

COMPUTATIONAL
INTELLIGENCE I N

SOFTVVARE QUALITY
ASSURANCE

SERIES IN MACHINE PERCEPTION AND ARTIFICIAL INTELLIGENCE*

Editors: H. Bunke (Univ. Bern, Switzerland)
P. S. P. Wang (Northeastern Univ., USA)

Vol. 46: Syntactic Pattern Recognition for Seismic Oil Exploration
(K. Y. Huang)

Vol. 47: Hybrid Methods in Pattern Recognition
(Eds. H. Bunke and A. Kandel)

Vol. 48: Multimodal Interface for Human-Machine Communications
(Eds. P. C. Yuen, Y. Y. Tang and P. S. P. Wang)

Vol. 49: Neural Networks and Systolic Array Design
(Eds. D. Zhang and S. K. Pal)

Vol. 50: Empirical Evaluation Methods in Computer Vision
(Eds. H. 1. Christensen and P. J. Phillips)

Vol. 51 : Automatic Diatom Identification
(Eds. H. du Buf and M. M. Bayer)

Vol. 52: Advances in Image Processing and Understanding
A Festschrift for Thomas S. Huwang
(Eds. A. C. Bovik, C. W. Chen and D. Goldgof)

Vol. 53: Soft Computing Approach to Pattern Recognition and Image Processing
(Eds. A. Ghosh and S. K. Pal)

Vol. 54: Fundamentals of Robotics - Linking Perception to Action
(M. Xie)

Vol. 55: Web Document Analysis: Challenges and Opportunities
(Eds. A. Antonacopoulos and J. Hu)

Vol. 56: Artificial Intelligence Methods in Software Testing
(Eds. M. Last, A. Kandel and H. Bunke)

Vol. 57: Data Mining in Time Series Databases
(Eds. M. Last, A. Kandel and H. Bunke)

Vol. 58: Computational Web Intelligence: Intelligent Technology for
Web Applications
(Eds. Y. Zhang, A. Kandel, T. Y. Lin and Y. Yao)

(P. Liu and H. LI)

and the Surface Interpenetration Measure
(L. Silva, 0. R. P. Bellon and K. L. Boyer)

Theory and Applications
(0. Maimon and L. Rokach)

(A. Schenker, H. Bunke, M. Last and A. Kandel)

*For the complete list of titles in this series, please write to the Publisher.

Vol. 59: Fuzzy Neural Network Theory and Application

Vol. 60: Robust Range Image Registration Using Genetic Algorithms

Vol. 61 : Decomposition Methodology for Knowledge Discovery and Data Mining:

Vol. 62: Graph-Theoretic Techniques for Web Content Mining

COMPUTATIONAL
INTELLIGENCE IN

SOFTVVARE QUALITY
ASSURANCE

S+ Dick
University of Alberta, Canada

A+ Kandel
University of South Florida, USA

rp World Scientific
N E W JERSEY - LONDON * SINGAPORE * B E l J l N G * S H A N G H A I * HONG KONG - TAIPEI * CHENNAI

Series in Machine Perception and Artificial Intelligence - Vol.

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA ofice: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK ofice: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

COMPUTATIONAL INTELLIGENCE IN SOFTWARE QUALITY ASSURANCE
Series in Machine Perception and Artificial Intelligence - Vol. 63

Copyright 0 2005 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, orparts thereoS, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-256-172-2

Printed in Singapore by World Scientific Printers (S) Pte Lfd

Dedication

This book is dedicated to my parents and family, for their unstinting love and

support; to my friends and colleagues, for their inspiration; and most important,

to my dearest wife Ashling, the love of my life.

V

This page intentionally left blank

Acknowledgements

I would like to thank Dr. Abraham Kandel, for his support and advice over the

past several years, and Drs. Horst Bunke, Dewey Rundus, Kenneth Christensen,

Carlos Smith and Mark Last for their valuable advice. My thanks also to Dr.

Vairavan of the University of Wisconsin-Milwaukee for providing the datasets

used in Chapters 4 and 5. Last but not least, my thanks to my editor, Ian Seldrup,

for his patience and support through all the difficulties of bringing this book to

press. The writing of this book was supported in part by the Natural Sciences

and Engineering Research Council of Canada under grant nos. PGSB22263 1 -

1999 and G230000109, and in part by the National Institute for Systems Test

and Productivity at USF under the USA Space and Naval Warfare Systems

Command grant no. N00039-01-1-2248.

vii

This page intentionally left blank

Foreword

Undoubtedly, Software Engineering is concerned with the most complex
and abstract systems ever designed by humans. The rapidly growing and
widespread presence and profound complexity of software systems
brings to the picture fimdamental concepts of software quality including
such key components as reliability, portability and maintenance, just to
allude to only a few of them. Software processes and software
development are profoundly human - driven. The human factors are
omnipresent throughout the entire software development process starting
from the requirement analysis, moving to general architectural
considerations, design, implementation, and ending up with software
validation and verification. Given the two important aspects of
complexity and human centricity, modeling software processes and
software quality becomes a genuine challenge. On one hand, we envision
a broad spectrum of models and specific modeling techniques quite often
brought into Software Engineering from other disciplines (e.g., system
reliability) that dwell upon the fundamental techniques of multivariate
linear and nonlinear regression analysis. On the other hand, by being
aware of the human-based and human-centric software processes, there is
a growing interest in other alternative methodological approaches to
system modeling. One of them has emerged within the framework of
Computational Intelligence (CI). Interestingly, the models of CI exhibit a
number of features that are of paramount interest and high practical
relevance to Software Engineering. The CI-based models can be formed
on a basis of heterogeneous data (including experimental data and quite
subjective expert feedback). The CI constructs are also inherently
transparent (owing to their logic underpinnings) and highly modular. The

ix

x Computational Intelligence in Software Quality Assurance

mechanisms of evolutionary optimization coming as an integral part of
the overall CI platform are of high relevance when dealing with the
structural and parametric optimization of such models.

Being fully cognizant of the complexity of the endeavor, this research
monograph, authored by Professors Scott Dick and Abraham Kandel,
ventures into the fundamentals of software quality assurance. Here, this
very idea of software quality assurance has been challenged and
significantly augmented in the setting of Computational Intelligence. A
significant part of the book focuses on software reliability - an important
and highly visible feature of most software products. The fundamental
principles of modeling software reliability are formed in the language of
fractals instead of stochastic or probabilistic models. This offers a new
and attractive view at the essence of this software quality. The authors
put forward several quite compelling arguments and augment them by
ca;efully organized and coherent experimental evidence. The ideas of
understanding software measures (metrics) presented in the realm of
unsupervised learning, notably fuzzy clustering, are highly relevant.
Revealing the structure in software data helps shed light on possible
categories of software modules, identifying those components that might
deserve more attention and generating some recommendations as to their
stability are of vital interest to software developers, testers, and software
managers. With regard to software metrics and categories of software
modules, the authors emphasize an importance and possible implications
of heavily skewed software data and discuss various ways of dealing
with this aspect of software modeling.

The material is covered in a highly authoritative fashion and the
presentation of the key ideas is systematic, well motivated and will
appeal to any reader. While the authors managed to cover a vast and
quite unexplored territory (and with this regard the presented material is
highly informative), the reading of the book could be very much
inspiring. What are the fundamentals and practical implications of fractal
analysis of software phenomena? What would be the most beneficial
hybridization of fuzzy sets, neural networks and evolutionary
optimization when being applied to problems of software development,
reliability, maintenance, and software quality? What type of data should
we collect and how could we treat the prescriptive and descriptive facets

Foreword xi

of software modeling? The book provides the reader not only with some
useful insights but what is just as important, stimulates further
investigations and detailed pursuits in this direction.

Professors Dick and Kandel deserve our sincere appreciation and
thanks by bringing to the research community such a timely and
important volume. This monograph definitely opens new avenues,
answers intriguing questions and delivers strong experimental evidence.
Undeniably, the book will be greatly appreciated by the community of
Quantitative Software Engineering and Computational Intelligence.

Witold Pedrycz

February 8,2005

This page intentionally left blank

Preface

Software systems are at once the most complex and the least reliable
technological systems human beings construct. A large software system
can have over lo2' states, and the reliability of software is infamously
poor. Software engineers must usually make assertions about the
reliability of software systems after having observed only an
insignificant fraction of the possible states of the system. New
mechanisms and techniques for inferring the overall quality and
reliability of software systems are needed. In this book, we will describe
three investigations into the use of computational intelligence and
machine learning for software quality assurance, which lead toward such
mechanisms.

Our first contribution is the use of chaos theory for software
reliability modeling. Software reliability growth models (SRGM) are
used to gauge the current and future reliability of a software system.
Virtually all current SRGMs assume that software failures occur
randomly in time, an assumption that has never been experimentally
tested despite being criticized by a number of authors in the field. We
have used nonlinear time series analysis to ascertain whether software
reliability data from three commercial software projects come from a
stochastic process, or from a nonlinear deterministic process. Evidence
of deterministic behavior was found in these datasets, lending support to
the idea that software failures may be irregular in nature. This is a
qualitatively different form of uncertainty than randomness, one that is
best modeled using the techniques of fractal sets and chaos theory rather
than probability theory.

...
XI11

xiv Computational Intelligence in Sof iare Quality Assurance

Our second contribution is the use of fuzzy clustering and data
mining in software metrics datasets. Software metrics are measures of
source code, which are intended as a basis for software quality
improvement. Literally hundreds of metrics have been published in the
literature, but no generally applicable regression model relating metrics
and failure rates has been found. Instead of statistical regression, we use
unsupervised machine learning, in the form of the fuzzy c-means
algorithm, to analyze three collections of software metrics from
commercial systems. This investigation highlights additional challenges
for machine learning in the software metrics domain, one of which is
skewness. The most common machine learning approach to overcoming
skewness is to resample the dataset; however, this has never been
attempted in the software metrics domain. Hence, our third contribution
is the use of resampling algorithms to calibrate a decision tree to
preferentially recognize high-risk classes of modules. We consider how
the calibration process, as well as the operational decision tree, can be
woven into an iterative software development process.

This book will primarily be of interest to researchers in the areas of
computational intelligence or software engineering, and particularly
those interested in interdisciplinary research between those two fields. It
will also be suitable for use as a textbook in an advanced graduate Jass
in either field, or to practicing software engineers interested in how
computationally intelligent technologies may be used to aid their work.
The original research material in this book is supported by an extensive
review of both software engineering and computational intelligence,
covering over 300 references.

Scott Dick
Abraham Kandel

February 2005

Contents

Dedication ... v

Acknowledgements ... vii

Foreword .. ix

... Preface ... xlll

Chapter 1 : Software Engineering and Artificial Intelligence 1
1.1 Introduction .. 1
1.2 Overview of Software Engineering .. 5

1.2.2 Software Life Cycle Models ... 7
1.2.1 The Capability Maturity Model ... 6

1.2.3 Modem Software Development .. 12
1.2.3.1 Requirements Engineering 13

1.2.3.4 Design Patterns ... 20
1.2.3.5 Maintenance Cycle .. 22

1.2.3.2 Software Architecture ... 16
1.2.3.3 00 Design .. 19

1.2.4 New Directions .. 23
1.3 Artificial Intelligence in Software Engineering 26

1.4.1 Fuzzy Sets and Fuzzy Logic .. 30
1.4.2 Artificial Neural Networks .. 32
1.4.3 Genetic Algorithms ... 34
1.4.4 Fractal Sets and Chaotic Systems .. 35

1.4 Computational Intelligence ... 29

xv

xvi Computational Intelligence in Sof iare Quality Assurance

1.4.5 Combined CI Methods .. 39
1.4.6 Case Based Reasoning .. 40
1.4.7 Machine Learning ... 42
1.4.8 Data Mining .. 43

1.5 Computational Intelligence in Software Engineering 44
1.6 Remarks .. 44

Chapter 2: Software Testing and Artificial Intelligence 46
2.1 Introduction .. 46
2.2 Software Quality ... 46
2.3 Software Testing ... 52

2.3.1 White-Box Testing .. 53
2.3.2 Black-Box Testing ... 57
2.3.3 Testing Graphical User Interfaces 58

2.4 Artificial Intelligence in Software Testing 59
2.5 Computational Intelligence in Software Testing 61
2.6 Remarks .. 62

Chapter 3: Chaos Theory and Software Reliability 65
3.1 Introduction .. 65
3.2 Reliability Engineering for Software .. 71

3.2.1 Reliability Engineering ... 71
3.2.1.1 Reliability Analysis ... 72

3.2.2 Software Reliability Engineering .. 79

3.3 Nonlinear Time Series Analysis ... 87
3.3.1 Analytical Techniques ... 87

3.4.1 State Space Reconstruction ... 94
3.4.2 Test for Determinism .. 96

3.5 Remarks .. 98

3.2.1.2 Reliability Testing ... 77

3.2.3 Software Reliability Models .. 82

3.3.2 Software Reliability Data .. 93
3.4 Experimental Results .. 94

3.4.3 Dimensions .. 98

Contents xvii

Chapter 4: Data Mining and Software Metrics 107
4.1 Introduction .. 107
4.2 Review of Related Work .. 109

4.2.1 Machine Learning for Software Quality 109
4.2.2 Fuzzy Cluster Analysis .. 111
4.2.3 Feature Space Reduction ... 113

4.3 Software Change and Software Characteristic Datasets 114
4.3.1 The MIS Dataset .. 114
4.3.2 The OOSoft and ProcSoft Datasets 117

4.4 Fuzzy Cluster Analysis ... 119
4.4.1 Results for the MIS Dataset .. 119
4.4.2 Results for the ProcSoft Dataset .. 127

4.4.4 Conclusions from Fuzzy Clustering 131
4.5 Data Mining .. 133

4.5.1 The MIS Dataset .. 133
4.5.2 The OOSoft Dataset .. 135
4.5.3 The ProcSoft Dataset ... 136

4.6 Remarks .. 137

4.4.3 Results for OOSoft .. 129

Chapter 5: Skewness and Resampling .. 139
5.1 Introduction .. 139
5.2 Machine Learning in Skewed Datasets 140
5.3 Experimental Results .. 144
5.4 Proposed Usage .. 149
5.5 Remarks .. 152

Chapter 6: Conclusion ... 153

References ... 157

About the Authors ... 179

This page intentionally left blank

Chapter 1

Software Engineering and Artificial
Intelligence

1.1 Introduction

A $500 million dollar rocket self-destructs because of an arithmetic
overflow [169]. A radiation therapy machine kills patients instead of
helping them [26]. Software systems permeate every corner of modern
life, and any failure of those systems impacts us. Sometimes the effect is
trivial -just the time required to restart a program. In other cases, life,
limb or property could be in jeopardy. One of the primary goals of
software testing is to quantify the reliability of a software system, and to
ensure that the system's failure modes do not include catastrophic
consequences to people or property. As the Ariane-5 and Therac-25
incidents showed, that goal has not yet been achieved, despite the
enormous resources invested in software development. The USA
Department of Defense spends $42 billion dollars per year developing
and maintaining computer systems and only $7 billion of this goes to
hardware [30]. The problem is that software systems are so complex -
lo2' states or more in a large system [84] - that software engineers are
not currently able to test software well enough to insure its correct
operation. Exhaustive testing is obviously impossible, and to date no one
has found a way to conduct non-exhaustive testing that provides
assurance that a software system will perform as intended. The problem
we address is finding mechanisms or relationships to more accurately
determine the quality of software systems, without visiting a large
fraction of their possible states. Novel ways of using nonlinear time

1

2 Computational Intelligence in Software Quality Assurance

series analysis and data mining to model software reliability and quality
will be investigated. These investigations point the way towards using
intelligent technologies to support human developers in creating software
systems by exploiting the different forms of uncertainty present in a
software system.

For a number of years, researchers have been trying to use artificial
intelligence (AI) techniques to automate the software engineering and
testing process [I , 6, 9, 11, 31,42,49, 57, 60,75, 99, 129, 131, 173,204,
213, 219, 269, 270, 273, 281, 282, 2921. The goal is to let a computer
perform much of the repetitive work involved in creating and testing
software. A computer that can interpret a high-level description of a
problem into working software would remove fallible humans from the
business of coding, while a system that is able to choose its own test
cases can generate and run tests far faster than a human being. If the
computer also somehow understood the nature of software failures, then
it could use that information to automatically generate better test cases.
Needless to say, these goals remain elusive. However, there has been a
significant amount of work done in using A1 for various aspects of
software development and testing. Various kinds of expert systems have
been proposed to examine software metrics and help guide developers
[47, 67, 68, 93, 95, 133, 138, 139, 140, 143, 2661. A1 algorithms have
been investigated for generating test cases [89, 179, 2591. Perhaps the
most ambitious effort was the research in automatic programming, which
attempted to create an A1 system that could autonomously write new
programs [l , 9, 11, 31,75,99, 129,269,273,2921.

Of particular interest in the present study is the use of computational
intelligence in software development and testing. Computational
intelligence (CI) is the name given to a synergistic group of technologies
that exploit a tolerance for uncertainty and incomplete or imprecise data,
in order to model complex systems and support decision making in
uncertain environments. A key characteristic of CI technologies is that
they embody different, but complementary, avenues of attack for system
modeling and decision support under uncertain conditions [90]. Neural
networks, genetic algorithms, evolutionary computation, fuzzy logic,
rough sets, fractals and chaos theory, and all the various hybridizations
of these technologies fall under the rubric of computational intelligence.

Software Engineering and Artijicial Intelligence 3

Since the software development and testing environment is fraught with
incomplete and imprecise information, along with a variety of forms and
sources of uncertainty, CI technologies are excellent candidates for
modeling software processes and products. CI technologies are also
closely related to case-based reasoning, machine learning, and data
mining algorithms, all of which deal with system modeling or decision
making in real-world, uncertain environments, and which have been used
for modeling software products and processes. The largest body of work
in this area is the use of CI technologies to predict software quality from
software metrics [7, 8, 47, 67, 68, 93, 95, 133, 138, 139, 140, 141, 143,
190, 2661; there has also been significant work done in using CI
technologies for software cost estimation [22, 77, 94, 233, 2721, and in
the computationally intelligent generation of test cases [192, 193, 225,
284,2851.

We present three specific contributions towards the use of intelligent
systems in software engineering. The first contribution is in using chaos
theory for software reliability modeling. Software reliability growth
models (SRGM) are used to gauge the current and future reliability of a
software system. Virtually all current SRGM are based on stochastic
processes, and incorporate the assumption that software failures occur
randomly in time, an assumption that has never been experimentally
tested. Software failures, however, ultimately arise from mistakes in the
program’s source code, mistakes that are made by human beings. Human
mistakes in general do not appear to be random events; more specifically,
there is no probability distribution that has been shown to govern when a
programmer will make an error. Instead, the infrequent and unpredictable
occurrence of human errors seems to more closely resemble the form of
uncertainty known as irregularity. Irregularity is properly modeled by
chaos theory and fractal sets, in the same way that randomness is
properly modeled by probability theory. Accordingly, nonlinear time
series analysis is used to ascertain whether software reliability data
comes from a stochastic process, or if the data in fact arise from a
nonlinear deterministic process. Reliability growth data drawn from
three commercial software systems was examined; these datasets do
indeed exhibit the signatures of deterministic behavior, and hint at
chaotic behavior. This experimental evidence shows that nonlinear

4 Computational Intelligence in Software Quality Assurance

deterministic models are a sound alternative to stochastic processes in
software reliability growth modeling.

The second contribution is the use of fuzzy clustering and data
mining in software metrics datasets. Software metrics are measures of
source code, which are intended as a basis for software quality
improvement. Literally hundreds of metrics have been published in the
literature, each of which quantifies some aspect of a program. These
metrics do seem to be related to the number of failures a module will
suffer, in that the correlation between metrics and failure rates is quite
strong. However, no one has discovered a generally applicable regression
model relating metrics and failure rates. Thus, while a relationship
clearly exists between software metrics and quality, no one knows
precisely what this relationship is. As an alternative to statistical
regression, some authors have investigated the use of machine learning
and data mining to search for relationships between software metrics and
software quality. In general, the techniques that have been used are
supervised learning algorithms such as neural networks or decision trees.
However, unsupervised learning actually appears to be a better fit to the
software engineering process than supervised learning. Accordingly, the
fuzzy c-means clustering algorithm was employed to explore three
datasets of software metrics in a fuzzy cluster analysis. These datasets
were collected from commercial software systems in the late ‘80s and
early ‘90s. This cluster analysis is the first time that the fuzzy c-means
algorithm has been applied to software metrics data, and revealed
additional characteristics of this application domain that pose a special
challenge for machine learning algorithms.

One of the challenges we highlight for machine learning in software
metrics is skewness. In general, any collection of software metrics will
be skewed towards modules with low metric values and low failure rates.
Skewness has a deleterious effect on machine learning, because machine
learning algorithms will try to optimize a global perfonnance measure
over an entire dataset. A minority class will thus receive less attention,
and the machine learner will be less capable of recognizing minority
class examples. This is a common problem in machine learning, and it is
solved by resampling the dataset, in order to homogenize the class
distribution, Resampling has not previously been investigated in the

Software Engineering and Artijicial Intelligence 5

software metrics domain; the only attempt to deal with skewness was the
use of differing misclassification penalties in a decision tree [139]. Our
third contribution is an investigation of resampling as a way to focus a
machine learner’s attention on modules that pose a high development
risk. Undersampling was used to thin out the majority classes from the
three metrics datasets, along with oversampling to build up the minority
classes. In this manner, a decision tree classifier was trained to
preferentially recognize high-risk modules in the three datasets, even
though these are a minority of the overall dataset. This research could be
used in an iterative software engineering process to create an automated
filter that recognizes potentially troublesome modules. This filter would
be a significant improvement over existing systems because a calibrated
decision tree will reflect the context of a specific project, rather than
being a generic set of rules with little relevance to the current project.

In the remainder of this chapter, key concepts from the existing
literature on software engineering, AI, and Computational Intelligence
are reviewed. This review continues in Chapter 2, where the focus is on
software testing and how it can be enhanced through the use of A1 and
Computational Intelligence. The software reliability investigation is
presented in Chapter 3, and the fuzzy clustering experiments in Chapter
4. Chapter 5 is devoted to an investigation of how resampling might be
used in software engineering datasets; the chapter closes with a
discussion of how Computational Intelligence might be directly used in a
software development process. We conclude with a summary of our
contributions and a discussion of hture work in Chapter 6.

1.2 Overview of Software Engineering

Software engineering is at once similar to all other engineering
disciplines, and radically different from any of them. It is similar in that a
complex artifact must be created by a developer in order to meet the
needs of a client; it is different in that the end product is not a physical
construct, but a logical one. Software systems have a life cycle like any
other engineering artifact; they are conceived, designed, built, and
operated, but they do not age or wear out. An unaltered piece of software

6 Computational Intelligence in Sofiware Quality Assurance

remains exactly as capable of fulfilling its original mission, in its original
environment, even thirty or forty years later as it was the day it was
installed. Software undergoes design changes and maintenance like any
other system; however, due to its logical nature, software seems absurdly
easy to change. There is a huge temptation to add features and perform
wholesale alterations, because they seem so effortless. The price is that
bugs will be added as well, ultimately degrading the quality of the whole
software system.

1.2.1 The Capability Maturity Model

Clearly, there must be some organized process for creating software.
The task of creating software is hugely complex; the work of literally
hundreds or thousands of programmers must coordinate to produce a
large software system, and each one of those programmers must play
some small creative role in developing the system. Even junior
programmers assigned to code a thoroughly planned design contribute
the creativity of their own implementation strategy. Moreover, each
project is unique, and an organization’s development process must be
tailored to the particular software system under construction [232]. Thus,
a natural starting point for a review of software engineering is to look at
how organizations can establish and improve their own software
development process - whatever it may be ~ in the context of the
Capability Maturity Model.

The Software Engineering Institute at Carnegie-Mellon University
developed the Capability Maturity Model (CMM), which rates how
effective an organization is at the software development task and helps
guide organizations to improve their processes [227]. The CMM begins
by rating organizations as belonging to one of five categories: initial,
repeatable, defined, managed and optimizing. Organizations at the
initial level have no project management structure at all. All
development projects use an ad-hoc organization, and any successes are
the result of individual heroics. Organizations at the repeatable level
employ a basic project management structure that at least tracks software
cost, function, and schedule, permitting earlier success on similar
projects to be repeated. Those at the deJined level have a complete

Sof iare Engineering and Artijicial Intelligence 7

project management and project engineering framework in place. Each
development project uses these frameworks, customized as necessary.
Managed organizations employ a basic quality-control scheme. Software
quality is measured at various points in the development cycle, and any
flaws thus uncovered are corrected. Finally, the optimizing organizations
are continually measuring and improving their development processes,
while exploring the opportunities offered by novel technologies. A 2001
self-assessment survey attempted to gauge how mature the overall
software industry is. More than a quarter of the organizations surveyed
(27.1%) reported that they were at the initial level. The largest group,
39.1%, was at the repeatable level, and 23.4% felt that they had reached
the de$ned level. Only 10.4% reported that they believed they were at
the managed or optimizing levels [34].

Besides simply ranking organizations, the CMM provides guidance
on how organizations can improve. At each level, the CMM identifies a
set of core competencies, and these competencies represent a path to
organizational improvement. Successive CMM levels lead organizations
through a learning process that, hopefully, results in the organization
being an efficient, effective software development group. One point of
particular significance is that the CMM is designed to be a step-by-step
guide for improving over time; an organization does not become a
CMM-optimizing development group by simply throwing the specified
tasks into their development process. The different stages of the CMM
are designed to enhance organizational discipline, not to be a checklist
[227]. The CMM is a high-level description of how organizations can
improve their software processes, with the implication being that this
will lead to improved software products. Our focus, however, is
analyzing and improving software products, the actual deliverables for a
client. Accordingly, the development of software products, rather than
the refinement of processes, is the focus of the remainder of this review.

1.2.2 Software Life Cycle Models

Software systems are conceived, built, operated, and finally replaced
when they are no longer useful. However, no one is yet certain what the
exact life cycle of a software system should be. The first widely accepted

8 Computational Intelligence in Software Quality Assurance

proposal was the waterfall model [254], which is the typical life cycle of
other engineering products, adapted for the use of software developers
(see Fig. 1.1). The waterfall model, an expansion of the staged model
[17], describes the evolution of a software system from the initial
collection of user requirements through the retirement of the system, as
shown in Figure 1.1. This particular version involves eight phases, all of
which are essential to any software life cycle: a feasibility study,
requirements specification, design, implementation, testing, installation
& acceptance, operation & maintenance, and finally retirement.

I I

Figure 1.1 : Waterfall Life-Cycle [232]

The first step in a software development project under the waterfall
model is to determine whether continuing the project at all is a useful

Software Engineering and ArtiJcial Intelligence 9

idea. The developers have to decide if they can deliver the software
product on time and on budget. A two-person shop, for instance, should
not take on the next upgrade of the SolarisTM operating system.
Assuming that the project is feasible, the actual work of producing a
software system begins with the collection of user requirements. Once a
complete picture of the user’s needs has been formed, the requirements
will usually be formalized as a requirements specification. This is the
definitive statement of what the software will do, and all subsequent
work is directed towards fulfilling the specification. A software
architecture and detailed design are worked out during the design stage,
and then translated into working computer code in the implementation
stage. The completed system is then tested, and upon passing its tests, is
released to the end users, who must install it and perform any acceptance
tests. The system then enters regular service. Over time, bugs will be
corrected and new capabilities added to the software; these are
considered maintenance activities. Finally, the software will be retired
when it becomes more economical to purchase a new software system of
superior functionality [40,232].

The waterfall model as used today incorporates the ability to
backtrack by one stage in order to fix a flaw in the system under
development. That, however, is the limit to which the waterfall model
can support incremental development. Thirty years’ worth of industry
experience now shows that this waterfall model is seriously flawed, and
that incremental or evolutionary life cycles are far more appropriate for
software development [232]. However, it is interesting to note that the
seminal papers on the waterfall model [254], and the SAGE development
model that preceded it [17], both described the development of a pilot
system as an essential activity (the fact that the SAGE system used a
pilot system was discussed in a forward to the ICSE’87 reprint). The
waterfall model, as it is employed today, does not incorporate the
development of a pilot system, and few developers attempt them.

The prototyping [1601, evolutionary [4 11 and incremental
development lifecycles [232] were developed to more closely match the
reality of software development. The evolutionary model is a high-level
analysis of changes that occur during the lifetime of a software system.
The emphasis is on a view of software evolution as a complex feedback

10 Computational Intelligence in Software Quality Assurance

loop with significant nonlinearities and delays. The prototyping and
incremental lifecycles are iterative in nature; each version of the system
becomes the basis for the next, with a relatively short turnaround time.
The incremental development model is depicted in Figure 1.2.

Figure 1.2: Incremental Life-Cycle [232]

The Fountain model [239] was proposed for software systems that
have a strongly iterative life cycle. As its name implies, the basic
metaphor of the fountain is used, in which water is shot out of a nozzle,
and then falls back into a pool. In the fountain model (Figure 1.3), the
project rises through the different phases of software development, often
falling back one or more phases. Finally, when the project is complete, it
exits the fountain into the operation and maintenance phase. As with
other iterative models, the main criticism leveled at the Fountain model
is that it does not support clear tracking of project milestones, thus
making project scheduling difficult [239].

Software Engineering and Artijicial Intelligence 11

Feasibility &
Requirements

Figure 1.3: Fountain Life-Cycle [239]

The Spiral model proposed by Boehm [23] combines the strengths of
both the waterfall and incremental life cycles. The Spiral model is
iterative, with the transition between each iteration controlled by a
formal risk assessment. In this model, the emphasis is on controlling
system risks by identifying and mitigating them. A cycle begins by
determining what alternatives are available, including in-house
development or commercial off-the-shelf software. A risk analysis is
conducted, and prototypes developed. The current iteration of the system

12 Computational Intelligence in Sojiiare Quality Assurance

is then designed, implemented, and tested, and then planning begins
for the next cycle. The Spiral model is depicted in Figure 1.4.

Figure 1.4: Spiral Life-Cycle [23]

1.2.3 Modern Software Development

In the past thirty years, software engineering as a profession has
undergone several revolutionary changes, as engineers have sought “the
right way” to create reliable, useful software systems. The days when a
single engineer could write his own operating system or applications are
long since gone; they passed away in the 1950s, when computers became
powerful enough to run large-scale programs (of which SAGE was an
early example [17]). Since that time, the technology deployed to assist
human software developers has been critically important. The invention
of the automatic compiler, taken for granted today, is a dramatic
example. In 1956 the SAGE team had to build their own compiler; today,
building a compiler is a standard term project for computer science

Sof iare Engineering and Artijicial Intelligence 13

students. Other technologies have not stood the test of time; structured
development, data-oriented design and information engineering were
widely hailed in their time as mechanisms to improve software quality,
just as object-oriented programming is today [40]. There are already
competing technologies, such as aspect-oriented programming [1971,
seeking to displace or significantly alter the object-oriented model. In
this section, some modern methods in software engineering are reviewed,
including requirements engineering, software architectures, object-
oriented design, design patterns, and the conduct of software
maintenance.

1.2.3.1 Requirements Engineering

A professional software engineer is an expert in transforming a stated
set of requirements into a working software system. A software engineer
is most emphatically not an expert in virtually any of the application
domains he or she will be called on to design software systems for.
Likewise, the clients (or their experts) are well schooled in the
application domain, but generally have no experience in developing
large-scale software systems. The gap between software expertise and
domain expertise can manifest itself in subtle ways, and can be very,
very dangerous [6]. For this reason, a complete and consistent set of
requirements is a vital part of every software development project. These
requirements must completely cover the functional, behavioral and non-
behavioral aspects of a software system. Functional aspects include all
the required operations that the software is expected to perform, or
services it is expected to provide. Behavioral aspects include all of the
sequencing and possible overlapping of system functions - essentially
the flow of control within the software system. Finally, non-behavioral
aspects of software are those attributes that do not belong to the previous
two categories, such as reliability, usability, scalability, etc. [232]

Requirements engineering is the name given to a structured,
exhaustive elicitation of requirements for a software system, and it is a
vital part (perhaps the most vital part) of a software project. The
principle products of a requirements engineering activity arc a software
requirements specification and a quality assurance plan. A software

14 Computational Intelligence in Sofnyare Quality Assurance

requirements specification describes the functional, behavioral and non-
behavioral attributes of a system, and also provides a context for the
project. The USA Department of Defense also requires traceability for all
requirements (DOD standard DI-MCCR-80025A), which means that
each requirement in the specification can be mapped back to a specific
user need. The quality assurance plan specifies the quality criteria, how
they are to be tested, cost constraints, and the system acceptance criteria
[232]. In the remainder of this section, only the generation of a software
requirements specification will be discussed.

Requirements engineering begins by determining the context of a
software system: its environment, the items it is expected to help
produce, the principal functions of the software system, and the system’s
modes of operation. From this context, we determine the system
functionality, external interfaces, performance requirements, constraints,
and required attributes, which form the core of the software requirements
specification (see Figure 1.5). With these global considerations in place,
we can proceed to analyze specific requirements. As a minimum, every
input to the system and every system output (the observable behavior)
must be described, along with the non-behavioral attributes of the
system. There are a number of ways to specify the observable behavior
of a system; object-oriented analysis, Jackson System Development,
finite state machines and Petri nets are just a few [232]. Formal
specification methods are one important class of techniques for
specifling observable behavior; we will discuss these next.

Formal specifications provide a mathematically sound basis for
program development. They are rigorous mathematical descriptions of
system behavior, and are the basis for a proof of program correctness.
They are essential tools in safety-critical systems, because only a
mathematical proof of correctness can insure that there will not be a
dangerous or catastrophic system failure. Formal specifications are now
widely used even in systems that are not safety-critical, in order to meet
IS0 9000 certification criteria. Some of the formal methods used in the
software industry include Petri nets, the Vienna Development Method,
Z notation, and the Cleanroom Black Box method.

Software Engineering and Artificial Intelligence 15

Functionality
-Required hnctionality
-System states
*SRS objects

External Interfaces
*Environment
-People
*System hardware
*Other hardware
=Other software Constraints

, *Quality standards
Coding language
*Resource limits

SRS Items of

Performance *Budget
-Speed
-Availability
*Response time

Attributes *Recovery time
*Portability
*Traceability
*Maintainability
*Reliability
-Security

Figure 1.5: Software Requirements Specification lssues [232]

Petri nets are one of the oldest formal specification methods currently
in use [232]. They are used to model concurrent systems and systems
that involve asynchronous communication. A Petri net is a form of finite
state machine in which a number of state transitions can take place
concurrently. Each transition is associated with input and output storage
locations (places), and there are a number of tokens circulating within the
net. All transitions fire at the same time; a transition can fire if and only
if each input place for that transition is holding a token. When a
transition fires, a token is removed from each input place associated with
that transition, and one is added to each output place for that transition.
Petri nets can be analyzed for several properties, such as liveness, safety,

16 Computational Intelligence in Software Quality Assurance

boundedness, and reachability [232]. An introduction to Petri nets may
be found in [234].

The Vienna Development Method (VDM) [21] was created at IBM's
Vienna Laboratory. In VDM, all modules in a program are treated as
mathematical functions mapping inputs to outputs. A VDM specification
requires that all assumptions about input arguments (preconditions) and
results (postconditions) be formally described in mathematical notation.
The most important aspect of a VDM specification is the proof
obligation, which is a relation or set of relations that must hold between
inputs and results. An implementation of a module must be shown to
satisfy the proof obligation in its specifications [232]. More on VDM
specifications may be found in [1201.

Z specifications are built up of schemas, which are a structured
description of both the static and dynamic features of a process. The
static features of a process are its inputs, outputs, and the function
prototype of any operations that the process needs to carry out, which are
represented as declarations. The dynamic features of a process are
represented by preconditions and postconditions, using the operations of
elementary set theory as well as input and output operators. See [271] for
further reading [232]. Finally, the Cleanroom Black Box method treats a
module as a black box, and simply specifies the module's response to
inputs, providing that a given set of constraints is satisfied. The dynamics
of the module are represented via production rules [232].

1.2.3.2 Software Architecture

The term software architecture refers to the global structuring of a
software system. It is a definition of how the overall system will operate,
rather than a detailed module design. According to the IBM Systems
Journal, "the term architecture is used., . to describe the attributes of a
system as seen by the programmer, i.e., the conceptual structure and
functional behavior, as distinct from the organization of the data flow
and controls, the logical design, and the physical implementation," [232].
Brooks has cited architectural integrity as a key component of software
quality [29], and Goel identified the breakdown of architectural integrity

S o f i a r e Engineering and Artificial Intelligence 17

through maintenance errors as the principal cause of “aging” in software
systems [87].

An architecture should be flexible, extensible, portable and reusable.
A flexible architecture is one that permits changes with minimal
disruption, and allows external interfaces and timing constraints to
change easily. Extensible architectures allow new functionality to be
added without the need for extensive changes, such as when adding
additional devices to a bus. A portable system runs on different platforms
without significant change. A system that can be compiled and run on
both Microsoft WindowsTM and Sun Microsystems’ SolarisTM, for
instance, is portable between those two platforms. The Java language and
the ANSI C standard were created to ensure that programs only had to be
written once, and could then be recompiled for any desired target
machine. Reusability is a software characteristic that is supported by an
architectural design. A software component is reusable if it can be
removed from the application it was written for, inserted into another,
and still perform its original task [232].

There are several architectural styles in wide use in software
engineering. Each style has application areas it is particularly well suited
for. The data flow, call & return, independent process, virtual machine
and repository architectures can be employed in a wide variety of
application domains. There are also domain-specific architectures, which
are not so useful outside of their original application domain.
Architectural choices are extremely important; the software architecture
is one of the main constraints on software evolution [1601.

Data flow architectures operate on some continuous stream of input
data. The system accepts an input, processes it, outputs a result, and
immediately moves on to the next input. Batch job control systems are an
early example of this architecture, as are process controllers and
cryptographic systems. Process controllers are used in plants to
automatically regulate some process (chemical reaction, manufacturing,
etc). They are placed in a feedback loop with the plant, and regulate the
plant according to a specified control law. Cryptographic systems take a
stream of ordinary text, and encrypt it so that it is unreadable. This
ciphertext is then sent to a recipient, who alone can decrypt the
ciphertext stream back into plaintext [232].

18 Computational Intelligence in Sof lare Quality Assurance

The call & return architecture will be the most familiar to a beginning
programmer. Call & return architectures arrange components in a driver-
worker relationship, such as a C main program and worker hnctions.
Object-oriented architectures, layered architectures, and any other
architecture that uses a master-slave relationship among its components
are considered call & return systems [232].

Independent process architectures are software systems composed of
autonomous processes, which may or may not communicate with each
other. Distributed and parallel systems are good examples of this kind of
architecture. The communicating process model [1071 specifies that
processes communicate through ports, over unidirectional channels. The
pattern of channels between processes can be manipulated to provide any
desired configuration, each of which is its own architecture. Agent
architectures are another form of independent process architecture, one
that is receiving considerable attention today. An agent is a persistent,
autonomous software entity that exists for a specific purpose. An agent
has its own input/output ports, memory, and processing capabilities.
These are enormously varied, since agents perform a number of tasks.
One of the more popularized types of agent architecture is the intelligent
agent, which will directly interact with a user in its input and output
channels [232].

A virtual machine architecture is, in essence, a simulator. The idea is
to present user programs with a specific target machine architecture,
independently of the processor the software actually runs on. This is a
step beyond portability; instead of simply enforcing a standard language
that can be recompiled for a target system, a virtual machine allows
programs to run without any changes or recompilation. The best-known
virtual machine today is probably the Java Virtual Machine (JVM),
which simulates a processor who native assembly language is Java [1681.
Other examples include the Adaptive Intelligent System architecture
[loo].

Repository architectures are another enormously important
architectural style. This type of architecture includes database systems,
along with reuse libraries, hypertext systems such as the World Wide
Web, archival systems and blackboards. Database systems in particular
are widely deployed in a variety of industries, and are the focus of

Software Engineering and Artificial Intelligence 19

almost every corporate Information Technology department. Repository
architectures consist of a data store, a central record of the system state,
and independent components implementing the functionality of the
system. These independent components will normally access the data
store and update the central state information in the course of their
activities [232].

1.2.3.3 00 Design

The procedure-oriented design paradigm is essentially structured
programming, combined with either top-down or bottom-up
decomposition of a system into modules [48]. One problem with this
design paradigm is that it appears to reach its limits in program with
more than 100,000 lines of source code [211]. Procedural systems larger
than this approximate value seem to be much less reliable. Object-
oriented systems can be much larger than procedure-oriented systems,
without encountering the same drop-off in reliability at 100,000 lines of
code that seems to affect procedural systems [211].

Object-oriented design is based on the principles of encapsulation,
inheritance, and polymorphism. Encapsulation means that data, and the
operations on it, are treated as a single, indivisible unit, known as an
object. The operations and data within an object are collectively known
as the attributes of that object, while the operations by themselves are
known as methods. The data within an object can only be accessed by
using that object’s methods. This supports the design principle of
information hiding, which asserts that users of a program unit should
only have access to the external interface of that unit, and not its internal
data and organization [2 1 1, 2751.

Inheritance is the ability of one object to incorporate the structure of
another object, plus its own additions. This is a key element of every
object-oriented program, and it allows the designers to create a
conceptually integrated application. Inheritance is a major technique for
representing knowledge; it is used in the A1 knowledge representation
schemes known as frames and semantic networks, which strongly
influenced the development of object-oriented design [125, 2561. Thus,
by using inheritance, designers represent their knowledge of an

20 Computational Intelligence in Sojiiare Quality Assurance

application in the design of a program. One object is said to be a
specialization of another if the first contains all the attributes of the
second, plus additional attributes of its own. One common refinement is
to define classes of objects, which are templates for actual objects.
Objects are then instances of some class, and inheritance is defined by
specializations amongst classes rather than individual objects [211, 2741.

Polymorphism is the idea of using a single name to represent
logically similar operations, in much the same way that the ‘+’ sign is
used for both integer and floating-point multiplication in C. Polymorphic
operations are mapped to the correct method by examining the signature
of the operator call. Two logically similar methods might share the same
name, but the exact parameters to be passed will not be the same. This
allows the computer’s run-time system to differentiate between calls to
these two methods [211,274].

An object-oriented design is usually a web of classes and sub-classes.
In some languages, the inheritance relationships form a simple tree
structure; a class may inherit the attributes of only one other class. In
other languages, classes may inherit the attributes of more than one class.
This is called multiple inheritance, and it seems to be out of vogue in the
object-oriented design community. The C++ language supports multiple
inheritance; the newer Java language does not [211, 2741. Objects in the
program (which are the only entities that have storage allocated to them)
communicate via message passing. A message is a call from one object
to a method in a different object. These calls may be to polymorphic
methods, or to non-polymorphic methods. In essence, an object-oriented
program is ideally a group of objects that interact in order to accomplish
some task [211].

1.2.3.4 Design Patterns

Design patterns are a formal mechanism for communicating software
designs. They are prose text, not code, and thus cannot be used directly
as building blocks of a system. They are applicable to any software
system, rather than being restricted to a design paradigm such as 00
design. There is, however, great excitement about the use and re-use of
patterns for design problems, particularly within the 00 community.

Software Engineering and Artijicial Intelligence 21

Patterns describe a problem, the context in which that problem occurs, a
solution to that problem, and any tradeoffs involved in using that
solution. A number of case studies have shown that using patterns
facilitates communication between designers and encourages the re-use
of proven solutions for a given problem [15, 2411. There have been
workshops on design patterns at OOPSLA, a major conference on object-
oriented technologies, since 199 1, and a separate conference on design
patterns (Pattern Languages of Programming) has been running since
1994 [15].

The heart of the design patterns movement is a standard template for
describing a pattern. The different sections provide a standard structure
that conveys all the information required to determine if a pattern is
appropriate for use in a given problem. The template for a pattern is [32]:

Name: A descriptive name for the pattern
Intent: A rationale for, and description of the problem solved by, the

Also Known As: Any other aliases for this pattern
Motivation: An illustrative example of how the pattern should be used
Applicability: The problem domain and situations in which the pattern

Structure: A graphical representation of the class hierarchy in the pattern
Participants: What classes and objects are used in the pattern, and what

Collaborations: A description of how the participants interact to

Consequences: The tradeoffs that must be made and the expected results

Implementation: Any particular implementation details that a user should

Sample Code: Code fragments that provide hints on implementation

Known Uses: Real-world examples that use this pattern
Related Patterns: Cross-reference to related patterns, hints on which

pattern

should be used

their roles are

accomplish the goals of the pattern

of using the pattern

be aware of

issues

patterns should be used with this one

Patterns are not encapsulated solutions. A programmer using a pattern
must map the classes and objects discussed in the pattern to the entities

22 Computational Intelligence in Software Quality Assurance

in their own program, which can be a difficult undertaking. Some
automated tool support is described in [32] and [79], while links to a
variety of pattern libraries may be found at [1041, the homepage of the
Hillside Group (an association of researchers interested in design
patterns).

1.2.3.5 Maintenance Cycle

Most of a software system’s lifetime will be spent in operation and
undergoing maintenance. Software maintenance consists of changing the
source code of a software system, usually for one of three reasons:
system correction, system adaptation, and system perfection. System
correction activities are undertaken when software errors arc uncovered
or failures occur, and consist of repairing the fault(s) responsible. One
example is the patch released by Microsoft in August 2002 to correct a
security flaw in Internet Explorer [1941. System adaptation activities are
responses to changes in the operating environment of the software, which
necessitate software changes. One might argue that fixing the Year 2000
bug was an adaptive, rather than corrective, maintenance task, as the
software in question never included successful interpretation of 2 lSt-
century dates in its original specification. Finally, perfective maintenance
is a catch-all term for the various changes to a software system required
to meet the evolving needs of its users [232].

Software maintenance is basically a cyclic process, consisting of the
eight stages shown in Figure 1.6. A change cycle begins with a change
request, which is analyzed for required costs and resources and its
expected impact. The change will be added to a list of changes to be
implemented in the next release of the software system in the scheduling
phase. The scheduled changes are implemented and tested, and then the
existing user documentation is updated. There is a release or beta-testing
phase before the changed system goes operational, and then the cycle
begins again [232]. This is the point in the software’s life cycle where the
oft-stated assumption of software “immortality” breaks down. Software
maintenance personnel arc usually different from the original
development team, and so do not have as deep an understanding of the
software system. They will make errors, which over time will erode the

Sof iare Engineering and Artijicial Intelligence 23

software system’s reliability. This is a peculiar form of aging; no
physical decay occurs, just the slow breakdown of the system’s
conceptual integrity [871.

Figure 1.6: Maintenance Cycle [232]

1.2.4 New Directions

The field of software engineering is a dynamic, fertile area of
research and development. In this section, some of the more recent trends
are summarized, including aspect-oriented programming, open-source
development, and agile development methods.

Aspect-oriented programming is a recent innovation in programming
language design. Object-oriented programs often contain routines that
are used by several different object classes. In the old procedure-oriented
languages, these routines would simply be child modules called by
different parent modules. However, object-oriented languages do not

24 Computational Intelligence in Sofhvare Quality Assurance

make any provision for common routines between different classes of
objects. Thus, in object-oriented languages, numerous copies of the same
routine must be included as methods for different classes. If there is a
later need to change these routines, the separate instances must be found
and individually changed. Aspects are extensions to 00 languages that
centralize these multiple routines into one location. An aspect cuts across
object boundaries, and thus represents a breaking of the modularity
concepts that 00 programming is based on; however, the proponents of
aspect-oriented programming claim that aspects simply represent a
different form of modularity.

Aspects are implemented by a language pre-processor. Points in an
object where an aspect is required are tagged by the programmer, and the
aspect is written separately. At compile time, the aspect will be inserted
by the pre-processor, and then the entire program will be compiled as
usual, along with the separate aspect code. There are several ongoing
research projects in aspect-oriented programming, such as the
AP/Demeter project at Northeastern University [1641, the AspectJ
language developed at Xerox PARC (now Palo Alto Research Center,
Inc.) [224], and the MDSOC project at IBM [113].

Open-source development has become a significant force in the
software engineering community. Open-source software is developed
largely over the Internet. A core team of developers produces a product,
and then places the source code into the public domain, protected by
special licensing agreements. These agreements protect the ownership
rights of the original code developers, but also permit others to
download, read, modify and even redistribute the source code (provided
the original copyright notices are not removed). The original source
code, stored in a central repository, can only be modified with the
approval of the core development team [221]. Thus, for instance, the
Linux kernel (including all versions and patches) is archived at [137].
Anyone can download, modify and redistribute the source code.
However, any changes to the official kernel have to be approved by
Linus Torvalds and his team.

The open-source community is in large measure a backlash against
commercial software vendors, who keep their source code proprietary.
Open-source adherents claim two major advantages: first is that the code

Software Engineering and Artificial Intelligence 25

they produce is of superior quality, because more eyes are looking at
each piece of code. The work products of the open-source community do
seem to back up this claim; both the Linux operating system [137] and
the Apache web server [5] enjoy good reputations for reliability. Apache,
in fact, has a majority of the world-wide web server market [5], [201].
The second major claim of the open-source community is “freedom,”
that open-source development is in some way morally superior to
proprietary development. This point of view is strongly espoused by the
Open Source Initiative [22 I], the Free Software Foundation [83], and
others. We attempt no analysis of this claim; issues of copyright
ownership and freedom of information are far outside the scope of this
study.

Agile development methods, including Extreme Programming (XP),
are development techniques that put a premium on the development of
code and minimize the organizational and proj ect-management overhead.
The ideas of agile development were summarized in February 2001 in
the Manifesto for Agile Software Development [161. The Manifesto
declares that developers should emphasize:

0

0

0

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Agile methods place a premium on iterative development procedures
such as rapid prototyping, on close customer involvement, and on rapid
response to changing requirements [1051. However, the most critical part
of an agile development methodology is the quality of the programming
team itself. Individual competency and talent are key factors for success
in agile development projects [39]. This leads immediately to a
fundamental criticism of agile methods: “There are only so many Kent
Becks in the world to lead the team” [24]. Boehm views agile methods as
part of a continuum of process models, ranging from completely ad-hoc
arrangements to the tightest level of control, and indicates that agile
methods are best suited to projects whose requirements undergo rapid
change [24].

26 Computational Intelligence in Sofmare Qua& Assurance

1.3 Artificial Intelligence in Software Engineering

If software engineering is fundamentally a learning process for the
developers of a system, as argued in [29], then it only makes sense to use
artificial intelligence to support human developers. Powerful A1 tools for
knowledge representation and reasoning are available, and can be useful
for software development. Organizing and utilizing knowledge are
critical tasks for any software project; as pointed out in [6], a software
project typically involves the services of both domain experts and
software experts. Domain experts possess extensive knowledge of the
task a new software system will be asked to perform; in general, they
will not have a detailed understanding of software development.
Likewise, the software experts will have an extensive knowledge of how
to design and implement software systems, but may have little to no
experience in the application domain. The gap between these two pools
of experience is a significant risk for any software system. Some authors
(such as [42, 2701) have commented on an apparent hostility between the
A1 and software engineering communities; they ascribe this hostility to
mutual misunderstanding and the fact that the two communities work on
fundamentally similar problems. Given the essential role knowledge
representation plays in both communities, this hostility is hopefully more
appearance than reality.

There are currently three major thrusts in using artificial intelligence
in software engineering: automatic programming, software reuse, and
process modeling. Of these, automatic programming is far and away the
oldest. In the 1960’s, automatic programming meant the automatic
generation of a machine readable program from a high-level description
of that program. This goal was achieved with the development of
automatic compilers. Automatic programming today means generating a
machine-readable program from a high-level or natural language
description of the problem to be solved [9, 2041. Software reuse is
currently a significant research focus (especially for component-based
software systems [14]), and process modeling encompasses a variety of
tasks from cost estimation through creating a knowledge base to retain
the developers’ understanding of the software system.

Software Engineering and ArtiJicial Intelligence 27

Automatic programming is the “holy grail” for A1 research in the
software engineering domain. An automatic programming system, as
envisioned by the A1 community, would accept a set of specifications at
a very high level of abstraction (even natural language), and would
successively transform them into more detailed representations, arriving
finally at compiled code. This would entirely remove humans from the
business of coding large systems, an area in which human software
engineers simply do not seem to be very effective. Maintenance would
also be simplified; a change to the high-level system description would
automatically be transformed into a new implementation of the system
[9]. This goal remains elusive. A few automatic programming systems
have been implemented; the REFINE tool, based on research at the
Kestrel Institute [269], was a commercial automatic programming system
marketed by Reasoning Systems, Inc., and the Programmer’s Assistant
project at MIT released their demonstration system KBEmacs more than
15 years ago [292]. However, neither system has been a commercial
success. Other approaches include developing a system of correctness-
preserving transforms to translate specifications into code [9, 751, using
domain knowledge to interactively develop specifications [1 11, creating
models to design and test formal requirements [3 11, and developing rule-
based systems to help a programmer select the most appropriate UNIX
utility [99]. There are also projects that try to develop automatic
designers, based on experimental observations of human designers [1,
129, 2731.

Reusability is a hot research topic in software engineering, because of
the tremendous savings that could be realized if reusable components
were widely available. A reusable component is a software artifact which
can be removed from its original context, stored in a library, and inserted
into a new program, thus saving the effort to develop that component
from scratch. Not all software artifacts are reusable; in fact, reuse has to
be designed into a component from the beginning [282]. The patterns
community represents one attempt to promote reuse of design ideas;
component libraries represent another. A component library is a
collection of software components that have been designed and certified
for reuse. In using a component library, the starting point is to develop a
specification for a component that is to be inserted into a program. Next,

28 Computational Intelligence in Software Quality Assurance

a set of candidate components must be identified from the library, and
each candidate must be evaluated for its suitability. Ultimately, one
candidate is selected as being the best. Assuming that this candidate is
reasonably close to the desired specification (otherwise the component
will just be written from scratch), it will be modified as needed and then
integrated into the program. Finally, the total experience of using this
component will be recorded, and this information inserted into the
component library’s experience base for future reference [141. The
library’s experience base contains a wealth of information in support of
the software components in the library, and is vital to the successful use
of the library (in fact, [14] considers the experience base to be the
library, while source code is just one of many documents stored for each
component). An experience based can be organized as a case-based
reasoning system [281], as a more general analogical reasoning system
[282], or as an expert system [2]. Some A1 process models also
incorporate software reuse [14,219].

Software process models and support systems are used to organize a
development project. The Capability Maturity Model discussed earlier
requires that organizations develop an overall software engineering
process, and then tailor that process to the particular needs of each
project. However, the CMM does not provide a constructive mechanism
for actually tailoring a process to a project. That is where process models
come into play, and particularly A1 process models. Process models
support developers by rationalizing and improving communication,
providing detailed reasoning about different features of the process,
providing guidance to developers, automating certain process steps, and
providing a mechanism for process improvement [49]. A1 process models
accomplish these tasks by using knowledge representation schemes as in
[49], creating expert systems for software costing [60], or using the Goal-
Question-Metric technique [14,2 191.

There are a number of other proposals for using A1 technology in
software engineering, which do not conveniently fit into a specific
category. One suggestion, found in [213], is to use communities of
agents as the basic building block of software systems. Some of the
benefits claimed include better fault tolerance and an explicit description
of exception conditions. An automatic theorem prover is used in [13 11 to

Sofiare Engineering and Artificial Intelligence 29

check for incomplete specifications, and to generate test cases for
systems that have complete specifications. A1 support for iterative
development and rapid prototyping is described in [57] and [173]; the
idea is that since A1 systems are developed through exploratory
programming, the tools for A1 development would be very useful for
generating system prototypes in a general software engineering project.
There are also a number of computationally intelligent approaches for
supporting software engineers. Computational Intelligence and
computationally intelligent approaches to software engineering are
reviewed in the next two sections.

1.4 Computational Intelligence

Computational Intelligence (CI) is a term coined in 1994 to describe
several synergistic intelligent technologies that are effective in modeling
systems, processes and decision making under uncertain conditions with
incomplete and/or imprecise information [90]. According to Bezdek, ' I . . .a
system is computationally intelligent when it: deals only with numerical
(low-level) data, has a pattern recognition component, and does not use
knowledge in the A1 sense; and additionally when it (begins to) exhibit
(i) computational adaptivity; (ii) computational fault tolerance; (iii) speed
approaching human-like turnaround, and (iv) error rates that approach
human performance ..." [191. One of the fundamental characteristics of CI
technologies is that they are complementary to one another, in that they
represent different but synergistic avenues of representing uncertain
situations and systems. Fuzzy sets and fuzzy logic model the imprecision
and vagueness that are a part of human thought; neural networks and
genetic algorithms are inductive learning algorithms that mimic the
natural processes of neuron operation and evolution, and chaotic systems
and fractal sets model the irregularity that underlies the seemingly
ordered and predictable physical world around us. One of the core
philosophies of CI is to match a problem to the modeling technique best
suited to solve it, instead of adopting a one-size-fits-all approach. Thus,
fuzzy sets have seen extensive use in expert systems, while neural
networks have been widely used as intelligent classifiers. A very good

30 Computational Intelligence in Sojiiave Quality Assurance

introduction to computational intelligence may be found in [1 161. There
are also close relationships between CI and other technologies such as
case based reasoning, machine learning and data mining.

1.4.1 Fuzzy Sets and Fuzzy Logic

A fuzzy set is a set to which elements may partly belong. Unlike a set
in the usual sense, fuzzy sets do not divide a universe of discourse into
elements and non-elements. Instead, the boundaries of a fuzzy set are
vague and imprecise. Mathematically, a fuzzy set is a set of 2-tuples
(x,p), with XE U a member of some universal set U, and p ~ [0 , 1] a
membership grade. The membership grade represents the degree to
which elements belong to the fuzzy set; a grade of 0 means no
membership, while a grade of 1 means total membership. The fuzzy set
may also be considered a membership function U+[O,l] (analogous to a
characteristic function for a set) [146].

Fuzzy sets capture that form of uncertainty called vagueness or
imprecision. This form of uncertainty represents situations where a value
is approximately known; it is distinct from the form of uncertainty
known as randomness, because approximate quantities do not obey the
law of large numbers [249]. In other words, repeated sampling of an
approximate quantity does not cause the sample mean to converge to the
theoretical population mean in the limit of infinite samples. This kind of
uncertainty is a major feature of human language, and so fuzzy sets have
been used to provide mathematical precision to phrases in natural
language. This is done using linguistic variables, which are an
association between a word in natural language and a fuzzy set.
Linguistic variables were introduced in [305], and have found
widespread application in the domain of automatic controllers, as first
outlined in [177, 2801. These fuzzy controllers are similar to expert
systems, in that their core functionality is a set of inference rules (the
rulebase), which are fired in accordance with the rules of fuzzy logic
[146]. Since any number of arbitrary rules may in theory be introduced
into a fuzzy rulebase, fuzzy controllers provide a simple, intuitive way to
construct strongly nonlinear controllers. Fuzzy systems have been shown

Sofiare Engineering and Artificial Intelligence 31

to be universal approximators [291], and have even been applied to the
control and modeling of chaotic systems [35,287].

Fuzzy numbers are closely related to linguistic variables. A fuzzy
number is a fuzzy set that represents a number that is not precisely
known. Fuzzy numbers are defined on the set of real numbers; one
particular real number x has a maximum membership value, and the
membership value of any other real number y monotonically decreases as
the distance between x and y increases. Intuitively, this means that the
membership of x in the fuzzy number F should be 1, while the
membership function of F is unimodal. Formally, a fuzzy number is a
convex, normal fuzzy subset F of the real line with membership function
p, where normality means that max(p(x)) = 1 and convexity means that

p(ilxl+ (1 - ;1)x2) 2 min(p(xl), p(x2)) (1.1)

for all x, x I , x2 E R, h E [0,1]. An example of a fuzzy number is depicted
in Figure 1.7. The definition of convexity ensures that p is unimodal,
with its peak at x, conforming to our intuition [146].

Figure 1.7: Fuzzy Number

Recently, the idea of granular computing has been a major research
focus of the fuzzy systems community. Granular computing involves

32 Computational Intelligence in Software Quality Assurance

reasoning about groups of objects rather than individual objects. Briefly,
objects in a universe of discourse are aggregated into groups (or
granules), and then computations are carried out using the granules as
atomic objects [306]. This notion is also called “Computing with Words”
[307], since a word can be considered the label of a fuzzy set. The main
issues in granular computing are first, how is this aggregation performed,
and second, how are these granules used once they are formed? Zadeh
provided some suggestions on those points in [308]; other views may be
found in [25, 54, 163, 187,2291.

1.4.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inductive learning algorithms
that mimic the operation of neurons in animal brains. An ANN is a
directed graph in which each vertex is a computational node, and each
edge is a link to another node (see Figure 1.8). ANNs derive their power
from having a large number of simple computational units that are very
densely interconnected [loll . The earliest paper on ANNs was [182] in
1943; other important early papers included [lo21 and [212].
Rosenblatt’s single-layer Perceptron architecture [252] was very popular
in the 1960’s, until Minsky and Papert showed that it could not solve any
learning problem that was not linearly separable [199]. The comment at
the end of this proof, casting doubt that a multi-layer perceptron would
fare any better, resulted in a 15-year chill on the development of ANNs.
However, in 1983, Rumelhart demonstrated a learning algorithm, based
on backward-propagation in a multilayer perceptron, which could solve
problems that were not linearly separable [255]. (The same algorithm
was found to have been independently discovered by Werbos in 1974
[294].) A few years later, multiplayer perceptrons using Rumelhart’s
Backpropagation architecture were shown to be universal approximators
[44], and they are now accepted as powerful and flexible inductive
learning algorithms. Since that time, a staggering number of papers on
ANNs have been published; see the journal IEEE Transactions on
Neural Networks for hrther reading.

In common with other inductive learning algorithms, ANNs learn by
repeatedly observing a set of input-output pairings, and developing an

Sofiai-e Engineering and ArfiJicial Intelligence 33

internal representation of the underlying function. The internal
representation used by ANNs is a pattern of connection weights. Each
link between two nodes in an ANN has an associated weight, which is
altered by the learning algorithm of the ANN. Thus, ANNs employ a
distributed form of knowledge, rather than centralizing it in a rulebase.
ANNs are particularly well-suited to the control of highly nonlinear
plants, whose dynamics are not fully understood but which can be
effectively controller by an experienced operator. The ANN is exposed
to repeated observations consisting of plant state variables and operator
responses, and is trained to find a relationship between the two [10 11.

Figure 1.8: Neural Network

The Backpropagation learning algorithm Rumelhart et al. developed
for multilayer perceptrons is a form of gradient descent. As such, it is
vulnerable to local minima in weight space. A number of techniques for
forcing Backpropagation networks out of a local minimum have been
proposed in the literature. One of the simplest is adding a momentum
term to the Backpropagation formula, which adds an additional vector to
the current weight update [1011. Other schemes include the hybrid neuro-
fuzzy systems we discuss later, Newton's method, or conjugate gradient
algorithms[1 161.

34 Computational Intelligence in Software Quality Assurance

1.4.3 Genetic Algorithms

Genetic algorithms are optimization schemes, much like neural
networks. However, genetic algorithms do not appear to suffer from local
minima as badly as neural networks do. Genetic algorithms are based on
the model of evolution, in which a population evolves towards overall
fitness, even though individuals perish. Evolution dictates that superior
individuals have a better chance of reproducing than inferior individuals,
and thus are more likely to pass their superior traits on to the next
generation. This “survival of the fittest” criterion was first converted to
an optimization algorithm by Holland in 1975 [108], and is today a major
optimization technique for complex, nonlinear problems [1931.

In a genetic algorithm, each individual of a population is one possible
solution to an optimization problem, encoded as a binary string called a
chromosome. A group of these individuals will be generated, and will
compete for the right to reproduce or even be carried over into the next
generation of the population. Competition consists of applying a fitness
function to every individual in the population; the individuals with the
best result are the fittest. The next generation will then be constructed by
carrying over a few of the best individuals, reproduction, and mutation.
Reproduction is carried out by a “crossover” operation, similar to what
happens in an animal embryo. Two chromosomes exchange portions of
their code, thus forming a pair of new individuals. In the simplest form
of crossover, a crossover point on the two chromosomes is selected at
random, and the chromosomes exchange all data after that point, while
keeping their own data up to that point. In order to introduce additional
variation in the population, a mutation operator will randomly change a
bit or bits in some chromosome(s). Usually, the mutation rate is kept low
to permit good solutions to remain stable [193].

The two most critical elements of a genetic algorithm are the way
solutions are represented, and the fitness function, both of which are
problem-dependent. The coding for a solution must be designed to
represent a possibly complicated idea or sequence of steps. The fitness
function must not only interpret the encoding of solutions, but also must
establish a ranking of different solutions. The fitness fimction is what
will drive the entire population of solutions towards a globally best

So fhvare Engineering and Artificial Intelligence 35

solution. Usually, developing the fitness fbnction is the most difficult
part of preparing a genetic algorithm, and currently there is no
constructive method for ensuring the population will in fact converge to
a global optimum [193]. For further reading, we suggest the updated
version of Holland’s book, [109].

1.4.4 Fractal Sets and Chaotic Systems

The notion of fractal sets begins with a fairly simple mathematical
question: what is a continuous function? The conventional answer is that
a continuous function is one that is differentiable everywhere, or at worst
has finitely many points at which no derivative exists. Intuitively, a
continuous function should be smooth in appearance. However, if one
points to any physical object, this idea of continuity breaks down. Under
microscopic examination, even a surface that appears smooth to the
naked eye will show considerable irregularities. In fact, this phenomenon
persists as we examine the object at finer and finer length scales. No
length scale is ever reached where the surface becomes a smooth curve.
How to account for this phenomenon [178]?

A classic example is the question, “How long is the coast of Great
Britain?” The answer is, it depends on the scale of the observations.
Measuring the coast on a scale of kilometers will give a far different
answer than measuring it on a scale of inches. Fine irregularities appear
at shorter and shorter length scales, making it impossible to reach a
single answer for the question [178, 2861. In general, a fractal curve will
be a continuous, nowhere-differentiable curve, having unique geometric
properties [303]. Likewise, a fractal set is an arbitrary set which has a
power-law relationship between the size (in some sense) of its
constituent elements and their frequency. For example, given a collection
of objects, the number N of these objects with a linear dimension greater
than r should obey the relation

(1.2)

36 Computational Intelligence in So f i a r e Qua/$ Assurance

where C is a constant, and the power D is the dimension of the set. If D
is a non-integer value, then the set is a fractal [286].

More formally, consider the dimension of an arbitrary set. Define the
dimension operator as follows:

Definition 1.1 [303]

Given some set X c R", the dimension of X , denoted by dim(X), must
satisfy four properties:
1. a) For a one-element set X = (p} , dim(X) = 0.

b) For the unit interval X = I ' , dim(X) = 1
c) For the unit hypercube X= F, dim(* = m.

2. (Monotonicity) I f X c Y, then dim(X) I dim(Y)
3. Given a sequence of sets X, c R",

dim U X = sup dim(X) (1.3)
(1 1 j i

4. (Invariance) Given a homeomorphism q~ from R" to R", dim(@)) =

dim(X).

Ordinary points, lines, geometric shapes and geometric solids clearly
have a dimension that obeys these four conditions. For more general sets,
the topological dimension dimT is a mathematically sound way to define
a dimension. The topological dimension generalizes the fact that a ball is
a three-dimensional object, but the surface of a sphere is a two-
dimensional object; the dimension of an arbitrary set is inferred via
induction from the dimension of its boundary. There is another way to
define dimensions for arbitrary sets, known as the Hausdorff dimension
dim,. For most ordinary sets, the topological and Hausdorff dimensions
are identical. However, where the topological dimension can take on
only integer values, the Hausdorff dimension is real-valued, and is
known to always be greater than or equal to the topological dimension.
The basic definition of a fractal set X in R" is that the topological and
Hausdorff dimensions for X are different, namely

dim, (1) < dim, (X) X i s a fractal set (1.4)

SofnYare Engineering and ArtiJicial Intelligence 37

In particular, if the Hausdorff dimension is not an integer, then X is
necessarily a fractal set [303].

One famous example of a fractal set is the Cantor set. This set is
generated by a recursive procedure, as follows: partition the unit interval
into three equal subintervals, and delete the middle interval. Then apply
the same procedure to each of the remaining sub-intervals. After an
infinite number of repetitions, a completely disconnected set of points is
obtained, whose topological dimension is 0 (see Figure 1.9). However,
the Hausdorff dimension of the Cantor set is log 2/log 3 = 0.63092, and
thus the Cantor set is a fractal set. In general, such simple proofs that a
set has a fractal geometry are very difficult to construct. The problem is
that accurately computing a Hausdorff dimension, or bounding it from
below, are very difficult problems. Bounding the Hausdorff dimension
from above is considerably easier, but this does not show that a set is a
fractal [303].

Figure 1.9: Two Iterations ofthe Cantor Set [303]

There is a class of fractal sets for which the Hausdorff dimension is
easily calculated. These are the famous self-similar sets, which include
the Cantor set. The basic definition of self-similarity is based on the

38 Computational Intelligence in Software Quality Assurance

notion of a contraction. A contraction is some mapping q: R" -+ R" such
that

for some CE (0,l) and any x,y E R". The definition of self-similarity is as
follows.

Definition 1.2 [303]

A non-empty compact set X c R" is self-similar if, for some set of
contractions { q,, q2, ..., qm} (m 2 2), the following relation holds:

m

If the maps q also happen to be linear, then the set is called a self-affine
set. Any self-affine set is self-similar, and any self-similar set is a fractal
set, as depicted in Figure 1.10 [303].

There is a very close relationship between fractal sets and chaotic
systems. A chaotic system is an analytic function that cannot be
accurately determined from observation of its behavior over any time
span. What this means is that any prediction of future behavior based on
past behavior is inaccurate; the amplitude of the prediction error very
quickly becomes as large as the original signal. This is the signature
property of a chaotic system; any two trajectories that are infinitesimally
close at some point in the system state space will diverge from each other
at an exponential rate. Thus, even the slightest prediction error is
magnified exponentially through time. The relationship between fractals
and chaos is simply that fractal sets can be the generators of a chaotic
system, and the invariant set or attractor of a chaotic system will have a
fractal geometry [130, 3031.

The literature on using chaos theory to analyze time series data has
become quite extensive. At this time, Kantz and Schreiber's monograph
[130] is generally considered to be the best resource on the subject. As
discussed in detail in Chapter 3, chaotic time series analysis involves a
number of steps and requires considerable judgment on the part of the

(1.5)

(1.6)

Software Engineering and Artificial Intelligence 39

analyst. Chaos theory and fractal sets fit into the soft computing
paradigm because they can usefully model a type of uncertainty called
irregularity, which deals with rare events, intermittency, bifurcations,
and other such behaviors. They are a better fit for these phenomena than
the techniques of probability theory, which models the form of
uncertainty called randomness, or fuzzy sets which model vagueness and
imprecision.

Figure 1.10: Hierarchy of Fractal Sets [303]

1.4.5 Combined CI Methods

One of the distinguishing characteristics of computationally
intelligent techniques is that they are complementary to one another, and
the various hybridizations of these techniques can be more effective than
any one of them in isolation. The best known of these hybrids are the
neuro-fuzzy systems, which are hybrids of fuzzy logic and neural
networks. In these hybrids, the interpretative power of fuzzy systems and
the learning power of a neural network are combined. This overcomes
the main deficiencies of both technologies, to wit that a fuzzy system is
not designed to learn, and the distributed knowledge in neural networks

40 Computational Intelligence in Software Quality Assurance

is very difficult to interpret. Indeed, pure fuzzy systems and pure neural
networks are now seen as the extreme points of a continuum of
intelligent systems, in which a tradeoff must be made between clarity and
adaptability [1 161.

The first papers on neuro-fuzzy systems were written by Lee and Lee
in 1974 [158, 1591. Lee and Lee generalized the McCullogh-Pitts neuron,
permitting inputs and outputs in the closed interval [0,1] instead of the
set {O,l}. Kandel and Lee published the first book that included a
discussion of fuzzy neural networks in 1979 [127]. Keller and Hunt
generalized the Perceptron algorithm to produce a fuzzy hyperplane as
the decision boundary, instead of a crisp hyperplane in [136]. The entire
field of neuro-fuzzy systems received a major boost at the lst NASA
Workshop on Neural Networks and Fuzzy Logic in 1988 [279]. This was
a watershed event, and a tremendous number of papers on neuro-fuzzy
architecture have been published in the intervening years. Probably the
best-known of these are Jang’s ANFIS architecture [1151 and Pal and
Mitra’s fuzzy MLP [222, 2231.

A number of other hybrid systems have also been proposed in the
literature on computational intelligence. For instance, genetic algorithms
can be used to provide a learning capability for fuzzy systems, yielding a
fuzzy-genetic hybrid such as in [246]. An even more ambitious hybrid is
the FuGeNeSys architecture in [257], where each individual in a genetic
algorithm represents a neuro-fuzzy system. An individual is inserted by
instantiating that neuro-fuzzy system, training it, and returning it to the
population. There are also hybrids of chaotic systems and neural
networks [1441, and fuzzy systems, neural networks, and wavelet
transforms (which are related to chaotic systems and fractal sets) in
[106].

1.4.6 Case Based Reasoning

Case-Based Reasoning (CBR) is a way to solve new problems by
examining solutions to similar problems that have been encountered
in the past. A CBR system stores information about known problems
and their solutions in an experience base. When a new problem is
encountered, the system searches for similar problems in the experience

Softare Engineering and Arti9cial Intelligence 41

base. The solutions to those similar problems are then modified, in order
to account for the differences between those old problems and the new
one. These two elements - judging similarity between problems instead
of equivalence, and reasoning about what the solution to a new, unseen
problem should be - are what differentiate CBR systems from a database
query. Solutions are not merely retrieved by an equivalence relation, they
are found by a more general similarity relation (which can be viewed as a
fuzzy form of equivalence) and adapted to fit the new problem [53].

Each stored problem, together with its solution, is a case in the CBR
experience base. Cases are stored by recording all relevant attributes of a
problem and a description of the solution. When a new problem is
encountered, the attributes of that problem are extracted, and sent to the
experience base as a probe. Similarity between a probe and a case is
determined by a distance measure, which has to be defined for the
specific problem. For purely numeric attributes, a Euclidean distance is
one possibility; for a mix of numeric and nominal attributes, a mix of
numeric and symbolic distance measures might need to be used. Other
possibilities include using a neural network or statistical models to
calculate a distance. As a rule, distance is inversely proportional to
similarity, so the cases with the minimum distance to the probe are the
most similar. CBR systems are most useful in situations where an
approximate solution is acceptable; there is only low to moderate
interaction between attributes; and there are discontinuities in the
relations between attributes. The latter would be the case when, for
instance, there is a linear relationship between two real-valued variables,
but only within a specific interval for each variable. The main overheads
for CBR systems are in computing the similarity between stored cases
and the probe, and determining how to modify existing solutions.
Depending on the problem domain, the modification subsystem might be
a full expert system in its own right [53]. The use of similarity for
finding candidate cases, and approximate reasoning to generate solutions
to new problems, tie CBR closely to CI technologies. Both are geared
towards decision-making in uncertain environments, and both exploit the
notion of approximate solutions.

42 Computational Intelligence in Sof iare Qualiq Assurance

1.4.7 Machine Learning

The discipline of machine learning involves efforts to make
computers imitate human cognition. Machine learning researcher hope to
create artificial systems that can learn the way human beings do, and can
thus tackle the difficult problems we humans are very good at, such as
recognizing a friendly face. They also hope to discover more about how
we ourselves learn new concepts by building artificial learners [210,
2561. There are two ways that machine learning researchers could attack
this problem. The first is to create a computer simulation of the human
brain and expose the simulation to a wealth of experience, in the same
way that humans are exposed to new experiences from birth. Such a
simulation is plainly out of reach. The second avenue of attack is to
create algorithms that will simulate a class of input-output behaviors, and
thus mimic the observable behavior of human cognition. The inductive
learning schemes that are generally referred to as “machine learning
algorithms,” such as neural networks, genetic algorithms and clustering,
are all examples of this sort of algorithm. The machine learning
community concentrates on this second line of attack.

Plainly, some of the core technologies in CI are also machine learning
algorithms, and so there is considerable overlap between the two areas.
However, this overlap is more than merely common algorithms; machine
learning and CI fundamentally deal with reasoning under conditions of
uncertainty, and so share both philosophical and practical concerns. The
basic philosophical problem both communities wrestle with is the
problem of induction: how to create models based on samples of past
experience that remain valid when encountering new inputs or situations,
and what are the limits of these models. Chaotic systems represent the
most extreme limits on machine learning, as they do not remain
predictable for more than a very short time horizon. At a more mundane
level, there is a need to evaluate both how accurate a model is, and to
understand when that model could be invalidated by events in the real
world. This is a very important consideration for data mining, the most
widely-deployed application of machine learning in industry. Data
mining is thus embedded in the Knowledge Discovery in Databases
(KDD) framework, also referred to as business intelligence.

Software Engineering and Artijkial Intelligence 43

1.4.8 Data Mining

Knowledge Discovery in Databases (KDD) is the process of distilling
useful information from a large collection of data. Data tables with
numerous attributes and a large number of records are extremely difficult
for humans to understand, and databases with multiple large tables are
even worse. Therefore, various types of summarizations of a database are
needed in order for human beings to make use of the information in that
database. KDD is a framework for obtaining such summarizations. KDD
and data mining are sometimes used interchangeably; however, a more
relevant usage for our purposes comes from Fayyad [74], in which “data
mining” is one step in the KDD framework. Fayyad defines KDD as a
sequence of nine steps:

1.

11.

...
111.

iv .

vi .
V.

vii.
viii.

ix .

Defining the goal of the KDD process
Assembling a dataset from a data warehouse, and perhaps
selecting a subset of the data for analysis
Data cleaning & preprocessing
Feature reduction
Selecting the data mining task (prediction, classification, etc.)
Selecting the data mining algorithm (neural networks, regression
analysis, clustering, etc.)
Data mining
Evaluation of the data mining results
Consolidating the results with prior knowledge, and applying
them.

Data mining is a search for associations in a database that may be
corrupted with noise, contain missing values, and may be absolutely
gigantic in size. These characteristics make CI algorithms excellent
candidates for data mining algorithms. Other possible data mining tools
include statistical regression and correlation algorithms, or rule
extraction schemes [74, 155, 156, 1571, among many others.

44 Computational Intelligence in Software Quality Assurance

1.5 Computational Intelligence in Software Engineering

Computationally intelligent technologies find a somewhat different
use in software engineering than traditional A1 techniques. Where A1
systems concentrate on knowledge representation and automatic
programming, computationally intelligent systems focus on system
modeling and decision making in the presence of uncertainty. This does
not mean that the two do not converge on some common areas of interest
within software engineering; there is in fact a rich literature on using
computational intelligence for estimating software project costs [22, 77,
233, 2721. A survey of this material may be found in [94].

Other applications of computational intelligence to software
engineering focus on a variety of sources and forms of uncertainty in
software development. As argued in [96], computationally intelligent
systems can play an important role because there are multiple levels of
uncertainty in a software system, and possibly multiple degrees of
uncertainty. Neural networks are used to assign routines and objects to
software modules in [263]; they key idea in that paper is to treat
modularization as a problem of categorization. Linguistic variables are
used in formal specifications in [124]. The linkage of linguistic terms
with a specified fuzzy set discussed in Section 1.4.1 makes these
specifications intuitively understandable, and yet still mathematically
precise. Finally, decision trees are used to filter reusable components
from a given software system in [248]. There is also an extensive list of
publications on analyzing software metrics using computationally
intelligent systems; we defer our review of this material until Chapter 4.

1.6 Remarks

Software engineering is a huge and complicated undertaking, and the
resulting products are the most complex technological systems in the
world today. An overview of software engineering, and of the A1 and
computationally intelligent technologies that are now being examined as
possible aids in the software engineering process, was the focus of this
chapter. In the next chapter, a more detailed review of the process of
testing a piece of software - usually the single largest expense in a

Software Engineering and ArtiJiciul Intelligence 45

project - will be undertaken. Brooks estimated that an ordinary software
development project should expect 50% of its resources to be expended
on testing; in the case of safety-critical systems, that figure could rise to
80% [29].

Chapter 2

Software Testing and Artificial Intelligence

2.1 Introduction

The focus of this chapter is on the quality of software, and how
software testing is an essential component of a software quality plan.
Testing has been a part of software development from the very
beginning; Alan Turing himself wrote an article entitled “Checking out a
large routine” as part of a 1950 manual [196]. It is a major part of every
software development project; Brooks has stated that 50% of the
development resources in an ordinary project (and up to 80% of
resources in a safety-critical system) will be spent in testing. To begin
this review, “software quality” will be defined, and then various testing
methodologies will be described. Finally, A1 and computationally
intelligent techniques for software testing arc reviewed.

2.2 Software Quality

“Quality” is one of those engineering terms that arc intuitively simple
but difficult to define exactly. At the most basic level, quality means how
well some product performs in use. This is a customer’s perception, and
docs not directly translate into engineering specifications. A more
technical meaning is that quality is the “degree of excellence” of a
product, considering all relevant characteristics of the product. Thus,
issues such as reliability, performance and usability contribute to a
system’s overall quality in that they are some of the quality

46

characteristics of this product. High quality will then mean a high degree
of excellence in these and other characteristics [92]. Quality is thus an
evaluation of a product in its totality.

Software quality is perhaps the most critical technological challenge
of the 2lSt century. No other product in the industrialized world is so
labor-intensive, and none are as error-prone [121, 1221. Several software
characteristics have become legendary for their poor quality. Reliability,
of course, is at the very top of this list; software “bugs” are by definition
failures. Usability has also been cited as a concern in innumerable
software projects. Thus, “improving software quality” is a mammoth
undertaking for any organization, requiring improvements in a number of
areas. One technique for improving the quality of a software system (and
its accompanying non-code work products) is the use of formal
inspections at the requirements, design and coding stages. Jones [1221
reports an average improvement of 15% in software productivity when
inspections are used.

Despite the usefdness of inspections, software testing necessarily
remains the basic mechanism for assessing software quality. Since large
software systems can have lo2’ states or more [84], software testing is
and most likely will always be non-exhaustive. In other words, software
test cases are samples of the complete input space of a program. There is,
however, no substitute for actually testing a program; we cannot
determine if a program is correct or not by merely inspecting the source
code. To be specific, consider a general-purpose computer language,
capable of simulating a Turing machine. Given an arbitrary program in
this language, and an arbitrary input, no algorithm can be designed that
will determine if an arbitrary statement in the program will execute or
not. Furthermore, while programs exist for which this analysis is
possible, no algorithm can be fashioned that will distinguish programs
for which this analysis is possible from those for which it is not possible.
If this last statement were not true, then the halting problem for Turing
machines would be solvable [72].

Quality management is an ongoing comparison of the actual quality
of a product with its expected quality. In the field of software
development, software metrics are collected at various points in the
development cycle, and utilized to guide testing and quality improvement

Software Engineering and Artificial Intelligence 45

48 Computational Intelligence in Software Qualily Assurance

efforts [47, 681. Metrics are used to identify modules in software systems
that are potentially error-prone, so that extra development, testing and
maintenance effort can be directed at those modules. One of the
empirical facts known about software failures is that they tend to cluster
in a few modules. An oft-quoted rule is that 80% of a system’s bugs will
be found in just 20% of the system’s modules [30, 1411. Metrics are also
used by program managers to track the current status of a project; these
metrics tend to be related to cost and schedule, rather than source code.
While these metrics are vital elements of both traditional and component-
based system development, [30, 2651, they are outside the scope of this
study.

A wide variety of regression models for relating software metrics to
defect rates have been investigated, including robust regression, local
polynomial regression, Poisson regression, and M-estimation [93].
However, there is currently no theoretical model relating metric values to
defect rates, and so selecting a regression model is a trial-and-error
process. This means that we are searching an infinite space of model
forms, selecting one of them and then fitting that model to our software
quality data. The use of machine learning algorithms is partly motivated
by that fact that non-parametric models such as neural networks or
genetic algorithm need far less detailed a priori information to construct
a model for a given dataset.

Each software metric quantifies some characteristic of a program.
Simple counting metrics such as the number of lines of source code or
Halstead’s number of operators and operands [97, 1 181 simply describe
how many “things” there are in a program. More complex metrics such
as McCabe’s cyclomatic complexity [18 11 or the Bandwidth metric [232]
attempt to describe the ttcomplexity’t of a program, by measuring the
number of decisions in a module or the average level of nesting in the
module, respectively. While different metrics do measure different
characteristics, the various metrics tend to be strongly correlated to each
other and to the number of failures in a program [67, 1671. Furthermore,
there tend to be relatively few modules in any given system that will
have a high degree of complexity. As a result, any database of software
characteristics or failures will be heavily skewed towards simple
modules with a low occurrence of failures [8].

Software Testing and Artijkial Intelligence 49

worker (int buf [I , int low, int high, int step) {
int min, max;
int i;

1 min = buf [low];
2 max = buf [low] ;
3 i = low + step;
4 while (i < high) {
5 if (max < buf [il) {
6 max = buf lil;

7 if (min > buf [ill {
8 min = buf [i];

9 i = i + step
10 printf ("%d\n",min) ;
11 printf ("%d\n",max) ;
1

1

1

1

Figure 2.1: Worker Function (Translated from [1471)

Two important tools used in developing software metrics are the
control graph and the call graph. The control graph is a directed graph
representing the flow of control in a program. Each vertex in the graph
represents a statement, and each edge in the graph represents a direct
transfer of control from one statement to the next. Two sequential
statements will be linked by an edge; a branch statement will be linked to
the first statements in each of the possible paths from that branch. Loops
are represented as cycles, and thus each possible element of the
structured programming paradigm maps directly to a graphical construct
[48]. As an example, consider the C program in Figure 2.1, translated
from Pascal in [147]. This program has two conditional statements,
nested within one loop construct. The control graph for this program may
be found in Figure 2.2; based on this control graph, the cyclomatic
complexity of this module is 4 [18 1,2751.

50 Computational Intelligence in Sofware Quality Assurance

Figure 2.2: Control Flow Graph for Figure 2.1

The call graph of a program is a directed graph that represents how
modules in the program call each other. Each subroutine (function,
procedure, method, etc.) is represented as a vertex in the graph, and an
edge from vertex Pi to vertex Pi means that Pi directly calls Pj. A
recursive call to a subroutine is represented by a cycle in the graph;
purely recursive routines call themselves, while a cycle of two or more
vertexes denotes indirect recursion. The fan-in and fan-out metrics are
based on analyzing call graphs, and are widely used in industry [126]. As
an example, the subroutines in Figure 2.3 lead to the call graph in Figure
2.4 [183, 2581. These figures also point out some of the aspects of
program behavior that are not represented in the call graph. As the reader
will note, the output of the program in Figure 2.3 is “Hello World”.
However, this fact cannot be deduced from an inspection of the call
graph, because timing information is not contained in the call graph.

Software Testing and Artificial Intelligence 51

int main () {
subl () ;
return 0;

1
void subl () {

sub2 (1 ;
sub3 () ;

I
void sub2 () {

sub4 (1 ;
I
void sub3 () {

sub5 () ;

void sub4 () {

1
void sub5 () {

printf (“Hello \ \) ;

printf (\\World\n”) ;
1

Figure 2.3: Hello World in C

Figure 2.4: Call Graph for Figure 2.3

52 Computational Intelligence in Software Quality Assurance

2.3 Software Testing

Software testing is an effort to find system inputs that will trigger the
failure of a software system. Finding these inputs can be extremely
difficult, particularly in the late stages of testing. The conditions that will
trigger a latent fault can be extremely complex, and in fact one fault can
“hide” behind another one [84]. Testing activities will normally consume
50% of a software project’s resources, and can consume up to 80% of the
resources in a safety-critical project [29]. Unfortunately, debugging
remains a labor-intensive, manual process; in fact, a 1997 article reported
that many programmers still prefer the manual insertion of “print”
statements as their debugging technique of choice [165]. An informal
1997 survey reported in [69] indicated that manual techniques, such as
inserting print statements, manually executing a test case, or inserting
breakpoints, accounted for 78% of real-world programmers’ attempts to
solve exceptionally difficult bugs.

In the remainder of this book, we adopt the failure model advocated
by Voas [84], Laprie and Kanoun [152], and others. In this model, a fault
is a mistake in the source code of a program. As such, it is a static entity.
A fault may be exercised by some input to the software; that is, the input
causes the flow of control in the program to pass through the location of
a fault. If that exercised fault causes an internal departure of the program
state from its correct value, then an error has occurred. If that error
manages to propagate all the way to the system output, then it becomes a
failure. Failures are the observed departure of a program from its correct
behavior. Note that not all faults will trigger an error, and not all errors
will result in failures. Faults that do not result in failures when they are
exercised are said to be “hiding.” This model accounts for much of the
complicated behavior of software failures, by explaining how errors may
mask one another, or how faults can remain undetected for years only to
manifest themselves in unusual situations or a changed environment.

Whittaker and Jorgensen [296] have developed a classification
scheme for software faults, dividing them into four broad classes:
improperly constrained inputs, improperly constrained stored data,
improperly constrained computation, and improperly constrained
outputs. An improperly constrained input is an input that violates the

Software Testing and ArtiJcial Intelligence 53

assumptions of the software; an example in [296] is a shellsort program
in which an array of data and the length of the array are parameters to the
shellsort function. Neither the array length, nor the existence of the array,
is verified in the function; thus the program is trivially easy to break.
Checking input constraints is a basic part of good programming practice
as taught in computer science classes; however, Whittaker and Jorgensen
found that this simple precaution is largely ignored. Improperly
constraining stored data leads to a corruption of the program state, and
thus to a failure. Improperly constrained computation refers to situations
where the result of a computation on legal values is an illegal value (such
as the one that destroyed Ariane-50 1). Arithmetic overflows and
underflows are prominent examples of this kind of fault. Finally, failing
to constrain an output is also a fault, since the user only perceives the
output of a program [296].

When a failure is detected, software developers will attempt to debug
the program. Ideally, the fault that caused the error will be identified and
corrected, and no other part of the system will be adversely affected. In
reality, the fault could have been incorrectly identified; alternatively, the
repair could only partly remove the fault or might even introduce new
faults. Finally, it is possible for one fault to hide behind another. This
occurs when the error propagating from the hidden fault is overwritten
by the error from the second fault. Thus, the perfect removal of one fault
could expose a second, possibly more serious fault. Thus, the successful
removal of a fault could actually make the software system less reliable
than it was before [84]. An essential part of removing a fault is
regression testing, in which a subset of the test suite is re-run to
determine if the test cases that were correctly executed before the repair
still execute correctly afterwards.

2.3.1 White-Box Testing

White-box testing (also known as glass-box or clear-box testing) is a
testing methodology that explicitly makes use of the structure of a
program. The goal is to increase the chances of finding errors in software
by effectively increasing the density of errors. White-box testing
schemes concentrate on program structures that are likely to be

54 Computational Intelligence in Software Qualiq Assurance

problematic, and ensure that the entire program is tested [66, 2321. Some
white-box approaches include dataflow testing, partition testing,
symbolic execution, state-based testing, program slicing, and mutation
testing. Testing object-oriented programs will also introduce additional
complexities

One of the main questions in white box testing is deciding how much
testing is required. This question is addressed by code coverage criteria,
which define the minimum standard of testing. For instance, statement
testing simply requires that every statement in the program be executed
by at least one test case. This criterion is considered very weak. A
stronger criterion comes from branch testing, which demands that every
logical branch in the program be executed at least once. The strongest
criterion is path testing, which requires that every possible control path
through the program be executed at least once. This criterion is generally
considered infeasible, because the number of possible paths in a program
with loop structures can be infinite [65]. There is also a family of
coverage criteria called condition coverage, which are frequently used in
the aerospace industry. For instance, conditioddecision coverage
stipulates that, in the course of testing, every entry and exit point in the
program must be invoked, every condition in any decision statement
must have taken on every possible value in its own domain, and every
decision statement must have taken on all possible outcomes. A stronger
version, multiple-condition coverage, requires that all entry and exit
points are invoked, and every possible combination of conditional values
in every decision statement is tested [37]. One of the weaknesses of
using coverage criteria is that the criteria make no distinction between
paths that a program can possibly traverse, and those that are impossible.
In fact, the general problem of distinguishing between feasible and
infeasible paths is undecidable [72, 2 151; however, the simpler problem
of constructing a path through a specified set of statements can be solved
in O(lE1) time, where E is the number of edges in the program control
graph [85]. Many papers comparing the different test criteria have been
published; [82] is a good example, and refers to a number of other
comparisons in the literature.

A specialized set of coverage criteria, known as data-flow criteria,
has attracted a great deal of interest in recent years. Data-flow testing is a

Sofmure Testing and Artificial Intelligence 55

white-box testing strategy that grows out of dataflow analysis in
optimizing compilers, in contrast to the control-flow methods discussed
earlier. Essentially, dataflow testing concentrates on two particular uses
of variables in a program: the points where a value is stored to a variable
(a definition), and the points where the stored value of a variable is
accessed (a use). The development of the dataflow approach is usually
credited to Rapps and Weyuker in [247]; Laski and Korel published a
similar approach at roughly the same time [154]. Efforts to ensure that
the various dataflow criteria of [247] result in feasible test cases are
reported in [81], while extensions to the dataflow criteria are described in
[214].

Partition testing is an attempt to reduce the number of test cases in a
program by finding homogenous regions within the input space. The idea
is to find regions where a single test case can represent the entire input
region it belongs to [250]. There are any number of criteria that can be
used to partition the input space of a program; one suggestion from [288]
is to cluster modules based on the number of accesses to shared
variables. However, partition testing is very sensitive to how the
partitions are determined; a poor choice of partitions can drop the failure-
detection rate below that of simple random testing (discussed later),
while a good choice can significantly improve the failure-detection rate
[98,295].

Symbolic execution is a technique for determining some aspects of
program behavior without actually executing the program. In symbolic
execution, algebraic symbols are input to a program instead of values.
Algebraic expressions describing the transformation of inputs into
outputs can then be derived [46]. Clearly, there is a problem of
scalability, in that the algebraic expression for a million-line application
may be too complicated to be of any use. In addition, symbolic execution
cannot represent some very important dynamic behaviors, such as
referencing array elements whose index depends on an input variable
[147]. Nonetheless, symbolic execution is used as a code analysis tool in
a number of publications; one example is in automated test generation
for mutation testing (see below) [216].

Program slicing is not a test methodology per se., but rather a method
for simplifying a program. A program slice is a decomposition of a

56 Computational Intelligence in SofnYare Quality Assurance

program based on dataflow and control flow analysis. Slices are
constructed by deleting statements from the original program, to arrive at
a reduced program that still behaves identically to the original on a given
subset of statements and variables. In essence, a slice is a projection
operator applied to source code [293]. Slices are useful in debugging
because they promote a clearer understanding of the program for a
human tester. Some matters relating to the computation of a program
slice may be found in [1491.

Mutation analysis was first described in a 1978 article [50], and has
been a major research focus since that time. Program mutation is defined
as the transformation of a program by inserting a known type of fault at
random locations in the program code. The mutant program is then tested
in parallel with the original program; whenever a difference is observed,
the mutant is said to have been “killed” by the test case; this test is then
known to detect the type of fault that was injected. There will normally
be a large number of mutant programs generated, and the goal is to
construct a suite of test cases that will kill them all. The best-known
mutation system at this time is the Mothra system developed at Georgia
Tech [145], which performs mutation analysis for Fortran programs.
Mothra has been criticized for generating too many program mutants (a
criticism that applies to other mutation systems as well), and thus being
prohibitively slow [78]. There is also the problem of detecting equivalent
mutants - mutants programs that are functionally equivalent to the
original program. In general, this is an undecideable problem, but some
approximate solutions are discussed in [2 151. A somewhat different
usage of mutation has been promoted by Voas in [84, 2901 and others.
Voas uses mutation to measure the testability of a program, by
introducing various mutations at a single point in the program and then
determining the proportion of the mutants that are killed. He refers to this
as “sensitivity analysis.” Other studies following a similar methodology
are also reported in [19 1,2031.

Finally, the generation of test cases from formal specifications has
long been interesting to software testers. One example system is the
Anna specification language, which inserts assertions (called
annotations) into an Ada program to aid in documenting and debugging
the program [91]. In contrast, [217] offers test criteria designed to

Software Testing and Artificial Intelligence 57

automate the process of generating test cases from state-based formal
specifications.

The advent of object-oriented technology has profound implications
for the software testing process. The basic units of an object-oriented
program are classes, which consist of both data and methods that operate
on this data. There is thus considerable opportunity for subtle couplings
between different methods in a class, through the data elements of that
class. In fact, the problem of testing a class very much resembles that
problem of testing a procedure-oriented program with a large number of
global variables! Couplings also exist between different classes, due to
inheritance, containment, or because they are assembled together into
components [12, 131. Integration testing is thus a continuous part of
testing object-oriented software, even at the unit-test level.

2.3.2 Black-Box Testing

Black-box testing refers to testing techniques that assume no
knowledge of the detailed structure of a program. The two most
prominent black-box approaches are functional testing and random
testing. Functional testing examines whether or not the software
conforms to its specifications, without regard to the internal structure of a
program. User acceptance tests always take this form, and it is also
useful for developers. In particular, testing to ensure that the software
correctly processes different parts of its input and output domains is an
important black-box activity [232].

Random testing was originally considered a very bad idea. Software
engineers considered it to be the least structured and least effective
means of testing a program. Black box testing was thought to be
superior, and white box testing better still [65]. However, studies in [65]
and [66] showed that randomly selecting inputs was a viable alternative
to generating test suites based on white-box coverage criteria. A larger
number of test cases have to be generated in the random-testing
approach, but this cost was offset by the ease with which a test case was
generated compared to the white-box approaches. Furthermore, random
testing is an essential component of reliability analysis. The structured
approach of white-box testing does not produce statistically valid data for

58 Computational Intelligence in Software Quality Assurance

reliability analysis; only randomly selected inputs, drawn from a
distribution representing the anticipated use of the software (the
operational profile) produce valid reliability data [123, 2071. Thus,
random testing is now considered a crucial part of any systems test plan.

2.3.3 Testing Graphical User Interfaces

A Graphical User Interface (GUI) is an intuitive, visual means of
interacting with a computer system. GUI systems are used extensively in
almost every area of computing; prominent examples include the
Windows@ and Macintosh@ operating systems. GUT systems are event-
driven, which means that they respond to user inputs as they arrive,
rather than scripting a user’s interaction through command lines or
hierarchical menus [185, 1861. Most GUI systems use the WIMP
interface style, an acronym for Windows, Icons, Menus, and Pointers.
The different elements of the WIMP interface are known as widgets; a
single GUI may have dozens of widgets in use at any time, each
displayed as a bitmap. The user is able to manipulate these widgets in the
virtual environment of the computer desktop, and those manipulations
translate directly into commands to the computer system. Window
widgets are usually top-level widgets, which act as terminals in their own
right. Subordinate widgets are attached to the window to provide
functionality. Icon widgets are small pictures that represent some system
element; they could be inactive windows, disk drives, individual files,
etc. Menu widgets provide a choice of services that the GUI is able to
provide, in a familiar format (whole interfaces can be built on menus
alone, such as an ATM screen). Finally, the pointer widget is a cursor
controlled by an input device such as a mouse or trackball. The pointer
indicates the location on the virtual desktop where any event will be
focussed [55].

The event-driven nature of GUI programs, combined with the size
and complexity of the GUI itself, makes them extremely difficult to test.
Consider a typical 1024x768 desktop; this interface consists of a variety
of bitmaps scattered arbitrarily over a virtual desktop having more than
3/4 of a million pixels. A user of this GUI is able to present an enormous
number of distinct inputs to the system, each of which must be caught,

Software Testing and Avtijicial Intelligence 59

parsed, and acted upon. The amount of code dedicated to operating just
the GUI itself might be 50-60% of the entire program [185]. Some of the
main difficulties in testing GUI programs include establishing test
coverage criteria, automatically generating test cases, creating automated
oracles for a GUI, and determining what test cases can or should be re-
used during regression testing. Very little automated support for these
tasks is available; most of the tools currently in use are just record-
playback systems that record a user’s actions as a script. A dissertation
on automated GUI testing by Dr. Atif Memon was completed in 2001, in
which automated planning algorithms were used to select test cases for a
GUI system [1851.

2.4 Artificial Intelligence in Software Testing

Much like automatic programming, automatic debugging has long
been a major research initiative for the A1 community. A 1998 survey
[276] divides the automatic debugging field into two categories: tutorial
systems and diagnostic systems. Tutorial systems are intended to assist
novice programmers, and can only consider fairly basic problems. The
systems will attempt to match a student’s program against a library of
example programs, thus determining what the student intended to do.
The systems have to be able to cope with distortions introduced by bugs
in the student’s program, and indicate to the student where the program
fault lies. Diagnostic systems, on the other hand, are intended to assist
professional software developers in debugging complex software.
Obviously, such systems cannot rely on a stored library of examples.
Instead, model-based reasoning is employed. A system model is
developed from the specifications of a software system, and the behavior
of this model is compared against the actual behavior of the software
system for a given test case. Differences imply that a program error
exists. However, there is a difference between model-based diagnosis for
hardware and software systems. In a hardware system, the specification
is the correct description of the system, and any discrepancies between
the actual system and the model imply an implementation error. In
software systems, the specifications themselves are frequently in error;

60 Computational Intelligence in Software Quality Assurance

thus, a discrepancy between the system and model outputs on a test case
may very well reflect a specification error or omission. Determining
whether the specification or the implementation is at fault remains a non-
trivial task [276].

A large amount of work has also gone into developing A1 tools for
automatic test case generation. One fairly intuitive representation of
programs is as systems of constraints. If this view is adopted, then
constraint-solving techniques may be used to generate test cases. This
approach is described in [89], where constraint solving was used to
detect the existence or absence of a feasible control path passing through
some arbitrary point in a program’s control graph. If such a path exists, a
test input to execute that path is generated. The one real deficiency of
[89] is a very common problem: the example used to illustrate the
procedure is trivial in size (a total of 15 statements), and so we cannot
say how the technique will perform when scaled up to a commercial-
sized program.

An important A1 technique for generating test cases is automatic
partial-order planning. A partial-order planner is an A1 technique for
generating a sequence of steps to solve a problem. A partial-order
planner needs to be given an initial state (the problem), a goal state (the
solved problem), and a set of operators that can be used to alter a
problem state. Given these tools, the planner will begin generating a
partially-ordered set of operations that reduce the difference between a
current problem state and the goal state, beginning at the initial state. The
partially-ordered operations can then be linearized; any linearization that
does not violate the ordering constraints among the operations is then a
solution to the problem [256]. A1 planners were used to generate test
cases for a robotic tape library system in [179,259].

Finally, the development of a testing agent system is described in
[38]. An agent is a persistent, autonomous software entity that exists for
a specific purpose. Agent architectures can often be designed as a
cooperating community of individual agents, working together to solve a
problem (and thus having “social” capabilities). The agent system in [38]
consists of three agents: an agent for communicating with a human tester,
an agent for generating test cases, and an agent for conducting regression

Sofoioare Testing and Artificial Intelligence 61

testing. The three agents employ a rule-based knowledge representation
scheme to reason about their activities.

2.5 Computational Intelligence in Software Testing

Computationally intelligent systems are also used for test-case
generation. The key to this usage is a formulation of the test-case
selection problem as an optimization problem, which can then be solved
by genetic algorithms, simulated annealing, or other optimization
algorithms. The first attempt to cast test case selection as an optimization
problem was made by Miller and Spooner in [198], in which the authors
developed a method for selecting test cases for floating-point operations.
They set every integer and conditional value to some arbitrary constant,
in order to drive execution down a selected path. They then used a
numerical optimization scheme to select the floating-point inputs to the
system. This technique was never widely used, since the manual
overhead of pre-specifying every integer value and conditional is quite
high. However, a second paper on using optimization has been quite
useful; this is Korel’s dynamic execution technique [1471. The dynamic
execution technique actually executes the program under test while
searching for test cases, in contrast to symbolic execution. By actually
executing the program, the old problems from symbolic execution - such
as array references that depend on an input variable - are avoided.
Returning to the example of Figure 2.1 (from which the control flow
graph of Figure 2.2 was computed), one of the possible paths through
this program is P = (1,2,3,4,5,7,9,10,11). Korel’s technique is to
associate a function with each branch point. If an input follows the
selected path at each branch point, then this function is 0 at each branch;
otherwise, it is a positive value at each non-conforming branch,
determined by the branch condition. By minimizing these functions,
subject to the constraint that the selected path is followed, an input which
will force the program to follow the selected path is selected.

Korel chose to use a direct-search technique in [147], and extended
this technique to account for subroutines in [148]; quite obviously, other
techniques could also be used. For example, the GADGET (Genetic

62 Computational Intelligence in Sofnyare Quality Assurance

Algorithm Data GEneration Tool) described in [193] uses a genetic
algorithm for just this purpose. The GADGET tool was also extended to
permit the use of gradient descent, simulated annealing, and a differential
genetic algorithm in [192]. Tracey, Clark and Mander [284] use a
simulated annealing algorithm to solve the optimization problem, while
genetic algorithms are again used in [225, 2851.

Three other papers that have a different take on using computational
intelligence in software testing should also be mentioned. In [3], a
genetic algorithm was used to find timing errors in an embedded system
for the power generation industry. The genetic algorithm was used to
find test cases that forced the system towards longer processing times, in
order to cause a violation of the system’s timing constraints. The genetic
algorithm was considerably superior to a random test-generation scheme
in this instance. In [86], the authors tackle the very important question of
when to stop testing software. This question is usually approached
through the use of software reliability models, such as we discuss in
Chapter 3. The authors of [86] instead look for a fuzzy function (i.e. a
function of fuzzy numbers) to serve as a reliability function. Since this
function is deterministic, it can be solved using numerical optimization
techniques, yielding the optimal release time for the software. Finally,
neural networks were used to create automated software oracles in [289].
Test oracles automatically determine whether the output of a software
system is correct or not, based on a model of the software system. They
are extremely important in the automated testing of large software
systems, since manually executing a single test case to determine the
correct output is a time consuming task that does not scale up to the huge
test suites needed for modern software. In [289], a neural network was
trained to mimic a software system, and then detect any changes in
behavior when the software system was modified.

2.6 Remarks

A large amount of research has been directed at the problem of
testing software in the last 40 years. The goal of this research is always
the improvement of software quality; that is, engineers seek ways to

Software Testing and Artificial Intelligence 63

reveal as many program faults as possible before the program is shipped
to a customer. The difficulty of this effort cannot be overstated; software
systems are becoming more and more complex, as developers seek to
take advantage of the explosive improvement in computer hardware.
Jones [122] reports that the very largest software systems (the enterprise
systems developed by SAP and others) are now reaching 500,000
function points in size. Automated testing support has now become
absolutely vital to the software industry, and artificial intelligence
approaches can be a very useful part of automated testing. Memon’s
recent development of an A1 planning system for GUI testing [1851 is a
very important contribution, as are the genetic algorithms discussed in
Section 2.5. However, testing by itself is simply not sufficient; engineers
cannot hope to visit even a significant fraction of the possible states of a
large software system. It is clear from the discussion in this chapter that
testing techniques cannot provide assurance that a software system is
correct, and so alternative mechanisms to infer the reliability and quality
of a software system are required.

In the next three chapters of this book, we present experimental work
concerning just such alternative mechanisms. In Chapter 3 , we take a
fresh look at software reliability modeling, and investigate nonlinear
determinism and chaos as an alternative mechanism to create software
reliability models. By examining three software reliability datasets using
nonlinear time series analysis, we will show that a nonlinear
deterministic process appears to be a superior explanation to stochastic
processes for the dynamic behaviors in these datasets. This result has
significant implications for software reliability modeling; it shows that
the stochastic models normally used in software reliability models may
not be representative of the actual uncertainty present in software
reliability data; the data may be irregular rather than random. In
Chapters 4 and 5 , software quality models based on software metrics are
examined. Intriguingly, the literature on using computational intelligence
and machine learning to develop such models has two significant holes:
the well-known fuzzy c-means algorithm has never been used in this
area, and the technique of resampling a dataset to correct for skewness is
also absent. Accordingly, a fuzzy cluster analysis of 3 software metrics
datasets is described in chapter 4, and a resampling technique applied to

64 Computational Intelligence in Sofhvare Quality Assurance

these three datasets in chapter 5 . The outcome of these two chapters is a
practical suggestion for using machine learning and resampling
techniques in conjunction with a system prototype. An automated filter
for recognizing potentially failure-prone system modules in the context
of a given project is suggested as an addition to current software
development processes.

Chapter 3

Chaos Theory and Software Reliability

3.1 Introduction

Reliability, in the general engineering sense, is the probability that a
given component or system in a given environment will operate correctly
for a speciJied period of time. Notice that this definition means that
reliability is dependent on the environment in which a component or
system is placed, and how long the period of observation is. In general,
the longer a system is running, the greater the chance of failure becomes.
Placing a system in a different environment could increase or decrease
the chance of a failure occurring [162]. Software reliability is defined as
the probability that a given software system in a given environment will
operate correctly for a specijiedperiod of time. As part of the software
engineering process, developers attempt to gauge the reliability of their
software, and compare the current level of reliability with the past history
of that software. If a software system is experiencing fewer failures as
time goes on, the reliability of that system is said to be growing. This is
obviously the desired situation; software that is experiencing an
increasing number of failures as time proceeds is a project manager’s
nightmare. Assuming a project is experiencing reliability growth, two
questions have to be answered: when should the software be shipped,
and what will its reliability be at that time? These questions are answered
by the use of software reliability models [1741.

A basic assumption in software reliability modeling is that software
failures are the result of a stochastic process, having an unknown
probability distribution. Software reliability models (e.g. [88, 1 17, 2061)

65

66 Computational Intelligence in Software Quality Assurance

specify some reasonable form for this distribution, and are fitted to data
from a software project. Once a model demonstrates a good fit to the
available data, it can be used to determine the current reliability of the
software, and predict the reliability of the software at future times [1741.
The central question in this chapter is, why are software failures modeled
as stochastic processes? After all, no software developer rolls a set of
dice and says “Aha! Time to make a mistake!” Unlike failures in
hardware systems, where the random occurrence of material defects is
unavoidable, every software failure is the result of a human mistake.

Randomness is a particular kind of uncertainty, one that is properly
modeled by probability theory. It is the species of uncertainty concerned
with events that follow the law of large numbers. This law is based on
the idea that there is an underlying “true” probability distribution with
mean p for some experiment or phenomenon. The law of large numbers
states that as you repeatedly perform the experiment or sample the
phenomenon, the sample mean will converge to p for an infinite number
of samples [249]. However, other kinds of uncertainty exist, for which
probabilistic models are not appropriate. For instance, the uncertainty
present in human language, commonly referred to as “vagueness,” is not
random in nature. It is, in fact, just imprecision, and can be represented
by fuzzy sets [146]. Our investigation in this chapter centers on
experimentally determining what form of uncertainty is present in three
sets of software reliability data; is the data drawn from a stochastic
process, or is another mechanism at work?

There does not seem to be a mechanism for bringing the law of large
numbers into play in software reliability experiments. Previous authors
have offered a few qualitative statements to support their treatment of
time-to-failure or number of failures as a random variable. These are
usually limited to a few sentences in the introduction to a paper. The
arguments used include the statement by Musa that “Since the number of
failures occurring in infinite time is dependent on the specific history of
execution of a program, it is best viewed as a random variable ...” [209]
or simply the assumption that “The life lengths of the software at each
stage of development are random variables ...” [1801. A more specific
assertion, due to Musa [206], is that while a programmer may not make
errors randomly, the location of errors in the code is random, and the test

Chaos Theory and Software Reliability 67

case inputs applied to the software are random. The latter point has been
extensively criticized. Littlewood [17 13, Schneidewind [260], and Cai,
Wen and Zhang [33] have all pointed out that test cases are not randomly
selected, but rather are chosen based on some test plan. This eliminates
one obvious source of randomness, although during specific periods of
reliability testing (as opposed to just debugging), test inputs will be
selected at random (see Chapter 2). The well-known relationship
between module complexity and module failures [67, 1671 is further
evidence that the locations of faults in source code are not random.
Littlewood goes on to assert that failures do not follow a probability
distribution as such; he argues for the use of Bayesian inference instead
[171]. In a similar vein, Cai, Wen and Zhang argue that there is no
repeated sampling of a phenomenon in software testing, and hence the
law of large numbers is irrelevant [33]. They argue for the use of fuzzy
set theory to represent the uncertainty present in software reliability. The
entire debate over randomness in the literature has been conducted via
qualitative statements; there is no hard evidence favoring one point of
view over another. The main result of this chapter is a statistical test of
the hypothesis that software failures arise from a stochastic process;
these results indicate that failures are likely the result of a complicated
deterministic process, rather than a stochastic process.

Software failures ultimately arise from mistakes in the program’s
source code, mistakes that are made by human beings. Human mistakes
in general do not appear to be random events; more specifically, there is
no probability distribution that has been shown to govern when a
programmer will make an error. Instead, the infrequent and unpredictable
occurrence of human errors seems to more closely resemble the form of
uncertainty known as irregularity. This form of uncertainty is
qualitatively different from randomness, and incorporates such
phenomena as intermittency, bifurcations and rare events. Irregularity is
best modeled by chaos theory and fractal sets, in the same way that
randomness is best modeled by probability theory. This work is in
accordance with a basic tenet of CI: that there are different forms of
uncertainty, and when they are encountered, the appropriate modeling
technique must be employed [223]. The causal model for software
failures we propose is that faults are irregularly distributed in the input

68 Computational Intelligence in Software Quality Assurance

space of a program. More specifically, it is hypothesized that the subset
of the input space which will trigger a fault (the fault set) is a fractal set
[84, 1521. The uncertain nature of software failures is thus a result of the
peculiar geometry of fractal sets, instead of any inherent randomness. In
order to directly test this hypothesis, it is necessary to reconstruct the
complete fault set of a program, which is impossible given the nature of
the datasets under study. However, an implication of this hypothesis is
that a time series of software failure occurrences will show evidence of
deterministic behavior. Since the software reliability datasets under study
consist of exactly this type of data, testing for this implication is the main
focus of this chapter. Finding evidence of deterministic behavior in these
datasets will indirectly support the hypothesis of a fractal fault set, and
will directly demonstrate that irregularity is an important feature of
software reliability growth

Nonlinear time series analysis is the name given to a collection of
techniques for analyzing time series data, which are based on chaos
theory. In nonlinear time series analysis, low dimensional chaos is used
as an alternative explanation to linear stochastic processes in modeling
and forecasting complex signals. This alternative implies that a
deterministic process is the basis of the time series, rather than a random
process, and that deterministic models should perform better in
predicting reliability growth for software systems. However, the
sensitivity to initial conditions displayed by chaotic systems means that
this predictability is limited to a short time frame, beyond which any
prediction scheme becomes useless. The main problem in nonlinear time
series analysis is that the theorems on which these techniques are based
assume an infinite amount of data. The limitations of finite time series
make is possible for undifferentiated white noise to sometimes appear to
come from a low-dimensional chaotic system. Considerable effort is thus
devoted to noise reduction, to ensuring that the time series under
examination are stationary, and to removing temporal correlations
(which can also be mistaken for chaotic dynamics) [130].

Three software reliability datasets have been analyzed using the
nonlinear time series techniques described in [1301 and implemented in
[103]. One of these datasets was collected by Musa [45], while the
remaining two are originally from IBM, and were obtained from [174].

Chaos Theoly and Software Reliabilify 69

These datasets are plotted in Figures 3.1-3.3. In these figures, the x-axis
represents the i-th failure, and the y-axis represents the elapsed time
between the (i-1)-th failure and the i-th failure (the interfailure time).
Viewed in this form, the time series exhibit some very irregular behavior,
and show a considerable amount of structure. However, a nonlinear test
reveals that the datasets are indeed stationary. Since the software systems
underlying these datasets were undergoing constant change, one would
expect to see evidence of nonstationary behavior. However, regression
testing is not included in these datasets, and hence the test cases that
caused failures are not actually revisited. Thus, the datasets are
effectively stationary. Clear evidence of deterministic behavior has been
found in these datasets, which was quantified using a standard technique
in nonlinear time series analysis, known as surrogate data. Various
analytical probability distributions have been fitted to the datasets, but
the Kolomogorov-Smirnoff goodness-of-fit test indicates that none of
these distributions actually represent the data. These results indicate that
the standard assumption of an underlying stochastic process is
inadequate for these datasets.

%stem 5 Reliebllltv Growth Data

Figure 3.1 : Reliability Growth Data for System 5

70 Computational Intelligence in Software Quality Assurance

Figure 3.2: Reliability Growth Data from ODCl

Figure 3.3: Reliability Growth Data from ODC4

Chaos Theory and Sofhvare Reliability 71

In Section 2 of this chapter, concepts from hardware and software
reliability engineering, and previous work in software reliability
modeling are reviewed. The nonlinear time series analysis techniques
used in this investigation, and the specific characteristics of the datasets,
are presented in Section 3, and Section 4 is devoted to the experimental
results of this investigation and their significance.

3.2 Reliability Engineering for Software

This section is devoted to a review of reliability engineering, as
applied to both hardware and software systems. First, an overview of
reliability engineering in general and the special challenges of
determining the reliability of a software system is provided. These
challenges arise from the fact that software is logical entity, rather than a
physical object. The rich variety of software reliability models will then
be discussed.

3.2.1 Reliability Engineering

Reliability engineering is the discipline of scientifically estimating
how well a technological system will perform its intended function.
Reliability engineering cuts across all the traditional disciplines of
engineering; after all, whether engineers are building a bridge, a jet
airplane, or a hydraulic valve, they must eventually be able to quantify
how long this system will perform correctly. Technically, reliability is
defined as the probability that a given technological system, in a given
operating environment, will fulfill its intended fimction for a given
period of time [1621. There is a close connection between reliability and
quality. In the popular mind, they may be one and the same. After all, a
quality product is one that does what it’s supposed to do, when the user
wants it done. However, in quality control, reliability is viewed as an
attribute of a product, while quality can be considered the degree of
excellence of the product when all attributes of the product are
considered [92]. Reliability is also closely allied with safety; where
reliability engineering is concerned with product defects that can cause a

72 Computational Intelligence in Software Quality Assurance

failure, safety engineering is concerned with those product failures that
may create a hazard to life, limb or property. As an example, consider an
automated tram, such as may be found at many airports around the U.S.
A number of attributes will contribute to the quality of this system; one
such could be the maximum change of acceleration experienced by
passengers. A rough ride will create a perception of poor quality, while a
smooth ride will indicate higher quality. The reliability engineer, on the
other hand, is concerned about the possibility of failures. What, for
instance, is the probability that the tram will become stuck at a station, or
even worse, between two stations? The safety engineer is concerned
about failures that might create a danger to passengers or property, such
as failing to stop before the tram hits an end wall [1621.

While reliability is a crucial attribute of any technological system, it
is still only one of a number of design parameters an engineer must keep
in mind. The most reliable car in the world will sit forever in a dealer’s
lot if it costs a million dollars and reaches a top speed of 45 miles per
hour. Cost, performance, and reliability are necessary and conflicting
requirements for any product. Much of the art of engineering design
involves balancing these conflicting demands [1621.

3.2.1.1 Reliability Analysis

The reliability of a technological system is not the same at every
moment of the system’s lifetime. In fact, three distinct “epochs” can be
observed in most systems: the infancy period, normal operation, and
wear-out. The infancy epoch is the time period immediately following
the system’s manufacture and installation. For most technological
systems, this is a critical period, during which design & manufacturing
flaws will come to light and cause a failure. This circumstance is referred
to as an “infant mortality” failure. During routine operation, failures are
normally the result of chance events in the system’s environment, and are
not time-dependent. Unexpected external events are the prime source of
failures during this time period. Near the end of the useful life of a
system, parts age and wear out, leading to a sharp increase in the number
of failures. These wear-out failures signal the need to replace the system,
and mark the end of the system’s lifetime. A pictorial representation of

Chaos Theory and Sofmare Reliability 73

this discussion can be created by graphing the expected failure rate of a
system with respect to time, as in Figure 3.4. This idealized “bathtub”
curve is typical of most technological systems [162].

Figure 3.4: System Failures Rates Over Time

Formally, a system’s reliability, its failure rate, and the Mean Time
To Failure (MTTF) are related in the following manner [1621. Treat the
running time of a system as a random variable, denoted by T, and define
the following probability density function

f (t) = P(t < T I t + At} (3.1)

as the probability that a failure occurs in the interval [t,t+At] for
vanishingly small At. This gives the cumulative density function

where F(t) represents the probability that a failure occurs before time t.
Since the definition of reliability is the probability that a failure does not
occur before time t, the reliability function is

(3.2)

14 Computational Intelligence in Software Qualily Assurance

R(t) = 1 - F (t) (3.3)

As boundary conditions, R(0) = 1 and R(co) = 0.
The failure rate and the MTTF may be determined from the reliability

function and the failure PDF. The failure rate A(t) is the probability that
the system will fail during the interval [t,t+dt] given that the system does
not fail before time t. This may be expressed in terms of the failure PDF
and the reliability function as

The failure rate is also often referred to as the hazard rate or mortality
rate. The MTTF, as its name implies, is just the expected value of the
failure time t, yielding

m

A4TTF = J‘tf (t)dt ,
0

or equivalently [1621,

m

A4TTF = IR(t)dt
0

(3.5a)

(3.5b)

Thus far, the form off(t), the failure PDF, has not been specified.
Obviously, knowing A t) is crucial to any reliability analysis.
However, given the sheer complexity of technological systems and
the world with which they interact, knowing the “true” form off(t)
is an unrealistic goal. Instead, reasonable approximations are used,
based on assumptions about the system’s behavior over time. For
instance, if infant mortality and aging can be neglected, then only
random failures occurring during normal operation are of any
concern. Since these are time-independent, the failure rate is

(3.4)

Chaos Theovy and Software Reliability 75

constant. This leads to the exponential distribution as a form for
At> :

From this the reliability function and MTTF are

(3.7)
-af R(t) = e

~ T F = ,J’ a (3.8)

The exponential distribution is only appropriate for modeling a
constant failure rate. In order to include infant mortality or aging, other
distributions must be used. The most common are the normal, the
lognormal, and the Weibull distributions. The normal distribution is
appropriate when an expected time-to-failure is known, along with a
confidence interval for that time-to-failure. The lognormal is useful in
the similar situation when an estimated failure time is known, along with
a factor n that plays a similar role to a confidence interval, i.e. some
degree of confidence that the true failure time lies in the interval
[f / n, nt] can be obtained [1621.

One of the most widely used distributions in reliability analysis is the
Weibull distribution. If the number of failures over time obeys a power
law, then this distribution can be very useful. The failure rate is assumed
to follow the power law

This yields the failure PDF

(3.6)

(3.9)

76 Computational Intelligence in Software Quality Assurance

and the CDF and reliability are

(3.10)

(3.11)

(3.12)

The Weibull is an extremely flexible distribution; in [162], Lewis shows
how the bathtub curve of Figure 3.4 could be approximated by the
superposition of three Weibull curves. However, this flexibility comes at
a price. Closed-form expressions for the MTTF are difficult to obtain,
and no closed-form solution exists for the maximum-likelihood estimates
of the parameters rn and B [244].

For many technological systems, the first failure is also the last.
However, some systems can be repaired after they fail; these are known
as repairable systems. For repairable systems, the MTTF remains an
important quantity. However, the probability of the system being
operational at any given time, and the average time to repair the system,
now become important quantities as well. These are referred to as the
availability and the Mean Time to Repair (MTTR), respectively.
Availability is simply defined as the probability that the system is
operational at time t. A related quantity is the steady-state availability
A(co), which represents the system availability after some initial failures
have occurred. To define the MTTR, begin by defining the
maintainability of the system. Let the time required to repair a failure be
a random variable T, and define the PDF m(t) to be

m(t) = P{t I T 5 t + At] (3.13)

Chaos Theoly and SofhYare Reliabilify 77

The maintainability of the system is defined as the corresponding CDF
M(t). The MTTR is then the expected value of m(t):

03

MTTR = bm(t)dt
0

A key point about repairs is that they are

(3.14)

made by humans, and are
thus subject to a wide variation of skill, experience, training, diligence,
and even day-to-day performance. Thus, it is much more difficult to fit a
distribution for m(t). Since the availability of a system is contingent on
both the MTTF and MTTR of the system, this means that estimating the
steady state availability is quite difficult. However, if we presume that
the MTTR is relatively constant, the approximation

MTTF
MTTF + MTTR

A(m) = (3.15)

can be used to represent the steady-state availability of a system [162].

3.2.1.2 Reliability Testing

All engineering analysis is based on scientifically gathered data, and
reliability engineering is no different. The collection of reliability data is
referred to as reliability testing. There are two distinct forms of reliability
testing, each with its own procedures and goals. Reliability Growth
Testing is conducted to find and remove the causes of failure in a
technological system, while Life Testing attempts to determine the useful
life of that technological system. Common to both forms of testing is the
constraint of cost; if an expensive system must be tested to destruction to
obtain a single observation, obtaining a statistically valid sample may be
prohibitively expensive. Time is also a constraint, since products must be
shipped within a reasonable amount of time. Failure analysis, censoring,
and acceleration are techniques used in reliability testing to overcome
these constraints [1621.

78 Computational Intelligence in Sofmare Quality Assurance

Reliability growth testing is typically conducted on system
prototypes, before the design is frozen. The goal of this form of testing is
to reveal the system’s failure modes, so that they may be eliminated by a
design change. A system prototype is activated, and run until it fails. The
time of this failure (the running time until the failure occurred) is
recorded. After each failure is observed, the failure is analyzed and its
cause determined. The product is then repaired, and the cause of that
failure is removed. The prototype is then reactivated, and run until the
next failure is observed, and the cycle repeats. The n failure times ti
(i = 1 , 2 , ..., n) constitute the reliability growth data for this system.
There appears to be a power-law relationship between the number of
failures and the total running time for the system (the sum of the ti’s):

n(T) = ebT‘-a (3.16)

where n(7) is the number of failures occurring by time T and T =

Reliability growth data will normally continue to be gathered even after a
system goes into operational use, both to refine the system and to set
maintenance policies [1621.

Life testing, unlike reliability growth testing, explicitly requires the
use of multiple copies of a technological system. The individual systems
are run until they fail, and from this data an estimate of the expected
lifetime of the system in service is obtained. However, it is usually
infeasible to wait for all the copies of the system to fail, and sometimes
the predicted service life of the system is so long that waiting for even
one copy to fail naturally is unacceptable. The techniques used to
overcome these constraints are censoring and accelerated testing.
Censoring is the removal of some copies of a system from the test before
they actually fail, or because their failure occurs under circumstances
that do not affect the expected lifetime of the system. Censoring is a
better option than simply deleting the removed unit from the test entirely,
since there is valuable information available from those units up until the
time they are removed [162].

Pressures on the design team to end testing early come from
economic factors; there is a need to put the system into production before

ti.

Chaos Theory and Software Reliability 79

market conditions render it unprofitable. Those same pressures make it
even more difficult to test systems whose design life is very long. In
those cases, it is not practical to wait for the length of time it would take
for even one copy of the system to fail under normal use. In these cases,
accelerated life testing is used to obtain usable estimate of the life
expectancy of the system. Acceleration is a technique for compressing
the operational life of a system into a much smaller period of calendar
time than would ordinarily be required. The simplest form of
acceleration is compressed-time testing, which can be used on systems
that do not run continuously throughout their lives. By running these
systems continuously instead of intermittently, we can obtain an estimate
of their life expectancy in much less time than would ordinarily be
required. Likewise, start-up failures can be accelerated by constantly
starting and stopping the system. For those systems that run
continuously, a technique called advanced-stress testing can be used. The
system is subjected to a greater load or a harsher environment than it
would ordinarily encounter, which should lead to an increased failure
rate. If a quantitative relationship between the increased stress and
reduced operating life can be established, then an estimate of the true life
expectancy can be generated [1 621.

3.2.2 Software Reliability Engineering

The integration of software reliability engineering into the software
development life-cycle must go considerably beyond just testing the
product. For example, a study of best current practices for software
reliability engineering was completed at AT&T in the early nineties [70].
Twenty process activities were identified that were necessary for
integrating software reliability into the development cycle; the activities
began in the feasibility and requirements studies, and continued right
through the deployment and maintenance phases. In the feasibility and
requirements phase, the expected operational usage of the software must
be specified, and what constitutes a failure must be defined. The trade-
off between cost and reliability must then be determined. During design
and implementation, the overall reliability objective must be decomposed
into component reliabilities, and each component must be designed and

80 Computational Intelligence in Software Quality Assurance

implemented to meet its allocated reliability. During systems test,
reliability growth testing is carried out, and eventually the product is
certified as having met its reliability objectives. When the system is
mission-ready, its field performance and customer satisfaction must be
tracked, and any evolution of the software must be certified to meet the
original system reliability goal. Another recommendation in [43] is to
employ statistical designs during the testing phase, rather than relying
solely on the tester’s judgment to decide what test cases should be run. A
standard for software reliability engineering has been jointly authored by
the American National Standards Institute (ANSI) and the American
Institute of Aeronautics and Astronautics (A I M) [4].

Software reliability engineering is based on the collection of
reliability growth data. Plainly, the debugging cycle of finding, analyzing
and fixing software faults yields precisely this type of data. The data
collected during this cycle is usually the amount of time that the software
has operated since the last failure, excluding regression testing.
Regression testing consists of re-running test cases that the system
passed before a change was made; the goal is to determine if that change
has degraded the reliability of the system. Regression testing data is not
useful as reliability data, because it is not randomly selected; the choice
of what subset of previous test cases to use as a regression test suite is an
important economic choice, as they will not reveal new faults, only
potential faults related to the repair of a known fault. Life testing, on the
other hand, is not conducted in software reliability engineering. The
reason for this goes back to the logical nature of software; unlike
physical systems, which exist in the analog world, digital information
like software can be copied perfectly, every time. Thus, there is no
variation between copies of a software system, and no need to estimate
the expected lifetime of the software. The time required for one copy to
fail will be the exact time required for each copy to fail, given identical
inputs and environments.

Another significant difference between hardware reliability and
software reliability may be observed in the failure rates of hardware and
software systems. The failure rate of a system normally changes over
time. Hardware systems typically exhibit the behavior shown in Figure
3.4. The typical failure rate of a software system, on the other hand, will

Chaos Theoly and Sofhvare Reliability 81

have a general form similar to Figure 3.5. As with hardware systems,
there is an initial region in which the failure rate decreases sharply,
corresponding to system testing and debugging. After this, there is a
fairly constant failure rate, corresponding to system usage. However,
there is no final region of increasing failures, because software does not
wear out. Software, being a logical entity, is not subject to wear and
environmental degradation. A piece of software is as capable of fulfilling
its original mission thirty, forty or fifty years after it was installed as it
was on the first day it was operational. Note, however, that this neglects
the effect of maintenance and enhancement activities on the software.
Systems that undergo extensive maintenance and enhancement do
experience reliability decay, as errors made by the maintenance and
enhancement teams accumulate over time [87, 1741.

Figure 3.5: Software Failure Rates Over Time

One area in which hardware and software systems seem to be similar
is in their response to an increased load. Reliability engineers have long
known that when a system is placed under an increased load, the system
will fail more often. Furthermore, this failure response need not be
linearly related to the load increase [162]. In this context, the work of
Iyer and Rossetti [1141 is very important, because it establishes a similar

82 Computational Intelligence in Software Quality Assurance

behavior for software systems. The authors studied the performance of
the operating system of an IBM 3081 at the Stanford Linear Accelerator
Center, and found that the number of failures was correlated with the
volume of interactive processing (paging rate, operating system CPU
time, etc.), but was not correlated with the overall CPU usage. This
indicates that “loads” for a software system are interactive operations,
and not compute-bound processes.

Other experimental investigations of software failures have been
conducted, especially at NASA. Dunham reports on fault
characterization experiments conducted at NASA in the mid-eighties in
[62]; follow-up experiments in the late eighties and early nineties are
reported in [63, 761. The latter reference also establishes two
characteristics of software faults: first, individual faults seem to be
associated with contiguous regions of the input space that will trigger
them; these were referred to as error crystals. Secondly, a log-linear
relationship between the failure rate and the number of remaining errors
in a software system was described. These two characteristics are very
suggestive in the context of the investigation in this chapter. One of the
characteristics of a fractal set is that there must be an inverse power-law
relationship between the size of elements in a set and elements having at
least that size; thus, there will be a few large elements and many smaller
ones [178]. Taking the size of a fault to be the hypervolume of the
associated error crystal, the hypothesis of a fractal fault set implies that
there should be an inverse power-law relationship between the size of a
fault and the number of faults having at least that size. The fault
detection rate (i.e. failure rate) will initially be very high, but will drop
off sharply as the few large faults are found; the numerous smaller faults
are much harder to detect. A log-linear relationship between these
quantities thus makes intuitive sense. This log-linear behavior contradicts
a basic assumption in many popular software reliability models, as will
be discussed in the next section.

3.2.3 Software Reliability Models

Once a software system’s reliability growth data has been collected,
the next step is to fit a probability distribution to this data, and thereby

Chaos Theory and Software Reliability 83

obtain the reliability function, failure rate, and mean time to failure for
the software. Such a distribution is known as a software reliability
growth model (SRGM), and they play a key role in software
development. Used judiciously, they help determine when a software
system may be released into the marketplace, and how reliable that
system is. The history of software reliability models goes back to the
early 1970s, and continues to be an active research area today. The first
software reliability model to gain widespread acceptance was the
Jelinski-Moranda de-eutrophication model [1 171. The authors discussed
the state of the art in software reliability research in the year 197 1 ; some
of their comments are still depressingly applicable today. Their model
assumed that the failure rate of a software system at any time is
proportional (instead of log-linear) to the number of errors remaining in
the software at that time. Maximum likelihood estimates for the two
parameters of the model are developed, and the model is tested on real-
world software failure data (in this case, trouble reports from a U.S.
Navy combat information system). This paper sets a pattern that most
software reliability papers follow: certain assumptions about software
failures are discussed, a model is developed along with any necessary
estimation procedures, and then the model is applied to a real-world
dataset(s). Forman and Singpunvalla [80] discuss the question of when to
stop testing and how to predict whether or not a software system still
contains bugs, using the Jelinski-Moranda model as a starting point.
Other papers on when to stop testing include [253, 2361. The
incorporation of an optimal release time is now a common feature in
software reliability papers.

There appear to be three major trends in software reliability research:
the use of Non-Homogeneous Poisson Process (NHPP) models, Bayesian
inference, and time series analysis. An NHPP is a Poisson process with a
time-varying mean value function. This means they are counting
processes, having the following characteristics: (i) the total number of
failures N(t) 2 0, (ii) N(t) E Z, (iii) s < t 3 N(s) < N(t), (iv) s < t =>
N(t) - N(s) is the number of events occurring in the open interval (s,t),

where Z is the set of integers [251]. An NHPP is governed by the
expression

84 Computational Intelligence in Software Quality Assurance

(m(t>Ik e-m(t) P{N(t) = k) =
k!

(3.17)

where N(t) is the number of events observed by time t, m(t) is the mean
value function, and the intensity function is given by the time derivative
of m(t) [87]. The use of NHPP models is generally considered to have
begun with a paper by Goel and Okumoto [88], although a conference
paper using an NHPP was published by Schneidewind [260] in 1975.
Like many papers in this field, Jelinski and Moranda’s assumption that
the failure rate is proportional to the remaining number of errors is
incorporated into this model (an assumption that is not supported by the
experimental work of [76]). The model also assumes that failures in
distinct intervals are independent of each other. These two assumptions
are widespread in software reliability modeling, even though authors
have criticized them since 1975 [260]. Another very important model is
the basic execution-time model developed by Musa [206]. This is
probably the most widely used software reliability model today [1741.
Musa’s model was the first to explicitly use CPU time instead of
calendar time as the unit of measurement. In addition, Musa collected a
large number of extremely high-quality datasets, which he describes in
[206] and which are currently archived at [45]. These datasets have
formed the basis for many experimental investigations in the last 20
years. Other NHPP models include the logarithmic Poisson [202, 209,
299, 3011. The development of new NHPP models continues up to the
present day; some recent examples are [1 12,2351.

Bayesian inference in software reliability models essentially consists
of treating the parameters of a reliability model as random variables
instead of constants to be estimated. Some reasonable prior distributions
are assumed for these parameters, and Bayes’ theorem is then invoked to
determine the posterior distributions using reliability data. The first
Bayesian model was presented by Littlewood and Verrall in [172]; the
development of Bayesian models continues today, with some examples
being [lo, 119, 151, 171, 180, 237, 238, 2671. As with the NHPP
models, there are a number of assumptions involved in the Bayesian
models; a nice illustration of this point may be found in [1801, where no
less than 8 assumptions are made for “Model I.” A most revealing
comment is that two of the assumptions were included “...based on
mathematical convenience.” The inclusion of simplifying assumptions to

Chaos Theo y and Sofmare Reliability 85

make the model computationally tractable is common; this has been the
source of much criticism of software reliability engineering in the past.

A few papers have used techniques from time series analysis to
examine software reliability data. A pair of papers [1 I 1, 2681 uses a
logarithmic transformation of software reliability data. This turns a
power law process into a first-order auto-regressive process. The
coefficient in this process was allowed to be random, and changing over
time. The AR process was then fitted to the transformed data. More
recently, Khoshgoftaar and Szabo [1421 used an auto-regressive
integrated moving average (ARIMA) model. They used both the failure
counts and a small number of complexity metrics as regression variables.
This is one of the few papers that integrate software reliability modeling
with software metrics, even though there is general agreement that the
two are related. However, the performance of the model in tracking the
original system is actually rather poor; the tracking error oscillates, but
the amplitude of those oscillations appears to increase over time. Chaos
theory was applied to software reliability modeling by Zou and Li in
[309]. The motivation for using chaos theory in that paper was the same
as in our current work; they also were not convinced that software
failures arise from a stochastic process. However, there are significant
methodological problems in [309] The datasets examined in that paper
were far too small for use in nonlinear time series analysis, and there was
no attempt to account for temporal correlations, non-stationarity, or a test
for the presence of deterministic behavior. Zou and Li simply applied the
correlation dimension algorithm to three very small datasets, and then
created a complex locally linear prediction model for those datasets. In
the field of nonlinear time series analysis, this is considered scientifically
unsound.

In addition to these three large-scale trends, there have been a great
many papers proposing software reliability models that are somewhat
unique. Littlewood proposed a semi-Markov process to model the
changes of control between modules in a program [1701. The idea in this
paper is that transfers of control between modules are failure-prone,
much like interfaces between hardware components. Okumoto [220]
used the logarithmic Poisson model of [209] to help construct a control
chart for software failures. The process has some similarities to the

86 Computational Intelligence in Softwave Quality Assurance

Shewart control chart, but there is a problem with the predicted values of
future failures. When these arc plotted with the current set of failures (as
in Figure 3 of [220]), all of the predicted values fall on one side of the
mean value, indicating a lack of control [92]. Karunanithi and Whitley
[1321 used a cascade-correlation network to perform one-step-ahead
software reliability predictions. If the hypothesis of deterministic
behavior in software failures is correct, then this sort of modeling is far
more appropriate than stochastic processes. Neural networks were also
used for software reliability forecasting in [133]. Kumar, Hariri and
Raghavendra [240] extend software reliability concepts to distributed
processing systems. They account for different network architecture by
integrating graph-theoretic concepts into software reliability studies.
Laprie et al. [153] describe a model called the Knowledge-Action-
Transformation (KAT) approach, which is based on extending renewal
theory to the nonstationary case. The resulting models are extremely
complex, and so simplified models are provided for everyday use. Cai,
Wen and Zhang [33] develop a software reliability model where the time
to failure is a fuzzy number rather than a random variable. Their model is
very simple, and incorporates many of the same assumptions found in
probabilistic models (i.e. perfect debugging, one fault is removed to fix
one error). Kanoun et al. [128] propose combining several existing
models into an overall modeling strategy, while Ohba [218] describes
two S-shaped reliability models and the hyper-exponential model. A pair
of papers describing exponential order statistic models for software
reliability may be found in [195,261].

There have been a number of critical reviews, surveys, and model
comparison papers in the software reliability literature. An oft-cited
review is Goel’s 1985 work [87], which includes a critical review of the
underlying assumptions of numerous models. Another review was
written by Yamada and Osaki [302]; this includes the logistic and
Gompertz curves, which were used for software reliability modeling in
Japan for a number of years. Littlewood’s 1980 review [171] is also of
interest. Musa proposed a classification scheme for software reliability
models in [208]; a more up-to-date work making use of this scheme may
be found in [73]. Comparative studies of different models may be found
in [134, 2771.

Chaos Theory and Sojhvare Reliabilily 87

3.3 Nonlinear Time Series Analysis

In this section, the techniques used in analyzing the software
reliability datasets, as well as some relevant characteristics of the datasets
themselves, are described. An important point that must be
acknowledged at the outset is that the data are not particularly well-
suited for study using nonlinear methods. None of the three datasets are
larger than roughly 2000 elements, and there is considerable
discretization noise present in them. Nonlinear time series analysis, on
the other hand, demands data of high quality and in large quantity. Data
sets on the order of 10000 elements or more are normally used in
laboratory experiments, while even the most robust nonlinear analysis
algorithms cannot tolerate a noise amplitude of more than 2-3% of the
actual signal. The experimental results in this chapter offer firm evidence
of deterministic behavior in these time series; while some indications of
chaotic behavior were also found, the limitations of the data prevent us
from reaching a definitive conclusion about chaos in software reliability
data [130].

3.3.1 Analytical Techniques

Kantz and Schrieber [130] is usually cited as the most up-to-date and
comprehensive treatise on the use of nonlinear techniques for the
analysis of time series data. This investigation applies the results and
algorithms developed in [130], and implemented in [103, 2621, to the
analysis of software reliability data, in which the interfailure times are
taken to be a time series. "Time," in these experiments, thus refers to an
index of the failures rater than physical time. A delay reconstruction of
the phase space of the software system corresponding to each dataset was
undertaken, and two-dimensional phase portraits of each system show
clear indications (in one case, dramatic indications) of deterministic
behavior. While this is not scientific evidence, it is reason to continue
using the techniques of nonlinear time series analysis in these datasets.
Using the method of surrogate data, this evidence was quantified through
statistical hypothesis testing. A nonlinear noise reduction algorithm was
used to clean the data, and the dimensionality of the phase-space attractor

88 Computational Intelligence in Sofmare Quality Assurance

in each dataset was estimated using the correlation dimension technique
[130].

A time series is a sequence of scalar measurements over time taken
from some interesting system. Information about the underlying system
is present in that time series, but extracting it can be a difficult task. The
scalar measurements themselves are just a complex projection of the true,
unobserved state variables of some system. In order to analyze a system
based solely on time-series data, the state space has to be reconstructed.
While the original state space cannot be uniquely determined, an
equivalent state space (in the sense that the two are related by a smooth,
invertible mapping) can be constructed using the method of delay
embeddings. Let a time series with k measurements be denoted by
x I , x 2 , ..., xk. A delay embedding of this time series is .a sequence of
vectors B, = (x, - (m - l)v, x, - (m ~ 2) ”,..., x, - ,,, x,). This is an m-dimensional
vector, formed from successive elements of the original time series. The
time lag v takes each consecutive element, every second element, every
third element, etc. In general, since delay vectors overlap, a time series of
n elements will be converted into a sequence of y2 - (m - l)v delay
vectors. Another way to look at the time lag is that it increases the time
window covered by each vector.

The parameters rn and v must be chosen for each time series.
Unfortunately, there is no single algorithm that gives the proper values
for m and v for any arbitrary data set. One known fact about rn, the
dimension estimate, is that there is a qualitative difference between
values of m that are too small, and values that are sufficiently large. If the
value for m is smaller than the actual dimension mo, then there will be
unresolved projections of the state variables, creating false neighbors.
For m > mo, these false neighbors do not exist. Thus, searching for false
neighbors is a powerful technique for finding a good estimate of m.
There are no such results for the time lag v; mathematically, every choice
of v is equivalent to every other choice. From a practical standpoint,
however, a proper choice of v helps nonlinear analysis, while a poor
choice hinders it. Qualitatively, small values of v make successive delay
vectors more and more correlated, so that the phase portrait of the system
will be concentrated along the diagonal. Large values of v make the
delay vectors virtually uncorrelated, so that they fill a cloud in the phase

Chaos Theory and Software Reliability 89

portrait. The best strategy is to select a promising range for v, and then
manually inspect each phase portrait. Since noise in the times series
denies the analyst access to infinitesimal length scales, the largest
possible deterministic structures are desired. Usehl hints about
promising values of v can be found from the first zero of the
autocorrelation hnction, or from the first minimum of the time-delayed
mutual information [1301.

The phase portrait of a system provides qualitative information about
a system. A truly stochastic process will fill a cloud in phase space;
deterministic systems with no noise will show clean trajectories. As an
example of the latter, consider the Henon map, shown in Figure 3.6. This
system is determined by the equations

2 x n + l = a - x n + b p
yn + 1 = Xn

(3.18)

Figure 3.6: The Henon Map

90 Computational Intelligence in Software Quality Assurance

where a=1.4 and b=0.3 (this choice of parameters induces chaotic
behavior in the Henon map [130]). Realistic time series fall somewhere
between these two extremes. The appearance of structure in the phase
portrait, or even just clear holes, probably signals the presence of
deterministic dynamics of some kind. An inspection of the phase portrait
of a system is thus a critical first step in analyzing that system.

The algorithms for nonlinear time series analysis all assume that the
time series is taken from a stationary process, at a sufficiently high
sampling rate. If this assumption is violated, then the algorithms will
produce spurious results. Thus, a check for stationarity is needed. In the
domain of nonlinear time series, linear statistics such as correlations are
not used to test for nonstationarity, as they cannot detect nonlinear
relationships. In a number of chaotic systems, parameter drifts may not
result in any change of the linear statistics; only nonlinear relationships
are affected. Instead, a technique called the space-time separation plot is
used [130, 2421. The space-time separation plot creates curves of
constant probability for two points to be within a spatial distance of E of
each other, assuming that the time difference is T. If these curves saturate
in a plateau (or a stable oscillation), then the time series is drawn from a
stationary process at an adequate sampling rate. Another way to look at
the space-time separation plots is that they show whether or not the time
scale of the observations made on a system is sufficiently larger than the
internal time scale of the system itself [1301.

Once the phase portrait provides an indication that deterministic
dynamics are present, and the space-time separation plot shows that the
time series is stationary, the next step is to quantify the evidence for
determinism through statistical hypothesis testing. The null hypothesis is
that the time series is explained by a stochastic process; if the null
hypothesis is rejected with at least 95% confidence (significance
a=0.05), then a scientific basis exists for saying that nonlinear
determinism, not randomness, explains the time series. Obviously, this
test is rather more involved than the student’s t-test! The technique used
in the literature is called the method of surrogate data. Essentially, one
constructs a group of time series that are random in nature, and applies a
test statistic that distinguishes between random and deterministic time

Chaos Theory and Sofoivare Reliability 91

series (a nonlinear prediction error is a good example). If the original
time series has a significantly different value of the statistic from the
random sets, then we reject the null hypothesis. The test statistics used in
this investigation are the time reversal asymmetry statistic

(p - y. - d)'

(p - p - d)'
(3.19)

and a prediction error obtained from the locally constant noise reduction
scheme discussed later [262,283].

The method of surrogate data was introduced to ensure that the
random data sets have the same properties as the original data, but still
conform to the hypothesis of random behavior. Essentially, one generates
a sequence of random numbers, manipulates that sequence to match a
given hypothesis (i.e. that the original data comes from a linear Gaussian
process distorted by a nonlinear observation function), and then uses the
"polished" sequence as a template for shuffling the original data. This
shuffle is then one surrogate data set. Obviously, the surrogate has the
same mean and variance as the original data set. One can also ensure that
the power spectrum of the surrogate is the same as the original. For a
two-sided determinism test, (2la) - 1 surrogates are generated, where a
is the desired significance of the test. If the test statistic for the original
data is greater or lesser than all the values for the surrogates, the null
hypothesis is rejected with significance a [130, 2831. Some authors will
reject the null hypothesis if the test statistic for the original data is at least
2.5 standard deviations from the mean of the test statistics for all data
sets. However, this assumes that the values of the test statistic are
normally distributed, which may be far from the truth [20, 1301.

Any realistic time series will be contaminated by noise. This noise is
a very serious problem for nonlinear time series analysis. Even the most
robust algorithm, the correlation dimension, cannot tolerant a noise
amplitude in excess of 2-3% of the total amplitude of the time series
[130]. Thus, an important step in nonlinear time series analysis is the use
of a nonlinear noise reduction scheme. One such scheme, the locally
constant projective scheme, has been described in [I301 and

92 Computational Intelligence in Software Quality Assurance

implemented in [262]. Assume that a point X in an rn-dimensional delay
embedding has k neighbors within a radius of E. The next point along the
system trajectory passing through X is predicted to be the mean of the
one-step evolutions of all k neighbors. This noise reduction technique
takes advantage of the property of continuity; trajectories that are
initially close will still be close together after a short period of time.
Even in chaotic systems, two trajectories that are initially close cannot
diverge at more than an exponential rate. This algorithm has been found
to be quite robust, and has been applied to a large number of time series
[130].

The phase-space attractor of a chaotic system will have a fractal
geometry. Fractal sets can exhibit self-similarity, and have a complex
structure at all length scales. The geometry of a fractal set is in fact so
unique that they can have a noninteger dimensionality, and this is a
characteristic signature of chaotic systems. In fact, the attractor
dimension is an invariant quantity for a given chaotic system, which
means that it is unaffected by scaling, rotation, etc. The correlation
dimension algorithm is normally used to estimate the dimension of a
chaotic attractor from a time series. One first computes the correlation
sum

(3.20)

where N is the number of delay vectors, E is a neighborhood, 0 is the
Heaviside step function, and xi, xj are delay vectors. The sum simply
counts the number of pairs of delay vectors that are within an E -

neighborhood of each other. For small values of E and infinite N, C(E) K
E?, and the correlation dimension D is defined as

d In C(E) D = lim lim
E + O N + ~ dln& (3.21)

Chaos Theory and Sofmare Reliability 93

This dimension will yield the correct, integer values for nonfractal
objects and is accepted as the best way of estimating a fractal attractor
dimension from time series data. In order to use this algorithm for the
practical analysis of a finite time series, the local slopes of the correlation
sum are plotted against the neighborhood E on a semi-logarithmic scale
for several embedding dimensions. If for all embedding dimensions m >
mo there is a region where the curves all plateau and saturate at a single
value, then that value is the correlation dimension. Note that the
correlation sum can be computed automatically, while the correlation
dimension has to be determined through expert interpretation [130].

3.3.2 Software Reliability Data

The analysis in this chapter involves three time series, each of which
consists of interfailure times from a commercial software system. Each
element of the time series is the time elapsed between the current failure
and the last failure. The data are time-ordered, i.e. the interfailure times
are recorded in the order in which they actually occurred, rather than
being sorted into ascending order (as is often done in statistical reliability
growth modeling). The noise known to be present in these datasets is
discretization noise; the data are discretized to integer values,
representing some time scale. For one time series, this time scale is the
nearest second; for the other two time series, this time scale is the nearest
day.

The first time series was collected by Musa [45]. It is referred to as
“System 5,” and consists of 831 interfailure times, recorded to the
nearest second. The system from which this data was collected was a
real-time commercial system, comprised of over 2.4 million object code
instructions. The data set was collected during the system test phase of
development, under careful controls. As with all datasets archived at this
site, the data were collected during the 1970s. This particular dataset is
the largest of the 16 software reliability datasets archived at [45].

The second time series was collected by IBM in the course of the
Orthogonal Defect Classification (ODC) project. The dataset is archived
in [174]. It consists of 1207 bug reports, each of which includes the date
of the failure. Thus, this data is discretized only to the nearest day and is

94 Computational Intelligence in Software Quality Assurance

not presented as interfailure times. In order to convert this dataset to
interfailure times, the recommendation in [1741 to assume that failures
arrive at random times during a day was followed. A uniform random
number generator was used to determine the j-th interfailure time during
a day, and then the total interfailure times during a day were normalized
so they sum to 1.0. This technique is strikingly similar to a
recommendation in [130]: discretization noise can be removed by first
adding uniform white noise in the interval [-0.5, 0.51 to a signal, and
then applying a nonlinear noise reduction scheme. This dataset will be
referred to as “ODCl.” The third dataset also comes from the IBM
Orthogonal Defect Classification project, and is also archived in [174].
This dataset consists of 2008 bug reports, with the date of each report
attached, as in ODCl . Preprocessing of this dataset was conducted in the
same manner as for ODC1. We will refer to this dataset as “ODC4.”

3.4 Experimental Results

The experiments reported in this section follow the procedures
described in Section 3.3. First, the state-space reconstruction of each
system is described, along with the evidence that the time series arise
from a stationary process. Next, the surrogate data experiment is
presented; the resulting evidence of deterministic behavior is the main
result of this chapter. Finally, the evidence obtained for chaotic behavior
is discussed.

3.4.1 State Space Reconstruction

The first problem was to reconstruct the state space for each of the
three datasets. The method of delay embeddings described in Section 3
was used; this requires determining values for the time lag v and the
embedding dimension m. The mutual information statistic and the
autocorrelation function were computed for values of v between one and
six for System 5 , and between one and four for ODCl and ODC4. Those
results are presented in Table 1. The first minimum of the mutual
information statistic occurred at v 5 4 for each dataset, but there were no

Chaos Theory and Sofhvare Reliability 9s

System-5 Mutual Inf.
System-S Autocorrelation
ODCl Mutual Inf.
ODCl Autocorrelation
ODC4 Mutual Inf.
ODC4 Autocorrelation

zero crossings for the autocorrelation function in that range. The two-
dimensional phase portraits for each system were then examined for
delays v = 1-6. Delays of v = 4, v = 3 , and v = 5 resulted in the largest
apparent structures for System 5 , ODCl and ODC4, respectively. Those
“best” phase portraits are shown in Figures 3.7-3.9, respectively (these
figures may be found at the end of the chapter).

Qualitatively, the phase portraits for each dataset appear to show the
following characteristics: firstly, in the System 5 phase portrait,
structures on the order of lo4 units in size appear; these structures are
apparent trajectories and voids in the phase plane. In the ODCl phase
portraits, some structure appears on the order of 0.3 units in size; this is
less than the expected noise amplitude, so these structures are not very
significant. Finally, in ODC4, a dramatic structure (a double helix) shows
up along the y-axis. It is 4 units in length, well above the noise level.
Taking these three phase portraits together, the datasets seem to show
some indications of deterministic behavior. The next step is to estimate
the dimensionality of each state space, and to determine if the datasets
are stationary.

v = l v = 2 v = 3 v = 4 v = S v = 6
0.077 0.082 0.089 0.067 0.082 0.070
0.138 0.152 0.126 0.087 0.119 0.114
0.036 0.011 0.072 0.041
0.328 0.101 0.070 0.043
0.021 0.012 0.020 0.015
0.229 0.167 0.174 0.124

Table 3.1 : Mutual Information and Autocorrelation Values

Using the technique of false nearest neighbors yields the results given
in Figure 3.10. For each dataset, the goal is a value of m such that the
ratio of false nearest neighbors drops to 0. Both System 5 and ODCl
reach this point by rn = 8; to be conservative, a value of m = 9 is used for
the experiments in this section. ODC4 is a more difficult case, since the
ratio of false nearest neighbors becomes very small, but never actually
reaches 0; in fact, one can see the beginning of an oscillation by m = 16.
In the remainder of this paper, a value of m = 15 will be used for ODC4,

-

-

-

-

-

-

-

-

96 Computational Intelligence in Software Quality Assurance

since this is the largest value of rn before the oscillatory behavior begins.
To summarize, System 5 is reconstructed in 9 dimensions with a delay of
4, ODCl in 9 dimensions with a delay of 3, and ODC4 in 15 dimensions
with a delay of 5.

Space-time separation plots for System 5 , ODC1, and ODC4 are
shown in Figures 3.11, 3.12, and 3.13, respectively. All three datasets
appear to be stationary, since the curves in each plot saturate at a rough
plateau. Temporal correlations in estimating the attractor dimension can
be avoided if points closer than 50 time steps together in System 5, closer
than 35 time steps in ODC1, and closer than 70 time steps in ODC4 are
excluded when computing the correlation sum.

3.4.2 Test for Determinism

One of the key steps in nonlinear time series analysis is ensuring that
one does not try to estimate chaotic invariants for a linear stochastic
process. While in theory a white-noise process is infinite-dimensional,
low dimensional values can often be obtained for finite times series
consisting of white noise. The correlation dimension algorithm, along
with other estimators for chaotic invariants, quantifies deterministic
behaviors when they are known to be present. These algorithms are not
effective as tests for determinism in and of themselves. The method of
surrogate data [283] was developed to provide scientific evidence that a
time series does in fact exhibit deterministic, rather than random,
behavior. This technique is based on statistical hypothesis testing; the
null hypothesis is that the time series arises from a linear stochastic
process, and the alternative is that the time series arises from a
deterministic process.

The method of surrogate data was used to test each of the three
datasets for the presence of deterministic behavior. First, 22 analytic
probability distributions were fitted to each dataset, including the normal,
lognormal, 2-parameter Weibull, 2-paramter Gamma, exponential,
Rayleigh and Beta distributions. The Kolomogorov-Smirnoff goodness-
of-fit test was then used to determine if any of the distributions were a
good match for the datasets. At a significance of 0.05, the test rejects
every distribution for each dataset. Thus, no probability structure for the

Chaos Theory and Software Reliability 97

System 5 Time Reversal
System 5 Prediction
ODC 1 Time Reversal
ODC4 Time Reversal
ODC4 Prediction

datasets has been found. Therefore, in these experiments, the null
hypothesis of a linear Gaussian process, distorted by a monotonic,
invertible nonlinear observation (the most general hypothesis available in
the literature) was used, with a significance of 0.05. Thus, 39 surrogates
were generated for each dataset, and the null hypothesis was rejected if
the statistic value for the original time series was greater or less than all
the surrogates. The results of these experiments are summarized in Table
2, where the statistic values for the original dataset, along with the
minimum, and maximum of the surrogate values, are presented.

Original Surrogate Surrogate
Minimum Maximum

3097.5 -24794.4 2098 1.7
39053.1 37412.7734 39049.5
-1.31 -0.36 0.26
-2.85 -6.56 4.97
0.84 1.17 1.82

Table 3.2: Test Statistics

Examining Table 2, the null hypothesis is rejected on dataset ODCl
using time reversal, but accepted for System 5 and ODC4 using time
reversal. The null hypothesis is rejected for both System 5 and ODC4
using the more powerful prediction error statistic [130]. Table 2, taken
together with the earlier attempt to fit a classical distribution to the
datasets, provides quantitative evidence that these datasets are
deterministic in nature. This means that the stochastic models usually
used in software reliability modeling do not capture the full state of
nature in software reliability growth; deterministic dynamics appear to be
present and (at least in the case of the three datasets we have analyzed) to
dominate any random behaviors. This analysis implies that deterministic
models (such as neural networks) would be a better fit for software
reliability data, and could provide better predictions of reliability growth
and when to stop testing than stochastic models. This is the principal
result of this chapter; attempts to find a correlation dimension for each
dataset are discussed in the next section.

98 Computational Intelligence in Software Quality Assurance

3.4.3 Dimensions

One of the characteristics of a chaotic system is that the attractor in
phase space has a fractal geometry [130]. This means the attractor is self-
similar over some range of length scales, and has a noninteger
dimensionality. An attempt was made to determine if the phase-space
attractors for the datasets under study are in fact fractal objects, using the
correlation dimension algorithm. First, an estimate of the fractal
dimension was made for the raw datasets; the scaling plots for System 5 ,
ODC 1 and ODC4 are given in Figures 3.14, 3.15 and 3.16, respectively.
Notice that System 5 shows a common behavior and a small plateau right
around lo4. However, the curves do not converge to a single value, but
differ by a factor. For this dataset, the evidence of fractal behavior is
suggestive, but not definitive. The plot for ODC1, while having a
roughly similar shape, is considerably weaker. Some common behavior
is present, but there is really not a clear plateau, nor do the curves
converge. The plot for ODC4 does not seem to show fractal behavior.
Next, the locally constant nonlinear noise reduction scheme [1301 was
used to filter the datasets. Scaling plots for the filtered versions of
System 5 , ODC1, and ODC4 are shown in Figures 3.17, 3.18 and 3.19,
respectively. The filtered time series actually appear to show less
evidence of fractal behavior. These analyses indicate that there is some
behavior in one dataset that is suggestive of chaotic dynamics, but this
evidence is too weak to support a definitive conclusion concerning the
presence of chaotic behavior in software reliability growth data.

3.5 Remarks

We expect software reliability to be the key technological bottleneck
of the 2lSt century. Software engineers and researchers do not have a full
understanding of the reliability growth process in software, while
software systems are too complex. The stochastic failure models used to
date apparently do not match the characteristics of software failures, as
they cannot account for the deterministic dynamics we have detected in
our datasets. The research reported in this chapter represents a first step
in applying the techniques of fractal sets and chaos theory to this

Chaos Theory and Software Reliability 99

problem. We have suggested a causal model for software failures, in
which the fault set of a program is hypothesized to be a fractal subset of
the input space for that program. An implication of this hypothesis is that
a software reliability growth dataset will show deterministic, and
possibly chaotic, behavior as opposed to stochastic behavior. A statistical
experiment demonstrates deterministic behavior in three software
reliability growth datasets, and suggestive but not definitive evidence of
chaotic behavior was found in one of those datasets. Further research in
this area, including the use of deterministic models for predicting
software reliability growth, may be found in [310].

Software reliability growth models are one tool used by developers to
estimate the quality of a software system. These models, however, can
only be applied late in the development cycle, when testing and failure
data become available. The problem is that this is also the most
expensive part of the development cycle to find software faults;
eliminating faults earlier on in development is highly desirable. Hence,
early in the development cycle, software engineers try to determine
which software modules pose a high risk of failure. These modules are
then treated as major risks in the development effort, and additional
resources are directed towards their development and testing. The
primary tools used in deciding which modules are development risks
are software metrics, which represent a different mechanism for
summarizing the characteristics of a program. The next two chapters of
this book will examine the usage of machine learning and data mining
technologies for the analysis of software metrics.

100 Computational Intelligence in Software Quality Assurance

Figure 3.7: System 5 Phase Portrait, v = 4

Figure 3.8: ODCl Phase Portrait, v = 3

Chaos Theory and Sofhvare Reliability 101

9 .

Figure 3.9: ODC4 Phase Portrait, v = 5

Figure 3.10: False Nearest Neighbor Ratios

Computional Intellegence in Software Quality Assurance102

Figure 3.11 : Space-Time Separation Plot for System 5

Figure 3.12: Space-Time Separation Plot for ODCI

Chaos Theory and Software Reliability 103

Figure 3.13: Space-Time Separation plot for ODC4

Figure 3.14: Scaling Plot for System 5

104 Computational Intelligence in S o f i a r e Quality Assurance

Figure 3.15: Scaling Plot for ODC 1

Figure 3.16: Scaling Plot for ODC4

Chaos Theory and Software Reliability 105

1

Figure 3.17: Scaling Plot for System 5 , After Noise Reduction

Figure 3.18: Scaling Plot for ODC1, Afier Noise Reduction

106 Computational Intelligence in SofnYave Quality Assurance

Figure 3.19: Scaling Plot for ODC4, After Noise Reduction

Chapter 4

Data Mining and Software Metrics

4.1 Introduction

Machine learning and data mining are powerful techniques for
discovering inherent relationships within a collection of data. Machine
learning algorithms will generally focus on creating an internal
representation of a problem domain for the use of a machine (such as the
connection weights in a neural network), while data mining algorithms
usually generate models principally for human interpretation. There have
been a number of works reported on the application of machine learning
and data mining techniques to the problem of software quality [47, 67,
68, 93, 95, 133, 138, 139, 140, 143, 2661. The majority of these papers
use software metrics as predictor attributes, and observed failures or
changes as the dependent attribute. The majority also employ some form
of supervised learning, be it statistical regression, neural networks,
genetic algorithms, or others. Very few unsupervised learning algorithms
have been used in the software quality domain. In fact, fuzzy c-means
clustering has not been used in this domain at all!

This chapter describes new research in the use of machine learning
and data mining techniques in the software quality domain. This work
revolves around the use of fuzzy clustering and freely available data
mining tools for the analysis of software metric databases. A few other
authors have also investigated the use of data mining of software metrics.
A call for the use of data mining to assist in the management of software
projects is made in [226], and some candidate techniques are discussed,
including multiple regression analysis, Principal Components Analysis,

107

108 Computational Intelligence and Soflware Quality Assurance

neural networks and classification trees. Mendonca et al. [188] utilize a
combination of artificial intelligence techniques and statistical analysis to
mine software metrics. The A1 technique used is called the Goal-
Question-Metric technique, and is a mechanism for generating queries
based on user goals and identifying metrics that can provide a useful
answer to these questions. The statistical tools employed are correlation
analyses and a search for outliers in a database. A validation of this
approach, principally using data user surveys, is reported in [189].
McLellan et al. report on data mining efforts carried out in a reusable
component library at Schlumberger Oilfield Services [1841. They use the
terms software mining and shotgun approach to describe a large
exploratory data mining project. What is unique about their algorithms is
that the data to be analyzed is raw source code, rather than a table of
metric values. The analysis tools are custom-built awk scripts, which are
used to crawl the library and extract metric values. The extracted values
are then imported to an Oracle database. While the analysis in that paper
does not extend beyond basic statistics of the resulting tables, the
potential for using more advanced techniques is obvious. Khoshgoftaar et
al. [139] report on the use of knowledge discovery in databases (KDD)
for predicting software quality from software metrics. They studied a
large telecommunications software system, and its associated
configuration management and problem reporting databases. The
system’s modules were divided into two classes: those that had
experienced a failure during customer operation, and those that had not.
The data mining tool used was the Classification and Regression Tree
(CART) algorithm. A tenfold cross-validation experiment with this tool
obtained an average testing classification accuracy of around 75%. Shin
and Goel [266] utilized a radial basis function network instead of the
CART algorithm for data mining in a NASA database of software
metrics. A bootstrap technique was used to validate the classification
results.

The investigation reported in this chapter looks at software metrics
from the point of view of granular computing (see Chapter 1). The goal
is to conduct a granular analysis of the datasets, instead of finding a
regression model to relate metrics and module changes. Fuzzy clustering
in metrics datasets that are not associated with a failure count, which is

Data Mining and Software Metrics 109

the situation developers face early in the software development cycle, are
also explored. Failure counts are not always available, especially in the
early stages of software development. This is a significant problem, since
the data mining and machine learning algorithms utilized to date almost
exclusively rely on supervised learning, a form of machine learning
which requires both a set of feature vectors to analyze, and the true
classification of those feature vectors. Without failure counts, these
algorithms quite literally have nothing to learn from. Unsupervised
learning, on the other hand, searches for knowledge within a dataset
without needing to be told the true classification of a feature vector.
Thus, unsupervised learning algorithms can be used before any failures
have been observed. When failure counts are available, unsupervised
learning can also help identify the knowledge present in the feature
vectors, and relate that knowledge to the observed failures. This
investigation illustrates how both tasks may be approached; however, the
primary goal is cluster analysis, not model-building [306, 307, 3081.

The remainder of this chapter is organized as follows. In Section 2,
machine learning and data mining for software quality are reviewed. In
Section 3 , the datasets under study are characterized, and previous work
involving those datasets reviewed. Section 4 describes the fuzzy
clustering experiments on the datasets, and section 5 presents the results
of using the Info-Fuzzy Network and tools from WizSoftB on these data
sets.

4.2 Review of Related Work

In this Section, the relevant literature from machine learning and data
mining is discussed. The focus of this review is on the use of machine
learning in the software quality domain, fuzzy cluster analysis, and
feature reduction.

4.2.1 Machine Learning for Software Quality

As described in Chapters 1 and 2, the effort to improve software
quality is a multi-faceted, ongoing area of research. A few companies,

110 Computational Intelligence and Sofhvave Quality Assurance

such as IBM or AT&T are reasonably good at building large, high-
quality applications, but they are the exceptions. For most organizations,
large size and high quality are almost mutually exclusive [12 1, 1221. The
majority of software quality initiatives collect software metrics and
attempt to use this data for software process control. Statistical methods
are predominately used for these analyses, even though software metrics
are very poor candidates for statistical analysis. Different metrics tend to
be highly correlated, and the data collected from any project or group of
projects tends to be skewed towards small modules with low failure
rates.

Not surprisingly, soft computing techniques for modeling software
metrics have also been tried. Neural networks [93, 133, 138, 143, 2661,
neuro-fuzzy systems [7, 1901, fuzzy logic and classification [67, 68, 951,
genetic programming [14 11, genetic-fuzzy systems [8], and classification
trees [47, 139, 1401, have been tried on various datasets. Multilayer
perceptrons, in particular, are one of the more popular non-parametric
techniques used in the analysis of software metric data. As mentioned, a
constant problem for both statistical and soft computing approaches is
that the data are heavily skewed in favor of modules with relatively few
failures and relatively low metric values. This can be an especially
serious problem for machine learning approaches that try to optimize a
global measure of predictive accuracy; “always guessing the majority
class” is a common mistake for learning algorithms in such skewed
datasets. In [139], this issue of skewness was accounted for by the use of
differing misclassification penalties. A greater cost was associated with
classifying high-risk modules as low risk than with classifying low risk
modules as high risk. While this approach can improve the learning
process in a skewed dataset, the results are highly sensitive to the ratio
between the different misclassification penalties. We will describe
experiments using an alternative technique for homogenizing class
distributions, known as resampling, in Chapter 5.

Our investigation utilizes fuzzy c-means clustering, and is the first to
do so in this domain. The only other use of fuzzy clustering is a fuzzy
subtractive clustering approach used in [304]. The fuzzy subtractive
clustering algorithm requires that expected cluster characteristics be
specified apriori, and so is not very useful as an exploratory tool. The

Data Mining and Software Metrics 111

power of a clustering algorithm is that it does not rely on predefined
''classes'' in the way that neural networks and other supervised learning
approaches do. Instead, clustering algorithms search for the structures
naturally present in the data. Failure classes can be generated by treating
each cluster as a class. If the clustering algorithm is itself fizzy, then the
resulting classes are fuzzy, and have imprecise boundaries. This is a
better representation of the true state of nature in software failure
analysis [8, 471.

4.2.2 Fuzzy Cluster Analysis

Traditionally, cluster analysis has utilized classical set theory. An
object is either a member of one particular subset, or it is not a member
of that subset. Furthermore, each subset must be disjoint, and they must
together form a partition of the total set of objects. This approach, while
mathematically sound, cannot account for the ambiguity and noise that
always accompany real-world objects. Fuzzy cluster analysis was
developed to permit some ambiguity and noise in a robust clustering
algorithm. A fuzzy cluster is a set to which an object may partly belong,
to a degree indicated by the membership value for that point in that
cluster. Afuzzypartition is a partition in which an object may belong to
several subsets, so long as the sum of that object's membership values

The most common clustering algorithm underlying fuzzy cluster
analysis is the well-known Fuzzy c-Means (FCM) algorithm [l l O] . This
is an iterative algorithm that attempts to find clusters that minimize the
cost function

where f is a fuzzy partition, f ix)@) is the membership of pattern x in
cluster k, rn is the fuzzij'ier exponent, and d(x,k) is the distance between
pattern x and the prototype (centroid) of the k-th cluster. FCM is an
iterative optimization algorithm, in which the optimization of cluster
prototypes and the optimization of cluster memberships alternate. FCM

(4.1)

112 Computational Intelligence and Sofhvare Quality Assurance

requires a set of patterns (represented as vectors), a distance metric
(usually the Euclidean distance), and the expected number of clusters in
the set of patterns. The initial set of cluster prototypes is chosen
randomly, and the fuzzy partitionfis computed for these cluster centers.
Then in each subsequent stage, the cluster prototypes are changed to
optimize J withfheld constant, and thenfis changed to optimize J with
the cluster prototypes held constant. The algorithm terminates when the
improvement of J from the previous iteration falls below a minimum
threshold, or a maximum number of iterations is exceeded.

FCM is an unsupervised learning scheme. In general, the patterns that
are to be clustered do not include class or value information. It is the
distribution of patterns in feature space that determines which patterns
will be assigned to a cluster. FCM optimizes J for a given set of patterns
and a given number of clusters. However, FCM provides no guidance on
what the correct number of clusters is. Finding the correct number of
clusters is known as the cluster validityproblem, and there is no general
theory on how to solve it. What is normally done is to run the FCM
algorithm on a dataset several times, using different numbers of clusters.
Then, measures of the “quality” of the resulting fuzzy partitions are taken
by computing cluster validity metrics for each fuzzy partition. The
partition with the optimum value for these cluster validity metrics is
considered correct [1101.

The final value of the objective function J is monotonic decreasing
with respect to the number of clusters c, and so is not useful as a criterion
for deciding the correct value of c [1101. Instead, measures such as the
partition coefficient [IS], proportion exponent [297], separation index
[64], and a fuzzy separation index [300] are used. These measures are all
based on some notion of what a generically “good” partition would look
like. Compactness and separation of clusters is one criterion; minimal
ambiguity (i.e. the values off(x)(k) approach 1 or 0) is another. There is
currently no way to determine a priori which of these metrics will be
most appropriate for a given dataset. If the class labels or output values
for the dataset happen to be available, a customized cluster validity
metric based on that information is generally the best choice, as this
information establishes the true (state-of-nature) mapping between
features and classes [1101.

Data Mining and Software Metrics 113

4.2.3 Feature Space Reduction

It is often possible to express the same information that exists in a
dataset using fewer attributes. Doing so can reduce the computational
burden of automatic pattern recognition or classification. In addition,
feature reduction can also remove noise from a dataset, and thus improve
the performance of a clustering algorithm. One of the most common
approaches in this area is Principal Components Analysis (PCA). PCA is
based on the notion that points in the dataset form a hyperellipsoid in
feature space, and that this hyperellipsoid has a few large axes and many
small ones. PCA determines the directions of the axes of this
hyperellipsoid and the length of these axes. For feature vectors with n
components, form the nxn covariance matrix C for the data set. This
matrix records the covariance between the i-th and j-th attributes, i,j E

{1,2,...,n} as C(ij) . Then the eigenvectors and eigenvalues of C are
determined. Normally, one finds a few large eigenvalues and several
smaller eigenvalues. The large eigenvalues indicate axes of the
hyperellipsoid that carry a significant amount of information about the
dataset; smaller eigenvalues are assumed to represent noise dimensions.
The axes themselves are defined by the eigenvectors associated with
each eigenvalue. Feature reduction is carried out by forming a matrix A
of the significant eigenvectors, and then applying the transformation

y = A' (2 - p)

to every feature vector x, where p is the mean vector of the dataset. The
resulting dataset will have as many attributes as there were significant
eigenvectors, will be oriented in parallel with the axes of the
hyperellipsoid, and will have its origin at the mean point of the dataset.
Furthermore, each axis of the hyperellipsoid is orthogonal to every other
axis, implying statistical independence. Other techniques of feature
reduction include Nonlinear Component Analysis and Independent
Component Analysis, to name a few [59].

(4.2)

114 Computational Intelligence and Sofbare Quality Assurance

4.3 Software Change and Software Characteristic Datasets

The datasets examined in this study were generated in the course of
two Master’s theses at the University of Wisconsin-Milwaukee. The MIS
dataset was collected by Randy Lind in [166] and widely disseminated in
[1751, while the datasets we have labeled “OOSoft” “ProcSoft” were
Collected by Warren DeVilbiss in [52]. In this section, a detailed
description of the datasets is provided, and the results of previous work
on these datasets examined.

4.3.1 The MIS Dataset

This dataset consists of 390 records, each having 12 fields. The first
11 fields are the values of different software metrics for a module, and
the final field is the number of changes made to that module. Lind
assumed that the number of changes in a module corresponds to the
number of failures in that module [166]. The application that was
analyzed is a commercial medical imaging system, General Electric’s
SIGNA system, running on a Data General MV4000 computer. In total,
the system is comprised of approximately 400,000 lines of source code,
divided into 4500 modules. Of these modules, 58% were written in
Pascal, 29% were written in Fortran, 7% in assembly language, and 6%
in PL/M (the Intel-86 programming language for microcomputers). The
dataset itself was created by extracting the software metrics for a sample
of 390 modules written in Fortran and Pascal, and associating those
values with the number of changes that had to be made for each module
[166]. The metrics used in this data set are as follows:

i.
ii.

iii.
iv.
v.

vi.
vii.

The number of lines of source code
The number of executable lines (rather than comments or
whitespace)
The total number of characters
The number of comment lines
The number of comment characters
The number of code characters
Halstead’s N ~ defined as the number of operators plus the
number of operands [97]

Data Mining and Sof iare Metrics 115

viii.
ix.
x.

xi. Bandwidth [232]

Halstead’s NA - an approximation to N [97]
Jensen’s NF - another approximation to N [1 181
McCabe’s cyclomatic complexity [18 11

An important point about this dataset is what constitutes a “module.”
Non-integer values like “8.5” were reported in this dataset for McCabe’s
cyclomatic complexity - a metric which should always consist of integer
values. While this point is not specifically addressed in [166], it turns
out that a “module” in this dataset is a source file, which may contain
one or more routines. The value of the counting metrics, such as the lines
of source code or the number of comment characters, has been
determined by summing the values over all routines in a module. The
values of the complexity metrics, such as Bandwidth or McCabe’s
cyclomatic complexity, have been determined by averaging over all
routines in a module. Thus, the granularity of this dataset is fairly coarse.
(As a side note, McCabe’s original paper does account for modules
composed of individual functions. The rule typically used to determine
cyclomatic complexity, ‘‘number of decisions + 1 ,I’ is actually the special
case where cyclomatic complexity is determined for a single function. In
[18 I], multiple functions are each treated as a strongly-connected
component, and the total complexity is the sum of their individual
complexities. Thus, in a module with multiple functions, it is actually
better to sum the cyclomatic complexity values, rather than averaging
them.)

Lind’s thesis reports on the result of a linear correlation analysis of
this dataset. Pearson’s correlation coefficient is computed between each
metric and the change count. For the reader’s convenience, we reproduce
these results in Table 4.1. Notice that there is generally a strong positive
correlation between each metric and the number of changes, except for
Bandwidth.

In addition to [166], Lind and Vairavan published a paper
summarizing these results [167]. Another work that examines the MIS
dataset is [205], in which the authors apply Principal Components
Analysis as well. In this work, the number of principal dimensions was
found to be two, rather than one as reported later in this chapter. The

116 Computational Intelligence and Sofhvare Quality Assurance

difference is that in [205], the PCA algorithm was applied to the raw
dataset, whereas the dataset was normalized first in the current
investigation. Normalization is an important step, because differences in
scale across different dimensions can distort the distribution of a multi-
dimensional database. The PCA algorithm assumes a hyperellipsoidal
distribution of data; distortions introduced by axis scalings can distort the
true distribution, altering the orientation and size of the different axes.

Table 4.1 : Correlation of Metrics to Changes, from [1661

Metric I Correlation to
Changes

Total Lines I 0.73
Code Lines
Total Chars
Comments

Comment Chars
Code Chars
Halstead’s N
Halstead’s NA
Jensen’s NF
McCabe’s
Bandwidth

0.68
0.72
0.75
0.66
0.69
0.62
0.66
0.66
0.68
0.26

Another work that examines this dataset is [133]. In this paper, the
authors use neural networks for software reliability prediction and to
identify fault-prone modules. The MIS dataset is used to illustrate the
second objective. The 390 records are first classified into low-, medium-,
and high-risk modules. The criterion used is that a low-risk module had
no faults or one fault, medium-risk modules had two to nine faults, and
high-risk modules had 10 or more faults. The study considers only the
203 low- and high- risk modules; the medium-risk modules were
discarded. The network was then trained to distinguish between low-risk
and high-risk modules.

There are two important points to notice about [133]. Firstly, the
“hard” classification of modules based on the number of changes is a
poor and arbitrary choice. No analysis has been conducted that showed
that a module with nine changes was substantially different than one with
10 changes. This artificial classification can dramatically worsen the

Data Mining and So fware Metrics 117

performance of a neural network classifier. This is because the
underlying assumption of a neural network is that the inputloutput
pairings it is trained on represent actual observations, not subjective
judgments. The network will always seek a smooth mapping from inputs
to outputs, even when the introduction of subjective judgments has
destroyed the actual mapping. Second, results in the current investigation
show that the fault classes that exist in the MIS dataset are in fact
overlapping, fuzzy classes. The artificial imposition of hard boundaries,
which are not truly representative of the data, will also distort a neural
network classifier’s results.

4.3.2 The OOSoft and ProcSoft Datasets

The two remaining datasets contain records of software metrics that
are not associated with a change count, drawn from [52]. Both datasets
are from operator display applications, which allow limited data entry.
These datasets are designated as ProcSoft and OOSoft. The application
underlying the ProcSoft dataset was programmed using structured
analysis techniques, in a mixture of C and assembly language. The
assembly language code was primarily for device drivers, and was
ignored in that thesis. The application underlying OOSoft was developed
using object-oriented techniques. This program incorporates additional
fimctionality over and above the functionality of the first program. In
order to make a comparison, 422 functions from the first program were
analyzed, and 562 methods from the object-oriented program performing
the same functionality were analyzed. Functions from the structured
program, and methods from the object-oriented program, were treated as
the basic modules of the program. Thus, these datasets represent a more
fine-grained analysis than the MIS dataset.

The OOSoft dataset contains 562 records, and the ProcSoft dataset
contains 422 records, with each record representing one method or
function. There were a total of 11 measures computed for each function
or method. These are:

i.
ii.

n l - The number of unique operators
n2 - The number of unique operands

118 Computational Intelligence and Software Quality Assurance

nl
n2
N1
N2

VG 1
VG2
LOC

...
111.

n l n2 NI N2 VGI VG2 LOC CMT
1.0 0.837 0.817 0.791 0.771 0.785 0.751 0.553

1.0 0.933 0.948 0.864 0.857 0.806 0.554
1.0 0.984 0.912 0.914 0.829 0.534

1.0 0.879 0.877 0.820 0.531
1.0 0.982 0.760 0.476

1.0 0.755 0.475
1.0 0.908

iv.

vi .
vii.

ix.

V.

... v111.

nl

N1
N2

VG 1
VG2
LOC
CMT

n2

X.
xi.

nl n2 N1 N2 VG1 VG2 LOC CMT
1.0 0.814 0.796 0.681 0.636 0.597 0.193 -0.107

1.0 0.952 0.882 0.864 0.447 0.072
1.0 0.804 0.817 0.472 0.113

1.0 0.961 0.484 0.148
1.0 0.472 0.147

1.0 0.92
1 .o

1.0 0.869 0.883 0.678 0.670 0.318 -0.010

N1 - The number of operators
N2 - The number of operands
Halstead’s N [97]
Halstead’s N” [97]
Jensen’s NF [1 181
VG1 - McCabe’s cyclomatic complexity [181]
VG2 - McCabe’s cyclomatic complexity, enhanced to include
the number of predicates in decisions [52]
Lines of Code (LOC)
Lines of Comments (CMT)

DeVilbiss examined the linear correlations between each pair of metrics
in each dataset - excluding N, N”, and NF ~ again using Pearson’s
correlation coefficient. For the reader’s convenience, those results are
reproduced in Tables 4.2 & 4.3 below.

Table 4.2: Pairwise Correlations in ProcSoft, from[52]

Table 4.3.: Pairwise Correlations in OOSoft, from [52]

Data Mining and Software Metrics 119

Note that in Table 4.2, all the metrics correlated well with each other,
with the exception of the number of lines of comments. In Table 4.3, the
correlation values tended to be lower. In that dataset, DeVilbiss
identified a trend of similar metrics (such as the various metrics due to
Halstead [97]) being more correlated to each other than to different
“families” of metrics. Also, the number of lines of code and of comments
correlated well only with each other. ProcSoft and OOSoft will be an
important part of the analysis in this chapter, because they represent the
reality of software development: software developers will simply not
have access to change data until late in the development cycle, and so
must work with metric values only.

4.4 Fuzzy Cluster Analysis

This section describes the methodology and results of a fuzzy cluster
analysis on the MIS, OOSoft and ProcSoft datasets. The datasets contain
no missing values, and all attribute values were normalized to [0,1]. The
Fuzzy c-means algorithm in MATLAB@ 6.0 was used in all
experiments, with a fuzzifier value of 2 and a stopping criterion of
minimal improvement of 0.00001. The number of clusters ranged from 2
to 10, and the cluster validity metrics used were the partition coefficient
[18], the CS index [64], the Separation index [300], and (in the case of
the MIS dataset) the average sum of squared error (SSE) in a ten-fold
cross-validation experiment.

4.4. I Results for the MIS Dataset

We allowed the number of clusters in this dataset to range from 2 to
10. Table 4.4 presents the values of the partition coefficient, CS index,
and Separation index, as well as the average SSE of the tenfold cross-
validation experiment, for each number of clusters. The SSE in a single
partition is the testing SSE for one tenth of the dataset, after the dataset
was clustered using the other nine tenths. The change value for each
cluster was determined by taking the centroid of the change counts for
that cluster, using

120 Computational Intelligence and Software Quality Assurance

where Fi is the number of changes for the i-th cluster, Ci is the i-th
cluster, xi is thej-th record from the dataset,f(x) is the change count for
record x, and ,uq is the membership of thej-th record in the i-th cluster. In
the testing phase, the fuzzy nearest prototypes algorithm [135] was used
to determine the inferred change value of a record. This algorithm takes a
feature vector, and determines the fuzzy classification of that vector
based on an existing fuzzy partition, which is exactly what is required for
this step of the cluster analysis. The squared difference was taken
between the inferred and actual value of the change count. Finally, the
mean of the SSE values for all ten partitions was used as a cluster
validity measure. Since this measure is specific to the dataset, and uses
the actual output values to evaluate cluster validity, this is the measure
we used to determine the actual number of clusters in this dataset.

Table 4.4: Cluster Validity Measures for MIS

Clusters

2
3
4
5
6
7
8
9
10

Partition Coef CS Index Separation Average SSE

0.8832 0.0064 9.5549 3.3596
0.1275 0.000 1 20.1707 2.1435
0.6529 0.0003 20.8820 2.7124
0.603 1 0.0000 16.5433 2.5807
0.5 145 0.0005 29.1250 2.5836
0.4865 0.0006 23.9647 2.5753
0.4262 0.000 1 41.6580 2.5878
0.4060 0.0001 40.0919 2.5762
0.4014 0.0009 26.0038 2.5821

* 103

Maximal values of the partition coefficient and the CS index indicate
the best partition; minimal values of the Separation index and the
average SSE indicate the best partition. Clearly, the three generic metrics
indicate that two clusters is the best partitioning, while the average SSE

(4.3)

Data Mining and Sofhvare Metrics 121

indicates that seven clusters are best. Furthermore, an examination of
Table 4.4 shows that the CS index and the Separation index also achieve
local extrema at seven clusters. In Figure 1, the values of the CS index,
Separation index and average SSE are plotted together to illustrate this
point. Since the average SSE makes use of the true output values in
assessing cluster validity, and since the CS and Separation indices
provide some additional support for this value, seven clusters will be
accepted as the correct value in the remainder of this investigation. Note
that the average SSE index is also vulnerable to skewness, and the CS
index is known to be very sensitive to outliers. It is therefore significant
that these three metrics all provide support for a partition of seven
clusters.

Figure 4.1: Cluster Validity Measures

Table 4.5 presents a statistical characterization of the change counts
in the seven clusters identified as the best partition. The minimum,
maximum, mean, median, and sample standard deviation of the changes
per module, and the number of data elements present in each cluster after
it was “hardened” using the maximum-membership method [I lo], are
presented for each cluster. Also, the change value for each cluster
centroid, as computed by Eq. (4.3) over the entire fuzzy cluster is

122 Computational Intelligence and Software Quality Assurance

Cluster
1
2
3
4
5
6
7

included in Table 4.5. As the reader will note, there is extensive overlap
between clusters in the change (output) dimension. This is evidence that
changes are by nature fuzzy events; it is not possible to draw a clear line
between high and low risk module classes based upon the number of
changes. The reader will also note further evidence of skewness in this
table. For each cluster, the median value of changes is substantially less
than the mean, indicating the change distribution in the cluster is skewed
towards a low occurrence of changes. Furthermore, the distribution of the
data vectors is itself skewed towards clusters with low change counts.
Finally, note that the clusters with the highest variance in the change
counts are also the clusters with the highest mean values of the change
counts. and the lowest number of data vectors.

Min Max Mean Median ' STD Count Centroid
0 27 4.18 2 4.68 102 4.75
0 47 21.25 16.5 12.94 20 21.15
8 41 19.32 14 12.12 22 16.56
0 19 2.26 1 3.10 107 3.12
14 98 36.75 32.5 22.00 12 29.06
0 25 5.32 4 4.89 86 6.16
1 46 10.02 7 9.38 41 9.92

From a practical standpoint, this kind of cluster analysis will be most
useful to software engineers as part of a Pareto analysis, in which
modules are ranked according to increasing metric values. Ordinarily, the
individual modules with the highest metric values are singled out for
additional development effort. One alternative, supported by the current
investigation, is to select modules belonging to the class or classes of
modules that have high metric values for extra development work. This
would capture a slightly different set of modules than a pure ranking
scheme. The first step in performing such an analysis is to find a way to
rank classes of modules. In the MIS dataset, the ordering of clusters
based on individual metric values was examined. In Table 4.6, an
ordering of clusters based on the cluster center component for a single
metric is presented. The fact that all of the cluster centers, as well as the

Table 4.5.: Cluster Characteristics in MTS

Data Mining and Softwave Metrics 123

Attribute
Lines of Source Code

Executable Lines
Total Characters
Comment Lines

Comment Characters
Code Characters

Halstead’s N
Halstead’s N”
Jensen’s NF

McCabe’s Cyclomatic Complexity
Bandwidth

Change Centroids

change centroids, have the same ordering indicates that a monotonic,
granular relationship exists between metrics and changes. In particular,
note the Bandwidth metric also obeys this relationship.

Ordering of Clusters
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1,6 ,7 ,3 ,2 ,5
4, 1, 6, 7, 3,2, 5
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1,6, 7 ,3 ,2 ,5
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1,6 ,7 ,3 ,2 ,5
4, 1 ,6 ,7 ,3 ,2 ,5
4, 1 ,6 ,7 ,3 ,2 ,5

We have used the Principal Components Analysis (PCA) algorithm to
further characterize this dataset. The PCA algorithm assumes that feature
vectors are distributed as a hyperellipsoid in feature space, and
characterizes this hyperellipsoid. In using the PCA algorithm, one
usually finds a few large eigenvalues, and then a number of small
eigenvalues. Those large eigenvalues represent the important axes of the
hyperellipsoid; the other dimensions are assumed to represent noise [59].
When the PCA algorithm was applied to the MIS dataset the largest
eigenvalue was 0.224 1, while the next-largest eigenvalue was 0.01 39.
Thus, this dataset has one principal dimension. Hence, MIS is a one-
dimensional dataset, in which the clusters follow a monotonic
relationship for all attributes. The overriding nature of this dataset is that
it is monotonic for all attributes. Note that this is in contrast to the results
reported in [166, 1671, where Bandwidth was determined to have a low
correlation. Correlation analysis is an important first step in data mining,
but it is not the end of the story. A correlation coefficient expresses the
degree to which two variables in a database are linearly dependent on
each other. The correlation coefficient will not detect a strongly
nonlinear relationship, nor can it detect linear relationships that are

Table 4.6.: Ordering of Cluster Centers by Attribute

124 Computational Intelligence and Sofmare Quality Assurance

obscured by noise. Thus, while a strong correlation is inherently
meaningful as indicating a linear relationship, a low correlation does not
rule out a linear relationship, and provides no information about whether
a nonlinear relationship is at work.

Note also that these PCA results differ from those presented in [205],
where the authors reported 2 principal dimensions. As noted earlier,
attribute normalization was not carried out during that study.
Furthermore, the two largest eigenvalues reported were 8.291 and 1.650.
Note that the first eigenvalue is actually much larger than the second.
The rule used to choose principal dimensions in [205] was to select those
dimensions with eigenvalues 2 1, rather than searching for the few
“large” eigenvalues as recommended in the pattern recognition literature.
The results presented in this investigation are thus consistent with the
data in [205].

There is further evidence to show that Bandwidth is an important
metric. Another series of tenfold cross-validation experiments was
performed on this dataset, allowing the number of clusters to vary
between 2 and 16. In one of these experiments, all 11 metrics were used,
including Bandwidth. In the other experiment, Bandwidth was dropped
altogether. Table 4.7 shows the average SSE values per cluster for both
experiments. As can be seen, removing Bandwidth decreases the
predictive accuracy of the models for nearly every partition, with the
lone exception being 11 clusters. 11 clusters is the optimum partition
without Bandwidth; note that the average SSE is still higher than the
optimum SSE with Bandwidth, which happens at seven clusters. Thus,
Bandwidth is indeed an important metric (in contrast to the conclusions
in [166, 167]), in the sense that it bears a similar relationship to the
number of changes that other metrics do.

After reducing the dimensionality of the MIS dataset with the PCA
algorithm, we re-ran our clustering experiment, to see how the clustering
results change when noise is removed. Since the Fuzzy c-means
algorithm requires at least two dimensions in a dataset, the eigenvectors
corresponding to the two largest eigenvalues were used as features. As
before, the values of the four clustering metrics for each partition from 2
to 16 clusters are reported in Table 4.8. The optimum partition, based on
the average SSE metric, is nine clusters instead of seven. The other

Data Mining and Sofhare Metrics 125

3
4
5
6
7
8
9
10
11
12
13
14
15
16

metrics do not seem to corroborate this value. There is only a local
maximum in the CS index for this partition.

2.7435 2.8428
2.7124 2.7697
2.5807 2.6404
2.5836 2.6267
2.5753 2.6137
2.5878 2.6193
2.5762 2.6191
2.5821 2.6117
2.6101 2.5800
2.5756 2.6094
2.588 1 2.6001
2.5907 2.6177
2.5910 2.6153
2.6022 2.6130

Table 4.7: Average SSE with and without Bandwidth

Clusters 1 SSE * 10.’ with Band. SSE * Id without Band.
2 I 3.3596 3.3703

Table 4.8: Cluster Validity Metrics for 2 Principal Components

Clusters

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Partition Coef CS Index Separation Average SSE *
103

0.9031 7.4172 * 5.6178 4.1675
0.7831 7.4472 * 9.4272 2.9941
0.732 1 1.3024 * 7.1275 2.7804
0.7057 2.4046 * 5.7659 2.5847
0.6372 4.4011 * 10.’ 8.9685 2.4750
0.6215 1.0645 * 6,9550 2.4281
0.61 11 2.2374 * lo4 4.8516 2.4037
0.5722 5.3835 * 5.5110 2.3972
0.5512 1.0482 * 6.8811 2.4340
0.5284 5.6127 * 8.9179 2.4156
0.5336 1.6353 * 4.6215 2.4262
0.5034 1.3801 * lo4 4.1628 2.4389
0.4892 5.7385 * 5.7243 2.4444
0.4805 6.5907 * 7.8394 2.4760
0.4743 4.1956 * 10.’ 7.8047 2.4524

10-4
10-5
10-4
10-5
10-5
105

10-5
10-5
10-5
10-5
10-4
10-5
10-6
10-5

126 Conzputational Intelligence and Sof iare Quality Assurance

Attribute
Principal Component #1
Principal Component #2

Change Centroids

The ordering of cluster centers and change centroids was again
compared for each of the two principal components in Table 4.9. Note
that the first principal component again shows a monotonic relationship
to the change centroids. The second principal component, which is
assumed to be a noise dimension, does not show a monotonic
relationship to the change centroids. The average SSE obtained using
two principal components was also compared with that obtained by using
three principal components. Using three principal components increases
the SSE considerably (see Table 4.10). These two tables support the
notion that there is only one principal dimension in the MIS dataset.
Furthermore, this single dimension again shows a monotonic relationship
to the change centroids. This evidence supports our earlier finding, that
the metrics in the MIS dataset are monotonically related to the change
counts per module.

Ordering of Clusters
2,3,4, 5,7,9, 8, 1 ,6
8 ,6 ,2 ,9 ,5 ,3 ,4 ,7 , 1
2,3,4, 5,7,9, 8, 1,6

Clusters

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Average SSE * 1 O3 - 2 Principal Average SSE * I O3 ~ 3 Principal
Components Components

4.1675 4.7424
2.9941 3.2418
2.7804 3.0138
2.5847 2.9945
2.4750 2.8689
2.428 1 2.8594
2.4037 2.8519
2.3972 2.8857
2.4340 2.8959
2.4156 2.8203
2.4262 2.8268
2.4389 2.8516
2.4444 2.8510
2.4760 2.8933
2.4524 2.8626

Table 4.9: Ordering of PCA Cluster Centers by Attribute

Table 4.10: Average SSE for 2 vs. 3 Principa Components

Data Mining and Sofhvare Metrics 127

Clusters
2
3
4
5
6
7
8
9
10

4.4.2 Results for the ProcSoft Dataset

Partition Coef CS Index Separation Index
0.8795 0.0012 20.0554
0.7524 1.4633 * 39.6065
0.6951 3.4166 * 21.4158
0.6138 4.2281 * 33.1550
0.5450 1.5024 * 35.7366
0.5392 2.3218 * 13.5172
0.5070 1.1190 * 12.8757
0.4738 1.7293 * 13.0638
0.4416 3.1477 * 19.4462

Since the ProcSoft dataset does not include change counts, the
average SSE metric from Section 4.1 is unusable. Instead, only the
partition coefficient, the CS index, and the Separation index are used as
cluster validity metrics. The number of clusters varied from 2 to 10. The
metrics for each partition are given in Table 4.1 1.

Table 4.1 1 : Cluster Validity Metrics for ProcSoft

As can be seen, the partition coefficient and the CS index both
indicate that two clusters is the optimal number, while the Separation
index indicates that eight clusters is the optimal number. The ordering of
cluster centers amongst these metrics again shows a monotonic
relationship between these attributes, as can be seen in Table 4.12. While
this table does not provide a final answer on which partition is superior,
is does hint quite strongly that the ProcSoft dataset appears to again be
monotonic in nature. This result is supported by a PCA analysis, which
again shows that there is a single principal component to the ProcSoft
dataset. This result is again different from the painvise linear correlation
analysis in [52]; that analysis indicated that the Lines of Comments
attribute was only strongly correlated to the Lines of Code attribute.

Additional information may be obtained by examining Tables 4.13
and 4.14, which show the size of each cluster (i.e. how many patterns
have the highest degree of membership in this cluster). Notice that for
two clusters, the distribution of patterns is skewed towards cluster two,
which contains larger metrics values, while the distribution is skewed

10-4
10-4
10-5
10-4
10-4
10-4
10-4
10-4

128 Computational Intelligence and So f iar-e Qualiw Assurance

Attributes
Halstead’s nl
Halstead’s n2
Halstead’s N1
Halstead’s N2
Halstead’s N
Halstead’s NA
Jensen’s NF

McCabe’s VGl
McCabe enhanced - VG2

Lines of Code
Lines of Comments

towards clusters of smaller values when we have an eight-cluster
partition. Comparing these results to Table 4.18, where a statistical
characterization of the entire dataset is presented, one sees that the proper
skew in this dataset is indeed towards smaller values. Thus, the partition
into eight clusters will be the most representative.

Ordering - 2 Clusters Ordering - 8 Clusters
1,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1 ,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1 ,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1 ,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1 ,2 2 ,5 ,7 ,4 ,6 ,8 ,3 , 1
192 2 ,5 ,7 ,4 ,6 ,8 ,3 , 1
1 , 2 2 ,5 ,7 ,4 ,6 ,8 ,3 , 1
1 ,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1 ,2 2 ,5 ,7 ,4 ,6 , 8,3, 1
1 ,2 2 ,5 ,7 ,4 ,6 , 8,3, 1

Cluster
2
5
7
4
6
8
3

Partition
82
136
83
59
23
25
11

1

Table 4.14: Cluster Size for 2-Partition

3

Cluster Patterns

Table 4.12: Ordering of Cluster Centers by Attribute

Table 4.13: Cluster Size for 8-Partition

1
2

59
363

Data Mining and Software Metrics 129

Clusters
2
3
4
5
6
7
8
9
10

4.4.3 Results for OOSoft

Partition Coef CS Index Separation Index
0.7371 1.0164 * 229.2901
0.6601 3.1147 * 184.2069
0.6704 3.1 147 * 95.8886
0.6695 6.9479 * 8.9305
0.5938 4.9494 * 10.~ 16.0950
0.5383 4.1993 * 17.9859
0.5150 1.0724 * 17.293 1
0.5037 6.4591 * 16.1833
0.4767 6.4591 * 17.8566

As with the ProcSoft dataset, change counts are not included in the
OOSoft dataset. Thus, the partition coefficient, the CS index and the
Separation index are once again relied upon as validity metrics. The
values of these metrics are presented in Table 4.15 for partitions of 2 to
10 clusters.

Table 4.16: Cluster Center Orderings for OOSoft

Feature
nl
n2
NI
N2
N

Nh
Nf

McCabeI
McCabe2

LOC
Comments

Both the CS index and the Separation index show a global extremum
at five clusters. The cluster center orderings this time did not indicate a
purely monotonic relationship amongst all the metrics. As can be seen in

Table 4.15: Cluster Validity Metrics for OOSoft

10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-4

Cluster Center Ordering
1,3,2,4,5
1,3,2,4,5

1,3,2,4,5
1,3,2,4,5
1,3,2,4,5
1,3,2,4,5

1,3,2,4,5
1,3,2,4,5
1,3,2,4,5
1,3,3,4, 5
a,3,2,4,5

130 Computational Intelligence and Sojiiare Qualiq Assurance

Table 4.16, all metrics save the Lines of Code and the Lines of
Comments are monotonically related. However, the Lines of Code and
Lines of Comments are not monotonically related to the others, and have
a limited relationship to each other. As with the MIS and ProcSoft
datasets, a PCA analysis shows that there is only one principal
dimension. The fact that the Lines of Code and Lines of Comments are
substantially different from the other metrics was determined by
DeVilbiss in [52].

The differences between ProcSoft and OOSoft deserve some
comment. Both datasets were extracted from similar applications, and the
same metrics were recorded for each. However, only in the OOSoft
dataset is there a low correlation between LOC or Comments and the rest
of the metrics. At this point, it might be instructive to review some of the
basic statistics for each of these datasets, which are presented in Tables
4.17 and 4.18. For every single metric, the average, median and
maximum values are significantly smaller in the OOSoft dataset than in
the ProcSoft dataset. This fact was remarked on in [52] ; a thorough
analysis showed that much of the complexity of the structured program
was due to the use of SWITCH statements to determine the data type of
arguments. Clearly, this is unnecessary in object-oriented systems that
support polymorphism and overloading. The removal of these SWITCH
statements simplifies the program, and reduces the average and median
values of the metrics. However, the relative change in the LOC was
smaller than the changes for other metrics, while the use of comments in
the object-oriented program was significantly different than in the
structured program. These observations account for the difference in the
clustering results for the ProcSoft and OOSoft datasets; the meaning of
these observations is less clear. Without module change data, one cannot
conclude that object-oriented methods will be less change-prone than
functions in a procedural program. Indeed, the nature of object-oriented
programming, which allows multiple methods access to shared data
structures in a class, introduces significant opportunities for subtle
program errors. In many ways, testing a class is similar to testing a
procedural program with a significant number of global variables, in that
the class variables produce a complex coupling between different
methods in the class. While the removal of unnecessary complexity is

Data Mining and Software Metrics 131

n l
n2
N1
N2
N

Nh
Nf

McC 1
McC2
LOC
CMT

helpful, object-oriented systems are not a silver bullet. The complexity
savings, and the greater conceptual integrity enforced by object-oriented
analysis and design, must be weighed against the increased complexity
of testing classes [12, 131.

Min MClX Mean Median STD
1 .oo 43.00 11.53 11.00 6.74
1 .oo 53.00 7.81 6.00 6.92
1 .oo 375.00 28.17 21.50 37.12
1 .oo 292.00 14.96 9.00 23.92
2.00 667.00 43.13 33.00 60.35
1 .oo 480.00 70.77 64.00 64.92
0.00 362.00 48.25 42.00 47.52
1 .oo 28.00 2.27 2.00 2.59
1 .00 36.00 2.49 2.00 3.30
14.00 387.00 56.17 40.00 49.50
2.00 299.00 36.60 21.00 42.89

nl 1 .oo 54.00 16.48 15.00 9.52
n2
NI
N2
N

Nh
Nf

McC 1
McC2
LOC
CMT

1 .oo 151.00 17.91 12.00 18.94
1 .oo 884.00 75.28 37.00 110.17
1 .oo 498.00 44.80 20.50 68.60
2.00 1303.00 120.08 56.50 178.10
1 .oo 1292.00 155.78 101.50 170.66
0.00 1029.00 112.48 69.50 132.47
1 .oo 67.00 5.39 3.00 6.87
1 .oo 72.00 6.12 3.00 7.87
3.00 786.00 84.92 55.00 92.83
0.00 524.00 5 1.07 34.00 60.27

4.4.4 Conclusions from Fuzzy Clustering

As noted in the preceding sections, a distinguishing feature of the
MIS, OOSoft and ProcSoft datasets is that they are one-dimensional and

Table 4.17: Statistics for OOSoft

Table 4.18: Statistics for ProcSoft

Min Max Mean Mediam STD

132 Computational Intelligence and Sojiiare Quality Assurance

monotonic in nature. In the MIS and ProcSoft datasets, all metrics
showed this monotonic relationship to each other, while all but the LOC
and Comments in OOSoft were monotonically related. In addition, the
MIS dataset shows a monotonic relationship between each metric and the
number of changes in the module. This phenomenon is referred to as
multicollinearity, and it has been repeatedly highlighted in the literature
as one of the most challenging features of software metric datasets. Quite
simply, multicollinearity tends to confound statistical regression models.
Indeed, one of the main motivations for using Principal Component
Analysis in previous studies was to avoid the multicollinearity of
metrics, since it is a common feature of software metric datasets.

Three further points can be highlighted concerning the MIS dataset.
First, Bandwidth is indeed a useful program metric. It bears a similar
relationship to software changes that other metrics do, and its removal
from this dataset has a clear, negative effect on the clustering results,
contradicting the results from [166, 1671. Second, the dataset is actually
quite noisy. The divergence of the general cluster validity measures from
the tenfold cross-validation results shows that the partitions having the
classically “best” cluster quality do not actually represent this dataset.
We believe this to be a problem of under-determination; the set of
metrics in this experiment truly does not quantify the full “state of
nature” in software systems. While this result is well known in the
context of regression analysis, its confirmation through machine learning
techniques is a notable result. Finally, in addition to the familiar problem
of skewness, this investigation also pointed out another unwelcome
statistical characteristic: variance. Variance also complicates regression
analysis and machine learning. The clusters detected in the MIS dataset
show a monotonic relationship between increasing mean change values
and increasing change variance. Thus, the clusters with the highest
change rates (the ones we are most interested in) also have the highest
variance.

Data Mining and SofMare Metrics 133

4.5 Data Mining

In this section, the same three datasets are analyzed using data mining
tools available on the Web. The Info-Fuzzy Network (IFN) [155] was
developed by Mark Last and is described in [176]. This data mining tool
uses information-theoretic algorithms to extract IF-THEN rules from a
database, and has been used in various data mining tasks, including
medical data mining [157] and quality control in the semiconductor
industry [156]. These IF-THEN rules may be positive associations, or
they might be negative associations (i.e. negative rules). The IFN can
only be used in cases where there is a target attribute, and so is applied
solely to the MIS dataset in this paper. To conduct data mining on the
OOSoft and ProcSoft datasets, the WizRule tool [298] created by the
WizSoft corporation is used. This tool searches for associations in a table
of data, without the need to specify a target attribute. Both of these tools
are rule-extraction algorithms, which means they search for cause-and-
effect relationships in the data, and present those relationships in the
form of linguistic (IF-THEN) rules In terms of the knowledge discovery
process discussed in Chapter 1, these tools both perform data mining and
enable the user to evaluate and consolidate the results of data mining.

4.5. I The MIS Dataset

The IFN is a data mining tool for data tables in which there is a target
attribute - an attribute whose value is to be predicted by the remaining
attributes, which become inputs. The IFN works by aggregating values in
each attribute domain into groups, and then performing data mining over
those groups. Thus, rules extracted by the IFN always deal with intewals
of data, rather than individual data points. The IFN discretizes all input
attributes, and assumes that the target attribute is in some discrete form
(i.e. classes). Thus, the first step in data mining in the MIS dataset is to
transform the change-count attribute into class information. This is done
by using the hardened classes from Section 4.1. These classes become
the values of the target attribute in the data mining process. A minimum
confidence level of 95% was specified for the rules extracted by the IFN.

134 Computational Intelligence and Sofware Quality Assurance

IF Code-Chars is [30,349] THEN Class = 4
IF Code-Chars is [30,349] THEN Class IS NOT 4
IF Codechars is [524,754] THEN Class = 1
IF Code-Chars is [524,754] THEN Class IS NOT 4
IF Code-Chars is [1841,22211 THEN Class = 6
IF Code-Chars is [1841,22211 THEN Class = 7
IF Code-Chars is [222 1,27621 THEN Class IS NOT 6
IF Code-Chars is [2221,2762] THEN Class = 7
IF Code-Chars > 7547 THEN Class = 5
IF Code-Chars is [349,524] and LOC is [3,57] THEN Class IS NOT 1
IF Code-Chars is [349,524] and LOC is [3,57] THEN Class = 4
IF Code-Chars is [349,524] and LOC is [57,89] THEN Class = 1
IF Code-Chars is [349,524] and LOC is [57,89] THEN Class IS NOT 4
IF Codechars is [349,524] and LOC is [89, 2091 THEN Class = 1
IF Code-Chars is [754, 12011 and LOC is [3,57] THEN Class = 1
IF Code-Chars is [754, 12011 and LOC is [3,57] THEN Class IS NOT 4
IF Code-Chars i s [754, 12011 and LOC i s 157,891 THEN Class = 1
IF Code-Chars is [1201, 18411 and LOC is [57, 891 THEN Class = 1
IF Code-Chars is [1201, 18411 and LOC is [57, 891 THEN Class = 6
IF Code-Chars is [1201, 18411 and LOC is [89,209] THEN Class IS NOT 1
IF Code-Chars is [1201, 18411 and LOC is [89,209] THEN Class = 6
IF Code-Chars is [1201, 18411 and LOC is [89,209] THEN Class IS NOT 7
IF Code-Chars is [2762,4638] and LOC is [89,209] THEN Class IS NOT 6
IF Code-Chars is [2762,4638] and LOC is [89,209] THEN Class = 7
IF Code-Chars is [4638,7547] and LOC is [209,471] THEN Class = 2
IF Code-Chars is [4638,7547] and LOC is [209,471] THEN Class = 3
IF Code-Chars is [4638, 75471 and LOC is > 471 THEN Class = 3
IF Code-Chars is [4638,7547] and LOC is > 471 THEN Class = 5
IF Code-Chars is [754, 12011 and LOC is [89,209] andNF is [OX, 178.91 THEN Class = 1
IF Code-Chars is [754, 12011 and LOC is [89,209] and NF is [0.8. 178.91 THEN Class IS NOT 6
IF Code-Chars is [754, 12011 and LOC is [89,209] andNF is [178.9,465.9] THEN Class IS NOT 1
IF Code-Chars is [754, 12011 and LOC i s [89,209] and NF is [178.9,465.9] THEN Class = 6
IF Code-Chars is [2762,4638] and LOC is [209,471] andNF is [178.9,465.9] THEN Class = 7
IF Code-Chars is [2762,4638] and LOC is [209,471] and NF is > 465.9 THEN Class IS NOT 2
IF Code-Chars is [2762,4638] and LOC is [209,471] and NF is > 465.9 THEN Class = 3

Figure 4.2: Rules from IFN

A total of 35 rules, both positive and negative, were extracted from
this dataset (see Figure 4.2). In general, these rules support the earlier
assertion that the dataset is monotonic in nature; the metric values and
the change classes tend to increase in unison with each other. The most
interesting result of this data mining experiment is the set of attributes
that were found to be significant predictors of the change class. As can
be seen, only the total lines of source code, the number of code
characters, and the NF estimator of Halstead’s N were determined to be

Data Mining and Soffware Metrics 135

significant. Referring to Section 4.3, Table 1, these are not in any way
the most correlated with the total number of changes. Indeed, the
attribute with the single highest correlation to the change counts
(Comments) is not seen as significant at all, and only one of the three
attributes with the highest correlation to the change counts (Total lines of
source code) is seen as significant.

4.5.2 The OOSoft Dataset

As discussed earlier, the OOSoft dataset does not contain change
data. As a result, there is no target attribute, and the IFN algorithm is not
applicable. However, another data mining tool called WizRule is able to
search for associations in a table of data even when there is no target
attribute. As with IFN, the output of WizRule is a sequence of IF-THEN
rules. However, in the case of WizRule, there is no separation into input
and target attributes. All attributes may at times appear in the antecedent
of a rule or in the consequent of a rule. While this format enables data
mining in the absence of a target attribute, it does tend to generate a large
number of rules for each association that is found. In addition, WizRule
will use both intervals and individual data points in its rules. However,
there are no negative rules in WizRule.

To minimize the number of rules, the rule probability threshold was
set as high as possible (99%). However, the extreme skewness of this
dataset complicated the data mining efforts. One of the parameters of
WizRule is the minimum number of records in which a rule must be
present in order to be extracted. Lowering this threshold can rapidly
increase the number of extracted rules. With the deep skewness of the
OOSoft dataset, this threshold was ten records. These parameters caused
WizRule to extract 795 IF-THEN rules from the 562 records in OOSoft.

The bulk of the rules extracted by WizRule described one of three
associations: 1) that small values of some metrics implied a small value
of another metric; 2) that large values of some metrics implied a large
value for another metric; 3) that the Halstead family of metrics are
strongly related to each other. Plainly, these are associations that were
already observed. However, there were a few other associations that
came to light, which were less obvious. As an example, 43 of the rules

136 Computational Intelligence and Sof iare Quality Assurance

extracted from OOSoft represent an association between a specific value
for each of the different metrics. However, this information had to be
determined through a manual inspection of the rules; it was not presented
as a single, cohesive association, and the meaning of this association is
unclear. A few other, similar associations may be found in the rules as
well. However, the sheer number of rules produced makes it difficult to
extract interesting information from the data mining results.

4.5.3 The ProcSoft Dataset

As with OOSoft, WizRule was used to conduct data mining in the
ProcSoft dataset. Again, the threshold number of records was set to 10
(since ProcSoft is also skewed), while the significance threshold was set
to 99%. This resulted in the generation of 200 rules, most of which
described the association of small values with small values, large values
with large values, and Halstead metrics with each other. However, a few
more interesting rules were also found. In particular, there were instances
when metric values that were less than the largest range were associated
with the largest ranges of other metrics. For instance, the rule

IF nl=[30,54] and McCabe=[15,67] THEN McCabe2=[18,72]

relates the largest values of the n l , McCabe and McCabe2 metrics
together. However, the rule

IF McCabe2=[18,451 and CMT=[137,4221 THEN LOC=[247, 7861

relates a lower value of McCabe2 to the maximum values of CMT and
LOC. Again, these more interesting cases had to be determined by
manual inspection. They are nonetheless worthwhile, since they signal
behaviors that are somewhat unexpected.

Data Mining and Sofiare Metrics 137

4.6 Remarks

This investigation has for the first time combined fuzzy clustering
and data mining for the analysis of software metrics data. This work
provides a new perspective on these three datasets, and points the way
toward the use of data mining technology in the context of software
process control. For organizations at the higher levels of the Capability
Maturity Model, there is a need to analyze software quality data and
apply this information to process improvement activities. This study
points out the need to rely on more than just a correlation analysis for
this purpose; the more powerful techniques of machine learning and data
mining are important, useful tools for software quality analysis.

Some of the special challenges that are a characteristic of this
application domain were highlighted in this study. Firstly, the individual
metric values and the change rates for a module all tend to be highly
correlated with each other. This is a phenomenon known as
multicollineavity, and it is a serious problem for most data analysis
techniques. Most statistical regression models assume independence
between the predictor attributes, which is clearly not the case. Machine
learning algorithms are able to operate in the presence of
multicollinearity, but their results can also be subtly affected. In general,
small variations from the overriding linear behavior would be discarded
as noise, when in fact those might be the most interesting features. One
of the main motivations for using PCA in software metrics research is
that each eigenvector thus obtained is orthogonal to every other
eigenvector, and thus individual attributes in the reduced feature space
are in fact independent of one another.

A second major characteristic is skewness. As mentioned, and as was
demonstrated in the clustering experiments on the MIS dataset, software
metric datasets tend to be skewed towards modules with low metric
values and low change rates. Machine learning algorithms tend to be less
effective at identiQing minority classes in a skewed dataset. To this fact,
these experiments also added another complication: the change
distributions in modules with high metric values also seem to have larger
variation. This result comes from the MIS experiments; the sample
standard deviation of the changes in a cluster appeared to be monotonic

138 Computational Intelligence and Sofbvave Quality Assurance

increasing with the mean of the changes in the cluster. This will
complicate machine learning in general, and be a very serious problem
for function approximation approaches in particular. Classification
approaches will also be affected, but the coarser granularity of the
dependent variable in will mitigate the impact of the higher variance.

A third characteristic of software metric datasets is that they are
underdetermined. As industrial experience and these experiments have
shown, a single metric or a combination of metrics is not a complete
predictor of the changes in a module. This is again a subtle problem for
machine learning approaches, which implicitly assume that each input-
output pattern is a sample of a fimction. In other words, machine learning
algorithms assume that the input component of a pattern contains the
values of all independent variables from the true mapping between inputs
and outputs. The experiments with the MIS dataset showed a clear
difference between the usual cluster validity measures and the predictive
accuracy of those clusters, indicating a significant departure from this
assumption.

Chapter 5 revisits the three datasets explored in this chapter, and
examines ways to remove or overcome the skewness present in them.
The technique that will be used is called resampling, and is commonly
used in the machine learning community. However, to the best of the
author’s knowledge, resampling has never been used in the software
quality domain before. Resampling a dataset can homogenize the class
distribution in that dataset, allowing a more effective investigation of
minority classes. In the software metrics domain, this means that
resampling can improve a classifier’s ability to recognize the relatively
few modules with large metric values and a high change rate.

Chapter 5

Skewness and Resampling

5.1 Introduction

As discussed in the previous chapter, software metrics are used to
measure the current quality of a software system. While there appears to
be an overall linear relationship between metric values and failure rates,
this relationship is not fully understood. At this point, a module with a
McCabe’s complexity of 20 seems much more likely to fail than one
with a McCabe’s complexity of 5 ; however, software engineers cannot
quantify this assertion. Quite simply, none of the hundreds of software
metrics available are adequate predictors of future failure rates.
Furthermore, the use of multiple metrics is complicated by the fact that
metrics are linearly related to each other, as well as to the failure rate.
This phenomenon of multicollineavity renders statistical regression
useless, since independence among regressor variables is a fundamental
assumption of the regression algorithms.

Machine learning algorithms, on the other hand, are able to operate in
the presence of multicollinearity, as demonstrated in [7, 47, 67, 138,
1411, among others. However, machine learning suffers from a different
problem: databases of metrics for any project are heavily skewed towards
modules with low metric values and low failure rates. Skewness distorts
a machine learning algorithm because the algorithm is attempting to
optimize a global performance index. For instance, if a particular dataset
contains 95% small, safe modules and 5% risky models, a machine
learner can simply guess that the module is small and safe - and thereby
achieve an accuracy of 95%, which is considered very high [36]. Since

139

140 Computational Intelligence in Software Quality Assurance

the data themselves are skewed, the model a machine learns from these
data is also skewed. This is a serious problem because the instances
developers want to learn about - the high-risk modules - are not being
given priority by the learner.

Skewed datasets are not new to the machine learning community. The
primary approaches to dealing with skewness are to resample the dataset,
or to penalize the learner for not recognizing minority-class examples. In
resampling, instead of simply taking the dataset as given, one can
preprocess it so that the interesting cases form a majority of the training
data. This can be accomplished by undersampling the majority class,
oversampling the minority class, or both. Alternatively, a learner can be
penalized by modifying the global performance index to include a cost
for each error. The cost per error can be higher for minority-class
examples, and can thus force the learner to make fewer mistakes on
minority-class examples. Interestingly, the only attempt to deal with
skewness in the domain of software metrics has been to use differing
misclassification penalties in a decision tree algorithm [1391. The
investigation in this chapter applies a new resampling algorithm,
SMOTE [36], to the problem of skewness in metrics datasets. The C4.5
decision tree learner [245] is then used to mine the resampled datasets.
When the resulting trees are compared against the trees generated from
the original datasets, the trees from resampled datasets identified risky
modules more accurately than trees from the original datasets.

The remainder of this chapter is organized as follows. In Section 2,
the existing literature on machine learning in skewed databases is
reviewed. Experimental results from the resampled datasets are presented
and compared to the original datasets in Section 3 . Ideas on how to use
these results in a practical setting are discussed in Section 4.

5.2 Machine Learning in Skewed Datasets

In many interesting machine learning problems, objects are not
homogeneously distributed among the different classes. Very often, the
available data mostly consist of predominantly "normal" examples, with
only a few ''abnormal'' examples. The abnormal examples, however, are

Skewness and Resampling 141

precisely the ones that are most interesting to analysts. In addition, when
there are costs to misclassifying an example, the cost of mistaking an
“abnormal” example for a ‘lnormal” example is often much higher than
classifying a ‘‘normal” example as “abnormal.” The problem this poses is
that a machine-learning algorithm usually works by defining some global
performance index to rate the algorithm’s current representation of a
given problem. Learning then involves changing the problem
representation to optimize that global index. This may involve adding
new branches to a tree, updating connection weights in a neural network,
producing a new generation of solutions in a genetic algorithm, adding or
modifying rules in an expert system, etc. Clearly, when the “abnormal”
cases are just a tiny fraction of the population, they cannot have a very
large effect on the global index, and will thus be ignored to some extent
by the learner [36].

The machine learning community has used several different
approaches to overcome skewness in a dataset. The two most common
are misclassification penalties and resampling techniques.
Misclassification penalties are used to “punish” a learning algorithm
when it makes an error. By associating a different penalty with different
types of mistakes, the user can force a learner to avoid certain kinds of
mistakes, at the cost of making more errors of a different type. Thus,
mistaking an “abnormal” case for a “normal” one might carry a higher
penalty than mistaking a ‘‘normal’’ case for an “abnormal” one, or vice
versa. The precise penalty strategy depends on the problem domain and
the user’s goals. Misclassification penalties are an option in CART trees,
and can be implemented for a variety of machine learning algorithms
through post-processing [56,228].

Resampling is the other major technique for dealing with skewed
datasets. Resampling in this sense is distinct from bagging or boosting.
Bagging is a resampling technique intended to perturb a learner; a dataset
is sampled with replacement to create a new dataset of the same size.
This dataset is, properly speaking, not a set, since it can contain repeated
elements. It is instead known as a bag. Plainly, the class distribution in
the bag will be roughly the same as in the original dataset. A collection
of such bags is formed, and then an ensemble of classifiers is trained on
the resulting bags, one classifier to each bag. The set of test inputs is then

142 Computational Intelligence in Sofhvare Quality Assurance

submitted to the ensemble, which votes on the final classification for
each input. The combination of bagging and voting is usually superior to
creating a single classifier, provided that the learning algorithm is
unstable [28]. Boosting is another technique for creating classifier
ensembles. Boosting algorithms such as AdaBoost [264] sequentially
train classifiers, placing more emphasis on certain patterns in each
successive iteration. This is done by defining a probability density over
the training data. For learning algorithms that do not support weighted
training patterns, the same effect can be achieved by resampling the
dataset with replacement, according to the desired probability density.
This is the primary difference between boosting and bagging, since
bagging uses uniform sampling with replacement.

The resampling techniques of interest in this study are also referred to
as stratification. They are used to alter the class distributions within a
dataset, either to homogenize them or to make the classifier more
sensitive to misclassification costs (as mentioned in [56]). The simplest
approach is under-sampling, wherein a subset of majority-class examples
is randomly selected for inclusion in the resampled dataset without
replacement. This effectively thins out the majority class, making the
dataset more homogenous. Similarly, a simple over-sampling approach
would be to duplicate examples from the minority class and include them
in the resampled dataset [36]. More advanced techniques are also
available in the literature; for instance, an under-sampling technique that
preserves the class boundaries in a dataset is used in [150]. This is
accomplished using the concept of Tomek links from statistical theory.
In another vein, the SMOTE algorithm [36] creates synthetic examples in
the minority class to be added to the genuine examples in the minority
class. This is an over-sampling technique that was originally motivated
by decision-tree learning. The authors found that simply replicating
examples from the minority class causes decision trees to construct a
small, tightly focused decision region around the replicated examples. As
an alternative, the authors created synthetic examples along the line in
feature space that connects a minority class example to its nearest
neighbor in the same class. They found that this approach resulted in an
expanded decision region, and thus better generalization. A somewhat
different application of under-sampling is the “uncertainty sampling”

Skewness and Resumpling 143

technique in [161]. The problem area in that paper is automatically
labeling unlabelled examples in datasets; however, skewness also
affects any effort to automatically categorize these unlabelled examples.

There are also other approaches to skewed datasets that do not fall
under the umbrella of resampling or error penalties. Bayesian networks
are often used to represent the probability structure of a dataset, but their
performance as classifiers is sometimes suspect. In [71], the authors use
classification accuracy as the driving goal in forming a Bayesian
network. The resulting network performs well, but is considerably
different from a traditional Bayesian network. By contrast, DeRouin and
Brown [5 11 approach neural-network learning for skewed datasets by
adding an adaptive attentionfactor to the learning rate of each neuron.
The attention factor depends on the class distribution of the dataset, and
on the proportion of each class that has already been presented for
training.

In addition to methods for overcoming skewness, machine learning
researchers have also been investigating the performance measures used
to compare different algorithms. The traditional measure, classification
error, has been extensively attacked for not incorporating the differing
costs of different mistakes, and for not offering a complete picture of the
relative performance of two classifiers. Provost and Fawcett [243] have
instead argued for the use of the Receiver Operating Characteristic
(ROC) curve from signal processing as a superior measure of classifier
performance. Other authors have offered their own interpretations of the
ROC curve [58], or used the curve itself to create new metrics for
classifier performance [27]. A number of metrics are available for the
specialized task of evaluating collections of text documents, where
classes may be both skewed and sparse [61, 2001. An important point to
note is that the ROC curve (and to a large extent the metrics for text
search) only measure how well one class is learned. The ROC curve
plots the number of "True Positives" versus "False Positives," while the
text-search metrics of precision and recall are based on the correct or
incorrect placement of examples in a category. A metric that naturally
measures a classifier's performance in several classes at once is the
geometric mean, given by

144 Computational Intelligence in Sofhvave Qualily Assurance

P = Vacci . acc2 acck (5.1)

where acci is the classification accuracy for class i alone.

5.3 Experimental Results

A series of data mining experiments was conducted on the three
datasets from Chapter 4 using the C4.5 Decision Tree Generator, release
8. Each experiment was a tenfold cross-validation, with the examples in
each partition being selected by a stratified sampling algorithm supplied
with C4.5. Thus, each individual partition had the same class distribution
as the original dataset. The classes used were the fuzzy clusters discussed
in Section 4.4, hardened into classes using the method of maximum
membership [l lo]. For each class of interest, the class testing accuracy
was computed by dividing the number of correctly classified test
examples for the class through all ten iterations of the cross-validation by
the total number of examples in that class. The overall performance in
each experiment was determined by taking the geometric mean of the
accuracies in the classes of interest, given by

P = Vacci . acc2 acck (5.2)

for the k classes of interest in the dataset. Perfect accuracy for all classes
of interest will be reflected by a value of P = 1.

Resampling approaches work by identifying one or more classes as
being interesting, and then altering the distribution of the dataset to favor
those classes, at the expense of uninteresting classes. A resampling
strategy that improves the learning of one class will degrade the
representation of other classes. Thus, the first task is to identifying those
classes that are of interest in the three datasets. For the MIS dataset, the
mean number of changes per module in each class is a good starting
point. An (admittedly arbitrary) decision was made to identify those
modules that belong to any class having an average of more than 10
failures. This yields 4 classes of interest: clusters 2, 3 , 5 and 7 (see Table

Skewness and Resampling 145

Overall
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7

Performance

4.5 in Chapter 4). For the OOSoft and ProcSoft datasets, failure counts
are unavailable. Based on the known fact that higher metric values
correlate well with higher failure rates, classes in these two datasets that
have unusually high metric values were identified by comparing the
cluster centers in each dimension with the mean value for the whole
dataset in that dimension. The classes of interest in ProcSoft and OOSoft
are those clusters whose centers are higher than the mean value for each
dimension in at least two dimensions.

Experiments with the original datasets were conducted to obtain
baseline data. The overall accuracy, class accuracy, and geometric mean
for the MIS, OOSoft and ProcSoft datasets are given in Tables 5.1, 5.2,
and 5.3. The classes of interest in the MIS dataset were classes 2, 3 , 5 ,
and 7. In OOSoft, the classes of interest are classes 3 , 4, 5 , and in
ProcSoft they were classes 1, 3 , 8. In general, the classes with the highest
accuracy were the ones that either had the lowest or highest metric
values; those classes in between were more difficult to classify.

10-Fold Accuracy
84.9%

80.39%
80%

11.21%
93.46%
9 1.67%
88.31%
15.61%
0.8091

Table 5.1: Tenfold Cross-Validation Results for MIS

Following these initial experiments, undersampling and SMOTE
were used to alter the class distributions in each dataset. The goal was to
trade off decreased accuracy in uninteresting classes for increased
accuracy in the ones that were interesting, or to calibrate a decision tree
to perform best on the classes of interest. In general, uninteresting classes
were undersampled to as little as 25% of their original population, and
interesting classes oversampled by 100 or 200%. In the terminology of
this study, X % undersampling means a class with X % of the number of

146 Computational Intelligence in Sofmare Quality Assuvance

Class 5

examples in the original class, chosen through random uniform sampling
without replacement, is created. Y% oversampling means that a class that
contains Y/lOO times as many synthetic examples as there were examples
in the original class, plus all of the original examples, is created. The
experiments followed an iterative, exploratory process, and were
terminated when all of the interesting classes had a class accuracy greater
than the overall accuracy for the entire dataset.

100%

Table 5.2: Tenfold Cross-Validation Results for OOsoft

Overall
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

Performance

I 10-Fold Accuracv

10-Fold Accuracy
89.1%

66.67%
95.12%
8 1.82%
79.66%
95.59%
78.26%
87.95%

76%
0.7456

Overall
Class 1
Class 2
Class 3
Class 4

97.7%
98.97%
98.02%
96.9%
94.89%

Table 5.3 : Tenfold Cross-Validation Results for ProcSoft

Four resampling experiments were conducted in the MIS dataset. The
resampling strategy for each of these experiments is shown in Table 5.4.
Table 5.5 presents the overall accuracy, class accuracies, and
performance for each of these experiments, again determined through a
tenfold cross-validation experiment using C4.5. As can be seen, all of the
resampling strategies resulted in improved overall accuracy. One can
also observe an improvement in the performance measure as the

Performance 0.9724

Skewness and Resampling 147

Class
1
2
3
4
5
6
7

sampling rate for uninteresting classes is decreased, and increased for
interesting classes. The procedure is sensitive to the exact combination of
undersampling and oversampling used in the dataset. The optimal
strategy appears to be specific to each dataset.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
50% under 50% under 25% under 25% under
100% over 200% over 100% over 200% over
100% over 200% over 200% over 200% over
50% under 50% under 25% under 25% under
Unchanged Unchanged Unchanged 100% over
50% under 50% under 50% under 50% under
100% over 100% over 100% over 100% over

Overall
Class 1
Class 2
Class 3

Class 5
Class 6
Class 7

Performance

Class 4

Table 5.5: Resampling Results in MIS

Experiment 1 Experiment 2 Experiment 3 Experiment 4
90.4% 88.9% 89.8% 89%
8 8.24% 84.3 1% 80.77% 50%
90.0% 88.33% 85% 96.67%
88.64% 93.94% 98.48% 96.91%

100% 91.67% 91.61% 95.83%
81.4% 79.07% 69.71% 8 1.4%
93.9% 92.68% 96.34% 96.34%
0.9303 0.9163 0.9273 0.9645

94.4% 87.04% 92.59% 74.07%

Three resampling experiments were conducted in the OOSoft dataset.
The sampling strategy for each experiment is described in Table 5.6,
while the results of each experiment are presented in Table 5.7.
Similarly, the resampling strategy for the 3 experiments conducted in the
ProcSoft dataset is presented in Table 5.8, 'and the results of those
experiments are presented in Table 5.9. As can be seen, the combination
of undersampling and SMOTE is consistently able to alter the class
accuracies to favor the interesting classes.

Table 5.4: Resampling Strategies inMIS

148

Overall
Class 1
Class 2
Class 3
Class 4
Class 5

Performance

Computational Znte ffigence in Sofvmre Qualiq Assurance

Experiment 1 Experiment 2 Experiment 3
96.1 % 97.2% 98.3%
96.94% 98.98% 97.96%
96.15% 94.23% 94.23%
86.67% 99.17% 100%
94.74% 95.79% 98.42%
100% 100% 100%

0.9364 0.9830 0.9947

Table 5.6: Resampling Strategy for OOSoft

50% under 25% under
100% over 100% over
Unchanged 100% over

Table 5.8: Resampling Strategy for ProcSofi

Class 2
Class 3
Class 4
Class 5
Class 6
Class 7

Experiment 1 Experiment 2 Experiment 3
100% over 100% over 100% over
50% under 50% under 25% under
100% over 200% over 200% over
Unchanged Unchanged Unchanged
50% under 25% under 25% under
Unchanged Unchanged Unchanged
50% under 50% under 50% under
100% over 100% over 100% over

Table 5.7: Resampling Results for OOSoft

50% Under

Class1

Class 8

Class 1
Class 2
Class 3
Class 4
Class 5

Experiment 1 Experiment Experimnt 3

Unchanged UnichangUnchange

50% unfrt
50% under

50% under
50% under

25% under
25%under
100%uov

Unchange

Skewness and Resampling

Table 5.9: Resampling Results for ProcSoft

149

Overall
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

Performance

Experiment 1 Experiment 2 Experiment 3
87.8% 87.2% 89.9%
100% 100% 100%

86.36% 93.94% 96.61%
86.44% 83.05% 88.14%
9 1.1 8% 88.23% 97.06%
69.57% 73.91% 78.26%
85.71% 83.33% 76.19%

94% 88% 92%
0.9329 0.9385 0.9407

87.8% 95.12% 90.48%

5.4 Proposed Usage

A classifier, which has been calibrated to identify troublesome
modules, will be of great benefit to software developers. Imagine the
following scenario: a programmer completes a module for a software
system, and checks it in to the configuration control system. A few
minutes later, he receives an email telling him that the module he has
checked in appears to be in the "moderately risky" category, meaning
that there is a higher-than-normal risk of failure in that module, based on
the software metrics computed for that module. The programmer then
has the opportunity to redesign the module to reduce its complexity, or to
prepare a more rigorous testing plan. It is even possible that the project
manager might set guidelines for how much testing is needed for each
failure risk class. This could be based on a cost optimization model that
accounts for the differing levels of risk associated with each risk
category. This scenario is the ideal that researchers have been striving for
in software metrics research. However, one of the key stumbling blocks
is that engineers cannot tell a priori what metric values correspond to
low risk, medium risk, or high risk categories in a given project. Take
McCabe's cyclomatic complexity: one source [275] asserts that a
cyclomatic complexity of more than 10 is associated with an increased
failure rate, while another [S] might say 15. The real problem is that each
development project is in large measure unique. Different team members
bring a different set of skills and experience to bear on problems that

150 Computational Intelligence in Sof iare Quality Assurance

might be in completely different application areas, and more or less
difficult than each other. Notice that even calibrating metrics thresholds
from a company's historical data is problematic, since the development
team, application domain, and project difficulty are most likely different.

The solution we advocate is to return to an idea proposed by Brooks
more than 30 years ago: building a pilot system for each project, with the
intent to learn from the pilot system and then throw it away [29]. The
software development community, for obvious reasons, has not
embraced this idea; building a realistic pilot system will be expensive in
itself, and thus would significantly increase the cost of software
development. However, there are a number of results and observations
gathered in the course of decades of software research that point to the
usefulness of a pilot system:

i. Brooks' argument that software development is a learning
process certainly rings true. Developers constantly have to learn
new application domains to produce products their customers
want, application domains that none of the developers may have
any understanding of. This gap between the domain of software
development and the application domain is extremely dangerous
[6]. A pilot system will give developers a chance to develop
competence in the application domain, before building the
production system.
In his seminal paper describing the waterfall model [254], W. W.
Royce also argues for the development of a pilot system. His
rationale is that matters such as timing and storage allocation
should be explored through this pilot system. The developers
will be able to experiment with a working system rather than
relying on human judgement, which Royce characterizes as
"invariably and seriously optimistic" in the area of software
development. While timing and storage allocation are no longer
the key issues they were in 1970, the underlying principle is the
same: design decisions will be sounder if they arise from
experimental studies as opposed to human guesses.
The research on iterative development has showed that rapid
prototyping helps determine a user's true requirements, and can
lead to better software. Iterative development is now accepted as
being far superior to a single, monolithic, design-and-build

ii.

...
111.

Skewness and Resampling 151

model. Building a pilot system would certainly fit into the
iterative development model.
Other engineering disciplines routinely build pilot systems, and
accept the costs as part of the development cycle. No chemical
engineer would build a production plant without first building
and testing a pilot plant, while manufacturers routinely
experiment with process designs before settling on one
production process.
Finally, the results in Chapter 4 indicate that failure classes are
best determined through a supervised learning algorithm. While
clustering the MIS dataset, and used these clusters to build a
decision tree classifier was successful, observe that the cluster
partition that best represented the actual failure occurrences was
not seen as optimal by any of the standard cluster validity
metrics. Unsupervised learning is attractive because developers
do not have to wait until the system is implemented and tested
before data mining can begin; however, the results in Chapter 4
& 5 are evidence that supervised learning is more accurate in this
domain, probably due to under-determination of the dataset. If
actual failure counts are needed, then only two choices are
available: either wait until failure counts become available late in
the project (which renders the metrics-based screening process
moot), or gather failure data from a pilot system.

iv.

v.

There is a general consensus in the software engineering community
that software engineers do not fully understand how to produce high-
quality software. Engineers have learned that the traditional "waterfall"
life cycle is a poor fit to the special characteristics of software
development [232], and that some form of iterative process is needed
instead. This investigation has pointed out the fact that there is now a
substantial body of evidence that favors building a pilot system as a
routine step in software development. In addition to its other benefits, a
pilot system can also be used to calibrate software metrics to the project
under development, enabling the construction of automated screening
tools for software modules. For those projects that utilize a rapid-
prototyping development approach, the tree for the k-th filter can be
calibrated on the (k - 1)-th prototype.

152 Computational Intelligence in Software Qualiw Assurance

5.5 Remarks

This investigation represents the first-ever application of resampling
techniques in the domain of software metrics. Resampling has been
shown to be a viable technique for calibrating a decision tree to identify
classes of interest in a database of software metrics. We suggest that
decision-tree calibration can best be carried out through the construction
of a pilot system, which should lead to higher-quality software in
general. This concludes the experimental portion of this monograph; a
summary and discussion of future work are presented in Chapter 6.

Chapter 6

Conclusion

Software systems are the most complex technological systems in the
world today, and the most ephemeral. They exist as pure information,
without any physical component. Software has a reputation for being the
most error-prone of all engineering constructs, and yet it is an essential
element of the North American infrastructure and economy. This crisis in
software quality is probably the most urgent technological challenge of
the 2Ist century. At this time, there are no universally accepted models of
software reliability, or metrics that can quantify the quality of a software
system. Simply put, the understanding of software as an engineered
product is still in its infancy.

In this book, we have made three specific contributions to the
engineering of software. The first contribution is an experimental
investigation of a founding assumption in software reliability modeling.
In the literature on software reliability, the idea that software failures are
ultimately the result of a stochastic process is a basic assumption. There
has never been a specific, empirical study that attempts to support or
question this assumption. This investigation, based on best practices in
nonlinear time series analysis, shows that software failures actually
appear to be deterministic in nature. This result, in itself, is of
considerable theoretical importance; it means that the most appropriate
software reliability models will be nonlinear, deterministic models,
instead of stochastic models. In other words, techniques such as neural
networks or hzzy inferential systems should produce better models of
software reliability then non-homogeneous Poisson processes. The
underlying causal model proposed for this phenomenon is that the fault
set of a program has a fractal geometry. This points the way to a new

153

154 Computational Intelligence in Software Quality Assurance

fault-forecasting technique; if the fault set of a software system is a
fractal set as hypothesized, then perhaps the location of unseen faults in a
program can be predicted from the location of known faults. This is a
potentially significant development in software testing, which will be
pursued in future research.

The second contribution is the application of clustering to software
metrics analysis. Clustering is an unsupervised learning technique, which
means that the algorithm “learns” the distribution of points in some
feature space, without needing an a priori classification of those points.
Clearly, this would be useful in software engineering, where software
metrics are available far earlier than failure data. Unsupervised learning
algorithms can provide significant insight into what modules pose greater
development risks well before failures are observed. In this context, it is
quite surprising that fuzzy c-means clustering, a powerful and well-
known unsupervised learning algorithm, had not been used in the
software metrics domain. The cluster analysis experiments reported in
Chapter 4 rectified this omission, and exposed a few new characteristics
of software metrics datasets. The most significant of these conclusions
has to do with the relationship between the mean number of failures in
modules and the variance in failures per module. Quite simply, the
groups of modules that have a higher average number of failures also
show a higher variance in the number of failures per module. This is very
important for any kind of statistical or machine learning algorithm;
predictive algorithms will encounter significant difficulties when the
variance between classes is not uniform. In particular, the type of
machine learning algorithms known as function approximators will be
severely impacted, as will statistical regression techniques.

The third contribution to software quality has to do with the nature of
software metrics datasets. As observed in Chapter 4, and as has been well
recorded in the literature, software metrics datasets are heavily skewed.
Most modules in a software system are small and have few bugs. Only a
few modules are large and buggy. However, it is precisely these large
and buggy modules that are most interesting. Learning in skewed
datasets is a typical machine learning problem, and two major
approaches have been developed for dealing with them. One is to
associate differing costs with making errors in majority or minority

Conclusion 155

classes; another is to resample the classes and homogenize the
distribution of examples across classes. In the software metrics domain,
there is a single paper describing different misclassification costs in
software metrics datasets, and none whatsoever describing resampling
approaches. Resampling experiments conducted using the results of our
clustering experiments in Chapter 4 were described in Chapter 5 . A
machine learning system (in this case the C4.5 decision tree algorithm)
was calibrated to preferentially recognize certain classes of modules that
posed a high development risk.

It is suggested that this research should be applied in an iterative
development model; at the very least, a pilot system should be built on
each software project, and used to calibrate metrics for the full system. In
a fully iterative development model, each iteration of the system should
be used to calibrate metrics for the next iteration. An automated system
that will pre-screen modules as soon as they are checked in to
configuration management is envisaged. This system would
automatically compare a new module’s metrics against a model of
potentially troublesome modules, and flag any that seem to have an
elevated risk of failure. This might simply be a warning that extra testing
is needed, or a manager might assign different levels of necessary testing
based on the classification of a module. This could also be a component
of a deployment decision framework. Industrial studies will be needed to
determine if this is a useful and economically viable concept.

Future work in this area includes industrial studies of a calibrated
metrics “filter,” and an investigation of the fractal fault set hypothesis, as
mentioned above. In addition, several related issues were raised in the
course of this study:

i. Firstly, finding the optimal combination of resampling
algorithms and machine learning algorithms as an automatic
filter requires more study.
In a similar vein, one can ask what software reliability models
are most useful, given the evidence of determinism we have
found. Both of these lines of inquiry must address not just the
pure machine-learning question of what algorithm gives the
highest accuracy, but also practical questions of how machine

ii.

156 Computational Intelligence in S o f i a r e Quality Assurance

learning can be used in software testing, how such algorithms
may support a human developer, and in what ways the software
developer must alter their processes purely to accommodate a
particular tool. Both lines of inquiry will also require the
examination of existing and novel machine learning
architectures.
One class of software failures that is currently receiving a large
amount of attention is security failures or breaches. If the subset
of the fault set representing security breaches also has a fractal
geometry, then security breaches might also be predicted.
Most software reliability models today are based on execution
time, rather than the amount of wall-clock time spent in testing,
although Musa’s calendar-time model does provide a means for
converting wall-clock time to execution time. However, open
source systems, which are tested by a loose association of
interested parties, pose real challenges for current software
reliability modeling techniques. Fuzzy sets and rough sets might
profitably be used to develop reliability models for open-source
systems.

...
111.

iv.

References

[l] Adelson, B.; Soloway, E., “The role of domain experience in software design,“
IEEE Transactions on Sof iare Engineering, vol. 11 no. 11, November 1985, pp.

[2] Aiken, M. W., “Using artificial intelligence based system simulation in software
reusability,” Sofiare Engineering Notes, vol. 15 no. 5, October 1990, pp. 23-27.

[3] Alander, J.T.; Mantere, T.; Moghadampour, G., “Testing software response times
using a genetic algorithm,” in Proceedings, 3rd Nordic Workshop on Genetic
Algorithms and Their Applications, Helsinki, Finland, August 18-22, 1997, pp.

[4] American Institute of Aeronautics and Astronautics, American National Standard
Recommended Practice for Sof iare Reliability, ANSVAIAA R-0 13- 1992;
February 23, 1993.

[5] The Apache Software Foundation, “Welcome! - The Apache Software
Foundation,” http://www.apache.org/, 2002.

[6] Arango, G.; Freeman, P., “Modeling knowledge for software development,” in
Proceedings of the Third International Workshop on Sof iare SpeciJcation and
Design, London, U.K., August 26-27, 1985, pp. 63-66.

[7] Baisch, E.; Bleile, T.; Belschner, R., “A neural fuzzy system to evaluate software
development productivity,” in Proceedings of the 1995 IEEE International
Conference on Systems, Man and Cybernetics, 1995, pp. 4603-4608.

[8] Baisch, E.; Liedtke, T., “Comparison of conventional approaches and soft-
computing approaches for software quality prediction,” in Proceedings of the 1997
IEEE International Conference on Systems, Man and Cybernetics, 1997, pp. 1045-
1049.

[9] Balzer, R., “A 15 year perspective on automatic programming,” IEEE
Transactions on Sof iare Engineering, vol. 11 no. 11, November 1985, pp. 1257-
1268.

[lo] Bar-Lev, S.K.; Lavi, I.; Reiser, B., “Bayesian inference for the power law
process,” Annals of the Institute of Statistical Mathematics, vol. 44 no. 4, 1992, pp.

1351 - 1360.

293-298.

623-639.

157

158 Computational Intelligence in Software Quality Assurance

[111 Barstow, D.R., ”Domain-specific automatic programming,” ZEEE Transactions on
Sofmare Engineering, vol. 11 no. 11, November 1985, pp. 1321-1336.

[121 Bashir, I.; Goel, A.L.; Testing Object-Oriented Sof iare: Life Cycle Solutions,
New York: Springer-Verlag, 1999.

[131 Bashir, I.; Paul, R.A., “Object-oriented integration testing,” Annals of Sofmare
Engineering, vol. 8, 1999, pp. 187-202.

[141 Basili, V.R.; Rombach, H.D., “Support for comprehensive reuse,” Sof iare
Engineeringhurnal, vol. 6 no. 5, September 1991, pp. 303-316.

[15] Beck, K.; Coplien, J.O.; Crocker, R.; Dominick, L.; Meszaros, G.; Paulisch, F.;
Vlissides, J., “Industrial experience with design patterns,” in Proceedings, 1 8Ih
International Conference on Software Engineering, Berlin, Germany, March 25-
29, 1996, pp. 103-1 14.

[16] Beck, K., et al., “Manifesto for Agile Software Development,”
http: liwww . agilemanifesto. orgi, 200 1 .

[171 Benington, H.D., “Production of large computer programs,” in Proceedings, ONR
Symposium on Advanced Programming Methods for Digital Computers, June
1956, pp. 15-27. Reprinted in Proceedings, gth International Conference on
Software Engineering, Monterey, CA, USA, March 30-April 2, 1987, pp. 299-3 10.

[181 Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms,
New York: Plenum Press, 1981.

[191 Bezdek, J.C., “What is computational intelligence?” in Zurada, J.M.; Marks, R.J.;
Robinson, C.J., Eds., Computational Intelligence: Imitating Life, New York: IEEE
Press, 1994, pp. 1-12.

[20] Bhattacharya, J., “Detection of Weak Chaos in Infant Respiration,” IEEE
Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, vol. 3 1 no. 4,

[21] Bjorner, D.; Jones, C.B., The Vienna Development Method. The Meta-language,
Berlin, Germany: Springer-Verlag, 1978.

[22] Bleile, T.; Baisch, E.; Belschner, R., “Neural fuzzy simulation to gain expert
knowledge for the improvement of software development productivity,” in
Proceedings, Summer Computer Simulation Conference, Ottawa, ON, Canada,

[23] Boehm, B.W., “A spiral model of software development and enhancement,” IEEE
Computer, vol. 21 no. 5, May 1988, pp. 61-72.

[24] Boehm, B., “Get ready for agile methods, with care,” IEEE Computer, vol. 35 no.

[25] Bortolan, G.; Pedrycz, W., “Reconstruction problem and information granularity,”
IEEE Transactions on Fuzzy Systems, vol. 5 no. 2, May 1997, pp. 234-248.

[26] Bowyer, K.W., Ethics and Computing: Living Responsibly in a Computerized
World, Los Alamitos, CA: IEEE Computer Society Press, 1996.

August 2001, pp. 637-642.

July 24-26, 1995, pp. 3 17-322.

1, pp. 64-69.

References 159

[27] Bradley, A.P., “The use of the area under the ROC curve in the evaluation of
machine learning algorithms,” Pattern Recognition, vol. 30 no. 7, 1997, pp. 1145-
1159.

1281 Breiman, L., “Bagging Predictors,” Technical Report No. 421, September 1994,
Department of Statistics, University of California at Berkeley.

[29] Brooks, F.P., Jr., The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, Reading, MA: Addison-Wesley Pub. Co., 1995.

[30] Brown, N., “Industrial-strength management strategies,” IEEE Software, vol. 13
no. 4, July 1996,pp. 94-103.

[3 I] Bubenko, J.; Rolland, C.; Loucopoulos, P.; DeAntonellis, V., “Facilitating ‘fuzzy
to formal’ requirements modeling,“ in Proceedings, 1‘‘ International Conference
on Requirements Engineering, Colorado Springs, CO, USA, April 18-22, 1994,

[32] Budinsky, F.J.; Finnie, M.A., “Automatic code generation from design patterns,”
IBMSystems Journal, vol. 35 no. 2, 1996, pp. 151-171.

[33] Cai, K.-Y.; Wen, C.-Y.; Zhang, M.-L., “A critical review on software reliability
modeling,” Reliability Engineering and System Safe@, vol. 32 no. 3, 1991, pp.

[34] Carnegie Mellon University, “SEMA-Maturity Profile,”
http://www.sei.cmu.edu/sema/profile.html, August 24, 200 1.

[3.5] Chang, Y.-C., “A robust tracking control for chaotic Chua’s circuits via fuzzy
approach,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory
andApplications, vol. 48 no. 7, July 2001, pp. 889-895.

[36] Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P., “SMOTE: synthetic
minority over-sampling technique,” Journal of Artificial Intelligence Research,
vol. 16, June 2002, pp. 321-357.

[37] Chilenski, J.J.; Miller, S.P., “Applicability of modified conditioddecision
coverage to software testing,” Sofhvare Engineering Journal, vol. 9 no. 5,
September 1994, pp. 193-200.

[38] Choi, J.; Choi, B., “Test agent system design,” in Proceedings, IEEE International
Conference on Fuzzy Systems, Seoul, Korea, August 22-2.5, 1999, pp. 326-33 1.

[39] Cockburn, A,; Highsmith, J., “Agile software development: the people factor,”
IEEE Computer, vol. 34 no. 11, November 2001, pp. 131-133.

1401 Conger, S., The New Software Engineering, Belmont, CA: Wadsworth Pub. Co.,
1994.

[41] Connell, J.L.; Shafer, L.B., Structured Rapid Prototyping, New York: Yourdon
Press, 1989.

[42] Cuena, J., “Contributions to a knowledge oriented view of software design,”
Knowledge Oriented Sofhvare Design, vol. A-27, 1993, pp. 51-75.

[43] Currit, P.A.; Dyer, M.; Mills, H.D., “Certifying the reliability of software,” IEEE
Transactions on Software Engineering, vol. 12 no. 1, Jan. 1986, pp. 3-1 1 .

pp. 154-157.

357-371.

160 Computational Intelligence in Software Quality Assurance

[44] Cybenko, G., “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, 1989, pp. 303-3 14.

[45] DACS Staff, “DACS Software Reliability Dataset,”
http://www.dacs.dtic.mil/databases/sled/swrel.shtml, Data & Analysis Center for
Software.

[46] Darringer, J.A.; King, J.C., “Applications of symbolic execution to program
testing,” IEEE Computer, vol. 11 no. 4, April 1978, pp. 51-60.

[47] De Almeida, M.A.; Lounis, H.; Melo, W.L., “An investigation on the use of
machine learned models for estimating software correctability,” International
Journal of Software Engineering and Knowledge Engineering, vol. 9 no. 5 , 1999,

[48] Deitel, H.M.; Deitel, P.J., C: How to Program, 2”d Ed.,Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[49] Dellen, B.; Maurer, F.; Munch, J.; Verlage, M., “Enriching software process
support by knowledge-based techniques,“ International Journal of Software
Engineering andKnowledge Engineering, vol. 7 no. 2, 1997, pp. 185-215.

[50] DeMillo, R.A.; Lipton, R.J.; Sayward, F.G., “Hints on test data selection: help for
the practicing programmer,” ZEEE Computer, vol. 11 no. 4, April 1978, pp. 34-41.

[5 11 DeRouin, E.; Brown, J., “Neural network training on unequally represented
classes,” in Proceedings, Artijkial Neural Networks in Engineering Conference,
1991, pp. 135-140.

[52] DeVilbiss, W., “A Comparison of Software Complexity of Programs Developed
Using Structured Techniques and Object-Oriented Techniques,” Master’s Thesis,
University of Wisconsin-Milwaukee, 1993.

1531 Dhar, V.; Stein, R, Intelligent Decision Support Methods: The Science of
Knowledge Work, Upper Saddle River, NJ: Prentice Hall, 1997.

[54] Dick, S.; Kandel, A,, “Granular Computing in Neural Networks,” in W. Pedrycz,
Ed., Granular Computing: An Emerging Paradigm, New York: Physica-Verlag
Heidelberg, 2001, pp. 275-305.

[55] Dix, A; Finlay, J.; Abowd, G.; Beale, R., Human-Computer Interaction, Znd Ed.,
London, U.K.: Prentice Hall Europe, 1998.

[56] Domingos, P., “Metacost: a general method for making classifiers cost-sensitive,”
in Proceedings, KDD-99, San Diego, CA, USA, Aug. 15-18, 1999, pp. 155-164.

[57] Doyle, J., “Expert systems and the ‘myth’ of symbolic reasoning,” IEEE
Transactions on Software Engineering, vol. 11 no. 11, pp. 1386-1390.

[58] Drummond, C.; Holte, R.C., “Explicitly representing expected cost: an alternative
to ROC representation,” in Proceedings, KDD-2000, Boston, MA, USA, August

[59] Duda, R.O.; Hart, P.E.; Stork, D.G., Pattern Classzjkation, Znd Edition, New

pp. 565-593.

20-23,2000, pp. 198-207.

York: John Wiley & Sons, Inc., 2001.

References 161

[60] Dudding, L.C.; McQueny, S.L., “Expert Software Pricer (ESP): an AI/algorithmic
approach to software costing,“ in Proceedings, WESTEX’87, Western Conference
on Expert Systems, Anaheim, CA, USA, June 2-4, 1987, pp. 190-195.

[61] Dumais, S.; Platt, J.; Heckerman, D., “Inductive learning algorithms and
representations for text categorization,” in Proceedings, I998 ACM Int. Con$ On
Information and Knowledge Management, Bethesda, MD, USA, November 3-7,

[62] Dunham, J.R., “Experiments in software reliability: life-critical applications,”
IEEE Transactions on Software Engineering, vol. 12 no. 1, Jan. 1986, pp. 110-
123.

[63] Dunham, J.R.; Finelli, G.B., “Real-time software failure characterization,” in
Proceedings of COMPASS ’90, 51h Annual Conference on Computer Assurance,
June 25-28, 1990, Gaithersburg, MD, USA, pp. 39-45.

[64] Durn, J.C., “A Fuzzy Relative of the ISODATA Process and its Use in Detecting
Compact Well-Separated Clusters,” Journal of Cybernetics, vol. 3 no. 3, 1973, pp.
32-57. Reprinted in Bezdek, J.C.; Pal, S.K., Fuzzy Models for Pattern
Recognition: Methods that Search for Structures in Data, Piscataway, NJ: IEEE
Press, 1992, pp. 82-101.

[65] Duran, J.W.; Ntafos, S.C., “An evaluation of random testing,” IEEE Transactions
on Sofmare Engineering, vol. 10 no. 4, July 1980, pp. 438-444.

[66] Duran, J.W.; Wiorkowski, J.J., “Quantifying software validity by sampling,” IEEE
Transactions on Reliability, vol. 29 no. 2, June 1980, pp. 141-144.

[67] Ebert, C., ‘‘Fuzzy classification for software criticality analysis,” Expert Systems
with Applications, vol. 11 no. 3, pp. 323-342, 1996.

[68] Ebert, C.; Baisch, E., “Knowledge-based techniques for software quality
management,” in W. Pedrycz, W.; Peters, J.F., Eds., Computational Intelligence in
Sofmare Engineering, River Edge, NJ: World Scientific, 1998, pp. 295-320.

[69] Eisenstadt, M., “My hairiest bug war stories,” Communications of the ACM, vol.
40 no. 4, April 1997, pp. 30-37.

[70] Everett, W.W.; Musa, J.D., “A software engineering practice,” IEEE Computer,
vol. 26 no. 3, March 1993, pp. 77-79.

[71] Ezawa, K.J.; Singh, M.; Norton, S.W., “Learning goal oriented Bayesian networks
for telecommunications risk management,” in Proceedings, 13rh Znnt. Conz On
Machine Learning, Bari, Italy, July 3-6, 1996, pp. 139-147.

[72] Fairley, R.E., “Tutorial: static analysis and dynamic testing of computer software,”
IEEE Computer, vol. 11 no. 4, April 1978, pp. 14-23.

[73] Farr, W., “Software Reliability Modeling Survey,” in Lyu, M.R., Ed., Handbook of
Software Reliability Engineering, New York: McGraw-Hill, 1996, pp. 71-1 15.

[74] Fayyad, U.M., “Data mining and knowledge discovery: Making sense out of data,”
IEEE Expert, vol. 11 no. 5, Oct. 1996, pp. 20-25.

1998, pp. 148-155.

162 Computational Intelligence in Software Quality Assurance

[75] Fickas, S.F., “Automating the transformational development of software,” IEEE
Transactions on Software Engineering, vol. 11 no. 11, November 1985, pp. 1268-
1277.

[76] Finelli, G.B., “NASA software failure characterization experiments,” Reliability
Engineering andsystem Safety, vol. 32 no. 1-2, 1991, pp. 155-169.

[77] Finnie, G.R.; Wittig, G.E., “A1 tools for software development estimation,” in
Proceedings, I996 International Conference on Software Engineering: Education
and Practice, Dunedin, New Zealand, January 24-27, 1996, pp. 346-353.

[78] Fleyshgakker, V.N.; Weiss, S.N., “Efficient mutation analysis: a new approach,”
Proceedings, ISSTA’94 - International Symposium on Software Testing and
Analysis, Seattle, WA, USA, August 17-19, 1994, pp. 185-195.

[79] Florijn, G.; Meijers, M.; van Winsen, P., “Tool support for object-oriented
patterns,” in Proceedings, ECOOP’97 - Object-Oriented Programming,
Jyvaskyla, Finland, June 9-13, 1997, pp. 472-495.

[80] Forman, E.H.; Singpurwalla, N.D., “Optimal time intervals for testing hypotheses
on computer software errors,” IEEE Transactions on Reliability, vol. 28 no. 3,
Aug. 1979, pp. 250-253.

[81] Frankl, P.G.; Weyuker, E.J., “An applicable family of data flow testing criteria,”
IEEE Transactions on Software Engineering, vol. 14 no. 10, October 1988, pp.

[82] Frankl, P.G.; Weyuker, E.J., “A formal analysis of the fault-detecting ability of
testing methods,” IEEE Transactions on Software Engineering, vol. 19 no. 3,
March 1993, pp. 202-213.

[83] Free Software Foundation, Inc., “Free Software Foundation ~ GNU Project ~ Free
Software Foundation (FSF),” http://www.fsf.orglfsf/fsf.html, June 12,2002.

[84] Friedman, M.A.; Voas, J.M., Software Assessment: Reliability, Safety, Testability,
New York: John Wiley & Sons, Inc., 1995.

[85] Gabow, H.; Maheshwari, S.N.; Ostenvell, L.J., “On two problems in the
generation of program test paths,” IEEE Transactions on Software Engineering,
vol. 2 no. 3, September 1976, pp. 227-23 1.

[86] Gemoets, L.; Kreinovich, V.; Melendez, H., “When to stop testing software? A
fuzzy interval approach,” in Proceedings, NAFIPS/IFIS/NASA ’94, San Antonio,
TX, USA, December 18-2 1, 1994, pp. 182- 186.

[87] Goel, A.L., “Software reliability models: assumptions, limitations, and
applicability,” IEEE Transactions on Software Engineering, vol. 11 no. 12, Dec.

[88] Goel, A.L.; Okumoto, K., “Time-dependent error-detection rate model for
software reliability and other performance measures,” IEEE Transactions on
Reliability, vol. 28 no. 3, August 1979, pp. 206-21 1.

[89] Gotlieb, A,; Botella, B.; Rueher, M., “Automatic test data generation using
constraint solving techniques,” Proceedings, ISSTA ’98 - International Symposium

1483-1498.

1985, pp. 141 1-1423.

References 163

on Sofhvare Testing andAnalysis, Cleanvater Beach, FL, USA, March 2-5, 1998,

[90] Gorzalczany, M.B., Computational Intelligence Systems and Applications: Neuro-
Fuzzy and Fuzzy Neural Synergisms, New York: Physica-Verlag Heidelberg,
2002.

[91] Goyal, A,; Sankar, S., “The application of formal specifications to software
documentation and debugging,” in Proceedings, I”‘ International Workshop on
Automated and Algorithmic Debugging, Linkeoping, Sweden, May 3-5, 1993, pp.
333-349.

[92] Grant, E.L.; Leavenworth, R.S., Statistical Quality Control, 7‘h Ed., New York:
McGraw-Hill, 1996.

[93] Gray, A.R., “A simulation-based comparison of empirical modeling techniques for
software metric models of development effort,” in Proceedings of the 6‘h
International Conference on Neural Information Processing, 1999, pp. 526-53 1.

[94] Gray, A.R.; MacDonell, S.G., “A comparison of techniques for developing
predictive models of software metrics,” Information and Software Technology,
vol. 39, 1997, pp. 425-437.

[95] Gray, A; MacDonell, S., “Applications of Fuzzy Logic to Software Metric Models
for Development Effort Estimation,” Proceedings of the Annual Meeting of the
North Amevican Fuzzy Information Processing Socieg -- NAFIPS, Syracuse, NY,
USA, September 21-24, 1997, pp. 394-399.

[96] Gray, A.R.; MacDonell, S.G., “Fuzzy logic for software metric models throughout
the development life-cycle,’’ in Proceedings, International Conference of the
North American Fuzzy Information Pvocessing Sociev - NAFIPS, New York, NY,
USA, June 10-12, 1999, pp. 258-262.

[97] Halstead, M., Elements of Software Science, New York: Elsevier, 1977.
[98] Hamlet, D.; Taylor, R., “Partition testing does not inspire confidence,” ZEEE

Transactions on Sofiware Engineering, vol. 16 no. 12, December 1990, pp. 1402-
1411.

[99] Hausen, H.L., “Knowledge based invocation of software methods and tools,” in
Proceedings, 1”‘ IEEE International Workshop on Tools for ArtiJicial Intelligence,
Fairfax, VA, USA, Oct. 23-25, 1989, pp. 499-510.

[loo] Hayes-Roth, B.; Pfleger, K.; Lalanda, P.; Morignot, P.; Balabanovic, M., “A
domain-specific software architecture for adaptive intelligent systems,” IEEE
Transactions on Sofbvare Engineering, vol. 21 no. 4, April 1995, pp. 288-301.

[l o l l Haykin, S., Neural Networks: A Comprehensive Foundation, 2”d Ed., Upper
Saddle River, NJ: Prentice Hall, 1999.

[1021 Hebb, D.O., The Organization of Behavior: A Neuropsychological Theory, New
York: John Wiley & Sons, 1949.

[1031 Hegger, R.; Kantz, H.; Schreiber, T., “Practical implementation of nonlinear time
series methods: The TISEAN package,” CHAOSvol. 9 no. 2, 1999, pp. 413-435.

pp. 53-62.

18th

164 Computational Intelligence in Sof iare Quality Assurance

[1041 The Hillside Group, “Welcome to the Hillside Group Web Pages,”
http:/hillside.net, August 7, 2002.

[1051 Highsmith, J.; Cockbum, A., “Agile software development: the business of
innovation,“ IEEE Computer, vol. 34 no. 9, September 2001, pp.120-122.

[lo61 Ho, D.W.C.; Zhang, P.-A.; Xu, J., “Fuzzy wavelet networks for function learning,”
IEEE Transactions on Fuzzy Systems, vol. 9 no. 1, February 2001, pp. 200-21 1.

[1071 Hoare, C.A.R., “Communicating sequential processes,“ Communications of the
rlCM, vol. 21 no. 8, August 1978, pp. 666-677.

[lo81 Holland, J.H., Adaptation in Natural and Artijkial Systems, Ann Arbor, MI:
University of Michigan Press, 1975.

[lo91 Holland, J.H., Adaptation in Natural and Artificial Systems, Cambridge, MA: MIT
Press, 1992.

[110] Hoppner, F.; Klawonn, F.; Kruse, R.; Runkler, T., Fuzzy Cluster Analysis:
Methods for ClassiJcation, Data Analysis and Image Recognition, New York:
John Wiley & Sons, Inc., 1999.

[1 1 11 Horigome, M.; Singpunvalla, N.D.; Soyer, R., “A Bayes empirical Bayes approach
for (software) reliability growth,” in Proceedings, Computer Science and
Statistics: The 16‘h Symposium on the Interface, March 1984, Atlanta, GA, USA,

[1121 Huang, C.-Y.; Kuo,S.-Y. “Analysis of incorporating logistic testing-effort function
into software reliability modeling,” IEEE Transactions on Reliability, vol. 5 1 no.
3, September 2002.

[1 131 IBM Corp., “Multi-Dimensional Separation of Concerns: Software Engineering
using Hyperspaces,” http://www.research.ibm.com/hyperspace/, 2002.

[114] Iyer, R.K.; Rossetti, D.J., “Effect of system workload on operating system
reliability: a study on IBM 308 1 ,” IEEE Transactions on Software Engineering,
vol. 11 no. 12, Dec. 1985, pp. 1438-1448.

[1151 Jang, J.-S.R., “ANFIS: adaptive network-based fuzzy inference system,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 23 no. 3, May 1993, pp. 665-
685.

[116] Jang, J.-S.R.; Sun, C.-T.; Mizutani, E., Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Upper Saddle
River, NJ: Prentice-Hall, Inc., 1997.

[1 171 Jelinski, Z.; Moranda, P.B., “Software reliability research,” in Proceedings,
Statistical Computer Performance Evaluation, November 22-23, 197 1,
Providence, RI, USA, pp. 465-484.

[1 181 Jensen, H.A.; Vairavan, K., “An Experimental Study of Software Metrics for Real-
Time Software,” IEEE Transactions on Sof iare Engineering, vol. 11, no. 2, Feb.

[l 191 Jewell, W.S., “Bayesian extensions to a basic model of software reliability,” IEEE

pp. 47-55.

1985, pp. 231-234.

Transactions on Software Engineering, vol. 11 no. 12, Dec. 1985, pp. 1465-1471.

References 165

[1201 Jones, C.B., Systematic Software Development Using VDM, Englewood Cliffs, NJ:
Prentice Hall, 1989.

[121] Jones, C., Software Quality: Analysis and Guidelines for Success, New York:
International Thompson Computer Press, 1997.

[1221 Jones, C., Software Assessments, Benchmarks, and Best Practices, New York:
Addison-Wesley, 2000.

[123] Jones, W.D; Vouk, M.A., “Field data analysis,” in Lyu, M.R., Ed., Handbook OJ

Software Reliability Engineering, New York: McGraw-Hill, 1996, pp. 439-489.
[1241 Joyce, D.T., “Examining the potential of fuzzy software requirements

specifications,” Information Sciences, vol. 2, 1994, pp. 85- 102.
[1251 Kaindl, H., “Object-oriented approaches in software engineering and artificial

intelligence,“ Journal of Object-Oriented Programming, vol. 6 no. 8, January

[I261 Kan, S.H., Metrics and Models in Sofmare Qualily Engineering, Reading, MA:
Addison-Wesley Pub. Co., 1995.

[127] Kandel, A.; Lee, S.C., Fuzzy Switching and Automata: Theoiy and Applications,
New York: Crane, Russak & Company, Inc., 1979.

[128] Kanoun, K.; de Bastos Martini, M.R.; de Souza, J.M., “A method for software
reliability analysis and predicition application to the TROPICO-R switching
system,” IEEE Transactions on Software Engineering, vol. 17 no. 4, April 1991,

[1291 Kant, E., “Understanding and automating algorithm design,” IEEE Transactions
on Software Engineering, vol. 11 no. 11, November 1985, pp. 1361-1374.

[130] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis, New York: Cambridge
University Press, 1997.

[131] Kapur, D., “An automated tool for analyzing completeness of equational
specifications,” Proceedings, ISSTA ’94 - International Symposium on Software
Testing anddnalysis, Seattle, WA, USA, Aug. 17-19, 1994, pp. 28-43.

[1321 Karunanithi, N.; Whitley, D., “Prediction of software reliability using feedforward
and recurrent neural nets,” in Proceedings IJCNN, International Joint Conference
on Neural Networks, June 7-1 1, 1992, Baltimore, MD, USA, pp. 800-805.

[1331 Karunanithi, N.; Malaiya, Y.K., “Neural networks for software reliability
engineering,” in M.R. Lyu, Ed., Handbook of Software Reliability Engineering,
New York: McGraw-Hill, 1996, pp. 699-728.

[134] Keiller, P.A.; Littlewood, B.; Miller, D.R.; Sofer, A., “Comparison of software
reliability predictions,” Proceedings, I 3‘h International Symposium on Fault-
Tolerant Computing, June 28-30, 1983, Milano, Italy, pp. 128-134.

[135] Keller, J.M.; Gray, M.R.; Givens, J.A., Jr., “A Fuzzy K-Nearest Neighbor
Algorithm,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15 no. 4,
JuVAug 1985, pp. 580-585. Reprinted in Bezdek, J.C.; Pal, S.K. Fuzzy Models for
Pattern Recognition: Methods that Search for Structures in Data, Piscataway, NJ:
IEEE Press, 1992, pp. 258-263.

1994, pp. 38-45.

pp. 334-344.

166 Computational Intelligence in Software Quality Assurance

[1361 Keller, J.M.; Hunt, D.J., “Incorporating fuzzy membership functions into the
Perceptron algorithm,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 7 no. 6, November 1985, pp. 693-699.

[1371 Kernel.Org Organization, Inc., “The Linux Kernel Archives,”
http://www.kernel.org, August 3,2002.

[1381 Khoshgoftaar, T.M.; Allen, E.B., “Neural networks for software quality
prediction,” in W. Pedrycz, J.F. Peters, Eds., Computational Intelligence in
Software Engineering, River Edge, NJ: World Scientific, 1998, pp. 33-63.

[I391 Khoshgoftaar, T.M.; Allen, E.B.; Jones, W.D.; Hudepohl, J.P., “Data Mining for
Predictors of Software Quality,” International Journal of Software Engineering
andKnowledge Engineering, vol. 9 no. 5, 1999, pp. 547-563.

[1401 Khoshgoftaar, T.M.; Allen, E.B.; Jones, W.D.; Hudepohl, J.P., “Classification-tree
models of software-quality over multiple releases,” IEEE Transactions on
Reliability, vol. 49 no. 1, March 2000, pp. 4-1 1.

[141] Khoshgoftaar, T.M.; Evett, M.P.; Allen, E.B.; Chien, P.-D., “An application of
genetic programming to software quality prediction,” in Pedrycz, W.; Peters, J.F.,
Eds., Computational Intelligence in Software Engineering, River Edge, NJ: World
Scientific, 1998, pp. 176-195.

[1421 Khoshgoftaar, T.M.; Szabo, R.M., “Investigating ARIMA models of software
system quality,” Sof iare Qualify Journal, vol. 4 no. 1, March 1995, pp. 33-48.

[143] Khoshgoftaar, T.M.; Szabo, R.M., “Using Neural Networks to Predict Software
Faults During Testing,” IEEE Transactions on Reliability, vol. 45 no. 3, Sept.

[144] Kim, S.-H.; Jang, C.-W.; Chai, C.-H.; Choi, H.-G., “Trajectory control of robotic
manipulators using chaotic neural networks,” in Proceedings, ICNN’97 -

International Conference on Neural Networks, Houston, TX, USA, June 9-12,

[145] King, K.N.; Offutt, A.J., “A Fortran language system for mutation-based software
testing,” Sofiare-Practice andExperience, vol. 21 no. 7, July 1991, pp. 685-718.

[1461 Klir, G.J; Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Upper
Saddle River, NJ: Prentice Hall PTR, 1995.

[1471 Korel, B., “Automated software test data generation,” IEEE Transactions on
Software Engineering, vol. 16 no. 8, August 1990, pp. 870-879.

[1481 Korel, B., “Automated test data generation for programs with procedures,” in
Proceedings, ISSTA’96 - International Symposium on Software Testing and
Analysis, San Diego, CA, USA, Jan. 8-10, 1996, pp. 209-215.

[1491 Korel, B.; Yalamanchili, S., “Forward computation of dynamic program slices,” in
Proceedings, ISSTA’94 - International Symposium on Software Testing and
Analysis, Seattle, WA, USA, Aug. 17-1 9, 1994, pp. 66-79.

[I501 Kubat, M.; Matwin, S., “Addressing the curse of imbalanced training sets: one-
sided selection,” in Proceedings, I4Ih Int. ConJ On Machine Learning, Nashville,

1996, pp. 456-462.

1997, pp. 1685-1688.

TN, USA, July 8-12, 1997, pp. 179-186.

References 167

[1511 Kyparisis, J.; Singpunvalla, N.D., “Bayesian inference for the Weibull process
with applications to assessing software reliability growth and predicting software
failures,” in Proceedings, Computer Science and Statistics: The 16“ Symposium
on the Interface, March 1984, Atlanta, GA, USA, pp. 57-64.

[152] Laprie, J.-C.; Kanoun, K., “Software Reliability and System Reliability,” in Lyu,
M.R., Ed., Handbook of Software Reliability Engineering, New York: McGraw-
Hill, 1996, pp. 27-68.

[I531 Laprie, J.-C.; Kanoun, K.; Beounes, C.; Kaaniche, M., “The KAT (Knowledge-
Action-Transformation) approach to the modeling and evaluation of reliability and
availability growth,” IEEE Transactions on Sof iare Engineering, vol. 17 no. 4,
April 1991, pp. 370-382.

[154] Laski, J.W.; Korel, B., “A data flow oriented program testing strategy,” IEEE
Transactions on Sof iare Engineering, vol. 9 no. 3, May 1983, pp. 347-354.

[155] Last, M., “Info-Fuzzy Network (IFN), ”
http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm, October 25,200 1.

[156] Last, M.; Kandel, A., “Data Mining for Process and Quality Control in the
Semiconductor Industry”, Data Mining for Design and Manufacturing: Methods
and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp. 207-234,
2001.

[1571 Last, M.; Maimon, 0.; Kandel, A., “Knowledge Discovery in Mortality Records:
An Info-Fuzzy Approach”, in Medical Data Mining and Knowledge Discovery, K.
Cios (Ed.), Studies in Fuzziness and Soft Computing, Vol. 60, Springer-Verlag, pp.

[158] Lee, S.C.; Lee, E.T., “Fuzzy sets and neural networks,” Journal of Cybernetics,
vol. 4 no. 2, 1974, pp. 83-103.

[1591 Lee, S.C.; Lee, E.T., “Fuzzy neural networks,” Mathematical Biosciences, vol. 23,

[1601 Lehman, M.M., “Software Evolution,” in Marciniak, J.J., Ed., Encyclopedia oJ

Sof iare Engineering, New York: John Wiley & Sons, Inc., 2002, pp. 1507-1513.
[1611 Lewis, D.D.; Catlett, J., “Heterogeneous uncertainty sampling for supervised

learning,” in Proceedings I f h Int. Con$ On Machine Learning, Rutgers
University, New Brunswick, NJ, USA, July 10-13, 1994, pp. 148-156.

[162] Lewis, E.E., Introduction to Reliability Engineering, Znd Ed., New York: John
Wiley & Sons, Inc., 1996.

[163] Liang, Q.; Mendel, J.M., “lnterval type-2 fuzzy logic systems: theory and design,“
IEEE Transactions on Fuzzy Systems, vol. 8 no. 5 , October 2000, pp. 535-550.

[I641 Lieberherr, K.J., “Demeter / Center for Software Sciences,”
http:/lwww.ccs.neu.edu/research/demeter/, August 9,2002.

[1651 Lieberman, H., “The debugging scandal and what to do about it,” Communications
of the ACM, vol. 40 no. 4, April 1997, pp. 26-29.

[1661 Lind, R.K,“An Experimental Study of Software Metrics and Their Relationship to
Software Errors,” Master’s Thesis, University of Wisconsin-Milwaukee, 1986.

211-235, 2001.

1975, pp. 151-177.

168 Computational Intelligence in Software Quality Assurance

[1671 Lind, R.K.; Vairavan, K., “An Experimental Investigation of Software Metrics and
Their Relationship to Software Development Effort,” IEEE Transactions on
Software Engineering, vol. 15 no. 5, May 1989, pp. 649-653.

[168] Lindholm, T.; Yellin, F., The JavaTM Virtual Machine Speczjkation, Palo Alto,
CA: Sun Microsystems, Inc., 1999.

[I691 Lions, J.L., “Ariane-5 flight 501 failure: report by the inquiry board,”
http://java.sun.com/people/jag/Ariane5.html, July 19, 1996.

[1701 Littlewood, B., “Software reliability model for modular program structure,” IEEE
Transactions on Reliability, vol. 28 no. 3, Aug. 1979, pp. 241-246.

[I711 Littlewood, B., “Theories of software reliability: how good are they and how can
they be improved?” IEEE Transactions on Software Engineering, vol. 6 no. 5,
Sept. 1980, pp. 489-500.

[1721 Littlewood, B.; Verrall, J.L., “A Bayesian reliability model with a stochastically
monotone failure rate,” IEEE Transactions on Reliability, vol. 23 no. 2, June 1974,

[1731 Loomis, M.E.S.; Loomis, T.P., “Prototyping and artificial intelligence,” in
Prototyping, New York: Pergamon Infotech, 1986.

[I741 Lyu, M.R., Ed., Handbook of Software Reliability Engineering, New York:
McGraw-Hill, 1996.

[175] Lyu, M.R., “Data and Tool Disk,“ in Lyu, M.R., Ed., Hadbook of Software
Reliability Engineering, New York: McGraw-Hill, 1996.

[176] Maimon, 0.; Last, M., Knowledge Discovery and Data Mining: The Info-Fuzzy
Network (IFN) Methodology, New York: Kluwer Academic Pub., 2000.

[177] Mamdani, E.H., “Application of fuzzy algorithm for control of simple dynamic
plant,” Proceedings of the Institute of Electrical Engineers, vol. 121, 1974, pp.

[I781 Mandelbrot, B.B., The Fractal Geometry of Nature, San Francisco, CA: W.H.
Freeman, 1983.

[179] von Mayrhauser, A.; France, R.; Scheetz, M.; Dahlman, E., “Generating test cases
from an object-oriented model with an artificial-intelligence planning system,”
IEEE Transactions on Reliability, vol. 49 no. I , March 2000, pp. 26-36.

[180] Mazzuchi, T.A.; Soyer, R., “A Bayes-empirical Bayes model for software
reliability,” IEEE Transactions on Reliability, vol. 37 no. 2, June 1988, pp. 248-
254.

[18 I] McCabe, T.J., “A Complexity Measure,” IEEE Transactions on Software
Engineering, vol. 2 no. 4, Dec. 1976, pp. 308-320.

[182] McCulloch, W.S.; Pitts, W., “A logical calculus of the ideas immanent in nervous
activity,” Bulletin of MathematicaZ Biophysics, vol. 5, 1943, pp. 115-133.

[1831 McDermid, J.A., Software Engineer’s Reference Book, Oxford, U.K.: Buttenvorth-
Heinemann Ltd., 199 1.

[184] McLellan, S.; Roesler, A.; Fei, Z.; Chandran, S.; Spinuzzi, C., “Experience using
web-based shotgun measures for large-system characterization and improvement,“

pp. 108-114.

1585-1588.

References 169

IEEE Transactions on Sofhuare Engineering, vol. 24 no. 4, April 1998, pp. 268-
277.
Memon, A.F., A Comprehensive Framework for Testing Graphical User
Interfaces, Ph.D. Dissertation, University of Pittsburgh, 2001.
Memon, A.F., “GUI testing: pitfalls and process,” IEEE Computer, vol. 35 no. 8,

Mendel, J.M.; Jordan, R.I.B., “Type-2 fhzzy sets made simple,” IEEE
Transactions on Fuzzy Systems, vol. 10 no. 2, April 2002, pp. 117-127.
Mendonca, M.G.; Basili, V.R.; Bhandari, IS.; Dawson, J., “An approach to
improving existing measurement frameworks,” IBM Systems Journal, vol. 3 7 no.

Mendonca, M.G.; Basili, V.R., “Validation of an approach for improving existing
measurement frameworks,“ IEEE Transactions on Sofhuare Engineering, vol. 26
no. 6, June 2000, pp. 484-499.
Mertoguno, J.S.; Paul, R,; Bourbakis, N.G.; Ramamoorthy, C.V., “A Neuro-Expert
System for the Prediction of Software Metrics,” Engineering Applications of
Artificial Intelligence, vol. 9 no. 2, 1996, pp. 153-161.
Michael, C.C.; Jones, R.C., “On the uniformity of error propagation in software,”
in Proceedings, COMPASS’97, Gaithersburg, MD, USA, June 16-19, 1997, pp.

Michael, C.; McGraw, G., “Automated software test data generation for complex
programs,” in Proceedings, 131h IEEE International Conference on Automated
Sof iare Engineering, Honolulu, HI, USA, Oct. 13-16, 1998, pp. 136-146.
Michael, C.C.; McGraw, G.; Schatz, M.A., “Generating software test data by
evolution,” IEEE Transactions on Sofiare Engineering, vol. 27 no. 12, December
2001,pp. 1085-1110.
Microsoft, Inc., “August 2002, Cumulative Patch for Internet Explorer,”
http:llwww.microsoft.comlwindowslie/downloadslcriticallq323759ieldefault.asp,
August 22,2002.
Miller, D.R., “Exponential order statistic models of software reliability growth,”
IEEE Transactions on Sof iare Engineering, vol. 12 no. 1, Jan. 1986, pp. 12-24.
Miller, E.F., Jr., “Program testing: guest editor’s introduction,” IEEE Computer,
vol. 11 no. 4, April 1978, pp. 10-12.
Miller, S.K., “Aspect-oriented programming takes aim at software complexity,”
IEEE Computer, vol. 34 no. 4, April 2001, pp. 18-21.
Miller, W.; Spooner, D.L., “Automatic generation of floating-point test data,”
IEEE Transactions on Sofhuare Engineering, vol. 2 no. 3, September 1976, pp.

Minsky, M.; Papert, S., Perceptrons: An Introduction to Computational Geometry,
Cambridge, MA: MIT Press, 1969.

August 2002, pp. 87-88.

4, 1998, pp. 484-501.

68-76.

223-226.

[185]

[186

[187]

[188]

[189]

[190]

[191]

[192

[193]

[194

[195]

[196]

[197]

[198]

[199]

170 Computational Intelligence in Sof iare Quality Assurance

[200] Mladenic, D.; Grobelnik, M., “Feature selection for unbalanced class distribution
and nai‘ve Bayes,” in Proceedings, isfh Int. Con$ On Machine Learning, Bled,
Slovenia, June 27-30, 1999, pp. 258-267.

[201] Mockus, A.; Fielding, R.T; Herbsleb, J.D., “Two case studies of open source
software development: Apache and Mozilla,” ACM Transactions on Software
Engineering and Methodology, vol. 11 no. 3, July 2002, pp. 309-346.

[202] Moranda, P.B., “Event-altered rate models for general reliability analysis,” IEEE
Transactions on Reliability, vol. 28 no. 5, Dec. 1979, pp. 376-381.

[203] Morell, L.; Murrill, B., “Perturbation analysis of computer programs,” in
Proceedings, COMPASS’97, Gaithersburg, MD, USA, June 16-19, 1997, pp. 77-
87.

[204] Mostow, J., “Foreword: what is AI? And what does it have to do with software
engineering?” IEEE Transactions on Software Engineering, vol. 11 no. 1 1,
November 1985, pp. 1253-1256.

[205] Munson, J.C.; Khoshgoftaar, T.M., “Software Metrics for Reliability Assessment,”
in M.R. Lyu, Ed., Handbook of Software Reliability Engineering, New York:
McGraw-Hill, 1996.

[206] Musa, J.D., “Validity of execution-time theory of software reliability,” ZEEE
Transactions on Reliability, vol. 28 no. 3, August 1979, pp. 181-191.

[207] Musa, J; Fuoco, G.; Irving, N.; Kropfl, D.; Juhlin, B., “The operational profile,” in
Lyu, M.R., Ed., Handbook of Software Reliability Engineering, New York:
McGraw-Hill, 1996, pp. 167-254.

[208] Musa, J.D.; Okomuto, K., “Software reliability models: concepts, classification,
comparisons, and practice,” in Skwirzynski, J.K., Ed., Electronic Systems
Effectiveness and Life Cycle Costing, Heidelberg: Springer-Verlag, 1983, pp. 395-
424.

[209] Musa, J.D.; Okumoto, K., “A logarithmic Poisson execution time model for
software reliability measurement,” in Proceedings of the 7fh Znternational
Conference on Software Engineering, March 26-29, 1984, Orlando, FL, USA, pp.

[210] Natarajan, B.K., Machine Learning; A Theoretical Approach, San Mateo, CA:
Morgan Kaufmann Pub., Inc., 1991.

[211] Naughton, P.; Schildt, H., Java: The Complete Reference, Berkeley, CA: Osborne
McGraw-Hill, 1997.

[212] von Neumann, J, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” in Automata Studies, Shannon, C.E.; McCarthy, J., Eds.,
Princeton, NJ: Princeton University Press, 1956, pp. 43-98.

[213] Nourani, C.F., ”Multiagent A1 implementations and emerging software
engineering trend,“ Engineering Applications of Artijkial Intelligence, vol. 12,

[214] Ntafos, S.C., “On required element testing,” IEEE Transactions on Software

230-238.

1999, pp. 37-42.

Engineering, vol. 10 no. 6, November 1984, pp. 795-803.

References 171

[215] Offutt, A.J.; Pan, J., “Detecting equivalent mutants and the feasible path problem,”
in Proceedings, COMPASS ’96: I Iih Annual Conference on Computer Assurance,
Gaithersburg, MD, USA, June 17-21, 1996, pp. 224-236.

[216] Offutt, A.J.; Seaman, E.J., “Using symbolic execution to aid automatic test
generation,” in Proceedings, COMPASS ’90: 51h Annual Conference on Computer
Assurance, Gaithersburg, MD, USA, June 25-28, 1990, pp. 12-21.

[217] Offutt, A.J.; Xiong, Y.; Liu, S., “Criteria for generating specification-based tests,”
in Proceedings, ICECCS’99 ~ IEEE International Conference on Engineering of
Complex Computer Systems, Las Vegas, NV, USA, Oct. 18-21, 1999, pp. 119-129.

[218] Ohba, M., “Software reliability analysis models,” IBM Journal of Research and
Development, vol. 28 no. 4, July 1984, pp. 428-443.

[219] Oivo, M.; Basili, V.R., “Representing software engineering models: the TAME
goal-oriented approach,“ IEEE Transactions on Software Engineering, vol. 18 no.
10, October 1992, pp. 886-898.

[220] Okumoto, K., “A statistical method for software quality control,” IEEE
Transactions on Software Engineering, vol. 11 no. 12, Dec. 1985, pp. 1424-1430.

[22 I] Open Source Initiative, “Open Source Initiative OSI,” http://www.opensource.org,
2002.

[222] Pal, S.K.; Mitra, S., “Multilayer perceptron, fuzzy sets, and classification,” IEEE
Transactions on Neural Networks, vol. 3 no. 5 , September 1992, pp. 683-697.

[223] Pal, S.K.; Mitra, S., Neuro-Fuzzy Pattern Recognition Methods in Soft
Computing, New York: John Wiley & Sons, Inc., 1999.

[224] Palo Alto Research Center, Inc., “AspectJ ~ Apsect-Oriented Programming (AOP)
for Java,” http://www.aspectj.org, July 24, 2002.

[225] Pargas, R.P.; Harrold, M.J.; Peck, R.R., “Test-data generation using genetic
algorithms,” Software Testing, Verification and Reliability, vol. 9 no. 4, Dec.

[226] Paul, R.A.; Kunii, T.L.; Shinagawa, Y.; Khan, M.F., “Software metrics knowledge
and databases for project management,“ IEEE Transactions on Knowledge and
Data Engineering, vol. 11 no. 1, Jan./Feb. 1999, pp. 255-264.

[227] Paulk, M.C.; Curtis, B.; Chrissis, M.B.; Weber, C.V., “Capability Maturity Model,
Version 1.1 ,” IEEE Sofhvare, vol. 10 no. 4, July 1993, pp. 18-27.

[228] Pazzani, M.; Merz, C.; Murphy, P.; Ali, K.; Hume, T.; brunk, C., “Reducing
misclassification costs,” in Proceedings, 1 lih Int. Con$ On Machine Learning,
Rutgers University, New Brunswick, NJ, USA, July 10-13, 1994, pp. 217-225.

[229] Pedrycz, W.; Bezdek, J.C.; Hathaway, R.J.; Rogers, G.W., “Two nonparametric
models for fusing heterogeneous fuzzy data,” IEEE Transactions on Fuzq
Systems, vol. 6 no. 3, August 1998, pp. 41 1-425.

[230] Pedrycz, W.; Peters, J.F.; Ramanna, S., “Design of a software quality decision
system: a computational intelligence approach,” in Proceedings, IEEE Canadian
Conference on Electrical and Computer Engineering, Waterloo, ON, Canada, May

1999, pp. 263-282.

24-28, 1998, pp. 513-516.

172 Computational Intelligence in Software Quality Assurance

[231] Pedrycz, W.; Smith, M.H., “Granular Correlation Analysis in Data Mining,” in
Proceedings of the 18‘h International Conference of the North American Fuzzy
Information Processing Society -NAFIPS, 1999, pp. 715 - 719.

[232] Peters, J.F.; Pedrycz, W., Sofiare Engineering: An Engineering Approach, New
York: John Wiley & Sons, 2000.

[233] Peters, J.F.; Han, L.; Ramanna, S., “Approximate time rough software cost
decision system: multicriteria decision-making approach,” in Ras, Z.W. and
Skowron, A. (Eds.), Foundations of Intelligent Systems, Lecture Notes in Artificial
Intelligence 1609. Berlin, Germany: Springer Verlag, 1999, pp. 556-564.

[234] Peterson, J.L., Petri Net Theory and the Modeling of Systems, Englewood Cliffs,
NJ: Prentice Hall, 1981.

[235] Pham, H.; Nordmann, L.; Zhang, X., “A general imperfect-software-debugging
model with S-shaped fault-detection rate,” IEEE Transactions on Reliability, vol.
48 no. 2, June 1999, pp. 169-175.

[236] Pham, H.; Wang, H., “A quasi-renewal process for software reliability and testing
costs,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vol. 3 1 no. 6, Nov. 2001, pp. 623-63 1.

[237] Pham, L.; Pham, H., “Software reliability models with time-dependent hazard
function based on Bayesian approach,” IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans, vol. 30 no. 1, January 2000, pp. 25-
35.

[238] Pham, L.; Pham, H., “A Bayesian predictive software reliability model with
pseudo- failures,” IEEE Transactions on Systems, man & Cybernetics ~ Part A:
Systems andHumans, vol. 31 no. 3, May 2001, pp. 233-238.

[239] Pillai, K., “The fountain model and its impact on project schedule,” Software
Engineering Notes, vol. 21 no. 2, March 1996, pp. 32-38.

[240] Prasanna Kumar, V.K.; Hariri, S.; Raghavendra, C.S.; “Distributed program
reliability analysis,” IEEE Transactions on Software Engineering, vol. 12 no. 1,
Jan. 1986, pp. 42-50.

[241] Prechelt, L.; Unger, B.; Tichy, W.F.; Brossler, P.; Votta, L.G., “A controlled
experiment in maintenance comparing design patterns to simpler solutions,” IEEE
Transactions on Software Engineering, vol. 27 no.12, December 2001, pp. 1134-
1144.

[242] Provenzale, A.; Smith, L.A.; Vio, R.; Murante, G., “Distinguishing between low-
dimensional dynamics and randomness in measured time series,” Physica D vol.

[243] Provost, F.; Fawcett, T.; Kohavi, R., “The case against accuracy estimation for
comparing induction algorithms,” in Proceedings, 1 j th Int. Con$ On Machine
Learning, Madison, WI, USA, July 24-27, 1998, pp. 445-453.

[244] Qiao, H.; Tsokos, C.P., “Estimation of the three parameter Weibull probability
distribution,” Mathematics and Computers in Simulation, vol. 39, 1995, pp. 173-
185.

53, 1992, pp. 31-49.

References 173

[245] Quinlan, J.R., C4.5 : programs for machine learning, San Mateo, CA: Morgan
Kaufmann Pub., 1993.

[246] Rajapakse, A,; Furuta, K.; Kondo, S., “Evolutionary learning of fuzzy controllers
and their adaptation through perpetual evolution,” IEEE Transactions on FUZZJ
Systems, vol. 10 no. 3, June 2002, pp. 309-321.

[247] Rapps, S.; Weyuker, E.J., “Selecting software test data using data flow
information,” IEEE Transactions on Software Engineering, vol. 11 no. 4, April

[248] Reynolds, R.G.; Zannoni, E., “Extracting procedural knowledge from software
systems using inductive learning in the PM system,” International Journal on
Artijkial Intelligence Tools, vol. 1 no. 3, 1992, pp. 351-367.

[249] Rice, J.A., Mathematical Statistics and Data Analysis, Belmont, CA: Wadsworth
Pub. Co., 1995.

[250] Richardson, D.J.; Clarke, L.A., “Partition analysis: a method combining testing
and verification,” IEEE Transactions on Software Engineering, vol. 11 no. 12,
December 1985, pp. 1477-1490.

[251] Roberts, H., Predicting the Performance OfSoftwai-e Systems via the Power Law
Process, Ph.D. Dissertation, University of South Florida, December 2000.

[252] Rosenblatt, F., “The Perceptron: a probabilistic model for information storage and
organization in the brain,” Psychological Review, vol. 65 no. 6, 1958, pp. 386-408.

[253] Ross, S.M., “Software reliability: the stopping rule problem,” IEEE Transactions
on Software Engineering, vol. 11 no. 12, Dec. 1985, pp. 1472-1476.

[254] Royce, W.W., “Managing the development of large software systems: concepts
and techniques,” in Proceedings of Wescon, Aug. 1970 Reprinted in Proceedings,
91h International Conference on Software Engineering, Monterey, CA, USA,
March 30-April 2, 1987, pp. 328-338.

[255] Rumelhart, D.E.; Hinton, G.E.; Williams, R.J., “Learning internal representations
by error propagation,” in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Rumelhart, D.E.; McClelland, J.L., Eds., Cambridge,
MA: MIT Press, 1986, pp. 318-362.

[256] Russell, S.; Norvig, P., Artificial Intelligence: A Modern Approach, Upper Saddle
River, NJ: Prentice-Hall, Inc., 1995.

[257] Russo, M., “FuGeNeSys - A fuzzy genetic neural system for fuzzy modeling,”
IEEE Transactions on Fuzzy Systems, vol. 6 no. 3, August 1998, pp. 373-388.

[258] Ryder, B.G., “Constructing the call graph of a program,” IEEE Transactions on
Software Engineering, vol. 5 no. 3, May 1979, pp. 216-226.

[259] Scheetz, M.; von Mayrhauser, A,; France, R., “Generating test cases from an 00
model with an A1 planning system,” in Proceedings, International Symposium on
Software Reliability Engineering, Boca Raton, FL, USA, November 1-4, 1999, pp.

[260] Schneidewind, N.F., “Analysis of error processes in computer software,”

1985, pp. 367-375.

250-259.

SIGPLANNotices, vol. 10 no. 6, 1975, pp. 337-346.

174 Computational Intelligence in Software Quality Assurance

[261] Scholz, F.-W., “Software reliability modeling and analysis,” IEEE Transactions on
Software Engineering, vol. 12 no. I , Jan. 1986, pp. 25-31.

[262] Schreiber, T.; Schmitz, A., “Surrogate time series,” Physica 0, vol. 142 no. 3-4,
Aug. 2000, pp. 346-382.

[263] Schwanke, R.W.; Hanson, S.J., “Using neural networks to modularize software,”
Machine Learning, vol. 15, 1994, pp. 137-168.

[264] Schwenk, H.; Bengio, Y., “AdaBoosting neural networks: application to on-line
character recognition,“ in Proceedings of ICANN ’97, Lausanne, Switzerland, Oct.

[265] Sedigh-Ali, S.; Ghafoor, A,; Paul, R.A., “Software engineering metrics for COTS-
based systems,” IEEE Computer, vol. 35 no. 5, May 2001, pp. 44-50.

[266] Shin, M.; Goel, A.L., “Knowledge Discovery and Validation in Software Metrics
Databases,“ Proceedings of SPIE - The International Society for Optical
Engineering, vol. 3695, April 1999, pp. 226-233.

[267] Singpunvalla, N.D., “Determining an optimal time interval for testing and
debugging software,” IEEE Transactions on Sofhvare Engineering, vol. 17 no. 4,
April 1991, pp. 313-319.

[268] Singpunvalla, N.D.; Soyer, R., “Assessing (software) reliability growth using a
random coefficient autoregressive process and its ramifications,” IEEE
Transactions on Software Engineering, vol. 11 no. 12, Dec. 1985, pp. 1456-1464.

[269] Smith, D.R.; Kotik, G.B.; Westfold, S.J., “Research on knowledge-based software
environments at Kestrel Institute,“ IEEE Transactions on Software Engineering,
vol. 11 no. 11, November 1985, pp. 1278-1295.

[270] Sommerville, I., “Artificial intelligence and systems engineering,” in Proceedings,
AISB’93, gth Biennial Conference of the Society for the Study of Artificial
Intelligence and Simulation of Behavior, Birmingham, U.K., March 29 - April 2,

[271] Spivey, J.M., The Z Notation: A Reference Manual, Znd Ed., London, UK: Prentice
Hall International, 1992.

[272] Srinivasan, K.; Fisher, D., “Machine learning approaches to estimating software
development effort,” IEEE Transactions on Sofhvare Engineering, vol. 21 no. 2,
February 1995, pp. 126-137.

[273] Steier, D.M.; Kant, E., “The roles of execution and analysis in algorithm design,“
IEEE Transactions on Software Engineering, vol. 11 no. 11, November 1985, pp.

[274] Stroustrup, B., The C++ Programming Language, Znd Ed., Reading, MA:

[275] Stubbs, D.F.; Webre, N.W., Data Structures with Abstvact Data Types and Ada,

[276] Stumptner, M.; Wotawa, F., “A survey of intelligent debugging,” AI

8-10, 1997, pp. 967-972.

1993, pp. 48-60.

1375-1386.

Addison-Wesley Pub. Co., 1991.

Boston, MA: PWS Pub. Co., 1993.

Communications, vol. 11 no. 1, 1998, pp. 35-51.

References 175

[277] Sukert, A.N., “Empirical validation of three software error prediction models,”
IEEE Transactions on Reliability, vol. 28 no. 3, Aug. 1979, pp. 199-205.

[278] Sun Microsystems, Inc., “OpenOffice.org,” http://www.openoffice.org/,
September 9,2002.

[279] Takagi, H., “Fusion technology of fuzzy theory and neural networks ~ survey and
future directions,” Proceedings, International Conference on Fuzzy Logic and
Neural Networks, July 1990, lizuka, Japan, pp. 13-26.

[280] Takagi, T.; Sugeno, M., “Fuzzy identification of systems and its application to
modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol.

[28 11 Tautz, C.; Althoff, K.-D., “Using case-based reasoning for reusing software
knowledge,“ in Proceedings, Znd International Conference on Case-Based
Reasoning, Providence, RI, USA, July 25-27, 1997, pp. 156-165.

[282] Tessem, B.; Bjornestad, S., ”Analogy and complex software modeling,”
Computers in Human Behavior, vol. 13 no. 4, 1997, pp. 465-486.

[283] Theiler, J.; Eubank, S.; Longtin, A,; Galdrikian, B.; Farmer, J.D., “Testing for
nonlinearity in time series: the method of surrogate data,” Physica D, vol. 58,

[284] Tracey, N.; Clark, J.; Mander, K., “Automated program flaw finding using
simulated annealing,” in Proceedings, ISSTA ’98 - International Symposium on
Software Testing andAnalysis, Clearwater Beach, FL, USA, March 2-5, 1998, pp.

[285] Tracey, N.; Clark, J.; Mander, K.; McDermid, J., “Automated test-data generation
for exception conditions,” Sofhvare - Practice and Experience, vol. 30, 2000, pp.

[286] Turcotte, D.L., Fractals and Chaos in Geology and Geophysics, New York:
Cambridge University Press, 1992.

[287] Udawatta, L.; Watanabe, K.; Kiguchi, K.; Izumi, K., “Fuzzy-chaos hybrid
controller for controlling of nonlinear systems,” IEEE Transactions on Fuzzy
Systems, vol. 10 no. 3, June 2002, pp. 401-41 1.

[288] Vagoun, T.; Hevner, A,, “Feasible input domain partitioning in software testing:
RCS case study,” Annals of Software Engineering, vol. 4, 1997, pp. 159-170.

[289] Vanmali, M.; Last, M.; Kandel, A,, “Using a neural network in the software testing
process,” International Journal oflntelligent Systems, vol. 17,2002, pp. 45-62.

[290] Voas, J.M., “Software testability measurement for assertion placement and fault
localization,” in Proceedings, AADEBUG: 2”d International Workshop on
Automated and Algorithmic Debugging, Saint-Malo, France, May 22-24, 1995, pp.
133- 144.

[291] Wang, L.-X., A Course in Fuzzy Systems and Control, Upper Saddle River, NJ:
Prentice Hall PTR, 1997.

15, 1985, pp. 116-132.

1992, pp. 77-94.

73-8 1.

61-79.

176 Computational Intelligence in Software Quality Assurance

[292] Waters, R.C., “The programmer’s apprentice: a session with KBEmacs,” IEEE
Transactions on Software Engineering, vol. 11 no. 11, November 1985, pp. 1296-
1320.

[293] Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering, vol.
10 no. 4, July 1984, pp. 352-357.

[294] Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, Ph.D. Thesis, Harvard University, Cambridge, MA, 1974.
Reprinted in The Roots of Backpropagation: From Ordered Derivatives to Neural
Networks and Political Forecasting, New York: John Wiley & Sons, 1994.

[295] Weyuker, E.J.; Jeng, B., “Analyzing partition testing strategies,” IEEE
Transactions on Software Engineering, vol. 17 no. 7, July 1991, pp. 703-71 1.

[296] Whittaker, J.A.; Jorgensen, A., “Why software fails,” Software Engineering Notes,
vol. 24 no. 4, July 1999, pp. 81-83.

[297] Windham, M.P., “Cluster Validity for Fuzzy Clustering Algorithms,” Fuzzy Sets
and Systems, vol. 5 no. 2, 198 1, pp. 177- 1 85.

[298] Wizsoft, Inc., “Wizsoft data mining and text mining: WizRule, Wizwhy,
WizDoc,“ http://www.wizsoft.com.

[299] Xia, G.; Zeephongsekul, P.; Kumar, S., “Optimal software release policies for
models incorporating learning in testing,” Asia-Paczjk Journal of Operational
Research, vol. 9 no. 2, Nov. 1992, pp. 221-234.

[300] Xie, X.L.; Beni, G., “A Validity Measure for Fuzzy Clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 13 no. 8, August
1991, 841-847. Reprinted in Bezdek, J.C.; Pal, S.K., Fuzzy Models for Pattern
Recognition: Methods that Search for Structures in Data, Piscataway, NJ: IEEE
Press, 1992, pp. 219-225.

[301] Yamada, S.; Ohba, M.; Osaki, S., “S-shaped reliability growth modeling for
software error detection,” IEEE Transactions on Reliability, vol. 32 no. 5, Dec.

[302] Yamada, S.; Osaki, S., “Software reliability growth modeling: models and
assumptions,” ZEEE Transactions on Software Engineering, vol. 1 1 no. 12, Dec.

[303] Yamaguti, M.; Hata, M.; Kigami, J., Mathematics of Fractals, Providence, RI:
American Mathematical Society, 1997.

[304] Yuan, X.; Khoshgoftaar, T.M.; Allen, E.B.; Ganesan, K., “An application of hzzy
clustering to software quality prediction,” in Proceedings of the 3rd IEEE
Symposium on Application-Specific Software Engineering Technology, pp. 85-90,
2000.

[305] Zadeh, L.A., “Outline of a new approach to the analysis of complex systems and
decision processes,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3
no. 1, Jan. 1973, pp. 28-44.

[306] Zadeh, L.A., ‘‘Fuzzy sets and information granularity,” in Advances in Fuzzy Set
Theory and Applications, Gupta, M.M.; Ragade, R.K.; Yager, R.R., Eds., New

1983, pp. 475-478.

1985, pp. 1431-1437.

References 177

York: North-Holland, 1979. Reprinted in Fuzzy Sets, Fuzzy Logic, and Fuzzy
Systems: Selected Papers by Lo$ A . Zadeh, Klir, G.J; Yuan, B., Eds., River Edge,
NJ: World Scientific Pub. Co., 1996.

[307] Zadeh, L.A., “Fuzzy logic = computing with words,” IEEE Transactions on Fuzzy
Systems, vol. 4 no. 2, May 1996, pp. 103-1 11.

[308] Zadeh, L.A., “Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic,” Fuzzy Sets and Systems, vol. 90, 1997, pp.

[309] Zou, F.-Z.; Li, C.-X., “A chaotic model for software reliability,” Chinese Journal
of Computers, vol. 24 no. 3,2001, pp. 281-291.

[310] S. Dick, C. Bethel, A. Kandel, “Software reliability modeling: the case for
deterministic behavior,” submitted to IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans.

11 1-127.

This page intentionally left blank

About the Authors

Scott H. Dick received a B.Sc. from the University of South Florida in
Tampa, FL, in 1997, a M.Sc. from USF in 1999, both in Computer
Science, and a Ph.D. in Computer Science & Engineering from USF in
2002. He has been an Assistant Professor in the Department of Electrical
and Computer Engineering at the University of Alberta in Edmonton,
AB, since August 2002. He served as Publications Chair for the 2004
NAFIPS International Conference, and as the organizing chair for an
invited session at the 2001 Joint IFSA World Congress and NAFIPS
International Conference. Dr. Dick is a member of the ACM, IEEE,
ASEE, and Sigma Xi.

Dr. Dick received an Outstanding Student Paper Award at the 2001
Joint IFSA World Conference and NAFIPS International Conference,
and the 2003 University of South Florida Outstanding Dissertation Prize.
He is the author of over a dozen research papers in scientific journals and
conferences. Dr. Dick’s research interests are in computational
intelligence, data mining, and software engineering.

Abraham Kandel received a B.Sc. from the Technion - Israel Institute
of Technology and a M.S. from the University of California, both in
Electrical Engineering, and a Ph.D. in Electrical Engineering and
Computer Science from the University of New Mexico. Dr. Kandel, a
Distinguished University Professor and the Endowed Eminent Scholar in
Computer Science and Engineering at the University of South Florida is
the Executive Director of the newly established National Institute for
Systems Test and Productivity. He was the Chairman of the Computer
Science and Engineering Department at the University of South Florida
(1991-2003) and the Founding Chairman of the Computer Science
Department at Florida State University (1978-1991). He also was the
Director of the Institute of Expert Systems and Robotics at FSU and the
Director of the State University System Center for Artificial Intelligence
at FSU. He is Editor of the Fuzzy Track-IEEE MCRO; Area Editor on

179

180 Computational Intelligence in Software Quality Assurance

Fuzzy Hardware for the International Journal “FUZZY Sets and Systems,”
an Associate Editor of the journals IEEE Transactions on Systems, Man
and Cybernetics; Control Engineering Practice; International Journal of
Pattern Recognition and ArtiJicial Intelligence, and a member of the
editorial boards of the international journals International Journal of
Expert Systems: Research and Applications; The Journal of Fuzzy
Mathematics; IEEE Transactions on Fuzzy Systems; Fuzzy Systems -
Reports and Letters; Engineering Applications for Artijicial Intelligence;
The Journal of Grey Systems; Applied Computing Review Journal (ACR)
- ACM; Journal of Neural Network World; Artijkial Intelligence Tools;
Fuzzy Economic Review; International Journal of Chaotic Systems and
Applications; International Journal of Image and Graphics, Pattern
Recognition; Book Series on “Studies in Fuzzy Decision and Control;
and BUSEFAL - Bulletin for Studies and Exchange of Fuzziness and its
Applications.

Dr. Kandel has published over 500 research papers for numerous
professional publications in Computer Science and Engineering. He is
also the author, co-author, editor or co-editor of 38 textbooks and
research monographs in the field. Dr. Kandel is a Fellow of the ACM,
Fellow of the IEEE, Fellow of the New York Academy of Sciences,
Fellow of AAAS, Fellow of IFSA, as well as a member of NAFIPS,
IAPR, ASEE, and Sigma-Xi.

Dr. Kandel has been awarded the College of Engineering Outstanding
Research Award, USF, 1993-94; Sigma-Xi Outstanding Faculty
Researcher Award, 1995; The Theodore and Venette-Askounes Ashford
Distinguished Scholar Award, USF, 1995; MOISIL International
Foundation Gold Medal for Lifetime Achievements, 1996; Distinguished
Researcher Award, USF, 1997; Professional Excellence Program Award,
USF, 1997; Medalist of the Year, Florida Academy of Sciences, 1999;
Honorary Scientific Advisor, Romanian Academy of Sciences, 2000.

	Contents
	Dedication
	Acknowledgements
	Foreword
	Preface
	Chapter 1 : Software Engineering and Artificial Intelligence
	1.1 Introduction
	1.2 Overview of Software Engineering
	1.2.1 The Capability Maturity Model
	1.2.2 Software Life Cycle Models
	1.2.3 Modem Software Development
	1.2.3.1 Requirements Engineering
	1.2.3.2 Software Architecture
	1.2.3.3 OO Design
	1.2.3.4 Design Patterns
	1.2.3.5 Maintenance Cycle

	1.2.4 New Directions

	1.3 Artificial Intelligence in Software Engineering
	1.4 Computational Intelligence
	1.4.1 Fuzzy Sets and Fuzzy Logic
	1.4.2 Artificial Neural Networks
	1.4.3 Genetic Algorithms
	1.4.4 Fractal Sets and Chaotic Systems
	1.4.5 Combined CI Methods
	1.4.6 Case Based Reasoning
	1.4.7 Machine Learning
	1.4.8 Data Mining

	1.5 Computational Intelligence in Software Engineering
	1.6 Remarks

	Chapter 2: Software Testing and Artificial Intelligence
	2.1 Introduction
	2.2 Software Quality
	2.3 Software Testing
	2.3.1 White-Box Testing
	2.3.2 Black-Box Testing
	2.3.3 Testing Graphical User Interfaces

	2.4 Artificial Intelligence in Software Testing
	2.5 Computational Intelligence in Software Testing
	2.6 Remarks

	Chapter 3: Chaos Theory and Software Reliability
	3.1 Introduction
	3.2 Reliability Engineering for Software
	3.2.1 Reliability Engineering
	3.2.1.1 Reliability Analysis
	3.2.1.2 Reliability Testing

	3.2.2 Software Reliability Engineering
	3.2.3 Software Reliability Models

	3.3 Nonlinear Time Series Analysis
	3.3.1 Analytical Techniques
	3.3.2 Software Reliability Data

	3.4 Experimental Results
	3.4.1 State Space Reconstruction
	3.4.2 Test for Determinism
	3.4.3 Dimensions

	3.5 Remarks

	Chapter 4: Data Mining and Software Metrics
	4.1 Introduction
	4.2 Review of Related Work
	4.2.1 Machine Learning for Software Quality
	4.2.2 Fuzzy Cluster Analysis
	4.2.3 Feature Space Reduction

	4.3 Software Change and Software Characteristic Datasets
	4.3.1 The MIS Dataset
	4.3.2 The OOSoft and ProcSoft Datasets

	4.4 Fuzzy Cluster Analysis
	4.4.1 Results for the MIS Dataset
	4.4.2 Results for the ProcSoft Dataset
	4.4.3 Results for OOSoft
	4.4.4 Conclusions from Fuzzy Clustering

	4.5 Data Mining
	4.5.1 The MIS Dataset
	4.5.2 The OOSoft Dataset
	4.5.3 The ProcSoft Dataset

	4.6 Remarks

	Chapter 5: Skewness and Resampling
	5.1 Introduction
	5.2 Machine Learning in Skewed Datasets
	5.3 Experimental Results
	5.4 Proposed Usage
	5.5 Remarks

	Chapter 6: Conclusion
	References
	About the Authors

