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Preface

The chemical process industry is an intensely competitive environment, where
cost reduction represents a critical factor towards increasing profit margins. Over
the last few decades, an ever growing need to lower utility costs and energy
consumption, and to improve raw material use, has spurred the development and
implementation of increasingly integrated process designs that make extensive
use of material recycling and energy recovery.

The significant reduction in capital and operating costs associated with pro-
cess integration does, however, come at the price of additional operational and
control challenges. Research on the control of interconnected process systems
and entire chemical plants has been driven both by developments in control and
optimization theory, and by shifts in market demands and industry needs. Initial
efforts focused on decentralized multi-loop control structures and on including
plant-wide considerations in the tuning of PID controllers. The associated ben-
efits dwindled, however, with the rise of modern, tightly integrated processes
with strong dynamic coupling between the different process units. More recently,
control systems developed within the linear model predictive control (MPC)
paradigm have allowed centralized decision making and accounting for economic
optimality under operating constraints. In the (petro)chemical industry, MPC
remains the established means for regulatory control and plant operation around
a given steady state.

The current economic environment is, however, highly dynamic. Economically
optimal plant operations thus entail frequent switching among different oper-
ating conditions (i.e., different steady states), having different product grades
and production rates. Adopting or adapting the existing fully centralized or
completely decentralized control designs for enforcing such transitions is neither
practical nor effective in the context of integrated processes, where the interac-
tions between the process units become significant and unique dynamic features
emerge.

Developed around an extensive body of recent research by the authors, this
book provides a new paradigm for the effective control of tightly integrated
process systems, by



xii Preface

� documenting rigorously the dynamic behavior that emerges at the plant level
when tight integration through material recycling and energy recovery is
employed

� presenting the means for deriving explicit and physically meaningful low-
dimensional models of the dominant plant dynamics

� describing a hierarchical controller design framework that discerns and coordi-
nates between regulatory control at the unit level and supervisory, plant-wide
control, and enables the design of nonlinear controllers for enforcing plant-
wide transitions

� illustrating the application of the theoretical concepts to several integrated
processes found in the chemical and energy industries

The chapters strive to balance rigor and practicality. The systematic analysis of
generic, prototypical processes that exemplify the process integration structures
encountered in practice is emphasized together with the unique dynamic features
and control challenges that they present. Illustrative examples and extensive case
studies on specific problems support the theoretical developments and provide
a practical vista. The text adopts a unique and quintessentially chemical engi-
neering perspective by introducing the concept of a process-level dimensionless
number to characterize process integration from both a process design and a pro-
cess control point of view. We are hopeful that our approach will allow readers
to rapidly master the underlying theory and develop extensions to other classes
of problems. Implementation details (sample computer codes) are provided in
order to further encourage the rapid deployment of practical applications.

The book targets graduate students and researchers interested in dynamics
and control, as well as practitioners involved in advanced control in industry.
It can serve as a reference text in an advanced process systems engineering or
process control course and as a valuable resource for the researcher or practi-
tioner. Written at a basic mathematical level (and largely self-contained from a
mathematical point of view), the material assumes some familiarity with process
modeling and an elementary background in nonlinear dynamical systems and
control.

We are grateful to our colleagues at the Department of Chemical Engineering
and Materials Science at Minnesota for maintaining an environment of scientific
excellence and collegiality over the years. M.B. is also grateful to the fellow
researchers at the Praxair Technology Center in Tonawanda, NY for creating an
intellectually stimulating atmosphere. We owe special thanks to Ed Cussler for
his advice and encouragement in the initial stages of the writing of this book,
the staff at Cambridge University Press for their support and advice, and the
National Science Foundation for the support it provided for the research that
formed the basis for this book. We also owe a special note of appreciation to
Aditya Kumar for his instrumental role in the initial phase of research on this
subject, and to Sujit Jogwar, whose recent work further solidified the basic thesis
and direction of the book.
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Preliminaries





1 Introduction

Integrated process systems, such as the one in Figure 1.1, consisting of multi-
ple reaction and separation units, heat integrated and interconnected through
material recycle streams, represent the rule rather than the exception in the
modern process industries. The dynamics and control of such systems present
distinct challenges: in addition to the nonlinear behavior of the individual units,
the feedback interactions caused by the recycle connections typically give rise to
a more complex, overall process dynamics. The use of design modifications, such
as surge tanks and unit oversizing, and the choice of mild operating conditions,
preventing the propagation of disturbances through the plant, initially allowed
the problem of controlling chemical plants with material recycling to be dealt
with at the unit level, using the “unit operations” approach (Umeda et al. 1978,
Stephanopoulos 1983): control loops were designed for each unit, their tuning
being subsequently adjusted to improve the operation of the entire plant. How-
ever, the shortage of raw materials, rising energy prices, and the need to lower
capital costs have, over the past few decades, spurred the process industry’s ten-
dency to build “lean,”1 integrated plants, relying heavily on material recycles
and energy recovery.

Owing to dwindling fossil-fuel supplies (and the associated increase in the
cost of energy), improving energy efficiency has become particulary important.
Energy integration and recovery are key enablers to this end. Fundamentally,
energy integration involves identifying the energy sources and sinks within a
system and establishing the means for energy transfer between them,2 thereby
reducing the use of external energy sources and utility streams. Chemical reactors
and distillation columns inherently contain such sources and sinks and clearly
constitute prime targets for energy integration. Numerous energy-integrated pro-
cess configurations have been proposed at the conceptual level: reactor-feed efflu-
ent heat exchanger systems, heat exchanger networks, heat-integrated and ther-
mally coupled distillation columns, etc.

The design and optimization of energy integration schemes has been an active
research area from the early days of process systems engineering. Initial efforts
(Rathore et al. 1974, Sophos et al. 1978, Nishida et al. 1981) focused on the

1 With little, if any, design margin (Stephanopoulos 1983).
2 Assuming, of course, that such transfer is thermodynamically feasible.
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Figure 1.1 An integrated process system.

synthesis of energy-integrated processes using heuristics. Later, pinch analysis
(Linnhoff and Hindmarsh 1983, Linnhoff et al. 1983) and bounding techniques
for utility usage (Morari and Faith III 1980, Andrecovich and Westerberg 1985a,
Mészáros and Fonyó 1986) were introduced, and they have since seen numerous
successful applications in the synthesis of new energy integration systems as well
as in plant retrofits. Mathematically rigorous formulations such as mixed-integer
linear/nonlinear programming (Andrecovich and Westerberg 1985b, Floudas and
Paules 1988, Yeomans and Grossmann 1999, Wei-Zhong and Xi-Gang 2009) and
genetic algorithms (Wang et al. 1998, Yu et al. 2000, Wang et al. 2008) were
subsequently developed to ensure the optimality of integrated processes. The
significant reduction in capital and operating costs resulting from energy inte-
gration is now well documented (Muhrer et al. 1990, Yee et al. 1990, Annakou
and Mizsey 1996, Reyes and Luyben 2000b, Westerberg 2004, El-Halwagi 2006,
Diez et al. 2009).

As integrated process designs continued to gain acceptance owing to their
improved economics, the process control community also became aware of the dis-
tinct challenges posed by the operation of such plants, and a number of research
studies ensued.

An initial theoretical study (Gilliland et al. 1964) established that, for a sim-
ple plant model consisting of a continuous stirred-tank reactor (CSTR) and a
distillation column, the material recycle stream increases the sensitivity to dis-
turbances together with increasing the time constant of the overall plant over
those of the individual units. Moreover, it was shown that in certain cases the
plant can become unstable even if the reactor itself is stable.

Several papers have since focused on either reaction–separation–recycle pro-
cesses (Verykios and Luyben 1978, Denn and Lavie 1982, Luyben 1993a, Scali and
Ferrari 1999, Lakshminarayanan et al. 2004) or individual multi-stage processes
(Kapoor et al. 1986) and have shown that recycle streams can “slow down” the
overall process dynamics (described by a small number of time constants) com-
pared with the dynamics of the individual units, and may even lead to the recycle
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loop being unstable. An analogy was drawn (Denn and Lavie 1982) between the
recycle system and a closed-loop system with positive feedback, thus concluding
that the presence of a recycle stream may increase the overall response time
of the plant and may increase the steady-state gain by a significant amount.
The effect of the recycle on the zero dynamics was studied (Jacobsen 1999), and
it was demonstrated that the feedback effect of the recycle stream can induce
a non-minimum-phase behavior even for the transfer function of single units.
Most of the aforementioned analyses were based on simplified transfer function
models and linear analysis tools. More recently, a number of studies (Morud
and Skogestad 1994, Mizsey and Kalmar 1996, Bildea et al. 2000, Pushpavanam
and Kienle 2001, Kiss et al. 2002, Larsson et al. 2003, Kiss et al. 2005, Vasude-
van and Rangaiah 2009) have indicated that, even in simple, prototype models
of reactor–separator systems, the recycle stream can lead to strongly nonlinear
overall dynamics, manifested in the form of multiple steady states, limit cycles
or even chaotic behavior (Jacobsen and Berezowski 1998). The above results
indicate that recycle streams are responsible for the complex behavior of process
systems, and place the control of recycle loops at the heart of the plant-wide
control problem.

The necessity to develop systematic procedures for coordinating distributed
(i.e., unit-level) and plant-wide control objectives and strategies was thus
acknowledged, and several studies have been dedicated to this purpose. Dynamic
process control (DPC) (Buckley 1964) was the first control strategy to divide the
control actions for a process plant (with or without recycle streams) into two cat-
egories: material-balance control (necessary for the management of the plant’s
operation in the presence of low-frequency (slow) changes, such as production flow
rate), and product-quality control (for countering the effects of high-frequency
(fast) disturbances acting at the unit level). Although it was a pioneering effort
at the time, DPC is not effective in modern, tightly integrated plants, where the
strong coupling induced by mass and energy recycling leads to the propagation
of disturbances across the frequency spectrum through multiple process units.

Later on, the complexities introduced by process integration were fully
acknowledged by researchers in the field, and motivated a series of studies on the
effect of the material recycle streams on the design, controllability, and control
structure selection for specific reaction/separation processes.

Luyben (1993a) provided valuable insights into the characteristics of recycle
systems and their design, control, and economics, and illustrated the challenges
caused by the feedback interactions in such systems, within a multi-loop linear
control framework. Also, in the context of steady-state operation, it was shown
(Luyben 1994) that the steady-state recycle flow rate is very sensitive to dis-
turbances in feed flow rate and feed composition and that, when certain control
configurations are used, the recycle flow rate increases considerably facing feed
flow rate disturbances. This behavior was termed “the snowball effect.”

The publication of an actual industrial plant-wide control problem, the Ten-
nessee Eastman challenge process (Downs and Vogel 1993) generated several
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valuable studies on the control of recycle processes, both within a linear con-
trol framework (McAvoy and Ye 1994, Banerjee and Arkun 1995, Lyman and
Georgakis 1995, Ricker 1996, Wu and Yu 1997, Larsson et al. 2001, Wang and
McAvoy 2001, Tian and Hoo 2005) and within a nonlinear (Ricker and Lee 1995)
control framework.

The control challenges posed by the feedback interactions induced by the
recycle were also illustrated in studies carried out on other problems, such as
supercritical fluid extraction (Ramchandran et al. 1992) and recycle reactors
(Kanadibhotla and Riggs 1995, Antoniades and Christofides 2001).

The above results have revealed that process integration severely limits the
effectiveness of the traditional, unit-operations approach, with fully decentral-
ized controllers for individual process units, which assumes that the combina-
tion of these controllers (possibly with some adjustments) would constitute an
effective control scheme for the overall plant. The strong coupling between the
control loops in different process units in an integrated process system was thus
recognized early on (Foss 1973) as a major issue that must be addressed in a
plant-wide control setting, and several generic strategies to this end have been
proposed.

Drawing on the ideas of Buckley (1964), Price and Georgakis (1993) pro-
vided guidelines for designing inventory-control structures that are consistent
with the main mass and energy flows of the process, surmising that the best
performance is achieved when some empirically selected control loops are tightly
tuned and the others have loose tuning. Banerjee and Arkun (1995) presented
a procedure for screening possible control configurations for a plant, using lin-
earized models for assessing the robustness of the control loops, without specif-
ically accounting for the presence of mass or energy recycles. Georgakis (1986)
suggested the use of empirically identified extensive fast and slow variables for
the synthesis of controllers for a process. In Ng and Stephanopoulos (1996),
a hierarchical procedure for plant-wide controller synthesis is proposed, rec-
ommending a multiple-time-horizon control structure, with the longest horizon
being that of the plant itself. Luyben et al. (1997) presented a tiered, heuris-
tic controller design procedure for process systems that addresses both energy
management and inventory and product purity control. A multi-step heuris-
tic design procedure was also introduced in Larsson and Skogestad (2000),
advocating a top-down plant analysis for identifying control objectives, fol-
lowed by a bottom-up controller implementation. A set of criteria for designing
and assessing the performance of plant-wide controllers has been proposed in
Vasudevan and Rangaiah (2010).

In a different vein, Kothare et al. (2000) formally defined the concept of partial
control on the basis of the practical premise that, in some cases, complex chemical
processes can be reasonably well controlled by controlling only a small subset of
the process variables, using an equally small number of “dominant” manipulated
variables. An analysis method for identifying the dominant variables of a process
was proposed in Tyreus (1999).
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Using the concept of passivity, Farschman et al. (1998), Ydstie (2002), Jillson
and Ydstie (2007), Bao and Lee (2007), Rojas et al. (2009) introduced a formal
framework for stability analysis and stabilization of process systems using decen-
tralized control, subject to thermodynamic and equipment constraints. Within
this context, the passivity/dissipativity properties of individual units in a pro-
cess are established using thermodynamic arguments, and existing results for
the interconnections of passive/dissipative systems (e.g., Desoer and Vidyasagar
2009) are used to determine the closed-loop stability properties of the overall pro-
cess. Within this framework, the stabilization of the process dynamics is achieved
via decentralized inventory controllers.

Following the ideas of Morari et al. (1980), Skogestad (2000, 2004), and Downs
and Skogestad (2009) proposed an algorithm for determining a “self-optimizing”
plant-wide control structure, consisting of identifying a set of controlled variables
that, when kept at constant setpoints, indirectly lead to near-optimal operation
with respect to a given economic objective. The proposed approach relies on
steady-state optimization and thus additional simulation steps are needed in
order to select the control structure with the best dynamic performance.

A hierarchical decision procedure for formulating control structures on the
basis of the minimization of economic penalties, while also accounting for the
process dynamics, was also proposed in Zheng et al. (1999), following Douglas’s
hierarchical method for conceptual process design (Douglas 1988). However, the
formulated control structures often require that additional surge capacities be
provided/installed in the process in order to achieve reasonable dynamic perfor-
mance, and may therefore increase the capital cost of the plant.

McAvoy (1999) advanced the use of optimization calculations at the controller
design stage, proposing the synthesis of plant-wide control structures that ensure
minimal actuator movements. The initial work relying on steady-state models
(McAvoy 1999) was recast into a controller synthesis procedure based on linear
dynamic plant models (Chen and McAvoy 2003, Chen et al. 2004), whereby
the performance of the generated plant-wide control structures was evaluated
through dynamic simulations.

The plant-wide control techniques referenced above are generally based on the
use of linear, multi-loop, decentralized control structures. Model predictive con-
trol (MPC) constitutes a different class of control techniques, consisting of deter-
mining the manipulated inputs of a process by minimizing an objective function
capturing either the deviation between the process states and the corresponding
setpoints (Prett and Garcia 1988) or an economic objective (Edgar 2004, Diehl
et al. 2011), possibly under the physical constraints associated with the plant
operation, over a receding time horizon. MPC can be applied to plant-wide
control problems, having multivariable control and constraint-handling capa-
bilities. However, calculating the manipulated inputs involves the solution of
an often computationally expensive optimization problem (owing to the use of
high-dimensional plant models in the problem formulation) at each time step,
and, although they are numerous (Qin and Badgwell 2003), successful practical
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implementations have been confined to the realm of plants with slow dynamics,
such as oil refineries.

A more recent direction relies on the use of distributed model-based control
strategies as an alternative to centralized controllers (based on the full plant
model) for large, integrated systems. Local controller design has been approached
both via MPC techniques (see, e.g., Zhu et al. 2000, Zhu and Henson 2002, Venkat
et al. 2006, 2008, Rawlings and Stewart 2008, Liu et al. 2008, 2009, Scattolini
2009, Stewart et al. 2010) and as an agent-based problem (e.g., Tatara et al.
2007, Tetiker et al. 2008). Typically, the analysis and implementation of dis-
tributed architectures considers the plant as a set of interconnected subsystems,
with each subsystem being assumed to have a controller that exchanges (some
of the) subsystem state information with the controllers of all the other subsys-
tems. Within the distributed MPC framework, it has been shown that predictive
control applications are possible for large plants with fast dynamics, since closed-
loop stability is assured at all times by formulating the optimization problem to
be feasible at every iteration.

The challenge posed by establishing and maintaining communication between
distributed controllers has also stimulated research in the area of networked pro-
cess control (El-Farra et al. 2005, Mhaskar et al. 2007, Sun and El-Farra 2008,
2010). The central issue of maintaining closed-loop stability in the presence of
bandwidth constraints and limitations in transmitter battery longevity is typi-
cally addressed by a judicious distribution of computation and communication
burdens between local/distributed control systems and a centralized supervisory
controller.

In general, MPC implementations (including those cited above) rely on the use
of data-driven linear plant models for computing the optimal plant inputs. How-
ever, chemical processes are inherently nonlinear, and these models lose accuracy
when economic circumstances call for operating the process under conditions
that differ significantly from the operating region in which model identification
was carried out. The implementation of MPC to processes with nonlinearities
(nonlinear MPC, NMPC) remains one of the most difficult problems associated
with plant-wide MPC applications: because NMPC relies on using a nonlinear
dynamic model, a nonlinear optimization problem must be solved at each time
step in order to calculate the optimal plant inputs, and the computation time
scales very unfavorably with the dimension of the plant model. To date, NMPC
implementations for integrated processes (e.g., Ricker and Lee 1995, Zhu and
Henson 2002) have made extensive use of modeling and controller simplifica-
tions in order to reduce computational complexity.

Many of the aforementioned heuristic decentralized control synthesis
approaches rely on engineering judgement rather than rigorous analysis. On the
other hand, the implementation of advanced, model-based, control strategies for
process systems is hindered by the often overwhelming size and complexity of
their dynamic models. The results cited above indicate that the design of fully
centralized controllers on the basis of entire process models is impractical, such
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controllers being almost invariably ill-conditioned, difficult to tune, expensive to
implement and maintain, and sensitive to measurement errors and noise. Thus,
the need to find a rational and transparent paradigm for synthesizing process-
wide model-based nonlinear control structures has emerged as (and remains) a
key issue in modern process control. This need is also an integral part of the ongo-
ing smart manufacturing initiative of twenty-first-century industry (Christofides
et al. 2007, Edgar and Davis 2009).

A salient feature of integrated process systems is their multiple-time-scale
behavior, owing to physical and chemical phenomena that occur at vastly differ-
ent rates, a feature that translates into their dynamic models being described by
stiff systems of differential equations. Stiffness represents in effect one of the main
hindrances to the implementation of plant-wide model-based control techniques.
It is at the origin of the ill conditioning of linear and nonlinear inversion-based
and optimization-based controller designs, and greatly increases the difficulty of
obtaining a numerical solution for optimal control problems.3

Although repeatedly acknowledged (directly or unwittingly) in plant-wide con-
trol studies (Buckley 1964, Georgakis 1986, Price and Georgakis 1993, Ng and
Stephanopoulos 1996, Wang and McAvoy 2001, Lakshminarayanan et al. 2004),
the issue of time-scale multiplicity at the plant level has not been accounted for
in a mathematically rigorous way until recently (Kumar and Daoutidis 2002,
Baldea and Daoutidis 2007, Jogwar et al. 2009). The goal of this text is thus
to explain the origin of time-scale multiplicity at the process level, and to eluci-
date its impact on the development of systematic, hierarchical controller design
procedures for the control of integrated process systems featuring material recy-
cling and/or energy recovery. To this end, we will make use of generic, prototype
systems that are representative for the design and operation of broad classes
of integrated processes. Moreover, we will introduce a novel set of process-level
dimensionless numbers that capture the salient steady-state design features of the
processes under consideration, and establish a connection between these design
features and process dynamics and control. Our goal is therefore to develop fun-
damental, rather than heuristic, results that are widely applicable in process
systems engineering and beyond our discipline. Evidently, we illustrate the use
of these results through numerous examples as well as an extensive case study
at the end of each chapter.

The book is organized as follows. Chapter 2 provides an introduction to
the mathematical description of multiple-time-scale systems and to singular

3 The term ill conditioning refers to the condition number of the linearized model of a plant,
defined as γ = λmax/λmin, with λ being the eigenvalues of the model. For large values of
γ, the plant dynamics will span more time scales (its time constants being defined as the
reciprocals of the eigenvalues), and the larger γ is, the more ill-conditioned (stiff) the plant
is considered to be. By way of consequence, model-based controllers that are designed on
the basis of inverting the (linear or nonlinear) plant model will be ill-conditioned as well.
Ill-conditioned controllers tend to amplify disturbances and modeling errors, and even induce
closed-loop instability.
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perturbation theory used in their analysis. Chapter 3 discusses the design,
dynamics and control of integrated process systems with significant material
recycle streams. Chapter 4 focuses on processes with small purge streams (an
important and common feature in chemical plants). Chapter 5 provides a model-
ing and model reduction framework for process systems featuring purge streams
and large material recycle streams. The impact of energy recovery on process
dynamics and control is analyzed in Chapter 6, while Chapter 7 concentrates on
the dynamic behavior of process systems with high energy throughput.



2 Singular perturbation theory

2.1 Introduction

The review in the previous chapter pointed out that, while long acknowledged,
the multiple-time-scale dynamic behavior of integrated chemical plants has been
dealt with mostly empirically, both from an analysis and from a control point of
view. In the remainder of the book, we will develop a mathematically rigorous
approach for identifying the causes, and for understanding and mitigating the
effects of time-scale multiplicity at the process system level.

The present chapter introduces the reader to singular perturbation theory
as the framework for modeling and analyzing systems with multiple-time-scale
dynamics, which we will make extensive use of throughout the text.

2.2 Properties of ODE systems with small parameters

The analysis of ordinary differential equation (ODE) systems with small param-
eters ε (with 0 < ε� 1) is generally referred to as perturbation analysis or per-
turbation theory. Perturbation theory has been the subject of many fundamental
research contributions (Fenichel 1979, Ladde and Siljak 1983), finding applica-
tions in many areas, including linear and nonlinear control systems, fluid mechan-
ics, and reaction engineering (see, e.g., Kokotović et al. 1986, Kevorkian and Cole
1996, Verhulst 2005). The main concepts of perturbation theory are presented
below, following closely the developments in (Kokotović et al. 1986).

Let us consider the following system of equations:

dx1

dt
= f(x1,x2), x1(0) = x0

1

dx2

dt
= g(x1,x2), x2(0) = x0

2

(2.1)

where f(x1,x2) and g(x1,x2) are assumed to be sufficiently many times differen-
tiable with respect to their variables x1 and x2. For our purposes, we can assume
that x1 ∈ IRn, x2 ∈ IRm (and hence x= [x1 x2]T ∈ IRn+m), f : IRn → IRn, and
g : IRm → IRm.
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Equation (2.1) is an ODE system, and, since the values of the variables x1

and x2 at t =0 are provided, it is an initial value problem. By employing a small
perturbation parameter 0 < ε� 1, (2.1) and implicitly its solution are perturbed.
The perturbation can occur in different manners. Consider, for example,

dx1

dt
= f(x1,x2) + εf1(x1,x2), x1(0) = x0

1

dx2

dt
= g(x1,x2) + εg1(x1,x2), x2(0) = x0

2

(2.2)

Equation (2.2) is said to be a regular perturbation problem. Notice that in the
limiting case, as ε → 0, the regular perturbation problem reduces to the origi-
nal problem (2.1). Intuitively, the solution of the regular perturbation problem
should not differ significantly from that of the unperturbed problem. For exam-
ple, for n= 1,m= 0, the solution of Equation (2.2) is of the form

x1(t, ε) = x1,0(t) + εx1,1(t) + · · · (2.3)

The solution (2.3) is known as a regular perturbation expansion. x1,0(t) is the
solution of the original problem (2.1), and the higher-order terms x1,1(t), . . .
are determined successively by substituting the regular expansion (2.3) into the
original differential equation (2.1) (Haberman 1998).

Example 2.1. A storage tank of cross-sectional area At = 1 m2 (Figure 2.1)
is fed at the top at a flow rate F0 = 0.221 47 m3/s with a liquid of density
ρ= 1000 kg/m3. The liquid drains under gravity via a pipe of cross-section
A1 = 0.05 m2 located at the bottom of the tank. We will compute the evolu-
tion of the tank level h, starting from an empty tank (h = 0 m) under the above
conditions, comparing the results with a case in which the bottom of the tank
leaks via a small fracture of cross-sectional area A2 = 0.0005 m2.

A2 A1

F0

h

Figure 2.1 A gravity-drained tank with a leak.
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Figure 2.2 Time evolution of the tank level with (dashed) and without (solid) a leak at
the bottom of the tank.

Assuming that the fracture is at the same height as the outlet pipe, an equation
for the time evolution of the tank level h can easily be written as

dh

dt
=

1
At

[
F0 − (A1 + A2)

√
2gh

]
(2.4)

with g = 9.81 m/s2 being the gravitational constant. Notice that, from the data
above, the cross-sectional area of the fracture is much smaller than the cross-
section of the pipe; we can thus define

ε =
A2

A1
= 0.01 � 1 (2.5)

and rewrite (2.4) as

dh

dt
=

1
At

(
F0 − A1

√
2gh

)
− ε

1
At

A1

√
2gh (2.6)

The above equation is in the form of Equation (2.2), with the presence of the leak
constituting a regular perturbation to the system dynamics. It is therefore to be
expected that the solutions in the two cases differ by a small, O(ε) quantity.

Figure 2.2 shows the results of integrating Equation (2.4) numerically from
h(t = 0)= 0 for 100 s. These results confirm the theoretical analysis presented
above, insofar as the time evolution of the tank level in the two cases is very
similar; in effect, the two trajectories differ by only 0.02 m (=O(ε)) at steady
state.



14 Singular perturbation theory

The small parameter ε can also multiply the derivatives with respect to time
of the state variables. Consider for example the system

dx1

dt
= f(x1,x2), x1(0) = x0

1 (2.7)

ε
dx2

dt
= g(x1,x2), x2(0) = x0

2 (2.8)

where ε multiplies the derivative of x2. The system of Equations (2.7) and (2.8)
is referred to as a singular perturbation problem. Note that the small perturba-
tion parameter multiplies the time derivative of x2. Consequently, in this case,
the limit ε → 0 would lead to a problem that differs significantly from the unper-
turbed one (2.1). In effect, when ε= 0, the dimension of the state space of (2.7)–
(2.8) collapses from n + m to n, because the differential equation (2.8) becomes
an algebraic equation:

0 = g(x̄1, x̄2) (2.9)

where the overbar is used to indicate that the variables belong to a system
with ε= 0. The original system (2.7)–(2.8) collapses to a system of differential
algebraic equations (DAEs):1

dx̄1

dt
= f(x̄1, x̄2) (2.10)

0 = g(x̄1, x̄2) (2.11)

Definition 2.1. The model of Equations (2.7) and (2.8) is said to be in a
standard singularly perturbed form if, in a domain of interest, Equation (2.9)
has k ≥ 1 distinct (isolated) roots

x̄2 = Φ̄i(x̄1), i = 1, . . . , k (2.12)

The condition stated in Definition 2.1 assures that a well-defined n-dimensional
reduced model will correspond to each solution (2.12); whenever this condition
is violated, the system in Equations (2.7) and (2.8) is said to be in a nonstandard
singularly perturbed form.

To obtain the (ith) reduced model, we substitute Equation (2.12) into Equa-
tion (2.10):

dx̄1

dt
= f(x̄1, Φ̄i(x̄1)); x̄1(t = 0) = x0

1 (2.13)

which can be written in the more compact form

dx̄1

dt
= f̄(x̄1); x̄1(t = 0) = x0

1 (2.14)

1 A definition of differential algebraic equations and some related notions are presented in
Appendix A.
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Equation (2.14) is referred to as a quasi-steady-state model, because x2, whose
rate of change dx2/dt = (1/ε)g can be large when ε is small, may rapidly converge
to a solution (2.12), which is the quasi-steady-state form of Equation (2.8).

Remark 2.1. For a standard singularly perturbed model, the DAE system (2.10)
has an index ν = 1, i.e., the variables x̄2 can be solved for directly from the
algebraic equations (2.9) and the reduced-order (equivalent ODE) representation
(2.13) is obtained directly. For systems that are in the nonstandard singularly
perturbed form, the DAE system (2.10) obtained in the limit as ε → 0 has an
index ν > 1 and an equivalent ODE representation for the slow dynamics is not
always readily available.

The presence of a singular perturbation induces multiple-time-scale behavior
in dynamical systems, which is characterized by the presence of both fast and
slow transients in their time response. The slow response is approximated by the
reduced model (2.14), while the difference between the response of the reduced
model (2.14) and that of the full model (2.7)–(2.8) is the fast transient.

In the slow model, the variables x2 have been substituted by the “quasi-steady-
state” x̄2. In contrast to the original variable x2, which starts from the initial
condition x0

2 at t = 0, the initial value of x̄2 is x̄2(t = 0) = Φ̄(x̄1(t = 0), 0), and
the discrepancy between x0

2 and x̄2(t = 0) may be large. Therefore, x̄2 is not a
uniform approximation of x2 on the entire time interval from t ≥ 0, but it will
be within O(ε) of x2 on a finite time interval t ∈ [t1, T ] t1 > 0, i.e.,

x2 = x̄2(t) + O(ε) (2.15)

On the other hand, the quasi-steady-state x̄1 can be constrained to start from
the initial condition x0

1, and it is therefore possible that the approximation of x1

by x̄1 can be uniform. Provided that x̄1 exists at every time t ∈ [0, T ], we can
write

x1 = x̄1(t) + O(ε), ∀t ∈ [0, T ] (2.16)

Equation (2.15) states that, during an initial time interval [0, t1] (frequently
referred to as the “boundary layer”), the original variable x2 approaches x̄2, and
remains close to x̄2 during [t1, T ] in the interval [t1, T ].

The rate at which x2 approaches x̄2 can be very large, since dx2/dt = (1/ε)g,
and ε → 0. Singular perturbation theory relies on defining a “stretched” time
variable τ = t/ε, with τ = 0 at t = 0, to analyze such fast transient phenomena.
The term “stretched” refers to the behavior of the new time variable τ , which
tends to ∞ even for t only slightly larger than 0. Note that, while x2 and τ vary
very rapidly, x1 stays near its initial value x0

1.
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The behavior of x2 as a function of τ (i.e., its behavior in the boundary layer)
is described using a boundary-layer correction x̂2 =x2 − x̄2 that satisfies

dx̂2

dτ
= g

(
x0

1, x̂2(τ) + x̄2(t = 0)
)
, with x̂2(t = 0) = x0

2 − x̄2(t = 0) (2.17)

The solution x̂2 of (2.17) is used as a correction of the expression in Equa-
tion (2.15), giving another approximate expression for x2 that is possibly
uniform:

x2 = x̄2(t) + x̂2(τ) + O(ε) (2.18)

Here, x̄2 is the slow transient of x2 and x̂2 is the fast transient. Note that, for
the corrected approximation in Equation (2.18) to converge rapidly to the slow
approximative solution (2.15), the term x̂2 must decay as t → ∞ to an O(ε)
quantity. In the slow time scale t, this decay is fast, since

dx̂2(τ)
dt

=
1
ε

dx̂2(τ)
dτ

A very important result regarding the validity of the approximate solutions
(2.18) and (2.16), and implicitly of the decomposition of the singularly perturbed
system (2.7)–(2.8) into a slow model (2.14) and a fast model (2.17), is a theorem
due to A. N. Tikhonov (Tikhonov 1948).

Theorem 2.1. If

(i) the equilibrium x̂2(τ)=0 of (2.17) is asymptotically stable uniformly in x0
1

and t = 0, and x0
2 − x̄2(t = 0) belongs to its domain of attraction, so x̂2(τ)

exists for τ ≥ 0, and
(ii) the eigenvalues of ∂g/∂x2, evaluated, for ε= 0, along x̄1(t), x̄2(t), have real

parts smaller than a given negative number c,

then the approximations (2.18) and (2.16) are valid for any t ∈ [0, T ] and there
exists a t1 ≥ 0 such that (2.15) is valid for any t ∈ [t1, T ].

Remark 2.2. Condition (i) in Theorem 2.1 states that

lim
τ→∞

x̂2(τ) = 0

uniformly in x0
1, t = 0; that is, x2 will come close to the quasi-steady-state value

x̄2 at a time t1 > 0, while condition (ii) assumes that, for any t ∈ [t1, T ], x2 will
stay close (within O(ε)) to x̄2.

Remark 2.3. Conditions (i) and (ii) describe a strong stability property of
the boundary layer (fast) system (2.17). Note that, if x0

2 is sufficiently close
to x̄2(t = 0), then condition (ii) encompasses condition (i). Also, the condition

det
∂g
∂x2


= 0

implies that the roots x̄2(t) are distinct, as required in Definition 2.1.
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Remark 2.4. In a general nonlinear system, there may be several distinct solu-
tions x̄2,i = Φ̄i, i ∈ {1, . . . , k}. In such a case, one focuses on a particular solu-
tion and the corresponding representation for the slow subsystem (2.13) in an
appropriate neighborhood. The choice of a particular quasi-steady-state solution
depends on the initial condition x0

1,x
0
2. The solution x̂2(τ) of the fast system will

stabilize at the corresponding steady state x̄2,i = Φ̄i

(
x0

1

)
.

Remark 2.5. Tikhonov’s theorem holds only for bounded time intervals. Under
the additional assumption that the slow system (2.14) is also locally exponentially
stable, a similar result exists for infinite time intervals (Khalil 2002).

It was previously shown that, in the limit as ε → 0, the dimension of the state
space of (2.7)–(2.8) collapses from (n + m) to n. This allows a geometric inter-
pretation: in the (n + m)-dimensional state space of x1 and x2, an n-dimensional
subspace or manifold Mε can be defined as

Mε :
{
x2 = Φ(x1), with x1 ∈ IRn and x2 ∈ IRm

}
(2.19)

where Φ(x1) is a sufficiently smooth function. The decrease in dimension of the
state space of (2.7)–(2.8) is then due to the constraint that states x2 remain in
Mε. For instance, in IR2, if n= 1 and m= 1, the manifold is a one-dimensional
(1D) line; in IR3, if n= 1 and m= 2, Mε will be a curve. If (2.19) holds at time
t∗ and for any t > t∗, then the manifold Mε is said to be invariant.

The discussion above was based on the limiting case ε → 0. The manifold Mε

will, in this limiting case, be

M0 :
{
x̄2 = Φ̄(x̄1), 0 = ḡ(x̄1, Φ̄(x̄1))

}
(2.20)

where the convention of distinguishing the variables in the case ε= 0 by an
overbar has been maintained.

Example 2.2. A reaction system consists of a reactant R1, which is transformed
into product P1 and intermediate R2, the latter of which is subsequently trans-
formed into product P2:

R1 → P1 + R2 (2.21)

R2 → P2 (2.22)

with rate constants k1 = 0.10 s−1 and k2 = 10 s−1, and initial conditions
x1(t = 0) = x1,0 and x2(t = 0) = x2,0, respectively. The evolution of the molar con-
centrations x1 and x2 of R1 and R2 is described by

dx1

dt
= −k1x1 (2.23)

dx2

dt
= k1x1 − k2x2 (2.24)
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In this case, given the large difference in the reaction rate constants, we can
define

ε =
k1

k2
= 0.01 � 1 (2.25)

and rewrite (2.23) and (2.24) as

dx1

dt
= −k1x1 (2.26)

ε
dx2

dt
= εk1x1 − k1x2 (2.27)

which is in the form of Equations (2.7) and (2.8).
Following the above, we consider the limit ε → 0, obtaining the DAE system

dx1

dt
= −k1x1 (2.28)

0 = −k1x2 (2.29)

Equation (2.29) has one distinct root, x̄2 =0, and hence the above singularly
perturbed ODE system is in standard form. Proceeding with our analysis, we
obtain a reduced-order, uniform approximation of the slow component of the
dynamics as

dx1

dt
= −k1x1 (2.30)

0 = x̄2 (2.31)

or, in integrated form,

x1(t) = e−k1t + x1,0 − 1 (2.32)

Moving now to the fast dynamics of this reaction system, we define the fast time
scale τ = t/ε, obtaining

dx̂2

dτ
= −k1x̂2 (2.33)

which can easily be solved for x̂2:

x̂2(τ) = e−k1τ + x̂2,0 − 1 (2.34)

Finally, by combining the above results, we can derive a uniform approximation
for x2, as

x2(t) = x̄2 + x̂2 = 0 + e−k1τ + x̂2,0 − 1 (2.35)

In computing the above solution, it is important to notice that, while x̄2(t) = 0
and x̄2(t = 0)= 0, the initial condition for x̂2 is x̂2 = x2,0.

Using the derivations above, we can infer the following.

� The reaction system (2.23)–(2.23) will have a dynamic behavior with two
time scales, and the concentration x2 of R2 will evolve much faster than the
concentration of R1.
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Figure 2.3 Evolution of the reactant concentrations from initial conditions
x1(t=0)=x2(t=0)=1mol/l: numerical (solid) and approximate analytical (dashed)
solutions.

� x2 will quickly reach its quasi-steady-state value x̄2 = 0, and x2 =0 constitutes
an equilibrium manifold of this system.

� Within the equilibrium manifold, x1 will slowly evolve towards the equilibrium
point (0, 0) of the entire system.

The above results are confirmed by numerical simulations: Figure 2.3
shows the evolution of the reactant concentrations from the initial values
x1(t = 0) = x2(t = 0)= 1 mol/l. As expected, x2 quickly converges to its quasi-
steady-state value, while the transient behavior of x1 is much slower.

Figure 2.4 presents the trajectories of the two concentrations in the phase
plane, revealing the presence of the equilibrium manifold: the phase trajec-
tories starting from any initial condition (x1,0, x2,0) ∈ [0, 1] × [0, 1] approach
the horizontal line x2 =0, followed by convergence towards the equilibrium
point (0, 0).

In contrast, let us analyze the same reaction system in a second case, namely
considering that the reaction rate constants have the same value, k1 = k2 = 1 s−1.
A comparison of the evolution of the compositions in the two cases is presented
in Figure 2.5, and a phase plane of the second case is shown in Figure 2.6.

Clearly, in the second case, the rate of change of concentration of the two
reactants is identical and the equilibrium manifold is not present in the phase
portrait, confirming the absence of a two-time-scale behavior.
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Figure 2.4 Phase trajectories of the reacting system starting from different initial
conditions (x1,0, x2,0) ∈ [0, 1] × [0, 1]; (0, 0) is a stable steady state.
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Figure 2.5 Evolution of the reactant concentrations from initial conditions
x1(t=0)=x2(t=0)=1 mol/l, with k1 =0.1 s−1 and k2 =10 s−1 (solid) and
k1 = k2 =1 s−1 (dashed).
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Figure 2.6 Phase trajectories of the reacting system with k1 = k2 =1 s−1 from different
initial conditions (x1,0, x2,0) ∈ [0, 1] × [0, 1].

2.3 Nonstandard singularly perturbed systems with two time scales

In what follows, we will focus on a class of systems arising from the detailed
dynamic models of chemical processes, which are characterized by the presence
of large parameters in the explicit rate equations.2 On defining the small param-
eter ε as the reciprocal of such a representative large parameter, it can be shown
(Kumar and Daoutidis 1999a) that the dynamic models of these fast-rate pro-
cesses are given by a system with the following general description:

ẋ = f(x) + G(x)u +
1
ε
B(x)k(x) (2.36)

where x ⊂ χ ∈ IRn is the vector of state variables, f(x) and k(x) are smooth
vector fields of dimension n and p, p < n, and G(x) and B(x) are matrices
of dimensions n × m and n × p, respectively. In the rate-based models of Equa-
tion (2.36), the term (1/ε)B(x)k(x) corresponds to the fast phenomena for which
the rate expressions involve large parameters; the matrix B(x) and the Jacobian
∂k(x)/∂x are assumed to have full column and row rank p, respectively.

Clearly, the system in Equation (2.36) is not in a standard singularly per-
turbed form and therefore the results derived so far are not directly applicable.

2 As will be seen throughout the rest of the text, typical examples include fast reactions and
large heat and mass transfer rates.
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Kumar et al. (1998) analyzed the two-time-scale property of the system (2.36)
and addressed the construction of nonlinear coordinate changes that would yield
a standard singularly perturbed representation.

Example 2.3. Depending on the mechanism, reacting systems with vastly differ-
ent reaction rates can be modeled by either standard or nonstandard singularly
perturbed systems of equations. Systems in which a reactant is involved in both
slow and fast reactions belong to the latter category. Consider the reaction sys-
tem in Example 2.2, with the difference that the reactant R1 also participates in
the second reaction:

R1 → P1 + R2 (2.37)

R1 + R2 → P2 (2.38)

The rate constants are k1 = 0.10 s−1 and k2 = 10 s−1 l mol−1. In this case, the
evolution of the molar concentrations x1 and x2 of R1 and R2 is described by

dx1

dt
= −k1x1 − k2x1x2 (2.39)

dx2

dt
= k1x1 − k2x1x2 (2.40)

Owing to the fact that R1 is the sole feedstock, we can reasonably assume that
x1,0 is not insignificant. For simplicity, let x1,0 = 1 mol/l. We can thus define

ε =
k1

k2x1,0
= 0.01 � 1 (2.41)

and rewrite (2.39)–(2.40) as

dx1

dt
= −k1x1 −

1
ε

k1

x1,0
x1x2 (2.42)

dx2

dt
= k1x1 −

1
ε

k1

x1,0
x1x2 (2.43)

which is in the form of Equation (2.36) (i.e., a nonstandard singularly
perturbed ODE), with x= [x1 x2]T, f(x)= k1x1[−1 1]T, G(x)=0, B(x)=
−(k1/x1,0)[1 1]T, and k(x)= x1x2.

Within the framework proposed in Kumar et al. (1998), a time-scale decom-
position is initially used to derive separate representations of the slow and fast
dynamics of (2.36) in the appropriate time scales and to provide some insight
into the variables that should be used as part of the desired coordinate change.
Specifically, by multiplying Equation (2.36) by ε and considering the limit ε → 0,
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we obtain the following set of (linearly independent) constraints that must be
satisfied in the slow time scale t:

ki(x) = 0, i = 1, . . . , p (2.44)

where ki(x) denotes the ith component of k(x).
For the system (2.36), in the limit ε → 0, the term (1/ε)k(x) becomes indeter-

minate. For rate-based chemical and physical process models, this allows a phys-
ical interpretation: in the limit when the large parameters in the rate expressions
approach infinity, the fast heat and mass transfer, reactions, etc., approach the
quasi-steady-state conditions of phase and/or reaction equilibrium (specified by
k(x)=0). In this case, the rates of the fast phenomena, as given by the explicit
rate expressions, become indeterminate (but, generally, remain different from
zero; i.e., the fast reactions and heat and mass transfer do still occur).

Thus, defining

zi = lim
ε→0

ki(x)
ε

as the finite but unknown rates of the fast phenomena, the system (2.36) takes
the following form:

ẋ = f(x) + G(x)u + B(x)z

0 = k(x)
(2.45)

which describes the slow dynamics of Equation (2.36). In the above DAE sys-
tem, x is the vector of differential variables and z ∈ IRp is a vector of algebraic
variables.

Note that the system (2.45) is a DAE system of nontrivial index, since z
cannot be evaluated directly from the algebraic equations. A solution for the
variables z must be obtained by differentiating the constraints k(x)=0. For most
chemical processes, such as reaction networks (Gerdtzen et al. 2004), reactive
distillation processes (Vora 2000), and complex chemical plants (Kumar and
Daoutidis 1999a), the z variables can be obtained after just one differentiation
of the algebraic constraints:

z = − (LBk(x))−1 {Lfk(x) + LGk(x)u} (2.46)

since in such cases the (p × p) matrix LBk(x), denoting the Lie derivative3 of
function k along B, is nonsingular. In the interest of preserving the simplicity of
the discussion, this observation is generalized as follows.

Assumption 2.1. For the systems under consideration, the matrix LBk(x) is
nonsingular.

3 Please see Appendix A for a definition of the Lie derivative.
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Assumption 2.1 fixes the index of the DAE system (2.45) to two, and the
numbers of slow and fast variables as (n − p) and p, respectively.

A state-space realization (ODE representation) of the DAE system (2.45) can
readily be obtained as

ẋ = f(x) + G(x)u − B(x)(LBk(x))−1{Lfk(x) + LGk(x)u} (2.47)

0 = k(x) (2.48)

Similarly, a representation of the fast dynamics in the limit ε → 0 is obtained in
the “stretched” fast time scale τ = t/ε as

dx
dτ

= B(x)k(x) (2.49)

Note that, though Equations (2.49) and (2.45) represent the fast and slow dynam-
ics, the fast and slow variables are still not explicitly separated.

As mentioned before, obtaining an explicit variable separation for the system
in Equation (2.36) requires a nonlinear coordinate transformation. The fact that
k(x)=0 in the slow time scale t and k(x) 
= 0 in the fast time scale τ indicates
that the functions ki(x) should be used in such a coordinate transformation as
fast variables. Then, it can be shown (see, e.g., Kumar and Daoutidis 1999a)
that a coordinate change of the form[

ζ

η

]
= T(x) =

[
φ(x)
k(x)

]
(2.50)

that results in a standard singularly perturbed representation of the system
(2.36), where ζ ∈ IRn−p are the slow variables and η ∈ IRp are the constraints
associated with the quasi-steady state of the fast component of the dynamics,
exists if and only if the matrix LBk(x) is nonsingular, and the p-dimensional
distribution spanned by the columns of the matrix B(x) is involutive.4

Assuming that the above conditions are satisfied, under the coordinate change
of Equation (2.50), we obtain the following standard singularly perturbed form
for (2.36):

ζ̇ = f̃(ζ,η) + G̃(ζ,η)u (2.51)

εη̇ = εf̄(ζ,η) + εḠ(ζ,η)u + Q(ζ,η)η (2.52)

where f̃ =Lfφ(x), f̄ = Lfk(x), G̃=LGφ(x), Ḡ=LGk(x), Q=LBk(x), evalu-
ated at x=T−1(ζ,η), and Q(ζ,η) is nonsingular uniformly in ζ,η, and the
(n − p)-dimensional vector field φ(x) is such that LBφ(x) ≡ 0.

Considering now (2.51)–(2.52) in the limit ε → 0, we obtain η =0 as the quasi-
steady-state solution of the fast variables, and the following model of dimension
(n − p) is obtained for the slow dynamics:

ζ̇ = f̃(ζ,0) + G̃(ζ,0)u (2.53)

4 The notion of involutivity is defined in Appendix A.
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On introducing the “stretched” fast time scale τ = t/ε, and considering
(2.51)–(2.52) in the limit ε → 0, we also obtain the following description of the
fast dynamics:

dζ

dτ
= 0

dη

dτ
= Q(ζ,η)η

(2.54)

Note that in this case, the variables ζ =φ(x) and η =k(x) represent the “true”
slow and fast variables, respectively, since the fast transients are observed only
in the η variables.

Example 2.4. Two metal objects B1 and B2 (with constant masses m1 and m2

and constant heat capacities Cp1 and Cp2, respectively), initially at different
temperatures (T1,0 and T2,0), are brought into contact. Heat transfer occurs over
a contact area A, with a heat-transfer coefficient U . The objects are assumed to
be isolated from the environment; however, the insulation on B2 is not perfect
and heat is lost to the environment over a similar area A; the heat transfer
coefficient Ue between B2 and the environment is, however, much lower than U .
The environment is assumed to act as a heat sink at a constant temperature Te.

The energy balance for this system is described by

d(m1Cp1T1)
dt

= UA(T2 − T1) (2.55)

d(m2Cp2T2)
dt

= −UA(T2 − T1) − UeA(T2 − Te) (2.56)

Since Ue �U , we can define

ε =
Ue

U
� 1 (2.57)

and rewrite (2.55)–(2.56) as

dT1

dt
=

1
ε

UeA

m1Cp1
(T2 − T1) (2.58)

dT2

dt
= −1

ε

UeA

m2Cp2
(T2 − T1) −

UeA

m2Cp2
(T2 − Te) (2.59)

which is in the form of Equation (2.36), with

x =
[

T1

T2

]
(2.60)

f(x) =

⎡
⎣ 0

− UeA

m2Cp2
(T2 − Te)

⎤
⎦ (2.61)
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B(x) =

⎡
⎢⎢⎢⎢⎣

UeA

m1Cp1

− UeA

m2Cp2

⎤
⎥⎥⎥⎥⎦ (2.62)

k(x) = T2 − T1 (2.63)

The nonstandard singularly perturbed form of the model of this system poten-
tially indicates a dynamic behavior with two time scales. This is, in effect, quite
intuitive, in view of the presence of different rates of heat transfer induced by
the different heat-transfer coefficients U and Ue.

In order to capture the fast component of the dynamics, we define the stretched
time scale τ = t/ε and consider the limit ε → 0 (i.e., an infinitely high heat-
transfer coefficient between B1 and B2). We thus obtain a description of the fast
dynamics as

dT1

dτ
=

UeA

m1Cp1
(T2 − T1) (2.64)

dT2

dτ
= − UeA

m2Cp2
(T2 − T1) (2.65)

with the corresponding quasi-steady-state constraint

0 = T2 − T1 (2.66)

This result also lends itself to an intuitive interpretation: temperature equilibra-
tion is a fast phenomenon and T1 =T2 – a line in the (T1, T2) coordinate system –
is the equilibrium manifold of the fast dynamics.

Turning now to the slow dynamics, we consider the same limit ε → 0 in the
original time scale t. On defining

z = lim
ε→0

T2 − T1

ε
(2.67)

we obtain

dT1

dt
=

UeA

m1Cp1
z (2.68)

dT2

dt
= − UeA

m2Cp2
z − UeA

m2Cp2
(T2 − Te) (2.69)

0 = T2 − T1 (2.70)

The algebraic variable z can be computed after differentiating the algebraic con-
straints (2.69):

z = −
(

UeA

m1Cp1
+

UeA

m2Cp2

)−1
UeA

m2Cp2
(T2 − Te) (2.71)
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Figure 2.7 Phase portrait of the system (2.55)–(2.56).

Finally, the coordinate change

ζ = m1Cp1T1 + m2Cp2T2 (2.72)

η = T2 − T1 ≡ 0 (2.73)

yields the 1D state-space representation of the slow dynamics:

dζ

dt
= −UeA

(
ζ

m1Cp1 + m2Cp2
− Te

)
(2.74)

The representation (2.74) of the slow dynamics provides yet another valuable
insight: while the temperatures of B1 and B2 exhibit a two-time-scale behavior,
the total enthalpy of the system (captured by the variable ζ) is a true slow
variable, evolving only in the slow time scale.

Figures 2.7 and 2.8 present a set of numerical simulations carried out
on the system (2.55)–(2.56) using the following parameters: A= 0.1 m2,
m1 = m2 = 0.1 kg, U = 1000 W m−2 K−1, Cp1 =Cp2 = 1000 J kg−1 K−1 and
Te = 273 K.

Figure 2.7 reveals the presence of the equilibrium manifold: phase trajectories
approach the T1 =T2 line and converge along this line to the equilibrium point
T1 = T2 =Te = 273 K.

Figure 2.8 presents the evolution of the temperatures starting from the ini-
tial state (T1 = 370 K, T2 =220 K): thermal equilibrium between B1 and B2 is
reached very quickly; subsequently, due to heat losses, the temperatures of the
two objects slowly reach the temperature of the environment. Conversely, the
total enthalpy of the system evolves slowly towards its value at Te =273 K.
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Figure 2.8 The system temperatures exhibit both fast and slow transients (top), while
the total enthalpy evolves only in the slow time scale (bottom).

Remark 2.6. Note that the above results require the involutivity of the distribu-
tion spanned by the columns of B(x). This condition, however, is quite restrictive,
and is, in general, violated for nonlinear systems with p > 1. In such cases, it
is possible to construct an ε-dependent coordinate transformation that is singu-
lar at ε= 0 to derive a standard singularly perturbed form. Specifically, under a
coordinate transformation of the form

[
ζ

η

]
= T(x) =

⎡
⎣ φ(x)

k(x)
ε

⎤
⎦ (2.75)

where ζ ∈ IRn−p and η ∈ IRp, the system of Equation (2.36) takes the following
standard singularly perturbed form:

ζ̇ = f̃(ζ, εη) + G̃(ζ, εη) u + B̃(ζ, εη)η (2.76)

εη̇ = f̄(ζ, εη) + Ḡ(ζ, εη) u + Q(ζ, εη)η (2.77)

where f̃ =Lfφ(x), G̃=LGφ(x), B̃=LBφ(x), f̄ =Lfk(x), Ḡ= LGk(x), and
Q= LBk(x) are evaluated at x=T−1(ζ, εη), and Q(ζ,0) is nonsingular uni-
formly in ζ. In the limit ε → 0, a reduced-order model of dimension (n − p) is
obtained for the slow dynamics:

ζ̇ = f̃(ζ,0) + G̃(ζ,0)u − B̃(ζ,0)Q(ζ,0)−1
[
f̄(ζ, 0) + Ḡ(ζ,0)u

]
(2.78)

η = −Q(ζ,0)−1
[
f̄(ζ,0) + Ḡ(ζ,0)u

]
(2.79)
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On introducing the “stretched” fast time scale τ = t/ε and considering the limit
ε → 0 in Equation (2.77), we also obtain the following description of the fast
dynamics:

dζ

dτ
= B̃(ζ, εη)k̂(ζ,η)

dη

dτ
= Q(ζ,η)k̂(ζ,η)

(2.80)

where k̂(ζ,η)=k(x)x=T−1(ζ,η). Note that, because k̂(ζ,η) is nonzero in the
fast time scale, the variables ζ exhibit both fast and slow transients and hence,
strictly speaking, are not “true” slow variables. Therefore, in this case, the sys-
tem (2.51)–(2.52) exhibits a two-time-scale behavior only in a restricted subspace
(Kumar and Daoutidis 1999a) where k(x) is O(ε), i.e.,

M̄(ε) = {x ∈ χ : k(x) = O(ε)} (2.81)

2.4 Singularly perturbed systems with three or more time scales

The developments presented above have been limited to the case of a single
small, singular perturbation parameter being present in the system description.
However, in practical applications, e.g., the analysis of complex reaction networks
(Vora 2000, Gerdtzen et al. 2004) or of processes with physical and chemical
phenomena occurring at different rates (Vora and Daoutidis 2001), it is possible
that several such parameters εi, i= 1, . . . , k, are present. Typically, the values
of these parameters are themselves of very different magnitudes, with

εj+1

εj
→ 0 as εj → 0 (2.82)

In such cases, the system is said to be in a multiply singularly perturbed form,
and has the potential to exhibit a dynamic behavior featuring more than two
time scales.

As in the case of two-time-scale systems, research work on systems exhibiting
more than two time scales has mostly focused on the standard singularly per-
turbed form (Hoppensteadt 1971). Comparatively, however, such systems (and,
in particular, nonstandard multiply singularly perturbed ones) have received far
less attention than their two-time-scale counterparts (Vora et al. 2006).

Time-scale decomposition and model reduction methods for multiply singu-
larly perturbed systems typically involve the nested application of the proce-
dures discussed so far. For the interested reader, an overview of existing research
results concerning the dynamic behavior of multiply singularly perturbed sys-
tems is presented in Appendix B.
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2.5 Control of singularly perturbed systems

Let us now consider an augmented representation of the standard and nonstan-
dard singularly perturbed systems discussed above, namely

dx1

dt
= f1(x1,x2) + G1(x1,x2)u (2.83)

ε
dx2

dt
= f2(x1,x2) + G2(x1,x2)u (2.84)

y = h(x1,x2) (2.85)

and
dx
dt

= f(x) + G(x)u +
1
ε
B(x)k(x) (2.86)

y = h(x) (2.87)

respectively. Here u ∈ IRm is a vector of manipulated inputs, or “handles” that
can be used to change the behavior of the system, y is a vector of system outputs
that singles out the states or combinations of states which can be measured (and
need to be controlled), and G1(x),G2(x), and G(x) are matrix functions of
appropriate dimensions.

In very generic terms, controller design seeks to use the (inverse of the) model
(2.83)–(2.85) or (2.86)–(2.87) to compute the inputs u as a function of the out-
puts y (or the states x), so as to minimize the difference between the latter and
a given value, or setpoint.

The majority of the existing literature on the control of singularly perturbed
systems considers the two-time-scale, standard form (see, e.g., Kokotović et al.
1986, Christofides and Daoutidis 1996a, 1996b). Nevertheless, the methods avail-
able for standard singularly perturbed systems can be extended to systems in
nonstandard form, since these can be transformed into an equivalent standard
form as mentioned above.

For two-time-scale systems, it is well established that inversion-based con-
trollers designed without explicitly accounting for the time-scale multiplicity are
ill-conditioned and can lead to closed-loop instability. In order to avoid such
issues, controller design must be addressed on the basis of the reduced-order
representations of the slow and fast dynamics, an approach referred to as com-
posite control (see, e.g., Chow and Kokotović 1976, 1978, Saberi and Khalil 1985,
Kokotović et al. 1986, Christofides and Daoutidis 1996a, 1996b).

Composite control relies on the use of a single controller consisting of a fast
component and a slow component, which are designed separately on the basis
of the reduced-order models for the dynamics in the respective time scales
(Figure 2.9).

Whether considering linear or nonlinear systems, and regardless of the con-
troller design method employed, the fast component of a composite control sys-
tem is typically designed to stabilize the fast dynamics (if it is unstable), while the
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Figure 2.9 Composite control relies on separate, coordinated fast and slow controllers,
designed on the basis of the respective reduced-order models, to compute a control
action that is consistent with the dynamic behavior of two-time-scale systems.

slow component aims to achieve the desired closed-loop performance objectives
on the basis of the slow subsystem, which practically governs the input–output
behavior of the overall two-time-scale system.

2.6 Synopsis

This chapter has reviewed existing results in addressing the analysis and con-
trol of multiple-time-scale systems, modeled by singularly perturbed systems of
ODEs. Several important concepts were introduced, amongst which the classifi-
cation of perturbations to ODE systems into regular and singular, with the latter
subdivided into standard and nonstandard forms. In each case, we discussed the
derivation of reduced-order representations for the fast dynamics (in a newly
defined stretched time scale, or boundary layer) and the corresponding equilib-
rium manifold, and for the slow dynamics. Illustrative examples were provided
in each case.

We also introduced the idea of composite control, which is based on the use
of separate, coordinated controllers for the fast and slow components of the
dynamics.

These concepts will be applied extensively in the remainder of the book as
the basis for further theoretical developments concerning singularly perturbed
systems, and as a support for analyzing the dynamic and control implications of
process integration. Specifically, we will demonstrate that many salient design
features of integrated processes translate into dynamic models that are in a
singularly perturbed form. Subsequently, we will exploit these findings in well-
conditioned, hierarchical controller designs that naturally account for the process
dynamics and lead to excellent performance at the process level.
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Process systems with material
integration





3 Process systems with significant
material recycling

3.1 Introduction

Modern chemical plant designs favor “lean” configurations featuring material
recycling, fewer units, and diminished material inventory. Together with the
elimination of provision for intermediary storage (buffer tanks), these traits intu-
itively result in significant dynamic interactions between the process units, lead-
ing to an intricate dynamic behavior at the process level. Consequently, the
design and implementation of advanced, model-based control systems aimed at
improving plant performance is a difficult matter, with the complexity, large
dimension, and ill conditioning of the process models being major hindrances.

In this chapter, we begin to explore the dynamic impact of process integration.
Following closely the arguments in (Kumar and Daoutidis 2002), we consider a
specific category of process systems, namely processes with significant (compared
with the feed flow rate) material recovery and recycling. We will establish a
connection between this steady-state design feature and the transient behavior
of the process, followed by postulating a hierarchical control framework that
exploits our findings in the realm of process dynamics in the design of well-
conditioned, low-dimensional controllers.

3.2 Modeling of process systems with large recycle streams

We consider a generic class of reaction–separation process systems, such as the
one in Figure 3.1, consisting of N units (modeled as lumped parameter systems)
in series, with one material recycle stream.

R

F1 F2F0 FN

Figure 3.1 A generic integrated process system, featuring a material recycle loop.
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In its general form, the mathematical model describing the overall and com-
ponent material balances of this process can be written as

ẋ = f(x) +
∑

j=0,N

gj(x)uj + Rc
N−1∑
j=1

kjgj(x)uj + RcgR(x)ur (3.1)

where x is the vector of state variables (i.e., total and component invento-
ries in each unit), the term f(x) captures the impact of chemical reactions on
the material balance, uj = (Fj/Fj,s) represent (possibly manipulated) dimen-
sionless variables that correspond to the flow rates of the process streams,
kj =Fj,s/FR,s, j = 1, . . . , N , and gj(x) and gR(x) are vector functions of appro-
priate dimensions. The subscript s denotes steady-state values.

Note that the model explicitly identifies the terms that involve the feed and
product flow rates (j = 0, N), the internal flow rates (j = 1, . . . , N − 1), and the
recycle (j = R).

In order to investigate the impact of the presence and magnitude of the recycle
stream on the process dynamics, Equation (3.1) also makes use of the recycle
number Rc, which we define below.

Definition 3.1. The recycle number of a material recycle loop in an integrated
process is a process-wide dimensionless number, expressed as the ratio of the
(steady-state) flow rates of the recycle stream and the process throughput, as
captured by the (total) flow rate of the process feed stream(s):

Rc =
Rs

F0s
(3.2)

Evidently, for a given production rate (set by F0), the value of Rc varies with
the flow rate of the recycle stream. Two limit cases are of interest.

Case I. Rc � 1: in this case, the recycle flow rate is much smaller than the
feed flow rate, the internal flow rates are comparable to the feed flow
rate, and kj � 1, Rckj = k̃j =O(1), j = 1, . . . , N − 1. In the limit as the
recycle flow rate tends to zero (Rc → 0), the last term in Equation (3.1)
vanishes, and the model reduces to the model of a series system:

ẋ = f(x) +
∑

j=0,N

gj(x)uj +
N−1∑
j=1

k̃jgj(x)uj (3.3)

In this case, the model of the process with recycle is a regular perturba-
tion of the nominal (no recycle) series system. In light of the concepts
introduced in Chapter 2, we can expect that the presence of the (small)
material recycle stream will not have a significant impact on the dynam-
ics of the process.

Case II. Rc� 1. in this case the recycle flow rate is much larger than the
feed flow rate, the internal flow rates are equally large and kj =O(1),
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j = 1, . . . , N − 1. In this context, the model of Equation (3.1) can be
rewritten as

ẋ = f(x) +
∑

j=0,N

gj(x)uj +
1
ε

⎡
⎣N−1∑

j=1

kjgj(x)uj + gR(x)ur

⎤
⎦ (3.4)

with

ε =
1
Rc

, 0 < ε � 1 (3.5)

The model in (3.4) is a system of equations in singularly perturbed form.
Considering again the theory presented in Chapter 2, we can expect the
dynamic behavior of systems with large recycle to differ significantly
from the dynamics of the nominal system with N units in series.

Example 3.1.

A process consisting of an isothermal continuously stirred tank reactor of vol-
ume V and an ideal separator (Figure 3.2) converts a feed stream of flow rate F0,
containing the reactant A (concentration CA0) to product B in the first-order
reaction

A → B (3.6)

with the reaction rate

r = kCA (3.7)

Complete conversion in the outlet stream is desired (i.e., CAout =0) and the
reactor effluent is separated, with the unreacted A being recycled to the reactor
at a flow rate R. It is assumed for simplicity that CAR =CA0.

R, CA0

F0, CA0 F1,CA
Fout,CAout= 0

Figure 3.2 A process system consisting of a reactor and an ideal separator, with
recycling of the unreacted feed A.
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Figure 3.3 Recycle flow rates (presented in terms of the recycle number Rc=Rs/F0s)
required to achieve complete conversion at the system outlet (solid line, left ordinate)
and corresponding reactor conversion (dashed, right ordinate) as a function of the
reaction rate constant.

The flow rate of the recycle stream, R, required to achieve complete conversion
at the process outlet can be computed as a function of the reaction rate constant
and the reactor volume from the steady-state material balance equations:

0 =
V

F0 + R
− CA0 − CA

kCA
(3.8)

0 = F1CA − RCA0 (3.9)

On solving the above equations for CA0 = 1000 mol/m3, V = 1 m3, and
F0 = 0.01 m3/s, for different values of k, we obtain the dependences represented
in Figure 3.3.

The results in Figure 3.3 are quite intuitive: for the selected reactor size, the
conversion in the reactor is low at low values of the reaction rate constant k.
The reactor effluent will therefore contain a significant amount of reactant A,
which must be separated and recycled, and in this case the flow rate of the
material recycle stream is very high compared with the flow rate of the feed
stream (Case II). Conversely, at high single-pass conversions, the required recycle
flow rate drops sharply (Case I).

Evidently, changes in the reactor size impact on the above findings: allowing an
increase in the reactor holdup leads to an increase in the single-pass conversion
and reduces the flow rate of the material recycle stream. While plant configu-
rations with low reactor capacity are preferred in processes featuring multiple
reactions with valuable intermediate products (Luyben 1993b), the optimal sizes
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of the reactor and separation equipment can be determined only by considering
the tradeoff between capital and operating costs1 and the profit generated from
the products.

Example 3.1 highlights the fact that the presence of (and need for) material
recycle streams with significant flow rates is entirely a steady-state design
feature of a process. In what follows, we will focus on investigating the profound
impact of this feature on the dynamics and control of the processes under
consideration.

To this end, let us rewrite the model in Equation (3.4) in a more general form:

ẋ = f(x) + Gs(x)us +
1
ε
Gl(x)ul (3.10)

where, as above, x is the vector of state variables, us ∈ IRms
is the vector of

scaled input variables that correspond to the small flow rates, ul ∈ IRml
is the

vector of scaled input variables that correspond to the large flow rates of the
internal streams, and Gs(x) and Gl(x) are matrices of appropriate dimensions.

According to the developments in Section 2.3, the model of Equation (3.10) is
in a nonstandard singularly perturbed form. We thus expect its dynamics (and,
consequently, the dynamics of integrated process systems with large material
recycle) to feature two distinct time scales. However, the analysis of the system
dynamics is complicated by the presence of the term ul, which, as we will see
below, precludes the direct application of the methods presented in Chapter 2 for
deriving representations of the slow and fast components of the system dynamics.

3.3 Model reduction

3.3.1 Fast dynamics

We define the fast, “stretched” time scale τ = t/ε. On rewriting Equation (3.10) in
this time scale and considering the limit case ε → 0 (which physically corresponds
to an infinitely large recycle number or, equivalently, an infinitely high recycle
flow rate), we obtain a description of the fast dynamics of the process:

dx
dτ

= Gl(x)ul (3.11)

Note that the above model of the fast dynamics involves only the large recycle
and internal flow rates ul, and does not involve the small feed/product flow rates
us. Examining the material balance equations in (3.1), it is intuitive that the flow
rates of the internal streams do not affect the total holdup of any component in
the process, and that total holdups are affected only by the flow rates us of the

1 Associated, respectively, with increasing the reactor and separation equipment size, and with
the amount of energy required by daily operations.
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feed/product streams. In other words, Equation (3.11) effectively describes the
dynamics of the individual units in the recycle loop – note that, by definition, τ

is of the order of magnitude of the residence time of an individual process unit –
and does not capture the overall (process-level) changes in the material balance
of the process. We can use this observation to further infer the following.
� The differential equations (3.11) are not linearly independent. Consequently,

as indicated in Section 2.3, the steady-state condition

0 = Gl(x)ul (3.12)

for the fast dynamics (3.11) does not specify a set of isolated equilibrium
points, but rather a low-dimensional equilibrium subspace (manifold), in
which a slow component of the system dynamics evolves.

� The slow component of the process dynamics is associated with the evolution
of the total material holdup of the process and with the total holdups of the
chemical components present in the process.

� From physical considerations, at most C equations (with C being the number
of chemical components) are required in order to completely capture the above
overall, process-level material balance. Thus, we can expect the dimension of
the system of equations describing the slow dynamics of the process to be at
most C, and the equilibrium manifold (3.12) of the fast dynamics to be at
most C-dimensional.

Remark 3.1. In contrast to the theory presented thus far (Section 2.3), the alge-
braic constraints of (3.12) incorporate a set of (unknown) manipulated inputs,
ul. The equilibrium manifold described by (3.12) is thus referred to as control-

dependent.

3.3.2 Slow dynamics

In order to obtain the description of the slow dynamics, and using the devel-
opments in Section 2.3, we make the following, typically true (see, e.g., Kumar
and Daoutidis 2002, Contou-Carrère et al. 2004, Baldea et al. 2006, Baldea and
Daoutidis 2007), assumption.

Assumption 3.1. The matrix Gl(x) can be decomposed as Gl(x) = B(x)Ḡl(x),
with B(x) ∈ IRn×(n−C) being a full column rank matrix and the matrix G̃l(x) ∈
IR(n−C)×ml

having linearly independent rows.

We now multiply Equation (3.10) by ε and consider the limit of an infinitely
high recycle flow rate (i.e., ε → 0) in the original time scale t. In this limit, we
obtain the constraints in Equation (3.12), or equivalently, the linearly indepen-
dent constraints

Ḡl(x)ul = 0 (3.13)

which must be satisfied in the slow time scale.
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Also in the limit ε → 0, the terms

Ḡl(x)ul

ε
(3.14)

which correspond to the differences of large flow rates present in the material
balance equations of every process unit become indeterminate. On defining

z = lim
ε→0

Ḡl(x)ul

ε
(3.15)

as the vector of these finite, but unknown terms, the system in Equation (3.10)
becomes

ẋ = f(x) + Gs(x)us + B̄(x)z

0 = Ḡl(x)ul
(3.16)

which represents the model of the slow dynamics of the process induced by the
large recycle flow rate.

As anticipated in Remark 3.1, the constraints in Equation (3.13) depend on
ul. In other words, the slow dynamics of the process cannot be completely char-
acterized (in the sense of obtaining a reduced-order ODE representation of the
type (2.48)) prior to defining ul as a function of the process state variables (or
measured outputs) via an appropriate control law. These issues are addressed in
the following section.

Remark 3.2. We can regard the developments above from a converse perspec-
tive. Namely, if we consider the model of each individual unit (preserving the
input and output flow structure of the process) in the fast time scale τ , we can
write a simplified model for unit i in the form

dx
dτ

= εfi(x) + εGs
i(x)us

i + Gl
i(x)ul

i (3.17)

with fi(x) being a vector field, and Gs
i and Gl

i matrices of appropriate dimen-
sions. us

i denote the inputs corresponding to any small mass flows and ul
i the

inputs corresponding to any large mass flows into the process unit. The model of
the process unit written in the form (3.17) is a regularly perturbed model. In the
limit case of an infinitely small recycle number, ε → 0 (which, in this context,
can intuitively be viewed as the limit in which the flow rates of the small streams
us

i are reduced to zero), the model reduces to

dx
dτ

= Gl
i(x)ul

i (3.18)

This result further confirms that the dynamics at the unit level are strongly influ-
enced by the flow rates of the large internal material streams ul

i, while the flow
rates of the small process input and output streams, us

i, have little impact on the
fast dynamics.

Moreover, the fact that, at the unit level, the presence of flow rates of vastly
different magnitudes is modeled as a regular perturbation, while at the process
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level it is modeled as a singular perturbation, establishes that it is the use of
recycle streams of large flow rates that induces the time-scale multiplicity at the
process level.

3.4 Control of integrated processes with large recycle

3.4.1 Hierarchical controller design

The two-time-scale behavior of the material balance of integrated processes with
large recycle suggests the use of a hierarchical control structure with two tiers
of control action:

� distributed control, addressing control objectives for individual process units
in the fast time scale

� supervisory control, addressing control objectives for the overall process in
the slow time scale.

To this end, let us complete the description of Equation (3.10) with a vector of
output variables y:

ẋ = f(x) + Gs(x)us +
1
ε
Gl(x)ul

y = h(x)
(3.19)

and let us further define

y =
[
yl

ys

]
(3.20)

where yl denotes the subset of the output variables which are associated with
control objectives for the individual process units (typically involving the control
of local inventories, i.e., the stabilization of liquid holdups or gas pressures) and
ys those associated with control objectives for the overall process, e.g., produc-
tion rate, total inventory, and product quality.

The above time-scale decomposition provides a transparent framework for the
selection of manipulated inputs that can be used for control in the two time
scales. Specifically, it establishes that output variables yl need to be controlled
in the fast time scale, using the large flow rates ul, while the control of the
variables ys is to be considered in the slow time scale, using the variables us.
Moreover, the reduced-order approximate models for the fast (Equation (3.11))
and slow (the state-space realization of Equation (3.16)) dynamics can serve as
a basis for the synthesis of well-conditioned nonlinear controllers in each time
scale.
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3.4.2 Control of the fast dynamics

Owing to the dependence of the state space where the slow dynamics evolves
on the large flow rates (Remark 3.1), the fast-controller design must precede the
slow-controller design.

The design of the fast distributed controllers for the individual units can, in
general, be addressed as a collection of individual control problems, where the
strictness of the operational requirements for each unit dictates the complexity of
the corresponding controller; typical applications rely on the use of simple linear
controllers, e.g., proportional (P), proportional–integral (PI) or proportional–
integral–derivative (PID).

Tikhonov’s theorem (Theorem 2.1) indicates a further requirement that must
be fulfilled by the controllers in the fast time scale: in order for the time-scale
decomposition developed above to remain valid, these controllers must ensure the
exponential stability of the fast dynamics. From a practical point of view, this
is an intuitive requirement: one cannot expect stability and control performance
at the process level if the operation of the process units is not stable.

3.4.3 Control in the slow time scale

The design and implementation of the fast controllers allows the derivation of
a minimal-order realization of the DAE model of the slow dynamics in Equa-
tion (3.16). For illustration purposes, let us assume that the fast controllers are
defined by the static state-feedback control law

ul = K
(
yl − yl

sp

)
(3.21)

with yl
sp denoting the setpoint for the outputs yl, which stabilizes the fast dynam-

ics and induces the desired closed-loop response in the fast time scale. Under the
control law (3.21), the slow model in Equation (3.16) becomes

ẋ = f(x) + Gs(x)us + B̄(x)z

0 = Ḡl(x)K
(
yl − yl

sp

) (3.22)

Using the methods presented in Chapter 2, the above formulation can be used
to derive a state-space realization of the slow dynamics of the type in Equation
(2.48). The resulting low-dimensional model should subsequently form the basis
for formulating and solving the control problems associated with the slow time
scale, i.e., stabilization, output tracking, and disturbance rejection at the process
level.

From a practical perspective, this is the model that should be used to design
a (multivariable) controller that manipulates the inputs us to fulfill the con-
trol objectives ys. It is important to note that the availability of a low-order
ODE model of the process-level dynamics affords significant flexibility in design-
ing the supervisory control system, since any of the available inversion- or
optimization-based (e.g., Kravaris and Kantor 1990, Mayne et al. 2000, Zavala
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and Biegler 2009) control methods for nonlinear ODE systems can be applied.
Using the reduced-order model for controller synthesis is also beneficial from
an implementation point of view: the reduced dimensions and improved con-
ditioning (reduced stiffness) compared with those of the original model (3.10)
will result in shorter online calculation times and less sensitivity to noise and
disturbances.

3.4.4 Cascaded control configurations

Practical considerations in implementing the hierarchical control framework
developed above concern the availability of manipulated inputs to address the
control objectives in the slow time scale (it is possible that dim(us) < dim(ys)),
as well as achieving a tighter coordination between the distributed and super-
visory control layers. Both issues are effectively addressed by using a cascaded
control configuration, which extends the choice of controlled variables in the slow
time scale to include the setpoints yl

sp of the distributed controllers.
In this case, however, the algebraic constraints in the DAE system describing

the slow dynamics (3.22) will explicitly involve manipulated input variables (i.e.,
yl

sp), and the direct application of the methods in Section 2.3 for the derivation
of a state-space realization of the slow dynamics is not possible.2

It can be shown (Kumar and Daoutidis 1996, Contou-Carrère et al. 2004)
that, under some mild assumptions (including Assumption 3.1), the models of
the process systems under consideration can be transformed into regular DAE
systems by introducing an additional set of appropriately defined differential
variables, i.e., by constructing a dynamic extension of the process model. Within
this framework, considering that a subset ȳl

sp ⊆ yl
sp of the setpoints of the fast

controllers are used as manipulated inputs in the slow time scale, the dynamic
extension

ȳl
sp = w (3.23)

ẇ = v1 (3.24)

us = v2 (3.25)

transforms the (nonregular) DAE model of Equation (3.22) into an index-2 DAE
system whose state space is independent of the new vector of manipulated inputs
v =

[
vT

1 vT
2

]T, which can subsequently be used for obtaining an ODE represen-
tation of the slow dynamics as described above.

Remark 3.3. The hierarchical control structure proposed in this chapter (illus-
trated in Figure 3.4) is dissimilar to the composite control approach reviewed in

2 Differential algebraic equation systems whose algebraic equations explicitly involve manipu-
lated input variables are referred to as nonregular (Kumar and Daoutidis 1999a). See also
Definition A.6.
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Integrated process

Distributed control

Supervisory control

y l

y s

y I
sp

ufast

Hierarchical controller

uslow

Figure 3.4 Hierarchical control relies on separate, but coordinated, fast and slow
controllers, designed on the basis of the respective reduced-order models, to compute
the values of the separate inputs that influence the fast and slow dynamics of the
process. Tighter coordination between the distributed and supervisory control layers
is achieved by using a cascaded configuration.

Section 2.2, in that two layers of control action involving separate controllers
are proposed, whereas composite control relies on a single (possibly multivari-
able) controller with two components, a fast one and a slow one. Thus, the
hierarchical control structure accounts for the separation of the flow rates of the
process streams into two groups of inputs that act upon the dynamics in the dif-
ferent time scales. On the other hand, composite controller design (Figure 2.9)
presupposes that the available manipulated inputs impact both the fast and the
slow dynamics and relies on one set of inputs to regulate both components of the
system dynamics.

Remark 3.4. In the context of the present chapter (and of the remainder of the
book), the term hierarchical control structure reflects the use of two (or multiple)
coordinated tiers of control action, and should not be confused with “hierarchical
plant-wide controller design strategies” (see, e.g. Ponton and Laing 1993, Luyben
et al. 1997, Zheng et al. 1999, Antelo et al. 2007, Scattolini 2009, and references
therein), which use the term “hierarchy” to denote a set of guidelines, to be
followed in sequence, for designing the control system for a chemical plant.

Example 3.2. Non-aqueous solvents are used as a reaction medium when an
aqueous synthesis route is not possible or economically feasible. Organic solvents
(alkanes, ethers, etc.) can facilitate product and enzyme recovery in enzyme-
catalyzed processes (Zaks and Klibanov 1985, Illanes 2008, Kobayashi 2009,
Adams et al. 2009). Ionic-liquids-based processes have garnered attention in
recent years owing to improved environmental safety and enhanced solvent recov-
ery (Wheeler et al. 2001, van Rantwijk et al. 2003, Yang and Pan 2005, Sureshku-
mar and Lee 2009). All such processes require an effective solvent-recovery strat-
egy; incorporating solvent recycling into the process design reduces the need for
expensive make-up solvents and helps meet environmental regulations.
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Figure 3.5 HMF production using a solvent-based process (1: two-phase reactor, 2:
evaporator, 3: condenser, 4: extractor).

5-hydroxymethylfurfural (HMF), a furanic compound, is currently regarded as
a key intermediate in the production of biomass-derived fuels and chemicals. In
particular, HMF can be used to synthesize building blocks for the production of
polymer analogs that are at present produced from petroleum (e.g., polyethylene
terephthalate, polybutylene terephthalate).

HMF can be produced through the acid-catalyzed dehydration of fructose in
aqueous media. This synthesis path is highly non-selective, leading to several
soluble and insoluble products besides HMF (Kuster and Temmink 1977). As
an additional complication, HMF reacts with water yielding levulinic and formic
acids, and fructose–fructose and fructose–HMF oligomers. A recently developed
(Roman-Leshkov et al. 2006, Torres et al. 2010) process for the production of
HMF relies on solvent extraction to continuously remove HMF from the reac-
tion system. The process (Figure 3.5) consists of a biphasic reactor coupled with
an extractor and an evaporator. A fructose solution and a soluble acid catalyst
are fed into a two-phase continuously stirred tank reactor. Fructose dehydra-
tion takes place in the aqueous phase, while the organic phase, composed of
7:3 methyl iso-butylketone (MIBK):2-butanol, selectively extracts the HMF pro-
duced, thus minimizing its decomposition. The aqueous stream from the reactor
enters a liquid–liquid extractor, where any residual aqueous HMF is recovered.
The aqueous stream is subsequently recycled to the reactor. A purge stream
is used to prevent the accumulation of byproducts in the aqueous phase. The
streams exiting the organic phase of the reactor and the extractor are sent to
the evaporator, where purified HMF is obtained as a liquid product. The evap-
orated solvent is condensed and cycled back to the extractor and the reactor.
A small make-up of fresh solvent compensates for any solvent losses.
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An optimally designed process (Torres et al. 2010) is capable of producing
HMF of 95% purity at the evaporator liquid exit. Solvent losses are therefore very
small (about 5% of the product flow rate) and the required solvent make-up flow
is of comparable magnitude. Process performance is enhanced by operating all
the units (except the evaporator) at high dilution, which minimizes the extent of
secondary reactions. This, in turn, requires that a significant amount of solvent
be used (and recycled) in the system: the solvent recycle flow rate is two orders
of magnitude (about 600 times) larger than the fresh-solvent feed flow, and the
recycled solvent stream is largely devoid of HMF.

Following the path of the MIBK–butanol mixture from the feed to the HMF
product stream, we notice that the process in Figure 3.5 is in effect a process
with significant material recycling. Specifically, it features a large solvent recycle
stream.

This observation can be used to make some important inferences concerning
the dynamics and control of solvent-based HMF production. In light of the argu-
ments developed in this chapter, we can expect that the dynamics of the process
in Figure 3.5 exhibit a fast component, related to the dynamics of the individual
process units, and a slow component, associated with the total material holdup
of the process and the total holdup of solvent in the solvent recycle loop. More
specifically, we should expect the solvent content (and, evidently, the actual prod-
uct content) of the product stream to change slowly in response to changes in the
manipulated inputs. Controlling the inventory at the process level and product
purity control should therefore be addressed over a longer time horizon, using
a separate controller designed on the basis of the model of the slow dynamics
(Jogwar et al. 2011).

3.5 Case study: control of a reactor–distillation–recycle process

3.5.1 Process description

We consider the process of Figure 3.6, consisting of a continuously stirred tank
reactor and a distillation column. A series of irreversible first-order reactions
transforms the reactant A, fed to the CSTR at a flow rate F0, into product P1

and undesired byproduct P2:

A
k1

GGGGGGA P1

k2
GGGGGGA P2, k1 = k2 (3.26)

The reactor effluent, consisting of a mixture of unreacted A with the products P1

and P2, is separated in the distillation column. The reactor effluent is fed to the
column on the feed stage Nf (stages are numbered 1, . . . , N from top to bottom)
at a flow rate F . The reactant A is the lightest component of the reactor-effluent
mixture and separates at the top of the column, being subsequently completely
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Figure 3.6 A reactor-separator process, consisting of a CSTR and a distillation
column. The unreacted feed material is recycled to the reactor.

recycled to the reactor, at a flow rate D. The bottom stream of the column (of
flow rate B) consists of the heavier products P1 and P2, which are separated in
a downstream column.

The operating targets for this process call for a high conversion of A, as well
as high selectivity in the desired product P1. From steady-state considerations,
both objectives can be achieved by maintaining a low single-pass conversion in
the reactor and using a recycle flow rate D much larger than the fresh-reactant
feed flow rate F0. A large recycle flow rate also implies that F , the flow rate of
the reactor-effluent stream, and V , the column vapor flow rate, are large, while
R and B are comparable to F0. The nominal values of the process variables are
presented in Table 3.1. For this process, we assume that

� the thermal effects of the reactions are negligible
� the latent heats of vaporization of A, P1, and P2 are comparable
� the relative volatilities α1 of A, α2 of P1, and α3 of P2 are such that

α1 > α2 > α3 = 1
� a trayed column is used, with each tray being equal to a theoretical stage
� the molar overflow from the column trays is constant
� the flow rates of the material streams F , V , B, R, and D are available as

manipulated inputs.

The control objectives of the process are to

� stabilize the liquid levels/holdups in the reactor, condenser, and column
reboiler, and

� control the concentration of P1, x2,B, in the column bottom (product) stream.
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Table 3.1. Nominal values of the process
variables (adapted from (Luyben 1993b))

F0 100.00 mol/h F 1880.00 mol/h
D 1780.00 mol/h R 290.00 mol/h
VB 2070.00 mol/h B 100.00 mol/h
k1 1.10 h−1 k2 1.10 h−1

α1 4.50 α2 2.10
MR 101.53 mol MD 173.00 mol
Mi 175.00 mol MB 181.00 mol
x1,R 0.8934 x2,R 0.0998
x1,D 0.9434 x2,D 0.0556
x1,B 0.00221 x2,B 0.8863
N 15 trays Nf 4

Under the above modeling assumptions, the dynamic model of the reactor–
column–recycle system consists of the material balance for the total molar holdup
of the reactor, condenser, and reboiler, and component-wise balances for the
reactant A and product P1 in the reactor, condenser, reboiler, and column trays,
having a total of 2N + 9 differential equations. Specifically,

ṀR = F0 − F + D

ẋ1,R =
1

MR
[F0(1 − x1,R) + D(x1,D − x1,R)] − k1x1,R

ẋ2,R =
1

MR
[−F0x2,R + D(x2,D − x2,R)] + k1x1,R − k2x2,R

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

reactor

ṀC = VB − R − D

ẋ1,D =
VB

MC
(y1,1 − x1,D)

ẋ2,D =
VB

MC
(y2,1 − x2,D)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

condenser

ẋ1,i =
1

Mi
[VB(y1,i+1 − y1,i) + R(x1,i−1 − x1,i)]

ẋ2,i =
1

Mi
[VB(y2,i+1 − y2,i) + R(x2,i−1 − x2,i)]

⎫⎪⎪⎬
⎪⎪⎭ tray i < Nf
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ẋ1,i =
1

Mi
[VB(y1,i+1 − y1,i) + R(x1,i−1 − x1,i)

+F (x1,f − x1,i)]

ẋ2,i =
1

Mi
[VB(y2,i+1 − y2,i) + R(x2,i−1 − x2,i)

+F (x2,f − x2,i)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

feed tray i = Nf (3.27)

ẋ1,i =
1

Mi
[VB(y1,i+1 − y1,i) + R(x1,i−1 − x1,i)

+F (x1,i−1 − x1,i)]

ẋ2,i =
1

Mi
[VB(y2,i+1 − y2,i) + R(x2,i−1 − x2,i)

+F (x2,i−1 − x2,i)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

tray i > Nf

ṀB = R − VB + F − B

ẋ1,B =
1

MB
[R(x1,N − x1,B) − VB(y1,B − x1,B) + F (x1,N − x1,B)]

ẋ2,B =
1

MB
[R(x2,N − x2,B) − VB(y2,B − x2,B) + F (x2,N − x2,B)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

reboiler

where MR, MC, MB, and Mi denote, respectively, the liquid molar holdup in
the reactor, condenser, reboiler, and trays i; and x1,i, x2,i and y1,i, y2,i are the
corresponding liquid-phase and vapor-phase mole fractions for components A
and P1. The vapor–liquid equilibrium relating xj,i and yj,i is described by

y1,i =
α1x1,i

1 + (α1 − 1)x1,i + (α2 − 1)x2,i
(3.28)

y2,i =
α2x2,i

1 + (α1 − 1)x1,i + (α2 − 1)x2,i
(3.29)

Note that the model in Equation (3.27) does not include the secondary col-
umn required to separate P1 and P2. This unit is not part of the material recycle
loop and has no dynamic interaction with the reactor or the first column. Con-
sequently, the control problem for this column can be formulated and addressed
independently and will not be considered in the remainder of the present
study.
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3.5.2 Model reduction and hierarchical controller design

Let us employ the ratio of the nominal, steady-state values (denoted by the
subscript s) of the feed-stream and recycle-stream flow rates to define the recycle
number

Rc =
Ds

F0s
(3.30)

We also define ε= 1/Rc, the O(1) ratios κ1 = Fs/Ds and κ2 =VBs/Ds, and the
scaled (O(1)) input functions u1 = F/Fs, u2 =VB/VBs, u3 =B/Bs, u4 = R/Rs,
and uR = D/Ds. Using the above definitions, the dynamic model in Equa-
tion (3.27) becomes

ṀR = F0 +
1
ε
F0,s(uR − κ1u1)

ẋ1,R =
1

MR

[
F0(1 − x1,R) +

1
ε
F0,s(x1,D − x1,R)uR

]
− k1x1,R

ẋ2,R =
1

MR

[
−F0x2,R +

1
ε
F0,s(x2,D − x2,R)uR

]
+ k1x1,R − k2x2,R

ṀC = Rsu4 +
1
ε
F0,s(κ2u2 − uR)

ẋ1,D =
1
ε

F0,s

MC
κ2u2(y1,1 − x1,D)

ẋ2,D =
1
ε

F0,s

MC
κ2u2(y2,1 − x2,D)

...

ẋ1,i =
1

Mi

[
Rsu4(x1,i−1 − x1,i) +

1
ε
F0,sκ2u2(y1,i+1 − y1,i)

]

ẋ2,i =
1

Mi

[
Rsu4(x2,i−1 − x2,i) +

1
ε
F0,sκ2u2(y2,i+1 − y2,i)

] i < Nf

...
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ẋ1,i =
1

Mi

[
Rsu4(x1,i−1 − x1,i)

+
1
ε
F0,s [κ2u2(y1,i+1 − y1,i) + κ1u1(x1,f − x1,i)]

]

ẋ2,i =
1

Mi

[
Rsu4(x2,i−1 − x2,i)

+
1
ε
F0,s [κ2u2(y2,i+1 − y2,i) + κ1u1(x2,f − x2,i)]

]
i = Nf

... (3.31)

ẋ1,i =
1

Mi

[
Rsu4(x1,i−1 − x1,i)

+
1
ε
F0,s [κ2u2(y1,i+1 − y1,i) + κ1u1(x1,i−1 − x1,i)]

]

ẋ2,i =
1

Mi

[
Rsu4(x2,i−1 − x2,i)

+
1
ε
F0,s [κ2u2(y2,i+1 − y2,i) + κ1u1(x2,i−1 − x2,i)]

]
ı > Nf

...

ṀB = Rsu4 − Bsu3 +
1
ε
F0,s(κ1u1 − κ2u2)

ẋ1,B =
1

MB

[
Rsu4(x1,N − x1,B)

+
1
ε
F0,s [κ1u1(x1,N − x1,B) − κ2u2(y1,B − x1,B)]

]

ẋ2,B =
1

MB

[
Rsu4(x2,N − x2,B)

+
1
ε
F0,s [κ1u1(x2,N − x2,B) − κ2u2(y2,B − x2,B)]

]
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The model in Equation (3.31) conforms to the general form in Equation (3.10),
with us = [u3 u4]T, ul = [u1 u2 uR]T, and

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

(F0/MR)(1 − x1,R) − k1x1,R

−(F0/MR)x2,R + k1x1,R − k2x2,R

0
0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.32)

Gs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 Rs

0 0
0 0
...

0
1

Mi
{Rs(x1,D − x1,1)}

0
1

Mi
{Rs(x2,D − x2,1)}

...

0
1

Mi
{Rs(x1,i−1 − x1,i)}

0
1

Mi
{Rs(x2,i−1 − x2,i)}

...

0
1

Mi
{Rs(x1,N−1 − xN,i)}

0
1

Mi
{Rs(x2,N−1 − xN,i)}

−Bs Rs

0
1

MB
{Rs(x1,N − x1,B)}

0
1

MB
{Rs(x2,N − x2,B)}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)
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Gl = F0,s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−κ1 0 1

0 0 (1/MR)(x1,D − x1,R)

0 0 (1/MR)(x2,D − x2,R)

0 1 −1

0 (κ2/MC)(y1,1 − x1,D) 0

0 (κ2/MC)(y2,1 − x2,D) 0

...

0 (κ2/Mi)(y1,i+1 − y1,i) 0

0 (κ2/Mi)(y2,i+1 − y2,i) 0

...

(κ1/Mf)(x1,f − x1,i) (κ2/Mf)(y1,i+1 − y1,i) 0

(κ1/Mf)(x2,f − x2,i) (κ2/Mf)(y2,i+1 − y2,i) 0

...

(κ1/Mi)(x1,i−1 − x1,i) (κ2/Mi)(y1,i+1 − y1,i) 0

(κ1/Mi)(x2,i−1 − x2,i) (κ2/Mi)(y2,i+1 − y2,i) 0

...

κ1 −κ2 0

(κ1/MB)(x1,N − x1,B) −(κ2/MB)(y1,B − x1,B) 0

(κ1/MB)(x2,N − x2,B) −(κ2/MB)(y2,B − x2,B) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.34)

Ignoring the two-time-scale behavior, a single j × 4 (1 ≤ j ≤ 5) multivariable
optimization- or inversion-based controller could be designed for the overall sys-
tem, using any combination of the flow rates of the five available material streams
(F , V , B, R, and D) to address the four control objectives stated above (MR,
MC, MB, and x2,B).

However, the stiffness/ill conditioning of the model (3.31) will strongly impact
on the implementation of optimization controllers (e.g., a model predictive con-
troller) (Baldea et al. 2010). On the other hand, for any choice of four flow
rates as manipulated inputs (keeping the remaining one constant at its nominal
value), the system is non-minimum phase (Kumar and Daoutidis 2002) and thus
potentially closed-loop unstable with an inversion-based controller.3 As discussed
in the previous section, a more systematic controller-design approach would

3 A linear system is referred to as minimum phase if all the zeros of its transfer function lie
in the left-hand plane; else, the system is non-minimum phase. Naturally, the inverse of the
transfer function of a non-minimum phase system will be unstable. In the case of nonlinear
systems, the concept of transfer function zeros is replaced by the zero dynamics (Isidori
1995); a nonlinear system is minimum phase if its zero dynamics are stable.
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therefore entail a time-scale decomposition of the system dynamics and the
design of separate distributed and supervisory controllers. This is addressed
below.

Distributed control in the fast time scale

The distributed control objectives for this process involve the stabilization of
the individual unit holdups (MR, MC, and MB), which, according to our prior
analysis, should be addressed in the fast time scale. The design of the distributed
controllers for the stabilization of the three holdups can easily be achieved, using
the large flow rates F,D, and V as manipulated inputs and employing sim-
ple proportional controllers – note that only these three flow rates (i.e., the
components of ul) affect the fast dynamics. More specifically, the proportional
control laws

u1 = 1 − K1(MRsp − MR) (3.35)

uR = 1 − K2(MDsp − MD) (3.36)

u2 = 1 − K3(MBsp − MB) (3.37)

can be used to stabilize the holdups MR, MC, and MB at their setpoints MRsp,
MDsp, and MBsp, respectively, with gains K1 = 0.0266 mol−1, K2 = 0.0281 mol−1,
and K3 = 0.0242 mol−1.

The implementation of the above distributed controllers stabilizes the fast
dynamics and affords us the opportunity to carry out a numerical experiment:
Figure 3.7 shows the evolution of the product purity x2,B for the original sys-
tem with the above proportional stabilizing controllers and starting from an
initial condition slightly perturbed from the nominal steady state. Clearly, x2,B

exhibits an initial fast transient (“boundary layer”) followed by a slow dynamics,
highlighting the two-time-scale behavior of this process.

The remaining state variables in Equation (3.27) display a similar behavior.
The fast and slow dynamics are thus not associated with any distinct subsets
of the state variables, which is consistent with the statement that the model of
the process under consideration is a nonstandard singularly perturbed system of
equations.

Supervisory control in the slow time scale

The supervisory control objective to be addressed in the slow time scale is the
regulation of the product purity. Additionally, we must consider the control of
the total material holdup Mt =MR + MC + MB, which is not affected by changes
in the flow rates of the large internal material streams F,D, and V , as can easily
be verified from the corresponding mass-balance equations.

In order to address these objectives, we follow the procedure outlined in
Section 3.4.3 to obtain a reduced-order model of the dynamics in the slow time
scale. Specifically, we consider the limit of an infinitely high recycle flow rate
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Figure 3.7 Two-time-scale behavior of the reactor–distillation-column–recycle process.

(i.e., ε → 0), in which case the system in Equation (3.31) yields the following set
of quasi-steady-state algebraic constraints:

0 = uR − κ1u1

0 = x1,D − x1,R

0 = x2,D − x2,R

0 = κ2u2 − uR

0 = y1,1 − x1,D

0 = y2,1 − x2,D

...
0 = y1,i+1 − y1,i

0 = y2,i+1 − y2,i
i < Nf

...
0 = κ2u2(y1,i+1 − y1,i) + κ1u1(x1f − x1,i)
0 = κ2u2(y2,i+1 − y2,i) + κ1u1(x2f − x2,i)

i = Nf

...
0 = κ2u2(y1,i+1 − y1,i) + κ1u1(x1,i−1 − x1,i)
0 = κ2u2(y2,i+1 − y2,i) + κ1u1(x2,i−1 − x2,i)

i > Nf

...
0 = κ1u1 − κ2u2

0 = κ1u1(x1,N − x1,B) − κ2u2(y1,B − x1,B)
0 = κ1u1(x2,N − x2,B) − κ2u2(y2,B − x2,B)

(3.38)
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where u1, u2, and uR are given by the proportional controllers in Equation (3.35).
The constraints in Equation (3.38) are not linearly independent; it is easy to
verify that the last three constraints can be expressed as linear combinations of
the other 2N + 6 algebraic equations. For example, we can write

κ1u1 − κ2u2 = −[uR − κ1u1] − [κ2u2 − uR] (3.39)

Consequently, the slow dynamics of the process are described by a DAE sys-
tem with 2N + 6 algebraic equations (specifically, the first 2N + 6 equations in
(3.38)) and 2N + 6 algebraic variables z, defined as the ratios of the right-hand
sides of the above 2N + 6 equations and ε, in the limit as ε → 0. The index
of this DAE system is exactly two, i.e., a single differentiation of the algebraic
constraints yields a solution for the algebraic variables, and an ODE representa-
tion of the slow dynamics can be obtained using the methods described above.
In this case, the ODE system that describes the evolution of the process in the
slow time scale is of dimension three (the number of components present in the
system is C =3). Furthermore, it is important to note that the dimension of the
reduced-order model of the slow dynamics is independent of the number of stages
in the distillation column.

A potential choice of manipulated inputs to address the control objectives in
the slow time scale is [u3 MRsp]T, i.e., the product flow rate from the column
reboiler, and the setpoint for the reactor holdup used in the proportional feed-
back controller of Equation (3.35). This cascade control configuration is physi-
cally meaningful as well: intuitively, the regulation of the product purity x2,B is
associated with the conversion and selectivity achieved by the reactor, which in
turn are affected by the reactor residence time.

Figure 3.8 shows the evolution of the product purity x2,B (the main perfor-
mance indicator of the process) for different step changes in MRsp. The opera-
tion of the process is stabilized by the three proportional controllers in Equation
(3.35). Clearly, these responses indicate that the slow dynamics of the process
is nonlinear; the implementation of a nonlinear supervisory controller for this
process is thus highly desirable.

Note, however, that due to this choice of manipulated inputs, the DAE sys-
tem describing the slow dynamics is nonregular, i.e., the underlying algebraic
constraints in the DAE system explicitly involve the input MRsp. A dynamic
extension (Section 3.4.4) was therefore used to obtain a state-space realization
(ODE description of the slow dynamics). The state-space realization was subse-
quently used in the synthesis of a nonlinear input–output linearizing controller
(Daoutidis and Kravaris 1992) for the slow system. The controller was designed
to enforce a first-order decoupled response in the nominal slow system:

x2,B + γ1ẋ2,B = y1sp (3.40)

MB + γ2ṀB = y2sp (3.41)
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Figure 3.8 Nonlinear behavior of the slow dynamics of the integrated process.

where y1sp and y2sp denote the setpoints for the two outputs and γ1 = 5h and
γ2 = 6h are the time constants.

Note that, owing to the underlying algebraic constraints in the DAE system
that describes the slow dynamics, the holdups MB, MC, and MR are not inde-
pendent (there are only two linearly independent constraints among the three
holdups, i.e., 0=uR − κ1u1 and 0=κ2u2 − uR, where u1, u2, and uR are deter-
mined by the proportional control laws in Equation (3.35)). Thus, controlling
one of the holdups (e.g., MB) amounts to regulating the total material holdup
in the process.

3.5.3 Simulation results and discussion

The hierarchical, cascade control structure described above was tested in several
simulation scenarios. Figures 3.9 and 3.10 show the closed-loop profiles for a 15%
increase in process throughput (via a direct increase in the feed flow rate F0),
imposed at t =15h, and a 1.5% decrease in the setpoint for x2,B. The proposed
hierarchical control framework clearly yields the desired closed-loop performance.
Figures 3.11 and 3.12 show the corresponding profiles for the same setpoint
change, in the presence of a plant–model mismatch in the model parameters,
namely a +10% error in αA and a −10% error in αB, demonstrating that the
controller performance is very robust with respect to these modeling errors.
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Figure 3.9 Closed-loop response for a 15% increase in production rate and 1.5%
decrease of the product-purity setpoint. (a) Product composition and (b) reactor
holdup and setpoint in the nominal case with no modeling errors.
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Figure 3.10 Closed-loop response for a 15% increase in production rate and 1.5%
decrease of the product-purity setpoint. Process flow rates in the nominal case with
no modeling errors: (a) product flow rate and (b) reactor effluent, recycle, and column
boilup flow rates.
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Figure 3.11 Closed-loop response of the product composition and reactor holdup for a
15% increase in production rate and 1.5% decrease of the product-purity setpoint, in
the presence of plant–model mismatch. (a) Product stream composition and
(b) reactor holdup and setpoint.
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Figure 3.12 Closed-loop response of the process flow rates for a 15% increase in
production rate and 1.5% decrease of the product-purity setpoint, in the presence of
plant–model mismatch. (a) Product flow rate and (b) reactor effluent, recycle, and
column boilup flow rates.
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3.6 Synopsis

This chapter addressed the dynamics and control of process systems with mate-
rial recycling. We established that whenever the flow rate of the recycle stream
is significantly larger than the flow rates of the feed/product streams, the overall
process exhibits a time-scale separation in its dynamics.

Specifically, the individual units of the process exhibit a fast dynamics in the
fast time scale; the response times in the fast time scale are typically of the order
of magnitude of the time constants of the individual units. In the fast time scale,
the dynamic coupling between the units (induced by the recycle stream) is weak
and can be ignored.

The interactions between units do, however, become significant over long peri-
ods of time: processes with recycle exhibit a slow, core dynamic component that
must be addressed in any effective process-wide control strategy. This chapter
presented an approach for systematically exploiting this two-time-scale behav-
ior in a well-coordinated hierarchical controller design. The proposed framework
relies on the use of simple distributed controllers to address unit-level control
objectives in the fast time scale and a multivariable supervisory controller to
accomplish process-wide control objectives over an extended time horizon.



4 Process systems with purge streams

4.1 Introduction

The present chapter focuses on the dynamics and control of integrated process
systems in which impurities are present in small quantities, e.g., introduced as
trace components in feed streams or generated as reaction byproducts. When
such impurities are not readily removed by the product streams (e.g., if they are
inert or noncondensable), they will accumulate in the process due to material
recycling. The accumulation of impurities is detrimental to process operation
(causing, for example, catalyst poisoning in the reactor) and process economics
(owing to an increase in compression and recirculation costs) (Belanger and
Luyben 1998, Luyben 2000, Dimian et al. 2001). Understanding the impact of
the presence of impurities on the process dynamics is therefore critical and con-
trolling the level of such components in the recycle structure can be a key oper-
ational objective.

In almost all such processes, the flow rate of the purge stream(s) is kept signifi-
cantly smaller than the process throughput, with the evident goal of minimizing
raw-material and product losses and the impact of releasing potentially haz-
ardous chemicals into the environment; the difference between the purge flow
rate and the flow rates of other process streams can span a few orders of mag-
nitude. This discrepancy suggests the possibility of a “core” dynamics of the
impurity levels in the process evolving in a much slower time scale than the
dynamics of the individual process units and possibly the overall process. Devel-
oping an explicit nonlinear model of this slow dynamics can be beneficial both
for analysis and evaluation purposes, and for model-based control.

In what follows, we begin by introducing two examples of process systems
with recycle and purge. First, we analyze the case of a reactor with gas effluent
connected via a gas recycle stream to a condenser, and a purge stream used to
remove the light impurity present in the feed. In the second case, the products
of a liquid-phase reactor are separated by a distillation column. The bottoms
of the column are recycled to the reactor, and the trace heavy impurity present
in the feed stream is removed via a liquid purge stream. We show that, in both
cases, the dynamics of the system is modeled by a system of stiff ODEs that can,
potentially, exhibit a two-time-scale behavior.
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Using the concepts introduced in (Baldea et al. 2006), we will subsequently
define a generic process structure consisting of a reaction–separation sequence in
which impurities are present and a purge stream is used for their removal. We will
show that, in the general case, the dynamics of such processes is described by a
system of ODEs in a nonstandard singularly perturbed form. We investigate the
dynamic behavior of the class of process systems considered within the framework
of singular perturbations developed in Chapter 2, demonstrating that they do
indeed exhibit a two-time-scale dynamics and deriving explicit reduced-order,
non-stiff models for the dynamics in each time scale. The key result of this
chapter is establishing that the slow dynamics of processes with purge streams is
one-dimensional and is associated with the total impurity holdup in the recycle
loop, which represents a true slow variable of the process. We will also highlight
the control implications of this finding.

4.2 Motivating examples

4.2.1 Processes with light impurities

We consider the system of a gas-phase reactor and a condenser shown in
Figure 4.1. The reactant A is fed at a molar flow rate F0 to the reactor, where a
first-order irreversible reaction A → B takes place with a reaction rate constant
k1. The reactor outlet stream is fed to a partial condenser that separates the
light unconverted reactant A from the heavy product B. The gas phase, rich in
A, is recycled to the reactor. A volatile inert impurity I is present in the feed
stream in small quantities and a (small) purge stream P is used to prevent its
accumulation in the recycle loop.

The interphase mass-transfer rates for the components A, B, and I in the
condenser are governed by rate expressions of the form:

Nj = KjA
(

yj −
PS

j

P xj

)
ML

ρL
(4.1)

F0,yA0,yI0

yAR, yBR, yIR

yA, yB, yI

NA, NB, NIA       B

R

F

P

L

k1

xA, xB, xI

Figure 4.1 Process system with recycle and purge.
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where KjA denotes a mass-transfer coefficient, yj the mole fraction in the gas
phase, xj the mole fraction in the liquid phase, PS

j the saturation vapor pressure
of the component j, P the total pressure in the condenser, ML the total molar
liquid holdup in the condenser, and ρL the molar density of the liquid. Assuming
that the temperature effects in the reactor are negligible and that the operation
of the condenser is isothermal, the dynamic model of the system has the form

ṀR = F0 + R − F

ẏA,R =
1

MR
[F0(yA,0 − yA,R) + R(yA − yA,R)] − rA

ẏI,R =
1

MR
[F0(yI,0 − yI,R) + R(yI − yI,R)]

ṀV = F − R − N − P

ẏA =
1

MV
[F (yA,R − yA) − NA + yAN ]

ẏI =
1

MV
[F (yI,R − yI) − NI + yIN ]

ṀL = N − L

ẋA =
1

ML
[NA − xAN ]

ẋI =
1

ML
[NI − xIN ]

(4.2)

where N = NA + NB + NI, MR, MV, and ML denote the molar holdups in the
reactor, vapor phase in the condenser, and liquid phase in the condenser, respec-
tively, and rA = k1yA,R represents the reaction rate.

In practical applications, for economic and operational reasons, the flow rate
of the purge stream is very small compared with the throughput of the process.
Hence, we can assume that the ratio of the purge flow rate to the feed flow rate
under steady-state conditions is very small, i.e., Ps/F0,s = ε � 1. We will also
consider that the mole fraction of the impurity in the feed (and, consequently,
the rate at which the impurity enters the system) is very small, or yI0 = β1ε,
where β1 is an O(1) quantity.

Owing to its high volatility, the impurity does not separate readily in the sep-
aration unit. Equivalently, the mass transfer rate for component I is very small:

KIA = β2ε
2 (4.3)

where β2 is O(1), and the vapor pressure of component I is high, i.e.,

PS
I

P = β3
1
ε

(4.4)

where β3 is O(1).
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Note that, from steady-state considerations, in order to remove an appreciable
amount of impurity from the recycle loop via the purge stream (whose flow rate
is small), the mole fraction of the impurity in the vapor phase in the condenser,
yI, has to be O(1). This implies that O(ε) moles of impurity enter and leave
the system through the feed and purge streams. Note also that our assumption
concerning the mass-transfer properties of the component I implies that a neg-
ligible amount of impurity leaves the recycle loop through condensation, exiting
the process with the liquid stream from the bottom of the condenser.

Using the assumptions above, the dynamic model of the system takes the form

ṀR = F0 + R − F

ẏAR =
1

MR
[F0(1 − β1ε − yA,R) + R(yA − yA,R)] − rA

ẏIR =
1

MR
[F0(β1ε − yI,R) + R(yI − yI,R)]

ṀV = F − R − (NA + NB) − β2ε
2yI + β2β3εxI − εF0,s

P

Ps

ẏA =
1

MV
[F (yA,R − yA) − NA

+ yA(NA + NB) + yA(β2ε
2yI − β2β3εxI)]

ẏI =
1

MV
[F (yI,R − yI) − (β2ε

2yI − β2β3εxI)

+ yI(NA + NB) + yI(β2ε
2yI − β2β3εxI)]

ṀL = (NA + NB) + β2ε
2yI − β2β3εxI − L

ẋA =
1

ML
[NA − xA(NA + NB) − xA(β2ε

2yI − β2β3εxI)]

ẋI =
1

ML
[β2ε

2yI − β2β3εxI − xI(NA + NB) − xI(β2ε
2yI − β2β3εxI)]

(4.5)

4.2.2 Processes with heavy impurities

Let us now consider a process consisting of a reactor and a distillation column
with N stages, as in Figure 4.2. The first-order reaction

E → A (4.6)

takes place in the reactor. The feed F0 contains the reactant E and a small
quantity of a nonvolatile, heavy impurity I, and the effluent of the reactor is fed
to a distillation column. The product A is light and is removed at the top of the
column, while the heavy reactant E is removed as bottoms and recycled to the
reactor. In order to prevent the accumulation of the heavy, inert impurity in the
process, a small purge stream of flow rate P is used.
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Figure 4.2 A reactor–distillation-column process system with recycle and purge.

Assuming that the relative volatilities of the components are constant and
that the vapor and liquid phases on the column stages are at equilibrium, we
can write

yA,i =
αAxA,i

1 + (αI − 1)xI,i + (αA − 1)xA,i
(4.7)

yI,i =
αIxI,i

1 + (αI − 1)xI,i + (αA − 1)xA,i
(4.8)

where xj,i and yj,i represent, respectively, the liquid and vapor mole fractions of
component j on tray i, with αj being the relative volatility of component j, the
(2N + 9)-dimensional model of the process is

ṀR = F0 + B − F

ẋA,R = (1/MR)[F0(xA,0 − xA,R) + B(xA,B − xA,R) + k(1 − xA,R − xI,R)MR]

ẋI,R = (1/MR)[F0(xI,0 − xI,R) + B(xI,B − xI,R)]

ṀD = V − R − D

ẋA,D = (V/MD)(yA,1 − xA,D)

ẋI,D = (V/MD)(yI,1 − xI,D)
...

ẋA,i = (1/Mi)[V (yA,i+1 − yA,i) + R(xA,i−1 − xA,i)]

ẋI,i = (1/Mi)[V (yI,i+1 − yI,i) + R(xI,i−1 − xI,i)]
... (4.9)
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ẋA,f = (1/Mf )[V (yA,f+1 − yA,f ) + R(xA,f−1 − xA,f ) + F (xA,R − xA,f )]

ẋI,f = (1/Mf )[V (yI,f+1 − yI,f ) + R(xI,f−1 − xI,f ) + F (xI,R − xI,f )]
...

ẋA,i = (1/Mi)[V (yA,i+1 − yA,i) + (R + F )(xA,i−1 − xA,i)]

ẋI,i = (1/Mi)[V (yI,i+1 − yI,i) + (R + F )(xI,i−1 − xI,i)]
...

ṀB = R + F − B − P

ẋA,B = (1/MB)[(R + F )(xA,N − xA,B) + V (xA,B − yA,B)]

ẋI,B = (1/MB)[(R + F )(xI,N − xI,B) + V (xI,B − yI,B)]

As in the previous case, we capture the fact that the flow rate of the purge stream
is very small compared with the system throughput by defining

ε =
Ps

F0,s
� 1 (4.10)

and we assume that the mole fraction of the impurity in the feed stream is also
very small, so that

yI0 = β1ε (4.11)

with β1 being O(1) and the subscript s denoting nominal values. Finally, it
is reasonable to assume that the heavy impurity has a high boiling point, or,
equivalently, a low relative volatility, which can be described as a function of the
small parameter ε as

αI = β2ε
2 (4.12)

with β2 being a O(1) term.
Under the above considerations, the phase-equilibrium equations (4.7) become

yA,i =
αAxA,i

N

yI,i =
ε2β2xI,i

N

(4.13)

with

N = 1 + (ε2β2 − 1)xI,i + (αA − 1)xA,i
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and the process model takes the form

ṀR = F0 + B − F

ẋA,R = (1/MR)[F0(1 − β1ε − xA,R) + B(xA,B − xA,R)

+ k(1 − xA,R − xI,R)MR]

ẋI,R = (1/MR)[F0(β1ε − xI,R) + B(xI,B − xI,R)]

ṀD = V − R − D

ẋA,D = (V/MD)(yA,1 − xA,D)

ẋI,D = (V/MD)(ε2β2xI,1/N − xI,D)
...

ẋA,i = (1/Mi)[V (yA,i+1 − yA,i) + R(xA,i−1 − xA,i)]

ẋI,i = (1/Mi)[V (ε2β2xI,i+1/N − ε2β2xI,i/N ) + R(xI,i−1 − xI,i)]
...

ẋA,f = (1/Mf )[V (yA,f+1 − yA,f )

+R(xA,f−1 − xA,f ) + F (xA,R − xA,f )]

ẋI,f = (1/Mf )[V (ε2β2xI,f+1/N − ε2β2xI,f/N )

+R(xI,f−1 − xI,f ) + F (xI,R − xI,f )]
...

ẋA,i = (1/Mi)[V (yA,i+1 − yA,i) + (R + F )(xA,i−1 − xA,i)]

ẋI,i = (1/Mi)[V (ε2β2xI,i+1/N − ε2β2xI,i/N ) + (R + F )(xI,i−1 − xI,i)]
...

ṀB = R + F − B − V − εF0,sP/Ps

ẋA,B = (1/MB)[(R + F )(xA,N − xA,B) + V (xA,B − yA,B)]

ẋI,B = (1/MB)[(R + F )(xI,N − xI,B) + V (xI,B − ε2β2xI,B/N )]

(4.14)

It is evident that the above models (Equations (4.5) and (4.14)) have terms
of O(1) and O(ε) and are in a singularly perturbed form. This suggests, poten-
tially, a two-time-scale behavior for the process systems with recycle and purge
streams that they describe. In the next section, we will develop a generic mod-
eling framework for such systems that captures this feature and allows a more
general analysis of their dynamic behavior.

4.3 Modeling of process systems with recycle and purge

To generalize the findings in the examples presented above, let us consider the
class of process systems presented in Figure 4.3. These systems consist of N
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Figure 4.3 A generic reactor–separator process system with recycle and purge.

units with a total of C components and a single recycle loop. At least one (pos-
sibly multi-stage) separation unit is present and we denote by S the part of the
separator that is included in the recycle loop, and by S + 1 the part that is
outside the loop. We consider that one of the output streams of the separator
is at least partially recycled (possibly through units S + 2, . . . , M), while the
other output stream leaves the system as a product stream, potentially after
being processed in units M + 1, . . . , N . An impurity I is introduced into the
process at a small rate, and we assume that it does not separate readily in the
separator. A purge stream prevents the accumulation of the impurity in the
recycle loop.

Let F0 denote the feed flow rate to the first unit, FI0 the rate at which the
impurity is input to the system,1 Fj , j = 1, . . . , N , the outlet flow rate from the
jth unit, FR the recycle flow rate, and FP the purge flow rate. Also, let Ni,
i = 1, . . . , C − 1 and NI denote the net rates at which the ith component and,
respectively, the impurity, are separated from the recycle loop.

1 The impurity feed stream FI0 has no physical equivalent but is a convenient means to increase
the generality of the model, since it can capture multiple practical scenarios concerning the
origin of the impurities, e.g., as part of the feed stream F0, leaks from the environment into
the process or as the product of undesired secondary reactions.
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Assuming that the individual process units can be modeled as lumped-
parameter systems, the mathematical model that describes the overall and
component material balances of the process takes the form

ẋ = f(x) +
N∑

j=1

gj(x)Fj +
C−1∑
i=1

gc,i(x)Ni + gR(x)FR

+gI0(x)FI0 + gI(x)NI + gP(x)Fp (4.15)

where x ⊂ χ ∈ IRn is the vector of state variables (i.e., total and component
inventories in each unit), f(x) captures the presence of any chemical reactions,
and gj(x), gc,i(x), gR(x), gI0(x), gI(x), and gP(x) are appropriately defined
n-dimensional vector functions.

In order to capture the impact of the purge stream on the dynamics of this
generic process, let us define the purge number.

Definition 4.1. The purge number of a material recycle loop in an inte-
grated process is a process-wide dimensionless number expressed as the ratio of
the steady-state flow rate of the purge and the process throughput, as captured by
the flow rate of the process feed stream:

Pu =
Fp,s

F0,s
(4.16)

Using the insights gained from the examples presented in Section 4.2, we also
make the following assumptions.

Assumption 4.1. The nominal flow rate of the purge stream is much smaller
than that of the feed stream, i.e., the purge number of the process is very small:

Pu � 1

Assumption 4.2. The rate at which the impurity is input to the process is very
small and (naturally) comparable to the flow rate of the purge stream. Therefore,
we have

FI0,s/F0,s = β1Pu

with β1 being an O(1) quantity.

Assumption 4.3. The net rate of impurity removal from the recycle loop by the
product stream (along the path NI, FS+1, . . . , FN ) is much smaller than the rate
at which the impurity is input to the system:

NI,s/F0,s = β2Pu2

where β2 is an O(1) quantity.
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Note that Assumption 4.3 effectively captures the need to use a purge stream
to prevent the buildup of the impurity in the units of the recycle loop.

Assumption 4.4. The flow rates F0, . . . , FN , FR and N1, . . . , NC−1 are of com-
parable magnitude, that is

Fj,s

F0,s
= O(1);

Ni,s

F0,s
= O(1)

We denote uc,i = Ni/Ni,s, i = 1, . . . , C − 1, I. Also, we define uj = Fj/Fjs to be
the scaled (possibly manipulated) inputs that correspond to the flow rates Fj of
the material streams.

Under Assumptions 4.1–4.4, the generic model in Equation (4.15) becomes

ẋ = f(x) +
N∑

j=1

gj(x)Fj,suj +
C−1∑
i=1

gc,i(x)Ni,suc,i + gR(x)FR,suR

+Pu [gI0(x)F0,sβ1 + PugI(x)F0,suc,Iβ2 + gP(x)F0,sup] (4.17)

Equation (4.17) can be written in a more compact and mathematically conve-
nient form as

ẋ = f̄(x,ul) + ε[gI0(x) + εgI(x) + gP(x)up] (4.18)

with

ε = Pu (4.19)

ul is the vector of scaled input variables corresponding to the “large” flow rates
F0, . . . , FN , FR, and f̄(x,ul), gI0(x), gI(x), and gP(x) are n-dimensional vector
functions.

The mass-transfer rates represented in Equation (4.17) by uc,i are generally
functions of the physical parameters of the system, i.e., uc,i = uc,i(x), and can-
not be manipulated independently. Hence, for notational convenience, the corre-
sponding terms have been included in the expressions for f̄(x,ul) and gI(x).

Referring back to the theory introduced in Chapter 2, we can expect that the
presence of terms of very different magnitudes (i.e., O(1) and O(ε)) in the model
(4.18) reflects a two-time-scale behavior in the dynamics of typical processes
with recycle and purge. In what follows, we will show that this is indeed the
case. Also, we will address the derivation of reduced-order models of the fast and
slow dynamics, provide a physical interpretation of this dynamic behavior, and
highlight its control implications.

4.4 Dynamic analysis and model reduction

Let us concentrate on the model in Equation (4.18) and consider the limit case of
a zero purge number, i.e., ε → 0. Physically, this limit corresponds to setting the



74 Process systems with purge streams

flow rate of the purge stream, the rate at which impurity is input to the process,
as well as the rate at which the impurity is separated from the recycle loop in
the separator, to zero. In other words, this limit case assumes that there is no
inflow or outflow of impurity to or from the process. Note, however, that this
limit case does not necessarily assume that impurities are no longer present in
the system (i.e., the impurity will be still present in the material being recycled,
and, as mentioned in the motivating examples above, its concentration in the
recycle loop will be O(1)).

The effect of the impurity inlet and outlet thus eliminated, we obtain a descrip-
tion of the fast dynamics of the process:

ẋ = f̄(x,ul) (4.20)

Note that the expression above involves only ul, which corresponds to the flow
rates of all material streams other than the impurity input and output flows. It
is easy to verify (and quite intuitive) that ul does not affect the total holdup of
the impurity in the recycle loop.

It is also easy to verify that the total inventory of I is influenced by the inflow
of impurity, its net removal rate in the separator, and the flow rate of the purge
stream. In the limit of an infinitely low purge number, these are set to zero and,
as can be seen from Equation (4.20), clearly have no influence on the dynamics
in the fast time scale.

These observations imply that there exists a process variable – namely the total
impurity holdup – whose dynamics are slow (in the sense defined in Chapter 2)
and whose evolution is thus not captured by the fast model (4.20). As a conse-
quence, one of the differential equations in (4.20) is redundant (i.e., these equa-
tions are not linearly independent). The steady-state conditions corresponding
to the fast dynamics,

0 = f̄(x,ul) (4.21)

will therefore specify a 1D equilibrium manifold.
As in the previous chapters, in order to proceed with our analysis, we will

make the following assumption.

Assumption 4.5. The vector f̄ can be decomposed as

f̄(x,ul) = B(x)f̃(x,ul) (4.22)

with B(x) ∈ IRn×(n−1) being a full column rank matrix and the vector f̃(x,ul) ∈
IRn−1 having linearly independent terms; that is, the linearly independent equa-
tions corresponding to (4.21) can be isolated.

Next, in order to obtain a description of the slow dynamics, we define a slow,
compressed, time scale τ = εt, in which the model of the process becomes

ε
dx
dτ

= f̄(x,ul) + ε[gI0(x) + εgI(x) + gP(x)up] (4.23)
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Let us consider again the limit of an infinitely small purge number (ε → 0), this
time in the newly defined slow time scale. This yields the algebraic equations

0 = f̄(x,ul) (4.24)

or, equivalently, the linearly independent equations

0 = f̃(x,ul) (4.25)

which are the quasi-steady-state conditions for the fast dynamics in Equa-
tion (4.21) and, respectively, (4.22). They describe the equilibrium manifold in
which the slow dynamics of the process evolves and therefore constitute con-
straints that must be satisfied in the slow time scale.

Finally, on dividing Equation (4.23) by ε, i.e.,

dx
dτ

=
1
ε
f̄(x,ul) + gI0(x) + εgI(x) + gP(x)up (4.26)

and considering the limit ε → 0 under the constraints above, we obtain the
description of the slow dynamics of the system:

dx
dτ

= gI0(x) + gP(x)up + B(x)z

0 = f̃(x,ul)
(4.27)

Note that, in the limit ε → 0, the term f̃(x,ul)/ε in Equation (4.26) becomes
indeterminate. Thus, in Equation (4.27), we defined

z = lim
ε→0

f̃(x,ul)
ε

(4.28)

with z ∈ IRn−1, to account for this finite but unknown term.
The model of the slow dynamics of the system consists therefore of a set of

coupled DAEs of nontrivial index, since the variables z (that physically corre-
spond to the net material flows of the system in the slow time scale) are implicitly
fixed by the quasi-steady-state constraints, rather than explicitly specified in the
dynamic model. Also, note that the DAE model (4.27) has a well-defined index
only if the flow rates ul which appear in the algebraic constraints are speci-
fied as functions of the state variables x. This is typically accomplished via a
control law ul(x).

Once the flow rates ul have been specified, it is possible to differentiate the
constraints in Equation (4.27) to obtain (after differentiating a sufficient number
of times) a solution for the algebraic variables z. One differentiation in time
will yield

z = −[LBf̃(x)]−1(LgI0 f̃(x) + LgP f̃(x)up) (4.29)
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with

LBf̃(x) =
∂ f̃
∂x

B(x) (4.30)

LgI0 f̃(x) =
∂ f̃
∂x

gI0 (4.31)

LgP f̃(x) =
∂ f̃
∂x

gP (4.32)

If the matrix LBf̃(x) is invertible (which is typically true, as will be shown in the
following examples), the index of the DAE system (4.27) is two (i.e., a solution
for z is obtained directly from Equation (4.29)), and in this case the dimension
of the underlying ODE system describing the slow dynamics is 1.

In this case, an explicit ODE representation (state-space realization) of the
DAE system (4.27) can be obtained be employing a coordinate change of the
form suggested in Section 2.3:[

ζ

η

]
= T(x) =

[
φ(x)

f̃(x,ul)

]
(4.33)

In these new coordinates, the model of the slow dynamics becomes

dζ

dτ
=

∂φ

∂x
B(x)z|x=T−1(ζ) +

∂φ

∂x
gI0(x)|x=T−1(ζ) +

∂φ

∂x
gP(x)up|x=T−1(ζ)

η ≡ 0
(4.34)

Remark 4.1. According to the developments in Section 2.3 (see also Theo-
rem A.1 in Appendix A), it is possible to choose the function φ(x) so that
(∂φ/∂x)B(x) = 0. In this case, the variable ζ evolves independently of the vari-
ables z, and represents a true “slow” variable in the system (whereas the original
state variables exhibit both fast and slow dynamics). Its transient evolution is
given by

dζ

dτ
=

∂φ

∂x
gI0(x)|x=T−1(ζ) +

∂φ

∂x
gP(x)up|x=T−1(ζ)

η ≡ 0
(4.35)

Remark 4.2. Equation (4.34) depends on the impurity input and output flow
rates (respectively, via gI0(x) and gP(x)up). This further confirms that the slow
dynamics are associated with the impurity inventory in the process. It is also
quite intuitive (as we will demonstrate in the examples below) that a coordinate
change of the type mentioned in Remark 4.1 could entail the use of the total
impurity holdup as a slow variable.

These findings are in agreement with empirical knowledge, which has, for a
long time, associated the presence of (inert) impurities in a process with long
response times, often spanning many hours or even days (Luyben 2000).
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4.5 Motivating examples (continued)

Let us continue with the analysis of the motivating examples introduced in
Section 4.2, and present the derivation of reduced-order models for the fast and
slow dynamics of the two process systems, according to the theoretical framework
developed above.

4.5.1 Processes with light impurities

We begin with a description of the fast dynamics of the stiff model in Equa-
tion (4.5). This is readily obtained in the form of Equation (4.20) by considering
the dynamic model (4.5) in the limit as ε → 0:

ṀR = F0 + R − F

ẏA,R =
1

MR
[F0(1 − yA,R) + R(yA − yA,R)] − rA

ẏI,R =
1

MR
[−F0yI,R + R(yI − yI,R)]

ṀV = F − R − (NA + NB)

ẏA =
1

MV
[F (yA,R − yA) − NA + yA(NA + NB)]

ẏI =
1

MV
[F (yI,R − yI) + yI(NA + NB)]

ṄL = (NA + NB) − L

ẋA =
1

ML
[NA − xA(NA + NB)]

ẋI = − 1
ML

[xI(NA + NB)]

(4.36)

Equation (4.36) is a non-stiff model that approximates the dynamics of the
reactor–condenser system in Figure 4.1 in the original (fast) time scale t.

Note that the differential equations in Equation (4.36) are not independent,
or, equivalently, the corresponding quasi-steady-state constraints are not linearly
independent. Specifically, the third constraint can be expressed as a linear com-
bination of the others, i.e., there exist only eight linearly independent constraints
that can be written in the form of Equation (4.22), with

B(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1/MR 0 0 0 0 0 0

−yI,R/MR 0 −yI/MR 0 −1/MR 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1/MV 0 0 0 0
0 0 0 0 1/MV 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1/ML 0
0 0 0 0 0 0 0 1/ML

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.37)
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and

f̃(x,ul) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 + R − F

F0(1 − yA,R) + R(yA − yA,R) − rAMR

F − R − (NA + NB)
F (yA,R − yA) − NA + yA(NA + NB)
F (yI,R − yI) + yI(NA + NB)
(NA + NB) − L

NA − xA(NA + NB)
xI(NA + NB)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.38)

This is consistent with the fact that these constraints correspond to the limit as
the purge flow rate and the inflow of the impurity become zero. In this limit, the
number of moles of the impurity leaving the reactor is identical to that leaving
the condenser, hence the redundant constraint. Note also that, in the fast time
scale, only the flow rates F , R, and L affect the dynamics and can be used for
addressing control objectives such as stabilization of holdups, production rate,
and product quality. The purge flow rate has, of course, no effect on the dynamics
in this fast time scale.

Turning now to the slow dynamics, we define the slow time scale τ = tε and
consider the limit ε → 0, obtaining a description of the slow dynamics of the
form (4.27):

dMR

dτ
= lim

ε→0

1
ε
(F0 + R − F )

dyA,R

dτ
= lim

ε→0

1
εMR

[F0(1 − yA,R) + R(yA − yA,R) − rAMR] − 1
MR

F0β1

dyI,R

dτ
= lim

ε→0

1
εMR

[−F0yI,R + R(yI − yI,R)] +
1

MR
F0β1

dMV

dτ
= lim

ε→0

1
ε
[F − R − (NA + NB)] − F0,s

P

Ps

dyA

dτ
= lim

ε→0

1
εMV

[F (yA,R − yA) − NA + yA(NA + NB)]

dyI

dτ
= lim

ε→0

1
εMV

[F (yI,R − yI) + yI(NA + NB)]

dML

dτ
= lim

ε→0

1
ε
[NA + NB − L]

dxA

dτ
= lim

ε→0

1
εML

[NA − xA(NA + NB)]

dxI

dτ
= lim

ε→0

−1
εML

[xI(NA + NB)]

(4.39)

subject to the quasi-steady-state constraints obtained by setting the terms in
Equation (4.38) equal to zero.
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It can be shown that on setting the reactor effluent flow rate F and the product
flow rate L with the proportional control laws

F = Fs(1 − kp,1(MR,sp − MR))

L = Ls(1 − kp,2(ML,sp − ML))
(4.40)

where the index s denotes nominal values and the index sp setpoints, the matrix
LBf̃(x) is invertible, and hence a coordinate change of the type (4.33) exists.
Note that the control laws in Equation (4.40) correspond to the stabilization of
the reactor and condenser liquid holdups.

In order to obtain an ODE description of the slow dynamics, the total impurity
holdup in the recycle loop, i.e.,

φ(x) = MRyI,R + MVyI (4.41)

represents a meaningful choice of the function φ(x) in the coordinate change
(4.33). This coordinate change then yields

dζ

dτ
= F0β1 − F0,s

P

Ps
yI(ζ) (4.42)

or, equivalently,

dζ

dτ
= F0β1 − F0,syI(ζ)up (4.43)

where yI(ζ) is computed from the steady-state constraints obtaining by setting
f̃(x,ul) in Equation (4.38) equal to zero and inverting the coordinate transfor-
mation (4.33), with ζ defined as above. Equation (4.43) represents a 1D non-stiff
description of the slow dynamics of the process in Figure 4.1. The single slow
mode of the system is therefore associated with the total holdup of the inert
impurity, which, as anticipated, is a “true slow variable” of the system.

4.5.2 Processes with heavy impurities

Following a similar procedure to the one employed above, it is easy to verify that
we obtain a model that approximates the fast dynamics of the system in Fig-
ure 4.2, in the form of Equation (4.20). Also, it can be verified that only 2N + 8
of the 2N + 9 steady-state constraints that correspond to the fast dynamics are
independent. After controlling the reactor holdup MR, the distillate holdup MD,
and the reboiler holdup MB with proportional controllers using respectively F ,
D, and B as manipulated inputs, the matrix LBf̃(x) is nonsingular, and hence
the coordinate change

ζ = MRxI,R + MfxI,f + MBxI,B +
N∑

i=1

MixI,i (4.44)
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which corresponds to the total holdup of the impurity in the recycle loop, exists.
After applying (4.44), we obtain the following 1D description of the slow dynam-
ics of the system:

dζ

dτ
= β1F0 − F0,s

P

Ps
xI,B(ζ) (4.45)

As in the previous example we considered, the total holdup of the impurity
represents the “true slow variable” in the 1D slow dynamics of the system.

4.6 Further applications

4.6.1 Processes with slow secondary reactions

A similar analysis can be carried out in the case of a process system in which the
“impurities” are generated in the reactor, rather than introduced into the feed
stream. Let us consider the process system in Figure 4.4, which has a structure
very similar to that of the reactor–condenser system presented in Section 4.2.

The difference consists in the fact that two first-order reactions, A → B and
A → I, take place in the reactor, with reaction rate constants k1 and k2, respec-
tively. B is the desired product and is separated in the condenser, while the
undesired light byproduct I (which is assumed to be generated in small quanti-
ties) does not separate and a purge stream P is used for its removal. Carrying
over the notation and modeling assumptions of Section 4.2, the model of the
process in Figure 4.4 can be written as

ṀR = F0 + R − F

ẏA,R =
1

MR
[F0(yA0 − yA,R) + R(yA − yA,R) − k1MRyA,R − k2MRyA,R]

ẏI,R =
1

MR
[−F0yI,R + R(yI − yI,R) + k2MRyA,R]

ṀV = F − R − N − P

F0,yA0
A       B

R

F

P

L

A       I

yAR, yBR, yIR

yA, yB, yI

NA, NB, NI

k1

k2

xA, xB, xI

Figure 4.4 Process system in which a secondary reaction takes place, yielding small
quantities of an unwanted byproduct.
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ẏA =
1

MV
[F (yA,R − yA) − NA + yAN ] (4.46)

ẏI =
1

MV
[F (yI,R − yI) − NI + yIN ]

ṀL = N − L

ẋA =
1

ML
[NA − xAN ]

ẋI =
1

ML
[NI − xIN ]

In this case, the form of Assumptions 4.1 and 4.3 remains the same as in the sec-
ond section, while Assumption 4.2 implies that the rate constant of the reaction
which leads to the formation of the impurity is very small, or k2MR,s/F0,s = β1ε,
with β1 being an O(1) quantity.

Notice that here Assumption 4.2 is expressed as a ratio of the characteristic
time for the chemical reaction and the characteristic time for convection, being
thus equivalent to considering that the second reaction has a low Damköhler
number.

With the aforementioned assumptions, the dynamic model of the system takes
the form

ṀR = F0 + R − F

ẏAR =
1

MR

[
F0(yA0 − yA,R) + R(yA − yA,R)

− k1MRyA,R − εβ1
F0,s

MR,s
MRyA,R

]

ẏIR =
1

MR

[
−F0yI,R + R(yI − yI,R) + εβ1

F0,s

MR,s
MRyA,R

]

ṀV = F − R − (NA + NB) − β2ε
2yI + β2β3εxI − εF0,s

P

Ps

ẏA =
1

MV
[F (yA,R − yA) − NA + yA(NA + NB)

+ yA(β2ε
2yI − β2β3εxI)]

ẏI =
1

MV
[F (yI,R − yI) − (β2ε

2yI − β2β3εxI)

+ yI(NA + NB) + yI(β2ε
2yI − β2β3εxI)]

ṀL = (NA + NB) + β2ε
2yI − β2β3εxI − L

ẋA =
1

ML
[NA − xA(NA + NB) − xA(β2ε

2yI − β2β3εxI)]

ẋI =
1

ML
[β2ε

2yI − β2β3εxI − xI(NA + NB) − xI(β2ε
2yI − β2β3εxI)]

(4.47)

which is in the form of Equation (4.18).
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After applying the model reduction proposed above, considering again the
total holdup of the impurity as a 1D function required by the coordinate change
(4.33) we obtain the following state-space realization of the slow dynamics of the
system in Figure 4.4:

dζ

dτ
=

F0,s

MR,s
β1MR(ζ)yA,R(ζ) − F0,s

P

Ps
yI(ζ) (4.48)

with MR(ζ), yA,R(ζ), and yI(ζ) being computed as in the case of the reactor
condenser system with feed impurities.

4.6.2 An analogy with systems with large recycle

In the analyses presented above, the mole fractions of the impurity in the units
of the recycle loop are O(1), and hence the amount of impurity that is recy-
cled in the system is much larger than the impurity throughput of the process.
The presence of a single slow mode associated with the impurity is therefore in
complete agreement with the analysis of systems with large recycle developed
in Chapter 3, which predicts a slow model of dimension equal to the number of
components for which the recycle flow rate is much larger than the throughput.
This perspective is reflected in the following example.

Example 4.1. Cryogenic air separation is currently the most economical means
for producing oxygen, nitrogen, and argon on a large scale. A typical air-
separation unit (ASU) consists of three heat-integrated columns (Figure 4.5).
Air is compressed in the main air compressor (MAC) and impurities such as
water and hydrocarbons are removed in the prepurifier (PP). The air stream

Air feed
xAr= 0.0093

MAC PP

Ar Feed
xAr ≅ 0.12

Ar Product
xAr ≅ 0.98

HPC

LPC

ARC

SH

MHX

LO2

GN2GO2
WN2

BC

EXP

Figure 4.5 Cryogenic process for the production of oxygen, nitrogen, and argon.
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is then divided into two substreams; the first substream (main air stream) is
cooled in the main heat exchanger (MHX) against warming cryogenic products,
while the second substream (expansion air) undergoes additional compression
before being fed to the MHX. The cooled expansion air is then fed to a turbine
expander, where it is further cooled to provide additional refrigeration to the
system.

On exiting the MHX, the main air stream enters the high-pressure column
(HPC), where it is separated into nearly pure nitrogen (at the top of the HPC)
and an oxygen-enriched stream at the HPC bottom. The condensing stream at
the top of the HPC is used to boil the near-pure oxygen liquid at the bottom of
the low-pressure column (LPC). The nitrogen-rich HPC top stream also provides
reflux to the LPC, while the oxygen-enriched HPC bottoms stream is used as
a condensing utility for the argon column (ARC) before being fed to the LPC.
Nearly pure nitrogen is collected at the top of the LPC and a waste-nitrogen
stream WN2 is drawn at an intermediate stage close to the top of the LPC to
provide additional refrigeration in the MHX.

The air stream fed to the process contains a small amount of argon, which
accumulates (reaching between 12% and 14% Ar) on an intermediate stage close
to the bottom of the LPC; the argon column gets its feed as an intermediate
vapor stream drawn at this point. A small argon product stream is removed at
the ARC top, and most of the ARC feed is returned to the LPC (i.e., the ARC
operates at a very high reflux ratio).

Argon is a valuable product on many global markets and modern ASUs are
designed to recover more than 90% of the argon in the air feed as a relatively
high-purity (98% or higher, with the remainder being oxygen) argon product
stream. From steady-state considerations, the flow rate of the argon stream is
about 0.8% of the flow rate of the air feed stream.

In the sense of the framework developed in this chapter, the argon present
in the air feed can be construed as a “feed impurity,” while the argon product
stream can be regarded as a “purge” stream. From this point of view, ASUs
are process systems with recycle and purge, or, alternatively, processes in which
argon is recycled at a high rate compared with the throughput.

This observation allows us a novel insight into ASU dynamics and control: we
can expect that the dynamics of the ASU exhibit a slow component, related to
the presence of the argon in the feed stream and the associated argon-recovery
system. Specifically, changes in the controlled variables of the process will be
reflected in the composition of the argon product stream after a long period of
time, a fact that has been confirmed by practical observations (Vinson 2006).
Furthermore, maximizing argon recovery is typically a key operating objective in
ASUs (Vinson 2006), and, considering the developments which we present later
in this chapter, the control of the purity of the argon product stream should be
undertaken over a longer time horizon, potentially using a separate controller
designed on the basis of the model of the slow dynamics.
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4.6.3 Processes with multiple impurities

The framework developed above can be extended to the case in which multi-
ple impurities are present in the system. It is straightforward to show that, in
such circumstances, the dimension of the state-space realization of the model
of the slow dynamics (Equation (4.34)) will be equal to the number of compo-
nents whose rate of input to the process (either as feed impurities or as reaction
byproducts) is small.

4.7 Control implications

The analysis presented in Section 4.4 indicates that, impurity levels notwith-
standing, the rate at which the overall process evolves is not significantly dif-
ferent (i.e., faster or slower) than the dynamics of the individual units. On the
other hand, we can expect the impurity levels in the process to respond very
slowly to changes in the manipulated variables. This suggests that the control of
integrated processes in which impurities are present should be approached using
two layers of control action.

� Control objectives related to the operation of the process units and the process
itself (production rate, product quality, unit-level, and total inventory) should
be addressed in the fast time scale. For instance, when a multi-loop linear
control strategy is considered, the reset time for the controllers should be of
the order of magnitude of the time constants of the individual process units.

� The control of the impurity levels in the process should be undertaken in
the slow time scale, and any control strategy should account for the long
time horizon that the respective variables evolve in. One could, for example,
employ a description of the slow dynamics (Equation (4.35)) for synthesizing
a model-based controller.
It is important to note that, in typical practical situations in which cost
constraints play an important role, impurity-concentration measurements are
available for only a few units (and, more often than not, just for a single
unit). Thus, a model of the evolution of the total impurity inventory (such
as those developed in the examples above, i.e., Equations (4.43) and (4.45))
is not well suited for controller design. Rather, an appropriate coordinate
change of the type in Equation (4.33) should be used to obtain a model of
the evolution of the measured concentration variable in the slow time scale.
An example of this approach is presented in the case study following this
section.

Our analysis also provides clues regarding the manipulated inputs that are avail-
able for use in each of the control layers. Recall that the flow rates ul of the
material streams not connected with the process impurity input and output are
present only in the model of the fast dynamics (4.20). ul thus represent the



4.8 Case study: control of a reactor–condenser process 85

inputs of choice for addressing all the control objectives not related to impurity
levels.

Conversely, impurity levels should be controlled by varying the flow rate up of
the purge stream. up is clearly the only manipulated input available in the model
of the slow dynamics (4.35). The rate at which impurity is input to or generated
in the process (as captured by the term (∂φ/∂x)gI0(x)|x=T−1(ζ)) cannot be set by
a process operator and constitutes a (typically unmeasured) process disturbance
that the control system must deal with.

4.8 Case study: control of a reactor–condenser process

4.8.1 Process description

A process designed to generate product B from a raw-material stream containing
the reactant A consists of a reactor in which the reaction A → B takes place,
followed by a condenser, where product B is separated in liquid form and the
unreacted A is recycled to the reactor in vapor form, as in Figure 4.1. The
feed stream contains a small quantity of noncondensing impurity I, which is
eliminated by purging a small portion of the recycle stream. The impurity has
an inhibitive effect on the reaction, which is reflected in the rate expression:

rA =
k1yA,R

1 + yI,R
(4.49)

The process parameters and the nominal values of the state variables are given
in Table 4.1 (the subscript c indicates process parameters for the condenser).
The model of the process is identical (with the exception of the reaction rate
expression) to the one developed in Section 4.2.1. The data in Table 4.1 also
follow the notation introduced in Section 4.2.1.

The operating objective for this system is to control the mole fraction of the
product B in the liquid product stream at xB,sp = 0.819, in the presence of
disturbances in the inlet composition and changes in the production rate.

Table 4.1. Nominal process parameters (adapted from (Baldea et al. 2006))

F0 100.00 mol/min Tc 279.00 K MR 2411.90 mol
R 100.10 mol/min Pc 2.83 MPa MV 1225.60 mol

F 200.10 mol/min A 200.00 m2/m
3

ML 14940.00 mol
L 97.10 mol/min KA 342.00 mol m−2 min−1 yA 0.255
P 3.90 mol/min KB 360.00 mol m−2 min−1 yI 0.511
yA,0 0.98 KI 1.8 × 10−5 mol m−2 min−1 yA,R 0.219
yI,0 0.02 P S

A(Tc) 4.00 MPa yI,R 0.266
kp,1 0.01 min−1 P S

B(Tc) 0.80 MPa xA 0.181
kp,2 0.01 min−1 P S

I (Tc) 90.00 MPa xI 1.90 × 10−5

Vc 2.00 m3 ρL 15.00 kmol/m3
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Figure 4.6 Time responses of all state variables.

4.8.2 System analysis

We will first concentrate on studying the process dynamics, so let us consider
a numerical experiment that consists of starting a dynamic simulation of the
process from initial conditions that are slightly perturbed from the nominal,
steady-state values of the state variables. Although material holdups are stabi-
lized using the proportional controllers in Equation (4.40), in view of the process-
level operating objective stated above, this can be considered an “open-loop”
simulation.

The process response is presented in Figure 4.6. Observe that all the state
variables exhibit a fast transient, followed by a slow approach to steady state,
which is indicative of the two-time-scale behavior of the system, and is consistent
with our observation that processes with impurities and purge are modeled by
systems of ODEs that are in a nonstandard singularly perturbed form.

Figure 4.7 shows the evolution of the total impurity holdup for the same
simulation; note that this variable exhibits dynamics only in the slow time scale,
which is – again – consistent with our previous findings.

4.8.3 Controller design

According to the results presented in Section 4.7, the control of the product
purity xB should be addressed in the fast time scale, together with inventory/
holdup control. After implementing the controllers (4.40), which use F and L as
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60 70 80 90 100 110 120
0.81885

0.81895

0.81905

x B

0.81915

0.81925

R, mol /min

Figure 4.8 Input multiplicity of product purity loop.

manipulated inputs, the remaining available manipulated input for controlling
the product purity is the recycle flow rate R.

A plot of xB vs. R at steady state (Figure 4.8) reveals an input multiplicity:
at low values of the recycle flow rate, an increase in R will yield a decrease in
the purity of the product. If R is, however, increased further, it will eventually
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result in increasing xB. Equivalently, the sign of the derivative ∂xB/∂R changes
over the range of variation of R and the sign of the gain of any linear purity
controller would have to change as a function of the flow rate R to accommo-
date this variation. Intuitively, this behavior limits the applicability of linear
controllers for controlling the purity of the product B. Rather, a nonlinear con-
troller should be used.

We used the model of the fast dynamics of the system in Equation (4.36)
to design a nonlinear input–output linearizing output feedback controller with
integral action (Daoutidis and Kravaris 1992) for xB. The controller was designed
to produce the critically damped second-order response

xB + βB,1
dxB

dt
+ βB,2

d2xB

dt2
= xB,sp (4.50)

with βB,1 = 40 min and βB,2 = 400 min2.
At a first glance, this controller is sufficient for maintaining the product purity.

However, simulation results indicate that, in order to maintain xB at the desired
level when the system is subjected to a small (5%) increase in the mole fraction
yI,0, the recycle flow rate R would need to rise to 501.3mol/min (a fivefold
increase from the nominal value). Thus, due to its inhibitive effect on the reaction
rate, the accumulation of the impurity I is highly detrimental to the operation of
the process. Consequently, the control of the impurity levels in the reactor is of
critical importance and directly linked to the main objective of product-purity
control.

Drawing again on our theoretical analysis, the control of yI,R should be
addressed in the slow time scale using the purge stream as a manipulated input.

To this end, we employed the coordinate transformation (4.33) with

φ(x) = yI,R (4.51)

together with the quasi-steady-state constraints stemming from setting the terms
in Equation (4.38) equal to zero, to obtain a description of the evolution of
the reactor impurity mole fraction in the slow time scale. We then used this
description as the basis for synthesizing a nonlinear input–output linearizing
controller that manipulates the purge flow rate to induce the following first-order
response for yI,R:

yI,R + βY
dyI,R

dt
= v (4.52)

with βY = 500 min and integral action imposed on the v − yI,R dynamics for
offset-free tracking.

4.8.4 Simulation results and discussion

Figures 4.9–4.11 present the closed-loop response for a 10% rise in the sys-
tem throughput (imposed by changing the feed flow rate F0). Figures 4.12–4.14
show the closed-loop response of the reactor–condenser system in the case of an
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Figure 4.9 Evolution of the process composition variables for a 10% increase in the
production rate at t = 0. (a) Product purity and (b) reactor impurity level.

unmeasured increase in the inlet mole fraction of the impurity yI0, from yI0 = 0.02
to yI0 = 0.025. The proposed nonlinear control structure exhibits excellent per-
formance in both cases, showing small changes in the product purity.

The closed-loop behavior in the presence of the same disturbances but con-
sidering, additionally, a 10% modeling error in the mass-transfer coefficient of
the product, KB, and a 5% modeling error for the reaction rate constant k1
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Figure 4.10 Evolution of the process stream flow rates for a 10% increase in the
production rate at t = 0. (a) Effluent and recycle flow rates, and (b) product flow rate.

is presented, respectively, in Figures 4.15–4.20. The proposed nonlinear con-
trol structure also exhibits excellent performance in the presence of unmeasured
disturbances, even when model mismatch is considered. The disturbances are
rejected with small changes in the recycle flow rate and minimal effect on the
product purity.
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Figure 4.11 Evolution of (a) the condenser liquid holdup and (b) the purge flow rate
for a 10% increase in the production rate at t = 0.

Notice that, according to the developments above, a change in the inlet impu-
rity fraction is a disturbance that strongly impacts the slow dynamics of the
process. This is apparent in the simulation scenarios presented in Figures 4.12–
4.14 and 4.18–4.20: the time required to reach steady state after an increase in
yI0 is clearly longer than the response time for an increase in the feed flow rate
F0 (Figures 4.9–4.11 and 4.15–4.17).
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in the inlet impurity levels yI0 occurring at t = 0. (a) Effluent and recycle flow rates,
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Figure 4.17 Evolution of (a) the condenser liquid holdup and (b) the purge flow rate
for a 10% increase in the production rate at t = 0, under plant–model parameter
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Figure 4.19 Evolution of the process stream flow rates for a 25% unmeasured increase
in the inlet impurity levels yI0 occurring at t = 0, under plant–model parameter
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4.9 Synopsis

In this chapter, we have considered the effect of the presence of difficult-to-
separate impurities (either present in the feed or generated as a reaction by
product) and of a purge stream used to remove them on the dynamics of inte-
grated processes. We have shown that the impurity levels in the process evolve
over a much longer time scale than the dynamics of the individual units (and of
the process itself) and that, consequently, processes with impurities and purge
have a two-time-scale dynamic behavior.

We then proposed a method for deriving reduced-order, non-stiff models for
the behavior of such systems in each time scale. In the general case, the slow
dynamics of the systems was shown to be 1D and directly associated with the
total impurity holdup.

Finally, we analyzed the control implications of the presence of impurities
in a process, concluding that the control of impurity levels must be addressed
over an extended time horizon using the flow rate of the purge stream as a
manipulated input. To close the impurity-levels loop, one should resort either
to an appropriately tuned linear controller (e.g., a PI controller with long reset
time) or to a (nonlinear) model-based controller that uses (an inverse of) the
reduced-order model of the slow dynamics – as developed in this chapter – to
compute the necessary control action.



5 Dynamics and control of
generalized integrated process
systems

5.1 Introduction

The purpose of this chapter is to create a general framework that captures the
dynamic effect of the simultaneous presence of both significant material recycle
streams and purge streams. We will use this result presented in (Baldea and
Daoutidis 2007) to rationalize at the theoretical level the development and use
of a hierarchical process control structure, consisting of several interconnected
control and optimization layers.

5.2 System description and modeling

In order to generalize the discussion of the process structures discussed in
Chapters 3 and 4, let us consider the class of processes in Figure 5.1. This generic
structure consists of S + 1 units and a single recycle loop that includes units
1, . . . , S. One (multi-stage) separator is present and we denote by S the part of
the separator that is included in the recycle loop, and by S + 1 the part that is

1 2 S

S + 1

FR

F2F1

FI0

F0
FS – 1

i

FS + 1

Fp

Reaction

S
ep

ar
at

io
n

Recycle loop

Figure 5.1 A generic reaction–separation process system with material recycle and
purge.
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outside the loop. One of the output streams of the separator is recycled, with the
flow rate FR of the recycle stream being much larger than the process through-
put F0. The other output stream leaves the process as a product stream. There
are in total C components in the process, including an impurity I which enters
the process at a small rate FI0. We assume that I does not separate readily in
the separator and that a purge stream is used to prevent its accumulation in the
recycle loop. In order to derive a model for this generic process, let F0 denote the
feed flow rate to the first unit, FI0 the rate at which the impurity is input to the
process, Fj , j = 1, . . . , S + 1, the outlet flow rate from the jth unit, FR the recy-
cle flow rate, and FP the purge flow rate. Also, let Ni, i = 1, . . . , C − 1, and NI

denote the net rates at which the ith component and the impurity, respectively,
are separated from the recycle loop.

Considering that the individual process units are modeled as lumped-
parameter systems, the mathematical model that describes the overall and com-
ponent material balances of the process has the generic form

ẋ = f(x) +
S−1∑
j=1

gj(x)Fj + gR(x)FR +
∑

j=0,S+1

gj(x)Fj +
C−1∑
i=1

gc,i(x)Ni

+gI0(x)FI0 + gI(x)NI + gP(x)Fp (5.1)

where f(x), gj(x), gc,i(x), gR(x), gI0(x), gI(x), and gP(x) are appropriately
defined n-dimensional vector functions. x ∈ χ ⊂ IRn represents the state vector.

The premises that we rely upon in the analysis presented in this chapter draw
on Assumptions 4.1–4.4 and the discussion in Section 3.2, and are summarized
below.

Assumption 5.1. There are no significant side-streams in the process. Conse-
quently, the nominal flow rates of the streams in the recycle loop are of comparable
magnitude, i.e.,

Fj,s

FR,s
= kj = O(1), j = 1, . . . , S − 1 (5.2)

where the index s denotes steady-state values.

Assumption 5.2. The net rates at which the components 1, . . . , C − 1 are sepa-
rated from the recycle loop, as well as the nominal flow rate of the product stream,
are of comparable magnitude. Also, from mass-balance considerations, they are
of the same magnitude as the flow rate of the process feed stream:

Ni,s

F0,s
= O(1), i = 1, . . . , C − 1 (5.3)

FS+1,s

F0,s
= O(1) (5.4)
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Assumption 5.3. The process conditions and constraints (e.g., low single-pass
conversion) are such that, at steady state, the flow rate of the material recycle
stream, FR,s, must be kept significantly larger than the process throughput F0,s.
This is reflected in a large recycle number Rc:

Rc =
FR,s

F0,s
� 1 (5.5)

Assumption 5.4. In order to minimize the loss of raw material and the release
of potentially hazardous chemicals into the environment, the steady-state flow
rate of the purge stream FP,s is much smaller than the flow rate of the reactant
feed stream F0,s. Equivalently, the purge number Pu of the process is small:

Pu =
FP,s

F0,s
� 1 (5.6)

Also, the inlet flow rate FI0,s of the impurity is comparable in magnitude to the
purge flow rate:

FI0,s

F0,s
= β1Pu (5.7)

where β1 is an O(1) quantity.

Assumption 5.5. The impurity is not readily separated from the rest of the
components present in the process. Equivalently, the net rate of impurity removal
from the recycle loop in the separation unit is significantly smaller than the rate
at which the impurity is input to the process:

NI,s

F0,s
= β2Pu2 (5.8)

where β2 is an O(1) quantity.

On defining uj = Fj/Fj,s, j = 0, 1, . . . , S + 1, R, P to be the scaled inputs that
correspond to the flow rates F0, . . . , Fj , . . . , FR and FP, and using the above
assumptions, the model of the generic process becomes

ẋ = f(x) + F0,s

∑
j=0,S+1

gj(x)uj +
C−1∑
i=1

gc,i(x)Ni

+PuF0,s

[
gI0(x)β1 + PugI(x)β2

NI

NI,s
+ gP(x)up

]

+Rc

⎡
⎣S−1∑

j=1

kjgj(x)uj + gR(x)uR

⎤
⎦ (5.9)
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Equation (5.9) can be written in a more compact and mathematically convenient
form as

dx
dt

= f̄(x,us)︸ ︷︷ ︸
process inlet/outlet

chemical reactions

+
1
ε1

Gl(x)ul

︸ ︷︷ ︸
material recycling

+ ε2

[
gI0(x) + ε2gI(x) + gP(x)up

]︸ ︷︷ ︸
impurity inlet/outlet

impurity purging

(5.10)

with ul ∈ IRml
being the vector of scaled input variables corresponding to the

“large” flow rates F1, . . . , FS−1, FR, and us ∈ IRms
being the vector of scaled

input variables corresponding to the “small” flow rates F0 and FS+1. f̄(x,us),
gI0(x), gI(x), and gP(x) are n-dimensional vector functions, and Gl(x) ∈ IRn×ml

.
As established in the previous chapters, we used the notation ε1 = 1/Rc and
ε2 = Pu, and, since the mass-transfer rates Ni, i = 1, . . . , C − 1, are generally
defined as functions of the physical parameters of the system, the corresponding
terms have been included in the expressions for f̄(x) and gI(x).

Clearly, the general model (5.10) contains terms of very different magnitudes,
corresponding, respectively, to the process input and output flows and to the
chemical reactions, to the presence of the large material recycle stream, and to
the presence of the impurity and the purge stream used for its removal. While
(as we have argued in the previous chapters of the book) the presence of these
terms is purely a steady-state, design feature of the process, it is intuitive that
their impact on the process dynamics will also be very different.

From a mathematical point of view, we can see that Equation (5.10) is in
a (nonstandard) singularly perturbed form. This suggests that the integrated
processes under consideration will feature a dynamic behavior with at least two
distinct time scales. Drawing on the developments in Chapters 2, 3, and 4, the
following section demonstrates that these systems evolve in effect over three
distinct time scales and proposes a method for deriving reduced-order, non-stiff
models for the dynamics in each time scale.

5.3 Time-scale decomposition and nonlinear model reduction

5.3.1 Fast dynamics at the unit level

Let us define the new time variable τ = 1/ε1, which is of the order of magnitude
of the residence time in an individual process unit. In this fast (“stretched”) time
scale, the model of Equation (5.10) becomes

dx
dτ

= ε1{f̄(x,us) + ε2[gI0(x) + ε2gI(x) + gP(x)up]} + Gl(x)ul (5.11)
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Following the procedure devised in Chapter 3, we consider the limit ε1 → 0,
corresponding to the recycle flow rate becoming infinite. This results in the
following description of the fast dynamics of the system:

dx
dτ

= Gl(x)ul (5.12)

Equation (5.12) effectively corresponds to the dynamics of the individual pro-
cess units that are part of the recycle loop. The description of the fast dynamics
(5.12) involves only the large flow rates ul of the recycle-loop streams, and does
not involve the small feed/product flow rates us or the purge flow rate up. As
shown in Chapter 3, it is easy to verify that the large flow rates ul of the inter-
nal streams do not affect the total holdup of any of the components 1, . . . , C − 1
(which is influenced only by the small flow rates us), or the total holdup of I
(which is influenced exclusively by the inflow FI0, the transfer rate NI in the
separator, and the purge stream up). By way of consequence, the differential
equations in (5.12) are not independent. Equivalently, the quasi-steady-state
condition 0 = Gl(x)ul corresponding to the dynamical system (5.12) does not
specify a set of isolated equilibrium points, but, rather, a low-dimensional equi-
librium manifold.

As in the previous chapters, we will assume that the linearly independent
quasi-steady-state conditions in Gl(x)ul can be isolated, i.e., the vector function
Gl can be reformulated as

Gl(x) = B(x)G̃l(x) (5.13)

with B(x) ∈ IRn×(n−C−m) being a full column rank matrix and the matrix
G̃l(x) ∈ IR(n−C−m)×ml

, with m < n being the number of states associated with
unit(s) S + 1, having linearly independent rows. This suggests that the dimen-
sion of the equilibrium manifold of the fast dynamics of the units within the
recycle loop has an upper bound in C + m.

5.3.2 Process-level dynamics

In order to obtain a description of the dynamics after the fast transient, we first
recognize that the equations describing the process evolution in the fast time
scale can be replaced, in the time scale t, by the corresponding quasi-steady-state
constraints. These constraints are obtained by multiplying Equation (5.10) by
ε1 and considering the limit ε1 → 0. Taking into account (5.13), the constraints
that must be satisfied in the slow(er) time scale(s) are

0 = G̃l(x)ul (5.14)
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In this limit, the terms (G̃l(x)ul)/ε1 become indeterminate. On defining z =
limε→0(G̃l(x)ul)/ε1, z ∈ IRn−C−m, as these finite but unknown terms, the process
model after the fast “boundary-layer” dynamics takes the form

dx
dt

= f̄(x,us) + B(x)z + ε2[gI0(x) + ε2gI(x) + gP(x)up]

0 = G̃l(x)ul
(5.15)

Once the flow rates ul have been specified by appropriate control laws, it
is possible to differentiate the constraints in Equation (5.15) to obtain (after
differentiating a sufficient number of times) a solution for the algebraic variables
z. One differentiation in time will yield

z = −[LB(G̃(x)ul(x))]−1{Lf̄ (G̃(x)ul(x))

+ ε2[LgI0(G̃(x)ul(x)) + ε2LgI(G̃(x)ul(x)) + LgP(G̃(x)ul(x))up]} (5.16)

provided that the matrix LB(G̃(x)ul(x)) is invertible (which is typically true).
In this case, the index of the DAE system (5.15) is two and the dimension of the
underlying ODE system describing the dynamics after the fast boundary layer
is C + m. An ODE description of this dynamics can be obtained by substituting
z into Equation (5.15), to obtain

dx
dt

= f̃(x,us) + ε2[g̃I0(x) + ε2g̃I(x) + g̃P(x)up]

0 = G̃l(x)ul(x)
(5.17)

with

f̃(x,us) = f̄(x,us) − [LB(G̃(x)ul)]−1Lf̄ (G̃(x)ul)

g̃I0 = gI0(x) − [LB(G̃(x)ul)]−1LgI0(G̃(x)ul)

g̃I = gI(x) − [LB(G̃(x)ul)]−1LgI(G̃(x)ul)

g̃P = gP(x) − [LB(G̃(x)ul)]−1LgP(G̃(x)ul)up

A minimal-order ODE representation of the system (5.17) can be subsequently
obtained by employing a coordinate change of the form[

ζ

η

]
= T1(x) =

[
φ(x)

G̃l(x)ul(x)

]
(5.18)

Specifically, the dynamics after the fast boundary layer will be described by

dζ

dt
=

dφ

dx
f̃(x,us)|x=T−1

1 (ζ)

+ ε2
dφ

dx

[
g̃I0(x)|x=T−1

1 (ζ) + ε2g̃I(x)|x=T−1
1 (ζ) + g̃P(x)|x=T−1

1 (ζ)up

]
η ≡ 0

(5.19)
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For convenience of notation, we define

dφ

dx
f̃(x,us)|x=T−1

1 (ζ) = f̂(ζ,us)

dφ

dx
g̃I0(x)|x=T−1

1 (ζ) = ĝI0(ζ)

dφ

dx
g̃I(x)|x=T−1

1 (ζ) = ĝI(ζ)

dφ

dx
g̃P(x)|x=T−1

1 (ζ) = ĝP(ζ)

with which Equations (5.19) become

dζ

dt
= f̂(ζ,us) + ε2[ĝI0(ζ) + ε2ĝI(ζ) + ĝP(ζ)up]

η ≡ 0
(5.20)

Equations (5.20) capture the core dynamics of the process, present due to the
large recycle stream. However, this model still contains both O(1) and O(ε2)
terms and is, therefore, stiff. The time evolution of the process after the fast
boundary layer thus itself has the potential to feature two time scales.

5.3.3 Slow dynamics of the impurity levels

We proceed with the model reduction using the method developed in Chapter 4,
by considering the limiting case of the purge flow rate and the impurity feed being
set to zero, i.e., ε2 → 0. In this limit, we obtain a description of the dynamics in
the intermediate time scale, that is, the time scale immediately succeeding the
fast boundary layer:

dζ

dt
= f̂(ζ,us) (5.21)

The description of the intermediate dynamics in Equation (5.21) involves only
the flow rates us. However, it was demonstrated that these flow rates do not affect
the total holdup of the impurity in the recycle loop, since the total holdup of I
is influenced only by the inflow of impurity, by its transfer rate in the separator,
and by the purge stream, which, as can be seen from Equation (5.21), have no
influence on the dynamics in this intermediate time scale. Consequently, one
of the differential equations describing the intermediate dynamics is redundant,
and Equations (5.21) are not independent. Correspondingly, the steady-state
conditions

0 = f̂(ζ,us) (5.22)
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specify a 1D sub-manifold in which a slower dynamics will evolve. Following
the approach taken above, we assume that we can rewrite the vector function
f̂(ζ,us) as

f̂(ζ,us) = B̂(x)f̌(ζ,us) (5.23)

where the matrix B̂(x) ∈ IR(C+m)×(C+m−1) has full column rank, and the vector
f̌(ζ,us) ∈ IR(C+m−1) has linearly independent rows.

Next, in order to obtain a description of the slow dynamics, we define the slow,
compressed, time scale θ = ε2t, in which the model of the process becomes

ε2
dζ

dθ
= f̂(ζ,us) + ε2[ĝI0(ζ) + ε2ĝI(ζ) + ĝP(ζ)up] (5.24)

and we consider the limit ε2 → 0, in which the constraints 0 = f̂(ζ,us), or, equiv-
alently, the linearly independent constraints 0 = f̌(ζ,us) are obtained. These
constraints must be satisfied in the slow time scale.

On dividing Equation (5.24) by ε2, and considering the same limiting case
under the constraints above, we obtain a description of the slow dynamics of
the system. Note that, in this limit, the term f̌(ζ,us)/ε2 becomes indeterminate.
On defining ẑ = limε2→0 f̌(ζ,us)/ε2, ẑ ∈ IRC+m−1, the slow dynamics of process
(5.10) takes the form

dx
dτ

= ĝI0(ζ) + ĝP(ζ)up + B̂(ζ)ẑ

0 = f̌(ζ,us)
(5.25)

In the DAE system (5.25), the variables ẑ ∈ IRC+m−1 are implicitly fixed by the
algebraic constraints, rather than specified explicitly, and thus the index of the
system is again nontrivial (i.e., higher than 1). Also, note that, as in the previous
reduction step, the index of (5.25) is well-defined only if the flow rates us are
specified as a function of the state variables (in this case, expressed in the new
coordinates ζ), i.e., us = us(ζ). Specifying these flow rates via feedback control
laws allows ẑ to be determined through differentiation of the algebraic constraints
in Equation (5.25). Differentiating these constraints once yields

ẑ = [LB̂f̌(ζ,us(ζ))]−1{LB̂ĝI0(ζ) + LB̂ĝP(ζ)up} (5.26)

under the assumption that the matrix LB̂f̌(ζ,us(ζ)) is invertible. In this case, the
DAE model describing the slow dynamics (5.25) is of index 2, and the underlying
dimension of the ODE system describing the evolution of the process in the slow
time scale is 1. An explicit state-space realization of the slow dynamics can then
be obtained via a coordinate change of the form[

γ

δ

]
= T2(ζ) =

[
ψ(ζ)

f̌(ζ,us)

]
(5.27)
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and takes the form
dγ

dθ
=

dψ

dζ

[
ĝI0(ζ) + ĝP(ζ)up + B̂(ζ)ẑ

]∣∣∣
ζ=T−1

2 (γ)

δ ≡ 0
(5.28)

This is the dynamics associated with the small amount of feed impurity removed
by the small purge stream.

5.4 Hierarchical controller design

The results above indicate clearly that the presence of flow rates of different mag-
nitudes (a steady-state design feature of many process systems) impacts upon
the dynamic behavior of the process. In what follows, we further our analysis
by emphasizing the implications of steady-state design on the selection of con-
trol structures and the synthesis of well-conditioned controllers for the class of
processes considered.

Each of the reduced-order models derived for the fast, intermediate, and slow
dynamics (Equations (5.12), (5.21), and (5.28)) involves only one group of manip-
ulated inputs, namely the large internal flow rates ul, the small flow rates us,
and the purge flow rate up, respectively. Thus, control objectives in each of the
time scales can be addressed by using the manipulated inputs that are available
and act upon the dynamics in the respective time scale, starting from the fastest.

5.4.1 Distributed control at the unit level

The fast dynamics of the process (5.12), corresponding to the evolution of the
individual process units in the recycle loop, are influenced only by the large
flow rates ul of the internal (recycle loop) streams. Thus, the flow rates of
these streams are available for addressing regulatory control objectives at the
unit level, such as liquid-level/holdup control, as well as for the rejection of
fast disturbances. Similar control objectives for the units outside the recycle
loop are to be addressed using the flow rates us of the corresponding material
streams. Typically, the above control objectives are fulfilled using simple linear
controllers, possibly with integral action, depending on the stringency of the
control objectives.

5.4.2 Supervisory control at the process level

The flow rates us of the streams outside the recycle loop appear as the manip-
ulated inputs available for controlling the “overall,” process dynamics (5.21) in
the intermediate time scale. Control objectives at the process level include the
product purity, the stabilization of the total material holdup, and setting the
production rate.
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Very often (especially because they serve also for the regulatory control for
the units outside the recycle loop), the number of available manipulated inputs
us is exceeded by the number of process-level control objectives. In this case, it
is possible to use the setpoints yl

sp of the controllers in the fast time scale as
manipulated inputs in the intermediate time scale, which leads to cascaded con-
trol configurations.1 Such configurations are beneficial from the point of view of
achieving a tighter coordination between the distributed and supervisory control
levels. However, in this case, the constrained state space of the DAE description
of the dynamics after the fast dynamics (5.15) becomes control-dependent (i.e.,
G̃l(x)ul = G̃l(x)ul

(
x,yl

sp

)
,) and the derivation of a corresponding ODE repre-

sentation of the type (5.17) – which is more challenging from a technical point of
view – has to be addressed using, e.g., the method proposed in Contou-Carrère
et al. (2004) and discussed in the previous chapter.

5.4.3 Control of impurity levels

The concentration of impurities (present in the feed) in the process evolves over a
very slow horizon (days or, possibly, weeks). Moreover, the presence of impurities
in the feed stream, together with significant material recycling, can lead to the
accumulation of impurities in the recycle loop, with detrimental effects on the
operation of the process and on its economics (Baldea et al. 2006). Therefore, as
was shown in Chapter 4, the control of the impurity levels in the process is an
important operational objective, and, according to the analysis presented above,
it should be addressed in the slow time scale, using the flow rate of the purge
stream, up, as a manipulated input.

5.4.4 Real-time optimization

A fourth, optimization, tier can be naturally integrated into the control structure
delineated above. In particular, the models of the overall process behavior in the
intermediate (5.21) and slow (5.28) time scales are non-stiff, and can be used to
formulate well-conditioned optimization problems for computing the setpoints of
the corresponding controllers, respectively, ys

sp and yP
sp.

The resulting hierarchical control structure is represented schematically in
Figure 5.2. Note that, while controller design proceeds in a “bottom-up” manner,
starting from the fastest time scale, during the operation of the process there
will exist a tight “top-down” interconnection via control cascades between the
supervisory and regulatory layers.

1 The use of a “non-square” controller (e.g., an MPC), such that the number of manipulated
inputs is lower than the number of controlled variables, is certainly possible. While this
approach eschews the use of cascaded configurations, it is intuitively detrimental to closed-
loop performance due to the reduced number of manipulated variables.
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Figure 5.2 Hierarchical control structure.

5.5 Case study: dynamics and control of a reactor–separator
process core

5.5.1 Process description

In what follows, we consider the process of Figure 5.3, consisting of a gas-phase
reactor and a condenser that are part of a recycle loop. This process is similar
to the one discussed in Chapter 4 in that the feed stream contains the reactant
A (of mole fraction yA,0) as well as a small quantity yI,0 of an inert, volatile
impurity I. However, in the present case, the slow first-order reaction A → B
results in a low single-pass conversion for the given equipment size. Consequently,
the reaction mass contains an appreciable quantity of unreacted reactant A and

F0, yA0, yI0

yAR, yBR, yIR

A

yA, yB, yI

NA, NB, NI

R

F

P

L

xA, xB, xI

k1
B

Figure 5.3 A reactor–single-stage-separator process.
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Figure 5.4 The toluene hydrodealkylation (HDA) plant (Douglas 1988). The
reactor–separator process core is highlighted.

a significant portion of it must be recycled to the reactor. In order to meet
the purity requirements, the recycle flow rate R needs to be much larger than
the feed flow rate F0. As in our previous encounter with this system, the feed
impurity is removed via a purge stream of small flow rate P . The objectives
for this process are stable operation and ensuring that the concentration of B
in the liquid product stream is within specifications. A third objective concerns
preventing accumulation of the inert impurity I in the recycle loop.

While apparently simple, such reactor–single-stage-separator processes with
high recycle rates and purge streams are omnipresent in the chemical industry,
lying at the core of complex integrated plants. This is also reflected in the fact
that the most frequently cited challenge processes proposed in the literature, i.e.,
the toluene hydrodealkylation plant (HDA) (Figure 5.4), the Tennessee Eastman
process (Figure 5.5), and the vinyl acetate monomer plant (Figure 5.6), feature
such reactor–separator cores. Thus, a rigorous analysis of the class of processes
considered in this case study is an important step in tackling the dynamic anal-
ysis and control of integrated chemical plants.

Assuming isothermal operation of the reactor and condenser, the dynamic
model of the process has the form

ṀR = F0 + R − F

ẏA,R = (1/MR) [F0(yA,0 − yA,R) + R(yA − yA,R) − k1MRyA,R]

ẏI,R = (1/MR) [F0(yI,0 − yI,R) + R(yI − yI,R)]

ṀV = F − R − N − P

ẏA = (1/MV) [F (yA,R − yA) − NA + yAN ] (5.29)
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Figure 5.5 The Tennessee Eastman plant (Downs and Vogel 1993), with the
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Figure 5.6 The vinyl acetate monomer plant (Luyben and Tyreus 1998). The
reactor–separator process core is highlighted.

ẏI = (1/MV) [F (yI,R − yI) − NI + yIN ]

ṀL = N − L

ẋA = (1/ML) [NA − xAN ]

ẋI = (1/ML) [NI − xIN ]

where MR, MV and ML denote the molar holdups in the reactor and in the
condenser vapor and liquid phases, respectively. The interphase mole transfer
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Table 5.1. Nominal values of the state variables and parameter values of the reactor–
separator process core in Figure 5.3

F0 100.00 mol/min Tc 298.00 K MR 4500.00 mol
R 445.48 mol/min Pc 0.327 MPa MV 621.70 mol
F 545.48 mol/min A 200.00 m−1 ML 4500.00 mol
L 95.00 mol/min KA 140 mol m−2 min−1 yA 0.429
P 5.00 mol/min KB 145 mol m−2 min−1 yI 0.399
yA,0 0.98 KI 5 × 10−5 mol m−2 min−1 yA,R 0.375
yI,0 0.02 P S

A(Tc) 1.17 MPa yI,R 0.330
kuR 0.1 mol−1 P S

B(Tc) 0.06 MPa xA 0.12
kuF 0.1 mol−1 P S

I (Tc) 56.7 MPa xI 1.25 × 10−5

Vc 5.00 m3 ρL 15.00 kmol/m3 k1 0.05 min−1

rates in the condenser are governed by rate expressions of the form Nj =
KjA(yj − (Ps

j/P)xj)(ML/ρL), i ∈ A, B, I, where Kj represents the mass-transfer
coefficient, yj the mole fraction in the gas phase, xj the mole fraction in the liquid
phase, Ps

j the saturation vapor pressure of the component j, and P the pressure
in the condenser. N represents the total mass-transfer rate in the condenser,
N = NA + NB + NI.

The parameters of the model are summarized in Table 5.1, together with the
nominal values of the state variables (the subscript c denotes the parameters of
the condenser).

5.5.2 System analysis

Inspecting Equation (5.29), we notice that three of the state variables (namely,
MR, MV, and ML) are material holdups, which act as integrators and render the
system open-loop unstable. Our initial focus will therefore be a “pseudo-open
loop” analysis consisting of simulating the model in Equation (5.29) after the
holdup of the reactor, and the vapor and liquid holdup in the condenser, have
been stabilized. This task is accomplished by defining the reactor effluent, recycle,
and liquid-product flow rates as functions of MR, MV, and ML via appropriate
control laws (specifically, via the proportional controllers (5.42) and (5.48), as
discussed later in this section). With this primary control structure in place,
we carried out a simulation using initial conditions that were slightly perturbed
from the steady-state values in Table 5.1.

The responses of all the state variables (Figure 5.7) exhibit an initial fast
transient, followed by a slower dynamics. The states approach their nominal
steady-state values after a period of time that exceeds 48 h (nota bene, two days!),
indicating that a very slow component is also present in the process dynamics.
The analysis in the following section will use the framework developed earlier in
the chapter to provide a theoretical explanation for these findings.
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Figure 5.7 Evolution of the state variables of the “pseudo-open-loop” system starting
from initial conditions slightly perturbed from the steady-state values.

5.5.3 Reduced-order modeling

In order to elucidate the dynamic behavior of the process and to devise repre-
sentations of the dynamics in each time scale, let us define the recycle number
of the process, Rc, as the ratio of the steady-state values of the feed and recycle
flow rates:

Rc =
Rs

F0s
(5.30)

and the purge number

Pu =
Ps

F0s
(5.31)

as the ratio of the purge and feed flow rates at steady state.
According to the developments above and with the data in Table 5.1, we have

yI,0 = αIPu, with αI = O(1). Upon further inspection of the data in Table 5.1,
we also notice that the vapor pressure of the impurity is very high compared
with the vapor pressures of components A and B. Given this, we can write

PS
I

P =
α2

Pu
(5.32)
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Corroborating this with the observation that the mass transfer coefficient of I
is very low compared with those of A and B (and therefore KI = α1Pu2, with
α1 = O(1)) we can infer that only a negligible amount of I will leave the recycle
loop through the liquid stream at the bottom of the condenser.

We also define the scaled flow rates uR = R/Rs, uF = F/Fs, and up = P/Ps,
and the ratio k = Fs/Rs, which, according to the data in Table 5.1, is of O(1).
Using these definitions and observations (and the notation ε1 = 1/Rc and ε2 =
Pu), the model in Equation (5.29) becomes

ṀR = F0 + (1/ε1)F0s(uR − kuF)

ẏA,R = (1/MR)[F0(1 − αIε2 − yA,R) − k1MRyA,R

+ (1/ε1)F0suR(yA − yA,R)]

ẏI,R = (1/MR)[F0(αIε2 − yI,R) + (1/ε1)F0suR(yI − yI,R)]

ṀV = −NA − NB − (α1ε
2
2yI + α1α2ε2xI)ML/�L

+ (1/ε1)F0s(kuF − uR) − ε2F0sup

ẏA = (1/MV)[(1/ε1)F0skuF(yA,R − yA) − NA + yA(NA + NB)

+ yA(α1ε
2
2yI + α1α2ε2xI)ML/�L]

ẏI = (1/MV)[(1/ε1)F0skuF(yI,R − yI) − (α1ε
2
2yI + α1α2ε2xI)ML/�L

+ yI(NA + NB) + yI(α1ε
2
2yI + α1α2ε2xI)ML/�L]

ṀL = NA + NB + (α1ε
2
2yI + α1α2ε2xI)ML/�L − L

ẋA = (1/ML)[NA − xA(NA + NB) − xA(α1ε
2
2yI + α1α2ε2xI)ML/�L]

ẋI = (1/ML)[(α1ε
2
2yI + α1α2ε2xI)ML/�L

−xI(NA + NB) − xI(α1ε
2
2yI + α1α2ε2xI)ML/�L]

(5.33)

which is in the generic form of Equation (5.10), with x = [MR yA,R yI,R

MV yA yI ML xA xI]T, ul = [uR uF ]T, us = [F0 L ]T, n = 9, and m = 3, and

Gl(x) = F0s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −k

(1/MR)(yA − yA,R) 0

(1/MR)(yI − yI,R) 0

−1 k

0 (1/MV)k(yA,R − yA)

0 (1/MV)k(yI,R − yI)

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.34)
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f̄(x,us) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

(1/MR)(F0(1 − yA,R) − k1MRyA,R)

(1/MR)(F0(−yI,R))

−NA − NB

(1/MV)(−NA + yA(NA + NB))

(1/MV)yI(NA + NB)

NA + NB − L

(1/ML)(NA − xA(NA + NB))

(1/ML)(−xI(NA + NB))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.35)

gI0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−(1/MR)F0αI

(1/MR)F0αI

−α1α2xIML/�L

(1/MV)yAα1α2xIML/�L

(1/MV)[−α1α2xI + yIα1α2xI]ML/�L

α1α2xIML/�L

−(1/ML)xA(α1α2xI)ML/�L

(1/ML)[α1α2xI − x2
I α1α2]ML/�L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.36)

gI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−α1yIML/�L

(1/MV)yAα1yIML/�L

(1/MV)[−α1yI + α1y
2
I ]ML/�L

α1yIML/�L

−(1/ML)xAα1yIML/�L

(1/ML)[α1yI − xIα1yI]ML/�L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.37)

gP = [0 0 0 F0s 0 0 0 0 0 ]T (5.38)

We proceed with the derivation of approximate models for the process dynam-
ics in each time scale, beginning with the fastest. To this end, we define the fast,
stretched time scale τ1 = t/ε1, in which the process model takes the form of
Equation (5.11), and, in the limit ε1 → 0, corresponding to an infinitely large
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recycle flow rate, we obtain a description of the process dynamics in the fast
time scale that is in the form of Equation (5.12):

dMR

dτ
= F0s(uR − kuF)

dyA,R

dτ
=

F0s

MR
uR(yA − yA,R)

dyI,R

dτ
=

F0s

MR
uR(yI − yI,R)

dMV

dτ
= F0s(kuF − uR)

dyA

dτ
=

F0s

MV
kuF(yA,R − yA)

dyI

dτ
=

F0s

MV
kuF(yI,R − yI)

dML

dτ
= 0

dxA

dτ
= 0

dxI

dτ
= 0

(5.39)

Clearly, not all the nontrivial algebraic equations that correspond to the equi-
librium of the fastest dynamics in Equation (5.39) are linearly independent.
Specifically, the last three equations can be expressed as functions of the first
three, reformulating Gl as in Equation (5.13), with

G̃l(x) =

⎡
⎢⎣

1 −k

(yA − yA,R) 0

(yI − yI,R) 0

⎤
⎥⎦ (5.40)

and

B(x) = F0s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1/MR 0

0 0 1/MR

−1 0 0

−(1/MV)(yA,R − yA) −1/MV 0

−(1/MV)(yI,R − yI) 0 −1/MV

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Consequently, the steady-state condition associated with the fast dynamics spec-
ifies a six-dimensional equilibrium manifold in which a slower dynamics evolves.
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Turning to the slower dynamics, and considering the limit ε1 → 0 in the orig-
inal time scale t, the linearly independent constraints of Equation (5.14), i.e.,

0 = uR − kuF

0 = uR(yA − yA,R)

0 = uR(yI − yI,R)

(5.41)

are obtained. Observe that the terms limε→0 G̃l(x)ul/ε1 are indeterminate, yet
finite. On defining these unknown limit terms as z1, the model of the process
takes the form of Equation (5.15), which represents a DAE description of the
core process dynamics after the fast transients.

By setting the ul with the proportional laws

ul =

[
uR

uF

]
=

[
1 − kuR(MV,sp − MV)

1 − kuF(MR,sp − MR)

]
(5.42)

the algebraic variables z1 can be computed after one differentiation of the alge-
braic constraints (5.41), thus the index of this DAE system is exactly two.

One coordinate change that satisfies the conditions in (5.18) involves the total
material holdup of the recycle loop and the holdups of the individual components
in the recycle loop, i.e.,

ζ1 = MR + MV

ζ2 = MRyA,R + MVyA

ζ3 = MRyI,R + MVyI

ζ4 = ML

ζ5 = xA

ζ6 = xI

η1 = uR(x) + kuF(x)

η2 = uR(x)(yA − yA,R)

η3 = uR(x)(yI − yI,R)

(5.43)

In these coordinates, the model of the process becomes

ζ̇1 = F0 − NA − NB − ε2ÑIε2F0sup

ζ̇2 = − 1
ζ1(kkuF + kuR)

(ε2F0skkuFζ2up + k1ζ2kuFMR,sp

− kF0yA,0ζ1kuF + kkuFNAζ1

− kk1ζ2 + k1ζ2ζ1kuR − F0yA0ζ1kuR

+ kuRNAζ1 + k1ζ2 − k1ζ2kuRMV,sp (5.44)

+ ζ2kuRε2upF0s)
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ζ̇3 = (ε2/ζ1)(−ζ3upF0s − ÑIζ1 + F0αIζ1)

ζ̇4 = NA + NB + ε2ÑI − L

ζ̇5 = NA − ζ5(NA + NB + ε2ÑI)

ζ̇6 = ε2ÑI − ζ6(NA + NB + ε2ÑI)

with

ÑI = (α1ε2ζ3/ζ1 + α1α2ζ6)ζ4/ρL (5.45)

Notice that the above model is still stiff, due to the presence of the parame-
ter ε2. Considering the limit ε2 → 0, corresponding to the absence of the inert
component from the feed and a zero purge flow rate, we obtain the following
description of the intermediate (process-level) dynamics:

ζ̇1 = F0 − NA − NB

ζ̇2 = −(k1ζ2kuFMR,sp − kF0yA,0ζ1kuF + kkuFNAζ1 − kk1ζ2

+ k1ζ2ζ1kuR − F0yA,0ζ1kuR + kuRNAζ1 + k1ζ2 − k1ζ2kuRMV,sp

+ ζ2kuRε2upF0s)/(ζ1(kkuF + kuR))

ζ̇3 = 0

ζ̇4 = NA + NB − L

ζ̇5 = NA − ζ5(NA + NB)

ζ̇6 = −ζ6(NA + NB)

(5.46)

It is evident from the equations above that the variable ζ3 (the total impurity
holdup) does not evolve in the time scale t, thus being a true slow variable.

On defining the slow, compressed, time scale θ = ε2t and considering the limit
ε2 → 0, we obtain an expression for the slowest dynamics of the process, due to
the presence of the inert impurity I. This has the form

dζ3

dθ
= (−ζ3upF0s + F0αIζ1)/ζ1 (5.47)

under the quasi-steady-state constraints that arise from setting the right-hand
sides of the equations in (5.46) equal to zero. Notice that the quasi-steady-state
constraints corresponding to the intermediate dynamics are linearly independent
in this case. Equivalently, in this case the conditions set forth in Theorem A.1
are fulfilled, and the coordinate change (5.43) results in an ODE representation
of the dynamics after the fast boundary layer (Equation (5.44)) that is in a
standard singularly perturbed form.

Remark 5.1. The presence of three distinct time horizons is well captured by
Figure 5.8, which provides a different perspective on the results of the “numerical
experiment” discussed in Section 5.5.2. Namely, the reactor holdup (top plot)
reaches steady state very quickly, and the total holdup of A (middle plot) reaches
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Figure 5.8 Three distinct time horizons in the dynamic response of the
reactor–condenser process core. Top: fast, unit-level dynamics. Middle: the total
holdup of component A has an intermediate response time. Bottom: the total holdup
of impurity evolves in the slowest time scale. The plots depict simulation results with
initial conditions slightly perturbed from their steady-state values.

steady state within a few hours, while the total holdup of I (bottom plot) is
approaching steady state after two days (i.e., the total holdups of component A

and the impurity I evolve only over the intermediate and slow time horizons,
respectively). These plots are in complete agreement with our theoretical results,
which predict that the dynamics of the individual units (i.e., the reactor) are
fast, that there exists a process-level dynamic component associated with the total
material holdup and with the holdups of all the components (except the impurity),
and that the slowest component of the process dynamics is related to the presence
of the impurity I.

5.5.4 Hierarchical control system design

The presence of three distinct time horizons in the process dynamics, as evinced
by the analysis above, warrants the use of a hierarchical control structure
that addresses the distributed (unit-level) and plant-wide control objectives
separately.

The first (distributed) layer of the control structure proposed in Section 5.4
was implemented as described in Equation (5.42), i.e., by stabilizing the holdups
of the units within the recycle loop (the reactor and the vapor phase of the
condenser) with proportional control laws. The liquid holdup in the condenser
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(and, thereby, the total material holdup of the process) was also stabilized with
a proportional controller:

L = Ls(1 − kL(ML,sp − ML)) (5.48)

with kL = 0.1 mol−1.
For controller-design purposes, it is practical to derive a state-space realiza-

tion of the dynamics after the fastest boundary layer (Equation (5.20)) using a
coordinate change (5.18) in which the control objectives appear directly. Thus,
rather than expressing the dynamics of the system in terms of total holdups,
we used

ζ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MR

yA,R

yI,R

ML

xA

xI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.49)

η =

⎡
⎢⎣

uR(x) + kuF(x)

uR(x)(yA − yA,R)

uR(x)(yI − yI,R)

⎤
⎥⎦ (5.50)

Using the symbolic calculation engine available in Matlab R©,2 we obtained the
following description of the intermediate dynamics of the reactor–condenser
process:

ζ̇1 = kuR(−NB − NA + F0)/(kkuF + kuR)

ζ̇2 = −kuR(NA + F0ζ2 + k1ζ1ζ2 − F0 − ζ2NB − ζ2NA)/A

ζ̇3 = −kuRζ3(−NB − NA + F0)/A

ζ̇4 = NA + NB − L

ζ̇5 = −(−NA + ζ5NA + ζ5NB)/ζ4

ζ̇6 = −1/[ζ4ζ6(NA + NB)]

(5.51)

where

A = (−1 + kuRMV,sp + k − kkuFMR,sp + kkuFζ1 + ζ1kuR) (5.52)

We then used the model (5.51) as the basis for synthesizing an input–output
linearizing controller with integral action (Daoutidis and Kravaris 1992) for
the product purity xB = 1 − ζ5 − ζ6, using the condenser vapor holdup setpoint

2 Matlab is a registered trademark of The Mathworks, Inc.
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MV,sp as a manipulated input3 and requesting a second-order critically damped
response:

xB + β1
dxB

dt
+ β2

d2xB

dt2
= xB,sp (5.53)

with β1 = 40 min and β2 = 400 min2.
The choice of manipulated input for the supervisory controller (the setpoint

of a controller that belongs to the primary control structure used to stabilize the
fast dynamics) is dictated by the low number (more precisely, one – the liquid
product flow rate) of stream flow rates available as manipulated inputs in the
intermediate time scale. The implementation of the resulting cascaded control
structure is more elaborate from a technical point of view, since the equilibrium
manifold of the fast dynamics (5.41) becomes control-dependent. We used the
method proposed in Contou-Carrère et al. (2004) as discussed earlier in the book
to overcome this difficulty.

Considering now the slowest (impurity) dynamics, we note that, under the
coordinate change (5.49), only five of the six steady-state conditions (5.22) –
corresponding to the model in Equation (5.51) – are linearly independent. Thus,
we have

B̂(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kuR/(kkuF + kuR) 0 0 0 0

0 −kuR/A 0 0 0

−kuRζ3/A 0 0 0 0

0 0 1 0 0

0 0 0 −1/ζ4 0

0 0 0 0 −1/ζ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.54)

and

f̌ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−NB − NA + F0

NA + F0ζ2 + k1ζ1ζ2 − F0 − ζ2NB − ζ2NA

NA + NB − L

−NA + ζ5NA + ζ5NB

ζ6(NA + NB)

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.55)

The above-mentioned steady-state conditions thus describe a 1D manifold in
which the slow dynamics of the process evolve.

3 Note that the setpoint of the vapor holdup in the reactor, MR,sp, is an equally valid choice
of manipulated input.
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Under the control law (5.48), the matrix LB̂f̌(ζ,us(ζ)) is invertible. Then,
having

ĝP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−F0skuR)/(kkuF + kuR)

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.56)

ĝI0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kuR(α1ζ4α2ζ6)/[(kkuF + kuR)/ρL]

−kuR(F0αIρL − ζ4α1α2ζ6ζ2)/(ρL/A)

kuR − α1ζ4α2ζ6 + F0αIρL + ζ4α1α2ζ6ζ2)/(ρL/A)

α1ζ4α2ζ6/ρL

−ζ5α1ζ4α2ζ6/(ζ4/ρL)

−(−α1ζ4α2ζ6 + α1ζ4α2ζ
2
6 )/(ζ4/ρL)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.57)

ĝI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kuR(α1ζ4ζ3)/[(kkuF + kuR)/ρL]

−kuR(−ζ2α1ζ3ζ4)/(ρL/A)

kuR(α1ζ
2
3ζ4 − α1ζ4ζ3)/(ρL/A)

α1ζ4ζ3/ρL

−ζ5α1ζ3/ρL

−(−α1ζ3 + α1ζ3ζ6)/ρL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.58)

we derived via symbolic calculation (the details are omitted for brevity) a 1D,
minimal-order representation of the slow dynamics (5.28) on the basis of which
we synthesized an input–output-linearizing controller with integral action for the
impurity mole fraction in the reactor, requesting a first-order response:

ζ3 + γ
dζ3

dθ
= ζ3,sp (5.59)

with γ = 500 min.
Table 5.2 summarizes the control principles outlined in this chapter as they

apply to the reactor–condenser process.

Remark 5.2. Industrial implementations of the distributed layer of this control
structure would depend on sensor availability. Thus, the holdup of the reactor
and the gas phase in the condenser would be stabilized by controlling the pressure
in these vessels, while the liquid-level measurements would be used to estimate
and control the liquid holdup. A potential process and instrumentation diagram
(P&ID) for this process is presented in Figure 5.9.
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Table 5.2. Control structure for the reactor–separator process core

Time scale Controlled output Manipulated input Controller

Fast Reactor holdup MR Reactor effluent flow
rate F

Proportional

Condenser vapor
holdup MV

Recycle flow rate R Proportional

Intermediate Total material
holdup

Liquid-product flow
rate L

Proportional

Product purity xB Condenser holdup
setpoint MV,sp

Nonlinear,
model-based
cascaded structure

Slow Inert levels in the
reactor, yI,R

Purge flow rate P Nonlinear,
model-based

xB

y
IR

MR

Mv

R

F

P

L

NLC

NLCF0

ML

Figure 5.9 A potential process and instrumentation diagram (P&ID) for the
reactor–condenser process core.

5.5.5 Simulation results and discussion

The theoretical concepts developed above were validated through numerical sim-
ulations. First, we considered the case of a 15% increase in the production rate
(achieved by increasing the feed flow rate). A second case concerned the operation
of the process under a significant (25%) rise in the inlet impurity concentration.
Figures 5.10–5.12 and 5.13–5.15 present the closed-loop response for these two
scenarios, evincing excellent controller performance. A second set of simulations
considered the same operating scenarios, with the added challenge of a mismatch
in two key parameters: the reaction rate k1 and the mass transfer coefficient KB

of the product B in the controller model were assumed to be overestimated by
10% compared with their values in the process. The control performance also in
these cases (Figures 5.16–5.18 and 5.19–5.21) is excellent.
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Figure 5.10 Evolution of the process composition variables for a 15% increase in the
production rate at t = 1h. (a) Product purity and (b) reactor impurity level.

Remark 5.3. Figures 5.10–5.21 show that the response of the mole fraction of
the impurity I in the reactor is also slow in closed-loop operation. This is to
be expected and was accounted for in the design of the impurity-mole-fraction
controller by requesting a sufficiently long time constant for the closed-loop
response (5.59).
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Figure 5.11 Evolution of the process stream flow rates for a 15% increase in the
production rate at t = 1h. (a) Effluent and recycle flow rates, and (b) product
flow rate.

Remark 5.4. The steady-state process parameters in Table 5.1 can be used
to calculate the values of the recycle and purge numbers. For this process, we
have Rc = 4.45 and Pu = 0.05, or, equivalently, ε1 = 1/Rc = 0.224 and ε2 =
Pu = 0.05. It is noteworthy that its numerical value does not immediately war-
rant the “small-parameter” description for ε1 (this is not an issue for ε2). The
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Figure 5.12 Evolution of (a) the condenser vapor holdup setpoint and (b) the purge
flow rate for a 15% increase in the production rate at t = 1h.

reactor–condenser system does not therefore strictly fulfill the assumptions of our
singular perturbation analysis. Yet, the model-based control structure designed
using the reduced-order models of the dynamics in each time scale performs
remarkably well. This case study thus provides further confirmation of the wide
applicability and robustness of the model-reduction and controller design methods
proposed in this chapter.
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Figure 5.13 Evolution of the process composition variables for a 25% unmeasured
increase in the inlet impurity levels yI0 occurring at t = 1h. (a) Product purity and
(b) reactor impurity level.
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Figure 5.14 Evolution of the process stream flow rates for a 25% unmeasured increase
in the inlet impurity levels yI0 occurring at t = 1h. (a) Effluent and recycle flow rates,
and (b) product flow rate.
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Figure 5.15 Evolution of (a) the condenser vapor holdup setpoint and (b) the purge
flow rate for a 25% unmeasured increase in the inlet impurity levels yI0 occurring at
t = 1h.
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Figure 5.16 Closed-loop evolution of the process composition variables for a 15%
increase in the production rate occurring at t = 0, under plant–model parameter
mismatch. The reaction rate k1 and the mass transfer coefficient KB in the controller
model are assumed to be overestimated by 10% compared with their values in the
plant. (a) Product purity and (b) reactor impurity level.
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Figure 5.17 Closed-loop evolution of the process stream flow rates for a 15% increase
in the production rate occurring at t = 0, under plant–model parameter mismatch.
The reaction rate k1 and the mass-transfer coefficient KB in the controller model are
assumed to be overestimated by 10% compared with their values in the plant.
(a) Effluent and recycle flow rates, and (b) product flow rate.
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Figure 5.18 Closed-loop evolution of (a) the condenser vapor holdup setpoint and
(b) the purge flow rate for a 15% increase in the production rate occurring at t = 0,
under plant–model parameter mismatch. The reaction rate k1 and the mass-transfer
coefficient KB in the controller model are assumed to be overestimated by 10%
compared with their values in the plant.
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Figure 5.19 Evolution of the process composition variables for a 25% unmeasured
increase in the inlet impurity levels yI0 occurring at t = 0, under plant–model
parameter mismatch. The reaction rate k1 and the mass-transfer coefficient KB in the
controller model are assumed to be overestimated by 10% compared with their values
in the plant. (a) Product purity and (b) reactor impurity level.
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Figure 5.20 Evolution of the process stream flow rates for a 25% unmeasured increase
in the inlet impurity levels yI0 occurring at t = 0, under plant–model parameter
mismatch. The reaction rate k1 and the mass-transfer coefficient KB in the controller
model are assumed to be overestimated by 10% compared with their values in the
plant. (a) Effluent and recycle flow rates, and (b) product flow rate.
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Figure 5.21 Evolution of (a) the condenser vapor holdup setpoint and (b) the purge
flow rate for a 25% unmeasured increase in the inlet impurity levels yI0 occurring at
t = 0, under plant–model parameter mismatch. The reaction rate k1 and the
mass-transfer coefficient KB in the controller model are assumed to be overestimated
by 10% compared with their values in the plant.
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5.6 Synopsis

In this chapter, we developed a unified framework for analyzing the dynamic
behavior of integrated processes. Using a completely generic description, we
investigated the dynamic behavior that emerges as a result of process integration
through significant material recycling and impurity purging.

Drawing on the results derived in the first two chapters in this part of the
book, we showed that the dynamics of these processes evolve over three distinct
time horizons:

� a fast time scale, which corresponds to the response of the individual process
units in the recycle loop

� an intermediate time scale, corresponding to the dynamic response of the
overall process

� a slow time scale that reflects the presence of process impurities and of the
purge stream that is used to eliminate them.

We showed that this dynamic behavior originates, in effect, from the large dis-
crepancies between the flow rates of the different material streams in the process
(captured by the recycle and purge numbers), thereby establishing a clear and
causal connection between the steady-state design and the dynamic response of
an integrated process.

We proposed a method for deriving nonlinear low-dimensional models for the
dynamics in each time scale. Subsequently, we proposed a hierarchical controller
design framework that takes advantage of the time-scale multiplicity, and relies
on a multi-tiered structure of coordinated decentralized and supervisory con-
trollers in order to address distributed and process-level control objectives.





Part III

Process systems with energy
integration





6 Process systems with energy
recycling

6.1 Introduction

The previous chapters have concentrated on analyzing the material-balance
dynamics of several classes of integrated process systems. We demonstrated that
the dynamic behavior of the systems considered exhibits several time scales and
described a method for the derivation of reduced-order models describing the
dynamics in each time scale. Also, a hierarchical controller design framework
was introduced, with distributed control of the fast dynamics and supervisory
control of the dynamics at the systems level.

In what follows, we focus on the dynamic features associated with energy
integration, a ubiquitous design feature in the process and energy industries.
Energy-integrated designs are motivated by the high cost of energy and the
corresponding need to minimize fuel and utility usage. Pairing energy genera-
tion and consumption within the same plant is an effective means to this end,
and can be implemented in numerous ways, including the use of feed–effluent
heat-exchange, plant-wide heat exchanger networks, heat pumping, and heat
integration and thermal coupling of distillation columns.

Energy-integrated designs invariably introduce a dynamic coupling between
the process units. Several authors have documented a positive-feedback effect
due to recycling of energy, which can lead to an intricate dynamic behavior,
featuring, e.g., an inverse response or open-loop instability (Morud and Skogestad
1994, 1996, Bildea and Dimian 1998, Jacobsen and Berezowski 1998, Mizsey et al.
1998, Morud and Skogestad 1998, Reyes and Luyben 2000a, Chen and Yu 2003).

The present chapter considers processes in which energy recycling and recov-
ery is significant in comparison with any available energy sources and/or sinks,
as well as with any energy input through the feed stream. Following the develop-
ments in (Jogwar et al. 2009), we construct a prototype process and use it to
identify and characterize the underlying dynamic structure, demonstrating that –
in analogy with the case of processes with significant material recycling, discussed
in Chapter 3 – the simultaneous presence of energy flows of different magnitudes
causes model stiffness and is at the origin of a time-scale separation in the energy-
balance dynamics. A model-reduction framework is developed and reduced-
order descriptions of the dynamics in each time scale are derived. We then
propose guidelines for taking these dynamic characteristics into consideration
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in controller design, and present several illustrative examples and a simulation
case study.

6.2 Dynamics of processes with significant energy recovery

Let us consider the process in Figure 6.1, consisting of N units in series. Let
H0 denote an external energy input to the first unit and Hi, i = 1, . . . , N , the
outlet energy flow from the ith unit. While Hi are (intuitively) assumed to be
associated with material streams, we also account for the potential presence of
other sources of energy in the units, Qi, originating, e.g., from direct heating or
cooling, or from the energy effect of chemical reactions. Finally, we assume that
the means exist (e.g., via direct heat exchange, transfer using a heat-transfer
medium, heat pumping or material recycle) to recover energy from the last unit
(or output stream) at a rate Qout and recycle it to the first unit (or process
input) at a rate Qin ≡ Qout.

The prototype process in Figure 6.1 captures the structural and dynamic
properties of integrated process designs with significant energy recycling, most
notably processes that rely on a feed–effluent heat exchanger (FEHE) to recover
energy from the products. Typically, FEHEs (Figure 6.2) are used for preheat-
ing feed streams using the heat of reaction carried by the products, but they are
equally effective in the recovery of refrigeration for feed cooling (see Example 4.1).

Assuming that individual process units are modeled as lumped-parameter sys-
tems and that kinetic and potential energy contributions are negligible, the

Ho H1 H2 HN

Q1 Q2 QN

Q in Qout   

Figure 6.1 A prototype energy-integrated process.

F, h0 F, h1

F, h3

F, h2

ΔH

FEHE                  Process unit(s)

HR

Figure 6.2 A process with a feed–effluent heat exchanger.
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mathematical model that describes the energy balance of the process can be
written in the form

θ̇1 = H0 − H1 + Q1 + Qin

...

θ̇i = Hi−1 − Hi + Qi

...

θ̇N = HN−1 − HN + QN − Qout

(6.1)

with θi being the enthalpies of units i = 1, . . . , N . Equation (6.1) can be rewritten
in a compact form as

θ̇ =
∑

i=0,N

γiHi +
∑

i=0,N

φi(x,θ)Qi +
N−1∑
i=1

γiHi + γin
q Qin + γout

q Qout (6.2)

with θ = [θ1 . . . θi . . . θN ]T, θ ∈ Q ⊂ IRN being the vector of unit enthalpies and
γi and γj

q being appropriately defined vector functions. For reasons that will
become apparent later in the book, we adhere to using a separate notation for
Qin and Qout, in spite of the fact that they represent, in effect, the same quantity.

We denote by ωi = Hi/Hi,s the dimensionless variables corresponding to the
energy flow rates Hi, i = 1, . . . , N (the subscript s denotes steady-state val-
ues). Appending a generic representation of the overall and component material-
balance equations, with x ∈ X ⊂ IRm being the material-balance variables, the
overall mathematical model of the process in Figure 6.1 becomes

ẋ = f(x,θ)

θ̇ =
∑

i=0,N

γi(x,θ)Hi +
∑

i=0,N

φi(x,θ)Qi

+
N−1∑
i=1

γi(x,θ)Hi + γin
q Qin + γout

q Qout

(6.3)

Let us now concentrate on the energy dynamics of the system (6.3), for which
we make the following steady-state assumptions.

Assumption 6.1. The internal energy flow rates Hi,s, i = 1, . . . , N − 1, are of
similar magnitudes (i.e., li = Hi,s/H1,s = O(1)) and much larger than the inlet
and outlet energy flows H0,s and HN,s, that is

H0,s

H1,s
� 1 (6.4)
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Assumption 6.2. The energy inputs Qi, i = 1, . . . , N , to the individual units
are of similar magnitude to the inlet energy flow. Equivalently, Qi,s/H0,s = O(1)
and Qi,s/H1,s � 1.

Assumption 6.3. The magnitude of the energy flow rate Qin ≡ Qout is similar
to the magnitude of the energy flows Hi, i = 1, . . . , N − 1, and we have

Qin,s

H1,s
≡ Qout,s

H1,s
= min = mout = O(1) (6.5)

We also define min = Qin,s/H1,s and mout = Qout,s/H1,s.

Assumptions 6.1–6.3 ensure that, in steady-state operation, the rate of energy
recovery from the effluent stream(s) is larger than the amount of energy input
to the system from the outside, thereby guaranteeing a tight energy integration.
These assumptions are not expected to remain true during inherently transient
events such as plant start-ups, when a significant amount of energy needs to
be accumulated in the process. In such cases, plant operation cannot rely on
significant energy recovery, and external energy sources are required.

The above assumptions also suggest that the degree of energy integration of a
process can be quantified by means of a dimensionless number.

Definition 6.1. The energy recovery number is the ratio of the rate at which
energy is recovered from the process effluent stream(s) to the rate at which energy
is input to the process through the material feed streams:

Erc =
H1,s

H0,s
(6.6)

Remark 6.1. The definition of the energy recovery number follows the same
principle as that of the recycle number Rc (Definition 3.1). Both numbers
characterize the intensity of recycling/recovery of a process inventory (see,
e.g., Farschman et al. 1998) – that is, energy and mass, respectively. From the
perspective of inventory recycling, the two numbers Erc and Rc are, in effect,
particular cases of the same dimensionless quantity.

With the above definition, we can rewrite the model (6.3) as

ẋ = f(x,θ)

θ̇ =
∑

i=0,N

γi(x,θ)Hi +
∑

i=0,N

φi(x,θ)Qi + ErcH0,s

×
(

N−1∑
i=1

γi(x,θ)liωi + γin
q (x,θ)minωin + γout

q mout(x,θ)ωout

) (6.7)



6.3 Model reduction 147

where ωin = Qin/Qin,s and ωout = Qout/Qout,s. More generally, we can write
(6.7) as

ẋ = f(x,θ)

θ̇ = Φ(x,θ) + Γs(x,θ)ωs + ErcΓl(x,θ)ωl
(6.8)

where ωs ∈ U s ⊂ IRms
is a vector of scaled variables that correspond to the small

inlet and outlet energy flows, and ωl ∈ U l ⊂ IRml
is a vector of scaled variables

corresponding to the large internal and recycle energy flows. f and Φ are vector
functions, and Gs and Gl are matrices of appropriate dimensions.

Our interest in this chapter concentrates on process systems with tight energy
integration, or, according to Assumption 6.1, processes for which the energy
recovery number is large. For mathematical convenience and in keeping with
the analysis framework developed throughout the book, we will define the small
parameter

ε =
1

Erc
� 1 (6.9)

which allows us to rewrite (6.8) as

ẋ = f(x,θ)

θ̇ = Φ(x,θ) + Γs(x,θ)ωs +
1
ε
Γl(x,θ)ωl

(6.10)

Owing to the presence of the small parameter ε, the generic model of Equation
(6.10) is stiff. According to the theory developed in Chapter 2, the dynamics of
integrated processes with energy recycling have the potential to evolve over mul-
tiple time scales. As was shown in the previous chapters, the rational approach to
addressing the control of such systems involves the properly coordinated synthe-
sis of separate fast and slow controllers, so that overall stability, output tracking,
and disturbance rejection can be achieved. The design of such controllers and the
closed-loop analysis must be performed on the basis of separate reduced-order
models that describe the dynamics in the fast and slow time scales. The deriva-
tion of reduced-order, non-stiff models for the energy dynamics of the class of
process systems considered is addressed in the next section.

6.3 Model reduction

We proceed by defining the fast time scale τ = t/ε and rewriting the model (6.10)
in this fast time scale to obtain

dx
dτ

= f(x,θ)

dθ

dτ
= ε(Φ(x,θ) + Γs(x,θ)ωs) + Γl(x,θ)ωl

(6.11)
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Let us now consider the limit ε → 0, i.e., the ideal case of total heat integration
via an infinitely high energy recycle. In this limit, we obtain

dx
dτ

= 0

dθ

dτ
= Γl(x,θ)ωl

(6.12)

which represents a description of the fast dynamics of the process, involving only
the variables θ that pertain to the energy balance.

It is evident that the fast dynamics described by Equation (6.12) are only
influenced by the large energy flows ωl. However, it is easy to verify (e.g., by
summing the equations in (6.1)) that the large internal flows do not affect the
total enthalpy of the process,

θtot =
N∑

i=1

θi (6.13)

and, furthermore, that the transient behavior of θtot is governed exclusively by
the small external energy flows and the (small) energy-generation terms in the
energy balance. In turn, this indicates that the differential equations in (6.12)
are not linearly independent. Thus, the solution of the algebraic equation system
consisting of the (linearly dependent) quasi-steady-state conditions

0 = Γl(x,θ)ωl (6.14)

corresponding to the fast component of the dynamics does not consist of a set of
isolated equilibrium enthalpy values; rather, it consists of an equilibrium mani-
fold, or subspace, in which a slower dynamic component evolves. From the phys-
ical arguments presented above, this manifold is at most 1D.

In pursuing the derivation of a description of the slow component of the system
dynamics, we make the following (typically true, as we will see in the examples
below) assumption.

Assumption 6.4. There exist a full column rank matrix B(x,θ) ∈ B ⊂ IRN×N−1

and a matrix Γ̃
l
(x,θ) ⊂ IR(N−1)×ml

with linearly independent rows, such that
Γl(x,θ) can be rewritten as

Γl(x,θ) = B(x,θ)Γ̃
l
(x,θ) (6.15)

Assumption 6.4 allows us to isolate a set of linearly independent constraints

0 = Γ̃
l
(x,θ)ωl (6.16)
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corresponding to the fast dynamics. Subsequently, we consider the same limit
case of an infinite energy recycle (i.e., ε → 0) in the original time scale t, under
the constraints (6.16), giving

ẋ = f(x,θ)

θ̇ = Φ(x,θ) + Γs(x,θ)ωs + B(x,θ) lim
ε→0

1
ε
Γ̃

l
(x,θ)ωl

0 = Γ̃
l
(x,θ)ωl

(6.17)

The terms limε→0(1/ε)Γ̃
l
(x,θ)ωl (which, being based on Equation (6.7), rep-

resent differences between large internal energy flows), become indeterminate
in the slow time scale. These terms do, however, remain finite, and constitute
an additional set of algebraic (rather than differential) variables in the model
of the slow dynamics. On defining z = limε→0(1/ε)Γ̃

l
(x,θ)ωl, the reduced-order

representation of the slow dynamics becomes

ẋ = f(x,θ)

θ̇ = Φ(x,θ) + Γs(x,θ)ωs + B(x,θ)z

0 = Γ̃
l
(x,θ)ωl

(6.18)

Equation (6.18) constitutes a differential algebraic representation of the slow
dynamics of the process. This DAE is of high index: the algebraic variables z
cannot be computed directly by solving the algebraic equations of the model.
Rather, in order to compute z and, implicitly, to obtain an ODE representa-
tion of the slow dynamics, the algebraic constraints of Equation (6.18) must
be differentiated with respect to the state variables once or several times.
Prior to proceeding with this operation, we make the following remark and
assumption.

Remark 6.2. As mentioned above, the large energy flow rates ωl present in the
algebraic equations of (6.18) are assumed to be associated with material flow
rates, whereby the material streams act as energy carriers. In light of these
facts, ωl can be viewed as a product of two separate terms, i.e., ωl

i = hiFi,
where Fi represents the material flow rate and hi the specific (e.g., molar)
enthalpy of stream i. Significant energy flow can thus originate either from a
large (compared with the process feed flow rate) material flow or from a material
stream having a much higher enthalpy (or temperature) than the feed and output
streams.

Assumption 6.5. In view of Remark 6.2, it is assumed that all the material flow
rates associated with ωl are determined by appropriate functions of the process
state variables (e.g., via feedback control laws, constitutive relations or pressure–
flow correlations).
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The above assumption allows us to differentiate the algebraic equations in
(6.18) with respect to the states. One differentiation yields

0 = LΦ(x,θ)

(
Γ̃

l
(x,θ)ωl

)
+ LΓs(x,θ)

(
Γ̃

l
(x,θ)ωl

)
ωs + LB(x,θ)

(
Γ̃

l
(x,θ)ωl

)
z

(6.19)

Assuming that the matrix LB(x,θ)(x,θ)
(
Γ̃

l
(x,θ)ωl

)
is invertible, z can be

computed as

z = −LB(x,θ)

(
Γ̃

l
(x,θ)ωl

)−1 [
LΦ(x,θ)

(
Γ̃

l
(x,θ)ωl

)
+ LΓs(x,θ)

(
Γ̃

l
(x,θ)ωl

)
ωs

]
(6.20)

On substituting (6.20) into (6.18), we obtain a (non-minimal-order) ODE repre-
sentation of the slow dynamics. A minimal-order ODE system can be obtained
via a coordinate transformation (Section 2.3) involving the energy-balance equa-
tions and constraints: [

ζ

η

]
= T (x,θ)

[
δ(x,θ)

Γ̃
l
(x,θ)ωl

]
(6.21)

under which the reduced-order model of the slow dynamics becomes

ẋ = f(x,θ) |θ=T −1(x,ζ)

ζ̇ =
∂δ

∂θ
Φ(x,θ) |θ=T −1(x,ζ) +

∂δ

∂θ
Γs(x,θ) |θ=T −1(x,ζ) ωs

+
∂δ

∂θ
B(x,θ)z |θ=T −1(x,ζ)

η = 0

(6.22)

From the preceding discussion regarding the equilibrium manifold of the fast
component of the system dynamics having a maximum dimension of one, we can
infer that, in effect, ζ ∈ Q1 ⊂ IR1.

Remark 6.3. The vector function δ(x,θ) can be arbitrarily chosen (as long
as the invertibility of T (x,θ) is preserved), which allows us to describe the
slow component of the energy dynamics in terms of the enthalpy/temperature
of any one of the units. Furthermore, δ(x,θ) may be chosen in such a way that
(∂δ/∂θ)B(x,θ) = 0. In this case, the model (6.18) will be independent of z and
the corresponding ζ represents a true “slow” variable in the system (whereas
the original state variables evolve both in the fast and in the slow time scales).
For example, on choosing δ(x,θ) as the sum of all the unit enthalpies (Equa-
tion (6.13)), it can be shown that indeed (∂δ/∂θ)B(x,θ) = 0. Thus, the total
enthalpy of the process evolves only over a slow time scale.
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6.4 Control implications

The analysis presented in Section 6.3 demonstrates that the variables in the
energy-balance equations of integrated process systems with significant energy
recycling evolve over two time horizons. The transient behavior of the enthalpies
of the individual units that are part of the energy recycle loop is fast, whereas
the evolution of the total enthalpy of the process occurs over a slower time scale.
While these results are analogous to those derived in Chapter 3 for processes
with material recycling, the control insights that we derive from the reduced-
order models (6.12) and (6.22) are somewhat different.

� The fast model (6.12) describes the evolution of the enthalpies/temperatures
of the individual units. Thus, control objectives related to the individual units
(e.g., reactor temperature control) should be addressed in this time scale. The
significant energy flows ωl associated with the internal streams are available
as manipulated inputs to this end. Note that it is often practical to vary ωl by
modifying a material flow rate, rather than by varying a stream’s enthalpy/
temperature.

� According to our analysis, the slow component of the energy dynamics can
be characterized in terms of the enthalpy (or temperature) of any of the
individual units, which, in turn, can constitute a control objective in the slow
time scale. However, Remark 6.3 allows us to regard the control problem in
the slow time scale in a more general context. The fact that the total process
enthalpy (which is itself difficult to measure and, thus, impractical to control)
is a true “slow” variable of the process suggests that the control objectives
to be addressed over a long time horizon should instead pertain to energy
management. Applications include high-value activities such as monitoring the
energy efficiency of a process (or even an entire manufacturing site) as well as
process-wide energy optimization. Intuitively, Equation (6.22) indicates that
the small inlet and outlet energy flows are available and should be used as
manipulated inputs to this end.

6.5 Illustrative examples

As demonstrated in Chapters 3–5, the variables of the material balance of an
integrated process system can themselves exhibit a dynamic behavior with up
to three time scales. As such, it is intuitive that, when considering both the
energy-balance and the material-balance equations, the dynamics of integrated
process systems can span several (i.e., more than three) time scales. For clarity,
this aspect was not directly accounted for in the theoretical analysis presented
above. We utilize the following examples to illustrate the concepts developed so
far, as well as to confirm this observation.
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Figure 6.3 Two heated tanks in series with recycle.
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Figure 6.4 Energy flows for heated tanks in series.

6.5.1 Cascade of heated tanks

We begin with the analysis of a basic system consisting of two heated tanks
interconnected via a material recycle stream, which acts as an energy carrier, as
in Figure 6.3. Let F be the molar feed flow rate to the first tank (with molar
enthalpy h0), R the molar recycle flow rate, h1 and h2 the molar enthalpies, and
Q1 and Q2 the rates at which heat is input to tanks 1 and 2.

Considering that the holdups in the two vessels remain constant and that
physical properties, such as the heat capacity and density, are temperature-
independent, and using the notation in Figure 6.4, we can write the energy
balance of the system as

θ̇1 = H0 + HR − H1 + Q1

θ̇2 = H1 − HR − H2 + Q2

(6.23)

where θ1 and θ2 are the enthalpies of tanks 1 and 2.
In this case, Assumption 6.2 translates to Q1/H0 = O(1), Q2/H0 = O(1). Let

us now assume that the rate at which material is recycled is very high, i.e.,
Fs/Rs = ε � 1. Observing that the energy flows Hi are, in effect, a product of
a material flow rate and a specific enthalpy, i.e., Hi = Fihi, (6.23) becomes

θ̇1 = Fh0 − Fh1 −
1
ε
Fsur(h1 − h2) + Q1

θ̇2 = Fh1 +
1
ε
Fsur(h1 − h2) − Fh2 + Q2

(6.24)

where ur = R/Rs.
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Proceeding with the analysis as outlined in Section 6.3, we derive a fast com-
ponent of the energy dynamics in the form

dθ1

dτ
= Fsur(h2 − h1)

dθ2

dτ
= Fsur(h1 − h2)

(6.25)

with the associated quasi-steady-state constraint

0 = h1 − h2 (6.26)

and a 1D slow component of the dynamics described by

d(θ1 + θ2)
dt

= Fh0 − Fh2 + Q1 + Q2 (6.27)

Clearly, this very simple process belongs to the class considered in Section 6.2.
From the defining assumptions, we can expect that the enthalpy in the second
tank will not differ significantly from the enthalpy of the feed stream. Thus, the
energy recovery number of the process,

Erc =
Rsh2

Fshs

∼= Rs

Fs
� 1 (6.28)

is very large. Moreover, we have shown that the enthalpies of the individual
tanks (θ1, and θ2) evolve both in a fast and in a slow time scale, while the total
enthalpy (θ1 + θ2) evolves only in the slow time scale.

A similar result was reported earlier (Georgakis 1986), when an eigenvalue
analysis was used to prove that a time-scale separation is present in the transient
evolution of the states θ1 and θ2. It is noteworthy, however, that, in contrast to
the approach presented in this chapter, an eigenvalue analysis does not provide
a means by which to derive physically meaningful reduced-order models for the
dynamics in each time scale.

Remark 6.4. In this case, significant energy recycling is achieved through the
presence of a large material recycle stream acting as an energy carrier. This
situation may naturally arise when (slow) chemical reactions occur in the vessels;
the large material recycle stream would thus also introduce a time-scale separation
in the material-balance dynamics, as pointed out in Chapter 3.

6.5.2 Processes with feed–effluent heat exchange

Energy exchange between effluent and feed streams is a key feature in integrated
process designs. Feed–effluent heat exchangers (FEHEs), such as the one in the
generic process of Figure 6.2, are frequently used in the case of processes with
mildly exothermic or endothermic effects, which operate at temperatures sig-
nificantly different from that at which the feed streams are normally available.
Typical examples include high-temperature reactions (in which heat is recovered
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Figure 6.5 Energy flows in a process with a feed–effluent heat exchanger.

to warm the feed stream to the reaction temperature) and cryogenic processes,
whereby refrigeration is recovered from the products to cool feed streams that
are initially at ambient temperature.

The steady-state operation of process systems with FEHEs relies on recovering
a large proportion of the energy of the effluent, effectively creating an energy
recycle loop between the FEHE and the process units, as depicted in Figure 6.5.
Evidently, this cannot be the case during significant transitions such as start-
up procedures, when external energy input is required. Likewise, controllability
considerations require that additional manipulated inputs (such as bypass flows
or additional energy sources) be present. These aspects will be considered in
a case study later in the book; in what follows, we analyze, without loss of
generality, a process of the type depicted in Figure 6.5.

For simplicity, we assume that the holdups of all the units are constant and
that the temperature dependence of physical properties such as density and heat
capacity is negligible. Under these assumptions, the energy-balance equations for
the process can be written as

θ̇1 = H0 − H1 + HR

θ̇2 = H1 − H2 + ΔH

θ̇3 = H2 − H3 − HR

(6.29)

with θ1, θ2, and θ3 being the enthalpies of the cold leg of the FEHE, overall
process units, and the warm leg of the FEHE, respectively. Prior to proceeding
with our analysis, we make the following set of assumptions regarding the steady-
state operation of the process under consideration.1

� The process units operate at an elevated temperature (much higher than the
temperature at which the feed is available). Hence, the specific enthalpy h1 of

1 Note that, since in this case the material flow rate is the same through all the units of the
process, we can formulate most arguments in terms of specific stream enthalpies hi, rather
than resorting to energy flows.
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the feed stream of the process units is much higher than the specific enthalpy
h0 of the FEHE feed stream, and the process has a high energy recovery
number,

Erc =
Fh1,s

Fh0,s
� 1 (6.30)

or, equivalently, ε = h0,s/h1,s � 1.
� The thermal effect of any reactions is mild and does not induce a phase change

or a significant change in the temperature of the process units. Hence, the
specific enthalpies of the feed and effluent streams, h1 and h2, of the process
units are of comparable magnitude: k2 = h2,s/h1,s = O(1). (Note that this
assumption is by no means restrictive; rather, it reflects current industrial
practice. For example, the use of adiabatic units in highly exothermic processes
is avoided for safety reasons, and external cooling systems are preferred. This
issue is addressed in detail in Chapter 7.)

� The FEHE achieves significant energy recovery. Hence, the energy flow HR is
of comparable magnitude to H1, kR = HR,s/H1,s = O(1), and the steady-state
specific enthalpies h0 and h3 of the inlet and outlet streams are of comparable
magnitude, h0,s/h3,s = O(1).

Under these assumptions (and accounting for the fact that the energy flows Hi

associated with the material streams can be written as products of the material
flow rate F and a specific enthalpy, Hi = Fhi), the model of Equation (6.29)
becomes

θ̇1 = Fh0 +
1
ε
Fh0s(−uH1 + kRuHR)

θ̇2 =
1
ε
Fh0s(uH1 − k2uH2) + ΔH

θ̇3 =
1
ε
Fh0s(k2uH2 − kRuHR) − Fh3

(6.31)

with uH1 = h1/h1,s, uHR = HR/HR,s and uH2 = h2/h2,s. We can now apply the
method developed in Section 6.3 to obtain a description of the fast component
of the energy dynamics:

dθ1

dτ
= Fh0s(−uH1 + kRuHR)

dθ2

dτ
= Fh0s(uH1 − k2uH2)

dθ3

dτ
= Fh0s(k2uH2 − kRuHR)

(6.32)

having an equilibrium manifold described by the (linearly dependent) equations

0 = −uH1 + kRuHR

0 = uH1 − k2uH2

0 = k2uH2 − kRuHR

(6.33)
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Finally, the total enthalpy θ1 + θ2 + θ3 can be used to derive a representation of
the slow component of the process dynamics:

d(θ1 + θ2 + θ3)
dt

= F (h0 − h3) + ΔH (6.34)

The results above indicate that, in the case of processes that rely on a FEHE
to achieve a high degree of energy integration, the two-time-scale behavior of
the variables in the energy balance is due to large discrepancies between the
temperatures of the internal streams and those of the inlet/outlet streams. Thus
(and in contrast to the example discussed in Section 6.5.1), the presence of a
large energy recycle is, in itself, unlikely to be directly related to stiffness at the
level of the material-balance equations.

Note that these results translate directly to cryogenic processes with FEHE, for
which the temperature (enthalpy) of the internal material streams is significantly
lower than the temperature (enthalpy) of the process inlet and outlet streams
(see Example 4.1).

Remark 6.5. With a slight modification of Definition 6.1, that is,

Erc =
Fh1,s

Fh0,s + ΔHs
(6.35)

the energy recovery number reflects the ratio of the rate at which energy is recov-
ered from the effluent of the process units via the FEHE and the sum of the
rates at which energy is supplied to the plant via the inlet stream and generated
internally. Thus, Erc emerges naturally as a figure of economic merit for energy
integration: a process with a high Erc can be regarded as more effectively inte-
grated and will likely have lower operating costs (owing, e.g., to a diminished
requirement on the amount of external energy used to preheat the feed) than
a similar process with a lower Erc. Conversely, improved energy recovery may
entail a higher capital cost (e.g., by requiring a larger heat-transfer area), and it
is to be expected that the economically optimal plant design for a given process
will entail a capital and operating cost tradeoff.

6.5.3 Energy-integrated distillation

Distillation is one of the most energy-intensive operations in the process indus-
tries, and the prospect of improving the energy efficiency of distillation columns
by integrating the condensation of the vapor stream with boiling the column
bottoms has been considered early on (King 1980). One such integrated scheme,
vapor recompression distillation (VRD), relies on heat pumping (Figure 6.6) for
transferring heat from the top (vapor) and bottoms streams of a column. To make
heat transfer thermodynamically possible, the vapor stream exiting the top of
the distillation column is compressed in the compressor CC, then condensed in
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Figure 6.6 A vapor recompression distillation (VRD) column.
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Figure 6.7 A block diagram of energy flows in the VRD column.

the reboiler–condenser RC against the boiling bottoms stream. The vaporized
bottoms stream then enters the stripping section of the column. A trim con-
denser TC is used to adjust the temperature of the reflux to the required value
as well as to condense any residual vapor. The condensed distillate is stored in
the overhead accumulator DT.

A block diagram representation of the energy flows in the process is presented
in Figure 6.7. For modeling purposes, the condenser section and the reboiler
section of the reboiler–condenser are represented separately and connected via
the corresponding exchanger duty Htr. Ht represents energy flow associated with
the column reflux (which can be regarded as a material recycle stream), Hl

represents the energy flow associated with the liquid entering the reboiler, Hf ,
Hr, Hv, Hc, Hrf , HD, and HB represent, respectively, the energy flows associated
with the feed, the vapor leaving the reboiler–condenser, the vapor leaving the
column, the vapor leaving the compressor, the condensate leaving the reboiler–
condenser, the bottoms stream, and the distillate stream. W is the compressor
power input and Qc is the trim condenser duty.
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Using the representation in Figure 6.7, we can write the energy-balance equa-
tions for the VRD column as

dθR

dt
= Hl + Htr − Hr − HB

dθD

dt
= Hf + Hr + Ht − Hv − Hl

dθC

dt
= Hv − Hc + W

dθF

dt
= Hc − Htr − Hrf

dθT

dt
= Hrf − HD − Ht − Qc

(6.36)

where θR, θD, θC, θF, and θT represent the enthalpies of the reboiler section,
the distillation column, the compressor, the condenser section, and the trim
condenser, respectively.

The economics of VRD favors separations involving components with similar
boiling points (e.g., the separation of propane and propylene in an oil refinery, in a
column that is typically referred to as a “C3 splitter”) so that the temperatures of
the top and bottom streams of the distillation column are close. This reduces the
power consumption of the compressor as well as the duty (and associated heat-
transfer area) of the trim condenser. Given the above, we can make the following
observations and assumptions concerning the various steady-state energy flows
in the process.

� The energy flows associated with the bottoms and distillate streams, respec-
tively HB,s and HD,s, are of the same order of magnitude as the energy flow
associated with the feed, Hf,s.

� The amounts of work done by the compressor, W , and the trim condenser
duty Qc are small and can be assumed to be of the same order of magnitude
as that of the feed, i.e., Ws/Hf,s = O(1) and Qc,s/Hf,s = O(1).

� The latent-heat contribution to the energy flow associated with a material
stream is generally significantly larger than the sensible-heat contribution.
The heat transfer across the reboiler–condenser is dominated by latent heat,
and the reboiler–condenser duty Htr is therefore much larger than the energy
flow associated with the feed stream. We can thus compute the energy recovery
number for VRD as

ErcVRD =
Htr,s

Hin,s
� 1 (6.37)

This observation also implies that the internal energy flows (Hf,s, Hv,s, and
Hc,s) are comparable in magnitude to Htr,s.

� The energy flow associated with the material recycle stream Ht,s can be of
larger magnitude than the energy flow associated with the feed, depending on
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the magnitude of the reflux ratio. However, it will always be of lower magni-
tude than Htr,s due to the latent-heat contribution. In the present analysis we
assume for simplicity that Ht,s is of comparable magnitude to the feed, and
we make a similar argument for Hl,s.

From the above, we can define the O(1) steady-state ratios kr = Hr,s/Htr,s,
kc = Hc,s/Htr,s, and kv = Hv,s/Htr,s, and the scaled energy flows utr =
Htr/Htr,s, ur = Hr/Hr,s, uc = Hc/Hc,s, and uv = Hv/Hv,s. We also define

ε =
1

ErcVRD
� 1 (6.38)

With this notation, (6.36) becomes

dθR

dt
= Hf,s

[
utr

ε
− krur

ε

]
+ Hl − HB

dθD

dt
= Hf,s

[
krur

ε
− kvuv

ε

]
+ Hf + Ht − Hl

dθC

dt
= Hf,s

[
kvuv

ε
− kcuc

ε

]
+ W

dθF

dt
= Hf,s

[
kcuc

ε
− utr

ε

]
− Hrf

dθT

dt
= Hrf − HD − Ht − QC

(6.39)

Equation (6.39) is in the form of the energy balance in (6.10), with

θ =
[
θR θD θC θF θT

]T
ωs =

[
Hf HD HB W Qc Hl Ht Hrf

]T
ωl =

[
utr ur uv uc

]T (6.40)

6.6 Case study: control of a reactor–FEHE process

6.6.1 Process description

We consider a plant designed to convert a feed stream rich in compound A
(of molar concentration cA0) into compound B in a high-temperature, mildly
exothermic, first-order reaction carried out in an adiabatic reactor (Figure 6.8).
For improved operability, the plant features a heater that is used at full capacity
in startup mode and as a trim heater during operation, as well as a bypass stream
that is used to regulate heat recovery in the FEHE.

The operational objectives for this process are the stabilization of the reactor
holdup and operating temperature, as well as controlling the product stream’s
temperature and maintaining its purity within the specifications of a downstream
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Figure 6.8 A reactor–FEHE process with a fired furnace and an exchanger bypass
stream.

separation system. The reactor effluent flow rate, the bypass flow rate, and the
heater duty are available as manipulated inputs.

Assuming that the temperature and composition dependence of the heat
capacity and density of the process streams is not significant, that there is no
phase change in the heat exchanger, and that the material holdup in both legs
of the heat exchanger and in the heater is constant, the model of the process can
be written as

dV

dt
= Fin − F

dcA

dt
=

Fin

V
(cA0 − cA) − k0e

−E/(RTR)cA

dTR

dt
=

Fin

V
(Ti − TR) − 1

ρCp
k0e

−E/(RTR)cA ΔH

∂TH

∂t
= −vH

∂TH

∂z
− UA

ρCp

TH − TC

VH

∂TC

∂t
= −vC

∂TC

∂z
+

UA

ρCp

TH − TC

VC

dTi

dt
=

Fin

Vf
(TC,z=L − Ti) +

QH

ρCpVf

(6.41)

with the boundary conditions

TH,z=L = TR (6.42)

TC,z=0 = Tin (6.43)

In the model above, Fin is the volumetric flow rate of the input stream to the
system and F is the reactor outlet flow rate; V , VH, VC, and Vf are the holdups
of the reactor, the FEHE hot and cold legs, and the furnace, respectively. Tin

is the cold-leg inlet temperature to the FEHE. TH and TC are the hot- and
cold-leg temperatures for the FEHE. Ti and TR are the reactor-inlet and -outlet
temperatures, and Texit is the temperature of the product stream exiting the
process. QH is the furnace heat duty, vH and vC are the velocities of the fluid
in the hot and cold compartments of FEHE, L is the length of the exchanger,
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Table 6.1. Nominal values of process parameters for the
reactor–FEHE process

k0 1.26 × 107 s−1 cA 55.19 mol/l
E 1.42 × 105 J/mol TR 922.00 K
ΔH −54.82 kJ/mol Ti 909.62 K
ρCp 4.184 × 106 Jm−3 K−1 Texit 363.53 K
UA 83.68 × 103 W/K TC,z=0 860.53 K
α 0.10 QH 118.42 kW
V 0.10 m3 Tin 300.00 K
VH 0.10 m3 Fin 5.76 × 10−4 m3/s
VC 0.09 m3 F 5.76 × 10−4 m3/s

Vf 0.01 m3 cA0 1000.00 mol/m3

L 5.00 m

and z is the spatial coordinate. R is the universal gas constant, U is the heat-
transfer coefficient and A is the heat-transfer area in the FEHE, and k0 is the
pre-exponential factor of the reaction rate constant; k0e

−E/(RTR) is the reaction
rate constant. The nominal values of the process variables and parameters are
presented in Table 6.1.

The FEHE bypass ratio, α, is defined as

α =
flow rate of the bypass stream

flow rate of the feed stream (F )
(6.44)

Using this definition and the assumption that the heat capacity and density
of the streams do not change, we can calculate the temperature of the stream
exiting the process as

Texit = αTR + (1 − α)TH,z=0 (6.45)

6.6.2 System analysis

In order to carry out numerical simulations, the spatial derivatives in Equa-
tion (6.41) were discretized using a backwards finite-difference scheme on a grid
of 1001 nodes (i.e., by dividing the exchanger length into 1000 discretization
intervals). It was verified that increasing the number of nodes does not result
in significant changes in the simulation results and that the energy balance at
the process level is closed (a potential pitfall associated with the discretization
of partial differential equations).

The temperature profiles of the heat exchanger (Figure 6.9) show a pinch at
the cold end (the temperature of the hot stream leaving the exchanger TH,z=0 =
301.48 K is very close to the inlet temperature). This indicates that the process
is tightly integrated, with a high degree of energy recovery.

A dynamic simulation of the 2006-dimensional ODE system from initial con-
ditions slightly perturbed from the values in Table 6.1 confirmed the theoretical
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Figure 6.9 Temperature profiles in the FEHE: (a) longitudinal temperature profile and
(b) temperature–enthalpy diagram.

analysis developed earlier in this chapter. As is typical of processes with
tight energy integration, the temperatures of the individual units exhibit a
two-time-scale behavior: the corresponding plots (Figures 6.10 and 6.11(a)) show
a fast transient, followed by a slow approach to steady state. Conversely, as
anticipated in Section 6.5.2, the variation of the total enthalpy (Figure 6.11(b))
is slow.
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Figure 6.10 Evolution of (a) the hot-leg and (b) the cold-leg outlet temperatures for
the perturbed system.

6.6.3 Reduced-order modeling

The results of the analysis above indicate that the process under considera-
tion belongs to the general category of processes with high energy recycle. The
rational development of a control framework would therefore entail a time-scale
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Figure 6.11 Evolution of (a) the reactor temperature and (b) the total enthalpy for the
perturbed system.

decomposition and model reduction, as discussed earlier in this chapter. How-
ever, the presence of the partial-differential advection terms in Equation (6.41)
prevents us from applying the methods developed in Section 6.3 directly. In order
to circumvent this difficulty, let us first develop an alternative modeling construct
that is based entirely on ODEs.
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Figure 6.12 Block diagram of the reactor–FEHE process. Hrec represents the duty of
the heat exchanger.

Figure 6.12 provides a block-diagram representation of the energy flows in the
process. Postponing the derivation of an expression of the heat-exchanger duty
Hrec (which is, evidently, central to this process and was originally captured
in the partial differential equations) until later in this section, we can use this
representation to develop a lumped-parameter model of the process:

dV

dt
= Fin − F

dcA

dt
=

Fin

V
(cA0 − cA) − k0e

−E/(RTR)cA

dTR

dt
=

Fin

V
(Ti − TR) − 1

ρCp
k0e

−E/(RTR)cA ΔH

dTH

dt
=

Fin(1 − α)
VH

(TR − TH) − Hrec

ρCpVH

dTC

dt
=

Fin

VC
(Tin − TC) +

Hrec

ρCpVC

dTi

dt
=

Fin

Vf
(TC − Ti) +

QH

ρCpVf

(6.46)

On the basis of this representation, we can define the energy recovery number:

Erc =
Hrec,s

[FinρCp(Tin − Tref)]s
(6.47)

with Tref being a reference temperature. In order to accomplish a high degree of
thermal integration, Erc should be significant; conversely, we can expect that

ε =
1

Erc
=

[FinρCp(Tin − Tref)]s
Hrec,s

(6.48)
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will be small, i.e., ε � 1. Using arguments similar to those developed in Sec-
tion 6.5.2, we also define the following O(1) quantities:

kR =
[FinρCp(TR − Tref)]s

Hrec,s
uR =

FinρCp(TR − Tref)
[FinρCp(TR − Tref)]s

(6.49)

ki =
[FinρCp(Ti − Tref)]s

Hrec,s
ui =

FinρCp(Ti − Tref)
[FinρCp(Ti − Tref)]s

(6.50)

kC =
[FinρCp(Tc − Tref)]s

Hrec,s
uC =

FinρCp(TC − Tref)
[FinρCp(TC − Tref)]s

(6.51)

Furthermore, we define

urec =
Hrec

Hrec,s
(6.52)

With this notation, we can rewrite the model in Equations (6.46) as

dV

dt
= Fin − F

dcA

dt
=

Fin

V
(cA0 − cA) − k0e

−E/(RTR)cA

dTR

dt
= − 1

ρCp
k0e

−E/(RTR)cA ΔH +
1
ε

[Fin(Tin − Tref)]s
Vf

V (kiui − kRuR)

dTH

dt
= −F (1 − α)

VH
TH − α

ε

[FinTin]s
VH

kRuR

+
1
ε

[Fin(Tin − Tref)]s
VH

(kRuR − urec)

dTC

dt
=

Fin

VC
Tin +

1
ε

[Fin(Tin − Tref)]s
VC

(−kCuC + urec)

dTi

dt
=

QH

ρCpVf
+

1
ε

[Fin(Tin − Tref)]s
Vf

(kCuC − kiui)

(6.53)

An inspection of the process parameters in Table 6.1 reveals that α/ε is of O(1)
(i.e., the energy flow associated with the bypass stream is much smaller than
the amount of energy recycled to the process). Equations (6.53) can thus be
rewritten as

dV

dt
= Fin − F

dcA

dt
=

Fin

V
(cA0 − cA) − k0e

−E/(RTR)cA

dTR

dt
= − 1

ρCp
k0e

−E/(RTR)cA ΔH +
1
ε

[Fin(Tin − Tref)]s
Vf

V (kiui − kRuR)
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dTH

dt
= −F (1 − α)

VH
TH − 1

VH
αFTR +

1
ε

[Fin(Tin − Tref)]s
VH

(kRuR − urec) (6.54)

dTC

dt
=

Fin

VC
Tin +

1
ε

[Fin(Tin − Tref)]s
VC

(−kCuC + urec)

dTi

dt
=

QH

ρCpVf
+

1
ε

[Fin(Tin − Tref)]s
Vf

(kCuC − kiui)

which is in the form of Equation (6.10).
We can now proceed with the analysis as described in Section 6.3. Let us define

the stretched, fast time variable τ = t/ε. On rewriting the model in terms of τ

and considering the limit ε → 0, we obtain a description of the fast dynamics of
the process:

dV

dτ
= 0

dcA

dτ
= 0

dTR

dτ
=

[Fin(Tin − Tref)]s
V

(kiui − kRuR)

dTH

dτ
=

[Fin(Tin − Tref)]s
VH

(kRuR − urec)

dTC

dτ
=

[Fin(Tin − Tref)]s
VC

(−kCuC + urec)

dTi

dτ
=

[Fin(Tin − Tref)]s
Vf

(kCuC − kiui)

(6.55)

with the corresponding (linearly independent) quasi-steady-state constraints

0 = kRuR − urec

0 = kiui − kRuR

0 = kCuC − kiui

(6.56)

Subsequently, the slow component of the process dynamics takes the form of
Equations (6.18):

dV

dt
= Fin − F

dcA

dt
=

Fin

V
(cA0 − cA) − k0e

−E/(RTR)cA

dTR

dt
= − 1

ρCp
k0e

−E/(RTR)cA ΔH +
[Fin(Tin − Tref)]s

Vf
V z2

dTH

dt
= −F (1 − α)

VH
TH − 1

VH
αFTR +

[Fin(Tin − Tref)]s
VH

z1 (6.57)
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dTC

dt
=

Fin

VC
Tin − [Fin(Tin − Tref)]s

VC
(z1 + z2 + z3)

dTi

dt
=

QH

ρCpVf
+

[Fin(Tin − Tref)]s
Vf

z3

0 = FinρCpTR − Hrec

0 = Ti − TR

0 = TC − Ti

where

z1 = lim
ε→0

1
ε
(kRuR − urec)

z2 = lim
ε→0

1
ε
(kiui − kRuR)

z3 = lim
ε→0

1
ε
(kCuC − kiui)

The expressions of the algebraic constraints in Equations (6.57) have been
obtained by substituting the definitions in Equations (6.49)–(6.52) into Equa-
tions (6.56). In order to determine the algebraic variables zi, we must differentiate
these algebraic constraints and, to this end, we must provide an expression for
Hrec, the duty of the FEHE.

The process conditions in the FEHE (counter-current flow with no phase
change and constant physical properties) lend themselves naturally to calcu-
lating the duty on the basis of the log mean temperature difference (LMTD):

Hrec = UA LMTD = UA
(TR − TC|z=L) − (TH|z=0 − Tin)

ln
(

TR − TC|z=L

TH|z=0 − Tin

) (6.58)

or, in terms of the alternative construct developed in this section,

Hrec = UA
(TR − TC) − (TH − Tin)

ln
(

TR − TC

TH − Tin

) (6.59)

Solving dynamic models that employ the LMTD can, however, be problematic
because the LMTD is not well defined when the temperature gradient along the
heat exchanger is constant i.e., TR = TC and TH = Tin (note that heat transfer in
a physical exchanger would still take place under these circumstances). Moreover,
the LMTD is not well defined in the case of a temperature cross-over (e.g.,
TR > TC and TH < Tin), a situation that can arise temporarily during transient
operation. These issues were recognized relatively early (Paterson 1984), and
several approximate formulations with improved numerical properties have been
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proposed (Chen 1987). In what follows, we will use the expression in Underwood
(1970), which was verified to provide a satisfactory degree of accuracy for our
process:

LMTDU =
[
(TR − TC)1/3 + (TH − Tin)1/3

2

]3

(6.60)

By substituting this definition into Equations (6.57), after differentiating the
constraints once to obtain the algebraic variables and applying a coordinate
change of the type in Equation (6.21), namely

δ = TR (6.61)

and

η1 = FinρCpTR − UA

[
(TR − TC)1/3 + (TH − Tin)1/3

2

]3

η2 = Ti − TR

η3 = TC − Ti

(6.62)

we obtained the following minimal-order state-space realization of the slow
dynamics:

dV

dt
= Fin − F

dcA

dt
=

Fin

V
(cA0 − cA) − k0e

−E/(Rδ)cA

δ̇ =
1

DEN
(−kcA ΔH VUA + ρCpTin UA(Fin − F )

+ 8 (ρCp)2FFinδ(α − 1) + ρCpFTinαUA

−αρCpδFUA + QHUA)

(6.63)

with

DEN = ρCp[UA(VC + Vf + V ) + 8VhFinρCp(1 − α)]

6.6.4 Controller design

According to the theoretical framework developed in this chapter, the design of
a control system for this process should be carried out in a hierarchical fashion,
starting with the stabilization of the unit temperatures. On examining the fast
submodel in Equations (6.55), it is easy to observe that it does not contain any
of the manipulated inputs of the process. At a first glance, this could constitute a
matter of concern, since there are seemingly no means to control the fast dynam-
ics. However, (6.55) contains no energy-source or energy-sink terms, describing,
in effect, the flow of a fluid through the path comprised of the cold leg of the heat
exchanger (where it is heated), the heater (where it undergoes no temperature
change), the reactor (where, again, it undergoes no temperature change) and,
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finally, the warm leg of the heat exchanger, where it is cooled. From physical
considerations (even under the ideal assumption that no energy is lost to the
environment), the fast component of the process dynamics is clearly stable2 and
requires no feedback control action.

Turning to the slow dynamics, we are interested in stabilizing the reactor
holdup, controlling the process outlet temperature, and controlling the temper-
ature in the reactor to manage the conversion. The first two objectives can be
addressed using simple linear controllers. In order to stabilize the reactor holdup,
we implemented a PI controller using the reactor outlet flow rate, F , as a manip-
ulated input:

F = Fs + Kv

[
(Vset − V ) +

1
τv

∫ t

0

(Vset − V )dτ

]
(6.64)

with Fs = 5.7667 × 10−4 m3/s, Kv = 5 s−1, and τv = 18 min.
The control of Texit was addressed using α as a manipulated input and the PI

control law

α = α0 + Kc

[
(Texit,set − Texit) +

1
τI

∫ t

0

(Texit,set − Texit)dτ

]
(6.65)

with α0 = 0.1, Kc = 0.0018 K−1, and τI = 10 s. The low reset time used for this
controller is justified by the fast nature of the mixing process.3

Implementing the reactor temperature controller merits some discussion.
While TR is not a true slow variable (it has a two-time-scale behavior, as illus-
trated in Figure 6.11(a)), as we argued above, the fast transient of the process
(and, inherently, of TR) is stable. We are thus interested in controlling the slow
component of the reactor temperature, which in effect governs the behavior of
the entire process. To this end, we conveniently chose the coordinate transfor-
mation (6.61)–(6.62) so that the energy balance in Equations (6.63) is written in
terms of the reactor temperature TR, rather than in terms of the total enthalpy
of the process.

The non-stiff, low-dimensional model (6.63) is ideally suited for control pur-
poses. We used it to design an input–output linearizing controller with integral
action that manipulates QH and enforces a first-order response in the TR dynam-
ics, namely

βd
TR

dt
+ TR = TR,set (6.66)

with β = 15 min.

2 This argument was also verified through simulations, whereby the eigenvalues of the Jacobian
matrix of the system in Equation (6.55) were shown to be negative.

3 Equation (6.45) assumes instant and perfect mixing at the exit of the warm leg of the heat
exchanger. In order to facilitate numerical simulations, this output was filtered with a first-
order filter with a time constant τfilter = 2 s prior to being used in the feedback controller.
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The aforementioned controllers were implemented on the full-order 2006-
dimensional discretization of the original distributed-parameter model, and their
performance was tested through simulations. The relevant Matlab codes are pre-
sented in Appendix C.

6.6.5 Simulation results and discussion

We considered two scenarios that are typical for the operation of reactors with
feed–effluent heat exchange. The first set of simulations traced the response of
the closed-loop system to a 10% increase in the production rate, imposed at
t = 1h by increasing the feed flow rate. Subsequently, we analyzed the response
of the same situation, but with the added complexity of an unmeasured 10 K
increase in the feed temperature occurring at t = 1h. In both cases, the setpoint
of the reactor temperature controller TR,set was increased by 2 K at t = 1h in
order to maintain reactor conversion at the higher production rate.

The simulation results in Figures 6.13–6.22 show that the proposed con-
troller has excellent performance. This is all the more remarkable given the
inherent mismatch between the (high-dimensional) plant model and the (low-
dimensional) model used for controller design. These results further confirm
the wide applicability of the theoretical framework proposed in this chapter
for developing an understanding of the energy dynamics of integrated pro-
cesses, and for designing effective temperature control and energy management
systems.
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Figure 6.13 Evolution of the reactor temperature for a 10% increase in the
production rate.



172 Process systems with energy recycling

T
ex

it,
 K

0 1 2 3 4 5
363.53

363.54

363.55

363.56

363.57

363.58

363.59

363.6

time, h

Figure 6.14 Evolution of the product temperature for a 10% increase in the
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Figure 6.15 Evolution of the heater duty for a 10% increase in the production rate.
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Figure 6.16 Evolution of the bypass ratio for a 10% increase in the production rate.
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Figure 6.17 Evolution of the reactor conversion for a 10% increase in the
production rate.
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Figure 6.18 Evolution of the reactor temperature for a 10% increase in the production
rate, in the presence of unmeasured disturbances in the feed temperature.
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Figure 6.19 Evolution of the product temperature for a 10% increase in the production
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Figure 6.20 Evolution of the heater duty for a 10% increase in the production rate, in
the presence of unmeasured disturbances in the feed temperature.
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Figure 6.21 Evolution of the bypass ratio for a 10% increase in the production rate, in
the presence of unmeasured disturbances in the feed temperature.
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Figure 6.22 Evolution of the reactor conversion for a 10% increase in the production
rate, in the presence of unmeasured disturbances in the feed temperature.

6.7 Synopsis

The present chapter focused on analyzing the dynamic aspects of a class of
energy-integrated processes, namely processes featuring significant (compared
with external input–output energy flows) energy recovery. A prototype system
allowed us to define a new concept, namely, the energy recovery number, Erc, a
process dimensionless number that quantifies the degree of energy integration.
Using arguments concerning the magnitude of Erc, we showed that, in the general
case, the energy dynamics of such processes is modeled by a set of stiff differential
equations. Our analysis further demonstrated that the enthalpies of individual
process units are fast variables, while the overall process enthalpy evolves only
over a slow time scale. Singular perturbation tools aided us in deriving generic
reduced-order models that describe the dynamics in each time scale.

Subsequently, we considered the control implications of our findings, and
showed that control objectives related to the energy dynamics of the individ-
ual units (e.g., temperature control) should typically be addressed in the fast
time scale. On the other hand, control objectives related to the energy dynamic
at the process level (such as managing energy use) should be addressed in the
slow time scale. These concepts were illustrated through several examples and a
simulation case study.



7 Process systems with high energy
throughput

7.1 Introduction

In this chapter we will expand the analysis presented in Chapter 6 by considering
processes in which significant external energy sources and/or sinks are present.
Examples include multiple-effect evaporators (Seider et al. 1999), stand-alone
distillation columns and distillation column trains (Jogwar and Daoutidis 2010),
and exothermic reactors with external heat exchanger (Baldea and Daoutidis
2006). Understanding the energy dynamics of such processes is beneficial
both from a control point of view and from an economic point of view, given
today’s rising energy and utility costs. We will follow the results in (Baldea and
Daoutidis 2006) and (Baldea and Daoutidis 2008), and show that the variables
that pertain to the energy balance of such processes evolve in a faster time scale
than the variables in the material-balance equations. Subsequently, we investi-
gate the impact of this dynamic feature on controller design and demonstrate
that the control of process systems with high energy throughput requires several
tiers of control action. Specifically, the variables in the energy balance should be
controlled in the fast time scale (over a short time horizon) and control objectives
related to the material balance should be fulfilled in the slow time scale(s).

7.2 Modeling of process systems with high energy throughput

We consider the process system in Figure 7.1, featuring N process units in series.
The first unit exchanges energy with the environment at a rate H0 + Qin, with
H0 being associated with the inlet material stream of the process and Qin cor-
responding to an energy source. Unit N of the process exchanges heat with the

H0 H1

Qin Qout

Q2

H2 HN

Figure 7.1 A process system with high energy throughput.
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environment at a rate HN + Qout such that, as for unit 1, HN is associated with
the process outlet material stream and Qout corresponds to an energy sink.

We focus on the case in which the steady-state energy flows associated with
the source Qin and sink Qout are of similar magnitude and significantly larger
than the energy flows associated with the inlet and outlet material streams, i.e.,

ε =
H0s

Qin
� 1

as well as larger than the energy input–output flows Qi to any of the units
2, . . . , N . Under such circumstances, Hi, i = 1, . . . , N − 1, act as an energy con-
duit between the source and the sink, having similar magnitudes to Qin and
Qout at steady state. We can thus refer to such processes as having a high energy
throughput. As we will demonstrate later in the chapter, ubiquitous units and
processes such as distillation columns, multiple-effect evaporators, and reactors
with external heat exchangers belong to this category.

To proceed with the analysis, we note that the structure of the process in
Figure 7.1 is very similar to that of the processes with significant energy recycle
considered in the previous chapter (Figure 6.1), with the obvious and necessary
distinction that in the present case Qin ≡/ Qout. Thus, using Assumptions 6.1–6.3,
the dynamic behavior of the process in Figure 7.1 can be modeled by a system
of equations of the type (6.10), that is

ẋ = f(x,θ)

θ̇ = Φ(x,θ) + Γs(x,θ)ωs +
1
ε
Γl(x,θ)ωl

(7.1)

where ωs ∈ U s ⊂ IRms
is a vector of scaled variables that correspond to the small

inlet and outlet energy flows, and ωl ∈ U l ⊂ IRml
is a vector of scaled variables

corresponding to the large, external energy source Qin and sink Qout, and internal
energy flows Hi, i = 1, . . . , N − 1. f and Φ are vector functions and Gs and Gl

are matrices of appropriate dimensions.

7.3 Nonlinear model reduction

Owing to the presence of the small parameter ε, the model in Equation (7.1) is
stiff and can potentially exhibit a dynamic behavior with multiple time scales.
Proceeding in a manner similar to the one adopted in Chapter 6, we define the
fast time scale τ = t/ε and rewrite (7.1) as

dx
dτ

= εf(x,θ)

dθ

dτ
= εΦ(x,θ) + εΓs(x,θ)ωs + Γl(x,θ)ωl

(7.2)

We continue to refer to the analysis in Chapter 6 and consider the limit ε → 0,
making the important distinction that in this case the limit corresponds to an
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infinitely high energy throughput rather than to an infinitely high energy recov-
ery. In this limit, we obtain

dx
dτ

= 0

dθ

dτ
= Γl(x,θ)ωl

(7.3)

which represents a description of the fast dynamics of the process, involving only
the variables θ that pertain to the energy balance.

In Chapter 6, we argued that large, internal energy recycle flows do not affect
the total enthalpy of the process. Conversely, it is intuitive that, in the case of
processes with high energy throughput, the total enthalpy will be affected by
the large flows ωl. Therefore, it can be verified that, in antithesis to the devel-
opments in the previous chapter, the steady-state conditions that correspond
to Equations (7.3) are linearly independent. Also, it is evident that the fast
energy dynamics described by Equations (7.3) are influenced only by the large
energy flows ωl.

The observations above indicate that, upon defining ωl as a function of the
state variables θ (e.g., via feedback control laws), the Jacobian matrix

∂

∂θ
Γl(x,θ)ωl

is nonsingular, and the equations 0 = Γl(x,θ)ωl can be solved for the quasi-
steady-state values θ� = k(x,ωl) of the enthalpies (or temperatures) of each unit.

On substituting the solution θ� into the model, we obtain a description of the
dynamics of the process after the fast temperature “boundary layer”:

ẋ = f(x,k(x,ωl))

θ̇ = 0
(7.4)

which constitutes a representation of the slow dynamics of the process.

Remark 7.1. The energy flow rates {H1 . . . HN−1} ⊂ ωl are typically functions
of the flow rates of (internal) material streams and cannot be set independently.
In order to preserve the simplicity of the presentation, this dependence has not
been explicitly accounted for; the results presented thus far are, however, indepen-
dent of this consideration. It is also intuitive that the following statements apply.

� The flow rates of the material streams are likely to belong to different groups
of manipulated inputs (as demonstrated in Chapter 5). Further, only some of
these groups will have any impact on the fast energy dynamics.

� Only a subgroup of the material flow rates which are available as manipulated
inputs in the fast time scale τ can actually be used to address control objectives
related to the variables θ.
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The observations above are expanded upon in the subsequent section and
illustrated in the examples introduced later in the chapter.

7.4 Control implications

As was the case in the previous chapters of the book, the potential presence of
two distinct scales in the dynamic behavior of process systems with high energy
throughput requires that the objectives pertaining to their operation and control
be addressed using separate, coordinated fast and slow controllers.

Energy-related control objectives are to be addressed in the fast time scale τ ,
where ωl are available as manipulated inputs (Equations (7.3)). From a practical
point of view, however, only a limited number of material flow rates may be
available to address objectives related to temperature control; thus, the set of
manipulated inputs in the fast time scale could often consist solely of the large
energy flows Qin and Qout. Simple, distributed controllers for the stabilization
(and fast disturbance rejection) of unit temperatures are a typical choice at
this level.

The control objectives related to the material balance (e.g., stabilization of
material holdups in the individual units, the evolution of product purity) should
subsequently be addressed according to the developments in Chapter 5.

7.5 Case study 1: dynamics of high-purity distillation columns

7.5.1 System description

High-purity distillation columns are multi-staged separation systems that rely
on a large internal material recycle for increasing the purity of the distillate/
bottoms streams. The internal boilup (vapor) stream undergoes phase changes
(evaporation/condensation), accumulating and, subsequently, releasing energy.
This material stream thus acts as an energy carrier, contributing to the high
energy throughput of the system. The differential equation system describing
the material balance of high-purity distillation columns was shown to exhibit a
two-time-scale behavior, and an explicit nonlinear low-order model of the slow
input–output dynamics that is suitable for analysis and controller design was
provided in Kumar and Daoutidis (2003). The present example aims to analyze
the energy dynamics of high-purity distillation columns.

We consider a distillation column with N stages (numbered from top to bot-
tom), into which a saturated liquid containing a mixture of two components
(denoted by 1 and 2) with mole fractions x1f and x2f , respectively, is fed at
(molar) flow rate F0 and temperature T0 on stage Nf (we analyze the case of
a binary mixture for simplicity; the results developed below can easily be gen-
eralized to mixtures of M components). The heavy component 2 is removed
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at the bottom from the reboiler at a flow rate B, while the light component 1
is removed at the top from the condenser at a flow rate D. In this column, a
large (compared with the feed, distillate, and bottom product flow rates) vapor
boilup V and liquid recycle R are required in order to attain a high purity of the
products.

We denote by Qr and QC the heat duties in the reboiler and condenser. For
simplicity, we assume that the relative volatilities of the components are constant,
and hence that the phase equilibrium on stage i is given by

y1,i =
α1x1,i

1 + (α1 − 1)x1,i
(7.5)

We also assume that the heat capacities Cp,l and Cp,v of the liquid and vapor
phases are constant. Under the above assumptions, the dynamic model of the
column can be written as

ṀC = V − R − D

ẋ1,D = (V/MC)(y1,1 − x1,D)

θ̇C = V

⎛
⎝Cp,vT1 +

2∑
j=1

yj,1λj

⎞
⎠− (R + D)Cp,lTC − QC

...

ẋ1,i =
1

Mi
[V (y1,i+1 − y1,i) + R(x1,i−1 − x1,i)]

θ̇i = V

⎛
⎝Cp,vTi+1 +

2∑
j=1

yj,i+1λj

⎞
⎠− V

⎛
⎝Cp,vTi +

2∑
j=1

yj,iλj

⎞
⎠

+RCp,l(Ti−1 − Ti)
... (7.6)

ẋ1,Nf =
1

MNf

[V (y1,Nf+1 − y1,Nf ) + R(x1,Nf−1 − x1,Nf )

+F (x1,Nf−1 − x1,Nf )]

θ̇f = V

⎛
⎝Cp,vTNf+1 +

2∑
j=1

yj,Nf+1λj

⎞
⎠− V

⎛
⎝Cp,vTNf +

2∑
j=1

yj,Nf λj

⎞
⎠

+RCp,l(TNf−1 − TNf ) + FCp,l(T0 − TNf )
...

ẋ1,i =
1

Mi
[V (y1,i+1 − y1,i) + R(x1,i−1 − x1,i) + F (x1,i−1 − x1,i)]
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θ̇i = V

⎛
⎝Cp,vTi+1 +

2∑
j=1

yj,i+1λj

⎞
⎠− V

⎛
⎝Cp,vTi +

2∑
j=1

yj,iλj

⎞
⎠

+RCp,l(Ti−1 − Ti) + FCp,l(Ti−1 − Ti)
...

ṀB = R − V + F − B

ẋ1,B =
1

MB
[R(x1,N − x1,B) − V (y1,B − x1,B) + F (x1,N − x1,B)]

θ̇B = (R + F )Cp,lTN − BCp,lTB − V

⎛
⎝Cp,vTB +

2∑
j=1

yj,Bλj

⎞
⎠ + QB

In Equations (7.6), MC, x1,D, y1,D, and TC are the molar liquid holdup, the
liquid mole fraction and vapor mole fraction of component 1, and the temperature
in the condenser, Mi, x1,i, y1,i, and Ti are the molar liquid holdup, the liquid
mole fractions and vapor mole fractions of component 1, and the temperature on
stage i, and MB, x1,B, y1,B, and TB are the corresponding holdup, liquid mole
fractions, vapor mole fractions, and temperature in the reboiler. θi are the stage
enthalpies and λj is the latent heat of vaporization of component j, j = 1, 2.
By expressing the stage enthalpies as a function of the stage temperatures, θi =
MiCp,lTi, Equations (7.6) can be rewritten as

ṀC = V − R − D

ẋ1,D = (V/MC)(y1,1 − x1,D)

ṪC =
1

MCCp,l

⎡
⎣V

⎛
⎝Cp,vT1 +

2∑
j=1

yj,1λj − Cp,lTC

⎞
⎠− QC

⎤
⎦

...

ẋ1,i =
1

Mi
[V (y1,i+1 − y1,i) + R(x1,i−1 − x1,i)]

Ṫi =
1

MiCp,l

⎡
⎣V

⎛
⎝Cp,vTi+1 +

2∑
j=1

yj,i+1λj

⎞
⎠

−V

⎛
⎝Cp,vTi +

2∑
j=1

yj,iλj

⎞
⎠ + RCp,l(Ti−1 − Ti)

⎤
⎦

...

ẋ1,Nf =
1

MNf

[V (y1,Nf+1 − y1,Nf ) + R(x1,Nf−1 − x1,Nf )

+F (x1,Nf−1 − x1,Nf )]
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ṪNf =
1

MNf Cp,l

⎡
⎣V

⎛
⎝Cp,vTNf+1 +

2∑
j=1

yj,Nf+1λj

⎞
⎠

−V

⎛
⎝Cp,vTNf +

2∑
j=1

yj,Nf λj

⎞
⎠

+ RCp,l(TNf−1 − TNf ) + FCp,l(T0 − TNf )

⎤
⎦ (7.7)

...

ẋ1,i =
1

Mi
[V (y1,i+1 − y1,i) + R(x1,i−1 − x1,i) + F (x1,i−1 − x1,i)]

Ṫi =
1

MiCp,l

⎡
⎣V

⎛
⎝Cp,vTi+1 +

2∑
j=1

yj,i+1λj

⎞
⎠

−V

⎛
⎝Cp,vTi +

2∑
j=1

yj,iλj

⎞
⎠

+ RCp,l(Ti−1 − Ti) + FCp,l(Ti−1 − Ti)

⎤
⎦

...

ṀB = R − V + F − B

ẋ1,B =
1

MB
[R(x1,N − x1,B) − V (y1,B − x1,B) + F (x1,N − x1,B)]

ṪB =
1

MBCp,l

⎡
⎣RCp,l(TN − TB) + FCp,l(TN − TB)

+ V Cp,lTB − V

⎛
⎝Cp,vTB +

2∑
j=1

yj,Bλj

⎞
⎠ + QB

⎤
⎦

7.5.2 Reduced-order modeling

At steady state, the presence of a large molar liquid recycle R implies an equally
large molar vapor boilup V . On the other hand, the feed flow rate F , the distillate
flow rate D, and the bottom-product flow rate B are of the same order of magni-
tude and much smaller than the flow rates of the internal streams. Therefore, we
can define ε1 = (Fs/Rs) � 1 and κ = Vs/Rs = O(1), where the subscript s refers
to the nominal steady state. Let us also define the scaled vapor and reflux flow
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rates V̄ = V/Vs and R̄ = R/Rs. With this notation, the model of the distillation
column becomes

ṀC =
1
ε1

Fs(κV̄ − R̄) − D

ẋ1,D =
1
ε1

F

MC
κV̄ (y1,1 − x1,D)

ṪC =
1

MCCp,l

⎡
⎣ 1

ε1
FsκV̄

⎛
⎝Cp,v +

2∑
j=1

yj,1
λj

T1

⎞
⎠T1

− 1
ε1

FsκV̄ Cp,lTC − QC

⎤
⎦

...

ẋ1,i =
1
ε1

Fs

Mi

[
κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)

]
Ṫi =

1
ε1

Fs

MiCp,l

⎡
⎣κV̄

⎛
⎝Cp,v +

2∑
j=1

yj,i+1
λj

Ti+1

⎞
⎠Ti+1

−κV̄

⎛
⎝Cp,v +

2∑
j=1

yj,i
λj

Ti

⎞
⎠Ti + R̄Cp,l(Ti−1 − Ti)

⎤
⎦

...

ẋ1,Nf =
1

MNf

[
1
ε1

FsκV̄ (y1,Nf+1 − y1,Nf ) +
1
ε1

FsR̄(x1,Nf−1 − x1,Nf )

+F (x1,Nf−1 − x1,Nf )
]

ṪNf =
1

MNf Cp,l

⎡
⎣ 1

ε1
FsκV̄

⎛
⎝Cp,v +

2∑
j=1

yj,Nf+1

λj

TNf+1

⎞
⎠TNf+1

− 1
ε1

FsκV̄

⎛
⎝Cp,v +

2∑
j=1

yj,Nf

λj

TNf

⎞
⎠TNf

+
1
ε1

FsR̄Cp,l(TNf−1 − TNf ) + FCp,l(T0 − TNf )

⎤
⎦ (7.8)

...

ẋ1,i =
1

Mi

[
1
ε1

FsκV̄ (y1,i+1 − y1,i) +
1
ε1

FsR̄(x1,i−1 − x1,i)

+F (x1,i−1 − x1,i)
]
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Ṫi =
1

MiCp,l

⎡
⎣ 1

ε1
FsκV̄

⎛
⎝Cp,v +

2∑
j=1

yj,i+1
λj

Ti+1

⎞
⎠Ti+1

− 1
ε1

FsκV̄

⎛
⎝Cp,v +

2∑
j=1

yj,i
λj

Ti

⎞
⎠Ti

+
1
ε1

FsR̄Cp,l(Ti−1 − Ti) + FCp,l(Ti−1 − Ti)

⎤
⎦

...

ṀB =
1
ε1

Fs(R̄ − κV̄ ) + F − B

ẋ1,B =
1

MB

[
1
ε1

FsR̄(x1,N − x1,B) − 1
ε1

FsκV̄ (y1,B − x1,B)

+ F (x1,N − x1,B)
]

ṪB =
1

MBCp,l

⎡
⎣ 1

ε1
FsR̄Cp,l(TN − TB) + FCp,l(TN − TB)

+
1
ε1

FsκV̄ Cp,lTB − 1
ε1

FsκV̄

×

⎛
⎝Cp,v +

2∑
j=1

yj,B
λj

TB

⎞
⎠TB + QB

⎤
⎦

As argued earlier in this chapter, the latent heat of the vapor phase is typically
very large, and the term

Cp,v +
2∑

j=1

yj
λj

T
(7.9)

in the above equation (with λ being the latent heat of vaporization) is much
larger than the heat capacity of the liquid phase, Cp,l. For example, for stage 1,
we can write

Cp,l(
Cp,v +

∑2
j=1 yj,1λj/T1

)
s

= ε � 1 (7.10)

with the index s again denoting steady-state values. A similar relation holds for
the other stages, i.e.,

Cp,l(
Cp,v +

∑2
j=1 yj,iλj/Ti

)
s

=
1
νi

ε (7.11)

with νi = O(1) and i = 2, . . . , N,B.
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Figure 7.2 Large energy flows in the high-purity distillation column.

Using a simple energy balance, we can see that, in order to supply enough
energy to vaporize the liquid, the energy input of the reboiler, QB, must be of
the same order of magnitude as the energy flow associated with the vapor leaving
the reboiler, that is

QB,s(
(1/ε1)Fsκ(Cp,v +

∑2
j=1 yj,Bλj/TB)

)
s

= ωB = O(1) (7.12)

Likewise, in order to condense the column vapor stream in the condenser, its
entire latent heat must be removed, and the condenser heat duty and the energy
flow associated with the vapor phase leaving the first stage must be of similar
magnitude:

QC,s(
(1/ε1)Fsκ

(
Cp,v +

∑2
j=1 yj,1λj/T1

))
s

= ωC = O(1) (7.13)

The evident implication of these observations is that the amount of energy
carried by the vapor stream from the bottom of the column to the top is much
larger than the amount of energy carried by the liquid reflux and, implicitly, than
that carried by the streams F , D and B. Thus, the column has a high energy
throughput from the reboiler to the condenser. Figure 7.2 presents a diagram of
the energy flows in the distillation column. An illustration of the energy flows
on an individual column tray is presented in Figure 7.3.

Let us now denote Q̄C = QC/QC,s and Q̄B = QB/QB,s, and

σi =
Cp,v +

∑2
j=1 yj,iλi/Ti(

Cp,v +
∑2

j=1 yj,iλi/Ti

)
s

(7.14)
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L

V

Figure 7.3 Material (solid) and energy (dashed) flows on a distillation-column tray.

With the above notation, the model of the distillation column becomes

ṀC =
1
ε1

Fs(κV̄ − R̄) − D

ẋ1,D =
1
ε1

F

MC
κV̄ (y1,1 − x1,D)

ṪC =
1

MCCp,l

(
1
ε1

FsκV̄
1
ε
σ1Cp,lT1 −

1
ε1

FsκV̄ Cp,lTC − 1
ε1

ωCFsκ
1
ε
Cp,lQ̄C

)
...

ẋ1,i =
1
ε1

Fs

Mi
[κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)]

Ṫi =
1
ε1

Fs

MiCp,l

[
κV̄

1
ε
σi+1νi+1Cp,lTi+1 − κV̄

1
ε
σiνiCp,lTi+ R̄Cp,l(Ti−1 − Ti)

]
...

ẋ1,Nf =
1

MNf

[
1
ε1

FsκV̄ (y1,Nf+1 − y1,Nf ) +
1
ε1

FsR̄(x1,Nf−1 − x1,Nf )

+ F (x1,Nf−1 − x1,Nf )
]

ṪNf =
1

MNf Cp,l

[
1
ε1

FsκV̄
1
ε
σNf+1νNf+1Cp,lTNf+1 −

1
ε1

FsκV̄
1
ε
σNf νNf Cp,lTNf

+
1
ε1

FsR̄Cp,l(TNf−1 − TNf ) + FCp,l(T0 − TNf )
]

...

ẋ1,i =
1

Mi

[
1
ε1

FsκV̄ (y1,i+1 − y1,i) +
1
ε1

FsR̄(x1,i−1 − x1,i) + F (x1,i−1 − x1,i)
]

Ṫi =
1

MiCp,l

[
1
ε1

FsκV̄
1
ε
σi+1νi+1Cp,lTi+1 −

1
ε1

FsκV̄
1
ε
σiνiCp,lTi

+
1
ε1

FsR̄Cp,l(Ti−1 − Ti) + FCp,l(Ti−1 − Ti)
]
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...

ṀR =
1
ε1

Fs(R̄ − κV̄ ) + F − B

ẋ1,B =
1

MB

[
1
ε1

FsR̄(x1,N − x1,B) − 1
ε1

FsκV̄ (y1,B − x1,B) + F (x1,N − x1,B)
]

ṪB =
1

MBCp,l

[
1
ε1

FsR̄Cp,l(TN − TB) + FCp,l(TN − TB) +
1
ε1

FsκV̄ Cp,lTB

− 1
ε1

FsκV̄
1
ε
σRνRCp,lTB +

1
ε1

ωBFsκνB
1
ε
Cp,lQ̄B

]

Finally, we define ε2 = ε1 · ε and rewrite the model as

ṀC =
1
ε1

Fs(κV̄ − R̄) − D

ẋ1,D =
1
ε1

1
MC

FsκV̄ (y1,1 − x1,D)

ṪC =
1

MCCp,l

[
1
ε2

FsκCp,l(V̄ σ1T1 − ωCQ̄C) − 1
ε1

FsκR̄Cp,lTC

]
...

ẋ1,i =
1
ε1

Fs

Mi

[
κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)

]
Ṫi =

1
MiCp,l

[
1
ε2

FsκV̄ (σi+1νi+1Cp,lTi+1 − σiνiCp,lTi)

+
1
ε1

FsR̄Cp,l(Ti−1 − Ti)
]

...

ẋ1,Nf =
1

MNf

[
1
ε1

FsκV̄ (y1,Nf+1 − y1,Nf ) +
1
ε1

FsR̄(x1,Nf−1 − x1,Nf )

+F (x1,Nf−1 − x1,Nf )
]

ṪNf =
1

MNf Cp,l

[
1
ε2

FsκV̄ (σNf+1νNf+1Cp,lTNf+1 − σNf νNf Cp,lTNf )

+
1
ε1

FsR̄Cp,l(TNf−1 − TNf ) + FCp,l(T0 − TNf )
]

(7.15)

...

ẋ1,i =
1

Mi

[
1
ε1

FsκV̄ (y1,i+1 − y1,i) +
1
ε1

FsR̄(x1,i−1 − x1,i)

+F (x1,i−1 − x1,i)
]



7.5 Case study 1: dynamics of high-purity distillation columns 189

Ṫi =
1

MiCp,l

[
1
ε2

FsκV̄ (σi+1νi+1Cp,lTi+1 − σiνiCp,lTi)

+
1
ε1

FsR̄Cp,l(Ti−1 − Ti) + FCp,l(Ti−1 − Ti)
]

...

ṀB =
1
ε1

Fs(R̄ − κV̄ ) + F − B

ẋ1,B =
1

MB

[
1
ε1

FsR̄(x1,N − x1,B) − 1
ε1

FsκV̄ (y1,B − x1,B)

+ F (x1,N − x1,B)
]

ṪB =
1

MBCp,l

[
1
ε1

FsR̄Cp,l(TN − TB) + FCp,l(TN − TB)

+
1
ε1

FsκV̄ Cp,lTB − 1
ε2

FsκCp,lνB(V̄ σRTB − ωBQ̄B)
]

Equations (7.15) are in the general form of Equations (7.1), with ε2 playing
the role of the small parameter in the sense used in (7.1). On the other hand, ε1

captures the presence of material streams of vastly different flow rates, which,
as we saw in Section 3.5, leads to a time-scale separation in the dynamics of the
material-balance variables.

By definition, however, we have ε2 � ε1. We can thus proceed with the time-
scale decomposition and model reduction of the high-purity distillation column
model as outlined in Section 7.3, by defining the stretched, fast time scale τ2 =
t/ε2, in which the model becomes

dMC

dτ2
=

ε2

ε1
Fs(κV̄ − R̄) − ε2D

x1,D

dτ2
=

ε2

ε1

1
MC

FsκV̄ (y1,1 − x1,D)

dTC

dτ2
=

1
MCCp,l

[
FsκCp,l(V̄ σ1T1 − ωCQ̄C) − ε2

ε1
FsκV̄ Cp,lTC

]
...

dx1,i

dτ2
=

ε2

ε1

Fs

Mi

[
κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)

]
dTi

dτ2
=

1
MiCp,l

[
FsκV̄ (σi+1νi+1Cp,lTi+1 − σiνiCp,lTi)

+
ε2

ε1
FsR̄Cp,l(Ti−1 − Ti)

]
...
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dx1,Nf

dτ2
=

1
MNf

[
ε2

ε1
FsκV̄ (y1,Nf+1 − y1,Nf )

+
ε2

ε1
FsR̄(x1,Nf−1 − x1,Nf ) + F (x1,Nf−1 − x1,Nf )

]
dTNf

dτ2
=

1
MNf Cp,l

[
FsκV̄ (σNf+1νNf+1Cp,lTNf+1 − σNf νNf Cp,lTNf )

+
ε2

ε1
FsR̄Cp,l(TNf−1 − TNf ) + ε2FCp,l(T0 − TNf )

]
(7.16)

...

dx1,i

dτ2
=

1
Mi

[
ε2

ε1
FsκV̄ (y1,i+1 − y1,i) +

ε2

ε1
FsR̄(x1,i−1 − x1,i)

+ F (x1,i−1 − x1,i)
]

dTi

dτ2
=

1
MiCp,l

[
FsκV̄ (σi+1νi+1Cp,lTi+1 − σiνiCp,lTi)

+
ε2

ε1
FsR̄Cp,l(Ti−1 − Ti) + ε2FCp,l(Ti−1 − Ti)

]
...

dMB

dτ2
=

ε2

ε1
Fs(R̄ − κV̄ ) + ε2(F − B)

x1,B

dτ2
=

1
MB

[
ε2

ε1
FsR̄(x1,N − x1,B) − 1

ε1
FsκV̄ (y1,B − x1,B)

+ F (x1,N − x1,B)
]

dTB

dτ2
=

1
MBCp,l

[
ε2

ε1
FsR̄Cp,l(TN − TB) + ε2FCp,l(TN − TB)

+
ε2

ε1
FsκV̄ Cp,lTB − FsκCp,lνB(V̄ σRTB − ωBQ̄B)

]

Let us now consider the limiting case of an infinitely high energy throughput
and set ε2 = 0, for which the column model becomes

dMC

dτ2
= 0

x1,D

dτ2
= 0

dTC

dτ2
=

1
MCCp,l

[
FsκCp,l(V̄ σ1T1 − ωCQ̄C)

]
...
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dx1,i

dτ2
= 0

dTi

dτ2
=

1
MiCp,l

[
FsκV̄ (σi+1νi+1Cp,lTi+1 − σiνiCp,lTi)

]
...

dx1,Nf

dτ2
= 0 (7.17)

dTNf

dτ2
=

1
MNf Cp,l

[
FsκV̄ (σNf+1νNf+1Cp,lTNf+1 − σNf νNf Cp,lTNf )

]
...

dx1,i

dτ2
= 0

dTi

dτ2
=

1
MiCp,l

[
FsκV̄ (σi+1νi+1Cp,lTi+1 − σiνiCp,lTi)

]
...

dMB

dτ2
= 0

x1,B

dτ2
= 0

dTB

dτ2
=

1
MBCp,l

[
FsκCp,lνB(−V̄ σRTB + ωBQ̄B)

]
Equation (7.17) is a description of the fast dynamics of the high-purity dis-

tillation column. It involves only the stage temperatures and it can be easily
verified that the system of ODEs describing the fast dynamics (as well as the
quasi-steady-state conditions that result from setting the left-hand side of (7.17)
to zero) are linearly independent. The constraints arising from the fast dynamics
can therefore be solved (typically numerically) for the quasi-steady-state values of
the stage temperatures, T� = [T �

C T �
1 . . . T �

N T �
B], which can then be substituted

into the ODE system (7.8) in order to obtain a description of the dynamics after
the fast temperature transient:

ṀC =
1
ε1

Fs(κV̄ − R̄) − D

ẋ1,D =
1
ε1

F

MC
κV̄ (y1,1 − x1,D)

...

ẋ1,i =
1
ε1

Fs

Mi

[
κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)

]
...
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ẋ1,Nf =
1

MNf

[
1
ε1

FsκV̄ (y1,Nf+1 − y1,Nf ) +
1
ε1

FsR̄(x1,Nf−1 − x1,Nf )

+F (x1,Nf−1 − x1,Nf )
]

(7.18)

...

ẋ1,i =
1

Mi

[
1
ε1

FsκV̄ (y1,i+1 − y1,i) +
1
ε1

FsR̄(x1,i−1 − x1,i)

+ F (x1,i−1 − x1,i)
]

...

ṀR =
1
ε1

Fs(R̄ − κV̄ ) + F − B

ẋ1,B =
1

MB

[
1
ε1

FsR̄(x1,N − x1,B) − 1
ε1

FsκV̄ (y1,B − x1,B)

+F (x1,N − x1,B)
]

Remark 7.2. The vapor flow rate V̄ depends through a constitutive relation
on the reboiler temperature V̄ = V̄ (T �

B), thus V̄ cannot be set independently for
control purposes, but only through manipulating the reboiler heat duty Q̄B.

As we anticipated at the beginning of this section, owing to the presence of
the small parameter ε1, the model in Equation (7.18) is still stiff. We will follow
the developments in Section 3.5 to investigate its dynamics. To this end, let
us define the intermediate stretched time scale τ1, and consider the limit of an
infinite recycle flow rate, or, equivalently, ε1 → 0:

dMC

dτ1
= Fs(κV̄ − R̄)

ẋ1,D

dτ1
=

Fs

MC
κV̄ (y1,1 − x1,D)

...
ẋ1,i

dτ1
=

Fs

Mi

[
κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)

]
...

ẋ1,Nf

dτ1
=

1
MNf

[
FsκV̄ (y1,Nf+1 − y1,Nf ) + FsR̄(x1,Nf−1 − x1,Nf )

]
(7.19)

...
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ẋ1,i

dτ1
=

1
Mi

[
FsκV̄ (y1,i+1 − y1,i) + FsR̄(x1,i−1 − x1,i)

]
...

ṀR

dτ1
= Fs(R̄ − κV̄ )

ẋ1,B

dτ1
=

1
MB

[
FsR̄(x1,N − x1,B) − FsκV̄ (y1,B − x1,B)

]
We turn to the slow time scale t to obtain a description of the slow dynamics.
In particular, on multiplying Equations (7.18) by ε1 and considering the limit
ε1 → 0, we obtain a set of algebraic constraints that need to be satisfied in the
slow time scale:

ζ0 ≡ κV̄ − R̄ = 0

ζ1 ≡ V̄ (y1,1 − x1,D) = 0
...

ζi ≡ κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i) = 0
...

ζNf ≡ κV̄ (y1,Nf+1 − y1,Nf ) + R̄(x1,Nf−1 − x1,Nf ) = 0
...

ζi ≡ κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i) = 0
...

ζN ≡ R̄ − κV̄ = 0

ζN+1 ≡ R̄(x1,N − x1,B) − κV̄ (y1,B − x1,B) = 0

(7.20)

The description of the dynamics in the intermediate time scale and the corre-
sponding quasi-steady-state constraints involve only the large internal material
flows of the column, i.e., V̄ and R̄. It is easy to verify that these flows do not
influence the total material holdup of the column, or the holdup of any of the
components in the column and, consequently, the constraints in Equations (7.20)
are not linearly independent (more specifically, the last two constraints can be
expressed as a linear combination of the remaining constraints).

Finally, let us consider the limit ε1 → 0 in the slow time scale t, where the
ratios limε1→0 ζi/ε1 become indeterminate. By denoting these unknown, yet finite
terms by zi, i = 0, . . . , N + 1, we obtain a description of the slow dynamics
of the column that captures its slow input–output behavior. This description
is in the form of a DAE system of nontrivial index, since the algebraic con-
straints ζi = 0 are singular with respect to the algebraic variables zi; a state-space
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realization of the model can be obtained by applying the techniques presented
in Chapter 3:

ṀC = Fsz0 − D

ẋ1,D =
1
ε1

F

MC
κz1

...

ẋ1,i =
Fs

Mi
zi

...

ẋ1,Nf =
1

MNf

[FszNf + F (x1,Nf−1 − x1,Nf )]

...

ẋ1,i =
1

Mi
[Fszi + F (x1,i−1 − x1,i)]

...

ṀB = FszN + F − B

ẋ1,B =
1

MB
[FszN+1 + F (x1,N − x1,B)]

0 = κV̄ − R̄

0 = V̄ (y1,1 − x1,D)
...

0 = κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)
...

0 = κV̄ (y1,Nf+1 − y1,Nf ) + R̄(x1,Nf−1 − x1,Nf )
...

0 = κV̄ (y1,i+1 − y1,i) + R̄(x1,i−1 − x1,i)
...

0 = R̄ − κV̄

0 = R̄(x1,N − x1,B) − κV̄ (y1,B − x1,B)

(7.21)

Remark 7.3. The analysis above indicates that high-purity distillation columns
are systems with high energy throughput, their dynamic behavior featuring a fast
component that involves the stage temperatures and is influenced only by the
large energy inputs of the column, i.e., the reboiler and condenser heat duties. It
is, however, easy to infer that the same behavior characterizes the dynamics of
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all distillation columns, since the derivation of Equations (7.17) and (7.18) is
independent of the assumption concerning the presence of a large internal recycle
(i.e., a high reflux ratio).

7.5.3 Control implications

The developments in this subsection have revealed that high-purity distillation
columns exhibit a dynamic behavior with three time scales. Thus, according to
the results in Sections 7.4 and 3.4, the design of a control system involves the
synthesis of a tiered structure featuring three levels of control action.

� Equations (7.17) single out the condenser and reboiler heat duties as the
only available inputs in the fast time scale (also see Remark 7.2). Thus, the
coolant and steam flows (i.e., the physical inputs that typically correspond to
the condenser and reboiler duties) should be used for controlling the tempera-
tures in the reboiler and the condenser. Simple linear controllers are generally
sufficient at this level.

� Equations (7.19) indicate that the large reflux rate R̄ is available as a manipu-
lated input in the intermediate time scale and that, by employing a cascaded
control configuration, the setpoint of the reboiler temperature can be used to
determine the vapor boilup rate V̄ . Thus, the two large internal material flow
rates R̄ and V̄ are at hand for addressing control objectives in the interme-
diate time scale, a time scale that captures the evolution of the compositions
and holdups of the individual stages and of the reboiler and condenser. Thus,
the large flow rates should be relied upon for controlling the material holdups
in the reboiler and condenser, a task that is also commonly achieved with
simple distributed controllers. Proper care should be taken in tuning the con-
trol loops (specifically, the temperature control loop in the fast time scale
should be faster than the level loop in the intermediate time scale) in order
to account for the potential use of a cascaded configuration.

� Once the large internal flow rates have been set via appropriate control laws,
the index of the DAE system (7.21) is well defined, and a state-space realiza-
tion (ODE representation) of the slow subsystem can be derived. This repre-
sentation of the slow dynamics of the column can be used for the derivation of
a model-based nonlinear controller to govern the input–output behavior of the
column, namely to address the control of the product purity and of the over-
all material balance. To this end, the small distillate and bottoms flow rates
as well as the setpoints of the level controllers are available as manipulated
inputs.

7.5.4 Simulation results and discussion

We consider a distillation column for the separation of a mixture containing 80%
(molar) normal-butane (n-butane) and 20% iso-butane, fed at a flow rate of 360
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Figure 7.4 Distillation column for separation of n-butane and iso-butane.

kmol/h. It is desired that both distillation products be obtained at high purity
(99.73% iso-butane in the distillate and 99.17% n-butane in the bottoms). The
column has 39 stages (with the feed entering above stage 13) and is operated
at a nominal top pressure of 1.5 atm. Stages are spaced at 0.7 m, the column is
1.5 m in diameter, and the weir height is 0.05 m. The nominal distillate flow rate
is 69.8 kmol/h.

The column was modeled with AspenPlus R©,1 using the rigorous radfrac col-
umn model, in conjunction with the Redlich–Kwong–Soave equation of state for
property estimation. Steady-state calculations indicated a reflux ratio of 87.67.
This is a consequence of the difficult separation problem posed by the two close-
boiling components.

Subsequently, we used Aspen Dynamics R© for time-domain simulations.
A basic control system was implemented with the sole purpose of stabilizing
the (open-loop unstable) column dynamics. Specifically, the liquid levels in the
reboiler and condenser are controlled using, respectively, the bottoms product
flow rate and the distillate flow rate and two proportional controllers, while the
total pressure in the column is controlled with the condenser heat duty and a PI
controller (Figure 7.4). A controller for product purity was not implemented.

Dynamic simulations were aimed at capturing the multiple-time-scale behavior
revealed by the theoretical developments presented above. Figures 7.5 and 7.6
show the evolution of the mole fraction of n-butane and of the temperature
on selected column stages for a small step change in the reboiler duty. Visual
inspection of the plots indicates that the temperatures exhibit a fast transient,

1 AspenPlus and Aspen Dynamics are registered trademarks of Aspen Technology Inc.
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Figure 7.5 Mole fractions of n-butane on representative column stages for a 0.1%
increase in column reboiler duty at time t = 1h.
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reboiler duty at time t = 1h.
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Figure 7.7 Time derivative of n-butane mole fractions on representative column stages
for a 0.1% increase in column reboiler duty at time t = 1h.

while the mole fractions (slow variables) display only a slow evolution towards
the new steady state. Evidently, compositions and temperatures cannot be fully
decoupled, and the stage temperatures thus have a slow approach to a new
steady-state value.

The results of our theoretical analysis are further confirmed by inspecting
the derivatives2 of the state variables, shown in Figures 7.7 and 7.8. The time
derivatives of the stage temperatures show a peak shortly after the step change
occurs at t = 1h and progress to a near-zero value shortly thereafter, which
indicates that the stage temperatures quickly reach a quasi-steady-state value.
On the other hand, the values of the time derivatives of the compositions remain
non-zero for an extended period of time, a clear indication of the fact that the
compositions evolve over a long time horizon.

Figures 7.9 and 7.10 show the evolution of the compositions and temperatures
on representative column stages for a small step change in the feed flow rate.
According to our theory, this disturbance influences the slow material-balance
dynamics and has very little impact on the fast energy dynamics of the column.
Indeed, while there are significant (albeit slow) changes in the stage compositions,

2 In order to calculate the time derivatives of the state variables, we used a finite-difference
approach, sampling the simulation data with a sample time τ = 0.05h:

d

dt
y(i) =

y(i) − y(i − 1)

τ

1

y(0)
(7.22)

where y(0) is the initial (steady-state) value of the variable and is used for scaling purposes.
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Figure 7.8 Time derivative of the temperatures of representative column stages for a
0.1% increase in column reboiler duty at time t = 1h.
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Figure 7.9 Mole fractions of n-butane on representative column stages for a rise of the
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Figure 7.10 Temperatures of representative column stages for a rise of the feed flow
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Figure 7.11 Time derivative of n-butane mole fractions on representative column
stages for a rise of the feed flow rate from 360.0 kmol/h to 366.0 kmol/h.

the changes in the stage temperatures are very small. An examination of the
time derivatives of the stage compositions and temperatures (Figures 7.11 and
7.12) further enforces these conclusions – note, in particular, that the values of
the time derivative of the temperatures at the top and bottom of the column
only briefly depart from zero and that their departure is very small. While the
mid-point temperatures in the stripping section of the column (i.e., the stages
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Figure 7.12 Time derivative of the temperatures of representative column stages for a
rise of the feed flow rate from 360.0 kmol/h to 366.0 kmol/h.

below the feed point) do exhibit a slow transition to steady state, the temperature
changes remain small. This behavior can be attributed to the dynamic influence
of the liquid feed stream, which is stronger in the stripping section than in the
rectifying section of the column.

7.6 Case study 2: control of a reactor with an external
heat exchanger

7.6.1 Process description

In processes in which reactions with significant thermal effects are present, adia-
batic reactor operation is not possible and direct heating/cooling for isothermal
operation is often impractical or infeasible. In such cases, the reactor contents
are recycled through an external heat exchanger (Seider et al. 1999). This con-
figuration allows more efficient heat exchange and affords the process designer a
choice of heat transfer area that is independent of the geometry of the reactor
itself. The efficiency of the external heat exchanger can be increased further by
increasing the heat capacity of the recycle stream, either by using excess quanti-
ties of a reactant or by introducing an inert diluent into the recycle loop, together
with a separation unit. Such configurations can be used both in batch and in
continuous processes, and are quite common in processes featuring fast, highly
exothermic reactions (e.g., polymerization). The significant amount of energy
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Figure 7.13 A schematic diagram of a reactor with an external heat exchanger.

carried through the reactor–heat exchanger–environment path places such sys-
tems in the category of processes with high energy throughput.

Existing literature on the control of reactor–external heat-exchanger processes
is relatively scarce, concerning mostly the implementation of linear (Ali and
Alhumaizi 2000, Henderson and Cornejo 1989) and nonlinear (Dadebo et al.
1997) control structures on specific processes. These studies report several control
challenges, including difficult tuning of PID and model-based controllers due to
the ill-conditioning of the process model.

In our analysis, we will consider a process consisting of a reactor with an
external heat exchanger, as shown in Figure 7.13. The feed stream of flow rate
F0 contains the reactant A and its composition CA0 is assumed to be constant.
Two consecutive first-order reactions take place in the reactor:

A k1→ B k2→ C (7.23)

The process produces either high-purity B (containing as little C as possible –
operating point I (OP I)), or a mixture of B and C with CB/CC = 1 at operating
point III (OP III) or CB/CC = 1.5 at operating point II (OP II), at a given
production rate.

Since the thermal effect of the reactions is very high (see the process parame-
ters in Tables 7.1 and 7.2), the adiabatic operation of the reactor is not possible.
In order to control the reactor temperature, the reaction mass is recycled at a
high rate through the heat exchanger.

The objectives for this process are thus the control of the reactor temperature
T , of the reactor holdup M , and of the product purity CB, at one of the operating
points of interest.

7.6.2 System modeling and model reduction

In order to develop a model for this process, let M denote the reactor holdup, MR

the holdup in the tube side of the heat exchanger, and Mc the holdup in the shell
side. We will denote by F0 the feed flow rate to the reactor, by F the effluent flow
rate, by Fc the coolant flow rate, and by R the recycle flow rate. Let T0 be the
temperature of the feed stream, T the reactor temperature, TR the temperature
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Table 7.1. Nominal parameter values for the
reactor–heat-exchanger process (adapted from (Marroquin and
Luyben 1973))

F 20.00 l/min k10 5.36 × 1010 min−1

M 1200.00 l k20 4.61 × 1018 min−1

Mc 68.80 l Cp 4138.20 J l−1 K−1

MR 22.93 l Cpc 4138.20 J l−1 K−1

CA0 2.00 mol/l T0 311.10 K
Ea1 75.00 kJ/mol Tc0 294.00 K
Ea2 150.00 kJ/mol U 1987.50 W m−2 K−1

ΔH1 −791.30 kJ/mol A 11.14 m2

ΔH2 −527.50 kJ/mol

Table 7.2. Temperatures, compositions, and flows for the
reactor–heat-exchanger process at the operating points
considered

OP I OP II OP III

T , K 353.00 380.00 383.50
TR, K 333.80 349.85 352.28
Tc, K 313.23 324.23 325.19
CA, mol/l × 102 7.43 1.45 1.031
CB, mol/l 1.89 1.20 0.995
Fc = R, l/min 343.36 272.18 278.80

of the reaction mass in the tube side of the heat exchanger, and Tc0 and Tc the
inlet and outlet temperatures of the cooling medium, respectively. To preserve
generality (we will revert to the case at hand later in this section), we will assume
that C components participate in R stoichiometrically independent reactions,
with reaction rates ri, i = 1, . . . ,R and stoichiometric matrix S ∈ IRC×R. We
denote the heat-of-reaction vector by ΔH = [ΔH1, . . . ,ΔHR]T. For simplicity,
we consider the density and heat capacity of the reactants and products (ρ and
Cp) and of the cooling medium used in the heat exchanger (ρc and Cpc) to be
constant and temperature-independent, and Cp and Cpc to be of comparable
magnitude, i.e., Cp/Cpc = kcp = O(1). Assuming that all units are modeled as
lumped-parameter systems and that the reactions take place only in the reactor,
the process model becomes

Ṁ = F0 − F

Ċ = Sr +
F0

M
(C0 − C)
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Ṫ = − 1
Cp

ΔHT r +
F0

M
(T0 − T ) +

R
M

(TR − T ) (7.24)

ṪR =
R

MR
(T − TR) − UA

CpMR
(TR − Tc)

Ṫc =
Fc

Mc
(Tc0 − Tc) +

UA

CpcMc
(TR − Tc)

where U denotes the overall heat transfer coefficient in the heat exchanger and
A the heat transfer area.

Let us now define

ε =
F0s

Rs
(7.25)

where the subscript s denotes steady-state values. Since the recycle flow rate Rs

is much larger than the reactor feed F0s (see Tables 7.1 and 7.2), we have ε �
1. Also, we define the scaled inputs u0 = F0/F0s, uF = F/Fs, uR = R/Rs, and
uc = Fc/Fcs, and the O(1) quantity kF = Fs/F0s. The model of Equations (7.24)
thus becomes

Ṁ = F0s(u0 − kFuf)

Ċ = Sr +
F0s

M
u0(C0 − C)

Ṫ = − 1
Cp

ΔHT r +
F0s

M
u0(T0 − T ) +

1
ε

F0s

M
uR(TR − T )

ṪR =
1
ε

F0s

MR
uR(T − TR) − UA

CpMR
(TR − Tc)

Ṫc =
Fcs

Mc
uc(Tc0 − Tc) +

UA

CpcMc
(TR − Tc)

(7.26)

For useful energy removal, the rate of heat removal from the reactor by the
recycle stream, (RCp(T − TR))s, must be of the same magnitude as the rate of
heat generation by the chemical reactions, ΔHs = (−ΔHT rM)s:

kΔH =
ΔHs

(RCp(T − TR))s
= O(1) (7.27)

Equivalently,

ΔHs =
1
ε
kΔHF0sCp(T − TR)s (7.28)

Our assumption that the heat capacities of the coolant and of the reaction mix-
ture are of comparable magnitude, i.e.,

Cp

Cpc
= kcp = O(1) (7.29)
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implies that the flow rate of the external cooling utility stream in the heat
exchanger will be in direct relationship with the reaction mass throughput,
i.e., a high recycle rate will require a high coolant flow rate. Hence, we can
assume that Fcs/Rs = kr = O(1) and consequently F0s/Fcs = O(ε). At steady
state (assuming zero losses), the heat-transfer rate in the heat exchanger and
the net rate at which heat is input to the heat exchanger by the recycle stream
R are identical.

(UA(TR − Tc))s
(RCp(T − TR))s

= 1

Additionally, we assume that the time constants for heat transfer and mass
transport are of the same order of magnitude, i.e.,

UA/(CpMR)
Rs/MR

= kh = O(1)

or, using Equation (7.25),

UA

Cp
= kh

F0s

ε
(7.30)

With the above notation, the dynamic model of the process in Figure 7.13 can
be written as

Ṁ = F0s(u0 − kFuf)

Ċ = Sr +
F0s

M
u0(C0 − C)

Ṫ =
F0s

M
u0(T0 − T ) +

1
ε

F0s

M
uR(TR − T )

− 1
ε

kΔH

ΔHs
F0s(T − TR)s ΔHT r

ṪR =
1
ε

F0s

MR
uR(T − TR) − 1

ε

khF0s

MR
(TR − Tc)

Ṫc =
1
ε

krF0s

Mc
uc(Tc0 − Tc) +

1
ε

khkcpF0s

Mc
(TR − Tc)

(7.31)

which is in the form of Equations (7.1). Owing to the presence of streams with
flow rates of different magnitudes, and of fast heat transfer (captured by the sin-
gular perturbation parameter ε) the above model is stiff. As highlighted in the
first part of this chapter, the rational control approach for this process entails
the use of separate controllers for the fast dynamics, with any model-based con-
trollers being synthesized using appropriate reduced-order models.
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Let us thus proceed with the derivation of reduced-order models, starting from
the fast time scale. To this end, we define the stretched, fast time scale τ = t/ε

in which Equations (7.31) become

dM

dτ
= εF0s(u0 − kFuf)

dC
dτ

= ε

[
Sr +

F0s

M
u0(C0 − C)

]
dT

dτ
= ε

F0s

M
u0(T0 − T ) +

F0s

M
uR(TR − T ) − kΔH

ΔHs
F0s(T − TR)s ΔHT r

dTR

dτ
=

F0s

MR
uR(T − TR) − khF0s

MR
(TR − Tc)

dTc

dτ
=

krF0s

Mc
uc(Tc0 − Tc) +

khkcpF0s

Mc
(TR − Tc)

(7.32)

Then, we consider the limit ε → 0, corresponding to infinitely large recycle and
cooling medium flow rates and infinitely fast heat transfer in the heat exchanger.
In this limit, we obtain the following description of the fast dynamics of the
process:

dT

dτ
=

F0s

M
uR(TR − T ) − kΔH

ΔHs
F0s(T − TR)s ΔHT r

dTR

dτ
=

F0s

MR
uR(T − TR) − khF0s

MR
(TR − Tc)

dTc

dτ
=

krF0s

Mc
uc(Tc0 − Tc) +

khkcpF0s

Mc
(TR − Tc)

(7.33)

In order to obtain a description of the slow dynamics, we first recognize that
the equations describing the energy balance can be replaced, in the slow time
scale, by the corresponding quasi-steady-state constraints. These constraints are
obtained by multiplying Equations (7.31) by ε and considering the limit ε → 0:

0 =
F0s

M
uR(TR − T ) − kΔH

ΔHs
F0s(T − TR)s ΔHTr

0 =
F0s

MR
uR(T − TR) − khF0s

MR
(TR − Tc)

0 =
krF0s

Mc
uc(Tc0 − Tc) +

khkcpF0s

Mc
(TR − Tc)

(7.34)

It is straightforward to verify that the algebraic constraints in Equations (7.34)
are generically linearly independent and hence they can be solved for the quasi-
steady-state values θ�(M,C) = [T �, T �

R, T �
c ] of the variables [T, TR, Tc]. Substi-

tuting the value for T �, we then obtain

Ṁ = Fs(kfu0 − uF)

Ċ = Sr(θ�) +
kfFs

M
u0(C0 − C)

(7.35)
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Figure 7.14 Energy flows of different magnitudes in a reactor–external-heat-exchanger
system.

which represents the model of the slow dynamics of the reactor–external-heat-
exchanger system.

Remark 7.4. Figure 7.14 illustrates the material and energy flows in the
reactor–heat exchanger. The rate of heat generation by the highly exothermic
reactions, Qgen, the rate of heat removal from the reactor by the large recycle
stream acting as an energy carrier, Qrecycle, and the rate of heat removal from
the process by the coolant, Qout, are of comparable magnitude. These terms are
much larger than the rate of heat removal by the reactor effluent (QF) and thus
dominate the energy balance of the system.

On the other hand, the material throughput of the process is small, owing to
the small reactor feed flow rate F . While the recycle rate R is much larger than
the feed flow rate F , under the assumption that no reaction occurs outside the
reactor, its composition remains constant. Therefore, the large recycle stream
has no influence on the material balance and the material-balance equations do
not contain any large terms. From these features, one can infer that the energy
dynamics of the process, being dominated by the large terms corresponding to
the generation and removal of heat through the heat exchanger, i.e., by the high
energy throughput, is faster than the dynamics of the material balance, which
is characterized by the small material throughput. This conclusion is consistent
with the results of the analysis presented above.

Remark 7.5. The material- and energy-balance equations of the process are not
decoupled: the rates of heat generation from the R reactions are the product of
two terms, ΔHi and ri, corresponding to the heat of reaction and reaction rate,
respectively. Consequently, a high rate of heat generation by reaction could be due
to fast reactions with moderate reaction enthalpy, or to reactions that have mod-
erate rates and a high heat of reaction. If the reaction chemistry involves both of
the aforementioned reaction categories, the material balance of Equations (7.35)
will itself be in a nonstandard singularly perturbed form (Baldea and Daoutidis
2005), and further reduction steps will be necessary in order to obtain non-stiff
descriptions of an intermediate and a slow dynamics.
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Remark 7.6. The analysis framework we presented is also applicable if an inert
component is used to increase the heat capacity of the reaction mixture. In this
case, the model (7.24) would be augmented by the equations corresponding to the
model of the separation unit. However, the stoichiometric matrix S and reaction
rates r would remain unchanged, since the inert component does not partake
in any reaction. Furthermore, the analysis can be applied if more complex cor-
relations are used for the physical parameters of the system (e.g., temperature
dependence of heat capacities and densities), as long as the basic assumptions
(7.27), (7.29), and (7.30) apply.

7.6.3 Control implications and controller implementation

The arguments presented above indicate that the large recycle and coolant flow
rates uR and uC are the only manipulated inputs available in the fast time scale,
and should be used to control the process temperatures. Likewise, the dynamics
of the material-balance variables in the slow time scale are affected only by the
small feed and effluent flow rates u0 and uF, which are thus the manipulated
inputs that must be used to tackle control objectives involving the material
balance. θsp, the setpoints of the temperature controllers in the fast time scale,
are also available as manipulated inputs in the slow time scale, a choice that leads
to cascaded control configurations between the “energy-” and “material-balance”
controllers.

In most cases, the only objective in the fast time scale is the control of the
reactor temperature, for which there are two available manipulated inputs, uR

and uC. Thus, several control system design options are available.

(i) Control the reactor temperature using the coolant flow rate uC as a manip-
ulated input, while fixing R at its nominal value (uR = 1).

(ii) Use two controllers, one to control the reactor temperature using the recycle
flow rate uR, and the other to control the recycle stream temperature TR

with the coolant flow rate uC.
(iii) Use a single controller to control the reactor temperature and manipulate

uC and uR, keeping the two flow rates in a fixed ratio. The ratio uC/uR

depends on the cost of circulating the reaction mass and the cost of the
coolant, and constitutes a design parameter.

Notice that in the first case the energy transfer between the reactor and the
heat exchanger is a limiting factor in the overall energy flow, which could lead to
reactor runaway because of insufficient heat-removal capacity. In the second case
one overcomes this problem at the cost of a more elaborate control structure,
while the third approach combines the benefits of the preceding two, i.e., it avoids
the heat-transfer limitations and relies on a simple control structure. In principle,
(iii) can be regarded as using the net rate of heat removal from the reactor as a
manipulated input for controlling the reactor temperature.
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On reverting to the particular case considered in Section 7.6.1, and applying
the model-reduction framework outlined above, we obtain the following descrip-
tion of the fast dynamics:

dT

dτ
=

F0s

M
uR(TR − T ) − kΔH

ΔHs
F0s(T − TR)s

×
(
ΔH1 k10e

−Ea1/(RT )CA + ΔH2 k20e
−Ea2/(RT )CB

)
dTR

dτ
=

F0s

MR
uR(T − TR) − khF0s

MR
(TR − Tc)

dTc

dτ
=

krF0s

Mc
uc(Tc0 − Tc) +

khkcpF0s

Mc
(TR − Tc)

(7.36)

According to our analysis, we address the control of the reactor temperature T in
the fast time scale, keeping the ratio uC/uR constant and using the proportional-
integral feedback law:

uC = 1 + KC

[
T − Tsp +

1
τi

∫ t

0

(T − Tsp)dt

]
(7.37)

The constraints arising from the fast dynamics (7.36) can now be solved for the
quasi-steady-state value, i.e., T � = Tsp, which allows us to obtain a description
of the slow dynamics:

Ṁ = F0 − F

ĊA =
F0

M
(CA0 − CA) − k10e

−Ea1/(RTsp)CA

ĊB = −F0

M
CB + k10e

−Ea1/(RTsp)CA − k20e
−Ea2/(RTsp)CB

ĊC = −F0

M
CC + k20e

−Ea2/(RTsp)CB

(7.38)

Since the flow rate of the feed stream F0 is fixed (and subject to disturbances
arising from changes in the upstream process conditions), it is not available as a
manipulated input in the slow time scale. Therefore, we address the control of the
inventory and the product purity CB by employing, respectively, F and Tsp as
manipulated inputs, the latter choice leading to a cascaded control configuration.

Prior to embarking on the design of the purity controller, let us consider
a steady-state analysis: Figure 7.15 presents the steady-state concentration
profiles as a function of the reactor temperature. CB exhibits a maximum
at Tmax = 353.55 K. However, operating the reactor at Tmax is not feasible
because dCB/dT |T=Tmax = 0 (at T = Tmax controllability is lost), and the first
requirement, namely obtaining a product stream with a high concentration of
B and a very low concentration of C, is fulfilled by operating the reactor at
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Figure 7.15 Steady-state reactor concentrations as functions of temperature.

Tsp,I = 353.00 K < Tmax (operating point I). On the other hand, the product
mixtures with CB/CC = 1.5 and CB/CC = 1 can be obtained by operating the
reactor at Tsp,II = 380.00 K > Tmax and at Tsp,III = 383.50 K > Tmax, respec-
tively (operating points II and III). Owing to the different signs of the steady-
state gain of the process at operating point I, and at operating points II and III,
any linear controller with integral action leads to instability if used both at oper-
ating point I and at operating points II and III, while a proportional controller
leads to offset (Daoutidis and Kravaris 1992), a limitation that does not affect a
nonlinear controller.

In what follows, we address the design of such a controller. We assume that
switching between a product with CB/CC = 1.5 and a product with CB/CC = 1
is also required. Thus, in addition to good disturbance-rejection abilities at all
operating points, the controller is required to exhibit good setpoint-tracking
abilities between operating points II and III. Figure 7.16 shows the evolution of
the product purity, initially at the steady state CB = 1.2 mol/l, T = 380.00 K
(operating point II) in response to a 1-K increase in Tsp. Notice that the product
purity exhibits an inverse response. This non-minimum phase behavior originates
from the increased contribution of the second reaction at temperatures higher
than Tmax. Namely, around operating point II, a rise in temperature leads to a
rise in the rates both of the first and of the second reaction. However, the rate of
the first reaction is quicker to increase than that of the second and, immediately
after the temperature rise, more B is generated than is consumed. Consequently,
CB increases. Subsequently, the consumption of B increases because the rate
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Figure 7.16 Inverse response of the product purity CB.

of the second reaction increases, and CB falls as expected. A similar dynamic
behavior is encountered around operating point III.

Motivated by the above, we address the design of the product-purity controller
for the reactor–external heat-exchanger process by following the approach of
statically equivalent outputs (Kravaris et al. 1998) in a manner analogous to
Kumar and Daoutidis (1999b). To this end, we will construct an auxiliary output
ỹ such that (i) ỹ is statically equivalent to the process output CB, i.e., ỹ = CB

at every steady state; and (ii) the system is minimum phase with respect to ỹ

(and to the other output, M). Once such an output ỹ has been constructed, an
input–output linearizing controller will yield asymptotic tracking for CB, with
closed-loop stability. We consider a statically equivalent output (notice that this
choice is not unique) of the form

ỹ = CB + γ1,1
dCB

dt
+ β

[
CA + CB + γ1,2

d

dt
(CA + CB) − (CA0 − CC)

]
(7.39)

with γ1,1, γ1,2, and β being scalar parameters. The above form is motivated by
the following two factors.

� The term CB + γ1,1 dCB/dt is statically equivalent to CB, and corresponds to
requesting a first-order response in CB when using a standard input–output
linearizing controller. However, such a controller would lead to closed-loop
instability, and the output requires a “statically equivalent” addition that
would allow one to overcome this limitation.
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� On the basis of the arguments regarding the cause of the non-minimum-phase
behavior of the reactor–external-heat-exchanger process, the term

β

[
CA + CB + γ1,2

d

dt
(CA + CB) − (CA0 − CC)

]
is designed to cancel out the influence of the second reaction on the con-
centrations of A and B, by maintaining the sum CA + CB at its “setpoint”
CA0 − CC. Notice that CA + CB + CC = CA0, and therefore the second term
in Equation (7.39) is zero at any steady state; that is, ỹ is statically equiva-
lent to CB.

With the outputs ỹ and M , using the reduced-order model (7.38), a multi-
variable input–output linearizing controller with integral action (Daoutidis and
Kravaris 1994) was designed for the product purity and reactor holdup, request-
ing a decoupled first-order response:

ỹ = CB,sp (7.40)

M + γ2
dM

dt
= Msp (7.41)

The controller was tuned with γ1,1 = 30 min, γ1,2 = 57 min, β = 0.5, and γ2 =
20 min, and, with the linear controller (7.37) tuned with KC = 0.17 K−1 and
τi = 2.8 min, its performance was studied through simulations.

7.6.4 Simulation results and discussion

An initial scenario considered the process to be at operating point II (CB,sp =
1.2 mol/l, corresponding to CB/CC = 1.5). At t = 60 min, we imposed a drop
in the product-purity setpoint to CB,sp = 0.995 mol/l (operating point III, cor-
responding to CB/CC = 1). After 19 h of operation, the setpoint of CB was
raised to 1.2 mol/l, switching the operation of the process back to point II.
Figures 7.17–7.19 present the evolution of CB, of the reactor temperature, and
of the coolant flow rate for this simulation. Observe that the proposed nonlinear
controller exhibits excellent tracking performance. Figures 7.20–7.22 show the
closed-loop profiles for the same scenario in the presence of unmodeled distur-
bances and plant–model mismatch, again evincing excellent performance.

Figures 7.23–7.27 show the closed-loop profiles for a 10% increase in the pro-
duction rate at operating point I (attained by increasing F0), and a decrease
in the purity setpoint to CB,sp = 1.888 mol/l – this reduction is necessary since
the nominal purity is beyond the maximum attainable purity for the increased
throughput. Although controller design was carried out to account for the inverse
response exhibited by the system at operating points II and III, and in spite of the
plant–model parameter mismatch, the proposed control structure clearly yields
good performance at operating point I as well.

Finally, Figures 7.28–7.30 present the case of operating the system at point
I with an unmeasured 6.0-K rise in the coolant inlet temperature occurring at
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Figure 7.17 Evolution of the product purity in the case of switching between operating
points II and III.
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Figure 7.18 Evolution of the reactor temperature in the case of switching between
operating points II and III.
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Figure 7.19 Evolution of the coolant flow rate in the case of switching between
operating points II and III.
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Figure 7.20 Evolution of the product purity in the case of switching between operating
points II and III, in the presence of a 10-K unmeasured increase in the coolant inlet
temperature and an unmodeled 20% drop in the heat transfer coefficient U . Both
disturbances occur at t = 60 min.
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Figure 7.21 Evolution of the reactor temperature in the case of switching between
operating points II and III, in the presence of a 10-K unmeasured increase in the
coolant inlet temperature and an unmodeled 20% drop in the heat transfer coefficient
U . Both disturbances occur at t = 60 min.
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Figure 7.22 Evolution of the coolant flow rate in the case of switching between
operating points II and III, in the presence of a 10-K unmeasured increase in the
coolant inlet temperature and an unmodeled 20% drop in the heat transfer coefficient
U . Both disturbances occur at t = 60 min.
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Figure 7.23 Evolution of the coolant flow rate for a 10% rise in the production rate at
operating point I, under plant–model parameter mismatch. The heat transfer
coefficient U in the controller model is overestimated by 10% compared with its value
in the plant.
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Figure 7.24 Evolution of the product flow rate for a 10% rise in the production rate at
operating point I, under plant–model parameter mismatch. The heat transfer
coefficient U in the controller model is overestimated by 10% compared with its value
in the plant.
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Figure 7.25 Evolution of the product purity for a 10% rise in the production rate at
operating point I, under plant–model parameter mismatch. The heat transfer
coefficient U in the controller model is overestimated by 10% compared with its value
in the plant.
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Figure 7.26 Evolution of the reactor holdup for a 10% rise in the production rate at
operating point I, under plant–model parameter mismatch. The heat transfer
coefficient U in the controller model is overestimated by 10% compared with its value
in the plant.



218 Process systems with high energy throughput

0 5 10 15 20 25 30
347

348

349

350

351

352

353

354

355

356

te
m

pe
ra

tu
re

, K

time, h

T
Tsp

Figure 7.27 Evolution of the reactor temperature and temperature setpoint for a 10%
rise in the production rate at operating point I, under plant–model parameter
mismatch. The heat transfer coefficient U in the controller model is overestimated by
10% compared with its value in the plant.
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Figure 7.28 Evolution of the product purity for an unmeasured 6-K rise in the coolant
inlet temperature at t = 0.
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Figure 7.29 Evolution of the reactor temperature for an unmeasured 6-K rise in the
coolant inlet temperature at t = 0.
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Figure 7.30 Evolution of the coolant flow rate for an unmeasured 6-K rise in the
coolant inlet temperature at t = 0.
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t = 0. The proposed control structure exhibits good performance, rapidly reject-
ing the disturbance by increasing the coolant flow rate. Notice also that the
setpoint of the temperature controller Tsp exhibits very little variation in this
scenario, since the disturbance acts upon the temperature dynamics in the fast
time scale and its effect in the slow time scale (i.e., on the product purity) is
very small. This observation is in complete agreement with the results of the
theoretical analysis introduced in the first part of this section.

7.7 Synopsis

In this chapter we analyzed the energy dynamics of processes featuring a high
energy throughput. We demonstrated that the presence of energy flows of differ-
ent magnitudes lies at the origin of stiffness in the process model, its dynamics
exhibiting a time-scale separation. Using singular perturbation arguments, it
was shown that the variables in the energy balance evolve in a fast time scale,
while the terms in the material-balance equations evolve over slower time scales.
Also within the framework of singular perturbations, we derived reduced-order,
non-stiff models for the dynamics in each time scale, and postulated a controller
design framework predicated on the use of fast, simple, controllers for temper-
ature control, and on addressing material-balance-related control objectives in
the slower time scales.
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Appendix A

Definitions

A.1 Lie derivatives. Involutivity

Definition A.1. Let x ∈ IRn be a vector, h(x) : IRn → IR a scalar function and
g(x) : IRn → IRn a vector function. The Lie derivative of function h with respect
to function g (or directional derivative of h along g) is defined as

Lgh(x) =
n∑

i=1

gi(x)
∂h

∂xi
(x) (A.1)

Note that Lgh(x) is itself a scalar function of x and that Lgh(x) : IRn →
IR. Consequently, we can calculate its directional derivative along the vector
function g, as

Lg(Lgh(x)) = L2
gh(x) (A.2)

or along the vector function f , as

Lf (Lgh(x)) = LfLgh(x) (A.3)

with the latter representing the mixed Lie derivative of Lgh(x) with respect to
the function f(x) : IRn → IRn.

Similarly, higher-order Lie derivatives can be defined recursively as

Lk
gh(x) = Lg

(
Lk−1

g h(x)
)

... (A.4)

It is also possible to define LBf(x) as an (m × m)-dimensional matrix of Lie
derivatives of the vector function f(x) : IRn → IRm along the columns Bi, i =
1, . . . , m of the matrix function B(x) : IRn → IRn × IRm. LBf(x) is computed by
multiplying the Jacobian of f(x) and B(x):

LBf(x) =

⎡
⎢⎢⎣

LB1f1(x) . . . LBmf1(x)
...

. . .
...

LB1fm(x) . . . LBmfm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∂f1(x)
∂x1

. . .
∂f1(x)
∂xn

...
. . .

...
∂fm(x)

∂x1
. . .

∂fm(x)
∂xn

⎤
⎥⎥⎥⎥⎥⎦B(x) (A.5)
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Definition A.2. Let x ∈ IRn be a vector and f(x) : IRn → IRn and g(x) : IRn →
IRn two vector functions. Then, the Lie bracket of the vector functions g(x) and
h(x) is defined as

[f(x),g(x)] =
∂g
∂x

(x)f(x) − ∂f
∂x

(x)g(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂g1

∂x1
. . .

∂g1

∂xn

...
. . .

...
∂gn

∂x1
. . .

∂gn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦ f(x) −

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1
. . .

∂f1

∂xn

...
. . .

...
∂fn

∂x1
. . .

∂fn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦g(x) (A.6)

Since the Lie bracket is also a vector function, iterated Lie brackets can be
defined using the following standard notation:

ad0
fg = g

ad1
fg = [f ,g]

ad2
fg = [f , [f ,g]]

...

adk
f g =

[
f , adk−1

f g
]

(A.7)

The notion of involutivity has also been employed in the statements of Theorem
A.1, and throughout the text. It is defined below.

Definition A.3. An m-dimensional distribution

G(x) = span{g1(x), . . . ,gm(x)} (A.8)

is involutive if the Lie bracket [gi(x),gj(x)], ∀ i, j = 1, . . . ,m, of any pair of
vector fields belonging to G(x) is a vector field that belongs to G(x).

A.2 Order of magnitude

Definition A.4. A scalar function δ(ε) is said to be of order ε, δ(ε) = O(ε), if
there exist positive constants k and c such that |δ(ε)| ≤ k|ε|, ∀|ε| < c.

A.3 Differential algebraic equations (DAEs)

Consider the nonlinear system of equations

F(ẋ,x,u(t)) = 0 (A.9)
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where x ∈ χ ⊂ IRn is the vector of state variables (χ is an open, connected
set), u(t) ∈ IRm is the vector of time-dependent input (control) variables and
F : IRn × χ× IRm → IRn is a smooth function. Clearly, the system in Equa-
tion (A.9) is an implicit ordinary differential equation (ODE) system if the Jaco-
bian matrix ∂F/∂ẋ is nonsingular. However, if ∂F/∂ẋ is singular, the system
(A.9) is a differential algebraic equation (DAE) system, exhibiting characteris-
tics that differ fundamentally from those of ODE systems.

Most of the research on the analysis and numerical simulation of nonlinear
DAEs has focused on systems in the fully implicit form of Equation (A.9).
However, the generality of the form of the system in Equation (A.9) does not
allow the development of explicit controller synthesis results. Also, the major-
ity of chemical process applications (see examples throughout this book), as
well as other engineering applications, are modeled by DAEs in a semi-explicit
form, such that there is a distinct separation of the differential and algebraic
equations:

ẋ = f(x) + B(x)z + G(x)u(t)

0 = k(x) + L(x)z + C(x)u(t)
(A.10)

where x ∈ χ ⊂ IRn is the vector of differential variables for which the explicit dif-
ferential equations are available, z ∈ Z ⊂ IRp is the vector of algebraic variables
that vary according to the algebraic equations, χ and Z are open, connected
sets, u(t) ∈ IRm is the vector of input variables, f(x) and k(x) are smooth vector
fields of dimensions n and p, respectively, and B(x), G(x), L(x), and C(x) are
smooth matrices of appropriate dimensions. In the above description, the inputs
u(x) and the algebraic variables z appear in the system equations in a linear
fashion, which is typical of most practical applications.

The common underlying principle in the approaches for characterizing the
solvability of a DAE system is to obtain, either explicitly, or implicitly, a local
representation of an equivalent ODE system, for which available results on exis-
tence and uniqueness of solutions are applicable. The derivation of the underlying
ODE system involves the repeated differentiation of the algebraic constraints of
the DAE, and it is this differentiation process that leads to the concept of a DAE
index that is widely used in the literature. For the semi-explicit DAE systems
(A.10) that are of interest to us here, the index has the following definition.

Definition A.5. The index νd of the DAE system in Equation (A.10) with spec-
ified smooth inputs u(t) is the minimum number of times the algebraic equations
or their subset have to be differentiated to obtain a set of differential equations
for z, i.e., in order to be able to solve ż = F(x, z, t) for z.

The index νd provides a measure of the “singularity” of the algebraic equa-
tions and the resulting differences from ODE systems. More specifically, con-
sider the DAE system of Equation (A.10) in the case in which the matrix L(x)
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is nonsingular. Then, the algebraic equations can be solved for the algebraic
variables z:

z = −L−1[k(x) + C(x)u(t)] (A.11)

and one differentiation of the algebraic equations in (A.10), or equivalently of
the solution for z (Equation (A.11)), will yield the differential equations for
z. Hence, in this case, the DAE system (A.10) has an index νd = 1. For such
systems, a direct substitution of the solution for z into the differential equations
for x will yield an equivalent ODE representation. In contrast, DAE systems with
a singular algebraic equation (more exactly, with the matrix L(x) being singular)
cannot be readily reduced to an ODE system, and have a high index, νd > 1.

In the process of deriving an equivalent ODE representation (state-space real-
ization) for the DAE systems of Equation (A.10), repeated differentiation of the
algebraic constraints may yield additional constraints that involve the manipu-
lated inputs u(t). In the context of numerical simulation of a DAE system with
specified inputs u(t), this implies that the inputs u(t) must vary smoothly with
time. However, in the context of feedback control, u is the vector of manipu-
lated inputs, and is not specified a priori as a function of time. It is in fact our
purpose to design a control law for the inputs u. The presence of the manip-
ulated inputs in the algebraic constraints in x influences the controller design
(Kumar and Daoutidis 1999a) due to the fact that the constrained state-space
region for x (which is defined by the algebraic equations/constraints) depends
on the (unknown) feedback control law for u. The notion of regularity is used
to distinguish, on the basis of the dependence of the constrained state-space
region where the differential variables x evolve on the inputs u, between two
fundamental classes of DAE systems.

Definition A.6. A differential algebraic equation system (A.10) is said to be
regular, if

(i) it has a finite index νd and
(ii) the state space region where the differential variables x are constrained to

evolve is invariant under any control law for u.

Theorem A.1 (Kumar et al. 1998) provides the necessary and sufficient con-
ditions for the existence of an ε-independent coordinate change that transforms
the two-time-scale system (2.36) into a standard singularly perturbed form. Also,
for the systems that satisfy the conditions set forth in the theorem, it provides
an explicit coordinate change.

Theorem A.1. Consider the system of Equation (2.36), for which the slow
dynamics is described by the DAE system of Equation (2.45). The system of
Equation (2.36) can be transformed into a two-time-scale singularly perturbed
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system in standard form through an ε-independent nonlinear coordinate change,
if and only if

(i) the p × p matrix LBk (with the (i, j)th component given by the Lie derivative
LBj

ki(x), where Bj is the jth column of B(x) and ki is the ith component
of k(x)) is nonsingular on χ, and

(ii) the p-dimensional distribution B(x) = span{B1(x), . . . ,Bp(x)} is involutive.

If these conditions hold, then under the coordinate change[
ζ

η

]
= T(x) =

[
φ(x)

k(x)

]
(A.12)

where ζ ∈ IRn−p, η ∈ IRp, and φ(x) is a vector field of dimension n − p with
components φi(x) such that LBj

φi ≡ 0, ∀ i, j, the system of Equation (2.36) takes
the following standard singularly perturbed form:

ζ̇ = f̃(ζ,η) + G̃(ζ,η)u

εη̇ = εf̄(ζ,η) + εḡ(ζ,η)u + Q(ζ,η)η

yi = hi(ζ,η), i = 1, . . . ,m

(A.13)

where f̃ is the Lie derivative of φ(x) along f(x), f̃ = Lfφ(x), f̄ = Lfk(x), G̃ =
LGφ(x), Ḡ = LGk(x), Q = LBk(x), evaluated at x = T−1(ζ,η), and Q(ζ,η)
is nonsingular uniformly in ζ and η.

Remark A.1. Condition (i) of Theorem A.1 essentially means that the corre-
sponding DAE system in Equation (2.45) has an index of two, which directly fixes
the dimensions of the fast and slow variables to p and n − p, respectively. Con-
dition (ii) of the theorem ensures that the (n − p)-dimensional slow ζ-subsystem
can be made independent of the singular term 1/ε, thereby yielding the system in
Equation (A.13) in the standard singularly perturbed form. While condition (ii)
is trivially satisfied for all linear systems and for nonlinear systems with p = 1,
it is not satisfied in general for nonlinear systems with p > 1.

When condition (ii) is not satisfied, a standard singularly perturbed represen-
tation for systems of the type (2.36) can still be obtained through an ε-dependent
coordinate change (Kumar et al. 1998) that is singular at ε = 0.

Remark A.2. Consider the DAE system in Equation (2.45) for which condi-
tion (i) of Theorem A.1 is satisfied, i.e., the DAE has an index of two. The
DAE system has exactly p constraints, and from the results on DAE systems
(Kumar and Daoutidis 1999a) a minimal-order state-space realization of dimen-
sion n − p can be derived, using the constraints k(x) = 0 as a part of a coordinate
change. Condition (ii) of the theorem allows the derivation of such a state-space
realization without evaluating a solution for the algebraic variables z, through
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an appropriate coordinate change. In fact, the choice of the state variables ζ

and η in Equation (A.12) precisely comprises such a coordinate change, and the
description of the slow subsystem of Equation (A.13),

ζ̇ = f̃(ζ,0) + G̃(ζ,0)u

yi = hi(x) |x=T−1(ζ,0), i = 1, . . . ,m
(A.14)

is the corresponding state-space realization of the index-two DAE system (2.45).



Appendix B

Systems with multiple-time-scale
dynamics

Section 2.4 alluded to the possibility of expanding the methods presented in
Chapter 2 to account for the presence of multiple singular perturbation param-
eters in a system of differential equations. This appendix is concerned with this
topic, and, to this end, let us consider a multiple-time-scale (multiply perturbed)
system in the standard form

dx
dt

= f(x,y1, . . . ,yM , ε), x(0) = x0

εj
dyj

dt
= gj(x,y1, . . . ,yM , ε), yj(0) = y0

j , j = 1, . . . , M

(B.1)

where x, f ∈ IRn, yj , gj ∈ IRmj , j = 1, . . . ,M , and ε = [ε1, . . . , εM ]T is a vector
of singular perturbation parameters satisfying the condition

εj+1

εj
→ 0 as ε1 → 0 (B.2)

In analogy with two-time-scale systems, the conditions for the regular degener-
ation for multiple-time-scale systems have been derived (Hoppensteadt 1971) in
terms of the Jacobian matrices in each time scale. Specifically, it is required that
the matrix

∂gj

yj
(x,y1, . . . ,yM , 0)

be nonsingular, and that its nonsingularity be preserved for each function gj

with the vector ε replaced by the scalar εj . Under these conditions, the system
will exhibit M fast time scales and one slow time scale.

Condition (B.2) implies that εM is the smallest singular perturbation param-
eter (that would yield the “fastest” fast time scale), while ε1 is the largest sin-
gular perturbation parameter, and is responsible for the “slowest” fast time
scale. Consequently, the variable yj+1 will be faster than the variable yj , for
j = 1, . . . , M − 1. It is this hierarchy of fast subsystems (boundary layers) that
distinguishes multiple-time-scale systems from two-time-scale systems.

The analysis of multiple-time-scale systems can, however, be carried out by
extending the methods used for analyzing two-time-scale systems presented in
Section 2.2. In analogy with two-time-scale systems, in the limiting case as ε → 0,
the dimension of the state space of the system in Equations (B.1) collapses
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from (n +
∑

j mj) to n, and the slow subsystem is described by the differential
algebraic equation system

dx
dt

= f(x,y1, . . . ,yM , 0)

0 = gj(x,y1, . . . ,yM , 0), j = 1, . . . ,M
(B.3)

By solving the algebraic equation system given by the constraints of Equation
(B.3), the steady-state solutions yj,ss can be obtained for the fast variables.
Subsequently, yj,ss can be used for the derivation of an equivalent n-dimensional
ODE representation of the slow subsystem:

dx
dt

= f(x,y1,ss(x), . . . ,yM,ss(x), 0) (B.4)

The descriptions of the fast subsystems are obtained hierarchically, starting from
the “fastest” fast time scale. On introducing a “stretched” time variable τM =
t/εM , the system in Equation (B.1) takes the form

dx
dτM

= εM f(x,y1, . . . ,yM , ε)

dyj

dτM
=

εM

εj
gj(x,y1, . . . ,yM , ε), j = 1, . . . , M − 1

dyM

dτM
= gM (x,y1, . . . ,yM , ε)

(B.5)

In the limit as ε → 0, the variables x and yj , j = 1, . . . ,M − 1, are in a quasi-
steady state, having negligible dynamics, and we obtain a representation of the
“fastest” fast dynamics in the stretched time scale τM :

dyM

dτM
= gM (x,y1, . . . ,yM , 0) (B.6)

in which the slow variables x and yj , j = 1, . . . , M − 1, are unchanged from
their initial conditions x = x0 and yj = y0

j , j = 1, . . . , M − 1, and are treated as
constant parameters. The fast subsystem (B.6) represents the fastest boundary-
layer system.

Continuing this line of reasoning, the introduction of the kth stretched time
scale (∀k ∈ [1,M ]), τk = t/εk, results in a description of system (B.1) of the form

dx
dτk

= εkf(x,y1, . . . ,yM , ε)

dyj

dτk
=

εk

εj
gj(x,y1, . . . ,yM , ε), j = 1, . . . , k − 1

dyk

dτk
= gk(x,y1, . . . ,yM , ε)

εj

εk

dyj

dτk
= gj(x,y1, . . . ,yM , ε), j = k + 1, . . . ,M

(B.7)
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In the limit as εk → 0, the dynamics of the slow variable x become negligible, and

dyj

τk
= 0, j = 1, k − 1

since, by condition (B.2), εk/εj → 0 for j = 1, . . . , k − 1. Hence, the variables x
and yj , j = 1, . . . , k − 1, will be fixed at their initial values. Also, following from
the same condition, εj/εk → 0, j = k + 1, . . . ,M , and therefore the differential
equations for yj , j = k + 1, . . . , M , are replaced by a set of algebraic constraints:

0 = gj

(
x0,y0

1, . . . ,y
0
k−1,yk, . . . ,ym, 0

)
, j = k + 1, . . . ,M (B.8)

The representation of the kth boundary layer, corresponding to the fast variables
yk, is then obtained as

dyk

dτk
= gk

(
x0,y0

1, . . . ,y
0
k−1,yk, . . . ,yM , 0

)
0 = gj

(
x0,y0

1, . . . ,y
0
k−1,yk, . . . ,ym, 0

)
, j = k + 1, . . . ,M

(B.9)

where the faster fast variables yj , j = k + 1, . . . ,M , can be obtained by solving
the algebraic equation system (B.8).

Such nested applications of single-parameter singular perturbation theory (i.e.,
the extension of the analysis of two-time-scale systems presented in Chapter 2
to multiple-time-scale systems) have been used for stability analysis of linear
(Ladde and Siljak 1983) and nonlinear (Desoer and Shahruz 1986) systems in the
standard form. However, as emphasized above (Section 2.3), the ODE models of
chemical processes are most often in the nonstandard singularly perturbed form,
with the general multiple-perturbation representation

ẋ = f(x) + G(x)u +
M∑

j=1

1
εj

Bj(x)kj(x) (B.10)

where x ∈ χ ⊂ IRn is the vector of state variables, f(x) and kj(x) are smooth
vector fields of dimensions n and pj (j = 1, . . . ,M), and G(x) and Bj(x) are
matrices of dimensions n × q and n × pj , respectively. The matrices Bj and
(∂kj(x)/∂x) are assumed to have full column and row ranks, respectively.
Also, in order for a system described by Equation (B.10) to exhibit a dynamic
behavior with more than two time scales, the small-perturbation parameters εj ,
j = 1, . . . , M , are assumed to satisfy relation (B.2). Existing results (Vora 2000)
referring to the time-scale decomposition of such systems (B.10) also rely on
a successive application of the methods used in the analysis of two-time-scale
nonregular singularly perturbed systems presented in Section 2.3.

Specifically, a representation of the fastest dynamics is obtained by introducing
the stretched fastest time scale τM = t/εM . Then, in the limit as εM → 0, we
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have εM/εj=0 and the fastest dynamics (fastest boundary-layer subsystem) is
described by

dx
dτM

= BM (x)kM (x) (B.11)

Similarly to the analysis of two-time-scale systems, in the slow time scale t, on
multiplying Equation (B.10) by εM , and considering the limit as εm → 0, we
obtain a set of constraints that must be satisfied in the slow subsystem:

0 = kMi
(x), i = 1, . . . , pM (B.12)

where kMi
(x) is the ith component of kM (x). Since the Jacobian [∂kM (x)/∂x]

has full rank, the above constraints are linearly independent. In the slow time
scale t, the ratios kMi

/εM become indeterminate as εM → 0. By denoting these
finite, but unknown, terms by zMi

= limεm→0 kMi
/εM (zM = [zM1 . . . zMp

]T),
and taking the limit as εM → 0 in Equation (B.10), we obtain

ẋ = f(x) + G(x)u +
M−1∑
j=1

1
εj

Bj(x)kj(x) + BM (x)zM

0 = kM (x)

(B.13)

which describes the slow dynamics after the fastest boundary layer of Equation
(B.10). Note that Equation (B.13) is still a stiff system, since it contains M − 1
parameters of different orders of magnitude. In addition, (B.13) is a DAE sys-
tem of nontrivial index, since the “algebraic” variables zM cannot be directly
evaluated from the algebraic equations. However, for most practical cases (Vora
2000), the matrix (LBM

km(x)) is nonsingular, thus allowing us to obtain the
variables zM after one differentiation of the algebraic constraints:

zM = −(LBM
km(x))−1

⎧⎨
⎩Lfkm(x) + LGkm(x)u +

M−1∑
j=1

1
εj

LBj
kj(x)

⎫⎬
⎭ (B.14)

The terms εj/kj contained in the solution for the variables zM (Equation (B.14))
become indeterminate as εj → 0, and are implicitly determined by the additional
constraints obtained in the jth time scale. Using the solution for zM in Equa-
tion (B.14), a state-space realization of the DAE system in Equation (B.13) is
obtained as

ẋ = f(x) + G(x)u +
M−1∑
j=1

1
εj

Bj(x)kj(x) − BM (x)(LBM
kM (x))−1

×

⎧⎨
⎩LfkM (x) + LGkM (x)u +

M−1∑
j=1

1
εj

LBj
kj(x)

⎫⎬
⎭

0 = kM (x)

(B.15)
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or, in a slightly rearranged form that collects the terms containing the
parameter εM−1,

ẋ =
(
f(x) − BM (x)(LBM

kM (x))−1LfkM (x)
)

+
(
G(x) − BM (x)(LBM

kM (x))−1LGkM (x)
)
u

+

⎧⎨
⎩

M−2∑
j=1

1
εj

Bj(x)kj(x) − BM (x)(LBM
kM (x))−1

×
M−2∑
j=1

1
εj

(LBj
kM (x))kj(x)

⎫⎬
⎭

+
1

εM−1
{BM−1(x)kM−1(x)

−BM (x)(LBM
)−1(LBM−1kM (x))kM−1(x)}

0 = km(x)

(B.16)

Introducing the (M − 1)st fast time scale, τM−1 = t/εM−1, and considering the
limit εM−1 → 0, we obtain the following description of the (M − 1)st fast dynam-
ics of the system (B.10):

dx
dτM−1

= [BM−1(x) BM (x)]

[
kM−1(x)

−(LBM
kM (x))−1(LBM−1kM (x))kM−1(x)

]

0 = kM (x) (B.17)

which represents the (M − 1)st boundary-layer subsystem. Under the assump-
tion that the matrix [BM−1(x) BM (x)] has full column rank, the constraints
after the (M − 1)st boundary layer, in addition to kM (x) = 0, are kM−1(x) = 0.
Note that the additional constraints kM−1(x) = 0 are the same as those that
would be obtained on considering Equation (B.10) in the limit εM−1 → 0.
On letting εM−1 → 0 in Equation (B.16), and denoting by zM−1 the pM−1-
dimensional vector of indeterminate terms kM−1(x)/εM−1 that arise in this limit,
we obtain the following description of the slow dynamics after the (M − 1)st
boundary layer:

ẋ =
(
f(x) − BM (x)(LBM

km(x))−1LfkM (x)
)

+
(
G(x) − BM (x)(LBM

kM (x))−1LGkM (x)
)
u

+

⎧⎨
⎩

M−2∑
j=1

1
εj

Bj(x)kj(x) − BM (x)(LBM
kM (x))−1

×
M−2∑
j=1

1
εj

(LBj
kM (x))kj(x)

⎫⎬
⎭

+ [BM−1(x) − BM (x)(LBM
kM (x))−1(LBM−1kM (x))]zM−1

0 = kM−1(x)
0 = kM (x)

(B.18)
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Proceeding in a similar fashion, in the slow time scale after the lth bound-
ary layer, assuming that the

(
n ×

∑M
j=l pj

)
matrix [Bl(x)| · · · |Bm(x)] has full

column rank, the limit εl → 0 leads to the additional constraints kl = 0. These
constraints must be satisfied in the slow subsystem, together with the previ-
ously obtained constraints corresponding to the faster time scales. On defining
zli = limεl→0 kli(x)/εl, and taking the limit εl → 0 in Equation (B.10), we obtain
the following description of the slow dynamics after the lth boundary layer:

ẋ = f(x) + G(x)u +
l−1∑
j=1

1
εj

Bj(x)kj(x) +
M∑
j=l

Bj(x)zj

0 = kj(x), j = l, . . . ,M

(B.19)

The system in Equation (B.19) is “less stiff” than the original system (B.10),
since it contains fewer small perturbation parameters ((l − 1) < M). Like the
other descriptions of the slow dynamics obtained so far, (B.19) is a DAE system of
nontrivial index, since there are no algebraic equations that would allow the vari-
ables zj to be evaluated directly. Making the assumption that the

∑M
j=l ×

∑M
j=l

matrix

(LBk(x))l
Δ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LBM
kM . . . LBM

kj . . . LBM
kl

...
. . .

...
. . .

...

LBj
kM . . . LBj

kj . . . LBj
kl

...
. . .

...
. . .

...

LBl
kM . . . LBl

kj . . . LBl
kl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.20)

is nonsingular, ∀l ∈ [1,M ], we fix the index of the DAE system (B.19) to two,
assuring that the solution for the variables zj , j = l, . . . ,M , can be obtained
after only one differentiation of the algebraic constraints. Also, the numbers of
slow and fast variables are set to n −

∑M
j=l pj and

∑M
j=l pj , respectively.

By carrying on the analysis to l = 1, we obtain

ẋ = f(x) + G(x)u +
M∑

j=1

Bj(x)zj

0 = kj(x), j = 1, . . . ,M

(B.21)

which is a description of the slow dynamics of the system (B.10), and is a non-stiff
system.

Note that this method ultimately leads to a set of state-space realizations for
the reduced-order models for each time scale of a multiple-time-scale system,
but does not identify the slow and fast variables associated with the individual
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time scales. They can be obtained only from a coordinate change that would
yield a standard singularly perturbed form of the system (B.10). The fact that
kl(x), l = 1, . . . , M , are constrained to be equal to zero in the slow systems
that follow the lth boundary layer and are non-zero in the lth boundary layer
indicates that kl(x) should be used in the definition of the fast variables in a
nonlinear coordinate change. Theorem B.1 (Vora 2000) states the conditions for
the existence of such a coordinate transformation.

Theorem B.1. Consider the system in Equation (B.10), and assume that

(i) the
(∑M

j=l ×
∑M

j=l

)
matrix (LBk(x))l defined in Equation (B.20) is non-

singular
(ii) the

(∑M
j=l pj × n

)
matrix [(∂kl(x)/∂x)T| · · · |(∂kM (x)/∂x)T]T has full row

rank ∀l ∈ [1,M ].

Then, there exists a coordinate change of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ

η1

...

ηj

...

ηM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= T(x, ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(x)

k1(x)/ε1

...

kj(x)/εj

...

kM (x)/εM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.22)

where ζ ∈ IRn−
∑

j pj and ηj ∈ IRpj , j = 1, . . . ,M , under which the multiple-time-
scale system of Equation (B.10) takes the following singularly perturbed form:

ζ̇ = f̃(ζ, εη) + g̃(ζ, εη)u +
M∑
i=1

{
B̃i(ζ, εη)ηi

}

ε1η̇1 = f̄1(ζ, εη) + Ḡ1(ζ, εη)u +
M∑
i=1

{
B̄1

i (ζ, εη)ηi

}
...

εj η̇j = f̄ j(ζ, εη) + Ḡj(ζ, εη)u +
M∑
i=1

{
B̄1

j (ζ, εη)ηi

}
...

εM η̇M = f̄M (ζ, εη) + ḠM (ζ, εη)u +
M∑
i=1

{
B̄1

M (ζ, εη)ηi

}

(B.23)
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where f̃ = Lfφ(x), G̃ = LGφ(x), B̃ = LBφ(x), f̄ j = Lfkj(x), Ḡj = LGkj(x),
and B̃j

i = LBi
kj(x) are evaluated at x = T−1(ζ, εη), ∀i, j, and the matrix

Ql(ζ, 0) = (LBk(x))l evaluated at x = T−1(ζ, 0) is nonsingular uniformly in
ζ ∈ IRn−

∑
j pj , ∀l ∈ [1,M ].

Notice that Theorem B.1 is an extension of Theorem A.1 to systems with mul-
tiple singular perturbation parameters. Also, note that the standard singularly
perturbed form (B.23) allows one to obtain the entire hierarchy of boundary-layer
subsystems and the corresponding slow subsystem for any l ∈ [1,M ].
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Matlab code

Listing C.1. Symbolic derivation of reduced-order model of the slow dynamics, and of the
input–output linearizing temperature controller for the reactor–feed effluent heat exchanger
system in Section 6.6

% define symbolic variables
syms f
syms B B11 B12 B13 B21 B32 B43
syms Fins Tins
syms Fin Tin VH VC VF UA V DH QH alpha F
syms kr ki kc
syms kreac cA
syms rhocp
syms Tvec TC_ TH_ TR Ti
syms coordch delta eta1 eta2 eta3

syms GammaTilde k1 k2 k3
syms z
syms dTdt_slow
syms LOG_FIXED_SS
syms a cAo k0 E Rconst

% vector field f corresponding to Equation (6.55); cA and V are not
% included in the derivation since they are slow variables

f = [Fin / VC * Tin
- F * (1 - alpha) / VH * TH_ - alpha * F * TR / VH
- kreac * cA * DH/ rhocp
QH / rhocp / VF];

% construct matrix B corresponding to Equation (6.55); cA and V are
% not included in the derivation since they are slow variables
B11 = -1 / VC;
B12 = -1 / VC;
B13 = -1 / VC;
B21 = 1 / VH;
B32 = 1 / V;
B43 = 1 / VF;
B = [B11 B12 B13 ;

B21 0 0 ;
0 B32 0 ;
0 0 B43 ];

B = Fins * Tins * B;
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% build vector field GammaTilde of linearly independent constraints
% corresponding to Equation (6.57). Underwood approximation of LMTD
% is used
k1 = Fin * rhocp * TR * (1-alpha) ...

- UA * (((TH_-Tin)ˆ(1/3) + (TR-TC_)ˆ(1/3))/2)ˆ(3);

k2 = Ti - TR;
k3 = TC_ - Ti;

GammaTilde = [ k1; k2; k3];

% vector of state variables in energy balance
Tvec = [TC_ ; TH_; TR ; Ti];

% compute algebraic variables z from Equation (6.57)
z = - inv ( jacobian(GammaTilde, Tvec) * B) ...

* jacobian(GammaTilde, Tvec) * f;

% build slow subsystem in DAE form
dTdt_slow = simplify(f + B* z);

% apply coordinate change of Equations (6.61) and (6.62)
% to obtain minimal-order state-space
% realization of the slow dynamics

A = solve(’delta = TR’,...
’eta1 = Fin * rhocp * TR - UA * (((TH_-Tin)ˆ(1/3)

+ (TR-TC_)ˆ(1/3))/2)ˆ(3)’,...
’eta2 = Ti - TR’,’eta3 = TC_ - Ti’, TH_, TR, TC_, Ti);

dTdt_slow_new = subs(dTdt_slow, TH_, A.TH_(1));

dTdt_slow_new = subs(dTdt_slow_new, TC_, A.TC_(1));

dTdt_slow_new = subs(dTdt_slow_new, TR, A.TR(1));

dTdt_slow_new = subs(dTdt_slow_new, Ti, A.Ti(1));

eta1 = 0; eta2 = 0; eta3 = 0 ;

dTdt_slow_new = subs(dTdt_slow_new);

% separate the expression for the evolution of the reactor
% temperature in the slow time scale and obtain Equation (6.63)

ddeltadt = simplify(dTdt_slow_new(3));

% controller design
% The third equation in (6.63) is in the format
%
% d delta/ dt = f_slow + g_slow * u
%
% with h = delta; u = QH
%
% the corresponding input/output linearizing controller
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% (Daoutidis and Kravaris, 1992) will be in the form
%
% u = (T_R_sp - T_R - beta * f_slow)/beta/g_slow
%
% with

f_slow = simplify( subs(ddeltadt, QH, 0))

g_slow = simplify(ddeltadt - f_slow);

g_slow = subs(g_slow, QH, 1)

Listing C.2. S-function illustrating the use of the reduced-order model of the slow dynamics
in the derivation of a control system (including an input–output linearizing temperature
controller) for the reactor–feed effluent heat exchanger system in Section 6.6

function [sys,x0,str,ts] = sf_FEHE(t,x,u,flag)
% Matlab s-function implementation of Case Study 6.6,
% control of a reactor-FEHE process

% parameters
prm.k0 = 12267000 ; % 1/s
prm.E = 142870 ; % J/mol
prm.DH = -54.8283e3 ; % J/mol
prm.rhocp = 4.184E6 ; % J/m3/K
prm.UA = 83680 ; % W/K
prm.VH = 0.1 ; % m3
prm.VC = 0.09 ; % m3
prm.VF = 0.01 ; % m3
prm.L = 5.0 ; % m
prm.cAo = 1000 ; % mol/m3
prm.nnode = 1001 ; % nodes

prm.Fs = 5.7667e-4 ; % m3/s

prm.tau_alpha = 10 ; % s
prm.k_alpha = 0.0018 ; % 1/K

prm.tau_v = 18 *60 ; % s
prm.k_v = - 5 ; % 1/s

prm.NLCbeta = 15 * 60 ; % s

switch flag,
case 0,

[sys,x0,str,ts] = mdlInitializeSizes(prm);
case 1,

sys = mdlDerivatives(t,x,u,prm);
case 2,

sys = mdlUpdate(t,x,u,prm);
case 3,

sys = mdlOutputs(t,x,u,prm);
case 9,

sys = mdlTerminate(t,x,u,prm);
otherwise

error([’Unhandled flag = ’,num2str(flag)]);
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end

function [sys,x0,str,ts] = mdlInitializeSizes(prm)

sizes = simsizes;

sizes.NumContStates = (2 * prm.nnode + 4) + 7;
sizes.NumDiscStates = 0;
sizes.NumOutputs = (2 * prm.nnode + 4) + 11;
sizes.NumInputs = 5;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

x0 = load_x0(0);
str = [];
ts = [0 0];

% end mdlInitializeSizes

function sys = mdlDerivatives(t,x,u,prm)

% inputs
Tin = u(1) ; % inlet temperature
Fin = u(2) ; % inlet flow rate
Texitsp = u(3) ; % exit temperature setpoint
Vsp = u(4) ; % reactor holdup setpoint
TR_sp = u(5) ; % reactor temperature setpoint

%=================================================
% CONTROL SYSTEM %
%=================================================

%==== PROCESS OUTLET TEMPERATURE (Texit) CONTROLLER ======

% isolate process outlet temperature from the state vector
Texit = SysVariableMapping (x,prm,’Texit’);

% isolate time integral of outlet temperature error
integralerror_texit = SysVariableMapping ( x, prm, ...

’integralerror_texit’)

% PI controller for process outlet temperature
alpha = PIcontrol(Texit, Texitsp, ...

integralerror_texit, 0.1, prm.k_alpha, prm.tau_alpha);

% define additional state, required to compute
% integral action for outlet temperature controller
dintegralerror_texit = -Texit + Texitsp;

% first-order filter for process outlet temperature
dTexit_dt = - 1/2*(Texit - ((alpha * x(3) + (1 - alpha) * x(5))));

%==== REACTOR HOLDUP CONTROLLER ======================
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% integral action for holdup controller
integralerror_v = SysVariableMapping ( x, prm, ’integralerror_v’);

% PI controller for reactor holdup
F = PIcontrol (x(1), Vsp,...

integralerror_v, prm.Fs, prm.k_v, prm.tau_v);

% define additional state, required to compute
% integral action for reactor holdup controller
dintegralerror_v = Vsp - x(1);

%==== REACTOR TEMPERATURE CONTROLLER ==================

% input-output linearizing output feedback controller
% synthesized using the reduced-order model of the slow dynamics

V = SysVariableMapping ( x, prm, ’v_red’);
cA = SysVariableMapping ( x, prm, ’cA_red’);
delta = SysVariableMapping ( x, prm, ’delta’);

kreac = prm.k0 * exp(-prm.E/8.314/delta);

integralerror_t = SysVariableMapping(x,prm,’integralerror_t’);

[f_slow, g_slow] = ReducedOrderSlowModel (x,u,prm,F,alpha);

% input-output linearizing controller
% calculate Q heater using the slow model

% integral action for reactor temperature controller
d_integralerror_t = 1/ prm.NLCbeta * (TR_sp - x(3));

QH = ReactorTemperatureControl (x(3), TR_sp,...
integralerror_t, prm, f_slow, g_slow);

% state-space realization of the reduced-order model (used as
% state observer for the reactor temperature controller)

% overall reactor mass balance
dV_red_dt = Fin - F;
% mass balance for component A
dcA_red_dt = Fin * (prm.cAo - cA) / V - kreac * cA;
% reactor energy balance
ddelta_dt = f_slow + g_slow * QH;

% vector of the time derviatives of the variables in the slow model
ddt_slow_red = [dV_red_dt; dcA_red_dt; ddelta_dt];

% Full-order model
% a finite-difference scheme is used to discretize
% the partial differential
% equations used to model the heat exchanger
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V = SysVariableMapping(x,prm,’V’);
cA = SysVariableMapping(x,prm,’cA’);
TR = SysVariableMapping(x,prm,’TR’);
Ti = SysVariableMapping(x,prm,’Ti’);
Tcout = SysVariableMapping(x,prm,’Tcout’);

kreac = prm.k0 * exp( - prm.E / 8.314 / TR);
TH(1:prm.nnode) = x(5: (prm.nnode + 4));
TC(1:prm.nnode) = x((prm.nnode+5): (2*prm.nnode + 4));

% reactor balance equations
dVdt = Fin - F;
dcAdt = Fin * (prm.cAo - cA) / V - kreac * cA;
dTRdt = Fin * (Ti - TR) ...

/ V - kreac * cA * prm.DH / prm.rhocp;

% energy balance for furnace
dTidt = Fin * (Tcout - Ti) / prm.VF + QH /prm.rhocp / prm.VF;

% discretized model of the feed-effluent heat exchanger
dTCdt = zeros(prm.nnode,1);
dTHdt = zeros(prm.nnode,1);

Ah = prm.VH / prm.L; % cross section of hot leg
vh = F*(1-alpha)/Ah;

Ac = prm.VC / prm.L; % cross section of cold leg
vc = Fin/Ac;

TH(1:prm.nnode) = x(5: (prm.nnode + 4));
TC(1:prm.nnode) = x((prm.nnode+5): (2*prm.nnode + 4));

dz = prm.L/(prm.nnode-1); % set discretization interval length

% finite difference discretization of HX PDE
dTCdt(1) = - vc * (TC(1)- Tin) / dz;

dTHdt(1) = - vh * (TH(1) - TH(2)) / dz ...
- prm.UA/prm.rhocp * (TH(1) - TC(1)) / (prm.VC);

dTCdt(prm.nnode) = - vc * (TC(prm.nnode)- TC(prm.nnode-1))/dz ...
+ prm.UA/prm.rhocp * (TH(prm.nnode) ...
- TC(prm.nnode) ) / (prm.VC);

dTHdt(prm.nnode) = - vh * (TH(prm.nnode) - TR)/dz;

for i=2:(prm.nnode-1)
dTCdt(i) = - vc * (TC(i)- TC(i-1)) / dz ...

+ prm.UA/prm.rhocp * (TH(i) - TC(i))/ (prm.VC);
dTHdt(i) = - vh * (TH(i) - TH(i+1))/dz ...

- prm.UA/prm.rhocp * (TH(i) - TC(i))/(prm.VH);
end



Appendix C. Matlab code 243

% assemble vector of time derivatives of the states of both the
% reduced-order and full-order models

sys = [dVdt ; dcAdt; dTRdt ; dTidt; dTHdt; dTCdt; ...
ddt_slow_red ;d_integralerror_t;dTexit_dt; ...
dintegralerror_texit; dintegralerror_v];

% end mdlDerivatives

function sys = mdlUpdate(t,x,u,prm)

sys = [];

% end mdlUpdate

function sys = mdlOutputs(t,x,u,prm)

% inputs
Tin = u(1) ; % inlet temperature
Fin = u(2) ; % inlet flow rate
Texitsp = u(3) ; % exit temperature setpoint
Vsp = u(4) ; % reactor holdup setpoint
TR_sp = u(5) ; % reactor temperature setpoint

% recalculate controller outputs for reporting purposes
% bypass ratio
Texit = SysVariableMapping (x,prm,’Texit’);

integralerror_texit = SysVariableMapping ( x, prm, ’
integralerror_texit’);

alpha = PIcontrol(Texit, Texitsp, ...
integralerror_texit, 0.1, prm.k_alpha, prm.tau_alpha);

% reactor effluent flow rate
integralerror_v = SysVariableMapping ( x, prm, ’integralerror_v’);

F = PIcontrol (x(1), Vsp,...
integralerror_v, prm.Fs, prm.k_v, prm.tau_v);

% QH
integralerror_t = SysVariableMapping(x,prm,’integralerror_t’);

[f_slow, g_slow] = ReducedOrderSlowModel (x,u,prm,F,alpha);

QH = ReactorTemperatureControl (x(3), TR_sp, ...
integralerror_t, prm, f_slow, g_slow

);

% calculate reactor conversion
conversion = (prm.cAo-x(2))/prm.cAo * 100;

% assemble output vector
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sys = [x;QH;conversion;alpha; F];

% end mdlOutputs

function sys = mdlTerminate(t,x,u,prm)

sys = [];

% end mdlTerminate

function out = PIcontrol(Ym,Ysp,integr_error,bias, Kc,tau_I)

out = bias + Kc * ((Ysp - Ym) + 1/tau_I * integr_error);

% end PIcontrol

function out = SysVariableMapping(x,prm,VariableSelector)
% isolate specified variable from state vector x

if strcmp(variableSelector,’Textit’)
% process outlet temperature
out = x (2 * prm.nnode + 4+5);

elseif strcmp (VariableSelector, ’integralerror_texit’)
out = x (2 * prm.nnode + 4 + 6);

elseif strcmp (VariableSelector, ’integralerror_v’)
% integral action for holdup controller
out = x (2 * prm.nnode + 4 + 7);

elseif strcmp (VariableSelector, ’V_red’)
% reactor holdup based on reduced-order model
out = x (2 * prm.nnode + 4 + 1);

elseif strcmp (VariableSelector, ’cA_red’)
% reactor composition based on reduced-order model
out = x (2 * prm.nnode + 4 + 2);

elseif strcmp (VariableSelector, ’delta’)
% reactor temperature based on reduced-order model
out = x (2 * prm.nnode + 4 + 3);

elseif strcmp (VariableSelector, ’integralerror_t’)
% integrated error of reactor temperature
out = x (2 * prm.nnode + 4 + 4);

elseif strcmp (VariableSelector, ’V’)
% reactor holdup
out = x (1);

elseif strcmp (VariableSelector, ’cA’)
% reactor composition
out = x (2);

elseif strcmp (VariableSelector, ’TR’)
% reactor temperature
out = x (3);

elseif strcmp (VariableSelector, ’Ti’)
% furnace temperature
out = x (4);

elseif strcmp (VariableSelector, ’Tcout’)
% cold leg outlet temperature
out = x (4 + 2 * prm.nnode);
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else
disp(’Unknown string’);
out = NaN

end;
% end SysVariableMapping

function [f_slow, g_slow] = ReducedOrderSlowModel (x,u,prm,F,alpha)
% functions f and g in the reduced-order model of the slow dynamics

% states of the reduced-order model
V = SysVariableMapping (x , prm , ’V_red’) ;
cA = SysVariableMapping (x , prm , ’cA_red’);
delta = SysVariableMapping (x , prm , ’delta’) ;

% system inputs (same as full-order model)

Tin = u(1) ; % inlet temperature
Fin = u(2) ; % inlet flow rate
Texitsp = u(3) ; % exit temperature setpoint
Vsp = u(4) ; % reactor holdup setpoint
TR_sp = u(5) ; % reactor temperature setpoint

kreac = prm.k0 * exp( -prm.E / 8.314 / delta);

DEN = ( prm.VC * prm.UA + prm.UA * prm.VF ...
+ prm.UA * V + 8 * prm.VH * Fin * prm.rhocp ...
- 8 * prm.VH * Fin * prm.rhocp * alpha) * prm.rhocp;

f_slow = ( - kreac * cA * prm.DH * V * prm.UA ...
+ Fin * Tin * prm.rhocp * prm.UA ...
- prm.rhocp * F * Tin * prm.UA ...
- 8 * prm.rhocpˆ2 * F * Fin * delta ...
+ prm.rhocp * F * Tin * alpha * prm.UA ...
+ 8 * prm.rhocpˆ2 * F * alpha * Fin * delta ...
- delta * prm.rhocp * F * alpha * prm.UA) ...
/ DEN ;

g_slow = prm.UA / DEN ;

% end SlowModel

function QH = ReactorTemperatureControl (TR, TR_sp, integralerror_t

prm, f_slow, g_slow)
% nonlinear controller for reactor temperature

QH = ((integralerror_t + TR_sp - TR ...
- prm.NLCbeta * f_slow ) / (prm.NLCbeta * g_slow ));

% end ReactorTemperatureControl
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bypass stream, 159

composite control, 30, 44

condenser, 65, 85, 112

constitutive relation, 149, 192

continuously stirred tank reactor, 37, 47,
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two-phase, 46

controller design

distributed model-based, 8

input–output linearization, 57, 88, 170,
212

model predictive, 7

passivity-based, 7

self-optimizing, 7

CSTR, see continuously stirred tank
reactor

DAE, see differential algebraic equations

Damköhler number, 81

differential-algebraic equations, 14,
224

algebraic constraints, 23, 58, 75,
109, 149, 193, 206, 225

dynamic extension, 44, 57

index, 225

nonregular, 44, 231

ODE representation, see state-space
realization

regular, 226
regularization, 44

state-space realization, 24, 57, 109,
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coordinate change, 22, 24, 76, 107,
109, 150, 169, 226, 235, 238

distillation column, 47, 67

heat-integrated, 82

high-purity, 180

midpoint temperature, 200

vapor recompression, 157

dynamic process control, 5

energy recovery number, 146

equilibrium manifold, 17, 74, 106, 148,
155

control dependent, 40

invariant, 17

feed–effluent heat exchanger, 82, 144

FEHE, see feed–effluent heat exchanger

filtering

first-order filter, 170

finite-difference discretization, 161, 198

heat exchanger networks, 3, 143

heat pumping, 143, 156

heat transfer, 21, 23, 25, 144, 156, 158,
168, 201

coefficient, 25, 161

limitations, 206

medium, 144

hierarchical control, 42, 44, 110

distributed layer, 43

supervisory layer, 43

ill-conditioning, see multiple time scale
behavior, stiffness

impurities, 64

control, 84, 118

heavy, 66

inhibitive effect, 85

light, 65

input multiplicity, 87

inverse response, 210

involutivity, 224
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Lie derivative
definition, 223

LMTD, see log mean temperature
difference

log mean temperature difference, 168
Underwood approximation, 169

mass transfer, 21, 23, 65, 73, 105
coefficient, 66, 115

minimum-phase system, 54, 210
multiple time scale behavior, 9, 15–17,

42, 229
“stretched” time variable, 15, 231
boundary-layer correction, 16
fast dynamics, 15
slow dynamics, 16
slow time scale, 16, 232
stiffness, 9, 156, 192

multiple-effect evaporator, 178

ODE, see ordinary differential equations
order of magnitude, 40, 63, 84, 96, 105,

158, 183, 186, 205
definition, 224

ordinary differential equations, 11
regular perturbation, 12
singular perturbation

nonstandard, 14, 21, 55, 86, 105
standard, 14

partial control, 6
partial-differential equations, 164
pinch analysis, 4, 161
plant-wide control, 6

hierarchical controller design strategy,
45

polymerization, 201
process inventory variable, 146
process-wide energy optimization,

151
purge number, 104

definition, 72
purge stream, 46, 64, 103

real-time optimization, 111
recycle number, 104

definition, 36
recycle stream, 35, 37, 41, 46, 48,

65, 103, 149, 153, 207
as energy carrier, 149, 153, 207

reduced-order model, 28, 30, 44,
55, 73, 101, 110, 147, 150,
205, 234

reflux ratio, 83, 159, 195
relative volatility, 48, 68, 181

separation unit, 37, 71, 102
smart manufacturing, 9
snowball effect, 5
solvent, 45
statically equivalent output, 211
stoichiometric matrix, 203, 208

Tennessee Eastman process, 5, 113
Tikhonov, A. N., 16, 43
toluene hydrodealkylation plant,

113
trim heater, 159

vinyl acetate monomer plant, 113

zero dynamics, 54
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