5.34), the solution of the given BVP is

u(x,y) =
∞∑

n=1

(−1)n 2
nπ

csch(2nπ)sin(nπx)sinh
(
nπ(y − 2)

)
+ 3csch(2π)sin(πx)sinh(πy).

5.15. Remark. The general solution of Yn should be expressed in the most
convenient form for the given nonhomogeneous BCs. Thus,

(i) if (u1)y(x,0) = g1(x), (u1)y(x,K) = g2(x), then

Yn(y) = C1n cosh
nπ(y −K)

L
+ C2n cosh

nπy

L
;

(ii) if u1(x,0) = g1(x), (u1)y(x,K) = g2(x), then

Yn(y) = C1n cosh
nπ(y −K)

L
+ C2n sinh

nπy

L
;
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(iii) if (u1)y(x,0) = g1(x), u1(x,K) = g2(x), then

Yn(y) = C1n cosh
nπy

L
+ C2n sinh

nπ(y −K)
L

.

The Laplace equation in a circular disk. Consider the equilibrium
temperature in a uniform circular disk

D = {(r,θ) : 0 ≤ r < α, −π < θ ≤ π}

with no sources, under the condition of prescribed temperature on the
boundary r = α = const. Because of the geometry of the body, it is
advisable that we write the modeling BVP in terms of polar coordinates r
and θ with the pole at the center of the disk. Thus, recalling the form of
the Laplacian in polar coordinates given in Remark 4.11(ii), we have

urr(r,θ) + r−1ur(r,θ) + r−2uθθ(r,θ) = 0,

0 < r < α, −π < θ < π, (PDE)

u(α,θ) = f(θ), −π < θ ≤ π. (BC)

Unlike the BVP discussed earlier in terms of Cartesian coordinates, where
the boundary values of the solution proved sufficient for us to solve the
problem, the form of the PDE in polar coordinates requires us to consider
additional “boundary” conditions. These conditions are imposed at the
remaining endpoints of the intervals on which the variables r and θ are de-
fined, namely, at r = 0, θ = −π, and θ = π, and their form is suggested
by analytic requirements based on physical considerations: u (the temper-
ature) and ur, uθ (the heat flux) in a problem in a bounded region with
“reasonably behaved” boundary data are expected to be continuous (there-
fore bounded) everywhere in that region. Thus, our additional conditions
can be formulated as follows:

u(r,θ), ur(r,θ) bounded as r → 0+, −π < θ < π,

u(r,−π) = u(r,π), uθ(r,−π) = uθ(r,π), 0 < r < α.

The PDE and all the BCs except u(α,θ) = f(θ) are homogeneous; con-
sequently, it seems advisable to seek a solution of the form

u(r,θ) = R(r)Θ(θ). (5.37)
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Then the last two (periodic) BCs become

Θ(−π)R(r) = Θ(π)R(r), Θ′(−π)R(r) = Θ′(π)R(r), 0 < r < α,

from which, to avoid the identically zero—hence, unacceptable—solution,
we deduce that

Θ(−π) = Θ(π), Θ′(−π) = Θ′(π).

In view of (5.37), the PDE can be written as

[
R′′(r) + r−1R′(r)

]
Θ(θ) + r−2R(r)Θ′′(θ) = 0,

which, on division by r−2R(r)Θ(θ) and in accordance with the usual argu-
ment, yields

Θ′′(θ)
Θ(θ)

= −r
2R′′(r) + rR′(r)

R(r)
= −λ, (5.38)

where λ = const is the separation constant. Then Θ is a solution of the
periodic Sturm–Liouville problem

Θ′′(θ) + λΘ(θ) = 0, −π < θ < π,

Θ(−π) = Θ(π), Θ′(−π) = Θ′(π).

This problem was discussed in Example 3.26. Hence, for L = π, the eigen-
values and their corresponding eigenfunctions are, respectively,

λ0 = 0, λn = n2, n = 1,2, . . . ,

Θ0(θ) = 1, Θ1n(θ) = cos(nθ), Θ2n(θ) = sin(nθ), n = 1,2, . . . .

From the second equality in (5.38) we see that for each n = 0,1,2, . . . the
correspondent radial component Rn satisfies

r2R′′
n(r) + rR′

n(r) − n2Rn = 0, 0 < r < α. (5.39)

This is a Cauchy–Euler equation, for which, if n �= 0, we seek solutions of
the form (see Section 1.4)

Rn(r) = rp, p = const.
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Replacing in (5.39), we find that

[p(p− 1) + p− n2]rp = 0,

or p2 − n2 = 0, with roots p1 = n and p2 = −n. Therefore, the general
solution of (5.39) in this case is

Rn(r) = C1r
n + C2r

−n, C1, C2 = const. (5.40)

If n = 0, then (5.39) reduces to (rR′
0(r))

′ = 0, so

rR′
0(r) = C̄2 = const;

in turn, this leads to R′
0(r) = r−1C̄2 and then to the general solution

R0(r) = C̄1 + C̄2 lnr, C̄1, C̄2 = const. (5.41)

From (5.37) and the condition of boundedness at r = 0 we deduce that
all the numbers Rn(0) must be finite. As (5.40) and (5.41) indicate, this
happens only if C2 = 0 and C̄2 = 0; in other words,

R0(r) = C̄1, Rn(r) = C1r
n, n = 1,2, . . . .

Taking the arbitrary constant equal to 1, we express this by the single
formula

Rn(r) = rn, n = 0,1,2, . . . .

In accordance with the separation of variables procedure, we expect the
solution of the IBVP to have a series representation of the form

u(r,θ) =
1
2
a0R0(r)Θ0(θ) +

∞∑
n=1

Rn(r)
[
anΘ1n(θ) + bnΘ2n(θ)

]

=
1
2
a0 +

∞∑
n=1

rn
[
an cos(nθ) + bn sin(nθ)

]
, (5.42)

where each term satisfies the PDE and the three homogeneous BCs. The
unknown numerical coefficients 1

2 a0, an, and bn are determined from the
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remaining (nonhomogeneous) condition:

u(α,θ) = f(θ) = 1
2 a0 +

∞∑
n=1

αn
[
an cos(nθ) + bn sin(nθ)

]
,

− π < θ ≤ π. (5.43)

This is the full Fourier series for f with L = π and coefficients 1
2 a0, αnan,

and αnbn; so, by (2.7)–(2.9),

a0 =
1
π

π∫
−π

f(θ)dθ,

an =
1
παn

π∫
−π

f(θ)cos(nθ)dθ, n = 1,2, . . . , (5.44)

bn =
1
παn

π∫
−π

f(θ)sin(nθ)dθ, n = 1,2, . . . .

Consequently, the solution of the BVP is given by (5.42) with the a0, an,
and bn computed by means of (5.44).

5.16. Remark. From (5.42) and (5.44) it follows that

u(0,θ) =
1
2
a0 =

1
2π

π∫
−π

f(θ)dθ;

in other words, the temperature at the center of the disk is equal to the
average of the temperature on the boundary circle. This result, already
used in the proof of Theorem 4.14, is called the mean value property for the
Laplace equation.

5.17. Example. In the BVP

(Δu)(r,θ) = 0, 0 < r < 2, −π < θ < π,

u(2,θ) = 1 + 8sinθ − 32cos(4θ), −π < θ < π,

we have
α = 2, f(θ) = 1 + 8sinθ − 32cos(4θ).
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Since f is a linear combination of the eigenfunctions associated with this
problem, we use (5.43) and Theorem 3.20(ii) to deduce that 1

2 a0 = 1,
24a4 = −32, and 2b1 = 8, while the remaining coefficients are zero; there-
fore,

a0 = 2, a4 = −2, an = 0 (n �= 0,4), b1 = 4, bn = 0 (n �= 1),

which means that, by (5.42), the solution of the given BVP is

u(r,θ) = 1 + 4r sinθ − 2r4 cos(4θ).

5.4. Other Equations

The method of separation of variables can also be applied to problems in-
volving some of the equations mentioned in Section 4.4.

5.18. Example. Consider the diffusion–convection IBVP

ut(x,t) = 2uxx(x,t) − ux(x,t), 0 < x < 1, t > 0, (PDE)

u(0, t) = 0, u(1, t) = 0, t > 0, (BCs)

u(x,0) = −2ex/4 sin(3πx), 0 < x < 1. (IC)

Applying the arguments developed earlier in this chapter, we seek the so-
lution in the form u(x,t) = X(x)T (t) and, from the PDE and BCs, deduce
that the components X and T satisfy

2X ′′(x) −X ′(x) + λX(x) = 0, 0 < x < 1,

X(0) = 0, X(1) = 0, t > 0,
(5.45)

and
T ′(t) + λT (t) = 0, t > 0. (5.46)

The regular Sturm–Liouville problem (5.45) is solved by the method used
in Example 3.19, and its eigenvalues and eigenfunctions are found to be

λn = 1
8 (16n2π2 + 1), Xn(x) = ex/4 sin(nπx), n = 1,2, . . . .

Then (5.46) becomes

Tn(t) + 1
8 (16n2π2 + 1)Tn(t) = 0,
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with general solution

Tn(t) = cne
−(16n2π2+1)t/8, cn = const.

Combining the Xn and Tn in the usual way, we find that the function

u(x,t) =
∞∑

n=1

cne
x/4−(16n2π2+1)t/8 sin(nπx) (5.47)

satisfies both the PDE and the BCs.
The coefficients cn are found from the IC; thus, for t = 0 we must have

u(x,0) =
∞∑

n=1

cne
x/4 sin(nπx) = −2ex/4 sin(3πx),

from which

c3 = −2, cn = 0 (n �= 3),

so the solution, given by (5.47), of the IBVP is

u(x,t) = −2ex/4−(144π2+1)t/8 sin(3πx).

5.19. Example. Consider the dissipative wave propagation problem

utt(x,t) + 2ut(x,t) = uxx(x,t) − 3ux(x,t),

0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = −e3x/2 sin(2πx), ut(x,0) = 2e3x/2 sin(πx),

0 < x < 1.

Writing u(x,t) = X(x)T (t) and proceeding as in Example 5.18, we find
that

X ′′(x) − 3X ′(x) + λX(x) = 0, 0 < x < 1,

X(0) = 0, X(1) = 0,
(5.48)

and

T ′′(t) + 2T ′ + λT (t) = 0. (5.49)
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The regular S–L problem (5.48), solved as in Example 3.19, yields the
eigenvalues and eigenfunctions

λn = 1
4 (n2π2 + 9), Xn(x) = e3x/2 sin(nπx), n = 1,2, . . . .

Then, from (5.49) with λ replaced by λn = 1
4 (n2π2 + 9), we find that

Tn(t) = e−t/2
[
c1n cos(αnt) + c2n sin(αnt)

]
, c1n, c2n = const,

where
αn = 1

2

√
n2π2 + 5, n = 1,2, . . . .

Putting together the Xn and Tn, we now see that the function

u(x,t) =
∞∑

n=1

e3x/2−t/2 sin(nπx)
[
c1n cos(αnt) + c2n sin(αnt)

]
(5.50)

satisfies the PDE and the BCs. We now set t = 0 in (5.50) and in its
t-derivative and compute the coefficients c1n and c2n from the ICs:

u(x,0) =
∞∑

n=1

c1ne
3x/2 sin(nπx) = −e3x/2 sin(2πx),

ut(x,0) =
∞∑

n=1

( − 1
2 c1n + αnc2n

)
e3x/2 sin(nπx) = 2e3x/2 sin(πx);

hence,
c12 = −1, c1n = 0 (n �= 2),

− 1
2 c11 + α1c21 = 2, − 1

2 c1n + αnc2n = 0 (n �= 1).

From these equalities we find that

c21 =
2
α1
, c22 = − 1

2α2
, c2n = 0 (n �= 1,2),

so the solution of the IBVP, obtained from (5.50), is

u(x,t) = e(3x−t)/2

[
2
α1

sin(α1t)sin(πx) − cos(α1t)sin(2πx)

− 1
2α2

sin(α2t)sin(2πx)
]
,

where α1 = 1
2

√
π2 + 5 and α2 = 1

2

√
4π2 + 5.
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5.20. Example. Consider the two-dimensional steady state diffusion–con-
vection problem

uxx(x,y) + uyy(x,y) − 2ux(x,y) = 0, 0 < x < 1, 0 < y < 2, (PDE)

u(0,y) = 0, u(1,y) = −3sin(πy), 0 < y < 2,

u(x,0) = 0, u(x,2) = 0, 0 < x < 1.
(BCs)

Seeking the solution in the form u(x,y) = X(x)Y (y), from the PDE and
the last two (homogeneous) BCs it follows that

X ′′(x) − 2X ′(x) − λX(x) = 0, 0 < x < 1, (5.51)

and
Y ′′(y) + λY (y) = 0, 0 < y < 2,

Y (0) = 0, Y (1) = 0.

The regular S–L problem for Y has been solved in Example 3.16 and has
the eigenvalues and eigenfunctions

λn =
n2π2

4
, Yn(y) = sin

nπy

2
, n = 1,2, . . . ,

so (5.51) becomes

X ′′
n(x) − 2X ′

n(x) − n2π2

4
Xn(x) = 0,

with general solution

Xn(x) = c1ne
s1nx + c2ne

s2nx,

where

s1n = 1 + 1
2

√
n2π2 + 4, s2n = 1 − 1

2

√
n2π2 + 4, c1n, c2n = const.

Consequently, the function

u(x,y) =
∞∑

n=1

sin
nπy

2
(
c1ne

s1nx + c2ne
s2nx

)
(5.52)

satisfies the PDE and the last two BCs. The coefficients c1n and c2n are
determined from the first two BCs; thus, setting x = 0 and then x = 1 in
(5.52), we find that



EQUATIONS WITH MORE THAN TWO VARIABLES 113

∞∑
n=1

(c1n + c2n)sin
nπy

2
= 0,

∞∑
n=1

(
c1ne

s1n + c2ne
s2n

)
sin

nπy

2
= −3sin(πy),

so

c1n + c2n = 0, n = 1,2, . . . ,

c12e
s12 + c22e

s22 = −3, c1ne
s1n + c2ne

s2n = 0 (n �= 2).

Then

c12 = −c22 =
3

es22 − es12
, c1n = c2n = 0 (n �= 2),

which, substituted in (5.52), yield the solution of the given BVP:

u(x,y) =
3

es22 − es12

(
es12x − es22x

)
sin(πy),

where

s12 = 1 +
√
π2 + 1, s22 = 1 −

√
π2 + 1.

5.5. Equations with More than Two Variables

In Section 4.2 we derived a model for heat conduction in a uniform plate,
where the unknown temperature function depends on the time variable and
two space variables. Here we consider the two-dimensional analog of the
wave equation and solve it by the method of separation of variables in
terms of both Cartesian and polar coordinates.

Vibrating rectangular membrane. A vibrating rectangular membrane
with negligible body force and clamped edges is modeled by the IBVP

utt(x,t) = c2(Δu)(x,y) = c2
[
uxx(x,y) + uyy(x,y)

]
,

0 < x < L, 0 < y < K, t > 0, (PDE)

u(0,y, t) = 0, u(L,y,t) = 0, 0 < y < K, t > 0,

u(x,0, t) = 0, u(x,K,t) = 0, 0 < x < L, t > 0,
(BCs)

u(x,y,0) = f(x,y), ut(x,y,0) = g(x,y),

0 < x < L, 0 < y < K. (ICs)
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Since the PDE and BCs are linear and homogeneous, we seek the solution
as a product of a function of the space variables and a function of the time
variable:

u(x,y,t) = S(x,y)T (t). (5.53)

Reasoning as in previous similar situations, from the PDE and BCs we find
that T satisfies the ODE

T ′′(t) + λc2T (t) = 0, t > 0,

and that S is a solution of the BVP

Sxx(x,y) + Syy(x,y) + λS(x,y) = 0,

0 < x < L, 0 < y < K,

S(0,y) = 0, S(L,y) = 0, 0 < y < K,

S(x,0) = 0, S(x,K) = 0, 0 < x < L,

(5.54)

where λ = const is the separation constant.
We notice that the PDE and BCs for S are themselves linear and homo-

geneous, so we use separation of variables once more and seek a solution for
(5.54) of the form

S(x,y) = X(x)Y (y). (5.55)

The PDE in (5.54) then becomes

X ′′(x)Y (y) +X(x)Y ′′(y) = −λX(x)Y (y),

which, on division by X(x)Y (y), yields

X ′′(x)
X(x)

= −λ− Y ′′(y)
Y (y)

= −μ,

where μ = const is a second separation constant.
From the above chain of equalities and the BCs in (5.54) we find in the

usual way that X and Y are, respectively, solutions of the regular Sturm–
Liouville problems

X ′′(x) + μX(x) = 0, 0 < x < L,

X(0) = 0, X(L) = 0,
(5.56)
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and
Y ′′(y) + (λ− μ)Y (y) = 0, 0 < y < K,

Y (0) = 0, Y (K) = 0.
(5.57)

The nonzero solutions that we require for (5.56) are the eigenfunctions of
this S–L problem, which were computed in Example 3.16 together with the
corresponding eigenvalues:

μn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . .

For each fixed value of n, the function Y satisfies the S–L problem (5.57)
with μ = μn. Since this problem is similar to (5.56), its eigenvalues and
eigenfunctions (nonzero solutions) are

λnm − μn =
(
mπ

K

)2

, Ynm(y) = sin
mπy

K
, m = 1,2, . . . .

We remark that (5.54) may be regarded as a two-dimensional eigenvalue
problem with eigenvalues

λnm = μn +
(
mπ

K

)2

=
(
nπ

L

)2

+
(
mπ

K

)2

, n, m = 1,2, . . . ,

and corresponding eigenfunctions

Snm(x,y) = Xn(x)Ynm(y) = sin
nπx

L
sin

mπy

K
, n, m = 1,2, . . . .

Going back to the equation satisfied by T , for λ = λnm we obtain the
functions

Tnm(t) = anm cos
(√

λnm ct
)

+ bnm sin
(√

λnm ct
)
, anm, bnm = const.

From this, (5.53), and (5.55) we now conclude that the solution of the
original IBVP should have a representation of the form

u(x,y,t) =
∞∑

n=1

∞∑
m=1

Snm(x,y)Tnm(t)

=
∞∑

n=1

∞∑
m=1

sin
nπx

L
sin

mπy

K

× [
anm cos

(√
λnm ct

)
+ bnm sin

(√
λnm ct

)]
. (5.58)
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Each term in (5.58) satisfies the PDE and the BCs. To satisfy the first
IC, we must have

u(x,y,0) = f(x,y) =
∞∑

m=1

( ∞∑
n=1

anm sin
nπx

L

)
sin

mπy

K
.

Multiplying the second equality by sin(pπy/K), p = 1,2, . . . , integrating the
result with respect to y over [0,K], and taking into account formula (2.5)
with L replaced by K, we find that

K∫
0

f(x,y)sin
pπy

K
dy =

K

2

∞∑
n=1

anp sin
nπx

L
.

Multiplying this new equality by sin(qπx/L), q = 1,2, . . . , and integrating
with respect to x over [0,L], we arrive at

L∫
0

K∫
0

f(x,y)sin
pπy

K
sin

qπx

L
dydx =

LK

4
aqp,

from which, replacing q by n and p by m, we obtain

anm =
4
LK

L∫
0

K∫
0

f(x,y)sin
nπx

L
sin

mπy

K
dydx, n, m = 1,2, . . . . (5.59)

The second IC is satisfied if

ut(x,y,0) = g(x,y) =
∞∑

m=1

( ∞∑
n=1

√
λnm cbnm sin

nπx

L

)
sin

mπy

K
;

as above, this yields

bnm =
4

LK
√
λnm c

L∫
0

K∫
0

g(x,y)sin
nπx

L
sin

mπy

K
dydx,

n, m = 1,2, . . . . (5.60)

In conclusion, the solution of the IBVP is given by series (5.58) with the
coefficients anm and bnm computed by means of (5.59) and (5.60).

Other homogeneous BCs are treated similarly.
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5.21. Example. In the IBVP

utt(x,y,t) = uxx(x,y,t) + uyy(x,y,t),

0 < x < 1, 0 < y < 2, t > 0,

u(0,y, t) = 0, u(1,y, t) = 0, 0 < y < 2, t > 0,

u(x,0, t) = 0, u(x,2, t) = 0, 0 < x < 1, t > 0,

u(x,y,0) = sin(2πx)
[
sin(1

2πy) − 2sin(πy)
]
,

0 < x < 1, 0 < y < 2,

ut(x,y,0) = 2sin(2πx)sin(1
2πy), 0 < x < 1, 0 < y < 2,

we have c = 1, L = 1, and K = 2; thus, comparing the initial data functions
with the double Fourier series expansions of f and g, we see that

a21 = 1, a22 = −2, a2m = 0 (m �= 1,2),√
λ21 b21 = 2,

√
λ2m b2m = 0 (m �= 1).

Since λ21 = (2π)2 + (π/2)2 = 17π2/4, formula (5.58) yields the solution

u(x,y,t) = sin(2πx)sin
(

1
2πy

)
cos

(
1
2

√
17πt

)
− 2sin(2πx)sin(πy)cos

(√
5πt

)
+

(
4π/

√
17

)
sin(2πx)sin

(
1
2πy

)
sin

(
1
2

√
17πt

)
.

Vibrating circular membrane. A two-dimensional body of this type is
defined in polar coordinates by 0 ≤ r ≤ α, −π < θ ≤ π. If the body force
is negligible and the boundary r = α is clamped (fixed), then the vertical
vibrations of the membrane are described by the IBVP

utt(r,θ, t) = c2(Δu)(r,θ, t), 0 < r < α, −π < θ < π, t > 0, (PDE)

u(α,θ,t) = 0, u(r,θ, t), ur(r,θ, t) bounded as r → 0+,

− π < θ < π, t > 0,

u(r,−π,t) = u(r,π,t), uθ(r,−π,t) = uθ(r,π,t),

0 < r < α, t > 0,
(BCs)

u(r,θ,0) = f(r,θ), ut(r,θ,0) = g(r,θ),

0 < r < α, −π < θ < π. (ICs)
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As in Section 5.3, the BCs at r = 0 and θ = −π, π express the continuity
(therefore boundedness) of the displacement (u) and tension (ur, uθ) in the
membrane for “reasonably behaved” functions f and g.

Since the PDE and BCs are linear and homogeneous, we try the method
of separation of variables and seek a solution of the form

u(r,θ, t) = S(r,θ)T (t). (5.61)

Then, following the standard procedure, from the PDE and BCs we find
that S is a solution of the problem

(ΔS)(r,θ) + λS(r,θ) = 0, 0 < r < α, −π < θ < π,

S(α,θ) = 0, S(r,θ), Sr(r,θ) bounded as r → 0+, −π < θ < π,

S(r,−π) = S(r,π), Sθ(r,−π) = Sθ(r,π), 0 < r < α,

(5.62)

where λ = const is the separation constant, while T satisfies

T ′′(t) + λc2T (t) = 0, t > 0.

Since the PDE and BCs for S are linear and homogeneous, we seek S of
the form

S(r,θ) = R(r)Θ(θ). (5.63)

Next, recalling the expression of the Laplacian in polar coordinates (see
Remark 4.11(ii)), we write the PDE in (5.62) as

[
R′′(r) + r−1R′(r)

]
Θ(θ) + r−2R(r)Θ′′(θ) + λR(r)Θ(θ) = 0,

which, on division by r−2R(r)Θ(θ), yields

Θ′′(θ)
Θ(θ)

= −r
2R′′(r) + rR′(r)

R(r)
− λr2 = −μ,

where μ = const is a second separation constant.
Applying the usual argument to the BCs, we now conclude that R and

Θ are solutions of Sturm–Liouville problems. First, Θ satisfies the periodic
S–L problem

Θ′′(θ) + μΘ(θ) = 0, −π < θ < π,

Θ(−π) = Θ(π), Θ′(−π) = Θ′(π),



EQUATIONS WITH MORE THAN TWO VARIABLES 119

whose eigenvalues and eigenfunctions, computed in Example 3.26, are

μ0 = 0, Θ0(θ) = 1
2 ,

μn = n2, Θ1n(θ) = cos(nθ), Θ2n(θ) = sin(nθ), n = 1,2, . . . .

For each fixed value of n, we compute a solution Rn of the singular S–L
problem

r2R′′
n(r) + rR′

n(r) + (λr2 − n2)Rn(r) = 0, 0 < r < α,

Rn(α) = 0, Rn(r), R′
n(r) bounded as r → 0+.

This is the singular Sturm–Liouville problem (3.12), (3.13) (with m re-
placed by n) discussed in Section 3.3, which has countably many eigenvalues
and a complete set of corresponding eigenfunctions

λnm =
(
ξnm

α

)2

, Rnm(r) = Jn

(
ξnmr

α

)
, n = 0,1,2, . . . , m = 1,2, . . . ,

where Jn is the Bessel function of the first kind and order n and ξnm are
the zeros of Jn.

Returning to the ODE satisfied by T , for λ = λnm = (ξnm/α)2 we now
obtain the solutions

Tnm(t) = Anm cos
ξnmct

α
+Bnm sin

ξnmct

α
, Anm, Bnm = const.

Suppose, for simplicity, that g = 0; then it is clear that the sine term in
Tnm must vanish. Hence, if we piece together the various components of u
according to (5.61) and (5.63), we conclude that the solution of the IBVP
should be of the form

u(r,θ, t) =
∞∑

n=0

∞∑
m=1

[
anmΘ1n(θ) + bnmΘ2n(θ)

]
Rnm(r)Tnm(t)

=
∞∑

n=0

∞∑
m=1

[
anm cos(nθ) + bnm sin(nθ)

]
Jn

(
ξnmr

α

)
cos

ξnm ct

α
.

Each term in this sum satisfies the PDE, the BCs, and the second IC. To
satisfy the first IC, we need to have

u(r,θ,0) = f(r,θ) =
∞∑

m=1

{ ∞∑
n=0

[
anm cos(nθ) + bnm sin(nθ)

]}
Jn

(
ξnmr

α

)
.
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The anm and bnm are now computed as in other problems of this type, by
means of the orthogonality properties of cos(nθ), sin(nθ), and Jn(ξnmr/α)
expressed by (2.4)–(2.6) with L = π and by (3.16).

5.22. Remark. In the circularly symmetric case (that is, when the data
functions are independent of θ) we use the solution split u(r,t) = R(r)T (t).
Here the problem reduces to solving Bessel’s equation of order zero. In the
end, we obtain

u(r,t) =
∞∑

m=1

[
am cos

(√
λm ct

)
+ bm sin

(√
λm ct

)]
J0

(√
λm r

)
,

where λm is the same as λ0m = (ξ0m/α)2 in the general problem and the
am and bm are determined from the property of orthogonality with weight
r on [0,α] of the functions J0

(√
λm r

)
.

5.23. Example. With α = 1, c = 1, f(r,θ) = 1, and g(r,θ) = 0, the
formula in Remark 5.22 yields

u(r,0) =
∞∑

m=1

amJ0

(√
λm r

)
= 1,

ut(r,0) =
∞∑

m=1

bm
√
λmJ0

(√
λm r

)
= 0,

so the am are the coefficients of the expansion of the constant function 1 in
the functions J0

(√
λm r

)
on (0,1) and bm = 0. Since, with a computational

approximation to four decimal places,

1 = 1.6020J0(2.4048r) − 1.0463J0(5.5201r) + 0.8514J0(8.6537r) + · · · ,

it follows that

a1 = 1.6020, a2 = −1.0463, a3 = 0.8514, . . . ,

so the solution of the problem is

u(r,t) = 1.6020cos(2.4048t)J0(2.4048r)

− 1.0463cos(5.5201t)J0(5.5201r)

+ 0.8514cos(8.6537t)J0(8.6537r) + · · · .



EQUATIONS WITH MORE THAN TWO VARIABLES 121

Equilibrium temperature in a solid sphere. The steady state distri-
bution of heat inside a homogeneous sphere of radius α when the (time-
independent) temperature is prescribed on the surface and no sources are
present is the solution of the BVP

Δu(r,θ,ϕ) = 0, 0 < r < α, 0 < θ < 2π, 0 < ϕ < π, (PDE)

u(α,θ,ϕ) = f(θ,ϕ), u(r,θ,ϕ), ur(r,θ,ϕ) bounded as r → 0+,

0 < θ < 2π, 0 < ϕ < π,

u(r,0,ϕ) = u(r,2π,ϕ), uθ(r,0,ϕ) = uθ(r,2π,ϕ),

0 < r < α, 0 < ϕ < π,
(BCs)

u(r,θ,ϕ), uϕ(r,θ,ϕ) bounded as ϕ→ 0+ and as ϕ→ π−,
0 < r < α, 0 < θ < 2π,

where f is a known function. The first boundary condition represents the
given surface temperature; the remaining ones have been adjoined on the
basis of arguments similar to those used in the case of a uniform circular
disk.

In terms of the spherical coordinates r, θ, ϕ, the above PDE is written as
(see Remark 4.11(v))

1
r2

(r2ur)r +
1

r2 sin2ϕ
uθθ +

1
r2 sinϕ

((sinϕ)uϕ)ϕ = 0.

Since the PDE and all but one of the BCs are homogeneous, we try a
solution of the form

u(r,θ,ϕ) = R(r)Θ(θ)Φ(ϕ).

As before, the nonhomogeneous BC implies that none of R,Θ,Φ can be
the zero function. Replacing in the PDE and multiplying every term by
(r2 sin2ϕ)/(RΘΦ), we find that

Θ′′

Θ
= −(sin2ϕ)

(r2R′)′

R
− (sinϕ)

(
(sinϕ)Φ′)′

Φ
,

where the left-hand side is a function of θ and the right-hand side is a
function of r and ϕ. Consequently, both sides must be equal to one and the
same constant, which, for convenience, we denote by −μ. This leads to the
pair of equations
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Θ′′(θ) + μΘ(θ) = 0, 0 < θ < 2π, (5.64)

(r2R′)′

R
+

1
sinϕ

(
(sinϕ)Φ′)′

Φ
− μ

sin2ϕ
= 0,

0 < r < α, 0 < ϕ < π. (5.65)

(In (5.65) we have also divided by sin2ϕ.)
To avoid the identically zero solution, from the two periodicity conditions

in the BVP we deduce in the usual way that

Θ(0) = Θ(2π), Θθ(0) = Θθ(2π). (5.66)

The regular S–L problem (5.64), (5.66) for Θ is the same as in the case of
the circular membrane; it has the eigenvalues μ = m2, m = 0,1,2, . . . , and
corresponding eigenfunctions

Θm(θ) = C1m cos(mθ) + C2m sin(mθ),

which, using Euler’s formula, we can rewrite as

Θm(θ) = C′
1me

imθ + C′
12e

−imθ. (5.67)

We now operate a second separation of variables, this time in (5.65):

1
sinϕ

(
(sinϕ)Φ′)′

Φ
− m2

sin2ϕ
=

(r2R′)′

R
= −λ = const;

this yields the equations

1
sinϕ

(
(sinϕ)Φ′(ϕ)

)′ +
(
λ− m2

sin2ϕ

)
Φ(ϕ) = 0, 0 < ϕ < π, (5.68)

(r2R′)′ − λR = 0, 0 < r < α. (5.69)

In (5.68) we substitute

ξ = cosϕ, dξ = −sinϕdϕ,
d

dξ
= − 1

sinϕ
d

dϕ
,

sin2ϕ = 1 − cos2ϕ = 1 − ξ2, Φ(ϕ) = Ψ(ξ)

and bring the equation to the form

(
(1 − ξ2)Ψ′(ξ)

)′ +
(
λ− m2

1 − ξ2

)
Ψ(ξ) = 0, −1 < ξ < 1. (5.70)
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The boundary conditions for Ψ are obtained from those at ϕ = 0 and ϕ = π

in the original problem by recalling that Φ cannot be the zero function:

Ψ(ξ), Ψ′(ξ) bounded as ξ → −1+ and as ξ → 1−. (5.71)

We remark that (5.70), (5.71) is the singular S–L problem for the asso-
ciated Legendre equation mentioned in Section 3.5, with eigenvalues and
eigenfunctions

λn = n(n+ 1), Ψ(ξ) = Pm
n (ξ), n = m,m+ 1, . . . ,

where Pm
n are the associated Legendre functions; consequently,

Φn(ϕ) = Pm
n (cosϕ). (5.72)

Turning to the Cauchy–Euler equation (5.69) with λ = n(n+ 1), we find
that its general solution (see Section 1.4) is

Rn(r) = C1r
n + C2r

−(n+1), C1, C2 = const.

When the condition that R(r) and R′(r) be bounded as r → 0+, which
follows from the second BC in the given BVP, is applied, we find that
C2 = 0, so

Rn(r) = rn. (5.73)

Here, as usual, we have taken C1 = 1.
Finally, we combine (5.67), (5.72), (5.73), (3.31), and (3.32) and write

the solution of the original problem in the form

u(r,θ,ϕ) =
∑

m=0,1,2,...
n=m,m+1,...

Rn(r)Θm(θ)Φnm(ϕ)

=
∑

m=0,1,2,...
n=m,m+1,...

rn
(
C′

1me
imθ + C′

2me
−imθ

)
Pm

n (cosϕ)

=
∞∑

n=0

m=n∑
m=−n

Cnmr
neimθPm

n (cosϕ)

=
∞∑

n=0

m=n∑
m=−n

cn,mr
nYn,m(θ,ϕ), (5.74)

where Yn,m are the orthonormalized spherical harmonics defined by (3.32).
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According to the nonhomogeneous BC in the given BVP, we must have

u(α,θ,ϕ) =
∞∑

n=1

m=n∑
m=−n

cn,mα
nYn,m(θ,ϕ) = f(θ,ϕ).

The coefficients cn,m are now determined in the standard way, by means of
the orthonormality relations (3.33):

cn,m =
1
αn

2π∫
0

π∫
0

f(θ,ϕ)Ȳn,m(θ,ϕ)sinϕdϕdθ. (5.75)

5.24. Example. If in the preceding problem the upper and lower hemi-
spheres of the sphere with the center at the origin and radius α = 1 are
kept at constant temperatures of 2 and −1, respectively, then

f(θ,ϕ) =
{

2, 0 < θ < 2π, 0 < ϕ < π/2,
−1, 0 < θ < 2π, π/2 < ϕ < π,

so, using (5.75), we find that the first two nonzero coefficients cn,m are
c0,0 =

√
π and c1,0 = 3

√
3π/2. By (5.74) and the expressions of the spherical

harmonics given in Example 3.36, the solution of the problem is

u(r,θ,ϕ) =
√
πY0,0(θ,ϕ) + 3

2

√
3πrY1,0(θ,ϕ) + · · · = 1

2 + 9
4 r cosϕ+ · · · .

Exercises

In (1)–(24) use separation of variables to solve the PDE

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

with the BCs and IC as indicated.

(1) u(0, t) = 0, u(1, t) = 0, u(x,0) = sin(2πx) − 3sin(6πx).
(2) u(0, t) = 0, u(1, t) = 0, u(x,0) = 3sin(πx) − sin(4πx).
(3) u(0, t) = 0, u(1, t) = 0, u(x,0) = −2.
(4) u(0, t) = 0, u(1, t) = 0, u(x,0) = 1 − 2x.
(5) u(0, t) = 0, u(1, t) = 0, u(x,0) = 2x+ 1.

(6) u(0, t) = 0, u(1, t) = 0, u(x,0) =
{

0, 0 < x ≤ 1/2,
2, 1/2 < x < 1.

(7) u(0, t) = 0, u(1, t) = 0, u(x,0) =
{
x, 0 < x ≤ 1/2,
0, 1/2 < x < 1.
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(8) u(0, t) = 0, u(1, t) = 0, u(x,0) =
{

2, 0 < x ≤ 1/2,
x− 1, 1/2 < x < 1.

(9) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = 3 − 2cos(4πx).
(10) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = cos(2πx) − 3cos(3πx).
(11) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = 2 − 3x.
(12) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = 3 − 2x.

(13) ux(0, t) = 0, ux(1, t) = 0, u(x,0) =
{−2, 0 < x ≤ 1/2,

0, 1/2 < x < 1.

(14) ux(0, t) = 0, ux(1, t) = 0, u(x,0) =
{

3, 0 < x ≤ 1/2,
−1, 1/2 < x < 1.

(15) ux(0, t) = 0, ux(1, t) = 0, u(x,0) =
{

0, 0 < x ≤ 1/2,
2x, 1/2 < x < 1.

(16) ux(0, t) = 0, ux(1, t) = 0, u(x,0) =
{

1, 0 < x ≤ 1/2,
x+ 1, 1/2 < x < 1.

(17) u(0, t) = 0, ux(1, t) = 0, u(x,0) = 3sin(πx/2) − sin(5πx/2).
(18) u(0, t) = 0, ux(1, t) = 0, u(x,0) = −3.
(19) u(0, t) = 0, ux(1, t) = 0, u(x,0) = 2 + x.

(20) u(0, t) = 0, ux(1, t) = 0, u(x,0) =
{

0, 0 < x ≤ 1/2,
−1, 1/2 < x < 1.

(21) ux(0, t) = 0, u(1, t) = 0, u(x,0) = 2cos(5πx/2).
(22) ux(0, t) = 0, u(1, t) = 0, u(x,0) = 4.
(23) ux(0, t) = 0, u(1, t) = 0, u(x,0) = 2x− 3.

(24) ux(0, t) = 0, u(1, t) = 0, u(x,0) =
{

2 − x, 0 < x ≤ 1/2,
1, 1/2 < x < 1.

In (25)–(28) use separation of variables to solve the IBVP

ut(x,t) = uxx(x,t), −1 < x < 1, t > 0,

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t), t > 0,

u(x,0) = f(x), 0 < x < 1,

with the function f as indicated.

(25) f(x) = 2sin(2πx) − cos(5πx).
(26) f(x) = 3x− 2.

(27) f(x) =
{

3, −1 < x ≤ 0,
0, 0 ≤ x < 1.

(28) f(x) =
{

2, −1 < x ≤ 0,
x− 1, 0 < x < 1.
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In (29)–(46) use separation of variables to solve the PDE

utt(x,t) = uxx(x,t), 0 < x < 1, t > 0,

with BCs and ICs as indicated.

(29) u(0, t) = 0, u(1, t) = 0,
u(x,0) = −3sin(2πx) + 4sin(7πx), ut(x,0) = sin(3πx).

(30) u(0, t) = 0, u(1, t) = 0, u(x,0) = −1, ut(x,0) = 3sin(πx).
(31) u(0, t) = 0, u(1, t) = 0, u(x,0) = 2sin(3πx), ut(x,0) = 2.
(32) u(0, t) = 0, u(1, t) = 0, u(x,0) = 1, ut(x,0) = x.

(33) u(0, t) = 0, u(1, t) = 0,

u(x,0) =
{

1, 0 < x ≤ 1/2,
2, 1/2 < x < 1,

ut(x,0) = 3sin(2πx).

(34) u(0, t) = 0, u(1, t) = 0,

u(x,0) = 1, ut(x,0) =
{

2, 0 < x ≤ 1/2,
−1, 1/2 < x < 1.

(35) u(0, t) = 0, u(1, t) = 0,

u(x,0) =
{
x, 0 < x ≤ 1/2,
1, 1/2 < x < 1,

ut(x,0) = −1.

(36) u(0, t) = 0, u(1, t) = 0,

u(x,0) = x+ 1, ut(x,0) =
{−1, 0 < x ≤ 1/2,

2x, 1/2 < x < 1.

(37) ux(0, t) = 0, ux(1, t) = 0,
u(x,0) = 2 − 3cos(4πx), ut(x,0) = 2cos(3πx).

(38) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = x− 1, ut(x,0) = 2 − cos(πx).
(39) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = −3cos(2πx), ut(x,0) = 2x− 1.
(40) ux(0, t) = 0, ux(1, t) = 0, u(x,0) = x, ut(x,0) = 2x− 1.

(41) ux(0, t) = 0, ux(1, t) = 0,

u(x,0) =
{

2, 0 < x ≤ 1/2,
3, 1/2 < x < 1,

ut(x,0) = −cos(3πx).

(42) ux(0, t) = 0, ux(1, t) = 0,

u(x,0) = x, ut(x,0) =
{

2, 0 < x ≤ 1/2,
−1, 1/2 < x < 1.

(43) ux(0, t) = 0, ux(1, t) = 0,

u(x,0) =
{
x+ 1, 0 < x ≤ 1/2,
2, 1/2 < x < 1,

ut(x,0) = 1 − x.
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(44) ux(0, t) = 0, ux(1, t) = 0,

u(x,0) = 2x, ut(x,0) =
{

2x+ 1, 0 < x ≤ 1/2,
x+ 2, 1/2 < x < 1.

(45) u(0, t) = 0, ux(1, t) = 0,

u(x,0) =
{

0, 0 < x ≤ 1/2,
2, 1/2 < x < 1, ut(x,0) = 3sin(5πx/2).

(46) ux(0, t) = 0, u(1, t) = 0,

u(x,0) = x− 1, ut(x,0) =
{

1, 0 < x ≤ 1/2,
2x− 1, 1/2 < x < 1.

In (47)–(52) use separation of variables to solve the PDE

uxx(x,y) + uyy(x,y) = 0, 0 < x < 1, 0 < y < 2,

with the BCs as indicated.

(47) u(0,y) = 0, u(1,y) = 0,
u(x,0) = 3sin(2πx), u(x,2) = sin(3πx).

(48) ux(0,y) = 2sin(πy), ux(1,y) = −sin(2πy),
u(x,0) = 0, u(x,2) = 0.

(49) ux(0,y) = y − 2, u(1,y) = 3cos(2πy),
uy(x,0) = 0, uy(x,2) = 0.

(50) ux(0,y) = 0, ux(1,y) = 0,
u(x,0) = 2 − cos(πx), uy(x,2) = x.

(51) ux(0,y) = 0, u(1,y) = 0,

u(x,0) =
{

1, 0 < x ≤ 1/2,
2, 1/2 < x < 1, uy(x,2) = 3cos(πx/2).

(52) ux(0,y) = −sin(3πy/4), ux(1,y) =
{

0, 0 < y ≤ 1,
1, 1 < y < 2,

u(x,0) = 0, uy(x,2) = 0.

In (53)–(56) use separation of variables to solve the BVP

urr(r,θ) + r−1ur(r,θ) + r−2uθθ(r,θ) = 0, 0 < r < α, −π < θ < π,

u(r,θ), ur(r,θ) bounded as r → 0+, u(α,θ) = f(θ), −π < θ < π,

u(r,−π) = u(r,π), uθ(r,−π) = uθ(r,π), 0 < r < α,

with the constant α and the function f as indicated.
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(53) α = 1/2, f(θ) = 3 − 4cos(3θ).

(54) α = 3, f(θ) = 2cos(4θ) + sin(2θ).

(55) α = 2, f(θ) =
{−1, −π < θ ≤ 0,

3, 0 < θ < π.

(56) α = 1, f(θ) =
{

1, −π < θ ≤ 0,
θ, 0 < θ < π.

In (57)–(60) use separation of variables to solve the IBVP

ut(x,t) = uxx(x,t) − ux(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = f(x), 0 < x < 1,

with the function f as indicated.

(57) f(x) = 3ex/2 sin(2πx).

(58) f(x) = 1.

(59) f(x) =
{

0, 0 < x ≤ 1/2,
1, 1/2 < x < 1.

(60) f(x) =
{

1, 0 < x ≤ 1/2,
−2, 1/2 < x < 1.

In (61)–(64) use separation of variables to solve the IBVP

utt(x,t) + ut(x,t) + u(x,t) = 4uxx(x,t) − 2ux(x,t),

0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < 1,

with the functions f and g as indicated.

(61) f(x) = −2ex/4 sin(3πx), g(x) = ex/4 sin(2πx).

(62) f(x) = −3, g(x) = 1.

(63) f(x) =
{−1, 0 < x ≤ 1/2,

0, 1/2 < x < 1,
g(x) = 4ex/4 sin(πx).

(64) f(x) = −3ex/4 sin(4πx), g(x) =
{

3, 0 < x ≤ 1/2,
−1, 1/2 < x < 1.
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In (65)–(68) use separation of variables to solve the PDE

uxx(x,y) + uyy(x,y) − 2uy(x,y) = 0, 0 < x < 2, 0 < y < 1,

with the BCs as indicated.

(65) u(0,y) = 0, u(2,y) = 0,
u(x,0) = −sin(πx/2), u(x,1) = 2sin(πx).

(66) u(0,y) = 0, u(2,y) = 0,
u(x,0) = 1, u(x,1) = −2sin(3πx/2).

(67) u(0,y) = 3ey sin(2πy), u(2,y) = −2ey sin(πy),
u(x,0) = 0, u(x,1) = 0.

(68) u(0,y) = 4ey sin(3πy), u(2,y) =
{

1, 0 < y ≤ 1/2,
0, 1/2 < y < 1,

u(x,0) = 0, u(x,1) = 0.

In (69)–(74) use separation of variables to solve the PDE

utt(x,y,t) = uxx(x,y,t) + uyy(x,y,t),

0 < x < 1, 0 < y < 1, t > 0,

with the BCs and ICs as indicated.

(69) u(0,y, t) = 0, u(1,y, t) = 0, u(x,0, t) = 0, u(x,1, t) = 0,
u(x,y,0) = sin(πx)sin(2πy), ut(x,y,0) = −2sin(2πx)sin(πy).

(70) u(0,y, t) = 0, u(1,y, t) = 0, u(x,0, t) = 0, u(x,1, t) = 0,
u(x,y,0) = 3sin(2πx)sin(πy),
ut(x,y,0) = sin(3πx)

[
sin(2πy) − 2sin(3πy)

]
.

(71) u(0,y, t) = 0, u(1,y, t) = 0, uy(x,0, t) = 0, uy(x,1, t) = 0,
u(x,y,0) = −sin(πx)cos(2πy), ut(x,y,0) = 3sin(2πx).

(72) ux(0,y, t) = 0, ux(1,y, t) = 0, u(x,0, t) = 0, u(x,1, t) = 0,
u(x,y,0) = cos(2πx), ut(x,y,0) = −2cos(πx)sin(3πy).

(73) u(0,y, t) = 0, u(1,y, t) = 0, u(x,0, t) = 0, u(x,1, t) = 0,
u(x,y,0) = 1, ut(x,y,0) = xy.

(74) u(0,y, t) = 0, u(1,y, t) = 0, uy(x,0, t) = 0, uy(x,1, t) = 0,
u(x,y,0) = (x − 1)y, ut(x,y,0) = 2xy.
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In (75)–(78), use separation of variables to compute the first five terms of
the series solution of the IBVP

utt(r,θ, t) = urr(r,θ, t) + r−1ur(r,θ, t) + r−2uθθ(r,θ, t),

0 < r < 1, −π < θ < π, t > 0,

u(1,θ, t) = 0, u(r,θ, t), ur(r,θ, t) bounded as r → 0+,

− π < θ < π, t > 0,

u(r,−π,t) = u(r,π,t), uθ(r,−π,t) = uθ(r,π,t),

0 < r < 1, t > 0,

u(r,θ,0) = f(r,θ), ut(r,θ,0) = g(r,θ),

0 < r < 1, −π < θ < π,

with the functions f and g as indicated.

(75) f(r,θ) = 2sin(2θ), g(r,θ) = 0.
(76) f(r,θ) = 0, g(r,θ) = −cosθ.
(77) f(r,θ) = r sinθ, g(r,θ) = 0.
(78) f(r,θ) = 0, g(r,θ) = (r − 1)cos(2θ).

In (79) and (80) use separation of variables to compute, up to r2-terms, the
series solution of the BVP

1
r2

(r2ur)r +
1

r2 sin2ϕ
uθθ +

1
r2 sinϕ

(
(sinϕ)uϕ

)
ϕ

= 0,

0 < r < 1, 0 < θ < 2π, 0 < ϕ < π,

u(1,θ,ϕ) = f(θ,ϕ), u(r,θ,ϕ), ur(r,θ,ϕ) bounded as r → 0+,

0 < θ < 2π, 0 < ϕ < π,

u(r,0,ϕ) = u(r,2π,ϕ), uθ(r,0,ϕ) = uθ(r,2π,ϕ),

0 < r < 1, 0 < ϕ < π,

u(r,θ,ϕ), uϕ(r,θ,ϕ) bounded as ϕ→ 0+ and as ϕ→ π−,
0 < r < 1, 0 < θ < 2π,

with the function f as indicated.

(79) f(θ,ϕ) = 2cos2 θ sin2ϕ− sinθ sinϕcosϕ− cos2ϕ.

(80) f(θ,ϕ) =
{

1, 0 < ϕ ≤ π/2,
sinθ sinϕcosϕ, π/2 < ϕ < π.



Chapter 6
Linear Nonhomogeneous
Problems

The method of separation of variables can be applied only if the PDE and
BCs are homogeneous. However, a mathematical model may include nonho-
mogeneous terms (that is, terms not containing the unknown function or its
derivatives) in the equation, and/or may have nonhomogeneous (nonzero)
data prescribed at its boundary points. In this chapter we show how, in
certain cases, such problems can be reduced to their corresponding homo-
geneous versions.

6.1. Equilibrium Solutions

We have already discussed equilibrium (or steady-state, or time-indepen-
dent) solutions for the higher-dimensional heat equation (see Section 4.2).
Below we consider equilibrium temperature distributions for a uniform rod.

Temperature prescribed at the endpoints. The general IBVP for a rod
with internal sources in this case is of the form

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0,

u(0, t) = α(t), u(L,t) = β(t), t > 0,

u(x,0) = f(x), 0 < x < L,

where α, β, and f are given functions. If α and β are constant and q = q(x),
then we may have an equilibrium solution u∞ = u∞(x), which satisfies the
BVP

u′′∞(x) + q(x) = 0, 0 < x < L,

u∞(0) = α, u∞(L) = β,

with q incorporating the factor 1/k. As can be seen, here the IC plays no
role in the computation of u∞. For a time-dependent problem, it seems
physically reasonable to expect that if an equilibrium solution exists, then

lim
t→∞u(x,t) = u∞(x).
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This justifies the use of the subscript ∞ in the symbol of the equilibrium
solution.

6.1. Example. The equilibrium temperature for the IBVP

ut(x,t) = 4uxx(x,t) + 2x− 1, 0 < x < 2, t > 0,

u(0, t) = 1, u(2, t) = −2, t > 0,

u(x,0) = sin
πx

2
, 0 < x < 2,

is obtained by solving the BVP

4u′′∞(x) + 2x− 1 = 0, 0 < x < 2,

u∞(0) = 1, u∞(2) = −2.

Integrating the ODE twice, we find that

u∞(x) = − 1
12 x

3 + 1
8 x

2 + C1x+ C2, C1, C2 = const.

The constants C1 and C2 are now easily found from the BCs. The equilib-
rium solution is

u∞(x) = − 1
12 x

3 + 1
8 x

2 − 17
12 x+ 1.

Flux prescribed at the endpoints. The general IBVP is

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0,

ux(0, t) = α(t), ux(L,t) = β(t), t > 0,

u(x,0) = f(x), 0 < x < L.

As above, an equilibrium solution may exist if α and β are constant and q

is independent of t. Such a solution satisfies the BVP

u′′∞(x) + q(x) = 0, 0 < x < L,

u′∞(0) = α, u′∞(L) = β,

with q incorporating the factor 1/k, and, if it exists, may once again be
regarded as the limit, as t→ ∞, of the solution u(x,t) of the IBVP. It turns
out that in this case the IC cannot be set aside. In fact, this condition now
plays an essential role in the computation of the equilibrium temperature.
Its input comes through the law of conservation of heat energy in the full
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time-dependent problem, which is equivalent to the PDE itself. Thus, under
the assumption made above on q, α, and β, integrating the PDE term by
term from 0 to L and using the BCs, we obtain

d

dt

L∫
0

u(x,t)dx = k

L∫
0

uxx(x,t)dx +

L∫
0

q(x)dx

= k
[
ux(L,t) − ux(0, t)

]
+

L∫
0

q(x)dx

= k
[
β(t) − α(t)

]
+

L∫
0

q(x)dx.

Given that the lateral (cylindrical) surface of the rod is insulated, an equi-
librium temperature cannot physically exist unless the total contribution of
the sources in the rod and of the heat flux through its endpoints is zero;
that is,

k
[
β(t) − α(t)

]
+

L∫
0

q(x,t)dx = 0.

If this happens, then, as the above equality shows,
L∫
0

u(x,t)dx is constant

for all t > 0, and so,
L∫

0

u(x,0)dx = lim
t→∞

L∫
0

u(x,t)dx;

in other words,
L∫

0

u∞(x)dx =

L∫
0

f(x)dx. (6.1)

6.2. Example. The equilibrium temperature for the IBVP

ut(x,t) = 4uxx(x,t) + γx+ 24, 0 < x < 2, t > 0,

ux(0, t) = 2, ux(2, t) = 14, t > 0,

u(x,0) = π sin
πx

2
+ 1, 0 < x < 2,

where γ = const, satisfies the BVP

4u′′∞(x) + γx+ 24 = 0, 0 < x < 2,

u′∞(0) = 2, u′∞(2) = 14.
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The ODE yields
u′∞(x) = − 1

8 γx
2 − 6x+ C1,

and the BCs imply that C1 = 2 and γ = −48. This is the only value of γ
for which an equilibrium temperature exists. Integrating again, we get

u∞(x) = 2x3 − 3x2 + 2x+ C2.

Since
L∫

0

f(x)dx =

2∫
0

(
π sin

πx

2
+ 1

)
dx = 6,

L∫
0

u(x)dx =

2∫
0

(
2x3 − 3x2 + 2x+ C2

)
dx = 2C2 + 4,

it follows that, by (6.1), C2 = 1; hence,

u∞(x) = 2x3 − 3x2 + 2x+ 1.

It is easily verified that, as expected, the total contribution of the source
term γx + 24 = −48x+ 24 over the length of the rod and of the heat flux
at the endpoints is zero.

Mixed boundary conditions. The same method can be applied to com-
pute the equilibrium solution in the case of mixed BCs.

6.3. Example. To find the equilibrium temperature for the IBVP

ut(x,t) = 4uxx(x,t) − 16, 0 < x < 2, t > 0,

u(0, t) = −5, ux(2, t) = 4, t > 0,

u(x,0) = sin
πx

2
, 0 < x < 2,

we need to solve the BVP

u′′∞(x) − 4 = 0, 0 < x < L,

u∞(0) = −5, u′∞(2) = 4.

Direct integration shows that u∞(x) = 2x2 − 4x− 5.
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6.4. Example. The equilibrium temperature for the IBVP

ut(x,t) = 4uxx(x,t) + 32, 0 < x < 2, t > 0,

ux(0, t) = 2
[
u(0, t) − 13

2

]
, u(2, t) = 1, t > 0,

u(x,0) = sin
πx

2
, 0 < x < 2,

satisfies
u′′∞(x) + 32 = 0, 0 < x < 1,

u′∞(0) = 2
[
u∞(0) − 13

2

]
, u∞(2) = 1,

so u∞(x) = −4x2 + 7x+ 3.

Equilibrium temperatures can sometimes also be computed explicitly for
heat IBVPs in higher dimensions.

Circular annulus with prescribed temperature on the boundary. In
view of the geometry of the domain, in this case it is advisable to use the
Laplacian in polar coordinates (see Remark 4.11(ii)).

6.5. Example. The IBVP

ut(r,t) = k(Δu)(r,t) = kr−1(rur(r,t))r , 1 < r < 2, t > 0,

u(1, t) = 3, u(2, t) = −1, t > 0,

u(r,0) = f(r), 1 < r < 2,

models heat conduction in a uniform circular annulus with no sources when
the inner and outer boundary circles r = 1 and r = 2 are held at two
different constant temperatures and the IC function depends only on r.
(Since the body and the IC have circular symmetry, we may assume that
the solution u is independent of the polar angle θ.) Then the equilibrium
temperature u∞(r) satisfies the BVP

(ru′∞(r))′ = 0, 1 < r < 2,

u∞(1) = 3, u∞(2) = −1.

Integrating the ODE once, we find that

ru′∞(r) = C1 = const,
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while a second integration yields the general solution

u∞(r) = C1 lnr + C2, C2 = const.

Using the BC at r = 1, we see that C2 = 3; then the condition at r = 2
leads to C1 = 4/(ln2), so

u∞(r) =
4

ln2
lnr + 3.

6.2. Nonhomogeneous Problems

Time-independent boundary conditions. Consider the IBVP

ut(x,t) = kuxx(x,t), 0 < x < L, t > 0,

u(0, t) = α, u(L,t) = β, t > 0,

u(x,0) = f(x), 0 < x < L,

(6.2)

where k, α, β = const and f is a given function. To be able to use the
method of separation of variables, we need to make the BCs homogeneous,
while keeping the PDE also homogeneous.

Proceeding as in Section 6.1, it is easily seen that the equilibrium solution
for this problem is

u∞(x) = α+
β − α

L
x, 0 < x < L. (6.3)

Then the function v = u− u∞ is a solution of the IBVP

vt(x,t) = kvxx(x,t), 0 < x < L, t > 0,

v(0, t) = 0, v(L,t) = 0, t > 0,

v(x,0) = f(x) − u∞(x), 0 < x < L.

This new IBVP was solved in Section 5.1 and, by (5.10), its solution is

v(x,t) =
∞∑

n=1

bn sin
nπx

L
e−k(n2π2/L)t,

where, by (5.9) with f replaced by f − u∞,

bn =
2
L

L∫
0

[f(x) − u∞(x)]sin
nπx

L
dx, n = 1,2, . . . . (6.4)
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Consequently, the solution of (6.2) is

u(x,t) = u∞(x) + v(x,t) = u∞(x) +
∞∑

n=1

bn sin
nπx

L
e−k(nπ/L)2t,

with u∞ and the bn given by (6.3) and (6.4), respectively.

Time-independent sources and boundary conditions. The above
method also works for an IBVP of the form

ut(x,t) = kuxx(x,t) + q(x), 0 < x < L, t > 0,

u(0, t) = α, u(L,t) = β, t > 0,

u(x,0) = f(x), 0 < x < L,

since, as seen in Section 6.1, the computation of the equilibrium temperature
distribution takes the source term into account.

Other types of BCs are treated similarly if a steady-state solution exists.

6.6. Example. The equilibrium solution u∞ of the IBVP

ut(x,t) = uxx(x,t) + π2 sin(πx), 0 < x < 1, t > 0,

u(0, t) = 1, u(1, t) = −3, t > 0,

u(x,0) = x2, 0 < x < 1,

satisfies
u′′∞(x) + π2 sin(πx) = 0, 0 < x < 1,

u∞(0) = 1, u∞(1) = −3.

The solution of this BVP is u∞(x) = sin(πx)−4x+1. Then the substitution
v(x) = u(x) − sin(πx) + 4x− 1 reduces the given IBVP to

vt(x,t) = vxx(x,t), 0 < x < 1, t > 0,

v(0, t) = 0, v(1, t) = 0, t > 0,

v(x,0) = x2 + 4x− 1 − sin(πx), 0 < x < 1,

which can be solved by the method of separation of variables.

6.7. Example. If the IBVP

ut(x,t) = uxx(x,t) + x− γ, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = − 1
2 + x+ 1

4 x
2 − 1

6 x
3, 0 < x < 1,
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where γ = const, has a steady-state solution u∞, then this solution must
satisfy

u′′∞(x) + x− γ = 0, 0 < x < 1,

u′∞(0) = 0, u′∞(1) = 0.

Integrating the equation once, we find that

u′∞(x) = − 1
2 x

2 + γx+ C1, C1 = const,

which satisfies both boundary conditions only if γ = 1/2 and C1 = 0.
Another integration yields

u∞(x) = − 1
6 x

3 + 1
4 x

2 + C2, C2 = const.

Following the procedure in Example 6.2, we deduce that C2 = 0. Then the
substitution v(x) = u(x) + 1

6 x
3 − 1

4 x
2 reduces the original problem to the

IBVP
vt(x,t) = vxx(x,t), 0 < x < 1, t > 0,

vx(0, t) = 0, vx(1, t) = 0, t > 0,

v(x,0) = x− 1
2 , 0 < x < 1,

to which we can apply the method of separation of variables.

The general case. Consider the IBVP

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0,

u(0, t) = α(t), u(L,t) = β(t), t > 0,

u(x,0) = f(x), 0 < x < L,

where α, β, f , and q are given functions. Also, let

p(x,t) = C1(t) + C2(t)x

be a linear polynomial in x satisfying the BCs; that is, p(0, t) = α(t) and
p(L,t) = β(t). Then C1 = α and C2 = (β − α)/L, and the substitution
u = v + p reduces the given problem to the new IBVP

vt(x,t) = kvxx(x,t) +
[
q(x,t) − pt(x,t)

]
, 0 < x < L, t > 0,

v(0, t) = 0, v(L,t) = 0, t > 0,

v(x,0) = f(x) − p(x,0), 0 < x < L,
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which has homogeneous BCs but a nonhomogeneous PDE. Such problems,
and similar ones with other types of BCs, are solved by the method of
eigenfunction expansion, discussed in the next chapter.

6.8. Example. The IBVP

ut(x,t) = uxx(x,t) + xt, 0 < x < 1, t > 0,

u(0, t) = 1 − t, u(1, t) = t2, t > 0,

u(x,0) = x, 0 < x < 1,

is of the above form, with L = 1, α(t) = 1 − t, β(t) = t2, and q(x,t) = xt;
therefore,

p(x,t) = 1 − t+ (t2 + t− 1)x.
The substitution

u(x,t) = v(x,t) + 1 − t+ (t2 + t− 1)x

now reduces the given IBVP to the problem

vt(x,t) = vxx(x,t) + 1 − xt− x, 0 < x < 1, t > 0,

v(0, t) = 0, v(1, t) = 0, t > 0,

v(x,0) = 2x− 1, 0 < x < 1,

with homogeneous BCs.

6.9. Example. The IBVP

ut(x,t) = uxx(x,t) + xt, 0 < x < 1, t > 0,

ux(0, t) = t, ux(1, t) = t2, t > 0,

u(x,0) = x+ 1, 0 < x < 1,

needs slightly different handling. Here we take px instead of p to be a linear
polynomial in x satisfying the BCs; that is,

px(x,t) = C1(t) + C2(t)x, px(0, t) = t, px(1, t) = t2.

Then px(x,t) = t+ (t2 − t)x, from which, by integration, we obtain

p(x,t) = xt+ 1
2 x

2(t2 − t).

(Since we need only one such function p, we have taken the constant of
integration to be zero.) The substitution
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u(x,t) = v(x,t) + xt+ 1
2 x

2(t2 − t)

now reduces the original problem to the IBVP

vt(x,t) = vxx(x,t) + t2 − t+ xt− 1
2 x

2(2t− 1) − x,

0 < x < 1, t > 0,
vx(0, t) = 0, vx(1, t) = 0, t > 0,

v(x,0) = x+ 1, 0 < x < 1.

6.10. Remark. This technique can also be applied to reduce other types
of IBVPs to simpler versions where the PDE is nonhomogeneous but the
BCs are homogeneous. In the case of BVPs, we can similarly make two of
the BCs homogeneous by means of a suitably chosen linear polynomial.

Exercises

In (1)–(6) find the equilibrium solution for the IBVP consisting of the PDE

ut(x,t) = uxx(x,t) + q(x), 0 < x < 1, t > 0,

and the function q, BCs, and IC as indicated. (In (5) and (6) also find the
value of γ for which such a solution exists.)

(1) q(x) = 6 − 12x, u(0, t) = −1, u(1, t) = 2, u(x,0) = f(x).
(2) q(x) = 4 − 6x, u(0, t) = −3, ux(1, t) = −1, u(x,0) = f(x).
(3) q(x) = −4 − 12x2, ux(0, t) = 3, ux(1, t) = 3

[
u(1, t) − 1

3

]
,

u(x,0) = f(x).
(4) q(x) = 24x− 12x2, ux(0, t) = −3

[
u(0, t) − 1

3

]
, u(1, t) = −2,

u(x,0) = f(x).
(5) q(x) = γx− 4, ux(0, t) = −3, ux(1, t) = 4, u(x,0) = −3x− 1

12 .

(6) q(x) = γ + 6x− 12x2, ux(0, t) = −2, ux(1, t) = 3,
u(x,0) = 157

120 π sin(πx).

In (7)–(12) find the equilibrium solution of the IBVP consisting of the PDE
and IC

ut(x,t) = uxx(x,t) − 3ux(x,t) + 2u(x,t) + q(x), 0 < x < 1, t > 0,

u(x,0) = f(x), 0 < x < 1,

and the function q and BCs as indicated.
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(7) q(x) = −2x2 + 2x+ 6, u(0, t) = −1, u(1, t) = 2.
(8) q(x) = −2x+ 7, u(0, t) = 0, ux(1, t) = 1 + 2e.
(9) q(x) = 2x− 3, ux(0, t) = −4, ux(1, t) = −1 + e− 4e2.

(10) q(x) = 8 − 4x, ux(0, t) = 8, ux(1, t) = 6e2 + 2.
(11) q(x) = −6x2 + 28x− 17, u(0, t) = −2, ux(1, t) = 2

[
u(1, t) − 9

2

]
.

(12) q(x) = 2x− 9, ux(0, t) = −2
[
u(0, t) − 11

2

]
, ux(1, t) = 2e− 1.

In (13)–(18) find a substitution that reduces the IBVP consisting of the
PDE and IC

ut(x,t) = uxx(x,t) + x+ t− 2, 0 < x < 1, t > 0,

u(x,0) = 2x, 0 < x < 1,

and the BCs as indicated, to an equivalent IBVP with homogeneous BCs.
In each case compute the nonhomogeneous term q(x,t) in the transformed
PDE and the transformed IC function f(x).

(13) u(0, t) = t+ 1, u(1, t) = 2t− t2.

(14) ux(0, t) = 2 − t2, ux(1, t) = t− 3.
(15) ux(0, t) = 3t, ux(1, t) = t2 + t.

(16) u(0, t) = t+ 2, ux(1, t) = 1 − 2t.
(17) ux(0, t) = −2[u(0, t)− t], ux(1, t) = 2 + t.

(18) u(0, t) = t2, ux(1, t) = 2[u(1, t) − 3].

In (19)–(22) find a substitution that reduces the IBVP consisting of the
PDE and ICs

utt(x,t) = uxx(x,t) − xt+ 2x, 0 < x < 1, t > 0,

u(x,0) = x+ 1, ut(x,0) = x, 0 < x < 1,

and the BCs as indicated, to an equivalent IBVP with homogeneous BCs.
In each case compute the nonhomogeneous term q(x,t) in the transformed
PDE and the transformed IC functions f(x) and g(x).

(19) u(0, t) = 2t+ 3, u(1, t) = t2 − 4.
(20) u(0, t) = t− t2, u(1, t) = 2t.
(21) ux(0, t) = t− 1, ux(1, t) = t2 + 2.
(22) ux(0, t) = t2 + 2t, ux(1, t) = 3 − 2t.
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In (23)–(26) find a substitution that reduces the BVP consisting of the PDE

uxx(x,y) + uyy(x,y) + 2x− y = 0, 0 < x, y < 1,

the two boundary conditions

u(x,0) = 3x, u(x,1) = 1 − 2x, 0 < x < 1,

and the other two BCs as indicated, to an equivalent BVP with homoge-
neous BCs at x = 0 and x = 1. In each case compute the nonhomogeneous
term q(x,y) in the transformed PDE and the transformed BC functions
f(x) and g(x) at y = 0 and y = 1.

(23) u(0,y) = 2y2 − 1, u(1,y) = y − y2.

(24) u(0,y) = y2 + 2y, u(1,y) = 3y2.

(25) ux(0,y) = 2 − y, ux(1,y) = 1 + 3y.
(26) ux(0,y) = y2 + 1, ux(1,y) = 3y2 − 2.

In (27)–(30) find a substitution that reduces the IBVP consisting of the
PDE and IC

ut(x,t) = uxx(x,t) − 2ux(x,t) + xt− x+ 1, 0 < x < 1, t > 0,

u(x,0) = x+ 2, 0 < x < 1,

and the BCs as indicated, to an equivalent IBVP with homogeneous BCs.
In each case compute the nonhomogeneous term q(x,t) in the transformed
PDE and the transformed IC function f(x).

(27) u(0, t) = 2t+ 3, u(1, t) = 4 − 3t.
(28) u(0, t) = t+ 4, u(1, t) = 2t− 1.
(29) ux(0, t) = 1 − 2t, ux(1, t) = 3 + t.

(30) ux(0, t) = t2, ux(1, t) = 3t+ 2.



Chapter 7
The Method of
Eigenfunction Expansion

Separation of variables cannot be performed if the PDE and/or BCs are not
homogeneous. As we saw in Chapter 6, there are particular situations where
we can reduce the problem to an equivalent one with homogeneous PDE
and BCs, but this is not always possible. In the general case, the best we
can do is make the boundary conditions homogeneous. The eigenfunction
expansion technique is designed for IBVPs with a nonhomogeneous equation
and homogeneous BCs.

7.1. The Heat Equation
Consider the IBVP

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = 0, u(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), 0 < x < L. (IC)

The eigenvalues and eigenfunctions of the corresponding homogeneous prob-
lem (q = 0) are, respectively (see Section 5.1),

λn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . .

Since
{
Xn

}∞
n=1

is a complete set, we may consider for the solution an ex-
pansion of the form

u(x,t) =
∞∑

n=1

cn(t)Xn(x). (7.1)

Differentiating series (7.1) term by term and recalling that X ′′
n +λnXn = 0,

from the PDE we obtain
∞∑

n=1

c′n(t)Xn(x) = k

∞∑
n=1

cn(t)X ′′
n(x) + q(x,t)

= −k
∞∑

n=1

cn(t)λnXn(x) + q(x,t),
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or
∞∑

n=1

[
c′n(t) + kλncn(t)

]
Xn(x) = q(x,t).

Multiplying this equality by Xm(x), integrating from 0 to L, and taking
the orthogonality of the Xn on [0,L] (see Theorem 3.8(iii)) into account, we
find that

[
c′m(t) + kλmcm(t)

] L∫
0

X2
m(x)dx =

L∫
0

q(x,t)Xm(x)dx,

which (with m replaced by n) yields the equations

c′n(t) + kλncn(t) =

L∫
0

q(x,t)Xn(x)dx

L∫
0

X2
n(x)dx

, t > 0, n = 1,2, . . . . (7.2)

The BCs are automatically satisfied since each of the Xn in (7.1) satisfies
them.

From (7.1) and the IC we see that

u(x,0) = f(x) =
∞∑

n=1

cn(0)Xn(x).

Proceeding as above, we arrive at the initial conditions

cn(0) =

L∫
0

f(x)Xn(x)dx

L∫
0

X2
n(x)dx

, n = 1,2, . . . . (7.3)

Clearly, this is the same as finding formal expansions

q(x,t) =
∞∑

n=1

qn(t)Xn(x), f(x) =
∞∑

n=1

fnXn(x),

where the qn(t) and fn are given by the right-hand sides in (7.2) and (7.3),
respectively. Then the solution of the IBVP is of the form (7.1) with the
coefficients cn(t) computed from (7.2) and (7.3), which, for our problem,
reduce to
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c′n(t) + k

(
nπ

L

)2

cn(t) = qn(t) =
2
L

L∫
0

q(x,t)sin
nπx

L
dx,

cn(0) = fn =
2
L

L∫
0

f(x)sin
nπx

L
dx.

IBVPs with other types of BCs are treated similarly.

7.1. Example. The eigenvalues and eigenfunctions for the IBVP

ut(x,t) = uxx(x,t) + π2e−24π2t sin(5πx), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = 3sin(4πx), 0 < x < 1,

are (here k = 1 and L = 1) λn = n2π2 and Xn(x) = sin(nπx), n = 1,2, . . . .
Since q(x,t) = π2e−24π2t sin(5πx) and f(x) = 3sin(4πx) coincide with their
eigenfunction expansions, the above formulas yield the IVPs

c′n(t) + n2π2cn(t) =
{
π2e−24π2t, n = 5,
0, n �= 5,

t > 0,

cn(0) =
{

3, n = 4,
0, n �= 4.

Hence, for n = 4 we have

c′4(t) + 16π2c4(t) = 0, t > 0,

c4(0) = 3,

with solution c4(t) = 3e−16π2t (obtained, for example, by means of the
integrating factor e25π2t); for n = 5,

c′5(t) + 25π2c5(t) = π2e−24π2t, t > 0,

c5(0) = 0,

with solution c5(t) = e−25π2t(eπ2t − 1); and for n �= 4,5,

c′n(t) + n2π2cn(t) = 0, t > 0,

cn(0) = 0,

with solution cn(t) = 0. Consequently, by (7.1), the solution of the IBVP is

u(x,t) = c4(t)X4(x) + c5(t)X5(x)

= 3e−16π2t sin(4πx) + e−25π2t(eπ2t − 1)sin(5πx).
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7.2. Example. The IBVP

ut(x,t) = uxx(x,t) + xe−t, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = x− 1, 0 < x < 1,

has the same eigenvalues and eigenfunctions as that in Example 7.1. Here
q(x,t) = xe−t and f(x) = x−1. Hence, by (7.2), (7.3), and (2.5), and using
integration by parts, we find that

c′n(t) + n2π2cn(t) = 2e−t

1∫
0

xsin(nπx)dx

= (−1)n+1 2
nπ

e−t, t > 0, (7.4)

and

cn(0) = 2

1∫
0

(x− 1)sin(nπx)dx = − 2
nπ

. (7.5)

An integrating factor for (7.4) is en2π2t, so the solution of (7.4), (7.5) is

cn(t) = (−1)n+1 2
nπ

{
1

n2π2 − 1
e−t +

[
(−1)n − 1

n2π2 − 1

]
e−n2π2t

}
,

which means that, by (7.1), the solution of the given IBVP is

u(x,t) =
∞∑

n=1

(−1)n+1 2
nπ

{
1

n2π2 − 1
e−t

+
[
(−1)n − 1

n2π2 − 1

]
e−n2π2t

}
sin(nπx).

7.3. Example. The eigenvalues and eigenfunctions associated with the
IBVP

ut(x,t) = uxx(x,t) + 2t+ cos(2πx), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) =
1

2π2
cos(2πx), 0 < x < 1,

are (see Section 5.1) λn = n2π2 and Xn(x) = cos(nπx), n = 0,1,2, . . .
(for convenience, here we have taken λ0 = 1 instead of 1/2). Reasoning
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just as in the case of the sine eigenfunctions, we deduce that (7.1)–(7.3)
still hold except that now n = 0,1,2, . . . and the Xn are cosines. Since
q(x,t) = 2t+cos(2πx) and f(x) = (2π2)−1 cos(2πx) are linear combinations
of the eigenfunctions, (7.2) (with k = 1) and (7.3) lead to the IVPs

c′n(t) + n2π2cn(t) =

⎧⎨
⎩

2t, n = 0,
1, n = 2,
0, n �= 0,2,

t > 0,

cn(0) =

{ 1
2π2

, n = 2,

0, n �= 2.

Thus, for n = 0 we have

c′0(t) = 2t, t > 0,

c0(0) = 0,

with solution c0(t) = t2; for n = 2,

c′2(t) + 4π2c2(t) = 1, t > 0,

c2(0) =
1

2π2
,

with solution c2(t) = (4π2)−1(1 + e−4π2t); and for n �= 0,2,

c′n(t) + n2π2cn(t) = 0, t > 0,

cn(0) = 0,

with solution cn(t) = 0. Hence, the solution of the given IBVP is

u(x,t) = c0(t)X0(x) + c2(t)X2(x) = t2 +
1

4π2
(1 + e−4π2t)cos(2πx).

7.4. Example. The eigenvalues and eigenfunctions for the IBVP

ut(x,t) = uxx(x,t) − sin
(

3
2πx

)
+ tsin

(
5
2πx

)
, 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = sin
(

1
2πx

)
+ 2sin

(
3
2πx

)
, 0 < x < 1,

are (see Section 5.1)

λn =
(2n− 1)2π2

4
, Xn(x) = sin

(2n− 1)πx
2

, n = 1,2, . . . .
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By direct calculation, we can show that the general scheme also works in
this case, with k = 1, L = 1, and the above λn and Xn. We could therefore
find the equations and ICs for the cn from (7.2) and (7.3). However, as
before, we notice that the functions q(x,t) = −sin(3

2πx) + tsin(5
2πx) and

f(x) = sin(1
2πx) + 2sin(3

2πx) are already linear combinations of the Xn, so
we deduce that

c′n(t) + 1
4 (2n− 1)2π2cn(t) =

⎧⎨
⎩
−1, n = 2,
t, n = 3,
0, n �= 2,3,

t > 0,

cn(0) =

⎧⎨
⎩

1, n = 1,
2, n = 2,
0, n �= 1,2.

Thus, for n = 1 we have

c′1(t) + 1
4 π

2c1(t) = 0, t > 0,

c1(0) = 2,

with solution c1(t) = e−π2t/4; for n = 2,

c′2(t) + 9
4 π

2c2(t) = −1, t > 0,

c2(0) = 2,

with solution c2(t) = (2 + 4
9 π

−2)e−9π2t/4 − 4
9π

−2; for n = 3,

c′3(t) + 25
4 π

2c3(t) = t, t > 0,

c3(0) = 0,

with solution c3(t) = 16
625 π

−4 e−25π2t/4 + 4
25 π

−2t − 16
625 π

−4; finally, for
n �= 1,2,3,

cn(t) + 1
4 (2n− 1)2π2cn(t) = 0, t > 0,

cn(0) = 0,

with solution cn(t) = 0. Hence, by (7.1), the solution of the given IBVP is

u(x,t) = e−π2t/4 sin
(

1
2 πx

)
+

(
18π2 + 4

9π2
e−9π2t/4 − 4

9π2

)
sin

(
3
2πx

)

+
(

4
25π2

t− 16
625π4

+
16

625π4
e−25π2t/4

)
sin

(
5
2πx

)
.
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7.2. The Wave Equation

Consider the IBVP

utt(x,t) = c2uxx(x,t) + q(x,t), 0 < x < L, t > 0, (PDE)

u(0, t) = 0, u(L,t) = 0, t > 0, (BCs)

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L. (ICs)

The eigenvalues and eigenfunctions associated with this problem are (see
Section 5.2)

λn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . .

Starting with an expansion of the form (7.1) and following the same general
procedure as for the heat equation, this time also including the second IC,
we find that (7.2) is replaced by

c′′n(t) + c2λncn(t) =

L∫
0

q(x,t)Xn(x)dx

L∫
0

X2
n(x)dx

, t > 0, n = 1,2, . . . , (7.6)

that (7.3) remains unchanged, and that

c′n(0) =

L∫
0

g(x)Xn(x)dx

L∫
0

X2
n(x)dx

, n = 1,2, . . . . (7.7)

The solution of the IBVP is then given by (7.1) with the cn computed by
means of (7.6), (7.3), and (7.7), which in our case take the form

c′′n(t) + c2
(
nπ

L

)2

cn(t) =
2
L

L∫
0

q(x,t)sin
nπx

L
dx,

cn(0) =
2
L

L∫
0

f(x)sin
nπx

L
dx, c′n(0) =

2
L

L∫
0

g(x)sin
nπx

L
dx.

Other BCs can be treated in similar fashion.
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7.5. Example. For the IBVP

utt(x,t) = uxx(x,t) + π2 sin(πx), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = π, ut(x,0) = 2π sin(2πx), 0 < x < 1,

the above formulas with c2 = 1, L = 1, q(x,t) = π2 sin(πx), f(x) = π, and
g(x) = 2π sin(2πx) yield

c′′n(t) + n2π2cn(t) =
{
π2, n = 1,
0, n �= 1,

t > 0,

cn(0) = 2

1∫
0

π sin(nπx)dx =
[
1 − (−1)n

] 2
n
, n = 1,2, . . . ,

c′n(0) =
{

2π, n = 2,
0, n �= 2.

Hence, for n = 1,
c′′1 (t) + π2c1(t) = π2, t > 0,

c1(0) = 4, c′1(0) = 0,

with solution c1(t) = 3cos(πt) + 1; for n = 2,

c′′2(t) + 4π2c2(t) = 0, t > 0,

c2(0) = 0, c′2(0) = 2π,

with solution c2(t) = sin(2πt); and for n �= 1,2,

c′′n(t) + n2π2cn(t) = 0, t > 0,

cn(0) =
[
1 − (−1)n

] 2
n
, c′n(0) = 0,

with solution cn(t) =
[
1 − (−1)n

]
(2/n)cos(nπt). Consequently, by (7.1),

u(x,t) = [3cos(πt) + 1]sin(πx) + sin(2πt)sin(2πx)

+
∞∑

n=3

[
1 − (−1)n

] 2
n

cos(nπt)sin(nπx).

7.6. Example. The IBVP

utt(x,t) = uxx(x,t) + 1 + tcos(πx), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = 2, ut(x,0) = −2cos(2πx), 0 < x < 1,
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gives rise to the eigenvalues and eigenfunctions (see Section 5.3)

λn = n2π2, Xn(x) = cos(nπx), n = 0,1,2, . . . .

The above general procedure accommodates this case as well, with the ob-
vious modifications. Taking c2 = 1 and L = 1 and seeing that q(x,t) =
1 + tcos(πx), f(x) = 2, and g(x) = −2cos(2πx) coincide with their eigen-
function expansions, we find that (7.6), (7.3), and (7.7) lead to the IVPs

c′′n(t) + n2π2cn(t) =

⎧⎨
⎩

1, n = 0,
t, n = 1,
0, n �= 0,1,

t > 0,

cn(0) =
{

2, n = 0,
0, n �= 0,

c′n(0) =
{−2, n = 2,

0, n �= 2.

So for n = 0 we have

c′′0(t) = 1, t > 0,

c0(0) = 2, c′0(0) = 0,

with solution c0(t) = 1
2 t

2 + 2; for n = 1,

c′′1 (t) + π2c1(t) = t, t > 0,

c1(0) = 0, c′1(0) = 0,

with solution c1(t) = −π−3 sin(πt) + π−2t; for n = 2,

c′′2(t) + 4π2c2(t) = 0, t > 0,

c2(0) = 0, c′2(0) = −2,

with solution c2(t) = −π−1 sin(2πt); and for n �= 0,1,2,

c′′n(t) + n2π2cn(t) = 0, t > 0,

cn(0) = 0, c′n(0) = 0,

with solution cn(t) = 0. Consequently, by (7.1), the solution of the IBVP is

u(x,t) =
1
2
t2 + 2 +

[
1
π2
t− 1

π3
sin(πt)

]
cos(πx)

− 1
π

sin(2πt)cos(2πx).



152 EIGENFUNCTION EXPANSION

7.3. The Laplace Equation

Consider the BVP

uxx(x,y) + uyy(x,y) = q(x,y), 0 < x < L, 0 < y < K,

u(0,y) = 0, u(L,y) = 0, 0 < y < K,

u(x,0) = f1(x), u(x,K) = f2(x), 0 < x < L,

where, for convenience, the source term has been shifted to the right-hand
side of the PDE. The eigenvalues and eigenfunctions associated with this
problem for the nonhomogeneous Laplace equation (Poisson equation) were
found in Section 5.3; they are, respectively,

λn =
(
nπ

L

)2

, Xn(x) = sin
nπx

L
, n = 1,2, . . . .

Seeking a solution of the form

u(x,y) =
∞∑

n=1

cn(y)sin
nπx

L
,

we deduce as in Sections 7.1 and 7.2 that the coefficients cn, n = 1,2, . . . ,
satisfy the ODE boundary value problems

c′′n(y) − n2π2cn(y) =
2
L

L∫
0

q(x,y)sin
nπx

L
dx, 0 < y < K,

cn(0) =
2
L

L∫
0

f1(x)sin
nπx

L
dx,

cn(K) =
2
L

L∫
0

f2(x)sin
nπx

L
dx.

(7.8)

7.7. Example. In the BVP

uxx(x,y) + uyy(x,y) = π2 sin(πx), 0 < x < 1, 0 < y < 2,

u(0,y) = 0, u(1,y) = 0, 0 < y < 2,

u(x,0) = 2sin(3πx), u(x,2) = −sin(πx), 0 < x < 1,
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we have L = 1, K = 2, q(x,y) = π2 sin(πx), f1(x) = 2sin(3πx), and
f2(x) = −sin(πx). Since q, f1, and f2 are linear combinations of the eigen-
functions, we can bypass (7.8) and see directly that cn satisfies

c′′n(y) − n2π2cn(y) =
{
π2, n = 1,
0, n �= 1,

0 < y < 2,

cn(0) =
{

2, n = 3,
0, n �= 3,

cn(2) =
{−1, n = 1,

0, n �= 1.

Then for n = 1,

c′′1(y) − π2c1(y) = π2, 0 < y < 2,

c1(0) = 0, c1(2) = −1,

with solution c1(y) = −csch(2π)sinh
(
π(y − 2)

) − 1; for n = 3,

c′′3(y) − 9π2c3(y) = 0, 0 < y < 2,

c3(0) = 2, c3(2) = 0,

with solution c3(y) = −2csch(6π)sinh
(
3π(y − 2)

)
; and for n �= 1,3,

c′′n(y) − n2π2cn(y) = 0, 0 < y < 2,

cn(0) = 0, cn(2) = 0,

with solution cn(y) = 0. Hence, the solution of the BVP is

u(x,y) = −[
csch(2π)sinh

(
π(y − 2)

)
+ 1

]
sin(πx)

− 2csch(6π)sinh
(
3π(y − 2)

)
sin(3πx).

The same method can be applied to the nonhomogeneous Laplace equa-
tion in polar coordinates.

7.8. Example. In Section 5.3 we established that the eigenvalues and
eigenfunctions associated with a BVP such as

urr(r,θ) + r−1ur(r,θ) + r−2uθθ(r,t) = 4,

0 < r < 1, −π < θ < π,

u(1,θ) = 2cosθ − sin(2θ), −π < θ < π,
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are
λ0 = 0, Θ0(θ) = 1,

λn = n2, Θ1n(θ) = cos(nθ), Θ2n(θ) = sin(nθ), n = 1,2, . . . .

Seeking a solution of the form

u(r,θ) = c0(r) +
∞∑

n=1

[
c1n(r)Θ1n(θ) + c2n(r)Θ2n(θ)

]

and reasoning just as in Example 7.7, we deduce that the coefficients c0,
c1n, and c2n, n = 1,2, . . . , satisfy

c′′0(r) + r−1c′0(r) = 4, 0 < r < 1,

c0(1) = 0,

c′′1n(r) + r−1c′1n(r) − n2r−2c1n(r) = 0, 0 < r < 1,

c1n(1) =
{

2, n = 1,
0, n �= 1,

c′′2n(r) + r−1c′2n(r) − n2r−2c2n(r) = 0, 0 < r < 1,

c2n(1) =
{−1, n = 2,

0, n �= 2.

Since, according to the explanation given in Section 5.3, u(r,θ), ur(r,θ), and
uθ(r,θ) must be continuous (hence, bounded) for 0 ≤ r ≤ 1, −π < θ ≤ π, we
look for solutions c0(r), c1n(r), and c2n(r) that remain bounded as r → 0+.

The ODE for n = 0 is integrated by first noting that, after multiplication
by r, the left-hand side can be written as (rc′0)

′; in the end, we find that
the desired bounded solution is c0(r) = r2 − 1.

Multiplying the ODEs for n ≥ 1 by r2, we arrive at BVPs for Cauchy–
Euler equations. Thus, for n = 1,

r2c′′11(r) + rc′11(r) − c11(r) = 0, 0 < r < 1,

c11(1) = 2,

r2c′′21(r) + rc′21(r) − c21(r) = 0, 0 < r < 1,

c21(1) = 0,
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with bounded solutions c11(r) = 2r and c21(r) = 0; for n = 2,

r2c′′12(r) + rc′12(r) − 4c12(r) = 0, 0 < r < 1,

c12(1) = 0,

r2c′′22(r) + rc′22(r) − 4c22(r) = 0, 0 < r < 1,

c22(1) = −1,

with bounded solutions c12(r) = 0 and c22(r) = −r2; and for n = 3,4, . . . ,

r2c′′1n(r) + rc′1n(r) − n2c1n(r) = 0, 0 < r < 1,

c1n(1) = 0,

r2c′′2n(r) + rc′2n(r) − n2c2n(r) = 0, 0 < r < 1,

c2n(1) = 0,

with bounded solutions c1n(r) = 0 and c2n(r) = 0. Therefore, the solution
of the BVP is

u(r,θ) = c0(r) + c1n(r)Θ1n(θ) + c2n(r)Θ2n(θ)

= r2 − 1 + 2r cosθ − r2 sin(2θ).

7.4. Other Equations

The method of eigenfunction expansion can also be applied to IBVPs or
BVPs for more general partial differential equations, such as those men-
tioned in Section 4.4.

7.9. Example. Consider the IBVP

ut(x,t) = uxx(x,t) − 2ux(x,t) + u(x,t) + 2tex sin(2πx),

0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = 0, 0 < x < 1.

Separating the variables in the associated homogenous IBVP in a conve-
nient way, we see that the eigenfunctions satisfy the regular Sturm–Liouville
problem
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X ′′(x) − 2X ′(x) + λX(x) = 0, 0 < x < 1,

X(0) = 0, X(1) = 0,

so, by the formulas in Remark 3.21(iii) with a = −2, b = 0, c = 1, and
L = 1,

λn = n2π2 + 1, Xn(x) = ex sin(nπx), n = 1,2, . . . .

Consequently, we seek the solution of our given nonhomogeneous IBVP in
the form

u(x,t) =
∞∑

n=1

cn(t)ex sin(nπx).

Following the procedure applied in the preceding examples, we conclude
that the coefficients cn(t) are the solutions of the IVPs

c′n(t) + (λn − 1)cn(t) =
{

2t, n = 2,
0, n �= 2, t > 0,

cn(0) = 0.

For n = 2 we have

c′2(t) + 4π2c2(t) = 2t, t > 0,

c2(0) = 0,

from which

c2(t) =
1

8π4

(
e−4π2t + 4π2t− 1

)
.

For n �= 2, we find that cn(t) = 0. Therefore, the solution of the given IBVP
is

u(x,t) =
1

8π4

(
e−4π2t + 4π2t− 1

)
ex sin(2πx).

7.10. Example. The same procedure applied to the IBVP

utt(x,t) + 2ut(x,t) = uxx(x,t) − ux(x,t)

+
[
2 +

(
9π2 + 1

4

)
t
]
ex/2 sin(3πx), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = 0, ut(x,0) = ex/2 sin(3πx), 0 < x < 1,
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yields

λn = n2π2 + 1
4 , Xn(x) = ex/2 sin(nπx), n = 1,2, . . . ,

which suggests that we seek the solution in the form

u(x,t) =
∞∑

n=1

cn(t)ex/2 sin(nπx),

with the coefficients cn(t) satisfying

c′′n(t) + 2c′n(t) + λncn(t) =
{

2 +
(
9π2 + 1

4

)
t, n = 3,

0, n �= 3,
t > 0,

cn(0) = 0, c′n(0) =
{

1, n = 3,
0, n �= 3.

Solving the two cases n = 3 and n �= 3 separately, we arrive at

cn(t) =
{
t, n = 3,
0, n �= 3.

Hence, the solution of the given IBVP is

u(x,t) = tex/2 sin(3πx).

7.11. Example. The method of eigenfunction expansion applied to the
BVP

uxx(x,y) + uyy(x,y) − 4ux(x,y) = (y2 − y)e2x sin(πx),

0 < x < 1, 0 < y < 2,

u(0,y) = 0, u(1,y) = 0, 0 < y < 2,

u(x,0) = 2e2x sin(2πx), u(x,2) = 0, 0 < x < 1,

leads us to the eigenvalues and eigenfunctions

λn = n2π2 + 4, Xn(x) = e2x sin(nπx), n = 1,2, . . . ,

so we seek the solution in the form

u(x,y) =
∞∑

n=1

cn(y)e2x sin(nπx),
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where the coefficients cn(y) are the solutions of the ODE boundary value
problems

c′′n(y) − λncn(y) =
{
y2 − y, n = 1,
0, n �= 1,

0 < y < 2,

cn(0) =
{

2, n = 2,
0, n �= 2,

cn(2) = 0.

The individual coefficients are now easily computed. For n = 1,

c′′1(y) − (π2 + 4)c1(y) = y2 − y, 0 < y < 2,

c1(0) = 0, c1(2) = 0,

with solution

c1(y) =
1

(π2 + 4)2
{
2csch

(
2
√
π2 + 4

)[
(π2 + 5)sinh

(√
π2 + 4y

)
− sinh

(√
π2 + 4(y − 2)

)]
+ (π2 + 4)(y − y2) − 2

}
;

for n = 2,

c′′2 (y) − 4(π2 + 1)c2(y) = 0, 0 < y < 2,

c2(0) = 2, c2(2) = 0,

with solution

c2(y) = −2csch
(
4
√
π2 + 1

)
sinh

(
2
√
π2 + 1(y − 2)

)
;

and for n �= 1,2,

c′′n(y) + (n2π2 + 4)cn(y) = 0, 0 < y < 2,

cn(0) = 0, cn(2) = 0,

with solution cn(y) = 0. Consequently, the solution of the given BVP is
written as

u(x,y) = c1(y)e2x sin(πx) + c2(y)e2x sin(2πx),

with c1(y) and c2(y) as determined above.
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Exercises

In (1)–(8) use the method of eigenfunction expansion to find the solution of
the IBVP

ut(x,t) = uxx(x,t) + q(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = f(x), 0 < x < 1,

with the functions q and f as indicated.

(1) q(x,t) = 2tsin(2πx), f(x) = sin(2πx) − 5sin(4πx).
(2) q(x,t) =

[
3 + π2(3t− 2)

]
sin(πx) + (9π2t2 + 2t)sin(3πx),

f(x) = −2sin(πx).
(3) q(x,t) = e−t sin(3πx) − sin(5πx), f(x) = sin(πx) + 2sin(3πx).
(4) q(x,t) =

[
(π2 − 1)e−t − π2

]
sin(πx) + (4π2t+ 4π2 + 1)sin(2πx)

+ 48π2 sin(4πx), f(x) = sin(2πx) + 3sin(4πx).
(5) q(x,t) = (t− 1)sin(πx), f(x) = sin(πx) + 2sin(2πx).
(6) q(x,t) = π2e−4π2t sin(2πx) + (2t+ 3)sin(3πx),

f(x) = 3sin(πx) − 2sin(2πx).

(7) q(x,t) = xt, f(x) =
{

1, 0 < x ≤ 1/2,
0, 1/2 < x < 1.

(8) q(x,t) = 1
2 (x− 1)t, f(x) = x.

In (9)–(16) use the method of eigenfunction expansion to find the solution
of the IBVP

ut(x,t) = uxx(x,t) + q(x,t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = f(x), 0 < x < 1,

with the functions q and f as indicated.

(9) q(x,t) = 2 + cos(2πx), f(x) = 2cos(πx) − cos(2πx).
(10) q(x,t) = 2 + 16π2 cos(2πx) +

[
(9π2 − 1)e−t + 9π2

]
cos(3πx),

f(x) = 4cos(2πx) + 2cos(3πx).
(11) q(x,t) = t− tcos(πx), f(x) = 1 + 3cos(4πx).
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(12) q(x,t) = π2e−π2t cos(πx) + (1 − 2t)cos(2πx), f(x) = 2cos(2πx).
(13) q(x,t) = e−t cos(πx), f(x) = 2 − cos(3πx).

(14) q(x,t) = 3t− 4, f(x) =
{−1, 0 < x ≤ 1/2,

1, 1/2 < x < 1.

(15) q(x,t) = −2xt, f(x) = 1 − 3cos(2x).
(16) q(x,t) = (1 − x)t, f(x) = x.

In (17)–(20) use the method of eigenfunction expansion to find the solution
of the IBVP

ut(x,t) = uxx(x,t) + q(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = f(x), 0 < x < 1,

with the functions q and f as indicated.

(17) q(x,t) = sin
(

3
2 πx

) − 2sin
(

5
2 πx

)
, f(x) = sin

(
3
2 πx

)
.

(18) q(x,t) = tsin
(

1
2 πx

)
, f(x) = sin

(
1
2 πx

)
+ 2sin

(
5
2 πx

)
.

(19) q(x,t) = 1
4

[
9π2t2 + 2(4 − 9π2)t− 8

]
sin

(
3
2 πx

)
+ 1

2 (25π2 − 4)e−t sin
(

5
2 πx

)
, f(x) = 2sin

(
5
2 πx

)
.

(20) q(x,t) = tsin
(

1
2 πx

)
, f(x) = πx.

In (21)–(26) use the method of eigenfunction expansion to find the solution
of the IBVP

utt(x,t) = uxx(x,t) + q(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < 1,

with the functions q, f , and g as indicated.

(21) q(x,t) = 2sin(2πx), f(x) = sin(πx), g(x) = −3sin(2πx).
(22) q(x,t) = (3π2 − 4 − 2π2t2)sin(πx) + 9π2(1 + t)sin(3πx),

f(x) = 3sin(πx) + sin(3πx), g(x) = sin(3πx).
(23) q(x,t) = tsin(πx), f(x) = sin(πx), g(x) = 2sin(πx) + 4sin(3πx).
(24) q(x,t) = 4

[
π2 − (π2 + 1)e−2t

]
sin(2πx) + 2(16π2 − 1)sin tsin(4πx),

f(x) = 0, g(x) = 2sin(2πx) + 2sin(4πx).
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(25) q(x,t) = (t+ 1)sin(2πx), f(x) = 0, g(x) = 2x− 1.

(26) q(x,t) = 2xt, f(x) =
{

0, 0 < x ≤ 1/2,
2 1/2 < x < 1,

g(x) = −1.

In (27)–(32) use the method of eigenfunction expansion to find the solution
of the IBVP

utt(x,t) = uxx(x,t) + q(x,t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < 1,

with the functions q, f , and g as indicated.

(27) q(x,t) = 3, f(x) = 1 + 2cos(2πx), g(x) = cos(3πx).

(28) q(x,t) = π2(3 − t)cos(πx),
f(x) = 3cos(πx), g(x) = −cos(πx) + 6π cos(3πx).

(29) q(x,t) = 1 + tcos(2πx),
f(x) = 2cos(2πx), g(x) = 1 + cos(πx) − cos(2πx).

(30) q(x,t) = (t− 2)e−t + 4π2tcos(2πx),
f(x) = −cos(3πx), g(x) = 1 + cos(2πx).

(31) q(x,t) = −x, f(x) = x− 1, g(x) = 0.

(32) q(x,t) = 2xt, f(x) = x, g(x) =
{

0, 0 < x ≤ 1/2,
1, 1/2 < x < 1.

In (33)–(48) use the method of eigenfunction expansion to find the solution
of the BVP

uxx(x,y) + uyy(x,y) = q(x,y), 0 < x < 1, 0 < y < 2,

with the function q and BCs (for 0 < x < 1, 0 < y < 2) as indicated.

(33) q(x,y) = sin(2πx), u(0,y) = 0, u(1,y) = 0,
u(x,0) = sin(πx) − 2sin(3πx), u(x,2) = −sin(2πx).

(34) q(x,y) = −π2(2y + 3)sin(πx) + (1 − 4π2)e−y sin(2πx),
u(0,y) = 0, u(1,y) = 0,
u(x,0) = 3sin(πx) + sin(2πx), uy(x,2) = 2sin(πx) − e−2 sin(2πx).



162 EIGENFUNCTION EXPANSION

(35) q(x,y) = 2y sin(πx), u(0,y) = 0, u(1,y) = 0,
uy(x,0) = x− 1, uy(x,2) = 0.

(36) q(x,y) = 1
2 π

2, u(0,y) = 0, u(1,y) = 0,
u(x,0) = 0, u(x,2) = 1

2 x.

(37) q(x,y) = −π2 sin(πy), u(0,y) = 2sin(πy), u(1,y) = sin
(

1
2 πy

)
,

u(x,0) = 0, u(x,2) = 0.

(38) q(x,y) =
[
2(1 − π2)ex + π2

]
sin(πy) − 9

4 π
2(x + 3)sin

(
3
2 πy

)
,

u(0,y) = sin(πy) + 3sin
(

3
2 πy

)
,

ux(1,y) = 2esin(πy) + sin
(

3
2 πy

)
, u(x,0) = 0, u(x,2) = 0.

(39) q(x,y) = (x− 1)sin(πy),
ux(0,y) = 0, u(1,y) = y − 2, u(x,0) = 0, u(x,2) = 0.

(40) q(x,y) = 3xsin
(

1
2 πy

)
,

u(0,y) = y, u(1,y) = 0, u(x,0) = 0, u(x,2) = 0.

(41) q(x,y) = −2 − 4π2(2y − 1)cos(2πx), ux(0,y) = 0, ux(1,y) = 0,
u(x,0) = 1 − cos(2πx), u(x,2) = −3 + 3cos(2πx).

(42) q(x,y) = −2 + π2(2 − y)cos(πx) + (4 − 9π2)e2y cos(3πx),
ux(0,y) = 0, ux(1,y) = 0,
uy(x,0) = cos(πx) + 2cos(3πx), u(x,2) = −3 + e4 cos(3πx).

(43) q(x,y) = y2 cos(2πx), ux(0,y) = 0, ux(1,y) = 0,
u(x,0) = 2cos(πx), uy(x,2) = −cos(2πx).

(44) q(x,y) = siny cos(πx), ux(0,y) = 0, ux(1,y) = 0,
u(x,0) = cos(πx), u(x,2) = 1.

(45) q(x,y) = (1 − x2)cos(πy),
u(0,y) = −cos(πy), u(1,y) = 2cos

(
1
2 πy

)
,

uy(x,0) = 0, uy(x,2) = 0.

(46) q(x,y) = 2 − 3
4 π

2 cos
(

1
2 πy

)
+ 2(π2 − 1)e−x cos(πy),

u(0,y) = 3cos
(

1
2 πy

) − 2cos(πy), ux(1,y) = 2e−1 cos(πy),
uy(x,0) = 0, uy(x,2) = 0.

(47) q(x,y) = xcos
(

3
2 πy

)
,

ux(0,y) = 0, u(1,y) = 2 − y, uy(x,0) = 0, uy(x,2) = 0.

(48) q(x,y) = 4y − 2,
u(0,y) = −cos(πy), u(1,y) = 0, uy(x,0) = 0, uy(x,2) = 0.
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In (49)–(54) use the method of eigenfunction expansion to find the solution
of the IBVP

urr(r,θ) + r−1ur(r,θ) + r−2uθθ(r,θ) = q(r,θ),

0 < x < 1, −π < θ < π,

u(r,θ), ur(r,θ) bounded as r → 0+, u(1,θ) = f(θ), −π < θ < π,

u(r,−π) = u(r,π), uθ(r,−π) = uθ(r,π), 0 < r < 1,

with the functions q and f as indicated.

(49) q(r,θ) = −8, f(θ) = −1 + 2sinθ + 2cos(3θ).

(50) q(r,θ) = 9r + 6cosθ + 3sinθ, f(θ) = 1 − 3sinθ.

(51) q(r,θ) = 18r − 4 + 8r cosθ + (7r2 − 5)sin(3θ),
f(θ) = 1 + cosθ + 2sin(3θ).

(52) q(r,θ) = 3cosθ + 10cos(3θ) − 2(2r4 + 9r3)e2r sin(4θ),
f(θ) = cosθ − cos(3θ) − e2 sin(4θ).

(53) q(r,θ) = (1 − r)sin(2θ), f(θ) =
{

0, −π < θ ≤ 0,
1, 0 < θ < π.

(54) q(r,θ) = r cosθ − 2sin(3θ), f(θ) =
{
θ, −π < θ ≤ 0,
−1, 0 < θ < π.

In (55)–(58) use the method of eigenfunction expansion to find the solution
of the IBVP

ut(x,t) = uxx(x,t) − ux(x,t) + 2u(x,t) + q(x,t),

0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = f(x), 0 < x < 1,

with the functions q and f as indicated.

(55) q(x,t) = (2 − 3t)ex/4 sin(πx), f(x) = −ex/4 sin(πx).

(56) q(x,t) = 3
4 (48π2 − 5)e−t+x/4 sin(3πx), f(x) = 2ex/4 sin(3πx).

(57) q(x,t) = ex/4, f(x) = −ex/4 sin(2πx).

(58) q(x,t) = 2ex/4 sin(πx), u(x,0) = x.
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In (59)–(62) use the method of eigenfunction expansion to find the solution
of the IBVP

utt(x,t) + ut(x,t) + u(x,t) = uxx(x,t) − 2ux(x,t) + q(x,t),

0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < 1,

with the functions q, f , and g as indicated.

(59) q(x,t) =
[
(π2 + 2)t+ 1

]
ex sin(πx), f(x) = 0, g(x) = ex sin(πx).

(60) q(x,t) = 4
[
(2π2 + 1)t− π2

]
ex sin(2πx),

f(x) = −ex sin(2πx), g(x) = 2ex sin(2πx).
(61) q(x,t) = ex, f(x) = −ex sin(πx), g(x) = 0.
(62) q(x,t) = 2ex sin(2πx), f(x) = 0, g(x) = 1.

In (63)–(66) use the method of eigenfunction expansion to find the solution
of the BVP

uxx(x,y) + uyy(x,y) − 2ux(x,y) + u(x,y) = q(x,t),

0 < x < 1, 0 < y < 2,

u(0,y) = 0, u(1,y) = 0, 0 < y < 2,

u(x,0) = f(x), u(x,2) = g(x), 0 < x < 1,

with the functions q, f , and g as indicated.

(63) q(x,y) = −π2(2y + 1)ex sin(πx),
f(x) = ex sin(πx), g(x) = 5ex sin(πx).

(64) q(x,y) = (2 − 3π2 − π2y)ex sin(πx),
f(x) = 3ex sin(πx), g(x) = 7ex sin(πx).

(65) q(x,y) = 2e2x, f(x) = ex sin(2πx), g(x) = 0.
(66) q(x,y) = 3ex sin(πx), f(x) = 0, g(x) = −1.



Chapter 8
The Fourier Transformations

Some problems of practical importance are beyond the reach of the method
of eigenfunction expansion. This is the case, for example, when the space
variable is defined on the entire real line and where, as a consequence, there
are no boundary points. This may lead to the problem in question having a
continuum of eigenvalues instead of a countable set. In such situations we
need to employ other techniques of solution. The Fourier transformations—
developed, in fact, from the Fourier series representations of functions—are
particularly useful tools when dealing with infinite or semi-infinite spatial
regions because they are designed for exactly this type of setup and have the
added advantage that they reduce by one the number of “active” variables
in the given PDE problem.

8.1. The Full Fourier Transformation
Construction of the transformation. Consider, for simplicity, a func-
tion f that is continuous and periodic with period 2L on R. Then we have
the representation (see Chapter 2)

f(x) =
1
2
a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (8.1)

where

an =
1
L

L∫
−L

f(x)cos
nπx

L
dx, n = 0,1,2, . . . ,

bn =
1
L

L∫
−L

f(x)sin
nπx

L
dx, n = 1,2, . . . .

(8.2)

Using Euler’s formula

eiθ = cosθ + isinθ, i2 = −1,

and its alternative with θ replaced by −θ, we get

cosθ = 1
2 (eiθ + e−iθ), sinθ = − 1

2 i(e
iθ − e−iθ);
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consequently, (8.1) with θ = nπx/L becomes

f(x) = 1
2 a0 +

∞∑
n=1

1
2 (an − ibn)einπx/L +

∞∑
n=1

1
2 (an + ibn)e−inπx/L.

Replacing n by −n in the first sum above and noticing from (8.2) that
a−n = an and b−n = −bn, from the last equality we obtain

f(x) = 1
2 a0 +

−∞∑
n=−1

1
2 (an + ibn)e−inπx/L +

∞∑
n=1

1
2 (an + ibn)e−inπx/L,

or

f(x) =
∞∑

n=−∞
cne

−inπx/L,

where, by (8.2),

cn = 1
2 (an + ibn) =

1
2L

L∫
−L

f(x)
(

cos
nπx

L
+ isin

nπx

L

)
dx

=
1

2L

L∫
−L

f(x)einπx/Ldx (with b0 = 0);

hence,

f(x) =
∞∑

n=−∞

[
1

2L

L∫
−L

f(ξ)einπξ/L dξ

]
e−inπx/L. (8.3)

If f is not periodic in the proper sense of the word, then we may regard
it as “periodic” with an “infinite period”. Using some advanced calculus
arguments, we find that, as L→ ∞, representation (8.3) for such a function
takes the form

f(x) =

∞∫
−∞

[
1
2π

∞∫
−∞

f(ξ)eiωξdξ

]
e−iωxdω. (8.4)

We define the (full) Fourier transform of f by

F [f ](ω) = F (ω) =
1√
2π

∞∫
−∞

f(x)eiωxdx. (8.5)
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From (8.4) it is clear that the inverse Fourier transform of F is

F−1[F ](x) = f(x) =
1√
2π

∞∫
−∞

F (ω)e−iωxdω. (8.6)

The integral operators F and F−1 are called the Fourier transformation
and inverse Fourier transformation, respectively. The variable ω is called
the transformation parameter.

8.1. Remarks. (i) Formulas (8.5) and (8.6) are valid if

∞∫
−∞

|f(x)|dx <∞;

that is, if f is absolutely integrable on R. However, the Fourier transform
may also be defined for some functions that do not have the above property.
This is done in a generalized sense through a limiting process involving
transforms of absolutely integrable functions.

(ii) The construction of the full Fourier transform can be extended to
piecewise continuous functions f . In this case, f(x) must be replaced by
1
2

[
f(x−) + f(x+)

]
in (8.4) and (8.6).

8.2. Example. The Fourier transform of the function

f(x) =
{

1, −a ≤ x ≤ a,
0 otherwise,

where a > 0 is a constant, is

F (ω) =
1√
2π

∞∫
−∞

f(x)eiωx dx =
1√
2π

a∫
−a

eiωx dx

=
1√
2π

1
iω

(eiωa − e−iωa) =

√
2
π

sin(aω)
ω

.

8.3. Definition. Let f and g be absolutely integrable on R. By the con-
volution of f and g we understand the function f ∗ g defined by

(f ∗ g)(x) =
1√
2π

∞∫
−∞

f(x− ξ)g(ξ)dξ, −∞ < x <∞.
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8.4. Remark. Making the change of variable x− ξ = η and then replacing
η by ξ, we easily convince ourselves that

(f ∗ g)(x) =
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ = (g ∗ f)(x).

This means that the operation of convolution is commutative.

8.5. Theorem. (i) F is linear; that is,

F [c1f1 + c2f2] = c1F [f1] + c2F [f2]

for any functions f1 and f2 (to which F can be applied) and any numbers
c1 and c2.

(ii) If u = u(x,t), u(x,t) → 0 as x→ ±∞, and F [u](ω,t) = U(ω,t), then

F [ux](ω,t) = −iωU(ω,t).

(iii) If, in addition, ux(x,t) → 0 as x→ ±∞, then

F [uxx](ω,t) = −ω2U(ω,t).

(iv) Time differentiation and the Fourier transformation with respect to
x commute:

F [ut](ω,t) =
(F [u]

)
t
(ω,t) = U ′(ω,t).

(v) The Fourier transform of a convolution is given by the formula

F [f ∗ g] = F [f ]F [g].

8.6. Remarks. (i) In general, F [fg] �= F [f ]F [g].

(ii) It is obvious from its definition that F−1 is also linear.

(iii) The Fourier transforms of a few elementary functions are given in
Table A2 in the Appendix.

The properties of the Fourier transformation listed in Theorem 8.5 play
an essential role in the solution of certain types of PDE problems. The
solution strategy in such situations is best illustrated by examples.
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The Cauchy problem for an infinite rod. Heat conduction in a very
long uniform rod where the diffusion activity diminishes towards the end-
points is modeled mathematically by the IVP (called a Cauchy problem)

ut(x,t) = kuxx(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = f(x), −∞ < x <∞.

Adopting the notation

F [u](ω,t) = U(ω,t), F [f ](ω) = F (ω),

we apply F to the PDE and IC and use the properties of F in Theorem
8.5 to reduce the given IVP to an initial value problem for an ordinary
differential equation in the so-called transform domain. This new IVP (in
which ω is an “inert” parameter) is

U ′(ω,t) + kω2U(ω,t) = 0, t > 0,

U(ω,0) = F (ω),

with solution
U(ω,t) = F (ω)e−kω2t. (8.7)

To find the solution of the original IVP, we now need to compute the
inverse Fourier transform of U . Let P (ω,t) = e−kω2t. Using formula 7
(with a = (4kt)−1/2) in Table A2, we easily see that the inverse transform
of P is

F−1[P ](x,t) = p(x,t) =
1√
2kt

e−x2/(4kt).

By Theorem 8.5(v), we can now write (8.7) as

F [u](ω,t) = F [f ](ω)F [p](ω,t) = F [f ∗ p](ω,t),

so u = f ∗ p, or, by Definition 8.3,

u(x,t) =
1√
2π

∞∫
−∞

f(ξ)
1√
2kt

e−(x−ξ)2/(4kt)dξ.
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An alternative form for this is

u(x,t) =

∞∫
−∞

G(x,t;ξ,0)u(ξ,0)dξ, (8.8)

where

G(x,t;ξ,0) =
1

2
√
πkt

e−(x−ξ)2/(4kt)

is called the Gauss–Weierstrass kernel or influence function. Formula (8.8)
shows how the initial temperature distribution u(x,0) influences the subse-
quent evolution of the temperature in the rod. This type of representation
formulas will be discussed in more detail in Chapter 10.

8.7. Example. In the IVP

ut(x,t) = 2uxx(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = f(x) =
{−3, |x| ≤ 1,

0, |x| > 1,

we have k = 2, so

G(x,t;ξ,0) =
1

2
√

2πt
e−(x−ξ)2/(8t),

which, replaced in (8.8), yields

u(x,t) = − 3
2
√

2πt

1∫
−1

e−(x−ξ)2/(8t) dξ.

If instead of (8.8) we use formula 12 (with a = 1) in Table A2 to compute
F (ω) = −3

√
2/π (sinω)/ω and then solve the transformed problem

U ′(ω,t) + 2ω2U(ω,t) = 0, t > 0,

U(ω,0) = −3

√
2
π

sinω
ω

,

we find that

U(ω,t) = −3

√
2
π

sinω
ω

e−2ω2t,
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which, through a combination of formulas 3 and 16, yields

u(x,t) = F−1[U ](x,t) =
3
2

(
erf

x− 1
2
√

2t
− erf

x+ 1
2
√

2t

)
.

The function y = erf(x) is called the error function. The graphs of the
error function and of the complementary error function defined on (−∞,∞),
respectively, by

y = erf(x) =
2√
π

x∫
0

e−ξ2
dξ,

y = erfc(x) =
2√
π

∞∫
x

e−ξ2
dξ = 1 − erf(x)

are shown in Fig. 8.1.

1

2

�1

0y�erf�x�

y�erfc�x�

Fig. 8.1.

Vibration of an infinite string. The vibrations of a very long string ini-
tially at rest, with negligible body force and where the effects of mechanical
activity at the endpoints are insignificant, are modeled by the IVP

utt(x,t) = c2uxx(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = f(x), ut(x,0) = 0, −∞ < x <∞.

As above, let F [u](ω,t) = U(ω,t) and F [f ](ω) = F (ω). Applying F to the
PDE and ICs, we arrive at the ODE problem

U ′′(ω,t) + c2ω2U(ω,t) = 0, t > 0,

U(ω,0) = F (ω), U ′(ω,0) = 0,
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with general solution U(ω,t) = C1(ω)cos(cωt) + C2(ω)sin(cωt), where
C1(ω) and C2(ω) are arbitrary functions of the transformation parameter.
Hence, using the ICs, we find that

U(ω,t) = F (ω)cos(cωt).

By Euler’s formula, we have cos(cωt) = 1
2 (eicωt + e−icωt), so from (8.6) it

follows that if f is continuous, then

u(x,t) = F−1[U ](x,t) =

∞∫
−∞

F (ω)cos(cωt)e−iωxdω

=
1
2

∞∫
−∞

F (ω)[e−iω(x−ct) + e−iω(x+ct)]dω

= 1
2 [f(x− ct) + f(x+ ct)]. (8.9)

This problem will be approached from a different angle in Chapter 12.

8.8. Example. In the IVP

utt(x,t) = uxx(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = e−x2
, ut(x,0) = 0, −∞ < x <∞,

we have c = 1 and f(x) = e−x2
, so, by (8.9),

u(x,t) = 1
2

[
e−(x−t)2 + e−(x+t)2

]
.

8.2. The Fourier Sine and Cosine Transformations

The Fourier sine and cosine transforms generalize the Fourier sine and co-
sine series, respectively, and are defined for functions f that are piecewise
continuous on 0 < x <∞ by

FS[f ](ω) = F (ω) =

√
2
π

∞∫
0

f(x)sin(ωx)dx,

FC [f ](ω) = F (ω) =

√
2
π

∞∫
0

f(x)cos(ωx)dx.
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It can be shown that these transforms exist if f is absolutely integrable on
(0,∞); that is,

∞∫
0

|f(x)|dx <∞.

The corresponding inverse transforms are

F−1
S [F ](x) = f(x) =

√
2
π

∞∫
0

F (ω)sin(ωx)dω,

F−1
C [F ](x) = f(x) =

√
2
π

∞∫
0

F (ω)cos(ωx)dω.

The operators FS and FC are called the Fourier sine transformation and
Fourier cosine transformation, respectively, while F−1

S and F−1
C are their

inverse transformations. The comment made at the end of Remark 8.1(ii)
applies here as well.

8.9. Example. The Fourier sine and cosine transforms of the function

f(x) =
{

1, 0 ≤ x ≤ a,
0, x > a,

a = const,

are

FS [f ](ω) =

√
2
π

∞∫
0

f(x)sin(ωx)dx =

√
2
π

a∫
0

sin(ωx)dx

=

√
2
π

1
ω

[
1 − cos(aω)

]
,

FC [f ](ω) =

√
2
π

∞∫
0

f(x)cos(ωx)dx =

√
2
π

a∫
0

cos(ωx)dx

=

√
2
π

1
ω

sin(aω).

8.10. Remark. FS (FC) can also be defined for functions on R if these
functions are odd (even).

8.11. Theorem. (i) FS and FC are linear operators.

(ii) If u = u(x,t) and u(x,t) → 0 as x→ ∞, then

FS[ux](ω,t) = −ωFC [u](ω,t),

FC [ux](ω,t) = −
√

2
π
u(0, t) + ωFS [u](ω,t).
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(iii) If, in addition, ux(x,t) → 0 as x→ ∞, then

FS [uxx](ω,t) =

√
2
π
ωu(0, t) − ω2FS [u](ω,t),

FC [uxx](ω,t) = −
√

2
π
ux(0, t) − ω2FC [u](ω,t).

(iv) Time differentiation commutes with both the Fourier sine and cosine
transformations:

FS [ut](ω,t) =
(FS [u]

)
t
(ω,t),

FC [ut](ω,t) =
(FC [u]

)
t
(ω,t).

As Theorem 8.11(iii) indicates, the choice between using the sine transfor-
mation or the cosine transformation in the solution of a given IBVP depends
on the type of BC prescribed at x = 0.

Brief lists of Fourier sine and cosine transforms are given in Tables A3
and A4 in the Appendix.

Heat conduction in a semi-infinite rod. The process of heat conduc-
tion in a long rod for which the temperature at the near endpoint is pre-
scribed while the effects of the conditions at the far endpoint are negligible
is modeled by the IBVP

ut(x,t) = kuxx(x,t), x > 0, t > 0,

u(0, t) = g(t), t > 0,

u(x,t), ux(x,t) → 0 as x→ ∞, t > 0,

u(x,0) = f(x), x > 0.

In view of the given BC, we use the sine transformation; thus, let

FS [u](ω,t) = U(ω,t), FS [f ](ω) = F (ω).

Applying FS to the PDE and IC and using the properties in Theorem 8.11,
we arrive at the ODE problem

U ′(ω,t) + kω2U(ω,t) =

√
2
π
kωg(t), t > 0,

U(ω,0) = F (ω).
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After finding U in the transform domain, we obtain the solution of the
original IBVP as u(x,t) = F−1

S [U ](x,t).

8.12. Example. The IBVP

ut(x,t) = uxx(x,t), x > 0, t > 0,

u(0, t) = 1, t > 0,

u(x,t), ux(x,t) → 0 as x→ ∞, t > 0,

u(x,0) = 0, x > 0,

requires the use of the Fourier sine transformation because it is the temper-
ature that is prescribed in the BC.

By Theorem 8.11, the transform U(ω,t) = FS [u](ω,t) of u satisfies

U ′(ω,t) + ω2U(ω,t) =

√
2
π
ω, t > 0,

U(ω,0) = 0.

The solution of the transformed problem is

U(ω,t) =

√
2
π

1
ω

(
1 − e−ω2t

)
;

so, by formula 12 (with a = 1/(2
√
t)) in Table A3,

u(x,t) = F−1
S [U ](x,t) = erfc

x

2
√
t
.

Vibrations of a semi-infinite string. The method applied in this case
is similar to that used above.

8.13. Example. The solution of the IBVP

utt(x,t) = 4uxx(x,t), x > 0, t > 0,

ux(0, t) = 0, t > 0,

u(x,t), ux(x,t) → 0 as x→ ∞, t > 0,

u(x,0) = e−x, ut(x,0) = 0, x > 0,

is obtained by means of the Fourier cosine transformation because the BC
prescribes the x-derivative of u at x = 0. According to formula 5 (with
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a = 1) in Table A4, the Fourier cosine transform of the function e−x is√
2/π (1 + ω2)−1; hence, by Theorem 8.11, U(ω,t) = FC [u](ω,t) satisfies

U ′′(ω,t) + 4ω2U(ω,t) = 0, t > 0,

U(ω,0) =

√
2
π

1
1 + ω2

,

with solution

U(ω,t) =

√
2
π

cos(2ωt)
1 + ω2

.

Then, by formula 14 (with a = 2t and b = 1), we find that the solution of
the IBVP is

u(x,t) = F−1
C [U ](x,t) =

{
e−x cosh(2t), t ≤ x/2,
e−2t coshx, t > x/2.

Equilibrium temperature in a semi-infinite strip. The steady-state
temperature distribution in a semi-infinite strip 0 ≤ x ≤ L, y ≥ 0 is modeled
by the BVP

uxx(x,y) + uyy(x,y) = 0, 0 < x < L, y > 0,

u(0,y) = g1(y), u(L,y) = g2(y), y > 0,

g1(y), g2(y) → 0 as y → ∞,

u(x,0) = f(x), 0 < x < L,

u(x,y), uy(x,y) → 0 as y → ∞, 0 < x < L.

Using the principle of superposition, we write the solution in the form

u(x,y) = u1(x,y) + u2(x,y),

where u1 satisfies the given BVP with g1 = 0 and g2 = 0, and u2 satisfies it
with f = 0.

Thus, the first BVP is

(u1)xx(x,y) + (u1)yy(x,y) = 0, 0 < x < L, y > 0,

u1(0,y) = 0, u1(L,y) = 0, y > 0,

u1(x,0) = f(x), 0 < x < L,

u1(x,y), (u1)y(x,y) → 0 as y → ∞, 0 < x < L,
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which is solved by the method of separation of variables. Proceeding as in
Section 5.3, from the PDE and BCs at x = 0 and x = L we obtain

u1(x,y) =
∞∑

n=1

sin
nπx

L

(
An cosh

nπy

L
+Bn sinh

nπy

L

)

=
∞∑

n=1

sin
nπx

L

(
an e

nπy/L + bn e
−nπy/L

)
.

Since u1(x,y) → 0 as y → ∞, we must have an = 0, n = 1,2, . . . ; hence,

u1(x,y) =
∞∑

n=1

bn sin
nπx

L
e−nπy/L. (8.10)

The BC at y = 0 now yields

u1(x,0) = f(x) =
∞∑

n=1

bn sin
nπx

L
,

where, by (2.10), the Fourier sine series coefficients bn are

bn =
2
L

L∫
0

f(x)sin
nπx

L
dx, n = 1,2, . . . .

Consequently, the solution of the first BVP is given by (8.10) with the bn
computed by means of the above formula.

The second BVP is

(u2)xx(x,y) + (u2)yy(x,y) = 0, 0 < x < L, y > 0,

u2(0,y) = g1(y), u2(L,y) = g2(y), y > 0,

g1(y), g2(y) → 0 as y → ∞,
u2(x,0) = 0, 0 < x < L,

u2(x,y) → 0, (u2)y(x,y) → 0 as y → ∞, 0 < x < L.

In view of the BC at y = 0, we use FS with respect to y and make the
notation

FS [u2](x,ω) = U(x,ω), FS [g1](ω) = G1(ω), FS [g2](ω) = G2(ω).
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Then the above BVP reduces to

U ′′(x,ω) − ω2U(x,ω) = 0, 0 < x < L,

U(0,ω) = G1(ω), U(L,ω) = G2(ω).

The general solution of the equation can be written as (see Remark 1.4)

U(x,ω) = C1(ω)sinh(ωx) + C2(ω)sinh
(
ω(L− x)

)
,

where C1 and C2 are arbitrary functions of ω. Using the BCs at x = 0 and
x = L, we find that

U(x,ω) = csch(ωL)
[
G2(ω)sinh(ωx) +G1(ω)sinh

(
ω(L− x)

)]
. (8.11)

The solution u2 is now obtained by applying F−1
S to the above equality.

8.14. Example. For the BVP

uxx(x,y) + uyy(x,y) = 0, 0 < x < 1, y > 0,

u(0,y) = 0, u(1,y) = g(y), y > 0,

u(x,0) = 0, 0 < x < 1,

u(x,y) → 0, uy(x,y) → 0 as y → ∞, 0 < x < 1,

where
g(y) =

{
1, 0 < y ≤ 2,
0, y > 2,

we have L = 1, g1(y) = 0, and g2(y) = g(y), so G1(ω) = 0 and, by formula
10 (with a = 2) in Table A3,

G2(ω) =

√
2
π

1
ω

[
1 − cos(2ω)

]
=

√
2
π

2
ω

sin2ω;

consequently, by (8.11),

U(x,ω) =

√
2
π

2
ω

sin2ω cschω sinh(ωx),

which yields

u(x,y) = F−1
S [U ](x,y)

=
4
π

∞∫
0

1
ω

sin2ω cschω sinh(ωx)sin(ωy)dω.
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8.3. Other Applications
The Fourier transformation method may also be applied to other suitable
problems, such as those mentioned in Section 4.4, including some with non-
homogeneous PDEs.

8.15. Example. The IVP (Cauchy problem)

ut(x,t) = uxx(x,t) + 2u(x,t) + (1 − 4x2t)e−x2
,

−∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = 0, −∞ < x <∞,

models a diffusion process with a chain reaction and a source in a one-
dimensional medium.

By formulas 8 and 10 (with a = 1) in Table A2,

F [(1 − 4x2t)e−x2
] =

1√
2

[
(ω2 − 2)t+ 1

]
e−ω2/4;

hence, setting F [u](ω,t) = U(ω,t) and using formula 2, we see that U is the
solution of the transformed problem

U ′(ω,t) + (ω2 − 2)U(ω,t) =
1√
2

[
(ω2 − 2)t+ 1

]
e−ω2/4, t > 0,

U(ω,0) = 0.

Direct calculation shows that

U(ω,t) =
1√
2
te−ω2/4,

so, by formula 8, the solution of the given IVP is

u(x,t) = F−1[U ](x,t) = te−x2
.

8.16. Example. The IBVP

utt(x,t) + 2ut(x,t) = uxx(x,t) + (2 + 4t− 4t2)e−2x,

x > 0, t > 0,
u(0, t) = t2, t > 0,

u(x,t), ux(x,t) → 0 as x→ ∞, t > 0,

u(x,0) = 0, ut(x,0) = 0, x > 0,
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describes the propagation of a dissipative wave along a semi-infinite string
initially at rest, under the action of a prescribed displacement of the near
endpoint and an external force. In view of the BC, we use the Fourier sine
transformation to find the solution.

First, by formula 6 (with a = 2) in Table A3,

FS [(2 + 4t− 4t2)e−2x] = 2

√
2
π

ω

4 + ω2
(1 + 2t− 2t2);

hence, by Theorem 8.11 and the ICs, the transform U(ω,t) = FS [u](ω,t) of
u satisfies

U ′′(ω,t) + 2U ′(ω,t) + ω2U(ω,t)

=

√
2
π
ωt2 + 2

√
2
π

ω

4 + ω2
(1 + 2t− 2t2), t > 0,

U(ω,0) = 0, U ′(ω,0) = 0.

Solving this ODE problem in the usual way, we find that

U(ω,t) =

√
2
π

ω

4 + ω2
t2,

so, again by formula 6,

u(x,t) = F−1
S [U ](x,t) = t2e−2x.

8.17. Example. The BVP

uxx(x,y) + uyy(x,y) + u(x,y) =
x(y4 + 8y2 − 1)

(1 + y2)3
,

0 < x < 1, y > 0,

u(0,y) = 0, u(1,y) =
1

1 + y2
, y > 0,

uy(x,0) = 0, 0 < x < 1,

u(x,y) → 0, uy(x,y) → 0 as y → ∞, 0 < x < 1,

models the steady-state distribution of heat in a semi-infinite strip with a
time-dependent source and insulated base. Since the BC at y = 0 prescribes
the derivative uy, we use the Fourier cosine transformation with respect to y
to find the solution.
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By formulas 9–12 (with a = 1) in Table A4, it is easy to see that

FC

[
x(y4 + 8y2 − 1)

(1 + y2)3

]
=

√
π

2
(1 − ω2)e−ωx,

FC

[
1

1 + y2

]
=

√
π

2
e−ω;

consequently, by Theorem 8.11, the transform U(x,ω) = FC [u](x,ω) of u
satisfies

U ′′(x,ω) − (ω2 − 1)U(x,ω) =
√
π

2
(1 − ω2)e−ωx, 0 < x < 1,

U(0,ω) = 0, U(1,ω) =
√
π

2
e−ω,

with solution

U(x,ω) =
√
π

2
xe−ω;

so, by formula 9,

u(x,y) = F−1
C [U ](x,y) =

x

1 + y2
.

Exercises

In (1)–(18) use a suitable Fourier transformation to find the solution of the
IBVP for the heat equation

ut(x,t) = kuxx(x,t) + q(x,t), t > 0,

with the constant k, interval for x, function q, BCs, and IC as indicated.
In the exercises with underlined numerical labels express the answer as an
integral.

(1) k = 1, −∞ < x <∞, q(x,t) = 0,
u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = −3e−x2

.

(2) k = 1, −∞ < x <∞, q(x,t) = 0,
u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = (1 − 2x2)e−4x2

.

(3) k = 2, −∞ < x <∞, q(x,t) =
{

1, |x| ≤ 1,
0, |x| > 1,

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = 0.
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(4) k = 2, −∞ < x <∞, q(x,t) = 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) =
{

1, |x| ≤ 1,
0, |x| > 1.

(5) k = 2, −∞ < x <∞, q(x,t) = 2(8x2t− 4x2 − 4t+ 1),

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = e−x2
.

(6) k = 1, −∞ < x <∞, q(x,t) = (5 − 16x2)et−2x2
,

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = e−2x2
.

(7) k = 1, x > 0, q(x,t) = 0, u(0, t) = 0,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = xe−x.

(8) k = 1, x > 0, q(x,t) = 0, u(0, t) = 1,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = e−x/2.

(9) k = 2, x > 0, q(x,t) =
{

1, 0 < x ≤ 1,
0, x > 1,

u(0, t) = t,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = 0.

(10) k = 2, x > 0, q(x,t) = 0, u(0, t) = 1 − t,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) =
{−1, 0 < x ≤ 1,

0, x > 1.

(11) k = 2, x > 0, q(x,t) = 2(x− 2t− 1)e−x, u(0, t) = 2t,
u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = −xe−x.

(12) k = 1, x > 0, q(x,t) = −2(4xt− x− 4t+ 2)e−2x, u(0, t) = 1,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = e−2x.

(13) k = 1, x > 0, q(x,t) = 0, ux(0, t) = −t,
u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = −2e−x.

(14) k = 1, x > 0, q(x,t) = 0, ux(0, t) = 1,
u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = −xe−2x.

(15) k = 2, x > 0, q(x,t) =
{

1, 0 < x ≤ 1,
0, x > 1,

ux(0, t) = t− 1,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = 0.

(16) k = 2, x > 0, q(x,t) = 0, ux(0, t) = t,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) =
{

1, 0 < x ≤ 2,
0, x > 2.

(17) k = 2, x > 0, q(x,t) = 2(8xt− x− 8t− 4)e−2x, ux(0, t) = −2t− 2,
u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = e−2x.
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(18) k = 1, x > 0, q(x,t) = −2e2t−x+1, ux(0, t) = −e2t+1,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = e1−x.

In (19)–(36) use a suitable Fourier transformation to find the solution of
the IBVP for the wave equation

utt(x,t) = c2uxx(x,t) + q(x,t), t > 0,

with the constant c, interval for x, function q, BCs, and ICs as indicated.
In the exercises with underlined numerical labels express the answer as an
integral.

(19) c = 1, −∞ < x <∞, q(x,t) = 0,

u(x,t), ux(x,t) → 0 as x→ ±∞,

u(x,0) = (2x− 1)e−x2
, ut(x,0) = 0.

(20) c = 1, −∞ < x <∞, q(x,t) = 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = 0, ut(x,0) = x2e−4x2
.

(21) c = 2, −∞ < x <∞, q(x,t) =
{

1, |x| ≤ 1,
0, |x| > 1,

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = 0, ut(x,0) = 0.

(22) c = 2, −∞ < x <∞, q(x,t) = 0,

u(x,t), ux(x,t) → 0 as x→ ±∞,

u(x,0) =
{

1, |x| ≤ 2,
0, |x| > 2,

ut(x,0) = 0.

(23) c = 2, −∞ < x <∞, q(x,t) = 2(9 − 16x2)e−t−x2
,

u(x,t), ux(x,t) → 0 as x→ ±∞,

u(x,0) = 2e−x2
, ut(x,0) = −2e−2x2

.

(24) c = 1, −∞ < x <∞, q(x,t) = 2(1 − t)(2x2 − 1)e−x2
,

u(x,t), ux(x,t) → 0 as x→ ±∞, u(x,0) = −e−x2
, ut(x,0) = e−x2

.

(25) c = 1, x > 0, q(x,t) = 0, u(0, t) = 1,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = 3e−2x, ut(x,0) = 0.

(26) c = 1, x > 0, q(x,t) = 0, u(0, t) = t,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = 0, ut(x,0) = xe−x.
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(27) c = 2, x > 0, q(x,t) =
{

1, 0 < x ≤ 1,
0, x > 1, u(0, t) = 0,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) = 0, ut(x,0) =
{−1, 0 < x ≤ 1,

0, x > 1.

(28) c = 2, x > 0, q(x,t) = 0, u(0, t) = t− 1,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) =
{

1, 0 < x ≤ 2,
0, x > 2,

ut(x,0) = 0.

(29) c = 1, x > 0, q(x,t) = −3e2t−x−1, u(0, t) = −e2t−1,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) = −e−x−1, ut(x,0) = −2e−x−1.

(30) c = 1, x > 0, q(x,t) = 2(−2x2 − 2xt+ 4x+ 2t− 1)e−2x, u(0, t) = 0,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = x2e−2x, ut(x,0) = xe−2x.

(31) c = 1, x > 0, q(x,t) = 0, ux(0, t) = −1,

u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = 3e−x, ut(x,0) = 0.

(32) c = 1, x > 0, q(x,t) = 0, ux(0, t) = −t,
u(x,t), ux(x,t) → 0 as x→ ∞, u(x,0) = 0, ut(x,0) = −xe−2x.

(33) c = 2, x > 0, q(x,t) =
{
t, 0 < x ≤ 2,
0, x > 2, ux(0, t) = 0,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) = 0, ut(x,0) =
{−1, 0 < x ≤ 2,

0, x > 2.

(34) c = 2, x > 0, q(x,t) = 0, ux(0, t) = 2t,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) =
{

1, 0 < x ≤ 1,
0, x > 1, ut(x,0) = 0.

(35) c = 1, x > 0, q(x,t) = (xt − 2t− 2)e−x, ux(0, t) = −t− 2,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) = 2e−x, ut(x,0) = −xe−x.

(36) c = 1, x > 0, q(x,t) = 4(3x− xt+ t− 4)e−2x, ux(0, t) = t− 5,

u(x,t), ux(x,t) → 0 as x→ ∞,

u(x,0) = (1 − 3x)e−2x, ut(x,0) = xe−2x.
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In (37)–(58) use a suitable Fourier transformation to find the solution of
the BVP for the Laplace (Poisson) equation

uxx(x,y) + uyy(x,y) = q(x,y), 0 < x < 1,

with the interval for y, function q, and BCs as indicated. In the exercises
with underlined numerical labels express the answer as an integral.

(37) −∞ < y <∞, q(x,y) = 0, u(0,y) = 0, u(1,y) = 2e−3y2
,

u(x,y), uy(x,y) → 0 as y → ±∞.

(38) −∞ < y <∞, q(x,y) = 0, u(0,y) = y2e−y2
, u(1,y) = 0,

u(x,y), uy(x,y) → 0 as y → ±∞.

(39) −∞ < y <∞, q(x,y) =
{
x, |y| ≤ 1,
0 |y| > 1,

u(0,y) = 0, u(1,y) = 0,

u(x,y), uy(x,y) → 0 as y → ±∞.

(40) −∞ < y <∞, q(x,y) = 0, u(0,y) =
{

2, |y| ≤ 1,
0, |y| > 1,

u(1,y) = 0,

u(x,y), uy(x,y) → 0 as y → ±∞.

(41) −∞ < y <∞, q(x,y) = 2(8x2y2 − 2x2 + 16y2 − 3)e−2y2
,

u(0,y) = 2e−2y2
, u(1,y) = 3e−2y2

,

u(x,y), uy(x,y) → 0 as y → ±∞.

(42) −∞ < y <∞, q(x,y) = −2(2y2 + 1)e2x−y2
,

u(0,y) = −e−y2
, u(1,y) = −e2−y2

,

u(x,y), uy(x,y) → 0 as y → ±∞.

(43) y > 0, q(x,y) = 0, u(0,y) = −e−2y, u(1,y) = 0,
u(x,0) = x, u(x,y), uy(x,y) → 0 as y → ∞.

(44) y > 0, q(x,y) = 0, u(0,y) = 0, u(1,y) = 2e−y,

u(x,0) = x− 1, u(x,y), uy(x,y) → 0 as y → ∞.

(45) y > 0, q(x,y) =
{

1, 0 < y ≤ 1,
0, y > 1,

u(0,y) =
{−2, 0 < y ≤ 1,

0, y > 1,
u(1,y) = 0,

u(x,0) = 0, u(x,y), uy(x,y) → 0 as y → ∞.

(46) y > 0, q(x,y) = 0, u(0,y) = 0, u(1,y) =
{

1, 0 < y ≤ 2,
0, y > 2,

u(x,0) = 1 − 2x, u(x,y), uy(x,y) → 0 as y → ∞.
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(47) y > 0, q(x,y) = (x2 − y + 4)e−y,

u(0,y) = −ye−y, u(1,y) = (1 − y)e−y,

u(x,0) = x2, u(x,y), uy(x,y) → 0 as y → ∞.

(48) y > 0, q(x,y) = (x2 + y2 − 2y + 1)e−2y,

u(0,y) = y2e−2y, u(1,y) = (y2 + 1)e−2y,

u(x,0) = x2, u(x,y), uy(x,y) → 0 as y → ∞.

(49) y > 0, q(x,y) = (5y + 1)ex−2y,

u(0,y) = (y + 1)e−2y, ux(1,y) = (y + 1)e1−2y,

u(x,0) = ex, u(x,y), uy(x,y) → 0 as y → ∞.

(50) y > 0, q(x,y) = 4(1 + x− xy)e−2y,

ux(0,y) = −ye−2y, u(1,y) = (1 − y)e−2y,

u(x,0) = 1, u(x,y), uy(x,y) → 0 as y → ∞.

(51) y > 0, q(x,y) = 0, u(0,y) = 2e−y, u(1,y) = 0,
uy(x,0) = x− 1, u(x,y), uy(x,y) → 0 as y → ∞.

(52) y > 0, q(x,y) = 0, u(0,y) = 0, u(1,y) = e−2y,

uy(x,0) = 2x, u(x,y), uy(x,y) → 0 as y → ∞.

(53) y > 0, q(x,y) =
{−1, 0 < y ≤ 1,

0, y > 1, u(0,y) = 0, u(1,y) = 0,

uy(x,0) = 1, u(x,y), uy(x,y) → 0 as y → ∞.

(54) y > 0, q(x,y) = 0, u(0,y) =
{

1, 0 < y ≤ 2,
0, y > 2, u(1,y) = 0,

uy(x,0) = x2 − 1, u(x,y), uy(x,y) → 0 as y → ∞.

(55) y > 0, q(x,y) = 2(4xy + 2y2 − 4x− 4y + 1)e−2y,

u(0,y) = y2e−2y, u(1,y) = (y2 + 2y)e−2y,

uy(x,0) = 2x, u(x,y), uy(x,y) → 0 as y → ∞.

(56) y > 0, q(x,y) = (5y − 2)e2x−y, u(0,y) = ye−y, u(1,y) = ye2−y,

uy(x,0) = e2x, u(x,y), uy(x,y) → 0 as y → ∞.

(57) y > 0, q(x,y) = (x2 + x− 1)e−y, ux(0,y) = e−y, u(1,y) = e−y,

uy(x,0) = 1 − x− x2, u(x,y), uy(x,y) → 0 as y → ∞.

(58) y > 0, q(x,y) = 4(3xy − 3x− 2)e−2y,

u(0,y) = −2e−2y, ux(1,y) = 3ye−2y,

uy(x,0) = 3x+ 4, u(x,y), uy(x,y) → 0 as y → ∞.



Chapter 9
The Laplace Transformation

The Fourier transformations are used mainly with respect to the space vari-
ables. In certain circumstances, however, for reasons of expedience or neces-
sity, it is desirable to eliminate time as an active variable. This is achieved
by means of the Laplace transformation. Problems where the spatial part
of the domain is unbounded but the solution is not expected to decay fast
enough away from the origin are particularly suited to this method.

9.1. Definition and Properties
First, we introduce a couple of useful mathematical entities.

9.1. Definition. The function H defined by

H(t) =
{

0, t < 0,
1, t ≥ 0,

is called the Heaviside (unit step) function. It is clear that, more generally,
for any real number t0,

H(t− t0) =
{

0, t < t0,
1, t ≥ t0.

9.2. Remark. H is piecewise continuous. As mentioned in Remark 2.4(ii),
the type of analysis we are performing is not affected by the value of a piece-
wise continuous function at its points of discontinuity. For our purposes,
therefore, the value H(0) = 1 is chosen purely for convenience, to have H
correctly defined as a function on the entire real line, but it is otherwise
unimportant.

In mathematical modeling it is often necessary to cater for a special type
of physical data such as unit impulses and point sources. Let us assume, for
example, that a unit impulse is produced by a constant force of magnitude
1/ε acting over a very short time interval (t0 − ε/2, t0 + ε/2), ε > 0. We
may express this mathematically by taking the force to be

gt0,ε(t) =
{

1/ε, t0 − ε/2 < t < t0 + ε/2,
0 otherwise,



188 THE LAPLACE TRANSFORMATION

and computing the total impulse as

∞∫
−∞

gt0,ε(t)dt =

t0+ε/2∫
t0−ε/2

1
ε
dt =

1
ε
· ε = 1.

We note that the above integral is equal to 1 irrespective of the value of ε. If
we now want to regard the impulse as being produced at the single moment
t = t0, we need to consider a limiting process and introduce some sort of
limit of gt0,ε as ε→ 0, which we denote by δ(t− t0).

9.3. Definition. The mathematical object δ defined by

(i) δ(t− t0) = 0 for all t �= t0,

(ii)
∞∫

−∞
δ(t− t0)dt = 1

is called the Dirac delta.

9.4. Remarks. (i) From Definition 9.3 it is obvious that δ cannot be as-
cribed a finite value at t = t0, because then its integral over R would be 0,
not 1. Consequently, δ is not a function. Strictly speaking, δ is a so-called
distribution (generalized function) and its proper handling requires a special
formalism that goes beyond the scope of this book.

(ii) If t < t0, we have

t∫
−∞

δ(τ − t0)dτ =

t∫
−∞

0dτ = 0;

if t > t0, we can find ε > 0 sufficiently small so that t0 + ε/2 < t; hence,
using the function gt0,ε introduced above, we see that

t∫
−∞

δ(τ − t0)dτ = lim
ε→0

t∫
−∞

gt0,ε(τ)dτ = lim
ε→0

t0+ε/2∫
t0−ε/2

1
ε
dτ = 1.

Therefore, combining these results, we may write
t∫

−∞
δ(τ − t0)dτ = H(t− t0),

which means that, in a certain generalized sense,

H ′(t− t0) = δ(t− t0).
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(iii) If f is continuous, then, by the mean value theorem, there is t′,
t− ε/2 < t′ < t+ ε/2, such that

∞∫
−∞

f(τ)δ(t− τ)dτ = lim
ε→0

∞∫
−∞

f(τ)gt,ε(τ)dτ = lim
ε→0

t+ε/2∫
t−ε/2

f(τ)
1
ε
dτ

= lim
ε→0

1
ε

[(
t+

ε

2

)
−

(
t− ε

2

)]
f(t′) = f(t). (9.1)

In distribution theory, δ is, in fact, defined rigorously by a formula of this
type and not as in Definition 9.3. Like differentiation, integration on the
left-hand side above is understood in a generalized, distributional sense.

(iv) The Dirac delta may also be used in problems formulated on semi-
infinite or finite intervals. In such cases its symbol stands for the “restric-
tion” of this distribution to the corresponding interval.

9.5. Definition. The Laplace transform of a function f(t), 0 < t < ∞, is
defined by

L[f ](s) = F (s) =

∞∫
0

f(t)e−stdt.

Here s is the transformation parameter. The corresponding inverse Laplace
transform, computed by means of complex variable techniques, is

L−1[F ](t) = f(t) =
1

2πi

c+i∞∫
c−i∞

F (s)est ds.

The operators L and L−1 are called the Laplace transformation and in-
verse Laplace transformation, respectively.

9.6. Remark. L is applicable to a wider class of functions than F .

The following assertion gives sufficient conditions for the existence of the
Laplace transform of a function.

9.7. Theorem. If

(i) f is piecewise continuous on [0,∞);

(ii) there are constants C and α such that |f(t)| ≤ Ceαt, 0 < t <∞,

then L[f ](s) = F (s) exists for all s > α.
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9.8. Examples. (i) The function f(t) = 1, t > 0, satisfies the conditions
in Theorem 9.7 with C = 1 and α = 0, and we have

F (s) =

∞∫
0

e−stdt = −1
s

[
e−st

]∞
0

=
1
s
, s > 0.

(ii) For f(t) = e2t, t > 0, Theorem 9.7 holds with C = 1 and α = 2. In
this case we have

F (s) =

∞∫
0

e2t e−stdt =

∞∫
0

e(2−s)tdt =
1

s− 2
, s > 2.

(iii) The rate of growth of the function f(t) = et2 , t > 0, as t → ∞
exceeds the exponential growth prescribed in Theorem 9.7. It turns out
that this function does not have a Laplace transform.

9.9. Theorem. (i) L is linear; that is,

L[c1f1 + c2f2] = c1L[f1] + c2L[f2]

for any functions f1, f2 (to which L can be applied) and any numbers c1, c2.

(ii) If u = u(x,t) and L[u](x,s) = U(x,s), then

L[ut](x,s) = sU(x,s) − u(x,0),

L[utt](x,s) = s2U(x,s) − su(x,0) − ut(x,0).

(iii) For the same type of function u, differentiation with respect to x and
the Laplace transformation commute:

L[ux](x,s) = (L[u])x(x,s) = U ′(x,s).

(iv) If we adopt a definition of the convolution f ∗ g of two functions f
and g that is slightly different from Definition 8.3, namely,

(f ∗ g)(t) =

t∫
0

f(τ)g(t− τ)dτ =

t∫
0

f(t− τ)g(τ)dτ = (g ∗ f)(t), (9.2)

then

L[f ∗ g] = L[f ]L[g].
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9.10. Remarks. (i) As in the case of the Fourier transformations, in gen-
eral L[fg] �= L[f ]L[g].

(ii) Clearly, L−1 is also linear.

The Laplace transforms of some frequently used functions are listed in
Table A5 in the Appendix.

9.11. Example. To find the inverse Laplace transform of the function
1/

(
s(s2 + 1)

)
, we first see from Table A5 that 1/s is the transform of the

constant function 1 and 1/(s2 + 1) is the transform of the function sint.
Therefore, by Theorem 9.9(iv), we can write symbolically

1
s(s2 + 1)

=
1
s

1
s2 + 1

= L[1]L[sint] = L[
1 ∗ (sint)

]
,

so

L−1

[
1

s(s2 + 1)

]
= 1 ∗ (sint) =

t∫
0

sinτ dτ = 1 − cos t.

Alternatively, we can split the given function into partial fractions as

1
s(s2 + 1)

=
1
s
− s

s2 + 1

and then use the linearity of L−1 to obtain the above result.

9.12. Example. The simplest way to find the inverse Laplace transform
of (3s2 +2s+12)/

(
s(s2 +4)

)
by direct calculation is to establish the partial

fraction decomposition

3s2 + 2s+ 12
s(s2 + 4)

=
3
s

+
2

s2 + 22

and then to apply formulas 5 and 8 in Table A5 to arrive at

L−1

[
3s2 + 2s+ 12
s(s2 + 4)

]
= 3 + sin(2t).

The next assertion lists two other helpful properties of the Laplace trans-
formation.

9.13. Theorem. If L[f ](s) = F (s), then

(i) L[eatf ](s) = F (s− a), s > a = const;

(ii) L[H(t− b)f(t− b)](s) = e−bsF (s), b = const > 0.
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9.14. Example. Since

L[sin(2t)] =
2

s2 + 4
, L[cos(3t)] =

s

s2 + 9
, L[t2] =

2
s3
,

from Theorem 9.13 it follows that

L[
e−t sin(2t) + e5t cos(3t) − 2(t− 2)2H(t− 2)

]
=

2
(s+ 1)2 + 4

+
s− 5

(s− 5)2 + 9
− 4
s3
e−2s.

9.15. Example. Similarly, we have

L−1

[
s− 1

s2 − 2s+ 10
− 1
s2 + 4

e−s

]

= L−1

[
s− 1

(s− 1)2 + 32
− 1
s2 + 22

e−s

]
= et cos(3t) − 1

2H(t− 1)sin
(
2(t− 1)

)
.

9.2. Applications

The signal problem for the wave equation. Consider a very long elastic
string of negligible weight, initially at rest, where the vertical displacement
(signal) is prescribed at the near endpoint and where the mechanical ac-
tivity diminishes considerably towards the far endpoint. Such a problem is
modeled mathematically by an IBVP of the form

utt(x,t) = c2uxx(x,t), x > 0, t > 0,

u(0, t) = f(t), t > 0,

u(x,t) bounded as x→ ∞, t > 0,

u(x,0) = 0, ut(x,0) = 0, x > 0.

Introducing the notation

L[u](x,s) = U(x,s), L[f ](s) = F (s),

applying L to the PDE and BC, and using the properties of L in Theorem
9.9, we arrive at the transformed problem

s2U(x,s) = c2U ′′(x,s), x > 0,

U(0,s) = F (s), U(x,s) bounded as x→ ∞.
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The ODE in the above problem can be rewritten in the form

U ′′(x,s) − (s/c)2U(x,s) = 0,

and its general solution is

U(x,s) = C1(s)e(s/c)x + C2(s)e−(s/c)x,

where C1(s) and C2(s) are arbitrary functions of the transformation param-
eter. Since U(x,s) needs to be bounded as x→ ∞, we must have C1(s) = 0.
Then the BC yields C2(s) = F (s), so

U(x,s) = F (s)e−(s/c)x = F (s)e−(x/c)s.

Consequently, by Theorem 9.13(ii), the solution of the original IBVP is

u(x,t) = L−1
[
F (s)e−(x/c)s

]
= H(t− x/c)f(t− x/c)

=
{

0, 0 < t < x/c,
f(t− x/c), t ≥ x/c.

This solution can also be expressed as

u(x,t) =
{
f(t− x/c), x ≤ ct,
0, x > ct.

(9.3)

We see that u(x,t) is constant when x− ct = const. Physically, this means
that the solution is a wave of fixed shape (determined by the BC function f)
with velocity dx/dt = c. Formula (9.3) indicates that at time t the signal
originating from x = 0 has not reached the points x > ct, which are still in
the initial state of rest.

9.16. Remark. The same inversion result can also be obtained by means
of convolution. Since, by formula 12 in Table A5, e−(x/c)s = L[

δ(t− x/c)
]
,

we can write

U(x,s) = F (s)e−(x/c)s = L[f ]L[
δ(t− x/c)

]
= L[

f ∗ δ(t− x/c)
]
,

from which we conclude that

u(x,t) = L−1[U ](x,t) = f ∗ δ(t− x/c) =

t∫
0

f(τ)δ(t − x/c− τ)dτ.
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If t < x/c, then t − x/c − τ < 0 for 0 ≤ τ ≤ t, so δ(t − x/c − τ) = 0;
hence, u(x,t) = 0 for t < x/c, or, equivalently, for x > ct.

If t > x/c, then t − x/c − τ = 0 at 0 < τ = t − x/c < t; therefore, by
(9.1), for x < ct,

u(x,t) =

t∫
0

f(τ)δ(t − x/c− τ)dτ =

∞∫
0

f(τ)δ(t − x/c− τ)dτ = f(t− x/c).

This result is the same as (9.3).

Heat conduction in a semi-infinite rod. A very long rod without
sources, with the near endpoint kept in open air of zero temperature, with
negligible thermal activity at the far endpoint, and with a constant initial
temperature distribution, is modeled by the IBVP

ut(x,t) = uxx(x,t), x > 0, t > 0,

ux(0, t) − u(0, t) = 0, t > 0,

u(x,t) bounded as x→ ∞, t > 0,

u(x,0) = u0 = const, x > 0.

Let L[u](x,s) = U(x,s). Applying L to the PDE and BCs, we arrive at
the transformed problem

U ′′(x,s) − sU(x,s) + u0 = 0, x > 0,

U ′(0,s) − U(0,s) = 0,

U(x,s) bounded as x→ ∞.

The general solution of the equation is

U(x,s) = C1(s)e
√

sx + C2(s)e−
√

sx +
1
s
u0,

where C1(s) and C2(s) are arbitrary functions of the transformation param-
eter. Since U needs to be bounded as x → ∞, we must have C1(s) = 0.
Then, differentiating U and using the BC at x = 0, we see that

−C2(s)
√
s− C2(s) − 1

s
u0 = 0,
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from which C2(s) = −u0/
(
s
(√
s+ 1

))
; hence,

U(x,s) = u0

[
− 1
s
(√
s+ 1

) e−√
sx +

1
s

]
.

After some manipulation (coupled with the use of a more comprehensive
Laplace transform table than A5), it can be shown that the solution of the
original IBVP is

u(x,t) = L−1[U ](x,t) = u0

[
1 − erfc

(
x

2
√
t

)
− erfc

(√
t+

x

2
√
t

)
ex+t

]
.

Other IBVPs for a semi-infinite rod can be solved by the same method.

9.17. Example. Consider the IBVP

ut(x,t) = uxx(x,t) + sinx, x > 0, t > 0,

u(0, t) = 2t− 1, t > 0,

u(x,t) bounded as x→ ∞, t > 0,

u(x,0) = 1, x > 0.

Setting L[u](x,s) = U(x,s), as above, and applying the Laplace transfor-
mation to the PDE and BC, we arrived at the ODE problem

U ′′(x,s) − sU(x,s) = −1 − 1
s

sinx, x > 0,

U(0,s) =
2
s2

− 1
s
, x > 0,

U(x,s) bounded as x→ ∞.

The general solution of the equation, written as the sum of the complemen-
tary function and a particular integral, is

U(x,s) = C1(s)e
√

sx + C2(s)e−
√

sx +
1
s

+
1

s(s+ 1)
sinx.

Since U has to remain bounded as x→ ∞, it follows that C1(s) = 0. Then,
applying the BC, we find that C2(s) = 2/s2 − 2/s; hence, given the partial
fraction decomposition

1
s(s+ 1)

=
1
s
− 1
s+ 1

,

we arrive at

U(x,s) =
(

2
s2

− 2
s

)
e−

√
sx +

1
s

+
(

1
s
− 1
s+ 1

)
sinx.
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By formulas 5–7, 15, and 16 in Table A5, the solution of the original IBVP
is

u(x,t) = L−1[U ](x,t)

= −2x

√
t

π
e−x2/(4t) + (x2 + 2t− 2)erfc

(
x

2
√
t

)

+ 1 + (1 − e−t)sinx.

Finite rod with temperature prescribed on the boundary. The IBVP

wt(x,t) = wxx(x,t), 0 < x < 1, t > 0,

w(0, t) = 0, w(1, t) = 1, t > 0,

w(x,0) = 0, 0 < x < 1,

is of a type that we have already encountered. The equilibrium solution in
this case, computed as in Section 6.1, is w∞(x) = x. Using this solution, we
reduce the problem to a similar one where both BCs are homogeneous and
which can thus be solved by the method of separation of variables. Putting
all the results together, we obtain

w(x,t) = x+
∞∑

n=1

(−1)n 2
nπ

sin(nπx)e−n2π2t. (9.4)

The same IBVP can also be solved by using the Laplace transformation
with respect to t. If we write L[w](x,s) = W (x,s), then from the PDE and
BCs we find that W is the solution of the BVP

W ′′(x,s) − sW (x,s) = 0, 0 < x < 1,

W (0,s) = 0, W (1,s) =
1
s
.

The general solution of the transformed equation can be written in the form
(see Remark 1.4)

W (x,s) = C1(s)cosh(
√
sx) + C2(s)sinh(

√
sx),

with C1(s) and C2(s) determined from the BCs. Applying these conditions
leads to

C1(s) = 0, C2(s)sinh
√
s =

1
s
,
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from which

C2(s) =
1

ssinh
√
s
;

hence,

W (x,s) =
sinh

(√
sx

)
ssinh

√
s
.

Then, using the inverse transformation and comparing with (9.4), we see
that

w(x,t) = L−1

[
1
s

sinh
(√
sx

)
sinh

√
s

]
= x+

∞∑
n=1

(−1)n 2
nπ

sin(nπx)e−n2π2t.

Now consider the more general IBVP

ut(x,t) = uxx(x,t), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = f(t), t > 0,

u(x,0) = 0, 0 < x < 1,

and let L[u](x,s) = U(x,s) and L[f ](s) = F (s). Applying L to the PDE
and BCs, we arrive at the BVP

U ′′(x,s) − sU(x,s) = 0, 0 < x < 1,

U(0,s) = 0, U(1,s) = F (s).

Proceeding exactly as above, we find that

U(x,s) = F (s)
sinh

(√
sx

)
sinh

√
s

= F (s)
{
s

[
1
s

sinh
(√
sx

)
sinh

√
s

]}

= F (s)
[
sW (x,s)

]
. (9.5)

Since w(x,0) = 0 in the IBVP for w, it follows that

L[wt](x,s) = sW (x,s) − w(x,0) = sW (x,s);

therefore, by (9.5) and Theorem 9.9(iv),

L[u] = U = F (sW ) = L[f ]L[wt] = L[f ∗ wt].

Using (9.2) and integration by parts, we now obtain
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u(x,t) = (f ∗ wt)(x,t) =

t∫
0

f(t− τ)wτ (x,τ)dτ

= f(t− τ)w(x,τ)
∣∣τ=t

τ=0
+

t∫
0

w(x,τ)f ′(t− τ)dτ

= f(0)w(x,t) − f(t)w(x,0) +

t∫
0

w(x,t − τ)f ′(τ)dτ

=

t∫
0

w(x,t − τ)f ′(τ)dτ + f(0)w(x,t),

where we have used the condition w(x,0) = 0 and the commutativity of the
convolution operation.

This result shows how the solution of a problem with more general BCs
can sometimes be obtained from that of a problem with simpler ones.

9.18. Remark. If we replace the BC w(1, t) = 1 by

w(1, t) = δ(t),

then the above formula becomes

u(x,t) =

t∫
0

w(x,t − τ)f(τ)dτ.

Diffusion–convection problems. Suppose that a chemical substance is
being poured at a constant rate into a straight, narrow, clean river that
flows with a constant velocity. The concentration u(x,t) of the substance
at a distance x downstream at time t is the solution of the IBVP

ut(x,t) = σuxx(x,t) − vux(x,t), x > 0, t > 0,

u(0, t) = α = const, t > 0,

u(x,0) = 0, x > 0,

where σ is the diffusion coefficient, v = const > 0 is the velocity of the river,
α = const > 0 is related to the substance discharge rate, and the second
term on the right-hand side in the PDE accounts for the convection effect
of the water flow on the substance.
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If the river is slow, then the convection term is much smaller than the
diffusion term and the PDE assumes the approximate form

ut(x,t) = σuxx(x,t), x > 0, t > 0,

which is the diffusion equation. If the river is fast, then the approximation
is given by the convection equation

ut(x,t) = −vux(x,t), x > 0, t > 0.

Since we have already studied the diffusion (heat) equation, we now turn
our attention to the convection and combined cases.

(i) The IBVP for pure convection is

ut(x,t) = −vux(x,t), x > 0, t > 0,

u(0, t) = α, t > 0,

u(x,0) = 0, x > 0.

Let L[u](x,s) = U(x,s). Applying the Laplace transformation to the PDE
and BC, we arrive at the problem

vU ′(x,s) + sU(x,s) = 0, x > 0,

U(0,s) =
1
s
α,

with solution

U(x,s) =
1
s
αe−(s/v)x =

1
s
αe−(x/v)s.

Since L−1
[
e−as/s

]
= H(t − a), we set a = x/v to find that the solution of

the original IBVP is

u(x,t) = L−1[U ](x,t) = L−1

[
1
s
αe−(x/v)s

]

= αH(t− x/v) =
{

0, 0 < t < x/v,
α, t ≥ x/v.

Thus, the substance reaches a fixed position x at time t = x/v; after
that, the concentration of the substance at x remains constant (equal to
the concentration of the substance at the point where it is poured into the
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river). The line t = x/v in the (x,t)-plane is the advancing wave front of
the substance (see Fig. 9.1).

0

u�x,t��Α

t�x�v

u�x,t��0

t�x�v

u�x,0��0

u
�
0
,
t
�
�
Α

t�x�v

Fig. 9.1. The front wave and the regions behind it and ahead of it.

(ii) We now consider a very long river with the substance already uni-
formly distributed in it from the source of the river up to the observation
point x = 0, and assume that both diffusion and convection effects are
significant. This mixed diffusion–convection problem in an infinite one-
dimensional medium is modeled by the IVP

ut(x,t) = σuxx(x,t) − vux(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = 1 −H(x), −∞ < x <∞.

We already know two possible methods for solving this problem: we can
apply the Laplace transformation with respect to t or the (full) Fourier
transformation with respect to x. In light of the discussion in (i) above, how-
ever, we indicate a third one, which consists in changing the x-coordinate
by connecting it to the wave front through the combination

ξ = x− vt. (9.6)

Clearly, ξ = 0 means that the point (x,t) is on the wave front, ξ > 0 means
that (x,t) is ahead of the wave front, and ξ < 0 means that (x,t) is behind
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the wave front. We also write

u(x,t) = u(ξ + vt, t) = w(ξ,t).

Hence, by the chain rule,

ut = wξξt + wt = −vwξ + wt,

ux = wξξx = wξ,

uxx = (wξ)ξξx = wξξ.

Since t = 0 yields x = ξ, the above IVP becomes

wt(ξ,t) = σwξξ(ξ,t), −∞ < ξ <∞, t > 0,

w(ξ,t), wξ(ξ,t) → 0 as ξ → ±∞, t > 0,

w(ξ,0) = 1 −H(ξ), −∞ < ξ <∞.

This problem was solved earlier by means of the Fourier transformation (see
Section 8.1), and its solution is

w(ξ,t) =
1

2
√
πσt

∞∫
−∞

[
1 −H(y)

]
e−(ξ−y)2/(4σt) dy

=
1

2
√
πσt

0∫
−∞

e−(ξ−y)2/(4σt) dy.

Then, by (9.6), we find that the solution of our IVP in terms of the original
variables x and t is

u(x,t) =
1

2
√
πσt

0∫
−∞

e−(x−vt−y)2/(4σt) dy.

Loss transmission line. Problems of this type can also be solved by the
Laplace transformation method.

9.19. Example. Consider the IBVP

utt(x,t) + 4ut(x,t) + 4u(x,t) = uxx(x,t) − 1, x > 0, t > 0,

u(0, t) = 0, u(x,t) bounded as x→ ∞, t > 0,

u(x,0) = 1, ut(x,0) = 0, x > 0.
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If we write, as usual, L[u](x,s) = U(x,s) and apply the Laplace transfor-
mation to the PDE and BC, we arrive at the ODE problem

U ′′(x,s) − (s+ 2)2U(x,s) =
1 − 4s− s2

s
, x > 0,

U(0,s) = 0, U(x,s) bounded as x→ ∞,

with general solution

U(x,s) = C1(s)e(s+2)x + C2(s)e−(s+2)x +
s2 + 4s− 1
s(s+ 2)2

.

The boundedness requirement implies that C1(s) = 0, and the BC yields

U(x,s) =
s2 + 4s− 1
s(s+ 2)2

[
1 − e−(s+2)x

]
.

This can also be written in the form

U(x,s) = F (s) − F (s)e−sxe−2x, (9.7)

where, using partial fractions, we have

F (s) =
s2 + 4s− 1
s(s+ 2)2

= − 1
4s

+
5

4(s+ 2)
+

5
2(s+ 2)2

.

By formulas 3 and 5–7 in Table A5,

f(t) = L−1[F ](t) = − 1
4 + 5

4 e
−2t + 5

2 te
−2t = 1

4

[
5(2t+ 1)e−2t − 1

]
.

Applying formula 2 in (9.7), we now find that

u(x,t) = L−1[U ](x,t) = f(t) − f(t− x)H(t− x)e−2x

= 1
4

[
5(2t+ 1)e−2t− 1

]− 1
4

[
5(2t− 2x+ 1)e−2t− e−2x

]
H(t− x).

Exercises

In (1)–(4) use Table A5 to compute the Laplace transform of the given
function f .

(1) f(t) = e−t sin(3t) − 3t4.
(2) f(t) = e4t cos(2t) + 4(t− 3)3H(t− 3).
(3) f(t) = e−2t(cost− 3sint) − 2t2H(t− 1).
(4) f(t) = t3et−2 − 3sin2

(
1
2 t).
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In (5)–(8) use Table A5 to compute the inverse Laplace transform of the
given function F .

(5) F (s) =
2s+ 1

s2 − 2s+ 26
. (6) F (s) =

3s+ 2
s2 + 6s+ 25

− 2s
(s− 1)2

e−s.

(7) F (s) =
3s+ 1
s

e−
√

s/2. (8) F (s) =
2 − s

s2
e−3

√
s.

In (9)–(18) use the Laplace transformation to find the solution of the PDE

ut(x,t) = kuxx(x,t) + q(x,t), x > 0, t > 0,

for the coefficient k, function q, and BC and IC as indicated, under the
condition that u(x,t) be bounded as x→ ∞, t > 0.

(9) k = 1, q(x,t) = 1, u(0, t) = t+ 1, u(x,0) = sin(2x).
(10) k = 4, q(x,t) = 1, u(0, t) = 2 − t, u(x,0) = −2.

(11) k = 1, q(x,t) =
{−3e−3t + 2(x− 1)2 − 4t, 0 < x ≤ 1,
−3e−3t, x > 1,

ux(0, t) = −4t, u(x,0) = 1.

(12) k = 1, q(x,t) =
{

(1 − t)e−t + 6, 0 < x ≤ 1,
(1 − t)e−t, x > 1,

ux(0, t) = 6, u(x,0) =
{

3(2x− x2), 0 < x ≤ 1,
3, x > 1.

(13) k = 1, q(x,t) = (2t+ 1)cosx, ux(0, t) = 0, u(x,0) = −cosx.
(14) k = 2, q(x,t) = −(2t+ 3)e−x, u(0, t) = t+ 2, u(x,0) = 2e−x.

(15) k = 1, q(x,t) = 5e−x
[
cos(2t) + sin(2t)

]
,

u(0, t) = −3cos(2t) + sin(2t), u(x,0) = −3e−x.

(16) k = 1, q(x,t) = −e−2t[2cost+ (5x2 + 4)sint],
ux(0, t) = 0, u(x,0) = x2.

(17) k = 4, q(x,t) = 3e−3t, u(0, t) = 3 − e−3t, u(x,0) = 1.
(18) k = 4, q(x,t) = −2e2t−x, u(0, t) = e2t − 2, u(x,0) = e−x.

In (19)–(28) use the Laplace transformation to find the solution of the PDE

utt(x,t) = c2uxx(x,t) + q(x,t), x > 0, t > 0,

for the coefficient c, function q, and BC and ICs as indicated, under the
condition that u(x,t) be bounded as x→ ∞, t > 0.

(19) c = 1, q(x,t) = 1, u(0, t) = t, u(x,0) = 0, ut(x,0) = −1.
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(20) c = 1, q(x,t) = −1, u(0, t) = t+ 1, u(x,0) = 2, ut(x,0) = 0.
(21) c = 2, q(x,t) = e−3t, ux(0, t) = 2t, u(x,0) = 0, ut(x,0) = −1.
(22) c = 2, q(x,t) = t, ux(0, t) = 2e−t, u(x,0) = 1, ut(x,0) = 0.
(23) c = 1, q(x,t) = −(2 + 3e−2t)e−x, u(0, t) = 2 − e−2t,

u(x,0) = e−x, ut(x,0) = 2e−x.

(24) c = 2, q(x,t) = 2(2t+ 5e−t)sinx, ux(0, t) = 2e−t + t,

u(x,0) = 2sinx, ut(x,0) = −sinx.
(25) c = 1, q(x,t) = e−t/2 − 4sin(2x), ux(0, t) = −2,

u(x,0) = 4 − sin(2x), ut(x,0) = −2.
(26) c = 1, q(x,t) = −8e−x sin(2t), u(0, t) = sin(2t),

u(x,0) = 0, ut(x,0) = 2e−x.

(27) c = 2, q(x,t) = 2, ux(0, t) = cost, u(x,0) = 0, ut(x,0) = 1.
(28) c = 1, q(x,t) = e−x, u(0, t) = −e−t, u(x,0) = −2, ut(x,0) = 0.

In (29)–(32) use the Laplace transformation to find the solution of the PDE

ut(x,t) = uxx(x,t) − 2ux(x,t) + u(x,t) + q(x,t), x > 0, t > 0,

for the function q and the BC and IC as indicated, under the condition that
u(x,t) be bounded as x→ ∞, t > 0.

(29) q(x,t) = 0, u(0, t) = −2, u(x,0) = 0.
(30) q(x,t) = 0, u(0, t) = t, u(x,0) = 0.
(31) q(x,t) = 2(3t+ 1)cosx+ 3sinx, ux(0, t) = 3t+ 1, u(x,0) = sinx.
(32) q(x,t) = cosxcos t− 2sinxsin t, ux(0, t) = 0, u(x,0) = 0.

In (33)–(36) use the Laplace transformation to find the solution of the PDE

utt(x,t) + 2ut(x,t) + u(x,t) = uxx(x,t) + q(x,t), x > 0, t > 0,

for the function q and BC and ICs as indicated, under the condition that
u(x,t) be bounded as x→ ∞, t > 0.

(33) q(x,t) = 1, u(0, t) = t+ 2, u(x,0) = −1, ut(x,0) = 0.
(34) q(x,t) = −e−2t, ux(0, t) = 3t, u(x,0) = 0, ut(x,0) = 2.
(35) q(x,t) = 5e−2x, ux(0, t) = 2(2 − t),

u(x,0) = −2e−2x, ut(x,0) = e−2x.

(36) q(x,t) = 4e−x
[
sin(2t) − cos(2t)

]
, u(0, t) = −sin(2t),

u(x,0) = 0, ut(x,0) = −2e−x.



Chapter 10
The Method of Green’s
Functions

The types of problems we have considered for the heat, wave, and Laplace
equations have solutions that are determined uniquely by the prescribed
data (boundary conditions, initial conditions, and any nonhomogeneous
term in the equation). It is natural, therefore, to seek a formula that gives
the solution directly in terms of the data. Such closed-form solutions are
constructed by means of the so-called Green’s function of the given problem,
and are of great importance in practical applications.

10.1. The Heat Equation

The equilibrium problem. The equilibrium temperature distribution in
a finite rod with internal sources and zero temperature at the endpoints is
modeled by a BVP of the form (see Section 6.1)

u′′(x) = −1
k
q(x), 0 < x < L,

u(0) = 0, u(L) = 0.
(10.1)

For convenience, we have omitted the subscript ∞ from the symbol of the
steady-state solution, but have kept the factor −1/k since we will later make
a comparison between the solutions of the equilibrium and time-dependent
problems.

If we have just one unit source concentrated at a point ξ, 0 < ξ < L,
then q(x) = δ(x − ξ) and the two-point solution G(x,ξ) of the above BVP
satisfies

Gxx(x,ξ) = −1
k
δ(x− ξ), 0 < x < L,

G(0, ξ) = 0, G(L,ξ) = 0.
(10.2)

The function G(x,ξ) can be computed explicitly. Since Hx(x−ξ) = δ(x−ξ)
(see Remark 9.4(ii)), from (10.2) it follows that

Gx(x,ξ) = −1
k
H(x− ξ) + C1(ξ) =

{
C1(ξ), x < ξ,

−1
k

+ C1(ξ), x > ξ,
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from which

G(x,ξ) =

⎧⎨
⎩
xC1(ξ) + C2(ξ), x < ξ,

x

[
C1(ξ) − 1

k

]
+ C3(ξ), x > ξ,

(10.3)

where C1, C2, and C3 are arbitrary functions of ξ. Using the BCs in (10.2),
we find that

C2(ξ) = 0, L

[
C1(ξ) − 1

k

]
+ C3(ξ) = 0.

Hence, C3(ξ) = −L[
C1(ξ) − 1/k

]
, and (10.3) becomes

G(x,ξ) =

⎧⎨
⎩
xC1(ξ), x < ξ,

(x− L)
[
C1(ξ) − 1

k

]
, x > ξ.

(10.4)

If G(x,ξ) had a jump (H-type) discontinuity at x = ξ, then Gx would have
a δ-type singularity at x = ξ. Since this is not the case, we must conclude
that G(x,ξ) is continuous at x = ξ; in other words, G(ξ−, ξ) = G(ξ+, ξ),
which, in view of (10.4), leads to

ξC1(ξ) = (ξ − L)
[
C1(ξ) − 1

k

]
.

Thus, C1(ξ) = (L− ξ)/(kL), and (10.4) yields

G(x,ξ) =

⎧⎪⎨
⎪⎩

x

kL
(L− ξ), x ≤ ξ,

ξ

kL
(L− x), x > ξ.

(10.5)

Clearly, G(x,ξ) = G(ξ,x).
Using integration by parts, we find that for two smooth functions u and

v on [0,L],

L∫
0

(u′′v − v′′u)dx =
[
u′v − v′u

]L

0
−

L∫
0

(u′v′ − v′u′)dx

=
[
u′(L)v(L) − v′(L)u(L)

] − [
u′(0)v(0) − v′(0)u(0)

]
. (10.6)

This is known as Green’s formula. If u is now the solution of (10.1) and
v = G is the solution of (10.2), then the right-hand side in (10.6) vanishes
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and we can write

L∫
0

[
u(x)δ(x − ξ) −G(x,ξ)q(x)]dx = 0.

By (9.1), interchanging x and ξ and recalling that G(x,ξ) = G(ξ,x), we
obtain

u(x) =

L∫
0

G(x,ξ)q(ξ)dξ. (10.7)

G(x,ξ), called the Green’s function of the BVP (10.1), is the temperature
at x due to a concentrated unit heat source at ξ. Formula (10.7) shows the
aggregate influence of all the sources q(ξ) in the rod on the temperature
at x.

A representation formula similar to (10.7) can also be derived for nonho-
mogeneous BCs. Suppose that the BCs in (10.1) are replaced by u(0) = a

and u(L) = b. Then (10.6) with the same choice of u and v as above becomes
L∫

0

[
u(x)δ(x − ξ) −G(x,ξ)q(x)

]
dx = −k[u(x)Gx(x,ξ)

]x=L

x=0
,

so

u(x) =

L∫
0

G(x,ξ)q(ξ)dξ − k
[
bGξ(x,L) − aGξ(x,0)

]
.

By (10.5),

Gξ(x,ξ) =

⎧⎪⎨
⎪⎩
− x

kL
, x ≤ ξ,

−x− L

kL
, x > ξ;

consequently, the desired representation formula is

u(x) =

L∫
0

G(x,ξ)q(ξ)dξ + b
x

L
+ a

(
1 − x

L

)
. (10.8)

10.1. Example. To compute the steady-state solution for the IBVP

ut(x,t) = uxx(x,t) + x− 1, 0 < x < 1, t > 0,

u(0, t) = 2, u(1, t) = −1, t > 0,

u(x,0) = f(x), 0 < x < 1,
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we use (10.8) with k = 1, L = 1, a = 2, b = −1, and q(x) = x− 1. First, by
(10.5),

G(x,ξ) =
{
x(1 − ξ), x ≤ ξ,
ξ(1 − x), x > ξ,

Gξ(x,ξ) =
{−x, x < ξ,

1 − x, x > ξ;
hence,

1∫
0

G(x,ξ)q(ξ)dξ =

x∫
0

ξ(1 − x)(ξ − 1)dξ +

1∫
x

x(1 − ξ)(ξ − 1)dξ

= (1 − x)

x∫
0

(ξ2 − ξ)dξ − x

1∫
x

(ξ − 1)2dξ

= − 1
6 x

3 + 1
2 x

2 − 1
3 x.

Since bx/L+ a(1−x/L) = −x+2(1−x) = 2− 3x, the equilibrium solution
(10.8) of the given IBVP is

u(x) = − 1
6 x

3 + 1
2 x

2 − 10
3 x+ 2.

10.2. Example. In the case of the IBVP

ut(x,t) = uxx(x,t) + q(x), 0 < x < 1, t > 0,

u(0, t) = 1, u(1, t) = 3, t > 0,

u(x,0) = f(x), 0 < x < 1,

with

q(x) =
{

2, 0 < x ≤ 1/2,
−1, 1/2 < x < 1,

we notice that the function G is the same as in the preceding example,
whereas a = 1 and b = 3. Given that the expressions of q and G change at
x = 1/2 and x = ξ, respectively, we split the computation of the equilibrium
solution (10.8) into two parts.

(i) If 0 < x < 1/2, the first term on the right-hand side in (10.8) is
written as a sum of three integrals, one for each of the intervals 0 < ξ ≤ x,
x < ξ ≤ 1/2, and 1/2 < ξ < 1. Thus, (10.8) yields
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u(x) =

x∫
0

2ξ(1 − x)dξ +

1/2∫
x

2x(1 − ξ)dξ +

1∫
1/2

−x(1 − ξ)dξ + 2x+ 1

= −x2 + 21
8 x+ 1.

(ii) If 1/2 < x < 1, the three integrals are over the intervals 0 < ξ ≤ 1/2,
1/2 < ξ ≤ x, and x < ξ < 1:

u(x) =

1/2∫
0

2ξ(1 − x)dξ +

x∫
1/2

−ξ(1 − x)dξ +

1∫
x

−x(1 − ξ)dξ + 2x+ 1

= 1
2 x

2 + 9
8 x+ 11

8 .

It is easy to verify that

u
(

1
2 − )

= u(1
2 +

)
= 33

16 ,

u′
(

1
2 − )

= u′
(

1
2 +

)
= 13

8 ,

but that

u′′
(

1
2 − )

= −2, u′′
(

1
2 +

)
= 1,

which confirms that, as expected, the discontinuity of q at x = 1/2 has
reduced the smoothness of the solution.

10.3. Remark. The Green’s function can be expanded in a double Fourier
series. In view of the eigenfunctions of the Sturm–Liouville problem asso-
ciated with (10.1) (see Section 5.1), the continuity of G, and the symmetry
G(x,ξ) = G(ξ,x), it seems reasonable to seek a series representation of the
form

G(x,ξ) =
∞∑

m=1

( ∞∑
n=1

bmn sin
nπx

L

)
sin

mπξ

L
. (10.9)

Differentiating (10.9) term by term twice with respect to x and substituting
in the ODE in (10.2), we obtain

∞∑
m=1

[ ∞∑
n=1

(
nπ

L

)2

bmn sin
nπx

L

]
sin

mπξ

L
=

1
k
δ(x − ξ).
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Multiplying this equality by sin(pπx/L), p = 1,2, . . . , integrating over [0,L],
and using (2.5) and (9.1), we find that

(
pπ

L

)2
kL

2

∞∑
m=1

bmp sin
mπξ

L
= sin

pπξ

L
, p = 1,2, . . . .

Theorem 3.20(ii) now implies that the only nonzero coefficients above are
bpp = 2L/(kp2π2), so series (10.9) is

G(x,ξ) =
∞∑

n=1

2L
kn2π2

sin
nπx

L
sin

nπξ

L
.

The time-dependent problem. A finite rod with internal sources and
zero temperature at the endpoints is modeled by the IBVP

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0,

u(0, t) = 0, u(L,t) = 0, t > 0,

u(x,0) = f(x), 0 < x < L.

(According to the arguments presented in Chapter 6, we may consider ho-
mogeneous BCs without loss of generality.) This problem can be solved by
the method of eigenfunction expansion (see Section 7.1), so let

u(x,t) =
∞∑

n=1

un(t)sin
nπx

L
,

q(x,t) =
∞∑

n=1

qn(t)sin
nπx

L
, f(x) =

∞∑
n=1

fn sin
nπx

L
,

where

qn(t) =
2
L

L∫
0

q(x,t)sin
nπx

L
dx, fn =

2
L

L∫
0

f(x)sin
nπx

L
dx. (10.10)

Replacing these series in the PDE, we find in the usual way that the un,
n = 1,2, . . . , must satisfy

u′n(t) + k

(
nπ

L

)2

un(t) = qn(t), t > 0,

un(0) = fn.
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This problem is solved, for example, by means of the integrating factor

exp
{∫

k

(
nπ

L

)2

dt

}
= ek(nπ/L)2t.

Thus, taking the IC for un into account, we obtain

un(t) = e−k(nπ/L)2t

[ t∫
0

qn(τ)ek(nπ/L)2τdτ + C

]

= fne
−k(nπ/L)2t + e−k(nπ/L)2t

t∫
0

qn(τ)ek(nπ/L)2τdτ ;

so, by (10.10),

u(x,t) =
∞∑

n=1

[
fne

−k(nπ/L)2t + e−k(nπ/L)2t

t∫
0

qn(τ)ek(nπ/L)2τdτ

]
sin

nπx

L

=
∞∑

n=1

{[
2
L

L∫
0

f(ξ)sin
nπξ

L
dξ

]
e−k(nπ/L)2t

+ e−k(nπ/L)2t

t∫
0

[
2
L

L∫
0

q(ξ,τ)sin
nπξ

L
dξ

]
ek(nπ/L)2τdτ

}
sin

nπx

L

=

L∫
0

f(ξ)
[ ∞∑

n=1

2
L

sin
nπx

L
sin

nπξ

L
e−k(nπ/L)2t

]
dξ

+

L∫
0

t∫
0

q(ξ,τ)
[ ∞∑

n=1

2
L

sin
nπx

L
sin

nπξ

L
e−k(nπ/L)2(t−τ)

]
dτ dξ.

If we now define the Green’s function of this problem by

G(x,t;ξ,τ) =
∞∑

n=1

2
L

sin
nπx

L
sin

nπξ

L
e−k(nπ/L)2(t−τ), τ < t, (10.11)

then the solution of the IBVP can be written in the form

u(x,t) =

L∫
0

G(x,t;ξ,0)f(ξ)dξ +

L∫
0

t∫
0

G(x,t;ξ,τ)q(ξ,τ)dτ dξ. (10.12)



212 GREEN’S FUNCTIONS

The first term in this formula represents the influence of the initial tem-
perature in the rod on the subsequent temperature at any point x and any
time t. The second term represents the influence of all the sources in the
rod at all times 0 < τ < t on the temperature at x and t. This expresses
what is known as the causality principle.

10.4. Example. We use (10.11) and (10.12) to compute the solution of
the IBVP

ut(x,t) = uxx(x,t) + t(x− 1), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x,0) = x, 0 < x < 1.

Here k = 1, L = 1, q(x,t) = t(x− 1), and f(x) = x, so

G(x,t;ξ,τ) =
∞∑

n=1

2sin(nπx)sin(nπξ)e−n2π2(t−τ);

hence,

u(x,t) =

1∫
0

G(x,t;ξ,0)ξ dξ +

1∫
0

t∫
0

G(x,t;ξ,τ)τ(ξ − 1)dτ dξ

=
∞∑

n=1

2sin(nπx)
[ 1∫

0

ξ sin(nπξ)dξ
]
e−n2π2t

+
∞∑

n=1

2sin(nπx)
[ 1∫

0

(ξ − 1)sin(nπξ)dξ
][ t∫

0

τe−n2π2(t−τ)dτ

]
.

Integrating by parts, we see that

1∫
0

ξ sin(nπξ)dξ = (−1)n+1 1
nπ

,

1∫
0

(ξ − 1)sin(nπξ)dξ = − 1
nπ

,

t∫
0

τe−n2π2(t−τ)dτ =
1

n2π2
t− 1

n4π4

(
1 − e−n2π2t

)
.
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We now put these results together and obtain the solution of the IBVP in
the form

u(x,t) =
∞∑

n=1

2
nπ

[
(−1)n+1e−n2π2t

− 1
n2π2

t+
1

n4π4

(
1 − e−n2π2t

)]
sin(nπx).

10.5. Remark. Green’s functions and representation formulas in terms of
such functions can also be constructed for IBVPs with other types of BCs,
and for IBVPs where the space variable takes values in a semi-infinite or
infinite interval (see, for example, (8.8)).

10.2. The Laplace Equation

The equilibrium temperature in a thin, uniform rectangular plate with time-
independent sources and zero temperature on the boundary is the solution
of the BVP

(Δu)(x,y) = q(x,y), 0 < x < L, 0 < y < K,

u(x,0) = 0, u(x,K) = 0, 0 < x < L,

u(0,y) = 0, u(L,y) = 0, 0 < y < K.

As in Section 10.1, let G(x,y;ξ,η) be the effect at (x,y) produced by just
one unit source located at a point (ξ,η), 0 < ξ < L, 0 < η < K. Then G is
the solution of the BVP

Δ(x,y)G(x,y;ξ,η) = δ(x − ξ,y − η), 0 < x < L, 0 < y < K,

G(x,0;ξ,η) = 0, G(x,K;ξ,η) = 0, 0 < x < L,

G(0,y;ξ,η) = 0, G(L,y;ξ,η) = 0, 0 < y < K,

where δ(x − ξ,y − η) = δ(x − ξ)δ(y − η) and Δ(x,y) indicates that the
Laplacian is applied with respect to the variables x, y. Also, let D be the
rectangle where the problem is formulated, that is,

D =
{
(x,y) : 0 < x < L, 0 < y < K

}
,

and let ∂D be the four-sided boundary of D.
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Since ∂D is piecewise smooth, we use the divergence theorem to find that
for a pair of smooth functions u and v,∫

D

(uΔv − vΔu)da =
∫
D

(udivgradv − vdivgradu)da

=
∫
D

[
div(ugradv) − (gradu) · (gradv)

− div(vgradu) + (gradv) · (gradu)
]
da

=
∫
∂S

[
(ugradv) · n− (vgradu) · n]

ds

=
∫

∂D

(uvn − vun)ds, (10.13)

where da and ds are the elements of area and arc, respectively, and the sub-
script n denotes the derivative in the direction of the unit outward normal
to the boundary. (The normal is not defined at the four corner points, but
this does not influence the outcome.)

Equality (10.13) is Green’s formula for functions of two space variables.
If u is the solution of the given BVP and v is replaced by G, then the
homogeneous BCs satisfied by both u and G make the right-hand side in
(10.13) vanish and the formula reduces to∫

D

[
u(x,y)δ(x− ξ)δ(y − η) − q(x,y)G(x,y;ξ,η)

]
da(x,y) = 0,

where da(x,y) indicates that integration is performed with respect to x, y.
By (9.1), this yields

u(ξ,η) =
∫
D

G(x,y;ξ,η)q(x,y)da(x,y). (10.14)

At the same time, applying (10.13) with u(x,y) replaced by G(x,y;ξ,η)
and v(x,y) replaced by G(x,y;ρ,σ) and making use once more of (9.1), we
obtain the symmetry

G(ξ,η;ρ,σ) = G(ρ,σ;ξ,η).
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Then, as a simple interchange of variables shows, (10.14) becomes the rep-
resentation formula

u(x,y) =
∫
D

G(x,y;ξ,η)q(ξ,η)da(ξ,η). (10.15)

G(x,y;ξ,η) is called the Green’s function of the given BVP. Formula (10.15)
shows the effect of all the sources inD on the temperature at the point (x,y).

10.6. Remark. To find a Fourier series representation for G we recall that
the two-dimensional eigenvalue problem (5.54) associated with our BVP has
the eigenvalue-eigenfunction pairs

λnm =
(
nπ

L

)2

+
(
mπ

K

)2

,

Snm = sin
nπx

L
sin

mπy

K
, n, m = 1,2, . . . .

Consequently, it seems reasonable to seek an expansion of the form

G(x,y;ξ,η) =
∞∑

n=1

∞∑
m=1

cnm(ξ,η)Snm(x,y)

=
∞∑

n=1

∞∑
m=1

cnm(ξ,η)sin
nπx

L
sin

mπy

K
.

If we replace this series in the equation satisfied by G, then

Δ(x,y)G(x,y;ξ,η) =
∞∑

n=1

∞∑
m=1

cnm(ξ,η)(ΔSnm)(x,y)

= −
∞∑

n=1

∞∑
m=1

λnmcnm(ξ,η)Snm(x,y)

= δ(x− ξ)δ(y − η).

Multiplying both sides above by Spq(x,y), integrating over D, and taking
(9.1) into account, we arrive at

cpq(ξ,η) = − 4
LKλpq

Spq(ξ,η).
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Hence, the double Fourier sine series for G is

G(x,y;ξ,η)

= − 4
LK

∞∑
n=1

∞∑
m=1

sin(nπξ/L)sin(mπη/K)
(nπ/L)2 + (mπ/K)2

sin
nπx

L
sin

mπy

K
.

(10.16)

10.7. Example. To compute the solution of the BVP

uxx(x,y) + uyy(x,y) = −5π2 sin(πx)sin(2πy),

0 < x < 1, 0 < y < 2,

u(x,0) = 0, u(x,2) = 0, 0 < x < 1,

u(0,y) = 0, u(1,y) = 0, 0 < y < 2,

we notice that here

L = 1, K = 2, q(x,t) = −5π2 sin(πx)sin(2πy).

Consequently, by (10.16),

G(x,y;ξ,η) = −2
∞∑

n=1

∞∑
m=1

sin(nπξ)sin(mπη/2)
n2π2 +m2π2/4

sin(nπx)sin
mπy

2
,

so from (10.15) and (2.5) it follows that

u(x,y) =

2∫
0

1∫
0

(−2)
∞∑

n=1

∞∑
m=1

4sin(nπξ)sin(mπη/2)
π2(4n2 +m2)

sin(nπx)sin
mπy

2

× (−5π2)sin(πξ)sin(2πη)dξ δη

= 40
∞∑

n=1

∞∑
m=1

1
4n2 +m2

( 1∫
0

sin(πξ)sin(nπξ)dξ
)

×
( 2∫

0

sin(2πη)sin
mπη

2
dη

)
sin(nπx)sin

mπy

2

=
(

40
4 · 12 + 42

· 1
2
· 1

)
sin(πx)sin(2πy) = sin(πx)sin(2πy).
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10.3. The Wave Equation

The vibrations of an infinite string are described by the IVP

utt(x,t) = c2uxx(x,t) + q(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), −∞ < x <∞.

If we have a unit force acting at a point ξ at time τ > 0, then its influence
G(x,t;ξ,τ) on the vertical vibration of a point x at time t is the solution of
the IVP

Gtt(x,t;ξ,τ) = c2Gxx(x,t;ξ,τ) + δ(x − ξ,t− τ),

−∞ < x <∞, t > 0,

G(x,t;ξ,τ), Gx(x,t;ξ,τ) → 0 as x→ ±∞, t > 0,

G(x,t;ξ,τ) = 0, −∞ < x <∞, t < τ,

where δ(x − ξ,t − τ) = δ(x − ξ)δ(t − τ) and the IC reflects the physical
reality that the displacement of the point x is not affected by the unit force
at ξ until this force has acted at time τ .

As we did in Chapter 8 in the case of the Cauchy problem for the heat
equation, we find the function G by means of the full Fourier transformation.
First, we note that, by (9.1),

F[
δ(x− ξ)

]
=

1√
2π

∞∫
−∞

δ(x − ξ)eiωx dx =
1√
2π

eiωξ.

Therefore, if we write F [G](ω,t;ξ,τ) = G̃(ω,t;ξ,τ) and apply F to the PDE
and IC satisfied by G, we arrive at the transformed problem

G̃tt(ω,t;ξ,τ) + c2ω2G̃(ω,t;ξ,τ) =
1√
2π

eiωξδ(t− τ), t > 0,

G̃(ω,t;ξ,τ) = 0, t < τ.

(10.17)

Since δ(t− τ) = 0 for t �= τ , the solution of (10.17) is

G̃(ω,t;ξ,τ) =
{0, t < τ ,
C1 cos

(
cω(t− τ)

)
+ C2 sin

(
cω(t− τ)

)
, t > τ , (10.18)
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where C1 and C2 are arbitrary functions of ω, ξ, and τ . Requiring G̃ to
be continuous at t = τ yields C1 = 0. To find C2, we consider an interval
[τ1, τ2] such that 0 < τ1 < τ < τ2 and integrate (10.17) with respect to t

over this interval:

G̃t(ω,τ2;ξ,τ) − G̃t(ω,τ1;ξ,τ) + c2ω2

τ2∫
τ1

G̃(ω,t;ξ,τ)dt

=
1√
2π

eiωξ

τ2∫
τ1

δ(t− τ)dt =
1√
2π

eiωξ

∞∫
−∞

δ(t− τ)dt =
1√
2π

eiωξ.

By (10.18),

G̃t(ω,τ1;ξ,τ) = 0,

G̃t(ω,τ2;ξ,τ) = cωC2 cos
(
cω(τ2 − τ)

)
.

If we now let τ1, τ2 → τ , from the continuity of G at t = τ it follows that
C2 = eiωξ/(

√
2πcω); hence,

G̃(ω,t;ξ,τ) =

⎧⎨
⎩

0, t < τ ,
1√
2πc

eiωξ
sin

(
cω(t− τ)

)
ω

, t > τ .

According to formulas 12 and 3 in Table A2 in the Appendix,

F−1

[√
2
π

sin(aω)
ω

]
= H(a− |x|),

F−1
[
eiωaF [f ](ω)

]
= f(x− a);

so, setting a = c(t− τ) and a = ξ, respectively, we obtain

G(x,t;ξ,τ) =
1
2c
H

(
c(t− τ) − |x− ξ|). (10.19)

The diagram in Fig. 10.1 shows the values of G in the upper half (t > 0) of
the (x,t)-plane, computed from (10.19). Using a similar diagram, it is easy
to see that (10.19) can also be written in the form

G(x,t;ξ,τ) =
1
2c

[
H

(
(x− ξ) + c(t− τ)

) −H
(
(x− ξ) − c(t− τ)

)]
. (10.20)
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Fig. 10.1.

A procedure analogous to, but more involved than, that followed in the
case of the Laplace equation can also be devised for the wave equation to
obtain a symmetry relation for G and a representation formula for a solution
u in terms of G. Thus, in its most general form the latter is

u(x,t) =

t∫
0

b∫
a

G(x,t;ξ,τ)q(ξ,τ)dξ dτ

+

b∫
a

[
G(x,t;ξ,0)uτ (ξ,0) −Gτ (x,t;ξ,0)u(ξ,0)

]
dξ

− c2
t∫

0

[
Gξ(x,t;ξ,τ)u(ξ,τ) −G(x,t;ξ,τ)uξ(ξ,τ)

]ξ=b

ξ=a
dτ, (10.21)

where q is the forcing term and a and b are the points where the BCs are
prescribed. G(x,t;ξ,τ) is called the Green’s function for the wave equation.

When −∞ < x < ∞, as in our problem, the corresponding formula is
obtained from the one above by letting a → −∞ and b → ∞ and taking
into account that G(x,t;ξ,τ) = 0 for |x| sufficiently large.

10.8. Example. Consider the IBVP

utt(x,t) = uxx(x,t) + q(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞, t > 0,

u(x,0) = 0, ut(x,0) = 0, −∞ < x <∞,

where
q(x,t) =

{
t, −1 < x < 1, t > 0,
0 otherwise.
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By formulas (10.21) and (10.20) with c = 1, the solution of this problem is
computed as

u(x,t) =

t∫
0

∞∫
−∞

G(x,t;ξ,τ)q(ξ,τ)dξ dτ

=

t∫
0

∞∫
−∞

1
2

[
H(x− ξ + t− τ) −H(x− ξ − t+ τ)

]
q(ξ,τ)dξ dτ

=
1
2

t∫
0

x+t−τ∫
−∞

q(ξ,τ)dξ dτ − 1
2

t∫
0

x−t+τ∫
−∞

q(ξ,τ)dξ dτ ;

that is,

u(x,t) =
1
2

t∫
0

x+t−τ∫
x−t+τ

q(ξ,τ)dξ dτ.

The value of the solution at, say, (x,t) = (3,2) is

u(3,2) =
1
2

2∫
0

5−τ∫
1+τ

q(ξ,τ)dξ dτ.

To calculate the above integral, we sketch the lines ξ = 1 + τ and ξ = 5− τ

in the (ξ,τ) system of axes and identify the domain of integration (see Fig.
10.2). Since, as the diagram shows, q is zero in this domain, it follows that
u(3,2) = 0.

0�1 1 5

�3,2�

Ξ�1�Τ

Ξ�5�Τ

Τ

Ξ

Fig. 10.2. The domain of integration for (x,t) = (3,2).
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Similarly,

u(2,2) =
1
2

2∫
0

4−τ∫
τ

q(ξ,τ)dξ δτ.

0�1 1 4

�2,2�

Ξ�Τ

Ξ�4�Τ

Τ

Ξ

Fig. 10.3. The domain of integration for (x,t) = (2,2).

Following the same procedure and taking into account the intersection of
the domain of integration and the semi-infinite strip where q is nonzero (see
Fig. 10.3), we see that

u(2,2) =
1
2

1∫
0

1∫
τ

τ dξ dτ =
1
2

1∫
0

τξ
∣∣ξ=1

ξ=τ
dτ =

1
2

1∫
0

τ(1 − τ)dτ =
1
12
.

Finally, to compute

u(1,3) =
1
2

3∫
0

4−τ∫
−2+τ

q(ξ,τ)dξ dτ,

0�1 1�2 4

�1,3�

Ξ��2�Τ

Ξ�4�Τ

Τ

Ξ

Fig. 10.4. The domain of integration for (x,t) = (1,3).
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we make use of the sketch in Fig. 10.4 and obtain

u(1,3) =
1
2

1∫
0

1∫
−1

τ dξ dτ +
1
2

3∫
1

1∫
−2+τ

τ dξ dτ =
13
6
.

Alternatively, by changing the order of integration,

u(1,3) =
1
2

1∫
−1

ξ+2∫
0

τ dτ dξ =
1
4

1∫
−1

(ξ + 2)2dξ =
13
6
.

10.9. Remark. If there is no forcing term (q = 0) in the general IVP with
−∞ < x <∞, then the representation formula (10.21) reduces to

u(x,t) =

∞∫
−∞

[
G(x,t;ξ,0)uτ (ξ,0) −Gτ (x,t;ξ,0)u(ξ,0)

]
dξ. (10.22)

This formula can be further simplified by using the explicit form of G. By
(10.20) and Remark 9.4(ii), according to which

H ′(τ − a) = δ(τ − a),

we have

Gτ (x,t;ξ,τ) = − 1
2

[
δ
(
(x− ξ) + c(t− τ)

)
+ δ

(
(x− ξ) − c(t− τ)

)]
;

so, by the definition of δ and H (see Section 9.1), (10.22) becomes

u(x,t) =
1
2

∞∫
−∞

[
δ(x− ξ − ct) + δ(x− ξ + ct)

]
f(ξ)dξ

+
1
2c

∞∫
−∞

[
H(x− ξ + ct) −H(x− ξ − ct)

]
g(ξ)dξ

=
1
2
[
f(x+ ct) + f(x− ct)

]
+

1
2c

x+ct∫
x−ct

g(ξ)dξ.

This formula, called d’Alembert’s solution, is revisited in Chapter 12, where
it is be established by another method.
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Exercises

In (1)–(10) construct the appropriate Green’s function and solve the one-
dimensional steady-state heat equation

ku′′(x) + q(x) = 0, 0 < x < L,

with the constants k and L, function q, and BCs as indicated.

(1) k = 2, L = 1, q(x) = 2x− 1, u(0) = 1, u(1) = −2.

(2) k = 1, L = 2, q(x) =
{

1, 0 < x ≤ 1,
x 1 < x < 2, u(0) = 3, u(2) = 1.

(3) k = 1, L = 2, q(x) = 4, u(0) = 2, u′(2) = −3.
(4) k = 2, L = 1, q(x) = 1 − x, u(0) = −1, u′(1) = 1.

(5) k = 2, L = 2, q(x) =
{−1, 0 < x ≤ 1,

2, 1 < x < 2, u(0) = −2, u′(2) = 3.

(6) k = 1, L = 1, q(x) =
{

1, 0 < x ≤ 1/2,
x+ 1, 1/2 < x < 1, u(0) = 4, u′(1) = 2.

(7) k = 3, L = 1, q(x) = −2, u′(0) = −3, u(1) = 4.
(8) k = 2, L = 2, q(x) = x− 2, u′(0) = 1, u(2) = −3.

(9) k = 1, L = 1, q(x) =
{

2, 0 < x ≤ 1/2,
−3, 1/2 < x < 1, u′(0) = −2, u(1) = 5.

(10) k = 1, L = 2, q(x) =
{
x− 1, 0 < x ≤ 1,
1, 1 < x < 2, u′(0) = 3, u(2) = −3.

In (11)–(20) construct a series representation of the appropriate Green’s
function and solve the one-dimensional heat equation

ut(x,t) = kuxx(x,t) + q(x,t), 0 < x < L, t > 0,

with the constants k and L, function q, and BCs and IC as indicated.

(11) k = 2, L = 1, q(x,t) = tsin(πx),
u(0, t) = 0, u(1, t) = 0, u(x,0) = −sin(2πx).

(12) k = 1, L = 2, q(x,t) = x(t − 2),
u(0, t) = 0, u(2, t) = 0, u(x,0) = 1.



224 GREEN’S FUNCTIONS

(13) k = 1, L = 2, q(x,t) =
{

1, 0 < x ≤ 1,
−1, 1 < x < 2,

u(0, t) = 0, u(2, t) = 0, u(x,0) = 1 − x.

(14) k = 3, L = 1, q(x,t) =
{
x, 0 < x ≤ 1/2,
0, 1/2 < x < 1,

u(0, t) = 0, u(1, t) = 0, u(x,0) =
{

0, 0 < x ≤ 1/2,
2, 1/2 < x < 1.

(15) k = 1, L = 1, q(x,t) = 2xt,
ux(0, t) = 0, ux(1, t) = 0, u(x,0) = x.

(16) k = 2, L = 1, q(x,t) =
{−1, 0 < x ≤ 1/2,

2, 1/2 < x < 1,

ux(0, t) = 0, ux(1, t) = 0, u(x,0) = x− 1.

(17) k = 2, L = 2, q(x,t) = t,

u(0, t) = 0, ux(2, t) = 0, u(x,0) = −1.

(18) k = 1, L = 2, q(x,t) =
{

0, 0 < x ≤ 1,
1, 1 < x < 2,

u(0, t) = 0, ux(2, t) = 0, u(x,0) = x.

(19) k = 1, L = 1, q(x,t) =
{−1, 0 < x ≤ 1/2,

0, 1/2 < x < 1,

ux(0, t) = 0, u(1, t) = 0, u(x,0) =
{

0, 0 < x ≤ 1/2,
2, 1/2 < x < 1.

(20) k = 1, L = 2, q(x,t) = 1,
ux(0, t) = 0, u(2, t) = 0, u(x,0) = x− 2.

In (21)–(30) construct a series representation of the appropriate Green’s
function and solve the nonhomogeneous Laplace equation

uxx(x,y) + uyy(x,y) = q(x,y), 0 < x < L, 0 < y < K,

with the constants L and K, function q, and BCs as indicated.

(21) L = 1, K = 2, q(x,y) = sin(πy),
u(0,y) = 0, u(1,y) = 0, u(x,0) = 0, u(x,2) = 0.

(22) L = 1, K = 1, q(x,y) = (y − 1)cos(πx),
ux(0,y) = 0, ux(1,y) = 0, u(x,0) = 0, u(x,1) = 0.
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(23) L = 1, K = 1, q(x,y) = xsin
(

3
2 πy

)
,

u(0,y) = 0, u(1,y) = 0, u(x,0) = 0, uy(x,1) = 0.

(24) L = 2, K = 1, q(x,y) = cos
(

1
4 πx

)
,

ux(0,y) = 0, u(2,y) = 0, u(x,0) = 0, u(x,1) = 0.

(25) L = 2, K = 1, q(x,y) = 2cos(3πy),
u(0,y) = 0, ux(2,y) = 0, uy(x,0) = 0, uy(x,1) = 0.

(26) L = 1, K = 2, q(x,y) = −sin
(

3
2 πx

)
,

u(0,y) = 0, ux(1,y) = 0, uy(x,0) = 0, u(x,2) = 0.

(27) L = 1, K = 1, q(x,y) = 1,
u(0,y) = 0, u(1,y) = 0, u(x,0) = 0, u(x,1) = 0.

(28) L = 1, K = 2, q(x,y) = −2,
u(0,y) = 0, u(1,y) = 0, u(x,0) = 0, uy(x,2) = 0.

(29) L = 1, K = 1, q(x,y) = x,

ux(0,y) = 0, u(1,y) = 0, u(x,0) = 0, uy(x,1) = 0.

(30) L = 2, K = 1, q(x,y) = y,

u(0,y) = 0, u(2,y) = 0, uy(x,0) = 0, uy(x,1) = 0.

In (31)–(40) construct an integral representation of the solution in terms of
the appropriate Green’s function for the IVP

utt(x,t) = c2uxx(x,t) + q(x,t), −∞ < x <∞, t > 0,

u(x,t), ux(x,t) → 0 as x→ ±∞,

u(x,0) = 0, ut(x,0) = 0, −∞ < x <∞,

with the constant c and function q as indicated, then compute the solution
at the given point x and time t.

(31) c = 1, q(x,t) =
{
x, −1 < x < 2, t > 0,
0 otherwise, (x,t) = (−1,2).

(32) c = 1, q(x,t) =
{
xt, −1 < x < 3, t > 0,
0 otherwise, (x,t) = (2,3).

(33) c = 2, q(x,t) =
{
x− t, −2 < x < 1, t > 0,
0 otherwise, (x,t) = (1,2).

(34) c = 2, q(x,t) =
{

2x+ t, −3 < x < −1, t > 0,
0 otherwise, (x,t) = (−2,1).
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(35) c = 1, q(x,t) =
{

1 − x+ 2t, 0 < x < 4, t > 1,
0 otherwise, (x,t) = (3,2).

(36) c = 1, q(x,t) =
{
xt+ 2, −5 < x < 0, 0 < t < 1,
0 otherwise, (x,t) = (−4,2).

(37) c = 2, q(x,t) =
{

2 − t, −8 < x < 0, t > 0,
0 otherwise, (x,t) = (−3,4).

(38) c = 2, q(x,t) =
{
x− 1, 3 < x < 10, t > 0,
0 otherwise, (x,t) = (5,3).

(39) c = 1, q(x,t) =
{

2x− t− 1, 0 < x < 5, 1/2 < t < 3/2,
0 otherwise, (x,t) = (4,2).

(40) c = 1, q(x,t) =
{
x(t− 1), −3 < x < 2, t > 0,
0 otherwise,

(x,t) = (−1,4).



Chapter 11
General Second-Order Linear
Partial Differential
Equations with Two
Independent Variables

Having studied several solution procedures for the heat, wave, and Laplace
equations, we need to explain why we have chosen these particular mod-
els in preference to others. In Chapter 4 we mentioned that these were
typical examples of what we called parabolic, hyperbolic, and elliptic equa-
tions, respectively. Below we present a systematic discussion of the general
second-order linear PDE in two independent variables and show how such
an equation can be reduced to its simplest form. It will be seen that if
the equation has constant coefficients, then its dominant part—that is, the
sum of the terms containing the highest-order derivatives with respect to
each of the variables—consists of the same terms as one of the above three
equations. This gives us a good indication of what solution technique we
should use, and what kind of behavior to expect from the solution.

11.1. The Canonical Form

Classification. The general form of a second-order linear PDE in two
independent variables is

A(x,y)uxx +B(x,y)uxy + C(x,y)uyy +D(x,y)ux + E(x,y)uy

+ F (x,y)u = G(x,y), (11.1)

where u = u(x,y) is the unknown function and A,. . . ,G are given coeffi-
cients. (In particular, some or all of these coefficients may be constant.)

11.1. Definition. (i) If B2 − 4AC > 0, (11.1) is called a hyperbolic equa-
tion.

(ii) If B2 − 4AC = 0, (11.1) is called a parabolic equation.

(iii) If B2 − 4AC < 0, (11.1) is called an elliptic equation.
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11.2. Example. For the one-dimensional wave equation

utt − c2uxx = 0

we have (considering t in place of y)

A = −c2, C = 1, B = D = E = F = G = 0;

hence, B2 − 4AC = 4c2 > 0, which means that the equation is hyperbolic
at all points in the (x,t)-plane.

11.3. Example. In the case of the one-dimensional heat equation

ut − kuxx = 0

we have

A = −k, E = 1, B = C = D = F = G = 0,

so B2 − 4AC = 0: the equation is parabolic in the entire (x,t)-plane.

11.4. Example. The (two-dimensional) Laplace equation

Δu = uxx + uyy = 0

is obtained for

A = 1, C = 1, B = D = E = F = G = 0;

therefore, B2 − 4AC = −4 < 0, which means that this equation is elliptic
throughout the (x,y)-plane.

11.5. Example. The equation

uxx −√
yuxy + xuyy + (2x+ y)ux − 3yuy + 4u = sin(x2 − 2y), y > 0,

fits the general form with

A = 1, B = −√
y, C = x,

D = 2x+ y, E = −3y, F = 4, G = sin(x2 − 2y),

so B2 − 4AC = y − 4x. Consequently,

(i) if y > 4x, the equation is hyperbolic;

(ii) if y = 4x, the equation is parabolic;

(iii) if y < 4x, the equation is elliptic.
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In other words, the type of this equation at (x,y) depends on where the
point lies in the half plane y > 0 (see Fig. 11.1).

0

y�4x

y�4x

y�4x

y

x

Fig. 11.1. The regions corresponding to the different equation types.

Reduction to the canonical form. We introduce new coordinates

r = r(x,y), s = s(x,y),
or, conversely,

x = x(r,s), y = y(r,s),

and write u
(
x(r,s),y(r,s)

)
= v(r,s). By the chain rule,

ux = vrrx + vssx, uy = vrry + vssy,

and

uxx = (ux)x = (vrrx + vssx)x = (vr)xrx + vr(rx)x + (vs)xsx + vs(sx)x

=
[
(vr)rrx + (vr)ssx

]
rx + vrrxx +

[
(vs)rrx + (vs)ssx

]
sx + vssxx

= vrrr
2
x + 2vrsrxsx + vsss

2
x + vrrxx + vssxx,

uyy = vrrr
2
y + 2vrsrysy + vsss

2
y + vrryy + vssyy,

uxy = vrrrxry + vrs(rxsy + rysx) + vsssxsy + vrrxy + vssxy,

where the last two expressions have been calculated in the same way as
the first one. Replacing all the derivatives in (11.1) and gathering the like
terms, we arrive at the new equality

Ā(r,s)vrr + B̄(r,s)vrs + C̄(r,s)vss + D̄(r,s)vr + Ē(r,s)vs

+ F̄ (r,s)v = Ḡ(r,s), (11.2)



230 SECOND-ORDER LINEAR EQUATIONS

where the new coefficients Ā, . . . , Ḡ are related to the old ones A,. . . ,G
through the formulas

Ā = Ar2x +Brxry + Cr2y ,

B̄ = 2Arxsx +B(rxsy + rysx) + 2Crysy,

C̄ = As2x +Bsxsy + Cs2y,

D̄ = Arxx +Brxy + Cryy +Drx + Ery ,

Ē = Asxx +Bsxy + Csyy +Dsx + Esy,

F̄ = F,

Ḡ = G.

(11.3)

We now choose r and s so that Ā = C̄ = 0. Since neither r = r(x,y)
nor s = s(x,y) can be a constant, it follows that at least one of rx, ry and
at least one of sx, sy must be nonzero. Suppose, for definiteness, that ry
and sy are nonzero. Setting the expression of Ā in (11.3) equal to zero and
dividing through by r2y , we arrive at the equation

A

(
rx
ry

)2

+B

(
rx
ry

)
+ C = 0; (11.4)

a similar procedure applied to the expression of C̄ in (11.3) leads to the
equality

A

(
sx

sy

)2

+B

(
sx

sy

)
+ C = 0. (11.5)

From (11.4) and (11.5) it follows that

rx
ry

=
−B +

√
B2 − 4AC
2A

,

sx

sy
=

−B −√
B2 − 4AC
2A

.

(11.6)

It is now obvious that the nature of the solutions of (11.6) depends on
whether the given equation is hyperbolic, parabolic, or elliptic.
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11.2. Hyperbolic Equations

Since here B2 − 4AC > 0, there are two distinct equations (11.6). Consider
the differential equations

dy

dx
=
B −√

B2 − 4AC
2A

,

dy

dx
=
B +

√
B2 − 4AC
2A

,

(11.7)

called the characteristic equations for (11.1), and let

ϕ(x,y) = c1, ψ(x,y) = c2, c1, c2 arbitrary constants,

be the families of their solution curves, called characteristics. Along these
curves we have, respectively,

dϕ = ϕxdx+ ϕydy = 0, dψ = ψxdx+ ψydy = 0,

which yields

ϕx

ϕy
= −dy

dx
=

−B +
√
B2 − 4AC
2A

,

ψx

ψy
= −dy

dx
=

−B −√
B2 − 4AC
2A

.

Consequently, the functions

r = ϕ(x,y), s = ψ(x,y) (11.8)

are solutions of (11.6); that is, they define the change of variables that
produces Ā = C̄ = 0. Using (11.3) and (11.8), we now compute the new
coefficients Ā, . . . , Ḡ and write out the canonical form (11.2) as

B̄(r,s)vrs + D̄(r,s)vr + Ē(r,s)vs + F̄ (r,s)v = Ḡ(r,s). (11.9)

11.6. Remark. The hyperbolic equation has an alternative canonical form.
If we introduce new variables α, β by means of the formulas

α = 1
2 (r + s), β = 1

2 (r − s)

and write v
(
r(α,β),s(α,β)

)
= w(α,β), then
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vr = wααr + wββr = 1
2wα + 1

2wβ ,

vs = wααs + wββs = 1
2wα − 1

2wβ ,

vrs = (vr)s = 1
2 [(wα + wβ)ααs + (wα + wβ)ββs]

= 1
2 [12 (wαα + wβα) − 1

2 (wαβ + wββ)] = 1
4wαα − 1

4wββ ,

and (11.9) becomes

B̄(wαα − wββ) + 2(D̄ + Ē)wα + 2(D̄ − Ē)wβ + 4F̄w = 4Ḡ.

The one-dimensional wave equation utt − c2uxx = 0 can be brought to
this form with new coefficients D̄ = Ē = F̄ = Ḡ = 0 by means of the
substitution τ = ct.

11.7. Example. The coefficients of the PDE

yuxx + 3yuxy + 3ux = 0, y �= 0,

are A = y, B = 3y, C = 0, D = 3, and E = F = G = 0. They yield
B2 − 4AC = 9y2 > 0, so the equation is hyperbolic at all points (x,y) with
y �= 0. Here the characteristic equations (11.7) are

y′(x) = 0, y′(x) = 3,

with general solutions y = c1 and y = 3x+ c2, respectively. Hence, we can
take our coordinate transformation to be

r = y, s = y − 3x,

which, by (11.3), leads to B̄ = −9y = −9r, Ē = −9, and D̄ = F̄ = Ḡ = 0
(we already know that Ā = C̄ = 0). Replacing in (11.9), we obtain the
canonical form

rvrs + vs = 0, v(r,s) = u
(
x(r,s),y(r,s)

)
.

Writing this equation in the form r(vs)r + vs = 0 and using, for example,
the integrating factor method, we find that vs(r,s) = (1/r)C(s), where C(s)
is an arbitrary function. A second integration, this time with respect to s,
produces the solution v(r,s) = (1/r)ϕ(s)+ψ(r), or, in terms of the original
variables x and y,

u(x,y) = v(r(x,y),s(x,y)) =
1
y
ϕ(y − 3x) + ψ(y),

where ϕ and ψ are arbitrary one-variable functions.
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11.8. Example. For the equation

uxx + uxy − 2uyy − 3ux − 6uy = 18x− 9y
we have

A = 1, B = 1, C = −2, D = −3, E = −6, F = 0, G = 18x− 9y.

Since B2 − 4AC = 9 > 0, this PDE is hyperbolic at all points in the (x,y)-
plane. By (11.7), the characteristic equations are

y′(x) = 2, y′(x) = −1,

with solutions y = 2x + c1 and y = −x + c2, respectively, c1, c2 = const;
hence, the coordinate transformation is

r = y − 2x, s = y + x.

From (11.3) it follows that B̄ = −9, Ē = −9, Ḡ = −9r, and D̄ = F̄ = 0;
therefore, the canonical form (11.9) of the given PDE is

vrs + vs = r, v(r,s) = u(x(r,s),y(r,s)),

or (vs)r + vs = r, which yields vs(r,s) = r − 1 + C(s)e−r. Then

v(r,s) = s(r − 1) + ϕ(s)e−r + ψ(r),

so the general solution of the PDE is

u(x,y) = v
(
r(x,y),s(x,y)

)
= (x+ y)(y − 2x− 1) + ϕ(x + y)e2x−y + ψ(y − 2x),

where ϕ and ψ are arbitrary one-variable functions.

11.9. Example. Consider the IVP (with the variable t replaced by y to
facilitate the use of the general formulas already derived in this chapter)

2uxx − 5uxy + 2uyy = −36x− 18y, −∞ < x <∞, y > 0,

u(x,0) = 4x3 + 3x, uy(x,0) = 12x2 + 4, −∞ < x <∞.

Here

A = 2, B = −5, C = 2, D = E = F = 0, G = −36x− 18y,
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so B2 − 4AC = 9 > 0, which means that the equation is hyperbolic. From
(11.7) it follows that the characteristic equations are

y′(x) = −2, y′(x) = − 1
2 ,

with solutions y = −2x + c1 and y = − 1
2 x + c2, where c1, c2 = const.

Therefore, we operate the coordinate transformation

r = 2x+ y, s = x+ 2y

and, using (11.3), find that B̄ = −9, D̄ = Ē = F̄ = 0, and Ḡ = −18r. This
yields the canonical form (see (11.9))

vrs = 2r, v(r,s) = u(x(r,s),y(r,s)),

with general solution

v(r,s) = r2s+ ϕ(r) + ψ(s).

Hence, the general solution of the given PDE is

u(x,y) = (2x+ y)2(x+ 2y) + ϕ(2x+ y) + ψ(x+ 2y),

where, as before, ϕ and ψ are arbitrary one-variable functions.
To apply the ICs, we first differentiate u with respect to y to obtain

uy(x,y) = 2(2x+ y)(x+ 2y) + 2(2x+ y)2 + ϕ′(2x+ y) + 2ψ′(x+ 2y)

and then set y = 0 in u and uy. Canceling out the like terms, we arrive at
the system of equations

ϕ(2x) + ψ(x) = 3x,

ϕ′(2x) + 2ψ′(x) = 4.

Differentiating the first equation with respect to x, we find that

2ϕ′(2x) + ψ′(x) = 3,

which, combined with the second equation, leads to ψ′(x) = 5/3; conse-
quently, ψ(x) = 5

3 x+ c, where c is an arbitrary constant.
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Next,

ϕ(2x) = 3x− ψ(x) = 3x− 5
3 x− c = 2

3 (2x) − c,

so ϕ(x) = 2
3 x− c. Then the solution of the IVP is

u(x,y) = (2x+ y)2(x+ 2y) + 2
3 (2x+ y) + 5

3 (x+ 2y)

= (2x+ y)2(x+ 2y) + 3x+ 4y.

11.3. Parabolic Equations

Since here B2 − 4AC = 0, from (11.6) we see that r and s satisfy the same
ODE, which means that we can make only one of Ā and C̄ zero. Let Ā = 0.
Then (11.6) reduces to

rx
ry

= − B

2A
,

from which
dy

dx
= −rx

ry
=

B

2A
. (11.10)

The general solution of this equation provides us with the function r(x,y).
Now B2 − 4AC = 0 implies that AC ≥ 0 and B = 2

√
AC. Without loss

of generality, we may also assume that A, C ≥ 0. Then, by (11.3),

B̄ = 2Arxsx +B(rxsy + rysx) + 2Crysy

= 2
[
Arxsx +

√
A
√
C(rxsy + rysx) + Crysy

]
= 2

[√
Arx(

√
Asx +

√
C sy) +

√
C ry(

√
Asx +

√
Csy)

]
= 2(

√
Arx +

√
C ry)(

√
Asx +

√
Csy).

But, according to (11.10),

rx
ry

= − B

2A
= −2

√
A
√
C

2A
= −

√
C√
A
,

so B̄ = 0. Consequently, s can be chosen arbitrarily, in any manner that
does not “clash” with r given by (11.10) (more precisely, so that the Ja-
cobian of the transformation is nonzero). The canonical form in this case
is

C̄(r,s)vss + D̄(r,s)vr + Ē(r,s)vs + F̄ (r,s)v = Ḡ(r,s). (11.11)
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11.10. Remark. The one-dimensional heat equation ut − kuxx = 0 is of
the form (11.11) with C̄ = −k, D̄ = 1, and Ē = F̄ = Ḡ = 0.

11.11. Example. The coefficients of the PDE

uxx + 2uxy + uyy = 0

are

A = 1, B = 2, C = 1, D = E = F = G = 0.

Since B2 − 4AC = 0, the equation is parabolic, and its characteristic equa-
tion (11.10) is y′(x) = 1, with general solution y = x+ c, c = const. Hence,
we take r = y − x; for the function s we can make any suitable choice, for
example, s = y. Then

C̄ = 1, D̄ = Ē = F̄ = Ḡ = 0

(we already know that Ā = B̄ = 0), which, by (11.11), leads to the canonical
form

vss = 0.

Integrating twice with respect to s, we obtain the general solution

v(r,s) = sϕ(r) + ψ(r),

or, in terms of x and y,

u(x,y) = v
(
r(x,y),s(x,y)

)
= yϕ(y − x) + ψ(y − x),

where ϕ and ψ are arbitrary one-variable functions.

11.12. Example. For the equation

4uxx + 12uxy + 9uyy − 9u = 9

we have

A = 4, B = 12, C = 9, D = E = 0, F = −9, G = 9,

so B2 − 4AC = 0; that is, the PDE is parabolic. By (11.10), the charac-
teristic equation is y′(x) = 3/2, with general solution y = (3/2)x + c, or
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2y − 3x = c′, c′ = const; consequently, we can take r = 2y − 3x and, say,
s = y, as above. Then

C̄ = 9, F̄ = −9, Ḡ = 9,

which, replaced in (11.11), yields the canonical form

vss − v = 1.

The general solution of this equation is

v(r,s) = ϕ(r)coshs+ ψ(r)sinhs− 1,

or, for the given PDE,

u(x,y) = v(r(x,y),s(x,y))

= ϕ(2y − 3x)coshy + ψ(2y − 3x)sinhy − 1,

where ϕ and ψ are arbitrary one-variable functions.

11.13. Example. The PDE

x2uxx + 2xyuxy + y2uyy + (x+ y)ux = x2 − 2y,

considered at all points (x,y) except the origin, has coefficients

A = x2, B = 2xy, C = y2,

D = x+ y, E = F = 0, G = x2 − 2y.

Since B2 − 4AC = 4x2y2 − 4x2y2 = 0, the equation is parabolic and its
characteristic equation is

y′(x) =
y

x
,

with solution y = cx, c = const. Hence, we may use the transformation

r =
y

x
, s = y,

under which the new coefficients, given by (11.3), are

C̄ = s2, D̄ = −r − r2, Ē = F̄ = 0, Ḡ =
s2

r2
− 2s.

In view of (11.11), we arrive at the canonical form

r2s2vss − (r4 + r3)vr = s2 − 2r2s, v(r,s) = u(x(r,s),y(r,s)).
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11.4. Elliptic Equations

The procedure in this case is the same as for hyperbolic equations, but, since
this time B2 − 4AC < 0, the characteristic curves are complex. However, a
real canonical form can still be obtained.

11.14. Example. The coefficients of the PDE

uxx + 2uxy + 5uyy + ux = 0

are

A = 1, B = 2, C = 5, D = 1, E = F = G = 0.

Thus, B2 − 4AC = −16 < 0, so the equation is elliptic. By (11.7), the
characteristic equations are

y′(x) = 1 − 2i, y′(x) = 1 + 2i,

with general solutions

y = (1 − 2i)x+ c1, y = (1 + 2i)x+ c2,

respectively. Therefore, the coordinate transformation is

r = y − (1 − 2i)x, s = y − (1 + 2i)x.

Then B̄ = 16, D̄ = −(1 − 2i), Ē = −(1 + 2i), and F̄ = Ḡ = 0 (Ā = C̄ = 0
because of the transformation), which yields the complex canonical form

16vrs − (1 − 2i)vr − (1 + 2i)vs = 0, v(r,s) = u(x(r,s),y(r,s)).

Performing the second transformation

α =
1
2
(r + s), β =

1
2i

(r − s),

we easily arrive at the new (real) canonical form

4(wαα + wββ) − wα + 2wβ = 0, w(α,β) = v(r(α,β),s(α,β)).

11.15. Remark. The Laplace equation uxx + uyy = 0 is elliptic, with
A = C = 1 and B = D = E = F = G = 0.
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Exercises

In (1)–(6) discuss the type (hyperbolic, parabolic, or elliptic) of the given
PDE and sketch a graph in the (x,y)-plane to illustrate your findings.

(1) uxx + (x − 1)uxy + uyy − 2x2ux + 3xyuy + 2u = sinx.

(2) uxx +
√
yuxy − (x− 2)uyy + 2uy − (x− y)u = ex siny, y > 0.

(3) yuxx − xuxy + yuyy − 3x2uy = xe−xy.

(4) 2xuxx − uxy + (y + 1)uyy − xux + (x− 2y)u = x+ 2y2.

(5) (x+ 2)uxx + 2(x+ y)uxy + 2(y − 1)uyy − 3x2ux = x3y3.

(6) 4xuxx + 4yuxy + (4 − x)uyy − 2xyuy + 2u = x(2y + 1).

In (7)–(16) verify that the given PDE is hyperbolic everywhere in the (x,y)-
plane, reduce it to its canonical form, and find its general solution.

(7) 2uxx − 7uxy + 3uyy = −150x− 50y.

(8) uxx + uxy − 2uyy = 72(2x2 + xy − y2) − 9.

(9) 3uxx + 2uxy − uyy = −32e−2x+2y.

(10) 2uxx + uxy − 6uyy = 98e7x.

(11) 6uxx + uxy − 2uyy + 42ux − 21uy = 0.

(12) uxx + 2uxy − 3uyy + 4ux − 4uy = 32(3x− y).

(13) 3uxx + uxy − 2uyy − 30ux + 20uy = 25(2x+ 3y).

(14) 2uxx − 3uxy − 2uyy + 10ux − 20uy = −25(4x+ 2y + 5).

(15) 4uxx + 14uxy + 6uyy − 10ux − 5uy = 25(4y− 7x− 2).

(16) 2uxx − 2uxy − 4uyy − 9ux + 18uy = 9(24x− 6y − 1).

In (17)–(22) verify that the given PDE is parabolic everywhere in the (x,y)-
plane, reduce it to its canonical form, and find its general solution.

(17) uxx + 8uxy + 16uyy + 64u = 16.

(18) 16uxx − 24uxy + 9uyy + 36ux − 27uy = 9.

(19) 25uxx + 30uxy + 9uyy − 45ux − 27uy + 18u = 18(3xy − 5y2).

(20) 9uxx − 6uxy + uyy + 12ux − 4uy + 3u = 9x+ 21y + 8.

(21) 4uxx + 4uxy + uyy − 2ux − uy − 2u = 3y − x.

(22) uxx + 6uxy + 9uyy + 9ux + 27uy + 18u = 27(4x− 2y − 1).
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In (23)–(26) verify that the given PDE is elliptic everywhere in the (x,y)-
plane and reduce it to its real canonical form.

(23) uxx + 4uxy + 5uyy − 2ux + uy = 3.

(24) uxx + 2uxy + 10uyy + 3ux − 2uy + 2u = x+ y.

(25) uxx + 6uxy + 10uyy − ux + uy − 3u = 2x− y.

(26) uxx + 4uxy + 13uyy + 2ux − uy + u = 3x+ 2y.

In (27)–(30) identify the type of the PDE, reduce the equation to its canon-
ical form, and compute the solution of the given IVP.

(27) 4uxx +12uxy + 9uyy− 6ux − 9uy = 27(3x− 2y), −∞ < x <∞, y > 0,

u(x,0) = −3x, uy(x,0) = 1, −∞ < x <∞.

(28) 9uxx + 6uxy + uyy + 3ux + uy = 2x− 6y + 1, x > 0, −∞ < y <∞,

u(0,y) = y, ux(0,y) = 2y, −∞ < y <∞.

(29) uxx + 6uxy + 8uyy = 8(10x− 3y), −∞ < x <∞, y > 0,

u(x,0) = −10(8x3 + x), uy(x,0) = 84x2 + 3, −∞ < x <∞.

(30) uxx − uxy − 6uyy − 10ux + 30uy = 50, −∞ < x <∞, y > 0,

u(x,0) = 4x+ e6x, uy(x,0) = 3 + 2e6x, −∞ < x <∞.

In (31)–(36) identify the type of the PDE and reduce the equation to its
canonical form.

(31) uxx + (x+ 1)uxy + xuyy + (2y − x2)u = y + x− x2, x �= 1.

(32) uxx + 2xuxy + (x2 + 1)uyy = x+ y.

(33) uxx + 2yuxy + y2uyy + 2uy = x+ y.

(34) uxx + 2uxy + (x2 + 1)uyy = 4(y − x), x �= 0.

(35) uxx + xuxy + (2x− 4)uyy + (4y − x2)u = (y − 2x)(2y + 4x− x2),
x �= 4.

(36) uxx + 2
√
xuxy + xuyy − yuy = 2y + 1, x > 0.



Chapter 12
The Method of Characteristics

The equations in the problems we have investigated so far are all linear
and the terms containing the unknown function and its derivatives have
constant coefficients. The only exception is the type of problem where
we need to make use of polar coordinates, but in such problems the polar
radius is present in some of the coefficients in a very specific way, which
does not disturb the solution scheme. Below we discuss a procedure for
solving first-order linear PDEs with more general variable coefficients, and
first-order nonlinear PDEs of a particular form. We also re-examine the
one-dimensional wave equation from the perspective of this new technique.

12.1. First-Order Linear Equations

Consider the IVP

ut(x,t) + cux(x,t) = 0, −∞ < x <∞, t > 0, (PDE)

u(x,0) = f(x), −∞ < x <∞, (IC)

where c = const. If we measure the rate of change of u from a moving
position given by x = x(t), then, by the chain rule,

d

dt
u(x(t), t) = ut(x(t), t) + ux(x(t), t)x′(t).

The first term on the right-hand side above is the change in u at a fixed
point x, while the second one is the change in u resulting from the movement
of the observation position.

Assuming that x′(t) = c, from the PDE we see that

d

dt
u(x(t), t) = ut(x(t), t) + cux(x(t), t) = 0;

that is, u = const as perceived from the moving observation point. The
position of this point is obtained by integrating its velocity x′(t) = c:

x = ct+ x0, x0 = x(0). (12.1)
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This formula defines a family of lines in the (x,t)-plane, which are called
characteristics (see Fig. 12.1). As mentioned above, the characteristics
have the property that u(x,t) takes a constant value along each one of them
(but, in general, different constant values on different characteristics).

0 x

t

�x,t�

�x0,0�

Fig. 12.1. Characteristic lines.

Hence, to find the value of the solution u at (x,t), we consider the char-
acteristic through (x,t), of equation x = ct+x0, which intersects the x-axis
at (x0,0). Since u is constant on this line, its value at (x,t) is the same as
at (x0,0). But the latter is known from the IC, so

u(x,t) = u(x0,0) = f(x0). (12.2)

The parameter x0 is now replaced from the equation (12.1) of the char-
acteristic line: x0 = x − ct. So, by (12.2), the solution of the given IVP
is

u(x,t) = f(x− ct).

This formula shows that at a fixed time t, the shape of the solution is the
same as at t = 0, but is shifted by ct along the x-axis. In other words,
the shape of the initial data function travels in the positive (negative)
x-direction with velocity c if c > 0 (c < 0), which means that the solu-
tion is a wave.

12.1. Example. In the IVP

ut(x,t) + 1
2 ux(x,t) = 0, −∞ < x <∞, t > 0,

u(x,0) =
{

sinx, 0 ≤ x ≤ π,
0 otherwise,
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the ODE of the characteristics is x′(t) = 1/2, so the characteristic passing
through x = x0 at t = 0 has equation x = t/2+x0. The dotted lines in Fig.
12.2 are the characteristics passing through x = 0 and x = π at t = 0, that
is, the lines of equations x = 1

2 t and x = 1
2 t+ π, respectively.

x
t�0

t�1

t�2

0 Π

Fig. 12.2. The characteristic lines through (0,0) and (π,0).

Since
du

dt
= ut + uxx

′ = ut + 1
2 ux = 0,

the solution u is constant along the characteristics:

u(x,t) = u(x0,0) =
{

sinx0, 0 ≤ x0 ≤ π,
0 otherwise;

therefore, since x0 = x − 1
2 t on the characteristic through (x,t), it follows

that

u(x,t) =
{

sin
(
x− 1

2 t
)
, 0 ≤ x− 1

2 t ≤ π,
0 otherwise.

This can also be written as

u(x,t) =
{

sin
(
x− 1

2 t
)
, 1

2 t ≤ x ≤ 1
2 t+ π,

0 otherwise.

12.2. Example. The velocity of the observation point in the IVP

ut(x,t) + 3tux(x,t) = u, −∞ < x <∞, t > 0,

u(x,0) = cosx, −∞ < x <∞,

is x′(t) = 3t, so the characteristic through (x,t) is x = 3
2 t

2 + x0, x0 = x(0).
Along this characteristic we have

du

dt
= ut + uxx

′ = ut + 3tux = u,
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with solution u(x,t) = Cet, C = const. Since the characteristic through
(x,t) also passes through (x0,0) and ue−t = C is constant on this curve, we
use the IC to write

C = u(x,t)e−t = u(x0,0)e0 = u(x0,0) = cosx0.

But x0 = x− 3
2 t

2 on the characteristic; consequently,

u(x,t) = Cet = et cosx0 = et cos(x− 3
2 t

2).

12.3. Example. In the IVP

ut(x,t) + xux(x,t) = 1, −∞ < x <∞, t > 0,

u(x,0) = x2, −∞ < x <∞,

the velocity of the observation point satisfies the ODE x′(t) = x, with gen-
eral solution x = cet, c = const. Thus, the characteristic through (x,t) that
also passes through (x0,0) has equation x = x0e

t. On this characteristic,

du

dt
= ut + uxx

′ = ut + xux = 1,

that is, u(x,t) = t+ C, C = const. Using the IC, we see that

C = u(x,t) − t = u(x0,0) − 0 = u(x0,0) = x2
0.

The solution of the IVP is now obtained by replacing x0 = xe−t from the
equation of the characteristic:

u(x,t) = t+ C = t+ x2
0 = t+ x2e−2t.

12.4. Example. The IBVP

ut(x,t) + ux(x,t) = x, x > 0, t > 0,

u(0, t) = t, t > 0,

u(x,0) = sinx, x > 0,

needs slightly different handling since here x is restricted to nonnegative
values and we also have a BC at x = 0. First, using the standard argument,
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we see that the velocity of the moving observation point satisfies x′(t) = 1;
therefore, the equation of the family of characteristics is x = t+c, c = const.
Since this problem is defined in the first quadrant of the (x,t)-plane, we
notice (see Fig. 12.3) that if the point (x,t) is above the line x = t, then the
characteristic passing through this point never reaches the x-axis, so the IC
cannot be used for it. However, this characteristic reaches the t-axis, and
we can use the BC instead. We split the discussion into three parts.

0 x

t

�x,t�

�0,t0�

�x0,0�

�x,t�
x�t

x�t x�t

Fig. 12.3. Characteristic lines in the first quadrant.

(i) Let x > t. Since the characteristic through (x,t) also passes through
(x0,0), its equation is written in the form x = t+ c = t+ x0, and the PDE
shows that on this line we have

du

dt
= ut + uxx

′ = ut + ux = x = t+ x0;

hence, u(x,t) = 1
2 t

2 + x0t+ C, C = const. Consequently,

C = u(x,t) − 1
2 t

2 − x0t = u(x0,0) − 0 − 0 = sinx0,

which, on substituting x0 = x − t from the equation of the characteristic,
yields

u(x,t) = 1
2 t

2 + x0t+ sinx0

= 1
2 t

2 + t(x− t) + sin(x− t) = tx− 1
2 t

2 + sin(x− t).

(ii) Let x < t. Then, since the characteristic through (x,t) also passes
through (0, t0), its equation is written as x = t+ c = t− t0 and on it,

du

dt
= x = t− t0,
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with solution

u(x,t) = 1
2 t

2 − t0t+ C, C = const;

therefore, using the BC, we deduce that

C = u(x,t) − 1
2 t

2 + t0t = u(0, t0) − 1
2 t

2
0 + t20 = t0 + 1

2 t
2
0.

To find the solution at (x,t), we now need to replace the parameter t0 = t−x
from the equation of the characteristic; thus,

u(x,t) = 1
2 t

2 − t0t+ t0 + 1
2 t

2
0

= 1
2 t

2 − t(t− x) + t− x+ 1
2 (t− x)2 = 1

2x
2 − x+ t.

(iii) We see that as the point (x,t) approaches the line x = t from either
side, we obtain the same limiting value u(x,t) = x2/2. Hence, the solution
is continuous across this line and we can write

u(x,t) =
{ 1

2x
2 − x+ t, x ≤ t,

xt− 1
2 t

2 + sin(x− t), x > t.

12.5. Remark. The continuity of u across the line x = t is due to the
continuity of the data at (0,0); that is,

lim
x→0

sinx = lim
t→0

t = 0.

When this condition is not satisfied in an IBVP of this type, then the
solution u is discontinuous across the corresponding dividing line in the
(x,t)-plane. Discontinuities—and, in general, any perturbations—in the
solution always propagate along the characteristic lines.

12.6. Example. The problem

ux(x,y) + uy(x,y) + 2u(x,y) = 0, −∞ < x, y <∞,

u(x,y) = x+ 1 on the line 2x+ y + 1 = 0

is neither an IVP nor a BVP. However, the method of characteristics works
in this case as well. Thus, assuming that x = x(y), we can write

d

dy
u(x(y),y) = uy(x(y),y) + ux(x(y),y)x′(y);
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so, if x′(y) = 1—that is, x = y + c, c = const—then the PDE becomes

du

dy
+ 2u = 0,

with general solution

u(x,y) = Ce−2y, C = const.

x�x1,y1�

x�y�x0

2x�y�1�0

�x,y�

Fig. 12.4. Characteristics and the data line.

The equation of the characteristic through (x,y) and (x1,y1) (see Fig.
12.4) is x = y+ x1 − y1 and, in view of the prescribed data, on this line we
have

u(x,y)e2y = C = u(x1,y1)e2y1 = (x1 + 1)e2y1 .

Since the point (x1,y1) lies on both the characteristic and the data lines,
its coordinates satisfy the system

x1 − y1 = x− y,

2x1 + y1 = −1,

with solution
x1 = 1

3 (x − y − 1),

y1 = 1
3 (−2x+ 2y − 1).

Consequently, the solution of the given problem is

u(x,y) = Ce−2y = (x1 + 1)e2(y1−y)

= 1
3 (x− y + 2)e−2(2x+y+1)/3.
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12.2. First-Order Quasilinear Equations

A PDE of the form

ut(x,t) + c(x,t,u)ux(x,t) = q(x,t,u)

is called quasilinear. Although technically nonlinear, it is linear in the first-
order derivatives of u. Such equations arise in the modeling of a variety of
phenomena (for example, traffic flow) and can be solved by the method of
characteristics.

12.7. Example. Consider the IVP

ut(x,t) + u3(x,t)ux(x,t) = 0, −∞ < x <∞, t > 0,

u(x,0) = x1/3, −∞ < x <∞.

If x = x(t), then the usual procedure leads to the conclusion that the
characteristic line through (x,t) and (x0,0) satisfies

x′(t) = u3(x(t), t), x(0) = x0.

On this line,
du

dt
= ut + uxx

′ = ut + u3ux = 0,

which, in view of the IC, yields

u(x,t) = C = u(x0,0) = x
1/3
0 .

Hence, the ODE problem for the characteristic line becomes

x′(t) = x0, x(0) = x0,

with solution x = x0t + x0 = x0(t + 1). Since on this line we have x0 =
x/(t+ 1), we can now write the solution of the given IVP as

u(x,t) = x
1/3
0 =

(
x

t+ 1

)1/3

.

12.8. Example. A similar procedure is used to solve the IVP

ut(x,t) + u(x,t)ux(x,t) = 2t, −∞ < x <∞, t > 0,

u(x,0) = x, −∞ < x <∞.
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If x = x(t) satisfies x′(t) = u(x(t), t), x(0) = x0, then on the characteristic
curve through (x,t) and (x0,0),

du

dt
= ut + uxx

′ = ut + uux = 2t.

Therefore, u(x,t) = t2 + C, or

u(x,t) − t2 = C = u(x0,0) − 0 = x0,

so u(x,t) = t2 + x0. This means that the characteristic curve satisfies

x′(t) = t2 + x0, x(0) = x0,

with solution

x = 1
3 t

3 + x0t+ x0 = 1
3 t

3 + x0(t+ 1).

Since on this curve we have x0 =
(
x − 1

3 t
3
)
/(t+ 1) = (3x− t3)/(3(t+ 1)),

the solution of the IBVP is

u(x,t) = t2 +
3x− t3

3(t+ 1)
.

12.3. The One-Dimensional Wave Equation

We now reconsider the wave equation in terms of details provided by the
method of characteristics.

The d’Alembert solution. Formally, we can write the one-dimensional
wave equation as

utt(x,t) − c2uxx(x,t) =
(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u(x,t)

=
(
∂

∂t
+ c

∂

∂x

)
w(x,t)

= wt(x,t) + cwx(x,t) = 0. (12.3)

We know from Section 12.1 that the general solution of the equation satisfied
by w in (12.3) is

w(x,t) = ut(x,t) − cux(x,t) = P (x− ct), (12.4)
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where P is an arbitrary one-variable function. On the other hand, if we
write the wave equation in the alternative form

utt(x,t) − c2uxx(x,t) =
(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u(x,t)

=
(
∂

∂t
− c

∂

∂x

)
v(x,t)

= vt(x,t) − cvx(x,t) = 0,

then, as above,

v(x,t) = ut(x,t) + cux(x,t) = Q(x+ ct), (12.5)

whereQ is another arbitrary one-variable function. Adding (12.4) and (12.5)
side by side, we find that

ut(x,t) = 1
2 [P (x− ct) +Q(x+ ct)].

Direct integration now yields

u(x,t) = F (x− ct) +G(x+ ct), (12.6)

where F and G are arbitrary one-variable functions.
According to the explanation given in Section 12.1, F (x − ct) is a fixed-

shape wave traveling to the right with velocity c, and is constant on the
characteristics x − ct = const. Similarly, G(x + ct) is a fixed-shape wave
traveling to the left with velocity −c, and is constant on the characteristics
x + ct = const (see Fig. 12.5). Through every point (x,t) in the t > 0 half
plane there pass two characteristics, one from each family.

0 x

tx�ct�const x�ct�const

�x,t�

Fig. 12.5. The two families of characteristics.
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Consider an infinite vibrating string, which is modeled by the IVP

utt(x,t) = c2uxx(x,t), −∞ < x <∞, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), −∞ < x <∞.

Differentiating the solution (12.6) of the PDE with respect to t and recalling
that F and G are one-variable functions, we obtain

ut(x,t) = −cF ′(x− ct) + cG′(x+ ct).

From the ICs it now follows that

f(x) = u(x,0) = F (x) +G(x), g(x) = ut(x,0) = −cF ′(x) + cG′(x).

We solve the above equations for F and G. Thus, F ′ = f ′ −G′, so that
g/c = −f ′ + 2G′, from which we easily find that

G′ =
1
2

(
f ′ +

1
c
g

)
, F ′ =

1
2

(
f ′ − 1

c
g

)
;

hence, by integration,

F (x) =
1
2
f(x) − 1

2c

x∫
0

g(y)dy,

G(x) =
1
2
f(x) +

1
2c

x∫
0

g(y)dy.

From these expressions and (12.6) we conclude that

u(x,t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

x+ct∫
x−ct

g(y)dy. (12.7)

This is d’Alembert’s solution, which was derived earlier in Section 10.3 by
means of the Green’s function for the wave equation.

12.9. Example. Suppose that in the above IVP we have

u(x,0) = f(x) =
{

1, |x| < h,
0, |x| > h,

ut(x,0) = g(x) = 0.
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By (12.7), the solution is

u(x,t) = 1
2 [f(x− ct) + f(x+ ct)],

where

1
2f(x− ct) =

{
1
2 , |x− ct| < h, or −h+ ct < x < h+ ct,
0 otherwise,

1
2f(x+ ct) =

{
1
2 , |x+ ct| < h, or −h− ct < x < h− ct,
0 otherwise.

Thus, the solution is the sum of two pulses of amplitude 1/2, which move
away from each other with velocity 2c. Since their endpoints are initially
2h apart, they separate after t = h/c.

12.10. Example. In the case of the IVP

utt(x,t) = c2uxx(x,t), −∞ < x <∞, t > 0,

u(x,0) = sinx, ut(x,0) = 0, −∞ < x <∞,

d’Alembert’s solution (12.7) yields

u(x,t) = 1
2

[
sin(x + ct) + sin(x− ct)

]
= sinxcos(ct).

Waves represented by solutions like this, where the variables separate, are
called standing waves.

12.11. Example. Also by (12.7), the solution of the IVP

utt(x,t) = c2uxx(x,t), −∞ < x <∞, t > 0,

u(x,0) = 0, ut(x,0) = sinx, −∞ < x <∞,

is

u(x,t) =
1
2c

x+ct∫
x−ct

sinydy

=
1
2c

[
cos(x− ct) − cos(x+ ct)

]
=

1
c

sinxsin(ct).

This solution also represents standing waves.
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12.12. Example. For the IVP

utt(x,t) = 4uxx(x,t), −∞ < x <∞, t > 0,

u(x,0) = x, ut(x,0) = 2x2, −∞ < x <∞,

d’Alembert’s formula with c = 2 produces the solution

u(x,t) = 1
2

[
(x− 2t) + (x+ 2t)

]
+ 1

4

x+2t∫
x−2t

2y2dy

= x+ 2x2t+ 8
3 t

3.

The semi-infinite vibrating string. Consider the IBVP

utt(x,t) = c2uxx(x,t), x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), x > 0.

As in the preceding case, from the PDE we obtain

u(x,t) = F (x− ct) +G(x+ ct),

where

F (x) =
1
2
f(x) − 1

2c

x∫
0

g(y)dy, x > 0,

G(x) =
1
2
f(x) +

1
2c

x∫
0

g(y)dy, x > 0.

Since x > 0 in this problem, the functions F and G are determined only
for positive values of their arguments. This does not affect G(x+ ct), since
t > 0. But the argument of F (x − ct) is negative if 0 < x < ct. To obtain
F (x − ct) for x− ct < 0, we use the BC. Thus,

u(0, t) = 0 = F (−ct) +G(ct), t > 0,

so for ξ < 0 we have F (ξ) = −G(−ξ), which means that the solution for
0 < x < ct is
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u(x,t) = F (x− ct) +G(x+ ct) = −G(ct− x) +G(x+ ct)

=
1
2
[f(x+ ct) − f(ct− x)] +

1
2c

[ x+ct∫
0

g(y)dy −
ct−x∫
0

g(y)dy
]

=
1
2
[f(ct+ x) − f(ct− x)] +

1
2c

ct+x∫
ct−x

g(y)dy. (12.8)

The term −G(ct− x) is a fixed-shape wave that travels to the right and is
called the reflected wave.

For x > ct, the solution of the problem is given by d’Alembert’s formula,
as before.

12.13. Example. The solution of the IBVP

utt(x,t) = 4uxx(x,t), x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x,0) = 4x, ut(x,0) = 2x+ 6, x > 0,

is computed in two stages. First, for 0 < x < 2t we use (12.8) with c = 2 to
find that

u(x,t) = 1
2

[
4(2t+ x) − 4(2t− x)

]
+ 1

4

2t+x∫
2t−x

(2y + 6)dy

= 2xt+ 7x;

then, by (12.7), for x > 2t we have

u(x,t) = 1
2

[
4(x+ 2t) + 4(x− 2t)

]
+ 1

4

x+2t∫
x−2t

(2y + 6)dy

= 2xt+ 4x+ 6t.

The solution is continuous across the characteristic line x = 2t since

lim
x→0

u(x,0) = lim
t→0

u(0, t) = 0.

Thus, we can write

u(x,t) =
{

2xt+ 7x, 0 ≤ x ≤ 2t,
2xt+ 4x+ 6t, x > 2t.
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The finite string. Consider the IBVP

utt(x,t) = c2uxx(x,t), 0 < x < L, t > 0,

u(0, t) = 0, u(L,t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), 0 < x < L.

Using separation of variables, in Section 5.2 we obtained the solution

u(x,t) =
∞∑

n=1

sin
nπx

L

(
b1n cos

nπct

L
+ b2n sin

nπct

L

)
,

where the coefficients b1n and b2n are determined from the expansions

f(x) =
∞∑

n=1

b1n sin
nπx

L
,

g(x) =
∞∑

n=1

b2n
nπc

L
sin

nπx

L
.

Suppose that f �= 0 and g = 0; then

b2n = 0, n = 1,2, . . . .

Using the formula

sinαcosβ = 1
2 [sin(α+ β) + sin(α − β)],

we write the solution in the form

u(x,t) = 1
2

∞∑
n=1

b1n

[
sin

nπ(x+ ct)
L

+ sin
nπ(x− ct)

L

]

= 1
2 [f(x+ ct) + f(x− ct)].

Suppose now that f = 0 and g �= 0; then b1n = 0, n = 1,2, . . . . Using the
formula

sinα sinβ = 1
2 [cos(α− β) − cos(α+ β)],

we rewrite the solution as

u(x,t) = 1
2

∞∑
n=1

b2n

[
cos

nπ(x − ct)
L

− cos
nπ(x+ ct)

L

]
.
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On the other hand,

x+ct∫
x−ct

g(y)dy =
∞∑

n=1

cb2n

x+ct∫
x−ct

nπ

L
sin

nπx

L
dx

= c

∞∑
n=1

b2n

[
cos

nπ(x− ct)
L

− cos
nπ(x+ ct)

L

]
;

hence,

u(x,t) =
1
2c

x+ct∫
x−ct

g(y)dy.

Combining the two separate solutions and using the superposition principle,
we now regain d’Alembert’s formula (12.7).

12.4. Other Hyperbolic Equations

The method set out in the preceding section can be extended to more general
hyperbolic equations. We illustrate how this is done in two particular cases.

One-dimensional waves. The solution of the type of problem discussed
here is based on a decomposition of the PDE operator which is similar to
that performed for the wave equation.

12.14. Example. The IVP

utt(x,t) + 5uxt(x,t) + 6uxx(x,t) = 0, −∞ < x <∞, t > 0,

u(x,0) = x+ 2, ut(x,0) = 2x, −∞ < x <∞,

is hyperbolic because B2 − 4AC = 25− 24 = 1 > 0. It is easily verified that
the PDE can be rewritten alternatively as(

∂

∂t
+ 2

∂

∂x

)(
∂

∂t
+ 3

∂

∂x

)
u(x,t) =

(
∂

∂t
+ 3

∂

∂x

)(
∂

∂t
+ 2

∂

∂x

)
u(x,t) = 0.

Setting
ut + 3ux = w, ut + 2ux = v,

we have
wt + 2wx = 0, vt + 3vx = 0.



OTHER HYPERBOLIC EQUATIONS 257

By the argument developed in Section 12.1, the general solutions of these
equations are, respectively,

w(x,t) = P (x− 2t),

v(x,t) = Q(x− 3t),

where P and Q are arbitrary one-variable functions; hence,

ut + 3ux = P (x− 2t),

ut + 2ux = Q(x− 3t).

The elimination of ux between these equations now yields

ut(x,t) = 3Q(x− 3t) − 2P (x− 2t),

from which, by integration, we find that

u(x,t) = F (x− 2t) +G(x− 3t),

where F and G are a new pair of arbitrary one-variable functions. We
remark that, by the chain rule, the time derivative of u is

ut(x,t) = −2F ′(x − 2t) − 3G′(x− 3t). (12.9)

At this point we apply the ICs and arrive at the equations

F (x) +G(x) = x+ 2,

− 2F ′(x) − 3G′(x) = 2x.

Differentiating the first equation term by term, we obtain F ′(x)+G′(x) = 1,
which, combined with the second equation above, leads to G′(x) = −2x−2.
This allows us to determine G and then F :

G(x) = −x2 − 2x+ c, c = const,

F (x) = x+ 2 −G(x) = x2 + 3x+ 2 − c.

Replacing in (12.9), we conclude that the solution of the given IVP is

u(x,t) =
[
(x− 2t)2 + 3(x− 2t) + 2 − c

]
+

[ − (x− 3t)2 − 2(x− 3t) + c
]

= 2xt− 5t2 + x+ 2.
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12.15. Example. Consider the IBVP

utt(x,t) − 3uxt(x,t) − 4uxx(x,t) = 0, x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x,0) = 1 − x2, ut(x,0) = x+ 2, x > 0.

Since B2 − 4AC = 9 + 16 = 25 > 0, the PDE is hyperbolic. Rewriting the
equation as

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− 4

∂

∂x

)
u(x,t) =

(
∂

∂t
− 4

∂

∂x

)(
∂

∂t
+

∂

∂x

)
u(x,t) = 0

and proceeding as in Example 12.14, we find that

u(x,t) = F (x− t) +G(x + 4t), (12.10)
where

F (x) = 1
10 (−9x2 − 4x+ 10) − c, c = const,

G(x) = 1
10 (−x2 + 4x) + c

(12.11)

are defined for positive values of their arguments.
If x > t, then x− t > 0 and we replace (12.11) in (12.10):

u(x,t) = 1
10

[ − 9(x− t)2 − 4(x− t) + 10 − (x+ 4t)2 + 4(x+ 4t)
]

= −x2 + xt− 5
2 t

2 + 2t+ 1.

If 0 ≤ x < t, then x− t < 0 and we make use of the BC:

0 = u(0, t) = F (−t) +G(4t) = F (−t) +G(−4(−t)),

which implies that F (z) = −G(−4z) for z < 0; so, by (12.10) and (12.11),

u(x,t) = −G(−4x+ 4t) +G(x + 4t)

= 1
10

[
(−4x+ 4t)2 − 4(−4x+ 4t) − (x + 4t)2 + 4(x+ 4t)

]
= 3

2 x
2 − 4xt+ 2x.

The two cases can be written together in the form

u(x,t) =

{
3
2 x

2 − 4xt+ 2x, 0 ≤ x < t,
−x2 + xt− 5

2 t
2 + 2t+ 1, x > t.

We notice that the solution is discontinuous across the line x = t.
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12.16. Remark. A d’Alembert-type formula can also be derived for PDEs
of the kind studied in Examples 12.14 and 12.15.

Spherical waves. The three-dimensional wave equation is

utt = c2Δu, (12.12)

where the Laplacian Δ is expressed in terms of a system of coordinates
appropriate for the geometry of the problem. If the amplitude of the waves
depends only on the distance r of the wave front from a point source, then
we choose spherical coordinates, in which case u = u(r,t) and, by Remark
4.11(v),

Δu = r−2(r2ur)r = r−2(2rur + r2urr) = urr + 2r−1ur.

Therefore, the equation governing the propagation of spherical waves is

utt(r,t) = c2
[
urr(r,t) + 2r−1ur(r,t)

]
.

Multiplying this equality by r and manipulating the right-hand side, we find
that

rutt = c2
[
(rurr + ur) + ur

]
= c2

[
(rur)r + ur

]
= c2(rur + u)r = c2((ru)r)r = c2(ru)rr .

The substitution ru(r,t) = v(r,t) now reduces the above equation to

vtt(r,t) = c2vrr(r,t),

so, by analogy with the argument developed in Section 12.1,

v(r,t) = F (r − ct) +G(r + ct).

Consequently, the general solution of (12.12) is

u(r,t) =
1
r

[
F (r − ct) +G(r + ct)

]
,

where F and G are arbitrary one-variable functions.
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Exercises

In (1)–(10) use the method of characteristics to solve the IVP

ut(x,t) + c(x,t)ux(x,t) = q(x,t,u), −∞ < x <∞, t > 0,

u(x,0) = f(x), −∞ < x <∞,

with the functions c, q, and f as indicated. In each case sketch the family
of characteristics in the (x,t)-plane.

(1) c(x,t) = 2, q(x,t,u) = t, f(x) = 1 − x.

(2) c(x,t) = −2t, q(x,t,u) = 2, f(x) = x3.

(3) c(x,t) = 2t+ 1, q(x,t,u) = 2u, f(x) = sinx.

(4) c(x,t) = t+ 2, q(x,t,u) = u+ 2t, f(x) = x+ 2.

(5) c(x,t) = x, q(x,t,u) = e−t, f(x) = x2 + 1.

(6) c(x,t) = x− 1, q(x,t,u) = 3t− 2, f(x) = 2x− 1.

(7) c(x,t) = −3, q(x,t,u) = 1 − x, f(x) = e−2x.

(8) c(x,t) = x+ 2, q(x,t,u) = 2x+ t2, f(x) = 2x+ 3.

(9) c(x,t) = 4, q(x,t,u) = u+ x+ t, f(x) = cos(2x).

(10) c(x,t) = −2x, q(x,t,u) = u− 2x, f(x) = 2 − x.

In (11)–(16) use the method of characteristics to solve the IBVP

ut(x,t) + cux(x,t) = q(x,t,u), x > 0, t > 0,

u(0, t) = g(t), t > 0,

u(x,0) = f(x), x > 0,

with the constant c and functions q, f , and g as indicated. In each case
sketch the family of characteristics in the (x,t)-plane.

(11) c = 1/2, q(x,t,u) = u, g(t) = 1, f(x) = ex.

(12) c = 1, q(x,t,u) = u− 1, g(t) = t− 1, f(x) = x2.

(13) c = 2, q(x,t,u) = x2, g(t) = t2 + 1, f(x) = x.

(14) c = 3/2, q(x,t,u) = x+ t, g(t) = et, f(x) = 1 − x.

(15) c = 1, q(x,t,u) = u+ x, g(t) = 2t+ 1, f(x) = cosx.

(16) c = 2, q(x,t,u) = 2u− t, g(t) = t2, f(x) = 2x− 1.
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In (17)–(22) use the method of characteristics to solve the problem

uy(x,y) + cux(x,y) = q(x,y,u), −∞ < x, y <∞,

u(x,y) = f(x,y) on the line ax+ by + d = 0,

with the constant c, functions q and f , and line ax+by+d = 0 as indicated.
In each case sketch the family of characteristics and the data line in the
(x,y)-plane.

(17) c = 2, q(x,y,u) = u, f(x,y) = 2x− y, x+ y − 1 = 0.
(18) c = −1, q(x,y,u) = 2y, f(x,y) = xy, x− 2y − 1 = 0.
(19) c = 1/2, q(x,y,u) = 2u− y, f(x,y) = x+ y, 2x+ 3y − 2 = 0.
(20) c = 1, q(x,y,u) = u+ x, f(x,y) = 2x− y − 1, 2x+ y − 3 = 0.
(21) c = −2, q(x,y,u) = u− x− y, f(x,y) = x− 2xy, x− y − 2 = 0.
(22) c = −1/2, q(x,y,u) = 2x+ y, f(x,y) = ex−y, 3x− y − 3 = 0.

In (23)–(28) use the method of characteristics to solve the quasilinear IVP

ut(x,t) + c(x,t,u)ux(x,t) = q(x,t,u), −∞ < x <∞, t > 0,

u(x,0) = f(x), −∞ < x <∞,

with the functions c, q, and f as indicated.

(23) c(x,t,u) = −2u− 1, q(x,t,u) = 3, f(x) = 1 − x.

(24) c(x,t,u) = u− 1, q(x,t,u) = t+ 1, f(x) = 2x.
(25) c(x,t,u) = u+ t, q(x,t,u) = 1, f(x) = x+ 1.
(26) c(x,t,u) = 1 + 2t− u, q(x,t,u) = 4t− 1, f(x) = 2 − 3x.
(27) c(x,t,u) = 1, q(x,t,u) = 2tu2, f(x) = −e−x.

(28) c(x,t,u) = (t+ 2)u, q(x,t,u) = u+ 1, f(x) = x.

In (29)–(36) use the method of operator decomposition to solve the IVP

autt(x,t) + buxt(x,t) + cuxx(x,t) = 0, −∞ < x <∞, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), −∞ < x <∞,

with the constants a, b, and c and the functions f and g as indicated. (Do
not use the d’Alembert formula directly.)

(29) a = 1, b = 0, c = −1, f(x) = 2x+ 3, g(x) = x2 + 1.
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(30) a = 1, b = 0, c = −9, f(x) = x2 + x, g(x) = 2 − x.

(31) a = 1, b = 0, c = −1/4, f(x) = e−2x, g(x) = x− x2.

(32) a = 1, b = 0, c = −4, f(x) = x2 − 3x+ 1, g(x) = sinx.
(33) a = 1, b = 1, c = −2, f(x) = x2, g(x) = 2x+ 1.
(34) a = 1, b = 1, c = −6, f(x) = 1 − 2x, g(x) = 3x2.

(35) a = 1, b = 4, c = 3, f(x) = x2 − x, g(x) = 4x− 2.
(36) a = 2, b = −7, c = −4, f(x) = 3x+ 1, g(x) = 1 − 2x.

In (37)–(44) use the method of operator decomposition to solve the IBVP

autt(x,t) + buxt(x,t) + cuxx(x,t) = 0, x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), x > 0,

with the constants a, b, and c and the functions f and g as indicated. (Do
not use the d’Alembert formula directly.)

(37) a = 1, b = 0, c = −1, f(x) = 2x2 − x, g(x) = 4x+ 1.
(38) a = 1, b = 0, c = −1/4, f(x) = x+ 2, g(x) = 3x2.

(39) a = 1, b = 0, c = −9, f(x) = 1 − x2, g(x) = cosx.
(40) a = 1, b = 0, c = −4, f(x) = e−x + 2, g(x) = 3x2 − 2x.
(41) a = 1, b = 2, c = −3, f(x) = x+ 1, g(x) = 2x.
(42) a = 1, b = 2, c = −8, f(x) = 2x− 1, g(x) = 4x+ 1.
(43) a = 2, b = 1, c = −1, f(x) = x2, g(x) = 2x+ 3.
(44) a = 2, b = −3, c = −1, f(x) = x2 + 1, g(x) = x− 3.



Chapter 13
Perturbation and Asymptotic
Methods

Owing to the complexity of the PDEs involved in some mathematical mod-
els, it is not always possible to find an exact solution to an initial/boundary
value problem. The next best thing in such situations is to compute an ap-
proximate solution instead. This is the idea behind the method of asymp-
totic expansion, which is applicable to problems that depend on a small
positive parameter and relies on the expansion of the solution in a series
of powers of the parameter. If the series converges, then the technique is
called a perturbation method; when the series diverges but is asymptotic (in
a sense that will be explained below), we have an asymptotic method.

In what follows we discuss only the formal construction of the series so-
lution and obtain the first few terms, without considering the question of
convergence.

13.1. Asymptotic Series

In order to state what an asymptotic series is, we need a mechanism to
compare the “magnitude” of functions.

13.1. Definition. Let f and g be two functions of a real variable x. We
say that f is of order g near x = a, and write

f(x) = O
(
g(x)

)
as x→ a,

if ∣∣∣∣f(x)
g(x)

∣∣∣∣ is bounded as x→ a.

We also write

f(x) = o
(
g(x)

)
as x→ a

if
f(x)
g(x)

→ 0 as x→ a.
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13.2. Examples. (i) The function sinx is of order x near x = 0 since
lim
x→0

(sinx)/x = 1; therefore, (sinx)/x is bounded for x close to 0.

(ii) We have x2 ln |x| = o(x) near x = 0 since lim
x→0

(x2 ln |x|)/x = 0.

(iii) Similarly, e−1/|x| = o(xn) near x = 0 for any positive integer n
because lim

x→0
(e−1/|x|)/xn = 0.

13.3. Definition. A function f(x,ε), where 0 < ε� 1 is a small parame-
ter, is said to have the asymptotic (power) series

f(x, ε) ≈
∞∑

n=0

fn(x)εn as ε→ 0+

if for any positive integer N

f(x,ε) =
N−1∑
n=0

fn(x)εn +O(εN ) as ε→ 0+, (13.1)

uniformly for x in some interval.

13.4. Remarks. (i) Equality (13.1) means that the remainder after N
terms is of order εN as ε→ 0+; it can also be written as

f(x,ε) =
N−1∑
n=0

fn(x)εn + o(εN−1) as ε→ 0 + .

(ii) The right-hand side of (13.1) may diverge as N → ∞, but it yields
a good approximation of f(x, ε) when N is fixed and ε > 0 is very small.
We do not need convergence for the result to be acceptable. Also, the
approximation may not get better if we take additional terms because, as
mentioned above, the series may be divergent.

(iii) In an asymptotic series it is assumed that the terms containing higher
powers of ε are much smaller than those with lower powers.

(iv) In this chapter we assume that asymptotic series may be differentiated
and integrated term by term.

(v) If k � 1 is a large parameter, then we can reduce the problem to one
with a small parameter by setting k = 1/ε.
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13.5. Definition. Consider an initial/boundary value problem that de-
pends (smoothly) on a small parameter ε > 0. The problem obtained by
setting ε = 0 in the equation and data functions is called the reduced (un-
perturbed) problem. If the reduced problem is of the same type and order
as the given one and both have unique solutions, then the given problem
is called a regular perturbation problem; otherwise, it is called a singular
perturbation problem.

13.6. Example. The IBVP

ut(x,t) = kuxx(x,t) + εux(x,t), 0 < x < L, t > 0,

u(0, t) = 0, u(L,t) = 0, t > 0,

u(x,0) = f(x), 0 < x < L,

is a regular perturbation problem since both this IBVP and its reduced
version (involving the heat equation) are second-order parabolic problems
with unique solutions.

13.7. Example. The signalling (hyperbolic) problem

εutt(x,t) − c2uxx(x,t) + ut(x,t) = 0, x > 0, −∞ < t <∞,

u(0, t) = f(t), −∞ < t <∞,

reduces to a parabolic one when we set ε = 0. Therefore, although both
the given and reduced problems have unique solutions, the given IVP is a
singular perturbation problem.

13.8. Example. Let D be a finite region bounded by a smooth, closed,
simple curve ∂D in the (x,y)-plane, and let n be the unit outward normal
to ∂D. The fourth-order BVP

(ΔΔu)(x,y) = 0, (x,y) in D,

u(x,y) = f(x,y), εun(x,y) + u(x,y) = g(x,y), (x,y) on ∂D,

where un = ∂u/∂n, reduces, when we set ε = 0, to the BVP

(ΔΔu)(x,y) = 0, (x,y) in D,

u(x,y) = f(x,y), u(x,y) = g(x,y), (x,y) on ∂D.
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If f �= g, then the reduced problem has no solution. On the other hand, if
f = g, then the solution is not unique, since we have lost one of the BCs.
Hence, the given BVP is a singular perturbation problem.

13.9. Definition. If the solution u of a perturbation problem has the

asymptotic series u ≈
∞∑

n=0
unε

n, then u − u0 is called a perturbation of

the solution of the reduced problem.

13.2. Regular Perturbation Problems

The best way to see how the method works in this case is to examine a few
specific models.

13.10. Example. Let

D =
{
(r,θ) : 0 ≤ r < 1, −π ≤ θ < π

}
,

∂D =
{
(r,θ) : r = 1, −π ≤ θ < π

}
be the unit disk (with the center at the origin) and its circular boundary, and
consider the Dirichlet problem for the two-dimensional Helmholtz equation

(Δu)(r,θ) + εu(r,θ) = 0, (r,θ) in D, r �= 0,

u(r,θ) = 1, (r,θ) on ∂D,

where 0 < ε � 1, which ensures that the above BVP has a unique solu-
tion. The reduced problem (for ε = 0) is the Dirichlet problem for the
Laplace equation, also uniquely solvable. Both the reduced and the per-
turbed problems are elliptic and of second order, so the given BVP is a
regular perturbation problem.

Assuming a perturbation series of the form u(r,θ) ≈
∞∑

n=0
un(r,θ)εn, from

the PDE we find that

Δu+ εu ≈
∞∑

n=0

(Δun)εn +
∞∑

n=0

unε
n+1

= Δu0 +
∞∑

n=1

(Δun + un−1)εn = 0 in D, r �= 0.
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At the same time, the BC yields

u ≈ u0 +
∞∑

n=1

unε
n = 1 on ∂D.

Equating the coefficients of every power of ε on both sides, we then obtain
the BVPs

Δu0 = 0 in D, r �= 0,

u0 = 1 on ∂D,

and, for n ≥ 1,
Δun = −un−1 in D, r �= 0,

un = 0 on ∂D.

Since the region where the problem is posed and the boundary data are
independent of the polar angle θ, we may assume that un = un(r); conse-
quently, by Remark 4.11(ii), the problem for u0 can be written as

(Δu0)(r) = u′′0(r) + r−1u′0(r) = 0, 0 < r < 1,

u0(1) = 1.

Multiplying the differential equation by r and noting that the left-hand side
of the new ODE is, in fact, (ru′0)

′, we find that

u0(r) = C1 lnr + C2, C1, C2 = const.

We know (see Section 5.3) that for this type of problem we also have ad-
ditional conditions, generated by physical considerations. Since we have
assumed that the solution is independent of θ, the only other condition of
this kind to be satisfied here is that the solution and its derivative be con-
tinuous (hence, bounded) in D. This implies that C1 = 0; the value of C2

is then found from the BC at r = 1, which yields u0(r) = 1.
Next, applying the same argument to the BVP satisfied by u1, namely,

(Δu1)(r) = u′′1(r) + r−1u′1(r) = −u0(r) = −1, 0 < r < 1,

u1(1) = 0,

we find that u1(r) = 1
4 (1 − r2); hence,

u(r) = 1 + 1
4ε(1 − r2) +O(ε2). (13.2)
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For this problem we can actually see how good an approximation (13.2)
is. The given (perturbed) equation can be written in the form

u′′(r) + r−1u′(r) + εu(r) = 0,

which is Bessel’s equation of order zero (see (3.12) with m = 0, λ = ε, and
x replaced by r). Its bounded solution satisfying u(1) = 1 is

u(r) = J0(
√
εr)/J0(

√
ε),

where J0 is the Bessel function of the first kind and order zero. This formula
makes sense because 0 < ε � 1; that is,

√
ε is smaller than the first zero

(ξ ∼= 2.4) of J0(ξ). Since for small values of ξ

J0(ξ) = 1 − 1
4ξ

2 +O(ξ4),

we use the formula for the sum of an infinite geometric progression with
ratio q, 0 < |q| < 1, namely,

1 + q + q2 + · · · + qn + · · · =
1

1 − q
,

to find that

J0(
√
εr)

J0(
√
ε)

=
1 − 1

4εr
2 +O(ε2)

1 − 1
4ε+O(ε2)

=
1 − 1

4εr
2 +O(ε2)

1 − (
1
4ε+O(ε2)

)
=

[
1 − 1

4εr
2 +O(ε2)

][
1 +

(
1
4ε+O(ε2)

)
+O(ε2)

]
= 1 + 1

4ε(1 − r2) +O(ε2).

Thus, the perturbation solution (13.2) coincides with the exact solution to
O(ε)-terms throughout D.

13.11. Example. The elliptic nonlinear BVP

Δu(r,θ) + εu2(r,θ) = 36r, (r,θ) in D,

u(r,θ) = 4, (r,θ) on ∂S,

where 0 < ε � 1 and D and ∂D are the same as in Example 13.10, is a
regular perturbation problem. Since we again notice that the solution u is
expected to depend only on r, we assume for the solution a series of the
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form u(r) ≈
∞∑

n=0
un(r)εn. Then, in the usual way, taking into account the

asymptotic expansion

u2 = [u0 + εu1 +O(ε2)
]2 = u2

0 + 2εu0u1 +O(ε2)

and recalling the boundedness condition mentioned in Example 13.10, we
see that u0 and u1 are, respectively, the solutions of the linear BVPs

u′′0(r) + r−1u′0(r) = 36r, 0 < r < 1,

u0(r), u′0(r) bounded as r → 0+, u0(1) = 4,

u′′1(r) + r−1u′1(r) = −u2
0(r), 0 < r < 1,

u1(r), u′1(r) bounded as r → 0+, u1(1) = 0,

with solutions u0(r) = 4r3 and u1(r) = 1
4 (1 − r8). Consequently,

u(r) = 4r3 + 1
4 ε(1 − r8) +O(ε2).

This example shows how, in certain cases, the perturbation method re-
duces a nonlinear problem to a sequence of linear ones.

13.12. Example. In the IVP

wtt(x,t) − wxx(x,t) + (3 + ε)w(x,t) = 0,

−∞ < x <∞, t > 0,

w(x,0) = εcosx, wt(x,0) = 0, −∞ < x <∞,

the small parameter 0 < ε � 1 occurs not only in the PDE, but also in
one of the ICs. Both the given IVP and the reduced one are second-order
hyperbolic problems with unique solutions, so this is a regular perturbation
problem.

Since the equation is homogeneous and the data functions are uniformly
small, we expect the solution to have the same property. Hence, we seek a
solution of the form w(x,y) = εu(x,y). Substituting above, we arrive at the
new IVP

utt(x,t) − uxx(x,t) + (3 + ε)u(x,t) = 0,

−∞ < x <∞, t > 0,

u(x,0) = cosx, ut(x,0) = 0, −∞ < x <∞,
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in which the small parameter now occurs only in the PDE. Replacing

u(x, t) ≈
∞∑

n=0
un(x, t)εn in the PDE and ICs and equating the coefficients of

each power of ε on both sides, we find that the functions un, n = 0,1, . . . ,
are, respectively, the solutions of the IVPs

(u0)tt(x,t) − (u0)xx(x,t) + 3u0(x,t) = 0, −∞ < x <∞, t > 0,

u0(x,0) = cosx, (u0)t(x,0) = 0, −∞ < x <∞,

(u1)tt(x,t) − (u1)xx(x,t) + 3u1(x,t) = −u0(x,t),

−∞ < x <∞, t > 0,

u1(x,0) = 0, (u1)t(x,0) = 0, −∞ < x <∞,

and so on.
We solve the IVP for u0 by means of separation of variables. Thus, we

seek a solution of the form

u0(x,t) = X(x)T (t),

where, as remarked in Chapter 5, neither X nor T is the zero function.
Replaced in the ICs, this yields

X(x)T (0) = cosx, X(x)T ′(0) = 0.

Clearly, T (0) �= 0. Since, as already noted, X �= 0, it follows that

X(x) =
1

T (0)
cosx, T ′(0) = 0.

Then the form of the solution is

u0(x,t) =
(

1
T (0)

cosx
)
T (t),

and the PDE for u0 becomes(
1

T (0)
cosx

)
T ′′(t) +

(
1

T (0)
cosx

)
T (t) + 3

(
1

T (0)
cosx

)
T (t) = 0.

Hence, T is the solution of the IVP

T ′′(t) + 4T (t) = 0, t > 0,

T ′(0) = 0,
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which is T (t) = T (0)cos(2t); so,

u0(x,t) = cos(2t)cosx.

The PDE for u1 is now written as

(u1)tt(x,t) − (u1)xx(x,t) + 3u1(x,t) = −cos(2t)cosx. (13.3)

Guided by the function on the right-hand side, we seek its solution in the
form

u1(x,t) = T (t)cosx, T �= 0.

Substituting in (13.3), equating the coefficients of cosx on both sides, and
making use of the ICs as above, we find that T is the solution of the IVP

T ′′(t) + 4T (t) = −cos(2t), t > 0,

T (0) = 0, T ′(0) = 0,

which is T (t) = − 1
4 tsin(2t). Thus,

u1(x,t) = − 1
4 tsin(2t)cosx.

Combining u0 and u1, we conclude that

u(x,t) = cos(2t)cosx− 1
4 εtsin(2t)cosx+O(ε2). (13.4)

This series is a good asymptotic approximation for the solution of the
given IVP as ε → 0 if t is restricted to any fixed finite interval [0, t0]. But
in the absence of such a restriction, we see that when t = O(ε−1), the term
1
4 εtsin(2t)cosx is of the same order of magnitude as the leading O(1)-term.
Such a term is called secular, and its presence means that the perturbation
series is not valid for very large values of t. To extend the validity of the
series for all t > 0, we use the power series expansions of sinα and cosα and
write

cos
(
2t+ 1

4 εt
)

= cos(2t)cos
(

1
4 εt

) − sin(2t)sin
(

1
4 εt

)
= cos(2t)

[
1 +O(ε2)

] − sin(2t)
[
1
4 εt+O(ε3)

]
= cos(2t) − 1

4 εtsin(2t) +O(ε2).
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Then the asymptotic solution series (13.4) can be rearranged in the form

u(x,t) = cosxcos
(
2t+ 1

4 εt
)

+O(ε2),

which does not contain the secular term identified earlier. Higher-order
terms in ε may, however, contain further secular terms.

13.13. Example. The first-order IVP

ut(x,t) + ux(x,t) + εu(x,t) = 0, −∞ < x <∞, t > 0,

u(x,0) = cosx, −∞ < x <∞,

where 0 < ε � 1, is a regular perturbation problem because the reduced
problem is also of first order and both problems have unique solutions.

Writing u(x,t) ≈
∞∑

n=0
un(x,t)εn, we are led to the sequence of IVPs

(u0)t(x,t) + (u0)x(x,t) = 0, −∞ < x <∞, t > 0,

u0(x,0) = cosx, −∞ < x <∞,

(u1)t(x,t) + (u1)x(x,t) = −u0(x,t), −∞ < x <∞, t > 0,

u1(x,0) = 0, −∞ < x <∞,

and so on. Using the method of characteristics (see Section 12.1), we find
that u0(x,t) = cos(x− t) and u1(x,t) = −tcos(x− t); hence,

u(x,t) = cos(x − t) − εtcos(x − t) +O(ε2).

As explained in Example 13.12, εtcos(x − t) is a secular term. Since the
procedure that removed such a term in the preceding example does not work
here, we try another technique, called the method of multiple scales, which
consists in introducing an additional variable τ = εt. Denoting by v(x,t,τ)
the new unknown function and remarking that v depends on t both directly
and through τ , we arrive at the problem

vt(x,t,τ) + εvτ (x,t,τ) + vx(x,t,τ) + εv(x,t,τ) = 0,

−∞ < x <∞, t, τ > 0,

v(x,0,0) = cosx, −∞ < x <∞.
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We now set v(x,t,τ) ≈
∞∑

n=0
vn(x,t,τ)εn and deduce that v0 and v1 are,

respectively, the solutions of the problems

(v0)t(x,t,τ) + (v0)x(x,t,τ) = 0, −∞ < x <∞, t, τ > 0,

v0(x,0,0) = cosx,

(v1)t(x,t,τ) + (v1)x(x,t,τ) = −(v0)τ (x,t,τ) − v0(x,t,τ),

−∞ < x <∞, t, τ > 0,
v1(x,0,0) = 0, −∞ < x <∞.

We seek the solution of the former as v0(x,t,τ) = f(x,t)ϕ(τ), where ϕ
satisfies the condition ϕ(0) = 1 but is otherwise arbitrary. Then the problem
for v0 reduces to the IVP

ft(x,t) + fx(x,t) = 0, −∞ < x <∞, t > 0,

f(x,0) = cosx, −∞ < x <∞,

with solution f(x,t) = cos(x− t), so v0(x,t,τ) = ϕ(τ)cos(x− t). Replacing
this on the right-hand side in the PDE for v1, we arrive at the equation

(v1)t(x,t,τ) + (v1)x(x,t,τ) = −[
ϕ′(τ) + ϕ(τ)

]
cos(x − t),

whose solution satisfying the condition v1(x,0,0) = 0 is

v1(x,t,τ) = −[
ϕ′(τ) + ϕ(τ)

]
tcos(x− t).

Consequently, the solution of the modified problem is

v(x,t,τ) = ϕ(τ)cos(x− t) − ε
[
ϕ′(τ) + ϕ(τ)

]
tcos(x− t) +O(ε2).

To eliminate the secular term on the right-hand side above, we now choose
ϕ so that ϕ′ +ϕ = 0. In view of the earlier condition ϕ(0) = 1, we find that
ϕ(τ) = e−τ . Hence, v(x,t,τ) = e−τ cos(x− t) + O(ε2), which, since τ = εt,
means that

u(x,t) = e−εt cos(x− t) +O(ε2).

Using the method of characteristics on the original IVP, we see that its
exact solution is, in fact, u(x,t) = e−εt cos(x−t). The additionalO(ε2)-term
represents “noise” generated by the approximating nature of the asymptotic
expansion technique.
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13.3. Singular Perturbation Problems

In this type of problem we need to construct different solutions that are valid
in different regions, and then to match them in an appropriate manner for
overall uniform validity.

13.14. Example. Consider the IVP

ε
[
ut(x,t) + 2ux(x,t)

]
+ u(x,t) = sint, −∞ < x <∞, t > 0,

u(x,0) = x, −∞ < x <∞,

where 0 < ε� 1. This is a singular perturbation problem since the reduced
(unperturbed) problem contains no derivatives of u.

Following the standard procedure, we try to seek a solution of the form

u(x,t) ≈
∞∑

n=0
un(x,t)εn. Replacing in the PDE, we obtain

u0(x,t) = sint,

un(x,t) = −(un−1)t(x,t) − 2(un−1)x(x,t), n = 1,2, . . . .

From the above recurrence relation it is easily seen that

u2n = (−1)n sint, u2n+1 = (−1)n+1 cos t, n ≥ 0;

therefore,

u(x,t) =
[ ∞∑

n=0

(−1)nε2n

]
sint− ε

[ ∞∑
n=0

(−1)nε2n

]
cos t

=
1

1 + ε2
(sin t− εcos t),

where we have used the formula for the sum of an infinite geometric progres-
sion with ratio −ε2. However, it is immediately obvious that this function
does not satisfy the initial condition. Also, when t ≈ ε, using the power
series for cosε and sinε, we have

sin t− εcost ≈ sinε− εcosε =
(
ε+O(ε3)

) − ε
(
1 +O(ε2)

)
= O(ε2);

in other words, for t = O(ε) the two terms in u(x,t) are of the same order,
which is not allowed in an asymptotic series. Consequently, the series is not
well ordered in the region where t = O(ε), so it is not a valid representation
of the solution in that region. This means that we must seek a different series
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in a boundary layer of width O(ε) near the x-axis (t = 0). To construct the
new series, we make the change of variables

τ =
t

ε
, u(x,t) = u(x,ετ) = ui(x,τ),

which amounts to a stretching of the time argument near t = 0. Under this
transformation, the IVP becomes

ui
τ (x,τ) + 2εui

x(x,τ) + ui(x,τ) = sinετ = ετ +O(ε3),

−∞ < x <∞, τ > 0,
ui(x,0) = x, −∞ < x <∞.

For the inner solution ui of this boundary layer IVP we assume an asymp-

totic expansion of the form ui(x,τ) ≈
∞∑

n=0
ui

n(x,τ)εn. Then the new PDE

and IC yield, in the usual way, the sequence of IVPs

(ui
0)τ (x,τ) + ui

0(x,τ) = 0, −∞ < x <∞, τ > 0,

ui
0(x,0) = x, −∞ < x <∞,

(ui
1)τ (x,τ) + ui

1(x,τ) = τ − 2(ui
0)x(x,τ), −∞ < x <∞, τ > 0,

ui
1(x,0) = 0, −∞ < x <∞,

and so on. Restricting our attention to the first two terms, from the first
problem we easily obtain

ui
0(x,τ) = xe−τ ,

and from the second problem (seeking a particular integral of the form
aτe−τ , a = const),

ui
1(x,τ) = τ − 1 + (1 − 2τ)e−τ ;

hence,

ui(x,τ) = xe−τ + ε
[
τ − 1 + (1 − 2τ)e−τ

]
+O(ε2).

We rename the first solution the outer solution and denote it by uo:

uo(x,t) =
1

1 + ε2
(sint− εcos t) = sint− εcos t+O(ε2).

Now we need to match uo (valid for t = O(1)) and ui (valid for t = O(ε))
up to the order of ε considered (here, it is O(ε)), in some common region of
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validity. To this end, first we write the outer solution in terms of the inner
variable τ = t/ε and expand it for τ fixed and ε small, listing the terms up
to O(ε), after which we revert to t:

(uo)i ≈ sin t− εcost+ · · · = sin(ετ) − εcos(ετ) + · · ·
= ε(τ − 1) + · · · = t− ε+ · · · .

Next, we write the inner solution in terms of the outer variable t = ετ and
expand it for t fixed and ε small to the same order:

(ui)o ≈ xe−t/ε + ε

[
t

ε
− 1 +

(
1 − 2

t

ε

)
e−t/ε

]
+ · · · = t− ε+ · · ·

(the rest of the terms are o(εn) for any positive integer n). Finally, we
impose the condition (uo)i = (ui)o up to O(ε) terms. In our case this is
already satisfied, so the two solutions match.

Since the common region of validity is not clear, it is useful to consider a
composite solution of the form

uc = uo + ui − (uo)i = uo + ui − (ui)o.

This is valid uniformly for t > 0 since

(uc)o = (uo)o + (ui)o − ((ui)o)o = uo + (ui)o − (ui)o = uo,

(uc)i = (uo)i + (ui)i − ((uo)i)i = (uo)i + ui − (uo)i = ui.

Here we have

u(x,t) ≈ uc(x,t) = sint− εcos t+ (x− 2t+ ε)e−t/ε + · · · .

13.15. Example. Consider the elliptic problem in a semi-infinite strip

ε(Δu)(x,y) + ux(x,y) + uy(x,y) = 0, x > 0, 0 < y < 1,

u(x,0) = e−x, u(x,1) = p(x), x > 0,

u(0,y) = y, u(x,y) bounded as x→ ∞, 0 < y < 1,

where 0 < ε� 1 and

p(x) =
{

1 − x, 0 < x < 1,
0, x ≥ 1.
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This is a singular perturbation problem because the perturbed BVP is of
second order whereas the reduced BVP is of first order.

Let u(x,y) ≈
∞∑

n=0
un(x, y)εn. Then it is readily seen that u0 is the solution

of the BVP

(u0)x(x,y) + (u0)y(x,y) = 0, x > 0, 0 < y < 1,

u0(x,0) = e−x, u0(x,1) = p(x), x > 0,

u0(0,y) = y, u0(x,y) bounded as x→ ∞, 0 < y < 1,

u1 is the solution of the BVP

(u1)x(x,y) + (u1)y(x,y) = −(Δu0)(x,y), x > 0, 0 < y < 1,

u1(x,0) = 0, u1(x,1) = 0, x > 0,

u1(0,y) = 0, u1(x,y) bounded as x→ ∞, 0 < y < 1,

and so on.
We find u0 by the method of characteristics (see Chapter 12), using y = 1

as the data line. If x = x(y) is a characteristic curve, then on it

d

dy
u0(x(y),y) = (u0)x(x(y),y)x′(y) + (u0)y(x(y),y).

Hence, x′(y) = 1 implies that du0/dy = 0, so

x = y + c, u0(x,y) = c′, c, c′ = const.

The equation of the characteristic through the points (x,y) and (x0,1) is
x = y + x0 − 1, and on this line

u0(x,y) = c′ = u0(x0,1) = p(x0) = p(x− y + 1);

therefore, the solution of the given BVP is

u(x,y) = u0(x,y) +O(ε) = p(x− y + 1) +O(ε)

=
{
y − x+O(ε), 0 < x < y,
O(ε), x ≥ y.

(13.5)

Since it is clear that this solution does not satisfy the other BCs, we need
to introduce two boundary layers.
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In the boundary layer near y = 0 we make the substitution η = y/δ(ε),
write u(x,y) = u(x,δ(ε)η) = v(x,η), and arrive at the new BVP

εvxx +
ε

δ2(ε)
vηη + vx +

1
δ(ε)

vη = 0, v(x,0) = e−x.

The unspecified boundary layer width δ(ε) must be chosen so that the vηη

term is one of the dominant terms in the above equation. Comparing the
coefficients of all the terms in the new PDE, we see that there are three
possibilities:

(i)
ε

δ2(ε)
≈ ε; (ii)

ε

δ2(ε)
≈ 1; (iii)

ε

δ2(ε)
≈ 1
δ(ε)

.

It is not difficult to check that cases (i) and (ii) do not satisfy our magnitude
requirement, whereas (iii) does. Hence, we can take δ(ε) = ε, for simplicity,
and the BVP becomes

ε2vxx + vηη + εvx + vη = 0, v(x,0) = e−x.

Writing v(x,η) =
∞∑

n=0
vn(x, η)εn, from the PDE and BC satisfied by v we

find that

(v0)ηη + (v0)η = 0, v0(x,0) = e−x,

with solution
v0(x,η) = α(x) +

[
e−x − α(x)

]
e−η,

where α is an arbitrary function; therefore,

u(x,y) = v(x,η) = v0(x,η) +O(ε)

= α(x) +
[
e−x − α(x)

]
e−η +O(ε). (13.6)

We rename (13.5) the outer solution uo and (13.6) the first inner solu-
tion ui1 , and match them by the method used in Example 13.14. Thus,
expanding p in powers of ε, we have

(uo)i1 = p(x− εη + 1) +O(ε) = p(x+ 1) +O(ε) = O(ε),

(ui1)o = α(x) +
[
e−x − α(x)

]
e−y/ε +O(ε) = α(x) +O(ε),

(13.7)

so (uo)i1 = (ui1)o to O(1) terms if

α(x) = 0, x > 0. (13.8)
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The second boundary layer needs to be constructed near x = 0. Pro-
ceeding as above (this time with the transformed uxx term as one of the
dominant terms in the new PDE), we again conclude that the correct layer
width is δ(ε) ≈ ε, so we set

ξ =
x

ε
.

Writing u(x,y) = u(εξ,y) = w(ξ,y), we arrive at the new BVP

wξξ + ε2wyy + wξ + εwy = 0, w(0,y) = y.

If we assume that w(ξ,y) ≈
∞∑

n=0
wn(ξ,y)εn, then

(w0)ξξ + (w0)ξ = 0, w0(0,y) = y,

with solution

w0(ξ,y) = β(y) +
[
y − β(y)

]
e−ξ,

where β is another arbitrary function; hence,

u(x,y) = w(ξ,y) = w0(ξ,y) +O(ε)

= β(y) +
[
y − β(y)

]
e−ξ + O(ε). (13.9)

We call (13.9) the second inner solution ui2 and match it with uo up to
O(1) terms. As above, we have

(uo)i2 = p(εξ − y + 1) +O(ε) = p(−y + 1) +O(ε) = y +O(ε),

(ui2)o = β(y) +
[
y − β(y)

]
e−x/ε +O(ε) = β(y) + O(ε),

(13.10)

so
β(y) = y. (13.11)

It can be verified that the composite solution in this case is

uc = uo + ui1 + ui2 − (ui1)o − (ui2)o

= uo + ui1 + ui2 − (uo)i1 − (uo)i2 ,

since (ui1)i2 = (ui1)o and (ui2)i1 = (ui2)o. Thus, by (13.5)–(13.11), the
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asymptotic solution of the given BVP to O(1) terms is

u(x,y) ≈ uc(x, y)

= p(x− y + 1) +
[
e−x − p(x+ 1)

]
e−y/ε

+
[
y − p(1 − y)

]
e−x/ε +O(ε)

=
{
y − x+ e−x−y/ε +O(ε), 0 < x < y,
e−x−y/ε +O(ε), x ≥ y.

13.16. Remarks. (i) We did not consider effects caused by the incompat-
ibility of the boundary values at the “corner points” (0,0) and (0,1).

(ii) If we had tried to construct the first boundary layer solution near
y = 1 instead of y = 0 (and, thus, use y = 0 as the data line for computing
the first term in uo), we would have failed. In that region we would need
to substitute η = (1 − y)/ε, and setting u(x,y) = u(x,1 − εη) = v(x,η), we
would obtain the BVP

ε2vxx + vηη + εvx − vη = 0, v(x,0) = p(x),

from which

(v0)ηη − (v0)η = 0, v0(x,0) = p(x).

This would yield

v0(x,η) = α(x) +
[
p(x) − α(x)

]
eη,

which is not good for matching since eη = ey/ε → ∞ as ε → 0+ with y

fixed.

Exercises

In (1)–(4) use the method of asymptotic expansion to compute a formal
approximate solution (to O(ε) terms) for the regular perturbation problem

u′′(r) + r−1u′(r) + εf(u) = q(r), 0 < r < 1,

u(r), u′(r) bounded as r → 0+, u(1) = g,

with the functions f and q and the number g as indicated, where 0 < ε� 1.
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(1) f(u) = 4u, q(r) = 1, g = 1 + ε.

(2) f(u) = −2u, q(r) = −4 + 2ε(r2 + 9r), g = 1 + 3ε.
(3) f(u) = −u3, q(r) = ε, g = −3.
(4) f(u) = u− u2, q(r) = 6(3r − 2)+ ε(12 − 3r2 +2r3− 9r4 +12r5− 4r6),

g = −1 + 3ε.

In (5)–(14) use the method of asymptotic expansion to compute a formal
approximate solution (to O(ε) terms) for the regular perturbation problem

ut(x,t) + aux(x,t) + bu(x,t) = q(x,t), −∞ < x <∞, t > 0,

u(x,0) = f(x), −∞ < x <∞,

with the functions q and f and the coefficients a and b as indicated, where
0 < ε� 1.

(5) q(x,t) = 0, f(x) = sinx, a = ε, b = 1 + ε.

(6) q(x,t) = 1, f(x) = −2x, a = −ε, b = 1 − ε.

(7) q(x,t) = ε, f(x) = e−x, a = 2ε, b = 2 − ε.

(8) q(x,t) = −2 + εe−t, f(x) = ε, a = −2ε, b = 1 + 2ε.
(9) q(x,t) = 0, f(x) = x, a = 3, b = −2ε.

(10) q(x,t) = 0, f(x) = 2x− 1, a = −1, b = 1 + ε.

(11) q(x,t) = 2, f(x) = −x, a = 2 + ε, b = ε− 1.
(12) q(x,t) = x+ 2ε, f(x) = 3 + x, a = 1 − ε, b = 1 + 2ε.
(13) q(x,t) = 2t, f(x) = ex, a = 2 + ε, b = 0.
(14) q(x,t) = 6xt+ εx, f(x) = 1 + x+ εx, a = 1 − 3ε, b = 0.

In (15)–(24) use the method of asymptotic expansion to compute a formal
approximate solution (to O(ε) terms) for the regular perturbation problem

uxx(x,y) + aux(x,y) + buy(x,y) + cu(x,y) = q(x,y),

0 < x < 1, −∞ < y <∞,

u(0,y) = f(y), u(1,y) = g(y), −∞ < y <∞,

with the functions q, f , and g and the coefficients a, b, and c as indicated,
where 0 < ε� 1.

(15) q(x,y) = −xy2, f(y) = εy, g(y) = y2 + ε(e− 2)y,
a = 0, b = −ε, c = −1.
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(16) q(x,y) = 2 − ε(x2 + 2y + 4), f(y) = 2y, g(y) = 1 + 2y + εy2,

a = 0, b = −2ε, c = −ε.
(17) q(x,y) = −4 − 2(1 + ε)x2, f(y) = εy, g(y) = −2 + εy cos1,

a = 0, b = ε, c = 1 + ε.

(18) q(x,y) = 4x2y − 2y − ε
[
x2y − x2 + 3(y + 1)ex

]
, f(y) = ε(y + 1),

g(y) = −y + εe(y + 1), a = 0, b = −ε, c = ε− 4.
(19) q(x,y) = −y, f(y) = 0, g(y) = y, a = −ε, b = −3ε, c = 0.
(20) q(x,y) = ε(y − 2)ex, f(y) = 2y, g(y) = (2 + ε)ey,

a = −1, b = −ε, c = 0.
(21) q(x,y) = 2ε− 6, f(y) = (2 + 3ε)y, g(y) = 2y + 6 + 3εey,

a = ε− 1, b = −2ε, c = 0.
(22) q(x,y) = 2ε(y + e2x), f(y) = (ε− 1)y, g(y) = −e2y + ε(e2 + y),

a = −3, b = −ε, c = 2.
(23) q(x,y) = 2y − 4x− 2 + ε(3 − 5e−x), f(y) = −y − 1,

g(y) = 2 − e−1 − y + 2εe−1, a = ε− 1, b = −ε, c = −2.
(24) q(x,y) = 2ε

[
2y + 3cos(2x) − y sin(2x)

]
, f(y) = (1 + ε)y,

g(y) = y cos2 + ε(y + sin2), a = ε, b = 2ε, c = 4.

In (25)–(34) use the method of asymptotic expansion (in conjunction with
the method of separation of variables) to compute a formal approximate
solution (to O(ε) terms) for the regular perturbation problem

utt(x,t) − a2uxx(x,t) + but(x,t) + cux(x,t) + du(x,t) = q(x,t),

−∞ < x <∞, t > 0,

u(x,0) = f(x), ut(x,0) = g(x), −∞ < x <∞,

with the functions q, f , and g and the coefficients a, b, c, and d as indicated,
where 0 < ε� 1.

(25) q(x,t) = 0, f(x) = −x, g(x) = x,

a = 2, b = 0, c = 0, d = 1 + ε.

(26) q(x,t) = x− 2, f(x) = x− 2, g(x) = 7
2 (x − 2),

a = 3, b = 2, c = 0, d = 2ε.
(27) q(x,t) = −9sin(2x), f(x) = sin(2x), g(x) = −3sin(2x),

a = 1, b = 0, c = 0, d = 5 + ε.

(28) q(x,t) = 0, f(x) = cos(3x), g(x) = 4cos(3x),
a = 2, b = 0, c = 0, d = −32 − ε.
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(29) q(x,t) = 0, f(x) = e−2x, g(x) = 2e−2x,

a = 2, b = 0, c = 0, d = 12 + 3ε.
(30) q(x,t) = 0, f(x) = e2x, g(x) = −e2x,

a = 1, b = −1, c = 0, d = 2 + 2ε.
(31) q(x,t) = 0, f(x) = ex, g(x) = 2ex,

a = 1, b = −3, c = 0, d = 3 + ε.

(32) q(x,t) = e−x, f(x) = e−x, g(x) = − 4
3 e

−x,

a = 2, b = −2, c = 0, d = 1 − ε.

(33) q(x,t) = 0, f(x) = 2x− 1, g(x) = 4x− 2,
a = 2, b = 0, c = 0, d = 3ε− 4.

(34) q(x,t) = −2x, f(x) = −2x, g(x) = 9
2 x,

a = 1, b = −2, c = ε, d = ε− 8.

In (35)–(40) use the method of matched asymptotic expansions to compute
a formal composite solution (to O(ε) terms) for the singular perturbation
problem

εuxx(x,y) + aux(x,y) + buy(x,y) + cu(x,y) = 0,

0 < x < L, −∞ < y <∞,

u(0,y) = f(y), u(L,y) = g(y), −∞ < y <∞,

with the functions f and g, the coefficients a, b, and c, and the number
L as indicated, where 0 < ε � 1. (The location of the boundary layer is
specified in each case.)

(35) f(y) = y + 1, g(y) = 2y, a = 1 + 2ε, b = 2ε, c = 1, L = 1;
boundary layer at x = 0.

(36) f(y) = y, g(y) = 2y − 1, a = 1 − ε, b = 0, c = 1, L = 2;
boundary layer at x = 0.

(37) f(y) = 2y + 3, g(y) = −y, a = ε− 1, b = ε, c = 0, L = 2;
boundary layer at x = 2.

(38) f(y) = −3y, g(y) = y + 2, a = −1 − ε, b = 2ε, c = 1, L = 1;
boundary layer at x = 1.

(39) f(y) = y2, g(y) = 1 − y, a = 1 − 2ε, b = −ε, c = −1, L = 1;
boundary layer at x = 0.

(40) f(y) = 2, g(y) = 2 − 3y, a = 1, b = −2ε, c = 1, L = 2;
boundary layer at x = 0.
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In (41)–(46) use the method of matched asymptotic expansions (in con-
junction with the method of characteristics) to compute a formal composite
solution (to O(ε) terms) for the singular perturbation problem

ε
[
uxx(x,y) + auyy(x,y)

]
+ bux(x,y) + cuy(x,y) = 0,

x > 0, 0 < y < L,

u(x,0) = f(x), u(x,L) = g(x), x > 0,

u(0,y) = h(y), 0 < y < L.

with the functions f , g, and h, the coefficients a, b, and c, and the number
L as indicated, where 0 < ε� 1. (The locations of the boundary layers are
specified in each case.)

(41) f(x) = x2 + 1, g(x) = 2x− 3, h(y) = y2,

a = 1, b = 1, c = 2, L = 1; boundary layers at x = 0, y = 0.
(42) f(x) = x2, g(x) = 1 − x, h(y) = y2 − 1,

a = 2, b = 1, c = 1, L = 2; boundary layers at x = 0, y = 0.
(43) f(x) = 2x2 − 1, g(x) = x+ 2, h(y) = y2 + 1,

a = 2, b = 1, c = −1, L = 1; boundary layers at x = 0, y = 1.
(44) f(x) = 1 − x2, g(x) = 2x+ 4, h(y) = 2y2,

a = 1, b = 2, c = −2, L = 2; boundary layers at x = 0, y = 2.
(45) f(x) = x+ 1, g(x) = x2 − 2, h(y) = 1 − 2y,

a = 4, b = 2, c = 1, L = 1; boundary layers at x = 0, y = 0.
(46) f(x) = x2 + x, g(x) = −3x, h(y) = y2 − 2y,

a = 3, b = 1, c = −1, L = 2; boundary layers at x = 0, y = 2.



Chapter 14
Complex Variable Methods

Certain linear two-dimensional elliptic problems turn out to be difficult to
solve in a Cartesian coordinate setup. In many such cases it is advisable
to go over to equivalent formulations in terms of complex variables, which
may be able to help us find the solutions much more readily and elegantly.
Although complex numbers have already been mentioned in Chapters 1, 3,
8, 9, and 11, we start by giving a brief presentation of their basic rules of
manipulation and a few essential details about complex functions.

14.1. Elliptic Equations

A complex number is an expression of the form

z = x+ iy, x, y real, i2 = −1,

where x and y are called, respectively, the real part and the imaginary part
of z. The number z̄ = x− iy is the complex conjugate of z and

r = |z| = (zz̄)1/2 = (x2 + y2)1/2

is the modulus of z.
A complex number can also be written in polar form as

z = reiθ = r(cosθ + isinθ),

where θ, −π < θ ≤ π, called the argument of z, is determined from the
equalities

cosθ =
x

r
, sinθ =

y

r
.

Obviously,

z̄ = r(cosθ − isinθ) = re−iθ .

Addition and multiplication of complex numbers are performed according
to the usual algebraic rules for real numbers.
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A complex function of a complex variable has the general form

f(z) = (Ref)(x,y) + i(Imf)(x,y),

where Ref and Imf are its real and imaginary parts. Such a function f is
called holomorphic if its derivative f ′(z) exists at all points in its domain of
definition. A holomorphic function is analytic—that is, it can be expanded
in a convergent power series.

14.1. Example. If f(z) = z2, then

(Ref)(x,y) = x2 − y2, (Imf)(x,y) = 2xy.

14.2. Theorem. A function f is holomorphic if and only if it satisfies the
Cauchy–Riemann relations

(Ref)x = (Imf)y, (Imf)x = −(Ref)y. (14.1)

In this case, both Ref and Imf are solutions of the Laplace equation.

14.3. Remarks. (i) Suppose that a smooth function f of real variables x
and y is expressed in terms of the complex variables z and z̄; that is,

f(x,y) = g(z, z̄).

From the chain rule of differentiation it follows that

fx = gz + gz̄,

fy = i(gz − gz̄),

fxx = gzz + 2gzz̄ + gz̄z̄,

fyy = −gzz + 2gzz̄ − gz̄z̄,

fxy = fyx = i(gzz − gz̄z̄).

(14.2)

(ii) The Laplace equation, which is not easily integrated in terms of real
variables, has a very simple solution in terms of complex variables. Thus,
if u(x,y) = v(z, z̄), then, by (14.2),

Δu = uxx + uyy = 4vzz̄, (14.3)
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so Δu(x,y) = 0 is equivalent to

vzz̄(z, z̄) = 0.

It is now trivial to see that the latter has the general solution

v(z, z̄) = ϕ(z) + ψ̄(z̄),

where ϕ and ψ are arbitrary analytic functions of z.
If we want the real general solution, then we must have v(z, z̄) = v̄(z̄,z);

that is,
ϕ(z) + ψ̄(z̄) = ϕ̄(z̄) + ψ(z),

or
ϕ(z) − ϕ̄(z̄) = ψ(z) − ψ̄(z̄),

which means that Imϕ = Imψ. Using this equality and (14.1), we find that
Reϕ = Reψ as well, so ψ = ϕ; therefore, the real general solution of the
two-dimensional Laplace equation is

v(z, z̄) = ϕ(z) + ϕ̄(z̄), (14.4)

where ϕ is an arbitrary analytic function.
(iii) A similar treatment can be applied to the biharmonic equation

ΔΔu(x,y) = 0.

Since, as we have seen, Δv = 4vzz̄ , where v(z, z̄) = u(x,y), we easily deduce
that ΔΔv(x,y) = 16vzzz̄z̄(z, z̄); hence, the biharmonic equation is equivalent
to

vzzz̄z̄(z, z̄) = 0.

Then, by (ii) above,

Δv(z, z̄) = 4vzz̄(z, z̄) = Φ(z) + Φ̄(z̄).

Integrating and applying the argument in (ii), we arrive at the real general
solution

v(z, z̄) = z̄Φ(z) + zΦ̄(z̄) + ϕ(z) + ϕ̄(z̄),

where Φ and ϕ are arbitrary analytic functions of z.
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14.4. Example. Consider the BVP

Δu = 8 in D,

u = 1 − 2cosθ − cos(2θ) + 2sin(2θ) on ∂D,

where D and ∂D are the unit circular disk and its boundary, respectively,
and r, θ are polar coordinates with the pole at the center of the disk. On
∂D we have

z = eiθ = σ, z̄ = e−iθ = σ−1,

cos(nθ) = 1
2 (einθ + e−inθ) = 1

2 (σn + σ−n), n = 1,2, . . . ,

sin(nθ) = − 1
2 i(e

inθ − e−inθ) = − 1
2 i(σ

n − σ−n);

(14.5)

hence, using (14.3), we bring the given BVP to the equivalent form

vzz̄ = 2 in D,

v = −(
1
2 − i

)
σ−2 − σ−1 + 1 − σ − (

1
2 + i

)
σ2 on ∂D.

It is easily seen that 2zz̄ is a particular solution of the PDE, so, by (14.4),
the general solution of the equation is

v(z, z̄) = ϕ(z) + ϕ̄(z̄) + 2zz̄. (14.6)

Since the arbitrary function ϕ is analytic, it admits a series expansion of
the form

ϕ(z) =
∞∑

n=0

anz
n. (14.7)

Replacing (14.7) in (14.6) and then v with z = σ and z̄ = σ−1 in the BC
and performing the usual comparison of coefficients, we find that

a0 + ā0 + 2 = 1, a1 = −1, a2 = −(
1
2 + i

)
, an = 0 (n �= 0,1,2).

Therefore, a0 + ā0 = −1, and (14.6) and (14.7) yield the solution

v(z, z̄) = a0 + ā0 + a1z + ā1z̄ + a2z
2 + ā2z̄

2 + 2zz̄

= −1 − z − z̄ − (
1
2 + i

)
z2 − (

1
2 − i

)
z̄2 + 2zz̄.

In Cartesian coordinates with the origin at the center of the disk, this
becomes

u(x,y) = −1 − 2x+ x2 + 4xy + 3y2.
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14.5. Example. To solve the elliptic BVP

uxx − 2uxy + 2uyy = 4 in D,

u = 3
2 − 1

2 cos(2θ) + 3
2 sin(2θ) on ∂D,

where the notation is the same as in Example 14.4, we use a slightly altered
procedure. First, by (14.2), we easily see that v(z, z̄) = u(x,y) is the solution
of the problem

(1 + 2i)vzz − 6vzz̄ + (1 − 2i)vz̄z̄ = −4 in D,

v = − 1
4 (1 − 3i)σ−2 + 3

2 − 1
4 (1 + 3i)σ2 on ∂D.

(14.8)

We now perform a simple transformation of the form

ζ = z + ᾱz̄, ζ̄ = z̄ + αz, v(z, z̄) = w(ζ, ζ̄),

where α is a complex number to be chosen so that the left-hand side of the
PDE for w consists only of the mixed second-order derivative. Thus, by the
chain rule,

vzz = wζζ + 2αwζζ̄ + α2wζ̄ζ̄ ,

vzz̄ = ᾱwζζ + (1 + αᾱ)wζζ̄ + αwζ̄ ζ̄ ,

vz̄z̄ = ᾱ2wζζ + 2ᾱwζζ̄ + wζ̄ζ̄ .

When we replace this in the PDE in (14.8), we see that the coefficients of
both wζζ and wζ̄ ζ̄ vanish if α is a root of the quadratic equation

(1 + 2i)α2 − 6α+ 1 − 2i = 0;

that is, if α = 1−2i or α = 1
5 (1−2i). Choosing, say, the first root, we have

the transformation

ζ = z + (1 + 2i)z̄, ζ̄ = z̄ + (1 − 2i)z, (14.9)

which leads to the equation
wζζ̄ = 1

4 ,

with general solution

w(ζ, ζ̄) = ϕ(ζ) + ϕ̄(ζ̄) + 1
4 ζζ̄, (14.10)
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where ϕ(ζ) is an arbitrary analytic function. As in (14.7), and taking (14.9)
into account, we now write

ϕ(ζ) =
∞∑

n=0

anζ
n =

∞∑
n=0

an

(
z + (1 + 2i)z̄

)n
,

so, by (14.9) and (14.10),

v(z, z̄) =
∞∑

n=0

[
an

(
z + (1 + 2i)z̄

)n
+ ān

(
z̄ + (1 − 2i)z

)n]
+ 1

4

(
z + (1 + 2i)z̄

)(
z̄ + (1 − 2i)z

)
. (14.11)

On the boundary ∂D, this and the BC in (14.8) give rise to the equality

∞∑
n=0

[
an

(
σ + (1 + 2i)σ−1

)n + ān

(
σ−1 + (1 − 2i)σ

)n]
+ 1

4

[
(1 + 2i)σ−2 + 6 + (1 − 2i)σ2

]
= − 1

4 (1 − 3i)σ−2 + 3
2 − 1

4 (1 + 3i)σ2.

Expanding the binomials on the left-hand side and equating the coefficients
of each power of σ on both sides, we immediately note that

an = 0, n = 3,4, . . . ,

and that, in this case,

a0 + ā0 + 2(1 + 2i)a2 + 2(1 − 2i)ā2 + 3
2 = 3

2 ,

a1 + (1 − 2i)ā1 = 0,

a2 − (3 + 4i)ā2 + 1
4 (1 − 2i) = − 1

4 (1 + 3i).

The second and third equalities, taken together with their conjugates,
yield the systems

a1 + (1 − 2i)ā1 = 0,

(1 + 2i)a1 + ā1 = 0,

a2 − (3 + 4i)ā2 = − 1
4 (2 + i),

(−3 + 4i)a2 + ā2 = − 1
4 (2 − i),
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from which a1 = 0 and a2 = 1
16 (2 + i). Replacing a2 in the first equality,

we find that a0 + ā0 = 0. Hence, by (14.11),

v(z, z̄) = a0 + ā0 + a1

(
z + (1 + 2i)z̄

)
+ ā1

(
z̄ + (1 − 2i)z

)
+ a2

(
z + (1 + 2i)z̄

)2
+ ā2

(
z̄ + (1 − 2i)z

)2

= − 1
4 (1 + 3i)z2 + 3

2 zz̄ − 1
4 (1 − 3i)z̄2,

or, in Cartesian coordinates,

u(x,y) = x2 + 3xy + 2y2.

14.2. Systems of Equations
As an illustration of the efficiency of the complex variable method in solving
linear two-dimensional systems of partial differential equations, we consider
the mathematical model of plane deformation of an elastic body. This
state is characterized by a two-component displacement vector u = (u1,u2)
defined in the two-dimensional domain D occupied by the body. In the
absence of body forces, u satisfies the system of PDEs

(λ+ μ)
[
(u1)xx + (u2)xy

]
+ μΔu1 = 0,

(λ+ μ)
[
(u1)xy + (u2)yy

]
+ μΔu2 = 0,

(14.12)

where λ and μ are physical constants and Δ is the Laplacian. We as-
sume that D is finite, simply connected (roughly, this means that D has no
“holes”), and bounded by a simple, smooth, closed contour ∂D, and consider
the Dirichlet problem for (14.12); that is, the BVP with the displacement
components prescribed on the boundary:

u1

∣∣
∂D

= f1, u2

∣∣
∂D

= f2,

where f1 and f2 are known functions. Our aim is to find u at every point
(x,y) in D.

14.6. Example. Using the same notation as in Example 14.4, consider the
BVP

2
[
(u1)xx + (u2)xy

]
+ Δu1 = 0,

2
[
(u1)xy + (u2)yy

]
+ Δu2 = 0

in D, (14.13)

u1

∣∣
∂D

= 1
2 sin(2θ), u2

∣∣
∂D

= cosθ. (14.14)
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To treat this problem in terms of complex variables, we define the complex
displacement

U = u1 + iu2

and see that

(u1)x + (u2)y = u1,z + u1,z̄ + iu2,z − iu2,z̄

= (u1 + iu2)z + (u1 − iu2)z̄ = Uz + Ūz̄. (14.15)

Next, we rewrite system (14.13) in the form

2[(u1)x + (u2)y]x + Δu1 = 0,

2[(u1)x + (u2)y]y + Δu2 = 0

and remark that, by (14.2), we have the operational equality ∂x+i∂y = 2∂z̄.

Multiplying the second equation above by i, adding it to the first one, and
using (14.15) and (14.3), we deduce that

0 = 2(∂x + i∂y)
[
(u1)x + (u2)y

]
+ Δ(u1 + iu2)

= 4∂z̄(Uz + Ūz̄) + ΔU = 4
[
(Uz + Ūz̄)z̄ + Uzz̄

]
,

or
(2Uz + Ūz̄)z̄ = 0,

with general solution
2Uz + Ūz̄ = 1

2 α
′(z),

where α′ is an analytic function of z. The algebraic system formed by this
equation and its conjugate now yields

Uz = 1
3 α

′(z) − 1
6 ᾱ

′(z̄); (14.16)

therefore, by integration,

U(z, z̄) = 1
3 α(z) − 1

6 zᾱ
′(z̄) + β̄(z̄), (14.17)

where β is another analytic function of z.
To investigate the arbitrariness of α and β, let p and q be functions of z

such that α + p and β + q generate the same displacement U as α and β.
Then, by (14.16),

1
3

[
α′(z) + p′(z)

] − 1
6

[
ᾱ′(z̄) + p̄′(z̄)

]
= 1

3 α
′(z) − 1

6 ᾱ
′(z̄),
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from which 2p′(z) − p̄′(z̄) = 0. This equation together with its conjugate
yield p′(z) = 0, so p(z) = c, where c is a complex number. Using (14.17),
we now see that

1
3 α(z) + 1

3 c− 1
6 zᾱ

′(z̄) + β̄(z̄) + q̄(z̄) = 1
3 α(z) − 1

6 zᾱ
′(z̄) + β̄(z̄),

so q(z) = − 1
3 c̄. The arbitrariness produced by the complex constant c in the

functions α and β can be eliminated by imposing an additional condition.
For example, if the origin is in D, we may ask that

α(0) = 0. (14.18)

As in the preceding section, let σ be a generic point on the circle ∂D.
Then, by (14.5) and the fact that σ̄ = σ−1, the BC (14.14) can be written
as

U
∣∣
∂D

= (u1 + iu2)
∣∣
∂D

= 1
4 i(σ

−2 + 2σ−1 + 2σ − σ2);

hence, in view of (14.17), we must have

1
3 α(σ) − 1

6 σᾱ
′(σ−1) + β̄(σ−1) = 1

4 i(σ
−2 + 2σ−1 + 2σ − σ2). (14.19)

Since D is finite and simply connected, we can consider series expansions
of the analytic functions α and β, of the form

α(z) =
∞∑

n=0

anz
n, β(z) =

∞∑
n=0

bnz
n.

Substituting these series in (14.19), we arrive at

∞∑
n=0

(
1
3 anσ

n − 1
6 nānσ

−n+2 + b̄nσ
−n

)
= 1

4 i(σ
−2 + 2σ−1 + 2σ − σ2).

The next step consists in equating the coefficients of each power of σ on
both sides, and it is clear that we have an = bn = 0 for all n = 3,4, . . . .
Thus, since (14.18) implies that a0 = 0, the only nonzero coefficients are
given by the equalities

b̄2 = 1
4 i, b̄1 = 1

2 i, b̄0 − 1
3 ā2 = 0, 1

3 a1 − 1
6 ā1 = 1

2 i,
1
3 a2 = − 1

4 i.



294 COMPLEX VARIABLE METHODS

Coefficient a1 is computed by combining the equation that it satisfies with
its complex conjugate form. In the end, we obtain

a1 = i, a2 = − 3
4 i, b0 = − 1

4 i, b1 = − 1
2 i, b2 = − 1

4 i,

which generate the functions

α(z) = iz − 3
4 iz

2, β(z) = − 1
4 i− 1

2 iz − 1
4 iz

2

and, by (14.17), the complex displacement

U(z, z̄) = 1
4 i(1 + 2z + 2z̄ − z2 − zz̄ + z̄2).

Hence, in terms of Cartesian coordinates, the solution of the given BVP is

u1(x,y) = Re
(
U(z, z̄)

)
= xy,

u2(x,y) = Im
(
U(z, z̄)

)
= 1

4 (1 + 4x− x2 − y2).

14.7. Remark. If the functions f1 and f2 prescribed on ∂D are not finite
sums of integral powers of σ, they need to be expanded in full Fourier series.
Using an argument similar to that in Section 8.1, we can write such a series
in the form (see Chapter 8)

f(θ) =
∞∑

n=−∞
cne

−inθ =
∞∑

n=−∞
cnσ

−n,

where

cn =
1
2π

π∫
−π

f(θ)einθ dθ.

Exercises

In (1)–(6) find the solution u(x,y) of the BVP

Δu = q in D,

u = f on ∂D,

where D and ∂D are the disk with the center at the origin and radius 1 and
its circular boundary, respectively, θ is the polar angle mentioned earlier in
this chapter, and the number q and function f are as indicated.
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(1) q = −6, f(θ) = 1
2

[
1 + 5cos(2θ)

]
.

(2) q = 8, f(θ) = 2 + 2cosθ − 3cos(2θ).
(3) q = −2, f(θ) = 1

2

[ − 5 + 2sinθ − 3cos(2θ) + 3sin(2θ)
]
.

(4) q = 2, f(θ) = 1
2

[
1 + 6sinθ − 5cos(2θ) + sin(2θ)

]
.

(5) q = 4, f(θ) = 1 + 2cosθ − 3sinθ + 2cos(2θ) − 2sin(2θ).
(6) q = −4, f(θ) = 2 + 2cosθ − sinθ + 2cos(2θ) − 4sin(2θ).

In (7)–(14) find the solution u(x,y) of the BVP

uxx + auxy + buyy = q in D,

u = f on ∂D,

where D and ∂D are the disk with the center at the origin and radius 1 and
its circular boundary, respectively, θ is the polar angle, and the numbers a,
b, and q and function f are as indicated.

(7) a = −4, b = 5, q = 18, f(θ) = 1
2

[
3 + cos(2θ) − sin(2θ)

]
.

(8) a = −2, b = 5, q = −8, f(θ) = 2cosθ + 2cos(2θ) + sin(2θ).
(9) a = 2, b = 2, q = 2, f(θ) = 1

2

[ − 1 − 2sinθ + 3cos(2θ) + 4sin(2θ)
]
.

(10) a = 4, b = 5, q = −28,
f(θ) = 2 + cosθ − 2sinθ + 3cos(2θ) + sin(2θ).

(11) a = −1, b = 5
4 , q = 25

2 ,

f(θ) = 1
2

[ − 4 + 4cosθ − 2cos(2θ) − 3sin(2θ)
]
.

(12) a = −4, b = 17
4 , q = − 67

2 ,

f(θ) = 1
2

[ − 5 + 2cosθ + 5cos(2θ) + 3sin(2θ)
]
.

(13) a = −2, b = 10, q = 66,
f(θ) = 3 + cosθ − 2sinθ − cos(2θ) − sin(2θ).

(14) a = −4, b = 13, q = −4,
f(θ) = 1 + 2cosθ − 3sinθ + 2cos(2θ) − 2sin(2θ).

In (15)–(24) find the solution
(
u1(x,y),u2(x,y)

)
of the BVP

(λ+ μ)
[
(u1)xx + (u2)xy

]
+ μΔu1 = 0,

(λ+ μ)
[
(u1)xy + (u2)yy

]
+ μΔu2 = 0

in D,

u1 = f1, u2 = f2 on ∂D,
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where D and ∂D are the disk with the center at the origin and radius 1 and
its circular boundary, respectively, Δ is the Laplacian, θ is the polar angle,
and the numbers λ and μ and functions f1 and f2 are as indicated.

(15) λ = 1, μ = 1
2 , f1(θ) = 2cosθ − cos(2θ), f2(θ) = cosθ + sin(2θ).

(16) λ = 1, μ = 1, f1(θ) = sinθ + cos(2θ), f2(θ) = 1 + 2sin(2θ).
(17) λ = 2, μ = 1, f1(θ) = 2 − cosθ + 2sin(2θ), f2(θ) = 1 − cos(2θ).
(18) λ = −1, μ = 2,

f1(θ) = cosθ + 2sin(2θ), f2(θ) = 1 + 2cos(2θ) + sin(2θ).
(19) λ = −2, μ = 3,

f1(θ) = 1 + 2cos(2θ) − sin(2θ), f2(θ) = cosθ − 2sin(2θ).
(20) λ = 1, μ = 2,

f1(θ) = 1 − sinθ + cos(2θ), f2(θ) = cos(2θ) − 2sin(2θ).
(21) λ = 1

2 , μ = 1,
f1(θ) = 2 + sinθ + sin(2θ), f2(θ) = 3cos(2θ) − sin(2θ).

(22) λ = − 1
2 , μ = 1,

f1(θ) = −cosθ + 2cos(2θ), f2(θ) = 2 − cos(2θ) − sin(2θ).
(23) λ = 3, μ = 1,

f1(θ) = cos(2θ) − sin(2θ), f2(θ) = 1 + sinθ − 2cos(2θ).
(24) λ = − 1

2 , μ = 2,
f1(θ) = cosθ − 2sin(2θ), f2(θ) = cos(2θ) + 3sin(2θ).



Answers to Odd-Numbered
Exercises

CHAPTER 1

(1) y = C(x2 + 1). (3) y = (x− 1)−2(x3/3 − x2/2 + C).

(5) y = Ce−5x/2. (7) y = C1e
x + C2e

3x.

(9) y = (C1 +C2x)e
−x/2. (11) y = e−x[C1 cos(2x) + C2 sin(2x)].

(13) y = Ce−2x + x− 1/2 + e4x/6. (15) y = (C + x/2)ex/2.

(17) y = C1 coshx+ C2 sinhx− x2 + x− 4. (19) y = C1e
5x + (C2 − 3x)e−5x.

(21) y = C1x
3/2 + C2x

−1. (23) Linear. (25) Nonlinear.

CHAPTER 2

(1) f(x) ∼ 1/2 +
∞∑

n=1
[(−1)n − 1](1/(nπ)) sin(nπx).

(3) f(x) ∼ 1/2 +
∞∑

n=1
[1 − (−1)n](5/(nπ)) sin(nπx).

(5) f(x) ∼ 1 +
∞∑

n=1
(−1)n+1(2/(nπ)) sin(nπx).

(7) f(x) ∼
∞∑

n=1
{[1 − (−1)n](2/(n2π2))cos(nπx/2)

+ [3− (−1)n](1/(nπ)) sin(nπx/2)}.
(9) f(x) ∼ −1/4 +

∞∑
n=1

{[(−1)n − 1](1/(n2π2))cos(nπx)

− [2(−1)n + 1](1/(nπ)) sin(nπx)}.
(11) f(x) ∼ 10/3 +

∞∑
n=1

(−1)n(4/(n2π2))[cos(nπx) + nπ sin(nπx)].

(13) f(x) ∼ (e4 − 1)/(4e2) +
∞∑

n=1
(−1)n[(e4 − 1)/(e2(4 + n2π2))]

× [2cos(nπx/2)− nπ sin(nπx/2)].

(15) f(x) ∼ 9/8 +
∞∑

n=1
{(2/(n2π2))[(−1)n − cos(nπ/2)]cos(nπx/2)

+ [(−1)n+1(3/(nπ))+ (2/(n2π2)) sin(nπ/2)]sin(nπx/2)}.
(17) f(x) ∼

∞∑
n=1

(2/(nπ))[cos(nπ/2) − (−1)n] sin(nπx/2);

f(x) ∼ 1/2 −
∞∑

n=1
(2/(nπ)) sin(nπ/2)cos(nπx/2);

(19) f(x) ∼
∞∑

n=1
(2/(nπ))[1 + (−1)n − 2cos(nπ/2)]sin(nπx/2);

f(x) ∼
∞∑

n=1
(4/(nπ)) sin(nπ/2)cos(nπx/2).
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(21) f(x) ∼
∞∑

n=1
[2 − (−1)n](2/(nπ)) sin(nπx);

f(x) ∼ 3/2 +
∞∑

n=1
[1 − (−1)n](2/(n2π2))cos(nπx).

(23) f(x) ∼
∞∑

n=1
(2/(nπ))[−3cos(nπ/2)+(2/(nπ)) sin(nπ/2)+(−1)n2]sin(nπx/2);

f(x) ∼ −3/4 +
∞∑

n=1
(2/(nπ))[3sin(nπ/2) + (2/(nπ))cos(nπ/2) − 2/(nπ)]

×cos(nπx/2).

(25) f(x) ∼
∞∑

n=1
(2/(nπ))[2+(−1)n−3cos(nπ/2)+(4/(nπ)) sin(nπ/2)]sin(nπx/2);

f(x) ∼ 1 +
∞∑

n=1
{(6/(nπ)) sin(nπ/2) + (8/(n2π2))cos(nπ/2)

+[(−1)n+1−1](4/(n2π2))}cos(nπx/2).

(27) f(x) ∼
∞∑

n=1
(2/(n3π3))[8(−1)n + n2π2 − (8 + 3n2π2)cos(nπ/2)

+ 2nπ sin(nπ/2)]sin(nπx/2);

f(x) ∼ 5/12 +
∞∑

n=1
(2/(n3π3)){[2(−1)n − 1]2nπ + 2nπ cos(nπ/2)

+(8+3n2π2) sin(nπ/2)}cos(nπx/2).

(29) f(x) ∼ 3sinx+
∞∑

n=2
(−1)n+1(2/n) sin(nx);

f(x) ∼ 2/π+π/2−(4/π)cosx+
∞∑

n=2
[2(1−(−1)n−2n2)/((n2−1)n2π)]cos(nx).

CHAPTER 3

(1) Regular. (3) Singular. (5) Singular.

(7) λn = (2n− 1)2/4, fn(x) = sin
(
(2n− 1)x/2

)
, n = 1,2, . . . .

(9) λn = ζ2n, where ζn are the roots of the equation tanζ = −ζ,
fn(x) = ζn cos(ζnx) + sin(ζnx), n = 1,2, . . . .

(11) λn = ζ2n, where ζn are the roots of the equation cotζ = ζ,

fn(x) = ζn cos(ζnx) + sin(ζnx), n = 1,2, . . . .

(13) λn = (4 + n2π2)/3, fn(x) = e−2x sin(nπx), n = 1,2, . . . .

(15) λn = 2ζ2n + 9/8, where ζn are the roots of the equation tanζ = 4ζ/3,

fn(x) = e−3x/4 sin(ζnx), n = 1,2, . . . .

(17) u(x) ∼
∞∑

n=1
[4/((2n − 1)π)] sin((2n− 1)x/2).

(19) u(x) ∼
∞∑

n=1
[8(2n− 1 − 3(−1)n)/((2n− 1)2π)] sin((2n− 1)x/2).

(21) u(x) ∼
∞∑

n=1
{[8 − 20sin((3 − 2n)π/4)]/((2n − 1)π)}sin((2n− 1)x/2).

(23) u(x) ∼
∞∑

n=1
[2/((2n − 1)2π)]{(2n− 1)(π − 2)sin((3 − 2n)π/4)

− 4[1 + (−1)n − 2n+ sin((2n− 1)π/4)]}sin((2n− 1)x/2).
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(25) u(x) ∼
∞∑

n=1
[2(−1)n+1/((2n− 1)π)]cos((2n− 1)πx/2).

(27) u(x) ∼
∞∑

n=1
[(8 − 4(−1)n(2n− 1)π)/((2n− 1)2π2)]cos((2n− 1)πx/2).

(29) u(x) ∼
∞∑

n=1
{4[(−1)n+1 − 3sin((2n− 1)π/4)]/((2n− 1)π)}cos((2n− 1)πx/2).

(31) u(x) ∼
∞∑

n=1
[4/((2n − 1)2π2)]{4(2n − 1)π sin((2n− 1)π/4)

−4sin((3−2n)π/4)+(2n−1)π[(−1)n−sin((2n−1)π/4)]}cos((2n−1)πx/2).

(33) u(x) ∼ 1.1892sin(2.0288x) + 0.3134sin(4.9132x) + 0.2776sin(7.9787x)

+ 0.1629sin(11.0855x) + 0.1499sin(14.2074x) + · · · .
(35) u(x) ∼ 0.9639sin(1.1444x) + 0.8718sin(2.5435x) + 0.4227sin(4.0481x)

+ 0.3836sin(5.5863x) + 0.2583sin(7.1382x) + · · · .
(37) u(x) ∼ 2.4222sin(2.0288x) − 2.9144sin(4.9132x) − 1.3509sin(7.9787x)

+ 0.3704sin(11.0855x) + 0.3322sin(14.2074x) + · · · .
(39) u(x) ∼ 1.0549sin(2.0288x) + 0.0227sin(4.9132x) − 0.0157sin(7.9787x)

− 0.3785sin(11.0855x) + 0.0242sin(14.2074x) + · · · .
(41) u(x) ∼ e−2x[3.8004sin(πx) − 1.8466sin(2πx) + 1.7035sin(3πx)

− 0.9917sin(4πx) + 1.0511sin(5πx) + · · ·].
(43) u(x) ∼ e−2x[8.3031sin(πx) − 5.7781sin(2πx) + 4.5576sin(3πx)

− 3.2366sin(4πx) + 2.8691sin(5πx) + · · ·].
(45) u(x) ∼ e−2x[−6.4533sin(πx/2) + 9.8385sin(πx) − 4.7668sin(3πx/2)

+ 1.9083sin(2πx) − 2.4786sin(5πx/2) + · · ·].
(47) u(x) ∼ e−2x[−3.3732sin(πx) + 2.1406sin(2πx) − 1.8243sin(3πx)

+ 0.7873sin(4πx) − 1.0104sin(5πx) + · · ·].
(49) (i) u(x) ∼ 1.6020J0(2.4048x) − 1.0463J0(5.5201x) + 0.8514J0(8.6537x)

− 0.7296J0(11.7915x) + 0.6485J0(14.9309x) + · · · .
(ii) u(x) ∼ 2.2131J1(3.8317x) − 0.5171J1(7.0156x) + 1.1046J1(10.1735x)

− 0.4550J1(13.3237x) + 0.8113J1(16.4706x) + · · · .
(51) (i) u(x) ∼ −0.8503J0(2.4048x) + 2.2951J0(5.5201x) − 1.5435J0(8.6537x)

+ 1.5114J0(11.7915x) − 1.2461J0(14.9309x) + · · · .
(ii) u(x) ∼ −1.6747J1(3.8317x) + 2.3326J1(7.0156x) − 1.2572J1(10.1735x)

+ 1.6073J1(13.3237x) − 1.0429J1(16.4706x) + · · · .
(53) (i) u(x) ∼ 0.8947J0(2.4048x) − 4.0540J0(5.5201x) + 2.5517J0(8.6537x)

− 0.0663J0(11.7915x) + 0.7009J0(14.9309x) + · · · .
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(ii) u(x) ∼ 2.2028J1(3.8317x) − 4.4956J1(7.0156x) + 0.8536J1(10.1735x)

− 0.1883J1(13.3237x) + 1.4431J1(16.4706x) + · · · .
(55) (i) u(x) ∼ 1.2920J0(2.4048x) − 0.2378J0(5.5201x) − 0.0983J0(8.6537x)

+ 0.0356J0(11.7915x) + 0.0602J0(14.9309x) + · · · .
(ii) u(x) ∼ 1.6299J1(3.8317x) + 0.4360J1(7.0156x) + 0.2091J1(10.1735x)

+ 0.2123J1(13.3237x) + 0.2485J1(16.4706x) + · · · .
(57) u(x) = (13/3)P0(x) − 3P1(x) + (2/3)P2(x).

(59) u(x) ∼ −P0(x) + 3P1(x) − (7/4)P3(x) + (11/8)P5(x) + · · · .
(61) u(x) ∼ −(5/4)P0(x)+(5/4)P1(x)+(5/16)P2(x)−(7/16)P3(x)−(3/32)P4(x)

+ (11/32)P5(x) + · · · .
(63) u(x) ∼ P0(x) − (3/2)P1(x) − (5/4)P2(x) + (7/8)P3(x) + (3/8)P4(x)

− (11/16)P5(x) + · · · .
(65) u(θ,ϕ) = −(2

√
π/3)Y0,0(θ,ϕ) −

√
2π/15Y2,−2(θ,ϕ) − (2

√
5π/3)Y2,0(θ,ϕ)

−
√

2π/15Y2,2(θ,ϕ).

(67) u(θ,ϕ) ∼ √
πY0,0(θ,ϕ) + (

√
3π/2)Y1,0(θ,ϕ) + · · · .

(69) u(θ,ϕ) ∼ 2
√
πY0,0(θ,ϕ) +

√
π/6(1 − i)Y1,−1(θ,ϕ) +

√
3πY1,0(θ,ϕ)

−
√
π/6(1 + i)Y1,1(θ,ϕ) − (1/8)

√
15π/2(1 − i)Y2,−1(θ,ϕ)

+ (1/8)
√

15π/2(1 + i)Y2,1(θ,ϕ) + · · · .
(71) u(θ,ϕ) ∼ (

√
π/3)Y0,0(θ,ϕ) − (5/8)

√
π/6 iY1,−1(θ,ϕ) − (

√
3π/8)Y1,0(θ,ϕ)

− (5/8)
√
π/6 iY1,1(θ,ϕ) +

√
π/30Y2,−2(θ,ϕ)

+ (83/8)
√
π/30 iY2,−1(θ,ϕ) − (1/3)

√
π/5Y2,0(θ,ϕ)

+ (83/8)
√
π/30 iY2,1(θ,ϕ) +

√
π/30Y2,2(θ,ϕ) + · · · .

CHAPTER 4

(5) α = 3/4, β = −17/8.

(7) α = 4, β = −10.

(9) (i) α = 1, β = −1/2, vtt(x,t) + (7/4)v(x,t) = vxx(x,t);

(ii) α = 1 −√
7/2, β = −1/2, vtt(x,t) = vxx(x,t) −√

7vx(x,t);

(11) (iii) α =
√

2/4, β = −1/2, vtt(x,t) + vt(x,t) = 2vxx(x,t).

(13) α = 1, β = 2, vxx(x,y) + vyy(x,y) + 2v(x,y) = 0.

(15) α = 3/2, β = 1/2, vxx(x,y) + vyy(x,y) − (1/2)v(x,y) = 0.
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CHAPTER 5

(1) u(x,t) = sin(2πx)e−4π2t − 3sin(6πx)e−36π2t.

(3) u(x,t) =
∞∑

n=1
[(−1)n − 1](4/(nπ)) sin(nπx)e−n2π2t.

(5) u(x,t) =
∞∑

n=1
[1 − (−1)n3](2/(nπ)) sin(nπx)e−n2π2t.

(7) u(x,t) =
∞∑

n=1
[(2/(n2π2)) sin(nπ/2) − (1/(nπ))cos(nπ/2)]sin(nπx)e−n2π2t.

(9) u(x,t) = 3 − 2cos(4πx)e−16π2t.

(11) u(x,t) = 1/2 +
∞∑

n=1
[1 − (−1)n](6/(n2π2))cos(nπx)e−n2π2t;

(13) u(x,t) = −1 −
∞∑

n=1
(4/(nπ)) sin(nπ/2)cos(nπx)e−n2π2t.

(15) u(x,t) = 3/4 +
∞∑

n=1
{−(2/(nπ)) sin(nπ/2) + (4/(n2π2))[(−1)n − cos(nπ/2)]}

× cos(nπx)e−n2π2t.

(17) u(x,t) = 3sin(nπx/2)e−π2t/4 − sin(5πx/2)e−25π2t/4.

(19) u(x,t) =
∞∑

n=1
[8/((2n− 1)π) + (−1)n+18/((2n− 1)2π2)]

× sin((2n− 1)πx/2)e−(2n−1)2π2t/4.

(21) u(x,t) = 2cos(5πx/2)e−25π2t/4.

(23) u(x,t) =
∞∑

n=1
[(−1)n4/((2n− 1)π) − 16/((2n− 1)2π2)]

× cos((2n− 1)πx/2)e−(2n−1)2π2t/4.

(25) u(x,t) = 2sin(2πx)e−4π2t − cos(5πx)e−25π2t.

(27) u(x,t) = 3/2 +
∞∑

n=1
[(−1)n − 1](3/(nπ)) sin(nπx)e−n2π2t.

(29) u(x,t) = −3sin(2πx)cos(2πt) + 4sin(7πx)cos(7πt)

+ (1/(3π)) sin(3πx) sin(3πt).

(31) u(x,t) = 2sin(3πx)cos(3πt) +
∞∑

n=1
[1 − (−1)n](4/(n2π2)) sin(nπx) sin(nπt).

(33) u(x,t) =
∞∑

n=1
sin(nπx)[(4/(nπ))(3 + 4cos(nπ/2))sin2(nπ/4)cos(nπt)

+ (3/(2π)) sin(2πt)].

(35) u(x,t) =
∞∑

n=1
sin(nπx){(1/(n2π2))[(−1)n+12nπ + nπ cos(nπ/2)

+2sin(nπ/2)]cos(nπt)+[(−1)n−1](2/(n2π2)) sin(nπt)}.
(37) u(x,t) = 2 − 3cos(4πx)cos(4πt) + (2/(3π))cos(3πx) sin(3πt).

(39) u(x,t) = −3cos(2πx)cos(2πt)

+
∞∑

n=1
[(−1)n − 1](4/(n3π3))cos(nπx) sin(nπt).

(41) u(x,t) = 5/2 +
∞∑

n=1
−(2/(nπ)) sin(nπ/2)cos(nπx)cos(nπt)

− (1/(3π))cos(3πx) sin(3πt).
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(43) u(x,t) = 13/8 + t/2

+
∞∑

n=1
cos(nπx){(1/(n2π2))[2cos(nπ/2) − nπ sin(nπ/2) − 2]cos(nπt)

+ [1− (−1)n](2/(n3π3)) sin(nπt)}.
(45) u(x,t) = (6/(5π)) sin(5πx/2)sin(5πt/2)

+
∞∑

n=1
[8/((2n− 1)π)]cos((2n− 1)π/4)sin((2n− 1)πx/2)cos((2n− 1)πt/2).

(47) u(x,y) = −3csch(4π) sin(2πx) sinh(2π(y − 2)) + csch(6π) sin(3πx) sinh(3πy).

(49) u(x,y) = 3sech(2π)cosh(2πx)cos(2πy) + 1 − x

+
∞∑

n=1
[(−1)n − 1](8/(n3π3)) sech(nπ/2)sinh(nπ(x− 1)/2)cos(nπy/2).

(51) u(x,y) = (6/π) sechπ cos(πx/2)sinh(πy/2)

+
∞∑

n=1
(4/(2n− 1)π)[(−1)n+12 − sin((2n− 1)π/4)]sech((2n− 1)π)

× cos((2n− 1)πx/2)cosh((2n− 1)π(y− 2)/2).

(53) u(r,θ) = 3 − 32r3 cos(3θ).

(55) u(r,θ) = 1 +
∞∑

n=1
[1 − (−1)n](1/(2n−2nπ))rn sin(nθ).

(57) u(x,t) = 3sin(2πx)e−(1+16π2)t/4+x/2.

(59) u(x,t) =
∞∑

n=1
(4/(1 + 4n2π2))

× {(−1)n+12nπ + e1/4[2nπ cos(nπ/2) + sin(nπ/2)]}sin(nπx)

× e−1/2−(1+4n2π2)t/4+x/2.

(61) u(x,t) = (1 + 16π2)−1/2e(x−2t)/4 sin(2πx) sin((1 + 16π2)1/2t)

− (1 + 36π2)−1/2e(x−2t)/4 sin(3πx)

× [2(1 + 36π2)1/2 cos((1+ 36π2)1/2t) + sin((1+ 36π2)1/2t)].

(63) u(x,t) = 4(1 + 4π2)−1/2 e(x−2t)/4 sin(πx) sin((1 + 4π2)1/2t)

+
∞∑

n=1
4(1 + 4n2π2)−1/2(1 + 16n2π2)−1

× [4nπ cos(nπ/2) + sin(nπ/2) − 4e1/8nπ]e(2x−4t−1)/8 sin(nπx)

× [2(1 + 4n2π2)1/2 cos((1 + 4n2π2)1/2t) + sin((1 + 4n2π2)1/2t)].

(65) u(x,y) = ey−1[ecsch((4 + π2)1/2/2)sin(πx/2)sinh((4 + π2)1/2(y − 1)/2)

+2csch((1+π2)1/2) sin(πx) sinh((1+π2)1/2y)].

(67) u(x,y) = −ey[3csch(2(1 + 4π2)1/2) sinh((1 + 4π2)1/2(x− 2))sin(2πy)

+ 2csch(2(1 + π2)1/2) sinh((1 + π2)1/2x) sin(πy)].

(69) u(x,y, t) = sin(πx) sin(2πy)cos(
√

5πt)

− (2/(
√

5π)) sin(2πx) sin(πy) sin(
√

5πt).

(71) u(x,y, t) = − sin(πx)cos(2πy)cos(
√

5πt) + (3/(2π)) sin(2πx) sin(2πt).

(73) u(x,y, t) = (4/π2)
∞∑

m=1

∞∑
n=1

(1/(mn)){[1 − (−1)m][1 − (−1)n]

× cos((m2 + n2)1/2πt)

+(−1)m+n(π(m2+n2))−1/2 sin((m2+n2)1/2πt)}sin(nπx) sin(mπy).
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(75) u(r,θ, t) = [5.2698J2(5.1356r)cos(5.1356t) − 0.3168J2(8.4172r)cos(8.4172t)

+ 2.6215J2(11.6198r)cos(11.6198t) − 0.4762J2(14.7960r)cos(14.7960t)

+ 1.9049J2(17.9598r)cos(17.9598t) + · · ·] sin(2θ).

(77) u(r,θ, t)= [−0.3382J1(3.8317r)cos(3.8317t) + 0.1354J1(7.0156r)cos(7.0156t)

− 0.0774J1(10.1735r)cos(10.1735t) + 0.0516J1(13.3237r)cos(13.3237t)

− 0.0375J1(16.4706r)cos(16.4706t) + · · ·] sinθ.
(79) u(r,θ,ϕ) = 1/3 + r2(2/3 − 2cos2ϕ− sinθ sinϕcosϕ+ cos(2θ) sin2ϕ) + · · · .

CHAPTER 6

(1) u∞(x) = 2x3 − 3x2 + 4x− 1. (3) u∞(x) = x4 + 2x2 + 3x− 2.

(5) γ = −6, u∞(x) = x3 + 2x2 − 3x− 1. (7) u∞(x) = x2 + 2x− 1.

(9) u∞(x) = ex − 2e2x − x. (11) u∞(x) = 3x2 − 5x− 2.

(13) v(x,t) = u(x,t)− t− 1 + x(t2 − t+ 1), q(x,t) = 2xt+ t− 3, f(x) = 3x− 1.

(15) v(x,t) = u(x,t) − 3xt− (1/2)x2(t2 − 2t),

q(x,t) = −x2t+ x2 + t2 − 2x− t− 2, f(x) = 2x.

(17) v(x,t) = u(x,t) − t/2 + 1 − x(t+ 2), q(x,t) = −5/2 + t, f(x) = 1.

(19) v(x,t) = u(x,t) − 2t− 3 + x(7 + 2t− t2),

q(x,t) = −xt, f(x) = 8x− 2, g(x) = 3x− 2.

(21) v(x,t) = u(x,t) − x(t− 1) − (1/2)x2(t2 − t+ 3),

q(x,t) = −x2 − xt+ t2 + 2x− t+ 3, f(x) = 1 + 2x− 3x2/2, g(x) = x2/2.

(23) v(x,y) = u(x,y) − 2y2 + 1 − x(1 + y − 3y2),

q(x,y) = −4x− y + 4, f(x) = 2x+ 1, g(x) = −x.
(25) v(x,y) = u(x,y) − x(2 − y) − x2(4y − 1)/2,

q(x,y) = 2x+ 3y − 1, f(x) = x2/2 + x, g(x) = 1 − 3x− 3x2/2.

(27) v(x,t) = u(x,t) − 2t− 3 − x(1 − 5t),

q(x,t) = xt+ 4x+ 10t − 3, f(x) = −1.

(29) v(x,t) = u(x,t) + x(2t− 1) − (1/2)x2(3t+ 2),

q(x,t) = −3x2/2 − 5xt− 3x+ 7t+ 1, f(x) = 2 − x2.

CHAPTER 7

(1) u(x,t) = [((8π4 + 1)/(8π4))e−4π2t + (1/(2π2))t− 1/(8π4)] sin(2πx)

− 5e−16π2t sin(4πx).
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(3) u(x,t) = e−π2t sin(πx)

+ [((18π2 − 3)/(9π2 − 1))e−9π2t + (1/(9π2 − 1))e−t] sin(3πx)

+ (1/(25π2))(e−25π2t − 1)sin(5πx).

(5) u(x,t) = [(1/π2)(t− 1) − 1/π4 + (1 + 1/π2 + 1/π4)e−π2t] sin(πx)

+ 2e−4π2t sin(2πx).

(7) u(x,t) =
∞∑

n=1
(2/(n5π5)){[(−1)n+1 + 2n4π4 sin2(nπ/4)]e−n2π2t

+ (−1)n(1 − n2π2t)}sin(nπx).

(9) u(x,t) = 2t+ 2e−π2t cos(πx) + [1/(4π2) − ((4π2 + 1)/(4π2))e−4π2t] cos(2πx).

(11) u(x,t) = (1/2)t2 + 1 + [1/π4 − (1/π2)t− (1/π4)e−π2t] cos(πx)

+ 3e−16π2t cos(4πx).

(13) u(x,t) = 2 + (1/(π2 − 1))(e−t − e−π2t)cos(πx) − e−9π2t cos(3πx).

(15) u(x,t) = 1 − t2/2 − 3e−4π2t cos(2πx)

+
∞∑

n=1
(4/(n6π6)){[1 + (−1)n]e−n2π2t − 1 + (−1)n

+ [1 − (−1)n]n2π2t}cos(nπx).

(17) u(x,t) = [((9π2 − 4)/(9π2))e−9π2t/4 + 4/(9π2)] sin(3πx/2)

+(8/(25π2))(e−25π2t/4−1)sin(5πx/2).

(19) u(x,t) = (t2 − 2t) sin(3πx/2) + 2e−t sin(5πx/2).

(21) u(x,t) = cos(πt) sin(πx)

+[1/(2π2)− (1/(2π2))cos(2πt)− (3/(2π)) sin(2πt)] sin(2πx).

(23) u(x,t) = [cos(πt) + ((2π2 − 1)/π3) sin(πt) + (1/π2)t] sin(πx)

+ (4/(3π)) sin(3πt) sin(3πx).

(25) u(x,t) = (1/(8π3))[2π(1 + t) − 2π cos(2πt) − sin(2πt)] sin(2πx)

+
∞∑

n=1
[(−1)n+1−1](2/(n2π2)) sin(nπt) sin(nπx).

(27) u(x,t) = (3/2)t2 + 1 + 2cos(2πt)cos(2πx) + (1/(3π)) sin(3πt)cos(3πx).

(29) u(x,t) = (1/2)t2 + t+ (1/π) sin(πt)cos(πx)

+[2cos(2πt)−((4π2+1)/(8π3)) sin(2πt)+(1/(4π2))t] cos(2πx).

(31) u(x,t) = −1/2 − t2/4

+
∞∑

n=1
[(−1)n − 1](2/(n4π4))[(n2π2 + 1)cos(nπt) − 1]cos(nπx).

(33) u(x,y) = −cosech(2π) sinh(π(y − 2))sin(πx)

+ [(1/(4π2) − 1)cosech(4π) sinh(2πy)

− (1/(4π2))cosech(4π) sinh(2π(y − 2)) − 1/(4π2)] sin(2πx)

+ 2cosech(6π) sinh(3π(y − 2))sin(3πx).
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(35) u(x,y) = (2/π3) sechπ sin(πx)[sinh(π(y − 1)) − πy coshπ]

+
∞∑

n=1
(2/(n2π2))csch(2nπ) sin(nπx)cosh(nπ(y− 2)).

(37) u(x,y) = cosech(π/2)sinh(πx/2)sin(πy/2)

+ {1− (cosechπ)[sinh(πx)+ sinh(π(x− 1))]}sin(πy).

(39) u(x,y) = (1/π3)[sechπ sinh(π(x− 1)) + π(1 − x)] sin(πy)

−
∞∑

n=1
(4/(nπ)) sech(nπ/2)cosh(nπx/2)sin(nπy/2).

(41) u(x,y) = 1 − y2 + (2y − 1)cos(2πx).

(43) u(x,y) = 2sech(2π)cos(πx)cosh(π(y − 2)) + (1/(8π4))cos(2πx)

× [4π(1 − π2) sech(4π) sinh(2πy) + sech(4π)cosh(2π(y − 2)) − 2π2y2 − 1].

(45) u(x,y) = 2csch(π/2)sinh(πx/2)cos(πy/2)

− (1/π4)[π2 − 2 − π2x2 + 2cschπ sinh(πx)

− (π4 − π2 + 2)cschπ sinh(π(x− 1))]cos(πy).

(47) u(x,y) = (4/(27π3)) sech(3π/2)[3π cosh(3πx/2) + 2sinh(3π(x− 1)/2)

− 3πxcosh(3π/2)]cos(3πy/2)

+ y +
∞∑

n=1
[1− (−1)n](4/(n2π2)) sech(nπ/2)cosh(nπx/2)cos(nπy/2).

(49) u(r,θ) = 1 − 2r2 + 2r sinθ + 2r3 cos(3θ).

(51) u(r,θ) = 2r3 − r2 + r3 cosθ + (r4 + r2) sin(3θ).

(53) u(r,θ) = (1/20)(−4r3 + 4r2 + 5r2 lnr) sin(2θ)

+1/2+
∞∑

n=1
[1−(−1)n](1/(nπ))rn sin(nθ).

(55) u(x,t) = (1/(7 − 16π2)2){8[10 + 32π2 + (21 − 48π2)t]

− (256π4 + 32π2 + 129)e(7−16π2)t/8}sin(πx).

(57) u(x,t) = −e(7−64π2)t/8+x/4 sin(2πx)

+
∞∑

n=1
[(−1)n − 1][16/(nπ(16n2π2 − 7))][e(7−16n2π2)t/8 − 1]ex/4 sin(nπx).

(59) u(x,t) = tex sin(πx).

(61) u(x,t) = −e−t/2+x[cos((4π2 + 7)1/2t/2)

+ (4π2 + 7)−1/2 sin((4π2 + 7)1/2t/2)]sin(πx)

+
∞∑

n=1
[(−1)n − 1]2[nπ(n2π2 + 2)(4n2π2 + 7)]−1{−(7 + 4n2π2)

+ e−t/2[(4n2π2 + 7)cos((4n2π2 + 7)1/2t/2)

+(4n2π2+7)1/2 sin((4n2π2+7)1/2t/2)]}ex sin(nπx).

(63) u(x,y) = (2y + 1)ex sin(πx).
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(65) u(x,y) = −csch(4π)ex sin(2πx) sinh(2π(y − 2))

+
∞∑

n=1
[8(1 − (−1)ne)/(n3π3 + nπ)] sech(nπ)

×ex sin(nπx) sinh(nπy/2)sinh(nπ(y−2)/2).

CHAPTER 8

(1) u(x,t) = −3(1 + 4t)−1/2e−x2/(1+4t).

(3) u(x,t) = (1/(2π))
∞∫

−∞
((sinω)/ω3)(1 − e−2ω2t)e−iωx dω.

(5) u(x,t) = (1 − 2t)e−x2
.

(7) u(x,t) = (4/π)
∞∫
0
ω(ω2 + 1)−2e−ω2t sin(ωx)dω.

(9) u(x,t) = (1/π)
∞∫
0
ω−3[(e−2ω2t − 1)cosω + 2ω2t] sin(ωx)dω.

(11) u(x,t) = (2t− x)e−x.

(13) u(x,t) = −(2/π)
∞∫
0

(ω5 + ω3)−1[(ω2 + 1)(ω2t− 1) + (2ω4 + ω2 + 1)e−ω2t]
× cos(ωx)dω.

(15) u(x,t) = (1/π)
∞∫
0
ω−4[−(ω sinω + 2ω2 + 1)e−2ω2t

+ ω sinω + 2ω2(1 − t) + 1]cos(ωx)dω.

(17) u(x,t) = (1 − 2xt)e−2x.

(19) u(x,t) = (1/2)[(2x + 2t − 1)e−(x+t)2 + (2x− 2t− 1)e−(x−t)2 ].

(21) u(x,t) = (1/(2π))
∞∫

−∞
ω−3 sinω sin2(ωt)e−iωx dω.

(23) u(x,t) = 2e−t−x2
.

(25) u(x,t) = (2/π)
∞∫
0

(ω3 + 4ω)−1[ω2 + 4 + 2(ω2 − 2)cos(ωt)] sin(ωx)dω.

(27) u(x,t) = (1/π)
∞∫
0
ω−3 sin2(ω/2)[1 − 2ω sin(2ωt) − cos(2ωt)] sin(ωx)dω.

(29) u(x,t) = −e2t−x−1.

(31) u(x,t) = (2/π)
∞∫
0

(ω4 + ω2)−1[1 + ω2 + (2ω2 − 1)cos(ωt)]cos(ωx)dω.

(33) u(x,t) = (1/(4π))
∞∫
0
ω−4 sin(2ω)[2ωt− (4ω2 + 1)sin(2ωt)]cos(ωx)dω.

(35) u(x,t) = (2 − xt)e−x.

(37) u(x,y) = (1/
√

3π)
∞∫

−∞
cschω sinh(ωx)e−ω2/12−iωy dω.

(39) u(x,y) = (1/π)
∞∫

−∞
ω−3 sinω[cschω sinh(ωx) − x]e−iωy dω.

(41) u(x,y) = (x2 + 2)e−2y2
.
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(43) u(x,y) = (1/π)
∞∫
0

(ω3 + 4ω)−1{cschω[−2(ω2 + 4)sinh(ωx)

+2ω2 sinh(ω(x−1))]+2(ω2+4)x}sin(ωy)dω.

(45) u(x,y) = (4/π)
∞∫
0
ω−3 sin2(ω/2)

× {−1 + cschω[sinh(ωx) + (2ω2 − 1)sinh(ω(x− 1))]}sin(ωy)dω.

(47) u(x,y) = (x2 − y)e−y.

(49) u(x,y) = (y + 1)ex−2y.

(51) u(x,y) = (2/π)
∞∫
0

(ω4 + ω2)−1[(1 − ω2)cschω sinh(ω(x− 1))

+ (ω2 + 1)(1 − x)]cos(ωy)dω.

(53) u(x,y) = (2/π)
∞∫
0
ω−3(ω − sinω)

×{cschω[sinh(ωx)−sinh(ω(x−1))]−1}cos(ωy)dω.

(55) u(x,y) = (2xy + y2)e−2y.

(57) u(x,y) = (x2 + x− 1)e−y.

CHAPTER 9

(1) 3/(s2 + 2s+ 10) − 72/s5.

(3) (s− 4)/(s2 + 4s+ 8) − 2((s2 + 2s+ 2)/s3)e−s.

(5) et[2cos(5t) + (3/5)sin(5t)].

(7) (3/(2
√

2π))t−3/2e−1/(8t) + erfc(1/(2
√

2t)).

(9) u(x,t) = t+ erfc(x/(2
√
t)) + e−4t sin(2x).

(11) u(x,t) = e−3t + 2t(x− 1)2H(1 − x).

(13) u(x,t) = (2t− 1)cosx.

(15) u(x,t) = e−x[sin(2t) − 3cos(2t)].

(17) u(x,t) = 2 − e−3t + erfc(x/(4
√
t )).

(19) u(x,t) = (1/2)[t2 − 2t− (x2 − 2xt+ t2 + 4x− 4t)H(t− x)].

(21) u(x,t) = (1/9)(e−3t − 6t− 1) − (1/2)(x − 2t)2H(t− x/2).

(23) u(x,t) = (2 − e−2t)e−x.

(25) u(x,t) = 4e−t/2 − sin(2x).

(27) u(x,t) = t2 + t− 2H(t− x/2)sin(t− x/2).

(29) u(x,t) = −2ex erfc(x/(2
√
t)).

(31) u(x,t) = (3t+ 1)sinx.

(33) u(x,t) = 1 − 2(1 + t)e−t + (1 + t− x)(e−x + 2e−t)H(t− x).

(35) u(x,t) = (t− 2)e−2x.
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CHAPTER 10

(1) G(x,ξ) =

{
x(1 − ξ)/2, x ≤ ξ,
ξ(1 − x)/2, x > ξ,

u(x) = (1/12)(12 − 37x+ 3x2 − 2x3).

(3) G(x,ξ) =

{
x, x ≤ ξ,
ξ, x > ξ,

u(x) = 2 + 5x− 2x2.

(5) G(x,ξ) =

{
x/2, x ≤ ξ,
ξ/2, x > ξ,

u(x) =

{
x2/4 + 7x/2 − 2, 0 ≤ x ≤ 1,
−x2/2 + 5x− 11/4, 1 < x ≤ 2.

(7) G(x,ξ) =

{
(1 − ξ)/3, x ≤ ξ,
(1 − x)/3, x > ξ,

u(x) = (1/3)(20 − 9x+ x2).

(9) G(x,ξ) =

{
1 − ξ, x ≤ ξ,
1 − x, x > ξ,

u(x) =

{
59/8 − 2x− x2, 0 ≤ x ≤ 1/2,
8 − 9x/2 + 3x2/2, 1/2 < x ≤ 1.

(11) G(x,t;ξ,τ ) =
∞∑

n=1
2e−2n2π2(t−τ) sin(nπx) sin(nπξ),

u(x,t) = (1/(4π4))(e−2π2t + 2t− 1)sin(πx) − e−8π2t sin(2πx).

(13) G(x,t;ξ,τ ) =
∞∑

n=1
e−n2π2(t−τ)/4 sin(nπx/2)sin(nπξ/2),

u(x,t) =
∞∑

n=1
(2/(n3π3)){[1 + (−1)n]n2π2 + 4(en

2π2t/4 − 1)

×[1+(−1)n−2cos(nπ/2)]}e−n2π2t/4 sin(nπx/2).

(15) G(x,t;ξ,τ ) = 1 +
∞∑

n=1
2e−n2π2(t−τ) cos(nπx)cos(nπξ),

u(x,t) = 1/2 + t2/2 +
∞∑

n=1
[(−1)n − 1](2/(n6π6))

× [2 + n4π4 + 2(n2π2t− 1)en
2π2t]e−n2π2t cos(nπx).

(17) G(x,t;ξ,τ ) =
∞∑

n=1
e−(2n−1)2π2(t−τ)/8 sin((2n− 1)πx/4)sin((2n− 1)πξ/4),

u(x,t) =
∞∑

n=1
(4/((2n− 1)5π5))

×{(2n− 1)4π4 − 8[8 + ((2n− 1)2π2t− 8)e(2n−1)2π2t/8]}
×e−(2n−1)2π2t/8 sin((2n−1)πx/4).

(19) G(x,t;ξ,τ ) =
∞∑

n=1
2e−(2n−1)2π2(t−τ)/4 cos((2n− 1)πx/2)cos((2n− 1)πξ/2),

u(x,t) =
∞∑

n=1
−[8/((2n − 1)3π3)]{(−1)n(2n− 1)2π2

− [2 − (2n− 1)2π2 − 2e(2n−1)2π2t/4] sin((2n− 1)π/4)}
×e−(2n−1)2π2t/4 cos((2n−1)πx/2).

(21) G(x,y;ξ,η) =
∞∑

m=1

∞∑
n=1

−[8/((m2 + 4n2)π2)] sin(nπx) sin(mπy/2)
× sin(nπξ) sin(mπη/2),

u(x,y) =
∞∑

n=1
[(−1)n − 1]2[n(n2 + 1)π3]−1 sin(nπx) sin(πy).

(23) G(x,y;ξ,η) =
∞∑

m=1

∞∑
n=1

−[16/((4m2 + 4n2 − 4m+ 1)π2)]

×sin(nπx) sin((2m−1)πy/2)sin(nπξ) sin((2m−1)πη/2),

u(x,y) =
∞∑

n=1
(−1)n8[n(4n2 + 9)π3]−1 sin(nπx) sin(3πy/2).
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(25) G(x,y;ξ,η) =
∞∑

m=0

∞∑
n=1

−[32/((16m2 + 4n2 − 4n+ 1)π2)]

×sin((2n−1)πx/4)cos(mπy) sin((2n−1)πξ/4)cos(mπη),

u(x,y) =
∞∑

n=1
−128[(2n−1)(4n2−4n+145)π3]−1 sin((2n−1)πx/4)cos(3πy).

(27) G(x,y;ξ,η) =
∞∑

m=1

∞∑
n=1

−(4/((m2 + n2)π2))

× sin(nπx) sin(mπy) sin(nπξ) sin(mπη),

u(x,y) =
∞∑

m=1

∞∑
n=1

−[(−1)m − 1][(−1)n − 1]4[mn(m2 + n2)π4]−1

× sin(nπx) sin(mπy).

(29) G(x,y;ξ,η) =
∞∑

m=1

∞∑
n=1

−[8/((2m2 + 2n2 − 2m− 2n+ 1)π2)]

×cos((2n−1)πx/2)sin((2m−1)πy/2)cos((2n−1)πξ/2)sin((2m−1)πη/2),

u(x,y) =
∞∑

m=1

∞∑
n=1

32[2 + (−1)n(2n− 1)π]

× [(2m− 1)(2n− 1)2(2m2 + 2n2 − 2m− 2n+ 1)π5]−1

×cos((2n−1)πx/2)sin((2m−1)πy/2).

(31) u(−1,2) = −1/3. (33) u(1,2) = −27/32. (35) u(3,2) = 1/3.

(37) u(−3,4) = 8/3. (39) u(4,2) = 133/24.

CHAPTER 11

(1) {(x,y) : −1 < x < 3}: elliptic; {(x,y) : x < −1 or x > 3}: hyperbolic;

{(x,y) : x = −1 or x = 3}: parabolic.

(3) {(x,y) : |x| < 2|y|}: elliptic; {(x,y) : |x| > 2|y|}: hyperbolic;

{(x,y) : |x| = 2|y|}: parabolic.

(5) {(x,y) : (x+ 1)2 + (y − 2)2 < 1}: elliptic;

{(x,y) : (x+ 1)2 + (y − 2)2 > 1}: hyperbolic;

{(x,y) : (x+ 1)2 + (y − 2)2 = 1}: parabolic.

(7) vrs = 2r, u(x,y) = (3x+ y)2(x+ 2y) + ϕ(3x+ y) + ψ(x+ 2y).

(9) vrs = 2e2s, u(x,y) = (x+ 3y)e−2x+2y + ϕ(x+ 3y) + ψ(y − x).

(11) vrs + 3vs = 0, u(x,y) = ϕ(3y − 2x)e−3(x+2y) + ψ(x+ 2y).

(13) vrs − 2vs = −r, u(x,y) = (1/4)(y − x) + (1/2)(2x + 3y)(y − x)

+ ϕ(2x+ 3y) + ψ(y − x)e4x+6y.

(15) 2vrs−vs = 2−r−2s, u(x,y) = (4x−3y)(3x−y)+ϕ(2y−x)+ψ(y−3x)ey−x/2.

(17) vss + 4v = 1, u(x,y) = 1/4 + ϕ(y − 4x)cos(2y) + ψ(y − 4x) sin(2y).

(19) vss − 3vs + 2v = −2rs, u(x,y) = (1/2)(2y + 3)(3x − 5y)

+ ϕ(5y − 3x)ey + ψ(5y − 3x)e2y.

(21) vss−vs−2v = r+s, u(x,y) = (1/4)(1+2x−6y)+ϕ(2y−x)e−y+ψ(2y−x)e2y.
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(23) wαα +wββ + 5wα − 2wβ = 3.

(25) wαα +wββ + 4wα −wβ − 3w = −α− β.

(27) Parabolic; vss − vs = −3r,

u(x,y) = 1 − 12x+ 8y − (1 − 9x+ 6y)ey − 9xy + 6y2.

(29) Hyperbolic; vrs = 2r+4s, u(x,y) = (3y−10x)(8x2−6xy+y2+1)+3y−10x.

(31) Hyperbolic; 2(2r − s+ 1)vrs − 2vs + sv = s− r.

(33) Parabolic; s2vss + (2r/s− r)vr + 2vs = s− ln(r/s).

(35) Hyperbolic; 2(2r − s− 16)vrs − 2vs + (2r + 2)v = rs.

CHAPTER 12

(1) x = 2t+ x0, u(x,t) = 1 − x+ 2t+ t2/2.

(3) x = t2 + t+ x0, u(x,t) = e2t sin(x− t2 − t).

(5) x = x0e
t, u(x,t) = x2e−2t − e−t + 2.

(7) x = −3t+ x0, u(x,t) = −xt− 3t2/2 + t+ e−2(x+3t).

(9) x = 4t+ x0, u(x,t) = [x− 4t+ 5 + cos(2x− 8t)]et − x− t− 5.

(11) x =

{
t/2 + x0, x ≥ t/2,
(t− t0)/2, x < t/2,

u(x,t) =

{
ex+t/2, x ≥ t/2,
e2x, x < t/2.

(13) x =

{
2t + x0, x ≥ 2t,
2(t − t0), x < 2t,

u(x,t) =

{
x2t− 2xt2 + 4t3/3 + x− 2t, x > 2t,
x3/6 + x2/4 − xt+ t2 + 1, x < 2t.

(15) x =

{
t+ x0, x ≥ t,
t− t0, x < t,

u(x,t) =

{
[x− t+ 1 + cos(x− t)]et − x− 1, x ≥ t,
2(t− x+ 1)ex − x− 1, x < t.

(17) x = 2y + x0, u(x,y) = (x− 2y + 1)e(x+y−1)/3.

(19) x = y/2 + x0, u(x,y) = (1/4)[(2x − y + 1)e(2x+3y−2)/2 + 2y + 1].

(21) x = −2y+x0, u(x,y) = −(1/9)(2x2 +8xy+8y2 +7x+14y−31)e(y−x+2)/3

+x+y−1.

(23) x = (2t+ 1)x0 − 3t2 − t, u(x,t) = (3t2 + 4t − x+ 1)/(2t+ 1).

(25) x = t2 + t+ (t+ 1)x0, u(x,t) = (x+ t+ 1)/(t + 1).

(27) x = t+ x0, u(x,t) = −1/(ex−t + t2).

(29) u(x,t) = x2t+ t3/3 + 2x+ t+ 3.

(31) u(x,t) = (1/2)et−2x + (1/2)e−t−2x − x2t− t3/12 + xt.
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(33) u(x,t) = x2 + 2xt+ t2 + t.

(35) u(x,t) = x2 + 4xt− 11t2 − x− 2t.

(37) u(x,t) =

{
8xt, 0 ≤ x < t,

2x2 + 4xt+ 2t2 − x+ t, x ≥ t.

(39) u(x,t) =

{−6xt+ (1/3)cosxcos(3t), 0 ≤ x < 3t,

1 − x2 − 9t2 + (1/3)cosx sin(3t), x > 3t.

(41) u(x,t) =

{
2x2/9 + 2xt/3 + x, 0 ≤ x < 3t,

2xt− 2t2 + x+ 1, x > 3t.

(43) u(x,t) =

{
x2 + 2xt+ 3x, 0 ≤ x < t,

x2 + 2xt+ 3t, x ≥ t.

CHAPTER 13

(1) u(r) = (1/4)(3 + r2) + (1/16)ε(29 − 12r2 − r4) +O(ε2).

(3) u(r) = −3 + (13/2)ε(r2 − 1) +O(ε2).

(5) u(x,t) = e−t sinx− εte−t(cosx+ sinx) +O(ε2).

(7) u(x,t) = e−2t−x + (1/2)ε(1 − e−2t + 6te−2t−x) +O(ε2).

(9) u(x,t) = x− 3t+ 2εt(x− 3t) +O(ε2).

(11) u(x,t) = (2 + 2t− x)et − 2 + ε[(xt− 2t2 − t+ 2)et − 2] +O(ε2).

(13) u(x,t) = ex−2t + t2 − εtex−2t +O(ε2).

(15) u(x,y) = xy2 + εy(ex − 2x) +O(ε2).

(17) u(x,y) = −2x2 + εy cosx+O(ε2).

(19) u(x,y) = 3xy/2 − x2y/2

+(1/24)ε(−15x+18x3−3x4−14xy+18x2y−4x3y)+O(ε2).

(21) u(x,y) = 6x+ 2y + 3εyex +O(ε2).

(23) u(x,y) = 2x− y − e−x + 2εxe−x +O(ε2).

(25) u(x,y) = x(siny − cosy) + (1/2)εx[y cosy + (y − 1)siny] +O(ε2).

(27) u(x,y) = sin(2x)[2cos(3y) − sin(3y) − 1]

−(1/18)ε sin(2x)[(3y+2)cos(3y)+(6y−1)sin(3y)−2]+O(ε2).

(29) u(x,y) = e−2x+2y − (3/16)εe−2x[e−2y + (4y − 1)e2y] +O(ε2).

(31) u(x,y) = ex+2y − εex[ey + (y − 1)e2y] +O(ε2).

(33) u(x,y) = (2x− 1)e2y + (3/16)ε(2x − 1)[(1 − 4y)e2y − e−2y] +O(ε2).
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(35) uc(x,y) = 2ye1−x + 2ε(xy − 2x− y + 2)e1−x

+ [1−x+(1− 2e)y− (1− 2e)xy+2εe(y− 2)]e−x/ε +O(ε2).

(37) uc(x,y) = 2y + 3 + 2εx+ (3xy + 3x− 9y − 9 − 4ε)e−(2−x)/ε +O(ε2).

(39) uc(x,y) = (1 − y)ex−1 + εy(1− x)ex−1

+(exy2 +xy+ ey2 −x+ y− 1− εy)e−1−x/ε +O(ε2).

(41) uc(x,y) = 2x− y − 2 + (x2 + xy − 2x− y + 3)e−2y/ε

+(4xy+y2+2x+y+2)e−x/ε +O(ε2).

(43) uc(x,y) = 2x2 + 4xy + 2y2 − 1 + 12εy

+ (−2x2 + 4xy − 7x+ 3y − 2 − 12ε)e−(1−y)/(2ε)

+ (2xy− y2 + 2− 12εy)e−x/ε +O(ε2).

(45) uc(x,y) = x2 − 4xy + 4y2 + 4x− 8y + 2 + 34ε(1 − y)

− (x2 + 4xy + 3x+ 6y + 1 + 34ε)e−y/(4ε)

+[−4xy−4y2+3x+6y−1+34ε(y−1)]e−2x/ε+O(ε2).

CHAPTER 14

(1) u(x,y) = x2 − 4y2 + 2.

(3) u(x,y) = −2x2 + 3xy + y2 + y − 2.

(5) u(x,y) = 3x2 − 4xy − y2 + 2x− 3y.

(7) u(x,y) = 2x2 − xy + y2.

(9) u(x,y) = x2 + 4xy − 2y2 − y.

(11) u(x,y) = x2 − 3xy + 3y2 + 2x− 4.

(13) u(x,y) = x2 − 2xy + 3y2 + x− 2y + 1.

(15) u1(x,y) = −x2 + y2 + 2x, u2(x,y) = 2xy + x.

(17) u1(x,y) = 4xy − x+ 2, u2(x,y) = (1/5)(−14x2 − 4y2 + 14).

(19) u1(x,y) = 2x2 − 2xy − 2y2 + 1, u2(x,y) = (1/7)(x2 − 28xy + y2 + 7x− 1).

(21) u1(x,y) = (1/7)(3x2 + 14xy + 3y2 + 7y + 11),

u2(x,y) = (1/7)(27x2 − 14xy − 15y2 − 6).

(23) u1(x,y) = (1/3)(x2 − 6xy− 5y2 +2), u2(x,y) = (1/3)(−8x2 +4y2 +3y+5).
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A1. Useful Integrals

For all m, n = 1,2, . . . ,
L∫

0

cos
nπx

L
dx = 0;

L∫
−L

sin
nπx

L
dx = 0;

L∫
0

sin
nπx

L
sin

mπx

L
dx =

{
0, n �= m,
L/2, n = m;

L∫
0

cos
nπx

L
cos

mπx

L
dx =

{
0, n �= m,
L/2, n = m;

L∫
−L

sin
nπx

L
cos

mπx

L
dx = 0;

L∫
0

sin
(2n− 1)πx

2L
sin

(2m− 1)πx
2L

dx =
{

0, n �= m,
L/2, n = m;

L∫
0

cos
(2n− 1)πx

2L
cos

(2m− 1)πx
2L

dx =
{

0, n �= m,
L/2, n = m.

For all real numbers a, b, c, and p �= 0,∫
(ax2 + bx+ c)cos(px)dx

=
1
p2

(2ax+ b)cos(px) +
1
p3

[
p2(ax2 + bx+ c) − 2a

]
sin(px) + const;∫

(ax2 + bx+ c)sin(px)dx

= − 1
p3

[
p2(ax2 + bx+ c) − 2a

]
cos(px) +

1
p2

(2ax+ b)sin(px) + const;∫
eax cos(px)dx =

eax

a2 + p2

[
acos(px) + psin(px)

]
+ const;∫

eax sin(px)dx =
eax

a2 + p2

[ − pcos(px) + asin(px)
]
+ const.
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A2. Table of Fourier Transforms

f(x) = F−1[F ](x) F (ω) = F [f ](ω)

1 f ′(x) −iωF (ω)

2 f ′′(x) −ω2F (ω)

3 f(ax+ b) (a > 0)
1
a
e−i(b/a)ωF (ω/a)

4 (f ∗ g)(x) F (ω)G(ω)

5 δ(x)
1√
2π

6 eiaxf(x) F (ω + a)

7 e−a2x2 1√
2a

e−ω2/(4a2)

8 xe−a2x2
(a > 0)

i

2
√

2a3
ωe−ω2/(4a2)

9 x2e−a2x2
(a > 0)

1
4
√

2a5
(2a2 − ω2)e−ω2/(4a2)

10
1

x2 + a2
(a > 0)

√
π

2
1
a
e−a|ω|

11
x

x2 + a2
(a > 0) −i

√
π

2
1
2a
ωe−a|ω|

12 H(a− |x|) =
{

1, |x| ≤ a
0, |x| > a

√
2
π

sin(aω)
ω

13 xH(a− |x|) =
{
x, |x| ≤ a
0, |x| > a

i

√
2
π

1
ω2

[
sin(aω) − aω cos(aω)

]

14 e−a|x|
√

2
π

a

a2 + ω2

15 e−(x+b)2/(4a) + e−(x−b)2/(4a) 2
√

2ae−aω2
cos(bω)

16 erf(ax) i

√
2
π

1
ω
e−ω2/(4a2)
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A3. Table of Fourier Sine Transforms

f(x) = F−1
S [F ](x) F (ω) = FS [f ](ω)

1 f ′(x) −ωFC [f ](ω)

2 f ′′(x)
√

2
π
ωf(0)− ω2F (ω)

3 f(ax) (a > 0)
1
a
F (ω/a)

4 f(ax)cos(bx) (a, b > 0)
1
2a

[
F

(
ω + b

a

)
+ F

(
ω − b

a

)]

5 1

√
2
π

1
ω

6 e−ax (a > 0)

√
2
π

ω

a2 + ω2

7 xe−ax (a > 0)

√
2
π

2aω
(a2 + ω2)2

8 x2e−ax (a > 0) 2
√

2
π

3a2ω − ω3

(a2 + ω2)3

9
x

x2 + a2

√
π

2
e−aω

10 H(a− x) =
{

1, 0 ≤ x ≤ a,
0, x > a

√
2
π

1
ω

[
1 − cos(aω)

]

11 xH(a− |x|) =
{
x, |x| ≤ a
0, |x| > a

√
2
π

1
ω2

[
sin(aω) − aω cos(aω)

]

12 erfc(ax) (a > 0)

√
2
π

1
ω

[
1 − e−ω2/(4a2)

]

13 xe−a2x2 1
2
√

2
1
a3
ωe−ω2/(4a2)

14 tan−1(x/a) (a > 0)
√
π

2
1
ω
e−aω
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A4. Table of Fourier Cosine Transforms

f(x) = F−1
C [F ](x) F (ω) = FC [f ](ω)

1 f ′(x) −
√

2
π
f(0) + ωFS[f ](ω)

2 f ′′(x) −
√

2
π
f ′(0) − ω2F (ω)

3 f(ax) (a > 0)
1
a
F (ω/a)

4 f(ax)cos(bx) (a, b > 0)
1
2a

[
F

(
ω + b

a

)
+ F

(
ω − b

a

)]

5 e−ax (a > 0)

√
2
π

a

a2 + ω2

6 xe−ax (a > 0)

√
2
π

a2 − ω2

(a2 + ω2)2

7 x2e−ax (a > 0) 2
√

2
π

a3 − 3aω2

(a2 + ω2)3

8 e−a2x2 1√
2

1
|a| e

−ω2/(4a2)

9
1

x2 + a2
(a > 0)

√
π

2
1
a
e−aω

10
1

(a2 + x2)3
(a > 0)

√
π

2
1

8a5
(a2ω2 + 3aω + 3)e−aω

11
x2

(a2 + x2)3
(a > 0)

√
π

2
1

8a3
(−a2ω2 + aω + 1)e−aω

12
x4

(a2 + x2)3
(a > 0)

√
π

2
1
8a

(a2ω2 − 5aω + 3)e−aω

13 H(a− x) =
{

1, 0 ≤ x ≤ a,
0, x > a

√
2
π

1
ω

sin(aω)

14
{

(1/b)e−bx cosh(ab), x ≥ a,
(1/b)e−ab cosh(bx), x < a

√
2
π

cos(aω)
b2 + ω2

(a, b > 0)
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A5. Table of Laplace Transforms

f(t) = L−1[F ](t) F (s) = L[f ](s)

1 f (n)(t) (nth derivative) snF (s) − sn−1f(0) − ·· ·
− f (n−1)(0)

2 H(t− a)f(t− a) e−asF (s)

3 eatf(t) F (s− a)

4 (f ∗ g)(t) F (s)G(s)

5 1
1
s

(s > 0)

6 tn (n positive integer)
n!
sn+1

(s > 0)

7 eat 1
s− a

(s > a)

8 sin(at)
a

s2 + a2
(s > 0)

9 cos(at)
s

s2 + a2
(s > 0)

10 sinh(at)
a

s2 − a2
(s > |a|)

11 cosh(at)
s

s2 − a2
(s > |a|)

12 δ(t− a) (a ≥ 0) e−as

13 ea2t erfc
(
a
√
t
)

(a > 0)
1

s+ a
√
s

14
a

2
√
π
t−3/2 e−a2/(4t) (a > 0) e−a

√
s

15 erfc
(

a

2
√
t

)
(a > 0)

1
s
e−a

√
s

16 −a
√
t

π
e−a2/(4t) +

(
1
2 a

2 + t)erfc
a

2
√
t

1
s2
e−a

√
s

(a > 0)
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A6. Second-Order Linear Equations

If
Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

if new variables
r = r(x,y), s = s(x,y)

are defined by the characteristic equations

dy

dx
=
B −√

B2 − 4AC
2A

,
dy

dx
=
B +

√
B2 − 4AC
2A

,

and if
u(x,y) = u

(
x(r,s),y(r,s)

)
= v(r,s),

then
Āvrr + B̄vrs + C̄vss + D̄vr + Ēvs + F̄ v = Ḡ,

where
Ā = A(rx)2 +Brxry + C(ry)2,

B̄ = 2Arxsx +B(rxsy + rysx) + 2Crysy,

C̄ = A(sx)2 +Bsxsy + C(sy)2,

D̄ = Arxx +Brxy + Cryy +Drx + Ery ,

Ē = Asxx +Bsxy + Csyy +Dsx + Esy,

F̄ = F,

Ḡ = G.
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