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Preface

Postgenome science is characterized by omics data related to genome, transcrip-
tome, epigenome, proteome, metabolome and interactome. In the omics era, it is a 
revolution in cancer research which fundamentally shifts the strategy from piece-by-
piece to global analysis and from hypothesis-driven to discovery-based research.

This book attempts to take a comprehensive overview on different areas of 
omics technologies for cancer research. It expounds important omics technologies 
which are multidimensional tools that may translate into clinical applications serv-
ing as the basis for personalized medicine of the 21st century.

This book not only serves as an introduction to novices to the area and a useful 
reference for those already involved, but also serves as a stimulus to these and oth-
ers to develop new approaches to cancer research.

November 2009 William C.S. Cho
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Abstract Cancer is a complex genetic, proteomic, and cellular disease caused by 
multiple factors via genetic mutations (hereditary or somatic) or environmental 
factors. The emerging omics technologies are being increasingly used for cancer 
research and personalized drug discovery, including genomics, epigenomics, 
proteomics, cytomics, metabolomics, interactomics, and bioinformatics. Recent 
advances in high-throughput omics technologies have provided new opportunity in 
the molecular analysis of human cancer in an unprecedented speed and details.

The detection and treatment of cancer is greatly facilitated by the omics tech-
nologies. For example, genomics analysis provides clue for gene regulation and 
gene knockdown for cancer management. The approval of Mammaprint and 
Oncotype DX indicates that multiplex diagnostic marker sets are becoming feasi-
ble. Discovery of the involvement of microRNAs in human cancers has opened a 
new page for cancer researchers. Some therapeutic drugs targeting on DNA methy-
lation and histone deacetylation are currently undergoing keen studies. Proteomics 
also plays an important role in cancer biomarker discovery and quantitative pro-
teome-disease relationships provide a mean for connectivity analysis. Fluorescent 
dye enables a more reliable analysis and it facilitates the progress of biochip and 
cytomics. The huge amount of information collected by multiparameter single cell 
flow- or slide-based cytometry measurements serves to investigate the molecular 
behavior of cancer cell populations. Cancer is also an ideal field of application for 
metabolite profiling owing to its unique biochemical properties.

It is envisioned that omics technologies will enhance our understanding of 
molecular signatures of cancer on both qualitative and quantitative patterns. The 
novel omics technologies have brought powerful abilities to screen cancer cells at 
the gene, transcript, protein, metabolite, and their interaction network level in 
searching of novel drug targets, expounding the drug mechanism-of-action, identifying 
adverse effects in unexpected interaction, validating current drug targets, speeding 
up the discovery of new targets, exploring potential applications for novel drugs, 
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and enabling the translation from bench to bedside. The field is moving fast, specialized 
techniques are being developed to integrate omics information and to enable new 
research avenues that can take advantage of and apply this information to new therapies. 
In this chapter, different omics technologies are briefly introduced.

1.1  Introduction

After the Human Genome Project, the scientific era of omics has emerged to 
revolutionize our way of studying and learning about cancer (Keusch 2006; 
Nicholson 2006; Finn 2007; Hamacher et al. 2008). The Greek suffix “ome” 
means collection or body, the term omics represents the rigorous study of various 
collections of molecules, biological processes, physiologic functions and struc-
tures as systems. It deciphers the dynamic interactions between the numerous 
components of a biological system to analyze networks, pathways, and interac-
tive relations that exist among them, such as genes, transcripts, proteins, metabo-
lites, and cells (Keusch 2006).

Recent studies use a combination of high-throughput omics technologies, 
including genomics, transcriptomics, epigenomics, proteomics, metabolomics, 
interactomics, and bioinformatics. Omics research has launched the era of cancer 
molecular medicine. Application of omics in cancer research provides multi-
dimensional analytical approach that reveals cancer molecular portraits. It pro-
vides a good deal of biological information and new insights into the gene, 
protein, and metabolite profiles during various stages of cancer. The recent 
developments in screening omics technologies have allowed the discovery of 
combinatorial cancer biomarkers (Cho 2010a). Omics analysis may be translated 
into practice for risk stratification, early detection, diagnosis, biomarker identi-
fication, treatment selection, prognostication, and the monitoring for recurrence 
(Cho 2007a). Several commonly used omics technologies in cancer research are 
overviewed in this chapter.

1.2  Genomics

Genomics is the study of the genomes of organisms. The application of genomics may 
lead to the discovery of a host of novel oncogenes and tumor suppressors, which will 
have a significant impact in our understanding of tumorigenesis and in the clinical 
management of cancer patients (Shih and Wang 2005). Genomics can also be used 
to identify molecular pathways that are deregulated in cancer which will not only 
elucidate underlying tumorigenic mechanisms, but may also help to determine the 
classes of drugs that are used for cancer treatment (Furge et al. 2007).

It is a challenge for genomics studies to identify unique biomarkers in complex 
biological mixtures that can be unambiguously corrected to biological events so as to 
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validate novel drug targets and predict drug response. Clinically useful biomarkers are 
informative for regulatory and therapeutic decision making regarding candidate drugs 
and their indications which may help bring new medicines to the right patients.

With the next generation sequencing technologies, a wide range of applications 
are now affordable and within reach. Systems can be used for applications ranging 
from megagenome and genome sequencing (de novo or re-sequencing) to transcrit-
pome analysis (e.g. cDNA, serial analysis of gene expression, cap analysis gene 
expression), to regulome studies (e.g. chromatin immunoprecipitation, microRNA). 
Genetic profiling associating with chemotherapeutic outcome contributes to the 
understanding of oncogenesis, tumor growth, and therapeutic response which may 
indicate new targets for cancer treatment.

1.3  Epigenomics

Epigenomics is a relatively new omics technology that can be useful for cancer man-
agement. Aberrant gene function and altered patterns of gene expression are key fea-
tures of cancer. Increasing evidences show that acquired epigenetic abnormalities 
participate with genetic alterations to cause this dysregulation (Jones and Baylin 
2007). Epigenetic silencing of tumor suppressor genes plays an important role in the 
pathogenesis of most cancers (Hatada 2006). Recent technological advances are now 
allowing cancer epigenomics to be studied genome-wide, an approach that may pro-
vide both biological insight and new avenues for translational research (Esteller 2007). 
Since epigenetic modifications contribute to carcinogenesis evolution, it may help to 
optimize the potency of epigenome targeting agents (Karamouzis et al. 2007).

1.4  Transcriptomics

Global mRNA transcript expression profiling is a very powerful tool in modern 
research because it encompasses the cell’s transcription of activated genes. 
Transcriptomics plays several roles in advanced management of cancer in the post-
genome era. Its main applications involve cancer diagnostics and prognostics based 
on tumor gene expression profiling of mRNA, as well as biomarker applications in 
drug discovery and development (He 2006). Even though less than 2% of the mam-
malian genome encodes proteins, a significant fraction can be transcribed into non-
coding RNAs. MicroRNAs are single-stranded small non-coding RNA molecules 
which main function acts as epigenetic regulator of their corresponding target genes 
at the post-transcriptional level. Numerous microRNAs are deregulated in human 
cancers, and growing evidences indicate that they can play roles as oncogenes or 
tumor suppressor genes (Negrini et al. 2007). In recent years, microRNA is becoming 
important for the understanding of tumorigenesis and some of them are believed to 
have diagnostic and prognostic roles (Cho 2007b, 2009, 2010b,c; Cho et al. 2009; 
Rosenfeld et al. 2008).
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1.5  Proteomics

During the past few years, the emphasis on genomics has shifted via transcriptomics 
to proteomics, the science of understanding how the whole set of proteins are 
expressed and function at the cellular level. Proteins are the physiological/
pathological active key players, the relationship between gene expression measured 
at the mRNA level and the corresponding protein level is complex in cancer. The 
mRNA/protein correlation coefficient varied among proteins with multiple iso-
forms, indicating potentially separate isoform-specific mechanisms for the regula-
tion of protein abundance (Reymond and Lippert 2008). Proteomics enable the 
quantitative investigation of both cellular protein expression levels and protein–
protein interactions involved in signaling networks. Monitoring the protein expres-
sion pattern in tumor cells by high-throughput proteomics technologies offers 
opportunities to discover potential cancer biomarkers (Cho 2007c). There is an 
intense interest in applying proteomics to foster an improved understanding of 
cancer pathogenesis, develop new cancer biomarkers for diagnosis, and early detec-
tion using functional proteomic signatures (Sanchez-Carbayo 2006).

Recent progress in clinical proteomics is mostly contributed by sophisticated 
new methodologies for proteome analyses (Rosenblatt et al. 2004). Different pro-
teomics tools such as two-dimensional difference gel electrophoresis, protein 
microarray, mass spectrometry (MS) platforms including matrix-assisted laser 
desorption/ionization, electrospray ionization, surface-enhanced laser desorption/
ionization, isotope-coded affinity tag, isobaric tags for relative and absolute quan-
tification, as well as multidimensional protein identification technology have been 
used for differential analysis of biological samples (Cho and Cheng 2007; van der 
Merwe et al. 2007). Oncoproteomics has the potential to revolutionize clinical 
practice, including early cancer diagnosis and screening based on proteomic por-
traits as a complement to histopathology, individualized selection of therapeutic 
combinations that target the entire cancer-specific protein network, real-time 
assessment of therapeutic efficacy and toxicity, and rational modulation of therapy 
based on changes in the cancer protein network associated with prognosis and drug 
resistance (Cho 2007d). With the application of mathematical tools in oncopro-
teomics, scientists can even describe the connectivity of chemical and/or biological 
systems using networks (González-Díaz et al. 2008).

1.6  Metabolomics

Metabolome is the complete complement of all small molecule (<1.5 kDa) metabolites 
found in a specific cell, organ or organism. Metabolomics is a dynamic portrait of the 
metabolic status of living systems. This new omics technology purports to give us a 
cross-section of the small molecular weight components in cells, tissues, organ, body 
fluids or the whole body at any moment in time, such that the constellation of molecules 
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and their relative proportions can provide us with information about the functional 
state (or the dysfunctional state) at that time. From reading such a profile, information 
may be gleaned which indicates some activity state that is meaningful in the present 
circumstances. Elucidation of cellular responses to molecular damage, including evo-
lutionarily conserved inducible molecular defense systems, can be achieved with 
metabolomics and can lead to the discovery of new biomarkers of molecular responses 
to functional perturbations. Metabolomics is useful for cancer management which 
permits simultaneous monitoring of many small molecules, as well as functional moni-
toring of multiple pivotal cellular pathways (Claudino et al. 2007). Animal study has 
shown that metabolomics may have a greater chance of success in toxicology and 
biomarker assessment than genomics and proteomics (van Ravenzwaay et al. 2007). It 
is well-known that cancer cells typically consume glucose and glutamine voraciously. 
Many cancer cells use glucose inefficiently, through glycolysis rather than oxidative 
phosphorylation (Warburg effect) (Hsu and Sabatini 2008). For human studies, the 
Human Metabolome Project attempts to identify and catalog all of the metabolites 
found in the human bodies, aiming to complete a metabolite inventory for human 
beings, to generate resources that can facilitate metabolomics research across many 
different disciplines, as well as to provide detailed information about the linkage 
between human metabolites and the genes, proteins, and pathways with which they are 
involved (Wishart et al. 2006; Wishart 2007).

Metabolomics is the study of metabolism at the global level. Metabolomic stud-
ies capture global biochemical events by assaying thousands of small molecules in 
cells, tissues, organs, or biological fluids-followed by the application of informatic 
techniques to define metabolomic signatures (Kaddurah-Daouk et al. 2008). Technical 
developments in ultra-high pressure liquid chromatography, Fourier transform MS, 
orbitrap MS, higher field and cold-probe nuclear magnetic resonance magnets have 
already had a significant impact in metabolomics. Continuing developments in lab-
on-a-chip technologies can be expected to make metabolomics much cheaper. 
However, the analysis of the metabolome is particularly challenging due to the 
diverse chemical nature of metabolites (Gowda et al. 2008). We need to understand 
more about the basic concepts of physiology and metabolism in the body before we 
can seriously use metabolomics to great advantage.

1.7  Interactomics

The behavior, morphology, and response to stimuli in biological systems are dic-
tated by the interactions between their components. These interactions are shaped 
by genetic variations and selective pressure (Cesareni et al. 2005). The interactom-
ics architectural map may represent the first step toward the attempt to decipher the 
carcinogenesis at the systems level (Hsu et al. 2007). Large-scale mappings of 
protein–protein interactions give new insights of the complex molecular mecha-
nisms inside a cell (Futschik et al. 2007). High-throughput technologies are 
employed to chart dynamic interactions between the components of a biological 
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system, as well as to simulate and analyze pathways. The significant advances in 
microarray and proteomics analyses have resulted in an exponential increase in 
potential new targets and have promised to shed light on the identification of cancer 
biomarkers and cellular pathways (Cesareni et al. 2005; Heck 2008).

1.8  Cytomics

Cytomics is an omics technology that applying various bioinformatic techniques to 
investigate the functions and molecular architecture of the cytome. It has received great 
attention in recent years as it allows the qualitative and quantitative analyses of individual 
cells, cell constituents, as well as their intracellular and functional interactions in a cel-
lular system. High-content and high-throughput single-cell analysis may lead to systems 
biology and cytomics. The application of cytomics in cancer research is very broad, rang-
ing from the better understanding of the tumor cell biology to the identification of 
residual tumor cells after treatment. The ultimate goal is to pinpoint these processes on 
the molecular, cellular, and tissue level. A comprehensive knowledge of cytomics 
requires multiplex and functional cellular and tissue analyses (Tárnok et al. 2006).

1.9  Phenomics

Human phenome can be viewed as a landscape of interrelated diseases, reflecting 
overlapping molecular causation. Cancer is a highly complex and heterogeneous 
disease involving a succession of genetic changes which resulting in a molecular 
phenotype with malignant specification. It does not have a clear inheritance pattern 
which involves multiple genes with modest effects acting independently or interacting 
(Mei et al. 2007). Cancer phenomics uses objective and systematic acquisition of 
phenotypic data at many levels which may help to evaluate the genetic influences 
of cancer (Zbuk and Eng 2007). Oncological research using systematic analysis of 
phenotype relationships to study human biology is still in its infancy. The major 
challenges for the identification of genetic effects are genetic heterogeneity and 
difficulty in analyzing high-order interactions (Lussier and Liu 2007).

1.10  Bioinformatics

Bioinformatics is the application of information technology to the field of molecu-
lar biology. Computational analysis (e.g. data mining and machine learning algo-
rithms) has become an essential element of cancer research with a main role of 
bioinformatics being the management and analysis of huge data. Cancer bioinfor-
matics is a branch of bioinformatics. The bridge between information and modeling 
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in cancer can be achieved by the bioinformatics strategies (Stransky et al. 2007). 
Many databases on cancer research have been set and are useful for further bioin-
formatics manipulation. Comparative and structural omics can be applied for 
understanding the underlying tumorigenesis process. In the post-genome era, omics 
challenges us with the necessity of using and communicating huge information 
outside the existing paradigm of bench and bedside services.

1.11  From Omics to Personalized Medicine

Several omics technologies are being increasingly used for personalized drug discov-
ery and their efforts are in progress in major therapeutic areas. Antibody drugs (such 
as trastuzumab, cetuximab, and bevacizumab), small molecule inhibitors for tyrosine 
kinases (such as gefitinib, erlotinib, and imatinib), conventional cytotoxic drugs, and 
antihormonal drugs are used for cancer chemotherapy. Biomarker monitoring may 
contribute to therapeutic optional choice and drug dosage determination. Biomodal 
targeting of single oncoproteins may become latter-day combination therapy, e.g. 
retinoic acid and arsenic trioxide for PML-RAR, Herceptin and lepatinib for HER2. 
Predictive genetic tests may allow individuals to learn their own susceptibilities and 
to reduce the risks for interventions. Although the present omics technologies are not 
ready for immediate clinical use as diagnostic tools, it can be envisaged that simple, 
fast, robust, portable, and cost-effective clinical diagnosis systems may be available 
in the future for home and bedside use (Zhang et al. 2007).

1.12  Challenges and Prospective

Advances in the large-scale omics technologies have led to a proliferation of puta-
tive cancer biomarkers. However, before the results can be implemented in the 
management of cancer patients, thorough validation and the issues of sensitivity, 
specificity, reproducibility, and accuracy need to be addressed. On the other hand, 
the validation of biomarker has a complicated interaction with known oncogenes or 
oncoproteins that has established further links with molecular pathways implicated 
in malignant transformation. The major challenge is how to bring the best results 
from the omics research into clinical use as accurate and reliable standardized tests 
that integrate into the clinical work-up. Each omics approach has its strengths and 
drawbacks. The integration of various omics data and their functional interpretation 
in conjunction with clinical results is another challenge.

The wealth of new information in omics databases provides unlimited possibili-
ties for designing new therapeutic agents for cancer. For example, the multiplex 
diagnostic biomarker is becoming favorable as indicated by the approval of 
MammaPrint and Oncotype DX. This will ultimately beneficial to the patients, 
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whose detection of cancer and treatment thereof will be greatly facilitated by the 
work. It is likely that omics-based cancer research will take a central place in the 
understanding, diagnosis, treatment, and monitoring of cancer in the near future.
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Abstract Human cancer is a personalized disease characterized by complex 
molecular genetic abnormalities unique to individual patients. Studying cancer 
genome has defined much of the molecular pathogenesis of neoplasia we have 
understood so far and has supported the view that cancer is a genetic disease caused 
by sequential accumulation of genetic alterations. Recent advances in genome-wide 
technologies have provided unprecedented tools to reveal the genomic landscape 
of cancer in great detail, and thus have offered new opportunity in deciphering the 
specific genomic changes participated in tumor initiation and progression. Here, 
we review these emergent array- or sequencing-based technologies and provide 
examples of how they can be applied in discovering molecular genetic changes 
in cancer and in facilitating mining of important cancer genes. From a clinical 
perspective, it appears a daunting challenge in translating those molecular genetic 
findings from cancer cells to cancer patients. Therefore, we will also briefly discuss 
the potential problems in translational cancer genomic research and propose the 
possible solutions.

2.1  Introduction

Cancer is a complex genetic disease caused by mutations that can be hereditary but 
most of time are somatic (Kinzler and Vogelstein 2002). It has become accepted that 
cancer develops as a result of accumulated genetic alterations which serve as the 
driving forces in initiating tumor development and propelling tumor progression. 
The Darwinian evolution theory of cancer predicts that clinically detectable tumors 
harbor the clonal molecular genetic changes that are causally related to uncontrolled 
tumor growth, survival in dynamic tumor microenvironment, invasion into surrounding 
normal tissues and metastasis to distant organs (Merlo et al. 2006).
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Various forms of genomic abnormalities have been documented to occur in cancers, 
such as point mutations (silent, missense, nonsense and frameshift mutations), DNA 
copy number alterations (CNAs, including gene duplication, amplification and deletion), 
and chromosomal rearrangements (insertion, inversion, intra- and inter-chromosomal 
translocations) (Fig. 2.1). These mutations can be grouped into two broad categories, 
microscopic changes involving large segments of DNA (typically larger than 3 Mb) 
that can be detected using traditional G-banded karyotyping and fluorescence in situ 
hybridization (FISH), and submicroscopic alterations less than 3 Mb that have been 
identified using an array of molecular and cellular biology techniques (Feuk et al. 
2006). Proto-oncogenes are typically activated by gene amplifications, gene translo-
cations, and activating intragenic mutations whereas tumor suppressors are inacti-
vated by gene deletions (loss of heterozygosity or homologous deletion), inactivating 
intragenic mutations, and epigenetic silencing (Haber and Settleman 2007). Therefore, 
decoding the genetic history present in tumor DNA, the identification and character-
ization of these molecular changes involving cancer-associated genes and the path-
ways they controlled, have not only shed new light on the molecular etiology of 
cancer, but also promised for the development of new diagnostic markers and novel 
therapeutic targets (Kinzler and Vogelstein 2002).

Recent advances in genome-wide technologies and bioinformatics have provided new 
opportunity in genomic analysis of human cancer in an unprecedented speed and details 
(Fig. 2.2). These high-throughput and high-resolution techniques have produced a long 
list of exciting candidate cancer-associated genes. In this chapter, we will focus on 
reviewing these emergent technologies and provide examples of how they can be applied 
in discovering cancer associated genetic changes and facilitate new cancer gene discov-
ery. The advantage and disadvantages inherent to each method will be briefly reviewed. 
We will also discuss the challenges in transforming these findings into biologically inter-
esting and clinically relevant knowledge, and the challenges faced in translating these 
findings into clinical applications that could directly benefit cancer patients.

2.2  Array-Based Technologies

2.2.1  Array Comparative Genomic Hybridization (aCGH)

First published in 1992, comparative genomic hybridization (CGH) is the first 
genome-wide method in detecting DNA copy number alterations (CNAs). In the 
original method, total genomic DNA is isolated from test and reference samples, dif-
ferentially labeled and hybridized to metaphase chromosomes from normal individu-
als (Kallioniemi et al. 1992). Measuring the fluorescence intensity ratio along each 
chromosome reveals the gain or loss in the test sample relative to reference sample at 
a genome-wide scale. However, the resolution afforded by metaphase chromosome 
CGH is typically only 5–10 Mb (Carter 2007). Substitution of metaphase chromo-
somes with DNA arrays for CGH theoretically greatly increases its resolution in CNA 
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detection, since the resolution of the array CGH (aCGH) is determined by the size 
and density of the probes (DNA sequences) present on the arrays.

The DNA sequences spotted for aCGH have included large-insert BAC clones, 
cDNA clones (80–200 kb in length), fosmid and cosmid clones (40 kb), genomic 
PCR products (100 bp to 1.5 kb), and oligonucleotides (25–80 bp) (Carter 2007). 
Among these DNA arrays, BAC clones have been thought to offer the most com-
plete genome coverage and the highest signal-to-noise ratio. Assuming each BAC 
clone is 100 kb in size, only 30,000 clones are needed to obtain complete chromo-
some coverage. Indeed, a tiling array consisting of 32,433 overlapping BAC clones 
covering the entire human genome has been constructed to permit a sub-megabase 
resolution (Ishkanian et al. 2004). However, the large size of BACs limits its ability 
to detect single-copy alterations smaller than 50 kb (Carter 2007). Microarrays with 
smaller elements, such as fosmid and genomic PCR products array can potentially 
provide higher genomic resolution, with the expense of increasing production cost 
and higher noise-to-signal ratio due to hybridization kinetics (Carter 2007; Pinkel 
and Albertson 2005). It is noteworthy that more probes are apparently needed to 
cover the whole genome when smaller DNA sequences are spotted. For example, 
assuming the PCR-products of genomic DNA average 1 kb, then 3 million 1-kb 
elements will be needed to cover the 3-billion-base human genome. Unfortunately, 
it is difficult to spot more than 60,000 DNAs onto a glass slide using current printing 
devices (Carter 2007). As a result, 50 slides would be needed to obtain full-genome 

Prioritization for target selection:

•Molecular “addiction”
•Presence in recurrent tumors 
•Association with aggressiveness
•Novel gene/pathway

Gene/Marker
Discovery 

Validation

Molecular 
mechanisms

Pre-clinical
studies

Clinical trials
(therapeutic or

diagnostic)

Fig. 2.2 Strategy to study cancer-associated genes. The flowchart summarizes the sequential steps 
for marker discovery and prioritization aiming to understand the biology of the genes in cancer 
development and to provide new molecular marker for diagnosis and targets for novel therapeutics
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coverage at a 1-kb resolution. Alternatively, hybridization using one slide would 
only provide a resolution of 50 kb. It should be noted that above calculations did 
not count for the highly repetitive regions of the genome, which could not be effec-
tively analyzed using hybridization technologies.

Recently, CGH using commercial oligonucleotide array platform has gained 
popularities for their high-resolution, ready-for-use availability and relatively low 
price (Ylstra et al. 2006). Oligonucleotide array can now be constructed using 
synthesis-on-slide technologies at a 1–2 million probes per slide (Carter 2007). For 
example, NimbleGen HD2 tiling array contains 2.1 million probes of 60 mer, with 
a median probe spacing of 1,169 bp (http://www.nimblegen.com/products/cgh/
index.html#hd2hg18). Practically, these high-density arrays may present a ~5-kb 
resolution for CNAs studies.

2.2.2  Representational Oligonucleotide Microarray Analysis

A major disadvantage of oligonucleotide arrays is the poor signal-to-noise ratio of 
hybridization due to the short probes on the slides (Carter 2007). The representa-
tional oligonucleotide microarray analysis (ROMA) improves the signal-to-noise 
ratio by reducing the complexity of the input genomic DNA (Lucito et al. 2003). 
With ROMA, genomic DNA samples are digested using a restriction enzyme (such 
as BglII), and the fragments are ligated to adapters followed by PCR amplification 
using universal primers. It was estimated that up to 97.5% reduction in complexity 
of input DNA can be achieved using the digestion-amplification process (Lucito 
et al. 2003). Although restriction digestion and PCR process may lead to differen-
tial representation between test and reference samples and thus introduce additional 
artifacts (Carter 2007), ROMA has been widely used for both oligonucleotide-
based CGH and SNP array analyses.

2.2.3  SNP Arrays

Single nucleotide polymorphisms (SNPs) are normal variations of nucleotide 
sequences and are frequently present in the genome. In fact, SNP is the most com-
mon and well-catalogued genetic variation. Of the estimated over 10 million com-
mon human SNPs, 3.9 million (1 SNP/700 bp) have now been identified (HapMap 
release 23a, http://www.hapmap.org/), and have served as the basis for designing 
oligonucleotide high-resolution SNP genotyping arrays by companies including 
Affymetrix and Illumina. SNP genotyping array has been proven as a powerful tool 
for the genome-wide genetic association studies, in which thousands or millions of 
SNPs were compared between cases and controls to identify loci associated with 
disease phenotypes, including cancers.
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This platform has successfully identified novel cancer susceptibility loci in 
breast cancer (Easton et al. 2007) and prostate cancer, such as the locus harboring 
the kallikrein-3 (KLK3) gene encoding the prostate specific antigen (PSA) (Eeles 
et al. 2008; Gudmundsson et al. 2008; Thomas et al. 2008).

Furthermore, SNP arrays offer an effective high-resolution method in detecting 
chromosomal regions undergoing loss of heterozygosity (LOH), which may harbor 
tumor suppressor genes. In addition, as the hybridization signal on SNP arrays is rela-
tively proportional to the copy number of input DNA sample, SNP array can be used 
to measure DNA copy number change. Numerous studies have demonstrated the 
power of high-density SNP arrays in detecting LOH, large-scale and minute CNAs, 
and uniparental disomies that retain a normal copy number. Due to its high-content 
information and relatively low cost, SNP array has become one of the most popular 
tools for cancer genomic studies in recent years (Mao et al. 2007). For example, using 
the Affymetrix 250 K Sty SNP array, an analysis of 371 lung tumors reveals 57 signifi-
cantly recurrent amplifications/deletions including 31 focal events (Weir et al. 2007).

The Affymetrix SNP Array contains 25-base long matched and mismatched probes 
for each SNP allele designed for better sensitivity and wider linear range. As with 
ROMA, the input genomic DNA is digested with a restriction enzyme (StyI and/or 
NspI) and is PCR-amplified to improve the signal-to-noise ratio. In contrast to aCGH, 
only one labeled DNA sample is hybridized onto the chip. The intensity of hybridiza-
tion is then compared to that predetermined from normal DNA from a group of indi-
viduals. Therefore, highly standardized slide handling and processing procedures and 
precision in array fabrication are essential to obtain reliable results (Carter 2007). 
Illumina has developed another SNP array platform using 50-bp oligonucleotides 
attached to indexed beads, in which allele-specific primer extension generates signal 
amplification. The longer probe and non-PCR amplification might result in better 
signal-to-noise ratio (Wang et al. 2007). However, to our best knowledge, no side-by-
side comparison using different SNP array platforms have been published. As SNPs 
are not uniformly distributed in the genome, the resolution of copy number detection 
has a limit of 10 kb (Carter 2007). Newer versions of Illumina and Affymetrix SNP 
arrays are now available and they contain non-SNP probes to increase the resolution. 
For example, the Affymetrix Genome-Wide Human SNP Array 6.0 claims to have an 
averaged probe spacing of 700 bp including more than 906,600 SNPs and more than 
946,000 non-SNPs probes for the detection of copy number change (http://www.
affymetrix.com/support/technical/datasheets/genomewide_snp6_datasheet.pdf).

2.3  Sequencing-Based Technologies

2.3.1  Mutational Analyses of Cancer Genome

The completion of the human genome project has revolutionized the biological and 
medical research. It is the foundation for technology innovations to detect genomic 
alterations in cancer and provided the database for designing oligonucleotides 
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probes in DNA microarrays as we have discussed above. Recently, with the advance 
in sequencing technologies accompanied by much reduced cost, it becomes a real-
ity to sequence individual human genome, either using the traditional Sanger dide-
oxy sequencing method (Levy et al. 2007), or next-generation sequencing methods 
(Wheeler et al. 2008). The whole genome sequencing in cancer can provide unbi-
ased information on genomic alterations in individual cancer specimen, and thus 
would likely produce a complete genomic map of individual cancers.

The first large-scale sequencing effort in cancer was reported by a Johns 
Hopkins University group, which initially sequenced protein coding regions of 
13,023 genes in 11 breast and 11 colorectal cancers (Sjoblom et al. 2006), and later 
extended to include all of the 18,191 genes in the Reference Sequence database in 
the same set of samples (Wood et al. 2007). Another study from the Wellcome Trust 
Sanger Institute focused on a small set of genes encoding 518 protein kinases, in a 
larger set of tumor samples including 210 cases of various tumor types (Greenman 
et al. 2007). Approximately 200 new cancer genes with somatic mutations were 
discovered by the Hopkins group from 22 tumor samples, and ~120 kinase gene 
mutations were found by the Sanger group. In 2008, the Johns Hopkins group fur-
ther extended their mutational analyses to 24 pancreatic cancers (Jones et al. 2008) 
and 20 glioblastoma multiformes, a highly malignant brain tumors (Parsons et al. 
2008). These studies have helped shaping the current view of human cancer as a 
molecularly personalized disease of extreme complexity and heterogeneity, which 
is attributed to individual’s genetic background and environmental exposure. For 
example, the near genome-wide sequencing analyses conducted by the Hopkins 
group showed that the genomic landscape of breast and colorectal cancers are char-
acterized by a few commonly mutated gene “mountains” and a much larger number 
of gene “hills” that are mutated at a much lower frequency (Wood et al. 2007). In 
addition, these mutational analyses suggest that tumor-type-specific mutations 
exist, but the vast majority of mutations occur in less than 10% of tumors. 
Interestingly, mutations enriched in a subset of signaling pathways or interactomes 
were identified, suggesting that strategies targeting multiple pathways may be a 
promising option that might be more effective and benefit a wider pool of patients 
(Jones et al. 2008; Wood et al. 2007).

Recently, the introduction of the “next-generation” sequencing instruments has 
poised to revolutionize genetic/genomic research in many facets (Schuster 2008; 
Wold and Myers 2008). Currently, there are three such systems that are commer-
cially available and vying for the spotlights, i.e. 454 technology from Roche 
Diagnostics, Solexa technology from Illumina, and SOLiD technology from 
Applied Biosystems (Chi 2008). While these instruments use various sample 
preparation methods and sequencing strategies (Rusk and Kiermer 2008), they all 
achieved the goal of massively parallel sequencing with the advantages of bacterial-
cloning free, high-throughput (over 1 Gb per run) and relatively low cost. Solexa 
and SOLiD instruments read about 30–35 bp, and the 454 technology can sequence 
up to 400 bp but with relatively higher operating cost (Rusk and Kiermer 2008; 
Schuster 2008). Currently these platforms are still relatively error-prone and gen-
erate shorter reading than ~750 bp by the traditional Sanger dideoxy method 
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(Dohm et al. 2008; Hillier et al. 2008). However, it is likely that accuracy and 
reading length would be improved in the near future. For example, a learning-
phase using a standard sample can improve the number of accurate reads to 78 
bases using the Solexa Genome Analyzer (Erlich et al. 2008). The strength of the 
next-generation sequencing platform has been demonstrated by the completion of 
the diploid whole-genome sequencing of individuals in a period of months (Wang 
et al. 2008; Wheeler et al. 2008). Recently, the first whole-genome sequencing of 
a primary human cancer genome has been reported using the Illumina/Solexa 
technology (Ley et al. 2008). In this study, the DNA contents of both tumor and 
normal skin cells obtained from a leukemia patient were sequenced and analyzed. 
Interestingly, by comparing the tumor genome to normal genome, only ten genes 
with acquired somatic non-synonymous mutation were found in leukemia cells 
(Ley et al. 2008).

Large-scale and high-throughput nucleotide sequencing accompanied by the 
state-of-art sample preparation methods can also be applied to study several bio-
logical questions including CNAs, protein-DNA interaction and identification of 
potential fusion genes. In the following, we will discuss applications in cancer 
genomics using the sequencing-based methods.

2.3.2  Digital Karyotyping

The principle of digital karyotyping (Wang et al. 2002) is similar to the serial 
analysis of gene expression (SAGE) method. The sequence tags in digital karyo-
typing are obtained from genomic DNA via restriction enzyme digests, and are 
then linked into ditags, concatenated, cloned, and sequenced. These 21 bp 
tags are mapped back to their corresponding genomic loci from which they are 
derived. With sufficient number of tags (usually 160,000 tags), the tag densities 
along the chromosomes can then be transformed to copy numbers, yielding a 
digital readout of genome-wide copy numbers in cancer samples in a high-reso-
lution and high-throughput manner. Typically, SacI is used as the mapping 
enzyme in digital karyotyping, which cuts DNA once per 4,096 bp on average 
(46 = 4,096). Therefore, ~4 kb resolution can be theoretically achieved assuming 
SacI recognition sites are evenly distributed in genome and a sufficient number 
of tags can be sequenced. Indeed, digital karyotyping was shown to be superior 
to the then-standard aCGH and SNP arrays in detecting copy number changes 
(Shih and Wang 2005).

Digital karyotyping has been used in profiling CNAs in colorectal (Wang et al. 
2004) and ovarian cancers (Shih et al. 2005). In two of four 5-fluorouracil-resistant 
colorectal tumors analyzed, an amplicon spanning an approximately 100-kb region 
on 18p11.32 was identified that contains a gene encoding thymidylate synthase 
(TYMS), a molecular target of 5-fluorouracil (Wang et al. 2004). Using FISH, 
TYMS gene amplification was shown to occur in 23% of 31 patients who received 
5-fluorouracil treatment, whereas no amplification was observed in metastases of 
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patients who did not receive 5-fluorouracil treatment, suggesting that genetic 
amplification of TYMS is one of the mechanisms of 5-fluorouracil resistance 
in vivo (Wang et al. 2004). In an analysis of seven high-grade ovarian serous carci-
noma samples using digital karyotyping , an amplification at 11q13.5 was found in 
three of seven cases, and amplicon mapping delineated a 1.8-Mb core of amplifica-
tion that contained 14 genes, of which the chromatin-remodeling factor Rsf-1 (or 
called HBXAP) (Shih Ie et al. 2005), p21/cdc42/Rad-activated kinase PAK1 
(Schraml et al. 2003), and adaptor protein GAB2 (Bentires-Alj et al. 2006), have 
been found to be important oncogenes in several types of human cancer.

As a sequencing-based technology, digital karyotyping overcomes many disad-
vantages associated with array-based technologies in detecting genomic structural 
changes. For example, array-based technologies are limited by the sequences pres-
ent on chips and also cannot reliably detect regions with low-complexity. However, 
while very powerful, digital karyotyping has not gained similar popularity as com-
pared to array-based technologies. This is mainly attributed to the relatively higher 
cost and being more technically-demanding for digital karyotyping than for array-
based platforms. In contrast, microarray service is now available in both commer-
cial and academic sectors with affordable cost. Nonetheless, we expect that the 
continuously decreasing cost of sequencing, the coupling of the next-generation 
sequencing in particular, could make digital karyotyping more accessible for cancer 
researchers. In addition, adaptation of digital karyotyping method might also 
improve its utility. For example, similar to superSAGE (Matsumura et al. 2003), the 
type III-endonuclease EcoP15I of phage P1 could be used to produce 26 bp tags 
instead of 21 bp tags. The longer tag can significantly improve the digital readout 
by enhancing mapping accuracy to reference genome.

2.3.3  Genomic DNA End-Sequencing: BAC, Fosmid  
and Paired-End

The main disadvantages of array-based technologies and digital karyotyping are that 
they are incapable of detecting balanced genomic rearrangements, either transloca-
tions or inversions. Besides, both techniques provide limited resolution in detecting 
breakpoints that are associated with copy number changes. DNA end-sequencing is 
an emerging tool in detecting point mutations, genomic rearrangement, as well as 
copy number alterations. Earlier studies employed the construction of a bacterial 
artificial chromosome (BAC) library from cancer samples, followed by BAC-ends 
sequencing and subsequent mapping end-sequence pairs onto the human reference 
genome (Volik et al. 2003). As in digital karyotyping, the density of the end-readings 
corresponds to their copy numbers; in addition, the paired ends that map in an oppo-
site orientation, far apart, or too close on the reference genome suggest that the BAC 
contains genomic rearrangements, such as inversion, deletion/translocation, or inser-
tion, respectively. The subsequent full-insert sequencing of these BAC clones produces 
the breakpoints information at a base-pair level. However, the large insert size of BAC 
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library limits the resolution of BAC-end-sequencing to be over 100 kb. Although the 
resolution of end-sequencing can be improved using smaller-sized fosmid library 
(Tuzun et al. 2005), constructing a BAC or fosmid library is a laborious process.

High-throughput next-generation sequencing technologies have also been 
applied to identify possible genomic structural alterations and assess DNA copy 
number changes omitting the bacteria cloning steps. By 454 sequencing of paired-
ends produced from ~3 kb genomic DNA fragments, over 1,000 structural varia-
tions spanning over 3 kb were found from two normal individuals (Korbel et al. 
2007). It is very likely that the same methodology could be adapted to sequence 
human cancer genome. In another effort to analyze genomic structural alterations, 
investigators have used 200 or 400 bp genomic DNA fragments from the two lung 
cancer cell lines, NCI-H1770 and NCI-H2171, and generated millions of paired 
reads of 29–36 bases at each end of these fragments using the Solexa sequencing 
platform (Campbell et al. 2008). Computational mapping of these paired reads to 
the human reference genome found over 1 million aberrantly mapping reads that 
could be result of chromosomal rearrangements. As the Solexa sequencing is theo-
retically error-prone, only paired-ends mapped with high uniqueness scores were 
prioritized for PCR validation of the potential breakpoint regions using cancer and 
normal cell line derived from the same patients. Subsequent sequencing of these 
PCR products using the conventional Sanger method identified a total of 103 
somatic rearrangements and 306 germline variations, including deletions, tandem 
duplications and inversions. Interestingly, while most of the germline rearrange-
ments involve deletions of AluY elements and LINE repeats, most of the somati-
cally acquired rearrangements are from amplicons. To identify rearrangements 
that may lead to fusion genes, aberrantly paired reads were examined in annotated 
gene databases, and those with both ends fell within the coding footprint of two 
different genes in the correct orientation were further studied for in-frame fusion 
products. This strategy identified two fusion transcripts from internal tandem 
duplication and two created by inter-chromosomal rearrangements (Campbell 
et al. 2008). For the DNA copy number analyses, the comparison of the frequency 
of DNA regions sequenced to that of the theoretical frequency from in silico simu-
lation, has revealed that its performance is comparable to Affymetrix SNP 6.0 
array with 1.85 million loci (Campbell et al. 2008). Interestingly, paired-end 
sequencing produced markedly higher estimates of copy number than SNP array 
for some highly-amplified regions, which might be result of signal saturation on 
the SNP array (Campbell et al. 2008).

2.3.4  Paired-End diTags (PETs) cDNA Sequencing

Gene fusions play important roles in the development of both hematological disorders 
and malignant solid tumors (Mitelman et al. 2007). While paired-end sequencing 
of genomic DNA can detect gene fusions, it requires additional steps to determine 
whether a fusion transcript is produced from rearranged genomic regions as 
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discussed above. The Paired-End diTags (PETs) sequencing method appeared to be 
extremely powerful in detecting gene fusions, as it directly sequence diTag library 
produced from cancer cDNA sample (Ruan et al. 2007). The Paired-End diTags 
method involves making full-length cDNA library from test sample, extracting 18 
base-pair from each of the 5¢ and 3¢ end of the full length cDNA, ligating the 5¢ and 
3¢ together to form Paired-End diTags, and sequencing these diTags (Ng et al. 
2005). Initially employed the conventional sequencing method, the coupling of 
PETs with 454 sequencing dramatically reduced the cost and improved the through-
put (Ng et al. 2006). Using this technique, 70 candidate gene fusions were identi-
fied from the breast cancer cell line MCF7 and the colon cancer cell line HCT116 
(Ruan et al. 2007).

2.4  Identification of Cancer-Associated Genes

The genome-wide cancer genomics studies, conducted by individual research 
group and by consortium efforts such as the NIH’s Cancer Genome Atlas (http://
cgap.nci.nih.gov/) and the Wellcome Trust Sanger Institute’s Cancer Genome 
Project (http://www.sanger.ac.uk/genetics/CGP/), have generated an enormous 
amount of data, and hopefully in the near future, these efforts can lead to the 
completion of genomic maps of various cancers. However, challenges remain to 
fully understand and translate genomic alterations documented in these studies. 
Cancer-associated gene discovery can sometimes be assisted by the known function 
of the candidate genes or that of their homologue in other organisms. Nevertheless, 
given the multi-functionality nature of proteins and the presence of non-protein-
coding genomic regions (such as microRNA), the full functional annotation of 
human genome appears to be a daunting task. Therefore, each candidate cancer-
associated genes needs to be characterized using experimental approaches to vali-
date their roles in cancer biology. In addition, the examination of cancer genome is 
performed after a cancer is surgically removed, which provides a snapshot of DNA 
abnormalities reflecting the genetic history of cancer cells during their journey of 
tumor evolution. Some mutations are thought to initiate the malignant transforma-
tion or promote progression, by conferring cancer cells with growth advantages or 
the ability escaping from cell death, and are therefore called drivers. The remaining 
passenger mutations, in contrast, are result of genome instability or just located 
next to driver mutations. While passenger mutations could serve as biomarkers, 
driver mutations are considered the key to understanding the mechanisms of tum-
origenesis and the key to the selection of novel targets for therapeutic interventions. 
Various strategies have been successfully employed for the quest of important 
cancer-associated genes, and an example is shown in a latter section.

In mutational analyses, driver mutations can be distinguished from passenger 
mutations by comparing the observed-to-expected ratio of synonymous mutations 
with that of non-synonymous mutations (Greenman et al. 2007). This is based on 
the assumption that synonymous (silent) mutations do not change amino-acid 
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composition and thus do not have an effect in tumorigenesis. Using this strategy, 
158 predicted driver mutations were identified in 120 kinase genes (Greenman 
et al. 2007). However, it should be noted that there are increasing number of 
reports on the link between silent mutations with cancer risk, and synonymous 
mutation representing rare codons may alter the mRNA stability and protein syn-
thesis (Duan et al. 2003; Nackley et al. 2006) or protein conformation (Kimchi-
Sarfaty et al. 2007).

Functional screenings can be also useful in the identification of cancer-associated 
genes. Using transformation screen in NIH-3T3 cells with cDNA library prepared 
from a lung tumor, a gene fusion was identified involving a tyrosine kinase gene 
(ALK) that affects 7% of non-small-cell lung cancer (Soda et al. 2007). Alternatively, 
cDNA libraries or RNAi libraries can be used to identify potential cancer-related 
genes, by examination of cancer-related phenotypes, such as proliferation 
(Schlabach et al. 2008), anchorage-independent growth, migration (Witt et al. 
2006), cell-cycle progression (Kittler et al. 2007; Mukherji et al. 2006), and drug 
resistance (Bosma et al. 2003). The major advantage of functional screening is that 
it offers an unbiased genome-wide over-expression/downregulation experimental 
approach that directly demonstrates the potential biological function of the 
genes in tumor development. Obviously, clinical relevance needs to be further 
established for those candidate genes identified from libraries not produced 
from patients.

2.5  Strategy to Prioritize Candidate Genes for Validation  
and Functional Characterization

Application of established and emerging genomic technologies is expected to iden-
tify numerous genes that are associated with human cancer. The real challenge is 
how to select and focus on the biologically most important and clinically most 
relevant cancer genes from a list of candidates for further studies. Fig. 2.2 repre-
sents our preferred strategies in facilitating the target gene selection and character-
ization. After validation of a repertoire of candidate genes using independent 
methods, genes will be prioritized for further characterization based on the follow-
ing criteria: (1) molecular addition to the specific gene expression or genetic altera-
tion, (2) expression and alteration of the gene in recurrent tumors, (3) association 
with aggressive clinical behavior, and (4) novel genes and pathways. These criteria 
can be applied to look for driver genes within an amplicon or a deleted region, and 
from a large-scale sequence mutational analysis. For example, based on digital 
karyotyping, we have previously detected frequent amplification at the chr11q13.5 
locus in several types of human cancer including ovarian cancer (Schwab 1998). 
Fine mapping by FISH in 11q13.5 amplified tumors further defines the minimal 
amplicon where potential driver gene(s) may reside (Fig. 2.3). Prior to identifica-
tion and characterization of the driver gene(s) in the 11q13.5 amplicon, we assessed 
whether 11q13.5 amplification is associated with disease aggressiveness in ovarian 
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cancer. Using FISH, we were able to demonstrate 11q13.5 amplification in 13–15% 
of high-grade ovarian serous carcinomas (Nakayama et al. 2007; Shih et al. 2005). 
11q13.5 amplification was significantly associated with worse clinical outcome in 
patients with high-grade serous carcinomas in independent retrospective cohorts 
(Brown et al. 2008; Shih et al. 2005). These findings suggest that gene(s) within 
this amplicon may contribute to clinical aggressiveness in neoplasm with 11q13.5 
amplification. With this “green light”, we proceeded to identify the potential 
gene(s) within the 11q13.5 amplicon which may play a mechanistic role in main-
taining the survival of cancer cells and in developing drug resistance in high-grade 
ovarian serous carcinomas. We first selected the top six genes within this amplicon 
that demonstrate the most significant correlation between DNA and mRNA copy 
number from a total of 14 genes within the amplicon. After knockdown of each 
gene using RNA interference, we determined their sensitivity to paclitaxel and 
carboplatin which are routinely used in treating ovarian cancer patients after cytore-
duction surgery. We found that Rsf-1 (HBXAP) knockdown significantly inhibited 
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cellular proliferation and decreased the IC
50

 of paclitaxel in ovarian cancer cells 
(Choi et al. 2008). Therefore, we selected Rsf-1 (HBXAP) to study its molecular 
mechanisms in contributing to tumor progression and assess its potential in Rsf-1 
(HBXAP)-targeted cancer therapy in the future.

2.6  Cancer Genomics from Bench to Bedside

Since the discovery of the Philadelphia chromosome in chronic myelocytic 
leukemia (CML) in 1960, knowledge gained from cancer genomics studies has 
been steadily applied in practice of cancer patient care, including the screening 
and prevention of familiar and hereditary forms of cancer, classification, diagno-
sis and prognosis prediction, and the therapeutics of cancers (Dalton and Friend 
2006; Ward and Hawkins 2001). While only accounts for 5–10% of all cancer 
cases, the hereditary cancer represents the most cogent example of successful 
application of genetic knowledge in clinic settings, as these patients often benefit 
the most from early detection by genetic screening, counseling and preventive 
surgery and treatment. For example, mutations in the BRCA1/2 genes account for 
approximately 90% of the hereditary ovarian carcinomas, and the lifetime risk of 
ovarian cancer in a BRCA1 mutation carriers approaches 40–50%, whereas that 
of BRCA2 mutation carriers risk is 20–30% depending on the population studied 
(Prat et al. 2005). The prophylactic bilateral salpingo-oophorectomy in BRCA 
mutation carriers after childbearing has shown to reduce the risk of ovarian, fal-
lopian tube, or primary peritoneal cancers by 98% (Prat et al. 2005). The other 
examples of successful application of cancer genomics studies to clinics are 
Novartis’ imatinib (Gleevec, a tyrosine kinase inhibitor against BCR-ABL) for 
treating chronic myeloid leukemia with BCR-ABL fusion, and Genentech’s 
Herceptin (trastuzumab, a humanized monoclonal antibody that binds to HER2) 
for treating breast cancers with HER2/neu (ErbB2) over-expression and/or ampli-
fication (Baselga 2006).

Gene expression analyses using microarray and quantitative RT-PCR have being 
widely used to identify genes whose expression is altered in cancer tissues com-
pared to their normal counterparts. The expression of these differentially expressed 
genes can be used for molecular cancer classification, diagnosis and prediction of 
treatment outcome. Recently, two commercially available gene expression assays, 
Oncotype DX (Genomic Health) and MammaPrint (Agendia, Amsterdam, the 
Netherlands) have been applied in the assessment of the risk of tumor recurrence in 
patients with stage I or II node-negative breast cancer (Dobbe et al. 2008). The 
Oncotype DX 21-gene assay employs quantitative RT-PCR to analyze the expres-
sion levels of 16 cancer-related genes and 5 reference genes from formalin-fixed 
and paraffin-embedded specimens. These 16 genes were selected from a panel of 
250 candidate genes that might be associated with breast cancer behavior based on 
literature, expression status and other information. A recurrence score can then be 
calculated from the normalized expression levels of these 16 genes and be used for 
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prediction of recurrence (Paik et al. 2004). Patients with low recurrence score may 
receive hormonal therapy (tamoxifen) alone without adjuvant chemotherapy, while 
patients with high recurrence score may require adjuvant chemotherapy in addition 
to tamoxifen administration (Dobbe et al. 2008; Paik et al. 2004). The MammaPrint 
is an oligonucleotide-array assay performed on fresh-frozen tumor samples to ana-
lyze the expression levels of 70 genes that have been shown to have the highest 
association with cancer metastasis among a total of 25,000 genes (van de Vijver 
et al. 2002). The potential advantages of recurrence-assessment for node-negative 
breast cancer patient lie on the facts that 85% of these women are expected to be 
free from distant metastasis in 10 years and most of these patients are still consid-
ered candidates for systematic chemotherapy (Dobbe et al. 2008). Therefore, the 
introduction of these prognosis prediction tests to clinical oncology is expected to 
have an impact on the decision making of treatment plans that are not possible 
without molecular analysis of cancer transcriptome (Dobbe et al. 2008).

Although in the next coming years, we will likely embrace the new era of 
genomic medicine, the long-awaited personalized cancer care has yet to come of 
age. This is mainly because of tremendous efforts needed to be taken in order to 
translate the clinical significance of the enormous body of genomic data and to 
project human genomic alterations to specific types of therapeutic regimen. 
Furthermore, the extremely complex and unique nature of cancer appear to be a 
result of the Darwinian evolution of tumor species. Each cancer specimen is pre-
sented as unique products of accelerated evolution process that maximizes the 
cancer cells’ survival in a dynamic micro-environment. This is clearly illustrated 
by the findings from aforementioned genome-wide mutational studies of cancer, 
showing that the genomic landscape of breast and colorectal cancers are character-
ized by a few commonly mutated gene “mountains” and a much larger number of 
gene “hills” that are mutated at a much lower frequency (Wood et al. 2007). The 
other recent whole-genome sequencing of an acute myeloid leukemia (AML) 
genome further demonstrated the uniqueness of each tumor sample, i.e. none of 
the eight novel genes with somatic mutations found in the patient was detected in 
187 additional cases of AML (Ley et al. 2008). It also should be noted that the 
sequencing of normal genome of several individuals have showed that a large 
quantities of DNA content differ from individual to individual (Levy et al. 2007; 
Ley et al. 2008; Wang et al. 2008; Wheeler et al. 2008). This polymorphism among 
individuals would pose an additional hurdle in the interpretation of the tumor 
genome. On the other hand, these variations in such large quantity also provide a 
useful source in identifying cancer susceptibility genes by genome-wide associa-
tion study. These studies suggest that much more mutations are yet to be identi-
fied, and much more number of cancer genomes need to be studied before we can 
identify the most important mutations or common pathways affected in cancers. 
In addition to case-to-case variation, the heterogeneity of cancer in individual 
patients and cells with normal DNA in the specimen would further complicate the 
genomics analysis of cancer. Until we obtain deeper understanding of the abnor-
malities occurred in cancer, the clinical translation of cancer genetics would be of 
limited use.
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2.7  Concluding Remarks

In summary, we have witnessed the advances in applying genomic tools to further 
understand the molecular etiology of cancer in recent years. Cancer is a personal-
ized disease characterized by a medley of genomic and molecular genetic abnor-
malities. While no single technology can adequately detect all kinds of genomic 
and molecular genetic changes (Feuk et al. 2006), the whole-genome sequencing is 
thought to likely provide the most comprehensive genomic landscape of cancer. 
However, currently the relatively high cost associated with whole-genome sequenc-
ing appears as a daunting limitation for large-scale cancer genetics studies, espe-
cially when a larger sample size is needed. Therefore, other array- or sequencing-based 
technologies will likely continue making substantial contribution in cancer genom-
ics and cancer-associated gene studies. Since cancer contains balanced and un-
balanced, large-scale and minute small mutations, until unbiased screening methods 
at several levels of resolution are applied, our quest for important genomic changes 
within cancer cells will be just like the story of blind men and an elephant (Heim 
and Mitelman 2008). In addition, the inquisition of cancer-associated genes that are 
causative genes or druggable targets needs to be accompanied by transcriptome and 
proteome analyses, both in human samples and in animal models. Lastly, it is 
expected that knowledge stemming from cancer genomics studies will be translated 
to clinically useful tools for diagnostics and therapeutics in cancer patients, following 
the successful lead of Novartis’ Gleevec (imatinib) for treating chronic myeloid 
leukemia with BCR-ABL fusion, and Genentech’s Herceptin (trastuzumab) for 
treating breast cancers with HER-2/neu (ErbB2) amplification.
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Abstract Several technologies now exist that allow the simultaneous evaluation 
of the amount of RNA produced by each cellular gene. Application of these 
technologies to measure transcriptional activity in cancer cells has provided a rich 
source of information that is being used to understand tumor biology. Analysis of 
the resulting gene expression data has evolved from the identification of individual 
gene expression differences between tumor and non-diseased cells to model-based 
evaluation of complex signal transduction pathways. Pathway-based models that 
utilize gene expression data have yielded new insights into tumor cell biology by 
more accurately describing both pleiotropic and polygenic cell processes. Further 
description and integration of gene expression-based models will be critical to fully 
exploit the information contained in gene expression data and to develop a more 
in-depth understanding of tumor cell development and progression.

3.1  Introduction to Gene Expression Profiling

Gene expression profiling commonly refers to the simultaneous measurement of 
the population of RNA within a biological sample of interest (Quackenbush 2006). 
The procedure begins with the isolation of RNA from the biological sample, which 
is often tumor cells growing in tissue culture or a small section of tumor tissue. 
Following RNA extraction, a fluorescent chemical moiety is enzymatically 
attached to each individual molecule of RNA. The attachment of this chemical 
moiety to the RNA is often termed RNA labeling, as this modification is used to 
quantify the amount of RNA molecules in later experimental steps. To quantify the 
RNA, the entire population of labeled RNA is hybridized to short, complementary 
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oligonucleotide sequences (probes) that have been arrayed onto a solid substrate 
(the gene expression “chip”). Complementary oligonucleotide probes are designed 
to hybridize with high affinity to the RNA produced by individual genes. During 
chip construction, photolithographic or fine-liquid handling techniques are used to 
deposit these gene-specific oligonucleotide probes in precise locations on the solid 
surface. Since the surface area required by the probes is very small, thousands to 
millions of unique probes can be arrayed on a single chip. The hybridization pro-
cess involves washing the labeled RNAs over the chip so that they bind to their 
complementary probes. Poorly hybridized labeled RNA is washed away to prevent 
background fluorescence when the chip is scanned with a laser. The intensity of 
fluorescence at each probe is converted into a numerical value under the assump-
tion that regions of the chip with more labeled RNA will fluoresce more brightly 
than regions with less RNA. Continual improvements are being made to the pro-
cess to enhance both the accuracy and precision in which gene expression mea-
surements are made. Probes can be rigorously interrogated to ensure each probe 
sequence maps to a unique gene sequence based on the latest genome assemblies 
(Dai et al. 2005). To more reliably estimate intensity values, differences in fluo-
rescent dye incorporation rates and intensity-dependent fluorescence effects are 
corrected during data normalization or data preprocessing (Choe et al. 2005; 
Dabney and Storey 2006; Irizarry et al. 2003). These and other advances in gene 
expression profiling methodologies have led to high levels of concordance between 
the RNA measurements made using chip-based experiments and measurements 
made using more traditional molecular biology techniques.

Given the numerous processing steps that are required to generate a gene expression 
profile – ranging from the selection of appropriate chips, to the sample preparation, 
to the varied experience of laboratories in generating high-throughput data – there 
is a potential for data to be generated that lacks validity and reproducibility 
(Draghici et al. 2006; Simon et al. 2003). Moreover, due to the significant amount 
of information that is present in a gene expression profile and the continuing devel-
opment of novel analysis methods, it is unlikely that a single research laboratory 
would be able to fully scrutinize the resulting data. To facilitate the critical evalua-
tion of gene expression profiling data by a larger researcher community, a database 
infrastructure has been developed to gather, archive, and distribute transcriptional 
profiling data. As researchers publish papers involving gene expression microarray 
experiments, the basic components of the gene expression data are uploaded into a 
public database. Enough data needs to be made publically available so that another 
researcher can reproduce, and if desired, extend the original analysis. For this rea-
son a standard has been established, termed the minimum information about a 
microarray experiment (MIAME), that outlines the information authors are 
expected to make publically available (Brazma et al. 2001). According to the 
MIAME guidelines, authors must provide access to pertinent information based on 
the following categories: (1) experimental design; (2) array design, including the 
sequences of the probes and the position of the probes on the chip; (3) samples and 
preparation used; (4) hybridization methods; (5) gene expression measurements; 
and (6) any normalization controls. MIAME-conforming data is typically submitted 
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to a central public repository such as the Gene Expression Omnibus (GEO) oper-
ated by the National Center for Biotechnology Information or the Array Express 
operated by the European Bioinformatics Institute. The construction of these gene 
expression databases has facilitated the critical evaluation of the results of gene 
expression profiling studies. In addition, these databases provide the basis for a 
flourishing analysis community that has the benefit of a large base of experimental 
data in which to develop and test new analytical methods. As a consequence, analy-
sis of gene expression data has evolved from the identification of individual gene 
expression differences to the identification of complex genomic, biochemical, and 
signal transduction pathway perturbations.

3.2  Identification of Discriminative Genes

Many of the initial studies that applied gene expression profiling to cancer biology 
focused on integrating the expression data with clinical information to identify 
genes that could be used to discriminate between distinct tissues (Alon et al. 1999; 
Bittner et al. 2000; Golub et al. 1999; Takahashi et al. 2003). One common study 
design was to search for individual genes that showed differences in expression 
between tumor and adjacent non-diseased tissue. Dramatic differences in transcrip-
tion were found between tumor and corresponding normal tissue, demonstrating 
that gene expression data could be used to uniquely identify transcriptional patterns 
in the tumor tissue. A variation of this analysis was to identify gene expression dif-
ferences between tumors of different histological subtypes. An example of this type 
of analysis was the use of gene expression information, rather than histologic infor-
mation, to decide if leukemia was acute myeloid leukemia (AML) or acute lympho-
blastic leukemia (ALL) (Golub et al. 1999). While some of the early gene 
expression profiling studies of cancer focused on classification of samples with 
clearly different histopathologies, an important conceptual advancement was the 
application of gene expression profiling data to classify tumors that lacked estab-
lished histological markers. Examination of gene expression data derived from 
B-cell lymphomas, renal cell carcinomas, breast tumors, and hepatocellular carci-
nomas (Alizadeh et al. 2000; Perou et al. 2000; Takahashi et al. 2001; van’t Veer 
et al. 2002; Ye et al. 2003) revealed that tumors with similar histological character-
istics could be partitioned into unique groups with different transcriptional charac-
teristics. The implication of these studies was that transcriptional data could 
provide a more detailed view into the molecular genetics of the tumor. As such, it 
became clear that a major emphasis should be placed on the identification of indi-
vidual genes that are uniquely expressed between different tumor subtypes to aid in 
tumor classification. Two general types of gene identification approaches are often 
used for the selection of these discriminative genes. The first of these approaches 
is sometimes termed “supervised analysis”, as it requires a researcher to assign  
a priori classifications to each tumor sample. For example, samples with AML 
histology could be placed in one group while samples with ALL histology would be 
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placed in a different group. Alternatively, samples obtained from patients that died 
due to disease progression within 2 years could be placed in one group while tumor 
samples from patients showing no disease progression after 2 years would be 
placed in another group. Following partitioning of the samples into groups, a vari-
ety of statistical methods can be used to find differentially expressed genes, such as 
signal-to-noise statistics, variations of Student’s t-tests, or rank-based approaches 
(Fig. 3.1a) (Troyanskaya et al. 2002). Recently, incorporation of robust estimates of 
measurement variance and corrections for multiple testing have been used to assign 
per-gene confidence levels, providing a robust framework for the identification of 
individual gene expression differences between two sets of samples (Dudoit et al. 
2002; Rhodes et al. 2002; Smyth 2004; Tusher et al. 2001).

It was immediately clear that the set of differentially expressed genes isolated 
from supervised gene expression analysis could have significant utility in the clas-
sification of tumors. An effective and now established use of gene expression data 
is to identify markers that can be used for classical immunohistochemical analysis 
of tumor samples. This technique has revealed many potential diagnostic markers 
for many tumor types. For example in renal cell carcinoma (RCC), some of these 
markers include the expression of a-methyacyl-CoA racemase for papillary RCC, 

Fig. 3.1 Identification of gene expression differences between two histologically distinct classes 
of papillary renal cell carcinoma (RCC). Gene expression profiling was performed on a set of 
papillary RCC samples (n = 35). Using expert histopathological analysis, papillary RCC samples 
were designated as type 1 or type 2 based on large or small cell size and single layer or stratified 
layer tissue arrangement. (a) The 50 genes that were most differentially expressed between the 
subtypes were identified using a moderated t-statistic. (b) The same gene expression data used in 
A was filtered to identify the top 50 most variable genes. The samples and genes were organized 
by hierarchical clustering. At least three genes were identified in common in both analyses
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glutathione S-transferase for clear cell RCC, and more recently, the S100A1 gene 
to discriminate between renal oncocytoma and chromophobe RCC. Several other 
genes such as vimentin, TIMP2, survivin, and adipose differentiation-related genes 
have been identified as potential prognostic indicators (Kosari et al. 2005; Li et al. 
2007; Lin et al. 2006; Moch et al. 1999; Rocca et al. 2007; Takahashi et al. 2001; 
Yao et al. 2007; Zhao et al. 2006). The use of markers identified from supervised 
gene expression analysis can complement and extend traditional patient stratifica-
tion approaches such as TNM staging, tumor grade, and functional status (Gettman 
et al. 2001; Han et al. 2003; Tsui et al. 2000; Zisman et al. 2001).

Rather than use gene expression profiling data to identify potential immunohis-
tochemical markers, a more powerful application of the data might be to use the 
gene expression profiles themselves to assist in sample classification. Using com-
binations of discriminative genes, it is possible to create unique signatures of gene 
expression for tumor subtypes. Thus, new samples might then be classified into one 
of the established groups for diagnostic purposes (Golub et al. 1999). A cogent 
example of this approach is a prognostic 70-gene signature that has been developed 
for breast cancer (van’t Veer et al. 2002). Known commercially as MammaPrint, 
this test predicts patient outcome based on a gene expression signature and has been 
shown to outperform tests that use traditional clinical criteria (Buyse et al. 2006; 
Glas et al. 2006; van’t Veer et al. 2002). This test has recently been granted FDA 
approval. Another test, known as Oncotype DX, uses 21 differentially expressed 
genes, identified in part, from microarray analysis, as a signature to predict recur-
rence in breast cancer patients (Habel et al. 2006; Paik et al. 2004). This test is now 
commonly performed on breast tumors. The advantage of a gene expression signa-
ture-based approach is that it provides a general framework for distinguishing 
between different tumor subtypes or different prognostic groups. As such, many 
tumor types are amenable to partitioning based on gene expression characteristics 
(Alizadeh et al. 2000; Perou et al. 2000; Takahashi et al. 2001; van’t Veer et al. 
2002; Ye et al. 2003). A disadvantage of gene expression-based classification is that 
in some cases, a gene expression signature that could differentiate between tumor 
subtypes in one study could not differentiate between tumor subtypes in other, 
independent studies (Draghici et al. 2006; Simon et al. 2003). Thus, controlled, 
statistically sound analytical approaches and robust validation are required before 
transitioning a gene signature to the clinical setting. However, as gene expression 
array technology matures, the performance of gene expression based classification, 
and hence clinical potential of gene expression signatures, is likely to mature as 
well (Dumur et al. 2008).

While supervised analysis is a useful method for finding discriminative genes 
between two pre-defined groups, an alternative method for identifying discrimina-
tive genes is to organize the genes into groups based on similar transcriptional 
characteristics (Alizadeh et al. 2000; Alon et al. 1999; Eisen et al. 1998). In this 
method, commonly termed “cluster analysis,” genes are organized based on simi-
larities in expression patterns using unbiased computational approaches. This 
approach is unsupervised since it does not require a priori classification of samples 
into groups by the researcher (Fig. 3.1b). Prior to the analysis, the gene expression 
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data is typically filtered to remove genes that have low intensity or low variability 
across the samples. Following the removal of these uninformative genes, the 
remaining genes can be organized into clusters based on similarities in expression 
patterns. A variety of approaches can be used to measure similarities in expression, 
including various distance- and correlation-based metrics (Eisen et al. 1998). Once 
similarity measures between genes are computed, the relationship between these 
genes and samples can be visualized using a hierarchical dendrogram. While both 
unsupervised and supervised approaches contain very different mathematical 
frameworks, it is common for these approaches to identify similar sets of genes 
when there are large transcriptional differences between groups (Fig. 3.1). 
Interestingly, it was the visual interpretation of hierarchical clustering data that 
gave some of the first clues that gene expression data contained information that 
transcended individual genes. However, supervised analysis using advanced statis-
tical models is often preferred for the identification of subtle transcriptional differ-
ences between samples.

3.3  Dissecting the Components of a Gene Expression Profile

The insights from hierarchical clustering analysis demonstrated that gene expres-
sion profiling data could expose underlying biological pathways. A simple example 
is based on the observation that relatively large groups of genes involved in cell 
proliferation and the cell division cycle were up-regulated in several cancers 
(Alizadeh et al. 2000; Chen et al. 2002; Perou et al. 2000). Specifically, genes that 
are periodically expressed in cells (indicating an association with the cell cycle) 
were often found to be up-regulated in the tumor tissue when compared to corre-
sponding non-cancerous tissue (Whitfield et al. 2002). The identification of prolif-
eration-related genes through gene expression profiling demonstrated the value of 
transcription information to investigate a variety of biological questions. While 
genes associated with cellular proliferation are expected to appear in analyses of 
cancer cells when compared to adjacent, non-cancerous tissue, other groups of 
genes related to inflammation, vascularization, and other general cellular physiol-
ogy were also identified from gene expression profiling data. From these observa-
tions researchers first suggested that a gene expression profile could be subset into 
different components with more tangible biological underpinnings. For example, 
the set of genes associated with proliferation and the cell cycle can be partitioned 
into a proliferation component of the gene expression profile. Likewise, the set of 
genes associated with growth and development of new blood vessels make up a 
vascular component. The appearance of proliferation or vascularization compo-
nents in the gene expression profile gave clues into the underlying biological state 
of the tumor samples. As more gene expression data was analyzed, it became 
clearer that insights into the cellular state of the tumor could be extended to other 
cellular phenomena ranging from oxygen deprivation to tissue repair (Chang et al. 
2005; Chi et al. 2006).
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While these insights shed light on the global cellular state of tumor cells, 
there are limitations to determining the cell state based on gene expression 
analysis. Perhaps the largest component of a gene expression profile can be 
attributed to the effect of cell lineage (Ross et al. 2000). When cells from differ-
ent tissues are compared, the majority of gene expression variation can be 
directly attributed to differences between tissue types. For example, cells derived 
from ovarian tissue have much different expression characteristics than cells 
derived from kidney tissue. This can be a particularly important effect when 
designing a gene expression profiling study where tumor samples are compared 
to corresponding non-diseased tissue. While the tumor tissue may be dominated 
by the bulk tumor cell population, other cells are also present, such as stromal 
cells, endothelial cells, necrotic cells, and cells of the immune response. These cells 
are usually of a much different lineage and not representative of the population 
of cells found in the non-diseased tissue. This complexity adds to the challenge 
of placing a differentially expressed gene into a biological context. It is reasonable 
to speculate that this tissue-specific “noise” found in the gene expression data 
would make it difficult to obtain meaningful information from gene expression 
profiling experiments. The identification of a limited set of underlying mecha-
nisms that directly account for the myriad of changes identified in gene expres-
sion profiling experiments would provide the easiest, most straightforward way 
to interpret the gene expression data. While the identification of cell-cycle genes 
provided initial support that specific biological processes could be interpreted 
from a gene expression profile, recent work has demonstrated that a gene expres-
sion profile can be divided into biologically meaningful components despite the 
presences of tissue-specific effects.

3.3.1  Effects of Genomic Structure

DNA amplifications and deletions were shown to have significant effects on gene 
expression in the budding yeast, Saccharomyces cerevisiae (Hughes et al. 2000a). 
In that study, mutant yeast cells containing a small region of amplification on one 
chromosome were compared to wild-type yeast cells that lacked the chromosomal 
amplification. When the gene expression data was arranged based on the genes’ 
relative positions along the chromosome, it was noticed that the genes located 
within the region of amplification produced much more RNA than the genes 
located outside the region of amplification. Since chromosomal abnormalities are a 
common occurrence in many tumors (Struski et al. 2002), it was postulated that 
analogous effects were occurring in human tumors. Although studies in human 
cells lagged behind the yeast data due to the lack of an assembled human genome 
(Lander et al. 2001; Venter et al. 2001), several groups showed that chromosomal 
gains and losses have similar effects on gene expression in human tumors and 
human tumor-derived cell lines (Fig. 3.2). More RNA than normal is typically pro-
duced by genes located in regions of chromosomal amplification and less RNA is 



38 J.A. Klomp et al.

typically produced by genes located in regions of chromosomal deletion (Crawley 
and Furge 2002; Mukasa et al. 2002; Phillips et al. 2001; Virtaneva et al. 2001; Xu 
et al. 2001). This gene expression effect has been observed in many tumor subtypes 
and these changes in gene expression nearly always indicate the presence of an 
underlying chromosomal abnormality (Furge et al. 2004; Hertzberg et al. 2006; 
Lindvall et al. 2004; Pollack et al. 2002).

Interestingly, not all transcripts that map to a region of deletion or amplifica-
tion show a large upward or downward expression change (Fig. 3.2). This may 
be attributable to technical errors such as improper clone annotation, cross-
hybridization, or genome assembly issues. It is also possible that an underlying 
biological mechanism, such as activation of signal transduction pathways, local 
genome architecture, or more complicated transcriptional regulation (e.g. gene 
silencing) control gene expression within a region of cytogenetic change (Platzer 
et al. 2002). Still, consistent with the observation that cell status and tissue type 
can be dissected from gene expression profiles, it is now clear that perturbations 
in genomic structure are reflected in gene expression data. Further, not only can 
the effects of large chromosomal gains and losses be found in the gene expres-
sion profile, but changes in transcription that result from certain other classes of 
chromosomal abnormalities can be identified. In some cases, chromosome trans-
locations are reflected in the gene expression data. A prominent example of the 
discovery of translocations using gene expression data is the identification of 
ETS family fusions in prostate cancer (Tomlins et al. 2005). By searching for 
genes that showed abnormally high gene expression in prostate cancers, 
researchers discovered gene fusions between two members of the ETS family of 
transcription factors, ERG and ETV1, and the TMPRSS2 gene. Moreover, analy-
sis of gene expression profiling data has uncovered new types of chromosomal 
abnormalities. Somatic chromosome pairing is a phenomenon in which the two 
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Fig. 3.2 Effects of aneuploidy on gene expression. Expression data from a normal kidney sample 
and a papillary renal cell carcinoma (RCC) were compared to expression data generated from a 
pool of normal kidney tissue. Gene expression ratios between the indicated sample and normal 
reference were log-transformed (base 2) such that a four-fold increase in expression has a trans-
formed value of 2. Likewise, a four-fold decrease in expression has a transformed value of −2. 
Shown is the expression data from genes mapping to chromosome 12. The centromere is high-
lighted with a red circle. Trisomy of chromosome 12 is a common abnormality in papillary RCC 
and a clear enrichment of up-regulated genes is shown in the tumor sample. To highlight the 
increase in up-regulated genes, a data smoothing curve is also shown
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chromosome homologues become closely associated or joined in interphase. 
Analysis of transcriptional defects in a subtype of renal cancer revealed a 
somatic pairing abnormality (Koeman et al. 2008). Since nearly all solid tumors 
have associated chromosomal abnormalities, these data show that effects of 
genome structure represent an additional, valuable component of gene expres-
sion profiling data.

3.3.2  Effects of Cellular Pathways

While the aforementioned work showed that general cellular states and genomic 
perturbations are reflected in gene expression data, additional studies of yeast 
showed that modulation of specific cellular signal transduction pathways was also 
reflected in transcriptional data. For example, a panel of yeast strains, each of 
which had a unique mutation in a gene associated with cell wall synthesis, showed 
very similar transcriptional signatures (Hughes et al. 2000b). These results demon-
strated that, at least in yeast, gene expression data can be exploited to detect pertur-
bations in more subtle cellular processes. However, early gene expression studies 
attempting to identify gene expression signatures for modulation of signal transduc-
tion pathways in mammalian cells had more limited success. Particularly, initial 
attempts to characterize unique gene expression events downstream of activated 
growth factor receptors or transcription factors suggested that this type of transcrip-
tional analysis would be difficult (Fambrough et al. 1999; Yu et al. 1999). These 
early reports generated a cloud of skepticism over gene expression signatures and 
their effectiveness as a method to determine pathway activation status of cancer 
cells. Moreover, since signal transduction events are often heavily influenced by 
post-transcriptional mechanisms such as protein modifications and changes in pro-
tein localization, isolation of specific transcriptional responses may not be possible 
in complex cells and tissues. Gradually, additional gene expression studies showed 
that at least a subset of signal transduction events could be measured using tran-
scriptional data.

It is not clear whether advances in gene chip construction, advances in data 
processing methods, or simply the examination of more amenable signal transduction 
pathways lead to successes in pathway analysis. Regardless of the mechanism, 
accumulating evidence supports the observation that activation of oncogenic pathways 
(or inactivation of tumor suppressor pathways) can have unique and detectable gene 
expression effects. When a number of oncogenes, including MYC, KRAS, and SRC, 
were over-expressed in primary breast epithelial cells and compared to mock-
transfected cells, a unique set of proliferation-independent gene signatures reflect-
ing the activation of these genes were identified (Desai et al. 2002; Huang et al. 
2003). It was also revealed that transcription factors in the EF3 family and HOX 
family could have identifiable transcriptional signatures (Ferrando et al. 2002; 
Ishida et al. 2001). In these experiments, it was critical to demonstrate that these 
signatures were reflective of pathway activation and did not simply represent an 
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aspect of cell cycle progression or apoptosis. Convincingly, the oncogenic gene 
signatures derived from several cell line studies were specific for monitoring activation 
of the corresponding molecular pathways in both in vitro cell culture and in vivo 
tumors. For example, genes up-regulated via over-expression of the RAS oncogene 
in breast cancer cell lines are also up-regulated in lung cancers known to contain 
activating RAS mutations, but not up-regulated in other lung cancers (Bild et al. 
2005; Huang et al. 2003; Sweet-Cordero et al. 2005). Further, when cell lines with 
inactivating mutations in the VHL tumor suppressor gene are compared to cell lines 
with wild-type VHL, the identified genes are also deregulated in renal cell carcino-
mas that contain VHL mutations but not other kidney cancers (Furge et al. 2007b; 
Staller et al. 2003). Similar studies now recognize the possibility of detecting acti-
vation or inactivation of a variety of signal transduction pathways using gene 
expression data.

The dissection of a gene expression profile into pathway components has 
direct and important implications for guiding the use of molecular-targeted 
therapy in cancer. The accurate and objective identification of oncogenic path-
ways that are deregulated in a tumor sample is critical for the selection of 
molecular-targeted drugs that can lead to dramatic effects on tumor growth. For 
instance, activation of mammalian target of rapamycin (mTOR), due to activa-
tion of the phosphoinositide 3-kinase (PI3K) signaling pathway, is a frequent 
event in human cancers (Samuels and Ericson 2006). The application of specific 
mTOR inhibitors, such as rapamycin-derivatives, has been shown to be highly 
effective in inhibiting the growth of these tumor cells (Majumder et al. 2004). 
Aberrant PI3K pathway activity can be identified based on examination of gene 
expression profiling data (Creighton 2008; Majumder et al. 2004; Tiwari et al. 
2003). As such, a PI3K activation signature can be used to rank patients based 
on their likelihood of response to rapamycin-based treatment regimens. An 
advantage of using gene expression-based models to identify pathway activation 
is that, like tumor sample classification, this approach is generalizable and there-
fore gene expression data can be used to monitor the activity of many different 
oncogenic pathways simultaneously (Rhodes and Chinnaiyan 2005). Thus, from 
a single gene expression profile, the activity of many pathways in addition to 
PI3K can be evaluated. Other important examples of molecular-targeted therapy 
involve the prominent class of anti-cancer drugs that inhibit the activity of recep-
tor tyrosine kinases (RTK). Growth factors such as epidermal growth factor 
(EGF) or hepatocyte growth factor (HGF) bind to RTKs, EGFR and MET 
respectively, and stimulate cell proliferation, survival, and differentiation. 
Inappropriate activation of RTKs is associated with the development of many 
types of cancers. For many RTKs, small molecule inhibitors that prevent activa-
tion of the tyrosine kinase or antibody-based therapies that interfere with growth 
factor/receptor interactions are either currently clinically available or being 
evaluated in clinical trials (Matar et al. 2004; Toschi and Janne 2008). Like acti-
vation of the PI3K signaling pathway, activation of RTKs can also be monitored 
through evaluation of gene expression profiling data (Choi et al. 2007; Kaposi-
Novak et al. 2006). The identification of RTK signal transduction defects using 
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gene expression data is a compelling model for the screening of patients most 
likely to benefit from RTK inhibitors. While much work remains to validate 
gene expression-based models of pathway activation in a clinical environment, 
the outlook of this general approach is bright.

3.3.3  Pathway Analysis Methodology

Detection of pathway activation from gene expression data builds upon the statisti-
cal methods used to identify individual gene expression differences. Activation of 
an oncogene (or inactivation of a tumor suppressor gene) regulates the transcrip-
tion of many downstream genes. A straightforward way to quantify the genes up- 
or down-regulated following oncogene activation is to perform a well-controlled 
genome-wide expression profiling experiment (Fig. 3.3). For example, primary 
breast epithelial cells transfected with MYC can be compared to mock-transfected 
primary breast epithelial cells and the set of genes up-regulated following MYC 
over-expression can be identified. Lists of genes that are up- or down-regulated 
following modulation of a given pathway are commonly reported in the literature 
either as tables in the manuscript, tables in the supplemental materials, or as data 
stored in gene expression databases. For clarity, we will use the term “empirically-
derived” to describe a set of genes that are obtained from genome-wide expression 

Fig. 3.3 Schematic of pathway analysis methodology. To generate an empirically-derived gene 
signature for MYC activation, gene expression profiling is performed on tissue culture cells in 
which MYC is over-expressed. Genes that are transcriptionally activated following MYC pathway 
activation are identified. To test if the MYC pathway is active in a particular tumor sample, these 
same transcriptionally responsive genes are examined for up-regulation in the tumor sample
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profiling studies such as the MYC experiment mentioned previously. These 
empirically-derived gene sets can be obtained by a variety of cellular manipulations 
such as stimulation by protein growth factors, activation of oncogenes, exposure 
to limiting oxygen (hypoxia), etc. In each of these cases, gene sets associated with 
these perturbations are identified by direct examination of the gene expression 
data obtained from comparison of treated and control cells. Identification of sets 
of genes using this methodology is distinct from identification of sets of genes that 
are grouped based on functional similarities, such as the Gene Ontology, or are 
organized into sets based on descriptions of classical biochemical pathways, such 
as genes associated with the citric acid (Krebs) cycle (Ashburner et al. 2000; 
Joshi-Tope et al. 2005). We will refer to the latter sets of genes as “theoretically-
derived” gene sets. In these cases, genes are grouped into sets based not on direct 
examination of gene expression data, but rather based on an accumulation and 
distillation of existing biochemical and molecular biological knowledge. As such, 
empirically-derived and theoretically-derived gene sets provide complementary 
information, but the distinction between the two is important for the interpretation 
of transcriptional data.

Similar to the identification of individual gene expression differences, there are 
several ways to determine if an empirically-derived or theoretically-derived set of 
genes is enriched in up-regulated genes (indicating possible pathway activation), 
down-regulated genes (indicating possible pathway inactivation), or that the set of 
genes does not contain any significant enrichment in up- or down-regulated genes 
in tumor samples (indicating no evidence for pathway deregulation). For example, 
to test if genes that are up-regulated by activation of the MYC oncogene are also 
up-regulated in tumor samples, gene expression levels in the tumor samples are 
compared to expression levels in non-diseased samples (Fig. 3.3). The genes are 
then ranked from most up-regulated in the tumor sample to most down-regulated 
in the tumor sample. One of the most common ways to test for enrichment (over-
representation) is to use Fisher’s exact test (Beissbart and Speed 2004; Bouton and 
Pevsner 2002; Hosack et al. 2003; Khatri et al. 2002). For this method, the top 100 
genes up-regulated in the tumor sample are compared to the list of genes up-regulated 
by MYC over-expression. The higher the number of genes that occur in both lists, 
the more significant the prediction of pathway activation is. While this method is 
straightforward, effective, and easy to interpret, it requires that a somewhat arbi-
trary threshold be set to perform the intersection. Several other methods have been 
developed to avoid setting such thresholds and to take advantage of more subtle 
gene expression changes. Modifications to two classical statistical approaches, the 
Kolomogorov–Smirnov running sum statistic and the test statistic from the 
Student’s t-test (Kim and Volsky 2005; Subramanian et al. 2005), can be used to 
test for gene set enrichments. Both of these approaches attempt to include genes 
that may have marginal statistical significance individually, but have high signifi-
cance when analyzed as a set. While an exhaustive comparison of these and other 
statistical methodologies for comparing enrichment of one set of genes to a ranked 
list of genes is beyond the scope of this text, these approaches all share the same 
conceptual framework.
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3.4  Integration of Gene Expression Components for Discovery

The benefit of dissecting gene expression profiles into different components is that 
it becomes possible to look for relationships between the components. If a tumor 
sample is predicted to have a genomic abnormality, such as a chromosomal ampli-
fication, the amplified region can be more closely scrutinized to look for deregula-
tion of genes in the region. For example, if chromosome amplification causes 
over-expression of an oncogene, it is reasonable to expect that either an empirical 
pathway or a theoretical pathway that is associated with oncogene activation would 
also show evidence of transcriptional deregulation. If the expression data shows 
evidence for a genomic amplification, evidence for over-expression of an oncogene 
in the region, and evidence for activation of the oncogenic pathway, an integrative 
oncogenomic model can be built (Fig. 3.4). In this way, transcriptional data can be 
used to build cause-effect relationships between the different components of a gene 
expression profile. Moreover, based on recent work in chemical genomics, it is pos-
sible to link over-expression of an oncogene with activation of an oncogenic path-
way and with identities of drugs that may modulate the activity of the oncogenic 
pathway (Hieronymus et al. 2006; Lamb et al. 2006). The advantage of this integra-
tive approach is that these gene expression-based models can be rapidly built and 
used as screening tools to identify previously unappreciated mechanisms associated 
with tumor development. To extract similar information using molecular genetic 

Fig. 3.4 Intersection of gene expression components. Gene expression analysis can be used to 
identify regions of genomic change. In this schematic, chromosome 8q was identified as being 
amplified in papillary renal cell carcinoma (RCC). Empirically-derived pathways can be analyzed 
to identify activated or repressed signal transduction components. In this schematic, the MYC 
pathway was identified as being active. Discriminative gene analysis can be used to identify indi-
vidual genes that are deregulated. The c-MYC gene which maps to chromosome 8q was found to 
be over-expressed and showed evidence of pathway activation. Integration of these components 
suggests that the c-MYC gene that maps to chromosome 8q is a gene that is likely to be involved 
with the development of this tumor

c-MYC
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approaches, a number of individual assays would be required, including comparative 
genomic hybridization studies to identify copy number abnormalities, a series of 
RT-PCR reactions to measure transcript abundance, and a series of Western blots to 
supply evidence of pathway activation. As these approaches often involve signifi-
cant time and resource commitments, exploiting gene expression data can be an 
efficient approach to identify molecular genetic defects.

By integrating gene expression components, it is possible to identify a limited 
set of underlying mechanisms that can account for some of the vast differences in 
gene expression between tumor and normal tissue. However, a more complete 
understanding of the advantages and disadvantages of these pathway-based 
approaches remains to be worked out. A current limitation of pathway-based 
approaches is the potential for a large number of false-positives (Furge et al. 
2007a). Effects of cellular proliferation can be found in many empirically-derived 
pathways. Oncogene activation and tumor suppressor gene inactivation often lead 
to increased cellular proliferation. If the effects of cellular proliferation dominate 
the transcriptional signature, then the signature will be predicted to be up-regulated 
in many tumors. This creates a false-positive result, as “activation” of the pathway 
simply represents proliferation of tumor cells in general, and can be a major limita-
tion of pathway-based approaches. However, the tendency to over-predict onco-
genic pathway activation based on proliferation effects should be tempered with the 
fact that gene expression predictions can still reveal true biological mechanisms. 
For example, samples from Burkitt’s lymphoma patients often contain transloca-
tions involving the MYC gene and an immunoglobulin (IG) locus. Consistent with 
this translocation, a transcriptional signature indicative of MYC activation was 
strongly up-regulated in lymphomas that contained the IG-MYC translocation, but 
not in other lymphomas. However, there was a smaller, significant, subset of the 
non IG-MYC lymphomas that also contained strong transcriptional indications of 
MYC pathway activation (Hummel et al. 2006). In this subset of non IG-MYC lym-
phomas, it is possible that other translocation-independent abnormalities led to 
MYC activation and subsequent changes in the gene expression profiles. In this 
case, pathway activation would not be considered a false-positive. Rather, this tran-
scriptional signature might reveal something important about the role of MYC in a 
subset of the non IG-MYC lymphomas.

3.5  The Evolution of Pathway Analysis

Full exploitation of gene expression profiling data in the future will require continued 
integration of the transcriptional data with the data produced by other “omics”-based 
approaches. For instance, it is now common to integrate gene expression data with 
genome-wide measurements of changes in chromatin structure, such as with the 
location of transcription factor binding sites, as identified by genome-wide chromatin 
immunoprecipitation experiments. In addition, pathway-based analysis of gene 
expression data requires a detailed knowledge of protein interaction networks. 
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The further elucidation of protein-protein interaction networks (interactomics) will 
be crucial for understanding how pathway modulations are reflected in gene 
expression profiling data. There are several public (Joshi-Tope et al. 2005; Okuda 
et al. 2008) and private (www.ingenuity.com) protein interaction databases that 
allow the integration of gene expression data with protein interaction networks. 
Integration of the gene expression and protein interaction networks has the poten-
tial to not only make predictions of pathway modulations, but also to shed light on 
changes in intracellular biochemistry and metabolite profiles (metabolomics). 
Integration of gene expression data with the metabolic pathway information can be 
used to highlight potential changes in metabolic flux. Given a kinetic model of a 
biochemical pathway, examination of the transcriptional changes that are occurring 
with key enzymes of a biochemical pathway can be used to infer changes in the rate 
at which various metabolites in a pathway are produced or consumed (Fig. 3.5). As 
more metabolic and signal transduction interaction networks are better described 
with mathematical models, integration of gene expression data has the potential 
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Fig. 3.5 Integration of gene expression data with protein-protein interaction data to infer meta-
bolic changes in the methionine cycle. Methionine (Met) enters the pathway and is converted to 
S-adenosyl methionine (AdoMet) by a family of methionine adenosyltransferases (MAT1, 
MAT2). AdoMet is used as a substrate for all DNA, protein, and lipid methytransferases. 
S-adenosyl homocysteine (AdoHcy) is a product of the methytransferase reaction and is broken 
into adenosine (Ado) and homocystine (Hcy) by S-adenosyl homocysteine hydrolase (AHCY). 
Ado and Hcy are either fluxed out of the cycle by adenosine deaminase (ADA) and cystathionine 
beta-synthase (CBS), or cycled back into the pathway by the activity of betaine-homocysteine 
methyltransferase (BHMT) and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). 
Overlaid on this pathway is gene expression data derived from comparisons of papillary renal cell 
carcinoma (RCC) and non-diseased tissue. Dark gray indicates increased gene expression and 
Light gray indicates decreased gene expression in the tumors. Hatched indicates the gene expres-
sion was not measured. The increased expression of key enzymatic components of this pathway 
suggests an increased methionine flux is occurring in the papillary RCCs
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to yield significant insights into perturbations in the cellular networks and their 
associated biochemistries.

In the coming years, a goal of the computational community should be the 
continued refinement of pathway analysis to the point at which gene expression 
predictions of a given pathway modulation have as much robust historical valida-
tion as more traditional molecular biological approaches. While this is a lofty 
goal, limiting confounding effects and false-positives will be a key to unlocking 
the rich information present in a gene expression profile. In addition, more exten-
sive work will be required to encourage acceptance of gene expression analyses 
by the biological community at large. It is likely that more subtle pathway pertur-
bations will be difficult, if not impossible, to recreate accurately in the laboratory. 
Experimental model systems such as tissue culture cells, tumor xerographs, or 
even animal models may lack the more subtle characteristics of human tumor cell 
biology. The biological community requires more confidence in gene expression-
based prediction methods before they can be fully accepted in translational or 
clinical settings. This is particularly important, since it is likely that additional 
clinically relevant biological components can be found in gene expression pro-
files. Effects of regulatory short RNAs (microRNAs), cytoskeleton modulations, 
and organelle dynamics all have the potential to be reflected in gene expression 
space. As additional gene expression components are identified from gene 
expression profiles, it will also be important to determine the extent by which a 
gene expression profile can be reduced to its component parts. Idealistically, all 
variability in gene expression of a tumor sample could be associated with defined 
biological components. While the complications of technical or experimental 
error coupled with the stochastic nature of gene expression may limit the under-
standing of all of the experimental variation, it will be crucial to categorize as 
much gene expression variability as possible.
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Abstract Epigenomics is the genome-wide study of epigenetics such as DNA 
methylation and histone modification. Epigenetic abnormality plays an important 
role in the pathogenesis of most cancers. Among these modifications, DNA methy-
lation is the best-known and most important because of its heritable character. 
Here, recent advances in several technologies for genome-wide profiling of DNA 
methylation are reviewed.

4.1  Introduction

Genetics cannot explain monozygotic twins and cloned animals, because the same 
genetic information has different phenotypes. It also cannot explain the diversity of 
cells with the same genetic information. However, epigenetics can explain these 
phenomena. Epigenetics is defined as heritable information other than genetic infor-
mation coded by the nucleotides adenine (A), guanine (G), cytosine (C), and thy-
mine (T). Epigenetic information is stored using two major modifications of DNA 
and histone: DNA methylation, which is methylation at the C5 position of cytosine, 
and histone modifications, such as acetylation and methylation (Bird 2002; Jenuwein 
2001). These modifications are variable and work as gene switches that regulate 
gene expression, giving phenotypic diversity to individuals or cells with the same 
genetic information. DNA methylation is associated with transcriptional repression 
while histone acetylation is associated with transcriptional activation. Methylation 
of histone H3 lysine 4 (H3K4) is associated with transcriptional activation while 
methylations of H3 lysine 9 (H3K9) and H3 lysine 27 (H3K27) are associated with 
transcriptional repression. DNA methylation is maintained by DNA (cytosine-5-)-
methyltransferase 1 (Dnmt1), which preferentially methylates hemimethylated DNA 
after DNA replication. In mammals, most DNA methylation is located at CpG sites. 
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These sites occur at relatively low frequency in eukaryotic genomes, because most 
cytosines at CpG are methylated by DNA methyltransferases, and methylated cytosine 
can be converted to thymine by spontaneous deamination (Fryxell and Zuckerkandl 
2000). However, clusters of CpG sites, called CpG islands, are frequently found in 
the 5¢ regions of genes. CpG sites in CpG islands are usually unmethylated in normal 
cells, while CpG sites in other regions, which are mostly located in repetitive 
sequences, are usually methylated.

Epigenetics has been most studied in cancer. The global level of DNA methylation 
is lower in cancer than that in normal tissue counterparts (Feinberg and Tycko 2004). 
Loss of methylation is mostly due to the demethylation of repetitive DNA sequences, 
which could explain the chromosomal instability of cancers. Chromosomal instability 
was also shown in a mouse model representing the depletion of DNA methylation by 
the disruption of Dnmts (Eden et al. 2003). The first epigenetic change in genes found 
in tumors was hypomethylation (Feinberg and Vogelstein 1983), and presently many 
growth-promoting genes such as HRAS, S100A4, PAX2, and microRNA let-7a-3, are 
known to be activated through hypomethylation in cancers (Feinberg 2007). On the 
other hand, many tumor suppressor genes including RB, CDKN2A, VHL, MLH1, and 
APC are known to be inactivated by hypermethylation in cancers (Feinberg 2007). 
Hypermethylation of CpG islands in the promoter regions of tumor-suppressor genes 
in cancer cells is associated with a particular combination of histone markers: 
deacetylation, loss of H3K4 trimethylation, and gain of H3K9 methylation and 
H3K27 trimethylation (Ballestar et al. 2003; Jones and Baylin 2007).

Epigenetic mutations have been found to be frequent mechanisms of gene inac-
tivation in cancers. For example, somatic mutations of BRCA1 are extremely rare 
in sporadic breast cancer and ovarian cancers, while this gene is frequently inacti-
vated by DNA methylation (Dobrovic et al. 1997). Recent studies have also sug-
gested that epigenetic abnormalities might be the earliest events in cancer initiation 
(Jones and Baylin 2007). A series of genes, such as CDKN2A, are reported to 
exhibit DNA hypermethylation in the preinvasive stages of colon and other cancers, 
but are rarely mutated in such cancers.

4.2  Emerging Technologies for Genome-Wide  
Profiling of DNA Methylation

Genome-wide profiling of DNA methylation has become one of the most important 
and exciting approaches to cancer genomics. Usually, these techniques involved com-
binations of methylation detection strategies and genome-wide profiling methods 
(Table 4.1). We have three strategies for the detection of DNA methylation: digestion 
of DNA by methylation-sensitive restriction enzymes, such as Not I and Hpa II, 
immunoprecipitation of DNA by 5-methylcytosine antibody (MeDIP), and bisulfite 
conversion of DNA (Table 4.1). There are several genome-wide profiling methods, 
such as two-dimensional electrophoresis, subtraction, microarray, pyrosequencing, 
next-generation sequencing technologies, and matrix-assisted laser desorption/ioniza-
tion time-of-flight (MALDI-TOF) mass spectrometry. For example, the combination 
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of a methylation-sensitive restriction enzyme and two-dimensional electrophoresis 
is known as restriction landmark genomic scanning (RLGS, Hatada et al. 1991, 
1993). Methylation-sensitive-representational difference analysis (MS-RDA, 
Ushijima et al. 1997) and methylation CpG island amplification-representational dif-
ference analysis (MCA-RDA, Toyota et al. 1999) are combinations of methylation-
sensitive restriction enzymes and a subtraction method. Microarray-based integrated 
analysis of methylation by isoschizomers (MIAMI) (Hatada et al. 2006) is a combina-
tion of methylation-sensitive restriction enzymes and microarray technology. MeDIP-
chip (Weber et al. 2005) is a combination of MeDIP and microarray technology.

4.3  Methylation-Sensitive Restriction Enzyme-Based  
Method 1 – RLGS

RLGS (Hatada et al. 1991) was originally developed as a genome-wide profiling 
method to detect genetic changes, such as deletions (Hirotsune et al. 1992), in cancer. 
Several thousand loci in the genome can be detected simultaneously by this method, 
using two-dimensional gel electrophoresis combined with restriction enzyme digestions. 
The application of a methylation-sensitive restriction enzyme, Not I, makes RLGS the 
first technology for genome-wide methylation analysis. RLGS has been used successfully 
to identify new imprinted genes (Hatada et al. 1993) and several putative tumor 
suppressor genes, such as SOCS-1and ID4 (Yoshikawa et al. 2001; Yu et al. 2005). Not 
I is a methylation-sensitive restriction enzyme whose recognition sites are rare in the 
genome. This enzyme cleaves the GCGGCCGC sequence at CpG sites when it is 
unmethylated; however, it cannot cleave the sequence when it is methylated. The first 
step in this technique involves cleavage with Not I, followed by end labeling with a 
radioisotope (Fig. 4.1). For the first dimension of electrophoresis with agarose gel, 
genomic DNA is reduced in fragment size to several kilobases with a restriction 
enzyme (restriction enzyme X). The second dimension of electrophoresis with acryl-
amide gel is performed after in-gel digestion with another restriction enzyme (restric-
tion enzyme Y). After two-dimensional electrophoresis, unmethylated and end-labeled 
Not I sites are detected by autoradiography as spots. When two autoradiographic pat-
terns are compared, using densitometry, the lack of a spot or decreased spot intensity 
in one sample indicates the presence of a differentially methylated Not I site. Spots can 

Table 4.1 Classification of genome-wide DNA methylation-profiling methods

Profiling

Methylation detection

Restriction 
enzymes

5-Methylcytosine 
antibody

Bisulfite 
treatment

2D electrophoresis RLGS – –
Subtraction MS-RDA, 

MCA-RDA
– –

Microarray MIAMI MeDIP-chip MSOM
MALDI-TOF mass spectrometry – – MALDI-TOF
Pyrosequencing – – PyroMeth
Next-generation sequencing – ChIP-seq BS-seq
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be identified either by spot cloning or by virtual RLGS (vRLGS). Virtual RLGS is a 
virtual pattern on a two-dimensional gel, generated using the complete genome 
sequence and computer programs, which enable us to obtain sequence information for 
each spot (Matsuyama et al. 2003; Zardo et al. 2002).

There are several enduring merits of RLGS, although it was developed 18 years 
ago. It is quantitative enough to detect the loss of one of two copies of the HRAS 
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& 1D electrophoresis 
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Fig. 4.1 Schematic flowchart for the RLGS. Genomic DNA is digested with a methylation-
sensitive restriction enzyme, Not I, and labeled with a radioisotope. The labeled fragments are 
applied to the first dimension of electrophoresis after digestion with restriction enzyme X, to 
reduce to a size appropriate for fractionation. After in-gel digestion with restriction enzyme Y, the 
second dimension of electrophoresis is performed. Unmethylated Not I sites are detected as spots 
by autoradiography. Methylation differences can be detected by comparing the two autoradiographic 
patterns derived from normal tissue and cancer
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gene in a cancer, because it directly detects end-labeled DNA and does not use PCR 
amplification. Another merit is that it can be applied to an organism without 
genome information. On the other hand, a disadvantage of the method is that its 
resolution is not particularly high; however, the additional application of a methy-
lation-sensitive restriction enzyme other than Not I partially solves this problem.

In combination with another technique, RLGS can be applied to the simultaneous 
analysis of copy number and methylation status. Zardo et al. reported integrated 
genomic and epigenomic analysis using sequence information for spots (Zardo et al. 
2002). This was performed by a combination of RLGS-based methylation analysis and 
high-resolution deletion maps from microarray-based comparative genomic hybridiza-
tion (array CGH) in glioma. They found that certain subsets of gene-associated CpG 
islands were preferentially affected by convergent methylation and deletion, including 
genes that exhibit tumor-suppressor activity, such as SOCS1, a negative regulator of the 
JAK-STAT signaling pathway. This analysis showed that most aberrant methylation 
events were focal and independent of deletions, and rare convergence of these mecha-
nisms can pinpoint biallelic gene inactivation without the use of positional cloning.

4.4  Methylation-Sensitive Restriction Enzyme-Based  
Method 2 – MS-RDA and MCA-RDA

MS-RDA (Ushijima et al. 1997) and MCA-RDA (Toyota et al. 1999) are subtraction-
based methods using methylation-sensitive restriction enzymes for the detection of 
methylation. In MS-RDA, unmethylated genomic DNA fragments are amplified by 
adaptor-mediated PCR after cleavage with a methylation-sensitive restriction enzyme, 
such as Hpa II and Sac II. On the other hand, the methylated genomic DNA frag-
ments are amplified in MCA-RDA. Amplified DNA fragments from the two samples 
to be compared are used for the following subtraction process. If a gene is methy-
lated in one sample but not in the other, the fragments derived from the gene will 
be missing from one sample. This fragment can be isolated using a subtraction 
method called representational difference analysis technique (Lisitsyn et al. 1993). 
MS-RDA analysis of gastric cancer cell lines identified LOX, a negative regulator 
of NF-kB signaling that is silenced in gastric cancer cells (Kaneda et al. 2002a). Other 
genes, such as 3-OST-2, INSIG1, and p41Arp2/3 were also found to be silenced in 
cancers by MS-RDA analysis (Miyamoto et al. 2003; Kaneda et al. 2002b).

4.5  Methylation-Sensitive Restriction Enzyme-Based  
Method 3 – MIAMI

Classical microarray technology has limited genome-wide approaches to epigenomics; 
however, recent advances allow us to perform highly reproducible genome-wide 
analysis using oligonucleotide probes. Early microarrays used cloned DNA  fragments 
or PCR-amplified DNA fragments as probes. These approaches are expensive for 
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genome-wide analysis; however, recent progress in high-density oligonucleotide 
arrays makes it possible to provide a reproducible and inexpensive tool to analyze 
the genome. High-density oligonucleotide arrays are now commercially available. 
They are photolithographic masked arrays of Affymetrix, photolithographic adap-
tive optics arrays of NimbleGen, inkjet arrays of Agilent technology and bead arrays 
of Illumina. The Agilent Human promoter array covers from 8 kb upstream to 2 kb 
downstream of the transcriptional start sites of the genes. The Affymetrix Human 
promoter array covers 7.5 kb upstream to 2.4 kb downstream.

MIAMI (Hatada et al. 2006) is the first method to use such a microarray plat-
form for genome-wide profiling of DNA methylation. Among several similar meth-
ods, MIAMI, can produce extremely accurate results. It uses methylation-sensitive 
restriction enzyme Hpa II in addition to a methylation-insensitive isoschizomer, 
Msp I, as a control to exclude effects other than methylation. Hpa II cleaves the 
unmethylated CCGG sequence; however, it cannot cleave the same sequence when 
internal C is methylated. On the other hand, Msp I cleaves both unmethylated and 
methylated CCGG sequences. A restriction site polymorphism at an Hpa II site 
and/or a difference in digestion at an Hpa II site depending on the quality of sam-
ples will give a change in Hpa II cleavage without a methylation difference. This 
can be solved by the MIAMI method, because the reliability of the methylation 
differences between samples calculated from the Hpa II cleavage difference is 
judged using Msp I cleavage difference, which is derived from the difference with-
out methylation. For example, in the case of restriction site polymorphism at the 
Hpa II site, cleavage by methylation-insensitive Msp I at this site will also give dif-
ferences between samples because both enzymes recognize the same recognition 
site. Thus, such changes can be treated as false positives.

The Hpa II cleavage difference, which is virtually a methylation difference, is 
detected as follows (Fig. 4.2). A several-fold amplification of regions located 
between unmethylated Hpa II sites is performed by Hpa II digestion, followed by 
adaptor ligation and five cycles of PCR (1st PCR). At this stage, only DNA 
fragments that have methylated internal Hpa II sites before PCR retain Hpa II 
(Msp I) sites. Methylated fragments become impossible to amplify in second 
main PCR by preceding Msp I digestion. The amplified and enriched unmethylated 
DNA fragments from two samples to be compared are labeled with Cy3 and Cy5, 
respectively, and co-hybridized to an oligonucleotide microarray made using 
Agilent inkjet technology. The ratios of fluorescence intensities are used to cal-
culate the Hpa II cleavage difference. On the other hand, for the detection of Msp 
I cleavage differences, which is used to judge the reliability of the Hpa II cleav-
age difference, an identical procedure is performed, except that Msp I digestion 
is performed in the first step (Fig. 4.2). Using this method, 5.7% of gene promot-
ers were found to be hypermethylated in a lung cancer cell line compared with 
those from a normal lung. This frequency is higher than in most previous reports, 
suggesting high sensitivity (Hatada et al. 2006). Analysis of one of the hyperm-
ethylated genes, CIDEB (cell death-inducing DFFA-like effector b), revealed 
hypermethylation in 71% of primary lung cancers. This gene activates apoptosis 
in mammalian cells and is located at 14q11, where LOH frequently occurs in lung 
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cancers (Abujiang et al. 1998). In cancer, 0.6% of promoters are hypomethylated 
and most of their sequences show low CpG content, suggesting that CpG-poor 
promoters are sensitive to demethylation.

Estimation of the distribution of Hpa II sites in the genome is important for 
MIAMI, and should be the same as CpG sites in the genome. The distribution of 
Hpa II sites by the distance from transcription start sites of 1,000 genes is similar 
to that of CpG sites. It is also important to know the Hpa II site density in the 
genome to allow adequate tiling. There are 2,300,000 Hpa II sites in the human 
genome and the average distance between the Hpa II sites is 1.2 kb. Thus, the Hpa 
II site has a suitable distribution and density for genome-wide tiling analysis. One 
of the merits of MIAMI compared with other microarray-based methods is that it 
has strong signals on microarray to support its high reproducibility. On the other 
hand, it cannot detect the locus without Hpa II sites.

4.6  DNA Immunoprecipitation (MeDIP)-Based  
Method – MeDIP-Chip

MeDIP is immunoprecipitation with a 5-methylcytosine-specific antibody. MeDIP 
chip is a combination of MeDIP and microarray chip (Weber et al. 2005) (Fig. 4.3). 
Sonicated and denaturated genomic DNA are immunoprecipitated with a 
5-methylcytosine-specific antibody. Input DNA and immunoprecipitated DNA are 
labeled with Cy5 and Cy3, respectively, and co-hybridized to a microarray. The 
methylation ratio of the genes can be compared between samples. This method was 
applied to cancer cell lines and 0.5–1% of gene promoters were found to be hyper-
methylated compared with those in normal cells.

This method was also applied to a colon cancer and revealed that large genomic 
segments with hypomethylation in cancer cells resided in gene-poor areas (Weber 
et al. 2005). MeDIP-chip was first performed with microarrays with cloned DNA; 
however, it has become applicable to the high-density oligonucleotide platform of 
NimbleGen (Weber et al. 2007). An advantage of this method compared with other 
microarray-based methods is that, theoretically, all methylated CpG sites can be 
analyzed. On the other hand, a disadvantage of this method is that the analysis of 
regions with low CpG density is believed to be problematic (Weber et al. 2007).

4.7  Bisulfite-Based Methods

Thirty years ago, Hayatsu found a bisulfite reaction that converts unmethylated 
cytosine to uracil, but not methylated cytosine (Hayatsu et al. 1970). PCR further 
converts uracil to thymine, therefore, unmethylated cytosine is converted to thymine 
while methylated cytosine is not. In combining this reaction with the quantitative 
pyrosequencing method, the PyroMeth (Uhlmann et al. 2002) method was developed. 
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This method is direct DNA sequencing of PCR-amplified bisulfite-treated DNA by 
pyrosequencing, which can determine the ratio of bases in mixed PCR products, 
and that of C and T exactly; however, only thirty bases can be read per reaction with 
this method. This was improved in a method using MALDI-TOF mass spectrome-
try (Schatz et al. 2004). In this method (Fig. 4.4), bisulfite-treated DNA is PCR 
amplified using a T7 RNA polymerase promoter-tagged primer. The PCR product 
is transcribed into RNA and specifically cleaved at U. The cleavage products are 
analyzed by MALDI-TOF mass spectrometry, and a characteristic mass signal pat-
tern can be obtained. After bisulfite treatment, a methylated template carries con-
served cytosines; therefore, the reverse transcript contains guanosine residues. On 
the other hand, in an unmethylated template, the cytosine is converted to uracil; 
hence, the reverse transcript contains adenosine residues in the respective positions. 
The sequence changes from G to A yield a 16-Da mass shift. Spectrum analysis for 
the presence/absence of mass signals determines the position of methylated CpG, 

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3CH3

CH3

CH3

DNA fragmented by sonication

Denaturation

Immunoprecipitation with 5-
methylcytosine-specific

antibody 

Labeling with Cy5

Hybridization

Microarray

Labeling with Cy3

Fig. 4.3 Schematic flowchart for the MeDIP chip. Sonicated genomic DNA is denatured and 
immunoprecipitated with an antibody directed against 5-methyl-cytosine. Input DNA and immu-
noprecipitated methylated DNA are labeled with Cy5 and Cy3, respectively, and are cohybridized 
to a microarray
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and the ratio of the peak areas of corresponding mass signals determines the relative 
methylation. Another microarray approach is the hybridization of PCR-amplified 
bisulfite-treated DNA with specific probes for both methylated and unmethylated 
DNA (Fig. 4.5) (Gitan et al. 2002; Adorjan et al. 2002). This method is called 
methylation-specific oligonucleotide microarray (MSOM). In this method, bisulfite-
treated DNA is PCR-amplified with a pair of primers for each gene, followed by 
labeling with Cy5 and hybridized to a microarray with a pair of specific probes for 
methylated (hybridized to CG) and unmethylated DNA (hybridized to TG). The 
ratio of methylation can be determined by calculating at both intensities. This 
method was applied for tumor class prediction using machine learning techniques 
(Adorjan et al. 2002). Some CpG dinucleotides correlate with progression to malig-
nancy; however, others are methylated in a tissue-specific manner, independent of 
malignancy. Each of the three bisulfite methods requires too many PCR amplifica-
tion reactions for the genes to be analyzed. Furthermore, the reduction of sequence 
complexity following bisulfite conversion means that it is difficult to design enough 
unique probes to analyze bisulfite-converted DNA comprehensively on a genome-
wide scale on microarrays.
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PCR T7 promoter

MALDI-TOF mass spectrometry
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Fig. 4.4 Schematic flowchart for MALDI-TOF mass spectrometry. Bisulfite-treated DNA is PCR 
amplified using a T7 RNA polymerase promoter-tagged primer. The PCR product is transcribed 
into RNA and cleaved U specifically to give a characteristic mass signal pattern with MALDI-
TOF mass spectrometry. A methylated template carries conserved cytosines after bisulfite treat-
ment; hence, the reverse transcript contains guanosine residues. On the other hand, in an 
unmethylated template, the cytosine is converted to uracil; therefore, the reverse transcript con-
tains adenosine residues in the respective positions. These sequence changes from G to A yield a 
16-Da shift in mass
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Bisulfite sequencing of the whole genome with next-generation sequencing 
technology (BS-seq) is the ultimate method (Cokus et al. 2008). There are several 
commercially available next-generation sequencing platforms such as 454, Solexa, 
and SOLiD, which perform cost effective, high-throughput sequencing, thus making 
the sequencing of individual isolates a feasible option. For example, with the 
Solexa platform, a large number of DNA fragments are immobilized on a solid 
surface, and read simultaneously with fluorescence-labeled nucleotides. Millions of 
36–50 base pair long reads can be obtained from each sample lane at a cost of less 
than $1,000 (USD). Deep sampling of DNA fragments allows rapid procurement of 
high coverage genome sequence information. This technology was successfully 
applied to shotgun bisulphite sequencing of the Arabidopsis genome (Cokus et al. 
2008). However, the BS-seq approach is currently prohibitively expensive for the 
routine analysis of large genomes such as that of humans.

4.8  Comparison of the Methods

Many methods exist for DNA methylation profiling, including those not described 
here. It is important to choose the appropriate technique for an experiment because 
each method has its advantages and disadvantages (Table 4.2). The choice of method 
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Fig. 4.5 Schematic flowchart for the MSOM. Bisulfite-treated DNA is PCR-amplified with a pair 
of primers for each gene. Labeling with Cy5 is followed by hybridization to a microarray with a 
pair of specific probes for methylated (hybridized to CG) and unmethylated DNA (hybridized to 
TG). By comparing both intensities, the ratio of methylation can be determined



62 I. Hatada

depends on the resolution required and the budget. Usually, resolution is in inverse 
proportion to cost. If you regard cost as important, subtraction-based methods and 
RLGS are recommended; however, the resolution of these methods is not very high. 
For example, RLGS can analyze only several thousand loci for one gel analysis. If 
good resolution is required, the best can be obtained with the bisulfite-based 
method. However, most of these methods are time-consuming and expensive, 
although BS-seq with a next-generation sequencer will make this approach feasible 
in the near future. Therefore, if we do not have previous information about candi-
date genes, it is practically impossible to use these methods. Microarray-based 
methods other than MSOM have moderate resolution and are cost-effective, 
because of recent advances in a commercially available high-resolution platform. 
Although these methods do not have resolution at the base pair level, their resolu-
tion is sufficiently high to limit candidate genes. After finding the candidates, we 
can perform extensive analysis at high-resolution using bisulfite-based methods.

Microarray-based methods also have the advantage of merging data with chroma-
tin immunoprecipitation (ChIP) on chip because both can be applied to the 
commercially available high-resolution platform. ChIP on chip is a combination of 
ChIP and microarray (Ren et al. 2000). Fragmented chromatins are immunoprecipi-
tated by antibodies and subjected to DNA extraction followed by microarray 
hybridization. When specific antibodies to histone modification are used, this tech-
nique can be applied to genome-wide profiling of histone modification. These data 
can be merged with methylation profiling data.

4.9  Histone Modifications of Cancer

Generally, histone acetylation is associated with transcriptional activation, but the 
effect of histone methylation depends on the type of amino acid and its position in 
the histone tail (Mack 2006; Bernstein et al. 2007). For example, the methylation 

Table 4.2 Pros and cons of DNA methylation-profiling methods

Ease of use Resolution Cost/gene Equipment Genome info

RLGS Difficult Low Low No Not required
MS-RDA, 

MCA-RDA
Easy Low Low No Not required

MIAMI Easy Middle Low Scanner Required
MeDIP Easy Middle Low Scanner Required
MSOM Easy High Middle Scanner Required
PyroMeth Easy High High Pyrosequencer Required
MALDI-TOF Easy High High Mass Required
ChIP-seq Easy Middle Low NGS Required
BS-seq Easy High Low NGS Required

NGS: Next-generation sequencer.
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of histone H3 lysine 4 (H3K4) is associated with transcriptional activation, while 
methylations of H3 lysine 9 (H3K9) and H3 lysine 27 (H3K27) are associated with 
transcriptional repression. A hypermethylated CpG island in the promoter regions 
of tumor-suppressor genes in cancer is associated with a particular combination of 
histone markers: deacetylation of histones H3 and H4, loss of H3K4 methylation, 
and gain of H3K9 and H3K27 methylation (Ballestar et al. 2003; Jones and Baylin 
2007). Aberrant regulation of histone modification is associated with carcinogen-
esis. In leukemias and sarcomas, chromosomal translocations involving histone-
modifier genes, such as histone acetyltransferases (CBP-MOZ) and histone 
methyltransferase (MLL1, NSD19) create aberrant fusion proteins (Esteller 2006). 
In solid tumors, the amplification of genes for histone methyltransferase (EZH2, 
MLL2) and histone demethylase (JMJD2C) is known (Bracken et al. 2003; Esteller 
2006; Cloos et al. 2006).

Recently, a hypothesis has been proposed, in which histone modification cause 
DNA methylation during cancer formation from stem cells (Widschwendter et al. 
2007). In mouse embryonic stem cells (ESCs), many developmental genes are 
maintained in a state of low transcriptional activity and are available for transcrip-
tional increase or decrease when differentiation cues are received. The promoter 
region of these genes is marked with a combination of active (H3K4) and repressive 
(H3K27) histone methylations in ES cells. This unique “bivalent” state is switched 
either to monovalent active (H3K4) or monovalent repressive (H3K27) after dif-
ferentiation (Bernstein et al. 2006). H3K27 methylation mostly colocalized with 
H3K4 methylation in ESCs is maintained with Polycomb group proteins to repress 
the genes encoding the transcription factors required for differentiation reversibly 
(Ringrose and Paro 2004). Widschwendter et al. hypothesized that the acquisition 
of promoter DNA methylation at these repressed genes leads to permanent silenc-
ing of reversible gene repression, locking the cell into a perpetual state of self-
renewal, and thereby predisposing it to subsequent malignant transformation 
(Widschwendter et al. 2007). By using DNA methylation and histone modification 
data provided by genome-wide profiling approaches such as MIAMI and ChIP on 
chip (Hatada et al. 2006; Lee et al. 2006), they found that hypermethylated genes 
in cancers are significantly enriched in polycomb targets in embryonic stem cells 
(Widschwendter et al. 2007), thus supporting the hypothesis.

This hypothesis suggests that epigenetic changes precede genetic mutations in 
cancer formation. The epigenetic change of a repair gene could cause subsequent 
genetic mutations. I searched the literature for repair genes among those genes with 
bivalent histone modifications in ESCs (Mikkelsen et al. 2007). Only four repair 
genes are bivalent in ESCs. Among them, TP73 is known to be hypermethylated in 
several cancers (Watanabe et al. 2002; Liu et al. 2008). This gene encodes tumor 
suppressor TP73, which is a member of the TP53 family of transcription factors 
involved in cellular responses to stress and development. The family members 
include TP53, TP63, and TP73 and have high sequence similarity to one another, 
which allows TP63 and TP73 to transactivate TP53-responsive genes causing cell 
cycle arrest and apoptosis (Kaghad et al. 1997). TP73 is located in 1p36, a region 
frequently deleted in several cancers (Kaghad et al. 1997). Interactions between 
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ZNF143, TP73, and ZNF143 target genes are involved in DNA repair gene expres-
sion and cisplatin resistance (Wakasugi et al. 2007). Interestingly, the mutation of 
TP73 is rarely observed in cancer although its epigenetic change is frequently 
observed. On the other hand, the genetic mutation of the TP53 is frequently 
observed in cancers.

This hypothesis is also interesting in relation to “cancer stem cells”, which is 
hypothesized to constitute the population of cells that are ultimately responsible for 
perpetuating the tumor. These cells have many properties common to normal stem 
cells, but their exact origins remain controversial (Bjerkvig et al. 2005). Currently, 
most researchers seem to favor the view that a range of cells in normal cell renew-
ing systems, from the ultimate stem cells to a subsequent series of precursor and 
progenitor cells, have the potential to constitute the focal transformation point for 
individual cancers. This fact could explain the existence of many subtypes of major 
tumor types, such as lung and breast cancers.

4.10  Technologies for Genome-Wide Profiling  
of Histone Modifications

Histone modifications can be detected by ChIP. In the first step of ChIP, DNA and 
its associated binding proteins are cross-linked in vivo by chemical treatment. 
Following the shearing of chromatin, the DNA-protein complex is immunoprecipi-
tated by antibodies specific for the histone modification of interest. The DNA 
sequences located near the modified histone binding site are therefore concentrated. 
These DNA sequences can be either detected by ChIP on chip (Ren et al. 2000), or 
by ChIP-seq (Barski et al. 2007). In ChIP on chip, the immunoprecipitated DNA is 
hybridized to a microarray platform. In ChIP-seq, the immunoprecipitated DNA is 
sequenced by next-generation DNA sequencing technology.

4.11  Epigenetic Therapy of Cancer

Drastic epigenetic change occurs in cancer and plays an important role in cancer 
formation. Unlike mutations, epigenetic change is reversible. This led to the idea of 
epigenetic therapy of cancer. Hypermethylated tumor-suppressor genes can be acti-
vated by drugs such as DNA methyltransferase inhibitors or histone deacetylase 
(HDAC) inhibitors. Although this strategy seems to be difficult, it can work in some 
tumors. Two DNA methyltransferase inhibitors, such as 5-azacytidine (Vidaza) and 
5-aza-2¢-deoxycytidine (decitabine), have been approved as treatments for the 
myelodysplastic syndrome and leukemia (Mack 2006; Müller et al. 2006; Oki et al. 
2007). However, these drugs have not yet been shown to have clinical activity 
against solid tumors (Mack 2006). A HDAC inhibitor, suberolanilide hydroxamic 
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acid (vorinostat), has been approved by the US Food and Drug Administration for 
the treatment of cutaneous T-cell lymphoma (Marks et al. 2007). Vorinostat can 
cause growth arrest and death of a broad variety of transformed cells, both in vitro 
and in tumor-bearing animals, at concentrations not toxic to normal cells. In clinical 
trials, vorinostat has shown significant anticancer activity against both hematologic 
and solid tumors at doses well tolerated by patients.

These drugs seem to have a nonspecific effect and impair normal cells. However, 
this may not be as much of a problem as it seems, because DNA methylation inhibi-
tors only act on dividing cells, leaving nondividing normal cells unaffected. In 
addition, the drugs seem preferentially to activate abnormally silenced genes in 
cancer (Karpf et al. 1999; Liang et al. 2002).

4.12  Perspectives and Conclusion

Several emerging genome-wide analysis technologies have been introduced to 
epigenomics to produce new methods for genome-wide DNA methylation analysis. 
Recent advances in commercially available high-density oligonucledotide array 
platforms can tile the genome and make it possible to analyze genome-wide DNA 
methylation. Although bisulfite-based methods are expensive and time-consuming, 
breakthroughs on the horizon will realize next-generation sequencing technology 
applicable to BS-seq of the human genome.

DNA methylation inhibitors and HDAC inhibitors are now used for cancer 
therapy. A combination of both inhibitors could be more effective because of the 
synergistic activities of DNA methylation and HDAC inhibitors. Epigenetics seems 
to be more important when we think of cancer stem cells. Cancer stem cells refrac-
tory to standard chemotherapy might be stimulated to differentiate by the chronic 
administration of epigenetic drugs.
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Abstract The initial discovery of the involvement of two microRNAs, miR-15a 
and miR-16-1, in human CLL opened the way to the myriad of studies that have 
now conclusively proved the central role of microRNAs in all human cancers. 
Gene expression studies revealed that hundreds of microRNAs are deregulated in 
cancer cells and functional studies clarified that microRNAs are involved in all 
the molecular and biological processes that drive tumorigenesis. These findings 
have greatly improved our understanding on the molecular basis of cancer and, 
even more importantly, laid the foundation for the exploitation of microRNAs in 
cancer therapy.

5.1  Introduction to MicroRNAs

MicroRNAs (miRNAs) constitute a large class of philogenetically conserved single 
stranded RNA molecules of ~22 nucleotides (nt) (ranging 19–25 nt), involved in 
post-transcriptional gene silencing. The miRNAs lin-4 and let-7 were the first to be 
discovered and shown to function in Caenorhabditis elegans as triggers for a cas-
cade of gene expression that regulates developmental events by Post-Transcriptional 
Gene Silencing (PTGS) (Lee et al. 1993; Reinhart et al. 2000; Wightman et al. 
1993). Initially believed to play a regulatory role only in worms, their importance 
became more apparent 7 years later, when miRNAs were identified and cloned 
from several organisms, including human, and their nucleotide sequences were 
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found to be philogenetically conserved (Lagos-Quintana et al. 2001; Lau et al. 
2001; Lee and Ambros 2001; Pasquinelli et al. 2000).

Based on the most recent release of the miRBase Registry (http://microrna.
sanger.ac.uk/) (Griffiths-Jones et al. 2006) (14.0, released on September 2009), 
there are 10,883 hairpin precursor miRNAs confirmed in primates, rodents, birds, 
fish, worms, flies, plants and viruses; among these, 721 are human. Computational 
algorithms predict that as many as 1,000 miRNA loci may exist in the human 
genome (Berezikov et al. 2005).

In human, miRNA genes are located in all chromosomes, with the exception of 
chromosome Y. Nearly 50% of known miRNAs are found in clusters and are tran-
scribed as polycistronic transcripts. About 60% of mammalian miRNA genes are 
located in introns of protein-coding genes, the remaining in intergenic non-coding 
transcriptional units; less often in exons and anti-sense orientation with the host 
gene (Baskerville and Bartel 2005; Rodriguez et al. 2004) (see Kim and Nam 2006; 
for a review). Intergenic miRNAs and, sometimes, intronic miRNAs are transcribed 
by RNA polymerase II as independent units. The primary transcript (pri-miRNA) 
is capped and polyadenylated (Cai et al. 2004; Lee et al. 2004). Hence, their expres-
sion is regulated under the same mechanisms that control transcription of protein-
coding genes.

Molecular mechanisms of miRNA maturation and action were also philogeneti-
cally conserved. MiRNA maturation begins in the nucleus, where the pri-miRNA 
is processed by a protein complex known as Microprocessor, which contains the 
nuclear RNaseIII Drosha and its cofactor DGCR8/Pasha (Han et al. 2004, 2006; 
Lee et al. 2003). Microprocessor action generates a precursor miRNA (pre-
miRNA), a 60–70 nt long RNA with a stem-loop structure, that is rapidly exported 
to the cytoplasm by Exportin-5 in a Ran GTP-dependent manner. The mature 
miRNA(s) may reside in the 5¢ arm or in the 3¢ arm of the pre-miRNA stem; some-
times both arms generate mature miRNAs. Once in the cytoplasm, a second 
RNaseIII, Dicer, acts on the pre-miRNA to release a ~22 nt miRNA duplex in 
which the mature miRNA is partially paired to a miRNA* present on the pre-
miRNA opposite stem strand. Usually, only the miRNA (mature miRNA) strand of 
the miRNA::miRNA* duplex is active and enters a protein complex, the RNA-
induced silencing complex (RISC), to repress gene expression (Tang 2005). Mature 
miRNA guides RISC toward regions of partial complementarity in the 3¢UTR of 
target mRNAs, and triggers either their degradation or inhibition of translation 
depending on the degree of complementarity between the miRNA and its target.

Recently, a deviation from the view on miRNAs acting as post-transcriptional 
inhibitors of gene expression has been proved by the case of miR-369-3 and tumor 
necrosis factor alpha (TNF-alpha): in this case, the miRNA was found to up-regulate 
translation upon cell cycle arrest (Vasudevan et al. 2007). The same study proved 
that other miRNAs, such as let-7 and the synthetic microRNA miRcxcr4, induce 
translation up-regulation of target mRNAs on cell cycle arrest, yet they repress 
translation in proliferating cells, suggesting that activation is a common function 
of microRNPs on cell cycle arrest, which leads the authors to propose that translation 
regulation by microRNPs oscillates between repression and activation during the 
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cell cycle. If confirmed, this finding will lead to a change in our way of thinking on 
the biological effects of miRNAs.

Positive effects of miRNA action were also identified for miR-122, which acts to 
facilitate replication of the hepatitis C viral RNA by binding to the 5¢ noncoding 
region of the virus genome (Jopling et al. 2005). However, this mechanism is pres-
ently unique. Indeed, in other known cases, cellular miRNAs interact with viral RNAs 
to inhibit their translation. For example, miR-32 targets the open reading frame 2 of 
the primate foamy virus type 1, thereby inhibiting virus translation (Lecellier et al. 
2005); miR-28, miR-125b, miR-150, miR-223, and miR-382 target sequences in the 3¢ 
end of HIV-1 RNA, thereby silencing almost all viral mRNAs (Huang et al. 2007).

In animal cells, post-transcriptional regulation by miRNA requires an mRNA 
sequence that is perfectly complementary to the “seed sequence” (positions 2–7 of the 
mature miRNA). Various algorithms (http://www.microrna.org/; http://www.tar-
getscan.org/; http://pictar.bio.nyu.edu/) have been developed for predicting 
miRNA::targets interactions. Based on predictive algorithms, each miRNA may poten-
tially regulate hundreds of target mRNAs (Lewis et al. 2005) and it seems so plausible 
that most, if not all, mRNAs are post-transcriptionally regulated by miRNAs.

Thus, by revealing a novel control level, the discovery of miRNAs has broad-
ened our understanding on the mechanisms that regulate gene expression in multi-
cellular organisms. The post-transcriptional control of gene expression operated by 
miRNAs represents a crucial part of all known regulatory pathways at the cellular 
and organism level. However, the miRNA/mRNA network is complex and far from 
being fully understood. A single miRNA can bind and regulate several different 
mRNAs and, at the same time, multiple miRNAs act together to regulate each sin-
gle mRNA target. Furthermore, functions of miRNAs may depend on the unique 
set of mRNA targets transcribed in each cell type. Thus, depending on the combina-
tion of mRNAs and miRNAs, transcriptional and post-transcriptional regulation of 
gene expression operate together to control the fate of each cell type.

5.2  The Discovery of the Involvement of MicroRNAs  
in Human Cancer

Given their potential involvement in all molecular pathways, it seems obvious that 
miRNAs could play such an important role in human tumorigenesis. It was not the 
case in the early days. The first evidence of miRNA involvement in human cancer 
came from a study by Calin et al. (2002). The discovery occurred in Dr. Croce’s 
laboratory by examining a recurring deletion at chromosome 13q14 in the search 
for a tumor suppressor gene involved in chronic lymphocytic leukemia (CLL). This 
discovery took advantage of two important exclusive informations. First, about 
1 Mb of nucleotide sequence at chromosome 13q14 common region of deletion was 
generated in-house, before the full genomic sequence became publicly available 
through the Human Genome Project; second, a very small region of about 30–40 kb 
was identified in human CLL as the smallest region of deletion at 13q14, by 
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taking advantage of two CLL cases with 13q14 translocations associated with 
microdeletions. Thus, by comparing the genomic sequence at chromosome 13 with 
gene sequences of the known miRNAs, it was simple to find that the smallest mini-
mal common region of deletion encoded two miRNAs, miR-15a and miR-16-1, 
whose existence was reported just few months earlier. Subsequent analysis of their 
expression in CLL samples and normal CD5+ lymphocytes revealed that down-
regulation of miR-15a and miR-16-1, which shares their primary transcript, was 
consistently associated with the deletion at chromosome 13q14. This suggested a 
potential role of miR-15a and miR-16-1 as tumor suppressor genes.

Similarly to the initial discovery in C. elegans, for some time, this finding was 
considered unusual and its general significance was not initially appreciated by the 
scientific community. However, subsequent investigations confirmed the involve-
ment and the importance of miR-15a/miR-16-1 and other miRNAs in the pathogen-
esis of human cancer. The putative tumor suppressive role of miR-15a and 
miR-16-1 was supported by the discovery in two CLL patients of a germ-line point 
mutation that results in reduced levels of mature miR-15a and miR-16-1 (Calin 
et al. 2005), and the idea was further strengthened by the demonstration that miR-
15a and miR-16-1 negatively regulate the anti-apoptotic oncogene BCL2 at a post-
transcriptional level and induce apoptosis and suppress tumorigenicity in the 
leukemic cell line MEG-01 (Calin et al. 2008; Cimmino et al. 2005).

5.3  Numerous MicroRNAs Are Involved in Human Cancer

Evidence now indicates that the involvement of miRNAs in cancer is much more 
extensive than initially expected. Initial clues came from the observation that about 
50% of known miRNA genes are located at sites of recurrent deletions or amplifica-
tions in human cancers (Calin et al. 2004a, b; Zhang et al. 2006a, b). More direct 
evidence was provided by genome-wide expression studies.

The expression levels for hundreds of microRNAs were assessed by using high-
throughput technologies from the very early studies, leaving the more traditional 
approaches for validation purposes only. Microarray (Liu et al. 2004), bead-based 
flow cytometric technique (Lu et al. 2005), qRT-PCR for miRNA precursors 
(Schmittgen et al. 2004), stem-loop qRT-PCR and primer-extension quantitative PCR 
for mature miRNA products (Chen et al. 2005; Raymond et al. 2005) were developed 
and applied to measure miRNA level of expression in normal and cancer tissues.

Two large multi-cancer expression profiling studies have been reported. In a 
study of 334 leukemias and solid cancers, Lu et al. (2005) found that miRNA-
expression profiles classify human cancers based on developmental lineage and 
differentiation status of the tumor. This study also revealed a globally decreased 
miRNA expression in tumors with respect to their normal counterpart. Volinia et al. 
(2006) conducted a large-scale miRNome analysis on 540 samples representing six 
solid cancers (lung, breast, stomach, prostate, colon and pancreas) and corresponding 
normal tissues and established the existence of a tumor-specific miRNA signature, 
which comprised 43 deregulated miRNAs (26 up and 17 down-regulated).
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The above studies were supported by a number of investigations on individual 
types of neoplasm. All the studies revealed the existence of differences in 
miRNA expression in neoplastic versus normal tissues (Bandres et al. 2006; 
Bottoni et al. 2007; Budhu et al. 2008; Calin et al. 2004; Ciafre et al. 2005; 
Cummins et al. 2006; Feber et al. 2008; Garzon et al. 2008a, b; Gottardo et al. 
2007; Gramantieri et al. 2007; Guo et al. 2008; He et al. 2005a, b; Huang et al. 
2008a, b; Iorio et al. 2005, 2007; Isken et al. 2008; Jiang et al. 2008; Ladeiro 
et al. 2008; Lawrie et al. 2007; Lin et al. 2008; Ma et al. 2007; Marcucci et al. 
2008; Meng et al. 2007; Michael et al. 2003; Murakami et al. 2006; Nam et al. 
2008; Ozen et al. 2008; Pallante et al. 2006; Pan et al. 2008; Porkka et al. 2007; 
Roldo et al. 2006; Schetter et al. 2008; Sengupta et al. 2008; Subramanian et al. 
2008; Tavazoie et al. 2008; Tetzlaff et al. 2007; Visone et al. 2007; Volinia et al. 
2006; Wang et al. 2007, 2008; Weber et al. 2006; Wong et al. 2008a, b; Yanaihara 
et al. 2006; Zhang et al. 2008).

These studies proved that each neoplasm has a distinct miRNA signature that 
differs from that of other neoplasms and from each normal tissue counterpart. 
Additionally, an important implication of miRNA studies was that, differently from 
mRNAs, a small number of miRNAs could uncover a large amount of diagnostic 
information, like assessment of tissue of origin and several bio-pathological and 
clinical cancer features. Besides its translational value for the development of inno-
vative diagnostic approaches, these findings also indicated that miRNAs could act 
as master regulators of the overall cellular gene expression.

These studies revealed that a number of miRNAs are recurrently deregulated 
in human cancer (Tables 5.1 and 5.2). In most cases, deregulation was consis-
tently in one direction, namely up- or down-regulation across different types of 
cancers, suggesting that the involvement of each deregulated miRNA could cause 
the subversion of one or more cancer-associated pathways shared by different 
types of cancer. Consistent with this view, the most commonly found miRNAs 
deregulated in cancer include miR-21, miR-221/222 cluster, several members of 
the miR-17-92 family clusters, miR-210 and miR-155, which are up-regulated in 
different types of neoplasm, and miR-143/145 cluster and several members of the 
miR-199, miR-125 and let-7 families, which are instead down-regulated in differ-
ent types of neoplasm.

In addition to miRNAs whose deregulation is shared among different types of tumors, 
there are also examples of miRNAs deregulated only in specific neoplasms: for example, 
the liver-specific miRNA miR-122 is consistently down-regulated in hepatocellular car-
cinoma only (Gramantieri et al. 2007; Kutay et al. 2006; Ladeiro et al. 2008).

There are also some apparently contradictory situations: for example, members 
of the miR-181 family are up-regulated in some cancers, such as thyroid, pancreatic 
and prostate carcinomas (He et al. 2005a, b, Pallante et al. 2006; Volinia et al. 2006) 
but down-regulated in others, such as glioblastomas and pituitary adenomas 
(Bottoni et al. 2007; Ciafre et al. 2005). Given the role of miR-181 in differentiation 
(Chen et al. 2004; Guimaraes-Sternberg et al. 2006; Naguibneva et al. 2006; 
Ramkissoon et al. 2006; Ryan et al. 2006). It is possible that these apparent discrepancies 
might reflect the original cell differentiation status and therefore, function of 
miRNA could depend on mRNA targets expressed in each different cell setting.
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There are also some situations that are apparently contrasting with the molecular 
or biological function (described below) associated with a given miRNA. For 
example, over-expression of miR-10b has been involved in tumor invasion/metastasis 
(Ma et al. 2007), but its expression is generally down-regulated in breast cancer. 
A more detailed analysis revealed that miR-10b was indeed up-regulated in about 
50% of metastatic breast cancers (Ma et al. 2007), while it was generally down-
regulated in all other metastatic and non-metastatic breast cancers, indicating that 
the miR-10b is up-regulated in only a fraction of breast cancers, that the statistical 
analyses employed to analyze microarray data may not recognize. Another example 
is linked to the role of miR-200 in epithelial-to-mesenchimal transition (EMT) 
(Gregory et al. 2008; Korpal et al. 2008; Park et al. 2008): while inhibition of differ-
ent members of the miR-8 family (miR-200a, miR-200b, miR-200c and miR-141), 
which are involved in the maintenance of epithelial traits, induces the EMT cancer 
progression trait and are expected to be expressed at reduced level in advanced can-
cers, these miRNAs were instead significantly up-regulated in ovarian, thyroid and 
colangiocarcinomas (Iorio et al. 2007; Meng et al. 2006; Nam et al. 2008; Pallante 
et al. 2006). Hence, in contrast with their potential role in cancer, their expression 
was frequently detected opposite to expectation in primary tumors. In this case, it 
may be speculated that the EMT trait may be detectable only in a small fraction of 
cancer cells, which have acquired a more aggressive phenotype in a heterogeneous 
primary tumor mass. Indeed, the EMT process appears to be only transiently 
acquired at the invasive tumor edge. Hence, methods capable of analyzing the over-
all expression of the tumor may not be able to acquire this type of information. The 
use of in situ hybridization in primary tumors should help to clarify this aspect.

In summary, microRNAome expression studies revealed a large number of miR-
NAs deregulated in several types of human cancers. In many cases, functional stud-
ies have now connected these miRNAs to biological and molecular cancer traits. 
Thus, the expression work in primary tumors appears to have identified many of the 
miRNAs relevant in human tumorigenesis. However, although considerable 
advancements have been achieved in the last 2–3 years, an understanding on the 
biological function and role in cancer for several of these cancer-associated miR-
NAs have not yet been obtained, suggesting that our knowledge needs to be further 
expanded by additional functional studies. Besides validating the biological signifi-
cance of miRNA deregulation, functional studies may also identify miRNAs 
involved in human cancer and missed by expression studies.

5.4  MicroRNAs Are Central Players in Malignant 
Transformation Processes

As previously mentioned, several of the miRNAs whose expression is deregu-
lated in cancer, were functionally linked to molecular pathways by the identifica-
tion of gene targets involved in human cancer (Table 5.3 and Fig. 5.1). Through 
several studies contributed by different laboratories, miRNAs were found to play 
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important roles in cell growth, death, differentiation, angiogenesis, invasion of 
surrounding tissues and metastasis to distant sites (Hanahan and Weinberg 2000). 
Moreover, since miRNAs could regulate multiple mRNA targets at the same time, 
the deregulation of a single miRNA was shown to affect, in some instances, various 
cancer traits.

Independence of growth factors provides cancer cell the ability to grow without 
tissue or organ control. Growth factor receptors represent the interface that allows 
cells to respond to external proliferation stimuli. miR-125a and miR-125b are 
down-regulated in breast cancer (Iorio et al. 2005). It was shown that these two 
miRNAs regulate the expression of the receptor tyrosine kinases ERBB2 and 
ERBB3 (Scott et al. 2007). Consistently with the suppression of ErbB signaling, 
ectopic over-expression of miR-125a or miR-125b in SK-BR-3 cells impaired 
in vitro anchorage-dependent growth and reduced migration and invasion capaci-
ties, suggesting that down-regulation of miR-125 in breast cancer may promote 
tumor cell motility and invasiveness.

Another tyrosine kinase receptor that is involved in conferring motility and inva-
sive potential to cancer cells is MET, which becomes physiologically activated by 
the hepatocyte growth factor (HGF). HGF is the most potent growth factor for 
hepatocytes and, by binding to its tyrosine kinase receptor, MET, promotes proliferation, 

Fig. 5.1 miRNAs are involved in all human cancer traits. Early and late events are here 
schematically shown. MiRNAs in green are generally down-regulated in cancer, thereby leading 
to target up-regulation; conversely, the miRNAs in red are generally up-regulated in cancer and 
their targets repressed
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regeneration, migration, survival and angiogenesis and it is involved in the control 
of invasive growth both during tumorigenesis and in embryonic development 
(Benvenuti and Comoglio 2007; Birchmeier et al. 2003). Recent reports indicated 
that MET is post-transcriptionally regulated by miR-199a/a* and miR-1 (Datta 
et al. 2008; Grady et al. 2008). Genes for both miRNAs are methylated in hepato-
cellular carcinomas (HCCs). Since members of the miR-199 family emerged as 
frequently down-regulated in several human cancers (Gramantieri et al. 2007; Iorio 
et al. 2007; Jiang et al. 2008; Meng et al. 2007; Murakami et al. 2006; Nam et al. 
2008; Pallante et al. 2006; Porkka et al. 2007), this mechanism could favour the 
activation of the MET oncogenic potential.

The activation of tyrosine kinase receptors (RTKs) initiates a downstream cas-
cade of events that lead cells to proliferate. Crucial elements of this signaling trans-
duction pathway are members of the RAS family of oncogenes. A molecular link 
between miRNA deregulation and RAS expression has been established. The 
3¢UTRs of the KRAS, NRAS and HRAS mRNAs contain multiple complementary 
sites for binding of let-7 members, and forced expression of let-7 in human cancer 
cells reduces RAS protein levels (Johnson et al. 2005). Since let-7 is frequently 
down-regulated in several human cancers (Gramantieri et al. 2007; Iorio et al. 2005, 
2007; Porkka et al. 2007; Yanaihara et al. 2006), this mechanism could lead to the 
activation of the RAS pathway.

It has also been shown that let-7 can also repress the HMGA2 oncogene (Calin 
et al. 2007; Mayr et al. 2007), which encodes for a high-mobility group protein 
oncogenic in a variety of tumors, including benign mesenchymal tumors and lung 
cancers. The effect of let-7 on HMGA2 was dependent on multiple target sites in 
the 3¢ untranslated region (UTR). The disrupted repression promotes anchorage-
independent growth and the growth-suppressive effect of let-7 on lung cancer 
cells was rescued by over-expression of the HMGA2 ORF without a 3¢UTR 
(Calin et al. 2007).

The importance of let-7 down-regulation in cancer was also supported by studies 
by Takamizawa et al. and Akao et al. (Akao et al. 2006; Takamizawa et al. 2004), 
who showed that let-7 can suppress the growth of A549 lung cancer cells and 
DLD-1 colon cancer cells in vitro.

Signal pathways from activated RTKs include also the phosphatidyl inositol 
3-phosphated kinase (PI3K)/AKT signalling, which leads to the activation of AKT 
kinases, which phosphorylate several protein targets that in turn promote cell sur-
vival. This pathway is controlled by the tumor suppressor lipid-phosphatase PTEN. 
It was shown that PTEN is a direct target of miR-21 (Meng et al. 2007), a miRNA 
that is over-expressed in most of human cancers (Ciafre et al. 2005; He et al. 2005a, b; 
Iorio et al. 2005; Nam et al. 2008; Volinia et al. 2006; Wong et al. 2008a, b; 
Yanaihara et al. 2006). Thus, PTEN could be repressed by the over-expression of 
miR-21, which would lead to cell survival through PI3K-AKT pathway activation.

miR-21 can also down-regulate the tumor suppressor Programmed Cell Death 4 
(Pdcd4) (Asangani et al. 2008; Frankel et al. 2008). Pdcd4 is believed to have a role 
in TGF-beta induced apoptosis. However, it may also have other functions. It is 
up-regulated in senescent fibroblasts and it may inhibit proliferation, possibly 
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through the indirect suppression of CDK1/cdc2 kinase. Moreover, it acts as a negative 
regulator of intravasation, initial step for cancer cell metastasis. Anti-miR-21-
transfected RKO cells showed an increase of Pdcd4-protein and reduced invasion, 
while over-expression of miR-21 in Colo206f significantly reduced Pdcd4-protein 
amounts and increased invasion. Analyses of primary colorectal cancers revealed 
that an inverse correlation between miR-21 and Pdcd4-protein exists, suggesting 
that miR-21/Pdcd4 interaction may be relevant for invasion/intravasation/metastasis 
of cancer cells.

The anti-apoptotic role of miR-21 was supported by experiments based on trans-
fection of cultured glioblastoma and breast cancer cells with anti-miRNA oligo-
nucleotides (AMOs): inhibition of miR-21 was accompanied by suppression of cell 
growth in vitro, associated with increased apoptosis (Chan et al. 2005). miR-21 is 
over-expressed in colangiocarcinoma and its inhibition by AMOs increases sensi-
tivity to the chemotherapeutic agent gemcitabine (Meng et al. 2006). miR-21 also 
down-regulates the tropomyosin 1 (TPM1) (Ahituv et al. 2007), which suppresses 
anchorage-independent growth of MCF-7 breast cancer cells, further supporting the 
oncogenic function of miR-21.

Defective apoptosis is a trait of cancer cells. The miR-21 example indicates that 
miRNAs can affect this essential element of tumorigenesis. Moreover, as men-
tioned above, miR-15a and miR-16-1 act as regulators of the anti-apoptotic BCL2 
oncoprotein. These miRNAs are encoded by genes located in a chromosomal 
region deleted in more than 50% of CLLs. In the leukemic cell line MEG-01, 
expression of miR-15a and/or miR-16-1 leads to BCL2 down-regulation and 
increased apoptosis (Cimmino et al. 2005). Hence, the loss of expression of these 
miRNAs, by removing a control over BCL2 expression, may be relevant in the 
pathogenesis of human CLL. Indeed, BCL2 is highly expressed in CLL; however, 
unlike in follicular lymphoma, its activation is not associated with translocation to 
the IgH-encoding locus. BCL2 activation in CLL thus appears at least in part linked 
to the reduced expression of miR-15a and miR-16-1.

Another important link between miRNAs and apoptosis and cell proliferation 
pathways is given by the miR-17-92 cluster, which acts together with MYC to accel-
erate tumor development in a mouse B-cell lymphoma model (He et al. 2005a, b). 
These lymphomas, differently from those arising in the MYC-only system, are 
characterized by the absence of apoptosis, which suggests that various miR-17-92 
family members regulate a pro-apoptotic gene. Interestingly, two miRNAs encoded 
by the cluster, miR-17-5p and miR-20a, negatively regulate the expression of E2F1 
(O’Donnell et al. 2005), a transcription factor that promotes cell cycle progression, 
but is also a strong inducer of apoptosis when abnormally expressed. The absence 
of apoptosis might thus be linked to the tight control on E2F1 by the miR-17 family. 
A more recent report, reveals that E2F1, E2F2, and E2F3 directly bind the promoter 
of the miR-17-92 cluster, activating its transcription, and miR-20a, a member of the 
miR-17–92 cluster, modulates the translation of the E2F2 and E2F3 mRNAs 
(Sylvestre et al. 2007). These results suggest the existence of a feed-back regulatory 
loop involving miR-20a and E2F that protects cells from apoptosis induced by 
excessive E2F expression.
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Additionally, the pro-apoptotic BCL2L11/BIM gene was also shown to be a 
direct target of multiple members of the various miR-17-92 clusters (Koralov 
et al. 2008; Petrocca et al. 2008), suggesting that the observed anti-apoptotic 
mechanism could be possibly more related to the repression of Bim rather than 
of E2F1. Indeed, haploinsufficiency for Bim can accelerate lymphomagenesis in 
Eu-myc transgenic mice (Egle et al. 2004), similarly to the overexpression of the 
miR-17-92 cluster.

In human, the miR-17-92 family includes 15 homologous miRNAs, which are 
encoded by 3 gene clusters on chromosomes 7, 13 and X (Mendell 2008; Tanzer 
and Stadler 2004). It is significant that members of all three clusters were up-regulated 
in different types of cancer, symptomatic of the importance of these miRNAs in 
cancer development. The role of these miRNAs as oncogenes has been proved by 
several evidences: expression studies revealed that these miRNAs are over-
expressed in different types of hematopoietic and solid malignancies (Volinia et al. 
2006). The cluster on chromosome 13 is amplified in human B-cell lymphomas 
(Ota et al. 2004), which leads to increased expression of various miRNA members. 
In human solid tumors, expression of the miR-17-92 cluster at chromosome 13 is 
up-regulated in small-cell lung cancer, and ectopic over-expression of this cluster 
enhances lung cancer cell growth (Dews et al. 2006; Hayashita et al. 2005). Over-
expression of the paralog on chromosome 7 renders gastric cancer insensitive to 
TGF-b-mediated cell cycle arrest, by interfering with the expression of CDKN1A/
p21 (Petrocca et al. 2008). Importantly, miR-17-92 up-regulation can increase 
tumor angiogenesis, through the down-regulation of the anti-angiogenic factors 
thrombospondin-1 (Tsp1) and connective tissue growth factor (CTGF), both pre-
dicted targets of the miR-17-92 microRNAs (Dews et al. 2006). These findings 
indicate that members of the miR-17 family are involved in multiple biological 
functions, most prominently apoptosis and cell cycle regulation, that affect different 
cancer traits.

A direct role of miRNAs in controlling cell growth by directly acting on ele-
ments of the cell cycle machinery was provided by studies on miR-221/222 cluster. 
miR-221, which was recently shown to be induced by MYCN (Schulte et al. 2008) 
and repressed by p53 (Tarasov et al. 2007), emerged as a significantly up-regulated 
miRNA in glioblastoma, pancreatic, hepatocellular, kidney, bladder, prostate and 
thyroid cancer (Calin et al. 2007; Ciafre et al. 2005; Galardi et al. 2007; Gottardo 
et al. 2007; He et al. 2005a, b; Lee et al. 2007a, b; Pallante et al. 2006), indicative 
of an oncogenic function affecting a trait commonly altered in several human neo-
plasms. Its oncogenic function was substantiated by the discovery of its ability to 
modulate the expression of the cyclin-dependent kinase inhibitors CDKN1B/p27 
(Corsten et al. 2007; Galardi et al. 2007) and CDKN1C/p57 (Fornari et al. 2008; 
Medina et al. 2008), two key controllers of cell cycle progression, implicating an 
important role of miR-221/222 in promoting cell cycle progression in cancer cells.

P53 is a tumor suppressor protein at the cross-road of a variety of signalling 
pathways that may induce cell cycle arrest or apoptosis, whose main function 
is to safeguard cellular integrity. This tumor suppressor gene encodes a tran-
scription factor that is post-transcriptionally activated by DNA damage, oxidative 
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stress, or activation of oncogenes (Vousden and Lane 2007). P53 activation 
leads the transcription of genes, whose products in turn induce cell cycle arrest, 
which can be transient or permanent (senescence), or promote apoptosis in 
cases where stress cannot be overcome. Biological outcome is largely depen-
dent on cellular background.

miR-34s form an evolutionarily conserved miRNA family, with three members 
in vertebrate genomes (miR-34a, miR-34b, and miR-34c), organized in two separate 
loci: miR-34a, located at chromosome 1p16, is encoded by its own transcript, 
whereas miR-34b and miR-34c, at 11q23, share a common primary transcript. The 
two loci show little phylogenetic conservation, except in the miRNA-encoding 
sequences and in short promoter proximal regions, each containing a consensus 
p53-binding site. A series of reports from several laboratories proved that members 
of the miR-34 family are induced by p53 (Adams et al. 2007; Bommer et al. 2007; 
Corney et al. 2007; Perkins et al. 2007; Raver-Shapira et al. 2007; Tarasov et al. 
2007; Tazawa et al. 2007). Through various induction stimuli, such as DNA dam-
age and oncogenic activation, miR-34a and miR-34b/miR-34c loci were shown to 
be directly regulated by interaction of p53, thus adding miRNAs among the numer-
ous p53-regulated genes. Importantly, biological responses to ectopic expression of 
miR-34 included senescence, cell cycle arrest or apoptosis depending on cellular 
model, indicating that, as cell cycle arrest and apoptosis are common endpoints of 
p53 activation, miR-34 genes represent important effectors of tumor suppression by 
p53. Various gene targets compatible with the observed biological effects were also 
identified. For examples, cyclin E2, cyclin-dependent kinase 4 and hepatocyte 
growth factor receptor MET, were down-regulated by miR-34 expression. It is inter-
esting to note that p53 was also reported to induce the down-regulation of cyclin-
dependent kinases (CDK4) and cyclins (Cyclin E2) (Spurgers et al. 2006), 
suggesting that down-regulation of these proteins could be mediated by induction 
of miR-34.

A direct link between miR-34a and tumorigenesis emerged from earlier studies 
of Welch et al. (Welch et al. 2007), who showed that the miR-34a gene is often lost 
in human neuroblastoma. This study proved that primary neuroblastomas and cell 
lines often exhibit low miR-34a expression. Importantly, enforced expression of 
miR-34a in these cells inhibited proliferation and activated cell death pathways. 
Because of the chromosomal location of the miR-34 genes, at 1p36 and 11q23, 
which are frequently deleted in a variety of human carcinomas, it is possible that 
these genomic abnormalities, by affecting miR-34, could indirectly alter the p53 
function in these cells.

miR-34s were not the only miRNAs modulated by p53. Notably, quantitative 
analyses indicated that 34 miRNAs were significantly induced by p53, whereas 
16 miRNAs were repressed (Tarasov et al. 2007). Some of these differentially 
regulated miRNAs were connected to cancer: among the induced miRNAs were 
miR-15/16, which target the oncogene product Bcl2, and let-7, which downregu-
lates RAS and HMGA2 (Calin and Croce 2006; Calin et al. 2007; Johnson et al. 
2005; Mayr et al. 2007). Among the miRNAs repressed by p53 was miR-221, 
which promotes cell cycle progression by down-regulating the CDK inhibitors 
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p27 and p57 (Corsten et al. 2007; Fornari et al. 2008; Galardi et al. 2007; Medina 
et al. 2008). These miR-mediated regulations are likely to contribute to tumor 
suppression activity of p53.

Another link between miRNAs and p53 was shown by a study on miR-372 and 
miR-373, which have been shown to cooperate with oncogenic RAS to transform 
primary human cells (Voorhoeve et al. 2006). This study proved that miRNAs can 
confer protection to oncogene-activated p53 pathway. It was shown that primary 
human cells undergo growth arrest and senescence in response to mitogenic signals 
from oncogenes such as RAS, by the activation of the p53 pathway, a response that 
is reversed by the presence of non-functional p53. Voorhoeve e coll. demonstrated 
that ectopic expression of miR372/373 was sufficient to allow transformation in the 
presence of wt p53. Thus, the study demonstrated that miR372/373 confers protec-
tion to oncogene-activated p53 pathway, but not to DNA damage p53-dependent 
cellular response. Interestingly, this is a characteristic found in testicular germ cell 
tumors (TGCTs), where, in contrast with other types of tumors, the miR-372/373 
cluster is indeed highly expressed in most TGCTs, suggesting a role in the develop-
ment of these tumors.

Altered apoptosis and cell cycle are early events in cancer, which progresses to 
more advanced stages by acquiring additional traits, like angiogenesis, invasion and 
metastasis. The role of miR-17-92 up-regulation in tumor angiogenesis has been pre-
viously mentioned (Dews et al. 2006). The role of miRNAs in invasion and metastasis 
was demonstrated by different studies (Adams et al. 2007; Huang et al. 2008a, b; 
Tavazoie et al. 2008). In a study from Robert Weinberg’s laboratory, it was shown that 
miR-10b initiates tumor invasion and metastasis (Adams et al. 2007). Although miR-
10b is down-regulated in most breast cancers in comparison with normal breast tissue 
(Iorio et al. 2005), this miRNA is instead over-expressed in about 50% of metastatic 
breast cancers. The authors proved that miR-10b was responsible for initiating tumor 
invasion and metastasis. They found that Twist, a metastasis-promoting transcription 
factor, can induce miR-10b expression by binding to an upstream element, and they 
proved that HOXD10, a homeobox transcription factor that promotes or maintains a 
differentiated phenotype in epithelial cells, is a target of miR-10b. The importance of 
HOXD10 as an effector of miR-10b was proven by showing that the ectopic expres-
sion of an unresponsive-to-miR-10b-HOXD10 could abrogate miR-10b-induced cell 
motility and invasiveness. Finally, the authors showed that RhoC, a G-protein 
involved in metastasis that is repressed by HOXD10, becomes strongly expressed in 
response to miR-10b expression. Importantly, reduction of RhoC expression by 
siRNA caused repression of miR-10b-induced cell migration and invasion, implying 
RhoC as a downstream effector of miR-10b.

Two additional miRNAs, miR-373 and miR-520c, were also found to function as 
metastasis-promoting miRNAs in breast cancer (Huang et al. 2008a, b). miR-373 
was previously associated with testicular cancer (Voorhoeve et al. 2006), but not to 
metastasis. Similarly to miR-10b, miR-373 and miR-520c did not affect cell prolif-
eration, but promoted an in vitro migratory and invasive phenotype of MCF7 cells. 
Furthermore, MCF7 cells over-expressing miR-373 or miR-520c developed 
metastatic nodules, which were absent in control cells. Interestingly, miR-373 and 



915 Involvement of MicroRNAs in Human Cancer: Discovery and Expression Profiling

miR-520c could regulate an overlapping set of gene targets, among which, CD44, 
which encodes a cell surface receptor for hyaluronan that could reduce the migra-
tory properties of MCF7 cells. In primary breast carcinomas, miR-373 was highly 
expressed in tumors presenting lymph-node metastasis and an inverse correlation 
with CD44 expression was revealed.

In addition to metastasis-promoting miRNAs, miR-335, miR-126 and miR-206 
were found to function as metastasis-suppressor microRNAs (Tavazoie et al. 2008). 
These miRNAs were identified by comparing miRNA expression of metastatic 
nodules versus unselected breast cancer parental cells. These microRNAs were 
consistently down-regulated in metastatic foci.

Invasion and metastasis of cancer cells present similarities with the embryonic 
process of EMT (Berx et al. 2007). The EMT program allows detachment of cells 
from each other and increases cell mobility, both of which are necessary for tumor 
cell dissemination. During this process, cells down-regulate E-cadherin and up-
regulate N-cadherin and Vimentin expression. In cancer, EMT seems to be tran-
siently activated at the invasive tumor edge by microenvironment factors. 
Expression of miR-200 was found to be a marker for cells that express E-cadherin 
but lack expression of Vimentin. miR-200 was also found to directly target the 
mRNA of the E-cadherin transcriptional repressors ZEB1 and ZEB2 (Burk et al. 
2008; Gregory et al. 2008; Korpal et al. 2008; Park et al. 2008). Expression of 
ZEB1 promotes metastasis of tumor cells in a mouse xenograft model (Spaderna 
et al. 2008). Ectopic expression of miR-200 caused up-regulation of E-cadherin in 
cancer cell lines and reduced their motility; conversely, inhibition of miR-200 
reduced E-cadherin expression, increased expression of Vimentin, and induced 
EMT. In spite of the fact that these miRNAs were found significantly up-regulated 
in ovarian, thyroid and colangiocarcinomas (Iorio et al. 2007; Meng et al. 2006; 
Nam et al. 2008; Pallante et al. 2006), these findings maintain their relevance in 
tumor biology and clinical significance. In fact, down-regulation of miR-200 may 
occur in a small fraction of cells present at the edge of tumor mass and may be 
missed by approaches that analyze the overall tumor expression.

As their role has been linked to any cancer trait, it is not surprising that miRNAs 
may also be important in normal and cancer stem cell maintenance. In this regard, 
let-7 was shown to play an important role in human and mouse mammary cell stem-
ness. A paper by Ibarra et al. (2007) proved a role of let-7 in the maintenance of a 
mammary mouse progenitor cells, and a paper by Yu et al. (2007) proved that the 
fraction of cells CD44+/CD24low of the breast cancer cell line SK-BR-3, which 
exhibits an increased potential of in vitro self-renewal and differentiation and 
capacity of in vivo tumor formation and metastasis, is also characterized by low 
level of let-7. Yu et al demonstrated that the low level of let-7 is required for the 
maintenance of self-renewal and differentiation properties and verified that the 
reduced level of let-7 is also present in CSCs directly enriched from primary 
tumors. Among targets of let-7, HMGA2 is responsible for maintaining cells in an 
undifferentiated status, a situation that mirrors what is observed in normal embry-
onic stem cells. This area of investigation is at a very early stage and it is therefore 
likely that new important discoveries on the role of miRNAs in the maintenance of 
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normal and cancer stem cells will increase our understanding in this important area 
of investigation in the near future.

The above studies clearly proved the importance of miRNAs in most, if not all, 
pathways associated with cancer traits (Fig. 5.1). In addition to advance our under-
standing on the molecular basis of cancer, it is now expected that this new informa-
tion could be translated into useful diagnostic and therapeutic tools.

5.5  miRNA Expression Signatures for Cancer Classification, 
Prognostic Stratification and Therapy Response

The findings discussed above clearly indicate that miRNAs aberrant expression can 
influence cancer phenotype. If so, specific miRNA expression signatures could poten-
tially be used to classify tumors and reveal distinct subtypes in term of prognosis or 
therapy response. Indeed, in several instances, the expression of individual or groups 
of miRNAs was associated with distinct bio-pathological and clinical features.

In CLL, a specific expression signature consisting of 13 miRNAs could distin-
guish cases of CLL with poor prognosis (high ZAP-70/unmutated IgVH) versus 
those with good prognosis (low ZAP-70/mutated IgVH). The same microRNA 
signature was also associated with disease progression (Calin et al. 2005).

In AML, miRNA expression was closely associated with selected cytogenetic 
and molecular abnormalities, such as t(11)(q23), isolated trisomy 8, and FLT3-ITD 
mutations; patients with high expression of miR-191 and miR-199a were shown to 
bear a significantly worse overall and event-free survival (Garzon et al. 2008).

Higher levels of miR-155 were found in DLBCLs with an activated B cell phe-
notype than with germinal center phenotype. Because patients with an activated 
B cell-type DLBCL have a poorer clinical prognosis, quantification of this miRNA 
may be clinically useful (Eis et al. 2005).

In hepatocellular carcinoma (HCC), Ladeiro and colleagues (Ladeiro et al. 2008) 
revealed that distinct miRNA expression signatures were associated with histological 
features (tumor/nontumor, p < 0.001; benign/malignant tumors, p < 0.01; inflamma-
tory adenoma and focal nodular hyperplasia, p < 0.01), clinical characteristics [hepa-
titis B virus (HBV) infection, p < 0.001; alcohol consumption, p < 0.05], and 
oncogene/tumor suppressor gene mutations [beta-catenin, p < 0.01; hepatocyte 
nuclear factor 1alpha (HNF1alpha), p < 0.01]. Budhu and colleagues identified a 
specific expression signature consisting of 20 miRNAs that was associated with prog-
nosis in HCC. In their entire cohort of samples, the 20-miRNA tumor signature was 
a significant independent predictor of survival (p = 0.009) and, in early stage HCCs, 
was significantly associated with both survival and relapse (p = 0.022 and 0.002, 
respectively), thus providing a simple profiling method to assist in identifying patients 
with HCC who are likely to develop metastases/recurrence (Budhu et al. 2008).

In lung cancer, Yanaihara and colleagues found that high expression of miR-155 
(p = 0.006) and low expression of let-7a-2 (p = 0.033) were associated with poor 
overall survival (Yanaihara et al. 2006); while Yu et al. identified a 5-set miRNA 



935 Involvement of MicroRNAs in Human Cancer: Discovery and Expression Profiling

signature (miR-221, let-7a, miR-137, miR-372 and miR-182*) able to predict overall 
survival (p = 0.007) and disease-free survival (p = 0.037) (Yu et al. 2008). In spite 
of the different technologies employed to assess miRNA expression, it appears 
significant that both studies revealed that the down-regulation of let-7a represents 
a predictor of a poor prognosis. Furthermore, this conclusion is also in agreement 
with the report by Takamizawa e colleagues, who found that the down-regulation 
of let-7 in non-small cell lung cancer was associated with poor prognosis and 
reduced post-operative survival (Takamizawa et al. 2004).

In oesophageal squamous cell carcinoma, low expression of miR-103/107 cor-
related with a high overall survival rate and high expression correlated with a low 
overall survival rate (p = 0.041) (Guo et al. 2008).

In colon cancer, high miR-21 expression was associated with poor survival and 
poor therapeutic outcome, independently of clinical covariates, including TNM stag-
ing, and was associated with a poor therapeutic outcome (Schetter et al. 2008).

In breast cancer, various miRNAs could predict disease-free and overall 
survival. Low expression of miR-335 or miR-126 was significantly associated 
with poor metastasis-free survival (Tavazoie et al. 2008) and the level of miR-210 
expression exhibited an inverse correlation with disease-free and overall survival 
(Camps et al. 2008). The prognostic value of miR-210 was also confirmed in an 
independent study (Foekens et al. 2008), which also revealed that up-regulation 
of miR-210 is associated with tumor aggressiveness in estrogen receptor positive/
lymph node negative breast cancers and early relapse in estrogen receptor 
negative/lymph node negative breast cancers. These results suggest the potential 
use of these miRNAs in prognostic stratification of breast cancer patients. In addition, 
although their usefulness as prognostic markers in a clinical setting needs to be 
assessed by more direct studies, over-expression of miR-10b (Adams et al. 2007), 
miR-373 and miR-520c (Huang et al. 2008a, b) were associated with breast cancer 
metastasis, as previously described.

miRNAs are also emerging as predictors of therapy response. In colangiocarci-
noma, the expression of miR-21 could modulate gemcitabine-induced apoptosis 
(Meng et al. 2006), while miR-214 could induce cisplatin resistance in ovarian 
cancer (Yang et al. 2008). In breast cancer, over-expression of miR-221/222 was 
found to confer resistance to tamoxifen (Miller et al. 2008). Interestingly, miR-128b 
was shown to regulate EGFR and its deletion in non-small-cell lung cancer corre-
lated with clinical response and survival following treatment with the EGFR inhibi-
tor gefitinib (Weiss et al. 2008), suggesting that expression of miR-128b could 
improve selection of patients eligible for gefitinib treatment.

5.6  miRNAs in Anti-cancer Therapy

miRNAs not only can be used as diagnostic markers, but they may become 
therapeutic targets or therapeutic molecules themselves, the anti-miRNA agents 
and the miRNA-mimics agents have been recently added to the expanding list 



94 M. Negrini and G.A. Calin

of anticancer ammunition. The conceptual basis for their use has been established 
by in vitro and animal models.

In 1998 Mello and Fire discovered the RNA interference (RNAi) in vertebrates 
(Fire et al. 1998). Similar to miRNAs, RNAi is a form of posttranscriptional gene 
silencing in which double-stranded RNA (dsRNA), named short interfering RNAs 
(siRNAs), catalyzes the degradation of complementary mRNA targets. A siRNA is 
a dsRNA homologous to an mRNA of a target gene. The processing of the siRNAs 
is similar of that of miRNAs (Kim and Rossi 2007; McManus and Sharp 2002). 
A siRNA can be generated by short hairpin RNA (shRNA), which represents a siRNA 
precursor hairpin molecule expressed from a vector (Bernards et al. 2006). DNA 
cassettes encoding RNA polymerase III promoter-driven shRNAs allow long-term 
expression of therapeutic RNAs in targeted cells. This process immediately 
attracted investigators all over the world, for the possibility to specifically inhibit 
the gene of interest, including oncogenes, with a relatively simple approach.

Song and colleagues used anti-Fas siRNA to protect mice from induced acute 
liver injury and, similarly, Zender and colleagues used anti-caspase-8 siRNA to 
protect mice against Fas ligand-induced liver injury (Kim et al. 2003; Wirth 
et al. 2003). Both studies demonstrated a survival benefit using a siRNA 
approach without significant side effects, and a high hepatic uptake following 
siRNA systemic administration.

Oncogenes expressed at abnormally high levels represent the obvious targets for 
anti-cancer siRNA-directed therapy. Several examples have been reported in the 
literature. It was shown that the targeting of the BCR-ABL chimeric oncogene, 
derived from the chromosomal translocation associated with the Philadelphia (Ph’) 
chromosome in chronic myeloid leukemia, resulted in BCR/ABL knockdown and 
was accompanied by strong induction of in vitro apoptotic cell death (Wilda et al. 
2002). Likewise, siRNA targeting of an activated K-RAS or viral oncogenes have 
also been proven to have an anti-cancer effect (Brummelkamp et al. 2002; Butz 
et al. 2003; Sabbioni et al. 2007; Yoshinouchi et al. 2003). These studies proved the 
efficacy of the approach in specifically targeting activated oncogenes and proved 
that this approach can be highly selective, a critical element in anti-neoplastic thera-
peutic intervention. The results from preclinical studies were also promising. For 
instance, in a mouse model of ovarian cancers, the administration of liposomal 
delivered siRNA targeting Eph2 combined with paclitaxel, determined a reduction 
of the tumor size greater than 50% on either intravenous or intraperitoneal routes 
of delivery (Landen et al. 2005). In another example, adenovirus-mediated siRNA 
against a K-ras mutated messenger (K-ras codon 12 GGT to GTT) markedly 
decreased K-ras gene expression and inhibited cellular proliferation of lung cancer 
cells that express the relevant mutation, but produced only minimal growth inhibi-
tion on cells that lack the specific abnormality (Zhang et al. 2006a, b). These 
reports support the idea that siRNAs, alone or combined with chemotherapy, could 
stimulate a powerful anti-cancer activity.

However, the siRNA cancer therapy is still shadowed by few, but significant 
issues. The first involves the low bio-availability. Another is represented by “off-
target-effects”, meaning that, in addition to the complementary target, a specific 
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siRNA can induce the silencing of several other imperfect complementary mRNAs. 
Finally, a major concern is the stimulation by siRNA duplexes of the innate immune 
system and the production of high amounts of interferon (for a review see Bumcrot 
et al. 2006).

miRNAs could have multiple advantages over siRNAs. First, since deregulation 
of a miRNA may affect multiple pathways, its re-establishment may have a restor-
ing effect on the same multiple pathways, a result that cannot be achieved by the 
siRNA approach. Second, since miRNAs are normal cellular molecules, the inter-
actions that are produced are likely to be physiological, thus possibly avoiding 
potential deleterious off-target effects.

Several studies have established the usefulness of miRNA-based therapy in can-
cer. The induction of apoptosis by miR-15a and miR-16-1 in CLL (Cimmino et al. 
2005), the inhibition of growth of cancer cells by let-7 (Akao et al. 2006; 
Takamizawa et al. 2004), the reduced migration and invasion capacities induced by 
miR-125 in breast cancer cells (Scott et al. 2007) are results that indicate the poten-
tial value of miRNA molecules in cancer therapy. However, because of limitations 
in methods for in vivo delivery, up to now there has not been any report of using 
agents that mimic miRNAs in animal or clinical models.

More successful has been the use of AMOs. The use of anti-miR-21 AMOs to 
elicit a pro-apoptotic response in glioblastoma and breast cancer cells are examples 
(Chan et al. 2005). Significantly, the use of the anti-miR-21 AMOs increases sus-
ceptibility of colangiocarcinoma cells to gemcitabine (Meng et al. 2006), suggest-
ing that miRNA-based therapy may be effectively combined with chemotherapy.

Even the efficiency of in vivo delivery of AMOs seems to have found effective 
solutions through the use of cholesterol-conjugation of “antagomirs” (Krutzfeldt 
et al. 2005, 2007) or the use of “locked” nucleotides for the production of LNA-
modifed oligonucleotides (Chan et al. 2005; Lecellier et al. 2005).

The “antagomir” represents a RNA therapeutic molecule originally designed to 
inhibit miRNAs (Krutzfeldt et al. 2005, 2007). These are chemically modified and 
cholesterol-conjugated single-stranded 23-nt RNA molecules complementary to the 
targeted miRNA. The modifications were introduced to increase the stability of the 
RNA and protect it from degradation. When intravenously administered to mice, 
antagomirs against miR-122 (antago-miR-122), a miRNA highly expressed in liver 
induced a marked, specific and persistent reduction of endogenous miRNA gene. 
One important aspect is that the silencing of miRNAs by these new agents is fol-
lowed by measurable effects, for example the decrease in plasma cholesterol levels 
after antago-miR-122 administration. The only tissue where antagomirs did not act 
when injected systemically was the brain, probably due to the difficulty of crossing 
the blood-brain barrier, but they efficiently target miRNAs when injected locally 
into the mouse cortex. One clear advantage with respect to siRNA technology is 
that antagomirs did not induce an immune response.

Mixed DNA/LNA AMOs have been used to inhibit miR-21, which results in an 
increased apoptotic death in glioblastomas cells (Chan et al. 2005). LNA-based 
oligonucleotides have been shown to be non-toxic at dosages of less than 5 mg/kg/
day in mice and these produce anti-tumor effects in vivo (Fluiter et al. 2003, 2005). 
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Recently, studies performed in mouse and African green monkeys models assessed 
safety and efficacy of the approach (Elmen et al. 2008a, b). Efficient silencing of 
miR-122 was achieved by three doses of 10 mg/kg LNA-antimiR, leading to a long-
lasting and reversible decrease in total plasma cholesterol without any evidence for 
associated toxicities or histopathological changes in the liver of the animals. Thus, 
by proving feasibility, safety and efficacy for the use of AMOs in a pre-clinical 
setting, these studies established the basis for their use as therapeutic molecules in 
clinical trials.

The potentiality for therapeutic implementation of small RNAs or AMOs in 
clinical practice is enormous. The development of animal models will certainly 
help to establish the role of miRNAs in tumorigenesis and represent useful models 
for in vivo testing of anti-cancer AMOs and miRNAs.

5.7  Concluding Remarks

The discovery of the aberrant expression of miRNAs in human cancer has opened 
the way to an understanding of a central event in tumorigenesis. Gene expression 
studies have revealed a large number of deregulated miRNAs, whose biological 
functions have been partly deciphered to reveal that cancer traits are controlled by 
miRNAs. Further functional studies and animal models will certainly expand our 
understanding on their role in normal and disease processes. Moreover, the future 
will see whether miRNAs will find their place also in the clinical setting. miRNAs 
signatures useful for cancer prognostic stratification and response to therapy have 
already been discovered and the use of AMOs as anti-cancer agents represents an 
exciting new field full of great expectations.
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Abstract Protein–protein interactions, post-translational modifications, and inter-
action between protein and DNA or RNA can all shift the activity of a protein 
from what would have been predicted by its level of transcription. Functional 
proteomics studies the interaction of proteins within their cellular environment to 
determine how a given protein accomplishes its specific cellular task. Accordingly, 
the promise of functional proteomics is that by chronicling the function of aberrant 
or over-expressed proteins, it will be possible to characterize the mechanism of the 
disease-sustaining proteins. The further understanding of the disease networks will 
lead to targeted cancer therapy and specific biomarkers for diagnosis, prognosis or 
therapeutic response prediction based on disease specific proteins. In the context of 
other proteomic technologies, targeted antibody arrays are strongly contributing for 
functional proteomics analyses. This chapter describes how such strategies reported 
to date that may assist in the diagnosis, surveillance, prognosis, and potentially for 
predictive and therapeutic purposes for patients affected with solid and haemato-
logical neoplasias.

6.1  Functional Proteomics in Oncology: Concepts

Cancer can be described as a genetic disease, driven by the multistep accumulation 
of genetic and epigenetic factors. These molecular alterations result in uncontrolled 
cellular proliferation, cell cycle deregulation, decrease in cell death or apoptosis, 
blockage of differentiation, invasion, and metastatic spread. The particular genetic 
and protein expression alterations that occur as part of the crosstalk between these 
pathways, will in great part determine the biological behavior of the tumor including 
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its ability to grow, recur, progress and metastasize. The advent of high-throughput 
methods of molecular analysis can comprehensively survey the genetic and protein 
profiles characteristic of distinct tumor types and identify targets and pathways 
that may underlie a particular clinical behavior. The driving force behind oncopro-
teomics is the belief that certain protein signatures or patterns are associated with 
a particular malignancy and clinical behavior. If so, the correlation of clinical 
parameters with defined protein expression patterns that reflect the mutated 
genetic program that caused or was involved in cancer progression, would allow 
tumor stratification, predict disease progression and even define improved tailored 
therapeutic modalities. The technological challenges to achieve these goals 
are significant since the human proteome is not defined. One potential solution 
to finding cancer-associated protein signatures is functional proteomic antibody 
array-based techniques.

While the amino acid sequence of a protein is uniquely determined by a nucle-
otide sequence, the genetic code of a protein is not a complete predictor of the 
function of a protein. Many in vivo factors can alter the activity level or function of 
a protein as cells are influenced by a complex system of communication with other 
cells and factors in their microenvironment. Protein–protein interactions, post-
translational modifications, and interaction between protein and DNA or RNA can 
all shift the activity of a protein from what would have been predicted by its level 
of transcription. Functional proteomics studies the interaction of proteins within 
their cellular environment to determine how a given protein accomplishes its spe-
cific cellular task. Accordingly the promise of functional proteomics is that by 
chronicling the function of aberrant or over-expressed proteins, it will be possible 
to characterize the mechanism of the disease-sustaining proteins. The further 
understanding of the disease networks will lead to targeted cancer therapy and 
specific biomarkers for diagnosis, prognosis or therapeutic response prediction 
based on disease specific proteins. In addition, the response of proteins to molecu-
lar targeted therapy could be monitored to determine the efficacy of the targeted 
therapy and potential viable future therapies involving the same protein pathway 
(Azad et al. 2006).

Several high-throughput techniques are available today for functional proteomics. 
These techniques can be applied to in vitro, in vivo and clinical samples to fur-
ther characterize protein functions in a multiplexed manner. Immunocapture 
through immunoblotting, precipitation, and histochemistry and protein and tissue 
microarrays are tools usually applied to clinical samples (tissue and body fluids). 
Immunoprecipitation can identify interactions between proteins and can be applied 
if the clinical sample is of adequate size and stability. Unknown partner proteins in 
a multiprotein complex can be identified using SDS-PAGE followed by mass 
spectrometry (MS) analysis and peptide mass fingerprinting as is done routinely 
for non-clinical samples. MS cannot only provide sequence from which to identify 
the protein, it is precise enough to detect co- and post-translational changes 
such as phosphorylation, glycosylation, acetylation, and alternate cleavage sites. 
In this chapter, antibody array-based technologies will be described for functional 
proteomic analyses.
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6.2  Antibody Array-Based Techniques in the Context  
of Other Functional Proteomic Approaches

It is important to correctly classify antibody array-based targeted proteomic approaches 
in the context of other strategies that may be undertaken to investigate the cancer 
proteome for functional analyses of the proteins under study (Haab et al. 2001; 
Kingsmore 2006; Chan et al. 2004; Angenendt et al. 2002; Kopf and Zharhary 
2007; Sanchez-Carbayo 2006; Borrebaeck and Wingren 2007). The terminology of 
untargeted and targeted proteomics refers to whether the proteins to be measured 
are known and considered in the experimental design (targeted) and the number of 
proteins that can be detected and characterized (decided at front in targeted 
approaches). Untargeted platforms such as two-dimensional electrophoresis (2D) 
and mass spectrometry are best suited for first pass comparisons of proteomes 
unknown at front in the experimental design to identify relatively few, novel and 
known proteins that may exhibit the greatest differences in abundance. These tech-
niques in their low- and high-resolution versions were initially considered the 
mainstay or standard of proteomic technologies (Kopf and Zharhary 2007; Sanchez-
Carbayo 2006; Borrebaeck and Wingren 2007). Targeted platforms measure and 
quantify known proteins of interest identified previously, and are suited for analy-
ses of quantitative differences in abundance among known protein families and 
pathways. Tissue arrays and multiplexed western blots are considered targeted 
proteomic approaches (Borrebaeck and Wingren 2007). However, antibody and 
protein microarrays are considered the main targeted techniques used for large-
scale analysis of many samples and known proteins. These two latter represent the 
most versatile among the proteomics techniques available to date, since antigens, 
peptide, complex protein solutions or antibodies can be immobilized to capture and 
quantify the presence of specific either proteins or antibodies, respectively (Kopf 
and Zharhary 2007; Sanchez-Carbayo 2006; Borrebaeck and Wingren 2007). 
Immobilization of proteins either as purified or phage-displayed protein versions or 
in format of complex protein solutions have led to tumor-associated antigen (TAAs) 
or reverse-phase arrays (Wang et al. 2005; Anderson and Labaer 2005; Nishizuka 
et al. 2003; Petricoin et al. 2005). TAAs arrays utilized on serum specimens 
enhance the detection of autoantibodies against TAAs, which are being utilized for 
cancer diagnosis and patient outcome stratification and the characterization of 
protein–antibody interactions. The rationale of TAAs arrays in clinical practice is 
related to the presence in the cancer sera of antibodies which react with a unique 
group of autologous cellular antigens or TAAs (Wang et al. 2005; Anderson and 
Labaer 2005). Complex protein extracts can also be spotted onto membranes and 
probed with antibodies targeting specific proteins and pathways on the so-called 
reverse-phase arrays (Nishizuka et al. 2003; Petricoin et al. 2005). Overall, the 
versatility of targeted platforms allows controlling and estimating the reproducibility, 
scalability and precise antibody and protein quantification, leading to high sensitivity 
and coverage. One of the major advantages of the antibody arrays approach is 
that it allows experimental designs to address specific hypothesis, and biological 
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interpretation of the results obtained, making them critical for functional proteomic 
analyses in oncology. However, the number of proteins amenable for these analyses 
depends on the availability of antibodies with high affinity and specificity to bind a 
target protein (Kopf and Zharhary 2007; Sanchez-Carbayo 2006; Borrebaeck and 
Wingren 2007). Because of the little overlap between studies conducted with tar-
geted and untargeted approaches using the same specimens, confirmation of the 
advantages and pitfalls of these types of high-throughput technologies for the func-
tional proteomics remains an elusive goal. Overall, any of these proteomic strate-
gies are impacting on functional proteomic studies and the discovery of cancer 
specific candidates (Table 6.1). In this chapter, these proteomic technologies have 
only been summarized to set up the main differences among them.

6.3  Antibody Array Formats

6.3.1  Current Formats

Depending on whether the antibodies are immobilized on a planar or spherical 
surface, antibody arrays have been classified into planar and suspension/bead for-
mats, respectively (Fig. 6.1). Innovation in the immobilization surfaces and detec-
tion strategies are leading to an increasing number of planar arrays and bead-based 
antibody array technologies. Planar antibody arrays represent the most versatile 

Table 6.1 Main characteristics of array-based proteomic techniques

Technique Printed molecule Pitfalls
Most frequent 
application

Antibody 
(forward-
phase) 
arrays

Highly specific 
antibodies

Availability of antibodies
Cross-reactivity

Protein profiling
Biomarker discovery
Signaling
Post-translational 

modifications
Bead-based 

multiplexed 
arrays

Antibodies coating 
differentially 
identifiable beads

Degree of multiplexing limited 
by number of differentially 
identifiable beads

Protein profiling
Cytokine
Signaling
Biomarker discovery

Reverse-phase 
arrays

Lysate protein 
extracts

Limited number of analytes 
analyzed even with 
multisectored slides

Crossreactivity

Protein profiling
Biomarker discovery
Signaling
Post-translational 

modifications
Antigen arrays Purified proteins and 

peptides
Significance of Autoabs in 

progression is controversial
Antibody profiling
Immune response 

evaluation
Biomarker discovery
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type, as shown along the clinical applications presented for the discovery of targets, 
functional networks and biomarker candidates below. The main planar label-based 
formats comprise one- antibody and sandwich assays. One-antibody and sandwich 
assays present advantages and pitfalls over each other. In both formats, the target 
protein is always captured by one (or more) immobilized “capture” antibody in the 
array. In one-antibody label-based assays, the targeted proteins are detected through 
labelling with a tag. In sandwich assays, a second not-immobilized “detection” 
antibody interacts with a different epitope for a given monomeric protein enabling 
detection by forming a “sandwich” (Fig. 6.1). In the direct labelling, proteins are 
labelled with a fluorophore (including cyanines such as Cy3 or Cy5). In the indirect 
labelling, proteins are labelled with a tag that is later detected by a labelled antibody 
(Sanchez-Carbayo 2006). By multiplexing with different fluorescent labels for each 
sample, one-antibody label-based assays may allow the incubation of more than 
one sample simultaneously. These assays can be designed to be competitive if the 
analytes belonging to the co-incubated test and reference solutions compete for 
binding at the antibodies. The competition in one antibody (two-colour) assays is 
ratiometric and does not imply that the analytes are saturating the antibodies. This 
competition has been suggested to lead to improvements in linearity of response 
and dynamic range as compared to non-competitive assays (Angenendt et al. 2002; 
Kopf and Zharhary 2007; Sanchez-Carbayo 2006; Borrebaeck and Wingren 2007). 

c. Suspension/bead 

Whole cell
Membrane

antigen
   Soluble antigen

a. Competitive

Cy3  Cy5

Cy3 Cy5

DigoxigeninBiotin

Direct

Indirect

b. Sandwich

RCA,RLS
ECL, TSA

Biotin-SA-Cy3

d. Whole cell detection

Whole cell
Membrane

antigens

Fig. 6.1 Main formats of planar and suspension antibody arrays. RCA: rolling circle amplifica-
tion; RLS: resonance light scattering; ECL: enhanced chemiluminescence; TSA: tyramide signal 
amplification; SA: streptavidin
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The main disadvantage is related to the potential disruption of the analyte–antigen 
interaction by the label, which may also limit the detection, as well as the sensitivity 
and specificity.

In the sandwich label-based format, immobilized “capture” antibodies capture 
unlabeled proteins, which are detected by another “detection” antibody using sev-
eral methods to generate the signal for detection (Fig. 6.1b). The use of these two 
“capture” and “detection” antibodies against different epitopes of a given analyte 
increases the specificity for the target protein to be measured as compared to label-
based assays. The reduced background of these assays increases also the sensitivity. 
The sandwich format allows only non-competitive assays, since only one sample 
can be incubated on each array (Haab et al. 2002; Kingsmore 2006; Chan et al. 
2004; Angenendt et al. 2002; Kopf and Zharhary 2007; Sanchez-Carbayo 2006; 
Borrebaeck and Wingren 2007). This format requires standard curves of known 
concentrations of analytes to achieve accurate calibration of concentrations. 
As compared to label-based assays, sandwich arrays are more difficult to develop 
in a multiplexed manner since matched pairs of antibodies and purified antigens 
may not be available for each target, and the potential cross-reactivity among detec-
tion antibodies increasing with additional analytes. The practical size of multi-
plexed sandwich assays limits to 30–50 different targets (Kopf and Zharhary 2007; 
Sanchez-Carbayo 2006; Borrebaeck and Wingren 2007). This contrasts with one-
antibody assays where only availability of antibodies and space on the substrate 
limit the number of targets analyzed.

Proteins in suspension can then be detected using bead/suspension arrays 
(Fig. 6.1c) (Lash et al. 2006; De Jager and Rijkers 2006; Waterboer et al. 2006). 
These arrays use different fluorescent beads, each coated with a different antibody 
and spectrally resolvable from each other (Lash et al. 2006; De Jager and Rijkers 
2006; Waterboer et al. 2006). The beads are incubated with a sample to allow pro-
tein binding to the capture antibodies, and the mixture is incubated with a cocktail 
of detection antibodies, each corresponding to one of the capture antibodies. The 
detection antibodies are tagged to allow fluorescent detection. The beads are passed 
through a flow cytometer system, and each bead is probed by two lasers, one to read 
to the colour, or identity of the beam and another to read the amount of detection 
antibody on the bead (Lash et al. 2006; De Jager and Rijkers 2006; Waterboer et al. 
2006). Multiplexed bead-based flow-cytometry assays represent an active area of 
development. Differentially identifiable beads coated with either proteins, autoan-
tigens or antibodies can identify a variety of bound antibodies or proteins using a 
flow cytometer system (Lash et al. 2006; De Jager and Rijkers 2006; Waterboer 
et al. 2006). Other antibody array approaches have been developed as modifications 
of the one-antibody and sandwich label-based arrays. These alternate strategies 
allow detection of proteins on whole cells without protein isolation (Fig. 6.1c, d) 
(Kingsmore 2006; Chan et al. 2004). Advances in instrumentation and bead chem-
istries are making this approach very valuable for the detection of circulating can-
cer cells. As another version of this concept, suspensions of cells can be incubated 
on antibody arrays, and the amount of cells that bound each antibody can be quanti-
fied by dark field microscopy. These arrays have the potential of characterizing 
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multiple membrane proteins in specific cell populations or changes in cell surfaces 
induced by drug therapies (Belov et al. 2001).

6.3.2  Emerging Formats for Functional Proteomics

Several examples can be provided to delineate recent remarkable innovations 
achieved to monitor specific post-translational modifications as well as to increase 
the limits of detection or enable the technology to profile protein extracts obtained 
from very few individual cells. In a first example, antibody arrays are adapted to 
detect differences in the content of glycans (sugars or carbohydrates) of proteins. 
These carbohydrate post-translational modifications on proteins are known to be 
important determinants of protein function in both normal and disease biology. 
Antibody array designs have been developed to allow efficient, multiplexed study 
of glycans on individual proteins from complex mixtures (Dotan et al. 2006; Chen 
et al. 2007). Once multiple proteins are captured using antibody microarrays, these 
post-translational modifications can be detected using lectins or glycan-binding 
antibodies (Chen et al. 2007). In pancreatic cancer, profiling of both protein and 
glycan variation in multiple serum samples using parallel sandwich and glycan-
detection assays, has identified the cancer-associated glycan alteration on proteins 
in the serum of pancreatic cancer patients (Chen et al. 2007). These antibody arrays 
for glycan detection are opening a novel field of glycobiology research in the con-
text of neoplastic diseases for functional proteomics and the discovery of potential 
targets and cancer biomarker candidates.

High sensitivity, in the femtomolar range, allowing protein quantification from 
limited sample quantities (only six cells) can be achieved by the so-called antibody 
“ultramicroarrays” (Nettikadan et al. 2006). These arrays were initially tested for 
the detection of interleukin-6 (IL-6) and prostate specific antigen (PSA), finding 
detection levels using purified proteins in the attomolar range (Nettikadan et al. 
2006). Remarkably, this strategy should enable proteomic analysis of clinical speci-
mens available in very limited quantities such as those collected by laser capture 
microdissection.

Another critical technical development that is being applied to antibody arrays 
increasing the limits of detection is quantum dot technology. By offering remark-
able photostability and brightness and low photobleaching, quantum dots allow 
detection of proteins in biological specimens (serum, plasma, body fluids) at pg/ml 
concentration, as has been shown to detect several cytokines (Zajac et al. 2007). 
Models of quantum dot probes include conjugation of nanocrystals to antibody 
specific to selected markers and the use of streptavidin (SA) coated quantum dots 
and biotinylated detector antibody (Zajac et al. 2007). By allowing monitoring of 
changes in protein concentration in physiological range in body fluids, the method-
ology can potentially be applied to other types of planar and suspension arrays.

Another technical innovation allowing detection of proteins at picomolar con-
centrations utilizes surface plasmon resonance imaging (SPRI) measurements of 
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RNA aptamer microarrays. The adsorption of proteins onto the RNA microarray 
is detected by the formation of a surface aptamer-protein-antibody complex. The 
SPRI response signal is then amplified using a localized precipitation reaction 
catalyzed by the enzyme horseradish peroxidase that is conjugated to the antibody. 
This enzymatically amplified SPRI methodology has initially been characterized 
for the detection of human thrombin at the fM concentration range. The appropri-
ate thrombin aptamer for the sandwich assay can be identified from a microarray 
using several potential thrombin aptamer candidates. The SPRI method has also 
been optimized to detect the protein vascular endothelial growth factor (VEGF) at 
a biologically relevant pM concentration. This incipient technology shows a 
potential for increasing this sensitivity for detecting proteins in body fluids (Li 
et al. 2007). The sensitivity achieved for VEGF allows its measurement in the 
serum for selecting or monitoring antiangiogenic therapies for breast, lung or 
colorectal cancer. In the same line of research, an independent study using a 
17-multiplexed photoaptamer-based array has exhibited limits of detection below 
10 fM for several analytes including the VEGF and endostatin, among others in 
serum samples. Since photoaptamers covalently bind to their target analytes before 
fluorescent signal detection, the arrays can be vigorously washed to remove back-
ground proteins, providing the potential for superior signal-to-noise ratios and 
lower limits of quantification in biological matrices. Interestingly, the affinity 
of the capture reagent can be directly correlated to the limit of detection for the 
analyte on the array (Bock et al. 2004).

6.4  Strategies and Applications of Antibody  
Arrays for Functional Proteomics

The increasing number of strategies of antibody arrays is improving, emerging and 
challenging in their applications in functional proteomic research. Significant con-
tributions of proteomics research using antibody arrays reported to date have 
derived from a wide spectrum of experimental designs using different specimens 
varying from cells, tissues and bodily fluids. Representative examples of these 
strategies comprising from single experiments to comparison of relatively low or 
medium size datasets obtained under different conditions (e.g. normal, preneoplas-
tic, inflammation, cancer) are described in this section.

6.4.1  Cell Culture

Protein profiling studies of cultured cells using antibody arrays are allowing in-
depth analyses of cancer biology. Since many of these cancer cells derived from 
human tumors, they resemble human disease and may also lead to functional pro-
teomic analyses depending on the experimental design. The use of antibody arrays 
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for high-throughput profiling of cultured cells is also useful to evaluate signaling 
pathways including tyrosine kinases networks (Gembitsky et al. 2004). Antibody 
arrays can profile enzyme activities using both protein extracts and cell culture 
supernatants. As compared to initial gel-based strategies utilized to assess the func-
tional state of enzymes, they represent a convenient platform to evaluate activity-
based protein profiling with high sensitivity and specificity and reducing sample 
consumption. While gel based strategies basically enable protein discovery, anti-
body microarrays may define new patterns of expression of known proteins. The 
presence of phosphorylated and unphosphorylated forms of proteins can be assessed 
in cell cultured systems using antibody arrays if adequate antibodies are available 
to address the specific posttranslational modifications of the target proteins under 
study (Gembitsky et al. 2004; Ivanov et al. 2004).

Cytokine profiles of cell lysates have also been analyzed by means of cytokine 
arrays and compared to those obtained on body fluids and tissue extracts (Lin et al. 
2003a, b). Commercially available cytokine arrays have been applied to condi-
tioned media of cancer cells to dissect functional cytokine secreted signatures 
associated to the over-expression of critical breast cancer target genes in breast 
cancer cells. This strategy revealed that the enhanced synthesis and secretion of 
members of the IL-8 chemokine family may represent a new pathway involved in 
the metastatic progression and endocrine resistance of HER2-over-expressing 
breast carcinomas (Vazquez-Martin et al. 2007). Not only this in vitro strategy 
served to identify a potentially relevant signalling pathway but also identified a 
cancer protein specific signature with clinical applications.

An independent study has screened the native cytokine expression patterns in 
human breast cancer cell lines associated to the expression of the estrogen receptor 
(ER) using cytokine arrays. ER positive cells expressed low levels of IL-8 whereas 
ER negative cells expressed high levels of IL-8. Such profiling served to monitor 
functional analyses blocking IL-8-mediated tumor cell invasion and angiogenesis 
using a neutralizing antibody against IL-8 as well as the exogenous over-expression 
of this gene, which substantially inhibited IL-8 expression. The combination of 
several in vitro strategies monitored by cytokine profiling using antibody arrays 
served to link the functional role of IL-8 in the development and progression of 
human breast cancer in association with the ER status (Lin et al. 2003a, b, 2004).

Cytokine profiles of cell supernatants of other tumor types such as the Jurkat 
(T-cell leukemia), and the A549 (non-small cell lung cancer) cells have also been 
monitored by means of cytokine arrays. The cytokine/chemokine response was 
evoked after cell stimulation with tumor necrosis factor alpha (TNF-alpha), phor-
bol-12-myristate-13-acetate, and phytohaemagglutinin. Stimulated cells showed an 
increase in the expression level of many of the 41 test analytes, including IL-8 and 
TNF-alpha in the treated cells (Garcia et al. 2007). This strategy shows the ability 
of antibody array analysis of cell-culture supernatants for the functional profiling 
of the release of cellular inflammatory mediators.

Antibody arrays can also be utilized for functional proteomics to monitor signal 
transduction mediated by complex networks of interacting proteins in mammalian 
cells and screen cancer drugs. Microarrays created in 96-well microtiter plate formats 
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multiplexed the measurement of amounts and modification states of signal trans-
duction proteins in crude cell lysates. These arrays have been applied to monitor the 
activation, uptake, and signaling of ErbB receptor tyrosine kinases in cancer cells. 
This strategy was used to characterize thee action of the epidermal growth factor 
receptor inhibitor PD153035 on cells (Nielsen et al. 2003). Thus, the integration of 
microplate and microarray methods for crude cell lysates may identify small mol-
ecules with specific inhibitory profiles against specific signaling networks. The 
technology is yielding comprehensive information about the mechanism of action 
and the efficacy of existing and novel cancer compounds in preclinical studies for 
the treatment of human cancer.

An interesting strategy reported on leukemias and lymphomas cells has allowed 
biological immunophenotyping by means of a “DotScan” antibody array, where 
these cells are incubated and captured based on their membrane protein expression 
patterns. The antibody array was initially with a set of 88 immobilized antibodies 
and later on using a higher number of 147 antibodies (Belov et al. 2001, 2006). 
Interestingly, a high number of leukemias and lymphoma cells, as well as clinical 
samples were analyzed and classified by their surface protein profiles (Belov et al. 
2006). The relevance of these strategies relies on the possibility of antibody 
arrays to capture cells based on the protein expression pattern of surface proteins. 
Moreover this approach might potentially lead to a molecular classification of 
human blood malignancies. Thus, cell binding assays on antibody arrays might 
permit the rapid immunophenotyping of human living cells. The throughput of the 
analysis, however, is still limited due to the ability to perform parallel and quanti-
tative detection of cells captured on the array. This limitation can be addressed 
using imaging techniques based on surface plasmon resonance (SPR). In addition 
to monitoring capture of proteins on antibody microarrays, SPR is being optimized 
for cell capture allowing more sophisticated functional proteomic analyses (Kato 
et al. 2007).

Protein extracts from cancer cells have been utilized to optimize and develop 
technological innovations of antibody arrays. The availability of cultured material 
allows reproducibility analyses and testing the analytical properties of a given novel 
innovation in antibody array technologies. Remarkably, dilution analyses varying 
from 100 to 4 prostatic LNCaP cells served to optimized ultramicroarrays that 
allow reproducible protein detection from the lysate of an average of just six cells 
of two known serum proteins such as secreted IL6 or PSA (Nettikadan et al. 2006). 
By resembling human disease, this sensitivity improvement using cultured cells 
suggests the potential utility of the protein quantification of these molecules or oth-
ers in human body fluids or protein extracts of laser microdissected neoplastic 
prostatic populations (Nettikadan et al. 2006). Another example of technology 
optimization establishing limiting factors of labelling methods using protein 
extracts of breast cancer cells dealt with competitive binding assays under different 
conditions with one-colour or two-colour fluorescence detection methods. These 
analyses revealed that antibody cross-reactivity, target protein truncation and abun-
dance, as well as the cellular compartment of origin are major factors that affect 
protein profiling on antibody arrays (Yeretssian et al. 2005).
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Protein extracts from murine and human lung cell lines have served to identify 
protein phosphatase 1 (PP1) interacting proteins (PIP) that are important in cell 
proliferation and cell survival by means of antibody arrays. This comparative 
approach identified 31 potential novel PIPs and confirmed 11 of 17 well-known 
PIPs included as controls. Interestingly, validation analysed by co-immunoprecipitation 
confirmed that nine of these proteins associated with PP1. By exposing these cells 
to nicotine, the association of PP1 with these proteins could be modulated. Thus, 
novel interactions with PP1 were identified and were consisting with the PP1 role 
at facilitating cell cycle arrest and/or apoptosis (Flores-Delgado et al. 2007). The 
important observation is that protein profiling using carefully selected antibodies 
served to design functional analyses to characterize the relevance of the post-
translational modifications of these proteins along cell cycle.

6.4.2  Tissue Specimens

It is also feasible to characterize functional proteomic profiles of protein 
extracts of tissue specimens using antibody arrays. By comparing malignant 
and normal counterparts it is possible to identify differentially expressed pro-
teins associated with disease progression. This strategy has been performed in 
lung cancer comparing tumor samples from patients with squamous cell lung 
carcinoma and normal lung tissue controls with a high number of antibodies 
printed on antibody arrays (Bartling et al. 2005). Among the differentially 
expressed proteins, up-regulated proteins were shown to correlate with a high 
mRNA expression obtained from paired gene microarray data. Thus, using a 
tumor profiling strategy, antibody microarrays served to identify functional 
networks and biomarker candidates in lung cancer (Bartling et al. 2005). In line 
with this strategy, it is possible to characterize protein profiles of neoplastic 
subpopulations obtained from frozen resected tumor specimens using laser 
capture microdissection (Hudelist et al. 2004). Microdissection is especially 
critical for data interpretation in heterogeneous tumors such as breast or pros-
tatic cancer. For example, profiling of protein extracts of breast tumor versus 
the adjacent normal breast tissue identified a number of proteins with increased 
expression levels in malignant specimens such as casein kinase Ie, p53 or 
annexin XI. Decreased expressed proteins in the malignant tissue included the 
multifunctional regulator 14-3-3. Immunohistochemistry in paraffin-embedded 
normal and malignant sections deriving from the same patient using antibodies 
against these proteins served to validate the data obtained using the antibody 
microarrays (Hudelist et al. 2004). In this exercise, protein profiling of a single 
neoplastic patient using a commercially available microarray served to identify 
molecular functional determinants of cancer progression in breast cancer. 
It seems reasonable to insist on that the clinical validation with high number of 
specimens on independent sets of clinical material is critical to verify the clinical 
significance of cancer-specific discovery analyses.
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The results of protein profiling of tumor protein extracts using antibody arrays 
can be validated in several manners in order to confirm that potential identified 
functional networks and biomarker candidates are cancer specific. On one hand, 
gene profiling of matched tumors can prove that the increased protein expression is 
associated with increased transcript profiles (Bartling et al. 2005). At the protein 
level, it can also be tested that the differential expression of proteins can be detected 
using an independent method such as immunoblotting (Bartling et al. 2005). 
Clinical validation of differential protein expression patterns can be confirmed by 
immunohistochemistry using the same antibodies that were printed on the antibody 
arrays on paraffin-embedded normal and malignant tissues providing high reliabil-
ity on the results found by protein profiling. If tissue arrays with well-characterized 
independent set of tumors are available, it is possible to evaluate clinico-pathological 
correlations of novel cancer-specific proteins with tumor stratification, disease 
progression and clinical outcome (Sanchez-Carbayo 2006).

The use of comprehensive gene profiling analyses using tissue material can 
identify tumor targets relevant of specific neoplasias for antibody arrays design. 
Such approach can be applied in antibody-based proteomics to generate 
protein-specific affinity antibodies to functionally explore the human proteome. 
Specific protein epitope signature tags (PrEST) can be identified and used to 
raise mono-specific, polyclonal antibodies, and be subsequently analyzed on 
paraffin-embedded sections of malignant and normal tissue. Genome-based, 
affinity proteomics, using PrEST-induced antibodies, is an efficient way to rapidly 
identify a number of disease-associated protein candidates of previously both 
known and unknown identity (Ek et al. 2006). A descriptive and comprehensive 
protein atlas for tissue distribution and subcellular localization of human pro-
teins in both normal and cancer tissues is being created (Uhlén et al. 2005). The 
subsequent antibodies generated can be used for analysis of corresponding pro-
teins in a wide range of assay platforms, including: i) immunohistochemistry 
for detailed tissue profiling; ii) specific affinity reagents for various functional 
protein assays; and iii) capture (“pull-down”) reagents for purification of spe-
cific proteins and their associated complexes for structural and biochemical 
analyses (Uhlén et al. 2005).

A critical part in functional proteomics research deals with optimization of 
sample preparation for comprehensive protein measurements. Proteases inhibitors 
can be added in order to overcome accelerated protein degradation due to the pres-
ence of secreted proteases. Novel tissue sample handling approaches to enrich 
(> 95% purity) of epithelial cells from fresh human tissue samples include the use 
of an epithelial cell surface antibody. This purification method showed several 
advantages for proteomic analyses on tissue specimens since a large quantity of 
cells available for downstream analysis were available and it showed an increased 
reproducibility (Kellner et al. 2004). Flow cytometry, sorting analyses, pulldowns 
of protein extracts, or spectrometry techniques represent alternative approaches to 
enrich cell populations of interest before protein profiling using antibody arrays.

Thus, quality control is a critical consideration as proteins and modifications 
such as phosphorylation may be unstable in improperly handled clinical samples. 
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Optimal outcome can be found when clinical samples are flash frozen immediately 
upon removal from the patient. Small samples are recommended to be directly 
embedded in an optimal cutting temperature (OCT-like) medium and frozen in 
situ so that thawing is retarded when samples are removed from freezer storage. 
Furthermore inclusion of protease inhibitor cocktails that may include phos-
phatase and other inhibitors in any fixative or lysis background may further pro-
tect frozen samples.

As commented above, tissue microarrays using core specimens of tissue paraffin 
archived blocks which are recast to create whole-cell microarrays of tumor speci-
mens are considered targeted proteomic approaches that may complement antibody 
array functional proteomic analyses. Once tissue specimens are placed on the tissue 
array, they can be analyzed concurrently with immunohistochemistry, fluorescence 
in situ hybridization, and RNA-RNA in situ hybridization. It is necessary to men-
tion that for RNA analyses, prior formalin fixation and paraffin embedding may 
limit these later techniques. Newer protocols are under development to improve 
protein and RNA resolution from these fixed archival samples.

6.4.3  Body Fluids

The initial report applying antibody microarrays in serum cancer for the discovery 
of biomarker candidates was performed using direct labelling methods for pros-
tate cancer, comparing several substrates for antibody printing (Miller et al. 
2003). As part of optimization analyses, data from “reverse-labelled” experi-
ment sets accurately predicted the agreement between antibody microarrays 
and enzyme-linked immunosorbent assay measurements (Miller et al. 2003). 
Comparison of protein profiles of patients with prostate cancer and control 
serum samples identified five proteins (von Willebrand Factor, immunoglobulin M, 
a1-antichymotrypsin, Villin and immunoglobulin G) that had significantly dif-
ferent levels between the prostate cancer samples and the controls. This initial 
study using direct labelling protocols is one of the critical analyses that led to 
multiple developments enabling the immediate use of high-density antibody and 
protein microarrays (Miller et al. 2003). The use of amplification protocols, such 
as the two-colour rolling circle amplification (RCA) method served to improve 
the detection of low-abundant proteins. This method has also been shown to 
provide adequate reproducibility and accuracy for protein profiling on serum 
specimens and clinical applications (Schweitzer et al. 2002; Zhou et al. 2004; 
Shao et al. 2003). Sandwich assays can also measure protein abundances in body 
fluids using amplification detection methods such as resonance light scattering 
(RLS) (Saviranta et al. 2004), enhanced chemiluminescence (ECL) (Huang et al. 
2004), or the tyramide signal amplification (TSA) method (Varnum et al. 2004) 
(Fig. 6.1, reviewed in Sanchez-Carbayo 2006). A recent report designed anti-
body arrays for bladder cancer by selecting antibodies against targets differen-
tially expressed in bladder tumors versus their respective normal urothelium 
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identified by gene profiling (Sanchez-Carbayo et al. 2006). Serum protein pro-
files obtained by two independent sets of antibody arrays served to segregate 
bladder cancer patients from controls. Protein profiles provided predictive infor-
mation by stratifying patients with bladder tumors based on their overall sur-
vival. In addition, serum proteins, such as c-met, that were top ranked at 
identifying bladder cancer patients were associated with pathological stage, tumor 
grade, and survival when validated by immunohistochemistry of tissue microar-
rays containing bladder tumors (Sanchez-Carbayo et al. 2006). Such strategy 
provides experimental evidence for the use of several integrated technologies 
strengthening the discovery process of cancer-specific biomarker candidates and 
functional proteomic analyses of disease progression.

Cytokine profiling on serum and plasma specimens represents one of the most 
described applications of antibody arrays technology, especially for autoimmune 
diseases. In neoplastic diseases, they have been evaluated to a lower extent, although 
the implementation of cytokine antibody arrays is increasing in many aspects of 
cancer research, such as the discovery of biomarker candidates, molecular mechanisms 
of cancer development, preclinical studies and the effects of cancer compounds 
(Celis et al. 2005). All of these are considered critical aspects for functional pro-
teomics. Studies in clinical material and in vitro systems have revealed the potential 
of cytokine profiling using antibody arrays for characterizing haematological neo-
plasias (Borrebaeck and Wingren 2007; Wang et al. 2005; Anderson and Labaer 
2005), or in serum of patients with breast cancer (Vazquez-Martin et al. 2007). 
Cytokine profiles can support differentiation between cancer patients from control 
subjects and also stratify patients with leukemia based on clinical outcome. Several 
reports have also compared the reproducibility and differences among the several 
technologies available for multiplexing cytokine measurements, including not only 
planar antibody arrays but also bead-based technologies (Lash et al. 2006; De Jager 
and Rijkers 2006; Waterboer et al. 2006).

The tumor interstitial fluid (TIF) which perfuses the tumor environment has 
also been utilized for protein functional proteomic profiling using antibody 
arrays. Analysis of the TIF could identify factors present in the tumor microenvi-
ronment that may be associated with tumor growth and progression. TIFs col-
lected from small pieces of freshly dissected invasive breast carcinomas have 
been analyzed by cytokine-specific antibody arrays. The approach provided  
a snapshot of more than 1,000 proteins – either secreted, shed by membrane 
vesicles, or externalized due to cell death – produced by the complex network of 
cell types that make up the tumor microenvironment. Considering that the protein 
composition of the TIF reflects the physiological and pathological state of the 
tissue, it should provide a new and potentially rich resource for the discovery of 
diagnostic biomarker candidates and for identifying more selective targets for 
therapeutic intervention (Celis et al. 2004, 2005). Interestingly, labelling and 
hybridization methods have been optimized for multiple protein detection on 
cerebrospinal fluid specimens, characterized by low protein concentrations 
(Romeo et al. 2005). Non-invasive body fluids such the saliva, sputum or urine 
specimens represent potential samples for clinical application of antibody arrays. 
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It is required to optimize labelling and hybridization protocols to the sensitivities 
required for such specimens.

6.5  Conclusions

The parallel analysis of multiple proteins in small sample volumes is being applied 
to measure multiple protein abundances for functional proteomic analyses using 
antibody arrays. Application on biological specimens is serving to address disease 
progression, clinical subtypes and outcomes in exploratory analyses. Modifications 
to antibody arrays are leading to functional protein profiling strategies that may 
also result into novel cancer targets and biomarker candidates such as: (a) detecting 
specific protein post-translational modifications; (b) measurement of enzyme 
activities; (c) quantification of protein cell-surface expression; d) characterizing 
signaling pathways; (e) the development and characterization of antibodies including 
identification of binding partners to proteins derived from functional studies for 
drug discovery or novel epitope mapping for determining regions of proteins than 
bind specific antibodies.

The use of antibody array methods not only results in added benefit for cancer 
diagnostics and patient stratification but also provides complementary information 
for the characterization of the biology underlining tumorigenesis and tumor pro-
gression. Protein profiling using antibody arrays is contributing to reveal the impor-
tance of monitoring multiple cell signaling endpoints and thus, mapping specific 
cellular networks not only in protein extracts from cell lines but also form tissue or 
body fluid specimens. Changes in glycan contents, phosphorylation status or cleaved 
states of key signaling proteins can easily be evaluated using antibody arrays as 
well. It is possible to test whether one pathway might become blocked with chemo-
therapeutic agents. Analyses of these pathways might reveal relevant information 
for designing individual targeted therapies and/or combinatorial strategies directed 
at multiple nodes in a cell signaling cascade. This strategy might be tested to predict 
response to novel drug therapies using the protein extracts of the tumors or in body 
fluids specimens.

Antibody-based microarrays represents a rapidly emerging technology for func-
tional proteomic analyses that is advancing from the first proof-of-concept studies 
to increasing protein profiling applications in cancer biomarker development. 
The increasing number, scope and effectiveness of the formats, methods and appli-
cations of antibody arrays are likely to markedly accelerate the characterization 
of cancer-specific pathways, networks and post-translational modifications. Identifying 
cancer-associated protein changes may lead to the discovery of cancer-associated 
targets and biomarker candidates that may assist in disease predisposition, diagnosis, 
prognosis, patient monitoring and possibly for therapeutic purposes on various 
sample types, such as serum, plasma, and other bodily fluids; cell culture superna-
tants; tissue culture lysates; and resected tumor specimens. As standards do not yet 
exist that bridge all of these applications, the current recommended best practice for 
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clinical validation of results is to approach study design in an iterative process using 
independent sets of human clinical material and to integrate data from several mea-
surement technologies. The main problems described in poorly delineated experi-
mental designs include lack of uniform patient inclusion and exclusion criteria, low 
patient numbers, poorly supporting clinical data, absence of standardized sample 
preparation, and limited analytical verification providing estimations of the intra 
and inter-assay reproducibility.

Several challenges and limitations remain to be improved in the design and 
application of antibody arrays for functional proteomics: (a) The mechanisms by 
which proteins or antibodies are immobilized in substrates such as nitrocellulose 
are poorly understood for certain technological innovations; (b) the limited dynamic 
ranges of two or three orders of magnitude for certain labelling protocols can be 
increased; (c) achieving accuracy and reproducibility similar to clinical immunoas-
says at the very low pico/femtomolar detection level; (d) the immunoreactivity 
might be affected by the molecular protein complexity and potential protein dena-
turation; (e) lack of standards and calibrators for all the antibody and reagents 
utilized; (f) development of high-affinity and highly-specific antibodies are not 
available for all the potential target antigens under study.

The highly increasing technical modalities of antibody arrays are requiring stan-
dardized processes for storing and retrieving data obtained from different technolo-
gies by different research groups. In this regard, it is necessary to acknowledge the 
multi-institutional effort of the Human Proteome Organization (HUPO) towards the 
standardization of protocols for critical parameters in serum or plasma proteomic 
analyses, including protein profiling using antibody arrays. Initial studies provided 
guidance on pre-analytical variables that can alter the analysis of blood-derived 
samples, including choice of sample type, stability during storage, use of protease 
inhibitors, and clinical standardization. It is also critical to standardize statistical 
strategies for high confidence protein identification and data analysis. These efforts 
and strategies towards integrating proteomic datasets would lead towards accurate 
and comprehensive representation of human proteomes.

Thus, the most significant contribution of functional proteomics research using 
antibody arrays for the discovery of molecular networks, targets and cancer bio-
marker candidates is expected to derive not from single experiments, but from the 
synthesis and comparison of large datasets obtained under different conditions (e.g. 
normal, inflammation, cancer) and in different in vitro and clinical material from 
various tissues and organs. The technology will continue providing unique opportu-
nities in cancer diagnostics, patient stratification, predicting clinical outcome and 
therapeutic response. Continued progress in the technology will surely lead to exten-
sions of these applications and the development of new ways of using the methods. 
Further innovations in the technology and in the experimental strategies will further 
broaden the scope of the applications and the type of information that can be gath-
ered. In the near future, the detailed characterization of the specific protein expres-
sion profiles or protein atlases of each tumor will also serve to better detect, monitor 
and stratify the clinical outcome risk of each specific cancer patient so that they may 
be benefit of tailored interventions based on the aggressiveness of their diseases.
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Abstract The consequences of breast, colon and prostate cancer create the neces-
sity of new, simpler and faster theoretical models that may allow earlier cancer 
detection. The present work has built several Quantitative Protein (or Proteome) – 
Disease Relationships (QPDRs). QPDRs, similar to Quantitative Structure Activity 
Relationship (QSAR) models, are based on topological indices (TIs) and/or connectiv-
ity indices (CIs) of graphs. In particular, we used Star graphs and Lattice networks of 
protein sequence or MS outcomes of blood proteome in order to predict the proteins 
related to breast and colon cancer and to improve the diagnostic potential of the PSA 
biomarker for prostate cancer. The advantages of this method are the simplicity, fast 
calculations and few resources needed (free software programmes, such as MARCH-
INSIDE and S2SNet). Thus, this ideal theoretical scheme can be easily extended to 
other types of diseases or even other fields, such as Genomics or Systems Biology.

7.1  Introduction

Cancer is the second most common cause of death after heart-related illnesses. 
It is estimated that during the twenty-first century cancer will become the main 
cause of death in developed countries. However, there has also been an increase 
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in the survival rate of cancer patients. The five main causes of cancer deaths in 
order of prevalence are: lung cancer, colorectal cancer, breast cancer, prostate 
cancer and pancreatic cancer (Mayer et al. 1993; Welsh et al. 2001; Rivera and 
Stover 2004; Del Chiaro et al. 2007; Kirkegaard et al. 2007). Oncoproteomics is 
the application of proteomic technologies in cancer. Considerable progress has 
been made during the past decade in the refinement of proteomic technologies 
and their application, so that the pathological mechanisms and the discovery of 
biomarkers and diagnosis of the disease could be better understood (Jain 2007). 
With the advent of new and improved proteomics technologies, such as the devel-
opment of quantitative proteomic methods, high-resolution, -speed and -sensitivity 
mass spectrometry and protein arrays, as well as advanced bioinformatics for data 
handling and interpretation, it is now possible to discover biomarkers that can 
reliably and accurately predict outcomes during cancer management and treatment 
(Cho and Cheng 2007).

Omics is a general term for a broad discipline of science and engineering that 
analyses the interactions of biological information objects in various omes (the 
Greek term for “all”, “every”, “whole” or “complete”): Genome (Coghlan et al. 
2005; Notebaart et al. 2008), Proteome (the totality of proteins in an organism, tis-
sue type or cell) (Cruz-Monteagudo et al. 2008; Klose 1989), Transcriptome (an 
mRNA complement to an entire organism, tissue type, or cell) (Hu et al. 2004; 
Latha and Venkatesh 2004), Metabolome (the totality of metabolites in an organ-
ism) (Wishart et al. 2008; Zhu and Qin 2005), Lipidome (the totality of lipids) 
(Bougnoux et al. 2006, 2008; Ding et al. 2008), Localizome (a whole set of local-
ization information of protein domains and proteins) (Lee et al. 2006), Glycome 
(the total list of sugar/carbohydrate molecules in an organism) (Freeze 2006; 
Morelle et al. 2006), Expressome (a whole set of gene expression in a cell, tissue, 
organ, organisms, and species) (Borges et al. 2007) and Interactome (a whole set of 
molecular interactions in cells) (Altaf-Ul-Amin et al. 2006; Bader and Hogue 2003; 
Chen et al. 2006). Our aim is to map the information objects, such as genes, pro-
teins and ligands, to find the interaction relationships between the objects and to 
engineer the networks and objects in order to get to understand and manipulate the 
regulatory mechanisms.

We give a solution for two types of problems related to Oncoproteomics at dif-
ferent levels of chemical matter organization. The first problem is to predict 
whether a specific protein is involved in Human Breast Cancer (BC) or in Human 
Colon Cancer (CC), given the protein sequence. The second problem is the use of 
the information provided by Mass Spectra (MS) analysis of human serum proteome 
and the level of prostate specific antigen (PSA) in the blood; this would improve 
the predictive power of the PSA test to detect prostate cancer. We established math-
ematical relationships between the structure/activity of the proteins/proteome mass 
spectra and the type of cancer by using a graphical method, the graph theory, in 
order to solve these problems. The graphic approaches applied to the biological 
systems can provide useful insights, as indicated by several previous studies on a 
series of important biological topics, such as enzyme-catalyzed reactions (Andraos 
2008; Chou 1989), protein folding kinetics (Chou 1990), inhibition kinetics of 
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processive nucleic acid polymerases and nucleases (Althaus et al. 1996; Chou et al. 
1994), analysis of codon usage (Chou and Zhang 1992), base frequencies in the 
anti-sense strands (Chou et al. 1996), analysis of DNA sequence (Qi et al. 2007).

The graph theory can be used to obtain macromolecular descriptors named topo-
logical indices (TIs) and connectivity indices (CIs). The branch of mathematical 
chemistry dedicated to encode the DNA/protein information in graph representa-
tions by the use of the TIs has become an intense research area that led to the 
interesting works made by Liao and Wang (2004), Liao et al. (2006), Randic, 
Nandy, Balaban, Basak, and Vracko (Randic 2000; Randic and Balaban 2003), 
Bielinska-Waz et al. (2007) or our group (Perez et al. 2004; Aguero-Chapin et al. 
2006). The TIs and CIs are parameters that describe numerically the patterns of 
interconnections (edges or arcs) between the parts of a system represented as a 
graph or network. These graphs or networks have become a flexible and general 
method to describe biological systems. First, we split the system in parts (nodes) 
and studied the presence of any kind of geometrical, physical, functional, dynamic 
or other classes of relationships between all pairs of nodes. In the case of the protein 
sequence, the nodes are amino acids and, regarding the mass spectra, the nodes are 
represented by contracted/averaged signals (Fig. 7.1). We can associate these 
graphs or networks with different classes of numerical matrices and with the invari-
ant calculated parameters of the graph (the TIs and the CIs). In the present work, 
we did not use simple molecular graphs but two types of simple graphs, the 
so-called Lattice networks and Star graphs. Depending on the geometrical shape of the 
graphs, there are several types of representations such as the spiral, circular or 
random. The advantages of using the Lattice and Star graphs are the simplicity of 
the calculations and the efficacy of these graphical representations to encode the 
complex information in indices. The protein sequences and the mass spectrum 
signals have no simple property directly linked to cancer. Thus, the graph method 
transforms the protein sequence and the proteome mass spectrum signal in a unique 
discrete series of indices (in the case of the MS proteome, the exact nature of all 
compounds is unknown; only the signal intensities are used). These parameters can 
be used as inputs to seek new models, which are in essence equations connecting 
the structure with the properties of the system.

One of the widely-used models for the prediction of protein properties is the 
Quantitative Structure Activity Relationship, QSAR (Devillers and Balaban 1999). 
We used the actual graphs to represent protein sequences or the outcomes of the MS 
analysis of blood proteomes and to connect them to diseases (different types of cancer). 
Consequently, the models reported here may be seen as Quantitative Protein (or 
Proteome)-Disease Relationships (QPDRs) (Estrada and Uriarte 2001; Barabasi and 
Bonabeau 2003; Balaban et al. 2004; Barabasi and Oltvai 2004; Barabasi 2005; 
González-Díaz et al. 2007; Randic et al. 2007; Ferino et al. 2008; González-Díaz 
et al. 2008). The most used methods to obtain models in proteomics/genetics are 
the Linear Discriminant Analysis (LDA), the machine-learning classifiers, such as 
the artificial neural networks (ANN), the Bayesian belief network (BBN), the support 
vector machine (SVM), the radial basis Gaussian kernel function (RBF) neural 
network or the Rand-Tree genetic programming.
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For instance, Ward et al. (2006) studied the colorectal cancer (CRC) which is 
often diagnosed at a late stage with concomitant poor prognosis. Early detection 
greatly improves prognosis; however, the invasive, unpleasant and inconvenient 
nature of current diagnostic procedures limits their applicability. No serum-based 
test is currently of sufficient sensitivity or specificity for widespread use. In the best 
currently available blood test, carcinoembryonic antigen exhibits low sensitivity 
and specificity particularly in the setting of early disease. Hence, there is a great 
need for new biomarkers that lead to an early detection of CRC. Surface-enhanced 

Fig. 7.1 Schematic representation of the QSAR-based method of cancer prediction
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laser desorption/ionisation (SELDI) has been used to investigate the serum pro-
teome of 62 CRC patients and 31 non-cancer subjects. Proteins with diagnostic 
potential have been identified. Thus, the ANN trained was able to classify the 
patients in this study (95% sensitivity and 91% specificity), using only the intensi-
ties of the SELDI peaks corresponding to the identified proteins.

Green and Karp (2004) have developed a method that efficiently combines 
homology and pathway-based evidence to identify candidates for filling pathway 
holes in Pathway/Genome databases. Not only does the application identify poten-
tial candidate sequences for pathway holes, but also combines data from multiple, 
heterogeneous sources to assess the likelihood that a candidate could have the 
required function. The new algorithm emulates the manual sequence annotation 
process, considering not only evidence from homology searches, but also consider-
ing evidence from genomic context (i.e. Is the gene part of an operon?) and func-
tional context (e.g. Are there functionally-related genes nearby in the genome?) to 
determine the posterior belief that a candidate has the required function. The 
method can be applied across an entire metabolic pathway network and it is gener-
ally applicable to any pathway database. The programme uses a set of sequences 
that encode the required activity in other genomes to identify candidate proteins in 
the genome of interest, and then evaluates each candidate by using a simple Bayes 
classifier to determine the probability that the candidate has the desired function.

Wang et al. (2008) explored the diagnostic value for ovarian cancer, using 
proteomic pattern established by SELDI-time-of-flight mass spectrometry 
(TOF-MS) profiling of plasma proteins coupled with SVM data analysis, and inves-
tigated whether the proteomic pattern established by advanced ovarian cancer could 
be used for diagnosis of early-stage ovarian cancer patients. The study included 44 
ovarian cancer patients (11 early-stage and 33 advanced ovarian cancer patients) and 
31 age-matched non-cancer controls. SELDI-TOF-MS coupled with SVM analysis 
was performed to establish a proteomic pattern to discriminate 33 advanced ovarian 
cancer patients from 31 non-cancer controls. A blind test, including 11 early-stage 
ovarian cancer cases, was carried out to investigate whether proteomic pattern estab-
lished by advanced ovarian cancer could be used for diagnosis of early-stage ovarian 
cancer patients. A 7-peak proteomic pattern was established, which discriminated 33 
advanced ovarian cancer patients from 31 non-cancer controls effectively.

In present work, the QSAR/QPDR models were obtained with the simplest and 
fastest linear discriminant analysis (LDA) method (Van Waterbeemd 1995).

7.2  Materials and Methods

7.2.1  Protein Database

It is important that the database used to develop the discriminant equation is varied 
and representative enough in order to obtain a high quality statistical model with 
good predictive power. The database carried out by Sjoblom et al. (2006) was compiled 
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and it included a series of 122 genes responsible for the formation of BC and 
another series of 69 genes responsible for the development of CC. The genetic 
sequence enabled information to be obtained on the codified protein sequence. 
Taking into consideration the high diversity of biological functions of the proteins 
represented in the dataset, it is obviously expected that these proteins were related 
to cancer by different mechanisms. The set of proteins not related to BC or CC 
(non-BCp or non-CCp) was also experimentally confirmed as negative by the same 
authors and it was used to provide additional examples of useful human proteins in 
other QSAR studies by Dobson and Doig (2003, 2005).

7.2.2  MS Database

The database of Petricoin et al. (2002) has been used. It contains the MS spectra 
of 322 patients, classified into 4 groups according to their PSA level. The PSA 
is a protein produced by both normal and cancerous prostate cells. A high level 
of PSA can be a sign of cancer, but the PSA level can also be raised in prostate 
conditions that are not cancer (are benign), or in case of infection. One group 
was made up of 190 patients with a PSA level greater than 4 (group A), a sec-
ond group consisted of 63 patients with a PSA less than 1 (group B), 26 patients 
with a PSA level in the 4–10 ng/ml range made up the third group (group C) 
and 43 patients with a PSA level greater than 10, the fourth group (group D). 
The clinical analyses have demonstrated that the healthy patients are those 
belonging to the groups A and B, the patients of the groups C and D are PCa 
(Petricoin et al. 2002; Ferino et al. 2008; González-Díaz et al. 2008).

7.2.3  MS Data Coding

More than 15,000 signals are present in each spectrum, each consisting of the m/z 
value and the corresponding I value; considering the successive ranges of 500 values 
of this parameter, 31 regions have been obtained for each MS. For the Randic Star, 
the I value of all 31 regions was expressed as a percentage and coded into  
8 branches (B, C, D, E, F, G, H, I) depending on the weight of the region in each 
MS. In the Lattice Network representation we applied the same coding for the 
Cartesian coordinates used by Randic to describe the 3D primary sequence of DNA 
(Randic et al. 2000). For the sake of convenience, we have also used the 4 Nucleic 
Bases to encode the MS of each patient. A 25% cut-off value is chosen to codify 
each data point according to their respective average I values. For example, all 
regions of the MS with an I value between 0% and 25% are classified with the letter A. 
The letter T includes regions with an I value between 25% and 50%, and the same 
label was used for the letter G and C, respectively.
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7.2.4  MARCH-INSIDE Software

Almost all graphs developed are created with the programme MARCH-INSIDE 2.0 
(Ferino et al. 2008; González-Díaz et al. 2008). This application can be obtained at 
request from the authors. The sequences of different proteins and the proteome MS 
of all patients were initially introduced into the programme. This programme was 
used to generate both Lattice-type networks (for protein sequence and proteome 
MS) and the Randic Star graph for each proteome MS.

7.2.5  Lattice Network Representations

The methodology used to construct lattice networks has been previously described 
in detail in the case of proteins (Aguero-Chapin et al. 2006) or MS outcomes of 
blood proteome (Cruz-Monteagudo et al. 2008). The representation was con-
structed in a similar way to the DNA representations introduced by Nandy and 
adapted to proteins according to a recently reported protocol (Arteca and Mezey 
1990; Nandy and Basak 2000; Randic and Vracko 2000; Estrada 2002; Randic and 
Balaban 2003; González-Díaz et al. 2007). The method is based on splitting 20 
types of amino acids into 4 groups according to the Hydrophobic (H) or Polar (P) 
nature of the different amino acids. Thus, four groups of amino acids can be gener-
ated in order to characterize the physicochemical nature of amino acids as polar, 
non-polar, acidic or basic. The 2D Cartesian representation and the Stochastic 
Matrix for a given protein sequence are shown in Table 7.1. The classification as 
acidic or basic prevails over the polar/non-polar classification in such a way that the 
four groups do not overlap each other. Subsequently, each amino acid in the 
sequence is placed in a 2D Lattice defined by a Cartesian space with its centre at 
the (0, 0) coordinates (see Table 7.1). The coordinates of the successive bases are 
calculated as follows, to form a Lattice Network with a step equal to 1:

For the protein sequence:

a. The abscissa axis increases by +1 for an acid amino acid (rightwards-step).
b. The abscissa axis decreases by –1 for a basic amino acid (leftwards-step).
c. The ordinate axis increases by +1 for a polar amino acid (upwards-step).
d. The ordinate axis decreases by –1 for a non-polar amino acid (downwards-step).

For proteome MS:

a. The abscissa axis increases by +1 for 0 < IR < 25 (rightwards-step).
b. The abscissa axis decreases by –1 for 25 < IR < 50 (leftwards-step).
c. The ordinate axis increases by +1 for 50 < IR < 75 (upwards-step).
d. The ordinate axis decreases by –1 for 75 < IR < 100 (downwards-step).

where I
R
 is the averaged Intensity value of proteome MS expressed in percentage 

terms. The three different non-equivalent coordinates were taken into consideration 
to create the 3D Lattice Network for proteome MS.
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7.2.6  MS Star Graph Representation

Regarding the second graphical representation, we opted for the Shining Star graph 
(Randic et al. 2007). In the same way as the Lattice Network, the Star graph was 
also constructed for DNA or protein sequences, as previously described, but in this 
case the nodes are regions of mass spectra (Nandy and Basak 2000). The starting 

Table 7.1 Graph representation and associate stochastic matrix for protein sequence
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point was the classification of each region into more categories according to the 
degree of average intensity (B, C, D, E, etc.). Afterwards, the number of regions of 
each type was counted and the Star graph was drawn by adding one node per 
region. The first node is the PSA value, represented in branch A, and 0, 1 or 2 nodes 
were also added in this branch depending on the PSA value = 0, 1 or 2.

7.2.7  Protein Star Graph Representation

In order to construct the protein Star graph, we have proceeded in the same manner 
as previously described in the case of MS Star. The only difference here is that the 
nodes of the star are not areas in the MS region but amino acids of the protein. 
 The first node does not correspond to any amino acid; it is just one dummy node 
core of the star. If the vertices do not carry a label, the sequence information will 
be lost; for that reason, the best method is to construct a standard star graph where 
each amino acid/vertex holds the position in the original sequence and the branches 
are labelled by alphabetical order of the three-letter amino acid code (Randic et al. 
2007). In the present study we use the alphabetical order of one-letter amino acid 
code. The standard star graph and the Stochastic Matrix for a random virtual non-
apeptide (ACADCEFDG) are illustrated in Table 7.1. Thus, there are 20 groups 
corresponding to the possible star branches for any standard amino acid type. 
Starting from the beginning of the sequence, the amino acids are placed in the cor-
respondent branch; the initial connectivity from the protein sequence is transformed 
into modified branch connectivity. If the initial sequence connections are added to 
the star graph, it will become an embedded graph.

7.2.8  Entropy Measurements

The protein chain sequences and the proteome MS are transformed into Network 
representations and subsequently characterised by the Shannon Entropy indices. 
We use our free S2SNet – Sequence to Star Networks application for the protein 
sequence Star graph (Munteanu et al. 2008). MARCH-INSIDE 2.0 was used for 
both Lattice Network representation and MS Star graph. In particular, the calcula-
tions presented here are characterized by Markov normalization and the power of 
matrices/indices (n) up to 5.

Shannon Entropy of the k powered Markov Matrices (q
n
) is described by the 

sum of i products between the p
i
 probability and its logarithm, where p

i
 are the 

n
i
 elements of the p vector, resulted from the matrix multiplication of the pow-

ered Markov normalized matrix (n
i
 × n

i
) and a vector (n

i
 × 1) with each element 

equal to 1/n
i
.
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7.2.9  Linear Discriminant Analysis (LDA)

Once the different Entropies were calculated, a LDA (Van Waterbeemd 1995) was 
performed using the STATISTICA package (Brzezinska 2003) to develop different 
classification functions. We have applied the same procedure, so that data process-
ing could be placed in the software STATISTICA for both databases; the procedure 
applied to the database of Petricoin et al. (2002) is described below. The data set 
was randomly divided into two series, a training series (for model construction) and 
a cross-validation series (for model validation). The training series consisted of 230 
patients (175 control group – healthy patients and 55 PCa); while the cross-validation 
series was made up of 92 patients (78 control group – healthy patients and 14 PCa). 
The activity or any given biological property (P) is expressed as a function of the 
entropy q

k
(R

i
) of k order for every MS region R

i
, generated in each case. Thus, in 

the classification function, P is the linear combination of the q
k
 entropies plus the 

PSA level multiplied by the coefficient calculated for PSA region. The discriminant 
function was obtained by using the Forward-stepwise method with a minimum 
tolerance value of 0.01. In the forward stepwise model selection procedure, vari-
ables are sequentially added to an “empty” (intercept only) model, in contrast to the 
backward procedures that start with all the variables in the model, and proceed by 
removing them.

7.3  Results and Discussion

7.3.1  Classification Function

The best models developed using Lattice Network and Randic Star Graph is 
presented in Table 7.2. The statistical parameters show the quality of the model 
and are the standard results obtained from the STATISTICA analysis (Van 
Waterbeemd 1995). The most important values of a model are accuracy, specific-
ity and sensitivity percentage that measure the ratio of the total number, cancer 
or non-cancer sequences/spectra correctly classified by the model with respect 
to the real classification. The results are presented in Table 7.2 and shows differ-
ent values for the created models. Regarding the database Sjöblom et al. the best 
models were developed using Lattice Network representation. The protein 
Lattice Network model has reached a total accuracy amounted to 87%, an 87.2% 
specificity and an 86.9% sensitivity.

The initial assumptions have to be checked for any statistical model. The 
parametrical assumptions such as normality, homocedasticity (homogeneity of 
variances) and non-colinearity have the same importance in the application of 
multivariate statistic techniques to QSAR (Bisquerra Alzina 1989; Stewart and 
Gill 1998) as the correct specification of the mathematical form. The validity 
and statistical signification of any model are conditioned by the above mentioned 
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Table 7.2 Summary results for the QSAR models

Protein sequence
Parameter Lattice network Star graph

Coeff. of q(canc) 202.66 q(canc) 191.61
Coeff. of q

0
(prot) −0.39 q

0
(prot) −0.59

Coeff. of q
0
(prot/canc) 2.56 q

0
(prot/canc) 0.86

Independent Coeff. −30.24 −26.04
N 191 191
R

c
0.76 0.76

l 0.41 0.41
c2 247.66 246.35
p <0.001 <0.001
Accuracy 87.0% 87.0%
Specificity 87.2% 87.2%
Sensitivity 86.9% 86.9%
Classification matrices nCprot Cprot nCprot Cprot

nCprot 163 24 163 24
Cprot 25 166 25 166

Proteome MS for patients

Parameter Lattice network Star graph

Coeff. of q
2
(C1) 5.66 q

0
(total) −938.80

Coeff. of q
3
(C2) −3.60 q

1
(total) −158.80

Coeff. of q
0
(C3) 13.06 q

2
(total) 161.60

Independent Coeff. −22.92 1443.40
N 322 322
R

c
0.34 0.91

l 0.88 0.17
c2 28.49 402.09
p <0.001 <0.001
Accuracy 73.9% 98.1%
Specificity 78.3% 100%
Sensitivity 58.0% 91.3%
Classification matrices nC-patient C-patient nC-patient C-patient
nC-patient 198 55 253 0
C-patient 29 40   6 63

The bold characters refer to the number of cases classified correctly; Cprot is the cancer proteins, 
nCprot is the non-cancer proteins, C-patient is the cancer patients, nC-patient is the non-cancer 
patients; q

0
(prot/canc) = p(canc)*q

0
(prot); (C1), (C2) and (C3) are the non-equivalent coordinate 

used to develop the model; N is the number of patients included in the discriminant analysis cal-
culation, R

c
 is the canonical regression coefficient, Wilk’s l is the standard statistic used to denote 

the statistical significance of the discriminatory power of the current model, c2 is the Chi-squared 
statistic, and p is the level of error.

factors. The simple linear mathematical form of the model in our work has been 
chosen in the absence of prior information. The basic assumption of LDA for 
this model was confirmed (Van Waterbeemd 1995). The distribution of the 
residuals for all patients (raw residuals vs. case number) shows no pattern.  
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The residual is the difference between the observed and the predicted values.  
A better threshold for the a priori classification probability can be estimated by 
means of the Receiver Operating Characteristic (ROC) curve (Hanley and McNeil 
1982). The ROC curve presented a pronounced curvature (convexity) with respect to 
the y = x line for both training and predicting series. This result confirms that the 
present model is a significant classifier that has an area under the ROC curve (about 
1.0 higher than 0.5), which is the value for a random classifier (Swets 1988).

The validity of the LDA models depends on the normal distribution of the 
sample used as well as on the homogeneity of their variances. Thus, we carry out 
two significant tests of normality: Chi-Square and Kolmogorov–Smirnov tests. In 
statistics, the Kolmogorov–Smirnov test (often called the KS test) is used to deter-
mine whether two underlying one-dimensional probability distributions differ, or 
whether an underlying probability distribution differs from a hypothesized distribution, 
in either case based on finite samples. The one-sample KS test compares the 
empirical distribution function with the cumulative distribution function specified 
by the null hypothesis. The main applications test goodness of fit with the normal 
and uniform distributions. The two-sample KS test is one of the most useful and 
general non-parametric methods to compare two samples, as it is sensitive to dif-
ferences in both location and shape of the empirical cumulative distribution func-
tions of the two samples. The Kolmogorov–Smirnov test for normality is based on 
the maximum difference between the sample cumulative distribution and the 
hypothesized cumulative distribution. If the d statistic were significant, conse-
quently the hypothesis that the respective distribution would be normal should be 
rejected. The Chi-square test for independence examines whether knowing 
 the value of a variable helps to estimate the value of another variable. The chi-
square test for homogeneity examines whether two populations have the same 
proportion of observations with a common characteristic. We tested the normal 
distribution of residual using various fitting tests; the results were as follows: 
Kolmogorov–Smirnov d = 0.20 with p < 0.01; Chi-squared = 88.0, with p = 0.00. 
The tests have confirmed that it is very close to a normal distribution. Similar 
results were obtained with the Star Graph representation. The protein Star Graph 
model has indeed statistical parameters similar to those of the protein Lattice net-
work model. In this case then, the goodness of the model does not seem to depend 
on the graphic representation but on the protein sequence. Different results were 
obtained using the database of Petricoin et al. In this case, the best models were 
developed from the Star Graph representation. The model 3.4 shows a 98.1% total 
accuracy, 100% specificity and 91.3% sensitivity.

These good results are confirmed by different statistical tests to which the 
model was subjected. The value of canonical regression coefficient R

c
 and Wilk’s 

l are, respectively, of 0.91 and 0.17. The scatter plots of the square standardized 
residual vs. the respective q

k
 included in the MS Star Graph model reveal an 

adequate scatter on the points without any consistent pattern, which validates the 
assumption of homocedasticity (i.e. homogeneity of variance of variables) 
(Stewart and Gill 1998).
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7.4  Conclusions

The actual work proposes several QPDR/QSAR models based on TIs and/or CIs of 
Star graphs or Lattice networks of protein sequence or MS outcomes of blood pro-
teome in order to predict the proteins related to breast and colon cancer and to 
improve the diagnostic potential of the PSA biomarker for prostate cancer. We hope 
these results will help in the earlier detection of the BC and CC and in the discover-
ing of new cancer-related proteins. The advantages of this method, such as simplic-
ity (there are no complicated experiments needed), fast calculations and few 
necessary resources (MARCH-INSIDE and S2SNet are free software programmes 
and the calculation can run in normal computers), make it an ideal theoretical 
scheme that can be extended easily to other types of diseases or other omics, such 
as genomics, transcriptomics, and metabolomics.
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Abstract The use of metabolite profiling techniques (metabonomics or 
metabolomics) in toxicology is a relatively new branch of this science. Due to 
their unique biochemical properties, cancer cells should, in principle, be an ideal 
field of application for metabolite profiling. However, due to technical and study 
design limitations there are only a few reliably metabolite profiles for human 
tumors. This chapter provides examples for the recognition of metabolic changes 
in animals induced by exposure to (carcinogenic) chemicals. In two major proj-
ects (COMET and MetaMapTox), data bases have been developed which are 
sufficiently large to evaluate the full potential of metabolite profiling in toxicol-
ogy and cancer research. In both projects blood and urine were used as matrices 
which can be easily obtained with minimally-invasive methods. Based on a high 
degree of standardization and a large-scale controlled data collection, consistent 
patterns of metabolite changes have been identified which are associated with 
different toxicological modes of action, some of which are known to enhance 
tumor development in rodents.
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8.1  Introduction

8.1.1  General

The first section provides an overview of the potential of the metabolite profiling 
techniques (referred to as metabonomics if NMR-based and metabolomics if 
MS-based) in toxicology and its potential for cancer research. In the second section 
the two commonly used techniques for metabolite profiling (NMR- and MS-based 
technologies) are introduced. In the third section the current use of these technolo-
gies and their future potential for cancer diagnostics is discussed. In addition, the 
main challenges to progress metabolite profiling to an essential tool in cancer diag-
nostics are presented. In the forth section results obtained from metabolite profiling 
with NMR- and MS-based technique for several compounds affecting the liver 
(with modes of action related to tumor promotion) are presented and discussed. In 
the final part perspectives are given on how metabolite profiling can be improved 
and how it may be used in the early detection of (liver) tumor formation.

Tumors are thought to be the end result of a multi-stage (initiation, promotion, 
progression) process. The first phase in the process of tumor formation (initiation) 
is a consequence of the exposure to genotox compounds but can also result from 
pre-existing genetic conditions. The second phase (promotion) involves a great 
number of potential processes, which ultimately result in a proliferative stimulus, 
providing the “right” environment for the initiated cells to express their growth 
advantages compared to normal cells. The progression stage is again thought to 
involve genetic changes, either induced from external sources (genotoxic agents) or 
through genetic instability of the (preneoplastic) tumorigenic lesion (Pitot 1986).

Mechanisms involved in liver tumor promotion include: (1) liver toxicity: result-
ing in a hepatocyte loss and a subsequent regenerative cell proliferation stimulus 
(Schulte-Hermann, 1974); (2) liver enzyme induction: resulting in an adaptive cell 
proliferation stimulus, in rodents often accompanied by nuclear polyploidisation as 
well as a reduction of apoptosis (van Ravenzwaay et al. 1987; Gamer et al. 2002); 
(3) receptor mediated stimulus of cell proliferation, e.g. PPR-alpha receptor and 
Ah-Receptor. (Kota et al. 2005; Peters et al. 2005).

8.1.2  Metabolite Profiling of Liver Tumor Promoters

Due to the diversity of possible actions of liver tumor promoters, the correct identifica-
tion and assessment is a rather complex process. Current methods comprise of clinical- 
and pathological-investigations and biochemical analysis. The main biochemical 
markers which are currently analyzed are alanine transaminase, aspartate transami-
nase, alkaline phosphatase and bilirubin. However, these biomarkers are subject to 
complex regulation and changes may sometimes occur only at rather progressed 
stages. A drawback of the histopathological assessments is that they are invasive 
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(Gunawan and Kaplowitz 2004). Taking into account the fact that most, if not all liver 
tumor promotion processes induce particular biochemical changes, the sensitive and 
selective analysis of these changes by metabolite profiling offers the possibility of a 
relatively easy, non-invasive and highly discriminative identification.

8.2  Methods

8.2.1  Metabolite Profiling – General

Metabolite profiling (analysis of endogenous low molecular compounds such as 
carbohydrates, amino acids, lipids, organic acids, etc.) has a long history of appli-
cation in the plant sciences (Trethewey et al. 1999; Sauter et al. 1991) but it is a 
relatively new technology in toxicology studies to elucidate changes in biochemi-
cal pathways (Lindon et al. 2004b). The analysis is performed routinely by using 
blood or urine of animals. Two technologies are mostly applied: (1) the profiling 
by NMR is called “metabonomics” (Griffin et al. 2004; Lindon et al. 2004a); (2) 
the use of the LC-MS and GC-MS techniques is referred to as “metabolomics” 
(van Ravenzwaay et al. 2007; Looser et al. 2005; Weckwerth and Morgenthal, 
2005; Wilson et al. 2005; Fernie et al. 2004). Most of the metabolite profiling 
data published so far have been developed using NMR metabonomics from urine 
of rats treated with compounds, which were toxic to the liver (Maddox et al. 2006; 
Clayton et al. 2003; Schoonen et al. 2007b). Although the focus on urinary 
metabolites is understandable as an easy, non invasive matrix, this does limit the 
potential number and nature of metabolites and will create a certain distortion of 
the information. Particularly with chemicals which would cause kidney toxicity 
and toxicity in any other organ at the same time, the effects on the kidney may 
greatly bias the overall metabolite profile. A number of researchers have used 
blood as a matrix for metabolite profiling (Lindon et al. 2003; Kleno et al. 2004; 
Heijne et al. 2005). Most of these studies have been conducted using NMR meta-
bonomics. MS-based metabolite profiling, especially when coupled to a chro-
matographic preseparation (e.g. GC or HPLC), is several orders of magnitude 
more sensitive than NMR-based metabolomics so more metabolites (e.g. hor-
mones) can be detected at lower concentrations. In a typical 1H-NMR spectrum 
about 30-40 known metabolites can be detected and quantified from a biological 
sample of some 100 mL. MS-based methods are able to measure hundreds of 
metabolites from even smaller sample volumes. For most of the NMR applica-
tions only little sample preparation is necessary and the measurement is usually 
fast and non-destructive whereas for MS methods, extraction and derivatization 
steps may be necessary before the samples can be injected into the mass spectro-
metric system. The ability to run different ionization techniques in MS allow for 
detection of different classes of molecules either very broad or very specific. 
Especially for GC-MS the use of mass spectral libraries facilitates the identification 
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of unknown metabolites even at low concentrations. For a detailed review of the 
advantages and disadvantages of NMR- and MS-based metabolite profiling see 
Lindon and Nicholson (2008).

8.2.2  NMR Metabonomics

1H-NMR produces a spectrum containing a number of peaks. The heights and posi-
tions of these peaks enable researchers to accurately determine the carbon-hydrogen 
framework of an organic molecule. NMR spectroscopy combines high-resolution 
nuclear magnetic resonance techniques with statistical data analysis methods to 
evaluate the metabolic status of an organism. When a molecule is placed in a mag-
netic field, the magnetic momentum of the nuclei of these atoms tends to assume 
specific orientation with respect to the field. A pulse of electromagnetic energy at the 
resonant frequency is then used to tip the magnetic spins of the nuclei away from 
their orientation along the magnetic field lines. When the perturbing radio-frequency 
is switched off, the magnetic momentum of the nuclei returns to their original lowest 
energy orientations. During this process they transmit energy which can be picked 
up by a radiofrequency receiver and transformed with the aid of a computer into a 
spectrum (Claudino et al. 2007; Lindon et al. 2003; Heijne et al. 2005).

The chemical shift of a nucleus is the difference between the resonance fre-
quency of the magnetic spins of the examined nucleus and a nucleus of the standard 
divided by the operation frequency of the magnet. In 1H-NMR spectroscopy, this 
standard is often tetramethylsilane-Si (CH

3
)

4
. Different biologic molecules contain 

different arrangements of 1H, 13C, 15N, and 31P atoms and have distinct chemical 
shifts in the NMR spectra. A signal spectrum for a specific element can be obtained, 
and assignments of these signals enable chemical analysis of the samples. Hence, 
1H-NMR is a qualitative method. An array of data is produced, and chemoinfor-
matic tools are used to clarify and interpret the results. Signal resolution has 
improved steadily for the past 2 decades as the field strength of magnets has 
increased while cost has dropped. Currently, the 600 MHz 1H-NMR, is the mostly 
used spectroscopy hardware (Claudino et al. 2007; Ishihara et al. 2006; Connor 
et al. 2004).

8.2.3  GC-MS/LC-MS Metabolomics

The GC-MS/LS-MS metabolomics technology used by BASF metanomics is sum-
marized below and the condition for the development of the MetaMapTox data base 
are described. For more detailed information see van Ravenzwaay et al. 2007 and 
Looser et al. 2005.

Wistar rats were maintained in an air-conditioned room under standardized envi-
ronmental conditions. For all compounds tested blood samples were taken after 7, 
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14 and 28 days at the same period of time in order to avoid changes related to circadian 
rhythms. The study design can be best compared to a highly standardized OECD 
407 guideline design with two dose levels. For mass spectrometry-based metabolite 
profiling analyses, plasma samples were extracted and a polar and a non-polar fraction 
prepared. For GC-MS analysis, the non-polar fraction was treated with methanol 
under acidic conditions to yield the fatty acid methyl esters. Both fractions were 
further derivatized with an O-methyl-oxime-generating reagent and subsequently 
with a trimethylsilylating reagent before analysis. For LC-MS analysis, both frac-
tions were reconstituted in appropriate solvent mixtures. HPLC was performed by 
gradient elution on reversed phase separation columns. For mass spectrometric 
detection methods are applied which allows target and high sensitivity MRM 
(Multiple Reaction Monitoring) measurement of selected target metabolites in 
parallel to a full screen metabolite profiling analysis. Following comprehensive 
analytical validation steps, the data for each analyte were normalized against data 
from pool samples. These samples were run in parallel through the whole process 
to account for process variability.

The data generated were analyzed by univariate and multivariate statistical 
methods and a sex- and day-stratified heteroscedastic t-test (“Welch test”) was 
applied to compare treated groups with respective controls. P-values and ratios of 
corresponding group medians were collected as metabolic profiles and fed into a 
database. Using the above mentioned MS based metabolomics technology, BASF 
has established a large metabolomics data base for chemicals, agrochemicals and 
drugs (MetaMap®Tox).

8.3  Metabolite Profiling and Cancer

Due to their unique biochemical properties, cancer cells should, in principle, be an 
ideal field of application for metabolite profiling. The biochemistry of neoplasia is 
characterized by a high glucose demand as well as elevated glycolytic activity. In 
addition to these features, noted by Warburg in the first half of the last century, there 
are other typical features of cancer cells such as decreased mitochondrial activity 
(due to the generally reduced availability of oxygen in many tumors), increased 
choline-phospholipid metabolism and increased lactate concentrations (Glunde and 
Serkova 2006; Serkova et al. 2007). These general features provide an opportunity 
for cancer diagnosis, however, lack of organ specificity when working with acces-
sible body fluids such as blood or urine may limit the practical use of metabolite 
profiling. Nevertheless, for some tumors specific metabolite profiles have been 
observed in the tumor tissue. In brain tumors N-acetyl-aspartate has been shown to 
be decreased, whereas alanine was found increased according to several authors 
(Griffin and Shockcor 2004; Gillies and Morse 2005). In prostate cancer a decrease 
of citrate was noted (Griffin and Shockcor 2004; Costello and Franklin 2006) and 
in gliomas an increase of myo-inositol has been reported (Griffin and Shockcor 
2004). These examples demonstrate definitive changes in the biochemistry of 
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tumors, however, it is likely that changes in single (or few) metabolites (particularly 
if these involve common metabolites such as glucose, lactate or alanine) are not 
going to be unique enough for accurate diagnosis of cancer. Too many other causes 
may be related to changes in these metabolites: e.g. diseases, exposure to xenobi-
otica, and nutritional status. Therefore, the identification of more extensive patterns 
of metabolite changes is a prerequisite to accurately detect specific tumors.

One of the earliest reports describing the successful identification of tumors 
using a pattern of metabolite change was from Tate et al. (2000). Samples of malig-
nant renal cortex tissue could be clearly separated from normal tissue using NMR 
metabonomics. With the aid of partial least square discriminant analysis (PLS-DA) 
they were able to distinguish with 100% accuracy between normal and malignant 
tissue, demonstrating the potential of metabolite profile recognition.

A step towards easier cancer diagnosis was reported by Odunsi et al. (2005) 
using serum samples of ovarian cancer patients and NMR based metabonomics 
pattern recognition. With principal component analysis (PCA) the study demon-
strated a 100% identification of patients with epithelial ovarian cancer versus pre-
menopausal healthy women.

A similar success was obtained for the detection of bladder cancer in human 
urine using MS-based metabolomics (Issaq et al. 2008). Urine collected from 48 
healthy individuals was compared to that of 41 patients diagnosed with kidney 
transitional cell carcinoma. Using PLS-DA a correct prediction of all healthy and 
all tumor-bearing people involved in this study was possible. With PCA, 46 of the 
48 healthy and 40 of the 41 bladder cancer urine samples were correctly identified. 
Despite the successful recognition of tumors with patterns of changes, in both stud-
ies, the metabolites which were responsible for the recognition pattern could not be 
exactly identified or quantified. Pattern recognition using PCA analysis was also 
successful in correctly identifying liver cancer patients. In this study reported by 
Yang et al. (2004), an important further step was achieved for practical cancer diag-
nosis. This study compared the urine of 50 healthy adults, 77 patients with liver 
diseases (27 hepatocirrhosis patients, 30 acute hepatitis patients and 20 chronic 
hepatitis patients) with those of 48 liver cancer patients using MS-based and NMR-
based metabolite profiling. Starting with an initial set of 15 known urinary nucleo-
sides a differentiation was obtained between patients with acute hepatitis, chronic 
hepatitis and hepatocirrhosis using quantitative analysis of 7 specific metabolites. 
Unfortunately, even with the quantitation of all 15 metabolites, liver cancer patients 
could not be separated from hepatocirrhosis patients. When PCA analysis was 
applied on a metabolite pattern of 113 urinary metabolite peaks, however, correct 
separation was achieved. This study, however, also suffered from the problem that 
most of the peaks could not be identified.

Metabolite profiling of normal human colon tissue and that of patients with 
colorectal cancer resulted in a total of 82 (out of 206) metabolites being different at a 
level of p < 0.01 following supervised analysis between normal and neoplastic tissue 
(Denkert et al. 2008). Twenty-five metabolites were up-regulated in neoplastic tissue 
(mainly metabolites related to the urea cycle, i.e. purines, pyrimidines and amino acids), 
while 57 were down-regulated (particularly TCA cycle metabolites and lipids). 
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The high percentage of changes between normal and neoplastic tissue was consid-
ered to be related to the biologically and biochemically highly different states of 
these tissues, and can be explained to a great extend by the metabolic disregulation 
of cancer cells. Thus, the findings as such cannot be immediately linked to a tissue 
specific neoplastic process. To help to interpret their findings, they connected the 
metabolite profiles with the existing knowledge on metabolic pathways as described 
in the Kyoto encyclopedia of genes and genomes (KEGG).

The importance of pattern recognition was also shown by Denkert et al. (2006). 
In their studies they analyzed 66 invasive ovarian carcinomas and nine borderline 
ovarian tumors using MS-based metabolomics. A total of 291 metabolites were 
detected in the tissues, out of which 114 were annotated as known compounds. 
T-test statistics (p < 0.01) showed that 51 metabolites were significantly different 
between borderline tumors and carcinomas. PCA analysis of the data allowed for 
an 88% separation of the borderline tumors from the carcinomas. The most promi-
nent differences were seen as an up-regulation (>3 fold) of the following metabo-
lites: alpha-glycerolphosphate (5.3 fold), uracil (4.2 fold) fold, hypoxantine (3.8 fold), 
pyrazine-2,5-bishydroxy (3.4 fold), inositol-2-phosphate (3.3 fold), phosphoric 
acid (3.2 fold). The most prominent down regulations were seen for nonadecanoic 
acid (1.2 fold), stearic acid (1.4 fold), heptadecanoic acid (14 fold), benzoic acid 
(1.6 fold) and lactic acid (2.2 fold). The ability to distinguish between different 
tumor characteristics within one organ is a major step towards the correct diagnosis 
of the disease. Griffin and Kauppinen (2007) provide an overview of metabolome 
differences between normal and neoplasia tissue from brain, connective tissue, 
lymphomas, liver, colon and prostate based on metabolite profiling in humans, 
animals and cell lines. These observations indicate, as predicted, that metabolic 
profiles in neoplastic tissue is fundamentally different from that of normal tissue.

In conclusion, the work described above demonstrates that: (1) tumors have a 
general metabolite profile that is different from normal cells; (2) most tumors will 
have a unique profile of their own; (3) the profile of at least some tumors is different 
during early stage and late stage (carcinoma) of the cancer process; and (4) 
advances are being made in the detection of tumors in patients using non invasive 
methods such as urine or blood sampling.

8.3.1  Challenges

There are still significant challenges which need to be addressed before metabolite 
profiling can progress to an essential tool in cancer diagnostics. The overwhelming 
amount of data accumulated in the omics sciences make it difficult to see the forest 
through the trees, i.e. to identify those changes which are particularly relevant to 
carcinogenesis. A further challenge is to integrate all of the relevant information in 
a transparent and systematical manner. These necessities are not new and have been 
raised several years ago for plant metabolomics. Bino et al. (2004) noted that for 
the maturation of metabolomics three objectives need to be achieved: (1) improvement 
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in the comprehensive coverage of [plant] metabolomics; (2) facilitation of comparison 
of results between laboratories and experiments; and (3) enhanced integration of 
metabolomics with other functional information. No doubt that these objectives are 
universal and apply also to human and environmental health metabolomics. 
ECETOC (2008) concluded that quality standards need to be defined for all omics 
technologies to improve confidence and (regulatory) acceptance of data and conclu-
sions. In addition to more general features of standardization, one additional quality 
standard, which was used in the MetaMapTox project, is the regular inclusion of 
“positive” controls, (compounds with known effects on the metabolome), during 
the data base development. These positive control substances help to monitor the 
quality of both the biological as well as the analytical procedures.

Visualization of genetic and metabolic pathways using the KEGG diagrams is a 
useful tool for the interpretation of large-scale data sets (Denkert et al. 2008). 
However, as metabolite changes may result from different pathways and not all 
metabolites from a single pathway can be detected there are some limitations to the 
general use of this tool. Moreover, the various cross-links between the different 
pathways that may be relevant are difficult to visualize in a complete manner.

The clinical utility of metabolite profiles relies on the establishment of correla-
tions between metabolite data and clinical measurements. Because metabolite 
profiling is a quantitative study, the assessment of tumors based on visual (histo-) 
pathological assessment introduces potential biases which may limit the reliability 
of such correlations. Burns et al. (2004) have shown that this potential problem can 
be overcome by the introduction of computer aided image analysis in the case of 
prostate pathology slides. Their studies showed a two fold difference between 
human visual assessment and computer aided assessment of 28 samples of prostat-
ectomy cases. Positive linear correlations were found between metabolites being 
indicative for normal epithelium (polyamines and citrate) and metabolites indica-
tive of prostate cancer (choline and the sum of phosphocholine and choline) using 
the computer aided diagnostics.

An additional challenge is the lack of correlation between in vitro (cell line or 
fresh culture) data and in vivo (human) tumors. Part of this problem is related to the 
limited amount of data comparing the metabolite profile of compounds tested  
in vitro and in vivo. Even less data exist for tumor cell lines and in vivo tumors.

A relatively simple but nevertheless important challenge is the concept of 
biomarker(s). A biomarker is defined as a characteristic that is measured and evalu-
ated as an indicator of normal biological processes, pathogenic processes or a 
pharmacological response to a therapeutic intervention. The potential problem is 
the term biomarker implicates that one specific parameter will be the sole solution 
provider. In reality, however, patterns of change contain far more information and 
a more robust and reliable than single markers (Christians et al. 2005). Specifically for 
cancer, which is a polygenetic disease, most diagnostic assessments will probably 
have to rely on multiple markers (Jain 2007). A further complicating factor is that 
specific pharmacological information may only be noted at low dose levels and that 
this information is lost or at least distorted at higher, toxic, dose levels due to 
competing mechanisms. In the MetaMap®Tox project, we have come across several 
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of such cases. This indicates that dose selection is a potential confounding factor in 
metabolome research and needs to be taken into account during subsequent assess-
ment of findings. The identification of specific biomarkers or patterns of change, 
however, is only one step towards clinical application of such findings. Brennan 
et al. (2007) note that whilst great advance have been made in discovery of putative 
biomarkers in DNA microarrays, few have been transformed into clinical applica-
bility. Metabolite profiling may have some advantages: (1) metabolite changes are 
the product of several processes with profound feedback mechanisms; (2) first 
attempts to integrate omics information into systems biology suggest that metabo-
lite profile is quite robust; and (3) metabolites have been traditionally used for clini-
cal assessments, there may be reason to believe that metabolite profiling will be 
more successfully transferred into clinical applications.

8.4  Metabolite Profiles

In this chapter an overview will be given of the most salient results obtained 
so far using either NMR metabolite profiling of mostly urinary samples or 
GC-MS/LC-MS metabolite profiling of serum samples with compounds affecting 
 the liver.

8.4.1  Control Animals

8.4.1.1  NMR Metabonomics

There are relatively few data available on the reproducibility of metabolite profiles 
following NMR metabolomics. This lack of such data can at least partly be 
explained by the fact that there have been few attempts to develop and publish 
metabolic profiles of control animals obtained in a standardized data base develop-
ment. One exception, however, is the COMET project. In this project all animal 
studies (and the subsequent metabonomics) were carried out according to a 
standardized protocol.

8.4.1.2  GC-MS/LC-MS Metabolomics

In the MetaMap®Tox project, a great number of studies with untreated control rats 
were performed over a time period of approximately 3 years and the data were used 
to establish base line values and to investigate if stable and reproducible values 
could be obtained. In an analysis of control samples over nearly 3 years no seasonal 
fluctuation was observed (ECETOC 2008). Currently the method employed allows 
for the detection of almost 300 blood metabolites, which fulfilled the criteria for 
quantification, stability and reproducibility. These metabolites were used for the 
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detection of biomarkers and specific patterns of change in the subsequent studies in 
which animals were exposed to test compounds.

Using PCA analysis of the metabolite profile of untreated control rats it can be 
seen that the major component driving the differences in the collective control 
group is the sex (see Fig. 8.1).

Using blood samples obtained from control animals over the course of nearly  
3 years the variance of the parameters over time was analyzed. Figure 8.2 shows 

Comp.

m

m

m m

m

m

m

m

m

m

m
m

m

m

m

m

m

m

m

m

mm

m
m

m

m

m

m

m
m

m
m

mm

m

m

m

m

m

m

m

m

m

m

m

m

mm

m

m

m

m

m

m

m
m

m

m

m

m

m

m

m

m

m

m
m

m

m

m

m

m

m

m

m

m

m
m

m
m

m

m

m

m

m

m
m

m

m

m

mm

m

m

m

m

m

mm

m

m
m

m

m

m

m mm m

m
mm

m

m

m

m

m

mm f

f
f

f

f

f

f

f

f

f

f

f

f
f

f
f

f

f

f

f

f f

f

f

f

f

f

f

f

f

f

f

f

f

f f
f

f

f

f

f

f f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f
f

f

f
f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

ff

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

f

ff

f

f

f

f

ff

m

f

m

m

f

m

f

f

f

f

f

f

f

f
f

f

fm
f

f
m

m

f

f

m

m

m
m

m

m

m

m
m

m

mm

m

m
m

m

m

mm

m m m

m

m

m

m

m
m

m

m

m

m

m
m

m

m

m

m mm

m
m

m

m

m

m

m

m

m

m

m

m

m

m

m

m
f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

ff

f

f
f

f
f

f
f

f

f
f

f f

f

f

f
f

f

f
f

ff

f

f

f

f
ff

f
f

f

f f
f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

ff

f

f

f

f

f

f

f

f

f

f

f

f f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

m

m

mm

m

m

m

m

m

m

m

m

m

f

f

f

f

f

f
f

f

f

f
f

ff

f

f

f

f

f

f

f
f

f

f

m

m

m

m

m

m

m

m

m

m

m

mm

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f
f

m

m

–3 –2 –1 0 1 2 3

–1.5

–1

–0.5

0

0.5

1

1.5

2
femalesmales

C
om

p.
2

Fig. 8.1 PCA of 670 plasma profiles of male and female control animals. Distribution of profiles 
in space of first two principal components (first component horizontal – 23% variance, second 
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the analytical variance and the biological variance in rats. From these data several 
conclusions can be drawn: (1) the biological variance is far larger than the analyti-
cal variance; (2) the variance within males and females is quite similar; (3) There 
is no seasonal component in the variance. Over time both analytical and biological 
variance was reduced slightly through increased standardization and experience 
gained through the course of the project.

The variance found during metabolite profiling using HPLC coupled with elec-
trochemical array detection was reported by Shurubor et al. (2007). They observed 
that the median coefficient of variation (CV) for analytical parameters (total of 66) 
was 12%. This value is quite in line with the analytical CV shown in Fig. 8.2 (for 
233 metabolites) which is approximately 10%. The work of Shurubor et al. (2007) 
also shows that biological variation is by far the dominating factor for the total 
variability of metabolite profiling. Using duplicate and triplicate measurements of 
human plasma samples, they conclude that the total CV (median value) is about 
50%. Given the analytical CV of 10% this would result in a biological CV of 
approximately 40%. The biological CV shown in Fig. 8.2 is approximately 20%. 
The fact that the latter biological CV is much lower than the former, can probably 
be explained by the fact that these were obtained from highly standardized condi-
tions (van Ravenzwaay 2007) and from the fact that human genetic background is 
more diverse than that of laboratory rats.

8.4.2  Studies with Liver Enzyme Inducers

8.4.2.1  NMR Metabonomics

There are relatively few studies reported with “classical” liver enzyme inducers, 
which do not cause severe liver toxicity. Schoonen et al. (2007a), reported on the 
effects of phenobarbital and tetracycline on the urinary metabolite profiling in rats. 
These changes consist of the following metabolic profile, which was identical for 
both compounds: succinate, citrate, ketoglutarate, allantoin and hippurate were all 
up-regulated. Both compounds did not induce liver toxicity in the study of Schoonen 
et al. (2007a), but are known to cause fatty changes (steatosis) in the liver.

8.4.2.2  GC-MS/LC-MS Metabolomics

Using the metabolic profiles of a number of typical compounds known to induce 
liver enzymes (reference compounds) we investigated which of the metabolites were 
regulated in a similar fashion. The reference compounds which were used to 
develop this pattern include phenobarbital sodium, Aroclor 1254, pentachloroben-
zene ethyl-benzene and vinclozoline (see Table 8.1).

The metabolite patterns for both male and female rats treated with liver enzyme 
inducers are quite similar, with a predominant up regulation of cholesterol and, 
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metabolites belonging to the triacylglycerides pathway. Comparing the results 
obtained with urinary NMR based metabonomics (8.4.2.1), with plasma MS-based 
metabolomics (Table 8.1), it can be seen that the metabolites investigated were not 
similar.

8.4.3  Studies with Hepatotoxic Compounds

8.4.3.1  NMR Metabonomics

Particularly hydrazine has been frequently used to study metabolite profile changes. 
In the following Table 8.2, these changes have been summarized.

Alanine, citrulline and 2-amino-adipic acid are consistently up-regulated. For 
other metabolites no consistent pattern was noted. Comparing rat urinary metabo-
lites with rat liver metabolites it can be seen that a similar regulation was obtained 
for citrulline, creatinine, and alanine. For glucose, there was a difference in the 
direction of regulation, up-regulated in the urine, down-regulated in the liver. 
Comparing the metabolite profile of hydrazine in the urine of rats and mice, a 
remarkable match can be observed. Nearly all metabolites found to be regulated in 
mouse urine following hydrazine administration are also regulated in the same 
manner in rats. The match of both species is an important positive finding for an 
across species application of metabolite profiling.

Other hepatotoxic compounds are shown in Table 8.3.
There is a relatively good match between the metabolic profile of bromobenzene 

in rat urine and rat plasma (five out of six plasma metabolites were similarly regu-

Table 8.1 MS-based analysis: liver enzyme inducers, male and female 
rats, plasma

Metabolites
Direction of  
regulation

Strength of  
regulation (× fold)

Males
Stearic acid Up 1.2 –1.7
Lignoceric acid Up 1.2–1.5
Behenic acid Up 1.1–1.7
Cholesterol Up 1.1–1.7
Eicosapentanoic acid Up 1.4–2.1

Females
Glycerol Up 1.3–2.9
Palmitic acid Up 1.2–2.4
Linoleic acid Up 1.3–3.0
Stearic acid Up 1.3–2.1
Arachidonic acid Up 1.3–2.9
Cholesterol Up 1.3–2.4
Lignoceric acid Up 1.1–1.9
Eicosanoic acid Up 1.2–2.2
Behenic acid Up 1.2–2.1
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lated). The metabolite 5-oxoproline, which is up-regulated in the urine of rats 
treated with bromobenzene as well as in mouse urine following treatment with 
acetaminophen (Farkas and Tannenbaum 2005) could be a potential common 
metabolite of oxidative liver toxicity. 1-naphthyl-isothiocyanate appears to induce 

Table 8.2 Hepatotoxic compounds: hydrazine

Compound Matrix Metabolite Direction References

Hydrazine Rat, urine b-Alanine Up Bollard et al. (2001)
2-Aminoadipic acid Up

3-D-hydroxy-butyrate Up

Citrate Down

Citruline Up

Na-acetyl-citrulline Up

Creatinine Up

Glucose Up

Hippurate Down

Hypotaurine Up

Lactate Up

2-Oxoglutarate Down

Succinate Down

Taurine Up

Trimethylamine-N-oxide Down
Hydrazine Rat, urine Citruline Up Kleno et al. (2004)

2-Aminoadipic acid Up

Amino acids Up
Hydrazine Mouse, urine 2-Aminoadipic acid Up Bollard et al. (2001)

Citrate Down

Creatinine Up

Guanidinoacetic acid Up

Hippurate Down

Lactate Up
Succinate Down
Trimethylamine Down

Hydrazine Rat, liver tissue Choline Down Kleno et al. (2004)
Glucose Down
Lipoproteine (VLDL, LDL) Down
Lipids Down
Amino acids (Alanine, 

valine, tyrosine)
Up

2-Amino adipic acid Up
Citruline Up
Creatinine Up

Hydrazine Rat, liver tissue Glycogen Down Garrod et al. (2005)
Alanine Up
Glucose oligomers Down
Unsaturated fatty acids Up
w3 type fatty acids Up
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a metabolic profile that is dominated by down regulation. Unfortunately, there are 
very few matches between the metabolites found to be regulated. Only citrate was 
found to be consistently lower in rat urine. The apparent heterogeneity of metabolic 
profiles of compounds causing liver toxicity, may be resolved if the actual mode of 

Table 8.3 Other hepatotoxic compounds

Compound Matrix Metabolite Direction References

Bromobenzene Rat, urine Citrate down Waters et al. 2006
2-Oxoglutarate down
Creatinine up
Glucose up
Choline up
Alanine up
5-Oxoproline up

Bromobenzene Rat, plasma Choline up Waters et al. 2006
Creatinine up
Acetoacetate up
Amino acids up
5-Oxoproline up

3Z-3[(H-pyrrol-2-yl)-
methylidene]-1-(1-
peperidinylmethyl)-
1,3,2H-indol-2-one

Rat, urine Citrate up Wang et al. 2006a
Lactate up
2-Oxo-glutarate up
Succinate up
Creatinine down
TMAO down
Acetate up
Succinate up
2-Oxo-glutamate up

3Z-3[(H-pyrrol-2-yl)-
methylidene]-1-(1-
Peperidinylmethyl)-
1,3,2H-indol-2-one

Rat, plasma TMAO up Wang et al. 2006
Lipids up
Glucose down
Phosphatidylcholine down

Ibuprofen Rat, urine Dimethylglycine down Schoonen et al. 
2007aa-ketoglutarate down

Creatinine down
Allantoin down
Uridine down
Formate down

1-Naphthyl-
Isothiocyanate
(ANIT)

Rat, urine a-ketoglutarate Down Schoonen et al. 
2007aCitrate Down

Dimethylamine Down
Taurine Down
Creatinine Down
Allantoin Down
Uridine Down
Formate Down

(continued)
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toxicological action resulting in liver toxicity is taken into consideration, knowing 
that different modes of action may cause different metabolic profiles. In this context 
it is interesting to see that Ibuprofen and 1-naphthyl-isothiocyanate both induce a 
profound down-regulation of metabolites. As both compounds exert their liver tox-
icity through a cholestatic mode of action, this mode of action may in fact be 
responsible for the metabolic changes noted in the urine, rather than the liver toxic-
ity per se.

8.4.3.2  MS/LC-MS Metabolomics

Typical compounds known to induce liver toxicity were investigated for their common 
profile changes. The reference compounds which were used to develop this pattern, 
include tetrahydrofurane, cyproterone acetate, dimethylformamide and toxaphene 
(see Table 8.4).

There is a reasonable similarity in the profiles of male and female rats treated 
with compounds known to be toxic to the liver. As these compounds are also known 
to be potent inducers of liver metabolism, it is not entirely surprising that this pro-
file is somewhat comparable to that found with MS based metabolomics for liver 
enzyme induction. The extent of regulation of those metabolites which are similar 
(belonging to the triacylglycerides), however, is far stronger in profiles from liver 
toxic compounds, than in liver enzyme inducers. It is also striking that there is no 
down regulation noted in these patterns.

Compound Matrix Metabolite Direction References

ANIT Rat, urine Citrate Down Azmi et al. 2005
Succinate Down
2-oxo-glutarate Down
Choline Up
Glucose Up
Lactate Up
Creatinine Up
Acetate Up
Taurine Up
Bile acids Up
Hippurate Down

ANIT Rat, plasma Glucose Up Azmi et al. 2005
TMAO Up
LDL Down
VLDL Down
Choline Down
Lactate Down

Table 8.3 (continued)
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8.4.4  Studies with Peroxisome Proliferators

8.4.4.1  NMR Metabonomics

The metabolic profile of mouse urine following administration of the peroxisome 
proliferator Wy-14,643 was studied by Zhen et al. (2007) (see Table 8.5).

8.4.4.2  GC-MS/LC-MS Metabolomics

Typical compounds known to induce peroxisome proliferation were investigated 
for their common profile changes. The reference compounds which were used to 
develop this pattern, include fenofibrate, clofibrate, diethylhexyl-phthalate and 
Wy14643 (see Table 8.6).

For rats treated with peroxisome proliferators there is a predominant down regu-
lation of metabolites. The results appear to suggest a reduction in the presence of 
fatty acids in the rat serum. This would be in line with the lipid reduction effects of 
these compounds. Overall, the pattern of peroxisome proliferators is distinctly 
 different from that of liver enzyme inducers and liver toxic compounds.

Table 8.4 Metabolite pattern for hepatotoxic compounds

Direction of 
regulation

Strength of 
regulation (× fold)

Male
Palmitic acid Up 1.4–1.6
Linoleic acid Up 1.5–1.7
Arachidonic acid Up 1.4–2.2
Docosahexaenoic acid Up 2.9–3.6
Eicosatrienoic acid Up 1.6–5.0
Behenic acid Up 1.3–2.2
Lignoceric acid Up 1.5–2.5
Cholesterol Up 1.4–2.2
Nervonic acid Up 1.7–3.6
myo-Inositol-2-monophosphate Up 1.7–3.3
Glycerol-phosphate-lipid fraction Up 1.5–2.6

Female
Palmitic acid Up 1.4–2.2
Stearic acid Up 1.2–1.7
Arachidonic acid Up 1.4–2.0
Docosahexaenoic acid Up 1.4–3.2
Cholesterol Up 1.6–2.4
Lignoceric acid Up 1.4–2.5
Behenic acid Up 1.5–2.5
Linoleic acid Up 1.2–3.0
Threonic acid Up 1.4–2.4
Nervonic acid Up 1.3–5.1
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8.5  Perspectives

Metabolomics is considered by many to be complementary to genomics, transcrip-
tomics, and proteomics (Griffin and Bollard 2004; Lindon et al. 2004a). This 
technology, however, does have a number of potential advantages over the other 
omics-technologies that could help to overcome many of the problems now encoun-
tered with genomics/transcriptomics and proteomics (Bilello 2005). In the events 
following a toxic insult, genomics/transcriptomics analyses the earliest change which 
may or may not result in changes at the protein level (as analyzed by proteomics). 
Protein changes (e.g. enzyme activities) in their turn again may or may not result in 
changes in metabolites. As both gene expression and protein changes are subject 
to complex homeostatic control and feedback mechanisms, the end result of changes 

Table 8.6 Metabolite pattern for peroxisome proliferators

Direction of  
regulation

Strength of  
regulation (× fold)

Males
Coenzyme Q10 Down 1.4–2.3
16-Methylheptadecanoic acid Down 2.3–4.8
17-Methyloctadecanoic acid Down 2.3–4.8
Eicosatrienoic acid Up 1.4–3.0
trans-4-hydroxyproline Down 1.3–2.1

Females
Pantothenic acid Up 1.8–3.3
Glycerol Up 1.1–5.0
Linoleic acid Down 1.3–1.8
16-Methylheptadecanoic acid Down 2.5–4.2
Cytosine Down 1.1–1.5
Phosphatidylcholine Down 1.1–1.9

Table 8.5 Studies with peroxisome proliferators

Compound Matrix Metabolite Direction Reference

Wy-14,643 Mouse, urine 11b-Hydroxy-dioxopren- 
4en-21-oic acid

Up Zhen et al. (2007)

11b,20-dihydrxy-3-oxopregn-
4-en-21-oic acid

Up

Nicotinamide Up
1-Methylnicotinamide Up
Hippuric acid Up
2,8-Dihydroxyquinoline- 

b-d-glucuronide
Up

Xanturenic acid Down
Hexanoylglycine Down
Phenylpropyonyl glycine Down
Cinnamoylglycine Down
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in this sequence are often alterations in metabolite levels. Consequently, metabolite 
profiling should provide information on a higher level of integration than the other 
omics-technologies and is closer to everyday toxicology (van Ravenzwaay et al. 
2007). Moreover, the knowledge concerning structure and function of metabolites is 
significantly greater than that of genes and their corresponding proteins. In addition, 
the number of metabolites is lower than those of genes and proteins. Consequently, 
the chances of finding meaningful changes (i.e. changes that can be interpreted both 
biochemically as well as in terms of effect) are greater. A further advantage of 
metabolite profiling is that changes are detectable in accessible body fluids such as 
urine and blood. If the analysis of a great number of individual organs can be replaced 
by such matrices, then this will provide several significant practical advantages (less 
invasive method, no need to sacrifice animals, time course analysis possible).

The (early) recognition of toxicological mode of action through metabolite pro-
filing is also a promising tool for the discovery of processes which may be involved 
in tumor development.

The profiles established for the three liver specific mode of action (liver enzyme 
induction, liver toxicity and liver peroxisome proliferation) within the MetaMapTox 
project are sufficiently different from each other to allow for a clear identification 
of each of them, not only with reference compounds, but also with compounds 
subsequently tested. PLS-DA visualizations of profiles for specific compounds are 
shown in Figs. 8.3 and 8.4.

Scatter Plot 

Fig. 8.3 PLS-DA analysis of high-dimensional metabolite profiling (256 standard high quality 
metabolites) of samples from male rats treated with compounds assigned to three liver specific 
modes of action: liver enzyme induction (orange spheres), liver toxicity (blue cubes) and peroxi-
some proli feration (violet tetrahedrons) relative to untreated male controls (green crosses). The 
plot shows the first three PLS-DA scores (cross-validation score: Q2(cum) = 0.80, Q2(cum, scores 
1–3) = 0.71). Each mode of action comprises three different compounds. Separate clusters can be 
seen for the three modes of action and the control group
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Recognition of toxicological modes of action which contribute to tumor promo-
tion would greatly enhance the quality of selection processes for drug or active 
ingredient development. The finding that blood metabolome analysis within a 
28 day study can provide data which allow for the identification of liver enzyme 
inducers, liver toxicants and peroxisome proliferators is clearly a step towards this 
goal. Several of the enzyme inducers correctly identified in the data base are known 
to enhance liver tumor development in species and strains known to be susceptible 
for this effect, e.g. phenobarbital, Arochlor. Similarly some of the hepatotoxic com-
pounds also are known to enhance liver tumor development in rodents, e.g. tetrahy-
drofurane. It should be noted that not all of the liver enzyme inducers, nor all of the 
hepatotoxic compounds, are necessarily enhancers of liver tumor formation and 
that this is not directly related to the primary mode of action, but rather to the 
response of the liver to these effects, i.e. cell proliferation. The association between 
these modes of action and the extent of liver tumor promotion will vary depending 
on the potential of the chemical and the susceptibility of the species tested. The 
importance of metabolite patterns as markers of a carcinogenic process was indi-
cated in the work reported by Thomas et al. (2007). In their analysis of metabolite 
changes of several compounds in 90 day and 2 year rodent studies they conclude 
that individual endogenous metabolites make relatively poor biomarkers, but the 

Scatter Plot 

Fig. 8.4 PLS-DA analysis of high-dimensional metabolite profiling (256 standard high quality 
metabolites) of samples from female rats treated with compounds assigned to three liver specific 
modes of action: liver enzyme induction (orange spheres), liver toxicity (blue cubes) and liver 
peroxisome proliferation (violet tetrahedrons) relative to untreated female controls (green crosses). 
The plot shows the first three PLS-DA scores
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metabolite profile as a whole gives a more accurate prediction of the bioassay 
results. The results obtained in the MetaMap Tox project points in a similar 
 direction; very rarely are there individual metabolites which can be used as  biomarkers 
of effect (mode of action). It is the consistent pattern of change that allows for a 
reliable identification of effect.

Further developments in metabolite profiling may increase the specificity of the 
data obtained and can provide a deeper insight into biochemical processes in cancer 
cells. The stable isotope dynamic metabolic profiling (SiDMAP) measures the flow 
of molecules through metabolic pathways. Thus, SiDMAP measures the activity of 
pathways, in terms of molecular flux over time in intact systems. With this technol-
ogy, metabolism was demonstrated to be involved as a cancer cell mechanism in 
drug resistance (Maguire et al. 2006). The primary metabolic difference between 
drug induced apoptotic-sensitive and – resistant cells is the more rapid rate at which 
resistant cells synthesis medium – and long-chain fatty acids. In addition, indirect 
acetyl-CoA formation through high fatty acid chain desaturase activity allows 
tumor cells to synthesize a membrane, which is independent of dietary fatty acids. 
SiDMAP investigations have also revealed the mechanism through which resis-
tance to imatinib mesilate occurs. This drug controls glucose metabolizing enzymes 
such as hexokinase II and glucose-6-phosphate dehydrogenase. Resistance occurs 
when cells use the non-oxidative branch of the pentose cycle for DNA- and RNA- 
synthesis, which is not controlled by the drug.

8.6  Integrated Approaches

A challenge and opportunity, is the integration of omics data. An integrated func-
tional genomics and metabolomics approach was reported by Ippolito et al. 2005, 
in their investigations to identify features of human neuroendocrine cancers associ-
ated with poor outcome. In their analysis of gene-chip data sets of primary prostate 
tumors, as well as lymph node and liver metastases from neuroendocrine tumors, 
they identified 446 genes whose expression was enriched in neoplastic cells. This 
gene signature was used for in silico metabolic reconstruction of neuroendocrine 
cell metabolism and metabolite profiling of cell lines and human neuroendocrine 
tumors with good or poor prognosis. A distinguishing feature of poor prognosis is 
the GABA production through a glutamic acid decarboxylase independent pathway 
and the production of imidazole-4-acetate through a dopa decarboxylase pathway. 
The difficulty, but also the power of combining data from genomics, proteomics 
and metabolite profiling has been demonstrated by Craig et al. 2005. Following 
high dose administration of methapyrilene for 3 days to rat, causing periportal liver 
cell necrosis, they sampled liver, whole blood and urine for omics analysis. Their 
results show a great number of gene changes, a good amount of protein changes 
and some metabolite changes. Of all the changes noted, only two pathways were 
consistently affected in all three areas; glucose metabolism and choline metabolism. 
These findings are in line with the general notion that the number and extend of 
changes in genome activity and protein concentrations are higher than that of 
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metabolites (ECETOC 2008). As metabolite profiling resides at the end of the 
biological road that commences with DNA, it is the place were variations in genome 
expression and protein formation become integrated. As the omics technologies 
provide quantitative data, robust computational methods for judging and interpreting 
omics data are needed (Willard et al. 2005). Given the advantages of metabolite pro-
filing, its integration in such a concept will be essential but will require the development 
of bioinformatics and accessible data bases. A possible tool to achieve this objective 
was proposed by Toyoda and Wada (2004) and consists of the concept of an omics 
space comprising of a series of layers of information (from genomics to metabolo-
mics and ultimately whole system observations called “phenomics”). The connections 
between these layers of information are enhanced by taking into account the 
dynamics of the interaction as well as its probability. With this tool the authors 
identified the oncogene cMyc and the cell division cycle homolog Cdc25A as the 
pair of genes which had the strongest connection to polyoma Middle-T induced 
mammary tumors.

Thomas and Ganji (2006) question, in a review of on the integration of genomics 
and metabolomics, “are we there yet?” They note that the search for correlations 
between genes and metabolites is largely limited to linking specific genes with 
defined metabolic events, and, that analysis appears to be heavily reliant upon an 
empirical search for correlations. Although valuable, this deductive approach is not 
likely to elucidate entirely new pathways. The approach taken by Griffin et al. 
(2004), in which hepatic extracts, intact liver tissue and plasma were used for 
metabolite profiling and gene analysis followed by a comprehensive multivariate 
statistical analysis appears to be a promising route. Particularly, the attempt to 
model time progression of the data sets using PLS seems to be an important step 
forward. As a result of this type of analysis, the authors were able to conclude that 
orotic acid-induced fatty liver is related with a decreased transcriptional activation 
of sterol regulatory elements.

The question of the influence of time progression and the dynamics of (early) 
responses deserves attention. Thomas and Ganji (2006) note that it is likely that 
data collected in steady-state situations are difficult to correlate with dynamic 
trends in levels of transcripts, protein, metabolite and phenotype. In the strive to 
elucidate the earliest, and ideally key events, in toxicological or pharmacological 
effects of a compound, most of the omics investigations have been performed 
within days, sometimes even hours after the administration of a compound. The 
search for very early information to derive mode-of-action knowledge from these 
data is one of the paradigms in safety testing of new active ingredients. Given the 
highly dynamic processes, with numerous feedback mechanisms occurring after 
a compound has started its interaction with an organism, it may be questioned 
whether this is an appropriate approach for all omics technologies. During the 
initial phases of this interaction, time and place of sampling of the material to 
be investigated will have a tremendous effect on the outcome of the results. In addi-
tion, inter-individual and inter-laboratory differences as well as the normal bio-
logical variation will further increase fluctuations of results. The sum of all these 
factors is the most likely cause of the current comparability problem. Long-term 
investigations of highly standardized metabolite profiling may offer a chance to 
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tackle this problem. The combination of the higher level of integration of metabolite 
proofing, relative to other omics technologies (van Ravenzwaay et al. 2007) with 
sampling during a steady-state phase is highly likely to solve the problem of the 
comparability problem of omics data. In the MetaMap®Tox project, in which 
blood sampling takes place after 7, 14 and 28 days of administration, it was noted 
that the vast majority of all profiles established shows a stable qualitative pattern 
of change, irrespective of the sampling time point. Quantitative differences can 
be noted, but these are either minor (which is a general property of metabolomics 
relative to other omics technologies – ECETOC 2008), or can be explained by 
bio-accumulation of the compound over time, or the cumulative toxic effect on 
an organ.

Metabolite profiling is starting to demonstrate its potential in toxicology and its 
application in cancer diagnosis appears to be a matter of time. With metabolite 
profiling still being a new field, there are only a few data bases available that offer 
comprehensive pathway contents. However, with the current pace of progression 
within metabolomic research and with the data bases that are currently being devel-
oped, it is highly likely that metabolite profiling will result in an enhanced recogni-
tion and assessment of toxicological modes of action, as well as cancer diagnosis. 
Plotting of metabolite profiles in biochemical pathways may lead to the discovery 
of key events and may also allow for a further distinction of compounds within a 
mode of action. Moreover, the quantitative nature of the observed changes is also 
likely to allow for a potency ranking and could enhance the recognition of com-
pounds associated with tumor promoting properties. For some years to come 
metabolite profiling, as any of the omics sciences is likely to retain its “research” 
status, as indicated by EPA’s framework for the use of genomics data (Dix et al. 
2006). EPA’s policy states that genomics data alone are currently insufficient as a 
basis for risk assessment and management decisions. A workshop organised by 
ECETOC in 2007 derived the same conclusion (ECETOC 2008). With respect to 
the question if a meaningful NOAEL (no observed adverse effect level) can be 
derived from omics data the following consensus was reached in this workshop: 
changes of individual parameters (genome, proteome or metabolome) cannot be 
used to derive a NOAEL. It is necessary to identify patterns of change which need 
to be correlated to observable changes at the microscopic and macroscopic level. 
This correlation can be established by comparing patterns of change with those of 
known reference compounds. Moreover, it must be assured that the pathway identi-
fied is related to an adverse effect. With this proposed framework, with the genera-
tion of tools that connect omics information with observable changes in whole 
biological systems and with the increasing availability of data, it should not be long 
before the omics sciences will become an integrated part of the toxicological, phar-
macological, medical and regulatory communities.
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Abstract Cancer is a complex disease with a myriad of genes and molecular 
processes involved. To unravel its underlying mechanisms, the main approach to 
date has been the study of individual genes and their association with carcinogen-
esis. As a recently emerging new paradigm, systems biology has complemented 
this time-honoured concept by promoting a holistic view of cancer as a network-
associated disease. This new strategy is reflected par excellence by the construction 
of genome- and proteome-wide interaction networks and their utilization. We give 
here an overview of the current status of the human interactome and report first 
successes in its application in cancer research. In particular, interactomics-based 
analyses have been successfully undertaken for the characterization and de novo 
prediction of cancer-associated genes and processes. Although considerable chal-
lenges are still to overcome, interactomics promises to become a cornerstone in the 
systems biology of cancer.

9.1  Introduction

Cancer is not a single uniform disease, but displays a striking heterogeneity in its 
cause, progression and prognosis. In fact, more than 100 distinct types of cancer 
have been identified in a variety of tissues over the last decades (Hanahan and 
Weinberg 2000). The recent progress in molecular profiling of cancer is likely to 
contribute to an even larger number of biologically and clinically distinct tumor 
sub-types (Alizadeh et al. 2000). Such observed heterogeneity is not only of interest 
for cancer researchers, but has also direct consequences in the clinical prognosis 
and medical treatment of cancer patients.
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Where does the observed heterogeneity originate from? Intensive research has 
discovered a large number of genes involved in the development of cancer. 
Especially, the study of genetic mutations identified many cancer-associated genes 
and has led to the view of cancer as a primarily genetic disease. A recent census of 
human cancer genes showed that somatic and germline mutations in almost 400 
genes have repeatedly been reported to contribute to oncogenesis (Futreal et al. 
2004). Additionally, numerous epigenetic and transcriptional changes have been 
associated with cancer (see also chapters 4 and 5).

How can we cope with this complex and heterogeneous disease in which so 
many genes and processes are involved? For a long time, the main approach to 
unravel oncogenesis has been to identify single cancer-associated genes and to 
characterize them one at a time. Undoubtedly, this paradigm in cancer research has 
supplied us with an impressive catalogue of pathogenic changes on molecular level. 
Despite considerable success, however, it has not yet delivered the much antici-
pated “magic bullets” against this disease.

Recently, a new discipline has emerged with the advent of large-scale bio-
logical data sets: Systems biology. It can be viewed as a complementary – but 
not opposing – approach to the classical reductionistic strategy for the study of 
the biological processes. In contrast to reductionistic approaches based on the 
dissection of processes into their most elementary levels, systems biology is 
more holistically orientated. The guiding principle of systems biology is that 
the total system can be more than the sum of its parts and can acquire properties 
that are not implied in the single components.

Following this principle, we seek to study a biological system as a whole. The 
aim is to determine the rules governing its behaviour and eventually to generate 
qualitative and quantitative predictions concerning its response to perturbations 
and modifications. To achieve this, two requirements have to be fulfilled: (1) 
a sufficient amount of data and information describing the system has to be avail-
able, and (2) a computational model of the system has to be designed. Whereas the 
first requirement is increasingly met with the development of new high-throughput 
techniques, the second one still demands considerable efforts. For instance, when 
we aim to represent the whole system, we need to choose an adequate level of 
resolution. Finding this level is challenging, since there is usually a trade-off 
between computational feasibility and detailed representation of the molecular 
systems due to their mere size and complexity. The inclusion of too many compo-
nents can lead to ill-determined models of the system with many parameters 
unknown, whereas a too severe restriction can results in an incomplete model with 
a lack of coherence. In fact, the choice of a suitable model depends not only on the 
research objective, but also, more practically, on the quality and quantity of data 
and information present.

In response to this difficulty, various methodologies for different levels of reso-
lution have been brought forward in systems biology to date. A nowadays very 
popular approach is based on the representation of biological systems as mathemat-
ical graphs and has laid the ground for the blooming field called network biology. 
In the context of molecular systems, for instance, the molecules are typically 



1699 Interactomics and Cancer

represented as nodes and their interactions as edges (Fig. 9.1). Although this type 
of representation is clearly a stark simplification of the underlying physical system, 
a major advantage of this approach is that the analysis of large networks becomes 
feasible. Also, the underlying graph-theory has been well developed and offers 
researchers a variety of tools. In fact, with its beginning dating back to Leonard 
Euler in 1736, graph theory has made profound impact in social, physical and com-
puter sciences (Euler 1736). The application of graph-theory to biology seems to be 
well suited where large networks are involved in the process of interest. Thus, it is 
not surprising that the concepts of network biology have been especially applied to 
elucidate the complex processes during oncogenesis and to consolidate the hitherto 
divergent observations. A short introduction to graph theory and its basic concepts 
is presented in Box 1.

The reminder of this chapter is following: We first present an overview of cur-
rent strategies to chart, to store and to analyse interaction maps. We focus here on 
protein–protein interaction data as many concepts of network biology have origi-
nally been demonstrated using protein interactions. Notably, we describe the gen-
eration of protein interaction maps in some details, as it can have a considerable 

Fig. 9.1 Graphical representation of the current human protein–protein interactome as stored in 
the UniHI database (http://www.unihi.org). Altogether, it comprises over a quarter of a million of 
interactions derived from experimental resources and by computational prediction. Nodes and 
edges in the displayed graph represent proteins and their interactions. The different colours indi-
cate the source of interactions: blue - Y2H screens, red - literature curation, green - orthology-based 
prediction, and grey - multiple evidence. Notably, distinct regions of the interactome are covered 
by different methods indicating the potential benefits of integration. The figure also illustrates the 
grade of simplification achieved by the graph-theoretical approach. The highlighted nodes sym-
bolizing the shown proteins (left: mitogen activated protein kinase; right: haemoglobin complex 
consisting of alpha and beta chains) are depicted for illustration only; they do not represent the 
actual location of these proteins in the interactome. Displayed protein structures were taken from 
the Protein Data Bank
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influence on the final maps. In fact, it is of critical importance for researchers to 
have a basic understanding how interaction maps were derived to avoid pitfalls in 
their usage. Subsequently, several studies and methodologies utilizing protein inter-
action networks to study cancer are reviewed. For sake of completeness, some 
references to the application of transcriptional networks to cancer research are 
given. Finally, we discuss future challenges and directions in the generation of 
human protein interaction maps and their applications.

9.2  The Human Protein–Protein Interactome:  
Generation and Analysis

In the last few years, we have witnessed the rapid increase in the large-scale 
protein–protein interaction maps for various model organisms. This striking rise is 
mainly due to advances in the high-throughput experimental techniques such as Yeast-
two-Hybrid (Y2H), the coordinated efforts to systematically chart interactions by 
human experts as well as the progress in computational text-mining and prediction. 

Box 1 Introduction to Graph Theory and Its Application to Network Biology

 Graph-Theoretical Description of Molecular Networks

One of the most basic descriptions of molecular systems is given by their 
representation as mathematical graphs. For protein interaction networks, for 
instance, proteins are commonly represented as nodes and their physical 
interactions as undirected edges. For transcriptional regulatory networks, 
nodes symbolize both transcription factors and their target genes and are con-
nected by direct edges. The resulting graphs can be analyzed using various 
graph-theoretical measures:

A fundamental characteristic of a node in a mathematical graph is its 
degree, i.e. the number of edges to other nodes. The degree distribution P(k) 
for a network can be defined as fraction of proteins with k interactions in the 
total network. It is an important feature of network to distinguish different 
network classes. Of special importance here is the power-law distribution 
(P(k) ~ k-g) which is characteristic for the class of scale-free networks. It has 
been shown that such network architecture is more robust against random 
failure of single components. A consequence of the scale-free topology is the 
emergence of so-called network hubs, i.e. highly connected nodes. Hubs are 
of particular importance for the network integrity and were associated with 
essential proteins (Jeong et al. 2001). Finally, the shortest path length 
between two nodes is defined as the minimum number of edges included in 
the (directed) path between the two nodes.
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As all these methods can lead to considerably divergent protein interaction maps (von 
Mering et al. 2002; Futschik et al. 2007a, b), it is important to have a basic under-
standing of the applied methodologies. In the following sections, we therefore 
introduce several current methods, discuss their pros and cons and outline their 
application to the human interactome.

9.2.1  Yeast-Two Hybrid System

The Y2H method is based on a screening approach using a set of modified proteins. 
The experimental basis of Y2H is the reconstitution of a multi-domain transcription 
factor (such as GAL4). Specifically, a protein-encoding cDNA of interest is cloned 
into a bait vector, and fused with the DNA binding domain of the multi-domain 
transcription factor. A second cDNA encoding a potentially interacting protein is 
cloned into a prey vector and fused to the transcription factor’s activation domain. 
Subsequently, the two yeast strains carrying the bait and prey hybrid proteins in 
plasmids are mated, resulting in yeast carrying both plasmids. If the bait and prey 
proteins interact, a functional transcription factor is reconstituted leading to the 
transcription of a reporter gene such as lacZ encoding for b-galactosidase. In the 
high-throughput mode, whole libraries of bait and prey vectors can be screened for 
interactions. Thus, the main advantage of this approach is that it provides a platform 
for the rapid generation of large-scale protein–protein interaction networks and it 
does not need to be biased towards known interactions. However, the false positive 
rate for Y2H screens can be considerable and can even exceed the estimated true 
positive rates (Hart et al. 2006).

Recently, the Y2H system was applied in two large-scale studies to screen 
human proteins identifying in total over ~5,500 new protein interactions, of which 
a selected sub-set was experimentally validated (Rual et al. 2005; Stelzl et al. 
2005). Notably, the overlap between the two studies is small: Only 17% of interac-
tions between common proteins were detected by both groups.

9.2.2  Literature Curation and Text-Mining

Besides high-throughput experimental approaches, the numerous small-scale experi-
ments described in the literature can be exploited to create large-scale protein 
interaction maps. Tapping into the wealth of published experiments, information on 
protein interactions is systematically extracted from the literature either by human 
experts or text-mining algorithms. The advantages of such procedures are that it is 
not biased a priori towards a particular experimental technique and that the charted 
interactions are determined under a broad range of conditions and protocols. 
Characteristic disadvantages are the inherent difficulty to estimate the false positive 
rate and the bias towards highly studied proteins. Numerous research groups have 
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followed this strategy to create large-scale human protein interaction maps (Bader 
et al. 2001; Salwinski et al. 2004; Pagel et al. 2005; Ramani et al. 2005; Mishra 
et al. 2006; Kerrien et al. 2007; Breitkreutz et al. 2008).

9.2.3  Computational Prediction of Human Protein Interactions

Alternative to the large-scale experimental and literature-curation, in silico predic-
tion has been used to build large-scale protein–protein interaction maps (Lehner 
and Fraser 2004; Brown and Jurisica 2005; Persico et al. 2005). This strategy is 
based on the assumption that interactions are evolutionarily conserved for ortholo-
gous proteins and thus interactions detected between proteins in lower organisms 
can be extrapolated to their human orthologs. A main advantage of this method is 
that it is entirely computational and thus enables rapid and cost-effective construction 
of human protein–protein interaction maps. Disadvantages are that it is purely 
predictive in nature and false positives can arise through erroneous mapping to 
human orthologs or that interactions are simply lost during evolution.

9.2.4  Databases for Human Protein Interactions

Several human protein interaction databases have been established to help research-
ers find and analyze interaction partners of proteins of interest. These databases can 
generally be divided into two different categories: The first one is based on the 
manual-curation of published literature and includes the Human Protein Reference 
Database (HPRD), the Biological General Repository for Interaction Datasets 
(BioGRID), IntAct, the Database of Interacting Proteins (DIP), the Biomolecular 
Interaction Network Database (BIND) and the MIPS Mammalian Protein–Protein 
Interaction Database (MPPI) (Bader et al. 2001; Salwinski et al. 2004; Pagel et al. 
2005; Mishra et al. 2006; Kerrien et al. 2007; Breitkreutz et al. 2008). The other 
category of databases also includes computationally predicted interactions; exam-
ples of such databases are the Online Predicted Human Interaction Database 
(OPHID) and HomoMINT (Brown and Jurisica 2005; Persico et al. 2005). 
Currently, HPRD is one of the major sources for human interaction data and – as 
the name implies – dedicated to human proteins. Besides interactions, it also pro-
vides information on domain architecture, post-translational modifications, disease 
association and biological pathways. Other databases e.g. BioGRID, IntAct, DIP 
and BIND are the repositories for a more diverse set of organisms and provide 
access to interaction data for other model organisms such as yeast, worm and fly.

Although these databases chart thousand of interactions from human proteins, 
their coverage in terms of the whole human interactome remains rudimentary. 
Comparative analysis revealed a very limited overlap between them (Chaurasia 
et al. 2006; Futschik et al. 2007a; Ramírez et al. 2007) (Fig. 9.1). Naturally, the 
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question arises why these maps have such small degree of overlap. One reason is 
likely that current maps are highly unsaturated. Given an estimated total size of 
human interactome of ~650,000 interactions, even HPRD – as one of the largest 
sources – covers less than 10% of the total interactome (Stumpf et al. 2008). 
Additionally, current maps display a strong detection bias, i.e. they are enriched in 
characteristic types of proteins while depleted of other types (Futschik et al. 
2007a). For example, literature-based maps show a significant enrichment in sig-
nalling proteins which is probably due to their popularity as biomedical research 
topic. Since currently available maps are incomplete and might contain comple-
mentary information, we and others reasoned that their integration can be benefi-
cial. Therefore, several research groups have started to integrate the diverse protein 
interaction datasets available (Prieto and De Las Rivas 2006; Chaurasia et al. 
2007). For instance, the Unified Human Interactome database (UniHI) including 
human interaction data from 14 different sources stores over ~250,000 interactions 
between ~22,000 proteins and thus constitutes one of the most comprehensive col-
lections of human protein interactions at present (Chaurasia et al. 2009). Such 
centralized repositories liberate researchers from laborious and time-consuming 
integration of the diverse interaction data sets. An overview of several current 
resources for human protein interactions is provided in Table 9.1. A more com-
plete list of protein interaction databases is compiled by the Pathguide project 
(Bader et al. 2006).

9.3  Application of Interactomics to Cancer Research

9.3.1  Network-Based Characterization of Cancer Genes

One of the first questions addressed by network-based approaches in cancer 
research is also one of the most intriguing: What makes a gene to a cancer gene? 
Although such naïve question may be somewhat puzzling at first, it makes natu-
rally sense in network biology to ask whether cancer-associated genes have 
characteristic properties within interaction networks. To address this question, 
graph-based methods can be applied to study network properties of cancer 
genes. An important concept here is centrality which evaluates the location 
within a network. Centrality of a node can be defined simply by its degree, i.e. 
the number of interactions or, more elaborately, by the number of shortest paths 
passing through this node.

Several research groups have applied such concepts to reveal the graph-theoretical 
properties and the role of cancer genes in human protein interaction networks 
(Wachi et al. 2005; Jonsson and Bates 2006; Hernández et al. 2007; Platzer et al. 
2007). For the analysis, the set of cancer-associated genes has first to be deter-
mined, for which commonly databases or microarray studies are used. As a second 
step, a disease network is created by integrating the cancer genes products (i.e. 
proteins encoded by cancer-associated genes) with available large-scale protein 
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interaction networks. Finally, the topological properties (e.g. degree distribution, 
centrality) of cancer genes within this network are computed and compared to those 
of genes that have not been associated with cancer.

Wachi and co-worker applied the above outlined strategy to study the centrality 
of genes that are differentially expressed in cancer (Wachi et al. 2005). For their 
analysis, human interaction data was collected from OPHID. Microarray data were 
obtained from five patients with squamous cell lung cancer and compared to normal 

Table 9.1 Resources for human protein–protein interactions described in the chapter. The size, 
the construction approach and additional information are given. For the calculation of the number 
of proteins and interactions in each dataset, proteins were mapped to their corresponding Entrez 
Gene identifiers

Resource Proteins Interactions Method References Resource location

MDC-Y2H 1,703 3,186 Y2H SCREEN Stelzl 
et al. 
(2005)

www.mdc-berlin.de/
neuroprot

CCSB-Y2H 1,549 2,754 Y2H SCREEN Rual et al. 
(2005)

www.vidal.dfci.
harvard.edu (flat 
file only)

HPRD-BIN 8,788 38,800 LITERATURE Peri et al. 
(2003)

www.hprd.org

DIP 1,085 1,397 LITERATURE Salwinski 
et al. 
(2004)

www.dip.doe-mbi.ucla.
edu

BIOGRID 7,953 24,624 LITERATURE Breitkreutz 
et al. 
(2008)

www.thebiogrid.org

INTACT 7,273 19,404 LITERATURE Hermjakob 
et al. 
(2004)

www.ebi.ac.uk/intact

BIND 5,286 7,394 LITERATURE Bader et al. 
(2001)

www.bind.ca

COCIT 3,737 6,580 TEXT MINING Ramani 
et al. 
(2005)

www.Bioinformatics.
icmb.utexas.edu/
idserve

REACTOME 1,554 37,332 LITERATURE Joshi-Tope 
et al. 
(2005)

www.reactome.org

ORTHO 6,225 71,466 ORTHOLOGY Lehner and 
Fraser, 
(2004)

www.sanger.ac.uk/
PostGenomics/
signaltransduction/
interactionmap

HOMOMINT 4,127 10,174 ORTHOLOGY Persico et al. 
(2005)

www.mint.bio.
uniroma2.it

OPHID 4,785 24,991 ORTHOLOGY Brown and 
Jurisica 
(2005)

www.ophid.utoronto.ca

UniHI 22,307 200,473 INTEGRATION Chaurasia 
et al. 
(2009)

www.unihi.org
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samples of the same patients. Using a paired t-test, differentially regulated genes 
were determined and mapped onto the protein interaction network. The subsequent 
analysis revealed that up-regulated genes tend to be highly connected and more 
centrally located in the network compared to randomly selected genes. Down-
regulated genes tended to be also more highly connected but not significantly. 
Furthermore, they did not show an increased centrality. Based on their findings, the 
authors suggested that a core set of central genes has to be activated during the 
course of carcinogenesis.

Similar results were reported in a separate topological analysis performed by 
Jonsson and Bates (2006). In contrast to Wachi et al., this analysis did not depend 
on microarray experiments to define cancer-associated genes. To avoid a bias 
towards a particular cancer type, they selected a general set of cancer genes that 
were previously identified in a literature-based census (Futreal et al. 2004). The 
human interaction network was constructed using an orthology-based approach. 
After mapping of cancer genes onto the human protein interaction network, the 
connectivity of each protein in the integrated network was computed. Results 
indicate that the cancer proteins show higher degrees than non-cancer proteins. 
Cancer proteins also tend to function as central hubs, reflecting their role as a key 
player in protein–protein interaction network. Clustering analysis additionally 
showed that cancer proteins, on average, are more frequently located in the inter-
faces between clusters indicating an enhanced role in the coordination of different 
cellular processes.

Following the same strategy as Wachi et al., Hernández and colleagues 
reported somewhat contrasting results for the topological properties and organi-
zation of cancer gene products in the human interactome network (Hernández 
et al. 2007). They started their analysis by creating an integrated set of human 
interactome originated from five manually-curated literature-based dataset. 
Microarray data sets for prostate, lung and colorectal cancers were utilized and 
differential expression was calculated. Topological analysis of the integrated net-
work revealed that down-regulated genes consistently tend to be more centrally 
located. In contrast, the centrality of up-regulated genes was dependent on the 
chosen cancer type. They also found that topological properties of down-regulated 
cancer genes are correlated with common biological processes and pathways 
that lead to cancer. However, both types of genes appear to be important for the 
organization and integrity of network structure. In particular, the elimination of 
cancer-associated genes from the network results in a faster breakage of the original 
network in smaller networks than those observed for elimination of randomly 
chosen genes.

Finally, the most comprehensive graph-theoretical study for cancer to date was 
conducted by Platzer et al. (2007). Altogether, they analysed 29 genome-wide can-
cer expression data sets using 22 individual graph-theoretical measures. For each 
study, differential gene expression was determined and sub-graphs of differentially 
regulated genes were constructed based on interaction data from OPHID. Various 
properties of the sub-graphs such as size, modularity and density were subsequently 
examined. The main result was that genes showing differential expression in cancer 
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tend to interact and to form larger sub-networks than expected by chance. Strikingly, 
however, the prevalence of hub proteins was not increased in cancer-associated sub-
graphs. The authors speculated that extended graphs with low density indicate 
networks of high robustness against the failure of single genes. This is especially 
intriguing in the context of cancer, as such finding would demand for the simultane-
ous therapeutic targeting of multiple proteins.

In summary, the described network studies give a first overview about the struc-
tural role of cancer genes in protein interaction networks. Nevertheless, care has to 
be taken in interpretation as current interaction maps often show divergence in 
structure due to different methods used for their assembly (Futschik et al. 2007b).

9.3.2  Identification of New Cancer-Associated Genes  
and Processes Using Protein Interaction Networks

A second area in which protein interaction networks have been utilized in cancer 
research is the identification of new cancer-associated genes. The rationale behind 
these investigations is that interacting proteins are likely linked to the same or simi-
lar phenotype. A leading example is Fanconi anemia, a genetic disease, for which 
seven of the nine associated proteins form a physical complex involved in DNA 
repair. Although interaction data can provide a suitable first basis for de novo iden-
tification of disease-causing genes, additional information has commonly been 
utilized to improve specificity.

For many years, genetic linkage studies were the most potent approach to find 
new disease-causing genes. A major difficulty, however, is to pick the right gene 
within extended chromosomal regions that have been linked to a disease. Oti et al. 
showed that this task can be considerably facilitated using protein interaction data 
(Oti et al. 2006). For genetically homogenous diseases, they predicted new disease 
associations when genes fell within an identified susceptibility locus and have 
protein interactions with a gene known to cause this disease. This simple method 
of data integration led to a tenfold increased specificity compared to randomly 
selected candidate genes at the same locus. Notably, Oti et al. also deduced that 
protein interactions added as much information as localization to the prediction 
accuracy. In a similar study, Franke et al. extended the protein interaction network 
by including microarray and gene annotation to generate a functional interaction 
network (Franke et al. 2006). Also, new candidate genes were identified in the 
larger network neighbourhood of known disease genes, avoiding the restriction to 
direct interactors only.

One requirement of these studies is that we have to know already a set of genes 
associated with a certain disease. This set can be then used to “anchor” a disease 
in the human interactome. If however no such genes are known, this approach 
cannot be used. To overcome this limitation, Lage et al. catalogued human pheno-
types in a computationally tractable manner (Lage et al. 2007). Their motivation 
was that similar diseases might share the same molecular basis. Having defined a 
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score for the similarity of phenotypes, information for a specific disease can then 
be deduced from similar diseases. Thus, candidate genes can be predicted even if 
no other gene associated with the specific disease is known yet. For prediction, 
Lage et al. integrated human protein interaction with linkage data in a similar man-
ner as Oti et al. and Franke et al. Using an in silico pull-down approach and the 
similarity of phenotypes, they extracted known and new complexes and predicted 
several novel candidate disease genes involved in disorders such as cancer, 
Alzheimer’s, diabetes and coronary heart diseases. Detailed analysis for epithelial 
ovarian cancer lead to the identification of a new candidate gene, Fanconi anemia 
group D2 protein (FANCD2) placed in a complex with breast cancer type 1 sus-
ceptibility protein (BRCA1) and breast cancer type 2 susceptibility protein 
(BRCA2). This protein has been associated with different types of cancer, but not 
with epithelial ovarian cancer so far.

A conceptually similar network-based modelling approach was applied by 
Pujana et al. to predict new candidate genes involved in breast cancer (Pujana et al. 
2007). They assumed that genes, which are functionally related or showed con-
served co-expression across species, might cause a similar phenotype. To test their 
hypothesis, they created a cancer-specific network with four known breast cancer-
associated genes: BRCA1, BRCA2, ATM, and CHEK2. Neighbours of each refer-
ence gene set were further ranked using a scoring system based on co-expression, 
phenotypic similarity, and genetic or physical interactions among orthologs of the 
proteins in other species. They identified a new gene (HMMR) that was found to be 
associated with an increased risk of breast cancer.

In addition to prediction of novel cancer-associated genes, interaction net-
works were also employed to unravel cancer-related molecular processes. As one 
example, Chuang et al. applied a network-based classifier to identify sub-net-
works as markers for breast cancer prognosis (Chuang et al. 2007). To find the 
sub-networks, they mapped the gene expression profiles of metastatic and non-
metastatic patients on a human protein–protein interaction network. Subsequently, 
they computed activity scores of all associated members to rank the sub-network 
as a whole. Their finding showed that high scoring sub-networks were enriched 
in many cancer-related biological processes such as apoptosis, proliferation, tis-
sue remodelling, signalling and survival. Their analysis also indicated that identi-
fied modules were more reproducible than individual genes selected without 
network information, and that they achieve a higher accuracy in the classification 
of metastatic versus non-metastatic tumors. Another advantage of this approach 
is that it also captures those genes which may have not been detected based on 
gene expression data alone. Such non-differentially expressed genes could be an  
integral part of a complex and be required for connecting high scoring proteins in 
a sub-network. In fact, Chuang et al. found that a large number of the identified 
network structures contained at least one protein that was not significantly 
expressed in metastasis while most of them served as a bridge between high scor-
ing proteins in a sub-network. This integration provides the opportunity to ana-
lyze the relationships between members of the complexes, and also increases the 
accuracy of the overall prediction.
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9.3.3  Analysis of Transcriptional Regulatory Networks  
in Cancer Research

Besides physical protein–protein interactions, transcriptional regulations have been 
analyzed in network biology to shed light on oncogenesis. The main building blocks 
of the constructed transcriptional regulatory networks are transcription factors and 
their target genes. In contrast to the protein interaction networks, the resulting graphs 
are directed, i.e. include edges directed from transcription factors to their target 
genes. Since transcription factors can be themselves target genes of other transcrip-
tion factors, this wiring scheme can lead to large connected networks. The ultimate 
goal is to build models that can “explain” observed expression patterns in terms of 
the underlying regulatory networks. Such models would go beyond the simple 
description of expression changes and could eventually provide us with a causative 
framework. This has become particularly interesting in the context of microarray 
technologies that have enabled a rapid genome-wide monitoring of expression.

In particular for yeast, this line of investigation has proven to be fruitful in reveal-
ing regulatory principles that are not detectable from the mere analysis of expression 
data (Janga et al. 2008). Early studies, for instance, could link changes in the structure 
of regulatory networks to the type of external stimuli and the corresponding transcrip-
tional response (Luscombe et al. 2004). Such impressive interrogations were made 
possible by the systematic experimental mapping of yeast transcription factor binding 
sites using Chromatin-Immunoprecipitation on chip (ChIP-chip) experiments. 
Unfortunately, the systematic experimental charting of human transcription factor 
binding sites is still at a very early phase with experiments being limited to a small 
number of transcription factors and cell types. At present, many collections of tran-
scription factor binding sites for humans thus rely considerably on in silico matching 
between promoter regions and position weighted matrices describing the consensus 
binding sites of transcription factors. Further difficulties in the construction of com-
prehensive regulatory networks are (1) a high number of false positive predictions of 
transcription factor binding sites based on simple sequence matching, (2) the choice 
of an adequate size of human promoter regions, (3) the combinatorial action of tran-
scription factors within cis-regulatory modules and (4) the influence of the – gener-
ally unknown – chromatin structure on the accessibility of binding sites.

Despite these challenges, first efforts have been undertaken to construct genome-
wide regulatory networks for cancer research. Notably, Kluger and colleagues exam-
ined the topological properties of regulatory networks to characterize gene deregulation 
during tumorigenesis (Tuck et al. 2006). For construction of a regulatory network, 
they utilized a collection of transcription factors stored in the Transcription factor 
(TRANSFAC) database. Potential target genes were determined by position weighted 
matrices. The basal connectivity network was then intersected with co-expression of 
genes from different cancer microarray studies to obtain condition-specific regulatory 
networks. In the subsequent analysis, network features such as degree distributions 
were used to differentiate between diseased and healthy patent samples. Although no 
significant improvement of classification accuracy was achieved compared to 
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conventional microarray analysis, the procedure offered some valuable insights in the 
potential causative mechanisms of gene deregulation. Most intriguingly, genes that 
discriminate best between disease conditions tend to be highly localized on the tran-
scriptional network. It is important to note that the applied strategy implies that 
expression levels of transcription factors can be proxies for their activity states. 
However, this might neglect important post-translational modifications.

An impressive project, which can also serve as a prime example for integrative 
network biology, is the assembly and analysis of the B-cell interactome by Califano 
and co-workers. This model of the molecular network for B-cells not only includes 
transcriptional regulatory, but also protein–protein and modifying post-translational 
interactions derived from a variety of experimental and computational resources. In 
the study by Mani et al., a strategy was developed to scrutinize the B-cell interactome 
for dysregulated interactions in three distinct types of lymphoma (Mani et al. 2008). 
In contrast to conventional microarray analysis focusing on the differential regulation 
of genes, the loss or gain of correlation between interacting genes was analyzed. 
Remarkably, the examination of dysregulated interactions pointed more clearly to the 
set of known genetic lesions than simple differential gene expression did. Furthermore, 
potential downstream effectors could be identified which would have been missed 
using gene expression alone. Notably, these results probably would not have been 
derived without the construction of a cell type-specific network.

9.4  Summary and Outlook

Cancer shows a striking complexity in the cellular mechanisms involved and, 
despite all successes in cancer research, the untangling of these interwoven pro-
cesses remains one of the most formidable tasks in molecular biology and medi-
cine. For a long time, genes and their implications in cancer were studied one at a 
time. This time-honoured strategy has now been complemented with systems-wide 
studies of disease-associated mechanisms. A central position in the new paradigm 
has taken the uprising field of network biology. Applied to biomedicine, diseases 
represent particular states of the underlying molecular network; a perspective that 
was already brought forward several decades ago by S. Kauffman (Kauffman 
1993). Following his influential ideas, cancer can be perceived as attractor states 
that might display remarkable robustness. Although based mostly on theoretical 
reasoning, we might argue to view cancer as a network-associated disease which 
requires complex intervention for its treatment (Kitano 2007).

A pivotal role in this new system biological strategy will be the study of protein 
interaction networks. Proteins and their aberrant interactions have long been known 
to be crucial in oncogenesis. With the construction of comprehensive interaction 
maps, we are now approaching a stage where the influence of dysfunctional pro-
teins can systematically be dissected and potential interventions designed. Despite 
its early successes and rapidly growing popularity, the application of interactomics 
requires some caution.
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Interaction maps of molecular processes are frequently highly rudimentary. This 
is also the case for human protein–protein maps in spite of their impressive size. 
At present, they are still scanty and are likely to include a considerable number of 
false positives. These shortcomings of current protein interaction networks – as well as 
of other types of molecular networks – underline the necessity of integrate comple-
mentary data and information. In fact, only by constructing multi-dimensional 
datasets, one can harvest the full potential of protein interaction maps. At present, 
this is mainly performed by simple mapping of expression changes onto generic 
interaction maps extracted from databases. Notably, such simple strategies account 
poorly for the complex spatial and temporal aspects of carcinogenesis. One step 
towards a more accurate representation can be the creation of tissue-specific net-
works. This might be especially relevant for cancer research where the examination 
of genes can lead to contradictory results depending on the used experimental 
model. For instance, RAS, a classical oncogene, has been shown to function in a 
tumor suppressing manner under certain conditions indicating the importance of 
the molecular context (Zhang et al. 2001). Also, the usefulness of streamlined inter-
action networks has already been demonstrated by the described study of the B-cell 
interactome. Future molecular maps reflecting this complexity will provide highly 
valuable tools for biomedical research. Indeed, the integration of independent infor-
mation concerning expression and localization has already been used for the iden-
tification of dynamic as well as constitutive protein modules (Futschik et al. 2007c).

To conclude, early applications have indicated the large potential of network biology 
in cancer research. Progress in experimental techniques and computational methods 
will continue to improve the coverage and sensitivity of interaction networks. A focus 
of interactomics – especially in its application to cancer research – will be on the 
combination of different types of networks, such as protein-protein, transcriptional 
regulatory and metabolic networks, to enable the creation of detailed molecular mod-
els of oncogenesis. Furthermore, the integration of interactions networks with the rich 
datasets generated by ongoing cancer-related sequencing, microarray or imaging proj-
ects is likely to provide us with molecular maps of unprecedented detail for the human 
organism in health and disease. Thus, network biology promises to contribute substan-
tially to a better understanding of the complexity of cancer and eventually to its cure.
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Abstract Cytomics combines the multimolecular cytometric analysis of cell and 
cell system (cytome, cytomes) heterogeneity on a single cell level with the exhaustive 
bioinformatic knowledge extraction from all analysis results (cytomics = system 
cytometry + bioinformatics). It therefore yields a maximum of information about 
the apparent molecular cell phenotype.

At present, in the typical hypothesis driven way the high amount of information 
collected by multiparameter single cell flow- or slide-based cytometry measurements 
is preferentially used to investigate the molecular behaviour of specific cell popula-
tions in the perspective of the hypothesis. The information outside the scope of the 
hypothesis remains frequently unused.

In contrast, under the predictive medicine by cytomics concept, the entire 
available information is processed (“sieved”) in a data driven way under the 
general data mining hypothesis that such data may contain useful information for 
clinical diagnosis and especially for therapy related predictions about disease 
progress in individual patients.

The present experience from clinical data sets of various malignant and other 
diseases suggests that this is a promising concept for cancer patients since it has 
amongst others the potential to identify high risk patients prior to an anticipated 
therapy as being unsusceptible with accuracies of greater 95% or 99%. This opens 
the way for early decision on alternative therapies by objective and molecularly 
standardised criteria. This has been traditionally difficult by current prognosis evaluation 
according to the widely used Kaplan-Meier statistics for patient groups.

The cytomics concept is also useful for cancer research in general because it 
favours the enrichment of informative parameters concerning disease outcome in 
individual organisms or cell cultures from an essentially unlimited number of parameters. 
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The selected parameters are useful as a starting point for mathematical modelling 
in systems biology without requirement for detailed pre-existing knowledge 
about potential disease inducing mechanisms. It has therefore the potential for the 
discovery of new molecular cell pathways and for their subsequent molecular 
reverse engineering.

10.1  Background

Single cell measurements by flow or slide-based cytometry in cancer medicine and 
cancer research are typically performed in a multiparameter setup using hypothesis 
driven parameter selection in order to simultaneously gather a maximum of diag-
nostic or prognostic information by the accurate assessment of the molecular phe-
notype of patient or experimental cells (Table 10.1).

Table 10.1 Comparison of flow- vs. slide-based cytometry. Some principle advantages and 
specific features of flow- (FCM) and slide-based (SBC) cytometry are listed. Depending on the 
specific setting one approach alone or both in combination might be applied. Whereas FCM 
allows to measure large sets of parameters in unsurpassed speed, SBC offers the unique feature to 
keep cells in their natural environment, i.e. tissue context and to follow up “individual” cells at 
different time points of experimental settings

FCM SBC

Technical 
specifications

Rapid speed Slow
Low CVs Broader CVs

Higher background, bleaching, during 
measurement

Standard 6 colours Standard 6 colours
Optional 17 colours Optional 8-colour, theoretical n-colour

Logical features Single-cell Multi-cellular complexes: tissue 
sections, cell/tissue cultures

In suspension: cell-network 
destroyed

On slide: topology kept intact

High-content analysis High-content analysis
Limited structural resolution Morphological re-evaluation

Clinical/practical 
aspects

Large specimens Hypocellular specimens
Consumptive unless cell 

sorting
Non-consumptive, no cell loss

Detection of ultra-rare 
events

Analysis of cell interaction

Bulk-sorting of specific 
cell-subtypes

Re-analysis on a single-cell basis

Combination of data at different functional 
states (pre-/post-fixation, pre-/ 
post-stimulation) at single-cell level
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With cells as the elementary function units of organisms at the one hand and 
diseases being caused by molecular alterations in cells and cellular systems 
(cytomes) at the other hand (Valet 2002), the disease associated molecular cell 
phenotype is a correlate of the disease process and a result of genotype realisation 
and the lifetime history of cell exposure to external and internal influences. The 
molecular cell phenotype (Fig. 10.1) is of interest for disease diagnosis but also for 
predictions about the future disease progress in individual patients.

These considerations lead to the development of the data driven system 
cytometry (Valet 1997) and cytomics (Valet 2002) approaches with the aim to 
extract knowledge from the entire available information of hypothesis driven 
cytometry and other investigations. Both, system cytometry and cytomics, regard 
a single cell as being a single biochemical cuvette. The analysis of the utmost 
cellular complexity instead of cellular monosystems constitutes the central 
feature of system cytometry. This requires to combine both: (a) to collect as much 
biochemical information as possible in a maximum of potentially related but 
nevertheless different cell populations of complex cellular systems (blood, bone marrow, 
transplant biopsies etc); and (b) extract this enormous amount of information 

Fig. 10.1 Cytomics. Cytomics and system cytomics address the molecular heterogeneity of single 
cells in cell systems (cytomes). Genome expression in cytomes adapts to environmental influences 
and may lead to altered disease susceptibility in genetically identical organisms (Wirdefeldt et al. 
2005). The resulting molecular cell phenotype represents a useful indicator of the actual balance 
between genetic setup and exposure in healthy and diseased individuals. It provides information for 
therapy dependent predictions on future disease course in individual patients (predictive medicine 
by cytomics) and is of interest for the molecular reverse engineering of disease pathways (Valet 
2005b, 2002, 1997) by system cytomics as well as for purposes of drug discovery (Valet 2006)
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efficiently by standardised multiparameter data classification (SMDC). This concept 
dates back to 1982 when a periodic system of cells was drafted for the first time 
(Schwemmler 1982).

Nevertheless, still multiparameter cytometry measurements are used in many 
instances to discriminate particular cell populations of interest while the informa-
tion of the other cell populations remains unconsidered. This constitutes a 
significant waste of information since it is by no means certain that non-evaluated 
cells lack relevant diagnostic, prognostic, or predictive information.

Antigen as well as forward (FSC) and sideward (SSC) light scatter distributions 
of cells are typically broad with coefficients of variation in the 20–50% range. 
Cellular antigens are frequently expressed with little correlation to each other as 
evidenced by the presence of nearly round or spherical clusters in cytometric two 
or three parameter histograms displays (Fig. 10.2). Antigen expression, the correla-
tions between different antigen expressions, and the spreads of value distributions 

Fig. 10.2 CD4, CD8 and CD3 antigen expression on peripheral blood leukocytes of a healthy 
adult person by flow cytometry as determined by fluorescence labelled antibodies (data file from 
Valet et al. 2002). The spheroid and oblongated cell clusters show significant spread and little 
parameter correlation (a–d). The coefficients of variation (CVs) of the cell clusters are typically 
between one and two orders of magnitude higher than CVs from DNA cell cycle analysis where  
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may change during disease or experimental conditions. The observed cellular het-
erogeneity may furthermore contain information about the high adaptivity of the 
hemato- and immunopoietic systems. It seems worthwhile to study these phenom-
ena by systematic, automated, and exhaustive information and knowledge extrac-
tion from all cells or biological particles in slide-based or flow cytometric 
measurements by bioinformatic data mining (Valet et al. 1986) under the general 
hypothesis that the thus obtained information may prove useful for disease diagno-
sis or especially for therapy related predictions on disease progress in individual 
patients. Data mining can be performed by statistical or algorithmic methods. 
Algorithmic data pattern classification (data sieving) (Valet et al. 1993) was found 
particularly efficient for this purpose.

10.2  Flow Cytometry

10.2.1  Clinically Oriented Studies

Initial efforts concerned cell functions with intracellular pH, esterase activity, and 
viable E. coli K12 phagocytosis as potential outcome predictors for intensive care 
patients with regard to recovery, development of sepsis, or posttraumatic shock 
(Rothe et al. 1990). Although at this stage not predictive, granulocyte function 
parameters showed a potential for individualised outcome predictions when granu-
locyte serine protease activity was flow cytometrically determined (Valet et al. 

Fig. 10.2 (continued) G0/G1 phase CV values around and below 1% lead to the resolution of 
x- and y-spermatides by flow cytometry (Meistrich et al. 1978). The form and spread of the cell 
clusters indicates molecular heterogeneity of cell populations and not uncertainty of measurement. 
The uncorrelated heterogeneity of cell parameters is informative in view of knowledge extraction 
by data mining (Valet et al. 1993, 2003). Self-adjusting gates (Valet et al. 1993) separate peripheral 
blood leukocytes into lympho-, mono- and granulocytes (A). The CVs (CV = 100*standard 
deviation/mean) of the FSC/SSC clusters of lympho- (lym), mono- (mon) and granulocytes (grn) 
are 10.2/21.6%, 10.7/16.6%, 23.2/25.1% with correlation coefficients between FSC and SSC of r = 
0.441, 0.269, 0.099. The selective display of cells within the lymphocyte gate (a) separate CD4/
CD3 positive and CD8/CD3 positive T-lymphocyte clusters as well as a CD3/CD4/CD8 negative 
cell cluster together with some CD8 positive but CD3 negative cells (b). The CD4 and CD8 posi-
tive T-cell clusters (c) show coefficients of variation of 24.6% and 46.9% with CD4 to CD8 cor-
relations of r = 0.183 and -0.053. The CVs for CD3 expression on CD3 positive/CD4 negative and 
CD3/CD4 positive lymphocytes (d) are 37.2% and 33.3% with 25.0% for the CD4 positive cells. 
The CD4 to CD3 correlations are r = 0.056 and 0.273 for the two lymphocyte clusters. The auto-
mated evaluation of the list mode file with the parameters forward (FSC) and sideward (SSC) light 
scatter, fluorescein isothiocyanate (FITC), phycoerythrin (PE) and phycoerythrin-cyanine 5 (Cy5) 
antibody labels, provides histograms containing 9789 (a), 2514 (b), 1872 (c) and 2384 (d) cells. 
Contour lines were drawn on a 3-decade logarithmic amplitude scale in 10% linear steps down-
wards from the respective maximum logarithmic channel content of each histogram  (max = 253, 
22, 70 cells) (a, c, d). The 10% contour line delimits the 3D clusters (max = 118 cells)  (b). The 
lowest contour lines contour histogram channels containing minimally a single cell thus assuring 
the display of all cells in each histogram
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1998). It was equally possible to identify risk patients for myocardial infarction 
from peripheral thrombocyte surface antigens CD62, CD63, and thrombospondin 
by algorithmic data pattern classification (Valet et al. 1986).

With this background, predictions in malignant diseases were addressed using 
clinical data collected outside of the own institution. It was possible from an initial 
data set of six parameters to prognosticate by meta-analysis individualised 10 year 
survival in melanoma patients at diagnosis (Valet et al. 2001) from the parameter 
triplet tumor diameter, tumor infiltration depth, and percentage of S-phase cells 
with negative and positive predictive values of around 80.3% for survivors and 
79.8% for non-survivors (Valet et al. 1986).

Acute myeloid leukemia (AML) was investigated in the context of a multicenter 
study of the South German Hemoblastosis Group (SHG). Data on the expression of 
23 of the most common cytogenetic abnormalities, of the frequency of positive 
cells for 36 antigen specificities, and of 9 clinical parameters at diagnosis were 
available (Valet et al. 2003). The predictive data pattern consisted of the following 
seven selected parameters: patient age, sample cellularity, percent CD2, CD4, 
CD13, CD36, and CD45 positive cells. This pattern identified with positive 
predictive values of 100% a subset of 49.8% and 91.5% of high risk non-survivors 
in the learning and unknown test sets. The result indicates an identifiable patient 
subgroup that will only have a survival chance upon immediate bone marrow stem 
cell transplantation. This clinically important conclusion cannot be derived from 
the concomitant prognostic analysis of the same data by Kaplan-Meier statistics 
(Repp et al. 2003).

Survivor AML patients, in contrast, are not well identified with 15.1% negative 
predictive value by the above data pattern (Valet et al. 2003). A more discriminatory 
data pattern may help. It may be important to analyse the “normal” cell populations 
by flow cytometry appearing during the first remission and to classify these results 
against final outcome to better understand the influence of non-malignant cells on 
final AML outcome.

Individualised outcome prediction by data pattern classification is not restricted 
to flow cytometry. The expression of mRNA in diffuse large B-cell lymphoma 
(DLBCL) was assessed on a Lymphochip cDNA array with 7,399 evaluable spots 
(Rosenwald et al. 2002). In the original study, this high amount of information 
produced a Kaplan-Meier prognosis graph, similar to the one for the international 
prognostic index (IPI) (The International Non-Hodgkin’s Lymphoma Prognostic 
Factors Project 1993). The IPI is constituted of only five clinical parameters, 
namely age over 60 years, late-stage disease (stages 3 and 4), more than one extra-
nodal site, high LDH, and poor general health. Since the Lymphochip evaluation 
heat maps did not allow individualised predictions it was of interest whether data 
pattern classification could do so.

High risk non-survivor patients were well identified at diagnosis by data pattern 
classification with 98.1% and 78.3% positive predictive values in the learning as 
well as in the unknown test set of patients (Valet and Höffkes 2004). Survivors, 
similarly as in the AML study, were less well recognised with negative predictive 
values of 67.3% and 45.3%.
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In conclusion, data pattern classification has been shown to be of significant imme-
diate clinical interest for the identification of high risk patients at diagnosis. The 
selected data patterns may be useful for research purposes and it may be promising to 
additionally classify “normal” remission cells against AML- or DLBCL-outcome.

10.2.2  Multiparameter Data Mining

Individualised predictions of therapy related disease progress in medicine are 
frequently considered impossible because in the majority of patients their future 
under therapy is evaluated by Kaplan–Meier statistics for patient groups (Bland and 
Douglas 1998). This approach is directed towards overall therapy optimisation but 
does not address the individual patient.

Parameter values of patients are typically introduced into value clusters in 
multiparameter data mining. At this point the concatenation, i.e. the coherence of 
the parameter values of a given patient, is lost. The value clusters for the various 
parameters are then correlated between the various classification categories and the 
parameters with the most discriminatory clusters are selected for classification. The 
lost coherence of patient parameters values leads typically to probabilistic conclusions 
with the inherent difficulty to generate individualised disease course predictions at 
accuracy levels greater than 95% or 99%.

Accurate individual predictions of therapy related disease progress are, however, 
important for patients and doctors but also for the public and private health care 
systems since potential adverse drug reactions in non-responders as well as higher 
health care costs due to inefficient therapies.

Data pattern classification according to the CLASSIF1 algorithm (Valet et al. 
1993, 2001; Valet 2005a) performs always a concatenated parameter classification 
of the originally measured multiparameter data patterns of each patient to achieve 
individualised predictions. The most discriminatory parameters of the measured 
data patterns are selected during the iterative learning phase and kept whereas lesser 
discriminating parameters are eliminated from consideration after the end of the 
iteration process.

All parameter values of a data pattern are classified at the beginning of the learning 
phase, then one parameter is temporarily removed, followed by reclassification of 
the remaining learning set. If the removed parameter contained information, an 
effect of this removal on the classification result will be observed (deterioration or 
improvement); this result is retained. The temporarily removed parameter is then 
reinserted and the next parameter is temporarily removed for the next iteration, and 
so on until the last parameter. Only parameters that have improved the classification 
result are kept at the end.

The ensuing predictive classification patterns consist typically of between 5 and  
20 parameters. The statistical probability that such patterns occur randomly decreases 
with 3−n and is lower than 1% from five-parameter classification patterns onward. 
Statistical probabilities do therefore not significantly influence the classification result.
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The robustness of the CLASSIF1 data patterns against random statistical 
fluctuations permits to further analyse them in order to discriminate subgroups of 
patients for example of particular genotype or exposure background as an 
additional data mining aspect. CLASSIF1 classifiers are typically standardised on 
a reference group of patients or on standard particles. The similarity of reference 
groups is verified by classifying them against each other. If they are indistinguish-
able classifiers can be compared between institutions and databases can be merged 
to build up standardised relational classification system of cells at the molecular 
level suitable for a human cytome project or for a periodical system of cells where 
normal and diseased cells can be compared in a standardised classification system 
for normal and abnormal cells (Valet 2005a, b).

10.3  Slide-Based Cytometry

Slide-based cytometry offers a different technological platform for the multiparametric 
analysis of cells. First instruments actually date back as early as 1955 (Caspersson 
et al. 1955; Göhde and Dittrich 1970): instead of passing the sample as a single-cell 
solution flowing through an analysis chamber as in flow cytometry, for slide-based 
cytometry the sample is prepared on an objective slide as for conventional micros-
copy or on some other kind of adequate solid support. The different commercially 
available instruments have in common that this slide with the fluorescent cells on 
it is moved by a motorised stage under the objective. Cells are illuminated by lasers 
or lamps (Xenon lamp or mercury arc lamp) and the fluorescence is detected by 
CCDs or photomultiplier tubes. This chapter does not aim to describe the different 
technical features in detail that have been realised in order to obtain stable illumination, 
spectral separation of different fluorochromes, detection of the fluorescence, or 
calculation of fluorescence intensity (for detailed comparison, see Mittag et al. 
2009). We would rather concentrate on the potential of this technology in general 
in the context of clinical oncology.

The slide-based design opens several opportunities that have so far not been 
accessible by flow cytometry or image cytometry based on conventional chromatic 
cytological staining. First, fluorescence can be stoichiometrically detected so that 
the number of antigens bound by an antibody can be calculated (Rimm 2006), and 
modern fluorochromes allow combinations of up to 17 dyes that can be detected in 
parallel (Perfetto et al. 2004). This is a major advantage as compared to image 
cytometry. So far, for a slide-based system up to eight colours have been combined 
at a single run using two excition wavelengths (488 nm by an Argon- and 633 nm 
by a HeNe-laser) (Gerstner et al. 2002; Mittag et al. 2006). This can easily be 
increased by adding another wavelength (405 nm by a violet-dye laser) and adapt-
ing the filter systems. In image analysis there is in general only one channel avail-
able; taking the most popular application, which is the determination of DNA-ploidy 
by Feulgen-staining (Feulgen and Rossenbeck 1924), the staining protocol includes 
procedures that destroy most antigens keeping only cellular morphology intact. 
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Second, for image analysis in general the investigator selects just 150–300 single 
“typical” cells for analysis whereas the other cells on the slide are not analysed and 
therefore the information contained in these cells is lost. In slide-based cytometry, 
all cells on the slides can easily be included into the analysis.

The third advantage is that samples not necessarily have to be prepared as a 
single-cell solution. Whereas this separation yields to no loss of information in 
 a tissue that constitutes of single cells physiologically, as it is the case in blood, 
in any other tissue crucial information is contained within the architecture of the 
tissue itself. A good example is the case of metastatic disease to a lymph node. 
Disrupting the architecture of the node for preparation of a single-cell solution only 
allows to detect the presence of metastatic cells among the lymphocytes; however, 
clinical even more relevant information such as extracapsular spread is lost. 
Detection of this topological information demands an intact anatomical specimen. 
This, however, would be inappropriate for flow cytometric assays.

In principle, any specimen that can be placed on a slide can be analysed in some 
way by slide-based cytometry. Modern instruments allow the analysis of chromatic 
dyes, too.

Since objects are immobilised on the slide at a fixed position they can be identi-
fied according to their x–y-co-ordinates. This puts the investigator into the position 
to rule out any artefact and to obtain proof that a given fluorescence signal is in fact 
generated by a cell. Also, cells are not lost; this has the advantage that sample too 
small for flow cytometry can be readily analysed by slide-based systems, such as 
hypocellular fine-needle aspirate biopsies or exfoliative swabs. For better visualisa-
tion of cell morphology cells can be re-stained by conventional chromatic dyes and 
inspected afterwards. Instead using chromatic dyes, specimens can be bleached and 
stained with another set of fluorochromes for another analyses. The data of the first 
analysis can be merged with those of the subsequent analyses to yield a data stack 
per cell. In principle, bleaching can even be omitted since the fluorescence of the 
prior staining can be subtracted from the subsequent staining (Mittag et al. 2006). 
Slides also can be stored as a conventional pathological specimen which is of 
utmost importance keeping medicolegal issues in mind.

The sum of these specific characteristics makes slide-based cytometry the 
superior technology for clinical applications in the oncology of solid tumors. 
Although the concept of predictive medicine by cytomics opens up n-dimensional 
data spaces so far only two or three parametric analyses have been established 
for the investigation of solid tumors and will be outlined below. Unlike in 
hematopoietic disorders, where clinical sample material is easily available, for 
solid tumors in general only minute samples are available which routinely are 
analysed by conventional histopathology. However, as will be shown by some 
non-oncological examples, the capacity of a slide-based technology in the analysis 
of tissue samples in principle has been established and soon will be transferred 
to oncological issues.

This specific clinical situation in solid tumors explains why the brilliant progress 
achieved by the cytomics approach in hematopoietic diseases has not yet been 
transferred to solid cancers.
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10.3.1  Predictive Medicine in Solid Tumors

Strictly speaking, an assay that allows the prediction of the clinical course in a 
patient with a solid tumor has to be implemented as early as possible within the 
diagnostic work-up. From the clinician’s point of view the first and most important 
issue is nothing more than to either verify or rule out the presence of a malignant 
tumor. This should be possible with samples available on an out-patient basis 
obtained by minimal- or non-invasive procedures. In theory there could be cases 
where the malignant phenotype is expressed only in a minority of cells which 
would be missed by a random sample such as a fine-needle aspiration biopsy. 
Keeping this in mind therefore a negative result hardly ever will be taken as a proof 
of absence of malignancy. However, in fact routine histopathology does not include 
an entire work-up of the whole specimen neither; instead, “representative” sections 
are screened. Actual, there is no proof that the sections in fact are representative 
other than the subjective judgement of the pathologist.

Exfoliative swabs on the other hand are confronted with the argument that the 
cells accessible by this method, i.e. the superficial layers of the lesion, are not the 
cells relevant for the course of the disease which rather is determined by the basal 
layers that infiltrate through the basilar membrane. However, from a clinical point 
of view just a stable surrogate marker of the disease would suffice. Besides, it is 
rather theoretical to argue that the superficial cells themselves do not infiltrate into 
the surrounding healthy tissue; in any way they serve as representatives of the basal 
cells. The only exception is tumors growing under intact mucosa hidden by intact 
epithelium as in sarcomas or some lymphomas. These tumors are hard to detect by 
any diagnostic procedure and make up only a minor part of malignancies.

In some anatomical regions such as the larynx the physiological function is 
tightly coupled to anatomical integrity. In tumors of the parotid gland incision 
biopsies are obsolete due to the risk of damaging the facial nerve and of spreading 
tumor cells in the surrounding tissue which would be hazardous even in the most 
common benign solid tumor, the pleomorphic adenoma. In cases like these minimal 
sampling is mandatory in order to avoid loss of quality of life due to diagnostic 
manoeuvres. “Deep” biopsies including basal layers in general induce a loss of 
function in these anatomical regions.

From a practical point of view predictive assays can be divided into assays that 
establish the diagnosis by minimal- or non-invasive ways on the one hand and into 
assays that predict the further clinical course of an already diagnosed disease on the 
other hand.

10.3.1.1  Diagnostic Cytomic Assays

As lined out above slide-based cytometry is an ideal tool to analyse hypocellular 
specimens. This has been exploited to determine the DNA-ploidy of tumor cells. 
Automated slide-based cytometry allows to analyse a multiple of cells that are 
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routinely selected by image cytometry, i.e. 20,000–100,000 vs. 150–300. This 
guarantees that also minor cell populations of less than 1% are included into the 
analysis that easily could be missed by manual screening with direct visualisation 
(Fig. 10.3). It has been shown that slide-based cytometry gives better prediction of 
the histopathological diagnosis than conventional cytology (Gerstner et al. 2003, 
2005, 2006). In some cases, the correct diagnosis could be established weeks 
before an appropriate histopathological sample could be obtained (Remmerbach 
et al. 2001, 2004).

The combination of HPV-genotyping and determination of the DNA-ploidy with 
conventional cytology has been proven beneficial in the early detection of carcino-
mas in cervical smears (Bollmann et al. 2005a) and was shown to have the potential 
to predict the further clinical course (Bollmann et al. 2006).

DI = 1.00

DI = 2.00

DI = 3.15

DI = 4.50

257
1.00

1.00

1.00

2.00
3.15 4.50

2.00

2.00

3.15 4.50

PI Integral

PI Integral

PI Integral

C
o

u
n

t
C

o
u

n
t

C
yt

o
ke

ra
ti

n
/A

re
a

205

154

102

51

5.9

5.9

5.9

0

80

64

48

32

16

0

10
00

00
0

10
00

Fig. 10.3 Slide-based cytometry. Slide-based cytometry of a fine-needle aspirate taken from a 
solid parotid gland tumour. Cells were stained with anti-cytokeratin and PI as a stoichiometrical 
DNA-dye. DNA-ploidy of epithelial cells is determined taking leukocytes as an internal standard 
(DNA-index = 1.00). Note the minimal population of cells with a DNA-index of 3.15 and 4.50 
making up less than 1% of all cells. Histology confirmed an adenocarcinoma. For detailed method 
see Gerstner et al. (2003) (reprinted with permission from Gerstner et al. 2008)
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In general, slide-based cytometry can yield quantitative and objective cytomics 
data where conventional cytology only can offer subjective judgements. The appli-
cations outlined above highlight only some peculiar examples.

10.3.1.2  Predictive Cytomic Assays

Prediction of the future clinical course of cancer patients by cytomic analyses date 
back to the 1990s (Hemmer and Schön 1993; Hemmer and Prinz 1997; Hemmer 
et al. 1997; Hemmer et al. 1999): in oral tumors it could be shown that DNA-
aneuploid tumors have a higher rate of locoregional metastasis advocating resection 
of the locoregional lymph nodes in DNA-aneuploid tumors even in cases without 
clinical and radiological signs of metastatic disease. Since DNA-aneuploid tumors 
also have a higher rate of local recurrence closer follow-up is advised.

In patients with superficial bladder carcinoma slide-based cytometry has been 
successfully implemented in the follow-up using samples obtained from voided 
urine (Bollmann et al. 2005b).

10.3.2  Future Aspects

The more expertise with slide-based assays is gained the more complex samples are 
analysed. Several (non-)oncological applications are outlined below but it is 
expected that these assays soon will be transferred into oncological issues.

Slide-based cytometry allows to analyse tissue sections. This has been per-
formed on sections from lymphoid organs: based on nuclear fluorescent staining 
the different microanatomical compartments of the lymphoid follicles, i.e. the man-
tel zone and the germinal centre, could be analysed separately and the relative 
content of specific subtypes (e.g. CD8+-lymphocytes) could be mapped to these 
compartments. The germinal centre could be further subdivided into the dark and 
the bright region containing the respective cell types (Gerstner et al. 2004). This 
concept of tissometry (Ecker and Steiner 2004; Ecker et al. 2006) has been further 
developed on brain sections – which have significant lower cellular density – aiming 
to analyse the three-dimensional interaction of different cell types within the tissue 
architecture (Mosch et al. 2006). This concept has recently been further pushed 
forward by developing a versatile hardware (Kim et al. 2007). Applications on 
lymphatic tissue are those most sophisticated (Harnett 2007). On prostate tissue 
sections the quantitative detection of a-methylacyl-CoA racemase has been 
exploited to allow automated classification of the tissue (Rubin et al. 2004).

Although these assays are still viewed sceptically by histopathologists they will 
in future be more and more relevant for clinicians who aim to base their decision 
about further diagnostic and therapeutic steps on objective parameters. This is not 
only the case in malignancy but is true for all somatic diseases.
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For example, therapeutic intervention in organ transplantation is oriented on 
functional parameters. However, slide-based analysis is useful in thorough charac-
terisation of graft-rejecting leukocytes in transplant rejection and therefore can help 
to better understand the underlying cellular mechanisms (Ecker and Steiner 2004). 
On this basis, therapy could be based on individual cytomic data.

The so far most detailed analysis of cellular interactions in the tissue has been 
achieved by a technology termed Multi-Epitop-Ligand-Kartographie MELK 
(Schubert 2003). A single section is repeatedly stained for an antigen with a fluo-
rochrome, analysed, and bleached to remove the signal, followed by another cycle 
of staining-analysis-bleaching, and so on. Data of all analyses are combined according 
to the fixed x–y-co-ordinates of the slide. Since the natural micro-environment of the 
cells is not disrupted (as in flow cytometry in order to obtain a single-cell suspension) 
but the architecture of the tissue is kept this approach allows to generate hierarchical 
clusters of interacting proteins according to their spatial location, termed the toponome 
(Schubert 2006. The maximum number of antigens analysed on the same slide so 
far is 100 (Friedenberger et al. 2007).

It is expected that these assays will soon be applied to issues in the oncology of 
solid tumors: to characterise and quantitatively determine tumor-infiltrating leukocytes, 
to analyse the tumor invasion front where the tumor and its host have the crucial interaction, 
and to judge on residual tumor cells after primary radiochemotherapy.

The slide-based approach on cytomics analysis additionally allows a detailed 
absolute immunophenosubtyping, i.e. the measurement of absolute numbers 
per volume of a given specific cell type such as the number of CD8+ cytotoxic 
cells per liter blood (Laffers et al. 2007). In breast cancer, the quantification of 
circulating tumor cells after therapy has been established as a predictor for the 
outcome and therefore can be used in the decision about adjuvant therapy 
(Lobodasch et al. 2007). In future, detailed analysis of the functional capacity 
of these cells might develop significant input into the therapeutic regimen in 
other solid tumors as well.

However, quantitative data on cells can also be obtained by analysing the tissue 
in toto without taking a biopsy applying multispectral imaging. The idea of this 
technology has first been applied at the Landsat-program of the National 
Aeronautics and Space Administration (NASA) for earth imaging (Harris 2006). 
The molecular composition of a specimen interacts with the electromagnetic radia-
tion. Therefore, the molecular phenotype of a cell is reflected by its specific spec-
tral signature. Since the architecture of the tissue is composed by cells and their 
molecular products, the type of tissue can be classified by its spectral signature as 
well. This principle was drafted in 1998 (Farkas et al. 1998) and since then it has 
been developed to different biomedical applications: It has been applied to histo-
logical sections (Levenson and Mansfield 2006) where it distinguished metastasis-
ing cells in lymphoid tissue or infiltrating tumor cells in breast cancer. Without 
taking biopsies invasively it has been applied for non-invasive classification of 
pigmented naevi; in fact, this application was established even earlier. In order to 
verify multispectral classification the naevi were subsequently resected; histopa-
thology confirmed exactly those regions within the naevi were malignant melanoma 
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developed (Farkas and Becker 2001). This concept could develop tremendous 
impact on routine diagnostic work-up, especially in oncology: any inner or outer 
body surface accessible for visualisation could be imaged by multi- or hyperspec-
tral imaging. The topological discrimination would be limited only by the optical 
resolution of the imaging tool and could in principle be scaled down to the single 
cell level. Beyond non-trivial problems concerning the hardware that so far have not 
been resolved the only limitations of this approach seem to be that the lesion should 
be at the inner or outer surface. However, novel imaging modalities could even 
break this barrier: for example, optical coherence tomography (OCT) gives optical 
sections non-invasively up to 2 mm deep into the tissue (Armstrong et al. 2006; 
Bibas et al. 2004; Kraft et al. 2007). Novel developments (µOCT) give subcellular 
resolution allowing to differentiate even single nuclei (Pan et al. 2007; Wang et al. 2007) 
without a cut or a single drop of blood.

10.4  Conclusions

The single cell approach in flow and slide-based cytometry with its currently rapid 
methodological progress has a significant clinical and research potential, especially 
when entire multiparameter data sets are subjected to outcome driven data mining.

The data pattern classification algorithm evaluates individual patient pattern 
against previously learned disease classifications patterns. This differs from statisti-
cal classifiers where the coherence of patient patterns is typically lost by introduction 
of the individual parameter values into data clusters resulting in lower resolution for 
pattern differences during the learning process. Statistical ambiguities concerning 
the best achievable classification as well as the limitation to prognostic conclusions 
for patient groups but not for individual patients make algorithmic data pattern 
classifiers attractive for clinical purposes. They provide by principle individualised 
predictions at the optimum discrimination conditions while the potential for subsequent 
statistical analysis of the selected parameter patterns is maintained.

Flow cytometry as the first single cell high-throughput technology has at present 
a certain lead with regard to predictive medicine by cytomics since a wealth of data 
sets and evaluations are available. With the fast progress of automated image 
segmentation in fluorescence microscopy the situation is likely to change. The difficulty 
to standardise molecular quantification in microscopy, is outweighed by the 
possibility to collect intracellular morphological as well as cellular 2D and 3D 
neighbourhood information as a further potential for knowledge extraction and 
mathematic modelling in system cytomics.

Molecule specific multiparameter fluorescence staining, high-throughput and 
high-content single cell measurements in conjunction with multiparameter data 
classification will open the way for generalized disease course prediction for 
patients for the practice of medicine, similarly as microscopic single cell observation 
of initially textile colour stained histological sections by Virchow (Virchow 1858) 
has enabled histopathological disease diagnosis.
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Abstract Understanding the molecular mechanisms underpinning prognosis and 
response to therapy of individuals suffering from cancer increasingly requires 
integrated and systematic approaches. Molecular-based strategies to more effectively 
prevent, diagnose, and treat cancer are seen as the future goal of oncology research. 
Although altered phenotypes can reliably be associated with altered gene functions, 
the systematic analysis of phenotypes relationships to study cancer biology remains 
nascent. The completion of the Human Genome Project has made possible high-
throughput approaches such as the Cancer Genome Atlas to accelerate phenomics 
research. However, these approaches still face important challenges. In this chapter, 
we review these challenges, introduce current research efforts in the field, and highlight 
the importance of computational approaches to conduct large-scale phenomic studies.

11.1  Introduction

The foundations of the biology and genetics of cells and organisms were laid as early 
as 1869, when F. Miescher isolated the nuclein (later named nucleic acid). Almost a 
century later, the discovery of the DNA double helix by Watson and Crick in 1953 
marked, for many, the beginning of molecular biology (Watson 1968). Since, molec-
ular biology grew from this point delivering solutions to many biological questions. 
Current cancer research (including the understanding of how cancers occur) draws in 
most part from these discoveries, especially in biology and genetics. One example 
is the close relationship between genetic contents and phenotype expressions, which 
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has been demonstrated for years. The recent Human Genome Project represented a 
landmark in science. The completion of the sequence of the human genome in 2001 
(Lander et al. 2001; Venter et al. 2001) have generated a number of facts in science, 
including the beginning of the genomic era, making possible high-throughput 
approaches to accelerate the understanding of human diseases. More recently, The 
Cancer Genome Atlas further paves the way for unveiling the molecular underpin-
nings of specific cancers (http://cancergenome.nih.gov/).

Understanding normal and diseases states of any organism requires integrated 
and systematic approach. While the above-mentioned approaches allow for genome-
wide unbiased assessments of molecular mechanisms, high-throughput assessments 
of supra cellular phenotypes are lacking. Although altered phenotypes are among 
the most reliable manifestations of altered “combinations” of gene functions, 
research using systematic analysis of phenotype relationships to study human biology 
is still in its infancy (Lussier and Liu 2007).

Phenomics is a field concerned with the characterization of phenotypes as a 
whole (phenome), which are characteristics of organisms that develop via the 
interaction of the genome with the environment. It is the systematic acquisition and 
objective documentation of phenotypic data at various levels, including clinical, 
molecular and cellular.

Advances in technology and reduced costs in the generation of genomic data have 
accelerated the amount of available genomic data for researchers. New technolo-
gies have also accelerated the pace of collecting phenotype data and the establishment 
of phenotype databases. Despite that, our ability to better understand and address the 
basis of human diseases continues to lag behind (Ball et al. 2004). Current research 
efforts in phenomics capitalize on novel high-throughput computation and informatics 
technologies to derive genome-wide molecular networks of genotypic-phenotype 
associations. These approaches involve the integration of multiple data repositories 
and the use of diverse statistical, machine learning, and data mining techniques.

In this chapter, we review the challenges facing high-throughput phenomics 
research and introduce research and development of phenomics databases.

11.2  High-Throughput Collection of Phenotypes: Challenges

The volumes of data available to researchers in life sciences can double every six 
months (Wong 2007). In addition, technologies to enable large scale, parallel, 
quantitative and inexpensive assessment of these data are increasingly becoming 
available. These advances are pushing an increase opportunity for more complex 
analyses and bringing different perspectives to research and to health care. However, 
several challenges, some well recognized in the development of health care 
systems, still limit the timely and effective use of these resources (Shortliffe and 
Sondik 2006; Pare and Trudel 2007).

Deriving useful knowledge from knowledge biomedical resources requires 
robust approaches in knowledge acquisition, representation, management, visualization, 
analysis and interpretation. High-throughput phenomics face major challenges, 



20311 The Frontiers of Computational Phenomics in Cancer Research

such as how to code and represent knowledge in databases and networks, in order 
to allow useful retrieval, visualization and proper analysis and interpretation of data 
(Lussier and Liu 2007; Chen et al. 2008a, b).

Phenotypic information can be found in many genomic databases. However, no single 
database or algorithm has successfully represented all information necessary to model 
the biological questions posed by the complex phenotypes in human diseases such as 
cancer (Juristica 2007). Very often the phenotypic information is coded in different 
formats, at different levels of granularity, and with different aims. These databases most 
likely are manually curated and have limited breath. These challenges have greatly 
limited the effectiveness of conducting combined phenotypic/genotypic analysis.

More recent studies have looked into mining the scientific literature, but the success 
of a great number of these efforts have been low, due to the lack of expressiveness of 
mining techniques (Lussier and Liu 2007). Granularity, synonyms, and ambiguity of 
biomedical entities, particularly of gene symbols, are a big challenge for text-mining 
systems (Xu et al. 2007; Spasic et al. 2005; Fan and Friedman 2008).

Another area that has been explored is the use of clinical data from electronic 
medical records. Researchers have studied automated methods for creating and 
updating knowledge bases from narrative reports of patient records (Mendonca 
et al. 2001; Rindflesch and Fiszman 2003; Rindflesch et al. 2000; Chen et al. 
2008a, b; Wang et al. 2008). Although these studies have showed that natural 
language processing and statistical methods can generate meaningful relationships, 
similar limitations are described. In addition, still a challenge to accurately identify 
the nature of associations from patient records, especially to infer causal links such 
as between drug and diseases or symptoms.

In understanding human diseases, it is also important to consider the association 
of gene expression and proteomic patterns with phenotypes and other factors, such as 
clinical history, environmental exposures and experimental conditions (Butte and 
Kohane 2006). These relationships have been essential to medicine and could lead to 
new disease-associated genes. Gene expression microarray analysis has increasingly 
added additional forms of information about diseases and other biological processes 
(Chen et al. 2008a, b). Repositories of microarray data present similar challenges to 
the ones presented by phenotypic databases. Contextual annotations are, in general, 
represented by unstructured text, which make almost impossible to determine the 
phenotype and environment by manual processes (Butte and Kohane 2006).

11.3  Representation and Organization of Phenotypes  
for High-Throughput Analysis

11.3.1  Ontologies Related to Cancers

Ontologies are conceptual models that aim to support consistent and unambiguous 
knowledge sharing and that provide a framework for knowledge integration (Stevens 
et al. 2000). A comprehensive body of knowledge is currently stored in biomedical 
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ontologies, which has led scientists to invest considerable efforts in establishing stan-
dards for the integration of phenotypes using ontologies. We present some examples 
of ontologies used in phenomics research below. Of particular interest for this chap-
ter, ICD-O and SNOMED have been used for decades by pathologists to describe 
cancer morphologies.

11.3.1.1  Gene Ontology (GO)

The GO project is a collaborative effort to address the need for consistent descriptions 
of gene products in different databases. GO has succeeded in annotating genes with 
molecular functions, processes, and cellular locations. The ontology is organized in 
separate hierarchies and represented as a directed acyclic graph, in which nodes are 
GO terms and edges represent the GO relationships (GO terms may have synonyms 
comprise over 25,000 terms, with many specialized in processes involved in cancer 
biology, e.g. cell cycle, angiogenesis, etc.) (Ashburner et al. 2000).

11.3.1.2  The Medical Subject Headings (MeSH)

MeSH is the National Library of Medicine’s (NLM) controlled vocabulary thesau-
rus. It is used by the NLM for indexing articles from biomedical journals for the 
MEDLINE/PubMed database. MeSH consists of sets of terms naming descriptors 
in a hierarchical structure that permits searching at various levels of specificity. A 
list of Descriptors and Supplementary Concept Records (SCRs) provides a more 
granular representation of biomedical entities, including chemicals and proteins 
(The Medical Subject Headings 2009).

11.3.1.3  The Systematized Nomenclature of Medicine (SNOMED)

Currently, SNOMED is probably the most comprehensive biomedical terminology 
and it comprises a specialized section on cellular morphologies of cancers, regional 
anatomies for description of primary or metastasis sites, and diverse types of can-
cers described as disease states. It contains over a half million biomedical concepts 
such as diseases, anatomy, morphology, functions, drugs, procedures, and treat-
ments. Originally developed by the College of American Pathologists, SNOMED 
has since been owned and developed by the International Health Terminology 
Standard Development Organization, a not-for-profit association (http://www.
ihtsdo.org/) (Spackman et al. 1997).

11.3.1.4  The Unified Medical Language System (UMLS)

The UMLS is a comprehensive knowledge source developed and distributed by the 
National Library of Medicine. It relates ontologies to one another. It has three major 
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components: the UMLS Metathesaurus, the Semantic Network, and MetaMap. 
The Metathesaurus contains over 1 million of biomedical concepts, from more than 
100 controlled vocabularies, classifications, and ontologies (including GO, 
SNOMED, NCI Thesaurus, MedDRA, and MeSH). The resource also presents 
relations among these concepts. Semantic types are assigned to the concepts and 
represented in the Semantic Network (Lindberg et al. 1993).

11.3.1.5  The Open Biomedical Ontologies (OBO)

The OBO is a consortium, which aims to establish a set of principles for ontology 
development with the goal of creating a suite of orthogonal interoperable reference 
ontologies in the biomedical domain. It covers several ontologies, including GO, 
Cell Ontology (CO), Sequence Ontology (SO), RNA Ontology (RnaO), and Protein 
Ontology (PRO). Data varies in granularity from organ and organism to cell and 
cellular component to molecule (Smith et al. 2007).

11.3.1.6  International Classification of Diseases for Oncology (ICD-O)

The ICD-O is developed by the World Health Organization and is used principally in 
tumor or cancer registries for coding the site (topography) and the histology (morphology) 
of neoplasms, usually obtained from a pathology report (Organization WH).

11.3.1.7  The Medical Dictionary for Regulatory Activities (MedDRA)

The MedDRA is an international medical terminology supported by the International 
Federation of Pharmaceutical Manufactures and Association (IFPMA) (http://
meddramsso.com/MSSOWeb/index.htm) (Brown et al. 1999). It is commonly used 
to report adverse event data from clinical trials and for pharmacovigilance. Its use 
has also been reported in the analysis of associations between phenotypic and 
genomic data with drug safety adverse event data (Hernandez-Boussard et al. 2006).

11.3.2  Phenotypic Databases Related to Cancers

Data integration plays a key role in correlating heterogeneous phenotypic data with 
genomic data at different levels. Manual methods for developing and maintaining 
databases of phenotypes and their genomic information provide more accurate rela-
tions, but are time and labor consuming and, in general, more expensive. Automated 
high-throughput methods work in large scale, faster, but results are not as accurate 
when compare to the manual methods. In this section, we present some examples 
of efforts in both areas. A more detailed description and comparison of the 
databases can be found in Lussier and Liu (2007).
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11.3.2.1  The Online Mendelian Inheritance in Man (OMIM)

OMIM is a comprehensive compendium of human genes and genetic phenotypes 
(Hamosh et al. 2000). Referenced overviews in OMIM contain information on all 
known mendelian disorders and over 12,000 genes of which about 700 are associated 
to cancer phenotypes. It focuses on the relationship between phenotype and genotype, 
and entries contain links to other genetic resources. Phenotypes are coded at different 
levels of granularity, in different formats and with different aims (Biesecker 2005).

11.3.2.2  The Online Mendelian Inheritance in Animals (OMIA)

OMIA is a compendium of genes, inherited disorders, and traits in more than 135 
species other than human and mouse (Lenffer et al. 2006).

11.3.2.3  The Mouse Genome Informatics (MGI)

The Mouse Genome Informatics databases contain genes, phenotypic narratives, 
and references to the literature (Eppig et al. 2007). Its core database is the Mouse 
Genome Database (MGD), which contains genetic, genomic, and phenotypic data 
for laboratory mouse (Bult et al. 2008). MGI also contains the Mammalian 
Phenotype Ontology (MPO).

11.3.2.4  GeneCards

GeneCards is a web-based, integrated database of human genes. It provides concise 
genomic, proteomic, transcriptomic, genetic and functional information on all 
known and predicted human genes (Rebhan et al. 1997, 1998; Safran et al. 2002).

11.3.2.5  Gene2Disease (G2D)

G2D is a web application that allows researchers to inspect any region of the human 
genome to find candidate genes related to a genetic disease of their interest. It was 
build over OMIM and it prioritizes genes on a chromosomal region according to 
their possible relation to an inherited disease using a combination of data mining 
on biomedical databases and gene sequence analysis (Perez-Iratxeta et al. 2005).

11.3.2.6  PhenomicDB

PhenomicDB is a multi-species genotype-phenotype database developed by merging 
public data from a variety of model organisms and Homo sapiens. Current release 
includes data from several different sources: MGI, OMIM, FlyBase, WormBase, 
MAtDB, ZFIN, flyrnai.org, Phenobank, and CYGD (Kahraman et al. 2005).
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11.3.2.7  PhenoGO

PhenoGO is a computed database designed for high-throughput mining that pro-
vides phenotypic and experimental context, such as the cell type, disease, tissue and 
organ to existing annotations between gene products and GO terms as specified in 
the Gene Ontology Annotations (GOA) for multiple model organisms. PhenoGO 
provides the broadest variety of binary and ternary relationships between genes, 
GO concepts, and phenotypes, including biological process of a specific gene in a 
particular phenotypic context (Sam et al. 2007, 2009).

11.4  Phenomic Analyses

Several researchers have used mining algorithms to automatically identify 
phenotype-genotype relationships from the scientific literature (Perez-Iratxeta 
et al. 2005; Hristovski et al. 2005; Korbel et al. 2005). These approaches have show 
limitations and moderate results.

Lussier and colleagues pioneered ontology-based phenomics using clinical 
databases. They integrated the Quick Medical Reference (QMR) with OMIM, 
generating relationships among genes, diseases, and traits of diseases (Miller et al. 
1986; Lussier et al. 2002). In GeneTrace, they study an integrative approach 
between ontology-based phenotypes from the UMLS and their statistical and 
semantic relationships with GO and model organism databases (Cantor et al. 2005). 
These studies indicated the potential of exploiting existing curated databases to 
infer new gene-disease relationships.

Butte and Kohane (2006) have more recently developed and validated a system 
that identifies and represents phenotypic, environmental and experimental context 
for microarrays in the Gene Expression Omnibus (GEO) database by mapping 
annotations to biomedical concepts in the UMLS (Wheeler et al. 2004). This study 
provided a method for identifying genes related to phenotype and environment. In 
a subsequent study, Dudley and Butte (2008) described a method for the automated 
discovery of disease-related experiments within GEO using MeSH annotations 
derived from PubMED identifiers (Butte and Chen 2006). Their results showed that 
62% of disease-related experiments contain sample subsets that could be automati-
cally identified as normal controls. The work was important as an initial step to 
demonstrate that large-scale genomic data can be automatically mined for human 
disease categorization.

11.5  Future Challenges

“A deeper understanding of disease requires a database of human traits and disease 
states that is integrated with molecular biology (Butte 2008).”
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Despite the advances in phenomic research, it is clear that we still face important 
challenges in integrating, organizing, and managing phenotypic databases across 
specifies, as well as enabling genome-wide analysis to associate phenotypic and 
genotypic data (Lussier and Liu 2007; Butte 2008). This need for advances in this 
area has driven several initiatives.

The Whole Genome Association studies launched by the National Institutes 
of Health aimed to link genetic data with phenotype datasets of large-scale clini-
cal studies over several generations of patients. The NIH expects researchers to 
be able to identify variations in human DNA that underlie particular diseases or 
effects of medicines, genetic factors that influence health, disease and response 
to treatment.

The Human Phenome Project was proposed in 2003 as an international effort to 
create phenomic databases, and to develop new approaches for analyzing such pheno-
typic data (Freimer and Sabatti 2003). It focuses on establishing databases of 
phenotypes to establish their relation with genes and proteins. The Physiome 
Project is an international collaboration to define the physiome (description of 
the functional behavior of the physiological state of an individual or species) via 
the development of integrated quantitative and descriptive modeling. The computation 
methods will integrate biochemical, biophysical, and anatomical information 
about cells, tissues and organs (Hunter and Borg 2003). PhysioNet is a web public 
service of the PhysioNet Resource funded by the National Institutes of Health’s 
NIBIB and NIGMS. The resource was intended to stimulate the study of complex 
biomedical and physiologic signals and already contains some complex human 
physiological traits (Physionet 2009).

The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/) is a compre-
hensive and coordinated effort of the USA National Cancer Institute to accelerate 
our understanding of the molecular basis of cancer through the application of 
genome analysis technologies, including large-scale genome sequencing. The pilot 
project in glioblastoma is currently conducted to assess the feasibility of a full-scale 
effort to systematically explore the entire spectrum of genomic changes involved in 
human cancer (Lussier et al. 2002).

The promise of these advances is “personalized medicine” where treatment 
strategies can be individualized based on a combination of factors, such as gene 
expression, protein expression. Personalized medicine has an extreme importance 
for cancer patients due to the with significant molecular differences in the expres-
sion and distribution of tumor cell markers among patients, the tendency for cel-
lular mutation with disease progress, and the toxic effect of most therapies to 
normal cells. The emerging field of cancer phenomics is likely to focus on thera-
peutic predictions and gene-disease associations.
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Abstract Cancer is a disease determined by several genetic and epigenetic alter-
ations. Due to technological advances in the omics disciplines, cancer research 
is going through a revolution. The technological advances that lead to the post-
genome era have allowed molecular biologists to make meticulous studies on the 
DNA (genome), the mRNA (transcriptome) and the protein sequences (proteome). 
Initiatives that intend to describe cancer in a global dimension are providing an 
opportunity for investigators to have more useful data to analyze and integrate in 
novel ways. Despite the practical difficulties, a growing number of projects are 
being developed with the aim to integrate information about samples, protocols, 
and data from multiple sources. Cancer bioinformatics deals with the organization 
and analysis of the data so that important trends and patterns can be identified 
– the ultimate goal being the discovery of new therapeutic and/or diagnostic pro-
tocols for cancer. In this chapter, we will discuss some aspects of this revolution 
giving a special emphasis on Bioinformatics. Furthermore, we will discuss how 
the omics data is being analyzed and used to transform the way cancer patients 
are treated.
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12.1  The Multidisciplinary Nature of Bioinformatics

The biomedical sciences are going through an important revolution that started a 
few decades ago. Technological innovations, such as high-throughput sequencing, 
have allowed genome scale measurements of many molecular species within the 
cell, tissue and body, leading to a massive expansion of the biomedical data. The 
challenge of converting all the information into a more useful knowledge is being 
overcome by the development of special computer programs and information 
technology-based techniques aimed to organize and analyze biological records. 
Bioinformatics and computational biology are multidisciplinary disciplines, which 
employ theories and applications from areas like computer science, mathematics, 
statistics, physics and engineering to solve biomedical problems and to improve the 
understanding of biological phenomena. Although the terms are frequently used as 
synonyms, they are different according to the NIH Biomedical Information Science 
and Technology Initiative (http://www.bisti.nih.gov/bistic2.cfm):

“Bioinformatics: Research, development, or application of computational tools and 
approaches for expanding the use of biological, medical, behavioral or health data, 
including those to acquire, store, organize, archive, analyze, or visualize such data”.

“Computational Biology: The development and application of data-analytical 
and theoretical methods, mathematical modeling and computational simulation 
techniques to the study of biological, behavioral, and social systems”.

Albeit distinct aspects of this multidisciplinary field define bioinformatics and 
computational biology, these areas have several common characteristics and 
purposes. Indeed, the fundamental objective is “…to enable the discovery of new 
biological insights as well as to create a global perspective from which unifying 
principles in biology can be discerned” (http://www.bisti.nih.gov/bistic2.cfm). In 
this chapter we will focus on the bioinformatics approaches to cancer, according to 
the NIH definition above.

As one of the first steps to organize and analyze biological data, bioinformaticians 
usually create databases, i.e. repositories of a large number of ordered and consistent 
data, usually associated with computer programs – to store all types of biological 
records, such as DNA or protein sequences. To handle all these information, specific 
software is continuously developed to update, query, and retrieve components of the 
data stored within the system. Nowadays, many of these databases are connected, 
allowing an integrated access and an easy recovery of detailed information from 
several sources using simple queries.

The International Nucleotide Sequence Database Collaboration (INSDC – www.
insdc.org) has been developed for more than 18 years, covering the DNA DataBank 
of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and 
GenBank at the National Center for Biotechnology Information (NCBI). This organi-
zation has a policy of free and unlimited access to all of its records. GenBank is the 
NIH’s genetic sequence database located at NCBI (http://www.ncbi.nlm.nih.gov/
Genbank/index.html). This comprehensive database contains an annotated collection 
of all publicly available DNA sequences for more than 260,000 identified organisms 
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(Benson et al. 2008). The EMBL Nucleotide Sequence Database, also known as 
EMBL-Bank (http://www.ebi.ac.uk/embl), constitutes Europe’s primary nucleotide 
sequence resource. In Japan, the DDBJ (http://www.ddbj.nig.ac.jp) is the only 
DNA data bank that is officially certified to assemble DNA sequences. The main 
sources for DNA and RNA sequences are primarily submissions from individual 
researchers, from sequencing projects as batches of different types of sequences, 
including cDNA and genomic ones, and patent applications. The information 
exchanged and updated among these three repositories on a daily-basis ensures the 
incorporation of the most recent available sequence data and a worldwide coverage. 
This kind of initiative has led to many constructive projects and should proliferate 
in the biology community as data accumulates in a significant way.

As accomplished for INSDC, there has been a huge community effort to develop 
and improve databases and tools for all kinds of biological records –from sequences 
databases to metabolic pathways, proteomics, organelles, human diseases, plants 
and immunological databases, to cite some. A substantial effort has been made to 
make available molecular records to the scientific community in a reliable and 
appropriate manner (Wolfsberg et al. 2002; Kraj and McIndoe 2005; Harris 2008). 
A good reference is the Molecular Biology Database Collection, a public repository 
updated annually and published in the first issue of Nucleic Acid Research, which 
describes hundreds of databases every year (http://nar.oxfordjournals.org).

As these repositories become more complex, scientists start to use a gamma of 
technologies based on knowledge discovery and data mining to extract informa-
tion from these databases. Knowledge Discovery in Database, or KDD, is a com-
putational approach that consists basically in databases construction, i.e. data 
selection, pre-processing, transformation and dimensionality decrease (Barrera 
et al. 2004). This knowledge is used to search for regular patterns, association 
rules, temporal sequences or legitimate correlation between the records, some-
thing that is not normally recognized by the specialist. The expected product from 
KDD is a significant information system that can be applied by the decision-
makers systems.

Database-mining methods, as part of the KDD approach, are also extremely useful 
to explore large amounts of data and basically consist of (a) data exploration, (b) 
pattern or model definition, and (c) validation of the model in other datasets. The 
application of models and algorithms to biological databases has produced valuable 
information related to pattern discovery in biological molecules, text mining in 
biomedical literature, data integration and probabilistic modeling of genome 
sequences (Fogel 2008; Haquin et al. 2008). The application of this kind of infor-
mation has helped many biomedical research programs – from the hypotheses 
creation in a hypothesis-driven project to the design of large-scale experiments.

The integration of computer and experiment-based approaches is a significant 
challenge for the whole biomedical field. Although experimentalists are using 
computer-based approaches in a daily basis in some fields like gene expression and 
phylogenetics, the great majority of biologists are still far from using computer 
tools in an effective way. As illustrate in Fig. 12.1, the Physiome Project is a worldwide 
effort of several loosely connected research groups. It was created to define the 
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physiome via the construction of databases and the development of integrated 
quantitative and descriptive modeling (http://nsr.bioeng.washington.edu). Biologists 
cannot afford to ignore such advances in this critical area. The development of 
biomedical science as a whole is dependent on a broader access to bioinfor-
matics and computational biology.

12.2  Cancer Bioinformatics

Cancer is a disease determined by several genetic and epigenetic alterations 
(Balmain et al. 2003). In its simplest form, cancer is a genetic disease caused 
by alterations in the genome of a cell, ranging from point mutations to inser-
tions, deletions and chromosomal translocations. These genetic changes can 
lead to an abnormal growth of cells and tissues that characterize the neoplastic phe-
notype of cancer. Although the molecular mechanisms governing cancer patho-
genesis have been the focus of intense investigation over the last 50 years, 
including investigations that employed a number of basic molecular methods, the 
mechanisms underlying the development of human cancer still remain ill-
defined (Nagl 2006). Despite the establishment of many molecular genetic and 
epigenetic alterations that lie at the root of cellular transformation, the complex 
processes that lead to the tumor phenotype are just beginning to be fully appreciated 

Fig. 12.1 Schematic representation of the relationship between different areas of biological  
organization in the physiome
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(Rivenbark and Coleman 2007). Opportunely, currently studies on the genetics 
basis of cancer are undergoing a revolution.

The technological advances that lead to the post-genome era allowed the 
molecular biologists to make meticulous studies on the DNA (genome), the mRNA 
(transcriptome) and the protein sequences (proteome). Initiatives that intend to 
describe cancer in a global dimension have provided an opportunity to investigators 
to obtain more useful data to analyze and to integrate in novel ways. In spite of 
the practical difficulties, a growing number of projects are being developed with 
the aim to integrate hundreds of samples, studies, and data types combined from 
multiple sources.

The Cancer Genome Anatomy Project (CGAP) (http://cgap.nci.nih.gov), 
launched and maintained by the National Cancer Institute (NCI), has become one 
of the leading initiatives in cancer genetics. This project has produced more than 
three million expressed sequences tags (EST) from a large variety of tumor and 
normal samples, besides hundreds of libraries constructed using new methodolo-
gies like serial analysis of gene expression (SAGE) and massively parallel signature 
sequencing (MPSS). In Brazil, the FAPESP/LICR Human Cancer Genome Project 
(HCGP) initiative produced more than one million ESTs from prevalent tumors 
using a new methodology called Open Reading frame ESTs (ORESTES), biased 
toward the central part of the transcripts (Camargo et al. 2001). The expressed 
sequences generated by the CGAP and HCGP were incorporated into a database 
known as the International Database Cancer Gene Expression that constituted 
the foundation of the Human Cancer Index at the Institute of Genomic Research 
(http://www.tigr.org). The alliance between the two projects was established 
because both initiatives were working essentially with the same objective – the 
creation of a catalog of gene expression in cancer, and together they annotated and 
submitted millions of sequences from tumor and normal tissues to GenBank 
(Brentani et al. 2003). The proposal was to determine the distinctive gene expression 
patterns of normal, pre-cancer, and cancer cells, with the objective of improving 
detection, diagnosis, and treatment for the patient.

The Cancer Biomedical Informatics Grid (http://cabig.nci.nih.gov) is an ambi-
tious and relatively new NCI-funded initiative that aims to create a cancer network, 
integrating information from four general categories: Interfaces, Vocabularies/
Terminologies and Ontologies, Data Elements, and Information Models. The 
caBIG™ community – including researchers, physicians, and patients, represents 
more than 800 people from over 80 organizations on more than 70 projects ranging 
from analysis of gene expression data to clinical trials (Hanauer et al. 2007). caBig 
is a component of the Cancer Genome Atlas initiative funded and maintained by 
NCI (http://cancergenome.nih.gov). As stated, the goals of caBIG are: (1) to  
connect scientists and practitioners through a shareable and interoperable infra-
structure; (2) to more easily share information by developing standard rules and a 
common language; and (3) to build or adapt tools for collecting, analyzing, integrating, 
and disseminating information associated with cancer research and care. The 
caBIG project seeks to create a collaborative information network to accelerate the 
discovery of new approaches and to improve patient outcomes.
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Accordingly, cancer bioinformatics deals with the organization and analysis 
of the data in order that important trends and patterns can be identified – the 
ultimate goal is the discovery of new therapeutic and/or diagnostic protocols for 
cancer.

The first step to accomplish this objective is the search for a blueprint of genetic 
expression that characterizes specific cancer conditions. It is generally accepted 
that any biological state, physiological or not, is a representation of a differentiated 
set of gene expression patterns, which could not be characterized by the expression 
of a single gene (Nevins and Potti 2007). Therefore, in order to reveal the molecular 
marks that typify cancer initiation and progression, researchers carry out an extensive 
genome analysis, using for example gene expression microarrays, array compara-
tive genomic hybridization (array CGH) and tissue microarrays. However, a significant 
number of alterations that would characterize specific cancer stages can take place 
after genome replication, during transcriptional, translational or posttranslational 
phases. Modifications such as gene amplification, alternative RNA splicing, phos-
phorylation, methylation and differences in protein stability and secretion are not 
envisaged by genome analysis. Proteomic analyses allow the identification and 
quantitative analysis of an entire protein set in biological samples (Posadas et al. 
2005). The currently technologies are 2D polyacrylamide gel electrophoresis 
(2DE), isotope-coded affinity tags, matrix-assisted laser desorption ionization-mass 
spectrometry (MALDI-MS), liquid chromatography-MS/MS (LC-MS/MS), imaging 
MS, protein arrays and autoantibody expression techniques. To organize and analyze 
the considerable quantity of data produced by these high-throughput methods, specific 
computational software packages and databases have to be developed (Manning 
et al. 2007). The establishment of protein or genetic profiles, assisted by computa-
tional statistical analyses, has allowed the recognition of genetic signatures that 
could be valuable in the prognostic and development of new and individualized 
cancer therapies (Matharoo-Ball et al. 2007).

The application of bioinformatics approaches and clinical validation has been 
used to identify indicative profiles in many types of cancer. Kim et al. (2007) 
analyzed SAGE and EST data to produce a list of differentially expressed genes in 
lung cancers. A systematic examination of the annotated gene properties led to 20 
genes, which were subjected to experimental validation using clinical specimens 
from lung cancer patients. Sjoblom et al. (2006) determined the sequence of 
well-annotated human protein-coding genes in colorectal and breast tumor. 
Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual 
tumors accumulated an average of approximately 90 mutant genes, but only a subset 
of them contributes to the neoplastic process. Using stringent criteria to delineate 
this subset, they identified 189 genes (average of 11 per tumor) that were mutated 
at significant frequency.

Therefore, statistical and bioinformatics tools can help to identify mutations with 
a role in tumorigenesis. The identification of molecular markers and profiles is being 
used in cancer classification and diagnosis as well as in envisaging clinical outcomes. 
The identification of specific genes, proteins and cellular pathways on which cancer 
cells depend is leading to the development of more effective therapeutic agents. 
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Designed to integrate data and results from multiple applications, platform projects 
such as GeneSpring Analysis Platform (http://www.chem.agilent.com/en-US/
Pages/HomePage.aspx), or the open source and development software project, 
Bioconductor (http://www.bioconductor.org), are not only specifically developed to 
answer biological questions at the intersection of genomics, genetics, proteomics 
and biomarker screening, but also provide comprehensive statistical analysis, data 
mining and visualization tools. Furthermore, population-based studies of molecular 
and genetic variation may become the basis of individualized treatment. Some suc-
cessful examples of therapeutic agents, which are now currently applied in clinics, 
are Gleevec, a kinase inhibitor for the treatment of some forms of adult and pediat-
ric chronic myeloid leukemia (CML) and the monoclonal antibodies Rituxan (non-
Hodgkin’s lymphoma), Avastin (colorectal cancer and non-small-cell-lung cancer), and 
Herceptin (breast cancer) (Section 12.6.1). The present text is not intended to be an 
extensive overview of cancer bioinformatics. Rather, the aim is to highlight some 
of the main molecular/bioinformatics methodologies in cancer research and their 
clinical application.

12.3  Large-Scale Approach to the Study of Cancer

For decades, the traditional approach to the study of cancer was to select a few 
genes, genomic regions or proteins and then to compare their status in healthy 
versus cancer states. However, with the advent of technologies for large-scale data 
generation and analysis, the paradigm to study cancer is changing (Bonetta 2005). 
The use of genomics, transcriptomics, proteomics and bioinformatics has allowed 
the generation of a great number of new hypotheses to be tested and has stimulated 
a fast development of cancer research (Collins et al. 2003). For example, the use of 
these large-scale approaches is amplifying the numbers of genetic variants known 
to be associated with the risk of developing specific types of cancer, and integrating 
molecular signatures to predict cancer prognosis and treatment response. Figure 12.2 
shows a schematic representation of how bioinformatics, together with genomics, 
transcriptomics and proteomics, are used to study cancer.

12.3.1  Genomics

Genomics is the large-scale study of the whole DNA sequence of an organism. 
Historically, Fred Sanger’s group established genomics when they developed techniques 
to sequence, map and store the DNA sequence of the virus phi X174 (Sanger et al. 
1977). The birth of Genomics, however, is more associated to the deciphering of 
the genome sequence of the bacteria Haemophilus influenza (Fleischmann et al. 
1995). Today, genomics has become intrinsic to modern biological research, and 
two factors were essential to this: (a) the development of large-scale sequencing 
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methods in the middle of the 1980s and (b) the development of computation 
methods to store, analyze and integrate these data (for a wide view of genomics, 
explore the UCSC (http://genome.ucsc.edu), NCBI (http://www.ncbi.nih.gov), and 
EBI (http://www.ebi.ac.uk) web sites).

The genomics approach has introduced an important new dimension into 
biomedical research and is one of the most relevant new areas is “cancer-genom-
ics”. This field integrates large-scale data generation and computational resources 
to study the structural changes in the genomes of a tumor tissue or cell line 
(Balmain et al. 2003). Below we describe two examples of how this genomic 
approach has revolutionized cancer research.

In a recent study, Campbell et al. (2008) identified and characterized, to the 
base-pair level, deletions, tandem duplications, inverted duplications, inversions 
and inter-chromosomal rearrangements in the genome of two lung cancer cell lines. 
Basically, the authors developed bioinformatics approaches to identify variations in 
the cancer genome using short sequences as input and the human public genome 
sequences as reference. Sjoblom et al. (2006) and Wood et al. (2007) looked for 
mutations in a set of breast and colon tumors sample. First, using bioinformatics 
tools, the authors selected 18,191 human genes available in the Reference Sequence 
database (http://www.ncbi.nlm.nih.gov/RefSeq). Next, they sequenced the protein-
coding exons of these genes in all tumor samples, yielding ~800,000 possible muta-
tions. They then used additional bioinformatics methods to remove artifacts, normal 
variants and synonymous substitutions to generate a more reliable set of somatic 
mutations occurring in those tumors. They found on average 80 mutated genes per 
each breast or colon tumor. More recently, the same leading group published a 
similar analysis for glioblastoma and pancreatic tumors (Jones et al. 2008; Parsons 
et al. 2008). In Table 12.1 there is a complete list of bioinformatics and genomics 
applications for cancer research.

Fig. 12.2 Schematic representation of how bioinformatics, together with genomics, transcriptomics, 
proteomics, can be used to develop of cancer research
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12.3.2  Transcriptomics

The complete set of transcripts produced by a genome at any time is called 
transcriptome, and, in analogy with the term genomics, transcriptomics is defined 
as the study of the transcriptome in a global way.

Unlike the genome, the transcriptome is extremely dynamic, varying not only 
among the different tissues in an organism but also between healthy and disease 
states, as is the case in cancer (Balmain et al. 2003). Based on this observation, 
many authors have studied the expression profiles of a large number of genes, and 
tried to identify patterns of gene expression in cancer (Nevins and Potti 2007). 
Below we describe two studies where transcriptomics was used to study genes 
expressed in cancer.

Rhodes et al. (2004) developed a computational protocol to find a meta-signa-
ture of gene expression in several types of cancer. These authors analyzed 40 pub-
lished cancer microarray data sets with ~38 million gene expression measurements 
from more than 3,700 cancer samples. As a result, they obtained 67 genes over-
expressed in more than 10 cancers relative to their normal tissues. Using almost the 
same strategy, many other works tried to identify signatures of gene expression in 
tumors (Greshock et al. 2007; Chanrion et al. 2008; Ivliev et al. 2008). Using a 
sequence-based approach, Sugarbaker et al. (2008) integrated a set of computa-
tional methods and next-generation sequencing to study the mesothelioma tumors 
from six patients. The author studied some characteristics of mesothelioma tran-
scriptome, and identified 15 new non-synonymous mutations in this tumor type.

Table 12.1 Description of genomics, transcriptomics, and proteomics bioinformatics techniques 
in cancer research. Some subcategories of genomics (epigenomics), transcriptomics (expressomics) 
and proteomics (interactomics) were also illustrated

Methodologies What can be explored in cancer Tools used

Genomics–
bioinformatics

Mutations; polymorphisms; 
methylation changes; 
chromosomal 
amplification, deletion 
and rearrangement

DNA sequencing; next-generation 
sequencing; SNP arrays; 
comparative genomic 
hybridization; BLAST; 
FASTA; other specific software 
and packages; web-tools and 
public databases

Transcriptomics–
bioinformatics

Definition of new exonic 
and intronic regions; 
gene expression; post-
transcriptional modification; 
targets (genes) expressed 
preferentially in disease 
state

Microarray-based technologies; 
SAGE; MPSS; next-generation 
sequencing; PCR-based gene 
expression; BLAST; BLAT; 
sim4; other specific software or 
packages; web-tools and public 
databases

Proteomics–
bioinformatics

Protein identification; protein 
level measurement; post-
translational modification; 
protein–protein interaction; 
enzymatic activity

Immunohistochemistry; 
immunofluorescence; mass 
spectroscopy; 2D gels; protein 
microarray; specific software; 
web-tools and public databases
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As pointed out for genomics, these reports are examples of how bioinformatics and 
transcriptomics can be integrated to produce fruitful results in the fight against 
cancer (Table 12.1).

12.3.3  Proteomics

Proteins are an essential part of organisms, participating in almost all-physiological and 
metabolic processes within a cell (Sharan et al. 2007). Also, in analogy with the term 
genomics and transcriptomics, the large-scale study of all expressed proteins in a cell 
or organism, as well as their modifications and interactions, is called proteomics.

Proteomics is often considered the next step in the study of biological systems, 
after genomics and transcriptomics (Lander et al. 2001). However, the study of proteome 
is much more complicated than genomics due to intrinsic features of proteins such 
as the variability of post-translational modifications. Moreover, the technologies 
available to study genomes in a large-scale manner are more powerful than the tech-
nologies for proteomes in spite of the advances in the mass spectrometry field.

Despite its methodological challenges, proteomics is growing rapidly and making 
important contributions to clinical diagnosis and disease management applied to 
cancer. Several works identified proteins that change in amount in breast, ovary, 
prostate, and esophagus cancer (Srinivas et al. 2002). For instance, tumor markers 
can be unambiguously identified in the blood of patients with ovarian cancers 
through proteomics approaches (Petricoin et al. 2002). Table 12.1 lists more 
examples of how proteomics can be used to study cancer.

12.4  Techniques of Large-Scale Analysis and Their Application 
in Cancer Research

As described previously, large-scale studies are essential for the development of 
modern biological research. However, these approaches – genomics, transcriptomics 
and proteomics – exist because experimental methodologies were developed and 
generated large-scale data, such as DNA sequencing, microarray (Schena et al. 
1995; Lockhart et al. 1996), SAGE (Velculescu et al. 1995) and mass spectroscopy. 
These methodologies have also contributed to the development of bioinformatics. 
It is remarkable that almost all of these methodologies were mainly applied originally 
to the study of cancer. Below, we will describe some of these methodologies and 
how they are used in biological research.

12.4.1  Expressed Sequences Tags (ESTs)

Expressed sequence tags (ESTs) are short sequences, 500 base pairs on average, gener-
ated through a partial single sequencing run from full-length cDNAs (Adams et al. 1991). 
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This technology was first developed as an alternative to survey expressed genes, 
instead of the slow, small-scale and laborious “northern blot”. In 1991, Adam et al. 
generated the first ESTs (609 sequences) and used them to study genes expressed 
in the central nervous system. After this seminal paper, many works have used EST 
to study several aspects of gene expression in diverse tissues and organisms, and the 
generation of ESTs grew exponentially. By now, the NCBI-based public database 
of EST, dbEST (Boguski et al. 1993), contains more than 54 millions sequences 
from 1,587 organisms (dbEST release 072508).

Essentially, the analysis of ESTs follows a well-defined bioinformatics pipeline: 
(a) in the first step, the sequences are trimmed and the low quality bases or contaminated 
regions are removed; (b) in the second step, the ESTs are clustered based on their 
similarities; (c) on the last step, the ESTs are annotated based on their overlapping, 
at sequence level, with known genes or known genomic regions. After these initial 
processing, the generated results can be used for gene discovery, gene expression 
analysis or studies of post-transcriptional variations, such as alternative splicing or 
alternative polyadenylation.

The relationship between EST and cancer research proved itself to be fruitful 
early. First, many works have used ESTs to study cancer (Nishiguchi et al. 1994; 
Papadopoulos et al. 1994; Watson and Fleming 1994). Second, two distinct cancer 
projects highlighted the importance of ESTs for the study of the transcriptome. 
The CGAP generated ~1.5 million ESTs from >10 tumor types (Strausberg et al. 
2000). The HCGP generated ~1 million ESTs from >10 tumor types (Camargo 
et al. 2001). For many years, the number of ESTs from cancer was predominant 
in dbEST.

12.4.2  SAGE and MPSS

Serial analysis of gene expression and MPSS are two methodologies that quantify 
gene expression through the generation of short sequence tags (10 or 17 bp for 
SAGE; 13 or 20 bp for MPSS) adjacent to the most 3¢ site of NlaIII (SAGE) or 
DpnII (MPSS) within polyadenylated transcripts (Velculescu et al. 1995; Brenner 
et al. 2000). The output of an experiment of SAGE and MPSS is a list of short 
sequences (tags), where the frequency of a given tag should be proportional to the 
abundance of the transcript from which the tag was derived.

Although SAGE and MPSS produce a similar output – a list of tags, the 
experimental protocols are completely different. For example, while SAGE 
uses the traditional cloning and DNA sequencing method, MPSS uses a novel 
cloning and a parallel sequencing protocol (proprietary) based on enzymatic 
digestion and hybridization. As a result, a SAGE output contains 100,000 tags 
on average while a MPSS output contains more than 1,000,000 tags (Brenner 
et al. 2000).

An essential step in the analyses of SAGE and MPSS data is the correct assignment/
mapping of tags to genes. Basically, there are three strategies to perform this process: 
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(a) an annotation based on databases constructed using in-house computer 
approaches (Blackshaw et al. 2004; Silva et al. 2004); (b) an annotation, tag by tag, 
done on websites such as the SAGE Genie (Boon et al. 2002) or SAGEmap (Lash 
et al. 2000); and (c) a large-scale annotation using several reference datasets 
(Galante et al. 2007; Norambuena et al. 2007). Another essential step in SAGE 
analysis is the identification of tags differentially represented in each sample. For 
this purpose, there are several methods, such as those described in Baggerly et al. 
(2003), Thygesen and Zwinderman (2006); and Zuyderduyn (2007).

Since their inception, the use of SAGE and MPSS has grown dramatically 
(especially SAGE). Numerous publications have used this methodology for an 
analysis of global gene expression, particularly in cancer (Riggins and Strausberg 
2001). One of the first comprehensive analyses of global gene expression in human 
cancer was performed using SAGE (Zhang et al. 1997). Three characteristics make 
SAGE and MPSS a powerful method to study gene expression in cancer: (a) SAGE 
and MPSS provide a description of the mRNA population without a priori selection 
of the genes to be studied allowing the discovery of new genes involved in the 
carcinogenesis for example; (b) the data obtained in one experiment can be directly 
compared with data generated from any other laboratory or with data available in 
public databases, allowing a large-scale comparison of genes expression; (c) the 
generated data, tag-frequencies, are in a digital format, allowing robust statistical 
analysis of gene expression.

12.4.3  Microarray

Since their conception in the mid-1990s (Fodor et al. 1991; Schena et al. 1995; 
Lockhart et al. 1996), the use of microarrays has spread rapidly throughout 
the research community. In recent years, microarray experiments have become the 
“must–have” item for many primary research articles in biology. Although there are many 
protocols and types of systems available for microarrays, the basic technique 
involves four main steps: (a) extraction of RNA from biological samples; (b) copy 
of RNA to cDNA, which includes the incorporation of either fluorescent nucle-
otides or a tag that is later stained with fluorescence; (c) hybridization of labeled 
RNAs (cDNAs) to the microarray chip; (d) scanning of the microarray chip under 
laser light and measurement of gene expression.

Today, the most common microarray platforms are “cDNA microarrays” 
(Schena et al. 1995) and “oligonucleotide microarrays” (Lockhart et al. 1996). 
The advantage of “oligonucleotide microarrays” lies on the fact that all probes 
are designed to have similar hybridization temperature and binding affinity. Despite 
the differences, both platforms are able to measure the gene expression of more 
than 10k genes per biological sample.

One critical step in the microarray experiments is the processing and analysis of 
results. Even though there are many software packages available (Gentleman et al. 
2004), it is still difficult to find a single software framework to process the raw data 
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(e.g. background correction and normalization) and execute the analysis (e.g. identify 
and present the genes differentially expressed). The best option is the development 
of a bioinformatics protocol (pipeline) that integrates several packages.

In addition to their obvious use in basic research, microarrays are broadly used 
to determine genes correlated with diseases, and, among these, cancer is the disease 
most commonly explored. For example, microarrays have been used to determine 
(a) genes differentially expressed in tumor versus healthy tissue, (b) genes corre-
lated with tumor progression, and (c) genes that are able to distinguish cancer from 
normal state or even multiple subtypes of tumors accurately (Butte 2002).

12.4.4  Next-Generation Sequencing Technologies

Largely because of efforts necessary to sequence the human genome, the sequenc-
ing of DNA (and cDNA) has undergone a steady metamorphosis from a cottage 
industry into a large-scale production enterprise (Mardis, 2008a, b). During this 
process, the cost per reaction of DNA sequencing has fallen, while the number of 
bases sequenced per run has increased drastically. Now, we are within the next-
generation (or second generation) sequencing technology, and the third generation 
(next-next-generation) is coming in the next few years (Mardis, 2008a, b). However, 
what does make the next-generation sequencing method cheaper and faster than the 
traditional sequencing methods? In contrast to the “Sanger” sequencing (“tradi-
tional method”) that processes 96 sequence-reads at the same time, the next-gener-
ation sequencing processes millions of sequence-reads in parallel, generating a 
huge amount of sequences in a few hours. For example, Roche-454, Illumina-Solexa 
and ABI-SOLiD, generates 1.2 million reads (average read length of 400 bp), 
40–50 million reads (read length of 36 bp) and ~100 million reads (read length of 
25–35 bp) per run, respectively (Mardis, 2008a, b).

Next-generation sequencing has applications that are immediately relevant 
to the medical field. In cancer genetics, for example, these methods may facilitate 
the discovery of mutations, as well as, the improvement in the quantification of 
gene expression and the discovery/description of regulatory RNA molecules (non-
coding RNA) whose myriad functions continue to be characterized in cancer. 
However, despite these enormous potential, next-generation sequencing methods 
are still offset by increased costs per run (at least $8,000) and difficulties on the 
bioinformatics front to handle the huge amount of data generated in each experiment 
(Mardis, 2008a, b).

12.4.5  Mass Spectrometry

Mass spectrometry is a powerful analytical technique that is used to identify 
unknown compounds, to quantify known compounds, and to elucidate the structure 
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and chemical properties of molecules. Mass spectrometry (MS) is at the heart of 
virtually all proteomics experiments. Basically, the dominant MS workflow starts 
with a site-specific enzymatic digestion from proteins to peptides. Next, the pep-
tides are volatized and the mass spectrometer generates the spectra for each sample. 
In the last step, the spectra are compared to peptide sequence from a database and 
the protein sequences are inferred.

The first step in a MS experiment, the enzymatic digestion, is done by a pro-
tease, such as trypsin. In order to volatize peptides, the two most common methods 
are matrix-assisted laser desorption/ionization (MALDI) and electrospray ioniza-
tion (ESI). MALDI is used to volatize peptide mixture containing a small amount 
of peptide; ESI is used when the peptide mixture contains a large amount of pep-
tides. The last step is a bioinformatics protocol whereby the spectra (observed 
peaks) are processed and compared to peptide sequences derived from a “virtual” 
digestion of protein sequences available in a protein database. Because protein 
identifications rely on matches with sequence databases, proteomics is currently 
restricted largely to those species for which comprehensive sequence databases are 
available.

A direct application of MS is the detection of protein or peptide peaks that 
differ in their mass/charge ratio in patients with cancer compared with healthy 
individuals. For example, using this strategy, Nakagawa et al. (2006) identified 
two polypeptides related to breast cancer, Hao et al. (2008) identified some poly-
peptides related to gastric cancer and Sun et al. (2008) identified 116 proteins that 
potentially could be used to distinguish between hepatocellular carcinoma and 
normal liver cells.

Even with the great potential of MS application to cancer research, the genetic 
variation among individuals (Nedelkov et al. 2005) and dynamic changes in the 
plasma proteome as a function of a multitude of factors (sex, age, health status, for 
example) are still an enormous barrier to this type of analysis (Ku et al. 2003).

12.5  The Integration of Omics Data

As pointed early, advances in genomics, transcriptomics and proteomics have pro-
vided biologists with a huge repertoire of data. However, most of this data comes 
from different platforms or is stored in databases where data integration is not easy 
or not even feasible. A specific area in bioinformatics has evolved to addresses this 
very important problem: the integromics (Venkatesh and Harlow 2002).

In integromics, algorithms and tools have been developed to make an inter- and 
intra-genomics, transcriptomics and proteomics data integration (Venkatesh and 
Harlow 2002). Theoretically, the methods in integromics can be divided in two sub-
types: high-level and low-level primary data integration. The first sub-type involves 
the merging of presumed facts and conclusions obtained from the raw experimental 
data. The second type, the low-level primary data integration, includes the process 
of normalization between platforms, organization of data and data-mining techniques. 
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Examples of both sub-types of methods can be seen at NCBI (http://www.ncbi.nih.
gov), UCSC (http://genomics.ucsc.edu) or EBI (http://www.ei.ac.uk) web sites.

An interesting example of data integration is the gene naming and gene product 
classification. Often a gene, discovered by different groups, has more than one 
name. For example, the gene TP53 has five different names (Maglott et al. 2007). 
This is also true for gene products. To standardize gene names, among other goals, 
the Human Genome Organization (HUGO) project was created (http://www.hugo-
international.org). HUGO assigns a unique symbol to each human gene and all 
newly discovered human genes should be submitted to HUGO to receive an offi-
cial name. Several initiatives are trying to classify gene products. The most popu-
lar is the Gene Ontology (GO) consortium (Ashburner et al. 2000), which uses a 
well-controlled vocabulary to classify each gene product in terms of their biological 
processes, cellular components and molecular functions.

Despite these several difficulties, data integration is extremely important for 
many reasons, which range from technical necessities (like reinforcement of a signal 
and deletion of some platform-specific noises) to the development of areas that 
depends on many data to obtain effective results (like the development of molecular 
pharmacology of cancer) (Rhodes and Chinnaiyan 2005). In spite of the fact that 
many methods and protocols have been developed in integromics, there still 
remains much “omics” data to be integrated.

12.6  Clinical Bioinformatics

Clinical bioinformatics applies bioinformatics knowledge and techniques to help in 
the diagnosis, treatment, prevention and control of diseases, as well in the development 
of chemical, structural and biochemical methods for clinical research. In cancer 
research, bioinformatics tools are used to detect biomarkers in several kinds of 
cancers, during different stages – initiation, progression and advanced. Accordingly 
to NCI, “biomarkers are defined as cellular, biochemical, molecular (genetic and 
epigenetic) alterations by which a normal, abnormal, or simply biologic process can 
be recognized or monitored”. Biomarkers can be measurable in biological media, 
such as in tissues, cells, or fluids and can be applied to evaluate early diagnosis, risk 
assessment, classification, and prognosis of cancer.

In 1999, the NCI Biomarker Developmental Laboratories (http://edrn.nci.nih.
gov/about-edrn/scicomponents/bdl) was created to identify techniques for finding 
molecular, genetic, and biologic early warning signals of cancer. This division, 
together with Biomarker Reference Laboratories (formerly known as Biomarker 
Validation Laboratories), Clinical Epidemiology and Validation Centers (formerly 
known as Clinical and Epidemiologic Centers), and Data Management and 
Coordinating Center (DMCC), form the NCI’s Early Detection Research Network 
(EDRN – http://edrn.nci.nih.gov/about-edrn) which has the responsibility for the 
development, evaluation, and validation of biomarkers for earlier cancer detec-
tion and risk assessment. Besides the classification and risk assessment, cancer 
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biomarkers have the potential of being transformed into targets for vaccine 
development.

Clinical bioinformatics is a fundamental component of a personalized treatment 
for cancer. The association studies that provide the data necessary to establish the 
link between a genetic alteration or variation and a specific clinical outcome are 
heavily dependent on the bioinformatics methods discussed in this chapter. 
Furthermore, these bioinformatics methods are also important for the establishment 
of biobanks and their integration with clinical information.

12.6.1  Identification of Gene and Protein Targets  
to Drugs and Vaccine Development

Cancer is a genetic disorder, and as such, it can be characterized by the genetic 
alterations established during its initiation and progression. As previously dis-
cussed, gene and protein signatures generated by altered gene expression, somatic 
mutations and genomic instability open on the possibility of distinguishing normal 
from cancer cells and the use of this knowledge to improve the diagnostic, prognos-
tic, and development of new drugs and therapies. During the last years, the develop-
ment of bioinformatics technology has facilitated the identification of cancer 
markers leading to a better comprehension of the mechanisms underlying the tum-
origenic process. Approaches aimed for target detection involve a high-throughput 
screening of genes and proteins and the quantification of their profiles and variants. 
The exploitation of bioinformatics methods in cancer research is leading to the 
detection of many targets that will need to be experimentally and clinically validated 
before a possible use in clinical practice.

In general, the process of drug discovery goes through five phases: identification 
of target, validation, high-throughput compound screening, lead optimization and 
clinical trials (Iorns et al. 2007). The first phase – target identification, aims to show 
a relationship between the alterations of gene or protein profile with a particular 
variety of cancer. Although this has led to identification of many markers, a 
challenge in the cancer drug discovery process is the second phase – target validation, 
which aims to establish the clinical importance of the target. In phase 3, high-
throughput techniques are used to recognize compounds that could inhibit a vali-
dated protein target. It could happen in this phase that a particular compound might 
be able to block a target in vitro, but it does not present the basic chemical and physical 
characteristics of a pharmaceutics drug. The phase of lead optimization aims to 
enhance the drug efficiency against the selected target and to discard unspecific 
leads. Unfortunately, a common side effect of this enhanced efficient is an undesirable 
cross-recognition of unrelated proteins that may limit the clinical application. In the 
last phase, biomedical or health-related studies are conducted following a 
pre-defined protocol and the outcomes are measured and evaluated in clinical 
trials. During each of these phases, several factors such as – samples collection, 
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processing and storage, patient classification, analytical incompleteness and limitations 
of bioinformatics tools and databases, may influence reproducibility and analysis, 
affecting the final outcome.

Despite the difficulties, omics analyses are speeding up the identification of 
many markers that potentially may be transformed in targets of therapeutic drugs 
(Strausberg et al. 2004). These targets can be classified in three main categories: (1) 
small-molecule inhibitors of oncogenic signals, (2) antibodies to surface compo-
nents and intercellular communicating factors, and (3) molecularly defined vac-
cines. In the first category, the most evident targets are kinases, since their 
association to tumor development is clear. An example of a positive result of this 
drug development strategy, already in clinical use, is the small molecule, imatinib 
mesylate (Gleevec), which is used in the treatment of some forms of adult and 
pediatric chronic myelogenous leukemia (CML), and for the treatment of a rare 
form of cancer called gastrointestinal stromal tumor (http://www.cancer.gov/clini-
caltrials/digestpage/gleevec). In the second and third categories, among the targets 
that could easily be recognized by therapeutic antibodies and vaccines are those 
with expression limited to one or more non-essential tissues or cells, irrespective of 
the disease state of the individual cells. In this manner, the damage caused by the 
immunotherapeutic intervention in organs such as breast and prostate, could be fol-
lowed by clinical removal without causing a severe loss. Other successful examples 
already on clinical use are the monoclonal antibodies Rituxan, used to treat non-
Hodgkin’s lymphoma, Avastin, for colorectal cancer and non-small-cell-lung 
cancer and Herceptin, for breast cancer (Carter 2001; Carter and Senter 2008). 
Although approaches involving targeting of oncogene kinases and immunotherapeutic 
systems are under development and have already obtained some success, both 
methods are hindered by the fact that potential targets are found only in subsets of 
any tumor type. For example, colon cancer has a broad spectrum of low-frequency 
mutations in kinases, each of which could be a potential target. This molecular 
heterogeneity makes the development of universally applicable therapies a compli-
cated and difficult enterprise (Carter and Senter 2008).

12.6.2  Individualized Treatment Based on Molecular  
and Genetic Variation

The completion of the human genome sequence opens the era of the functional 
genomic analysis and brings promises of the development of new disease therapies. 
However, regardless of our present knowledge of the human genome and a better 
understanding of the cancer genetic alterations, there is still a long way to go in 
developing widespread cancer treatments.

Traditionally, the treatment of cancer depends on the size and location of the 
tumor, the extent of the spread of the cancer and the person’s underlying health. 
Although all these facts are important, the location of a tumor has been recognized 
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as the basic rule in clinical oncology: the organ of origin should dictate the thera-
peutic approach to cancer therapy. The typical approach to primary cancer usually 
consists of surgical resection of the primary tumor, local irradiation according to 
the type of surgery and the extent of disease and adjuvant systemic therapy accord-
ing to the tumor biology (http://www.cancer.net/portal/site/patient). However, the 
genomics research data obtained in recent years strongly indicates that each  
individual cancer – even from the same origin, presents an individual signature, 
composed of a set of different genetic alterations and might therefore require a  
collection of targeted agents. According to Lengauer et al. (2005)), “it is likely that 
the paradigm of ‘one drug for one cancer’ will eventually be replaced by multiple 
targeted drugs for multiple different genetic defects” – for one individual cancer, in 
one individual person.

In fact, the idea of individualized treatment is not new – it was already proposed 
decades ago (Scott 1969), but it’s implementation is dependent on further scientific 
progress. The Individualized Cancer Chemotherapy (ICC) is a procedure that aims 
to maximize the efficacy of chemotherapy and to minimize its adverse effects. Based 
on the pathogenic status of a specific tumor and the knowledge of drug responses, 
clinicians can stipulate the best drugs combination in the therapy. This strategy can 
be designed based on the follow information: (a) the use of drug sensitivity tests that 
compare the anticancer activities of potential candidate drugs on surgically removed 
samples and those showing the best responses are selected for the use in succeeding 
treatments; (b) the use of tumorigenic markers as specific targets for drug antago-
nism and disruption; and (c) the integration of morphological information concern-
ing primary tumor location and mode of spread to a rationally designed drug 
combination (Lu et al. 2006). Others approaches used in individualized treatment 
aim (a) to define pretreatment molecular markers that predict response and toxicity 
from a chemotherapeutic regimen for head and neck (Singh and Pfister 2008) and 
colorectal cancer (Bandres et al. 2007; Wilson et al. 2007), (b) to select the most 
cost-effective and least toxic chemotherapy for an individual (Lu et al. 2006) or (c) 
to identify reliable and validated marks that could select patients for specific treat-
ments breast cancer patients (Pusztai et al. 2004; Dressman et al. 2007).

Although gene expression and protein profile of cancer are attractive technolo-
gies to fully characterized properties of a particular cancer, the development of 
successful predictors that can be applied in clinic treatments has proven to be dif-
ficult (Lengauer et al. 2005). In other words, whether the basic research seeks to 
identify a marker to be used as a predictor of response or resistance to chemotherapy, 
it remains to be seen what accuracy is need to a predictive marker to be clinically 
useful, i.e. whether a patient will respond to a particular drug or combination 
regime in question.

Regardless of the enormous difficulties imposed by the cancer complexity on 
treatments, the solution is to strengthen the association of basic and applied cancer 
research in areas such as germ-cell mutation analysis, genetic and gene expression 
profiles, targeted therapy, cancer stem cells, circulating cancer cells and single-
nucleotide polymorphism. The increase of successful targeted therapies will 
significantly depend on the quality of the science that will lead to the drug discovery 
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and development process, which is believed to refine future preventive and early 
intervention strategies on an individual basis.

12.7  Final Remarks

Cancer disease, as an epigenetic disorder, can be characterized by distinct genetic 
and protein profiles that are associated to its initiation and development. Several 
modifications, such as altered gene expression patterns, genomic instability and 
somatic mutations, can be used to discriminate cancer cells from normal ones, and 
this knowledge can be applied in the diagnosis support and development of therapies 
specifically directed to cancer cells. In this context, bioinformatics approaches have 
not only been an essential tool in the identification of biological markers but also are 
facilitating the understanding of the whole process of tumor development. The 
development of “omics” science involves the integration of a huge amount of data 
from many different sources. Data from high-throughput analysis of genes, gene 
variants, expression and proteomics are continually accumulating in public databanks 
and, as a corollary, bioinformatics technologies will also be continually developed 
to help the investigation of these datasets of complexes processes and networks. 
Therefore, bioinformatics analysis deals with data integration and such approach is 
providing a variety of information on cancer that begins to be used for clinical practices, 
both for diagnosis and treatment. The establishment of bioinformatics as a pillar of 
such enterprise is a natural consequence of its quantitative nature.

According to Pusztai and collaborators (Pusztai et al. 2004), before this prac-
tice can be adopted in the clinic, scientists and clinicians will need to overcome 
several challenges. The initial observations that genetic profiling of cancer can 
lead to the development of an individualized therapy will need to be confirmed, 
and the true accuracy of potential cancer targets will need to be determined.  
As stated by the authors, “…to draw an analogy between the clinical development 
of drugs and that of diagnostic predictive markers, the currently published results 
represent encouraging phase I/II clinical marker-discovery trial data. To demon-
strate the clinical utility and evaluate the accuracy of these markers with a narrow 
confidence interval, a larger, randomized, phase III marker validation studies will 
be needed”.

Despite all these difficulties, it is clear that, although the application of bioinfor-
matics in cancer research is still in an early stage, it has already become an obliga-
tory technology to assist and improve the development of cancer therapy in this 
post-genomic era. In this chapter, we aimed to provide a general overview of this 
exciting field. We envisage that the new technological advances will represent an 
even more dramatic contribution to our fight against cancer.
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Abstract Drug research and development is a long, expensive and risky process. 
The novel omics technologies (genomics, transcriptomics, proteomics and metabo-
nomics) and systems biology have brought unprecedented abilities to screen cells 
at the gene, transcript, protein, metabolite and their interaction network level in 
searching of novel drug targets, elucidating the primary mechanism-of-action of a 
drug, understanding side effects in unanticipated off-target interaction, validating 
existing drug candidates and finding new potential therapeutic applications for an 
established drug, hence to facilitate the translation from bench to bedside. This 
chapter provides an overview of recent applications of various omics technologies 
and systems biology to drug development.

13.1  Introduction

Translational medicine is to translate basic science achievements into clinical prac-
tice, particularly facilitating the transition “from bench to bedside” in the drug 
discovery and development process. Today in the pharmaceutical industry, higher 
investments in R&D are providing lower than anticipated returns, the process of 
discovering new medicines is long (10–15 years), expensive ($0.8–$1.5 billion), 
and risky (10% success following first dose in humans) (Austin and Babiss 2006). 
To improve such a process, appropriate biomarkers need to be developed and vali-
dated, facilitating the transition of a compound into a drug, i.e. the transition from 
the test tube and animal experiments to application in humans.

A biomarker is a biologically derived molecule in the body, which is indicative 
of normal biologic processes, pathogenic processes, or pharmacologic responses to 
a therapeutic or nutritional intervention. Different functional categories of biomarkers 
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are involved in different phases of drug development. For example, in the phase of 
drug discovery, disease-related biomarkers are applied to monitor disease causality, 
progression and susceptibility; in the phase of pre-clinical toxicology studies, the 
safety and efficacy-related biomarkers are used to evaluate the risk/benefit ratio; in 
the phase of clinical development, the previously discovered biomarkers need to be 
qualified and validated for human use. In general, the identification and validation 
of useful biomarkers will allow researchers to make early go/no go decisions, hence 
to decrease the cost of late phase testing of an ineffective agent. Moreover, 
biomarkers can be used as surrogate for treatment approval by regulatory agencies, 
and to decrease the lag between product development and marketability. This 
chapter presents an overview of omics technologies applied to drug target discovery 
and validation.

13.2  Genomics in Drug Target Discovery and Validation

Genomics is to investigate DNA sequences and DNA changes like DNA rearrangements, 
DNA copy numbers, single nucleotide polymorphism (SNP), DNA methylation, 
etc. Currently, two technologies are developed to simultaneously profile hundreds 
of thousand of SNPs in a single assay, one is the randomly ordered bead arrays from 
Ilumina (http://www.illumina.com/) and 454 Life Sciences (http://www.454.com/), 
another is the photolithographic-based in situ synthesized gene chips from 
Affymetrix (http://www.affymetrix.com/). Both platforms are suitable for whole-
genome genotyping. For DNA methylation analysis, there are three commonly used 
approaches for high-throughput array-based DNA methylation analysis: (1) MeDIP 
(methylated DNA immunoprecipitation); (2) HELP (Hpa II tiny fragment enrich-
ment by ligation-mediated PCR); (3) fractionation by McrBC, an enzyme that cuts 
most methylated DNA. Recently, to overcome significant limitations to these methods 
(bias toward CpG islands in MeDIP, relatively incomplete coverage in HELP, and 
location imprecision in McrBC), Irizarry et al. (2008) developed a comprehensive 
high-throughput array for relative methylation (CHARM). Unlike other approaches, 
CHARM has a substantial advantage that it is highly quantitative. In general, DNA 
biomarkers can be applied to establish the link among genetic variations, disease, 
environmental influences and treatments. Specially, DNA methylation and gene 
polymorphisms like SNP play an important role in drug discovery and development.

Gene polymorphisms can occur at the level of proteins directly involved in drug 
action and drug metabolizing enzymes or transporters, leading to alterations in drug 
efficacy and toxicity. The identification of functional polymorphisms in patients 
undergoing chemotherapy may help the clinician prescribe the optimal drug 
combination and predict the drug response to these prescriptions with more accuracy. 
Especially, predicting drug toxicity is very important and should be determined in 
routine before drug administration, for example, three frequent SNPs, Lys751 Gln 
in the xeroderma pigmentosum complementation group D (XPD, ERCC2) gene, 
Asp1104His in the xeroderma pigmentosum complementation group G (XPG, ERCC5) 
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gene and Ile105Val in the glutathione S-transferase P1 (GSTP1) gene, were found 
to be related to the cytotoxicity of some anticancer drugs (Le Morvan et al. 2006). 
Recently, Liu et al. (2008) performed a genome-wide association scan for obesity 
by examining approximately 500,000 SNPs in a sample of 1,000 unrelated US 
Caucasians. They found that multiple SNPs in a newly identified gene, CTNNBL1, 
were associated with body mass index (BMI) and fat mass, among them the most 
significant SNP is rs6013029, suggesting a novel mechanism for the development 
of obesity, hence providing a new drug target for anti-obesity drug development.

DNA methylation of the promoter region of genes and associated gene silencing 
has been recognized to play a very important role in tumorigenesis. DNA methyla-
tion biomarkers can be detected in the presence of large amounts of background 
DNA with high sensitivity, they have been applied to molecular diagnostic tests for 
routine clinical use (Lesche and Eckhardt 2007). Specially, it has been suggested 
that DNA methylation biomarkers can be applied to monitor drug response. For 
example, the disappearance of RASSF1 methylation in serum has been observed to 
correlate with response of breast cancer treatment to tamoxifen (Fiegl et al. 2005), 
the status of the enzyme o-6-methylguanine-DNA methyltransferase (MGMT) 
methylation is the best independent predictor of response to BCNU (carmustine) 
and temozolomide in gliomas (Hegi et al. 2005). Recently, Shen et al. (2007) 
showed that different promoter hypermethylation profiles can effectively predict 
the sensitivity of NCI-60 cancer cell lines to a library of 30,000 drugs, this 
highlights the potential of DNA methylation biomarkers in drug development. In 
fact, the FDA approved the first inhibitor of DNA methylation, Azacytidine, for the 
treatment of myelodysplastic syndromes (Issa and Kantarjian 2005), and new drugs 
targeting DNA methyltransferases have been introduced into clinical trials for the 
treatment of advanced prostate cancers (Nelson et al. 2007).

13.3  Transcriptomics in Drug Target Discovery and Validation

Transcriptomics is to investigate gene expression patterns based on the relative 
estimation of messenger RNA (mRNA) copy number under a given condition for 
a given organism. Currently, the most widely used tool for transcriptomics is 
DNA microarrays, which allows to measure the expression level of thousands of 
genes, or even entire genomes, simultaneously. Oligonucleotide microarrays and 
cDNA microarrays are two major formats of DNA microarrays commercially 
available. A typical DNA microarray experiment consists of the following steps: 
(1) DNA sequences are immobilized on a solid surface; (2) mRNA extraction 
from a sample (cells, tissues, or organs) and labeled with fluorescence dyes;  
(3) Labeled nuclei acids are then hybridized to the DNA sequences; (4) using an 
appropriate scanning device (fluorescence scanner or CCD camera) to detect 
signal; and (5) data analysis by pattern recognition technologies and bioinformatics 
tools. Gene expression microarray technology is benefiting all phases of drug 
discovery and development.
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For target identification and validation, comparison of gene expression profiles 
in the normal and disease tissue will enhance the understanding of disease pathol-
ogy and identify potential therapeutic intervention points. In the context of cancer 
and drug development, application of gene expression analysis to cellular processes 
such as cell cycle and signal transduction may identify genes involved in tumori-
genesis that may be potential drug targets. Numerous reports have demonstrated the 
potential power of gene expression profiling in normal and pathological tissues for 
the identification and validation of biomarkers and new molecular targets (Zhang 
2007; Zhang et al. 2007a). In particular, Rhodes et al. (2004) employed large-scale 
meta-analysis of cancer microarrays and identified some common cancer biomark-
ers. For example, TOP2A is present in 18 cancers versus normal signatures, repre-
senting 10 types of cancer. Similarly, seven gene pairs were identified as common 
biomarkers for four types of cancer (colon, melanoma, ovarian and esophageal 
cancers) (Basil et al. 2006). These biomarkers could be used for cancer diagnosis 
and could also be considered as potential drug targets.

Furthermore, gene expression microarrays can be used to profile the pharmacological 
effects of lead compounds on a genome-wide basis, to investigate the molecular 
mechanism of action of drugs in clinical trials, to identify genes and expression 
patterns related to toxicity, drug sensitivity or resistance, and to predict which patient 
is most likely to benefit from which particular drug. For example, Staunton et al. 
(2001) used the expression profile of the NCI 60 human tumor cell line panel to predict 
sensitivity or resistance to 232 compounds. This study not only reveals information 
on factors governing drug resistance/sensitivity but also provides information on the 
potential target. Zembutsu et al. (2002) employed genome-wide cDNA microarray 
screening to correlate gene expression profiles with sensitivity of 85 human cancer 
xenografts to anticancer drugs. Some interesting associations between gene expression 
and anticancer drug sensitivity were observed, for example, increased topoisomerase 
II expression and increased doxorubicin resistance, a negative correlation between 
thymidylate synthetase expression and 5-FU sensitivity, and also a negative correlation 
between aldehyde dehydrogenase 1 and camptothecin sensitivity. Recently, whole-
genome gene expression profiling has become a promising approach for defining 
responsiveness to treatment. A good example is dedicated to breast cancer. In a number 
of breast cancer studies whole-genome gene expression have been used to profile 
breast samples of patients treated with Tamoxifen or Tamoxifen plus chemotherapy 
before surgery, the resulting profiles are scored to assess the risk of recurrence and 
the need of adjuvant therapy, and have been associated with chemotherapy response 
(Paik et al. 2006).

13.4  Proteomics in Drug Target Discovery and Validation

Proteomics involves the large-scale identification and functional characterization of 
all the expressed proteins in a given cell or tissue, including all protein isoforms and 
modifications. Typically, the workflow for the proteomics analysis essentially 
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consists of sample preparation, protein separation, and protein identification. 
The frequently used tools for proteomic investigations include two-dimensional gel 
electrophoresis (2D-gel) and mass spectrometry (MS). A simple and affordable 
approach is that proteins are separated with 2D-gel and quantified by direct staining 
with visible or fluorescent detection dyes (i.e. Coomassie blue or SYPRO Ruby), 
then the protein spots of interest are excised, digested, and the resulting peptides 
are identified by MS. However, there are some technical limitations to this 
method: (1) the narrowed window of proteins separation, subject to their pH and 
abundances, i.e. inability to detect low-abundant proteins and proteins with 
extreme properties (very small, very large, very hydrophobic and very acidic or 
basic proteins); (2) the lack of reproducibility in the separation step (gel-to-gel varia-
tions), in the enzymatic digestion, and in the ionization process; (3) the lack of 
automation, the labor-intensive, time-consuming and costly properties. Instead of 
the gel approaches, an exciting and powerful tool is MS-based proteomics technology, 
which has been widely used for biomarker discovery and early diagnosis of human 
cancers (Zhang et al. 2007b). The mostly used MS instruments for proteomics 
experiments are electrospray ionization (ESI)-MS, matrix-assisted laser desorption 
ionization time-of-flight (MALDI-TOF)-MS and its variant surface-enhanced laser 
desorption/ionization (SELDI)-TOF-MS. The superior power of MS in the proteomic 
analysis can be further enhanced when MS is combined with a separation technique 
(e.g. gas chromatography (GC), liquid chromatography (LC) or capillary electrophoresis 
(CE)) or when tandem MS (MS/MS) is used.

The recent developments in proteomic technologies have brought them with 
ability to comparatively screen large numbers of proteins within clinically distinct 
samples. The differential expression of proteins detected in normal versus disease 
samples can be used to characterize which biological pathways are involved, which 
can later be targeted with drugs. Many interesting results have been obtained by 
application of MS-based proteomics technologies to biomarker discovery and vali-
dation. For example, with SELDI–TOF-MS analysis, Cho et al. (2004) identified 
two isoforms of serum amyloid A protein as useful biomarkers to monitor relapse 
of nasopharyngeal carcinoma (NPC), which are correlated with relapse and a sharp 
fall with response to salvage chemotherapy. Further examination was conducted to 
identify other cancer targets, inter-a-trypsin inhibitor precursor and platelet  
factor-4 that were associated with active disease or chemoresponse in NPC patients 
treated with chemotherapy respectively. These disease- and treatment-associated 
serum biomarkers might serve for the diagnosis and chemotherapy monitoring of 
NPC patients (Cho et al. 2007). Zhang et al. (2004) identified and validated three 
biomarkers by SELDI-TOF-MS analysis of the serum proteome of patients with 
early-stage ovarian cancer, apolipoprotein A1, a truncated form of transthyretin and 
a cleavage fragment of inter-a-trypsin inhibitor heavy chain H4. By applying a 
proteomics technology, Keay et al. (2004) identified CKAP4 as a receptor of an 
antiproliferative factor (APF) and a possible druggable target to treat patients suf-
fering the adverse effects of interstitial cystitis. Huang et al. (2006a) used differential 
gel electrophoresis (DIGE) and MALDI-TOF/TOF-MS to screen biomarker candi-
dates in serum samples obtained from 39 patients with breast cancer and 35 controls. 
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They revealed proapolipoprotein A-I, transferrin, and hemoglobin as up-regulated 
and apolipoprotein A-I, apolipoprotein C-III, and haptoglobin alpha 2 as down-
regulated in patients, and routine clinical immunochemical reactions were used to 
validate transferrin as potential biomarker. Holly et al. (2006) analyzed urinary 
proteins from septic rats with acute renal failure (ARF) by DIGE and MALDI-MS 
and identified meprin-1-alpha as a potential biomarker and drug target. Dear et al. 
(2007) employed a comparative proteomics to a clinically relevant mouse model of 
sepsis, identified a number of novel proteins that changed in abundance and facilitated 
the discovery of new therapeutic target cyclophilin receptor CD147.

Recognizing specific protein changes in response to drug administration in humans 
has the potential for significant utility in clinical research. Proteomics can be used to 
investigate the molecular mechanism of action of drugs in clinical trials and to predict 
drug response. Lee et al. (2005) used a proteomic analysis including 2D-gel and 
MALDI-TOF-MS to investigate the anti-cancer mechanism of paclitaxel against cervical 
carcinoma cells and identified several cellular proteins that are responsive to paclitaxel 
treatment in HeLa cells. This study demonstrates the power of proteomic profiling with 
functional analysis using RNAi technology for the discovery of novel molecular targets 
and a better understanding of the actions of paclitaxel at the molecular level in cervical 
carcinoma cells. Patil et al. (2007) used a MS-based proteomics technique to measure 
changes in proteins related to drug administration in the plasma and cerebrospinal fluid 
(CSF) proteomes of 11 subjects given atomoxetine. They detected statistically signifi-
cant changes in the CSF protein pattern after drug treatment, suggesting that identifica-
tion of changes in the CSF proteome associated with the administration of centrally 
active drugs is feasible, and may be valuable in the development of new drugs.

13.5  Metabonomics in Drug Target Discovery and Validation

Metabonomics is to investigate the fingerprint of biochemical perturbations caused by 
disease, drugs, and toxins (Goodacre 2007). It is not to be confused with “metabolom-
ics”, which is defined as the comprehensive analysis of all metabolites generated in a 
given biological system, focusing on the measurements of metabolite concentrations 
and secretions in cells and tissues (Fiehn 2002). Typically, two main analytical plat-
forms are used in metabonomics experiments: nuclear magnetic resonance (NMR) and 
MS technologies. Both platforms are very complementary, NMR allows the identifica-
tion and quantification of small polar molecules, MS enables the profiling of larger 
non-polar molecules. The frequently used MS instruments include MS in combination 
with some chromatography technologies such as GC, LC, CE and UPLC (a new 
HPLC systems using sub-2 mm packing columns combined with high operating 
pressures). Further recent development in MS-based metabonomics is the chip-based 
nanoelectrospray MS developed at Novartis, which can reduce matrix effects, 
measurement time (no chromatographic separation needed), and improve sensitivity.

In principle, there are some particular advantages to using metabolites as biomark-
ers, especially in the context of translational research (Keun and Athersuch 2007). 
First, the number of metabolites is a few thousand, versus tens of thousands of genes 
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and up to hundreds of thousands of proteins. Second, metabolite measurements are usu-
ally accessible via non- or minimally-invasive biological fluids like urine, rather than 
tissue. Third, metabolites remain the same chemical entity irrespective of their origin, 
while genes and gene products are subject to sequence variation, post-translational 
modifications, etc. These features make bench-to-bedside translation much easier 
without increasing patient morbidity or cost. However, another distinguished feature of 
metabonome from the genome and proteome is the major, direct and sustained input of 
key exogenous sources such as diet, life styles, smoking, physical activities, and expo-
sure to xenobiotics, etc. This makes metabonomic profiling very sensitive to many 
environmental factors and brings metabonomics investigations a significant challenge 
to discriminate between exogenous causes and endogenous effects.

Currently, there are more and more examples of metabonomics technologies 
being successfully used to drug development process. For example, Chen et al. 
(2006) combined desorption electrospray ionization mass spectrometry (DESI-MS) 
and NMR for differential metabonomics on urine samples from diseased (lung 
cancer) and healthy mice and successfully identified over 80 different metabolites 
under the condition of no sample preparation. Dieterle et al. (2006) used NMR 
urinalysis to rank compounds based on toxicity, showing the potential of metabo-
nomics in lead selection and optimization. Al-Saffar et al. (2006) employed NMR 
technology and xenograft models to examine the effects of MN58b treatment on 
human colon and breast cancer cell lines. They showed that the choline kinase 
inhibitor MN58b reduced levels of total choline, phosphocholine and total phospho-
monoesters both in vitro and in vivo, demonstrating the potential value of applying 
metabonomics to biomarker discovery and the identification of novel targets in a 
clinical translational environment. Clayton et al. (2006) used a combination of pre-
dose metabolite profiling and chemometrics to model and predict the responses of 
individual subjects with paracetamol (acetaminophen) administered to rats. They 
showed pre-dose prediction of an aspect of the urinary drug metabolite profile and 
an association between pre-dose urinary composition and the extent of liver damage 
sustained after paracetamol administration. This suggests that pretreatment 
metabolic profiles can be predictive of response to drug exposure. Soga et al. 
(2006) applied a metabolome differential display method based on CE-TOF-MS to 
profile liver metabolites following acetaminophen-induced hepatotoxicity. They 
globally detected 1,859 peaks in mouse liver extracts and specifically found that 
serum ophthalmate is a sensitive indicator of hepatic GSH depletion, and may be a 
new biomarker for oxidative stress.

13.6  Systems Biology in Drug Target Discovery and Validation

In general, human diseases are enormously complex and involve simultaneous 
pathologies of multiple organ systems, hence a comprehensive analysis of such a 
complex system is highly required to identify molecular biomarkers of different 
toxic endpoints during drug development process. Systems biology, the simultaneous 
measurement of genomic, proteomic, and metabonomic parameters in a given system 
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under defined conditions (Davidov et al. 2003), offer exciting opportunities for 
drug research and development.

There is an increasing trend in systems biology applied in the drug-discovery 
setting. For example, Ruepp et al. (2002) used microarray expression and proteom-
ics to evaluate acetaminophen toxicity in mice liver. Heijne et al. (2003) employed 
a combined transcriptomics and proteomics approach to investigate hepatotoxicity 
induced in rats by bromobenzene administration. The results revealed a modest 
overlap in results from proteomics and transcriptomics, suggesting that transcrip-
tomics and proteomics technologies are complementary to each other and provide 
new possibilities in molecular toxicology. Coen et al. (2004) applied transcriptomics 
and metabonomics to identify biochemical changes arising from hepatotoxicity in 
mice dosed with acetaminophen. They found that an increased rate of hepatic glyco-
lysis was consistent with the altered levels of gene expression relating to lipid and 
energy metabolism in liver, showing that these two technology platforms together 
offer a complementary view into cellular responses to toxic processes. Recently,  
Li et al. (2006) applied an integrative omics approach (genomics, transcriptomics and 
proteomics) to identify potential biomarkers for the diagnosis and therapy of lung 
cancer. First, 183 up-regulated genes were identified by genomic and transcriptomic 
methods, Second, 42 over-expressed proteins were identified by 2D-gel and MS, 
then four genes (PRDX1, EEF1A2, CALR and KCIP-1) were found to be correlated 
with elevated protein expression by the comparison between the 183 genes and 42 
proteins. The further validation experiments by Southern, Northern, and Western 
blotting demonstrated that the amplification of EEF1A2 and KCIP-1 was associated 
with elevated protein expression, strongly suggesting that the two genes could be 
potential biomarkers for the diagnosis and therapy of lung cancer. Craig et al. (2006) 
utilized an integrated systems approach to understanding the toxic mechanisms of 
the histamine antagonist methapyrilene administered in rats by combining proteom-
ics, metabonomics by H-1 NMR spectroscopy and genomics by microarray gene 
expression profiling. They found that the changes occurred in signal transduction 
and metabolic pathways during methapyrilene hepatotoxicity are reflected in both 
gene/protein expression patterns and metabolites. Based on these data, the authors 
suggest a new cytochrome P450 target for the specific periportal activation of 
methapyrilene.

However, it is noted that it is not easy to establish a direct link between genes and/
or proteins and metabolites: multiple mRNAs could be formed from one gene; 
multiple proteins from one mRNA; multiple metabolites can be formed from one 
enzyme; and the same metabolite can participate in many different pathways. This 
complicates the interpretation and integration of the various omics data. In fact, some 
studies have now shown that there is a poor correlation between the amount of a 
protein and its transcript’s abundance. For example, Conradas et al. (2005) conducted 
a combined proteome and microarray investigation of inorganic phosphate-induced 
pre-osteoblast cells. Comparison of the mRNA microarray data with the 24-h quantitative 
proteomic data resulted in a generally weak overall correlation. Post-transcriptional 
processing events, temporal differences in mRNA and protein expression, or other 
factors may be the potential reasons for this lack of correlation.
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13.7  Emerging Applications in Clinical Practice and Perspectives

Over the past few years, the rapid development of whole genome profiling 
technologies has greatly expanded our knowledge of cancer development and 
progression. Currently, numerous commercialized multigene assays have entered the 
expanding landscape of cancer diagnostics. In particular, several multigene assays are 
now available for breast cancer (Ross 2008), for example, ProExBr (www.bd.com/
tripath/labs/mo_oncology.asp), Mammostrat (www.apppplied-genomics.com), eXagenBC 
(www.exagen.com), oncotype DX (www.genomichealth.com/oncotype/default.aspx), 
Invasiveness gene signature (www.oncomed.com), MammaPrint (www.agendia.com), 
Two-gene ratio H/I (www.aviaradx.com), Rotterdam signature (www.veridex.com), 
Cytochrome P450CYP2D6 (www.roche.com/med_backgr-ampli.htm), etc. Among 
them, the two tests that have achieved the most advanced commercial success are 
oncotype DX and MammaPrint, each test has some advantages and disadvantages. The 
21-gene oncotype DX use widely available starting material like formalin-fixed paraf-
fin-embedded (FFPE), while the 70-gene MammaPrint cannot currently be performed 
on FFPE tissues and requires either fresh-frozen tumor samples or tissues collected 
into an RNA preservative solution. The MammaPrint test has a wider patient eligibility 
than oncotype DX by including ER-positive and ER-negative and younger patients. 
The oncotype DX can be served as both a prognostic test and predictive test for certain 
hormonal and chemotherapeutic agents, and the MammaPrint is validated as a prog-
nostic test only and has not been formally tested as a predictive test for specific therapy 
regimes. In terms of US FDA status, the MammaPrint assay has received 510(k) clear-
ance, whereas oncotype DX has been exempt.

With the further development of omics technologies, more and more biochip-based 
assays (genes chips, protein chips or metabolite chips) will be moved from 
bench to bedside for applications of diagnosis, prognosis and response to 
therapy. In particular, nanotechnology raises new possibilities in diagnosis  
and treatment of human cancers. Lee et al. (2007) employed the NanoChip 
Molecular Biology Workstation to validate a CYP2D6 genotyping assay, CYP2D6 
is a highly polymorphic phase I enzyme that metabolizes 20–25% of clinically 
used drugs. Corradi et al. (2008) combined a multiplex RT-PCR approach with 
the electronic hybridization and fluorescent detection on the Nanogen NanoChip 
Molecular Biology Workstation to screen for the most common fusion gene 
transcripts in human leukemia, providing a multi-purpose platform for relevant 
comprehensive diagnostics of hemato-oncology patients.

However, regardless of the final assay platform, all these tests are to use profiling 
technology for the discovery of the test’s gene, mRNA, protein or metabolite 
biomarkers. One critical issue is that these biomarkers must be fully validated on 
large and independent patient samples, it remains to be seen whether these new 
assays will hold up over time as more patients are tested. On the other hand, it 
should be noted that these new tests can easily be misused, including applying the 
test in the wrong clinical setting and ending up with misleading reassurance about 
test-driven decisions.



244 X. Zhang et al.

Finally, it must be pointed out that the future direction on cancer drug discovery 
and therapy should be pathway-oriented. Very recently, three landmark genome 
scans of cancer have affirmed the complexity of genetic changes in solid tumors, 
they all share a core group of perturbed pathways, although each tumor in each 
patient is different, it appears that cancer is really a pathway disease (Chin et al. 
2008; Jones et al. 2008; Parsons et al. 2008). These new results point towards a 
future where we should change the way in thinking about cancer from gene-centric 
to pathway-centric. It may be a good choice that the drug development aims at 
entire signaling pathways rather than just one mutation at a time, and the determi-
nation of therapy regimes by looking at genetic changes in patients, as part of a 
personalized medicine, could be changed to look directly at the core pathway. To 
achieve these goals, systems biology offers exciting opportunity. For example, 
Nikolsky et al. (2005) used network analysis tool to compare the effects of differ-
ent drug treatment (4-hydroxytamoxifen and estrogen) on the MCF-7 breast can-
cer cell line, they identified topological motifs in expression network and provided 
a novel type of biomarker for drug exposure. Huang et al. (2006b) applied the 
pathway-mapping approach to the quantitative evaluation of anticancer drug 
action, they proposed that the way to improve the efficacy of anticancer drugs is 
to screen for the compounds that selectively target the pathways which exhibit 
reduced coherence in cancer.

13.8  Conclusions

Novel omics technologies are showing the potential value in the drug development 
process (Fig. 13.1): target identification and validation; lead discovery and optimi-
zation; preclinical efficacy and safety assessment; mode of action and mechanism; 

Genomics Transcriptomics Proteomics Metabonomics

Systems Biology

Target identification
and validation

Lead identification
and optimization

ADME toxicology

Fig. 13.1 Flow scheme of the contributions of omics technologies (genomics, transcriptomics, 
proteomics and metabonomics) and systems biology to the drug discovery processes. ADME: 
absorption, distribution, metabolism and excretion
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patient stratification; and clinical pharmacological monitoring. In particular, 
systems biology, more than the simple merge of various omics technologies 
(genomics, transcriptomics, proteomics, and metabonomics), will greatly facili-
tate the understanding of the complex interaction network between drugs and 
molecules in biological systems and accelerate the discovery and validation of 
drug target as well as the translation from bench to bedside, hence to achieve the 
goal of personalized medicine and healthcare, although many significant 
challenges still exist ahead.
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Abstract The development of high-throughput techniques for analyzing cell 
components has provided vast amounts of data in recent years. This development 
of gene-sequencing methods was followed by advances in techniques for analyz-
ing and managing data from transcriptomes, proteomes, and other omics data. 
The so-called omics revolution has led to the development of numerous databases 
describing specific cell components. A recent study suggests that cell behavior 
cannot be modeled by analyzing its constituents separately, but rather calls for an 
integrative approach (Barabási and Oltvai 2004). Thus, specialized techniques are 
being developed to integrate omics information. To enable new research avenues 
that can take advantage of and apply this information to new therapies – e.g. in 
cancer research – methods must be designed that provide a seamless integration of 
these new databases with classical clinical data.

The problem of database integration has been studied at length over the last 
15 years, with special emphasis in the post-genomic era on publicly available 
online data. In the field of genomic medicine, the integration of phenotype and 
genotype data is of special interest for the prevention of patient intolerance to specific 
drugs and for defining personalized therapies. Patients’ individual characteristics 
will play a fundamental role in future treatment design. These characteristics 
include, of course, genetic profiles.

To address the issues surrounding omics data integration, this chapter is organized 
as follows. Section 14.1 describes the role of data integration in cancer research. 
Section 14.2 analyzes omics data integration problems and techniques. Section 14.3 
introduces a range of international efforts in database integration. Finally, Section 14.4 
presents future trends in omics data integration for cancer research.
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14.1  The Role of Data Integration in Cancer Research

The joint analysis of phenotypic and omics data can drastically improve the ability 
to diagnose, identify, characterize and finally treat cancer. These different types of 
data are normally stored in disparate heterogeneous databases. Thus, accessing, 
retrieving, interpreting and evaluating these data are time-consuming and, often, 
tricky processes within clinical environments. There is a need to present this het-
erogeneous information in a readable, easy-to-understand form (Collins and 
McKusick 2001). However, attempts at integrating these data come up against all 
sorts of problems. Most of these difficulties are related to semantic and syntactic 
heterogeneities, security, and accessing disparate and remote locations. These dif-
ficulties can be overcome by using technologies to bridge different types of hetero-
geneity and data federation.

The applications of heterogeneous data integration in medicine are manifold. 
Some of the most interesting uses for this chapter are related to genomic medicine. 
This area covers different uses of genotypic information to enhance diagnosis and 
treatments. The use of integrated genetic and phenotypic information will lead to 
enhanced diagnosis and treatment (Maojo and Tsiknakis 2007) – i.e. personalized 
application of a cancer treatment such as chemotherapy based on the patient’s 
genetic profile could avoid cases of intolerance. If results from tests such as biop-
sies were subjected to analysis at a molecular level, and these results were stored 
and made accessible to other organizations for seamless integration with other 
kinds of data, individualized molecular profiles could be built to improve the 
performance of a therapy in a particular case (Nature 2004).

There are a range of possibilities for integrating data for cancer treatment. Cross-
institution data integration refers mainly to the exchange of similar data with the 
aim of completing a data set – i.e. laboratory tests taken at different times and 
places. Even though these data are of the same type, issues like how they were 
gathered and stored, together with the privacy and proprietary technologies used, 
must be addressed. Another case of integration is classical heterogeneous data 
integration. This type of integration involves different types of data sources – e.g. 
relational phenotypic data sources, images or genetic data. Another case is biologi-
cal multi-level data integration. This involves integrating data of different levels of 
granularity – i.e. from genetic or molecular data to macroscopic images of a tumor, 
for example. A particular type of multi-level data integration is omics data integra-
tion. The next section focuses on this issue in more detail.

14.1.1  Types of Omics Data

Omics is a term used informally to refer to any type of biological data gathered 
using the high-throughput techniques, like genome-sequencing, developed in recent 
years. Omics data can be divided into three main categories, depending on what 
type of cellular network description they provide (Joyce and Palsson 2006). These 
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are (a) component data, which describes a specific part of a cell, (b) interaction 
data, which stores the relationship between molecular elements inside a cell, and 
(c) functional-states, which specify the global behavior of cells. For each of these 
categories, there exist specialized fields of research. The most important of these 
fields are briefly described below.

The component data field is divided as follows:

a. Genomics, which refers to the complete sequencing of an organism’s genomes. 
Numerous genomics efforts have been carried out over the last few years on dif-
ferent species (like the Human Genome Project resulting in the 2001 publication 
of a draft sequence of the human genome).

b. Transcriptomics, which analyzes transcriptome data – the set of all mRNA mol-
ecules inside a cell or group of cells. The goal is to study gene expressions in 
order to uncover active cell components. This information can help to provide an 
understanding of many biological processes, such as carcinogenesis, by studying 
which genes are active in which situations.

c. Proteomics, which deals with the study of proteins. The ultimate goal is to assess 
the cellular levels of each protein encoded in the genome.

d. Metabolomics, which studies the cell metabolome – i.e. the complete set of 
metabolites. Metabolites are “the end products of cellular regulatory processes” 
(Fiehn 2002), and studying metabolite levels can give insight into the responses 
of biological systems to genetic or environmental changes. The related field of 
metabonomics researches the metabolic response to external perturbations.

e. Glycomics, which attempts to study the glycome – the set of all glycan mole-
cules. Glycan molecules can be found acting as an interface between cells to 
coordinate biological processes (Iozzo 2001). Their study can hopefully lead to 
the development of new drugs (Shriver et al. 2004).

f. Lipidomics, which studies lipids and interacting factors (Wenk 2005). Numerous 
studies have demonstrated the relationship between lipid metabolic enzyme dis-
ruptions and diverse diseases, including cancer.

g. Localizomics, which aims to discover the sub-cellular locations of proteins. This 
information can provide important insight into the specific role of individual 
proteins.

h. Epigenomics, dealing with the study of heritable changes not coded in the DNA 
sequence (epigenetics) on a large-scale.

i. Immunomics, which studies immune networks and pathways, making use of 
transcriptomics, genomics and proteomics.

j. Cytomics, which refers to the study of the molecular architecture of cell-systems. 
Different bioinformatics techniques are employed to this end – e.g. confocal and 
laser scanning microscopy.

There are two separate specialized fields of research for interactions data  
(also called interactomics):

a. Protein-DNA interactome refers to interactions between proteins and DNA. 
These interactions are the basis of the cell’s genetic regulatory network.
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b. Protein-protein interactions, which are crucial for numerous cellular processes. 
Their analysis is essential for correctly understanding biology as an integrated 
system (Cusick et al. 2008).
Finally, functional-states data are classified as:

a. Fluxomics, which aims to analyze the metabolic fluxes that occur within a cell, 
for example in metabolic or signaling pathways (Wiechert et al. 2007).

b. Phenomics, which refers to the analysis of phenotypes – i.e. the observable 
expression of the genotype in a given environment.

Figure 14.1 summarizes the description of fields in each of the three categories.

14.1.2  Need for Integration of Omics Data

Describing a complex system through its inner components usually provides an 
easy-to-understand representation of the global entity. However, important properties 
can be missed by analyzing the elements separately. In general systems theory this 
phenomenon is known as emergence. Hurricanes, which are formed due to a positive 
feedback between wind, humidity, water evaporation and the Coriolis force, are a 
standard example of emergent entities (Abbott 2004). Biological organisms are not 
a case apart. As Burgun and Bodenreider (2008) pointed out, the evolution of bio-
medical research from traditional clinical and biological practices towards the omics 

Fig. 14.1 The three types of omics data
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era calls for the integration of disparate data sources, bridging phenotypic data with 
omics knowledge to model the molecular basis of diseases, and developing support 
systems for analyzing research data. The various types of omics data above describe 
different elements of biological organisms – such as cells. But to be able to under-
stand the inner processes taking place inside such organisms, an integrated approach 
is required. There are many examples where omics data integration provides new 
knowledge that can result in new research paths or lead to the discovery of new treat-
ments. The integration of transcriptomics and metabolomics is driving studies aiming 
to assess the impact of genetic modifications on crops. Kristensen et al. inserted 
high-flux pathways into Arabidopsis thaliana, modifying the inner mechanisms for 
synthesis and storage of high quantities of cyanogenic glucoside (Kristensen et al. 
2005). The study concluded that such modifications could be performed without 
noticeably affecting the transcriptome and metabolome. Hirai et al. (2004) studied 
the impact of nutrient starvation in A. thaliana. To do this, he conducted a series of 
analyses on transcriptome and metabolome data, including Fourier transform-ion 
cyclotron MS experiments. The results showed the presence of general responses to 
sulfur and nitrogen deficits. The integration of metabolomics and transcriptomics is 
used by the same author to elucidate gene-to-gene and metabolite-to-gene networks, 
providing strategies for discovering new gene functions. These strategies included 
batch learning and self-organizing mappings of integrated metabolomics and tran-
scriptomics data (Hirai et al. 2005). Coen et al. (2004) integrated metabonomics and 
transcriptomics to study cellular responses to toxic processes. The study involved 
analyzing the liver tissue of mice injected with different doses of paracetamol. 
Extraction and integration of the data confirmed the relationship between paraceta-
mol toxicity and global energy metabolism failure. Other toxicology-related works 
(Heijne et al. 2003) employed a combination of transcriptomics and proteomics to 
study the cellular mechanisms of toxicity. This study revealed that transcriptomics 
and proteomics are complementary and opened up new opportunities for knowledge 
discovery in molecular toxicology.

Evolution studies benefit from the integration of omics data as well. Genomics, 
transcriptomics and proteomics have been utilized in different studies to evaluate 
how variations in gene and protein patterns in the brain relate to differences in 
humans and chimpanzees (Enard et al. 2002; Khaitovich et al. 2004, 2005). In this 
work, microarrays and human protein expression patterns were studied, showing a 
great many changes in gene expression, mainly related to the human brain, between 
closely related mammals. Genomics and transcriptomics integration has launched 
other studies to assess the effect of changes in transcriptional regulatory networks 
on yeast evolution (Ihmels et al. 2005). The same type of integration served to study 
the evolutionary dynamics of transcriptional regulatory networks in different yeast 
species (Tanay et al. 2005). These studies prove that the annotation of uncharacter-
ized data with well-known concepts enables the integration of genomic and pheno-
typic data, facilitating the reconstruction of regulatory network evolution. Clinical 
studies have also taken advantage of the integration of diverse omics data.

Cancer research is already benefiting from this strategy. One example is the 
identification of biomarkers associated with diseases. Petrik et al. (2006) investigated 
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methods for using genomics, proteomics and metabolomics data from brain tumor 
tissues to identify biomarker signatures. Results indicate better diagnosis accuracy 
with biomarker signatures compared to individual biomarkers. Ippolito et al. (2005) 
presented a study of feature identification related to poor human neuroendocrine 
cancer outcomes based on integrated genomics and metabolomics. The results of 
this study show different features of poor prognosis in this type of cancer. Other 
studies, like the one presented by Sohal et al. (2008), demonstrate the viability of 
integrating genomic data collected at different laboratories and public databases, 
such as the NCBI’s Gene Expression Omnibus (GEO). In this work, they were able 
to circumvent experimental variability and discovered common gene expression 
signature characteristics of cells involved in leukemia processes.

The inherent complexity of biological systems makes the task of integrating omics 
a far from simple one. The Munich Systems Biology Forum recognizes two different 
dimensions of omics integration (MSBF). One carries out integration across levels of 
structure and scale, starting from components and ending with the large-scale organi-
zation of the system. The other integrates data across process phases, linking the 
insights from different omics. Combining these two approaches would uncover the 
spatio-temporal characteristics of biological systems. This, however, raises a series of 
challenges: (a) the discovery of new methods and techniques for extracting accurate 
data from biological tissue, (b) the development of new modeling and computational 
approaches that can handle extremely large amounts of data, and (c) establishment of 
interdisciplinary collaborations among experimentalists and modelers. By advancing 
in these fields, biologists hope to achieve a better understanding of the global  behavior 
of biological processes and, eventually, to apply this new knowledge to new treat-
ments for common diseases, like cancer.

14.2  The Problem of Data Integration in Cancer Research

The problem of heterogeneous data integration has been the object of a plethora of 
studies over the last 20 years. The main goal of database integration is to offer end 
users seamless, homogeneous access to a set of data combined in a single view 
(Lenzerini 2002). The problems to be overcome to integrate heterogeneous data are 
varied. They can be categorized as follows: (1) technological issues, (2) instance 
level heterogeneities, (3) schema level heterogeneities, and (4) legal, ethical issues. 
Technological issues arise when different software platforms, database management 
systems, languages or interfaces are used to access different information repositories. 
Instance level heterogeneities are related to the heterogeneity present at the data 
level, while schema level heterogeneity refers mainly to the structure of and the 
relations among the data. In an environment, such as genomic medicine, where 
privacy is important, legal and ethical issues in relation to the usage of sensitive 
data should also be taken into consideration. To solve this type of problems, proper 
middleware software layers should be built, providing homogenous access to the 
upper layers dealing with other kinds of heterogeneities. These middleware software 
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components are called wrappers. Wrapping services leverage communication when 
different interfaces are used, but they often include syntactic heterogeneities pro-
cessing at the schema level. This is the case of the Data Access Services in the 
ACGT platform (Martín et al. 2007).

14.2.1  Database Integration Approaches

A number of software components normally deal with instance and schema level 
heterogeneities. The behavior and architecture of the components depend on the 
selected database integration approach. Database integration approaches can be 
divided into three categories: (1) information linkage, (2) data translation and (3) 
query translation approaches (Sujanski 2001). Information linkage is a simple 
method used to integrate public sources available on the Internet using cross 
references. This requires ad hoc built software working with specific data reposito-
ries. Some examples of online public sources whose information contents can be 
integrated using these techniques are MEDLINE and OMIM. By contrast, data 
translation approaches are based on the actual storage of data in a centralized 
repository, usually with its own schema. Data from the actual data sources are 
translated and homogenized in order to fit the requirements of this repository, 
which offers unified access to final users. The most representative example of an 
integrated data translation repository is a data warehouse (Kimball 1996). On the 
other hand, query translation approaches do not make any previous transformation 
or translation of the actual data. In this case, mediation software is responsible for 
translating the queries and retrieving partial results from the actual databases.

14.2.1.1  Centralized Approaches

Centralized database integration approaches rely on the transformation and storage 
of data in a centralized repository. This implies the creation and maintenance of a 
new database, with its own database management system and interfaces. The most 
representative example of this type of approach is a data warehouse. A data 
warehouse has an architecture comprising several layers. Data in one layer are 
derived from data in the lower layer (Jarke et al. 1998). The bottom layer of a data 
warehouse contains the operational databases. Operational databases are usually 
heterogeneous data repositories that were not built with the intention of being 
integrated. The core layer is the so-called global data warehouse. Integrated data 
from the underlying databases are stored at this level. This integrated repository is 
updated periodically, maintaining a historical record of past states. On top of the 
architecture are situated the local warehouses, containing data specifically aggre-
gated for different purposes, such as decision making or historical analysis. Clearly, 
centralized approaches require a huge amount of space allocation to store both the 
global and the local warehouses. Another drawback is that the data that the warehouses 
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contain may not be completely up to date – i.e. updating operational databases will 
not necessarily update warehouses. In contrast, queries are answered quickly, and the 
use of highly aggregated data enables complex analysis and faster decision making.

14.2.1.2  Query Translation Approaches

Query translation approaches are not based on an a priori transformation of data. 
The sources of information are in fact an active part of the system, and are accessed 
each time a user launches a query. This vision contrasts with the idea of transforming 
and homogenizing data for the construction of a centralized integrated repository. 
In query translation, data are transformed and homogenized, but this happens every 
time a query is made. This type of approach has one main advantage: retrieved 
information is always up to date. In addition, there is no need with query translation 
to allocate space for the centralized repository. The functioning is more control 
based than data driven – i.e. there exists mediation software responsible for translat-
ing the queries and homogenizing data. However, there are some drawbacks associ-
ated with this type of approach. First of all, the single view displayed to the users 
– i.e. the so-called virtual schema – is not real. This means that this is not the real 
database schema, but a view built for the purpose of giving users the feeling that 
they are accessing a single database. Depending on how elements in this schema 
link to items in the actual databases, the translation of the query and the data may 
not be straightforward.

There are two main ways of building a query translation system: (1) global as 
view (Cali et al. 2001), and (2) local as view (Levy et al. 1996). In global as view, 
the global schema is built using predefined views of the real databases. In this type 
of approach, the links between the virtual schema and the data sources are specified 
early on. This way, query translation is direct and there are no problems of consis-
tency with the results. However, global as view-based systems are not very adapt-
able to a dynamic environment – i.e. if any kind of change occurs in the original 
data sources, the whole model needs to be changed. Conversely, single descriptions 
of the individual sources are built in local as view, usually using elements from a 
common homogenization framework – e.g. an ontology.

14.2.1.3  Levels of Heterogeneity: Instance versus Schema

It is worth establishing a clear difference between two types of common semantic 
heterogeneities, namely the instance and schema levels. Instance heterogeneities 
refer mainly to the problems encountered when integrating the actual data contained 
in the sources. Some examples of instance level heterogeneities are synonymy – 
e.g. different identifiers used to refer to the same protein – homonymy – e.g. same 
identifier with different meanings – scale or granularity. Each of these types of 
heterogeneity requires a set of transformations that need to be designed and implemented 
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ad hoc. Instance level heterogeneities are also hard to detect, since each type of 
inconsistency has its own peculiarities. Consequently, a method designed to detect 
the heterogeneity for one cannot usually be used for the others. There are not many 
relevant works, like Ontodataclean (Pérez-Rey et al. 2006), studying how to lever-
age this problem. Solving heterogeneities at this level is the biggest challenge in 
modern database integration.

Conversely, schema level heterogeneities are semantic problems present in data 
relations and database structures. A database normally has a defined structure of 
relations between its stored data. The description of this structure is called the data-
base schema. When integrating heterogeneous sources of information, the database 
integration system has to deal with heterogeneities in the way these schemas are 
defined in different databases. A popular way to overcome this kind of problems is 
to use a common framework to homogeneously describe the data domain and rela-
tions. Database schemas are transformed to match the common framework specifi-
cations. The most accepted type of framework used to address this issue is ontology 
(Gruber 1993). Some examples of works where ontologies have been used to inte-
grate databases are Ontofusion (Pérez-Rey et al. 2005), ACGT (Tsiknakis et al. 
2006) and TAMBIS (Baker et al. 1998).

14.2.1.4  Public Database Integration

There are a great many publicly available databases containing different kinds of 
biological data (Galperin 2008). These sources contain a lot of heterogeneous 
information regarding genes, proteins and diseases, etc. Each database is usually 
populated and maintained by the institution that created it, and access is normally 
offered via Internet. Such web interfaces are based on text queries – i.e. like popular 
search engines such as Google or Yahoo. Such queries can include natural language 
information or specific technical descriptors. Others require HTML forms con-
verted to XML documents. The main issue when trying to integrate public data 
sources is that they are unstructured. There is no definite schema giving a view of 
how data are related in the database. In actual fact, data are not related at all in many 
cases and are simply stored in the bodies of text documents.

The most common way to integrate public data sources is to use wrappers to 
carry out the information retrieval process. Each web-based interface needs to have 
its own wrapper designed to extract information matching the interface require-
ments of the service. These wrappers solve the syntactic problems, and offer a 
homogeneous interface to the upper layers of the database integration system. The 
main problem with this type of wrappers is that they need to be built completely  
ad hoc for each database. If a change takes place in the web service interface, the 
wrapper should be re-designed and re-implemented. It is even harder to integrate 
this kind of non-structured sources with classical relational databases such as 
patients’ hospital records. The Ontofusion system is an example of a solution for 
this type of integration (Alonso-Calvo et al. 2007).
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14.2.2  Techniques for Integrating Omics Data

Given the acknowledged importance of integrated omics for research on biological 
systems, a big effort has gone into advancing this topic lately. Research has focused 
on addressing the challenges presented in Section 1.2. Numerous algorithms and a 
lot of software have been developed to enable researchers to perform more effective 
analyses and create more accurate models. In regard to interdisciplinary collaborations, 
several standards have been drafted. This has facilitated research by enabling data 
sharing across different work groups. Probably one of the most fruitful developments 
is the Systems Biology Markup Language (SBML), a machine-readable format that 
is useful for representing models of biochemical reaction networks. SBML was 
created as a common language enabling information sharing among developers, 
modelers and researchers. A great many applications have been developed in 
conformity with this standard, making SBML the de facto language for biological 
systems modeling. Another widespread language for modeling biological systems 
is CellML (CellML). This is similar to SBML, although it has a broader scope. 
Although CellML was originally designed to describe biological models, it can 
actually store any mathematical model. CellML facilitates modeling by enabling 
component-based design of new models, as well as by using encapsulation 
techniques and import mechanisms (Lloyd et al. 2004). These features allow users 
to build models based on previously tested models.

Other standardization efforts involve creating common semantics for modeling 
biological systems. The Systems Biology Ontology (SBO) ‘project (SBO: systems 
biology ontology 2008) aims at building controlled vocabularies and ontologies for 
systems biology-related problems (in the context of computational modeling). The 
purpose is to build the standard semantics of these areas of research complemen-
tarily to standard syntaxes like SBML of CellML.

14.2.3  Omics Integration Algorithms

The latest research has made it clear that most biological characteristics cannot 
be attributed to single molecules. Rather biological systems activity is determined 
by complex interactions between the numerous components of a cell, such as 
DNA, RNA, proteins and diverse molecules (Barabási and Oltvai 2004; Albert 
2005). Models that simply describe the behavior of individual elements cannot 
cope with the extreme complexity of biological systems, and more sophisticated 
models are required. Networks have been widely used for this purpose, causing 
the development of numerous algorithms for biological network analysis. One 
example is the SANDY algorithm (Luscombe et al. 2004). SANDY integrates 
transcriptional regulatory information and gene expression data in a wide variety 
of conditions. It employs network analysis techniques to uncover the dynamics of 
biological  networks on a genomic scale. Another example is the GRAM algorithm 
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(GRAM). This algorithm combines genomics and transcriptomics data in order to 
discover gene modules – i.e. sets of genes co-expressed and regulated by the same 
set of transcription factors (TFs). This information can lead to the discovery and 
understanding of the network representing the general regulation of gene expres-
sion in a cell. The gene modules are found by establishing thresholds to the 
p-value binding genes with TFs, using randomization tests to reduce unwarranted 
assumptions. Variants on the network-based approach are employed to analyze 
different biological aspects. For example, developmental genetic regulatory net-
works integrate genomic and phenomic data to give insight into development 
phenomenology (Davidson et al. 2003). These models are vital for analyzing and 
comprehending of how genetic regulatory networks work, as they can lead to 
DNA-specific predictions.

Another approach for describing biological data is to use matrices to relate genes 
with a set of conditions (Madeira and Oliveira 2004). Biclustering algorithms are 
used to extract biclusters – i.e. subsets of genes sharing similar conditions – from 
such matrices. Although biclustering was introduced in the mid-1970s, it was not 
until the year 2000 that they were first used to analyze biological data (Cheng and 
Church 2000). Since then, many biclustering algorithms have been developed for 
biological data analysis. For example, the SAMBA algorithm calculates high qual-
ity clusters in polynomial time by combining graph theory and statistical data 
analysis (Tanay et al. 2002). The algorithm is applied to genomics and DNA-
protein interactions to discover new biological associations. It was tested with data 
from carcinogenic cells, achieving better results than earlier approaches.

The growth of techniques for integrating omics data has produced a parallel 
growth in tools and resources for researchers to visualize data and create increas-
ingly accurate biological models. Many of these tools support the most widespread 
standards, such as SBML, which facilitates data and results sharing. (A full list of 
tools supporting SBML can be found at http://sbml.org/SBML_Software_Guide/
SBML_Software_Summary) Tools for modeling, visualizing and simulating cel-
lular behavior and biological pathways are quite common – e.g. CellDesigner, 
SmartCell or Cell Illustrator. Other resources make biological data available for 
researchers to analyze with the available tools. Panther Pathway (PANTHER)  fea-
tures over 165 pathways (primarily signaling) that can be browsed on the web (via 
CellDesigner). PathArt (PathArt) contains a database of biomolecular interactions, 
with tools for searching, analyzing and visualizing data. It uses curated data from 
the literature and public databases for more than 2,100 signaling and metabolic 
pathways.

14.3  Examples of Omics Integration: International Efforts

Numerous international efforts at developing integration platforms are now under 
way. The goal is to help researchers to seamlessly access the vast amounts of data 
available today.
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14.3.1  ACGT

ACGT (Advancing Clinico-Genomic Trials on Cancer) is an R&D project funded 
by the European Commission under the e-Health program. The main aim of ACGT 
is to develop an ontology-driven infrastructure comprising a set of semantic grid 
services enabling the execution of analytical workflows in the context of multi-
centric, post-genomic clinical trials. This project focuses on providing an open 
source platform, allowing the cancer research community to integrate clinical and 
genomic data at different levels. The data integration process is carried out by the 
Semantic Mediation Layer together with the Data Access Services. Semantic and 
syntactic problems are dealt with separately, providing seamless domain-independent 
data integration. The project uses data from two existing clinical trials on cancer, 
namely TOP, regarding breast cancer, and SIOP, dealing with nephroblastoma. 
These trials are used in the requirements acquisition and testing processes. More 
information about ACGT can be found in (Tsiknakis et al. 2006)

14.3.2  caBIG

caBIG (cancer Biomedical Informatics Grid) is an information network supported 
by the US National Cancer Institute with the main aims of providing an infrastruc-
ture to connect scientists and practitioners, developing standard rules and a com-
mon language to lever information exchange, and building and adapting tools for 
the collection, analysis, integration and dissemination of cancer-related data. One 
of the tools that caBIG is providing for data integration is semCDI (Shironoshita 
et al. 2008), a query formulation model that uses the semantic metadata provided 
in caBIG to build queries and integrate heterogeneous data. This model has been 
tested by querying integrated data about human proteins using caBIO (Kraj and 
McIndoe 2005), GeneConnect (geneConnect) and Pathway Interaction Database 
(PID) data sources. The use of the caBIG semantic metadata allows the construc-
tion of high-level semantically rich queries for these integrated repositories. More 
information about caBIG can be found in (Langella et al. 2007).

14.3.3  HeC

The European Commission funded Health e-Child (HeC) project aiming at developing 
an integrated healthcare platform for European pediatrics, based on Grid-based 
services aimed at manipulating and sharing heterogeneous biomedical data (Freund 
et al. 2006). In the HeC methodology for vertical knowledge integration, patient 
information is integrated according to disease models, instead of using public 
biomedical databases. Patient data collected in the hospitals are annotated using a 
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common model called Integrated Disease Knowledge Model (IDKM). One IDKM 
is built for each particular disease applying a methodology that uses well-known 
biomedical ontologies and public databases. This methodology identifies six 
different levels of granularity in the information, namely population, individual, 
organ, tissue, cellular and molecular. Elements gathered from the different ontolo-
gies are classified into these categories. Relations among concepts in different 
models are also identified. More information about HeC can be found in (Branson 
et al. 2008).

14.3.4  ONTOFUSION

ONTOFUSION is a database integration system. It was designed to provide unified 
access to multiple, heterogeneous biological and medical sources that are publicly 
available over the Internet (Alonso-Calvo et al. 2007), but can be used to access 
private patient databases as well. In ONTOFUSION, a wrapper is built for each one 
of the data sources to grant homogeneous access. Each data source is mapped to a 
global ontology in order to semantically homogenize the language of the concepts 
and relations. The mapping process produces a virtual repository, a homogenized 
view of a single database. With the ONTOFUSION approach, these repositories 
can be automatically combined into abstract integrated virtual repositories, offering 
a unique view of a set of integrated databases. ONTOFUSION offers a web-based 
end-user interface that helps users with the query formulation process. The tool has 
been tested by integrating data from multiple information sources of different 
kinds, such as Ensembl, SwissProt, OMIM, Prosite, SNP, PDB, ENZYME, 
LocusLink, and InterPRO (Pérez-Rey et al. 2005).

14.3.5  BIRN

The Biomedical Informatics Research Network (BIRN) is an NCRR/NIH spon-
sored project for creating and maintaining a virtual community of partners who 
share information across a data management, integration and analysis infrastructure 
(BIRN Web Site). Each partner contributes a database of its specific domain to the 
project. A semantic mediator and a series of analysis tools have been developed to 
offer clinicians the necessary infrastructure to conduct brand new experiments.

The integration module in BIRN is based on a mediator/wrapper design. The 
wrappers provide an SQL interface to all underlying data, relieving the mediator 
from syntactic heterogeneities. The actual semantic mediator, named Metropolis-II, 
employs external ontologies as global schemas and uses a global-as-view approach. 
The mediator includes functionality for underlying repositories to export both data 
and functions, providing a highly flexible architecture. By adopting this approach 
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not only databases but also computational resources can be integrated (Astakhov 
et al. 2005).

14.3.6  SIG

In the field of standardization, the HL7 Clinical Genomics special interest group 
(SIG) is working on the development of standards to enhance the exchange of clini-
cal and genomic data between different institutions (HL7). The core of this stan-
dardization effort is the ‘Genotype’ model that encapsulates a range of genomic 
data types. The SIG has been working on breast cancer with different institutions 
involved in cancer research, like Massachusetts General Hospital. This initiative is 
led by the IBM Haifa Group.

14.4  Future of Data Integration in Genomics Medicine

Biological model generation using omics data still has a long way to go before it is 
a mature area. A lot of progress has to be made on omics data analysis, processing 
and integration techniques before we get a proper understanding of the biological 
processes that take place inside our organism. Nevertheless, the field of omics data 
integration is expected to provide important advances in a wide range of clinical 
areas, including cancer research.

Accurate biological modeling will signify a great advance in many areas of 
medicine. Using such models, medical researchers could, for example, explain the 
cause of numerous diseases, or establish a person’s predisposition to suffer from a 
specific disease. Drug design applications are expected to benefit from omics inte-
gration as well (Nikolsky et al. 2005). Even now, such disparate fields as nutrige-
nomics or toxicogenomics are beginning to take advantage of the results of 
integrating heterogeneous omics data (Stierum et al. 2005; Corthésy-Theulaz et al. 
2005). Additionally, clinicians will be able to foresee the effect of a treatment on 
individual patients. Therapies will be designed specifically for each person based 
on her/his genomic signature, resulting in greatly improved healthcare.

14.4.1  Personalized Genomic Medicine

It has been proven that genomic similarity across random persons lies at around 
99.5%, compared to 99.9% as was generally believed (Levy et al. 2007). Mason 
et al. (2007) reviews the types of variations in the human genome, and divides them 
into five categories, namely: (a) large-scale, (b) rampant small-scale, (c) rogue 
agents, (d) transcribed based and (e) epigenomics based. It is known that genomic 
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variations can be the reason for patients’ positive predisposition to specific dis-
eases, or the level of responsiveness to a drug – e.g. inherited genetic markers have 
been recently tested for predicting clinical outcomes in cancer patients (Rebbeck 
2006). There are already initiatives to establish infrastructures for researchers to 
test their hypotheses and uncover the genomic relation to disease predisposition. 
The Personal Genome Project (PGP) at Harvard University collects genetic samples 
from volunteers for publication in the interests of scientific research. The goal is to 
provide data for eventually achieving the personalized genomic medicine, developing 
tools for the design of patient-specific therapies.

In addition, there are efforts at developing comprehensible systems to enable clinical 
and omics data access and interpretation. A relevant example is the Mayo Clinic/IBM 
Computational Biology Collaboration (de Groen et al. 2003), led by Professor de 
Groen. This consortium has created a data warehouse containing clinical and genomic 
data from millions of patients. The database management system is enhanced by a 
powerful search engine, able to handle a large variety of data types and query forms. 
This engine is complemented by an ad hoc designed end-user interface.

To be able to implement real personalized genomic medicine, all omics 
information that researchers have at their disposal has to be contextualized. New 
technologies have yet to emerge before this can be achieved. Bhowmick et al. 
(2003) described the challenges that lie ahead of this enterprise. Of these, we 
should stress the need to develop common standards for storing omics information 
that can be adopted by different researchers – SBML and CellML are a first step in 
this direction – and to seamlessly integrate heterogeneous databases and properly 
combine omics data techniques so that researchers are able to access rich data 
repositories in a uniform manner.

Personalized genomic medicine is expected to change health care and improve 
our lives. It remains, however, to be seen how drastic this transformation will be. 
Currently, two different opinions coexist (Billings et al. 2005): on the one side, some 
predict that genomic medicine will imply a radical healthcare revolution, making 
current models obsolete. Others, however, foresee a more gradual application of new 
genomic technologies in the marketplace. In any case, personalized genomic medicine 
will have important implications for cancer research. It has been proven that, just 
like many common diseases, a great number of cancers are caused by interactions 
between genetic and environmental factors (Rubinstein and Roy 2005). Personalized 
genomic medicine can help to uncover such interactions, enabling precise predic-
tions of whether a person is predisposed to suffer from a specific cancer, or her/his 
expected response to a treatment. Effective therapies could be designed against 
cancer, greatly enhancing our ability to fight this disease.
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