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Introduction

I.1. Overview and motivation

After the Second World War, the rapid developments of
the aircraft and aerospace industries brought great
engineering challenges and academic interests in
lightweight and high performance structure design.
Structural —optimization techniques are becoming
increasingly important to satisfy complicated engineering
requirements.

Strive to save the weight by each gram.

— AVIC, China

For aircraft or aerospace vehicles, weight is a critical
determinant of performance, payload capacity,
maneuverability and range.

— US National Research Council

In recent decades, structural optimization methods have gained
great progress with the increasing performances of computers and
computing algorithms. Solutions of practical and complicated
optimization problems undergoing complex loading conditions are
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made possible to satisfy severe multidisciplinary design performances.
Among others, topology optimization has become one of the most
promising techniques.

In the 21st Century, many new aircraft and aerospace projects are
being set up in China. This brings great challenges in developing
innovative design methodology and dealing with new scientific and
technical problems issued from the complicated engineering practices.
Nowadays, industrial applications are becoming one of the most
important challenges in the engineering design community of structure
optimization, especially topology optimization for aircraft or
aerospace structure systems. Within this scope, fundamental and
innovative research works are carried out. The research team of
Engineering Simulation & Aerospace Computing in Northwestern
Polytechnical University in China is becoming one of the most active
research groups in this discipline and is motivated to develop the
following techniques and solutions.

In 2003, we started to optimize the wing structure of an aircraft to
satisfy the specific static and dynamic performances. The global
model consists of less than 5,000 shell, rib and beam elements. Later,
the work was focused on the optimization of the composite and
honeycomb structures of a large airborne radome. As mechanical
performances and electromagnetic functionality were contradictory
in design, both of them were optimized simultaneously based on
multiobjective optimization methods.

Since 2005, studies have been focused on the shape optimization of
aero-engine structures, for example turbine disks, blades, shafts,
elastic supports and nozzle parts that belong to a kind of complicated
curved structure working under aerodynamic loads, rotating inertial
loads and high temperature conditions. Typically, shape optimization
of the cutouts on the thin-walled curved panels was a challenging
issue because it could not be directly dealt with using traditional shape
optimization methods. It is required that the cutout boundary should
be kept on the curved surface whatever the design modification. Thus,
both a new mapping method and Boolean operation method were
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developed to define design variables of the cutout in the intrinsic
coordinate system of the curved surface. Mechanical and thermal
stresses were considered in this work. Shape optimization resulted in
a stress-level reduction of about 30% and a weight saving of more
than 10%.

Almost at the same time, we were motivated by the conceptual
design of new aircraft structures. Based on fruitful discussions with
aircraft design engineers, topology optimization of large-scale aircraft
structures was carried out with nearly one million design variables and
dozens of complex loading conditions. In particular, design-dependent
loads and mass constraint with multiple materials should be treated
properly in topology optimization to achieve clear structural
configurations.

At the beginning of 2006, we were motivated by the simultaneous
optimization of payloads and supporting structures after a visit by
some aerospace engineers. The aim was to integrate geometrical
packing optimization with topology optimization for the system
of large launch vehicles. An integrated design methodology of a
multicomponent system was thus developed. The supporting structure
configuration and layout of satellites are optimized to improve the
global dynamic performance. Shape and sizing optimizations were
further used to detail the structural design for the strength and
buckling requirements. In consequence, the dynamic performance is
increased by 17% with a weight saving of more than 7% compared to
the initial design.

Based on the above practices, we have realized that structure
topology optimization has become essentially important to promote
the frontier industrial developments, especially for the design of
advanced aircraft and aerospace systems. The purpose of this book is
to present recent achievements of topology optimization. Methods,
techniques and applications summarized in the book will hopefully be
destined to provide rich illustrations for researchers and engineers
working in the field of structure design.
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I.2. Basic engineering optimization methodologies

Structure optimization methods are basically classified into three
categories: sizing optimization, shape optimization and topology
optimization. Sizing optimization is a classical method and easy to
conduct by choosing cross-sectional dimensions of trusses, beams
and frames, or the thicknesses of membranes, plates and shells as
design variables, as shown in Figure I.1. Sizing optimization can be
regarded as a detailed design procedure of the structural model
involving a large number of design variables. It has been developed
maturely and is becoming the most popular method in engineering
community.

R> 4mm

* Skin

N .
I-section

" Truss rib

Figure 1.1. Sizing optimization for aircraft structure members [RAD 02]
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Shape optimization aims at designing structural boundaries or
holes in a structure, as shown in Figure 1.2. This method can be used
practically to ameliorate local performances such as stress
distribution. There often exist a small number of geometric design
variables owing to boundary parameterization. As the boundary
perturbation directly changes the geometrical model, shape sensitivity
analysis with respect to geometric design variables is always a
problem to be carefully considered. Obviously, both sizing and shape
optimization methods are detailed design procedures without changing
the specific topology of a structure.

Figure 1.2. Shape optimization of cutouts in a thin-walled structure

Figure 1.3. A typical topology optimization problem of MBB-beam [BEN 03]

Topology optimization aims at finding an optimal solid-void
pattern of the material layout over a specific design domain with given
boundary conditions, as shown in Figure 1.3. This method is often
used at the conceptual design stage to optimize global performances
such as the rigidity and natural frequencies of a structure. Topology
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optimization was originally a 0-1 discrete problem. The major
challenge is the solution of a large-scale integer programming
problem. The high computing cost of this kind of problem typically
precludes the use of gradient-free algorithms. The successful
application of Lagrangian duality to the large-scale integer problem
was found in the work of Beckers [BEC 97, BEC 99] who proposed a
dual method to deal with discrete design variables. Most approaches
have been proposed to deal with the problem as a continuous one
since the pioneering work by Cheng and Olhoff [CHE 81] and
Bendsee and Kikuchi [BEN 88]. To have a comprehensive
understanding of the state of the art, one can refer to literature surveys
and books by Bendsge [BEN 95, BEN 02], Eschenauer and Olhoff
[ESC 01] and Bendsge and Sigmund [BEN 03].

Several representative methods have been proposed so far. For
example, the homogenization-based method [BEN 88, GUE 90,
SUZ 91, ALL 04a] describes the structural material layout with
microstructures, as shown in Figure 1.4. Meanwhile, the equivalent
material properties of each microstructure, for example elastic moduli,
are calculated using the homogenization method. Topology
optimization is processed by modifying the dimension parameters of
each microstructure iteratively. However, the mathematical
complexity of the homogenization process prevents the general
application of this method.

Macrostructure

Iﬂl:l

Microstructure

Figure 1.4. Material layout described with the homogenization-based method
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Among others, solid isotropic material with penalty (SIMP) is the
most popular method in topology optimization [BEN 89, BEN 99,
ZHO 91, ROZ 01a]. It proceeds by penalizing exponentially isotropic
material in terms of element pseudo-density variables defined by a
power-law

E =En’ [I.1]

where E; is the elastic modulus of the ith element. E, is the elastic
modulus of the solid material. #; and p are the so-called pseudo-
density and penalty factor, respectively. Compared with the amount of
material for each element, a very low stiffness will be obtained even
when element pseudo-density variables take intermediate values
between 0 and 1. The effect of the penalty factor will push the pseudo-
density toward 0 and 1 during the optimization. In the work of
Bendsge and Sigmund [BEN 99], the power-law approach was proved
theoretically provided that the penalty factor satisfies the Hashin—
Shtrikman bounds.

To obtain a purely or nearly 0-1 material layout, strong penalty
with a great value of p is suggested. Unfortunately, as the derivative of
E;with respect to #;is zero at 5;= 0, the presence of the so-called gray
elements may occur in a numerical solution. To ensure the numerical
stability, rational approximation of material properties (RAMP) was
proposed by Stolpe and Svanberg [STO 01] as an alternative model.

__n

_mE0 [1.2]

i

where ¢ is the penalty factor.

In comparison, SIMP and RAMP are similar to each other.
However, RAMP is sensitive to #=0 in the sense that E; has a non-
zero derivative at ;= 0.

The evolutionary method is an engineering approach. It is based on
the intuitive concept that inefficient materials are gradually removed
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from the design domain to approach the optimal topology. Among
others, evolutionary structural optimization (ESO) developed by Xie
and Steven [XIE 96], Li et al. [LI 99] and Kim et al. [KIM 03] is a
typical evolutionary approach. In most cases, optimal topologies are
generated by deleting the set of elements with low strain energy
values from the entire design domain systematically. The element
efficiency evaluated from sensitivity analysis is used as an index of
element deletion. As the ESO is devised as a unidirectional scheme
only for removing elements, the restitution of the removed elements
will be, however, unallowable during the iteration. Later, an improved
bidirectional procedure named bidirectional evolutionary structural
optimization (BESQO) was proposed by Querin and Young [QUE 00]
and Yang et al. [YAN 99a, YAN 99b]. Materials are allowed to be
added in those void areas with the highest efficiency, but it is required
that an initial design configuration connecting the boundary conditions
and loading locations should be specified a priori.

Both ESO and BESO have the advantage of conceptual simplicity.
Moreover, Tanskanen [TAN 02] proved that, in some particular
situations, these approaches basically correspond to a sequential linear
programming approximate method. However, Sigmund [SIG 01]
indicated that it is questionable to extend these approaches to other
design cases such as multiconstraints and multiphysics problems. A
critical view given by Zhou and Rozvany [ZHO 01], Rozvany
[ROZ 01b] also indicated the existence of some numerical failures. In
particular, neither the stress level nor the sensitivity values used till
now has been able to describe exactly the criterion of the element
deletion/growth when the latter causes a significant variation of the
objective function [ZHU 07]. Nevertheless, the ESO method was also
defended against the criticism [EDW 07, HUA 08, TAN 02, ROZ 02a,
ROZ 02b, ROZ 04].

Other topology optimization methods were also proposed. For
example, the bubble method developed by Eschenauer ef al. [ESC 94]
introduced new holes (or bubbles) into the design domain. The
contour and position of the holes were designed in the way of shape
optimization. The topology description function and level set method
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[WAN 03, ALL 04b, DER 04, MEI 04a, MEI 04b] were developed to
describe the structure as a high dimension level-set function.

It should be mentioned that alternating solid and void elements
over the design domain often occurs in topology optimization. This
phenomenon behaves in a checkerboard fashion and is mesh
dependent. According to Jog and Haber [JOG 96], it was due to the
finite element approximation or design optimization criteria. From this
viewpoint, Rodrigues and Fernandes [ROD 95] improved the
interpolation accuracy by means of high-order elements in thermo-
elastic optimization problems. However, the computing cost increases
dramatically together with the number of degrees of freedom of the
structural system. Later, Sigmund and Petersson [SIG 98] developed
the filtering scheme to smooth the sensitivities of the objective
functions over the considered element and its eight neighbors based on
image filtering techniques. However, this sensitivity filter is not
appropriate for the searching strategies because the modified
sensitivities do not completely correspond to the objective function
and may lead to some divergence problems. As a result, further
developments are being made on the density filter by Bruns and
Tortorelli [BRU 01] and Bourdin [BOU 01]. The modifications are
directly implemented on the updated design variables. More
descriptions and improvements on density filter can be found in the
works of Wang and Wang [WAN 05], Sigmund [SIG 06], Sigmund
[SIG 07] and Lemaire et al. [LEM 07].

Alternatively, Haber et al. [HAB 96] proposed the perimeter
control method to control the checkerboard pattern and detailed
structures between solid and void elements. Zhang and Duysinx
[ZHA 03] also proposed an improved perimeter control of quadratic
form in consistence with the dual approach. Checkerboard control
in the framework of ESO/BESO was discussed by Yang et al.
[YAN 02].

The idea of topology optimization has been extended to different
territories. Numerical results show that a variety of problems
including maximization designs of structural stiffness [SIG Ola],
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natural frequency [PED 00], buckling loads [ZHO 04], heat
conduction [GER 06], CFD channel flow [GER 05] etc., can be
solved. Furthermore, the concept of topology design domain is
extended by introducing structural supports and joints modeled with
spring elements. Typical results presented by Jiang and Chirehdast
[JTIA 97], Buhl [BUH 01], Zhu and Zhang [ZHU 06a] mainly covered
problems of structural stiffness, natural frequency as well as compliant
mechanism. Other extended patterns of topology optimization were
developed to design the microstructures [SIG 99, ZHA 06] and to deal
with design-dependent load problems [CHE 01, BRU 05, GAO 08].

When the eigenvalue problems like natural frequencies and
buckling loads of a structure are maximized with the SIMP model,
an important issue concerns the artificial modes or localized
deformations. This issue takes place in low-density areas where
elements take the minimum pseudo-density values. Compared with
the solid region, these areas are too compliant to support themselves.
Neves et al. [NEV 95] investigated this phenomenon when optimizing
the structural buckling loads. Pedersen [PED 00] and Bruyneel and
Duysinx [BRU 05] improved SIMP interpolation model after
analyzing the artificial modes numerically in natural frequency
maximization and self-weight loading problems, respectively. By
analyzing the material properties of the elements in low-density areas,
Zhu et al. [ZHU 07] used the equivalent material properties of the
orthotropic cellular microstructures that could be effective in avoiding
the artificial modes.

Topology optimization has stepped into its rapid developing age.
Excellent works gain great success in both theoretical studies and
practical applications. Recent literature surveys are given by Guo and
Cheng [GUO 10], Deaton and Grandhi [DEA 14], Sigmund and
Maute [SIG 13] Zhang et al. [ZHA 11] and Zhu et al. [ZHU 16].

1.3. Layout of the book

This book consists of seven chapters mainly summarizing the work
of the authors’ research team. A brief introduction of the background
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and motivation is presented first. Then the state of art of the related
techniques and their applications is reviewed. In the following
chapters, contents are related to standard material layout design with
topology optimization, low-density areas in topology optimization,
dynamic and thermal-elastic design of topology optimization,
integrated layout design of multicomponent system and topology
optimization with constraints on multifastener joint loads. Finally,
potential applications of topology optimization, such as shape
preserving design, smart structure design, structural feature design and
additive manufacturing, etc., are also addressed to provide a forward-
looking perspective.



Standard Material Layout Design

1.1. Basic formulations of topology optimization

In most engineering applications, topology optimization has been
recognized as an effective approach for conceptual design. Topology
optimization results were considered as a design of the most effective
load carrying path, while the structural details in the design domain,
such as structural chamfers and fillets, stiffeners, joints and cross-
sections, were designed in the following shape and sizing optimization
procedure.

A Dbasic topology design procedure can be illustrated with the help
of a typical application of a large cargo aircraft pylon design. The
pylon shown in Figure 1.1 hangs the turbine engine or other payloads
to the aircraft wing. The structure will be optimized to produce a stiff
and lightweight design. First, the pylon is assigned as the design
domain that is discretized by refined solid finite elements. Two
hanging positions, i.e. the tip and lower lugs, are considered as non-
designable components. The design domain and its finite element
model (240,000 elements) are shown in Figure 1.2. The thrust and
weight of the turbine engine are considered as applied loads on both
hanging positions. The total structure is clamped onto the wing at two
fixation positions.
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Figure 1.1. An aircraft pylon (http://www.flightglobal.com)
hanging a turbine engine

Fixations

vA

_

Hanging positions

Figure 1.2. The design domain and its finite element model

Topology optimization of this problem can be formulated in the
following way. First, design variables are defined by pseudo-densities
describing the material distributions.

find: n={n] 0<n<lLi=12,.,n, [1.1]

where 7; refers to the pseudo-density variable of element i representing
a solid or void when it takes the value of 1 and 0, respectively. n. is
the number of pseudo-density variables. Practically, to avoid
singularities of computed element properties, for example the element



Standard Material Layout Design 3

stiffness matrix, a small non-zero value is often assigned as the lower
bound of #..

Suppose the design objective is to maximize the global structural
stiffness, which is normally evaluated as the minimization of the mean
compliance.

min c:lﬁU:lum+FﬂTU [1.2]
2 2

where C is the strain energy in terms of the external load vector F™,
the self-weight load vector F® and the nodal displacement vector U. F
is the total nodal load vector. It is important to note that F®is design
dependent and follows the general rule of no material, no load. The
finite element equilibrium equation corresponds to

F" +F¢ =KU [1.3]
Here, K is the structural global stiffness.

Moreover, a material volume constraint is needed in practical
engineering design.

st. V=Y nV,<V, [1.4]

V' and Vy denote the total volume of the material and the upper
bound, respectively. The combination of equation [1.2] with equation
[1.4] constitutes the standard topology optimization formulation.

In this formulation, apart from SIMP and RAMP, a polynomial
interpolation model [ZHU 09] is introduced to consider the design-
dependent effect of self-weight. In this context, different penalties are
used to match both variations of the self-weight and stiftness.

P: =P

1.5
Ei:P(ni)EiO:<(1_W)77ip+mi)Ei0 2l
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where p; and E; are the specific density and elastic modulus of
solid material, respectively. P(#;) can be considered as an extended
SIMP with w and p being constant parameters of the interpolation.
Details of this interpolation model are discussed in the following
chapters.

To solve the optimization problem, sensitivities of the objective
function and constraint function with respect to the pseudo-density
variables are needed.

T
o, 5 AT 0

9, miam 2| o, o,
; [1.6]
1a(Fs) v (oF 3K
LU+ (F+F) K| S-Sy
2 on 2 on, on,

If polynomial interpolation of equation [1.5] is used, we can easily
obtain the above derivative.

To mitigate possible numerical instabilities, such as mesh-
dependency, checkerboard patterns, the standard sensitivity filter
proposed by Sigmund and Petersson [SIG 98] is the most popular
method and used here.

* 2{77/ [rmin _dls(]’l)]aagv}

{aC] _J
ani niZ[rmin —dIS(],l)]

[1.7]

7, {m|dis(j.0) <, |
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where dis(j,i) refers to the distance between the jth and ith density
points. All the density points located within the predefined distance
Fmin are accounted for in the filtering scheme.

Numerical experiences indicate that topology optimization
problems can be solved with different algorithms, such as Conlin
[FLE 86, FLE 89]), MMA (method of moving asymptotes, [SVA 87],
SQP (sequential quadratic programming, see [NOC 99]), MDQA
(method of diagonal quadratic approximations, [ZHA 97]) and
GCMMA (global convergent version of MMA, [SVA 95, SVA 07)]).
For example, the GCMMA was implemented in BOSS-Quattro which
is a general purpose optimization platform [RAD 02]. This algorithm
is based on the approximation of a function expressed as

T
xz[xl,xz,...,xn]

1
g(x) (x(k))+2p(k)( Ot —xi")J [1.8]

—X;

1
(k)
+Z‘1 [ O §k)_l(k)j

Parameters p¥ and ¢® are computed based on the first-order
derivatives of the function. Asymptotes u,* and /¥ are two positive
parameters that should be updated on the basis of the rule proposed by
Svanberg [SVA 95] to ensure the global convergence of the algorithm.

The benefits of GCMMA are obvious. As it holds the property of
non-monotonicity, convexity and separability in terms of variables,
it is thus helpful in solving optimization problems involving
non-monotonous functions.

For the optimization problem shown in Figure 1.2, the final design
obtained using GCMMA is shown in Figure 1.3. The material
distribution of the optimized design indicates the most effective load
carrying path that can be used as an important reference for the further
detailed design.



6 Topology Optimization in Engineering Structure Design

Figure 1.3. Topology optimization design of the aircraft pylon

1.2. Typical applications of standard topology optimization

In the work of Remouchamps et al. [REM 11], the conceptual
design for the pylon of Airbus A350 is obtained using standard
topology optimization implemented in the SAMCEF platform. The
global design domain was meshed with tetrahedral elements. To
ensure the symmetry, design variable linking was used. The design
domain and optimized design are shown in Figure 1.4.

Figure 1.4. Topology optimization design of
the Airbus A350 pylon [REM 11]

Another example is the rear fuselage design of a large cargo
aircraft. Due to the structural symmetry, only half of the finite element
model is shown in Figure 1.5. It is a relatively huge design with
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460,000 design variables and 22 load cases including the inner
pressure, outer fight loads, loads from the rear cabin door and the
vertical tail. The whole model is fixed on the section connected to the
middle fuselage. The topological design is shown in Figure 1.6 after
more than 50 design iterations. Clear structural pattern including
several reinforced frames, stringers, etc. can be found.

Figure 1.5. Finite element model of the rear fuselage. For a color
version of this figure, see www.iste.co.uk/zhang/topology.zip

Figure 1.6. Topology optimization design of the rear fuselage

The optimized design obtained in the standard topology
optimization is only a rough material distribution [MAU 04]. Further
detailed designs are necessary for the purpose of engineering
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applications. In this case, the optimized design will be post-processed
as engineering models accordingly by adding more engineering
features considering manufacturing, assembling and functional
purposes. This procedure can be done in some general purpose CAD
platforms by skilled designers. The detailed configuration and
performances of the final model will, however, depend upon the
subjectivity and experience of the designer. Some post-processing
schemes that automatically generate a smooth boundary of the
topological design were also presented in the work of Bendsee and
Sigmund [BEN 03] and Sigmund [SIG 07], where the iso-density
curve or surface on the boundary are identified and used. The
performances of the smoothened model were proved to be very close
to the topological design in many works. Moreover, it was also found
that some nodal pseudo-density variable-based topology optimization
methods favor the post-processing [GUE 04].

Once the optimized design has been post-processed into a detailed
engineering model, subsequent shape and sizing optimizations are
needed to improve the structural performances that are not fully
considered in topology optimization, for example, local stress,
buckling, dynamic response, etc.

Figure 1.7. Topologically optimized design
and the rebuilt model [KRO 02]

Typical design procedures can be found in the works presented
by Krog et al. [KRO 02, KRO 04], where the least weight design of
Airbus A380 wing structures was implemented. As shown in
Figure 1.7, according to the topology design of a wing rib, the global
structural configurations were rebuilt and optimized in detail. Some
differences in structural configurations were found between the
topologically optimized design and the rebuilt design. This was mostly
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due to the consideration of detailed requirements. However, in some
other cases, this could also be a compromise to existing design
traditions.

One of the most important applications of topology optimization
was also presented by Krog et al. [KRO 02]. As shown in Figure 1.8,
the leading edge ribs of Airbus A380 were optimized with significant
effects of weight saving.

Figure 1.8. Topology optimization of Airbus A380 leading edge ribs

Attention should be paid to the finite element model and the design
domain of topology optimization. Usually, practical topology
optimization is to design some structural components which are only a
fraction of the total aircraft model. In this case, the external loads are
applied on the total model, and the design domain is then discretized
with refined finite element mesh to maintain the quality of topology
optimization. This is a kind of global model approach. However, a
refined finite element model of a total aircraft will be on a massive
scale, consisting of millions of elements. Topology optimization using
global model analysis is computationally expensive. For this reason,
substructuring techniques have been popularly used [KRO 04]. After
the analysis of the global model, the target component and the
interface loads are extracted from the global model. Topology
optimization is then carried out with the local model and the interface
loads. The substructure-based methods are obviously approximate
schemes as the interface loads are not updated during the structural
topology evolution. However, it was a practical and effective way in
aircraft structure analysis and design.
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1.3. Topology optimization of cellular materials and
structures

1.3.1. Homogenization method and material microstructure
designs

Cellular solids are ultra-lightweight materials widely applied
in aerospace and automotive industries due to their particular
multifunctional properties such as energy absorption, thermal
isolation, anti-impact, etc. The structural efficiency can be
convincingly achieved by designing hierarchical cellular materials
optimally even with moderate-quality constituents.

In recent years, topology optimization has become an efficient
approach to fulfill this task. Successful applications are rapidly
recognized for the purpose of tailoring effective properties of cellular
materials. Among others, an inverse homogenization method was
proposed by Sigmund [SIG 94, SIG 95], Sigmund and Torquato
[SIG 97] as a material design procedure. The homogenization method
that allows us to establish macroscopic effective properties of the
heterogeneous medium in terms of microstructural variables was
coupled with the SIMP model such that materials can be efficiently
tailored to attain optimized microstructures or some prescribed elastic
even extreme properties. Typical designs are shown in Figure 1.9.
Similarly, a strain energy method was also developed by Zhang et al.
[ZHA 07] to favor numerical implementation.

z

Figure 1.9. Different 3D cells with prescribed Poisson’s ratio [SIG 95]

However, as the homogenization method is a two-scale asymptotic
method based on the periodicity assumption of the microstructures,
the predicted effective properties only depend upon the material



Standard Material Layout Design 11

microstructure, volume fractions and properties of constituents.
Mathematically, under the periodicity assumption of the
microstructures, the asymptotic expansion of each physical field, for
example, the displacement of an arbitrary material point in a cellular
elastic body is expressed as

u(x)=u’(x,p)+pu' (x,y)+ v’ (x,p)+.. [1.9]

where x is the macroscopic variable measured in the macroscale
system (X) and varies slowly from unit cell to unit cell. y= x/y is the
periodic microscopic variable measured in the microscale system (Y)
and varies quickly within each unit cell. Parameter y is a small value
representing the aspect ratio between the micro- and macroscale. Due
to the complexity of analyzing the cellular structure illustrated in
Figure 1.10 directly, unit cells of periodic microstructures are often
modeled as a homogenized medium with effective elastic tensor.
Based on the asymptotic expansion of equation [1.9], the elasticity
equilibrium equation system defined over the unit cell can be
expressed as:

o g

Dgy=(p,%%ay Voey 1.10
3y 3y = [1.10]

ikl a

The effective elastic tensor of a periodic microstructure is then
written as:

Kl

5

Y=(Dy) _(qfl)* [1.11]

1
Dy, = M ,[ r [DW =Dy,

where (Dijk,)* denotes the average elastic tensor depending upon the
material volume fractions of constituents as evaluated by the classical
mixture rule. (a,-jkl)* is the average stress tensor associated with the
displacement vector #* over the unit cell in load case k/ and represents
a correction term reflecting the influence of the material
microstructure of the unit cell. It is necessary to note that effective
heat conductivity coefficients and thermal expansion coefficients of a
microstructure can be evaluated in a similar way.
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It should be mentioned that such a formulation is valid only

asymptotically with X being infinitesimally small and the obtained
results preclude any scale-effect in the real structure even for stiffness
design. In reality, this theoretical limit can never be reached. In
other words, the homogenized descriptions are only valid when
the size of the macrostructure is very large compared with the size
of its microstructural heterogeneities. This situation was confirmed
in the earlier study of buckling design by Bendsee and Triantafyllidis
[BEN 90]. Therefore, it is of great interest to formulate the
integrated design problems with the retention of scale-effect for a real
structure.

1.3.2. Scale-effect of the material microstructure

In contrast, strain energy minimization of cellular structures
corresponds to a multiscale problem that is different from both the
material design and pure structural design. The essential influence of
underlying material microstructures upon macrostructure behavior
requires that microstructures be designed to optimally match the
loading and boundary conditions of the specific macrostructure. In this
context, volume fractions of solid phases, the microstructure topology
and the scale size of the material microstructure all have to be taken
into account simultaneously.

Till now, Fujii et al. [FUJ 01] have studied the strain energy
minimization of the macrostructure through topology optimization of
material microstructures using the homogenization method. Rodrigues
et al. [ROD 02] proposed a hierarchical computational procedure that
integrates the global topology and local material design. As there may
exist multiple solutions of microstructures that produce different
local optima of effective elastic properties, Neves et al. [NEV 02]
introduced the local buckling constraint to penalize the microstructure
in the optimization procedure.
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Figure 1.10. Scale-effect of cellular core with identical
microstructure and volume fraction

In fact, one important issue in the simultaneous design of materials
and structures is concerned with the scale-effect of the microstructure,
as shown in Figure 1.10. This mechanism was confirmed from both
micromechanics theories and experiments [SUT 99, PEC 99].
Recently, Tantikom et al. [TAN 05] pointed out this phenomenon
experimentally. As shown in Figure 1.11, the specimen with tubular
core results in different nominal stress-strain curves when the number
of cellular layers changes. Curves become indifferent whenever the
number of cellular layers is large enough. This mechanism is the
so-called scale-effect as discussed by Burgueno et al. [BUR 05] and
Dai and Zhang [DAI 08]. Therefore, the scale-effect should be taken
into account together with the morphology of the microstructure in a
comprehensive way in the design optimization.

However, as the homogenization method leads to the same
effective elastic tensor in all above cases of microstructures, its
utilization is reasonable only when the number of cells involved in the
core is large enough. On the contrary, when the panel has only a few
cellular layers, the scale-effect becomes important in the design so
that the predicted effective properties are unable to account for the real
state of the material microstructure.
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Figure 1.11. Specimens with three, five and seven layers and in-plane
nominal compressive stress-strain curves of pure copper assemblies with
different numbers of rows [TAN 05]

Here, an integrated optimization approach [ZHA 06] is presented
for the strain energy minimization of two-dimensional (2D) layered
structures. The scale-effect of the microstructures upon the
topologically optimized design is highlighted. Without loss of
generality, we consider the periodicity of the cellular microstructure in
a given design domain, as shown in Figure 1.12. The scale-related
design optimization may be interpreted as how to determine the
number of unit cells as well as the involved microstructures. In fact,
such a scale-related problem reflects the intrinsic dependence between
the material and structure. With the given material volume fraction,
increasing m, i.e. the number of the unit cells, means reducing the size

of each microstructure and the small parameter X defined as the ratio
between the microscale of the material and the macroscale of the
structure. In the ultimate case of an infinite number of unit cells, the
scale-effect will become ignorable and the design result converges to
the asymptotic solution of the homogenization method. Alternatively,
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the limit case of involving only one unit cell corresponds to topology
optimization of the pure macrostructure.

Y.

st AN

m=1x2 m=1x4 m=2x4 Homogenization

BN /S
t

m=1x1 m=2x1 m=4x1 m=4x2 m—> oo

v

Figure 1.12. A two-dimensional domain with different numbers of unit cells

1.3.3. Scale-related topology optimization

For illustration, a cellular solid in the macroscale (X) with known
boundary conditions and external forces is shown in Figure 1.13.
The optimized solution is one that uses a spatial distribution
of heterogeneous cellular materials characterized by different
microstructures at different locations of the design domain. Thus,
materials will be optimally distributed to match the loaded regions. To
do this, the design procedure is partitioned into two steps: macroscale
layout optimization and refined microstructure optimization.

F i
%*%\\ﬁ/gix

f
|
\

X A microstructure
1

macrostructure

Figure 1.13. lllustration of a cellular domain
with different material microstructures
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First, the macrostructure is considered as a homogenized body and
discretized into a finite element model. The overall behavior can be
determined by solving the corresponding FE equilibrium equation
system. For each element, suppose that the element stiffness matrix
depends upon the element pseudo-density variable linearly. This
corresponds to the SIMP model with exponent p = 1 for a smooth
variation of the optimized pseudo-density variables over the design
domain. Suppose the structural strain energy is minimized subjected to
the volume constraint. The formulation corresponds to exactly a
traditional sizing optimization problem.

(Macroscale for global structure)
find: n" ={77,.(A)} i=12,..,n"
1

min : C=§FTU [1.12]
s.t. V<V,
0<n™ <1

with
(Macroscale for global structure)

1.13
E, :77,-(A)Eio B

Once the above mentioned macroscale optimization problem is
solved, a global distribution of pseudo-densities is obtained over the
macrostructure. If values of pseudo-densities attain nearly 0 or 1, it
means that the corresponding element is a void or solid one.
Otherwise, the element has a cellular microstructure with intermediate
pseudo-density and needs to be further refined at the step of the
microscale design. To this end, all regions of intermediate pseudo-
density values are first identified and grouped into subdomains and
then topology optimization is carried out to determine microstructures
and their sizes following design specifications and available
manufacturing capabilities. Meanwhile, each unit cell considered as a
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subdomain can be allowed to have its proper microstructure.
Alternatively, we can also consider elements of the same pseudo-
density values as a group of subdomains to hold the identical
microstructure distributed periodically. Here, all subdomains are
considered to be unit cells of identical size, which are further

discretized into n(B)

€

finite elements with their own pseudo-density

variables. For unit cell i, the problem of microstructure topology
optimization can be similarly defined as

(Microscale for unit cell i)

find: " ={n]} j=12..n

i i

max: C, =%U,.TKU,. [1.14]
st. V. <y
0<n® <1

where the microstructure is optimized in terms of the pseudo-densities
for each unit cell in microscale. Vjis the volume of the unit cell i with
full material. The strain energy related to the objective function is also
calculated locally in the microstructure.

It should be noted that: (1) the strain energy in microscale is
calculated according to the known nodal displacement vector in
macroscale; (2) as the displacement field is known, the stiffness
design now corresponds to a maximization problem of strain energy
and (3) the upper bound of the volume constraint for each unite cell is

also inherited from the macroscale design variable 77I(A) .

To figure out the optimal topology, pseudo-density variables in
microscale are penalized by the SIMP law, e.g. p = 4 in the current
design procedure. To perform a sensitivity analysis of the objective
function, two approaches are set up as follows.
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1.3.3.1. The scale-related approach

For element j included in the unit cell i, assume that the
dependence of element stiffness matrix upon its pseudo-density
variable obeys the SIMP law. Similarly to a topology optimization in
macroscale, the sensitivity of the objective function with respect to
each pseudo-density variable in microscale can be directly calculated
as follows:

aC, Ly oK, vl TaK"jU _
(B) i (B) 71 i (B) 71
ony 2 " an 2 an;

i,j i,J

1 p
577(3.) €

ij

[1.15]

where K;; and C;; denote the stiffness matrix and strain energy of
element j in unit cell i.

1.3.3.2. The homogenization approach

When the unit cell is specified to have a small enough size the
homogenization method can be applied to evaluate the effective
elastic matrix D". In such a way, the stiffness matrix of one
such element depends upon the microscale pseudo-densities as
follows:

K, =[BD} (n”)B,dQ [1.16]

where B; is the strain-displacement matrix or the geometry matrix.
Based on the finite element discretization of unit cell i, the effective
elastic matrix is evaluated according to the homogenization method in
its discrete form:

0! =3[0, ()0, ()8, U, (1" e L7

D;; and U;; are the elastic matrix and nodal displacement vector of
element j involved in unit cell 7.
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According to the SIMP interpolation model, the derivative of the
effective elastic matrix can be written as:

oDl 1
W:m[}flj)n,,/rfi,/o—’;’mjni,fls,,fu, (n”)de- ZID B, ]/ de

: B E /

Now, based on these intermediate results, the chain rule will be
finally applied for the differentiation of the objective function such
that

oC, (n” "
%:l IK, U, =—U |8 oD, BdQ |U [1.19]
a77i,j 2 anxj anz/

Obviously, the scale-related approach is a simple and convenient
formulation to obtain the design sensitivities needed for topology
optimization when compared with the homogenization approach.

1.3.4. Numerical examples

Consider now a 2D rectangular domain of plane stress state, as
shown in Figure 1.14. Assume that the design domain has a dimension
of 32 x 20 m and a thickness of 1 m. The panel is loaded vertically
with 100 N/m. Young’s modulus and Poisson’s ratio of the material
are 1,000 Pa and 0.3, respectively. In this problem, a volume fraction
of 60% is used for the solid material in the design domain and the
dimension of the unit cell, i.e. representative volume element (RVE) is
noted by [ x h. For finite element modeling, the problem will be
ill-conditioned and become singular if solid elements are eliminated
along the right edge where the vertical load is applied directly. To
avoid this, a small non-designable elastic portion will be added
artificially along one such edge to transfer the applied load.
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Figure 1.14. 2D rectangular design domain

The 2D panel is macroscopically discretized into a mesh of 20 x 32
finite elements. Assume that elements in each horizontal layer have
the same value of pseudo-density variables that can be realized in
the way of design variable linking technique. Consequently, 20
independent design variables exist. The optimized distribution of
pseudo-density variables in macroscale is shown in Figure 1.15. This
is exactly equivalent to a sizing problem. A symmetric distribution is
obtained with values of pseudo-density variables being (1.0, 0.72,
0.46, 0.41, 0.46, 0.72 and 1.0). As expected, such a graded distribution
is the stiffest to prevent the bending deformation from the engineering
viewpoint.

Figure 1.15. Macroscale design for material layout
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According to the result given in Figure 1.15, unit cells in each
horizontal layer are assumed to have an identical microstructure and
eight independent subproblems will be solved. Based on the scale-
related approach, the optimized solution related to 16 x 8 unit cells is
given in Figure 1.16(a) with the corresponding strain energy denoted
by C16><8.

Comparatively, if the homogenization method is used, the effective
elastic tensor is evaluated for each macroelement meshed with 32 x 20
microelements. The optimized solution denoted by C- is shown in
Figure 1.16(b). We can see that microstructures change from layer
to layer in order that load-bearing capacities of materials are
fully explored to resist the bending force. In particular, a lozenge
microstructure is obtained along the neutral axis to resist the
maximum shear stress. Note that although values of the structural
strain energy obtained by both approaches are very close, a difference
still exists between microstructures.

a) Ciex3 =172 019.7 b) C-=172171.8

Figure 1.16. Comparison of scale-related design
and homogenization-based design

To further reveal the scale-effect, the influence of the number of
unit cells upon the optimized designs of microstructures is studied
now. Suppose that the inner core has a uniform value of 0.5 for
pseudo-density variables and all unit cells in the inner core have a
common microstructure. This corresponds to the same volume
fraction (60%) over the whole structure but a volume fraction of 50%
over the core. Figure 1.17 shows that a variety of design solutions are
obtained for square unit cells of different scales. The comparison
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indicates that a successive size diminution of the unit cell reduces the
design space and increases the number of design variable linking
constraints so that the structural strain energy increases and converges
to the solution of the homogenization method. This observation
indicates that both material and structural designs can be unified from
the viewpoint of the relative scale and the homogenization-based
design is a limit solution case with infinite unit cells.

a) Cox1 =165 061.1 b) C4x =168 025.8  ¢) Csx4 =176 616.6;
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Figure 1.18. Cellular core design optimization
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The proposed approach [ZHA 06] can also be extended to the
cellular core design of circular structures that find wide applications in
the aerospace industry. The test is about a circular membrane with
inner and outer skins as shown in Figure 1.18. The inner hole and
outer contour have radii of 60 and 120 mm, respectively. Two cases of
different skin thicknesses of 6 and 1 mm are investigated. Fixations
will be imposed along the inner hole. Under the point-wise tangential
loading of 1,600 N applied on the outer contour, the cellular core
limited to a volume fraction of 40% needs to be designed for a
maximum rigidity. To do this, the structure is partitioned into 16
representative sectors, i.e. unit cells that hold the cyclic symmetry.

By performing the refined design procedure using the scale-related
approach, optimal design patterns are illustrated in Figure 1.19. It has
been found that stiffeners have a layout nearly perpendicular to each
other like the classical solution of the Michell truss structure. Besides,
both solutions are very similar except for small holes near the outer
contour when the skin thickness is 6 mm. These holes are completely
filled when the skin thickness is 10 mm.

Figure 1.19. Optimized designs of cellular core
with outer skin thicknesses of 6 and 10 mm

By keeping the skin thickness of 6 mm unchanged, two more
examples are tested by partitioning the structure into 8 and 24 unit
cells. The optimized designs are compared in Figure 1.20.
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Figure 1.20. Optimized designs of cellular core with 8 and 24 unit cells

Apart from the above work, Yan et al. [YAN 08] and Liu et al.
[LIU 08] proposed a concurrent optimization procedure to design
uniform cellular materials as well as macrostructures. Figure 1.21
presents one typical design where a mechanical load and a
temperature rise are applied simultaneously.

T
1
1
A Unit Cell _|-- ]
R e .
J 9 AT

4 el 1

N ; H=47.7cm
Micro design domain :
Macro Design Domain I
1
L=72em |

1F=500000

Figure 1.21. Design problem with the simultaneous
presence of a mechanical load and a temperature rise
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Figure 1.22. Simultaneous topology optimization of
microstructures and macrostructures [YAN 08]

Note that Rodrigues er al. [ROD 02] and Coelho et al
[COE 08] carried out topology optimization of macrostructures and
microstructures in a hierarchical way without accounting for scale-
effect. An optimized design is shown in Figure 1.23. Different
microstructures are obtained in different locations to match the local
material properties calculated from the global material distribution and
loading conditions.

Figure 1.23. Hierarchical optimization of
macrostructures and microstructures
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1.4. Conclusions

Standard material layout design is the basic form of topology
optimization. By defining the design variables related to the finite
element mesh and assuming the constraint to material volume,
topology optimization of macrostructure, microstructure and their
integration are made possible.

Microstructure design or material design is mostly formulated
based on the homogenization method to find proper microstructure
patterns satisfying the prescribed material properties. It is, however,
scale-independent. With the introduction of the subdomain concept, we
investigate the scale-effect of the microstructure upon the optimized
topology. The integrated design of materials and structures is introduced
as a two-level design methodology combining the macroscale layout
optimization with the refined design of microstructures.

The scale-effect of the microstructure upon the optimized topology
solution is highlighted. In limit cases, the design becomes a pure
topology optimization problem of the macrostructure or a pure topology
optimization problem of the microstructure that is asymptotically
equivalent to the homogenization solution. Therefore, it concludes that
designs of material microstructures and macrostructures are relative
solutions depending upon the scale. Likewise, designs of periodical
cellular structures can also be extended to circular structures of cyclic

symmetry.
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Low-Density Areas
in Topology Optimization

2.1. Localized mode in low-density areas

Localized mode often appears in topology optimization for
maximizing the natural frequencies or buckling loads [NEV 95,
PED 00, ZHO 04]. It means that the vibration or buckling takes place
only in the low-density areas related to void elements that should
not physically have a mechanical effect. Consequently, structural
responses and sensitivities are incorrectly calculated which misleads
the optimization process. This phenomenon is actually recognized as a
type of numerical singularity due to the improperly defined material
properties for the void elements, especially when the popular SIMP
model is directly used.

A simple example of a cantilevered beam is illustrated in
Figure 2.1. The cross-section of the beam is a square with a size of
0.05 m x 0.05 m. Suppose that the beam is discretized into
two elements. Only nodes A and B are free and 4 degrees of freedom
exist altogether, i.e. the vertical displacements and the rotations of the
two nodes (v,,8,,v;,6;). Based on the SIMP interpolation model,

pseudo-density variables are penalized in different orders and related
to material properties in the following form:
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Element 1: elastic modulus E;
100 kg/rn3 , Poisson’s ratio 0.3;

Element 2: elastic modulus E,
100 kg/m’, Poisson’s ratio 0.3;

;713><106 Pa, density p, =

72x10° Pa, density p,

Figure 2.1. A cantilevered be

7 Element 1 A Element 2 B
%‘ <% 7
% — - — .

am with two elements

Theoretically, the stiffness and mass matrices of element i are

expressed as:

[ 12E1  6EI  12E1 6E[ |
I r L I
6E.1 4E1 6EI 2E]I
2 2
K, = I L [ L [2.1]
12E1  6E1 12EI 6E 1
L r
6F.1 2E1 6EI 4E]I
| I L I’ L |
156 22L 54 —13L
. 22L 4 137 -3I7
M, = 2AL ) 2.2]
420 | 54 131> 156 -22L
—13L =3I> -22L 4I°

where 4 and [ are the area and moment of inertia of the beam cross-
section. L is the length of one beam element.
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By assembling the element matrices and removing the DOFs fixed

by the boundary conditions, the global stiffness and mass matrices are
expressed as:

(121 6/ 12E,1 6E,I |

7(E| +E) —(E-E) - L32 L22

6/ 4] 6F,1 2E,1
ﬁ(El_Ez) 7(E1+E2) - 22 2

K= L L L [2.3]

12E,1 6E,]  12E,]  GE,I
D T r P

6E,I 2E, 1 6El 4El
I’ L I’ L

156A4L(p, + p,) —224%(p,—p,) S54p,AL —13p,Al*
1 ~224L(p, - p,) 44l (p+p)  13p, AL -3p,AD

T40|  s4pAL 13,413 156p,AL  —22p,AI*
_13p,AL? Bp, AR —2p, AR 4p, AL

[2.4]

First, suppose elements 1 and 2 are solid with pseudo-density

variables #; = 1 and 7, = 1. The assembled global stiffness and mass
matrices correspond to

0.1000 0 —-0.0500 0.1250
B 0 0.8333 -0.1250 0.2083 2.5]
~1-0.0500 —0.1250 0.0500 —0.1250 '

0.1250 0.2083 -0.1250 0.4167

0.9286 0 0.1607 -0.1935

0 0.5952  0.1935 -0.2232
0.1607 0.1935 0.4643 -0.3274
-0.1935 -0.2232 -0.3274 0.2976

[2.6]
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T

FElement 1 A Element 2

Figure 2.2. Four mode shapes of the cantilevered beam

By solving the eigenequation, the four eigenvalues and
corresponding eigenvectors are obtained as:

[0, 03.0},0} |=[0.0026 0.1029 1.1768 9.9134] [27]

0.3395 -0.7194 0.1017 0.2531
0.1163 0.0433 -0.7647 0.5204
1 1 1 1
0.1377 0.4799 0.9644 1.9329

[VA’QA’VB’QBT =

The first- to fourth-order mode shapes are shown in Figure 2.2.
Nothing abnormal is observed in the obtained natural frequencies and
mode shapes. Notice that the eigenvectors are normalized by assuming
the vertical displacement of node B to be 1.
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Now, the material property of element 2 is perturbed by setting
ny = 0.01 to represent a void element of low-density in topology
optimization. The global stiftness and mass matrices become

0.0500 —0.1250 —=5.0x10"* 1.3x10”’
—0.1250 04167 —1.3x107 2.1x1077

- 2.9
-5.0x10® —1.3x107 5.0x10°* —1.3x1077 [29]
1.3x107  2.1x107 —=1.3x107 4.2x1077
0.4689 -0.3241 0.0016 -0.0019
-0.3241 0. 0019  —0.0022

_|-03 0.3006 0.0019 —0.00 2.10]

0.0016  0.0019 0.0046 -0.0033
-0.0019 -0.0022 -0.0033 0.0030

Notice that in the global stiffness matrix, the absolute values of
terms related to element 2 decrease much faster than those in the mass
matrix because of the power-law penalization. After solving the
eigenequation, eigenvalues and eigenvectors are obtained as:

(@, @}, |=[4.2x10° 0.0004 0.0411 3.7938]  [2.11]

3.31x107° —7.29x107° 1.5345 0.7839

1.14x10°° —2.37x107° 0.4234 1.2158
[vetirn0,] = Co | b

0.2755 1.5245 2.4250 2.5214

The first and second eigenvalues are greatly reduced because of
the significant difference between the stiffness and mass matrices.
Specifically, in the first and second eigenvectors, node 4 has very
small displacements and nearly stops vibrating. This indicates that
only element 2 vibrates. Figure 2.3 shows that the vibrations act as
localized modes only in the low-density element at the first- and
second-order vibrations. The reason is that the material interpolation
model leads to the mismatch between the stiffness and mass matrices.
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Therefore, avoiding the localized mode is a serious problem to be
dealt with in practice. In order to have a detailed view of the localized
mode, the material property of element 2 is weakened step-by-step
from #, = 1 to 5, = 0.01. The modal analysis is carried out
correspondingly to show the variations of the eigenvalues and mode

shapes.
lst /
2nd /

7

_
7
_
7

Figure 2.3. Mode shapes of the cantilevered
beam including localized modes

Since the localized modes appear in the first- and second-order
vibrations, only these two modes are analyzed. Figures 2.4 and 2.5
show the variations of the two eigenvectors and eigenvalues versus 7.

Figure 2.4 indicates that the first-order vibration of element 1
decreases monotonically while element 2 tends toward void.
Figure 2.5 indicates that the localized mode occurs continuously.
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Figure 2.4. Displacements of node A versus n;
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Figure 2.5. First- and second eigenvalues versus n;
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It is obvious that no clear bound can be defined for the occurrence
of localized mode. When the elements in the low-density area are
compliant enough, the solid elements stop their vibrations and act as
an approximately rigid part which can be removed from the stiffness
and mass matrices. In this case, the eigenequation can be simplified
as:

(K,-&'M,)U=0 [2.13]

so that

-1
@’U=M;'K,U= (772M270) MK, U
= 22M2,071K2,0U

[2.14]

where K, and M, are the stiffness matrices of element 2, and K, and
M, are the corresponding stiffness and mass matrices at the solid
element state. Equation [2.14] shows that the first two eigenvalues
related to the localized modes depend upon #, in the parabolic way.
Figure 2.6 compares these variations with the solutions before
simplification.

Curves related to first and second eigenvalues start to coincide with
the simplified parabola at around #, = 0.14 and #, = 0.06, respectively.
These coincidences are also confirmed by the displacement variations
of the mode shape in Figure 2.4 where node A4 stops vibrating around
these critical values.

According to the above analysis, the lower bound of the pseudo-
density variable in the SIMP model must be greater than these critical
values to ensure the threshold stiffness of the low-density areas.
Although a lower penalty factor can be used in SIMP to moderate the
mismatch between the stiffness and mass matrices, this will
unfortunately weaken the key penalty effect of the SIMP model in
generating clear black and white structural patterns. In conclusion, the
standard SIMP interpolation model with the power-law penalization
cannot directly be used in topology optimization of eigenvalue
maximization.
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Figure 2.6. Comparisons between real
eigenvalues and simplified parabola

A test of maximizing the fundamental frequency is further carried
out to show how the localized modes influence the topological design.
As illustrated in Figure 2.7, a 4 m x 4 m square plate completely
clamped at four edges is divided into 40 % 40 fine quadrangular shell
elements. A 0.8 m x 0.8 m square area at the center of the plate is
supposed to be non-designable.

The material properties are defined as: elastic modulus 7 x 10" Pa,
density 2,700 kg/m’ and Poisson’s ratio 0.3

The SIMP model with the penalty factor p = 3 is used here and a
volume fraction of solid material is limited to 50%. In this case, the
localized modes start to appear at the eighth iteration where the
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fundamental frequency decreases sharply. Later, some unsupported
materials appear near the right corners on the top and bottom at the
16th and 17th iterations, as shown in Figure 2.8.

In Figure 2.9, the first mode shape is recognized as the localized
mode at the 16th iteration and appears at the two corners. As the
localized mode dominates the fundamental frequency, this will lead to
meaningless iterations.

N

N

N A\

Figure 2.7. Design domain of a square plate

h Y

Figure 2.8. The material layout at the: a) 16th and ; b) 17th iterations
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Figure 2.9. The first mode shape at the 16th iteration
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Figure 2.10. The iteration history of the fundamental frequency

Figure 2.10 shows the variation of the fundamental frequency
during the iteration. A sudden decrease in the frequency value occurs
at the eighth iteration because the localized mode is very different
from the normal mode that occurs. Physically, the low-density areas
are so compliant that a rather low fundamental frequency is obtained.
Therefore, the phenomenon of localized mode is an ill-conditioned
issue due to the mismatch between the mass and stiffness.
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2.2. Localized deformation

Similar to the localized mode in vibration problems, the localized
deformation often occurs in the presence of design-dependent loads.
Here, design-dependent loads refer to those loads that change with
respect to design variables, e.g. body force, inertia load and pressure
load on a movable surface. Due to their existences, low-density areas
are too weak to support themselves. Consequently, deformations in
the low-density areas become much more important than those in the
solid parts. Further discussions can also be found in the work of
Bruyneel and Duysinx [BRU 04].

Here, new formulations are derived and numerical tests are made
to highlight the problem. The same beam studied in section 2.1 is
considered again. Suppose the beam undergoes a vertical gravity
acceleration of 10 m/s>. Material properties of the solid element are:

Elastic modulus 10" Pa, density 1,000 kg/m® and Poisson’s
ratio 0.3

Figure 2.11 shows that the gravity acceleration force is discretized
into nodal loads over the beam. Elastic modulus of element 2 is
interpolated with the SIMP model (penalty factor p = 3), while
element 1 is a solid element that is supposed to be unchanged. The
gravity acceleration force of element 2 is linearly penalized in terms of
7, so that elastic modulus decreases more rapidly. Figure 2.12 plots
the vertical displacements of nodes A and B versus #,.

62.5+62.51,)N 62.51,N
7 ( 72) A M2 B

O]

Sm Sm

Figure 2.11. The equivalent nodal loads when gravity is applied

Both nodal loads vary linearly with #,. As the material properties
of element 1 remain unchanged with #; = 1, a linear relation exists
between the displacement of node 4 and #,. Comparatively, as the
stiffness of element 2 varies with the cubic exponent of 7, the
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absolute displacement of node B increases sharply as a relatively large
localized deformation around #, = 0.05 and should be avoided.
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Figure 2.12. Nodal displacements versus nz

Topology optimization of a two-dimensional (2D) problem
with inertial load is considered. The standard SIMP model is used here
with penalty factor p = 3. The design domain consists of 50 x 100
quadrangular finite elements, as shown in Figure 2.13. Because of the
symmetry, only half of the domain is taken into account. Material
properties are:

Elastic modulus 7 x 10" Pa, density 2,700 kg/m’ and
Poisson’s ratio 0.3.

1m/s’T
1m/s? Sm

Sm

10m Sm

Q0 Q000 Q0 Q
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7 e S

Figure 2.13. Design domain of the test problem
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Figure 2.14(a) shows the material layout at the 13th iteration.
Because the low-density areas are too compliant to support
themselves, localized deformations appear at the bottom center, as
shown in Figure 2.14(b). This implies that the localized elements
become dominant and generate unconnected patterns in the
following iterations. Figure 2.14(c) shows the singular pattern at the
19th iteration.

a)
b)
c) 4 L

':'"r — '-"':'

Figure 2.14. Singular pattern obtained with the standard SIMP model:
a) material layout at the 13th iteration; b) localized deformation at the
13th iteration; c) material layout at the 19th iteration
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2.3. Polynomial interpolation model

The SIMP model corresponds to a power-law interpolation
expressed as:

K, = P(Ui)Kio =17K,
M, = 771'Mi0

[2.15]

where the stiffness and the mass matrices depend upon pseudo-density
variables in the exponential and linear form, respectively.

As discussed in sections 2.1 and 2.2, the SIMP model is not
suitable for vibration problems and problems with design-dependent
loads due to the mismatch penalty between the mass and stiffness.
According to Pedersen [PED 00], a ratio of the pseudo-density
variable to the penalty function is introduced as:

J — - [2.16]
P(n;)
10000 ¢ U =i, 1
P(n)

9000 0.9

8000 0.8

7000 0.7 =
£ —O— Penalty function S
€ 6000 - - 0.6 2
g —e— Ratio function E
S 5000 - 05 =
s g
< 4000 - - 04 g
m D

3000 - 0.3 A«

2000 - 0.2

1000 - - 0.1

0 - * 0
0 0.2 0.4 0.6 0.8 1
m,

Figure 2.15. Interpolation model and ratio function of standard SIMP

Both the SIMP model (p = 3) and the ratio function Ry are plotted
with respect to the pseudo-density variable in Figure 2.15. The value
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of the ratio function tends to infinity when the pseudo-density variable
approaches zero, which indicates the mismatch between the stiffness
and mass matrices.

To avoid this problem, Pedersen [PED 00] constrained the lower
bound of the elastic modulus to be 1/1,000 of the solid one.

P()=1
[2.17]
P(0)=0.001
A cubic function is built accordingly as:
P(n;,)=n; +0.001(1-7) [2.18]
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Figure 2.16. Improved model and ratio function

The modified function and the ratio function Ry are plotted in
Figure 2.16. The value of the ratio function will no longer tend to the
infinity when the pseudo-density variable approaches zero.

To a certain extent, this interpolation model can be used to solve
eigenvalue maximization problems and avoid the localized modes.
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However, the peak value of the ratio function around #; = 0.1 is still
unsatisfied and could possibly lead to localized modes.

Later, it was found that the microstructures of low densities can
retain more stiffness than the SIMP model. Take a square shape
microstructure “[1” as an example. The equivalent tensile stiffness
is calculated by virtue of the strain energy based method [PED 98,
ZHA 07]. This method proved to be equivalent to the homogenization
method in predicting the effective elastic material properties
[HOR 99]. Let us take an example. The boundary conditions are
defined in Figure 2.17. Horizontal displacements on the left edge are
constrained. A uniform horizontal displacement u is imposed on the
right edge. The volume fraction of the microstructure is calculated as:

BB

77_ 112

[2.19]

L

b

S
ST

Figure 2.17. Definition of the microstructure
and the boundary conditions
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| ——Ratio of the volume fraction

to the tensile elastic modulus
| —o—Tensile elastic modulus

Ratio of the volume fraction
to the tensile elastic modulus
Tensile elastic modulus

Figure 2.18. The horizontal tensile elastic modulus versus
the volume fraction of the “o” shaped microstructure

The tensile elastic modulus is calculated as:

Eu_ Jr [2.20]
I it
p=Jr [2.21]
ut

where E is the equivalent tensile elastic modulus, fz is the resultant of
reaction forces on the left edge. ¢ is the thickness of the
microstructure. Assume that /; = u = ¢ =1 and /, varies from 0.005 to
0.995 in the test. The relationships between the tensile elastic modulus
and the volume fraction are plotted in Figure 2.18. Here, the ratio just
corresponds to the ratio function Ry.

In comparison to the curves related to the SIMP in Figure 2.15, the
slope of the tensile elastic modulus is positive at # = 0 and the ratio of
the volume fraction to the tensile elastic modulus is limited to a small
value approximately equal to 2.
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The maximum value of the ratio can be proved by ignoring the two
vertical columns of the microstructure when # is rather small. As a
result, the resultant reaction forces are approximately calculated as the
inner tensile forces of the two horizontal bars.

E
L ot [2.22]
(l1 -1, )t A
where E, is the elastic modulus of the solid material forming the
microstructure. The equivalent tensile elastic modulus is then
calculated by

@:&_Eou(ll —1,)

L Lt P (2.23]

_EO(ll_lz)

E= [2.24]
ll

And the ratio of the volume fraction to the tensile elastic modulus
is expressed as:

2 2
fim =i 2 bl 2
-0 Lok 112 E, (ll —12) h-h [E, E,

[2.25]

In this example, Ej is predefined as 1. At # = 0, the derivative of E
with respect to # is 0.5, which makes the curve different from that of
the SIMP model. However, the homogenization method involves
greatly computational complexities.

RAMP [STO 01] is an alternative interpolation model. The penalty
function and its derivative at #; = 0 are expressed as:

_ 7;
P(m)——lw(l_m) [2.26]
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o . 1+ 1
lim P’(77,) = lim 4 5= [2.27]
7,—0 1201+ —qn,) I+q
where ¢ is the penalty factor, which is always positive. Figure 2.19
shows the penalty function and the ratio function at ¢ = 5. It is obvious
that Ry 1s actually a linear function of pseudo-density variable.
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Figure 2.19. RAMP model and the ratio function

Abundant numerical examples using RAMP can be found in the
work of Luo et al. [LUO 04]. Moreover, Pedersen [PED 00] presented
a modified SIMP model that was further studied by Bruyneel and
Duysinx [BRU 04].

1

(ni/a)EiO; 1; <o’

E =P()E, = [2.28]
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where two parts exist for the penalty function. They are linear
interpolation with a slope of 1/a and power-law interpolation of the
standard SIMP model. The linear penalty is defined to ensure the
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positive derivative near #7; = 0. Two independent parameters a and p
can adjust the Ry and the penalty effect separately.

In Figure 2.20, both the penalty function and the ratio function are
plotted at @ = 16 and p = 3. Thus, the maximum value of Ry is
limited by the constant value of & to control the mismatch between the
mass and stiffness.
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Figure 2.20. Modified SIMP model and the ratio function

The modified SIMP model was found to be effective for topology
optimization of problems with body force or natural frequency
maximization. However, critical comments are received for the non-
differentiability at 7, = «""?. Here, a polynomial interpolation
function [ZHU 09] is presented in the following form.

P(17,)=(1=w)n! +wn, [2.29]

This function holds the following properties:
1) at two end points
P(0)=0, P(1)=1
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2) the first-order derivative at #;, = 0
P'(O) =w, w>0

Figure 2.21 shows the new penalty function and the ratio function,
respectively. Ry is limited to the value 1/w at #; = 0 and the
derivative of the penalty function is continuous everywhere to favor
gradient-based optimization methods.

—O— Penalty function

—®— Ratio function

Ratio function
Penalty function

Figure 2.21. Polynomial interpolation model and the ratio function

Now, the polynomial interpolation model is examined based on the
previously tested two examples. For the vibrating square plate shown
in Figure 2.7, material layouts and the mode shape at the 30th iteration
are shown in Figure 2.22(a). It is obvious that the mode shape is a
global mode without localized mode.

The optimization is further processed and convergence attained at
the 42nd iteration. The non-designable area is finally supported as
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shown in Figure 2.22(b). Figure 2.23 indicates that the convergence
history of the objective function is rather stable. A similar optimized
layout can be found in Pedersen [PED 00].

a) b)

Figure 2.22. Layout design of the square plate with polynomial
interpolation model: a) material layout and mode shape at
the 30th iteration; b) material layout at the 42nd iteration
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Figure 2.23. Convergence history of the first natural frequency

Again, the problem with inertial load discussed in Figure 2.13 is
tested here. One intermediate solution and the -corresponding
deformation shape are shown in Figures 2.24(a). There is no localized
deformation found in the design domain. By continuing the design
iteration, the optimized layout is obtained at the 38th iteration, which
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is a typical arc illustrated in Figures 2.24(b). Figure 2.25 shows
that the convergence history of the global strain energy is also rather
stable. Similar topology optimization problems can be found
in [BRU 05].

a)

Figure 2.24. Layout design of the inertia load problem with
polynomial interpolation model: a) material layout and global
deformation at the 16th iteration; b) material layout at 38th iteration

According to numerical results, the polynomial interpolation model
is effective in avoiding localized modes and localized deformations.
This will benefit topology optimization with vibrations and design-
dependent body forces, and will be further highlighted in the
following chapters.
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Figure 2.25. Convergence history of the global strain energy
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2.4. Breakdown issue in ESO

The topic discussed in this section is an important issue involved in
the family of evolutionary structural optimization (ESO) methods
from the viewpoint of low-density areas. Its implementation is easily
understood with less mathematical rigor. Based on the heuristic
engineering concepts and sensitivity results, the material layout of a
structure is optimized by removing inefficient elements systematically
from the ground structure. Numerical results have shown that a variety
of problems, e.g., maximizations of structural stiffness [XIE 94a],
natural frequency [XIE 94b, XIE 96] and buckling load [RON 01] can
be dealt with by this method. However, the breakdown issue
discovered by Zhou and Rozvany [ZHO 01] is still a fatal drawback of
this method.

ESO/BESO method works directly with 0-1 discrete design
variables. Element deletions and recoveries are carried out by virtue of
the element efficiency which is measured by the sensitivity values. As
we cannot directly obtain all the sensitivity values of the finite
difference with only one finite element analysis, sensitivity values
used in the hard-killing scheme of ESO/BESO are analytical
sensitivities.

€ __1yku, =, [2.30]
on, 2

00 _U'K,U,—’U'M,U,

= 231
on, U™U [2.31]

where C; is the strain energy of the ith element. The sensitivities can
be derived by supposing a linear interpolation model for K; and M; as
a function of #; with

Ki = 77[Ki0

2.32
Mi = 77iM10 [ .



52  Topology Optimization in Engineering Structure Design

K, and M, denote the stiffness and mass matrices of the ith
element when it is solid. In fact, the analytical sensitivities are unable
to represent the real change of the objective function whenever an
inefficient element is directly removed (Ax; = -1) or an efficient
element is recovered (An; = 1). To solve this problem, consider two
kinds of sensitivities shown in Figure 2.26.

The solid curve in Figure 2.26 represents the objective function
versus #;. This is typically the case for the structural strain energy with
values of other design variables being invariable. AC, corresponds to
the change of C evaluated with the analytical sensitivity value when
the ith element is removed by ESO/BESO from the design domain,
whereas AC, represents the exact change of C after the removal of the
ith element. Clearly, both are quite different from each other.

The change of the objective function will be overestimated when
AC>AC,. This is a conservative situation so that some inefficient
elements are retained in the actual iteration. In contrast, when
AC<AG,, particularly when a sharp difference exists, there is the
danger that related elements could be erroneously considered to be
inefficient, removed and no longer recoverable during the iterations.

AC,

AC,

0

Figure 2.26. Comparison of two kinds of sensitivities
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Figure 2.27. A test example for the failure of ESO

Although lots of existing results have shown that the convergence
of the iteration procedure is not deteriorated by ESO/BESO,
understanding the nature of the solid curve in Figure 2.26 is essential
to reveal the underlying trouble of ESO/BESO.

To illustrate the phenomenon and reasons for the failure of ESO, a
test example from Zhou and Rozvany [ZHO 01] is analyzed here in
detail. The FE model shown in Figure 2.27 consists of a 32 m X 3 m
horizontal beam and a 1 m x 4 m vertical link meshed with 0.25 m x
0.25 m 4-node quadrangular elements. The material properties are:

Elastic modulus 1 Pa, Poisson’s ratio 0

To figure out the difficulty, the initial distribution of elemental
strain energies representing the absolute sensitivity values is shown
in Figure 2.28(a). It is found that the elements on the vertical link
take the lowest strain energy and should be removed in the
ESO procedure. Based on the reanalysis of the updated model,
Figure 2.28(b) shows a new distribution of the element strain energies
with a sudden increase of the structural strain energy C by a factor of
10. This implies that a fatal iteration occurs. As the elements with the
maximum strain energies are unfortunately relocated at the left bottom
corner of the horizontal part, erroneously removed elements on the
vertical link are no longer recovered by BESO.
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——

b)

Figure 2.28. Distributions of the elemental strain energies related to ESO
method: a) initial distribution of elemental strain energies within the full
structure (C = 194.9 J); b) distribution of elemental strain energies after

removing the vertical link (C = 2306.1 J)
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Figure 2.29. Global strain energy versus elastic modulus of the vertical link

To obtain the sudden variation of the objective function, the strain
energy of the total structure C is drafted versus the variation of the
elastic modulus of elements E from 1 to 107 Pa on the vertical link in
Figure 2.29. Here, the axis of E is logarithmic. It is observed that the
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slope is very small near £ = 1 and E = 0. This indicates that both solid
and void elements are not sensitive. As a result, the solid elements are
removed in ESO and cannot be recovered by BESO.

However, a significant change of C is observed for values of £
between 107 and 10 Pa. However, the sensitivity values used in ESO
cannot detect the sharp variation of the global strain energy as
discussed before. Thus, the vertical link is apparently considered to be
inefficient and completely removed. This is the reason why the ESO
fails.

According to the above discussions, the standard ESO/BESO
approach cannot detect the sharp increase in the strain energy of the
vertical link. Figure 2.29 illustrates high absolute sensitivity values
when E varies between 107 and 10” Pa. This means that the elements
on the vertical link should take the maximum strain energies of all the
elements for a wide range of E. To make things clear, Figure 2.30
shows the variation of the strain energy of the vertical link in terms of
its elastic modulus, varying from 1 to 107 Pa.
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Figure 2.30. Strain energy of the vertical link versus its elastic modulus
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Accordingly, the so-called check position method is proposed to
identify and remedy the erroneous element deletion. The key idea is to
introduce moderate low-density elements with the elastic modulus set
to 0.01-0.1% of the initial value, i.e. 10*-107 Pa in this problem.
These elements are able to capture the sharp variation of the objective
function. Compared to solid elements, moderate low-density elements
will act as compromising elements between void and solid elements
but they are not compliant enough to be treated as removed ones. This
makes it possible to pick out the elements that were erroneously
removed and to recover them in the design procedure.

In the test example, elements on the vertical link are now replaced
with the moderate low-density elements of equivalent elastic modulus
10 Pa. The corresponding distribution of the elemental strain energies
is shown in Figure 2.31. It is observed that vertical link substituted
with the moderate low-density element takes the maximum value of
the elemental strain energies, which is easily identified in the design
domain.

Figure 2.31. Distribution of the elemental
strain energies at the check position

In this way, a modified ESO/BESO design procedure can be
devised as:

1) calculate the design sensitivities and remove the inefficient
elements;

2) if a sharp degradation of the objective function is detected
against a specified threshold, e.g. the structural strain energy increases
to more than 5 times or the natural frequency decreases to less than
1/5, the removed elements in the last step will be further recovered
with the moderate low-density elements. This is referred to as the
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check position. Otherwise, a normal ESO/BESO procedure of element
removal and growth is carried out;

3) based on the FE reanalysis of the updated model at the check
position, moderate low-density elements possessing the maximum
strain energies will be recovered and marked as non-designable, while
the other moderate elements will be removed again. But the mark of
non-designable elements only stays for a few steps. These elements
will be designable again later on;

4) standard ESO/BESO element removal and growth procedure is
carried out by ignoring the non-designable elements.

The test example is now continued with this procedure. With the
vertical link recovered and marked as non-designable, the elements
removed in the first effective step are presented in Figure 2.32.

However, after several iterations, when the elements on the
vertical link are once again designable, the elements can be
removed again. The check position may be reintroduced
depending on the objective degradation. After 61 iterations, the
final design of the structure is shown in Figure 2.33 with an
amount of 40% of the total material.

Figure 2.32. Structural topology generated by the first effective iteration

Figure 2.33. Optimal structural topology (C = 509.8 J)
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Another test is to maximize the first natural frequency. As shown
in Figure 2.34, a 2 m x 12 m beam supported at both ends is meshed
with 20 x 120 quadratic elements. The non-designable area consists of
2 x 20 elements at the center. Fifty percent of the total material is
used. Material properties are

elastic modulus E, = 2x10" Pa, density po = 7,800 kg/m3
and Poisson’s ratio #£=0.3

A

Figure 2.34. Design domain of the biclamped beam

b)

Figure 2.35. Erroneous iterations: a) distribution of the sensitivities at the third
iteration (64.17 Hz); b) structural topology at the fourth iteration (0 Hz)

Problems are detected at the fourth iteration where the non-
designable area is unsupported and the objective function decreases to
0 Hz, as shown in Figure 2.35.

The removed elements in the last iteration are then recovered with
the moderate low-density elements. The updated structure is analyzed
again and the distribution of sensitivity values is shown in
Figure 2.36. It is observed that some of the moderate low-density
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elements take now the maximum values and will be recovered into the
solid elements, as shown in Figure 2.37.

Figure 2.36. Distribution of sensitivity
values at the check position (59.19 Hz)

Sixty-eight iterations are completed and the optimized design is
shown in Figure 2.38. The proposed ESO/BESO design procedure
with check position can be used to avoid some erroneous design
iterations. However, this method is still based on some heuristic rules.

Figure 2.37. The effective structural
topology at the fourth iteration (64.27 Hz)

Figure 2.38. The final design of the biclamped beam (71.18 Hz)

2.5. Conclusions

To benefit from the applications of topology optimization, some
problems involved in the low-density areas in topology optimization
are discussed in detail. By observing the phenomena of the localized
modes in eigenvalue maximization problems and localized
deformations in problems with design-dependent body forces,
numerical failures are concluded to be the result of improper
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interpolation models. The great difference between mass and stiffness
of the low-density elements will thus be limited to avoid these
problems. Several interpolation models, e.g. limiting the minimum
value of the elastic modulus or the derivative of the interpolation, are
evaluated. A polynomial interpolation model is also presented and
discussed through numerical tests.

Finally, the breakdown of the ESO/BESO method is discussed. It is
found that the sensitivity values cannot correctly describe the practical
operations on the elements. The check position scheme is then
proposed by introducing moderate low-density elements into design
iterations. Consequently, erroneously removed elements can be
identified and recovered. Two typical examples are examined to
illustrate how to achieve reasonable results.
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Dynamic Problems

3.1. Introduction

Topology optimization of dynamic problems is a challenging topic,
and mainly includes optimization problems related to structural
eigenfrequency and dynamic responses.

Relevant research on structural eigenfrequency optimization have
been focused on free vibration problems, such as the maximization of
fundamental frequency and the gap between two consecutive natural
frequencies. For example, based on the homogenization method,
Diaz and Kikuchi [DIA 92] and Ma er al. [MA 95] studied the
maximization of the fundamental frequency and a set of eigenvalues
of the structure, respectively. Later, Pedersen [PED 00] studied the
maximization of eigenvalues using the density method. In his work,
specific attention was paid to the localized modes in low-density areas
and an improved interpolation scheme based on SIMP was developed
to solve this problem. Also using the density method, Du and Olhoff
[DU 07] dealt with the topology optimization involving the
maximization of eigenfrequencies and frequency gaps. In their work,
another improved interpolation scheme based on [TCH 02] was used
to avoid the localized modes. The RAMP model introduced by Stolpe
and Svanberg [SVA 01] and the polynomial interpolation model
introduced by Zhu et al. [ZHU 09] were also implemented to
eliminate the localized modes. These research achievements



62 Topology Optimization in Engineering Structure Design

concerning localized modes have benefited the study of dynamic
response optimization.

Dynamic response optimization mainly includes problems related
to harmonic responses [JOG 02, KAN 12, LIU 15, MA 95,
OLH 05, YAN 14] and random vibration responses [LIN 11, RON 00,
ZHA 10a, ZHA 12, ZHA 15]. Physically, the minimization of the
dynamic response subjected to harmonic excitations is a basic concern
since the major source of vibration or noise in a structure system or a
machine approximately corresponds to a harmonic force due to
rotating components. For example, practical implications range from
household appliances and construction machinery to cars and ships.
All kinds of periodic excitations can be interpreted as the
superposition of a set of harmonic excitations.

Until now, considerable effort has been made to study topology
optimization for harmonic responses. Ma et al. [MA 95] defined the
“dynamic compliance” as the objective function without considering
structural damping, and successfully implemented the homogenization
technique for topology optimization under harmonic excitations. Jog
[JOG 02] also minimized the “dynamic compliance” for which
structural damping was taken into account. The frequency response
amplitude at a given point was also optimized in his work. Tcherniak
[TCH 02] designed the layout of resonating actuators by maximizing
the magnitude of steady-state vibrations at a given excitation
frequency. Yoon [YOO 10] investigated the applicability of model
reduction techniques in topology optimization of harmonic problems,
including the mode displacement method (MDM), the Ritz vector
method and the quasi-static Ritz vector method. Shu et a/. [SHU 11]
minimized the frequency response based on the level set method.
Kang et al. [KAN 12] studied the optimal distribution of damping
material in vibrating structures subjected to multiple harmonic
excitations in phase, using the topology optimization method.

Random excitations such as earthquake ground motions, ocean
wave-induced forces, aerodynamic and turbulent pressures can be
classified into stationary and non-stationary random excitations. In
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general, if the overall averages for a random excitation were
time-independent, the excitation would be stationary. Otherwise, it
would be non-stationary. To a large extent, some secondary structure
designs are mostly based on stationary random excitations
[WI1J 09] that were closely considered in the advanced formulations
of dynamic optimization problems [BUC 98, MA 11, MIS 13,
PAG 12].

Rong et al. [RON 00] optimized the structural topology using the
ESO method with stationary random responses constrained in design.
Dynamic responses were calculated by means of the complete
quadratic combination method (CQC). Comparatively, as CQC was
cost-ineffective in random analysis, the pseudo-excitation method
(PEM) [JIA 92, LIN 01, LIN 85, LU 09, ZHA 10b] was thus
introduced to transfer the solving of random responses into the solving
of pseudo-harmonic responses. Although both methods can achieve
the same solution with the same number of structural modes, the
efficiency of the PEM is much higher than the CQC. Lin et al. [LIN
11] adopted the PEM as an efficient optimization procedure in the
maximization of energy harvesting performance under stationary
random excitation.

However, structures were mostly limited to a small number of
DOFs due to the inherent complexity of the problem in the previous
work. How to deal with dynamic topology optimizations of large-scale
problems remains a great challenge, even though different topology
optimization formulations and methods have been developed.

In this chapter, linear dynamic systems with classical damping and
steady-state responses are considered. A comparative study of
different dynamic analysis methods is first made to highlight their
computing accuracy and efficiency for problems under harmonic force
excitations [LIU 15]. Their effectiveness in topology optimization
under harmonic force excitations at one specific frequency and with
multiple frequencies is, respectively, investigated, especially for large-
scale problems. Investigations are also made into structural topology
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optimization related to dynamic responses under stationary random
force excitations [ZHA 15]. It is shown that the commonly used
CQC in previous optimization work is not only computationally
costly, but also results in a non-convergent design pattern due to
the low computing accuracy of random responses for large-scale
problems. To circumvent these difficulties, an efficient and
accurate optimization procedure integrating the PEM and mode
acceleration method (MAM) is introduced into the dynamic topology
optimization. In this framework, random responses are calculated
using the PEM to ascertain a high efficiency over the CQC. More
importantly, the accuracy of random responses is improved indirectly
by solving the pseudo-harmonic responses involved in the PEM with
the help of the MAM. Numerical examples fully demonstrate the
validity of the developed optimization procedure and its potential
applications in practical designs.

3.2. Analysis methods for harmonic force excitations

Although harmonic response analysis methods such as MDM,
MAM [COR 83] and full method (FM) were widely implemented in
commercial CAE software, how to use them correctly in topology
optimization is still a basic issue to be clarified in practice.
Generally, MDM is adopted by default due to its simplicity and
efficiency from the engineering viewpoint. However, the poor
response accuracy would affect the optimization convergence,
especially for large-scale problems. Therefore, MAM and FM are
introduced into the framework of topology optimization. MAM has a
higher accuracy than MDM in the case of using the same modes
and can easily be implemented. FM is an exact analysis method
and can be used as a benchmark. A comparative study among
MDM, MAM and FM is presented to highlight their effectiveness in
topology optimization under harmonic force excitation for large-scale
problems.

Here, linear dynamic systems with classical damping and steady-
state responses under harmonic force excitations are considered. As is
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known, the governing equation of a discretized n-DOF structure under
harmonic force excitation can generally be written as:

Mii(f) + Cu(r) + Ku(t) = £(¢) [3.1]

where M, C and K represent the mass matrix, damping matrix and
stiffness matrix. u(#) represents the displacement vector. f(#) denotes
the harmonic force vector of form f(7) = Fe'”'(:* = -1). F and o denote
the magnitude vector of harmonic force and excitation frequency,
respectively. In this section, three typical methods, i.e. MDM, MAM
and FM, are briefly introduced before studying their applications in
topology optimization.

3.2.1. Mode displacement method

Suppose w; and ¢, are the kth circular eigenfrequency and
eigenvector, respectively. The mode shape matrix ¢ = [@;...9,] is
normalized by mass matrix. Classical damping is supposed, with
being the kth damping ratio so that following relations hold

¢ Mo=1I
¢'Ko = diag(e}) [3.2]
¢'Co=diag(2{,®,)

By introducing the notation,

u(r) =o@y(?) [3.3]
where y(f) is the vector of generalized coordinates. A number
n of uncoupled equations of motion can be obtained by substituting
equation [3.3] into equation [3.1] and by premultiplying .

j}k(t)+2§kwkyk(t)+w/3yk(t):(sz(l) [3.4]

The solution of the above equation yields

Y =(a} -’ + 2, 0.0)" (1) [3.5]
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Thus, the displacement response related to equation [3.3] under
harmonic force can be expressed as:

u()=Y 0 ()= 0, H.0f(1) [3.6]

H; is the frequency domain transfer function between loading and
response:

H, =(&] - &+, 0.0)" [3.7]

Considering the computing efficiency, only lower / modes are
usually employed with /<<n so that:

u(r) = Zq)ka(sz(f) [3.8]

3.2.2. Mode acceleration method

The solution of the uncoupled system in equation [3.4] is rewritten

as:
y (=20 250 R0 o

The substitution of equation [3.9] into equation [3.6] leads to:

2

u(t)zz(tpktpaizf(t)_2<pk§a§y'k(t)_<pkik(t)) [3.10]

According to Besselink et al. [BES 13], the inverse of the stiffness
matrix can be represented as

k=1

n T
K" :Z—"’;‘Ek [3.11]
k
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Notice that in MDM, n is reduced to [ for all three terms in
equation [3.10]. However in MAM, it is not necessary to approximate
the first term in equation [3.10] using only / modes, because this term
can be exactly solved as a static problem by means of equation [3.11]
to include all » modes. According to equation [3.9], the second and
third parts of equation [3.10] can be written as:

Z(— 20,4 3 (1) _(Pk)'};;(f))zz((pkyk(t)_mzf(t)) [3.12]

k=1 @, e k=1 e

Hence, based on the substitution of equation [3.11] into equation
[3.10] and the combination with equation [3.12], the MAM results in
the approximation of the displacement response:

u() =K 10+ @0,,0) —%f“)) [3.13]

k

The further introduction of equation [3.11] simplifies equation
[3.13] into:

u =Y 00+ Y 20w = Yo H0lt0+ Y 200 [3.14]

k=I+1 i k=l+1 (3

The comparison between formulations of MDM and MAM
indicates that the second term of equation [3.14] related to MAM
could be treated as the correction term of MDM related to equation
[3.8]. The computing error related to MDM increases, along with the
increase in the number of DOFs. Obviously, more modes should be
employed if MDM is used for large-scale problems. However, it is
hard to decide how many modes should be employed in advance to
obtain the prescribed accuracy. In the works of [BES 13] and
[COR 83], detailed comparisons between the computing accuracies of
MDM and MAM were made. It was concluded that the MAM
outperformed the MDM in all cases. Here, their effects will be
focused on topology optimization. Besides, other approximation
methods such as the modal truncation augmentation method [DIC 97],
Ritz vector method [WIL 82], quasi-static Ritz vector method [GU 00]
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and Pade approximation method [JEN 07] could also be employed to
improve the accuracy of dynamic responses without increasing the
computing cost prohibitively.

3.2.3. Full method

As an exact method of harmonic analysis, the FM is formulated by
introducing the following solution form:

u(?) =Ue” [3.15]

where U is the complex amplitude vector of displacement response.
Equation [3.1] can then be rewritten as:

(K-Ma’ +1C)U=F [3.16]
U can directly be solved as
U=(K-Ma®" +1aC)"'F [3.17]
in which Rayleigh damping corresponds to
C =aM+bK [3.18]

Notice that constants a and b are Rayleigh damping coefficients of
the structure. From the third relation of equation [3.2], the damping
ratio {; can be expressed as

2
sz [3.19]

20,

Equation [3.16] can be solved using the same sparse direct solver
as in a static analysis but with complex arithmetic by default. So the
displacement response related to FM can be written as:

u(t) =(K-Ma’ +10C) ' Fe' [3.20]
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3.2.4. Comparative tests of harmonic analysis methods

In this section, three numerical tests are studied to compare the
above three analysis methods. The computing results obtained by FM
are regarded as the exact solution in the comparison. In all numerical
tests, the Young’s modulus, Poisson ratio and density of the solid
material are 200 GPa, 0.3 and 7,800 kg/m’ respectively.

Structure 1: 2D cantilever beam

The structure is a rectangular domain of size 80 mm X 50 mm x
1 mm. It is clamped at the left side, as shown in Figure 3.1. Here, the
domain is meshed into 48 x 30 plane stress elements with 3,038 DOFs
in all. A harmonic force with the amplitude of 9 kN is applied at the
middle node of the right edge.

&

l

Figure 3.1. Structure 1: 2D cantilever beam (3,038 DOFs)

Structure 2: short 3D beam

The beam structure has a size of 2 m x 1 m x 1 m. It is simply
supported at the four corners of the bottom as shown in Figure 3.2.
The design domain is meshed into 40 x 20 % 20 solid elements with
54,243 DOFs in all. A harmonic force with the amplitude of 1,000 kN
is applied at the middle point of the tip face.

The same Rayleigh damping is adopted in all cases with @ = 107
and b = 10°°. Here, MDM and MAM are all implemented with the first
/ = 30 modes for structures 1 and 2. Notice that structure 1 represents
the common problem studied in the previous research with thousands
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of DOFs. Structure 2 (Figure 3.2) is used to illustrate large-scale
problems of huge numbers of DOFs that really represent dynamic
topology optimization from the engineering viewpoint.

D

v

Figure 3.2. Structure 2: 3D beam (99,603 DOFs)

3.2.4.1. Computing accuracy

The displacement amplitude at the loaded point along the force
direction is obtained by three different methods. They are compared in
form of logarithm in Figures 3.3 and 3.4. Notice that the excitation
frequency in each problem is always covered by the first [
eigenfrequencies selected in MDM and MAM by default.

K

loglu |/m

-5.0
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0 10000 20000 30000 40000 50000
Excitation frequency/Hz

Figure 3.3. Displacement amplitudes obtained
by three methods for structure 1
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Figure 3.4. Displacement amplitudes obtained
by three methods for structure 2

In both examples, we see that the displacement amplitude using the
MAM is close to the exact solution obtained by the FM. Instead, the
accuracy of the MDM is acceptable only when the excitation
frequency is low. We also note that the error of MDM is relatively
small near the peaks of response curves where the excitation
frequency attains the resonant eigenfrequency.

Moreover, with the dramatic increase in the DOF number, the ratio
of the employed mode numbers (/ = 30) to n greatly decreases in the
MDM and MAM. Naturally, the accuracy of MDM and MAM would
also decrease. To further confirm the above statement, structure 1 is
analyzed using different meshes, while / = 30 is unchanged
in the calculation of the harmonic response at the loading position.
Here the excitation frequency is f = 1,500 Hz. The displacement
amplitudes of structure 1 along with the mesh refinement are plotted
in Figure 3.5.
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Figure 3.5. Displacement response amplitudes
versus mesh refinements for structure 1

As is seen, both MAM and FM converge asymptotically along with
the increase in element number or equivalently the number of DOFs.
Comparatively, the computing error related to MDM increases along
with the increase in the number of DOFs. Obviously, more modes
should be employed if MDM is used for large-scale problems.
However, it is hard to decide how many modes should be employed in
advance to obtain the prescribed accuracy. Hence, FM and MAM
outperform the MDM in computing accuracy, especially for large-
scale problems.

3.2.4.2. Computing efficiency

Regarding the computing efficiency, the following two situations
are considered.

Case 1: Harmonic analysis at one specific excitation frequency

Noticeably, the computing cost of FM is a little more than the
static analysis due to the complex arithmetic. For MDM and MAM,
most computing time is sacrificed to calculate modes while the mode
superposition process is trivial. In fact, various methods exist to obtain
the modes and detailed information about numerical algorithms can be
found in [GRI 94, WIL 82]. Suppose that the computing time is tpy = 7
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for FM under the harmonic force excitation with one specific
frequency, and the computing time for MDM is #ypm consisting of
mode computing time J and computing time A for the mode
superposition process. Then,

oy =0 +4 ;3.21]
ey =7
As is well known, the mode computing time ¢ is usually greater
than 7, especially when the number of selected modes is large with
tov>>tem. In order to ascertain the above conclusion, structure 1 is
used to test the efficiency of MDM and FM. All the calculations are
implemented in ANSYS software with a mesh of 320 x 200 plane
stress elements, and the Block Lanczos method is adopted to
proceed the modal analysis. Here, the specific excitation frequency is
1,500 Hz. Finally, we have tgy = 8.53s, while typy depends upon the
number of included modes /, as shown in Figure 3.6. Meanwhile, the
computing time J for the modal analysis extracting / modes is also
plotted.

160

—o— Computing time (7) for FM

140 {—o— Computing time (5+4 ) for MDM

120 —— Computing time (&) for Modal analysis

100 A
80
60
40
201

0 T T T T T T T T T T T
0 20 40 / 60 80 100

Time/s

Figure 3.6. Computing time comparisons of FM, MDM and modal analysis

In this case, it can be seen that modal analysis takes about the
whole time in the MDM with #ypy =~ J and that the latter is always
larger than #z, even when only one mode is used. tvpy approximately
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increases in a linear way with respect to /. Oppositely, little time
(A =2.1s) is consumed for the mode superposition process in the case
of / = 100. FM demonstrates its great advantage in both computing
efficiency and accuracy for the harmonic analysis with one specific
frequency.

Case 2: Harmonic analysis at multiple excitation frequencies

Suppose g is the number of sampling excitation frequencies. The
computing time can then be estimated as:

typy =0 + 84

[3.22]
Iy =87

Each excitation frequency implies that one independent complex
analysis is required if FM is used. Comparatively, the computing cost
related to MDM and MAM would not increase greatly because only
one modal analysis is needed for a given structure and the cost of
superposition process 4 is trivial. Therefore, tpn>>typym and tev>>tvam
hold if g is large enough. This is why MDM is widely used in practice
because hundreds even thousands of excitation frequencies may
be sampled to capture the corresponding displacement amplitudes. But
considering both the efficiency and the accuracy, the MAM would be
the best choice for the harmonic problems in this situation.

3.3. Topology optimization under harmonic force excitations

3.3.1. Topology optimization formulation

For a dynamic problem under harmonic force excitations, topology
optimization formulation is often stated as:
find n={n} i=1l..n,

min |u‘§, (t)|
s.t 294
O<np <1 <1

[3.23]
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where 7 is the lower bound of the set of design variables defined by
element pseudo-densities. Here, 7, = 0.001 is used to prevent the
mass, stiffness and damping matrices from becoming singular. i and V'
denote element number and the solid volume fraction, respectively. Vy
is the upper bound of the latter.

In topology optimization of dynamic problems, it is recognized that
the SIMP interpolation scheme would cause localized modes
phenomena for the stiffness and mass matrices, because of the
mismatch between element stiffness and mass. This has been
discussed in detail in Chapter 2 and the polynomial interpolation
model is adopted here.

3.3.2. Sensitivity analysis

For a harmonic problem, the sensitivity of displacement with
respect to pseudo-density variables #; is introduced in this section.
Using MDM or MAM, the sensitivity of displacement can be obtained
by directly differentiating equation [3.8] or equation [3.13]. Thus, the
MDM corresponds to:

ou(t) <& de, oH 0"
u()=2( - H, +0,—"0, +¢,H, Ps }(t) [3.24]
k=1

o7, a7, o7, o7,
Suppose:
Z, =) -& +2l 00)" - [3.25]

The sensitivity of displacement using MAM can be written as:

@Kg_a(K*F)
on, a on,

o (00, ¢ 0Z, ; 99,
gt Zo, +0, —=¢, +¢, 7 t 3.26
e ;[877, k(pk (Pk aﬂi (Pk (Pk k 877,~ ( ) [ ]

Obviously, sensitivities of eigenfrequencies and eigenvectors are
basic calculations for solutions of equation [3.24] and equation [3.26].
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The sensitivity of eigenfrequency can be obtained by the following
equation:

K oM
(PZ ( - a),f ]‘Pk

0w, _ 87771 an, (3.27]

o, 20,

The derivatives of the eigenvectors hold the following form
[ALV 97]:

99, _~
Tk — 2 B 3.28
877 — kr(l)r [ ]

where By, is calculated as:

(K 0a? aMJ
TR TR M -t 2
’[M o, “on, )% ok
B, = & —F [3.29]
1 +oM
—Etpla—mq’k r=k

Suppose A is the column vector with all terms being zero except
term s being 1. So the sensitivity of displacement of concerned DOF s
can be calculated as:

aus (t) — AT au(t)
a7, o7,

[3.30]

As for the displacement response using FM, the differentiation of
equation [3.16] gives rise to

a&Uﬂ(da—U:o [3.31]

o7, on,
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where the following notation is used:

K, =(K-Ma’ +1aC) [3.32]
Suppose
u,=A"U [3.33]

By virtue of the adjoint method, the following equation is then
established:

o _Ar U _r ey, Y,
o1, a7, a7, a7, (3.34]
=(A" —;JKd)a—U—xT Ky
a7, a7,
where A is the adjoint vector obtained by
K,A=A [3.35]
As a result, equation [3.34] can be written as:
K
ou, _ 419Ky [3.36]
an, an,

After the sensitivity of displacement under harmonic force
excitation is obtained by means of MDM, MAM and FM, the
sensitivity of displacement amplitude can be derived through the chain
rule as:

m = {real(us) -real(
a7

i

uS

d ou, )
an, an,

)+imag(u,)- imag( u, () [3.37]

3.3.3. Numerical examples

In this section, topology optimization problems under harmonic
force excitation at one specific frequency and multiple frequencies are
solved. The GCMMA algorithm is used as the optimizer.
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3.3.3.1. Harmonic excitation at one specific frequency

— 2D examples

The structure is illustrated in Figure 3.1. Suppose the vertical
displacement amplitude at the loading position is minimized. The
volume fraction of solid material is constrained to be less than 50%.
Initial values of all pseudo-densities are set to be 0.5 with the
first eigenfrequency of the initial structure being 1,776 Hz,
correspondingly. At the specific excitation frequency of /= 1,500 Hz,
[ = 30 modes are employed by MDM and MAM. The optimized
configurations are shown in Figure 3.7(a) and the iteration curves of
the objective function are plotted in Figure 3.7(b).

loglu |/m

0 30 6 9 120 150 180
Iteration

b)

Figure 3.7. Optimization results of structure 1 with a mesh of
48 x 30 (3,038 DOFs): a) optimized configurations; b) iteration
curves of the objective function

It can be seen that nearly the same configurations are obtained by
three methods. As the excitation frequency /= 1,500 Hz is lower than
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the initial first eigenfrequency (1,776 Hz), solutions are comparable
with that minimizing the static compliance when a static load is
applied. Different problems with the similar order of DOFs can also
be found in references.

Therefore, all three methods are effective in this case. Now, the
structure in Figure 3.1 is further optimized with refined meshes
of large numbers of DOFs. Figures 3.8 and 3.9 show the topology
optimization results for a mesh of 160 x 100 and 240 x 150
elements, respectively. While / = 30, modes are still employed in
MDM and MAM. In conclusion, a poor convergence occurs for
MDM. The optimized configuration is not clear, especially near the

loading point.
MAM FM

Figure 3.8. Optimized configurations of structure 1
with a mesh of 160 x 100 (32,522 DOFs)

P
MDM

M

Figure 3.9. Optimized configurations of structure 1
with a mesh of 240 x 150 (72,782 DOFs)

Examples show that MAM and FM work well in all the above
cases, while MDM converges poorly due to the low accuracy of
harmonic responses when large-scale problems are considered. The
reason can be explained in the following two aspects.
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First, as a kind of approximate method, MDM would introduce
errors because of the truncation modes. Although more modes may
reduce the error, it is difficult to decide how many modes should be
employed to ensure the accuracy of dynamic solutions in advance.
Meanwhile, as the structure is modified in each iteration of
optimization, it is difficult to choose a proper / instantaneously. The
best way is to deal with the problem by selecting the value of / large
enough for all iterations, which means a huge computing cost.

Second, as mentioned in section 3.2.4.1, the large error of MDM
occurs when the excitation frequency is far from the resonant
eigenfrequencies. The dynamic response minimization aims at
pushing the eigenfrequencies far away from the excitation frequency ,
which will further deteriorate the accuracy of harmonic response for
the prescribed excitation frequency. This might explain why the MDM
leads to the incorrect solution for large-scale problems. It should be
considered that this problem could be avoided at the cost of huge
amounts of computing by employing enough numbers of modes in
MDM. Therefore, MDM is preferable to deal with small-scale
problems.

— 3D examples

A literature review indicates that topology optimizations of large-
scale dynamic problems are rarely reported due to the prohibitive
computing time and convergence difficulty related to the MDM. To
further verify the effects of three analysis methods within this context,
consider now 3D structures of huge numbers of DOFs. Suppose the
displacement amplitude at the loading position along the force
direction is minimized. For all tests below, / = 30 modes are employed
in MDM and MAM. The volume fraction is constrained to be less
than 10% and the initial values of all pseudo-densities are uniformly
set to be 0.1 correspondingly.

The 3D beam structure illustrated in Figure 3.2 is also studied. The
first eigenfrequency of the initial structure is 2.95 Hz. Optimization
results with excitation frequency f = 2.5 Hz are shown in Figure
3.10(a) and the iteration histories of the objective function are also
presented in Figure 3.10(b).
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Figure 3.10. Optimization results of structure 2 (72,782 DOFs):
a) optimized configurations; b) iteration curves of objective function

It can be seen from all the above numerical tests that the final
design configuration with MDM becomes unreasonable with the
increase in DOFs, while MAM or FM can ensure the optimized
configurations of the structure due to their high accuracy. The
iteration curves of objective function also illustrate that FM is the
most powerful in convergence.

3.3.3.2. Harmonic excitations with multiple frequencies

In topology optimization related to harmonic responses, a
converged solution could be easily obtained if the excitation
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frequency is lower than the resonant eigenfrequency, as shown in
section 3.3.3.1. However, in the case of single excitation frequency
with a higher value than the resonant eigenfrequency, the optimization
iteration would be difficult to converge. Meanwhile, the parasitic
effect of the material layout is mostly evident in the obtained
configurations and the static stiffness is usually quite weak. This
phenomenon was also mentioned by Olhoff and Du [OLH 05].
Actually, practical structures are usually excited by the harmonic load
in a frequency interval, not just at a prescribed frequency value.
Meanwhile, the static stiffness is also an essential requirement. As is
well known, the minimization of dynamic response under one low
frequency excitation is consistent with the maximization of static
stiffness, to some extent. Therefore, in order to achieve practical
optimized configurations, two schemes are adopted in structural
design. One is to introduce the static compliance into the optimization
formulation as an additional constraint, as detailed by Olhoff and Du
[OLH 05]. The other scheme is to handle the harmonic excitations
with multiple frequencies or in frequency intervals, which will be
presented below.

For the optimization problem under harmonic excitations with
multiple frequencies, the integral of displacement amplitude in a
frequency interval [w,, wg] is usually considered as the objective
function. The optimization formulation can be stated as

find n={n} i=12,...n,

min IwAB u, (@)dew (3.38]
s.t V<V,
O<n <np <1

The calculation of the integral in a frequency interval is crucial to
the optimization. As is well known, the curve of harmonic response
demonstrates a very sharp jump around the resonant eigenfrequency.
It therefore takes a significant effort to yield converged solutions
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[CHE 98]. In this section, the numerical integration method, i.e.
Gauss—Legendre integration, is used to calculate the integral:

.[ "
Wy

N
- - +
u (@dw="2"C0y y |y (P Py BT Oy [3.39]
‘ 2 o ‘ 2 2
where p. is the weight factor for the ¢th Gaussian-point, v. is
the Gaussian-point within [-1,1] and N is the number of Gaussian-
points.

When the integrand is very complicated or the integration interval
is very large, the subdivision of the integration interval is necessary to
ensure the computing accuracy. Considering the sharp jumps of
harmonic response curve and the large frequency interval, the latter is
subdivided by the eigenfrequencies first. Each subinterval between
adjacent eigenfrequencies will be further subdivided by m additional
points. The distribution of the jth point within the subinterval [wy,
wy+1] 1s then defined by

o, =0, +w, (0, -0,) 1<j<m, 0<w,<I [3.40]

where w; is the proportional factor of the jth point in the subinterval.
In order to represent the sharp jumps, w; should be selected
properly to form small subintervals near the eigenfrequency and large
subintervals far from the eigenfrequency. In this chapter, m = 5
additional points are chosen in the following way between adjacent
eigenfrequencies:

W, =0+ 0.01(@,,, — )

a,=0,+0.11(o,, -o,)

o, =0, +05(0,, —,) [3.41]

o, =0,+0.89(w,, - o,)

5=, +0.99(w,, - o,)

Figure 3.11 illustrates the subdivision of the frequency interval.
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Figure 3.11. Schematic of the frequency interval subdivision

After the subdivision, each subinterval would be calculated
by the Gauss—Legendre integration method with 15 Gaussian-points.
Examples show that this method works well in the optimization to
deal with harmonic responses with hundreds of excitation frequencies.
Optimization with FM is too time-consuming to implement and hence
only MDM and MAM are adopted in this section.

The 3D cantilever beam has a size of 0.8 m x 0.4 m % 0.06 m and
is clamped at the left side, as shown in Figure 3.12. The design
domain is meshed into 80 x 40 x 6 solid elements. A harmonic force
with the amplitude of 1,000 kN is applied at the center of the right
side. The integral of vertical displacement amplitude at the loading
position is minimized and the volume fraction is constrained to be less
than 30%. Initial values of all pseudo-densities are set to be 0.3.
Correspondingly, the first eigenfrequency of the initial structure is
21 Hz.
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Figure 3.12. Structure 3: 3D cantilever beam (69,741 DOFs)

Three frequency intervals are considered here, namely,
[0-100] Hz, [0-300] Hz and [0-900] Hz. Notice that only MDM and
MAM are adopted due to the prohibitive computing time of the FM.
Here, / = 15 modes are employed in MDM and MAM for the first two
frequency intervals, while / = 20 modes are employed for the
last interval. Optimized configurations with MDM and MAM are
shown in Figures 3.13 and 3.14, respectively. Obviously, the
convergence is very poor with MDM, while the configurations by
MAM are quite clear. For the optimized configurations in Figure 3.14,
the response curves calculated using FM are shown in Figure 3.15. It
can be clearly seen that the responses in the frequency intervals
decrease.

L

'“"-’-’-m\u.'fg'f#gﬁ. 4 e il L e 2y
—— Sa=nts i
£=[0-100] Hz /=[0-300] Hz /=[0-900] Hz

Figure 3.13. Optimized configurations
of structure 3 using MDM
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J/=10-300] Hz /=[0-900] Hz

Figure 3.14. Optimized configurations
of structure 3 using MAM
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Figure 3.15. Displacement amplitudes of initial
and three optimized structures using FM. For a color version
of this figure, see www.iste.co.uk/zhang/topology.zip

Numerical tests find that the MAM is the most favorable method,
considering the balance between computing accuracy and efficiency,
for the optimization problem under harmonic force excitations with
multiple excitation frequencies. Comparatively, the computing
accuracy of the MDM makes the optimization process difficult to
converge. The computing cost of the FM is unacceptable in the case of
harmonic excitations with multiple frequencies.
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3.4. Analysis methods for stationary random force excitations
3.4.1. Complete quadratic combination method

Now, consider a discretized n-DOF structure subjected to
stationary random force excitation. The motion equation can be
written as:

Mii(¢) + Cu(?) + Ku(t) = bp() [3.42]

p(?) is a d-dimension stationary random force vector of non-zero
values, whose power spectral density (PSD) matrix is of d-dimension
and denoted by S,(w). Notice that b is a n x d transformation matrix
representing the force distribution. Here, bp(?) is assumed to be white-
noise excitation with zero mean value, i.e. a uniform power spectral
density over the frequency interval.

As discussed in section 3.2.1, a number of n uncoupled equations
of motion can be obtained.

j}k(t)+2é,kwkyk(t)+a)l§yk(t):(p;fbp(t) [3.43]

By means of the Duhamel integral, the time-domain solution of
this equation is [CLO 75]:

(6)= [ @[bp(t =D, (1)dT [3.44]

where /(7) is the unit impulse response function related to the single
DOF system of equation [3.43]:

—Sk 0T
£ sin ot 720
h (t)=1 m,®, [3.45]

0 7<0
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with

=g, Mg, [3.46]

It follows that:
u(®)=) 0,5, = . 0,0b [ p(t ~ D) (7)d7 [3.47]
k=1 k=1 oo

The autocorrelation function of displacement response u(f) reads
[CLO 75]:

R, (A)=E[u()u(t+A)"]

4
_Zz<pk<pkb(ij (A+17,—7,)h (2)h,(7,)d7,d7,)b ¢ 0’ r 3481

k=1 j=I

The PSD matrix of random displacement response S,(w) can then
be obtained by Fourier transformation of the above autocorrelation
function:

S, () ——J.RH(A) S GA = ZZHHkabs (w)b"g 0"  [3.49]

k=1 j=l1

Actually, it is almost impossible to use all the » modes in the
computing process of equation [3.49], especially for large-scale
problems. Suppose [/ is the number of modes employed in the
computing with / << n, equation [3.49] is then approximated as:

! !
) =YY HH,,0/bS,(0)b"p,q" [3.50]

k=1 j=1

The CQC method [CLO 75, LIN 92] consists of obtaining the PSD
matrix of random displacement response by computing equation
[3.50] directly. Since the latter involves the cross-correlation terms
between all [ participant modes, the computing would be very
expensive for large values of /.
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3.4.2. Conventional pseudo-excitation method

Since the PSD matrix S,(w) is Hermitian, it can be decomposed
into [LIN O1]:

s, (@)=2(,) (v, [3.51]

in which Q is the rank of S,(w). Therefore, equation [3.50] can be
rewritten as:

T

o (1 T
Su(w)=2(2<p,<ij,bvq] [Zmdmbn} [3.52]

g=1\_Jj=I

Suppose
!
g, (D=2 0.H,oby,e" [3.53]
k=1

According to the MDM, g,(¢) is the displacement response vector
1wt

of equation [3.42] under the gth pseudo harmonic force vector by,e™.
Equation [3.52] can then be rewritten as:

0
S, (w)=> g8, [3.54]

This is the conventional PEM [LIN 92, LIN 01]. It holds exactly
the same accuracy as the CQC but is more efficient than the CQC for
random vibration analysis. This method means that the PSD matrix of
random displacement response can be solved through the harmonic
responses under pseudo-harmonic excitations. To have a clear idea,
suppose all the vectors and matrixes in equation [3.50], equation
[3.53] and equation [3.54] are known in advance. The computing of
equation [3.50] related to the CQC implies n*(37 + 2dI*) + nd"P
multiplication operations of real numbers, while equation [3.53] and
equation [3.54] related to the PEM imply »’Q + n(2l + dI)Q
multiplication operations. Generally, as z is great in comparison with
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I, d and O (O < d), the coefficient of n’ for the PEM is therefore
much smaller than that for the CQC.

3.4.3. The combined method of PEM and MAM

Other than the computing efficiency, the accuracy of random
response is also very crucial to topology optimization. In fact, both the
CQC and PEM belong to the same kind of mode superposition method
and the truncation modes would undoubtedly introduce computing
errors into the random responses. To remedy this, one possibility for
the CQC so far is to increase the number of modes at the expense of
huge computing cost especially for large-scale problems. Notably, this
would make the dynamic topology optimization impractical.
Meanwhile, it is difficult to decide how many modes should be
employed in advance to guarantee the accuracy for a specified
structure. Therefore, adopting a great number of modes is neither a
reasonable nor practical strategy.

With the help of the conventional PEM, random responses are now
solved through the pseudo-harmonic responses. This implies that the
improvement of random response accuracy can be achieved by
increasing the accuracy of pseudo-harmonic responses. Equation
[3.53] is the so-called MDM commonly used in solving the harmonic
responses due to its simplicity from the engineering viewpoint.
However, the truncation of n-/ high-order modes would decrease the
accuracy of response. Shi et a/l. [SHI 11] introduced MAM to replace
MDM involved in the conventional PEM for structural analysis under
multisupport excitations. As discussed below, the combined method of
PEM and MAM makes it possible to improve the accuracy of random
response with high efficiency. Generally, the MAM has a higher
accuracy than the MDM in the case of using the same number of
modes and can easily be implemented. Detailed comparisons between
the computing accuracies of both methods have been made [COR 83,
BES 13]. It was concluded that the MAM outperformed the MDM in
all cases. The error of truncation modes in equation [3.53] related to
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the MDM can be remedied by the MAM using a pseudo-static
solution. In this sense, equation [3.53] reads:

! T
. 9,0 :
g,(t) ={K l(byq ) +> (@.H, 9, - 2); )byqje o [3.55]
k=1 k

where K'l(byq) is the pseudo-static displacement under static
force vector (by,). As equation [3.55] just needs one more additional
static analysis than equation [3.53], efficiencies of MAM and
MDM would be very close. Equation [3.55] can also be written as
[BES 13]:
! n T
2,(0=Y 0, H, gy, e+ Y H2hpy, o [3.56]

k=1 k=1+1 k

The second term of equation [3.56] related to MAM could be
treated as the correction term to equation [3.53] of MDM. Thus, the
accuracy of random response can be improved significantly by
replacing equation [3.53] with equation [3.56].

In order to compare the accuracy between the conventional PEM
involving the MDM and the combined method of PEM and MAM, the
exact solution of PSD obtained by means of the full method (FM) is
used as the benchmark for comparison. As an exact method of
harmonic analysis, the FM directly solves the displacement response
vector dominated by equation [3.42] under the gth pseudo-harmonic

1wt

force vector by,e™".
g,(t)=(K-Ma’ +10C) 'by & [3.57]

The Rayleigh damping is also adopted as presented in
section 3.2.3. Equation [3.57] can be handled by sparse direct solver
as used in static analysis, but with complex arithmetic by default.
By replacing equation [3.53] with equation [3.57], the PSD of
random response would be the exact solution and will be used
as the benchmark in the following comparisons. Notice that
each excitation frequency @ implies one independent complex
analysis of equation [3.57] if the FM is used. The reason why the
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exact PEM is not suggested in topology optimization lies in the fact
that the computing cost is prohibitive in practice for the multiple
excitation frequencies.

3.4.4. Comparative tests of stationary random analysis
methods

Two examples are dealt with by means of the conventional PEM,
the combined method of PEM and MAM as well as the exact PEM. In
all numerical tests of this chapter, Young’s modulus, Poisson ratio
and density of the solid material are set to be 200 GPa, 0.3 and
7,800 kg/m’, respectively. The same Rayleigh damping is also
adopted with a = 102 and # = 10”. To simplify the discussion, the
combined method of PEM and MAM is termed improved PEM.

Structure 1: 2D cantilever beam

The structure is a rectangular domain of size 0.8 m x 0.4 m x
0.001 m. It is clamped at the left side, as shown in Figure 3.16. Here,
the domain is meshed into 40 x 20 plane stress elements with 1,722
DOFs in all. The white-noise force excitation of PSD value 2,500
N?/(rad/s) is applied at the middle node of the right edge.

bp(?)

Figure 3.16. 2D cantilever beam
(800 plane elements, 1,722 DOFs)
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Structure 2: 3D beam

The beam structure has a size of 0.5 m x 0.3 m % 0.2 m. It is
simply supported at four corners, as shown in Figure 3.17. The
domain is meshed into 50 x 30 x 20 solid elements with 99,603 DOFs
in all. The white-noise force excitation of PSD valuel0* N*/(rad/s) is
applied at the middle bottom point of the other side.

P

* bp(1)

Figure 3.17. 3D beam (30,000 solid
elements, 99,603 DOFs)

Here, the first / = 30 modes are employed in both examples. Notice
that structure 1 represents the common problem studied previously
with a discretization of roughly thousands of DOFs. Structure 2 is
adopted to illustrate the large-scale problems of huge numbers of
DOFs that are rarely studied in dynamic topology optimization.

According to equation [3.54], the PSD value of random
displacement at the loading point along the force direction is
calculated as:

2

[3.58]

5. (0)=3(s,) (2,) =3

q=1 1

(g,),

* Y
q=
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where s denotes the concerned DOF number. The solution of equation
[3.58] will be obtained by the exact FM, the improved PEM as well as
the conventional method. Suppose

2(w)=log(S, (o)) [3.59]

Results are then compared in the above form of logarithm in
Figures 3.18 and 3.19. Notice that the excitation frequency (@ = 2xf)
in each problem is always covered by the first / eigenfrequencies by

default.

—o— Exact solution
—>— Improved PEM
—— Conventional PEM

2() (m2~rad'1-s)

0 1000 2000 3000 4000 5000 6000

Excitation circular frequency (rad- s'l)

Figure 3.18. PSD curves obtained using three
different methods for structure 1

In both examples, it is shown that the PSD curves using the
improved PEM are very close to the exact solution. Instead, the
conventional PEM is acceptable only when the excitation frequency is
low. The error is relatively small near the peaks of PSD curves, where
the excitation frequency attains the resonant eigenfrequency. In
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Figures 3.18 and 3.19, it is also seen that the accuracy of the
conventional PEM decreases with the dramatic increase in the DOF
number, while the improved PEM maintains its accuracy. Hence, the
improved PEM outperforms the conventional PEM in terms of
accuracy for large-scale problems.

—o— Exact solution
—<— Improved PEM
—+— Conventional PEM

1 1
—_ —_
—_ (e

[ T

—
)
1

—
w
1 "

Q(w) (m’rads)

~
N
" 1 "

0 1000 2000 3000 4000 5000 6000
Excitation circular frequency (rad- s'l)

Figure 3.19. PSD curves obtained using
three different methods for structure 2

3.5. Topology optimization under stationary random force
excitation

3.5.1. Topology optimization formulation

The root mean square (RMS) of random response can be used to
represent the vibration level in practice. Here, the RMS of random
displacement response of the concerned rth DOF is considered as the
objective function.

R, =[S, (oMo [3.60]

U w, L
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[w4, wp] refers to the frequency interval of random excitation.
Therefore, dynamic topology optimization is stated as:

find Tl={77,-} i=12,..,n,

min R,
[3.61]
s.t V <y,
O<n <p <1

3.5.2. Sensitivity analysis

The sensitivity of RMS with respect to pseudo-density variable #;
is presented below. The differentiation of equation [3.60] can be
written as:

oR 0, 0S, (@
U _ 1 J' U ( )dw [3 .62]
877;' 2Ru>\. @ 877;

According to equation [3.58], the following equation holds:

o|(e,),

a7,

QJ

[3.63]

=i 2|(e,),

Clearly, the sensitivity of displacement amplitude of
pseudo-harmonic response is the basic calculation for equation [3.62].
With the implementation of the MDM, the sensitivity of pseudo-
harmonic displacement can be obtained by directly differentiating
equation [3.53].

. a(pk T 0H,
Ho,+o
ani kz_;( kVk k 8771

99, o
L+ H, ank beqe [3.64]

i
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With the implementation of the MAM, the sensitivity of
pseudo-harmonic displacement corresponds to

o, (K 'by, )

— em}t
an, on.
77[ 77[ T [3‘65]
L( dg, T 0Z o0Q
+ 72,0+, —~¢! +9,Z, —~ by &
;(877,- e R ol L

where Z; is defined in equation [3.25].

3.5.3. Numerical examples

In this section, topology optimization problems under stationary
random force excitation are addressed. The conventional PEM and the
improved PEM are used to solve large-scale problems. The GCMMA
algorithm is used as the optimizer.

Structure 1

The problem is illustrated in Figure 3.16. Suppose the RMS
of vertical displacement at the loading position is minimized. The
volume fraction of solid material is constrained to be less than
50% of the design domain. Initial values of all pseudo-densities
are set to be 0.5. Two frequency intervals of random force excitation
are considered with f = [0, 100] Hz and [0, 500] Hz. Here,
!/ = 30 modes are employed with the first eigenfrequency being
152 Hz and the 30th eigenfrequency being 4,541 Hz for the initial
structure.

Nearly the same configurations are obtained by the conventional
PEM and the improved PEM, as shown in Figures 3.20 and 3.21.
Exact solutions of PSD curves are shown in Figure 3.22 for the
optimized configurations related to Figure 3.21. It can be seen that the
PSD within the prescribed optimization frequency intervals decreases
obviously for the minimization of the RMS of random displacement
response.
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= [0, 500] Hz

=10, 100] Hz

Figure 3.20. Optimized configurations of structure 1
by the conventional PEM (1,722 DOFs)

2O K>

£=10, 100] Hz = [0, 500] Hz

Figure 3.21. Optimized configurations of structure 1
by the improved PEM (1,722 DOFs)
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Figure 3.22. Exact solutions of PSD curves
for optimized configurations in Figure 3.21
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Other problems with the similar order of DOFs can also be found
in [LIN 11, RON 08, RON 00, ZHA 10a]. Therefore, both the
conventional PEM and the improved PEM are effective when the
number of DOFs is small. Now, structure 1 will be further optimized
with refined meshes of 120 X 60 elements and large numbers of
DOFs, while / = 30 modes are still employed. Figure 3.23 indicates
that unclear configurations, especially near the loading point, are
obtained by the conventional PEM with a poor convergence. In
contrast, the improved PEM works well and produces clear
configurations as shown in Figure 3.24.

/=10, 100] Hz f=10,500] Hz

Figure 3.23. Optimized configurations of structure 1
by the conventional PEM (14,762 DOFs)

208

/=10, 100] Hz /=10, 500] Hz

Figure 3.24. Optimized configurations of structure 1
by the improved PEM (14,762 DOFs)

Structure 2

To further verify the effects of the improved PEM, consider now
the 3D problem illustrated in Figure 3.17. Suppose the RMS of
random displacement response at the loading position along the force
direction is minimized. The volume fraction of solid material is
constrained to be less than 20%. Initial values of all pseudo-densities
are set to be 0.2. Two frequency intervals are considered with f'= [0,
100] Hz and [0, 500] Hz. / = 30 modes are still employed with the first
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eigenfrequency being 30 Hz and the 30th eigenfrequency being
2,476 Hz for the initial structure. Configurations optimized by the
conventional PEM and the improved PEM are shown in Figures 3.25
and 3.26, respectively.

e

/= , 10 | f=10, 500] Hz

Figure 3.25. Optimized configurations of structure 2
by the conventional PEM (99,603 DOFs)

Likewise, it is difficult for the conventional PEM to achieve
convergence, especially with the expanding interval of excitation
frequency. Comparatively, the improved PEM is very efficient in both
frequency intervals. Optimized configurations and exact solutions of
PSD curves are shown in Figures 3.26 and 3.27, respectively. It is
shown that PSD curves of optimized structures globally decrease
within the prescribed frequency intervals.

£=10,100]Hz =10, 500] Hz

Figure 3.26. Optimized configurations of structure 2
by the improved PEM (99,603 DOFs)



Dynamic Problems 101

—O— initial
o ——f=[0, 100]Hz
2 /=10, 500]Hz
g
=10

Ng-
B
Q-12+

-14 -

0 1000 2000 3000 4000 5000 6000
Excitation circular frequency (rad-s™)

Figure 3.27. Exact solutions of PSD curves for
optimized configurations shown in Figure 3.26

Structure 3

A bracket structure is illustrated in Figure 3.28. It is clamped by
four bolts and loaded by a white-noise force excitation at the middle
node of the top edge with PSD value of 10* N*/(rad/s). Suppose the
RMS of displacement at the loading position along the force direction
is minimized. Notice that materials around the loading point and four
bolt holes are set as non-designable solids. The volume fraction of
solid material in the design domain is constrained to be less than 10%.
Initial values of all pseudo-densities of elements in the design domain
are set to be 0.1. Two frequency intervals are considered with = [0,
400] Hz and [0,3000] Hz. Here, / = 20 modes are employed with the
first eigenfrequency being 356 Hz and the 20th eigenfrequency being
5,537 Hz for the initial structure. Within the above frequency
intervals, optimized configurations shown in Figures 3.29 and 3.30 are
obtained by the conventional PEM and the improved PEM. As
indicated in Figure 3.31, PSD curves related to optimized structures
given in Figure 3.30 globally decrease within the prescribed frequency
intervals.
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Figure 3.28. Bracket structure (42,300
solid elements, 145,104 DOFs)

JS=10, 400] Hz /=10, 3,000] Hz

Figure 3.29. Optimized configurations of structure 3
by the conventional PEM (145,104 DOFs)
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/=10, 400] Hz /=10, 3,000] Hz

Figure 3.30. Optimized configurations of structure 3
by the improved PEM (145,104 DOFs)
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Figure 3.31. Exact solutions of PSD curves for the
optimized configurations given in Figure 3.30

From the above examples, it may be concluded that the
conventional PEM is only limited to small-scale problems. For large-
scale problems the convergence is very poor, especially at high
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excitation frequency intervals. It is almost impossible to identify clear
configurations from obtained results. In contrast, the improved PEM is
efficient in all cases for dynamic topology optimization.

3.6. Conclusions

In topology optimization related to harmonic responses, the MDM
was generally adopted as the dynamic analysis method. However,
unsatisfactory convergences become inevitable due to the low
computing accuracy of harmonic responses when large-scale problems
are concerned in practice. In this chapter, effects of the MDM on
topology optimization results are investigated, and the reasons for the
low accuracy of structural response are discussed to highlight the
errors caused by the truncation modes and by the augmented gap
between excitation frequency and eigenfrequencies of optimized
structures. It is shown that the MDM would become critical with the
increase in DOFs. Therefore, both the MAM and the FM are proposed
to improve the computing accuracy and the convergence of large-scale
topology optimization problems. Theoretical analysis and numerical
tests demonstrate that the FM outperforms the MDM and MAM in the
aspect of analysis accuracy and efficiency in the case of harmonic
excitation with one specific frequency. For the optimization problems
under harmonic excitations with multiple frequencies, the MAM is
suggested because of its compromise between computing accuracy
and efficiency.

In topology optimization related to random responses, the CQC
was generally adopted as the dynamic analysis method. However,
prohibitive computing cost and unsatisfactory convergences became
inevitable when large-scale problems were concerned in practice. The
introduction of the conventional PEM can greatly improve efficiency,
while unsatisfactory convergence is still a great difficulty due to the
low accuracy of the CQC and PEM. Therefore, the improved PEM is
introduced in the current work. The advantage is twofold: the
embedded PEM can improve the computing efficiency in the
optimization, while the computing accuracy of random response is
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guaranteed by means of the embedded MAM. Finally, theoretical
analysis and numerical tests demonstrate that the proposed
optimization procedure outperforms the existing methods in terms of
efficiency and convergence, and opens its great practicability in
dynamic topology optimization of large-scale structures subjected to
stationary random excitations.



4

Thermo-Elastic Problems

4.1. Introduction

Thermo-elastic topology optimization is complicated because it
belongs to a kind of design-dependent problem [ZHA 14b] with the
thermal stress load changing along with the spatial distribution of
solid material phases. Generally, the aim is to achieve one such design
that produces a optimized structure that is stiff enough to support the
mechanical load and compliant enough in proper areas to release the
thermal stress.

Most works on thermo-elastic topology optimization have been
limited to the case of one single material phase. For example,
Rodrigues and Fernandes [ROD 95] adopted the homogenization
method to formulate the thermal stress load for the mean compliance
minimization. Li et al. [LI 99] used the ESO method with element
thickness to be design variables. An adjoint design sensitivity analysis
method [CHO 05] was developed for the topology optimization of
weakly coupled thermo-elastic problems. Structural rigidity
optimization with an initial design-dependent thermo-elastic
stress field was also presented [DES 13]. Deng et al. [DEN 13]
optimized the microstructure of homogeneous porous material and
macrostructure topology. Pedersen and Pedersen [PED 12] found that
minimization of the maximum von-Mises stress can be achieved
through accomplishing a uniform energy density recursively. Recent
results from Zhang et al. [ZHA 14a] indicated that the elastic strain
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energy minimization and mean compliance minimization led to
different configurations if thermal loads exist. The elastic strain
energy minimization particularly favors stress reduction.

Meanwhile, multiple materials were taken into account and the
concept of thermal stress coefficient (TSC) defined as the product
between Young’s modulus and coefficient of thermal expansion was
introduced [GAO 10]. The TSC was adopted later in the thermo-
elastic topology optimization of stress-constrained problems
[DEA 13] and dynamic compliance minimization [YAN 14].

The outline of this chapter is as follows. First, the concept of TSC
is introduced to model the thermal stress load. Second, suppose that
only one solid material is used. Thermo-elastic topology optimization
is formulated as the minimization of the structural compliance
subjected to the volume constraint. Numerical tests are performed to
illustrate the formulation and comparison is made between the SIMP
and RAMP models. Third, a general formulation is proposed for
thermo-elastic topology optimization with multiple materials and
mass constraint. Finally, the mean compliance and strain energy are
compared for the definition of the objective function.

4.2. Thermo-elastic analysis

The particularity of the thermo-elastic topology optimization is that
the thermal stress load relies upon both the Young’s modulus and the
coefficient of thermal expansion. The inherent issue is therefore how
to establish the formulation in the case of the thermal stress load.

Figure 4.1. Elastic body under thermal and mechanical loads
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First, it is necessary to recall some basic concepts. For a thermo-
elastic structure undergoing thermal and mechanical loads, the stress-
strain relation reads

6. =Dg"
! ! [4.1]

m __ th __ th
g =¢ —¢, =dU, —¢

where D is the Hooke matrix, U; is the displacement that is often
calculated by the FEM and ¢; is the strain. Notice that superscripts m
and th denote mechanical and thermal parts, respectively. As
shown in Figure 4.1, designs can be made to improve the structural
rigidity or to reduce the thermal stress by optimizing the material
layout either over the main structural domain Q or the elastic
support Qs.

In this chapter, the finite element equilibrium equation
corresponds to

KU=F=F"+F" [4.2]

Here, K is the global stiffness matrix of the structure. U is the
nodal displacement vector. F™ and F™ are nodal force vectors related
to mechanical and thermal loads, respectively.

The nodal thermal stress force vector of the ith element can be
written as

F'=| B/Dg'dQ [4.3]

By definition, B; and D; are element strain-displacement matrix and
elasticity matrix, respectively. The former consists of derivatives of
element shape functions that are independent of topology design
variables. In this work, isotropic linear elastic materials are used, and
the elasticity matrix D can be written as:
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Suppose that the coefficient of thermal expansion is temperature-
independent. Thus, the thermal strain vector &1 is written as:

g =a,AT, [4.5]

where AT; denotes the temperature rise of the ith element. The vector
of the coefficient of thermal expansion, a,, can be written as:

:05(])

Hm 4.6
o=[1 11 0 0 0] 14.6]

where ¢;is the coefficient of thermal expansion. The substitution of sith
into equation [4.3] then produces

F"=[ B/DaATdQ [4.7]

Then, the vector of the thermal stress coefficient (TSC) is defined
as:

B,=D,a, [4.8]

The substitution of equations [4.4] and [4.6] into equation [4.8]
yields

B = :qu)
_ ko, [4.9]
Sy
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Thus, TSC can be treated as an inherent material property. F." is
then rewritten as:

F.th — ﬂfth

L [4.10]

F. = | BJYATdQ

4.3. Thermo-elastic topology optimization with single material

In this section, the basic thermo-elastic topology optimization is
presented to minimize the structural compliance subjected to the
volume constraint. Here, single solid material and void are considered.
The models and conclusions can be extended into design problem with
multiple materials studied later.

4.3.1. Topology optimization formulation

The topology optimization problem involving thermo-elastic stress
load can be expressed as a compliance minimization subjected to the
volume constraint.

find n={n} i=12,..n

min C=F'U

s.t F=KU
Q=HT [4.11]
Ve =DV, SVy=vfy -V
O<n <n, <1

where Q, T and U are the global thermal flux vector, nodal
temperature vector and nodal displacement vector. K is the global
stiffness matrix and H is the global heat conductivity matrix. Vy
denotes the upper bound of the volume constraint of the candidate
material V. The upper bound of the volume fraction, vfy, is defined as
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the ratio of 'y to the total volume of all designable elements V" with
vfu = Vu/V. Obviously, 0 < vf;;< 1 for a meaningful volume constraint.

4.3.2. Sensitivity analysis

As detailed in Chapter 2, the SIMP interpolation model of
exponential form might lead to a mismatch between force and
stiffness for low-density elements with very small values of #; when
design-dependent body forces such as self-weight and centrifugal
forces are present. Here, the RAMP model is adopted with

77.
E = ' E
1+qE(1_771) ’

7].

B =——"7"——p [4.12]

1+‘Iﬂ(1_77i) ’

_ m:
AN TR

Here, interpolations of the Young’s modulus (£), thermal stress
coefficient (f) and heat conductivity coefficient (x) are made
simultaneously to compute element stiffness matrix and thermal stress
load. The subscript 0 denotes the solid material. In the case of
a single material, the Poisson’s ratio is supposed to be constant and

ﬁ() = E()Ot()/( 1 -2/1()).

When gradient-based optimizers are used to solve topology
optimization problems, it is necessary to carry out a sensitivity
analysis with respect to pseudo-density variables. The sensitivity of
the structural compliance corresponds to

T aEth B

1

oK,
U —LU, 4.13
ani i an i [ ]

1

U=2U

m th
a_czzUT ai+aF _UTa_K
o7, on, o1, a7,

Term OF"/0n; is often equal to zero when F™ is design-independent
except for inertial forces, such as gravity and centrifugal loads.
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Evidently, 0K/0n; and 6F,»‘h/871,» can easily be derived at the element
level.

For the ith element, the stiffness matrix is expressed as

_ T
K, = -[Q, B'D B dQ [4.14]

Mathematically, 0K,;/0n; can be written as

K, ﬂBz BLB do —%Km
an, o, (1+q,(1-1,)) [4.15]
[ B/DB,dQ
Q;

where D is the elasticity matrix related to the solid material. As to
term OF"/dn;, it is derived from equation [4.10].

0AT,

th _t
OF" 9B —n oF, _f = F s f BT(I)_’dQ [4.16]

ﬁ _=
on, 877 o,

1

Theoretically, two cases exist in the calculation of OAT/0n;:
OAT;/0n;=0 for a design-independent temperature field whatever the
material layout. OAT;/0n+#0 for a design-dependent temperature field.
In our implementation, a constant temperature field (zero-order
approximation) is assumed in sensitivity analysis, while the
temperature field is updated on the finite element analysis level of
steady-state heat conduction. In this way, the efficiency of the design
procedure can be largely improved without deterioration of the design
accuracy. Thus, the sensitivity of the thermal stress force vector of the
ith element can be approximately simplified as:

th .
o _9B g [4.17]

an, an,.
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4.3.3. Numerical examples

4.3.3.1. Constant temperature rise

Numerical comparisons between SIMP and RAMP models

A biclamped structure with two non-designable domains (the dark
areas) is shown in Figure 4.2. It was studied previously by Rodrigues
and Fernandes [ROD 95]. A mesh of 60 X 40 elements is used here.
Assume that Young’s modulus of the solid material is 210 GPa, the
coefficient of thermal expansion is 1.1x107/°C and the Poisson’s ratio
is 0.3. The applied force has a value of 10 kN and a uniform
temperature rise is 1 K over the domain.

\ 2 |

=

Figure 4.2. Structure 1: biclamped rectangular domain (unit: cm)

The upper bound of the volume fraction is vfy = 0.4. The SIMP
model is applied first. With one solid material and void, SIMP models

of the Young’s modulus and TSC correspond to E, =7*E; and

B = Uip” B3, . As usual, the penalty factor pz= 3 is used for Young’s

modulus here. For different values of penalty factor for TSC (py),
iteration curves of the normalized compliance and optimized
configurations are shown in Figure 4.3. It is found that the iteration
history is unstable and small oscillations exist at the end of iteration
when p; =1. Meanwhile, the parasitic effect of the material layout is
quite evident. For pg>1, although the iteration history becomes stable,
the unexpected gray areas exist for ps>2 and the gray area increases.
A clear configuration is obtained only for ps = 2. Unfortunately,
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Figure 4.4 indicated that the SIMP model is unable to yield a clear
configuration if the uniform temperature rise is 3K with ps = 2 and
pE:3-

Alternatively, the RAMP model is now applied for the same
problem. Iteration histories and the optimization results for A7 =1 K
and AT = 3 K are shown in Figures 4.5 and 4.6, respectively. With
gr = 8 and gz = 0, the RAMP model leads to stable iterations and clear
configurations in both cases. Accordingly, the RAMP model seems to
be more robust than the SIMP model for this kind of problem.

—=1
010 ——2
g x —-3
i 3 ——4
= A ——5
86 /\/\/\/\
g >\( x X PN Ko =X
N4
E
52
Z
0
0 5 10 15 20 25 30
Iteration
a)
ps=1
pp=2 Ps=3
N l I
py=4 py=5

Figure 4.3. Optimization design with SIMP model (AT = 1 K, pe = 3):
a) iteration histories of the normalized compliance with different pg;
b) structural configuration at last iteration
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Figure 4.4. Optimization design with SIMP model (AT = 3 K pe = 3, pg-2):
a) iteration histories of the normalized compliance and the volume
fraction; b) structural configuration at last iteration

It should be remarked that at AT = 1 K, the volume fraction always
attains the prescribed upper bound for both SIMP and RAMP models.
At AT = 3 K, Figures 4.4(a) and 4.6(a) indicate that the volume
fraction constraint behaves differently for each model. The RAMP
produces an optimization structure slightly stiffer than using the SIMP
model.

In fact, from the work of Stolpe and Svanberg [STO 01], it is
known that the RAMP is always first-order infinitesimal with
non-zero slope when the element pseudo-density tends to zero. In
contrast, the SIMP has a zero slope when the element pseudo-density
tends to zero if the penalty factor is larger than 1. This difference
means that both the element stiffness and the thermal load related to
the SIMP model are insensitive to the zero value of pseudo-density.
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Figure 4.5. Optimization design with RAMP model (AT = 1 K,
qe = 8, qp - 0): a) iteration history of the normalized compliance;
b) structural configuration at last iteration

20 0.8
—— Normalized compliance
—=— Volume fraction
o
215 0.6
S =
a S
:
S g
310 04 &
a 3 o
E c
Es 02 >
)
Z
0 0.0
0 5 10 15 20 25 30
Iteration

Figure 4.6. Optimization design with RAMP model (AT = 3 K,
qe = 8, q5=0,): a) iteration histories of the normalized compliance
and the volume fraction; b) structural configuration at last iteration
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Influence of the upper bound of volume constraint upon the
optimization results

With g = 8 and g4 = 0, initial values of all design variables are set to
be the prescribed upper bound of volume fraction. As shown in Figure
4.7, the compliance of the optimized structure decreases monotonously
and is then stabilized when vfy > 0.7. Note that the normalized
compliance is even less than 1 when vfi; > 0.8. This means that the
corresponding optimized configurations are better than a fully solid
structure. Furthermore, it should be highlighted that the volume
constraint is active only if the upper bound is 0.965. This is just like the
similar phenomenon observed in the body force problem [BRU 05].

o
e

Normalized compliance
(3]

1017 6.995 0.988 0.988

0 . . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

Upper bound of volume constraint (vf;;)

b)

Volume fraction of optimized configuration

0 01 02 03 04 05 06 07 08 09 1
Upper bound of volume constraint (vf;;)

Figure 4.7. Influence of the upper bound of volume constraint upon the
optimization results: a) influence upon the normalized compliance;
b) influence upon the volume fraction of optimized configuration
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The optimized structures are shown in Figure 4.8. The
configurations have similar topologies and are in good accordance
with the results of Rodrigues and Fernandes [ROD 95] for a wide
range when 0.2 < vfy < 1. Moreover, a two-branch configuration is
obtained for very small value vf;; = 0.1.

VfU:1

VfU:() 9 VfU:() 8 VfU:0.7

N N

P o = Tt i
VfU:0.2 \{fU:(). 1

Figure 4.8. Influence of the upper bound of volume
constraint upon the optimal configuration
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variable: a) optimization result after six iterations; b) evolution curve of
the compliance versus the design variable (i = 1,094); c) evolution curve of the
compliance versus the design variable (i = 3); d) evolution curve of the

2.6378E-01

2.6376E-01

Design variable

compliance versus the design variable (i = 576)

o
o
o)
°
] Ocpooo
0 0.2 0.4 0.6 0.8
Design variable
J
OOO
o
%
“
%
%
0 02 04 0.6 0.8 1
Design variable
OOM%O
| %
o)
0,
%
o)
o)
9
o)
%
oo%@%%W

0 0.2 0.4 0.6 0.8




Thermo-Elastic Problems 121

Discussions

In sensitivity analysis, it is found that the sensitivity may have a
non-constant sign due to the design-dependence of the thermal stress
load. Actually, the thermal stress load makes the structural compliance
complicated and the evolution curves of the objective function are
plotted and illustrated here. Take the optimization problem of
Figure 4.5 as an example and consider three elements related to the
design result after six iterations shown in Figure 4.9(a). The evolution
curves of the compliance versus these design variables are plotted in
Figures 4.9(b—d). The solid point refers to the current solution.
Obviously, the evolution curves of the compliance might be convex,
concave or even non-monotonous with respect to the concerned
design variable so that local solutions might exist in these
optimization problems.

As is well known, concave functions will bring more difficulties
into the approximation and numerical optimization. The popular
optimizations, such as ConLin, MMA, GCMMA and MDQA,
are all based on convex approximations and lack the ability to find out
the global optimal solution. Thus, the solution presented here is not
guaranteed to be the global optimal solution.

4.3.3.2. Computing the rise in temperature

As problems considered in section 4.3.3.1 are subjected to a
constant temperature field, interpolation models are only applied to
Young’s modulus and TSC. In this section, the steady-state heat
conduction is taken into account so that the interpolation model is also
adopted for the thermal conductivity.

Suppose vfy = 0.4 for structure 1 illustrated in Figure 4.2. Apart
from the applied external force 10 kN, a fixed heat flow Q is applied
at the same point.

Effects of the heat flow upon the normalized optimization
compliance are shown in Figure 4.10. The normalized compliance
curve is approximately linear with respect to the heat flow.
Corresponding optimized configurations are shown in Figure 4.11.
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Noticeably, the optimized configuration with O = 0 is quite different
from those with O > 0. It implies that the existence of the heat flow
makes the material layout more complicated. Likewise, the optimized
configurations are considerably different from those with a constant
temperature field. Both the temperature and displacement fields of the
optimal structure are illustrated in Figure 4.12.

Normalized compliance
N

Heat flow

Figure 4.10. Influence of the heat flow upon
the normalized optimization compliance

03 0=4

Figure 4.11. Influences of the heat flow upon the optimized configuration
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Figure 4.12. Distributions of temperature and displacement
fields of the optimized structure for Q = 2: a) distribution of
the temperature field; b) distribution of the displacement field

4.4. Thermo-elastic topology optimization with multiple
materials

From the engineering viewpoint, it is a common practice to use
multiphase materials for the sake of lightweight and multifunctional
designs. Topology optimization with multiphase materials was first
investigated by Thomsen [THO 92]. Later, typical works were
focused on the extension of the SIMP/RAMP models and varieties of
topology optimization problems with multiple materials including
designs of microstructures with the extreme equivalent property
[SIG 97], thermo-elastic problem subjected to the volume constraint
[GAO 10] and multiphysics actuator design [SIG 01b]. Simultaneous
design of the structural layout and discrete fiber orientation was also
dealt with using an extension of the SIMP scheme, for example, the
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so-called discrete material optimization (DMO) scheme [STE 05],
shape functions with penalization (SFP) scheme [BRU 11] and
bi-value coding parameterization (BCP) scheme [GAO 12].

The ESO was also applied to address multiple materials [HUA 09].
An evolutionary approach using discrete variables was proposed to
solve the mass minimization problem with multiple materials and
strength constraints [RAM 11]. Alternatively, the level set method and
the phase field method were applied to address topology optimization
problems with multiple materials, including both the stiffness
maximization problem [MEI 04a] and heat conduction problem
[ZHU 10b]. It should be noted that the implicit description of the
interfaces between two distinct solid material phases is the basis of
this approach. Some other schemes should be mentioned here: Yin
and Ananthasuresh [YIN 01] proposed a multimaterial interpolation
model based on the so-called peak function; Jung and Gea [JUN 06]
constructed a variable-inseparable multimaterial model for the design
of an energy-absorbing structure; Yoon [YOO 11] presented the
so-called patch stacking method for the nonlinear dynamic problem
with multiple materials.

In the earlier work, the material amount was controlled by the
volume constraint of each candidate material phase. In the engineering
design sense, the volume constraint is less significant than the mass
constraint to the whole structure. Although both constraints are
identical when only one single solid material phase is present, the
situation changes completely in the case of multiple materials due to
the differences in material densities. The mass constraint of multiple
materials was investigated under pure mechanical loads for the
structural compliance minimization [GAO 11]. Two interpolation
schemes, namely, recursive multiphase materials interpolation
(RMMI) and uniform multiphase materials interpolation (UMMI)
were discussed. It was demonstrated that the mass constraint is more
beneficial than the volume constraint in the sense that the structural
stiffness can be further increased and multiple material properties can
be automatically matched.
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This section focuses on topology optimization with multiple
materials subject to the mass constraint and both mechanical and
thermal loading are taken into account.

4.4.1. Standard optimization formulation

In this section, topology optimization with multiple materials is
stated as

find n :{77,],} i=12,..,n,;j=12,.,m

min C=F'U

s.t F =KU [4.18]
Q=HT
M <M,
O<m <7, <1

in which m is the number of candidate material phases and #;
represents the presence (1) or absence (0) of the jth candidate material
in the ith finite element. The structural mass M should be less than its
upper bound My.

4.4.2. Sensitivity analysis

In a design problem involving both mechanical and thermal loads,
the elasticity matrix and TSC should be parameterized to compute the
element stiffness matrix and thermal stress load vectors, respectively.
If a heat conduction analysis is required to compute the temperature
field, the heat conductivity coefficient x; should be parameterized
as well. Generally, these parameterized material properties can be
expressed as the weighted summation of all of the candidate material
phases.

D, :Z}Wfl)(f) B :Z‘Wfﬂ(/) K :ZW;K(./') [4.19]
J= J=



126  Topology Optimization in Engineering Structure Design

Herein, the superscript (j) denotes the jth candidate material phase.
The TSC of the jth material phase corresponds to S D =F Vg 0y
(1-247).

In [GAO 10], the UMMI was found to be superior to the RMMI
because the former made it possible to formulate the mass constraint
in a linear form with separable design variables. One such formulation
benefits the problem resolution by means of mathematical
programming approaches, specifically convex programming methods.
Hence, the RAMP scheme is utilized in combination with the UMMI
scheme known as DMO in the work of Stegmann and Lund [STE 05].
The weighting functions in the above parameterization models then
correspond to

PURURCIDRE b _ ;

wy =R, & SR 1+4"(1-7,)
#j

PRI s 1y

ok i (1-&) R T [4.20]
#j

K _ Km x K= nif

W,,—Rif;[(l k) " 14g"(1-m,)
=)

where R;”, Rijﬁ and R;" are calculated using ¢”, ¢" and ¢° which are
internal parameters in the RAMP scheme.

By combining the UMMI and RAMP schemes, the sensitivity of
the structural compliance then corresponds to

m th th
9C | I Ky Ky 421
o, an; I, o, o, a1,

i

Evidently, 0Ki/on; and 8F,-th/8nij can be easily derived at the
element level. Mathematically, 0Ki/Onj; is written as
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am_j BT ’BdV Z( J

=jVB,.D BidV
OR? _»
alj H(I_Ri?) j:g
ow?” i [4.22]
on; - , OR7
Y| -R 1-RY) j#¢
S anl l;! ( f)
$#j.l#c
aR,;-) 1+4"

A constant temperature rise (0AT;/On; = 0) is assumed and the
partial derivative of the thermal stress load is stated as

E:i( ,gﬁ J—th

877,.1. Bny
Rﬂ m
i Vil s
- H(I_Ri;’) J=¢
B on, &5
Mo | [4.23]
on, OR?  m '
R BT (o) e
877,, §¢§=§1¢§
E)Rf 3 1+4”

My (144" (1-1,))

According to the sensitivity analysis, 0C/On; 1is positive
or negative depending on the relative magnitudes of the
partial derivatives of the stiffness matrix and thermal stress
load. This implies that the compliance formulation might be
non-monotonic.



128 Topology Optimization in Engineering Structure Design

4.4.3. Mass constraint

4.4.3.1. Mass constraint formulation

The formulation of the mass constraint depends on how the
densities of the candidate material phases are interpolated. First,
consider the linear formulation [GAO 11] with the density of element
i interpolated as

p,=>n,p" [4.24]

The corresponding mass constraint of multiple materials then reads

ne - m

M, =>>n,p" <M [4.25]

i=l j=1

Obviously, the linear form and separability of the design variables
are favorable to the optimization procedure. The sensitivity of the
mass constraint can easily be derived as

My _ oy [4.26]

9y

In this section, an alternative formulation of the density using the
UMMI scheme is also studied,

p.= | mI1(1-m¢) o [4.27]

The corresponding mass constraint is then written as

e m

M, ZZ %H( )| p Uy <m, [4.28]

i=l j=1
fﬂ
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and the sensitivity is expressed as

= [T(=me)p” =2 me TT (1=n¢) [P |77 1429
aﬂi' ¢=1 &=1

&=l
S#j c#j S#j.$#¢

In numerical tests, the nonlinear mass constraint is found to be
frequently violated, which will terminate the optimization process.
Therefore, M is used instead of My in this work.

In comparison, the volume constraint related to multiple materials
is also presented below. For each candidate material phase j, the
volume constraint is written as

VC = ZI/’UU < VUf zvfl,!/' 4 .] = 1,...,7’]’1 [430]
i=1

Herein, Vy; denotes the prescribed upper bound of the volume
constraint of the jth candidate material. The upper bound of the
volume fraction vfy; is defined as the division of V'y; by the summation
of all designable elements V, namely, vfy; = Vy/V. Obviously,
0<vfy;<1 for each meaningful volume constraint. Usually, the number
of volume constraints equals the number of candidate material phases

m and vau,' <1 for all volume constraints. The sensitivity of the
j=1
volume constraint is obviously constant,

%:K [4.31]
a7,

4.4.3.2. Relationship between volume and mass constraints

Without a loss of generality, suppose that an arbitrary feasible
solution n = {#;} exists in the sense that the set of volume constraints
is satisfied. Based on the condition 0< 1-#,<I, it follows that
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S I10-n:) [ <Xmv <k, [4.32]

The multiplication of this term by the density of the material phase
7, p?, gives rise to

>\ 11(1=n¢) (no” < X vp" <v;,p” [4.33]
i=1 &=1 i=1
§#J

S T10-m) e <SS n o < 370" [4.34]
j=1 i=1 £=1 j=1 i=1 j=1
E#j

Now, suppose that the structure mass is specified as the upper
bound My, we then have

i =M [4.35]

The combination of equation [4.34] and equation [4.35] yields the
linear and nonlinear forms of the mass constraint given in equation
[4.25] and equation [4.28], respectively. This means that an arbitrary
feasible solution of the volume-constrained optimization problem is
always within the feasible domain of the mass-constrained design
problem.

It concludes that the following relation theoretically exists for
design spaces defined by the volume and mass constraints.

Q,cQ, cQ [4.36]
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Geometrically, this means that under the precondition of the same
mass of the structure, the volume constraint defines a subdesign space
of the linear mass constraint, while the latter defines a subdesign space
of the nonlinear mass constraint. Therefore, the mass constraint
always produces a stiffer configuration than the volume constraint in
the compliance minimization sense.

At the same time, the following relation holds:

M <M, [4.37]

Note that My = M only if n; = 1 and 7,: = 0 (&#) with one single
material or #7; = 0 with a void in each element. Although My is not
adopted in the optimization formulation, values of My and M| can be
utilized to check the status of the presence or absence of mixed
material.

4.4.4. Improved optimization formulation

In this section, a typical numerical example is tested to illustrate
the mixed material status if the presented standard optimization
formulation is used. Then, an improved optimization formulation is
proposed to overcome the resulting defect.

4.4 .4 1. Mixed material status

Consider the biclamped plane structure with two non-designable
domains (the dark areas) on both sides, as shown in Figure 4.2. The
upper bound of the mass constraint is My = 10. A vertical force F™ =
8kN is applied, and the reference temperature for the thermal strain
calculation is 20°C. Suppose two isotropic solid material phases are
available (black for M2 and gray for M1) with their properties listed in
Table 4.1. Note that M2 has large values of the Young’s modulus,
stiffness-to-density ratio and TSC. This implies that M2 is superior to
M1 in bearing mechanical loads, but the produced thermal stress load
from M2 does not favor the reduction of structural compliance.
According to [GAO 11, STE 05], a uniform initial weighting in the
UMMI scheme is helpful for topology optimization problems under
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pure mechanical loads to avoid the local optimum close to the initial
point. Therefore, uniform initial design variables (77;; = #, = 0.05) are
adopted here as a feasible starting point.

Material phase | M1 M2
(TC4) | (18Mn2CrMoBA)
Density (kg/m3) 4,440 7,850
Young’s modulus (GPa) 105 190
Thermal conductivity (W/(m -°C)) 8.7 35.38
Poisson’s ratio | 0.34 0.28
Coefficient of thermal expansion (x10%°C) | 9.10 12.4
Thermal stress coefficient (MPa/°C) | 2.986 5.355

Table 4.1. Basic properties of two solid material phases

Suppose a uniform temperature of 100 K is applied over the whole
structure, the optimization results are illustrated in Figure 4.13. It is
found that My<M;, even after 80 iterations, which means that the
mixed material status still exists in some elements. Consider elements
3 and 33 as examples, with the evolution histories of their design
variables plotted in Figures 4.13(c) and (d). 7, = O after tens of
iterations, while 7;; approaches 0.039 and 0.177, respectively, for
elements 3 and 33. Of particular interest, the evolution track is self-
intersecting for element 33.

4.4.4.2. Optimization formulation with an artificial penalty term

To avoid the mixed material status of each element, we introduce
the following artificial penalty term

5=2(fj > n,-gn,-;] [4.38]

i=1 \ &=1 {=£+1
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The optimization formulation is then rewritten as

find n={n,} i=12..n;j=1..m

min C+a-o
th m __
s.t F" +F" =KU [4.39]
Q=HT
M<M,
O<n <7y, <1

Here, 0 acts as a positive penalty to force the design variables in
each element toward a solid (#; = 1 and 7,: = 0 (%)) or void (77; = 0)
material status. This situation occurs at 6 = 0 so that the objective
function in equation [4.39] equals the structural compliance. Note that
a = aCydy is a scale parameter defined to avoid large differences
between 0 and C. J, and C, are the initial values.

With the updated formulation in equation [4.39], the biclamped
rectangular structure is optimized. The influence of parameter @ upon
the optimization process is first studied. As shown in Figure 4.14(a),
the iterations of J oscillate for @ = 0 and a = 0.04, while large values
of d lead to stable iterations. In Figure 4.14(b), it is shown that a large
value of & will push ¢ toward zero, but increases the structural
compliance. In summary, a small value for the parameter a leads to
stiff configurations with mixed material status, while large values of @
yield clear but weak configurations.

A treatment using variable @ is proposed to seek clear and stiff
configurations where a is gradually increased from 0.01 to 0.1 in 40
iterations. The J stabilizes as the iteration count increases, as plotted
in Figure 4.14(a). The optimization results are shown in Figure 4.15.
Clearly, the iteration processes of the compliance and material costs
are globally stable. Linear and nonlinear formulations of the mass
constraint are used to evaluate the effect of the artificial penalty term.
Because the masses of the linear and nonlinear forms converge and are
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nearly identical after 40 iterations, the value of J tends to zero.
Consequently, a clear configuration is obtained without mixed
material status. The optimization formulation in equation [4.39] is
thus adopted in the following numerical tests instead of the original
one that was used in equation [4.18].
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Figure 4.14. Influence of & upon the optimization process:
a) influence of & on the iteration histories of 6; b) influence
of & on the compliance and o of the optimized results. For a color
version of this figure, see www.iste.co.uk/zhang/topology.zip
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Figure 4.15. Optimization results with equation [4.39] under
uniform AT = 80 K: a) optimized configuration (C = 662.4 & = 0.44x107%);
b) iteration histories of the compliance and mass; c) iteration
histories of the volumes of two solid materials

To gain further understanding of the nonlinearity and complexity
of the investigated problem, the intermediate design result after
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17 iterations is shown in Figure 4.16(a). The distribution of the
compliance value versus the design variables of element 61 is illustrated
in Figure 4.16(b). Obviously, the compliance is non-monotonic with
respect to the concerned design variables. Particularly, there exists a
minor peak around (0.4, 0) and a cliff near (1, 1).
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a) b)

Figure 4.16. Distribution of the compliance value versus design
variables of element 61: a) Distribution of Young’s modulus after
17 iterations; b) Compliance versus design variables (i = 61). For a
color version of this figure, see www.iste.co.uk/zhang/topology.zip

4.4.5. Numerical examples

More numerical examples are tested using the improved
optimization formulation in equation [4.39] with the artificial penalty
term and variable 4, which is gradually increased from 0.01 to 0.1 in
40 iterations.

2D structure

The biclamped plane structure is further tested. The influence of
the temperature rise on the optimization results is also investigated.
Suppose the mechanical force remains unchanged and the structural
mass is constrained by My = 10 in all tests. Figure 4.17(a) shows that
the compliance increases with the rise of uniform temperature
due to the increase in thermal stress loads. Figure 4.17(b) shows that
the amount of M1 increases with the temperature rise because of its
small TSC value. Some voids thus occur inside the structure to allow
for thermal stress release. In the extreme case of
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either a small or absent temperature rise, only M2 is used due
to its large Young’s modulus value. Therefore, the optimized
configuration result is a compromise between mechanical and thermal
stress loads.
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Figure 4.17. Influence of the temperature rise on the optimized result at
My = 10: a) influence of the temperature rise on the compliance; b) influence
of the temperature rise on the volume of each candidate material phase

Now, the effect of the upper bound of the mass constraint on the
optimized results is investigated for a uniform temperature rise (80 K).
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Figure 4.18 indicates that the structural compliance of the optimized
configuration naturally decreases with the increase in My. The mass
constraint reaches its upper bound in all tests. If the mass is strongly
limited by a small value of My, the solution corresponds to a
two-branch structure consisting of only M2. In contrast, a large value
of My results in similar optimized configurations that are filled with
both materials. In detail, M2 is placed around the mechanical loads
and lower corners of the non-designable area. M1 transfers loads to
both vertical edges. The compliances are almost the same for My =8
despite differences in both the amount of each available material and
the optimized configurations.
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Figure 4.18. Influence of the upper bound of
the mass constraint on the optimized result
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Furthermore, the volume and mass constraints are compared. To do
this, two volume constraints are introduced for M1 and M2 to replace
the linear mass constraint. The upper bound of each volume constraint
is correspondingly defined to match My = 10. As shown in
Figure 4.19, the optimized configuration with the mass constraint is
found to be the stiffest whatever the upper bounds of the volume
constraints are. This situation theoretically confirms the benefit of
using the mass constraint over the volume constraint according to
equation [4.36].
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Figure 4.19. Comparisons of optimized results under
mass or volume constraints with the same My = 10

Now, the effects of the initial values of the design variables are
highlighted in the case of multiple materials. Tests are conducted with
fixed #, = 0.05 and different #,; as initial values. Figure 4.20(a)
indicates that the resulting curve is non-monotonic. Uniform initial
weights are not the absolute best choice, although they are suggested
to address problems under a design-independent mechanical load.
Figure 4.20(b) indicates that the amount of M2 obviously decreases
with the increase in the initial value of 7;;. In these tests, the mass
constraint always remains active.
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According to [GAO 11] and [STE 05], a uniform initial weighting
in the UMMI scheme is desirable for topology optimization problems
under pure mechanical loads to avoid the local optimum. In this work,
due to the presence of a design-dependent thermal stress load, the non-
uniform initial weighting might yield a local optimum, which is better
than the uniform initial weighting.
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Figure 4.20. Influence of the initial value of 1);; on the optimized result
(Miz = 0.05); a) influence of the initial value of 1;; on the compliance;
b) influence of the initial value of 1)1 on the volume of each candidate
material phase
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3D structure

The proposed method is now tested for a large-scale engineering
problem. The structure used is shown in Figure 4.21. It is fixed on the
ends of two horizontal arms. Herein, two candidate materials, M1 and
M2, are available. The structure undergoes a temperature rise and
mechanical load simultaneously. The latter consists of pressure
applied to the inner surface of the hole with a cosine distribution
function over 8 = 120° (the peak value p; = 50 MPa) and uniform
pushing force (p, = 8 MPa). Suppose the loading area is a
non-designable one filled with material phase M2. The reference
temperature for the thermal strain calculations is assumed to be 20°C.
The whole structure is meshed into 39,352 solid elements and the
design variables are uniformly set to initial values of #;; = #,, = 0.05,
which is a feasible starting point.

Figure 4.21. Structure 2 (unit: m)

At My = 40, the optimized results are illustrated in Figure 4.22 (red
for M2 and cyan for M1). In the case of pure mechanical loads, the
whole structure consists of only M2 due to its high Young’s modulus
value, as shown in Figure 4.22(a). If the uniform temperature rise
(AT = 60 K) is applied, the optimized structure shown in
Figure 4.22(b) is obviously different. The structure is mainly
composed of M1 due to its small TSC value, and M2 is distributed
around clamped areas. A non-uniform temperature rise is tested as
well. Temperatures on the inner surface of the hole and the upper
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surface of the structure are set to 110 and 50°C, respectively. In each
iteration, a steady-state heat conduction analysis is carried out
to obtain the temperature field over the whole structure. The
optimized configuration and its temperature field are illustrated in
Figure 4.22(c). Note that the mass constraint reaches its upper bound
in all test cases.

a)

b)

)

temperature field

lndonnom

Figure 4.22. Optimized results for the 3D structure: a) AT = 0°C
(M2: 5.095 x 1073 m3); b) uniform temperature rise (AT = 60°C) (M1: 6.051 x
10° m®, M2:1.673 x 10° m3); ¢) non-uniform temperature rise (M1: 6.199 x
10° m3, M2: 1.589 x 107 m3). For a color version of this figure, see
www.iste.co.uk/zhang/topology.zip
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4.5. Distinction between mean compliance and elastic
strain energy

In all the above work, the mean compliance is used as the objective
function. When only mechanical loads exist, the mean compliance and
strain energy are identical. However, as the thermal loading is
design-dependent, it contributes to each objective formulation
differently so that both metrics are no longer the same. In fact, the
thermal load follows the rule of “no material, no thermal load” in the
optimization process, while the mechanical load is a fixed one. To
study each formulation, the effects of mechanical and thermal loads
upon the structural compliance and strain energy are investigated in
detail. As shown later, the difference between both metrics results in a
big difference between the optimized configurations as the thermal
load increases. In this section, single material is the candidate.

4.5.1. Formulations of mean compliance and elastic strain
energy

The discrete form of the mean compliance C of an elastic body is

written as:
C=1U'KU=L(F" +F")"U=1U"F" +LU"F"
: : : 2 [4.40]
:E(Fm )T K-lFm + %(Fth )T K-lFth + (Fm )T K-lFth

It should be noted that a coefficient 1/2 is added in the mean
compliance formulation in order to conveniently compare with the
elastic strain energy defined below. The mean compliance can be
regarded as a combination of three terms: mechanical, thermal and
coupled.

C — Cm + Cth +Cmth

Cm :%(Fm )T K—lFm Z%(Fm )T Um

Cth — %(Fth )T K—]Fth — %(Fth )T Uth

Cmth — (Fm)T K—lFth — (Fm )T Uth — (Fth )T Um

[4.41]

Physically, C™ refers to the coupled effect between thermal and
mechanic loads. It can be positive or negative depending upon the
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relative direction between the displacement and load vectors involved
in the expression.

Accordingly, the elastic strain energy Ck is defined as the potential
mechanical energy stored in the configuration of an elastic body as
work is performed to distort its volume or shape.

C =ij(a—smf1xs—sth
Y T Tryth hT Ty th [4.42]
=%J.V£ Dst—jVs De' aVV+%J'V($t ) De"dV

where the third integral term on the right refers to the energy
generated by the initial thermal strain. It equals the total strain energy
when the domain is fully constrained with € = 0. Based on the finite
element method, the above relation can be discretized as:

C,=3U'KU-U'F" +C;'

. 4.43
C' =4[ ") De"ar [4.43]

where Cg'™ is the initial thermal strain energy. In addition, it can
easily be proved that the elastic strain energy consists of two
independent parts contributed from the mechanical and thermal
loads, respectively.

C.=Cr+CP
Cr=1(F™)'K'F"=C" [4.44]
Céh:_%(Fth)TK—lFth +%J‘V (Sth)T DetdV=—C" +Cgh

4.5.2. Comparisons between mean compliance and elastic
strain energy

4.5.2.1. Comparisons in analysis

It is important to note that the following relationship holds between
the elastic strain energy Cgand the mean compliance C.

C,=C-UF" +C}" [4.45]
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Clearly, Cg is equivalent to C when thermal loads disappear with
AT = 0. This is the common case mostly studied in topology
optimization. However, for AT+0, Cg and C have different
expressions and should be carefully investigated in the formulation of
the optimization model.

To some extent, the strain energy measures the stressed state of a
structure. Physically, if a structure deforms in a free stress state, the
strain energy tends to zero.

E,A,L,00,AT E, A, L,a0,AT

a) b)

Figure 4.23. lllustration of a slender bar under uniform heating:
a) free expansion case; b) completely constrained case

For example, Figure 4.23 illustrates a uniformly heated slender bar
only with axial thermal deformation. Suppose the bar is fixed at two
ends or only at one end. It therefore follows that

Case (a): C=1/2 EALo* (AT)*, C, =0, €™ =0, " =oAT

Case (b): C=0, C,=1FEALZ(ATY=C}", &"™=-0AT,
e = oAT [4.46]

where, E, A, L and a denote the Young’s modulus, cross-section area,
length and coefficient of thermal expansion. It is seen that the mean
compliance and strain energy change from one case to the other case.
In case (a), no thermal stress exists because the bar is in the state of
free expansion. In case (b), the thermal stress is calculated as
0= -0FEAT.

In fact, the von-Mises stress can be expressed in quadratic form of
the stress vector,

(c"™) =c'Jo [4.47]
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where J is a constant symmetrical matrix of form similar to the
inverse of the elastic matrix D™'. For 2D plane stress problems and 3D
problems, J is expressed as,

1 -1/2 0
J=(-1/2 1 0 for 2D problems
| 0 0 3
1 -1/2 -1)2 ]
-2 1 -1)2 0, [4.48]
—2 -2 1
J= for 3D problems
1 00
0., 310 1.0
| 0 0 1]

In comparison, D' can be written as

. 1 —u 0
D' = Z -u 1 0 for 2D problems
L0 0 2(1+w)
T1 —u —u -
—H 1 —H 03><3 [449]
-u - 1
p=1 e for 3D problems
E 1 00
0., 2(1+w)|0 1 0
| 0 0 1]]

This indicates that the element strain energy is close to element
von-Mises stress in form. The reduction of maximum value of the
element strain energy can result in the reduction of maximum value of
element von-Mises stress. Therefore, the strain energy of an element is
related to the stress state to some extent.
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4.5.2.2. Comparisons in topology optimization

In this chapter, two formulations are investigated for topology
optimization of thermo-elastic problems subjected to the volume
constraint. One is to use the mean compliance as the objective
function. The other is to use the elastic strain energy as the objective
function.

The aim of this section is to show how the mean compliance, strain
energy and von-Mises stress change when each formulation is used for
topology optimization. To avoid the local stress concentration at the
load application point, distributed loads or point-wise loads applied on
a non-designable domain are considered as shown in Figure 4.24.

s L A
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; Uniform temperature AT 2 ? Uniform temperature AT ; 2 Unif(;)lm -tem;emtu-Ie AT 2

Design Domain Design Domain / / esign Domain
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‘ T S U I o ——
i t F
Structure 3 Structure 4 Structure 5

Figure 4.24. Biclamped domain under thermo-mechanical loads

In these three tests, assume that the Young’s modulus and
coefficient of thermal expansion of the solid material are £ =210 GPa
and a = 1.1x10°/°C, respectively. The domain is uniformly heated
with a temperature variation AT = 50 K. The distributed load is 100
N/m and the point load is 10 kN. The whole domain is discretized
with a 60 x 40 mesh of eight-node bilinear elements for finite element
analysis. Element size is about 12 mmx11.9 mm. The volume fraction
40% is used as the upper bound of the volume constraint.

Figures 4.25 and 4.26 show the optimized configurations and
corresponding distributions of von-Mises stresses for the mean
compliance and strain energy minimizations, respectively. It should be
remarked that for elements with intermediate pseudo-densities
(not 0/1), stress computations become dependent on the choice of
the interpolation parameters. This is, however, negligible if few
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intermediate elements exist in the final configuration. For the purpose
of illustration, Figure 4.27 gives the iteration histories of structure 3.
Based on numerical results, the following conclusions can be drawn
out.

Structure 3 Structure 4 Structure 5

me o et
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Figure 4.25. Comparisons of optimized configurations
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Figure 4.26. Stress distributions of the optimized configurations
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Figure 4.27. lteration histories (structure 3). For a color version
of this figure, see www.iste.co.uk/zhang/topology.zip

1) The mean compliance minimization can achieve a lower mean
compliance value than that using the strain energy minimization.
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Likewise, the strain energy minimization can produce a lower strain
energy value than that using the mean compliance minimization.

2) As mentioned previously, the strain energy depends upon
the stressed state of the structure. So the strain energy minimization
tends to release the constraints related to the thermal deformation of
the structure as much as possible. This is why less material is
used and retained in both fixed ends of the domain after optimization.
More importantly, the maximum and average stress values in the
optimized configuration using the strain energy minimization are
reduced and more uniformly distributed than those in the mean
compliance minimization. In other words, the strain energy
minimization provides a better strength design than the mean
compliance minimization.

3) Since C™" is the coupling term of mechanical and thermal loads
in the mean compliance, C™ even decreases to negative values along
with the increase in C" and the decrease in C™ in the mean compliance
minimization. Instead, Cg™ and Cs™ are two independent terms. In
the strain energy minimization, both Cg™ andCg™ decrease. As a result,
the value of Cg™ becomes greatly dominant over CEth in the
composition of Cg.

4.5.3. Effects of thermal and mechanical loads on the
optimized configurations

As shown in numerical tests above, the optimized configuration
may change greatly depending upon whether the load is dominated
by the mechanical or thermal load. In order to reveal the effects of
each load upon the structural compliance and strain energy, thermal
and mechanical load sensitivity analyses are carried out. To do this,
load coefficients 4™ and A™ are first introduced as coefficients
applied to initial mechanical load vector F™ and thermal load

vector FM°,

Fm — /lmFmO,

[4.50]
Fth — ﬂtthhO, AT — ﬂthATE)
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Consider now the objective function defined by the mean
compliance or the strain energy. The following expressions can be
derived

C — Cm + Cth + Cmth — (/’lm )2 CmO + (/’lth )2 CthO + /’lm/’lthcmtho

. b [4.51]
C,=Cl+CP=(A")Y C+(A" ' C°

where C™, ¢™, ™ ™ and C™ refer to corresponding parts of
the mean compliance and the strain energy under initial loads.

Without loss of generality, the topology optimization problem can
be written in the following general form

find 1]:{771.} i=12,..n,

min  f(nd) A=(4.Ad.A) [4.52]
s.t h(n)<1

where m denotes the n.-dimensional vector of topological design
variables; A denotes the s-dimensional vector of fixed parameters, i.e.
load coefficients in our case; f denotes the objective function;
h denotes the volume constraint function, which is independent of
fixed parameters.

Suppose the gradient of the objective function f'with respect to n is
expressed as

[af(na) af(nr)  af(mr)]|

Vi(nA
(n:3) a7, a7, a7,

[4.53]

The Karush—Kuhn-Tucker (KKT) condition can be used to
characterize the influences of load amplitudes characterized by load
coefficients A™ and A™ upon the optimum solution related to each
metric. In our case, it is theoretically stated that at an optimum point,
the negative gradient of the objective function can be expressed as a
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linear combination of gradients of active constraints with non-negative
Lagrangian multipliers. Since the gradients of the volume constraint
and side constraints involved in the topology optimization problem are
constant and independent of 4™ and A™ in topology optimization, the
deviation of the optimized solution will be made possible only if any
perturbation of A™ and A™ changes the gradient direction of the
objective function. Hence, the gradient deviation of the objective
function can be quantified by the angle between the perturbed gradient
vector with A4 and the original gradient vector to measure the gradient
direction variation.

VE(n,h+AL)-VE(n,h)
[VE(na+AL)|[VE(n2)|

cosf = [4.54]

cosdis an important indicator of the load effects upon the optimized
configuration. If the value of cos@ is close to 1, it means that the
gradient directions before and after the load change are nearly parallel
so that small changes will appear in the optimized configurations.
Otherwise, closer to 0 for cosé, greater changes will appear in the
optimized configurations.

The structure 1 is tested here for detailed illustrations. Suppose that
the initial mechanical load is F™ = 10* N and temperature variation is
AT, = 1 K. Figure 4.28 shows the corresponding gradient
direction variations of each metric when only thermal loads
increase with respect to the reference value of A" = —5. Topologies
of the optimized structures achieved by both formulations are
quite different at A"#0. Notice that at AT = A" = 0, the mean
compliance is identical to the strain energy for the definition of
objective function.

Figure 4.28 indicates the significant changes of optimized
configurations compared with the reference when cos® increases and
decreases. As shown in Figure 4.29, the same conclusion can be
drawn out when mechanical loads change.
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Figure 4.28. Gradient direction variations and
corresponding o/?timized configurations under different
thermal loads (A" = —5 as the reference value): a) mean
compliance minimization; b) strain energy minimization
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Figure 4.29. Gradient direction variations and corresponding
optimized configurations under different mechanical loads
(A" = 2 as the reference value): a) mean compliance
minimization; b) strain energy minimization
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Although the optimized configurations related to both formulations
are sensitive to the variations of thermal and mechanical loads, the
influence measured by the load sensitivity is physically different. In
the mean compliance minimization, the load change will change the
pattern of material layout. In the strain energy minimization, the load
change will only change the member thickness, while the pattern of
material layout remains unchanged.

4.6. Conclusions

In this chapter, the concept of TSC is first introduced as an
inherent property of material to favor the formulation of topology
optimization problems involving thermo-elastic stress. With numerical
examples, the RAMP model demonstrates superior advantages over
the SIMP model for this kind of problem. Moreover, the internal
RAMP parameters are studied to reveal the penalty effects upon the
structural stiffness and thermal stress load.

A mass constraint is implemented into thermo-elastic topology
optimization for structures of multiphase materials to reflect
the engineering design needs of light weightness. To avoid the
possible mixed material status within each element, the optimization
formulation is improved by introducing the artificial penalty term at
the objective function level. The influence of the additive parameter d
is studied and the variable 4 is then suggested. Due to the presence of
thermal stress loads, numerical tests highlight that non-uniform initial
weighting in the UMMI might be more advantageous than the uniform
initial weighting in obtaining the optimum solution. In contrast, for the
case with pure mechanical loads, uniform initial weighting is
preferable to avoid the local optimum.

Two formulations related to the mean compliance minimization
and strain energy minimization are studied for thermo-elastic topology
optimization. Based on theoretical and numerical comparisons, it
is found that both formulations lead to different optimized
configurations when thermo-elastic load exists. Meanwhile, the strain
energy minimization is more beneficial for the stress reduction than
the mean compliance minimization. In addition, although the
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optimized configurations related to both formulations are sensitive to
the wvariations of thermal and mechanical loads, the influence
measured by the load sensitivity is physically different. In the mean
compliance minimization, the load change will change the pattern of
material layout. In the strain energy minimization, the load change
will only change the member thickness, while the pattern of material
layout remains unchanged.



5

Integrated Layout and
Topology Optimization

5.1. Introduction to integrated optimization

A multicomponent system is a structural system consisting of a
certain number of components of specific form, a container and the
supporting structure that interconnects the components and the
container for its integrity. Most structural systems in mechanical and
aerospace engineering can be considered as a kind of multicomponent
system, as shown in Figure 5.1. Compactness, structural efficiency,
static and dynamic responses have to be optimized for the
functionality and mechanical performance. On the one hand, the given
components are assembled in the limited space of the container to
satisfy various functional constraints, which are a packing
optimization or a layout optimization. On the other hand, proper
supporting structures have to be identified to satisfy the mechanical
performances of the system, which is a typical topology optimization.
In this work, the integrated layout and topology optimization are
discussed for the maximum rigidity design where the spatial
placement of components and the configuration of the supporting
structure have to be optimized simultaneously, as illustrated in
Figure 5.2.
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Generally speaking, there are two main difficulties involved in the
integrated optimization design [ZHU 06b]. First, non-overlapping
constraints will be properly defined to avoid the collision of
components. Second, the integrated finite element model including the
modeling of the components, structures and their interfaces will be
studied to favor the simultaneous design.

Figure 5.1. Typical multicomponent system

Components

Design Domain

Boundary Conditions
a)

Figure 5.2. lllustration of integrated layout and topology optimization
design of multicomponent systems: a) initial definition; b) optimized design

5.2. Finite-circle method
5.2.1. Formulation of finite-circle method

According to the definition of integrated optimization, packing
optimization with non-overlapping constraints has to be performed to
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figure out the proper layout of components. Until now, packing
optimization problems are still CAD based. Simple geometrical or
physical measures like the system compactness, gravity center,
configuration cost, etc., are optimized in the packing design by
assigning the location and orientation of the components as design
variables. As indicated by Cagan et al. [CAG 98, CAG 02], the
underlying difficulties are concerned with the modeling of the
components, the packing area and selection of efficient search
strategies, etc. Among others, one of the key issues is that the non-
overlapping constraints have to be properly introduced in order to
avoid both the components’ overlapping and their overlapping with
the design domain boundaries. Theoretically, it was proved that
packing optimization is a type of NP-hard problem [DEB 88].
Varieties of component shapes and design domain boundaries will
lead to high nonlinearity and even discontinuity of the non-overlap
constraint functions. Consequently, the gradient-based optimization
algorithms will be strongly limited in solving packing problems when
the components or the design domain boundary have complex and
concave shapes. Even for the simplest bin-packing problem with
rectangular components, different overlap cases exist and should be
analyzed carefully [PAL 06, HUA 07].

Practically, techniques such as octrees [MEA 82, SAM 89], sphere
trees [MOO 02, HUB 93, QUI 94] and S-bounds based trees
[CAM 91] have been proposed to detect object collision. These
techniques approximate the components with various levels of small
cubes or spheres and refine the model partition iteratively. However,
these methods are limited to detecting rather than evaluating the
overlapping. More interesting information cannot be provided to
identify the search directions and to verify attainment of the optimum
solution. For more overlapping detection methods, we can refer to the
work of Lin and Gottschalk [LIN 98].

In this section, the Finite-circle method (FCM) is presented to
adapt gradient-based algorithms to the packing design. Consider a 2D
packing problem as shown in Figure 5.3. Suppose several components
will be located inside the design domain and no overlapping will be
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found between different components. Mathematically, the following
conditions should be retained

Vy=L12,..,n;

st.: Q,(x,,,,0,)cQ)

Vyl=12,.,n; wy2=12,..n; yl£y2
b0 (X1, Y150, Ny (X2, V,2,6,,) =D

where Q,, and €, denote the area occupied by the yth component and
the global design domain, respectively. Q,is described as the function
of the location and orientation of the component, i.e. (xy vy 6,). nc
is the number of components. ¥l and ¥2 denote two different
components. This equation is a symbolic presentation. When gradient-
based algorithms are applied, it is necessary to have the design
sensitivities in order to understand how much the components are
overlapped with each other, in which direction they should move to
escape from the overlapping and possible overlapping.

-

Figure 5.3. A 2D packing problem

Figure 5.4. Components approximation with single circle
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Although it is difficult to describe overlapping for components
with arbitrary shapes, overlapping between circles and spheres can be
easily calculated by comparing the distances of the centers with the
summation of their radii. This is the idea of approximating all the
components of arbitrary shapes with circles or spheres. For clarity of
presentation, only the formulation related to 2D components is
discussed here. If only one single circle is used for the approximation
of one component as shown in Figure 5.4, the approximation error
will be large. Consequently, the two components are still far away
from each other but the circles have already overlapped. Here, FCM
uses the idea similar to the sphere-trees. The components and the
design domain are approximately modeled with numbers of circles
(2D) or spheres (3D) as shown in Figure 5.5. For each component, a
family of circles may have different radii and be placed at different
locations to approximately cover the boundary of the components.
Clearly, the approximation accuracy can be improved by refining the
circles’ definition or simply using more circles.

Figure 5.5. The FCM approximation of the components

In this way, the complex non-overlapping constraint can be
transformed and simplified into a standard form of constraint between
circles

HO,,,l,glOl,,z,gz H >R, . +R [5.2]

V2,62

where Oy is the center of the (¢1)th circle defined in the (y1)th
component. R, is the corresponding radius. This relationship refers
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to the distance condition between the circle centers. The gradients
with respect to the involved design variables can thus be easily
calculated by differentiating the constraint function. From this
viewpoint, FCM can be considered a common approach for packing
optimization problems with components and design domain of
arbitrary shapes.

Compared with the sphere-trees methods, the iterative
approximation refinements of the circles’ discretization are not
employed in FCM, which implies that the FCM uses a fixed number
of design constraints during the packing optimization. In fact, FCM is
more than a collision detection method. It identifies how to relocate
the components to avoid overlap by calculating the sensitivities of the
distances between the circles with respect to the location and
orientation of the components. Note that although FCM proposes to
favor the gradient-based algorithms, it does not limit the application of
the gradient-free methods.

A simple packing optimization problem consisting of six identical
equilateral triangle components and an equilateral hexagon design
domain is illustrated in Figure 5.6. The characteristic length / is now
assigned as the edge length of the triangular component and each
component is approximated with nine identical circles with a
maximum approximation error of 7.22%l. Likewise, the design
domain is approximated with six big circles and the maximum error is
3%I. The problem is now to find the optimal locations of all
components inside the design domain with a minimum packing area.
Mathematically, the problem can be stated as the height minimization
of the equilateral hexagon.

=y = = = /

Figure 5.6. The triangle component and the design domain
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c) Iteration 8 d) The final configuration

Figure 5.7. The design iteration and the optimized result

Finally, 1,215 constraints are retained to avoid overlap between the
components and 324 constraints to keep all the components inside the
design domain. Based on the initial configuration shown in
Figure 5.7(a), the optimization problem is programmed and sensitivity
analysis is carried out in the framework of Boss-Quattro, the design
process converges to the configuration shown in Figure 5.7(d) after 13
iterations. Because FCM uses conservative approximation, there are
always safety gaps between the design domain contour and the
components.

To improve the approximation accuracy, more circles are used as
shown in Figure 5.8 with the uniform discretization. Although the
approximation error is reduced, the great number of the circles leads
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to a large number of design constrains which requires tremendous
computing time.
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Figure 5.8. Effects of circle and constraint numbers
upon the computing time for one single iteration

5.2.2. Improved adaptive constraint aggregation

FCM possesses the advantage of simple and explicit formulation
which can be easily differentiated to yield sensitivities for gradient-
based optimizations. Moreover, FCM can easily be extended to deal
with 3D overlapping problems by using spheres instead of circles.

However, precise description of components’ geometries requires
more circles which will lead to large numbers of overlapping
constraints and costly computing times when the packing optimization
problem is solved iteratively. It is therefore crucial to use fewer circles
on the one hand while maintaining the approximation precision. On
the other hand, some constraint aggregation approaches such as KS
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function, etc., are applicable to reduce the number of constraints. The
standard form of KS function is expressed as:

KS(T):%lnzgexp(Tgm) [5.3]

where N, stands for the number of constraints.7is the aggregation
parameter. Generally, the constraints should be normalized into the
same scale, which will be helpful, especially when the constraints are
in different magnitudes.

Normally, an equivalent form is used to avoid some numerical
difficulties.

1, &
KS(t)=g,.. + ;ln Zexp [T(gm — & ):l [5.4]
m=1

where g..x stands for the maximum value of all the constraints. We
also have

1
o <KS(T)< g, +—1n(Ng)
T [5.5]
lim KS(7)=g,...
H—>+oo

Obviously, choosing larger values for aggregation parameters has
the advantages of a precise description of the feasible region.
However, too large a value of the aggregation parameter will lead to
an ill-conditioned Hessian matrix of the KS function and result in
optimization instability when the current design point is located very
close to, or directly at the points where multiple constraints are active.
Practically, 7 should be properly defined considering both the
precision and stability of optimization iteration.

In the existing adaptive aggregation method [MAR 05, POO 07],
|dKS/d7 is chosen as the criterion to determine the aggregation
parameters adaptively during each iteration.

dKS

<0 5.6
a7 [5.6]
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J is a prescribed small positive value. By assuming a linear
relationship between |[dKS/d 7 and 7in logarithmic scale, the derivative
of |dKS/d7 w.r.t.7was then obtained with a finite difference scheme.
The desired value of 7= 7, satisfying equation [5.6] was thus directly
obtained by

dKS dKS dKS dKS
log =z, | log 7=T, log =, | log 7=T,
dz " dr ' dz " 0
= [5.7]
logz, —logz, logz, —logz,

where 7 is assigned as an initial value of 50, andzy = 7+ 107, Note
that when 7= 7, |dKS/d7 is equal to .

Here, we explain the conditions in which equation [5.7] holds. By
considering the standard form of the KS function, we have its first
derivative

Ng

D (g, —KS)exp(zg,,)
ml [5.8]

Ng
7y exp(7g,)

m=1

dKS
dr

In most cases, the linear relationship between |dKS/d7 and 7 in
logarithmic scale cannot be attained. However, in some special
situations, e.g. when all the constraints’ values are equal, the
aggregation absolute error can be written as

KS-g = lln N, [5.9]
T
we have
dKS = __1n N [5.10]

dr 7’



Integrated Layout and Topology Optimization 169

Therefore, the linear relationship between |dKS/d7 and 7in
logarithmic scale can be obtained.

log

$‘=log(lnNg)—210gT [5.11]
T

As the linear assumption only exists in few particular cases, the
adaptive approach may therefore fail in obtaining proper aggregation
parameters. To solve this problem, an improved adaptive approach
based on the Steffensen iteration is presented. First, we have

d’KS 2a(alna—-17b)+7°(ac—b*)

dz? v’ 121
where
Ng
a=Y exp(rg,);
m=1
NX
m=1

N,
c=Y grexp(rg,).
m=1

It is easy to obtain

a>0;
N,

alna—-tb=arKS—-1b= TX(KS -g,exp(rg,)>0;  [5.14]

m=1

Ng N,
ac—b* =%ZZ(gm -g,) exp(rg, +7g,)=0,m#n.

m=1 n=1
Consequently, we can prove

d*’KS

i >0
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lim —=0" [5.15]
ure dT

By giving a small positive value &, there is one and only one
positive 75 satisfying the following equation

|dKS/d7|,_ =6 [5.16]

So, we propose using an iterative adaptive approach to search the
aggregation parameter by introducing both upper and lower bounds
for |dKS/d 1.

V6 <|dKS/d7|< 8, 0<v<1 [5.17]

Here, we use the equivalent form of KS function, its derivative can
be expressed as

Ng
D (8 = G ) €XP[ 7(£1 = Gy )|
d(fTS %(KS— g, )+ [5.18]
TZeXp[T ~ )|

Then, we assume

> 7(80 = G ) XD 7(81r — G ) |
f="= [5.19]

}:exp[f = G ) |

which leads to

dKS 1

KS-
dT T( gmmax)

[5.20]

M\
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We use the Steffensen iteration to obtain the root of the following
equation

—%(KS—gmmax)+i2=—5 [5.21]

N

The stable point formula chosen for the Steffensen iteration can be
reorganized as

T e [
f—\/ 5(KS Zormax ) 5 [5.22]

Then the final formula of the Steffensen iteration can be expressed
as

o(5)= | H(KS, g )

_ [¢(Tk)_7k ]2
(/’[(P(Tk )] - 2¢(Tk ) 7

[5.23]

T =7

+1

where7, is initially set to be 50, a common value chosen in many
previous works. Then dKS/d7 is iteratively calculated and evaluated
until equation [5.17] is satisfied. Since the Steffensen iteration proves
to be at least quadratically convergent, the proper value of 7 can be
obtained efficiently.

As a substantial member of non-overlapping constraints have been
aggregated into one with high nonlinearity, precise sensitivity analysis
becomes an important issue. The finite difference and the analytical
scheme are two usual methods to achieve design sensitivities.

The finite difference scheme is easy to implement but leads to
inaccurate sensitivities. It has been proven that each design variable in
different iterations needs adaptive step lengths to ensure a stable
sensitivity output. Typically, tiny finite difference step lengths will not
improve the precision as expected due to the numerical calculation
errors.
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On the contrary, the analytical method holds the advantage of
accuracy. However, compared with the finite difference scheme, the
analytical method for the aggregated non-overlapping constraint needs
more operations due to the tedious formulations and derivations.

As a result, we chose to use the complex step derivative
approximation [SQU 98, MAR 03, LAI 08] here. Consider a complex
function with one complex variable. It can be expanded by using a
Taylor series at the current design point

4

F+ih) = f(x)+inf () - L ;('x) _ind 3"‘) +ee [5.24]
Then, only the imaginary parts are extracted
f/(x) — Im[f(x+lh)] +h2 f,”(x) Foee [525]

h 3!

Ignoring the high-order items, we obtain an approximation form by
using a small value of /

B Im[ f(x+ih)]

1) [5.26]
h

This formulation ensures a more accurate sensitivity output than

the standard finite difference method. On the one hand, it is based on

an O(h*) approximation of f(x). On the other hand, subtraction

operation leading to roundness error is avoided in the complex

formulation.

The complex step derivative approximation used in our problem is
expressed as

KS(s,) _Im[KS(s, +ih)] [5.27]
os h

v

where Im[KS(s,+ih)] denotes the imaginary output after a small
imaginary perturbation i% is brought into the KS function. Normally,
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we use & = 10™% in our work. Here, sy 1s one of the geometry design
variables such as x,, y,or 0.

5.3. Density points and embedded meshing
5.3.1. Definition of the density points

Another key difficulty of the integrated optimization lies in the
description of the interfaces between the components and supporting
structures. In traditional density-based topology optimization such as
the SIMP model-based method, it is known that the pseudo-density
variables used to describe the material layout are always defined
with respect to a fixed finite element mesh, i.e. one pseudo-density is
related to one element. However, for an integrated layout and
topology optimization problem, components’ positions will be
designed simultaneously with the material layout of the supporting
structure. Consequently, the finite element mesh of the design domain
has to be updated iteratively to follow the variations of the component
positions in a body-fit way.

Suppose an intermediate topology pattern is generated as shown in
Figure 5.9. The black and white colors denote the solid and void
material properties, respectively. The optimization aims to update the
geometry variables and pseudo-densities simultaneously. When
the locations and orientations of the components are changed during
the iteration, a new finite element mesh has to be generated to make
sure the components are still embedded and joined together with the
structure. However, after the remeshing, the pseudo-densities cannot
find the previous corresponding elements and the structural material
layout cannot be further updated.

Accordingly, the method of density points is proposed to solve this
confliction. The idea is to relate the pseudo-densities with the points
rather than elements. To do this, some fixed points named density
points are first defined in the design domain and the pseudo-densities
are then attributed to these points. The material properties will be, in
turn, spread out from these points to the neighborhood elements.
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The method is as follows. First, the density points are defined in
the design domain to cover the overall area. As shown in Figure 5.10,
four density points are defined to describe four material properties in a
square area. Later, the design domain is meshed with elements of
proper sizes. By calculating the distances between each density point
and the centroids of the corresponding elements, each element will
find the nearest density point and receive the information of the
material properties. Note that several elements may share the same
material property.

Figure 5.9. Conflict between pseudo-density
definition and component position updating

O Density Points

O Centroid of element

Figure 5.10. Material properties
defined by the density points

With the technique of density points, the finite element mesh
can be updated during the iteration of topology optimization. The
drawbacks of this kind of element mesh are, however, twofold. On the
one hand, a large member of elements will be generated in the finite
element model. On the other hand, the whole system has to be
remeshed along with the perturbations of the geometry variables and
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the design iteration. Both of them will cost much computing time. For
this reason, the technique of embedded meshing is introduced to
embed the components of designable locations and orientations in the
design domain with fewer elements and easier mesh updating. As
shown in Figure 5.11, the initial mesh of the design domain referred to
as the basic mesh or background mesh is first created by fine
quadrangular elements. The components are also meshed with refined
element size.

When the component is located in the design domain, as shown in
Figure 5.12(a), Boolean operations have to be carried out in such a
way that some elements of the basic mesh overlapping with the
component, as indicated with gray color, will be refined locally to
ensure the elements of the component are embedded in the design
domain. The modified elements belonging to the design domain will
also be restricted in the small square elements of the basic mesh as
shown in Figure 5.12(b). Material properties of these elements will
still be covered by the proper density points except those belonging to
the components. In this way, only a few density points that
are located around the component will cover more than one element,
which avoids using a large number of the elements to mesh the whole
structural system. Furthermore, when the component changes its
location and orientation as shown in Figure 5.12(c), the basic mesh is
simply restored and only the Boolean operations and modification of
the affected elements will be repeated at the new position, rather than
remeshing the global system. The final element mesh is shown in
Figure 5.12(d).

O O O o
O Density Points
O O O o
O O O o
o O O o
Basic mesh Component mesh

Figure 5.11. Basic mesh with density points and the component mesh



176  Topology Optimization in Engineering Structure Design

X\

fAﬁ‘\ S

a) b)
R {Qz/

) 9

Figure 5.12. Process of embedded meshing

5.3.2. Superelement and semi-analytical sensitivities

To enhance the design efficiency, components can generally be
modeled as a supereclement whose stiffness matrix can be
analytically calculated as a function of its orientation. Only the DOFs
associated with boundary nodes of the component are retained, while
the interior DOFs are condensed. The reduced stiffness matrix is thus
expressed as

K, =K, -K,K/K, [5.28]

Note that the submatrices correspond to the following partitioned
matrix form of the boundary and interior DOFs

K. K
KW:{ g ”’} [5.29]
Kbi Kbb
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Clearly, when the component location is modified by translation in
the design procedure, the stiffness matrix of the superelement remains
unchanged. In contrast, when the design modification concerns the
change of its orientation angle 6, the stiffness matrix can be
analytically calculated in a cost-effective way by means of the
following transformation:

K, (0) = T" (0)K, T(6) [5.30]

Meanwhile, the stiffness matrix of the superelement can be
calculated only once for all the identical components.

During the sensitivity analysis, the global stiffness is partitioned
into three parts contributed from connecting structure, transitional
structures and components;

K=K +> K, +>.K, [5.31]
=l y=l

Ks) is the stiffness matrix of the connecting structure, K7, is the
transition stiffness matrix of the yth component and K, is the stiffness
matrix of the yth component.

The differentiation of the finite element static equation with respect
to s; of component j gives

aK n, aK n, aK n, n,
(8) My v
( % +2 % +2 3 WU+(Ks, + 2 Ky, +> K,)
j y=1 y=1

i vl y=1 OS;

U
—=01[5.32
3 [5.32]

J

While the derivative of the system strain energy with respect to s; is
expressed as

aC 1 U 1 "l n, oU
0 I = U (K )+ Y Ky + K ) o
asj 2 aS,- 2 (8) ; (1 ; ) aSj
[5.33]
1 aK Tl aK n, aK

:__UT (S5) (1)1 ()1 U
VS e, )

=1 O0S; =1 OS;
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K(s) is independent of s;. The derivative term is then equal to
zero. For K1)y, the derivative can be calculated by finite difference so
that

iame _ ime —Kiw [5.34]
w=1 aSj w=1 ASJ-

For Ky, it is only sensitive to the rotation angle € of its own, i.e.
when j=y. The derivative of K, can be simplified as
0, s,#0,

K
L ={0T,(0,)
9,

n,

T, (6,) [5.35]

K,T,(0)+T,0,)K, — , 5,=0,

J J

I=1 aS‘/-

The sensitivity of global strain energy with respect to
the pseudo-density variables can be derived analytically, which
can be found in many existing literatures and will not be provided
here.

Consider a rectangular domain of 0.4 m x 0.5 m containing nine
identical rectangular components of 0.05 m x 0.1 m, as shown in
Figure 5.13. The rectangular domain is meshed with 40 x 50 four-
node quadrilateral membrane elements and each component is
modeled as a superelement containing 25 x 50 four-node membrane
elements. Two point-wise forces and a moment approximated
by a pair of equal and opposite forces are applied on the structure. The
right part of the upper edge and the lower part of the left edge are
fixed. To avoid possible overlapping during the optimization,
each component is approximated with eight circles. Due to the
presence of nine components, the volume fraction of the domain is
limited to 27.5%. In this way, the final configuration is mainly
composed of the components. Here, the elastic modulus of the
design domain and the components are 7 x 10'° Pa and 2 x 10" Pa,
respectively.
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Figure 5.13. Integrated optimization of a nine-component problem

The evolution of the design configuration is shown in Figure 5.14.
Nine components move inside the design domain together with the
progressive appearance of the structural framework. The
final optimized design is shown in Figure 5.15(a). For the purpose of
comparison, Figure 5.15(b) shows the optimized configuration
without components, obtained by standard topology optimization
with a 50% volume fraction. It is observed that the components’
packing design and the structure topology design are integrated

simultaneously.
O v
ixﬁ N‘

(a) 4" iteration (b) 8" iteration

S f S

() 11" iteration (d) 15" iteration

Figure 5.14. Design iterations of a nine-component system
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a) b)

Figure 5.15. Comparison of the integrated optimization
and the standard optimization: a) integrated optimization,
C = 28.4 J; b) standard optimization, C = 34.6 J

5.3.3. Decomposition optimization strategies

Considering the nature of the integrated optimization,
decomposition optimization strategies are used by means of the
Kuhn-Tucker optimality condition to carry out the packing design and
topology design separately, which makes it possible to explore better
optimization solutions. In packing optimization, only geometry
variables are optimized iteratively, while the pseudo-density design
variables are considered as fixed parameters and will be updated
in topology optimization. Likewise, in topology optimization, only
pseudo-density variables are optimized iteratively with the location
design variables fixed. In this context, two decomposition
formulations, i.e. parallel design strategy and sequential design
strategy, are tested.

In order to have the feature of the considered optimization
problem, the formulation can be written in a general form

min: f'(n,S)

[5.36]
st.:h(n)<0, g(S)<0
This formulation is characterized by the fact that two kinds of
design variables are separated at the level of constraints but coupled
by the objective function. Based on the Kuhn—Tucker optimality
condition, the corresponding Lagrangian function is expressed as
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L(m,S,p,2) =1 (n,S)+pn"h(n)+1"g(S) [5.37]

According to the stationary condition, it follows that

a_L:aiﬂ,ra_h:O

o on - on [5.38]
a_L:al_F)\’Ta_g:

JS aS oS

The satisfaction of optimality conditions implies that the original
optimization problem is split into two subproblems and each of them
contains only one kind of design variable.

min: £, (n) =/ (n,S,)

st.:h(n)<0
min: f, (S) = f(n,.S)
st.:g(S)<0
y _ e T T I
| |
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| |
[ I L ___ |
v 4
A4 h 4
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Figure 5.16. Parallel design strategy (V: variables, P: parameters)
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Figure 5.17. Sequential design strategy
(V: variables, P: parameters)

The advantage of this decomposition is twofold. On the one hand,
the problem scale can be reduced to some extent and each subproblem
can be solved independently at the current step. On the other hand,
proper approximation concepts and optimization algorithms can be
applied independently for pure topology optimization and packing
design, because the nature of each set of design variables is different.
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This is beneficial in improving the computing efficiency and iteration
convergence. Here, two design strategies, i.e. parallel strategy and
sequential strategy, are tested in order to save computing time and
achieve high-quality convergence of optimization. Parallel strategy
refers to the parallel running of two subproblems independently. The
flowchart is illustrated in Figure 5.16.

In contrast, the flowchart of sequential design strategy is illustrated
in Figure 5.17. The main difference from the parallel strategy is that
two kinds of design variables are updated sequentially.
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Figure 5.18. Cantilever beam with three components

A cantilever beam with three components is presented here to
investigate different design strategies, i.e. simultaneous design,
parallel design and sequential design. As shown in Figure 5.18, the
sizes of the three components are different. Material properties are the
same as in the previous examples.

As shown in Figure 5.19, the optimized designs achieved by three
design strategies are different in the component layout, while the final
values of structural strain energy are quite close to each other. This
confirms the existence of multiple minima for this kind of NP-hard
problem.
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Figure 5.19. Optimized designs obtained with three design strategies

Besides, it is shown in Figure 5.19(a) that about 40 iterations are
required by the simultaneous strategy and oscillations take place at
iteration 8 and iteration 13. This is because few materials are available
to connect the shortest component as shown in Figure 5.20(a). The
values of local pseudo-density variables covered by the component
reach the lower bound instantly due to its movement and they are
quickly recovered after several iterations. After the 13th iteration, only
slight changes occur for the component positions so that the iteration
history becomes stable.

For the parallel design strategy, nearly the same iteration number is
required. However, oscillations become more serious because the
coupling between two sets of design variables is greatly weakened.
Instead, one such coupling is relatively strengthened by the sequential
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design strategy so that the corresponding iteration history shown in
Figure 5.19(c) converges smoothly.

1= NESWESYAS

Iter. 2 (C=49.6 J) Iter. 4 (C=22.51) Iter. 7 (C=12.0J) Iter. 8 (C=33.0J)
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Iter. 12 (C=8.11)  Iter. 13 (C=24.71) Iter. 19 (C=6.41J) Iter. 25 (C=4.5])

(a) Simultaneous design optimization
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(b) Parallel design optimization

[EN 2N 725 2N
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(c) Sequential design optimization

Figure 5.20. Optimization iterations with three design strategies

5.4. MPC-based component-structure connections

In many practical industrial cases, components and supporting
structures are mostly assembled together by rivets or bolts with the
connecting positions designated in advance as shown in Figure 5.21.
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The components are actually floating on the surface of the topological
design domain and direct nodal connections are not applicable. Here,
we propose to use multipoint constraints (MPCs) to define rivet or
bolt connections. The displacement consistence is strictly maintained
by satisfying the MPC equations. When the components move, only
the MPC connections are rebuilt at new positions. In this way, the
advantages of remesh-free, analyticity as well as the precise material
description, are simultaneously maintained.

Figure 5.21. Connections between components and supporting structures

To use MPC as the connections, the topological design domain and
the components are discretized, respectively, into finite elements as
illustrated in Figure 5.22. Assume M, is one of the connecting nodes
on the component, which is projected to the point M;" inside the
structural element e;. Then, we enable the following MPC equation.

Uy = U;’ll =N, (MT ) U,
[5.40]

*

Uy =N, (Ml ) U, =0
where Uy and U'yy; denote the displacement vectors of node M, and
point M, .U,; and N,(M,") are the displacement vectors of the
element e, and the shape function coefficient matrix at the point M 1*.

Note that the MPC equation is a linear combination of the nodal
displacements. Multiple MPC equations as well as the boundary
conditions can be organized as the following linear equations.

HU=0 [5.41]
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where H is the coefficient matrix determined by the shape functions
of the connected elements, connection positions and boundary
conditions. U is the global displacement vector.

Figure 5.22. Definition of MPC connections

Considering the above displacement constraints, the revised form
of the overall potential energy of the global system can be expressed
as:

(U, %) :%UTKU—FTU+XTHU [5.42]

where K and F are, respectively, the global stiffness matrix and the
global nodal load vector. A is the Lagrange multiplier vector. The
stiffness matrix can be expressed as

[5.43]
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K, is the stiffness matrix of the supporting structure. K;, K, and
K. respectively, stand for the stiffness matrices of the first, second
and n.th components. Similar definitions are used for the global
load vector and displacement vector. Then, we apply the stationary
conditions and obtain:
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KU+H'A=F
{ [5.44]

HU=0

By solving the above equations, the displacement vector U
and Lagrange multiplier vector A can be finally obtained. Similar
explanations of MPC equations can be found in some existing works
such as Ainsworth [AIN 01] and Yoon et al. [YOO 04]. Typically, to
move the components during the optimization iteration, we only have
to relocate the finite element models of the components at the new
positions and rebuild the MPC equations. Since there are no direct
nodal connections between the components and the supporting
structures, the element remeshing is avoided in this procedure.

Considering the sensitivity analysis, the differentiation of the static
equation with respect to the pseudo-density variable 77; can be written
as:

K F-H"A
Ky, g _oF-HDH

[5.45]
on, a7, o7,

Assuming F=F+F,, where F,, and F, stand for design independent
external loads and design dependent inertial loads, respectively, we
have:

I(F-H) _ JF, 9(H"))

[5.46]
on, ang, I,

Then, we have the derivative of the overall strain energy:

B_C: UTKa_U+lUT B_KU
a7, an, 2 9,

aﬁ_UTHT I lUTa_K

ar, an, 2 dn,

Tai_lUT B_KU
an, 2 9m,

—Uu" U [5.47]
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where the derivatives of the inertial load vector F, and the stiffness
matrix K can be easily obtained according to the material interpolation
model for the element mass and stiffness.

The derivative of the strain energy with respect to the geometry
design variable s; is similarly written as:

T
a—(’w:—UTaix—lUTa—KU [5.48]
asj asj 2 asj

Suppose s;is a translational variable of the jth component, both the
stiffness matrix of the supporting structure and the components will
remain unchanged after a translational moving. So, we yield:

T
STC _ aa% A [5.49]

J J

If s; is a rotational variable, the derivative of the stiffness matrix
can be done in a similar way to equations [5.30]-[5.35].

Figure 5.23 illustrates an example. A hexagonal plate with a
thickness of 0.036 m is discretized into three layers of total 18,000
solid hexahedron elements. External loads are applied at three
different positions. Each position has four nodes and a 500 N
downward force has been applied on each single node. The design
domain is described with six large circles by FCM. The elastic
modulus and the Poisson’s ratio are 7.0 x 10" Pa and 0.3.

The first two identical six-foot components are approximately
described by four circles. Their elastic modulus and the Poisson’s
ratio are 1.1 x 10" Pa and 0.3. The elastic modulus and the Poisson’s
ratio of the second group of two four-foot components described by
three circles are 2.0 x 10" Pa and 0.3. Detailed configurations of the
components are illustrated in Figure 5.24 and all four components are
connected to the supporting structure surface through the nodes in
their foot areas.
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There are in total 109 non-overlapping constraints aggregated by
the improved adaptive method based on KS function in this problem.
The material volume fraction is constrained to 0.4.

0.5m
—20
R, A

)

Ny

9

10.6m

Figure 5.23. Optimization problem with four components

Figure 5.24. Detailed illustrations of the components: a) the
3D models of two sets of components; b) circle approximation by FCM

As shown in Figures 5.25(a—g), clear structural topologies are
obtained and all four components find their proper locations to
reinforce the structure locally. The optimization converges after 70
iterations with the global strain energy decreasing smoothly from an
initial 11.267 J to a final value of 0.877 J as plotted in Figure 5.26. In
the optimized design, it is found that the two four-foot components are
relatively ineffective in carrying loads, which ultimately behave as the
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adhering and reinforcing components. In contrast, the six-foot
components are much stiffer and they are thus located on the key load
carrying path.

(h) final design obtained by the existing

(g) iteration 70 (back view) adaptive constraint aggregation approach

Figure 5.25. Design iterations of structural topology and components’ layout

For the purpose of comparison, this problem is solved again with
the existing adaptive constraint aggregation approach [MAR 05,
POO 07] based on KS function. The final structural topology shows
that the optimization does not converge after 70 iterations, as shown in
Figure 5.25(h). Its final global strain energy is also higher than that
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obtained by the improved approach in Figure 5.26. The final design is
also found to be infeasible due to overlapping between one component
and the design domain boundary. The iteration histories of aggregated
constraints using the improved adaptive approach and the existing
adaptive approach are shown in Figure 5.27.

-e-Improved adaptive approach —o—-Existing adaptive approach

Global strain energy(J)

1 7 B 19 25 31 37 43 49 55 6l 67
Iteration

Figure 5.26. /teration history of the global strain energy

25
-e-Improved adaptive approach —c-Existing adaptive approach

Aggregated constraint’s values

Iteration

Figure 5.27. Iteration history of aggregated constraint

The evolutions of aggregation parameters and their derivatives in
both adaptive approaches are also shown in Figures 5.28 and 5.29.
It is found that the aggregation parameters and the derivatives of



Integrated Layout and Topology Optimization 193

aggregated constraints obtained by the improved adaptive approach
show a convergent and stable history, while those calculated by the
existing approach stay divergent during the whole optimization.

800 -
- - Improved adaptive approach——

1 7 13 19 25 31 37 43 49 55 61 67

Iteration

Figure 5.28. Iteration history of aggregation
parameters obtained by both approaches
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Figure 5.29. Comparison of |dKS/d1 calculated by both approaches
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Figure 5.30. Multicomponent layout design
of a four-satellite supporting system

Integrated optimization was recently applied to design a launching
vehicle structure which supports four satellites as shown in Figure
5.30. One satellite was located on the top and three satellites were
evenly located on a lower plate. The orientation of the top satellite and
distances of the lower satellites to the central axis are assigned as the
geometry variables. The supporting structure below the plate was
assigned as the topological design domain. The objective is to
maximize the designated natural frequencies. A prescribed weight
limit together with several other design constraints on the structural
symmetry, such as inner space for other devices, etc., has been
considered in the design. Figure 5.30 shows the topology optimization
result and the final engineering design. Compared with the original
design, the optimization has increased the fundamental natural
frequency by 17% and reduced the weight by 7%.

5.5. Integrated optimization based on implicit model

5.5.1. Implicit representation of component geometry

In topology optimization, the density-based method has been
acknowledged as a promising method with countless extensions and
industrial applications and is commonly used with different material
interpolation schemes. The proposed integrated optimization using
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density points, embedded meshing and MPC has proved effective in
obtaining reasonable optimization design. Here, new schemes based
on the implicit model will be presented including improvements in
components modeling and sensitivity analysis.

The FE discretization of an integrated system with a circular
component and a square host structure illustrated in Figure 5.31(a) can
be considered as a local Lagrangian mesh as shown in Figure 5.31(b).
The adjacent elements attaching to the moving boundary of the
component need to be locally refined by adding transition elements.
Although the Lagrangian mesh provides the accuracies of geometry and
material distribution, in some case it will fail to prevent poor element
qualities and difficulties in mesh generation and design iterations.

Here, we employ a fixed Eulerian mesh, as shown in
Figure 5.31(c). As the material interfaces do not coincide with the real
geometrical interface, the discontinuity of material properties over
adjacent elements attaching to the boundary is smoothed
approximately [QIA 04, CHE 07]. Such a regular mesh type
automatically favors standard topology optimization related to a fixed
FE mesh. Obviously, a refined mesh shown in Figure 5.31(d) will
increase the computing accuracy at the cost of computing time.

il
Il
(a) (b) (c)

[TT1 [TTT]

[TT]
L]
|
|

Figure 5.31. Different meshing strategies: a) initial material layout,
b) local Lagrangian mesh, c¢) Eulerian mesh and d) refined Eulerian mesh

By means of the /evel set method and R-function theory, the free-
form shape of a component can be represented by an implicit function.
This is an alternative method to explicit parameterization such as
Bezier, Nurbs curves and surfaces for B-reps, and can be well adapted
to the Eulerian mesh. As shown in Figure 5.32(a), a 3D level set
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function ®(x) is constructed according to the center coordinates and
radius of a circular component in Figure 5.32(b). Suppose x denotes
the coordinates of a point in the design domain D. ®(x) then
corresponds to

xinside Q, if ®(x)>0

xonT, if ®(x)=0 [5.50]
x outside Q, if ®(x) <0

where ®(x)>0, ®(x)<0 and D(x)=0 denotes the solid, void and
boundary, respectively.

cb(x)>o h

D/Q D

b)

Figure 5.32. Level set representation: a) 3D-level
set model; b) 2D design domain

Likewise, we can resort to R-functions for the implicit
representations of complicated boundary shapes. The mathematical
formulation is based on the following Boolean operations on
constitutive functions.

BN AT RN 5511

RV A IS AN

For example, a rectangular domain Q2 with dimensions of a x b can
be represented by the R-function as

Sz
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foa= A+ =R+
fi=a’=x"20 [5.52]
f,=b"-1y*20

Such interesting features provide great flexibility in shape
representation of components. The component geometry can be
decomposed into several basic elements, such as rectangles, ellipses,
etc. Through R-function-based Boolean operations, such a complex
geometry could be implicitly represented. The following equation
gives a possible implicit representation function formation for
ellipse:

S ENED
a b

where (x,, y.) gives the center coordinate of the ellipse and @ and b are
the radii in two axes.

Theoretically, with the Boolean operations we can implicitly
represent shapes of any complexity in required precision with an
unlimited number of basic elements. Although the constructed implicit
function could be too complicated to be expressed in an
exact formulation after several levels of Boolean operations,
its exact formulation is not a necessity in the optimization design.
Suppose @, is an implicit function representing the higher
dimensional shape representation function of the yth component. S,
represents the set of involved shape parameters, e.g. length,
width, radius, etc. Such an implicit representation makes it possible to
construct higher dimensional shape representation functions
analytically.

For the structural elements in the design domain, we take the SIMP
model penalizing the material properties, for example:

{Ez‘ :(7]1') EO [554]
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where 77; is the pseudo-density variable of the element i, and p is the
penalty factor (typically p = 3). E; is the element Young’s modulus
and E, is the Young’s modulus of solid material.

For the components, suppose the wth component has a
homogenous Young’s modulus E\,. x; denotes the centroid coordinate
of element 7 in the Cartesian coordinate system. As a result, a standard
material interpolation model is formulated.

E =(n,)" [Eo +Y 4@, (x,.8,)(E, —Eo)j [5.55]
y=1

A(D (x;,S,)) acts as a compressing function to transform values of
d,(x,,S,) into the range of 0—1. One of its expressions can be written
as:

__arctan(t/A) +l

A(t 5.56
(1)=——"—+5 [5.56]
its derivative w.r.t. ¢ is then analytically expressed as:
dA (¢
() = A [5.57]

dr n(A2+t2)

Figure 5.33 shows A(¢) and its derivative at different values of A.
Obviously, A of a small value might lead to instabilities in sensitivity
analysis, while a large A may result in imprecise modeling. In fact, A
controls the local approximation smoothness of material discontinuity
over the boundary region. An alternative choice of the compression
function is the modified Heaviside function, which is a piecewise-
function but has a similar effect to the above function.
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(c) dA(t)/dt; A=1 (d) dA(1)/dt;A=T

Figure 5.33. Curves of A(t) and its derivative
of different A value with respect to t

To have a clear idea, the following equations give the level set
functions representing a circle and a rectangle illustrated in
Figures 5.34 and 5.35. Using A = 4, the compression functions A(®)
are correspondingly shown.

Circle: ®=24—/x" +y°

Rectangle: @ = f,+ f, —/f7 + f;
f;=24—J(xxcos18 —yxsinl8° [5.58]
£ =40—\/(x><sin18° +yxcosl8 )

with
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P 0

40

Figure 5.34. Compression of a circle representation function. For a color
version of this figure, see www.iste.co.uk/zhang/topology.zip
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Figure 5.35. Compression of a rectangle representation function. For
a color version of this figure, see www.iste.co.uk/zhang/topology.zip
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Figure 5.36. /llustration of a component with two material phases

It is easy to decide the material properties of the elements inside
and outside the wth component, respectively. Notice that each
component is assumed to be homogeneous with elasticity £,. In fact,
equation [5.55] can be generalized to variant material models when
multiphase materials are involved in a component. For instance,
consider a two-phase component consisting of materials with elastic
moduli £,y and £, as shown in Figure 5.36. ®,, and ®,, denote the
geometry of different material phases in the wth component. The
material model can be defined as:

E =(n,) (Eo+A@,,(x,8,))(E, - E, )+ A@,,(x,.8,))(E,, - E,,))  [5.59]

Clearly, whatever the complexity of the component shape, the
number of material phases, and the number of involved components,
the material model can be constructed in a generalized manner:

E=(nY [Eo Y A@, (x,.8,), (EyEyrovn By, )] [5.60]

y=1¢=l

in which n, denotes the number of material phases related to the yth
component and f,, defines the composition function of related material
phases.
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5.5.2. Sensitivity analysis and examples with implicit
functions

The sensitivity analysis with respect to the pseudo-density
variables is similar to the standard topology optimization and will not
be provided here. Suppose s, represents one of the geometry design
variables x,, y,, 6, of the yth component. The derivative of the
element elastic modulus with respect to s,,is

oFE. 0 & &
() S| B+ DY A@, (x,.8,))f; (Ey:Eyponn By )
asy/ afw £=1 ¢=1 [5 61]
& 0A(®, . (x,.8,)) '
:(7/;)1}2 '//aS - fy/(E()’E(//I""’EV/nw)
14

¢=1

By applying the chain rule, the above equation can be further
expressed as:

oE. P aA((DWC(X,.,SW)) a(l)w(xi,sw)
9% _ EE, . E )[562
ds, () CZ:; oD, (x,,S,) 0s,, f"'( 0>yl W""/)[ ]

Submitting the derivative of the compressing function, we finally
have:

%z(r] » y, f'/’(Eo’El//l""’El/mv,) aq)y/g(xiﬂsy/)
aS'// ’ C:In(1+<<l>wc(xi)/A)2) aSV,

[5.63]

For a certain component with its implicit function, i.e. ®(x;,S,),
its derivative can be analytically calculated according to the explicit
relationship between the function and the component location design
variables. For example, if the yth component is a circle, the higher
dimensional function used for implicit representation can be

q)w(xw’xw’yw)sz_(xi_xu/)z_(yi_yw)z [5.64]



Integrated Layout and Topology Optimization 203

Thus, the derivatives of the above function with respect to x, and

yy are:
0D, (x,,x,,5,)

ox,,
P, (x,,x,,,)

%y,

= 2(x,. _xu/)
[5.65]
= 2<y[ _yy,)

If the wth component is a rectangle, the higher dimensional
function used for representation is composed with two subfunctions as
follows:

(I)W(Xiaxy/ayy/aew):fl(xi)+f2(xi)_ f12(xi)+f22(xi) [5 66]
AE)=b, () s Alx)=al ~(x, )

Note that rotational location design variables need to be considered
for a rectangular component. x*y, and y*,y are transformed variables of
x, and y, with respect to 6.

X, cosf, —sinf, ||x, —x,
i Y g [5.67]
¥, sind,  cosf, ||y, -y,

Thus, the derivative can be calculated by the chain rule as follows:

o, (x,,%,,7,,6,) of o 1 ( oy afJ
yr vy vl V0 Y2 C f 2 [5.68]
as,/, 0s v asw VA ‘+ fy aSV’ ’ Sy

The derivatives of the two subfunctions are

2y sm@ =x

v Sy v

9
i= 2y,/,c050 Sy =Yy,

os
Y 2)/:,(()/X yw)smﬁ —(x —-x )cos& ), s, =0,
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*
2x,,,cos€,/, .S, =X,

—%=4-2x,sin0, ,s, =Y, [5.69]

2x:, ((xl- —x,,,)sin@w + (yl. —y,,,)cos@w) .5, =0,

A variety of numerical tests are solved here to illustrate the
effectiveness and flexibility of the proposed implicit model. A
100 mm X 200 mm rectangular design domain is discretized with
100 x 200 quadrangular plane stress elements, as shown in
Figure 5.37(a). The Young’s modulus of structural elements is 1 MPa,
and the Poisson’s ratio is 0.3. A 1 N force is applied on the middle
point of the right edge and the left edge is fixed. A pure topology
optimization without component is first tested for the purpose of
comparison, and the solution is given in Figure 5.37(b) with a 50%
volume fraction.

(a) Design domain (b) Topology optimization result

Figure 5.37. The definition of the design domain
and a standard topology optimization result

Then different variants of void components are tested under the
same conditions. If we introduce three circular holes, an extremely
small value of Young’s modulus is thus attributed to the elements
inside the hole. Because the initial configuration is symmetrical, the
hole is placed in an asymmetric location to generate an original
perturbation in sensitivity analysis.
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(a) initial state (b) iteration 3

(c) iteration 5 (d) iteration 7

(e) iteration 12 (f) iteration 20
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(h) convergent history of the objective
(g) final result function

Figure 5.38. Integrated optimization with three holes

The three holes are initially located at the coordinates (50 and
70 mm), (100and 30 mm) and (150 and 70 mm). As shown in
Figure 5.38, two of the three holes move quickly toward both ends of
the design domain and the middle one finds its position in the right
part. The existence of the holes does not break the integrity of the
structure, but slightly changes the material distribution of the
structure.
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In some cases, it is necessary to keep the shapes of the holes as
functional parts. Therefore, tolerance zones surrounding the holes
makes sense in design. Two-phase circular components are defined
using R-function. In contrast from the above case, the circular
component possesses a certain volume. Therefore, we restrict the
volume of the structure together with the component. Figure 5.39
gives the design evolution process and the convergence history. All
components are embedded as basic loading parts of the integrated
structure due to their stiffness.

(a) initial state (b) iteration 5
(c) iteration 10 (d) iteration 22

250.00
200.00

2 15000

8

2

= 100.00

50.00

5 9 13 17 21 25 29 33 37 41
Iteration Number

(e) final result (f) objective convergent history

Figure 5.39. Integrated optimization with three holes with tolerance zones

The proposed model can easily be extended to three-dimensional
problems. On the one hand, a fixed FE mesh greatly simplifies the
modeling process. On the other hand, the implicit representation of
components greatly saves computational cost in sensitivity analysis
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w.r.t. location variables. Take a cuboid design domain (30 mm X
60 mm x 90 mm for example), discretized with 30 x 60 x 90 uniform
eight-node cubic elements. Material property of the structure is the
same as the previous example. The left end of the beam is fixed and a
force of 1 N is applied on the bottom edge of the right end. Two solid
sphere components with radius 10 mm and Young’s modulus 2 Mpa
are initially located at the coordinates (15, 30 and 30 mm) and (15, 60
and 30 mm). The volume constraint is set as 18.5%, including the
volume occupied by the sphere component. Similarly to the 2D
situation, the sphere components move quickly to the fixed end and
the loading end due to its high modulus. The optimization evolution is
shown in Figure 5.40.

(a) initial state (b) iteration 6 (c) iteration 10

(d) iteration 22 (e) iteration 32 (f) final result

Figure 5.40. Integrated optimization with two sphere components.
For a color version of this figure, see www.iste.co.uk/zhang/topology.zip

5.5.3. Integrated optimization based on XFEM

The integrated layout and topology optimization of
multicomponent systems are further addressed within the XFEM
framework here. XFEM using Eulerian mesh is based on a fixed mesh
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that works with the level set method, which was first proposed by
Osher and Sethian [OSH 88], to represent moving interfaces and has
been extensively applied to structural optimization [ALL 04b,
WAN 03, LUO 07, LUO 08]. XFEM has the advantage of handling
problems with material discontinuities across elements. As shown in
Figure 5.41, a material interface exists between the structure and
embedded component when they have different material attributes. In
order to model the local discontinuity, the standard finite element
approximation within a narrow domain €, is enriched in XFEM.
Usually, the interface boundary shape is described implicitly as a
curve of a higher dimension level set function.

I

t

Q

enr

D=QZUQ:UQ€}1V

Figure 5.41. Local enrichment of the material interface with XFEM

To favor the XFEM-based integrated optimization, a general
formulation of the strain energy is stated as

1

2.e,T(U)-D-s(U)dQ [5.70]

c(u)=|

D

where D is the material elastic matrix. € is the strain vector. In the case
of material-void interface problems (e.g. a hole in the structure),
XFEM is always implemented by neglecting the integration over the
void part [WEI 10, VAN 07], such as

C(U):I%ST (U)-D-£(U)-H(®)dQ [5.71]

D



Integrated Layout and Topology Optimization 209

But for a material-material interface problem (e.g. solid
component and supporting structure), additional degrees of freedom
have to be introduced in the enriched domain. As a result, the global
strain energy can be calculated as:

1

C(U)= [5&" (U)-D, 5(V)dQ+ [%sT(U)-DC-s(U)dQ

Q;

[5.72]
+Qj %sT(U,dD)-D@)-a(U,d))dQ

Here, the level set function is chosen as the signed distance
function with the definition of

O(x,0)=% min)"x—xr" [5.73]

xpel (1

The sign is positive or negative when x is outside or inside the
design domain boundary I'(¢). ¢ is a pseudo-time describing the shape
variation process of a component in shape sensitivity analysis.

Pl Q, cQ,

Qe - Qenr
Q,cQUQ

Q,cQ,

e

O Base structure element B Enriched element

BE Component element o Enriched node

Figure 5.42. Partition of structural region and element classifications
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Practically, the base domain is uniformly discretized with finite
element meshes. Figure 5.42 shows the structural elements,
component elements and enriched elements. The last set belongs to
bimaterial elements and others are one-material elements. A
bi-material element domain can be considered as a combination of the
structure part and the component part.

In XFEM, the level set surface is always approximated by discrete
values at nodes and then interpolated over the elements by finite
element shape functions as:

@ (x)=Y N, (x)0, [5.74]

iel

where ®"(x) refers to the approximation of the level set surface. N;
denotes the standard finite element shape functions. / represents the
set of all nodes in the domain.

The material elastic matrix at a spatial point x within the structure
can thus be expressed by the level set function ®’(x) and the
Heaviside function H().

D(x)=D, +(D,-D,)H(®" (x)) [5.75]

where D, and D, are the elastic matrices related to the structure and
component, respectively. The above relationship means that any point
X in the component domain (®"(x) > 0) will have an elastic matrix
equal to D... Otherwise, the elastic matrix will be equal to D,. Once the
coordinates of a spatial point in the structure are given, the material
property can be determined.

Under the XFEM framework, the displacement field is interpolated
by

U"(x)=)N,U,+ > N,pa, [5.76]

iel iel”

where U; is the nodal displacement vector of the standard FE part. a;
is the additional nodal unknown vector. / ‘is the set of all enriched
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nodes, which is a subset of /. Function ¢ is the enrichment function
whose selection depends upon the nature of the problem.

For the integrated optimization with solid components, which is
considered a weak discontinuity, the following function proposed by
Mogés et al. [MOE 03] can be used as the enrichment function:

o(x)=2 N, (x)|®,|-

iel

>N, (x)d),.‘ [5.77]
iel
In the case of material-void interface problems, there are no
additional degrees of freedom, a change will be introduced in the
approximation of displacement so that:
U"(x)=> N, (x)H (x)U, [5.78]
iel
Here, an analytical XFEM-based sensitivity calculation method is

developed. The derivative of an element stiffness matrix K, can be
calculated via the chain rule:

E;Ke _y K %2, 5701

s iz 0@, 0s,,

v

The derivative of the structural strain energy with respect to nodal
level set function value ®; can be written as:

T
aC _ 3 —lUZ'f pp B 9B pp.pr Py QU, [5.80]
aq),‘ eeQ,,, 2 Q, aq)t aq): a(I)I

Due to the fact that any change of nodal level set function value ®;
for a one-material element does not affect element stiffness matrices,
it follows that:

a9C _ > (_lUg .aLUeJ [5.81]
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Comparing the above two equations, the derivative of element
stiffness matrix K, can be written as:

T
K, =j D2+ ppip P plio [5.82]
D, 4 90, 90

The derivative of the geometry matrix B can be derived according
to the discretization of the level set functions using the shape
functions. The derivatives of the level set value with respect to the
geometry variables can then be approximated by finite difference as:

9D, :d)i(sW+Asw)—(I)i(sW)

5.83
as,/, As [ ]

v

Numerical examples with different component geometries are
studied to verify the proposed approach. Here, the elastic modulus of
the design domain and the components are 7 x 10" Pa and 2 x 10'' Pa,
respectively. The strain energy of the global structure is minimized
subject to the non-overlapping constraints based on FCM. Besides, the
volume fraction is constrained to 35% of the whole domain.

B O €3

Figure 5.43. Definition of the design domain
and the finite circles for the components

Figure 5.43 shows a 45 m X 30 m design domain discretized with
45 x 30 four nodes quadrilateral finite elements. A point force of
100,000 N is applied on the lower left corner. To avoid possible
overlap between components, each of them is approximated with a
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specific number of circles, as illustrated also in Figure 5.43. Iterative
design patterns are shown in Figure 5.44. In the final design, three
components act as essential parts of the structure due to their high
elastic modulus.

The convergence histories of the objective function and the volume
fraction are also shown in Figure 5.44. It can be seen that the volume
fraction reaches its upper bound. There also exists an oscillation of the
volume fraction, caused mainly by the movements of components.
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Figure 5.44. The convergence history of the structural
configuration, objective function and the structural volume

Another example is to include two L-shaped solid components.
The structural domain and boundary conditions are the same as in the
previous example. As shown in Figure 5.45, each component is
approximated with nine finite circles. Initial values of pseudo-
densities are set at 0.35. Iterative design patterns are shown in
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Figure 5.46. Both components are properly placed as essential parts of
the structure. The iteration history of the objective function has a
stable convergence, as shown in Figure 5.46.

Figure 5.45. Finite circles approximation
of an L-shaped component
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Figure 5.46. The convergence history of the structural
configuration, objective function and the volume fraction

5.6. Conclusions

Several important issues such as non-overlapping constraints and
integrated modeling for integrated layout and topology optimization



Integrated Layout and Topology Optimization 215

are discussed in this chapter. First, based on the finite circle method,
proper circle definitions are used to approximate the contour of the
components and to formulate the non-overlapping constraints. To
avoid using large numbers of non-overlapping constraints, an
improved constraint aggregation method based on the KS function and
a Steffensen iteration is proposed to aggregate the constraints into a
single constraint. With an additional complex step derivative
approximation, the design sensitivities can be precisely obtained.

Second, based on body-fit modeling, density points and embedded
meshing techniques are proposed to establish exact nodal connections
between the components and to ensure the simultaneous optimization
of different design wvariables. Instead of using global element
remeshing, local embedded meshing and superelement techniques are
used to improve the efficiency of the modeling process. The MPC
connections between components and structures are later introduced to
simulate bolt or rivet joints.

The implicit model for the component is then introduced. The
contour of the component is described by level set function. Elements
located on the boundary of the component will thus have their
material properties interpolated or described by XFEM. The
movement of a component is actually represented by a movement of
the component material property, without any element remesh.
Benefitting from the fixed finite element, the design sensitivities with
respect to the geometry design variables can be transferred into the
derivatives of the level set functions and those with respect to the
pseudo-densities in turn. The optimization iteration will thus avoid the
procedures of finite difference or semi-analytical calculation with
additional finite element analysis.

Using the above techniques, integrated layout and topology
optimization can be implemented in different numerical examples.
The convergence of the objective functions, the effect of different
optimization strategies, and the applications are discussed in detail
with reasonable results obtained.



6

Optimization with Constraints on
Multifastener Joint Loads

6.1. Introduction

In an assembled aircraft structure, bolts or rivets are widely used as
multifastener joints. They are sometimes the weakest component of a
structure due to the high intensity of joint load [NIU 88, BAR 92,
WAN 00, CHI 10]. Earlier studies were focused on developing
analytical and numerical methods for stress and failure predictions of
multifastener joints. Typical models concerned panels joined by single
or multiple joints, in which joint loads as well as stress distributions
around pin holes, etc., are mostly analyzed [ROW 82, WAN 88,
ZHA 96, CAM 97]. Poon and Xiong [POO 95] and Oh et al. [OH 97]
considered the optimization of fastener joint locations, ply angles and
stacking sequences of laminates, fastener diameters and edge
distances, etc., to avoid the failure of fasteners. Bianchi ef al. [BIA 07]
developed an optimization procedure maximizing the load-carrying
capability of the joint system to balance the number and size of bolts.
Ekh and Schon [EKH 08] evaluated the effects of different parameters
on the load distribution, such as the mismatch of member plates,
length of the overlap region and the fastener’s stiffness. Optimization
was then carried out to minimize the bearing stress. In the work of
Oinonen et al. [OIN 10], a “weakest link” method was proposed to
optimize the layout of fasteners for the bracket-to-beam joints. The
design objective was to ameliorate Von-Mises equivalent strain as
well as shear loads in the joints.
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Attempts were also made by Jiang and Chirehdast [JIA 97], Buhl
[BUH 01], Zhu and Zhang [ZHU 06a], Qiao and Liu [QIA 09], and
Zhu and Zhang [ZHU 10a] to introduce the concept of topology
optimization into the layout design of fixations and fasteners. In the
works of Chickermane and Gea [CHI 97], Li et al. [LI 01] and Qian
and Ananthasuresh [QIA 04], structural patterns of different parts and
the layout of fasteners were also sought by constraining these
subdomains with different volume fractions. Chickermane et al.
[CHI 99] also proposed a topology optimization method for the
location optimization of fasteners in conjunction with fastener load
constraints, while the connected components remain unchanged.

Unfortunately, it was found in engineering practices that the
adjustment of joint distributions, the addition of more joints or the
enlargement of joint diameters might not lower the joint loads
significantly due to the stiffness mismatch between the connected
structure components. This is especially the case for aircraft spar-skin
structure with overloaded fastener joints. For example, during a
typical aircraft wing beam design, the joint loads in the fasteners near
the root of the beam were found to be unexpectedly large. To avoid
failure of structural joints, possible solutions include increasing
diameters of the fasteners and connected spars, rearranging the layout
of the fasteners or even adding more fasteners, as shown in Figure 6.1,
which will unfortunately increase the weight of the structure.

? ? |

Figure 6.1. Existing solutions to avoid the failure of fasteners

In fact, joint loads highly depend not only on mechanical and
geometrical attributes of joints themselves, but also on stiffness
distributions of the connected structures according to aircraft design
manuals [NIU 88, WAN 00] and existing works [POO 95, OH 97,
EKH 08, CHI 10]. In this chapter, the standard topology optimization
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method is applied to deal with the above problem by introducing
additional multifastener joint load constraints for the first time. Unlike
the existing works, dominant shear loads over joints are controlled by
optimizing the stiffness distribution of connected structures. In the
calculation of shear loads, short beam elements are used to model
multifastener joints with the negligence of bolt-hole clearance, clamp-
up and friction effects. The proposed optimization method can be
considered an effective way to limit the joint loads during the design
procedure of assembled aircraft structures. Meanwhile, designers can
also benefit from the optimized load carrying path for detailed
structure design.

6.2. Joint load calculation and sensitivity analysis

In the topology optimization model, a precise calculation of shear
loads in fasteners can involve deep studies of relative displacements of
hole centers, fastener deformation, conforming contact between
fasteners and member plates as well as effects of fastener clamp-up,
friction and out of plane deformation, etc. This brings extra
complexities and intractable computational difficulties. Here,
multifastener joints are approximated by numbers of beam elements as
used by Chickermane et al. [CHI 99], Ekh and Schon [EKH 08].

For a short beam of two nodes A and B shown in Figure 6.2, the
total shear load is calculated as:

Fo=\F+F, [6.1]

with:
__ 2Bl 12BI - GEI ., . G6E
or@+e) Mt ra+e) o ra+e) M r(+e) ¥
12E1 12E1 6EI 6EI
= u, - u, - 0., — 0. 6.2
L (1+0) iy L (1+0) Hiny r(1+e) ™ r’(1+e) e [6:2]
o 2Ely

~ GSI?
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where E and G are the elastic and shear moduli. 7, S and L denote the
moment of inertia, the cross-section area and the beam length. © is the
shear coefficient. y = 10/9 is the shear factor of the cross-section. u;,,
and 0,4, are the corresponding nodal displacement and rotation angle
of node 4 in x direction. Similar definitions are used for w4, 0,4y, Uy,
Ojpx> ujpy and O;p,.

Figure 6.2. Beam element and its coordinate system,
tension force, moments and shear forces

Sensitivity analysis of elastic strain energy with respect to pseudo-
densities is very popular. Here, we are focused on the sensitivity
analysis of the joint load F;, whose components are denoted by Fj, and
Fj,. For example, Fj, can be expressed as a linear function of nodal
displacements

_ leEr - 12BI . 6EL . GEl
ror@+e) Mt ra+e) o r(a+e) U r(i+e) ¥ [6.3]
=xj.xU

where A; is a constant vector with the same dimension as the
displacement vector U. Items of A, corresponding to the four degrees
of freedom are defined by the coefficients in the above equation, while
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the rest are set to be zero. Accordingly, the sensitivity of Fj, is
calculated as:

F_ 9(AU
oF, _ 0, ):xg.a—U [6.4]
an, an, oo,

Similar calculations of Fj, can be performed to obtain constant
vector Ay. As a result, the derivative of the total joint load
corresponds to:

o, EHE) o a(r+E)
an, - an, - ZdFji +Fj a7,

L 2F AT 2 U o xl-aU
2F JX an 5y 877

F)\.T +F A" U

JXx Y

F, a7,

J
_,r.9U oU
j a n,

[6.5]

Based on the finite element equilibrium equation, the above
equation can further be written as:

Al gU AL { -K~ (aa—F—g—KUH ~(k™,)" -(aa—F—g—KUJ [6.6]
7, 1, on . on

The above expression can be simplified by the following notation:
—1 T

K%, =U [6.7]

Notice that the stiffness matrix K is symmetric. U* can be

interpreted as the displacement vector related to the adjoint load
vector A; applied on the structure. The substitution gives rise to:

¥y [a—F-a—KuJ [6.8]
a7, an, o,
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In the above equation, the derivative of the load vector is zero
when only design-independent loads are applied to the structure.
Derivatives of the stiffness matrix K with respect to the pseudo-
densities are easily obtained by means of SIMP material interpolation
model used in this chapter.

In practice, sensitivity analyses of the joint loads will be
computationally expensive due to the additional finite element
analyses required for large numbers of fasteners and joint load
constraints. To solve the problem, methods like KS function and
P-norm function can be used to merge large numbers of design
constraints into only one constraint. In addition, as shown in
numerical examples, only a small number of fasteners need to be
constrained, because the rest joint loads are small enough to be
neglected during optimization.

In the following sections, two numerical examples are presented to
illustrate the efficiency and validity of the proposed optimization
model. One is further validated with a loading test of fabricated resin
models. We use the optimization algorithm GCMMA (globally
convergent method of moving asymptotes, [SVA 95]) implemented in
the general-purpose design platform BOSS Quattro [RAD 02]. The
density filter technique [BRU 01] is applied, with the filter radius
being three times of the average element size in both examples to
avoid the checkerboards.

6.3. Numerical examples and discussions
6.3.1. Cantilever beam with experiments

Here, we will design an I-shaped cantilever beam joined with a thin
sheet by two rows of evenly distributed fasteners. Dimensions and
layout of joints are shown in Figure 6.3. As the shear load
distributions are identical in both rows, fasteners are numbered only
for one row from the beam root to the tip.
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The assembled structure is meshed with quadrangular shell
elements of size | mm x 1 mm and thickness 1 mm. The design
domain of the structure is the I-shaped beam web. The elastic modulus
of the solid material is 2.6 x 10° Pa and Poisson’s ratio is 0.3.
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Figure 6.3. I-shaped cantilever beam connected with a thin sheet

A point force of 150 N is applied on the bottom right corner of the
design domain. In Figure 6.4, we present the shear load distribution
over fastener joints after static analysis of the initial solid FE model.
We find that the maximum shear load occurs at the beam root, which
indicates the most vulnerable position.

For the purpose of comparison, a standard strain energy minization
topology optimization is firstly carried out without joint load
constraints. The only constraint is defined by limiting the volume
fraction of the design domain to 30%. Figure 6.5 presents the
optimized design and related joint loads after 36 design iterations.
The mean compliance is 0.660 J. The maximum tip displacement is
8.887 mm, while the maximum shear load rises to 30.13 N at the
beam root. The optimized topology seems to be the classical topology
solution of a pure cantilever beam. There are no materials distributed
near the joint for the structure reinforcement, even where the
maximum shear load occurs, which implies that the increase in the
maximum joint load does not significantly affect the minimization of
the mean compliance.
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Figure 6.4. The initial distribution of the shear loads in the joints
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Figure 6.5. Optimized design and joint load distribution without joint load
constraint (mean compliance 0.660 J, maximum joint load 30.13 N)

Now, the same topology optimization problem is considered with
the introduction of joint load constraints. The upper bound of the shear
load is limited to 20 N. Due to the symmetry, we only constrain the
shear loads in one row of fasteners. Figure 6.6 shows the optimized
design and joint loads distribution after 30 design iterations. To ease
the comparison, load distribution in Figure 6.5 is also plotted here.
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Figure 6.6. Optimized design and comparison of joint
load distribution with joint load constraint (Mean
compliance 0.667 J, maximum joint load 19.97 N)

Detailed results are listed and compared in Table 6.1. The mean
compliance is now 0.667 J, while the maximum tip displacement
reaches 8.988 mm. Although the structural stiffness is slightly smaller
than before, the maximum shear load in the joints is now 19.97 N with
a great reduction by more than 10 N, i.e. 33.7% of the previous
design. The maximum joint load appears still at the beam root and all
the loads now satisfy the design constraints.

Items gﬁgg:lltziiielséig Optimized design | Initial
. with F;<20N |solid beam
constraints J
Mean compliance (J) 0.660 0.667 0.335
Maximum displacement (mm) 8.887 8.988 4.53
Maximum shear loads (N) 30.13 19.97 26.3
Volume fractions 0.3 0.3 1

Table 6.1. Comparison of optimized results
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To have a deep insight into the design solution, the principal
stresses near the beam root are plotted and compared in Figure 6.7 for
two optimized designs. Notice that the arrows indicate magnitudes and
directions of principal stresses. In the optimized design of Figure 6.7,
the structural configuration near the beam root is redesigned
significantly to provide a reasonable support near the joint where
maximum shear loads occur. Compared with the optimized design in
Figure 6.5, an additional push is provided by the structure branch to
offset the shear effect.

Figure 6.7. Principal stresses of the optimized designs

To validate the optimized design, loading tests are carried out. We
use rapid prototyping to fabricate resin models according to the above
two topology optimization solutions. The resin material Somos 14120
is a standard ABS-like stereolithography resin. According to the data
obtained from the supplier DSM Somos (www.dsmsomos.com, 14120
white documents) and some previous applications [NOR 09, GU 12],
the stereolithography resin material can approximately maintain linear
elastic properties within a small deformation.

According to the optimized designs, solid models of engineering
features are built in CATIA as shown in Figure 6.8(a) and then
outputted as STL models for rapid prototyping. Clearly, structural
configurations are globally maintained except for some minor details.
As thin-walled stereolithography resin parts have the problem of
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easy-buckling, some extra stiffeners are added to the structure.
Because failures of practical bolt and rivet joints appearing around the
joined holes on the member plates are not easily detectable, all the
joints are directly fabricated as small vulnerable resin beams of
identical size and cross-section with approximately the same strength,
as shown in Figure 6.8(b). These resin joints can thus be considered as
simple breaking sensors of shear loads. Although the experiment
cannot precisely determine the magnitude of the shear loads, a
significant tendency should be persuasive due to the fact that the
optimized design with joint load constraints remarkably reduces the
shear loads.

(a) (b)

Figure 6.8. Solid CAD model of the optimized
beam and joints with engineering features

a)

b)

Figure 6.9. Resin models fabricated according
to the topology optimization result

In Figure 6.9, transparent outlines of the resin models are plotted
over the material density distribution for comparison. Resin models
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marked as A and B in Figure 6.9 are then fabricated with a SPS-350B
stereolithography machine.

The loading test is set up in the following way: resin models are
installed onto static stretching machine as cantilever beams with a
fixture as shown in Figure 6.10. A strong string bounds the lower right
corner to the dynamometer. The aim of the experiment is to find the
minimum stretching force breaking the joints in both models. Three
groups of specimens are tested. By slowly increasing the stretching
force, the force value is recorded from the dynamometer once the first
joint is broken. All the experimental data are compared in Table 6.2,
and model B with broken joints is shown in Figure 6.11.

7

Dynamometer Cb

Figure 6.10. Resin model installed onto
the static stretching machine
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Figure 6.11. Model B with broken joints

Minimum stretching forces (N)
Model A Model B
Group 1 27.6 42.8
Group 2 32.1 40.6
Group 3 31.7 44.2

Table 6.2. Comparison of loading test results

Magnitudes of the stretching forces in Table 6.2 have clearly
indicated that the resin joints related to model B can undertake a larger
stretching force. In other words, optimized design with joint load
constraints can reduce the shear loads significantly.

It should be noted that the displacements of the resin models are
not evaluated in the experiment. This is because the maximum
displacements are 0.621 and 0.624 mm, respectively, according to
finite element analyses of both models when a 20 N force is applied.
The difference is only 0.003 mm, which cannot be precisely
distinguished by our existing equipment in the experiment.

Later, the optimization designs with different shear load constraints
are implemented and results are achieved as shown in Figure 6.12. We
find that shear load constraint affects the optimized configuration
significantly. Meanwhile, the strain energy of the optimized structure
will be greater than the standard one. As the constraint upper bounds
decrease, some truss-like structural branches appear. The delicate
structures can offset the shear effect in the joints. But at the same time
it reduces manufacturability and structural stiffness. At this point, the
choice of constraint upper bound is very important.
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Figure 6.12. Optimized structures and load
distributions with different constraints

6.3.2. Two different wing boxes

Consider now a wing box structure shown in Figure 6.13. It
consists of two tapered I-beams covered with two thin sheets. Both
beams are clamped at one end. A distributed pressure of 5 x 10* Pa is

applied on the lower skin. Due to the symmetry, only one of the two
beams is considered.

Suppose skins and webs of the I-beams have a thickness of 2 mm.
The beams and skins are meshed with quadrangular shell elements of
size¢ ] mm X 1 mm and 2 mm X 2 mm, respectively. Each beam is
fastened to the thin sheets with four rows of joints marked as Rows A,
B, C and D. For the whole structure, the elastic modulus is 2.6 x
10° Pa and Poisson’s ratio is 0.3. After the first FE analysis, the shear
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loads of the initial solid design are shown in Figure 6.14. We can find

that the maximum shear loads occur at the root of the I-beam in all the
four rows.
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Figure 6.14. Initial distribution of the joint loads in the joints
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Figure 6.15. The optimized design without joint load constraint
(mean compliance 1.033 J, maximum joint load 27.5 N)

Likewise, topology optimization is intended to minimize the mean
compliance. The constraint of 30% volume fraction is imposed to the
beam web. Similarly, two optimizations are performed for the purpose
of comparison. One of them constrains the shear load in the joints to
be less than 20 N. Figures 6.15 and 6.16 present the two optimized
structural topologies. Corresponding joint loads are plotted and
compared in Figure 6.17.
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Figure 6.16. The optimized design with joint load constraint
(mean compliance 1.082 J, maximum joint load 20 N)

Figures 6.15-6.17 indicate that the maximum joint load appears in
row D in both cases. Compared with the initial joint loads presented in
Figure 6.14, the distributions of joint loads change considerably. The
comparison between Figures 6.15 and 6.16 indicates that materials are
topologically distributed toward the beam root to offset the joint loads.
Furthermore, the principal stresses near the beam roots in two
optimized designs are plotted in Figure 6.18. This confirms that the
structure is optimized to provide a push for the upper plate and a pull
for the lower one near the beam root.
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Figure 6.17. Joint load distributions for two optimized designs

Figure 6.18. Principal stresses of the optimized designs

Finally, a flat wing of length 8.22 m and width 2.5 m as shown in
Figure 6.19 is considered in the topology optimization with joint load
constraints. Two typical load cases are applied, i.e. the bending and
torsion conditions with the aerodynamic forces loaded on the skin of
the wing. The deformations and stress distributions of the two load
cases are plotted in Figure 6.20. As the maximum joint loads appear
near the root of the wing, we decide to choose two wing boxes as the
topological design domain, as shown in Figure 6.21.
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Figure 6.20. Deformations and stress distributions of
a) bending and b) torsion load cases. For a color version of
this figure, see www.iste.co.uk/zhang/topology.zip

T&Smm

Figure 6.21. Wing boxes chosen as the design
domain and the configuration of the fasteners

Analyses of the original design have shown that the joint loads in
the torsion case are much larger than those of the bending case. The
maximum joint load is now 17.5 KN. The distribution of the joint
loads on the chosen wing box is shown in Figure 6.22.



Optimization with Constraints on Multifastener Joint Loads 235

Shear loads (KN) Shear loads (KN) Shear loads (KN)

Shear loads (KN)

20 20
Row A mTorsion case z Row B =Torsion case
15 . " % _ . .
OBending case : T Bending case
=]
10 g
=
5 g
=
@ =
0 s E
1 4 7 10 13 16 1 4 7 10 13 16
Fastener number Fastener number
20 20
Row C mTorsion case 2 Row D =Torsion case
15 OBending case %’ T Bending case
=]
10 g
=
5 g
=
@« =
0 = =
1 4 7 10 13 16 1 4 7 10 13 16
Fastener number Fastener number
20 - 20
Row M =Torsion case > Row N =Torsion case
15 - Bendi § 15 - — .
LiBending case : CiBending case
FRU
-
g s
=
7
0
1 4 7 10 13 16 1 4 7 10 13 16
Fastener number Fastener number
20 20
Row P mTorsion case = Row Q =Torsion case
15 O Bendi 5 15 - - .
O Bending case ;/ T Bending case
=}
S
2
P
g
=
7
1 4 7 10 13 16 1 4 7 10 13 16
Fastener number Fastener number
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Figure 6.23. Topology optimization result of: a) a standard
design and; b) the design with joint load constraints
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Figure 6.24. Comparisons of the joint loads of the standard
design (black) and those with joint load constraints (white)

A volume constraint is imposed and bounded by a volume fraction
35% in both standard topology optimization and those with constraints
on joint loads limited to be lower than 19.5 KN. The final designs are
shown in Figure 6.23. Comparisons are shown in Figure 6.24 and
Table 6.3.
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. with F; < 20N difference
constraints
Mean compliance (J) 131.9 133.4 +1.1%
Maximum shear loads (N) 21.01 19.36 —7.9%
Volume fractions 0.35 0.35 0

Table 6.3. Comparison of optimized results

6.4. Conclusions

In this chapter, we present a structural topology optimization
method with constraints on the shear loads of multifastener joints,
which is inspired from practical aircraft design. The joints are
modeled as short beam elements. Design sensitivities of shear loads
with respect to pseudo-densities are derived using the adjoint method
in terms of the derivatives of nodal displacements of beam elements,
where additional finite element analyses are needed.

Several numerical examples, including aircraft wing section
design, are tested and optimization results are compared with standard
topology optimization designs. It is shown that the joint loads are
strongly affected by the structural layout and the load carrying path.
With an optimized distribution of structural stiffness, all the shear
loads in the joints are perfectly controlled by the prescribed upper
bound.

To validate the proposed optimization method, loading tests are
carried out with the help of stereolithography resin models. By
comparing the minimum stretching force breaking the joints in the
resin model, three groups of experiments have obviously verified the
effect of the joint load constraints upon the optimized topology.
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Potential Applications of
Topology Optimization

7.1. Shape-preserving design

In most existing work on engineering structural designs, typical
conceptual designs were obtained from the best load carrying path
generated by a global strain energy-based topology optimization design.
Further detailed shape and sizing optimization designs were
subsequently carried out to improve local performances such as strength
and stability, etc. However, in many cases, it is crucial to restrain the
warping deformations and maintain the coordinated displacements
during the procedures of structural design, manufacturing, assembling
and service [NIU 88, CAI 06, XIE 07]. The design specification is to
obtain better deformation behaviors of the elastic bodies, which is more
than a global strain energy design. For example, structures on the
aircraft front fuselage, as shown in Figure 7.1, will be designed properly
not only for strength and stiffness performance, but also to ensure a
coordinate deformation of the windshield to avoid cracking. Similar
design requirements can be found for the supporting structures of the
large numbers of openings and components on the aircraft.

In fact, techniques of topology optimization have long been used to
obtain required structural deformation patterns, which mainly results
in the design of compliant mechanisms. In the existing literature,
constraints on a single nodal displacement or multiple displacements
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were normally issued. The magnitudes of different nodal
displacements were controlled to form a better deformation.

Figure 7.1. Structure layout and windshield of front fuselage

However, obtaining a coordinated displacement with least warping
deformation is rather complicated and computationally expensive,
with large numbers of constraints on magnitudes of nodal
displacements. The key difficulty lies in how to distinguish the rigid
body motion and warping deformation from the total deformation
patterns.

Recently, we have proposed a shape-preserving topology
optimization method. Local strain energies on specified shape
preserving were assigned as design constraints. The structural total
deformation consists of the warping deformation and rigid body
motion. As the strain energy of the rigid body motion is completely
zero, the warping deformation can be easily distinguished and
suppressed in this way, as shown in Figure 7.2.

Typical designs can be found as shown in Figure 7.3. Structural
configuration of a front fuselage was designed to obtain a minimum
global strain energy with control of local warping deformation on the
windshield in Figure 7.3(b). Compared with the standard topology
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optimization result shown in Figure 7.3(a), the shape-preserving
design reduced the local strain energy in the windshield up to 20%,
while the cost of the global strain energy increased only by 5%.
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Figure 7.3. Topology optimization of a front fuselage: a) standard
topology optimization and b) shape-preserving design

Potential applications of shape-preserving design can be extended
to aircraft assembly jigs design and precision design of some other
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functional surfaces. As shown in Figure 7.4, during the structure
design of assembly jigs, the shape of the supported aircraft
components, especially the assembling interface, will be preserved to
ensure a precise assembly. Tiny elastic warping deformations under
external loading conditions and gravity must be suppressed under
shape-preserving constraints. In Figure 7.5, a helicopter aiming
system is designed to maintain a parallel direction for subsystems of
TV, infrared and laser aiming. The thermal-elastic warping
deformation will lead to non-straight aiming. The recent solution of
shape-preserving topology optimization for the aiming system
pedestal is also shown in Figure 7.5.

Figure 7.5. A helicopter aiming system and
shape-preserving design of its pedestal
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7.2. Smart structure design

Recently, smart structures have been recognized as one of the most
important structural styles for next-generation aircrafts and aerospace
vehicles. Existing attempts to use topology optimization in designing
smart structures were based on aerodynamic performance, i.e. the
morphing aircraft structure design. For example, Reich et al. [REI 07]
proposed a two-step topology optimization design for morphing
vehicle skins. The substructures of the aircraft skin were first
considered as truss-like mechanisms. Driven by actuators, the global
structure will deform to a specific goal shape. The material properties
of the skin were optimized to meet the global deformation
requirement. In the second step, multi-phase material microstructures
were designed using topology optimization to satisfy prespecified
requirements for the skin design. The effective properties of the
microstructures were further evaluated with loading test.

Inoyama et al. [INO 08] later presented new topology optimization
approaches that determine the distribution of structural properties and
actuators, to obtain a morphing wing with multiple target shapes. By
acquiring the constraints on the truss volume and actuators’
distribution, the topological design results satisfied the design
requirements effectively. Figure 7.6 shows the typical designs where
three different configurations of the morphing wing for different flight
cases are presented. The topological design includes the distribution of
trusses, different actuators, structural components and linkages.

In topology optimization of smart structures, actuators are the key
elements to realize structural morphing. These actuators may be
replaced with some smart structural components, e.g. shape memory
alloys (SMAs), whose solid-to-solid phase transformations induced by
appropriate temperature and/or stress changes can recover structural
deformations. These components have been widely used in many
practical areas due to their particular properties. Early works of SMA
applications have been summarized by Van Humbeeck [VAN 99]. In
the work of Beauchamps et al. [BEA 92], SMA was used to control
the surfaces of the wings and rotor blades in adaptation to different
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flight speed and attack angle. As a result, flight efficiency was
improved and noise was reduced.

Configuration 0 15 deg sweep

Reference config

Configuration 1

15 deg sweep
84% area increase

Configuration 2
30 deg sweep

14% area increase

Figure 7.6. Topology optimization of morphing wing [INO 08]

Later, Kudva [KUD 04] reviewed the DARPA project on smart
wing design. As shown in Figure 7.7, the leading edge of the
unmanned aerial vehicle (UAV) was actuated by SMA to improve the
flight efficiency. More recent applications of SMA in aircraft and
aerospace designs can be found in the works of Hartl et al. [HAR 07,
HAR 10].

As presented by Van Humbeeck [VAN 99], SMA also has more
particular properties, such as high damping capacity and
pseudoelastic, besides the shape memory effects. These properties
bring more possibilities to future smart structure systems design,
especially in topology optimization design. For example, SMA
actuators or structures can first be considered as some functional
components integrated with the structures to have better mechanical
and mechanism properties. The integrated system can be realized
using the integrated layout and topology optimization to improve the
structural efficiency of deformation. Second, the configuration of
SMA structures themselves can also be optimized to improve the
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deformation and actuation under thermal or stress inputs, such as the
work done by Langelaar ef al. [LAN 11]. Third, due to the damping
properties, SMA structures can be good alternatives to current
damping materials and structures. The material distribution of SMA
can be optimized to improve the global dynamic responses.
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Figure 7.7. Structural layout of UAV using SMA actuators [KUD 04]

7.3. Structural features design

Existing topology optimization techniques, such as density-based
methods and level set methods, have been developed rapidly
to improve mechanical performances and obtain reasonable load-
carrying paths. But to gain wide acceptance from the engineering side,
more structural engineering features will be imposed in topology
optimization.

Engineering features are not new in topology optimization. The
abovementioned topological design with stiffeners, structural
components and fasteners based on pseudo-density variables can be
considered as different kinds of features design. Some other feature-
based design has focused on the sizing control for level set methods
topology optimization, such as the work of Mei et al. [MEI 08], Chen
et al. [CHE 08] and Guo et a/. [GUO 14a].
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However, compared with the real engineering features such as
stiffeners, lugs, holes and protrusions, etc., as shown in Figure 7.8, the
abovementioned features are far from the requirement of practical
applications. As a result, detailed designs produced by adding
engineering features are needed as postprocessing procedures for
existing topology optimization applications. These features can be
designed for mechanical, functional or even manufacturing purposes.
This is a serial design mode, which significantly changes the structural
configuration and may lower the optimized structural performances.

Figure 7.8. Aircraft structures with engineering features. For a color
version of this figure, see www.iste.co.uk/zhang/topology.zip

Thus, in the future of topology optimization, these engineering
features and their assembling patterns may need to be designed
simultaneously with the material distribution, which can be considered
as an integrated design for engineering features’ layout and structural
topology [ZHU 09, ZHU 10a]. More considerations on structural
detailed performances, functional and manufacturing purposes,
assembling processes, etc., will be introduced into the topological
design. The optimization design of the features can therefore be
achieved by improved integrated layout and topology optimization
methods.

With this idea in mind, some recently proposed topology
optimization methods [GUO 14b, ZHO 16] have considered features
with different geometries as numbers of components. These
components are described with implicit level set functions and will be
joined together using Boolean operation, based on a scheme such as
R-functions or KS functions. The structural topology can be obtained
by the layout design of these components. A typical example is
presented in Figure 7.9.
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d) Optimized configuration

Figure 7.9. Evolutions of structural configuration involving
features/components with different geometries

7.4. Topology optimization and additive manufacturing

Most topology optimization researchers have been questioned
about the manufacturability of their optimized structures. Before, the
performance of topology optimization was compromised with some
additional manufacturing constraints, such as sizing constraints,
casting directions, symmetry and repeated patterns, etc. Recently, the
rapidly growing additive manufacturing techniques, also known as 3D
printing, which directly fabricate structures from a CAD model,
change the situation and may prove to be beneficial for both sides. On
the one hand, additive manufacturing techniques currently provide
possibly the best manufacturing solutions for topology optimization.
On the other hand, additive manufacturing needs something to prove
its abilities of forming very complicated structures. Topology
optimization is among the best choices.
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The combination of topology optimization and additive
manufacturing immediately gained preliminary success. As shown in
Figure 7.10, researchers from EADS attempted to optimize the aircraft
structures to have a light-weight and stiffness design. The final design
was revealed with metallic additive manufacturing. The global
procedure saved up to 64%, in weight with all the mechanical
performances satisfied.

Figure 7.10. Topology optimization and additive
manufacturing of Airbus A320 nacelle hinge bracket [TOM 11]

Figure 7.11. Loading test with stereolithography
resin model of additive manufacturing

Metallic additive manufacturing is powerful in forming practical
structural parts, but it suffers from the high cost of the equipment and
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processing procedure. Very recently, resinous additive manufacturing,
i.e. the high efficient stereolithography rapid prototyping, is being
used to validate the topology optimization results, as shown in
Figures 7.11 and 7.12. It was found that the rapid prototypes of resin
material can approximately maintain linear elastic and isotropic
mechanical properties in a specific deformation range. Moreover,
compared with metallic additive manufacturing, the resin model is
much more easily and effectively fabricated.
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Figure 7.12. “Backbone Cup’, students’ structure design
competition at Northwestern Polytechnical University. The best
result used 35 g resin material withstanding a force of 3,235 N
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In the upcoming future, it is believed that aircraft and aerospace
structures, especially most UAV structures, will be designed and
fabricated as unconventional integral structures to save weight and
simplify the assembling procedure. With this new concept, the
combination of topology optimization and additive manufacturing will
surely play an important role in developing high-performance and
lightweight structure systems.
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