
B 10 M ED I CAL 
SIGNAL ANALYSIS 
A Case-Study Approach 

Rangaraj M. Rangayyan 
Univeristy of Calgary 
Calgary, Alberta, Canada 

IEEE Engineering in Medicine @B and Biology Society, Sponsor 

IEEE Press Series on Biomedical Engineering 
Metin Akay, Series Editor 

*IEEE 
IEEE Press 

@ R L E N C E  
JOHN WILEY & SONS, INC. 



This text is printed on acid-free paper. @ 

Copyright 8 2002 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any 
fonn or by any means. electronic, mechanical, photocopying. recording, scanning or otherwise, 
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act. without 
either the prior written permission of the Publisher. or authorization through payment o f  the 
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be 
addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, 
NY 10158-0012, (212) 850-601 I, fax (212) 850-6008. E-Mail: PERMREQ @ WILEY.COM. 

For ordering and customer service, call I -800-CALL-WILEY. 

Library of Congress Cataloging in Publication Data is available. 

ISBN 0-471-2081 1-6 

10 9 8 7 6 5 4 3 2 



Dedication 

Preface 

About the Author 

Acknowledgments 

Symbols and Abbreviations 

1 Introduction to Biomedical Signals 
1.1 The Nature of Biomedical Signals 
1.2 Examples of Biomedical Signals 

1.2.1 The action potential 
1.2.2 The electroneurogram (ENG) 
1.2.3 The electromyogram (EMG) 
1.2.4 The electrocardiogram (ECG) 
1.2.5 The electroencephalogram (EEG) 
1.2.6 Event-related potentials (ERPs) 
1.2.7 The electrogastrogram (EGG) 
1.2.8 The phonocardiograrn (PCG) 
1.2.9 The carotid pulse (CP) 

Contents 

vii 

ix 

xiv 

xvii 

xxix 

1 
1 
5 
5 
9 

11 
14 
28 
30 
31 
34 
38 

xxi 



XXil  CONTENTS 

1.2.10 Signals from catheter-tip sensors 
1.2.1 1 The speech signal 
1.2.12 The vibromyogram (VMG) 
1.2.13 The vibroarthrogram (VAG) 
1.2.14 Oto-acoustic emission signals 
Objectives of Biomedical Signal Analysis 
Difficulties in Biomedical Signal Analysis 

1.3 
1.4 
1.5 Computer-aided Diagnosis 
1.6 Remarks 
1.7 Study Questions and Problems 
1.8 Laboratory Exercises and Projects 

2 Concurrent, Coupled, and Correlated Processes 
2.1 Problem Statement 
2.2 Illustration of the Problem with Case-studies 

2.2.1 
2.2.2 
2.2.3 
2.2.4 Cardio-respiratory interaction 
2.2.5 
2.2.6 

2.3 Application: Segmentation of the PCG 
2.4 Remarks 
2.5 Study Questions and Problems 
2.6 Laboratory Exercises and Projects 

The electrocardiogram and the phonocardiogram 
The phonocardiogram and the carotid pulse 
The ECG and the atrial electrogram 

The electromyogram and the vibromyogram 
The knee-joint and muscle vibration signals 

3 Filtering for Removal of Artifacts 
3.1 Problem Statement 

Random noise, structured noise, and physiological 
interference 

3.1.1 

3.1.2 Stationary versus nonstationary processes 
Illustration of the Problem with Case-studies 
3.2.1 Noise in event-related potentials 
3.2.2 
3.2.3 
3.2.4 
3.2.5 
3.2.6 
3.2.7 

3.2 

High-frequency noise in the ECG 
Motion artifact in the ECG 
Power-line interference in ECG signals 
Maternal interference in fetal ECG 
Muscle-contraction interference in VAG signals 
Potential solutions to the problem 

40 
40 
46 
46 
48 
48 
52 
55 
57 
58 
59 

61 
62 
62 
62 
63 
64 
66 
67 
67 
69 
71 
71 
71 

73 
73 

74 
81 
85 
85 
85 
87 
87 
90 
91 
93 



CONTENTS xxiii 

3.3 Time-domain Filters 93 
3.3.1 Synchronized averaging 94 
3.3.2 Moving-average filters 99 
3.3.3 Derivative-based operators to remove low-frequency 

artifacts 109 
3.4 Frequency-domain Filters 115 

3.4.1 Removal of high-frequency noise: Butterworth 
lowpass filters 118 

3.4.2 Removal of low-frequency noise: Butterworth 
highpass filters 127 

3.4.3 Removal of periodic artifacts: Notch and comb filters 130 
3.5 
3.6 

Optimal Filtering: The Wiener Filter 
Adaptive Filters for Removal of Interference 
3.6.1 The adaptive noise canceler 
3.6.2 The least-mean-squares adaptive filter 
3.6.3 

3.7 Selecting an Appropriate Filter 
3.8 Application: Removal of Artifacts in the ECG 
3.9 Application: Maternal - Fetal ECG 
3.10 Application: Muscle-contraction Interference 
3.11 Remarks 
3.12 Study Questions and Problems 
3.13 Laboratory Exercises and Projects 

The recursive least-squares adaptive filter 

4 Event Detection 
4.1 Problem Statement 
4.2 Illustration of the Problem with Case-studies 

4.2.1 The P, QRS, and T waves in the ECG 
4.2.2 The first and second heart sounds 
4.2.3 The dicrotic notch in the carotid pulse 
4.2.4 EEG rhythms, waves, and transients 
Detection of Events and Waves 
4.3.1 Derivative-based methods for QRS detection 
4.3.2 The Pan-Tompkins algorithm for QRS detection 
4.3.3 Detection of the dicrotic notch 
Correlation Analysis of EEG channels 
4.4.1 Detection of EEG rhythms 
4.4.2 

4.3 

4.4 

Template matching for EEG spike-and-wave 
detection 

137 
146 
147 
150 
15 1 
158 
162 
165 
166 
171 
171 
175 

177 
177 
178 
178 
179 
180 
180 
182 
183 
187 
191 
191 
193 

200 



xxiv CONTENTS 

4.5 Cross-spectral Techniques 
4.5.1 

4.6 The Matched Filter 
4.6.1 

4.7 Detection of the P Wave 
4.8 Homomorphic Filtering 

4.8.1 Generalized linear filtering 
4.8.2 Homomorphic deconvolution 
4.8.3 

4.9 Application: ECG Rhythm Analysis 
4.10 Application: Identification of Heart Sounds 
4.1 1 Application: Detection of the Aortic Component of S2 
4.12 Remarks 
4.13 Study Questions and Problems 
4.14 Laboratory Exercises and Projects 

Coherence analysis of EEG channels 

Detection of EEG spike-and-wave complexes 

Extraction of the vocal-tract response 

5 Waveshape and Waveform Complexity 
5.1 Problem Statement 
5.2 Illustration of the Problem with Case-studies 

200 
200 
204 
204 
205 
212 
212 
213 
216 
222 
225 
227 
23 1 
233 
234 

237 
237 
238 

5.2.1 The QRS complex in the case of bundle-branch block 238 
5.2.2 

5.2.3 Ectopic beats 
5.2.4 EMG interference pattern complexity 
5.2.5 PCG intensity patterns 

5.3 Analysis of Event-related Potentials 
5.4 Morphological Analysis of ECG Waves 

5.4.1 Correlation coefficient 
5.4.2 
5.4.3 ECG waveform analysis 

5.5.1 Amplitude demodulation 
5.5.2 
5.5.3 The envelogram 

5.6.1 The root mean-squared value 
5.6.2 Zero-crossing rate 
5.6.3 Turns count 
5.6.4 Form factor 

The effect of myocardial ischemia and infarction on 
QRS waveshape 

The minimum-phase correspondent and signal length 

5.5 Envelope Extraction and Analysis 

Synchronized averaging of PCG envelopes 

5.6 Analysis of Activity 

238 
238 
239 
239 
240 
240 
240 
24 1 
248 
249 
25 1 
252 
255 
256 
259 
259 
260 
262 



CONTENTS 

5.7 Application: Normal and Ectopic ECG Beats 
5.8 Application: Analysis of Exercise ECG 
5.9 Application: Analysis of Respiration 
5.10 Application: Correlates of Muscular Contraction 
5.11 Remarks 
5.12 Study Questions and Problems 
5.13 Laboratory Exercises and Projects 

6 Frequency-domain Characterization 
6.1 Problem Statement 
6.2 Illustration of the Problem with Case-studies 

6.2.1 

6.2.2 

The effect of myocardial elasticity on heart sound 
spectra 
Frequency analysis of murmurs to diagnose valvular 
defects 

6.3 The Fourier Spectrum 
6.4 Estimation of the Power Spectral Density Function 

6.4.1 The periodogram 
6.4.2 The need for averaging 
6.4.3 
6.4.4 
6.4.5 

6.5.1 Moments of PSD functions 
6.5.2 Spectral power ratios 
Application: Evaluation of Prosthetic Valves 

The use of windows: Spectral resolution and leakage 
Estimation of the autocorrelation function 
Synchronized averaging of PCG spectra 

6.5 Measures Derived from PSDs 

6.6 
6.7 Remarks 
6.8 Study Questions and Problems 
6.9 Laboratory Exercises and Projects 

7 Modeling Biomedical Systems 
7.1 Problem Statement 
7.2 Illustration of the Problem 

7.2.1 Motor-unit firing patterns 
7.2.2 Cardiac rhythm 
7.2.3 
7.2.4 Patello-femoral crepitus 

Formants and pitch in speech 

7.3 Point Processes 
7.4 Parametric Svstem Modeling 

xxv 

263 
265 
266 
269 
269 
272 
274 

277 
278 
279 

279 

280 
282 
287 
288 
289 
29 1 
297 
298 
302 
305 
307 
308 
3 10 
311 
312 

315 
315 
316 
3 16 
317 
317 
319 
3 20 
327 



XXVi CONTENTS 

7.5 Autoregressive or All-pole Modeling 
7.5.1 Spectral matching and parameterization 
7.5.2 Optimal model order 
7.5.3 Relationship between AR and cepstral coefficients 

7.6.1 Sequential estimation of poles and zeros 
7.6.2 Iterative system identification 
7.6.3 Homomorphic prediction and modeling 
Electromechanical Models of Signal Generation 
7.7.1 Sound generation in coronary arteries 
7.7.2 Sound generation in knee joints 

Application: Spectral Modeling and Analysis of PCG 
Signals 

7.6 Pole-zero Modeling 

7.7 

7.8 Application: Heart-rate Variability 
7.9 

7.10 Application: Coronary Artery Disease 
7.11 Remarks 
7.12 Study Questions and Problems 
7.13 Laboratory Exercises and Projects 

8 Analysis of Nonstationary Signals 
8.1 Problem Statement 
8.2 Illustration of the Problem with Case-studies 

8.2.1 Heart sounds and murmurs 
8.2.2 EEG rhythms and waves 
8.2.3 

8.3.1 

Articular cartilage damage and knee-joint vibrations 

Characterization of nonstationary signals and 
dynamic systems 

8.3 Time-variant Systems 

8.4 Fixed Segmentation 
8.4.1 The short-time Fourier transform 
8.4.2 Considerations in short-time analysis 

8.5.1 Spectral error measure 
8.5.2 ACF distance 
8.5.3 The generalized likelihood ratio 
8.5.4 

Use of Adaptive Filters for Segmentation 
8.6.1 Monitoring the RLS filter 

8.5 Adaptive Segmentation 

Comparative analysis of the ACF, SEM, and GLR 
methods 

8.6 

333 
339 
342 
346 
355 
358 
360 
366 
37 1 
37 1 
374 
377 

380 
386 
386 
389 
390 

39 1 
392 
392 
392 
393 
393 
396 

397 
399 
400 
402 
405 
408 
413 
414 

416 
419 
420 



8.6.2 The RLS lattice filter 42 1 
8.7 Application: Adaptive Segmentation of EEG Signals 43 1 
8.8 Application: Adaptive Segmentation of PCG Signals 438 
8.9 Application: Time-varying Analysis of Heart-rate Variability 438 
8.10 Remarks 
8.1 1 Study Questions and Problems 
8.12 Laboratory Exercises and Projects 

9 Pattern Classification and Diagnostic Decision 
9.1 Problem Statement 
9.2 Illustration of the Problem with Case-studies 

9.2.1 Diagnosis of bundle-branch block 
9.2.2 Normal or ectopic ECG beat? 
9.2.3 Is there an alpha rhythm? 
9.2.4 Is a murmur present? 

9.3 Pattern Classification 
9.4 Supervised Pattern Classification 

9.4.1 Discriminant and decision functions 
9.4.2 Distance functions 
9.4.3 The nearest-neighbor rule 

9.5.1 ’ Cluster-seeking methods 
Probabilistic Models and Statistical Decision 
9.6.1 
9.6.2 

9.7 Logistic Regression Analysis 
9.8 The Training and Test Steps 

9.8.1 The leave-one-out method 
9.9 Neural Networks 
9.10 Measures of Diagnostic Accuracy and Cost 

9.10.1 Receiver operating characteristics 
9.10.2 McNemar’s test of symmetry 

9.1 1 Reliability of Classifiers and Decisions 
9.12 Application: Normal versus Ectopic ECG Beats 
9.13 Application: Detection of Knee-joint Cartilage Pathology 
9.14 Remarks 
9.15 Study Questions and Problems 
9.16 Laboratory Exercises and Projects 

9.5 Unsupervised Pattern Classification 

9.6 
Likelihood functions and statistical decision 
Bayes classifier for normal patterns 

444 
44.4 
444 

445 
446 
446 
446 
447 
448 
448 
449 
450 
450 
45 1 
452 
453 
453 
457 
457 
460 
462 
463 
463 
464 
466 
469 
472 
473 
474 
480 
483 
485 
487 



xxviil CONTENTS 

References 

Index 

489 

509 



 

Dedication 

Ma'tr dkvd bhava 
Pitr de'vd bhava 
Achdrya de'vb bhava 

Look upon your mother as your God 
Look upon your father as your God 
Look upon your teacher as your God 

- from the sacred Vedic hymns of the Taittireeya Upanishad of India. 

This book is dedicated to the fond memory of 
my mother Srimati Padma Srinivasan Rangajyan 

and my father Sri Srinivasan Mandayam Rangayyan, 
and to all of my teachers, 

in particular, Professor Ivaturi Surya Narayana Murthy. 

vii 



Preface 

Background and Motivation 

The establishment of the clinical electrocardiograph (ECG) by the Dutch physician 
Willem Einthoven in 1903 marked the beginning of a new era in medical diagnostic 
techniques, including the entry of electronics into health care. Since then, electronics, 
and subsequently computers, have become integral components of biomedical signal 
analysis systems, performing a variety of tasks from data acquisition and prepro- 
cessing for removal of artifacts to feature extraction and interpretation. Electronic 
instrumentation and computers have been applied to investigate a host of biologi- 
cal and physiological systems and phenomena, such as the electrical activity of the 
cardiovascular system, the brain, the neuromuscular system, and the gastric system; 
pressure variations in the cardiovascular system; sound and vibration signals from 
the cardiovascular, the musculo-skeletal, and the respiratory systems; and magnetic 
fields of the brain, to name a few. 

The primary step in investigations of physiological systems requires the devel- 
opment of appropriate sensors and instrumentation to transduce the phenomenon of 
interest into a measurable electrical signal. The next step of analysis of the signals, 
however, is not always an easy task for a physician or life-sciences specialist. The 
clinically relevant information in the signal is often masked by noise and interference, 
and the signal features may not be readily comprehensible by the visual or auditory 
systems of a human observer. Heart sounds, for example, have most of their energy 
at or below the threshold of auditory perception of most humans; the interference pat- 
terns of a surface electromyographic (EMG) signal are too complex to permit visual 

lx 



analysis. Some repetitious or attention-demanding tasks, such as on-line monitoring 
of the ECG of a critically ill patient with cardiac rhythm problems, could be uninter- 
esting and tiring for a human observer. Furthermore, the variability present in a given 
type of signal from one subject to another, and the inter-observer variability inherent 
in subjective analysis performed by physicians or analysts make consistent under- 
standing or evaluation of any phenomenon difficult, if not impossible. These factors 
created the need not only for improved instrumentation, but also for the development 
of methods for objective analysis via signal processing algorithms implemented in 
electronic hardware or on computers. 

Processing of biomedical signals, until a few years ago, was mainly directed 
toward filtering for removal of noise and power-line interference; spectral analysis 
to understand the frequency characteristics of signals; and modeling for feature 
representation and parameterization. Recent trends have been toward quantitative or 
objective analysis of physiological systems and phenomena via signal analysis. The 
field of biomedical signal analysis has advanced to the stage of practical application 
of signal processing and pattern analysis techniques for efficient and improved non- 
invasive diagnosis, on-line monitoring of critically ill patients, and rehabilitation and 
sensory aids for the handicapped. Techniques developed by engineers are gaining 
wider acceptance by practicing clinicians, and the role of engineering in diagnosis 
and treatment is gaining much-deserved respect. 

The major strength in the application of computers in biomedical signal analysis 
lies in the potential use of signal processing and modeling techniques for quantitative 
or objective analysis. Analysis of signals by human observers is almost always 
accompanied by perceptual limitations, inter-personal variations, errors caused by 
fatigue, errors caused by the very low rate of incidence of a certain sign of abnormality, 
environmental distractions, and so on. The interpretation of a signal by an expert bears 
the weight of the experience and expertise of the analyst; however, such analysis is 
almost always subjective. Computer analysis of biomedical signals, if performed with 
the appropriate logic, has the potential to add objective strength to the interpretation of 
the expert. It thus becomes possible to improve the diagnostic confidence or accuracy 
of even an expert with many years of experience. This approach to improved health 
care could be labeled as computer-aided diagnosis. 

Developing an algorithm for biomedical signal analysis, however, is not an easy 
task; quite often, it might not even be a straightforward process. The engineer or 
computer analyst is often bewildered by the variability of features in biomedical 
signals and systems, which is far higher than that encountered in physical systems 
or observations. Benign diseases often mimic the features of malignant diseases; 
malignancies may exhibit a characteristic pattern, which, however, is not always 
guaranteed to appear. Handling all of the possibilities and degrees of freedom in a 
biomedical system is a major challenge in most applications. Techniques proven to 
work well with a certain system or set of signals may not work in another seemingly 
similar situation. 



The Problem-solving Approach 

The approach I have taken in presenting material in this book is primarily that 
of development of algorithms for problem solving. Engineers are often said to 
be (with admiration, I believe) problem solvers. However, the development of a 
problem statement and gaining of a good understanding of the problem could require 
a significant amount of preparatory work. I have selected a logical series of problems, 
from the many case-studies I have encountered in my research work, for presentation 
in the book. Each chapter deals with a certain type of a problem with biomedical 
signals, Each chapter begins with a statement of the problem, followed immediately 
with a few illustrations of the problem with real-life case-studies and the associated 
signals. Signal processing, modeling, or analysis techniques are then presented, 
starting with relatively simple “textbook” methods, followed by more sophisticated 
research approaches directed at the specific problem. Each chapter concludes with 
one or more applications to significant and practical problems. The book is illustrated 
copiously with real-life biomedical signals and their derivatives. 

The methods presented in the book are at a fairly high level of technical sophistica- 
tion. A good background in signal and system analysis [ l ,  2,3] as well as probability, 
random variables, and stochastic processes [4, 5,  6, 7, 8, 91 is required, in order to 
follow the procedures and analysis. Familiarity with systems theory and transforms 
such as the Laplace and Fourier, the latter in both continuous and discrete versions, 
will be assumed. We will not be getting into details of the transducers and instru- 
mentation techniques essential for biomedical signal acquisition [ 10, 11, 12, 131; 
instead, we will be studying the problems present in the signals after they have been 
acquired, concentrating on how to solve the problems. Concurrent or prior study of 
the physiological phenomena associated with the signals of specific interest, with a 
clinical textbook, is strongly recommended. 

Intended Readership 

The book is directed at engineering students in their final year of undergraduate 
studies or in their graduate studies. Electrical Engineering students with a rich 
background in signals and systems [ 1,2,3] will be well prepared for the material in 
the book. Students in other engineering disciplines, or in computer science, physics, 
mathematics, or geophysics should also be able to appreciate the material in the book. 
A course on digital signal processing or digital filters [ 141 would form a useful link, 
but a capable student without this topic may not face much difficulty. 

Practicing engineers, computer scientists, information technologists, medical 
physicists, and data-processing specialists working in diverse areas such as telecom- 
munications, seismic and geophysical applications, biomedical applications, and hos- 
pital information systems may find the book useful in their quest to learn advanced 
techniques for signal analysis. They could draw inspiration from other applica- 
tions of signal processing or analysis, and satisfy their curiosity regarding computer 
applications in medicine and computer-aided medical diagnosis. 
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Teaching and Learning Plan 

The book starts with an illustrated introduction to biomedical signals in Chapter 1. 
Chapter 2 continues the introduction, but with emphasis on the analysis of multiple 
channels of related signals. This part of the book may be skipped in the teaching 
plan for a course if the students have had a previous course on biomedical signals and 
instrumentation. In such a case, the chapters should be studied as review material in 
order to get oriented toward the examples to follow in the book. 

Chapter 3 deals exclusively with filtering for removal of artifacts as an important 
precursive step before signal analysis. Basic properties of systems and transforms 
as well as signal processing techniques are reviewed and described as and when 
required. The chapter is written so as to facilitate easy comprehension by those who 
have had a basic course on signals, systems, and transforms [l, 2, 31. The emphasis 
is on the application to particular problems in biomedical signal analysis, and not on 
the techniques themselves. A large number of illustrations are included to provide a 
visual impression of the problem and the effectiveness of the various filtering methods 
described. 

Chapter 4 presents techniques particularly useful in the detection of events in 
biomedical signals. Analysis of waveshape and waveform complexity of events and 
components of signals is the focus of Chapter 5.  Techniques for frequency-domain 
characterization of biomedical signals and systems are presented in Chapter 6. A 
number of diverse examples are provided in these chapters. Attention is directed to 
the characteristics of the problems one faces in analyzing and interpreting biomedical 
signals, rather than to any specific diagnostic application with particular signals. 

The material in the book up to and including Chapter 6 will provide more than 
adequate material for a one-semester (1 3-week) course at the senior (fourth-year) 
engineering level. My own teaching experience indicates that this material will 
require about 36 hours of lectures, augmented with about 12 hours of tutorials 
(problem-solving sessions) and 10 laboratory sessions. 

Modeling biomedical signal-generating processes and systems for parametric rep- 
resentation and analysis is the subject of Chapter 7. Chapter 8 deals with the analysis 
of nonstationary signals. The topics in these chapters are of higher mathematical 
complexity than suitable for undergraduate courses. Some sections may be selected 
and included in a first course on biomedical signal analysis if there is particular 
interest in these topics. Otherwise, the two chapters could be left for self-study by 
those in need of the techniques, or included in an advanced course. 

Chapter 9 presents the final aspect of biomedical signal analysis, and provides an 
introduction to pattern classification and diagnostic decision. Although this topic is 
advanced in nature and could form a graduate-level course on its own, the material 
is introduced so as to draw the entire exercise of biomedical signal analysis to its 
concluding stage of diagnostic decision. It is recommended that a few sections from 
this chapter be included even in a first course on biomedical signal analysis so as to 
give the students a flavor of the end result. 

The topic of data compression has deliberately been left out of the book. Advanced 
topics such as nonlinear dynamics, time-frequency distributions, wavelet-based anal- 
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ysis, chaos, and fractals are not covered in the book. Adaptive filters and nonstationary 
signal analysis techniques are introduced in the book, but deserve more attention, 
depth, and breadth. These topics will form the subjects of a follow-up book that I 
intend to write. 

Each chapter includes a number of study questions and problems to facilitate 
preparation for tests and examinations. A number of laboratory exercises are also 
provided at the end of each chapter, which could be used to formulate hands-on 
exercises with real-life signals. Data files related to the problems and exercises at the 
end of each chapter are available at the site 

ftp:llftp.ieee.org/uploadslpresslrangay y an/ 

MATLAB programs to read the data are also provided where required. 
It is strongly recommended that the first one or two laboratory sessions in the 

course be visits to a local hospital, health sciences center, or clinical laboratory to view 
biomedical signal acquisition and analysis in a practical (clinical) setting. Signals 
acquired from fellow students and professors could form interesting and motivating 
material for laboratory exercises, and should be used to supplement the data files 
provided. A few workshops by physiologists, neuroscientists, and cardiologists 
should also be included in the course so as to provide the students with a non- 
engineering perspective on the subject. 

Practical experience with real-life signals is a key element in understanding and 
appreciating biomedical signal analysis. This aspect could be difficult and frustrating 
at times, but provides professional satisfaction and educational fun! 

RANGARAJ MANDAYAM RANGAYYAN 

Calgay,  Alberta, Canada 
September: 2001 , 
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Symbols and Abbreviations 

Note: Bold-face letters represent the vector or matrix form of the variable in the 
corresponding italicized letters. Variables or symbols used within limited contexts 
are not listed: they are described within their contexts. The mathematical symbols 
listed may stand for other entities or variables in different applications; only the 
common associations are listed for ready reference. 

ak 
au 
aV{E L, R} 
A,  
ACF 
ADC 
A1 
AM 
ANC 
ANN 
A 0  
AP 
AR 
AR 
ARMA 
AS 
ASD 
AV 

autoregressive model or filter coefficients 
arbitrary units 
augmented ECG leads 
area under the ROC curve 
autocorrelation function 
analog-to-digital converter 
aortic insufficiency 
amplitude modulation 
adaptive noise cancellation 
artificial neural network 
aorta, aortic (valve or pressure) 
action potential 
interval between atrial activity and the corresponding QRS 
autoregressive (model or filter) 
autoregressive, moving-average (model or filter) 
aortic stenosis 
atrial septa1 defect 
atrio-ventricular 
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A2 
bl 

bPm 
C 
Ci 
c=, 
CCF 
CD 
CNS 
CP 
CSD 
cv 
D 
DAC 
DC 
DFT 
DM 
DW 

ECG 
ECoG 
EEG 
EGG 
EM 
EMG 
ENG 
ERP 
EZ. 
E [  I 
f 
fc 
f d  

e(nh E(w)  

FF 
FFT 
FIR 
FM 
FN 
FNF 
FP 
FPF 
Fr 
GLR 
h(tL h(n) 

Hg 
H 

aortic component of the second heart sound 
moving-average model or filter coefficients 
beats per minute 
covariance matrix 
the ith class in a pattern classification problem 
covariance between ;F and y 
cross-correlation function 
compact disk 
central nervous system 
carotid pulse 
cross-spectral density, cross-spectrum 
coefficient of variation 
dicrotic notch in the carotid pulse 
digital-to-analog converter 
direct current; zero frequency 
discrete Fourier transform 
diastolic murmur 
dicrotic wave in the carotid pulse 
model or estimation error 
electrocardiogram, electrocardiography 
electrocorticogram 
electroencephalogram 
electrogastrogram 
electromagnetic 
electromyogram 
electroneurogram 
event-related potential 
total energy of the signal ;F 

statistical expectation operator 
frequency variable, usually in Hertz 
cutoff frequency (usually at -3 dB) of a filter in Hertz 
sampling frequency in Hertz 
form factor 
fast Fourier transform 
finite impulse response (filter) 
frequency modulation 
false negative 
false negative fraction 
false positive 
false positive fraction 
Fourier transform 
generalized likelihood ratio 
impulse response of a filter 
Hermitian (complex-conjugate) matrix transposition 
mercury 
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H(5)7 H(4 
H ( 8 )  

H ( 4  
H ( w )  
H(w) 
HR 
HRV 
HSS 
H% 
i 
IFT 
IIR 
IPI 
j 
j 
In 

LA 
LMS 
LP 
LV 
m 
m 
mA 
mm 
ms 
mV 
M 
MA 
MCI 
MI 
MMSE 
MPC 
MR 
MS 
MS 
MSE 
MU 
MUAP 
MVC 
nA 
N 
N 
NPV 

Li j 

Pk 

transfer function of a filter 
Laplace transform of h( t )  
z-transform of h(n) 
frequency response of a filter 
Fourier transform of h(t) 
heart rate 
heart-rate variability 
hypertrophic subaortic stenosis 
Hertz 
index of a series or discrete-time signal 
inverse Fourier transform 
infinite impulse response (filter) 
inter-pulse interval 
index of a series or discrete-time signal 

natural logarithm (base e) 
loss function in pattern classification 
left atrium 
least mean squares 
linear prediction (model) 
left ventricle 
mean 
mean vector of a pattern class 
milliamperes 
millimeter 
millisecond 
millivolt 
number of samples 
moving average (filter) 
muscle-contraction interference 
mitral insufficiency 
minimum mean-squared error 
minimum-phase correspondent 
mitral regurgitation 
mitral stenosis 
mean-squared 
mean-squared error 
motor unit 
motor unit action potential 
maximal voluntary contraction 
nanoamperes 
number of samples 
filter order 
negative predictive value 
pole of a model 

J-? 
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P(X) 
P(xlCi) 
PPm 
PPS 
OAE 
P 
P 
P 
P ( x )  
P (  Ci 12) 
PCG 
PDA 
PDF 
PFP 
PI 
PLP 
PPC 
PPV 
PQ 
PS 
PSD 
P2 
Q 
QRS 
r ,  r 
T j  (x) 
RA 
REM 
RF 
RLS 
RLSL 
RMS 
ROC 
RR 
RV 
8 

8 

S ( W ) *  S ( k )  
SA 
SD 
SEM 
SEP 
SL 
SM 
SMUAP 

probability density function of the random variable z 
likelihood function of class Ci or state-conditional PDF of 2 

pulses per minute 
pulses per second 
oto-acoustic emission 
atrial contraction wave in the ECG 
percussion wave in the carotid pulse 
model order or number of poles 
probability of the event x 
posterior probability that the observation x is from class Ci 
phonocardiogram 
patent ductus arteriosus 
probability density function 
patello-femoral pulse trains or signals 
pulmonary insufficiency 
posterior leaflet prolapse 
physiological patello-femoral crepitus 
positive predictive value 
isoelectric segment in the ECG before ventricular contraction 
pulmonary stenosis 
power spectral density, power spectrum 
pulmonary component of the second heart sound 
model order or number of zeros 
ventricular contraction wave in the ECG 
reference input to an adaptive filter 
average risk or loss in pattern classification 
right atrium 
rapid eye movement 
radio-frequency 
recursive least-squares 
recursive least-squares lattice 
root mean squared 
receiver operating characteristics 
interval between two successive QRS waves in an ECG 
right ventricle 
second 
Laplace-domain variable 
auto- or cross-spectral density; power spectral density 
sino-atrial 
standard deviation 
spectral error measure 
somatosensory evoked potential 
signal length 
systolic murmur 
single motor-unit action potential 
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SNR 
ST 
STm 
s1 
s2 
s3 
s4 
S+ 
S- 
t 
T 
T 
T 

T+ 
T- 
TF 
TFD 
T h  
TI 
TN 
T N F  
TP 
TPF 
TS 
TSE 
TV 
V 
V1 -V6 
VAG 
VCG 
VMG 
VSD 

T 

W 

W 

4t>, .(n> 

X ( f  
X ( k )  
X ( Z )  
X ( T ,  w )  
!A% v(n) 

Y(f 1, Y ( 4  

X 

X 

Y 

signal-to-noise ratio 
isoelectric segment in the ECG during ventricular contraction 
short-time Fourier transform 
first heart sound 
second heart sound 
third heart sound 
fourth heart sound 
sensitivity of a test 
specificity of a test 
time variable 
ventricular relaxation wave in the ECG 
tidal wave in the carotid pulse 
sampling interval 
as a superscript: vector or matrix transposition 
positive test result 
negative test result 
time-frequency 
time-frequency distribution 
threshold 
tricuspid insufficiency 
true negative 
true negative fraction 
true positive 
true positive fraction 
tricuspid stenosis 
total squared error 
television 
Volt 
chest leads for ECG 
vibroarthrogram 
vectorcardiography 
vibromyogram 
ventricular septa1 defect 
filter tap weight; weighting function 
filter weight vector 
a signal in the time domain; usually denotes input 
vector representation of the signal z(n)  
a feature vector in pattern classification 
Fourier transform of z( t )  
Discrete Fourier transform of z(n)  
z-transform of z(n)  
short-time Fourier transform or time-frequency distribution of x ( t )  
a signal in the time domain; usually denotes output 
vector representation of the signal y(n) 
Fourier transform of y(t) 
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Y ( k )  
Y ( 4  

z-l 
z 

z1 
Z 
ZCR 
ZT 
1D 
2D 
3D 
I, 11, I11 
a 
P 
7 
7 + Y  

Discrete Fourier transform of y(n) 
x-transform of ~ ( n )  
the z-transform variable 
unit delay operator in discrete-time systems 
zeros of a system 
a prototype feature vector in pattern classification 
zero-crossing rate 
the z-transform 
one-dimensional 
two-dimensional 
three-dimensional 
limb leads for ECG 
an EEG wave 
an EEG wave 
an EEG wave 
correlation coefficient between z and y 
reflection coefficient 
coherence between z and y 
an EEG wave 
Dirac delta (impulse) function 
total squared error 
a random variable or noise process 
an angle 
a threshold 
an EEG wave 
cross-correlation function 
forgetting factor in the RLS filter 
the mean (average) of a random variable 
a rhythmic wave in the EEG 
step size in the LMS filter 
microvolt 
micrometer 
microsecond 
correlation coefficient 
the real part of the Laplace variable 8 (Neper frequency) 
the standard deviation of a random variable 
the variance of a random variable 
a time interval, delay, or shift 
autocorrelation 
frequency variable in radians per second 
frequency variable in radians per second 
when in-line: convolution 
as a superscript: complex conjugation 
average or normalized version of the variable 
complex cepstrum of the signal, if a function of time 



SYMBOLS AND ABBREVIATIONS xxxv 

complex logarithm of the signal, if a function of frequency 
estimate of the variable under the symbol 
first and second derivatives of the preceding function 
for all 
belongs to or is in (the set) 
absolute value or magnitude of 
argument of, angle of 



1 
Introduction to Biomedical 

Signals 

1.1 THE NATURE OF BIOMEDICAL SIGNALS 

Living organisms are made up of many component systems - the human body, for 
example, includes the nervous system, the cardiovascular system, and the musculo- 
skeletal system, among others. Each system is made up of several subsystems that 
carry on many physiological processes. For example, the cardiac system performs 
the important task of rhythmic pumping of blood throughout the body to facilitate 
the delivery of nutrients, as well as pumping blood through the pulmonary system 
for oxygenation of the blood itself. 

Physiological processes are complex phenomena, including nervous or hormonal 
stimulation and control; inputs and outputs that could be in the form of physical 
material, neurotransmitters, or information; and action that could be mechanical, 
electrical, or biochemical. Most physiological processes are accompanied by or 
manifest themselves as signals that reflect their nature and activities. Such signals 
could be of many types, including biochemical in the form of hormones and neuro- 
transmitters, electrical in the form of potential or current, and physical in the form of 
pressure or temperature. 

Diseases or defects in a biological system cause alterations in its normal phys- 
iological processes, leading to pathological processes that affect the performance, 
health, and general well-being of the system. A pathological process is typically 
associated with signals that are different in some respects from the corresponding 
normal signals. If we possess a good understanding of a system of interest, it becomes 
possible to observe the corresponding signals and assess the state of the system. The 
task is not very difficult when the signal is simple and appears at the outer surface of 
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the body. For example, most infections cause a rise in the temperature of the body, 
which may be sensed very easily, albeit in a relative and qualitative manner, via the 
palm of one’s hand. Objective or quantitative measurement of temperature requires 
an instrument, such as a simple thermometer. 

A single measurement z of temperature is a scalar, and represents the thermal state 
of the body at a particular or single instant of time t (and a particular position). If we 
record the temperature continuously in some form, say a strip-chart record, we obtain 
a signal as a function of time; such a signal may be expressed in continuous-time or 
analog form as z(t) .  When the temperature is measured at discrete points of time, 
it may be expressed in discrete-time form as z(nT) or z(n), where n is the index 
or measurement sample number of the array of values, and T represents the uniform 
interval between the time instants of measurement. A discrete-time signal that can 
take amplitude values only from a limited list of quantized levels is called a digital 
signal; the distinction between discrete-time and digital signals is often ignored. 

In intensive-care monitoring, the tympanic (ear drum) temperature may sometimes 
be measured using an infra-red sensor. Occasionally, when catheters are being used 
for other purposes, a temperature sensor may also be introduced into an artery or 
the heart to measure the core temperature of the body. It then becomes possible 
to obtain a continuous measurement of temperature, although only a few samples 
taken at intervals of a few minutes may be stored for subsequent analysis. Figure 1.1 
illustrates representations of temperature measurements as a scalar, an array, and 
a signal that is a function of time. It is obvious that the graphical representation 
facilitates easier and faster comprehension of trends in the temperature than the 
numerical format. Long-term recordings of temperature can facilitate the analysis of 
temperature-regulation mechanisms [ 15, 161. 

Let us now consider another basic measurement in health care and monitoring: 
that of blood pressure (BP). Each measurement consists of two values - the systolic 
pressure and the diastolic pressure. BP is measured in millimeters of mercury 
(mm of Hg) in clinical practice, although the international standard unit for pressure 
is the Pascal. A single BP measurement could thus be viewed as a vector x = 
[zl, z 2 I T  with two components: z1 indicating the systolic pressure and z2 indicating 
the diastolic pressure. When BP is measured at a few instants of time, we obtain an 
array of vectorial values x(n). In intensive-care monitoring and surgical procedures, 
a pressure transducer may sometimes be inserted into an artery (along with other 
intra-arterial or intra-venous devices). It then becomes possible to obtain the arterial 
systolic and diastolic BP on a continuous-time recording, although the values may 
be transferred to a computer and stored only at sampled instants of time that are 
several minutes apart. The signal may then be expressed as a function of time x(t). 
Figure 1.2 shows BP measurements as a single two-component vector, as an array, 
and as a function of time. It is clear that the plot as a function of time facilitates rapid 
observation of trends in the pressure. 
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Figure 1.1 Measurements of the temperature of a patient presented as (a) a scalar with 
one temperature measurement z at a time instant t; (b) an array z (n)  made up of several 
measurements at different instants of time; and (c) a signal z( t )  or z (n ) .  The horizontal axis 
of the plot represents time in hours; the vertical axis gives temperature in degrees Celsius. 
Data courtesy of Foothills Hospital, Calgary. 
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(a) 

Time 08:OO 1O:OO 12:OO 14:OO 16:OO 18:OO 20:OO 22:OO 24:OO 

Systolic 122 102 108 94 104 118 86 95 88 

Diastolic 66 59 60 50 55 62 41 52 48 
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Figure 1.2 Measurements of the blood pressure of a patient presented as (a) a single pair 
or vector of systolic and diastolic measurements x in mm of Hg at a time instant t ;  (b) an 
array x ( n )  made up of several measurements at different instants of time; and (c) a signal x(t) 
or x(n ) .  Note the use of boldface x to indicate that each measurement is a vector with two 
components. The horizontal axis of the plot represents time in hours; the vertical axis gives 
the systolic pressure (upper trace) and the diastolic pressure (lower trace) in mm of Hg. Data 
courtesy of Foothills Hospital, Calgary. 
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1.2 EXAMPLES OF BIOMEDICAL SIGNALS 

The preceding example of body temperature as a signal is a rather simple example of a 
biomedical signal. Regardless of its simplicity, we can appreciate its importance and 
value in the assessment of the well-being of a child with a fever or that of a critically 
ill patient in a hospital. The origins and nature of a few other biomedical signals 
of various types are described in the following subsections, with brief indications of 
their usefulness in diagnosis. Further detailed discussions on some of the signals will 
be provided in the context of their analysis for various purposes in the chapters that 
follow. 

1.2.1 The action potential 

The action potential (AP) is the electrical signal that accompanies the mechanical 
contraction of a single cell when stimulated by an electrical current (neural or external) 
[lo, 17, 18, 19, 20, 211. It is caused by the flow of sodium (Nu+) ,  potassium (K+),  
chloride (CZ-), and other ions across the cell membrane. The action potential is the 
basic component of all bioelectrical signals. It provides information on the nature of 
physiological activity at the single-cell level. Recording an action potential requires 
the isolation of a single cell, and microelectrodes with tips of the order of a few 
micrometers to stimulate the cell and record the response [ 101. 

Resting potential: Nerve and muscle cells are encased in a semi-permeable 
membrane that permits selected substances to pass through while others are kept out. 
Body fluids surrounding cells are conductive solutions containing charged atoms 
known as ions. In their resting state, membranes of excitable cells readily permit 
the entry of K+ and Cl- ions, but effectively block the entry of Nu+ ions (the 
permeability for K +  is 50-100 times that for Na+) .  Various ions seek to establish 
a balance between the inside and the outside of a cell according to charge and 
concentration. The inability of Nu+ to penetrate a cell membrane results in the 
following [ 171: 

0 Nu+ concentration inside the cell is far less than that outside. 

0 The outside of the cell is more positive than the inside of the cell. 

0 To balance the charge, additional K+ ions enter the cell, causing higher K+ 

0 Charge balance cannot be reached due to differences in membrane permeability 

concentration inside the cell than outside. 

for the various ions. 

0 A state of equilibrium is established with a potential difference, with the inside 
of the cell being negative with respect to the outside. 

A cell in its resting state is said to be polarized. Most cells maintain a resting 
potential of the order of -60 to - 100 mV until some disturbance or stimulus upsets 
the equilibrium. 
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Depolarization: When a cell is excited by ionic currents or an external stimulus, 
the membrane changes its characteristics and begins to allow Nu+ ions to enter the 
cell. This movement of Nu+ ions constitutes an ionic current, which further reduces 
the membrane barrier to Na+ ions. This leads to an avalanche effect: Nu+ ions rush 
into the cell. KS ions try to leave the cell as they were in higher concentration inside 
the cell in the preceding resting state, but cannot move as fast as the Na+ ions. The 
net result is that the inside of the cell becomes positive with respect to the outside due 
to an imbalance of K+ ions. A new state of equilibrium is reached after the rush of 
Na+ ions stops. This change represents the beginning of the action potential, with 
a peak value of about +20 mV for most cells. An excited cell displaying an action 
potential is said to be depolarized; the process is called depolarization. 

Repolarization: After a certain period of being in the depolarized state the cell 
becomes polarized again and returns to its resting potential via a process known 
as repolarization. Repolarization occurs by processes that are analogous to those 
of depolarization, except that instead of Nu+ ions, the principal ions involved in 
repolarization are K+ ions [ 191. Membrane depolarization, while increasing the 
permeability for Na+ ions, also increases the permeability of the membrane for K+ 
ions via a specific class of ion channels known as voltage-dependent K+ channels. 
Although this may appear to be paradoxical at first glance, the key to the mecha- 
nism for repolarization lies in the time-dependence and voltage-dependence of the 
membrane permeability changes for K+ ions compared with that for Na+ ions. The 
permeability changes for K+ during depolarization occur considerably more slowly 
than those for Na+ ions, hence the initial depolarization is caused by an inrush of 
Na+ ions. However, the membrane permeability changes for Na+ spontaneously 
decrease near the peak of the depolarization, whereas those for K +  ions are beginning 
to increase. Hence, during repolarization, the predominant membrane permeability is 
for K +  ions. Because K +  concentration is much higher inside the cell than outside, 
there is a net efflux of K+ from the cell, which makes the inside more negative, 
thereby effecting repolarization back to the resting potential. 

It should be noted that the voltage-dependent K+ permeability change is due to 
a distinctly different class of ion channels than those that are responsible for setting 
the resting potential. A mechanism known as the Na+ - K +  pump extrudes Na+ 
ions in exchange for transporting K+ ions back into the cell. However, this transport 
mechanism carries very little current in comparison with ion channels, and therefore 
makes a minor contribution to the repolarization process. The Na+ - K+ pump is 
essential for resetting the Nu+ - K +  balance of the cell, but the process occurs on 
a longer time scale than the duration of an action potential. 

Nerve and muscle cells repolarize rapidly, with an action potential duration of 
about 1 ms. Heart muscle cells repolarize slowly, with an action potential duration 

The action potential is always the same for a given cell, regardless of the method 
of excitation or the intensity of the stimulus beyond a threshold: this is known as 
the afl-or-none or all-or-nothing phenomenon. After an action potential, there is 
a period during which a cell cannot respond to any new stimulus, known as the 
absolute refrucroryperiod (about 1 me in nerve cells). This is followed by a relative 

of 150 - 300 TIM. 
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refractory period (several ms in nerve cells), when another action potential may be 
triggered by a much stronger stimulus than in the normal situation. 

Figure 1.3 shows action potentials recorded from individual rabbit ventricular and 
atrial myocytes (muscle cells) [19]. Figure 1.4 shows a ventricular myocyte in its 
relaxed and fully contracted states. The tissues were first incubated in digestive 
enzymes, principally collagenase, and then dispersed into single cells using gentle 
mechanical agitation. The recording electrodes were glass patch pipettes; a whole- 
cell, current-clamp recording configuration was used to obtain the action potentials. 
The cells were stimulated at low rates (once per 8 8) ;  this is far less than physiological 
rates, Moreover, the cells were maintained at 20° C, rather than body temperature. 
Nevertheless, the major features of the action potentials shown are similar to those 
recorded under physiological conditions. 

(a) Action Potential of Rabbit Ventricular Myocyte 

-80 I I I , I , 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time (8) 

(b) Action Potential of Rabbit Atrial Myocyte 
20 
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2 -20 
- - 
9 

-40 
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3 -80 

-80 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time (8) 

Figure 1.3 Action potentials of rabbit ventricular and atrial myocytes. Data courtesy of R. 
Clark, Department of Physiology and Biophysics, University of Calgary. 

The resting membrane potential of the cells (from 0 to 20 ms in the plots in 
Figure 1.3) is about -83 mV. A square pulse of current, 3 ms in duration and 
1 nA in amplitude, was passed through the recording electrode and across the cell 
membrane, causing the cell to depolarize rapidly. The ventricular myocyte exhibits 
a depolarized potential of about +40 mV; it then slowly declines back to the resting 
potential level over an interval of about 500 ms. The initial, rapid depolarization of 
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Figure 1.4 A single ventricular myocyte (of a rabbit) in its (a) relaxed and (b) fully contracted 
states. The length of the myocyte is approximately 25 pm. The tip of the glass pipette, faintly 
visible at the upper-right end of the myocyte, is approximately 2 pm wide. Images courtesy 
of R. Clark, Department of Physiology and Biophysics, University of Calgary. 
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the atrial cell is similar to that of the ventricular cell, but does not overshoot zero 
membrane potential as much as the ventricular action potential; repolarization occurs 
much more quickly than is the case for the ventricular cell. 

Propagation of an action potential: An action potential propagates along a 
muscle fiber or an unmyelinated nerve fiber as follows [22]: Once initiated by a 
stimulus, the action potential propagates along the whole length of a fiber without 
decrease in amplitude by progressive depolarization of the membrane. Current 
flows from a depolarized region through the intra-cellular fluid to adjacent inactive 
regions, thereby depolarizing them. Current also flows through the extra-cellular 
fluids, through the depolarized membrane, and back into the intra-cellular space, 
completing the local circuit. The energy to maintain conduction is supplied by the 
fiber itself. 

Myelinated nerve fibers are covered by an insulating sheath of myelin. The 
sheath is interrupted every few millimeters by spaces known as the nodes of Ranvier, 
where the fiber is exposed to the interstitial fluid. Sites of excitation and changes of 
membrane permeability exist only at the nodes, and current flows by jumping from 
one node to the next in a process known as saltatory conduction. 

1.2.2 The electroneurogram (ENG) 

The ENG is an electrical signal observed as a stimulus and the associated nerve 
action potential propagate over the length of a nerve. It may be used to measure the 
velocity of propagation (or conduction velocity) of a stimulus or action potential in 
a nerve [lo]. ENGs may be recorded using concentric needle electrodes or silver - 
silver-chloride electrodes (Ag - AgCZ) at the surface of the body. 

Conduction velocity in a peripheral nerve may be measured by stimulating a motor 
nerve and measuring the related activity at two points that are a known distance apart 
along its course. In order to minimize muscle contraction and other undesired effects, 
the limb is held in a relaxed posture and a strong but short stimulus is applied in the 
form of a pulse of about 100 V amplitude and 100 - 300 ps duration [lo]. The 
difference in the latencies of the ENGs recorded over the associated muscle gives 
the conduction time. Knowing the separation distance between the stimulus sites, 
it is possible to determine the conduction velocity in the nerve [lo]. ENGs have 
amplitudes of the order of 10 pV and are susceptible to power-line interference and 
instrumentation noise. 

Figure 1.5 illustrates the ENGs recorded in a nerve conduction velocity study. 
The stimulus was applied to the ulnar nerve. The ENGs were recorded at the wrist 
(marked “Wrist” in the figure), just below the elbow (BElbow), and just above the 
elbow (AElbow) using surface electrodes, amplified with a gain of 2,000, and filtered 
to the bandwidth 10 - 10,000 Ht. The three traces in the figure indicate increasing 
latencies with respect to the stimulus time point, which is the left margin of the plots. 
The responses shown in the figure are normal, indicate a BElbow -Wrist latency of 
3.23 ms, and lead to a nerve conduction velocity of 64.9 mls. 

Typical values of propagation rate or nerve conduction velocity are [22, 10,231: 



10 INTRODUCTION TO BIOMEDICAL SIGNALS 

N C V I  I I 1  I I I 
. . . . . . . . . . .  .p  .:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. I  . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 :  : : : :  : T : :  
. . , . , . . , . 

Figure 1.5 Nerve conduction velocity measurement via electrical stimulation of the ulnar 
nerve. The grid boxes represent 3 ms in width and 2 pV in height. AElbow: above the elbow. 
BEIbow: below the elbow. 0: onset. P: Peak. T: trough. R: recovery of base-line. Courtesy 
of M. Wilson and C. Adams, Alberta Children’s Hospital, Calgary. 
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0 45 - 70 m / s  in nerve fibers; 

0 0.2 - 0.4 m/s  in heart muscle; 

0 0.03 - 0.05 m/s in time-delay fibers between the atria and ventricles. 

Neural diseases may cause a decrease in conduction velocity. 

1.2.3 The eiectromyogram (EMG) 

Skeletal muscle fibers are considered to be twitch fibers because they produce a 
mechanical twitch response for a single stimulus and generate a propagated action 
potential. Skeletal muscles are made up of collections of motor units (MUs), each 
of which consists of an anterior horn cell (or motoneuron or motor neuron), its axon, 
and all muscle fibers innervated by that axon. A motor unit is the smallest muscle 
unit that can be activated by volitional effort. The constituent fibers of a motor unit 
are activated synchronously. Component fibers of a motor unit extend lengthwise in 
loose bundles along the muscle. In cross-section, the fibers of a given motor unit are 
interspersed with the fibers of other motor units [22, 10,241. Figure 1.6 (top panel) 
illustrates a motor unit in schematic form [24]. 

Large muscles for gross movement have hundreds of fibers per motor unit; muscles 
for precise movement have fewer fibers per motor unit. The number of muscle 
fibers per motor nerve fiber is known as the innewation ratio. For example, it has 
been estimated that the platysma muscle (of the neck) has 1,826 large nerve fibers 
controlling 27,100 muscle fibers with 1,096 motor units and an innervation ratio 
of 25, whereas the first dorsal interosseus (finger) muscle has 199 large nerve fibers 
and 40,500 muscle fibers with 119 motor units and an innervation ratio of 340 [22]. 
The mechanical output (contraction) of a muscle is the net result of stimulation and 
contraction of several of its motor units. 

When stimulated by a neural signal, each motor unit contracts and causes an 
electrical signal that is the summation of the action potentials of all of its constituent 
cells. This is known as the singfe-motor-unit action potential (SMUAP, or simply 
MUAP), and may be recorded using needle electrodes inserted into the muscle 
region of interest. Normal SMUAPs are usually biphasic or triphasic, 3 - 15 ms 
in duration, 100 - 300 pV in amplitude, and appear with frequency in the range 
of 6 - 30/s [lo, 221. The shape of a recorded SMUAP depends upon the type of 
the needle electrode used, its positioning with respect to the active motor unit, and 
the projection of the electrical field of the activity onto the electrodes. Figure 1.7 
illustrates simultaneous recordings of the activities of a few motor units from three 
channels of needle electrodes [25]. Although the SMUAPs are biphasic or triphasic, 
the same SMUAP displays variable shape from one channel to another. (Note: The 
action potentials in Figure 1.3 are monophasic; the first two SMUAPs in Channel 1 
in Figure 1.7 are biphasic, and the third SMUAP in the same signal is triphasic.) 

The shape of SMUAPs is affected by disease. Figure 1.8 illustrates SMUAP trains 
of a normal subject and those of patients with neuropathy and myopathy. Neuropathy 
causes slow conduction and/or desynchronized activation of fibers, and a polyphasic 
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Figure 1.6 Schematic representation of a motor unit and model for the generation of EMG 
signals. Top panel: A motor unit includes an anterior horn cell or motor neuron (illustrated 
in a cross-section of the spinal cord), an axon, and several connected muscle fibers. The 
hatched fibers belong to one motor unit; the non-hatched fibers belong to other motor units. 
A needle electrode is also illustrated. Middle panel: The firing pattern of each motor neuron 
is represented by an impulse train. Each system hi( t )  shown represents a motor unit that is 
activated and generates a train of SMUAPs. The net EMG is the sum of several SMUAP trains. 
Bottom panel: Effects of instrumentation on the EMG signal acquired. The observed EMG is 
a function of time t and muscular force produced F. Reproduced with permission from C.J. de 
Luca, Physiology and mathematics of myoelectric signals, IEEE Trunsucrions on Biomedical 
Engineering, 26~313-325, 1979. OIEEE. 
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Figure 1.7 SMUAP trains recorded simultaneously from three channels of needle electrodes. 
Observe the different shapes of the same SMUAPs projected onto the axes of the three channels. 
Three different motor units are active over the duration of the signals illustrated. Reproduced 
with permission from B. Mambrito and C.J. de Luca, Acquisition and decomposition of the 
EMG signal, in Progress in Clinical Neurophysiology, Volume 10: Computer-aided Elec- 
tromyography, Editor: J.E. Desmedt, pp 52-72, 1983. @S. Karger AG, Basel, Switzerland. 
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SMUAP with an amplitude larger than normal. The same motor unit may be observed 
to fire at higher rates than normal before more motor units are recruited. Myopathy 
involves loss of muscle fibers in motor units, with the neurons presumably intact. 
Splintering of SMUAPs occurs due to asynchrony in activation as a result of patchy 
destruction of fibers (e.g., in muscular dystrophy), leading to polyphasic SMUAPs. 
More motor units may be observed to be recruited at low levels of effort. 

Gradation of muscular contraction: Muscular contraction levels are controlled 
in two ways: 

0 Spatial recruitment, by activating new motor units with increasing effort; and 

0 Temporal recruitment, by increasing the frequency of discharge (firing rate) of 
each motor unit with increasing effort. 

Motor units are activated at different times and at different frequencies causing 
asynchronous contraction. The twitches of individual motor units sum and fuse to 
form tetanic contraction and increased force. Weak volitional effort causes motor 
units to fire at about 5 - 15 pps (pulses per second). As greater tension is developed, 
an interjiwncepattern EMG is obtained, with the constituent and active motor units 
firing in the range of 25 - 50 pps .  Grouping of MUAPs has been observed as fatigue 
develops, leading to decreased high-frequency content and increased amplitude in 
the EMG 1241. 

Spatio-temporal summation of the MUAPs of all of the active motor units gives 
rise to the EMG of the muscle. EMG signals recorded using surface electrodes 
are complex signals including interference patterns of several MUAP trains and are 
difficult to analyze. An EMG signal indicates the level of activity of a muscle, and 
may be used to diagnose neuromuscular diseases such as neuropathy and myopathy. 

Figure 1.9 illustrates an EMG signal recorded from the crural diaphragm of a dog 
using fine-wire electrodes sewn in-line with the muscle fibers and placed 10 mm 
apart [26]. The signal represents one period of breathing (inhalation being the active 
part as far as the muscle and EMG are concerned). It is seen that the overall level 
of activity in the signal increases during the initial phase of inhalation. Figure 1.10 
shows the early parts of the same signal on an expanded time scale. SMUAPs are seen 
at the beginning stages of contraction, followed by increasingly complex interference 
patterns of several MUAPs. 

Signal-processing techniques for the analysis of EMG signals will be discussed in 
Sections 5.2.4,5.6,5.9,5.10,7.2.1, and 7.3. 

1.2.4 The electrocardiogram (ECG) 

The ECG is the electrical manifestation of the contractile activity of the heart, and 
can be recorded fairly easily with surface electrodes on the limbs or chest. The 
ECG is perhaps the most commonly known, recognized, and used biomedical signal. 
The rhythm of the heart in terms of beats per minute (bprn) may be easily estimated 
by counting the readily identifiable waves. More important is the fact that the ECG 
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Figure 1.8 Examples of SMUAP trains. (a) From the right deltoid of a normal subject, male, 
11 years; the SMUAPs are mostly biphasic, with duration in the range 3 - 5 me. (b) From the 
deltoid of a six-month-old male patient with brachial plexus injury (neuropathy); the SMUAPs 
are polyphasic and large in amplitude (800 pV) ,  and the same motor unit is firing at a relatively 
high rate at low-to-medium levels of effort. (c) From the right biceps of a 17-year-old male 
patient with myopathy; the SMUAPs are polyphasic and indicate early recruitment of more 
motor units at a low level of effort. The signals were recorded with gauge 20 needle electrodes. 
The width of each grid box represents a duration of 20 me; its height represents an amplitude 
of 200 pV, Courtesy of M. Wilson and C. Adams, Alberta Children’s Hospital, Calgary. 
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Figure 1.9 EMG signal recorded from the crural diaphragm muscle of a dog using implanted 
fine-wire electrodes. Data courtesy of R.S. Platt and P.A. Easton, Department of Clinical 
Neurosciences, University of Calgary. 



EXAMPLES OF BIOMEDICAL SIGNALS 17 

-5001 I I 1 I I I I I I I 
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 

Time in seconds 

! I , I I I I I , 
1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 

-600' 
0.9 0.95 1 

Time in seconds 

Figure 1.10 The initial part of the EMG signal in Figure 1.9 shown on an expanded time 
scale. Observe the SMUAPs at the initial stages of contraction, followed by increasingly 
complex interference patterns of several MUAPs. Data courtesy of R.S. Platt and P.A. Easton, 
Department of Clinical Neurosciences, University of Calgary. 
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waveshape is altered by cardiovascular diseases and abnormalities such as myocardial 
ischemia and infarction, ventricular hypertrophy, and conduction problems. 

The heart: The heart is a four-chambered pump with two atria for collection of 
blood and two ventricles for pumping out of blood. Figure 1.1 1 shows a schematic 
representation of the four chambers and the major vessels connecting to the heart. 
The resting or filling phase of a cardiac chamber is called diastole; the contracting or 
pumping phase is called systole. 

The right atrium (or auricle, RA) collects impure blood from the superior and 
inferior vena cavae. During atrial contraction, blood is passed from the right atrium 
to the right ventricle (RV) through the tricuspid valve. During ventricular systole, 
the impure blood in the right ventricle is pumped out through the pulmonary valve to 
the lungs for purification (oxygenation). 
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Figure 1.11 
system of the heart. 

Schematic representation of the chambers, valves, vessels, and conduction 

The left atrium (LA) receives purified blood from the lungs, which is passed on 
during atrial contraction to the left ventricle (LV) via the mitral valve. The left ven- 
tricle is the largest and most important cardiac chamber. The left ventricle contracts 
the strongest among the cardiac chambers, as it has to pump out the oxygenated 
blood through the aortic valve and the aorta against the pressure of the rest of the 
vascular system of the body. Due to the higher level of importance of contraction of 
the ventricles, the terms systole and diastole are applied to the ventricles by default. 

The heart rate (HR) or cardiac rhythm is controlled by specialized pacemaker cells 
that form the sino-atrial (SA) node located at the junction of the superior vena cava 
and the right atrium [23]. The firing rate of the SA node is controlled by impulses 
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from the autonomous and central nervous systems leading to the delivery of the 
neurotransmitters acetylcholine (for vagal stimulation, causing a reduction in heart 
rate) or epinephrine (for sympathetic stimulation, causing an increase in the heart 
rate). The normal (resting) heart rate is about 70 bpm. The heart rate is lower during 
sleep, but abnormally low heart rates below 60 bpm during activity could indicate a 
disorder called bradycardia. The instantaneous heart rate could reach values as high 
as 200 bpm during vigorous exercise or athletic activity; a high resting heart rate 
could be due to illness, disease, or cardiac abnormalities, and is termed tachycardia. 

The electrical system of the heart: Co-ordinated electrical events and a spe- 
cialized conduction system intrinsic and unique to the heart play major roles in the 
rhythmic contractile activity of the heart. The SA node is the basic, natural cardiac 
pacemaker that triggers its own train of action potentials. The action potential of 
the SA node propagates through the rest of the heart, causing a particular pattern of 
excitation and contraction (see Figure 1.12). The sequence of events and waves in a 
cardiac cycle is as follows [23]: 

1. The SA node fires. 

2. Electrical activity is propagated through the atrial musculature at comparatively 
low rates, causing slow-moving depolarization (contraction) of the atria. This 
results in the P wave in the ECG (see Figure 1-13). Due to the slow contraction 
of the atria and their small size, the P wave is a slow, low-amplitude wave, with 
an amplitude of about 0.1 - 0.2 mV and a duration of about 60 - 80 ms. 

3. The excitation wave faces a propagation delay at the atrio-ventricular (AV) 
node, which results in a normally iso-electric segment of about 60 - 80 ms 
after the P wave in the ECG, known as the PQ segment. The pause assists in 
the completion of the transfer of blood from the atria to the ventricles. 

4. The His bundle, the bundle branches, and the Purkinje system of specialized 
conduction fibers propagate the stimulus to the ventricles at a high rate. 

5 .  The wave of stimulus spreads rapidly from the apex of the heart upwards, 
causing rapid depolarization (contraction) of the ventricles. This results in the 
QRS wave of the ECG - a sharp biphasic or triphasic wave of about 1 mV 
amplitude and 80 ms duration (see Figure 1.13). 

6. Ventricular muscle cells possess a relatively long action potential duration of 
300 - 350 rns (see Figure 1.3). The plateau portion of the action potential 
causes a normally iso-electric segment of about 100 - 120 ms after the QRS, 
known as the ST segment. 

7. Repolarization (relaxation) of the ventricles causes the slow T wave, with an 
amplitude of 0.1 - 0.3 mV and duration of 120 - 160 ms (see Figure 1.13). 

Any disturbance in the regular rhythmic activity of the heart is termed arrhythmia. 
Cardiac arrhythmia may be caused by irregular firing patterns from the SA node, or 
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Figure 1.12 Propagation of the excitation pulse through the heart. Reproduced with permis- 
sion from R.F. Rushmer, Cardiovascular Dynamics, 4th edition, @W.B. Saunders, Philadel- 
phia, PA, 1976. 
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Figure 1.13 A typical ECG signal (male subject of age 24 years). (Note: Signal values are 
not calibrated, that is, specified in physical units, in many applications. As is the case in this 
plot, signal values in plots in this book are in arbitrary or normalized units unless specified.) 



EXAMPLES OF BIOMEDICAL SIGNALS 21 

by abnormal and additional pacing activity from other parts of the heart. Many parts 
of the heart possess inherent rhythmicity and pacemaker properties; for example, the 
SA node, the AV node, the Purkinje fibers, atrial tissue, and ventricular tissue. If the 
SA node is depressed or inactive, any one of the above tissues may take over the role 
of the pacemaker or introduce ectopic beats. Different types of abnormal rhythm 
(arrhythmia) result from variations in the site and frequency of impulse formation. 
Premature ventricular contractions (PVCs) caused by ectopic foci on the ventricles 
upset the regular rhythm and may lead to ventricular dissociation and fibrillation 
- a state of disorganized contraction of the ventricles independent of the atria - 
resulting in no effective pumping of blood and possibly death. The waveshapes of 
PVCs are usually very different from that of the normal beats of the same subject due 
to the different conduction paths of the ectopic impulses and the associated abnormal 
contraction events. Figure 1.14 shows an ECG signal with a few normal beats and 
two PVCs. (See Figure 9.5 for an illustration of ventricular bigeminy, where every 
second pulse from the SA node is replaced by a PVC with a full compensatory pause.) 
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Figure 1.14 ECG signal with PVCs. The third and sixth beats are PVCs. The first PVC 
has blocked the normal beat that would have appeared at about the same time instant, but the 
second PVC has not blocked any normal beat triggered by the SA node. Data courtesy of G. 
Groves and J. Tyberg, Department of Physiology and Biophysics, University of Calgary. 

The QRS waveshape is affected by conduction disorders; for example, bundle- 
branch block causes a widened and possibly jagged QRS. Figure 1.15 shows the ECG 
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signal of a patient with right bundle-branch block. Observe the wider-than-normal 
QRS complex, which also displays a waveshape that is significantly different from 
the normal QRS waves. Ventricular hypertrophy (enlargement) could also cause a 
wider-than-normal QRS. 

The ST segment, which is normally iso-electric (flat and in line with the PQ 
segment) may be elevated or depressed due to myocardial ischemia (reduced blood 
supply to a part of the heart muscles due to a block in the coronary arteries) or 
due to myocardial infarction (dead myocardial tissue incapable of contraction due to 
total lack of blood supply). Many other diseases cause specific changes in the ECG 
waveshape: the ECG is a very important signal that is useful in heart-rate (rhythm) 
monitoring and the diagnosis of cardiovascular diseases. 
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Figure 1.15 ECG signal of a patient with right bundle-branch block and hypertrophy (male 
patient of age 3 months). The QRS complex is wider than normal, and displays an abnormal, 
jagged waveform due to desynchronized contraction of the ventricles. (The signal also has a 
base-line drift, which has not been corrected for.) 

ECG signal acquisition: In clinical practice, the standard 12-channel ECG is 
obtained using four limb leads and chest leads in six positions [23,27]. The right leg 
is used to place the reference electrode. The left arm, right arm, and left leg are used 
to get leads I, 11, and 111. A combined reference known as Wilson’s central terminal 
is formed by combining the left arm, right arm, and left leg leads, and is used as the 
reference for chest leads. The augmented limb leads known as aVR, aVL, and aVF 
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(aV for the augmented lead, R for the right arm, L for the left arm, and F for the left 
foot) are obtained by using the exploring electrode on the limb indicated by the lead 
name, with the reference being Wilson's central terminal without the exploring limb 
lead. 

Figure 1.16 shows the directions of the axes formed by the six limb leads. The 
hypothetical equilateral triangle formed by leads I, 11, and I11 is known as Einzhoven 's 
triangle. The center of the triangle represents Wilson's central terminal. Schemat- 
ically, the heart is assumed to be placed at the center of the triangle. The six leads 
measure projections of the three-dimensional (3D) cardiac electrical vector onto the 
axes illustrated in Figure 1.16. The six axes sample the 0" - 180" range in steps of 
approximately 30". The projections facilitate viewing and analysis of the electrical 
activity of the heart and from different perspectives in the frontal plane. 
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Figure 1.16 Einthoven's triangle and the axes of the six ECG leads formed by using four 
limb leads. 

The six chest leads (written as V1 - V6) are obtained from six standardized 
positions on the chest [23] with Wilson's central terminal as the reference. The 
positions for placement of the precordial (chest) leads are indicated in Figure 1.17. 
The V1 and V2 leads are placed at the fourth intercostal space just to the right and 
left of the sternum, respectively. V4 is recorded at the fifth intercostal space at the 
left midclavicular line. The V3 lead is placed half-way between the V2 and V4 leads, 
The V5 and V6 leads are located at the same level as the V4 lead, but at the anterior 
axillary line and the midaxillary line, respectively. The six chest leads permit viewing 
the cardiac electrical vector from different orientations in a cross-sectional plane: V5 
and V6 are most sensitive to left ventricular activity; V3 and V4 depict septa1 activity 
best; V1 and V2 reflect well activity in the right-half of the heart. 
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Figure 1.17 Positions for placement of the precordial (chest) leads V1 - V6 for ECG, 
auscultation areas for heart sounds, and pulse transducer positions for the carotid and jugular 
pulse signals. ICS: intercostal space. 
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In spite of being redundant, the 12-lead system serves as the basis of the standard 
clinical ECG. Clinical ECG interpretation is mainly empirical, based on experimental 
knowledge. A compact and efficient system has been proposed for vecrorcardiogru- 
phy or VCG [28, 231, where loops inscribed by the 3D cardiac electrical vector in 
three mutually orthogonal planes, namely, the frontal, horizontal, and sagittal planes, 
are plotted and analyzed. Regardless, the 12-lead scalar ECG is the most commonly 
used procedure in clinical practice. 

As the external ECG is a projection of the internal 3D cardiac electrical vector, the 
external recordings are not unique. Some of the lead inter-relationships are [23, 271: 

0 I1 = I + I11 
0 aVL=(I - I11) /2 .  

Some of the important features of the standard clinical ECG are: 

0 A rectangular calibration pulse of 1 mV amplitude and 200 ms duration is 

0 The paper speed used is 25 mm/s, resulting in a graphical scale of 0.04 s/mm 

applied to produce a pulse of 1 cm height on the paper plot. 

or 40 mslmm. The calibration pulse width will then be 5 mm. 

0 The ECG signal peak value is normally about 1 mV. 

0 The amplifier gain used is 1,000. 

0 Clinical ECG is usually filtered to a bandwidth of about 0.05 - 100 Hz, with a 
recommended sampling rate of 500 Hz for diagnostic ECG. Distortions in the 
shape of the calibration pulse may indicate improper filter settings or a poor 
signal acquisition system. 

0 ECG for heart-rate monitoring could use a reduced bandwidth 0.5 - 50 Hz. 

0 High-resolution ECG requires a greater bandwidth of 0.05 - 500 Hz. 

Figure 1.18 shows the 12-lead ECG of a normal male adult. The system used to 
obtain the illustration records three channels at a time: leads I, 11,II; aVR, aVL, aVF; 
V1, V2, V3; and V4, V5, V6 are recorded in the three available channels simulta- 
neously. Other systems may record one channel at a time. Observe the changing 
shape of the ECG waves from one lead to another. A well-trained cardiologist will 
be able to deduce the 3D orientation of the cardiac electrical vector by analyzing 
the waveshapes in the six limb leads. Cardiac defects, if any, may be localized by 
analyzing the waveshapes in the six chest leads. 

Figure 1.19 shows the 12-lead ECG of a patient with right bundle-branch block 
with secondary repolarization changes. The increased QRS width and distortions in 
the QRS shape indicate the effects of asynchronous activation of the ventricles due 
to the bundle-branch block. 

Signal-processing techniques to filter ECG signals will be presented in Sec- 
tions 3.2, 3.3, 3.4, 3.5, and 3.8. Detection of ECG waveforms will be discussed 

Next Page



26 INTRODUCTION TO BIOMEDICAL SfGNALS 

Figure 1.18 Standard 1Zlead ECG of a normal male adult. Courtesy of E. Gedamu and L.B. 
Mitchell, Foothills Hospital, Calgary. 

Previous Page
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Figure 1.19 Standard 12-lead ECG of a patient with right bundle-branch block. Courtesy of 
L.B. Mitchell, Foothills Hospital, Calgary. 
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in Sections 4.2.1, 4.3.2,4.7, and 4.9. Analysis of ECG waveform shape and classi- 
fication of beats will be dealt with in Sections 5.2.1,5.2.2,5.2.3, 5.4,5.7, 5.8, 9.2.1, 
and 9.12. Analysis of heart-rate variability will be described in Sections 7.2.2, 7.8, 
and 8.9. Reviews of computer applications in ECG analysis have been published by 
Jenkins [29,30] and Cox et al. [31]. 

1.2.5 The electroencephalogram (EEG) 

The EEG (popularly known as bruin waves) represents the electrical activity of the 
brain [32, 33, 341. A few important aspects of the organization of the brain are as 
follows: The main parts of the brain are the cerebrum, the cerebellum, the brain 
stem (including the midbrain, pons medulla, and the reticular formation), and the 
thalamus (between the midbrain and the hemispheres). The cerebrum is divided into 
two hemispheres, separated by a longitudinal fissure across which there is a large 
connective band of fibers known as the corpus callosum. The outer surface of the 
cerebral hemispheres, known as the cerebral cortex, is composed of neurons (grey 
matter) in convoluted patterns, and separated into regions by fissures (sulci). Beneath 
the cortex lie nerve fibers that lead to other parts of the brain and the body (white 
matter). 

Cortical potentials are generated due to excitatory and inhibitory post-synaptic 
potentials developed by cell bodies and dendrites of pyramidal neurons. Physiological 
control processes, thought processes, and external stimuli generate signals in the 
corresponding parts of the brain that may be recorded at the scalp using surface 
electrodes. The scalp EEG is an average of the multifarious activities of many small 
zones of the cortical surface beneath the electrode. 

In clinical practice, several channels of the EEG are recorded simultaneously from 
various locations on the scalp for comparative analysis of activities in different regions 
of the brain. The International Federation of Societies for Electroencephalography 
and Clinical Neurophysiology has recommended the 10 - 20 system of electrode 
placement for clinical EEG recording [32], which is schematically illustrated in 
Figure 1.20. The name 10 - 20 indicates the fact that the electrodes along the midline 
are placed at 10,20,20,20,20, and 10% of the total nasion - inion distance; the other 
series of electrodes are also placed at similar fractional distances of the corresponding 
reference distances [32]. The inter-electrode distances are equal along any antero- 
posterior or transverse line, and electrode positioning is symmetrical. EEG signals 
may be used to study the nervous system, monitoring of sleep stages, biofeedback 
and control, and diagnosis of diseases such as epilepsy. 

Qpical EEG instrumentation settings used are lowpass filtering at 75 Hz, and 
paper recording at 100 pV/crn and 30 mm/8 for 10 - 20 minutes over 8 - 16 si- 
multaneous channels. Monitoring of sleep EEG and detection of transients related to 
epileptic seizures may require multichannel EEG acquisition over several hours. Spe- 
cial EEG techniques include the use of needle electrodes, naso-pharyngeal electrodes, 
recording the electrocorticogram (ECoG) from an exposed part of the cortex, and the 
use of intracerebral electrodes. Evocative techniques for recording the EEG include 
initial recording at rest (eyes open, eyes closed), hyperventilation (after breathing at 
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Figure 1.20 The 10 - 20 system of electrode placement for EEG recording [32]. Notes 
regarding channel labels: pg- naso-pharyngeal, a- auricular (ear lobes), fp- pre-frontal, f- 
frontal, p- pareital, c- central, 0- occipital, t- temporal, cb- cerebellar, z- midline, odd 
numbers on the left, even numbers on the right of the subject. 
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20 respirations per minute for 2 - 4 minutes), photic stimulation (with 1 - 50 flashes 
of light per second), auditory stimulation with loud clicks, sleep (different stages), 
and pharmaceuticals or drugs. 

EEG signals exhibit several patterns of rhythmic or periodic activity. (Note: The 
term rhythm stands for different phenomena or events in the ECG and the EEG.) The 
commonly used terms for EEG frequency (f) bands are: 

0 Delta (6): 0.5 5 f < 4 Ha;  

0 Theta (6): 4 5 f < 8 Ha;  

0 Alpha (a): 8 5 f 5 13 Hz; and 

0 Beta (p): f > 13 Ha.  

Figure 1.21 illustrates traces of EEG signals with the rhythms listed above. 
EEG rhythms are associated with various physiological and mental processes [33, 

341. The alpha rhythm is the principal resting rhythm of the brain, and is common 
in wakeful, resting adults, especially in the occipital area with bilateral synchrony. 
Auditory and mental arithmetic tasks with the eyes closed lead to strong alpha waves, 
which are suppressed when the eyes are opened (that is, by a visual stimulus); see 
Figure 1.21(e) [32]. 

The alpha wave is replaced by slower rhythms at various stages of sleep. Theta 
waves appear at the beginning stages of sleep; delta waves appear at deep-sleep 
stages. High-frequency beta waves appear as background activity in tense and anxious 
subjects. The depression or absence of the normal (expected) rhythm in a certain state 
of the subject could indicate abnormality. The presence of delta or theta (slow) waves 
in a wakeful adult would be considered to be abnormal. Focal brain injury and tumors 
lead to abnormal slow waves in the corresponding regions. Unilateral depression 
(left - right asymmetry) of a rhythm could indicate disturbances in cortical pathways. 
Spikes and sharp waves could indicate the presence of epileptogenic regions in the 
corresponding parts of the brain. 

Figure 1.22 shows an example of eight channels of the EEG recorded simultane- 
ously from the scalp of a subject. All channels display high levels of alpha activity. 
Figure 1.23 shows 10 channels of the EEG of a subject with spike-and-wave com- 
plexes. Observe the distinctly different waveshape and sharpness of the spikes in 
Figure 1.23 as compared to the smooth waves in Figure 1.22. EEG signals also 
include spikes, transients, and other waves and patterns associated with various ner- 
vous disorders (see Figure 4.1 and Section 4.2.4). Detection of events and rhythms 
in EEG signals will be discussed in Sections 4.4, 4.5, and 4.6. Spectral analysis of 
EEG signals will be dealt with in Sections 6.4.3 and 7.5.2. Adaptive segmentation of 
EEG signals will be described in Section 8.2.2,8.5, and 8.7. 

1.2.6 Event-related potentials (ERPs) 

The term event-related potential is more general than and preferred to the term 
evoked potential, and includes the ENG or the EEG in response to light, sound, 
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Figure 1.21 From top to bottom: (a) delta rhythm; (b) theta rhythm; (c) alpha rhythm; 
(d) beta rhythm; (e) blocking of the alpha rhythm by eye opening; (f) 1 s time markers and 
50 pV marker. Reproduced with permission from R. Cooper, J.W. Osselton, and J.C. Shaw, 
EEG Technology, 3rd Edition, 1980. @Butterworth Heinemann Publishers, a division of Reed 
Educational & Professional Publishing Ltd., Oxford, UK. 

electrical, or other external stimuli. Short-latency ERPs are predominantly dependent 
upon the physical characteristics of the stimulus, whereas longer-latency ERPs are 
predominantly influenced by the conditions of presentation of the stimuli. 

Somatosensory evoked potentials (SEPs) are useful for noninvasive evaluation of 
the nervous system from a peripheral receptor to the cerebral cortex. Median nerve 
short-latency SEPs are obtained by placing stimulating electrodes about 2 - 3 cm 
apart over the median nerve at the wrist with electrical stimulation at 5 - 10 pps,  
each stimulus pulse being of duration less than 0.5 ms with an amplitude of about 
100 V (producing a visible thumb twitch). The SEPs are recorded from the surface 
of the scalp. The latency, duration, and amplitude of the response are measured. 

ERPs and SEPs are weak signals typically buried in ongoing activity of associated 
systems. Examples of ERPs are provided in Figures 3.2 and 3.12. Signal-to-noise 
ratio (SNR) improvement is usually achieved by synchronized averaging and filtering, 
which will be described in Section 3.3.1. 

1.2.7 The electrogastrogram (EGG) 

The electrical activity of the stomach consists of rhythmic waves of depolarization 
and repolarization of its constituent smooth muscle cells [35, 36, 371. The activ- 
ity originates in the mid-corpus of the stomach, with intervals of about 20 s in 
humans. The waves of activity are always present and are not directly associated 
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Figure 1.22 Eight channels of the EEG of a subject displaying alpha rhythm. See Figure 1.20 
for details regarding channel labels. Data courtesy of Y. Mizuno-Matsumoto, Osaka University 
Medical School, Osaka, Japan. 
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Figure 1.23 Ten channels of the EEG of a subject displaying spike-and-wave complexes. 
See Figure 1.20 for details regarding channel labels. Data courtesy of Y. Mizuno-Matsumoto, 
Osaka University Medical School, Osaka, Japan. Note that the time scale is expanded compared 
to that of Figure 1.22. 
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with contractions; they are related to the spatial and temporal organization of gastric 
contractions. 

External (cutaneous) electrodes can record the signal known as the electrogas- 
trogram (EGG). Chen et al. [38] used the following procedures to record cutaneous 
EGG signals. With the subject in the supine position and remaining motionless, 
the stomach was localized by using a 5 M H a  ultrasound transducer array, and the 
orientation of the distal stomach was marked on the abdominal surface. Three active 
electrodes were placed on the abdomen along the antral axis of the stomach with 
an inter-electrode spacing of 3.5 cm. A common reference electrode was placed 
6 cm away in the upper right quadrant. Three bipolar signals were obtained from the 
three active electrodes in relation to the common reference electrode. The signals 
were amplified and filtered to the bandwidth of 0.02 - 0.3 Hz with 6 dB/octave 
transition bands, and sampled at 2 Ha. 

The surface EGG is believed to reflect the overall electrical activity of the stomach, 
including the electrical control activity and the electrical response activity. Chen et 
al. [38] indicated that gastric dysrhythmia or arrhythmia may be detected via analysis 
of the EGG. Other researchers suggest that the diagnostic potential of the signal has 
not yet been established [35,36]. Accurate and reliable measurement of the electrical 
activity of the stomach requires implantation of electrodes within the stomach [39], 
which limits its practical applicability. 

1.2.8 The phonocardlogram (PCG) 

The heart sound signal is perhaps the most traditional biomedical signal, as indi- 
cated by the fact that the stethoscope is the primary instrument carried and used by 
physicians. The PCG is a vibration or sound signal related to the contractile activity 
of the cardiohemic system (the heart and blood together) [23, 40, 41, 42, 43, 441, 
and represents a recording of the heart sound signal. Recording of the PCG signal 
requires a transducer to convert the vibration or sound signal into an electronic signal: 
microphones, pressure transducers, or accelerometers may be placed on the chest sur- 
face for this purpose. The normal heart sounds provide an indication of the general 
state of the heart in terms of rhythm and contractility. Cardiovascular diseases and 
defects cause changes or additional sounds and murmurs that could be useful in their 
diagnosis. 

The genesis of heart sounds: It is now commonly accepted that the externally 
recorded heart sounds are not caused by valve leaflet movements per se, as earlier 
believed, but by vibrations of the whole cardiovascular system triggered by pressure 
gradients [23). The cardiohemic system may be compared to a fluid-filled balloon, 
which, when stimulated at any location, vibrates as a whole. Externally, however, 
heart sound components are best heard at certain locations on the chest individually, 
and this localization has led to the concept of secondary sources on the chest related 
to the well-known auscultatory areas: the mitral, aortic, pulmonary, and tricuspid 
areas [23]. The standard auscultatory areas are indicated in Figure 1.17. The mitral 
area is near the apex of the heart. The aortic area is to the right of the sternum, in the 
second right-intercostal space. The tricuspid area is in the fourth intercostal space 
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near the right sternal border. The pulmonary area lies at the left parasternal line in 
the second or third left-intercostal space [23]. 

A normal cardiac cycle contains two major sounds - the first heart sound (Sl)  
and the second heart sound (S2). Figure 1.24 shows a normal PCG signal, along with 
the ECG and carotid pulse tracings. S1 occurs at the onset of ventricular contraction, 
and corresponds in timing to the QRS complex in the ECG signal. 
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Figure 1.24 Three-channel simultaneous record of the PCG, ECG, and carotid pulse signals 
of a normal male adult. 

The initial vibrations in S1 occur when the first myocardial contractions in the 
ventricles move blood toward the atria, sealing the atrio-ventricular (AV - mitral 
and tricuspid) valves (see Figure 1.25). The second component of S 1 begins with 
abrupt tension of the closed AV valves, decelerating the blood. Next, the semilunar 
(aortic and pulmonary) valves open and the blood is ejected out of the ventricles. 
The third component of S1 may be caused by oscillation of blood between the root 
of the aorta and the ventricular walls. This is followed by the fourth component of 
S 1, which may be due to vibrations caused by turbulence in the ejected blood flowing 
rapidly through the ascending aorta and the pulmonary artery. 

Following the systolic pause in the PCG of a normal cardiac cycle, the second 
sound S2 is caused by the closure of the semilunar valves. While the primary 
vibrations occur in the arteries due to deceleration of blood, the ventricles and atria 
also vibrate, due to transmission of vibrations through the blood, valves, and the 
valve rings. S2 has two components, one due to closure of the aortic valve (A2) 
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A. COMPONENTS OF FIRST HEART SOUND 

Figure 1.25 Schematic representation of the genesis of heart sounds. Only the left portion 
of the heart is illustrated as it is the major source of the heart sounds. The corresponding 
events in the right portion also contribute to the sounds. The atria do not contribute much to 
the heart sounds. Reproduced with permission from R.F. Rushmer, Cardiovascular Dynamics, 
4th edition, @W.B. Saunders, Philadelphia, PA, 1976. 
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and another due to closure of the pulmonary valve (P2). The aortic valve normally 
closes before the pulmonary valve, and hence A2 precedes P2 by a few milliseconds. 
Pathologic conditions could cause this gap to widen, or may also reverse the order 
of occurrence of A2 and P2. The A2 - P2 gap is also widened in normal subjects 
during inspiration. (Note: The PCG signal in Figure 1.24 does not show the A2 and 
P2 components separately.) 

In some cases a third heart sound (S3) may be heard, corresponding to sudden 
termination of the ventricular rapid-filling phase. Because the ventricles are filled 
with blood and their walls are relaxed during this part of diastole, the vibrations of 
S3 are of very low frequency. In late diastole, a fourth heart sound (S4) may be 
heard sometimes, caused by atrial contractions displacing blood into the distended 
ventricles. In addition to these sounds, valvular clicks and snaps are occasionally 
heard. 

Heart murmurs: The intervals between S 1 and S2, and S2 and S 1 of the next 
cycle (corresponding to ventricular systole and diastole, respectively) are normally 
silent. Murmurs, which are caused by certain cardiovascular defects and diseases, 
may occur in these intervals. Murmurs are high-frequency, noise-like sounds that 
arise when the velocity of blood becomes high as it flows through an irregularity 
(such as a constriction or a baffle). Typical conditions in the cardiovascular system 
that cause turbulence in blood flow are valvular stenosis and insufficiency. A valve is 
said to be stenosed when, due to the deposition of calcium or other reasons, the valve 
leaflets are stiffened and do not open completely, and thereby cause an obstruction or 
baffle in the path of the blood being ejected. A valve is said to be insufficient when it 
cannot close effectively and causes reverse leakage or regurgitation of blood through 
a narrow opening. 

Systolic murmurs (SM) are caused by conditions such as ventricular septal defect 
(VSD - essentially a hole in the wall between the left ventricle and the right ven- 
tricle), aortic stenosis (AS), pulmonary stenosis (PS), mitral insufficiency (MI), and 
tricuspid insufficiency (TI). Semilunar valvular stenosis (aortic stenosis, pulmonary 
stenosis) causes an obstruction in the path of blood being ejected during systole. AV 
valvular insufficiency (mitral insufficiency, tricuspid insufficiency) causes regurgita- 
tion of blood to the atria during ventricular contraction. 

Diastolic murmurs (DM) are caused by conditions such as aortic or pulmonary 
insufficiency (AI, PI), and mitral or tricuspid stenosis (MS, PS). Other conditions 
causing murmurs are atrial septal defect (ASD), patent ductus arteriosus (PDA), as 
well as certain physiological or functional conditions that cause increased cardiac 
output or blood velocity. 

Features of heart sounds and murmurs, such as intensity, frequency content, and 
timing, are affected by many physical and physiological factors such as the recording 
site on the thorax, intervening thoracic structures, left ventricular contractility, posi- 
tion of the cardiac valves at the onset of systole, the degree of the defect present, the 
heart rate, and blood velocity. For example, S 1 is loud and delayed in mitral stenosis; 
right bundle-branch block causes wide splitting of S2; left bundle-branch block re- 
sults in reversed splitting of S2; acute myocardial infarction causes a pathologic S3; 
and severe mitral regurgitation (MR) leads to an increased S4 [40, 41, 42, 43, 441. 



38 INTRODUCTION TO BIOMEDICAL SIGNALS 

Although murmurs are noise-like events, their features aid in distinguishing between 
different causes. For example, aortic stenosis causes a diamond-shaped midsystolic 
murmur, whereas mitral stenosis causes a decrescendo - crescendo type diastolic - 
presystolic murmur. Figure 1.26 illustrates the PCG, ECG, and carotid pulse sig- 
nals of a patient with aortic stenosis; the PCG displays the typical diamond-shaped 
murmur in systole. 

Recording PCG signals: PCG signals are normally recorded using piezoelectric 
contact sensors that are sensitive to displacement or acceleration at the skin surface. 
The PCG signals illustrated in this section were obtained using a Hewlett Packard 
HP21050A transducer, which has a nominal bandwidth of 0.05 - 1,000 Hz. The 
carotid pulse signals shown in this section were recorded using the HP2 128 1 A pulse 
transducer, which has a nominal bandwidth of 0- 100 Hz. PCG recording is normally 
performed in a quiet room, with the patient in the supine position with the head resting 
on a pillow. The PCG transducer is placed firmly on the desired position on the chest 
using a suction ring and/or a rubber strap. 

Use of the ECG and carotid pulse signals in the analysis of PCG signals will be 
described in Sections 2.2.1,2.2.2, and 2.3. Segmentation of the PCG based on events 
detected in the ECG and carotid pulse signals will be discussed in Section 4.10. A 
particular type of synchronized averaging to detect A2 in S2 will be the topic of 
Section 4. I 1. Spectral analysis of the PCG and its applications will be presented in 
Sections 6.2.1, 6.4.5, 6.6, and 7.10. Parametric modeling and detection of S1 and 
S2 will be described in Sections 7.5.2 and 7.9. Modeling of sound generation in 
stenosed coronary arteries will be discussed in Section 7.7.1. Adaptive segmentation 
of PCG signals with no other reference signal will be explored in Section 8.8. 

1.2.9 The carotid pulse (CP) 

The carotid pulse is a pressure signal recorded over the carotid artery as it passes 
near the surface of the body at the neck. It provides a pulse signal indicating the 
variations in arterial blood pressure and volume with each heart beat. Because of the 
proximity of the recording site to the heart, the carotid pulse signal closely resembles 
the morphology of the pressure signal at the root of the aorta; however, it cannot be 
used to measure absolute pressure [41]. The carotid pulse is a useful adjunct to the 
PCG and can assist in the identification of S2 and its components. 

The carotid pulse rises abruptly with the ejection of blood from the left ventricle 
to the aorta, reaching a peak called the percussion wave (P, see Figure 1.24). This 
is followed by a plateau or a secondary wave known as the tidal wave (T), caused 
by a reflected pulse returning from the upper body. Next, closure of the aortic valve 
causes a notch known as the dicrotic notch (D). The dicrotic notch may be followed 
by the dicrotic wave (DW, see Figure 1.24) due to a reflected pulse from the lower 
body [41]. The carotid pulse trace is affected by valvular defects such as mitral 
insufficiency and aortic stenosis [41]; however, it is not commonly used in clinical 
diagnosis. 

The carotid pulse signals shown in this section were recorded using the HP21281A 
pulse transducer, which has a nominal bandwidth of 0 - 100 Hz. The carotid pulse 
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Figure 1.26 Three-channel simultaneous record of the PCG, ECG, and carotid pulse signals 
of a patient (female, 11 years) with aortic stenosis. Note the presence of the typical diamond- 
shaped systolic murmur and the split nature of S2 in the PCG. 
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signal is usually recorded with the PCG and ECG signals. Placement of the carotid 
pulse transducer requires careful selection of a location on the neck as close to the 
carotid artery as possible, where the pulse is felt the strongest, usually by a trained 
technician (see Figure 1.17). 

Details on intervals that may be measured from the carotid pulse and their use in 
segmenting the PCG will be presented in Sections 2.2.2 and 2.3. Signal-processing 
techniques for the detection of the dicrotic notch will be described in Section 4.3.3. 
Use of the dicrotic notch for segmentation of PCG signals will be explored in Sec- 
tions 4.10 and 4.1 1. Application of the carotid pulse to averaging of PCG spectra in 
systole and diastole will be proposed in Section 6.4.5. 

1.2.10 Signals from catheter-tip sensors 

For very specific and close monitoring of cardiac function, sensors placed on catheter 
tips may be inserted into the cardiac chambers. It then becomes possible to acquire 
several signals such as left ventricular pressure, right atrial pressure, aortic (AO) 
pressure, and intracardiac sounds [43, 441. While these signals provide valuable 
and accurate information, the procedures are invasive and are associated with certain 
risks. 

Figures 1.27 and 1.28 illustrate multi-channel aortic, left ventricular, and right 
ventricular pressure recordings from a dog using catheter-tip sensors. The ECG 
signal is also shown. Observe in Figure 1.27 that the right ventricular and left 
ventricular pressures increase exactly at the instant of each QRS complex. The aortic 
pressure peaks slightly after the increase in the left ventricular pressure. The notch 
(incisura) in the aortic pressure signal is due to closure of the aortic valve. (The same 
notch propagates through the vascular system and appears as the dicrotic notch in 
the carotid pulse signal.) The left ventricular pressure range (10 - 110 mm of Hg) 
is much larger than the right ventricular pressure range (5 - 25 mm of Hg). The 
aortic pressure range is limited to the vascular BP range of 80 - 120 mm of Hg. 

The signals in Figure 1.28 display the effects of PVCs. Observe the depressed 
ST segment in the ECG signal in the figure, likely due to myocardial ischemia. (It 
should be noted that the PQ and ST segments of the ECG signal in Figure 1.27 are 
iso-electric, even though the displayed values indicate a non-zero level. On the other 
hand, in the ECG in Figure 1.28, the ST segment stays below the corresponding 
iso-electric PQ segment.) The ECG complexes appearing just after the 2 8 and 3 s 
markers are PVCs arising from different ectopic foci, as evidenced by their markedly 
different waveforms. Although the PVCs cause a less-than-normal increase in the 
left ventricular pressure, they do not cause a rise in the aortic pressure, as no blood is 
effectively pumped out of the left ventricle during the ectopic beats. 

1.2.1 1 The speech signal 

Human beings are social creatures by nature, and have an innate need to communicate. 
We are endowed with the most sophisticated vocal system in nature. The speech signal 
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Figure 1.27 Normal ECG and intracardiac pressure signals from a dog. A 0  represents aortic 
pressure near the aortic valve. Data courtesy of R. Sas and J. Tyberg, Department of Physiology 
and Biophysics, University of Calgary. 
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Figure 1.28 ECG and intracardiac pressure signals from a dog with PVCs. Data courtesy of 
R. Sas and J. Tyberg, Department of Physiology and Biophysics, University of Calgary. 
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is an important signal, although it is more commonly considered as a communication 
signal than a biomedical signal. However, the speech signal can serve as a diagnostic 
signal when speech and vocal-tract disorders need to be investigated 1451. 

Speech sounds are produced by transmitting puffs of air from the lungs through the 
vocal tract (as well as the nasal tract for certain sounds) [46]. The vocal tract starts at 
the vocal cords or glottis in the throat and ends at the lips and the nostrils. The shape 
of the vocal tract is varied to produce different types of sound units or phonemes 
which, when concatenated, form speech. In essence, the vocal tract acts as a filter 
that modulates the spectral characteristics of the input puffs of air. It is evident that 
the system is dynamic, and that the filter, and therefore the speech signal produced, 
have time-varying characteristics, that is, they are nonstationary (see Section 3.1.2). 

Speech sounds may be classified mainly as voiced, unvoiced, and plosive sounds 
[46]. Voiced sounds involve the participation of the glottis: air is forced through 
the vocal cords held at a certain tension. The result is a series of quasi-periodic 
pulses of air which is passed through the vocal tract. The input to the vocal tract 
may be treated as an impulse train that is almost periodic. Upon convolution with the 
impulse response of the vocal tract, which is held steady at a certain configuration for 
the duration of the voiced sound desired, a quasi-periodic signal is produced with a 
characteristic waveshape that is repeated. All vowels are voiced sounds. Figure 1.29 
shows the speech signal of the word “safety” spoken by a male. Figure 1.30 shows, in 
the upper trace, a portion of the signal corresponding to the /E/ sound (the letter “a” in 
the word). The quasi-periodic nature of the signal is evident. Features of interest in 
voiced signals are the pitch (average interval between the repetitions of the vocal-tract 
impulse response or basic wavelet) and the resonance or formant frequencies of the 
vocal-tract system. 

An unvoiced sound (or fricative) is produced by forcing a steady stream of air 
through a narrow opening or constriction formed at a specific position along the 
vocal tract. The result is a turbulent signal that appears almost like random noise. In 
fact, the input to the vocal tract is a broadband random signal, which is filtered by 
the vocal tract to yield the desired sound. Fricatives are unvoiced sounds, as they do 
not involve any activity (vibration) of the vocal cords. The phonemes / S / ,  /SW, /ZJ, 
and /F/ are examples of fricatives. The lower trace in Figure 1.30 shows a portion 
of the signal corresponding to the / S /  sound in the word “safety”. The signal has no 
identifiable structure, and appears to be random (see also Figures 3.1,3.3, and 3.4, as 
well as Section 3.1.2). The transfer function of the vocal tract, as evidenced by the 
spectrum of the signal itself, would be of interest in analyzing a fricative. 

Plosives, also known as stops, involve complete closure of the vocal tract, followed 
by an abrupt release of built-up pressure. The phonemes P/, /T/, /K/, and /D/ are 
examples of plosives. The sudden burst of activity at about 1.1 s in Figure 1.29 
illustrates the plosive nature of R/. Plosives are hard to characterize as they are 
transients; their properties are affected by the preceding phoneme as well. For more 
details on the speech signal, see Rabiner and Schafer [46]. 

Signal-processing techniques for extraction of the vocal-tract response from voiced 
speech signals will be described in Section 4.8.3. Frequency-domain characteristics 
of speech signals will be illustrated in Section 7.6.3 and 8.4.1. 
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Figure 1.29 Speech signal of the word “safety” uttered by a male speaker, Approximate 
time intervals of the various phonemes in the word are /S/: 0.2 - 0.35 8 ;  IEl: 0.4 - 0.7 s; E L  
0.75 - 0.95 s; iTL transient at 1.1 s; A/: 1.1 - 1.2 s. Background noise is also seen in the 
signal before the beginning and after the termination of the speech, as well as during the stop 
interval before the plosive IT/. 
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Figure 1.30 Segments of the signal in Figure 1.29 on an expanded scale to illustrate the 
quasi-periodic nature of the voiced sound /E/ in the upper trace, and the almost-random nature 
of the fricative /S/ in the lower trace. 
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1.2.1 2 The vlbromyogram (VMG) 

The VMG is the direct mechanical manifestation of contraction of a skeletal muscle, 
and is  a vibration signal that accompanies the EMG. The signal has also been named 
as the sound-, acoustic-, or phono-myogram. Muscle sounds or vibrations are related 
to the change in dimensions (contraction) of the constituent muscle fibers (see Fig- 
ure 1.4), and may be recorded using contact microphones or accelerometers (such 
as the Dytran 31 15A accelerometer, Dytran, Chatsworth, CA) placed on the muscle 
surface [47,48]. The frequency and intensity of the VMG have been shown to vary 
in direct proportion to the contraction level. The VMG, along with the EMG, may 
be useful in studies related to neuromuscular control, muscle contraction, athletic 
training, and biofeedback. VMG signal analysis, however, is not as well established 
or popular as EMG analysis. 

Simultaneous analysis of the VMG and EMG signals will be discussed in Sec- 
tion 2.2.5. Adaptive cancellation of the VMG from knee-joint vibration signals will 
be the topic of Sections 3.6.2,3.6.3, and 3.10. Analysis of muscle contraction using 
the VMG will be described in Section 5.10. 

1.2.1 3 The vlbroarthrogram (VAG) 

The knee joint: As illustrated in Figure 1.31, the knee joint is formed between the 
femur, the patella, and the tibia. The knee joint is the largest articulation in the human 
body that can effectively move from 0" extension to 135" flexion, together with 20" 
to 30" rotation of the flexed leg on the femoral condyles. The joint has four important 
features: (1) a joint cavity, (2) articular cartilage, (3) a synovial membrane, and (4) a 
fibrous capsule [49,50]. The knee joint is known as a synovial joint, as it contains 
a lubricating substance called the synovial fluid. The patella (knee cap), a sesamoid 
bone, protects the joint, and is precisely aligned to slide in the groove (trochlea) of 
the femur during leg movement. The knee joint is made up of three compartments: 
(1) the patello-femoral, (2) the lateral tibio-femoral, and (3) the medial tibio-femoral 
compartments. The patello-femoral compartment is classified as a synovial gliding 
joint and the tibio-femoral a s  a synovial hinge joint [5  11. The anterior and posterior 
cruciate ligaments as well as the lateral and medial ligaments bind the femur and 
tibia together, give support to the knee joint, and limit movement of the joint. The 
various muscles around the joint help in the movement of the joint and contribute to 
its stability. 

The knee derives its physiological movement and its typical rolling - gliding 
mechanism of flexion and extension from its six degrees of freedom: three in trans- 
lation and three in rotation. The translations of the knee take place on the anterior - 
posterior, medial - lateral, and proximal -distal axes. The rotational motion consists 
of flexion - extension, internal - external rotation, and abduction - adduction. 

Although the tibia1 plateaus are the main load-bearing structures in the knee, the 
cartilage, menisci, and ligaments also bear loads. The patella aids knee extension by 
lengthening the lever arm of the quadriceps muscle throughout the entire range of 
motion, and allows a better distribution of compressive stresses on the femur [52]. 
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Figure 1.31 Front and side views of the knee joint (the two views are not mutually orthogo- 
nal). The inset shows the top view of the tibia with the menisci. 

Articular cartilage: Two types of cartilage are present in the knee joint: the 
articular cartilage, which covers the ends of bones, and the wedge-shaped fibro- 
cartilaginous structure called the menisci, located between the femur and the tibia 
[53]. The shock-absorbing menisci are composed of the medial meniscus and the 
lateral meniscus, which are two crescent-shaped plates of fibrocartilage that lie on 
the articular surface of the tibia. 

The articular surfaces of the knee joint are the large curved condyles of the femur, 
the flattened condyles (medial and lateral plateaus) of the tibia, and the facets of the 
patella. There are three types of articulation: an intermediate articulation between 
the patella and the femur, and lateral and medial articulation between the femur and 
the tibia. The articular surfaces are covered by cartilage, like all the major joints of 
the body. Cartilage is vital to joint function because it protects the underlying bone 
during movement. Loss of cartilage function leads to pain, decreased mobility, and 
in some instances, deformity and instability. 

Knee-joint disorders: The knee is the most commonly injured joint in the body. 
Arthritic degeneration of injured knees is a well-known phenomenon, and is known 
to result from a variety of traumatic causes. Damage to the stabilizing ligaments 
of the knee, or to the shock-absorbing fibrocartilage pads (the menisci) are two of 
the most common causes of deterioration of knee-joint surfaces. Impact trauma to 
the articular cartilage surfaces themselves could lead to surface deterioration and 
secondary osteoarthritis. 

Non-traumatic conditions of the knee joint include the extremely common id- 
iopathic condition known as chondromalacia patella (soft cartilage of the patella), 
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in which articular cartilage softens, fibrillates, and sheds off the undersurface of 
the patella. Similarly, the meniscal fibrocartilage of the knee can apparently soften, 
which could possibly lead to degenerative tears and secondary changes in the regional 
hyaline surfaces. 

Knee-joint sounds: Considerable noise is often associated with degeneration of 
knee-joint surfaces. The VAG is the vibration signal recorded from a joint during 
movement (articulation) of the joint. Normal joint surfaces are smooth and produce 
little or no sound, whereas joints affected by osteoarthritis and other degenerative 
diseases may have suffered cartilage loss and produce grinding sounds. Detection of 
knee-joint problems via the analysis of VAG signals could help avoid unnecessary 
exploratory surgery, and also aid better selection of patients who would benefit from 
surgery [54, 55 ,  56, 57, 58, 59, 601. The VAG signal, however, is not yet well 
understood, and is a difficult signal to analyze due to its complex nonstationary 
characteristics. 

Further details on the VAG signal will be provided in Sections 2.2.6, 3.2.6, 
and 8.2.3. Modeling of a specific type of VAG signal known as patello-femoral crepi- 
tus will be presented in Sections 7.2.4,7.3, and 7.7.2. Adaptive filtering of the VAG 
signal to remove muscle-contraction interference will be described in Sections 3.6.2, 
3.6.3, and 3.10. Adaptive segmentation of VAG signals into quasi-stationary seg- 
ments will be illustrated in Sections 8.6.1 and 8.6.2. The role of VAG signal analysis 
in the detection of articular cartilage diseases will be discussed in Section 9.13. 

1.2.14 Oto-acoustic emission signals 

The oto-acoustic emission (OAE) signal represents the acoustic energy emitted by the 
cochlea either spontaneously or in response to an acoustic stimulus. The discovery 
of the existence of this signal indicates that the cochlea not only receives sound 
but also produces acoustic energy [61]. The OAE signal could provide objective 
information on the micromechanical activity of the preneural or sensory components 
of the cochlea that are distal to the nerve-fiber endings. Analysis of the OAE signal 
could lead to improved noninvasive investigative techniques to study the auditory 
system. The signal may also assist in screening of hearing function and in the 
diagnosis of hearing impairment. 

1.3 OBJECTIVES OF BIOMEDICAL SIGNAL ANALYSIS 

The representation of biomedical signals in electronic form facilitates computer 
processing and analysis of the data. Figure 1.32 illustrates the typical steps and 
processes involved in computer-aided diagnosis and therapy based upon biomedical 
signal analysis. 
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The major objectives of biomedical instrumentation and signal analysis [ 17, 13, 
10, 11, 121 are: 

0 Informarion gathering - measurement of phenomena to interpret a system. 

0 Diagnosis - detection of malfunction, pathology, or abnormality. 

0 Monitoring - obtaining continuous or periodic information about a system. 

0 Therapy and control - modification of the behavior of a system based upon 
the outcome of the activities listed above to ensure a specific result. 

0 Evaluarion - objective analysis to determine the ability to meet functional 
requirements, obtain proof of performance, perform quality control, or quantify 
the effect of treatment. 

Signal acquisition procedures may be categorized as being invasive or noninvasive, 
and active or passive. 

Invasive versus noninvasive procedures: Invasive procedures involve the place- 
ment of transducers or other devices inside the body, such as needle electrodes to 
record MUAPs, or insertion of catheter-tip sensors into the heart via a major artery or 
vein to record intracardiac signals. Noninvasive procedures are desirable in order to 
minimize risk to the subject. Recording of the ECG using limb or chest electrodes, 
the EMG with surface electrodes, or the FCG with microphones or accelerometers 
placed on the chest are noninvasive procedures. 

Note that making measurements or imaging with x-rays, ultrasound, and so on, 
may be classified as invasive procedures, as they involve penetration of the body with 
externally administered radiation, even though the radiation is invisible and there is 
no visible puncturing or invasion of the body. 

Active versus passive procedures: Active data acquisition procedures require 
external stimuli to be applied to the subject, or require the subject to perform a certain 
activity to stimulate the system of interest in order to elicit the desired response or 
signal. For example, recording an EMG signal requires contraction of the muscle of 
interest, say the clenching of a fist; recording the VAG signal from the knee requires 
flexing of the leg over a certain joint angle range; recording visual ERP signals 
requires the delivery of flashes of light to the subject. While these stimuli may appear 
to be innocuous, they do carry risks in certain situations for some subjects: flexing 
the knee beyond a certain angle may cause pain for some subjects; strobe lights may 
trigger epileptic seizures in some subjects. The investigator should be aware of such 
risks, factor them in a risk - benejir analysis, and be prepared to manage adverse 
reactions. 

Passive procedures do not require the subject to perform any activity. Recording 
of the ECG using limb or chest electrodes, the EEG during sleep using scalp-surface 
electrodes, or the PCG with microphones or accelerometers placed on the chest are 
passive procedures, but require contact between the subject and the instruments. Note 
that although the procedure is passive, the system of interest is active under its own 
natural control in these procedures. Acquiring an image of a subject with reflected 
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natural light (with no flash from the camera) or with the natural infra-red (thermal) 
emission could be categorized as a passive and non-contact procedure. 

Most organizations require ethical approval by specialized committees for exper- 
imental procedures involving human or animal subjects, with the aim of minimizing 
the risk and discomfort to the subject and maximizing the benefits to both the subjects 
and the investigator. 

The human - instrument system: The components of a human - instrument 
system [17, 13, 10, 11, 121 are: 

0 The subject or  patient: It is important always to bear in mind that the main 
purpose of biomedical instrumentation and signal analysis is to provide a 
certain benefit to the subject or patient. All systems and procedures should 
be designed so as not to unduly inconvenience the subject, and not to cause 
any harm or danger. In applying invasive or risky procedures, it is extremely 
important to perform a risk -benefit analysis and determine if the anticipated 
benefits of the procedure are worth placing the subject at the risks involved. 

0 Stimulus orprocedure ofactivity Application of stimuli to the subject in active 
procedures requires instruments such as strobe light generators, sound genera- 
tors, and electrical pulse generators. Passive procedures require a standardized 
protocol of the desired activity to ensure repeatability and consistency of the 
experiment. 

0 Transducers: electrodes, sensors. 

0 Signal-conditioning equipment: amplifiers, filters. 

0 Display equipment: oscilloscopes, strip-chart or paper recorders, computer 
monitors, printers. 

0 Recording, data processing, and transmission equipment: analog instrumen- 
tation tape recorders, analog-to-digital converters (ADCs), digital-to-analog 
converters (DACs), digital tapes, compact disks (CDs), diskettes, computers, 
telemetry systems. 

0 Control devices: power supply stabilizers and isolation equipment, patient 
intervention systems. 

The science of measurement of physiological variables and parameters is known 
as biornetrics. Some of the aspects to be considered in the design, specification, or 
use of biomedical instruments [17, 13, 10, 11, 121 are: 

0 Isolation of the subject or patient - of paramount importance so that the 
subject is not placed at the risk of electrocution. 

0 Range of operation - the minimum to maximum values of the signal or 
parameter being measured. 
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0 Sensitivity - the smallest signal variation measurable. This determines the 
resolution of the system. 

0 Linearity - desired over at least a portion of the range of operation. Any 
nonlinearity present may need to be corrected for at later stages of signal 
processing. 

0 Hysteresis - a lag in measurement due to the direction of variation of the 
entity being measured. Hysteresis may add a bias to the measurement, and 
should be corrected for. 

0 Frequency response - represents the variation of sensitivity with frequency. 
Most systems encountered in practice exhibit a lowpass behavior, that is, the 
sensitivity of the system decreases as the frequency of the input signal increases. 
Signal restoration techniques may be required to compensate reduced high- 
frequency sensitivity. 

0 Stability - an unstable system could preclude repeatability and consistency of 
measurements. 

0 Signal-to-noise ratio (SNR) - power-line interference, grounding problems, 
thermal noise, and so on, could compromise the quality of the signal being 
acquired. A good understanding of the signal-degrading phenomena present in 
the system is necessary in order to design appropriate filtering and correction 
procedures. 

0 Accuracy - includes the effects of errors due to component tolerance, move- 
ment, or mechanical errors; drift due to changes in temperature, humidity, or 
pressure; reading errors due to, for example, parallax; and zeroing or calibration 
errors. 

1.4 DIFFICULTIES ENCOUNTERED IN BIOMEDICAL SIGNAL 
ACQUISITION AND ANALYSIS 

In spite of the long history of biomedical instrumentation and its extensive use in 
health care and research, many practical difficulties are encountered in biomedical 
signal acquisition, processing, and analysis [ 17, 13, 10, 11, 121. The characteristics 
of the problems, and hence their potential solutions, are unique to each type of signal. 
Particular attention should be paid to the following issues. 

Accessibility of the variables to measurement: Most of the systems and organs 
of interest, such as the cardiovascular system and the brain, are located well within 
the body (for good reasons!). While the ECG may be recordeeusing limb electrodes, 
the signal so acquired is but a projection of the true 3D cardiac electrical vector of 
the heart onto the axis of the electrodes. Such a signal may be sufficient for rhythm 
monitoring, but could be inadequate for more specific analysis of the cardiac system 
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such as atrial electrical activity. Accessing the atrial electrical activity at the source 
requires insertion of an electrode close to the atrial surface or within the atria. 

Similarly, measurement of blood pressure using a pressure cuff over an arm gives 
an estimate of the brachial arterial pressure. Detailed study of pressure variations 
within the cardiac chambers or arteries over a cardiac cycle would require insertion 
of catheters with pressure sensors into the heart. Such invasive procedures provide 
access to the desired signals at their sources and often provide clear and useful signals, 
but carry high risks. 

The surface EMG includes the interference pattern of the activities of several 
motor units even at very low levels of muscular contraction. Acquisition of SMUAPs 
requires access to the specific muscle layer or unit of interest by insertion of fine-wire 
or needle electrodes. The procedure carries risks of infection and damage to muscle 
fibers, and causes pain to the subject during muscular activity. 

An investigator should assess the system and variables of interest carefully and 
determine the minimal level of intervention absolutely essential to the data acquisition 
procedure. The trade-off to be performed is that of integrity and quality of the 
information acquired versus the pain and risks to the subject. 

Variability of the signal source: It is evident from the preceding sections that 
the various systems that comprise the human body are dynamic systems with several 
variables. Biomedical signals represent the dynamic activity of physiological systems 
and the states of their constituent variables. The nature of the processes or the 
variables could be deterministic or random (stochastic); a special case is that of 
periodicity or quasi-periodicity. 

A normal ECG exhibits a regular rhythm with a readily identifiable waveshape (the 
QRS complex) in each period, and under such conditions the signal may be referred 
to as a deterministic and periodic signal. However, the cardiovascular system of a 
heart patient may not stay in a given state over significant periods and the waveshape 
and rhythm may vary over time. 

The surface EMG is the summation of the MUAPs of the motor units that are 
active at the given instant of time. Depending upon the level of contraction desired 
(at the volition of the subject), the number of active motor units varies, increasing 
with increasing effort. Furthermore, the firing intervals or the firing rate of each 
motor unit also vary in response to the level of contraction desired, and exhibit 
stochastic properties. While the individual MUAPs possess readily identifiable and 
simple monophasic, biphasic, or triphasic waveshapes, the interference pattern of 
several motor units firing at different rates will appear as an almost random signal 
with no visually recognizable waves or waveshapes. 

The dynamic nature of biological systems causes most signals to exhibit stochastic 
and nonstationary behavior. This means that signal statistics such as mean, variance, 
and spectral density change with time. For this reason, signals from a dynamic system 
should be analyzed over extended periods of time including various possible states 
of the system, and the results should be placed in the context of the corresponding 
states. ! 

Inter-relationships and interactions among physiological systems: The various 
systems that compose the human body are not mutually independent; rather, they are 
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inter-related and interact in various ways. Some of the interactive phenomena are 
compensation, feedback, cause-and-effect, collateral effects, loading, and take-over 
of function of a disabled system or part by another system or part. For example, 
the second heart sound exhibits a split during active inspiration in normal subjects 
due to reduced intra-thoracic pressure and decreased venous return to the left side 
of the heart [41] (but not during expiration); this is due to normal physiological 
processes. However, the second heart sound is split in both inspiration and expiration 
due to delayed right ventricular contraction in right bundle-branch block, pulmonary 
valvular stenosis or insufficiency, and other conditions [41]. Ignoring this inter- 
relationship could lead to misinterpretation of the signal. 

Effect of the instrumentation or procedure on the system: The placement of 
transducers on and connecting a system to instruments could affect the performance 
or alter the behavior of the system, and cause spurious variations in the parameters 
being investigated. The experimental procedure or activity required to elicit the signal 
may lead to certain effects that could alter signal characteristics. This aspect may not 
always be obvious unless careful attention is paid. For example, the placement of a 
relatively heavy accelerometer may affect the vibration characteristics of a muscle and 
compromise the integrity of the vibration or sound signal being measured. Fatigue 
may set in after a few repetitions of an experimental procedure, and subsequent 
measurements may not be indicative of the true behavior of the system; the system 
may need some rest between procedures or their repetitions. 

Physiological artifacts and interference: One of the pre-requisites for obtaining 
a good ECG signal is for the subject to remain relaxed and still with no movement. 
Coughing, tensing of muscles, and movement of the limbs cause the corresponding 
EMG to appear as an undesired artifact. In the absence of any movement by the 
subject, the only muscular activity in the body would be that of the heart. When chest 
leads are used, even normal breathing could cause the associated EMG of the chest 
muscles to interfere with the desired ECG. It should also be noted that breathing 
causes beat-to-beat variations in the RR interval, which should not be mistaken to 
be sinus arrhythmia. An effective solution would be to record the signal with the 
subject holding breath for a few seconds. This simple solution does not apply in 
long-term monitoring of critically ill patients or in recording the ECG of infants; 
signal-processing procedures would then be required to remove the artifacts. 

A unique situation is that of acquiring the ECG of a fetus through surface electrodes 
placed over the mother’s abdomen: the maternal ECG appears as an interference in 
this situation. No volitional or external control is possible or desirable to prevent 
the artifact in this situation, which calls for more intelligent adaptive cancellation 
techniques using multiple channels of various signals [62]. 

Another example of physiological interference or cross-talk is that of muscle- 
contraction interference (MCI) in the recording of the knee-joint VAG signal [63]. 
The rectus femoris muscle is active (contracting) during the swinging movement of 
the leg required to elicit the joint vibration signal. The VMG of the muscle is propa- 
gated to the knee and appears as an interference. Swinging the leg mechanically using 
a mechanical actuator is a possible solution; however, this represents an unnatural 
situation, and may cause other sound or vibration artifacts from the machine. Adap- 
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tive filtering using multi-channel vibration signals from various points is a feasible 
solution [63]. 

Energy limitations: Most biomedical signals are generated at microvolt or mil- 
livolt levels at their sources. Recording such signals requires very sensitive trans- 
ducers and instrumentation with low noise levels. The connectors and cables need 
to be shielded as well, in order to obviate pickup of ambient electromagnetic (EM) 
signals. Some applications may require transducers with integrated amplifiers and 
signal conditioners so that the signal leaving the subject at the transducer level is 
much stronger than ambient sources of potential interference. 

When external stimuli are required to elicit a certain response from a system, the 
level of the stimulus is constrained due to safety factors and physiological limitations. 
Electrical stimuli to record the ENG need to be limited in voltage level so as to not 
cause local burns or interfere with the electrical control signals of the cardiac or 
nervous systems. Auditory and visual stimuli are constrained by the lower thresholds 
of detectability and upper thresholds related to frequency response, saturation, or 
pain. 

Patient safety: Protection of the subject or patient from electrical shock or 
radiation hazards is an unquestionable requirement of paramount importance. The 
relative levels of any other risks involved should be assessed when a choice is 
available between various procedures, and analyzed against their relative benefits. 
Patient safety concerns may preclude the use of a procedure that may yield better 
signals or results than others, or require modifications to a procedure that may lead 
to inferior signals. Further signal-processing steps would then become essential in 
order to improve signal quality or otherwise compensate for the initial loss. 

1.5 COMPUTER-AIDED DIAGNOSIS 

Physicians, cardiologists, neuroscientists, and health-care technologists are highly 
trained and skilled practitioners. Why then would we want to use computers or 
electronic instrumentation for the analysis of biomedical signals? The following 
points provide some arguments in favor of the application of computers to process 
and analyze biomedical signals. 

0 Humans are highly skilled and fast in the analysis of visual patterns and wave- 
forms, but are slow in arithmetic operations with large numbers of values. The 
ECG of a single cardiac cycle (heart beat) could have up to 200 numerical 
values; the corresponding PCG up to 2,000. If signals need to be processed to 
remove noise or extract a parameter, it would not be practical for a person to 
perform such computation. Computers can perform millions of arithmetic op- 
erations per second. It should be noted, however, that recognition of waveforms 
and images using mathematical procedures typically requires huge numbers 
of operations that could lead to slow responses in such tasks from low-level 
computers. 
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0 Humans could be affected by fatigue, boredom, and environmental factors, 
and are susceptible to committing errors. Long-term monitoring of signals, for 
example, the heart rate and ECG of a critically ill patient, by a human observer 
watching an oscilloscope or computer tracing is neither economical nor feasi- 
ble. A human observer could be distracted by other events in the surrounding 
areas and may miss short episodes or transients in the signal. Computers, 
being inanimate but mathematically accurate and consistent machines, can be 
designed to perform computationally specific and repetitive tasks. 

0 Analysis by humans is usually subjective and qualitative. When comparative 
analysis is required between the signal of a subject and another or a standard 
pattern, a human observer would typically provide a qualitative response. For 
example, if the QRS width of the ECG is of interest, a human observer may 
remark that the QRS of the subject is wider than the reference or normal. 
More specific or objective comparison to the accuracy of the order of a few 
milliseconds would require the use of electronic instrumentation or a com- 
puter. Derivation of quantitative or numerical features from signals with large 
numbers of samples would certainly demand the use of computers. 

0 Analysis by humans is subject to inter-observer as well as intra-observer vari- 
ations (with time). Given that most analyses performed by humans are based 
upon qualitative judgment, they are liable to vary with time for a given ob- 
server, or from one observer to another. The former could also be due to lack 
of diligence or due to inconsistent application of knowledge, and the latter due 
to variations in training and level of understanding. Computers can apply a 
given procedure repeatedly and whenever recalled in a consistent manner. It 
is further possible to encode the knowledge (to be more specific, the logic) 
of many experts into a single computational procedure, and thereby enable a 
computer with the collective intelligence of several human experts in the area 
of interest. 

0 Most biomedical signals are fairly slow (lowpass) signals, with their bandwidth 
limited to a few tens to a few thousand Hertz. Typical sampling rates for digital 
processing of biomedical signals therefore range from 100 Hz to 10 - 20 k H z .  
Sampling rates as above facilitate on-line, real-rime analysis of biomedical 
signals with even low-end computers. Note that the term “real-time analysis” 
may be used to indicate the processing of each sample of the signal before 
the next sample arrives, or the processing of an epoch or episode such as an 
ECG beat before the next one is received in its entirety in a buffer. Heart- 
rate monitoring of critically ill patients would certainly demand real-time ECG 
analysis. However, some applications do not require on-line, real-time analysis: 
for example, processing a VAG signal to diagnose cartilage degeneration, 
and analysis of a long-term ECG record obtained over several hours using 
an ambulatory system do not demand immediate attention and results. In 
such cases, computers could be used for of-line analysis of pre-recorded 
signals with sophisticated signal-processing and time-consuming modeling 
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techniques. The speed required for real-time processing and the computational 
complexities of modeling techniques in the case of off-line applications both 
would rule out the possibility of performance of the tasks by humans. 

One of the important points to note in the above discussion is that quantitative 
analysis becomes possible by the application of computers to biomedical signals. The 
logic of medical or clinical diagnosis via signal analysis could then be objectively 
encoded and consistently applied in routine or repetitive tasks. However, it should 
be emphasized at this stage that the end-goal of biomedical signal analysis should 
be seen as computer-aided diagnosis and not automated diagnosis. A physician or 
medical specialist typically uses a significant amount of information in addition to 
signals and measurements, including the general physical appearance and mental 
state of the patient, family history, and socio-economic factors affecting the patient, 
many of which are not amenable to quantification and logistic rule-based processes. 
Biomedical signals are, at best, indirect indicators of the state of the patient; most 
cases lack a direct or unique signal -pathology relationship [3 11. The results of signal 
analysis need to be integrated with other clinical signs, symptoms, and information 
by a physician. Above all, the intuition of the specialist plays an important role in 
amving at the final diagnosis. For these reasons, and keeping in mind the realms 
of practice of various licensed and regulated professions, liability, and legal factors, 
the final diagnostic decision is best left to the physician or medical specialist. It 
is expected that quantitative and objective analysis facilitated by the application of 
computers to biomedical signal analysis will lead to a more accurate diagnostic 
decision by the physician. 

On the importance of quantitative analysis: 
“When you can measure what you are speaking about, and express it in numbers, 
you know something about it; but when you cannot measure it, when you cannot 
express it in numbers, your knowledge is of a meager and unsatisfactory kind: 
it may be the beginning of knowledge, but you have scarcely, in your thoughts, 
advanced to the stage of science.” 

- Lord Kelvin (William Thomson, 1824 - 1907) [64] 

On assumptions made in quantitative analysis: 
“Things do not in general run around with their measure stamped on them like 
the capacity of a freight car; it requires a certain amount of investigation to 
discover what their measures are ... What most experimenters take for granted 
before they begin their experiments is infinitely more interesting than any results 
to which their experiments lead.” 

- Norbert Wiener (I 894 - 1964) 

1.6 REMARKS 

We have taken a general look at the nature of biomedical signals in this chapter, and 
seen a few signals illustrated for the purpose of gaining familiarity with their typical 
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appearance and features. Specific details of the characteristics of the signals and their 
processing or analysis will be dealt with in subsequent chapters. 

We have also stated the objectives of biomedical instrumentation and signal anal- 
ysis. Some practical difficulties that arise in biomedical signal investigation were 
discussed in order to draw attention to the relevant practical issues. The suitabil- 
ity and desirability of the application of computers for biomedical signal analysis 
were discussed, with emphasis on objective and quantitative analysis toward the end- 
goal of computer-aided diagnosis. The remaining chapters will deal with specific 
techniques and applications. 

1.7 STUDY QUESTIONS AND PROBLEMS 

(Note: Some of the questions may require background preparation with other sources on the 
ECG (for example, Rushmer [23]), the EMG (for example, Goodgold and Eberstein [22]), and 
biomedical instrumentation (for example, Webster [ 101.) 

1. Give two reasons to justify the use of electronic instruments and computers in medicine. 

2. State any two objectives of using biomedical instrumentation and signal analysis. 

3. Distinguish between open-loop and closed-loop monitoring of a patient. 

4. List three common types or sources of artifact in a biomedical instrument. 

5 .  A nerve cell has an action potential of duration 10 ms including the refractory period. 
What is the maximum rate (in pulses per second) at which this cell can transmit electrical 
activity? 

6. Consider a myocardial cell with an action potential of duration 300 ms including its 
refractory period. What is the maximum rate at which this cell can be activated (fired) 
into contraction? 

7. Distinguish between spatial and temporal recruitment of motor units to obtain increasing 
levels of muscular activity. 

8. Consider three motor units with action potentials (SMUAPs) that are of different bipha- 
sic and triphasic shapes. Consider the initial stages of contraction of the related muscle. 
Draw three plots of the net EMG of the three motor units for increasing levels of con- 
traction with the spatial and temporal recruitment phenomena invoked individually and 
in combination. Assume low levels of contraction and that the SMUAPs do not overlap. 

9. Draw a typical ECG waveform over one cardiac cycle indicating the important compo- 
nent waves, their typical durations, and the typical intervals between them. Label each 
wave or interval with the corresponding cardiac event or activity. 

10. Draw the waveform corresponding to two cycles of a typical ECG signal and indicate 
the following waves and periods: (a) the P, QRS, and T waves; (b) the RR interval; 
(c) atrial contraction; (d) atrial relaxation; (e) ventricular contraction; and (f) ventricular 
relaxation. 

11, Explain why the P and T waves are low-frequency signals whereas the QRS complex is 
a high-frequency signal. Include diagrams of action potentials and an ECG waveform 
in your reasoning. 
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12. Explain the reasons for widening of the QRS complex in the case of certain cardiac 
diseases. 

13. Give two examples that call for the use of electronic instruments and/or computers in 
ECG analysis. 

14. A heart patient has a regular SA node pulse (firing) pattern and an irregular ectopic 
focus. Over a period of 10 s, the SA node was observed to fire regularly at t = 0,1,2, 
3,4,5,6, 7,8, and 9 s. The ectopic focus was observed to fire at t = 1.3,2.8,6.08, 
and 7.25 s. 

Draw two impulse sequences corresponding to the firing patterns of the SA node and 
the ectopic focus. Draw a schematic waveform of the resulting ECG of the patient. 
Explain the source of each beat (SA node or ectopic focus) and give reasons. 

15. A patient has ventricular bigeminy, where every second pulse from the SA node is 
replaced by a premature ventricular ectopic beat with a full compensatory pause. (See 
Figure 9.5 for an illustration of bigeminy.) The SA-node firing rate is regular at 80 
beats a minute, and each ectopic beat precedes the blocked SA node pulse by 100 ms. 
(a) Draw a schematic trace of the ECG for 10 beats, marking the time scale in detail. 
(b) Draw a histogram of the RR intervals for the ECG trace. 
(c) What is the average RR interval computed over the 10 beats? 

16. Draw a typical PCG (heart sound signal) waveform over one cardiac cycle indicating the 
important component waves, their typical durations, and the typical intervals between 
them. Label each wave or interval with the corresponding cardiac event or activity. 

17. Give two examples that require the application of electronic instruments andor com- 
puters in EEG analysis. 

18. Distinguish between ECG rhythms and EEG rhythms. Sketch one example of each. 

1.8 LABORATORY EXERCISES AND PROJECTS 

1. Visit an ECG, EMG, or EEG laboratory in your local hospital or health sciences center. 
View a demonstration of the acquisition of a few biomedical signals. Request a specialist 
in a related field to explain how he or she would interpret the signals. Volunteer to 
be the experimental subject and experience first-hand a biomedical signal acquisition 
procedure ! 

2. Set up an ECG acquisition system and study the effects of the following conditions or 
actions on the quality and nature of the signal: loose electrodes; lack of electrode gel; 
the subject holding his/her breath or breathing freely during the recording procedure; 
and the subject coughing, talking, or squirming during signal recording. 

3. Using a stethoscope, listen to your own heart sounds and those of your friends. Examine 
the variability of the sounds with the site of auscultation. Study the effects of heavy 
breathing and speaking by the subject as you are listening to the heart sound signal. 

4. Record speech signals of vowels (/A/, /I/, NI, /El, /O/), diphthongs (/EI/, IOU/), 
fricatives (/S/, /F/), and plosives (/T/, /P/), as well as words with all three types of 
sounds (for example, safety, explosive, hearty, heightened, house). You may be able to 
perform this experiment with the microphone on your computer workstation. Study the 
waveform and characteristics of each signal. 



2 
Analysis of Concurrent, 

Coup 1 ed, and Correlated 
A. 

Processes 
The human body is a complex integration of a number of biological systems with 
several ongoing physiological, functional, and possibly pathological processes. Most 
biological processes within a body are not independent of one another; rather, they 
are mutually correlated and bound together by physical or physiological control and 
communication phenomena. Analyzing any single process without due attention to 
others that are concurrent, coupled, or correlated with the process may provide only 
partial information and pose difficulties in the comprehension of the process. The 
problem, then, is how do we recognize the existence of concurrent, coupled, and 
correlated phenomena? How do we obtain the corresponding signals and identify the 
correlated features? Unfortunately, there is no simple or universal rule to apply to 
this problem. 

Ideally, an investigator should explore the system or process of interest from all 
possible angles and use multidisciplinary approaches to identify several potential 
sources of information. The signals so obtained may be electrical, mechanical, 
biochemical, or physical, among the many possibilities, and may exhibit inter- 
relationships confounded by peculiarities of transduction, time delays, multipath 
transmission or reflection, waveform distortions, and filtering effects that may need 
to be accounted for in their simultaneous analysis. Events or waves in signals of 
interest may be nonspecific and difficult to identify and analyze. How could we ex- 
ploit the concurrency, coupling, and correlation present between processes or related 
signals to better understand a system? 
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2.1 PROBLEM STATEMENT 

Determine the correspondences, correlation, and inter-relationships present be- 
tween concurrent signals related to a common underlying physiological system 
or process, and identify their potential applications. 

The statement above represents, of necessity at this stage of the discussion, a 
rather vague and generic problem. The case-studies and applications presented in the 
following sections provide a few illustrative examples dealing with specific systems 
and problems. Signal processing techniques for the various tasks identified in the 
case-studies will be developed in chapters that follow. Note that the examples cover 
a diverse range of systems, processes, and signals. The specific problem of your 
interest will very likely not be directly related to any of the case-studies presented 
here. It is expected that a study of the examples provided will expand the scope of 
your analytical skills and lead to improved solution of your specific case. 

2.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

2.2.1 The electrocardiogram and the phonocardiogram 

A clinical ECG record typically includes 12 channels of sequentially or simultane- 
ously recorded signals, and can be used on its own to diagnose many cardiac diseases. 
This is mainly due to the simple and readily identifiable waveforms in the ECG, and 
the innumerable studies that have firmly established clinical ECG as a standard pro- 
cedure, albeit as an empirical one. The PCG, on the other hand, is a more complex 
signal. PCG waveforms cannot be visually analyzed except for the identification of 
gross features such as the presence of murmurs, time delays as in a split S2, and 
envelopes of murmurs. An advantage with the PCG is that it may be listened to; 
auscultation of heart sounds is more commonly performed than visual analysis of the 
PCG signal. However, objective analysis of the PCG requires the identification of 
components, such as S1 and S2, and subsequent analysis tailored to the nature of the 
components. 

Given a run of a PCG signal over several cardiac cycles, visual identification of 
S1 and S2 is possible if there are no murmurs between the sounds, and if the heart 
rate is low such that the S2 - S 1 (of the next beat) interval is longer than the S 1 - S2 
interval (as expected in normal situations). At high heart rates and with the presence 
of murmurs or premature beats, identification of S 1 and S2 could be difficult. 

Problem: Identifjl the beginning of S1 in a PCG signal and extract the heart 
sound signal over one cardiac cycle. 

Solution: The ECG and PCG are concurrent phenomena, with the noticeable 
difference that the former is electrical while the latter is mechanical (sound or vibra- 
tion). It is customary to record the ECG with the PCG; see Figures 1.24 and 1.26 for 
examples. 

The QRS wave in the ECG is directly related to ventricular contraction, as the 
summation of the action potentials of ventricular muscle cells (see Section 1.2.4). 
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As the ventricles contract, the tension in the chordue tendineae and the pressure of 
retrograde flow of blood toward the atria seal the AV valves shut, thereby causing the 
initial vibrations of S1 [23] (see Section 1.2.8). Thus S1 begins immediately after 
the QRS complex. Given the nonspecific nature of vibration signals and the various 
possibilities in the transmission of the heart sounds to the recording site on the chest, 
detection of S1 on its own is a difficult problem. 

As will be seen in Sections 3.3.1,4.3.1, and 4.3.2, detection of the QRS is fairly 
easy, given that the QRS is the sharpest wave in the ECG over a cardiac cycle; in 
fact, the P and T waves may be almost negligible in many ECG records. Thus the 
QRS complex in the ECG is a reliable indicator of the beginning of S 1,  and may be 
used to segment a PCG record into individual cardiac cycles: from the beginning of 
one QRS (and thereby Sl)  to the beginning of the next QRS and S1. This method 
may be applied visually or via signal processing techniques: the former requires no 
further explanation but will be expanded upon in Section 2.3; the latter will be dealt 
with in Section 4.10. 

2.2.2 The phonocardiogram and the carotid pulse 

Identification of the diastolic segment of the PCG may be required in some applica- 
tions in cardiovascular diagnosis [65]. Ventricular systole ends with the closure of 
the aortic and pulmonary valves, indicated by the aortic (A2) and pulmonary (P2) 
components of the second heart sound S2 (see Section 1.2.8). The end of contraction 
is also indicated by the T wave in the ECG, and S2 appears slightly after the end 
of the T wave (see Figure 1.24). S2 may be taken to be the end of systole and the 
beginning of ventricular relaxation or diastole. (Note: Shaver et al. [43] and Reddy 
et al. [44] have included S2 in the part of their article on systolic sounds.) However, 
as in the case of S1, S2 is also a nonspecific vibrational wave that cannot be readily 
identified (even visually), especially when murmurs are present. 

Given the temporal relationship between the T wave and S2, it may appear that the 
former may be used to identify the latter. This, however, may not always be possible 
in practice, as the T wave is often a low-amplitude and smooth wave and is sometimes 
not recorded at all (see Figure 1.14). ST segment elevation (as in Figure 1.14) or 
depression (as in Figure 1.28) may make even visual identification of the end of the 
T wave difficult. Thus the T wave is not a reliable indicator to use for identification 
of s2. 

Problem: IdentifL the beginning of S2 in a PCG signal. 
Solution: Given the inadequacy of the T wave as an indicator of diastole, we 

need to explore other possible sources of information. Closure of the aortic valve is 
accompanied by deceleration and reversal of blood flow in the aorta. This causes a 
sudden drop in the blood pressure within the aorta, which is already on a downward 
slope due to the end of systolic activity. The sudden change in pressure causes an 
incisuru or notch in the aortic pressure wave (see Figures 1.27 and 1.28). The aortic 
pressure signal may be obtained using catheter-tip sensors [43,44], but the procedure 
would be invasive. Fortunately, the notch is transmitted through the arterial system, 
and may be observed in the carotid pulse (see Section 1.2.9) recorded at the neck. 
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The dicrotic notch D in the carotid pulse signal will bear a delay with respect to 
the corresponding notch in the aortic pressure signal, but has the advantage of being 
accessible in a noninvasive manner. (Similar events occur in the pulmonary artery, 
but provide no externally observable effects.) See Figures 1.24 and 1.26 for examples 
of three-channel PCG - ECG - carotid pulse recordings that illustrate the D - S2 - 
T relationships. The dicrotic notch may thus be used as a reliable indicator of the 
end of systole or beginning of diastole that may be obtained in a noninvasive manner. 
The average S2 - D delay has been found to be 42.6 rns with a standard deviation of 
5 ms [66] (see also Tavel [41]), which should be subtracted from the dicrotic notch 
position to obtain the beginning of S2. 

Signal processing techniques for the detection of the dicrotic notch and segmen- 
tation of the PCG will be described in Sections 4.3.3,4.10, and 4.1 1. 

2.2.3 The ECG and the atrial electrogram 

Most studies on the ECG and the PCG pay more attention to ventricular activity than 
to atrial activity, and even then, more to l e j  ventricular activity than to the right. 
Rhythm analysis is commonly performed using QRS complexes to obtain inter-beat 
intervals known as RR intervals. Such analysis neglects atrial activity. 

Recollect that the AV node introduces a delay between atrial contraction initiated 
by the SA node impulse and the consequent ventricular contraction. This delay plays 
a major role in the coordinated contraction of the atria and the ventricles. Certain 
pathological conditions may disrupt this coordination, and even cause AV dissociation 
[23]. It then becomes necessary to study atrial activity independent of ventricular 
activity and establish their association, or lack thereof. Thus the interval between the 
P wave and the QRS (termed the PR interval) would be a valuable adjunct to the RR 
interval in rhythm analysis. Unfortunately, the atria, being relatively small chambers 
with weak contractile activity, cause a small and smooth P wave in the external ECG. 
Quite often the P wave may not be recorded or seen in the external ECG; see, for 
example, leads I and V3 - V6 in Figure 1.18. 

Problem: Obtain an indicator of atrial contraction to measure the PR interval. 
Solution: One of the reasons for the lack of specificity of the P wave is the effect 

of transmission from the atria to the external recording sites. An obvious solution 
would be to insert electrodes into one of the atria via a catheter and record the signal 
at the source. This would, of course, constitute an invasive procedure. Jenkins et 
al. [67, 68, 29, 301 proposed a unique and very interesting procedure to obtain a 
strong and clear signal of atrial activity: they developed a pill electrode that could be 
swallowed and lowered through the esophagus to a position close to the left atrium 
(the bipolar electrode pill being held suspended by wires about 35 cm from the lips). 
The procedure may or may not be termed invasive, although an object is inserted into 
the body (and removed after the procedure), as the action required is that of normal 
swallowing of a tablet-like object. The gain required to obtain a good atrial signal 
was 2 - 5 times that used in ECG amplifiers. With a 5 - 100 H x  bandpass filter, 
Jenkins et al. obtained an SNR of 10. 
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Figure 2.1 shows recordings from a normal subject of the atrial electrogram from 
the pill electrode and an external ECG lead. Atrial contraction is clearly indicated by 
a sharp spike in the atrial electrogram. Measurement of the PR interval (or the AR 
interval, as called by Jenkins et al.) now becomes an easy task, with identification of 
the spike in the atrial electrogram (the “A” wave, as labeled by Jenkins et al.) being 
easier than identification of the QRS in the ECG. 

Figure 2.1 Pill-electrode recording of the atrial electrogram (lower tracing) and the external 
ECG (upper tracing) of a normal subject. The pulse train between the two signals indicates 
intervals of 1 8 .  Reproduced with permission from J.M. Jenkins, D. Wu, and R. Arzbaecher, 
Computer diagnosis of abnormal cardiac rhythms employing a new P-wave detector for interval 
measurement, Computers and Biomedical Research, 11: 17-33, 1978. @Academic Press. 

Figure 2.2 shows the atrial electrogram and external ECG of a subject with ectopic 
beats. The PVCs have no immediately preceding atrial activity. The first PVC has 
blocked the conduction of the atrial activity occurring immediately after, resulting 
in a compensatory pause before the following normal beat. The second PVC has 
not blocked the subsequent atrial wave, but has caused a longer-than-normal AV 
delay and an aberrant conduction path, which explains the different waveshape of 
the consequent beat. The third PVC has not affected the timing of the following SA- 
node-initiated pulse, but has caused a change in waveshape in the resulting QRS-T 
by altering the conduction path [67,68,29,30]. 

Jenkins et al. developed a four-digit code for each beat, as illustrated in Figure 2.2. 
The first digit was coded as 

0: abnormal waveshape, or 
1: normal waveshape, 
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as determined by a correlation coefficient computed between the beat being processed 
and a normal template (see Sections 3.3.1, 4.4.2, and 5.4.1). The remaining three 
digits encoded the nature of the RR, AR, and AA intervals, respectively, as 

0: short, 
1: normal, or 
2: long. 

The absence of a preceding A wave related to the beat being analyzed was indicated 
by the code z in the fourth digit (in which case the AR interval is longer than the RR 
interval). Figure 2.2 shows the code for each beat. Based upon the code for each 
beat, Jenkins et al. were able to develop a computerized method to detect a wide 
variety of arrhythmia. 

Figure 2.2 Atrial electrogram (lower tracing) and the external ECG (upper tracing) of a 
subject with ectopic beats. The pulse train between the two signals indicates intervals of 1 8.  

Reproduced with permission from J.M. Jenkins, D. Wu, and R. Arzbaecher, Computer diagno- 
sis of abnormal cardiac rhythms employing a new P-wave detector for interval measurement, 
Computers and Biomedical Research, 1 1: 17-33, 1978. @Academic Press. 

2.2.4 Cardio-respiratory interaction 

The heart rate is affected by normal breathing due to the coupling and interaction ex- 
isting between the cardiac and respiratory systems [69,70,71,72,73,74]. Breathing 
also affects the transmission of the heart sounds from the cardiac chambers to the 
chest surface. Durand et al. [75] recorded intracardiac and chest-surface FTG signals 
and derived the dynamic transfer function of the heart - thorax acoustic system in 
dogs. Analysis of the synchronization and coupling within the cardio-respiratory sys- 
tem could require sophisticated analysis of several signals acquired simultaneously 
from the cardiac and respiratory systems [76]. A few techniques for the analysis 
of heart-rate variability (HRV) based upon RR interval data will be described in 
Sections 7.2.2.7.8, and 8.9. 
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2.2.5 The electromyogram and the vibromyogram 

The EMG signal has been studied extensively and the relationship between EMG 
signal parameters and muscle contraction level has been established [22, 241. It is 
known that the EMG root mean-squared (RMS) and mean frequency values increase 
with increasing muscle contraction until fatigue sets in, at which point both values 
begin to decrease. In this situation, while the muscle output measured is mechanical 
contraction (using force or strain transducers), the signal analyzed is electrical in 
character, A direct mechanical signal related to basic muscle-fiber or motor unit 
phenomena may be desired in some situations. 

Problem: Obtain a mechanical signal that is a direct indicator of muscle-fiber or 
motor unit activity to study muscle contraction and force development. 

Solution: The VMG, as introduced in Section 1.2.12, is a vibration signal mea- 
sured from a contracting muscle. The signal is a direct manifestation of the contraction 
of muscle fibers, and as such represents mechanical activity at the muscle-fiber or 
motor-unit level. The VMG signal is the mechanical counterpart and contemporary 
of the EMG signal. Although no direct relationship has been established between 
the force outputs of individual motor units and the net force output of the muscle, it 
has been shown that the RMS and mean frequency parameters of the VMG signal 
increase with muscle force output, in patterns that parallel those of the EMG. Thus 
the VMG may be used to quantify muscular contraction [47]. 

Given the simplicity and noninvasive nature of EMG and VMG measurement, 
simultaneous analysis of the two signals is an attractive and viable application. Such 
techniques may find use in biofeedback and rehabilitation [48]. Figure 2.3 shows 
simultaneous EMG - VMG recodings at two levels of contraction of the rectus 
femoris muscle [48]. Both signals are interference patterns of several active motor 
units even at low levels of muscle effort, and cannot be analyzed visually. However, a 
general increase in the power levels of the signals from the lower effort to the higher 
effort case may be observed. Signal processing techniques for simultaneous EMG - 
VMG studies will be described in Section 5.10. 

2.2.6 The knee-joint and muscle vibration signals 

We saw in Section 1.2.13 that the vibration (VAG) signals produced by the knee 
joint during active swinging movement of the leg may bear diagnostic information. 
However, the VMG associated with the rectus femoris muscle that must necessarily 
be active during extension of the leg could appear as an interference and corrupt the 
VAG signal [63]. 

Problem: Suggest an approach to remove muscle-contraction inte$erence from 
the knee-joint vibration signal. 

Solution: The VMG interference signal gets transmitted from the source muscle 
location to the VAG recording position at the skin surface over the patella (knee 
cap) through the intervening muscles and bones (see Figure 3.1 1 and Section 3.2.6). 
Although the interference signal has been found to be of very low frequency (around 
10 Hz), the frequency content of the signal varies with muscular effort and knee-joint 
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Figure 2.3 Simultaneous EMG - VMG records at two levels of contraction of the rectus 
femoris muscle. (a) VMG at 40% of the maximal voluntary contraction (MVC) level. (b) 
EMG at 40% MVC. (c) VMG at 60% MVC. (d) EMG at 60% MVC. Reproduced with 
permission from Y.T. Zhang, C.B. Frank, R.M. Rangayyan, and G.D. Bell, Relationships of 
the vibromyogram to the surface electromyogram of the human rectus femoris muscle during 
voluntary isometric contraction, Journal of Rehabilitation Research and Development, 33(4): 
395-403, 1996. @Department of Veterans Affairs. 
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angle. The rectus femoris muscle and the knee-joint systems are coupled dynamic 
systems with vibration characteristics that vary with activity level, and hence time; 
thus simple highpass or bandpass filtering of the VAG signal is not an appropriate 
solution. 

An approach to solve the problem would be to record the VMG signal at the 
rectus femoris at the same time as the VAG signal of interest is acquired from the 
patella position. Adaptive filtering and noise cancellation techniques [77, 62, 631 
could then be applied, with the VAG signal as the primary input and the VMG signal 
as the reference input. Assuming that the VMG signal that arrives at the patella 
is strongly correlated with the VMG signal at the rectus femoris and not correlated 
with the VAG signal of interest, the adaptive filter should remove the interference 
and estimate the desired VAG signal. Details of adaptive filters will be provided in 
Sections 3.6 and 3.10. 

2.3 APPLICATION: SEGMENTATION OF THE PCG INTO SYSTOLIC 
AND DIASTOLIC PARTS 

Problem: Show how the ECG and carotid pulse signals may be used to break a PCG 
signal into its systolic and diastolic parts. 

Solution: A cardiac cycle may be divided into two important parts based upon 
ventricular activity: systole and diastole. The systolic part starts with S1 and ends 
at the beginning of S2; it includes any systolic murmur that may be present in the 
signal. The diastolic part starts with S2, and ends just before the beginning of the S 1 
of the next cardiac cycle. (The aortic and pulmonary valves close slightly before the 
A2 and P2 components of S2. Therefore systole may be considered to have ended 
just before S2. Although Shaver et al. [43] and Reddy et al. [44] have included S2 
in the part of their article on systolic sounds, we shall include S2 in the diastolic part 
of the PCG.) The diastolic part includes any diastolic murmur that may be present in 
the signal; it might also include S3 and S4, if present, as well as AV valve-opening 
snaps, if any. 

We saw in Section 2.2.1 that the QRS complex in the ECG may be used as a reliable 
marker of the beginning of S 1. We also saw, in Section 2.2.2, that the dicrotic notch 
in the carotid pulse may be used to locate the beginning of S2. Thus, if we have both 
the ECG and carotid pulse signals along with the PCG, it becomes possible to break 
the PCG into its systolic and diastolic parts. 

Figure 2.4 shows three-channel PCG - ECG - carotid pulse signals of a subject 
with systolic murmur due to aortic stenosis (the same as in Figure 1.26), with the 
systolic and diastolic parts of the PCG marked in relation to the QRS and D events. 
The demarcation was performed by visual inspection of the signals in this example. 
Signal processing techniques to detect the QRS and D waves will be presented in 
Section 4.3. Adaptive filtering techniques to break the PCG into stationary segments 
without the use of any other reference signal will be described in Section 8.8. 
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Figure 2.4 Demarcation of the systolic (SYS.) and diastolic (DIAS.) parts of the PCG signal 
in Figure 1.26 by using the ECG and carotid pulse as reference signals. The QRS complex 
and the dicrotic notch D are marked on the ECG and carotid pulse signals, respectively. 
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2.4 REMARKS 

This chapter has introduced the notion of using multiple channels of biomedical 
signals to obtain information on concurrent, coupled, and correlated phenomena with 
the aim of obtaining an improved understanding of a system or obtaining reference 
signals for various purposes. The main point to note is that physiological systems 
are complex systems with multiple variables and outputs that should be studied from 
various approaches in order to gain multifaceted information. 

Some of the problems have been stated in fairly general terms due to the intro- 
ductory nature of the chapter. Subsequent chapters will present more illustrations of 
specific problems and applications of the notions gained from this chapter. A number 
of examples will be provided to illustrate the use of multiple channels of signals to 
obtain timing information. 

2.5 STUDY QUESTIONS AND PROBLEMS 

1. A patient has ventricular bigeminy: every second pulse from the SA node is replaced 
by a premature ventricular ectopic beat (PVC) with a full compensatory pause. (See 
Figure 9.5 for an illustration of bigeminy.) The SA-node rate is regular at 80 beats a 
minute, and each ectopic beat precedes the blocked SA-node pulse by 100 ma. 
Draw a schematic three-channel representation of the ECG, the atrial electrogram (or 
SA-node firing pattern), and the firing pattern of the ectopic focus for 10 beats, marking 
the time scale in detail. Identify the correspondences and relationships between the 
activities in the three channels. 

2. Draw schematic representations of the ECG, PCG, and carotid pulse signals. Label all 
waves in the three signals. Identify their common relationships to events in the cardiac 
cycle. 

2.6 LABORATORY EXERCISES AND PROJECTS 

(Note: The following projects require access to a physiological signal recording laboratory.) 

1 .  Using a multichannel biomedical signal acquisition system, obtain simultaneous record- 
ings of an ECG channel and a signal related to respiration (temperature, airflow, or 
pressure in the nostril). Study the variations in the RR interval with inspiration and 
expiration. Repeat the experiment with the subject holding hisher breath during the 
signal acquisition period. 

2. Obtain simultaneous recordings of an ECG lead, the PCG, the carotid pulse, and the 
pulse at the wrist. Study the temporal correspondences (and delays) between events in 
the various channels. 

3. Record an ECG lead and PCG signals from two or three auscultation areas (mitral, 
aortic, pulmonary, tricuspid, and apex: see Figure 1.17) simultaneously. Study the 
variations in the intensities and characteristics of S1 and S2 and their components in 
the PCGs from the various recording sites. 
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Filtering for Removal of 

Artifacts 

Most biomedical signals appear as weak signals in an environment that is teeming 
with many other signals of various origins. Any signal other than that of interest could 
be termed as an interference, artifact, or simply noise. The sources of noise could be 
physiological, the instrumentation used, or the environment of the experiment. 

This chapter starts with an introduction to the nature of the artifacts that are com- 
monly encountered in biomedical signals. Several illustrations of signals corrupted 
by various types of artifacts are provided. Details of the design of filters, spanning 
a broad range of approaches, from linear time-domain and frequency-domain fixed 
filters to the optimal Wiener filter to adaptive filters, are then described. The chapter 
concludes with demonstrations of application of the filters described to ECG and 
VAG signals. 

(Note: A good background in signal and system analysis [ l ,  2, 31 as well as 
probability, random variables, and stochastic processes [4,5,6,7,8,9] is required, in 
order to follow the procedures and analysis described in this chapter. Familiarity with 
systems theory and transforms such as the Laplace transform, the Fourier transform 
in both the continuous and discrete form, and the z-transform will be assumed.) 

3.1 PROBLEM STATEMENT 

Noise is omnipresent! The problems caused by artifacts in biomedical signals are 
vast in scope and variety; their potential for degrading the performance of the most 
sophisticated signal processing algorithms is high. The enormity of the problem of 
noise removal and its importance are reflected by the size of this chapter and its 
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placement as the first one on signal processing techniques. Let us start with a generic 
statement of the problem and investigate its nature: 

Analyze the various types of artifacts that corrupt biomedical signals and explore 
filtering techniques to remove them without degrading the signal of interest. 

If during an ECG acquisition procedure the subject coughs or squirms, the EMG 
associated with such activity will pose an interference or artifact. In adult patients, 
such physiological interference may be minimized by strict instructions and self- 
control; this solution may, however, not be applicable to infants and children. An 
intriguing example of physiological interference is that of the mother’s ECG appear- 
ing along with that of the fetus, with the latter being of interest. No external control is 
feasible or desirable in this case, and the investigator is forced to develop innovative 
solutions to extract the signal of interest. 

Due to the weak levels of most biomedical signals at their source, high amplifi- 
cation factors of several hundred to several thousand may be required. Electronic 
noise in the instrumentation amplifiers also gets amplified along with the desired 
signal. While it is possible to reduce the thermal component of the noise by cooling 
the devices to very low temperatures, this step may not be practical in most appli- 
cations; the cost could also be prohibitive. Low-noise power supplies and modern 
electronic amplifiers with high input impedance, high common-mode rejection ratio, 
and high power-supply rejection ratio are desirable for the acquisition of biomedical 
signals [lo]. 

Our environment is filled with EM waves, both natural and man-made. EM waves 
broadcast by radio and television (TV) stations and those radiated by fluorescent 
lighting devices, computer monitors, and other systems used in the laboratory or 
work environment are picked up by cables, devices, and connectors. The 50 Hz or 
60 Hz power-supply waveform is notorious for the many ways in which it can get 
mixed with and corrupt the signal of interest. Such interference may be termed as 
being due to the environment of the experiment. Simple EM shielding of cables and 
grounding of the chassis of equipment reduce EM and power-supply interference in 
most cases. Experiments dealing with very weak signals such as ERPs and EEGs 
may require a wire-mesh-shielded cage to contain the subject and the instruments. 

The ECG is a relatively strong signal with a readily identifiable waveform. Most 
types of interference that affect ECG signals may be removed by bandpass filters. 
Other signals of less recognizable waveforms and broader bandwidths may not be 
amenable to simple filtering procedures. In the case of signals such as ERPs or SEPs 
the noise levels could be much higher than the signal levels, rendering the latter 
unrecognizable in a single recording. It is important to gain a good understanding of 
the noise processes involved before one attempts to filter or preprocess a signal. 

3.1.1 Random noise, structured noise, and physiological interference 

A deterministic signal is one whose value at a given instant of time may be computed 
using a closed-form mathematical function of time, or predicted from a knowledge 
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of a few past values of the signal. A signal that does not meet this condition may be 
labeled as a nondeterministic signal or a random signal. 

Test for randomness: Random signals are generally expected to display more 
excursions about a certain reference level within a specified interval than signals 
that are predictable. Kendall [78] and Challis and Kitney [79] recommend a test for 
randomness based upon the number of peaks or troughs in the signal. A peak or a 
trough is defined by a set of three consecutive samples of the signal, with the central 
sample being either the maximum or minimum, respectively. As the direction of 
excursion of the signal changes at peaks and troughs, such points are collectively 
known as turning points. A simple test for a turning point is that the sign of the 
first-order difference (derivative) at the current sample of the signal be not equal 
to that at the preceding sample. Given a signal of N samples, the signal may be 
labeled as being random if the number of turning points is greater than the threshold 
$ ( N  - 2) [78, 791. In the case of a signal of varying characteristics, that is, a 
nonstationary signal, the test would have to be conducted using a running window of 
N samples. The width of the window should be chosen, keeping in mind the shortest 
duration over which the signal may remain in a given state. The method as above 
was used by Mintchev et al. [39] to study the dynamics of the level of randomness in 
EGG signals. 

Figure 3.1 illustrates the variation in the number of turning points in a moving 
window of 50 ms (400 samples with the sampling frequency fa = 8 IcHz) for the 
speech signal of the word “safety”. The threshold for randomness for N = 400 
according to the rule above is 265. It is seen from the figure that the test indicates 
that the signal is random for the fricatives / S /  (over the interval of 0.2 - 0.4 s, 
approximately) and /F/ (0.7 - 0.9 s), and not random for the remaining portions, as 
expected. (See also Section 1.2.1 1 and Figures 1.29 and 1.30.) 

Random noise: The term random noise refers to an interference that arises from 
a random process such as thermal noise in electronic devices. A random process is 
characterized by the probability density function (PDF) representing the probabilities 
of occurrence of all possible values of a random variable. (See Papoulis [4] or 
Bendat and Piersol [51 for background material on probability, random variables, and 
stochastic processes.) Consider a random process 77 that is characterized by the PDF 
~ ~ ( 7 7 ) .  The mean p,, of the random process 7 is given by the first-order moment of 
the PDF, defined as 

where E [  ] represents the statistical expectation operator. It is common to assume 
the mean of a random noise process to be zero. 

The mean-squared (MS) value of the random process 17 is given by the second- 
order moment of the PDF, defined as 
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Figure 3.1 Top: Speech signal of the word “safety” uttered by a male speaker. Bottom: 
Count of turning points in a moving window of 50 rns (400 samples with fa = 8 k H z ) .  The 
threshold for randomness for N = 400 is 265. 
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The variance 0; of the process is defined as the second central moment: 

The square root of the variance gives the standard deviation (SD) brl of the process. 
Note that 6: = E[q2]  - p i .  If the mean is zero, it follows that 0; = E[v2] ,  that is, 
the variance and the MS values are the same. 

When the values of a random process q form a time series or a function of time, we 
have a random signal (or a stochastic process) q(t) .  The statistical measures described 
above then have physical meanings: the mean represents the DC component, the MS 
value represents the average power, and the square root of the mean-squared value 
(the root mean-squared or RMS value) gives the average noise magnitude or level. 
The measures are useful in calculating the SNR, which is commonly defined as the 
ratio of the peak-to-peak amplitude range of the signal to the RMS value of the noise, 
or as the ratio of the average power of the signal to that of the noise. 

Observe the use of the same symbol 17 to represent the random variable, the random 
process, and the random signal as a function of time. The subscript of the PDF or the 
statistical parameter derived indicates the random process of concern. The context 
of the discussion or expression should make the meaning of the symbol clear. 

A biomedical signal of interest z ( t )  may also, for the sake of generality, be 
considered to be a realization of a random process 2. For example, although a normal 
heart sound signal is heard as the same comforting lub - dub sound over every cycle, 
the corresponding PCG vibration waveforms are not precisely the same from one 
cycle to another. The PCG signal may be represented as a random process exhibiting 
certain characteristics on the average. 

When a (random) signal z ( t )  is observed in an environment with random noise, 
the measured signal y(t) may be treated as a realization of another random process 
y. In most cases the noise is additive, and the observed signal is expressed as 

Y ( t )  = 44 + 77(+ (3.4) 

Each of the random processes 2 and y is characterized by its own PDF pZ(z) and 
py(y), respectively. 

In most practical applications, the random processes representing a signal of inter- 
est and the noise affecting the signal may be assumed to be statistically independent 
processes. Two random processes 3c and 7) are said to be statistically independent 
if their joint PDF ~ ~ , ~ ( z ,  7 )  is equal to the product of their individual PDFs given 
as pz(z)pv(q). It then follows that the first-order moment and second-order central 
moment of the signals ~ ( t )  and y ( t )  are related as 

Ebl = Py = E[zI = Pr, (3.5) 

(3.6) 
where p represents the mean and u2 represents the variance of the random process 
indicated by the subscript, and it is assumed that p,, = 0. 
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Ensemble averages: When the PDFs of the random processes of concern are not 
known, it is common to approximate the statistical expectation operation by averages 
computed using a collection or ensemble of sample observations of the random 
process. Such averages are known as ensemble averages. Suppose we have M 
observations of the random process t as functions of time: zl(t), zz(t),  . . . , t ~ ( t ) .  
We may estimate the mean of the process at a particular instant of time t l  as 

M 

(3.7) 

Figure 3.2 illustrates ten sample acquisitions of flash visual ERPs (see also Fig- 
ure 3.12). The vertical lines at t = tl and t = t z  = tl + T represent the ensemble 
averaging process at two different instants of time. 

The autocorrelation function (ACF) ~ & ~ ( t l ,  tl + 7) of a random process z that is 
a time series is given by 

1 
Pz( t1 )  = lim - x z k ( t l ) *  

M-tao * k=l 

00 

4 t l )  z ( t 1  + T) Pa?(.) d t ,  (3.8) $_, dZZ(t1 , t l  + 7) = E[Z( t l )Z( t l  + 41 = 

which may be estimated as 

where T is the delay parameter. If the signals are complex, one of the functions in the 
expression above should be conjugated; in this book we shall deal with physiological 
signals that are always real. The two vertical lines at t = tl and t = t z  = tl + T 
in Figure 3.2 represent the ensemble averaging process to compute q5zz(tl, t 2 ) .  The 
ACF indicates how the values of a signal at a particular instant of time are statistically 
related to (or have characteristics in common with) values of the same signal at another 
instant of time. 

When dealing with random processes that are observed as functions of time (or 
stochastic processes), it becomes possible to compute ensemble averages at every 
point of time. Then, we obtain an averaged function of time Z ( t )  as 

(3.10) 

for all time t. The signal Z ( t )  may be used to represent the random process t as a 
prototype; see the last trace (framed) in Figure 3.2. 

Time averages: When we have a sample observation of a random process q ( t )  
as a function of time, it is possible to compute time averages or temporal statistics 
by integrating along the time axis: 

.I f i T / 2  
pz(k) = lim - t k ( t )  dt.  (3.1 1)  
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Figure 3.2 Ten sample acquisitions (z1 to 210) of individual flash visual ERPs from the 
occipital midline (oz) position of a normal adult male (the author of this book!). The ear lobes 
were used to form the reference lead (ala2), and the left forehead was used as the reference (see 
Figure 1.20). The signals may be treated as ten realizations of a random process in the form of 
time series or signals. The vertical lines at t = tl and t = t p  = t l  + T represent the ensemble 
averaging process at two different instants of time. The last plot (framed) gives the ensemble 
average or prototype 8( t )  of the ten individual signals. The horizontal box superimposed on 
the third trace represents the process of computing temporal statistics over the duration t = t3 
to t = t 4  of the sample ERP z s ( t ) .  See also Figure 3.12. Data courtesy of L. Alfaro and H. 
Darwish, Alberta Children’s Hospital, Calgary. 
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The integral would be replaced by a summation in the case of sampled or discrete-time 
signals. The time-averaged ACF q522(~ ,  k) is given by 

TI2 

T+oo T -T/a 
&=(T, k) = lim 1 / ~ ( t )  zk(t+ T )  dt.  (3.12) 

(See Section 6.4 for details on estimation of the ACF of finite-length data sequences.) 
The horizontal box superimposed on the third trace in Figure 3.2 represents the 
process of computing temporal statistics over the duration t = t s  to t = t 4  of the 
sample ERP ~ ( t )  selected from the ensemble of ERPs illustrated in the figure. 

Random noise may thus be characterized in terms of ensemble and/or temporal 
statistics. The mean does not play an important role: it is usually assumed to be zero, 
or may be subtracted out if it is not zero. The ACF plays an important role in the 
characterization of random processes. The Fourier transform (FT) of the ACF is the 
power spectral density (PSD) function, which is useful in spectral analysis and filter 
design. 

Covariance and cross-correlation: When two random processes G and y need 
to be compared, we could compute the covariance between them as 

m o o  

c=, = E[(z-Pz)(Y-Pu)l = 1 1 (W.b)(Y-Pl/) P Z , , ( W ) d a : & ,  (3.13) 
-m -oo 

where pa , , ( z ,  y) is the joint PDF of the two processes. The covariance parameter 
may be normalized to get the correlation coefficient, defined as 

(3.14) 

with -1 5 pzV 5 +l. A high covariance indicates that the two processes have 
similar statistical variability or behavior. The processes G and y are said to be 
uncorrelated if pzu = 0. f i o  processes that are statistically independent are also 
uncorrelated; the converse of this property is, in general, not true. 

that are functions of time, the 
cross-correlation function (CCF) between them is defined as 

When dealing with random processes G and 

w o o  

4 t l )  d t l +  .) P z , u ( Z ,  9 )  dx  dV. 
(3.15) 

Correlation functions are useful in analyzing the nature of variability and spectral 
bandwidth of signals, as well as for detection of events by template matching. The 
discussion on random processes will be continued in the next subsection. 

Structured noise: Power-line interference at 50 Hz or 60 Hz is an example of 
structured noise: the typical waveform of the interference is known in advance. It 
should, however, be noted that the phase of the interfering waveform will not usually 
be known. Furthermore, the interfering waveform may not be an exact sinusoid; 
this is indicated by the presence of harmonics of the fundamental 50 Hz or 60 Hz 
component . 

I, L o o  
ezU(tl,tl +TI = E I Z ( ~ ~ ) Y ( ~ ~  +.)I = 
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Physiological interference: As we have already noted, the human body is a 
complex conglomeration of several systems and processes. Several physiological 
processes could be active at a given instant of time, each one producing many signals 
of different types. A patient or experimental subject may not be able to exercise 
control on all physiological processes and systems. The appearance of signals from 
systems or processes other than those of interest may be termed as physiological 
interference; several examples are listed below. 

0 EMG related to coughing, breathing, or squirming affecting the ECG 

0 EGG interfering with precordial ECG 

0 Maternal ECG getting added to the fetal ECG of interest 

0 ECG interfering with the EEG 

0 Ongoing EEG in ERPs and SEPs 

0 Breath, lung, or bowel sounds contaminating the heart sounds (PCG) 

0 Heart sounds getting mixed with breath or lung sounds 

0 Muscle sound (VMG) interference in joint sounds (VAG) 

0 Needle-insertion activity appearing at the beginning of a needle-EMG record- 
ing 

Physiological interference may not be characterized by any specific waveform or 
spectral content, and is typically dynamic and nonstationary (varying with the level of 
the activity of relevance and hence with time; see the next subsection for a discussion 
on stationarity). Thus simple, linear bandpass filters will usually not be effective in 
removing physiological interference. 

3.1.2 Stationary versus nonstationary processes 

We saw in the previous subsection that random processes may be characterized in 
terms of their ensemble and/or temporal statistics. A random process is said to be 
stationary in the strict sense or strongly stationary if its ensemble averages of all 
orders are independent of time, that is, they do not vary with time. In practice, 
only first-order and second-order averages are used. A random process is said to be 
weakly stationary or stationary in the wide sense if its ensemble mean and ACF do 
not vary with time. Then, from Equations 3.7 and 3.9, we have p,( t l )  = pz and 
q5,, ( t l ,  t l  + T )  = &,(T). The ACF is now a function of the delay parameter T only; 
the PSD of the process does not vary with time. 

A stationary process is said to be ergodic if the temporal statistics computed are 
independent of the sample observed; that is, the same result is obtained for any sample 
observation zk(t) .  The time averages in Equations 3.1 1 and 3.12 are then independent 
of k: p,(k) = p, and &,(T, k) = &,(T) .  All ensemble statistics may be replaced 
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by temporal statistics when analyzing ergodic processes. Ergodic processes are an 
important type of stationary random processes since their statistics may be computed 
from a single observation as a function of time. The use of ensemble and temporal 
averages for noise filtering will be illustrated in Sections 3.3.1 and 3.3.2, respectively. 

Signals or processes that do not meet the conditions described above may be, in 
general, called nonstutionury processes. A nonstationary process possesses statistics 
that vary with time. It is readily seen in Figure 1.15 (see also Figure 3.6) that the mean 
level (base-line) of the signal is varying over the duration of the signal. Therefore, 
the signal is nonstationary in the mean, a first-order statistical measure. Figure 3.3 
illustrates the variance of the speech signal of the word “safety” computed in a 
moving window of 50 ms (400 samples with f. = 8 kHz). As the variance changes 
significantly from one portion of the signal to another, it should be concluded that the 
signal is nonstationary in its second-order statistics (variance, SD, or RMS). While 
the speech signal is stationary in the mean, this is not an important characteristic as the 
mean is typically removed from speech signals. (A DC signal bears no information 
related to vibration or sound.) 

Note that the variance displays a behavior that is almost the opposite of that of the 
turning points count in Figure 3.1. Variance is sensitive to changes in amplitude, with 
large swings about the mean leading to large variance values. The procedure to detect 
turning points examines the presence of peaks and troughs with no consideration of 
their relative amplitudes; the low-amplitude ranges of the fricatives in the signal have 
resulted in low variance values, even though their counts of turning points are high. 

Most biomedical systems are dynamic and produce nonstationary signals (for ex- 
ample, EMG, EEG, VMG, PCG, VAG, and speech signals). However, a physical or 
physiological system has limitations in the rate at which it can change its character- 
istics. This limitation facilitates breaking a signal into segments of short duration 
(typically a few tens of milliseconds), over which the statistics of interest are not 
varying, or may be assumed to remain the same. The signal is then referred to as a 
quasi-stationary process; the approach is known as short-time analysis. Figure 3.4 
illustrates the spectrogram of the speech signal of the word “safety”. The spectro- 
gram was computed by computing an array of magnitude spectra of segments of the 
signal of duration 64 ms; an overlap of 32 ms was permitted between successive 
segments. It is evident that the spectral characteristics of the signal vary over its 
duration: the fricatives demonstrate more high-frequency content than the vowels, 
and also lack formant (resonance) structure. The signal is therefore nonstationary in 
terms of its PSD; since the PSD is related to the ACF, the signal is also nonstationary 
in the second-order statistical measure of the ACE 

Further discussion and examples of techniques of this nature will be presented in 
Sections 8.4.1 and 8.5. Adaptive signal processing techniques may also be designed 
to detect changes in certain statistical measures of an observed signal; the signal 
may then be broken into quasi-stationary segments of variable duration that meet the 
specified conditions of stationarity. Methods for analysis of nonstationary signals 
will be discussed in Chapter 8. Adaptive segmentation of the EEG, VAG, and PCG 
signals will be discussed in Sections 8.5, 8.6, 8.7, and 8.8. 
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Figure 3.4 Spectrogram of the speech signal of the word “safety” uttered by a male speaker. 
(The signal is also illustrated in Figures 1.29, 3.1, and 3.3.) Each curve represents the 
magnitude spectrum of the signal in a moving window of duration 64 me (512 samples with 
fa = 8 IcHr), with the window advance interval being 32 me. The spectrogram is plotted on 
a linear scale to display better the major differences between the voiced and unvoiced sounds. 
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Certain systems, such as the cardiac system, normally perform rhythmic opera- 
tions. The resulting signal, such as the ECG, PCG, or carotid pulse, is then almost 
periodic, and may be referred to as a cyclo-stationary signal. The statistics of the 
PCG signal vary within the duration of a cardiac cycle, especially when murmurs are 
present, but repeat themselves at regular intervals. The cyclic repetition of the process 
facilitates ensemble averaging, using epochs or events extracted from an observation 
of the signal over many cycles (which is, strictly speaking, a single function of time). 
Exploitation of the cyclic nature of the ECG signal for synchronized averaging to 
reduce noise will be illustrated in Section 3.3.1. Application of the same concept to 
estimate the envelopes of PCG signals will be described in Section 5.5.2. Further 
extensions of the approach to extract A2 from S2 in PCG signals will be demonstrated 
in Section 4.11; those to estimate the PSDs of PCG segments in systole and diastole 
will be presented in Section 6.4.5. 

3.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

The following case-studies present several examples of various types of interference 
in biomedical signals of different origins. The aim of this section is to gain famil- 
iarity with the various possibilities of interference and their general characteristics. 
Filtering techniques to remove various types of interference will be described in later 
sections. 

3.2.1 Noise in event-related potentials 

An ERP is a signal obtained in response to a stimulus. The response is usually of 
very small amplitude (of the order of 10 pV), and is buried in ambient EEG activity 
and noise. The waveform of a single response may be barely recognizable against the 
background activity. Figure 3.2 shows ten individual flash visual ERP signals. The 
signals were recorded at the occipital midline (oz) position, with the left and right 
ear lobes combined to form the reference lead (ala2). The left forehead was used as 
the reference. The ERP signals are buried in ongoing EEG and power-line (00 Hz) 
interference, and cannot be analyzed using the individual acquisitions shown in the 
figure. 

3.2.2 High-frequency noise in the ECG 

Figure 3.5 shows a segment of an ECG signal with high-frequency noise. The 
noise could be due to the instrumentation amplifiers, the recording system, pickup 
of ambient EM signals by the cables, and so on. The signal illustrated has also been 
corrupted by power-line interference at 60 Nz and its harmonics, which may also be 
considered as a part of high-frequency noise relative to the low-frequency nature of 
the ECG signal. 
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Figure 3.5 ECG signal with high-frequency noise. 
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3.2.3 Motion artifact in the ECG 

Low-frequency artifacts and base-line drift may be caused in chest-lead ECG signals 
by coughing or breathing with large movement of the chest, or when an arm or 
leg is moved in the case of limb-lead ECG acquisition. The EGG is a common 
source of artifact in chest-lead ECG. Poor contact and polarization of the electrodes 
may also cause low-frequency artifacts. Base-line drift may sometimes be caused 
by variations in temperature and bias in the instrumentation and amplifiers as well. 
Figure 3.6 shows an ECG signal with low-frequency artifact. Base-line drift makes 
analysis of isoelectricity of the ST segment difficult. A large base-line drift may 
cause the positive or negative peaks in the ECG to be clipped by the amplifiers or the 
ADC. 

Figure 3.6 ECG signal with low-frequency artifact. 

3.2.4 Power-line Interference in ECG signals 

The most commonly encountered periodic artifact in biomedical signals is the power- 
line interference at 50 Hz or 60 Hz. If the power-line waveform is not a pure sinusoid 
due to distortions or clipping, harmonics of the fundamental frequency could also 
appear. Harmonics will also appear if the interference is a periodic waveform that is 
not a sinusoid (such as rectangular pulses). 
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Power-line interference may be difficult to detect visually in signals having non- 
specific waveforms such as the PCG or EMG; however, the interference is easily 
visible if present on well-defined signal waveforms such as the ECG or carotid pulse 
signals. In either case, the power spectrum of the signal should provide a clear 
indication of the presence of power-line interference as an impulse or spike at 50 Hz 
or 60 Ha; harmonics, if present, will appear as additional spikes at integral multiples 
of the fundamental frequency. 

Figure 3.7 shows a segment of an ECG signal with 60 Hz interference. Observe 
the regular or periodic structure of the interference, which rides on top of the ECG 
waves. Figure 3.8 shows the power spectrum of the signal. The periodic interference 
is clearly displayed as a spike at not only its fundamental frequency of 60 Ha, but 
also as spikes at 180 Hz and 300 He, which represent the third and fifth harmonics, 
respectively. (The recommended sampling rate for ECG signals is 500 Ha; the higher 
rate of 1,000 Hz was used in this case as the ECG was recorded as a reference signal 
with the PCG. The larger bandwidth also permits better illustration of artifacts and 
filtering.) 

0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 
Time in seconds 

Figure 3.7 ECG signal with power-line (00 Hz) interference. 

The bandwidth of interest of the ECG signal, which is usually in the range 0.05 - 
100 Hz, includes the 60 Hz component; hence simple lowpass filtering will not be 
appropriate for removal of power-line interference. Lowpass filtering of the ECG to 
a bandwidth lower than 60 Hz could smooth and blur the QRS complex as well as 
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Figure 3.8 Power spectrum of the ECG signal in Figure 3.7 with power-line interference. 
The spectrum illustrates peaks at the fundamental frequency of 60 H a  as well as the third and 
fifth harmonics at 180 H a  and 300 H a ,  respectively. 
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affect the PQ and ST segments. The ideal solution would be to remove the 60 He 
component without sacrificing any other component. 

3.2.5 Maternal interference In fetal ECG 

Figure 3.9 shows an ECG signal recorded from the abdomen of a pregnant woman. 
Shown also is a simultaneously recorded ECG from the woman’s chest. Comparing 
the two, we see that the abdominal ECG demonstrates multiple peaks (QRS com- 
plexes) corresponding to the maternal ECG (occurring at the same time instants as 
the QRS complexes in the chest lead) as well as several others at weaker levels and 
a higher repetition rate. The non-maternal QRS complexes represent the ECG of the 
fetus. Observe that the QRS complex shapes of the maternal ECG from the chest and 
abdominal leads have different shapes due to the projection of the cardiac electrical 
vector onto different axes. Given that the two signals being combined have almost 
the same bandwidth, how would we be able to separate them and obtain the fetal 
ECG that we would be interested in? 

A ,MOTHER 

Figure 3.9 ECG signals of a pregnant woman from abdominal and chest leads: (a) chest-lead 
ECG, and (b) abdominal-lead ECG; the former presents the maternal ECG whereas the latter 
is a combination of the maternal and fetal ECG signals. (See also Figure 3.58.) Reproduced 
with permission from B. Widrow, J.R. Glover, Jr., J.M. McCool, J. Kaunitz, C.S. Williams, 
R.H. Hearn, J.R. Zeidler, E. Dong, Jr., R.C. Goodlin, Adaptive noise cancelling: Principles 
and applications, Proceedings ofthe IEEE, 63(12):1692-1716,1975. OIEEE. 
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3.2.6 Muscle-contraction interference in VAG signals 

VMG (MCI) 

VAG 

c 

VAG 
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Figure 3.10 Experimental setup to measure VMG and VAG signals at different positions 
along the leg [63]. 

Figure 3.10 shows the recording setup used by Zhang et al. [63] to study the 
possibility of VMG signals appearing as muscle-contraction interference in VAG 
signals. The left-hand column in Figure 3.1 1 shows VMG signals recorded using ac- 
celerometers placed at the distal rectus femoris (thigh), mid-patella (knee cap), tibia1 
tuberosity, and mid-tibia1 shaft positions of a subject during isometric contraction of 
the rectus femoris muscle (with no leg or knee movement). The right-hand column 
of the figure shows vibration signals recorded at the same positions using the same 
accelerometers, but during isotonic contraction (swinging movement of the leg), The 
top signal (a) in the right-hand column indicates the VMG signal generated at the 
rectus femoris during acquisition of the VAG signals; parts (b) - (d) of the right-hand 
column show the VAG signals. 

VAG signals are difficult to analyze as they have no predefined or recognizable 
waveforms; it is even more difficult to identify any noise or interference that may be 
present in VAG signals. The signals shown in Figure 3.1 1 indicate that a transformed 
version of the VMG could get added to the VAG, especially during extension of the 
leg when the rectus femoris muscle is active (the second halves of the VAG signals 
in parts (b) - (d) of the right-hand column). The left-hand column of VMG signals 
in Figure 3.1 1 illustrates that the VMG generated at the distal rectus femoris gets 
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Figure 3.11 Left-hand column: VMG signals recorded simultaneously at (top-to-bottom) 
(a) the distal rectus femoris, (b) mid-patella, (c) tibia1 tuberosity, and (d) mid-tibia1 shaft posi- 
tions during isometric contraction (no leg or knee movement). Right-hand column: Vibration 
signals recorded simultaneously at the same positions as above during isotonic contraction 
(swinging movement of the leg). Observe the muscle-contraction interference appearing in the 
extension parts (second halves) of each of the VAG signals (plots (b) - (d)) in the right-hand 
column [63]. The recording setup is shown in Figure 3.10. Reproduced with permission from 
Y.T. Zhang, R.M. Rangayyan, C.B. Frank, and G.D. Bell, Adaptive cancellation of muscle- 
contraction interference from knee joint vibration signals, IEEE Transactions on Biomedical 
Engineering, 4 l(2): 18 1-19 1, 1994. OIEEE. 
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transmitted well down the leg and appears at the other recording positions. It may 
be observed from the VAG signals in the right-hand column that vibration signals 
comparable to the VMG are present in the VAG channels (b) - (d) during extension 
(second halves) but not as prominent in flexion (first halves). Interestingly enough, 
the knee-joint “crepitus” and click signals that appear in the first half of the VAG 
signal at the mid-patella position (right (b)) have been transmitted downwards along 
the leg to the tibia1 tuberosity (right (c)) and mid-tibia1 shaft (right (d)) positions 
farther down the leg, presumably along the tibia, but not upwards to the distal rectus 
femoris position (right (a)). 

It should also be noted that the VAG signal cannot be expected to be the same 
during the extension and flexion parts of a swing cycle: extension causes more stress 
or force per unit area on the patello-femoral joint than flexion. Furthermore, the 
VAG and VMG signals are nonstationary: characteristics of the VAG vary with the 
quality of the cartilage surfaces that come into contact at different joint angles, while 
the VMG varies in accordance with the level of contraction of the muscles involved. 
To make the problem even more difficult, the bandwidths of the two signals overlap 
in the range of about 0 - 100 He. These factors make removal of the VMG or 
muscle-contraction interference from VAG signals a challenge. 

3.2.7 Potential solutions to the problem 

Now that we have gained an understanding of a few sources of artifacts in biomedical 
signals and their nature, we are prepared to look at specific problems and develop ef- 
fective filtering techniques to solve them. The following sections investigate artifacts 
of various types and demonstrate increasingly complex signal processing techniques 
to remove them. The problem statement at the beginning of each section defines the 
nature of the problem in as general terms as possible, sets the terms and conditions, 
and defines the scope of the investigation to follow. The solution proposed provides 
the details of an appropriate filtering technique. Each solution is demonstrated with 
an illustration of its application. Further examples of application of the techniques 
studied are provided at the end of the chapter. Comparative evaluation of filtering 
techniques is also provided where applicable. 

A practical problem encountered by an investigator in the field may not precisely 
match a specific problem considered in this chapter. However, it is expected that the 
knowledge of several techniques and an appreciation of the results of their application 
gained from this chapter will help in designing innovative and appropriate solutions 
to new problems. 

3.3 TIME-DOMAIN FILTERS 

Certain types of noise may be filtered directly in the time domain using signal 
processing techniques or digital filters. An advantage of time-domain filtering is 
that spectral characterization of the signal and noise may not be required (at least 
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in a direct manner). Time-domain processing may also be faster in most cases than 
frequency-domain filtering. 

3.3.1 Synchronized averaging 

Problem: Propose a time-domain technique to remove random noise given the 
possibility of acquiring multiple realizations of the signal or event of interest. 

Solution: Linear filters fail to perform when the signal and noise spectra overlap. 
Synchronized signal averaging can separate a repetitive signal from noise without 
distorting the signal [27, 791. ERP or SEP epochs may be obtained a number of 
times by repeated application of the stimulus; they may then be averaged by using 
the stimulus as a trigger for aligning the epochs. ECG signals may be filtered by 
detecting the QRS complexes and using their positions to align the waveforms for 
synchronized averaging. If the noise is random with zero mean and is uncorrelated 
with the signal, averaging will improve the SNR. 

Let yk(n) represent one realization of a signal, with k = 1,2,. . . , M representing 
the ensemble index, and n = 1,2,. . . , N representing the time-sample index. (Some 
authors use the notation nT, T = l/fa being the sampling interval, where fa is 
the sampling frequency, to denote the index of a sampled signal; in this book we 
shall use just n, the sample number.) M is the number of copies (events, epochs, 
or realizations) of the signal available, and N is the number of time samples in each 
copy of the signal (event). We may express the observed signal as 

gk(n) = zk(n) f qk(n), (3.16) 

where zk(n) represents the original uncorrupted signal and ?)&(It) represents the 
noise in the kth copy of the observed signal. Now, if for each instant of time n we 
add the M copies of the signal, we get 

k=l k=l 

If the repetitions of the signal are identical and aligned, CEl zk(n) = M z ( n ) .  If 
the noise is random and has zero mean and variance u:, CEl will tend to 
zero as M increases, with a variance of Ma:. The RMS value of the noise in the 
averaged signal is @a,,. Thus the SNR of the signal will increase by a factor of 
$$ or a. The larger the number of epochs or realizations that are averaged, the 
better will be the SNR of the result. Note that synchronized averaging is a type of 
ensemble averaging. 

An algorithmic description of synchronized averaging is as follows: 

1. Obtain a number of realizations of the signal or event of interest. 

2. Determine a reference point for each realization of the signal. This is directly 
given by the trigger if the signal is obtained by external stimulation (such as 
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ERPs or SEPs), or may be obtained by detecting the repetitive events in the 
signal if it is quasi-periodic (such as the QRS complex in the ECG or S1 and 
S2 in the PCG). 

3. Extract parts of the signal corresponding to the events and add them to a 
buffer. Note that it is possible for the various parts to be of different durations. 
Alignment of the copies at the trigger point is important; the tail ends of all 
parts may not be aligned. 

4. Divide the result in the buffer by the number of events added. 

Figure 3.12 illustrates two single-flash ERPs in the upper two traces. The results of 
averaging over 10 and 20 flashes are shown in the third and fourth plots, respectively, 
in the same figure. The averaging process has facilitated identification of the first 
positivity and the preceding and succeeding troughs (marked on the fourth trace) with 
certainty; the corresponding features are not reliably seen in the single acquisitions 
(see also the single-flash ERPs in Figure 3.2). Visual ERPs are analyzed in terms of 
the latencies of the first major peak or positivity, labeled as P120 due to the fact that the 
normal expected latency for adults is 120 ms; the trough or negativity before P120, 
labeled as N80; and the trough following P120, labeled as N145. The N80, P120, 
and N145 latencies measured from the averaged signal in Trace 4 of Figure 3.12 are 
85.7,100.7, and 117 ms, respectively, which are considered to be within the normal 
range for adults. 

Illustration of application: The upper trace in Figure 3.13 illustrates a noisy ECG 
signal over several beats. In order to obtain trigger points, a sample QRS complex of 
86 ms duration (86 samples at a sampling rate of 1,000 H x )  was extracted from the 
the first beat in the signal and used as a template. Template matching was performed 
using a normalized correlation coefficient defined as [79] 

where 2 is the template, 9 is the ECG signal, % and Q are the averages of the 
corresponding signals over the N samples considered, and k is the time index of 
the signal y at which the template is placed. (Jenkins et al. [67] used a measure 
similar to rzy(k) but without subtraction of the mean and without the shift parameter 
k to match segmented ECG cycles with a template.) The lower trace in Figure 3.13 
shows yzy(k), where it is seen that the cross-correlation result peaks to values near 
unity at the locations of the QRS complexes in the signal. Averaging inherent in 
the cross-correlation formula (over N samples) has reduced the effect of noise on 
template matching. 

By choosing an appropriate threshold, it becomes possible to obtain a trigger point 
to extract the QRS complex locations in the ECG signal. (Nofee: The QRS template 
matches with the P and T waves with cross-correlation values of about 0.5; wider 
QRS complexes may yield higher cross-correlation values with taller P and T waves. 
The threshold has to be chosen so as to detect only the QRS complexes.) A threshold 
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Figure 3.12 Traces 1 and 2: Tbo sample acquisitions of individual flash visual ERPs from 
the occipital midline (02) position of a normal adult male. The ear lobes were used to form the 
reference lead (ala2), and the left forehead was used as the reference (see Figure 1.20). Trace 
3: Average of 10 ERPs. Trace 4: Average of 20 ERPs. The latencies of interest have been 
labeled on Trace 4 by an EEG technologist. See also Figure 3.2. Data courtesy of L. Alfaro 
and H. Danvish, Alberta Children’s Hospital, Calgary. 
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of 0.9 was applied to rZv(rC), and the QRS positions of all of the 12 beats in the signal 
were detected. 

Figure 3.14 illustrates two ECG cycles extracted using the trigger points obtained 
by thresholding the cross-correlation function, as well as the result of averaging the 
first 11 cycles in the signal. It is seen that the noise has been effectively suppressed 
by synchronized averaging. The low-level base-line variation and power-line in- 
terference present in the signal have caused minor artifacts in the result, which are 
negligible in this illustration. 

1 
B 

1 0.5 

3 

f 
Q 0 

T 
1-0.5 

0 

2 3 4 5 6 7 
Time in seconds 

Figure 3.13 An ECG signal with noise (upper trace) and the result of cross-correlation (lower 
trace) with the QRS template selected from the first cycle. The cross-correlation coefficient is 
normalized to the range (-1,l). 

The most important requirement in synchronized averaging is indicated by the 
first word in the name of the process: the realizations of the signal that are added for 
averaging must be aligned such that the repetitive part of the signal appears at exactly 
the same instant in each realization of the signal. If this condition is not met, the 
waveform of the event in the signal will be blurred or smudged along the time axis. 

A major advantage of synchronized averaging is that no frequency-domain filtering 
is performed - either explicitly or implicitly. No spectral content of the signal is lost 
as is the case with frequency-domain (lowpass) filters or other time-domain filters 
such as moving-window averaging filters. 



98 FILTERING FOR REMOVAL OF ARTIFACTS 
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ECG cycle number 5 

Average of 11 ECQ cycles 

Figure 3.14 Upper two traces: two cycles of the ECG extracted from the signal in Figure 3.13. 
Bottom trace: the result of synchronized averaging of 1 1  cycles from the same ECG signal. 
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Structured noise such as power-line interference may be suppressed by synchro- 
nized averaging if the phase of the interference in each realization is different. To 
facilitate this feature, the repetition rate of the stimulus should be set so that it is 
not directly related to the power-line frequency (for example, the flashes used to 
acquire the averaged ERPs in Figure 3.12 were delivered at 2.1 ppe) .  Physiological 
interference such as background EEG in ERPs and SEPs may also be suppressed 
by synchronized averaging, as such activity may bear no inter-relationship from one 
epoch of the desired signal to another. 

3.3.2 Moving-average filters 

Problem: Propose a time-domain technique to remove random noise given only one 
realization of the signal or event of interest. 

Solution: When an ensemble of several realizations of an event is not available, 
synchronized averaging will not be possible. We are then forced to consider temporal 
averaging for noise removal, with the assumption that the processes involved are 
ergodic, that is, temporal statistics may be used instead of ensemble statistics. As 
temporal statistics are computed using a few samples of the signal along the time 
axis and the temporal window of samples is moved to obtain the output at various 
points of time, such a filtering procedure is called a moving-window averaging filter 
in general; the term moving-average (MA) filter is commonly used. 

The general form of an MA filter is 
N 

y(n) = bk z (n  - k), (3.19) 

where 2 and y are the input and output of the filter, respectively. The bk values are 
the filter coefficients or tap weights, k = 0 , 1 , 2 , .  . . , N ,  where N is the order of the 
filter. The effect of division by the number of samples used ( N  + 1) is included in 
the values of the filter coefficients. The signal-flow diagram of a generic MA filter is 
shown in Figure 3.15. 

k=O 

Applying the z-transform, we get the transfer function H ( z )  of the filter as 

where X ( z )  and Y ( z )  are the z-transforms of z(n) and y(n), respectively. (See 
Lathi [I] ,  Oppenheim et al. [2], or Oppenheim and Schafer El41 for background 
details on system analysis using the r-transform and the Fourier transform.) 

A simple MA filter for filtering noise is the von Hann or Hanning filter [27], given 

y(n) = -[a(.) + 2a(n - 1) + a(n - 2)]. (3.21) 

The signal-flow diagram of the Hanning filter is shown in Figure 3.16. The impulse 
response of the filter is obtained by letting z(n) = S(n), resulting in h(n) = 

1 
4 

by 

$(n) + 26(n - 1) + S(n - 2)]. 
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Figure 3.15 Signal-flow diagram of a moving-average filter of order N .  Each block with the 
symbol z-l represents a delay of one sample, and serves as a memory unit for the corresponding 
signal sample value. 

Figure 3.16 Signal-flow diagram of the Hanning filter. 
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The transfer function of the Hanning filter is 

1 
4 

H(E) = - [ 1 +  22-1 + 8 1 .  (3.22) 

The transfer function has a double-zero at z = -1 .  

and advantages: 
An MA filter is a finite impulse response (FIR) filter with the following attributes 

0 The impulse response h ( k )  has a finite number of terms: h(k)  = b k ,  k = 

0 An FIR filter may be realized non-recursively with no feedback. 

0 The output depends only on the present input sample and a few past input 

0 The filter is merely a set of tap weights of the delay stages, as illustrated in 

0 , 1 , 2  )...) N .  

samples. 

Figure 3.15. 

0 The filter transfer function has no poles except at z = 0: the filter is inherently 
stable. 

0 The filter has linear phase if the series of tap weights is symmetric or antisym- 

The frequency response of a filter is obtained by substituting E = ejwT in the 
expression for H ( z ) ,  where T is the sampling interval in seconds and w is the radian 
frequency (w = 2 n f ,  where f is the frequency in H E ) .  Note that we may set T = 1 
and deal with normalized frequency in the range 0 5 w 5 27r or 0 5 f 5 1; then 
f = 1 or w = 27r represents the sampling frequency, with lower frequency values 
being represented as a normalized fraction of the sampling frequency. 

metric. 

The frequency response of the Hanning filter is given as 

1 
~ ( w )  = - [ I  4 + 2e-Jw + e--j2w I. 

Letting e-Jw = cos(w) - j sin(w), we obtain 

1 
~ ( w )  = - [ { 2  + 2cos(w))e-Jw].  

4 
The magnitude and phase responses are given as 

IH(w)l = 2 { 1 +  cos(w)} I 1  
and 

L H ( w )  = -w. 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
The magnitude and phase responses of the Hanning filter are plotted in Figure 3.17. 
It is clear that the filter is a lowpass filter with linear phase. 
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Figure 3.17 Magnitude and phase responses of the Hanning (smoothing) filter. 
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Note that, although we started with a description of the Hanning filter in the time 
domain, subsequent analysis of the filter was performed in the frequency domain 
using the z-transform and the frequency response. System analysis is easier to 
perform in the z domain in terms of the poles and zeros of the transfer function and in 
the frequency domain in terms of the magnitude and phase responses. The magnitude 
and phase responses assist in understanding the effect of the filter on the frequency 
components of the signal (and noise). 

It is seen from the magnitude response of the Hanning filter (Figure 3.17) that 
components beyond about 20% of the sampling frequency of 1,000 Hz are reduced 
in amplitude by more than 3 dB, that is, to less than half of their levels in the input. 
High-frequency components beyond 40% of the sampling frequency are suppressed 
to less than 20 dB below their input levels. The filter will perform adequate filtering 
of ECG signals sampled at 200 Hz, with the gain being lower than -20 dB beyond 
80 H z .  However, if the signal is sampled at 1,000 Hz (as in the present example), 
the gain remains above -20 dB for frequencies up to 400 Hz; such a lowpass filter 
may not be adequate for filtering ECG signals, but may be appropriate for other 
signals such as the PCG and the EMG. 

Increased smoothing may be achieved by averaging signal samples over longer 
time windows, at the expense of increased filter delay. If the signal samples over a 
window of eight samples are averaged, we get the output as 

7 1 
p(n) = g c s(n - k). 

k=O 
(3.27) 

The impulse response of the filter is h(n) = i[S(n) + S(n - 1) + S(n - 2) + S(n - 
3) + S(n - 4) + S(n - 5) + S(n - 6) + S(n - 7)]. The transfer function of the filter is 

1 '  
H ( z )  = g Z-', 

k=O 
(3.28) 

and the frequency response is given by 

1 

x (1 + 2 cos(w) + 2 cos(2w) + 2 cos(Sw))]. (3.29) 

The frequency response of the %point MA filter is shown in Figure 3.18; the pole- 
zero plot of the filter is depicted in Figure 3.19. It is seen that the filter has zeros 
at f = 125 H z ,  4 = 250 H z ,  = 375 H z ,  and $ = 500 H z .  Comparing 
the frequency response of the %point MA filter with that of the Hanning filter in 
Figure 3.17, we see that the former provides increased attenuation in the range 
90 - 400 Hz over the latter. Note that the attenuation provided by the filter after 
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about 100 H x  is nonuniform, which may not be desirable in certain applications. 
Furthermore, the phase response of the filter is not linear, although it is piece-wise 
linear. 
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Figure 3.18 Magnitude and phase responses of the 8-point moving-average (smoothing) 
filter. 

Relationship of moving-average filtering to integration: Disregarding the 
scale factor for a moment, the operation in Equation 3.27 may be interpreted as the 
summation or integration of the signal over the duration n - 7 to n. A comparable 
integration of a continuous-time signal z ( t )  over the interval tl to t 2  is expressed as 

y(t) = f a  x ( t ) d t .  
t l  

The general definition of the integral of a signal is 

or, if the signal is causal, 

(3.30) 

(3.31) 

(3.32) 
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Figure 3.19 Pole-zero plot of the 8-point moving-average (smoothing) filter. 
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The Fourier transforms of the signals in the relationship above are related as [ 1,2] 

1 
3w 

Y ( w )  = T- X ( w )  + nX(O)S(w). 

The frequency response of the integration operator is 

1 
H ( w )  = - 

j w  ' 
with the magnitude response 

IH(w)l = 

(3.33) 

(3.34) 

(3.35) 

and phase response 
(3.36) 

It is seen from the frequency response that the gain of the filter reduces (nonlin- 
early) as the frequency is increased; therefore, the corresponding filter has lowpass 
characteristics. 

Integration or accumulation of a discrete-time signal for all samples up to the 
present sample results in the transfer function H ( z )  = & [I ,  21. Such an 
operation is seldom used in practice. Instead, a moving-window sum is computed as 
in Equation 3.27. The 8-point MA filter may be rewritten as 

?r 
L H ( w )  = --. 

2 

1 1 
8 

~ ( n )  = ~ ( n  - 1) + g ~ ( n )  - -Z(TI - 8). (3.37) 

The recursive form as above clearly depicts the integration aspect of the filter. The 
transfer function of this expression is easily derived to be 

(3.38) 

The frequency response of the filter is given by 

which is equivalent to that in Equation 3.29. Summation over a limited discrete-time 
window results in a frequency response having sinc-type characteristics, as illustrated 
in Figure 3.18. See Tompkins [27] for a discussion on other types of integrators. 

Illustration of application: Figure 3.20 shows a segment of an ECG signal with 
high-frequency noise. Figure 3.21 shows the result of filtering the signal with the 
8-point MA filter described above. Although the noise level has been reduced, some 
noise is still present in the result. This is due to the fact that the attenuation of the 
simple 8-point MA filter is not more than -20 dB at most frequencies (except near 
the zeros of the filter). 
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Figure 3.20 ECG signal with high-frequency noise; f. = 1,000 H r .  
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Figure 3.21 
8-point MA filter shown in Figure 3.18. 

The ECG signal with high-frequency noise in Figure 3.20 after filtering by the 
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3.3.3 Derivative-based operators to remove low-frequency artifacts 

Problem: Develop a time-domain technique to remove base-line dri@ in the ECG 
signal. 

Solution: The derivative operator in the time domain removes the parts of the input 
that are constant (the output is zero). Large changes in the input lead to high values 
in the output of the derivative operator. Improved understanding of the derivative 
operation may be obtained by studying its transform in the frequency domain. 

The ideal $ operator in the time domain results in multiplication of the Fourier 
transform of the original signal by j w = j 27rf in the frequency domain. If X ( f )  
represents the Fourier transform of the signal z(i!), then the Fourier transform of 
is j 2 7 r f X ( f )  or j w X ( w ) .  The frequency response of the operation is H ( w )  = j w. 
It is seen that the gain of the frequency response increases linearly with frequency, 
starting with H ( w )  = 0 at w = 0. Thus the DC component is removed by the 
derivative operator, and higher frequencies receive linearly increasing gain: the 
operation represents a highpass filter. The derivative operator may be used to remove 
DC and suppress low-frequency Components (and boost high-frequency components). 

It follows readily that the second-order derivative operator & has the frequency 
response H ( w )  = -w2, with a quadratic increase in gain for higher frequencies. The 
second-order derivative operator may be used to obtain even higher gain for higher 
frequencies than the first-order derivative operator; the former may be realized as a 
cascade of two of the latter. 

In digital signal processing, the basic derivative is given by the first-order differ- 
ence operator [27] 

g(n) = - [z(n) - z(n - l)]. (3.40) 

The scale factor including t;e sampling interval T is required in order to obtain the 
rate of change of the signal with respect to the true time. The transfer function of the 
operator is 

1 
T 

* 
H ( 2 )  = (1 - 2-1). T 

The filter has a zero at z = 1, the DC point. 
The frequency Tesponse of the operator is 

1 1 
T H ( w )  = - [l - exp(- jw)]  = - ~ X P  ( - j  i) 

which leads to 

and 7 r w  
LH(w) = - - -. 

2 2  

(3.41) 

[ z j  sin (:)I , (3.42) 

(3.43) 

(3.44) 

The magnitude and phase responses of the first-order difference operator are plotted 
in Figure 3.22. The gain of the filter increases for higher frequencies up to the 
folding frequency f , / 2  (half the sampling frequency f.). The gain may be taken to 

Next Page
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approximate that of the ideal derivative operator, that is, Iwl, for low values of w .  
Any high-frequency noise present in the signal will be amplified significantly: 
result could thus be noisy. 
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Figure 3.22 Magnitude and phase responses of the first-order difference operator. The 
magnitude response is shown on a linear scale in order to illustrate better its proportionality to 
frequency. 

The noise-amplification problem with the first-order difference operator in Equa- 
tion 3.40 may be controlled by taking the average of two successive output values: 

1 
l/3(n) = 5 + Y(" - 111 

1 
2T 
1 
2T 

= - [(z(n) - z(n - 1)) + (z(n - 1) - z(n - 2)}] 

- [z(n) - z(n - 2)) (3.45) 

The transfer function of the operator above, known as the three-point central differ- 
ence [27], is 

- - 

(3.46) 

Observe that the transfer function of the three-point central-difference operator is the 
product of the transfer functions of the simple first-order difference operator and a 

Previous Page
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two-point MA filter. The three-point central-difference operation may therefore be 
performed by the simple first-order difference operator and a two-point MA filter in 
series (cascade). 

The magnitude and phase responses of the three-point central-difference operator 
are plotted in Figure 3.23. The transfer function has zeros at z = 1 and z = -1, with 
the latter pulling the gain at the folding frequency to zero: the operator is a bandpass 
filter. Although the operator does not have the noise-amplification problem of the 
first-order difference operator, the approximation of the $ operation is poor after 
about f8/10 [27]. 
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Figure 3.23 Magnitude and phase responses of the three-point central-difference operator, 
The magnitude response is shown on a linear scale. 

Illustration of application: Figures 3.24 and 3.25 show the results of filtering 
the ECG signal with low-frequency noise shown in Figure 3.6, using the first-order 
difference and three-point central-difference operators, respectively. It is seen that 
the base-line drift has been removed, with the latter being less noisy than the former. 
However, it is obvious that the highpass and high-frequency emphasis effects inherent 
in both operators have removed the slow P and T waves, and altered the QRS 
complexes to such an extent as to make the resulting waveforms look unlike ECG 
signals. (We shall see in Section 4.3 that, although the derivative operators are not 
useful in the present application, they are indeed useful in detecting the QRS complex 
and the dicrotic notch.) 



112 FILTERING FOR REMOVAL OFARTIFACTS 

Figure 3.24 Result of filtering the ECG signal with low-frequency noise shown in Figure 3.6, 
using the first-order difference operator. 
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Figure 3.25 Result of filtering the ECG signal with low-frequency noise shown in Figure 3.6, 
using the three-point central-difference operator. 
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Problem: How could we improve the performance of the basicjrst-order differ- 
ence operator as a Jilter to remove low-frequency noise or base-line wander without 
distorting the QRS complex? 

Solution: The drawback of the first-order difference and the three-point central- 
difference operators lies in the fact that their magnitude responses remain low for a 
significant range of frequencies well beyond the band related to base-line wander. 
The zero of the first-order difference operator at z = 1 is desired in order to reject 
the DC component and very low frequencies. However, we would like to maintain 
the levels of the components present in the signal beyond about 0.5 - 1 Ha, that is, 
we would like the gain of the filter to be close to unity after about 0.5 Hz. 

The gain of a filter at specific frequencies may be boosted by placing poles at 
related locations around the unit circle in the z-plane. For the sake of stability of the 
filter, the poles should be placed within the unit circle. Since we are interested in 
maintaining a high gain at very low frequencies, we could place a pole on the real 
axis (zero frequency), at say z = 0.995 [80]. The transfer function of the modified 
first-order difference filter is then 

or equivalently, 

1 - z-1 H ( z )  = - 

H ( z ) = L  [ 2-1 1 .  
T z - 0.995 

(3.47) 

(3.48) 

The time-domain input - output relationship is given as 

(3.49) 

Two equivalent signal-flow diagrams of the filter are shown in Figure 3.26. (Note: 
The filter is no longer an FIR filter; details on infinite impulse response or IIR filters 
will be presented later in Section 3.4.1.) 

The form of H ( z )  in Equation 3.48 in terms of z helps in understanding a graphical 
method for the evaluation of the frequency response of discrete-time filters [l ,  2,271. 
The frequency response of a system is obtained by evaluating its transfer function 
at various points on the unit circle in the z-plane, that is, by letting z = exp(jw) 
and evaluating H ( z )  for various values of the frequency variable w of interest. The 
numerator in Equation 3.48 expresses the vector distance between a specified point 
in the z-plane and the zero at a = 1; the denominator gives the distance to the 
pole at z = 0.995. In general, the magnitude transfer function of a system for a 
particular value of z is given by the product of the distances from the corresponding 
point in the z-plane to all the zeros of the system’s transfer function, divided by the 
product of the distances to its poles. The phase response is given by the sum of the 
angles of the vectors joining the point to all the zeros, minus the sum of the angles 
to the poles [ l ,  2, 271. It is obvious that the magnitude response of the filter in 
Equations 3.47 and 3.48 is zero at a = 1, due to the presence of a zero at that point. 
Furthermore, for values of z away from a = 1, the distances to the zero at z = 1 

1 
~ ( n )  = ?; [ ~ ( n )  - ~ ( l t  - l)] + 0.995 ~ ( n  - 1). 
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Figure 3.26 TWO equivalent signal-flow diagrams of the filter to remove low-frequency noise 
or base-line wander. The form in (a) uses two delays, whereas that in (b) uses only one delay. 

and the pole at z = 0.995 will be almost equal; therefore, the gain of the filter will 
be close to unity for frequencies greater than about 1 Hz. The magnitude and phase 
responses of the filter shown in Figure 3.26 confirm these observations: the filter is 
a highpass filter with nonlinear phase. 

The result of application of the filter to the ECG signal with low-frequency noise 
shown in Figure 3.6 is displayed in Figure 3.28. It is evident that the low-frequency 
base-line artifact has been removed without any significant distortion of the ECG 
waveforms, as compared with the results of differentiation in Figures 3.24 and 3.25. 
Close inspection, however, reveals that the S wave has been enhanced (made deeper) 
and that a negative undershoot has been introduced after the T wave. Removal of the 
low-frequency base-line artifact has been achieved at the cost of a slight distortion 
of the ECG waves due to the use of a derivative-based filter and its nonlinear phase 
response. 

3.4 FREQUENCY-DOMAIN FILTERS 

The filters described in the previous section performed relatively simple operations in 
the time domain; although their frequency-domain characteristics were explored, the 
operators were not specifically designed to possess any particular frequency response 
at the outset. The frequency response of the MA filter, in particular, was seen to be 
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Figure 3.27 Normalized magnitude and phase responses of the filter to remove base-line 
wander as in Equation 3.47. The magnitude response is shown on a linear scale. 



FREQUENCY-DOMAIN FILTERS f f 7 

! 

3.5 

3 -  

2.5 - 

2 -  

0 
1.5- 

3 s 
ti 1 -  

0.5 - 

I I I I I I I I I I 

1 2 3 4 5 6 7 8 9 
Time in seconds 

Figure 3.28 Result of processing the ECG signal with low-frequency noise shown in Fig- 
ure 3.6, using the filter to remove base-line wander as in Equation 3.47. (Compare with the 
results in Figures 3.24 and 3.25.) 



118 FILTERING FOR REMOVAL OF ARTIFACTS 

not attractive: the attenuation in the stop-band was not high and was not uniform, 
with the gain falling below -20 dB only around the zeros of the transfer function. 

Filters may be designed in the frequency domain to provide specific lowpass, 
highpass, bandpass, or band-reject (notch) characteristics. Frequency-domain filters 
may be implemented in software after obtaining the Fourier transform of the input 
signal, or converted into equivalent time-domain filters and applied directly upon the 
signal samples. 

Many design procedures are available in the literature to design various types of 
filters: the most-commonly used designs are the Butterworth, Chebyshev, elliptic, 
and Bessel filters [14, 81, 82, 83, 84, 85, 261. Since these filters have been well- 
established in the analog-filter domain, it is common to commence with an analog 
design and apply the bilinear transformation to obtain a digital filter in the x-domain. 
It is also common to design a lowpass filter with the desired pass-band, transition, 
and stop-band characteristics on a normalized-frequency axis, and then transform it 
to the desired lowpass, highpass, bandpass, or band-reject characteristics [ 14, 8 11. 
Frequency-domain filters may also be specified directly in terms of the values of the 
desired frequency response at certain frequency samples only, and then transformed 
into the equivalent time-domain filter coefficients via the inverse Fourier transform. 

3.4.1 Removal of high-frequency noise: Butterworth lowpass filters 

Problem: Design a frequency-domain filter to remove high-frequency noise with 
minimal loss of signal components in the specified pass-band. 

Solution: The Butterworth filter is perhaps the most commonly used frequency- 
domain filter due to its simplicity and the property of a maximally flat magnitude 
response in the pass-band. For a Butterworth lowpass filter of order N, the first 
2N - 1 derivatives of the squared magnitude response are zero at R = 0, where 0 
represents the analog radian frequency. The Butterworth filter response is monotonic 
in the pass-band as well as in the stop-band. 

The basic Butterworth lowpass filter function is given as [14, 861 
1 IHa(jn)12 = (3.50) 

1 + (KyN ' 
where Ho is the frequency response of the analog filter and R, is the cutoff frequency 
(in radians/s). A Butterworth filter is completely specified by its cutoff frequency 
0, and order N. As the order N increases, the filter response becomes more flat 
in the pass-band, and the transition to the stop-band becomes faster or sharper. 
IHa(jSIc)12 = 4 for all N. 

Changing to the Laplace variable s, we get 
1 

&(s)Ho(-8)  = 2N * (3.51) 

The poles of the squared transfer function are located with equal spacing around a 
circle of radius R, in the s-plane, distributed symmetrically on either side of the 

1+ (k) 
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imaginary axis s = jn. No pole will lie on the imaginary axis itself; poles will 
appear on the real axis for odd N .  The angular spacing between the poles is $. 
If H,(s)H,(-s) has a pole at s = sp, it will have a pole at s = -sp as well. 
Furthermore, for the filter coefficients to be real, complex poles must appear in 
conjugate pairs. In order to obtain a stable and causal filter, we need to form H,(s) 
with only the N poles on the left-hand side of the s-plane. The pole positions in the 
s-plane are given by 

2N 
(3.52) 

le = 1,2, ..., 2N [Sl]. 

obtain the transfer function in the analog Laplace domain as 
Once the pole positions are obtained in the s-plane, they may be combined to 

(3.53) ti 
Ha(8) = (8 - PI)(&¶ - p z ) ( s  - p 3 )  ' * * (8 - p N )  ' 

where p k ,  Ic = 1 , 2 , .  . , , N ,  are the N poles of the transfer function in the left-half of 
the s-plane, and G is a gain factor specified as needed or calculated to normalize the 
gain at DC ( 8  = 0) to be unity. 

If we use the bilinear transformation 

(3.54) 

the Butterworth circle in the s-plane maps to a circle in the z-plane with its real-axis 
intercepts at z = :;,"f$ and z = ~ ~ ~ ; ~ ,  The poles at s = sp and s = -sp in 
the 8-plane map to the locatrons t = zp and 2 = l/xp, respectively. The poles in 
the z-plane are not uniformly spaced around the transformed Butterworth circle. For 
stability, all poles of H(z)  must lie within the unit circle in the z-plane. 

Consider the unit circle in the z-plane given by z = e j w .  For points on the unit 
circle, we have 

s = u + j n = -  2 ( 1 - e - J w  . )=,tan(;). 2 j  
T 1 + e-JW 

(3.55) 

For the unit circle, u = 0; therefore, we get the relationships between the continuous- 
time (8-domain) frequency variable and the discrete-time (2-domain) frequency 
variable w as 

and 

i2=Ttan(;) 2 
(3.56) 

(3.57) 

This is a nonlinear relationship that warps the frequency values as they are mapped 
from the imaginary (vertical) axis in the s-plane to the unit circle in the x-plane (or 
vice-versa), and should be taken into account in specifying cutoff frequencies. 
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The transfer function H,(s) may be mapped to the a-domain by applying the 
bilinear transformation, that is, by substituting 8 = $6. The transfer function 
H ( z )  may then be simplified to the form 

G' (1 + H ( z )  = c:=o ak rk ' 
(3.58) 

where a&, k = 0, 1,2,. . . , N, are the filter coefficients or tap weights (with a0 = l), 
and G' is the gain factor (usually calculated so as to obtain IN(%)[ = 1 at DC, that 
is, at z = 1. Observe that the filter has N zeros at z = -1 due to the use of the 
bilinear transformation. The filter is now in the familiar form of an IIR filter. Two 
forms of realization of a generic IIR filter are illustrated as signal-flow diagrams in 
Figures 3.29 and 3.30: the former represents a direct realization using 2N delays and 
2N - 1 multipliers (with a0 = l), whereas the latter uses only N delays and 2N - 1 
multipliers. 

Figure 3.29 Signal-flow diagram of a direct realization of a generic infinite impulse response 
(IIR) filter. This form uses 2N delays and 2N - 1 multipliers for a filter of order N. 

A time-domain representation of the filter will be required if the filter is to be 
applied to data samples directly in the time domain. From the filter transfer function 
N ( z )  in Equation 3.58, it becomes easy to represent the filter in the time domain with 
the difference equation 

N N 
(3.59) 

k=O k l  
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Figure 3.30 Signal-flow diagram of a realization of an IIR filter that uses only N delays and 
(2N - 1) multipliers for a filter of order N .  

The coefficients bk are given by the coefficients of the expansion of G’(1 + 
The MATLAB [87] command butter and its variants provide Butterworth filters 
obtained using the procedure described above. 

It is also possible to directly specify the Butterworth filter as 

(3.60) 

with w normalized to the range (0,2n) for sampled or discrete-time signals; in such 
a case, the equation is valid only for the range (0, n), with the function in the range 
(n, 2n) being a reflection of that over (0, T ) .  The cutoff frequency w, should be 
specified in the range (0, T ) .  

If the discrete Fourier transform (DFT) is used to compute the Fourier transforms 
of the signals being filtered, Equation 3.60 may be modified to 

(3.61) 

where k is the index of the DFT array standing for discretized frequency. With K 
being the number of points in the DFT array, k, is the array index corresponding 
to the cutoff frequency we (that is, k, = Kz). The equation above is valid for 
12 = 0, 1,2, . . . , 4, with the second half over (8 + 1, K - 1) being a reflection 
of the first half (that is, H ( k )  = H(K - k ) ,  k = $ + 1,. . . ,K - 1). Note that 
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the DFT includes two unique values: the DC component in H ( 0 )  and the folding- 
frequency component in H (  %). The variable k in the filter equation could also be 
used to represent normalized frequency in the range (0, l), with unity standing for the 
sampling frequency, 0.5 standing for the maximum frequency present in the sampled 
signal (that is, the folding frequency), and k, being specified in the range (0,0.5). 
(Nore: MATLAB normalizes half the sampling frequency to unity; the maximum 
normalized frequency present in the sampled signal is then unity. MATLAB and a 
few other programming languages do not allow an array index to be zero: in such a 
case, the indices mentioned above must be incremented by one.) 

One could compute the DFT of the given signal, multiply the result by IH(k)l, 
and compute the inverse DFT to obtain the filtered signal. The advantage of this 
procedure is that no phase change is involved: the filter is a strictly magnitude-only 
transfer function. The time-domain implementation described earlier will include a 
phase response which may not be desired. However, time-domain implementation 
will be required in on-line signal processing applications. 

Butterworth lowpass filter design example: In order to design a Butterworth 
lowpass filter, we need to specify two parameters: wc and N. The two parameters may 
be specified based on a knowledge of the characteristics of the filter as well as those 
of the signal and noise. It is also possible to specify the required minimum gain at a 
certain frequency in the pass-band and the required minimum attenuation at another 
frequency in the stop-band. The two values may then be used with Equation 3.50 to 
obtain two equations in the two unknowns w, and N, which may be solved to derive 
the filter parameters [86]. 

Given the 3 dB cutoff frequency fc and order N, the procedure to design a 
Butterworth lowpass filter is as follows: 

1. Convert the specified 3 dB cutoff frequency fc to radians in the normalized 
range (0,2 n) as w, = 6 2n. Then, T = 1. Prewarp the cutoff frequency w, 
by using Equation 3.56 and obtain 0,. 

2. Derive the positions of the poles of the filter in the e-plane as given by Equa- 
tion 3.52. 

3. Form the transfer function Ha(8) of the Butterworth lowpass filter in the 
Laplace domain by using the poles in the left-half plane only as given by 
Equation 3.53. 

4. Apply the bilinear transformation as per Equation 3.54 and obtain the transfer 
function of the filter H ( z )  in the x-domain as in Equation 3.58. 

5.  Convert the filter to the series of coefficients bk and a k  as in Equation 3.59. 

Let us now design a Butterworth lowpass filter with fc = 40 Hz, fs = 200 Hz, 
2n = 0.4~ radianels. The prewarped e-domain 

The poles of Ha(e)Ha(-e) are placed around a circle of radius 1.453085 with an 
radians. The poles of interest are located at angles $7r 

and N = 4. We have wc = 
cutoff frequency is n, = $ tan (3) = 1.453085 radians/s. 

angular separation of 5 = 
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and fr and the corresponding conjugate positions. Figure 3.31 shows the positions 
of the poles of Ha ( 8 )  Ha ( - 8 )  in the Laplace plane. The coordinates of the poles of 
interest are (-0.556072 f j 1.342475) and (-1.342475 j ~ j  0.556072). The transfer 
function of the filter is 

(3.62) 4.458247 
Ha(s) = ( s a  + 1.112143s + 2.111456)(s2 + 2.684951s + 2.111456)' 

Imaginary 

Butterworth circle 
radius = 1.453085 radians 

Figure 3.31 
worth lowpass filter with f c  = 40 Hz, f. = 200 Ht, and N = 4. 

Pole bsitions in the s-plane of the squared magnitude response of the Butter- 

Applying the bilinear transformation, we get 

0.046583( 1 + z - ' ) ~  H ( z )  = 
(1 - 0 . 4 4 7 7 6 5 ~ ~ '  + 0.460815~-')(1 - 0 . 3 2 8 9 7 6 ~ ~ ~  + 0.064588~-') * 

(3.63) 
The filter has four poles at (0.223882 f j 0.640852) and (0.164488 f j 0.193730), 
and four zeros at -1 + j0. The bk coefficients of the filter as in Equation 3.59 
are {0.0465829,0.186332,0.279497,0.186332,0.046583}, and the a k  coefficients 
are (1, -0.776740,0.672706, -0.180517,0.029763}. The pole-zero plot and the 
frequency response of the filter are given in Figures 3.32 and 3.33, respectively. The 
frequency response displays the expected monotonic decrease in gain and -3 dB 
power point or 0.707 gain at 40 Hz. 
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Imaginary 

(100 Hz) 

Figure 3.32 Positions of the poles and zeros in the r-plane of the Butterworth lowpass filter 
with fc = 40 Hz, f .  = 200 Ht, and N = 4. 

Figure 3.34 compares the magnitude responses of three Butterworth lowpass filters 
with fc = 40 Hz and fa = 200 Hz, with the order increasing from N = 4 (dotted) 
to N = 8 (dashed) to N = 12 (solid). All three filters have their half-power points 
(gain = 0.707) at 40 Hz, but the transition band becomes sharper as the order N is 
increased. 

The Butterworth design is popular because of its simplicity, a monotonically 
decreasing magnitude response, and a maximally flat magnitude response in the 
pass-band. Its main disadvantages are a slow (or wide) transition from the pass- 
band to the stop-band, and a nonlinear phase response. The nonlinear phase may 
be corrected for by passing the filter output again through the same filter but after a 
reversal in time [82]. This process, however, leads to a magnitude response that is 
the square of that provided by the initial filter design. The squaring effect may be 
compensated for in the initial design; however, the approach cannot be applied in 
real time. The elliptic filter design provides a sharp transition band at the expense 
of ripples in the pass-band and the stop-band. The Bessel design provides a group 
delay that is maximally flat at DC, and a phase response that approximates a linear 
response. Details on the design of Bessel, Chebyshev, elliptic, and other filters may 
be found in other sources on filter design [ 14,81, 82,83,84, 85,261. 

Illustration of application: The upper trace in Figure 3.35 illustrates a carotid 
pulse signal with high-frequency noise and effects of clipping. The lower trace in the 
same figure shows the result of processing in the time domain with the MATLABJilrer 
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Figure 3.33 
f. = 200 H r ,  and N = 4. 

Magnitude response of the Butterworth lowpass filter with fc = 40 H r ,  
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Figure 3.34 Magnitude responses of three Butterworth lowpass filters with f c  = 40 Hz, 
f .  = 200 H I ,  and variable order: N = 4 (dotted), N = 8 (dashed), and N = 12 (solid). 



FREQUENCY-DOMAIN FILTERS 127 

command; the Butterworth lowpass filter coefficients as designed in the preceding 
paragraphs and indicated in Equation 3.63 were used (fc = 40 He, fa = 200 Hr, 
and N = 4). The high-frequency noise has been effectively removed; furthermore, 
the effects of clipping have been smoothed. However, the low-frequency artifacts in 
the signal remain (for example, around the 14 8 time mark). 

I I I I I 

12 12.5 13 13.5 14 14.5 
-3' ' 

-31 ' V 
I I I I I 

12 12.5 13 13.5 14 14.5 
Time in seconds 

Figure 3.35 Upper trace: a carotid pulse signal with high-frequency noise and effects of 
clipping. Lower trace: result of filtering with a Butterworth lowpass filter with fc = 40 Hz, 
f. = 200 Hz, and N = 4. The filtering operation was performed in the time domain using 
the MATLAB jilter command. 

Figure 3.36 shows the result of filtering the noisy ECG signal shown in Figure 3.20 
with an eighth-order Butterworth lowpass filter as in Equations 3.60 and 3.61 and a 
cutoff frequency of 70 He. The frequency response IH(w)l of the filter is shown in 
Figure 3.37. It is evident that the high-frequency noise has been suppressed by the 
filter. 

3.4.2 Removal of low-frequency noise: Butterworth highpass filters 

Problem: Design a frequency-domain jilter to remove low-frequency noise with 
minimal loss of signal components in the pass-band. 
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Figure 3.36 Result of frequency-domain filtering of the noisy ECG signal in Figure 3.20 
with an eighth-order Butterworth lowpass filter with cutoff frequency = 70 Ht. 
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Figure 3.37 Frequency response of the eighth-order Butterworth lowpass filter with cutoff 
frequency = fc = 70 Hz and f. = 1,000 H r .  
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Solution: Highpass filters may be designed on their own, or obtained by transform- 
ing a normalized prototype lowpass filter [86,8 11. The latter approach is easier since 
lowpass filter prototypes with various characteristics are readily available, as are the 
transformations required to derive highpass, bandpass, and bandstop filters [86, 811. 
MATLAB provides highpass filters with the simple command bu?fer(N, fc, ’high’). 

As in the case of the Butterworth lowpass filter in Equation 3.61, the Butterworth 
highpass filter may be specified directly in the discrete-frequency domain as 

Illustration of application: Figure 3.6 shows a segment of an ECG signal with 
low-frequency noise appearing in the form of a wandering base-line (base-line drift). 
Figure 3.38 shows the result of filtering the signal with an eighth-order Butterworth 
highpass filter as in Equation 3.64 and a cutoff frequency of 2 Hx. The frequency 
response of the filter is shown in Figure 3.39. While the low-frequency artifact has 
been removed by the filter, it should be noted that the high-frequency noise present 
in the signal has not been affected. 

Observe that the filtered result retains the characteristics of the QRS complex, 
unlike the case with the derivative-based time-domain filters (compare Figure 3.38 
with Figures 3.24 and 3.25.) This advantage is due to the fact that the Butterworth 
highpass filter that was used has a gain of almost unity over the frequency range of 
3 - 100 H z ;  the derivative-based filters severely attenuate these components and 
hence distort the QRS complex. However, it should be observed that the filter has 
distorted the P and T waves to some extent. The result in Figure 3.38 compares well 
with that in Figure 3.28, obtained using the much simpler IIR filter in Equation 3.47. 
(Compare the frequency responses in Figures 3.39,3.22,3.23, and 3.27.) 

3.4.3 Removal of periodic artifacts: Notch and comb filters 

Problem: Design a frequency-domain filter to remove periodic arttifacts such as 
power-line interference. 

Solution: The simplest method to remove periodic artifacts is to compute the 
Fourier transform of the signal, delete the undesired component(s) from the spectrum, 
and then compute the inverse Fourier transform. The undesired components could be 
set to zero, or better, to the average level of the signal components over a few frequency 
samples around the component that is to be removed; the former method will remove 
the noise components as well as the signal components at the frequencies of concern, 
whereas the latter assumes that the signal spectrum is smooth in the affected regions. 

Periodic interference may also be removed by notch filters with zeros on the 
unit circle in the z-domain at the specific frequencies to be rejected. If f,, is the 
interference frequency, the angles of the (complex conjugate) zeros required will be 
f (27r); the radius of the zeros will be unity. If harmonics are also present, multiple 
zeros will be required at &%(27r), n representing the orders of all of the harmonics 
present. The zero angles are limited to the range ( -T, 7r). The filter is then called 
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Figure 3.38 Result of frequency-domain filtering of the ECG signal with low-frequency 
noise in Figure 3.6 with an eighth-order Butterworth highpass filter with cutoff frequency = 
2 Ht. (Compare with the results in Figures 3.24, 3.25, and 3.28.) 
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Figure 3.39 Frequency response of an eighth-order Butterworth highpass filter with cutoff 
frequency = 2 H z .  fa = 1,000 Ha.  "he frequency response is shown on an expanded scale 
for the range 0 - 10 H z  only. 
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a “comb” filter. In some situations, higher-order harmonics beyond $ may appear 
at aliased locations (see Figures 3.8 and 3.57); zeros may then be placed at such 
frequencies as well. 

Notch filter design example: Consider a signal with power-line interference at 
fo = 60 Hz and sampling rate of f6 = 1,000 Hz (see Figures 3.7 and 3.8). The 
notch filter is then required to have zeros at w, = k k ( 2 n )  = f0.377 radians = 
f21.6O. The zero locations are then given by cos(w,) & j  sin(wo) or z1 = 0.92977+ 
j0.36812 and 22 = 0.92977 - j0.36812. The transfer function is 

(3.65) 

If the gain at DC ( z  = 1) is required to be unity, H ( z )  should be divided by 0.14045. 
Figure 3.40 shows a plot of the zeros of the notch filter in the z-plane. Figure 3.41 

shows the magnitude and phase responses of the notch filter obtained using MATLAB. 
Observe that the filter attenuates not only the 60 H z  component but also a band of 
frequencies around 60 H z .  The sharpness of the notch may be improved by placing 
a few poles near or symmetrically around the zeros and inside the unit circle [l ,  801. 
Note also that the gain of the filter is at its maximum at f6/2; additional lowpass 
filtering in the case of application to ECG signals could be used to reduce the gain at 
frequencies beyond about 80 H z .  

H ( z )  = (1 - ~1)(1 - z - ~  2 2 )  = 1 - 1.85955~-1 + z - ~ .  

750 Hz or -250 Hz 

Figure 3.40 Zeros of the notch filter to remove 60 Hz interference, the sampling frequency 
being 1,000 Hz. 

Comb filter design example: Let us consider the presence of a periodic artifact 
with the fundamental frequency of 60 Hz and odd harmonics at 180 Hz, 300 Nz, 
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Figure 3.41 
in Figure 3.40. fa = 1,000 Hr. 

Magnitude and phase responses of the 80 Hz notch filter with zeros as shown 



FREQUENCY-DOMAIN FILTERS 135 

and 420 Hz. Let fa = 1,000 Hz, and assume the absence of any aliasing error. 
Zeros are then desired at 60 Hz, 180 Ht, 300 Hz, and 420 Hz, which translate to 
f21.6O, f64.8O, f108". and ~k151.2~, with 360' corresponding to 1,000 Ht. The 
coordinates of the zeros are 0.92977 f j0.36812,0.42578 f j0.90483, -0.30902 f 
j0.95106, and -0.87631 f j0.48175. The transfer function of the filter is 

G (1 - 1.85955~~~ + z-')(l- 0.85156~-1 + t-') H ( z )  = 

x (1 + 0.61803~~~ + ~-~)(1- 1.75261~-1 + z - ~ ) ,  (3.66) 

where G is the desired gain or scaling factor. With G computed so as to set the gain 
at DC to be unity, the filter transfer function becomes 

H ( z )  = 0.6310 - 0.2149~-' + 0.1512.~-' - 0.1288~-~ + 0.1227~-* 
- 0.1288z-' + 0.1512z-' - 0.2149z-' + 0.6310z-'. (3.67) 

A plot of the locations of the zeros in the z-plane is shown in Figure 3.42. The 
frequency response of the comb filter is shown in Figure 3.43. Observe the low gain 
at not only the notch frequencies but also in the adjacent regions. 

500Hzor- 

Figure 3.42 Zeros of the comb filter to remove 60 H r  interference with odd harmonics; the 
sampling frequency is 1,000 Ha. 

Illustration of application: Figure 3.44 shows an ECG signal with power-line 
interference at fo  = 60 H z .  Figure 3.45 shows the result of applying the notch filter 
in Equation 3.65 to the signal. The 60 Hz interference has been effectively removed, 
with no perceptible distortion of the ECG waveform. 
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Figure 3.43 Magnitude and phase responses of the comb filter with zeros as shown in 
Figure 3.42. 
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An illustration of the application of the comb filter will be provided at the end of 
the chapter, in Section 3.8. 

I I I , I 1 I 1 

Figure 3.44 ECG signal with 60 Hz interference. 

3.5 OPTIMAL FILTERING: THE WIENER FILTER 

The filters described in the preceding sections can take into account only limited 
information about the temporal or spectral characteristics of the signal and noise 
processes. They are often labeled as ad hoc filters: one may have to try several filter 
parameters and settle upon the filter that appears to provide a usable result. The 
output is not guaranteed to be the best achievable result: it is not optimized in any 
sense. 

Problem: Design an optimaljlter to remove noise from a signal, given that the 
signal and noise processes are independent, stationary, random processes. You may 
assume the “desired” or ideal characteristics of the uncorrupted signal to be known. 
The noise characteristics may also be assumed to be known. 

Solution: Wiener filter theory provides for optimal filtering by taking into account 
the statistical characteristics of the signal and noise processes. The filter parameters 
are optimized with reference to a performance criterion. The output i s  guaranteed 
to be the best achievable result under the conditions imposed and the information 
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Time in seconds 

Figure 3.45 The ECG signal in Figure 3.44 after filtering with the 60 Hz notch filter shown 
in Figures 3.40 and 3.41. 
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provided. The Wiener filter is a powerful conceptual tool that changed traditional 
approaches to signal processing. 

Considering the application of filtering a biomedical signal to remove noise, let 
us limit ourselves to a single-input, single-output, FIR filter with real input signal 
values and real coefficients. Figure 3.46 shows the general signal-flow diagram of 
a transversal filter with coefficients or tap weights wi, i = 0 ,  1,2 , .  . . , M - 1, input 
z(n), and output d(n) [77]. The output is usually considered to be an estimate 
of some "desired" signal d(n)  that represents the ideal, uncorrupted signal, and is, 
therefore, indicated as d(n). If we assume for the moment that the desired signal is 
available, we could compute the estimation error between the output and the desired 
signal as 

e(n)  = d(n)  - d(n). (3.68) 

z-' 1 Y----:- I Lp . . , , 
"a 

Figure 3.46 Block diagram of the Wiener filter. 

Since d(n) is the output of a linear FIR filter, it can be expressed as the convolution 
of the input z(n) with the tap-weight sequence wi (which is also the impulse response 
of the filter) as 

J(n) = wk z ( 7 b - k ) .  (3.69) 

For easier handling of the optimization procedures, the tap-weight sequence may be 
written as an M x 1 tup-weight vector 

M - 1  

k=O 

(3.70) T w =  [wO,wl ,w2, . . . ,wM-l ]  1 

where the bold-faced character w represents a vector and the superscript T indicates 
vector transposition. As the tap weights are combined with M values of the input 
in the convolution expression, we could also write the M input values as an M x 1 
vector: 

~ ( n )  = [z(n), z(n - l), . . . ,z(n - M + l)]'. (3.71) 



140 FILTERING FOR REMOVAL OF ARTIFACTS 

Note that the vector x(n )  varies with time: at a given instant n the vector contains the 
current input sample z(n) and the preceding (M - 1) input samples from z(n - 1) 
to a(n - M + 1). The convolution expression in Equation 3.69 may now be written 
in a simpler form as the inner or dot product of the vectors w and x(n) :  

d(n) = wTx(n) = xT(n)w = (x ,  w ) .  (3.72) 

The estimation error is then given by 

e(n) = d(n) - wTx(n). (3.73) 

Wiener filter theory estimates the tap-weight sequence that minimizes the MS 
value of the estimation error; the output could then be called the minimum mean- 
squared error (MMSE) estimate of the desired response, the filter being then an 
optimaljfter. The mean-squared error (MSE) is defined as 

J(W)  = ~ [ e ' ( n ) ]  
= E[{d(n)  - wTx(n)}{d(n) - xT(n)w}] 

E[d'(n)] - wTE[x(n)d(n)] - E[d(n)xT(n)]w = 

+ wTE[x(n)xT(n)]w. (3.74) 

Note that the expectation operator is not applicable tow as it is not a random variable. 
Under the assumption that the input vector x(n )  and the desired response d(n) 

are jointly stationary, the expectation expressions in the equation above have the 
following interpretations [77]: 

0 E[d2(n)] is the variance of d(n), written as ui, with the further assumption 

0 E[x(n)d(n)] is the cross-correlation between the input vector ~ ( n )  and the 

that the mean of d(n)  is zero. 

desired response d ( n ) ,  which is an M x 1 vector: 

0 = E[x(n)d(n) ] .  (3.75) 

NotethatO = [ O ( O ) , @ ( - l ) ,  . . . ,O(l-M)]T,where 

O ( - k )  = E [ z ( n  - k)d(n)], k = O , l ,  2,. . . ,M - 1. (3.76) 

0 E[d(n)x*(n)] is simply the transpose of E[x(n)d(n) ] ;  therefore 

OT = E[d(n)xT(n)] .  (3.77) 

0 E[x(n)x*(n)]  represents the autocorrelation of the input vector ~ ( n )  com- 
puted as the outer product of the vector with itself, written as 

9 = E[x(n)xT(n) ]  (3.78) 
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or in its full M x M matrix form as 

4(1) * * *  4(M - 1) 
4(0) * * ' 4(M - 2) 

$ ( - M + l )  4(-M+2) * ' .  4(0) 

with the element in row k and column i given by 

(3.79) 

4(i - k) = E[z (n  - k)z (n  - i)], (3.80) 

with the property that #(i - I c )  = $ ( I c  - i). (Note: q5 = 4zz.)  With the 
assumption of wide-sense stationarity, the M x M matrix * is completely 
specified by M values of the autocorrelation 4(0), 4(1), . . . , $J(M - 1) for 
lags 0,1,. . . , M - 1. 

With the interpretations as listed above, the MSE expression in Equation 3.74 is 
simplified to 

J(w) = (7: - WTO - OTW + WT*W. (3.81) 

This expression indicates that the MSE is a second-order function of the tap-weight 
vector w. To determine the optimal tap-weight vector, denoted by w,,, we could 
differentiate J(w) with respect to w, set it to zero, and solve the resulting equation. 
To perform this differentiation, we should note the following derivatives: 

d 
dw 

d 
dw 

-(oTW) = 0,  

- ( W T 0 )  = 0, 

-(W%W) = 2*w. 
d 

dw 
Now, we obtain the derivative of J(w) with respect to w as 

dJ(w) - = - 2 0  + 2Qlw. 
dw (3.82) 

Setting this expression to zero, we obtain the condition for the optimal filter as 

+w, = 0. (3.83) 

This equation is known as the Wiener-Hopf equation. It is also known as the normal 
equation as it can be shown that [77], for the optimal filter, each element of the input 
vector x(n)  and the estimation error e(n) are mutually orthogonal, and furthermore, 
that the filter output J(n) and the error e(n) are mutually orthogonal (that is, the 
expectation of their products is zero). The optimal filter is obtained as 

w, = *--lo. (3.84) 
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In expanded form, we have the Wiener-Hopf equation as 

or as 
M-1 C woi #(i - k) = e ( - k ) ,  k = 0,1,2 ,..., N - 1. (3.86) 
i=O 

The minimum MSE is given by 

Jmin = U: - OT*-'O. (3.87) 

Given the condition that the signals involved are stationary, we have +(i - k) = 
q5(k - i) and @(-k) = B(k). Then, we may write Equation 3.86 as 

M - 1  
Woi #(k - i) = 8 ( k ) ,  k = 0,1,2,. . . , M - 1. (3.88) 

i=O 

Thus we have the convolution relationship 

Wok * 4(k) = V ) .  (3.89) 

Applying the Fourier transform to the equation above, we get 

W ( W ) S = z ( W )  = S z d ( W ) ,  (3.90) 

which may be modified to obtain the Wiener filter frequency response W(w) as 

(3.91) 

where Szz(w) is the PSD of the input signal and Sed(w) is the cross-spectral density 
(CSD) between the input signal and the desired signal. 

Note that derivation of the optimal filter requires rather specific knowledge about 
the input and the desired response in the form of the autocorrelation Q of the input 
z(n)  and the cross-correlation 8 between the input z(n) and the desired response 
d(n). In practice, although the desired response d(n)  may not be known, it should be 
possible to obtain an estimate of its temporal or spectral statistics, which may be used 
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to estimate 0. Proper estimation of the statistical entities mentioned above requires 
a large number of samples of the corresponding signals. 

(Note: Haykin [77] allows all the entities involved to be complex. Vector trans- 
position is then Hermitian or complex-conjugate transposition H .  Products of two 
entities require one to be conjugated: for example, e2(n) is obtained as e(n )e* (n ) ;  
Equation 3.69 will have w; in place of wk, and so on. Furthermore, &(onw) = 0 
and &(wHO) = 2 0 .  The final Wiener-Hopf equation, however, simplifies to the 
same as above in Equation 3.86.) 

Let us now consider the problem of removing noise from a corrupted input signal. 
For this case, let the input z(n) contain a mixture of the desired (original) signal d(n) 
and noise ~ ( n ) ,  that is, 

z(n) = d(n) + v(n). (3.92) 

Using the vector notation as before, we have 

4.1 = d(n) + v(n), (3.93) 

where ~ ( n )  is the vector representation of the noise function ~ ( n ) .  The autocorrela- 
tion matrix of the input is given by 

(3.94) 

If we now assume that the noise process is statistically independent of the signal 
process, we have 

(3.95) 

Then, * = E[d(n)dT(n)] + E[v(n)~f(n)] = *d + *,,, (3.96) 
where +d and *,, are the M x M autocorrelation matrices of the signal and noise, 
respectively. Furthermore, 

* = ~ [ X ( . ) X T ( 4 1  = EIGW + v(n)Hd(n) + v(n)lTI. 

E[d(n)$(n)] = E[$(n)d(n)] = 0. 

0 = E[x(n)d(n)] = E[{d(n) + v(n)}d(n)]  = E[d(n)d(n)] = *id ,  (3.97) 

where *Id is an M x 1 autocorrelation vector of the desired signal. The optimal 
Wiener filter is then given by 

w, = (*d + *,,)-l*Id. (3.98) 

The frequency response of the Wiener filter may be obtained by modifying Equa- 
tion 3.91 by taking into account the spectral relationships 

s e z ( u )  = Sd(u)  + sq(u) (3.99) 

(3.100) 
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where &(w)  and S,(w) are the PSDs of the desired signal and the noise process, 
respectively. Note that designing the optimal filter requires knowledge of the PSDs 
of the desired signal and the noise process (or models thereof). 

Illustration of application: The upper trace in Figure 3.47 shows one ECG cycle 
extracted from the signal with noise in Figure 3.5. A piece-wise linear model of the 
desired version of the signal was created by concatenating linear segments to provide 
P, QRS, and T waves with amplitudes, durations, and intervals similar to those in the 
given noisy signal. The base-line of the model signal was set to zero. The noise-free 
model signal is shown in the middle trace of Figure 3.47. The log PSDs of the given 
noisy signal and the noise-free model, the latter being Sd(w) in Equation 3.101, are 
shown in the upper two plots of Figure 3.48. 

0.5 - 
$ 

100 200 300 400 500 600 700 

100 200 300 400 500 800 700 

-0.5 - 
100 200 300 400 500 800 700 

Time in ms 

Figure 3.47 From top to bottom: one cycle of the noisy ECG signal in Figure 3.5 (labeled as 
Original); a piece-wise linear model of the desired noise-free signal (Model); and the output 
of the Wiener filter (Restored). 

The T - P intervals between successive cardiac cycles in an ECG (the inter-beat 
intervals) may be taken to represent the iso-electric base-line. Then, any activity 
present in these intervals constitutes noise. Four T - P intervals were selected from 
the noisy signal in Figure 3.5 and their Fourier power spectra were averaged to derive 
the noise PSD S,(w) required in the Wiener filter (Equation 3.101). The estimated 
log PSD of the noise is shown in the third trace of Figure 3.48. Observe the relatively 
high levels of energy in the noise PSD above 100 Hz compared to the PSDs of 
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Figure 3.48 From top to bottom: log PSD (in d B )  of the given noisy signal (labeled as 
Original); log PSD of the noise-free model (Model); estimated log PSD of the noise process 
(Noise); log frequency response of the Wiener filter (Wiener); and log PSD of the filter output 
(Restored). 
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the original noisy signal and the model. Observe also the peaks in the original and 
noise PSDs near 180 H e ,  300 Hz, and 420 Hz, representing the third, fifth, and 
seventh harmonics of 60 Ha, respectively; the peak at 460 Hz is an aliased version 
of the ninth harmonic at 540 Hz. The 60 Hz component itself appears to have been 
suppressed by a notch filter in the signal acquisition system. (See Sections 3.2.4 
and 3.4.3 for more details.) 

The Wiener filter frequency response was derived as in Equation 3.101, and is 
shown in the fourth plot in Figure 3.48. Observe the low gain of the filter near 
180 H z ,  300 Hz, 420 Hz, and 460 Hz corresponding to the peaks in the noise 
spectrum. As indicated by Equation 3.101, the Wiener filter gain is inversely related 
to the noise PSD and directly related to the signal PSD. The result of application of 
the Wiener filter to the given signal is shown in the third trace of Figure 3.47. It is 
evident that almost all of the noise has been effectively removed by the filter. 

The most important point to observe here is that the filter was derived with models 
of the noise and signal processes (PSDs), which were obtained from the given signal 
itself in the present application. No cutoff frequency was required to be specified in 
designing the Wiener filter, whereas the Butterworth filter requires the specification 
of a cutoff frequency and filter order. 

Most signal acquisition systems should permit the measurement of at least the 
variance or power level of the noise present. A uniform (white) PSD model may 
then be easily derived. Models of the ideal signal and the noise processes may also 
be created using parametric Gaussian or Laplacian models either in the time domain 
(ACF) or directly in the frequency domain (PSD). 

3.6 ADAPTIVE FILTERS FOR REMOVAL OF INTERFERENCE 

Filters with fixed characteristics (tap weights or coefficients), as seen in the preceding 
sections, are suitable when the characteristics of the signal and noise (random or 
structured) are stationary and known. Design of frequency-domain filters requires 
detailed knowledge of the spectral contents of the signal and noise. Such filters are 
not applicable when the characteristics of the signal and/or noise vary with time, that 
is, when they are nonstationary. They are also not suitable when the spectral contents 
of the signal and the interference overlap significantly. 

Consider the situation when two ECG signals such as those of a fetus and the 
mother, or two vibration signals such as the VAG and the VMG, arrive at the recording 
site and get added in some proportion. The spectra of the signals in the mixture span 
the same or similar frequency ranges, and hence fixed filtering cannot separate them. 
In the case of the VAGNMG mixture, it is also possible for the spectra of the signals 
to vary from one point in time to another, due to changes in the characteristics of the 
cartilage surfaces causing the VAG signal, and due to the effect of variations in the 
recruitment of muscle fibers on the VMG signal. Such a situation calls for the use 
of a filter that can learn and adapt to the characteristics of the interference, estimate 
the interfering signal, and remove it from the mixture to obtain the desired signal. 
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This requires the filter to automatically adjust its impulse response (and hence its 
frequency response) as the characteristics of the signal and/or noise vary. 

Problem: Design an optimal filter to remove a nonstationary integerence from 
a nonstationary signal. An additional channel of information related to the inter- 
ference is available for  use. The filter should continuously adapt to the changing 
characteristics of the signal and interference. 

Solution: We need to address two different concerns in this problem: 

1. The filter should be adaptive; the tap-weight vector of the filter will then vary 
with time. The principles of the adaptive filter, also known as the adaptive 
noise canceler (ANC), will be explained in Section 3.6.1. 

2. The filter should be optimal. Two well-established methods for optimization 
of the adaptive filter will be presented in Sections 3.6.2 and 3.6.3. 

Illustrations of the application of the methods will be presented at the end of Sec- 
tions 3.6.2 and 3.6.3, as well as the end of the chapter, in Sections 3.9 and 3.10. 

3.6.1 The adaptive noise canceler 

Figure 3.49 shows a generic block diagram of an adaptive filter or ANC [62, 881. 
The “primary input” to the filter z(n)  is a mixture of the signal of interest v ( n )  and 
the “primary noise” m(n): 

.(n) = v(n)  + m(n). (3.1 02) 

z(n)  is the primary observed signal; it is desired that the interference or noise m(n) 
be estimated and removed from z(n) in order to obtain the signal of interest ~(n). It 
is assumed that v ( n )  and m(n) are uncorrelated. Adaptive filtering requires a second 
input, known as the “reference input” r(n), that is uncorrelated with the signal of 
interest v ( n )  but closely related to or correlated with the interference or noise m(n) 
in some manner that need not be known. The ANC filters or modifies the reference 
input ~ ( n )  to obtain a signal y(n) that is as close to the noise m(n) as possible. y(n) 
is then subtracted from the primary input to estimate the desired signal: 

G(n) = e(n) = z(n) - y(n). (3.1 03) 

Let us now analyze the function of the filter. Let us assume that the signal of 
interest v ( n ) ,  the primary noise rn(n), the reference input r(n), and the primary 
noise estimate y(n) are statistically stationary and have zero means. (Note: The 
requirement of stationarity will be removed later when the expectations are computed 
in moving windows.) We have already stated that v ( n )  is uncorrelated with m(n) 
and ~(n), and that r (n)  is correlated with m(n). The output of the ANC is 

= 44 -44 
= 4 n )  + m(.) - y(n), (3.104) 
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Reference input 

r (n )  
- Y h )  Adaptive FIRfilter - 

Figure 3.49 Block diagram of a generic adaptive noise canceler (ANC) or adaptive filter. 

where y(n) = k ( n )  is the estimate of the primary noise obtained at the output of 
the adaptive filter. By taking the square and expectation (statistical average) of both 
sides of Equation 3.104, we obtain 

E[e2(n)] = E[v’(n)] + E[{m(n) - y(n))’] + 2E[w(n){m(n) - ~ ( n ) } ] .  (3.105) 

Since v ( n )  is uncorrelated with m(n) and y(n) and all of them have zero means, we 
have 

EIv(n){m(n) - v(n)}l = E[v(n)lE[m(n) - v(n)l = 0. (3.106) 

Equation 3.105 can be rewritten as 

Ele2(4l  = Eb2(n)l + E[{m(n) - Y(4)21- (3.107) 

Note from Figure 3.49 that the output e(n) is used (fed back) to control the 
adaptive filter. In ANC applications, the objective is to obtain an output e(n) that is 
a least-squares fit to the desired signal ~ ( n ) .  This is achieved by feeding the output 
back to the adaptive filter and adjusting the filter to minimize the total system output 
power. The system output serves as the error signal for the adaptive process. 

The signal power E[v2(n)]  will be unaffected as the filter is adjusted to minimize 
E[ea (n)] ;  accordingly, the minimum output power is 

min ~ [ e ~ ( n ) ]  = ~ [ v ’ ( n ) ]  + min ~ [ { r n ( n )  - y(n)}’]. (3.108) 

As the filter is adjusted so that E[e2(n)] is minimized, E[{m(n) - ~ ( n ) } ~ ]  is also 
minimized. Thus the filter output y(n) is the MMSE estimate of the primary noise 
m(n). Moreover, when E[{m(n)  - y(n)}’] is minimized, E[{e(n) - ~ ( n ) } ’ ]  is also 
minimized, since from Equation 3.104 

e(n )  - w(n) = m(n) - y(n). (3.109) 

Adjusting or adapting the filter to minimize the total output power is, therefore, 
equivalent to causing the output e(n) to be the MMSE estimate of the signal of 
interest v(n)  for the given structure and adjustability of the adaptive filter and for the 
given reference input. 
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The output e ( n )  will contain the signal of interest v(n)  and some noise. From 
Equation 3.109, the output noise is given by e(n)  - v ( n )  = 6(n) - v(n)  = m(n) - 
y(n). Since minimizing E [ e 2 ( n ) ]  minimizes E[(m(n) - y ( r ~ ) ) ~ ] ,  minimizing the 
total output power minimizes the output noise powel: Since the signal component 
v ( n )  in the output remains unaffected, minimizing the total output power maximizes 
the output SNR. 

Note from Equation 3.107 that the output power is minimum when E [ e 2 ( n ) ]  = 
E[v2(n)]. When this condition is achieved, E[{m(n) - y(n)}'] = 0. We then have 
y(n) = m(n) and e(n) = v ( n ) ;  that is, the output is a perfect and noise-free estimate 
of the desired signal. 

Optimization of the filter may be performed by expressing the error in terms of 
the tap-weight vector and applying the procedure of choice. The output ~ ( n )  of the 
adaptive filter (see Figure 3.49) in response to its input r (n) is given by 

M- 1 

y(n) = wk " ( n - k ) ,  (3.1 10) 

where W k ,  k = 0,1 ,2 , .  . . , M - 1, are the tap weights, and M is the order of the 
filter, The estimation error e ( n )  or the output of the ANC system is 

k=O 

e ( n )  = z(n) - y(n). (3.1 11) 

For the sake of notational simplicity, let us define the tap-weight vector at time n 
as 

W(.) = ['Wo(12.),'Wl(n), * * * , W M - 1 W I T *  (3.1 12) 

Similarly, the tap-input vector at each time instant n may be defined as the M -  
dimensional vector 

r(n) = [ r (n) ,  r(n - l), . . . , r (n  - M + 1)]*. (3.1 13) 

Then, the estimation error e ( n )  given in Equation 3.1 11 may be rewritten as 

e ( n )  = z(n) - wT(n)r(n).  (3.1 14) 

It is worth noting that the derivations made above required no knowledge about 
the processes behind v(n) ,  m(n), and r (n )  or their inter-relationships, other than the 
assumptions of statistical independence between v(n)  and m(n) and some form of 
correlation between m(n) and r(n). The arguments can be extended to situations 
where the primary and reference inputs contain additive random noise processes that 
are mutually uncorrelated and also uncorrelated with ~ ( n ) ,  m(n), and r (n) .  The 
procedures may also be extended to cases where m(n) and r(n)  are deterministic 
or structured rather than stochastic, such as power-line interference or an ECG or a 
VMG signal [62].  

Several methods are available to maximize the output SNR; two such methods 
based on the least-mean-squares (LMS) and the recursive least-squares (RLS) ap- 
proaches are described in the following sections. 
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3.6.2 The least-mean-squares adaptive filter 

The purpose of adaptive filtering algorithms is to adjust the tap-weight vector to 
minimize the MSE. By squaring the expression for the estimation error e(n) given in 
Equation 3.1 14, we get 

ea(n) = P ( n )  - 2z(n)rT(n)w(n) + wT(n)r(n)rT(n)w(n). (3.1 15) 

The squared error is a second-order (quadratic) function of the tap-weight vector (and 
the inputs), and may be depicted as a concave hyper-paraboloidal (bowl-like) surface 
that is never negative. The aim of the filter optimization procedure would be to reach 
the bottom of the bowl-like function. Gradient-based methods may be used for this 
purpose. 

By taking the expected values of the entities in Equation 3.1 15 and taking the 
derivative with respect to the tap-weight vector, we may derive the Wiener-Hopf 
equation for the present application. The LMS algorithm takes a simpler approach 
by assuming the square of the instantaneous error as in Equation 3.1 15 to stand for 
an estimate of the MSE [62]. The LMS algorithm is based on the method of steepest 
descent, where the new tap-weight vector w(n+ 1) is given by the present tap-weight 
vector w(n) plus a correction proportional to the negative of the gradient V ( n )  of 
the squared error: 

w(n + 1) = w(n) - pV(n).  (3.1 16) 

The parameter ,u controls the stability and rate of convergence of the algorithm: the 
larger the value of p, the larger is the gradient of the noise that is introduced and the 
faster is the convergence of the algorithm, and vice-versa. 

The LMS algorithm approximates V ( n )  by the derivative of the squared emor in 
Equation 3.1 15 with respect to the tap-weight vector as 

V ( n )  = -2z(n)r(n) + 2(wT(n)r(n)}r(n) = -2e(n)r(n). (3.1 17) 

Using this estimate of the gradient in Equation 3.1 16, we get 

w(n + 1) = ~ ( n )  + 2p e(n) r(n). (3.118) 

This expression is known as the Widrow-Hoff LMS algorithm. 
The advantages of the LMS algorithm lie in its simplicity and ease of implemen- 

tation: although the method is based on the MSE and gradient-based optimization, 
the filter expression itself is free of differentiation, squaring, or averaging. It has 
been shown that the expected value of the tap-weight vector provided by the LMS 
algorithm converges to the optimal Wiener solution when the input vectors are uncor- 
related over time [89,62]. The procedure may be started with an arbitrary tap-weight 
vector; it will converge in the mean and remain stable as long as p is greater than zero 
but less than the reciprocal of the largest eigenvalue of the autocorrelation matrix of 
the reference input [62]. 

Illustration of application: Zhang et al. [63] used a two-stage adaptive LMS 
filter to cancel muscle-contraction interference from VAG signals. The first stage 
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was used to remove the measurement noise in the accelerometers and associated 
amplifiers, and the second stage was designed to cancel the muscle signal. 

Zhang et al. [63] also proposed a procedure for optimization of the step size p by 
using an RMS-error-based misadjustment factor and a time-varying estimate of the 
input signal power, among other entities. The LMS algorithm was implemented as 

w(n + 1) = ~ ( n )  + 2p(n) e(n)  r(n). (3.1 19) 

The step size p was treated as a variable, its value being determined dynamically as 

P 
p(n)  = (M + 1) @(n) (a, r(n) ,  q n  - 1)) ’ (3.120) 

with 0 c p < 1. A forgetting factor a was introduced in the adaptation process, with 
0 5 a << 1; this feature was expected to overcome problems caused by high levels 
of nonstationarity in the signal. Z2(n) is a time-varying estimate of the input signal 
power, computed as $(n) = a ~ ~ ( n )  + (1 - a)b2(n - 1). 

The filtered versions of the VAG signals recorded from the mid-patella and the 
tibia1 tuberosity positions, as shown in Figure 3.11 (traces (b) and (c), right-hand 
column), are shown in Figure 3.50. The muscle-contraction signal recorded at the 
distal rectus femoris position was used as the reference input (Figure 3.11, right-hand 
column, trace (a)). It is seen that the low-frequency muscle-contraction artifact has 
been successfully removed from the VAG signals (compare the second half of each 
signal in Figure 3.50 with the corresponding part in Figure 3.1 1). 

3.6.3 The recursive least-squares adaptive filter 

When the input process of an adaptive system is (quasi-) stationary, the best steady- 
state performance results from slow adaptation. However, when the input statistics 
are time-variant (nonstationary), the best performance is obtained by a compromise 
between fast adaptation (necessary to track variations in the input process) and slow 
adaptation (necessary to limit the noise in the adaptive process). The LMS adaptation 
algorithm is a simple and efficient approach for ANC; however, it is not appropriate 
for fast-varying signals due to its slow convergence, and due to the difficulty in 
selecting the correct value for the step size p. An alternative approach based on the 
exact minimization of the least-squares criterion is the RLS method [77, 901. The 
RLS algorithm has been widely used in real-time system identification and noise 
cancellation because of its fast convergence, which is about an order of magnitude 
higher than that of the LMS method. (The derivation of the RLS filter in this section 
has been adapted from Sesay [go] and Krishnan [88] with permission.) 

An important feature of the RLS algorithm is that it utilizes information contained 
in the input data, and extends it back to the instant of time when the algorithm was 
initiated [77]. Given the least-squares estimate of the tap-weight vector of the filter at 
time n - 1, the updated estimate of the vector at time n is computed upon the arrival 
of new data. 
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Figure 3.50 LMS-filtered versions of the VAG signals recorded from the mid-patella and 
the tibia1 tuberosity positions, as shown in Figure 3.1 1 (traces (b) and (c). right-hand column). 
The muscle-contraction signal recorded at the distal rectus femoris position was used as the 
reference input (Figure 3.11, right-hand column, trace (a)). The recording setup is shown in 
Figure 3.10. Reproduced with permission from Y.T B a n g ,  R.M. Rangayyan, C.B. Frank, and 
G.D. Bell, Adaptive cancellation of muscle-contraction interference from knee joint vibration 
signals, IEEE Transactions on Biomedical Engineering, 41(2): 181-191, 1994. OIEEE. 
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In the derivation of the RLS algorithm, the performance index or objectivefunction 
( ( n )  to be minimized in the sense of least squares is defined as 

n 

(3.121) 
i = l  

where 1 5 i 5 n is the observation interval, e ( i )  is the estimation error as defined in 
Equation 3.114, and A is a weighting factor (also known as theforgettingfactor) with 
0 < A 5 1. The values of An-i < 1 give more “weight” to the more recent error 
values. Such weighting is desired in the case of nonstationary data, where changes 
in the signal statistics make the inclusion of past data less appropriate. The inverse 
of (1 - A) is a measure of the memory of the algorithm. 

The Wiener-Hopf equation is the necessary and sufficient condition [77] for mini- 
mizing the performance index in the least-squares sense and for obtaining the optimal 
values of the tap weights, and may be derived in a manner similar to that presented 
in Section 3.5 for the Wiener filter. The normal equation to be solved in the RLS 
procedure is 

*(n)*(n) = @(?I), (3.122) 
where +(n) is the optimal tap-weight vector for which the performance index is at its 
minimum, * ( n )  is an M x M time-averaged (and weighted) autocorrelation matrix 
of the reference input r(i) defined as 

n 

* (n )  = C A ~ - ’  r(i) r*(i), (3.123) 

and Q(n)  is an M x 1 time-averaged (and weighted) cross-correlation matrix between 
the reference input r(i) and the primary input ~ ( i ) ,  defined as 

i= l  

n 

(3.124) 

The general scheme of the RLS filter is illustrated in Figure 3.51. 
Because of the difficulty in solving the normal equation for the optimal tap-weight 

vector, recursive techniques need to be considered. In order to obtain a recursive 
solution, we could isolate the term corresponding to i = n from the rest of the 
summation on the right-hand side of Equation 3.123, and obtain 

I 

r n-1  1 

According to the definition in Equation 3.123, the expression inside the square 
brackets on the right-hand side of Equation 3.125 equals the time-averaged and 
weighted autocorrelation matrix * ( n  - 1). Hence, Equation 3.125 can be rewritten 
as a recursive expression, given by 

* ( n )  = ~ ( n  - I) + r(n)rT(n). (3.126) 
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Figure 3.51 General structure of the adaptive RLS filter. 

Similarly, Equation 3.124 can be written as the recursive equation 

Q(n) = XQ(n - 1) + r(n)z(n). (3.127) 

To compute the least-squares estimate +(n) for the tap-weight vector in accor- 
dance with Equation 3.122, we have to determine the inverse of the correlation 
matrix *(n). In practice, such an operation is time-consuming (particularly if M is 
large). To reduce the computational requirements, a matrix inversion lemma known 
as the "ABCD lemma" could be used (a similar form of the lemma can be found in 
Haykin [77]). According to the ABCD lemma, given matrices A, B, C, and D, 

(A + BCD)-l = A-' - A-'B(DA-lB + C-')-lDA-l. (3.128) 

The matrices A, C, (A + BCD), and (DA-'B+C-l) are assumed tobeinvertible. 
With the correlation matrix * ( n )  assumed to be positive definite and therefore 
nonsingular, we may apply the matrix inversion lemma to Equation 3.126 by assigning 

A = X*(n- l), 
B = r(n), 
c = 1, 
D = rT(n). 

We then have 

*-l(n) = A-l*-l(n - 1) 

- ~ - l i ~ - l ( n  - l>r(n) [X-'rT(n)+-'(n - l)r(n) + I]-' 
x X-'rT(n)S-l(n - I). (3.129) 
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Since the expression inside the brackets of the above equation is a scalar, the equation 
can be rewritten as 

. (3.130) Xv2*-'(n - 1)r(n)rT(n)*-l(n - I) 
1 + X-lrT(n)*-l(n - 1)r(n) 

*-'(?I) = X-l*-l(n - 1) - 

For convenience of notation, let 

P(n)  = *-I(?+ (3.131) 

with P(0)  = ~ 5 ~ ~ 1 ,  where 6 is a small constant and I is the identity matrix. Further- 
more, let 

X-lP(n - l)r(n) 
1 + X-lrT(n)P(n - 1)r(n)' 

k(n)  = (3.132) 

k(n) is analogous to the Kulman gain vector in Kalman filter theory [77]. Equa- 
tion 3.130 may then be rewritten in a simpler form as 

P(n)  = X-lP(n - 1 )  - X-'k(n)rT(n)P(n - 1). (3.133) 

By multiplying both sides of Equation 3.132 by the denominator on its right-hand 
side, we get 

k(n) [1+ X-'rT(n)P(n - l)r(n)] = X-lP(n - l)r(n), (3.134) 

or, 
k(n) = [X-'P(n - 1) - X-lk(n)rT(n)P(n - l)] r(n). (3.135) 

Comparing the expression inside the brackets on the right-hand side of the above 
equation with Equation 3.133, we have 

k(n) = P(n)r(n).  (3.136) 

P(n)  and k(n) have the dimensions M x M and M x 1, respectively. 

least-squares estimate +(n) of the tap-weight vector can be obtained as 
By using Equations 3.122, 3.127, and 3.13 1, a recursive equation for updating the 

* (n)  = *--1(n)O(n) 

= P(n)O(n)  
= XP(n)O(n - 1) + P(n)r(n)z(n).  (3.137) 

Substituting Equation 3.133 for P(n)  in the first term of Equation 3.137, we get 

* (n)  = P(n  - l)O(n - 1) - k(n)rT(n)P(n - l)O(n - 1 )  

* - ' (n - l)O(n - 1) - k(n)rT(n)+-'(n - l)O(n - 1) 

= dt(n - 1) - k(n)rT(n)*(n - 1) + P(n)r(n)z(n). 

+ P(n)r(n)z(n) 

+ P ( M 4 4 4  

= 

(3.138) 

Next Page
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Finally, from Equation 3.136, using the fact that P(n)r(n) equals the gain vector 
k(n), the above equation can be rewritten as 

+(n) = +(n - 1) - k(n) [z(n) - rT(n)+(n - l)] 
= +(n - 1) + k(n)a(n), (3.139) 

where +(O) = 0, and 

a(n) = z(n) - rT(n)+(n - I) 
= s(n) - +‘(n - l)r(n). (3.140) 

The quantity a(.) is often referred to as the a priori error, reflecting the fact that 
it is the error obtained using the “old” filter (that is, the filter before being updated 
with the new data at the nth time instant). It is evident that in the case of ANC 
applications, a(n) will be the estimated signal of interest C(n) after the filter has 
converged, that is, 

a ( n )  = ~ ( n )  = z(n) - +‘(n - l)r(n). (3.141) 

Furthermore, after convergence, the primary noise estimate, that is, the output of 
the adaptive filter y(n), can be written as 

y(n) = f i (n)  = +‘(n - l)r(n). (3.142) 

By substituting Equations 3.104 and 3.142 in Equation 3.141, we get 

6(n) = v ( n )  + m(n) - %(n) 
= v ( n )  + m(n) - ~ ~ ( n  - l)r(n) 
= z(n> - +‘(n - l)r(n). (3.143) 

Equation 3.139 gives a recursive relationship for obtaining the optimal values of 
the tap weights, which, in turn, provide the least-squares estimate C(n) of the signal 
of interest v ( n )  as in Equation 3.143. 

Illustration of application: Figure 3.52 shows plots of the VAG signal of a normal 
subject (trace (a)) and a simultaneously recorded channel of muscle-contraction 
interference (labeled as MCI, trace (b)). The characteristics of the vibration signals 
in this example are different from those of the signals in Figure 3.1 1, due to a different 
recording protocol in terms of speed and range of swinging motion of the leg 1881. The 
results of adaptive filtering of the VAG signal with the muscle-contraction interference 
channel as the reference are also shown in Figure 3.52: trace (c) shows the result of 
LMS filtering, and trace (d) shows that of RLS filtering. A single-stage LMS filter 
with variable step size p(n)  as in Equation 3.120 was used; no attempt was made 
to remove instrumentation noise. The LMS filter used M = 7, p = 0.05, and a 
forgetting factor a = 0.98; other values resulted in poor results. The RLS filter used 
M = 7 and A = 0.98. 

Previous Page
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Figure 3.52 (a) VAG signal of a normal subject. (b) Muscle-contraction interference (MCI). 
(c) Result of LMS filtering. (d) Result of RLS filtering. The recording setup is shown in 
Figure 3.10. 
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The relatively low-frequency muscle-contraction interference has been removed 
better by the RLS filter than by the LMS filter; the latter failed to track the nonsta- 
tionarities in the interference, and has caused additional artifacts in the result. The 
spectrograms of the primary, reference, and RLS-filtered signals are shown in Fig- 
ures 3.53,3.54, and 3.55, respectively. (The logarithmic scale is used to display better 
the minor differences between the spectrograms.) It is seen that the predominantly 
low-frequency artifact, indicated by the high energy levels at low frequencies for the 
entire duration in the spectrograms in Figures 3.53 and 3.54, has been removed by 
the RLS filter. 

Figure 3.53 Spectrogram of the VAG signal in Figure 3.52 (a). A Hanning window of length 
256 samples (128 me) was used; an overlap of 32 samples (16 me) was allowed between 
adjacent segments. 

3.7 SELECTING AN APPROPRIATE FILTER 

We have so far examined five approaches to remove noise and interference: (1) syn- 
chronized or ensemble averaging of multiple realizations or copies of a signal, (2) MA 
filtering, (3) frequency-domain filtering, (4) optimal (Wiener) filtering, and ( 5 )  adap- 
tive filtering. The first two approaches work directly with the signal in the time 
domain. Frequency-domain (fixed) filtering is performed on the spectrum of the 
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Figure 3.54 Spectrogram of the muscle-contraction interference signal in Figure 3.52 (b). A 
Hanning window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 ms) 
was allowed between adjacent segments. 
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Figure 3.55 Spectrogram of the RLS-filtered VAG signal in Figure 3.52 (d). A Hanning 
window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 me) was 
allowed between adjacent segments. 
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signal, Note that the impulse response of a filter designed in the frequency domain 
could be used to implement the filter in the time domain as an IIR or FIR filter. 
Furthermore, time-domain filters may be analyzed in the frequency domain via their 
transfer function or frequency response to understand better their characteristics and 
effects on the input signal. The Wiener filter may be implemented either in the time 
domain as a transversal filter or in the frequency domain. Adaptive filters work 
directly on the signal in the time domain, but dynamically alter their characteristics 
in response to changes in the interference; their frequency response thus varies from 
one point in time to another. 

What are the guiding principles to determine which of these filters is the best for 
a given application? The following points should assist in making this decision. 

Synchronized or ensemble averaging is possible when: 

0 The signal is statistically stationary, (quasi-)periodic, or cyclo-stationary. 

0 Multiple realizations or copies of the signal of interest are available. 

0 A trigger point or time marker is available, or can be derived to extract and 

0 The noise is a stationary random process that is uncorrelated with the signal 

align the copies of the signal. 

and has a zero mean (or a known mean). 

Temporal MA filtering is suitable when: 

0 The signal is statistically stationary at least over the duration of the moving 

0 The noise is a zero-mean random process that is stationary at least over the 

0 The signal is a relatively slow (low-frequency) phenomenon. 

0 Fast, on-line, real-time filtering is desired. 

window. 

duration of the moving window and is independent of the signal. 

Frequency-domain fixed filtering is applicable when: 

0 The signal is statistically stationary. 

0 The noise is a stationary random process that is statistically independent of the 

0 The signal spectrum is limited in bandwidth compared to that of the noise (or 

0 Loss of information in the spectral band removed by the filter does not seriously 

0 On-line, real-time filtering is not required (if implemented in the spectral 

signal. 

vice-versa). 

affect the signal. 

domain via the Fourier transform). 
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The optimal Wiener filter can be designed i f  

0 The signal is statistically stationary. 

0 The noise is a stationary random process that is statistically independent of the 
signal. 

0 Specific details (or models) are available regarding the ACFs or the PSDs of 
the signal and noise. 

Adaptive filtering is called for and possible when: 

0 The noise or interference is not stationary and not necessarily arandom process. 

0 The noise is uncorrelated with the signal. 

0 No information is available about the spectral characteristics of the signal and 
noise, which may also overlap significantly. 

0 A second source or recording site is available to obtain a reference signal that 
is strongly correlated with the noise but uncorrelated with the signal. 

It is worth noting that an adaptive filter acts as a fixed filter when the signal and 
noise are stationary. An adaptive filter can also act as a notch or a comb filter when 
the interference is periodic. It should be noted that all of the filters mentioned above 
are applicable only when the noise is additive. Techniques such as homomorphic 
filtering (see Section 4.8) may be used as preprocessing steps if signals combined 
with operations other than addition need to be separated. 

3.8 APPLICATION: REMOVAL OF ARTIFACTS IN THE ECC 

Problem: Figure 3.56 (top trace) shows an ECG signal with a combination of base- 
line drift, high-frequency noise, and power-line interference. Designjilters to remove 
the artifacts. 

Solution: The power spectrum of the given signal is shown in the top-most plot 
in Figure 3.57. Observe the relatively high amount of spectral energy present near 
DC, from 100 Ha to 500 Hz, and at the power-line frequency and its harmonics 
located at 60 Hz, 180 Hz, 300 Hz, and 420 Hz. The fundamental component at 
60 Ha is lower than the third, fifth, and seventh harmonics due perhaps to a notch 
filter included in the signal acquisition system, which has not been effective. 

A Butterworth lowpass filter with order N = 8 and fc = 70 H z  (see Section 3.4.1 
and Equation 3.61 ), a Butterworth highpass filter of order N = 8 and fc = 2 Ha (see 
Section 3.4.2 and Equation 3.64), and a comb filter with zeros at 60 Hz, 180 Hz, 
300 Ha, and 420 H z  (see Section 3.4.3 and Equation 3.67) were applied in series 
to the signal. The signal spectrum displays the presence of further harmonics (ninth 
and eleventh) of the power-line interference at 540 Hz and 660 HZ that have been 
aliased to the peaks apparent at 460 HZ and 340 Hz, respectively. However, the 
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comb filter in the present example was not designed to remove these components. 
The lowpass and highpass filters were applied in the frequency domain to the Fourier 
transform of the signal using the form indicated by Equations 3.61 and 3.64. The 
comb filter was applied in the time domain using the MATLAB filter command and 
the coefficients in Equation 3.67. 

The combined frequency response of the filters is shown in the middle plot in 
Figure 3.57. The spectrum of the ECG signal after the application of all three filters 
is shown in the bottom plot is Figure 3.57. The filtered signal spectrum has no 
appreciable energy beyond about 100 Hz, and displays significant attenuation at 
60 Hz. 

The outputs after the lowpass filter, the highpass filter, and the comb filter are shown 
in Figure 3.56. Observe that the base-line drift is present in the output of the lowpass 
filter, and that the power-line interference is present in the outputs of the lowpass 
and highpass filters. The final trace is free of all three types of interference. Note, 
however, that the highpass filter has introduced a noticeable distortion (undershoot) 
in the P and T waves. 

After highpass filter 

After comb filler 

Figure 3.56 ECG signal with a combination of artifacts and its filtered versions. The duration 
of the signal is 10.7 8.  
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Figure 3.57 Top and bottom plots: Power spectra of the ECG signals in the top and bottom 
traces of Figure 3.56. Middle plot: Frequency response of the combination of lowpass, 
highpass, and comb filters. The cutoff frequency of the highpass filter is 2 Hz; the highpass 
portion of the frequency response is not clearly seen in the plot. 
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3.9 APPLICATION: ADAPTIVE CANCELLATION OF THE MATERNAL 
ECG TO OBTAIN THE FETAL ECG 

Problem: Propose an adaptive noise cancellation$lter to remove the maternal ECG 
signal from the abdominal-lead ECG shown in Figure 3.9 to obtain the fetal ECG. 
Chest-lead ECG signals of the mother may be used for reference. 

Solution: Widrow et al. [62] describe a multiple-reference ANC for removal of 
the maternal ECG in order to obtain the fetal ECG. The combined ECG was obtained 
from a single abdominal lead, whereas the maternal ECG was obtained via four chest 
leads. The model was designed to permit the treatment of not only multiple sources 
of interference, but also of components of the desired signal present in the reference 
inputs, and further to consider the presence of uncorrelated noise components in the 
reference inputs. It should be noted that the maternal cardiac vector is projected onto 
the axes of different ECG leads in different ways, and hence the characteristics of the 
maternal ECG in the abdominal lead would be different from those of the chest-lead 
ECG signals used as reference inputs. 

Each filter channel used by Widrow et al. [62] had 32 taps and a delay of 129 ms. 
The signals were pre-filtered to the bandwidth 3 - 35 Hz and a sampling rate of 
256 Hz was used. The optimal Wiener filter (see Section 3.5) included transfer 
functions and cross-spectral vectors between the input source and each reference 
input. Further extension of the method to more general multiple-source, multiple- 
reference noise cancelling problems was also discussed by Widrow et al. 

The result of cancellation of the maternal ECG from the abdominal lead ECG 
signal in Figure 3.9 is shown in Figure 3.58. Comparing the two figures, it is seen 
that the filter output has successfully extracted the fetal ECG and suppressed the 
maternal ECG. See Widrow et al. [62] for details; see also Ferrara and Widrow [91]. 

Figure 3.58 Result of adaptive cancellation of the maternal chest ECG from the abdominal 
ECG in Figure 3.9. The QRS complexes extracted correspond to the fetal ECG. Reproduced 
with permission from B. Widrow, J.R. Glover, Jr., J.M. McCool, J. Kaunitz, C.S. Williams, 
R.H. Hearn, J.R. Zeidler, E. Dong, Jr., R.C. Goodlin, Adaptive noise cancelling: Principles 
and applications, Proceedings of the IEEE, 63( 12): 1692-1716,1975. OIEEE. 
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3.1 0 APPLICATION: ADAPTIVE CANCELLATION OF 
MUSCLE-CONTRACTION INTERFERENCE IN KNEEJOINT 
VIBRATION SIGNALS 

Problem: Study the applicability of adaptive noise cancellation filters to remove 
the muscle-contraction inte~erence caused by the rectus femoris in the VAG signal 
recorded at the patella. 

Solution: Rangayyan et al. [92] conducted a study on the impact of muscle- 
contraction interference cancellation on modeling and classification of VAG signals 
and further classification of the filtered signals as normal or abnormal. Both the LMS 
(see Section 3.6.2) and the RLS (see Section 3.6.3) methods were investigated, and 
the RLS method was chosen for its more efficient tracking of nonstationarities in the 
input and reference signals. 

Figure 3.59 shows plots of the VAG signal of a subject with chondromalacia patella 
of grade I1 (trace (a)) and a simultaneously recorded channel of muscle-contraction 
interference (labeled as MCI, trace (b)). The results of adaptive filtering of the VAG 
signal with the muscle-contraction interference channel as the reference are also 
shown in Figure 3.59: trace (c) shows the result of LMS filtering, and trace (d) shows 
that of RLS filtering. A single-stage LMS filter with variable step size p(n)  as in 
Equation 3.120 was used, with M = 7, p = 0.05, and a = 0.98. The RLS filter 
used M = 7 and X = 0.98. 

As in the earlier example in Figure 3.52, it is seen that the muscle-contraction 
interference has been removed by the RLS filter; however, the LMS filter failed to 
perform well, due to its limited capabilities in tracking the nonstationarities in the 
interference. The spectrograms of the primary, reference, and RLS-filtered signals 
are shown in Figures 3.60,3.61, and 3.62, respectively. (The logarithmic scale is used 
to display better the minor differences between the spectrograms.) It is seen that the 
frequency components of the muscle-contraction interference have been suppressed 
by the RLS filter. 

The primary (original) and filtered VAG signals of 53 subjects were adaptively 
segmented and modeled in the study of Rangayyan et al. [92] (see Chapter 8). 
The segment boundaries were observed to be markedly different for the primary 
and the filtered VAG signals. Parameters extracted from the filtered VAG signals 
were expected to provide higher discriminant power in pattern classification when 
compared to the same parameters of the unfiltered or primary VAG signals. However, 
classification experiments indicated otherwise: the filtered signals gave a lower 
classification accuracy by almost 10%. It was reasoned that after removal of the 
predominantly low-frequency muscle-contraction interference, the transient VAG 
signals of clinical interest were not modeled well by the prediction-based methods. 
It was concluded that the adaptive filtering procedure used was not an appropriate 
preprocessing step before signal modeling for pattern classification. However, it was 
noted that cancellation of muscle-contraction interference may be a desirable step 
before spectral analysis of VAG signals. 
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Figure 3.59 Top to bottom: (a) VAG signal of a subject with chondromalacia patella of grade 
11; (b) Muscle-contraction interference (MCI); (c) Result of LMS filtering; and (d) Result of 
RLS filtering. The recording setup in shown in Figure 3.10. 
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Figure 3.60 Spectrogram of the original VAG signal in Figure 3.59 (a). A Hanning window 
of length 256 samples (128 ms) was used; an overlap of 32 samples (16 ms) was allowed 
between adjacent segments. 
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Figure 3.61 Spectrogram of the muscle-contraction interference signal in Figure 3.59 (b). A 
Hanning window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 me) 
was allowed between adjacent segments. 
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Figure 3.62 Spectrogram of the RLS-filtered VAG signal in Figure 3.59 (d). A Hanning 
window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 ms) was 
allowed between adjacent segments. 
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3.11 REMARKS 

We have investigated problems posed by artifact, noise, and interference of vari- 
ous forms in the acquisition and analysis of several biomedical signals. Random 
noise, structured interference, and physiological interference have been identified 
and analyzed separately. Attention has been drawn to the different characteristics of 
various types of noise, such as frequency content and nonstationarity. Fixed, optimal, 
and adaptive filters were developed in the time and frequency domains for several 
applications, and guidelines were drawn to assist in choosing the appropriate filter 
for various types of artifacts. Advanced methods for adaptive denoising based on 
wavelet and time-frequency decomposition methods have not been discussed in this 
chapter, but are described by Krishnan and Rangayyan [93] for filtering VAG signals. 
Another category of filters that has not been considered in this chapter is that of 
morphological filters [94, 951, which include nonlinear statistics-based operations 
and could be formulated under certain conditions to include linear filter operations 
as well. 

It is important to observe that each practical problem needs to be studied carefully 
to determine the type and characteristics of the artifact present; the nature of the 
signal and its relationship to, or interaction with, the artifact; and the effect of the 
filter being considered on the desired signal or features computed from the filtered 
result. Different filters may be suitable for different subsequent steps of signal 
analysis. It is unlikely that a single filter will address all of the problems and the 
requirements in a wide variety of practical situations and applications. Regardless of 
one’s expertise in filters, it should be remembered that prevention is better than cure: 
most filters, while removing an artifact, may introduce another. Attempts should be 
made at the outset to acquire artifact-free signals to the extent possible. 

3.12 STUDY QUESTIONS AND PROBLEMS 

(Note: Some of the questions deal with the fundamentals of signals and systems, and may 
require background preparation with other sources such as Lathi (11 or Oppenheim et al. [2]. 
Such problems are included for the sake of recollection of the related concepts.) 

1. What are the potential sources of instrumentation and physiological artifacts in recording 
the PCG signal? Propose non-electronic methods to prevent or suppress the latter type 
of artifacts. 

2. List four potential sources of instrumentation and physiological artifacts in recording 
the ECG signal. Describe methods to prevent or remove each artifact. Identify the 
possible undesired effects of your procedures on the ECG signal. 

3. Identify at least three potential sources of physiological artifacts in recording the EEG 
signal. 

4. In recording the EEG in a clinical laboratory, some channels were found to contain the 
ECG as an artifact. Will simple lowpass or bandpass filtering help in removing the 
artifact? Why (not)? Propose a scheme to remove the artifact. 
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5. A biomedical signal is bandpass filtered to the range 0 - 150 Hz. Assume the filter 
to be ideal, and assume any distribution of spectral energy over the bandwidth of the 
signal. 
(a) What is the minimum frequency at which the signal should be sampled in order to 
avoid aliasing errors? 
(b) A researcher samples the signal at 500 Hz. Draw a schematic representation of the 
spectrum of the sampled signal. 
(c) Another researcher samples the signal at 200 Hz. Draw a schematic representation 
of the spectrum of the sampled signal. Explain the differences between case (b) and 
case (c). 

6. Distinguish between ensemble averages and temporal (time) averages. Identify appli- 
cations of first-order and second-order averages of both types in EEG analysis. 

7. Explain how one may apply ensemble averaging and temporal (time) averaging pro- 
cedures to process ECG signals. Identify applications of first-order and second-order 
averages of both types in ECG analysis. 

(a) ECG signals, 
(b) event-related (or evoked) potentials, 
(c) heart sound (PCG) signals, 
(d) EMG signals. 
In each case, explain 
(i) how you will obtain the information required for synchronization of the signals 
epochs or episodes; 
(ii) sources of artifacts and how you will deal with them; 
(iii) limitations and practical difficulties; and 
(iv) potential for success of the method. 

nent waves. How is the waveform affected by passage through 
(a) a lowpass filter with a cutoff frequency of 40 Hz? 
(b) a highpass filter with a cutoff frequency of 5 Hz? 
Draw schematic representations of the expected outputs and explain their characteristics. 

8. Explain how you would apply synchronized averaging to remove noise in 

9. Draw a typical ECG waveform over one cardiac cycle indicating the important compo- 

10. What is the z-transform of a signal whose samples are given in the series 
{4,3,2,1,0, - 1 , O ,  1, O}? 
(The first sample represents zero time in all the signal sample arrays given in the 
problems, unless stated otherwise.) 

(a) Draw the unit circle in the complex z-plane and identify the frequencies correspond- 
ing to the points z = (1 + j O ) ,  z = (0 + jl), z = (-1 + j O ) ,  x = (0 - jl), and the 
point z = (1 + j 0 )  again as approached in the counter-clockwise direction. 
(b) What are the frequencies corresponding to these same points if the sampling rate is 
500 Hz? 

12. What is the transfer function of a linear shift-invariant system whose impulse response 
is given by the series {2,1,0,0, - l , O ,  1,0} for n = 0,1,2,. . . ,7.? 

11. A digital filter is used to process a signal at a sampling rate of 2,000 Hz. 
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13. The impulse response of a digital filter is (1, -2 , l ) .  What will be the response of the 
filter to the unit step? 

14. The impulse response of a filter is (3, -2,2}. What will be the response of the filter to 
the input (6,4,2, l}? 

15. The transfer function of a filter is H ( z )  = z-' - 3z-' + 2z-4 - I-'. What is the 
difference equation relating the output to the input? What is the impulse response of 
the filter? 

16. The impulse response of a filter is given by the series of values 
{3,2,1,0, -1,O, 0 , l ) .  What is its transfer function? 

17. The impulse response of a filter is specified by the series of sample values {3,1, -1). 
(a) What will be the response of the filter to the input whose sample values are 

(b) Is the filter response obtained by linear convolution or circular convolution of the 
input with the impulse response? 
(c) What will be the response with the type of convolution other than the one you 
indicated as the answer to the question above? 
(d) How would you implement convolution of the two signals listed above using the 
FFT? Which type of convolution will this procedure provide? How would you get the 
other type of convolution for the signals in this problem via the FFT-based procedure? 

18. A biomedical signal is expected to be band-limited to 100 Hz, with significant com- 
ponents of interest up to 80 Ha. However, the signal is contaminated with a periodic 
artifact with a fundamental frequency of 60 Ht and significant third and fifth harmonics. 
A researcher samples the signal at 200 Ha without pre-filtering the signal. 
Draw a schematic representation of the spectrum of the signal and indicate the artifact 
components. Label the frequency axis clearly in Hz. 
What kind of a filter would you recommend to remove the artifact? 

60 Ht interference. 
(a) Design a notch filter with two zeros to remove the interference. 
(b) What is the effect of the filter if a signal sampled at 100 H z  is applied as the input? 

20. 'Avo filters with transfer functions H1(z)  = ;(1+ I-' + z-')  and H'(z) = 1 - z-l 
are cascaded. 
(a) What is the transfer function of the complete system? 
(b) What is its impulse response? 
(c) What is its gain at DC and at the folding frequency (that is, f,/2)? 

21. A filter has the transfer function H ( z )  = (1 + 22-' + z-')/(l - t-'). 
(a) Write the difference equation relating the output to the input. 
(b) Draw the signal-flow diagram of a realization of the filter. 
(c) Draw its pole-zero diagram. 

22. A digital filter has zeros at 0.5 f j 0 .5  and poles at -0.6 f j0.3.  
(a) Derive the transfer function of the filter. 
(b) Derive the time-domain difference equation (input - output relationship) of the filter. 

(4,4,2, I)? 

19. A biomedical signal sampled at 500 Hz was found to have a significant amount of 
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(c) If the filter is used at a sampling frequency of 1,000 Hz, what are the frequencies 
at which the gain of the filter is maximum and minimum? 

23. W o  filters with transfer functions HI ( z )  = & (1 - e-') and H' ( z )  = -& are 
cascaded. 
(a) What is the transfer function of the complete system? 
(b) Draw its pole-zero diagram. 
(c) Write the difference equation relating the output to the input. 
(d) Draw the signal-flow diagram of a realization of the filter. 
(e) Compute the first six values of the impulse response of the filter. 
(f) The filter is used to process a signal sampled at 1,000 He. What is its gain at 
0,250, and 500 He? 

24. A filter is described by the difference equation p(n) = p(n - 1) + i z ( n )  - i z ( n  - 4). 
(a) What is its transfer function? 
(b) Draw the signal-flow diagram of a realization of the filter. 
(c) Draw its pole-zero diagram. 

25. Under what conditions will synchronized averaging fail to reduce noise? 
26. A signal sampled at the rate of 100 He has the samples (0, 10, 0, -5,O) in mV. The 

signal is passed through a filter described by the transfer function H ( z )  = (1 - z- ' ) .  
What will be the output sequence? Plot the output and indicate the amplitude and time 
scales in detail with appropriate units. 

27. A signal sampled at the rate of 100 Hz has the samples (0, 10, 0, -5,O) in mV. It 
is supposed to be processed by a differentiator with the difference equation ~ ( n )  = 
&[z(n) - z(n - l)] and then squared. By mistake the squaring operation is performed 
before the differentiation. What will be the output sequence? Plot the outputs for 
both cases and indicate the amplitude and time scales in detail with appropriate units. 
Explain the differences between the two results. 

28. A certain signal analysis technique requires the following operations in order: (a) dif- 
ferentiation, (b) squaring, and (c) lowpass filtering with a filter H(w) .  Considering a 
generic signal z(t )  as the input, write the time-domain and frequency-domain expres- 
sions for the output of each stage. 
Will changing the order of the operations change the final result? Why (not)? 

29. A signal sampled at the rate of 100 H e  has the samples (0, 10, 0, -5,O) in mV. The 
signal is processed by a differentiator with the difference equation p(n) = +[z(n)  - 
z(n - l)], and then filtered with a 4-point moving-average filter. 
(a) Derive the transfer function and frequency response of each filter and the combined 
system. 
(b) Derive the values of the signal samples at each stage. 
(c) Does it matter which filter is placed first? Why (not)? 
(d) Plot the output and indicate the amplitude and time scales in detail with appropriate 
units. 

30. Distinguish between ensemble averages and temporal (time) averages. 
Identify potential applications of first-order and second-order averages of both types in 
heart sound (PCG) analysis. Explain how you would obtain a trigger for synchroniza- 
tion. 
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3 1. Is the heart sound signal (PCG) a stationary signal or not? Provide your answer in the 
context of one full cardiac cycle and give reasons. 
If you say that the PCG signal is nonstationary, identify parts (segments) that could 
possibly be stationary, considering the possibility of murmurs in both systole and 
diastole. 

32. A signal z( t )  is transmitted through a channel. The received signal ~ ( t )  is a scaled, 
shifted, and noisy version of z(t )  given as ~ ( t )  = az(t - t o )  + q( t )  where a is a scale 
factor, t o  is the time delay, and q( t )  is noise. Assume that the noise process has zero 
mean and is statistically independent of the signal process, and that all processes are 
stationary. 
Derive expressions for the PSD of ~ ( t )  in terms of the PSDs of z and 9. 

33. A signal z(n) that is observed in an experiment is modeled as a noisy version of a desired 
signal d(n) as ~ ( n )  = d(n) + q(n). The noise process q is a zero-mean, unit-variance 
random process with uncorrelated samples (“white” noise, with ACF &(T) = b ( ~ ) )  
that is statistically independent of the signal process d. The ACF qh(~) of d is given 
by the sequence {l.O, 0.6,0.2}, for T = 0,1,2, respectively. 
Prepare the Wiener-Hopf equation and derive the coefficients of the optimal Wiener 
filter. 

3.13 LABORATORY EXERCISES AND PROJECTS 

Note; Data files related to the exercises are available at the site 
ftp://ftp.ieee.org/uploads/press/rangay yad 

1, The data file ecg2x60.dat contains an ECG signal, sampled at 200 Ht, with a significant 
amount of 60 Hz power-line artifact. (See also the file ecg2x60.m.) 
(a) Design a notch filter with two zeros to remove the artifact and implement it in 
MATLAB. 
(b) Add two poles at the same frequencies as those of the zeros, but with a radius that 
is less than unity. Study the effect of the poles on the output of the filter as their radius 
is varied between 0.8 and 0.99, 

2. A noisy ECG signal is provided in the file ecg-hfn.dat. (See also the file ecghfn.m.) 
The sampling rate of this signal is 1,000 HI. 
Develop a MATLAB program to perform synchronized averaging as described in Sec- 
tion 3.3.1. Select a QRS complex from the signal for use as the template and use a 
suitable threshold on the cross-correlation function in Equation 3.18 for beat detection, 
Plot the resulting averaged QRS complex. Ensure that the averaged result covers one 
full cardiac cycle. Plot a sample ECG cycle from the noisy signal for comparison. 
Select the QRS complex from a different beat for use as the template and repeat the 
experiment. Observe the results when the threshold on the cross-correlation function is 
low (say, 0.4) or high (say, 0.95) and comment. 

3. Filter the noisy ECG signal in the file ecg_hfn.dat (See also the file ecghfn.m; f. = 
1,000 Ha.) using four different Buttetworth lowpass filters (individually) realized 
through MATLAB with the following characteristics: 
(a) Order 2, cutoff frequency 10 Ht; 
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(b) Order 8, cutoff frequency 20 Hz; 
(c) Order 8, cutoff frequency 40 Hz. 
(d) Order 8, cutoff frequency 70 Hz. 
Use “help butter” and “help filter” in MATLAB to get details about the Butterworth 
filter. 
Compare the results obtained using each of the four Butterworth filters (individually) 
with those obtained by synchronized averaging, and comment upon the improvements 
or distortions in the outputs. Relate your discussions to specific characteristics observed 
in plots of the signals. 

4. The ECG signal in the file ecg-lfn.dat has a wandering base-line (low-frequency artifact). 
(See also the file ecg-1fn.m.) Filter the signal with the derivative-based filters described 
in Section 3.3.3 and study the results. Study the effect of variation of the position of 
the pole in the filter in Equation 3.47 on the signal. 

5. Filter the signal in the file ecg-lfn.dat using Butterworth highpass filters with orders 
2 - 8 and cutoff frequencies 0.5 - 5 Hz. (See also the file ecg-1fn.m.) Study the efficacy 
of the filters in removing the base-line artifact and the effect on the ECG waveform 
itself. Determine the best compromise acceptable. 

6. Design a Wiener filter to remove the artifacts in the ECG signal in the file ecg-hfn.dat, 
(See also the file ecghfnm.) The equation of the desired filter is given in Equa- 
tion 3.101. The required model PSDs may be obtained as follows: 
Create a piece-wise linear model of the desired version of the signal by concatenating 
linear segments to provide P, QRS, and T waves with amplitudes, durations, and intervals 
similar to those in the given noisy ECG signal. Compute the PSD of the model signal. 
Select a few segments from the given ECG signal that are expected to be iso-electric 
(for example, the T - P intervals). Compute their PSDs and obtain their average. The 
selected noise segments should have zero mean or have the mean subtracted out. 
Compare the results of the Wiener filter with those obtained by synchronized averaging 
and lowpass filtering. 



4 
Event Detection 

Biomedical signals carry signatures of physiological events. The part of a signal 
related to a specific event of interest is often referred to as an epoch. Analysis 
of a signal for monitoring or diagnosis requires the identification of epochs and 
investigation of the corresponding events. Once an event has been identified, the 
corresponding waveform may be segmented and analyzed in terms of its amplitude, 
waveshape (morphology), time duration, intervals between events, energy distribu- 
tion, frequency content, and so on. Event detection is thus an important step in 
biomedical signal analysis. 

4.1 PROBLEM STATEMENT 

A generic problem statement applicable to the theme of this chapter may be formu- 
lated as follows: 

Given a biomedical signal, identify discrete signal epochs and correlate them 
with events in the related physiological process. 

In the sections to follow, we shall first study a few examples of epochs in different 
biomedical signals, with the aim of understanding the nature of the related physio- 
logical events. Such an understanding will help in the subsequent development of 
signal processing techniques to emphasize, detect, and analyze epochs. 

177 
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4.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

The following sections provide illustrations of several events in biomedical signals. 
The aim of the illustrations is to develop an appreciation of the nature of signal 
events. A good understanding of signal events will help in designing appropriate 
signal processing techniques for their detection. 

4.2.1 The P, QRS, and T waves In the ECG 

As we have already observed in Section 1.2.4, a cardiac cycle is reflected in a period 
of the repetitive ECG signal as the series of waves labeled as P, QRS, and T. If we 
view the cardiac cycle as a series of events, we have the following epochs in an ECG 
waveform: 

0 The P wave: Contraction of the atria is triggered by the SA-node impulse. The 
atria do not possess any specialized conduction nerves as the ventricles do; as 
such, contraction of the atrial muscles takes place in a slow squeezing manner, 
with the excitation stimulus being propagated by the muscle cells themselves. 
For this reason, the P wave is a slow waveform, with a duration of about 80 ms. 
The P wave amplitude is much smaller (about 0.1 - 0.2 mV) than that of the 
QRS because the atria are smaller than the ventricles. The P wave is the epoch 
related to the event of atrial contraction. (Atrial relaxation does not produce 
any distinct waveform in the ECG as it is overshadowed by the following QRS 
wave.) 

0 The PQ segment: The AV node provides a delay to facilitate completion 
of atrial contraction and transfer of blood to the ventricles before ventricular 
contraction is initiated. The resulting PQ segment, of about 80 ma duration, 
is thus a “non-event”; however, it is important in recognizing the base-line as 
the interval is almost always iso-electric. 

0 The QRS wave: The specialized system of Purkinje fibers stimulate contrac- 
tion of ventricular muscles in a rapid sequence from the apex upwards. The 
almost-simultaneous contraction of the entire ventricular musculature results 
in a sharp and tall QRS complex of about 1 mV amplitude and 80 - 100 rns 
duration. The event of ventricularcontraction is represented by the QRS epoch. 

0 The ST segment: The normally flat (iso-electric) ST segment is related to 
the plateau in the action potential of the left ventricular muscle cells (see 
Figure 1.3). The duration of the plateau in the action potential is about 200 ms; 
the ST segment duration is usually about 100 - 120 ms. As in the case of the 
PQ segment, the ST segment may also be termed as a non-event. However, 
myocardial ischemia or infarction could change the action potentials of a 
portion of the left ventricular musculature, and cause the ST segment to be 
depressed (see Figure 1.28) or elevated. The PQ segment serves as a useful 
reference when the iso-electric nature of the ST segment needs to be verified. 
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0 The T wave: The T wave appears in a normal ECG signal as a discrete wave 
separated from the QRS by an iso-electric ST segment. However, it relates 
to the last phase of the action potential of ventricular muscle cells, when the 
potential returns from the plateau of the depolarized state to the resting potential 
through the process of repolarization [23]. The T wave is commonly referred 
to as the wave corresponding to ventricular relaxation. While this is indeed 
correct, it should be noted that relaxation through repolarization is but the final 
phase of contraction: contraction and relaxation are indicated by the upstroke 
and downstroke of the same action potential. For this reason, the T wave may 
be said to relate to a nonspecific event. 
The T wave is elusive, being low in amplitude (0.1 - 0.3 mV) and being a 
slow wave extending over 120 - 160 ma. It is almost absent in many ECG 
recordings. Rather than attempt to detect the often obscure T wave, one may 
extract a segment of the ECG 80 - 360 ms from the beginning of the QRS and 
use it to represent the ST segment and the T wave. 

4.2.2 The first and second heart sounds 
We observed in Section 1.2.8 that the normal cardiac cycle manifests as a series of 
the first and second heart sounds - S 1 and S2. Murmurs and additional sounds may 
appear in the presence of cardiovascular diseases or defects. We shall concentrate on 
S 1, S2, and murmurs only. 

0 The first heart sound S1: S 1 reflects a sequence of events related to ventricular 
contraction - closure of the atrio-ventricular valves, isovolumic contraction, 
opening of the semilunar valves, and ejection of the blood from the ventricles 
[23]. The epoch of S1 is directly related to the event of ventricular contraction. 

0 The second heart sound S2: S2 is related to the end of ventricular contraction, 
signified by closure of the aortic and pulmonary valves. As we observed in 
the case of the T wave, the end of ventricular contraction cannot be referred 
to as a specific event per se. However, in the case of S2, we do have the 
specific events of closure of the aortic and pulmonary valves to relate to, as 
indicated by the corresponding A2 and P2 components of S2. Unfortunately, 
separate identification of A2 and P2 is confounded by the fact that they usually 
overlap in normal signals. If A2 and P2 are separated due to a cardiovascular 
disorder, simultaneous multi-site PCG recordings will be required to identify 
each component definitively as they may be reversed in order (see Tavel [41] 
and Rushmer [23]). 

0 Murmurs: Murmurs, if present, could be viewed as specific events. For ex- 
ample, the systolic murmur of aortic stenosis relates to the event of turbulent 
ejection of blood from the left ventricle through a restricted aortic valve open- 
ing. The diastolic murmur in the case of aortic insufficiency corresponds to 
the event of regurgitation of blood from the aorta back into the left ventricle 
through a leaky aortic valve. 



180 EVENT DETECTION 

4.2.3 The dicrotlc notch in the carotid pulse 

As we saw in Sections 1.2.9 and 1.2.10, closure of the aortic valve causes a sudden 
drop in aortic pressure that is already on a downward slope at the end of ventricular 
systole. The dicrotic notch inscribed in the carotid pulse is a delayed, upstream 
manifestation of the incisura in the aortic pressure wave. The dicrotic notch is a 
specific signature on the relatively nondescript carotid pulse signal, and may be taken 
as an epoch related to the event of aortic valve closure (albeit with a time delay); the 
same event also signifies the end of ventricular systole and ejection as well as the 
beginning of S2 and diastole. 

4.2.4 EEG rhythms, waves, and transients 

We have already studied a few basic characteristics of the EEG in Section 1.2.5, and 
noted the nature of the a, 0, 8, and 8 waves. We shall now consider a few events 
and transients that occur in EEG signals [32, 33, 34, 96,97, 981. Figure 4.1 shows 
typical manifestations of the activities described below [32]. 

0 K-complex: This is a transient complex waveform with slow waves, sometimes 
associated with sharp components, and often followed by 14 H r  waves. It 
occurs spontaneously or in response to a sudden stimulus during sleep, with 
an amplitude of about 200 pV. 

0 Lambda waves: These are monophasic, positive, sharp waves that occur in 
the occipital location with an amplitude of less than 50 pV.  They are related 
to eye movement, and are associated with visual exploration. 

0 Mu rhythm: This rhythm appears as a group of waves in the frequency 
range of 7 - 11 Hz with an arcade or comb shape in the central location. 
The mu rhythm usually has an amplitude of less than 50 p V ,  and is blocked 
or attenuated by contralateral movement, thought of movement, readiness to 
move, or tactile stimulation. 

0 Spike: A spike is defined as a transient with a pointed peak, having a duration 
in the range of 20 - 30 ms. 

0 Sharp wave: A sharp wave is also a transient with a pointed peak, but with a 
longer duration than a spike, in the range of 70 - 200 ms. 

0 Spike-and-wave rhythm: A sequence of surface-negative slow waves in the 
frequency range of 2.5 - 3.5 Hz and having a spike associated with each wave 
is referred to as a spike-and-wave rhythm. There could be several spikes of 
amplitude up to 1,000 pV in each complex, in which case the rhythm is called 
a polyspike-and-wave complex. 

0 Sleep spindle: This is an episodic rhythm at about 14 Hz and 50 pV,  
occurring maximally over the fronto-central regions during certain stages of 
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Figure 4.1 From top to bottom: (a) the K-complex; (b) the lambda wave; (c) the mu rhythm; 
(d) a spike; (e) sharp waves; ( f )  spike-and-wave complexes; (g) a sleep spindle; (h) vertex sharp 
waves; and (i) polyspike discharges. The horizontal bar at the bottom indicates a duration 
of 1 8 ;  the vertical bars at the right indicate 100 p V .  Reproduced with permission from R. 
Cooper, J.W. Osselton, and J.C. Shaw, EEG Technology, 3rd Edition, 1980. @Butterworth 
Heinemann Publishers, a division of Reed Educational & Professional Publishing Ltd., Oxford, 
UK. 



182 EVENT DETECTION 

sleep. A spindle is defined, in general, as a short sequence of monomorphic 
waves having a fusiform appearance [33]. 

0 Vertex sharp transient or V-wave: This wave is a sharp potential that is 
maximal at the vertex at about 300 pV and is negative in relation to the EEG 
in other areas. It occurs spontaneously during sleep or in response to a sensory 
stimulus during sleep or wakefulness. 

In addition to the above, the term “burst” is used to indicate a phenomenon 
composed of two or more waves that are different from the principal (background) 
activity in terms of amplitude, frequency, or waveform. A burst is abrupt and has a 
relatively short duration [33]. 

An EEG record is described in terms of [32] 

0 the most persistent rhythm (for example, a); 

0 the presence of other rhythmic features, such as S,6, or p; 

0 discrete features of relatively long duration, such as an episode of spike-and- 

0 discrete features of relatively short duration, such as isolated spikes or sharp 

0 the activity remaining when all the previous features have been described, 

0 artifacts, if any, giving rise to ambiguity in interpretation. 

Each of the EEG waves or activities is described in chronological sequence in terms 
of amplitude; frequency, in the case of rhythmic features; waveform, in the case of 
both rhythmic and transient features; location or spatial distribution; incidence or 
temporal variability; right - left symmetry in location of activity; and responsiveness 
to stimuli, such as eye opening and closure. The EEG record at rest is first described as 
above; effects of evocative techniques are then specified in the same terms. Behavioral 
changes, such as the subject becoming drowsy or falling asleep, are also noted [32]. 

The EEG signals in Figure 1.22 demonstrate the presence of the a rhythm in all 
the channels. The EEG signals in Figure 1.23 depict spike-and-wave complexes in 
almost all the channels. 

wave activity; 

waves; 

referred to as background activity; and 

4.3 DETECTION OF EVENTS AND WAVES 

We shall now see how the knowledge that we have gained so far of several biomed- 
ical signal events may be applied to develop signal processing techniques for their 
detection. Each of the following subsections will deal with the problem of detection 
of a specific type of event. The techniques described should find applications in the 
detection of other events of comparable characteristics. 
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4.3.1 Derivative-based methods for QRS detection 

Problem: Develop signal processing techniques to facilitate detection of the QRS 
complex, given that it is the sharpest wave in an ECG cycle. 

Solution 1: We noted in Section 1.2.4 that the QRS complex has the largest slope 
(rate of change of voltage) in a cardiac cycle by virtue of the rapid conduction and 
depolarization characteristics of the ventricles. As the rate of change is given by the 
derivative operator, the -$ operation would be the most logical starting point in an 
attempt to develop an algorithm to detect the QRS complex. 

We saw in Section 3.3.3 that the derivative operator enhances the QRS, although 
the resulting wave does not bear any resemblance to a typical QRS complex. Observe 
in Figures 3.24 and 3.25 that the slow P and T waves have been suppressed by the 
derivative operators, while the output is the highest at the QRS. However, given the 
noisy nature of the results of the derivative-based operators, it is also evident that 
significant smoothing will be required before further processing can take place. 

Balda et al. [99] proposed a derivative-based algorithm for QRS detection, which 
was further studied and evaluated by Ahlstrom and Tompkins [lOO], Friesen et 
al. [ loll ,  and Tompkins [27]. The algorithm progresses as follows. In a manner 
similar to Equation 3.45, the smoothed three-point first derivative yo (n)  of the given 
signal z(n) is approximated as 

(4.1) Yo(n) = 14.) - z(n - 211. 

yl(n) = 1 ~ ( n )  - 2 4 ~ 1 -  2) + z(n - 4)l. 

Yz(n) = 1.3Yo(n) 4- l-lYi(n). 

The second derivative is approximated as 

(4.2) 

The two results are weighted and combined to obtain 

(4.3) 

The result ya(n) is scanned with a threshold of 1.0. Whenever the threshold is 
crossed, the subsequent eight samples are also tested against the same threshold. If 
at least six of the eight points pass the threshold test, the segment of eight samples is 
taken to be a part of a QRS complex. The procedure results in a pulse with its width 
proportional to that of the QRS complex; however, the method is sensitive to noise. 

Illustration of application: Figure 4.2 illustrates, in the top-most trace, two 
cycles of a filtered version of the ECG signal shown in Figure 3.5. The signal was 
filtered with an eighth-order Butterworth lowpass filter with fc = 90 Hz, down- 
sampled by a factor of five, and filtered with a notch filter with fo = 60 Hz. The 
effective sampling rate is 200 Hz. The signal was normalized by dividing by its 
maximum value. 

The second and third plots in Figure 4.2 show the derivatives yo(n) and yl(n), 
respectively; the fourth plot illustrates the combined result yz(n). Observe the 
relatively high values in the derivative-based results at the QRS locations; the outputs 
are low or negligible at the P and T wave locations, in spite of the fact that the original 
signal possesses an unusually sharp and tall T wave. It is also seen that the results 
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Figure 4.2 From top to bottom: two cycles of a filtered version of the ECG signal shown 
in Figure 3.5; output yo(n) of the first-derivative-based operator in Equation 4.1; output 
yl (n) of the second-derivative-based operator in Equation 4.2; the combined result (n) 
from Equation 4.3; and the result gs(n) of passing ga(n) through the 8-point MA filter in 
Equation 3.27. 
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have multiple peaks over the duration of the QRS wave, due to the fact that the QRS 
complex includes three major swings: Q - R, R - S, and S - ST base-line in the 
present example (an additional PQ base-line - Q swing may also be present in other 
ECG signals). 

The last plot in Figure 4.2 shows the smoothed result y ~ ( n )  obtained by passing 
yz(n) through the %point MA filter in Equation 3.27. We now have a single pulse 
with amplitude greater than 1.0 over the duration of the corresponding QRS complex. 
A simple peak-searching algorithm may be used to detect each ECG beat. The net 
delay introduced by the filters should be subtracted from the detected peak location 
in order to obtain the corresponding QRS location. 

Note that peak searching cannot be performed directly on an ECG signal: the QRS 
might not always be the highest wave in a cardiac cycle, and artifacts may easily upset 
the search procedure. Observe also that the ECG signal in the present illustration was 
filtered to a restricted bandwidth of 90 Hz before the derivatives were computed, 
and that it is free of base-line drift. 

Solution 2: Murthy and Rangaraj [lo21 proposed a QRS detection algorithm 
based upon a weighted and squared first-derivative operator and an MA filter. In this 
method, a filtered-derivative operator was defined as 

N 
g1(n) = c ls(n - i + 1) - s(n - i)12(N - i + l), (4.4) 

where s(n) is the ECG signal, and N is the width of a window within which first- 
order differences are computed, squared, and weighted by the factor (N - i + 1). 
The weighting factor decreases linearly from the current difference to the difference 
N samples earlier in time, and provides a smoothing effect. Further smoothing of 
the result was performed by an MA filter over M points to obtain 

i=l 

With a sampling rate of 100 Hz, the filter window widths were set as M = N = 8. 
The algorithm provides a single peak for each QRS complex and suppresses P and T 
waves. 

Searching for the peak in a processed signal such as g(n)  may be accomplished 
by a simple peak-searching algorithm as follows: 

1. Scan a portion of the signal g ( n )  that may be expected to contain a peak and 
determine the maximum value gmsx. The maximum of g(n) over its entire 
available duration may also be taken to be gmax. 

2. Define a threshold as a fraction of the maximum, for example, Th = 0.5 gmm. 

3. For all g(n) > Th, select those samples for which the corresponding g(n) 
values are greater than a certain predefined number M of preceding and suc- 
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ceeding samples of g(n), that is, 

C p } =  [ n Ig(n)  > Th ] A N D  (4.6) 

[ g ( n )  > g(n - i), i = 1,2, . . . , M ] AND 
[ g(n) > g ( n + i ) , i  = 1,2,* . . ,M 1. 

The set {p} defined as above contains the indices of the peaks in g(n) .  

Additional conditions may be imposed to reject peaks due to artifacts, such as 
a minimum interval between two adjacent peaks. A more elaborate peak-searching 
algorithm will be described in Section 4.3.2. 

Illustration of application: Figure 4.3 illustrates, in the top-most trace, two 
cycles of a filtered version of the ECG signal shown in Figure 3.5. The signal 
was filtered with an eighth-order Buttenvorth lowpass filter with fc = 40 H z ,  and 
down-sampled by a factor of ten. The effective sampling rate is 100 HE to match 
the parameters used by Murthy and Rangaraj [ 1021. The signal was normalized by 
dividing by its maximum value. 
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Figure 4.3 From top to bottom: two cycles of a filtered version of the ECG signal shown in 
Figure 3.5; output g1(n) of the weighted and squared first-derivative operator in Equation 4.4; 
output g ( n )  of the smoothing filter in Equation 4.5. 

The second and third plots in Figure 4.3 show the outputs of the derivative-based 
operator and the smoothing filter. Observe that the final output contains a single, 
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Squaring . operation Differentiator Bandpass - filter 

smooth peak for each QRS, and that the P and T waves produce no significant 
output. A simple peak-searching algorithm may be used to detect and segment each 
beat [ 1021. 

Moving-window 
’ integrator - 

4.3.2 The Pan-Tompkins algorithm for QRS detection 

Problem: Propose an algorithm to detect QRS complexes in an ongoing ECG signal. 
Solution: Pan and Tompkins [103, 271 proposed a real-time QRS detection al- 

gorithm based on analysis of the slope, amplitude, and width of QRS complexes. 
The algorithm includes a series of filters and methods that perform lowpass, high- 
pass, derivative, squaring, integration, adaptive thresholding, and search procedures. 
Figure 4.4 illustrates the steps of the algorithm in schematic form. 

Figure 4.4 Block diagram of the Pan-Tompkins algorithm for QRS detection. 

Lowpass filter: The recursive lowpass filter used in the Pan-Tompkins algorithm 
has integer coefficients to reduce computational complexity, with the transfer function 
defined as 

1 (1 - z-6)2 
H ( z )  = - 

32 ( l - . ~ - l ) ~  * 
(4.7) 

(See also Equations 3.37 and 3.38.) The output y ( n )  is related to the input z(n) as 

1 
~ ( n )  = 2y(n - 1) - ~ ( n  - 2) + - [.(TI) - 2a(n - 6) + z(n - 12)]. 

32 (4.8) 

With the sampling rate being 200 H z ,  the filter has a rather low cutoff frequency 
of fc = 11 Hz, and introduces a delay of 5 samples or 25 ms. The filter provides 
an attenuation greater than 35 dB at 60 Hz, and effectively suppresses power-line 
interference, if present. 

Highpass filter: The highpass filter used in the algorithm is implemented as an 
allpass filter minus a lowpass filter. The lowpass component has the transfer function 

(1 - 2-37 

(1 - 2-1) ’ H l p ( 4  = 

the input - output relationship is 

~ ( n )  = ~ ( n  - 1) + ~ ( n )  - ~ ( n  - 32). 

The transfer function Hhp(z)  of the highpass filter is specified as 
, 

(4.9) 

(4.10) 

(4.1 1) 
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Equivalently, the output p(n)  of the highpass filter is given by the difference equation 

(4.12) 
1 

32 
p(n)  = z(n - 16) - - [ ~ ( n  - 1) + ~ ( n )  - z(n - 32)], 

with z(n) and y(n) being related as in Equation 4.10. The highpass filter has a cutoff 
frequency of 5 H z  and introduces a delay of 80 me. 

Derivative operator: The derivative operation used by Pan and Tompkins is 
specified as 

(4.13) 

and approximates the ideal 4 operator up to 30 H z .  The derivative procedure 
suppresses the low-frequency components of the P and T waves, and provides a 
large gain to the high-frequency components arising from the high slopes of the QRS 
complex. (See Section 3.3.3 for details on the properties of derivative-based filters.) 

Squaring: The squaring operation makes the result positive and emphasizes large 
differences resulting from QRS complexes; the small differences arising from P and 
T waves are suppressed. The high-frequency components in the signal related to the 
QRS complex are further enhanced. 

Integration: As observed in the previous subsection, the output of a derivative- 
based operation will exhibit multiple peaks within the duration of a single QRS 
complex. The Pan-Tompkins algorithm performs smoothing of the output of the 
preceding operations through a moving-window integration filter as 

1 
y(n) = - [2~(n) + z(n - 1) - ~ ( n  - 3) - 2s(n - 4)], 

8 

1 
y(n) = [z(n - ( N  - 1)) + z(n - ( N  - 2)) + * + .(.)I. (4.14) 

The choice of the window width N is to be made with the following considerations: 
too large a value will result in the outputs due to the QRS and T waves being merged, 
whereas too small a value could yield several peaks for a single QRS. A window 
width of N = 30 was found to be suitable for fb = 200 Hz. Figure 4.5 illustrates 
the effect of the window width on the output of the integrator and its relationship to 
the QRS width. (See Section 3.3.2 for details on the properties of moving-average 
and integrating filters.) 

Adaptive thresholding: The thresholding procedure in the Pan-Tompkins algo- 
rithm adapts to changes in the ECG signal by computing running estimates of signal 
and noise peaks. A peak is said to be detected whenever the final output changes 
direction within a specified interval. In the following discussion, S P K I  represents 
the peak level that the algorithm has learned to be that corresponding to QRS peaks, 
and N P K I  represents the peak level related to non-QRS events (noise, EMG, etc.). 
T H R E S H O L D  I1 and T H R E S H O L D  I 2  are two thresholds used to categorize 
peaks detected as signal (QRS) or noise. 

Every new peak detected is categorized as a signal peak or a noise peak. If a peak 
exceeds T H R E S H O L D  I1 during the first step of analysis, it is classified as a QRS 
(signal) peak. If the searchback technique (described in the next paragraph) is used, 

I 
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R 

T 

Figure 4.5 The relationship of a QRS complex to the moving-window integrator output. 
Upper plot: Schematic ECG signal. Lower plot: Output of the moving-window integrator. 
QS: QRS complex width. W width of the integrator window, given as N/ f, 8.  Adapted from 
Tompkins (271. 

the peak should be above T H R E S H O L D  I 2  to be called a QRS. The peak levels 
and thresholds are updated after each peak is detected and classified as 

if P E A K I  is a signal peak; (4.15) 
if P E A K I  is a noise peak; 

SPKI = 0.125 P E A K I  + 0.875 SPKI 
NPKI = 0.125 P E A K I  + 0.875 NPKI 

T H R E S H O L D  I1 = NPKI + 0.25(SPKI - NPKI); (4.16) 
T H R E S H O L D  I 2  = 0.5 T H R E S H O L D  II .  

The updating formula for SPKI is changed to 

SPKI = 0.25 P E A K I  + 0.75 SPKI (4.17) 

if a QRS is detected in the searchback procedure using T H R E S H O L D  12. 
Searchback procedure: The Pan-Tompkins algorithm maintains two RR-interval 

averages: RR AVERAGE1 is the average of the eight most-recent beats, and RR 
AVERAGE2 is the average of the eight most-recent beats having R R  intervals 
within the range specified by RR LOW L I M I T  = 0.92 x R R  AVERAGE2 
and RR H I G H  L I M I T  = 1.16 x R R  AVERAGE2. Whenever a QRS is 
not detected for a certain interval specified as RR MISSED L I M I T  = 1.06 x 
RR AVERAGE2, the QRS is taken to be the peak between the established thresh- 
olds applied in the searchback procedure. 
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The algorithm performed with a very low error rate of 0.68%, or 33 beats per hour 
on a database of about 116,000 beats obtained from 24-hour records of the ECGs of 
48 patients (see Tompkins [27] for details). 

Illustration of application: Figure 4.6 illustrates, in the top-most trace, the 
same ECG signal as in Figure 4.2. The Pan-Tompkins algorithm as above was 
implemented in MATLAB. The outputs of the various stages of the algorithm are 
illustrated in sequence in the same figure. The observations to be made are similar 
to those in the preceding section on the derivative-based method. The derivative 
operator suppresses the P and T waves and provides a large output at the QRS 
locations. The squaring operation preferentially enhances large values, and boosts 
high-frequency components. The result still possesses multiple peaks for each QRS, 
and hence needs to be smoothed. The final output of the integrator is a single smooth 
pulse for each QRS. Observe the shift between the actual QRS location and the pulse 
output due to the cumulative delays of the various filters. The thresholding and search 
procedures and their results are not illustrated. More examples of QRS detection will 
be presented in Sections 4.9 and 4.10. 
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Figure 4.6 Results of the Pan-Tompkins algorithm. From top to bottom: two cycles of a 
filtered version of the ECG signal shown in Figure 3.5 (the same as that in Figure 4.2); output 
of the bandpass filter (BPF, a combination of lowpass and highpass filters); output of the 
derivative-based operator; the result of squaring; and lOOx the result of the final integrator. 
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4.3.3 Detection of the dicrotic notch 

Problem: Propose a method to detect the dicrotic notch in the carotid pulse signal. 
Solution: Lehner and Rangayyan [66] proposed a method for detection of the 

dicrotic notch that used the least-squares estimate of the second derivative p(n)  of 
the carotid pulse signal ~ ( n )  defined as 

p(n) = 29(n - 2) - ~ ( n  - 1) - 29(n) - ~ ( n  + 1) + 2y(n + 2). (4.18) 

Observe that this expression is noncausal; it may be made causal by adding a delay 
of two samples. 

The second derivative was used due to the fact that the dicrotic notch appears 
as a short wave riding on the downward slope of the carotid pulse signal (see also 
Starmer et al. [ 1041). A first-derivative operation would give an almost-constant 
output for the downward slope. The second-derivative operation removes the effect 
of the downward slope and enhances the notch itself. The result was squared and 
smoothed to obtain 

s(n) = C p2(n - k + l )w(k) ,  (4.19) 

where w(k) = (M - k + 1) is a linear weighting function, and M = 16 for 
f a  = 256 Hz. 

The method yields two peaks for each period of the carotid pulse signal. The first 
peak in the result represents the onset of the carotid upstroke. The second peak that 
appears in the result within a cardiac cycle is due to the dicrotic notch. To locate the 
dicrotic notch, the local minimum in the carotid pulse within a f 2 0  rns interval of 
the second peak needs to be located. 

Illustration of application: The upper plot in Figure 4.7 illustrates two cycles 
of a carotid pulse signal. The signal was lowpass filtered at 100 He and sampled at 
250 He. The result of application of the Lehner and Rangayyan method to the signal 
is shown in the lower plot. It is evident that the second derivative has successfully 
accentuated the diciotic notch. A simple peak-searching algorithm may be used to 
detect the first and second peaks in the result. The dicrotic notch may then be located 
by searching for the minimum in the carotid pulse signal within a A20 rns interval 
around the second peak location. 

Observe that the result illustrated in Figure 4.7 may benefit from further smoothing 
by increasing the window width M in Equation 4.19. The window width needs to 
be chosen in accordance with the characteristics of the signal on hand as well as 
the lowpass filter and sampling rate used. Further illustration of the detection of the 
dicrotic notch will be provided in Section 4.10. 

M 

k=l 

4.4 CORRELATION ANALYSIS OF EEG CHANNELS 

EEG signals are usually acquired simultaneously over multiple channels. Event 
detection and epoch analysis of EEG signals becomes more complicated than the 
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Figure 4.7 %o cycles of a carotid pulse signal and the result of the Lehner and Rangayyan 
method for detection of the dicrotic notch. 
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problems we have seen so far with the single-channel ECG and carotid pulse signals, 
due to the need to detect similar events across multiple channels. Autocorrelation 
and cross-correlation techniques in both the time and frequency domains serve such 
needs. 

4.4.1 Detection of EEG rhythms 

Problem: Propose a method to detect the presence of the a rhythm in an EEG 
channel. How would you extend the method to detect the presence of the same 
rhythm simultaneously in two EEG channels? 

Solution: Two signals may be compared to detect common characteristics present 
in them via their dot product (also known as the inner or scalar product), defined as 

(4.20) 

where the signals z(n) and y(n) have N samples each. The dot product represents 
the projection of one signal onto the other, with each signal being viewed as an 
N-dimensional vector. The dot product may be normalized by the geometric mean 
of the energies of the two signals to obtain a correlation coefficient as [67] 

(4.21) 

The means of the signals may be subtracted out, if desired, as in Equation 3.18. 

signal onto the other is defined as 
In the case of two continuous-time signals z( t )  and y(t), the projection of one 

(4.22) 

When a shift or time delay may be present in the occurrence of the epoch of interest 
in the two signals being compared, it becomes necessary to introduce a time-shift 
parameter to compute the projection for every possible position of overlap. The shift 
parameter facilitates searching one signal for the occurrence of an event matching 
that in the other signal at any time instant within the available duration of the signals. 
The cross-correlation function (CCF) between two signals for a shift or delay of T 

seconds or k samples may be obtained as 

&,(d = S_,z(t)y(t + T)d4 or (4.23) 

@z,(k) = c z(n)y(n + k). (4.24) 

The range of summation in the latter case needs to be limited to the range of the 
available overlapped data. A scale factor, depending upon the number of data samples 

00 

n 
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used, needs to be introduced to obtain the true CCF, but will be neglected here (see 
Section 6.4). An extended version of the correlation coefficient 'yZv in Equation 4.2 1, 
to include time shift, is provided in Equation 3.18. 

When the ACF or the CCF are computed for various shifts, a question arises about 
the data samples in one of the signal segments beyond the duration of the other. We 
may add zeros to one of the signals and increase its length by the maximum shift 
of interest, or we may use the true data samples from the original signal record, if 
available. The latter method was used wherever possible in the following illustrations. 

In the case of random signals, we need to take the expectation or sample average 
of the outer product of the vectors formed by the available samples of the signals. Let 
x ( n )  = [z(n),z(n-1) ,..., z(n-N+1)ITandy(n)  = [g(n),g(n-l), ...,y( n- 
N + 1)IT represent the N-dimensional vectorial form of the two signals z(n) and 
g(n)  with the most-recent N samples being available in each signal at the time 
instant n. If x(n )  and y(n) are sample observations of random processes, their CCF 
is defined as 

@z, = EIx(4yT(n)l ,  (4.25) 

in a manner similar to what we saw in Equations 3.78 and 3.79. The outer product, 
which is an N x N matrix, provides the cross-terms that include all possible delays 
(shifts) within the duration of the signals. 

All of the equations above may be modified to obtain the ACF by replacing the 
second signal y with the first signal z. The signal 2 is then compared with itself. 

The ACF displays peaks at intervals corresponding to the period (and integral 
multiples thereof) of any periodic or repetitive pattern present in the signal. This 
property facilitates the detection of rhythms in signals such as the EEG: the presence 
of the a rhythm would be indicated by a peak in the neighborhood of 0.1 8 .  The 
ACF of most signals decays and reaches negligible values after delays of a few 
milliseconds, except for periodic signals of infinite or indefinite duration for which 
the ACF will also exhibit periodic peaks. The ACF will also exhibit multiple peaks 
when the same event repeats itself at regular or irregular intervals. One may need 
to compute the ACF only up to certain delay limits depending upon the expected 
characteristics of the signal being analyzed. 

The CCF displays peaks at the period of any periodic pattern present in both 
of the signals being analyzed. The CCF may therefore be used to detect common 
rhythms present between two signals, for example, between two channels of the EEG. 
When one of the functions being used to compute the CCF is a template representing 
an event, such as an ECG cycle as in the illustration in Section 3.3.1 or an EEG 
spike-and-wave complex as in Section 4.4.2, the procedure is known as template 
matching. 

Illustration of application: Figure 4.8 shows, in the upper trace, the ACF of 
a segment of the p4 channel of the EEG in Figure 1.22 over the time interval 
4.67 - 5.81 8 .  The ACF displays peaks at time delays of 0.11 s and its integral 
multiples. The inverse of the delay of the first peak corresponds to 9 Ha, which is 
within the a rhythm range. (The PSD in the lower trace of Figure 4.8 and the others 
to follow will be described in Section 4.5.) It is therefore obvious that the signal 
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segment analyzed contains the a rhythm. A simple peak-search algorithm may be 
applied to the ACF to detect the presence of peaks at specific delays of interest or 
over the entire range of the ACE 
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Delay in seconds 

". - 4 t \  I \ .  1 

0 5 10 15 20 25 30 35 40 45 
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Figure 4.8 Upper trace: ACF of the 4.67 - 5.81 s portion of the p4 channel of the EEG 
signal shown in Figure 1.22. Lower trace: The PSD of the signal segment in dB, given by the 
Fourier transform of the ACE 

To contrast with the preceding example, the upper trace of Figure 4.9 shows the 
ACF of the 4.2 - 4.96 a segment of the f3 channel of the EEG in Figure 1.22. The 
ACF shows no peak in the 0.08 - 1.25 s region, indicating absence of the a rhythm 
in the segment analyzed. 

Figures 4.10, 4.1 1, and 4.12 illustrate the CCF results comparing the following 
portions of the EEG signal shown in Figure 1.22 in order: the p3 and p4 channels 
over the duration 4.72 - 5.71 s when both channels exhibit the a rhythm; the 02 and 
c4 channels over the duration 5.71 - 6.78 s when the former has the a rhythm but not 
the latter channel; and the f3 and f4 channels over the duration 4.13 - 4.96 s when 
neither channel has a activity. The relative strengths of the peaks in the a range, as 
described earlier, agree with the joint presence, singular presence, or absence of the 
a rhythm in the various segments (channels) analyzed. 
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Figure 4.9 Upper trace: ACF of the 4.2 - 4.96 s portion of the f3 channel of the EEG signal 
shown in Figure 1.22. Lower trace: The PSD of the signal segment in dB. 
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Figure 4.10 Upper trace: CCF between the 4.72 - 5.71 s portions of the p3 and p4 channels 
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB, 
computed as the Pourier transform of the CCF. 
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Figure 4.11 Upper trace: CCFbetween the 5.71 - 6.78 s portions of the 02 and c4 channels 
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB. 
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Figure 4.12 Upper trace: CCF between the 4.13 - 4.96 8 portions of the f3 and f4 channels 
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB. 
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4.4.2 Template matchlng for EEG spike-and-wave detection 

We have already seen the use of template matching for the extraction of ECG cycles 
for use in synchronized averaging in Section 3.3.1. We shall now consider another 
application of template matching. 

Problem: Propose a method to detect spike-and-wave complexes in an EEG 
signal. You may assume that a sample segment of a spike-and-wave complex is 
available. 

Solution: A spike-and-wave complex is a well-defined event in an EEG signal. 
The complex is composed of a sharp spike followed by a wave with a frequency 
of about 3 Hz; the wave may contain a half period or a full period of an almost- 
sinusoidal pattern. One may therefore extract an epoch of a spike-and-wave complex 
from an EEG channel and use it for template matching with the same formula as in 
Equation 3.18 (see also Barlow [97]). The template may be correlated with the same 
channel from which it was extracted to detect similar events that appear at a later 
time, or with another channel to search for similar events. A simple threshold on the 
result should yield the time instants where the events appear. 

Illustration of application: The c3 channel of the EEG signal in Figure 1.23 is 
shown in the upper trace of Figure 4.13. The spike-and-wave complex between 0.60 s 
and 0.82 8 in the signal was selected for use as the template, and template matching 
was performed with the same channel signal using the formula in Equation 3.18. The 
result in the lower trace of Figure 4.13 demonstrates strong and clear peaks at each 
Occurrence of the spike-and-wave complex jn the EEG signal. The peaks in the result 
occur at the same instants of time as the corresponding spike-and-wave complexes. 

Figure 4.14 shows the f3 channel of the EEG signal in Figure 1.23, along with the 
result of template matching, using the same template that was used in the previous 
example from channel c3. The result shows that the f3 channel also has spike-and- 
wave complexes that match the template. 

4.5 CROSS-SPECTRAL TECHNIQUES 

The multiple peaks that arise in the ACF or CCF functions may cause confusion in 
the detection of rhythms; the analyst may be required to discount peaks that appear 
at integral multiples of the delay corresponding to a fundamental frequency. The 
Fourier-domain equivalents of the ACF or the CCF permit easier and more intuitive 
analysis in the frequency domain than in the time domain. The notion of rhythms 
would be easier to associate with frequencies in cps or Hz than with the corresponding 
inversely related periods (see also the introductory section of Chapter 6). 

4.5.1 Coherence analysis of EEG channels 

Problem: Describe a frequency-domain approach to study the presence of rhythms 
in multiple channels of an EEG signal. 
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Figure 4.13 Upper trace: the c3 channel of the EEG signal shown in Figure 1.23. Lower 
trace: result of template matching. The spike-and-wave complex between 0.60 s and 0.82 8 

in the signal was used as the template. 
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Figure 4.14 Upper trace: the f3 channel of the EEG signal shown in Figure 1.23. Lower 
trace: result of template matching. The spike-and-wave complex between 0.60 s and 0.82 8 

in the c3 channel (see Figure 4.13) was used as the template. 
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Solution: The Fourier-domain equivalents of the ACF and CCF are the PSD (also 
known as the autospectrum) and the cross-spectrum (or cross-spectral density - 
CSD), respectively. The PSD S,, (f) of a signal is related to its ACF via the Fourier 
transform: 

Sza(f) = Fq?L2(7)1= X(fW*(f )  = lX(f)I2. (4.26) 

The Fourier transform of the CCF between two signals gives the CSD: 

(4.27) 

(For the sake of simplicity, the double-symbol subscripts zz and yy may be replaced 
by their singular versions, or dropped entirely when not relevant in subsequent 
discussions.) 

The PSD displays peaks at frequencies corresponding to periodic activities in the 
signal. This property facilitates the detection of rhythms in signals such as the EEG: 
the presence of the a rhythm would be indicated by a peak or multiple peaks in the 
neighborhood of 8 - 13 Hz. The PSD may also be studied to locate the presence 
of activity spread over specific bands of frequencies, such as formants in the speech 
signal or murmurs in the PCG. 

The CSD exhibits peaks at frequencies that are present in both of the signals being 
compared. The CSD may be used to detect rhythms present in common between two 
channels of the EEG. 

The normalized coherence spectrum of two signals is given by [5, 321 

(4.28) 

The phase of the coherence spectrum is given by $,,(f) = LS,,(f), which rep- 
resents the average phase difference (related to the time delay) between common 
frequency components in the two signals. 

Illustration of application: The coherence between EEG signals recorded from 
different positions on the scalp depends upon the structural connectivity or func- 
tional coupling between the corresponding parts of the brain. Investigations into the 
neurophysiology of seizure discharges and behavior attributable to disorganization 
of cerebral function may be facilitated by coherence analysis [32]. The symmetry, 
or lack thereof, between two EEG channels on the left and right sides of the same 
position (for example, c3 and c4) may be analyzed via the CSD or the coherence 
function. 

The lower traces in Figures 4.8 and 4.9 illustrate the PSDs of EEG segments with 
and without the Q rhythm, respectively. The former shows a strong and clear peak at 
about 9 Hz, indicating the presence of the Q rhythm. Observe that the PSD displays 
a single peak although the corresponding ACF has multiple peaks at two, three, and 
four times the delay corresponding to the fundamental period of the a wave in the 
signal. The PSD in Figure 4.9 exhibits no peak in the a range, indicating the absence 
of the a rhythm in the signal. 
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The lower traces in Figures 4.10,4.11, and 4.12 illustrate the CSDs corresponding 
to the CCFs in the respective upper traces. Once again, it is easier to deduce the 
common presence of strong a activity between channels p3 and p4 from the CSD 
rather than the CCF in Figure 4.10. The single peak at 9 Hz in the CSD is more 
easily interpretable than the multiple peaks in the corresponding CCF. The CSD in 
Figure 4.1 1 lacks a clear peak in the a range, even though the corresponding CCF 
shows a peak at about 0.1 8 ,  albeit less significant than that in Figure 4.10. The 
results agree with the fact that one channel has a activity while the other does not. 
Finally, the CSD in Figure 4.12 is clearly lacking a peak in the a range; the two signal 
segments have no a activity. Further methods for the analysis of a activity will be 
presented in Sections 6.4.3 and 7.5.2. 

4.6 THE MATCHED FILTER 

When a sample observation or template of a typical version of a signal event is 
available, it becomes possible to design a filter that is matched to the characteristics 
of the event. If a signal that contains repetitions of the event with almost the same 
characteristics is passed through the rnatchedfilter, the output should provide peaks 
at the time instants of occurrence of the event. Matched filters are commonly used for 
the detection of signals of known characteristics that are buried in noise [105, 1061. 
They are designed to perform a correlation between the input signal and the signal 
template, and hence are also known as correlation$lters. 

4.6.1 Detection of EEG spike-and-wave complexes 

Problem: Design a matched$lter to detect spike-and-wave complexes in an EEG 
signal. A reference spike-and-wave complex is available. 

Solution: Let z ( t )  be the given reference signal, representing an ideal observation 
of the event of interest. Let X ( f )  be the Fourier transform of z(t ) .  Consider passing 
z ( t )  through a linear time-invariant filter whose impulse response is h(t);  the transfer 
function of the filter is H ( f )  = FT[h(t)] .  The output is given by p(t) = z( t )  * h(t)  
or Y ( f )  = X(f)H(f) .  

It may be shown that the output energy is maximized when 

Wf) = K X * ( f )  exp(-j2nfto), (4.29) 

where K is a scale factor and t o  is a time instant or delay [ 1051. This corresponds to 
the impulse response being 

h(t)  = Kz(to - t). (4.30) 

Thus the transfer function of the matched filter is proportional to the complex conju- 
gate of the Fourier transform of the signal event to be detected. In the time domain, 
the impulse response is simply a reversed or rejlected version of the reference signal 
that is scaled and delayed. A suitable delay will have to be added to make the filter 
causal, as determined by the duration of the reference signal. 
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As the impulse response is a reversed version of z ( t ) ,  the convolution operation 
performed by the matched filter is equivalent to correlation: the output is then equal 
to the cross-correlation between the input and the reference signal. When a portion 
of an input signal that is different from z ( t )  matches the reference signal, the output 
approximates the ACF &, of the reference signal at the corresponding time delay. 
The corresponding frequency domain result is 

(4.3 1) 

which is the PSD of the reference signal (ignoring the time delay and scale fac- 
tors). The output is therefore maximum at the time instant of occurrence of an 
approximation to the reference signal. (See also Barlow 1971.) 

Illustration of application: To facilitate comparison with template matching, 
the spike-and-wave complex between 0.60 s and 0.82 s in the c3 channel of the 
EEG in Figure 1.23 was used as the reference signal to derive the matched filter. 
Figure 4.15 shows the extracted reference signal in the upper trace. The lower trace 
in the same figure shows the impulse response of the matched filter, which is simply 
a time-reversed version of the reference signal. The matched filter was implemented 
as an FIR filter using the MATLABjlter command. 

Figures 4.16 and 4.17 show the outputs of the matched filter applied to the c3 and 
f3 channels of the EEG in Figure 1.23, respectively. The upper trace in each plot 
shows the signal, and the lower trace shows the matched-filter output. It is evident 
that the matched filter provides a large output for each spike-and-wave complex. 
Comparing the matched-filter outputs in Figures 4.16 and 4.17 with those of template 
matching in Figure 4.13 and 4.14, respectively, we observe that they are similar, with 
the exception that the matched-filter results peak with a delay of 0.22 s after the 
corresponding spike-and-wave complex. The delay corresponds to the duration of 
the impulse response of the filter. (Note: MATLAB provides the commandjlrjlt for 
zero-phase forward and reverse digital filtering; this method is not considered in the 
book.) 

4.7 DETECTION OF THE P WAVE 

Detection of the P wave is difficult, as it is small, has an ill-defined and variable 
shape, and could be placed in a background of noise of varying size and origin. 

Problem: Propose an algorithm to detect the P wave in the ECG signal. 
Solution 1: In the method proposed by Hengeveld and van Bemmel [107], VCG 

1. The QRS is detected, deleted, and replaced with the base-line. The base-line 

2. The resulting signal is bandpass filtered with -3 dB points at 3 H z  and 11 Hz. 

3. A search interval is defined as QT,, = i R R  + 250 ms, where RR is the 

signals are processed as follows: 

is determined by analyzing a few samples preceding the QRS complex. 

interval between two successive QRS complexes. 
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Figure 4.15 Upper trace: The spike-and-wave complex between 0.60 8 and 0.82 s in the 
c3 channel of the EEG signal shown in Figure 1.23. Lower trace: Impulse response of the 
matched filter derived from the signal segment in the upper trace. Observe that the latter is a 
time-reversed version of the former. 
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Figure 4.16 Upper trace: The c3 channel of the EEG signal shown in Figure 1.23, used as 
input to the matched filter in Figure 4.15. Lower trace: Output of the matched filter. See also 
Figure 4.13. 
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Figure 4.17 Upper trace: The f3 channel of the EEG signal shown in Figure 1.23, used as 
input to the matched filter in Figure 4.15. Lower trace: Output of the matched filter. See also 
Figure 4.14. 
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4. The maximum and minimum values are found in all three VCG leads from the 
end of the preceding T wave to the onset of the QRS. 

5. The signal is rectified and thresholded at 50% and 75% of the maximum to 
obtain a ternary (three-level) signal. 

6 .  The cross-correlation of the result is computed with a ternary template derived 
in a manner similar to the procedure in the previous step from a representative 
set of P waves. 

7. The peak in the cross-correlation corresponds to the P location in the original 

The algorithm overcomes the dominance of the QRS complex by first detecting 
the QRS and then deleting it. Observe that the cross-correlation is computed not 
with an original P wave, which we have noted could be rather obscure and variable, 
but with a ternary wave derived from the P wave. The ternary wave represents a 
simplified template of the P wave. 

Figure 4.18 illustrates the results of the various stages of the P-finding algorithm 
of Hengeveld and van Bemmel [ 1071. Observe that the original ECG signal shown in 
part (a) of the figure has a P wave that is hardly discernible. The processed versions 
of the signal after deleting the QRS, filtering, and rectification are shown in parts (b), 
(c), and (d). The ternary version in part (e) shows that the P wave has been converted 
into two pulses corresponding to its upstroke and return parts. The result of cross- 
correlation with the template in part (f) is shown in part (g). A simple peak-picking 
algorithm with search limits may be used to detect the peak in the result, and hence 
determine the P wave position. 

Note that the result in part (d) has other waves preceding those related to the P 
wave. An appropriate search interval should be used so as to disregard the unwanted 
components. 

Solution 2: Gritzali et al. [ 1081 proposed a common approach to detect the QRS, T, 
and P waves in multichannel ECG signals based upon a transformation they labeled as 
the “length” transformation. Given a collection of ECG signals from N simultaneous 
channels z:l(t), zz(t),  . . . , z ~ ( t ) ,  the length transformation was defined as 

ECG. 

(4.32) 

where w is the width of the time window over which the integration is performed. In 
essence, the procedure computes the total squared derivative of the signals across the 
various channels available, and integrates the summed quantity over a moving time 
window. The advantage of applying the derivative-based operator across multiple 
channels of an ECG signal is that the P and T waves may be well-defined in at least 
one channel. 

In the procedure for waveform detection proposed by Gritzali et al., the QRS is 
first detected by applying a threshold to L(N,  w ,  t ) ,  with w set equal to the average 
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Figure 4.18 Illustration of the results at various stages of the Hengeveld and van Bemmel 
method for P wave detection. From top to bottom: (a) the original ECG signal; (b) after 
replacement of the QRS with the base-line; (c) after bandpass filtering; (d) after rectification, 
with the dashed lines indicating the thresholds; (e) the thresholded ternary signal; (f) the 
ternary P wave template; and (g) result of cross-correlation between the signals in (e) and (0. 
Reproduced with permission from S.J. Hengeveld and J.H. van Bemmel, Computer detection 
of P waves, Computers and Biomedical Research, 9:125-132, 1976. @Academic Press. 
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QRS width. The onset and offset (end) points of the QRS are represented by a pulse 
waveform, as indicated in Figure 4.19. The QRS complexes in the signals are then 
replaced by the iso-electric base-line of the signals, the procedure is repeated with 
w set equal to the average T duration, and the T waves are detected. The same 
steps are repeated to detect the P waves. Figure 4.19 illustrates the detection of the 
QRS, T, and P waves in a three-channel ECG signal. Gritzali et al. also proposed a 
procedure based upon correlation analysis and least-squares modeling to determine 
the thresholds required, which will not be described here. 
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Figure 4.19 Detection of the P, QRS, and T waves in a three-channel ECG signal using the 
length transformation. The lower three traces show the three ECG channels. The upper three 
traces indicate the onset and end of the P, QRS, and T waves detected by the procedure in the 
form of pulse trains. The first P and the last T waves have not been processed. Reproduced 
with permission from F. Gritzali, G. Frangakis, G. Papakonstantinou, Detection of the P and T 
waves in an ECG, Computers and Biomedical Research, 22:83-91, 1989. @Academic Press. 
See Willems et al. [ 109, 1 101 for details on the ECG database used by Gritzali et al. 

Next Page



212 EVENT DETECTION 

4.8 HOMOMORPHIC FILTERING AND THE COMPLEX CEPSTRUM 

In Chapter 3, we have seen linear filters designed to separate signals that were 
added together. The question asked has been, given ~ ( t )  = z ( t )  + q( t ) ,  how 
could one extract z ( t )  only. Given that the Fourier transform is linear, we know 
that the Fourier transforms of the signals are also combined in an additive manner: 
Y ( w )  = X ( w )  +v(w) .  Therefore, a linear filter will facilitate the separation of X ( w )  
and ~ ( w ) ,  with the assumption that they have significant portions of their energies in 
different frequency bands. 

Suppose now that we are presented with a signal that contains the product of two 
signals, say, ~ ( t )  = z ( t )  p ( t ) .  From the multiplication or convolution property of the 
Fourier transform we have Y ( w )  = X ( w )  * P(w),  where * represents convolution in 
the frequency domain. How would we be able to separate z ( t )  from p ( t ) ?  

Furthermore, suppose we have ~ ( t )  = z ( t )  * h( t ) ,  where * stands for convolution 
as in the case of the passage of the glottal pulse train or random excitation z ( t )  through 
the vocal-tract system with the impulse response h( t ) .  The Fourier transforms of the 
signals are related as Y(w)  = X ( w )  H ( w ) .  How would we attempt to separate z(t )  
and h(t)? 

4.8.1 Generalized linear filtering 

Given that linear filters are well established and understood, it is attractive to con- 
sider extending their application to signals that have been combined by operations 
other than addition, especially by multiplication and convolution as indicated in the 
preceding paragraphs. An interesting possibility to achieve this is via conversion of 
the operation combining the signals into addition by one or more transformations. 
Under the assumption that the transformed signals occupy different portions of the 
transform space, linear filters may be applied to separate them. The inverses of the 
transformations used initially would then take us back to the original space of the 
signals. This approach was proposed in a series of papers by Bogert et al. [ 11 11 
and Oppenheim et al. [ 1 12, 1 131. As the procedure extends the application of linear 
filters to multiplied and convolved signals, it has been referred to as generalized 
linearjltering. Furthermore, as the operations can be represented by algebraically 
linear transformations between the input and output vector spaces, they have been 
called homomorphic systems. 

As a simple illustration of a homomorphic system for multiplied signals, consider 
again the signal 

V ( t )  = Z ( t ) P ( t ) .  (4.33) 

Given the goal of converting the multiplication operation to addition, it is evident 
that a simple logarithmic transformation is appropriate: 

Previous Page
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The logarithms of the two signals are now combined in an additive manner. Taking 
the Fourier transform, we get 

X ( w )  = Xr(w)  + S ( w ) ,  (4.35) 

where the subscript 1 indicates that the Fourier transform has been applied to a 
log-transformed version of the signal. 

Assuming that the logarithmic transformation has not affected the separability of 
the Fourier components of the two signals m ( t )  and p ( t ) ,  a linear filter (lowpass, 
highpass, etc.) may now be applied to X ( w )  to separate them. An inverse Fourier 
transform will yield the filtered signal in the time domain. An exponential operation 
will complete the reversal procedure (if required). 

Figure 4.20 illustrates the operations involved in a multiplicative homomorphic 
system (or filter). The symbol at the input or output of each block indicates the 
operation that combines the signal components at the corresponding step. A system 
of this type is useful in image processing, where an image may be treated as the 
product of an illumination function and a transmittance or reflectance function. The 
homomorphic filter facilitates separation of the illumination function and correction 
for nonuniform lighting. The method has been used to achieve simultaneous dynamic 
range compression and contrast enhancement [86, 114, 1121. 

4.8.2 Homomorphic deconvolution 

Problem: Propose a homomorphic filter to separate two signals that have been 
combined through the convolution operation. 

Solution: Consider the case expressed by the relation 

y ( t )  = z ( t )  * h(t) .  (4.36) 

As in the case of the multiplicative homomorphic system, our goal is to convert 
the convolution operation to addition. From the convolution property of the Fourier 
transform, we know that 

Thus application of the Fourier transform converts convolution to multiplication. 
Now, it is readily seen that the multiplicative homomorphic system may be applied 
to convert the multiplication to addition. Taking the complex logarithm of Y ( w ) ,  we 
have 

Y ( w )  = X ( w )  H(w) .  (4.37) 
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A linear filter may now be used to separate the transformed components of o and 
h, with the assumption as before that they are separable in the transform space. A 
series of the inverses of the transformations applied initially will take us back to the 
original domain. 

While the discussion here has been in terms of application of the Fourier transform, 
the general formulation of the homomorphic filter by Oppenheim and Schafer [86] 
is in terms of the t-transform. However, the Fourier transform is equivalent to the 
z-transform evaluated on the unit circle in the z-plane, and the Fourier transform is 
more commonly used in signal processing than the z-transform. 

Figure 4.21 gives a block diagram of the steps involved in a homomorphic filter 
for convolved signals. Observe that the path formed by the first three blocks (the top 
row) transforms the convolution operation at the input to addition. The set of the 
last three blocks (the bottom row) performs the reverse transformation, converting 
addition to convolution. The filter in between thus deals with (transformed) signals 
that are combined by simple addition. 

4.8.3 Extraction of the vocal-tract response 

Problem: Design a homomorphic filter to extract the basic wavelet corresponding 
to the vocal-tract response from a voiced-speech signal. 

Solution: We noted in Section 1.2.1 1 that voiced speech is generated by excitation 
of the vocal tract, as it is held in a particular form, with a glottal waveform that may 
be approximated as a series of pulses. The voiced-speech signal may therefore be 
expressed in discrete-time terms as y(n) = s(n) * h(n) ,  where y(n) is the speech 
signal, z(n)  is the glottal waveform (excitation sequence), and h(n)  is the impulse 
response of the vocal tract (basic wavelet). The * symbol represents convolution, 
with the assumption that the vocal-tract filter may be approximated by a linear, shift- 
invariant filter. We may therefore use the homomorphic filter for convolved signals 
as introduced in the preceding section to separate h(n) and e(n).  

The glottal excitation sequence may be further expressed as e(n) = p ( n )  * 
g(n), where p(n) is a train of ideal impulses (Dirac delta functions) and g(n)  is a 
smoothing function, to indicate that the physical vocal-cord system cannot produce 
ideal impulses but rather pulses of finite duration and slope [86]. This aspect will be 
neglected in our discussions. 

Practical application of the homomorphic filter is not simple. Figure 4.22 gives 
a detailed block diagram of the procedure [86, 1151. Some of the finer details and 
practical techniques are explained in the following paragraphs. 

The complex cepstrum: The formal definition of the complex cepstrum states 
that it is the inverse z-transform of the complex logarithm of the z-transform of 
the input signal [115, 861. (The name “cepstrum” was derived by transposing the 
syllables of the word “spectrum”; other transposed terms [ 1 1 1, 86, 1 151 are less 
commonly used.) If y(n) is the input signal and Y (z) is its z-transform, the complex 
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cepstrum $(n) is defined as 

$(n)  = - / log[Y(z)] z"-l dz. 
2n j 

(4.39) 

The contour integral performs the inverse %-transform, and should be evaluated within 
an annular region in the complex z-plane where Y ( z )  = log[Y(z)] is single-valued 
and analytic [86, 21. The unit of n in $(TI), that is, in the cepstral domain, is often 
referred to as quefrency, a term obtained by switching the syllables in the term 
frequency. 

Given y(n) = z(n) * h(n), it follows that 

Y ( z )  = X ( z )  + r i ( z )  or Y ( w )  = X ( w )  + f i ( w ) ,  (4.40) 

and further that the complex cepstra of the signals are related simply as 

g(n) = o(n) + k(n). (4.41) 

Here, the A symbol over a function of z or w indicates the complex logarithm of 
the corresponding function of z or w, whereas the same symbol over a function 
of time (n) indicates the complex cepstrum of the corresponding signal. It should 
be noted that if the original signal y(n) is real, its complex cepstrum $(n) is real; 
the prefix complex is used to indicate the fact that the preceding z and logarithmic 
transformations are computed as complex functions. Furthermore, it should be noted 
that the complex cepstrum is a function of time. 

An important consideration in the evaluation of the complex logarithm of Y ( z )  
or Y ( w )  relates to the phase of the signal. The phase spectrum computed as its 
principal value in the range 0 - 2n, given by tan- [ -1, will almost 
always have discontinuities that will conflict with the requirements of the inverse 
%-transformation or inverse Fourier transform to follow later. Thus Y ( w )  needs to 
be separated into its magnitude and phase components, the logarithmic operation 
applied to the magnitude, the phase corrected to be continuous by adding correction 
factors of f 2 n  at discontinuities larger than IF, and the two components combined 
again before the subsequent inverse transformation. Correcting the phase spectrum 
as above is referred to as phase unwrapping [115,86]. It has been shown that a linear 
phase term, if present in the spectrum of the input signal, may cause rapidly decaying 
oscillations in the complex cepstrum [ 1151. It is advisable to remove the linear phase 
term, if present, during the phase-unwrapping step. The linear phase term may be 
added to the filtered result (as a time shift) if necessary. 

Exponential signals are defined as signals that have a rational %-transform, that is, 
their %-transforms may be expressed as ratios of polynomials in 2. Such signals are 
effectively represented as weighted sums of exponentials. A few important properties 
of the complex cepstrum of an exponential signal are summarized below [86]. 

1 ima inary Y w 

0 g(n) will be of infinite duration even if ~ ( n )  is of finite duration, and exists for 
--oo < n < 00 in general. 
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0 The complex cepstrum $(n)  decays at least as fast as t. 
0 If y(n) is a minimum-phase signal (that is, it has all of its poles or zeros inside 

the unit circle in the z-plane), then $(n) = 0 for n < 0. 

0 If ~ ( n )  is a maximum-phase signal (that is, it has no poles or zeros inside the 
unit circle in the z-plane), then $(n) = 0 for n > 0. 

Limiting ourselves to causal signals of finite energy, we need not consider the 
presence of poles on or outside the unit circle in the z-plane. However, the z-transform 
of a finite-energy signal may have zeros outside the unit circle. Such a composite 
signal may be separated into its minimum-phase component and maximum-phase 
component by extracting the causal part (n > 0) and anti-causal part (n < 0), 
respectively, of its complex cepstrum, followed by the inverse procedures. The 
composite signal is equal to the convolution of its minimum-phase component and 
maximum-phase component. (See also Section 5.4.2.) 

Effect of echoes or repetitions of a wavelet: Let us consider a simplified signal 
~ ( n )  = z(n) * h(n), where 

z(n)  = 6(n) + a6(n - no), (4.42) 

with a and no being two constants. (The sampling interval T is ignored, or assumed 
to be normalized to unity in this example.) The signal may also be expressed as 

g(n) = h(n) + ah(n - no). (4.43) 

The signal thus has two Occurrences of the basic wavelet h(n) at n = 0 and n = no. 
The coefficient a indicates the magnitude of the second appearance of the basic 
wavelet (called an echo in seismic applications), and no indicates its delay (pitch 
in the case of a voiced-speech signal). The top-most plot in Figure 4.23 shows a 
synthesized signal with a wavelet and an echo at half the amplitude (that is, a = 0.5) 
of the first wavelet arriving at no = 0.01125 8 .  

Taking the z-transform of the signal, we have 

Y ( z )  = (1 + az-"")H(z). (4.44) 

If the s-transform is evaluated on the unit circle, we get the Fourier-transform-based 
expression 

(4.45) 

Taking the logarithm, we have 

Y(w)  = [l + a  exp(-jwno)]H(w). 

P ( w )  = &(w) + Iog[l+ a exp(-jwno)]. 

If a < 1, the log term may be expanded in a power series, to get 

P(w)  = &(w) + a exp(-jwno) - - exp(-2jwno) + - exp(-3jwno) - * - .  . 
(4.47) 

(4.46) 

a' a8 
2 3 
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Figure 4.23 From top to bottom: a composite signal with a wavelet and an echo; the complex 
cepstrum of the signal (the amplitude axis has been stretched to make the peaks at the echo 
time and its multiples more readily visible; values outside the range f1.5 have been clipped); 
the basic wavelet extracted by shortpass filtering the cepstrum; and the excitation sequence 
extracted by longpass filtering the cepstrum. 



Taking the inverse Fourier transform, we get 
a’ a3 
2 

g(n) = h(n) + aS(n - no) - - S(n - 2no) + 7 6(n - 3no) - * * . (4.48) 

The derivation above shows that the complex cepstrum of a signal with a basic 
wavelet and an echo is equal to the complex cepstrum of the basic wavelet plus a 
series of impulses at the echo delay and integral multiples thereof [115, 861. The 
amplitudes of the impulses are proportional to the echo amplitude (the factor a) and 
decay for the higher-order repetitions (if a < 1). It may be readily seen that if 
the signal has multiple echoes or repetitions of a basic wavelet, the cepstrum will 
possess multiple impulse trains, with an impulse at the arrival time of each wavelet 
and integral multiples thereof. In the case of a voiced-speech signal, the location of 
the first peak will give the pitch. The second plot in Figure 4.23 shows the complex 
cepstrum of the signal in the first plot of the same figure. It is seen that the cepstrum 
has a peak at 0.01125 s, the echo amval time; a smaller (negative) peak is also seen 
at twice the echo arrival time. 

Under the assumption that the complex cepstrum of the basic wavelet decays 
to negligible values before the first impulse a S ( n  - no) related to the echo, h(n) 
may be extracted from the complex cepstrum g(n) of the composite signal by a 
simple window that has unit value for In( < n,, n, being the cutoff point. (This 
filter is sometimes referred to as a “shortpass” filter as the cepstrum is a function 
of time; it might also be called a lowpass filter.) The inverse procedures will yield 
h(n).  The remaining portion of the cepstrum (obtained by “longpass” or highpass 
filtering) will give 2(n),  which upon application of the inverse procedures will yield 
s(n) .  The third and fourth plots in Figure 4.23 show the basic wavelet h(n) and the 
excitation sequence z(n)  extracted by filtering the cepstrum with the cutoff point at 
n, = 0.005 s. 

In the case where a >_ 1, it can be shown that the complex cepstrum will have 
a train of impulses on its negative time axis, that is, at (n + kno), k = 1,2,. . . 
[ 115, 861. An appropriate exponential weighting sequence may be used to achieve 
the condition a < 1, in which case the impulse train will appear on the positive axis 
of the cepstrum. If the weighted signal satisfies the minimum-phase condition, the 
cepstrum will be causal. 

The power cepstrum: Several variants of the cepstrum have been proposed in 
the literature; Childers [ 1 151 provides a review’of the related techniques. One variant 
that is commonly used is the real cepsrrum or thepower cepstrum, which is defined as 
the square of the inverse z-transform of the logarithm of the squared magnitude of the 
z-transform of the given signal. In practice, the z-transform in the definition stated 
is replaced by the FFT. The power cepstrum has the computational advantage of not 
requiring phase unwrapping, but does not facilitate separation of the components of 
the signal. 

By evaluating the inverse z-transform on the unit circle in the z-plane, the power 
cepstrum GP(n) of a signal g ( n )  may be defined as 

2n j (4.49) 
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If, as before, we consider y(n) = z(n) * h(n), we have IY(a)12 = I X ( Z ) ~ ~ ~ H ( Z ) ~ ~ ,  
and it follows that log lY(z)I2 = log I X ( Z ) ( ~  + log lH(z)I2.  Applying the inverse 
a-transform to this relationship, we get 

Y p ( 4  = W ) + & h 4 7  (4.50) 

where hp(n) is the power cepstrum of the basic wavelet and $p(n) is the power 
cepstrum of the excitation signal, Note that in the above equation the cross-product 
term was neglected; the cross-term will be zero if the two component power cepstra 
occupy non-overlapping quefrency ranges. The final squaring operation in Equa- 
tion 4.49 is omitted in some definitions of the power cepstrum; in such a case, the 
cross-term does not arise, and Equation 4.50 is valid. 

The power cepstrum does not retain the phase information of the original signal. 
However, it is useful in the identification of the presence of echoes in the signal, and 
in the estimation of their arrival times. The power cepstrum is related to the complex 
cepstrum as [ 1 151 

(4.5 1) 

Let us again consider the situation of a signal with two occurrences of a basic 

$ p W  = [fib) + O(-n)l2. 

wavelet h(n) and n = 0 and n = no as in Equations 4.42 and 4.43. Then [115], 

I Y ( Z ) ~ ~  = lH(z)1211 + az-"0l2. (4.52) 

By taking the logarithm of both sides of the equation and substituting z = exp(jw), 
we get 

log ly(w)12 = log I H ( u ) ( ~  + log[l+ u2 + 2 a  cos(wno)] 

= log l ~ ( w ) l ~  + log(l+ a') 

(4.53) 

It is now seen that the logarithm of the PSD of the signal will have sinusoidal 
components (ripples) due to the presence of an echo. The amplitudes and frequencies 
of the ripples are related to the amplitude a of the echo and its time delay no. 

Illustration of application: A voiced-speech signal y ( n )  is the result of convo- 
lution of a slowly varying vocal-tract response h(n) with a relatively fast-varying 
glottal pulse train z(n): y ( n )  = z(n) * h(n).  Under these conditions, it may be 
demonstrated that the contributions of h(n) to the complex cepstrum $(n) will be 
limited to low values of n within the range of the pitch period of the speech signal 
[86] .  The complex cepstrum $(n) will possess impulses at the pitch period and 
integral multiples thereof. Therefore, a filter that selects a portion of the complex 
cepstrum for low values of n, followed by the inverse transformations, will yield an 
estimate of h(n). 

When the repetitions of the basic wavelet have magnitudes almost equal to (or 
even greater than) that of the first wavelet in the given signal record, the contributions 
of the pulse-train component to the complex cepstrum may not decay rapidly and 
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may cause aliasing artifacts when the cepstrum is computed over a finite duration. A 
similar situation is caused when the delay between the occurrences of the multiple 
versions of the basic wavelet is a significant portion of the duration of the given 
signal. The problem may be ameliorated by applying an exponential weight a" to 
the data sequence, with a < 1. Childers et al. [115] recommended values of a 
in the range 0.99 - 0.96, depending upon the signal characteristics as listed above. 
Furthermore, they recommend appending or padding zeros to the input signal to 
facilitate computation of the cepstrum to a longer duration than the signal in order to 
avoid aliasing errors and ambiguities in time-delay estimates. (See Figure 4.22 for 
an illustration of the various steps in homomorphic filtering of convolved signals.) 

Figure 4.24 illustrates a segment of a voiced-speech signal (extracted from the 
signal shown in Figure 1.30) and the basic wavelet extracted by shortpass filtering 
of its complex cepstrum with nc = 0.003125 8 .  The signal was padded with zeros 
to twice its duration; exponential weighting with a = 0.99 was used. It is seen that 
the basic vocal-tract response wavelet has been successfully extracted. Extraction of 
the vocal-tract response facilitates spectral analysis without the effect of the quasi- 
periodic repetitions in the speech signal. 

The fourth trace in Figure 4.24 shows the glottal (excitation) waveform extracted 
by longpass filtering of the cepstrum with the same parameters as in the preceding 
paragraph. The result shows impulses at the time of arrival of each wavelet in the 
composite speech signal. The peaks are decreasing in amplitude due to the use of 
exponential weighting (with a = 0.99) prior to computation of the cepstrum. Inverse 
exponential weighting can restore the pulses to their original levels; however, the 
artifact at the end of the excitation signal gets amplified to much higher levels than 
the desired pulses due to progressively higher values of a-" for large n. Hence the 
inverse weighting operation was not applied in the present illustration. Regardless, 
the result indicates that pitch information may also be recovered by homomorphic 
filtering of voiced-speech signals. 

4.9 APPLICATION: ECG RHYTHM ANALYSIS 

Problem: Describe a method to measure the heart rate and average RR interval 
from an ECG signal. 

Solution: Algorithms for QRS detection such as the Pan-Tompkins method de- 
scribed in Section 4.3.2 are useful for ECG rhythm analysis or heart-rate monitoring. 
The output of the final smoothing filter could be subjected to a peak-searching al- 
gorithm to obtain a time marker for each QRS or ECG beat. The search procedure 
proposed by Pan and Totnpkins was explained in Section 4.3.2. The intervals be- 
tween two such consecutive markers gives the RR interval, which could be averaged 
over a number of beats to obtain a good estimate of the inter-beat interval. The heart 
rate may be computed in bpm as 60 divided by the average RR interval in seconds. 
The heart rate may also be obtained by counting the number of beats detected over a 
certain period, say 10 s, and multiplying the result with the required factor (6 in the 
present case) to get the number of beats over one minute. 
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Figure 4.24 From top to bottom: a segment of a voiced-speech signal over six pitch periods 
(extracted from the signal shown in Figure 1.30 and lowpass filtered); the complex cepstrum 
of the signal (the amplitude axis has been stretched to make the peaks at the echo time 
and its multiples more readily visible; values outside the range f l . O  have been clipped); 
the (shifted) basic wavelet extracted by shortpass filtering the cepstrum; and the excitation 
sequence extracted by longpass filtering the cepstrum. 
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The upper plot in Figure 4.25 shows a filtered version of the noisy ECG signal 
shown in Figure 3.5. The noisy signal was filtered with an eighth-order Butterworth 
lowpass filter with a cutoff frequency of 90 Hz, and the signal was down-sampled 
by a factor of five to an effective sampling rate of 200 Hz. The lower plot shows the 
output of the Pan-Tompkins method. The Pan-Tompkins result was normalized by 
dividing by its maximum over the data record available (as the present example was 
computed off-line). A fixed threshold of 0.1 and a blanking interval of 250 me was 
used in a simple search procedure, which was successful in detecting all the beats in 
the signal. (The blanking interval indicates the period over which threshold checking 
is suspended once the threshold has been crossed.) The average RR interval was 
computed as 716 ms, leading to an effective heart rate of 84 bpm. 
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Figure 4.25 Results of the Pan-Tompkins algorithm. Top: lowpass-filtered version of the 
ECG signal shown in Figure 3.5. Bottom: normalized result of the final integrator. 

Results at the various stages of the Pan-Tompkins algorithm for a noisy ECG signal 
sampled at 200 Hz are shown in Figure 4.26. The bandpass filter has efficiently 
removed the low-frequency artifact in the signal. The final output has two peaks that 
are much larger than the others: one at the beginning of the signal due to filtering 
artifacts, and one at about 7.5 s due to an artifact in the signal. Furthermore, the 
output has two peaks for the beat with an artifact at 7.5 s. The simple peak-searching 
procedure as explained in the previous paragraph was applied, which resulted in the 
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detection of 46 beats: one more than the 45 present in the signal due to the artifact at 
about 7.5 8. The average RR interval was computed to be 446.6 ms, leading to an 
effective heart rate of 137 6pm. 

The illustration demonstrates the need for prefiltering the ECG signal to remove 
artifacts and the need to apply an adaptive threshold to the output of the Pan-Tompkins 
algorithm for QRS detection. It is readily seen that direct thresholding of the original 
ECG signal will not be successful in detecting all of the QRS complexes in the signal. 
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Figure 4.26 Results of the Pan-Tompkins algorithm with a noisy ECG signal. From top to 
bottom: ECG signal sampled at 200 Hz; output of the bandpass filter (BPF); output of the 
derivative-based operator; the result of squaring; and normalized result of the final integrator. 

4.10 APPLICATION: IDENTIFICATION OF HEART SOUNDS 

Problem: Outline a signal processing algorithm to identify S1 and S2 in a PCG 
signal, and further segment the PCG signal into its systolic and diastolic parts. The 
ECG and carotid pulse signals are available for reference. 

Solution: We saw in Section 2.3 how the ECG and carotid pulse signals could be 
used to demarcate the onset of S1 and S2 in the PCG; the procedure, however, was not 
based upon signal processing but upon visual analysis of the signals. We have, in the 
present chapter, developed signal processing techniques to detect the QRS complex 
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in the ECG and the dicrotic notch in the carotid pulse signal. We may therefore use 
these methods to transfer the timing information from the ECG and carotid pulse 
signals to the PCG signal. In order to perform this task, we need to recognize a few 
timing relationships between the signals [41,66]. 

The beginning of S 1 may be taken to be the same instant as the beginning of the 
QRS. The QRS itself may be detected using one of the three methods described in 
the present chapter, such as the Pan-Tompkins method. 

Detection of the beginning of S2 is more involved. Let the heart rate be H R  bpm. 
The pre-ejection period PEP is defined as the interval from the beginning of the 
QRS to the onset of the corresponding carotid upstroke. The rate-corrected PEP 
is defined as PEPC = PEP + 0.4HR, with the periods in ms. PEPC is in the 
range of 131 f 13 ms for normal adults [41]. 

The ejection time ET is the interval from the onset of the carotid upstroke to the 
dicrotic notch. The rate-corrected ejection time in ms is ETC = ET + 1.6HR, and 
is in the ranges of 395 f 13 ms for normal adult males and 415 f 11 ms for normal 
adult females. 

Using PEPC,,, = 144 ms and HR,i, = 60 bpm, we get PEP,, = 120 me. 
With HRmi, = 60 bpm and ETC,, = 425 me, we get ET,, = 325 ms. With 
these parameters, the maximum interval between the QRS and the dicrotic notch is 
380 ms. The procedure proposed by Lehner and Rangayyan [66] for detection of 
the dicrotic notch recommends searching the output of the derivative-based method 
described in Section 4.3.3 in a 500 ms interval after the QRS. After the dicrotic notch 
is detected, we need to subtract the time delay between the beginning of S2 and D 
to get the time instant where S2 begins. Lehner and Rangayyan 1661 measured the 
average S2 - D delay over the PCG and carotid pulse signals of 60 patients to be 
42.6 ms, with a standard deviation of 5.0 ms. 

The following procedure may be used to segment a PCG signal into its systolic 
and diastolic parts. 

1. Use the Pan-Tompkins method described in Section 4.3.2 to locate the QRS 
complexes in the ECG. 

2. Identify one period of the PCG as the interval between two successive QRS 
locations. Note that any delay introduced by the filters used in the Pan- 
Tompkins method needs to be subtracted from the detected peak locations to 
obtain the starting points of the QRS complexes. 

3. Use the Lehner and Rangayyan method described in Section 4.3.3 to detect the 
dicrotic notch in the carotid pulse signal. 

4. Let the standardized S2 - D delay be the mean plus two standard deviation 
values as reported by Lehner and Rangayyan [66], that is, 52.6 me. Subtract 
the standardized S2 - D delay from the detected dicrotic notch location to 
obtain the onset of S2. 

5.  The S1 - S2 interval gives the systolic part of the PCG cycle. 
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6. The interval between the S2 point and the next detected S 1 gives the diastolic 
part of the PCG cycle. 

Figures 4.27 and 4.28 illustrate the results of application of the procedure de- 
scribed above to the PCG, ECG, and carotid pulse signals of a normal subject and a 
patient with a split S2, systolic ejection murmur, and opening snap of the mitral valve. 
(Clinical diagnosis indicated the possibility of ventricular septa1 defect, pulmonary 
stenosis, or pulmonary hypertension for the 14-month-old female patient with mur- 
mur.) The peak positions detected in the output of the Pan-Tompkins method (the 
third trace in each figure) and the output of the Lehner and Rangayyan method (the 
fifth trace) have been marked with the * symbol. A simple threshold of 0.75 times 
the maximum value was used as the threshold to detect the peaks in the output of the 
Pan-Tompkins method, with a blanking interval of 250 ms. 

The QRS and D positions have been marked on the ECG and carotid pulse traces 
with the triangle and diamond symbols, respectively. Finally, the S 1 and S2 positions 
are marked on the PCG trace with triangles and diamonds, respectively. The filter 
delays and timing relationships between the three channels of signals described 
previously have been accounted for in the process of marking the events. Note 
how the results of event detection in the ECG and carotid pulse signals have been 
transferred to locate the corresponding events in the PCG. Lehner and Rangayyan [66] 
used a similar procedure to break PCG signals into systolic and diastolic segments; 
the segments were then analyzed separately in the time and frequency domains. (See 
also Sections 6.4.5 and 7.9.) 

4.1 1 APPLICATION: DETECTION OF THE AORTIC COMPONENT OF 
THE SECOND HEART SOUND 

Heart sounds are preferentially transmitted to different locations on the chest. The 
aortic and pulmonary components A2 and P2 of S2 are best heard at the aortic area (to 
the right of the sternum, in the second right-intercostal space) and the pulmonary area 
(left parasternal line in the third left-intercostal space), respectively (see Figure 1.17). 
A2 is caused by the closure of the aortic valve at the end of systole, and is usually 
louder than P2 at all locations on the chest. Earlier theories on the genesis of heart 
sounds attributed the sounds to the opening and closing actions of the valve leaflets 
per se. The more commonly accepted theory at the present time is that described by 
Rushmer [23]; see Section 1.2.8. 

The relative timing of A2 and P2 depends upon the pressure differences across 
the corresponding valves in  the left and right ventricular circulatory systems. In a 
normal individual, the timing of P2 with reference to A2 varies with respiration; 
the timing of A2 itself is independent of respiration. The pulmonary pressure (in- 
trathoracic pressure) is decreased during inspiration, leading to a delayed closure of 
the pulmonary valve and hence an increased (audible and visible) gap between A2 
and P2 [23, 41, 421. The gap is closed and A2 and P2 overlap during expiration 
in normal individuals. A2 and P2 have individual durations of about 50 ms. The 
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Figure 4.27 Results of segmentation of a PCG signal into systolic and diastolic parts using the 
ECG and carotid pulse signals for reference. From top to bottom: the PCG signal of a normal 
subject (male subject, 23 years); the ECG signal; y(n), the output of the Pan-Tompkins method 
for detection of the QRS after normalization to the range (0 , l ) ;  the carotid pulse signal; s (n) ,  
the output of the Lehner and Rangayyan method for detection of the dicrotic notch, normalized 
to the range (0 , l ) .  The peaks detected in the outputs of the two methods have been identified 
with * marks. The QRS and D positions have been marked with the triangle and diamond 
symbols, respectively. The Sl and S2 positions are marked on the FCG trace with triangles 
and diamonds, respectively. The last cardiac cycle was not processed. 
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Figure4.28 Results of segmentation of a PCG signal into systolic and diastolic parts using the 
ECG and carotid pulse signals for reference. From top to bottom: the PCG signal of a patient 
with a split S2, systolic ejection murmur, and opening snap of the mitral valve (female patient, 
14 months); the ECG signal; y(n), the output of the Pan-Tompkins method for detection of 
the QRS; the carotid pulse signal; s(n) ,  the output of the Lehner and Rangayyan method for 
detection of the dicrotic notch. The peaks detected in the outputs of the two methods have 
been identified with * marks. The QRS and D positions have been marked with the triangle 
and diamond symbols, respectively. The S1 and S2 positions are marked on the PCG trace 
with triangles and diamonds, respectively. 
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normal inspiratory gap between A2 and P2 is of the order of 30 - 40 me, although 
splits as long as 100 me have been recorded [41]. 

A split in S2 longer than 40 ms during sustained expiration is considered to be 
abnormal [41]. Complete right bundle-branch block could cause delayed activation 
of the right ventricle, therefore delayed pulmonary valve closure, a delayed P2, and 
hence a widely split S2. Some of the other conditions that cause a wide split in S2 are 
atrial septal defect, ventricular septal defect, and pulmonary stenosis. Left bundle- 
branch block leads to delayed left-ventricular contraction and aortic valve closure 
(with reference to the right ventricle and the pulmonary valve), causing A2 to appear 
after P2, and reversed splitting of the two components. Some of the other conditions 
that could cause reversed splitting of S2 are aortic insufficiency and abnormally early 
pulmonary valve closure. It is thus seen that identification of A2 and P2 and their 
temporal relationships could assist in the diagnosis of several cardiovascular defects 
and diseases. 

MacCanon et al. [ 1 161 conducted experiments on a dog for direct detection and 
timing of aortic valve closure. They developed a catheter with an electrical contacting 
device that could be placed at the aortic valve to detect the exact moment of closure of 
the aortic valve. They also measured the aortic pressure and the PCG at the third left- 
intercostal space. It was demonstrated that the aortic valve closes at least 5 - 13 ms 
before the incisura appears in the aortic pressure wave (see Figure 1.27 and 1.28 
for illustrations of the aortic pressure waves recorded from a dog). The conclusion 
reached was that S2 is caused not by the collision of the valve leaflets themselves, 
but due to the rebound of the aortic blood column and walls after valve closure. 
MacCanon et al. also hypothesized that the relative high-frequency characteristics of 
the incisura and S2 result from elastic recoil of the aortic wall and valve in reaction 
to the distention by the rebounding aortic blood column. 

Stein et al. [117, 1181 conducted experiments in which intracardiac and intra- 
arterial sounds were recorded and analyzed. Their experiments indicated that S2 
begins after the aortic valve closes. They argued that the intensity of S2 depends 
upon, among other factors, the distensibility of the aortic and pulmonary valves; 
hemodynamic factors that cause the valves to distend and vibrate; viscosity of the 
blood and its ability to inhibit diastolic valve motion; and the configuration of the 
aorta, the pulmonary artery, and the ventricles. It was demonstrated that the pul- 
monary valve, due to its larger surface area than that of the aortic valve, is more 
distensible and hence produces a larger sound than the aortic valve even for the same 
pressure gradient across the valve. In the case of pulmonary hypertension, it was 
argued that the pulmonary valve would distend further at a higher speed: the rate 
of development of the diastolic pressure gradient across the closed pulmonary valve 
would be higher than in normal cases. 

Problem: Given that the second heart sound S2 is made up of an aortic component 
A2 and a pulmonary component P2 with variable temporal relationships, propose a 
method to detect only A2. 

Solution: We have seen in the preceding section how the dicrotic notch in the 
carotid pulse signal may be used to detect the beginning of S2. The technique is 
based upon the direct relationship between aortic valve closure and the aortic incisura, 
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and consequently the dicrotic notch, as explained above. Now, if we were to detect 
and segment S2 over several cardiac cycles and several respiratory cycles, we could 
perform synchronized averaging of S2. A2 should appear at the same instant in every 
S2 segment, and should be strengthened by the synchronized averaging process. P2, 
on the other hand, would appear at different times, and should be cancelled out 
(suppressed) by the averaging process. 

Figure 4.29 shows segments of duration 300 rns containing S2 segmented from 
nine successive cardiac cycles of the PCG of a patient with atrial septa1 defect. The 
PCG signal was segmented using the ECG and carotid pulse signals for reference in 
a method similar to that illustrated in Figures 4.27 and 4.28. The PCG signal was 
recorded at the second left-intercostal space, which is closer to the pulmonary area 
than to the aortic area. The nine S2 segments clearly show the fixed timing of A2 
and the variable timing of P2. The last plot is the average of S2 segments extracted 
from 21 successive cardiac cycles. The averaged signal displays A2 very well, while 
P2 has been suppressed. 

The detection of A2 would perhaps have been better, had the PCG been recorded 
at the aortic area, where A2 would be stronger than P2. Once A2 is detected, it could 
be subtracted from each S2 record to obtain individual estimates of P2. Sarkady et 
al. [ 1191, Baranek et al. [ 1201, and Durand et al. [ 1211 proposed averaging techniques 
as above with or without envelope detection (but without the use of the carotid pulse); 
the methods were called aligned ensemble averaging to detect wavelets or coherent 
detection and averaging. 

4.12 REMARKS 

We have now established links between the characteristics of certain epochs in a 
number of biomedical signals and the corresponding physiological or pathological 
events in the biomedical systems of concern. We have seen how derivative-based 
operators may be applied to detect QRS complexes in the ECG signal as well as 
the dicrotic notch in the carotid pulse signal. The utility of correlation and spectral 
density functions in the detection of rhythms and events in EEG signals was also 
demonstrated. We have studied how signals with repetitions of a certain event or 
wavelet, such as a voiced-speech signal, may be analyzed using the complex cepstrum 
and homomorphic filtering. Finally, we also saw how events detected in one signal 
may be used to locate the corresponding events in another signal: the task of detecting 
S 1 and S2 in the PCG was made simpler by using the ECG and carotid pulse signals, 
where the QRS and D waves can be detected more readily than the heart sounds 
themselves. 

Event detection is an important step that is required before we may attempt to 
analyze the corresponding waves or wavelets in more detail. After a specific wave of 
interest has been detected, isolated, and extracted, methods targeted to the expected 
characteristics of the event may be applied for directed analysis of the corresponding 
physiological or pathological event. Analysis of the event is then not hindered or 
obscured by other events or artifacts in the acquired signal. 
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4.13 STUDY QUESTIONS AND PROBLEMS 

1. Prove that the autocorrelation function (ACF) &,(T) of any function z( t )  is maximum 
at T = 0. 
(Hint: Start with E [ { z ( t  + T )  f ~ ( t ) } ~ ]  2 0.) 

2. For a stationary process z, prove that the ACF is even symmetric, that is, & ( T )  = 
&( -T ) .  You may use the expectation or time-average definition of the ACE 

3. Starting with the continuous time-average definition of the ACF, prove that the Fourier 
transform of the ACF is the PSD of the signal. 

4. What are the Fourier-domain equivalents of the autocorrelation function and the cross- 
correlation function? Describe their common features and differences. List their 
applications in biomedical signal analysis. 

5 .  A signal z ( t )  is transmitted through a channel. The received signal y ( t )  is a scaled, 
shifted, and noisy version of z(t )  given as y ( t )  = az(t - t o )  + q(t)  where a is a scale 
factor, t o  is the time delay, and q(t)  is noise. Assume that the noise process has zero 
mean and is statistically independent of the signal process, and that all processes are 
stationary. 
Derive expressions for the mean and the ACF of y ( t )  in terms of the statistics of z and 
rl. 

6. Derive an expression for the ACF of the signal z( t )  = sin(w0t). Use the time-average 
definition of the ACE 
From the ACF, derive an expression for the PSD of the signal. Show all steps. 

7. A rhythmic episode of a theta wave in an EEG signal is approximated by a researcher 
to be a sine wave of frequency 5 H a .  The signal is sampled at 100 H z .  
Draw a schematic representation of the ACF of the episode for delays up to 0.5 8. Label 
the time axis in samples and in seconds. 
Draw a schematic representation of the PSD of the episode. Label the frequency axis 
in H r .  

8. The values of a signal sampled at 100 Hz are given by the series 
{0,0,0,0,10,10,10,0,0,0,0,0,5,5,5,0,0,0,0,0, -3 , -3 , -3 ,0 ,0 ,0 ) .  
An investigator performs template matching with the pattern (0,5,5,5,0}. The first 
sample in each array stands for zero time. 
Plot the output of the template-matching operation and interpret the result. Label the 
time axis in seconds. 

z(n)={0,1,2, l ,O,-1,-2,-1,0}forn=0,1,2 ,..., 8. 
a) Draw a plot of $(TI) .  

b) Compose a signal y (n )  defined as g ( n )  = 3 z ( n )  + 2z(n - 12) - z(n - 24). Draw 
a plot of y(n). 
c) Design a matched filter to detect the presence of z(n) in y(n) .  Explain how the 
impulse response h(n) and the frequency response H ( w )  of the filter are related to 

d) Compute the output of the filter and plot it. Interpret the output of the filter. 
10. A researcher uses the derivative operator (filter) specified as w ( n )  = z(n) - z(n - l), 

where z(n)  is the input and w ( n )  is the output. The result is then passed through the 

9. A biphasic signal z(n) is represented by the series of samples 

z(n). Plot h(n). 
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moving-average filter y(n) = i [ w ( n )  + w(n - 1) + w(n - 2)], where y(n) is the 
final output desired. 
(a) Derive the transfer functions (in the z-domain) of the two filters individually as well 
as that of the combination. 
(b) Does it matter which of the two filters is placed first? Why (not)? 
(c) Derive the impulse response of each filter and that of the combination. Plot the three 
signals. 
(d) The signal described by the samples 
(O,O, . . . ,0,6,6,6,6,6,6,6,6,0,0,. . .) 
is applied to the system. Derive the values of the final output signal. Explain the effect 
of the operations on the signal. 

4.14 LABORATORY EXERCISES AND PROJECTS 

Note: Data files related to the exercises are available at the site 
ftp://ftp.ieee.org/uploads/press/rangay y an/ 

1. Implement the Pan-Tompkins method for QRS detection in MATLAB. You may employ 
a simple threshold-based method to detect QRS complexes as the procedure will be run 
off-line. 
Apply the procedure to the signals in the files ECG3.dat, ECG4.dat, ECGLdat, and 
ECG6.dat, sampled at a rate of 200 Hz (see the file ECGS.m). Compute the averaged 
heart rate and QRS width for each record. Verify your results by measuring the 
parameters visually from plots of the signals. 

2. The files eegl-xx.dat (where xx indicates the channel name) give eight simultaneously 
recorded channels of EEG signals with the alpha rhythm. (You may read the signals 
using the MATLAB program in the file eeg1.m.) The sampling rate is 100 Hr per 
channel. Cut out a portion of a signal with a clear presence of the alpha rhythm for 
use as a template or reference signal. Perform cross-correlation of the template with 
running (short-time) windows of various channels and study the use of the results for 
the detection of the presence of the alpha rhythm. 

3. The files eeg2-xx.dat (where xx indicates the channel name) give ten simultaneously 
recorded channels of EEG signals with spike-and-wave complexes. (You may read the 
signals using the MATLAB program in the file eeg2.m.) The sampling rate is 100 Hz 
per channel. Cut out one spike-and-wave complex from any EEG channel and use it as 
a template. Perform template matching by cross-correlation or by designing a matched 
filter. Apply the procedure to the same channel from which the template was selected 
as well as to other channels. Study the results and explain how they may be used to 
detect spike-and-wave complexes. 

4. The files pecl.dat, pec33.dat, and pec52.dat give three-channel recordings of the PCG, 
ECG, and carotid pulse signals (sampled at 1,000 HI; you may read the signals using 
the program in the file plotpecm). The signals in pecl.dat (adult male) and pec52.dat 
(male subject, 23 years) are normal; the PCG signal in pec33.dat has systolic murmur, 
and is of a patient suspected to have pulmonary stenosis, ventricular septa1 defect, and 
pulmonary hypertension (female, 14 months). 
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Apply the Pan-Tompkins method for QRS detection to the ECG channel and the Lehner 
and Rangayyan method to detect the dicrotic notch in the carotid pulse channel. Ex- 
trapolate the timing information from the ECG and carotid pulse channels to detect the 
onset of S 1 and S2 in the PCG channel. What are the corrections required to compensate 
the delays between the corresponding events in the three channels? 



3 
Analvsis of Waveshape and 

J 

Wavt;fo rm Complexity 

Certain biomedical signals such as the ECG and carotid pulse have simple waveshapes 
(although the QRS wave is often referred to as a “complex”!). The readily identifi- 
able signatures of the ECG and carotid pulse are modified by abnormal events and 
pathological processes. Hence analysis of waveshapes could be useful in diagnosis. 

Signals such as the EMG and the PCG do not have waveshapes that may be iden- 
tified easily. EMG signals are indeed complex interference patterns of innumerable 
SMUAPs. PCG signals represent vibration waves that do not possess specific wave- 
shapes. Regardless, even the complexity of the waveforms in signals such as the 
EMG and the PCG does vary in relation to physiological and pathological phenom- 
ena. Analyzing the waveform complexity of such signals may assist in gaining an 
understanding of the processes they reflect. 

5.1 PROBLEM STATEMENT 

Explain how waveshapes and waveform complexity in biomedical signals relate to 
the characteristics of the underlying physiological and pathological phenomena. 
Propose techniques to parameterize and analyze the signal features you identih. 

As in the preceding chapters, the problem statement given above is generic and 
represents the theme of the present chapter. The following section presents illus- 
trations of the problem with case-studies that provide more specific definitions of 
the problem with a few signals of interest. The remaining sections of the chapter 
describe techniques to address the stated problems. It should be noted again that 
although signal analysis techniques are proposed in the context of specific signals 
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and applications, they should find applications in other fields where signals with 
comparable characteristics and behavior are encountered. 

5.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

5.2.1 The QRS complex In the case of bundle-branch block 

We saw in Section 1.2.4 that the His bundle and its branches conduct the cardiac 
excitation pulse from the AV node to the ventricles. A block in one of the bundle 
branches causes asynchrony between the contraction of the left and the right ven- 
tricles. This, in turn, causes a staggered summation of the action potentials of the 
myocytes of the left and the right ventricles over a longer-than-normal duration. The 
result is a longer and possibly jagged QRS complex, as illustrated by the ECG of a 
patient with right bundle-branch block in Figure 1.15. 

5.2.2 The effect of myocardial Ischemia and infarction on QRS 
waveshape 

Occlusion of a coronary artery or a branch thereof due to deposition of fat, calcium, 
and so on, results in reduced blood supply to a portion of the cardiac musculature. 
The part of the myocardium served by the affected artery then suffers from ischemia, 
that is, lack of blood supply. Prolonged ischemia leads to myocardial infarction, 
when the affected tissue dies. The deceased myocytes cannot contract any more, and 
no longer produce action potentials. 

The action potential of an under-nourished ventricular myocyte reflects altered 
repolarization characteristics: the action potential is of smaller amplitude and shorter 
duration [lo, 1221. The result of the summation of the action potentials of all of the 
active ventricular myocytes will thus be different from the normal QRS complex. 
The primary change reflected in the ECG is a modified ST segment that is either 
elevated or depressed, depending upon the lead used and the position of the affected 
region; the T wave may also be inverted. Chronic myocardial infarction causes a 
return to a normal ST segment, and a pronounced Q wave [23]. 

5.2.3 Ectoplc beats 

Ectopic beats are generated by cardiac tissue that possess abnormal pacing capabil- 
ities. Ectopic beats originating from focal points on the atria could cause altered P 
waveshapes due to different paths of propagation of the excitation pulse and hence 
different activation sequences of atrial muscle units. However, the QRS complex of 
atrial ectopic beats will appear normal as the conduction of the excitation past the 
AV node would be normal. 

Ectopic beats originating on the ventricles (that are necessarily premature beats, 
that is, PVCs) typically possess bizarre QRS waveshapes due to widely differing paths 
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of conduction and excitation of the ventricular muscle units. Figure 1.14 illustrates 
an ECG signal with PVCs. PVCs typically lack a preceding P wave; however, an 
ectopic beat triggered during the normal AV node delay will demonstrate a normal 
preceding P wave. PVCs triggered by ectopic foci close to the AV node may possess 
near-normal QRS shape as the path of conduction may be almost the same as in the 
case of a normal impulse from the AV node. On the other hand, beats triggered by 
ectopic foci near the apex could take a widely different path of propagation, resulting 
in a far-from-normal QRS waveshape. In addition to waveshape, the preceding and 
succeeding RR intervals play important roles in determining the nature of ectopic 
beats. 

5.2.4 EMG interference pattern complexity 

We saw in Section 1.2.3 that motor units are recruited by two mechanisms - spatial 
and temporal recruitment - in order to produce increasing levels of contraction and 
muscular force output. As more and more motor units are brought into action and 
their individual firing rates increase (within certain limits), the SMUAPs of the active 
motor units overlap and produce a complex interference pattern. Figures 1.9 and 
1.10 illustrate an EMG signal obtained from the crural diaphragm of a dog during 
one normal breath cycle. The increasing complexity of the waveform with increasing 
level of the breath is clearly seen in the expanded plot in Figure 1.10. 

Although a surface EMG interference pattern is typically too complex for visual 
analysis, the general increase in the level of activity (“busy-ness”) may be readily 
seen. It is common practice in EMG laboratories to feed EMG signals to an amplified 
speaker: low levels of activity when the SMUAPs are not overlapping (that is, 
separated in time) result in discrete “firing” type of sounds; increasing levels of 
contraction result in increased “chatter” in the sound produced. EMG signals may be 
analyzed to derive parameters of waveform complexity that increase with increasing 
muscular contraction, thereby providing a correlate to mechanical activity that is 
derived from its electrical manifestation. 

5.2.5 PCG intensity patterns 

Although the vibration waves in a PCG signal may not be amenable to direct visual 
analysis, the general intensity pattern of the signal over a cardiac cycle may be 
readily appreciated either by auscultation or visual inspection. Certain cardiovascular 
diseases and defects alter the relative intensity patterns of S 1 and S2, cause additional 
sounds or murmurs, and/or split S2 into two distinct components, as already described 
in Section 1.2.8. While many diseases may cause systolic murmurs, for example, 
the intensity pattern or envelope of the murmur could assist in arriving at a specific 
diagnosis. It should also be noted that definitive diagnosis based on the PCG would 
usually require comparative analysis of PCG signals from a few positions on the chest. 
Figures 1.24, 1.26,2.4,4.27, and 4.28 illustrate PCG signals of a normal subject and 
patients with systolic murmur, split S2, and opening snap of the mitral valve. The 



240 WAVESHAPE AND WAVEFORM COMPLEXIN 

differences in the overall intensity patterns of the signals are obvious. However, 
signal processing techniques are desirable to convert the signals into positive-valued 
envelopes that could be treated as distributions of signal energy over time. Such 
a transformation permits the treatment of signal intensity patterns as PDFs, which 
lends to the computation of various statistical measures and moments. 

5.3 ANALYSIS OF EVENT-RELATED POTENTIALS 

The most important parameter extracted from a visual ERP is the timing or latency 
of the first major positivity; since the average of this latency is about 120 ms for 
normal adults, it is referred to as P120 (see Figure 3.12). The latencies of the troughs 
before and after P120, called N80 and N145, respectively, are also of interest. The 
amplitudes of the ERP at the corresponding instants are of lesser importance. Delays 
in the latencies that are well beyond the normal range could indicate problems in the 
visual system. Asymmetries in the latencies of the left and right parts of the visual 
system could also be indicative of disorders. 

The lowest trace in Figure 3.12 is an averaged flash visual ERP recorded from a 
normal adult male subject. The signal has been labeled to indicate the N80, P120, 
and N145 points, the corresponding actual latencies for the subject being 86,100.7, 
and 117 ms, respectively. 

Auditory ERPs are weaker and more complex than visual ERPs, requiring aver- 
aging over several hundred or a few thousand stimuli. Auditory ERPs are analyzed 
for the latencies and amplitudes of several peaks and troughs. Clinical ERP analysis 
is usually performed manually, there being no pressing need for signal processing 
techniques beyond synchronized averaging. 

5.4 MORPHOLOGICAL ANALYSIS OF ECG WAVES 

The waveshape of an ECG cycle could be changed by many different abnormalities, 
including myocardial ischemia or infarction, bundle-branch block, and ectopic beats. 
It is not possible to propose a single analysis technique that can assist in categorizing 
all possible abnormal causes of change in waveshape. The following subsections 
address a few illustrative cases. 

5.4.1 Correlation coefficient 

Problem: Propose a general index to indicate altered QRS waveshape. You are 
given a normal QRS template, 

Solution: Jenkins et al. [67] applied the correlation coefficient ̂ fey as defined 
in Equation 4.21 to classify ECG cycles as normal beats or beats with abnormal 
morphology. A normal beat was used as a template to compute rsU for each detected 
beat. They found that most normal beats possessed yzy values above 0.9, and that 
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PVCs and beats with abnormal shape had considerably lower values. A threshold 
of 0.9 was used to assign a code to each beat as 0:abnormal or 1:normal in terms 
of waveshape. Figure 2.2 shows an ECG signal with five abnormal beats that have 
the first symbol in the 4-symbol code as 0, indicating an abnormal shape due to 
generation by an ectopic focus or due to aberrant conduction of a pulse generated by 
the SA node. The normal beats have the first symbol of the code as 1, indicating a 
high correlation with the normal template. 

5.4.2 The minimum-phase correspondent and signal length 

The normal ECG signal contains epochs of activity where the signal’s energy is 
concentrated. Discounting the usually low-amplitude P and T waves, most of the 
energy of a normal ECG signal is concentrated within an interval of about 80 ms that 
is spanned by the QRS complex. The normally iso-electric PQ, ST, and TP segments 
contain no energy as the signal amplitude is zero over the corresponding intervals. 
We have observed that certain abnormal conditions cause the QRS to widen or the 
ST segment to bear a nonzero value. In such a case, it could be said that the energy of 
the signal is being spread over a longer duration. Let us now consider how we may 
capture this information, and investigate if it may be used for waveshape analysis. 

Problem: Investigate the effect of the distribution of energy over the time axis on 
a signal’s characteristics. Propose measures to parameterize the eflects and study 
their use in the classification of ECG beats. 

Solution: A signal z ( t )  may be seen as a distribution of the amplitude of a 
certain variable over the time axis. The square of the signal, that is, x z ( t ) ,  may be 
interpreted as the instantaneous energy of the signal-generating process. The function 
z 2 ( t ) ,  0 5 t 5 T ,  may then be viewed as an energy distribution or density function, 
with the observation that the total energy of the signal is given by 

T 
E, = z z ( t ) d t .  (5.1) 

Such a representation facilitates the definition of moments of the energy distribution, 
leading to a centroidal time 

s,’ t z 2 ( t ) d t  
s,’ z 2 ( t )  dt ’ 

t* = 

and dispersion of energy about the centroidal time 
, 

J’ ( t  - t2 )2  z 2 ( t )  dt 
s,’ z 2 ( t ) d t  

a;a = O 

(5.2) 

(5.3) 

Observe the similarity between the equations above and Equations 3.1 and 3.3: the 
normalized function 

(5.4) 
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is now treated as a PDE Other moments may also be defined to characterize and 
study the distribution of za(t)  over the time axis. The preceding equations have been 
stated in continuous time for the sake of generality: they are valid for discrete-time 
signals, with a simple change o f t  to n and 1 dt to En. 

Minimum-phase signals: The distribution of the energy of a signal over its dura- 
tion is related to its amplitude spectrum and, more importantly, to its phase spectrum. 
The notion of minimum phase is useful in analyzing related signal characteristics. 
The minimum-phase property of signals may be explained in both the time and 
frequency domains [86, 123, 124, 125, 126, 127, 1021. 

In the time domain, a signal z(n) is a minimum-phase signal if both the signal 
and its inverse zi(n) are one-sided (that is, completely causal or anti-causal) signals 
with finite energy, that is, C:=, z2(n) < 00 and C:=, z:(n) < 00. (Note: The 
inverse of a signal is defined such that z (n )  * zi(n) = d(n); equivalently, we have 
XdZ) = &.) 

Some of the important properties of a minimum-phase signal are: 

0 For a given amplitude spectrum there exists one and only one minimum-phase 
signal. 

0 Of all finite-energy, one-sided signals with identical amplitude spectra, the 
energy of the minimum-phase signal is optimally concentrated toward the 
origin, and the signal has the smallest phase lag and phase-lag derivative at 
each frequency. 

0 The a-transform of a minimum-phase signal has all of its poles and zeros inside 
the unit circle in the a-plane. 

0 The complex cepstrum of a minimum-phase signal is causal (see also Sec- 
tion 4.8.3). 

The extreme example of a minimum-phase signal is the delta function 6(t), which 
has all of its energy concentrated at t = 0. The magnitude spectrum of the delta 
function is real and equal to unity for all frequencies; the phase lag at every frequency 
is zero. 

Minimum-phase and maximum-phase components: A signal z(n) that does 
not satisfy the minimum-phase condition, referred to as a composite signal or a 
mixed-phase signal, may be split into its minimum-phase component and maximum- 
phase component by filtering its complex cepstrum e(n) [86, 115, 1281. To obtain 
the minimum-phase component, the causal part of the complex cepstrum (see Sec- 
tion 4.8.3) is chosen as follows: 

n < O  { I ( n )  n > O  
2,,(n) = 0.52(n) n = O  . (5.5) 

Application of the inverse procedures yields the minimum-phase component z,in (n) .  
Similarly, the maximum-phase component is obtained by application of the inverse 
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procedures to the anti-causal part of the cepstrum, selected as 

The minimum-phase and maximum-phase components of a signal satisfy the follow- 
ing relationships: 

(5.7) s(n) = smin(n) + smex(n)r 

The minimum-phase correspondent (MPC): A mixed-phase signal may be 
converted to a minimum-phase signal that has the same spectral magnitude as the 
original signal by filtering the complex cepstrum of the original signal as 

(5.9) 

and applying the inverse procedures [86, 115, 1281. The result is known as the 
minimum-phase correspondent or MPC of the original signal [102]. The MPC 
will possess optimal concentration of energy around the origin under the constraint 
imposed by the specified magnitude spectrum (of the original mixed-phase signal). 

Observe that & ~ p c ( n )  is equal to twice the even part of S(n) for n > 0. This 
leads to a simpler procedure to compute the MPC, as follows: Let us assume X(z) = 
logX(z) to be analytic over the unit circle in the z-plane. We can write X ( w )  = 
XR(W) + j X r ( w ) ,  where the subscripts R and1 indicate the real and imaginary parts, 
respectively. X R ( W )  and X 1 ( w )  are the log-magnityde and phase spectra of z(n), 
respectively. Now, the inverse Fourier transform of X R ( W )  is equal to the even part 
of S(n), defined as &(n) = [j.(n) + S(-n)] /2 .  Thus we have 

n<O 
(5.10) 

This result means that we do not need to compute the complex cepstrum, which 
requires the unwrapped phase spectrum of the signal, but need only to compute a real 
cepstrum using the log-magnitude spectrum. Furthermore, given that the PSD is the 
Fourier transform of the ACE we have log[FT[q5,,(n)]] = 2 X ~ ( w ) .  It follows that, 
in the cepstral domain, JZZ(n)  = 2i!e(n)9 and therefore [128] 

n<O 
;i .Mpc(n) = 0.5&,(n) n = o , (5.1 1) (" L(.) n > 0 

where &*(n) is the cepstrum of the ACF Qza(n) of z(n). 
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Signal length: The notion of signal length (SL), as introduced by Berkhout [ 1241, 
is different from signal duration. The duration of a signal is the extent of time over 
which the signal exists, that is, has nonzero values (neglecting periods within the 
total signal duration where the signal could be zero). SL relates to how the energy 
of a signal is distributed over its duration. SL depends upon both the magnitude and 
phase spectra of the signal. For one-sided signals, minimum SL implies minimum 
phase; the converse is also true [ 1241. 

The general definition of SL of a signal z(n) is given as [124] 

(5.12) 

where w(n)  is a nondecreasing, positive weighting function with w ( 0 )  = 0. The 
definition of w(n)  depends upon the application and the desired characteristics of 
SL. It is readily seen that samples of the signal away from the origin n = 0 receive 
progressively heavier weighting by w(n) .  The definition of SL as above may be 
viewed as a normalized moment of .’(TI). If w(n) = n, we get the centroidal time 
instant of z2(n) as in Equation 5.2. 

For a given amplitude spectrum and hence total energy, the minimum-phase signal 
has its energy optimally concentrated near the origin. Therefore, the minimum-phase 
signal will have the lowest SL of all signals with the specified amplitude spectrum. 
Signals with increasing phase lag have their energy spread over a longer time duration, 
and will have larger SL due to the increased weighting by w(n).  

Illustration of application: The QRS-T wave is the result of the spatio-temporal 
summation of the action potentials of ventricular myocytes. The duration of normal 
QRS-T waves is in the range of 350 - 400 ms, with the QRS itself limited to about 
80 ms due to rapid and coordinated depolarization of the ventricular motor units via 
the Purkinje fibers. However, PVCs, in general, have QRS-Tcomplexes that are wider 
than normal, that is, they have their energy distributed over longer time spans within 
their total duration. This is due to different and possibly slower and disorganized 
excitation sequences triggering the ventricular motor units: ectopic triggers may 
not get conducted through the Purkinje system, and may be conducted through the 
ventricular muscle cells themselves. Furthermore, PVCs do not, in general, display 
separate QRS and T waves, that is, they lack an iso-electric ST segment. 

Regardless of the above distinctions, normal ECG beats and PVCs have similar 
amplitude spectra, indicating that the difference between the signals may lie in their 
phase. SL depends upon both the amplitude spectrum and the phase spectrum of 
the given signal, and parameterizes the distribution of energy over the duration of 
the signal. Based upon the arguments above, Murthy and Rangaraj [lo21 proposed 
the application of SL to classify ECG beats as normal or ectopic (or PVC, along 
with the use of the RR interval to indicate prematurity). Furthermore, to overcome 
ambiguities in the determination of the onset of each beat, they computed the SL of 
the MPC of the ECG signals (segmented so as to include the P, QRS, and T waves 
of each cycle). Use of the MPC resulted in a “rearrangement” of the waves such that 
the dominant QRS wave appeared at the origin in the ME. 
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Figure 5.1 illustrates a normal ECG signal and three PVCs of a patient with 
multiple ectopic foci generating PVCs of widely differing shapes [102]. The figure 
also illustrates the corresponding MPCs and lists the SL values of all the signals. 
The SL values of the MPCs of the abnormal waves are higher than the SL of the 
MPC of the normal signal (see the right-hand column of signals in Figure 5.1). The 
SL values of the original PVCs do not exhibit such a separation from the SL of the 
normal signal (see the left-hand column of signals in Figure 5.1). Ambiguities due to 
the presence of base-line segments of variable lengths at the beginning of the signals 
have been overcome by the use of the MPCs. The MPCs have the most-dominant 
wave in each case at the origin, reflecting a rearrangement of energy or waves so as 
to meet the minimum-phase criteria. 

Figure 5.2 shows plots of the RR intervals and SL values computed using the 
original ECG signals and their MPCs for several beats of the same patient whose 
representative ECG waveforms are illustrated in Figure 5.1 [102]. The SL values 
of the normal signals and the ectopic beats exhibit a significant overlap in the range 
28 - 35 (plot (a) in Figure 5.2). However, the SL values of the MPCs of the PVCs 
are higher than those of the normal beats, which facilitates their classification (plot 
(b) in Figure 5.2). 

Murthy and Rangaraj [lo21 applied their QRS detection method (described in 
Section 4.3.1) to ECG signals of two patients with ectopic beats, and used the 
SL of MPC to classify the beats with a linear discriminant function (described in 
Section 9.4.1). They analyzed 208 beats of the first patient (whose signals are 
illustrated in Figures 5.1 and 5.2): 132 out of 155 normals and 48 out of 53 PVCs 
were correctly classified; one beat was missed by the QRS detection algorithm. 
Misclassification of normal beats as PVCs was attributed to wider-than-normal QRS 
complexes and depressed ST segments in some of the normal beats of the patient 
(see Figure 5.2). The signal of the second patient included 89 normals and 18 PVCs, 
all of which were detected and classified correctly. It was observed that computation 
of the MPC was not required in the case of the second patient: the S L values of the 
original signals provided adequate separation between normal and ectopic beats. The 
segments of normal ECG cycles used by Murthy and Rangaraj included the P wave; 
better results could perhaps be obtained by using only the QRS and T waves since 
most PVCs do not include a distinct P wave and essentially correspond to the QRS 
and T waves in a normal ECG signal. 

It should be noted that the QRS width may be increased by other abnormal condi- 
tions such as bundle-branch block; the definition of SL as above would lead to higher 
SL for wider-than-normal QRS complexes. Furthermore, ST segment elevation or 
depression would be interpreted as the presence of energy in the corresponding time 
interval in the computation of SL. Abnormally large T waves could also lead to SL 
values that are larger than those for normal signals. More sophisticated logic and 
other parameters in addition to SL could be used to rule out these possibilities and 
affirm the classification of a beat as an ectopic beat. 
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Figure 5.1 (a) A normal ECG beat and (b) - (d) three ectopic beats (PVCs) of a patient with 
multiple ectopic foci. (e) - (h) MPCs of the signals in (a) - (d). The SL values of the signals 
are also indicated [ 1021. Note that the abscissa is labeled in samples, with a sampling interval 
of 10 ms. The ordinate is not calibrated. The signals have different durations and amplitudes 
although plotted to the same size. Reproduced with permission from I.S.N. Murthy and M.R. 
Rangaraj, New concepts for PVC detection, IEEE Transactions on Biomedical Engineering, 
26(7):409416, 1979. OIEEE. 
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Figure 5.2 (a) Plot of RR and SL values of several beats of a patient with multiple ectopic 
foci (as in Figure 5.1). (b) Same as (a) but with the SL of the MPCs of the signals. A few 
representative ECG cycles are illustrated. The linear discriminant (decision) function used 
to classify the beats is also shown [ 1021. Reproduced with permission from I.S.N. Murthy 
and M.R. Rangaraj, New concepts for PVC detection, IEEE Transactions on Biomedical 
Engineering, 26(7):409-416, 1979. OIEEE. 
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5.4.3 ECG waveform analysis 

Measures such as the correlation coefficient and SL described in the preceding sub- 
sections provide general parameters that could assist in comparing waveforms. The 
representation, however, is in terms of gross features, and many different waveforms 
could possess the same or similar feature values. Detailed analysis of ECG waveforms 
will require the use of several features or measurements for accurate categorization 
of various QRS complex shapes and correlation with cardiovascular diseases. Since 
the ECG waveform depends upon the lead system used, sets of features may have to 
be derived for multiple-lead ECGs, including as many as 12 leads that are commonly 
used in clinical practice. 

The steps required for ECG waveform analysis may be expressed as [31]: 

1. Detection of ECG waves, primarily the QRS complex, and possibly the P and 

2. Delimitation of wave boundaries, including the P, QRS, and T waves. 

3. Measurement of inter-wave intervals, such as RR, PQ, QT, ST, QQ, and PP 

4. Characterization of the morphology (shape) of the waves. 

The last step above may be achieved using parameters such as the correlation 
coefficient and SL as described earlier, or via detailed measurements of the peaks of 
the P, Q, R, S, and T waves (some could be negative); the durations of the P, Q, R, S, 
QRS, and T waves; and the inter-wave intervals defined above [3 11. The nature of the 
PQ and ST segments, in terms of their being iso-electric or not (in case of the latter, 
as being positive or negative, or elevated or depressed), should also be documented. 
However, a large number of such features would make the development of further 
pattern classification rules difficult. 

Cox et al. [31, 1291 proposed four measures to characterize QRS complexes, 
defined as follows: 

1. Duration - the duration or width of the QRS complex. 

2. Height - the maximum amplitude minus the minimum amplitude of the QRS 
complex. 

3. Ofset - the positive or negative vertical distance from the midpoint of the 
base-line to the center of the QRS complex. The base-line is defined as the 
straight line connecting the temporal boundary points of the QRS complex. 
The center is defined as the midpoint between the highest and lowest bounds 
in amplitude of the QRS complex. 

4. Areu - the area under the QRS waveform rectified with respect to a straight 
line through the midpoint of the base-line. 

Since the measures are independent of time, they are less sensitive to the preceding 
procedures for the detection of fiducial markers. 

T waves. 

intervals. 
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The measures were used to develop a system for arrhythmia monitoring, known 
as “Argus” for Arrhythmia Guard System, for use in coronary-care units. Figure 5.3 
shows the grouping of more than 200 QRS complexes of a patient with multi-focal 
PVCs into 16 dynamic families by Argus using the four features defined above [31]. 
The families labeled 00,01,02,04,06, and 10 were classified as normal beats by 
Argus (163 beats which were all classified as normals by a cardiologist; 91% of the 
normals were correctly labeled by Argus). PVCs of different shapes from more than 
two ectopic foci form the remaining families, with some of them having shapes close 
to those of the patient’s normal sinus beats. Of the 52 beats in the remaining families, 
96% were labeled as PVCs by the cardiologist; Argus labeled 85% of them as PVCs, 
13% as not PVCs, and 2% as border-line beats [129]. Cox et al. [31] summarize one 
of the clinical tests of Argus with over 50,000 beats, some noteworthy points being as 
follows: 85% of 45,364 normal beats detected and classified correctly, with 0.04% 
beats missed; 78% of 4,010 PVCs detected and classified correctly, with 5.3% beats 
missed; and 38 normals (less than 0.1% of the beats) falsely labeled as PVCs. 

5.5 ENVELOPE EXTRACTION AND ANALYSIS 

Signals with complex patterns such as the EMG and PCG may not permit direct 
analysis of their waveshape. In such cases, the intricate high-frequency variations 
may not be of interest; rather, the general trends in the level of the overall activity 
might convey useful information. Considering, for example, the EMG in Figure 1.9, 
observe that the general signal level increases with the level of activity (breathing). As 
another example, the PCG in the case of aortic stenosis, as illustrated in Figure 1.26, 
demonstrates a diamond-shaped systolic murmur: the envelope of the overall signal 
carries important information. Let us therefore consider the problem of extraction of 
the envelope of a seemingly complex signal. 

Problem: Formulate algorithms to extract the envelope of an EMG or PCG signal 
to facilitate analysis of trends in the level of activity or energy in the signal. 

Solution: The first step required in order to derive the envelope of a signal with 
positive and negative deflections is to obtain the absolute value of the signal at each 
time instant, that is, perform full-wave rectification. This procedure will create abrupt 
discontinuities at time instants when the original signal values change sign, that is, at 
zero-crossings. The discontinuities create high-frequency components of significant 
magnitude. This calls for the application of a lowpass filter with a relatively low 
bandwidth in the range of 0 - 10 or 0 - 50 Hz to obtain smooth envelopes of EMG 
and PCG signals. A moving-average filter may be used to perform lowpass filtering, 
leading to the basic definition of a time-averaged envelope as 

(5.13) 

where T, is the duration of the moving-average window. 
In a procedure similar in principle to that described above, Lehner and Ran- 

gayyan [66] applied a weighted MA filter to the squared PCG signal to obtain a 
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Figure 5.3 Use of four features to catalog QRS complexes into one of 16 dynamic families of 
similar complexes enclosed by four-dimensional boxes. The waveforms of typical members of 
each family are shown in the area-versus-offset feature plane. The family numbers displayed 
are in the octal (base eight) system. The families labeled 00,01,02,04,06, and 10 were 
classified as normal beats, with the others being PVCs or border-line beats. Reproduced 
with permission from J.R. Cox, Jr., EM. Nolle, and R.M. Arthur, Digital analysis of the 
electroencephalogram, the blood pressure wave, and the electrocardiogram, Proceedings of 
the IEEE, 60( 10): 1 137-1 164,1972. OIEEE. 



ENVELOPE EXTRACTION AND ANALYSIS 251 

smoothed energy distribution curve E(n)  as 

M 
E(n)  = C z2(n - k + l)~(k), (5.14) 

where z(n) is the PCG signal, w ( k )  = M - k + 1, and M = 32 with the signal 
sampled at 1,024 Hz. Observe that the difference between energy and power is 
simply a division by the time interval being considered, which may be treated as a 
scale factor or ignored. 

The envelope represents the total averaged activity (electrical, acoustic, and so 
on) within the averaging window. An improved filter such as a Bessel filter [26] 
may be required if a smooth envelope is desired. The filter should strike a balance 
between the need to smooth discontinuities in the rectified signal and the requirement 
to maintain good sensitivity to represent relevant changes in signal level or amplitude. 
This procedure is known as envelope detection or amplitude demodulation. A few 
related procedures and techniques are described in the following subsections. 

k = l  

5.5.1 Amplitude demodulation 

Amplitude modulation (AM) of signals for radio transmission involves multiplication 
of the signal z ( t )  to be transmitted by an RF carrier cos(w,t), where wc is the carrier 
frequency. The AM signal is given as y ( t )  = z ( t )  cos(w,t) [ l ,  21. If the exact 
carrier wave used at the transmitting end were available at the receiving end as well 
(including the phase), synchronous demodulation becomes possible by multiplying 
the received signal y(t) with the carrier. We then have the demodulated signal as 

1 1 
2 

z d ( t )  = ~ ( t )  C O S ( ~ , ~ )  = ~ ( t )  cos2(wct) = - z ( t )  + i z ( t )  COS(~W,~) .  (5.15) 

The AM component at 2wc may be removed by a lowpass filter, which will leave us 
with the desired signal ~ ( t ) .  

If z ( t )  is always positive, or aDC bias is added to meet this requirement, it becomes 
readily apparent that the envelope of the AM signal is equal to ~ ( t ) .  An extremely 
simple asynchronous demodulation procedure that does not require the carrier then 
becomes feasible: we just need to follow the envelope of y ( t ) .  Given also that the 
carrier frequency we is far greater than the maximum frequency present in z ( t ) ,  the 
positive envelope of y(t) may be extracted by performing half-wave rectification. A 
lowpass filter with an appropriate time constant to “fill the gaps” between the peaks 
of the carrier wave will give a good estimate of z(t) .  The difference between the 
use of a full-wave rectifier or a half-wave rectifier (that is, the larger gaps between 
the peaks of the carrier wave available after either type of rectification) can be easily 
made up by increasing the time constant of the filter. The main differences between 
various envelope detectors lie in the way the rectification operation is performed, and 
in the lowpass filter used [ I ,  21. 

In a related procedure known as complex demodulation , a given arbitrary signal 
is demodulated to derive the time-varying amplitude and phase characteristics of the 
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signal for each frequency (band) of interest [130, 131, 1321. In this approach, an 
arbitrary signal z ( t )  is expressed as 

z ( t )  = a( t )  cos[fot + $( t ) ]  + zr(t), (5.16) 

where fo is the frequency of interest, a( t )  and $ ( t )  are the time-varying amplitude 
and phase of the component at fo, and zr(t) is the remainder of the signal z( t )  
after the component at fo has been removed. It is assumed that a( t )  and $ ( t )  vary 
slowly in relation to the frequencies of interest. The signal z( t )  may be equivalently 
expressed in terms of complex exponentials as 

In the procedure of complex demodulation, the signal is shifted in frequency by -fo 
via multiplication with 2 exp(-jf,t), to obtain the result y(t) as 

y(t) = exp(-jfot) (5.18) 
1 a( t )  ex~[ j$ ( t ) l+  a(t)ex~{-j[2fot + + ( t ) ] }  + 2zr(t)exp(-jfot)* 

The second term in the expression above is centered at 2f0, whereas the third term is 
centered at fo; only the first term is placed at DC. Therefore, a lowpass filter may be 
used to extract the first term, to obtain the final result yo( t )  as 

yo(t) = a ( t )  exPIjWl.  (5.19) 

The desired entities may then be extracted as a( t )  M Iyo(t)l and $ ( t )  x Ly,( t ) .  
The frequency resolution of the method depends upon the bandwidth of the lowpass 

filter used. The procedure may be repeated at every frequency (band) of interest. The 
result may be interpreted as the envelope of the signal for the specified frequency 
(band). The method was applied for the analysis of HRV by Shin et al. [ 1301 and the 
analysis of heart rate and arterial blood pressure variability by Hayano et al. [ 1311. 

In applying envelope detection to biomedical signals such as the PCG and the 
EMG, it should be noted that there is no underlying RF carrier wave in the signal: 
the envelope rides on relatively high-frequency acoustic or electrical activity that has 
a composite spectrum. The difference in frequency content between the envelope 
and the “carrier activity” will not be comparable to that in AM. Regardless, we could 
expect at least a ten-fold difference in frequency content: the envelope of an EMG 
or PCG signal may have an extremely limited bandwidth of 0 - 20 Ha, whereas 
the underlying signal has components up to at least 200 Hz, if not to 1,000 H r .  
Application of envelope detection to the analysis of EMG related to respiration will 
be illustrated in Section 5.9. 

5.5.2 Synchronized averaging of PCG envelopes 

The ECG and PCG form a good signal pair for synchronized averaging: the lat- 
ter could be averaged over several cardiac cycles using the former as the trigger. 
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However, the PCG is not amenable to direct synchronized averaging as the vibration 
waves may interfere in a destructive manner and cancel themselves out. Karpman et 
al. [133] proposed to first rectify the PCG signal, smooth the result using a lowpass 
filter, and then perform synchronized averaging of the envelopes so obtained using 
the ECG as the trigger. The PCG envelopes were averaged over up to 128 cardiac 
cycles to get repeatable averaged envelopes. It should noted that while synchronized 
averaging can reduce the effects of noise, breathing, coughing, and so on, it can also 
smudge the time boundaries of cardiac events if the heart rate is not constant during 
the averaging procedure. 

Figure 5.4 illustrates the envelopes obtained for a normal case and seven cases of 
systolic murmur due to aortic stenosis (AS), atrial septal defect (ASD), hypertrophic 
subaortic stenosis (HSS), rheumatic mitral regurgitation (MR), ventricular septal 
defect (VSD), and mitral regurgitation with posterior leaflet prolapse (PLP). The 
typical diamond-shaped envelope in the case of aortic stenosis results in an envelope 
shaped like an isosceles triangle due to rectification. Mitral regurgitation results in a 
rectangular holo-systolic murmur envelope. 

Figure 5.4 Averaged envelopes of the PCG signals of a normal subject and patients with 
systolic murmur due to aortic stenosis (AS), atrial septal defect (ASD), hypertrophic subaortic 
stenosis (HSS), rheumatic mitral regurgitation (MR), ventricular septal defect (VSD), and 
rnitral regurgitation with posterior leaflet prolapse (PLP). Reproduced with permission from L. 
Karpman, J .  Cage, C. Hill, A.D. Forbes, V. Karpman, and K. Cohn, Sound envelope averaging 
and the differential diagnosis of systolic murmurs, American Heart Journal, 90(5):600-606, 
1975. @American Heart Association. 

Karpman et al. analyzed 400 cases of systolic murmurs due to six types of diseases 
and defects, and obtained an accuracy of 89% via envelope analysis. They proposed a 
decision tree to classify systolic murmurs based upon envelope shape and its relation 
to the envelopes of S 1 and S2, which is illustrated in Figure 5.5. 
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Figure 5.5 Decision tree to classify systolic murmurs based upon envelope analysis. For 
details on the abbreviations used, refer to the text or the caption of Figure 5.4. Reproduced 
with permission from L. Karpman, J. Cage, C. Hill, A.D. Forbes, V. Karpman, and K. Cohn, 
Sound envelope averaging and the differential diagnosis of systolic murmurs, American Heart 
Journal, 90(5):600-606, 1975. @American Heart Association. 
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5.5.3 The envelogram 

Sarkady et al. [ 1191 proposed a Fourier-domain algorithm to obtain envelopes of 
PCG signals. They defined the envelogram estimate as the magnitude of the analytic 
signal y(t) formed using the PCG z ( t )  and its Hilbert transform z ~ ( t )  as 

Y( t )  = z ( t )  + j Z H ( t ) .  (5.20) 

(Note: An analytic function is a complex function of time having a Fourier transform 
that vanishes for negative frequencies [5, 861.) The Hilbert transform of a signal is 
defined as the convolution of the signal with A, that is, 

The Fourier transform of is - j  sgn(w), where 

-1 w < o  

1 w > o  

(5.21) 

(5.22) 

Then, we have Y ( w )  = X ( w ) [ l  + sgn(w)]. Y ( w )  is a one-sided or single-sideband 
function of w containing positive-frequency terms only. 

Based upon the definitions and properties described above, Sarkady et al. [119] 
proposed the following algorithm to obtain the envelogram estimate: 

1. Compute the DFT of the PCG signal. 

2. Set the negative-frequency terms to zero; that is, X ( k )  = 0 for f +2 5 k <_ N, 

3. Multiply the positive-frequency terms, that is, X ( k )  for 2 5 k 5 $ + 1, by 2; 
the DC term X(l) remains unchanged. 

4. Compute the inverse DFT of the result. 

5.  The magnitude of the result gives the envelogram estimate. 

The procedure described above, labeled also as complex demodulation by Sarkady 
et al., yields a high-resolution envelope of the input signal. Envelograms and PSDs 
computed from PCG signals over single cardiac cycles tend to be noisy and are 
affected by respiration and muscle noise. Sarkady et a]. recommended synchronized 
averaging of both envelograms and PSDs of PCGs over several cycles. A similar 
method was used by Baranek et al. [ 1201 to obtain the envelopes of PCG signals for 
the detection of the aortic component A2 of S2. 

Illustration of application: The top-most plots in Figures 5.6 and 5.7 show one 
cycle each of the PCG signals of a normal subject and of a patient with systolic 
murmur, split S2, and opening snap of the mitral valve. The PCG signals were 

with the DFT indexed 1 5 k 5 N as in MATLAB. 
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segmented by using the Pan-Tompkins method to detect the QRS complexes in 
the ECG signal, as illustrated in Figures 4.27 and 4.28 for the same signals. The 
envelograms of the PCG cycles illustrated and the averaged envelograms (over 16 
beats for the normal and 26 beats for the case with murmur) obtained using the method 
of Sarkady et al. [ 1191 are shown in the second and third plots of Figures 5.6 and 5.7, 
respectively. Observe that while a split S2 is visible in the individual signal and 
envelogram illustrated in Figure 5.6, the split is not seen in the averaged envelogram 
and envelope, possibly due to breathing-related variations over the duration of the 
signal record and averaging. 

Furthermore, based upon the method of Karpman et al. [133], the averaged en- 
velopes were computed by taking the absolute value of the signal over each cardiac 
cycle, smoothing with a Butterworth lowpass filter with N = 8 and fc = 50 H z ,  
and synchronized averaging. The last plots in Figures 5.6 and 5.7 show the averaged 
envelopes. (The Butterworth filter has introduced a small delay in the envelope; 
the delay may be avoided by using thejlrjilt command in MATLAB.) The averaged 
envelograms and averaged envelopes for the normal case display the envelopes of S 1 
and S2; the individual components of S 1 and S2 have been smoothed over and merged 
in the averaged results. The averaged envelograms and averaged envelopes for the 
case with murmur clearly demonstrate the envelopes of S 1, the systolic murmur, the 
split S2, and the opening snap of the mitral valve. 

5.6 ANALYSIS OF ACTIVITY 

Problem: Propose nieasures of waveform complexity or activity that may be used to 
analyze the extent of variability in signals such as the PCG and EMG. 

Solution: The samples of a given EMG or PCG signal may, for the sake of 
generality, be treated as a random variable z. Then, the variance 62 = E[(z  - 
represents an averaged measure of the variability or activity of the signal about its 
mean. If the signal has zero mean, or is preprocessed to meet the same condition, we 
have ua = E [ z 2 ] ;  that is, the variance is equal to the average power of the signal. 
Taking the square root, we get the standard deviation of the signal as equal to its 
root mean-squared (RMS) value. Thus the RMS value could be used as an indicator 
of the level of activity about the mean of the signal. A much simpler indicator of 
activity is the number of zero-crossings within a specified interval; the zero-crossing 
rate (ZCR) increases as the high-frequency energy of the signal increases. A few 
measures related to the concepts introduced above are described in the following 
subsections, with illustrations of application. 
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Figure 5.6 Top to bottom: PCG signal of a normal subject (male, 23 years); envelogram 
estimate of the signal shown; averaged envelogram over 16 cardiac cycles; averaged envelope 
over 16 cardiac cycles. The PCG signal starts with S1. See Figure 4.27 for an illustration of 
segmentation of the same signal. 
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Figure 5.7 Top to bottom: PCG signal of a patient (female, 14 months) with systolic 
murmur (approximately 0.1 - 0.3 s), split S2 (0.3 - 0.4 s), and opening snap of the mitral 
valve (0.4 - 0.43 s); envelogram estimate of the signal shown; averaged envelogram over 26 
cardiac cycles; averaged envelope over 26 cardiac cycles. The PCG signal starts with S 1. See 
Figure 4.28 for an illustration of segmentation of the same signal. 
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5.6.1 The root mean-squared value 

The RMS value of a signal z(n) over its total duration of N samples is given by 

(5.23) 

This global measure of signal level (related to power), however, is not useful for the 
analysis of trends in nonstationary signals. A running estimate of the RMS value of 
the signal computed over a causal window of M samples, defined as 

M-1 

R M S ( n )  = [ z2(n - 
k=O 

(5.24) 

could serve as a useful indicator of the average power of the signal as a function 
of time. The duration of the window M needs to be chosen in accordance with 
the bandwidth of the signal, with M << N .  Such an approach for computing 
running parameters of signals falls under the general scheme of short-time analysis 
of nonstationary signals [46]. 

Gerbarg et al. [134, 1353 derived power versus time curves of PCG signals by 
computing the average power in contiguous segments of duration 10 ms, and used 
the curves to identify systolic and diastolic segments of the signals. They noted that 
within a 10 s PCG record, at least one diastolic segment would be longer than the 
corresponding systolic segment, and that all systolic segments in the record would 
have approximately the same duration. Innocent (physiological) systolic murmurs 
in children were observed to be limited to the first and middle thirds of the systolic 
interval between S1 and S2, whereas pathological systolic murmurs due to mitral 
regurgitation were noted to be holo-systolic (spanning the entire systolic period). 
Based upon these observations, Gerbarg et al. computed ratios of the mean power of 
the lust third of systole to the mean power of systole and also to a certain “standard” 
noise level. A ratio was also computed of the mean energy of systole to the mean 
energy of the PCG over the complete cardiac cycle. Agreement in the range of 
78 - 91% was obtained between computer classification based upon the three ratios 
defined above and clinical diagnosis of mitral regurgitation in different groups of 
subjects. 

Use of the RMS function for the analysis of EMG and VMG signals and thereby 
muscular activity will be illustrated in Section 5.10. 

5.6.2 Zero-crossing rate 

An intuitive indication of the “busy-ness” of a signal is provided by the number of 
times it crosses the zero-activity line or some other reference level. Z C R  is defined 
as the number of times the signal crosses the reference within a specified interval. 
However, Z C R  could be easily affected by DC bias, base-line wander, and low- 
frequency artifacts. For these reasons, it would be advisable to measure the Z C R  of 
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the derivative of the signal, which would be similar to the definition of turning points 
in the test for randomness described in Section 3.1.1. Saltzberg and Burch [136] 
discuss the relationship between ZCR and moments of PSDs, and their application 
to EEG analysis. 

In spite of its simplicity, ZCR has been used in practical applications such as 
speech signal analysis to perform speech versus silence decision and to discriminate 
between voiced and unvoiced sounds [46] (see also Figure 3. l), and PCG analysis 
for the detection of murmurs. Jacobs et al. [137] used ZCR to perform normal 
versus abnormal classification of PCG signals using the ECG as a trigger, and ob- 
tained correct-classification rates of 95% for normals (58/61) and 94% for abnormals 
(77/82). They indicated a decision limit of 20 zero-crossings in a cardiac cycle. Yokoi 
et al. [ 1381 proposed a mass-screening system based upon measurements of the max- 
imum amplitude and ZCR in 8 rns segments of PCG signals (sampled at 2 k H z ) .  
They obtained correct-classification rates of 98% with 4,809 normal subjects and 
76% with 1,217 patients with murmurs. 

5.6.3 Turns count 

Willison [ 1391 proposed to analyze the level of activity in EMG signals by determining 
the number of spikes occurring in the interference pattern (see also [22, 140, 1411). 
Instead of counting zero-crossings, Willison’s method investigates the significance 
of every change in phase (direction or slope) of the EMG signal called a turn. Turns 
greater than 100 pV are counted, with the threshold selected so as to avoid counting 
insignificant fluctuations due to noise. The method is similar to counting turning 
points as in the test for randomness described in Section 3.1.1, but is expected to 
be robust in the presence of noise due to the threshold imposed. The method is not 
directly sensitive to SMUAPs, but significant phase changes caused by superimposed 
SMUAPs are counted. Willison [I391 found that EMG signals of subjects with 
myopathy possessed higher turns counts than those of normal subjects at comparable 
levels of volitional effort. 

Illustration of application: The top-most plot in Figure 5.8 illustrates the EMG 
signal over two breath cycles from the crural diaphragm of a dog recorded via 
implanted fine-wire electrodes [26]. The subsequent plots illustrate, in top-to-bottom 
order, the short-time RMS values, the turns count by Willison’s procedure, and the 
smoothed envelope of the signal. The RMS and turns count values were computed 
using a causal moving window of duration 70 ms (210 samples). The window 
duration needs to be chosen to strike a balance between the extent of smoothing 
desired in the turns count series and the accuracy in reflecting the nonstationary nature 
of the signal (increasing level of activity with inspiration in the present example). 
The envelope was obtained by taking the absolute value of the signal (equivalent 
to full-wave rectification) followed by a Butterworth lowpass filter of order N = 8 
and cutoff frequency fc = 8 Hz. It is seen that all three of the derived features 
demonstrate the expected increasing trend with the level of contraction (breath), and 
can serve as correlates or indicators of muscle contraction and the concomitant EMG 
complexity. The results may be further smoothed (lowpass filtered) if desired. 
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Figure 5.8 Top to bottom: EMG signal over two breath cycles from the crural diaphragm of 
a dog recorded via implanted fine-wire electrodes; short-time RMS values; turns count using 
Willison's procedure; and smoothed envelope of the signal. The RMS and turns count values 
were computed using a causal moving window of 70 ms duration. EMG signal courtesy of 
R.S. Platt and P.A. Easton, Department of Clinical Neurosciences, University of Calgary. 
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Figure 5.9 illustrates one 70 ms segment of the EMG signal in Figure 5.8 with the 
boundary points of the significant turns as detected by Willison’s procedure marked 
by the ‘*’ symbol. The procedure was implemented by first computing the derivative 
of the EMG signal and detecting points of change in its sign. A turn was marked 
wherever the EMG signal differed by at least 100 pV between successive points of 
sign change in the derivative. Observe from Figure 5.9 that the EMG signal need not 
cross the zero line to cause a turns count, and that zero-crossings with voltage swings 
of less than 100 pV are not counted as turns. 

-200! -250 1.34 1.35 1.36 1.37 1.38 1.39 1.4 

Time in Seconds 

Figure 5.9 Illustration of the detection of turns in a 70 rn~  window of the EMG signal in 
Figure 5.8. The segments of the signal between pairs of ‘*’ marks have been identified as 
significant turns. 

5.6.4 Form factor 

Based upon the notion of variance as a measure of signal activity, Hjorth [142, 143, 
1441 (see also [32]) proposed a method for the analysis of EEG waves. In this method, 
short-time segments of duration 1 s or longer are analyzed and three parameters are 
computed. The first parameter is called activity and is simply the variance c: of the 
signal segment .(TI). The second parameter, called mobility M,, is computed as the 
square root of the ratio of the activity of the first derivative of the signal to the activity 
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of the (original) signal: 

(5.25) 

where z' stands for the first derivative of z. The third parameter, called complexiry 
or theformfactor FF, is defined as the ratio of the mobility of the first derivative of 
the signal to the mobility of the signal itself 

(5.26) 

where z" stands for the second derivative of the signal. The complexity of a sinusoidal 
wave is unity; other waveforms have complexity values increasing with the extent of 
variations present in them. 

Hjorth [ 143, 1441 described the mathematical relationships between the activity, 
mobility, complexity, and PSD of a signal, and applied them to model EEG signal 
generation. Binnie et al. [145, 1461 describe the application of FF and spectrum 
analysis to EEG analysis for the detection of epilepsy. However, because the com- 
putation of FF is based upon the first and second derivatives of the signal and their 
variances, the measure is sensitive to noise. A complex and relatively wide-band 
signal such as the EMG is not amenable to analysis via FF. Application of FF to 
discriminate between normal and ectopic ECG beats will be illustrated in Section 5.7. 

We have explored a few measures to characterize waveform complexity in this 
section. Many authors have proposed several other diverse measures and interpreta- 
tions of waveform or system complexity in the literature, examples of which include 
features based upon nonlinear dynamics and the correlation dimension [ 1471, and the 
embedding dimension of time-varying dynamic systems [ 1481. 

5.7 APPLICATION: PARAMETERIZATION OF NORMAL AND ECTOPIC 
ECG BEATS 

Problem: Develop a parameter to discriminate between normal ECG waveforms 
and ectopic beats (PVCs). 

Solution: We have observed several times that ectopic beats, due to the abnormal 
propagation paths of the associated excitation pulses, typically possess waveforms 
that are significantly different from those of the normal QRS waveforms of the same 
subject. More often than not, ectopic beats have bizarre and complex waveshapes. 
The form factor FF described in Section 5.6.4 parameterizes the notion of waveform 
complexity, providing a value that increases with complexity. Therefore, F F appears 
to be a suitable measure to discriminate between normal and ectopic beats. Note that 
the RR interval by itself cannot indicate ectopic beats, as the RR interval could 
vary due to sinus arrhythmia and conduction problems, as well as due to heart-rate 
variations. 

Figure 5.10 displays a segment of the ECG of a patient with ectopic beats; the 
segment illustrates the initiation of an episode of ventricular bigeminy where every 
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normal beat is followed by an ectopic beat [23]. The ECG of the patient was 
processed using the Pan-Tompkins algorithm for QRS detection (see Section 4.3.2). 
QRS marker points were detected using a simple threshold applied to the output of 
the Pan-Tompkins algorithm. Each beat was segmented at points 160 ms before and 
240 ms after the detected marker point; the diamond and circle symbols on the ECG 
in Figure 5.10 indicate the starting and ending points of the corresponding beats. The 
FF value was computed for each segmented beat. The RR interval (in ma) and FF 
value are printed for each beat in Figure 5.10. It can be readily seen that the FF 
values for the PVCs are higher than those for the normal beats. 

Note from Figure 5.10 that the RR intervals for the PVCs are lower than those for 
the normal beats, and that the normal beats that follow the PVCs have higher-than- 
normal RR intervals due to the compensatory pause. Pattern classification of the 
ECG beats in this example as normal or PVCs using RR and FF will be described 
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Figure 5.10 Segment of the ECG of a patient (male, 65 years) with ectopic beats. The 
diamond and circle symbols indicate the starting and ending points, respectively, of each beat 
obtained using the Pan-Tompkins algorithm for QRS detection. The RR interval (in me) and 
form factor FF values are printed for each beat. 
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5.8 APPLICATION: ANALYSIS OF EXERCISE ECG 

Problem: Develop an algorithm to analyze changes in the ST segment of the ECG 
during exercise. 

Solution: Hsia et al. [149] developed a method to analyze changes in the ST 
segment of the ECG signal as the subject performed exercises. The analysis was 
performed as part of a radionuclide ventriculography (gated blood-pool imaging) 
procedure. In this procedure, nuclear medicine images are obtained of the left 
ventricle before and after exercising by the patient on a treadmill or bicycle ergometer. 
Images are obtained at different phases of the cardiac cycle by gating the radionuclide 
(gamma ray) emission data with reference to the ECG; image data for each phase are 
averaged over several cardiac cycles. Analysis of exercise ECG is complicated due 
to base-line artifacts caused by the effects of respiration, skin resistance changes due 
to perspiration, and soft tissue movement affecting electrode contact. Detection of 
changes in the ST segment in the presence of such artifacts poses a major challenge. 

One of the main parameters used by Hsia et al. is related to the correlation 
coefficient as defined in Equation 3.18. The measure, however, is affected by base- 
line variations. To address this, a modified correlation coefficient was defined as 

(5.27) 

Here, z(n) is the template, ~ ( n )  is the ECG signal being analyzed, A is a base-line 
correction factor defined as the difference between the base-line of y(n) and the 
base-line of z(n), and N is the duration (number of samples) of the template and 
the signal being analyzed. The template was generated by averaging up to 20 QRS 
complexes that met a specified RR interval constraint. 

Hsia et al. proposed a method to establish the base-line of each ECG beat by 
searching for the PQ segment by backtracking from the R point detected (trigger for 
gating the image data). The region of three consecutive samples with the minimum 
change (maximum flatness) preceding the QRS was taken to represent the base- 
line of the beat. (Note: The PQ segment is almost always iso-electric, whereas 
the ST segment is variable in the case of cardiac diseases.) The search procedure 
also established the width of the QRS complex to be used in template matching (N 
in Equation 5.27). Beats with rev < 0.85 were considered to be abnormal. The 
base-line correction factor in Equation 5.27 provided the robustness required. 

Groups of 16 successive normal beats were aligned and averaged to obtain a repre- 
sentative waveform. The ST segment level was computed as the difference between a 
reference ST point and the iso-electric level of the current averaged beat. The averag- 
ing procedure included a condition to reject beats with abnormal morphology, such as 
PVCs. The ST reference point was defined as R+ 64 ms + max(4, v) x 4 ms 
or S + 44 ms + max(4, v) x 4 ms, where R or S indicates the position of 
the R or S wave of the present beat in ms, and HR is the heart rate in bpm. ST 
level differences of more than 2 mV were reported by the program. Furthermore, 
the slope of the ST segment was computed by using two samples before and two 
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samples after the ST point detected as described above (a duration of 16 m8 with the 
sampling rate being 250 He). 

In addition to the analysis of the ST segment, the method of Hsia et al. performed 
rhythm analysis, identification of PVCs and other abnormal beats, and assisted in the 
rejection of radionuclide emission data related to abnormal beats from the imaging 
procedure. The combined use of nuclear medicine imaging and ECG analysis was 
expected to improve the accuracy of the diagnosis of myocardial ischemia. 

5.9 APPLICATION: ANALYSIS OF RESPIRATION 

Problem: Propose a method to relate EMG activity to airjiow during inspiration. 
Solution: Platt et al. [26] recorded EMG signals from the parasternal intercostal 

and crural diaphragm muscles of dogs. One EMG signal was obtained from a pair 
of electrodes mounted at a fixed distance of 2 mm placed between fibers in the third 
left parasternal intercostal muscle about 2 cm from the edge of the sternum. The 
crural diaphragm EMG was obtained via fine-wire electrodes sewn in-line with the 
muscle fibers and placed 10 mm apart. During the signal acquisition experiment, the 
dog breathed through a snout mask, and a pneumo-tachograph was used to measure 
airflow. Figures 1.9, 1 .lo, and 5.8 show samples of the crural EMG signal. 

Although the EMG signal is commonly used in many physiological studies in- 
cluding analysis of respiration, the intricate variations in the signal are often not of 
interest. A measure of the total or integrated electrical activity, ideally reflecting 
the global activity in the pool of active motor units of the muscle, would serve the 
purposes of most analyses [26]. As the EMG signal is nonstationary, short-time 
measures are called for. The smoothed envelope of the EMG signal is commonly 
used under these circumstances. 

Platt et al. observed that the filters commonly used for smoothing rectified EMG 
signals had poor high-frequency attenuation, resulting in noisy envelopes. They 
proposed a modified Bessel filter for application to the EMG signal after full-wave 
rectification; the filter severely attenuated frequencies beyond 20 He with gain 
< -70 dB, and yielded EMG envelopes that were much smoother than those given 
by other filters. 

The EMG envelopes derived by Platt et al. agreed very well with the inspiratory 
airflow pattern. Figure 5.11 shows plots of the parasternal intercostal EMG signal 
over two breath cycles, the corresponding filtered envelope, and the airflow pattern. 
Figure 5.12 shows the correlation between the filtered EMG envelope amplitude and 
the airflow in liters per second. It is evident that the envelope extracted by this method 
is an excellent correlate of inspiratory airflow. 



APPLICATION: ANALYSIS OF RESPIRATION 267 

Figure 5.11 Top to bottom: EMG signal over two breath cycles from the parastemal inter- 
costal muscle of a dog recorded via implanted electrodes; EMG envelope obtained with the 
modified Bessel filter with a time constant of 100 ma; and inspiratory airflow. The duration 
of the signals plotted is 5 8. The several minor peaks appearing in the envelope are related to 
the ECG which appears as an artifact in the EMG signal. Data courtesy of R.S. Platt and P.A. 
Easton, Department of Clinical Neurosciences, University of Calgary [26]. 
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Figure 5.12 Correlation between EMG amplitude from Bessel-filtered envelope versus in- 
spiratory airilow. The EMG envelope was filtered using a modified Bessel filter with a time 
constant of 100 ms. Data courtesy of R.S. Platt and P.A. Easton, Department of Clinical 
Neurosciences, University of Calgary [26]. 
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5.1 0 APPLICATION: ELECTRICAL AND MECHANICAL CORRELATES 
OF MUSCULAR CONTRACTION 

Problem: Derive parameters from the electrical and mechanical manifestations of 
muscular activiry that correlate with the level of contraction or force produced. 

Solution: Zhang et al. [47,48] studied the usefulness of simultaneously recorded 
EMG and VMG signals in the analysis of muscular force produced by contraction. 
In their experimental procedure, the subjects performed isometric contraction (that 
is, with no movement of the associated leg) of the rectus femoris (thigh) muscle to 
different levels of torque with a Cybex I1 dynamometer. Four levels of contraction 
were performed from 20% to 80% of the maximal voluntary contraction (MVC) level 
of the individual subject. The experiments were performed at three knee-joint angles 
of 30", 60°, and 90". Each contraction was held for a duration of about 6 s, and 
the subjects rested in between experiments to prevent the development of muscle 
fatigue. The VMG signal was recorded using a Dytran 31 15a accelerometer, and 
surface EMG signals were recorded using disposable Ag - AgCZ electrodes. The 
VMG signals were filtered to the bandwidth 3 - 100 Hz and the EMG signals were 
filtered to 10 - 300 Hz. The VMG and EMG signals were sampled at 250 Ht and 
1,000 Hz, respectively. Figure 2.3 illustrates sample recordings of the VMG and 
EMG signals at two levels of contraction. 

RMS values were computed for each contraction level over a duration of 5 s. 
Figure 5.13 shows the variation of the RMS values of the EMG and VMG signals 
acquired at a knee-joint angle of 60' and averaged over four subjects. The almost- 
linear trends of the RMS values of both the signals with muscular contraction indicate 
the usefulness of the parameter in the analysis of muscular activity. It should, however, 
be noted that the relationship between RMS values and contraction may not follow 
the same (linear) pattern for different muscles. Figure 5.14 shows the RMS versus 
%MVC relationships for three muscles: the relationship is linear for the first dorsal 
interosseus (FDI), whereas it is nonlinear for the biceps and deltoid muscles [ 1501. 

5.11 REMARKS 

We have now reached the stage in our study where we can derive parameters from 
segments of biomedical signals. We focused our attention on characteristics that 
could be observed or derived in the time domain. The parameters considered were 
designed with the aim of discriminating between different types of waveshapes, or of 
representing change in waveform complexity through the course of a physiological 
or pathological process. We have seen how the various parameters explored in the 
present chapter can help in distinguishing between normal and ectopic ECG beats, 
and how certain measures can serve as correlates of physiological activity such as 
respiration. 

It should be borne in mind that, in most practical applications, a single parameter 
or a couple of measures may not adequately serve the purposes of signal analysis or 
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Figure 5.13 RMS values of the VMG and EMG signals for four levels of contraction of the 
rectus fernoris muscle at 60° knee-joint angle averaged over four subjects. Reproduced with 
permission from Y.T. Zhang, C.B. Frank, R.M. Rangayyan, and G.D. Bell, Relationships of 
the vibromyogram to the surface electromyogram of the human rectus fernoris muscle during 
voluntary isometric contraction, Journal of Rehabilitation Research and Development, 33(4): 
395403, 1996. @Department of Veterans Affairs. 
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Figure 5.14 EMG RMS value versus level of muscle contraction expressed as a percentage 
of the maximal voluntary contraction level (%MVC) for each subject. The relationship is 
displayed for three muscles. FDI: first dorsal interosseus. N: number of muscles in the study. 
Reproduced with permission from J.H. Lawrence and C.J. de Luca, Myoelectric signal versus 
force relationship in different human muscles, Journal of Applied Physiology, 54(6): 1653- 
1659, 1983. @American Physiological Society. 
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diagnostic decision making. A single parameter such as the form factor or signal 
length may assist in distinguishing some types of PVCs from normal ECG beats; 
however, several cardiovascular diseases and defects may cause changes in the ECG 
signal that may lead to similar variations in the FF or SL values. A practical appli- 
cation would need to maintain a broad scope of analysis and use several parameters 
to detect various possible abnormalities. As always, an investigator should consider 
the possibility that a parameter observed to be useful in, say, ECG analysis in the 
time domain, may serve the needs in the analysis of some other signal, such as the 
PCG or EMG, in a different domain. 

5.12 STUDY QUESTIONS AND PROBLEMS 

1. Prove that the form factor FF of a sinusoidal wave is equal to unity. 

2. The following discrete-time signals are defined over the interval 0 to 10 8 with the 
sampling frequency being 1 Hz: 

0 z1(n) = u(n)  - u(n - 5 ) .  

0 zs(n) = u(n - 2)  - u(n  - 9). 

0 zr(n) = u(n  - 2 )  - u(n - 10). 

zl(n) = 2u(n - 3 )  - 2471 - 8 ) .  

u (n )  is the discrete-time unit step function. 
The signal length SL of a signal z(n)  is defined as 

where w(n)  is a nondecreasing weighting function, and N is the number of samples in 
the signal. Let w(n) = n, n = 0, 1’2,. . . , N - 1. 
Draw sketches of each signal with the weighting function w ( n )  superimposed. Compute 
the SL values for the four signals given. Interpret your results and compare the 
characteristics of the four signals in terms of their SL values. 

3. You are given a signal with the samples (0’0, 2,2 ,3 ,  -3 ,2 ,0 ,0 }  and a template with 
the samples (1, -1). Perform the template matching operation and derive the sample 
values for the output. Provide an interpretation of the result. 

4. Discuss the similarities and differences between the problems of 
(i) detection of spike transients in EEG signals, and 
(ii) the detection of QRS complexes in ECG signals. 

5 .  You have been hired to develop a heart-rate monitor for use in a coronary-care unit. 
Design a system to accept a patient’s ECG signal, filter it to remove artifacts and noise, 
sample the signal, measure the heart rate, and set off alarms as appropriate. Provide a 
block diagram of the system, with details (in point form) of the signal processing steps 
to be performed in each block. Specify the important parameters for each processing 
step. 
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6. A needle EMG signal under low levels of muscle contraction was observed to contain a 
mixture of three trains of MUAPs. One of the trains contains quasi-periodic occurrences 
of a monophasic MUAP, the second contains occurrences of a biphasic MUAP, and the 
third contains Occurrences of a triphasic MUAP. It was also observed that the MUAPs 
do not overlap in the EMG signal. 
Propose a signal analysis procedure to: 
(a) detect the occurrence (location in time) of each MUAP of each type individually, 
and 
(b) determine the firing rate of each motor unit. 
Note that each MUAP needs to be detected and labeled as being one of monophasic, 
biphasic, or triphasic type. 
Your solution should include: 
(i) plots of the EMG signal (make up one according to the description above) with labels 
for the components; 
(ii) plots of the signal at various stages of your analysis procedure; 
(iii) equations for important steps of your signal analysis procedure; and 
(iv) point-form statements describing the reason or logic behind each step you propose. 

7. A researcher is attempting to develop a digital signal processing system for the ac- 
quisition and analysis of heart sound signals (PCG signals). Assist the researcher in 
addressing the following concerns and problems: 
(a) What are the typical bandwidths of normal PCG signals and those with murmurs? 
What is the recommended sampling frequency? 
(b) What are the sources of artifacts that one has to consider in recording PCG signals? 
Name one physiological source and one other source, and recommend techniques to 
limit or eliminate both. 
(c) How can one identify the locations of the first and second heart sounds (S1 and S2)? 
Which other biomedical signals would you recommend for assistance in this problem? 
Draw schematic diagrams of the signals and identify the corresponding cardiac events 
and timing relationships. 
(d) Propose a technique to obtain the envelope of the PCG signal. List all steps of the 
method you propose and provide the required parameters. 
(e) Draw schematic PCG signals and their envelopes over one cardiac cycle for a normal 
case, a case with systolic murmur, and a case with diastolic murmur. Identify each event 
in each case. 

8. You are given a database of single-motor-unit action potentials (SMUAPs) containing 
several types of normal and abnormal patterns. Each signal record has one SMUAP. 
The patterns and features of interest are: 
(i) Monophasic SMUAPs. 
(ii) Biphasic SMUAPs. 
(iii) Triphasic SMUAPs. 
(iv) Polyphasic SMUAPs with more than three phases. 
(a) Propose two parameters (computed features) to help in separating the four classes of 
SMUAPs. Give the required equations or procedures and explain their relationship to 
the signal characteristics described above. Describe conditions or preprocessing steps 
that are required in order for your methods to work well. 
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(b) Draw a schematic plot of the feature-vector space and demarcate regions where you 
expect features of the four SMUAP types to lie. 
(c) State decision rules to classify the four SMUAP types using the two measures you 
propose. 

9. Why is the ST segment of the ECG relevant in diagnosis? Recommend signal analysis 
techniques for the analysis of ST segment variations in clinical applications. 

5.13 LABORATORY EXERCISES AND PROJECTS 

Note; Data files related to the exercises are available at the site 
ftp://ftp.ieee.org/uploads/press/rangay y a d  

1. The signal in the file emg-dog2.dat was recorded from the crural diaphragm of a dog 
using fine-wire electrodes sewn in-line with the muscle fibers and placed 10 mm apart. 
The signal represents two cycles of breathing, and has been sampled at 10 IcHz. (See 
also the file emg-dog2.m.) 
Write a MATLAB program to perform full-wave rectification (absolute value) or half- 
wave rectification (threshold at zero, with the mean value of the signal being zero). 
Apply a lowpass Butterworth filter of order eight and cutoff frequency in the range 
10 to 20 H z  to the result. Analyze and evaluate the results with the two methods of 
rectification and at least two different lowpass cutoff frequencies. Compare the results 
with the envelope provided in the file emg-dog2-env.dat. 

2. The root mean squared (RMS) value of a signal within a specific duration is related to 
the average power level of the signal. Write a MATLAB program to compute the RMS 
value at each instant for the EMG signal in the file emgdog2,dat by using a causal 
short-time analysis window of duration in the range 50 - 150 ms. Use at least two 
different window durations and analyze the results. (See also the file emg-dog2.m.) 

3. Develop a MATLAB program to compute the turns count in causal moving windows 
of duration in the range 50 - 150 ms. Apply the method to the EMG signal in the file 
emg-dog2.dat. (See also the file emg-dog2.m.) Study the results for different thresholds 
in the range 0 - 200 pV. 
Compare the envelope, RMS, and turns count curves in terms of their usefulness as 
representatives of inspiratory airflow (data provided in the file emg-dog2-flo.dat). 

4. The file safety.wav contains the speech signal for the word “safety” uttered by a male 
speaker, sampled at 8 k H z .  (See also the file safetym.) The signal has a significant 
amount of background noise (as it was recorded in a normal computer laboratory). 
Develop procedures to derive short-time RMS, turns count, and ZCR in moving windows 
of duration in the range 10 - 100 ms. Study the variations in the parameters in relation 
to the voiced, unvoiced, and silence (background noise) portions of the signal. 
What do you expect the results to be if the procedures are applied to the first derivative 
of the signal? Confirm your assertions or expectations by performing the study. 

5 .  Develop a program to derive the envelogram. Apply the procedure to the FTG signals 
in the files pecl.dat, pec33.dat, and pec52.dat. (See the file p1otpec.m.) 
Extend the procedure to average the envelograms over several cardiac cycles using the 
ECG as the trigger. How will you handle the variations in the duration (number of 
samples) of the signals from one beat to another? 
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6. The ECG signal in the file ecgpvc.dat contains a large number of PVCs, including 
episodes of bigeminy. (See the file ecgpvc.m.) Apply the Pan-Tompkins procedure to 
detect and segment each beat. Label each beat as normal or PVC by visual inspection. 
Record the number of beats missed, if any, by your detection procedure. 
Compute the RR interval and the form factor FF for each beat. Use a duration of 80 
samples (400 ms) spanning the QRS - T portion of each beat to compute FF. The P 
wave need not be considered in the present exercise. 
Compute the mean and standard deviation of the FF and RR values for the normal 
beats and the PVCs. Evaluate the variation of the two parameters between the two 
categories of beats. 



6 
Freauencv-domain 

Characterizition Gf Signals 
and Systems 

Many biomedical systems exhibit innate rhythms and periodicity that is more readily 
expressed and appreciated in terms of frequency than time units. As a basic example, 
consider cardiac function: we express cardiac rhythm more conveniently in terms of 
beats per minute - a measure of the frequency of occurrence or the rate of repetition 
- than in terms of the duration of a beat or the interval between beats in seconds 
(the RR interval). A cardiac rhythm expressed as 72 bpm is more easily understood 
than a statement of the corresponding RR interval as 0.833 8 .  By the same token, 
the notion of an EEG rhythm is conveyed more readily by a description in cycles per 
second in lay terms, or in Hertz (Hz) in technical terms. Even engineers would find 
a frequency-domain expression easier to appreciate than a time-domain description, 
such as an alpha rhythm having a frequency of 11.5 H e  versus the equivalent period 
of 0.087 s. 

When the signal being studied is made up of discrete (that is, separate and distinct) 
events in time, such as the ECG or a train of SMUAPs, the basic rhythm or rate of ac- 
tivity present in the signal can indeed be assessed directly in the time domain. On the 
other hand, signals such as the PCG display complex or complicated patterns in the 
time domain that do not facilitate ready appreciation of their frequency-domain char- 
acteristics; furthermore, the time-domain waveforms may differ from one occurrence 
of the signal (one heart beat) to another. 

The PCG provides an interesting example of a signal with multiple frequency- 
domain features: in addition to the beat-to-beat periodicity or rhythm, the heart 
sounds within a cardiac cycle exhibit resonance. Due to the multi-compartmental 
nature of the cardiac system, we should expect heart sounds to possess multiple 
resonance frequencies: this leads to the need to describe the PCG, not only in terms 
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of a rhythm (the heart rate) or a single resonance frequency, but also a composite 
spectrum of several dominant or resonance frequencies. Furthermore, constrained 
flow of blood through an orifice such as a septa1 defect or across a stenosed valve 
acting as a baffle could lead to turbulence, resulting in wide-band noise. In the case 
of noise-like murmurs, we would be able to identify neither rhythms nor resonance 
frequencies: the need arises to consider the distribution of the signal’s energy or 
power over a wide band of frequencies, leading to the notion of the power spectral 
density function. 

We have seen in Chapter 3 that it is often more convenient and meaningful to 
describe filters in terms of their frequency response - H ( z ) ,  H ( w ) ,  or H ( f )  -than 
in terms of their impulse response h( t )  or the time-domain input - output relationship 
(difference equation). Furthermore, we saw in Section 4.4 that it is easier to interpret 
the PSDs of EEG waves than it is to interpret their theoretically equivalent ACFs. The 
Fourier and other similar transforms provide an invertible or reversible transformation 
from the time domain to the frequency domain (and vice-versa). Therefore, it may 
be argued that no new information is created by taking a given signal from the time 
domain to the frequency domain. However, the distribution of the energy or power 
of the signal in the frequency domain that is provided by the Fourier transform - 
the spectrum or PSD of the signal - facilitates better analysis and description of the 
frequency-domain characteristics of the signal. The PSD of a signal is not only useful 
in analyzing the signal, but also in designing amplifiers, filters, data-acquisition and 
transmission systems, and signal processing systems to treat the signal appropriately. 
We have seen in Section 3.5 that we need not only the signal PSD but also the noise 
PSD in order to be able to implement the optimal Wiener filter. 

The treatment of biomedical signals as stochastic processes provides flexibility 
and a sense of generality in analysis, but imposes conditions and requirements in 
the estimation of their statistics including the ACF and PSD. In the present chapter, 
we shall investigate methods to estimate the PSD and frequency-domain parameters 
of biomedical signals and systems. We shall also study methods to derive spectral 
parameters that can characterize the given signal as well as the system that generated 
the signal. The motivation for the study, as always, shall be to distinguish between 
normal and abnormal signals or systems, and the potential use of the methods in 
diagnosis. 

6.1 PROBLEM STATEMENT 

Investigate the potential use of the Fourier spectrum andparameters derived thereof in 
the analysis of biomedical signals. Identify physiological and pathological processes 
that could modify the frequency content of the corresponding signals. Outline the 
signal processing tasks needed to perform spectral analysis of biomedical signals 
and systems. 

As in the preceding chapters, the problem statement given above is generic, and 
represents the theme of the present chapter. The various signal analysis techniques 
described and the examples used for illustration in the following sections will address 
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the points raised in the problem statement, with attention to specific problems and 
techniques. 

6.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

6.2.1 The effect of myocardial elasticity on heart sound spectra 

The first and second heart sounds - S1 and S2 - are typically composed of low- 
frequency components; this is to be expected due to the fluid-filled and elastic nature 
of the cardiohemic system. Sakai et al. [ 15 11 processed recorded heart sound signals 
by using tunable bandpass filters (with a bandwidth of 20 H z ,  tuned over the range 
20 - 40 H z  to 400 - 420 He) ,  and estimated the frequency distributions of S 1 and 
S2. They found the heart sound spectra to be maximum in the 20 - 40 H z  band; that 
S1 had a tendency to demonstrate peaks at lower frequencies than those of S2; and 
that S2 exhibited a “gentle peaking” between 60 Hz and 220 Hz. 

Gerbarg et al. [ 134, 1351 developed a computer program to simulate a filter bank, 
and obtained averaged power spectra of S 1 and S2 of 1,000 adult males, 32 high- 
school children, and 75 patients in a hospital. The averaged PSDs of S1 and S2 
obtained by them indicated peak power in the range 60 - 70 He,  and relative power 
levels lower than -10 dB beyond 150 Hz. The PSD of S2 displayed slightly more 
high-frequency energy than that of S 1. 

Frome and Frederickson [ 1521 applied the FFT to the analysis of first and second 
heart sounds. They described how segmented S1 and S2 data may be combined 
into a single complex signal, and how a single FFT may be used to obtain the FFTs 
of the two signals. Computer data processing techniques were described to obtain 
smoothed, averaged periodograms (described later in Section 6.4.1) of S1 and S2 
separately. 

Yoganathan et al. [153] applied the FTT for the analysis of S1 of 29 normal 
subjects. The FFT spectra of 250 rns windows containing S1 were averaged over 15 
beats for each subject. It was found that the frequency spectrum of S 1 contains peaks 
in a low-frequency range (10 - 50 H z )  and a medium-frequency range (50- 140 Hz) 
[153]. In a similar study, the spectrum of S2 was observed to contain peaks in low- 
frequency (10 - 80 Hz) ,  medium-frequency (80 - 220 Ha), and high-frequency 
ranges (220 - 400 Hz) [ 1541. It has been suggested that the resonance peaks in the 
spectra may be related to the elastic properties of the heart muscles and the dynamic 
events causing the various components of S 1 and S2 (see Section 1.2.8). 

Adolph et al. [155] used a dynamic spectrum analyzer to study the frequency 
content of S 1 during the iso-volumic contraction period. The center frequency of a 
filter with 20 Hz bandwidth was initially set to 30 Hz, and then varied in 10 H z  
increments up to 70 Hz. The outputs of the filters were averaged over the same 
(prerecorded) 10 consecutive beats. Finally, the ratios of the average peak voltage of 
the filtered outputs to that of the total S1 signal during the iso-volumic contraction 
period were computed. 
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Adolph et al. hypothesized that the frequency content of S1 during the iso- 
volumic contraction period should depend on the relative contributions of the mass 
and elasticity of the left ventricle. The mass of the left ventricle with its blood content 
remains constant during iso-volumic contraction. Therefore, it was reasoned that the 
frequency content of S1 should decrease (that is, shift toward lower frequencies) in 
the case of diseases that reduce ventricular elasticity, such as myocardial infarction. 

Figure 6.1 shows averaged S1 spectra for normal subjects and patients with acute 
or healed myocardial infarction; it is seen that the reduced elasticity due to myocardial 
infarction has reduced the relative content of power near 40 Hz. However, Adolph 
et al. also noted that an increase in ventricular mass as in the case of trained athletes, 
or a reduction in elasticity combined with an increase in the mass as in the case 
of myocardiopathy, could also cause a similar shift in the frequency content of S1. 
Regardless, they found that frequency analysis of S 1 was of value in differentiating 
acute pulmonary embolism from acute myocardial infarction. Clarke et al. [ 1561 
also found reduction in the spectral energy of S1 to be a common accompaniment of 
myocardial ischemia. 
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Figure 6.1 First heart sound spectra for normal, acute myocardial infarct, and healed my- 
ocardial infarct cases. The latter two cases exhibit an increased percentage of low-frequency 
components. Reproduced with permission from R.J. Adolph, J.F. Stephens, and K. Tanaka, 
The clinical value of frequency analysis of the first heart sound in myocardial infarction, 
Circulation, 41:1003-1014, 1970. @American Heart Association. 

6.2.2 Frequency analysis of murmurs to diagnose valvular defects 

As we noted in Section 1.2.8, cardiovascular valvular defects and diseases cause 
high-frequency, noise-like sounds known as murmurs. Murmurs are often the only 



ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 281 

indicators of the early stages of certain cardiovascular diseases; prompt diagnosis 
could prevent further deterioration of the condition and possible complications. 

We noted in Section 5.6.2 that zero-crossing analysis in the time domain was ap- 
plied to assist in the detection of murmurs by Jacobs et al. [ 1371 and Yokoi et al. [ 1381. 
Although ZCR increases with the presence of higher-frequency components, it does 
not yield a direct measure of the frequency content or the spectrum of the signal. 

Application of electronic signal filtering techniques to analyze the frequency 
content of heart sounds and murmurs was initiated as early as the 1950s. Geckeler 
et al. [157] and McKusick et al. [l58, 1591 studied the applicability of the sound 
spectrograph for the analysis of heart sounds and murmurs. The sound spectrograph 
was developed in the late 1940s by Bell Telephone Laboratories as a tool to produce 
what was labeled as visible speech. The spectrograph used a bandpass filter (or a bank 
of bandpass filters) to determine the power of the given signal in each frequency band 
of interest. The signal was usually recorded and played back repeatedly as the center 
frequency of the bandpass filter was varied. The output was recorded on heat-sensitive 
or light-sensitive paper to produce a 2D distribution of frequency content of the signal 
at every instant of time as a gray-level image (essentially a tirne-frequency distribution, 
to be discussed in Section 8.4.1). Winer et al. [ 1601 proposed iso-intensity contour 
plotting of the spectrogram instead of using variations in intensity (gray scale); they 
reported that, whereas normal heart sounds indicated the presence of regularity in the 
contours of equal intensity, abnormal sounds and murmurs produced irregular contour 
line structures with extensive “convolutions” and roughness. It was suggested that 
the cardio-spectrograms (or spectral phonocardiography) could provide physiologic 
and pathologic information beyond that provided by auscultation, without suffering 
from the psychoacoustic impediments that affected human observers. 

Yoshimura et al. [I611 used a tunable bandpass filter with low and high cutoff 
frequencies in the range 18 - 1,425 Hz to process recorded PCG signals. They 
determined that the diastolic rumble of mitral stenosis occupied the range 20 - 
200 Hz, whereas the diastolic blow of aortic regurgitation spanned a much higher 
frequency range of 200 - 1,600 H z  (although the characteristic range was 400 - 
800 Ha) .  

Gerbarg et al. [134, 1351 developed a computer program to simulate a filter bank 
and obtain power spectra of heart sounds and murmurs, with the aim of developing 
a system for mass-screening to detect cardiovascular diseases. They argued that 
innocent (physiological) systolic murmur in children is limited to the first and middle 
thirds of the systolic interval between S1 and S2, whereas pathological systolic 
murmur due to mitral regurgitation is holo-systolic (spans the entire systolic period). 
Therefore, they computed ratios of the mean power of the last third of systole to 
the mean power of systole and also to a certain “standard” noise level. A ratio 
was also computed of the mean energy of systole to the mean energy of the PCG 
over the complete cardiac cycle. Gerbarg et al. obtained 78 - 91% agreement of 
their computer classification based upon the three ratios defined above with clinical 
diagnosis of mitral regurgitation in different groups of subjects. Although they would 
not claim that a fully automated program for the diagnosis of mitral regurgitation 
had been developed, they indicated that the feasibility of computer-based diagnosis 
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had been established, and that simulation of human auscultation had been partially 
achieved. 

The specific problem of detection of the murmur due to aortic insufficiency in the 
presence of the murmur due to mitral stenosis was considered by van Vollenhoven et 
al. [162]. Aortic insufficiency causes an early diastolic murmur (with a blowing or 
hissing quality) that is best heard in the aortic area (second right-intercostal space, 
just right of the sternum), whereas the mid-diastolic rumbling murmur of mitral 
stenosis is best heard at the apex. A tunable bandpass filter with 50 H e  bandwidth 
and center frequency tunable in steps of 50 Hz was used by van Vollenhoven et al. 
to study the frequency content in a 100 me window during the diastolic phase of 
recorded PCG signals. They found that the murmur of mitral stenosis was limited 
in frequency content to less than 400 Hz, whereas the murmur in the case of aortic 
insufficiency combined with mitral stenosis had more high-frequency energy in the 
range 300 - 1,000 Hz. 

Sarkady et al. [ 1 191 suggested synchronized averaging of the PSDs of PCG signals 
over several cardiac cycles computed using the FFT algorithm. Johnson et al. [163, 
1641 studied FFT-based PSDs of the systolic murmur due to aortic stenosis. They 
computed the PSDs of systolic windows of duration 86,170, and 341 me, and 
averaged the results over 10 cardiac cycles. Johnson et al. hypothesized that higher 
murmur frequencies are generated as the severity of aortic stenosis increases. In their 
study of patients who underwent catheterization and cardiac fluoroscopy, the trans- 
valvular systolic pressure gradient was measured during pull-back of the catheter 
from the left ventricle through the aortic valve, and found to be in the range 10 - 
140 r n n  of Hg. Spectral power ratios (described in Section 6.5.2) were computed 
considering the band 25 - 75 H z  as the constant area (CA) related to normal sounds 
and the band 75 - 150 Hz as the predictive area (PA) related to murmurs. 

Figure 6.2 illustrates the PSDs of four patients with aortic stenosis of different 
levels of severity. The PSDs in the figure are segmented into the C A  and P A  parts 
as described above; the trans-valvular systolic pressure gradient (in mrn of Hg) 
and the PAICA spectral power ratio are also shown for each case. Johnson et al. 
found that the spectral power ratio increased linearly with the trans-valvular systolic 
pressure gradient, and hence correlated well with the severity of aortic stenosis. 
The importance of recording the PCG in the aortic area, pre-filtering the PCG to 
25 - 1,500 Hz, and the selection of an appropriate systolic murmur window was 
discussed by Johnson et al. Although there were confounding factors, it was indicated 
that the noninvasive PCG-based technique could be useful in identifying the need for 
catheterization as well as follow-up of patients with aortic stenosis. 

6.3 THE FOURIER SPECTRUM 

The Fourier transform is the most commonly used transform to study the frequency- 
domain characteristics of signals [ l ,  2, 14, 861. This is mainly because the Fourier 
transform uses sinusoidal functions as its basis functions. Projections are computed 
of the given signal z(t) onto the complex exponential basis function of frequency w 



THE FOURIER SPECTRUM 283 

Figure 6.2 Averaged and normalized PSDs of four patients with aortic stenosis of different 
levels of severity. Each PSD is segmented into two parts: a constant area C A  and a predic- 
tive area PA.  The trans-valvular systolic pressure gradient (measured via catheterization in 
mm of H g )  and the PAICA spectral power ratio are shown for each case. Reproduced 
with permission from the American College of Cardiology: G.R. Johnson, R.J. Adolph, and 
D.J. Campbell, Estimation of the severity of aortic valve stenosis by frequency analysis of the 
murmur, Journal of the American College of Cardiology, l(5): 13 15-1323, 1983 @Elsevier 
Science. 
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radiansls,  given by exp(jwt) = cos(wt) + j sin(&), as 

m 
z ( t )  exp(-jwt) d t ,  

or in the frequency variable f in Hz as 
m 

X ( f )  = 1 e(t) exp(-j27rft) dt.  (6.2) 
-m 

(The complex exponential function is conjugated in computing the projection. In 
some fields, the forward Fourier transform is defined with exp(+jwt) in the integral.) 
The above equations represent analysis of the signal z ( t )  with reference to the 
complex exponential basis functions. The lower limit of the integral will be 0 if the 
signal is causal; the upper limit will be equal to the duration of the signal in the case 
of a finite-duration signal. The value of X ( w )  or X ( f )  at each frequency of interest 
w = 27rf represents the “amount” of the corresponding cosine and sine functions 
present in the signal z(t ) .  Note that, in general, X ( w )  is complex for real signals, 
and includes the magnitude and phase of the corresponding complex exponential. 

The inverse transformation, representing synthesis of the signal z ( t )  as a weighted 
combination of the complex exponential basis functions, is given as 

m W 

X(f)  exp(j2nft) 4. (6.3) L z ( t )  = / ~ ( w )  exp(jwt) d~ = 271. 

The second version of the above equation with the frequency variable f in Hz may 
be more convenient in some situations than the first one with w in radians/$,  due 
to the absence of the & factor. (If the forward Fourier transform is defined with 
exp( +jut), the inverse Fourier transform will have exp(-jut) in the integral; this 
distinction is not significant.) 

In the case of a discrete-time signal z(n), we may still compute the Fourier 
transform with a continuous frequency variable w as 

(6.4) 

with the normalized-frequency range 0 5 w 5 27r (equivalent to 0 5 f 5 1). The 
lower limit of the summation will be 0 if the signal is causal. The upper limit of 
the summation will be equal to the index ( N  - 1) of the last sample in the case 
of a finite-duration signal with N samples. The frequency variable w may also be 
defined over the range 0 5 w 5 wd (equivalent to 0 _< f 5 fa),  in which case n 
in the above equation should be multiplied by the sampling interval T in seconds. 
The Fourier transform is equivalent to the z-transform evaluated on the unit circle 
with z = exp(jw). Note that the Fourier transform of a discrete-time (sampled) 
signal is periodic with the period equal to the sampling frequency w, or 2 7 ~  on the 
normalized-frequency scale. 

- 
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When processing digital signals on a computer, the frequency variable w will 
also have to be sampled, as w = 2n$ k ,  or in the case of normalized frequency as 
w = 9 k,  where k is the frequency sample index and N is the number of samples 
to be used over one period of the periodic spectrum X ( w ) .  Then, we have the DFT 
(analysis) relationship 

N-1 

X ( k )  = c z(n) exp ( - j $ k n )  , k = 0,1,2, .  . . , N - 1. (6.5) 
n=O 

In the above equation, it is assumed that the given signal has N samples; it may 
be shown that the Fourier transform of a discrete-time signal with N samples is 
completely determined by N samples of its Fourier transform equally spaced around 
the unit circle in the z-plane [86]. The inverse DFT (synthesis) relationship is given 
by the expression 

z ( n )  = - , n = 0 , 1 1 2 1 . . . 1 N - 1 .  (6.6) 
k=O 

N 

Sampling the frequency variable causes the signal to become periodic in the time 
domain. The equations above define the forward and inverse DFIk over one period. 

Note that 

e x p ( j $ k n )  = c o s ( $ k n )  + j s i n ( $ k n )  (6.7) 

represents the sine and cosine functions of normalized frequency f = h k ,  k = 
0,1,2,. . . , N - 1. The normalized frequency lies in the range 0 5 f 5 1, and 
may be converted to the real frequency in H z  by multiplication with the sampling 
frequency f a  Ha.  Equation 6.5 represents the dot product or projection of the given 
signal z ( n )  onto each complex exponential or sinusoid e x p ( j 9 k n )  (conjugated). 
Equation 6.6 represents synthesis of the signal z(n) as a linear, weighted combination 
of the complex exponential basis functions, the weights being the DFT coefficients 

Several important properties of the DFT and their implications are listed below [ 1, 
X ( k ) *  

2, 14, 861. 

0 A signal z(n)  and its DFT X ( k )  are both periodic sequences. 

0 If a signal z(n) has N samples, its DFT X( k )  must be computed with at least N 
samples equally spaced over the normalized-frequency range 0 5 w 5 2n (or, 
equivalently, around the unit circle in the z-plane) for complete representation 
and determination of X ( w ) ,  and hence exact reconstruction of z(n)  via the 
inverse DFT of X ( k ) .  Of course, one may use more than N samples to compute 
X ( k )  in order to employ an FFT algorithm with L = 2M 2 N samples, where 
M is an integer, or to obtain X ( w )  with finer frequency sampling than s. 
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0 TheDFTislinear: theDFTofaz(n)+by(n)isaX(k)+bY(k), whereX(k) 
and Y ( k )  are the DFTs of z(n) and y(n), respectively. 

The DFT of z(n - no) is exp(-j%kn,)X(k), where X(k) is the DFT of 
z(n). A time shift leads to a linear component being added to the phase of the 
original signal. As all sequences in DFT relationships are periodic, the shift 
operation should be defined as a circular or periodic shift. If at least no zeros 
are present or are padded at the end of the signal before the shift operation, a 
circular shift will be equivalent to a linear shift. 

0 The DFT of z(n)  * h(n) is X(k)H(k), where X(k) and H ( k )  are the DFTs of 
z(n) and h(n), respectively. The inverse DFT of X ( k ) H ( k )  is z(n) * h(n).  
Similarly, z(n)h(n) and X ( k )  * H ( k )  form a DFT pair. Convolution in one 
domain is equivalent to multiplication in the other. It is necessary for all the 
signals in the above relationships to have the same number of samples N. 
As all sequences in DFT relationships are periodic, the convolution operations 
in the above relationships are periodic convolution and not linear convolution. 
Note that circular or periodic convolution is defined for periodic signals having 
the same period, and that the result will also be periodic with the same period 
as that of the individual input signals. 

The result of linear convolution of two signals z(n) and h(n) with different 
durations N ,  and N h  samples, respectively, will have a duration of N, + N h  - 1 
samples. If linear convolution is desired via the inverse DFli of X(k)H(k),  
the DlTs must be computed with L 2 N, + Nh - 1 samples. The individual 
signals should be padded with zeros at the end to make their effective durations 
equal for the sake of DFT computation and multiplication. All signals and 
their DFTs are then periodic with the augmented period of L samples. 

0 The DFT of a real signal z(n) will possess conjugate symmetry, that is, 
X(-k) = X * ( k ) .  As a consequence, the real part and the magnitude of 
X ( k )  will be even sequences, whereas the imaginary part and the phase of 
X ( k )  will be odd sequences. 

0 According to Parseval's theorem, the total energy of the signal must remain 
the same before and after Fourier transformation. We then have the following 
equalities: 

N-1 - N-1 
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Since the integral of IX(w)la over all w or the sum of IX(k)I2 over all k 
represents the total energy of the signal (or average power, if the quantity 
is divided by the duration of the signal), IX(w)la and lX(k)I2 represent the 
spread or density of the power of the signal along the frequency axis. 

6.4 ESTIMATION OF THE POWER SPECTRAL DENSITY FUNCTION 

We have already encountered the ACF and CCF in Equations 3.9, 3.12, and 4.24: 
the first two equations cited provided a general definition of the ACF as a statistical 
expectation or an integral over a duration tending to 00; the third treated the CCF as 
the projection of one signal onto another and neglected a scale factor that was of no 
consequence in the application. We shall now investigate more closely the procedures 
required to estimate the ACF, and hence the PSD, from finite-length signal records. 

Let us consider a signal record of N samples: z(n),  n = 0, 1 ,2 , .  . . , N - 1. In 
order to compute the time-averaged ACF $22 (m) for a delay of m samples, we need 
to form the product z(n)z(n f m) and sum over the available range of data samples. 
The true ACF is given as $,,(m) = E[z(n)z(n + m)]. Note that one of the copies 
of the signal entering the computation of the ACF should be conjugated if the signal 
is complex. 

It is readily seen that we may sum from n = 0 to n = N - 1 when computing 
c&(O) withz(n)z(n) = z2(n). However, whencomputing CpZz(1) with z(n)z(n+ 
l), we can only sum from n = 0 to n = N - 2. As we apply a linear shift of 
m samples to one copy of the signal to compute $2z(&m), m samples of one of 
the copies of the signal drop out of the window of analysis indicated by the overlap 
between the two copies of the signal. Therefore, only N - Iml pairs of data samples 
are available to estimate the ACF for the delay of f m  samples. We then have a 
sample-mean estimate of the ACF given by 

The subscript zz has been omitted in the above equation; the subscript 1 indicates 
the use of one type of averaging scale factor in estimating the ACE Oppenheim and 
Schafer [86] show that $l(m) is a consistent estimate of $2a(m): it has zero bias and 
has a variance that tends to zero as N + 00. However, the variance of the estimate 
becomes exceptionally large as m approaches N: very few non-zero pairs of samples 
are then available to compute the ACE and the estimate is useless. 

An alternative definition of the ACF ignores the lack of Irnl non-zero pairs of 
samples, and applies the same scale factor for all delays, leading to 

. N-lml-1 
1 

&(m) = c z(n)z(n f m). 
n=O 

(6.10) 

Note that the upper limit of summation in the above expression could be stated as 
N - 1 with no effect on the result; the first or the last Iml samples of z(n) will not 
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overlap with z(n+rn), and result in zero product terms. Oppenheim and Schafer [86] 
show that 42(m) has a bias equal to g+22(m):  the bias tends to the actual value being 
estimated as m approaches N, although the variance is almost independent of rn and 
tends to zero as N + 00. Regardless, both the ACF estimates are asymptotically 
unbiased (the bias of 42(rn) tends to zero as N + oo), and yield good estimates of 
the ACF as long as the number of samples N is large and m << N. 

Note that the two ACF estimates #l (m)  and 42(rn) are inter-related as 

(6.1 1) 

Thus 42(rn) is a scaled version of $l(m).  However, since the scaling factor is a 
function of m, it is more commonly referred to as a window; more discussion on 
this interpretation will be presented in Section 6.4.1. It should also be observed 
that the distinction between +l(m)  and 42(rn) is comparable to that between the 
unbiased and biased sample variance measures, where the division is by N - 1 or N, 
respectively, with N being the number of samples available. 

6.4.1 The periodogram 

Since the PSD and the ACF are a Fourier transform pair, we may compute an estimate 
of the PSD as 

N-1 

(6.12) 
m= - (N-1) 

assuming that, indeed, the ACF is computed or available for (rnl up to N - 1. The 
Fourier transform of the signal z(n),  n = 0,1,2,. . . , N - 1, is given as 

(6.13) 

(6.14) 

The PSD estimate & ( w )  is known as the periodogram of the signal z(n) [86]. 
Oppenheim and Schafer [86] show that &(w) is a biased estimate of the PSD, with 

If we consider the Fourier transform of #~l(rn), we get a different estimate of the 

S l ( W )  = c 41(m) exp(-jwm), (6.16) 

PSD as 
N - 1  

m=-(N-l) 
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with the expected value [86] 

N-1 

E[S1 (w ) ]  = c 422 (m) exp(-jwm). (6.17) 

Because of the finite limits of the summation, &(w)  is a biased estimate of the PSD. 
The two estimates Sa(w) and S l ( w )  may be seen as the Fourier transforms of 

windowed ACFs, with the window functions being a triangular function -known as 
the Bartlett window, wg(m) - in the first case, and a rectangular window W R ( ~ )  
in the second case: 

m=-(N-l)  

1 ( m l < N  
wR(m) = { 0,  otherwise * 

(6.18) 

(6.19) 

Note that the windows defined above have a (non-zero) duration of (2N - 1) samples. 
Since the ACF is multiplied with the window function, the PSD is convolved with 

the Fourier transform of the window function, leading to spectral leakage and loss 
of resolution (more details on windows will follow in Section 6.4.3). The Fourier 
transforms of the Bartlett and rectangular windows are, respectively [86], 

and 

(6.20) 

(6.2 1) 

Oppenheim and Schafer [86] show that the periodogram has a variance that does 
not approach zero as N + 00; instead, the variance of the periodogram is of the 
order of 6: regardless of N. Thus the periodogram is not a consistent estimate of the 
PSD. 

6.4.2 The need for averaging 

A common approach to reduce the variance of an estimate is to average over a 
number of statistically independent estimates. We have seen in Section 3.3.1 how 
the variance of the noise in noisy signals may be reduced by synchronized averaging 
over a number of observations of the corrupted signal. In a similar vein, a number of 
periodograms may be computed over multiple observations of a signal and averaged 
to obtain a better estimate of the PSD. It is necessary for the process to be stationary, 
at least during the period over which the periodograms are computed and averaged. 

Problem: How can we obtain an averaged periodogram when we are given only 
one signal record ofjinire duration ? 
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Solution: Oppenheim and Schafer [86] describe the following procedure, at- 
tributed to Bartlett, to average periodograms of segments of the given signal record: 

1. Divide the given data sequence z(n), n = 0,1,2,. . . , N - 1, into K segments 
of M samples each. We then have the segments given by 

zi(n) = ~ ( n  + (i - 1)M), 0 5 n 5 M - 1, 1 5 i 5 K. (6.22) 

2. Compute the periodogram of each segment as 

The Fourier transform in the above equation is evaluated as a DFT (using the 
FFT algorithm) in practice. 

3. If the ACF &=(m) is negligible for Iml > M, the periodograms of the 
K segments of duration M samples each may be assumed to be mutually 
independent. Then, the Bartlett estimate SB(W) of the PSD is obtained as the 
sample mean of the K independent observations of the periodogram: 

(6.24) 

Oppenheim and Schafer [86] show that the expected value of the Bartlett estimate 
SB(W) is the convolution of the true PSD Szz(w) with the Fourier transform of the 
Bartlett window given in Equation 6.20 (with N replaced by M ) .  The convolution 
relationship indicates the bias in the estimate, and has the effect of spectral smearing 
and leakage; the bias may therefore be interpreted as a loss in resolution. Although 
SB(W) is a biased estimate, its variance tends to zero as the number of segments K 
increases. Therefore, it is a consistent estimate. 

When we have a (stationary) signal of fixed duration of N samples, we will face 
limitations on the number of segments K that we may obtain. While the variance 
of the estimate decreases as K is increased, it should be recognized that there is a 
concomitant decrease in the number of samples M per segment. As M decreases, 
the main lobe of the Fourier transform of the Bartlett window (see Equation 6.20) 
widens; frequency resolution is lost because the estimate is the convolution of the 
true PSD with the window’s frequency response. An illustration of application of the 
Bartlett procedure will be provided at the end of Section 6.4.3. 

Cyclo-stationary signals such as the PCG offer a unique and interesting approach 
to synchronized averaging of periodograms over a number of cycles, without the 
trade-off between the reduction of variance and the loss of resolution imposed by 
segmentation as described above. This is presented as an illustration of application 
in Section 6.4.5. 
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6.4.3 The use of wlndows: Spectral resolution and leakage 

The Bartlett procedure may be viewed as an ensemble averaging approach to reduce 
the variance (which may be interpreted as noise) of the periodogram. Another 
approach to obtain a smooth spectrum is to convolve the periodogram S ( w )  with a 
filter or smoothing function W(w) in the frequency domain (similar to the use of an 
MA filter in the time domain). The smoothed estimate S,(w) is given by 

S,(w) = S(v)  W(w - v) dv, 
27r --‘II 

(6.25) 

where v is a temporary variable for integration. 
As the PSD is a nonnegative function, the smoothing function W(w) should satisfy 

W(w) 2 0, --?r 5 w 5 7r. The Fourier transform of the Bartlett window WB(W) 
meets this requirement. Oppenheim and Schafer [86] show that the variance of the 
smoothed periodogram is reduced approximately by the factor 

M-1 

- c wZ(m)=- (6.26) N 
m=- (M - 1) 

with reference to the variance of the original periodogram; here N is the total 
number of samples in the signal and (2M - 1) is the number of samples in the 
smoothing window function. A rectangular window offers a variance-reduction 
factor of approximately F, whereas the factor for the Bartlett window is [86] .  
It should be noted that smoothing of the spectrum (reduction of variance) is achieved 
at the price of loss of frequency resolution. 

Since the periodogram is the Fourier transform of the ACF estimate +(m), the 
convolution operation in the frequency domain in Equation 6.25 is equivalent to 
multiplying +(m) with w(rn), the inverse Fourier transform of W ( w ) .  This result 
suggests that the same PSD estimate as S,(w) may be obtained by applying a window 
to the ACF estimate and then taking the Fourier transform of the result. As the ACF 
is an even function, the window should also be even. 

Based upon the arguments outlined above, Welch [ I651 (see also Oppenheim and 
Schafer [86])  proposed a method to average modified periodograms. In Welch’s 
procedure, the given signal is segmented as in the Bartlett procedure, but a window 
is applied directly to the original signal segments before Fourier transformation. The 
periodograms of the windowed segments are defined as 

zi(n)ut(n) exp(-jwn) , i = 1,2, .  . . , K ,  (6.27) 
M-1 

SWi(W)  = - 

where Ew is the average power of the window given by 

w2(n)# E w = -  C 
n=O M 

1 M-l 
(6.28) 
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Note that the duration of the window is now M samples. The Welch PSD estimate 
SW(W) is obtained by averaging the modified periodograms as 

(6.29) 

Welch [I651 showed that, if the segments are not overlapping, the variance of 
the averaged modified periodogram is inversely proportional to K, the number of 
segments used. Welch also suggested that the segments may be allowed to overlap, 
in which case the modified periodograms are not mutually independent. The spec- 
tral window that is effectively convolved with the PSD in the frequency domain is 
proportional to the squared magnitude of the Founer transform of the time-domain 
data window applied. Therefore, no matter which type of a data window is used, 
the spectral smoothing function is nonnegative, thereby guaranteeing that the PSD 
estimate will be nonnegative as well. 

Some of the commonly used data windows are defined below [86, 1661; the 
windows are of length N samples and causal, defined for 0 5 n 5 N - 1. 

J 

Rectangular: 

Bartlett (triangular): 

w(n)  = 1. (6.30) 

Hamming: 

w ( n )  = 0.54 - 0.46 cos 

Hanning (von Hann): 

w(n)  = f [ I -  cos (g)] . 

(6.32) 

(6.33) 

Blackman: 

~ ( n )  = 0.42 - 0.5 cos ( - iTl)  + 0.08 cos (&) . (6.34) 

Figure 6.3 illustrates the rectangular, Bartlett, Hanning, and Hamming windows 
with N = 256 samples. A Hanning window with N = 128 samples is also illustrated 
(centered with reference to the longer-duration windows). 

Use of the tapered windows (all of the above, except the rectangular window) 
provides the advantage that the ends of the given signal are reduced to zero (with the 
further exception of the Hamming window, for which the end-values are not zero but 
0.08). This feature means that there are no discontinuities in the periodic version of 
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I 1 I I I r 

Figure 6.3 Commonly used window functions: rectangular, Bartlett, Hamming, and Han- 
ning windows with N = 256 (Hanningl), and Hanning window with N = 128 samples 
(Hanning2). All windows are centered at the 128'h sample. 
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the signal encountered in DFT-based procedures. All of the window functions listed 
above are symmetric (even) functions, and therefore have a linear phase (or a real 
spectrum with zero phase if the window is centered at the origin). 

Figures 6.4 to 6.8 illustrate the log-magnitude frequency responses of the window 
functions shown in Figure 6.3. The frequency responses were computed after padding 
the windows to a total duration of L = 2,048 samples for FFT computation. The plots 
are on an expanded scale over the limited normalized-frequency range of (0,O.l) in 
order to illustrate clearly the characteristics of the main-lobe and the side-lobes. The 
discontinuities in the frequency responses of the rectangular and Bartlett windows in 
Figures 6.4 and 6.5 are due to the log of the zeros of the responses being -m. 

The rectangular window has the narrowest main lobe of width h; the main lobe is 
wider at 
for the Blackman window [86]. A reduction in window width will lead to an increase 
in the main-lobe width, as illustrated by the frequency responses of the two Hanning 
windows in Figures 6.7 and 6.8. Note that the wider the main lobe, the greater is the 
spectral smoothing, and hence the loss of spectral resolution is more severe. 

N for the Bartlett, Hanning, and Hamming windows; it is the widest at 

- 

- 

- 

- 

- 

- 

- 

-50' t I J 

Figure 6.4 Log-magnitude frequency response of the rectangular window illustrated in Fig- 
ure 6.3. The window width is N = 256 samples. 

The rectangular window has the highest peak side-lobe levels of all of the windows 
listed at -13 dB, with the Bartlett, Hamming, Hanning, and Blackman windows 
having their peak side-lobe levels at -25 dB, -31 dB, -41 dB, and -57 dB, 
respectively [86]. Higher levels of the side-lobes will cause increased spectral leakage 
(weighted summation of spectral components with significant weights over a wide 
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Normalized frequency 

Figure 6.5 Log-magnitude frequency response of the Bartlett window illustrated in Fig- 
ure 6.3. The window width is N = 256 samples. 

range of frequencies due to convolution in the frequency domain), resulting in a more 
distorted spectrum. Note that reduction of leakage through the use of the tapered 
windows comes at the price of increased main-lobe width, and therefore more severe 
loss of spectral resolution (more smoothing). 

Illustration of application: The Welch method of windowing signal segments 
and averaging their PSDs was applied to the 02 channel of the EEG signal illustrated 
in Figure 1.22. The number of samples in the signal is N = 750, with the sampling 
frequency being f. = 100 Hx. Note that the specific EEG signal record may be 
assumed to be stationary over its relatively short duration of 7.5 s. The dominant 
activity in the signal is the alpha rhythm, which appears throughout the duration of 
the signal record. 

The PSD of the entire signal was first computed using no window (that is, the 
rectangular window was applied implicitly); the FFT array was computed with L = 
1,024 samples. The top trace in Figure 6.9 illustrates the PSD of the signal. 

For the first averaged periodogram procedure, the EEG signal was segmented with 
M = 64 samples each, with implicit usage of the rectangular window (equivalent to 
the Bartlett method). A total of K = 11 segments were obtained. Each segment was 
padded with zeros to a length of L = 1,024 for the sake of FFT computation, The 
PSDs of the segments were then averaged, followed by normalization and logarithmic 
transformation. The second and third plots in Figure 6.9 illustrate the PSD of a sample 
segment (the llth segment) and the averaged PSD (the Bartlett estimate), respectively. 
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Frequency responw of the Hamnrlng window 
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Normalized frequency 
1 

Figure 6.6 Log-magnitude frequency response of the Hamming window illustrated in Fig- 
ure 6.3. The window width is N = 256 samples. 

It is seen that the averaged PSD (third trace) provides a smooth spectral estimate with 
a clearly dominant peak at approximately 10 HI, representing the alpha rhythm 
present in the signal. The PSD of the individual segment (middle trace) displays 
many peaks and valleys that are possibly spurious and not significant, and have been 
suppressed or smoothed by the averaging process. The single PSD computed from 
the entire signal (top trace) exhibits numerous variations that may not be relevant and 
could confound visual or automated analysis. (Note: Direct comparison of the PSDs 
is possible since they have the same number of samples, that is, the same frequency 
sampling.) 

Figure 6.10 illustrates a second set of PSDs similar to that in Figure 6.9, but 
with the usage of the Hanning window in the Welch procedure. The effect of the 
Hanning window is not significant in the case of the PSD of the entire signal (top 
trace), as the window length is reasonably large (N = 750). However, the Hanning 
window has clearly smoothed the multiple (possibly spurious) peaks and valleys in 
the PSD of the segment illustrated in the middle trace. The wider main-lobe of the 
Hanning window’s frequency response has caused a more severe loss of frequency 
resolution (smoothing) than the rectangular window in the case of the corresponding 
PSD in Figure 6.9. Finally, the averaged PSD in the lowest trace of Figure 6.10 clearly 
illustrates the benefit of the Hanning window in the significantly reduced power levels 
beyond 30 Hz. The lower side-lobe levels of the Hanning window have resulted 
in less spectral leakage than in the case of the rectangular window as illustrated by 
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Figure 6.7 Log-magnitude frequency response of the Hanningl window illustrated in Fig- 
ure 6.3. The window width is N = 266 samples. 

the corresponding PSD in Figure 6.9. The price paid, however, is evidenced by the 
wider peak in the averaged PSD with the Hanning window, which spans the range 
5 - 15 Ha at the -10 dB level. The two distinct peaks at about 10 Hz and 12 Hz 
that are evident in the top traces of Figures 6.9 and 6.10 as well as in the smoothed 
PSD in the bottom trace of Figure 6.9 are no longer seen separately in the bottom trace 
of Figure 6.10. Regardless, the averaged PSD with the Hanning window appears to 
be smoother and more amenable to analysis than the corresponding result with the 
rectangular window. 

6.4.4 Estimation of the autocorrelation function 

Good estimates of the ACF are required in applications such as the design of the 
optimal Wiener filter and estimation of the statistics of stochastic processes. Once a 
PSD estimate has been obtained by a method such as the Bartlett or Welch procedures, 
we may take the inverse Fourier transform of the result and use the result as an 
estimate of the ACE We may also fit a smooth curve or a parametric model (Gaussian, 
Laplacian, etc.) to the PSD or to the equivalent ACF model. 

Let us consider again the expression 

. N-lml-1 
1 

dJz(m) = - c z(n)z(n + m). 
n=O 

N (6.35) 
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Figure 6.8 Log-magnitude frequency response of the Hanning2 window illustrated in Fig- 
ure 6.3. The window width is N = 128 samples. 

As the ACF is an even function, we need to compute it only for positive rn. It is 
evident that the ACF estimate is simply the result of linear convolution of z(n) with 
z(-n) (with the scale factor 1 . If the DFT of z(n)  is X ( k ) ,  the DFT of z(-n) 
is X * ( k ) .  Since convolution In the time domain is multiplication in the frequency 
domain, we could compute the DFT X ( k )  of z(n), obtain X ( k ) X * ( k )  = IX(k)la,  
and take its inverse DFT. However, the Dm procedure provides circular convolution 
and not linear convolution. Therefore, we need to pad z(n) with at least M - 1 zeros, 
where M is the largest lag for which the ACF is desired. The DFT must then be 
computed with at least L = N + M - 1 samples, where N is the number of samples 
in the original signal. If this requirement is built into the periodogram or averaged 
periodograrn procedure, the inverse Dm of the final PSD estimate may be used as 
an estimate of the ACF (with the scale factor 8, or division by C $ ~ ~ ( O )  to get the 
normalized ACF). 

I v )  

6.4.5 Synchronized averaging of PCG spectra 

Every individual is familiar with the comforting lub - dub sounds of his or her heart 
beat; every prospective parent would have taken pleasure in listening to the throbbing 
heart of the yet-to-be-born baby. Use of the heart sounds is extremely common in 
clinical practice: the stethoscope is the most common sign and tool of a physician. 
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Figure 6.9 Bartlett PSD estimate of the 02 channel of the EEG signal in Figure 1.22. 
Top trace: PSD of the entire signal. Middle trace: PSD of the 1lth segment. Bottom trace: 
Averaged PSD using K = 11 segments of the signal. The rectangular window was (implicitly) 
used in all cases. Number of samples in the entire signal: N = 750. Number of samples in 
each segment: M = 64. All arrays were computed with L = 1,024 samples. Sampling 
frequency f. = 100 HI. 
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Figure 6.10 Welch PSD estimate of the 02 channel of the EEG signal in Figure 1.22. Top 
trace: PSD of the entire signal. Middle trace: PSD of the llth segment. Bottom trace: 
Averaged PSD using K = 11 segments of the signal. The Hanning window was used in all 
cases, Number of samples in the entire signal and the size of the Hanning window used in 
computing the PSD of the entire signal: N = 750. Number of samples in each segment and 
the size of the Hanning window used in the averaged periodogram method: M = 64. All FFT 
arrays were computed with L = 1,024 samples. Sampling frequency f. = 100 Hz. 
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Yet, behind this common signal lie many sophisticated and potentially complicating 
characteristics. 

The PCG is a nonstationary signal due to the fact that the amount of blood in each 
cardiac chamber and the state of contraction of the muscles change continually during 
each cardiac cycle. S2 usually has more high-frequency content than S 1 : the PSD of 
a normal PCG signal changes within about 300 ms. Valve opening or closing sounds, 
being of short duration of the order of 10 ms, are of a transient and high-frequency 
character. The presence of murmurs adds another dimension of nonstationarity, 
with frequency content well beyond that of the normal heart sounds: the PSD of an 
abnormal PCG could change every 100 ms or less. Individual epochs’of S1, S2, 
valve snaps, and murmurs are of limited durations of the order of 10 - 300 ms. These 
aspects of the PCG preclude segmented averaging as recommended by the Bartlett 
or Welch procedures. 

Over and above all of the factors mentioned in the preceding paragraph, the 
transmission characteristics of the chest wall change during breathing. (Living 
systems are dynamic!) The PCG signals recorded at various locations on the chest are 
also subject to different transmission-path effects. While adult subjects may cooperate 
in PCG signal acquisition by holding their breath or performing other maneuvers, 
these possibilities cannot be considered in the case of infants and young children in 
poor states of health. The PCG signal presents more challenges in acquisition and 
analysis than most of the other biomedical signals we have encountered [40]. 

Problem: Propose a method to obtain averaged PSD estimates of the systolic and 
diastolic heart sounds. 

Solution: The cyclo-stationarity of the PCG lends itself to a unique approach 
to averaging PCG segments corresponding to the same phase of the cardiac cycle 
extracted from multiple beats. If the subject were to hold hisher breath during the 
period of acquisition of the PCG record, the chest-wall transmission characteristics 
will be stationary over the multiple cardiac cycles in the record. Therefore, we may 
segment S 1, S2, or any portion of the cardiac cycle of interest from as many beats as 
are available, and average their PSD estimates in a procedure similar to the Bartlett 
or Welch procedures. (Note: Direct averaging of the PCG signals themselves or of 
their complex Fourier transforms could lead to undesired cancellation of noise-like 
murmurs or asynchronous frequency components and their disappearance from the 
result! Refer to Sections 4.1 1 and 6.6 for discussions on intentional cancellation of 
asynchronous components in the PCG via synchronized averaging.) 

We saw in Sections 5.5.2 and 5.5.3 how the envelope or the envelogram of the 
PCG may be averaged over several cardiac cycles. However, there was no need to 
segment parts of a cardiac cycle in envelope analysis: nonstationarity of the signal 
within a cardiac cycle was not a concern. In the present application of PSD analysis, 
there is a need to segment the PCG further. 

A procedure was described in Section 4.10 for segmentation of the systolic and 
diastolic parts of PCG signals based upon the detection of the QRS complex in the 
ECG and the detection of the dicrotic notch in the carotid pulse signal. Further 
segmentation of the systolic or diastolic parts into S 1 and systolic murmur or S2 and 
diastolic murmur, respectively, would require more sophisticated methods, which will 
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be the topics of Chapter 8. For now, let us consider the task of obtaining averaged 
PSDs of the systolic and diastolic parts of a PCG signal. 

Figure 6.1 1 shows the PCG signal over one cardiac cycle of a normal subject seg- 
mented using the procedure described in Section 4.10 and illustrated in Figure 4.27. 
The periodograms of the systolic and diastolic parts of the PCG cycle illustrated are 
also shown in the figure. In order to obtain better PSD estimates, the periodogram 
of each systolic or diastolic segment was computed separately and averaged over 16 
cardiac cycles. No data window was applied (the rectangular window was used, in 
effect), therefore the procedure used is similar to the Bartlett procedure. Individual 
systolic or diastolic segments could be of different durations; for the present illus- 
tration, all periodograms were computed with the same number of samples, which 
was taken to be the maximum RR interval in the ECG record of the subject. The 
averaged systolic and diastolic PSD estimates are shown in Figure 6.1 1. The aver- 
aging procedure provides a smoother estimate of the PSDs by removing beat-to-beat 
variations that are neither significant nor of interest. Spectral peaks may be clearly 
observed in the averaged periodograms, and may be considered to be more reliable 
estimates of resonance than the peaks found in individual periodograms. 

Figure 6.12 illustrates a PCG signal cycle as well as the individual and averaged 
systolic and diastolic PSD estimates for a patient with systolic murmur, split S2, and 
opening snap of the mitral valve (see also Figures 4.28 and 5.7). It is unlikely that 
the patient held her breath during data acquisition. The presence of increased high- 
frequency power in the range 120 - 250 Hz due to the systolic murmur is evident in 
the averaged systolic PSD. The diastolic PSDs are comparable to the corresponding 
normal diastolic PSDs in Figure 6.1 1. 

6.5 MEASURES DERIVED FROM POWER SPECTRAL DENSITY 
FUNCTIONS 

The Fourier spectrum or PSD provides us with a density function of signal ampli- 
tude, power, or energy versus frequency. We would typically have a large number 
of samples of the PSD over a wide frequency range, which may not lend itself to 
easy analysis. We may, of course, study the shape of the spectrum graphically, and 
observe its general characteristics. Such an approach is often referred to as non- 
parametric spectral analysis. The spectral models we shall study later in Section 7.4 
are characterized by a small number of parameters, and are hence called parametric 
spectral analysis (or modeling) methods. 

Problem: Derive parameters or measures from a Fourier spectrum or PSD that 
can help in the characterization of the spectral variations or features contained 
therein. 

Solution: Since the PSD is a nonnegative function as well as a density function, 
we may readily treat it as a PDF, and compute statistics using moments. We may 
also detect peaks corresponding to resonance, measure their bandwidth or quality 
factor, and derive measures of concentration of power in specific frequency bands of 
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Figure 6.11 Top to bottom: A sample PCG signal over one cardiac cycle of a normal subject 
(male, 23 years; see also Figures 4.27 and 5.6); periodogram of the systolic portion of the 
signal (approximately 0 - 0.4 8) ;  averaged periodogram of the systolic parts of 16 cardiac 
cycles segmented as illustrated in Figure 4.27; periodogram of the diastolic portion of the signal 
shown in the first plot (approximately 0.4 - 1.2 8 ) ;  averaged periodogram of the diastolic parts 
of 16 cardiac cycles. The periodograms are on a log scale (dB).  
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Figure 6.12 Top to bottom: A sample PCG signal over one cardiac cycle of a patient with 
systolic murmur, split S2, and opening snap of the mitral valve (female, 14 months; see 
also Figures 4.28 and 5.7); periodogram of the systolic portion of the signal (approximately 
0 - 0.28 8); averaged periodogram of the systolic parts of 26 cardiac cycles segmented as 
illustrated in Figure 4.28; periodogram of the diastolic portion of the signal shown in the first 
plot (approximately 0.28 - 0.62 s); averaged periodogram of the diastolic parts of 26 cardiac 
cycles. The periodograms are on a log scale (dB).  
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interest or concern. Although the PSD itself is nonparametric, we may derive several 
parameters that, while not completely representing the entire PSD, may facilitate the 
identification of physiological and/or pathological phenomena. We shall investigate 
a few different approaches toward this end in the following subsections. 

6.5.1 Moments of PSD functions 

As the area under the PSD curve represents the total signal power or energy which 
need not be unity, we have to normalize all moments by the total power or energy of 
the signal E, given by 

(6.36) 
n=O k=O 

1 

lX(W)l2 dw = J;=. 1X(f)I2 df. = G i  
1 2n 

Note that the frequency variables w and f above are normalized. Assuming that the 
PSD has been obtained using one of the methods described in the preceding sections, 
we may replace IX(.)I2 in the above expressions by Szz(.). 

As a simple measure of the concentration of the signal power over its frequency 
range, we may compute the mean frequency f as the first-order moment 

or as 

(6.37) 

(6.38) 

where N is the number of samples in the DFT-based representation of the PSD. The 
upper limit of integration of 0.5 represents integration from DC to the maximum 
frequency present in the signal, which is half the sampling frequency, the frequency 
variable having been normalized to the range 0 5 f 5 1. Note that the integration 
or summation is performed over one-half period of the periodic function S,,(f) or 
Szz(k), which also possesses even symmetry about half the sampling frequency for 
real signals. 

The median frequency fmed is defined as that frequency which splits the PSD in 
half: 

m 
N fmed = - fa with the largest m such that (6.39) 

We may also compute higher-order statistics such as 
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0 variance fm2 as the second-order moment by using (f - f)2 in place of f  (the 
function of frequency that is multiplied with SZZ(f)) in Equation 6.37 or the 
equivalent expression in k in Equation 6.38; that is, 

(6.40) 

or 

where k is the frequency sample index corresponding to f .  

0 skewnessas 
fm3 skewness = 

(fm2)3/z ’ 

(6.41) 

(6.42) 

where the third-order moment fm3 is computed with (f - 
Equation 6.37, that is, 

in place o f f  in 

2 0.5 
~3 = 1 (f - .V szz(f) (6.43) 

f=O 

0 kurtosis as 
fm4 

(fm2)Z ’ 
kurtosis = - (6.45) 

where the fourth-order moment fm4 is computed with (f - f)4 in place of f 
in Equation 6.37, that is, 

or 

(6.46) 

(6.47) 

The mean frequency is a useful measure of the concentration of signal power, 
and could indicate the resonance frequency in the case of unimodal distributions. 
However, a nearly uniform PSD could lead to half the maximum frequency as the 
mean frequency, which by itself may not be a useful representation of the PSD. The 
presence of multiple resonance frequencies could also lead to a mean frequency that 
may not be a useful measure. Multimodal PSDs may be characterized better by a 
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series of peak frequencies, along with measures of their relative levels and bandwidths 
or quality factors (to be described in the next subsection). 

The square-root of fmz provides a measure of spectral spread (standard deviation 
about the mean) and an indication of the bandwidth (but not at -3 dB)  about the 
mean frequency. The skewness is zero if the density function is symmetric about the 
mean frequency; otherwise, it indicates the extent of asymmetry of the distribution. 
Kurtosis indicates if the PSD is a long-tailed function. 

Moments of PSDs may be useful in characterizing the general trends in the 
distribution of the power of a signal over its bandwidth. The higher-order moments 
are sensitive to noise or spurious variations in the PSD estimate, and may not yield 
reliable measures if the PSD pattern is not simple or if the PSD estimate is poor (has 
a high variance). The reliability of moments may be improved by smoothing the PSD 
estimate, or by fitting a smooth parametric curve (Gaussian, Laplacian, spline, etc.) 
as a model of the PSD estimate and computing the moments of the model. Saltzberg 
and Burch [ 1361 discuss the relationship between moments of PSDs and ZCR, and 
their application to EEG analysis. 

6.5.2 Spectral power ratios 

The moments described in the preceding subsection provide general statistical char- 
acterization of the PSD treated as a PDF, In the case of analysis of biomedical signals, 
it may be more advantageous to define specific measures based upon a priori infor- 
mation or empirical knowledge about the signals, systems, and the physiological or 
pathological processes of concern. For example, in the case of PCG analysis for the 
detection of murmurs, we could specifically investigate the presence of signal power 
in the frequency range beyond that of S1 and/or S2. If a specific type of pathology 
of interest is known to cause a shift in the frequency content within a certain band 
of frequencies, we may measure spectral power ratios over partitions of the band of 
interest. We have already seen in Sections 6.2.1 and 6.2.2 how such measures have 
been used for the analysis of ventricular elasticity, diagnosis of myocardial infarction, 
and detection of murmurs. 

The fraction of signal power in a frequency band of interest (fl : f ~ )  may be 
computed as 

where kl and kz are the DFT indices corresponding to fi and f2, respectively. 
Fractions of power as above may be computed for several bands of interest that may 
or may not span the entire signal bandwidth. 

In a variation of the above fractional-power measure, Johnson et al. [ 1631 compared 
the integral of the magnitude spectrum of the systolic murmurs due to aortic stenosis 
over the band 75 : 150 Hz to that over the band 25 : 75 HE. They considered the 
higher-frequency band to represent the predictive area (PA) of the spectrum related 
to the aortic stenosis, and the lower-frequency band to represent a constant area (CA) 
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that would be common to all systolic PCG signal segments. The ratio of P A  to CA 
was defined as 

(6.49) 

with fi = 25 H r ,  fi = 75 Ha, and f3 = 150 Ha. The ratio is provided for the 
PSDs of systolic murmurs of four patients with aortic stenosis in Figure 6.2; Johnson 
et al. showed that the ratio correlates well with the severity of aortic stenosis. 

Binnie et al. [145, 1461 describe the application of spectrum analysis to EEG for 
the detection of epilepsy. Their method was based upon partitioning or banding 
of the EEG spectrum into not only the traditional 6, 6, a, and ,8 bands, but also 
into seven other nonuniform bands specified as 1 - 2, 2 - 4, 4 - 6, 6 - 8, 8 - 
11, 11 - 14, and > 14 Ha. Additional features related to form factor FF (see 
Section 5.6.4) were also used. In a study with 275 patients with suspected epilepsy, 
90% of the signals of the patients with pathology were classified as abnormal by their 
methods: conversely, 86% of the patients whose EEGs were classified as abnormal 
had confirmed pathology. 

When analyzing a spectral peak, we may also compute the -3 dB bandwidth of 
the peak, and furthermore, its quality factor as the ratio of the peak frequency to the 
bandwidth. Such measures may be computed for not only the dominant peak, but 
several peaks at progressively lower levels of signal power. Essentially, each potential 
resonance peak is treated and characterized as a bandpass filter. Durand et al. [ 1671 
used such measures to characterize the PSDs of sounds produced by prosthetic heart 
valves (to be discussed in Section 6.6). 

6.6 APPLICATION: EVALUATION OF PROSTHETIC HEART VALVES 

Efficient opening and closing actions of cardiac valves are of paramount importance 
for proper pumping of blood by the heart. When native valves fail, they may be 
replaced by mechanical prosthetic valves or by bioprosthetic valves extracted from 
pigs. Mechanical prosthetic valves are prone to sudden failure due to fracture of 
their components. Bioprosthetic valves fail gradually due to tissue degeneration and 
calcification, and have been observed to last 7 - 12 years [167]. Follow-up of the 
health of patients with prosthetic valves requires periodic, noninvasive assessment of 
the functional integrity of the valves. 

Problem: Deposition of calcium causes the normally pliant and elastic bio- 
prosthetic valve leajlets to become stifl Propose a method to assess the functional 
integrity of bioprosthetic valves. 

Solution: Based on the theory that valve opening and closure contribute directly to 
heart sounds, analysis of FCG components offers a noninvasive and passive approach 
to evaluation of prosthetic valves. The increased stiffness is expected to lead to 
higher-frequency components in the opening or closing sounds of the valve. Durand 
et al. [167] studied the spectra of the entire S1 signal segment to evaluate the sounds 
contributed by the closure of porcine (pig) bioprosthetic valves implanted in the 
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mitral position in humans. They demonstrated that, whereas normal S 1 spectra were 
limited in bandwidth to about 100 H a ,  degenerated bioprosthetic valves created 
significant spectral energy in the range 100 - 250 Hz. Figure 6.13 shows the relative 
power spectra of S1 in the case of a normal bioprosthetic valve and a degenerated 
bioprosthetic valve. 

Durand et al. derived several parameters from S1 spectra and used them to 
discriminate normal from degenerated bioprosthetic valves. Some of the parameters 
used by them are the first and second dominant peak frequencies; the bandwidth and 
quality factor of the dominant peak; integrated mean area above -20 dB; the highest 
frequency found at -3 dB; total area and RMS value of the spectrum; area and 
RMS value in the 20 - 100 H z ,  100 - 200 Ht, and 200 - 300 H z  bands; and 
the median frequency. Normal versus degenerated valve classification accuracies as 
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high as 98% were achieved. 
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Figure 6.13 First heart sound spectra in the case of normal and degenerated porcine biopros- 
thetic valves implanted in the mitral position. Reproduced with permission from L.G. Durand, 
M. Blanchard, G. Cloutier, H.N. Sabbah, and P.D. Stein, Comparison of pattern recognition 
methods for computer-assisted classification of spectra of heart sounds in patients with a 
porcine bioprosthetic valve implanted in the mitral position, IEEE Transactions on Biomedical 
Engineering, 37(12):1121-1129, 1990 OIEEE. 

Durand et al. 11211 also studied the sounds of bioprosthetic valves in the aortic 
position. They argued that the aortic and pulmonary components (A2 and P2, re- 
spectively) of S2, each lasting about 50 ms, are not temporally correlated during 
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normal breathing. The two components of S2 are separated by 30 - 60 ms during 
inspiration, but get closer and could overlap during expiration. Furthermore, P2 is 
weaker than A2 if the PCG is recorded in the aortic area. Thus P2 may be suppressed 
and A2 strengthened by coherent detection and averaging of S2 over several cardiac 
and breath cycles; see Section 4.1 1. Durand et al. performed spectral analysis of A2 
extracted as above for the purpose of evaluation of bioprosthetic valves in the aortic 
position. Among a selection of spectral analysis methods including the basic peri- 
odogram, Welch’s averaged periodogram, all-pole modeling (see Section 7 .3 ,  and 
pole-zero modeling (see Section 7.6), they found the basic periodogram to provide 
the best compromise for estimating both the spectral distribution and the dominant 
frequency peaks of bioprosthetic valve sounds. 

Cloutier et al. [ 1681 studied the bias and variability of several diagnostic spectral 
parameters computed from simulated closing sounds of bioprosthetic valves in the 
mitral position. They found that the most-dominant spectral peak frequency and its 
quality factor were best estimated using an FFT-based PSD estimate with a rectangular 
window. However, the -3 dB bandwidth of the most-dominant spectral peak, 
the frequency of the second-dominant peak, and a few other parameters were best 
estimated by the Steiglitz-McBride method of pole-zero modeling (see Section 7.6.2). 
Some other parameters were best estimated by all-pole modeling using the covariance 
method (see Section 7.5). It was concluded that a single method would not provide 
the best estimates of all possible spectral parameters of interest. 

6.7 REMARKS 

We have investigated the frequency-domain characteristics of a few biomedical sig- 
nals and the corresponding physiological systems, with particular attention to the PCG 
and the cardiovascular system. Frequency-domain analysis via PSDs and parameters 
derived from PSDs can enable us to view the signal from a different perspective than 
the time domain. Certain signals such as the PCG and EEG may not lend themselves 
to easy interpretation in the time domain, and therefore may benefit from a move to 
the frequency domain. 

PSDs and their parameters facilitate investigation of the behavior of physiological 
systems in terms of rhythms, resonance, and parameters that could be related to the 
physical characteristics of anatomical entities (for example, the loss of elasticity of 
the myocardial muscles due to ischemia or infarction, the extent of aortic valvular 
stenosis, or the extent of calcification and stiffness of bioprosthetic valves). Patho- 
logical states may also be derived or simulated by modifying the spectral parameters 
or representations of the corresponding normal physiological states and signals. 

It is worthwhile to pause at this stage of our study, and recognize the importance 
of the topics presented in the preceding chapters. A good understanding of the phys- 
iological systems that produce the biomedical signals we deal with, as well as of 
the pathological processes that alter their characteristics, is of paramount importance 
before we may process the signals. Preprocessing the signals to remove artifacts and 
detect events is essential before we may derive parameters to facilitate their analysis in 
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the time andor frequency domains. Design of biomedical signal analysis techniques 
requires a thorough understanding of the characteristics and properties of the biomed- 
ical systems behind the signals, in addition to detailed knowledge of mathematical 
principles, computer techniques, and digital signal processing algorithms. 

6.8 STUDY QUESTIONS AND PROBLEMS 

1. The impulse response of a filter is specified by the series of sample values (3,1, -1). 
(a) What will be the response of the filter to the input whose sample values are 
{4,412,1)? 
(b) Is the filter response obtained by linear convolution or circular convolution of the 
input with the impulse response? 
(c) What will be the response with the type of convolution other than the one you 
indicated as the answer to the questions above? 
(d) How would you implement convolution of the two signals listed above using the 
FIT? Which type of convolution will this procedure provide? How would you get the 
other type of convolution for the signals in this problem via the FIT-based procedure? 

2. A conjugate symmetric (even) signal ze(n)  is defined as a signal with the property 
ze(n)  = z:(-n). A conjugate antisymmetric (odd) signal z,(n) is defined as a signal 
with the property zo(n) = -z:(-n). An arbitrary signal z(n)  may be expressed 
as the sum of its conjugate symmetric and conjugate antisymmetric parts as z(n)  = 
ze(n) + zo(n),  where ze(n) = i[z(n) + z*(-n)]  and zo(n) = !j[z(n) - z'(-n)]. 
Prove that 

FT[ze(n)]  = real[X(w)], 

and / 

where FT[z(n)]  = X(w), and FT stands for the Fourier transform [86]. 
3. A signal z( t )  is transmitted through a channel. The received signal y ( t )  is a scaled, 

shifted, and noisy version of z( t )  given as y ( t )  = az(t  - t o )  + t)( t)  where a is a scale 
factor, t o  is the time delay, and q( t )  is noise. Assume that the noise process has zero 
mean and is statistically independent of the signal process, and that all processes are 
stationary. 
Derive expressions for the PSD of g( t )  in terms of the PSDs of z and t) [105,5]. 

(a) Derive an analytical expression for the ACF of the signal. 
(b) Draw a schematic plot of the ACF, including detailed labeling of the time axis. 
(c) State the relationship of the PSD to the ACE 
(d) Derive the analytical expression for the PSD of the given signal. 
(e) Draw a schematic plot of the PSD, including detailed labeling of the frequency axis. 

5 .  ' h o  real signals z1(n) and zz(n) are combined to form a complex signal defined as 
y(n) = a ( n )  + jzz(n) .  Derive a procedure to extract the D R s  X l ( k )  and &(k) of 
z~(n) and ~ ( n ) ,  respectively, from the DFT Y ( k )  of g ( n ) .  

6. Distinguish between ensemble averages and temporal (time) averages. Identify appli- 
cations of first-order and second-order averages of both types in PCG analysis. 

FT[z,(n)l= j imag[x(w)l ,  

4. Consider a continuous-time sinusoidal signal of frequency 10 H r .  
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7. Propose, in point form, a procedure to process PCG signals to identify the possible 

8. Propose an algorithm to detect the presence of the alpha rhythm in an EEG signal. 
presence of a murmur due to aortic stenosis. 

Propose an extension to the algorithm to detect the joint presence of the same rhythm 
in four simultaneously recorded EEG channels. 

6.9 LABORATORY EXERCISES AND PROJECTS 

Note: Data files related to the exercises are available at the site 
ftp:Nftp.ieee.orgluploads/press/rangay y a d  

1. Using MATLAB, prepare a signal that contains the sum of two cosine waves of equal 
amplitude at 40 H z  and 45 Hz. Let the sampling rate be 1 k H z .  
(a) Compute the power spectrum of the signal with a rectangular window of duration 
2 8. 

(b) Compute the power spectrum of the signal with a Hamming window of duration 

(c) Compute the power spectrum of the signal with a rectangular window of duration 
0.5 s. 
(d) Compute the power spectrum of the signal with a Hamming window of duration 
0.5 8 .  

To obtain the power spectrum, you may take the FFI’ and square the result. Compare 
the spectra obtained in parts (a) - (d) and comment upon their similarities and/or 
differences. In order to visualize the differences clearly, use 2,048-point FFTs and 
plot the logarithm of the magnitude-squared spectra with an expanded scale from 0 to 
100 H z  only. Be sure to label the frequency axis in Hx! 
What should the ideal spectrum look like? 

2. Two VAG signals are given in the files vagl.dat and vag2.dat (see also the file vag.m). 
The sampling rate is 2 k H z .  Obtain and plot their power spectra (PSDs) using 
MATLAB. Label the frequency axis in H I !  
Compute the mean frequency as the first moment of the PSD for each signal. Compute 
also the variance (second central moment) of each PSD. What are the units of these 
parameters? 
Compare the spectra and the parameters derived and give your evaluation of the fre- 
quency content of the signals. 

3. The file safety.wav contains the speech signal for the word “safety” uttered by a male 
speaker, sampled at 8 k H z  (see also the file safety-m). The signal has a significant 
amount of background noise (as it was recorded in a normal computer laboratory). De- 
velop procedures to segment the signal into voiced, unvoiced, and silence (background 
noise) portions using short-time RMS, turns count, or ZCR measures. Compute the 
PSD for each segment that you obtain and study its characteristics. 

4. The files pecl.dat, pec33.dat, and pec52.dat give three-channel recordings of the PCG, 
ECG, and carotid pulse signals (sampled at 1,000 H z ;  you may read the signals using 
the program in the file p1otpec.m). The signals in p c l  ,dat and pec52.dat are normal; 
the PCG signal in pecg33.dat has systolic murmur, and is of a patient suspected to have 
pulmonary stenosis, ventricular septa1 defect, and pulmonary hypertension. 

2 8.  
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Apply the Pan-Tompkins method for QRS detection to the ECG channel and the Lehner 
and Rangayyan method to detect the dicrotic notch in the carotid pulse channel. Ex- 
trapolate the timing information from the ECG and carotid pulse channels to segment 
the PCG signal into two parts: the systolic part from the onset of an S 1 and to the onset 
of the following S2, and the diastolic part from the onset of an S2 to the onset of the 
following S 1. Compute the PSD of each segment. 
Extend the procedure to average the systolic and diastolic PSDs over several cardiac 
cycles. Compare the PSDs obtained for the three cases. 

5. Compute the mean frequency and the ratio of the energy in the range 100 - 300 Hz 
to the total energy for each PSD derived in the previous problem. What can you infer 
from these measures? 

6. Compute the PSDs of a few channels of the EEG in the file eegl-xx.dat using Welch’s 
procedure (see also the file eeg1.m). Study the changes in the PSDs derived with 
variations in the window width, the number of segments averaged, and the type of the 
window used. Compare the results with the PSDs computed using the entire signal 
in each channel. Discuss the results in terms of the effects of the procedures and 
parameters on spectral resolution and leakage. 



7 
Modeling Biomedical 

Signal -generating 
Processes and Systems 

We have thus far concentrated on the processing and analysis of biomedical signals. 
The signals were treated in their own right as conveyors of diagnostic information. 
While it was emphasized that the design and application of signal analysis procedures 
require an understanding of the physiological and pathological processes and systems 
that generate the signals, no specific mathematical model was used to represent the 
genesis of the signals in the methods we have studied so far. 

We shall now consider the modeling approach, where an explicit mathematical 
model is used to represent the process or the system that generates the signal of 
interest. The parameters of the model are then investigated for use in signal analysis, 
pattern recognition, and decision making. As we shall see, the model parameters may 
also be related to the physical or physiological aspects of the related systems. The 
parametric modeling approach often leads to succinct and efficient representation of 
signals and systems. Regardless of the emphasis on modeling, the final aim of the 
methods described in this chapter will be analysis of the signal of interest. 

7.1 PROBLEM STATEMENT 

Propose mathematical models to represent the generation of biomedical signals. 
Identify the possible relationships between the mathematical models and the physi- 
ological and pathological processes and systems that generate the signals. Explore 
the potential use of the model parameters in signal analysis, pattern recognition, and 
diagnostic decision making. 

315 
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Given the diversity of the biomedical signals that we have already encountered 
and the many others that exist, a generic model cannot be expected to represent 
a large number of signals. Indeed, a very specific model is often required for 
each signal. Bioelectric signals such as the ECG and EMG may be modeled using 
the basic action potential or SMUAP as the building block. Sound and vibration 
signals such as the PCG and speech may be modeled using fluid-filled resonating 
chambers, turbulent flow across a baffle or through a constriction, vibrating pipes, 
and acoustic or vibrational excitation of a tract of variable shape. We shall investigate 
a few representative signals and models in the following sections, and then study a 
few modeling techniques that facilitate signal analysis based upon the parameters 
extracted. 

7.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

7.2.1 Motor-unit firing patterns 

We saw in Section 1.2.3 that the surface EMG of an active skeletal muscle is the 
spatio-temporal summation of the action potentials of a large number of motor units 
that have been recruited into action (see Figure 1.6). If we consider the EMG of a 
single motor unit, we have a train of SMUAPs; the same basic wave (spike, pulse, 
or wavelet) is repeated in a quasi-periodic sequence. For the sake of generality, we 
may represent the intervals between the SMUAPs by a random variable: although 
an overall periodicity exists and is represented by the firing rate in pps, the intervals 
between the pulses, known as the inter-pulse interval or IPI, may not precisely be the 
same from one SMUAP to another. 

Agarwal and Gottlieb [169] modeled the single-motor-unit EMG as the convo- 
lution of a series of unit impulses or Dirac delta functions - known as a point 
process [170, 171, 172, 1731 - with the basic SMUAP wave. The SMUAP train 
y(t) may then be modeled as the output of a linear system whose impulse response 
h(t)  is the SMUAP, and the input is a point process z(t):  

t 
y(t) = 1 h(t - 7) z(7) d7. 

0 

Physiological conditions dictate that successive action potentials of the same motor 
unit cannot overlap: the interval between any two pulses should be greater than the 
SMUAP duration. In normal muscle activation, SMUAP durations are of the order 
of 3 - 20 ms and motor unit firing rates are in the range 7 - 25 pps; the IPI is 
therefore in the range 40 - 140 ms, which is significantly higher than the SMUAP 
duration. An SMUAP train therefore consists of discrete (distinct and separated) 
events or waves. 

The model as above permits independent analysis of SMUAP waveshape and 
firing pattern: the two are indeed physiologically separate entities. The SMUAP 
waveshape depends upon the spatial arrangement of the muscle fibers that constitute 
the motor unit, while the firing pattern is determined by the motor neuron that 
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stimulates the muscle fibers. Statistics of the point process representing the IPI 
may be used to study the muscle activation process independently of the SMUAP 
waveshape. Details on point processes and their application to EMG modeling will 
be presented in Section 7.3. 

7.2.2 Cardiac rhythm 

The ECG is a quasi-periodic signal that is also cyclo-stationary in the normal case 
(see Section 1.2.4). Each beat is triggered by a pulse from the SA node. The P 
wave is the combined result of the action potentials of the atrial muscle units, while 
the QRS and T waves are formed by the spatio-temporal summation of the action 
potentials of the ventricular muscle units. 

In rhythm analysis, one is more interested in the timing of the beats than in their 
individual waveshape (with the exception of PVCs). Diseases that affect the SA 
node could disturb the normal rhythm, and lead to abnormal variability in the RR 
intervals. Disregarding the details of atrial and ventricular ECG waves, an ECG 
rhythm may be modeled by a point process representing the firing pattern of the 
SA node. Sinus arrhythmia and HRV may then be investigated by studying the 
distribution and statistics of the RR interval. 

Figure 7.1 illustrates the representation of ECG complexes in terms of the instan- 
taneous heart rate values defined as the inverse of the RR interval of each beat, in 
terms of a series of RR interval values, and as a train of delta functions at the SA node 
firing instants [72]. A discrete-time signal may be derived by sampling the signal in 
Figure 7.1 (b) at equidistant points; the result, however, may not be continuous or dif- 
ferentiable [72]. The signal in Figure 7.1 (c), known as the interval series, has values 
Ik = t k  - t k - 1 ,  where the instants t k  represent the time instants at which the QRS 
complexes occur in the ECG signal. The Ik series is defined as a function of interval 
number and not of time, and hence may pose difficulties regarding interpretation in 
the frequency domain. Finally, the signal in Figure 7.1 (d) is defined as a train of 
Dirac delta functions s ( t )  = 6(t  - t k ) .  The series of impulses represents a point 
process that may be analyzed and interpreted with relative ease, as will be seen in 
Section 7.3. The last two representations may be used to analyze cardiac rhythm and 
HRV, which will be described in Section 7.8 (see also Section 8.9). 

7.2.3 Formants and pitch in speech 

Speech signals are formed by exciting the vocal tract with either a pulse train or a 
random signal produced at the glottis, and possibly their combination as well (see 
Section 1.2.1 1) .  The shape of the vocal tract is varied according to the nature of the 
sound or phoneme to be produced; the system is therefore a time-variant system. We 
may model the output as the convolution of the (time-variant) impulse response of the 
vocal tract with the input glottal waveform. The input may be modeled by a random 
process for unvoiced speech and as a point process for voiced speech. Clearly, the 
speech signal is a nonstationary signal; however, the signal may be considered to be 



318 MODELING BIOMEDICAL SYSTEMS 

t0 t l  t 2  

Figure 7.1 The train of ECG complexes in (a) is represented in terms of (b) the instantaneous 
heart rate values defined as the inverse of the RR interval of each beat; (c) a series of RR interval 
values (known as the interval series); and (d) a train of delta functions at the SA node firing 
instants. Reproduced with permission from R.W. DeBoer, J.M. Karemaker, and J. Strackee, 
Comparing spectra of a series of point events particularly for heart rate variability studies, 
IEEE Transactions on Biomedical Engineering, 3 l(4): 384-387, 1984. OIEEE. 
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quasi-stationary over short intervals of time during which the same phoneme is being 
produced. 

Figure 7.2 illustrates the commonly used model for speech production [46]. The 
speech signal may be modeled using the same convolutional relationship as in Equa- 
tion 7.1, with the limitation that the expression is valid over durations of time when 
the vocal-tract shape is held fixed and the same glottal excitation is applied. Then, 
h( t )  represents the impulse response of the vocal-tract system (filter) for the time 
interval considered, and z ( t )  represents the glottal waveform that is input to the 
system. In the case of voiced speech, the IPI statistics of the point-process input, 
in particular its mean, are related to the pitch. Furthermore, the frequency response 
of the filter H ( w )  representing the vocal tract determines the spectral content of the 
speech signal: the dominant frequencies or peaks are known as formants in the case 
of voiced speech. 

A. Point process A. Voiced speech 
Time-variant 
vocal tract 
filter system 

B. Random noise B. Unvoiced speech 

Figure 7.2 Model for production of speech, treating the vocal tract as a time-variant linear 
system. A point-process input generates quasi-periodic voiced speech, whereas a random-noise 
input generates unvoiced speech. 

Point processes will be described in Section 7.3. Parametric spectral modeling and 
analysis techniques suitable for formant extraction will be described in Sections 7.4, 
7.5, and 7.6. 

7.2.4 Patello-femoral crepltus 

Among the various types of VAG signals produced by the knee joint (see Sec- 
tion 1.2.13), the most common is a signal known as physiological patello-femoral 
crepitus (PPC) [174, 59, 175, 176, 1771. The PPC signal is a random sequence of 
vibrational pulses generated between the surfaces of the patella and the femur, typi- 
cally observed during slow movement of the knee joint. The PPC signal may carry 
information on the state and lubrication of the knee joint. A mechanical model of the 
knee-joint surfaces that generate PPC, as proposed by Beverland et al. [176], will be 
described in Section 7.7.2. 

Zhang et al. [ 1741 proposed a model for generation of the PPC signal based on point 
processes, similar to that for the SMUAP train described in Section 7.2.1. The effects 
of the repetition rate (or IPI) and the basic patello-femoral pulse (PFP) waveform 
on the spectrum of the PPC signal were analyzed separately. It was suggested that 
the model could represent the relationships between physiological parameters such 
as the mean and standard deviation of the IPI as well as the PFP waveshape, and 
parameters that could be measured from the PPC signal such as its mean, RMS, and 
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PSD-based features. Illustrations related to this application will be provided at the 
end of Section 7.3. 

7.3 POINT PROCESSES 

Problem: Formulate a mathematical model representing the generation of a train of 
SMUAPs, and derive an expression for the PSD of the signal. 

Solution: In the model for EMG generation proposed by Agarwal and Got- 
tlieb [169], a point process is used to represent the motor neuron firing sequence, 
and the SMUAP train is modeled by the convolution integral as in Equation 7.1. The 
IPI is treated as a sequence of independent random variables with identical normal 
(Gaussian) PDFs. 

Let the interval between the ith SMUAP and the preceding one be ~ i ,  and let the 
origin be set at the instant of appearance of the first SMUAP at i = 0 with ro = 0. 
The time of arrival of the ith SMUAP is then given by ti = TI + r2 + * - + q. 
The variable t i  is the sum of i independent random variables; note that ri > 0. It is 
assumed that the mean p and variance u2 of the random variable representing each 
IPI are the same. Then, the mean of t i  is ip ,  and its variance is ia2. Furthermore, ti 
is also a random variable with the Gaussian PDF 

If the SMUAP train has N + 1 SMUAPs labeled as i = 0, 1,2 , .  . . , N, the motor 
neuron firing sequence is represented by the point process 

N 
z(t )  = c s(t - t i ) .  (7.3) 

i = O  

The Fourier transform of the point process is 

N 

= C exp( - jw t i ) .  
i=O 

X ( w )  is a function of the random variable t i ,  which is, in turn, a function of i random 
variables 71, Q, . . . , q. Therefore, X ( w )  is random. The ensemble average of X ( w )  
may be obtained by computing its expectation, taking into account the PDF of t i ,  as 
follows [ 1691: 

(7.5) 

(7.6) 

N - 
X ( W )  = E [ x ( ~ ) ]  = C ~ [ e x p ( - j w t i ) ] .  

i = O  
m 

E[exp(  -jwti)] = 1 exp( - jw t i )  ~ t ,  ( t i )  dt i .  
--do 
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Using the expression for p t , ( t i )  in Equation 7.2, we get 

Substituting ti - i p  = T, where T is a temporary variable, we get 

Using the property that the Fourier transform of exp( - &) is a& exp( - q) 
[I], we get 

E[exp( - j w t i ) ]  = exp( - jw ip )  exp 

Finally, we have 

(7.9) 

(7.10) 

The ensemble-averaged Fourier transform of the SMUAP train is given by 
- 
Y ( w )  = X ( w ) H ( w ) ,  (7.11) 

where H ( w )  is the Fourier transform of an individual SMUAP. The Fourier transform 
of an SMUAP train is, therefore, a multiplicative combination of the Fourier transform 
of the point process representing the motor neuron firing sequence and the Fourier 
transform of an individual SMUAP. 

Illustration of application to EMG: Figure 7.3 illustrates EMG signals synthe- 
sized using the point-process model as above using 1,20,40, and 60 motor units, 
all with the same biphasic SMUAP of 8 ms duration and IPI statistics p = 50 ms 
and u = 6.27 rns [169]. It is seen that the EMG signal complexity increases as 
more motor units are activated. The interference patterns obscure the shape of the 
SMUAP used to generate the signals, and were observed to closely resemble real 
EMG signals. 

Figure 7.4 shows the magnitude spectra of synthesized EMG signals with one 
motor unit and 15 motor units, with biphasic SMUAP duration of 8 ms, p = 20 ms, 
and cr = 4.36 ms [ 1691. The smooth curve superimposed on the second spectrum 
in Figure 7.4 was derived from the mathematical model described in the preceding 
paragraphs. An important point to observe from the spectra is that the average 
magnitude spectrum of several identical motor units approaches the spectrum of a 
single MUAP. The spectral envelope of an SMUAP train or that of an interference 
pattern of several SMUAP trains with identical SMUAP waveshape is determined by 
the shape of an individual SMUAP. 

Figure 7.5 shows the magnitude spectra of surface EMG signals recorded from the 
gastrocnemius-soleus muscle, averaged over 1,5, and 15 signal records [169]. The 
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Figure 7.3 Synthesis of an SMUAP train and EMG interference pattern using the point- 
process model. Top to bottom: SMUAP train of a single motor unit, and interference patterns 
of the activities of 20,40, and 60 motor units. SMUAP duration = 8 ms. IPI statistics 
p = 50 ms and u = 8.27 ms. The duration of each signal is 250 ms. Reproduced with 
permission from G.C. Agarwal and G.L. Gottlieb, An analysis of the electromyogram by 
Fourier, simulation and experimental techniques, IEEE Transactions on Biomedical Engineer- 
ing, 22(3): 225-229, 1975. QIEEE. 
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Figure 7.4 Magnitude spectra of synthesized EMG signals with (a) one motor unit, and 
(b) 15 motor units, with biphasic SMUAP duration of 8 ms, p = 20 ms, and cr = 4.36 ms. 
The smooth curve superimposed on the spectrum in (b) was derived from the point-process 
model with 10 SMUAPs. Reproduced with permission from G.C. Agarwal and G.L. Gottlieb, 
An analysis of the electromyogram by Fourier, simulation and experimental techniques, lEEE 
Transactions on Biomedical Engineering, 22(3): 225-229, 1975. OIEEE. 



324 MODELING BIOMEDICAL SYSTEMS 

spectra in Figures 7.4 and 7.5 demonstrate comparable features. If all of the motor 
units active in a composite EMG record were to have similar or identical MUAPs, the 
spectral envelope of the signal could provide information on the MUAP waveshape 
(via an IFT). As we have noted earlier in Section 1.2.3, MUAP shape could be useful 
in the diagnosis of neuromuscular diseases. In reality, however, many motor units 
of different MUAP shapes could be contributing to the EMG signal even at low 
levels of effort, and analysis as above may have limited applicability. Regardless, the 
point-process model provides an interesting approach to model EMG signals. The 
same model is applicable to the generation of voiced-speech signals, as illustrated 
in Figure 7.2. For other models to represent the characteristics of the EMG signal, 
refer to the papers by Parker et al. [ 1781, Lindstrom and Magnusson [ 1791, Zhang et 
al. [180], Parker and Scott [181], Shwedyk et al. [182], Person and Libkind [183], 
Person and Kudina [ 1841, de Luca [ 185,241, Lawrence and de Luca [ 1501, and de 
Luca and van Dyk [ 1861. 

Illustration of application to PPC: Zhang et al. [ 1741 proposed a point-process 
model to represent knee-joint PPC signals, which they called PFP trains or signals (see 
Section 7.2.4). Figure 7.6 illustrates the PSDs of two point processes simulated with 
mean repetition rate pc = 21 pps and coefficient of variation CV, = u,/p, = 0.1 
and 0.05, where Cr is the standard deviation of the repetition rate. A Gaussian 
distribution was used to model the IPI statistics. The spectra clearly show the most- 
dominant peak at the mean repetition rate of the point process, followed by smaller 
peaks at its harmonics. The higher-order harmonics are better defined in the case with 
the lower CV,; in the limit, the PSD will be a periodic impulse train with all impulses 
of equal strength when the point process is exactly periodic (u, = 0,  CV, = 0).  

Zhang et al. [174] simulated PFP trains for different IPI statistics using a sample 
PFP waveform from a real VAG signal recorded at the patella of a normal subject 
using an accelerometer. The duration of the PFP waveform was 21 ms, and the IPI 
statistics p, and CV, were limited such that the PFP trains synthesized would have 
non-overlapping PFP waveforms and resemble real PFP signals. Figures 7.7 and 7.8 
illustrate the PSDs of synthesized PFP signals for different p, but with the same CV,, 
and for the same p,. but with different CV,, respectively. The PSDs clearly illustrate 
the influence of IPI statistics on the spectral features of signals generated by point 
processes. Some important observations to be made are: 

0 The PSD envelope of the PFP train remains the same, regardless of the IPI 

0 The PSD envelope of the PFP train is determined by the PSD of an individual 

0 The PSD envelope of the PFP train is modulated by a series of impulses with 
characteristics determined by the IPI statistics. The first impulse indicates the 
mean repetition rate. 

0 The point process has a highpass effect: low-frequency components of the 
PSD of the basic PFP are suppressed due to multiplication with the PSD of the 
point process. 

statistics. 

PFP waveform. 
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Figure 7.5 Magnitude spectra of surface EMG signals recorded from the gastrocnemius- 
soleus muscle, averaged over 1,5,  and 15 signal records. Reproduced with permission from 
G.C. Agarwal and G.L. Gottlieb, An analysis of the electromyogram by Fourier, simulation 
and experimental techniques, IEEE Transactions on Biomedical Engineering, 22(3): 225-229, 
1975. OIEEE. 
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Figure 7.6 Normalized PSDs of synthesized point processes with (a) p, = 21 pps and 
CV, = 0.1, and (b) p, = 21 pps and CV, = 0.05. Note: PDS =power density spectrum = 
PSD. Reproduced with permission from Y.T. Zhang, C.B. Frank, R.M. Rangayyan, and G.D. 
Bell, Mathematical modelling and spectrum analysis of the physiological patello-femoral 
pulse train produced by slow knee movement, IEEE Transactions on Biomedical Engineering, 
39(9):971-979, 1992. OIEEE. 
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0 Physiological signals rarely exhibit precise periodicity. The CV, value will be 
reasonably large, thereby limiting the effect of repetition to low frequencies in 
the PSD of the PFP train. 

The observations made above are valid for all signals generated by point processes, 
including SMUAP trains and voiced-speech signals. 

Zhang et al. [174] verified the point-process model for PFP signals by comput- 
ing the IPI statistics and PSDs of real PFP signals recorded from normal subjects. 
Figure 7.9 shows the IPI histograms computed from the PFP signals of two normal 
subjects. The IPI statistics computed for the two cases were p, = 25.2 pps and 
CV, = 0.07 for the first, and p, = 16.1 pps and CV, = 0.25 for the second signal. 
While the IPI histogram for the first signal appears to be close to a Gaussian distribu- 
tion, the second is not. The PSDs of the two signals are shown in Figure 7.10. The 
PSDs of the real signals demonstrate features that are comparable to those observed 
from the PSDs of the synthesized signals, and agree with the observations listed 
above. The envelopes of the two PSDs demonstrate minor variations: the basic PFP 
waveform in the two cases were not identical. 

7.4 PARAMETRIC SYSTEM MODELING 

The importance of spectral analysis of biomedical signals was established in Chap- 
ter 6. However, the methods described were based on the computation and use of the 
Fourier spectrum; while this approach is, to begin with, nonparametric, we saw how 
a few parameters could be computed from Fourier spectra. The limitations of such 
an approach were also discussed in Chapter 6. We shall now study methods for para- 
metric modeling and analysis that, although based on time-domain data and models 
at the outset, can facilitate parametric characterization of the spectral properties of 
signals and systems. 

Problem: Explore the possibility of parametric modeling of signal characteristics 
using the general linear system model. 

Solution: The difference equation that gives the output of a general linear, shift- 
invariant (or time-invariant), discrete-time system is 

P Q 
~ ( n )  = - C ak ~ ( n  - k) + G C 61 ~ ( n  - I ) ,  

with bo = 1. (Note: The advantage of the negative sign before the summation with 
ak will become apparent later in this section; some model formulations use a positive 
sign, which does not make any significant difference in the rest of the derivation.) The 
input to the system is z (n) ;  the output is ~ ( n ) ;  the parameters br, I = 0,1 ,2 , .  . . , Q, 
indicate how the present and Q past samples of the input are combined, in a linear 
manner, to generate the present output sample; the parameters ak, k = 1 ,2 , .  . . , P, 
indicate how the past P samples of the output are linearly combined (in a feedback 
loop) to produce the current output; G is a gain factor; and P and Q determine 

(7.12) 
k = l  l = O  
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Figure 7.7 Normalized PSDs of synthesized PFP trains using a real PFP waveform with a 
duration of 21 ms, CV, = 0.05, and (a) p, = 16 pps, (b) p, = 21 pps, and (c) p ,  = 31 pps. 
Note: PDS = power density spectrum = PSD. Reproduced with permission from Y.T. Zhang, 
C.B. Frank, R.M. Rangayyan, and G.D. Bell, Mathematical modelling and spectrum analysis 
of the physiological patello-femoral pulse train produced by slow knee movement, IEEE 
Transactions on Biomedical Engineering, 39(9):97 1-979, 1992. OIEEE. 
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Figure 7.8 Normalized PSDs of synthesized PFP trains using a real PFP waveform with a 
duration of 21 ms, pr = 21 pps, and (a) CV, = 0.1, (b) CV, = 0.05, and (c) CV, = 0.01. 
Note: PDS = power density spectrum = PSD. Reproduced with permission from Y.T. Zhang, 
C.B. Frank, R.M. Rangayyan, and G.D. Bell, Mathematical modelling and spectrum analysis 
of the physiological patello-femoral pulse train produced by slow knee movement, IEEE 
Transactions on Biomedical Engineering, 39(9):97 1-979, 1992. OIEEE. 
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Figure 7.9 IPI histograms computed From real PFP trains recorded from two normal subjects. 
The statistics computed were (a) pr = 25.2 ppu and CV, = 0.07, and (b) p ,  = 16.1 pps and 
GV, = 0.25. Reproduced with permission from Y.T. Zhang, C.B. Frank, R.M. Rangayyan, 
and G.D. Bell, Mathematical modelling and spectrum analysis of the physiological patello- 
femoral pulse train produced by slow knee movement, IEEE Transactions on Biomedical 
Engineering, 39(9):97 1-979, 1992. OIEEE. 
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Figure 7.10 Normalized PSDs of the real PFP trains recorded from two normal subjects 
whose IPI histograms are shown in Figure 7.9. The IPI statistics of the two cases are 
(a) pr = 25.2 pps and CV, = 0.07, and (b) pr = 16.1 pplr and CVr = 0.25. Note: 
PDS = power density spectrum = PSD. Reproduced with permission from Y.T. Zhang, C.B. 
Frank, R.M. Rangayyan, and G.D. Bell, Mathematical modelling and spectrum analysis of the 
physiological patello-femoral pulse train produced by slow knee movement, IEEE Transactions 
on Biomedical Engineering, 39(9):97 1-979, 1992. OIEEE. 
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the order of the system. The summation over z represents the moving-average or 
MA part of the system; the summation over 21 represents the autoregressive or AR 
part of the system; the entire system may be viewed as a combined autoregressive, 
moving-average or ARMA system. The feedback part typically makes the impulse 
response of the system infinitely long; the system may then be viewed as an IIR filter 
(see Figures 3.29 and 3.30). 

Equation 7.12 indicates that the output of the system is simply a linear combination 
of the present input sample and a few past input samples, and a few past output 
samples. The use of the past input and output samples in computing the present 
output sample represents the memory of the system. The model also indicates that 
the present output sample may be predicted as a linear combination of the present 
and a few past input samples, and a few past output samples. For this reason, the 
model is also known as the linear prediction or LP model [ 187,46, 771. 

Applying the a-transform to Equation 7.12, we can obtain the transfer function of 
the system as 

(7.13) 

(The advantage of the negative sign before the summation with uk in Equation 7.12 
is now apparent in the numerator - denominator symmetry of Equation 7.13.) The 
system is completely characterized by the parameters uk, & = 1,2,. . . , P ;  bl, 1 = 
1,2,. . . , Q; and G. In most applications the gain factor G is not important; the system 
is therefore completely characterized by the a and b parameters, with the exception 
of a gain factor. Furthermore, we may factorize the numerator and denominator 
polynomials in Equation 7.13 and express the transfer function as 

(7.14) 

where 21 ,  E = 1,2,. . . , Q, are the zeros of the system andpk, k = 1,2,. . , , P, are the 
poles of the system. The model may now be referred to as a pole-zem model. It is 
evident from Equation 7.14 that the system is completely characterized by its poles 
and zeros but for a gain factor. 

Equations 7.12,7.13, and 7.14 demonstrate the applicability of the same concep- 
tual model in the time and frequency domains. The u and b parameters are directly 
applicable in both the time and the frequency domains in expressing the input - 
output relationship or the system transfer function. The poles and zeros are more 
specific to the frequency domain, although the contribution of each pole or zero to 
the time-domain impulse response of the system may be derived directly from its 
coordinates in the z-plane [ 11. 

Given a particular input signal ~ ( n )  and the corresponding output of the system 
y(n), we could derive their z-transforms X(z) and Y ( z )  and hence obtain the system 
transfer function H ( z )  in some form. Difficulties arise at values of z for which 
X ( z )  = 0; as the system is linear, and Y ( z )  = H ( z ) X ( z ) ,  we have Y(a) = 0 at 
such points as well. Then, H ( z )  cannot be determined at the corresponding values 
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of z. [The simplest test signal is the unit-impulse function z(n) = 6(n), for which 
X ( z )  = 1 for all z :  the response of a linear shift-invariant system to an impulse 
completely characterizes the system with the corresponding y(n) = h(n) or its z- 
domain equivalent H(z ) . ]  Methods to determine an AR or ARMA model for a given 
signal for which the corresponding input to the system is not known (or is assumed to 
be a point process or a random process) will be described in the following sections. 

7.5 AUTOREGRESSIVE OR ALL-POLE MODELING 

Problem: How can we obtain an AR (or LP) model when the input to the system that 
caused the given signal as its output is unknown? 

Solution: In the AR or all-pole model [ 187,461, the output is modeled as a linear 
combination of P past values of the output and the present input sample as 

P 

y(n) = - C a k  ~ ( n  - k) + G ~ ( n ) .  (7.15) 

(The discussion on AR modeling here closely follows that in Makhoul [187], with 
permission.) Some model formulations use a positive sign in place of the negative 
sign before the summation in the above equation. It should be noted that the model 
as in Equation 7.15 does not account for the presence of noise. 

k = l  

The all-pole transfer function corresponding to Equation 7.15 is 

(7.16) 

In the case of biomedical signals such as the EEG or the PCG, the input to the system 
is totally unknown. Then, we can only approximately predict the current sample of 
the output signal using its past values as 

(7.17) 

where the - indicates that the predicted value is only approximate. The error in the 
predicted value (also known as the residual) is 

P 

e(n) = y(n) - ~ ( n )  = y(n) + C a k  y(n - k). (7.18) 

The general signal-flow diagram of the AR model viewed as a prediction or error 
filter is illustrated in Figure 7.1 1. 

The least-squares method: In the least-squares method, the parameters ak are 
obtained by minimizing the MSE with respect to all of the parameters. The proce- 
dure is similar to that used to derive the optimal Wiener filter (see Section 3.5 and 
Haykin [77]). 

k = l  
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Figure 7.11 Signal-flow diagram of the AR model. 

Given an observed signal y(n), the following procedure is applicable for mini- 
mization of the MSE [ 1871. The total squared error (TSE) € is given by 

(Note: The TSE is the same as the MSE except for a scale factor.) Although the 
range of the summation in Equation 7.19 is important, we may minimize E without 
specifying the range for the time being. Minimization of 6 is performed by applying 
the conditions 

8~ -=  0, l L k L P  (7.20) 
Oak 

to Equation 7.19, which yields 

P c a& c y(n - k) y(n - i) = - c y(n) y(n - i ) ,  1 5 i 2 P. (7.21) 
&=l n n 

For a given signal y(n), Equation 7.21 provides a set of P equations in the P 
unknowns a&, k = 1,2, .  . . , P, known as the normal equations; the similarities 
between the normal equations here and those in the case of the Wiener filter (see 
Section 3.5) will become apparent later. 

By expanding Equation 7.19 and using the relationship in Equation 7.21, the 
minimum TSE EP for the model of order P is obtained as 

The expression for TSE will be simplified in the following sections. 
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The autocorrelation method: If the range of summation in Equations 7.19 
and 7.21 is specified to be -00 < n < 00, the error is minimized over an infinite 
duration, and we have 

(7.23) 

where &(i) is the ACF of y(n). In practice, the signal y(n) will be available only 
over a finite interval, say 0 5 n 5 N - 1; the given signal may then be assumed to 
be zero outside this range and treated as a windowed version of the true signal, as we 
have already seen in Section 6.4. Then, the ACF may be expressed as 

(7.24) 
n=i 

where the scale factor k is omitted. (It will become apparent later that the scale 
factor is immaterial in the derivation of the model coefficients.) The normal equations 
then become 

C a k  4u(i - I C )  = -4y(i), 1 5 i 5 P. 
P 

(7.25) 

We now see that an AR model may be derived for a signal with the knowledge of 
only its ACF; the signal samples themselves are not required. It is seen now that the 
scale factor that was omitted in defining the ACF is of no consequence in deriving 
the model coefficients. It may be advantageous to use the normalized ACF values 
given as &(i) = &(i)/q5p(0), which have the property that I&,(i)l 5 1. 

k = l  

The minimum TSE is given by 

(7.26) 

Application to random signals: If the signal y(n) is a sample of a random 
process, the error e(n) is also a sample of a random process. We then have to use the 
expectation operation to obtain the MSE as follows: 

Applying the condition for minimum error as in Equation 7.20, we get the normal 
equations as 

P 

ak E[y(n - k) y(n - i)] = -E[y(n) y(n - i)], 1 L i I P. (7.28) 
k = l  
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The minimum MSE is 
P 

EP = E[y2(n)l -t c E b b )  Y(n - k)l. (7.29) 

If the signal is a sample of a stationary random process, we have E[y(n - I c )  g ( n  - 
i)] = +#(i - I c ) .  This leads to the same normal equations as in Equation 7.25. If the 
process is ergodic, the ACF may be computed as a time average as in Equation 7.24. 

If the signal is a sample of a nonstationary random process, E[y(n- k) y(n- i)] = 
&(n - k, n - i); the ACF is a function of not only the shift but also time. We would 
then have to compute the model parameters for every instant of time n; we then 
have a time-variant model. Modeling and analysis of nonstationary signals will be 
postponed to Chapter 8. 

Computation of the gain factor G: Since we assumed earlier that the input 
to the system being modeled is unknown, the gain parameter G is not important. 
Regardless, the derivation of G demonstrates a few important points. Equation 7.18 
may be rewritten as 

k = l  

P 
y(n) = - C ak g(n - ~c) + e(n) .  (7.30) 

Comparing this with Equation 7.15, we see that the only input signal z(n) which can 
result in g(n) at the output is given by the condition Gz(n)  = e(n).  This condition 
indicates that the input signal is proportional to the error of prediction when the 
estimated model parameters are equal to the real system parameters. Regardless of 
the input, a condition that could be applied is that the energy of the output be equal 
to that of the signal y(n) being modeled. Since the transfer function H ( z )  is fixed, 
we then have the condition that the total energy of the input signal be equal to the 
total energy of the error EP.  

As illustrated in the model for speech generation in Figure 7.2, two types of input 
that are of interest are the impulse function and a random process that is stationary 
white noise. In the case when z(n) = S(n), we have the impulse response h(n) at 
the output, and 

k=l 

P 
h(n) = - C a k  h(7Z - k) G S(n). (7.31) 

Multiplying both sides of the expression above with h(n - i) and summing over all 
n, we get expressions in terms of the ACF &(i) of h(n) as 

k-1 

P 

h ( i )  = - a& #h(i  - k), 1 5 l i l 5 00 (7.32) 
k=l 

and 

(7.33) 
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Due to the condition that the energy of the output of the system be equal to that of 
y(n), the condition #h(0) = &(O) must be satisfied. Comparing Equations 7.32 
and 7.25, we then have 

(7.34) 

Therefore, for a model of order P, the first (P+ 1) ACF terms of the impulse response 
h(n) must be equal to the corresponding ACF terms of the signal y(n) being modeled. 
It follows from Equations 7.33,7.34, and 7.26 that 

&(i) = f&(i), 0 5 i 5 P. 

P 

G2 = E P  = &(O) + ah &(k). (7.35) 
k = l  

In the case when the input is a sequence of uncorrelated samples of a random 
process (white noise) with zero mean and unit variance, we could use the same 
procedure as for the impulse-input case, with the difference being that expectations 
are taken instead of summing over all n. (The conditions to be noted in this case 
are E[z(n)]  = 0 and E[s(n)  s(n - i)] = d(i).) The same relations as above for 
the impulse-input case are obtained. The identical nature of the results for the two 
cases follows from the fact that the two types of input have identical ACFs and PSDs. 
These characteristics are relevant in the speech model shown in Figure 7.2. 

Computation of the model parameters: For low orders of the model, Equa- 
tion 7.25 may be solved directly. However, direct methods may not be feasible when 
P is large. 

The normal equations in Equation 7.25 may be written in matrix form as 

For real signals, the P x P ACF matrix is symmetric and the elements along any 
diagonal are identical, that is, it is a Toeplitz matrix. 

It is worth noting the following similarities and differences between the normal 
equations in the case of the Wiener filter as given in Equation 3.85 and those above 
in Equation 7.36: 

0 The matrix on the left-hand side is the ACF of the input to the filter in the case 
of the Wiener filter, whereas it is the ACF of the output of the prediction filter 
in the present case. 

0 The filter vector on the left-hand side contains the coefficients of the filter being 
designed in both cases - the optimal Wiener filter or the optimal prediction 
filter. 

0 The vector on the right-hand side is the CCF between the input and the desired 
response in the case of the Wiener filter, whereas it is the ACF of the output of 
the prediction filter in the present case. 
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Haykin [77] provides a more detailed correspondence between the AR model and the 
Wiener filter. 

A procedure known as Durbin’s method [ 188, 1891 or the Levinson-Durbin al- 
gorithm (see Makhoul [187], Rabiner and Schafer [46], or Haykin [77]) provides a 
recursive method to solve the normal equations in Equation 7.36. The procedure 
starts with a model order of 1; computes the model parameters, the error, and a 
secondary set of parameters known as the reflection coefficients; updates the model 
order and the parameters; and repeats the procedure until the model of the desired 
order is obtained. The Levinson-Durbin algorithm is summarized below. 

Initialize model order i = 0 and error EO = &(O). Perform the following steps 
recursively for i = 1,2, . . . , P. 

1. Increment model order i and compute the ith reflection coefficient as 

where ai-1,j denotes the jth model coefficient at iteration (i - 1); the iteration 
index is also the recursively updated model order. 

2. Let ai,i = 7i. 

3. Update the predictor coefficients as 

ai,j = ai-1,j +yi ai-l,i-j, 15 j 5 i - 1. (7.38) 

4. Compute the error value as 

Ei  = (1 - 7i 2 ) ~ i - 1 .  (7.39) 

The final model parameters are given as a& = ap,k, 1 5 12 5 P. The Levinson- 
Durbin algorithm computes the model parameters for all orders up to the desired 
order P. As the order of the model is increased, the TSE reduces, and hence we have 
0 5 ~i 5 Q - ~ .  The reflection coefficients may also be used to test the stability of 
the model (filter) being designed: l7il < 1, i = 1,2,. . . , P, is the required condition 
for stability of the model of order P. 

The covariance method: In deriving the autocorrelation method, the range of 
summation of the prediction error in Equations 7.19 and 7.21 was specified to be 
-00 < n < 00. If, instead, we specify the range of summation to be a finite interval, 
say, 0 5 n 5 N - 1, we get 

P 

C a k C ( k , i )  = -c(o,i), 15 i 5 P (7.40) 
k l  

instead of Equation 7.25 based upon the ACF, and the minimum TSE is given by 
B 

~p = C(0,O) + C C(0, k) 
k=l 

(7.41) 
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instead of Equation 7.26, where 

N-1 

C(i ,  k) = c y(n - i)y(n - k) (7.42) 

is the covariance of the signal y(n) in the specified interval. The matrix formed by 
the covariance function is symmetric as C(i ,  k) = C(k ,  i), similar to the ACF matrix 
in Equation 7.36; however, the elements along each diagonal will not be equal, as 

Computation of the covariance coefficients also requires y(n) to be known for - P 5 
n 5 N - 1. The distinctions disappear as the specified interval of summation (error 
minimization) tends to infinity. 

n = O  

C ( i  + l,k + 1) = C ( i ,  k) + y(-i - l)y(-k - 1) - y(N - 1 - i)y(N - 1 - k). 

7.5.1 Spectral matching and parameterization 

The AR model was derived in the preceding section based upon time-domain for- 
mulations in the autocorrelation and covariance methods. We shall now see that 
equivalent formulations can be derived in the frequency domain, which can lead to a 
different interpretation of the model. Applying the z-transform to Equation 7.18, we 

and 

where 

(7.44) 

(7.45) 

and E ( z )  is the z-transform of e(n) .  We can now view the error e ( n )  as the result 
of passing the signal being modeled y(n) through the filter A(%), which may be 
considered to be an inversejlter. In the case of y(n) being a deterministic signal, 
applying Parseval's theorem, the TSE to be minimized may be written as 

(7.46) 

where E(w) is obtained by evaluating E ( z )  on the unit circle in the z-plane. Using 
S,(w) to represent the PSD of y(n), we have 

(7.47) 

where A(w)  is the frequency response of the inverse filter, and is given by evaluating 
A ( z )  on the unit circle in the z-plane. 
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From Equations 7.15,7.16, and 7.44, we get 

(7.48) G2 G2 
S,(w) = lH(w)I2 = - - 2 ’  I A ( w ) 1 2  - 11 + P a& exp(- jkw) l  

Here, S, (w)  represents the PSD of the modeled signal g(n) that is an approximation 
of ~ ( n )  as in Equation 7.17. From Equation 7.43 we have 

(7.49) 

Now, &(w)  is the model’s approximation of S,(w). Comparing Equations 7.48 
and 7.49, we see that the error PSD IE(w)12 is modeled by a uniform (or “flat” 
or “white”) PSD equal to G2. For this reason, the filter A ( z )  is also known as a 
“whitening” filter. 

From Equations 7.46,7.48, and 7.49, we get the TSE as 

(7.50) 

As the model is derived by minimizing the TSE E,  we see now that the model is 
effectively minimizing the integrated ratio of the signal PSD S,(w) to its approxima- 
tion S,(w). Makhoul [187] describes the equivalence of the model in the following 
terms: 

0 As the model order P -+ 00, the TSE is minimized, that is, &p -+ 0. 

0 For a model of order P, the first (P + 1) ACF values of its impulse response 
are equal to those of the signal being modeled. Increasing P increases the 
range of the delay parameter (time) over which the model ACF is equal to the 
signal ACE 

0 Given that the PSD and the ACF are Fourier-transform pairs, the preceding 
point leads to the frequency-domain statement that increasing P leads to a 
better fit of S,(w) to S,(w). As P + 00, the model ACF and PSD become 
identical to the signal ACF and PSD, respectively. Thus any spectrum may be 
approximated by an all-pole model of an appropriate order (see Section 7.5.2 
for a discussion on the optimal model order). 

Noting from Equation 7.35 that G2 = ~ p ,  Equation 7.50 yields another important 

(7.51) 

property of the model as 

Equations 7.50 and 7.51 lead to the following spectral-matching properties of the AR 
model [ 1871: 
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0 Due to the fact that the TSE is determined by the ratio of the true PSD to the 
model PSD, the spectral-matching process performs uniformly over the entire 
frequency range irrespective of the spectral shape. (Had the error measure been 
dependent on the difference between the true PSD and the model PSD, the 
spectral match would have been better at higher-energy frequency coordinates 
than at lower-energy frequency coordinates.) 

S,(w) will be greater than S,(w) at some frequencies and lesser at others, 
while satisfying Equation 7.51 on the whole; the contribution to the TSE is 
more significant when S,(w) > &(w)  than in the opposite case. Thus, when 
the error is minimized, the fitting of $,(w) to S,(w) is better at frequencies 
where S,(w) > s,(w). Thus the model PSD fits better at the peaks of the 
signal PSD. 

0 The preceding point leads to another interpretation: the AR-model spectrum 
&(w)  is a good estimate of the spectral envelope of the signal PSD. This is par- 
ticularly useful when modeling quasi-periodic signals such as voiced speech, 
PCG, and other signals that have strong peaks in their spectra representing 
harmonics, formants, or resonance. By following the envelope, the effects 
of repetition, that is, the effects of the point-process excitation function (see 
Section 7.3), are removed. 

Since the model PSD is entirely specified by the model parameters (as in Equa- 
tion 7.48), we now have a parametric representation of the PSD of the given signal 
(subject to the error in the model). The TSE may be related to the signal PSD as 
foiiows r 1871. - -  

1 "  
2T -= 

i(0) = - / log[S,(w)] dw (7.52) 

represents the zeroth coefficient of the (power or real) cepstrum (see Sections 4.8.3 
and 5.4.2) of #(n). Using the relationship in Equation 7.48, we get 

G(0) = logGa - - /m logIA(w)I2dw. (7.53) 
271 --A 

As all the roots (zeros) of A ( z )  are inside the unit circle in the r-plane (for the AR 
model to be stable), the integral in the above equation is zero [187]. We also have 
G2 = E P .  Therefore, 

The minimum of ~p is reached as P + 00, and is given by 
e p  = exp[G(o)]. (7.54) 

= em = exp[+(O)]. (7.55) 

This relationship means that the TSE EP is the geometric mean of the model PSD 
.s*,(w), which is always positive for a positive-definite PSD. The quantity e p  rep- 
resents that portion of the signal's information content that is not predictable by a 
model of order P. 
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7.5.2 Optimal model order 

Given that the AR model performs better and better as the order P is increased, where 
do we stop? Makhoul [ 1871 shows that if the given signal is the output of a P-pole 
system, then an AR model of order P would be the optimal model with the minimum 
error. But how would one find in practice if the given signal was indeed produced by 
a P-pole system? 

One possibility to determine the optimal order for modeling a given signal is to 
follow the trend in the TSE as the model order P is increased. This is feasible in 
a recursive procedure such as the Levinson-Durbin algorithm, where models of all 
lower orders are computed in deriving a model of order P, and the error at each order 
is readily available. The procedure could be stopped when there is no significant 
reduction in the error as the model order is incremented. 

Makhoul [ 1871 describes the use of a normalized error measure Ep defined as 

As the model order P + 00, 

(7.56) 

(7.57) 

Fmin is a monotonically decreasing function of P ,  with To = 1 and Z, = Emin; 
furthermore, it can be expressed as a function of the model PSD as 

exp [ & s:, 1% %(4 4 
(7.58) 

It is evident that Zp depends only upon the shape of the model PSD, and that Emin 
is determined solely by the signal PSD. The quantity 2 p  may be viewed as the ratio 
of the geometric mean of the model PSD to its arithmetic mean, which is a measure 
of the spread of the PSD: the smaller the spread, the closer is the ratio to unity; the 
larger the spread, the closer is the ratio to zero. If the signal is the result of an all-pole 
system with Po poles, Zp = Zp, for P 2 PO, that is, the curve remains flat. In 
practice, the incremental reduction in the normalized error may be checked with a 

(7.59) 

- 
Ep = t s:, S*(4& 

condition such as - 
EP+l  

EP 
1 - 7  < A ,  

where A is a small threshold. The optimal order may be considered to have been 
reached if the condition is satisfied for several consecutive model orders. 

Another measure based upon an information-theoretic criterion proposed by 
Akaike [ I901 may be expressed as [ 1871 

2P 
I ( P )  = IogEp + -, 

N, 
(7.60) 
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where N, is the effective number of data points in the signal taking into account 
windowing (for example, N, = 0.4N for a Hamming window, where N is the 
number of data samples). The first term in the equation above decreases while the 
second term increases as P is increased. Akaike’s measure I ( P )  may be computed 
up to the maximum order P of interest or the maximum that is feasible, and then the 
model of the order for which I ( P )  is at its minimum could be taken as the optimal 
model. 

Model parameters: The AR (all-pole) model H ( z )  and its inverse A ( z )  are 
uniquely characterized by any one set of the following sets of parameters [ 1871: 

0 The model parameters ae, k = 1,2, .  . . , P. The series of ak parameters is also 

0 The impulse response h(n) of the AR model. 

0 The poles of H ( e ) ,  which are also the roots (zeros) of A ( z ) .  

0 The reflection coefficients -yi, i = 1,2, .  . . , P. 

0 The ACF (or PSD) of the ak coefficients. 

0 The ACF (or PSD) of h(n). 

0 The cepstrum of ak or h(n). 

equal to the impulse response of the inverse filter. 

With the inclusion of the gain factor G as required, all of the above sets have a total 
of (P + 1) values, and are equivalent in the sense that one set may be derived from 
another. Any particular set of parameters may be used, depending upon its relevance, 
interpretability, or relationship to the real-world system being modeled. 

Illustration of application to EEG signals: Identification of the existence of 
rhythms of specific frequencies is an important aspect of EEG analysis. The direct 
relationship between the poles of an AR model and resonance frequencies makes this 
technique an attractive tool for the analysis of EEG signals. 

Figure 7.12 shows the FFT spectrum and AR-model spectra with P = 6 and 
P = 10 for the 01 channel of the EEG signal shown in Figure 1.22. The FFT 
spectrum in the lowest trace of Figure 7.12 includes many spurious variations which 
make its interpretation difficult. On the other hand, the AR spectra indicate distinct 
peaks at about 10 Hz corresponding to an alpha rhythm; a peak at 10 Hz is clearly 
evident even with a low model order of P = 6 (the middle trace in Figure 7.12). 

The poles of the AR model with order P = 10 are plotted in Figure 7.13. 
The dominant pole (closest to the unit circle in the z-plane) appears at 9.9 Hz, 
corresponding to the peak observed in the spectrum in the top-most plot in Figure 7.12. 
The radius of the dominant pole is IzI = 0.95; the other complex-conjugate pole pairs 
have IzI 5 0.76. The model with P = 6 resulted in two complex-conjugate pole pairs 
and two real poles, with the dominant pair at 10.5 H z  with IzI = 0.91; the magnitude 
of the other pole pair was 0.74. A simple search for the dominant (complex) pole can 
thus provide an indication of the prevalent EEG rhythm with fairly low AR model 
orders. 
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Figure 7.12 From bottom to top: m - b a s e d  and AR-model spectra with P = 6 and P = 10 
for the 01 channel of the EEG signal shown in Figure 1.22. 
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0 Hz 

Figure 7.13 Poles of the AR model with P = 10 for the 01 channel of the EEG signal shown 
in Figure 1.22. See also Figure 7.12. 
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Illustration of application to PCG signals: Application of AR modeling is an 
attractive possibility for the analysis of PCG signals due to the need to identify signif- 
icant frequencies of resonance in the presence of multiple components, artifacts, and 
noise. Although the model coefficients themselves do not carry any physical corre- 
lates or significance, the poles may be related directly to the physical or physiological 
characteristics of hearts sounds and murmurs. 

Figures 7.14 and 7.15 illustrate the FFT-based spectrum of a segment containing 
one S1 and the subsequent systolic portion of the PCG signal of a normal subject, the 
AR-model spectra for order P = 10 and P = 20, and the poles of the model of order 
P = 20 (see also Figures 4.27, 5.6, and 6.1 1). Figures 7.16 and 7.17 illustrate the 
same items for a segment containing one S2 and the subsequent diastolic portion of 
the same subject. It is evident that the AR spectra follow the dominant peaks in the 
spectra of the original signals. The spectra for the models of order P = 20 provide 
closer fits than those for P = 10; peaks in the P = 10 spectra gloss over multiple 
peaks in the original spectra. Observe the presence of poles close to the unit circle 
in the z-plane at frequencies corresponding to the peaks in the spectra of the signals. 
The AR-model spectra are smoother and easier to interpret than the periodogram- 
based spectra illustrated in Figure 6.1 1 for the same subject. The spectra for the 
diastolic portion indicate more medium-frequency energy than those for the systolic 
portion, as expected. The model coefficients or poles provide a compact parametric 
representation of the signals and their spectra. 

Figures 7.18 and 7.19 illustrate the FFT-based spectrum of a segment containing 
one S 1 and the subsequent systolic portion of the PCG signal of a subject with systolic 
murmur, split S2, and opening snap of the mitral valve (see also Figures 4.28, 5.7, 
and 6.12); the AR-model spectra for order P = 10 and P = 20; and the poles of 
the model of order P = 20. Figures 7.20 and 7.21 illustrate the same items for a 
segment containing one S2 and the subsequent diastolic portion of the same subject. 
The systolic murmur has given rise to more medium-frequency components than in 
the case of the normal subject in Figure 7.14. The AR-model spectra clearly indicate 
additional and stronger peaks at 150 Hz and 250 Hz, which are confirmed by poles 
close to the unit circle at the corresponding frequencies in Figure 7.19. 

7.5.3 Relationship between AR and cepstral coefficients 

If the poles of H ( z )  are inside the unit circle in the complex z-plane, from the theory 
of complex variables, l n H ( z )  can be expanded into a Laurent series as 

00 

l n H ( z )  = c R(n) z-”. (7.61) 
n=l 

Given the definition of the complex cepstrum as the inverse z-transform of the 
logarithm of the z-transform of the signal, and the fact that the left-hand side of the 
equation above represents the z-transform of h(n), it is clear that the coefficients of 
the series h(n) are the cepstral coefficients of h(n). If H ( z )  has been approximated 
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Figure 7.14 Bottom to top: FFT-based spectrum of the systolic portion of the PCG of a 
normal subject (male, 23 years); AR-model spectrum with order P = 10; AR-model spectrum 
with order P = 20. (See also Figures 4.27,5.6, and 6.1 1 . )  
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Figure 7.15 Poles of the AR model with order P = 20 of the systolic portion of the PCG of 
a normal subject. (See also Figure 7.14.) 
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Figure 7.16 Bottom to top: FFT-based spectrum of the diastolic portion of the PCG of a 
normal subject (male, 23 years); AR-model spectrum with order P = 10; AR-model spectrum 
with order P = 20. (See also Figures 4.27,5.6, and 6.1 1 . )  
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Figure 7.17 Poles of the AR model with order P = 20 of the diastolic portion of the PCG 
of a normal subject. (See also Figure 7.16.) 
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Figure 7.18 Bottom to top: FFT-based spectrum of the systolic portion of the PCG of a 
subject with systolic murmur, split S2, and opening snap of the mitral valve (female, 14 
months); AR-model spectrum with order P = 10; AR-model spectrum with order P = 20. 
(See also Figures 4.28,5.7, and 6.12.) 
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500 Hz 0 Hz 

Figure 7.19 Poles of the AR model with order P = 20 of the systolic portion of the PCG 
of a subject with systolic murmur, split S2, and opening snap of the mitml valve. (See also 
Figure 7.18.) 
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Figure 7.20 Bottom to top: FFT-based spectrum of the diastolic portion of the PCG of 
a subject with systolic murmur, split S2, and opening snap of the mitral valve (female, 14 
months): AR-model spectrum with order P = 10; AR-model spectrum with order P = 20. 
(See also Figures 4.28,5.7, and 6.12.) 
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Figure 7.21 Poles of the AR model with order P = 20 of the diastolic portion of the PCG 
of a subject with systolic murmur, split S2, and opening snap of the mitral valve. (See also 
Figure 7.20.) 
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by an AR model with coefficients ak, 1 5 k 5 P,  we have 
\ o o  

(7.62) 

Differentiating both sides of the equation above with respect to z-', we get 

By equating the constant term and the like powers of z-' on both sides, the following 
relationship can be obtained [ 1913: 

R(1) = -a1, (7.65) 

As we saw in Section 4.8.3, phase unwrapping is a major issue in estimating the 
cepstral coefficients using the inverse Fourier transform of the logarithm of the Fourier 
transform of a given signal [ 1 151. Estimation of the cepstral coefficients using the AR 
coefficients has the advantage that it does not require phase unwrapping. Although 
the cepstral coefficients are deduced from the AR coefficients, it is expected that the 
nonlinear characteristics of the transformation could lead to an improvement in signal 
classification using the former than the latter set of coefficients. Cepstral coefficients 
have provided better classification than AR coefficients in speech [ 1911, EMG [ 1921, 
and VAG [58] signal analysis. 

7.6 POLE-ZERO MODELING 

Although AR or all-pole modeling can provide good spectral models for any kind 
of spectra with appropriately high model orders, it has a few limitations. The AR 
model essentially follows the peaks in the PSD of the signal being modeled, and thus 
resonance characteristics are represented well. However, if the signal has spectral 
nulls or valleys (anti-resonance), the AR-model spectrum will not provide a good fit 
in such spectral segments. Spectral zeros are important in modeling certain signals, 
such as nasal speech signals [193]. Furthermore, an all-pole model assumes the 
signal to be a minimum-phase signal or a maximum-phase signal, and does not allow 
mixed-phase signals [ 1281. 

The main conceptual difficulty posed by pole-zero modeling is that it is inherently 
non-unique, because a zero can be approximated by a large number of poles, and 
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vice-versa [ 1871. However, if the system being modeled has a number of influential 
zeros, the number of poles required for an all-pole model can become very large. 
For these reasons, ARMA or pole-zero modeling [187, 193, 128, 80, 194, 1951 is 
important in certain applications. 

The ARMA normal equations: From the ARMA model represented by Equa- 
tion 7.13, we can write the model PSD as [187] 

where 

and 
Q 

s b ( W )  = 1 + bl e X p ( - j h )  I 1=1 

The total spectral-matching error is given by 

(7.66) 

(7.67) 

(7.68) 

(7.69) 

which may be viewed as the residual energy after passing the modeled signal through 
the inverse filter s. In order to obtain the optimal pole-zero model, we need to 
determine the coefficients ak and b1 such that the error E is minimized. 

Before taking the derivatives of E with respect to a& and bl,  the following relation- 
ships are worth noting. Taking the partial derivative of So(w) in Equation 7.67 with 
respect to ai, we get 

P 
--- - 2c a& cos[(i - k)w] ,  

k=O Bai 

with a. = 1. Similarly, from Equation 7.68 we get 

Let 

Q 
-- 8sb(w) - 2C bl cos[(i - E)w]. 

l = O  
Bbi 

(7.70) 

(7.71) 

(7.72) 

&,oo(i) is the inverse Fourier transform of S,(w), and hence simply &,(i). 
Now we can take the partial derivative of E in Equation 7.69 with respect to ui as 

(7.73) 
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In the same manner, we can obtain 

Q 
= -2 61 &,21(i - Z), 1 5 i 5 Q. 

l = O  
dbi 

357 

(7.74) 

Because c$,lo(i - k )  in Equation 7.73 is not a function of ah, we obtain a set of linear 
equations by setting the final expression in Equation 7.73 to zero, which could be 
solved to obtain the a k  coefficients in a manner similar to the procedures used in AR 
modeling. However, &zl(i - 1 )  in Equation 7.74 is a function of the 61 coefficients, 
which leads to a set of nonlinear equations that must be solved to obtain the bl 
coefficients; the zeros of the model may then be derived from the bl coefficients. 
Obtaining the ARMA model therefore requires solving P linear equations and Q 
nonlinear equations. 

Iterative solution of the ARMA normal equations: Makhoul [ 1871 describes the 
following iterative procedure to solve the (P + &) ARMA model normal equations 
based on the Newton-Raphson procedure: 

Let a = [al ,a2,  ..., apIT, b = [bl,b2 ,..., bglT, and c = [a1,a2, . .  .,ap, 
b l ,  6 2 , .  . . , b ~ ] ~  represent the model coefficients to be derived in vector form. The 
vector at iteration (m + 1) is derived from that at iteration m as 

(7.75) 

where J is the (P + Q) x (P + Q) symmetric Hessian matrix defined as J = 8:kF. 
The vector c may be partitioned as cT = [aT, bT], and the iterative procedure may 
be expressed as 

(7.76) 

Equations 7.73 and 7.74 give the first-order partial derivatives required above. The 
second-order partial derivatives are given as follows [ 1871: 

(7.77) 
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and 

The iterative procedure works well if the initial estimate is close to the optimal model; 
otherwise, one of the noniterative methods described in the following sections may 
be considered. 

7.6.1 Sequential estimation of poles and zeros 

Given the difficulties with the nonlinear nature of direct pole-zero modeling, a few 
methods have been proposed to split the problem into two parts: identify the poles 
first by AR modeling, and then treat the residual error in some manner to estimate 
the zeros [187, 193, 128, 80, 194, 1951. (Note: Several notational differences exist 
between the various references cited here. The following derivations use notations 
consistent with those used so far in the present chapter,) 

Shanks’ method: Let us consider a slightly modified version of Equation 7.13 as 

(7.80) 

where the gain factor G has been set to be unity: G = 1. The difference equation 
relating the output to the input is given by a small change to Equation 7.12 as 

P Q 
y(n) = - a& ~ ( n  - k) + b1 z ( n  - I ) .  (7.81) 

The effect of the numerator and denominator polynomials in Equation 7.80 may be 
separated by considering Y ( z )  = V(z )B(z ) ,  where V ( z )  = %. This leads to the 
all-zero or MA part of the system 

k = l  1=0 

Q 

I = O  
y(n) = c bl v(n - q, (7.82) 

with v ( n )  given by the all-pole or AR part of the model as 

P 
.(n) = - c a k  v(n - k )  + z(n). (7.83) 

Let us consider the case of determining the a k  and bl coefficients (equivalently, 
the poles and zeros) of the system H ( z )  given its impulse response. Recollect 

k = l  
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that y ( n )  = h(n) when z(n)  = d(n); consequently, we have X ( z )  = 1, and 
Y ( z )  = H ( z ) .  The impulse response of the system is given by 

P Q 
h(n) = - c Uk h(7& - k) -k c b1 d(n - l ) ,  (7.84) 

k = l  l = O  

which simplifies to 
P 

h(n) = - U k  h(n - k ) ,  n > Q. (7.85) 

The effect of the impulse input does not last beyond the number of zeros in the 
system: the system output is then perfectly predictable from the preceding P samples, 
and hence an AR or all-pole model is adequate to model h(n) for n > Q. As a 
consequence, Equation 7.32 is modified to 

k = l  

P 

(7.86) 

This system of equations may be solved by considering P equations with Q + 1 5 
i 5 Q + P. Thus the U k  coefficients and hence the poles of the system may be 
computed independently of the br coefficients or the zeros by restricting the AR error 
analysis to n > Q. 

In a practical application, the error of prediction needs to be considered, as the 
model order P will not be known or some noise will be present in the estimation. 
Kopec et al. [ 1931 recommend that the covariance method described in Section 7.5 
be used to derive the AR model by considering the error of prediction as 

P 
e(n )  = h(n) + C U k  h(n - I C ) ,  

k = l  

and minimizing the TSE defined as 
m 

(7.87) 

(7.88) 
n = Q + 1  

The first Q points are left out as they are not predictable with an all-pole model. 

procedure described above. Let 
Let us assume that the AR modeling part has been successfully performed by the 

P 

A ( z )  = 1 + c ?ik Z - k  (7.89) 

represent the denominator polynomial of the system that has been estimated. The 
TSE in modeling h(n) is given by 

k=l 

(7.90) 
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where 6(n) is the impulse response of the AR model derived, with v ( z )  = &. 
Minimization of E above leads to the set of linear equations 

Q 
C bt h ( l , j )  = '$hC(o,j)y 0 I j 5 Q, (7.91) 
l = O  

00 
where 

6hC(lyj) = h(n - 1 )  s(n - j )  (7.92) 
n=O 

is the CCF between h(n) and { (n ) ,  and $66 is the ACF of 6(n). 

The TSE is 
The frequency-domain equivalents of the steps above may be analyzed as follows. 

Q 
= LJw1  2?r -* H ( w ) A ( w )  - bl exp( - j lw)  I v (w) la  dw (7.93) 

1 =o 

where & ( z )  = H ( z ) A ( z )  is the AR model error in the z-domain. [Recall that the 
Fourier spectrum of a signal is obtained by evaluating the corresponding function of 
z with z = exp(jw).] The method described above, which is originally attributed 
to Shanks [80] and has been described as above by Kopec et al. [193], therefore 
estimates the numerator polynomial of the model by fitting a polynomial (spectral 
function) to the z-transform of the AR or all-pole model error. 

Makhoul [ 1871 and Kopec et al. [ 1931 suggest another method labeled as inverse 
LP modeling, where the inverse of the AR model error ehl(n) given as the inverse 
z-transform of E h l ( z )  is subjected to all-pole modeling. The poles so obtained are 
the zeros of the original system being modeled. 

7.6.2 Iterative system identification 

Problem: Given a noisy observation of the output of a linear system in response 
to a certain input, develop a method to estimate the numerator and denominator 
polynomials of a rational z-domain model of the system. 

Solution: In consideration of the difficulty in solving the nonlinear problem 
inherent in ARMA modeling or pole-zero estimation, Steiglitz and McBride [ 1941 
proposed an iterative procedure based upon an initial estimate of the denominator 
(AR) polynomial. Since their approach to system identification is slightly different 
from the LP approach we have been using so far in this chapter, it is appropriate to 
restate the problem. 

The Steiglitz-McBride method: Figure 7.22 shows a block diagram illustrating 
the problem of system identification. The system is represented by its transfer 
function H ( z ) ,  input z(n),  output y(n) = h(n) * z(n), and the noisy observation 
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. X 
system 
input 

~ ( n )  = g(n) + 9(n), where ~ ( n )  is a noise process that is statistically independent 
of the signals being considered. H ( z )  is represented as a rational function of z ,  as 

system Y 
H l z l  

I *Oiserl 

mode 1 

Output 1 model error 

+ system 
output 

(7.94) 

Figure 7.22 Schematic representation of system identification. Adapted from Steiglitz and 
McBride [ 1941. 

The error to be minimized may be written as [ 1941 

(7.95) 
1 C e2(n) = - 27rj 

N- 1 

n = O  

where the right-hand side represents the inverse z-transform of the function of z 
involved, and N is the number of data samples available. The functions of a within 
the integral essentially compare the predicted model output with the observed output 
of the physical system. 

As seen earlier, this approach leads to a nonlinear problem. The problem may be 
simplified (linearized) by taking the approach of separate identification of the numer- 
ator and denominator polynomials: the estimation problem illustrated in Figure 7.23 
treats A ( z )  and B(z )  as separate systems. The error to be minimized may then be 
written as [ 1941 

1 N - 1  

e2(n) = - 2TJ / I X ( z ) B ( z )  - W(z)A(z)I2 $. (7.96) 
n=O 
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I noiseq 

system 
output 

Figure 7.23 Schematic representation of system identification with separate estimation of 
A(%) and B(z) .  Adapted from Steiglitz and McBride [194]. 

(This approach was originally proposed by Kalman [196].) 
The sample model error is given by 

Q P 
e(n)  = c bi z(n - a )  - elk W ( n  - k) - W ( n ) .  (7.97) 

The model coefficients and the input - output data samples may be written in vector 
form as 

(7.98) 
and 

I=O k=l 

T c = [bo, b l , .  . . bQ, -all -a2,. , . -ap]  , 

d ( n )  = [~ (n ) , s (n - l ) , . .  . , ~ ( n - Q ) , ~ ( n - l ) , ~ ( n - 2 ) , .  . . , w ( T I - P ) ] ~ ,  (7.99) 

with the vectors being of size (P + Q + 1). Then, the error is given by 

e(n)  = dT(n)c  - w(n) .  (7. loo) 

The condition for minimum TSE is given by 
N-1 N-1 

(7.101) 
6 N-l - 
8c  

e2(n)  = 2 W e ( n )  = 2 c d(n)e(n)  = 0. 
n=O 6 C  n=O n=O 

Substitution of the expression for the error in Equation 7.100 in the above condition 
gives 

N-1 N-1 

(7.102) 
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N - 1  

CP = C d(.)dT(.) (7.103) 
n=O 

represent the (P + Q + 1) x (P + Q + 1) correlation matrix of the combined string 
of input - output data samples d(n), and let 

N - 1  

0 = C w(n)d(n) (7.104) 
n=O 

represent the correlation between the signal w(n)  and the data vector d(n) of size 
(P + Q + l), we get the solution to the estimation problem as 

c = *--lo. (7.105) 

Although the vectors and matrices related to the filter coefficients and the signal cor- 
relation functions are defined in a different manner, the solution above is comparable 
to that of the optimal Wiener filter (see Section 3.5 and Equation 3.84). 

The limitation of the approach above is that the error used has no physical signifi- 
cance. The separation of the numerator and denominator functions as in Figure 7.23, 
while simplifying the estimation problem, has led to a situation that is far from reality. 

To improve upon the match between the real physical situation and the estima- 
tion problem, Steiglitz and McBride [ 1941 proposed an iterative procedure which is 
schematically illustrated in Figure 7.24. The basic approach is to treat the system 
identified using the simplified procedure described above as an initial estimate, la- 
beled as Al(z)  and &(%); filter the original signals .(.) and w(.) with the system 

* use the filtered signals to obtain new estimates A2(z) and B~(z); and iterate Alo’ 
the procedure until convergence is achieved. 

The error to be minimized may be written as [ 1941 

with Ao(z) = 1. It is obvious that upon convergence, when Ai(z) = Ai-l(z), 
the minimization problem above reduces to the ideal (albeit nonlinear) situation 
expressed in Equation 7.95 and illustrated in Figure 7.22. 

Steiglitz and McBride [ 1941 suggest a modified iterative procedure to further 
improve the estimate, by imposing the condition that the partial derivatives of the true 
error criterion with respect to the model coefficients be equal to zero at convergence. 
The true (ideal) model error is given in the z-domain as (refer to Figure 7.22) 

E(z )  = X ( z ) -  B ( z )  - W ( z )  = V ( z )  - W ( z ) .  
4 % )  

(7.107) 
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Figure 7.24 Schematic representation of system identification via iterative prefiltering. 
Adapted from Steiglitz and McBride [ 1941. 
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V ( z )  is the output of the model for the input z(n). The derivatives of E(a)  with 
respect to the model coefficients are given by 

and 
(7.109) 

where the superscript - represents a filtered version of the corresponding signal, the 
filter transfer function being -&, A new data vector is defined as 

dl(n) = [5(71),5(~1-1),.. . ,5(n-Q), i j (n- l ) ,8(~~-2) , .  . . , ij(n-P)lT. (7.110) 

The error gradient in Equation 7.101 is modified to 

N-1 N-1 6 N-l  - e2(n) = 2 c *e(n) = 2 dl(n)e(n) (7.111) 
OC n=O 

6 C  n=O n = O  
N-1 

= 2 c [&(n)dT(n)c - w(n)ddn)l, 
n=O 

where the last equality is true only at convergence. The rest of the procedure remains 
the same as before, but with the correlation functions defined as 

(7.1 12) 

and 

n=O 

N-1 

01 = C w(n)dl(n). (7.1 13) 
n = O  

Once the a k  and br coefficients are obtained, the related polynomials may be 
solved to obtain the poles and zeros of the system being modeled. Furthermore, 
the polynomials may be used to derive spectral models of the system or the signal 
of interest. Note that the procedures given above are applicable to the special case 
of system identification when the impulse response h(n) is given: we just need to 
change z (n )  = S(n) and X ( z )  = 1. Steiglitz and McBride [194] did not provide 
any proof of convergence of their methods; however, it was indicated that the method 
performed successfully in many practical applications. 

The Steiglitz-McBride method was applied to the modeling and classification of 
PCG signals by Joo et al. [197]. The first and second peak frequencies were detected 
from the model spectra and used to analyze porcine prosthetic valve function, Murthy 
and Prasad [ 1981 applied the Steiglitz-McBride method to ECG signals. Pole-zero 
models derived from ECG strips including a few cardiac cycles were were used to 
reconstruct and identify the ECG waveform over a single cycle, and also to reconstruct 
separately (that is, to segment) the P, QRS, and T waves. 
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7.6.3 Homomorphlc prediction and modellng 

Problem: Given the relative ease of all-pole modeling, is it possible to convert the 
zeros of a system to poles? 

Solution: As mentioned earlier, an all-pole model assumes the signal being mod- 
eled to be a minimum-phase signal or a maximum-phase signal, and does not allow 
mixed-phase signals [128]. We have seen in Sections 4.8.3 and 5.4.2 that homomor- 
phic filtering can facilitate the separation of the minimum-phase and maximum- 
phase components of a mixed-phase signal, and further facilitate the derivation 
of a minimum-phase version or correspondent (MPC) of a mixed-phase signal. 
Makhoul [187], Oppenheim et al. [128], and Kopec et al. [193] suggest methods 
to combine homomorphic filtering and LP into a procedure that has been labeled 
homomorphic prediction or cepstral prediction. 

An intriguing property that arises in homomorphic prediction is that if a signal 
z(n) has a rational z-transform, then n$(n) [where $(n) is the complex cepstrum 
of z(n)] has a rational z-transform whose poles correspond to the poles and zeros 
of z(n). The basic property of the z-transform we need to recollect here is that 
if X ( z )  is the z-transform of z(n), then the z-transform of nz(n) is - z  y. 
Now, the complex cepstrum &(n) of z(n) is defined as the inverse z-transform of 
X ( z )  = log X ( z ) .  Therefore, we have 

(7.1 14) 
d X ( z )  1 d X ( z )  ZT[n$(n)] = -% - = -% - - 

dz X ( z )  dz ' 
where ZT( ] represents the z-transform operator. If X ( z )  = %, we get 

(7.1 15) 

where the prime ' denotes the derivative of the associated function with respect to z. 
A general representation of a rational function of z (which represents an exponential 
signal in the z-domain) in terms of its poles and zeros is given by [ 1281 

with the magnitudes of all of the zi, %,,pi,  and p ,  coefficients being less than unity. 
The pi and zi  values above give the Pi poles and Qi zeros, respectively, of the system 
that are inside the unit circle in the z-plane; 1 and $ give the Po poles and Qo 
zeros, respectively, that lie outside the unit circle. Of course, a causal and stable 
system will not have any poles outside the unit circle; the general representation 
above will permit the analysis and modeling of maximum-phase signals that are 
anti-causal. Computation of the complex cepstrum requires the removal of any linear 
phase component that may be present, and hence we could impose the condition 
r = 0. We then have 

X ( z )  = l o g X ( z )  = l o g A  (7.1 17) 

P o  
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Q d  Q, 

I=1 n=l 

k=l m=l 

and furthermore, 

From the expression above, it is evident that ns(n) has simple (first-order) poles 
at every pole as well as every zero of z(n). Therefore, we could apply an all- 
pole modeling procedure to n$(n), and then separate the poles so obtained into the 
desired poles and zeros of z(n). An initial all-pole model of z(n)  can assist in the 
task of separating the poles from the zeros. Oppenheim et al. [128] show further 
that even if X ( z )  is irrational, nS(n) has a rational z-transform with first-order poles 
corresponding to each irrational factor in X ( z ) .  

Illustration of application to a synthetic speech signal: Figures 7.25 and 7.26 
show examples of the application of several pole-zero and all-pole modeling tech- 
niques to a synthetic speech signal [128]. The impulse response of the synthetic 
system with two poles at 292 Hz and 3,500 H z  with bandwidth 79 Hz and 100 H z ,  
and one zero at 2,000 Hz with bandwidth 200 Hz, is shown in Figure 7.25 (a), with 
its log-magnitude spectrum in Figure 7.26 (a). The formant or resonance structure of 
the signal is evident in the spectral peaks. (The sampling rate is 12 IcHz.) Excitation 
of the system with a pulse train with repetition rate 120 H z  resulted in the signal in 
Figure 7.25 (b), whose spectrum is shown in Figure 7.26 (b); the spectrum clearly 
shows the effect of repetition of the basic wavelet in the series of waves that are 
superimposed on the basic spectrum of the wavelet. Application of homomorphic 
filtering to the signal in Figure 7.25 (b) provided an estimate of the basic wavelet as 
shown in Figure 7.25 (c), with the corresponding spectrum in Figure 7.26 (c). 

The pole-zero modeling method of Shanks was applied to the result of homo- 
morphic filtering in Figure 7.25 (c) with four poles and two zeros. The impulse 
response of the model and the corresponding spectrum are shown in Figure 7.25 (d) 
and Figure 7.26 (d), respectively. It is seen that the two peaks and the valley in the 
original spectrum are faithfully reproduced in the modeled spectrum. The frequen- 
cies of the poles (and their bandwidths) given by the model were 291 Hz (118 Hz) 
and 3,498 Hz (128 Hz), and those of the zero were 2,004 H z  (242 Hz), which 
compare well with those of the synthesized system listed in the preceding paragraph. 

Application of the autocorrelation method of LP modeling with six poles to the 
original signal in Figure 7.25 (a) resulted in the model impulse response and spectrum 
illustrated in Figures 7.25 (e) and 7.26 (e). While the all-pole model spectrum has 
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Figure 7.25 Time-domain signals: (a) impulse response of a 4-pole, 2-zero synthetic system; 
(b) synthesized voiced-speech signal obtained by triggering the system with an impulse train; 
(c) result of basic wavelet extraction via application of homomorphic filtering to the signal in 
(b); (d) impulse response of a 4-pole, 2-zero model of the signal in (c) obtained by Shanks’ 
method; (e) impulse response of a 6-pole AR model. Reproduced with permission from A.V. 
Oppenheim, G.E. Kopec, and J.M. Tribolet, Signal analysis by homomorphic prediction, IEEE 
Transactions on Acoustics, Speech, and Signal Processing, 24(4):327-332, 1976. OIEEE. 
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Figure 7.26 Log-magnitude spectra of the time-domain signals in Figure 7.25: (a) actual 
spectral response of the 4-pole. 2-zero synthetic system; (b) spectrum of the synthesized 
voiced-speech signal obtained by triggering the system with an impulse train; (c) spectrum of 
the basic wavelet extracted via application of homomorphic filtering to the signal corresponding 
to (b); (d) spectral response of a 4-pole, 2-zero model of the signal in (c) obtained by Shanks’ 
method; (e) spectral response of a 6-pole AR model. Reproduced with permission from A.V. 
Oppenheim, G.E. Kopec, and J.M. Tribolet, Signal analysis by homomorphic prediction, IEEE 
Transactions on Acoustics, Speech, and Signal Processing, 24(4):327-332, 1976. OIEEE. 
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followed the spectral peaks well, it has failed to represent the valley or null related 
to the zero. 

Illustration of application to a real speech signal: Figure 7.27 (a) shows the 
log-magnitude spectrum of a real speech signal (pre-emphasized) of the nasalized 
vowel /U/ in the word “moon” [193]. Part (b) of the same figure shows the spectrum 
after homomorphic filtering to remove the effects of repetition of the basic wavelet. 
Parts (c) and (d) show 10-pole, 6-zero model spectra obtained using Shanks’ method 
and inverse LP modeling, respectively. The spectra of the models have successfully 
followed the peaks and valleys in the signal spectrum. 

20 dB] 

2 0 d B ]  

20 dB ] 

2 0 4  

I I I I 1 
I I 2 . 3  4 

( kHr) 

Figure 7.27 (a) Log-magnitude spectrum of the pre-emphasized, real speech signal of the 
nasalized vowel /Ul in the word “moon”; (b) spectrum after homomorphic filtering to remove 
the effects of repetition of the basic wavelet; (c) spectral response of a 10-pole, 6-zero model 
obtained by Shanks’ method; (d) spectral response of a 10-pole, 6-zero model obtained by 
inverse LP modeling. Reproduced with permission from G.E. Kopec, A.V. Oppenheim, and 
J.M. Tribolet, Speech analysis by homomorphic prediction, IEEE Tmnsactions on Acoustics, 
Speech, and Signal Processing, 25( 1):40-49, 1977. OIEEE. 

Shanks’ method was applied to the minimum-phase and maximum-phase com- 
ponents of ECG signals obtained via homomorphic filtering by Murthy et al. [ 1991. 
Akay et al. [200] used ARMA techniques to model diastolic heart sounds for the 
detection of coronary heart disease; however, only the dominant poles of the model 
were used in pattern analysis (see Section 7.10 for details of this application). 
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7.7 ELECTROMECHANICAL MODELS OF SIGNAL GENERATION 

While purely mathematical models of signal generation such as point processes and 
linear system models provide the advantage of theoretical elegance and convenience, 
they may not be able to represent certain physical and physiological aspects of the 
systems that generate the signals. For example, the models we have seen in the 
preceding sections cannot. directly accommodate the physical dimensions of blood 
vessels or valves, the loss in the compliance of a valve leaflet due to stenosis, or the 
lubrication (or the lack thereof) or friction between joint surfaces. 

Sikarskie et al. [201] proposed a model to characterize aortic valve vibration for 
the analysis of its contribution to S2; in addition to mathematical relationships, they 
included physical factors such as the valve forcing function, valve mass, and valve 
stiffness. It was shown that the amplitude and frequency of A2 depend strongly 
on the valve forcing function and valve stiffness. Valve mass was shown to have 
little effect on the amplitude and frequency of A2; blood density was shown to 
have no effect on the same parameters. We shall now study two representative 
applications of electromechanical modeling, where mechanical models and their 
electrical counterparts are used to represent the generation and altered characteristics 
of sounds in arteries and knee joints. 

7.7.1 Sound generation in coronary arteries 

Problem: Propose an electromechanical model to characterize the sounds produced 
due to bloodflow in stenosed arteries. 

Solution: Blood vessels are normally flexible, elastic, and pliant, with smooth 
internal surfaces. When a segment of a blood vessel is hardened due to the de- 
position of calcium and other minerals, the segment becomes rigid. Furthermore, 
the development of plaque inside the vessel causes narrowing or constriction of the 
vessel, which impedes the flow of blood. The result is a turbulent flow of blood, with 
accompanying high-frequency sounds. 

Wang et al. [202, 2031 proposed a sound-source model combining an incremen- 
tal-network model of the left coronary-artery tree with a transfer-function model 
describing the resonance characteristics of arterial chambers. The network model, 
illustrated in Figure 7.28, predicts flow in normal and stenosed arteries. It was noted 
that stenotic branches may require division into multiple segments in the model due 
to greater geometric variations. Furthermore, it was observed that a stenotic segment 
may exhibit post-stenotic dilation as illustrated in Figure 7.29, due to increased 
pressure fluctuations caused by turbulence at the point of stenosis. 

The resonance frequency of a segment depends upon the length and diameter of 
the segment, as well as upon the distal (away from the heart) hydraulic pressure 
loading the segment. The physical parameters required for the model were obtained 
from arteriograms of the patient being examined. The terminal resistances, labeled 
2 in Figure 7.28, represent loading of the resistive arteriolar beds, assumed to be 
directly related to the areas that the terminal branches serve. 
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(C) 

Figure 7.28 Electromechanical model of a coronary artery tree. (a) The left coronary-artery 
tree is divided into 14 branches. (b) Circuit model of a segment. (c) Circuit model of the artery 
tree. Reproduced with permission from J.Z. Wang, B. Tie, W. Welkowitz, J.L. Semmlow, 
and J.B. Kostis, Modeling sound generation in stenosed coronary arteries, IEEE Transactions 
on Biomedical Engineering, 37(11):1087-1094, 1990, (QIEEE; and J.Z. Wang, B. Tie, W. 
Welkowitz, J. Kostis, and J. Semmlow, Incremental network analogue model of the coronary 
artery, Medical & Biological Engineering & Computing, 27:416422, 1989. (QIFMBE. 
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S1: Proximal to Stenosis Segment 
S 2 :  Stenotic Segment 
S3: Poststenotic Dilation Segment 
S4: Distal to Dilation Segment 

Figure 7.29 Hypothetical example of stenosis in coronary artery branch 9. Reproduced with 
permission from J.Z. Wang, B. Tie, W. Welkowitz, J.L. Semmlow, and J.B. Kostis, Modeling 
sound generation in stenosed coronary arteries, IEEE Transactions on Biomedical Engineering, 
37( 11):1087-1094, 1990. OIEEE. 

Wang et al. related the network elements (resistance R, inertance or inductance 
L, and capacitance C) to the physical parameters of the artery segments as 

(7.119) 

1 L = p -  
A '  
D 
E C = Alh -, 

where Y = 0.04 gcm-' s is the viscosity of blood, p = 1.0 g ~ m - ~  is the density 
of blood, E = 2 x 10' g cm-' a2 is the Young's modulus of the blood vessel, D is 
the diameter of the segment, A = R% is the cross-sectional area of the segment, 
h x 0.080 is the wall thickness of the segment, and 1 is the length of the segment. 
Wang et al. [203] remarked that while the network elements may be assumed to be 
approximately constant during diastole, the assumption would not be valid during 
systole due to variations in the parameters of the segments. 

In analyzing the artery - network model, voltage is analogous to pressure (P), and 
current is analogous to blood flow (&). State-variable differential equations were 
used by Wang et al. [203] to derive the flow through the artery tree model for various 
pressure waveforms. It was hypothesized that turbulence at the point of stenosis 
would provide the excitation power, and that the stenotic segment and the dilated 
segment distal to the point of stenosis (see Figure 7.29) would act as resonance 
chambers. 
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Wang et al. [202] used the following relationships to compute the RMS pressure 

(P2)max = 10-~fi’f(x), (7.120) 

fluctuation (see also Fredberg [204]): 

f (x)  = 25.1 - 37.12 + 15.52’ - 0 . 0 8 ~ ~  - 0 . 8 9 ~ ~  + 0.12z6, 

where u is the blood velocity in the stenotic segment, and d is the diameter of the 
stenotic segment. The incremental network model was used to estimate the blood 
velocity in each segment. 

The wide-band spectrum of the sound associated with turbulent flow was modeled 
as (see also Fredberg [2043): 

(7.121) 

where U is the velocity of blood in a normal segment and f is frequency in Hz. Wang 
et al. used the function S ( f )  as above as the source of excitation power to derive the 
response of their network model. It was observed that the model spectra indicated 
two resonance frequencies, the magnitude and frequency of which depended upon 
the geometry and loading of the segments. Wang et al. cautioned that the results of 
the model are sensitive to errors in the estimation of the required parameters from 
arteriograms or other sources. 

Figure 7.30 illustrates the model spectra for segment 12 of the artery tree model 
in  Figure 7.28 with no stenosis and with stenosis of two grades. Narrowing of the 
segment with increasing stenosis is seen to shift the second peak in the spectrum 
to higher frequencies, while the magnitude and frequency of the first peak are both 
reduced. The results were confirmed by comparing the model spectra with spectra 
of signals recorded from a few patients with stenosed coronary arteries. Examples 
of spectral analysis of signals recorded from patients before and after angioplasty to 
correct for stenosis will be presented in Section 7.10. 

7.7.2 Sound generation in knee joints 

Problem: Develop a mechanical analog of the knee joint to model the generation of 
the pulse train related to physiological patello-femoral crepitus. 

Solution: Beverland et al. [I761 studied the PPC signals produced during very 
slow movement of the leg (at about 4O/s). The signals were recorded by taping 
accelerometers to the skin above the upper pole and/or the lower pole of the patella. 
Reproducible series of bursts of vibration were recorded in their experiments. Fig- 
ure 7.31 illustrates two channels of simultaneously recorded PPC signals from the 
upper and lower poles of the patella during extension and flexion of the leg. The 
signals display reversed similarity when extension versus flexion or upper-pole versus 
lower-pole recordings are compared. 
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Figure 7.30 Shift in frequency components predicted by the transfer-function model for the 
case of stenosis in element 12 in the model of the coronary artery in Figure 7.28. Reproduced 
with permission from J.Z. Wang, B. Tie, W. Welkowitz, J.L. Semmlow, and J.B. Kostis, 
Modeling sound generation in stenosed coronary arteries, IEEE Transactions on Biomedical 
Engineering, 37( 11):1087-1094,1990. OIEEE. 

EXTENSION FLEX ION 

Figure 7.31 Simultaneously recorded PPC signals from the upper and lower poles of the 
patella during extension and flexion of the leg. The duration of the signal was not specified. 
Reproduced with permission from D.E. Beverland, W.G. Kernohan, G.F. McCoy, and R.A.B. 
Mollan, What is physiological patellofemoral crepitus?, Proceedings of XIV International 
Conference on Medical and Biological Engineering and VII International Conference on 
Medical Physics, pp 1249-1250, Espoo, Finland, 1985. OIFMBE 
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Beverland et al. proposed a mechanical model to explain the generation of the 
PPC signals. The patella was considered to behave 'like a see-saw in the model, 
which was supported by the observation that a pivot point exists at the mid-point of 
the patella. The apparatus constructed, as illustrated in Figure 7.32, included a rubber 
wheel to represent the trochlear surface of the femur, on top of which was tensioned 
a rectangular piece of hardboard to represent the patella. 

It was argued that as the wheel in the model is slowly rotated clockwise (repre- 
senting extension), it would initially stick to the overlying patella (hardboard) due 
to static friction. This would tend to impart an anticlockwise rotatory motion, as 
a rotating cogwheel would impart an opposite rotation to a cog in contact with it 
(as illustrated in the upper right-hand comer of Figure 7.32). The upper end of the 
patella would then move toward the wheel. A point would be reached where the static 
friction would be overcome, when the patella would slip and the rotation is suddenly 
reversed, with the upper pole jerking outward and the lower pole jerking inward. 
The actions would be the opposite to those described above in the case of flexion. 
The mechanical model was shown to generate signals similar to those recorded from 
subjects, thereby confirming the srick-slip frictional model for the generation of PPC 
signals. 

Figure 7.32 Apparatus to mimic the generation of PPC signals via a stick-slip frictional 
model. Reproduced with permission from D.E. Beverland, W.G. Kernohan, G.F. McCoy, and 
R.A.B. Mollan, What is physiological patellofemoral crepitus?, Proceedings of XIV Interna- 
tional Conference on Medical and Biological Engineering and VII International Conference 
on Medical Physics, pp 1249-1250, Espoo, Finland, 1985. OIFMBE 
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7.8 APPLICATION: ANALYSIS OF HEART-RATE VARIABILITY 

Problem: Explore the applicability of Fourier spectral analysis methods to study 
heart-rate data. 

Solution: DeBoer et al. [72] applied Fourier analysis techniques to two types of 
data derived from heart-rate data. (See also Akselrod et al. [205].) They noted that 
the standard Fourier analysis methods cannot be applied directly to a series of point 
events. Therefore, they derived three types of signals from trains of ECG beats as 
illustrated in Figure 7.1. 

The inrerval spectrum was derived by computing the Fourier spectrum of the 
interval series, normalized as ik = ( I& - f) / f, where I is the mean interval length. 
The frequency axis was scaled by considering the time-domain data to be spaced at 
distances equal to the mean interval length f, that is, the effective sampling frequency 
i s l / i .  

The spectrum of counts was derived by taking the Fourier transform of the impulse- 
train representation, derived from RR interval data as shown in Figure 7.1. The signal 
was normalized and scaled as Z(t) = C [f d ( t  - t k ) ]  - N, where N is the number of 
data samples, and the Fourier transform was computed. The spectra computed were 
smoothed with a 27-point rectangular window. DeBoer et al. demonstrated that the 
two spectra exhibit similar characteristics under certain conditions of slow or slight 
modulation of the data about the mean heart rate. 

The RR interval data of a subject breathing freely and the two spectra derived 
from the data are shown in Figure 7.33. Three peaks are seen in both the spectra, 
which were explained as follows [72]: 

0 the effect of respiration at about 0.3 Hz; 

0 the peak at 0.1 He related to 10 s waves seen in the blood pressure signal; and 

0 a peak at a frequency lower than 0.1 Hz caused by the thermo-regulatory 
system. 

Figure 7.34 shows the RR interval data and spectra for a subject breathing at a 
fixed rate of 0.16 Hz. The spectra display well-defined peaks at both the average 
heart rate (1.06 Hz) and at the breathing rate, as well as their harmonics. The spectra 
clearly illustrate the effect of respiration on the heart rate, and may be used to analyze 
the coupling between the cardiovascular and respiratory systems. 

Note that direct Fourier analysis of a stream of ECG signals will not provide the 
same information as above. The reduced representation (model) of the RR interval 
data, as illustrated in Figure 7.1, has permitted Fourier analysis of the heart rate 
and its relationship with respiration. The methods have application in studies on 
HRV [69,70,71,73,74]. 
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Figure 733 (a) 400 RR interval values from a healthy subject breathing freely. (b) Interval 
spectrum computed from a total of 940 intervals, including the 400 shown in (a) at the 
beginning. (c) Spectrum of counts. The spectra are shown for the range 0 - 0.5 Hz 
only. Reproduced with permission from R.W. DeBoer, J.M. Karemaker, and J. Strackee, 
Comparing spectra of a series of point events particularly for heart rate variability studies, 
IEEE Transactions on Biomedical Engineering, 3 l(4): 384-387, 1984. QIEEE. 



APPLICATION: HEART-RATE VARIABILITY 379 

Figure 7.34 (a) 340 RR interval values from a healthy subject breathing at a fixed rate of 
0.10 Hz. (b) Spectrum of counts for the range 0 - 2.5 H E .  (c) Spectrum of counts for the 
range 0 - 0.5 Wz. (d) Interval spectrum. Reproduced with permission from R.W. DeBoer, 
J.M. Karemaker, and J. Strackee, Comparing spectra of a series of point events particularly for 
heart rate variability studies, IEEE Transactions on Biomedical Engineering, 3 l(4): 384-387, 
1984. OIEEE. 



380 MODELING BIOMEDICAL SYSTEMS 

7.9 APPLICATION: SPECTRAL MODELING AND ANALYSIS OF PCG 
SIGNALS 

Iwata et al. [206, 2071 applied AR modeling and parametric spectral analysis tech- 
niques to PCG signals for the detection of murmurs as well as the detection of the 
onset of S 1 and S2. Their techniques included AR modeling, extraction of the domi- 
nant poles for pattern classification, and spectral tracking, which are explained in the 
following paragraphs. 

Dominant poles: After the a k ,  k = 1,2,. . . , P, coefficients of an all-pole or AR 
model of order P have been computed, the polynomial A ( z )  may be factorized and 
solved to obtain the locations of the poles p k ,  k = 1,2, .  . . , P, of the system. The 
closer a pole is to the unit circle in the z-plane, the narrower is its bandwidth, and the 
stronger is its contribution to the impulse response of the system. Poles that are close 
to the unit circle may be related to the resonance frequencies of the system, and used 
in system identification and pattern recognition. 

In view of the nonstationary nature of the signal, Iwata et al. I2061 computed a new 
model with order P = 8 for every window or frame of duration 25 ms, allowing an 
overlap of 12.5 ms between adjacent frames (with the sampling rate fa = 2 k H z ) .  
The frequency of a pole p k  was calculated as 

and its bandwidth as 

(7.122) 

(7.123) 

Conditions based upon the difference in the spectral power estimate of the model 
from one frame to the next, and the existence of poles with f k  < 300 Hz with 
the minimal bandwidth for the model considered, were used to segment each PCG 
signal into four phases: S1, a systolic phase spanning the S1 - S2 interval, S2, and 
a diastolic phase spanning the interval from one S2 to the following S1. (See also 
Section 4.10.) 

Figures 7.35 and 7.36 show the PCG signals, spectral contours, the spectral power 
estimate, and the dominant poles for a normal subject and a patient with murmur 
due to patent ductus arteriosus (PDA). Most of the dominant poles of the model for 
the normal subject are below 300 Hz; the model for the patient with PDA indicates 
many dominant poles above 300 Hz. 

The mean and standard deviation of the poles with b w k  < 80 Hz of the model 
of each PCG phase were computed and used for pattern classification. The five 
coefficients of a fourth-order polynomial fitted to the series of spectral power estimates 
of the models for each phase were also used as features. Twenty-six out of 29 design 
samples and 14 out of 19 test samples were correctly classified. However, the number 
of cases was low compared to the number of features used in most of the six categories. 

Spectral tracking: In another application of AR modeling for the analysis of 
PCG signals, Iwata et al. [207] proposed a spectral-tracking procedure based upon 
AR modeling to detect S1 and S2. PCG signals were recorded at the apex with a 
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Figure 7.35 Illustration of feature extraction based upon all-pole modeling of a normal PCG 
signal. From top to bottom: PCG signal; model spectrum in the form of iso-intensity contours; 
model spectral power estimate B', where i refers to the frame number; the frequencies Fj 
of the dominant poles with bandwidth &j < 80 H r .  Reproduced with permission from 
A. Iwata, N. Suzumara, and K. Ikegaya, Pattern classification of the phonocardiogram using 
linear prediction analysis, Medical & Biological Engineering & Computing, 15407412,  1977 
OIFMBE. 
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Figure 7.36 Illustration of feature extraction based upon all-pole modeling of the PCG signal 
of a patient with murmur due to patent ductus arteriosus. From top to bottom: PCG signal; 
model spectrum in the form of iso-intensity contours; model spectral power estimate B', 
where i refers to the frame number; the frequencies F; of the dominant poles with bandwidth 
2; < 80 Hz. Reproduced with permission from A. Iwata, N. Suzumara, and K. Ikegaya, 
Pattern classification of the phonocardiogram using linear prediction analysis, Medical & 
Biological Engineering & Computing, 15:407-4 12 QIFMBE. 
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highpass filter that, at 100 H z ,  had a gain -40 dB below the peak gain at 300 Ha 
(labeled Ap-H). The signals were lowpass filtered with a gain of -20 dB at 1,000 H z  
and sampled at 2 IcHz. The AR model was computed with order P = 8 for frames 
of length 25 ms; the frame-advance interval was only 5 ms. The model PSD was 
computed as 

(7.1 24) 

where 

P - k  

$ a ( k )  = aj a j + k t  (7.125) 
j =O 

with the Uk being the AR model coefficients, P = 8, T = 0.5 ms, u: being the 
model residual energy (error), and a0 = 1. 

Based upon a study of the spectra of 69 normal and abnormal PCG signals, Iwata 
et al. [207] found the mean peak frequency of S1 to be 127 H z  and that of S2 to be 
170 HL; it should be noted that the PCG signals were highpass filtered (as described 
in the preceding paragraph) at the time of data acquisition. The model spectral power 
at 100 H z  was used as the tracking function to detect S1: the peak in the tracking 
function after the location t R  of the R wave in the ECG was taken to be the position 
of S1. The tracking function to detect S2 was based upon the spectral power at 
150 H z ;  the peak in the interval t R  + 0.25RR 5 t 5 t R  + 0.6RR, where RR is 
the inter-beat interval, was treated as the position of S2. The use of a normalized 
spectral density function based upon the AR model coefficients but without the a: 
factor in Equation 7.124 was recommended, in order to overcome problems due to 
the occurrence of murmurs close to S2. 

Figure 7.37 illustrates the performance of the tracking procedure with a normal 
PCG signal. The peaks in the 100 H z  and 150 H z  spectral-tracking functions 
(lowest traces) coincide well with the timing instants of S1 and S2, respectively. 
Figure 7.38 illustrates the application of the tracking procedure to the PCG signal of 
a patient with mitral insufficiency. The systolic murmur completely fills the interval 
between S1 and 52, and no separation is seen between the sounds and the murmur. 
Whereas the 150 H z  spectral-tracking function labeled (b) in the figure does not 
demonstrate a clear peak related to S2, the normalized spectral-tracking function 
labeled (c) shows a clear peak corresponding to S2. The two additional PCG traces 
shown at the bottom of the figure (labeled Ap-L for the apex channel including more 
low-frequency components with a gain of -20 dB at 40 Hz, and 3L-H for a channel 
recorded at the third left-intercostal space with the same bandwidth as the Ap-H 
signal) illustrate S2 more distinctively than the Ap-H signal, confirming the peak 
location of the spectral-tracking function labeled (c) in the figure. 
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Figure 7.37 Illustration of the detection of S1 and S2 via spectral tracking based upon 
all-pole modeling of a normal PCG signal. From top to bottom: ECG signal; PCG signal; 
spectral-tracking functions at 100 Hn for S1 and 150 HZ for S2. The S1 and S2 locations 
detected are marked as t z  and trz ,  respectively. Reproduced with permission from A. Iwata, 
N. Ishii, N. Suzumara, and K. Ikegaya, Algorithm for detecting the first and the second heart 
sounds by spectral tracking, Medical & Biological Engineering & Computing, 18: 19-26, 1980 
OIFMBE. 
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Figure 7.38 Illustration of the detection of S1 and S2 via spectral tracking based upon all- 
pole modeling of a PCG signal with systolic murmur due to mitral insufficiency. From top 
to bottom: ECG signal; PCG (Ap-H) signal; spectral-tracking functions at 100 Hz for Sl 
and 150 Hz for S2; normalized spectral-tracking function at 150 Hz for S2; PCG (Ap-L) 
signal from the apex with more low-frequency components included; PCG (3L-H) signal from 
the third left-intercostal space with the same filters as for Ap-H. The S1 and S2 locations 
detected are marked as t r  and t I I ,  respectively. Reproduced with permission from A. Iwata, 
N. Ishii, N. Suzumara, and K. Ikegaya, Algorithm for detecting the first and the second heart 
sounds by spectral tracking, Medical & Biological Engineering & Computing, 18: 19-26, 1980 
OIFMBE. 
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7.1 0 APPLICATION: DETECTION OF CORONARY ARTERY DISEASE 

The diastolic segment of a normal PCG signal after S2 is typically silent; in particular, 
the central portion of the diastolic segment after the possible occurrence of atrio- 
ventricular valve-opening snaps is silent. Akay et al. [65] conjectured that blood flow 
in the coronary arteries is maximum during mid-diastole, and further that coronary 
artery disease (occlusion, stenosis, etc.) could present high-frequency sounds in this 
period due to turbulent blood flow (see Section 7.7.1). 

Akay et al. [65] studied the spectra of mid-diastolic segments of the PCGs, av- 
eraged over 20 - 30 beats, of normal subjects and patients with coronary artery 
disease confirmed by angiography. It was found that the PCG signals in the case of 
coronary artery disease exhibited greater portions of their energy above 300 H z  than 
the normal signals. 

Figure 7.39 illustrates the AR-model spectra of two normal subjects and two 
patients with coronary artery disease. The signals related to coronary artery disease 
are seen to possess a high-frequency peak in the range 400 - 600 H r  that is not 
evident in the normal cases. 

Akay et al. [208] further found that the high relative-power levels of resonance 
frequencies in the range of 400 - 600 Hz that were evident in patients with coronary 
artery disease were reduced after angioplasty. Figure 7.40 shows the spectra of 
the diastolic heart sounds of a patient before and after coronary artery occlusion 
was corrected by angioplasty. It may be readily observed that the high-frequency 
components that were present before surgery (“preang.”) are not present after the 
treatment (“postang.”). (The minimum-norm method of PSD estimation used by 
Akay et al. [208] - labeled as “MINORM’ in the figure - is not discussed in this 
book.) 

7.11 REMARKS 

We have studied in this chapter how mathematical models may be derived to represent 
physiological processes that generate biomedical signals, and furthermore, how the 
models may be related to changes in signal characteristics due to functional and 
pathological processes. The important point to note in the modeling approach is that 
the models provide a small number of parameters that characterize the signal andor 
system of interest; the modeling approach is therefore useful in purametric analysis 
of signals and systems. As the number of parameters derived is usually much smaller 
than the number of signal samples, the modeling approach could also assist in data 
compression and compact representation of signals and related information. 

Pole-zero models could be used to view physiological systems as control systems. 
Pathological states may be derived or simulated by modifying the parameters of the 
related models. Models of signals and systems are also useful in the design and 
control of prostheses. 

A combination of mathematical modeling with electromechanical modeling can 
allow the inclusion of physical parameters such as the diameter of a blood vessel, 
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Figure 7.39 Diastolic heart sound spectra of (a, b) two normal subjects and (c, d) two patients 
with coronary artery disease. The method of estimating AR models identified in the figure as 
"RLSL" will be described in Section 8.6.2; the gradient predictor method is not discussed in 
this book. Reproduced with permission from A.M. Akay, J.L. Semrnlow, W. Welkowitz, M.D. 
Bauer, and J.B. Kostis, Detection of coronary occlusions using autoregressive modeling of 
diastolic heart sounds, IEEE Transactions on Biotnedicnl Engineering, 37(4):366-373, 1990. 
OIEEE. 
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Figure 7.40 Diastolic heart sound spectra before (preang.) and after angioplasty (postang.) 
of a patient for whom coronary artery occlusion was corrected. (The minimum-norm method 
of PSD estimation used by Akay et al. [208] - labeled as “MINORM’ in the figure - is not 
discussed in this book.) Reproduced with permission from A.M. Akay, J.L. Semmlow, W. 
Welkowitz, M.D. Bauer, and J.B. Kostis, Noninvasive detection of coronary stenoses before and 
after angioplasty using eigenvector methods, IEEE Transactions on Biomedical Engineering, 
37(11):1095-1104, 1990. OIEEE. 
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constriction due to plaque buildup, stiffness due to stenosis, and friction coefficient. 
Although accurate estimation of such parameters for  human subjects may not always 
be  possible, the models could lead to  better understanding of the related biomedical 
signals and systems. 

7.12 STUDY QUESTIONS AND PROBLEMS 

1. Consider the simple linear prediction model given by p(n) = ay(n - 1). Define the 
prediction error, and derive the optimal value for a by minimizing the total squared 
error. 

2. The autoregressive model coefficients of a signal are a0 = 1,ui  = 1, a2 = 0.5. What 
is the transfer function of the model? Draw the pole-zero diagram of the model. What 
are the resonance frequencies of the system? 

3. The autoregressive model coefficient vectors of a number of signals are made avail- 
able to you. Propose two measures to compare the signals for (a) similarity, and (b) 
dissimilarity. 

4. In autoregressive modeling of signals, show why setting the derivative of the total 
squared error with respect to any coefficient to zero will always lead to the minimum 
error (and not the maximum). 

5 .  What type of a filter can convert the autocorrelation matrix of a signal to a diagonal 
matrix? 

6. A biomedical signal is sampled at 500 Nn and subjected to AR modeling. The poles 
of the model are determined to be at 0.4 f j 0 .5  and -0.7 f j 0 .6 .  
(a) Derive the transfer function of the model. 
(b) Derive the difference equation in the time domain. 
(c) What are the resonance frequencies of the system that is producing the signal? 

7. A model is described by the relationship 

y(n) = ~ ( n )  + 0 . 5 ~ ( n  - 1) + 0 . 2 5 ~ ( n  - 2 ) ,  

where s(n) is the input and y(n) is the output. 
What is the type of this system among AR, MA,  and ARMA systems? 
What is the model order? 
What is its transfer function? 
Draw the pole-zero diagram of the system. 
Comment upon the stability of the system. 

8. A model is described by the relationship 

~ ( n )  = -0.5y(n - 1) - y(n - 2 )  + ~ ( n )  + 0 . 5 ~ ( n  - 1) - ~ ( n  - 2 ) ,  

where ~ ( n )  is the input and y(n) is the output. 
What is the type of this system among AR, MA,  and ARMA systems? 
What is the model order? 
What is its transfer function? 



390 MODELING BIOMEDICAL SYSTEMS 

Draw the pole-zero diagram of the system. 
Comment upon the stability of the system. 

7.13 LABORATORY EXERCISES AND PROJECTS 

Note: Data files related to the exercises are available at the site 
ftp://ftp.ieee.org/uploads/press/rangay yan/ 

1. The file safety-wav contains the speech signal for the word “safety” uttered by a male 
speaker, sampled at 8 kHz (see the file safetym). The signal has a significant amount 
of background noise (as it was recorded in a normal computer laboratory). Develop 
procedures to segment the signal into voiced, unvoiced, and silence (background noise) 
portions using short-time RMS, turns count, or ZCR measures. 
Apply the AR modeling procedure to each segment using the command Ipc in MATLAB. 
Compute the AR-model PSD for each segment. Compare the model PSD with the 
FFT-based PSD for each segment. What are the advantages and disadvantages of the 
model-based PSD in the case of voiced and unvoiced sounds? 

2. Derive the poles of the models you obtained in the preceding problem. Express each 
pole in terms of not only its z-plane coordinates but also its frequency and bandwidth. 
Study the variations in the pole positions as the type of the sound varies from one 
segment to the next over the duration of the signal. 

3. The files pecl .dat, pec33.dat, and pec52.dat give three-channel recordings of the PCG, 
ECG, and carotid pulse signals (sampled at 1,000 Hz; you may read the signals using 
the program in the file p1otpec.m). The signals in pecI.dat and pec52.dat are normal; 
the PCG signal in  pecg33.dat has systolic murmur, and is of a patient suspected to have 
pulmonary stenosis, ventricular septa1 defect, and pulmonary hypertension. 
Segment each signal into its systolic and diastolic parts. Apply the AR modeling 
procedure to each segment and derive the model PSD. Compare the result with the 
corresponding PSDs obtained using Welch’s procedure. 

4. Derive the poles of the models you obtained in the preceding problem. Express each 
pole in terms of not only its z-plane coordinates but also its frequency and bandwidth. 
Study the variations in the pole positions from the systolic part to the diastolic part of 
each signal. What are the major differences between the pole plots for the normal cases 
and the case with murmur? 

5. The files ECG3, ECG4, ECGS, and ECG6 contain ECG signals sampled at the rate of 
200 Hz (see the file ECGSm). Apply the Pan-Tompkins method for QRS detection to 
each signal. Create impulse sequences including a delta function at every QRS Location 
for the four signals. Create also the interval series for each signal as illustrated in 
Figure 7.1. Compute the spectra corresponding to the two representations of cardiac 
rhythm and study their relationship to the heart rate and its variability in each case. 
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Analysis of Nonstationary 
Signals 

A stationary (or homogeneous) signal is one that possesses the same statistical mea- 
sures for all time, or at least over the duration of observation. We have seen in the 
preceding chapters that most biomedical signals, being manifestations of dynamic 
systems and patho-physiological processes, are nonstationary (or heterogeneous): 
Figure 3.3 shows that the variance of the speech signal used as an example varies 
with time; Figure 3.4 shows that the spectrum or frequency content of the speech 
signal also varies considerably over its duration. Figures 6.1 1 and 6.12 show that the 
spectrum of a heart sound signal or PCG varies from systole to diastole, and could 
vary in between the two events as well. 

When the characteristics of a signal being studied vary considerably over the 
duration of interest, measures and transforms computed over the entire duration do 
not carry useful information: they gloss over the dynamics of the signal. A single 
PSD computed from a long EMG, PCG, VAG, or speech record is of no practical 
value. The PSD does not provide information on time localization of the frequency 
components of the signal. We addressed this concern in PCG signal analysis in 
Section 6.4.5 by segmenting the PCG into its systolic and diastolic parts by using the 
ECG and carotid pulse signals as timing references. But how would we be able to 
handle the situation when murmurs are present in systole and diastole, and we need 
to analyze the spectra of the murmurs without the contributions of S1 and S2? 

Furthermore, the EEG signal changes its nature in terms of rhythms, waves, 
transients, and spindles for which no independent references are available. In fact, 
the EEG is a conglomeration of a number of mental and physiological processes 
going on in the brain at any given instant of time. The VAG signal has nonstationary 
characteristics related to the cartilage surfaces that come into contact depending upon 
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the activity performed, and no other source of information can assist in identifying 
time instants when the signal properties change. Indeed, a VAG signal contains no 
specific events that may be identified as such, but is a concatenation of nonspecific 
vibrations (with, perhaps, the exception of clicks). Would we able to extend the 
application of the well-established signal analysis techniques that we have studied so 
far to such nonstationary signals? 

8.1 PROBLEM STATEMENT 

Develop methods to study the dynamic characteristics of nonstationary biomedical 
signals. Propose schemes to apply the well-established Fourier and autoregressive 
modeling techniques to analyze and parameterize nonstationary signals. 

In order to limit the scope of the present chapter, we shall consider the extension 
of only Fourier spectral analysis and AR modeling to nonstationary signals. The 
case-studies presented in the following section will provide the motivation for the 
study from the perspective of a few representative biomedical signals. Approaches 
to solving the stated problem will be presented in the sections to follow. 

This chapter concentrates on segmentation-based analysis of nonstationary signals. 
Topics such as the Kalman filter, time-frequency distributions, and wavelets are not 
considered. 

8.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

8.2.1 Heart sounds and murmurs 

We noted in Section 6.4.5 that the spectral contents of S1 and S2 are different due 
to the different states of contraction or relaxation of the ventricular muscles and the 
differences in their blood content during the corresponding cardiac phases. In the 
normal case, the QRS in the ECG signal and the dicrotic notch in the carotid pulse 
signal may be used to split the PCG into S1 and S2, and separate PSDs may be 
obtained for the signal parts as illustrated in Section 6.4.5. However, when a PCG 
signal contains murmurs in systole and/or diastole and possibly valve opening snaps 
(see Figure 6.12), it may be desirable to split the signal further. 

Iwata et al. [206] applied AR modeling to PCG signals by breaking the signal into 
fixed segments of 25 ns duration (see Section 7.9). While this approach may be 
satisfactory, it raises questions on optimality. What should be the window duration? 
Is it necessary to break the intervals between S1 and S2 into multiple segments? 
Would it not be more efficient to compute a single AR model for the entire durations 
of each of S 1. S2, systolic murmur, and diastolic murmur - that is, a total of only four 
models? It is conceivable that each model would be more accurate as all available 
signal samples would be used to estimate the required ACF if the signal were to be 
segmented adaptively as mentioned above. 
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8.2.2 EEG rhythms and waves 

The scalp EEG represents a combination of the multifarious activities of many small 
zones of the cortical surface beneath each electrode. The signal changes its character- 
istics in relation to mental tasks, external stimuli, and physiological processes. As we 
have noted in Section 1.2.5 and observed in Figure 1.21, a visual stimulus blocks the 
alpha rhythm; slower waves become prominent as the subject goes to deeper stages 
of sleep; and patients with epilepsy may exhibit sharp spikes and trains of spike- 
and-wave complexes. Description of an EEG record, as outlined in Sections 1.2.5 
and 4.2.4, requires the identification of several types of waves and rhythms. This 
suggests that the signal may first have to be broken into segments, each possessing 
certain properties that remain the same for the duration of the segment. Each segment 
may then be described in terms of its characteristic features. 

8.2.3 Articular cartilage damage and knee-joint vibrations 

Movement of the knee joint consists of coupled translation and rotation. The configu- 
ration of the patella is such that some portion of the articular surface is in contact with 
the femur throughout knee flexion and to almost full extension (see Section 1.2.13 
and Figure 1.3 1). Goodfellow et al. [209] demonstrated that initial patello-femoral 
engagement occurs at approximately 20° of flexion involving both the medial and 
lateral facets. Figure 8.1 shows the patellar contact areas at different joint angles. 
As the knee is flexed, the patello-femoral contact area moves progressively upward, 
involving both the medial and lateral facets. At 90" of flexion, the band of contact 
engages the upper pole of the patella. The odd facet does not articulate with the 
lateral margin of the medial femoral condyle until about 120" - 135" of knee flexion. 

Articular cartilage is composed of a solid matrix and synovial fluid [210]; it has no 
nerves, blood vessels, or lymphatics, and is nourished by the synovial fluid covering 
its free surface. During articulation, friction between the bones is reduced as a result 
of the lubrication provided by the viscous synovial fluid [49, 521. The material 
properties of articular cartilage and cartilage thickness are variable not only from 
joint to joint but also within the same joint. In case of abnormal cartilage alterations 
in the matrix structure such as increased hydration, disruption of the collagen fibrillar 
network and dis-aggregation or loss of proteoglycans occur. As the compositional 
and biomechanical properties of abnormal articular cartilage continue to deteriorate, 
substance loss eventually occurs. This may be focal or diffuse, restricted to superficial 
fraying and fibrillation, or partial-thickness loss to full-thickness loss. In some cases, 
focal swelling or blistering of the cartilage may be seen before there is fraying of the 
articular surface [211]. 

Chondromalacia patella (soft cartilage of the patella) is a condition in which 
there is degeneration of patellar cartilage, often associated with anterior knee pain. 
Exposed subchondral bone and surface fibrillation of the articular cartilage are evident 
on the posterior patellar surface in chondromalacia patella [2 121. Chondromalacia 
patella is usually graded in terms of the seventy of the lesions [213,214] as follows: 

0 Grade I: Softening, cracking, and blistering, but no loss of articular cartilage. 
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Figure 8.1 Contact areas of the patella with the femur during patello-femoral articulation. 
Adapted, with permission, from S. Krishnan, Adaptive Signal m e s s i n g  Techniques for 
Analysis of Knee Joint Vibroarthrographic Signals, Ph.D. Thesis, University of Calgary, 1999. 

0 Grade ZZ: Damage is moderate and there is some loss of cartilage. 

0 Grade ZZZ: Severe damage of fibrocartilage has occurred but bone is not ex- 
posed. 

0 Grade ZV: The cartilage is eroded and the subchondral bone is exposed. 

Osreoarrhriris is a degenerative joint disease that involves specific changes to 
bone in addition to cartilage. In the late stages of osteoarthritis, there is full-thickness 
articular cartilage degeneration and exposed bone. Other structural changes include 
fibrous changes to the synovium, joint capsule thickening, and further alterations to 
the bone such as osteophyte formation [215]. Higher-grade chondromalacia may be 
categorized as osteoarthritis. 

The menisci are subject to vertical compression, horizontal distraction, and rotary 
and shearing forces of varying degrees in the course of normal activities [216]. 
Advance of the aging process in both articular cartilage and fibrocartilage causes 
progressive liability to horizontal cleavage lesion [2 161. 

The semi-invasive procedure of anhroscopy (fiber-optic inspection of joint sur- 
faces, usually under general anesthesia) is often used for diagnosis of cartilage 
pathology. Through an arthroscope, the surgeon can usually see the patello-femoral 
joint, the femoral condyles, the tibia1 plateau (menisci), the anterior cruciate ligament, 
and the medial and lateral synovial spaces. Arthroscopy has emerged as the "gold 
standard" for relatively low-risk assessment of joint surfaces in order to determine 
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the prognosis and treatment for a variety of conditions. Figure 8.2 shows the different 
stages of chondromalacia patella as viewed during arthroscopy. 

Figure 8.2 Arthroscopic views of the patello-femoral joint. (a) Normal cartilage surfaces. 
(b) Chondromalacia Grade 11 at the patella. (c) Chondromalacia Grade 111 at the patella. 
(d) Chondromalacia Grade IV at the patella and the femur; the bones are exposed. The under- 
surface of patella is at the top and the femoral condyle is at the bottom. Figure courtesy: G.D. 
Bell, Sport Medicine Centre, University of Calgary. 

Abnormal structures and surfaces in the knee joint are more likely to generate 
sound during extension and flexion movements than normal structures. Softened 
articular cartilage in chondromalacia patella, and cracks, fissures, or thickened areas 
in osteoarthritis almost certainly increase the friction between the articular surfaces, 
and are therefore likely to increase the sounds emitted during normal joint move- 
ment [217, 541. Injury to the menisci in the form of tearing causes irregularity in  
shape and disruption to normal joint movement, and may produce sharp clicking 
sounds during normal knee movement [218,59,54]. 

It is obvious from this discussion that the VAG signal is nonstationary. Different 
aspects of the articulating surfaces come into contact at different joint angles; their 
quality in terms of lubrication and functional integrity could vary from one position 
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to another. Inspection of the VAG signals and their spectrograms illustrated in 
Sections 3.6.3 and 3.10 reveals that the nature of a VAG signal changes significantly 
over the duration of the signal. As no prior or independent information is available 
about changes in the knee-joint structures that could lead to vibrations, adaptive 
segmentation of the VAG signal is required before it may be analyzed, using the 
methods we have studied so far in this book. Illustration of adaptive segmentation of 
VAG signals will be provided in Sections 8.6.1 and 8.6.2. 

8.3 TIME-VARIANT SYSTEMS 

The linear system model represented by Equation 7.1 is a time-invariant system: the 
coefficients Uk and bl of the system do not change with time, and consequently, the 
poles and zeros of the system stay fixed for all time. A nonstationary (or dynamic) 
system will possess coefficients that do vary with time: we saw in Sections 3.6.2 
and 3.6.3 that the coefficient (tap-weight) vectors of the adaptive LMS and RLS filters 
are expressed as functions of time. (Note: The Wiener filter described in Section 3.5, 
once optimized for a given set of signal and noise statistics, is a time-invariant filter.) 
Since the coefficients of an LMS or RLS filter vary with time, so do the transfer 
function and the frequency response of the filter. It follows that the impulse response 
of such a system also varies with time. 

Let us consider an all-pole filter for the sake of simplicity; the filter characteristics 
are determined by the positions of the poles to within a gain factor. If the poles are 
expressed in terms of their polar coordinates, their angles correspond to (resonance) 
frequencies and their radii are related to the associated bandwidths. We may therefore 
characterize time-variant or nonstationary systems and signals by describing their 
pole positions in the complex z-plane - or, equivalently, the related frequencies and 
bandwidths - as functions of time. A description of the variation or the modulation 
of the pole parameters over time can thus capture the nonstationary or dynamic 
nature of a time-variant system or signal. Variations in the gain factor also lead to 
nonstationarities in the signal produced by the system. Appel and v. Brandt [219,220] 
describe the simulation of different types of nonstationary behavior of signals and 
systems. 

In the general case of a nonstationary system that is an AR process, we may 
modify Equation 7.17 to indicate that the model coefficients are functions of time: 

Methods related to the Kalman filter or the least-squares approach may be used 
to analyze such a system [77, 221, 222, 2231 (not considered in this book). Time- 
varying AR and ARMA modeling techniques have been applied to analyze EEG [224], 
EGG [38], and HRV [225] signals; the application to HRV signals will be discussed 
in Section 8.9. 
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8.3.1 Characterization of nonstationary signals and dynamic systems 

The output of a time-variant or dynamic system will be a nonstationary signal. The 
system may be characterized in terms of its time-variant model coefficients, transfer 
function, or related parameters derived thereof. Various short-time statistical mea- 
sures computed over moving windows may be used to characterize a nonstationary 
signal; the measures may also be used to test for stationarity, or lack thereof, of a 
signal. 

0 Mean: The short-time mean represents the average or DC level of the signal 
in the analysis window. Variation of the mean from one window to another is 
usually an indication of the presence of a wandering base-line or low-frequency 
artifact, as in the case of the ECG signal in Figure 3.6. Clearly, the signal in 
Figure 3.6 is nonstationary in the mean. However, the mean is not an important 
measure in most signals, and is typically blocked at the data-acquisition stage 
via capacitive coupling andor a highpass filter. Furthermore, since a DC level 
carries no sound or vibration information, its removal is of no consequence in 
the analysis of signals such as heart sounds, speech, VAG, and the VMG. 

0 Variance: Figure 3.3 illustrates the short-time variance for a speech signal. 
It is evident that the variance is high in regions of high signal variability 
(swings or excursions) about the mean, as in the case of the vowels in the 
signal. The variance is low in the regions related to the fricatives in the signal 
where the amplitude swing is small, in spite of their high-frequency nature. 
Since the mean of the signal is zero, the variance is equal to the MS value, 
and represents the average power level in the corresponding signal windows. 
Although variations in the power level of speech signals may be useful in 
making voiced unvoiced silence decision, the parameter does not bear much 
information, and provides a limited representation of the general statistical 
variability of signal characteristics. Regardless of the interpretation of the 
parameter, it is seen that the speech signal in Figure 3.3 is nonstationary in its 
variance (and the related measures of SD, MS, and RMS). From the discussion 
in Section 1.2.11, it is also clear that the vocal-tract system producing the 
speech signal is a dynamic system with time-varying configuration and filtering 
characteristics. 

0 Measures of activity: We have studied several measures of activity that 
indicate the “busy-ness” of the given signal, such as turning points, ZCR, 
and turns count (in Chapters 3 and 5) .  The short-time count of turning points 
is plotted in Figure 3.1 for a speech signal: it is evident that the signal is more 
active or busy in the periods related to the fricatives than those related to the 
vowels (a trend that is the opposite of that in the short-time variance of the 
same signal shown in Figure 3.3). The short-time turns count plot of the EMG 
signal in Figure 5.8 indicates the rising level of complexity of the signal with 
the level of breathing. Although turning points, ZCR, and turns count are not 
among the traditional statistical measures derived from PDFs, they characterize 
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signal variability and complexity in different ways. Both the examples cited 
above illustrate variation of the parameters measured over the duration of the 
corresponding signals: the signals are therefore nonstationary in terms of the 
number of turning points or the turns count. 

0 ACF: The ACF was defined in Section 3.1.1 in general as &z(tl, tl + T )  = 
E[z(tl)z(tl + T ) ] .  In Section 3.1.2, one of the conditions for (wide-sense or 
second-order) stationarity was defined as the ACF being independent of time, 
that is, &+(tl,tl + T )  = C # J ~ ~ ( T ) .  A nonstationary signal will not satisfy 
this condition, and will have an ACF that varies with time. Since the ACF is 
based on the expectation of pairs of signal samples separated by a certain time 
difference or lag, it is a more general measure of signal variability than the 
variance and related measures. Note that the ACF for zero lag is the MS value 
of the signal. 
One faces limitations in computing the ACF of short-time segments of a signal 
to investigate (n0n)stationarity: the shorter the analysis window, the shorter 
the maximum lag up to which the ACF may be estimated reliably. Regardless, 
the short-time ACF may be used to track nonstationarities in a signal. If the 
signal is the result of a dynamic AR system, the system parameters may be 
derived from the ACF (see Section 7.5). 

0 PSD: The PSD and ACF of a signal are inter-related by the Fourier transform. 
Therefore, a signal that is (non)stationary in its ACF is also (non)stationary in 
its PSD. However, the PSD is easier to interpret than the ACF, as we have seen 
in Chapter 6. The spectrogram of the speech signal in Figure 3.4 indicates 
significant variations in the short-time PSD of the signal: the speech signal is 
clearly nonstationary in its PSD (and ACF). The spectrograms of VAG signals 
in Sections 3.6.3 and 3.10 illustrate the nonstationary nature of VAG signals. 

0 Higher-order statistics: A major limitation of signal analysis using the ACF 
(or equivalently the PSD) is that the phase information is lost. The importance 
of phase in signals is discussed by Oppenheim and Lim [226]. Various condi- 
tions under which a signal may be reconstructed from its magnitude spectrum 
only or from its phase spectrum only are described by Hayes and Oppen- 
heim [227] and Oppenheim and Lim [226]. Analysis based only upon the ACF 
cannot be applied to signals that are of mixed phase (that is, not minimum 
phase), that are the result of nonlinear systems, or that follow a PDF other than 
a Gaussian [228]. 
The general nth-order moment of a random signal z(t )  at the instant tl is 
defined as [228,229,77] 

(8.2) 

where 71, q,. . , , T ~ - ~  are various delays or lags. It is evident that the ACF is 
a special case of the above with n = 2, that is, the ACF is the second-order 
moment. 

m:(ti,ti + 71, ti + ra,. . . , t i  -I- ~ ~ - 1 )  = 
E[z(tl)z(tl -k Tl)z(tl + 'Q) * * ' z(t1 + Tn-l)], 



FIXED SEGMENTATION 399 

A set of parameters known as cumulants may be related to the moments as 
follows: The second-order and third-order cumulants are equal to the corre- 
sponding moments. The fourth-order cumulant is related to the fourth-order 
moment as [77,228,229] 

ct(tllt1 +71,tl + ~ z , t l  + 7 3 )  = mt(ti ,t i  +7i l t i  +7zlti + 7 3 )  (8.3) 
- 4 t l l  tl + 71) d ( t l  + 72, tl + 73) 

- ~ ~ ( ~ 1 1 ~ ~ + ~ 3 ) ~ ~ ( ~ 1 + 7 1 , t 1 + 7 2 ) .  

- 
m E ( t l l t l  + 7 2 )  m:(tl + 739 tl + 71)  

The Fourier transforms of the cumulants provide the corresponding higher- 
order spectra or polyspectra (with as many frequency variables as the order 
minus one). The Fourier transforms of the second-order, third-order, and 
fourth-order cumulants are known as the power spectrum (PSD), bispectrum, 
and trispectrum, respectively. A Gaussian process possesses only first-order 
and second-order statistics: moments and spectra of order higher than two 
are zero. Higher-order moments, cumulants, and spectra may be used to 
characterize nonlinear, mixed-phase, and non-Gaussian signals [77,228,229]. 
Variations over time of such measures may be used to detect the related types 
of nonstationarity. 

0 System parameters: When a time-varying model of the system producing the 
signal is available in terms of its coefficients, such as ak(n) in Equation 8.1, we 
may follow or track changes in the coefficients over time. Significant changes 
in the model parameters indicate corresponding changes in the output signal. 

8.4 FIXED SEGMENTATION 

Given a nonstationary signal, the simplest approach to break it into quasi-stationary 
segments would be to consider small windows of fixed duration. Given a signal z ( i )  
for i = 0,1,2, . . . , N - 1, we could consider a fixed segment duration of M samples, 
with M << N, and break the signal into K parts as 

With the assumption that the signal does not change its characteristics to any signifi- 
cant extent within the duration corresponding to M samples (or s), each segment 
may be considered to be quasi-stationary, 

Note that the segmentation here is similar to that in the Bartlett and Welch proce- 
dures described in Sections 6.4.2 and 6.4.3. However, we will not be averaging the 
spectra over the segments now, but will be treating them as separate entities. The 
signal processing techniques we have studied so far may then be applied to analyze 
each segment separately. 



a

Once the given signal has been segmented into quasi-stationary parts zk(n) as above, 
we may compute the Fourier spectrum for each segment as 

The array of spectra X~(W) for k = 1,2,. . . , K will describe the time-varying 
spectral characteristics of the signal. 

Segmentation of the given signal as above may be interpreted as the application 
of a moving window to the signal. The kth segment zk(n) may be expressed as 
the multiplication of the signal z(n)  with a window function w ( n )  positioned at the 
beginning of the segment as 

(8.6) ~ k ( 7 t )  = z ( n ) ~ ( n  - ( I c  - 1)M), 1 5 k 5 K, 

where 

1 f o r O I n S M - 1  
0 otherwise w(n) = 

Figure 8.3 (a) illustrates the PCG of a patient with systolic murmur and opening 
snap of the mitral valve, with a moving rectangular analysis window of duration 
64 rns superimposed on the signal at three different instants of time. The duration of 
each window is 64 samples, equal to 64 m8 with fi = 1 kHz. The three windows 
have been positioned approximately over the S 1, systolic murmur, and S2 events in 
the signal. Figure 8.3 (b) shows the log PSDs of the signal segments extracted by the 
three analysis windows. It is seen that the PSDs differ significantly, with the second 
window displaying the largest amount of high-frequency power due to the murmur. 
The third window displays more medium-frequency content than the first. It is clear 
that the PCG signal is nonstationary in the PSD. 

In general, the window may be positioned at any time instant m, and the resulting 
segment may be expressed as z(n)w(n - m). We need to state how the window is 
moved or advanced from one segment to another; in the extreme situation, we may 
advance the window one sample at a time, in which case adjacent windows would 
have an overlap of (M - 1) samples. We may then compute the Fourier transform 
of every segment as 

M-1 

x ( m , w )  = C z(n>w(n - rn) exp( - jwn) .  (8.8) 

In the case when both the time and frequency variables are continuous, we may write 
the expression above in a more readily understandable form as 

n=O 

00 

X ( T , W )  = z( t )w( t  - 7 )  exp( - jwt )  dt .  (8.9) I, 
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Figure 8.3 (a) PCG signal of a patient (female, 14 months) with systolic murmur and 
opening snap (0.9) of the mitral valve. Three short-time analysis windows are superimposed, 
each one being a rectangular window of duration 64 ms. (b) Log PSDs of the three windowed 
signal segments. Each FFT was computed with zero-padding to a total length 256 samples. 
f. = 1 kHz .  See also Figure 6.12. 



402 ANALYSIS OF NONSTATIONARY SIGNALS 

The spectrum is now expressed not only as a function of frequency w ,  but also as a 
function of time 7. Although the limits of the integral have been stated as (-00, 00), 

the finite duration of the window placed at time T will perform segmentation of the 
signal as desired. 

The spectral representation of the signal as a function of time in Equations 8.8 
and 8.9 is known as a time-frequency distribution or TFD [230,23 1,232,2331. Since 
the Fourier transform is applied, in the procedure above, to short windows of the 
signal in time, the result is known as the short-time Fourier transform or STFT of 
the signal. The method of analysis of a nonstationary signal in short windows is, in 
general, known as short-time analysis. The magnitude of the STFT (squared and/or 
with the logarithmic operation if desired) is known as the spectrogram of the signal. 

Figure 8.4 illustrates the spectrogram of the PCG signal of a patient with systolic 
murmur and opening snap of the mitral valve: the signal and the window parameters 
are the same as in Figure 8.3, but now the spectra are plotted for every window 
position with a displacement of 32 ms. The relatively high-frequency nature of the 
murmur as compared to S 1 and S2 is clearly evident in the spectrogram. 

We have previously encountered spectrograms of speech and VAG signals: refer 
to Figure 3.4 and Sections 3.6.3 and 3.10. More examples of spectrograms will be 
provided at the end of this section and later in this chapter. 

8.4.2 Considerations in short-time analysis 

Short-time analysis of signals could be computationally expensive. In the case of 
the STFT, the Fourier transform has to be computed for each segment of the signal. 
In practice, there should be no need to compute the Fourier transform for every 
possible window position, that is, for every m in Equation 8.8. We could advance the 
analysis window by M samples, in which case adjacent windows will not overlap. 
It is common practice to advance the analysis window by 9 samples, in which case 
adjacent windows will overlap for samples; some overlap is desirable in order to 
maintain continuity in the STFT or TFD computed. 

An important question arises regarding the duration of the analysis window M to 
be used. The window should be short enough to ensure that the segment is stationary, 
but long enough to permit meaningful analysis. We have seen in Section 6.3 that a 
short window possesses a wide main lobe in its frequency response. Since the given 
signal is multiplied in the time domain with the analysis window, the spectrum of 
the signal gets convolved with the spectral response of the window in the frequency 
domain. Convolution in the frequency domain with a function having a large main 
lobe leads to significant loss of spectral resolution. 

The limitation imposed by the use of a window is related to the uncertainty 
principle or time-bandwidth product, expressed as [23 11 

1 
2 

At x AU 2 -, (8.10) 
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Figure 8.4 Spectrogram of the PCG signal of a patient (female, 14 months) with systolic 
murmur and opening snap of the rnitral valve, computed with a moving short-time analysis 
window of duration 64 samples (64 ms with f. = 1 kHz), with the window advance interval 
being 32 samples. Each FFT was computed with zero-padding to a total length 256 samples. 
f .  = 1 kHz. See also Figures 6.12 and 8.3. 
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where 

W 

(Aw)’ = (w - a)’ IX(w)l’dw, 

(8.1 1) 

(8.12) 

(8.13) 

(8.14) 

and At and Aw represent the time extent (duration) and frequency extent (bandwidth) 
of the signal z ( t )  and its Fourier transform X ( w ) ,  respectively. The gist of the 
limitation stated above is that a signal and its Fourier transform cannot be made 
arbitrarily narrow. The effect of this limitation on the STFT and TFD-based analysis 
is that we cannot simultaneously obtain arbitrarily high resolution along both the 
time and frequency axes. 

At the extremes, a continuous-time signal z( t )  provides infinite time resolution 
but no frequency resolution: the value of the signal is known at every instant of 
time t, but nothing is known about the frequency content of the signal. Conversely, 
the PSD S,,(f) provides infinite frequency resolution but no time resolution: the 
overall strength of sinusoids at every frequency f present in the signal over all time 
t is known, but nothing is known about where exactly in time a given frequency 
component begins or ends. (The phase spectrum contains this information but cannot 
be readily interpreted and used for the purposes of this discussion.) 

In the case of sampled signals and spectra, the sampling intervals At in the time 
domain and A f in the frequency domain will be finite, and limited by Heisenberg’s 
inequality as stated above. Increasing the time resolution of the STFT by making 
the analysis window short in duration will compromise frequency resolution; on the 
other hand, increasing the window duration will lead to a loss in time resolution. 

In general, the window function w(n)  included in Equation 8.8 need not be a 
rectangle: any of the window functions listed in Section 6.4.3 may be used. Once 
a window is chosen, the joint time-frequency (TF) resolution is the same over the 
entire TF plane. 

The STFT expression in Equation 8.8 indicated the placement of a causal analysis 
window beginning at the time instant of reference m in the argument of the STFT. 
It is also common practice to use a symmetrical noncausal window defined for 
- @ 2 -  < n 5 y ,  in which case the reference point of the analysis window would be 
the center of the window. 

Illustration of application: Spectrograms of the speech signal in Figure 1.29 
with different window parameters are provided in Figures 8.5 and 8.6. The spectro- 
grams are shown here as gray-scale images, with the darkness at each point being 
proportional to the log PSD for the corresponding temporal analysis window position 
and frequency coordinate. It is evident that increasing the length of the analysis 
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window provides better frequency resolution (the definition or clarity of the fre- 
quency components) while at the same time reducing the temporal resolution (that is, 
causing smearing in the temporal dimension). Decreasing the window length causes 
the reverse effects. The spectrogram in Figure 8.5 (b) with the analysis window 
duration being 16 ms clearly illustrates the high-frequency (broad-band) nature of 
the fricatives; the transient and broad-band nature of the plosive fT/ is also clearly 
shown. The same features are not clearly depicted by the spectrogram in Figure 8.6 
(b) where the analysis window is fairly long (128 ms); however, the formant struc- 
ture of the voiced-speech components (the vowels) is clearly depicted. The formant 
structure of the voiced-speech components is not clearly visible in the spectrogram 
in Figure 8.5 (b). 

8.5 ADAPTIVE SEGMENTATION 

One of the limitations of short-time analysis lies with the use of a fixed window dura- 
tion, A signal may remain stationary for a certain duration of time much longer than 
the window duration chosen, and yet the signal would be broken into many segments 
over such a duration. Conversely, a signal may change its characteristics within the 
duration of the fixed window: short-time analysis cannot guarantee stationarity of the 
signal over even the relatively short duration of the analysis window used. It would 
be desirable to adapt the analysis window to changes in the given signal, allowing 
the window to be as long as possible while the signal remains stationary, and to start 
a new window at the exact instant when the signal or the related system changes its 
characteristics. 

Problem: Propose methods to break a nonstationary signal into quasi-stationary 
segments of variable duration. 

Solution: We saw in Section 7.5 that a signal may be represented or modeled as a 
linear combination of a sinall number of past values of the signal, subject to a small 
error of prediction. It then follows that if a signal were to change its behavior, it 
would no longer be predictable from its preceding samples as they would correspond 
to the previous state of the time-variant system generating the nonstationary signal. 
Therefore, we could expect a large jump in the prediction error at instants of time 
when the signal changes in its characteristics. Furthermore, the AR model parameters 
represent the system generating the signal, and provide the poles of the system. If 
the system were to change in terms of the locations of its poles, the same model 
would no longer hold: a new model would have to be initiated at such instants of 
change. This suggests that we could estimate AR models on a short-time basis, and 
monitor the model parameters from segment to segment: a significant change in the 
model parameters would indicate a point of change in the signal. (We have seen in 
Section 7.9 how a similar approach was used by Iwata et al. [207] to detect S1 and 
S2 in PCGs.) Adjacent segments that have the same or similar model parameters 
could be concatenated to form longer segments. As the AR model provides several 
parameters and may be interpreted in several ways (see Section 7.5.2), tracking the 
behavior of the model over a moving analysis window may be accomplished in many 
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Figure 8.5 (a) Time-domain speech signal of the word “safety” uttered by a male speaker. 
(The signal is also illustrated in Figures 1.29, 3.1, and 3.3.) (b) Spectrogram (log PSD) of the 
signal computed with a moving short-time analysis window of duration 16 ms (128 samples 
with fa = 8 k H z ) ,  with the window advance interval being 8 ms. 
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Figure 8.6 Spectrograms (log PSD) of the speech signal in Figure 8.5 (a) with a moving 
window of duration 64 me (512 samples with f. = 8 k H z ) ,  with the window advance 
interval being 32 me. (b) with a moving window of duration 128 ma (1024 samples), with 
the window advance interval being 64 ma. 
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ways. The following subsections provide the details of a few approaches for adaptive 
segmentation based upon the notions stated above. 

8.5.1 Spectral error measure 

Bodenstein and Praetorius [98, 2341 used the all-pole LP or AR model (see Sec- 
tion 7.5) for adaptive segmentation of EEG signals into quasi-stationary segments 
and also for further feature extraction. They made the following observations about 
the application of AR modeling to EEG signals: 

0 7ime domain: The present value of the prediction error indicates the instanta- 

0 Autocorrelation domain: The prediction error is decorrelated. 

0 Spectral domain: The prediction error being white noise, the AR model yields 
an all-pole representation of the signal spectrum, which is particularly suitable 
for the modeling of resonance. 

neous degree of “unexpectedness” in the signal. 

These properties are useful for 

0 detection and elimination of transients; 

0 segmentation of the EEG into quasi-stationary segments; and 

0 feature extraction and pattern recognition (diagnosis). 

Ferber [235] provides a description of nonstationarities in the EEG and suggests 
a few approaches to treat the same. 

Analysis of spectral change: Let the PSD of the given nonstationary signal 
be S(0 ,w)  at zero time, and S ( t , w )  at time t .  The spectral ermr of S ( t , w )  with 
respect to S(0 ,w)  may be taken to be dependent upon the difference between the 
corresponding log PSDs, that is, to be proportional to log[S(t, w ) ]  - log[S(O, w ) ] ,  or 
equivalently, to be proportional to M. Consider the state when an AR model has 
been adapted to the signal spectrum S(0, w )  at zero time. If we pass the signal at time 
t through the AR model, the prediction error will have an instantaneous spectrum 
given by 

(8.15) 

which is similar to the spectral ratio in Equation 7.50. Thus the problem of comparing 
two arbitrary PSDs of a nonstationary signal at two different instants of time may 
now be expressed as testing Se(w)  for deviation from a uniform PSD. 

Let a ~ ( k ) ,  k = 1,2,. . . , P, represent the reference AR model. When the current 
signal ~ ( n )  is passed through the filter represented by the AR model, we obtain the 
prediction error 

e(n) = c Q(k) ar(n - k). 
P 

(8.16) 
k=O 
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The error indicates the deviation of the current signal from the previously computed 
model. Consider the integral 

(8.17) 

where S, (w )  is the PSD of the prediction error. Ideally, when the AR model has been 
optimized for the signal on hand, the prediction error is expected to have a uniform 
PSD. However, if the signal is nonstationary, some changes would have occurred in 
the spectral characteristics of the signal, which would be reflected in the PSD of the 
error. If &(k) is the ACF corresponding to Se(w) ,  the latter is given by the Fourier 
transform of the former. However, since both functions are real and even, we have 

00 

Se(w) = #e(O) + 2 C $e(lc)  cos(2nwk). (8.18) 
k = l  

Then, 

Due to the orthonormality of the trigonometric functions, we get 

00 

E = [1 - $e(o)12 + 2 c &(W. (8.20) 

In practice, the summation may be performed up to some lag, say M .  Bodenstein 
and Praetorius [98] recommended normalization of the error measure by division by 
&(O), leading to the spectral ermr measure ( S E M )  

k=l 

(8.21) 

Here, the first term represents the change in the total power of the prediction error; the 
second term depends upon the change in spectral shape only. Note that the prediction 
error is expected to have a uniform (flat) PSD as long as the signal remains stationary 
with respect to the AR model designed. The S E M  was shown to vary significantly in 
response to changes in the spectral characteristics of EEG signals, and to be useful in 
breaking the signals into quasi-stationary parts. Figure 8.7 shows the general scheme 
of EEG segmentation by using the S E M .  

Algorithm for adaptive segmentation [98]: 
Let n = 0 represent the starting point of analysis where the first reference or fixed 

analysis window is placed for each adaptive segment, as in Figure 8.7 (a). (N + P) 
samples of the signal y(n) should be available prior to the arbitrarily designated 
origin at n = 0, where (2N + 1) is the size of the analysis window and P is the order 
of the AR model to be used. 
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Figure 8.7 Adaptive segmentation of EEG signals via use of S E M .  (a) Original EEG signal. 
The rectangular window at the beginning of each adaptive segment indicates the signal window 
to which the AR model has been optimized. (b) Prediction error. The initial ACF of the error 
is computed over the fixed window; the running ACF of the error is computed over the moving 
window. (c) Segmentation threshold. (d) SEM.  The vertical lines represent the segmentation 
boundaries. Reproduced with permission from G. Bodenstein and H.M. Praetorius, Feature 
extraction from the electroencephalogram by adaptive segmentation, Proceedings ofthe IEEE, 
65(5):642-652, 1977. OIEEE. 

1. Using the signal samples y(-N) to y(N), compute the signal ACF up to lag 

2. Derive the corresponding AR model of order P. 

3. Using the signal values y( - N  - P) to y(n + N), compute the prediction error 
e ( - N )  to e(n + N), and compute the running short-time ACF t&(n, m) of 
the prediction error as 

P .  

1 N-rn 
$e(n,m)= - e ( n + k ) e ( n + k + m ) .  (8.22) 

Note that the ACF now has two indices: the first index n to indicate the position 
of the short-time analysis window, and the second index m to indicate the lag 
for which the ACF is computed. 

4. Calculate &(O, m) for m = 0,1, . . . , M. This represents the fixed window at 
the beginning of each adaptive segment in Figure 8.7 (a). 
Perform the following three steps for each data point: 

relationship 

k = - N  2N+1 

5.  Compute $e(n, m) for the moving window [see Figure 8.7 (b)] by the recursive 

(8.23) #e(nl rn) = 4e(n - 1, rn) t e(n + N)e(n  + N - rn) 
- e(n - N - l)e(n - N - 1 - m). 
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This represents the moving window in Figure 8.7 (b). 

6. Compute the S E M  at time n as 

where &(O, 0) accounts for the fact that the signal may have an arbitrary power 
level. 

7. Test if S E M ( n )  > Thl ,  where Thl is a threshold. 
If the condition is not satisfied, increase n by 1 and return to Step 5. 
If the condition is satisfied, a segment boundary has been detected at time n, 
as indicated by the vertical lines in Figure 8.7. Reset the procedure by the 
following step: 

8. Shift the time axis by substituting (n + k) with (k - N) and start the procedure 
again with Step 1. 

In the investigations of Bodenstein and Praetorius [98], S E M  demonstrated sharp 
jumps as transients of duration less than 100 ms entered and left the moving analysis 
window of duration 2 s (2N + 1 = 101 samples with f, = 50 Hz). Such jumps 
could lead to inappropriate segmentation, especially with burst-suppression type EEG 
episodes as illustrated in Figure 8.8. To overcome this problem, it was suggested that 
the prediction error e(n) be limited (clipped) by a threshold Thz as 

if le(n)l < Th2 { z z / e (n ) ]  Th2 if le(n)l 2 Th2 * 
e(n) = (8.25) 

The threshold Th2 is shown by the dashed lines in Figure 8.8 (c). The S E M  
computed from the clipped e(n) is shown in Figure 8.8 (d), which, when checked 
against the original threshold Thl ,  will yield the correct segmentation boundary. 
The signal reconstructed from the clipped prediction error is shown in Figure 8.8 (e), 
which shows that the clipping procedure has suppressed the effect of the transient 
without affecting the rest of the signal. 

In spite of the clipping procedure as in Equation 8.25, it was indicated by Boden- 
stein and Praetorius [98] that the procedure was too sensitive and caused false alarms. 
To further limit the effects of random fluctuations in the prediction error, a smoothed 
version e,(n) of the squared prediction error was computed as 

e,(n) = e2(n  - 1) + 2e2(n) + e2(n + 1) (8.26) 

forthose samples of e ( n )  that satisfied thecondition le(n)l > Th2. Anotherthreshold 
Th3 was applied to e,(n), and the triplet {y(n - l), y(n), ~ ( n  + 1)) was considered 
to be a part of a transient only if e,(n) > Th3. The procedure of Bodenstein and 
Praetorius combines adaptive segmentation of EEG signals with transient detection 
as the two tasks are interrelated. 
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Figure 8.8 Elimination of transients by clipping the prediction error. (a) Original EEG signal 
of the burst-suppression type. The sharp wave marked by the arrow 1 is followed by the onset 
of a burst marked by the arrow 2. (b) SEM showing sudden jumps at points indicated by the 
arrows 3 and 4 as the sharp wave enters and leaves the analysis window. (c) Clipping of the 
prediction error with threshold Tho. (d) SEM after clipping the prediction error. The dashed 
line represents the threshold 2%. (e) Signal reconstructed from the clipped prediction error. 
Reproduced with permission from G. Bodenstein and H.M. Praetorius, Feature extraction from 
the electroencephalogram by adaptive segmentation, Proceedings ofthe IEEE, 65(5):642-652, 
1977. OIEEE. 
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Illustration of application: Figure 8.9 shows the EEG signal of a child in sleep 
stage I, superimposed with 14 Hz spindles. The SEM and its components are also 
shown in the figure. The vertical lines indicate the segment boundaries detected. 
Bodenstein et al. [236] and Creutzfeldt et al. [237] describe further extension of the 
approach to computerized pattern classification of EEG signals including clustering 
of similar segments and labeling of the types of activity found in an EEG record. 

The SEM method was applied for adaptive segmentation of VAG signals by 
Tavathia et al. [ 5 5 ] .  It was indicated that each segment could be characterized by 
the frequency of the most-dominant pole obtained via AR modeling and the spectral 
power ratio E40:12~ as per Equation 6.48; however, no classification experiments were 
performed. More examples of application of the SEM technique will be presented in 
Sections 8.5.4 and 8.7. 

Figure 8.9 Use of the spectral error measure SEM to segment an EEG signal. (a) Original 
EEG signal of a child in sleep stage I with superimposed 14 Hz spindles. (b) Segmentation 
threshold. (c) SEM. (d) Deviation in prediction error power. (e) Deviation in prediction 
error spectral shape. The vertical lines represent the segmentation boundaries. Reproduced 
with permission from G. Bodenstein and H.M. Praetorius, Feature extraction from the elec- 
troencephalogram by adaptive segmentation, Proceedings of the IEEE, 65(5):642-652, 1977. 
OIEEE. 

8.5.2 ACF distance 

Michael and Houchin [238] proposed a method comparable to that of Bodenstein 
and Praetorius [98], but based upon a simpler scheme using the ACE It should be 
noted that the AR model coefficients are indeed derived from the ACF, and that the 
spectra used to compute SEM are related to the corresponding ACFs by the Fourier 
transform. However, direct use of the ACF removes the assumption made in AR 
modeling that the signal is the result of an AR process. 

In the method of Michael and Houchin, the ACF is treated as a statistical measure 
of the given signal, and significant variations in  the ACF are used to detect nonstation- 
arity. A reference window is extracted at the beginning of each scan, and the given 
signal (EEG) is observed through a moving window. The duration of the window has 
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to be chosen such that it is shorter than the shortest expected quasi-stationary segment 
of the given signal, but long enough to characterize the lowest frequency present. If 
the difference between the signal’s statistics (ACF) in the moving window and the 
reference window is significant, a segment boundary is drawn, and the procedure is 
restarted. 

Let # ~ ( k )  be the ACF of the reference window at the beginning of a new segmen- 
tation step, where le is the lag or delay. Let # ~ ( n ,  k) be the ACF of the test window 
positioned at time instant n. Given that the ACF for zero lag is the power of the 
signal, Michael and Houchin computed a normalized power distance d p ( n )  between 
the ACFs as (see also Appel and v. Brandt [220]) 

(8.27) 

A spectral distance d ~ ( n )  was computed using the ACF coefficients only up to lag q 

The lag limit q was set as the lower value of the lags at which the ACFs changed 
from positive to negative values for the first time. The net ACF distance d(n) was 
then computed as 

(8.29) 

where T h p  and ThF are thresholds. The condition d(n)  > 1 was considered to 
represent a significant change in the ACF, and used to mark a segment boundary. 

Due to the use of a moving window of finite size, the true boundary or point 
of change in the signal characteristics will lie within the last test window before 
a segment boundary is triggered. Michael and Houchin used a linear interpolation 
procedure based upon the steepness of the ACF distance measure to correct for such a 
displacement. Barlow et al. [239] provide illustrations of application of the method to 
clinical EEGs. Their work includes clustering of similar segments based upon mean 
amplitude and mean frequency measures, “dendrograms” to illustrate the clustering of 
segments, as well as labeling of the various states found in an EEG record. Illustration 
of application of the ACF method will be provided in Section 8.5.4. 

8.5.3 The generalized likelihood ratio 

The generalized likelihood ratio (GLR) method, proposed by Appel and v. Brandt 
[2 191, uses a reference window that is continuously grown as long as no new boundary 
is marked. The test window is a sliding window of constant duration as in the case 
of the SEM and ACF methods. Figure 8.10 illustrates the windows used. The 
advantage of the growing reference window is that it contains the maximum amount 
of information available from the beginning of the new segment to the current instant. 
Three different data sets are defined: the growing reference window, the sliding test 
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window, and a pooled window formed by concatenating the two. Distance measures 
are then derived using AR model prediction errors computed for the three data sets. 

growing sliding 
reference test 
wlndow window 

___H_ 4 c-- 
1 I 1 

I I I I 

1 rn n - pooled window C 

Figure 8.10 The growing reference window, the sliding test window, and the pooled window 
used in the GLR method for adaptive segmentation. 

Let c(m : n) represent the prediction error energy (TSE E as in Equation 7.19) 
within an arbitrary data set or window with boundaries m and n. The maximum log 
likelihood measure H(m : n) for the window is defined as 

I. &(m : n) [ (n - m+ 1) 
H ( m  : n) = (n - m + 1) In (8.30) 

Three measures are computed for the three data sets described above as H (  1 : rn - 1) 
for the growing reference window, H(m : n) for the test window, and H(l : n) 
for the composite or pooled window. Here, the reference window is denoted as 
commencing from the time instant or sample 1, m is the last sample of the growing 
reference window, and the current test window spans the duration from m to the 
current time instaqt n (see Figure 8.10). The GLR distance measure is defined as 

d(n) = H(1: n) - [H(1 : m - 1) + H(m : n)]. (8.31) 

Here, the first quantity represents the TSE if the test window is added to the growing 
reference window; the second quantity represents the TSE of the reference window 
grown so far; and the third quantity represents the TSE in modeling the test window 
itself. The measure d(n)  answers the question: “How much is the increase in the 
TSE if we add the test window to the growing reference window”? 

Appel and v. Brandt [219] and Cohen [173] provide more details on the GLR. 
The GLR distance is a measure of the statistical similarity of the reference and test 
data sequences, with the assumption that their AR model coefficients have a normal 
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(Gaussian) distribution. The GLR distance is also a measure of the loss of information 
caused if no segment boundary is drawn at the position of the test window, that is, if 
it is assumed that the null hypothesis that the two sequences are similar is true. 

Appel and v. Brandt [219] discuss issues related to the choice of the parameters 
involved in the GLR method, including the AR model order, the test window length, 
and the threshold, on the GLR distance measure. The GLR method was also used by 
Willsky and Jones [240] to detect abrupt changes (sporadic anomalies and failures) 
in the variables of stochastic linear systems, and by Basseville and Benveniste [241] 
for segmentation of nonstationary signals (see also Cohen [ 1731). Illustration of 
application of the GLR method will be provided in Section 8.5.4. 

8.5.4 Comparative analysis of the ACF, SEM, and GLR methods 

Appel and v. Brandt [220] performed a comparative analysis of the performance of 
the ACF, SEM, and GLR methods of adaptive segmentation using synthesized signals 
as well as EEG signals. A simple two-pole system was used as the basis to simulate 
nonstationary signals. The gain, pole radius, and pole angle were individually varied 
back and forth between two sets of values. Several outputs of the dynamic system 
were computed with random signals (Gaussian-distributed white noise) as input. The 
signals were processed by the ACF, SEM, and GLR methods for adaptive segmenta- 
tion. The variability of the segment boundaries detected for various realizations of the 
nonstationary (random) output signals for the same sequences of system parameters 
was analyzed. 

Figure 8.1 1 shows the results related to variations in the angles of the poles, that is, 
in the resonance frequency of the system. The angle of the pole in the upper-half of the 
z-plane was changed from 20" to 40' and back at samples 200 and 400; the conjugate 
pole was also varied accordingly. The same changes were repeated at samples 700 
and 800. The upper panel in the figure shows the pole positions and the related 
PSDs. The middle panel illustrates one sample of the 200 test signals generated: the 
higher-frequency characteristics of the signal related to the shifted pole positioned 
at 40° is evident over the intervals 200 - 400 and 700 - 800 samples. The lower 
panel illustrates the variability in the detected segment indices (dotted curve) and the 
estimated segment boundary positions (solid curves) for the three methods over 200 
realizations of the test signals. (The true segment indices and boundaries are 1 : 200, 
2 : 400, 3 : 700, and 4 : 800; ideally, the curves should exhibit steps at the points 
of change.) It is evident that the GLR method has provided the most consistent and 
accurate segmentation results, although at the price of increased computational load. 
The SEM method has performed better than the ACF method, the latter showing the 
poorest results. 

Figure 8.12 shows the results related to variations in the distance of the poles from 
the origin, that is, in the bandwidth of the resonance frequency of the system. The 
distance of the poles from the origin was changed from 0.7 to 0.9 and back at samples 
200 and 400. The same changes were repeated at samples 700 and 800. The PSDs 
display the increased prominence of the spectral peak when the poles are pushed 
toward the unit circle. The ACF method has not performed well in recognizing the 

Next Page
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Figure 8.11 Comparative analysis of the ACF, SEM, and GLR methods for adaptive seg- 
mentation with the pole angle varied. Upper panel: pole positions and the related PSDs. Note: 
Norm. Frequency is normalized frequency such that the maximum frequency present in the 
sampled signal is unity. Middle panel: sample test signal; TS = time series. Lower panel: 
variability in the detected segment indices (dotted curve) and the estimated segment boundary 
positions (solid curves) for the three methods over 200 realizations of the test signals. See the 
text for more details. Reproduced with permission from U. Appel and A. v. Brandt, A com- 
parative analysis of three sequential time series segmentation algorithms, Signal Processing, 
6:45-60, 1984. @Elsevier Science Publishers B.V. (North Holland). 
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418 ANALYSIS OF NONSTATIONARY SIGNALS 

nonstationarities of this type in the test signals. The GLR method has performed 
better than the ACF method in segmentation. 

I 1 

I 
100:  2 0 0 :  300: 400: 5 0 0 :  6 0 0 :  7 0 0 :  800' 9 0 0 :  l O O O !  

Figure 8.12 Comparative analysis of the ACF, SEM, and GLR methods for adaptive seg- 
mentation with the pole radius varied. Upper panel: pole positions and the related PSDs. 
Note: Norm. Frequency is normalized frequency such that the maximum frequency present in 
the sampled signal is unity. Middle panel: sample test signal; TS = time series. Lower panel: 
variability in the detected segment indices (dotted curve) and the estimated segment boundary 
positions (solid curves) for the three methods over 200 realizations of the test signals. See the 
text for more details. Reproduced with permission from U. Appel and A. v. Brandt, A com- 
parative analysis of three sequential time series segmentation algorithms, Signal Processing, 
6:45-60, 1984. @Elsevier Science Publishers B.V. (North Holland). 

Figure 8.13 shows the results of application of the three methods to an EEG 
signal. Although the exact locations where the signal changes its characteristics are 
not known for the EEG signal, the boundaries indicated by the GLR method appear 
to be the most accurate. It may be desirable in real-life applications to err o n  the 
side of superfluous segmentation; a subsequent clustering step could merge adjacent 
segments with similar model parameters. 
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Figure 8.13 Comparative analysis of the ACF, SEM, and GLR methods for adaptive seg- 
mentation of an EEG signal. Reproduced with permission from U. Appel and A. v. Brandt, A 
comparative analysis of three sequential time series segmentation algorithms, Signal Process- 
ing, 6:45-60, 1984. @Elsevier Science Publishers B.V. (North Holland). 

8.6 USE OF ADAPTIVE FILTERS FOR SEGMENTATION 

We saw in Sections 3.6.2 and 3.6.3 that the coefficient (tap-weight) vectors of the 
adaptive LMS and RLS filters are expressed as functions of time. The filters adapt to 
changes in the statistics of the primary and reference signals. Could we, therefore, 
use the tap-weight vector w(n) to detect nonstationarities in a signal? 

Problem: Investigate the potential use of the RLS adaptive filter for  adaptive 
segmentation of nonstationary signals. 

Solution: When we have only one signal to work with - the signal that is to be 
segmented - the question arises as to how we may provide two inputs, namely, the 
primary and reference signals, to the adaptive filter. If we assume that the signal to 
be segmented (applied at the primary input) was generated by an AR system, then 
we may provide the same signal with a delay as the reference input to the adaptive 
filter. The delay is to be set such that the reference input at a given instant of time is 
uncorrelated with the primary input; the delay may also be set on the basis of the order 
of the filter. (It is also possible to apply white noise at the reference input.) In essence, 
the adaptive filter then acts the role of an adaptive AR model. The filter tap-weight 
vector is continually adapted to changes in the statistics (ACF) of the input signal. The 
output represents the prediction error. Significant changes in the tap-weight vector or 
the prediction error may be used to mark points of prominent nonstationarities in the 
signal. Figure 8.14 shows a signal-flow diagram of the adaptive filter as described 
above; the filter structure is only slightly different from that in Figure 3.5 1. 
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Figure 8.14 Adaptive RLS filter for segmentation of nonstationary signals. 

8.6.1 Monitoring the RLS filter 

The RLS filter as in Figure 8.14 attempts to predict the current signal sample from 
the available knowledge of the previous samples stored in the filter’s memory units. 
If a large change occurs in the signal, the prediction error exhibits a correspondingly 
large value. In response, the adaptive filter’s tap-weight vector is modified by the 
RLS algorithm. 

Moussavi et al. [56] applied the RLS filter for segmentation of VAG signals. The 
order of the filter was set to be 5 in order to be low enough to detect transient changes 
and also to provide fast convergence. The forgetting factor was defined as X = 0.98 
so that the filter may be assumed to operate in an almost-stationary situation. The 
delay between the input and the reference input was set to be 7 samples (which 
corresponds to 3.5 ms with fa = 2 kHz) .  

The adaptive segmentation algorithm of Moussavi et al. is as follows: 

1. Initialize the RLS algorithm. 

2. Find the squared Euclidean distance between the current tap-weight vector 

(8.32) 

3. After computing A(n) for all samples of the signal available (in off-line pro- 
cessing), compute the standard deviation of the A(n) values. Define a threshold 
as three times the standard deviation. 

~ ( n )  and the preceding vector w(n - 1) as 

A(n) = Iw(.) - ~ ( n  - l)la. 
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4. Label all samples n for which A(n) exceeds the threshold as primary segment 
boundaries. 

5.  Compute the primary segment lengths (durations) as the differences between 
successive primary segment boundaries. Reject all primary segment bound- 
aries that result in segment duration less than a preset minimum (defined in 
the work of Moussavi et al. [56] as 120 samples or 60 ms, corresponding to a 
knee-joint angle range of approximately 4'). 

6. The remaining boundary points are the final segment boundaries. 

The main advantage of the RLS method is that there are no explicit reference and 
test windows as in the case of the ACE SEM, and GLR methods. The RLS method 
computes a new filter tap-weight vector at each sample of the incoming signal. The 
method was found to perform well in the detection of trend-wise or gradual changes 
as well as sudden variations in VAG signals. 

Illustration of application: Figures 8.15 and 8.16 illustrate the segmentation of 
the VAG signals of a normal subject and a patient with arthroscopically confirmed 
cartilage pathology, respectively. The figures also illustrate the spectrograms of 
the two signals. While the segmentation of the abnormal signal in Figure 8.16 
may appear to be superfluous at first sight, close inspection of the corresponding 
spectrogram indicates that the spectral characteristics of the signal do indeed change 
within short intervals. It is evident that the RLS method has detected the different 
types of nonstationarity present in the signals. Moussavi et al. [56] tested the method 
with 46 VAG signals and observed that the segmentation boundaries agreed well with 
the nature of the joint sounds heard via auscultation with a stethoscope as well as 
with the spectral changes observed in the spectrograms of the signals. 

8.6.2 The RLS lattice filter 

In order to apply the RLS method for adaptive segmentation in a nonstationary 
environment, it is necessary to solve the least-squares problem recursively and rapidly. 
The recursive least-squares lattice (RLSL) algorithm is well suited for such purposes. 
Since the RLSL method uses a lattice filter, and is based upon forward and backward 
prediction and time-varying reflection coefficients, it is necessary to define some of 
the related procedures. 

Forward and backward prediction: Let us rewrite Equation 7.17 related to LP 
or AR modeling as 

M 
g(n) = - a M , k  Y(n - k), (8.33) 

with the inclusion of the order of the model M a s  a subscript for the model coefficients 
a k .  Inthisprocedure,Mpastsamplesofthesignaly(n-l),y(n-2),. . . , y ( n - M )  
are used in a linear combination to predict the current sample ~ ( n )  in theforward 

k = l  
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(b) 

Figure 8.15 (a) Segmentation of the VAG signal of a normal subject using the RLS method. 
A click heard in auscultation of the knee joint is labeled. (b) Spectrogram (STFT) of the 
signal. Reproduced with permission from Z.M.K. Moussavi, R.M. Rangayyan, G.D. Bell, 
C.B. Frank, K.O. Ladly, and Y.T. Zhang, Screening of vibroarthrographic signals via adaptive 
segmentation and linear prediction modeling, IEEE Transactions on Biomedical Engineering, 
43(1):15-23, 1996. OIEEE. 
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Figure 8.16 (a) Segmentation of the VAG signal of a subject with cartilage pathology using 
the RLS method. Clicking and grinding sounds heard during auscultation of the knee joint 
are labeled. (b) Spectrogram (STFT) of the signal. Reproduced with permission from Z.M.K. 
Moussavi, R.M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, and Y.T. Zhang, Screening 
of vibroarthrographic signals via adaptive segmentation and linear prediction modeling, ZEEE 
Transactions on Biomedical Engineering, 43( 1): 15-23, 1996. OIEEE. 
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direction. The forward prediction error is 

(8.34) 
k=O 

with U M , O  = 1. This equation is a restatement of Equation 7.18 with the inclusion of 
the order of the model M as a subscript for the error e as well as the subscript f to 
indicate that the prediction is being performed in the forward direction. 

The term backward prediction refers to the estimation of p(n - M) from the 
samples y(n), g(n - l), . . . , p(n - M + 1) as 

(8.35) 

where 
method described in Section 7.5 for a stationary signal leads to the result 

are the backward prediction coefficients. Application of the least-squares 

a%,, = a M , M - k ,  k = 0,192, * * .  9 M ,  (8.36) 

that is, the backward prediction coefficients are the same as the forward prediction 
coefficients, but in reverse order [77]. The backward prediction error is, therefore, 
given by 

(8.37) 

The Burg-lattice method: The Burg-lattice method [77] is based on minimizing 
the sum of the squared forward and backward prediction errors. Assuming that the 
input ~ ( n )  is ergodic, the pegormanee index tm is given by 

N 

(8.38) 
n=m+l 

where e m , j ( n )  is the forward prediction error and em,b(n) is the backward prediction 
error, with the model order m being recursively updated as m = 1,2 , .  . . , M. The 
length of the available block of data is N samples. 

If we use the Levinson-Durbin method to estimate the forward prediction coeffi- 
cients, we get (see Section 7.5 and Equation 7.38) 

am,k = a m - l , k  -!- 7 m  a m - l , m - k ,  (8.39) 

where 7m is the reflection coefficient for order m. Similarly, for the case of backward 
prediction, we get 

am,m-k = am-1,m-k i- 7 m  a m - l , m ,  (8.40) 
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including the substitution ~ f , ~  = Um,m-k. 

Combining the relationships in Equations 8.34, 8.38, 8.39, and 8.40 leads to the 
lattice structure for computation of the forward and backward prediction errors, where 
the two prediction error series are inter-related recursively as [77] 

and 
em,b(n) = ern-l,b(n - 1) -k r m  em-l,f(n). (8.42) 

(All coefficients are assumed to be real-valued in this derivation; Haykin [77] allows 
for all coefficients to be complex-valued.) Figure 8.17 illustrates a basic unit of the 
lattice structure that performs the recursive operations in Equations 8.41 and 8.42. 
The reflection coefficient rm may be chosen so as to minimize the performance index 
given in Equation 8.38, that is, by setting 

Partial differentiation of Equations 8.41 and 8.42 with respect to rm yields 

and 

Substituting the results above in Equation 8.43, we get 

N 

C [em,/(n) em-l,b(n - 1) + em,b(n) em-1,f(n)1 = 0. 
n=m+l 

Substituting Equations 8.41 and 8.42 in Equation 8.46, we get 

N 

[{em-l,f(n) + Tm ern-l,b(n - 1)) em-i,b(n - 1) 

+ {em-l,b(n - 1) + r m  em-i,f(n)} em-i,f(n)] = 0. 
n=m+l 

The reflection coefficients rm can then be calculated as 

(8.43) 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

(8.48) 

The magnitudes of the reflection coefficients are less than unity. The Burg formula 
always yields a minimum-phase design for the lattice predictor. 
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Figure 8.17 Basic unit of the lattice structure that performs the recursive operations in 
Equations 8.41 and 8.42 as well as the recursive operations in Equations 8.52 and 8.53. In 
the case of the former, due to the stationarity of the processes involved, the forward and 
backward reflection coefficients are the same and are independent of time. Adapted, with 
permission, from S. Krishnan, Adaptive Signal Processing Techniques for Analysis of Knee 
Joint Vibroarthrographic Signals, Ph.D. Thesis, University of Calgary, 1999. 
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The prediction coefficients or the AR model parameters can be computed from 
the reflection coefficients by using the relationship in Equation 8.39. The order m 
is updated recursively as m = 1,2, .  . . , M, with am,o = 1, and am-l ,k  = 0 for 
k > m - 1. From Equation 8.39 and Figure 8.17, it can be observed that the AR 
coefficients can be computed for any model order by simply adding one or more 
lattice stages without affecting the earlier computations for lower orders. This is 
one of the main advantages of the Burg-lattice AR modeling algorithm, especially in 
situations where the order of the system being modeled is not known in advance. 

RLSL algorithm for adaptive segmentation: A general schematic representa- 
tion of the RLSL filter structure is given in Figure 8.18. Two levels of updating are 
used in the RLSL algorithm: 

1. Order-update: This involves updating the forward prediction error em,f(n), 
the backward prediction error em,b(n), the forward prediction error power 
Em, f (n ) ,  and the backward prediction error power Em,b(n).  Here, m indicates 
the model order, and n indicates the time instant. 

2. Time-update: This involves time-updating of the parameters that ensure adap- 
tation, including the forward reflection coefficients ym,f (n)  and backward 
reflection coefficients rm,b(n) .  Note that, in the general nonstationary envi- 
ronment, rm,f(n) # "Im,b(n). 

Order-updating and time-updating together enable the RLSL algorithm to achieve 

The RLSL algorithm can be expressed in three stages [77, 88,901: 
extremely fast convergence and excellent tracking capability. 

1. Initialization of the algorithm and lattice for j l t e r  order M :  The parameters 
of the algorithm are initialized at n = 0 and for each order m = 1 , 2 , .  . . , M 
by setting the forward prediction error power ~ ~ - l , f ( O )  and the backward 
prediction error power E m - l , b ( O )  equal to a small positive constant; the for- 
ward reflection coefficients ym,f (0) = 0; the backward reflection coefficients 
ym,b(0) = 0; the conversion factor y0,~(0) = 1; and an auxiliary variable 

For each time instant n 2 1, the following zeroth-order variables are generated: 
the forward prediction error e o , f ( n )  equal to the data input y(n); the backward 
prediction error eO,b(n) = y ( n ) ;  ~ o , f ( n )  = Eo,b(n )  = X ~ o , f ( n  - 1) + Iy(n)I2, 
where X is the forgetting factor, and yo,c(n) = 1. 
The variables involved in joint process estimation, for each order m = 0, 1, 
. . . , M at time n = 0, are initialized by setting the scalar pm(0)  = 0, and for 
each instant n 2 1 the zeroth-order variable of a priori estimation error eo = 
d ( n ) ,  where d(n) is the desired response of the system. 

Am-, (O)  = 0. 

2. Prediction part of the RLSL algorithm: For n = 1,2, .  . . , N,, where N, is the 
number of signal samples available, the various order-updates are computed in 
the sequence m = 1,2, .  . . , M, where M is the final order of the least squares 
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Lattice part 

Figure 8.18 General schematic representation of the RLSL filter structure for adaptive seg- 
mentation of nonstationary signals. Adapted, with permission, from S .  Krishnan, Adaptive 
Signal Processing Techniques for Analysis of Knee Joint Vibroarthrographic Signals, Ph.D. 
Thesis, University of Calgary, 1999. 
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predictor, as follows: 

where Am-l (n) is the cross-correlation between the delayed backward pre- 
diction error em-l,b(n - 1) and the forward prediction error em-l,f(n) of the 
lattice filter. 
The forward reflection coefficient rm,f(n) is then updated as 

A m - l ( n )  
rm,f(n) = - &m-l,b(n) * 

Similarly, the backward reflection coefficient is updated as 

(8.50) 

(8.51) 

In general, €m- l , f (n )  and &m-l,b(n - 1) are unequal, so that in the RLSL 
algorithm, unlike in the Burg algorithm described earlier in this section, we 
have rm,f(n) # ?'m,b(n). 

From the lattice structure as described earlier in the context of Equations 8.41 
and 8.42 and depicted in Figure 8.17, and noting that the reflection coeffi- 
cients rm,f(n) and rm,b(n) are now different and time-variant parameters, we 
can write the order-update recursion of the forward prediction error as (see 
Figure 8.17) 

em,f(n) = e m - l , f ( n )  -k Tm,f(n)  em-l,b(n - I), (8.52) 

and the order-update recursion of the backward prediction error as 

em,b(n) = em-l,b(n - 1) + rm,b(n) e m - l , f ( n ) .  (8.53) 

The prediction'error powers are updated as 

cm, f (n )  = Em-l , f (n)  + 7m,f(n)  A m - l ( n ) ,  (8.54) 

and 
Em,b(n) = Em-l,b(n - 1) + rm,b(n) A m - l ( n ) .  (8.55) 

The conversion factor rm,,-(n - 1) is updated as 

(8.56) 

The equations in this step constitute the basic order-update recursions for the 
RLSL predictor. The recursions generate two sequences of prediction errors: 
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the forward prediction error and the backward prediction error. The two error 
sequences play key roles in the recursive solution of the linear least-squares 
problem. 

3.  Filtering part of the RLSL algorithm: For n = 1,2, . . . , N,, the various order- 
updates are computed in the sequence n = 0,1,. . . , M as follows: 

(8.57) 

The regression coefficients Ic,(n) of the joint process estimator are defined in 
terms of the scalar p,(n) as 

(8.58) 

The order-update recursion of the a posteriori estimation error e,(n) is then 
given as 

e m ( n )  = e m - l ( n )  - h ( n )  em,b(n).  (8.59) 

The dynamics of the input signal, that is, the statistical changes occurring in 
the signal, are reflected in the lattice filter parameters. Parameters such as the 
reflection coefficients (rf and r b )  and the MS value of the estimation error 
(that is, E [ e k ( n ) ] )  may therefore be used to monitor the statistical changes. 
The conversion factor -yc that appears in the algorithm can be used as a good 
statistical detection measure of the “unexpectedness” of the recent data sam- 
ples. As long as the data belong to the same distribution, the variable -yc will 
be near unity. If the recent data samples belong to a different distribution, 
7c will tend to fall from unity. This will cause the factor k appearing in the 
time-update formula (Equation 8.49) to be large, which leads to abrupt changes 
in the lattice parameters. The quantities yc, 2, or & may be used for fast 
tracking of changes in the input data, and to test for segment boundaries in a 
nonstationary environment. 

Illustration of application: The advantage in using the RLSL filter for segmen- 
tation of VAG signals is that the statistical changes in the signals are well reflected in 
the filter parameters, and hence segment boundaries can be detected by monitoring 
any one of the filter parameters such as the MSE, conversion factor, or the reflection 
coefficients. Krishnan et al. [57,88] used the conversion factor (rc) to monitor statis- 
tical changes in VAG signals. In a stationary environment, rc starts with a low initial 
value, and remains small during the early part of the initialization period. After a 
few iterations, rc begins to increase rapidly toward the final value of unity. In the 
case of nonstationary signals such as VAG, rc will fall from its steady-state value 
of unity whenever a change occurs in the statistics of the signal. This can be used 
in segmenting VAG signals into quasi-stationary components. The segmentation 
procedure proposed by Krishnan et al. [57,88] is summarized as follows: 
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1. The VAG signal is passed twice through the segmentation filter: the first pass 
is used to allow the filter to converge, and the second pass is used to test the 
yc value at each sample against a threshold value for the detection of segment 
boundaries. 

2. Whenever 'yc at a particular sample during the second pass is less than the 
threshold, a primary segment boundary is marked. 

3. If the difference between two successive primary segment boundaries is less 
than the minimum desired segment length (120 samples in the work of Krishnan 
et a].), the later of the two boundaries is deleted. 

Figures 8.19 and 8.20 show the results of application of the RLSL segmentation 
method to two VAG signals. Plots of rc(n)  are also included in the figures. It may be 
observed that the value of rc(n)  drops whenever there is a significant change in the 
characteristics of the signal. Whereas the direct application of a threshold on yc(n)  
would result in superfluous segmentation, inclusion of the condition on the minimum 
segment length that is meaningful in the application is seen to provide practically 
useful segmentation. The number of segments was observed to be, on the average, 
eight segments per VAG signal. Signals of patients with cartilage pathology were 
observed to result in more segments than normal signals. 

An advantage of the RLSL method of adaptive segmentation is that a fixed thresh- 
old may be used; Krishnan et al. found a fixed threshold value of 0.9985 to give good 
segmentation results with VAG signals. The adaptive segmentation procedure was 
found to provide segments that agreed well with manual segmentation based upon 
auscultation andor arthroscopy. Adaptive analysis of VAG signals will be further 
described in Section 9.13. 

8.7 APPLICATION: ADAPTIVE SEGMENTATION OF EEG SIGNALS 

Problem: Propose a method for parametric representation of nonstationary EEG 
signals. 

Solution: Bodenstein and Praetorius [98] applied their adaptive segmentation 
procedure based upon the SEM (see Section 8.5.1) for representation and analysis 
of EEG signals with the following propositions. 

1. An EEG signal consists of quasi-stationary segments upon which transients 
may be superimposed. 

2. A segment is specified by its time of occurrence, duration, and PSD (represented 
by its AR model coefficients). A transient is specified by its time of occurrence 
and a set of  grapho-elements (or directly by its samples). 

3. An EEG signal consists of a finite number of recurrent states. 

It should be noted that whereas the adaptive segments have variable length, each 
adaptive segment is represented by the same number of AR model coefficients. 



432 ANALYSIS OF NONSTATIONARY SIGNALS 

Figure 8.19 (a) VAG signal of a normal subject with the final segment boundaries given by 
the RLSL method shown by vertical dashed lines. (b) Plot of the conversion factor rc(n); the 
horizontal dashed line represents the fixed threshold used to detect segment boundaries. The 
duration of the signal is 5 s, with fa = 2 k H z .  Reproduced with permission from S. Krishnan, 
R.M. Rangayyan, G.D. Bell, C.B. Frank, and K.O. Ladly, Adaptive filtering, modelling, and 
classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular 
cartilage pathology, Medical and Biological Engineering and Computing, 35(6):677-684, 
1997. OIFMBE. 
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Figure 8.20 (a) VAG signal of a subject with cartilage pathology, with the final segment 
boundaries given by the RLSL method shown by vertical dashed lines. (b) Plot of the 
conversion factor yc(n); the horizontal dashed line represents the fixed threshold used to 
detect segment boundaries. The duration of the signal is 5 s, with f. = 2 kHz. Reproduced 
with permission from S. Krishnan, R.M. Rangayyan, G.D. Bell, C.B. Frank, and K.O. Ladly, 
Adaptive filtering, modelling, and classification of knee joint vibroarthrographic signals for 
non-invasive diagnosis of articular cartilage pathology, Medical and Biological Engineering 
and Computing, 35(6):677-684, 1997. OIFMBE. 
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The number of parameters is therefore independent of segment duration, which 
is convenient when pattern classification techniques are applied to the segments. 
Since the AR model is computed once at the beginning of each segment and some 
prediction error is permitted in the moving analysis window, the initial AR model 
may not adequately represent the entire adaptive segment. A new model may be 
computed using the signal samples over the entire duration of each adaptive segment. 
Instead, Bodenstein and Praetorius maintained the initial AR model of order P of 
each adaptive segment, and an additional corrective predictor of order M was derived 
for each adaptive segment using the ACF of the prediction error which is computed 
and readily available in the segmentation procedure, Each adaptive segment was then 
represented by the (P + M) AR model coefficients, the associated prediction error 
RMS values, and the segment length. The PSD of the segment may be derived from 
the two sets of AR model coefficients. 

With the EEG signals bandpass filtered to the range 1 - 25 Ha and sampled 
at 50 Hz in the work of Bodenstein and Praetorius [98], the ACF window length 
was set to be 2 s with 2 N  + 1 = 101 samples. Bodenstein and Praetorius used 
the rule of thumb that the AR model order should be at least twice the number of 
expected resonances in the PSD of the signal. Short segments of EEG signals rarely 
demonstrate more than two spectral peaks, which suggests that an AR model order 
of P = 5 should be adequate. Regardless, Bodenstein and Praetorius used P = 8, 
which met the Akaike criterion as well (see Section 7.5.2). The order of the ACF 
of the prediction error and the associated corrective predictor was set to a low value 
of M = 3, allowing for one spectral peak (the error should ideally have a flat PSD). 
The thresholds were defined as Thl = 0.5 (empirical), and Tha = 2.5a, where u is 
the RMS value of the prediction error (see Section 8.5.1). The range of 20u' to 40ua 
was recommended for Ths. A transitional delay of 25 samples was allowed between 
each segmentation boundary and the starting point of the following fixed window to 
prevent the inclusion of the spectral components of one segment into the following 
segment. 

Figure 8.21 shows a few examples of adaptive segmentation of EEG signals. A 
clustering procedure was included to remove spurious boundaries, some examples of 
which may be seen in Figure 8.21 (d): neighboring segments with similar parameters 
were merged in a subsequent step. Visual inspection of the results indicates that 
most of the adaptive segments are stationary (that is, they have the same appearance) 
over their durations. It is worth noting that the longest segment in Figure 8.21 (d) of 
duration 16 s or 800 samples is represented by just 12 parameters. 

Figure 8.22 shows examples of detection of transients in two contralateral channels 
of the EEG of a patient with epilepsy. The EEG signal between seizures (inter-ictal 
periods) is expected to exhibit a large number of sharp waves. The length of the 
arrows shown in the figure was made proportional to the cumulated supra-threshold 
part of the squared prediction error in order to indicate how pronounced the event 
was regarded to be by the algorithm. 

The method was further extended to parallel analysis of multichannel EEG signals 
by Bodenstein et al. [236] and Creutzfeldt et al. [237]. Procedures were proposed for 
computerized pattern classification and labeling of EEG signals, including clustering 
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Figure 8.21 Examples of segmentation of EEG signals. (a) Newborn in non-REM sleep. 
REM = rapid eye movement. (b) Child of age 7 years in sleep stage I. (c) Child of age 8 
years in sleep stage 111. (d) Alpha rhythm of an adult. (e) EEG of an adult with paroxysms. 
The vertical lines represent the segmentation boundaries. Reproduced with permission from 
G. Bodenstein and H.M. Praetorius, Feature extraction from the electroencephalogram by 
adaptive segmentation, Proceedings ofthe IEEE, 65(5):642452,  1977. OIEEE. 
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Figure 8.22 Example of detection of transients in the EEG signal of a patient with epilepsy. 
The signals shown are from contralateral channels between seizures (inter-ictal period). The 
longer the arrow the more pronounced is the transient detected at the corresponding time 
instant. Transients detected simultaneously in the two contralateral channels are marked 
with dots. Reproduced with permission from G. Bodenstein and H.M. Praetorius, Feature 
extraction from the electroencephalogram by adaptive segmentation, Proceedings ofthe IEEE, 
65(5):642-652, 1977. OIEEE. 

of similar segments and state diagrams indicating the sequence of the types of activity 
found in an EEG record. Figure 8.23 illustrates the record produced by the application 
of the procedure to two channels of an EEG signal. Qpical EEG segments belonging 
to the four clusters detected in the signal are shown on the left-hand and right-hand 
sides of the upper portion of the figure. Each signal segment is labeled with the 
frequencies (FRQ, in Hz) and amplitudes (AMP, in p V )  of the resonances detected 
using an eighth-order AR model. The central column of the upper portion of the 
figure illustrates the PSDs of the corresponding segments on the left-hand side (solid 
line) and right-hand side (dashed line). The middle portion of the figure provides 
the state diagram, indicating the transitions between the four states (represented by 
the four clusters of the EEG segments) detected in the two channels of the signal. 
The states represent 1: background, 2: eyes open, 3: paroxysm, and 4: epileptiform 
spike-and-wave complexes. The values on the right-hand side of the state diagram 
give the percentage of the total duration of the signal for which the EEG was in the 
corresponding states. The bottom portion of the figure illustrates singular events, that 
is, segments that could not be grouped with any of the four clusters. It was indicated 
that the segments of most EEG signals could be clustered into at most five states, 
and that the summarized record as illustrated in Figure 8.23 could assist clinicians in 
analyzing lengthy EEG records in an efficient manner. 
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Figure 8.23 Example of application of segmentation and pattern analysis to the EEG signal 
of a patient with epileptiform activity. Refer to the text for details. Reproduced with permission 
from G. Bodenstein, W. Schneider, and C.V.D. Malsburg, Computerized EEG pattern classi- 
fication by adaptive segmentation and probability-density-function classification. Description 
of the method, Computers in Biology and Medicine, 15(5):297-3 13,1985. @Elsevier Science. 
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8.8 APPLICATION: ADAPTIVE SEGMENTATION OF PCG SIGNALS 

We have noted several times that the PCG signal is nonstationary. Let us now assess 
the feasibility of adaptive segmentation of PCG signals using the RLSL method, with 
no other signal being used as a reference. 

Figure 8.24 illustrates the results of segmentation of the PCG signal of a normal 
subject. The top trace shows the PCG signal over three cardiac cycles; the segment 
boundaries detected are indicated by the vertical dotted lines as well as by the trian- 
gular markers on the time axis. The second trace illustrates a plot of the conversion 
factor rc: the conversion factor drops from unity whenever there is a change in the 
signal characteristics, in particular at the boundaries of S1 and S2. A threshold of 
0.995 (indicated by the horizontal line overlaid on the second trace) applied to T~ 
and a condition imposing a minimum segment length of 50 samples (50 me) were 
used to obtain the segment boundaries. The third and fourth traces illustrate the ECG 
and carotid pulse signals of the subject acquired simultaneously with the PCG. The 
segment boundaries obtained by the RLSL method agree very well with the readily 
noticeable SI and S2 boundaries as well as the QRS and dicrotic notch positions. 
(See also Sections 1.2.8,2.3, and 4.10.) 

Figure 8.25 illustrates the results of adaptive segmentation of the PCG signal of a 
subject with systolic murmur due to aortic stenosis. The results in this case, however, 
are not as clear or as easy to interpret as in the preceding case. The method has indeed 
identified the beginning of S1 and S2; furthermore, the split nature of S2 has been 
identified by an additional segment boundary within each S2. However, the method 
has not reliably identified the boundaries between the episodes of S1 and systolic 
murmur illustrated: the condition on the minimum segment length has affected the 
placement of the segment boundary after the beginning of S 1. Use of other conditions 
on yc may provide better segmentation results. 

8.9 APPLICATION: TIME-VARYING ANALYSIS OF HEART-RATE 
VARIABILITY 

The heart rate is controlled by the autonomous and central nervous systems: the vagal 
and sympathetic activities lead to a decrease or increase, respectively, in the heart 
rate (see Section 1.2.4). We saw in Section 7.8 how respiration affects heart rate, and 
how Fourier analysis may be extended to analyze HRV. When heart rate data such as 
beat-to-beat RR intervals are collected over long periods of time (several hours), the 
signal could be expected to be nonstationary. 

Bianchi et al. [225] extended AR modeling techniques for time-variant PSD anal- 
ysis of HRV data in order to study transient episodes related to ischemic attacks. The 
prediction error was weighted with a forgetting factor, and a time-varying AR model 
was derived. The RLS algorithm was used to update the AR model coefficients at 
every RR interval sample (every cardiac cycle). The AR coefficients were then used 
to compute a time-varying PSD. The following frequency bands were indicated to be 
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Figure 8.24 Adaptive segmentation of the PCG signal of a normal subject using the RLSL 
method. Top to bottom: PCG signal (the vertical dotted lines and triangular markers represent 
the segmentation boundaries); conversion factor ye (the horizontal line is the threshold used); 
ECG; carotid pulse (clipped due to saturation). 
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I 1  

Figure 8.25 Adaptive segmentation of the PCG signal of a subject (female, 11 years) with 
systolic murmur due to aortic stenosis. Top to bottom: FCG signal (the vertical lines and 
triangular markers represent the segmentation boundaries); conversion factor rc (the horizontal 
line is the threshold used); ECG; carotid pulse. 
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of interest in the analysis of RR interval PSDs: very-low-frequency (VLF) band in the 
range 0 - 0.03 Hz related to humoral and thermoregulatory factors; low-frequency 
(LF) band in the range 0.03-0.15 HE related to sympathetic activity; high-frequency 
(HF) band in the range 0.18 - 0.4 Hz related to respiration and vagal activity. 

Figure 8.26 shows an RR interval series including an ischemic episode (delineated 
by B for beginning and E for ending points, respectively). Figure 8.27 shows the 
time-varying PSD in the form of a spectrogram. Figure 8.28 shows a segment of RR 
interval data and a few measures derived from the data. 

B E 
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B aee 488 689 888 looQ 
n 

Figure 8.26 RR interval series including an ischemic episode. B: beginning and E: end 
of the episode. Reproduced with permission from A.M. Bianchi, L. Mainardi, E. Petrucci, 
M.G. Signorini, M. Mainardi, and S. Cerutti, Time-variant power spectrum analysis for the 
detection of transient episodes in HRV signal, IEEE Transactions on Biomedical Engineering, 
40(2):136-144, 1993. OIEEE. 

Some of the important observations made by Bianchi et al. (and illustrated by the 
spectrogram in Figure 8.27 and the parameters in Figure 8.28) are: 

0 There is an increase in LF power about 1.5 - 2 minutes before an ischemic 
event. 

0 The RR variance decreases as an episode begins. 

0 There is a predominant rise in LF power at the end of an ischemic episode. 

0 A small HF component appears toward the end of an episode. 

0 Early activation of an LF component precedes tachycardia and ST displacement 
in the ECG that are generally indicative of the onset of an ischemic episode. 

0 The results suggest an arousal of the sympathetic system before an acute 
ischemic attack. 

Time-varying AR modeling techniques have also been applied for the analysis of 
EEG signals [224]. Time-varying ARMA modeling techniques have been applied to 
analyze EGG signals [38]. 
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Figure 8.27 Spectrogram of the RR interval series in Figure 8.26. Time progresses from 
the top to the bottom. B: beginning and E: end of an ischemic episode. Reproduced with 
permission from A.M. Bianchi, L. Mainardi, E. Petrucci, M.G. Signorini, M. Mainardi, and S. 
Cerutti, Time-variant power spectrum analysis for the detection of transient episodes in HRV 
signal, IEEE Transactions on Biomedical Engineering, 40(2): 136-144, 1993. OIEEE. 
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Figure 8.28 Top to bottom: RR interval series including an ischemic episode; variance; 
low-frequency (LF) to high-frequency (HF) power ratio; percentage of LF power; percentage 
of HF power; LF power; and HF power. B: beginning and E: end of the episode. Reproduced 
with permission from A.M. Bianchi, L. Mainardi, E. Petrucci, M.G. Signorini, M. Mainardi, 
and S. Cerutti, Time-variant power spectrum analysis for the detection of transient episodes in 
HRV signal, IEEE Transactions on Biomedical Engineering, 40(2): 136-144, 1993. OIEEE. 
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8.10 REMARKS 

We have now reached the stage where we have extended the application of a number 
of signal processing, modeling, and analysis techniques to nonstationary biomedical 
signals. Fixed or adaptive segmentation of the signals into quasi-stationary segments 
was seen to be a pre-requisite step, and we studied several approaches for segmen- 
tation. Adaptive segmentation facilitates not only the identification of distinct and 
separate events at unknown time instants in the given signal, but also the character- 
ization of events of variable duration using the same number of parameters. This is 
advantageous in pattern classification tasks (to be studied in Chapter 9) as well as for 
efficient data compression. 

8.1 1 STUDY QUESTIONS AND PROBLEMS 

1. Describe the characteristics of PCG signals that would make them nonstationary. Pro- 
pose signal processing strategies to break a PCG signal into quasi-stationary segments. 

2. Discuss features of the EEG that make the signal nonstationary. Propose signal pro- 
cessing strategies to detect each type of nonstationarity and to break an EEG signal into 
quasi-stationary segments. 

3. Investigate features of the EMG that make the signal nonstationary. Propose signal 
processing strategies to track the time-varying characteristics of the signal. Under what 
conditions can the signal be partitioned into quasi-stationary segments? What are the 
physiological features that you would be able to derive from each segment? 

8.12 LABORATORY EXERCISES AND PROJECTS 

Note: Data files related to the exercises are available at the site 
ftp://ftp.ieee.org/uploads/press/rangay y an/ 

1. The speech signal of the word “safety” is given in the file safety.wav. You may use 
the program safety.m to read the data. Explore the use of short-time statistics such as 
ZCR and RMS values for segmentation of the signal. Study the effect of the duration 
of the short-time analysis window on the trends in the parameters computed and on 
segmentation. 

2. The files pecl.dat, pec22.dat, pec33.dat, and pec52.dat give the PCG, ECG, and carotid 
pulse signals of two normal subjects and two patients with systolic murmur. You may use 
the program p1otpec.m to read the data. Explore the use of short-time ZCR, RMS, and 
AR model coefficients for segmentation of the signals. Evaluate the segment boundaries 
obtained in relation to the events in the PCG signals as well as the corresponding events 
in the ECG and carotid pulse channels. 



9 
Pattern ClassiJication and 

Diagnostic Decision 

The final purpose of biomedical signal analysis is to classify a given signal into 
one of a few known categories, and to arrive at a diagnostic decision regarding the 
condition of the patient. A physician or medical specialist may achieve this goal 
via visual or auditory analysis of the signal presented: comparative analysis of the 
given signal with others of known diagnoses or established protocols and sets of rules 
assist in such a decision-making process. The basic knowledge, clinical experience, 
expertise, and intuition of the physician play significant roles in this process. Some 
measurements may also be made from the given signal to assist in its analysis, such 
as the QRS width from an ECG signal plot. 

When signal analysis is performed via the application of computer algorithms, 
the typical result is the extraction of a number of numerical features. When the 
numerical features relate directly to measures of the signal such as the QRS width 
and RR interval of an ECG signal, the clinical specialist may be able to use the 
features in his or her diagnostic logic. Even indirect measures such as the frequency 
content of PCG signals and murmurs may find such direct use. However, when 
parameters such as AR model coefficients and spectral statistics are derived, a human 
analyst is not likely to be able to comprehend and analyze the features. Furthermore, 
as the number of the computed features increases, the associated diagnostic logic 
may become too complicated and unwieldy for human analysis. Computer methods 
would then be desirable for performing the classification and decision process. 

At the outset, it should be borne in mind that a biomedical signal forms but one 
piece of information in arriving at a diagnosis: the classification of a given signal 
into one of many categories may assist in the diagnostic procedure, but will almost 
never be the only factor. Regardless, pattern classification based upon signal analysis 

445 
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is indeed an important aspect of biomedical signal analysis, and forms the theme of 
this chapter. Remaining within the realm of computer-aided diagnosis as introduced 
in Figure 1.32 and Section 1.5, it would be preferable to design methods so as to 
assist a medical specialist in amving at a diagnosis rather than to provide a decision. 

9.1 PROBLEM STATEMENT 

A number of measures and features have been derived from a biomedical signal. Ex- 
plore methods to classib the signal into one of a few specified categories. Investigate 
the relevance of the features and the classijication methods in arriving at a diagnostic 
decision about the patient. 

Observe that the features may have been derived manually or by computer methods. 
Note the distinction between classifying the given signal and amving at a diagnosis 
regarding the patient: the connection between the two tasks or steps may not always 
be direct. In other words, a pattern classification method may facilitate the labeling 
of a given signal as being a member of a particular class; arriving at a diagnosis of 
the condition of the patient will most likely require the analysis of several other items 
of clinical information. Although it is common to work with a pre-specified number 
of pattern classes, many problems do exist where the number of classes is not known 
a priori. 

The following sections present a few illustrative case-studies. A number of meth- 
ods for pattern classification, decision making, and evaluation of the results of clas- 
sification will be reviewed and illustrated. 

9.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

9.2.1 Diagnosis of bundle-branch block 

Bundle-branch block affects the propagation of the excitation pulse through the 
conduction system of the heart to the ventricles. A block in the left bundle branch 
results in delayed activation of the left ventricle as compared to the right; a block in 
the right bundle branch has the opposite effect. Essentially, contraction of the two 
ventricles becomes asynchronous. The resulting ECG typically displays a wider- 
than-normal QRS complex (100 - 120 ms or more), which could have a jagged or 
slurred shape as well [23]; see Figure 1.15. 

The orientation of the cardiac electromotive forces will be affected by bundle- 
branch block. The initial forces in left bundle-branch block are directed more 
markedly to the left-posterior, whereas the terminal forces are directed to the superior- 
left and posterior [23]. Left bundle-branch block results in the loss of Q waves in 
leads I, V5, and V6. 

The following logic assists in the diagnosis of incomplete left bundle-branch 
block [242]: 
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IF (QRS duration 2 105 ms and 5 120 ms) AND 
(QRS amplitude is negative in leads V1 and V2) AND 
(Q or S duration 2 80 ms in leads V1 and V2) AND 
(no Q wave is present in any two of leads I, V5, and V6) AND 
(R duration > 60 ms in any two of leads I, aVL, V5, and V6) THEN 
the patient has incomplete lefi bundle-branch block. 

Incomplete right bundle-branch block is indicated by the following conditions [242]: 

IF (QRS duration 2 91 ms and 5 120 ma) AND 
(S duration 2 40 ms in any two of leads I, aVL, V4, V5, and V6) AND 
in lead V1 or V2 EITHER 
[ (R duration > 30 ms) AND (R amplitude > 100 p V )  AND 
(no S wave is present) ] OR 
[ (R' duration > 30 ms) AND (R' amplitude > 100 pV)  AND 
(no S' wave is present) 1 THEN 
the patient has incomplete right bundle-branch block. 

(Note: The first positive deflection of a QRS complex is referred to as the R wave 
and the second positive deflection is referred to as the R' wave. Similarly, S and S' 
indicate the first and second negative deflections, respectively, of a QRS wave.) 

Note that the logic or decision rules above may be used either by a human analyst 
or in a computer algorithm after the durations and amplitudes of the various waves 
mentioned have been measured or computed. Cardiologists with extensive training 
and experience may perform such decisions via visual analysis of an ECG record 
without resorting to actual measurements. 

9.2.2 Normal or ectopic ECG beat? 

Premature ventricular contractions caused by ectopic foci could be precursors of 
more serious arrhythmia, and hence detection of such beats is important in cardiac 
monitoring. As illustrated in Sections 5.4.2 and 5.7 as well as in Figures 5.1 and 5.10, 
PVCs possess shorter preceding RR intervals than normal beats and display bizarre 
waveshapes that are markedly different from those of the normal QRS complexes of 
the same subject. Therefore, a simple rule to detect PVCs or ectopic beats could be 
as follows: 

IF (the RR interval of the beat is less than the normal at the current heart rate) AND 
(the QRS waveshape is markedly different from the normal QRS of the patient) 
THEN the beat is a PVC. 

As in the preceding case-study of bundle-branch block, the logic above may 
be easily applied for visual analysis of an ECG signal by a physician or a trained 
observer. Computer implementation of the first part of the rule relating in an objective 
or quantitative manner to the RR interval is simple. However, implementation of the 
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second condition on waveshape, being qualitative and subjective, is neither direct nor 
easy. Regardless, we have seen in Chapter 5 how we may characterize waveshape. 
Figures 5.1 and 5.10 illustrate the application of waveshape analysis to quantify 
the differences between the shapes of normal QRS complexes and ectopic beats. 
Figure 5.2 suggests how a 2D feature space may be divided by a simple linear 
decision boundary to categorize beats as normal or ectopic. We shall study the 
details of such methods later in this chapter. 

9.2.3 Is there an alpha rhythm? 

The alpha rhythm appears in an EEG record as an almost-sinusoidal wave (see 
Figure 1.22); a trained EEG technologist or physician can readily recognize the 
pattern at a glance from an EEG record plotted at the standard scale. The number of 
cycles of the wave may be counted over one or two seconds of the plot if an estimate 
of the dominant frequency of the rhythm is required. 

In computer analysis of EEG signals, the ACF and PSD may be used to detect the 
presence of the alpha rhythm. We saw in Chapter 4 how these two functions demon- 
strate peaks at the basic period or dominant frequency of the rhythm, respectively 
(see Figure 4.8). A peak-detection algorithm may be applied to the ACF, and the 
presence of a significant peak in the range 75 - 125 ms may be used as an indication 
of the existence of the alpha rhythm. If the PSD is available, the fractional power 
of the signal in the band 8 - 12 Hz (see Equation 6.48) may be computed: a high 
value of the fraction indicates the presence of the alpha rhythm. Note that the logic 
described above includes the qualifier “significant”; experimentation with a number 
of signals that have been categorized by experts should assist in assigning a numerical 
value to represent the significance of the features described. 

9.2.4 Is a murmur present? 

Detection of the presence of a heart murmur is a fairly simple task for a trained 
physician or cardiologist: in performing auscultation of a patient with a stethoscope, 
the cardiologist needs to determine the existence of noise-like, high-frequency sounds 
between the low-frequency S1 and S2. It is necessary to exercise adequate care to 
reject high-frequency noise from other sources such as breathing, wheezing, and 
scraping of the stethoscope against the skin or hair. The cardiologist also has to 
distinguish between innocent physiological murmurs and those due to cardiovascular 
defects and diseases. Further discrimination between different types of murmurs 
requires more careful analysis: Figure 5.5 illustrates a decision tree to classify 
systolic murmurs based upon envelope analysis. 

We have seen in Chapters 6 and 7 how we may derive frequency-domain parame- 
ters that relate to the presence of murmurs in the PCG signal. Once we have derived 
such numerical features for a number of signals of known categories of diseases (di- 
agnoses), it becomes possible to design and train classifiers to categorize new signals 
into one of a few pre-specified classes. 
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The preceding case-studies suggest that the classification of patterns in a signal 
may, in some cases, be based upon thresholds applied to quantitative measurements 
obtained from the signal; in some other cases, it may be based upon objective 
measures derived from the signal that attempt to quantify certain notions regarding 
the characteristics of signals belonging to various categories. Classification may also 
be based upon the differences between certain measures derived from the signal on 
hand and those of established examples with known categorization. The succeeding 
sections of this chapter describe procedures for classification of signals based upon 
the approaches suggested above. 

9.3 PATTERN CLASSIFICATION 

Pattern recognition or classification may be defined as categorization of input data into 
identifiable classes via the extraction of significant features or attributes of the data 
from a background of irrelevant detail [243,244,245,246,247,248,249]. In biomed- 
ical signal analysis, after quantitative features have been extracted from the given 
signals, each signal may be represented by a feature vector x = (q,22,. . . , z , )~ ,  
which is also known as a measurement vector or a pattern vector. When the values 
x i  are real numbers, x is a point in an n-dimensional Euclidean space: vectors of 
similar objects may be expected to form clusters as illustrated in Figure 9.1. 

L 
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x class  c 

decision function 
+ w x + w = o  
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Figure 9.1 Two-dimensional feature vectors of two classes C1 and Ca. The prototypes of 
the two classes are indicated by the vectors 51 and 5 2 .  The optimal linear decision function 
shown d ( x )  (solid line) is the perpendicular bisector of the straight line joining the two class 
prototypes (dashed line). 
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For efficient pattern classification, measurements that could lead to disjoint sets 
or clusters of feature vectors are desired. This point underlines the importance of 
appropriate design of the preprocessing and feature extraction procedures. Features 
or characterizing attributes that are common to all patterns belonging to a particular 
class are known as intraset or intraclassfeatures. Discriminant features that represent 
differences between pattern classes are called interset or interclass features. 

The pattern classification problem is that of generating optimal decision boundaries 
or decision procedures to separate the data into pattern classes based on the feature 
vectors. Figure 9.1 illustrates a simple linear decision function or boundary to 
separate 2D feature vectors into two classes. 

9.4 SUPERVISED PATTERN CLASSiFlCATlON 

Problem: You are provided with a number of feature vectors with classes assigned to 
them. Propose techniques to characterize the boundaries that separate the classes. 

Solution: A given set of feature vectors of known categorization is often referred 
to as a training set. The availability of a training set facilitates the development of 
mathematical functions that can characterize the separation between the classes. The 
functions may then be applied to new feature vectors of unknown classes to classify 
or recognize them. This approach is known as supervisedpattern classification. A set 
of feature vectors of known categorization that is used to evaluate a classifier designed 
in this manner is referred to as a test set. The following subsections describe a few 
methods that can assist in the development of discriminant and decision functions. 

9.4.1 Dlscriminant and decision functions 

A general linear discriminant or decision function is of the form 

(9.1) 

where x = (x1,22, . . . , Zn, l)T is the feature vector augmented by an additional entry 
equal to unity, and w = (w1, w2,. . . , Wn, w,+I)~ is a correspondingly augmented 
weight vector. A two-class pattern classification problem may be stated as 

T d(x) = w1z1 + w222 + * * * + wnxn + wn+1 = w x, 

> O  i f x E C 1  
< O  i f x E C 2  ’ (9.2) 

where Cl and Cz represent the two classes. The discriminant function may be inter- 
preted as the boundary separating the classes C1 and C2, as illustrated in Figure 9.1. 

In the general case of an M-class pattern classification problem, we will need M 
weight vectors and M decision functions to perform the following decisions: 

where W i  = (Wily wiz, ..., Win, ~ i , ~ + l ) ~  is the weight vector for the class Ci. 
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Three cases arise in solving this problem [243]: 

Case 1: Each class is separable from the rest by a single decision surface: 

if d , (x )  > 0 then x E Cj. (9.4) 

Case 2: Each class is separable from every other individual class by a distinct deci- 
sion surface, that is, the classes are pair-wise separable. There are M ( M -  1)/2 
decision surfaces given by dij ( x )  = w$. x .  

if dij (x)  > 0 V j # i then x E Cis (9.5) 

[Note: di j (x)  = -dj i (x) . ]  

the property that 
Case 3: There exist M decision functions dk(x) = wz x ,  k = 1,2, .  . . , M, with 

(9.6) if di(x)  > dj (x)  V j  # i, then x E Ci. 

This is a special instance of Case 2. We may define 

(9.7) 

If the classes are separable under Case 3, they are separable under Case 2; the 
converse is, in general, not true. 

T dij (x)  = di(x)  - d j (x )  = (wi - wj)  x = WT v X .  

Patterns that may be separated by linear decision functions as above are said to 
be linearly separable. In other situations, an infinite variety of complex decision 
boundaries may be formulated by using generalized decision functions based upon 
nonlinear functions of the feature vectors as 

i = l  

Here, { f i ( x ) } ,  i = 1,2 , .  . . , K ,  arereal, single-valuedfunctionsofx; f ~ + ~ ( x )  = 1. 
Whereas the functions f i (x )  may be nonlinear in the n-dimensional space of x ,  the 

decision function may be formulated as a linear function by defining a transformed 
feature vector xt = ( f l ( x ) ,  f2(x) ,  . . . , f ~ ( x ) ,  l)T. Then, d ( x )  = w T x t ,  with 
w = (w1, w2,.  . . , W K ,  w ~ + 1 ) ~ .  Once evaluated, { f i ( x ) }  is just a set of numerical 
values, and xt is simply a K-dimensional vector augmented by an entry equal to 
unity. 

9.4.2 Distance functions 

Consider M pattern classes represented by their prototype patterns 5 1 , 5 2 ,  . . . , ZM. 
The prototype of a class is typically computed as the average of all the feature vectors 



452 PATTERN CLASSIFICATION AND DIAGNOSTIC DECISION 

belonging to the class. Figure 9.1 illustrates schematically the prototypes zl and z2 

of the two classes shown. 
The Euclidean distance between an arbitrary pattern vector x and the ith prototype 

is given as 

Di = JJx - zi /J  = d m .  (9.10) 

A simple rule to classify the pattern vector x would be to choose that class for which 
the vector has the smallest distance: 

if Di < Dj V j # i, then x E Ci. (9.1 1) 

A simple relationship may be established between discriminant functions and 
distance functions as follows [243]: 

(9.12) D! = I I x - z ~ ~ ~ ~  = ( x - z ~ )  T (x-  zi) 

- T T 1 ,  - XTX - 2x zi + zi zj = XTX - 2(XTZi - 5"' Z i ) .  

Choosing the minimum of D? is equivalent to choosing the minimum of Di 
(as all Di > 0). Furthermore, from the equation above, it follows that choosing 
the minimum of 0: is equivalent to choosing the maximum of (xTzi - izTzi) .  
Therefore, we may define the decision function 

(9.13) dj(X) = (XTZi - -zi 1 ,  Zi), i = 1 , 2 , ,  . . , M .  
2 

A decision rule may then be stated as 

if di(x) > dj(x) V j # i, then x E C i a  (9.14) 

This is a linear discriminant function, which becomes obvious from the following 
representation: If zjj, j = 1,2 , .  . . , n, are the components of zi, let wij = zij, 
j = 1 , 2 , .  . . ,n; wi,,,+l = --izi zi; and x = (21,22,. . . ,a,, l)T. Then, di(x) = 
WTX, i = 1 , 2 , .  . . , M, where wi = (wil, wi2,. . . , W ~ , , , + I ) ~ .  Therefore, distance 
functions may be formulated as linear discriminant or decision functions. 

1 T  

9.4.3 The nearest-neighbor rule 

Suppose that we are provided with a set of N sample patterns { S I , S ~ ,  . . . , s ~ }  of 
known classification: each pattern belongs to one of M classes {CI, C2, . . . , CM}. 
We are then given a new feature vector x whose class needs to be determined. Let us 
compute a distance measure D(si,  x) between the vector x and each sample pattern. 
Then, the nearest-neighbor rule states that the vector x is to be assigned to the class 
of the sample that is the closest to x: 

x E Ci if D(si,x) = min{D(sl,x)}, 1 = 1,2, .  . . , N .  (9.15) 

A major disadvantage of the above method is that the classification decision 
is made based upon a single sample vector of known classification. The nearest 
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neighbor may happen to be an outlier that is not representative of its class. It would 
be more reliable to base the classification upon several samples: we may consider 
a certain number le of the nearest neighbors of the sample to be classified, and then 
seek a majority opinion. This leads to the so-called k-nearest-neighbor or k-NN rule: 
Determine the k nearest neighbors of x, and use the majority of equal classifications 
in this group as the classification of x. 

9.5 UNSUPERVISED PATTERN CLASSIFICATION 

Problem: We are given a set of feature vectors with no categorization or classes 
attached to them. No prior training information is available. How may we group the 
vectors into multiple categories? 

Solution: The design of distance functions and decision boundaries requires a 
training set of feature vectors of known classes. The functions so designed may then 
be applied to a new set of feature vectors or samples to perform pattern classification. 
Such a procedure is known as supervised pattern classification due to the initial 
training step. In some situations a training step may not be possible, and we may 
be required to classify a given set of feature vectors into either a pre-specified or 
unknown number of categories. Such a problem is labeled as unsupervised pattern 
classification, and may be solved by cluster-seeking methods. 

9.5.1 Cluster-seeking methods 

Given a set of feature vectors, we may examine them for the formation of inherent 
groups or clusters. This is a simple task in the case of 2D vectors, where we may plot 
them, visually identify groups, and label each group with a pattern class. Allowance 
may have to be made to assign the same class to multiple disjoint groups. Such an 
approach may be used even when the number of classes is not known at the outset. 
When the vectors have a dimension higher than three, visual analysis will not be 
feasible. It then becomes necessary to define criteria to group the given vectors on 
the basis of similarity, dissimilarity, or distance measures. A few examples of such 
measures are [243]: 

0 Euclidean distance 
n 

(9.16) 

Here, x and z are two feature vectors; the latter could be a class prototype if 
available. A small value of DE indicates greater similarity between the two 
vectors than a large value of DE.  

D; = IIX - 8112 = (x - Z)T(X - a) = c (2i - Z i )  2 . 
i=l  

0 Mahalanobis distance 
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where x is a feature vector being compared to a pattern class for which m is 
the class mean vector and C is the covariance matrix. A small value of DM 
indicates a higher potential membership of the vector7 in the class than a large 
value of D M .  

0 Normalized dot product (cosine of the angle between the vectors x and 8 )  

(9.18) 

A large dot product value indicates a greater degree of similarity between the 
two vectors than a small value. 

The covariance matrix is defined as 

c = EKY - m)(Y - mY1, (9.19) 

where the expectation operation is performed over all feature vectors y that belong 
to the class. The covariance matrix provides the covariance of all possible pairs of 
the features in the feature vector over all samples belonging to the given class. The 
elements along the main diagonal of the covariance matrix provide the variance of the 
individual features that make up the feature vector. The covariance matrix represents 
the scatter of the features that belong to the given class. The mean and covariance need 
to be updated as more samples are added to a given class in a clustering procedure. 

When the Mahanalobis distance needs to be calculated between a sample vector 
and a number of classes represented by their mean and covariance matrices, a pooled 
covariance matrix may be used if the numbers of members in the various classes are 
unequal and low [246]. For example, if the covariance matrices of two classes are C1 
and Cz, and the numbers of members in the two classes are NI and N2, the pooled 
covariance matrix is given by 

( N i  - 1)Ci + (N2 - 1)C2 
Ni + N2 - 2 

C =  (9.20) 

Various performance indices may be designed to measure the success of a cluster- 
ing procedure [243]. A measure of the tightness of a cluster is the sum of the squared 
errors performance index: 

(9.21) 

where N, is the number of cluster domains, Sj is the set of samples in the jth cluster, 

m . - L  c x ’ - N j  XESj 

(9.22) 

is the sample mean vector of S j ,  and Nj is the number of samples in Sj .  

, 
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A few other examples of performance indices are: 

0 Average of the squared distances between the samples in a cluster domain. 

0 Intra-cluster variance. 

0 Average of the squared distances between the samples in different cluster 
domains. 

0 Inter-cluster distances. 

0 Scatter matrices. 

0 Covariance matrices. 

A simple cluster-seeking algorithm [243]: Suppose we have N sample patterns 
{Xl, x2, . * . I XN). 

1. Let the first cluster center z1 be equal to any one of the samples, say zl = XI. 

2. Choose a non-negative threshold 8. 

3. Compute the distance D21 between x2 and 11. If D21 < 8, assign x2 to the 
domain (class) of cluster center 51; otherwise, start a new cluster with its center 
as z2 = xg. For the subsequent steps, let us assume that a new cluster with 
center z2 has been established. 

4. Compute the distances D31 and 0 3 2  from the next sample x3 to zl and z2, 
respectively. If D31 and D32 are both greater than 8, start a new cluster with 
its center as z3 = x3; otherwise, assign x3 to the domain of the closer cluster. 

5 .  Continue to apply steps 3 and 4 by computing and checking the distance from 
every new (unclassified) pattern vector to every established cluster center and 
applying the assignment or cluster-creation rule. 

6. Stop when every given pattern vector has been assigned to a cluster. 

Note that the procedure does not require knowledge of the number of classes a 
priori. Note also that the procedure does not assign a real-world class to each cluster: 
it merely groups the given vectors into disjoint clusters. A subsequent step is required 
to label each cluster with a class related to the actual problem. Multiple clusters may 
relate to the same real-world class, and may have to be merged. 

A major disadvantage of the simple cluster-seeking algorithm is that the results 
depend upon 

0 the first cluster center chosen for each domain or class, 

0 the order in which the sample patterns are considered, 

0 the value of the threshold 8, and 
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0 the geometrical properties (distributions) of the data (or the feature-vector 
space). 

The maximin-distance clustering algorithm [243]: This method is similar to 
the previous “simple” algorithm, but first identifies the cluster regions that are the 
farthest apart. The term “maximin” refers to the combined use of maximum and 
minimum distances between the given vectors and the centers of the clusters already 
formed. 

1. Let x1 be the first cluster center z1. 

2. Determine the farthest sample from XI, and call it cluster center 52 .  

3. Compute the distance from each remaining sample to 51 and to z2. For every 
pair of these computations, save the minimum distance, and select the maxi- 
mum of the minimum distances. If this “maximin” distance is an appreciable 
fraction of the distance between the cluster centers z1 and z2, label the cor- 
responding sample as a new cluster center z3; otherwise stop forming new 
clusters and go to Step 5.  

4. If a new cluster center was formed in Step 3, repeat Step 3 using a “typical” or 
the average distance between the established cluster centers for comparison. 

5 .  Assign each remaining sample to the domain of its nearest cluster center. 

The K-means algorithm [243]: The preceding “simple” and “maximin” algo- 
rithms are intuitive procedures. The K-means algorithm is based on iterative mini- 
mization of a performance index that is defined as the sum of the squared distances 
from all points in a cluster domain to the cluster center. 

1. Choose K initial cluster centers zl(l),z2(1), . . . , z~(1). The index in paren- 

2. At the kth iterative step, distribute the samples {x} among the K cluster 

theses represents the iteration number. 

domains, using the relation 

x E Sj(k) if IIx - zj(lc))I < IIx - zi(k)II V i = 1,2 , .  . . ,K,  i # j ,  (9.23) 

where Sj(k) denotes the set of samples whose cluster center is 5j(k:). 

3. From the results of Step 2, compute the new cluster centers 5j(k + l), j = 
1,2 , .  , , , K, such that the sum of the squared distances from all points in Sj(k:) 
to the new cluster center is minimized. In other words, the new cluster center 
5, (k: + 1) is computed so that the performance index 

J, = C llx - zj(k + 1)112, j = 1,2 , .  . . ,K, (9.24) 
XESj(k) 
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4. 

is minimized. The zj (k + 1) that minimizes this performance index is simply 
the sample mean of Sj ( I c ) .  Therefore, the new cluster center is given by 

(9.25) 1 z , ( k + l ) = -  c x , j = 1 , 2  , a * . ,  K, 
N j  X E S * ( k )  

where Nj is the number of samples in Sj (k). The name “K-means” is derived 
from the manner in which cluster centers are sequentially updated. 

If z,(k + 1) = z j ( k )  for j = 1,2,. . . , K, the algorithm has converged: 
terminate the procedure; otherwise go to Step 2. 

The behavior of the K-means algorithm is influenced by: 

the number of cluster centers specified, 

the choice of the initial cluster centers, 

the order in which the sample patterns are considered, and 

the geometrical properties (distributions) of the data (or the feature-vector 
space). 

9.6 PROBABILISTIC MODELS AND STATISTICAL DECISION 

Problem: Pattern class$cation methods such as discriminant functions are depen- 
dent upon the set of training samples provided. Their success, when applied to new 
cases, will depend, upon the accuracy of representation of the various pattern classes 
by the training samples. How can we design pattern classifkation techniques that 
are independent of speciJic training samples and optimal in a broad sense? 

Solution: Probability functions and probabilistic models may be developed to 
represent the occurrence and statistical attributes of classes of patterns. Such func- 
tions may be based upon large collections of data, historical records, or mathematical 
models of pattern generation. In the absence of information as above, a training 
step with samples of known categorization will be required to estimate the required 
model parameters. It is common practice to assume a Gaussian PDF to represent 
the distribution of the features for each class, and estimate the required mean and 
variance parameters from the training sets. When PDFs are available to characterize 
pattern classes and their features, optimal decision functions may be designed based 
upon statistical functions and decision theory. The following subsections describe a 
few methods that fall into this category. 

9.6.1 Likelihood functions and statistical decision 

Let P(Ci) be the probability of Occurrence of class Ci, i = 1 , 2 , .  . . , M; this is 
known as the a priori, prior, or unconditional probability. The a posteriori or 
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posterior probability that an observed sample pattern x comes from Cd is expressed 
as P(Cilx). If a classifier decides that x comes from Cj when it actually came from 
Ci, then the classifier is said to incur a loss Lij, with Lii = 0 or a fixed operational 
cost and Lij > Lii V j # i. 

Since x may belong to any of M classes under consideration, the expected loss, 
known as the conditional average risk or loss, in assigning x to Cj is [243] 

A classifier could compute Rj(x), j = 1,2, . . . , M ,  for each sample x, and then 
assign x to the class with the smallest conditional loss. Such a classifier will minimize 
the total expected loss over all decisions, and is called the Eayes cluss$er. From a 
statistical point of view, the Bayes classifier represents the optimal classifier. 

According to Bayes formula, we have [243,244] 

(9.27) 

where p(xlCi) is called the likelihood function of class Ci or the state-conditional 
PDF of x, and p(x) is the PDF of x regardless of class membership (unconditional). 
[Note: P ( y )  is used to represent the probability of Occurrence of an event 9; p(y) is 
used to represent the PDF of a random variable y. Probabilities and PDFs involving 
a multi-dimensional feature vector are multivariate functions with dimension equal 
to that of the feature vector.] Bayes formula shows how observing the sample x 
changes the a priori probability P(Ci) to the a posteriori probability P(C;Jx). In 
other words, Bayes formula provides a mechanism to update the a priori probability 
P(Ci) to the a posteriori probability P(Cilx) due to the observation of the sample 
x. Then, we can express the expected loss as [243] 

As p~ is common for all j, we could modify Rj(x) to 

M 

(9.28) 

(9.29) 

In a two-class case with M = 2, we obtain the following expressions [243]: 
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that is. 

(9.35) 

The left-hand side of the inequality above, which is a ratio of two likelihood functions, 
is often referred to as the likelihood ratio: 

(9.36) 

Then, Bayes decision rule for M = 2 is [243]: 

1. Assign x to class CI if I12(x)  > 612, where 812 is a threshold given by 
,g - p{c;i ~ ~ P ~ - - L P I ~  

12 - P c L12-L,1 * 

2. Assign x to class CZ if h ( x )  < 812. 

3. Make an arbitrary or heuristic decision if 112(x)  = 612. 

The rule may be generalized to the M-class case as 12431: 

k = l  q=1 

j = l , 2  ) . . . )  M , j # i .  
In most pattern classification problems, the loss is nil for correct decisions. The 

loss could be assumed to be equal to a certain quantity for all erroneous decisions. 
Then, Lij = 1 - 6ij, where 

6 , , -  1 i f i = j  
1' - { 0 otherwise (9.38) 

and 
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since 

(9.40) 

that is, 

x E ci if p(x)Ci)P(Ci) > p(x)Cj)P(Cj) ,  j = 1,2,. . . , M ,  j # i. (9.42) 

This is nothing more than using the decision functions 

where a pattern x is assigned to class Ci if di (x)  > dj (x)  V j # i for that pattern. 
Using Bayes formula, we get 

di(x) = P(Cilx) p ( x ) ,  i = 1 , 2 , .  . . , M .  (9.44) 

Since p ( x )  does not depend upon the class index i, this can be reduced to 

di(x) = P(Cjlx), i = 1 , 2 , .  . . , M. (9.45) 

The different decision functions given above provide alternative yet equivalent ap- 
proaches, depending upon whether p(xlCi) or P(Ci(x)  is used (or available). Es- 
timation of p(x(Cj) would require a training set for each class Ci. It is common to 
assume a Gaussian distribution and estimate its mean and variance using the training 
set. 

9.6.2 Bayes classifier for normal patterns 

The univariate normal or Gaussian PDF for a single random variable z is given by 

= - & G U  1 exp [-: (?l2], (9.46) 

which is completely specified by two parameters: the mean 
m 

m = ~ [ z ]  = S_, z p ( z )  dz, (9.47) 

and the variance 
m 

u2 = E [ ( z  - = s_, (z - m)2 p ( z )  dz. (9.48) 
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In the case of M pattern classes and pattern vectors x of dimension n governed 
by multivariate normal PDFs, we have 

i = 1,2,  , . . , M ,  where each PDF is completely specified by its mean vector mi and 
its n x n covariance matrix Ci ,  with 

mi = & [ X I ,  (9.50) 

and 
Ci = Ei[(x - m i ) ( x  - mi) T 1. (9.5 1) 

Here, Ei[ ] denotes the expectation operator over the patterns belonging to class Ci. 
Normal distributions occur frequently in nature, and have the advantage of an- 

alytical tractability. A multivariate normal PDF reduces to a product of univariate 
normal PDFs when the elements of x are mutually independent (then the covariance 
matrix is a diagonal matrix). 

We earlier had formulated the decision functions 

&(x)  = p(xlCi) P(Ci) ,  i = 1129 - - s 9 M .  

Given the exponential in the normal PDF, it is convenient to use 

(9.52) 

di(x) = In Ip(xlCi) P(Ci) ]  = hp(xlCi )  + InP(Ci), (9.53) 

which is equivalent in terms of classification performance as the natural logarithm In 
is a monotonically increasing function. Then [243], 

i = 1,2,  . . . , M. The second term does not depend upon i ;  therefore, we can simplify 
di (x)  to 

1 1 
2 2 

di(x) = In P(c~) - - In lcil - - [ ( x  - mi)TC;l ( x  - mi)], i = I, 2 , .  . . , M .  
(9.55) 

The decision functions above are hyperquadrics; hence the best that a Bayes 
classifier for normal patterns can do is to place a general second-order decision 
surface between each pair of pattern classes. In the case of true normal distributions 
of patterns, the decision functions as above will be optimal on an average basis: they 
minimize the expected loss with the simplified loss function Lij = 1 - & j  [243]. 

If all the covariance matrices are equal, that is, Ci = C ,  i = 1,2,  . . . , M ,  we get 

1 
(9.56) 

after omitting terms independent of i. The Bayesian classifier is now represented by 
a set of linear decision functions. 

di (x)  = lnP(Ci) + xTC-'m,  - -mTC-lmi ,  i = 1 , 2 , .  . . , M ,  ' 2 '  
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Before one may apply the decision functions as above, it would be appropriate 
to verify the Gaussian nature of the PDFs of the variables on hand by conducting 
statistical tests [5,245]. Furthermore, it would be necessary to derive or estimate the 
mean vector and covariance matrix for each class; sample statistics computed from a 
training set may serve this purpose. 

9.7 LOGISTIC REGRESSION ANALYSIS 

Logistic classification is a statistical technique based on a logistic regression model 
that estimates the probability of occurrence of an event [250, 251, 2521. The tech- 
nique is designed for problems where patterns are to be classified into one of two 
classes. When the response variable is binary, theoretical and empirical considera- 
tions indicate that the response function is often curvilinear. The typical response 
function is shaped as a forward or backward tilted “S”, and is known as a sigmoidal 
function. The function has asymptotes at 0 and 1. 

In logistic pattern classification, an event is defined as the membership of a pattern 
vector in one of the two classes. The method computes a variable that depends upon 
the given parameters and is constrained to the range (0 , l )  so that it may be interpreted 
as a probability. The probability of the pattern vector belonging to the second class 
is simply the difference between unity and the estimated value. 

For the case of a single feature or parameter, the logistic regression model is given 
as 

exP(bo + biz) P(event) = 
1 + exp(b0 + he) ’ (9.57) 

or equivalently, 
1 

P(event) = (9.58) 
1 + exp[-(bo + he))’ 

where bo and bl are coefficients estimated from the data, and z is the independent 
(feature) variable. The relationship between the independent variable and the esti- 
mated probability is nonlinear, and follows an S-shaped curve that closely resembles 
the integral of a Gaussian function. In the case of an n-dimensional feature vector x, 
the model can be written as 

1 
P(event) = 

1 + exp(-z)’ 
(9.59) 

where z is the linear combination 

that is, z is the dot product of the augmented feature vector x with a coefficient or 
weight vector b. 

In linear regression, the coefficients of the model are estimated using the method of 
least squares; the selected regression coefficients are those that result in the smallest 
sum of squared distances between the observed and the predicted values of the 
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dependent variable. In logistic regression, the parameters of the model are estimated 
using the maximum likelihood method [250, 2451; the coefficients that make the 
observed results “most likely” are selected. Since the logistic regression model is 
nonlinear, an iterative algorithm is necessary for estimation of the coefficients [25 1, 
2521. A training set is required to design a classifier based upon logistic regression. 

9.8 THE TRAINING AND TEST STEPS 

In the situation when a limited number of sample vectors with known classification 
are available, questions arise as to how many of the samples may be used to design 
or train a classifier, with the understanding that the classifier designed needs to be 
tested using an independent set of samples of known classification as well. When a 
sufficiently large number of samples are available, they may be randomly split into 
two approximately equal sets, one for use as the training set and the other to be used 
as the test set. The random-splitting procedure may be repeated a number of times to 
generate several classifiers. Finally, one of the classifiers so designed may be selected 
based upon its performance in both the training and test steps. 

9.8.1 The leave-one-out method 

The leave-one-out method [245] is suitable for the estimation of the classification 
accuracy of a pattern classification technique, particularly when the number of avail- 
able samples is small. In this method, one of the available samples is excluded, the 
classifier is designed with the remaining samples, and then the classifier is applied to 
the excluded sample. The validity of the classification so performed is noted. This 
procedure is repeated with each available sample: if N training samples are available, 
N classifiers are designed and tested. The training and test sets for any one classifier 
so designed and tested are independent. However, whereas the training set for each 
classifier has N - 1 samples, the test set has only one sample. In the final analysis, 
every sample will have served (N - 1) times as a training sample, and once as a 
test sample. An average classification accuracy is then computed using all the test 
results. 

Let us consider a simple case in which the covariances of the sample sets of two 
classes are equal. Assume that two sample sets, S1 = (xr), . . . , x:!} from class 
C1, and SZ = {xr) ,  ..., x$:} from class C2 are given. Here, N1 and N2 are the 
numbers of samples in the sets S’l and Sz, respectively. Assume also that the prior 
probabilities of the two classes are equal to each other. Then, according to the Bayes 
classifier and assuming x to be governed by a multivariate Gaussian PDF, a sample 
x is assigned to class C1 if 

( x  - m l ) T ( x  - ml) - (x - mz) T ( x  - mz) > 8, (9.61) 
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where 8 is a threshold, and the sample mean mi is given by 

(9.62) 

In the leave-one-out method, one sample xt)  is excluded from the training set and 
then used as the test sample. The mean estimate for class Ci without xk, labeled as 
m i k ,  may be computed as 

(9.63) 

which leads to 
(9.64) ,(i) - mik = -(xy Ni - mi). Ni - 1 k 

Then, testing a sample xp) from C1 can be carried out as 

(xr) - m l k )  = (xk (1) - mlk) - (xp) - m 2 ) T ( X p  - m,) (9.65) 
2 

cXC) - ml)*(Xf) - ml) - (xp) - - m2) > 8. 
= (23) 

= (xf’ - ml)=(Xp - ml) - ( - N2 >’ (xp  - m a ) T ( X p  - m 2 )  < 8. 

Note that when xf) is tested, only m 1  is changed and mn is not changed. 
Likewise, when a sample xf) from C2 is tested, the decision rule is 

(xf) - ml)T(Xf)  - ml) - (xf) - m 2 k )  T (xk (2) - mZk) (9.66) 

N 2  - 1 

The leave-one-out method provides the least biased (practically unbiased) estimate 
of the classification accuracy of a given classification method for a given training 
set, and is useful when the number of samples available with known classification is 
small. 

9.9 NEURAL NETWORKS 

In many practical problems, we may have no knowledge of the prior probabili- 
ties of patterns belonging to one class or another. No general classification rules 
may exist for the patterns on hand. Clinical knowledge may not yield symbolic 
knowledge bases that could be used to classify patterns that demonstrate exceptional 
behavior. In such situations, conventional pattern classification methods as described 
in the preceding sections may not be well-suited for classification of pattern vec- 
tors. Artificial neural networks (ANNs), with the properties of experience-based 
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learning and fault tolerance, should be effective in solving such classification prob- 
lems [247,248,249,253,254,255,256]. 

Figure 9.2 illustrates a two-layer perceptron with one hidden layer and one output 
layer for pattern classification. The network learns the similarities among patterns 
directly from their instances in the training set that is provided initially. Classification 
rules are inferred from the training data without prior knowledge of the pattern class 
distributions in the data. Training of an ANN classifier is typically achieved by the 
back-propagation algorithm [247, 248, 249, 253,254, 255, 2561. The actual output 
of the ANN y k  is calculated as 

where 

p k = f  E W $ X ; - ~ , #  , k = 1 , 2  ,..., K, 
( j r ,  ) (9.67) 

(9.68) 

In the above equations, 0, and 8% are node offsets, w i j  and w$ are node weights, 
Zi are the elements of the pattern vectors (input parameters), and I, J, and K are the 
numbers of nodes in the input, hidden, and output layers, respectively. The weights 
and offsets are updated by 

w$(n+ 1) = w$ (n) +7[2 /k  (1 - Y k ) ( d k  -&)]Zj# +a[w$ (It) - W$ ( I t -  I)], (9.70) 

e,#(n+ l) = @(n) + v [ Y k ( l -  Y k ) ( d k  - V k ) ] ( - 1 )  + a[e,#(n> -Of(. - I)], (9.7 1) 

w i j ( n + 1 )  = 

+ 
+ 

and 

w i j ( n )  (9.72) 

e j ( n +  1) = ej (9.73) 

I K 

+ 77 ZT(1 - Z y )  

+ 
{ v k ( l  - y k ) ( d k  - y k ) w $ }  (-1) [ k=l  

a [ e j ( n )  - ej(n - I ) ] ,  

where d k  are the desired outputs, a is a momentum term, q is a gain term, and n 
refers to the iteration number. Equations 9.70 and 9.7 1 represent the backpropagation 
steps, with Y k  (1 - Y k ) Z i #  being the sensitivity of y k  to w$, that is, ++. 

ow,, 
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Figure 9.2 A two-layer perceptron. 

The classifier training algorithm is repeated until the errors between the desired 
outputs and actual outputs for the training data are smaller than a predetermined 
threshold value. Shen et al. [256] present a leave-one-out approach to determine the 
most suitable values for the parameters J, q, and a. 

9.10 MEASURES OF DIAGNOSTIC ACCURACY AND COST 

Pattern recognition or classification decisions that are made in the context of medical 
diagnosis have implications that go beyond statistical measures of accuracy and 
validity. We need to provide a clinical or diagnostic interpretation of statistical or 
rule-based decisions made with signal pattern vectors. 

Consider the simple situation of screening, which represents the use of a test to 
detect the presence or absence of a specific disease in a certain study population: the 
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decision to be made is binary. Let us represent by A the event that a subject has the 
particular pathology (or is abnormal), and by N the event that the subject does not 
have the disease (or is normal). Let the prior probabilities P ( A )  and P ( N )  represent 
the fractions of subjects with the disease and the normal subjects, respectively, in 
the test population. Let T t  represent a positive screening test result (indicative of 
the presence of the disease) and T -  a negative result. The following possibilities 
arise [257]: 

0 A true positive (TP) is the situation when the test is positive for a subject 
with the disease (also known as a hit). The true-positive fraction ( T P F )  or 
sensitivity S+ is given as P ( T + ( A )  or 

number of TP decisions 
number of subjects with the disease ' s+ = (9.74) 

The sensitivity of a test represents its capability to detect the presence of the 
disease of concern. 

0 A true negative (TN) represents the case when the test is negative for a subject 
who does not have the disease. The true-negative fraction ( T N F )  or speciJicity 
S- is given as P(T-IN)  or 

number of TN decisions 
number of subjects without the disease ' s- = (9.75) 

The specificity of a test indicates its accuracy in identifying the absence of the 
disease of concern. 

0 A false negative (FN) is said to occur when the test is negative for a subject who 
has the disease of concern; that is, the test has missed the case. The probability 
of this error, known as the false-negative fraction ( F N F )  is P ( T - J A ) .  

0 A false positive (FT) is defined as the case where the result of the test is positive 
when the individual being tested does not have the disease. The probability of 
this type of error or false alarm, known as the false-positive fraction ( F P F )  is 
P (  T+ IN). 

Table 9.1 summarizes the classification possibilities. Note that 

8 FNF + T P F  = 1,  

0 FPF + T N F  = 1, 

8 S - = 1 - F P F = T N F , a n d  

8 S + = I - F N F = T P F .  

A summary measure of accuracy may be defined as [257j 

= S+ P ( A )  + S- P ( N ) ,  (9.76) 
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Actual Group Predicted Group 

Normal Abnormal 

Normal S- = TNF FPF 

Abnormal FNF S+ = TPF 

Table 9.1 Schematic representation of a classification matrix. S- denotes the specificity 
(true-negative fraction or TNF), FPF denotes the false-positive fraction, FNF denotes the 
false-negative fraction, and S+ denotes the sensitivity (true-positive fraction or TPF). 

where P ( A )  is the fraction of the study population that actually has the disease (that 
is, the prevalence of the disease) and P ( N )  is the fraction of the study population 
that is actually free of the disease. 

The efficiency of a test may also be indicated by its predictive values. The positive 
predictive value PPV of a test, defined as 

T P  
T P + F P ’  PPV = 100 (9.77) 

represents the percentage of the cases labeled as positive by the test that are actually 
positive. The negative predictive value NPV,  defined as 

T N  
T N + F N ’  NPV = 100 (9.78) 

represents the percentage of cases labeled as negative by the test that are actually 
negative. 

When a new test or method of diagnosis is being developed and tested, it will be 
necessary to use another previously established method as a reference to confirm the 
presence or absence of the disease. Such a reference method is often called the gold 
standard. When computer-based methods need to be tested, it is common practice 
to use the diagnosis or classification provided by an expert in the field as the gold 
standard. Results of biopsy, other established laboratory or investigative procedures, 
or long-term clinical follow-up in the case of normal subjects may also serve this 
purpose. The term “actual group” in Table 9.1 indicates the result of the gold standard, 
and the term “predicted group” refers to the result of the test conducted. 

Health-care professionals (and the general public) would be interested in knowing 
the probability that a subject with a positive test result actually has the disease: this 
is given by the conditional probability P(AIT+). The question could be answered 
by using Bayes theorem [245], using which we can obtain 

P ( A )  v+ 14 
P(A)P(T+(A)  + P(N)P(T+IN) * 

P(A(T+)  = (9.79) 
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Note that P(T+IA) = S+ and P(T+IN) = 1 - S-. In order to determine the 
posterior probability as above, the sensitivity and specificity of the test and the prior 
probabilities of negative cases and positive cases (the rate of prevalence of the disease) 
should be known. 

A cost matrix may be defined, as in Table 9.2, to reflect the overall cost effective- 
ness of a test or method of diagnosis. The cost of conducting the test and arriving at 
a TN decision is indicated by CN: this is the cost of subjecting a normal subject to 
the test for the purposes of screening for a disease. The cost of the test when a TP is 
found is shown as CA: this might include the costs of further tests, treatment, follow- 
up, and so on, which are secondary to the test itself, but part of the screening and 
health-care program. The value C+ indicates the cost of an FP result: this represents 
the cost of erroneously subjecting an individual without the disease to further tests 
or therapy. Whereas it may be easy to identify the costs of clinical tests or treatment 
procedures, it is difficult to quantify the traumatic and psychological effects of an 
FP result and the consequent procedures on a normal subject. The cost C- is the 
cost of an FN result: the presence of the disease in a patient is not diagnosed, the 
condition worsens with time, the patient faces more complications of the disease, and 
the health-care system or the patient has to bear the costs of further tests and delayed 
therapy. 

A loss factor due to misclassification may be defined as 

L = FPF x C' + FNF x C-. (9.80) 

The total cost of the screening program may be computed as 

Cs = T P F  x CA + T N F  x CN + FPF x Cf + FNF x C-. (9.81) 

Metz [257] provides more details on the computation of the costs of diagnostic tests. 

Actual Group Predicted Group 

Normal Abnormal 

Normal C N  C+ 

Abnormal c- C A  

Table 9.2 Schematic representation of the cost matrix of a diagnostic method. 

9.1 0.1 Receiver operating characteristics 

Measures of overall correct classification of patterns as percentages provide limited 
indications of the accuracy of a diagnostic method. The provision of separate per- 
centage correct classification for each category, such as sensitivity and specificity, 
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can facilitate improved analysis. However, these measures do not indicate the depen- 
dence of the results upon the decision threshold. Furthermore, the effect of the rate 
of incidence or prevalence of the particular disease is not considered. 

From another perspective, it is desirable to have a screening or diagnostic test that 
is both highly sensitive and highly specific. In reality, however, such a test is usually 
not achievable. Most tests are based on clinical measurements that can assume limited 
ranges of a variable (or a few variables) with an inherent trade-off between sensitivity 
and specificity. The relationship between sensitivity and specificity is illustrated 
by the receiver operating characteristics (ROC) curve, which facilitates improved 
analysis of the classification accuracy of a diagnostic method [257,258,259]. 

Consider the situation illustrated in Figure 9.3. For a given diagnostic test with the 
decision variable z, we have predetermined state-conditional PDFs of the decision 
variable z for actually negative or normal cases indicated as p(z lN) ,  and for actually 
positive or abnormal cases indicated as p(z1A). As indicated in Figure 9.3, the two 
PDFs will almost always overlap, given that no method can be perfect. The user or 
operator needs to determine a decision threshold (indicated by the vertical line) so 
as to strike a compromise between sensitivity and specificity. Lowering the decision 
threshold will increase T P F  at the cost of increased FPF.  (Note: T N F  and F N F  
may be derived easily from FPF and T P F ,  respectively.) 

Figure 9.3 State-conditional probability density functions of a diagnostic decision variable 
z for normal and abnormal cases. The vertical line represents the decision threshold. 

An ROC curve is a graph that plots (FPF,  T P F )  points obtained for a range 
of decision threshold or cut points of the decision method (see Figure 9.4). The 
cut point could correspond to the threshold of the probability of prediction. By 
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varying the decision threshold, we get different decision fractions, within the range 
(0 , l ) .  An ROC curve describes the inherent detection (diagnostic or discriminant) 
characteristics of a test or method: a receiver (user) may choose to operate at any 
point along the curve. The ROC curve is independent of the prevalence of the disease 
or disorder being investigated as it is based upon normalized decision fractions. As 
all cases may be simply labeled as negative or all may be labeled as positive, an ROC 
curve has to pass through the points (0,O) and (1,l). 
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Figure 9.4 Examples of receiver operating characteristic curves. 

In a diagnostic situation where a human operator or specialist is required to provide 
the diagnostic decision, ROC analysis is usually conducted by requiring the specialist 
to rank each case as one of five possibilities [257]: 

1. definitely or almost definitely negative (normal), 

2. probably negative, 

3. possibly positive, 

4. probably positive, 
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5 .  definitely or almost definitely positive (abnormal). 

Item 3 above may be replaced by “indeterminate” if desired. Various values of 
T P F  and FPF are then calculated by varying the decision threshold from level 5 
to level 1 according to the decision items listed above. The resulting (FPF,  T P F )  
points are then plotted to form an ROC curve. The maximum likelihood estimation 
method [260] is commonly used to fit a binormal ROC curve to data as above. 

A summary measure of effectiveness of a test is given by the area under the ROC 
curve, traditionally labeled as A,. It is clear from Figure 9.4 that A, is limited to 
the range (0 , l ) .  A test that gives a larger area under the ROC curve indicates a 
better method than one with a smaller area: in Figure 9.4, the method corresponding 
to ROC3 is better than the method corresponding to ROC2; both are better than the 
method represented by ROC1 with A, = 0.5. An ideal method will have an ROC 
curve that follows the vertical line from (0,O) to (0, l), and then the horizontal line 
from (0 , l )  to (1, l), with A, = 1: the method has T P F  = 1 with FPF = 0, 
which is ideal. (Note: This would require the PDFs represented in Figure 9.3 to be 
non-overlapping.) 

9.1 0.2 McNemar’s test of symmetry 

Problem: Suppose we have two methods to pe$orm a certain diagnostic test. How 
may we compare the classifcation pe$ormance of one against that of the other? 

Solution: Measures of overall classification accuracies such as a percentage of 
correct classification or the area under the ROC curve provide simple measures to 
compare two or more diagnostic methods. If more details are required as to how the 
classifications of groups of cases vary from one method to another, McNemar’s test 
of symmetry [261,262] would be an appropriate tool. 

McNemar’s test is based on the construction of contingency tables that compare 
the results of two classification methods. The rows of a contingency table represent 
the outcomes of one of the methods used as the reference, possibly a gold standard 
(labeled as Method A in Table 9.3); the columns represent the outcomes of the other 
method, which is usually a new method (Method B) to be evaluated against the gold 
standard. The entries in the table are counts that correspond to particular diagnostic 
categories, which in Table 9.3 are labeled as normal, indeterminate, and abnormal. A 
separate contingency table should be prepared for each true category of the patterns; 
for example, normal and abnormal. (The class “indeterminate” may not be applicable 
as a true category.) The true category of each case may have to be determined by a 
third method (for example, biopsy or surgery). 

In Table 9.3, the variables a, b, c, d,  e, f, g, h, and i denote the counts in each 
cell, and the numbers in parentheses denote the cell number. The variables C1, C2, 
and C3 denote the total numbers of counts in the corresponding columns; R1, R2, 
and R3 denote the total numbers of counts in the corresponding rows. The total 
number of cases in the true category represented by the table is N = C1+ C2 + C3 
= R 1 +  R2 + R3. 
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Method B 

Method A Normal Indeterminate Abnormal Total 

Indeterminate d (4) e ( 5 )  f (6) R2 

Abnormal 9 (7) h (8) i (9) R3 

Total c1 c2 c3 N 

Table 9.3 Schematic representation of a contingency table for McNemar’s test of asymmetry. 

Each cell in a contingency table represents a paired outcome. For example, in 
evaluating the diagnostic efficiency of Method B versus Method A, cell number 3 
will contain the number of samples that were classified as normal by Method A but 
as abnormal by Method B. The row totals R1, R2, and R3, and the column totals C1, 
C2, and C3 may be used to determine the sensitivity and specificity of the methods. 

High values along the main diagonal (a, e, i) of a contingency table (see Table 9.3) 
indicate no change in diagnostic performance with Method B as compared to Method 
A. In a contingency table for truly abnormal cases, a high value in the upper-right 
portion (cell number 3) will indicate an improvement in diagnosis (higher sensitivity) 
with Method B as compared to Method A. In evaluating a contingency table for 
truly normal cases, Method B will have a higher specificity than Method A if a 
large value is found in cell 7. McNemar’s method may be used to perform detailed 
statistical analysis of improvement in performance based upon contingency tables if 
large numbers of cases are available in each category [261,262]. 

9.1 1 RELIABILITY OF CLASSIFIERS AND DECISIONS 

In most practical applications of biomedical signal analysis, the researcher is pre- 
sented with the problem of designing a pattern classification and decision making 
system using a small number of training samples (signals), with no knowledge of the 
distributions of the features or parameters computed from the signals. The size of 
the training set, relative to the number of features used in the pattern classification 
system, determines the accuracy and reliability of the decisions made [263, 2641. 
One should not increase the number of features to be used without a simultaneous 
increase in the number of training samples, as the two quantities together affect the 
bias and variance of the classifier. On the other hand, when the training set has a fixed 
number of samples, the addition of more features beyond a certain limit will lead to 
poorer performance of the classifier: this is known as the ‘‘curse of dimensionality”. 
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It is desirable to be able to analyze the bias and variance of a classification rule while 
isolating the effects of the functional form of the distributions of the features used. 

Raudys and Jain [264] give a rule-of-thumb table for the number of training 
samples required in relation to the number of features used in order to remain within 
certain limits of classification errors for five pattern classification methods. When the 
available features are ordered in terms of their individual classification performance, 
the optimal number of features to be used with a certain classification method and 
training set may be determined by obtaining unbiased estimates of the classification 
accuracy with the number of features increased one at a time in order. A point will be 
reached when the performance deteriorates, which will indicate the optimal number 
of features to be used. This method, however, cannot take into account the joint 
performance of various combinations of features: exhaustive combinations of all 
features may have to be evaluated to take this aspect into consideration. Software 
packages such as the Statistical Package for the Social Sciences (SPSS) [25 1, 2521 
provide programs to facilitate feature evaluation and selection as well as the estimation 
of classification accuracies. 

Durand et al. [ 1671 reported on the design and evaluation of several pattern clas- 
sification systems for the assessment of bioprosthetic valves based upon 18 features 
computed from PCG spectra (see Section 6.6). Based upon the rule of thumb that 
the number of training samples should be five or more times the number of features 
used, and with the number of training samples limited to data from 20 normal and 
28 degenerated valves, exhaustive combinations of the 18 features taken 2,3,4,5, 
and 6 at a time were used to design and evaluate pattern classification systems. The 
Bayes method was seen to provide the best performance (98% correct classification) 
with six features; as many as 511 combinations of the 18 features taken six at a 
time provided correct classification between 90% and 98%. The nearest-neighbor 
algorithm with the Mahalanobis distance provided 94% correct classification with 
only three features, and did not perform any better with more features. 

9.12 APPLICATION: NORMAL VERSUS ECTOPIC ECG BEATS 

We have seen the distinctions between normal and ectopic (PVC) beats in the ECG 
in several different contexts (see Sections 1.2.4, 5.4.2, 5.7, and 9.2.2, as well as 
Figures 5.1 and 5.10). We shall now see how we can put together several of the topics 
we have studied so far for the purpose of detecting PVCs in an ECG signal. 

Training step: Figure 9.5 shows the ECG signal of a patient with several ectopic 
beats, including episodes of bigeminy (alternating normal beats and PVCs). The 
beats in the portion of the signal in Figure 9.5 were manually labeled as‘normals (‘0’ 
marks) or PVCs (‘x’ marks), and used to train a pattern classification system. The 
training set includes 121 normal beats and 39 PVCs. 

The following procedure was applied to the signal to detect each beat, compute 
features, and develop a pattern classification rule: 
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Figure 9.5 The ECG signal of a patient (male, 65 years) with PVCs (training set). Each strip 
is of duration 10 8;  the signal continues from top to bottom. The second half of the seventh 
strip and the first half of the eighth strip illustrate an episode of bigeminy. Each beat was 
manually labeled as normal (‘0’) or PVC (‘x’). The last beat was not processed. 
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1 .  The signal was filtered with a Buttenvorth lowpass filter of order 8 and cutoff 
frequency 70 Hz to remove noise (see Section 3.4.1); the sampling rate is 
200 Hz. 

2. The Pan-Tompkins algorithm was applied todetect each beat (see Section 4.3.2). 

3. The QRS - T portion of each beat was segmented by selecting the interval 
from the sample 160 ms before the peak of the Pan-Tompkins output to the 
sample 240 ms after the peak (see Figure 5.10). 

4. The RR interval and form factor FF were computed for each beat (see Sec- 
tions 5.6.4 and 5.7, and Figure 5.10). Figure 9.6 illustrates the feature vector 
plot for the training set. 

5.  The prototype (mean) feature vectors were computed for the normal and PVC 
groups in the training set. The prototype vectors are (RR, F F )  = (0.66,1.58) 
and (RR, F F )  = (0.45,2.74) for the normal and PVC classes, respectively. 

6. The equations of the straight line joining the two prototype vectors and its 
normal bisector were determined; the latter is the optimal linear decision 
function (see Section 9.4.1 and Figure 9.1). Figure 9.6 illustrates the two lines. 

7. The equation of the linear decision function is RR - 5.56FF + 11.44 = 0. 
The decision rule may be stated as 

> 0 normal beat { 1 0  PVC. if RR - 5.56FF + 11.44 (9.82) 

All of the beats in the training set were correctly classified by the decision rule in 
Equation 9.82. 

Observe from Figure 9.6 that a simple threshold on FF alone can effectively 
separate the PVCs from the normals in the training set. A viable classification rule 
to detect PVCs may also be stated in a manner similar to that in Section 9.2.2. The 
example given here is intended to serve as a simple illustration of the design of a 2D 
linear decision function. 

Test step: Figure 9.7 illustrates an ECG segment immediately following that in 
Figure 9.5. The same procedure as described above was applied to detect the beats in 
the signal in Figure 9.7 and to compute their features, which were used as the test set. 
The decision rule in Equation 9.82 was applied to the feature vectors and the beats 
in the signal were automatically classified as normal or PVC. Figure 9.8 illustrates 
the feature-vector space of the beats in the test set, along with the decision boundary 
given by Equation 9.82. Figure 9.7 shows the automatically applied labels of each 
beat: all the 37 PVCs were correctly classified, and only one of the 120 normal beats 
was misclassified as a PVC (that is, there was one false positive). 

It should be observed that a PVC has, by definition, an RR interval that is less than 
that for a normal beat (at the same heart rate). However, the heart rate of a subject 
will vary over time, and the reference RR interval to determine the prematurity of 
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Figure 9.6 (RR, FF) feature-vector space corresponding to the ECG in Figure 9.5 (training 
set). Normal: ‘o’, PVC: ‘x’. The straight line joining the two prototype vectors (dashed) and 
its normal bisector (solid) are also shown; the latter is the optimal linear decision function. 
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Figure 9.7 The ECG signal of a patient with PVCs (test set); this portion immediately 
follows that in Figure 9.5. Each strip is of duration 10 e; the signal continues from top to 
bottom. Each beat was automatically labeled as normal (‘0’) or PVC (‘x’) by the decision rule 
stated in Equation 9.82. The loth beat in the gth strip with (RR, FF) = (0.66,2.42) was 
misclassified. The last beat was not processed. 
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Figure 9.8 (RR, FF) feature-vector space corresponding to the ECG in Figure 9.7 (test 
set). Normal: ‘o’, PVC: ‘x’. The straight line is the optimal linear decision function given in 
Equation 9.82. The ‘x’ mark closest to the decision boundary with (RR, F F )  = (0.66,2.42) 
corresponds to a false positive classification. 
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PVCs needs to be updated periodically. A decision rule as in Equation 9.82 cannot be 
applied on a continuing basis even to the same subject. Note that the proposed method 
can be extended for the identification of sinus beats (originating from the SA node) 
that meet the prematurity condition due to sinus arrhythmia but are, nevertheless, 
normal in waveshape. 

The FF values will depend upon the waveshape of each ECG beat, which will 
vary from one ECG lead to another. Therefore, the same decision rule based upon 
waveshape cannot be applied to all ECG leads of even the same subject. Furthermore, 
a given subject may have PVCs originating from various ectopic foci resulting in 
widely different waveshapes even in the same ECG lead. A shape factor to be used 
for pattern classification must be capable of maintaining different values between 
PVCs of various waveshapes as one group, and of normal beats as the other. 

The preceding illustration is intended to serve as a simple example of the design of 
a pattern classification system; in practice, more complex decision rules based upon 
more than two features will be required. Furthermore, it should be observed that a 
pattern classification procedure as described above provides beat-by-beat labeling; 
the overall diagnosis of the patient’s condition requires many other items of clinical 
information and the expertise of a cardiologist. 

9.1 3 APPLICATION: DETECTION OF KNEE-JOINT CARTILAGE 
PATHOLOGY 

Moussavi et al. [56], Krishnan et al. [57], and Rangayyan et al. [58]  proposed a series 
of adaptive segmentation, modeling, and pattern classification techniques for the 
detection of knee-joint cartilage pathology using VAG signals (see Sections 1.2.13 
and 8.2.3). In consideration of the fact that VAG signals are nonstationary, each VAG 
signal was first divided into locally stationary segments using the RLS or the RLSL 
algorithm (see Sections 8.6.1 and 8.6.2). Each segment was considered as a separate 
signal and modeled by the forward-backward linear prediction or the Burg-lattice 
method (see Section 8.6.2). The model coefficients or poles were used as parameters 
for pattern classification. 

A striking difference that may be observed visually and aurally between normal and 
abnormal VAG signals is that abnormal signals are much more variable in amplitude 
across a swing cycle than normal signals. However, this difference is lost in the 
process of dividing the signals into segments and considering each segment as a 
separate signal. To overcome this problem, the means (time averages) of the segments 
of each subject’s signal were computed, and then the variance of the means was 
computed across the various segments of the same signal. The variance of the means 
represents the above-mentioned difference, and was used as one of the discriminant 
features. 

In addition to quantitative parameters derived from VAG signal analysis, clinical 
parameters (to be described in the following paragraphs) related to the subjects were 
also investigated for possible discriminant capabilities. At the outset, as shown 
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in Figure 9.9, knee joints of the subjects in the study were categorized into two 
groups: normal and abnormal. The normal group was divided into two subgroups: 
normal-silent and normal-noisy. If no sound was heard during auscultation, a normal 
knee was considered to be normal-silent; otherwise, it was considered to be normal- 
noisy. All knees in the abnormal group used were examined by arthroscopy (see 
Section 8.2.3 and Figure 8.2), and divided into two groups: arthroscopically normal 
and arthroscopically abnormal. 

Labeling of VAG signal segments was achieved by comparing the auscultation 
and arthroscopy results of each patient with the corresponding segmented VAG and 
joint angle signals. Localization of the pathology was performed during arthroscopy 
and the joint angle ranges where the affected areas could come into contact with 
other joint surfaces were estimated. These results were then compared with the 
auscultation reports to determine whether the joint angle(s) at which pathology existed 
corresponded to the joint angle@) at which sound was heard. For example, if it was 
found from the arthroscopy report of a patient that the abnormal parts of the patient's 
knee could cause contact in the range 30" - go", VAG signal segments of the subject 
corresponding to the angle range of 30" - 90" were labeled as arthroscopically 
abnormal; the rest of the segments of the signal were labeled as arthroscopically 
normal. 

Knee joint 

I 
,I, via clinical 

observation I 

Figure 9.9 Categorization of knee joints based upon auscultation and arthroscopy. 

Categorization into four groups as above was done based upon the presumptions 
that normai-noisy and arthroscopically abnormal signals might be distinguishable in 
their characteristics, and that normal-silent and arthroscopically normal knees would 
also be distinguishable. The possibilities of arthroscopically normal knees being 
associated with sounds, normal-noisy knees not having any associated pathology, 
and normal-silent knees having undetermined pathologies were also admitted. Kr- 
ishnan et al. [57] further subdivided the arthroscopically normal and arthroscopically 
abnormal categories into silent and noisy categories, thereby having a total of six 
categories; this is not shown in Figure 9.9. 
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Based on clinical reports and auscultation of knee joints, the following clini- 
cal parameters were chosen as features (in addition to AR model parameters) for 
classification: 

Sound: The sound heard by auscultation during flexion and extension movement of 
the knee joint was coded as: 

0- silent, 
1- click, 

3- grinding, or 
4- a mixture of the above-mentioned sounds or other sounds. 

2- pop, 

Each segment of the VAG signals was labeled with one of the above codes. 

Activity level: The activity level of each subject was coded as: 

1- exercising once per week or less, 
2- exercising two or three times per week, or 
3- exercising more than three times per week. 

Age: The age of the subject in years. 

Gender: The gender of the subject, which was coded as 

0- female, or 
1- male. 

Among the parameters mentioned above, gender may not be a discriminant param- 
eter; however, it is customary to record gender in clinical analysis. Note that among 
the four parameters listed above, only the first one can vary between the different 
segments of a given subject’s VAG signal. 

Moussavi et al. [56] compared the performance of various sets of features in the 
classification of VAG signals into two groups and four groups (see Figure 9.9) with 
random selections of cases. Using a set of 540 segments obtained from 20 normal 
subjects and 16 subjects with cartilage pathology, different numbers of segments were 
randomly selected for use in the training step of designing a discriminant function, 
and finally the selection which provided the best result in the test step was chosen 
for the final classification system. Two-group classification accuracies in the range 
77 - 91% and four-group classification accuracies in the range 65 - 88% were 
obtained. 

By combining the steps of classification into two groups and four groups, a two- 
step method was proposed by Moussavi et al. [56]; a block diagram of this method is 
illustrated in Figure 9.10. The algorithm first uses training sets to design classifiers 
for two and four groups. The resulting discriminant functions are used as Classifier 1 
(two groups) and Classifier 2 (four groups), respectively. An unknown signal, which 
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has been adaptively divided into segments, enters Classifier 1. If segments spanning 
more than 90% of the duration of the signal are classified as being normal, the 
signal (subject) is considered to be normal. On the other hand, if more than 90% 
of the duration of the signal is classified as being abnormal, the signal (subject) is 
considered to be abnormal. If more than 10% but less than 90% of the signal duration 
is classified as abnormal, the signal goes to Classifier 2, which classifies the signal 
into four groups (see Figure 9.9). In the second step, if more than 10% of the duration 
of the signal is classified as being arthroscopically abnormal, the signal is considered 
to be abnormal; otherwise it is considered to be normal. At this stage, information 
on the numbers of segments belonging to the four categories shown in Figure 9.9 is 
available, but the final decision is on the normality of the whole signal (subject or 
knee joint). 

The two-step diagnosis method was trained with 262 segments obtained from 10 
normal subjects and eight subjects with cartilage pathology, and was tested with 278 
segments obtained from a different set of 10 normal subjects and eight subjects with 
cartilage pathology but without any restriction on the kind of abnormality. Except for 
one normal signal which was indicated as being abnormal over 12% of its duration, 
all of the signals were correctly classified. The results also showed that all of the 
abnormal signals including signals associated with chondromalacia grades I to IV 
(see Section 8.2.3 and Figure 8.2) were classified correctly. Based upon this result, 
it was indicated that the method has the ability to detect chondromalacia patella at 
its early stages as well as advanced stages. Krishnan et al. [57] and Rangayyan et 
al. [58]  reported on further work along these directions. 

9.14 REMARKS 

The subject of pattern classification is a vast area by itself. The topics presented in 
this chapter provide a brief introduction to the subject. 

We have now seen how biomedical signals may be processed and analyzed to 
extract quantitative features that may be used to classify the signals as well as to 
design diagnostic decision functions. Practical development of such techniques is 
usually hampered by a number of limitations related to the extent of discriminant 
information present in the signals selected for analysis, as well as the limitations of 
the features designed and computed. Artifacts inherent in the signal or caused by the 
signal acquisition systems impose further limitations. 

A pattern classification system that is designed with limited data and information 
about the chosen signals and features will provide results that should be interpreted 
with due care. Above all, it should be borne in mind that the final diagnostic decision 
requires far more information than that provided by signal analysis: this aspect is 
best left to the physician or health-care specialist in the spirit of computer-aided 
diagnosis. 
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I 
Classifier 2 
( 4  groups) 

N o  Yes 

t 

VAG signal 

Classifier 1 
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Normal Abnormal 

Figure 9.10 A two-step classification method for the diagnosis of cartilage pathology. AA 
- Arthroscopically abnormal. See also Figure 9.9. Reproduced with permission from Z.M.K. 
Moussavi, R.M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, and Y.T. Zhang, Screening 
of vibroarthrographic signals via adaptive segmentation and linear prediction modeling, IEEE 
Transactions on Biomedical Engineering, 43( 1) :  15-23, 19%. OIEEE. 
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9.15 STUDY QUESTIONS AND PROBLEMS 

1, The prototype vectors of two classes of signals are specified as Class 1 : (1,0.5), and 
Class 2 : (3,3). A new sample vector is given as ( 2 , l ) .  Give the equations for two 
measures of similarity or dissimilarity, compute the measures for the sample vector, 
and classify the sample as Class 1 or Class 2 using each measure. 

2. In a three-class pattern classification problem, the three decision boundaries are dl (x) = 
-21 + ZZ. &(x) = ZI + zz - 5, and &(x) = - 2 2  + 1. 
Draw the decision boundaries on a sheet of graph paper. 
Classify the sample pattern vector x = (6,5) using the decision functions. 

3. Two pattern class prototype vectors are given to you as 51 = (3,4) and 5 2  = (10,2). 
Classify the sample pattern vector x = (4,5) using (a) the normalized dot product, and 
(b) the Euclidean distance. 

4. A researcher makes two measurements per sample on a set of 10 normal and 10 abnormal 
samples. 
The set of feature vectors for the normal samples is 

The set of feature vectors for the abnormal samples is 
((4, lo ) ,  (24,181, (16, 181, (18,20), (14,20), (20,22), (18, ls), (20, 201, (18, la), (20,18)). 
Plot the scatter diagram of the samples in both classes in the feature-vector space (on a 
sheet of graph paper). Draw a linear decision function to classify the samples with the 
least error of misclassification. Write the decision function as a mathematical rule. 
How many (if any) samples are misclassified by your decision function? Mark the 
misclassified samples on the plot. 
Two new observation sample vectors are provided to you as XI = (12,15) and xz = 
(14,15). Classify the samples using your decision rule. 
Now, classify the samples x1 and Xa using the k-nearest-neighbor method, with k = 7. 
Measure distances graphically on your graph paper plot and mark the neighbors used 
in this decision process for each sample. 
Comment upon the results - whether the two methods resulted in the same classification 
result or not - and provide reasons. 

5. A researcher makes measurements of RR intervals (in seconds) and form factor (FF) 
for a number of ECG beats including (i) normal beats, (ii) premature ventricular con- 
tractions (PVC), and (iii) normal beats with a compensatory pause (NBCP). The values 
(training set) are given in Table 9.4. 
(a) Plot the (RR, FF) feature-vector points for the three classes of beats on a graph 
paper. 
(b) Compute the prototype vectors for each class as the class means. Indicate the 
prototypes on the plot. 
(c) Derive the optimal linear discriminant functions (or decision functions) as the 
perpendicular bisectors of the straight lines joining the prototypes. State the decision 
rule(s) for each type of beat. 
(d) Three new beats are observed to have the parameters listed in Table 9.5. Classify 
each beat using the decision functions derived in part (c). 

6. For the training data given in the preceding problem, compute the mean and covariance 
matrices of the feature vectors for each class, as well as the pooled covariance matrix. 

{(2,6), (22, 20), (10,14), (10, lo), (24,2419 (8, lo), (8, (6,10), (8,12), (8912)). 
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Normal Beats PVCs NBCPs 

RR FF RR FF RR FF 
0.700 1.5 0.600 5.5 0.800 1.2 
0.720 1.0 0.580 6.1 0.805 1.1 
0.710 1.2 0.560 6.4 0.810 1.6 
0.705 1.3 0.570 5.9 0.815 1.3 
0.725 1.4 0.610 6.3 0.790 1.4 

Table 9.4 Training set of (RR, FF) feature vectors. 

BeatNo. RR FF 

1 0.650 5.5 
2 0.680 1.9 
3 0.820 1.8 

Table 9.5 Test set of (RR, FF) feature vectors. 

Design a classifier based upon the Mahalanobis distance using the pooled covariance 
matrix. 

7. You have won a contract to design a software package for computer-aided diagnosis 
of cardiovascular diseases using the heart sound signal (PCG) as the main source of 
information. The main task is to identify the presence of murmurs in systole and/or 
diastole. You may use other signals for reference. 
Propose a signal processing system to 

(i) acquire the required signals; 

( i i )  preprocess them as required; 

(iii) extract at least two features for classification; and 

(iv) classify the PCG signals as: 

class 1 - Normal (no murmurs), 
class 2 - Systolic murmur, 
class 3 - Diastolic murmur, or 
class 4 - Systolic and diastolic murmur. 

Provide a block diagram of the complete procedure. Explain the reason behind the 
application of each step and state the expected results or benefits. Provide algorithmic 
details and/or mathematical definitions for at least two major steps in your procedure. 
Draw a schematic plot of the feature-vector space and indicate where samples from the 
four classes listed above would fall. Propose a framework of decision rules to classify 
an incoming signal as belonging to one of the four classes. 
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9.16 LABORATORY EXERCISES AND PROJECTS 

Note: Data files related to the exercises are available at the site 
ftp:Nftp.ieee.orgluploads/presslrangay yanl 

1. The data file ecgpvc.dat contains the ECG signal of a patient with PVCs (see Figures 9.5 
and 9.7). Refer to the file ecgpvc.m for details. Use the first 40% of the signal as training 
data to develop a PVC detection system (see Section 9.12). Develop code to segment 
the QRS - T portion of each beat using the Pan-Tompkins method (see Section 4.3.2), 
and compute the RR interval, QRS width (see Figure 4.5), and form factor FF for 
each beat (see Section 5.6.4). Design linear discriminant functions using (i) RR and 
QRS width, and (ii) RR and FF as the features; see Figure 9.6. Analyze the results in 
terms of T P F  and F P F .  
Code the decision function into your program as a classification rule. Test the pattern 
classifier program with the remaining 60% of the signal as the test signal. Compute the 
test-stage classification accuracy in terms of T P F  and F P F .  

2. Repeat the previous exercise replacing the linear discriminant function with the k- 
nearest-neighbor method, with k = 1,3,5, and 7. Evaluate the method with feature 
sets composed as 

0 RR and QRS width, 
RR and FF,  and 

0 RR, FF,  and QRS width. 

Compare the performances of the three classifiers and provide reasons for any differ- 
ences between them. 
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inverse linear prediction 360

inverse of a signal 242
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K-means clustering 456

knee joint 46

cartilage pathology

detection 480
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arthroscopy 394 481
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crepitus 374

sound generation model 374
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loss function 458
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Mahalanobis distance 453
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first-order 75 82

of energy distribution 241

of power spectral density 305
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 reflection coefficient 338 424

 refractory period 6

 repolarization 6
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 respiration

analysis of 266

 resting potential 5

 rhythm analysis 64 277

 root mean-squared value 77 259 269
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 screening 466

 searchback procedure 189
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single-motor-unit action potential, see MUAP
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specificity 467
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spike-and-wave 180
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stick-slip model 376

structured noise 80

synchronized averaging 94 161 231 252 255

298

system identification 360

systole 18 37 69 225



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

T

tap weights 99 101 139 149 153

419

temperature 2

template matching 80 95 194 200 205

209 240

temporal statistics, see time averages
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time-frequency distribution 402

time-invariant system 327

time-variant system 317 396 419

transfer function 99 332

true negative 467
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turning points 75

turns count 260
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VAG 46 91 393
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introduction 46

muscle force 269
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root mean-squared value 269

vocal tract 43

vocal-tract response 216 221
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waveform analysis ECG 244 248

waveform complexity 237 256

 waveshape 237

 weighting function 222

 Welch method 291 296

 whitening filter 340

 Widrow-Hoff algorithm 150

 Wiener filter 137 150 162 165 334

337 363

 Wiener-Hopf equation 141 150 153

 Wilson’s terminal 22



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

window

Bartlett 289 292

Hamming 292

Hanning 292 296

in short-time analysis 402

rectangular 289 292 295 302

Z

zero padding 222
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