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Foreword 

Undoubtedly, Software Engineering is concerned with the most complex 
and abstract systems ever designed by humans. The rapidly growing and 
widespread presence and profound complexity of software systems 
brings to the picture fimdamental concepts of software quality including 
such key components as reliability, portability and maintenance, just to 
allude to only a few of them. Software processes and software 
development are profoundly human - driven. The human factors are 
omnipresent throughout the entire software development process starting 
from the requirement analysis, moving to general architectural 
considerations, design, implementation, and ending up with software 
validation and verification. Given the two important aspects of 
complexity and human centricity, modeling software processes and 
software quality becomes a genuine challenge. On one hand, we envision 
a broad spectrum of models and specific modeling techniques quite often 
brought into Software Engineering from other disciplines (e.g., system 
reliability) that dwell upon the fundamental techniques of multivariate 
linear and nonlinear regression analysis. On the other hand, by being 
aware of the human-based and human-centric software processes, there is 
a growing interest in other alternative methodological approaches to 
system modeling. One of them has emerged within the framework of 
Computational Intelligence (CI). Interestingly, the models of CI exhibit a 
number of features that are of paramount interest and high practical 
relevance to Software Engineering. The CI-based models can be formed 
on a basis of heterogeneous data (including experimental data and quite 
subjective expert feedback). The CI constructs are also inherently 
transparent (owing to their logic underpinnings) and highly modular. The 

ix 
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mechanisms of evolutionary optimization coming as an integral part of 
the overall CI platform are of high relevance when dealing with the 
structural and parametric optimization of such models. 

Being fully cognizant of the complexity of the endeavor, this research 
monograph, authored by Professors Scott Dick and Abraham Kandel, 
ventures into the fundamentals of software quality assurance. Here, this 
very idea of software quality assurance has been challenged and 
significantly augmented in the setting of Computational Intelligence. A 
significant part of the book focuses on software reliability - an important 
and highly visible feature of most software products. The fundamental 
principles of modeling software reliability are formed in the language of 
fractals instead of stochastic or probabilistic models. This offers a new 
and attractive view at the essence of this software quality. The authors 
put forward several quite compelling arguments and augment them by 
ca;efully organized and coherent experimental evidence. The ideas of 
understanding software measures (metrics) presented in the realm of 
unsupervised learning, notably fuzzy clustering, are highly relevant. 
Revealing the structure in software data helps shed light on possible 
categories of software modules, identifying those components that might 
deserve more attention and generating some recommendations as to their 
stability are of vital interest to software developers, testers, and software 
managers. With regard to software metrics and categories of software 
modules, the authors emphasize an importance and possible implications 
of heavily skewed software data and discuss various ways of dealing 
with this aspect of software modeling. 

The material is covered in a highly authoritative fashion and the 
presentation of the key ideas is systematic, well motivated and will 
appeal to any reader. While the authors managed to cover a vast and 
quite unexplored territory (and with this regard the presented material is 
highly informative), the reading of the book could be very much 
inspiring. What are the fundamentals and practical implications of fractal 
analysis of software phenomena? What would be the most beneficial 
hybridization of fuzzy sets, neural networks and evolutionary 
optimization when being applied to problems of software development, 
reliability, maintenance, and software quality? What type of data should 
we collect and how could we treat the prescriptive and descriptive facets 



Foreword xi 

of software modeling? The book provides the reader not only with some 
useful insights but what is just as important, stimulates further 
investigations and detailed pursuits in this direction. 

Professors Dick and Kandel deserve our sincere appreciation and 
thanks by bringing to the research community such a timely and 
important volume. This monograph definitely opens new avenues, 
answers intriguing questions and delivers strong experimental evidence. 
Undeniably, the book will be greatly appreciated by the community of 
Quantitative Software Engineering and Computational Intelligence. 

Witold Pedrycz 

February 8,2005 
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Preface 

Software systems are at once the most complex and the least reliable 
technological systems human beings construct. A large software system 
can have over lo2' states, and the reliability of software is infamously 
poor. Software engineers must usually make assertions about the 
reliability of software systems after having observed only an 
insignificant fraction of the possible states of the system. New 
mechanisms and techniques for inferring the overall quality and 
reliability of software systems are needed. In this book, we will describe 
three investigations into the use of computational intelligence and 
machine learning for software quality assurance, which lead toward such 
mechanisms. 

Our first contribution is the use of chaos theory for software 
reliability modeling. Software reliability growth models (SRGM) are 
used to gauge the current and future reliability of a software system. 
Virtually all current SRGMs assume that software failures occur 
randomly in time, an assumption that has never been experimentally 
tested despite being criticized by a number of authors in the field. We 
have used nonlinear time series analysis to ascertain whether software 
reliability data from three commercial software projects come from a 
stochastic process, or from a nonlinear deterministic process. Evidence 
of deterministic behavior was found in these datasets, lending support to 
the idea that software failures may be irregular in nature. This is a 
qualitatively different form of uncertainty than randomness, one that is 
best modeled using the techniques of fractal sets and chaos theory rather 
than probability theory. 

... 
XI11 
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Our second contribution is the use of fuzzy clustering and data 
mining in software metrics datasets. Software metrics are measures of 
source code, which are intended as a basis for software quality 
improvement. Literally hundreds of metrics have been published in the 
literature, but no generally applicable regression model relating metrics 
and failure rates has been found. Instead of statistical regression, we use 
unsupervised machine learning, in the form of the fuzzy c-means 
algorithm, to analyze three collections of software metrics from 
commercial systems. This investigation highlights additional challenges 
for machine learning in the software metrics domain, one of which is 
skewness. The most common machine learning approach to overcoming 
skewness is to resample the dataset; however, this has never been 
attempted in the software metrics domain. Hence, our third contribution 
is the use of resampling algorithms to calibrate a decision tree to 
preferentially recognize high-risk classes of modules. We consider how 
the calibration process, as well as the operational decision tree, can be 
woven into an iterative software development process. 

This book will primarily be of interest to researchers in the areas of 
computational intelligence or software engineering, and particularly 
those interested in interdisciplinary research between those two fields. It 
will also be suitable for use as a textbook in an advanced graduate Jass  
in either field, or to practicing software engineers interested in how 
computationally intelligent technologies may be used to aid their work. 
The original research material in this book is supported by an extensive 
review of both software engineering and computational intelligence, 
covering over 300 references. 

Scott Dick 
Abraham Kandel 

February 2005 
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Chapter 1 

Software Engineering and Artificial 
Intelligence 

1.1 Introduction 

A $500 million dollar rocket self-destructs because of an arithmetic 
overflow [169]. A radiation therapy machine kills patients instead of 
helping them [26]. Software systems permeate every corner of modern 
life, and any failure of those systems impacts us. Sometimes the effect is 
trivial -just the time required to restart a program. In other cases, life, 
limb or property could be in jeopardy. One of the primary goals of 
software testing is to quantify the reliability of a software system, and to 
ensure that the system's failure modes do not include catastrophic 
consequences to people or property. As the Ariane-5 and Therac-25 
incidents showed, that goal has not yet been achieved, despite the 
enormous resources invested in software development. The USA 
Department of Defense spends $42 billion dollars per year developing 
and maintaining computer systems and only $7 billion of this goes to 
hardware [30]. The problem is that software systems are so complex - 
lo2' states or more in a large system [84] - that software engineers are 
not currently able to test software well enough to insure its correct 
operation. Exhaustive testing is obviously impossible, and to date no one 
has found a way to conduct non-exhaustive testing that provides 
assurance that a software system will perform as intended. The problem 
we address is finding mechanisms or relationships to more accurately 
determine the quality of software systems, without visiting a large 
fraction of their possible states. Novel ways of using nonlinear time 
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series analysis and data mining to model software reliability and quality 
will be investigated. These investigations point the way towards using 
intelligent technologies to support human developers in creating software 
systems by exploiting the different forms of uncertainty present in a 
software system. 

For a number of years, researchers have been trying to use artificial 
intelligence (AI) techniques to automate the software engineering and 
testing process [I ,  6, 9, 11, 31,42,49, 57, 60,75, 99, 129, 131, 173,204, 
213, 219, 269, 270, 273, 281, 282, 2921. The goal is to let a computer 
perform much of the repetitive work involved in creating and testing 
software. A computer that can interpret a high-level description of a 
problem into working software would remove fallible humans from the 
business of coding, while a system that is able to choose its own test 
cases can generate and run tests far faster than a human being. If the 
computer also somehow understood the nature of software failures, then 
it could use that information to automatically generate better test cases. 
Needless to say, these goals remain elusive. However, there has been a 
significant amount of work done in using A1 for various aspects of 
software development and testing. Various kinds of expert systems have 
been proposed to examine software metrics and help guide developers 
[47, 67, 68, 93, 95, 133, 138, 139, 140, 143, 2661. A1 algorithms have 
been investigated for generating test cases [89, 179, 2591. Perhaps the 
most ambitious effort was the research in automatic programming, which 
attempted to create an A1 system that could autonomously write new 
programs [l ,  9, 11, 31,75,99, 129,269,273,2921. 

Of particular interest in the present study is the use of computational 
intelligence in software development and testing. Computational 
intelligence (CI) is the name given to a synergistic group of technologies 
that exploit a tolerance for uncertainty and incomplete or imprecise data, 
in order to model complex systems and support decision making in 
uncertain environments. A key characteristic of CI technologies is that 
they embody different, but complementary, avenues of attack for system 
modeling and decision support under uncertain conditions [90]. Neural 
networks, genetic algorithms, evolutionary computation, fuzzy logic, 
rough sets, fractals and chaos theory, and all the various hybridizations 
of these technologies fall under the rubric of computational intelligence. 



Software Engineering and Artijicial Intelligence 3 

Since the software development and testing environment is fraught with 
incomplete and imprecise information, along with a variety of forms and 
sources of uncertainty, CI technologies are excellent candidates for 
modeling software processes and products. CI technologies are also 
closely related to case-based reasoning, machine learning, and data 
mining algorithms, all of which deal with system modeling or decision 
making in real-world, uncertain environments, and which have been used 
for modeling software products and processes. The largest body of work 
in this area is the use of CI technologies to predict software quality from 
software metrics [7, 8, 47, 67, 68, 93, 95, 133, 138, 139, 140, 141, 143, 
190, 2661; there has also been significant work done in using CI 
technologies for software cost estimation [22, 77, 94, 233, 2721, and in 
the computationally intelligent generation of test cases [ 192, 193, 225, 
284,2851. 

We present three specific contributions towards the use of intelligent 
systems in software engineering. The first contribution is in using chaos 
theory for software reliability modeling. Software reliability growth 
models (SRGM) are used to gauge the current and future reliability of a 
software system. Virtually all current SRGM are based on stochastic 
processes, and incorporate the assumption that software failures occur 
randomly in time, an assumption that has never been experimentally 
tested. Software failures, however, ultimately arise from mistakes in the 
program’s source code, mistakes that are made by human beings. Human 
mistakes in general do not appear to be random events; more specifically, 
there is no probability distribution that has been shown to govern when a 
programmer will make an error. Instead, the infrequent and unpredictable 
occurrence of human errors seems to more closely resemble the form of 
uncertainty known as irregularity. Irregularity is properly modeled by 
chaos theory and fractal sets, in the same way that randomness is 
properly modeled by probability theory. Accordingly, nonlinear time 
series analysis is used to ascertain whether software reliability data 
comes from a stochastic process, or if the data in fact arise from a 
nonlinear deterministic process. Reliability growth data drawn from 
three commercial software systems was examined; these datasets do 
indeed exhibit the signatures of deterministic behavior, and hint at 
chaotic behavior. This experimental evidence shows that nonlinear 
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deterministic models are a sound alternative to stochastic processes in 
software reliability growth modeling. 

The second contribution is the use of fuzzy clustering and data 
mining in software metrics datasets. Software metrics are measures of 
source code, which are intended as a basis for software quality 
improvement. Literally hundreds of metrics have been published in the 
literature, each of which quantifies some aspect of a program. These 
metrics do seem to be related to the number of failures a module will 
suffer, in that the correlation between metrics and failure rates is quite 
strong. However, no one has discovered a generally applicable regression 
model relating metrics and failure rates. Thus, while a relationship 
clearly exists between software metrics and quality, no one knows 
precisely what this relationship is. As an alternative to statistical 
regression, some authors have investigated the use of machine learning 
and data mining to search for relationships between software metrics and 
software quality. In general, the techniques that have been used are 
supervised learning algorithms such as neural networks or decision trees. 
However, unsupervised learning actually appears to be a better fit to the 
software engineering process than supervised learning. Accordingly, the 
fuzzy c-means clustering algorithm was employed to explore three 
datasets of software metrics in a fuzzy cluster analysis. These datasets 
were collected from commercial software systems in the late ‘80s and 
early ‘90s. This cluster analysis is the first time that the fuzzy c-means 
algorithm has been applied to software metrics data, and revealed 
additional characteristics of this application domain that pose a special 
challenge for machine learning algorithms. 

One of the challenges we highlight for machine learning in software 
metrics is skewness. In general, any collection of software metrics will 
be skewed towards modules with low metric values and low failure rates. 
Skewness has a deleterious effect on machine learning, because machine 
learning algorithms will try to optimize a global perfonnance measure 
over an entire dataset. A minority class will thus receive less attention, 
and the machine learner will be less capable of recognizing minority 
class examples. This is a common problem in machine learning, and it is 
solved by resampling the dataset, in order to homogenize the class 
distribution, Resampling has not previously been investigated in the 
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software metrics domain; the only attempt to deal with skewness was the 
use of differing misclassification penalties in a decision tree [139]. Our 
third contribution is an investigation of resampling as a way to focus a 
machine learner’s attention on modules that pose a high development 
risk. Undersampling was used to thin out the majority classes from the 
three metrics datasets, along with oversampling to build up the minority 
classes. In this manner, a decision tree classifier was trained to 
preferentially recognize high-risk modules in the three datasets, even 
though these are a minority of the overall dataset. This research could be 
used in an iterative software engineering process to create an automated 
filter that recognizes potentially troublesome modules. This filter would 
be a significant improvement over existing systems because a calibrated 
decision tree will reflect the context of a specific project, rather than 
being a generic set of rules with little relevance to the current project. 

In the remainder of this chapter, key concepts from the existing 
literature on software engineering, AI, and Computational Intelligence 
are reviewed. This review continues in Chapter 2, where the focus is on 
software testing and how it can be enhanced through the use of A1 and 
Computational Intelligence. The software reliability investigation is 
presented in Chapter 3, and the fuzzy clustering experiments in Chapter 
4. Chapter 5 is devoted to an investigation of how resampling might be 
used in software engineering datasets; the chapter closes with a 
discussion of how Computational Intelligence might be directly used in a 
software development process. We conclude with a summary of our 
contributions and a discussion of hture work in Chapter 6. 

1.2 Overview of Software Engineering 

Software engineering is at once similar to all other engineering 
disciplines, and radically different from any of them. It is similar in that a 
complex artifact must be created by a developer in order to meet the 
needs of a client; it is different in that the end product is not a physical 
construct, but a logical one. Software systems have a life cycle like any 
other engineering artifact; they are conceived, designed, built, and 
operated, but they do not age or wear out. An unaltered piece of software 
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remains exactly as capable of fulfilling its original mission, in its original 
environment, even thirty or forty years later as it was the day it was 
installed. Software undergoes design changes and maintenance like any 
other system; however, due to its logical nature, software seems absurdly 
easy to change. There is a huge temptation to add features and perform 
wholesale alterations, because they seem so effortless. The price is that 
bugs will be added as well, ultimately degrading the quality of the whole 
software system. 

1.2.1 The Capability Maturity Model 

Clearly, there must be some organized process for creating software. 
The task of creating software is hugely complex; the work of literally 
hundreds or thousands of programmers must coordinate to produce a 
large software system, and each one of those programmers must play 
some small creative role in developing the system. Even junior 
programmers assigned to code a thoroughly planned design contribute 
the creativity of their own implementation strategy. Moreover, each 
project is unique, and an organization’s development process must be 
tailored to the particular software system under construction [232]. Thus, 
a natural starting point for a review of software engineering is to look at 
how organizations can establish and improve their own software 
development process - whatever it may be ~ in the context of the 
Capability Maturity Model. 

The Software Engineering Institute at Carnegie-Mellon University 
developed the Capability Maturity Model (CMM), which rates how 
effective an organization is at the software development task and helps 
guide organizations to improve their processes [227]. The CMM begins 
by rating organizations as belonging to one of five categories: initial, 
repeatable, defined, managed and optimizing. Organizations at the 
initial level have no project management structure at all. All 
development projects use an ad-hoc organization, and any successes are 
the result of individual heroics. Organizations at the repeatable level 
employ a basic project management structure that at least tracks software 
cost, function, and schedule, permitting earlier success on similar 
projects to be repeated. Those at the deJined level have a complete 
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project management and project engineering framework in place. Each 
development project uses these frameworks, customized as necessary. 
Managed organizations employ a basic quality-control scheme. Software 
quality is measured at various points in the development cycle, and any 
flaws thus uncovered are corrected. Finally, the optimizing organizations 
are continually measuring and improving their development processes, 
while exploring the opportunities offered by novel technologies. A 2001 
self-assessment survey attempted to gauge how mature the overall 
software industry is. More than a quarter of the organizations surveyed 
(27.1%) reported that they were at the initial level. The largest group, 
39.1%, was at the repeatable level, and 23.4% felt that they had reached 
the de$ned level. Only 10.4% reported that they believed they were at 
the managed or optimizing levels [34]. 

Besides simply ranking organizations, the CMM provides guidance 
on how organizations can improve. At each level, the CMM identifies a 
set of core competencies, and these competencies represent a path to 
organizational improvement. Successive CMM levels lead organizations 
through a learning process that, hopefully, results in the organization 
being an efficient, effective software development group. One point of 
particular significance is that the CMM is designed to be a step-by-step 
guide for improving over time; an organization does not become a 
CMM-optimizing development group by simply throwing the specified 
tasks into their development process. The different stages of the CMM 
are designed to enhance organizational discipline, not to be a checklist 
[227]. The CMM is a high-level description of how organizations can 
improve their software processes, with the implication being that this 
will lead to improved software products. Our focus, however, is 
analyzing and improving software products, the actual deliverables for a 
client. Accordingly, the development of software products, rather than 
the refinement of processes, is the focus of the remainder of this review. 

1.2.2 Software Life Cycle Models 

Software systems are conceived, built, operated, and finally replaced 
when they are no longer useful. However, no one is yet certain what the 
exact life cycle of a software system should be. The first widely accepted 
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proposal was the waterfall model [254], which is the typical life cycle of 
other engineering products, adapted for the use of software developers 
(see Fig. 1.1). The waterfall model, an expansion of the staged model 
[17], describes the evolution of a software system from the initial 
collection of user requirements through the retirement of the system, as 
shown in Figure 1.1. This particular version involves eight phases, all of 
which are essential to any software life cycle: a feasibility study, 
requirements specification, design, implementation, testing, installation 
& acceptance, operation & maintenance, and finally retirement. 

I I 

Figure 1.1 : Waterfall Life-Cycle [232] 

The first step in a software development project under the waterfall 
model is to determine whether continuing the project at all is a useful 
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idea. The developers have to decide if they can deliver the software 
product on time and on budget. A two-person shop, for instance, should 
not take on the next upgrade of the SolarisTM operating system. 
Assuming that the project is feasible, the actual work of producing a 
software system begins with the collection of user requirements. Once a 
complete picture of the user’s needs has been formed, the requirements 
will usually be formalized as a requirements specification. This is the 
definitive statement of what the software will do, and all subsequent 
work is directed towards fulfilling the specification. A software 
architecture and detailed design are worked out during the design stage, 
and then translated into working computer code in the implementation 
stage. The completed system is then tested, and upon passing its tests, is 
released to the end users, who must install it and perform any acceptance 
tests. The system then enters regular service. Over time, bugs will be 
corrected and new capabilities added to the software; these are 
considered maintenance activities. Finally, the software will be retired 
when it becomes more economical to purchase a new software system of 
superior functionality [40,232]. 

The waterfall model as used today incorporates the ability to 
backtrack by one stage in order to fix a flaw in the system under 
development. That, however, is the limit to which the waterfall model 
can support incremental development. Thirty years’ worth of industry 
experience now shows that this waterfall model is seriously flawed, and 
that incremental or evolutionary life cycles are far more appropriate for 
software development [232]. However, it is interesting to note that the 
seminal papers on the waterfall model [254], and the SAGE development 
model that preceded it [17], both described the development of a pilot 
system as an essential activity (the fact that the SAGE system used a 
pilot system was discussed in a forward to the ICSE’87 reprint). The 
waterfall model, as it is employed today, does not incorporate the 
development of a pilot system, and few developers attempt them. 

The prototyping [ 1601, evolutionary [4 11 and incremental 
development lifecycles [232] were developed to more closely match the 
reality of software development. The evolutionary model is a high-level 
analysis of changes that occur during the lifetime of a software system. 
The emphasis is on a view of software evolution as a complex feedback 
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loop with significant nonlinearities and delays. The prototyping and 
incremental lifecycles are iterative in nature; each version of the system 
becomes the basis for the next, with a relatively short turnaround time. 
The incremental development model is depicted in Figure 1.2. 

Figure 1.2: Incremental Life-Cycle [232] 

The Fountain model [239] was proposed for software systems that 
have a strongly iterative life cycle. As its name implies, the basic 
metaphor of the fountain is used, in which water is shot out of a nozzle, 
and then falls back into a pool. In the fountain model (Figure 1.3), the 
project rises through the different phases of software development, often 
falling back one or more phases. Finally, when the project is complete, it 
exits the fountain into the operation and maintenance phase. As with 
other iterative models, the main criticism leveled at the Fountain model 
is that it does not support clear tracking of project milestones, thus 
making project scheduling difficult [239]. 
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Feasibility & 
Requirements 

Figure 1.3: Fountain Life-Cycle [239] 

The Spiral model proposed by Boehm [23] combines the strengths of 
both the waterfall and incremental life cycles. The Spiral model is 
iterative, with the transition between each iteration controlled by a 
formal risk assessment. In this model, the emphasis is on controlling 
system risks by identifying and mitigating them. A cycle begins by 
determining what alternatives are available, including in-house 
development or commercial off-the-shelf software. A risk analysis is 
conducted, and prototypes developed. The current iteration of the system 
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is then designed, implemented, and tested, and then planning begins 
for the next cycle. The Spiral model is depicted in Figure 1.4. 

Figure 1.4: Spiral Life-Cycle [23] 

1.2.3 Modern Software Development 

In the past thirty years, software engineering as a profession has 
undergone several revolutionary changes, as engineers have sought “the 
right way” to create reliable, useful software systems. The days when a 
single engineer could write his own operating system or applications are 
long since gone; they passed away in the 1950s, when computers became 
powerful enough to run large-scale programs (of which SAGE was an 
early example [17]). Since that time, the technology deployed to assist 
human software developers has been critically important. The invention 
of the automatic compiler, taken for granted today, is a dramatic 
example. In 1956 the SAGE team had to build their own compiler; today, 
building a compiler is a standard term project for computer science 
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students. Other technologies have not stood the test of time; structured 
development, data-oriented design and information engineering were 
widely hailed in their time as mechanisms to improve software quality, 
just as object-oriented programming is today [40]. There are already 
competing technologies, such as aspect-oriented programming [ 1971, 
seeking to displace or significantly alter the object-oriented model. In 
this section, some modern methods in software engineering are reviewed, 
including requirements engineering, software architectures, object- 
oriented design, design patterns, and the conduct of software 
maintenance. 

1.2.3.1 Requirements Engineering 

A professional software engineer is an expert in transforming a stated 
set of requirements into a working software system. A software engineer 
is most emphatically not an expert in virtually any of the application 
domains he or she will be called on to design software systems for. 
Likewise, the clients (or their experts) are well schooled in the 
application domain, but generally have no experience in developing 
large-scale software systems. The gap between software expertise and 
domain expertise can manifest itself in subtle ways, and can be very, 
very dangerous [6]. For this reason, a complete and consistent set of 
requirements is a vital part of every software development project. These 
requirements must completely cover the functional, behavioral and non- 
behavioral aspects of a software system. Functional aspects include all 
the required operations that the software is expected to perform, or 
services it is expected to provide. Behavioral aspects include all of the 
sequencing and possible overlapping of system functions - essentially 
the flow of control within the software system. Finally, non-behavioral 
aspects of software are those attributes that do not belong to the previous 
two categories, such as reliability, usability, scalability, etc. [232] 

Requirements engineering is the name given to a structured, 
exhaustive elicitation of requirements for a software system, and it is a 
vital part (perhaps the most vital part) of a software project. The 
principle products of a requirements engineering activity arc a software 
requirements specification and a quality assurance plan. A software 
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requirements specification describes the functional, behavioral and non- 
behavioral attributes of a system, and also provides a context for the 
project. The USA Department of Defense also requires traceability for all 
requirements (DOD standard DI-MCCR-80025A), which means that 
each requirement in the specification can be mapped back to a specific 
user need. The quality assurance plan specifies the quality criteria, how 
they are to be tested, cost constraints, and the system acceptance criteria 
[232]. In the remainder of this section, only the generation of a software 
requirements specification will be discussed. 

Requirements engineering begins by determining the context of a 
software system: its environment, the items it is expected to help 
produce, the principal functions of the software system, and the system’s 
modes of operation. From this context, we determine the system 
functionality, external interfaces, performance requirements, constraints, 
and required attributes, which form the core of the software requirements 
specification (see Figure 1.5). With these global considerations in place, 
we can proceed to analyze specific requirements. As a minimum, every 
input to the system and every system output (the observable behavior) 
must be described, along with the non-behavioral attributes of the 
system. There are a number of ways to specify the observable behavior 
of a system; object-oriented analysis, Jackson System Development, 
finite state machines and Petri nets are just a few [232]. Formal 
specification methods are one important class of techniques for 
specifling observable behavior; we will discuss these next. 

Formal specifications provide a mathematically sound basis for 
program development. They are rigorous mathematical descriptions of 
system behavior, and are the basis for a proof of program correctness. 
They are essential tools in safety-critical systems, because only a 
mathematical proof of correctness can insure that there will not be a 
dangerous or catastrophic system failure. Formal specifications are now 
widely used even in systems that are not safety-critical, in order to meet 
IS0  9000 certification criteria. Some of the formal methods used in the 
software industry include Petri nets, the Vienna Development Method, 
Z notation, and the Cleanroom Black Box method. 
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Figure 1.5: Software Requirements Specification lssues [232] 

Petri nets are one of the oldest formal specification methods currently 
in use [232]. They are used to model concurrent systems and systems 
that involve asynchronous communication. A Petri net is a form of finite 
state machine in which a number of state transitions can take place 
concurrently. Each transition is associated with input and output storage 
locations (places), and there are a number of tokens circulating within the 
net. All transitions fire at the same time; a transition can fire if and only 
if each input place for that transition is holding a token. When a 
transition fires, a token is removed from each input place associated with 
that transition, and one is added to each output place for that transition. 
Petri nets can be analyzed for several properties, such as liveness, safety, 
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boundedness, and reachability [232]. An introduction to Petri nets may 
be found in [234]. 

The Vienna Development Method (VDM) [21] was created at IBM's 
Vienna Laboratory. In VDM, all modules in a program are treated as 
mathematical functions mapping inputs to outputs. A VDM specification 
requires that all assumptions about input arguments (preconditions) and 
results (postconditions) be formally described in mathematical notation. 
The most important aspect of a VDM specification is the proof 
obligation, which is a relation or set of relations that must hold between 
inputs and results. An implementation of a module must be shown to 
satisfy the proof obligation in its specifications [232]. More on VDM 
specifications may be found in [ 1201. 

Z specifications are built up of schemas, which are a structured 
description of both the static and dynamic features of a process. The 
static features of a process are its inputs, outputs, and the function 
prototype of any operations that the process needs to carry out, which are 
represented as declarations. The dynamic features of a process are 
represented by preconditions and postconditions, using the operations of 
elementary set theory as well as input and output operators. See [271] for 
further reading [232]. Finally, the Cleanroom Black Box method treats a 
module as a black box, and simply specifies the module's response to 
inputs, providing that a given set of constraints is satisfied. The dynamics 
of the module are represented via production rules [232]. 

1.2.3.2 Software Architecture 

The term software architecture refers to the global structuring of a 
software system. It is a definition of how the overall system will operate, 
rather than a detailed module design. According to the IBM Systems 
Journal, "the term architecture is used., . to describe the attributes of a 
system as seen by the programmer, i.e., the conceptual structure and 
functional behavior, as distinct from the organization of the data flow 
and controls, the logical design, and the physical implementation," [232]. 
Brooks has cited architectural integrity as a key component of software 
quality [29], and Goel identified the breakdown of architectural integrity 
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through maintenance errors as the principal cause of “aging” in software 
systems [87]. 

An architecture should be flexible, extensible, portable and reusable. 
A flexible architecture is one that permits changes with minimal 
disruption, and allows external interfaces and timing constraints to 
change easily. Extensible architectures allow new functionality to be 
added without the need for extensive changes, such as when adding 
additional devices to a bus. A portable system runs on different platforms 
without significant change. A system that can be compiled and run on 
both Microsoft WindowsTM and Sun Microsystems’ SolarisTM, for 
instance, is portable between those two platforms. The Java language and 
the ANSI C standard were created to ensure that programs only had to be 
written once, and could then be recompiled for any desired target 
machine. Reusability is a software characteristic that is supported by an 
architectural design. A software component is reusable if it can be 
removed from the application it was written for, inserted into another, 
and still perform its original task [232]. 

There are several architectural styles in wide use in software 
engineering. Each style has application areas it is particularly well suited 
for. The data flow, call & return, independent process, virtual machine 
and repository architectures can be employed in a wide variety of 
application domains. There are also domain-specific architectures, which 
are not so useful outside of their original application domain. 
Architectural choices are extremely important; the software architecture 
is one of the main constraints on software evolution [ 1601. 

Data flow architectures operate on some continuous stream of input 
data. The system accepts an input, processes it, outputs a result, and 
immediately moves on to the next input. Batch job control systems are an 
early example of this architecture, as are process controllers and 
cryptographic systems. Process controllers are used in plants to 
automatically regulate some process (chemical reaction, manufacturing, 
etc). They are placed in a feedback loop with the plant, and regulate the 
plant according to a specified control law. Cryptographic systems take a 
stream of ordinary text, and encrypt it so that it is unreadable. This 
ciphertext is then sent to a recipient, who alone can decrypt the 
ciphertext stream back into plaintext [232]. 
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The call & return architecture will be the most familiar to a beginning 
programmer. Call & return architectures arrange components in a driver- 
worker relationship, such as a C main program and worker hnctions. 
Object-oriented architectures, layered architectures, and any other 
architecture that uses a master-slave relationship among its components 
are considered call & return systems [232]. 

Independent process architectures are software systems composed of 
autonomous processes, which may or may not communicate with each 
other. Distributed and parallel systems are good examples of this kind of 
architecture. The communicating process model [ 1071 specifies that 
processes communicate through ports, over unidirectional channels. The 
pattern of channels between processes can be manipulated to provide any 
desired configuration, each of which is its own architecture. Agent 
architectures are another form of independent process architecture, one 
that is receiving considerable attention today. An agent is a persistent, 
autonomous software entity that exists for a specific purpose. An agent 
has its own input/output ports, memory, and processing capabilities. 
These are enormously varied, since agents perform a number of tasks. 
One of the more popularized types of agent architecture is the intelligent 
agent, which will directly interact with a user in its input and output 
channels [232]. 

A virtual machine architecture is, in essence, a simulator. The idea is 
to present user programs with a specific target machine architecture, 
independently of the processor the software actually runs on. This is a 
step beyond portability; instead of simply enforcing a standard language 
that can be recompiled for a target system, a virtual machine allows 
programs to run without any changes or recompilation. The best-known 
virtual machine today is probably the Java Virtual Machine (JVM), 
which simulates a processor who native assembly language is Java [ 1681. 
Other examples include the Adaptive Intelligent System architecture 
[loo]. 

Repository architectures are another enormously important 
architectural style. This type of architecture includes database systems, 
along with reuse libraries, hypertext systems such as the World Wide 
Web, archival systems and blackboards. Database systems in particular 
are widely deployed in a variety of industries, and are the focus of 
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almost every corporate Information Technology department. Repository 
architectures consist of a data store, a central record of the system state, 
and independent components implementing the functionality of the 
system. These independent components will normally access the data 
store and update the central state information in the course of their 
activities [232]. 

1.2.3.3 00 Design 

The procedure-oriented design paradigm is essentially structured 
programming, combined with either top-down or bottom-up 
decomposition of a system into modules [48]. One problem with this 
design paradigm is that it appears to reach its limits in program with 
more than 100,000 lines of source code [211]. Procedural systems larger 
than this approximate value seem to be much less reliable. Object- 
oriented systems can be much larger than procedure-oriented systems, 
without encountering the same drop-off in reliability at 100,000 lines of 
code that seems to affect procedural systems [211]. 

Object-oriented design is based on the principles of encapsulation, 
inheritance, and polymorphism. Encapsulation means that data, and the 
operations on it, are treated as a single, indivisible unit, known as an 
object. The operations and data within an object are collectively known 
as the attributes of that object, while the operations by themselves are 
known as methods. The data within an object can only be accessed by 
using that object’s methods. This supports the design principle of 
information hiding, which asserts that users of a program unit should 
only have access to the external interface of that unit, and not its internal 
data and organization [2 1 1, 2751. 

Inheritance is the ability of one object to incorporate the structure of 
another object, plus its own additions. This is a key element of every 
object-oriented program, and it allows the designers to create a 
conceptually integrated application. Inheritance is a major technique for 
representing knowledge; it is used in the A1 knowledge representation 
schemes known as frames and semantic networks, which strongly 
influenced the development of object-oriented design [ 125, 2561. Thus, 
by using inheritance, designers represent their knowledge of an 
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application in the design of a program. One object is said to be a 
specialization of another if the first contains all the attributes of the 
second, plus additional attributes of its own. One common refinement is 
to define classes of objects, which are templates for actual objects. 
Objects are then instances of some class, and inheritance is defined by 
specializations amongst classes rather than individual objects [211, 2741. 

Polymorphism is the idea of using a single name to represent 
logically similar operations, in much the same way that the ‘+’ sign is 
used for both integer and floating-point multiplication in C. Polymorphic 
operations are mapped to the correct method by examining the signature 
of the operator call. Two logically similar methods might share the same 
name, but the exact parameters to be passed will not be the same. This 
allows the computer’s run-time system to differentiate between calls to 
these two methods [211,274]. 

An object-oriented design is usually a web of classes and sub-classes. 
In some languages, the inheritance relationships form a simple tree 
structure; a class may inherit the attributes of only one other class. In 
other languages, classes may inherit the attributes of more than one class. 
This is called multiple inheritance, and it seems to be out of vogue in the 
object-oriented design community. The C++ language supports multiple 
inheritance; the newer Java language does not [211, 2741. Objects in the 
program (which are the only entities that have storage allocated to them) 
communicate via message passing. A message is a call from one object 
to a method in a different object. These calls may be to polymorphic 
methods, or to non-polymorphic methods. In essence, an object-oriented 
program is ideally a group of objects that interact in order to accomplish 
some task [211]. 

1.2.3.4 Design Patterns 

Design patterns are a formal mechanism for communicating software 
designs. They are prose text, not code, and thus cannot be used directly 
as building blocks of a system. They are applicable to any software 
system, rather than being restricted to a design paradigm such as 00 
design. There is, however, great excitement about the use and re-use of 
patterns for design problems, particularly within the 00 community. 
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Patterns describe a problem, the context in which that problem occurs, a 
solution to that problem, and any tradeoffs involved in using that 
solution. A number of case studies have shown that using patterns 
facilitates communication between designers and encourages the re-use 
of proven solutions for a given problem [15, 2411. There have been 
workshops on design patterns at OOPSLA, a major conference on object- 
oriented technologies, since 199 1, and a separate conference on design 
patterns (Pattern Languages of Programming) has been running since 
1994 [15]. 

The heart of the design patterns movement is a standard template for 
describing a pattern. The different sections provide a standard structure 
that conveys all the information required to determine if a pattern is 
appropriate for use in a given problem. The template for a pattern is [32]: 

Name: A descriptive name for the pattern 
Intent: A rationale for, and description of the problem solved by, the 

Also Known As: Any other aliases for this pattern 
Motivation: An illustrative example of how the pattern should be used 
Applicability: The problem domain and situations in which the pattern 

Structure: A graphical representation of the class hierarchy in the pattern 
Participants: What classes and objects are used in the pattern, and what 

Collaborations: A description of how the participants interact to 

Consequences: The tradeoffs that must be made and the expected results 

Implementation: Any particular implementation details that a user should 

Sample Code: Code fragments that provide hints on implementation 

Known Uses: Real-world examples that use this pattern 
Related Patterns: Cross-reference to related patterns, hints on which 

pattern 

should be used 

their roles are 

accomplish the goals of the pattern 

of using the pattern 

be aware of 

issues 

patterns should be used with this one 

Patterns are not encapsulated solutions. A programmer using a pattern 
must map the classes and objects discussed in the pattern to the entities 
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in their own program, which can be a difficult undertaking. Some 
automated tool support is described in [32] and [79], while links to a 
variety of pattern libraries may be found at [ 1041, the homepage of the 
Hillside Group (an association of researchers interested in design 
patterns). 

1.2.3.5 Maintenance Cycle 

Most of a software system’s lifetime will be spent in operation and 
undergoing maintenance. Software maintenance consists of changing the 
source code of a software system, usually for one of three reasons: 
system correction, system adaptation, and system perfection. System 
correction activities are undertaken when software errors arc uncovered 
or failures occur, and consist of repairing the fault(s) responsible. One 
example is the patch released by Microsoft in August 2002 to correct a 
security flaw in Internet Explorer [ 1941. System adaptation activities are 
responses to changes in the operating environment of the software, which 
necessitate software changes. One might argue that fixing the Year 2000 
bug was an adaptive, rather than corrective, maintenance task, as the 
software in question never included successful interpretation of 2 lSt- 
century dates in its original specification. Finally, perfective maintenance 
is a catch-all term for the various changes to a software system required 
to meet the evolving needs of its users [232]. 

Software maintenance is basically a cyclic process, consisting of the 
eight stages shown in Figure 1.6. A change cycle begins with a change 
request, which is analyzed for required costs and resources and its 
expected impact. The change will be added to a list of changes to be 
implemented in the next release of the software system in the scheduling 
phase. The scheduled changes are implemented and tested, and then the 
existing user documentation is updated. There is a release or beta-testing 
phase before the changed system goes operational, and then the cycle 
begins again [232]. This is the point in the software’s life cycle where the 
oft-stated assumption of software “immortality” breaks down. Software 
maintenance personnel arc usually different from the original 
development team, and so do not have as deep an understanding of the 
software system. They will make errors, which over time will erode the 
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software system’s reliability. This is a peculiar form of aging; no 
physical decay occurs, just the slow breakdown of the system’s 
conceptual integrity [ 871. 

Figure 1.6: Maintenance Cycle [232] 

1.2.4 New Directions 

The field of software engineering is a dynamic, fertile area of 
research and development. In this section, some of the more recent trends 
are summarized, including aspect-oriented programming, open-source 
development, and agile development methods. 

Aspect-oriented programming is a recent innovation in programming 
language design. Object-oriented programs often contain routines that 
are used by several different object classes. In the old procedure-oriented 
languages, these routines would simply be child modules called by 
different parent modules. However, object-oriented languages do not 
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make any provision for common routines between different classes of 
objects. Thus, in object-oriented languages, numerous copies of the same 
routine must be included as methods for different classes. If there is a 
later need to change these routines, the separate instances must be found 
and individually changed. Aspects are extensions to 00 languages that 
centralize these multiple routines into one location. An aspect cuts across 
object boundaries, and thus represents a breaking of the modularity 
concepts that 00 programming is based on; however, the proponents of 
aspect-oriented programming claim that aspects simply represent a 
different form of modularity. 

Aspects are implemented by a language pre-processor. Points in an 
object where an aspect is required are tagged by the programmer, and the 
aspect is written separately. At compile time, the aspect will be inserted 
by the pre-processor, and then the entire program will be compiled as 
usual, along with the separate aspect code. There are several ongoing 
research projects in aspect-oriented programming, such as the 
AP/Demeter project at Northeastern University [ 1641, the AspectJ 
language developed at Xerox PARC (now Palo Alto Research Center, 
Inc.) [224], and the MDSOC project at IBM [113]. 

Open-source development has become a significant force in the 
software engineering community. Open-source software is developed 
largely over the Internet. A core team of developers produces a product, 
and then places the source code into the public domain, protected by 
special licensing agreements. These agreements protect the ownership 
rights of the original code developers, but also permit others to 
download, read, modify and even redistribute the source code (provided 
the original copyright notices are not removed). The original source 
code, stored in a central repository, can only be modified with the 
approval of the core development team [221]. Thus, for instance, the 
Linux kernel (including all versions and patches) is archived at [137]. 
Anyone can download, modify and redistribute the source code. 
However, any changes to the official kernel have to be approved by 
Linus Torvalds and his team. 

The open-source community is in large measure a backlash against 
commercial software vendors, who keep their source code proprietary. 
Open-source adherents claim two major advantages: first is that the code 
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they produce is of superior quality, because more eyes are looking at 
each piece of code. The work products of the open-source community do 
seem to back up this claim; both the Linux operating system [137] and 
the Apache web server [5] enjoy good reputations for reliability. Apache, 
in fact, has a majority of the world-wide web server market [5], [201]. 
The second major claim of the open-source community is “freedom,” 
that open-source development is in some way morally superior to 
proprietary development. This point of view is strongly espoused by the 
Open Source Initiative [22 I], the Free Software Foundation [83], and 
others. We attempt no analysis of this claim; issues of copyright 
ownership and freedom of information are far outside the scope of this 
study. 

Agile development methods, including Extreme Programming (XP), 
are development techniques that put a premium on the development of 
code and minimize the organizational and proj ect-management overhead. 
The ideas of agile development were summarized in February 2001 in 
the Manifesto for Agile Software Development [ 161. The Manifesto 
declares that developers should emphasize: 

0 

0 

0 

Individuals and interactions over processes and tools 
Working software over comprehensive documentation 
Customer collaboration over contract negotiation 
Responding to change over following a plan 

Agile methods place a premium on iterative development procedures 
such as rapid prototyping, on close customer involvement, and on rapid 
response to changing requirements [ 1051. However, the most critical part 
of an agile development methodology is the quality of the programming 
team itself. Individual competency and talent are key factors for success 
in agile development projects [39]. This leads immediately to a 
fundamental criticism of agile methods: “There are only so many Kent 
Becks in the world to lead the team” [24]. Boehm views agile methods as 
part of a continuum of process models, ranging from completely ad-hoc 
arrangements to the tightest level of control, and indicates that agile 
methods are best suited to projects whose requirements undergo rapid 
change [24]. 
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1.3 Artificial Intelligence in Software Engineering 

If software engineering is fundamentally a learning process for the 
developers of a system, as argued in [29], then it only makes sense to use 
artificial intelligence to support human developers. Powerful A1 tools for 
knowledge representation and reasoning are available, and can be useful 
for software development. Organizing and utilizing knowledge are 
critical tasks for any software project; as pointed out in [6], a software 
project typically involves the services of both domain experts and 
software experts. Domain experts possess extensive knowledge of the 
task a new software system will be asked to perform; in general, they 
will not have a detailed understanding of software development. 
Likewise, the software experts will have an extensive knowledge of how 
to design and implement software systems, but may have little to no 
experience in the application domain. The gap between these two pools 
of experience is a significant risk for any software system. Some authors 
(such as [42, 2701) have commented on an apparent hostility between the 
A1 and software engineering communities; they ascribe this hostility to 
mutual misunderstanding and the fact that the two communities work on 
fundamentally similar problems. Given the essential role knowledge 
representation plays in both communities, this hostility is hopefully more 
appearance than reality. 

There are currently three major thrusts in using artificial intelligence 
in software engineering: automatic programming, software reuse, and 
process modeling. Of these, automatic programming is far and away the 
oldest. In the 1960’s, automatic programming meant the automatic 
generation of a machine readable program from a high-level description 
of that program. This goal was achieved with the development of 
automatic compilers. Automatic programming today means generating a 
machine-readable program from a high-level or natural language 
description of the problem to be solved [9, 2041. Software reuse is 
currently a significant research focus (especially for component-based 
software systems [ 14]), and process modeling encompasses a variety of 
tasks from cost estimation through creating a knowledge base to retain 
the developers’ understanding of the software system. 
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Automatic programming is the “holy grail” for A1 research in the 
software engineering domain. An automatic programming system, as 
envisioned by the A1 community, would accept a set of specifications at 
a very high level of abstraction (even natural language), and would 
successively transform them into more detailed representations, arriving 
finally at compiled code. This would entirely remove humans from the 
business of coding large systems, an area in which human software 
engineers simply do not seem to be very effective. Maintenance would 
also be simplified; a change to the high-level system description would 
automatically be transformed into a new implementation of the system 
[9]. This goal remains elusive. A few automatic programming systems 
have been implemented; the REFINE tool, based on research at the 
Kestrel Institute [269], was a commercial automatic programming system 
marketed by Reasoning Systems, Inc., and the Programmer’s Assistant 
project at MIT released their demonstration system KBEmacs more than 
15 years ago [292]. However, neither system has been a commercial 
success. Other approaches include developing a system of correctness- 
preserving transforms to translate specifications into code [9, 751, using 
domain knowledge to interactively develop specifications [ 1 11, creating 
models to design and test formal requirements [3 11, and developing rule- 
based systems to help a programmer select the most appropriate UNIX 
utility [99]. There are also projects that try to develop automatic 
designers, based on experimental observations of human designers [ 1, 
129, 2731. 

Reusability is a hot research topic in software engineering, because of 
the tremendous savings that could be realized if reusable components 
were widely available. A reusable component is a software artifact which 
can be removed from its original context, stored in a library, and inserted 
into a new program, thus saving the effort to develop that component 
from scratch. Not all software artifacts are reusable; in fact, reuse has to 
be designed into a component from the beginning [282]. The patterns 
community represents one attempt to promote reuse of design ideas; 
component libraries represent another. A component library is a 
collection of software components that have been designed and certified 
for reuse. In using a component library, the starting point is to develop a 
specification for a component that is to be inserted into a program. Next, 
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a set of candidate components must be identified from the library, and 
each candidate must be evaluated for its suitability. Ultimately, one 
candidate is selected as being the best. Assuming that this candidate is 
reasonably close to the desired specification (otherwise the component 
will just be written from scratch), it will be modified as needed and then 
integrated into the program. Finally, the total experience of using this 
component will be recorded, and this information inserted into the 
component library’s experience base for future reference [ 141. The 
library’s experience base contains a wealth of information in support of 
the software components in the library, and is vital to the successful use 
of the library (in fact, [14] considers the experience base to be the 
library, while source code is just one of many documents stored for each 
component). An experience based can be organized as a case-based 
reasoning system [281], as a more general analogical reasoning system 
[282], or as an expert system [2]. Some A1 process models also 
incorporate software reuse [14,219]. 

Software process models and support systems are used to organize a 
development project. The Capability Maturity Model discussed earlier 
requires that organizations develop an overall software engineering 
process, and then tailor that process to the particular needs of each 
project. However, the CMM does not provide a constructive mechanism 
for actually tailoring a process to a project. That is where process models 
come into play, and particularly A1 process models. Process models 
support developers by rationalizing and improving communication, 
providing detailed reasoning about different features of the process, 
providing guidance to developers, automating certain process steps, and 
providing a mechanism for process improvement [49]. A1 process models 
accomplish these tasks by using knowledge representation schemes as in 
[49], creating expert systems for software costing [60], or using the Goal- 
Question-Metric technique [ 14,2 191. 

There are a number of other proposals for using A1 technology in 
software engineering, which do not conveniently fit into a specific 
category. One suggestion, found in [213], is to use communities of 
agents as the basic building block of software systems. Some of the 
benefits claimed include better fault tolerance and an explicit description 
of exception conditions. An automatic theorem prover is used in [ 13 11 to 
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check for incomplete specifications, and to generate test cases for 
systems that have complete specifications. A1 support for iterative 
development and rapid prototyping is described in [57] and [173]; the 
idea is that since A1 systems are developed through exploratory 
programming, the tools for A1 development would be very useful for 
generating system prototypes in a general software engineering project. 
There are also a number of computationally intelligent approaches for 
supporting software engineers. Computational Intelligence and 
computationally intelligent approaches to software engineering are 
reviewed in the next two sections. 

1.4 Computational Intelligence 

Computational Intelligence (CI) is a term coined in 1994 to describe 
several synergistic intelligent technologies that are effective in modeling 
systems, processes and decision making under uncertain conditions with 
incomplete and/or imprecise information [90]. According to Bezdek, ' I . .  .a 
system is computationally intelligent when it: deals only with numerical 
(low-level) data, has a pattern recognition component, and does not use 
knowledge in the A1 sense; and additionally when it (begins to) exhibit 
(i) computational adaptivity; (ii) computational fault tolerance; (iii) speed 
approaching human-like turnaround, and (iv) error rates that approach 
human performance ..." [ 191. One of the fundamental characteristics of CI 
technologies is that they are complementary to one another, in that they 
represent different but synergistic avenues of representing uncertain 
situations and systems. Fuzzy sets and fuzzy logic model the imprecision 
and vagueness that are a part of human thought; neural networks and 
genetic algorithms are inductive learning algorithms that mimic the 
natural processes of neuron operation and evolution, and chaotic systems 
and fractal sets model the irregularity that underlies the seemingly 
ordered and predictable physical world around us. One of the core 
philosophies of CI is to match a problem to the modeling technique best 
suited to solve it, instead of adopting a one-size-fits-all approach. Thus, 
fuzzy sets have seen extensive use in expert systems, while neural 
networks have been widely used as intelligent classifiers. A very good 
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introduction to computational intelligence may be found in [ 1 161. There 
are also close relationships between CI and other technologies such as 
case based reasoning, machine learning and data mining. 

1.4.1 Fuzzy Sets and Fuzzy Logic 

A fuzzy set is a set to which elements may partly belong. Unlike a set 
in the usual sense, fuzzy sets do not divide a universe of discourse into 
elements and non-elements. Instead, the boundaries of a fuzzy set are 
vague and imprecise. Mathematically, a fuzzy set is a set of 2-tuples 
(x,p), with XE U a member of some universal set U, and p ~ [ 0 , 1 ]  a 
membership grade. The membership grade represents the degree to 
which elements belong to the fuzzy set; a grade of 0 means no 
membership, while a grade of 1 means total membership. The fuzzy set 
may also be considered a membership function U+[O,l] (analogous to a 
characteristic function for a set) [146]. 

Fuzzy sets capture that form of uncertainty called vagueness or 
imprecision. This form of uncertainty represents situations where a value 
is approximately known; it is distinct from the form of uncertainty 
known as randomness, because approximate quantities do not obey the 
law of large numbers [249]. In other words, repeated sampling of an 
approximate quantity does not cause the sample mean to converge to the 
theoretical population mean in the limit of infinite samples. This kind of 
uncertainty is a major feature of human language, and so fuzzy sets have 
been used to provide mathematical precision to phrases in natural 
language. This is done using linguistic variables, which are an 
association between a word in natural language and a fuzzy set. 
Linguistic variables were introduced in [305], and have found 
widespread application in the domain of automatic controllers, as first 
outlined in [177, 2801. These fuzzy controllers are similar to expert 
systems, in that their core functionality is a set of inference rules (the 
rulebase), which are fired in accordance with the rules of fuzzy logic 
[146]. Since any number of arbitrary rules may in theory be introduced 
into a fuzzy rulebase, fuzzy controllers provide a simple, intuitive way to 
construct strongly nonlinear controllers. Fuzzy systems have been shown 



Sofiare Engineering and Artificial Intelligence 31 

to be universal approximators [291], and have even been applied to the 
control and modeling of chaotic systems [35,287]. 

Fuzzy numbers are closely related to linguistic variables. A fuzzy 
number is a fuzzy set that represents a number that is not precisely 
known. Fuzzy numbers are defined on the set of real numbers; one 
particular real number x has a maximum membership value, and the 
membership value of any other real number y monotonically decreases as 
the distance between x and y increases. Intuitively, this means that the 
membership of x in the fuzzy number F should be 1, while the 
membership function of F is unimodal. Formally, a fuzzy number is a 
convex, normal fuzzy subset F of the real line with membership function 
p, where normality means that max(p(x)) = 1 and convexity means that 

p(ilxl+ (1 - ;1)x2) 2 min(p(xl), p(x2)) (1.1) 

for all x, x I ,  x2 E R, h E [0,1]. An example of a fuzzy number is depicted 
in Figure 1.7. The definition of convexity ensures that p is unimodal, 
with its peak at x, conforming to our intuition [146]. 

Figure 1.7: Fuzzy Number 

Recently, the idea of granular computing has been a major research 
focus of the fuzzy systems community. Granular computing involves 
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reasoning about groups of objects rather than individual objects. Briefly, 
objects in a universe of discourse are aggregated into groups (or 
granules), and then computations are carried out using the granules as 
atomic objects [306]. This notion is also called “Computing with Words” 
[307], since a word can be considered the label of a fuzzy set. The main 
issues in granular computing are first, how is this aggregation performed, 
and second, how are these granules used once they are formed? Zadeh 
provided some suggestions on those points in [308]; other views may be 
found in [25, 54, 163, 187,2291. 

1.4.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are inductive learning algorithms 
that mimic the operation of neurons in animal brains. An ANN is a 
directed graph in which each vertex is a computational node, and each 
edge is a link to another node (see Figure 1.8). ANNs derive their power 
from having a large number of simple computational units that are very 
densely interconnected [loll .  The earliest paper on ANNs was [182] in 
1943; other important early papers included [lo21 and [212]. 
Rosenblatt’s single-layer Perceptron architecture [252] was very popular 
in the 1960’s, until Minsky and Papert showed that it could not solve any 
learning problem that was not linearly separable [199]. The comment at 
the end of this proof, casting doubt that a multi-layer perceptron would 
fare any better, resulted in a 15-year chill on the development of ANNs. 
However, in 1983, Rumelhart demonstrated a learning algorithm, based 
on backward-propagation in a multilayer perceptron, which could solve 
problems that were not linearly separable [255]. (The same algorithm 
was found to have been independently discovered by Werbos in 1974 
[294].) A few years later, multiplayer perceptrons using Rumelhart’s 
Backpropagation architecture were shown to be universal approximators 
[44], and they are now accepted as powerful and flexible inductive 
learning algorithms. Since that time, a staggering number of papers on 
ANNs have been published; see the journal IEEE Transactions on 
Neural Networks for hrther reading. 

In common with other inductive learning algorithms, ANNs learn by 
repeatedly observing a set of input-output pairings, and developing an 
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internal representation of the underlying function. The internal 
representation used by ANNs is a pattern of connection weights. Each 
link between two nodes in an ANN has an associated weight, which is 
altered by the learning algorithm of the ANN. Thus, ANNs employ a 
distributed form of knowledge, rather than centralizing it in a rulebase. 
ANNs are particularly well-suited to the control of highly nonlinear 
plants, whose dynamics are not fully understood but which can be 
effectively controller by an experienced operator. The ANN is exposed 
to repeated observations consisting of plant state variables and operator 
responses, and is trained to find a relationship between the two [ 10 11. 

Figure 1.8: Neural Network 

The Backpropagation learning algorithm Rumelhart et al. developed 
for multilayer perceptrons is a form of gradient descent. As such, it is 
vulnerable to local minima in weight space. A number of techniques for 
forcing Backpropagation networks out of a local minimum have been 
proposed in the literature. One of the simplest is adding a momentum 
term to the Backpropagation formula, which adds an additional vector to 
the current weight update [ 1011. Other schemes include the hybrid neuro- 
fuzzy systems we discuss later, Newton's method, or conjugate gradient 
algorithms[ 1 161. 
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1.4.3 Genetic Algorithms 

Genetic algorithms are optimization schemes, much like neural 
networks. However, genetic algorithms do not appear to suffer from local 
minima as badly as neural networks do. Genetic algorithms are based on 
the model of evolution, in which a population evolves towards overall 
fitness, even though individuals perish. Evolution dictates that superior 
individuals have a better chance of reproducing than inferior individuals, 
and thus are more likely to pass their superior traits on to the next 
generation. This “survival of the fittest” criterion was first converted to 
an optimization algorithm by Holland in 1975 [108], and is today a major 
optimization technique for complex, nonlinear problems [ 1931. 

In a genetic algorithm, each individual of a population is one possible 
solution to an optimization problem, encoded as a binary string called a 
chromosome. A group of these individuals will be generated, and will 
compete for the right to reproduce or even be carried over into the next 
generation of the population. Competition consists of applying a fitness 
function to every individual in the population; the individuals with the 
best result are the fittest. The next generation will then be constructed by 
carrying over a few of the best individuals, reproduction, and mutation. 
Reproduction is carried out by a “crossover” operation, similar to what 
happens in an animal embryo. Two chromosomes exchange portions of 
their code, thus forming a pair of new individuals. In the simplest form 
of crossover, a crossover point on the two chromosomes is selected at 
random, and the chromosomes exchange all data after that point, while 
keeping their own data up to that point. In order to introduce additional 
variation in the population, a mutation operator will randomly change a 
bit or bits in some chromosome(s). Usually, the mutation rate is kept low 
to permit good solutions to remain stable [193]. 

The two most critical elements of a genetic algorithm are the way 
solutions are represented, and the fitness function, both of which are 
problem-dependent. The coding for a solution must be designed to 
represent a possibly complicated idea or sequence of steps. The fitness 
function must not only interpret the encoding of solutions, but also must 
establish a ranking of different solutions. The fitness fimction is what 
will drive the entire population of solutions towards a globally best 
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solution. Usually, developing the fitness fbnction is the most difficult 
part of preparing a genetic algorithm, and currently there is no 
constructive method for ensuring the population will in fact converge to 
a global optimum [193]. For further reading, we suggest the updated 
version of Holland’s book, [109]. 

1.4.4 Fractal Sets and Chaotic Systems 

The notion of fractal sets begins with a fairly simple mathematical 
question: what is a continuous function? The conventional answer is that 
a continuous function is one that is differentiable everywhere, or at worst 
has finitely many points at which no derivative exists. Intuitively, a 
continuous function should be smooth in appearance. However, if one 
points to any physical object, this idea of continuity breaks down. Under 
microscopic examination, even a surface that appears smooth to the 
naked eye will show considerable irregularities. In fact, this phenomenon 
persists as we examine the object at finer and finer length scales. No 
length scale is ever reached where the surface becomes a smooth curve. 
How to account for this phenomenon [ 178]? 

A classic example is the question, “How long is the coast of Great 
Britain?” The answer is, it depends on the scale of the observations. 
Measuring the coast on a scale of kilometers will give a far different 
answer than measuring it on a scale of inches. Fine irregularities appear 
at shorter and shorter length scales, making it impossible to reach a 
single answer for the question [178, 2861. In general, a fractal curve will 
be a continuous, nowhere-differentiable curve, having unique geometric 
properties [303]. Likewise, a fractal set is an arbitrary set which has a 
power-law relationship between the size (in some sense) of its 
constituent elements and their frequency. For example, given a collection 
of objects, the number N of these objects with a linear dimension greater 
than r should obey the relation 

(1.2)
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where C is a constant, and the power D is the dimension of the set. If D 
is a non-integer value, then the set is a fractal [286]. 

More formally, consider the dimension of an arbitrary set. Define the 
dimension operator as follows: 

Definition 1.1 [303] 

Given some set X c R", the dimension of X ,  denoted by dim(X), must 
satisfy four properties: 
1. a) For a one-element set X = (p} , dim(X) = 0. 

b) For the unit interval X =  I ' ,  dim(X) = 1 
c) For the unit hypercube X= F, dim(* = m. 

2. (Monotonicity) I f X c  Y, then dim(X) I dim(Y) 
3. Given a sequence of sets X, c R", 

dim U X  = sup dim(X) (1.3) 
( 1 1  j i 

4. (Invariance) Given a homeomorphism q~ from R" to R", dim(@)) = 

dim(X). 

Ordinary points, lines, geometric shapes and geometric solids clearly 
have a dimension that obeys these four conditions. For more general sets, 
the topological dimension dimT is a mathematically sound way to define 
a dimension. The topological dimension generalizes the fact that a ball is 
a three-dimensional object, but the surface of a sphere is a two- 
dimensional object; the dimension of an arbitrary set is inferred via 
induction from the dimension of its boundary. There is another way to 
define dimensions for arbitrary sets, known as the Hausdorff dimension 
dim,. For most ordinary sets, the topological and Hausdorff dimensions 
are identical. However, where the topological dimension can take on 
only integer values, the Hausdorff dimension is real-valued, and is 
known to always be greater than or equal to the topological dimension. 
The basic definition of a fractal set X in R" is that the topological and 
Hausdorff dimensions for X are different, namely 

dim, (1) < dim, (X) X i s  a fractal set (1.4) 
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In particular, if the Hausdorff dimension is not an integer, then X is 
necessarily a fractal set [303]. 

One famous example of a fractal set is the Cantor set. This set is 
generated by a recursive procedure, as follows: partition the unit interval 
into three equal subintervals, and delete the middle interval. Then apply 
the same procedure to each of the remaining sub-intervals. After an 
infinite number of repetitions, a completely disconnected set of points is 
obtained, whose topological dimension is 0 (see Figure 1.9). However, 
the Hausdorff dimension of the Cantor set is log 2/log 3 = 0.63092, and 
thus the Cantor set is a fractal set. In general, such simple proofs that a 
set has a fractal geometry are very difficult to construct. The problem is 
that accurately computing a Hausdorff dimension, or bounding it from 
below, are very difficult problems. Bounding the Hausdorff dimension 
from above is considerably easier, but this does not show that a set is a 
fractal [303]. 

Figure 1.9: Two Iterations ofthe Cantor Set [303] 

There is a class of fractal sets for which the Hausdorff dimension is 
easily calculated. These are the famous self-similar sets, which include 
the Cantor set. The basic definition of self-similarity is based on the 
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notion of a contraction. A contraction is some mapping q: R" -+ R" such 
that 

for some CE (0,l) and any x,y E R". The definition of self-similarity is as 
follows. 

Definition 1.2 [303] 

A non-empty compact set X c R" is self-similar if, for some set of 
contractions { q,, q2, ..., qm} (m 2 2), the following relation holds: 

m 

If the maps q also happen to be linear, then the set is called a self-affine 
set. Any self-affine set is self-similar, and any self-similar set is a fractal 
set, as depicted in Figure 1.10 [303]. 

There is a very close relationship between fractal sets and chaotic 
systems. A chaotic system is an analytic function that cannot be 
accurately determined from observation of its behavior over any time 
span. What this means is that any prediction of future behavior based on 
past behavior is inaccurate; the amplitude of the prediction error very 
quickly becomes as large as the original signal. This is the signature 
property of a chaotic system; any two trajectories that are infinitesimally 
close at some point in the system state space will diverge from each other 
at an exponential rate. Thus, even the slightest prediction error is 
magnified exponentially through time. The relationship between fractals 
and chaos is simply that fractal sets can be the generators of a chaotic 
system, and the invariant set or attractor of a chaotic system will have a 
fractal geometry [130, 3031. 

The literature on using chaos theory to analyze time series data has 
become quite extensive. At this time, Kantz and Schreiber's monograph 
[130] is generally considered to be the best resource on the subject. As 
discussed in detail in Chapter 3, chaotic time series analysis involves a 
number of steps and requires considerable judgment on the part of the 

(1.5)

(1.6)



Software Engineering and Artificial Intelligence 39 

analyst. Chaos theory and fractal sets fit into the soft computing 
paradigm because they can usefully model a type of uncertainty called 
irregularity, which deals with rare events, intermittency, bifurcations, 
and other such behaviors. They are a better fit for these phenomena than 
the techniques of probability theory, which models the form of 
uncertainty called randomness, or fuzzy sets which model vagueness and 
imprecision. 

Figure 1.10: Hierarchy of Fractal Sets [303] 

1.4.5 Combined CI Methods 

One of the distinguishing characteristics of computationally 
intelligent techniques is that they are complementary to one another, and 
the various hybridizations of these techniques can be more effective than 
any one of them in isolation. The best known of these hybrids are the 
neuro-fuzzy systems, which are hybrids of fuzzy logic and neural 
networks. In these hybrids, the interpretative power of fuzzy systems and 
the learning power of a neural network are combined. This overcomes 
the main deficiencies of both technologies, to wit that a fuzzy system is 
not designed to learn, and the distributed knowledge in neural networks 
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is very difficult to interpret. Indeed, pure fuzzy systems and pure neural 
networks are now seen as the extreme points of a continuum of 
intelligent systems, in which a tradeoff must be made between clarity and 
adaptability [ 1 161. 

The first papers on neuro-fuzzy systems were written by Lee and Lee 
in 1974 [ 158, 1591. Lee and Lee generalized the McCullogh-Pitts neuron, 
permitting inputs and outputs in the closed interval [0,1] instead of the 
set {O,l}. Kandel and Lee published the first book that included a 
discussion of fuzzy neural networks in 1979 [127]. Keller and Hunt 
generalized the Perceptron algorithm to produce a fuzzy hyperplane as 
the decision boundary, instead of a crisp hyperplane in [136]. The entire 
field of neuro-fuzzy systems received a major boost at the lst NASA 
Workshop on Neural Networks and Fuzzy Logic in 1988 [279]. This was 
a watershed event, and a tremendous number of papers on neuro-fuzzy 
architecture have been published in the intervening years. Probably the 
best-known of these are Jang’s ANFIS architecture [ 1151 and Pal and 
Mitra’s fuzzy MLP [222, 2231. 

A number of other hybrid systems have also been proposed in the 
literature on computational intelligence. For instance, genetic algorithms 
can be used to provide a learning capability for fuzzy systems, yielding a 
fuzzy-genetic hybrid such as in [246]. An even more ambitious hybrid is 
the FuGeNeSys architecture in [257], where each individual in a genetic 
algorithm represents a neuro-fuzzy system. An individual is inserted by 
instantiating that neuro-fuzzy system, training it, and returning it to the 
population. There are also hybrids of chaotic systems and neural 
networks [ 1441, and fuzzy systems, neural networks, and wavelet 
transforms (which are related to chaotic systems and fractal sets) in 
[106]. 

1.4.6 Case Based Reasoning 

Case-Based Reasoning (CBR) is a way to solve new problems by 
examining solutions to similar problems that have been encountered 
in the past. A CBR system stores information about known problems 
and their solutions in an experience base. When a new problem is 
encountered, the system searches for similar problems in the experience 
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base. The solutions to those similar problems are then modified, in order 
to account for the differences between those old problems and the new 
one. These two elements - judging similarity between problems instead 
of equivalence, and reasoning about what the solution to a new, unseen 
problem should be - are what differentiate CBR systems from a database 
query. Solutions are not merely retrieved by an equivalence relation, they 
are found by a more general similarity relation (which can be viewed as a 
fuzzy form of equivalence) and adapted to fit the new problem [53].  

Each stored problem, together with its solution, is a case in the CBR 
experience base. Cases are stored by recording all relevant attributes of a 
problem and a description of the solution. When a new problem is 
encountered, the attributes of that problem are extracted, and sent to the 
experience base as a probe. Similarity between a probe and a case is 
determined by a distance measure, which has to be defined for the 
specific problem. For purely numeric attributes, a Euclidean distance is 
one possibility; for a mix of numeric and nominal attributes, a mix of 
numeric and symbolic distance measures might need to be used. Other 
possibilities include using a neural network or statistical models to 
calculate a distance. As a rule, distance is inversely proportional to 
similarity, so the cases with the minimum distance to the probe are the 
most similar. CBR systems are most useful in situations where an 
approximate solution is acceptable; there is only low to moderate 
interaction between attributes; and there are discontinuities in the 
relations between attributes. The latter would be the case when, for 
instance, there is a linear relationship between two real-valued variables, 
but only within a specific interval for each variable. The main overheads 
for CBR systems are in computing the similarity between stored cases 
and the probe, and determining how to modify existing solutions. 
Depending on the problem domain, the modification subsystem might be 
a full expert system in its own right [53].  The use of similarity for 
finding candidate cases, and approximate reasoning to generate solutions 
to new problems, tie CBR closely to CI technologies. Both are geared 
towards decision-making in uncertain environments, and both exploit the 
notion of approximate solutions. 
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1.4.7 Machine Learning 

The discipline of machine learning involves efforts to make 
computers imitate human cognition. Machine learning researcher hope to 
create artificial systems that can learn the way human beings do, and can 
thus tackle the difficult problems we humans are very good at, such as 
recognizing a friendly face. They also hope to discover more about how 
we ourselves learn new concepts by building artificial learners [210, 
2561. There are two ways that machine learning researchers could attack 
this problem. The first is to create a computer simulation of the human 
brain and expose the simulation to a wealth of experience, in the same 
way that humans are exposed to new experiences from birth. Such a 
simulation is plainly out of reach. The second avenue of attack is to 
create algorithms that will simulate a class of input-output behaviors, and 
thus mimic the observable behavior of human cognition. The inductive 
learning schemes that are generally referred to as “machine learning 
algorithms,” such as neural networks, genetic algorithms and clustering, 
are all examples of this sort of algorithm. The machine learning 
community concentrates on this second line of attack. 

Plainly, some of the core technologies in CI are also machine learning 
algorithms, and so there is considerable overlap between the two areas. 
However, this overlap is more than merely common algorithms; machine 
learning and CI fundamentally deal with reasoning under conditions of 
uncertainty, and so share both philosophical and practical concerns. The 
basic philosophical problem both communities wrestle with is the 
problem of induction: how to create models based on samples of past 
experience that remain valid when encountering new inputs or situations, 
and what are the limits of these models. Chaotic systems represent the 
most extreme limits on machine learning, as they do not remain 
predictable for more than a very short time horizon. At a more mundane 
level, there is a need to evaluate both how accurate a model is, and to 
understand when that model could be invalidated by events in the real 
world. This is a very important consideration for data mining, the most 
widely-deployed application of machine learning in industry. Data 
mining is thus embedded in the Knowledge Discovery in Databases 
(KDD) framework, also referred to as business intelligence. 
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1.4.8 Data Mining 

Knowledge Discovery in Databases (KDD) is the process of distilling 
useful information from a large collection of data. Data tables with 
numerous attributes and a large number of records are extremely difficult 
for humans to understand, and databases with multiple large tables are 
even worse. Therefore, various types of summarizations of a database are 
needed in order for human beings to make use of the information in that 
database. KDD is a framework for obtaining such summarizations. KDD 
and data mining are sometimes used interchangeably; however, a more 
relevant usage for our purposes comes from Fayyad [74], in which “data 
mining” is one step in the KDD framework. Fayyad defines KDD as a 
sequence of nine steps: 

1. 

11. 

... 
111. 

iv . 

vi . 
V. 

vii. 
viii. 

ix . 

Defining the goal of the KDD process 
Assembling a dataset from a data warehouse, and perhaps 
selecting a subset of the data for analysis 
Data cleaning & preprocessing 
Feature reduction 
Selecting the data mining task (prediction, classification, etc.) 
Selecting the data mining algorithm (neural networks, regression 
analysis, clustering, etc.) 
Data mining 
Evaluation of the data mining results 
Consolidating the results with prior knowledge, and applying 
them. 

Data mining is a search for associations in a database that may be 
corrupted with noise, contain missing values, and may be absolutely 
gigantic in size. These characteristics make CI algorithms excellent 
candidates for data mining algorithms. Other possible data mining tools 
include statistical regression and correlation algorithms, or rule 
extraction schemes [74, 155, 156, 1571, among many others. 
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1.5 Computational Intelligence in Software Engineering 

Computationally intelligent technologies find a somewhat different 
use in software engineering than traditional A1 techniques. Where A1 
systems concentrate on knowledge representation and automatic 
programming, computationally intelligent systems focus on system 
modeling and decision making in the presence of uncertainty. This does 
not mean that the two do not converge on some common areas of interest 
within software engineering; there is in fact a rich literature on using 
computational intelligence for estimating software project costs [22, 77, 
233, 2721. A survey of this material may be found in [94]. 

Other applications of computational intelligence to software 
engineering focus on a variety of sources and forms of uncertainty in 
software development. As argued in [96], computationally intelligent 
systems can play an important role because there are multiple levels of 
uncertainty in a software system, and possibly multiple degrees of 
uncertainty. Neural networks are used to assign routines and objects to 
software modules in [263]; they key idea in that paper is to treat 
modularization as a problem of categorization. Linguistic variables are 
used in formal specifications in [124]. The linkage of linguistic terms 
with a specified fuzzy set discussed in Section 1.4.1 makes these 
specifications intuitively understandable, and yet still mathematically 
precise. Finally, decision trees are used to filter reusable components 
from a given software system in [248]. There is also an extensive list of 
publications on analyzing software metrics using computationally 
intelligent systems; we defer our review of this material until Chapter 4. 

1.6 Remarks 

Software engineering is a huge and complicated undertaking, and the 
resulting products are the most complex technological systems in the 
world today. An overview of software engineering, and of the A1 and 
computationally intelligent technologies that are now being examined as 
possible aids in the software engineering process, was the focus of this 
chapter. In the next chapter, a more detailed review of the process of 
testing a piece of software - usually the single largest expense in a 
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project - will be undertaken. Brooks estimated that an ordinary software 
development project should expect 50% of its resources to be expended 
on testing; in the case of safety-critical systems, that figure could rise to 
80% [29]. 



Chapter 2 

Software Testing and Artificial Intelligence 

2.1 Introduction 

The focus of this chapter is on the quality of software, and how 
software testing is an essential component of a software quality plan. 
Testing has been a part of software development from the very 
beginning; Alan Turing himself wrote an article entitled “Checking out a 
large routine” as part of a 1950 manual [196]. It is a major part of every 
software development project; Brooks has stated that 50% of the 
development resources in an ordinary project (and up to 80% of 
resources in a safety-critical system) will be spent in testing. To begin 
this review, “software quality” will be defined, and then various testing 
methodologies will be described. Finally, A1 and computationally 
intelligent techniques for software testing arc reviewed. 

2.2 Software Quality 

“Quality” is one of those engineering terms that arc intuitively simple 
but difficult to define exactly. At the most basic level, quality means how 
well some product performs in use. This is a customer’s perception, and 
docs not directly translate into engineering specifications. A more 
technical meaning is that quality is the “degree of excellence” of a 
product, considering all relevant characteristics of the product. Thus, 
issues such as reliability, performance and usability contribute to a 
system’s overall quality in that they are some of the quality 
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characteristics of this product. High quality will then mean a high degree 
of excellence in these and other characteristics [92]. Quality is thus an 
evaluation of a product in its totality. 

Software quality is perhaps the most critical technological challenge 
of the 2lSt century. No other product in the industrialized world is so 
labor-intensive, and none are as error-prone [ 121, 1221. Several software 
characteristics have become legendary for their poor quality. Reliability, 
of course, is at the very top of this list; software “bugs” are by definition 
failures. Usability has also been cited as a concern in innumerable 
software projects. Thus, “improving software quality” is a mammoth 
undertaking for any organization, requiring improvements in a number of 
areas. One technique for improving the quality of a software system (and 
its accompanying non-code work products) is the use of formal 
inspections at the requirements, design and coding stages. Jones [ 1221 
reports an average improvement of 15% in software productivity when 
inspections are used. 

Despite the usefdness of inspections, software testing necessarily 
remains the basic mechanism for assessing software quality. Since large 
software systems can have lo2’ states or more [84], software testing is 
and most likely will always be non-exhaustive. In other words, software 
test cases are samples of the complete input space of a program. There is, 
however, no substitute for actually testing a program; we cannot 
determine if a program is correct or not by merely inspecting the source 
code. To be specific, consider a general-purpose computer language, 
capable of simulating a Turing machine. Given an arbitrary program in 
this language, and an arbitrary input, no algorithm can be designed that 
will determine if an arbitrary statement in the program will execute or 
not. Furthermore, while programs exist for which this analysis is 
possible, no algorithm can be fashioned that will distinguish programs 
for which this analysis is possible from those for which it is not possible. 
If this last statement were not true, then the halting problem for Turing 
machines would be solvable [72]. 

Quality management is an ongoing comparison of the actual quality 
of a product with its expected quality. In the field of software 
development, software metrics are collected at various points in the 
development cycle, and utilized to guide testing and quality improvement 
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efforts [47, 681. Metrics are used to identify modules in software systems 
that are potentially error-prone, so that extra development, testing and 
maintenance effort can be directed at those modules. One of the 
empirical facts known about software failures is that they tend to cluster 
in a few modules. An oft-quoted rule is that 80% of a system’s bugs will 
be found in just 20% of the system’s modules [30, 1411. Metrics are also 
used by program managers to track the current status of a project; these 
metrics tend to be related to cost and schedule, rather than source code. 
While these metrics are vital elements of both traditional and component- 
based system development, [30, 2651, they are outside the scope of this 
study. 

A wide variety of regression models for relating software metrics to 
defect rates have been investigated, including robust regression, local 
polynomial regression, Poisson regression, and M-estimation [93]. 
However, there is currently no theoretical model relating metric values to 
defect rates, and so selecting a regression model is a trial-and-error 
process. This means that we are searching an infinite space of model 
forms, selecting one of them and then fitting that model to our software 
quality data. The use of machine learning algorithms is partly motivated 
by that fact that non-parametric models such as neural networks or 
genetic algorithm need far less detailed a priori information to construct 
a model for a given dataset. 

Each software metric quantifies some characteristic of a program. 
Simple counting metrics such as the number of lines of source code or 
Halstead’s number of operators and operands [97, 1 181 simply describe 
how many “things” there are in a program. More complex metrics such 
as McCabe’s cyclomatic complexity [ 18 11 or the Bandwidth metric [232] 
attempt to describe the ttcomplexity’t of a program, by measuring the 
number of decisions in a module or the average level of nesting in the 
module, respectively. While different metrics do measure different 
characteristics, the various metrics tend to be strongly correlated to each 
other and to the number of failures in a program [67, 1671. Furthermore, 
there tend to be relatively few modules in any given system that will 
have a high degree of complexity. As a result, any database of software 
characteristics or failures will be heavily skewed towards simple 
modules with a low occurrence of failures [8]. 
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worker (int buf [ I ,  int low, int high, int step) { 
int min, max; 
int i; 

1 min = buf [low]; 
2 max = buf [low] ; 
3 i = low + step; 
4 while (i < high) { 
5 if (max < buf [il) { 
6 max = buf lil; 

7 if (min > buf [ill { 
8 min = buf [i]; 

9 i = i + step 
10 printf ("%d\n",min) ; 
11 printf ("%d\n",max) ; 
1 

1 

1 

1 

Figure 2.1: Worker Function (Translated from [ 1471) 

Two important tools used in developing software metrics are the 
control graph and the call graph. The control graph is a directed graph 
representing the flow of control in a program. Each vertex in the graph 
represents a statement, and each edge in the graph represents a direct 
transfer of control from one statement to the next. Two sequential 
statements will be linked by an edge; a branch statement will be linked to 
the first statements in each of the possible paths from that branch. Loops 
are represented as cycles, and thus each possible element of the 
structured programming paradigm maps directly to a graphical construct 
[48]. As an example, consider the C program in Figure 2.1, translated 
from Pascal in [147]. This program has two conditional statements, 
nested within one loop construct. The control graph for this program may 
be found in Figure 2.2; based on this control graph, the cyclomatic 
complexity of this module is 4 [ 18 1,2751. 
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Figure 2.2: Control Flow Graph for Figure 2.1 

The call graph of a program is a directed graph that represents how 
modules in the program call each other. Each subroutine (function, 
procedure, method, etc.) is represented as a vertex in the graph, and an 
edge from vertex Pi to vertex Pi means that Pi directly calls Pj. A 
recursive call to a subroutine is represented by a cycle in the graph; 
purely recursive routines call themselves, while a cycle of two or more 
vertexes denotes indirect recursion. The fan-in and fan-out metrics are 
based on analyzing call graphs, and are widely used in industry [126]. As 
an example, the subroutines in Figure 2.3 lead to the call graph in Figure 
2.4 [183, 2581. These figures also point out some of the aspects of 
program behavior that are not represented in the call graph. As the reader 
will note, the output of the program in Figure 2.3 is “Hello World”. 
However, this fact cannot be deduced from an inspection of the call 
graph, because timing information is not contained in the call graph. 



Software Testing and Artificial Intelligence 51 

int main ( )  { 
subl ( )  ; 
return 0; 

1 
void subl ( )  { 

sub2 ( 1  ; 
sub3 ( )  ; 

I 
void sub2 ( )  { 

sub4 ( 1  ; 
I 
void sub3 ( )  { 

sub5 ( )  ; 

void sub4 ( )  { 

1 
void sub5 ( )  { 

printf (“Hello \ \ )  ; 

printf (\\World\n”) ; 
1 

Figure 2.3: Hello World in C 

Figure 2.4: Call Graph for Figure 2.3 
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2.3 Software Testing 

Software testing is an effort to find system inputs that will trigger the 
failure of a software system. Finding these inputs can be extremely 
difficult, particularly in the late stages of testing. The conditions that will 
trigger a latent fault can be extremely complex, and in fact one fault can 
“hide” behind another one [84]. Testing activities will normally consume 
50% of a software project’s resources, and can consume up to 80% of the 
resources in a safety-critical project [29]. Unfortunately, debugging 
remains a labor-intensive, manual process; in fact, a 1997 article reported 
that many programmers still prefer the manual insertion of “print” 
statements as their debugging technique of choice [165]. An informal 
1997 survey reported in [69] indicated that manual techniques, such as 
inserting print statements, manually executing a test case, or inserting 
breakpoints, accounted for 78% of real-world programmers’ attempts to 
solve exceptionally difficult bugs. 

In the remainder of this book, we adopt the failure model advocated 
by Voas [84], Laprie and Kanoun [152], and others. In this model, a fault 
is a mistake in the source code of a program. As such, it is a static entity. 
A fault may be exercised by some input to the software; that is, the input 
causes the flow of control in the program to pass through the location of 
a fault. If that exercised fault causes an internal departure of the program 
state from its correct value, then an error has occurred. If that error 
manages to propagate all the way to the system output, then it becomes a 
failure. Failures are the observed departure of a program from its correct 
behavior. Note that not all faults will trigger an error, and not all errors 
will result in failures. Faults that do not result in failures when they are 
exercised are said to be “hiding.” This model accounts for much of the 
complicated behavior of software failures, by explaining how errors may 
mask one another, or how faults can remain undetected for years only to 
manifest themselves in unusual situations or a changed environment. 

Whittaker and Jorgensen [296] have developed a classification 
scheme for software faults, dividing them into four broad classes: 
improperly constrained inputs, improperly constrained stored data, 
improperly constrained computation, and improperly constrained 
outputs. An improperly constrained input is an input that violates the 
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assumptions of the software; an example in [296] is a shellsort program 
in which an array of data and the length of the array are parameters to the 
shellsort function. Neither the array length, nor the existence of the array, 
is verified in the function; thus the program is trivially easy to break. 
Checking input constraints is a basic part of good programming practice 
as taught in computer science classes; however, Whittaker and Jorgensen 
found that this simple precaution is largely ignored. Improperly 
constraining stored data leads to a corruption of the program state, and 
thus to a failure. Improperly constrained computation refers to situations 
where the result of a computation on legal values is an illegal value (such 
as the one that destroyed Ariane-50 1). Arithmetic overflows and 
underflows are prominent examples of this kind of fault. Finally, failing 
to constrain an output is also a fault, since the user only perceives the 
output of a program [296]. 

When a failure is detected, software developers will attempt to debug 
the program. Ideally, the fault that caused the error will be identified and 
corrected, and no other part of the system will be adversely affected. In 
reality, the fault could have been incorrectly identified; alternatively, the 
repair could only partly remove the fault or might even introduce new 
faults. Finally, it is possible for one fault to hide behind another. This 
occurs when the error propagating from the hidden fault is overwritten 
by the error from the second fault. Thus, the perfect removal of one fault 
could expose a second, possibly more serious fault. Thus, the successful 
removal of a fault could actually make the software system less reliable 
than it was before [84]. An essential part of removing a fault is 
regression testing, in which a subset of the test suite is re-run to 
determine if the test cases that were correctly executed before the repair 
still execute correctly afterwards. 

2.3.1 White-Box Testing 

White-box testing (also known as glass-box or clear-box testing) is a 
testing methodology that explicitly makes use of the structure of a 
program. The goal is to increase the chances of finding errors in software 
by effectively increasing the density of errors. White-box testing 
schemes concentrate on program structures that are likely to be 
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problematic, and ensure that the entire program is tested [66, 2321. Some 
white-box approaches include dataflow testing, partition testing, 
symbolic execution, state-based testing, program slicing, and mutation 
testing. Testing object-oriented programs will also introduce additional 
complexities 

One of the main questions in white box testing is deciding how much 
testing is required. This question is addressed by code coverage criteria, 
which define the minimum standard of testing. For instance, statement 
testing simply requires that every statement in the program be executed 
by at least one test case. This criterion is considered very weak. A 
stronger criterion comes from branch testing, which demands that every 
logical branch in the program be executed at least once. The strongest 
criterion is path testing, which requires that every possible control path 
through the program be executed at least once. This criterion is generally 
considered infeasible, because the number of possible paths in a program 
with loop structures can be infinite [65]. There is also a family of 
coverage criteria called condition coverage, which are frequently used in 
the aerospace industry. For instance, conditioddecision coverage 
stipulates that, in the course of testing, every entry and exit point in the 
program must be invoked, every condition in any decision statement 
must have taken on every possible value in its own domain, and every 
decision statement must have taken on all possible outcomes. A stronger 
version, multiple-condition coverage, requires that all entry and exit 
points are invoked, and every possible combination of conditional values 
in every decision statement is tested [37]. One of the weaknesses of 
using coverage criteria is that the criteria make no distinction between 
paths that a program can possibly traverse, and those that are impossible. 
In fact, the general problem of distinguishing between feasible and 
infeasible paths is undecidable [72, 2 151; however, the simpler problem 
of constructing a path through a specified set of statements can be solved 
in O(lE1) time, where E is the number of edges in the program control 
graph [85]. Many papers comparing the different test criteria have been 
published; [82] is a good example, and refers to a number of other 
comparisons in the literature. 

A specialized set of coverage criteria, known as data-flow criteria, 
has attracted a great deal of interest in recent years. Data-flow testing is a 
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white-box testing strategy that grows out of dataflow analysis in 
optimizing compilers, in contrast to the control-flow methods discussed 
earlier. Essentially, dataflow testing concentrates on two particular uses 
of variables in a program: the points where a value is stored to a variable 
(a definition), and the points where the stored value of a variable is 
accessed (a use). The development of the dataflow approach is usually 
credited to Rapps and Weyuker in [247]; Laski and Korel published a 
similar approach at roughly the same time [154]. Efforts to ensure that 
the various dataflow criteria of [247] result in feasible test cases are 
reported in [81], while extensions to the dataflow criteria are described in 
[214]. 

Partition testing is an attempt to reduce the number of test cases in a 
program by finding homogenous regions within the input space. The idea 
is to find regions where a single test case can represent the entire input 
region it belongs to [250]. There are any number of criteria that can be 
used to partition the input space of a program; one suggestion from [288] 
is to cluster modules based on the number of accesses to shared 
variables. However, partition testing is very sensitive to how the 
partitions are determined; a poor choice of partitions can drop the failure- 
detection rate below that of simple random testing (discussed later), 
while a good choice can significantly improve the failure-detection rate 
[98,295]. 

Symbolic execution is a technique for determining some aspects of 
program behavior without actually executing the program. In symbolic 
execution, algebraic symbols are input to a program instead of values. 
Algebraic expressions describing the transformation of inputs into 
outputs can then be derived [46]. Clearly, there is a problem of 
scalability, in that the algebraic expression for a million-line application 
may be too complicated to be of any use. In addition, symbolic execution 
cannot represent some very important dynamic behaviors, such as 
referencing array elements whose index depends on an input variable 
[147]. Nonetheless, symbolic execution is used as a code analysis tool in 
a number of publications; one example is in automated test generation 
for mutation testing (see below) [216]. 

Program slicing is not a test methodology per se., but rather a method 
for simplifying a program. A program slice is a decomposition of a 
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program based on dataflow and control flow analysis. Slices are 
constructed by deleting statements from the original program, to arrive at 
a reduced program that still behaves identically to the original on a given 
subset of statements and variables. In essence, a slice is a projection 
operator applied to source code [293]. Slices are useful in debugging 
because they promote a clearer understanding of the program for a 
human tester. Some matters relating to the computation of a program 
slice may be found in [ 1491. 

Mutation analysis was first described in a 1978 article [50], and has 
been a major research focus since that time. Program mutation is defined 
as the transformation of a program by inserting a known type of fault at 
random locations in the program code. The mutant program is then tested 
in parallel with the original program; whenever a difference is observed, 
the mutant is said to have been “killed” by the test case; this test is then 
known to detect the type of fault that was injected. There will normally 
be a large number of mutant programs generated, and the goal is to 
construct a suite of test cases that will kill them all. The best-known 
mutation system at this time is the Mothra system developed at Georgia 
Tech [145], which performs mutation analysis for Fortran programs. 
Mothra has been criticized for generating too many program mutants (a 
criticism that applies to other mutation systems as well), and thus being 
prohibitively slow [78]. There is also the problem of detecting equivalent 
mutants - mutants programs that are functionally equivalent to the 
original program. In general, this is an undecideable problem, but some 
approximate solutions are discussed in [2 151. A somewhat different 
usage of mutation has been promoted by Voas in [84, 2901 and others. 
Voas uses mutation to measure the testability of a program, by 
introducing various mutations at a single point in the program and then 
determining the proportion of the mutants that are killed. He refers to this 
as “sensitivity analysis.” Other studies following a similar methodology 
are also reported in [ 19 1,2031. 

Finally, the generation of test cases from formal specifications has 
long been interesting to software testers. One example system is the 
Anna specification language, which inserts assertions (called 
annotations) into an Ada program to aid in documenting and debugging 
the program [91]. In contrast, [217] offers test criteria designed to 
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automate the process of generating test cases from state-based formal 
specifications. 

The advent of object-oriented technology has profound implications 
for the software testing process. The basic units of an object-oriented 
program are classes, which consist of both data and methods that operate 
on this data. There is thus considerable opportunity for subtle couplings 
between different methods in a class, through the data elements of that 
class. In fact, the problem of testing a class very much resembles that 
problem of testing a procedure-oriented program with a large number of 
global variables! Couplings also exist between different classes, due to 
inheritance, containment, or because they are assembled together into 
components [12, 131. Integration testing is thus a continuous part of 
testing object-oriented software, even at the unit-test level. 

2.3.2 Black-Box Testing 

Black-box testing refers to testing techniques that assume no 
knowledge of the detailed structure of a program. The two most 
prominent black-box approaches are functional testing and random 
testing. Functional testing examines whether or not the software 
conforms to its specifications, without regard to the internal structure of a 
program. User acceptance tests always take this form, and it is also 
useful for developers. In particular, testing to ensure that the software 
correctly processes different parts of its input and output domains is an 
important black-box activity [232]. 

Random testing was originally considered a very bad idea. Software 
engineers considered it to be the least structured and least effective 
means of testing a program. Black box testing was thought to be 
superior, and white box testing better still [65]. However, studies in [65] 
and [66] showed that randomly selecting inputs was a viable alternative 
to generating test suites based on white-box coverage criteria. A larger 
number of test cases have to be generated in the random-testing 
approach, but this cost was offset by the ease with which a test case was 
generated compared to the white-box approaches. Furthermore, random 
testing is an essential component of reliability analysis. The structured 
approach of white-box testing does not produce statistically valid data for 
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reliability analysis; only randomly selected inputs, drawn from a 
distribution representing the anticipated use of the software (the 
operational profile) produce valid reliability data [ 123, 2071. Thus, 
random testing is now considered a crucial part of any systems test plan. 

2.3.3 Testing Graphical User Interfaces 

A Graphical User Interface (GUI) is an intuitive, visual means of 
interacting with a computer system. GUI systems are used extensively in 
almost every area of computing; prominent examples include the 
Windows@ and Macintosh@ operating systems. GUT systems are event- 
driven, which means that they respond to user inputs as they arrive, 
rather than scripting a user’s interaction through command lines or 
hierarchical menus [185, 1861. Most GUI systems use the WIMP 
interface style, an acronym for Windows, Icons, Menus, and Pointers. 
The different elements of the WIMP interface are known as widgets; a 
single GUI may have dozens of widgets in use at any time, each 
displayed as a bitmap. The user is able to manipulate these widgets in the 
virtual environment of the computer desktop, and those manipulations 
translate directly into commands to the computer system. Window 
widgets are usually top-level widgets, which act as terminals in their own 
right. Subordinate widgets are attached to the window to provide 
functionality. Icon widgets are small pictures that represent some system 
element; they could be inactive windows, disk drives, individual files, 
etc. Menu widgets provide a choice of services that the GUI is able to 
provide, in a familiar format (whole interfaces can be built on menus 
alone, such as an ATM screen). Finally, the pointer widget is a cursor 
controlled by an input device such as a mouse or trackball. The pointer 
indicates the location on the virtual desktop where any event will be 
focussed [55]. 

The event-driven nature of GUI programs, combined with the size 
and complexity of the GUI itself, makes them extremely difficult to test. 
Consider a typical 1024x768 desktop; this interface consists of a variety 
of bitmaps scattered arbitrarily over a virtual desktop having more than 
3/4 of a million pixels. A user of this GUI is able to present an enormous 
number of distinct inputs to the system, each of which must be caught, 
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parsed, and acted upon. The amount of code dedicated to operating just 
the GUI itself might be 50-60% of the entire program [185]. Some of the 
main difficulties in testing GUI programs include establishing test 
coverage criteria, automatically generating test cases, creating automated 
oracles for a GUI, and determining what test cases can or should be re- 
used during regression testing. Very little automated support for these 
tasks is available; most of the tools currently in use are just record- 
playback systems that record a user’s actions as a script. A dissertation 
on automated GUI testing by Dr. Atif Memon was completed in 2001, in 
which automated planning algorithms were used to select test cases for a 
GUI system [ 1851. 

2.4 Artificial Intelligence in Software Testing 

Much like automatic programming, automatic debugging has long 
been a major research initiative for the A1 community. A 1998 survey 
[276] divides the automatic debugging field into two categories: tutorial 
systems and diagnostic systems. Tutorial systems are intended to assist 
novice programmers, and can only consider fairly basic problems. The 
systems will attempt to match a student’s program against a library of 
example programs, thus determining what the student intended to do. 
The systems have to be able to cope with distortions introduced by bugs 
in the student’s program, and indicate to the student where the program 
fault lies. Diagnostic systems, on the other hand, are intended to assist 
professional software developers in debugging complex software. 
Obviously, such systems cannot rely on a stored library of examples. 
Instead, model-based reasoning is employed. A system model is 
developed from the specifications of a software system, and the behavior 
of this model is compared against the actual behavior of the software 
system for a given test case. Differences imply that a program error 
exists. However, there is a difference between model-based diagnosis for 
hardware and software systems. In a hardware system, the specification 
is the correct description of the system, and any discrepancies between 
the actual system and the model imply an implementation error. In 
software systems, the specifications themselves are frequently in error; 
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thus, a discrepancy between the system and model outputs on a test case 
may very well reflect a specification error or omission. Determining 
whether the specification or the implementation is at fault remains a non- 
trivial task [276]. 

A large amount of work has also gone into developing A1 tools for 
automatic test case generation. One fairly intuitive representation of 
programs is as systems of constraints. If this view is adopted, then 
constraint-solving techniques may be used to generate test cases. This 
approach is described in [89], where constraint solving was used to 
detect the existence or absence of a feasible control path passing through 
some arbitrary point in a program’s control graph. If such a path exists, a 
test input to execute that path is generated. The one real deficiency of 
[89] is a very common problem: the example used to illustrate the 
procedure is trivial in size (a total of 15 statements), and so we cannot 
say how the technique will perform when scaled up to a commercial- 
sized program. 

An important A1 technique for generating test cases is automatic 
partial-order planning. A partial-order planner is an A1 technique for 
generating a sequence of steps to solve a problem. A partial-order 
planner needs to be given an initial state (the problem), a goal state (the 
solved problem), and a set of operators that can be used to alter a 
problem state. Given these tools, the planner will begin generating a 
partially-ordered set of operations that reduce the difference between a 
current problem state and the goal state, beginning at the initial state. The 
partially-ordered operations can then be linearized; any linearization that 
does not violate the ordering constraints among the operations is then a 
solution to the problem [256]. A1 planners were used to generate test 
cases for a robotic tape library system in [179,259]. 

Finally, the development of a testing agent system is described in 
[38]. An agent is a persistent, autonomous software entity that exists for 
a specific purpose. Agent architectures can often be designed as a 
cooperating community of individual agents, working together to solve a 
problem (and thus having “social” capabilities). The agent system in [38] 
consists of three agents: an agent for communicating with a human tester, 
an agent for generating test cases, and an agent for conducting regression 
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testing. The three agents employ a rule-based knowledge representation 
scheme to reason about their activities. 

2.5 Computational Intelligence in Software Testing 

Computationally intelligent systems are also used for test-case 
generation. The key to this usage is a formulation of the test-case 
selection problem as an optimization problem, which can then be solved 
by genetic algorithms, simulated annealing, or other optimization 
algorithms. The first attempt to cast test case selection as an optimization 
problem was made by Miller and Spooner in [198], in which the authors 
developed a method for selecting test cases for floating-point operations. 
They set every integer and conditional value to some arbitrary constant, 
in order to drive execution down a selected path. They then used a 
numerical optimization scheme to select the floating-point inputs to the 
system. This technique was never widely used, since the manual 
overhead of pre-specifying every integer value and conditional is quite 
high. However, a second paper on using optimization has been quite 
useful; this is Korel’s dynamic execution technique [ 1471. The dynamic 
execution technique actually executes the program under test while 
searching for test cases, in contrast to symbolic execution. By actually 
executing the program, the old problems from symbolic execution - such 
as array references that depend on an input variable - are avoided. 
Returning to the example of Figure 2.1 (from which the control flow 
graph of Figure 2.2 was computed), one of the possible paths through 
this program is P = (1,2,3,4,5,7,9,10,11). Korel’s technique is to 
associate a function with each branch point. If an input follows the 
selected path at each branch point, then this function is 0 at each branch; 
otherwise, it is a positive value at each non-conforming branch, 
determined by the branch condition. By minimizing these functions, 
subject to the constraint that the selected path is followed, an input which 
will force the program to follow the selected path is selected. 

Korel chose to use a direct-search technique in [147], and extended 
this technique to account for subroutines in [148]; quite obviously, other 
techniques could also be used. For example, the GADGET (Genetic 
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Algorithm Data GEneration Tool) described in [193] uses a genetic 
algorithm for just this purpose. The GADGET tool was also extended to 
permit the use of gradient descent, simulated annealing, and a differential 
genetic algorithm in [192]. Tracey, Clark and Mander [284] use a 
simulated annealing algorithm to solve the optimization problem, while 
genetic algorithms are again used in [225, 2851. 

Three other papers that have a different take on using computational 
intelligence in software testing should also be mentioned. In [3], a 
genetic algorithm was used to find timing errors in an embedded system 
for the power generation industry. The genetic algorithm was used to 
find test cases that forced the system towards longer processing times, in 
order to cause a violation of the system’s timing constraints. The genetic 
algorithm was considerably superior to a random test-generation scheme 
in this instance. In [86], the authors tackle the very important question of 
when to stop testing software. This question is usually approached 
through the use of software reliability models, such as we discuss in 
Chapter 3. The authors of [86] instead look for a fuzzy function (i.e. a 
function of fuzzy numbers) to serve as a reliability function. Since this 
function is deterministic, it can be solved using numerical optimization 
techniques, yielding the optimal release time for the software. Finally, 
neural networks were used to create automated software oracles in [289]. 
Test oracles automatically determine whether the output of a software 
system is correct or not, based on a model of the software system. They 
are extremely important in the automated testing of large software 
systems, since manually executing a single test case to determine the 
correct output is a time consuming task that does not scale up to the huge 
test suites needed for modern software. In [289], a neural network was 
trained to mimic a software system, and then detect any changes in 
behavior when the software system was modified. 

2.6 Remarks 

A large amount of research has been directed at the problem of 
testing software in the last 40 years. The goal of this research is always 
the improvement of software quality; that is, engineers seek ways to 
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reveal as many program faults as possible before the program is shipped 
to a customer. The difficulty of this effort cannot be overstated; software 
systems are becoming more and more complex, as developers seek to 
take advantage of the explosive improvement in computer hardware. 
Jones [122] reports that the very largest software systems (the enterprise 
systems developed by SAP and others) are now reaching 500,000 
function points in size. Automated testing support has now become 
absolutely vital to the software industry, and artificial intelligence 
approaches can be a very useful part of automated testing. Memon’s 
recent development of an A1 planning system for GUI testing [ 1851 is a 
very important contribution, as are the genetic algorithms discussed in 
Section 2.5. However, testing by itself is simply not sufficient; engineers 
cannot hope to visit even a significant fraction of the possible states of a 
large software system. It is clear from the discussion in this chapter that 
testing techniques cannot provide assurance that a software system is 
correct, and so alternative mechanisms to infer the reliability and quality 
of a software system are required. 

In the next three chapters of this book, we present experimental work 
concerning just such alternative mechanisms. In Chapter 3 ,  we take a 
fresh look at software reliability modeling, and investigate nonlinear 
determinism and chaos as an alternative mechanism to create software 
reliability models. By examining three software reliability datasets using 
nonlinear time series analysis, we will show that a nonlinear 
deterministic process appears to be a superior explanation to stochastic 
processes for the dynamic behaviors in these datasets. This result has 
significant implications for software reliability modeling; it shows that 
the stochastic models normally used in software reliability models may 
not be representative of the actual uncertainty present in software 
reliability data; the data may be irregular rather than random. In 
Chapters 4 and 5 ,  software quality models based on software metrics are 
examined. Intriguingly, the literature on using computational intelligence 
and machine learning to develop such models has two significant holes: 
the well-known fuzzy c-means algorithm has never been used in this 
area, and the technique of resampling a dataset to correct for skewness is 
also absent. Accordingly, a fuzzy cluster analysis of 3 software metrics 
datasets is described in chapter 4, and a resampling technique applied to 
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these three datasets in chapter 5 .  The outcome of these two chapters is a 
practical suggestion for using machine learning and resampling 
techniques in conjunction with a system prototype. An automated filter 
for recognizing potentially failure-prone system modules in the context 
of a given project is suggested as an addition to current software 
development processes. 



Chapter 3 

Chaos Theory and Software Reliability 

3.1 Introduction 

Reliability, in the general engineering sense, is the probability that a 
given component or system in a given environment will operate correctly 
for a speciJied period of time. Notice that this definition means that 
reliability is dependent on the environment in which a component or 
system is placed, and how long the period of observation is. In general, 
the longer a system is running, the greater the chance of failure becomes. 
Placing a system in a different environment could increase or decrease 
the chance of a failure occurring [162]. Software reliability is defined as 
the probability that a given software system in a given environment will 
operate correctly for a specijiedperiod of time. As part of the software 
engineering process, developers attempt to gauge the reliability of their 
software, and compare the current level of reliability with the past history 
of that software. If a software system is experiencing fewer failures as 
time goes on, the reliability of that system is said to be growing. This is 
obviously the desired situation; software that is experiencing an 
increasing number of failures as time proceeds is a project manager’s 
nightmare. Assuming a project is experiencing reliability growth, two 
questions have to be answered: when should the software be shipped, 
and what will its reliability be at that time? These questions are answered 
by the use of software reliability models [ 1741. 

A basic assumption in software reliability modeling is that software 
failures are the result of a stochastic process, having an unknown 
probability distribution. Software reliability models (e.g. [88, 1 17, 2061) 
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specify some reasonable form for this distribution, and are fitted to data 
from a software project. Once a model demonstrates a good fit to the 
available data, it can be used to determine the current reliability of the 
software, and predict the reliability of the software at future times [ 1741. 
The central question in this chapter is, why are software failures modeled 
as stochastic processes? After all, no software developer rolls a set of 
dice and says “Aha! Time to make a mistake!” Unlike failures in 
hardware systems, where the random occurrence of material defects is 
unavoidable, every software failure is the result of a human mistake. 

Randomness is a particular kind of uncertainty, one that is properly 
modeled by probability theory. It is the species of uncertainty concerned 
with events that follow the law of large numbers. This law is based on 
the idea that there is an underlying “true” probability distribution with 
mean p for some experiment or phenomenon. The law of large numbers 
states that as you repeatedly perform the experiment or sample the 
phenomenon, the sample mean will converge to p for an infinite number 
of samples [249]. However, other kinds of uncertainty exist, for which 
probabilistic models are not appropriate. For instance, the uncertainty 
present in human language, commonly referred to as “vagueness,” is not 
random in nature. It is, in fact, just imprecision, and can be represented 
by fuzzy sets [146]. Our investigation in this chapter centers on 
experimentally determining what form of uncertainty is present in three 
sets of software reliability data; is the data drawn from a stochastic 
process, or is another mechanism at work? 

There does not seem to be a mechanism for bringing the law of large 
numbers into play in software reliability experiments. Previous authors 
have offered a few qualitative statements to support their treatment of 
time-to-failure or number of failures as a random variable. These are 
usually limited to a few sentences in the introduction to a paper. The 
arguments used include the statement by Musa that “Since the number of 
failures occurring in infinite time is dependent on the specific history of 
execution of a program, it is best viewed as a random variable ...” [209] 
or simply the assumption that “The life lengths of the software at each 
stage of development are random variables ...” [ 1801. A more specific 
assertion, due to Musa [206], is that while a programmer may not make 
errors randomly, the location of errors in the code is random, and the test 
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case inputs applied to the software are random. The latter point has been 
extensively criticized. Littlewood [ 17 13, Schneidewind [260], and Cai, 
Wen and Zhang [33] have all pointed out that test cases are not randomly 
selected, but rather are chosen based on some test plan. This eliminates 
one obvious source of randomness, although during specific periods of 
reliability testing (as opposed to just debugging), test inputs will be 
selected at random (see Chapter 2). The well-known relationship 
between module complexity and module failures [67, 1671 is further 
evidence that the locations of faults in source code are not random. 
Littlewood goes on to assert that failures do not follow a probability 
distribution as such; he argues for the use of Bayesian inference instead 
[171]. In a similar vein, Cai, Wen and Zhang argue that there is no 
repeated sampling of a phenomenon in software testing, and hence the 
law of large numbers is irrelevant [33]. They argue for the use of fuzzy 
set theory to represent the uncertainty present in software reliability. The 
entire debate over randomness in the literature has been conducted via 
qualitative statements; there is no hard evidence favoring one point of 
view over another. The main result of this chapter is a statistical test of 
the hypothesis that software failures arise from a stochastic process; 
these results indicate that failures are likely the result of a complicated 
deterministic process, rather than a stochastic process. 

Software failures ultimately arise from mistakes in the program’s 
source code, mistakes that are made by human beings. Human mistakes 
in general do not appear to be random events; more specifically, there is 
no probability distribution that has been shown to govern when a 
programmer will make an error. Instead, the infrequent and unpredictable 
occurrence of human errors seems to more closely resemble the form of 
uncertainty known as irregularity. This form of uncertainty is 
qualitatively different from randomness, and incorporates such 
phenomena as intermittency, bifurcations and rare events. Irregularity is 
best modeled by chaos theory and fractal sets, in the same way that 
randomness is best modeled by probability theory. This work is in 
accordance with a basic tenet of CI: that there are different forms of 
uncertainty, and when they are encountered, the appropriate modeling 
technique must be employed [223]. The causal model for software 
failures we propose is that faults are irregularly distributed in the input 
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space of a program. More specifically, it is hypothesized that the subset 
of the input space which will trigger a fault (the fault set) is a fractal set 
[84, 1521. The uncertain nature of software failures is thus a result of the 
peculiar geometry of fractal sets, instead of any inherent randomness. In 
order to directly test this hypothesis, it is necessary to reconstruct the 
complete fault set of a program, which is impossible given the nature of 
the datasets under study. However, an implication of this hypothesis is 
that a time series of software failure occurrences will show evidence of 
deterministic behavior. Since the software reliability datasets under study 
consist of exactly this type of data, testing for this implication is the main 
focus of this chapter. Finding evidence of deterministic behavior in these 
datasets will indirectly support the hypothesis of a fractal fault set, and 
will directly demonstrate that irregularity is an important feature of 
software reliability growth 

Nonlinear time series analysis is the name given to a collection of 
techniques for analyzing time series data, which are based on chaos 
theory. In nonlinear time series analysis, low dimensional chaos is used 
as an alternative explanation to linear stochastic processes in modeling 
and forecasting complex signals. This alternative implies that a 
deterministic process is the basis of the time series, rather than a random 
process, and that deterministic models should perform better in 
predicting reliability growth for software systems. However, the 
sensitivity to initial conditions displayed by chaotic systems means that 
this predictability is limited to a short time frame, beyond which any 
prediction scheme becomes useless. The main problem in nonlinear time 
series analysis is that the theorems on which these techniques are based 
assume an infinite amount of data. The limitations of finite time series 
make is possible for undifferentiated white noise to sometimes appear to 
come from a low-dimensional chaotic system. Considerable effort is thus 
devoted to noise reduction, to ensuring that the time series under 
examination are stationary, and to removing temporal correlations 
(which can also be mistaken for chaotic dynamics) [130]. 

Three software reliability datasets have been analyzed using the 
nonlinear time series techniques described in [ 1301 and implemented in 
[103]. One of these datasets was collected by Musa [45], while the 
remaining two are originally from IBM, and were obtained from [174]. 
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These datasets are plotted in Figures 3.1-3.3. In these figures, the x-axis 
represents the i-th failure, and the y-axis represents the elapsed time 
between the (i-1)-th failure and the i-th failure (the interfailure time). 
Viewed in this form, the time series exhibit some very irregular behavior, 
and show a considerable amount of structure. However, a nonlinear test 
reveals that the datasets are indeed stationary. Since the software systems 
underlying these datasets were undergoing constant change, one would 
expect to see evidence of nonstationary behavior. However, regression 
testing is not included in these datasets, and hence the test cases that 
caused failures are not actually revisited. Thus, the datasets are 
effectively stationary. Clear evidence of deterministic behavior has been 
found in these datasets, which was quantified using a standard technique 
in nonlinear time series analysis, known as surrogate data. Various 
analytical probability distributions have been fitted to the datasets, but 
the Kolomogorov-Smirnoff goodness-of-fit test indicates that none of 
these distributions actually represent the data. These results indicate that 
the standard assumption of an underlying stochastic process is 
inadequate for these datasets. 

%stem 5 Reliebllltv Growth Data 

Figure 3.1 : Reliability Growth Data for System 5 



70 Computational Intelligence in Software Quality Assurance 

Figure 3.2: Reliability Growth Data from ODCl 

Figure 3.3: Reliability Growth Data from ODC4 
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In Section 2 of this chapter, concepts from hardware and software 
reliability engineering, and previous work in software reliability 
modeling are reviewed. The nonlinear time series analysis techniques 
used in this investigation, and the specific characteristics of the datasets, 
are presented in Section 3, and Section 4 is devoted to the experimental 
results of this investigation and their significance. 

3.2 Reliability Engineering for Software 

This section is devoted to a review of reliability engineering, as 
applied to both hardware and software systems. First, an overview of 
reliability engineering in general and the special challenges of 
determining the reliability of a software system is provided. These 
challenges arise from the fact that software is logical entity, rather than a 
physical object. The rich variety of software reliability models will then 
be discussed. 

3.2.1 Reliability Engineering 

Reliability engineering is the discipline of scientifically estimating 
how well a technological system will perform its intended function. 
Reliability engineering cuts across all the traditional disciplines of 
engineering; after all, whether engineers are building a bridge, a jet 
airplane, or a hydraulic valve, they must eventually be able to quantify 
how long this system will perform correctly. Technically, reliability is 
defined as the probability that a given technological system, in a given 
operating environment, will fulfill its intended fimction for a given 
period of time [ 1621. There is a close connection between reliability and 
quality. In the popular mind, they may be one and the same. After all, a 
quality product is one that does what it’s supposed to do, when the user 
wants it done. However, in quality control, reliability is viewed as an 
attribute of a product, while quality can be considered the degree of 
excellence of the product when all attributes of the product are 
considered [92]. Reliability is also closely allied with safety; where 
reliability engineering is concerned with product defects that can cause a 
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failure, safety engineering is concerned with those product failures that 
may create a hazard to life, limb or property. As an example, consider an 
automated tram, such as may be found at many airports around the U.S. 
A number of attributes will contribute to the quality of this system; one 
such could be the maximum change of acceleration experienced by 
passengers. A rough ride will create a perception of poor quality, while a 
smooth ride will indicate higher quality. The reliability engineer, on the 
other hand, is concerned about the possibility of failures. What, for 
instance, is the probability that the tram will become stuck at a station, or 
even worse, between two stations? The safety engineer is concerned 
about failures that might create a danger to passengers or property, such 
as failing to stop before the tram hits an end wall [ 1621. 

While reliability is a crucial attribute of any technological system, it 
is still only one of a number of design parameters an engineer must keep 
in mind. The most reliable car in the world will sit forever in a dealer’s 
lot if it costs a million dollars and reaches a top speed of 45 miles per 
hour. Cost, performance, and reliability are necessary and conflicting 
requirements for any product. Much of the art of engineering design 
involves balancing these conflicting demands [ 1621. 

3.2.1.1 Reliability Analysis 

The reliability of a technological system is not the same at every 
moment of the system’s lifetime. In fact, three distinct “epochs” can be 
observed in most systems: the infancy period, normal operation, and 
wear-out. The infancy epoch is the time period immediately following 
the system’s manufacture and installation. For most technological 
systems, this is a critical period, during which design & manufacturing 
flaws will come to light and cause a failure. This circumstance is referred 
to as an “infant mortality” failure. During routine operation, failures are 
normally the result of chance events in the system’s environment, and are 
not time-dependent. Unexpected external events are the prime source of 
failures during this time period. Near the end of the useful life of a 
system, parts age and wear out, leading to a sharp increase in the number 
of failures. These wear-out failures signal the need to replace the system, 
and mark the end of the system’s lifetime. A pictorial representation of 
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this discussion can be created by graphing the expected failure rate of a 
system with respect to time, as in Figure 3.4. This idealized “bathtub” 
curve is typical of most technological systems [162]. 

Figure 3.4: System Failures Rates Over Time 

Formally, a system’s reliability, its failure rate, and the Mean Time 
To Failure (MTTF) are related in the following manner [ 1621. Treat the 
running time of a system as a random variable, denoted by T, and define 
the following probability density function 

f ( t )  = P(t < T I t + At}  (3.1) 

as the probability that a failure occurs in the interval [t,t+At] for 
vanishingly small At. This gives the cumulative density function 

where F(t) represents the probability that a failure occurs before time t. 
Since the definition of reliability is the probability that a failure does not 
occur before time t, the reliability function is 

(3.2)
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R( t )  = 1 - F ( t )  (3.3) 

As boundary conditions, R(0) = 1 and R(co) = 0. 
The failure rate and the MTTF may be determined from the reliability 

function and the failure PDF. The failure rate A(t) is the probability that 
the system will fail during the interval [t,t+dt] given that the system does 
not fail before time t. This may be expressed in terms of the failure PDF 
and the reliability function as 

The failure rate is also often referred to as the hazard rate or mortality 
rate. The MTTF, as its name implies, is just the expected value of the 
failure time t, yielding 

m 

A4TTF = J‘tf (t)dt , 
0 

or equivalently [ 1621, 

m 

A4TTF = IR(t)dt 
0 

(3.5a) 

(3.5b) 

Thus far, the form off(t), the failure PDF, has not been specified. 
Obviously, knowing A t )  is crucial to any reliability analysis. 
However, given the sheer complexity of technological systems and 
the world with which they interact, knowing the “true” form off(t) 
is an unrealistic goal. Instead, reasonable approximations are used, 
based on assumptions about the system’s behavior over time. For 
instance, if infant mortality and aging can be neglected, then only 
random failures occurring during normal operation are of any 
concern. Since these are time-independent, the failure rate is 

(3.4)
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constant. This leads to the exponential distribution as a form for 
At> : 

From this the reliability function and MTTF are 

(3.7) 
-af R(t )  = e 

~ T F  = ,J’ a (3.8) 

The exponential distribution is only appropriate for modeling a 
constant failure rate. In order to include infant mortality or aging, other 
distributions must be used. The most common are the normal, the 
lognormal, and the Weibull distributions. The normal distribution is 
appropriate when an expected time-to-failure is known, along with a 
confidence interval for that time-to-failure. The lognormal is useful in 
the similar situation when an estimated failure time is known, along with 
a factor n that plays a similar role to a confidence interval, i.e. some 
degree of confidence that the true failure time lies in the interval 
[f / n, nt] can be obtained [ 1621. 

One of the most widely used distributions in reliability analysis is the 
Weibull distribution. If the number of failures over time obeys a power 
law, then this distribution can be very useful. The failure rate is assumed 
to follow the power law 

This yields the failure PDF 

(3.6)

(3.9)



76 Computational Intelligence in Software Quality Assurance 

and the CDF and reliability are 

(3.10) 

(3.11) 

(3.12) 

The Weibull is an extremely flexible distribution; in [162], Lewis shows 
how the bathtub curve of Figure 3.4 could be approximated by the 
superposition of three Weibull curves. However, this flexibility comes at 
a price. Closed-form expressions for the MTTF are difficult to obtain, 
and no closed-form solution exists for the maximum-likelihood estimates 
of the parameters rn and B [244]. 

For many technological systems, the first failure is also the last. 
However, some systems can be repaired after they fail; these are known 
as repairable systems. For repairable systems, the MTTF remains an 
important quantity. However, the probability of the system being 
operational at any given time, and the average time to repair the system, 
now become important quantities as well. These are referred to as the 
availability and the Mean Time to Repair (MTTR), respectively. 
Availability is simply defined as the probability that the system is 
operational at time t. A related quantity is the steady-state availability 
A(co), which represents the system availability after some initial failures 
have occurred. To define the MTTR, begin by defining the 
maintainability of the system. Let the time required to repair a failure be 
a random variable T, and define the PDF m(t) to be 

m(t) = P{t I T 5 t + At] (3.13) 
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The maintainability of the system is defined as the corresponding CDF 
M(t). The MTTR is then the expected value of m(t): 

03 

MTTR = bm(t)dt 
0 

A key point about repairs is that they are 

(3.14) 

made by humans, and are 
thus subject to a wide variation of skill, experience, training, diligence, 
and even day-to-day performance. Thus, it is much more difficult to fit a 
distribution for m(t). Since the availability of a system is contingent on 
both the MTTF and MTTR of the system, this means that estimating the 
steady state availability is quite difficult. However, if we presume that 
the MTTR is relatively constant, the approximation 

MTTF 
MTTF + MTTR 

A(m) = (3.15) 

can be used to represent the steady-state availability of a system [162]. 

3.2.1.2 Reliability Testing 

All engineering analysis is based on scientifically gathered data, and 
reliability engineering is no different. The collection of reliability data is 
referred to as reliability testing. There are two distinct forms of reliability 
testing, each with its own procedures and goals. Reliability Growth 
Testing is conducted to find and remove the causes of failure in a 
technological system, while Life Testing attempts to determine the useful 
life of that technological system. Common to both forms of testing is the 
constraint of cost; if an expensive system must be tested to destruction to 
obtain a single observation, obtaining a statistically valid sample may be 
prohibitively expensive. Time is also a constraint, since products must be 
shipped within a reasonable amount of time. Failure analysis, censoring, 
and acceleration are techniques used in reliability testing to overcome 
these constraints [ 1621. 
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Reliability growth testing is typically conducted on system 
prototypes, before the design is frozen. The goal of this form of testing is 
to reveal the system’s failure modes, so that they may be eliminated by a 
design change. A system prototype is activated, and run until it fails. The 
time of this failure (the running time until the failure occurred) is 
recorded. After each failure is observed, the failure is analyzed and its 
cause determined. The product is then repaired, and the cause of that 
failure is removed. The prototype is then reactivated, and run until the 
next failure is observed, and the cycle repeats. The n failure times ti 
(i = 1 , 2  , ..., n )  constitute the reliability growth data for this system. 
There appears to be a power-law relationship between the number of 
failures and the total running time for the system (the sum of the ti’s): 

n(T) = ebT‘-a (3.16) 

where n(7) is the number of failures occurring by time T and T = 

Reliability growth data will normally continue to be gathered even after a 
system goes into operational use, both to refine the system and to set 
maintenance policies [ 1621. 

Life testing, unlike reliability growth testing, explicitly requires the 
use of multiple copies of a technological system. The individual systems 
are run until they fail, and from this data an estimate of the expected 
lifetime of the system in service is obtained. However, it is usually 
infeasible to wait for all the copies of the system to fail, and sometimes 
the predicted service life of the system is so long that waiting for even 
one copy to fail naturally is unacceptable. The techniques used to 
overcome these constraints are censoring and accelerated testing. 
Censoring is the removal of some copies of a system from the test before 
they actually fail, or because their failure occurs under circumstances 
that do not affect the expected lifetime of the system. Censoring is a 
better option than simply deleting the removed unit from the test entirely, 
since there is valuable information available from those units up until the 
time they are removed [162]. 

Pressures on the design team to end testing early come from 
economic factors; there is a need to put the system into production before 

ti. 
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market conditions render it unprofitable. Those same pressures make it 
even more difficult to test systems whose design life is very long. In 
those cases, it is not practical to wait for the length of time it would take 
for even one copy of the system to fail under normal use. In these cases, 
accelerated life testing is used to obtain usable estimate of the life 
expectancy of the system. Acceleration is a technique for compressing 
the operational life of a system into a much smaller period of calendar 
time than would ordinarily be required. The simplest form of 
acceleration is compressed-time testing, which can be used on systems 
that do not run continuously throughout their lives. By running these 
systems continuously instead of intermittently, we can obtain an estimate 
of their life expectancy in much less time than would ordinarily be 
required. Likewise, start-up failures can be accelerated by constantly 
starting and stopping the system. For those systems that run 
continuously, a technique called advanced-stress testing can be used. The 
system is subjected to a greater load or a harsher environment than it 
would ordinarily encounter, which should lead to an increased failure 
rate. If a quantitative relationship between the increased stress and 
reduced operating life can be established, then an estimate of the true life 
expectancy can be generated [ 1 621. 

3.2.2 Software Reliability Engineering 

The integration of software reliability engineering into the software 
development life-cycle must go considerably beyond just testing the 
product. For example, a study of best current practices for software 
reliability engineering was completed at AT&T in the early nineties [70]. 
Twenty process activities were identified that were necessary for 
integrating software reliability into the development cycle; the activities 
began in the feasibility and requirements studies, and continued right 
through the deployment and maintenance phases. In the feasibility and 
requirements phase, the expected operational usage of the software must 
be specified, and what constitutes a failure must be defined. The trade- 
off between cost and reliability must then be determined. During design 
and implementation, the overall reliability objective must be decomposed 
into component reliabilities, and each component must be designed and 
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implemented to meet its allocated reliability. During systems test, 
reliability growth testing is carried out, and eventually the product is 
certified as having met its reliability objectives. When the system is 
mission-ready, its field performance and customer satisfaction must be 
tracked, and any evolution of the software must be certified to meet the 
original system reliability goal. Another recommendation in [43] is to 
employ statistical designs during the testing phase, rather than relying 
solely on the tester’s judgment to decide what test cases should be run. A 
standard for software reliability engineering has been jointly authored by 
the American National Standards Institute (ANSI) and the American 
Institute of Aeronautics and Astronautics ( A I M )  [4]. 

Software reliability engineering is based on the collection of 
reliability growth data. Plainly, the debugging cycle of finding, analyzing 
and fixing software faults yields precisely this type of data. The data 
collected during this cycle is usually the amount of time that the software 
has operated since the last failure, excluding regression testing. 
Regression testing consists of re-running test cases that the system 
passed before a change was made; the goal is to determine if that change 
has degraded the reliability of the system. Regression testing data is not 
useful as reliability data, because it is not randomly selected; the choice 
of what subset of previous test cases to use as a regression test suite is an 
important economic choice, as they will not reveal new faults, only 
potential faults related to the repair of a known fault. Life testing, on the 
other hand, is not conducted in software reliability engineering. The 
reason for this goes back to the logical nature of software; unlike 
physical systems, which exist in the analog world, digital information 
like software can be copied perfectly, every time. Thus, there is no 
variation between copies of a software system, and no need to estimate 
the expected lifetime of the software. The time required for one copy to 
fail will be the exact time required for each copy to fail, given identical 
inputs and environments. 

Another significant difference between hardware reliability and 
software reliability may be observed in the failure rates of hardware and 
software systems. The failure rate of a system normally changes over 
time. Hardware systems typically exhibit the behavior shown in Figure 
3.4. The typical failure rate of a software system, on the other hand, will 
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have a general form similar to Figure 3.5. As with hardware systems, 
there is an initial region in which the failure rate decreases sharply, 
corresponding to system testing and debugging. After this, there is a 
fairly constant failure rate, corresponding to system usage. However, 
there is no final region of increasing failures, because software does not 
wear out. Software, being a logical entity, is not subject to wear and 
environmental degradation. A piece of software is as capable of fulfilling 
its original mission thirty, forty or fifty years after it was installed as it 
was on the first day it was operational. Note, however, that this neglects 
the effect of maintenance and enhancement activities on the software. 
Systems that undergo extensive maintenance and enhancement do 
experience reliability decay, as errors made by the maintenance and 
enhancement teams accumulate over time [87, 1741. 

Figure 3.5: Software Failure Rates Over Time 

One area in which hardware and software systems seem to be similar 
is in their response to an increased load. Reliability engineers have long 
known that when a system is placed under an increased load, the system 
will fail more often. Furthermore, this failure response need not be 
linearly related to the load increase [162]. In this context, the work of 
Iyer and Rossetti [ 1141 is very important, because it establishes a similar 
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behavior for software systems. The authors studied the performance of 
the operating system of an IBM 3081 at the Stanford Linear Accelerator 
Center, and found that the number of failures was correlated with the 
volume of interactive processing (paging rate, operating system CPU 
time, etc.), but was not correlated with the overall CPU usage. This 
indicates that “loads” for a software system are interactive operations, 
and not compute-bound processes. 

Other experimental investigations of software failures have been 
conducted, especially at NASA. Dunham reports on fault 
characterization experiments conducted at NASA in the mid-eighties in 
[62]; follow-up experiments in the late eighties and early nineties are 
reported in [63, 761. The latter reference also establishes two 
characteristics of software faults: first, individual faults seem to be 
associated with contiguous regions of the input space that will trigger 
them; these were referred to as error crystals. Secondly, a log-linear 
relationship between the failure rate and the number of remaining errors 
in a software system was described. These two characteristics are very 
suggestive in the context of the investigation in this chapter. One of the 
characteristics of a fractal set is that there must be an inverse power-law 
relationship between the size of elements in a set and elements having at 
least that size; thus, there will be a few large elements and many smaller 
ones [178]. Taking the size of a fault to be the hypervolume of the 
associated error crystal, the hypothesis of a fractal fault set implies that 
there should be an inverse power-law relationship between the size of a 
fault and the number of faults having at least that size. The fault 
detection rate (i.e. failure rate) will initially be very high, but will drop 
off sharply as the few large faults are found; the numerous smaller faults 
are much harder to detect. A log-linear relationship between these 
quantities thus makes intuitive sense. This log-linear behavior contradicts 
a basic assumption in many popular software reliability models, as will 
be discussed in the next section. 

3.2.3 Software Reliability Models 

Once a software system’s reliability growth data has been collected, 
the next step is to fit a probability distribution to this data, and thereby 
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obtain the reliability function, failure rate, and mean time to failure for 
the software. Such a distribution is known as a software reliability 
growth model (SRGM), and they play a key role in software 
development. Used judiciously, they help determine when a software 
system may be released into the marketplace, and how reliable that 
system is. The history of software reliability models goes back to the 
early 1970s, and continues to be an active research area today. The first 
software reliability model to gain widespread acceptance was the 
Jelinski-Moranda de-eutrophication model [ 1 171. The authors discussed 
the state of the art in software reliability research in the year 197 1 ; some 
of their comments are still depressingly applicable today. Their model 
assumed that the failure rate of a software system at any time is 
proportional (instead of log-linear) to the number of errors remaining in 
the software at that time. Maximum likelihood estimates for the two 
parameters of the model are developed, and the model is tested on real- 
world software failure data (in this case, trouble reports from a U.S. 
Navy combat information system). This paper sets a pattern that most 
software reliability papers follow: certain assumptions about software 
failures are discussed, a model is developed along with any necessary 
estimation procedures, and then the model is applied to a real-world 
dataset(s). Forman and Singpunvalla [80] discuss the question of when to 
stop testing and how to predict whether or not a software system still 
contains bugs, using the Jelinski-Moranda model as a starting point. 
Other papers on when to stop testing include [253, 2361. The 
incorporation of an optimal release time is now a common feature in 
software reliability papers. 

There appear to be three major trends in software reliability research: 
the use of Non-Homogeneous Poisson Process (NHPP) models, Bayesian 
inference, and time series analysis. An NHPP is a Poisson process with a 
time-varying mean value function. This means they are counting 
processes, having the following characteristics: (i) the total number of 
failures N(t) 2 0, (ii) N(t) E Z, (iii) s < t 3 N(s) < N(t), (iv) s < t => 
N(t) - N(s) is the number of events occurring in the open interval (s,t), 

where Z is the set of integers [251]. An NHPP is governed by the 
expression 
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(m(t>Ik e-m(t)  P{N(t)  = k )  = 
k! 

(3.17) 

where N(t) is the number of events observed by time t, m(t) is the mean 
value function, and the intensity function is given by the time derivative 
of m(t) [87]. The use of NHPP models is generally considered to have 
begun with a paper by Goel and Okumoto [88], although a conference 
paper using an NHPP was published by Schneidewind [260] in 1975. 
Like many papers in this field, Jelinski and Moranda’s assumption that 
the failure rate is proportional to the remaining number of errors is 
incorporated into this model (an assumption that is not supported by the 
experimental work of [76]). The model also assumes that failures in 
distinct intervals are independent of each other. These two assumptions 
are widespread in software reliability modeling, even though authors 
have criticized them since 1975 [260]. Another very important model is 
the basic execution-time model developed by Musa [206]. This is 
probably the most widely used software reliability model today [ 1741. 
Musa’s model was the first to explicitly use CPU time instead of 
calendar time as the unit of measurement. In addition, Musa collected a 
large number of extremely high-quality datasets, which he describes in 
[206] and which are currently archived at [45]. These datasets have 
formed the basis for many experimental investigations in the last 20 
years. Other NHPP models include the logarithmic Poisson [202, 209, 
299, 3011. The development of new NHPP models continues up to the 
present day; some recent examples are [ 1 12,2351. 

Bayesian inference in software reliability models essentially consists 
of treating the parameters of a reliability model as random variables 
instead of constants to be estimated. Some reasonable prior distributions 
are assumed for these parameters, and Bayes’ theorem is then invoked to 
determine the posterior distributions using reliability data. The first 
Bayesian model was presented by Littlewood and Verrall in [172]; the 
development of Bayesian models continues today, with some examples 
being [lo, 119, 151, 171, 180, 237, 238, 2671. As with the NHPP 
models, there are a number of assumptions involved in the Bayesian 
models; a nice illustration of this point may be found in [ 1801, where no 
less than 8 assumptions are made for “Model I.” A most revealing 
comment is that two of the assumptions were included “...based on 
mathematical convenience.” The inclusion of simplifying assumptions to 
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make the model computationally tractable is common; this has been the 
source of much criticism of software reliability engineering in the past. 

A few papers have used techniques from time series analysis to 
examine software reliability data. A pair of papers [ 1 I 1, 2681 uses a 
logarithmic transformation of software reliability data. This turns a 
power law process into a first-order auto-regressive process. The 
coefficient in this process was allowed to be random, and changing over 
time. The AR process was then fitted to the transformed data. More 
recently, Khoshgoftaar and Szabo [ 1421 used an auto-regressive 
integrated moving average (ARIMA) model. They used both the failure 
counts and a small number of complexity metrics as regression variables. 
This is one of the few papers that integrate software reliability modeling 
with software metrics, even though there is general agreement that the 
two are related. However, the performance of the model in tracking the 
original system is actually rather poor; the tracking error oscillates, but 
the amplitude of those oscillations appears to increase over time. Chaos 
theory was applied to software reliability modeling by Zou and Li in 
[309]. The motivation for using chaos theory in that paper was the same 
as in our current work; they also were not convinced that software 
failures arise from a stochastic process. However, there are significant 
methodological problems in [309] The datasets examined in that paper 
were far too small for use in nonlinear time series analysis, and there was 
no attempt to account for temporal correlations, non-stationarity, or a test 
for the presence of deterministic behavior. Zou and Li simply applied the 
correlation dimension algorithm to three very small datasets, and then 
created a complex locally linear prediction model for those datasets. In 
the field of nonlinear time series analysis, this is considered scientifically 
unsound. 

In addition to these three large-scale trends, there have been a great 
many papers proposing software reliability models that are somewhat 
unique. Littlewood proposed a semi-Markov process to model the 
changes of control between modules in a program [ 1701. The idea in this 
paper is that transfers of control between modules are failure-prone, 
much like interfaces between hardware components. Okumoto [220] 
used the logarithmic Poisson model of [209] to help construct a control 
chart for software failures. The process has some similarities to the 
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Shewart control chart, but there is a problem with the predicted values of 
future failures. When these arc plotted with the current set of failures (as 
in Figure 3 of [220]), all of the predicted values fall on one side of the 
mean value, indicating a lack of control [92]. Karunanithi and Whitley 
[ 1321 used a cascade-correlation network to perform one-step-ahead 
software reliability predictions. If the hypothesis of deterministic 
behavior in software failures is correct, then this sort of modeling is far 
more appropriate than stochastic processes. Neural networks were also 
used for software reliability forecasting in [133]. Kumar, Hariri and 
Raghavendra [240] extend software reliability concepts to distributed 
processing systems. They account for different network architecture by 
integrating graph-theoretic concepts into software reliability studies. 
Laprie et al. [153] describe a model called the Knowledge-Action- 
Transformation (KAT) approach, which is based on extending renewal 
theory to the nonstationary case. The resulting models are extremely 
complex, and so simplified models are provided for everyday use. Cai, 
Wen and Zhang [33] develop a software reliability model where the time 
to failure is a fuzzy number rather than a random variable. Their model is 
very simple, and incorporates many of the same assumptions found in 
probabilistic models (i.e. perfect debugging, one fault is removed to fix 
one error). Kanoun et al. [128] propose combining several existing 
models into an overall modeling strategy, while Ohba [218] describes 
two S-shaped reliability models and the hyper-exponential model. A pair 
of papers describing exponential order statistic models for software 
reliability may be found in [195,261]. 

There have been a number of critical reviews, surveys, and model 
comparison papers in the software reliability literature. An oft-cited 
review is Goel’s 1985 work [87], which includes a critical review of the 
underlying assumptions of numerous models. Another review was 
written by Yamada and Osaki [302]; this includes the logistic and 
Gompertz curves, which were used for software reliability modeling in 
Japan for a number of years. Littlewood’s 1980 review [171] is also of 
interest. Musa proposed a classification scheme for software reliability 
models in [208]; a more up-to-date work making use of this scheme may 
be found in [73]. Comparative studies of different models may be found 
in [134, 2771. 
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3.3 Nonlinear Time Series Analysis 

In this section, the techniques used in analyzing the software 
reliability datasets, as well as some relevant characteristics of the datasets 
themselves, are described. An important point that must be 
acknowledged at the outset is that the data are not particularly well- 
suited for study using nonlinear methods. None of the three datasets are 
larger than roughly 2000 elements, and there is considerable 
discretization noise present in them. Nonlinear time series analysis, on 
the other hand, demands data of high quality and in large quantity. Data 
sets on the order of 10000 elements or more are normally used in 
laboratory experiments, while even the most robust nonlinear analysis 
algorithms cannot tolerate a noise amplitude of more than 2-3% of the 
actual signal. The experimental results in this chapter offer firm evidence 
of deterministic behavior in these time series; while some indications of 
chaotic behavior were also found, the limitations of the data prevent us 
from reaching a definitive conclusion about chaos in software reliability 
data [130]. 

3.3.1 Analytical Techniques 

Kantz and Schrieber [130] is usually cited as the most up-to-date and 
comprehensive treatise on the use of nonlinear techniques for the 
analysis of time series data. This investigation applies the results and 
algorithms developed in [130], and implemented in [103, 2621, to the 
analysis of software reliability data, in which the interfailure times are 
taken to be a time series. "Time," in these experiments, thus refers to an 
index of the failures rater than physical time. A delay reconstruction of 
the phase space of the software system corresponding to each dataset was 
undertaken, and two-dimensional phase portraits of each system show 
clear indications (in one case, dramatic indications) of deterministic 
behavior. While this is not scientific evidence, it is reason to continue 
using the techniques of nonlinear time series analysis in these datasets. 
Using the method of surrogate data, this evidence was quantified through 
statistical hypothesis testing. A nonlinear noise reduction algorithm was 
used to clean the data, and the dimensionality of the phase-space attractor 
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in each dataset was estimated using the correlation dimension technique 
[130]. 

A time series is a sequence of scalar measurements over time taken 
from some interesting system. Information about the underlying system 
is present in that time series, but extracting it can be a difficult task. The 
scalar measurements themselves are just a complex projection of the true, 
unobserved state variables of some system. In order to analyze a system 
based solely on time-series data, the state space has to be reconstructed. 
While the original state space cannot be uniquely determined, an 
equivalent state space (in the sense that the two are related by a smooth, 
invertible mapping) can be constructed using the method of delay 
embeddings. Let a time series with k measurements be denoted by 
x I , x 2 ,  ..., xk.  A delay embedding of this time series is .a sequence of 
vectors B, = (x, - (m - l)v, x, - (m ~ 2) ”,..., x, - ,,, x,). This is an m-dimensional 
vector, formed from successive elements of the original time series. The 
time lag v takes each consecutive element, every second element, every 
third element, etc. In general, since delay vectors overlap, a time series of 
n elements will be converted into a sequence of y2 - (m - l)v delay 
vectors. Another way to look at the time lag is that it increases the time 
window covered by each vector. 

The parameters rn and v must be chosen for each time series. 
Unfortunately, there is no single algorithm that gives the proper values 
for m and v for any arbitrary data set. One known fact about rn, the 
dimension estimate, is that there is a qualitative difference between 
values of m that are too small, and values that are sufficiently large. If the 
value for m is smaller than the actual dimension mo, then there will be 
unresolved projections of the state variables, creating false neighbors. 
For m > mo, these false neighbors do not exist. Thus, searching for false 
neighbors is a powerful technique for finding a good estimate of m. 
There are no such results for the time lag v; mathematically, every choice 
of v is equivalent to every other choice. From a practical standpoint, 
however, a proper choice of v helps nonlinear analysis, while a poor 
choice hinders it. Qualitatively, small values of v make successive delay 
vectors more and more correlated, so that the phase portrait of the system 
will be concentrated along the diagonal. Large values of v make the 
delay vectors virtually uncorrelated, so that they fill a cloud in the phase 
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portrait. The best strategy is to select a promising range for v, and then 
manually inspect each phase portrait. Since noise in the times series 
denies the analyst access to infinitesimal length scales, the largest 
possible deterministic structures are desired. Usehl hints about 
promising values of v can be found from the first zero of the 
autocorrelation hnction, or from the first minimum of the time-delayed 
mutual information [ 1301. 

The phase portrait of a system provides qualitative information about 
a system. A truly stochastic process will fill a cloud in phase space; 
deterministic systems with no noise will show clean trajectories. As an 
example of the latter, consider the Henon map, shown in Figure 3.6. This 
system is determined by the equations 

2 x n + l = a - x n  + b p  
yn + 1 = Xn 

(3.18) 

Figure 3.6: The Henon Map 
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where a=1.4 and b=0.3 (this choice of parameters induces chaotic 
behavior in the Henon map [130]). Realistic time series fall somewhere 
between these two extremes. The appearance of structure in the phase 
portrait, or even just clear holes, probably signals the presence of 
deterministic dynamics of some kind. An inspection of the phase portrait 
of a system is thus a critical first step in analyzing that system. 

The algorithms for nonlinear time series analysis all assume that the 
time series is taken from a stationary process, at a sufficiently high 
sampling rate. If this assumption is violated, then the algorithms will 
produce spurious results. Thus, a check for stationarity is needed. In the 
domain of nonlinear time series, linear statistics such as correlations are 
not used to test for nonstationarity, as they cannot detect nonlinear 
relationships. In a number of chaotic systems, parameter drifts may not 
result in any change of the linear statistics; only nonlinear relationships 
are affected. Instead, a technique called the space-time separation plot is 
used [130, 2421. The space-time separation plot creates curves of 
constant probability for two points to be within a spatial distance of E of 
each other, assuming that the time difference is T. If these curves saturate 
in a plateau (or a stable oscillation), then the time series is drawn from a 
stationary process at an adequate sampling rate. Another way to look at 
the space-time separation plots is that they show whether or not the time 
scale of the observations made on a system is sufficiently larger than the 
internal time scale of the system itself [ 1301. 

Once the phase portrait provides an indication that deterministic 
dynamics are present, and the space-time separation plot shows that the 
time series is stationary, the next step is to quantify the evidence for 
determinism through statistical hypothesis testing. The null hypothesis is 
that the time series is explained by a stochastic process; if the null 
hypothesis is rejected with at least 95% confidence (significance 
a=0.05), then a scientific basis exists for saying that nonlinear 
determinism, not randomness, explains the time series. Obviously, this 
test is rather more involved than the student’s t-test! The technique used 
in the literature is called the method of surrogate data. Essentially, one 
constructs a group of time series that are random in nature, and applies a 
test statistic that distinguishes between random and deterministic time 
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series (a nonlinear prediction error is a good example). If the original 
time series has a significantly different value of the statistic from the 
random sets, then we reject the null hypothesis. The test statistics used in 
this investigation are the time reversal asymmetry statistic 

(p - y. - d)' 

(p - p - d)' 
(3.19) 

and a prediction error obtained from the locally constant noise reduction 
scheme discussed later [262,283]. 

The method of surrogate data was introduced to ensure that the 
random data sets have the same properties as the original data, but still 
conform to the hypothesis of random behavior. Essentially, one generates 
a sequence of random numbers, manipulates that sequence to match a 
given hypothesis (i.e. that the original data comes from a linear Gaussian 
process distorted by a nonlinear observation function), and then uses the 
"polished" sequence as a template for shuffling the original data. This 
shuffle is then one surrogate data set. Obviously, the surrogate has the 
same mean and variance as the original data set. One can also ensure that 
the power spectrum of the surrogate is the same as the original. For a 
two-sided determinism test, (2la) - 1 surrogates are generated, where a 
is the desired significance of the test. If the test statistic for the original 
data is greater or lesser than all the values for the surrogates, the null 
hypothesis is rejected with significance a [130, 2831. Some authors will 
reject the null hypothesis if the test statistic for the original data is at least 
2.5 standard deviations from the mean of the test statistics for all data 
sets. However, this assumes that the values of the test statistic are 
normally distributed, which may be far from the truth [20, 1301. 

Any realistic time series will be contaminated by noise. This noise is 
a very serious problem for nonlinear time series analysis. Even the most 
robust algorithm, the correlation dimension, cannot tolerant a noise 
amplitude in excess of 2-3% of the total amplitude of the time series 
[130]. Thus, an important step in nonlinear time series analysis is the use 
of a nonlinear noise reduction scheme. One such scheme, the locally 
constant projective scheme, has been described in [I301 and 
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implemented in [262]. Assume that a point X in an rn-dimensional delay 
embedding has k neighbors within a radius of E. The next point along the 
system trajectory passing through X is predicted to be the mean of the 
one-step evolutions of all k neighbors. This noise reduction technique 
takes advantage of the property of continuity; trajectories that are 
initially close will still be close together after a short period of time. 
Even in chaotic systems, two trajectories that are initially close cannot 
diverge at more than an exponential rate. This algorithm has been found 
to be quite robust, and has been applied to a large number of time series 
[130]. 

The phase-space attractor of a chaotic system will have a fractal 
geometry. Fractal sets can exhibit self-similarity, and have a complex 
structure at all length scales. The geometry of a fractal set is in fact so 
unique that they can have a noninteger dimensionality, and this is a 
characteristic signature of chaotic systems. In fact, the attractor 
dimension is an invariant quantity for a given chaotic system, which 
means that it is unaffected by scaling, rotation, etc. The correlation 
dimension algorithm is normally used to estimate the dimension of a 
chaotic attractor from a time series. One first computes the correlation 
sum 

(3.20) 

where N is the number of delay vectors, E is a neighborhood, 0 is the 
Heaviside step function, and xi, xj are delay vectors. The sum simply 
counts the number of pairs of delay vectors that are within an E -  

neighborhood of each other. For small values of E and infinite N, C(E) K 
E?, and the correlation dimension D is defined as 

d In C(E)  D = lim lim 
E + O N + ~  dln& (3.21) 
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This dimension will yield the correct, integer values for nonfractal 
objects and is accepted as the best way of estimating a fractal attractor 
dimension from time series data. In order to use this algorithm for the 
practical analysis of a finite time series, the local slopes of the correlation 
sum are plotted against the neighborhood E on a semi-logarithmic scale 
for several embedding dimensions. If for all embedding dimensions m > 
mo there is a region where the curves all plateau and saturate at a single 
value, then that value is the correlation dimension. Note that the 
correlation sum can be computed automatically, while the correlation 
dimension has to be determined through expert interpretation [130]. 

3.3.2 Software Reliability Data 

The analysis in this chapter involves three time series, each of which 
consists of interfailure times from a commercial software system. Each 
element of the time series is the time elapsed between the current failure 
and the last failure. The data are time-ordered, i.e. the interfailure times 
are recorded in the order in which they actually occurred, rather than 
being sorted into ascending order (as is often done in statistical reliability 
growth modeling). The noise known to be present in these datasets is 
discretization noise; the data are discretized to integer values, 
representing some time scale. For one time series, this time scale is the 
nearest second; for the other two time series, this time scale is the nearest 
day. 

The first time series was collected by Musa [45]. It is referred to as 
“System 5,” and consists of 831 interfailure times, recorded to the 
nearest second. The system from which this data was collected was a 
real-time commercial system, comprised of over 2.4 million object code 
instructions. The data set was collected during the system test phase of 
development, under careful controls. As with all datasets archived at this 
site, the data were collected during the 1970s. This particular dataset is 
the largest of the 16 software reliability datasets archived at [45]. 

The second time series was collected by IBM in the course of the 
Orthogonal Defect Classification (ODC) project. The dataset is archived 
in [174]. It consists of 1207 bug reports, each of which includes the date 
of the failure. Thus, this data is discretized only to the nearest day and is 
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not presented as interfailure times. In order to convert this dataset to 
interfailure times, the recommendation in [ 1741 to assume that failures 
arrive at random times during a day was followed. A uniform random 
number generator was used to determine the j-th interfailure time during 
a day, and then the total interfailure times during a day were normalized 
so they sum to 1.0. This technique is strikingly similar to a 
recommendation in [130]: discretization noise can be removed by first 
adding uniform white noise in the interval [-0.5, 0.51 to a signal, and 
then applying a nonlinear noise reduction scheme. This dataset will be 
referred to as “ODCl.” The third dataset also comes from the IBM 
Orthogonal Defect Classification project, and is also archived in [174]. 
This dataset consists of 2008 bug reports, with the date of each report 
attached, as in ODCl . Preprocessing of this dataset was conducted in the 
same manner as for ODC1. We will refer to this dataset as “ODC4.” 

3.4 Experimental Results 

The experiments reported in this section follow the procedures 
described in Section 3.3. First, the state-space reconstruction of each 
system is described, along with the evidence that the time series arise 
from a stationary process. Next, the surrogate data experiment is 
presented; the resulting evidence of deterministic behavior is the main 
result of this chapter. Finally, the evidence obtained for chaotic behavior 
is discussed. 

3.4.1 State Space Reconstruction 

The first problem was to reconstruct the state space for each of the 
three datasets. The method of delay embeddings described in Section 3 
was used; this requires determining values for the time lag v and the 
embedding dimension m. The mutual information statistic and the 
autocorrelation function were computed for values of v between one and 
six for System 5 ,  and between one and four for ODCl and ODC4. Those 
results are presented in Table 1. The first minimum of the mutual 
information statistic occurred at v 5 4 for each dataset, but there were no 
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System-5 Mutual Inf. 
System-S Autocorrelation 
ODCl Mutual Inf. 
ODCl Autocorrelation 
ODC4 Mutual Inf. 
ODC4 Autocorrelation 

zero crossings for the autocorrelation function in that range. The two- 
dimensional phase portraits for each system were then examined for 
delays v = 1-6. Delays of v = 4, v = 3 ,  and v = 5 resulted in the largest 
apparent structures for System 5 ,  ODCl and ODC4, respectively. Those 
“best” phase portraits are shown in Figures 3.7-3.9, respectively (these 
figures may be found at the end of the chapter). 

Qualitatively, the phase portraits for each dataset appear to show the 
following characteristics: firstly, in the System 5 phase portrait, 
structures on the order of lo4 units in size appear; these structures are 
apparent trajectories and voids in the phase plane. In the ODCl phase 
portraits, some structure appears on the order of 0.3 units in size; this is 
less than the expected noise amplitude, so these structures are not very 
significant. Finally, in ODC4, a dramatic structure (a double helix) shows 
up along the y-axis. It is 4 units in length, well above the noise level. 
Taking these three phase portraits together, the datasets seem to show 
some indications of deterministic behavior. The next step is to estimate 
the dimensionality of each state space, and to determine if the datasets 
are stationary. 

v = l  v = 2  v = 3  v = 4  v = S  v = 6  
0.077 0.082 0.089 0.067 0.082 0.070 
0.138 0.152 0.126 0.087 0.119 0.114 
0.036 0.011 0.072 0.041 
0.328 0.101 0.070 0.043 
0.021 0.012 0.020 0.015 
0.229 0.167 0.174 0.124 

Table 3.1 : Mutual Information and Autocorrelation Values 

Using the technique of false nearest neighbors yields the results given 
in Figure 3.10. For each dataset, the goal is a value of m such that the 
ratio of false nearest neighbors drops to 0. Both System 5 and ODCl 
reach this point by rn = 8; to be conservative, a value of m = 9 is used for 
the experiments in this section. ODC4 is a more difficult case, since the 
ratio of false nearest neighbors becomes very small, but never actually 
reaches 0; in fact, one can see the beginning of an oscillation by m = 16. 
In the remainder of this paper, a value of m = 15 will be used for ODC4, 

- 

- 

- 

- 

- 

- 

- 

- 
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since this is the largest value of rn before the oscillatory behavior begins. 
To summarize, System 5 is reconstructed in 9 dimensions with a delay of 
4, ODCl in 9 dimensions with a delay of 3, and ODC4 in 15 dimensions 
with a delay of 5. 

Space-time separation plots for System 5 ,  ODC1, and ODC4 are 
shown in Figures 3.11, 3.12, and 3.13, respectively. All three datasets 
appear to be stationary, since the curves in each plot saturate at a rough 
plateau. Temporal correlations in estimating the attractor dimension can 
be avoided if points closer than 50 time steps together in System 5, closer 
than 35 time steps in ODC1, and closer than 70 time steps in ODC4 are 
excluded when computing the correlation sum. 

3.4.2 Test for Determinism 

One of the key steps in nonlinear time series analysis is ensuring that 
one does not try to estimate chaotic invariants for a linear stochastic 
process. While in theory a white-noise process is infinite-dimensional, 
low dimensional values can often be obtained for finite times series 
consisting of white noise. The correlation dimension algorithm, along 
with other estimators for chaotic invariants, quantifies deterministic 
behaviors when they are known to be present. These algorithms are not 
effective as tests for determinism in and of themselves. The method of 
surrogate data [283] was developed to provide scientific evidence that a 
time series does in fact exhibit deterministic, rather than random, 
behavior. This technique is based on statistical hypothesis testing; the 
null hypothesis is that the time series arises from a linear stochastic 
process, and the alternative is that the time series arises from a 
deterministic process. 

The method of surrogate data was used to test each of the three 
datasets for the presence of deterministic behavior. First, 22 analytic 
probability distributions were fitted to each dataset, including the normal, 
lognormal, 2-parameter Weibull, 2-paramter Gamma, exponential, 
Rayleigh and Beta distributions. The Kolomogorov-Smirnoff goodness- 
of-fit test was then used to determine if any of the distributions were a 
good match for the datasets. At a significance of 0.05, the test rejects 
every distribution for each dataset. Thus, no probability structure for the 
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System 5 Time Reversal 
System 5 Prediction 
ODC 1 Time Reversal 
ODC4 Time Reversal 
ODC4 Prediction 

datasets has been found. Therefore, in these experiments, the null 
hypothesis of a linear Gaussian process, distorted by a monotonic, 
invertible nonlinear observation (the most general hypothesis available in 
the literature) was used, with a significance of 0.05. Thus, 39 surrogates 
were generated for each dataset, and the null hypothesis was rejected if 
the statistic value for the original time series was greater or less than all 
the surrogates. The results of these experiments are summarized in Table 
2, where the statistic values for the original dataset, along with the 
minimum, and maximum of the surrogate values, are presented. 

Original Surrogate Surrogate 
Minimum Maximum 

3097.5 -24794.4 2098 1.7 
39053.1 37412.7734 39049.5 
-1.31 -0.36 0.26 
-2.85 -6.56 4.97 
0.84 1.17 1.82 

Table 3.2: Test Statistics 

Examining Table 2, the null hypothesis is rejected on dataset ODCl 
using time reversal, but accepted for System 5 and ODC4 using time 
reversal. The null hypothesis is rejected for both System 5 and ODC4 
using the more powerful prediction error statistic [130]. Table 2, taken 
together with the earlier attempt to fit a classical distribution to the 
datasets, provides quantitative evidence that these datasets are 
deterministic in nature. This means that the stochastic models usually 
used in software reliability modeling do not capture the full state of 
nature in software reliability growth; deterministic dynamics appear to be 
present and (at least in the case of the three datasets we have analyzed) to 
dominate any random behaviors. This analysis implies that deterministic 
models (such as neural networks) would be a better fit for software 
reliability data, and could provide better predictions of reliability growth 
and when to stop testing than stochastic models. This is the principal 
result of this chapter; attempts to find a correlation dimension for each 
dataset are discussed in the next section. 
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3.4.3 Dimensions 

One of the characteristics of a chaotic system is that the attractor in 
phase space has a fractal geometry [130]. This means the attractor is self- 
similar over some range of length scales, and has a noninteger 
dimensionality. An attempt was made to determine if the phase-space 
attractors for the datasets under study are in fact fractal objects, using the 
correlation dimension algorithm. First, an estimate of the fractal 
dimension was made for the raw datasets; the scaling plots for System 5 ,  
ODC 1 and ODC4 are given in Figures 3.14, 3.15 and 3.16, respectively. 
Notice that System 5 shows a common behavior and a small plateau right 
around lo4. However, the curves do not converge to a single value, but 
differ by a factor. For this dataset, the evidence of fractal behavior is 
suggestive, but not definitive. The plot for ODC1, while having a 
roughly similar shape, is considerably weaker. Some common behavior 
is present, but there is really not a clear plateau, nor do the curves 
converge. The plot for ODC4 does not seem to show fractal behavior. 
Next, the locally constant nonlinear noise reduction scheme [ 1301 was 
used to filter the datasets. Scaling plots for the filtered versions of 
System 5 ,  ODC1, and ODC4 are shown in Figures 3.17, 3.18 and 3.19, 
respectively. The filtered time series actually appear to show less 
evidence of fractal behavior. These analyses indicate that there is some 
behavior in one dataset that is suggestive of chaotic dynamics, but this 
evidence is too weak to support a definitive conclusion concerning the 
presence of chaotic behavior in software reliability growth data. 

3.5 Remarks 

We expect software reliability to be the key technological bottleneck 
of the 2lSt century. Software engineers and researchers do not have a full 
understanding of the reliability growth process in software, while 
software systems are too complex. The stochastic failure models used to 
date apparently do not match the characteristics of software failures, as 
they cannot account for the deterministic dynamics we have detected in 
our datasets. The research reported in this chapter represents a first step 
in applying the techniques of fractal sets and chaos theory to this 
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problem. We have suggested a causal model for software failures, in 
which the fault set of a program is hypothesized to be a fractal subset of 
the input space for that program. An implication of this hypothesis is that 
a software reliability growth dataset will show deterministic, and 
possibly chaotic, behavior as opposed to stochastic behavior. A statistical 
experiment demonstrates deterministic behavior in three software 
reliability growth datasets, and suggestive but not definitive evidence of 
chaotic behavior was found in one of those datasets. Further research in 
this area, including the use of deterministic models for predicting 
software reliability growth, may be found in [310]. 

Software reliability growth models are one tool used by developers to 
estimate the quality of a software system. These models, however, can 
only be applied late in the development cycle, when testing and failure 
data become available. The problem is that this is also the most 
expensive part of the development cycle to find software faults; 
eliminating faults earlier on in development is highly desirable. Hence, 
early in the development cycle, software engineers try to determine 
which software modules pose a high risk of failure. These modules are 
then treated as major risks in the development effort, and additional 
resources are directed towards their development and testing. The 
primary tools used in deciding which modules are development risks 
are software metrics, which represent a different mechanism for 
summarizing the characteristics of a program. The next two chapters of 
this book will examine the usage of machine learning and data mining 
technologies for the analysis of software metrics. 
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Figure 3.7: System 5 Phase Portrait, v = 4 

Figure 3.8: ODCl Phase Portrait, v = 3 
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9 .  

Figure 3.9: ODC4 Phase Portrait, v = 5 

Figure 3.10: False Nearest Neighbor Ratios 
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Figure 3.11 : Space-Time Separation Plot for System 5

Figure 3.12: Space-Time Separation Plot for ODCI
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Figure 3.13: Space-Time Separation plot for ODC4

Figure 3.14: Scaling Plot for System 5
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Figure 3.15: Scaling Plot for ODC 1 

Figure 3.16: Scaling Plot for ODC4 
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Figure 3.17: Scaling Plot for System 5 ,  After Noise Reduction 

Figure 3.18: Scaling Plot for ODC1, Afier Noise Reduction 
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Figure 3.19: Scaling Plot for ODC4, After Noise Reduction 



Chapter 4 

Data Mining and Software Metrics 

4.1 Introduction 

Machine learning and data mining are powerful techniques for 
discovering inherent relationships within a collection of data. Machine 
learning algorithms will generally focus on creating an internal 
representation of a problem domain for the use of a machine (such as the 
connection weights in a neural network), while data mining algorithms 
usually generate models principally for human interpretation. There have 
been a number of works reported on the application of machine learning 
and data mining techniques to the problem of software quality [47, 67, 
68, 93, 95, 133, 138, 139, 140, 143, 2661. The majority of these papers 
use software metrics as predictor attributes, and observed failures or 
changes as the dependent attribute. The majority also employ some form 
of supervised learning, be it statistical regression, neural networks, 
genetic algorithms, or others. Very few unsupervised learning algorithms 
have been used in the software quality domain. In fact, fuzzy c-means 
clustering has not been used in this domain at all! 

This chapter describes new research in the use of machine learning 
and data mining techniques in the software quality domain. This work 
revolves around the use of fuzzy clustering and freely available data 
mining tools for the analysis of software metric databases. A few other 
authors have also investigated the use of data mining of software metrics. 
A call for the use of data mining to assist in the management of software 
projects is made in [226], and some candidate techniques are discussed, 
including multiple regression analysis, Principal Components Analysis, 
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neural networks and classification trees. Mendonca et al. [188] utilize a 
combination of artificial intelligence techniques and statistical analysis to 
mine software metrics. The A1 technique used is called the Goal- 
Question-Metric technique, and is a mechanism for generating queries 
based on user goals and identifying metrics that can provide a useful 
answer to these questions. The statistical tools employed are correlation 
analyses and a search for outliers in a database. A validation of this 
approach, principally using data user surveys, is reported in [189]. 
McLellan et al. report on data mining efforts carried out in a reusable 
component library at Schlumberger Oilfield Services [ 1841. They use the 
terms software mining and shotgun approach to describe a large 
exploratory data mining project. What is unique about their algorithms is 
that the data to be analyzed is raw source code, rather than a table of 
metric values. The analysis tools are custom-built awk scripts, which are 
used to crawl the library and extract metric values. The extracted values 
are then imported to an Oracle database. While the analysis in that paper 
does not extend beyond basic statistics of the resulting tables, the 
potential for using more advanced techniques is obvious. Khoshgoftaar et 
al. [139] report on the use of knowledge discovery in databases (KDD) 
for predicting software quality from software metrics. They studied a 
large telecommunications software system, and its associated 
configuration management and problem reporting databases. The 
system’s modules were divided into two classes: those that had 
experienced a failure during customer operation, and those that had not. 
The data mining tool used was the Classification and Regression Tree 
(CART) algorithm. A tenfold cross-validation experiment with this tool 
obtained an average testing classification accuracy of around 75%. Shin 
and Goel [266] utilized a radial basis function network instead of the 
CART algorithm for data mining in a NASA database of software 
metrics. A bootstrap technique was used to validate the classification 
results. 

The investigation reported in this chapter looks at software metrics 
from the point of view of granular computing (see Chapter 1). The goal 
is to conduct a granular analysis of the datasets, instead of finding a 
regression model to relate metrics and module changes. Fuzzy clustering 
in metrics datasets that are not associated with a failure count, which is 
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the situation developers face early in the software development cycle, are 
also explored. Failure counts are not always available, especially in the 
early stages of software development. This is a significant problem, since 
the data mining and machine learning algorithms utilized to date almost 
exclusively rely on supervised learning, a form of machine learning 
which requires both a set of feature vectors to analyze, and the true 
classification of those feature vectors. Without failure counts, these 
algorithms quite literally have nothing to learn from. Unsupervised 
learning, on the other hand, searches for knowledge within a dataset 
without needing to be told the true classification of a feature vector. 
Thus, unsupervised learning algorithms can be used before any failures 
have been observed. When failure counts are available, unsupervised 
learning can also help identify the knowledge present in the feature 
vectors, and relate that knowledge to the observed failures. This 
investigation illustrates how both tasks may be approached; however, the 
primary goal is cluster analysis, not model-building [306, 307, 3081. 

The remainder of this chapter is organized as follows. In Section 2, 
machine learning and data mining for software quality are reviewed. In 
Section 3 ,  the datasets under study are characterized, and previous work 
involving those datasets reviewed. Section 4 describes the fuzzy 
clustering experiments on the datasets, and section 5 presents the results 
of using the Info-Fuzzy Network and tools from WizSoftB on these data 
sets. 

4.2 Review of Related Work 

In this Section, the relevant literature from machine learning and data 
mining is discussed. The focus of this review is on the use of machine 
learning in the software quality domain, fuzzy cluster analysis, and 
feature reduction. 

4.2.1 Machine Learning for Software Quality 

As described in Chapters 1 and 2, the effort to improve software 
quality is a multi-faceted, ongoing area of research. A few companies, 
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such as IBM or AT&T are reasonably good at building large, high- 
quality applications, but they are the exceptions. For most organizations, 
large size and high quality are almost mutually exclusive [ 12 1, 1221. The 
majority of software quality initiatives collect software metrics and 
attempt to use this data for software process control. Statistical methods 
are predominately used for these analyses, even though software metrics 
are very poor candidates for statistical analysis. Different metrics tend to 
be highly correlated, and the data collected from any project or group of 
projects tends to be skewed towards small modules with low failure 
rates. 

Not surprisingly, soft computing techniques for modeling software 
metrics have also been tried. Neural networks [93, 133, 138, 143, 2661, 
neuro-fuzzy systems [7, 1901, fuzzy logic and classification [67, 68, 951, 
genetic programming [ 14 11, genetic-fuzzy systems [8], and classification 
trees [47, 139, 1401, have been tried on various datasets. Multilayer 
perceptrons, in particular, are one of the more popular non-parametric 
techniques used in the analysis of software metric data. As mentioned, a 
constant problem for both statistical and soft computing approaches is 
that the data are heavily skewed in favor of modules with relatively few 
failures and relatively low metric values. This can be an especially 
serious problem for machine learning approaches that try to optimize a 
global measure of predictive accuracy; “always guessing the majority 
class” is a common mistake for learning algorithms in such skewed 
datasets. In [139], this issue of skewness was accounted for by the use of 
differing misclassification penalties. A greater cost was associated with 
classifying high-risk modules as low risk than with classifying low risk 
modules as high risk. While this approach can improve the learning 
process in a skewed dataset, the results are highly sensitive to the ratio 
between the different misclassification penalties. We will describe 
experiments using an alternative technique for homogenizing class 
distributions, known as resampling, in Chapter 5. 

Our investigation utilizes fuzzy c-means clustering, and is the first to 
do so in this domain. The only other use of fuzzy clustering is a fuzzy 
subtractive clustering approach used in [304]. The fuzzy subtractive 
clustering algorithm requires that expected cluster characteristics be 
specified apriori, and so is not very useful as an exploratory tool. The 
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power of a clustering algorithm is that it does not rely on predefined 
''classes'' in the way that neural networks and other supervised learning 
approaches do. Instead, clustering algorithms search for the structures 
naturally present in the data. Failure classes can be generated by treating 
each cluster as a class. If the clustering algorithm is itself fizzy, then the 
resulting classes are fuzzy, and have imprecise boundaries. This is a 
better representation of the true state of nature in software failure 
analysis [8, 471. 

4.2.2 Fuzzy Cluster Analysis 

Traditionally, cluster analysis has utilized classical set theory. An 
object is either a member of one particular subset, or it is not a member 
of that subset. Furthermore, each subset must be disjoint, and they must 
together form a partition of the total set of objects. This approach, while 
mathematically sound, cannot account for the ambiguity and noise that 
always accompany real-world objects. Fuzzy cluster analysis was 
developed to permit some ambiguity and noise in a robust clustering 
algorithm. A fuzzy cluster is a set to which an object may partly belong, 
to a degree indicated by the membership value for that point in that 
cluster. Afuzzypartition is a partition in which an object may belong to 
several subsets, so long as the sum of that object's membership values 

The most common clustering algorithm underlying fuzzy cluster 
analysis is the well-known Fuzzy c-Means (FCM) algorithm [ l l O ] .  This 
is an iterative algorithm that attempts to find clusters that minimize the 
cost function 

where f is a fuzzy partition, f ix )@)  is the membership of pattern x in 
cluster k, rn is the fuzzij'ier exponent, and d(x,k) is the distance between 
pattern x and the prototype (centroid) of the k-th cluster. FCM is an 
iterative optimization algorithm, in which the optimization of cluster 
prototypes and the optimization of cluster memberships alternate. FCM 

(4.1)
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requires a set of patterns (represented as vectors), a distance metric 
(usually the Euclidean distance), and the expected number of clusters in 
the set of patterns. The initial set of cluster prototypes is chosen 
randomly, and the fuzzy partitionfis computed for these cluster centers. 
Then in each subsequent stage, the cluster prototypes are changed to 
optimize J withfheld constant, and thenfis changed to optimize J with 
the cluster prototypes held constant. The algorithm terminates when the 
improvement of J from the previous iteration falls below a minimum 
threshold, or a maximum number of iterations is exceeded. 

FCM is an unsupervised learning scheme. In general, the patterns that 
are to be clustered do not include class or value information. It is the 
distribution of patterns in feature space that determines which patterns 
will be assigned to a cluster. FCM optimizes J for a given set of patterns 
and a given number of clusters. However, FCM provides no guidance on 
what the correct number of clusters is. Finding the correct number of 
clusters is known as the cluster validityproblem, and there is no general 
theory on how to solve it. What is normally done is to run the FCM 
algorithm on a dataset several times, using different numbers of clusters. 
Then, measures of the “quality” of the resulting fuzzy partitions are taken 
by computing cluster validity metrics for each fuzzy partition. The 
partition with the optimum value for these cluster validity metrics is 
considered correct [ 1101. 

The final value of the objective function J is monotonic decreasing 
with respect to the number of clusters c, and so is not useful as a criterion 
for deciding the correct value of c [ 1101. Instead, measures such as the 
partition coefficient [IS], proportion exponent [297], separation index 
[64], and a fuzzy separation index [300] are used. These measures are all 
based on some notion of what a generically “good” partition would look 
like. Compactness and separation of clusters is one criterion; minimal 
ambiguity (i.e. the values off(x)(k) approach 1 or 0) is another. There is 
currently no way to determine a priori which of these metrics will be 
most appropriate for a given dataset. If the class labels or output values 
for the dataset happen to be available, a customized cluster validity 
metric based on that information is generally the best choice, as this 
information establishes the true (state-of-nature) mapping between 
features and classes [ 1101. 
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4.2.3 Feature Space Reduction 

It is often possible to express the same information that exists in a 
dataset using fewer attributes. Doing so can reduce the computational 
burden of automatic pattern recognition or classification. In addition, 
feature reduction can also remove noise from a dataset, and thus improve 
the performance of a clustering algorithm. One of the most common 
approaches in this area is Principal Components Analysis (PCA). PCA is 
based on the notion that points in the dataset form a hyperellipsoid in 
feature space, and that this hyperellipsoid has a few large axes and many 
small ones. PCA determines the directions of the axes of this 
hyperellipsoid and the length of these axes. For feature vectors with n 
components, form the nxn covariance matrix C for the data set. This 
matrix records the covariance between the i-th and j-th attributes, i,j E 

{1,2,...,n} as C(ij) .  Then the eigenvectors and eigenvalues of C are 
determined. Normally, one finds a few large eigenvalues and several 
smaller eigenvalues. The large eigenvalues indicate axes of the 
hyperellipsoid that carry a significant amount of information about the 
dataset; smaller eigenvalues are assumed to represent noise dimensions. 
The axes themselves are defined by the eigenvectors associated with 
each eigenvalue. Feature reduction is carried out by forming a matrix A 
of the significant eigenvectors, and then applying the transformation 

y = A' (2 - p )  

to every feature vector x, where p is the mean vector of the dataset. The 
resulting dataset will have as many attributes as there were significant 
eigenvectors, will be oriented in parallel with the axes of the 
hyperellipsoid, and will have its origin at the mean point of the dataset. 
Furthermore, each axis of the hyperellipsoid is orthogonal to every other 
axis, implying statistical independence. Other techniques of feature 
reduction include Nonlinear Component Analysis and Independent 
Component Analysis, to name a few [59]. 

(4.2)
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4.3 Software Change and Software Characteristic Datasets 

The datasets examined in this study were generated in the course of 
two Master’s theses at the University of Wisconsin-Milwaukee. The MIS 
dataset was collected by Randy Lind in [166] and widely disseminated in 
[ 1751, while the datasets we have labeled “OOSoft” “ProcSoft” were 
Collected by Warren DeVilbiss in [52]. In this section, a detailed 
description of the datasets is provided, and the results of previous work 
on these datasets examined. 

4.3.1 The MIS Dataset 

This dataset consists of 390 records, each having 12 fields. The first 
11 fields are the values of different software metrics for a module, and 
the final field is the number of changes made to that module. Lind 
assumed that the number of changes in a module corresponds to the 
number of failures in that module [166]. The application that was 
analyzed is a commercial medical imaging system, General Electric’s 
SIGNA system, running on a Data General MV4000 computer. In total, 
the system is comprised of approximately 400,000 lines of source code, 
divided into 4500 modules. Of these modules, 58% were written in 
Pascal, 29% were written in Fortran, 7% in assembly language, and 6% 
in PL/M (the Intel-86 programming language for microcomputers). The 
dataset itself was created by extracting the software metrics for a sample 
of 390 modules written in Fortran and Pascal, and associating those 
values with the number of changes that had to be made for each module 
[166]. The metrics used in this data set are as follows: 

i. 
ii. 

iii. 
iv. 
v. 

vi. 
vii. 

The number of lines of source code 
The number of executable lines (rather than comments or 
whitespace) 
The total number of characters 
The number of comment lines 
The number of comment characters 
The number of code characters 
Halstead’s N ~ defined as the number of operators plus the 
number of operands [97] 
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viii. 
ix. 
x. 

xi. Bandwidth [232] 

Halstead’s NA - an approximation to N [97] 
Jensen’s NF - another approximation to N [ 1 181 
McCabe’s cyclomatic complexity [ 18 11 

An important point about this dataset is what constitutes a “module.” 
Non-integer values like “8.5” were reported in this dataset for McCabe’s 
cyclomatic complexity - a metric which should always consist of integer 
values. While this point is not specifically addressed in [166], it turns 
out that a “module” in this dataset is a source file, which may contain 
one or more routines. The value of the counting metrics, such as the lines 
of source code or the number of comment characters, has been 
determined by summing the values over all routines in a module. The 
values of the complexity metrics, such as Bandwidth or McCabe’s 
cyclomatic complexity, have been determined by averaging over all 
routines in a module. Thus, the granularity of this dataset is fairly coarse. 
(As a side note, McCabe’s original paper does account for modules 
composed of individual functions. The rule typically used to determine 
cyclomatic complexity, ‘‘number of decisions + 1 ,I’ is actually the special 
case where cyclomatic complexity is determined for a single function. In 
[ 18 I], multiple functions are each treated as a strongly-connected 
component, and the total complexity is the sum of their individual 
complexities. Thus, in a module with multiple functions, it is actually 
better to sum the cyclomatic complexity values, rather than averaging 
them.) 

Lind’s thesis reports on the result of a linear correlation analysis of 
this dataset. Pearson’s correlation coefficient is computed between each 
metric and the change count. For the reader’s convenience, we reproduce 
these results in Table 4.1. Notice that there is generally a strong positive 
correlation between each metric and the number of changes, except for 
Bandwidth. 

In addition to [166], Lind and Vairavan published a paper 
summarizing these results [167]. Another work that examines the MIS 
dataset is [205], in which the authors apply Principal Components 
Analysis as well. In this work, the number of principal dimensions was 
found to be two, rather than one as reported later in this chapter. The 
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difference is that in [205], the PCA algorithm was applied to the raw 
dataset, whereas the dataset was normalized first in the current 
investigation. Normalization is an important step, because differences in 
scale across different dimensions can distort the distribution of a multi- 
dimensional database. The PCA algorithm assumes a hyperellipsoidal 
distribution of data; distortions introduced by axis scalings can distort the 
true distribution, altering the orientation and size of the different axes. 

Table 4.1 : Correlation of Metrics to Changes, from [ 1661 

Metric I Correlation to 
Changes 

Total Lines I 0.73 
Code Lines 
Total Chars 
Comments 

Comment Chars 
Code Chars 
Halstead’s N 
Halstead’s NA 
Jensen’s NF 
McCabe’s 
Bandwidth 

0.68 
0.72 
0.75 
0.66 
0.69 
0.62 
0.66 
0.66 
0.68 
0.26 

Another work that examines this dataset is [133]. In this paper, the 
authors use neural networks for software reliability prediction and to 
identify fault-prone modules. The MIS dataset is used to illustrate the 
second objective. The 390 records are first classified into low-, medium-, 
and high-risk modules. The criterion used is that a low-risk module had 
no faults or one fault, medium-risk modules had two to nine faults, and 
high-risk modules had 10 or more faults. The study considers only the 
203 low- and high- risk modules; the medium-risk modules were 
discarded. The network was then trained to distinguish between low-risk 
and high-risk modules. 

There are two important points to notice about [133]. Firstly, the 
“hard” classification of modules based on the number of changes is a 
poor and arbitrary choice. No analysis has been conducted that showed 
that a module with nine changes was substantially different than one with 
10 changes. This artificial classification can dramatically worsen the 
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performance of a neural network classifier. This is because the 
underlying assumption of a neural network is that the inputloutput 
pairings it is trained on represent actual observations, not subjective 
judgments. The network will always seek a smooth mapping from inputs 
to outputs, even when the introduction of subjective judgments has 
destroyed the actual mapping. Second, results in the current investigation 
show that the fault classes that exist in the MIS dataset are in fact 
overlapping, fuzzy classes. The artificial imposition of hard boundaries, 
which are not truly representative of the data, will also distort a neural 
network classifier’s results. 

4.3.2 The OOSoft and ProcSoft Datasets 

The two remaining datasets contain records of software metrics that 
are not associated with a change count, drawn from [52]. Both datasets 
are from operator display applications, which allow limited data entry. 
These datasets are designated as ProcSoft and OOSoft. The application 
underlying the ProcSoft dataset was programmed using structured 
analysis techniques, in a mixture of C and assembly language. The 
assembly language code was primarily for device drivers, and was 
ignored in that thesis. The application underlying OOSoft was developed 
using object-oriented techniques. This program incorporates additional 
fimctionality over and above the functionality of the first program. In 
order to make a comparison, 422 functions from the first program were 
analyzed, and 562 methods from the object-oriented program performing 
the same functionality were analyzed. Functions from the structured 
program, and methods from the object-oriented program, were treated as 
the basic modules of the program. Thus, these datasets represent a more 
fine-grained analysis than the MIS dataset. 

The OOSoft dataset contains 562 records, and the ProcSoft dataset 
contains 422 records, with each record representing one method or 
function. There were a total of 11 measures computed for each function 
or method. These are: 

i. 
ii. 

n l  - The number of unique operators 
n2 - The number of unique operands 
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nl 
n2 
N1 
N2 

VG 1 
VG2 
LOC 

... 
111. 

n l  n2 NI N2 VGI VG2 LOC CMT 
1.0 0.837 0.817 0.791 0.771 0.785 0.751 0.553 

1.0 0.933 0.948 0.864 0.857 0.806 0.554 
1.0 0.984 0.912 0.914 0.829 0.534 

1.0 0.879 0.877 0.820 0.531 
1.0 0.982 0.760 0.476 

1.0 0.755 0.475 
1.0 0.908 

iv. 

vi . 
vii. 

ix. 

V. 

... v111. 

nl  

N1 
N2 

VG 1 
VG2 
LOC 
CMT 

n2 

X. 
xi. 

nl n2 N1 N2 VG1 VG2 LOC CMT 
1.0 0.814 0.796 0.681 0.636 0.597 0.193 -0.107 

1.0 0.952 0.882 0.864 0.447 0.072 
1.0 0.804 0.817 0.472 0.113 

1.0 0.961 0.484 0.148 
1.0 0.472 0.147 

1.0 0.92 
1 .o 

1.0 0.869 0.883 0.678 0.670 0.318 -0.010 

N1 - The number of operators 
N2 - The number of operands 
Halstead’s N [97] 
Halstead’s N” [97] 
Jensen’s NF [ 1 181 
VG1 - McCabe’s cyclomatic complexity [181] 
VG2 - McCabe’s cyclomatic complexity, enhanced to include 
the number of predicates in decisions [52] 
Lines of Code (LOC) 
Lines of Comments (CMT) 

DeVilbiss examined the linear correlations between each pair of metrics 
in each dataset - excluding N, N”, and NF ~ again using Pearson’s 
correlation coefficient. For the reader’s convenience, those results are 
reproduced in Tables 4.2 & 4.3 below. 

Table 4.2: Pairwise Correlations in ProcSoft, from[52]

Table 4.3.: Pairwise Correlations in OOSoft, from [52]
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Note that in Table 4.2, all the metrics correlated well with each other, 
with the exception of the number of lines of comments. In Table 4.3, the 
correlation values tended to be lower. In that dataset, DeVilbiss 
identified a trend of similar metrics (such as the various metrics due to 
Halstead [97]) being more correlated to each other than to different 
“families” of metrics. Also, the number of lines of code and of comments 
correlated well only with each other. ProcSoft and OOSoft will be an 
important part of the analysis in this chapter, because they represent the 
reality of software development: software developers will simply not 
have access to change data until late in the development cycle, and so 
must work with metric values only. 

4.4 Fuzzy Cluster Analysis 

This section describes the methodology and results of a fuzzy cluster 
analysis on the MIS, OOSoft and ProcSoft datasets. The datasets contain 
no missing values, and all attribute values were normalized to [0,1]. The 
Fuzzy c-means algorithm in MATLAB@ 6.0 was used in all 
experiments, with a fuzzifier value of 2 and a stopping criterion of 
minimal improvement of 0.00001. The number of clusters ranged from 2 
to 10, and the cluster validity metrics used were the partition coefficient 
[18], the CS index [64], the Separation index [300], and (in the case of 
the MIS dataset) the average sum of squared error (SSE) in a ten-fold 
cross-validation experiment. 

4.4. I Results for the MIS Dataset 

We allowed the number of clusters in this dataset to range from 2 to 
10. Table 4.4 presents the values of the partition coefficient, CS index, 
and Separation index, as well as the average SSE of the tenfold cross- 
validation experiment, for each number of clusters. The SSE in a single 
partition is the testing SSE for one tenth of the dataset, after the dataset 
was clustered using the other nine tenths. The change value for each 
cluster was determined by taking the centroid of the change counts for 
that cluster, using 
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where Fi is the number of changes for the i-th cluster, Ci is the i-th 
cluster, xi is thej-th record from the dataset,f(x) is the change count for 
record x, and ,uq is the membership of thej-th record in the i-th cluster. In 
the testing phase, the fuzzy nearest prototypes algorithm [135] was used 
to determine the inferred change value of a record. This algorithm takes a 
feature vector, and determines the fuzzy classification of that vector 
based on an existing fuzzy partition, which is exactly what is required for 
this step of the cluster analysis. The squared difference was taken 
between the inferred and actual value of the change count. Finally, the 
mean of the SSE values for all ten partitions was used as a cluster 
validity measure. Since this measure is specific to the dataset, and uses 
the actual output values to evaluate cluster validity, this is the measure 
we used to determine the actual number of clusters in this dataset. 

Table 4.4: Cluster Validity Measures for MIS 

Clusters 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Partition Coef CS Index Separation Average SSE 

0.8832 0.0064 9.5549 3.3596 
0.1275 0.000 1 20.1707 2.1435 
0.6529 0.0003 20.8820 2.7124 
0.603 1 0.0000 16.5433 2.5807 
0.5 145 0.0005 29.1250 2.5836 
0.4865 0.0006 23.9647 2.5753 
0.4262 0.000 1 41.6580 2.5878 
0.4060 0.0001 40.0919 2.5762 
0.4014 0.0009 26.0038 2.5821 

* 103 

Maximal values of the partition coefficient and the CS index indicate 
the best partition; minimal values of the Separation index and the 
average SSE indicate the best partition. Clearly, the three generic metrics 
indicate that two clusters is the best partitioning, while the average SSE 

(4.3) 
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indicates that seven clusters are best. Furthermore, an examination of 
Table 4.4 shows that the CS index and the Separation index also achieve 
local extrema at seven clusters. In Figure 1, the values of the CS index, 
Separation index and average SSE are plotted together to illustrate this 
point. Since the average SSE makes use of the true output values in 
assessing cluster validity, and since the CS and Separation indices 
provide some additional support for this value, seven clusters will be 
accepted as the correct value in the remainder of this investigation. Note 
that the average SSE index is also vulnerable to skewness, and the CS 
index is known to be very sensitive to outliers. It is therefore significant 
that these three metrics all provide support for a partition of seven 
clusters. 

Figure 4.1: Cluster Validity Measures 

Table 4.5 presents a statistical characterization of the change counts 
in the seven clusters identified as the best partition. The minimum, 
maximum, mean, median, and sample standard deviation of the changes 
per module, and the number of data elements present in each cluster after 
it was “hardened” using the maximum-membership method [I lo], are 
presented for each cluster. Also, the change value for each cluster 
centroid, as computed by Eq. (4.3) over the entire fuzzy cluster is 
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Cluster 
1 
2 
3 
4 
5 
6 
7 

included in Table 4.5. As the reader will note, there is extensive overlap 
between clusters in the change (output) dimension. This is evidence that 
changes are by nature fuzzy events; it is not possible to draw a clear line 
between high and low risk module classes based upon the number of 
changes. The reader will also note further evidence of skewness in this 
table. For each cluster, the median value of changes is substantially less 
than the mean, indicating the change distribution in the cluster is skewed 
towards a low occurrence of changes. Furthermore, the distribution of the 
data vectors is itself skewed towards clusters with low change counts. 
Finally, note that the clusters with the highest variance in the change 
counts are also the clusters with the highest mean values of the change 
counts. and the lowest number of data vectors. 

Min Max Mean Median ' STD Count Centroid 
0 27 4.18 2 4.68 102 4.75 
0 47 21.25 16.5 12.94 20 21.15 
8 41 19.32 14 12.12 22 16.56 
0 19 2.26 1 3.10 107 3.12 
14 98 36.75 32.5 22.00 12 29.06 
0 25 5.32 4 4.89 86 6.16 
1 46 10.02 7 9.38 41 9.92 

From a practical standpoint, this kind of cluster analysis will be most 
useful to software engineers as part of a Pareto analysis, in which 
modules are ranked according to increasing metric values. Ordinarily, the 
individual modules with the highest metric values are singled out for 
additional development effort. One alternative, supported by the current 
investigation, is to select modules belonging to the class or classes of 
modules that have high metric values for extra development work. This 
would capture a slightly different set of modules than a pure ranking 
scheme. The first step in performing such an analysis is to find a way to 
rank classes of modules. In the MIS dataset, the ordering of clusters 
based on individual metric values was examined. In Table 4.6, an 
ordering of clusters based on the cluster center component for a single 
metric is presented. The fact that all of the cluster centers, as well as the 

Table 4.5.: Cluster Characteristics in MTS
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Attribute 
Lines of Source Code 

Executable Lines 
Total Characters 
Comment Lines 

Comment Characters 
Code Characters 

Halstead’s N 
Halstead’s N” 
Jensen’s NF 

McCabe’s Cyclomatic Complexity 
Bandwidth 

Change Centroids 

change centroids, have the same ordering indicates that a monotonic, 
granular relationship exists between metrics and changes. In particular, 
note the Bandwidth metric also obeys this relationship. 

Ordering of Clusters 
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1,6 ,7 ,3 ,2 ,5  
4, 1,  6, 7, 3,2, 5 
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1,6, 7 ,3 ,2 ,5  
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1,6 ,7 ,3 ,2 ,5  
4, 1 ,6 ,7 ,3 ,2 ,5  
4, 1 ,6 ,7 ,3 ,2 ,5  

We have used the Principal Components Analysis (PCA) algorithm to 
further characterize this dataset. The PCA algorithm assumes that feature 
vectors are distributed as a hyperellipsoid in feature space, and 
characterizes this hyperellipsoid. In using the PCA algorithm, one 
usually finds a few large eigenvalues, and then a number of small 
eigenvalues. Those large eigenvalues represent the important axes of the 
hyperellipsoid; the other dimensions are assumed to represent noise [59]. 
When the PCA algorithm was applied to the MIS dataset the largest 
eigenvalue was 0.224 1, while the next-largest eigenvalue was 0.01 39. 
Thus, this dataset has one principal dimension. Hence, MIS is a one- 
dimensional dataset, in which the clusters follow a monotonic 
relationship for all attributes. The overriding nature of this dataset is that 
it is monotonic for all attributes. Note that this is in contrast to the results 
reported in [166, 1671, where Bandwidth was determined to have a low 
correlation. Correlation analysis is an important first step in data mining, 
but it is not the end of the story. A correlation coefficient expresses the 
degree to which two variables in a database are linearly dependent on 
each other. The correlation coefficient will not detect a strongly 
nonlinear relationship, nor can it detect linear relationships that are 

Table 4.6.: Ordering of Cluster Centers by Attribute
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obscured by noise. Thus, while a strong correlation is inherently 
meaningful as indicating a linear relationship, a low correlation does not 
rule out a linear relationship, and provides no information about whether 
a nonlinear relationship is at work. 

Note also that these PCA results differ from those presented in [205], 
where the authors reported 2 principal dimensions. As noted earlier, 
attribute normalization was not carried out during that study. 
Furthermore, the two largest eigenvalues reported were 8.291 and 1.650. 
Note that the first eigenvalue is actually much larger than the second. 
The rule used to choose principal dimensions in [205] was to select those 
dimensions with eigenvalues 2 1, rather than searching for the few 
“large” eigenvalues as recommended in the pattern recognition literature. 
The results presented in this investigation are thus consistent with the 
data in [205]. 

There is further evidence to show that Bandwidth is an important 
metric. Another series of tenfold cross-validation experiments was 
performed on this dataset, allowing the number of clusters to vary 
between 2 and 16. In one of these experiments, all 11 metrics were used, 
including Bandwidth. In the other experiment, Bandwidth was dropped 
altogether. Table 4.7 shows the average SSE values per cluster for both 
experiments. As can be seen, removing Bandwidth decreases the 
predictive accuracy of the models for nearly every partition, with the 
lone exception being 11 clusters. 11 clusters is the optimum partition 
without Bandwidth; note that the average SSE is still higher than the 
optimum SSE with Bandwidth, which happens at seven clusters. Thus, 
Bandwidth is indeed an important metric (in contrast to the conclusions 
in [166, 167]), in the sense that it bears a similar relationship to the 
number of changes that other metrics do. 

After reducing the dimensionality of the MIS dataset with the PCA 
algorithm, we re-ran our clustering experiment, to see how the clustering 
results change when noise is removed. Since the Fuzzy c-means 
algorithm requires at least two dimensions in a dataset, the eigenvectors 
corresponding to the two largest eigenvalues were used as features. As 
before, the values of the four clustering metrics for each partition from 2 
to 16 clusters are reported in Table 4.8. The optimum partition, based on 
the average SSE metric, is nine clusters instead of seven. The other 
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3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

metrics do not seem to corroborate this value. There is only a local 
maximum in the CS index for this partition. 

2.7435 2.8428 
2.7124 2.7697 
2.5807 2.6404 
2.5836 2.6267 
2.5753 2.6137 
2.5878 2.6193 
2.5762 2.6191 
2.5821 2.6117 
2.6101 2.5800 
2.5756 2.6094 
2.588 1 2.6001 
2.5907 2.6177 
2.5910 2.6153 
2.6022 2.6130 

Table 4.7: Average SSE with and without Bandwidth 

Clusters 1 SSE * 10.’ with Band. SSE * Id without Band. 
2 I 3.3596 3.3703 

Table 4.8: Cluster Validity Metrics for 2 Principal Components 

Clusters 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Partition Coef CS Index Separation Average SSE * 
103 

0.9031 7.4172 * 5.6178 4.1675 
0.7831 7.4472 * 9.4272 2.9941 
0.732 1 1.3024 * 7.1275 2.7804 
0.7057 2.4046 * 5.7659 2.5847 
0.6372 4.4011 * 10.’ 8.9685 2.4750 
0.6215 1.0645 * 6,9550 2.4281 
0.61 11 2.2374 * lo4 4.8516 2.4037 
0.5722 5.3835 * 5.5110 2.3972 
0.5512 1.0482 * 6.8811 2.4340 
0.5284 5.6127 * 8.9179 2.4156 
0.5336 1.6353 * 4.6215 2.4262 
0.5034 1.3801 * lo4 4.1628 2.4389 
0.4892 5.7385 * 5.7243 2.4444 
0.4805 6.5907 * 7.8394 2.4760 
0.4743 4.1956 * 10.’ 7.8047 2.4524 

10-4
10-5
10-4
10-5
10-5
105

10-5
10-5
10-5
10-5
10-4
10-5
10-6
10-5
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Attribute 
Principal Component #1 
Principal Component #2 

Change Centroids 

The ordering of cluster centers and change centroids was again 
compared for each of the two principal components in Table 4.9. Note 
that the first principal component again shows a monotonic relationship 
to the change centroids. The second principal component, which is 
assumed to be a noise dimension, does not show a monotonic 
relationship to the change centroids. The average SSE obtained using 
two principal components was also compared with that obtained by using 
three principal components. Using three principal components increases 
the SSE considerably (see Table 4.10). These two tables support the 
notion that there is only one principal dimension in the MIS dataset. 
Furthermore, this single dimension again shows a monotonic relationship 
to the change centroids. This evidence supports our earlier finding, that 
the metrics in the MIS dataset are monotonically related to the change 
counts per module. 

Ordering of Clusters 
2,3,4,  5,7,9, 8, 1 ,6  
8 ,6 ,2 ,9 ,5 ,3 ,4 ,7 ,  1 
2,3,4, 5,7,9, 8, 1,6  

Clusters 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Average SSE * 1 O3 - 2 Principal Average SSE * I O3 ~ 3 Principal 
Components Components 

4.1675 4.7424 
2.9941 3.2418 
2.7804 3.0138 
2.5847 2.9945 
2.4750 2.8689 
2.428 1 2.8594 
2.4037 2.8519 
2.3972 2.8857 
2.4340 2.8959 
2.4156 2.8203 
2.4262 2.8268 
2.4389 2.8516 
2.4444 2.8510 
2.4760 2.8933 
2.4524 2.8626 

Table 4.9: Ordering of PCA Cluster Centers by Attribute

Table 4.10: Average SSE for 2 vs. 3 Principa Components
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Clusters 
2 
3 
4 
5 
6 
7 
8 
9 
10 

4.4.2 Results for the ProcSoft Dataset 

Partition Coef CS Index Separation Index 
0.8795 0.0012 20.0554 
0.7524 1.4633 * 39.6065 
0.6951 3.4166 * 21.4158 
0.6138 4.2281 * 33.1550 
0.5450 1.5024 * 35.7366 
0.5392 2.3218 * 13.5172 
0.5070 1.1190 * 12.8757 
0.4738 1.7293 * 13.0638 
0.4416 3.1477 * 19.4462 

Since the ProcSoft dataset does not include change counts, the 
average SSE metric from Section 4.1 is unusable. Instead, only the 
partition coefficient, the CS index, and the Separation index are used as 
cluster validity metrics. The number of clusters varied from 2 to 10. The 
metrics for each partition are given in Table 4.1 1. 

Table 4.1 1 : Cluster Validity Metrics for ProcSoft 

As can be seen, the partition coefficient and the CS index both 
indicate that two clusters is the optimal number, while the Separation 
index indicates that eight clusters is the optimal number. The ordering of 
cluster centers amongst these metrics again shows a monotonic 
relationship between these attributes, as can be seen in Table 4.12. While 
this table does not provide a final answer on which partition is superior, 
is does hint quite strongly that the ProcSoft dataset appears to again be 
monotonic in nature. This result is supported by a PCA analysis, which 
again shows that there is a single principal component to the ProcSoft 
dataset. This result is again different from the painvise linear correlation 
analysis in [52]; that analysis indicated that the Lines of Comments 
attribute was only strongly correlated to the Lines of Code attribute. 

Additional information may be obtained by examining Tables 4.13 
and 4.14, which show the size of each cluster (i.e. how many patterns 
have the highest degree of membership in this cluster). Notice that for 
two clusters, the distribution of patterns is skewed towards cluster two, 
which contains larger metrics values, while the distribution is skewed 

10-4
10-4
10-5
10-4
10-4
10-4
10-4
10-4
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Attributes 
Halstead’s nl  
Halstead’s n2 
Halstead’s N1 
Halstead’s N2 
Halstead’s N 
Halstead’s NA 
Jensen’s NF 

McCabe’s VGl 
McCabe enhanced - VG2 

Lines of Code 
Lines of Comments 

towards clusters of smaller values when we have an eight-cluster 
partition. Comparing these results to Table 4.18, where a statistical 
characterization of the entire dataset is presented, one sees that the proper 
skew in this dataset is indeed towards smaller values. Thus, the partition 
into eight clusters will be the most representative. 

Ordering - 2 Clusters Ordering - 8 Clusters 
1,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1 ,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1 ,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1 ,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1 ,2  2 ,5 ,7 ,4 ,6 ,8 ,3 ,  1 
192 2 ,5 ,7 ,4 ,6 ,8 ,3 ,  1 
1 , 2  2 ,5 ,7 ,4 ,6 ,8 ,3 ,  1 
1 ,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1 ,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 
1 ,2  2 ,5 ,7 ,4 ,6 ,  8,3, 1 

Cluster 
2 
5 
7 
4 
6 
8 
3 

Partition 
82 
136 
83 
59 
23 
25 
11 

1 

Table 4.14: Cluster Size for 2-Partition 

3 

Cluster Patterns 

Table 4.12: Ordering of Cluster Centers by Attribute

Table 4.13: Cluster Size for 8-Partition

1
2

59
363
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Clusters 
2 
3 
4 
5 
6 
7 
8 
9 
10 

4.4.3 Results for OOSoft 

Partition Coef CS Index Separation Index 
0.7371 1.0164 * 229.2901 
0.6601 3.1147 * 184.2069 
0.6704 3.1 147 * 95.8886 
0.6695 6.9479 * 8.9305 
0.5938 4.9494 * 10.~ 16.0950 
0.5383 4.1993 * 17.9859 
0.5150 1.0724 * 17.293 1 
0.5037 6.4591 * 16.1833 
0.4767 6.4591 * 17.8566 

As with the ProcSoft dataset, change counts are not included in the 
OOSoft dataset. Thus, the partition coefficient, the CS index and the 
Separation index are once again relied upon as validity metrics. The 
values of these metrics are presented in Table 4.15 for partitions of 2 to 
10 clusters. 

Table 4.16: Cluster Center Orderings for OOSoft 

Feature 
nl  
n2 
NI 
N2 
N 

Nh 
Nf 

McCabeI 
McCabe2 

LOC 
Comments 

Both the CS index and the Separation index show a global extremum 
at five clusters. The cluster center orderings this time did not indicate a 
purely monotonic relationship amongst all the metrics. As can be seen in 

Table 4.15: Cluster Validity Metrics for OOSoft

10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-4

Cluster Center Ordering
1,3,2,4,5
1,3,2,4,5

1,3,2,4,5
1,3,2,4,5
1,3,2,4,5
1,3,2,4,5

1,3,2,4,5
1,3,2,4,5
1,3,2,4,5
1,3,3,4, 5
a,3,2,4,5
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Table 4.16, all metrics save the Lines of Code and the Lines of 
Comments are monotonically related. However, the Lines of Code and 
Lines of Comments are not monotonically related to the others, and have 
a limited relationship to each other. As with the MIS and ProcSoft 
datasets, a PCA analysis shows that there is only one principal 
dimension. The fact that the Lines of Code and Lines of Comments are 
substantially different from the other metrics was determined by 
DeVilbiss in [52].  

The differences between ProcSoft and OOSoft deserve some 
comment. Both datasets were extracted from similar applications, and the 
same metrics were recorded for each. However, only in the OOSoft 
dataset is there a low correlation between LOC or Comments and the rest 
of the metrics. At this point, it might be instructive to review some of the 
basic statistics for each of these datasets, which are presented in Tables 
4.17 and 4.18. For every single metric, the average, median and 
maximum values are significantly smaller in the OOSoft dataset than in 
the ProcSoft dataset. This fact was remarked on in [52 ] ;  a thorough 
analysis showed that much of the complexity of the structured program 
was due to the use of SWITCH statements to determine the data type of 
arguments. Clearly, this is unnecessary in object-oriented systems that 
support polymorphism and overloading. The removal of these SWITCH 
statements simplifies the program, and reduces the average and median 
values of the metrics. However, the relative change in the LOC was 
smaller than the changes for other metrics, while the use of comments in 
the object-oriented program was significantly different than in the 
structured program. These observations account for the difference in the 
clustering results for the ProcSoft and OOSoft datasets; the meaning of 
these observations is less clear. Without module change data, one cannot 
conclude that object-oriented methods will be less change-prone than 
functions in a procedural program. Indeed, the nature of object-oriented 
programming, which allows multiple methods access to shared data 
structures in a class, introduces significant opportunities for subtle 
program errors. In many ways, testing a class is similar to testing a 
procedural program with a significant number of global variables, in that 
the class variables produce a complex coupling between different 
methods in the class. While the removal of unnecessary complexity is 
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n l  
n2 
N1 
N2 
N 

Nh 
Nf 

McC 1 
McC2 
LOC 
CMT 

helpful, object-oriented systems are not a silver bullet. The complexity 
savings, and the greater conceptual integrity enforced by object-oriented 
analysis and design, must be weighed against the increased complexity 
of testing classes [12, 131. 

Min MClX Mean Median STD 
1 .oo 43.00 11.53 11.00 6.74 
1 .oo 53.00 7.81 6.00 6.92 
1 .oo 375.00 28.17 21.50 37.12 
1 .oo 292.00 14.96 9.00 23.92 
2.00 667.00 43.13 33.00 60.35 
1 .oo 480.00 70.77 64.00 64.92 
0.00 362.00 48.25 42.00 47.52 
1 .oo 28.00 2.27 2.00 2.59 
1 .00 36.00 2.49 2.00 3.30 
14.00 387.00 56.17 40.00 49.50 
2.00 299.00 36.60 21.00 42.89 

nl 1 .oo 54.00 16.48 15.00 9.52 
n2 
NI 
N2 
N 

Nh 
Nf 

McC 1 
McC2 
LOC 
CMT 

1 .oo 151.00 17.91 12.00 18.94 
1 .oo 884.00 75.28 37.00 110.17 
1 .oo 498.00 44.80 20.50 68.60 
2.00 1303.00 120.08 56.50 178.10 
1 .oo 1292.00 155.78 101.50 170.66 
0.00 1029.00 112.48 69.50 132.47 
1 .oo 67.00 5.39 3.00 6.87 
1 .oo 72.00 6.12 3.00 7.87 
3.00 786.00 84.92 55.00 92.83 
0.00 524.00 5 1.07 34.00 60.27 

4.4.4 Conclusions from Fuzzy Clustering 

As noted in the preceding sections, a distinguishing feature of the 
MIS, OOSoft and ProcSoft datasets is that they are one-dimensional and 

Table 4.17: Statistics for OOSoft

Table 4.18: Statistics for ProcSoft

Min Max Mean Mediam STD
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monotonic in nature. In the MIS and ProcSoft datasets, all metrics 
showed this monotonic relationship to each other, while all but the LOC 
and Comments in OOSoft were monotonically related. In addition, the 
MIS dataset shows a monotonic relationship between each metric and the 
number of changes in the module. This phenomenon is referred to as 
multicollinearity, and it has been repeatedly highlighted in the literature 
as one of the most challenging features of software metric datasets. Quite 
simply, multicollinearity tends to confound statistical regression models. 
Indeed, one of the main motivations for using Principal Component 
Analysis in previous studies was to avoid the multicollinearity of 
metrics, since it is a common feature of software metric datasets. 

Three further points can be highlighted concerning the MIS dataset. 
First, Bandwidth is indeed a useful program metric. It bears a similar 
relationship to software changes that other metrics do, and its removal 
from this dataset has a clear, negative effect on the clustering results, 
contradicting the results from [166, 1671. Second, the dataset is actually 
quite noisy. The divergence of the general cluster validity measures from 
the tenfold cross-validation results shows that the partitions having the 
classically “best” cluster quality do not actually represent this dataset. 
We believe this to be a problem of under-determination; the set of 
metrics in this experiment truly does not quantify the full “state of 
nature” in software systems. While this result is well known in the 
context of regression analysis, its confirmation through machine learning 
techniques is a notable result. Finally, in addition to the familiar problem 
of skewness, this investigation also pointed out another unwelcome 
statistical characteristic: variance. Variance also complicates regression 
analysis and machine learning. The clusters detected in the MIS dataset 
show a monotonic relationship between increasing mean change values 
and increasing change variance. Thus, the clusters with the highest 
change rates (the ones we are most interested in) also have the highest 
variance. 
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4.5 Data Mining 

In this section, the same three datasets are analyzed using data mining 
tools available on the Web. The Info-Fuzzy Network (IFN) [155] was 
developed by Mark Last and is described in [176]. This data mining tool 
uses information-theoretic algorithms to extract IF-THEN rules from a 
database, and has been used in various data mining tasks, including 
medical data mining [157] and quality control in the semiconductor 
industry [156]. These IF-THEN rules may be positive associations, or 
they might be negative associations (i.e. negative rules). The IFN can 
only be used in cases where there is a target attribute, and so is applied 
solely to the MIS dataset in this paper. To conduct data mining on the 
OOSoft and ProcSoft datasets, the WizRule tool [298] created by the 
WizSoft corporation is used. This tool searches for associations in a table 
of data, without the need to specify a target attribute. Both of these tools 
are rule-extraction algorithms, which means they search for cause-and- 
effect relationships in the data, and present those relationships in the 
form of linguistic (IF-THEN) rules In terms of the knowledge discovery 
process discussed in Chapter 1, these tools both perform data mining and 
enable the user to evaluate and consolidate the results of data mining. 

4.5. I The MIS Dataset 

The IFN is a data mining tool for data tables in which there is a target 
attribute - an attribute whose value is to be predicted by the remaining 
attributes, which become inputs. The IFN works by aggregating values in 
each attribute domain into groups, and then performing data mining over 
those groups. Thus, rules extracted by the IFN always deal with intewals 
of data, rather than individual data points. The IFN discretizes all input 
attributes, and assumes that the target attribute is in some discrete form 
(i.e. classes). Thus, the first step in data mining in the MIS dataset is to 
transform the change-count attribute into class information. This is done 
by using the hardened classes from Section 4.1. These classes become 
the values of the target attribute in the data mining process. A minimum 
confidence level of 95% was specified for the rules extracted by the IFN. 
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IF Code-Chars is [30,349] THEN Class = 4 
IF  Code-Chars is [30,349] THEN Class IS NOT 4 
IF Codechars is [524,754] THEN Class = 1 
IF Code-Chars is [524,754] THEN Class IS NOT 4 
IF Code-Chars is [ 1841,22211 THEN Class = 6 
IF Code-Chars is [ 1841,22211 THEN Class = 7 
IF Code-Chars is [222 1,27621 THEN Class IS NOT 6 
IF Code-Chars is [2221,2762] THEN Class = 7 
IF Code-Chars > 7547 THEN Class = 5 
IF Code-Chars is [349,524] and LOC is [3,57] THEN Class IS NOT 1 
IF Code-Chars is [349,524] and LOC is [3,57] THEN Class = 4 
IF Code-Chars is [349,524] and LOC is [57,89] THEN Class = 1 
IF Code-Chars is [349,524] and LOC is [57,89] THEN Class IS NOT 4 
IF Codechars is [349,524] and LOC is [89, 2091 THEN Class = 1 
IF Code-Chars is [754, 12011 and LOC is [3,57] THEN Class = 1 
IF Code-Chars is [754, 12011 and LOC is [3,57] THEN Class IS NOT 4 
IF Code-Chars i s  [754, 12011 and LOC i s  157,891 THEN Class = 1 
IF Code-Chars is [1201, 18411 and LOC is [57, 891 THEN Class = 1 
IF Code-Chars is [1201, 18411 and LOC is [57, 891 THEN Class = 6 
IF Code-Chars is [1201, 18411 and LOC is [89,209] THEN Class IS NOT 1 
IF Code-Chars is [1201, 18411 and LOC is [89,209] THEN Class = 6 
IF Code-Chars is [1201, 18411 and LOC is [89,209] THEN Class IS NOT 7 
IF Code-Chars is [2762,4638] and LOC is [89,209] THEN Class IS NOT 6 
IF Code-Chars is [2762,4638] and LOC is [89,209] THEN Class = 7 
IF Code-Chars is [4638,7547] and LOC is [209,471] THEN Class = 2 
IF Code-Chars is [4638,7547] and LOC is [209,471] THEN Class = 3 
IF Code-Chars is [4638, 75471 and LOC is > 471 THEN Class = 3 
IF Code-Chars is [4638,7547] and LOC is > 471 THEN Class = 5 
IF Code-Chars is [754, 12011 and LOC is [89,209] andNF is [OX,  178.91 THEN Class = 1 
IF Code-Chars is [754, 12011 and LOC is [89,209] and NF is [0.8. 178.91 THEN Class IS NOT 6 
IF Code-Chars is [754, 12011 and LOC is [89,209] andNF is [178.9,465.9] THEN Class IS NOT 1 
IF Code-Chars is [754, 12011 and LOC i s  [89,209] and NF is [178.9,465.9] THEN Class = 6 
IF Code-Chars is [2762,4638] and LOC is [209,471] andNF is [178.9,465.9] THEN Class = 7 
IF Code-Chars is [2762,4638] and LOC is [209,471] and NF is > 465.9 THEN Class IS NOT 2 
IF Code-Chars is [2762,4638] and LOC is [209,471] and NF is > 465.9 THEN Class = 3 

Figure 4.2: Rules from IFN 

A total of 35 rules, both positive and negative, were extracted from 
this dataset (see Figure 4.2). In general, these rules support the earlier 
assertion that the dataset is monotonic in nature; the metric values and 
the change classes tend to increase in unison with each other. The most 
interesting result of this data mining experiment is the set of attributes 
that were found to be significant predictors of the change class. As can 
be seen, only the total lines of source code, the number of code 
characters, and the NF estimator of Halstead’s N were determined to be 
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significant. Referring to Section 4.3, Table 1, these are not in any way 
the most correlated with the total number of changes. Indeed, the 
attribute with the single highest correlation to the change counts 
(Comments) is not seen as significant at all, and only one of the three 
attributes with the highest correlation to the change counts (Total lines of 
source code) is seen as significant. 

4.5.2 The OOSoft Dataset 

As discussed earlier, the OOSoft dataset does not contain change 
data. As a result, there is no target attribute, and the IFN algorithm is not 
applicable. However, another data mining tool called WizRule is able to 
search for associations in a table of data even when there is no target 
attribute. As with IFN, the output of WizRule is a sequence of IF-THEN 
rules. However, in the case of WizRule, there is no separation into input 
and target attributes. All attributes may at times appear in the antecedent 
of a rule or in the consequent of a rule. While this format enables data 
mining in the absence of a target attribute, it does tend to generate a large 
number of rules for each association that is found. In addition, WizRule 
will use both intervals and individual data points in its rules. However, 
there are no negative rules in WizRule. 

To minimize the number of rules, the rule probability threshold was 
set as high as possible (99%). However, the extreme skewness of this 
dataset complicated the data mining efforts. One of the parameters of 
WizRule is the minimum number of records in which a rule must be 
present in order to be extracted. Lowering this threshold can rapidly 
increase the number of extracted rules. With the deep skewness of the 
OOSoft dataset, this threshold was ten records. These parameters caused 
WizRule to extract 795 IF-THEN rules from the 562 records in OOSoft. 

The bulk of the rules extracted by WizRule described one of three 
associations: 1) that small values of some metrics implied a small value 
of another metric; 2) that large values of some metrics implied a large 
value for another metric; 3) that the Halstead family of metrics are 
strongly related to each other. Plainly, these are associations that were 
already observed. However, there were a few other associations that 
came to light, which were less obvious. As an example, 43 of the rules 
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extracted from OOSoft represent an association between a specific value 
for each of the different metrics. However, this information had to be 
determined through a manual inspection of the rules; it was not presented 
as a single, cohesive association, and the meaning of this association is 
unclear. A few other, similar associations may be found in the rules as 
well. However, the sheer number of rules produced makes it difficult to 
extract interesting information from the data mining results. 

4.5.3 The ProcSoft Dataset 

As with OOSoft, WizRule was used to conduct data mining in the 
ProcSoft dataset. Again, the threshold number of records was set to 10 
(since ProcSoft is also skewed), while the significance threshold was set 
to 99%. This resulted in the generation of 200 rules, most of which 
described the association of small values with small values, large values 
with large values, and Halstead metrics with each other. However, a few 
more interesting rules were also found. In particular, there were instances 
when metric values that were less than the largest range were associated 
with the largest ranges of other metrics. For instance, the rule 

IF nl=[30,54] and McCabe=[15,67] THEN McCabe2=[18,72] 

relates the largest values of the n l ,  McCabe and McCabe2 metrics 
together. However, the rule 

IF McCabe2=[ 18,451 and CMT=[ 137,4221 THEN LOC=[247, 7861 

relates a lower value of McCabe2 to the maximum values of CMT and 
LOC. Again, these more interesting cases had to be determined by 
manual inspection. They are nonetheless worthwhile, since they signal 
behaviors that are somewhat unexpected. 
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4.6 Remarks 

This investigation has for the first time combined fuzzy clustering 
and data mining for the analysis of software metrics data. This work 
provides a new perspective on these three datasets, and points the way 
toward the use of data mining technology in the context of software 
process control. For organizations at the higher levels of the Capability 
Maturity Model, there is a need to analyze software quality data and 
apply this information to process improvement activities. This study 
points out the need to rely on more than just a correlation analysis for 
this purpose; the more powerful techniques of machine learning and data 
mining are important, useful tools for software quality analysis. 

Some of the special challenges that are a characteristic of this 
application domain were highlighted in this study. Firstly, the individual 
metric values and the change rates for a module all tend to be highly 
correlated with each other. This is a phenomenon known as 
multicollineavity, and it is a serious problem for most data analysis 
techniques. Most statistical regression models assume independence 
between the predictor attributes, which is clearly not the case. Machine 
learning algorithms are able to operate in the presence of 
multicollinearity, but their results can also be subtly affected. In general, 
small variations from the overriding linear behavior would be discarded 
as noise, when in fact those might be the most interesting features. One 
of the main motivations for using PCA in software metrics research is 
that each eigenvector thus obtained is orthogonal to every other 
eigenvector, and thus individual attributes in the reduced feature space 
are in fact independent of one another. 

A second major characteristic is skewness. As mentioned, and as was 
demonstrated in the clustering experiments on the MIS dataset, software 
metric datasets tend to be skewed towards modules with low metric 
values and low change rates. Machine learning algorithms tend to be less 
effective at identiQing minority classes in a skewed dataset. To this fact, 
these experiments also added another complication: the change 
distributions in modules with high metric values also seem to have larger 
variation. This result comes from the MIS experiments; the sample 
standard deviation of the changes in a cluster appeared to be monotonic 
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increasing with the mean of the changes in the cluster. This will 
complicate machine learning in general, and be a very serious problem 
for function approximation approaches in particular. Classification 
approaches will also be affected, but the coarser granularity of the 
dependent variable in will mitigate the impact of the higher variance. 

A third characteristic of software metric datasets is that they are 
underdetermined. As industrial experience and these experiments have 
shown, a single metric or a combination of metrics is not a complete 
predictor of the changes in a module. This is again a subtle problem for 
machine learning approaches, which implicitly assume that each input- 
output pattern is a sample of a fimction. In other words, machine learning 
algorithms assume that the input component of a pattern contains the 
values of all independent variables from the true mapping between inputs 
and outputs. The experiments with the MIS dataset showed a clear 
difference between the usual cluster validity measures and the predictive 
accuracy of those clusters, indicating a significant departure from this 
assumption. 

Chapter 5 revisits the three datasets explored in this chapter, and 
examines ways to remove or overcome the skewness present in them. 
The technique that will be used is called resampling, and is commonly 
used in the machine learning community. However, to the best of the 
author’s knowledge, resampling has never been used in the software 
quality domain before. Resampling a dataset can homogenize the class 
distribution in that dataset, allowing a more effective investigation of 
minority classes. In the software metrics domain, this means that 
resampling can improve a classifier’s ability to recognize the relatively 
few modules with large metric values and a high change rate. 



Chapter 5 

Skewness and Resampling 

5.1 Introduction 

As discussed in the previous chapter, software metrics are used to 
measure the current quality of a software system. While there appears to 
be an overall linear relationship between metric values and failure rates, 
this relationship is not fully understood. At this point, a module with a 
McCabe’s complexity of 20 seems much more likely to fail than one 
with a McCabe’s complexity of 5 ;  however, software engineers cannot 
quantify this assertion. Quite simply, none of the hundreds of software 
metrics available are adequate predictors of future failure rates. 
Furthermore, the use of multiple metrics is complicated by the fact that 
metrics are linearly related to each other, as well as to the failure rate. 
This phenomenon of multicollineavity renders statistical regression 
useless, since independence among regressor variables is a fundamental 
assumption of the regression algorithms. 

Machine learning algorithms, on the other hand, are able to operate in 
the presence of multicollinearity, as demonstrated in [7, 47, 67, 138, 
1411, among others. However, machine learning suffers from a different 
problem: databases of metrics for any project are heavily skewed towards 
modules with low metric values and low failure rates. Skewness distorts 
a machine learning algorithm because the algorithm is attempting to 
optimize a global performance index. For instance, if a particular dataset 
contains 95% small, safe modules and 5% risky models, a machine 
learner can simply guess that the module is small and safe - and thereby 
achieve an accuracy of 95%, which is considered very high [36]. Since 
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the data themselves are skewed, the model a machine learns from these 
data is also skewed. This is a serious problem because the instances 
developers want to learn about - the high-risk modules - are not being 
given priority by the learner. 

Skewed datasets are not new to the machine learning community. The 
primary approaches to dealing with skewness are to resample the dataset, 
or to penalize the learner for not recognizing minority-class examples. In 
resampling, instead of simply taking the dataset as given, one can 
preprocess it so that the interesting cases form a majority of the training 
data. This can be accomplished by undersampling the majority class, 
oversampling the minority class, or both. Alternatively, a learner can be 
penalized by modifying the global performance index to include a cost 
for each error. The cost per error can be higher for minority-class 
examples, and can thus force the learner to make fewer mistakes on 
minority-class examples. Interestingly, the only attempt to deal with 
skewness in the domain of software metrics has been to use differing 
misclassification penalties in a decision tree algorithm [ 1391. The 
investigation in this chapter applies a new resampling algorithm, 
SMOTE [36], to the problem of skewness in metrics datasets. The C4.5 
decision tree learner [245] is then used to mine the resampled datasets. 
When the resulting trees are compared against the trees generated from 
the original datasets, the trees from resampled datasets identified risky 
modules more accurately than trees from the original datasets. 

The remainder of this chapter is organized as follows. In Section 2, 
the existing literature on machine learning in skewed databases is 
reviewed. Experimental results from the resampled datasets are presented 
and compared to the original datasets in Section 3 .  Ideas on how to use 
these results in a practical setting are discussed in Section 4. 

5.2 Machine Learning in Skewed Datasets 

In many interesting machine learning problems, objects are not 
homogeneously distributed among the different classes. Very often, the 
available data mostly consist of predominantly "normal" examples, with 
only a few ''abnormal'' examples. The abnormal examples, however, are 
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precisely the ones that are most interesting to analysts. In addition, when 
there are costs to misclassifying an example, the cost of mistaking an 
“abnormal” example for a ‘lnormal” example is often much higher than 
classifying a ‘‘normal” example as “abnormal.” The problem this poses is 
that a machine-learning algorithm usually works by defining some global 
performance index to rate the algorithm’s current representation of a 
given problem. Learning then involves changing the problem 
representation to optimize that global index. This may involve adding 
new branches to a tree, updating connection weights in a neural network, 
producing a new generation of solutions in a genetic algorithm, adding or 
modifying rules in an expert system, etc. Clearly, when the “abnormal” 
cases are just a tiny fraction of the population, they cannot have a very 
large effect on the global index, and will thus be ignored to some extent 
by the learner [36]. 

The machine learning community has used several different 
approaches to overcome skewness in a dataset. The two most common 
are misclassification penalties and resampling techniques. 
Misclassification penalties are used to “punish” a learning algorithm 
when it makes an error. By associating a different penalty with different 
types of mistakes, the user can force a learner to avoid certain kinds of 
mistakes, at the cost of making more errors of a different type. Thus, 
mistaking an “abnormal” case for a “normal” one might carry a higher 
penalty than mistaking a ‘‘normal’’ case for an “abnormal” one, or vice 
versa. The precise penalty strategy depends on the problem domain and 
the user’s goals. Misclassification penalties are an option in CART trees, 
and can be implemented for a variety of machine learning algorithms 
through post-processing [56,228]. 

Resampling is the other major technique for dealing with skewed 
datasets. Resampling in this sense is distinct from bagging or boosting. 
Bagging is a resampling technique intended to perturb a learner; a dataset 
is sampled with replacement to create a new dataset of the same size. 
This dataset is, properly speaking, not a set, since it can contain repeated 
elements. It is instead known as a bag. Plainly, the class distribution in 
the bag will be roughly the same as in the original dataset. A collection 
of such bags is formed, and then an ensemble of classifiers is trained on 
the resulting bags, one classifier to each bag. The set of test inputs is then 
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submitted to the ensemble, which votes on the final classification for 
each input. The combination of bagging and voting is usually superior to 
creating a single classifier, provided that the learning algorithm is 
unstable [28]. Boosting is another technique for creating classifier 
ensembles. Boosting algorithms such as AdaBoost [264] sequentially 
train classifiers, placing more emphasis on certain patterns in each 
successive iteration. This is done by defining a probability density over 
the training data. For learning algorithms that do not support weighted 
training patterns, the same effect can be achieved by resampling the 
dataset with replacement, according to the desired probability density. 
This is the primary difference between boosting and bagging, since 
bagging uses uniform sampling with replacement. 

The resampling techniques of interest in this study are also referred to 
as stratification. They are used to alter the class distributions within a 
dataset, either to homogenize them or to make the classifier more 
sensitive to misclassification costs (as mentioned in [56]). The simplest 
approach is under-sampling, wherein a subset of majority-class examples 
is randomly selected for inclusion in the resampled dataset without 
replacement. This effectively thins out the majority class, making the 
dataset more homogenous. Similarly, a simple over-sampling approach 
would be to duplicate examples from the minority class and include them 
in the resampled dataset [36]. More advanced techniques are also 
available in the literature; for instance, an under-sampling technique that 
preserves the class boundaries in a dataset is used in [150]. This is 
accomplished using the concept of Tomek links from statistical theory. 
In another vein, the SMOTE algorithm [36] creates synthetic examples in 
the minority class to be added to the genuine examples in the minority 
class. This is an over-sampling technique that was originally motivated 
by decision-tree learning. The authors found that simply replicating 
examples from the minority class causes decision trees to construct a 
small, tightly focused decision region around the replicated examples. As 
an alternative, the authors created synthetic examples along the line in 
feature space that connects a minority class example to its nearest 
neighbor in the same class. They found that this approach resulted in an 
expanded decision region, and thus better generalization. A somewhat 
different application of under-sampling is the “uncertainty sampling” 



Skewness and Resumpling 143 

technique in [161]. The problem area in that paper is automatically 
labeling unlabelled examples in datasets; however, skewness also 
affects any effort to automatically categorize these unlabelled examples. 

There are also other approaches to skewed datasets that do not fall 
under the umbrella of resampling or error penalties. Bayesian networks 
are often used to represent the probability structure of a dataset, but their 
performance as classifiers is sometimes suspect. In [71], the authors use 
classification accuracy as the driving goal in forming a Bayesian 
network. The resulting network performs well, but is considerably 
different from a traditional Bayesian network. By contrast, DeRouin and 
Brown [5  11 approach neural-network learning for skewed datasets by 
adding an adaptive attentionfactor to the learning rate of each neuron. 
The attention factor depends on the class distribution of the dataset, and 
on the proportion of each class that has already been presented for 
training. 

In addition to methods for overcoming skewness, machine learning 
researchers have also been investigating the performance measures used 
to compare different algorithms. The traditional measure, classification 
error, has been extensively attacked for not incorporating the differing 
costs of different mistakes, and for not offering a complete picture of the 
relative performance of two classifiers. Provost and Fawcett [243] have 
instead argued for the use of the Receiver Operating Characteristic 
(ROC) curve from signal processing as a superior measure of classifier 
performance. Other authors have offered their own interpretations of the 
ROC curve [58], or used the curve itself to create new metrics for 
classifier performance [27]. A number of metrics are available for the 
specialized task of evaluating collections of text documents, where 
classes may be both skewed and sparse [61, 2001. An important point to 
note is that the ROC curve (and to a large extent the metrics for text 
search) only measure how well one class is learned. The ROC curve 
plots the number of "True Positives" versus "False Positives," while the 
text-search metrics of precision and recall are based on the correct or 
incorrect placement of examples in a category. A metric that naturally 
measures a classifier's performance in several classes at once is the 
geometric mean, given by 
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P = Vacci . acc2 . . . . . acck (5.1) 

where acci is the classification accuracy for class i alone. 

5.3 Experimental Results 

A series of data mining experiments was conducted on the three 
datasets from Chapter 4 using the C4.5 Decision Tree Generator, release 
8. Each experiment was a tenfold cross-validation, with the examples in 
each partition being selected by a stratified sampling algorithm supplied 
with C4.5. Thus, each individual partition had the same class distribution 
as the original dataset. The classes used were the fuzzy clusters discussed 
in Section 4.4, hardened into classes using the method of maximum 
membership [ l  lo]. For each class of interest, the class testing accuracy 
was computed by dividing the number of correctly classified test 
examples for the class through all ten iterations of the cross-validation by 
the total number of examples in that class. The overall performance in 
each experiment was determined by taking the geometric mean of the 
accuracies in the classes of interest, given by 

P = Vacci . acc2 . . . . . acck (5.2) 

for the k classes of interest in the dataset. Perfect accuracy for all classes 
of interest will be reflected by a value of P = 1. 

Resampling approaches work by identifying one or more classes as 
being interesting, and then altering the distribution of the dataset to favor 
those classes, at the expense of uninteresting classes. A resampling 
strategy that improves the learning of one class will degrade the 
representation of other classes. Thus, the first task is to identifying those 
classes that are of interest in the three datasets. For the MIS dataset, the 
mean number of changes per module in each class is a good starting 
point. An (admittedly arbitrary) decision was made to identify those 
modules that belong to any class having an average of more than 10 
failures. This yields 4 classes of interest: clusters 2, 3 ,  5 and 7 (see Table 
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Overall 
Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 
Class 7 

Performance 

4.5 in Chapter 4). For the OOSoft and ProcSoft datasets, failure counts 
are unavailable. Based on the known fact that higher metric values 
correlate well with higher failure rates, classes in these two datasets that 
have unusually high metric values were identified by comparing the 
cluster centers in each dimension with the mean value for the whole 
dataset in that dimension. The classes of interest in ProcSoft and OOSoft 
are those clusters whose centers are higher than the mean value for each 
dimension in at least two dimensions. 

Experiments with the original datasets were conducted to obtain 
baseline data. The overall accuracy, class accuracy, and geometric mean 
for the MIS, OOSoft and ProcSoft datasets are given in Tables 5.1, 5.2, 
and 5.3. The classes of interest in the MIS dataset were classes 2, 3 ,  5 ,  
and 7. In OOSoft, the classes of interest are classes 3 ,  4, 5 ,  and in 
ProcSoft they were classes 1, 3 ,  8. In general, the classes with the highest 
accuracy were the ones that either had the lowest or highest metric 
values; those classes in between were more difficult to classify. 

10-Fold Accuracy 
84.9% 

80.39% 
80% 

11.21% 
93.46% 
9 1.67% 
88.31% 
15.61% 
0.8091 

Table 5.1: Tenfold Cross-Validation Results for MIS 

Following these initial experiments, undersampling and SMOTE 
were used to alter the class distributions in each dataset. The goal was to 
trade off decreased accuracy in uninteresting classes for increased 
accuracy in the ones that were interesting, or to calibrate a decision tree 
to perform best on the classes of interest. In general, uninteresting classes 
were undersampled to as little as 25% of their original population, and 
interesting classes oversampled by 100 or 200%. In the terminology of 
this study, X %  undersampling means a class with X %  of the number of 
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Class 5 

examples in the original class, chosen through random uniform sampling 
without replacement, is created. Y% oversampling means that a class that 
contains Y/lOO times as many synthetic examples as there were examples 
in the original class, plus all of the original examples, is created. The 
experiments followed an iterative, exploratory process, and were 
terminated when all of the interesting classes had a class accuracy greater 
than the overall accuracy for the entire dataset. 

100% 

Table 5.2: Tenfold Cross-Validation Results for OOsoft 

Overall 
Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 
Class 7 
Class 8 

Performance 

I 10-Fold Accuracv 

10-Fold Accuracy 
89.1% 

66.67% 
95.12% 
8 1.82% 
79.66% 
95.59% 
78.26% 
87.95% 

76% 
0.7456 

Overall 
Class 1 
Class 2 
Class 3 
Class 4 

97.7% 
98.97% 
98.02% 
96.9% 
94.89% 

Table 5.3 : Tenfold Cross-Validation Results for ProcSoft 

Four resampling experiments were conducted in the MIS dataset. The 
resampling strategy for each of these experiments is shown in Table 5.4. 
Table 5.5 presents the overall accuracy, class accuracies, and 
performance for each of these experiments, again determined through a 
tenfold cross-validation experiment using C4.5. As can be seen, all of the 
resampling strategies resulted in improved overall accuracy. One can 
also observe an improvement in the performance measure as the 

Performance 0.9724
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Class 
1 
2 
3 
4 
5 
6 
7 

sampling rate for uninteresting classes is decreased, and increased for 
interesting classes. The procedure is sensitive to the exact combination of 
undersampling and oversampling used in the dataset. The optimal 
strategy appears to be specific to each dataset. 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 
50% under 50% under 25% under 25% under 
100% over 200% over 100% over 200% over 
100% over 200% over 200% over 200% over 
50% under 50% under 25% under 25% under 
Unchanged Unchanged Unchanged 100% over 
50% under 50% under 50% under 50% under 
100% over 100% over 100% over 100% over 

Overall 
Class 1 
Class 2 
Class 3 

Class 5 
Class 6 
Class 7 

Performance 

Class 4 

Table 5.5: Resampling Results in MIS 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 
90.4% 88.9% 89.8% 89% 
8 8.24% 84.3 1% 80.77% 50% 
90.0% 88.33% 85% 96.67% 
88.64% 93.94% 98.48% 96.91% 

100% 91.67% 91.61% 95.83% 
81.4% 79.07% 69.71% 8 1.4% 
93.9% 92.68% 96.34% 96.34% 
0.9303 0.9163 0.9273 0.9645 

94.4% 87.04% 92.59% 74.07% 

Three resampling experiments were conducted in the OOSoft dataset. 
The sampling strategy for each experiment is described in Table 5.6, 
while the results of each experiment are presented in Table 5.7. 
Similarly, the resampling strategy for the 3 experiments conducted in the 
ProcSoft dataset is presented in Table 5.8, 'and the results of those 
experiments are presented in Table 5.9. As can be seen, the combination 
of undersampling and SMOTE is consistently able to alter the class 
accuracies to favor the interesting classes. 

Table 5.4: Resampling Strategies inMIS
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Overall 
Class 1 
Class 2 
Class 3 
Class 4 
Class 5 

Performance 
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Experiment 1 Experiment 2 Experiment 3 
96.1 % 97.2% 98.3% 
96.94% 98.98% 97.96% 
96.15% 94.23% 94.23% 
86.67% 99.17% 100% 
94.74% 95.79% 98.42% 
100% 100% 100% 

0.9364 0.9830 0.9947 

Table 5.6: Resampling Strategy for OOSoft 

50% under 25% under 
100% over 100% over 
Unchanged 100% over 

Table 5.8: Resampling Strategy for ProcSofi 

Class 2 
Class 3 
Class 4 
Class 5 
Class 6 
Class 7 

Experiment 1 Experiment 2 Experiment 3 
100% over 100% over 100% over 
50% under 50% under 25% under 
100% over 200% over 200% over 
Unchanged Unchanged Unchanged 
50% under 25% under 25% under 
Unchanged Unchanged Unchanged 
50% under 50% under 50% under 
100% over 100% over 100% over 

Table 5.7: Resampling Results for OOSoft

50% Under

Class1

Class 8

Class 1
Class 2
Class 3
Class 4
Class 5

Experiment 1 Experiment Experimnt 3

Unchanged UnichangUnchange

50% unfrt
50% under

50% under
50% under

25% under
25%under
100%uov

Unchange
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Table 5.9: Resampling Results for ProcSoft 
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Overall 
Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 
Class 7 
Class 8 

Performance 

Experiment 1 Experiment 2 Experiment 3 
87.8% 87.2% 89.9% 
100% 100% 100% 

86.36% 93.94% 96.61% 
86.44% 83.05% 88.14% 
9 1.1 8% 88.23% 97.06% 
69.57% 73.91% 78.26% 
85.71% 83.33% 76.19% 

94% 88% 92% 
0.9329 0.9385 0.9407 

87.8% 95.12% 90.48% 

5.4 Proposed Usage 

A classifier, which has been calibrated to identify troublesome 
modules, will be of great benefit to software developers. Imagine the 
following scenario: a programmer completes a module for a software 
system, and checks it in to the configuration control system. A few 
minutes later, he receives an email telling him that the module he has 
checked in appears to be in the "moderately risky" category, meaning 
that there is a higher-than-normal risk of failure in that module, based on 
the software metrics computed for that module. The programmer then 
has the opportunity to redesign the module to reduce its complexity, or to 
prepare a more rigorous testing plan. It is even possible that the project 
manager might set guidelines for how much testing is needed for each 
failure risk class. This could be based on a cost optimization model that 
accounts for the differing levels of risk associated with each risk 
category. This scenario is the ideal that researchers have been striving for 
in software metrics research. However, one of the key stumbling blocks 
is that engineers cannot tell a priori what metric values correspond to 
low risk, medium risk, or high risk categories in a given project. Take 
McCabe's cyclomatic complexity: one source [275] asserts that a 
cyclomatic complexity of more than 10 is associated with an increased 
failure rate, while another [S] might say 15. The real problem is that each 
development project is in large measure unique. Different team members 
bring a different set of skills and experience to bear on problems that 
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might be in completely different application areas, and more or less 
difficult than each other. Notice that even calibrating metrics thresholds 
from a company's historical data is problematic, since the development 
team, application domain, and project difficulty are most likely different. 

The solution we advocate is to return to an idea proposed by Brooks 
more than 30 years ago: building a pilot system for each project, with the 
intent to learn from the pilot system and then throw it away [29]. The 
software development community, for obvious reasons, has not 
embraced this idea; building a realistic pilot system will be expensive in 
itself, and thus would significantly increase the cost of software 
development. However, there are a number of results and observations 
gathered in the course of decades of software research that point to the 
usefulness of a pilot system: 

i. Brooks' argument that software development is a learning 
process certainly rings true. Developers constantly have to learn 
new application domains to produce products their customers 
want, application domains that none of the developers may have 
any understanding of. This gap between the domain of software 
development and the application domain is extremely dangerous 
[6]. A pilot system will give developers a chance to develop 
competence in the application domain, before building the 
production system. 
In his seminal paper describing the waterfall model [254], W. W. 
Royce also argues for the development of a pilot system. His 
rationale is that matters such as timing and storage allocation 
should be explored through this pilot system. The developers 
will be able to experiment with a working system rather than 
relying on human judgement, which Royce characterizes as 
"invariably and seriously optimistic" in the area of software 
development. While timing and storage allocation are no longer 
the key issues they were in 1970, the underlying principle is the 
same: design decisions will be sounder if they arise from 
experimental studies as opposed to human guesses. 
The research on iterative development has showed that rapid 
prototyping helps determine a user's true requirements, and can 
lead to better software. Iterative development is now accepted as 
being far superior to a single, monolithic, design-and-build 

ii. 

... 
111. 
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model. Building a pilot system would certainly fit into the 
iterative development model. 
Other engineering disciplines routinely build pilot systems, and 
accept the costs as part of the development cycle. No chemical 
engineer would build a production plant without first building 
and testing a pilot plant, while manufacturers routinely 
experiment with process designs before settling on one 
production process. 
Finally, the results in Chapter 4 indicate that failure classes are 
best determined through a supervised learning algorithm. While 
clustering the MIS dataset, and used these clusters to build a 
decision tree classifier was successful, observe that the cluster 
partition that best represented the actual failure occurrences was 
not seen as optimal by any of the standard cluster validity 
metrics. Unsupervised learning is attractive because developers 
do not have to wait until the system is implemented and tested 
before data mining can begin; however, the results in Chapter 4 
& 5 are evidence that supervised learning is more accurate in this 
domain, probably due to under-determination of the dataset. If 
actual failure counts are needed, then only two choices are 
available: either wait until failure counts become available late in 
the project (which renders the metrics-based screening process 
moot), or gather failure data from a pilot system. 

iv. 

v. 

There is a general consensus in the software engineering community 
that software engineers do not fully understand how to produce high- 
quality software. Engineers have learned that the traditional "waterfall" 
life cycle is a poor fit to the special characteristics of software 
development [232], and that some form of iterative process is needed 
instead. This investigation has pointed out the fact that there is now a 
substantial body of evidence that favors building a pilot system as a 
routine step in software development. In addition to its other benefits, a 
pilot system can also be used to calibrate software metrics to the project 
under development, enabling the construction of automated screening 
tools for software modules. For those projects that utilize a rapid- 
prototyping development approach, the tree for the k-th filter can be 
calibrated on the (k  - 1)-th prototype. 
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5.5 Remarks 

This investigation represents the first-ever application of resampling 
techniques in the domain of software metrics. Resampling has been 
shown to be a viable technique for calibrating a decision tree to identify 
classes of interest in a database of software metrics. We suggest that 
decision-tree calibration can best be carried out through the construction 
of a pilot system, which should lead to higher-quality software in 
general. This concludes the experimental portion of this monograph; a 
summary and discussion of future work are presented in Chapter 6. 



Chapter 6 

Conclusion 

Software systems are the most complex technological systems in the 
world today, and the most ephemeral. They exist as pure information, 
without any physical component. Software has a reputation for being the 
most error-prone of all engineering constructs, and yet it is an essential 
element of the North American infrastructure and economy. This crisis in 
software quality is probably the most urgent technological challenge of 
the 2Ist century. At this time, there are no universally accepted models of 
software reliability, or metrics that can quantify the quality of a software 
system. Simply put, the understanding of software as an engineered 
product is still in its infancy. 

In this book, we have made three specific contributions to the 
engineering of software. The first contribution is an experimental 
investigation of a founding assumption in software reliability modeling. 
In the literature on software reliability, the idea that software failures are 
ultimately the result of a stochastic process is a basic assumption. There 
has never been a specific, empirical study that attempts to support or 
question this assumption. This investigation, based on best practices in 
nonlinear time series analysis, shows that software failures actually 
appear to be deterministic in nature. This result, in itself, is of 
considerable theoretical importance; it means that the most appropriate 
software reliability models will be nonlinear, deterministic models, 
instead of stochastic models. In other words, techniques such as neural 
networks or hzzy inferential systems should produce better models of 
software reliability then non-homogeneous Poisson processes. The 
underlying causal model proposed for this phenomenon is that the fault 
set of a program has a fractal geometry. This points the way to a new 
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fault-forecasting technique; if the fault set of a software system is a 
fractal set as hypothesized, then perhaps the location of unseen faults in a 
program can be predicted from the location of known faults. This is a 
potentially significant development in software testing, which will be 
pursued in future research. 

The second contribution is the application of clustering to software 
metrics analysis. Clustering is an unsupervised learning technique, which 
means that the algorithm “learns” the distribution of points in some 
feature space, without needing an a priori classification of those points. 
Clearly, this would be useful in software engineering, where software 
metrics are available far earlier than failure data. Unsupervised learning 
algorithms can provide significant insight into what modules pose greater 
development risks well before failures are observed. In this context, it is 
quite surprising that fuzzy c-means clustering, a powerful and well- 
known unsupervised learning algorithm, had not been used in the 
software metrics domain. The cluster analysis experiments reported in 
Chapter 4 rectified this omission, and exposed a few new characteristics 
of software metrics datasets. The most significant of these conclusions 
has to do with the relationship between the mean number of failures in 
modules and the variance in failures per module. Quite simply, the 
groups of modules that have a higher average number of failures also 
show a higher variance in the number of failures per module. This is very 
important for any kind of statistical or machine learning algorithm; 
predictive algorithms will encounter significant difficulties when the 
variance between classes is not uniform. In particular, the type of 
machine learning algorithms known as function approximators will be 
severely impacted, as will statistical regression techniques. 

The third contribution to software quality has to do with the nature of 
software metrics datasets. As observed in Chapter 4, and as has been well 
recorded in the literature, software metrics datasets are heavily skewed. 
Most modules in a software system are small and have few bugs. Only a 
few modules are large and buggy. However, it is precisely these large 
and buggy modules that are most interesting. Learning in skewed 
datasets is a typical machine learning problem, and two major 
approaches have been developed for dealing with them. One is to 
associate differing costs with making errors in majority or minority 
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classes; another is to resample the classes and homogenize the 
distribution of examples across classes. In the software metrics domain, 
there is a single paper describing different misclassification costs in 
software metrics datasets, and none whatsoever describing resampling 
approaches. Resampling experiments conducted using the results of our 
clustering experiments in Chapter 4 were described in Chapter 5 .  A 
machine learning system (in this case the C4.5 decision tree algorithm) 
was calibrated to preferentially recognize certain classes of modules that 
posed a high development risk. 

It is suggested that this research should be applied in an iterative 
development model; at the very least, a pilot system should be built on 
each software project, and used to calibrate metrics for the full system. In 
a fully iterative development model, each iteration of the system should 
be used to calibrate metrics for the next iteration. An automated system 
that will pre-screen modules as soon as they are checked in to 
configuration management is envisaged. This system would 
automatically compare a new module’s metrics against a model of 
potentially troublesome modules, and flag any that seem to have an 
elevated risk of failure. This might simply be a warning that extra testing 
is needed, or a manager might assign different levels of necessary testing 
based on the classification of a module. This could also be a component 
of a deployment decision framework. Industrial studies will be needed to 
determine if this is a useful and economically viable concept. 

Future work in this area includes industrial studies of a calibrated 
metrics “filter,” and an investigation of the fractal fault set hypothesis, as 
mentioned above. In addition, several related issues were raised in the 
course of this study: 

i. Firstly, finding the optimal combination of resampling 
algorithms and machine learning algorithms as an automatic 
filter requires more study. 
In a similar vein, one can ask what software reliability models 
are most useful, given the evidence of determinism we have 
found. Both of these lines of inquiry must address not just the 
pure machine-learning question of what algorithm gives the 
highest accuracy, but also practical questions of how machine 

ii. 
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learning can be used in software testing, how such algorithms 
may support a human developer, and in what ways the software 
developer must alter their processes purely to accommodate a 
particular tool. Both lines of inquiry will also require the 
examination of existing and novel machine learning 
architectures. 
One class of software failures that is currently receiving a large 
amount of attention is security failures or breaches. If the subset 
of the fault set representing security breaches also has a fractal 
geometry, then security breaches might also be predicted. 
Most software reliability models today are based on execution 
time, rather than the amount of wall-clock time spent in testing, 
although Musa’s calendar-time model does provide a means for 
converting wall-clock time to execution time. However, open 
source systems, which are tested by a loose association of 
interested parties, pose real challenges for current software 
reliability modeling techniques. Fuzzy sets and rough sets might 
profitably be used to develop reliability models for open-source 
systems. 

... 
111. 

iv. 
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