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Preface

Digital signal processing (DSP) does not require any special advertisements. Since the
1960s, it has become one of the most intensive fields of study in electronics-related
science, and since the 1980s, owing to the extensive progress in integrated circuits
technology, it has been an inseparable part of modern electronic systems. However,
among the numerous DSP publications on algorithms, approaches, technical solutions,
and so on, there is apparently no book on library shelves that is dedicated to linear
non-adaptive time-variant digital filters. The lack of such a book is a deterrent to
developing much broader engineering applications of these systems.

Different aspects of time-variant digital filters, or broader systems, have been stud-
ied for many years. Publications dedicated to this subject belong to different authors,
and are spread over years and across journals. However, in spite of the many inter-
esting and useful features of such systems, there are no systematic publications,
monographs, or textbooks dedicated to filters with time-varying parameters or more
complex systems based on these filters. The objective of this book is to present an
appropriate introduction to theory and practice of one of the subclasses of time-varying
digital systems: parametric digital filters and oscillators. The word parametric adopted
in this book came from analog systems with periodically time-varying parameters; for
example, the RLC resonator with varying capacitor [1]. This book starts with an anal-
ysis of discrete systems with parameters varying according to arbitrary laws, while the
core of the book is dedicated to digital parametric filters and oscillators, which are the
systems with periodically time-varying coefficients. In the general case, coefficient
variation laws are arbitrary but specified beforehand, regardless of the input process.
This distinguishes the discussed systems from adaptive filters [2]. This book does not
cover filters with an essentially varying sampling rate nT + δT (n) and δT (n) ≥ T ,
which belong to the subclass of multi-rate filters [3] and also, in many instances,
belong to the class of time-variant systems [4].

Thus, we will study digital systems described by the linear difference equation
with time-varying parameters:

K1∑

k=0

ak(n) · y(n − k) =
K2∑

k=0

bk(n) · x(n − k)

where x(n) and y(n) are input and output signals respectively; n = 0, 1, . . . is the time
instant nT (T is the sampling interval); ak(n) and bk(n) are time-varying coefficients;
and a0(n) �= 0 for any n.



xii PREFACE

Choosing an appropriate law of parameter variation in infinite impulse response
(IIR) systems allows them to operate in filtering, frequency conversion or parametric
oscillating modes. The latter mode has not been previously discussed in the literature
except in the author’s publications. In the main text, in many cases the word “filter”
will describe all these systems. There will not be a focus on how to build these
systems. The presented algorithms for time-variant systems will be appropriate for
universal computers, microprocessors, specially developed hardware or DSP boards.
For us, these will all be time-variant systems or filters.

Time-variant systems demonstrate some essential peculiarities in comparison with
the traditional digital time-invariant filters. Even very small variations in parameters
can change the characteristics of filters dramatically. Distinctive features of these
systems are interesting from the circuit theory point of view and also have practical
applications. Looking at this problem a little bit philosophically, we can regard the
variation of parameters in time as offering new degrees of freedom in system design.
Readers will find numerous examples within this book of how these extra degrees of
freedom influence filter characteristics.

But, first let us look at an example that is very far from the field of digital systems.
This example shows how it can be important to add an extra degree of freedom when
attempting to solve a problem.

So, there are problems that have no solutions within N × D space, but have solu-
tions within (N + K) × D space or have better solutions within (N + K) × D space,
or have more cost-effective solutions and so on.

Comparison of the difference equation describing time-invariant filters

K1∑

k=0

ak · y(n − k) =
K2∑

k=0

bk · x(n − k)

with the difference equation describing time-variant filters shows that the latter has
extra degrees of freedom owing to the time dependence of coefficients. How these
new degrees of freedom can be used will be discussed in the main text. The author
hopes that on the basis of this information, researchers and engineers will be able to
develop many new applications for time-variant digital systems.

In the book, only two algorithms of time-variant systems are discussed in detail:
frequency filters that are, in some instances, equivalents of linear time-invariant (LTI)
filters, and parametric oscillators. Of course, these are not the only possible types of
linear time-variant (LTV) system applications. LTV systems are optimal, for example,
for cyclo-stationary signals processing in communication systems [5, 6]. LTV discrete
systems (DSs) can be used for spectrum [7] and image scrambling [8], image trans-
mission [9], systems identification [10], TDM/FDM conversion [11, 12] and for many
other useful applications.

The last but not the least group of LTV algorithms are two-dimensional time-
variant filters for image processing, which are now the focus of much research. They
include periodically time-varying filters [13] as well as more general systems and,
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You have six matches.

PUZZLE

How do you build four
triangles
using only these six matches?

The first attempt:

Six matches are used but only
two triangles are built 

The second attempt:

Two and a half triangles are ready
but all matches have been used.

Keep going… 

The solution is a pyramid
and an extra degree of

freedom is the third dimension.

in particular, time-variant filtering based on Gabor transform [14, 15]. Traditionally,
one-dimensional filtering theory has generally been the basis for multidimensional
signal processing. Therefore, this book can also be used as an introduction to two-
dimensional LTV filtering.

As follows from the discussion above, LTV systems represent a rather broad class
of systems and algorithms for signal and image processing. This book does not pretend
to cover all aspects of LTV DS analysis and synthesis as well as application of time-
varying algorithms in signal processing. Following the advice of the Russian folk
philosopher Kozma Prutkoff that

“ . . . it is impossible to envelop the boundless . . . ”

this book is necessarily restricted in its contents. However, the author’s expectation is
that the book will initiate a new wave of interest in this class of systems, particularly
in the engineering community.
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The book contains seven chapters. There are no cross-references between the intro-
duction and the main text, allowing the main text to be read independently of the
introduction. When the first draft of the main text was ready, the author gave it to
some postgraduate students to study. However, it took an unexpectedly long time for
students to complete their reading of the book. After discussions with these students
about how to make the book easier to read, the introduction was added. It is designed
to help the reader understand the main text without requiring other special materials.
The introductory chapter concisely explains the general problems of digital signals,
filtering and methods of system analysis.

The introduction is not intended to substitute for numerous wonderful textbooks
dedicated to digital systems and signals [16–18]. So, if readers feel confident about
their knowledge of digital signals and systems they can read the book starting from the
main text. Alternatively, the introduction may serve to refresh the reader’s knowledge
of the signals and systems basics.

This book is written, first of all, for graduate specialists in signal processing and
related specialties, as well as for PhD students. Other students, for example, those
engaged in final year thesis preparation, may also find it useful.

Any preface assumes some historical reference to the subject. For me, the story
of this subject started when I first read the paper of reference [19]. I then started to
work in this area with my PhD students. Much later I had the privilege of spending
a term in Cambridge University with a world-class signal-processing group led by
Prof. Peter Rayner. Some early research done by this group was also dedicated to
time-variant signal processing [11, 20].

Most of the author’s papers dedicated to parametric systems have been published
in Russian. It is difficult to translate properly even the title of these journals. Some
information regarding these papers can be found in [21].

My former postgraduate students, V. Bets, V. Sizov, I. Rogozkin, L. Donskoi, P.-
J. Picot, have contributed a lot in the area covered by the book. Moreover, with the
permission of V. Sizov, there are some direct adoptions from his thesis; in particular,
examples of time-varying filters.

The book is also a good place to thank my former PhD supervisor and later my
colleague for many years, Prof. D. Nezlin, for his contribution to my development as
a scientist.

Behind any book there is a big job in manuscript preparation. I want to thank Carol
Booth who helped me with this.
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1
Introduction: Basis of Discrete
Signals and Digital Filters

The theory and practice of digital signal processing (DSP) are currently in a mature
stage. It is difficult to imagine any modern electronic system without wide application
of DSP and, in particular, linear time-invariant algorithms for filtering, equalization,
characteristic correction and so on.

The major goal of this chapter is to introduce the theoretical basis of discrete signals
and time-invariant digital systems to help readers more easily understand the main
text dedicated to time-variant systems and to minimize the necessity to consult other
texts while reading this book. This introduction provides a superficial overview of
DSP concepts: sampling and quantization; impulse and frequency responses; Fourier,
Laplace and z-transforms; system stability and causality and finite and infinite impulse
response (IIR) digital filters (DFs). For those familiar with DSP and related subjects,
this introduction will help refresh their knowledge. For those who are unfamiliar,
this chapter can be used as the first stage of study of discrete signals and systems.
Of course, this introduction does not and cannot replace special literature and text-
books dedicated to DSP problems. Among the latest textbooks in this area, the author
recommends Reference [1].

1.1 DISCRETE SIGNALS AND SYSTEMS

Most signals used in information systems are similar to analog processes. In the gen-
eral case they are functions of continuous time. Digital filters belong to the group
of discrete systems of signal processing, which operate with discrete input processes.
Thus, an analog input signal is represented by discrete samples obtained in time
moments proportional to the sampling interval T . An analog waveform can be trans-
formed into an appropriate discrete signal without information losses if sampling
frequency fs is determined as

fs = ωs

2π
= 1

T
≥ 2fo max (1.1)

An Introduction to Parametric Digital Filters and Oscillators Mikhail Cherniakov
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85104-X



2 BASIS OF DISCRETE SIGNALS AND DIGITAL FILTERS

This corresponds to the Nyquist criteria, that is, the sampling frequency is at least
two times higher than the highest frequency in the signal spectrum fo max [2]. In
discrete signal analysis, frequency, as a rule, is represented as a normalized frequency
ω = ωaT = ωa/fs , where ωa = 2πfa is a frequency of an analog (continuous) signal.

To form a digital signal from a discrete signal, the amplitude is represented as a
binary code. The device that quantizes the signal is called an analog–digital converter
(ADC). The number of bits in signal representation depends on the system’s appli-
cations and in practice, varies in a band from 1 to 16. The most widely used ADCs
have 8 to 12 bits.

The analysis of digital systems is similar to the analysis of analog systems and is
based on the comparison of signals at the system’s input and output. In this chapter,
digital signals and systems will be considered with the assumption that the number
of bits in ADCs is large enough and that quantization effects are negligible. In other
words, we make digital signals and systems equivalent to discrete signals and sys-
tems. If necessary, a quantization effect can be taken into account by adding some
quantization noise to signal. In conventional ADCs, in the first approximation, this
noise has uniformly distributed amplitude with zero mean value and its power can
be calculated by [1] σ 2

qn = �2/12, where � is the quantization level. This noise also
has near uniform power spectral density over the band |f | ≤ fs/2.

Signal-to-quantization noise ratio (S/Nqn ) can be evaluated as S/Nqn ≈ 6.02Bits +
4.77 − 20 log(Ap/σS) (dB), where Bits is the number of bits representing an input
signal, σS is the rms value of the input waveform and Ap is the ADC peak design
level of the quantizer. For example, if an input signal is a sinusoidal waveform
(S/Nqn) ≈ 6.02Bits + 1.7 (dB). Continuous linear systems are fully characterized by
their impulse response h(t). The impulse response is an output system reaction to the
input signal, described by the δ-function

δ(t) =
{∞, t = 0

0, t �= 0
(1.2)

and

y(t) =
∫ t

0
x(t − λ)h(λ) dλ (1.3)

where x(t) and y(t) are input and output signals of the system respectively, and
x(t) = 0 for t < 0.

For a discrete system, continuous time t should be replaced by discrete time t = nT

and λ = mT , and integration is replaced by summation

y(nT ) =
n∑

m=0

x(nT − mT ) · h(mT ) · T (1.4)

Thus, the first step of digital system analysis is the representation of an analog
signal x(t) by a discrete equivalent x(nT ). The second step is the representation of
h(t) by its discrete equivalent h(mT ).
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1.2 DISCRETE SIGNALS

1.2.1 Time-Domain Representation for Discrete Signals

In the general case, discrete signals can be described in discrete time moment nT as
well as in continuous time. For the analysis of discrete systems, signals description
in discrete time is most popular, namely, nT . The sampling period T is often omitted
and the signal at the moment nT is described as x(n) = x(nT ).

Some examples of discrete signal descriptions and their plots are given below.

1. Sinusoidal sequence: x(nT ) ≡ x(n) = sin(ωnT ) ≡ sin(ωn) (Fig. 1.1)

2. Linear sequence: x(nT ) ≡ x(n) = n (Fig. 1.2)

3. Unit sample sequence (impulse): xi(n − m) =
{

1 for n = m

0 for n �= m
(Fig. 1.3)

4. Unit step sequence: xs(n − m) =
{

1 for n ≥ m

0 for n < m
(Fig. 1.4)

Unit steps and unit impulses are widely used as test signals to analyse discrete
systems. It is sometimes convenient to represent function xs(n) as a function xi(n):
xs(n − k) = ∑∞

m=0 xi(n − k − m).

0 2 4 6 8
n

0x(
n)

Figure 1.1 Discrete function x(n) = sin(ωn)

0 4 6
0

x 
(n

)

1 8
n

Figure 1.2 Discrete function x(n) = n
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4 6
n

0

1

x(
n)

2 8

Figure 1.3 Unit sample, m = 5

6
n

1

2 80

x(
n)

4

Figure 1.4 Unit step, m = 5

1.2.2 Presentation of Discrete Signals by Fourier Transform

Like analog signals, discrete signals can be represented and analysed in frequency
domain. Spectral analysis is based on Fourier transform [2]. To apply Fourier trans-
form to discrete signals, they have to be represented in continuous time

x(n) = x(nT ) = xd(t) = x(t) · v(t) (1.5)

where xd(t) is a discrete function represented in continuous time, x(t) is the initial
analog function (e.g., x(n) = sin(ωn) ⇔ x(t) = sin(ωat)) and v(t) is a periodical
sequence of δ-functions (see Fig. 1.5a) with period T

v(t) =
∞∑

n=−∞
δ

(
t

T
− n

)
, n = 0, 1, 2, . . . (1.6)

Note that the δ-function possesses some properties that will be used later∫ ∞

−∞
δ(t) dt = 1 (1.7)

∫ ∞

−∞
F(t)δ(t − t0) dt = F(t0) (1.8)
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where F(t) is an arbitrary function. Thus, discrete function x(n) in continuous time
can be represented by

x(n) = x(t) ·
∞∑

n=−∞
δ

(
t

T
− n

)
(1.9)

As was discussed earlier, a discrete function can be obtained from an appropriate
analog function by discretization. But, from a practical point of view, δ-function is an
abstract notion. So, for practical applications, it is more useful to consider an impulse
sequence with a unit amplitude and limited duration τ (Fig. 1.5b) as a periodical
sampling function:

vτ (t) =




1 for |t − nT | ≤ τ

2

0 for |t − nT | >
τ

2

(1.10)

Then the discrete signal takes the form

x(n) = x(t) · vτ (t) (1.11)

To evaluate a spectrum of this discrete function, let us consider known expressions
for a continuous waveform s(t) spectrum [2]

S(ωa) =
∫ ∞

−∞
s(t) exp(−jωat) dt (1.12)

where (∗) denotes a complex function. We use equation (1.9) to calculate the spectrum
of the discrete signal x(n). Assume that x(n) = 0 for n < 0 and introduce x(n) via
its continuous time equivalent

Xd(ωa) =
∫ ∞

0
x(t)

∞∑
n=−∞

δ

(
t

T
− n

)
exp(−jωat) dt

(b)

1
vτ(t )

0−T−2T T 2T 3T

v (t )

0−T T−2T 2T 3T

(a)

t

Figure 1.5 Sample functions: (a) ideal and (b) real
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=
∞∑

n=−∞

∫ ∞

0
x(t)δ

(
t

T
− n

)
exp(−jωat) dt

= T

∞∑
n=−∞

x(nT ) exp(−jωant) (1.13)

As seen from equation (1.13), the sampling period T is a scale factor, and in some
literature, it is omitted. So, the spectrum of a discrete signal is generally a complex
value and is a function of the analog frequency ωa . However, in many cases, it is
more convenient to represent this spectrum as a function of normalized frequency
ω = ωaT or

Xd(ω) ≡ X(ω) =
∞∑

n=0

x(n) exp(−jωn) (1.14)

for the case x(n) = 0 when n < 0. In spectrum descriptions, complexity notation
(∗) is also often omitted, taking into account that the spectrum, in general, is a
complex value.

From expression (1.13), it follows that the discrete signal spectrum is periodical
with period ωs . This important property can be described more accurately

Xd(ωa + kωs) = T

∞∑
n=0

x(nT ) exp[−j(ωa + kωs)nT ]

= T

∞∑
n=0

x(nT ) exp(−jωanT ) · exp(−jkωsnT ) (1.15)

However,

exp(−jkωsnT ) =
(

−jk
2π

T
nT

)
= 1 (1.16)

and
Xd(ωa + kωs) = Xd(ωa) (1.17)

After similar calculations for normalized frequency ω, it can be seen that the period
is equal to 2π , that is,

X(ω) = X(ω + k2π) (1.18)

A graphic interpretation of equation (1.18) is shown in Fig. 1.6.
Another peculiarity of the discrete signal spectrum is the behaviour of its

phase–frequency components. If the signal is represented by a real function of
time, then the spectrum values at the symmetrical points, relative to ω = kπ are
complex conjugates:

Xd(2π − ω) = Xd(ω)∗ (1.19)
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0 2p

X (wa) and X (w)X (w)

−2p

w

Figure 1.6 Spectrum of discrete signals

where (•)∗ stands for a complex-conjugate value. Equation (1.19) directly follows
from the simple formula

Xd(2π − ω) =
∞∑

n=0

x(nT ) exp(jωn) · exp(−j2πn) =
∞∑

n=0

x(nT ) exp(jωn) (1.20)

This peculiarity is an equivalent of the following relation between the amplitude and
phase spectrum components

|Xd(2π − ω)| = |Xd(ω)|
θd(2π − ω) = −θd(ω)

(1.21)

that correspond to the definition of the complex-conjugate function. Graphical inter-
pretation of the equation is shown in Fig. 1.7.

It was shown earlier that the spectrum of the discrete signal is periodic. We can
now determine the relations between the spectrum of an analog signal X(ωa) and the
corresponding spectrum of a discrete signal Xd(ωa). In time domain, a discrete signal
can be introduced via an appropriate analog signal as follows from equation (1.5)

xd(t) = x(t) · v(t) (1.22)

(w)Xd

2p − w0

−q0

q0 qd (w)

w0 p
2p w

Figure 1.7 Amplitude and phase spectrum of a real discrete signal
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It is known that a spectrum of the product of two functions is proportional to a
convolution of these functions’ spectrums [2]

Xd(ωa) = 1

2π

∫ ∞

−∞
X(λ) · V (ωa − λ) dλ (1.23)

where X(λ) is a spectrum of the initial analog signal x(t) and V (λ) is a spectrum of
the sampling signal v(t). This sampling signal was specified earlier as a sequence of
the δ-functions (1.6), the spectrum of which is

V (ωa) = T

∞∑
n=−∞

δ

(
ωa

ωs

− n

)
(1.24)

Consequently, combining (1.22) to (1.24) we obtain

Xd(ωa) = 1

2π

∫ ∞

−∞
X(λ)T

∞∑
n=−∞

δ

(
ωa − λ

ωs

− n

)
(1.25)

After integration and taking into account equation (1.8), we finally obtain the relation
between Xa(ωa) and Xd(ωa):

Xd(ωa) =
∞∑

n=−∞
X(ωa − kωs) (1.26)

That is, the spectrum of the discrete signal Xd(ωa) is a sum of the spectrums X(ωa)

of the initial analog signal shifted along the frequency with a period equal to the
sampling frequency ωs (Fig. 1.6). In other words, the spectrum of the discrete signal
is periodic, and each component of this spectrum corresponds to the spectrum of the
initial analog signal.

From a practical point of view, it is useful to consider the influence of the realistic
sampling function waveform on the discrete signal spectrum. In this case, the sequence
of δ functions should be replaced by the sequence of unit pulses with finite duration
τ (Fig. 1.5b). This corresponds to the replacement of v(t) on vτ (t):

Xd(ωa) =
∫ T

0
x(t)vτ (t) exp(−jωat) dt

=
∞∑

n=0

∫ nT +τ/2

(nT −τ/2)

x(t) exp(−jωat) dt (1.27)

Although τ is not an infinitely small value as in the δ-function, in practice it
is still considerably less than the sampling period: τ 	 T . Then, the integral in
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equation (1.27) can be approximately represented as

∫ nT +τ/2

(nT −τ/2)

x(t) exp(−jωat) dt ≈ x(nT ) exp(−jωanT ) · τ

Consequently,

Xd(ωa) ≈
∞∑

n=0

x(nT ) exp(−jωanT ) (1.28)

Physically, this approximation means that function x(t) does not change its value in
the vicinity t = nT . At the same time, signal (1.27) corresponds to the output signal
of a real ADC.

Compare now the discrete spectrum introduced by equation (1.27) and the spectrum
of the initial analog signal. The spectrum of the impulse sequence vτ (t) is

V τ (ωa) = τ
sin ωτ/2

ωτ/2
·

∞∑
n=−∞

δ

(
ωa

ωs

− n

)
(1.29)

Then,

Xd(ωa) = τ

2π

∞∑
n=−∞

∫ ∞

−∞
X(λ)

sin(ωa − λ)τ/2

(ωa − λ)τ/2
· δ

(
ωa − λ

ωs

− n

)
dλ

= τ

T

∞∑
n=−∞

X(ωa − nωs) · sin nωsτ/2

nωsτ/2
(1.30)

From equation (1.30), it can be seen that the spectrum of the discrete signal is a
sum of shifted copies of the input signal spectrum. However, the amplitude of this
spectrum is modulated by the slowly decreasing function sin x

x
. Figure 1.8 shows the

relations between the spectrum of the initial analog signal (Fig. 1.8a), the spectrum
of the discrete signal obtained by ideal time-sampling (Fig. 1.8b) and that obtained
by using impulse-sampling signal duration τ (Fig. 1.8c).

1.2.3 Discrete Fourier Transform

For spectrum analysis of discrete signals, it is convenient to use a discrete Fourier
transform (DFT), which is a variation of Fourier Transform.

Let us determine the spectrum of a periodical discrete signal with period T0. Like all
periodical signals it has a discrete spectrum, which is not equal to zero at frequencies
ωa = k 2π

T0
= k	, where k = 0, 1, 2, . . . . For simplification, we choose an interval

of signal sampling T in such a way that T0/T = N is an integer. This interval has
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X (wa)

wa

(a)

(b)

wa

Xd (wa)

(c)

Xd (wa)
sin nwst/2

nwst/2

2p/t
wa

Figure 1.8 Relations between spectrums

Xd (wa)

ws

wa

−ws Ω

Figure 1.9 Spectrum of a periodical discrete signal

to satisfy the Nyquist criteria ωs

	
= 2π

T
· T0

2π
= N . Components of the periodic signal

spectrum are δ-functions, and this spectrum is shown in Fig. 1.9.
Then, expression (1.13) takes the form

Xd(ωa) =
∞∑

n=0

x(nT ) exp(−jk	nT ) =
∞∑

n=0

x(n) exp

(
− jkn2π

N

)
(1.31)

Both functions x(n) and exp(•) in equation (1.31) are periodical with the same period
N . Consequently, we can consider only the first N elements of the sum:

N−1∑
n=0

x(n) exp

(
− jkn2π

N

)
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and

Xd(ωa) =
∞∑

l=−∞
δ(ωa − l	)

N−1∑
n=0

x(n) exp

(
− jkn2π

N

)
(1.32)

The first sum in equation (1.32) means that each spectrum component is a δ-function
and the spectrum has a period 	. The second sum reflects the essence of the spectrum
and is the DFT:

X(k) ≡ X(k	) =
N−1∑
n=0

x(n) exp

(
−j

2π

N
kn

)
(1.33)

In equation (1.33), the spectrum is a function of discrete frequency k	.
The inverse discrete Fourier transform (IDFT) is determined as

x(n) = 1

N

N−1∑
k=0

X(k) exp

(
j
2π

N
kn

)
(1.34)

Thus, equations (1.33) and (1.34) are the pair of DFT that are widely used in DSP
systems analysis and design [1].

1.2.4 Laplace and z -transforms

Laplace transform (LT) is an exclusively important tool used in linear systems theory.
Systems described by linear differential equations can be relatively easily analysed
via LT. This transform converts a differential equation into an algebraic equation [2].
A discrete signal can be represented using LT by

L(p) =
∫ ∞

0
xd(t) exp(−pt) dt =

∫ ∞

0
x(t)

∞∑
n=0

δ

(
t

T
− n

)
exp(−pt) dt (1.35)

Then, using equation (1.8),

L(p) = T

∞∑
n=0

x(nT ) exp(−pnT ) (1.36)

The inverse Laplace transform (ILT) is

x(nT ) = 1

2π j

∮
L(p) exp(pnT ) dp (1.37)

where the integral is taken along any contour containing all poles of the integrand
function.
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As known, the contour integral in equation (1.37) can be represented as a sum of
residues of the integrand function at its poles pl , that is,

x(nT ) =
L∑

l=1

resl{L(p) exp(pnT )} (1.38)

where L is the number of poles.
For the analysis of discrete signals and systems, expressions (1.35) to (1.38) are

used in different representations. Instead of p, a variable z is used:

z = exp(pT ) (1.39)

and LT becomes a z-transform:

x(z) =
∞∑

n=0

x(nT ) · z−n (1.40)

Similar to the discrete signal representation x(nT ) ≡ x(n), the interval of discretiza-
tion is often omitted. The inverse z-transform is used to determine x(n) when x(z)

is known, and is described as

x(nT ) = 1

2π j

∮
L

(
1

T
ln z

)
exp

(
1

T
ln z · nT

)
dz

T z

= 1

2π j

∮
T ·

∞∑
n=0

x(nT )z−n dz

T z
= 1

2π j

∮
x(z)zn−1 dz (1.41)

Equation (1.41) can be obtained directly from equation (1.37) by substituting

p = 1

T
ln z (1.42)

which follows from equation (1.39). Equation (1.41) can be evaluated using the theory
of residues:

x(nT ) =
L∑

l=1

resl(x(z) · zn−1) (1.43)

Application of z-transform is very popular in the theory of discrete signals and sys-
tems, and we now consider some properties of this transform.
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1.2.4.1 Properties of z-Transform

1. Linearity

Let x(n) =
I∑

i=1

aixi(n). The appropriate z-transform is

x(z) =
∞∑

n=0

I∑
i=1

aixi(n)z−n =
I∑

i=1

aixi(z) (1.44)

which is the sum of z-transforms of xi(n) functions.

2. Delay

Assume that discrete signal x(n) is delayed by T · m, that is, xd(n) = x(n − m).
Evaluating z-transform, we obtain

xd(z) =
∞∑

n=0

x(n − m)z−n =
∞∑

n=m

x(n − m)z−n

Taking into account that x(n) = 0 for n < 0, or substituting v = n − m, we obtain

xd(z) =
∞∑

v=0

x(v)z−vz−m = x(z)z−m (1.45)

3. Multiplication by exponential function

Assume y(n) = a−nx(n). The z-transform of this equation is

y(z) =
∞∑

n=0

a−nx(n)z−n =
∞∑

n=0

x(n)(az)−n

or
y(z) = x(az) (1.46)

4. Differentiation

We differentiate both sides of the equation (1.40):

dx(z)

dz
= −

∞∑
n=0

x(nT )nz−n−1 or − z
dx(z)

dz
=

∞∑
n=0

nx(nT )z−n

Denoting y(n) = nx(n), we obtain

y(n) = −z
dx(z)

dz
(1.47)
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Some other properties can be found in [3]. The properties of the z-transform are
similar to many properties of Fourier and Laplace transforms.

1.2.4.2 Examples of z-Transform

Consider some examples of z-transform for commonly used functions.

1. xI (n) =
{

1 n = 0
0 n �= 0

xI (z) = xI (0) · z−0 = 1 (1.48)

2. xs(n) =
{

1 n ≥ 0
0 n < 0

xs(z) =
∞∑

n=0

z−n

It is important to note that this is a sum of geometrical progression z−1, that is,

xs(z) = 1 − z−∞

1 − z−1

For |z| > 1, limN→∞ z−N = 0 and

xs(z) = 1

1 − z−1
= z

z − 1
(1.49)

For |z| < 1, xs(z) → ∞.

3. x(n) =
{

an n ≥ 0
0 n < 0

x(z) =
∞∑

n=0

an · z−n =
∞∑

n=0

(az−1)n

In this case, x(z) is represented by a sum of geometrical progression with denominator
az−1. So,

x(z) = 1 − (az−1)∞

1 − az−1

If |z| > a, then

x(z) = z

z − a
= 1

1 − az−1
(1.50)

4. x(n) =
{

cos ωn n ≥ 0
0 n < 0
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Taking into account that cos ωn = 1
2 {exp(jωn) + exp(−jωn)} and using results from

the previous section as well as assuming exp(jω) = a, we obtain

x(z) = 1

2

{
z

z − exp(jω)
+ z

z − exp(−jω)

}
(1.51)

5. xn(n) =
{

n n ≥ 0
0 n < 0

This function can be represented as xn(n) = nxs(n), where xs(n) has already been
considered. Then, using a rule of differentiation

xs(z) = z

z − 1
and

dxs(z)

dz
= − 1

(z − 1)2

Consequently, from equation (1.47) we obtain

xn(z) = z

(z − 1)2
(1.52)

1.2.4.3 Calculation of the Inverse z -Transform

To calculate function x(n) using inverse z-transform, it is necessary to determine the
sum of residues for function f (z) = x(z)zn−1 in its poles. There are a number of
methods for residue sum calculation. We consider only two useful approaches.

1. Determination of the residue at a prime pole

If f (z) is a rational function,

f (z) = P (z)

Q(z)

where P (z) and Q(z) are exponential polynomials. Then, residue f (z) at its kth pole
zk is

resk = P (z)

Q′(z)

∣∣∣∣
z=zk

(1.53)

2. Determination of the residue at the “m” multiple pole

If for the same value of z = zk function f (z) has “m” multiple poles, then

resk = 1

(m − 1)!

dm−1

dzm−1
{f (z)(z − zk)

m}z=zk
(1.54)
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1.2.4.4 Examples of Inverse z -Transform Calculations

1. x(z) = z

z − a
; f (z) = zn

z − a

There is one prime pole at the point z = a. Using equation (1.53), we obtain

x(n) = zn

d

dz
(z − a)

∣∣∣∣∣∣∣∣
z=a

= an (1.55)

2. x(z) = z

(z − 1)2
; f (z) = zn

(z − 1)2

In this case, the pole is at the point z = 1 with multiplicity m = 2. Using
equation (1.54), we obtain

x(n) = d

dz

{
zn

(z − 1)2
(z − 1)2

}
z=1

= nzn−1|z=1 = n (1.56)

3. x(z) = a

z − b
; f (z) = azn−1

z − b

Note that for n = 0, f (z) = a
(z−b)z

and, consequently, there are two primary poles
z1 = b and z2 = 0. For n ≥ 1 there is only one pole z1 = b. We will consider these
two cases separately:

x(0) = a

z − b + z

∣∣∣∣
z=0

+ a

z − b + z

∣∣∣∣
z=b

= 0

and for n ≥ 1,
x(n) = azn−1|z=b = abn−1

Thus,

x(n) =
{

0, n = 0
abn−1, n ≥ 1

(1.57)

1.3 TIME–INVARIANT DISCRETE LINEAR SYSTEMS

For discrete linear systems (DLSs), a principle of superposition is valid, which is a
criterion of system linearity. Assume that at the system input there is a signal x1(n)

and that at the output there is a signal y1(n). For input signal x2(n) there will be
output signal y2(n), and so on. A system is said to be time-invariant if a time shift in
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the input signal leads to an identical time shift in the output signal. So, if the system
is linear, then the following assumptions are true:

x(n) = V1x1(n) + V2x2(n)

y(n) = V1y1(n) + V2y2(n) (1.58)

If the system is linear and time-invariant then

x(n − m) = V1x1(n − m) + V2x2(n − m)

y(n − m) = V1y1(n − m) + V2y2(n − m) (1.59)

In the general case, a system can have a non-linear ADC at the LTI filter input
and digital–analog converter (DAC) at its output (Fig. 1.10), for example, for speech
compression.

1.3.1 Difference Equation and Impulse Response

Like the analog systems, discrete linear systems (DLSs) can be characterized by their
impulse responses h(n). This characteristic is a system response when the input is a
unit impulse (see Fig. 1.3):

xi(n) =
{

1, n = 0
0, n �= 0

(1.60)

An output signal y(n) in this case is represented by a discrete convolution of the
signal x(n) and the impulse response h(n):

y(n) =
n∑

m=0

x(m)h(n − m) =
n∑

m=0

x(n − m)h(m) (1.61)

where x(n) = 0 for n < 0.
As can be seen from equation (1.61), to form the output signal y(n) it is neces-

sary to undertake the following mathematical operations: summation (subtraction),
multiplication and delay. It means that with a digital device that can perform these

LTI system
Non-linear

ADC
Non-linear

DAC

Figure 1.10 Block diagram of a digital system
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x(n)
−a0(n)

−a1(n) Z−1

Z−1

Z−1

b1(n)

b0(n) y(n)

bK1(n)−aK2(n)

Figure 1.11 Block diagram of DF

operations, we can build a DLS and, in particular, a digital filter. In the following dis-
cussions, DLSs and DFs will be considered as equivalent systems. A block structure
of a general DLS–DF is shown in Fig. 1.11.

In Fig. 1.11, the unit delay is represented by its system function z−1. Note that the
time delay by interval iT corresponds to the operator z−iT in z-domain. By analogy
with time domain, where x(nT ) ≡ x(n), we can denote delay as z−iT ≡ z−i . The
variables ai and bi depict multiplication of a sequence by a constant coefficient. An
input–output relation in a DLS is

y(n) =
M∑

i=0

bix(n − i) +
N∑

i=0

aiy(n − i) (1.62)

which is a linear difference equation.
There are many methods for the solution of difference and differential equations.

For analysis of DF, z-transform is widely used, since it converts a difference equation
into an algebraic one, simplifying the system analysis [4]. Applying z-transform of
both sides of equation (1.62) and using its linearity property, we obtain

y(z) = x(z)

M∑
i=0

biz
−i + y(z)

N∑
i=0

aiz
−i (1.63)

Then,

y(z) = x(z)

M∑
i=0

biz
−i

1 −
N∑

i=0

aiz
−i

(1.64)

Consider, as an example, a system described by equation (1.63) for a step input
signal (Fig. 1.4) for M = 0 and N = 1, that is, a pure recursive DLS of the first
order:

y(n) = x(n) + ay(n − 1) (1.65)
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Then,

y(z) = x(z)

1 − az−i
= x(z)z

z − a
(1.66)

Taking into account that input signal xs(n) has a z-transform (1.49), xs(z) = z
z−1 , we

obtain

y(z) = z2

(z − a)(z − 1)
(1.67)

To evaluate the output sequence in time domain, it is necessary to find an inverse
z-transform of the function (1.67). It is determined as a sum of residues for function
f (z) = y(z)zn−1 or

f (z) = zn+1

(z − a)(z − 1)
(1.68)

This function has primary poles at the points z1 = 1 and z2 = a. The sum of residues
of this function and, consequently, the output signal in time domain is

y(n) =
2∑

i=1

resi = P (z1)

Q′(z1)
+ P (z2)

Q′(z2)
= zn+1

2z − a − 1

∣∣∣∣
z=z1

+ zn+1

2z − a − 1

∣∣∣∣
z=z2

= 1

1 − a
+ an+1

a − 1
= 1 − an+1

1 − a
(1.69)

It is obvious that the output signal y(n) can be found from discrete convolution (1.61).
An impulse response of the system is

h(n) = an (1.70)

Then,

y(n) =
n∑

m=0

x(n − m)h(m) =
n∑

m=0

am (1.71)

Thus, the output signal is described by the geometric progression and after the sum
evaluation, we obtain

y(n) = 1 − an+1

1 − a
(1.72)

which coincides with equation (1.69).
In this example, we considered a primitive DLS, where analytical determination

of the output signal using equation (1.71) was simple. In the general case, it is more
convenient to use z-transform to determine y(n).
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1.3.2 DLS Representation via Transfer Function

A system transfer function is determined as

H(z) = Y(z)

X(z)
(1.73)

and, like the frequency response, fully describes a DLS. Equation (1.64) can be rear-
ranged

H(z) =

M∑
i=0

biz
−i

1 −
N∑

i=1

aiz
−i

(1.74)

DLSs with N ≥ 1 are called recursive filters or filters with infinite impulse response
(IIR). Value N , equal to the number of delay elements in the filter, is called the order
of the filter.

In contrast, if all ai = 0, then the filters are called transversal filters or filters with
finite impulse response (FIR). The impulse responses of such filters can be simply
evaluated by {

h(m) = bm m ≤ M

h(m) = 0 m > M
(1.75)

Although the classification of the FIR and IIR filters considered here is broad, it is
possible to find systems with N ≥ 1, but with a finite length of the impulse response.
These are particular cases, but we consider one of them as an example.

Let us determine the impulse response of the system shown in Fig. 1.12 if b = −ak

and k is a positive integer.
To evaluate the impulse response, assume that there is a unit impulse at the system

input at the time equal to zero. The system response on this signal is y(0) = 1. For the
time moments 0 < n < k − 1, the impulse response is determined by the expression
h(n) = an, n ≤ k − 1. However, at time k there is a signal with value −ak at the
summator input. Consequently, at the summator output, the signal is y(k) = 0. Thus,

a

+
x(n)

b = − a k

y (n )

Z−1Z−k

Figure 1.12 Recursive filter with finite impulse response
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the impulse response of the system is

h(n) =
{

an, 0 < n < k − 1
0, n ≥ k

(1.76)

This example is a particular case, but it serves to warn the reader regarding the
use of discussed determinations.

1.3.2.1 Canonic and Cascade Filters Structure

Equation (1.74) for the transfer functions can be expressed as

H(z) = 1

1 −
N∑

i=1

aiz
−i

N∑
i=0

biz
−i (1.77)

For simplicity, assume that M = N . This approach does not reduce the generality of
the presentation. It is always possible to make some coefficients ai and bi equal to
zero. Equation (1.77) allows us to represent the filter as a serial connection of two
sections, one of which is IIR, and the other, FIR:

HR(z) = 1

1 −
N∑

i=1

aiz
−i

and

HT (z) =
N∑

i=0

biz
−i

The structure of such a filter is shown in Fig. 1.13a. It shows that the signals are the
same at the delay elements output in both sections. Consequently, the filter can be
represented in another, so-called canonical, form (Fig. 1.13b).

For this purpose, we rewrite equation (1.74) as

H(z) = bm

an

M∑
i=0

bi

bm

z−i

1

an

−
N∑

i=1

ai

an

z−i

(1.78)

or

H(z) = bm

an

M∏
i=0

(z−1
i − ziT )

N∏
i=1

(z−1
i − ziR)

(1.79)
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Figure 1.13 Filter transition into a canonical shape: (a) cascade connection of the filters and
(b) canonic structure of the filter

where ziT and ziR are roots of polynomials in the nominator and denominator of
equation (1.78) respectively.

In the general case, these roots can be real or complex. Note that if the roots are
complex they are always complex conjugate.

1.4 STABILITY AND CAUSALITY OF DISCRETE
SYSTEMS

In the previous sections, it was assumed that DLSs are causal and stable. However,
it is known from the theory of differential equations that in the general case this is
not obvious. In each case, the system has to be analysed from stability and causality
perspectives.

A DLS is causal if its impulse response is equal to zero for the negative time values
m. The meaning of this criterion is obvious: if a system is operating in real time, a
signal cannot reach the system output earlier than it reaches its input. Formally, this
rule is written as h(m) = 0 for m < 0.

Determination and criteria of stability are more complicated questions. From an
engineering point of view, the best and most visual determination is the following [4]:
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A DLS is called stable if the output signal of the system is limited for the limited input
signal.

In the following chapters, problems of system stability will be studied in more
detail. Here we will consider two criteria of stability:

1. A DLS is stable if the sum of all values of the impulse response is limited:

∞∑
m=0

|h(m)| < ∞ (1.80)

2. A DLS is stable if and only if all poles zk of its transfer function at the z-plane are
placed inside the unit circle with a centre at the origin of the coordinate system,
that is,

|zk| < 1 (1.81)

1.5 FREQUENCY RESPONSE OF A DISCRETE
LINEAR SYSTEM

Systems description via their frequency characteristics is the most popular method. In
the general case, a complex frequency characteristic of a system can be determined
in the following way. If there is a harmonic signal at the input of a linear system,

xcos(t) = cos ωat (1.82)

then the output is
ycos(t) = A(ωa) cos(ωat + ψ(ωa)) (1.83)

By analogy, for the sine signal,

xsin(t) = sin ωat (1.84)

and the output signal is

ysin(t) = A(ωa) sin(wat + ψ(ωa)) (1.85)

Substituting the output signal as the sum

xexp(t) = xcos(ωat) + jxsin(ωat) = exp(jωat) (1.86)

the output response of the system is described as

yexp(t) = ycos(t) + jysin(t) = A(ωa) exp j(ωat + ψ(ωa)) (1.87)

Then the complex frequency response of the system is

H(ωa) = ye(t)

exp(jωat)
= A(ωa) exp(jψ(ωa)) (1.88)
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Usually, A(ωa) or |H(ωa)| is called an amplitude–frequency response, and ψ(ωa)

is called a phase–frequency response.
Obviously, knowing the impulse response of the system we can determine the

signal at its output. If the input signal is a complex exponent, then

yexp(t) =
∫ t

0
exp jωa(t − x)h(x) dx

= exp jωat

∫ t

0
exp(−jωax)h(x) dx (1.89)

Let us express H(ωa) through h(t) of the same system:

H(ωa) = ye(t)

exp jωat
=

∫ t

0
h(x) exp(−jωax) dx (1.90)

Expression (1.90) is a Fourier transform of function h(x).
By analogy with the complex frequency response of analog systems, we can find

the frequency response of a DLS. In this case, the input signal is a discrete process,
that is,

x(n) = exp(jnωaT ) (1.91)

Hd(ωa) = y(nωaT )

exp jnωaT
(1.92)

We determine the output signal y(nωaT ) through convolution (equation (1.61)). The
upper limit in this equation can be replaced by infinity as for m > n all h(n − m) = 0
and x(n − m) = 0:

y(nωaT ) =
∞∑

m=0

exp jωa(n − m)Th(m)

= exp jωanT

∞∑
m=0

h(m) exp(−jωamT ) (1.93)

Equation (1.93) shows that the complex frequency response of a DLS is equal to the
Fourier transform of its impulse response:

Hd(ωaT ) = y(nωaT )

exp jnωaT
=

∞∑
m=0

h(m) exp(−jωamT ) (1.94)

This coincides with the similar case for continuous systems.
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1.5.1 Properties of the Frequency Response of a Discrete
Linear System

1. The frequency response of a discrete system is a periodical function of discrete
frequency ωs = 2π

T
.

2. If the impulse response of the system is a real function h(mT), then for the ampli-
tude–frequency characteristic,

3.
|Hd(ω)| = |Hd(2π − ω)| (1.95)

and for the phase–frequency characteristic,

ψd(ω) = −ψd(2π − ω) (1.96)

The properties described in (1.95) and (1.96) determine the main and considerable
difference between frequency characteristics of analog and discrete linear systems.

Equations (1.95) and (1.96) show that for a full description of the DLS frequency
characteristic it is sufficient to describe it at the frequency interval 0 to π of the
normalized frequency ω. A sketch of DLS phase and frequency responses, which
illustrates the properties described by (1.95) and (1.96), is shown in Fig. 1.14.

Note that a DLS impulse response can be evaluated from its frequency response
via inverse Fourier transform:

h(n) = 1

2π

∫ π

−π

Hd(ω) exp(jnω) dω (1.97)

Equation (1.97) contains the integral, as Hd(ω) is a continuous function of its argu-
ment.

1.5.2 Transfer Function versus Frequency Response

As was indicated above, the most convenient analysis of a DLS is based on z-
transform and the corresponding transfer function. At the same time, signals presen-
tation and processing in frequency domain requires the use of the system’s frequency

1

2p

2

|H
d 

(w
)| ψd (w)

w

p

Figure 1.14 Amplitude–frequency (1) and phase–frequency (2) responses of a DLS
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response. So, it is important to know the relationship between these two main char-
acteristics. The DLS output value is

y(n) =
∞∑

m=0

x(n − m)h(m) (1.98)

Applying z-transform to the left and right parts of this expression we obtain

y(z) =
n=∞∑
n=0

m=∞∑
m=0

x(n − m)h(m)z−n (1.99)

or

y(z) =
∞∑

m=0

h(m)

∞∑
n=0

x(n − m)z−n (1.100)

But, according to equation (1.45), the second sum is a delay operator, that is,

∞∑
n=0

x(n − m)z−n = x(z)z−m (1.101)

and therefore

H(z) =
∞∑

m=0

h(m)z−m (1.102)

Thus, the transfer function of the discrete system is equal to the z-transform of its
impulse response. At the same time, the transfer function of a DLS can be represented
by summing the residues of function H(z)zm−1 at its poles (1.43):

h(m) =
m∑
k

resk(H(z)zm−1) (1.103)

To determine the relation between transfer function and frequency characteristics, we
can use H(z). It is not difficult to see that if the normalized frequency ω changes
within the interval 0 to 2π , then variable z describes a unit circle and

z = ejω, |z| ≤ 1 (1.104)

Then,

H(z) = Hd(exp jω) =
∞∑

m=0

h(m) exp(−jωm) (1.105)
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The right side of equation (1.105) is a complex frequency characteristic of the system
represented by equation (1.94) and

H(ω) = Hd(exp jω) (1.106)

So, equation (1.106) shows a simple way to evaluate a system frequency response
via its transfer function.

1.6 CASE STUDY: LOW-ORDER FILTERS

As an example of application of the theory described above, consider DFs of the
first and second order. These examples are useful for a study of the main text, since
these circuits are used as the basis for more complex filter design. More detailed
descriptions of these systems can be found in many books dedicated to DSP and, in
particular, in [5].

1.6.1 Purely Recursive Filters

1.6.1.1 First-Order Filter

A block diagram of a first-order DF is shown in Fig. 1.15. This filter is described by
the difference equation

y(n) = x(n) + ay(n − 1) (1.107)

An appropriate impulse response (Fig. 1.16), which is the filter reaction y(n) to the
unit input signal xi(n), is

y(n) = h(n) =
{

0 n < 0
an n ≥ 0

(1.108)

Hence, from equation (1.80), it follows that the system stability condition is
∑∞

n=0 |a|n <

∞. This is the sum of geometrical progression, which is limited if |a| < 1.

y (n)

a

+
x(n)

Z−1

Figure 1.15 Recursive digital filter of the first order
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1h(
n)

a = 1.2 

a = 0.8

n
4321

Figure 1.16 Impulse response of the first-order filter, with a = 0.8 (stable filter) and a = 1.2
(unstable filter)

The filter response on the unit step xs(n) input signal

xs(n) =
{

0 n < 0
1 n ≥ 0

(1.109)

is

ys(n) =
{

0 n < 0
(1 − an+1)/(1 − a) n ≥ 0

(1.110)

The graph of the function (1.110) is shown in Fig. 1.17.
By analogy with continuous systems, such as resistor–capacitor (RC) low-pass

(LP) filters, we can introduce a time constant of the system, τ . The RC LP pulse
response [4] is

hRC(t) = 1

RC
exp

(
− t

RC

)

and the time constant is equal to RC , which specifies the time interval of the pulse
response (magnitude changes in e times). This filter frequency response in the time

0 5 10 15 20 25 30
1

2

3

n

3.5

1.5

2.5

Figure 1.17 Response of the first-order filter with a = 0.8 to a unit step input signal
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constant τ notation is

H(ωa) = 1/τ

jωa + 1/τ

In the case of DFs, this constant is normalized to the period of discretization:

τ = τ/T (1.111)

Then expression (1.110) can be presented as follows [4]:

ys(n) = [1 − e−(n+1)/τ ] (1.112)

Consequently,
e−1/τ = a (1.113)

for a > 0 and
τ = 1/ ln(1/a) (1.114)

where ln is logarithm with base e. For narrowband LP DFs a → 1, and it can be
replaced by a = 1 − δ, where δ 	 1. In this case, the normalized time constant of
the DF is

τ ≈ δ−1 (1.115)

Let us now study the filter reaction to harmonic signals. The sinusoidal steady-state
response is the filter reaction to the complex exponential input signal x(n) = ejnω.
The signal at the output of the first-order filter is

y(n) = ejnω

1 − ae−jω
− an+1e−jω

1 − ae−jω
(1.116)

Recalling that the stability criteria is |a| < 1, the steady-state (n → ∞) output sig-
nal is

y(n) = ejnω 1

1 − ae−jω
(1.117)

According to its definition, the frequency response is

H(ω) = y(n)

x(n)

where x(n) is a complex exponential function. Consequently, the frequency response
of the first-order DF, from equation (1.117), is

H(ω) = 1

1 − ae−jω
(1.118)
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Amplitude- and phase–frequency responses of this system are

|H(ω)| = 1/(1 − 2a cos ω + a2)1/2 (1.119)

and
ψ(ω) = tan−1[a sin ω/(1 − a cos ω)] (1.120)

Note that for small normalized frequencies ω 	 2π and cos ω ≈ 1 − ω2

2 and, thus,
the amplitude–frequency characteristic of the first-order filter is

|H(ω)| ≈ 1{
(1 − a2)

[
1 + a

(1 − a)2
ω2

]}1/2 (1.121)

Equation (1.121) coincides well with the frequency response of an RC LP filter [4]:

|H(ωa)|RC = 1

(1 + R2C2ω2
a)

1/2
(1.122)

Assuming that T = 1, we consider ωa = ω, that is, analog and normalized fre-
quencies are equal and we can easily compare these two functions. Figure 1.18 shows
amplitude–frequency responses of the digital (curve 1) and analog (curve 2) filters
for the condition that τRC = RC and τ = 1/ ln(1/a) are approximately equal (a = 0.7
and RC ≈ 2.8).

Analog RC LP filter gain is always 1 at DC (ωa = 0). The DF amplification gain
at DC is also normalized to 1 by dividing equation (1.121) by

|H(0)|DC = 1√
1 − a2

0 1
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Figure 1.18 Frequency responses comparison
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to equalize the filter amplitude responses:

|H(ω)| = 1(
1 + a

(1 − a)2
ω2

)1/2 = 1

(1 − δ−2aω2)1/2
(1.123)

Thus, when a → 1, equations (1.122) and (1.123) tend to be equal to each other.
It is well known that frequency responses of first-order IIR filters and RC filters

do not coincide when they have the same time constant. The general rule is if there
is an analog prototype of the DF, then these two filters can have the same (with high
accuracy) impulse responses or (!) frequency responses.

As indicated earlier, filters are characterized by their z-transfer function. Consider
the following for a first-order DF. Let Y(z) and X(z) be z-transforms of the output
and input signals respectively. Then,

Y(z) = X(z) + az−1Y(z) (1.124)

Thus, the z-transfer function is

H(z) = 1

(1 − az−1)
= z

z − a
(1.125)

The frequency response of this system can be found by substituting z = ejω (1.104)
into (1.125):

H(ω) = 1

1 − ae−jω

This equation coincides with equation (1.118).

1.6.1.2 Second-Order Filter

The second-order IIR filter is described by a difference equation:

y(n) = x(n) − a1y(n − 1) − a2y(n − 2) (1.126)

In this expression, the signs of the coefficients have been reversed. Figure 1.19 shows
a block diagram of this filter, which is referred to in literature as a pure recursive
second-order filter.

The transfer function of this filter is

H(z) = 1

1 + a1z−1 + a2z−2
= z2

z2 + a1z + a2
(1.127)
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+ y(n)x(n)

Z−1

Z−1

a1

a2

Figure 1.19 Second-order pure recursive digital filter

The denominator of function (1.127) is an equation of the second order. Consequently,
in the general case it has complex-conjugate roots. Roots of the transfer function
denominator are called poles. Then, pole values for the second-order filter are

p1,2 = −a1

2
± 1

2

√
a2

1 − 4a2 (1.128)

Depending on coefficient values a1, a2, the poles p1, p2 can be either

real (a2
1 ≥ 4a2) or complex (a2

1 < 4a2)

In the first case, the filter of the second order is equivalent to the serial connection
of first-order filters with real coefficients. The response of the filter on step function
xs(n) is determined by the function

ys(n) = 1

(1 − a1)(1 − a2)

[
1 − an+1

2 − (1 − a2)
an+1

1 − an+1
2

a1 − a2

]
(1.129)

In the second case, there are two complex-conjugate poles: p and p∗ with

p = −a1

2
+ j

1

2

√
(4a2 − a2

1)

p∗ = −a1

2
− j

1

2

√
(4a2 − a2

1) (1.130)

Such a filter cannot be represented by a cascaded connection of first-order filters
with real coefficients. A typical pulse response of such a filter is shown in Fig. 1.20.

The poles can be represented by polar coordinates using filter coefficients a1 and
a2. Let

p = rejϕ (1.131)

Then,

r = a
1/2
2 and ϕ = cos−1

(
−a1

2r

)
= cos−1

(
− a1

2
√

a2

)

or
a1 = −2r cos ϕ and a2 = r2 (1.132)
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Figure 1.20 Impulse response for a second-order filter with complex poles

To evaluate the stability of the digital resonator we can use the second stability
criterion, which stipulates that all poles of the transfer function should be within the
unit circle |zk| < 1. Introducing poles of the second-order filter via its coefficients a1

and a2, the criterion takes the following form:

0 ≤ |a2| < 1
|a1| ≤ 1 + a2

(1.133)

A graphical interpretation of equation (1.133) is shown in Fig. 1.21. Only coefficients
inside the triangle with vertex coordinates 2,1; −2, 1 and −1, −1 correspond to the
stable second-order IIR digital filter.

a1

−1 a2 1

2

−2

The area of
complex poles 

a2
1 < 4a2

Figure 1.21 The stability area for a digital resonator
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Changing z on ω in (1.127) by ejω, we obtain the values of amplitude and phase
characteristics of the second-order filter:

|H(ω)| = [1 + a2
1 + a2

2 + 2a1(1 + a2) cos ω + 2a2 cos 2ω]−1/2 (1.134)

and

ψ(ω) = − tan−1

[
a1 sin ω + a2 sin 2ω

1 + a1 cos ω + a2 cos 2ω

]
(1.135)

Combining equations (1.132), (1.134) and (1.135), we can obtain a more visual
description of the frequency and phase characteristics of the filter:

|H(ω)| = {
[1 + r2 − 2r cos(ϕ − ω)][1 + r2 − 2r cos(ϕ + ω)]

}−1/2
(1.136)

and

ψ(ω) = tan−1

[
r sin(ϕ + ω)

1 − r cos(ϕ + ω)

]
− tan−1

[
r sin(ϕ − ω)

1 − r cos(ϕ − ω)

]
(1.137)

Analysis of the first-order system showed that in some instances, it is a digital
equivalent of the RC filter. Appropriate similarities can also be found between recur-
sive DFs of the second order (digital resonators) and resistor–inductance–capacitance
(RLC) analog filters (resonators). In their frequency responses there are clear maxi-
mums or minimums. The extremes can be found by differentiating equation (1.136)
by ω and evaluating frequency where the derivative is equal to 0:

d|H(ω)|/dω = sin ω[a1(1 + a2) + 4a2 cos ω] = 0 (1.138)

Taking into account that ω is a normalized frequency ω = ωaT , equation (1.138) is
equal to 0 when ω = 0 or ω = 0.5. Another extreme can be found when the second
factor in equation (1.138) is equal to 0. This is possible when∣∣∣∣a1(1 + a2)

4a2

∣∣∣∣ = 1 (1.139)

Using polar coordinates, this corresponds to

cos ϕ = 2r

1 + r2

Finally, in the coefficients domain,

cos ωR = −a1(1 + a2)

4a2
(1.140)

ωR = cos−1

[
−a1(1 + a2)

4a2

]
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where ωR is called the resonance frequency, similar to the case of analog filters. Note
that in parallel RLC contours, the resonance appears at frequency

ωR =
√

1

LC
− 1

4C2R2

Another important characteristic of digital resonators is amplification at the resonance
frequency. The system gain can be found by combining equations (1.136) and (1.140):

HR = 1

1 − a2

(
4a2

4a2 − a2
1

)1/2

(1.141)

Using polar coordinates,

HR = 1

1 − r

(
1

(1 + r) sin ϕ

)
(1.142)

Another useful characteristic of filters is their bandwidth. As a rule, the band-
width of low-order filters is determined at an attenuated level −3 dB relevant to the
maximum of the frequency response:

�ω = ω2 − ω1 (1.143)

where
|H(ω1)|2 = |H(ω2)|2 = |H(ωR)|2/2

Assuming that the filter is narrowband (r ∼ 1) we can show that [5]

�ω ∼= 2(1 − r) ∼= 2(1 − √
a2) (1.144)

Note that efficiency of the filter is a continually increasing function when r → 1.
Similar to equation (1.115) for narrowband digital resonators, the following simple
formula can be used to evaluate the system bandwidth: �ω ∼= 2(1 − √

a2) = 2(1 −√
1 − δ) ≈ δ.
Thus, equations (1.140) and (1.144) determine a resonance frequency and a band-

width of the digital resonator. Figure 1.22 illustrates examples of amplitude–frequency
responses of second-order filters for coefficient values a1 and a2.

If the frequency response of a filter is known, it is easy to evaluate its pulse
response. For a digital resonator, the pulse response is [3]

h(n) = rn sin(n + 1)ϕ

sin ϕ
(1.145)
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Figure 1.22 Frequency responses of a second-order filter: (a) a1 = 0.7 and (b) a2 = 0.7

In the general case, this corresponds to the exponentially dumped sinusoid, where r

is the parameter responsible for the amplitude dumping. A normalized time constant
can be defined in the following way, similar to equation (1.61):

τ = 1

ln(1/r)
= 1

ln(1/
√

a2)
(1.146)

An example of the digital resonator impulse response for r = 0.9 and ϕ = π/2 is
shown in Fig. 1.23.
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Figure 1.23 Impulse response of a digital resonator
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1.6.2 Effects of Word Length Limitation

When analysing DFs, we assume that neither the coefficients’ word length nor arith-
metical operation processing are limited in bit number. In practice, the word length is
always restricted, and investigation of the limits is an essential part of any DSP sys-
tem design. Detailed analysis of this problem can be found in [1] and other sources.
We will consider in brief here how the word length limitation affects parameters of
digital resonators.

Restriction of the maximum bit number (Lb) in a filter’s coefficients (a1 and a2

in this case) simply means that the coefficients can have only a limited number of
discrete values. Hence, during filter design, poles can occupy only a fixed number of
possible positions inside the unit circle. Consequently, we can approximate a desired
frequency response with a finite accuracy that directly depends on coefficient word
length.

In the relatively simple case of a digital resonator we can evaluate, for example,
how the minimal filter bandwidth depends on the number of bits. Using equation
(1.144) and replacing a2 with the binary number closest to one that will be 1 − 2−Lb

we obtain the minimum resonator bandwidth:

�ωmin = 2(1 − √
a2) = 2[1 − (1 − 2−Lb/2)] = 21−Lb/2 (1.147)

Thus, for Lb = 8, the minimal bandwidth is �ωmin = 0.125 and for Lb = 12, the
minimal bandwidth is �ωmin = 0.0312.

For a narrowband filtering, it is important to have accurate resonance frequency
adjustment. The displacement should be usually much less than the resonator band-
width. This example clearly demonstrates that at least for a narrowband filtering, the
word length is essential.

Another problem of the word length limitation follows from the rounding of arith-
metical operation results to Lar bits. A reasonably good approximation of the rounding
noise is a process with uniform spectrum over the frequency interval ω = 0 to π and
power σ 2

RN = 2−2Lar /12. In the general case, the output noise power depends on the
system’s frequency response. For a digital resonator, the output noise power can be
evaluated through the filter noise bandwidth, which relates [6] to the −3 dB band-
width like �ωnoise ≈ 1.2�ω−3 dB. Hence, the output rounding noise level for a filter

with the unit gain in the first approximation is σ 2
RN ≈ 2−2Lar

10π
�ω−3 dB.

1.6.3 Transversal and Combined Filters

A block diagram of a first-order FIR filter is shown in Fig. 1.24. This filter is described
by the difference equation

y(n) = b0x(n) + b1x(n − 1) (1.148)
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Z−1 

b0 +

b1

y(n)x(n)

Figure 1.24 First-order FIR digital filter

An impulse response of this filter is just a pair of samples:

y(n) = h(n) =




0 n < 0
b0 n = 1
b1 n = 2
0 n > 2

(1.149)

and the filter response on the unit step input signal xs(n) is

ys(n) =



0 n < 0
b0 n = 1

b1 + b2 n ≥ 2
(1.150)

Another important test waveform is a harmonic signal. The sinusoidal steady-state
response is the filter reaction on the input signal x(n) = ejnω and the filter output
signal is

y(n) = b0ejnω + b1ej(n−1)ω (1.151)

According to its definition, the system frequency response is

H(ω) = y(n)

einω
= b0 + b1e−jω (1.152)

The magnitude and phase of this function are

|H(ω)| = (b2
0 + b2

1 + 2b0b1 cos ω)1/2 (1.153)

and

ψ(ω) = − tan−1 b0 sin ω

b0 + b1 cos ω
(1.154)

Examples of amplitude–frequency responses for different values b1 when b0 = 1
are shown in Fig. 1.25.
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Figure 1.25 Amplitude–frequency response of a first-order transversal filter

Second-order FIR filters (see Fig. 1.26) can be considered in a way similar to that
of first-order filters. The impulse response of a second-order filter is

h(n) =




0 n < 0
b0 n = 1
b1 n = 2
b2 n = 3
0 n > 3

(1.155)

The frequency response is

H(ω) = b0 + b1e−jω + b2e−j2ω (1.156)

From equation (1.156), both amplitude and phase–frequency responses can be
calculated. As an example, let us consider the filter with the following coefficient
values: b0 = b2 = 1 and b1 = −2. The amplitude–frequency response of the filter is
obtained by

|H(ω)| = 2|cos ω − 1| (1.157)

Z−1 

+b0

b1

b2

y(n)x(n)

Z−1 

Figure 1.26 Block diagram of a second-order FIR filter
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Then, for b0 = b2 = 1, b1 = −√
2, the frequency response is obtained by

|H(ω)| = 2

∣∣∣∣cos ω − 1√
2

∣∣∣∣ (1.158)

The appropriate functions are shown in Fig. 1.27 by curves 1 and 2 respectively.
FIR and IIR filters can be combined to form more complex filtering systems.

The typical cascade realization of a combined filter assumes common delays (shift
registers) in their structure (Fig. 1.28) and frequency responses of the combined filter
are a product of the frequency responses of each of the constitutive filters.

For illustration purposes, Fig. 1.29 shows frequency responses of an FIR filter with
b0 = b2 = 1, b1 = −2 (curve 1), an IIR filter with a1 = 0.22, a2 = 0.44 (curve 2) and
the frequency response of the cascade filter (curve 3).

It is important to note that in the literature, filters without a recursive part are
usually referred to as transversal or FIR filters, and filters with both recursive and
transversal parts are referred to as recursive or IIR. In the case when for some reason
it is important to highlight that filters do not have transversal parts, these filters are
usually referred to as purely recursive filters.
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Figure 1.27 Amplitude–frequency response of a second-order transversal filter
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Figure 1.28 Cascade realization of the combined FIR-IIR filters
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Figure 1.29 Amplitude–frequency response of the combined FIR–IIR filters

1.7 SUMMARY

In this chapter, we have developed the major parameters and characteristics of discrete
signals and systems and explored their relations with continuous (analog) signals and
systems. The first important issue is that analog signals can be converted into a digital
domain without information losses. This requires time discretization of an analog
waveform with the sampling frequency chosen according to the Nyquist theorem
with further amplitude quantization via analog–digital converters. Perhaps the major
difference between continuous and discrete signals is their spectrums. After analog
waveform sampling, its spectrum becomes periodical with the sampling frequency
period.

Like continuous signals and systems, their discrete counterparts can be described in
frequency domain using the DFT, which is a modification of the Fourier transform. In
many situations, it is convenient to analyse continuous systems using Laplace space.
This approach is also applicable for discrete systems, but it is more convenient to use
the discrete Laplace and z-transforms.

Linear time-invariant systems are the core of signal filtering algorithms. Discrete
linear systems can be fully described by appropriate difference equations or their inte-
gral characteristics: impulse response in the time domain, and frequency response and
transfer function in the frequency and z-domain respectively. Applying the Laplace
or z-transforms, difference equations can be converted into algebraic equations, a
convenient way to evaluate a system’s transfer function and, eventually, all system
characteristics. There is a strong similarity between digital and analog filters and,
again, the core difference is that the frequency response of a DF is periodical with
sampling frequency function.

A few of the problems of DSP were discussed in this introductory chapter. The
topic selection follows from the chapter goal of supplying readers with knowledge
essential to understand the main text. This chapter can also be viewed as a general
introduction to discrete signals and systems in a wider sense than the declared goal.
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1.8 ABBREVIATIONS

ADC analog–digital converter
DF digital filter
DC direct current
DAC digital–analog converter
DFT discrete Fourier transform
DLS discrete linear system
DSP digital signal processing
FIR finite impulse response
IDFT inverse discrete Fourier transform
IIR infinite impulse response
ILT Inverse Laplace transform
LP low-pass (filter)
LT Laplace transform
RC resistor–capacitor (filter)
RLC resistor-inductance-capacitance (filter)

1.9 VARIABLES

V (ωa) spectrum of δ-function
|Xd(ωa)| amplitude spectrum of a discrete signal
H(ωa) complex frequency characteristic (response) of continuous system
θd(ωa) phase spectrum of discrete signal
(•) complex value
(•)∗ complex-conjugate value
σ 2

qn power of quantization noise
A(ωa) amplitude frequency response of analog system
H(ω) system frequency response
δ(t) delta function
|Hd(ω)| amplitude frequency characteristic of discrete system
Hd(ωa) complex frequency characteristic (response) of a discrete system
Xd(ωa) spectrum of discrete signal
V τ (ωa) spectrum of pulse sampling function
τ normalized time constant
σs standard deviation of an input signal
ψ(ωa) phase–frequency response
� quantization level
S(ωa) complex spectrum of a signal
X(k	) complex spectrum of periodic signal
ϕ angle in polar coordinates
τ time constant
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ω normalized frequency
	 main frequency of periodical signal spectrum [rad/s]
�ω normalized frequency band
δ(n, k) unit sample sequence
ωa absolute frequency [rad/s]
ωR resonance frequency [rad/s]
ωs sampling frequency [rad/s]
ai coefficients of recursive filter
bi coefficients of transversal filter
Bits number of bits in signal binary presentation
C capacitor
fomax the highest frequency in an analog signal spectrum [Hz]
fs sampling frequency [Hz]
H(m) impulse response of a discrete system
H(t) impulse response of a continuous system
H(z) transfer function
HR(z) transfer function of the recursive part of a digital filter
hRC (t) pulse response of RC filter
HT (z) transfer function of the transverse part of a digital filter
L inductance
L(p) Laplace transform
pi pole of function
r radius in polar coordinates
R resistor
resm function residue
S/Nqn signal-to-quantization noise ratio
T sampling period
T0 signal period
vτ (t) periodical sequence of impulses with amplitude 1 and duration τ

v(t) periodical sequence of δ functions
X(ω) spectrum of the discrete input signal of the normalized frequency
x(n) input discrete signal
xd(n) discrete signal
xd(t) discrete signal in continuous time
xi(n) discrete pulse signal
xs(n) discrete unit step
y(n) output discrete signal
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Part One
Linear Discrete Time-Variant
Systems





2
Main Characteristics
of Time-Variant Systems

Traditionally, scientists and engineers have been very familiar with two types of
discrete systems. The first broad group consists of linear, time-invariant systems with
algorithms closely related to those used for digital filtering. The parameters for these
filters do not depend on time and are specified beforehand according to various criteria.
The second broad group consists of adaptive systems, whose parameters change with
time, reflecting changes in input processes that cannot be fully predicted. In this
book, we will consider another group of linear systems whose parameters vary with
time according to previously specified laws; in other words, linear time-variant (LTV)
non-adaptive systems, or time-varying systems.

These time-variant systems can be defined as follows: systems are time-variant if
a time delay or time advance of the input signal leads not only to an appropriate
time shift in the output signal but also to changes in other parameters of the output
signals. This difference between linear time-invariant (LTI) and linear time-variant
(LTV) systems is illustrated in Fig. 2.1.

Different methods for describing linear time-variant discrete systems (LTV DSs)
and linear time-variant digital filters (LTV DFs) have been reported in the periodical
literature, including [1–19], where the most important characteristics and relation-
ships have been defined. These published results are systematized in this chapter in
order to standardize the account of LTV systems. The aim is to present calculations
and results for LTV systems in a way that is as consistent as possible with those used
for linear time-invariant discrete systems (LTI DSs). Some analytical approaches to
discrete systems analysis will be presented in this chapter by analogy with the theory
of continuous time-invariant systems [20–26].

At this stage, we assume that amplitude quantization as well as word length limi-
tations do not affect the major systems’ parameters and that systems may not possess
filtering properties. Hence, the general subject of our analysis is time-variant lin-
ear discrete systems. The notion of a “filter” will be used in the following chapters
only where the LTV DS is considered as a filtering system. Similarly, the notion of

An Introduction to Parametric Digital Filters and Oscillators Mikhail Cherniakov
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85104-X
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LTI system

LTV system

OutputInput

Input Output

Figure 2.1 Waveforms at the input and output of LTI and LTV systems

a “digital” system or filter will be used only in those cases where quantized input
signals and/or limited word lengths are specifically considered.

In summary, this chapter describes the definitions, analysis and other generic
aspects of LTV DSs, which provide the basis for the next chapters.

2.1 DESCRIPTION OF A LINEAR TIME-VARIANT
DISCRETE SYSTEM THROUGH DIFFERENCE
EQUATIONS

An LTV DS can be described by a difference equation with time-varying coefficients:

K1∑
k=0

ak(n) · y(n − k) =
K2∑
k=0

bk(n) · x(n − k) (2.1)

where x(n) and y(n) are input and output signals respectively; n = 0, 1, . . . corre-
sponds to the time instant nT, where T is the clock or sampling period; and ak(n) and
bk(n) are time-varying coefficients and a0(n) �= 0 for any n [5, 8]. Coefficients ak(n)

correspond to a recursive part of the system, and bk(n) correspond to a non-recursive
(transversal) part of the system. For K1 > 0, a system is called a recursive or infi-
nite impulse response (IIR) system of the K1 order, whereas for K1 = 0, it is called
a non-recursive or finite impulse response (FIR) system. So, in terms of the descrip-
tion, the major difference between LTI and LTV systems is in the time dependence
of coefficients ak(n) and bk(n). The convenience of using difference equations fol-
lows from the transparency of the physical processes occurring in the system. The
processes directly reflect the structure and the sequence of mathematical operations
within the system.

Another popular method of describing LTV systems is based on state–space equa-
tions. For example, in [4, 12, 27, 28], methods employing state–space equations are
used to describe LTV DSs where equation (2.1) is presented in matrix form. This
makes it possible to investigate multi-variable systems and to use well-developed
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mathematical matrix theory. Although we primarily apply the direct difference equa-
tion method of describing LTI systems here, the state–space method will be used
later in the book for stability analysis.

Similar to the case of continuous time-varying systems, there is no general ana-
lytical solution of the difference equation (2.1) for arbitrary coefficients and system
order. If the coefficients are given and an input signal x(n) is known, it is possible
to calculate an output signal y(n) directly using the difference equation. In this case,
equation (2.1) is simply used as a computer algorithm. This approach is useful in many
situations but has some limitations: as it is necessary to know initial conditions, this
restricts the use of the method to causal systems, and computational problems can
arise when determining steady-state output signals (n → ∞) that require infinitely
long calculations. In spite of these limitations, the direct method of LTV systems
analysis will be widely used in this book to verify analytical calculations and where
no other methods can be applied.

For time-invariant systems, the most spread have linear transform (Laplace and z-
transform) applications that convert differential and difference equations into algebraic
equations. Using these transforms, it becomes reasonably easy to evaluate the integral
system characteristics (transfer functions, frequency and pulse responses, etc.). How-
ever, it is impossible to find a suitable universal transform for time-varying systems.
Such transforms have been found only for some classes of LTV DSs and, importantly,
these transforms were not universal.

From the practical point of view, the most convenient approach for time-variant
systems analysis is to find those integral system characteristics that do not depend on
the input signal, but allow determination of output signals for known input signals.
This is the major approach in time-invariant systems analysis, and the characteristics
that are independent of the input signal are the impulse response and transfer function,
definitions of which are given below.

2.2 IMPULSE RESPONSE

The impulse response (IR), denoted in the literature by h(.), also known as Green’s
function, describes an LTV DS in the time domain. According to the definition, an
IR of linear systems is the output signal measured at time moment nT in response
to a unit impulse applied at time mT (m and n are integers). The unit impulse is
defined thus:

δ(n − m) =
{

1 for n = m

0 for n �= m
(2.2)

The IR can be found as a solution of equation (2.1) when the input is the unit sample
sequence x(n) = δ(n − m):

y(n) = 1

a0(n)

[
−

K1∑
k=1

ak(n)y(n − k) +
K2∑
k=0

bk(n)δ(n − k − m)

]
(2.3)
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and

h(m, n) = 1

a0(n)

[
−

K1∑
k=1

ak(n)·h(m, n − k) +
K2∑
k=0

bk(n) · δ(n − k − m)

]
(2.4)

So, unlike LTI systems, the output response of the LTV system depends on the
moment of the observation as well as the moment of input signal application. There-
fore, in a time-variant discrete system the IR h(m, n) is a function of the two time
variables or time instants mT and nT.

For the known IR, a signal at the output of a time-variant DS is determined as a
convolution of the IR and input sequences x(n):

y(n) =
∞∑

m=−∞
x(m) · h(m, n) (2.5)

y(n) =
∞∑

l=−∞
x(n − l) · h(n − l, n) (2.6)

The latter is obtained by substitution of n − m = l.
The causality of LTV DSs, which means that output signals cannot appear before

the input signal is applied, imposes the next limitations on the IR:

h(m, n) = 0 for n < 0 and m > n (2.7)

Taking into account these limitations, we can restrict the lower limit in (2.5) to

y(n) =
∞∑

m=0

x(m) · h(m, n), (2.8)

y(n) =
n∑

l=0

x(n − l) · h(n − l, n) (2.9)

Similar to (2.1), equations (2.3) and (2.8) do not have a solution in a closed analyt-
ical form for an arbitrary system order and coefficient values. To analyse a particular
case, it is necessary to impose some restrictions or simplifications. Thus, for FIR sys-
tems, along both time coordinates nT and mT , all values of h(m, n) can be directly
calculated from equation (2.4). We cannot follow the same procedure in the case of
systems with an IIR where there is the problem of an unlimited number of calculations.
However, later we will consider systems with periodically time-varying coefficients,
in which case the IR is an infinite, but periodical, function. Consequently, the IR
can be calculated over a period that requires finite calculations even in the case of
IIR systems.
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For systems with non-recursive and recursive parts, IR calculations can be slightly
simplified by first finding an IR–g(m, n) – for the recursive part and, then, as shown
in [5], the system impulse response will be

h(m, n) =
K2∑
k=0

bk(m + k) · g(m + k, n) (2.10)

The simplicity of equation (2.10) shows that the most complicated task is to find
the IR for the recursive part of the system. One of the possible ways of solving this
problem will be discussed later in detail.

Thus, in contrast to LTI systems, the IR of LTV DSs is a function of two-argument.
For a better understanding of the IR of time-varying systems, let us consider the
following example.

Example 2.1: Impulse Response of a Non-Recursive LTV System

Consider a system described by a third-order difference equation:

y(n) =
2∑

k=0

bk(n)x(n − k) (2.11)

The system reaction to the unit pulse δ(n − m) is the IR, and for bk(n) = k−n

h(m, n) =
2∑

k=0

k−nδ(n − k − m) (2.12)

The calculated results for equation (2.12) are shown in Table 2.1.

Table 2.1 Impulse response of a non-recursive LTV system

m

n

0 1 2 3 4 5

0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 1/4 1 0 0 0 0
3 0 1/8 1 0 0 0
4 0 0 1/16 1 0 0
5 0 0 0 1/32 1 0
6 0 0 0 0 1/64 1
7 0 0 0 0 0 1/128

The system block diagram is shown in Fig. 2.2.
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Figure 2.2 Non-recursive system

The results in Table 2.1 clearly show that the system IR depends on the time moment
m of unit pulse application to the system input. A fragment of this IR is shown in Fig. 2.3

n

m

h(n, m)
1

2

4

Figure 2.3 Impulse response of an LTV system

Of course, it is not an easy task to imagine this three-dimensional picture for the
general case, but in terms of mathematical notation, this IR is similar to those used
in descriptions of time-invariant systems.

2.3 GENERALIZED TRANSFER FUNCTION

As for LTI systems, in many cases it is more convenient to analyse LTV systems in
the frequency domain. This can be achieved by describing them through the transfer
function and frequency response.

The transfer function of time-varying systems binds an output and input signal in
the z-domain:

Y(z, n) = X(z) · H(z, n) (2.13)

where X(z) =
m=∞∑

m=−∞
x(m) · z−m is the z-transform of the input signal x(m) and

H(z, n) =
∞∑

m=−∞
h(m, n) · zm−n (2.14)

or

H(z, n) =
∞∑

l=−∞
h(n − l, n) · z−l (2.15)
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The transfer function of the LTV DS, unlike that of the LTI DS, depends on time,
and is called a generalized transfer function (GTF). The definition of this GTF was
first introduced in [1] for continuous parametric systems.

For causal systems, GTF is determined only for n ≥ 0 and, taking into account
equation (2.5), is

H(z, n) =
n∑

m=0

h(m, n) · zm−n (2.16)

or

H(z, n) =
n∑

l=0

h(n − l, n) · z−l (2.17)

An output signal in the time domain at each time moment nT can be found by
inverse z-transform of Y(z, n):

y(n) = 1

2π j

∮
C

Y (z, n) · zn−1 dz = 1

2π j

∮
C

X(z) · H(z, n) · zn−1 dz (2.18)

where the counter-clockwise integral contour C has to cover all poles of the inte-
grand function. When H(z, n) is known, for the input signal x(n) = δ(n − m) its
z-transform is equal to X(z) = z−m and

y(n) = h(m, n) = 1

2π j

∮
C

X(z) · H(z, n) · zn−1 dz (2.19)

Finally, taking into account that the x(n) = δ(n − m) unit function z-transform is
equal to z−m, we obtain

h(m, n) = 1

2π j

∮
C

H(z, n) · zn−m−1 dz (2.20)

Equation (2.16) for obtaining H(z, n) describes the system response from the
moment of the input signal appearance n = 0 that includes a transient process. For
analysis of LTI signals in a steady-state mode, components of the transitional process
approach zero and can be neglected. In spite of the apparent simplicity of (2.14),
calculation of the GTF for LTV DSs is a complicated task. An attempt to apply
z-transform to (2.4) for IR results in a recursive equation:

H(z, n) =
∞∑

m=−∞

1

a0(n)

[
−

K1∑
k=1

ak(n) · h(m, n − k) +
K2∑
k=0

bk(n) · δ(n − k − m)

]
· zm−n

= 1

a0(n)

[
−

K1∑
k=1

ak(n) · H(z, n − k) · z−k +
K2∑
k=0

bk(n) · z−k

]
(2.21)
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where in the right part of the equation there are values of H (z , n − k) that correspond
to previous time moments.

Equation (2.21) can be used for recursive calculations of H(z, n) in a causal system
for n ≥ 0 and initial conditions H(z, −k) = 0. However, this is possible only for a
limited time interval and does not provide an answer regarding GTF behaviour in a
steady-state mode where n → ∞.

The GTF of a “slowly” varying system, when H(z, n) ≈ H(z, n − k) for k =
1, . . . , K1, may be approximated by the LTI transfer function by freezing the LTV
difference equation at the instant of consideration [5, 8, 9, 13]. For such systems,
from equation (2.13), it follows that

H(z, n) ≈
K2∑
k=0

bk(n) · z−k

/ K1∑
k=0

ak(n) · z−k (2.22)

However, there is no exact criterion that allows determination of how “slow” the
system is. Also, as has been shown in [9], use of a “frozen” GTF leads to inadmissibly
large errors for many causal systems.

Another possibility for approximate evaluation of the transfer function is based
on spectral analysis with a shifting time window [8], which also assumes a “slowly”
varying GTF. Unfortunately, this approach has the same disadvantages and limitations
as the “frozen-time” method.

Calculations of GTF can be simplified if coefficients have certain limitations. Let
us consider two cases that allow GTF representation as a product of two multipliers,
one of which does not depend on time.

2. Coefficients of the recursive part are constant: ak(n) = ak = const. In this case [5],

H(z, n) = F(z, n) · G(z) (2.23)

where F(z, n) and G(z), the GTF of the non-recursive and recursive parts respec-
tively, equal

F(z, n) =
K2∑
k=0

bk(n) · z−k (2.24)

and

G(z) = 1

/ K1∑
k=0

ak · z−k (2.25)

2. Coefficients of the non-recursive part are constant. Substitution of bk(n) = bk =
const in equation (2.9) gives

H(z, n) =
∞∑

m=−∞
h(m, n) · zm−n =

∞∑
m=−∞

K2∑
k−0

bk · g(m + k, n) · zm−n
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=
K2∑
k=0

bk · z−k

∞∑
m=−∞

g(m, n) · zm−n

or
H(z, n) = F(z) · G(z, n) (2.26)

where F(z) and G(z, n), the GTF of non-recursive and recursive parts respectively,
equal

F(z) =
K2∑
k=0

bk · z−k (2.27)

and

G(z, n) =
∞∑

m=−∞
g(m, n) · zm−n (2.28)

Let us consider the following example of GTF evaluation.

Example 2.2: Generalized Transfer Function of a Non-Recursive LTV
System

Assume a system described by the difference equation

y(n) =
2∑

k=0

bk(n)x(n − k) (2.29)

with coefficients bk = k−n (similar to example 2.1). The GTF of this system binds the
output and input signals in z-domain:

H(z, n) =
2∑

k=0

bk · z−k = b0(n) + b1(n)z−1 + b3(n)z−2 = z−1 + 2−nz−2 = z + 2−n

z2

(2.30)

2.4 SIGNALS ANALYSIS IN FREQUENCY DOMAIN

Time-variant systems can be described in frequency domain, similar to LTI systems,
via their frequency responses. Substitution of z = ejω in equation (2.14), where ω =
2πf T is a normalized frequency and allows conversion of the system description
from z-domain into the frequency domain

H(ω, n) =
∞∑

m=−∞
h(m, n) · ejω(m−n) (2.31)
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By analogy with the GTF, the function H(ω, n) is called a generalized frequency
response (GFR). Also, using an equation similar to (2.18), the output signal can be
determined as

y(n) = 1

2π

∫ π

−π

X(ω) · H(ω, n) · ejωn dω (2.32)

where X(ω) =
∞∑

m=−∞
x(m) · e−jωm is the spectrum of the input signal.

A GFR has an explicit physical meaning. When the input signal is a harmonic
waveform, represented in our case in a complex exponential form,

x(m) = ejωm = cos(ωm) + j sin(ωm) (2.33)

the output signal is equal to

y(n) =
∞∑

m=−∞
e−jωm · h(m, n) = ejωn

∞∑
m=−∞

h(m, n) · ejω(m−n) = ejω n · H(ω, n)

(2.34)

That is, the GFR represents the response of LTV systems to a sampled analytical
signal with frequency ω. Although equation (2.32) is an inverse spectrum transform,
the product X(ω) · H(ω, n) depends on time and, unlike the LTI systems case, is no
longer a spectrum of the output signal. So, the next step is to identify a function that
describes an output signal in frequency domain.

The spectrum of output signals can be determined by applying a discrete Fourier
transform (DFT):

Y(ω) =
∞∑

n=−∞
y(n) · e−jωn (2.35)

and after combination with (2.5) and (2.32), we obtain

Y(ω) =
∞∑

n=−∞

[ ∞∑
m=−∞

1

2π

∫ π

−π

X(ψ) · ejψm dψ · h(m, n)

]
· e−jωn (2.36)

Denoting

H(ψ, ω) =
∞∑

n=−∞

∞∑
m=−∞

h(m, n) · ej(ψm−ωn) (2.37)

we finally obtain a function that depends on two frequencies but not a time:

Y(ω) =
∫ π

−π

X(ψ) · H(ψ, ω) dψ (2.38)

Function H(ψ, ω) is called a bifrequency function (BF) of the system, and it
describes the transformation of all input spectrum components X(ψ) into an output
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spectrum Y(ω) with frequency ω. The first BF term was introduced in [1] for con-
tinuous systems and has been developed in [4–7] for LTV DSs.

Using (2.37), it is not difficult to obtain expressions to describe the relations
between the GFR and BF

H(ψ, n) = 1

2π

∫ π

−π

H(ψ, ω) · e−jn(ψ−ω) dω (2.39)

H(ψ, ω) =
∞∑

n=−∞
H(ψ, n) · ejn(ψ−ω) (2.40)

For a better understanding of the introduced system’s characteristics in frequency
domain H(ψ, n) and H(ψ, ω), let us compare these characteristics with the traditional
frequency response of LTI systems using the next examples.

Example 2.3: Frequency and Bifrequency Responses

Let us derive an expression for the GFR and BF of an LTI DS, whose parameters do
not depend on time. Substituting (2.40) into H(ψ, n) = H(ψ), we obtain

H(ψ, ω) = H(ψ) ·
∞∑

n=−∞
ejn(ψ−ω) = H(ψ) · δ(ψ − ω) (2.41)

The meaning of this expression is simple: LTI systems do not transform the input
signal frequency, but only weight it according to the frequency response of the system.
Substitution of H(ψ, ω) into equation (2.38) gives a known expression for the output
spectrum of LTI systems:

Y (ω) =
∫ π

−π

X(ψ) · H(ψ)δ(ψ − ω) dψ = X(ω) · H(ω) (2.42)

Example 2.4: Non-Recursive System

Consider a system described by the following difference equation:

y(n) =
1∑

k=0

bk(n)x(n − k) (2.43)

where bk = (−1)n. This system has an impulse response:

h(m, n) =
1∑

k=0

(−1)nδ(n − k − m) (2.44)
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The GFR of this function is

H(ψ, n) =
∞∑

n=−∞
h(m, n)e−jψ(n−m) =

∞∑
m=−∞

δ(n − m)e−jψ(n−m)

+ (−1)nejψ
∞∑

m=−∞
δ(n − m)e−jψ(n−m) = 1 + (−1)ne−jψ (2.45)

It has the amplitude frequency response square or power transfer function

|H(ψ, n)|2 = 2[1 + (−1)n cos ψ] (2.46)

which is shown in Fig. 2.4 over one period of frequency ψ = 2π .

2
H (y, n)

n

2

2p y

Figure 2.4 GFR modules of a non-recursive system

The BF of the system can be found by applying a DFT for the corresponding GFR,
equation (2.45):

H(ψ, ω) =
∞∑

n=−∞

∞∑
m=−∞

h(m, n)e−j(nω−mψ) =
∞∑

n=−∞

∞∑
m=−∞

δ(n − m)e−j(nω−mψ)

+
∞∑

n=−∞

∞∑
m=−∞

(−1)nδ(n − m − 1)e−j(nω−mψ) = δ(ψ − ω)

+ δ(ψ − ω ± π)e−j(ψ) (2.47)

So, this LTV system with an N = 2 periodically varying coefficient introduces at the
output new frequencies ω = ψ ± π , which were absent in the input signal spectrum.
This result is consistent with the general statement [4] that in any periodically time-
varying systems with the period N an input signal with frequency ψ will appear at
the output at frequencies ψ ± 2π/N . The frequency conversion diagram for N = 2 is
shown in Fig. 2.5. In this figure, the signals spectrums at the input and output of the
LTV system are related according to the BF map H(ψ, ω).
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−p

−p p w

input
X(y)

Y

w

output
Y(w)

Figure 2.5 Spectrum conversions in an LTV system

2.5 SAMPLING FREQUENCY CHOICE FOR LINEAR
TIME-VARIANT DISCRETE SYSTEMS

From the discussion above, it follows that in LTV systems the input signal spec-
trum component with frequencies ψ is transformed into a set of output frequencies
ω according to the BF. This is one of the main differences between LTV discrete
systems and discrete systems with constant parameters, where input signal spectrum
components are only weighted by the frequency characteristic of the system. New
frequency components cannot appear at the output of stable LTI systems. This condi-
tions the common conception regarding the choice of signal sampling frequency for
LTV systems. The problem of selecting suitable sampling frequencies for LTV DSs
has been discussed and developed in [29–32].

For LTI systems, the sampling theorem states that the input signal must be sampled
at a sampling rate that is twice greater than the highest frequency in the input signal
spectrum [33]. An approach to this problem as well as the latest literature references
can be found in [34].

Here, a simplified approach to this problem based on the concept of spectrum over-
lapping will be introduced. To avoid an aliasing effect in LTV DSs, the choice of the
sampling frequency has to account for both the input and output signal spectrums. In
the general case, the output signal spectrum is broader than the input signal spectrum
in time-varying systems.

Let the LTV DS have a BF other than zero in the limited region of the input and
output frequencies:

H(ω, ψ) = 0, for |ω| > B and |ψ | > C (2.48)

and let the input signal spectrum bandwidth be limited with maximal frequency A:

X(ψ) = 0 for |ψ | > A (2.49)

where all A, B, C are normalized frequencies.
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Figure 2.6 Regions of BF and input signal existence in the bifrequency plane

Areas where the BF and input signal spectrum exist are shown in Fig. 2.6, a
bifrequency map, on the frequency plane {ω, ψ} [4, 5]. It is known that discrete
signals have all spectrum components periodical with a sampling frequency ωS = 2π .
The same applies to the characteristics of discrete systems in frequency domain:
the frequency response of a discrete system is a periodical function with the same
sampling frequency period (see Fig. 2.6).

Let us assume that the signal at the system output is reconstructed into the contin-
uous waveform by an ideal analog low-pass filter (LPF) with rectangular frequency
response of width ±π . Then, from Fig. 2.6, we can derive the conditions that ensure
that the aliasing effect is absent during the signal reconstruction, provided that

• the input signal spectrum A(ψ) is within the frequency band ±π or |A(ψ)| < π ,
which is the traditional requirement for LTI DSs; and

• at the system output the signal frequency band B(ω) is also within the frequency
band |B(ω)| < π .

These conditions can be viewed as a generalization of Nyquist’s criteria for LTV
DFs [28]. This simplified geometrical approach at least guarantees an absence of
frequency aliasing.

So, for any given system, the minimal sampling frequency has to satisfy the condition

ωS = max{2B; 2A} (2.50)

This generalization can be slightly modified for filtering systems when an output
frequency band C is less than the frequency band of the input signals: C < A [29, 31].
Let a sampling frequency be selected such that A + C < π , which potentially leads
to the aliasing problem with the input signal spectrum. However, in some cases, and
particularly in recursive filters, these aliasing regions are cut by the system itself (this
problem will be discussed in more detail in Chapter 3) and in the first approximation
does not affect the reconstructed output signal. This condition can be considered as
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an expansion of the sampling theorem for systems with a frequency band narrowing
from the input to the output (narrowband filtering).

So, for narrowband LTV filtering systems, the minimal sampling frequency has to
satisfy the condition

ωS = max{2B; A + C} (2.51)

Thus, in equation (2.51) it is assumed that aliasing occurs, but its influence on the
system performance is negligible for many applications.

In this simplified approach, we mainly demonstrate a way of selecting minimal
sampling frequency and do not pretend to have presented a deep theory of sampling
in LTV systems. Nevertheless, this is a descriptive way to investigate systems and
will be used for analysis of periodically time-varying discrete systems.

2.6 RANDOM SIGNALS PROCESSING IN LINEAR
TIME-VARIANT DISCRETE SYSTEMS

In the previous sections, we discussed LTI systems for deterministic input signals.
Now we will consider the case of random signals at the system input. Let X(n) be
a random discrete input process with the following moments: mean value MX(n),
variance σ 2

X(n) and autocorrelation function RX(m, n), where m is a time delay. Our
goal is to evaluate the same parameters for a random output process Y(n), assuming
that the characteristics of the system are known. To do this, we should take into
account that for any particular realization of the input signal, equation (2.52) is true

Y(n) =
∞∑

m=−∞
X(m) · h(m, n) (2.52)

Then, under the condition that the input process does not depend on the law of LTV
DS parameter variation, we obtain the following:

1. The mean value

MY (n) = 〈Y(n)〉 =
〈 ∞∑

m=−∞
X(m) · h(m, n)

〉
=

∞∑
m=−∞

〈X(m)〉 · h(m, n)

=
∞∑

m=−∞
MX(m) · h(m, n) (2.53)

where 〈∗〉 means averaging over random process realizations,

2. The autocorrelation function

RY (m, n) = 〈Y(m) · Y(n)〉 =
〈 ∞∑

ν=−∞
X(ν) · h(ν, m) ·

∞∑
ξ=−∞

X(ξ) · h(ξ, n)

〉
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=
∞∑

ν=−∞
h(ν, n)

∞∑
ξ=−∞

h(ξ, m) · 〈X(ν) · X(ξ)〉

=
∞∑

ν=−∞
h(ν, n)

∞∑
ξ=−∞

h(ξ, m) · RX(ν, ξ) (2.54)

and

3. The variance

σ 2
Y (n) = RY (n, n) =

∞∑
ν=−∞

h(ν, n)

∞∑
ξ=−∞

h(ξ, n) · RX(ν, ξ) (2.55)

If the input process X(n) is a wide sense stationary, that is,

MX(n) = MX = const, RX(m, n) = RX(n − m), σ 2
Y (n) = σ 2

Y = const,

then expressions (2.53) to (2.55) take the following forms:

1. The mean value

MY (n) = MX

∞∑
m=−∞

h(m, n) = MX · H(0, n) (2.56)

where H(0, n) is the GFR for direct current (DC − ω = 0),

2. The correlation function

RY (m, n) =
∞∑

ν=−∞
h(ν, n)

∞∑
ξ=−∞

h(ξ, m) · RX(ν − ξ) (2.57)

and

3. The variance

σ 2
Y (n) =

∞∑
ν=−∞

h(ν, n)

∞∑
ξ=−∞

h(ξ, n) · RX(ν − ξ) (2.58)

From these equations follows a very important conclusion: the output process of an
LTV DS becomes non-stationary even if an input signal is a stationary process. It is
the consequence of the nature of time-variant systems.

The correlation function of a random time-varying discrete process is connected
with its power spectral density SX(ω) by Fourier transform, according to the Wiener–
Khintchine theorem:

RX(τ) = 1

2π

∫ π

−π

SX(ω) · ejωτ dω (2.59)
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SX(ω) =
∞∑

τ=−∞
RX(τ) · e−jωτ , τ = ν − ξ (2.60)

Using these transforms, it is possible to obtain a spectral representation of the
random signals at the LTV DS output. Substituting (2.59) into (2.57), then multiplying
by ej(m−n)ω · e−j(m−n)ω ≡ 1 and conducting the relevant calculations, we obtain

RY (m, n) = 1

2π

∫ π

−π

SX(ω) · H(ω, n) · H(−ω, m) · e−j(m−n)ω dω (2.61)

as well as

σ 2
Y (n) = 1

2π

∫ π

−π

SX(ω) · |H(ω, n)|2 dω (2.62)

Denoting in equation (2.61) that n − m = τ , we can rewrite it as

RY (τ, n) = 1

2π

∫ π

−π

SX(ω) · H(ω, n) · H(−ω, n − τ) · e−jωτ dω (2.63)

For causal systems, in all summations it is necessary to indicate limitations for vari-
ation of the indexes, corresponding to the area of IR non-zero values as shown in
equation (2.8). We will come back to these equations in the following chapters.

2.7 COMBINATIONS OF TIME-VARIANT SYSTEMS

High-order systems are often built by combining lower-order systems. Let us inves-
tigate the basic types of system combinations – parallel, cascade and with feedback
connections – and obtain expressions for the IR h(m, n) and GTF H(z, n) of these
complex M-stage systems. We denote hi(m, n) as the IR and Hi(z, n) as the GTF of
the ith stage of the systems under consideration, where i = 1, . . . M .

2.7.1 Parallel Connections

A system with M parallel-connected sections is shown in Fig. 2.7. If an input signal
is the unit sample sequence (2.2), then the output signal is the system’s IR. In the
case of parallel-connected systems, the output signal is equal to the sum of the output
signals for each link between stages. The signals, themselves, are the IRs of the
considered stages hi(m, n):

h(m, n) =
M∑
i=1

hi(m, n) (2.64)
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h1(m,n),

H1(z,n)

hM(m,n),

+

HM(z,n)

y(n)x(n)
…

Figure 2.7 A system with parallel connections

The GTF of the system with parallel-connected stages is equal to the sum of the
GTF of each stage Hi(z, n). The GTF of each stage is calculated in the following way:

H(z, n) =
n∑

m=0

h(m, n) · zm−n =
n∑

m=0

M∑
i=1

hi(m, n) · zm−n

=
Mn∑
i=1

n∑
m=0

hi(m, n) · zm−n =
M∑
i=1

Hi(z, n) (2.65)

2.7.2 Cascade Connections

Consider the two-cascade system shown in Fig. 2.8.
If the system’s input signal is the unit pulse described in equation (2.2), then the

first stage output signal is its IR h1(m, k). The second stage response is a convolution
of the input signal and the second stage IR h2(m, k) and can be calculated using
equation (2.5):

h(m, n) =
∞∑

k=−∞
h1(m, k) · h2(k, n) (2.66)

h1(m,n),
H1(z,n)

h2(m,n),
H2(z,n)

y(n)x(n)

Figure 2.8 System with two cascaded sections

The GTF of the system can then be determined by applying a z-transform to (2.66):

H(z, n) =
∞∑

m=−∞

[ ∞∑
k=−∞

h1(m, k) · h2(k, n)

]
· zm−n

=
∞∑

k=−∞

[ ∞∑
m=−∞

h1(m, k) · zm−k

]
· h2(k, n) · zk−n
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=
∞∑

k=−∞
H1(z, k) · h2(k, n) · zk−n (2.67)

Knowing n − k = l, this equation can be rewritten as

H(z, n) =
∞∑

l=−∞
H1(z, n − l) · h2(n − l, n) · z−l (2.68)

For causal systems, h1(m, k) and h2(k, n) in equations (2.66) and (2.67) are equal to
zero, except for the case when 0 ≤ m ≤ k ≤ n, in which case

h(m, n) =
n∑

k=0

h1(m, k) · h2(k, n) (2.69)

and

H(z, n) =
n∑

k=0

H1(z, k) · h2(n, k) · zk−n (2.70)

or

H(z, n) =
n∑

l=0

H1(z, n − l) · h2(n − l, n) · z−l (2.71)

Expressions (2.69) and (2.70) can be used for recurrent calculation of LTV DSs.
It is important to note that, unlike the LTI systems case, expressions (2.64) to (2.70)

are not invariant relative to the order of the connection of the stages. This conclusion is
illustrated by the following examples.

Example 2.5: Interconnected LTI–LTV Systems

The first stage of the two-cascade systems is time-invariant when the second stage is
time-variant. Then H1(z, n) = H1(z), and from equation (2.67) it follows that

H(z, n) = H1(z) ·
∞∑

k=−∞
h2(k, n) · zk−n = H1(z) · H2(z, n) (2.72)

That is, in this case the GTF of the system can be derived from the product of the GTFs
for each stage.

Example 2.6: Interconnected LTV–LTI Systems

The first stage of the two-cascade systems is time-variant when the second stage is time-
invariant. Applying the algorithms of the previous example, we obtain a final equation
that is essentially different from equation (2.72)

H(z, n) =
∞∑

l=−∞
H1(z, n − l) · h2(l) · z−l (2.73)
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Equations (2.72) and (2.73) clearly show that time-variant systems do not possess
the property of invariance relative to the sequence of link combinations.

Now, let us consider a system with M cascaded stages, as shown in Fig. 2.9.

h1(m,n)
H1(z,n)

y (n)x (n) hi(m,n)
Hi(z,n)

h1(m,n)
H1(z,n)

hi+1(m,n)
Hi+1(z,n)…

g1(m,n)
G1(z,n)

gi(m,n)
Gi(z,n)

gi+1(m,n)
Gi+1(z,n)

gM(m,n)
GM(z,n)

…

Figure 2.9 A system with M cascaded links

To calculate the characteristics of this system, it is necessary to apply formulas (2.66)
and (2.67). The system can be represented as a connection of the one-stage link ‘i’,
with IR gi(m, n) and GTF, Gi(z, n), and the following ‘i + 1’ link, with IR gi+1(m, n)

and GTF Gi+1(z, n). Figure 2.9 makes clear the principle of calculation by cascaded
accumulation of links. It is obvious that for the first stage g1(m, n) = h1(m, n) and
G1(z, n) = H1(z, n). Then, expressions (2.66) and (2.67) or (2.69) and (2.70) can be
used. The final values gM(m, n) and GM(z, n) for i = M are the desired system char-
acteristics h(m, n) and H1(z, n).

2.7.3 Systems with Feedback

An LTV system structure with a feedback is shown in Fig. 2.10. The variables h1(m, n)

and H1(z, n) represent characteristics of the direct link and h2(m, n) and H2(z, n) repre-
sent characteristics of the feedback, both of which are assumed to be known. The goal is
to calculate the system’s IR h(m, n) and GTF H(z, n). Let us denote signals at different
points of the system using equation (2.5):

u(ξ) =
∞∑

ν=−∞
y(ν) · h2(ν, ξ) (2.74)

w(ξ) = x(ξ) + u(ξ) (2.75)

h1(m,n)
H1(z,n)+

h2(m,n)
H2(z,n)

y (n)x (n) (x)

u(x)

Figure 2.10 A system with a feedback
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y(n) =
∞∑

ξ=−∞
w(ξ) · h1(ξ, n) (2.76)

Then, for the output signal

y(n) =
∞∑

ξ=−∞

[
x(ξ) +

∞∑
ν=−∞

y(ν) · h2(ν, ξ)

]
· h1(ξ, n) (2.77)

or, changing the summation order,

y(n) =
∞∑

ξ=−∞
x(ξ) · h1(ξ, n) +

∞∑
ν=−∞

y(ν) ·
∞∑

ξ=−∞
h2(ν, ξ) · h1(ξ, n) (2.78)

If, at the system input there is the pulse signal described by equation (2.2), then the
output signal of the system is its IR:

h(m, n) =
∞∑

ξ=−∞
δ(ξ − m) · h1(ξ, n) +

∞∑
ν=−∞

h(m, ν) ·
∞∑

ξ=−∞
h2(ν, ξ) · h1(ξ, n)

(2.79)

The first sum of this expression represents the IR of the non-recursive part of the
system h1(m, n), while the second sum in the right-hand part represents the IR of
the disconnected system in the direction from output to input. Denoting this second
sum as

g(ν, n) =
∞∑

ξ=−∞
h2(ν, ξ) · h1(ξ, n) (2.80)

we finally obtain a formula for the IR of the system with feedback:

h(m, n) = h1(m, n) +
∞∑

ν=−∞
h(m, ν) · g(ν, n) (2.81)

The GTF of the system with feedback can be determined using equations (2.16)
and (2.81):

H(z, n) =
∞∑

m=−∞

[
h1(m, n) +

∞∑
ν=−∞

h(m, ν) · g(ν, n)

]
· zm−n =

∞∑
m=−∞

h1(m, n) · zm−n

+
∞∑

ν=−∞
g(ν, n) · zν−n ·

∞∑
m=−∞

h(m, ν) · zm−ν (2.82)

or

H(z, n) = H1(z · n) +
∞∑

ν=−∞
H(z, ν) · g(ν, n) · zν−n (2.83)
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For causal systems, expressions (2.80) to (2.83) are represented as

g(ν, n) =
∞∑

ξ=0

h2(ν, ξ) · h1(ξ, n) (2.84)

h(m, n) = h1(m, n) +
∞∑

ν=0

h(m, ν) · g(ν, n) (2.85)

and

H(z, n) = H1(z, n) +
∞∑

ν=0

H(z, ν) · g(ν, n) · zν−n (2.86)

The obtained recurrent relations in the case of a restricted n can be sequen-
tially solved for all n. In the case when n → ∞, the system’s characteristics can
be determined if some additional simplifying assumptions are made. Some of these
assumptions will be discussed later in the book.

2.7.4 Continuous and Discrete LTV Systems

Mathematical expressions for the main characteristics of LTV DSs and similar expres-
sions for continuous LTV systems are presented in publications [20–26] and, using a
uniform format, are collected in Tables 2.2 to 2.4. Recall that corresponding expres-
sions for discrete and continuous systems have the same physical meanings.

Table 2.2 The characteristics of LTV systems for deterministic input signals

Continuous systems Discrete systems

Difference
(differential)
equations

R1∑
k=0

ak(t) · dky

dt k
=

K2∑
k=0

bk(t) · dkx

dt k

K1∑
k=0

ak(n) · y(n − k)

=
K2∑
k=0

bk(n) · x(n − k)

IR h(τ, t) = y(t) for x(t) = δ(τ − t) h(m, n) = y(n) for x(n) = δ(m − n)

GFR H(jω, t) =
∫ t

0
h(τ, t) · ej(t−τ )ω dτ H(ω, n) =

∞∑
m=0

h(m, n) · ejω(m−n)

BF H(jω, jψ)

=
∫ ∞

0

∫ ∞

0
h(τ, t) · ej(ψτ−ωt) dτ dt

H(ψ, ω) =
∞∑

n=0

∞∑
m=0

h(m, n) · ej(ψm−ωn)

Output signal y(t) =
∫ t

0
x(τ) · h(τ, t) dτ

= 1

2π

∫ ∞

−∞
X(jω) · H(jω, t) · ejωt dω

y(n) =
n∑

m=0

x(m) · h(m, n)

= 1

2π

∫ π

−π

X(ω) · H(ω, n) · ejωn dω

Spectrum of
the output
signal

Y (jω) =
1

2π

∫ ∞

−∞
X(jψ) · H(jψ, jω) · dψ

Y(ω) = 1

2π

∫ π

−π

X(ψ) · H(ψ, ω) · dψ
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Table 2.3 Characteristics of LTV systems containing two stages

Continuous systems Discrete systems

Parallel
junction

h(ξ, t) = h1(ξ, t) + h2(ξ, t)

H(jω, t) = H1(jω, t) + H2(jω, t)

h(m, n) = h1(m, n) + h2(m, n)

H(ω, n) = H1(ω, n) + H2(ω, n)

Cascaded
junction

h(ξ, t) =
∫ t

ξ

h1(ξ, u) · h2(u, t) · du

H(jω, t) =
∫ t

0
H1(jω, ξ) · h2(ξ, t)

· ejω(ξ−t)

h(m, n) =
n∑

k=m

h1(m, k) · h2(k, n)

H(ω, n) =
n∑

m=0

H1(ω, m) · h2(m, n)

·ejω(m−n)

Feedback
connection

h(ξ, t) = h1(ξ, t)

+
∫ t

ξ

h(ξ, u) · g(u, t) · du

h(m, n) = h1(m, n)

+
n∑

k=m

h(m, k) · g(k, n)

H(jω, t) = H1(jω, t)

+
∫ t

0
H(jω, u) · g(u, t) · ejω(u−t) · du

g(u, t) =
∫ t

ξ

h2(u, ξ) · h1(ξ, t) · dξ

H(ω, n) = H1(ω, n)

+
n∑

k=0

H(ω, k) · g(k, n) · ejω(k−n)

g(k, n) =
n∑

imk

h2(k, m) · h1(m, n)

Table 2.4 Output characteristics of LTV systems for random input signals

Continuous systems Discrete systems

Time-variant input signals

Mean value MY (t) =
∫ t

0
MX(τ) · h(τ, t) dτ MY (n) =

n∑
m=0

MX(m) · h(m, n)

Deviation σ 2
Y (t) =

∫ t

0
h(ν, t)

∫ t

0
h(ξ, t)

· RX(ν, ξ) dξ dν

σ 2
Y (n) = RY (n, n)

=
∞∑

ν=−∞
h(ν, n)

∑
h(ξ, n)

· RX(ν, ξ)

Correlation
function

RY (τ, t) =
∫ τ

0
h(ν, τ )

∫ t

0
h(ξ, t)

×RX(ν, ξ) dξ dν

RY (m, n) =
n∑

ν=0

h(ν, n)

n∑
ξ=0

h(ξ,m)

· RX(ν, ξ)

Time-invariant input signals

Mean value MY (t) = MX · H(0, t) MY (n) = MX · H(0, n)

Deviation σ 2
Y (t) = 1

2π

∫ ∞

−∞
SX(jω)

· |H(jω, t)|2 dω

σ 2
Y (t) = 1

2π

∫ ∞π

−π

SX(ω)

· |H(ω, n)|2 dω

Correlation
function

RY (τ, t) = 1

2π

∫ ∞

−∞
SX(jω)

· H(jω, t) × H(−jω, t)

· ej(t−τ )ω dω

RY (m, n) = 1

2π

∫ π

−π

SX(ω) · H(ω, n)

×H(−ω, m) · ej(n−m)ω dω
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The expressions for discrete systems approach the corresponding expressions for
continuous systems in the limiting case when the sampling period becomes infinitely
small and the sums are converted into integrals.

2.8 TIME-VARYING SAMPLING
In the previous sections, we have considered systems with varying coefficients. The
definition of these time-variant systems is based on the linear difference equation (2.1)
with time-dependent coefficients. The sampling time in this equation is hidden behind
the indexes “n” and “k”. It is assumed that the real sampling time is uniform and
follows a constant time interval T . It is also well known from digital filtering theory
that this sampling time interval T specifies the scale of the frequency response for
all filters. Hence, together with the coefficients, T directly influences the relations
between input and output signals in discrete systems.

Now, following the analysis of linear discrete systems with time-varying coef-
ficients, we consider linear discrete systems with constant coefficients but with a
time-varying sampling interval T = T (n). We will not discuss here a comprehensive
theory of non-uniform sampling (see, for example, [35]). Here, it seems interesting
to show that when variation of the sampling period is small in comparison with an
average clock period, the behaviour of the discrete system is similar to the behavior of
systems with time-varying coefficients. This effect has both theoretical and practical
applications. Although it has been assumed that sampling or clock pulses occur reg-
ularly at interval T , in practice, pulse sequences can become non-uniform. Thus, in
digital microprocessor-based filters, the clock interval is usually synchronized with the
interruption procedure, which destroys the regularity of the sampling period. Another
example of a non-uniform pulse sequence is in a filter in communication systems in
which the clock interval is recovered from a receiving signal and is always corrupted
by noise [36].

Firstly, let us recall that linear digital filters (DF), including those with time-varying
coefficients, are “linear” relative to the input signal, but not to the clock signals. With
respect to the clock signal, these filters are non-linear and the principle of superpo-
sition cannot be applied to these systems. Consequently, there is no characteristic
similar to the bifrequency function. To resolve this problem, we can use the methods
appropriate for small parameter variations. It is assumed that the deviation in the sam-
pling period is small in comparison to the uniform sampling interval. For the practical
cases described above, as well as for many other typical situations, this assumption
is acceptable. Otherwise, computer modelling can be used.

2.8.1 Systems with Non-Uniform Sampling

Assume that we are analyzing linear discrete systems with constant coefficients, which
can be described with a linear difference equation:

K1∑
k=0

aky(n − k) =
K2∑
k=0

bkx(n − k) (2.87)
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Note that the system can also have time-varying coefficients, but this is beyond the
scope of the book. Let us try to find the relationship between the input and output
signal spectrums of this system as a function of the spectrum of the sampling sequence
by analogy with the bifrequency function [30]

Y(ω) = 1

2π

∫ π

−π

X(ψ) · H(ψ, ω) · dψ (2.88)

Assume that there is a sampling sequence at the system input acting at time instants
T n + T 	n. Then, the appropriate difference equation is

K1∑
k=0

ak · y ′[(n − k)T + 	n−k] =
K2∑
k=0

bk · x ′[(n − k)T + 	n−k] (2.89)

Introduction of the transforms x(nT ) = x ′(nT + 	n) and y(nT ) = y ′(nT + 	n)

yields
K1∑
k=0

ak · y[(n − k)T ] =
K2∑
k=0

bk · x[(n − k)T ] (2.90)

which is consistent with the equation describing LTI filters [35].
Therefore, a discrete filter (system) with non-uniform sampling (DFNS) can be

represented by the simplified model shown in Fig. 2.11. This model consists of three
blocks: input and output time transformers TT1 and TT2, as well as an LTI discrete
filter with constant sampling period T . A procedure for DFNS analysis is input signal
transform in TT1, calculation of system characteristics at the DF output and then,
again, the time-transform of the output signal in TT2. This procedure allows use of
the well-developed methods of LTI systems analysis for DFNS investigations.

The block TT1 is a sampler with varying sampling time. The sampled signals
arrive at the DF input at constant time interval T . Thus, the TT1 operates like a serial
connection of a time-varying delay (T 	n) and a uniform sampler with the sampling
period T . If a continuous signal is required at the second sampler TT2 output, then
it can be represented by a combination of a time-varying delay line (−T 	i) and an
ideal low-pass filter (LPF). These two time transformers shift the input and output
signals in such a way that the filter itself could be considered as the filter with
constant parameters.

iT+DiT iT iT−DiT
xi yi y (t)

TT1 DF TT2

H(w)

X(w) X´(w) Y´(w) Y(w)

x (t)

Figure 2.11 Model of discrete filter with non-uniform sampling
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Assume now that there is a signal x(t) with spectrum X(ω) at the T T 1 input.
This transformer’s sampling period is modulated by a discrete delay 	i . Hence, T T 1
selects a signal at the time moments iT + 	i , and, according to the Nyquist theorem
for non-uniform sampling [35], with a small delay modulation index (	i/T ),

xi = 1

2π

∫ π

−π

X(ω)ejω(i+	i) dω. (2.91)

The small delay modulation index is a requirement for applying the small parameters
method, and for this case, the exponential function can be represented as

ejω(i+	i) = ejωi + jω	ie
jωi (2.92)

After substituting equation (2.92) into (2.91), equation (2.91) takes the form

xi = 1

2π

∫ π

−π

X(ω)ejωi dω + 1

2π

∫ π

−π

jω	iX(ω)ejωi dω (2.93)

Thus, signals at the output of the time-varying sampler with a small modulation index
can be represented as the sum of signals with uniform sampling (the first summand
in (2.93)) and a discrete additive signal di (the second summand), that is,

xi = x(iT ) + di (2.94)

where

di = 1

2π

∫ π

−π

jψ	iX(ψ)ejψi dψ (2.95)

The spectrum of this signal can be represented as

X′(ω) =
∞∑

i=−∞
(x(iT ) + di)e

−jωi = X(ω)

∞∑
i=−∞

1

2π

∫ π

−π

jψ	ie
jψiX(ψ) dψe−jωi

= 1

2π

∫ π

−π

X(ψ)

{
2πδ(ω − ψ) +

∞∑
i=−∞

jψ	ie
j(ψ−ω)i

}
dψ (2.96)

To present this spectrum in a more convenient form for analytical calculations, denote

L(ω, ψ) = 2πδ(ω − ψ) +
∞∑

i=−∞
jψ	ie

j(ψ−ω)i (2.97)

Then,

X′(ω) = 1

2π

∫ π

−π

X(ψ)L(ω, ψ) dψ (2.98)
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L(ω, ψ) is the BF of the first time transformer according to this equation and the
definition of bifrequency function. The transformer output signal spectrum consists
of input signal spectral components (SCs) and, originating within the transformers,
combinational spectral components (CCs) that are a result of the signal modulation.
Thus, the SCs of the BF are similar to the frequency response of the periodical (uni-
form) sampler with constant time interval T while the CCs determine the components
of the signal’s spectrum appearing because of delay modulation.

The spectrum of the discrete signal 	i can be specified as

E(ω) =
∞∑

i=−∞
	ie

−jωi (2.99)

and the transformer BF can be presented in the convenient form

L(ω, ψ) = 2πδ(ω − ψ) + jψE(ω − ψ) (2.100)

The BF for the second time transformer TT2 can be similarly determined with the
only difference being that jω has a negative sign.

We now find the dependence between signal spectrums at the input and output of
the DFNS by

Y ′(ω) = X′(ω)H(ω) (2.101)

For TT1,

X′(ω) = 1

2π

∫ π

−π

X(ψ)L1(ω, ψ) dψ (2.102)

Y ′(ω) = 1

2π

∫ π

−π

Y ′(ψ)L2(ω, ψ) dψ (2.103)

where L1(ω, ψ) and L2(ω, ψ) are the BFs for TT1 and TT2 respectively. Finally,
taking into account equations (2.100) to (2.102), the signal spectrum at the output of
a DF with time-varying sampling period takes the form

Y(ω) = 1

2π

∫ π

−π

X(ψ){H(ψ)2πδ(ω − ψ) + [H(ω) − H(ψ)]jψE(ω − ψ)} dψ

− 1

2π

∫ π

−π

1

2π

∫ π

−π

H(ψ)X(θ)jθE(ψ − θ) dθ jψE(ω − ψ) dψ (2.104)

The double integral in (2.104) specifies the CC. This CC appears at the TT2 output
due to the CC generated by TT1, passed through the filter DF (Fig. 2.11). In the
general case, this value has a second order of smallness and can be neglected. So,
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for the first approximation, the equation for the output spectrum can be derived with
the simple and physically obvious equation

Y(ω) = 1

2π

∫ π

−π

Y (ψ)H(ω, ψ) dψ (2.105)

where H(ω, ψ) is the BF of a DF with non-uniform sampling:

H(ω, ψ) = 2πδ(ω − ψ)H(ψ) + jψ |H(ω) − H(ψ)|E(ψ − ψ) dψ (2.106)

Function H(ω, ψ) also contains an SC and a CC. Substituting equation (2.62)
into (2.105), we obtain

Y(ω) = H(ω)X(ω) + 1

2π

∫ π

−π

iψx(ψ)|H(ω) − H(ψ)|E(ψ − ψ) dψ (2.107)

The SC of the DFNS output spectrum for small deviations of the sampling period
corresponds with the signal spectrum at the output of the corresponding LTI filter.
The CC can be calculated by taking the integral from equation (2.107). The integrand
components are the input signal spectrum X(ψ), the modulation function of the
sampling period E(ω) and the filter frequency characteristic H(ω). Consider the next
example of DFNS analysis.

Example 2.7: Signal Transformation in DFNS

Consider the case when a sampling period has harmonic modulation relative to T with
frequency � and modulation index ε, that is, the filter is clocked at the moments

Ti = T [1 + ε(cos �i)] (2.108)

Suppose that at the filter input there is a harmonic signal x(t) = A cos(ωct). Its spectrum
is

X(ω) = Aπ[δ(ω − ωc) + δ(ω + ωc)] (2.109)

The spectrum of the modulating process is

E(ω) = επ[δ(ω − �) + δ(ω + �)] (2.110)

Substituting these equations into (2.107), we obtain

Y (ω) = H(ω)X(ω) + jAωcε
π

2
[H(ωc + �) − H(ωc)]δ(ω − ωc − �)

+ jAωcε
π

2
[H(ωc − �) − H(ωc)]δ(ω − ωc + �)

− jAωcε
π

2
[H(−ωc + �) − H(−ωc)]δ(ω + ωc − �)

− jAωcε
π

2
[H(−ωc − �) − H(−ωc)]δ(ω + ωc + �) (2.111)
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The output spectrum contains SCs with frequencies ωc and CCs with frequencies
±ωc ± �. The amplitudes of the CCs are proportional to the product of ωc and ε, as
well as dependent on H(ω). The sharper the shape of the filter frequency response, the
larger are the CC amplitudes. In the limiting case when H(ω) = const, the CCs are
equal to zero because the filter becomes the serially connected transformers TT1 and
TT2, where the time delays are mutually compensated. In another limiting case, the
filter is narrowband with high Q. This filter essentially weakens the signal CCs after
TT1 and thus

Y (ω) = H(ω)X(ω) − jAωcε
π

2
H(ωc) − H(ωc)δ(ω − ωc − �) − jAωcε

π

2
H(ωc)

− H(ωc)δ(ω − ωc + �) + jAωcε
π

2
[H(−ωc)]δ(ω + ωc − �)

+ jAωcε
π

2
H(−ωc)δ(ω + ωc + �) (2.112)

Figure 2.12 demonstrates the relations between |H(ω)| and |Y (ω)| for the first-order
recursive low-pass DFNS. The curve numbers 1 to 3 correspond to the following con-
ditions: 1 for −ωc = π/8, a1 = 0.99, � = π/16, ε = 0.1; 2 for −ωc = π/8, a1 = 0.99,
� = π/16, ε = 0.05; and 3 for ωc = π/8, a1 = 0.5, � = π/16, ε = 0.1.

Y(w) H(w)
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(w

)

Figure 2.12 Dependence of the output signal spectrum on input frequency

The CC amplitudes of the spectrum Y(ω) are reduced when Q of the filter and the
amplitude of the modulated signal (curves 3 and 2 respectively) become smaller.

2.8.2 Systems with Stochastic Sampling Interval

Consider now the case in which a random stationary discrete process η1 modulates
the periodic sampling signal. As a result, the clock pulses at the sampler occur at time
instants iT + ηiT . Assume that any deviation of the random process η1 is much less
then the regular sampling interval T ; this interval satisfies the Nyquist theorem and
the system input signal is a random stationary continuous process ξ(t) with power
spectrum density (PSD) Fξ(ω).
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A signal at the system output will be a random process with realizations γi . As fol-
lows from equation (2.109), for zero-correlated realizations ηi and ξ(t) the spectrum
of an appropriate γi is [36]

γ (ω) = H(ω)ξ(ω) + 1

2π

∫ π

−π

jψξ(ψ)[H(ω) − H(ψ)]η(ω − ψ) dψ

= H(ω)ξ(ω) + Z(ω) (2.113)

where ξ(ω) and η(ω) are the realizations of Fourier transforms of the random pro-
cesses ξ(t) and ηi respectively. Multiplying γ (ω) by its complex conjugated value,
we obtain

γ (ω)γ ∗ (ω) = |H(ω)|2ξ(ω)ξ(ω) + H(ω)ξ(ω)Z(ω) + H(ω)ξ(ω)Z(ω) + Z(ω)Z(ω)

(2.114)

Converting the product of integrals Z(ω)Z(ω) into a double integral, we then obtain

γ (ω)γ ∗ (ω) = |H(ω)|2ξ(ω)ξ(ω) + H(ω)ξ(ω)Z(ω) + 1

4π2

∫ π

−π

ψθξ(ψ)ξ(θ)[H(ω)

− H(ψ)][H(ω) − H(θ)]η(ω − ψ)η(ω − ψ) dθ dψ (2.115)

The derived integral is a complex combination of the product of random patterns of
η, ξ spectrums and their complex conjugate values. The integrating area is shown in
Fig. 2.13. It has a rectangular shape with sides 2π on the frequency plane ψ, θ [32].

If an integrand’s components are changed so that the inner integral is evaluated
along the straight line parallel to the diagonal ψ = θ , then its maximal value lies on
the diagonal itself. Along this line, the integrand becomes equal to the product of the
squares of the cofactor modules and the integral reaches its highest value

Z = 1

4π2

∫ π

−π

ψ−2|ξ(ψ)|2|H(ω) − H(ψ)|2|η(ω − ψ)|2 dψ (2.116)

1/t p−p

−p

p

w

y

1.41/t

Figure 2.13 Integration area of η, ξ
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The integration of the products of the spectrum components and their complex con-
jugated values (with shifted on ε arguments) is evaluated along the parallel lines
ψ = θ + ε. Such a convolution in frequency domain corresponds to the product of
shifted sequences in time domain. After an averaging across the ensemble, we obtain
the autocorrelation function of the output random process. If τk is a correlation inter-
val of random processes introduced in a number of sampling periods T , then 1/τk is
an interval of mutual correlation for the spectrum component and its complex con-
jugate values. That is, for a frequency difference limited by 1/τk, the integral value
along the line parallel to the diagonal can be considered equal to z. For frequency
differences that are greater than 1/τk , an appropriate averaging gives small values
tending towards zero. Then, the last term of equation (2.113) can be approximately
calculated by multiplying the integral along the diagonal line by the width of the
1.41/τ areas:

Z(ω)Z(ω)∗ = 1.41z/τko (2.117)

where τko is the smallest interval of correlation for processes η and ξ . Ensemble
averaging eliminates the second and third summands in equation (2.114), and the
output signal spectrum can then be expressed in the following compact form:

Fγ (ω) = |H(ω)|2Fξ(ω) + 1.41

4π2τk0

∫ π

−π

ψ2Fξ(ω)|H(ω) − H(ψ)|2Fη(ω − ψ) dψ

(2.118)

where Fγ (ω), Fξ(ω) and Fη(ω) are the PSDs of processes γ, ξ and η respectively,
obtained by the ensemble averaging.

Thus, for a discrete system with random sampling, it is possible to estimate the
PSD of the output signal using equation (2.118). Use of this equation assumes that
the modulation index of the sampling interval is small, the statistical characteristics
of the input and clock signals are known and these processes are non-correlated.

2.9 SUMMARY

This chapter has provided an introduction to the time and frequency analysis of linear
time-variant discrete systems. The major goal was not just to present this analysis,
but also to select and/or modify various approaches to this analysis in order to use
methods as similar as possible to those traditional to descriptions of time-invariant
systems. In particular, we examined IRs, GTFs, and GFRs for LTV systems. All these
basic characteristics are similar, in some instances, to the corresponding characteristics
of LTI systems. The introduction of these functions binds input and output signals in
LTV systems in time, frequency and mixed time frequency or z-domains.

The major differences between time-variant and time-invariant systems follow from
their parametric nature. The output signal of a time-variant system not only weights
input signal spectral components but also generates new ones. Interactions of input
signals and variation of the system’s parameters – coefficient values and clock inter-
vals – lead to the rather complex behavior of LTV DSs. Perhaps most disappointing
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for readers is that for the general case there are no analytical methods to derive all
introduced characteristics from appropriate difference equations. In contrast to LTI
systems, these characteristics for time-variant systems cannot be represented in closed
forms for most cases.

Both GTFs and GFRs not only exist in the transform domains (z and frequency)
but also depend on the time. Consequently, new spectral harmonics appear on the
system output. This essentially differentiates time-variant and time-invariant systems.
Thus, for example, for complex systems that have more than one interconnected stage,
this means that the sequence of stage combination becomes critical. Moreover, for
LTV DSs, we have to correct the Nyquist criterion taking into account the spectral
conversions.

The next chapter will be dedicated to the analysis of LTV DSs with periodically
varying coefficients where the system’s characteristics can be presented in analytically
closed forms. LTV systems with periodically time-varying parameters are the major
subject of this book and their analysis is based on the general results and definitions
provided in this chapter.

2.10 ABBREVIATIONS

BF bifrequency function
CC combinational component
DF digital filter
DFNS digital filter with non-uniform sampling
DS discrete system
GFR generalized frequency response
GTF generalized transfer function
IR impulse response
LPF low-pass filter
LTI linear time-invariant
LTV linear time-variant (or varying)
PSD power spectrum density
SC signal component

2.11 VARIABLES

σ 2
x (x) variance of a process

ω normalized frequency
� radial frequency of a sampling period modulation
ξ(ω), η(ω) Fourier transforms of the random processes’

realizations.
δ(n, k) unit sample sequence
ξ(t), ηi stationary random processes’ realizations
γI output random process realization
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	I discrete process modulating sampling period
τk an interval of correlation for random processes
ωs minimal sampling frequency
a(n) time-varying coefficients of the recursive part of a

difference equation
b(n) time-varying coefficients of the non-recursive part

of a difference equation
f frequency
Fξ(ω) power spectrum density
F(z, n) generalized transfer function of the non-recursive

part
g(m, n) impulse response of the recursive part
G(z) generalized transfer function of the recursive part
H(ψ, ω) bifrequency function
h(m, n) impulse response
H(z, n) generalized transfer function
i, l, m, n, k integers
M(n) mean value
R(m, n) correlation function
S(ω) spectral density
T sampling period
X(ω), X(ψ) spectrum of the input signal
X(n) input discrete random process
x(n) input signal
X(z) z-transform of the input signal
Y(ω) spectrum of the output signal
Y(n) output discrete random process
y(n) output signal
Y(z, n) z-transform of the output signal
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3
Periodically Time-Variant
Discrete Systems

Chapter 2 was dedicated to a general consideration of linear time-variant discrete sys-
tems (LTV DSs). The only restrictions were that these systems should be causal and
stable. In this chapter, the general analysis of LTV DS is adapted for discrete systems
with periodically time varying parameters. The major characteristics and parame-
ters of periodically linear time-variant (PLTV) systems, such as impulse response
(IR), generalized transfer function (GTF) and sampling frequency, are introduced
here. The vitally important problem of the instability of recursive systems is also
one of the foci of this chapter. In addition, we will discuss sinusoidal and binary
(rectangular) laws of coefficient variation with different on-off factors (q) in PLTV
systems.

3.1 DIFFERENCE EQUATION

PLTV DSs are systems that can be described by difference equation (2.1):

K1∑
k=0

ak(n) · y(n − k) =
K2∑
k=0

bk(n) · x(n − k) (3.1)

with N -periodical coefficients ak(n) and bk(n), which means that

ak(n) = ak(n + N) and bk(n) = bk(n + N)

or, for an arbitrary integer l = 0, 1, 2 . . .:

K1∑
k=0

ak(n + lN) · y(n − k) =
K2∑
k=0

bk(n + lN) · x(n − k) (3.2)

An Introduction to Parametric Digital Filters and Oscillators Mikhail Cherniakov
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In the general case, all or some periods of coefficient variation (Ni), where
i = 0, 1, 2 . . . K1 + K2 + 1, can be different. However, a description of periodical
systems whose coefficient periods are all equal does not reduce the generality of
the approach. It is always possible to find a period N that is the lowest common

multiple for all Ni . For example, if all Ni are simple numbers, then N =
K1+K2+1∏

i=0
Ni .

Another simplification assumed in (3.1) and (3.2) is that the periods are integer
numbers of the sampling interval T . This restriction slightly narrows the class of
considered systems. On the other hand, this approach allows us to determine the
properties of general systems without solving the difference equation. As will be
shown later, this approach does not essentially influence the system’s parameters and,
more importantly, is technically easily achievable. It also simplifies the solution of
the difference equation if it is necessary to calculate this. Consequently, evaluation
of the system’s performance is also simplified.

3.2 IMPULSE RESPONSE

Consider equation (2.4) for the linear time-invariant (LTI) system impulse response
(IR). For time moments shifted on period N of coefficient variation, the equation can
be presented in the following format:

h(m + N, n + N) = 1

a0(n + N)

[
−

K1∑
k=1

ak(n + N) · h(m + N, n + N − k)

+
K2∑
k=0

bk(n + N) · δ(n − k − m)

]
(3.3)

Taking into account the coefficient periodicity in equation (3.2), we obtain

h(m + N, n + N) = 1

a0(n)

×
[
−

K1∑
k=1

ak(n) · h(m + N, n + N − k) +
K2∑
k=0

bk(n) · δ(n − k − m)

]
(3.4)

which coincides with equation (2.4). Since only one IR corresponds to the difference
equation [1, 2], from equations (2.4) and (3.4), it follows that

h(m + N, n + N) = h(m, n) (3.5)

This equation simply states that periodically linear time-variant discrete systems
(PLTV DSs) have N -periodical impulse responses. Similar relationships are also
known in the theory of continuous systems with periodically time-varying coefficients
and have an essential impact on systems analysis.



GENERALIZED TRANSFER FUNCTION AND FREQUENCY RESPONSE 85

3.3 GENERALIZED TRANSFER FUNCTION
AND FREQUENCY RESPONSE

Let us consider equation (2.14) for the generalized transfer function (GTF) at moment
n and over the time interval (n + N ):

H(z, n + N) =
∞∑

m=−∞
h(m, n + N) · zm−n−N (3.6)

Substituting equation (3.5) into (2.14) and with ξ = m + N , we obtain

H(z, n) =
∞∑

m=−∞
h(m + N, n + N) · zm+N−n−N =

∞∑
ξ=−∞

h(ξ, n + N) · zξ−n−N (3.7)

which coincides with equation (3.5). Thus,

H(z, n + N) = H(z, n) (3.8)

Similarly, it can be easily shown that for the generalized frequency response (GFR)

H(ω, n + N) = H(ω, n) (3.9)

The periodicity of H(z, n) and H(ω, n) allows us to represent these integral char-
acteristics using a discrete Fourier transform (DFT):

H(z, n) =
N−1∑
k=0

Hk(z) · e j�kn (3.10)

Hk(z) = 1

N

N−1∑
n=0

H(z, n) · e−j�kn (3.11)

and

H(ω, n) =
N−1∑
k=0

Hk(ω) · ej�kn (3.12)

Hk(ω) = 1

N

N−1∑
n=0

H(ω, n) · e−j�kn (3.13)

where � = 2π/N is the normalized radial frequency of a system’s parameter varia-
tion. This frequency � will be widely used later in the book.

Here, readers should note that a normalizing multiplier 1/N in equations (3.11)
and (3.13) is replaced in the equation for the DFT. This allows us to consider the DFT
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harmonic at zero frequency as a mean value of the function without an additional
amplification by N times, as is generally required by the DFT procedure. This replace-
ment simplifies equations and makes physical interpretation of the results obtained
below easier.

3.4 SIGNALS IN PERIODICALLY LINEAR
TIME-VARIANT SYSTEMS

PLTV systems are a particular case in the broader class of time-variant systems.
Nevertheless, this subclass can be more easily interpreted in mathematical descriptions
than the broader class. The periodicity of parameter variation allows the use of the
Fourier series, which yields some new general properties, as shown in Section 3.4.1.

3.4.1 Bifrequency Function

From equations (2.40) and (3.12), we can derive the following expression for the
bifrequency function (BF) of PLTV DSs:

H(ψ, ω) =
∞∑

n=−∞

N−1∑
k=o

Hk(ψ) · ejnk� · ej(ψ−ω)n =
N−1∑
k=0

Hk(ψ)

∞∑
n=−∞

ej(ψ+k�−ω)n (3.14)

Let us consider the internal sum as a spectrum of the sampled harmonic signal with
frequency ψ + k�, which is equal to 2πδ(ψ + k� − ω). We can now represent
the BF as

H(ψ, ω) = 2π

N−1∑
k=0

Hk(ψ) · δ(ψ + k� − ω) (3.15)

The physical meaning of this expression is that new spectral components appear
within PLTV systems. They present in the output signal as the modulation constituents
of the input signal. These new components are centred on the input signal spectrum
components being shifted on frequencies ±k�, which are multiples of the main
frequency of coefficient variation �. This is an important feature of time-variant
systems. We will come back to this problem later in the chapter.

3.4.2 Deterministic Signal Processing

Let there be a discrete deterministic signal x(n) with spectrum X(ω) at the input
of a periodically time-variant system. The spectrum of the output signal Y(ω) is
determined by equation (2.38), and taking into account equation (3.15),

Y(ω) = 1

2π

∫ π

−π

X(ψ) · 2π

N−1∑
k=0

Hk(ψ) · δ(ψ + k� − ω) dψ
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=
N−1∑
k=0

X(ω − k�) · Hk(ω − k�) (3.16)

For a better understanding of these important equations consider the following examples.

Example 3.1: Harmonic Input Signal

For the harmonic input signal x(n) = ejω0n with spectrum X(ψ) = 2πδ(ψ − ω0), the
spectrum of the output signal spectrum is

Y (ω) = 2π

N−1∑
k=0

Hk(ω0) · δ(ω0 + k� − ω) (3.17)

The spectrum of the output signal in the general case has non-zero components with
amplitude 2πHk(ω0) at the frequencies ω = ω0 + k�. So, if at the input only one
harmonic ω0 presents, the output signal contains a number of harmonics concentrated
around the central frequency ω0, corresponding to the input signal. In time domain this
output signal can be obtained by the inverse Fourier transform:

y(n) = ejω0n

N−1∑
k=0

Hk(ω0) · ejkn� (3.18)

Example 3.2: Sinusoidal Input Signal

The spectrum of the sinusoidal signal x(n) = sin(ω0n) has two harmonic components:

X(ψ) = πδ(ψ − ω0) + πδ(ψ + ω0) (3.19)

The output signal spectrum for the sinusoidal input signal is

Y (ω) = π

N−1∑
k=0

Hk(ω0) · δ(ω0 + k� − ω)

+ π

N−1∑
k=0

Hk(−ω0) · δ(−ω0 + k� − ω) (3.20)

Non-zero components of the output spectrum exist for frequencies ω = k� ± ω0. Spec-
trums of the input and output signals are shown in Fig. 3.1 to illustrate the example.

Let us analyse the output signal spectrum presented by equation (3.20) and the
GFR of a PLTV DS described by equation (3.10) to introduce a physical sense of the
different GFR components Hk(ω).

1. From equation (3.16), it can be noted that the Hk(ω) component for k = 0 is, in some
instances, similar to the frequency response of a system with constant coefficients.
H0(ω) represents the relationships between the output spectrum components and the
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Output signal 

Ω
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Figure 3.1 Output signal spectrum in a PLTV DS

input signal spectrum at the coinciding frequencies. This component of the GFR is not
responsible for any spectrum conversion but just weights the input signal’s harmonics
phases and amplitudes. This GFR component (k = 0) is called the signal component
(SC) and H0(ω) is an equivalent frequency response (EFR) of the PLTV DS. This
name reflects some similarity between time-invariant and time-variant systems.

2. The GFR Hk(ω) for k �= 0 describes the conversion of input signal spectrum
components into output signal spectrum combinational frequencies ω = ψ + k�,
which are the new spectral components that originated within the time-variant sys-
tem. Amplitudes and phases of these new frequency components relate to the input
signal spectrum as well as Hk(ω). These output signal spectrum components as
well as appropriate components of GFRs Hk(ω) are called combinational compo-
nents (CCs). The new output signal spectrum components or CCs are multiplicative
as they appear only when the input signal presents and are directly related to the
input signal spectrum.

It is a property of DFTs that the spectrum shift on frequency k� corresponds to the
multiplication of the input signal by function ejkn� in time domain. So, equation (3.16)
can be represented by an equivalent system, the block diagram of which is shown in
Fig. 3.2.

. . . 

ejnΩ

ejniΩ

ejn(N−1)Ω

x(n) y(n)
H0(w)

H1(w)

Hi(w)

HN−1(w)

+

Figure 3.2 An equivalent structure for a PLTV DS
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An equivalent block diagram of a PLTV DS contains N parallel channels. In
each of these channels the frequency response Hk(ω) is constant, and the signal
frequency is shifted (in frequency domain) on k�. The structure is similar to the
well-known representation of continuous periodical systems [3] with the exception
that the number of channels is limited for N . This structure is the basis of one of
the possible approaches to the synthesis of PLTV DSs using some equivalent linear
time-invariant digital systems, where Hk(ω) can be calculated by equation (3.13).

3.4.3 Random Signals Processing
Consider now the response of periodically time-variant systems when an input signal
is a random process x(n). Assume that it is a wide sense stationary process with
known mean value MX(n) = MX, variance σ 2

X(n) = σ 2
X, correlation function RX(τ)

and SX(ω).
Parameters of the output random process can be determined using equations (2.56),

(2.62) and (2.63) and taking into account that an appropriate GFR, described by
equation (3.9), is an N -periodical function:

MY (n) = MX · H(0, n) = MX · H(0, n + N) = MY (n + N) (3.21)

σ 2
Y (n) = 1

2π

∫ π

−π

SX(ω) · |H(ω, n)|2 dω

= 1

2π

∫ π

−π

SX(ω) · |H(ω, n + N)|2 dω = σ 2
Y (n + N) (3.22)

and

RY (τ, n) = 1

2π

∫ π

−π

SX(ω) · H(ω, n) · H(−ω, n − τ) · e−jωτ dω

= 1

2π

∫ π

−π

SX(ω) · H(ω, n + N) · H(−ω, n + N − τ) · e−jωτ dω

= RY (τ, n + N) (3.23)

So, the output process is cyclostationary [4] or periodically non-stationary [5].
The correlation function RY (τ, n) of the output signal of the system depends not

only on τ but also on the discrete time of observation n. To find an appropriate PSD
of the output process SY (ω), the time mean value of the correlation function RY0(τ )

can be found by averaging the correlation function over the period N :

RY0(τ) = 1

N

N−1∑
n=0

RY (τ, n) (3.24)

Combining equations (3.23), (3.24) and (3.12), we obtain

RY0(τ) = 1

N

N−1∑
n=0

1

2π

∫ π

−π

SX(ψ) ·
N−1∑
i=0

Hi(ψ) · ej�in ·
N−1∑
k=0

Hk(ψ) · ej�k(n−τ) · ejψτ dψ

(3.25)
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or, changing the integration and summation order and taking into account that

1

N

N−1∑
n=0

ej�n(k+i) = δ(i + k) (3.26)

is a delayed unit sample sequence, we obtain

RY0(τ) = 1

2π

∫ π

−π

SX(ψ) ·
N−1∑
k=0

H−k(ψ) · H ∗
k (ψ) · ej(ψ−k�)τ dψ (3.27)

Then, substituting
H−k(ψ) · H ∗

k (ψ) = |Hk(ψ)|2 (3.28)

into (3.27) we finally obtain

RY0(τ) = 1

2π

∫ π

−π

SX(ψ) ·
N−1∑
k=0

|Hk(ψ)|2 · ej(ψ−k�)τ dψ (3.29)

According to the Wiener–Khintchine theorem,

SY (ω) =
∞∑

τ=−∞
RY0(τ) · e−jωτ

= 1

2π

∫ π

−π

SX(ψ) ·
N−1∑
k=0

|Hk(ψ)|2 ·
∞∑

τ=−∞
e−jωτ · ej(ψ−k�)τ dψ (3.30)

Considering summation along τ as the spectrum of a sampling signal with frequency
ψ − k� equal to 2π · δ(ψ − k� − ω), we obtain

SY (ω) =
N−1∑
k=0

SX(ω + k�) · |Hk(ω + k�)|2 (3.31)

So, for a wide sense stationary input signal, the output process PSD in N -periodically
linear time-variant discrete systems contains N shifted by frequencies k� multiplica-
tive spectrum components. The magnitudes of these new spectral components are
proportional to the square of the corresponding GTF.

From equation (3.31) it follows that the representation of a PLTV DS by an equiv-
alent block diagram, shown in Fig. 3.2 and derived initially for deterministic input
processes, is also valid for wide sense stationary input random processes. In this
case, the power spectrum of the output process (Fig. 3.3) is similar to that given in
Fig. 3.1.
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Figure 3.3 Output signal spectrums in a PLTV DS for a random input signal

3.5 GENERALIZATION OF THE SAMPLING THEOREM

From the previous section, we now know how to evaluate an output signal spectrum in
PLTV DSs. Let us come back to the problem of signal sampling in these systems. We
have already discussed that for time-invariant systems there is the accurate approach
to the choice of sampling frequency. Because of discretization, a signal spectrum
becomes periodical in frequency domain with the period equal to the sampling fre-
quency. If there is no overlap between spectrums separated by the sampling frequency,
the system output signal can be reconstructed without information losses. Ideally, a
filter with a break-wall frequency response should be used for the reconstruction with
the cut-off frequency equal to half the sampling rate. Using this approach PLTV DSs
can be analysed [3].

In contrast to time-invariant discrete systems, in time-variant systems there is a
frequency conversion of the input signal spectral components. In the general case,
the output signal contains not only input signal spectral components but also new
combinational components. Possible overlapping of these CCs should also be taken
into account when the sampling frequency is estimated. So, we are dealing with two
fundamental frequencies: B, which specifies the input signal bandwidth, and �, which
determines the rate of parameter variation.

To analyse sampling problems in PLTV DSs, we will use the geometrical approach
applied earlier. Recalling that this approach is an illustrative method at the quality
level and not a mathematical proof, consider equation (3.15) and assume that a region
where H0(ψ) �= 0 is limited by ψ ∈ {−A . . . A}. The other GFR components, Hk(ψ)

and k �= 0, are also limited in this case: Hk(ψ) �= 0 for ψ ∈ {k� − A . . . k� + A}.
To better visualize this, consider an example of an appropriate bifrequency map.

Example 3.3: Bifrequency Map for N = 3

Projection of a bifrequency map on the plane ψ − ω for a PLTV DS is shown in
Fig. 3.4. For the problem under consideration, the particular shape of the GFR is not
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important. The only essential part of the frequency response is the region where the
GFR’s components are not equal to zero. In the example, the period of coefficients
variation is chosen to cover three sampling periods, that is, N = 3 or 3T . Bold lines
correspond to the SCs or H0(ψ), while the other lines represent CCs or Hi(ψ). Non-zero
values of the bifrequency characteristic are placed along the line ω = k� + ψ .
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Figure 3.4 Spectrum diagram for the case with no aliasing

As mentioned above, two situations are possible: when output signal spectrums over-
lap or when there is no spectrum overlapping. Figure 3.4 represents a PLTV DS for
which the input signal spectrum bandwidth is restricted by B − X(ψ) ∈ {−B . . . B}
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and satisfies the condition B ≤ �/2 = π/N . This condition corresponds to the case of
non-overlapping output spectrums and, consequently, the output signal can be recon-
structed by a filter with cut-off frequency C − ω ∈ {−C . . . C} where C ≤ �/2.

Figure 3.4a shows a bifrequency map of this system, and Fig. 3.4b demonstrates
projections of the bifrequency characteristic on the axis of the output ψ and input ω

frequencies. As can be seen directly from the figure, there is no aliasing in the PLTV
DS output spectrum. So, the requirements for the sampling frequency in PLTV DSs
can be formulated: the sampling frequency should be at least twice higher than the
frequency of parameter variation in PLTV DSs. This statement can be considered a
generalization of the sampling theorem for PLTV DSs. Such systems are also known
as multi-rate digital filters [2, 6].

This criterion of sampling frequency selection does not take into account the filtering
properties of the systems under consideration. Assume now that a PLTV DS is acting
as a narrowband filter. This assumption means that the H0(ψ) passband is less than the
spectrum bandwidth B occupied by the input signal. In this case, the frequency band
of the output signal is narrower than the frequency band of the input signal: A < B

(see in Fig. 3.4b). For this very practical situation, the discrete input signal spectrum
components can partly overlap. These overlapping components are filtered out by the
system and do not appear at the output. In this case, it is possible to reduce the sampling
frequencies of the input and output signals till the normalized frequency value satisfies
the condition A = π/N , where A is the PLTV filter cut-off frequency.

Let us now analyse a system with the spectrum overlapping. As has been shown,
the PLTV DS output spectrum contains spectral components coinciding with the
components of the corresponding spectrum of the input signal (frequency band B) as
well as combinational spectral components concentrated around frequencies k�. If the
input signal bandwidth increases, its spectrum components and the CCs originating
within the PLTV DS may overlap. This case is shown in Fig. 3.3, where the input
signal spectrum occupies band B (upper part of the figure), which is approximately
equal to � and partly overlaps with CCs.

A case of full spectrum aliasing is shown in Fig. 3.5, where the input signal
occupies frequency band B, which is equal to one-half of the sampling frequency.
This is the lowest boundary for sampling frequency, according to the Nyquist criteria,
for time-invariant systems, and too low a sampling frequency for the time-variant case.

Now let us try to evaluate the consequences of the input signal spectrum overlap-
ping with the new spectral components generated within a time-variant system. We
will show that these consequences are different from those in the case of spectrums
overlapping in time-invariant systems. The differences follow from the fact that the
level of signal components, which is proportional to H0(ψ), is essentially different
to the level of CCs, which is proportional to Hi(ψ). Moreover, in many practical
situations the following inequality is true: |H0(ψ)| > |Hi(ψ)|, where i �= 0.

Let us assume that not all newly generated spectral components at the system
output are desirable parts of the output waveform. CCs of the output signal that have
penetrated the frequency band of the desired signal cannot be filtered out and affect
systems in a way similar to a multiplicative interference (or distortion, depending on
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Figure 3.5 Spectrum diagram for the case with aliasing

applications). To estimate deterioration of the signal-to-interference ratio (SIR), we
can calculate the ratio of the power of all CCs to the power of the useful output signal
components along the whole frequency band:

ρ =

∫ 2π

0

N−1∑
k=1

SX(ω + k�) · |Hk(ω + k�)|2 · dω

∫ 2π

0
SX(ω) · |H0(ω)|2 · dω

(3.32)

Assuming for the first approximation that the PSD of the input signal SX(ω) = S

is constant over the whole frequency band, equation (3.32) can be simplified to

ρ =

N−1∑
k=1

∫ 2π

0
|Hk(ω + k�)|2 · dω

∫ 2π

0
|H0(ω)|2 · dω

(3.33)
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From this equation it follows that SIR reduction depends mainly on the characteristics
of the PLTV system under consideration and, in particular, on its GFR. Let us call
this coefficient ρ the integral level of combinational components.

3.6 SYSTEM STABILITY

The stability of systems with feedback, in general, and the stability of recursive
filters, in particular, are critically important issues for system design. For practical
applications, it is essential not only to obtain stability but also to have some spare
stability. The reason is that even digital systems with 32 to 64 and more bits in words
and the presentation of calculations cannot be considered ideal systems. They contain
noise, quantization errors, round-off errors of mathematical operations and so on.

3.6.1 General Stability Problem

The stability of systems with time-varying parameters differs considerably from the
stability of similar systems with constant parameters. Thus, before studying systems
with time-varying coefficients it is necessary to analyse their stability. In general, this
analysis is based on the classical definition of stability [7].

Of the few stability definitions, we will use the more physically descriptive def-
inition based on the second Liapunov method [8–10]. The solution is derived from
the behaviour of a system function, the state vector that manifests physically as “gen-
eralized” energy. If the system is led out of an equilibrium state and the energy
of the system is constantly decreasing, then the system is stable; otherwise it is
unstable.

Information about LTV digital recursive systems (DRSs) can be found in different
publications, which offer methods for stability analysis that are complicated [11, 12]
or have limited application [13, 14]. In contrast, a method using a discrete transient
matrix to estimate the stability of continuous analog systems with periodically time-
varying parameters [9, 15] is distinguished by its simplicity and easy visualization.
This method has been adapted to analyse the stability of periodically linear time-
variant discrete systems. It is based on eigenvalue analysis of the monodromy matrix
(MM) [16], which is a transient state matrix for a given time interval and control
signal (CS). The control signal is a new term introduced in this book and will be
widely used in Chapters 6 and 7. Here, CS corresponds to a function describing
the law of coefficient variation in the corresponding difference equation (2.1). It is
introduced by analogy with a “pumping signal” used in the description of parametrical
systems [17]. Introduction of this term indicates the connection between the digital
systems considered here and the well-studied analog parametric systems, such as
the RLC resonator with a time-varying capacitor. This representation of the law of
parameter variation as an external CS will be very convenient to use later in the book
when digital parametric oscillators are discussed.
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3.6.2 Selection of Stability Criteria

For stability analysis, it is convenient to operate with the difference equation repre-
sented in the matrix notation. Substituting y1(i) = y(i), y2(i) = y1(i − 1), . . ., yn(i) =
yn−1(i − 1), the uniform part of the difference equation of an arbitrary order

K∑
k=0

ak(n) · y(n − k) = 0 (3.34)

can be represented as a system of uniform difference equations of the first order:


y1(i) = −a1(i)y1(i − 1) − a2(i)y2(i − 1) − · · · − an(i)yn(i − 1) = 0
y2(i) = y1(i − 1)

. . . . . . . . . . . . . . . . . .

yn(i) = yn−1(i − 1)

(3.35)

In matrix notation, equation (3.35) can be represented as


y1(i)

y2(i)

. . . . . . ..

yn(i)


=




−a1(i) −a2(i) . . . −an−1(i) −an(i)

1 0 . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . 1 0


 ·




y1(i − 1)

y2(i − 1)

. . . . .

yn(i − 1)




(3.36)

or
[Y(i)] = [A(i)][Y(i − 1)] (3.37)

where, in terms of state space, [Y(i)] and [Y(i − 1)] are n dimension state vectors of
the system at moments i and i − 1, respectively. [A(i)] is a matrix of state variation
for the system of n by n size, connecting system states at moments i and i − 1 [18].

In cases of coefficient variation in LTV systems, [A(i)] is a time-varying matrix,
determined by coefficient values. For the known initial conditions [Y (0)] and coeffi-
cients a1,2(i), it is possible to determine the state vector of the system at an arbitrary
time moment k by the following recurrent calculations:

[Y(k)] = [A(k)][Y(k − 1)] = [A(k)][A(k − 1)][Y(k − 2)] =
1∏

i=k

[A(i)][Y(0)]

(3.38)

According to the second Liapunov method, the stability of solutions of
equation (3.38) can be estimated by assessing in time domain a behaviour of the
state vector norm’s (SVN) function:

||Y(k)|| = (y2
1(k) + y2

2(k) + · · · + y2
n(k))1/2 (3.39)

whose parameters will be specified later. The decrease of this function along the
trajectory of movement after its displacement from the equilibrium state near the
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base of the co-ordinate guarantees the similar behaviour of the SVN itself, that is,
||Y(k)|| → 0 for k → ∞.

When the CS is a deterministic function, each [Y (0)] corresponds to only one
possible trajectory. For a random CS, each given [Y (0)] corresponds to a different
trajectory, depending on the CS realization. For a stochastic system we can also
introduce a function characterizing “generalized” energy, similar to the deterministic
case. However, it is necessary to determine the function’s integral behaviour along
the ensemble. Then, the system described by equation (3.38) can be considered stable
by stochastic means if the mean energy does not increase in time [19].

According to the definition given in [20], we can consider the solution of
equation (3.38) as

1. p-stable, if for any ε > 0, r > 0 can be found such that for k ≥ k0, M||Y(0)|| < r:

M||Y(k)||p < ε (p > 0) (3.40)

where M(·) is a mathematical mean of the pth order SVN.

2. Asymptotically p-stable, if it is p-stable and, in addition, for the small ||Y(0)||

M(||Y(k)||p) → 0 for k → ∞ (3.41)

is true.

In this book, we consider the stability in terms of the mean square (p = 2). We
will investigate the behaviour of the SVN mean square, since this kind of Liapunov
function is well matched with the “generalized” energy accumulated by the system.

3.6.3 Stability Evaluation

The problem of calculating the SVN square mean requires consideration of the mean
of the Kroneker [21] square matrix

∏1
i=k [A(i)]:




y2
1(k)

y1(k)y2(k)

. . . ..

y1(k)yn(k)

. . . . . .

yn(k)y1(k)

. . . . . . .

y2
n(k)




= M




[
1∏

i=k

[A(i)]

][2]




y2
1(0)

y1(0)y2(0)

. . . ..

y1(0)yn(0)

. . . . . .

yn(0)y1(0)

. . . . . . .

y2
n(0)







(3.42)
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where [·][2] indicates a Kroneker square. By the definition for an arbitrary matrix [C]

[C][2] =




C11 C12 . . . C1/2

C21 C22 . . . C2/2

. . . . . . . . . . . .

Cn1 Cn2 . . . Cnn




[2]

=




C11[C] C12[C] . . . C1/2[C]
C21[C] C22[C] . . . C2/2[C]

. . . . . . . . . . . .

Cn1[C] Cn2[C] . . . Cnn [C]



(3.43)

is a matrix of the order n2 × n2.

As a result of the independency of [Y (0)] and
1∏

i=k

[A(i)] we can write




y2
1(k)

y1(k)y2(k)

. . . ..

y1(k)yn(k)

. . . . . .

yn(k)y1(k)

. . . . . . .

y2
n(k)




= M




[
1∏

i=k

[A(i)]

][2]

· M




y2
1(0)

y1(0)y2(0)

. . . ..

y1(0)yn(0)

. . . . . .

yn(0)y1(0)

. . . . . . .

y2
n(0)







(3.44)

Taking into account that

[
1∏

i=k

[A(i)]

][2]

=
1∏

i=k

[A(i)][2] (3.45)

we obtain a mean square value of SVN:




y2
1(k)

y1(k)y2(k)

. . . ..

y1(k)yn(k)

. . . . . .

yn(k)y1(k)

. . . . . . .

y2
n(k)




= M




[
1∏

i=k

[A(i)]

][2]

· M




y2
1(k)

y1(k)y2(k)

. . . ..

y1(k)yn(k)

. . . . . .

yn(k)y1(k)

. . . . . . .

y2
n(k)







(3.46)

Thus, according to the criterion formulated in equations (3.40) and (3.41), a linear
time-variant digital recursive system is stable in the mean square if

lim
k→∞ M

[
1∏

i=k

[A(i)][2]

]
= [ε] (3.47)
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where all elements εmn < ∞, and are asymptotically stable in the mean square if

lim
k→∞

M

[
1∏

i=k

[A(i)][2]

]
= [0] (3.48)

Now, we can apply this method of system stability evaluation for a particular
system with a known law of coefficient variation or, in other words, for a given
control signal.

3.6.4 Stability of Parametric Recursive Systems

Consider a periodically linear time-variant digital recursive system. The matrix of
state variation [A(i)] is obviously periodical, with the period N equal to the lowest
common multiple of the periods of variation of coefficients a1,2(i) [22, 23]. The
evaluation of stability is reduced to the analysis of the following expression:

lim
k→∞

[
1∏

i=k

[A(i)][2]

]
(3.49)

The limit calculation in the equation can be considerably simplified if we use the
notion of a system monodromy matrix [24]. For a periodically linear time-variant
digital recursive system (PLTV DRS) this is a matrix [C(N, 0)] that connects arbi-
trary states of the system, separated by the interval N that is the period of coeffi-
cient variation:

[C(N, 0)] =
1∏

i=N

[A(i)] =
2∏

i=N+1

[A(i)] =
(m−1)N+q+1∏

i=mN+q

[A(i)] (3.50)

Then equation (3.47) takes the form

lim
k→∞

[
1∏

i=k

[A(i)][2]

]
= lim

k→∞
[
[C(N, 0][2]

]k/N
(3.51)

This expression is limited (equal to 0) if all eigenvalues of matrix [C(N, 0)][2]

satisfy the following conditions: |δ1, δ2, . . . , δ
2
n| ≤ 1. According to the definition given

in [21], eigenvalues [C(N, 0)][2] are pairwise products of the form δ = λjλl , where
λj , λl are eigenvalues of the matrix [C(N, 0)]. From the condition |δ1, δ2, . . . , δ

2
n| ≤ 1

directly follows another rather simple requirement for calculating the monodromy
matrix eigenvalues: |λ1, λ2, . . . , λn| ≤ 1. Thus, the stability of a discrete parametric
recursive system can be determined from eigenvalues λ1, λ2, . . . , λn of the
MM [C(N, 0)]:
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1. If all |λ1, λ2, . . . , λn| ≤ 1, then the system is stable (asymptotically), or

2. If at least one of the eigenvalues |λ1, λ2, . . . , λn| > 1, then the system is not stable.

Eigenvalues λ1, λ2, . . . , λn are determined from the characteristic equation [9]

det [[C(N, 0)] − λ[In]] = 0 (3.52)

where [In] is a unit matrix n × n. From this equation we obtain

λn + d1λ
n−1 + · · · + dn−1λ + dn = 0 (3.53)

Coefficients d1, d2, . . . , dn of the characteristic equation are expressed through the
elements of the matrix [C(N, 0)]. Coefficient d1 is equal to the sum of the elements
of the main diagonal (trace Tr of the matrix [C(N, 0)]) with a negative sign:

d1 = −Tr1 (3.54)

and dn is equal to the determinant of the matrix [C(N, 0)]. Other coefficients are
determined using the recursive formula:

dm = − 1

m
(dmTr1 + dm−1Tr2 + · · · + d1Trm−1 + Trm) (3.55)

where Trm is a trace of the matrix [C(N, 0)]m. Calculation of dn is considerably
simplified by taking into account that the determinant of the matrix [C(N, 0)] (see
equation (3.50)) is a product of matrixes [A(i)] and is equal to the product of the
determinants [25]. In our case,

det[A(i)] = an(i) (3.56)

Then,

dn = det[C(N, 0)] = det
1∏

i=N

[A(i)] =
1∏

i=N

det [A(i)] =
1∏

i=N

an(i) (3.57)

and using coefficients d1, d2, . . ., dn of the characteristic equation (3.43) it is easy to
determine eigenvalues λ1, λ2, . . . , λn of the monodromy matrix.

In the discussions above, we have covered the mathematical aspects of evaluating
the stability of parametric systems.

3.7 STABILITY OF SECOND-ORDER SYSTEMS

The method for stability evaluation described above can be applied for the arbitrary-
order system. Let us investigate the stability of a second-order recursive system. This
analysis has significant practical and methodological implications. The second-order



STABILITY OF SECOND-ORDER SYSTEMS 101

units are often used in digital filtering as bricks for more complex and higher order
systems design. These second-order systems are also the key components for the
parametric oscillator analysis introduced later in the book.

A block diagram of the second-order PLTV system is shown in Fig. 3.6a, which can
be simplified to those shown in Fig. 3.6b. This system is described by the equation

y(i) + a1(i)y(i − 1) + a2(i)y(i − 2) = f (x(i), x(i − 1), x(i − 2)) (3.58)

For stability analysis of linear systems, it is not necessary to consider the particular
values of input signal f (x(i)). The important issue is the initial conditions (IC), that
is, the values stored in the system memory (the delay registers ‘Z−1’ in Fig. 3.6a).
These ICs are shown in Fig. 3.6b as an independent input parameter.

Assume that coefficients a1(i) and a2(i) are the periodical functions a1(i) = a1(i +
N1), a2(i) = a2(i + N2), with the lowest common multiple of the intervals N1 and
N2 equal to N . For this case, the MM elements

[C(N, 0)] =
[

C11 C12

C21 C22

]
=

1∏
i=N

[ −a1(i) −a2(i)

1 0

]
(3.59)

can be determined using the recurrent procedure [22]:




C11 = C11(N) = −a1(N)C11(N − 1) − a2(N)C21(N − 1)

C12 = C12(N) = −a1(N)C12(N − 1) − a2(N)

C21 = C21(N) = C11(N − 1)

C22 = C22(N) = C12(N − 1)

(3.60)

X

+ 

X

f (x(i)) y(i)

−a1(i)y(i−1)

−a2(i)y(i−2)

−a2(i)

Z−1

Z−1

CS2

−a1(i)
CS1

(a)

y(i)CS1

CS2

PLTV
DRS 

ICs y (0) and y(−1)

(b)

Figure 3.6 A second-order system: (a) block diagram and (b) simplified block diagram
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In this expression, (N) and (N − 1) mean that MM elements are obtained as a result
of N and N − 1 matrix [A(i)] multiplication.

For the MM, the characteristic equation is

λ2 + d1λ + d2 = 0 (3.61)

According to equations (3.54) and (3.57), the coefficients d1, d2 are

d1 = Tr[C(N, 0)] = −C11 − C22

d2 = det[C(N, 0)] =
N∏

i=1

a2(i) (3.62)

Then, equation (3.61) takes the following reasonably simple form for calculations:

λ2 − (C11 + C22)λ + det[C(N, 0)] = 0 (3.63)

The condition |λ1| ≤ 1, |λ2| ≤ 1 imposes the following limitations on the coeffi-
cient values in equation (3.63):

{1 − C11 − C22 + det[C(N, 0)] ≥ 0
1 + C11 + C22 + det[C(N, 0)] ≥ 0
| det[C(N, 0)]| ≤ 1

(3.64)

Consider the stability of the second-order system when coefficients vary under the
influence of two control signal waveforms: binary (square wave) and sinusoidal [22,
23]. First, let us consider the simplest case using the following example.

Example 3.4: Second-Order Filter with “Fast” Sinusoidal
Control Signals

The second-order parametric DRS has the binary law of coefficient variation with periods
N1 = N2 = N = 2: a1(i) = a1 + γ1 cos(πi) and a2(i) = a2 + γ2 cos(πi).

This case is interesting, first of all, from the methodological point of view and later
we will refer to it as the “fast” sinusoidal CS. Elements of the monodromy matrix
[C(N < 0)] can be evaluated using recurrent relations (3.60):

{
C11 = −a1(2)C11(1) − a2(2)C21(1) = a1(2)a1(1) − a2(2)

C22 = C12(1) = −a2(1)

| det C(2, 0)| = a2(1)a2(2)

(3.65)

Conditions (3.64) for the system stability take the form

{1 − a1(2)a1(1) + a2(2) + a2(1) + a2(1)a2(2) ≥ 0
1 + a1(2)a1(1) − a2(2) − a2(1) + a2(1)a2(2) ≥ 0
|a2(1)a2(2)| ≤ 1

(3.66)
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Whether CSs are in-phase or have opposite phases, in both cases we obtain the following
stability area (SA) introduced in the plane of coefficients a1, a2:



(1 + a2)
2

γ 2
1 − γ 2

2

− a2

γ 2
1 − γ 2

2

≥ 1

(1 − a2)
2 + a2

1 ≥ γ 2
1 + γ 2

2

a2 ≤ 1 + γ 2
2

(3.67)

These coincide with those specified in [14, 18, 22 and 23]. Recall that CSs in our case
correspond to the law of variation for coefficients a1(i) and a2(i).

Figure 3.7a represents the boundaries of the SA for PLTV DRSs of the second order
on the plane of coefficients: a1,a2 for |γ1| > |γ2|. Figure 3.7b represents the same for
the case |γ1| < |γ2|. The dashed line is the stability area for γ1 = γ2 = 0, which coin-
cides with known results for second-order recursive filters with constant coefficients.
Data analysis from example 3.4 allows us to make some visual generalizations at the
physical level.

2.0
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−0.8

−2.0

−1 −0.4 0.4 10

0

R = (g1 + g2 )1/222 R = (g1 + g2)1/222

a1

2.0

0.8

−0.8

−2.0

0a1

a2

−1 −0.4 0.40
a2

1 + (g 2)21 + (g 2)2

(a) (b)

Figure 3.7 Stability area for “fast” coefficient variation

It is clear that the stability of PLTV systems is essentially different from the
stability of LTI systems. There are the following deformations of the stability area
due to coefficient variation:

1. In the neighbourhood of the point with coordinates a1 = 0, a2 = 1 an enclave of
instability occurs, which is limited by a circle with radius R = (γ 2

1 + γ 2
2 )1/2. For

a1 = 0 and a2 → 0, a DRS with constant coefficients is a narrowband filter with the
resonance frequency ωres = cos−1(−a1/2

√
a2) = π/2. This frequency corresponds

to the first sub-harmonic of the control signal: �S/2 = 2π/2N = π/2.
2. Variation of the coefficient a2(i) expands the SA boundary to values a2 > 1, that

is, a2 = 1 + γ 2
2 (instead of a2 = 1 for LTI systems).

3. The bigger the amplitude of coefficient variation, the bigger is the degree of SA
deformation.
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It is now very important to note that relative to CSs, the system is not linear. So, for
each law of coefficient variation the SA evaluation should be independently applied.

For more complex CSs (N > 2, q > 2), the stability conditions can also be obtained
in closed analytical form using the same equations. However, these formulas become
too tedious for direct analysis. So, we will introduce only the results of computer
calculations for the further analysis of stability areas.

Example 3.5: Second-Order Filter with ‘Slow’ Sinusoidal Variation of
Control Signals

Consider now a “slow” sinusoidal CS with the period N = 16. Let a1(i) = a1 be constant

and a2(i) = 0.125 cos
(π

8
i
)

+ a2. The stability area for −2 < a1 < −1.6 and 0.7 <

a2 < 1 is shown in Fig. 3.8. It clearly shows two instability enclaves centred around
values of coefficients a1: −1.94 and −1.84, when a2 ≈ 1. A digital recursive second-
order system with these coefficients corresponds to a narrowband filter with resonance
frequencies ωres ≈ π/8 and ωres ≈ π/4, respectively. These two frequencies coincide
with the first and second sub-harmonic of the control signal. In Fig. 3.8, the grey colour
corresponds to the instability area.

a 2

a2

General instability area (grey)

−1.6

−1.7

−1.8

−1.9

−2.0
         0.7           0.8           0.9            1.0         

Figure 3.8 Stability area for sinusoidal CS (N = 16)

The analytical analysis of LTV DSs developed above is appropriate for stabil-
ity evaluation of any system. Nevertheless, it seems useful to consider two more
examples for better understanding of the physical processes behind this stability
analysis. Of course, these results are illustrative and cannot be used as graphs for
stability evaluation.

Example 3.6: Second-Order Filter with “Slow” Binary Variation
of Control Signals

The results of an SA evaluation for binary (square waves) CSs with a period of N = 16
and the same on/off factor q = 2 for several values of γ1 and γ2 are shown in Fig. 3.9.
The keys for the modelling parameters for the figure are in Table 3.1.
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Figure 3.9 Stability areas for binary CS

Table 3.1 PLTV DRS and CS parameters

Curve γ1 γ2 Line Figure
nos. nos.

1 0.125 0 Solid 3.9a
2 0 0.125 Dashed 3.9a
3 0 0.125 Solid 3.9b
4 0 0.0625 Dashed 3.9b

The SA obtained by varying only coefficients a1(i) (solid line) and a2(i) (dashed
line) with equal amplitudes γ1 = γ2 = 0.125 is shown in Fig. 3.9a. A similar SA for
a2(i) variation with amplitudes γ2 = 0.125 (solid line) and γ2 = 0.0625 (dashed line) is
shown in Fig. 3.9b.

The enclaves of instability in example 3.3 occur in different positions from the
enclaves for the case when N = 2. However, in terms of the resonance frequencies
of digital resonators, these enclaves again correspond to the sub-harmonics of control
signals: ωres = cos−1(−a1/2

√
a2) ≈ S�S/2. This situation is typical for parametric

systems [26], so let us call these enclaves parametrical instability zones (PIZs). PIZs’
axes of symmetry coincide with the frequencies of CS sub-harmonics and follow the
parabolas of the equal frequencies a2 = a2

1/[4 cos(S�S/2)]. The higher the resonator
efficiency Q (e.g., a2 is close to 1) and the bigger the coefficient variations γ , the
wider along the axes a2 and the deeper along the axes a1 are these PIZs. Conversely,
the higher the sub-harmonic number to which the system is matched, the smaller
are the PIZs. We will come back to this problem later in the book. Qualitatively,
this picture corresponds to the conclusions of Mathieu and Mysner in their stability
analysis of equations [26–28].

Example 3.7: Second-Order Filter with “Slow” Sinusoidal Variations
of Control Signals

Let us consider a sinusoidal CS with different periods N and amplitudes γ1, γ2. The
influence of parameter variation on the system SA is shown in Fig. 3.10, while the keys
for the figure are collected in Table 3.2
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Figure 3.10 Stability areas of a second-order parametric system

Table 3.2 PLTV DRS and CS parameters

Curve N γ1 γ2 Line Figure
nos. nos.

1 16 0.125 0 Solid 3.10a
2 16 0 0.125 Dashed
3 16 0.125 0.125 Solid 3.10b
4 16 0.125 −0.125 Dashed
5 16 0.125 0.125 Solid 3.10c
6a 16 0.125 0.125 Dashed
7 16 0 0.125 Solid 3.10d
8 16 0 0.0625 Dashed
9 8 0.125 0 Solid 3.10e

10 8 0 0.125 Dashed
11 8 0.125 0.125 Solid 3.10f
12 8 0.125 −0.125 Dashed

a CS a1(i) and a2(i) are shifted by N /4

Using the method described above, the stability of arbitrary time-variant systems
can be evaluated analytically. For consideration of parametric systems in this book
we can draw some general conclusions regarding the stability of highly efficient
second-order systems or digital resonators:
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1. Because of the variation of coefficients a1(i) and/or a2(i) in high Q systems, specific
instability enclaves occur near resonance frequencies corresponding to CS sub-
harmonics S�S/2.

2. The existence, positions and shapes of these zones are determined by parameters
of the resonator and CS. The width of the zones along axis a1 (frequency) is
proportional to the amplitudes of coefficient variation.

3.8 STABILITY OF STOCHASTIC SYSTEMS

From theoretical and practical points of view, it is important to consider time-variant
systems with CSs containing random components. In this section, we will study
the influence of these random components on the stability of periodically time-
variant systems.

For stability determination in the mean square [20], first consider the general
expression

lim
k→∞ M

[
1∏

i=k

[
A(i)[2]

]]
(3.68)

where the matrix contains random components. Determination of the mean value of
an infinite number of random matrix multiplications can be considerably simplified
if matrixes [A(i)] are independent and equally distributed [29, 30]. For parametric
system analysis, we can use this approach without essential losses in a generality.
Matrix independence here means that the time intervals by which they are separated
exceed correlation intervals of the random process. However, in general, the matrix
elements can be cross-correlated with each other. Let us determine a monodromy
matrix, introducing it at the correlation interval τ k = N , which is equal to the lowest
common multiple of coefficient correlation intervals [31]:

[C(N, 0)] =
1∏

i=N

[A(i)],

. . . . . . . . . . . . . . .

[Cm(N, 0)] =
(m−1)N+1+q∏

i=mN+q

[A(i)] (3.69)

Then, equation (3.53) can be rewritten as

lim
k→∞ M

[
1∏

i=k

[A(i)][2]

]
= lim

k→∞ M


 1∏

m=k/N

Cm(N, 0)[2]


 = lim

k→∞
[
M[Cm(N, 0)][2]

]k/N

(3.70)
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It is limited if all absolute eigenvalues δ1, δ2, . . . , δn of the matrix M[Cm(N, 0)][2]

do not exceed 1 [23], which is the criteria for system stability. This approach can be
used for the stability analysis of an arbitrary-order system.

For better understanding of this problem, let us apply the method for stability anal-
ysis of the second-order difference equation with stochastic coefficients. So, we are
analysing a second-order PLTV DRS with coefficients containing stochastic compo-
nents, which is described by the following equation:

y(i) + a1(i)y(i − 1) + a2(i)y(i − 2) = f (x(i), x(i − 1), x(i − 2)) (3.71)

In the general case, the coefficients contain deterministic a(i) and random η (i) com-
ponents. We can specify the MM if a1(i) and a2(i) are known:

[C(N, 0)] =
1∏

i=N

[A(i)] =
[

C11 C12

C21 C22

]
(3.72)

where elements [C(N, 0)] can be determined using the recurrent expression (3.65).
Thus, for investigation of the Kroneker square of a matrix 2 × 2, it is possible to
consider only the matrix with the dimensions 3 × 3, which is determined as

[C(N, 0)][2] =

 C2

11 2C11C12 C2
12

C11C21 C11C22 + C12C21 C12C22

C2
21 2C21C22 C2

22


 (3.73)

Coefficients d1, d2, d3 of the characteristic equation of the third order,

δ3 + d1δ
2 + d2δ + d3 = 0 (3.74)

are determined according to equations (3.57) to (3.64) as


d1 = M(C2
11) + M(C11C22 + C12C21) + M(C2

22)

d2 = M(C2
11)M(C11C22 + C12C21) + M(C2

11)M(C2
22)

+ M(C11C22 + C12C21)M(C2
22) − 2M(C11C22)M(C11C21)

− M(C2
12)M(C2

21) − 2M(C12C21)M(C12C22)

d3 = M(C2
11)M(C11C22 + C12C21)M(C2

22) + 2M(C2
11)M(C21C22)M(C12C22)

+ 2M(C11C22)M(C11C21)M(C2
22) − 2M(C11C12)M(C2

21)M(C12C22)

− 2M(C2
12)M(C11C21)M(C21C22) + M(C2

12)M(C2
21)M(C11C22 + C12C21)

(3.75)

Thus, d1, d2 and d3 are fully specified within the correlation theory. The conditions
for which all absolute values of the roots λ1, λ2 and λ3 of the third-order equation
are less than or equal to 1 are{−1 ≤ d2 ≤ 3/2

1 − d2
3 + d1d3 − d2 ≥ 0 (3.76)
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By sequentially performing all the above-enumerated operations, we obtain stability
conditions as a function of the random components’ statistical first and second moments
as well as autocorrelation (ACFs) and cross-correlation (CCFs) functions of the coeffi-
cients. For a simpler understanding of the stability of stochastic systems and the method
of stability analysis discussed above, let us consider the following examples.

Example 3.8: Second-Order System with Non-Correlated
Random Coefficients
Evaluate the stability conditions for a second-order system with coefficients a1(i) =
a1 + η1(i) and a2(i) = a2 + η2(i). They have constant deterministic coefficients a1 and
a2, and random η1(i) and η2(i) components. Assume that the stochastic components are
two white noise zero-mean processes with known variance σ 2

1 and σ 2
2 . According to the

definition, the correlation time interval for white noise is τk = 0 and the MM is

[Ci(1, 0)] =
[−a1 − η1(i) −a2 − η2(i)

1 0

]
(3.77)

Coefficients d1, d2 and d3 of the characteristic equation of the matrix M[[Ci(1, 0)][2]]
are determined according to equation (3.76), as functions a1(i), a2(i) of their moments
and the CCF



d1 = M((a1 + η1(i))
2) + M(a2 + η2(i)) = −a2 − a2

1 − σ 2
1

d2 = −M((a1 + η1(i))
2) + M(a2 + η2(i)) + 2M((a1 + η1(i))M((a1 + η1(i))

M((a2 + η2(i)) − M((a2 + η2(i))
2) = a2σ

2
1 + a2

1A2 + 2a1K12 − a2
2 − σ 2

2

d3 = −M((a2 + η2(i))
2)M((a2 + η2(i)) = −a2(a

2
2 + σ 2

2 )

(3.78)

where σ 2
1 = M(η2

1(i)) and σ 2
2 = M(η2

2(i)) are variances of the random components and
K12 = M(η1(i)η2(i)) is their CCF. So, the stability conditions take the following form:




a2σ
2
1 + a2

1a2 + 2a1K12 − a2
2 − σ 2

2 ≥ −1

a2σ
2
1 + a2

1a2 + 2a1K12 − a2
2 − σ 2

2 ≤ 3/2

1 − a2
2(a

2
2 − σ 2

2 )2 − a2(a2 − a2
1σ

2
1 )(a2

2 + σ 2
2 ) + a2σ1 − a2

1a2

−2a1K12 + a2
2 + σ 2

2 ≥ 0

(3.79)

Using equation (3.79), it is possible to evaluate the stability of a system with known
coefficients. The corresponding SA on the plane of coefficients a1, a2 is shown in
Fig. 3.11, which can be used for SA analysis. Key parameters for the figure are collected
in Table 3.3. The case of time-invariant systems or σ 2

1 = σ 2
2 = K1 = K2 = K12 = 0 is

shown in this figure as well as in Figs. 3.12 and 3.13 by a solid line (curve 1). Thus,
the presence of noise leads to uniform reduction of the SA (Fig. 3.11a). The bigger the
noise variance, the smaller is the stability area. For non-correlated noise components of
the coefficients a1(i) and a2(i), a uniform reduction of SA size can be observed from
all directions. When the cross-correlation of coefficients does not equal zero (K12 �= 0),
the reduction in SA is not uniform (Fig. 3.11b) due to the mutual influence of coeffi-
cient variation.
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Table 3.3 CS parameters

Curve σ 2
1 σ 2

2 K12 Figure
nos. nos.

1 0 0 0
2 0.1 0 0
3 0.2 0 0 3.11a
4 0 0.1 0
5 0 0.2 0
1 0 0 0
2 0.1 0.1 0 3.11b
3 0.1 0.1 0.05
4 0.1 0.1 0.1

a2

a1
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2

3

4

a2

a1

1

2, 4

3, 5

(a) (b)

Figure 3.11 Stability areas for a second-order DRS with coefficients corrupted by correlated
noise

Example 3.9: Second-Order System with Correlated
Random Coefficients
Consider the case when constant coefficients a1(i) = a1 and a2(i) = a2 of the system are
distorted by correlated noise η1(i), η2(i) with the known correlation coefficients over
an interval τk = 2T :K1 and K2 [32]. To estimate the stability of such a system it is
necessary to investigate eigenvalues of the matrix:

M
[
[ci(2, 0)][2]

] =
[

i−1∏
i

[A(i)][2]

]

=
[
M

[
[a1 + η1(i)][a1(i − 1)] − [a2 + η2(i)] −(a1η1(i))(a2 + η2(i − 1))

−(a1 + η1(i − 1)) −(a2 + η2(i − 1))

]]
[2]

(3.80)
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The calculations yield conditions similar to those in equation (3.79). The results of
computer analysis of these conditions are shown in Fig. 3.12 for different parameters,
which are collected in Table 3.4. Two auxiliary curves in Fig. 3.12 (curve 1) and (curve
2) are shown for comparison.

a1
1

2

3

4

a2

a1 1

2

a2

3

4

(a) (b)

Figure 3.12 Stability areas for a second-order DRS with coefficients corrupted by correlated
noise

Table 3.4 CS parameters

Curve σ 2
1 σ 2

2 K1 K2 Figure
nos. nos.

1 0 0 0 0
2 0.1 0 0 0
3 0.1 0 −0.1 0 3.12a
4 0.1 0 0.1 0
1 0 0 0 0
2 0 0.1 0 0 3.12b
3 0 0.1 −0.1 −0.1
4 0 0.1 0.1 0.1

It is interesting to note that the instability area appears near the point with
coordinates a1 = 0, a2 = 1, which corresponds to resonance frequency ωres = π/2
(Fig. 3.12a). Note also that, in general, the nature of SA distortions is similar to that
in the case of the “fast” sinusoidal variation of the deterministic coefficient a1(i).

Example 3.10: Second-Order Digital Recursive System with Periodically
Varying Coefficients Corrupted by Noise

Consider a second-order discrete system with deterministic coefficients similar to those
discussed in example 3.4, but corrupted by white noise components η1, η2 with variance
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σ 2
1 and σ 2

2 : N1 = N2 = N = 2; a1(i) = a1 + γ1 cos(πi) + η1 and a2(i) = a2 + γ2 cos
(πi) + η2. To estimate stability it is necessary to consider the following matrix:

[M[C(2, 0)]][2] =
[
M

i−1∏
i

[A(i)]

]
[2]

=

M


 [a1 − γ1 + η1(i)][a1 + γ1 + η1(i − 1)] −[a2 − γ2 + η2(i)]

−[a1 − γ1 + η1(i)] ×[a2 + γ2η2(i − 1)]
−a1 − γ1 − η1(i − 1) −a2 − γ2 − η2(i − 1)






(3.81)

Then, using equations (3.75) and (3.76) stability conditions can be obtained. Appropriate
results calculated by a computer are shown in Fig. 3.13 for different CS parameters. The
key parameters for the figure are collected in Table 3.5.

Table 3.5 CS parameters

Curve γ1 γ2 σ 2
1 σ 2

2 Figure
nos. nos.

1 0 0 0 0
2 0.3 0 0 0 3.13a
3 0.3 0 0.1 0
4 0.3 0 0.2 0
1 0 0 0 0
2 0 0.2 0 0 3.13b
3 0 0.2 0 0.2

(a) (b)

1

2

a2

3

4

a1 a1

1

2

3

a2

Figure 3.13 SA For a second-order DRS with binary CS distorted by white noise

Analysis of the results of stability analysis of systems with random varying coef-
ficients allows us to draw the following conclusions:
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1. Existence of a random component in the CS leads to distortions in SAs, which are
mainly a reduction proportional to the deviation of the random component.

2. The particular kind of ACFs and CCFs of the CS random components influence
SA shape and size.

3. Results of system stability analysis are well agreed for random and deterministic
variations of coefficients.

4. Stability of stochastic PLTV DSs is fully determined by Eigen and compound mo-
ments of the random variations of coefficients, that is, solutions can be obtained
within the correlation theory, which corresponds to known results [19, 20].

The stability conditions obtained above for systems with random coefficients have
been verified by computer experiments. These experiments were done using direct
modelling of the difference equation (3.71) for zero input signal and initial condition
||Y(0)|| = 1. Results of the experiments are shown in Fig. 3.14. A system of the second
order with constant coefficients was used for the experiment. The coefficients a1(i)

have been corrupted by noise with a variance σ 2
1 = 0.1. An appropriate solution for

equation (3.71) was found. Then, mean values of the state vector norms were calculated,
using results of 50 realizations of random component observations for different a1.
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Figure 3.14 Experimental verification of conclusions derived from the theory of stability for
systems with stochastic coefficients

Dependence of the SVN mean value on time moments iT is shown in Fig. 3.14.
Calculations were done for coefficients a1 = 0.85, 0.95 that correspond to the SA
(curves 1, 2). The other values, a1 = 1, 1.05, 1.1, 1.3 (curves 3–6), correspond to an
instability area in the mean square determined earlier using equations (3.75) to (3.79)
for the parameters being considered. Analysis of the processes shown in Fig. 3.14
allows selection of the following typical areas:

1. monotone reduction of the mean square SVN (curves 1, 2) for systems inside the
SA, which corresponds to the selected earlier stability determination;

2. non-monotone reduction or expansion of parameters, located outside the SA, but
close to its boundaries (curves 3 and 4);
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3. monotone expansion of the mean square SVN for the big system boundary receding
from the SA with noisy coefficients (a2

1 = 1 − σ 2
1 ), as well as for similar receding

from the SA boundary of the system with constant coefficients corrupted by noise
(curves 5, 6).

The modelling results confirm the validity of the analytical approach to stochastic
system stability analysis developed above.

3.9 SUMMARY

In this chapter, we studied periodically time-variant systems. These systems are a
subclass of LTV DSs introduced in Chapter 2. Because of the coefficients’ period-
icity it became possible to introduce the major system characteristics in analytically
closed forms. The important consequences of coefficient periodicity are the periodic-
ity of such system characteristics as impulse response, generalized transfer function
and frequency response. Applying Fourier transform to the GFR yielded a new and
practically useful characteristic, the bifrequency function. This function has a clear
physical sense as it tiers input and output signal spectrums. Analysis of this function
permits relaxation of requirements for the sampling frequency choice in some cases.

The specifically important consequence of the coefficient periodicity is the system
stability behaviour. In this chapter, the analytical method for the stability evaluation
for any periodically varying systems was introduced. This study highlights that the
stability of PLTV DSs derives from sophisticated behaviour, and when time-variant
systems are designed the stability issues should be the focus of the system analy-
sis. The recursive systems become extremely sensitive to the relationships between
their frequency-selective properties and the spectrum of coefficient variations. Except,
perhaps, for second-order systems, it is very difficult to imagine the SA of the sys-
tem, and all PLTV systems should be stability tested even in the case of only small
parameter variations.

Analysis of second-order systems revealed strong deformations of the SAs in the
coefficient domain. PLTV systems are losing their stability when resonance frequen-
cies of the system coincide with sub-harmonics of the CS spectrum components.

3.10 ABBREVIATIONS

ACF autocorrelation function
CC Combinational component
CCF cross-correlation function
CS control signal
DFT discrete Fourier transform
DRS digital recursive systems
DS-1 discrete system of the first order
DS-2 discrete system of the second order
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GFR generalized frequency response
GTF generalized transfer function
IR impulse response
LTI DS linear time-invariant discrete system
MM monodromy matrix
PIZ parametrical instability zone
PLTV DRS periodically linear time-variant digital recursive system
PLTV DS periodically linear time-variant discrete system
PSD power spectral density
SA stability area
SVN state vector norm

3.11 VARIABLES

H0(ω) an equivalent frequency response
ρ integral level of MC
γ MC integral level of PLTV DS losses in comparison

with stationary system
� normalized frequency of system parameter variation
ω normalized frequency of the signal
ξ(ω), η(ω) spectrums of the random processes
ξ(t), ηi stationary continuous random process
�i discrete process modulating sampling period
γi output random signal
λi eigenvalues of the characteristic equation
τk an interval of correlation for random processes
σ 2

X(n) deviation
[A(i)] a matrix of state variation
[Y(i)] n dimension state vector of the system at moment i

||Y(k)|| state vector norm
a(n) time-varying coefficients of the recursive part of a

difference equation
b(n) time-varying coefficients of the non-recursive part of

a difference equation
di coefficients of the characteristic equation
f frequency
Fξ(ω) power spectrum density
F(z, n) GTF of the non-recursive part
g(m, n) impulse response of the recursive part
G(z) GTF of the recursive part
H(ψ, ω) bifrequency function
h(m, n) impulse response
H(z, n) generalized transfer function
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M(·) a mathematical mean of the pth order SVN
M(n) mean value
R(m, n) correlation function
S(ω) spectral density
Tr trace of the matrix
X(ω), X(ψ) spectrum of the input signal
X(n) input discrete random process
x(n) input signal
X(z) z-transform of the input signal
Y(ω) spectrum of the output signal
Y(n) output discrete random process
y(n) output signal
Y(z, n) z-transform of the output signal
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Part Two
Parametric Systems





4
Parametric Filters Analysis

In Chapter 2, we discussed the general properties of linear systems with time-variant
parameters, with periodically linear time-variant discrete systems (PLTV DSs) as the
specific focus of our discussion. Now let us study the main characteristics of PLTV
systems, which act relevant to input signals as frequency selective circuits. If these
systems are stable, their behaviour and characteristics are similar in some instances
to the relevant characteristics of time-invariant systems. We will call these systems
parametric filters (PFs). In this chapter, we will examine how the major characteristics
of PFs can be calculated.

4.1 NON-RECURSIVE PARAMETRIC FILTERS

As was discussed in previous chapters, analysis of non-recursive linear time-variant
(LTV) filters is a relatively simple task. A block diagram of a non-recursive sys-
tem with periodically varying coefficients is shown in Fig. 4.1. The system can be
described by a difference equation:

y(n) =
K2∑
k=0

bk(n) · x(n − k) (4.1)

where
bk(n) = bk(n + N) (4.2)

In this block diagram nT represents delay of the input signal by n periods of
sampling interval. The impulse response (IR) of the system is determined from
equation (4.1) for the unit pulse input signal represented by equation (1.2):

h(m, n) =
K2∑
k=0

bk(n) · δ(m − n + k) (4.3)

An Introduction to Parametric Digital Filters and Oscillators Mikhail Cherniakov
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85104-X
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x(n)
b0(n)

b1(n)

bK(n)

bK1(n)

. . . 

. . . 

T

kT

K1T 

+

Figure 4.1 Non-recursive PF

The generalized transfer function (GTF), which is a z-transform of the IR, is deter-
mined using equation (1.14):

H(z, n) =
∞∑

m=−∞

K2∑
k=0

bk(n) · δ(n − k − m) · zm−n =
K2∑
k=0

bk(n) · z−k (4.4)

and the generalized frequency response (GFR) can be found by substituting z = ejω:

H(ω, n) =
K2∑
k=0

bk(n) · e−jωk (4.5)

The periodical coefficients of the system can be represented by a discrete-time
Fourier series:

bk(n) =
N−1∑
i=0

bk,i · ej�in (4.6)

where � = 2π/N and

bk,i = 1

N

N−1∑
n=0

bk(n) · e−j�in (4.7)

Then,

H(ω, n) =
K2∑
k=0

N−1∑
i=0

bk,i · ej�in · e−jωk =
N−1∑
i=0

(
K2∑
k=0

bk,i · e−jωk

)
· ej�in (4.8)

and

Hi(ω) =
K2∑
k=0

bk,i · e−jωk (4.9)

These useful expressions will be applied in the following discussions.
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4.2 THE FIRST-ORDER RECURSIVE PARAMETRIC
FILTER

Consider a causal recursive parametric filter of the first order, which is illustrated by
the block diagram in Fig. 4.2. This system is described by the difference equation

y(n) = a(n) · y(n − 1) + x(n), n ≥ 0, y(n) = 0 if n < 0 (4.10)

where the coefficient of the filter a(n) = a(n + N) is N -periodical. Now we will
study the main characteristics of this filter.

a(n)

y(n)x(n) w (x)

u(x)

T

+

Figure 4.2 Recursive PF of the first order

4.2.1 Impulse Response

The solution of this equation represents the IR of the filter if the input signal is
represented by equation (1.2):

h(n, m) =
{

a(n) · h(m, n − 1) + δ(m, n) for 0 ≤ m ≤ n

0 for n < 0 and m > n
(4.11)

Let us solve the difference equation for values n ∈ 0, . . . , P ; m ∈ 0, . . . , R < P

and, in particular, for m = 0 and different n [1, 2]:

n = 0 h(0, 0) = δ(0, 0) = 1

n = 1 h(0, 1) = a(1) · h(0, 0) = a(1)

n = 2 h(0, 2) = a(2) · h(0, 1) = a(2) · a(1)

. . .

n = P h(0, P ) = a(P ) · a(P − 1) · . . . · a(2) · a(1)

Then, for m = 1 and different n, we obtain

n = 0 h(1, 0) = 0

n = 1 h(1, 1) = δ(1, 1) = 1

n = 2 h(1, 2) = a(2) · h(1, 1) = a(2)
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n = 3 h(1, 3) = a(3) · h(1, 2) = a(3) · a(2)

. . .

n = P h(1, P ) = a(P ) · a(P − 1) · . . . · a(2)

and for m = 2 and different n, we obtain

n = 0 h(2, 0) = 0

n = 1 h(2, 1) = 0

n = 2 h(2, 2) = δ(2, 2) = 1

n = 3 h(2, 3) = a(3) · h(2, 2) = a(3)

. . .

n = P h(2, P ) = a(P ) · a(P − 1) · . . . · a(3)

Finally, for m = R and different n, we obtain

n = 0 h(R, 0) = 0

n = 1 h(R, 1) = 0

. . .

n = R h(R, R) = δ(R, R) = 1

n = R + 1 h(R, R + 1) = a(R + 1) · h(R, R) = a(R + 1)

n = R + 2 h(R, R + 2) = a(R + 2) · h(R, R + 1) = a(R + 2) · a(R + 1)

. . .

n = P h(R, P ) = a(P ) · a(P − 1) · . . . · a(R + 1)

Comparing the obtained values for the same n and different m, note that the IR can
be represented as

h(m, n) =



n∏
i=m+l

a(i) for 0 ≤ m ≤ n

0 for n < 0; m > n

(4.12)

After denoting

g(n) =
n∏

i=1

a(i) = h(0, n) (4.13)

for n ≥ 1, g(0) = 1, equation (4.12) takes the form

h(m, n) =




n∏
i=m+1

a(i) = g(n)

g(m)
, 0 ≤ m ≤ n

0, m > n

0 n < 0

(4.14)
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We then introduce the new variable

n = µN + ν (4.15)

where µ = 0, 1, . . ., an integer representing the total number of periods of coefficient
variation till the moment nT, and ν = n − µN is some addition, which can take values
from the range 0, . . . , N − 1, depending on the instant n.

For the periodic coefficient, from equations (4.13) and (4.14), it follows that

g(n + N) = g(N) · g(n) (4.16)

where

g(N) =
N∏

i=1

a(i) =
N−1∏
i=0

a(i) (4.17)

is a multiplication of all coefficient values for the period. Continuing the calculations,

h(ηN + ξ, µN + ν) = gµ−η(N) · h(ξ, ν) (4.18)

where m is also represented by an integer number of periods η < µ and by an
“addition” ξ .

According to the stability criteria, the IR should decrease in time. From equa-
tion (4.14), we can see that this condition is obtained if

g(N) < 1 (4.19)

Thus, an important conclusion is that the product of all instantaneous coefficient
values of a stable first-order system for the whole period of coefficient variation
must be less than 1. But, at any particular interval within the period, the coefficient
can be bigger than 1. This characteristic represents an essential distinction between
first-order time-variant systems and time-invariant discrete systems. In stable linear
time-invariant (LTI) systems, the coefficient always has to be less than 1. We will come
back to this problem later in the book. So, we have found an analytical equation that
describes the IR of the first-order PF. Consider now a numerical example to confirm
the analytical results of (4.14) and (4.17).

Example 4.1: Coefficients of a First-Order Filter

First, calculate the IR of the filter with coefficients equal a(1) = 0.5, a(2) = 0.5, a(3) =
0.4 and N = 3 directly from the appropriate difference equation. These results are pre-
sented in Table 4.1.

The results fully coincide with the calculation by equations (4.14) and (4.17). For
instance, g(3) = 0.5 · 0.5 · 0.4 = 0.1 or g(5) = 0.5 · 0.5 · 0.4 · 0.5 · 0.4 = 0.2. Table 4.1
also shows the periodicity of the PF impulse as specified by equation (2.5) derived for
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the general case. Thus, we have shown that the proposed method can be used to evaluate
the first-order recursive PF impulse response.

Table 4.1 Impulse response of the filter

2
3
4
5
6
7

G(n)

0
0
0
0
0
0

1

a(n) 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5
M n 0 1 2 3 4 5 6 7
0 1
1 0

8 0

0
0
0
0
0
0

0.5

0.5
1

0

1
0
0
0
0
0

0.2

0.2
0.4

0

0.5
1
0
0
0
0

0.1

0.1
0.2

0

0.25
0.5
1
0
0
0

0.05

0.05
0.1

0

0.1
0.2
0.4
1
0
0

0.02

0.02
0.04

0

0.05
0.1
0.2
0.5
1
0

0.01

0.01
0.02

0

0.025
0.05
0.1
0.25
0.5
1

0.005

0.005
0.01

0

0.4
8
0.002
0.004
0.01
0.02
0.04
0.1
0.2
0.4
1

0.002

4.2.2 Generalized Transfer Function

We can determine the GTF of a first-order system using equation (1.10) for z-
transform and taking into account equation (4.15):

H(z, µN + ν) =
µN−1∑
l=0

h(µN + ν − l, µN + ν) · z−l

+
µN+ν∑
l=µN

h(µN + ν − l, µN + ν) · z−l (4.20)

Substituting equation (4.18) into (4.20), we obtain after calculations

H(z, µN + ν) =
µ−1∑
η=0

gµ−1(N) · z−(µ−1)N ·
N−1∑
ξ=0

h(N + ν − ξ, N + ν) · z−ξ

+ gµ(N) · z−µN ·
ν∑

ξ=0

h(ν − ξ, ν) · z−ξ (4.21)

The value of the second part of this expression decreases with time in a stable sys-
tem, satisfying equation (4.19). This part describes a transition process, which damps
starting from the moment of arrival of an input signal. An obvious method used in the
theory of continuous LTV systems is to discard the second part of equation (4.21) and
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consider only the first part that corresponds to the steady-state mode. The first sum is a

decreasing geometric progression, converging to
1

1 − g(N) · z−N
for µ → ∞. Hence,

H(z, n) = H(z, µN + ν) = H(z, ν) =

N−1∑
ξ=0

h(N + ν − ξ, N + ν) · z−ξ

1 − g(N) · z−N
(4.22)

Note that the obtained expression for the GTF has the property of periodicity, as
revealed in Chapter 3.

In equations (4.21) and (4.22), the impulse response contains period N , to over-
come time values less then zero in calculations and limitations on the causality of
the system. If we replace N by 1 in (4.22) or assume that coefficients are constant,
equation (4.22) takes the form of the well-known expression [3] for the transfer func-
tion of a first-order system with constant coefficients

H(z) = 1

1 − a · z−1
(4.23)

Comparison of equation (4.22) with (4.4) shows that a recursive discrete system
of the first order (DS-1) can be represented as a cascaded non-recursive PLTV DS of
the N − 1 order with coefficients

bξ (ν) = h(N + ν − ξ, N + ν) (4.24)

and as a recursive system with constant coefficients and transfer function

H(z) = 1

1 − g(N) · z−N
(4.25)

An equivalent structure of a recursive PLTV DS-1 using this representation is
shown in Fig. 4.3.

y(n)x(n)

. . . 

. . . 

h(N+n,N+n)

h(N+n−1,N+n)

h(N+n− i,N+n)

h(n+1,N+n)

g(N )iT 

T 

(N−1)T 

NT 

+

Figure 4.3 An equivalent structure of the recursive PLTV DS of the first order
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The GFR of a first-order PF as well as the harmonics of the GTF and GFR can
be found using equations (2.10) to (2.12). In particular, for an equivalent frequency
response (EFR) characteristic of the first-order system,

H0(ω) = 1

N

N−1∑
ν=0

N−1∑
ξ=0

h(N + ν − ξ, N + ν) · e−jξω

1 − g(N) · e−jωN

=

N−1∑
ξ=0

[
1

N

N−1∑
ν=0

h(N + ν − ξ, N + ν)

]
· e−jξω

1 − g(N) · e−jωN
(4.26)

that is, the EFR is determined by mean value of the system’s IR.

Example 4.2: First-Order Filter Impulse Response

Consider a parametric DS-1 with coefficient a(n) = [1, 1, 0.75, 0.75] and N = 4. The
IR of the system h(0, m) = g(m) is shown in Fig. 4.4. From equation (4.26), Fig. 4.3
and Fig. 4.4, we can see that an LTI DS-1 with some equivalent coefficient has an IR
close to the averaged IR of a PLTV DS-1.

0 5 10 15
n

0

0.1h(
n)

Figure 4.4 Impulse response of first-order systems

As a criterion for IR coincidence, we can use their equality at points corresponding to
the integer number of periods, that is, t = 0, N, 2N, . . .. For this case, the equivalent is

a = N

√√√√ N∏
i=1

a(i) (4.27)

which is equal to the geometric mean of the time-varying coefficient over the period. It
is obvious that the equivalent system is stable if the PLTV DS is stable.

Curve 1 in Fig. 4.4 represents an IR of the equivalent system and curve 2 repre-
sents the PF. One can see from the figure that both IR characteristics vary compatibly
and incident values of the IR of the parametric system oscillate around the IR of the
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time-invariant system. Equation (4.26) takes the form of a well-known formula for the
time-invariant system impulse response if the coefficient value from equation (4.27) is
used for the calculations:

H(ω) = 1

1 − a · e−jω
(4.28)

Figure 4.5 shows the EFR of a PLTV DS-1 (dashed line) and the EFR of an LTI
filter (solid line) with a geometric mean value of the coefficient. The figure shows a
very good coincidence of characteristic with no more than 0.1-dB difference between
them. Thus, we can conclude that using the geometric mean of the coefficient is the
correct approach for estimation of the IR and EFR of a first-order parametric filter.

0 0.1 0.2 0.3 0.4
−10

0

10

H
(w

),
 (

dB
)

w

Figure 4.5 Frequency characteristics of the system from example 4.2

4.3 A RECURSIVE PARAMETRIC FILTER OF THE
SECOND ORDER

A causal recursive PLTV DS of the second order (DS-2) is described by a differ-
ence equation:

y(n) = a1(n)y(n − 1) + a2(n)y(n − 2) + x(n) (4.29)

where coefficients a1(n) and a2(n) are N -periodical:

a1(n + N) = a1(n), a2(n + N) = a2(n) (4.30)

The system’s block diagram is shown in Fig. 4.6a.

4.3.1 Impulse Response
To find the characteristics of the second-order system, we will use the results obtained
above for the PLTV DS-1, representing the PLTV DS-2 by cascade connection of
the first-order system (Fig. 4.6b) [2, 4]. Firstly, we determine coefficients for the
first-order system. The difference equations for the output signals are

u(n) = s1(n) · u(n − 1) + x(n) (4.31)
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(a)

(b)

x(n)

a1(n)

T

a2(n)

T

y(n)
+

y(n)

s1(n)

x(n) u(n)

T 

s2(n)

T 

++

Figure 4.6 (a) Second-order recursive system block diagram and (b) its equivalent presentation

y(n) = s2(n) · y(n − 1) + u(n) (4.32)

where u(n) is a signal at the output of the first system, and s1(n), s2(n) are coefficients
of the equivalent cascaded system.

From equation (4.32), we obtain

u(n − 1) = y(n − 1) − s2(n − 1) · y(n − 2) (4.33)

and from equation (4.31), it follows

u(n) = s1(n) · [y(n − 1) − s2(n − 1) · y(n − 2)] + x(n) (4.34)

Substituting (4.34) into equation (4.32), we obtain

y(n) = [s1(n) + s2(n)] · y(n − 1) − s1(n) · s2(n − 1) · y(n − 2) + x(n) (4.35)

Comparison of equation (4.35) with (4.29) gives conditions for the equivalency of
structures represented in Fig. 4.4:


s1(n) + s2(n) = a1(n)

for n = 1, 2, . . . , N

s1(n) · s2(n − 1) = −a2(n)

(4.36)

If a solution of equation (4.36) exists, then it means that the second-order system can
be represented by cascaded systems of the first order. In 2N equations (4.36), there
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are 2N + 1 variables. An additional condition for equivalency is the periodicity of
coefficient s2(n):

s2(n) = s2(n + N) (4.37)

Excluding s1(n) from equation (4.36), we obtain

s2(n − 1) = −a2(n)/[a1(n) − s2(n)] (4.38)

for n = 1, 2, . . . , N . Equation (4.38) forms systems of equations for different N that
can be solved by sequential substitution:

s1(n) = a1(n) − s2(n) = An + Bn · s2(0)

Cn + Dn · s2(0)
(4.39)

Rewriting (4.38) using equation (4.39), we obtain

s2(n − 1) = −a2(n) · [Cn + Dn · s2(0)]

An + Bn · s2(0)
= −a2(n) · Cn − a2(n) · Dn · s2(0)

An + Bn · s2(0)
(4.40)

At the same time, from equation (4.39), it follows that

s2(n − 1) = a1(n − 1) − An−1 + Bn−1 · s2(0)

Cn−1 + Dn−1 · s2(0)

= a1(n − 1) · Cn−1 + a1(n − 1) · Dn−1 · s2(0) − An−1 − Bn−1 · s2(0)

Cn−1 + Dn−1 · s2(0)
(4.41)

Comparing the numerators and denominators of both equations, we note that they
are identical for the following recurrent relations:


An−1 = a1(n − 1) · An + a2(n) · Cn

Bn−1 = a1(n − 1) · Bn + a2(n) · Dn

Cn−1 = An

Dn−1 = Bn

(4.42)

The initial values of coefficients An, Bn, Cn and Dn are determined as follows:
for n = N , according to equation (4.37), s2(0) = s2(N), and equation (4.41) becomes
identical for

AN = a1(N), BN = −1, CN = 1, DN = 0 (4.43)

A1, B1, C1 and D1 can be found by sequentially solving the recurrent equation (4.42)
for the initial conditions specified in equation (4.43) for all n = N, N − 1, . . . , 2.
Then, by substituting them into equation (4.39), we obtain an expression for s1(1):

s1(1) = A1 + B1 · s2(0)

C1 + D1 · s2(0)
(4.44)
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Substituting this into the second equation of the system from equation (4.38), for
n = 1, we obtain the square equation for s2(0):

B1 · s2
2(0) + [A1 + a2(1) · D1] · s2(0) + a2(1) · C1 = 0 (4.45)

from which we obtain

s2(0) = −[A1 + a2(1) · D1] ± √
[A1 + a2(1) · D1]2 − 4 · a2(1) · B1 · C1

2 · B1
(4.46)

Two solutions for s2(0) indicate that there are two versions of cascaded represen-
tation for PLTV DFs. Other values for s2(n) for n = N − 1, . . . , 1 can be derived
from equation (4.38) for s2(N) = s2(0), while values for s1(n) can be derived from
the first equation of the system represented by equation (4.36).

Thus, the system described by equation (4.38) has a solution, and a PLTV DS of the
second order can be represented by two cascaded first-order PLTV DSs. Coefficients
of this equivalent system can be found using coefficients a1(n), a2(n) of an original
system via algorithms (4.36) to (4.46). Coefficients s1(n), s2(n) of the equivalent
representation are N -periodical and, in the general case, complex. There are two
different sequences of coefficients s1(n), s2(n), which correspond to two different
solutions of equation (4.30). Any of these sequences can be used for calculations, as
the results will be the same.

The IR of the PLTV DS-2, represented by two cascaded equivalent first-order
systems, is determined according to equation (1.69):

h(m, n) =
n∑

k=0

h1(m, k) · h2(k, n) (4.47)

where h1(m, k) and h2(k, n) are the IRs of the first and second systems, respectively,
and can be derived from the known coefficients s1(n) and s2(n) using equation (4.12).
Let us consider the following example.

Example 4.3: Second-Order Filter

Instant values of coefficients a1(n) and a2(n) of the DS-2 with period N = 4 are pre-
sented in Table 4.2. This table also contains two different sequences of coefficients
s ′

1(n), s ′
2(n) and s ′′

1 (n), s ′′
2 (n) for an equivalent representation of the second-order sys-

tem via cascaded connections of the first-order systems. Table 4.3 provides IR values
h(m, n) calculated directly from the difference equation (4.29) for the unit pulse input
signals (1.2) applied at time m = 3, and also values of two IRs h′(m, n) and h′′(m, n)

for the equivalent representation, calculated from equations (4.36) to (4.46).
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Table 4.2 Coefficients of the DS-2 and its equivalent representation DS-1

Initial system Equivalent representation

The first variant The second variant

N a1(n) a2(n) s′
1(n) s′

2(n) s′′
1 (n) s′′

2 (n)

0 −0.75 −1 −0.375 + j1.301 −0,375 − j1.301 −0,375 − j1.301 −0,375 + j1.301
1 −0.5 −1 −0.205 + j0.710 −0.295 − j0.710 −0.205 − j0.710 −0.295 + j0.710
2 −0.75 −0.75 −0.375 + j0.901 −0.375 − j0.901 −0.375 − j0.901 −0,375 + j0.901
3 −0.5 −0.75 −0.295 + j0.710 −0.205 − j0.710 −0.295 − j0.710 −0.205 + j0.710

Table 4.3 IR of the DS-2 and its equivalent representation by the DS-1

DS-2 Equivalent system

m = 3 The first variant The second variant

n h(3, n) h
′
(3, n) h

′′
(3, n)

0 0 0 0
1 0 0 0
2 0 0 0
3 1.0000000 0.9999999 0.9999999
4 −0.5000000 −0.5000000 −0.5000000
5 −0.6250000 −0.6249999 −0.6249999
6 0.8125000 0.8124999 0.8124999
4 −0.1406250 −0.1406251 −0.1406251
7 −0.5390625 −0.5390623 −0.5390623
8 0.5449219 0.5449218 0.5449218
9 0.2666016 0.2666014 0.2666014

The data from these tables show that the IR calculated from a difference equation
coincides with the IR calculated using equivalent DS-2 representation by cascaded
systems. Two different solutions of equation (4.46) correspond to the same equivalent
systems. Note also that if a1(n) are real, coefficients of the first-order systems are
complex conjugates.

If IR reduction is used as the criterion for PLTV systems, then for a stable DS-2,
the following expressions should be correct:

|g1(N)| < 1, |g2(N)| < 1 (4.48)

where g1(N) and g2(N) are determined from equation (4.13) using coefficients s1(n)

and s2(n), respectively. In equation (4.31), absolute values have been adopted, since
coefficients s1(n) and s2(n) are generally complex and, as a result, g1(N)and g2(N)

are also complex.
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4.3.2 Generalized Transfer Function

We obtain an expression for the GTF of the second-order system using equation (1.70):

H(z, n) =
n∑

k=0

H1(z, k) · h2(k, n) · zk−n (4.49)

We will determine the GTF of the DS-2 following a procedure similar to first-order
systems analysis:

H(z, n) = H(z, µN + ν) =
µ−1∑
η=0

N−1∑
ξ=0

H1(z, ηN + ξ) · h2(ηN + ξ, µN + ν)

· zηN+ξ−µN−ν +
ν∑

ξ=0

H1(z, µN + ξ) · h2(ηN + ξ, µN + ν) · zµN+ξ−µN−ν

(4.50)

Equation (4.32) corresponds to the GTF of the stable DS-1 and was derived from
equation (4.21):

H1(z, k) = H1(z, ηN + ξ) = H1(z, ξ) =
∑N−1

χ=0 h1(N + ξ − χ, N + ξ) · z−χ

1 − g1(N) · z−N

(4.51)

Using expression (4.15) for the IR of the second DS-1, from equation (4.32), we obtain

H(z, n) = H(z, µN + ν) =
µ−1∑
η=0

g
µ−η

2 (N) · z(η−µ)·N
N−1∑
ξ=0

H1(z, ξ)

· h2(N + ξ, N + ν) · zξ−ν + g
µ

2 (N) ·
ν∑

ξ=0

H1(z, ξ) · h2(ξ, ν) · zξ−ν

(4.52)

The next step is to evaluate the steady-state GTF. We will have to consider
equation (4.52) for µ → ∞, taking into account that for the stable DS-2 g2(N) < 1,

the sum along η is a decreasing geometrical mean, converging to
1

1 − g2(N) · z−N
.

The second half of equation (4.35), which corresponds to a transition process, tends
to zero and can be disregarded. Finally, the GTF of a second-order PLTV system is
described by

H(z, ν) = 1

1 − g2(N) · z−N
·

N−1∑
ξ=0

H1(z, ξ) · h2(N + ξ, N + ν) · zξ−ν (4.53)
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Summarizing what should be done to evaluate the integral characteristics of a PLTV
of the second order, an algorithm for determination of characteristics of the DS-2
involves the following procedure:

1. DS-2 representation by two cascaded DS-1 coefficients s1(n) and s2(n).

2. Calculation of coefficients s1(n) and s2(n).

3. Determination of the stability of the first-order systems.

4. Calculation of the IR and GTF of the first cascaded system using equations (4.36)
to (4.46), (4.12) and (4.52).

5. Calculation of the IR and GTF of the whole cascaded structure calculation using
equations (1.69) and (4.53).

6. Substitution of z = ejω to determine characteristics in the frequency domain.

7. Evaluation of the signal and combinational components (CCs) of the GFR using
equation (2.13).

In the next example, components of the GFR are introduced, calculated by the
method described above. We will come back to these results later, during discussion
of the approximate method of parameter evaluations.

Example 4.4: Evaluation of Signal and Combinational Components

Figure 4.7 [5] (solid lines) shows the signal (EFR) and CCs of the system GFR with
coefficients from example 4.3 calculated using the algorithm described above.

H0

−40
0 0.1 0.2 0.3 0.4

0

20

|H
(w

)| 
dB H2

H3

H1

−20

w

Figure 4.7 PLTV DS-2 GFR components
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4.4 PARAMETRIC FILTERS OF AN ARBITRARY
ORDER

In the previous sections, we introduced analytical methods for evaluating integral
characteristics of first- and second-order recursive PLTV DSs. Let us now evaluate
the GTF for an arbitrary-order PLTV DS. Any other system characteristics can be
derived from this function if necessary. It is interesting to note that, in the general case,
GTF cannot be presented in an analytically closed form for continuous periodically
time-variant systems, except for the first-order case [6].

4.4.1 Direct Equation Solution

The difference equation (1.21) can be represented for all 0 ≤ n ≤ N − 1 as a system
of linear equations:

K1∑
k=0

ak(n) · z−k · H(z, n − k) =
K2∑
k=0

bk(n) · z−k (4.54)

This can be rewritten in the matrix form

[Amn(z)] · [H(z, n)] = [Bn(z)] (4.55)

where values of the coefficient matrix are determined according to the following
algorithm:

1. Amn(z) = 0 is the matrix of initial coefficients.

2. An integer i = n − k + pN has to be found for all 0 ≤ n ≤ N − 1 and 0 ≤ k ≤
K1, where another integer p is selected to satisfy the condition 0 ≤ i ≤ N − 1.
Then, ak(n) · z−k is added to the previous value Ani(z). This is necessary to count
a periodicity of H(z, n) = H(z, n + N).

3. Values of the constant term column are determined as

Bn(z) =
K2∑
k=0

bk(z) · z−k (4.56)

Having these values of the coefficients, the matrix form (4.55) corresponds to the
difference equation (4.54). Solution of the system can be obtained by one of the
known methods [5] for any given z. For example, using multiplication of the left and
right parts of the equation (4.55) by reverse coefficient matrix, we obtain

[Amn(z)]
−1 · [Amn(z)] · [H(z, n)] = [Amn(z)]

−1 · [Bn(z)]
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or
[H(z, n)] = [Amn(z)]

−1 · [Bn(z)] (4.57)

To calculate the GFR, z = ejω is substituted into equation (4.55) and GFR har-
monics are determined using equation (2.13). The algorithm will be more easily
understood if we consider the following example of calculations.

Example 4.5: Direct Solution for N = 4

For a PLTV DS-2 and the period N = 4, the coefficient matrix can be written as

[Amn(z)] =




a0(0) 0 a2(0) · z−2 a1(0) · z−1

a1(1) · z−1 a0(1) 0 a2(1) · z−2

a2(2) · z−2 a1(2) · z−1 a0(2) 0
0 a2(3) · z−2 a1(3) · z−1 a0(3)




Consider a recursive PLTV DS-2 with coefficients from example 4.3. Since there
are differences in the form of equations (4.27) and (4.54), in the coefficient matrix
it is necessary to designate a0(n) = −1 and b0(n) = 1. Let us start calculations from
direct current (DC) that correspond to ω = 0 and, consequently, z = 1. In this case, we
have H(0, n) = 0,23; 0,48; 0,47; 0,405, which coincide exactly with values calculated
using the algorithm from Section 4.3. For the frequency ω = π/8, the solution of
equation (4.57) gives the following values: H(π/8, 0) = 0.34 + 0.34j ; H(π/8, 1) =
0,43 + 0.47j ; H(π/8, 2) = 0.27 + 0.23j ; H(π/8, 3) = 0.47 + 0.33j . These results
could also be obtained using the algorithm and calculations in Section 4.3.

Note that in the case when ak(n) = ak = const, which is the case for LTI systems,
solution of equation (1.21) can be obtained by applying a discrete Fourier transform
(DFT) to both parts of equation (4.54):

K1∑
k=0

ak · z−k · Hi(z) =
K2∑
k=0

bki · z−k (4.58)

where

bki = 1

N

N−1∑
n=0

bk(n) · e−jni� (4.59)

From this, it follows that

Hi(z) =

K2∑
k=0

bki · z−k

K1∑
k=0

ak · z−k

(4.60)

For a non-recursive PLTV DS, when a0 = 1, ak = 0 and k > 0, the obtained expres-
sion coincides with equation (4.9).
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4.4.2 Equation Solution in a State Space

As discussed before, difference equations can be introduced in the state space [7]. In
the time domain, the system can be described by

w[n + 1] = Aw[n] + bx[n] (4.61)

y[n] = CT w[n] + Dx[n] (4.62)

where matrix A, vectors b and c, and scalar D represent the system stricture and
coefficients. For example, for the canonical second-order filter with coefficients b1

and b2 in the non-recursive part and −a1 and −a2 in the recursive part, the parameters
under consideration will take the following forms:

A =
[−a1 −a2

1 0

]
, b =

[
1
0

]
, CT = [b1 − a1 b2 − a2], D = [1] (4.63)

A similar approach can be taken for time-variant systems where, obviously, coef-
ficients ai and bi will be functions of time n. For periodically time-variant systems,
this approach was developed in [8]. For the general case, the state equations (4.61)
and (4.62) have the following time-dependent form:

w[n + 1] = A[n]w[n] + b[n]x[n] (4.64)

y[n] = CT [n]w[n] + D[n]x[n] (4.65)

In equations (4.64) and (4.65), the system matrixes are N -periodical for PLTV sys-
tems. In this case, as for previous cases, we can apply DFT for the parameter matrixes:

A[n] =
N−1∑
k=0

Ak exp(j�nk) (4.66)

b[n] =
N−1∑
k=0

bk exp(j�nk) (4.67)

C[n] =
N−1∑
k=0

Ck exp(j�nk) (4.68)

D[n] =
N−1∑
k=0

Dk exp(j�nk) (4.69)

where � = 1/N is the main frequency in the Fourier presentation. Assuming that
the order of the system is K , these matrixes have the following dimensions: A is a
constant K × K matrix, bK is a constant K × 1 matrix, Ck is a K × 1 matrix and
Dk is a constant scalar.
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As our goal is to determine the GFR, which is the system reaction to the complex
sinusoidal signal, we should consider this signal as an input signal:

x[n] = exp(jωn) (4.70)

Let the vector of transfer functions between the input signal x[n] and the state vec-
tor w[n] be q(exp(j�), n). This vector links the state vector and the input signal
as follows:

w[n] = q[exp(jω), n]x[n]|x[n]=exp(jωn) (4.71)

Now we can introduce the GFR via system parameters and the transfer function:

H(ejω, n) = CT [n]q[ejω, n] + D[n] (4.72)

The transfer vector, like the system parameters, is periodical and can be represented
via Fourier transform as

q[jω, n] =
N−1∑
k=0

qk(e
jω) exp(j�nk) (4.73)

Now we can replace all terms in the state–space equation in the Fourier nota-
tion (4.66) to (4.69) and (4.73) to obtain

N−1∑
k=0

Hk(e
jω) exp(j�nk) =

(
N−1∑
λ=0

CT
λ exp(j�nλ)

)
×

(
N−1∑

γ

qγ (ejω) exp(j�nγ )

)

+
N−1∑
k=0

Dk exp(j�nk) (4.74)

This equation is true for any n and, taking into account the periodicity of the
complex exponential function equation (4.74), can be represented in the following
matrix format:∣∣∣∣∣∣∣∣∣∣

H0

H1

. . .

. . .

HN−1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

CT
0 CT

N−1 . . . . . . . . . CT
1

CT
1 CT

0 . . . . . . . . . . CT
2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

CT
N−1 CT

N−2 . . . . . . . . . CT
0

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣

q0

q1

. . .

. . .

qN−1

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

D0

D1

. . .

. . .

DN−1

∣∣∣∣∣∣∣∣∣∣
(4.75)

This equation can be further rearranged to obtain the more compact matrix form

H = CQ + D (4.76)

where H, C, Q and D reflect components of equation (4.75). To find the GFR in the
closed analytical form, we need to evaluate vector Q. If we replace the components
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in equation (4.61), with appropriate equations (4.66), (4.67) and (4.71), and take into
account equation (4.73), we obtain the following relationships between qi and the
system parameters:{

N−1∑
k=0

qkejω exp(j�(n + 1)k)

}
exp(jω(N + 1)) =

{
N−1∑
λ=0

Aλej�nλ

}

×



N−1∑
γ=0

qγ ejω exp(j�nγ )


 exp(jωn) +

{
N−1∑
k=0

bkej�nk

}
exp(jωn) (4.77)

Equation (4.77) is true for any n. Comparing both sides of this equation and taking
into account the periodicity of complex exponent functions, we obtain∣∣∣∣∣∣∣∣∣∣

q0 exp j(ω)

q1 exp j(ω + �)

. . . . . . . . .

. . . . . . . . .

qN−1 exp j(ω + �(N − 1))

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

A0 AN−1 . . . . . A1

A1 A0 . . . . . . . A2

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

AN−1 AN−2 . . . . . A0

∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

q0

q1

. . .

. . .

qN−1

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

b0

b1

. . .

. . .

bN−1

∣∣∣∣∣∣∣∣∣∣
(4.78)

or ∣∣∣∣∣∣∣∣∣∣

ejωE − A0 −AN−1 . . . . . . . . . . . . − A1

−A1 ej(ω+�)E − A0 . . . . . . . . . − A2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

−AN−1 −AN−2 ej(ω+�(N−1))E − A0

∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

q0

q1

. . .

. . .

qN−1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

b0

b1

. . .

. . .

bN−1

∣∣∣∣∣∣∣∣∣∣
(4.79)

In a more compact matrix form, this equation takes the form

ÂQ = B (4.80)

where Â is a KN × KN matrix, Q is a KN × 1 column and E is the K × K unit
matrix. In case of the stable PLTV DS, the rank of Â equals the order of the matrix
Â. Then, we can evaluate the sought Q as follows:

Q = Â−1B (4.81)

Now we have all components of equation (4.75) to evaluate the GFR spectrum and
the last step is to put the evaluated Hi(ω) into (2.13):

H(ejω, n) =
N−1∑
k=0

Hk(e
jω) exp(−j�nk) (4.82)

Let us apply this approach to first-order system analysis.
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Example 4.6: First-Order Filter

Consider a stable parametric filter of the first order with a constant coefficient b1 = b in
the non-recursive part and a periodically time-varying coefficient with the period N = 2
in the recursive part of the filter a1 = a(1 − cosnπ) [8]. Taking into account (4.63) and
assuming a2 = b2 = 0, we obtain a state equation for the canonical first-order filter:

∣∣∣∣w1(n + 1)

w2(n + 1)

∣∣∣∣ =
∣∣∣∣ 0 a(1 − cos nπ) − b

b − a(1 + cos nπ) 0

∣∣∣∣ ×
∣∣∣∣w1(n)

w2(n)

∣∣∣∣ +
∣∣∣∣ 1
1

∣∣∣∣ x(n)

y(n) = [1, 1][w1(n)w2(n)]T + x(n) (4.83)

For instance, for a = b = 0.5, the equations in (4.63) become

A0 =
∣∣∣∣ 0 0
0 0

∣∣∣∣ , A1 =
∣∣∣∣ 0 −0.5
−0.5 0

∣∣∣∣ , b0 =
∣∣∣∣ 1
1

∣∣∣∣ , b1 =
∣∣∣∣ 0
0

∣∣∣∣ (4.84)

CT
0 = [1 1], CT

1 = [0 0], D0 = 1, D1 = 0

Substituting components of equation (4.79) with (4.84) we obtain

∣∣∣∣∣∣∣∣
ejω 0 0 0.5
0 ejω 0.5 0
0 0.5 −ejω 0

0.5 0 0 −ejω

∣∣∣∣∣∣∣∣
·
∣∣∣∣ q0

q1

∣∣∣∣ =

∣∣∣∣∣∣∣∣
1
1
0
0

∣∣∣∣∣∣∣∣
(4.85)

The solution of this equation is

∣∣∣∣ q0

q1

∣∣∣∣ =
∣∣∣∣ 4ejω

4ej2ω + 1

4ejω

4ej2ω + 1

2

4ej2ω + 1

2

4ej2ω + 1

∣∣∣∣ (4.86)

The GFR spectrum components can be evaluated from the following equation:

∣∣∣∣H0

H1

∣∣∣∣ =
∣∣∣∣ 1 1 0 0
0 0 1 1

∣∣∣∣ ·
∣∣∣∣ q0

q1

∣∣∣∣ +
∣∣∣∣ 1
0

∣∣∣∣ =
∣∣∣∣ 4ej2ω + 8ejω + 1

4ej2ω + 1

4

4ej2ω + 1

∣∣∣∣ (4.87)

From equation (2.12), which is for our case

H(ejω, n) =
N−1∑
k=0

Hk(e
jω) exp(−j�nk) (4.88)

we obtain

H(ejω, n) = 4ej2ω + 8ejω + 1 + 4 cos nπ

4ej2ω + 1
(4.89)

For frequency ω = 0, we obtain H(0, 0) = 3.4; H(0, 1) = 1.8; H(0, 2) = 3.4;
H(0, 3) = 1.8 and so on, and for frequency ω = π/8, we obtain H(π/8, 0) = 11.4 −
j3.36; H(π/8, 1) = 1.07 − j3.36 and so on.
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4.5 APPROXIMATE METHOD FOR ANALYSIS
OF PERIODICAL LINEAR TIME-VARIANT
DISCRETE SYSTEMS

We have discussed two approaches to parametric system analysis: through the analyt-
ically calculated integral characteristics and through appropriate difference equations
and computer simulations. These methods for GFR evaluation give an exact result,
but require a large number of calculations. These calculations, in some instances,
mask the physical sense behind the system analysis. In engineering practice, approx-
imate methods of analysis have a very important role. They not only give reasonably
accurate results but are also transparent for the physical processes occurring, which
allows for a clearer understanding of the system. Let us consider one of these approx-
imate methods.

In Section 4.2, we discussed an approximate method for analysis of a first-order
discrete system, which was represented as an LTI system with a constant coefficient
equal to the mean geometrical value of coefficient variation. For second- and higher-
order systems, this approach is not directly applicable. Instead, we will consider an
approximate method of calculation based on calculation of GFR harmonics.

Equation (4.54), for the recursive part of the system, can be written as

K1∑
k=0

ak(n) · z−k · H(z, n − k) = 1 (4.90)

and applying a DFT, we obtain

1

N

N−1∑
n=0

e−jmn� ·
[

K1∑
k=0

ak(n) · z−k · H(z, n − k)

]
= 1

N

N−1∑
n=0

e−jmn� (4.91)

From (4.91), we can derive a system of equations for GFR harmonics using DFT
properties for multiplication of functions [3]:

N−1∑
i=0

Hi(z) ·
K1∑
k=0

ak,m−i · z−k · e−jki� = δ(m) (4.92)

where

akm = 1

N

N−1∑
n=0

ak(n) · e−jmn� (4.93)

represents the coefficients via a Fourier series.
In the frequency domain, we obtain the following system of equations for GFR

harmonics:

N−1∑
i=0

Hi(ω) ·
K1∑
k=0

ak,m−i · e−jk(ω+i�) = δ(m), m = 0, . . . , N − 1 (4.94)
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The system of N linear equations represented by (4.94) can be solved by the computer
for each particular frequency ω. In comparison with equation (4.55), more computer
calculations are required to determine system coefficients, but the structure of the
coefficient matrix has a regular nature regardless of the order of the system and the
period N , and is, therefore, simpler for programming. The results of calculations
using equations (4.55) and (4.94) are the same.

We can now simplify the solution for equation (4.94) by considering the physi-
cal implications of the appearance of combinational components (CCs). Figure 4.8
presents, as an example, a structure of the recursive second-order PLTV DS, where
a feedback of the systems has been split into two branches: branch A has constant
(averaged) coefficients a10 and a20, and branch B has a variable part of the coefficient
components. In this figure, elements of the unit delay have been replaced by ej�

multiplication. For the analysis of particular systems, � should be replaced by the
actual frequency of the signal passing through the element.

Consider signal x(n) = ejωn passing through the system. According to equation
(2.18), an output signal of the system is

y(n)=ejωn · H(ω, n)=ejωn ·
N−1∑
k=0

Hk(ω) · ej�kn =ejωn · H0(ω) +
N−1∑
k=1

Hk(ω) · ej(ω+k�)

(4.95)

Through branch A, the following components pass to the system input:

1. The output signal component with frequency ω:

ejωn · H0(ω) · (a10 · e−jω + a20 · e−2jω) (4.96)

y(n) x(n)

AB

e jΘ

e jΘ

a10

a20

H0(w)

+

N−1

m=1
a1m.e jmnΩΣ

N−1

m=1
a2m.e jmnΩΣ +

Figure 4.8 Generation of CCs in a recursive PLTV DS-2
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2. The output combinational components with frequencies ω + k�:

K1∑
k=1

Hk(ω) · ej(ω+k�)n ·
[
a10 · e−j(ω+k�) + a20 · e−2j(ω+k�)

]
(4.97)

Through branch B, the following components pass to the input:

1. Combinational components that have been obtained as a result of modulation of
the output signal component by the time-varying parts of coefficients:

ejωn · Ho(ω) ·
N−1∑
m=1

(a1m · e−jω + a2m · e−2jω) · ejmn� (4.98)

2. Products of the secondary modulation of the output combinational components:

N−1∑
k=1

Hk(ω) · ej(ω+k�)n ·
N−1∑
m−1

[
a1m · e−j(ω+k�) + a2m · e−2j(ω+k�)

]
· ejmn� (4.99)

We can now assume that the total power of GFR combinational components is
small in comparison with the power of the signal component:

N−1∑
i=1

|Hi(ω)|2 <<|H0(ω)|2 (4.100)

We can also assume that for coefficients of the recursive part the following condi-
tion is satisfied:

N−1∑
i−1

K1∑
k=0

|aki |2 <<

K1∑
k=0

|ak0|2 (4.101)

which corresponds to the smallness of variation of coefficient amplitudes in compari-
son with their mean value. As will be shown later in examples, these assumptions are
mutually dependent. If the variation in coefficient amplitudes is reduced, the power
of the CCs is also proportionally reduced. Conditions (4.100) and/or (4.101) are the
limiting factors in applying the approximate method. Nevertheless, for the parametric
filters considered in this book, the approximate method is fully applicable.

The conditions (4.100) and (4.101) mean secondary modulation components in
the feedback have a second order of smallness and can be neglected. Returning to
equation (4.94), we neglect all terms in double sum over i, k except terms for i = 0
and i = m. Then, for m = 0 in equation (4.94), we obtain

H0(ω) ≈ 1
K1∑
k=0

ak0 · e−jkω

(4.102)
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and for m �= 0 from equation (4.94), we obtain

H0(ω) ·
K1∑
k=0

akm · e−jk(ω+m�) + Hm(ω) ·
K1∑
k=0

ak0 · e−jk(ω+m�) ≈ 0

or

Hm(ω) ≈ −
H0(ω) ·

K1∑
k=0

akm · e−jk(ω+m�)

K1∑
k=0

ak0 · e−jk(ω+m�)

= −H0(ω) ·
K1∑
k=0

akm · e−jk(ω+m�) · H0(ω + m�) (4.103)

The obtained expressions have a clear physical meaning:

1. An EFR of the parametric filter corresponds approximately to the frequency re-
sponse of an LTI system with constant coefficients equal to the time mean values
of the time-varying coefficients (as shown in Fig. 4.5).

2. The input signal with frequency ω is amplified by the system according to its
EFR at the frequency H0(ω). This signal at the feedback is modulated by the
harmonics of the time-varying coefficients, and the newly generated harmonic
components with frequencies ω + k� are filtered by the system according to its
EFR at combinational frequencies H0(ω + k�).

Thus, the harmonics appearing at the recursive part of a PLTV DS are weakened by
the system itself according to its equivalent frequency response. The narrower the pass
band of the recursive part, the smaller will be the level of CCs at the system output.

Expressions (4.102) and (4.103) are considerably simpler than the accurate meth-
ods of analysis introduced earlier. They can be recommended for fast approximate
estimation of PLTV DS characteristics. Let us confirm this by the following example.

Example 4.7: Evaluation of GFR Components

The GFR signal and CCs for a PLTV DS-2 with parameters from examples 4.4 and 4.3
were calculated by the approximate approach described above. The signal components
(SCs) and CCs of the GFR are shown in Fig. 4.7 by dotted lines. Comparison of these
components with those obtained by the exact analytical method, shown in Fig. 4.7 by
solid lines, demonstrates a good qualitative and quantitative coincidence of the results,
even for a relatively large coefficient amplitude. Strictly speaking, the assumption in
equation (4.101) is not executed for the given case. However, at the maximums of pass
bands, deviation of calculated data does not exceed 0.5 dB for all GFR components.
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4.6 SUMMARY

In this chapter, the major characteristics of digital filters (DFs) with periodically time-
varying coefficients were introduced. Impulse and frequency response of the first- and
second-order systems were derived in an analytically closed form.

Only parametric systems with the period of coefficient variation being a multiple
of the sampling period were considered. This restriction on the coefficient variation
period does not reduce the analyses’ generality but essentially helps to simplify an
analytical description of these systems. This simplifies calculations and clarifies the
system behaviour and the physical processes driving these relatively complex systems.

Eventually, it became possible to replace the systems under consideration with their
approximate equivalent block diagram. These diagrams are convenient to use where
PLTV DSs are a part of more complex systems. One of the interesting conclusions
derived from our analysis is that PLTV systems can act very similar to LTI sys-
tems under some conditions discussed in the chapter. In this case, PLTV filters have
averaged frequency response, when the variations in characteristic relevant to these
average parameters can be viewed like some sort of noise with predictable param-
eters in terms of power and spectrum. It is also important to note that in the case
of recursive parametric narrowband filtering, these noise components are effectively
filtered out by the system itself to levels low enough for practical applications.

4.7 ABBREVIATIONS

CC combinational component
DF digital filter
DFT discrete Fourier transform
DRS digital recursive systems
DS discrete system
DS-1 discrete system of the first order
DS-2 discrete system of the second order
EFR equivalent frequency response
GFR generalized frequency response
GTF generalized transfer function
IR impulse response
LTI DS linear time-invariant digital system
PF parametric filter
PLTV DRS periodically time-variant digital recursive system
PLTV DS periodically linear time-variant discrete system
SC signal components

4.8 VARIABLES

H0(ω) an equivalent frequency response
� normalized frequency of system parameter variation
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ω normalized frequency of the signal
s1(n), s2(n) coefficients of the systems in the equivalent representation.
a(n) time-varying coefficients of the recursive part of a

difference equation
b(n) time-varying coefficients of the non-recursive part of a

difference equation
F frequency
g(m, n) impulse response of the recursive part
G(z) GTF of the recursive part
h(m, n) impulse response
H(z, n) generalized transfer function
u(n) signal at the output of the first system
X(ω), X(ψ) spectrum of the input signal
X(n) input discrete random process
x(n) input signal
X(z) z-transform of the input signal
Y(ω) spectrum of the output signal
Y(n) output discrete random process
y(n) output signal
Y(z, n) z-transform of the output signal
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5
Design Studies for Parametric
Filters

It has been discussed in previous chapters that a signal at an output of a periodically
linear time-variant discrete system (PLTV DS) contains a number of spectral compo-
nents for the harmonic input waveform. One of these spectral components coincides
with the input signal frequency ω = ψ and is a signal component (SC). The others
are combinational components (CC) with frequencies ω = ψ + k�, originated within
the system itself. If the SC is considered to be desirable, then a PLTV DS behaves
like a frequency filter. In the general case, characteristics of such a filter are deter-
mined not by the instantaneous filter coefficients, but by their time-averaged values.
Such a system is called a PLTV digital filter (DF) or a parametric filter (PF). In a
PF, CCs at the system output are considered as noise or interference. In the course
of filter design, it is important not only to estimate their level but also to reduce their
influence on system performance.

In contrast, if at the PLTV DS output one or more of the CCs are considered
desirable, then the effect of the frequency components should be emphasized by
an appropriate choice of system parameters. This could be the basis of design of
digital functional elements, which provide functions of frequency converters, phase
and synchronized detectors, correlators and other devices, similar to those used for
analog techniques. For analysis of these functional elements, the approaches developed
in previous chapters can be used, but their more detailed study is beyond the scope
of this book.

The analysis of numerous publications dedicated to time-variant systems, and in
particular PLTV DSs, shows that there is no theory or method of design of such
systems similar to those we have for LTV systems [1]. Different elements of time-
variant DS design can be found in [2–33]. A number of recent publications are
dedicated to two-dimensional LTV filter analysis, which are outside the scope of this
book, but are essentially dedicated to the same problems [34–38].

In this chapter, using examples, we discuss a number of peculiarities that distin-
guish PF design from linear time-invariant (LTI) digital filter (DF) analysis. We will

An Introduction to Parametric Digital Filters and Oscillators Mikhail Cherniakov
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85104-X
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consider only PF design, using as criteria their approximate equivalent frequency
response (EFR) and the CC level.

5.1 RECURSIVE PARAMETRIC FILTERS

5.1.1 Frequency Response Correction

Let us first consider how to improve frequency response approximation in DFs using
the effect of coefficient variation or simply using a PF instead of an LTI DS. Coeffi-
cients of DFs are always represented by a finite word length that leads to appropriate
limitations on the accuracy of the filter frequency response approximations. To design
a DF with constant coefficients that satisfy a criterion to enhance the accuracy of
approximation, it is necessary to increase the coefficient word length or, in other
words, to reduce the coefficient quantization step qs [1]. These requirements increase
the system complexity, which can be unviable in some situations. For example, in a
system that uses an 8-bit fixed-point microcontroller for signal processing, the coef-
ficient lengths have already been predetermined. For modernization purposes, let an
extra filtering algorithm be performed by the controller. Moreover, the desired fre-
quency response can be approximated only by using, say, a 12-bit word length.
Sometimes, the only solution is to replace the controller, but in some cases we
can solve the problem at the software level by replacing an LTI algorithm by the
use of a PF.

To replace an LTI filter by a PF, their frequency response and EFR should coincide.
We have discussed that the EFR of a PLTV DS is obtained by time-averaging of the
system coefficients. Now let us consider examples of EFR analysis.

Example 5.1: EFR for a First-Order Recursive Filter

Consider a PF of the first-order (PLTV DF-1 or PF-1 (parametric filter of the first order))
in which coefficient a(n) can take only two values: 0.75 and 1 with period N = 8. The
timing diagram is a = 1 over T n1 for the period TN (0 ≤ n1 < N) and at times it
is equal to a = 0.75 over the period T (N − n1). For instance, the case when n1 = 0
corresponds to the filter with constant coefficient a = 0.75 and the case when n1 = 8
corresponds to the filter with constant coefficient a = 1. It is interesting to note that for
a = 1 the filter does not satisfy stability requirements [2].

A set of EFRs for a PF-1, calculated using equation (4.26), is shown in Fig. 5.1. The
narrowest frequency band corresponds to n1 = 7. This figure shows that, in contrast to
a filter with constant parameters and coefficients quantized with the step qs = 2−2, the
PF can have eight different EFRs by changing the timing diagrams of the coefficient
variation. This is equivalent to an increase in coefficient quantization word length by 3
bits or qs = 2−5.

So, by changing a duty cycle of the coefficient variation timing diagram we are tuning
the filter cut-off frequency.
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Figure 5.1 Normalized EFR of PF-1

Example 5.2: First-Order Narrowband Low-Pass Filter

Let us design a narrowband recursive DF-1 with a normalized cut-off frequency
ωc = 2 · 10−4 at the −3-dB level. First, we will calculate the exact value of the filter
coefficient that corresponds to this cut-off frequency [1], that is, a = 0.9987442. The

filter gain at ω = 0 is Gdc = 1

1 − a
= 58.02 dB and we assume that the gain error

should not exceed ±0.25 dB. The minimum number of bits in the coefficient represen-
tation that still attains this level of accuracy is 12. If the coefficient aq0 = 1 − 5 · 2−12

is chosen, the filter gain is 58.27 dB. The nearest best 10-bit coefficient aq1 = 1 − 2−10

corresponds to 60.02-dB gain and the 11-bit coefficient aq2 = 1 − 3 · 2−11 corresponds
to 56.68-dB gain. In both cases, the gain deviation exceeds ±0.25 dB.

Consider now a PF-1 with a coefficient that can take two values: a(0) = aq1 and
a(1) = aq2 with period N = 2. Calculation of PF characteristics using the geometrical
mean value gives Gdc = 58.27 dB, which corresponds to the filter specification but is
obtained via a shorter word length. So, this is another example that demonstrates an
increase in accuracy of approximation of characteristics within a given word length by
using a PLTV DS.

Example 5.3: Second-Order Filter with Highly Quantized Coefficients

Consider a PLTV DF of the second order (PLTV DF-2 or PF-2 (parametric filter of the
second order)), in which coefficients a1(n) and a2(n) are quantized with step q = 2−2

and the coefficient variation period N = 4. Figure 5.2 demonstrates several amplitude
effective frequency responses of such filters, with different coefficient values correspond-
ing to different curves. Response (1) corresponds to a DF with constant coefficients:
a1 = −0.5 and a2 = −0.75. The other responses correspond to PFs with the following
timing diagrams of coefficient variation:
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Figure 5.2 Amplitude EFR of the second-order PF

for a1 = −0.5 we have

a2 = {−0.75; −0.75; −0.75; −1} − (2)

a2 = {−0.75; −0.75; −1; −1} − (3)

a2 = {−0.75; −1; −1; −1} − (4)

for a2 = {−0.75; −0.75; −1; −1} we have

a1 = {−0.5; −0.5; −0.5; −0.75} − (5)

a1 = {−0.5; −0.5; −0.75; −0.75} − (6)

a1 = {−0.5; −0.75; −0.75; −0.75} − (7)

a1 = −0.75 − (8)

Similar to the PF-1 in example 5.1, coefficient variation in the PF-2 leads to the
appearance of responses that occupy intermediate positions. These responses correspond
to the frequency responses (FRs) of time-invariant filters with more bits in coefficient
representations. In this case, for instance, between responses 3 and 8, there are three
intermediate curves. So, these PFs have an efficient fourfold reduction in the quantiza-
tion step.

Therefore, as discussed above, this effect can be used to improve approximation
of filter responses. Consider the following example of a filter design.

Example 5.4: Second-Order Filter with Given Cut-Off Frequencies

Let us consider a second-order filter with specified cut-off frequencies ωc1 = 0.170 and
ωc2 = 0.172 at the level of −3 dB [3]. The amplitude–frequency response of the filter
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with constant coefficients is

|H(ω)| =
∣∣∣∣ 1 − e−2jω

1 − a1e−jω − a2e−2jω

∣∣∣∣ (5.1)

The coefficient values, which can be found through these cut-off frequencies, are a1 =
0.9465492 and a2 = −0.9875119. The FR of the filter with these constant coefficients
is shown in Fig. 5.3a, curve 1.

The coefficients of DFs have limited word length. An example of the quantized
coefficients grid with step qs = 2−7 is shown in Fig. 5.3b. The quantized coefficients
a11 = 1 − 3 · 2−6, a12 = 1 − 7 · 2−6, a21 = −1 + 2−6 and a22 = −1 + 2−7 are closest to
the exact values evaluated above for the idealized filter. The nodes of the grid (points
2–5) correspond to the different combinations of quantized coefficients and various
displacements of the LTI DF frequency responses (shown in Fig. 5.3a). The indexes of
curves and corresponding nodes in parts (a) and (b) of Fig. 5.3 coincide. As can be seen,
the FR of the filter with quantized coefficients deviates considerably from the desired
FR (curve 1).

Now let us study a PF-2 with coefficients having the timing diagram with period
N = 4 and values a1(n) = {a11, a12, a21, a12} and a2(n) = {a21, a22, a21, a22}. The EFR
(curve 6 – the dotted line) of this PLTV filter almost coincides with the required
characteristic (curve 1 – continuous line).
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Figure 5.3 Amplitude–frequency response of PF-2



154 DESIGN STUDIES FOR PARAMETRIC FILTERS

So, once again we have demonstrated that the use of a PF can increase the accuracy
of DF approximation for given coefficient word lengths. It is definitely not necessary
for all PF coefficients to be time-varying. Some coefficients can be constant. Consider
another example of filter design.

Example 5.5: Low-Pass Filter with Given Flatness

In this example, we will design a low-pass filter (LPF) with the amplitude–frequency
response deviating no more than 1 dB in the pass-band ω < 0.1 and with attenuation
of at least −32 dB in the stop-band ω ≥ 0.15. This filter was calculated by the known
methods [1] and can be represented as two cascaded filters of the second order with
the FR

H(ω) = 1 + b11 · e−jω + e−2jω

1 + a11 · e−jω + a12 · e−2jω
· 1 + b21 · e−jω + e−2jω

1 + a21 · e−jω + a22 · e−2jω
(5.2)

with coefficients a11 = −1.4686, a12 = 0.6006, b11 = −1.125 and a21 = −1.5, a22 =
0.875, b21 = 0.25. Note that all coefficients except a11 and a12 are represented by
binary numbers with quantization step qs = 2−3. So, it is a big challenge to replace
coefficients a11 and a12 by 3-bit numbers. A normalized FR with coefficients in the
pass-band is represented in Fig. 5.4 (curve 1). The other curves in the figure correspond
to a11 and a12 representations by 10 bits (curve 2), 7 bits (curve 3), 4 bits (curve 4)
and 3 bits (curve 5). We will now study these approximations in more detail.

Consider first the FR of the filter with quantized constant coefficients. For the step
qs = 2−10, the filter FR almost coincides with the given exact FR (deviation is not more
than 0.02 dB, curve 2). With bigger steps the deviation increases. Thus, for qs = 2−7

the deviation is 0.05 dB and the FR still remains within the given specification (curve
3). For qs = 2−4 the closest coefficient values are a11 = −1.4375, a12 = 0.625 and
the FR (curve 4) within the pass-band has a 5-dB deviation. It is interesting to note
that for q = 2−3 and coefficients a11 = −1.5 and a12 = 0.625, the FR is closer to the
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Figure 5.4 Characteristics of the fourth-order filter
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specification and has a deviation in the pass-band of about 1.2 dB (curve 5). This can
be explained by some mutual compensation in FRs of the two filter stages.

Now let us synthesize this filter using periodically varying coefficients with qs = 2−4

and period N = 8. The following timing diagram of coefficient variation

a11(n) = {−1.4375; −1.4375; −1.4375; −1.4375; −1.5; −1.5; −1.5; −1.5}

and

a12(n) = {0.5625; 0.5625; 0.5625; 0.625; 0.625; 0.625; 0.625; 0.625}

gives the required result (see dots near curve 3). The quantization step of the coef-
ficient values under consideration is 2−4, but the accuracy of equivalent coefficient
representation corresponds to the quantization step 2−7.

It is possible to further reduce the coefficient word length by up to 3 bits at the
expense of the period of coefficient variation, which increases to N = 16. Thus, for
a11(n) equal to −1.375 over 4T and −1.5 over 12T , and for a12(n) equal to 0.5 over
3T and 0.625 over 13T , the resulting FR also satisfies the filter specification.

5.1.2 Multiplier-Free Filters

In PF design, coefficients that do not require a multiplier and can be developed by
a small number of shifts and summation components or logical procedures can be
used. Such coefficients have a minimum number of units in binary code and in some
literature are referred to as primitive coefficients. In the following examples, we will
consider coefficients with no more than two units in a binary code representation,
that is, ±2−ν ± 2−ξ , where ν, ξ = 0, 1 . . ..

Example 5.6: First-Order Parametric Filter

Consider the PF-1 from example 5.2, but having a coefficient with period N = 4 and
timing diagram a(n) = {1 − 2−10; 1 − 2−10; 1 − 2−10; 1 − 2−9}. The time mean value of
such a coefficient coincides with the value from example 5.2. The amplitude–frequency
responses of this filter and its counterpart from example 5.2 are nearly equal to each
other. However, coefficients in example 5.6 are primitive for the given word length and
2 bits less than their LTI DF equivalent.

Example 5.7: Second-Order Parametric Filter

The band-pass filter of the second order from example 5.4 can also be approximated
with primitive coefficients if the period is increased until N = 8:

a1 = {a11; a11; a11; a11; a11; a11; a12; a12}
a11 = 1 − 2−4, a12 = 1 − 2−5

a2 = {a21; a21; a21; a21; a21; a22; a22; a22}
a21 = 1 − 2−6, a22 = 1 − 2−7
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The amplitude–frequency response of such a filter satisfies the requirements given in
example 5.4.

It is obvious that using primitive coefficients can have considerable design advan-
tage compared to using filters that have multipliers. This advantage can be especially
important for complex systems containing large numbers of filters or channels. As an
example, we can consider a bank of filters (a comb filter).

Example 5.8: Bank of Filters

Consider a bank M = 128 second-order filters of equal pass-band, covering a frequency
span from direct current (DC) to one-half of the sampling frequency. The bank forms a
“comb” of overlapping filters. The FR of an individual time-invariant filter is described

by equation (5.1). The resonance frequencies of each filter are ω0l = (l − 1)

2(M − 1)
, where

l is the sequence number of the filter. The pass-band of each filter is �ω = 1

2(M − 1)
for an amplitude–frequency response overlapping at the level of −3 dB. As an example,
Table 5.1 shows coefficient values for filters 51 and 54 in two cases: time-invariant filters
and parametric filters. All coefficients (constant and time-varying) are rounded off to
primitive values. Figure 5.5 shows the normalized amplitude–frequency responses of
these filters.

The required FRs corresponding to coefficient values are shown by continuous lines.
The characteristics of time-invariant filters with rounded-off primitive coefficient values
are shown by dashed lines and the PF-2 characteristics are depicted by dots. These graphs

Table 5.1 Comb filter coefficient values

Filter Exact LTI DF with PF for N = 8
number coefficients primitive
l values coefficients

51 a1 = 0.64759 a∗
1 = 2−1 + 2−3 a

′
1 = 2−1 + 2−2, n11 = 1

a2 = −0.97556 a∗
2 = −1 + 2−5 a

′′
1 = 2−1 + 2−3, n12 = 7

a
′
2 = −1 + 2−5, n21 = 5

a
′′
2 = −1 + 2−6, n22 = 3

52 a1 = 0.60123 a∗
1 = 2−1 + 2−3 a

′
1 = 2−1 + 2−3, n11 = 5

a2 = −0.97556 a∗
2 = −1 + 2−5 a

′′
1 = 2−1 + 2−4, n12 = 3

a
′
2 = −1 + 2−5, n21 = 5

a
′′
2 = −1 + 2−6, n22 = 3

53 a1 = 0.55499 a∗
1 = 2−1 + 2−4 a

′
1 = 2−1 + 2−4, n11 = 6

a2 = −0.97556 a∗
2 = −1 + 2−5 a

′′
1 = 2−1 + 2−5, n12 = 2

a
′
2 = −1 + 2−5, n21 = 5

a
′′
2 = −1 + 2−6, n22 = 3

54 a1 = 0.50781 a∗
1 = 2−1 + 2−7 a

′
1 = 2−1 + 2−7, n11 = 7

a2 = −0.97556 a∗
2 = −1 + 2−5 a

′′
1 = 2−1 + 2−8, n12 = 1

a
′
2 = −1 + 2−5, n21 = 5

a
′′
2 = −1 + 2−6, n22 = 3
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Figure 5.5 FR of the comb filter components

show that frequency responses of filters with constant primitive coefficients deviate
considerably from the desired characteristics, while the PF-2 responses are very close
to the specifications. The 51st PF-2 with a 2-bit word length for the most roughly
approximated quantized coefficient a1 has the maximum deviation. However, increasing
the period to N = 16 results in the coincidence of its FR with the required characteristics.
Thus, the example shows that an application of PFs with primitive coefficients provides a
high level of approximation accuracy when the desired characteristics cannot be obtained
by time-invariant filters with primitive coefficients.

Let us try to roughly estimate the number of mathematical operations required to
develop a bank of filters using PFs, fast Fourier transform (FFT) and filter realization
by time-invariant second-order sections. The generalized block diagram of this comb
filter is shown in Fig. 5.6a. Figure 5.6b shows the sequence of calculations, in the
form of a block diagram, in one of the PFs-2 with primitive coefficients ±2−ν±2−ξ .

From Fig. 5.6 it can be seen that a second-order filter with these coefficients
requires four summations and four shifts. A full structure of the comb filter also
includes a non-recursive part common to all channels. We can estimate that the whole
comb filter requires 4M shifts and 4M summations. Note that the number of these
components does not depend on coefficient word length.

Consider now the comb filter using M-points FFT algorithm [1]. The multiplication
is obtained by a number of shifts and summations. The FFT algorithm is based on a
uniform structure with two complex inputs and two complex outputs, called a butterfly.
The butterfly requires four multiplications and six summations of real numbers. FFT
coefficients, in general, are not primitive numbers. For L-bit coefficients, the multipli-
cation requires L shifts and L summations. To calculate the M-points FFT, approxi-
mately (M/2) · log2 M base butterfly evaluations are required. Thus, for one frequency
channel the FFT algorithm requires 2L · log2 M shift operations and 3L · Log2 M

summation operations.
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In contrast to the comb filters, the FFT algorithm is applied to blocks of M word
input data and, consequently, the output spectrum appears M times fewer than sam-
pling frequency. This is not suitable for a number of applications. The better algorithm
for comparison is the sliding FFT, where the algorithm is repeated for each new sam-
ple of input signal. This sliding FFT requires approximately (M/2) · log2 M butterfly
operations. Comb filter realization using the traditional LTI DF requires for each
recursive system two summations and two multiplications (L shifts and summations)
of real numbers. We can estimate the number of elementary operations required for
such comb filter realization as 2M · L shifts and 2M · (L + 2) summations.

(b) Second-order filter with coefficients ±2−n ±2−x
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Figure 5.6 Block diagram of PF: (a) general structure and (b) second-order filter with coefficients
±2−ν±2−ξ

The number of mathematical operations required for comb filters with M = 128
channels and 8-bit coefficient word lengths are collected in Table 5.2 for the four algo-
rithms discussed above. These numbers of operations should be performed for each
new sample of an input signal. Of course, this is no more than the first and rather rough
evaluation, but it shows the real potential offered by PF applications in comb filtering.

The limiting case for the use of primitive coefficients is for coefficients equal to −1,
0, 1, as discussed in [5–8]. This case, however, has more theoretical than practical
importance because of the considerable level of output CCs, which is noted in [7].
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Table 5.2 Number of operations in a comb filter with 128 channels

Variant of Number Number
realization of shifts of summations

LTI DF-2 2 048 2 560
FFT without weighting window 112 168
Sliding FFT without weighting

window
14 336 21 504

PF with “simple” coefficients 512 512

5.1.3 High-Efficiency Parametric Filters

Narrowband filters are often used for signal processing. If there are no special require-
ments, recursive systems of the first and second order are used for this purpose.
Higher-order filtering systems are usually built as connections of these primary sys-
tems, with aims to unify system architecture, reduce round-off noise and minimize
data word length. To obtain a narrow pass-band or narrow transition band between
the pass- and stop-bands, the filtering systems have to include stages with a high
efficiency factor Q.

There is a maximum limit for the value of Q in recursive filters with constant
coefficients for a given word length.

Consider a first-order recursive filter with the frequency response

H(ω) = 1

1 − a · e−jω
(5.3)

A −3-dB cut-off frequency ω0 for this filter is specified from

|H(ω0)|2
|H(0)|2 = (1 − a)2

(1 − 2a · cos ω0 + a2)
= 1

2
(5.4)

For small ω0, cos ω0 ≈ 1 − ω2
0

2
, and it is not difficult to show that

ω0 ≈ 1 − a√
a

(5.5)

from which it can be seen that the filter bandwidth decreases when coefficient a

approaches 1.
For a binary quantization of the coefficient with word length L, the coefficient

closest to unity is a = 1 − 2−L, and the minimum possible frequency band for this
word length is

ω0 min ≈ 1 − (1 − 2−L)√
1 − 2−L

≈ 2−L (5.6)
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It is possible to obtain a similar expression for second-order filters. In general, the
recursive part of a second-order DF is a digital resonator [1, 39] with the efficiency
factor Q increasing when |a2| → 1. So, the coefficient word length determines the
maximum achievable Q.

Consider a recursive PF-1. This filter is stable if the product of coefficient val-
ues over the variation period is less than unity. So, unlike a first-order LTI DF,
where stability of the system requires that the constant coefficient is always less
than one, the instantaneous value of the PF-1 coefficient can exceed one. This
provides new possibilities to develop high-Q filters. The equivalent value of the
coefficient in the PF is approximately equal to the geometrical mean of the product
of all instantaneous coefficient values. For instance, consider the filter with instanta-
neous coefficient values a1 = 1 − q and a2 = 1 + q, n = 0 . . . N − 1. For the timing
diagram of these coefficients and N = 2, the filter is stable, since gN = a1 · a2 =
(1 − q) · (1 + q) = 1 − q2 < 1. An equivalent coefficient a = √

(1 − q2) ≈ 1 − q2

2
is considerably closer to 1 than the coefficient for an LTI DF with the same quanti-
zation step. Now consider a few numerical examples.

Example 5.9: High-Q Filters

For the quantization step q = 2−8, the LTI DF has the maximal coefficient value amax =
1 − 2−8, while the PF has the equivalent coefficient value amax = 1 − 2−15. So, for this
case Q is 128 times higher for the PF than for the LTI filter. In the general case, for
arbitrary N , an equivalent coefficient is equal to

a = N

√
a

n1
1 · a

n2
2 (5.7)

Taking the logarithm of this equation, we can find those n1 and n2 for which an equivalent
coefficient maximally approaches the required coefficient a:

n1 =
〈
N · ln

a

a2

/
ln

a1

a2

〉
, n2 = N − n1 (5.8)

Here < x > denotes the function that rounds off the x to the closest integer.

Example 5.10: Quantization Step q = 0.25

Consider a case when q = 0.25. For the period N = 16, the coefficient a(n)n1 = 7 takes
the value a1 = 0.75 and n2 = 9 takes the value a2 = 1.25. The equivalent coefficient
of this filter is a = 16

√
0.757 · 1.259 = 0.999657, that is, 1370 times closer to 1 than the

equivalent coefficient for a time-variant filter with the same number of bits.

Example 5.11: High-Q Second-Order Filter

Consider a pass-band second-order filter with a constant coefficient a1 = −1 and a
time-varying coefficient a2(n) with the quantization step q = 2−6 varying with period
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N = 16 : a′
2 = 1 − 2−6 and a′′

2 = 1 + 2−6. A set of FRs corresponding to different n1 is
shown in Fig. 5.7.
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Figure 5.7 Amplitude–frequency responses of a PF-2

Figure 5.7 shows that increasing n1 for the period increases Q to a maximum of
30 dB. The lowest FR in the figure corresponds to the filter with constant coefficients
of given word length of 6 bits. The highest FR in the figure corresponds to the
case when n1 = n2 = 8. It has to be noted that the approximate representation of an
equivalent constant coefficient as a mean value for the period is not correct in this
case, since this corresponds to an unstable LTI DF. For a high-Q filter, it is necessary
to use accurate methods to evaluate PF characteristics.

For some coefficient combinations, Q can increase to infinity. In these cases, the
stability of the filter is violated. Moreover, for some coefficients, when the resonance
frequency of the filter is close to one of the harmonics appearing with the frequency of
coefficient variation, generation can occur even if all instantaneous coefficient values
correspond to a stable LTI DF. For some resonance frequencies, the system stability will
not be violated even when all instantaneous coefficient values correspond to an unstable
LTI DF. This effect has been described in [10–14] and is also the subject of Chapter 6.

The given examples show that the strong connection between coefficient word
length and limited Q of the system that is typical for LTI systems is not true for filters
with time-varying coefficients. Instantaneous values of PF coefficients can belong to
the area where the relevant LTI filters are unstable. In this case, a considerably higher
Q for the system can be achieved via coefficient variations. This is a unique peculiarity
of PFs. Note also that the coefficients 1 ± 2−L are primitive and, as was discussed,
can have reasonably simple hardware implementation.

5.2 COMBINATIONAL COMPONENTS
IN PARAMETRIC FILTERS

In previous sections, we considered how to provide filtering via PLTV DSs. This
assumes that the only desired part of a generalized frequency response (GFR) is its
EFR. Using periodically time-varying coefficients, it is possible to design filters with
specified frequency responses by technically more effective ways; for example, by
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using coefficients with low-bit word lengths or by using primitive coefficients. These
options became possible because of the introduction of an extra degree of freedom in
filter design, that is, coefficient variation. We can form a desired EFR by the choice
of the period of coefficient variation N , the timing diagram within the period, as well
as the value of the coefficients themselves. In return for this technical advantage,
we have to be ready for possible complications in filter stability and the presence
of CCs in the output signal spectrum, which act as interference. The magnitude
and spectrum of CC interference directly depends on the filter EFR and the timing
diagram of coefficient variation. We can view the CC interference as a penalty for
the good and sometimes unique results of using PLTV DSs for filtering. When PFs
are used for signal processing, the interference level should meet some criteria. These
criteria can be quantitatively specified only relevant to a particular PF application.
Nevertheless, it is obvious that under other equal conditions this interference level
should be minimized.

For practical PF applications, it is important to compare the CC power with other
possible noise and distortions. The main undesired process in DFs is the noise of
data quantization and the round-off noise occurring during intermediate calculations.
Moreover, the CC level has to be considered relevant to the given GFR of the filter.
For example, there is no sense in decreasing the CC level to −60 dB if the filter
damping at the stop-band requires −30 dB. Before we consider different approaches
to reducing interference, let us consider the criteria for evaluating the CC level.

5.2.1 Evaluation of the Level of Combinational Components

In Chapter 3, a criterion for an integral level of CC interference was introduced – the
level of integral interference can be determined as a ratio of the total CC power to
the power of the useful signal over all frequency bands (equation 3.32). Application
of this integral criterion for evaluation of the CC level requires a large amount of
calculations and knowledge of the exact GFR of the filter. Let us consider here a
simplified version of this parameter for evaluation.

From Section 4.5 it follows that in a recursive PF the maximal level of the GFR
combinational harmonics is determined by its EFR. This is the result of CC filtering
by the recursive filters themselves. This fact allows for simplification of the procedure
for estimating the CC level [15].

Consider, in Fig. 5.8, the shapes of the EFR and GFR combinational harmonics
of a PLTV DF with N = 4 from example 4.3 (Fig. 5.8 is similar to Fig. 4.7 and is
repeated here for convenience). Characteristics are given for one-half of the frequency
band ω/2π ∈ {0, . . . , 0.5}. In the second half, all characteristics are a mirror image
of those in the first half.

It can be seen from Fig. 5.8 that the GFR has six maximums. Three of them
are at frequency ω0 ≈ 0.31, which coincides with the maximum of the EFR H0(ω).
Three others correspond to the combinational frequencies ω0 + k�: 0.052, 0.19 and
0.44. The shape of the CC maximums in the EFR pass-band is the same as the
EFR shape.
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Figure 5.8 GFR components of a PLTV DS-2

According to equation (4.103), the bandwidth of GFR harmonics Hi(ω) is equal to
the bandwidth of the H0(ω). We can now approximate H0(ω), assuming that within
the pass-band H0(ω) is constant and equal to its maximum, while outside the pass-
band H0(ω) is equal to zero (see Fig. 5.8). From this approximation, the normalized
CC level can be evaluated using only GFR maximums:

γ =

N−1∑
m=1

{
|Hm(ω0)|2 +

N−1∑
i=1

|Hm(ω0 + i�)|2
}

2 · |H0(ω0)|2 (5.9)

The calculated CC level from equation (5.9) is close to results obtained from the more
accurate equation (3.33). Let us refer to equation (5.9) as the amplitude criterion of
the CC level. Taking into account the mirror symmetry of GFR, it is possible to halve
the number of maximums in equation (5.9). Also, because the maximum levels are
equal in pairs, the calculations can be made only at the resonant frequency of the
filter (see Fig. 5.8), and equation (5.9) can be further simplified to

γ =
2 ·

N−1∑
m=1

|Hm(ω0)|2

|H0(ω0)|2 (5.10)

It is obvious that CC evaluation according to the amplitude criterion requires
considerably fewer computations than calculation according to the integral criterion.
To compare the accuracy of these approximate and exact methods, a number of
calculations were made following these two criteria. The results are collected in
Table 5.3.

The data in Table 5.3 confirm the correctness of the amplitude criterion and the
appropriateness of introducing equation (5.9). These methods for evaluating the CC
level cannot themselves reduce the interference level, but are simply an instrument
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Table 4.3 CC levels for a PF-2

Criterion Equations ρ in (dB)

Integral criterion (calculations in
100 frequency points)

(3.32) −14.61

Integral criterion (calculations in
1000 frequency points)

(3.32) −14.61

Amplitude criterion (calculations
in all GFR maximums)

(5.9) −14.59

Amplitude criterion (calculations
at the resonant ω0)

(5.10) −14.59

for PF performance analysis. In the next section, we will address the methods of
reducing the CC level.

5.2.2 Methods of Reducing Combinational Components

I. Optimization of the coefficient variation timing diagram

Equation (4.103) specifies the level of CCs of the GFR Hm(ω), m 	= 0. The EFR
H0(ω) of the filter is the factor for each evaluation of the GFR harmonics Hm(ω).
Hence, dividing the numerator and the denominator of equation (5.9) by H0(ω0), after
simple transformations we obtain

γ ≈ 2 ·
N−1∑
m=1

|H0(ω0 + m�)|2·
K1∑
k=0

a2
km (5.11)

From this equation a simple conclusion follows: the CC level is proportional to the
total power of the alternative part of the PF coefficients. So, to obtain a minimum CC
level, it is necessary to minimize the amplitude of coefficient variation. The emerging
CCs are filtered by the EFR of the system, and the more distant they are relative
to the resonance frequency ω0, the greater is the attenuation of the combinational
harmonics. This means that in the general case, the smaller the period of coefficient
variation, the bigger is the reduction in CC level.

Example 5.12: Dependence of Combinational Components on the Am-
plitude of Coefficient Variation

Consider the narrowband LPF from example 5.2. Examples 5.2, 5.6 and 5.11 demon-
strated that approximation of the desired EFR with a given accuracy could be obtained
by using different periodically time-varying coefficients. There was no indication of any
difference in the accuracy of EFR approximation using different timing diagrams of coef-
ficient variations. However, the CC levels essentially depend on this timing. In Table 5.4
are the collected results of CC level evaluation for coefficients used in examples 5.2,
5.6 and 5.11. The table shows that the CC level increases as coefficient amplitude and
period increase, which coincides with the general rule formulated above.
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Table 5.4 CC levels in a PF-1

Example Coefficient variations Gain (dB) CCs level (dB)

a1 = 1 − 2−10, a2 = 1 − 3 · 2−11 58.27 −75.25

5.2 N = 2, n1 = 1, n2 = 1

5.6 a1 = 1 − 2−10, a2 = 1 − 2−9 58.27 −68.26

N = 4, n1 = 3, n2 = 1

5.11a a2 = 1 − 2−8, a2 = 1 + 2−8 58.22 −29.71

N = 32, n1 = 21, n2 = 11 (−49.94)

5.11b a2 = 1 − 2−8, a2 = 1 + 2−8 57.66 −50.44

N = 3, n1 = 2, n2 = 1

5.11c a1 = 1 − 2−8, a2 = 1 57.70 −56.45

N = 3, n1 = 1, n2 = 2

Example 5.13: CC Level versus Coefficient Variation Timing Diagram

Consider the band-pass PF-2 from examples 5.4 and 5.7. Table 5.5 shows the calculated
level of CCs for different timing diagrams.

Table 5.5 CC levels in a PF-2

Coefficient Timing diagrams of coefficient Gain CC level
values variations (dB) (dB)

Binary a1(n) = {a11; a12; a12; a12} 44.64 −47.37

L = 7, N = 4 a2(n) = {a21; a22; a21; a22}
a11 = 1 − 3 · 2−6 a1(n) = {a21; a11; a12; a12} 44.64 −41.49

a12 = 1 − 7 · 2−6 a2(n) = {a21; a22; a21; a22}
a21 = −1 + 2−6 a1(n) = {a12; a11; a12; a12} 44.64 −41.85

a22 = −1 + 2−7 a2(n) = {a21; a22; a21; a22}
Primitive a1(n) = {a11; a11; a11; a11; a11; a11; a12; a12} 43.90 −34.29

L = 7, N = 8 a2(n) = {a21; a21; a21; a21; a21; a22; a22; a22}
a11 = 1 − 2−4 a1(n) = {a11; a11; a11; a11; a11; a11; a12; a12} 43.90 −35.12

a12 = 1 − 2−5 a2(n) = {a21; a22; a21; a21; a22; a21; a21; a22}
a21 = −1 + 2−6 a1(n) = {a11; a11; a11; a12; a11; a11; a11; a12} 43.90 −35.54

a22 = −1 + 2−7 a2(n) = {a21; a22; a21; a21; a22; a21; a21; a22}

From the given data it can be seen that if the amplitude and period of coefficient
variation increases, then the CC level rises; however, optimization of coefficient arrange-
ment has less influence on the CC level than the amplitude of variation, especially for
large N . In any case, the CC levels indicated in Table 5.5 are small and the extent of
the problem of their further reduction depends on the particular PF application.
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II. Use of additional LTI filters

It is obvious that a further reduction of CC levels can be obtained by means of addi-
tional LTI filters, narrowing the pass-band at the input or the output of the system.
Of course, the frequency response of these filters can be taken into account when
the frequency response of the final system is evaluated. As follows from the discus-
sions in Chapter 3, these additional filters narrow the input and output signal band
and reduce spectrum overlapping after sampling and reconstructing the signal (see
Fig. 3.5). In this case, an extra reduction in the CC level is outside the PF pass-band.
The contribution of additional filters can be taken into account as follows:

ρ =

∫ 2π

0

N−1∑
k=1

SX(ω + k�) · |Hin(ω)|2 · |Hk(ω + k�)|2 · |Hout(ω)|2 · dω

∫ 2π

0
SX(ω) · |Hin(ω)|2 · |H0(ω)|2 · |Hout(ω)|2 · dω

(5.12)

where Hin(ω) and Hout(ω) are frequency responses of the input and the output fil-
ters, respectively. The effect of CC level reduction by using additional filters can be
determined for each particular case.

III. Grouping of non-stationary and stationary systems within complex systems

An effect similar to the application of additional filters can be obtained in higher-order
complex filtering systems if LTI as well as PLTV stages of a lower order are used. In
this case, an optimal grouping of the stages can weaken spurious pass-bands at the
input or reduce output CCs.

If there is a requirement to maximally reduce signal transformation from combi-
national bands into the desired band, then LTI stages have to be placed closer to the
system input. If the requirement is to maximally suppress components of transforma-
tion from the desired band into combinational frequencies at the output, then the LTI
stages have to be placed after the parametric stages. This problem has already been
briefly discussed in Chapter 2.

IV. Reduction of the output sampling rate

Output sampling frequency can be reduced if the PF is a low-pass, narrowband filter.
Let us consider the PF output signal y(n) if the input signal is a harmonic waveform:

y(n) = ejωn · H(ω, n) (5.13)

We assume that the output signal is observed (sampled) at the time instants n = µN ,
where µ is an integer. Then,

y(µN) = ejωµN · H(ω, µN) = ejωµN · H(ω, 0) (5.14)

Equation (5.14) shows that a PF behaves similarly to an LTI system with frequency
response H(ω) = H(ω, 0) if n = µN + ν, where ν = 0, . . . , N − 1.
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So, in the considered case a reduction of the sampling rate at the system output can
fully remove CCs from PF output signals. Depending on the actual time moments
of signal sampling relative to the timing diagram of coefficient variation, there is
some uncertainty in the value of the transformation coefficient. However, when the
CC level is low, this uncertainty is small and has the same order as the value of the
CCs themselves.

5.2.3 Comparison of the Combinational Components and Noise
Levels in Digital Filters

For some applications, it is not necessary to devote much effort to reducing CC
levels as levels should be just less than the level of quantization and round-off noise
of intermediate calculation results [1]. So, to formulate a requirement for CC levels
there is good reason to firstly evaluate the noise level at the filter output. This depends
on the particular filter architecture and GFR, which is demonstrated in the following
typical examples showing how to compare CC levels and filter output noise levels.
Consider the following two examples, which connect values of CC level, round-off
noise and coefficient word length for a particular filter.

Example 5.14: Variance Evaluation of Combinational Components

For an LTI DF of the first order, the output round-off noise level of the intermediate
calculations up to word length L is determined as follows [1]:

σ 2 = 2−2L

12(1 − a2)
(5.15)

Substitution of the filter coefficient a = 0.9987442 from example 5.2 results in different
levels of round-off noise depending on the word length of the calculations. These results
are shown in Table 5.6.

Table 5.6 Round-off noise and CC levels

Calculation DS-1 CC level DS-2
word length round-off in PF-1 round-off
L noise (dB) (dB) noise (dB)

8 −29.9 −56.5 −17.7
9 −36.0 −20.7

10 −42.0 −68.2 −23.7
11 −48.0 −26.7
12 −54.0 −29.7
13 −60.0 −32.8
14 −66.1 −66.1 −35.8
15 −72.1 −38.8
16 −78.1 −41.8
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The values shown in Table 5.6 can be compared with the values of CC level for the
equivalent GFR for a PF-1, shown in Table 5.4. From the comparison it follows that the
CC level can be essentially less than the round-off noise.

However, this conclusion cannot be extrapolated to all filters and the levels of CCs
and noise should be compared for each particular case.

Example 5.15: Combinational Components and Round-Off Noise

For a recursive system of the second order, the output round-off noise can be calculated
using the following expression:

σ 2 = 2−2L

12
· 1 − α2

1 + α2
· 1

α4 − 2α2 · cos(2θ) + 1
(5.16)

where α = √
a2, cos θ = − a1

2α
.

Table 5.6 shows values of round-off noise calculated by equation (5.16) for a DF-2
with coefficients a1 = 0.9465492 and a2 = −0.9875119 from example 5.4 for different
calculation word lengths L.

We can compare the round-off noise with the CC levels for different variants of the
PF-2, shown in Table 5.5. For the 7-bit calculation (example 5.4) with the best timing
diagram, the CC level is −47.4 dB and remains considerably lower than the calculated
round-off noise level with word length L = 16.

5.3 PARAMETRIC FILTER DESIGN – A CASE STUDY

Synthesis of complex filtering systems in the general case is a serious engineering
problem. Utilization of PLTV algorithms gives an additional degree of freedom in
terms of the filter parameters and choice of characteristics. This extra degree of
freedom not only helps to design systems with given characteristics but also introduces
new problems: more parameters need to be taken into account during filter design.

A number of papers discuss the problems of synthesis and technical realization
of time-variant digital systems [16–18] and, in particular, periodically time-variant
digital systems [5–8, 19–26]. In this book, we are not pretending to introduce a
successive and universal method of LTV filter design. Instead, we are introduc-
ing a simplified algorithm or set of instructions for developing a PF with specified
parameters. This algorithm is based on the PLTI DS analysis developed in the pre-
vious chapters of the book. It is based on the simple assumption that the EFR of
a PF averaged over the period coefficients is the equivalent of an appropriate time-
invariant filter.

One of the implications of such an approach is that for the given filter’s specifica-
tions, determination of the coefficients of an equivalent LTI filter should be attempted
first by known methods [1]. If the specification cannot be met by using a filter with
constant coefficients, then the required characteristics can perhaps be obtained by
using periodically time-varying coefficients. An equivalent LTI filter with averaged
coefficient values can be used for the rough estimation of PF characteristics. These
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characteristics are the first approximation, which, in some cases, can be defined more
precisely by using approaches developed in Chapter 4.

At the same time, the CC level and its correspondence to the given specification
have to be checked. If necessary, CC levels should be reduced via one of the methods
discussed in this chapter. Some methods of CC level reduction could influence the
desired EFR or the system structure. In some of these cases, requirements for the
EFR of the PF have to be defined more precisely. Figure 5.9 shows a step-by-step
diagram of the PF development according to the given requirements for the EFR. We
will consider this algorithm using an example of a filter design.

Example 5.16: Filter Synthesis

Here, we present a more detailed consideration of the DF-1 from examples 5.1 and 5.2,
applying the algorithm for PF development from Fig. 5.9. Assume that this filter should
be designed using an 8-bit word length microcontroller without a hardware multiplier.

1. On the basis of the given requirements, our goal is to design a DF-1 with a cut-off
frequency of ωc = 0.0002 at the level −3 dB and with the FR deviation less than
±0.25 dB.

2. An exact value for the LTI DF coefficient [1] is a = 0.9987442 and the filter gain at
DC equals 58.02 dB.

Requirements of the system 

FR specification  

Synthesis of an LTI DF with limited word
length 

Analysis of LTI filter realization 

Estimation of LTI replacement by PF
Specification of time-varying parameters

Stability analysis

Calculation of EFR and CC level

CC level reduction 

Determination of the PF structure

More
precise

Figure 5.9 Step-by-step PF development
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3. The coefficient values that provide FR deviation less than ±0.25 dB are amin =
0.99867 and amax = 0.998814. A minimal word length and value for the LTI filter
with quantized coefficients complying with the specifications is aq0 = 1 − 5 · 2−12

and the required gain is 58.27 dB.

4. In order to use the selected hardware, the determined word length has to be reduced.
The coefficient value closest to one for the given word length is 1 − 2−8. For this
word length, a required cut-off frequency cannot be obtained (see example 5.11).
Possible solutions for this problem include amending requirements for the system or
using periodically time-varying coefficients.

5. Use equation (5.3) to estimate the FR for different coefficient variation periods N . The
following parameters of the PF provide sufficient FR approximation: N = 32, n1 =
11, a1 = 1 − 2−8 and n2 = 21, a2 = 1 + 2−8 (from example 5.11a from Table 5.4).
To meet the given system specifications, the geometrical mean of the equivalent
coefficient must be 0.998772 and the filter gain must be 58.22 dB. This PF also
meets the stability criterion. For smaller valves of N , it is not possible to obtain the
required accuracy from FR approximation.

6. Calculate the CC level. For the regular timing diagram of coefficient variation,
when the same instant coefficient values are repeated in succession, the CC level
is −29.7 dB. This value approximately corresponds to the round-off noise level for
the 8-bit calculation introduced in Table 5.4. Optimization of the timing diagram (as
in example 5.13) considerably reduces the CC level, down to −49.9 dB. These CC
components are fully masked by the round-off noise.

7. Further simplification can be obtained using period N = 3. For this period (see
examples 5.11b,c from Table 5.4), the EFR also meets the filter specifications. The
resulting −56.5 dB CC level is even less than that considered in step 6.

8. Taking into account that the filter is low-pass and narrowband, it is possible to reduce
sampling frequency in three times to overcome CC interference problem.

Thus, we obtain coefficient values a1 = 1 − 2−8, a2 = 1; period N = 3; a timing
diagram of coefficient variation n1 = 1, n2 = 2. This PF fully meets the specifications,
can be developed by an 8-bit microcontroller and does not use directly the multiplica-
tion procedure.

5.4 SUMMARY

Various generic problems of time-variant linear discrete systems (DSs) were discussed
in Chapters 2 to 4. In this chapter, the accumulated generic knowledge was applied for
PF analysis. We specified functions of PFs to be, in some instances, a direct equivalent
of LTI digital filters. Coefficient variations are used to add some flexibility or degree
of freedom to filter characteristics, achieved by making some hardware/software sim-
plifications. In this chapter, we proposed ways to reduce word length requirements,
use of primitive coefficients that allow us to replace multiplications by more simple
shifting operations and use of coefficients that correspond to a non-stable LTI.

Replacement of LTI by LTV systems is not a penalty-free procedure. Owing to
variation of filter coefficients, multiplicative interferences appear at the filter output.
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In this chapter, we discussed how to both evaluate the level of these interferences and
reduce their negative effects. Using numerous examples, it was shown that for many
practical applications the interference level can be minimized to an acceptable level.

Of course, nobody is proposing to replace traditional LTI DFs by parametric filters.
The goal of the book is to supply professional designers with some extra flexibility
for system design. The hope is that demonstrated examples of PFs representing appli-
cations of time-variant systems have persuaded the reader that PLTV DSs are serious
weapons in an engineer’s arsenal.

5.5 ABBREVIATIONS

CC combinational component
DF digital filter
DS discrete system
EFR equivalent frequency response
FFT fast Fourier transform
GFR generalized frequency response
LPF low-pass filter
LTI linear time-invariant
PF parametric filter
PF-1 parametric filter of the first order
PF-2 parametric filter of the second order
PLTV periodical linear time-variant

5.6 VARIABLES

�ωn noise frequency band
ψ input frequency
ω normalized output frequency
γ amplitude criteria
� normalized frequency of system parameter variation
δ(n, k) unit sample sequence
ω0 resonant frequency
σ 2 level of round-off noise
ωc cut-off frequency
A signal amplitude
a(n) time-varying coefficients of the recursive part of a

difference equation
b(n) time-varying coefficients of non-recursive part of a

difference equation
G system gain
g(m, n) impulse response of the recursive part
H(ψ, ω) bifrequency function
h(m, n) impulse response
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H(z, n) generalized transfer function
i, l, m, n, k, ν, ξ, η integers
L coefficient word length
M number of filters in a comb
N period
Q quality factor
q quantization step
T sampling period
X(ω), X(ψ) spectrum of the input signal
X(n) input discrete random process
x(n) input signal
X(z) z-transform of the input signal
Y(ω) spectrum of the output signal
Y(n) output discrete random process
y(n) output signal
Y(z, n) z-transform of the output signal
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6
Digital Parametric Oscillators

In Chapters 2 to 4, we discussed generic aspects of linear time-variant digital systems
and, in particular, those with periodically varying parameters. Using this theory in
Chapter 5, we investigated parametric filters (PFs) that are based on periodically
linear time-variant discrete systems (PLTV DSs). The major function of a PF is
similar to that of linear time-invariant (LTI) digital systems, that is, signal filtering.
In some instances, introduction of a PF is one example of practical applications of
PLTV DSs.

In this chapter, another more “exotic” tool based on PLTV DSs – the digital para-
metric oscillator (DPO) – will be introduced. It can also be regarded as a practical
output from the introduced theory.

Analysis of second-order recursive systems (Chapter 3) with high quality factor
(Q) and periodically varying coefficients showed a rather sophisticated dependence
between the law of coefficient variation and the system stability. For convenience, we
referred to the law of coefficients variation as some external control signals (CSs).
In particular, we found that instability occurred at frequencies integer to the half of
CS main harmonics �C : S�C/2, where S = 1, 2, 3 . . .. In these instability regions,
parametric generation occurs in a process similar to that for a well-known capacitor, an
inductor (LC) resonance circuit with a periodically varying capacitor. Consequently,
this periodically time-varying digital resonator (DR) becomes a digital parametric
oscillator. So, the goal of this chapter is to introduce the theory behind DPOs, another
useful tool for signal processing based on PLTV systems. It is very important to recall
that the word “linear” in these systems refers only to the input signals. Relative to the
CSs, the parametric systems are essentially non-linear and the superposition principle
is not applicable when CSs are considered.

These or similar digital parametric generators have not been described in the litera-
ture apart from the author’s work [1–19]. The method of investigating these systems
used in this book is based on the classical Liapunov theory. Introduction to the
Liapunov theory for continuous parametric systems can be found in [20].

An Introduction to Parametric Digital Filters and Oscillators Mikhail Cherniakov
 2003 John Wiley & Sons, Ltd ISBN: 0-470-85104-X
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6.1 REGIONS OF PARAMETRIC OSCILLATIONS

Let us consider a high Q, recursive second-order DR with periodically varying coef-
ficient(s) or, in other words, a periodically varying digital resonator (PVDR). This
system is, in some instances, an equivalent of resonance LC circuits with periodically
varying capacitor and/or inductor. From the mathematical point of view, the condi-
tion for the origin of oscillations in PVDRs is an increase in “generalized” energy
introduced by the square of the state vector norm (SVN). From the physical point of
view, this instability means that at the resonator the output process will increase in
time even in the absence of any signal at the input. In the general case, this output
process may or may not be coherent with the CS parameters.

In Chapter 3, we investigated the stability of a second-order PLTV system. This
study identified special instability enclaves within the stability area of a PF. We
assume now and will prove later that the areas of instability correspond to paramet-
ric instability zones (PIZ). Coherent narrowband oscillations with central frequency
S�ci/2(S = 1, 2, 3 . . .) occur at the output of the system even in the absence of any
input signals when PLTV parameters correspond to these instability regions. Con-
sider the behaviour of a PVDR in the instability areas discussed above and relations
between the CS and a process at the system output. Assume that any signal at the
DR input is absent, but initial conditions (words stored in the internal registers) are
non-zero.

The analysis of PVDR stability has revealed regions where there is unlimited
increase in “generalized” system energy, which is a necessary (but not sufficient)
condition for generation of parametric oscillation. To determine regions of parametri-
cal generation (RPG) in the overall system’s instability area, we rely on the fact that
when parametrical generation is initialized, quasi-harmonic (narrowband) oscillations
coherent with the CS appear at the system output. It is important to note that the
presence of CS sub-harmonics is the fundamental feature of parametric generation
processes [21].

Note also that one of the conditions for parametric generation is an increase in the
SVN module value or, simply, the magnitude of the output signal. Eventually, the
magnitude rise in digital systems leads to internal registers overfilling and the system
operates in the saturated mode. So, in the general case these parametric generators
should be investigated in two modes: non-limited (quasi-linear) and saturated (steady-
state).

It is interesting to note that there is one unique combination of CS and PVDR
parameters where parametric oscillations occur, but have a constant average mag-
nitude over time. This mode corresponds to the case where the DPO operates
exactly at the boundary of the parametric instability zones. Perhaps this is not a
practical mode of operation, but it makes theoretical sense and will be used for
the analysis.

Let us first analyse the system behaviour at the PIZ boundary, where the solution
is assumed to be periodic with a constant envelope. This will be a good introduction
for readers into the DPO.
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The system is described by a uniform linear difference equation:

y(n) + a1(n)y(n − 1) + a2(n)y(n − 2) = 0 (6.1)

and from this equation we will derive the major features of an output (generating)
signal, assuming, as mentioned before, non-zero initial conditions. Let us represent
periodically time-varying coefficients a1(n) = a1(n + N) and a2(n) = a2(n + N) by
a quadrature Fourier series:




a1(n) = a1 +
M∑

m=1

α1m cos(m2πn/N)

a2(n) = a2 +
M∑

m=1

α2m cos(m2πn/N)

(6.2)

where α1m, α2m are the Fourier coefficients and a1, a2 are average values of the
coefficients.

To determine spectral characteristics of the output signal y(n), we first apply a
discrete Fourier transform (DFT) to equation (6.1). Let us select a DFT sampling
interval in frequency domain equal to �c/2 = π/N , since the output signal spec-
trum contains components proportional to the sub-harmonic frequencies of the CS.
Substituting for a1(n) and a2(n) by representation of their Fourier series expansion,
we obtain

N−1∑
n=0

y(n)e−jSπn/N + a1

N−1∑
n=0

y(n − 1)e−jSπi/N

+
[

M∑
m=1

α1m

N−1∑
i=0

(ej2πmn/N + e−j2πmn/N)y(n − 1)e−jSπn/N

]/
2

+ a2

N−1∑
n=0

y(n − 2)e−jSπn/N

+
[

M∑
m=1

α2m

N−1∑
n=0

(ej2πmn/N + e−j2πmn/N)y(n − 2)e−jSπn/N

]/
2 = 0 (6.3)

Denoting the Sth spectral component as ŷS = ∑N−1
n=0 y(n)e−jSπn/N and taking into

account the DFT property in the time and frequency domains, we obtain the following
expression for the additives of equation (6.3):

N−1∑
n=0

y(n − 1)e−jSπn/N = ŷSe−jSπ/N (6.4)
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N−1∑
n=0

y(n − 2)e−jSπn/N = ŷSe−j2Sπ/N (6.5)

N−1∑
n=0

y(n − 1)e−jSπn/Ne±j2πmn/N = ŷS±2me−j(S±2m)π/N (6.6)

N−1∑
n=0

y(n − 2)e−jSπn/Ne±j2πmn/N = ŷS±2me−j(S±2m)π/N (6.7)

It is possible to find a formula connecting the S and S ± 2m components of
the parametric oscillator output signal. Taking into account equations (6.4) to (6.7)
and the expression describing the Sth and (S ± 2m)th spectrum components from
equation (6.3), we obtain

ŷS =
−

M∑
m=1

α1m[e−jπ(S−2m)/N ŷS−2m + e−jπ(S+2m)/N ŷS+2m]

2(1 + a1e−jSπ/N + a2e−j2Sπ/N )

−

M∑
m=1

α2m[e−j2π(S−2m)/N ŷS−2m + e−j2π(S+2m)/N ŷS+2m]

2(1 + a1e−jSπ/N + a2e−j2Sπ/N )

=

M∑
m=1

ŷS−2m[α1me−jπ(S−2m)/N + α2me−j2π(S+2m)/N ]

2(1 + a1e−jSπ/N + a2e−j2Sπ/N )

−

M∑
m=1

ŷS+2m[α1me−jπ(S+2m)/N + α2me−j2π(S+2m)/N ]

2(1 + a1e−jSπ/N + a2e−j2Sπ/N )
(6.8)

It was specified above that the sufficient condition for parametric oscillation is the
presence of a dominant component in the output signal y(n) spectrum at one of the
frequencies S�c/2. In other words, the DPO generates a narrowband signal coherent
with the CS. Analysis of equation (6.8) shows that this criteria corresponds to the
denominator of (6.8) approaching zero:

1 + a1e−jSπ/N + a2e−jS2π/N = 0 (6.9)

Equation (6.9), in the general case, represents a complex value and it should be first
separated into imaginary (Im) and real (Re) parts:

Im{z} = a1 sin(Sπ/N) + a2 sin(2Sπ/N)

Re{z} = a1 cos(Sπ/N) + a2 cos(2Sπ/N) (6.10)
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Then, two conditions for the existence of a dominant component in the output signal
spectrum can be found. The first one follows from the condition that the Im part of
equation (6.9) is equal to zero:

a1 sin(Sπ/N) + a2 sin(2Sπ/N) ≈ 0 (6.11)

or
a1 ≈ −2a2 cos(Sπ/N) (6.12)

from which
Sπ/N ≈ cos−1(−a1/2a2) (6.13)

The next step is to transform equation (6.10) into

1 − 2a2 cos2(Sπ/N) + a2 cos2(Sπ/N) − a2 sin2(Sπ/N) ≈ 0 (6.14)

and we thus obtain the second condition:

a2 ≈ 1 (6.15)

From equations (6.12) and (6.15) it follows that the sufficient conditions for para-
metric generation in a PVDR are as follows:

1. The DR has to have a high Q.
2. The DR has to have the resonance frequency at ωres

∼= S�c/2, which is the
Sth CS sub-harmonic frequency. This has an easy explanation. When a2 ≈ 1
(high Q), the condition described by equation (6.13) becomes similar to the
known equation for the resonance frequency of the second-order DR ωres =
cos−1(−a1/2

√
a2) [22].

Hence, for these conditions there is a dominant component in the output signal
y(n) spectrum, that is, generated parametric oscillations are quasi-harmonic. From
equation (6.8), it also follows that modulation components ŷS±2m appearing in the
output signal spectrum are caused by the mth (including m = 1) CS harmonics. Thus,
the DR and CS parameters fully determine the output signal spectrum.

To confirm the effect of parametric oscillations in the PVDR and determine the
characteristics of an output signal spectrum, let us consider results of system mod-
elling. For particular values of a1(n), a2(n) and initial conditions, the modelling allows
us to obtain an exact solution for equation (6.1). The output signal spectrum ŷ(ω/�c)

can be calculated via DFT of the output signal y(n) periodic component ỹ(n).
It is necessary to underline the following peculiarity of the modelling. Analytical

description of the output signal was obtained for PIZ boundaries, where the solution is
periodic. For practical modelling it is, in some instances, impossible to operate directly
at these boundaries, as they are infinitely thin lines, a mathematical abstraction. When
the PVDR parameters correspond to any internal area restricted by this PIZ boundary,
an average magnitude of the output signal y(n) is an exponentially increasing function.
This will be studied later in detail. The following example illustrates what has just
been discussed.
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Example 6.1: Spectrum of an Output Signal

Consider the modelling results for a harmonic CS: a2(n) = 0.988 + 0.125 cos(2πn/6),
and constant coefficient a1 = −1.414. For parametric generation at the first CS sub-
harmonic S = 1, the DR resonance frequency should be ωres ≈ 2π/12, which approxi-
mately corresponds to the coefficient a2 value. The CS spectrum for this case is shown
in Fig. 6.1 by dashed lines and the output signal spectrum is shown in Fig. 6.1 by
solid lines. The modelling result confirms that there is a narrowband output signal for
the given DR and CS parameters. The main spectral harmonic is approximately 15 dB
above the side components and the position of the main harmonic corresponds to the
first CS’s sub-harmonic.
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Figure 6.1 Signals spectrum in a DPO

Thus, if the regions of parametric instability satisfy conditions (6.13) and (6.15),
then the output signal has a dominant component at one of the frequencies inte-
ger to CS spectrum sub-harmonics, that is, there are parametric oscillations in the
system. Such regions, illustrated in Fig. 6.2, are called regions of parametric genera-
tion (RPGs).
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Figure 6.2 Regions of parametric generation
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6.2 PARAMETRIC RESONANCE IN DIGITAL
RESONATORS

We identified regions of parametric generation using the similarity between continuous
and discrete parametric systems as well as common sense. In this section, we will
study a parametric resonance phenomenon in digital systems using a more solid
mathematical approach. Let us analyse characteristics of an output signal, assuming
that parameters of the PVDR correspond to the internal regions of PIZs and parametric
oscillations occur.

As detailed above, increasing quasi-harmonic oscillations present at the DPO output
for non-zero initial conditions. According to [23], a general solution of the second-
order parametric differential equation can be represented as a linear combination of
two normal components: increasing and decreasing components. The time period
when the decreasing component has sufficient value in comparison with the increas-
ing component corresponds to the transient. At the end of this time, the decreasing
component becomes small enough to be neglected and monotonically increasing
quasi-harmonic oscillations are established. These oscillations are coherent with the
CS. Eventually, the increasing magnitude of oscillations leads to an overflow of the
register’s capacity during arithmetical operations and to limitation of the output sig-
nal. This saturated mode will be analysed later. Here, the non-limited mode will
be studied.

The non-limited regime of a digital parameter occurs in two cases. In the first case,
it exists for a relatively short transient between oscillation excitation and the moment
of register overflow. The second case involves the use of DRs specifically designed
to maximize the transient period. This can be achieved by scaling internal words,
used, for example, in digital filters based on fixed-point arithmetic [22].

Solutions for equation 6.1 that describe signals at the oscillator output in the
non-limited mode depend on initial conditions and eigenvalues of the appropriate
monodromy matrix (MM). In the non-limited mode, the parametric oscillator opera-
tion is determined by two time constants – τ1 for an increasing oscillation component
and τ2 for a decreasing component – spectral characteristics of the periodical compo-
nent ŷ(ω) and phase relations between the CS and the signal at the output of the DPO.
The time constant for the decreasing component specifies the length of the transient
period. So, all characteristics are determined by the DR parameters, CS and initial
conditions. The aim of the following material is to establish an accurate dependence
between these parameters and characteristics of generating signals.

The homogeneous difference equation (6.1), which describes a DPO, has two linear
independent non-zero fundamental solutions: [Y1(i)] and [Y2(i)]. Any other solution
is just a linear combination of these fundamental solutions [24]:

[Y(i)] = g1[Y1(i)] + g2[Y2(i)] (6.16)
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where g1,2 are constants. In order to form a fundamental system for [Y1(i)] and
[Y2(i)], it is necessary and sufficient that the Kazoratty determinant

�(i) = det

[
y1(i) y2(i)

y1(i − 1) y2(i − 1)

]
(6.17)

is not equal to zero.
In the general case, in regions of parametric generation, the solutions of

equation (6.1) are not periodic. However, among them there are solutions that are
multiplied by a constant value λ when n increases by the period of the CS variation
T = N :

[Y(n + N)] = [C(N + n, n)][Y(n)] = [C(N, 0)][Y(n)] = λ[Y(n)] (6.18)

Such solutions are called normal and will be used hereon. Physically, this condition
means that the state vector at the moments separated by the interval T has the same
position in space, but its module differs in λ times. To find these normal solutions,
we use the right side of equation (6.18):

[C(N, 0)][Y(n)] = λ[Y(n)] (6.19)

or
[[C(N, 0)] − λ[I2]] = 0 (6.20)

This system has a non-trivial solution only in the case when

det [[C(N, 0)] − λ[I2]] = 0 (6.21)

The characteristic equation (6.21) has two solutions, λ1 and λ2:

λ1,2 = −C11 + C22

2
±
√√√√(C11 + C22

2

)2

−
N∏

n=1

a2(n) (6.22)

For each of λ1,2, such [Y1(0)] and [Y2(0)] can be found where solutions of the
equation are normal and, hence, can be represented as

[Y1(n + mN)] = λm
1 [Y1(1)] (6.23)

or
[Y2(n + mN)] = λm

2 [Y2(1)] (6.24)

As was shown in Chapter 3, λ1,2 must be real. Only in this case are [Y1(n)] and
[Y2(n)] normal.
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To determine [Y1(n)] and [Y2(n)], the next set of equations has to be substituted
into equation (6.21):

{
(C11 − λ1,2)y1,2(n) + C12y1,2(n − 1) = 0
C21y1,2(n) + (C22 − λ1,2)y1,2(n − 1) = 0

(6.25)

From equation (6.25), we can obtain the following expression, which connects output
signals y1,2(n) and y1,2(n − 1) at the consecutive sampling intervals (n) and (n − 1):

y1,2(n) = −C12 − C22 + λ1,2

C21 + C11 − λ1,2
y1,2(n − 1) (6.26)

or in matrix notation:

[Y1,2(n)] =
[

y1,2(n)

y1,2(n − 1)

]
=

−C12 − C22 + λ1,2

C21 + C11 − λ1,2

1


 (6.27)

Note that equation (6.17)

�(n) = det

[
y1(n) y2(n)

y1(n − 1) y2(n − 1)

]
= det


−C12 − C22 + λ1

C21 + C11 − λ1
−C12 − C22 + λ2

C21 + C11 − λ2
1 1




= −C12 − C22 + λ1

C21 + C11 − λ1
+ C12 − C22 + λ2

C21 + C11 − λ2
(6.28)

is equal to zero only for λ1 = λ2 = 0. In the considered case, we obtain λ1λ2 =
N∏

n=1
a2(n) ≈ 1, that is, the requirement for a high Q in RPGs. This is a necessary

and sufficient condition for [Y1(n)] and [Y2(n)] to form a fundamental system for
solutions of equation (6.1).

Thus, a general solution of equation (6.1) in RPGs can be represented as a linear
combination of two normal components:

[Y(n)] = g1[Y1(n)] + g2[Y2(n)] (6.29)

A solution through the system period N can be found using eigenvalues of MM
as follows:

[Y(n + N)] = g1[Y1(n + N)] + g2[Y2(n + N)] = λ1g1[Y1(n)] + λ2g2[Y2(n)]
(6.30)

and by analogy,

[Y(n + mN)] = λm
1 g1[Y1(n)] + λm

2 g2[Y2(n)] (6.31)
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Thus, depending on the value of λ1,2, different solutions can be obtained, as sum-
marized below (see also Fig. 6.2):

1. Stable region: If |λ1,2| < 1, then both fundamental solutions decrease,
equation (6.1) is stable and the system possesses filtering properties.

2. Region of parametric generation: Roots λ1,2, are real, an absolute value of one of
them is larger than 1 and the second root is less than 1. Such a situation corresponds
to the system operation within RPGs. According to equation (6.22),

λ1λ2 =
N∏

n=1

a2(n) ≈ 1 (6.32)

since a necessary condition for quasi-harmonic oscillations is high Q, that is,
a2 ∼ 1 (as specified by equation 6.15). At the boundary of RPGs, the condition
|λ1| = |λ2| = 1 is true.

3. Unstable region: If |λ1,2| > 1, then non-parametrical instability occurs. Moreover,
if λ1 and λ2 are real and outside the stability area determined as

(
C11 + C22

2

)2

−
N∏

n=1

a2(n) < 0

then the output process will have a divergent non-periodic character. If λ1 and λ2

are complex conjugates, there will be increasing oscillations, non-coherent with
the CS.

Thus, the process of excitation of parametrical oscillations can be divided into
two stages:

1. Solution normalization transient: At this stage, both the increasing components
g1λ

m
1 [Y1(n)] and the decreasing components g2λ

m
2 [Y2(n)] should be taken into account

and the output oscillations are not fully coherent with the CS. There is a transient
process in the DPO that is the cause of amplitudes and phase disturbance.

2. A normal solution: At this stage, the decreasing component can be neglected
and the solution converges to only the normal increasing component:

[Y(n + mN)] ≈ λm
1 [Y(n)] (6.33)

or
y(n + mN) ≈ λm

1 y(n) (6.34)

Thus, using equation (6.22) it is possible to determine the relation between
equation (6.1) coefficients and solutions (6.33) that describe the digital parametrical
generator (DPG) output process in the non-limited mode. Let us illustrate these using
computer modelling.
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Example 6.2: Oscillation Initiated via a Fast Sinusoidal Control Signal

Oscillations have been excited by the sinusoidal CS: a2(n) = 1.0 ± 0.25 sin(πn/2) in
an RPG. The output waveform for two values of the constant coefficient, a1 = −1.25
(continuous line) and −1.41 (dashed line), are sketched in Fig. 6.3. Both values for a1

provide parametrical generation at the frequency of the first CS sub-harmonic; however,
eigenvalues for these two cases differ considerably. Thus, for a1 = −1.25 eigenvalues
approach 1: λ1 = −1.031 and λ2 = −0.970.
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Figure 6.3 Parametric oscillation excitation

For the coefficient a1 = −1.41, the oscillation excitation occurs when CS parameters
correspond to the RPG axis that is described by a2

1 = 4a2 cos2(π/4) = 2a2. In this case,
the eigenvalues are considerably different from 1: λ1 = −1.637, λ2 = −0.611.

The output process in both cases has an increasing component. The larger the
absolute value of λ1, the faster is the increase in the magnitude of oscillations. The
solution normalization occurs at the beginning, but it is difficult to separate it from
the background of the fast increasing component λm

1 g1y1(n). Figure 6.3 clearly shows
the interdependencies between the DPO parameters and the rate of increase of the
magnitude of the output signal.

The next example shows the process of normalization of the output oscillation.

Example 6.3: Solutions Normalization

Consider a stage of solution normalization using a sinusoidal CS that is transient. For
better visualization, only periodic components of ỹ(n) of the transitional process are
shown in Figs. 6.4a, b. The periodical component ỹ(n) of the output process can be
found from y(n) by

ỹ(n) = y(n)/λ
n/N

1 (6.35)

The modelling results are sketched in Fig. 6.4. Oscillations in the DPG have been
generated by sinusoidal variation of the coefficient: a2(n) = 1.0 ± 0.1 sin(πn/2). The
periodic component ỹ(n) is shown in Fig. 6.4 for a1 = −1.41, where corresponding
eigenvalues λ1 = −1.1 and λ2 = −0.92 (Fig. 6.4a) and −1.39 (Fig. 6.4b) are repre-
sented by a solid line, and corresponding eigenvalues λ1 = −1.04 and λ2 = −0.95 are
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represented by a dashed line. To provide a sense of scale, a periodic component of the
output process is shown in these figures by a solid line after 500 periods of CS. Similar
to the previous example, comparison of these results shows that the duration of the tran-
sitional process in terms of the phase normalization period is less for value a1 = −1.41
than for the value a1 = −1.39. It is also important to highlight that the transient refers
to both amplitude and phase of normalization of the output process, when in many
situations only amplitude variations are easily visible.
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Figure 6.4 Solution normalization

Example 6.4: Comparison of Increasing and Decreasing Components

Increasing and decreasing components of a DPO output signal are sketched in Fig. 6.5a,
b. In this PVDR, coefficient a2(n) varies by a sinusoidal law with a2(n) = 0.95 ±
0.08 sin(πn/2), and constant coefficient a1 = −1.34 provides parametrical oscillation at
the first CS sub-harmonic. Normal components y1(n) (Fig. 6.5a) and y2(n) (Fig. 6.5b)
were selected from the output process. For the specified CS and DR parameters, eigen-
values are equal to λ1 = −1.01 and λ2 = −0.85.

To select the increasing component, the initial conditions are set at y(0) = 1.00 and
y(−1) = 0.578. These ICs exclude the decreasing component. Similarly, to exclude the
increasing component, ICs are set at y(0) = 1.00 and y(−1) = 1.8227. An explanation
for why we can exclude one of the signal components y1,2 by choosing particular
initial conditions will be provided later. This effect is true for both continuous and
digital systems, but we can easily control these values and thus exclude the transient, if
necessary, only in digital systems.
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Figure 6.5 Solution components

Thus, analysis of equation (6.1) and the above examples shows that during excita-
tion of parametrical oscillations, a DPO output process can be represented as a linear
combination of the two normal increasing and decreasing components. In the general
case, there is a transitional process in DPO when the mode of operation changes.
After the transient, the output signal corresponds to a normal increasing component
coherent with CS. The rates of component increase or decrease are determined by
MM eigenvalues and the ratio between these components is specified by the initial
conditions y(0) and y(−1).

6.3 APPROXIMATE METHOD OF EVALUATING
A REGION OF PARAMETRICAL GENERATION

Stability analysis and the effect of excitation of parametric generation in PVDRs were
discussed above. Basically, this is the essence of DPO operations. However, the rather
tedious mathematical representations shown above sometimes mask the physical sense
of a system’s operation. So, let us introduce here an approximate method to determine
the boundaries of regions of parametric generation. Using this approach, we can
clearly demonstrate the dependence between the RPG and CS parameters. To develop
the proposed approximation, we rely on the fact that the DPO output signal has an
essential asymmetry in its spectrum relative to the dominating central frequency. This
spectrum asymmetry is the consequence of the output signal having both amplitude
and frequency (phase) modulation (AFM). The proposed method is based on the
analysis of the signal spectrum.

Let us consider the sinusoidal CSs:

a1(n) = a1 + γ1 cos(2πn/N)

and
a2(n) = a2 + γ2 cos(2πn/N)
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Output signal spectral components ŷS+2 and ŷS−2 are symmetrical relative to the
main spectral component ŷS . Assuming that an output signal has AFM, we can
write that

|ŷS+2| � |ŷS−2| or |ŷS+2| � |ŷS−2|

For this case, equation (6.8) takes the form

ŷS = − γ1e−jπ(S−2)/N + γ2e−jπ(S−2)/N

2(1 + a1e−jπS/N + a2e−jπS/N )
ŷS−2 = δ(S)ŷS−2 (6.36)

where δ(S) is a factor connecting arbitrary spectrum components, separated by two
frequency references, which are the main CS frequencies �C = 2π/N . Similar to
equation (6.36), for ŷS−2 and ŷS−4 we can write

ŷS−2 = δ(S−2)ŷS−4, . . . , ŷS−2n = δ(S−2n)ŷS−2n−2 (6.37)

From these equations a recurrent relation can be obtained, which connects any two
spectrum components separated by 2n frequency references:

ŷS =
n−1∏
k=0

δS−2kŷS−2n (6.38)

Similarly, we can obtain relations connecting mirror spectrum components ŷS and
ŷ−S , which will be used hereon in

ŷS =
S−1∏
k=0

δS−2kŷ−S (6.39)

Taking into account the property of DFT for periodic spectrums |ŷS | = |ŷ−S |, we
obtain the condition under which the PVDR generates periodic AFM oscillations:

∣∣∣∣∣
S−1∏
k=0

δ(S−2k)

∣∣∣∣∣ = 1 (6.40)

Using equation (6.40), a boundary for the RPG could be determined. Factor δ

contains all DR-CS parameters necessary for boundary determination: a1, a2, γ1, γ2

and N that corresponds to the RPG. Following are examples of such calculations.

Example 6.5: Sinusoidal Control Signal

Determine boundaries of the RPG using the approximate method for a sinusoidal
CS with a2(n) = a2 + 0.125 sin(2πn/16), and constant coefficient (γ1 = 0)a1 = −1.85.
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Figure 6.6 shows the RPG calculated using the precise method of MM root analysis
(solid line) and using the approximate method (dashed line). The coincidence of these
RPG boundaries demonstrates that the proposed approximation method has high accu-
racy, at least for system analysis at a qualitative level.
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−2.0
0.75 0.95
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∆a1 ~ g2

Figure 6.6 RPG for S = 1 and sinusoidal CS

Consider now in more detail how to use the proposed method in practice. For a
parametric oscillator, it is important to estimate RPG sizes for excitation of different
sub-harmonics S versus CS parameters. Let us apply the method described above
to a DPO where oscillations are generated by sinusoidal variation of a2(n) with an
amplitude γ2 and period N = 4. Note that selection of these parameters does not limit
generalization from the results obtained below.

Condition (6.40) for S = 1 takes the form

|δ(1)| = |−γ2/[2(1 + a1e−jπ4 + a2e−j2π/4)]|
= γ2/{2[(1 + a1/

√
2)2 + (a2 + a1/

√
2)2]1/2} = 1 (6.41)

or
γ 2

2 /4 = (1 + a1/
√

2)2 + (a2 + a1/
√

2)2 (6.42)

Equation (6.42) has the solution a1 = −√
2 ± γ2/2 when the average coefficient

a2 ≈ 1, that is, the width of the RPG cross section (the size of the RPG along the a1

axis) is �a1 ≈ γ2 (see Fig. 6.6).
This result has a very explicit physical interpretation: the size of the RPG along

the a1 axis is proportional to the magnitude of CS variation. It is also important to
recall that in the discussed case, the a1 axis, in some instances, corresponds to the
frequency domain.

Consider the same method for S = 2 assuming the same CS-DR parameters:

|δ(2)||δ(0)| =
∣∣∣∣ γ2e−jπ

2(1 + a1e−jπ/2 + a2e−jπ )

∣∣∣∣ ·
∣∣∣∣ γ2

2(1 − a1 + a2)

∣∣∣∣ = 1 (6.43)
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or
γ 2

2

4[(1 − a2)2 + a2
1]1/2(1 + a1 + a2)

= 1 (6.44)

In the region of high Q (a2 ≈ 1) a1 = −1 ± (1 + γ 2
2 /4)1/2, that is, the width of the

region cross section is proportional to �a1 ≈ γ 2
2 /4 for S = 2.

Analysis of equation (6.40) shows that the number of factors in the product is equal
to the order number of sub-harmonic S at which oscillations are generated. Each of
the factors is proportional to γ /2, that is, each is directly related to the variation in
CS amplitude. For the sinusoidal CS, condition (6.40) for generation of parametric
oscillations takes the form ∣∣∣∣∣

S−1∏
k=0

δ(S−2k)

∣∣∣∣∣ =
∣∣∣∣B (γ

2

)S
∣∣∣∣ = 1 (6.45)

where factor B is determined by the system parameters and the condition |γ | < 1
is true.

Hence, as the order of the generating sub-harmonic S increases, the sizes of the
appropriate RPGs exponentially decrease.

Example 6.6: Second Sub-Harmonic Generation

For a harmonic CS with a2(n) = a2 + 0.125 sin(2πn/16), RPGs have been calculated for
the first and second sub-harmonics (Fig. 6.7) using the approximate method (solid line)
and the exact method of MM root analysis (dashed line). Similar to the previous example,
comparison of these data shows relatively high (specifically for a2 ∼ 1) coincidence of
regions and confirms the conclusion that RPG size decreases proportional to ∼(γ /2)S .

0.55 0.950.75
a2

S = 2

S = 1

−2.1

−1.9

−1.7

a 1

Figure 6.7 RPG for S = 1, 2 and sinusoidal CS

The results of approximate DPG analysis can be summarized as follows:

1. At the resonator output, quasi-harmonic oscillations coherent with the CS appear
at the central frequency �CS/2.

2. These oscillations are modulated by phase and amplitude with the CS.
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3. The size of the RPG is directly related to the amplitude of CS variation γ /2.
4. When S increases, the RPG size along a1 in a high Q DR decreases and can be

roughly estimated as �a1S ≈ 2(γ /2)S for |γ | < 1.
5. Taking into account the coherent nature of the output signal, the parametric oscilla-

tor can be viewed as a frequency multiplier by the factor S/2 or a phase lock loop.

The RPG size along the a1 axis is closely related to another practical parameter, the
digital parametric generator synchronization band �ωs . The meaning of this newly
introduced parameter follows from some similarity between the phase lock loop and
the parametric oscillator. Assume that the DPO is a “black box” where the CS is
an input signal with central frequency ωin and the output is another quasi-harmonic
signal with central frequency ωout = ωinS/2. This is true if all the DR and CS param-
eters correspond to the RPG and variation of the input signal frequency �ωs occurs
within the RPG. Outside this synchronization frequency band, the “black box” no
longer generates a coherent signal. So, in some instances this synchronization band
is equivalent to a pull-in range in a phase lock loop.

In the first approximation, the synchronization band of the DPO can be estimated
using the RPG width �a1S as follows:

�ωs = ωmax − ωmin

= 2{cos−1[−(a1 + �a1S/2)/2
√

a2] − cos−1[−(a1 − �a1S/2)/2
√

a2]}/S
For the high Q DR, this equation can be simplified to

�ωs = 2{cos−1[−(a1 + �a1S/2)/2] − cos−1[−(a1 − �a1S/2)/2]}/S

6.4 ANALYSIS OF NON-PERIODIC COMPONENTS
Now let us return to the accurate solution for equations that describe DPOs and anal-
yse non-periodic components of the output signal. Consider the process of oscillation
excitation at the stage of solution normalization. There are two comparable compo-
nents in the output signal at this stage: increasing y1(n) = g1λ

m
1 ỹ1(n) and decreasing

y2(n) = g2λ
m
2 ỹ2(n). They have non-periodic exponential parts as well as periodic

ỹ1(n) and ỹ2(n) parts oscillating with the central frequency S�C/2. The rate of
magnitude increase or decrease of these components depends on the non-periodic
multipliers g1λ

m
1 and g2λ

m
2 . These multipliers determine the duration of the transient

in the DPO.
Following the traditional approach, the rate of increase in the output process g1λ

m
1

can be characterized by a time constant τ1 = l1T , where T is the sampling period.
The rate of increase is determined as the time interval during which its amplitude
increases (or decreases) e times, that is,

y1(n + l1) = λ
l1/N

1 y1(n) = ey(n) (6.46)

or
λ

l1/N

1 = e (6.47)
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So, the time constant τ1 of the increasing component is determined as

τ1 = l1T = NT/ ln |λ1| (6.48)

and the decreasing component of the output signal has the time constant

τ2 = −NT/ ln |λ2| = NT/ ln |λ−1
2 | (6.49)

For a PVDR, one of the conditions to excite oscillations is a high Q (a2 →
1), and according to equation (6.36), λ1λ2 ≈ 1 or λ1 ≈ 1/λ2. From comparison of
equations (6.48) and (6.49) in the first approximation, we obtain

τ ≈ τ1 ≈ τ2 = NT/ ln |λ1| ≈ NT/ ln |λ−1
2 | (6.50)

The next examples illustrate the qualitative dependence of the time constant τ on
DPO parameters.

Example 6.7: Region of Parametric Generation versus Control Signal
Amplitude

Consider a DPO where the sinusoidal CS excites oscillations

a2(n) = a2 + γ2 cos(2πn/8)

The RPGs calculated for three values of γ2, corresponding to S = 1, are shown in
Fig. 6.8, where the solid line corresponds to γ2 = 0.25, the dashed line corresponds to
γ2 = 0.125, and the dashed-dotted line corresponds to γ2 = 0.0625.
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0.55 0.950.75
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Figure 6.8 RPG for S = 1 and sinusoidal CS

Using equations (6.48) and (6.49), the time constants τ1,2 have been calculated inside
these regions for different combinations of parameters a1, a2, γ2 and shown in Fig. 6.9.
The key to this figure is shown in Table 6.1.
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Figure 6.9 Time constant dependence on DPG parameters

Table 6.1 DPO Parameters for Fig. 6.9

Curve a1 a2 γ2 Figure
nos. nos.

1 – 1.0 0.125 –
2 – 0.96 0.125 6.9a
3 – 0.92 0.125 –
1 −1.76 – 0.25 –
2 −1.86 – 0.25 6.9b
3 −1.8 – 0.125 –
4 −1.83 – 0.125 –

Figure 6.9a illustrates that τ depends to a large extent on DPO parameters. This is
a predictable result as the time constants depend on the eigenvalues λ1,2, which are
specified by the same parameters of the system. The time constant has a minimum
value at the axis of the RPG, where there are best conditions for oscillation excitation.
The time constant sharply increases when the parameters approach the RPG boundary,
where modules of the eigenvalues are close to 1.

Dependence of τ on a2 is shown in Fig. 6.9b. Curve 2 corresponds to the monotone
τ decreasing while a2 increases, which does not contradict results given above. Curve 1
has an extreme corresponding to the location of the RPG axis S = 1 for its cross section
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a1 = −1.76. Curve 3 has an extreme where it crosses the RPG axis, while curve 4 does
not have an extreme, since the cross section a1 = −1.83 is below this axis (Fig. 6.8).

Time constants τ1 and τ2 determine the duration of the transient in a DPO. One
of the possible criteria for determination of the transient period is that the difference
between the increasing and decreasing components is much more than 1 and the
decreasing component can be neglected.

Denote hTP (n) as the ratio of the magnitude of the increasing component to the
magnitude of the decreasing component and introduce the following parameter:

hTP (n) = g1 exp(n/τ1)

g2 exp(−n/τ2)
= g1g

−1
2 exp[(τ1 + τ2)n/τ1τ2] ≈

or hTP (n) ≈ g1g2 exp(2n/τ) for a2 → 1 (6.51)

Let the criterion for completion of a transient period be that one component exceeds
the other by the given ratio hTPO . Then, for known g1,2, it is possible to determine
the time of completion of the transient period Ttr = ltrT :

ltr = ln(hTP0 g2/g1)τ1τ2/(τ1 + τ2) (6.52)

The absolute value for hTP0 can be specified for any particular application. As an
example, consider a digital system operating with L bits fixed-point arithmetic. The
criterion for completion of the transient period can be reduction of the decreasing
component g2 exp(−n/τ2) below the level of the lowest bit 2−L, which means that
the condition of the completion of the transient period is

|g2 exp(−n/τ2)| ≤ 2−L (6.53)

The time of completion can be determined as

ltr = −τ2 ln(2−L/|g2|) (6.54)

Equations (6.52) and (6.54) show that the duration of the transient period depends
not only on time constant τ but also on the relation between components y1(n) and
y2(n) at the moment n = 0. This relation is determined by the initial conditions.

Thus, the behaviour of non-periodic oscillation components can be described using
two time constants τ1,2. The value of τ depends on its location within the RPG,
reaching a minimum at its axis and increasing as it approaches the RPG boundaries.

6.5 ANALYSIS OF THE PERIODIC COMPONENTS

In the previous section, the non-periodic increasing and decreasing components g1λ
m
1

and g2λ
m
2 were investigated. They determine the output signal envelope and its

dynamic in a DPO operating in the non-limited mode. Let us now consider the
spectrum of the periodic components ỹ1(n) and ỹ2(n) of this signal.

First, we will study the behaviour of the output periodical component during the
transient period. It is important to recall that the transient affects not only the signal



ANALYSIS OF THE PERIODIC COMPONENTS 197

envelope but also the signal phase. We defined the transient period as the time when
the decreasing solution component cannot be neglected. In the non-limiting mode of
DPO operation, equation (6.1) has non-periodic solutions, which does not allow the
use of the DFT algorithm directly to determine spectrum characteristics of the output
signal y(n). However, DFT can be used for analysis of the periodic components of
this process. For the increasing component g1 exp(n/τ)ỹ1(n), an appropriate equation
to describe the DPO has the form

g1en/τ ỹ1(n) + a1(n)g1e(n−1)/τ ỹ1(n − 1) + a2(n)g1e(n−2)/τ ỹ1(n − 2) = 0 (6.55)

or
ỹ1(n) + a1(n)e−1/τ ỹ1(n − 1) + a2(n)e−2/τ ỹ1(n − 2) = 0 (6.56)

Denoting {
a′

1(n) = a1(n)e−1/τ

a′
2(n) = a2(n)e−2/τ (6.57)

we obtain a difference equation of the second order relative to the periodic component
ỹ1(n):

ỹ1(n) + a′
1(n)ỹ1(n − 1) + a′

2(n)ỹ1(n − 2) = 0 (6.58)

To determine the spectrum of ỹ1(n), we use the results of DFT application to a
similar equation (6.1). So, for the harmonic CS variation,{

a′
1(n) = a′

1 + γ ′
1 cos(2πn/N)

a′
2(n) = a′

2 + γ ′
2 cos(2πn/N)

(6.59)

we obtain relations between spectrum components for the output signal, which is an
amplitude–frequency modulated narrowband process:

ŷ1(S) = − γ ′
1e−jπ(S±2)/N + γ ′

2e−jπ2(S±2)/N

2(1 + a′
1e−jπS/N + a′

2e−j2πS/N )
ŷ1(S±2) (6.60)

Note that condition (6.9) for excitation of quasi-harmonic parametric oscillations
is that the resonance frequency of the DR approximately equals ωres ≈ S�C/2. This
provides the condition |ŷS | � |ŷS+2| because the denominator is approaching zero.
Although in equation (6.60) a′

1 	= a1 and a′
2 	= a2, the condition |ŷS | � |ŷS+2| is still

satisfied, as
ω

′
res = ωres

and

ω
′
res = cos−1

(
−a′

1/2
√

a′
2

)
= cos−1(−a1 exp(−1/τ)/{2[a2 exp(−2/τ)]1/2})

= cos−1(−a1/2
√

a2)
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Division of the frequency by a factor 2 is feasible for the harmonic CS in the RPG
corresponding to S = 1 where condition |ŷS | = |ŷS+2| is true. The reason for this is
that these spectral components are the mirror constituents. Hence, the spectrum is
determined by the ratio of harmonic ŷ1(S+2) = ŷ13 to the main harmonic ŷ1S = ŷ11:

ŷ11 = − γ ′
1e−j3π/N + γ ′

2e−j6π/N

2(1 + a′
1e−jπ/N + a′

2e−j2π/N)
ŷ13 (6.61)

From this equation the level of the modulation component ŷ13 can be evaluated:

|ŷ11| = −
∣∣∣∣ γ ′

1e−j3π/N + γ ′
2e−j6π/N

2(1 + a′
1e−jπ/N + a′

2e−j2π/N )

∣∣∣∣ · |ŷ13| (6.62)

Using the same approach, we can obtain an expression for the spectrum of the
periodic decreasing component ỹ2(n):

|ŷ21| = −
∣∣∣∣ γ ′′

1 e−j3π/N + γ ′
2e−j6π/N

2(1 + a′
1e−jπ/N + a′

2e−j2π/N )

∣∣∣∣ · |ŷ23| (6.63)

where γ ′′
1 = γ1e1/τ2 , γ ′′

2 = γ2e2/τ2 , a′′
1 = a1e1/τ2 , a′′

2 = a2e2/τ2 . So, the equations intro-
duced above specify the spectrum components of the periodical constituent of the
DPO output signal.

It is also helpful to know the phase relations between the CS and the output
oscillations y(n). After completion of the transient period, y(n) contains only a normal
increasing component y1(n) = g1λ

m
1 ỹ1(n), with the main spectrum components of the

periodical signal ỹCP (n) ≈ A sin(S�Cn/2 + ϕ). From here,

y(n) ≈ g1Aλ
n/N

1 sin(S�Cn/2 + ϕ) (6.64)

Taking into account equation (6.26), which connects two adjacent references of the
normal increasing component, we obtain

g1Aλ
n/N

1 sin(S�Cn/2 + ϕ) = −g1λ
(n−1)/N

1 sin(S�Cn/2 + ϕ)
C12 − C22 + λ1

C21 + C11 − λ1

(6.65)

or

sin(S�Cn/2) cos ϕ + cos(S�Cn/2) sin ϕ = −C12 − C22 + λ1

C21 + C11 − λ1
λ

−1/N

1

× {sin[S�C(n − 1)/2] cos ϕ + cos[S�C(n − 1)/2] sin ϕ} (6.66)
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From this equation, an initial phase ϕ of the output periodic component relative to
the CS can be determined:

ϕ = tan−1




sin(S�Cn/2) + λ
−1/N

1 sin[S�C(n − 1)/2]
C12 − C22 + λ1

C21 + C11 − λ1

cos(S�Cn/2) + λ
−1/N

1 cos[S�C(n − 1)/2]
C12 − C22 + λ1

C21 + C11 − λ1


 (6.67)

Expression (6.67) is correct for any time moment n. For simplicity, assume that n = 0:

ϕ = tan−1




λ
−1/N

1 sin[S�C(n − 1)/2]
C12 − C22 + λ1

C21 + C11 − λ1

1 + λ
−1/N

1 cos[S�C(n − 1)/2]
C12 − C22 + λ1

C21 + C11 − λ1




= tan−1

{
−λ

−1/N

1 sin[S�C/2](C12 − C22 + λ1)

C21 + C11 − λ1 + λ
−1/N

2 (C12 − C22 + λ1) cos[S�C/2]

}
(6.68)

Thus, the initial phase of the output process in a non-limiting mode is determined
by the CS and the DR. Note that equation (6.1) accepts two opposite phase solutions
for one CS. This is consistent with the conclusion above that the main source of
oscillations is a halving of the CS frequency.

We can now study the generating signal spectrum by applying the analytical
approach developed above in some examples.

Example 6.8: Spectrum of the Output Signal of a Digital Parametric
Oscillator
Let us study the output signal spectrum for the case of the sinusoidal CS a2(n) = 0.96 +
γ2 cos(2πn/N). Consider the relation between dominant output spectral component (y11)
and side (modulation) components (y13) of this signal for different values a1 and γ2. The
results calculated according to equation (6.63) and obtained by computer modelling of
the ratios y13/y11 are shown in Fig. 6.10. The calculated results are introduced by dashed
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Figure 6.10 Level of modulation components
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lines in Fig. 6.10a for N = 4 and Fig. 6.10b for N = 8, where γ2 = 0.125 is represented
by curve 1 and γ2 = 0.25 by curve 2. In the same figures, the solid line shows the level
of the modulation components obtained by computer modelling. Analysis of these graphs
confirms the consistency between the analytical estimation and the modelling.

Example 6.9: Relative Phase of the Output Signal

Consider now the phase relationships in a DPO. Appropriate values of the phase ϕ have
been calculated using equation (6.68) and by computer modelling for the RPG when
S = 1 and the harmonic CS a2(n) = 0.96 + 0.125 sin(2πn/8). The dependence of the
calculated value (dashed line) and the computer-modelled value (solid line) on a1 is
shown in Fig. 6.11.
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Figure 6.11 Relative phase of the output signal

A sharp variation in the initial phase can be seen near the centre of the RPG (a1 ≈
−1.78), which is the resonance frequency. This coincides with the behaviour of the
phase characteristic of the DR.

6.6 WIDEBAND CONTROL SIGNAL

In the previous section, we discussed DPOs with sinusoidal control signal. Let us
now consider the case when a CS spectrum has more than one harmonic and, in
particular, the case of a DPO with binary variation of coefficients. This has both
theoretical and practical significance. A DPO with a sinusoidal CS could, theoretically,
generate signals with any central frequency S�C/2. But the condition for excitation
of oscillations becomes tougher with the increase of the sub-harmonic number S. In
some instances, the sub-harmonic number has a practical limit that can be estimated
as S = 3 − 6. Actually, this figure is no more than a rule of thumb. When the DPO is
used for frequency synthesis, instead of using a sinusoidal CS with high S, one of the
binary CS harmonics can be used for signal excitation. Before we study this problem
it is important to recall once again that relative to the CS, a parametric oscillator is an
essentially non-linear system. This introduces a limitation to the use of non-sinusoidal
CSs in a DPO: regions of parametric generation determined by different CS spectral
components should not overlap. The situation when two or more spectral harmonics
initiate parametric oscillations at the same time is outside the scope of this book.
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Consider the excitation of parametric oscillations by binary variation of the coeffi-
cients, which can be represented via the Fourier series expansion (6.2). Assume that
the system operates at the RPG boundary and, consequently, the output signal has a
constant envelope. For this case, the equation connecting output signal spectrum (6.7)
in a matrix form is


ŷS

ŷS−2

. . .

ŷS−2M


 =




δ1(S) δ2(S) . . . δM(S)

1 0 . . . 0
. . . . . . . . . . . .

0 0 . . . 0


 ·




ŷS−2

ŷS−4

. . .

ŷS−2M−2


 (6.69)

where

δ(S)
m = −γ1α1me−jπ(S−2m)/N − γ2α2me−j2π(S−2m)/N

2(1 + a1e−jπS/N + a2e−j2πS/N )
ŷ13 (6.70)

are coefficients connecting components ŷS and ŷS±2m for an AFM output signal. Or,

[Ŷ (S)] = [A(S)][Ŷ (S−2)] (6.71)

where [Ŷ (S)] is a column matrix containing M frequency samples, y(n); [Ŷ (S−2)] is
a column matrix, shifted on two frequency samples relative to the matrix [Ŷ (S)]; and
[A(S)] is a square M × M matrix, connecting column matrixes [Ŷ (S)], separated by
two frequency samples. In addition, similar to the sinusoidal CS (M = 1) case, we
obtain the recurrent relation

[Ŷ (S)] =
S−n∏
k=0

[A(S−2k)][Ŷ (S)] = [C(S, −S][Ŷ (−S)] (6.72)

Now, we should take into account the periodicity of the DFT (|ŶS | = |Ŷ−S |) and
the quasi-harmonic (narrowband) nature of excited oscillations (|ŶS | � |ŶS±2m|). For
these obvious conditions, it is sufficient to consider only the first elements in vectors
and we can write the following approximate equation:

|C11(S1, −S)| ≈ 1 (6.73)

where |C11(S1, −S)| is the first element of the matrix [C(S, −S)] =
S−1∏
k=0

[A(S−2k)].

Let us study the results in the next example.

Example 6.10: Bi-Frequency Control Signal

Let us determine the conditions for excitation of parametric oscillations for a CS that
contains only the first �1 = 2πn/N and the third �3 = 3�1 = 6πn/N harmonics in its
spectrum: a2(n) = a2 + α21 cos(2πn/N) + α23 cos(6πn/N)
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1. To excite oscillations at the frequency of the first CS sub-harmonic π/N (S1 = 1),
determine the matrix

[C(1, −1)] = [A(1)] =

 δ

(1)
1 0 δ

(1)
3

1 0 0
0 1 0


 (6.74)

Condition (6.73) in this case takes the form

|C(1, −1)| = |A(1)||δ(1)
1 | = 1 (6.75)

that is, parametrical generation at the first sub-harmonic is a result of the halving of the
first harmonic frequency 2π/N .

2. Similarly, for RPG S1 = 2, we obtain

[C(2, −2)] = [A(2)][A(0)] =

 δ

(2)

1 0 δ
(2)

3
1 0 0
0 1 0




 δ

(0)

1 0 δ
(0)

3
1 0 0
0 1 0




=

 δ

(2)

1 δ
(0)

1 δ
(0)

3 δ
(2)

3 δ
(0)

3

δ
(0)

1 0 δ
(0)

3
1 0 0


 (6.76)

Condition (6.73) |C11(λ, −λ)| = |δ(2)
1 δ

(0)
1 | = 1 shows that oscillations at the CS fre-

quency are determined by the first harmonic, and the size of the RPG is proportional to
α2

21/4. A similar result was obtained when harmonic CSs were discussed.

3. The conditions for oscillation excitation at the third sub-harmonic can be deter-
mined using the same method. We should take into account that two mechanisms of
oscillation excitation are competing at the third sub-harmonic (3/2N ): the third sub-
harmonic of �1 or S1 = 3 and the first sub-harmonic of �3 or S3 = 1, as they are equal
to each other. Thus,

[C(3, −3)] =

 δ

(3)

1 δ
(1)

1 δ
(−1)

1 + δ
(3)

3 δ
(1)

3 δ
(3)

1 δ
(3)

1 δ
(−1)

1 δ
(−1)

3

δ
(1)
1 δ

(−1)
1 δ

(1)
3 δ

(1)
1 δ

(−1)
3

δ
(−1)

1 0 δ
(−1)

3


 (6.77)

and

|C11(3, −3)| = |δ(3)

1 δ
(1)

1 δ
(−1)

1 + δ
(3)

3 | = 1 (6.78)

In equation (6.78), the term δ
(3)

1 δ
(1)

1 δ
(−1)

1 reflects the multiplication of the first har-
monic while δ

(3)

3 reflects the division of the third harmonic. For the case under consider-
ation here, when |γ2| < 1 it is obvious that |δ(3)

1 δ
(1)

1 δ
(−1)

1 | � |δ(3)

3 |, and condition (6.78)
takes the form |δ(3)

3 | = 1, that is, in this case dominates halving of the third harmonic
frequency or S3 = 1. This result is easily predictable from our previous study.

From the example, we can draw this important conclusion: in the general case, the
main mechanism of oscillation excitation is a halving of the corresponding harmonic in
the broadband (multi-frequency) CS spectrum.
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The dependence between the amplitude of the CS spectral components and the size
of RPGs is sketched in Fig. 6.12.
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Figure 6.12 Relations between CS and RPG

The solid line in Fig. 6.12a shows an amplitude spectrum â(ω/�C) of a binary
CS with N = 32 and q = 2, containing only odd harmonics, which decrease with the
harmonic number. The dashed line in Fig. 6.12a shows a spectrum of the CS with N =
32 and q = 16, which contains both odd and even harmonics. The spectrum components
for narrowband (q = 2) and wideband (q = 16) CSs are normalized according to the
level of the first frequency component of the spectrum.

Figure 6.12b shows the results of RPG calculations using the method of MM eigen-
values analysis. The vertical axis corresponds to the width of the RPG cross section
�a1S along a1 (for a given a2), normalized relative to the widest region of paramet-
ric generation �a11 that corresponds to S1 = 1. So, Fig. 6.12b introduces parameter
�a1S/�a11 depending on the sub-harmonic order number at which oscillations occur.
For a narrowband CS (solid line), the RPGs are considerably larger for odd S than for
even S. For a wideband CS (dashed line), the dependence of the size of RPGs on sub-
harmonic number repeats the case for the CS spectrum. There is parametric resonance
for both odd and even sub-harmonic numbers S.

These data support the conclusions drawn from the approximate method of bound-
ary estimation: the basic mechanism of oscillation excitation is halving of the har-
monic frequency of the CS and the size of the parametric generation region is
proportional to the amplitude of these harmonics.
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Thus, the approximate method outlined above yields boundary estimations that
correspond to physically observed results, which once again highlights the parametric
nature of the output oscillations. These parametric oscillations occur in two cases:
(i) when one of the CS frequency components is halved (Si = 1) and (ii) when CS
spectrum components are multiplied (Si > 1). However, the dominating factor is the
mechanism of the halving of the harmonic components in the broadband CS spectrum.
The size of RPGs in terms of CS main frequency �ωC for high Q resonators, that
is, a2 ≈ 1 can be approximately estimated using an amplitude of the corresponding
CS spectrum harmonic.

6.7 PERIODIC COMPONENTS SPECTRUM

As discussed above, in the general case a sinusoidal CS with frequency �C can
initiate parametric oscillations with a central frequency �CS1/2. At the same time,
parametric oscillations with the same central frequency �CS1/2 could be initiated
by the ith harmonic of a binary CS or �CSi/2 = �CS1/2. What will be the main
difference in the output signal spectrum for these two cases? In this section, we will
show that the difference is in the spectrum of the output signal. When a sinusoidal
CS is used, the output process is modulated by only one CS harmonic. For the non-
sinusoidal CS, in particular the binary CS, the output process is modulated by the
multi-harmonic CS’s spectrum.

Expressions for the periodical component of the DPO output spectrum were
obtained earlier for a harmonic CS. These results can be expanded to describe output
signal spectrums for the non-harmonic CS case. The most practically interesting case
is when the CS is a binary (pulse) signal. Such a waveform can be represented as a
Fourier series expansion. Applying DFT to equation (6.58), we obtain an expression
in the matrix form, connecting the spectrum components ŷ1S of the output signal
periodical components:


ŷS

ŷS−2

. . .

ŷS−2M


 =




δ′
1(S) δ′

2(S) . . . δ′
M(S)

1 0 . . . 0
. . . . . . . . . . . .

0 0 . . . 0


 ·




ŷS−2

ŷS−4

. . .

ŷS−2M−2


 (6.79)

where

δ(S)
m = −γ ′

1α1me−jπ(S−2m)/N − γ ′
2α2me−j2π(S−2m)/N

2(1 + a′
1e−jπS/N + a′

2e−j2πS/N )
(6.80)

are coefficients, connecting components ŷ1(S) and ŷ1(S+2M) of the AFM output signal
spectrum. In equation (6.80), the following notations are used: a′

1 = a1e
−1/τ , a′

2 =
a2e

−2/τ , γ ′
1 = γ1e

−1/τ and γ ′
2 = γ2e

−2/τ . Similar results can be obtained for a spectrum
of the periodic decreasing component.

From equation (6.80), it follows that the spectrum of the output periodical com-
ponent for a binary CS contains not only the main component at the frequency
of generation S�C/2 but also the modulation components. Levels of these spectral
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components are determined by the CS-DR parameters. The time constant does not
essentially influence the spectrum qualitatively, and leads only to some quantita-
tive changes.

Results of this small section on periodic components qualitatively fully coincide
with those obtained earlier. This confirms that for any CS waveform the DPO output
process contains the main central spectral component and any CS spectral components
up-converted to this central frequency.

6.8 THE TRANSIENT IN DIGITAL PARAMETRIC
OSCILLATORS

We considered output signal spectrums in DPOs with multi-frequency CSs and indi-
cated that this mode is prospective when a DPO is used for a frequency multiplication.
The other important parameter is the duration of the transient period, as any variations
of CS and/or DR parameters cause a transient to occur.

The time constant of the decreasing component specifies the transient in a DPO.
When higher-order sub-harmonics are generated, the physical mechanism behind the
process remains the same and differs mainly at a qualitative level. So, using the
accurate mathematical analysis and modelling introduced in this chapter, we will
investigate the transient for a DPO operating in a frequency multiplying mode by
the following set of examples. You will see that the example results are consistent
with the theory that the major mechanism of excitation of parametric oscillations is
the halving of one of the CS spectrum harmonics. The time constant depends on this
particular harmonic amplitude and the DPO parameters that specify the RPG.

Example 6.11: Frequency Multiplier, S3 = 1

Time constants τ1,2 were calculated for the DPO governed by the binary CS with N = 16
and q = 2 in a sub-harmonic generation mode (S3 = 1). Results of the calculations are
sketched in Fig. 6.13 and the keys to the figure are mentioned in Table 6.2.
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Figure 6.13 The time constant versus DPO parameters
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Table 6.2 DPO Parameters for Fig. 6.13

Curve a1 γ2

nos.

1 −1.34 0.25
2 −1.36 0.25
3 −1.38 0.125
4 −1.39 0.125

Curves 1 and 2 show the dependence of τ1,2 on coefficient a2 for γ2 = 0.25 and
a1 = −1.34 and −1.36 respectively. The time constant dependence on DPO parameters
a1 and a2 in RPG S3 = 1 is similar to the curve for S1 = 1 (see Fig. 6.9), but the values
of τ1,2 are considerably higher.

Example 6.12: High Multiple Harmonic Generations

Figure 6.14 shows the dependence of the DPO’s time constant on the sub-harmonic i

number (assuming that Si = 1). It was considered for a binary CS a2 = 1 ± 0.25 with
N = 512 and q = 256 for i = 8 − 128, where these time constants have the minimum
values within appropriate RPGs. The results reflect the fact that the time constants, with
other conditions equal, are inversely proportional to the CS amplitude. Higher generating
sub-harmonics i are excited by the CS harmonics with smaller amplitudes.
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Figure 6.14 The time constant versus the sub-harmonic number

The absolute duration of the transient period depends on the time constant τ itself
and also on the DPO’s initial conditions regardless of the cause of the appearance
of the transient. Examples of causes of a transient include switching the system on,
a phase shift in the CS, and the DPO switching to another sub-harmonic genera-
tion mode.

Example 6.13: Transient versus Initial Conditions

Oscillations were excited in a DPO with different ICs at the third sub-harmonic S3 = 1
by a binary coefficient variation a2(n) = 1.03 ± 0.125 with q = 2 and N = 12. The
phase delay relevant to the steady-state oscillations versus the time instants n is shown
in Fig. 6.15.



SUMMARY 207

0 20 40 60 80
n

4

2
D

el
ay

 ‘
n’

1

2

3

Figure 6.15 Phase delay due to the transient

The delay of the output oscillations is shown in Fig. 6.15 by curve 1 for ICs y(0) =
2.936, and y(−1) = 2.234, by curve 2 for y(0) = −0.252, y(−1) = −1.657, and by
curve 3 for y(0) = −1.657, y(−1) = −2.292. These three curves clearly show that the
duration of the transient essentially depends on the ICs.

The absence of the transient for case 3 can be easily explained by the fact that
ICs y(0) = −1.657, y(−1) = −2.292 correspond to the system engine vector. In the
general case, to reduce or exclude the transient in a DPO we can exploit the fact dis-
cussed above that the duration of the transient depends not only on the time constant
but also on the initial conditions. This is clearly seen from equation (6.16). The rela-
tion between increasing and decreasing components depends not only on eigenvalues
of MM (equation (6.1)) but also on the constants g1 and g2 (equation (6.16)), which
are determined by the ICs y(0) and y(−1). In contrast with ICs for analog para-
metric circuits, the ICs in this case can be easily corrected, if necessary, by writing
appropriate words in the DR registers.

The transient can be fully prevented if the eigenvector of the MM is chosen as the
ICs. From matrix theory it is known that the eigenvector is mapped by the matrix
onto another vector, which takes the same (or opposite) position in the space but is
λ times longer [24]. Thus, if the MM eigenvector is selected as the ICs, then one of
the solutions is equal to zero (g1 or g2 is equal to zero).

Thus, to prevent the transient, the second term in equation (6.16) should equal zero.
In this case, y(n) = y1(n), when y(0) and y(−1) are determined from equation (6.26):

y(0) = [−(C12 − C22 + λ1)/(C21 + C11 − λ1)]y(−1) (6.81)

From the technical point of view, the structure of an oscillator with controllable ICs
has to contain a subsystem that simultaneously provides DPO parameter variation
and writes down values for y(n) and y(n − 1) equal to the MM eigenvector in the
oscillator registers. This is a technically feasible way to develop, for example, a
frequency synthesizer without a transient during frequency hopping.

6.9 SUMMARY
Analysis of periodically linear time-varying digital systems identified some spe-
cific instability areas in the parameter domain of high Q digital resonators, which
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are known as regions of parametric generation. In terms of frequency, these areas
correspond to the sub-harmonics of the CS spectral components. The system behaviour
in these instability areas corresponds to parametric oscillation generation mode. A dig-
ital PF in this mode can be viewed as a DPO, which can be used for signal generation
and processing in various systems.

Relative to the input signal, which is the CS in our case, a DPO can oper-
ate, in some instances, similar to a phase lock loop, frequency multiplier, or fre-
quency–amplitude converter.

A DPO can filter out and/or multiply one of the CS spectrum component frequen-
cies by S/2 as well as track this frequency over easily predictable frequency bands.
The DPO time constant under otherwise equal conditions has strict dependence on
the CS period. The oscillator in the described non-limiting mode can be used as a
precise time-amplitude converter. Using the theory introduced in this chapter many
other practical and “exotic” DPO applications can be proposed.

6.10 ABBREVIATIONS

CS control signal
DFT discrete Fourier transform
DPG digital parametrical generator
DPO digital parametric oscillator
DR digital resonator
IC initial condition
MM monodromy matrix
PF parametric filter
PIZ parametrical instability zone
PLTV DS periodically linear time-variant discrete system
PVDR periodically varying digital resonator
RPG region of parametrical generation
SVN state vector norm

6.11 VARIABLES

H0(ω) an equivalent frequency response
ŷS dominant component
ỹ(n) periodic component of a signal
� normalized frequency of system parameter variation
ω normalized frequency of the signal
λ1,λ2 eigenvalues
s1(n), s2(n) coefficients of the systems in the equivalent representation
a(n) time-varying coefficients of the recursive part of a difference

equation
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b(n) time-varying coefficients of the non-recursive part of a difference
equation

f frequency
g(m, n) impulse response of the recursive part
G(z) GTF of the recursive part
h(m, n) impulse response
H(z, n) generalized transfer function
Q on/off factor
Q quality factor
S order number of the sub-harmonic
Si order of the sub-harmonic excited by the ith harmonic of a CS
u(n) signal at the output of the first system
X(ω), X(ψ) spectrum of the input signal
X(n) input discrete random process
x(n) input signal
X(z) z-transform of the input signal
Y(ω) spectrum of the output signal
Y(n) output discrete random process
y(n) output signal
Y(z, n) z-transform of the output signal
�ωs synchronization frequency band
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7
Parametric Oscillator
in Steady-State Mode

Chapter 6 introduced the generic problems of digital parametric oscillators (DPOs) in
non-limiting mode. In this chapter, we will consider a number of problems associated
with DPO analysis as well as with their practical application for signal process-
ing and generation. As a case study, we will consider results of DPO modelling
using MATLAB.

The non-limiting mode can be viewed as an independent regime of DPO operation
as well as a temporal period, which exists from the moment of oscillation excitation
till the moment of overflow of the internal registers. Register overflow is typical
for many or even for most applications; it is called a steady-state (SS) mode of
DPO operation.

The conditions for excitation and the characteristics of the output signal were
determined in Chapter 6 for the non-limiting mode of parametric digital resonators
(DRs). Using the difference equation analysis, it was shown that the solution has
two components: the decreasing component, which specifies the transient, and the
increasing component, which is the essence of the DPO operation. Sooner or later,
with an increase in the magnitude of the output signal the system reaches saturation
owing to the limited capacity of registers and enters a steady-state mode. The generator
in the SS mode can be described by a non-linear difference equation with time-varying
coefficients:

y(n) = �{F [−a1(n)y(n − 1)] + F [−a2(n)y(n − 2)]} (7.1)

where � is a non-linearity, occurring during the sum operation, and F is a non-
linearity, occurring during the multiplication operation.

It is not possible to obtain an exact analytical solution for equation (7.1) in the
general case. Hence, the major instrument for system analysis is computer modelling.
Analysis of DPOs shows that the main difference between the SS and non-limiting
modes is with the amplitude limitation of the output process in the SS mode, when
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all processes of oscillation excitation remain similar. This is partly the consequence
of a special type of non-linearity, which has an essentially linear locality.

The second important practical issue is the possible presence of noise components
in the control signal (CS) spectrum. As discussed earlier, a DPO is essentially a non-
linear system relative to the CSs, which limits analytical approaches to the study. We
will consider one important case of a small (relative to CS magnitude) noise presence
in the control channel using a simplified analytical approach and modelling.

7.1 LIMITING MODE OF PARAMETRIC OSCILLATORS

In the non-limiting mode, when a transition process is completed, a DPO output signal
can be represented by a normal increasing component. As soon as the amplitude of
the oscillations reaches the maximum possible value for the given number of bits in
the processor, the amplitude saturates and the oscillator starts to operate in the SS or
limiting mode. This mode is described by equation (7.1). When fixed-point arithmetic
is used, the non-linearity (F ) of the multiplication is practically absent. Since during
a scaling all numbers are selected to have an absolute value less than 1, there is no
overflow during multiplication calculations. To further ease our task, but without a
loss of generality, we can analyse a simplified equation with only one non-linearity:

y(n) = �[−a1(n)y(n − 1) − a2(n)y(n − 2)] (7.2)

Consider the non-linear characteristic of an adder �. If numbers with fixed points
are presented in an inverse or complementary code, then the characteristic of the
adder � looks as shown in Fig. 7.1a. The largest positive number is adjacent to the
largest absolute value of the negative number.

Adder overflow leads to strong modulation of y(n) (sign variation from the maxi-
mally possible positive value to the maximally possible negative value and vice versa)
and the oscillator is constantly in a transition mode of parametric oscillations. To pro-
vide a steady-state limiting mode of parametric generation, the adder’s characteristics
have to look like a “saturating adder” or a “soft limiter” (Fig. 7.1b):

�(y) =



y for |y| ≤ C

C for |y| > C, y > 0
−C for |y| > C, y < 0

(7.3)

(a) (b)

Φ(y) Φ(y)

y y

C

−C −C

C

Figure 7.1 Adder characteristics
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Figure 7.2 DPO equivalent structure

which is widely used for digital recursive filters with constant coefficients to prevent
oscillations caused by overflows [1].

The resulting new equivalent diagram of the parametric digital oscillator corre-
sponding to the steady-state limiting mode is shown in Fig. 7.2.

The main peculiarity of the SS mode is the presence of the non-linear stage �. We
will study this mode by considering some computer simulation results.

Example 7.1: Comparison of the Steady-State and Non-Limiting Modes

To evaluate the characteristics of the output process affected by the non-linearity �,
let us compare the output waveforms generated via equation (6.1) during oscillation
excitation and equation (7.2), which corresponds to the SS mode under the same CS
and initial conditions (ICs). These waveforms are sketched in Fig. 7.3.

The DR and CS parameters in this example are as follows: the CS is a square
wave a1 ± γ1 with amplitude γ1 = 0.125, period N = 8 and q = 2 (see Fig. 7.3a), and
constant second coefficient a2 = 0.99. Consider two cases:

1. The DPO generates a first CS sub-harmonic, that is, the region of parametrical
generation (RPG) S1 = 1, and the appropriate average value of the first coefficient
is a1 = −0.84.

2. The DPO generates a third CS sub-harmonic, that is, S3 = 1 and a1 = −0.74.

The steady-state output waveform is shown in Fig. 7.3b by a solid line for S1 = 1
and a dashed line shows the periodical component of non-limiting oscillations scaled to
the same amplitude. Similar waveforms for the S3 = 1 case are shown in Fig. 7.3c.

Comparison of the results demonstrates that introducing the non-linearity � leads to
some limitation of the output signal amplitude and a shift in signal phase variation. The
amplitude limitation is bigger and better seen in Fig. 7.3b, where the DPO has a smaller
time constant (broader band). For this case, spectral components, occurring because of
the harmonic signal limitation, are not fully filtered out. The mutual phase shift can be
explained as an effect of amplitude–phase conversion in the hard limiter.
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Figure 7.3 Waveforms of the output process in a DPO

When the DPO time constant is bigger (narrower band), which is the case with
S3 = 1, these two waveforms become closer to each other and to a harmonic function.
This tendency was confirmed in many other examples and corresponds to common
sense. Any spectral components of the generating signal are filtered by the DR itself;
hence, the narrower the DR frequency response, the smaller will be the levels of side
spectral components. This effect is similar to the case of the parametric filter, where
combinational components were filtered out by the recursive filter itself.

Now let us study the size and the positions of RPGs in a steady-state mode in the
a1 –a2 plane. It is not difficult to suppose that the conditions of oscillation excitation
are precisely the same as they are in the linear mode. This is a consequence of the
specific character of the non-linearity �: it has only a soft limitation, with a linear
part about the zero-crossing point. Since generation starts at a low-bit data circulation
(assuming that the ICs correspond to a linear part of �), the physical conditions for
oscillation excitation in both circuits are the same. Nevertheless, let us confirm this
using the next example [2].

Example 7.2: Evaluation of Regions of Parametrical Generation for Dig-
ital Parametric Oscillators in a Steady-State Mode

RPGs for the non-limiting mode for S1 = 1 and S3 = 1 are shown in Fig. 7.4a, b. Oscil-
lations were excited by binary coefficient a1(n) variations for two amplitudes: γ1 = 0.25
(solid line), 0.125 (dashed-dotted line) and N = 8, q = 2, when constant second coeffi-
cient a2 = 0.99. These RPGs were evaluated by an exact method of monodromy matrix
(MM) eigenvalues analysis. For the same conditions, RPGs were evaluated by computer
modelling, the results of which are shown in Fig. 7.4 for both the non-limiting and the
steady-state modes. All three sets of results fully coincide and verify the placement of
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excitation region boundaries. This comparison shows that oscillation initiation processes
are identical in both modes.

0.6 1.0
a2

(a)

a 1
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1.00.94
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a 1

−0.68

−0.76

−0.84

Figure 7.4 RPG for non-limiting and steady-state modes

As was discussed, the accurate analytical investigation of DPOs in the SS mode is a
complicated task, since there is no general solution of non-linear parametric difference
equations. A more practical method for investigation of such systems is modelling. This
method has been discussed repeatedly in this book and its high quality performance
has been demonstrated. In the general case, computer modelling of digital systems may
correspond to an exact solution for particular selected systems and signal parameters.

Analysis of the modelling results yields the following main characteristics of DPOs
in SS mode, which are, fundamentally, very close to those obtained for the non-
limiting mode, except items 5 and 6:

1. Output signals are quasi-harmonic (with the dominant spectral component at the
frequency of the Sth CS sub-harmonic).

2. Output and CSs are coherent.

3. The output signal spectrum y(n) contains modulation components due to the alter-
native constituents of the CS.

4. The CS and DR parameters fully determine the characteristics of the output signal.

5. Average amplitude of the output signal is constant, which is the result of the
amplitude limitation.

6. The output signal spectrum always contains harmonics of the main signal fre-
quency, which is also the result of amplitude limitation.

Let us illustrate these statements with examples of DPO modelling in the steady-state
mode. The quasi-harmonic nature of the output process during oscillation excitation was
shown analytically in Chapter 6 for the non-limiting case and verified by modelling for
the steady-state mode (see Fig. 7.3) for different parameters of the generator and CS.
Consider the spectrum of the DPO output signal in SS mode using the following example.

Example 7.3: Output Signal Spectrum Components in Steady-State Mode

Consider Fig. 7.5, where the output signal spectrum y(n) has been obtained for the SS
mode in a DPO with the following parameters: the CS is the binary sequence a2(n) =
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1.08 ± 0.625 with N = 32, q = 16 and a1 = −1.41. In this spectrum, a central frequency
component at S8 = 1 is 13 dB higher than the level of the closest (and largest) side
components at frequencies ωside = 4 �C ± �C .
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Figure 7.5 Spectrum of the output process

So, the output signal is a quasi-harmonic with the central frequency component
dominating relative to side components. In spite of the amplitude limitation, the side
spectrum components are relatively small as a result of the DR’s filtering properties.

A strong dependence between the initial phases of the CS and the periodical com-
ponent of the output process at the stage of oscillation excitation has been determined
analytically (equation (6.68)) and verified by computer modelling (Figs. 6.11–6.15).
In the steady-state mode, the output signal also remains coherent with the CSs, but
an additional phase shift appears because of amplitude–phase conversion at the DR’s
non-linearity [2]. Consider the following example.

Example 7.4: Phase Relationships between the Control Signal and the
Output Signal

Quasi-harmonic oscillations were excited at the first sub-harmonic (S1 = 1) of the CS
in a DPO with binary varying coefficients a1(n) = −1.38 ± 0.125 (N = 4, q = 2) and
a2 = 0.96. The CS waveform and output DPO signals in SS mode and non-limiting
mode are shown in Fig. 7.6.

The output signal of the SS mode (solid line) and the periodic component of the
oscillation excitation stage (dashed line) are shown in Fig. 7.6b, c. The transient process
was removed by selecting ICs equal to the MM eigenvector: y(0) = 1, y(−1) = 0.43
(Fig. 7.6b) and y(0) = −1, y(−1) = −0.43 (Fig. 7.6c). The initial phases of oscillations
for the non-limiting and SS modes are similar.

The output signal has some amplitude modulation despite the presence of a lim-
iter in a DPO operating in SS mode. The reason is that in this case the limiter is
not a memory-less network. Amplitude normalization requires some averaging time
specified by the system time constant. Consequently, the output signal has some
amplitude and phase modulations. As discussed earlier, the indicator of amplitude
and phase (frequency) modulations is an asymmetry in the output signal spectrum
relative to the central (dominant) component. Consider this effect for the SS mode in
the following examples.
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Figure 7.6 DPO output signal

Example 7.5: Modulation of the Output Signal

The existence of amplitude–phase modulation in the output spectrum is illustrated in
Fig. 7.7, which shows spectrums of the output signal for SS oscillations (solid line) and
for the periodic component of the oscillation excitation mode (dashed line) evaluated
by Fourier transform.
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Figure 7.7 Spectrum of the DPO output signal

Oscillations at the fifth CS sub-harmonic have been excited by binary variation of
coefficient a1(n) = −1.41 ± 0.125 with q = 2, N = 20 at the resonance frequency ωres ≈
π/4. There are non-symmetrical spectrum components at frequencies (S ± 2m)�C/2,
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where m = 1, 2, 3 . . . in the output spectrums at both the excitation (dashed line) and SS
(solid line) stage of oscillations.

So, even in the limiting case, the output signal contains small amplitude modula-
tion as a consequence of DR inertia. The cause of modulation is variations of DR
parameters by the CS. The relationship between the CS and output signal spectrums
can be seen from the next example.

Example 7.6: Output Signal Modulation Components versus Control
Signal Spectrum

Oscillations were excited by a binary variation of coefficient a2(n) = 0.96 ± 0.0625
(N = 12, q = 2). The CS spectrum (dashed line) and output DPO signal spectrum (solid
line) initiated by this CS are shown in Fig. 7.8. The figure clearly shows that the CS
spectrum contains only odd harmonics. In the output signal spectrum, these harmonic
(m = 1, 3, 5, 7 . . .) components are strongly expressed.
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Figure 7.8 DPO output signal and CS spectrums

From Fig. 7.8 it follows that the output signal is modulated by CS components
in the DPO operating in SS mode. The following example illustrates this even more
clearly. This example demonstrates that the magnitude of these modulation compo-
nents is proportional to the CS magnitude.

Example 7.7: Dependence of Modulation Components

The DPO was modelled to demonstrate the dependence between CS amplitude and the
level of the output signal modulation components. The DPO was in the SS mode of
signal generation by a CS with variable amplitude γ2. The relationship between the
normalized levels of the nearest modulation spectral components in the output process
versus γ2 is shown in Fig. 7.9 for different RPGs.
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Figure 7.9 Modulation components versus CS magnitude
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The modelling results were obtained during oscillation excitation by binary variation
of coefficient a2(n) with N = 12 and q = 2 at the third (solid line) and the fifth (dashed
line) CS sub-harmonics. Oscillation excitation at the sub-harmonic of high multiplicity
S = 128 by a wideband binary CS with q = 256 and N = 512 is shown in the same
figure by the dashed-dotted line. From Fig. 7.9 we conclude that the level of y(n)

spectrum modulation components proportionally depends on the CS magnitude.

The next subject for study is the influence of the average DR coefficients a1, a2 on
the spectrum of the output processes. In the first approximation for high Q resonators,
coefficient a2 is responsible for the generator’s filtering properties, that is, the time
constant, when a1 specifies the DR resonance frequency. Using the next example, we
will study this dependence.

Example 7.8: The Influence of Digital Resonator Parameters on the Out-
put Process

Consider a dependence between the DR-CS parameters and the output signal spectrum
using the S = 1 generation region (see Fig. 7.10) obtained by a binary CS: a1(n) =
a1 ± γ1 with N = 16, q = 2 and γ1 = 0.125 (Fig. 7.11a). Inside this RPG, two pairs of
parameters, those at points 1, 2 and 3, 4, have been chosen for investigations:

1. Points 1 and 2 correspond to a2 = 0.98 and a1 = −1.99 and a1 = −1.92. A DPO with
these parameters has different time constants: τ = 5.93 for point 1 and τ = 10.09
for point 2.

2. Points 3 and 4 correspond to a1 = −1.92 and a2 = 0.92 (τ = 7.29) and 0.87 (τ =
17.92).
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Figure 7.10 DR-CS parameters

The output waveform y(n) in the SS mode (solid line) and normalized output wave-
form ỹ(n) for the non-limiting mode (dashed line) are sketched in parts b, c, d, e
of Fig. 7.11, corresponding to the parameters of points 1, 2, 3 and 4 (Fig. 7.10),
respectively.

Comparing y(n) and ỹ(n), note that the existence of the non-linearity makes the shape
of oscillations “more rectangular”. This is obviously because the amplitude limiter is
present. It is better seen in DPOs with smaller τ , as the resonator introduces weaker
harmonic filtering. The bigger the time constant τ (narrower band), the better is the
output signal approximation to the sinusoidal waveform.
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This once again confirms the fact that a DR with higher Q (bigger τ , narrower band)
provides better filtering of the output spectrum modulation components.

Consider this effect once again in the following example.
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Figure 7.11 DPO output waveforms

Example 7.9: Output Processes in High Q Oscillator

Let us consider the influence of the DPO time constant on the output waveform. A
DPO similar to that in example 7.8 is used, but it operates in the S3 = 1 oscillation



LIMITING MODE OF PARAMETRIC OSCILLATORS 221

mode (see Fig. 7.12). Results of this DPO modelling are shown in Fig. 7.13: y(n) for
the SS mode (solid line) and ỹ(n) for the non-limiting mode (dashed line) are shown in
Fig. 7.13b for a1 = −1.63, a2 = 0.99, τ = 283.8 (point 1, Fig. 7.12) and in Fig. 7.13c
for a1 = −1.645, a2 = 0.99, τ = 91.9 (point 2, Fig. 7.12). Since the time constant values
τ for S3 = 1 are considerably larger than for S = 1 under the same conditions, the shape
of the oscillations in the case S3 = 1 is much closer to a harmonic waveform.

a 1

−1.64

−1.66

−1.7
0.95       0.97       0.99.0

a2

Figure 7.12 Region of parametric generation S3 = 1
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Figure 7.13 Output processes for different DPO parameters (S3 = 1)



222 PARAMETRIC OSCILLATOR IN STEADY-STATE MODE

Analysis of the modelling results for a DPO in SS mode yields the following
conclusions:

1. The existence of the adder non-linearity does not essentially change the main
character of the output process in comparison with the non-limiting operating
generation mode.

2. The magnitude of the increasing component is restricted by the limited capacity of
the internal DPO registers. The limiter itself translates the increasing oscillations
to an almost rectangular shape, but the DPO essentially filters out side harmonics
of the generating signal. For a bigger time constant, the filtering effect is stronger
and the output process becomes closer to the sinusoidal waveform.

3. The output process is coherent with the CS and the dominant frequency S�C/2
component is accompanied by the modulation components. The constituents and
location of these harmonics are determined by the CS spectrum. Their amplitudes
are proportional to the coefficient variations (that is, the CS) as well as dependent
on the resonator parameters a1, a2 and, consequently, the time constant τ .

7.2 DPO ANALYSIS IN THE PRESENCE OF NOISE

As discussed above, a DPO can be used as some sort of frequency multiplier, that
is, a narrowband filtering system. In this section, we will discuss a very interesting
practical case in which the deterministic CS is accompanied by a random process,
which creates system noise. Unfortunately, no one has yet carried out a detailed
analysis of this problem, either analytically or by modelling; this would be a good
topic for future research.

In Chapter 3, the stability of second-order digital parametric systems was discussed
for the case in which the CS contains not only deterministic but also random compo-
nents. When noise is present, an appropriate system can be described by stochastic
difference equations. Analysis of these equations is very complicated from the math-
ematical point of view and there are no solutions for the general case.

It is important to recall here once again that relative to control signals, DPOs are
not linear systems and the superposition principle is not applicable. Nevertheless, for
DPO applications we can consider one practically interesting case of a system with
only a small level of noise. We assume that the CS is corrupted by additive noise, but
its standard deviation is essentially less than the magnitude of the CS variations. In
this case, the behaviour of the DPO can be evaluated at least in the first approximation.
Representing signals and systems as row expansion series and using only first terms,
some equivalent of the superposition principle can be used [3]. Now let us study the
influence of interference on parametric oscillators in both non-limiting and SS modes.

Operation of the DPO at the stage of oscillation excitation is described by the
difference equation (6.1). In the presence of noise, coefficients in this equation can
be represented as a sum of the signal a0(n) (which is the CS in this case) and the
centred noise component η(n) [4]:

a(n) = a
◦
(n) + η(n) (7.4)
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Similar to equation (7.4), an output process y(n) in the first approximation can be
represented as the sum of two components: the signal y

◦
(n) (due to the CS) and

the noise ξ(n) (due to the presence of noise component η(n) at the input). This
representation is possible if and only if

1. the noise components are small relative to the CS;

2. interaction between the CS and input noise produces components of second-
order smallness;

3. the presence of noise does not collapse the parametric oscillations;

4. the presence of noise does not disturb the mode of quasi-harmonic parametric
generation, for example, by changing the RPGs.

It is important to note that these conditions are not always applicable even for a
“small” noise. But introduction of this analysis is still useful for the understanding of
DPO operations.

Thus,
y(n) = y

◦
(n) + ξ(n) (7.5)

and equation (6.1) takes the form

[y◦
(n) + ξ(n)] + [a1

◦
(n) + η1(n)][y◦

(n − 1)

+ ξ(n − 1)] + [a2
◦
(n) + η2(n)][y◦

(n − 2) + ξ(n − 2)] = 0 (7.6)

or

y
◦
(n) + a1

◦
(n)y

◦
(n − 1) + a2

◦
(n)y

◦
(n − 2) + ξ(n) + a1

◦
(n)ξ(n − 1) + a2

◦
(n)ξ(n − 2)

+ η1(n)y
◦
(n − 1) + η2(n)y

◦
(n − 2) + η1(n)ξ(n − 1) + η2(n)ξ(n − 2) = 0 (7.7)

Taking into account that

y
◦
(n) + a1

◦
(n)y

◦
(n − 1) + a2

◦
(n)y

◦
(n − 2) = 0 (7.8)

consider only the first order of smallness in equation (7.7). This equation, with respect
to the random component of the output process, can be written as

ξ(n) + a1
◦
(n)ξ(n − 1) + a2

◦
(n)ξ(n − 2) + η1(n)y

◦
(n − 1) + η2(n)y

◦
(n − 2) = 0

(7.9)

or

ξ(n) + a1
◦
(n)ξ(n − 1) + a2

◦
(n)ξ(n − 2) = −η1(n)y

◦
(n − 1) − η2(n)y

◦
(n − 2)

(7.10)

The non-uniform difference equation (7.9) has a general solution relative to ξ(n),
which is a sum of solutions for the uniform part and solutions due to the existence of
constant terms. The solutions for the uniform part of equation (7.9) were determined
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earlier. The right part of equation (7.10) also represents oscillations at frequency
S�C/2, modulated by CS components, which includes noise components. The spec-
trum of the output process contains signals at frequencies (S�C/2) ± ωN , where the
dominant component at frequency S�C/2 is surrounded by modulation components.

Let us describe this solution in technical terms. If a deterministic periodical CS
causing excitation of parametric oscillations is accompanied by a small noise, the
DPO will convert this random process at the output central frequency S�C/2 [4].
This conclusion is important from a practical point of view. It specifies that relative
to the input process, which is a sum of the deterministic CS and random noise, a
DPO acts as a narrowband frequency converter or a chain of a memory-less frequency
multiplier with the multiplication coefficient S/2 and a narrowband filter. Parameters
of the DPO specify not only a central output frequency (multiplication coefficient S)
but also the filtering property of this system. For a better understanding, consider the
next example, where noise is a narrowband harmonic-like process. Here, for the sake
of simplicity of presentation, we introduce the interference component at the discrete
frequency ωN and later will study the noise component with a broader spectrum.

Example 7.10: Control Signal Accompanied by Narrowband
Interference
Oscillations in the GPO are excited by the sinusoidal CS a1 = a10 + γ1 sin �Cn = a10 +
0.125 sin(πn/4). Coefficient a2 = 0.96 is chosen to provide oscillations in the RPG
S = 1. Narrowband interference at the frequency (1 + 0.1)�C (sketched in Fig. 7.14a)
with a magnitude −16 dB lower than the γ1 is added to the CS.
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Figure 7.14 DPO with narrowband interference
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An output signal spectrum is shown in Fig. 7.14b. At the output, besides the central
spectrum component at frequency S�C/2, the signal contains interference components
at frequencies �C/2 ± 0.1n�C . Its maximum level is equal to −24 dB at frequency
0.5 �C + 0.1 �C . This well illustrates the conclusion drawn above that interference
(noise) is heterodyned (up- or down-converted) to the output frequencies and processed
according to the equivalent frequency response of the parametric oscillator.

In spite of the clear physical sense of this conclusion, it is only true in the case
of “small” noise. As a result of the essential non-linearity of the process behind the
DPO operation, the boundary of this “smallness” is not defined. It is also important to
recall here that non-linearity is the fundamental property of the parametric difference
equation relative to the law of coefficient variation or the CS in the discussed case.

The existence of random noise in the CS leads not only to output signal parameters
but also to the location, size and even shape of RPGs, depending on this random
process. A strict determination of conditions for excitation of parametric oscillations
by a signal with random components has not been introduced in the literature. This
is mainly due to mathematical difficulties [5]. Random matrixes describe trajectories
of motion of such systems in a vector space. The theory of such matrixes is rather
sophisticated and no one study has specified exact conditions for oscillation excitation
in closed analytical form. So, this problem can be introduced here via computer
modelling. Consider the influence of a small noise component on the conditions for
excitation of parametric oscillations. We will use oscillations occurring in RPG S = 1,
which was investigated in Chapter 6 (Fig. 6.7).

Example 7.11: Influence of Noise on Boundaries of Regions of Paramet-
rical Generation
An RPG for the harmonic law of CSs a2(n) = γ2 sin(2πn/16), with amplitude γ2 =
0.125, is shown by the solid line in Fig. 7.15. In the same figure, a boundary of the
appropriate RPG is shown when a white Gaussian random process accompanies the
deterministic sinusoidal CS (dashed line). The following algorithm was used to obtain
this result: calculate the MM for a CS with period N at the point with coordinates
a1, a2; determine if oscillations are occurring by applying criteria (3.27) and analysing

a 1 −1.8

−1.95
0.8                      0.9                     1.00        

a2

Figure 7.15 RPG deformation by noise
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MM eigenvalues. Depending on the values of deterministic parameters a1 and a2 +
γ2 sin(�Cn), as well as random components η1(n) and η2(n), different RPG boundaries
are obtained.

In Fig. 7.15, the dashed line represents the case when a2(n) is corrupted by white
noise with variance σ 2

2 = 0.01, when γ2 = 0.125. For comparison, RPG boundaries for
oscillations excited by only two independent white noise components with variances
σ 2

1 = σ 2
2 = 0.01(γ1 = γ2 = 0) are represented by a dashed-dotted line.

Example 7.10 shows that the boundaries of RPGs now also have random components.
Their statistical parameters – probability density function of boundary variation, a mean
value and variance – can be evaluated by data collection and processing via computer
simulation. The following explicit algorithm was used to calculate the parameters:

1. For a given deterministic sinusoidal CS, specify the RPG boundary by analysis of
the eigenvalues λ1,2.

2. Choose arbitrary points a1b and a2b at this boundary.

3. Add low-level white noise to the deterministic CS and again calculate the RPG
boundary in the vicinity of a1b and a2b. To do this, calculate eigenvalues λ1,2

successively for 100 independent samples to collect appropriate statistics.

4. Calculate histograms of the RPG boundary distribution for the given point a2b and
for 10 values of a1 with equal steps between a1b − 0.05 and a1b + 0.05. For each
calculation, evaluate the values of |λ1| to determine if excitation of parametric
oscillation has occurred.

From the obtained data, we found a distribution for the location of RPG boundaries,
which is close to the normal law. The Gaussian-like distribution of the boundary
is easily predictable as we are dealing with a narrowband system. Using the next
example, let us study the parameters of this distribution with the mean value M(a1)

and variance σ 2
a .

Example 7.12: Parameters of Boundary Variation for Regions of Para-
metrical Generation
Approximated probability density functions of RPG boundary distribution relative to
the boundaries for only deterministic CSs are shown in Fig. 7.16 for three different

P(
a 1

) 0.6

0.2

−1.68               −1.72                −1.76
a1

Figure 7.16 RPG boundary distribution
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variances of the noise. These distributions were calculated for a1b = −1.735 and a2b =
0.95. For the noise with variance σ 2

2 = 4 · 10−4, the boundary distribution along a1

has the mean value M(a1) = −1.736 and variance σ 2
a = 5.85 · 10−4 (solid line); for

σ 2
2 = 8 · 10−4, the mean value M(a1) = −1.737 and variance σ 2

a = 7.93 · 10−4 (dashed
line); and for σ 2

2 = 2 · 10−3, the mean value M(a1) = −1.738 and the variance σ 2
a =

1.54 · 10−3 (dotted-dashed line). So, when the variance of the boundary distribution
directly depends on the power of the CS’s noise component, the mean value does
not change.

The dependencies of σ 2
a on the CS’s noise variance is shown in Fig. 7.17 for

a2 = 0.95, a1 = −1.735 (solid line) and a2 = 0.91, a1 = −1.705 (dashed line) at the
RPG boundary. Simulations have been provided for the white noise.

0.0002

0.0001

0
0.0008          0.0016         

s2
2

s
2 a

Figure 7.17 RPG boundary variance versus the noise power

Analysis of example 7.12, shown in Fig. 7.17, confirms that variation of the RPG
boundary directly depends on the power of the CS’s random components.

The influence of broadband noise on the output signal spectrum will be discussed
in the next example.

Example 7.13: Control Signal Accompanied by White Noise

Consider a DPO with a sinusoidal CS corrupted by small additive white noise. The
CS-to-noise ratio is 35 dB. Spectrum ŷ(ω/�C) of the periodic component of the output
process for a2 = 0.99 (solid line) and a2 = 0.96 (dashed line), a1 = −1.81 and CS
amplitude γ2 = 0.125 is shown in Fig. 7.18.

We can see that the noise components also present in the output signal spectrum.
When the input noise has a broad uniform spectrum, the output signal spectrum is
narrowband, which is the consequence of the DPO’s filtering properties as well as
strong system non-linearity relative to the CS.

The analysis here of the influence of CS noise components on DPO operation
has been very brief and does not give essential information for quantitative analysis.
Perhaps this is one direction for future research. However, at least two conclusions
should be derived: the additive noise causes random variations of RPG boundaries as
well as stochastic modulation of the output signal.
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Figure 7.18 Output signal spectrum in the presence of input noise

7.3 MODELLING OF A DIGITAL PARAMETRIC
OSCILLATOR USING MATLAB – A CASE STUDY

In Chapters 6 and 7 we introduced digital parametric oscillators, which can be viewed
as periodically time-varying systems for signal generation and processing. We anal-
ysed DPO characteristics and considered a number of examples. In these examples,
the parameters used provided good results for visualization, but were not useful for
practical applications. In this section, results of DPO modelling using Matlab will
be presented, which will give readers a better understanding of the operation and
practical applications of DPOs.

7.3.1 Non-Limiting Oscillation Mode

Example 7.14: Sinusoidal Control Signal Representation

Let us consider a DPO with a sinusoidal control signal:

CS (n) = a1 + γ1 sin(n�)

The spectrum and waveform of this CS are shown in Fig. 7.19a, b, respectively, for � =
0.5 and γ1 = 0.01. For the coefficient a2 = 0.999, this CS causes parametric oscillation
in the region S = 1. The spectrum and waveform of the output signal are shown in
Fig. 7.19b, c, respectively.

As shown in Fig. 7.19, the output spectrum has two harmonics: one at the relative
frequency 0.25, which is the main component, and the second at frequency 0.75, the
first CS sub-harmonic, which is the modulating component. As a result of high DR
efficiency (a2 = 0.999 and γ1 = 0.01), the modulation harmonic is −70 dB relative to
the main harmonic.

We have already discussed that the DPO output signal spectrum and waveform depend
on the system parameters, even when the oscillator operates within the same RPG and
the CSs have the same period. Parameters such as a1, a2, γ1 and γ2 influence the DPO
time constant τ . Let us consider this effect in the following example.
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Figure 7.19 CS and DPO output signal spectrum and waveform

Example 7.15: Time Constant Influence on the Output Signal of a Dig-
ital Parametric Oscillator
Let �, S and a2 have fixed values. We will study the influence of the parameter γ1 on
the output waveform and spectrum. When we change γ1, we are changing the DPO time
constant, which is the rate of increase in the signal amplitude. The parameters are fixed
at the following values:




� = 0.5
s = 1
a2 = 0.999
a1 = −1.9369

and for γ1 = 0.005 the time constant τ = 8; for γ1 = 0.01, τ = 4; for γ1 = 0.02, τ = 2;
and for γ1 = 0.05, τ = 1. The output signal spectrums and waveforms are shown in
Fig. 7.20a, b, c, d, respectively. It is clear that with reduction of the time constant, the
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rate of increase of the signal envelope rises and the signal spectrum becomes broader
as it contains stronger modulation components.
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Figure 7.20 Signal and spectrum variation for different DPO time constants

For a sinusoidal CS it is rather difficult to initiate parametric oscillation in a mode
S > 1 because of rapid reduction of RPG size. Nevertheless, it is possible and the next
example will demonstrate the output signal spectrums for S = 2 and S = 3 oscilla-
tion modes.

Example 7.16: Signal Generation in S > 1 Mode in a Digital Parametric
Oscillator
In order to generate sub-harmonics higher than S = 1, we fix all DPO and CS parameters
except a1, which is varied in order to excite oscillations in RPGs for S = 2 and S = 3.
So, let � = 0.5, a2 = 0.999 and γ2 = 0.05. Then, the following values of a1 should
apply: for signal generation in S = 1 or �

2 = 0.25, a1 = −1.9369; for S = 2 or � = 0.5,
a1 = −1.7543; and for S = 3 or 3 �

2 = 0.75, a1 = −1.4626. Spectrums of the relevant
signals are shown in Fig. 7.21a–c, respectively. With all other conditions equal, the
DPO time constant increases as S increases. As a consequence of this, as Fig. 7.21
clearly shows, the spectrum narrows as S increases.
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It is important to recall that the size of the region of parametric oscillations

decreases proportional to
(γ

2

)S

. In this example, γ = 0.05; therefore, the RPG sizes

are
(γ

2

)S

1
= 0.025;

(γ

2

)S

2
= 6.25 · 10−4 and

(γ

2

)S

3
= 1.56 · 10−6 for S = 1, S = 2 and

S = 3, respectively.
A DPO can operate like a phase lock loop tracing the frequency of an input signal.

In the DPO case, an input signal is the control signal. Let us demonstrate this effect in
the next example.
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Figure 7.21 Output signal spectrum for different S

Example 7.17: Variation of the Control Signal Central Frequency

In this example, all oscillators are fixed, but the CS frequency is shifted relative to
some central frequency �centre. It is assumed that at this frequency, parametric oscil-
lations are present at the DPO output. Now, let the CS frequency be described as
� = �centre(1 + α), where α � 1 is a real number. We will investigate the spectrums of
output signals for different values of α. The system parameters are �centre = 0.5, S =
1, a2 = 0.999, γ = 0.05, a1 = −1.9369. Output signal spectrums and waveforms for
α = 0 (� = 0.5), α = 0.06 (� = 0.53), α = −0.06 (� = 0.47), α = 0.16 (� = 0.58)
and α = 0.24 (� = 0.62) are shown in Fig. 7.22a, b, c, d, e, f, respectively. The latter
frequency � = 0.62 is slightly outside the DPO synchronization band. For this signal,
it is clear that there is more than one dominating harmonic in its spectrum and the
waveform is strongly modulated as well as having a decreasing envelope.
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7.3.2 Steady-State Oscillation Mode

In the previous sections, the output signal was considered to be in a non-limiting
mode. However, when the amplitude of the output signal is increasing, the system
eventually reaches saturation due to overflow of the DPO internal registers. For this
mode, the system is described by the difference equation

y(i) = �[[a1(i)y(i − 1)] + [−a2(i)y(i − 2)]]

In the preceding equation, �(∗) is a non-linearity with the following characteristics:

�(y) =
{

y for |y| < M

M for y > M

−M for y < −M

Let us consider the signal spectrum and waveform for the steady-state mode as a
function of the CS amplitude γ in the next example.
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Example 7.18: Digital Parametric Oscillator with a Sinusoidal Control
Signal in the Steady-State Mode

A signal waveform at the transient between non-limiting and steady-state mode is shown
in Fig. 7.23a for the following DPO parameters: � = 0.5, S = 1, a2 = 0.999, γ = 0.01,
M = 1, a1 = −1.9369. The signal waveform and its spectrum are shown in Fig. 7.23b,
c, respectively, for the same parameters, but for the steady-state mode.
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Figure 7.23 Transient from non-limiting and steady-state mode

It is interesting to note that the signal spectrum in the steady-state mode is rather
pure, and this can be explained by the suppression of the amplitude modulation in the
limiter. When this amplitude is increased, stronger modulation components are present in
the spectrum. This is shown in Fig. 7.23d–i, which correspond to the case of γ = 0.05
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and γ = 0.1, respectively. Moreover, as follows from a previous discussion the DPO
time constant decreases as the CS amplitude increases. We can clearly see this with the
analysis of the rate of amplitude increase in the non-limiting cases (Fig. 7.23a, d, g). In
Fig. 7.23h, the output waveform is almost a square wave, which is the consequence of
the poor auto-filtering property of DPOs for large values of γ .

7.3.3 A Digital Parametric Oscillator with Non-Sinusoidal
Control Signal

To provide DPO operation in the S > 1 mode [6, 7], it is convenient to use a non-
sinusoidal CS. This signal contains a number of harmonics of the main frequency
m�. So, instead of generating a signal at the Sth sub-harmonic S�/2 using the �

component in the CS spectrum, it is easier to generate the first sub-harmonic from the
mth harmonic of CS, m�/2. We have already notated this sub-harmonic as Sm = 1.
Consider now examples of such oscillation generation using a rectangular CS. This
rectangular CS has the period N = 2π

�
, amplitude variation ±λ and the parameter a1,

which is an average value of the CS and can be derived from a1 = − 4a2
1+a2

cos(ωR),
depending on the desired angular frequency ωR.

Example 7.19: Rectangular Control Signal

In this example, we use a CS with the following parameters: � = 2π
12 , γ = 0.1, a2 =

0.99. The waveform and spectrum of this CS are shown in Fig. 7.24a, b, respectively.
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Figure 7.24 Rectangular signal waveform and spectrum

As Fig. 7.24 shows, the main component of the signal spectrum corresponds to � =
0.524 when the third and fifth harmonics have relative amplitude of −15 and −25 dB,
respectively.

To generate signals with the central frequencies ωR = s�
2 = π

12 , 3π
12 , 5π

12 , 7π
12 , 9π

12 and
11π
12 , we should evaluate appropriate values of a1. These a1 values, respectively, are
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−1.9221, −1.4071, −0.515, 0.515, 1.4071 and 1.9221, and the relevant output signal
spectrums are shown in Fig. 7.25a, b, c, d, e, f, respectively. In these examples, a
steady-state mode of DPO is used.
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Figure 7.25 Signals generation by DPO with rectangle CS

Thus, using a rectangular CS we can generate sub-harmonics of higher order than
we can using a sinusoidal CS.
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7.3.4 Frequency Synthesizer

The examples considered above show that a DPO with a non-sinusoidal CS can be
effectively used as a frequency synthesizer. This will be demonstrated using appro-
priate examples, but first it is important to recall that any changes in the DR or CS
parameters lead to a transient period. During this transient period, the quality of the
generating signal can deteriorate. The following example shows how the presence of
a transient in a DPO can be visualized.

Example 7.20: Phase Shift in a Sinusoidal Control Signal

A sinusoidal CS with the parameters � = 2π
12 , S = 1, a2 = 0.999, γ = 0.01 initiated

parametric oscillations in a DPO. Initial conditions correspond to the non-limiting oper-
ation mode at the beginning. The DPO output waveform is shown in Fig. 7.26a. Using
the same ICs and DPO parameters, oscillations were initiated by a sinusoidal CS with
180◦ phase shift (see Fig. 7.26b) at a time moment corresponding to the non-limiting
DPO mode. Figure 7.26c shows the transient period in the DPO output signal wave-
form.
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Figure 7.26 Transient in the DPO operating in non-limiting mode

When a DPO is operating in a steady-state mode, the transient is not very visi-
ble as it is buried in the phase modulation. However, this transient presents unless
the ICs will not be selected that way to be an eigenvector of the corresponding
difference equation.
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Example 7.21: Frequency Synthesizer

For frequency synthesis, we will use a rectangular CS with the central frequency � = 2π
12

and amplitude ±γ = 0.1. Coefficient a2 is constant and equals 0.999, while coefficient
a1 is tuned to provide oscillations at frequencies �

2 to −1.9309, 3�
2 to −1.4135 and 5�

2
to −0.5174. Each frequency occupies 1500 n time slots. The CS waveform is introduced
in Fig. 7.27a and shown enlarged in Fig. 7.27b, c.
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Figure 7.27 CS in the frequency synthesizer

With this CS, the DPO output signal changes its central frequency and relevant
waveforms around the transition from �

2 to 3�
2 (shown in Fig. 7.28a) and from 3�

2 to
5�
2 (shown in Fig. 7.28b).

From these figures we see that the output waveform is different for the different
frequency bands. This can be easily explained by the fact that the DPO time constant
directly depends on the CS magnitude. In our case, generation of sub-harmonics is
initiated by the different harmonics of the CS, which have different amplitudes. With
other conditions being equal, the smaller the amplitude, the larger is the time constant.
This is why the waveform with frequency �/2 is almost rectangular (due to poor filtering
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by the DR), while the waveform with frequency 3 �/2 is about sinusoidal (due to better
filtering by the DR). Of course, for practical designing purposes, all this should be taken
into account and mitigated by appropriate choice of DPO parameters. The spectrums of
each of the three signals are shown in Fig. 7.29a–c.
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Figure 7.28 Frequency synthesizer output waveforms
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Figure 7.29 Spectrums of the generated signals
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7.4 SUMMARY

This chapter has introduced practical aspects of digital parametric oscillator analy-
sis. In particular, we examined the steady-state mode of DPOs, which is the most
technically applicable case. In many aspects, the DPO behaves similarly in the SS
and the non-limiting modes. The major difference is probably with the constant aver-
age amplitude of the output signal, which still has some amplitude modulation. Of
course, the signal also has a phase modulation specified by the control signal and the
oscillator parameters.

Another important practical parameter is the ability of the DPO to operate in the
presence of random components in the CS. Unfortunately, an accurate analytical
analysis for this case is not possible due to mathematical difficulties. Nevertheless,
we were able to investigate the influence of small random interference on system
performance.

The case study of DPO modelling using MATLAB can be viewed as the section that
provides better understanding of DPO theory as well as demonstrating the potential
characteristics of the oscillators. It is important to note that with appropriate choice
of parameters, the purity of the signal spectrum can be in the order of 80 dB. Using
the system eigenvector as the IC in the DPO registers allows for variation of the
output signal without transient modulation. This makes the DPO prospective for use
in frequency synthesizers, modems and other signal processing algorithms.

7.5 ABBREVIATIONS

CS control signal
DPO digital parametric oscillator
DR digital resonator
IC initial condition
MM monodromy matrix
RPG region of parametrical generation
SS steady state

7.6 VARIABLES

� a non-linearity, occurring during sum
operation

γN amplitude of the noise component
H0(ω) an equivalent frequency response
ωN circular frequency of the noise component
ŷS dominant component
ỹ(n) periodic component of a signal
τ time constant
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� normalized frequency of system parameter
variation

ω normalized frequency of the signal
λ1, λ2 eigenvalues
γ1, γ2 amplitudes of the oscillations excited by

variation of coefficients a1 and a2,
respectively

σ 2
X(n) deviation

s1(n), s2(n) coefficients of systems in the equivalent
representation

a(n) time-varying coefficients of the recursive
part of a difference equation

b(n)- time-varying coefficients of the
non-recursive part of a difference
equation

F a non-linearity, occurring during
multiplication operation

f frequency
g(m, n) impulse response of the recursive part
G(z) generalized transfer function of the

recursive part
h(m, n) impulse response
H(z, n)- generalized transfer function
M(n) mean value
Q quality factor
S order number of the sub-harmonic
S(ω) spectral density
u(n) signal at the output of the first system
X(ω), X(ψ) spectrum of the input signal
X(n) input discrete random process
x(n) input signal
X(z) z-transform of the input signal
Y(ω) spectrum of the output signal
Y(n) output discrete random process
y(n) output signal
Y(z, n) z-transform of the output signal
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