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Introduction 

I.1. Overview and motivation 

After the Second World War, the rapid developments of 
the aircraft and aerospace industries brought great 
engineering challenges and academic interests in 
lightweight and high performance structure design. 
Structural optimization techniques are becoming 
increasingly important to satisfy complicated engineering 
requirements.  

Strive to save the weight by each gram. 

– AVIC, China 

For aircraft or aerospace vehicles, weight is a critical 
determinant of performance, payload capacity, 
maneuverability and range. 

– US National Research Council 

In recent decades, structural optimization methods have gained 
great progress with the increasing performances of computers and 
computing algorithms. Solutions of practical and complicated 
optimization problems undergoing complex loading conditions are  
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made possible to satisfy severe multidisciplinary design performances. 
Among others, topology optimization has become one of the most 
promising techniques. 

In the 21st Century, many new aircraft and aerospace projects are 
being set up in China. This brings great challenges in developing 
innovative design methodology and dealing with new scientific and 
technical problems issued from the complicated engineering practices. 
Nowadays, industrial applications are becoming one of the most 
important challenges in the engineering design community of structure 
optimization, especially topology optimization for aircraft or 
aerospace structure systems. Within this scope, fundamental and 
innovative research works are carried out. The research team of 
Engineering Simulation & Aerospace Computing in Northwestern 
Polytechnical University in China is becoming one of the most active 
research groups in this discipline and is motivated to develop the 
following techniques and solutions. 

In 2003, we started to optimize the wing structure of an aircraft to 
satisfy the specific static and dynamic performances. The global 
model consists of less than 5,000 shell, rib and beam elements. Later, 
the work was focused on the optimization of the composite and 
honeycomb structures of a large airborne radome. As mechanical 
performances and electromagnetic functionality were contradictory  
in design, both of them were optimized simultaneously based on 
multiobjective optimization methods. 

Since 2005, studies have been focused on the shape optimization of 
aero-engine structures, for example turbine disks, blades, shafts, 
elastic supports and nozzle parts that belong to a kind of complicated 
curved structure working under aerodynamic loads, rotating inertial 
loads and high temperature conditions. Typically, shape optimization 
of the cutouts on the thin-walled curved panels was a challenging 
issue because it could not be directly dealt with using traditional shape 
optimization methods. It is required that the cutout boundary should 
be kept on the curved surface whatever the design modification. Thus, 
both a new mapping method and Boolean operation method were  
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developed to define design variables of the cutout in the intrinsic 
coordinate system of the curved surface. Mechanical and thermal 
stresses were considered in this work. Shape optimization resulted in  
a stress-level reduction of about 30% and a weight saving of more 
than 10%. 

Almost at the same time, we were motivated by the conceptual 
design of new aircraft structures. Based on fruitful discussions with 
aircraft design engineers, topology optimization of large-scale aircraft 
structures was carried out with nearly one million design variables and 
dozens of complex loading conditions. In particular, design-dependent 
loads and mass constraint with multiple materials should be treated 
properly in topology optimization to achieve clear structural 
configurations.  

At the beginning of 2006, we were motivated by the simultaneous 
optimization of payloads and supporting structures after a visit by 
some aerospace engineers. The aim was to integrate geometrical 
packing optimization with topology optimization for the system  
of large launch vehicles. An integrated design methodology of a 
multicomponent system was thus developed. The supporting structure 
configuration and layout of satellites are optimized to improve the 
global dynamic performance. Shape and sizing optimizations were 
further used to detail the structural design for the strength and 
buckling requirements. In consequence, the dynamic performance is 
increased by 17% with a weight saving of more than 7% compared to 
the initial design. 

Based on the above practices, we have realized that structure 
topology optimization has become essentially important to promote 
the frontier industrial developments, especially for the design of 
advanced aircraft and aerospace systems. The purpose of this book is 
to present recent achievements of topology optimization. Methods, 
techniques and applications summarized in the book will hopefully be 
destined to provide rich illustrations for researchers and engineers 
working in the field of structure design. 
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I.2. Basic engineering optimization methodologies 

Structure optimization methods are basically classified into three 
categories: sizing optimization, shape optimization and topology 
optimization. Sizing optimization is a classical method and easy to 
conduct by choosing cross-sectional dimensions of trusses, beams  
and frames, or the thicknesses of membranes, plates and shells as 
design variables, as shown in Figure I.1. Sizing optimization can be 
regarded as a detailed design procedure of the structural model 
involving a large number of design variables. It has been developed 
maturely and is becoming the most popular method in engineering 
community. 

 
Figure I.1. Sizing optimization for aircraft structure members [RAD 02] 
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optimization was originally a 0-1 discrete problem. The major 
challenge is the solution of a large-scale integer programming 
problem. The high computing cost of this kind of problem typically 
precludes the use of gradient-free algorithms. The successful 
application of Lagrangian duality to the large-scale integer problem 
was found in the work of Beckers [BEC 97, BEC 99] who proposed a 
dual method to deal with discrete design variables. Most approaches 
have been proposed to deal with the problem as a continuous one 
since the pioneering work by Cheng and Olhoff [CHE 81] and 
Bendsøe and Kikuchi [BEN 88]. To have a comprehensive 
understanding of the state of the art, one can refer to literature surveys 
and books by Bendsøe [BEN 95, BEN 02], Eschenauer and Olhoff 
[ESC 01] and Bendsøe and Sigmund [BEN 03]. 

Several representative methods have been proposed so far. For 
example, the homogenization-based method [BEN 88, GUE 90,  
SUZ 91, ALL 04a] describes the structural material layout with 
microstructures, as shown in Figure I.4. Meanwhile, the equivalent 
material properties of each microstructure, for example elastic moduli, 
are calculated using the homogenization method. Topology 
optimization is processed by modifying the dimension parameters of 
each microstructure iteratively. However, the mathematical 
complexity of the homogenization process prevents the general 
application of this method. 

 
Figure I.4. Material layout described with the homogenization-based method 
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Among others, solid isotropic material with penalty (SIMP) is the 
most popular method in topology optimization [BEN 89, BEN 99, 
ZHO 91, ROZ 01a]. It proceeds by penalizing exponentially isotropic 
material in terms of element pseudo-density variables defined by a 
power-law  

0
p

i iE E η=  [I.1] 

where Ei is the elastic modulus of the ith element. E0 is the elastic 
modulus of the solid material. ηi and p are the so-called pseudo-
density and penalty factor, respectively. Compared with the amount of 
material for each element, a very low stiffness will be obtained even 
when element pseudo-density variables take intermediate values 
between 0 and 1. The effect of the penalty factor will push the pseudo-
density toward 0 and 1 during the optimization. In the work of 
Bendsøe and Sigmund [BEN 99], the power-law approach was proved 
theoretically provided that the penalty factor satisfies the Hashin–
Shtrikman bounds. 

To obtain a purely or nearly 0-1 material layout, strong penalty 
with a great value of p is suggested. Unfortunately, as the derivative of 
Ei with respect to ηi is zero at ηi = 0, the presence of the so-called gray 
elements may occur in a numerical solution. To ensure the numerical 
stability, rational approximation of material properties (RAMP) was 
proposed by Stolpe and Svanberg [STO 01] as an alternative model. 

( ) 01 1
i

i
i

E E
q

η
η

=
+ −  [I.2] 

where q is the penalty factor.  

In comparison, SIMP and RAMP are similar to each other. 
However, RAMP is sensitive to ηi=0 in the sense that Ei has a non-
zero derivative at ηi = 0. 

The evolutionary method is an engineering approach. It is based on 
the intuitive concept that inefficient materials are gradually removed  
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from the design domain to approach the optimal topology. Among 
others, evolutionary structural optimization (ESO) developed by Xie 
and Steven [XIE 96], Li et al. [LI 99] and Kim et al. [KIM 03] is a 
typical evolutionary approach. In most cases, optimal topologies are 
generated by deleting the set of elements with low strain energy 
values from the entire design domain systematically. The element 
efficiency evaluated from sensitivity analysis is used as an index of 
element deletion. As the ESO is devised as a unidirectional scheme 
only for removing elements, the restitution of the removed elements 
will be, however, unallowable during the iteration. Later, an improved 
bidirectional procedure named bidirectional evolutionary structural 
optimization (BESO) was proposed by Querin and Young [QUE 00] 
and Yang et al. [YAN 99a, YAN 99b]. Materials are allowed to be 
added in those void areas with the highest efficiency, but it is required 
that an initial design configuration connecting the boundary conditions 
and loading locations should be specified a priori. 

Both ESO and BESO have the advantage of conceptual simplicity. 
Moreover, Tanskanen [TAN 02] proved that, in some particular 
situations, these approaches basically correspond to a sequential linear 
programming approximate method. However, Sigmund [SIG 01] 
indicated that it is questionable to extend these approaches to other 
design cases such as multiconstraints and multiphysics problems. A 
critical view given by Zhou and Rozvany [ZHO 01], Rozvany  
[ROZ 01b] also indicated the existence of some numerical failures. In 
particular, neither the stress level nor the sensitivity values used till 
now has been able to describe exactly the criterion of the element 
deletion/growth when the latter causes a significant variation of the 
objective function [ZHU 07]. Nevertheless, the ESO method was also 
defended against the criticism [EDW 07, HUA 08, TAN 02, ROZ 02a, 
ROZ 02b, ROZ 04].  

Other topology optimization methods were also proposed. For 
example, the bubble method developed by Eschenauer et al. [ESC 94] 
introduced new holes (or bubbles) into the design domain. The 
contour and position of the holes were designed in the way of shape 
optimization. The topology description function and level set method 
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[WAN 03, ALL 04b, DER 04, MEI 04a, MEI 04b] were developed to 
describe the structure as a high dimension level-set function.  

It should be mentioned that alternating solid and void elements 
over the design domain often occurs in topology optimization. This 
phenomenon behaves in a checkerboard fashion and is mesh 
dependent. According to Jog and Haber [JOG 96], it was due to the 
finite element approximation or design optimization criteria. From this 
viewpoint, Rodrigues and Fernandes [ROD 95] improved the 
interpolation accuracy by means of high-order elements in thermo-
elastic optimization problems. However, the computing cost increases 
dramatically together with the number of degrees of freedom of the 
structural system. Later, Sigmund and Petersson [SIG 98] developed 
the filtering scheme to smooth the sensitivities of the objective 
functions over the considered element and its eight neighbors based on 
image filtering techniques. However, this sensitivity filter is not 
appropriate for the searching strategies because the modified 
sensitivities do not completely correspond to the objective function 
and may lead to some divergence problems. As a result, further 
developments are being made on the density filter by Bruns and 
Tortorelli [BRU 01] and Bourdin [BOU 01]. The modifications are 
directly implemented on the updated design variables. More 
descriptions and improvements on density filter can be found in the 
works of Wang and Wang [WAN 05], Sigmund [SIG 06], Sigmund 
[SIG 07] and Lemaire et al. [LEM 07]. 

Alternatively, Haber et al. [HAB 96] proposed the perimeter 
control method to control the checkerboard pattern and detailed 
structures between solid and void elements. Zhang and Duysinx  
[ZHA 03] also proposed an improved perimeter control of quadratic 
form in consistence with the dual approach. Checkerboard control  
in the framework of ESO/BESO was discussed by Yang et al.  
[YAN 02]. 

The idea of topology optimization has been extended to different 
territories. Numerical results show that a variety of problems 
including maximization designs of structural stiffness [SIG 01a],  
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natural frequency [PED 00], buckling loads [ZHO 04], heat 
conduction [GER 06], CFD channel flow [GER 05] etc., can be 
solved. Furthermore, the concept of topology design domain is 
extended by introducing structural supports and joints modeled with 
spring elements. Typical results presented by Jiang and Chirehdast 
[JIA 97], Buhl [BUH 01], Zhu and Zhang [ZHU 06a] mainly covered 
problems of structural stiffness, natural frequency as well as compliant 
mechanism. Other extended patterns of topology optimization were 
developed to design the microstructures [SIG 99, ZHA 06] and to deal 
with design-dependent load problems [CHE 01, BRU 05, GAO 08]. 

When the eigenvalue problems like natural frequencies and 
buckling loads of a structure are maximized with the SIMP model,  
an important issue concerns the artificial modes or localized 
deformations. This issue takes place in low-density areas where 
elements take the minimum pseudo-density values. Compared with 
the solid region, these areas are too compliant to support themselves. 
Neves et al. [NEV 95] investigated this phenomenon when optimizing 
the structural buckling loads. Pedersen [PED 00] and Bruyneel and 
Duysinx [BRU 05] improved SIMP interpolation model after 
analyzing the artificial modes numerically in natural frequency 
maximization and self-weight loading problems, respectively. By 
analyzing the material properties of the elements in low-density areas, 
Zhu et al. [ZHU 07] used the equivalent material properties of the 
orthotropic cellular microstructures that could be effective in avoiding 
the artificial modes.  

Topology optimization has stepped into its rapid developing age. 
Excellent works gain great success in both theoretical studies and 
practical applications. Recent literature surveys are given by Guo and 
Cheng [GUO 10], Deaton and Grandhi [DEA 14], Sigmund and 
Maute [SIG 13] Zhang et al. [ZHA 11] and Zhu et al. [ZHU 16]. 

I.3. Layout of the book 

This book consists of seven chapters mainly summarizing the work 
of the authors’ research team. A brief introduction of the background  
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and motivation is presented first. Then the state of art of the related 
techniques and their applications is reviewed. In the following 
chapters, contents are related to standard material layout design with 
topology optimization, low-density areas in topology optimization, 
dynamic and thermal-elastic design of topology optimization, 
integrated layout design of multicomponent system and topology 
optimization with constraints on multifastener joint loads. Finally, 
potential applications of topology optimization, such as shape 
preserving design, smart structure design, structural feature design and 
additive manufacturing, etc., are also addressed to provide a forward-
looking perspective. 



1  

Standard Material Layout Design 

1.1. Basic formulations of topology optimization 

In most engineering applications, topology optimization has been 
recognized as an effective approach for conceptual design. Topology 
optimization results were considered as a design of the most effective 
load carrying path, while the structural details in the design domain, 
such as structural chamfers and fillets, stiffeners, joints and cross-
sections, were designed in the following shape and sizing optimization 
procedure. 

A basic topology design procedure can be illustrated with the help 
of a typical application of a large cargo aircraft pylon design. The 
pylon shown in Figure 1.1 hangs the turbine engine or other payloads 
to the aircraft wing. The structure will be optimized to produce a stiff 
and lightweight design. First, the pylon is assigned as the design 
domain that is discretized by refined solid finite elements. Two 
hanging positions, i.e. the tip and lower lugs, are considered as non-
designable components. The design domain and its finite element 
model (240,000 elements) are shown in Figure 1.2. The thrust and 
weight of the turbine engine are considered as applied loads on both 
hanging positions. The total structure is clamped onto the wing at two 
fixation positions. 
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Figure 1.1. An aircraft pylon (http://www.flightglobal.com) 
 hanging a turbine engine 

 

Figure 1.2. The design domain and its finite element model 

Topology optimization of this problem can be formulated in the 
following way. First, design variables are defined by pseudo-densities 
describing the material distributions. 

{ } efind :     0 1, 1,2,...,i i i nη η< ≤ =η =  [1.1] 

where ηi refers to the pseudo-density variable of element i representing 
a solid or void when it takes the value of 1 and 0, respectively. ne is 
the number of pseudo-density variables. Practically, to avoid 
singularities of computed element properties, for example the element 

Fixations

Hanging positions
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stiffness matrix, a small non-zero value is often assigned as the lower 
bound of ηi. 

Suppose the design objective is to maximize the global structural 
stiffness, which is normally evaluated as the minimization of the mean 
compliance.  

( )m g TT1 1min :
2 2

C = =F U F F U+
 

[1.2] 

where C is the strain energy in terms of the external load vector Fm, 
the self-weight load vector Fg and the nodal displacement vector U. F 
is the total nodal load vector. It is important to note that Fg is design 
dependent and follows the general rule of no material, no load. The 
finite element equilibrium equation corresponds to 

m gF F = KU+
 

[1.3] 

Here, K is the structural global stiffness.  

Moreover, a material volume constraint is needed in practical 
engineering design. 

0 Us.t.  i
i

iVV Vη= ≤∑
 

[1.4] 

V and VU denote the total volume of the material and the upper 
bound, respectively. The combination of equation [1.2] with equation 
[1.4] constitutes the standard topology optimization formulation. 

In this formulation, apart from SIMP and RAMP, a polynomial 
interpolation model [ZHU 09] is introduced to consider the design-
dependent effect of self-weight. In this context, different penalties are 
used to match both variations of the self-weight and stiffness. 

( )( )
0

0 01( )
i i i

p
i i i ii iwE P E w E

ρ η ρ
η η η−

=

= = +
 [1.5] 
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where ρi0 and Ei0 are the specific density and elastic modulus of  
solid material, respectively. P(ηi) can be considered as an extended 
SIMP with w and p being constant parameters of the interpolation. 
Details of this interpolation model are discussed in the following 
chapters.  

To solve the optimization problem, sensitivities of the objective 
function and constraint function with respect to the pseudo-density 
variables are needed.  

0i
i

VV
η

=∂
∂ ;

( ) ( )

( ) ( )

g
m

Tg gTm g 1

T
Tg1

2

1 1
2 2i i i

i i i

C

η η η

η η η

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∂ ⎛ ⎞∂ ∂= + −⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂ ∂= +
∂ ∂ ∂

F

F F KU F K U

UU F F

F

+

+

 [1.6] 

If polynomial interpolation of equation [1.5] is used, we can easily 
obtain the above derivative. 

To mitigate possible numerical instabilities, such as mesh-
dependency, checkerboard patterns, the standard sensitivity filter 
proposed by Sigmund and Petersson [SIG 98] is the most popular 
method and used here. 

* min

min

dis( , )

dis( , )

j
j j

i i
j

Cr j i
C

r j i

η
η

η η

⎧ ⎫⎪ ⎪⎡ ⎤⎨ ⎬⎣ ⎦⎛ ⎞ ⎪ ⎪⎩ ⎭
⎜ ⎟

⎡ ⎤⎝ ⎠ ⎣ ⎦

∂−
∂∂ =

∂ −

∑

∑
 

[1.7] 

{ }mindis( , )j j j i rη η∈ ≤
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where dis(j,i) refers to the distance between the jth and ith density 
points. All the density points located within the predefined distance 
rmin are accounted for in the filtering scheme. 

Numerical experiences indicate that topology optimization 
problems can be solved with different algorithms, such as Conlin 
[FLE 86, FLE 89]), MMA (method of moving asymptotes, [SVA 87], 
SQP (sequential quadratic programming, see [NOC 99]), MDQA 
(method of diagonal quadratic approximations, [ZHA 97]) and 
GCMMA (global convergent version of MMA, [SVA 95, SVA 07]). 
For example, the GCMMA was implemented in BOSS-Quattro which 
is a general purpose optimization platform [RAD 02]. This algorithm 
is based on the approximation of a function expressed as 

( ) ( )

T
1 2

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

, ,...,

1 1

1 1           +

n

k k
i k k k

i i i i i

k
i k k k

i i i i i

x x x

g g p
u x u x

q
x l x l

⎡ ⎤⎣ ⎦
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=

≈ + −
− −

−
− −

∑

∑

x

x x
 

[1.8] 

Parameters pi
(k) and qi

(k) are computed based on the first-order 
derivatives of the function. Asymptotes ui

(k) and li
(k) are two positive 

parameters that should be updated on the basis of the rule proposed by 
Svanberg [SVA 95] to ensure the global convergence of the algorithm. 

The benefits of GCMMA are obvious. As it holds the property of 
non-monotonicity, convexity and separability in terms of variables,  
it is thus helpful in solving optimization problems involving  
non-monotonous functions. 

For the optimization problem shown in Figure 1.2, the final design 
obtained using GCMMA is shown in Figure 1.3. The material 
distribution of the optimized design indicates the most effective load 
carrying path that can be used as an important reference for the further 
detailed design. 
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1.3. Topology optimization of cellular materials and 
structures 
1.3.1. Homogenization method and material microstructure 
designs 

Cellular solids are ultra-lightweight materials widely applied  
in aerospace and automotive industries due to their particular 
multifunctional properties such as energy absorption, thermal 
isolation, anti-impact, etc. The structural efficiency can be 
convincingly achieved by designing hierarchical cellular materials 
optimally even with moderate-quality constituents.  

In recent years, topology optimization has become an efficient 
approach to fulfill this task. Successful applications are rapidly 
recognized for the purpose of tailoring effective properties of cellular 
materials. Among others, an inverse homogenization method was 
proposed by Sigmund [SIG 94, SIG 95], Sigmund and Torquato  
[SIG 97] as a material design procedure. The homogenization method 
that allows us to establish macroscopic effective properties of the 
heterogeneous medium in terms of microstructural variables was 
coupled with the SIMP model such that materials can be efficiently 
tailored to attain optimized microstructures or some prescribed elastic 
even extreme properties. Typical designs are shown in Figure 1.9. 
Similarly, a strain energy method was also developed by Zhang et al. 
[ZHA 07] to favor numerical implementation. 

 

Figure 1.9. Different 3D cells with prescribed Poisson’s ratio [SIG 95] 

However, as the homogenization method is a two-scale asymptotic 
method based on the periodicity assumption of the microstructures, 
the predicted effective properties only depend upon the material 

y

xz

y

xz



Standard Material Layout Design     11 

microstructure, volume fractions and properties of constituents. 
Mathematically, under the periodicity assumption of the 
microstructures, the asymptotic expansion of each physical field, for 
example, the displacement of an arbitrary material point in a cellular 
elastic body is expressed as 

( ) ( ) ( ) ( )0 1 2 2, , , ...x x y x y x yu u u uχ χ= + + +  [1.9] 

where x is the macroscopic variable measured in the macroscale 
system (X) and varies slowly from unit cell to unit cell. y= x/χ is the 
periodic microscopic variable measured in the microscale system (Y) 
and varies quickly within each unit cell. Parameter χ is a small value 
representing the aspect ratio between the micro- and macroscale. Due 
to the complexity of analyzing the cellular structure illustrated in 
Figure 1.10 directly, unit cells of periodic microstructures are often 
modeled as a homogenized medium with effective elastic tensor. 
Based on the asymptotic expansion of equation [1.9], the elasticity 
equilibrium equation system defined over the unit cell can be 
expressed as: 

      
kl
p i i

ijpq ijklY Y
q j j

u
D dY D dY Y

y y y
υ υ υ

∂ ∂ ∂= ∀ ∈
∂ ∂ ∂∫ ∫  [1.10] 

The effective elastic tensor of a periodic microstructure is then 
written as: 

( ) ( )**H 1 kl
p kl

ijkl ijkl ijpq ijkl ijY
q

u
D D D dY D

Y y
σ

⎛ ⎞∂
= − = −⎜ ⎟⎜ ⎟∂⎝ ⎠

∫
 

[1.11] 

where (Dijkl)* denotes the average elastic tensor depending upon the 
material volume fractions of constituents as evaluated by the classical 
mixture rule. (σij

kl)* is the average stress tensor associated with the 
displacement vector ukl over the unit cell in load case kl and represents 
a correction term reflecting the influence of the material 
microstructure of the unit cell. It is necessary to note that effective 
heat conductivity coefficients and thermal expansion coefficients of a 
microstructure can be evaluated in a similar way. 
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It should be mentioned that such a formulation is valid only 
asymptotically with χ being infinitesimally small and the obtained 
results preclude any scale-effect in the real structure even for stiffness 
design. In reality, this theoretical limit can never be reached. In  
other words, the homogenized descriptions are only valid when  
the size of the macrostructure is very large compared with the size  
of its microstructural heterogeneities. This situation was confirmed  
in the earlier study of buckling design by Bendsøe and Triantafyllidis  
[BEN 90]. Therefore, it is of great interest to formulate the  
integrated design problems with the retention of scale-effect for a real 
structure.  

1.3.2. Scale-effect of the material microstructure  

In contrast, strain energy minimization of cellular structures 
corresponds to a multiscale problem that is different from both the 
material design and pure structural design. The essential influence of 
underlying material microstructures upon macrostructure behavior 
requires that microstructures be designed to optimally match the 
loading and boundary conditions of the specific macrostructure. In this 
context, volume fractions of solid phases, the microstructure topology 
and the scale size of the material microstructure all have to be taken 
into account simultaneously.  

Till now, Fujii et al. [FUJ 01] have studied the strain energy 
minimization of the macrostructure through topology optimization of 
material microstructures using the homogenization method. Rodrigues 
et al. [ROD 02] proposed a hierarchical computational procedure that 
integrates the global topology and local material design. As there may 
exist multiple solutions of microstructures that produce different  
local optima of effective elastic properties, Neves et al. [NEV 02] 
introduced the local buckling constraint to penalize the microstructure 
in the optimization procedure.  
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Figure 1.10. Scale-effect of cellular core with identical  
microstructure and volume fraction 

In fact, one important issue in the simultaneous design of materials 
and structures is concerned with the scale-effect of the microstructure, 
as shown in Figure 1.10. This mechanism was confirmed from both 
micromechanics theories and experiments [SUT 99, PEC 99]. 
Recently, Tantikom et al. [TAN 05] pointed out this phenomenon 
experimentally. As shown in Figure 1.11, the specimen with tubular 
core results in different nominal stress-strain curves when the number 
of cellular layers changes. Curves become indifferent whenever the 
number of cellular layers is large enough. This mechanism is the  
so-called scale-effect as discussed by Burgueno et al. [BUR 05] and 
Dai and Zhang [DAI 08]. Therefore, the scale-effect should be taken 
into account together with the morphology of the microstructure in a 
comprehensive way in the design optimization.   

However, as the homogenization method leads to the same 
effective elastic tensor in all above cases of microstructures, its 
utilization is reasonable only when the number of cells involved in the 
core is large enough. On the contrary, when the panel has only a few 
cellular layers, the scale-effect becomes important in the design so 
that the predicted effective properties are unable to account for the real 
state of the material microstructure. 
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Figure 1.11. Specimens with three, five and seven layers and in-plane 
nominal compressive stress-strain curves of pure copper assemblies with 

different numbers of rows [TAN 05] 

Here, an integrated optimization approach [ZHA 06] is presented 
for the strain energy minimization of two-dimensional (2D) layered 
structures. The scale-effect of the microstructures upon the 
topologically optimized design is highlighted. Without loss of 
generality, we consider the periodicity of the cellular microstructure in 
a given design domain, as shown in Figure 1.12. The scale-related 
design optimization may be interpreted as how to determine the 
number of unit cells as well as the involved microstructures. In fact, 
such a scale-related problem reflects the intrinsic dependence between 
the material and structure. With the given material volume fraction, 
increasing m, i.e. the number of the unit cells, means reducing the size 
of each microstructure and the small parameter χ defined as the ratio 
between the microscale of the material and the macroscale of the 
structure. In the ultimate case of an infinite number of unit cells, the 
scale-effect will become ignorable and the design result converges to 
the asymptotic solution of the homogenization method. Alternatively, 
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the limit case of involving only one unit cell corresponds to topology 
optimization of the pure macrostructure.  

 

Figure 1.12. A two-dimensional domain with different numbers of unit cells 

1.3.3. Scale-related topology optimization 

For illustration, a cellular solid in the macroscale (X) with known 
boundary conditions and external forces is shown in Figure 1.13.  
The optimized solution is one that uses a spatial distribution  
of heterogeneous cellular materials characterized by different 
microstructures at different locations of the design domain. Thus, 
materials will be optimally distributed to match the loaded regions. To 
do this, the design procedure is partitioned into two steps: macroscale 
layout optimization and refined microstructure optimization.  

 

Figure 1.13. Illustration of a cellular domain 
 with different material microstructures 
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First, the macrostructure is considered as a homogenized body and 
discretized into a finite element model. The overall behavior can be 
determined by solving the corresponding FE equilibrium equation 
system. For each element, suppose that the element stiffness matrix 
depends upon the element pseudo-density variable linearly. This 
corresponds to the SIMP model with exponent p = 1 for a smooth 
variation of the optimized pseudo-density variables over the design 
domain. Suppose the structural strain energy is minimized subjected to 
the volume constraint. The formulation corresponds to exactly a 
traditional sizing optimization problem.  

( )
( ) ( ){ } ( )

( )

A A A
e

U

A

T

Macroscale for global structure

find :    1,2,...,

1min :
2

s.t.
0 1

i

i

i n

C

V V

η

η

=

=

≤
< ≤

η

F U

=

 [1.12] 

with 

( )
( )A

0

Macroscale for global structure

ii iE Eη=
 

[1.13] 

Once the above mentioned macroscale optimization problem is 
solved, a global distribution of pseudo-densities is obtained over the 
macrostructure. If values of pseudo-densities attain nearly 0 or 1, it 
means that the corresponding element is a void or solid one. 
Otherwise, the element has a cellular microstructure with intermediate 
pseudo-density and needs to be further refined at the step of the 
microscale design. To this end, all regions of intermediate pseudo-
density values are first identified and grouped into subdomains and 
then topology optimization is carried out to determine microstructures  
and their sizes following design specifications and available  
manufacturing capabilities. Meanwhile, each unit cell considered as a  
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subdomain can be allowed to have its proper microstructure. 
Alternatively, we can also consider elements of the same pseudo-
density values as a group of subdomains to hold the identical 
microstructure distributed periodically. Here, all subdomains are 
considered to be unit cells of identical size, which are further 
discretized into ( )B

en  finite elements with their own pseudo-density 
variables. For unit cell i, the problem of microstructure topology 
optimization can be similarly defined as 

( )
( ) ( ){ } ( )

( )

( )

B B B
, e

T

A
0

B
,

Microscale for unit cell 

find :    1,2,...,

1max :
2

s.t.
0 1

i i j

i i i

i i i

i j

i

j n

C

V V

η

η
η

=

=

≤
< ≤

K

η

U U

=

 
[1.14] 

where the microstructure is optimized in terms of the pseudo-densities 
for each unit cell in microscale. Vi0 is the volume of the unit cell i with 
full material. The strain energy related to the objective function is also 
calculated locally in the microstructure. 

It should be noted that: (1) the strain energy in microscale is 
calculated according to the known nodal displacement vector in 
macroscale; (2) as the displacement field is known, the stiffness 
design now corresponds to a maximization problem of strain energy 
and (3) the upper bound of the volume constraint for each unite cell is 
also inherited from the macroscale design variable ( )A

iη . 

To figure out the optimal topology, pseudo-density variables in 
microscale are penalized by the SIMP law, e.g. p = 4 in the current 
design procedure. To perform a sensitivity analysis of the objective 
function, two approaches are set up as follows. 
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1.3.3.1. The scale-related approach 
For element j included in the unit cell i, assume that the 

dependence of element stiffness matrix upon its pseudo-density 
variable obeys the SIMP law. Similarly to a topology optimization in 
macroscale, the sensitivity of the objective function with respect to 
each pseudo-density variable in microscale can be directly calculated 
as follows: 

( ) ( ) ( ) ( )
,T T

,B B B B
, , , ,

1 1 1
2 2 2

KKU U U Ui ji i
i i i i i j

i j i j i j i j

C p C
η η η η

∂∂ ∂
= = =

∂ ∂ ∂
 

[1.15] 

where Ki,j and Ci,j denote the stiffness matrix and strain energy of 
element j in unit cell i. 

1.3.3.2. The homogenization approach 
When the unit cell is specified to have a small enough size the 

homogenization method can be applied to evaluate the effective  
elastic matrix DH. In such a way, the stiffness matrix of one  
such element depends upon the microscale pseudo-densities as 
follows: 

( )( )BH di i i i i= Ω∫K B D Bη
 

[1.16] 

where Bi is the strain-displacement matrix or the geometry matrix. 
Based on the finite element discretization of unit cell i, the effective 
elastic matrix is evaluated according to the homogenization method in 
its discrete form: 

( )( ) ( )( ) ( )( )( )B B BH
, , , , , ,

0

1 di i j i j i j i j i j i j i
jiV

η η= − Ω∑∫D D D B U η
 

[1.17] 

Di,j and Ui,j are the elastic matrix and nodal displacement vector of 
element j involved in unit cell i. 
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According to the SIMP interpolation model, the derivative of the 
effective elastic matrix can be written as: 

( ) ( ) ( )
( )( ) ( )

( ) ( )
( )( ) ( )

H
B ,

, , 0 , , , , ,B B B B
0, , , ,

B ,
, , 0 , , ,B B B

0 , , ,

1 d d

1 d d

i ji
i j i j i j i j i j i i j i j

jii j i j i j i j

i j
i j i j i j i i j i j

ji i j i j i j

p pV
V

p pV
V

η η η η

η η η

⎛ ⎞∂∂
⎜ ⎟= − Ω − Ω⎜ ⎟∂⎝ ⎠
⎛ ⎞∂
⎜ ⎟= − Ω − Ω⎜ ⎟∂⎝ ⎠

∂ ∑∫ ∫

∑∫ ∫

UD D D B U D B

U
D σ D B

η

η  
[1.18] 

Now, based on these intermediate results, the chain rule will be 
finally applied for the differentiation of the objective function such 
that 

( )( )
( ) ( ) ( )

B H
T T

B B B
, , ,

1 1 d
2 2

K DU U U B B U
η

η η
i i Ti i

i i i i i i
i j i j i j

C

η
∂ ⎛ ⎞∂ ∂

⎜ ⎟= = Ω
⎜ ⎟∂ ∂ ∂⎝ ⎠
∫  [1.19] 

Obviously, the scale-related approach is a simple and convenient 
formulation to obtain the design sensitivities needed for topology 
optimization when compared with the homogenization approach. 

1.3.4. Numerical examples 

Consider now a 2D rectangular domain of plane stress state, as 
shown in Figure 1.14. Assume that the design domain has a dimension 
of 32 × 20 m and a thickness of 1 m. The panel is loaded vertically 
with 100 N/m. Young’s modulus and Poisson’s ratio of the material 
are 1,000 Pa and 0.3, respectively. In this problem, a volume fraction 
of 60% is used for the solid material in the design domain and the 
dimension of the unit cell, i.e. representative volume element (RVE) is 
noted by l × h. For finite element modeling, the problem will be  
ill-conditioned and become singular if solid elements are eliminated 
along the right edge where the vertical load is applied directly. To 
avoid this, a small non-designable elastic portion will be added 
artificially along one such edge to transfer the applied load.  
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1.4. Conclusions 

Standard material layout design is the basic form of topology 
optimization. By defining the design variables related to the finite 
element mesh and assuming the constraint to material volume, 
topology optimization of macrostructure, microstructure and their 
integration are made possible.  

Microstructure design or material design is mostly formulated  
based on the homogenization method to find proper microstructure 
patterns satisfying the prescribed material properties. It is, however, 
scale-independent. With the introduction of the subdomain concept, we 
investigate the scale-effect of the microstructure upon the optimized 
topology. The integrated design of materials and structures is introduced 
as a two-level design methodology combining the macroscale layout 
optimization with the refined design of microstructures.  

The scale-effect of the microstructure upon the optimized topology 
solution is highlighted. In limit cases, the design becomes a pure 
topology optimization problem of the macrostructure or a pure topology 
optimization problem of the microstructure that is asymptotically 
equivalent to the homogenization solution. Therefore, it concludes that 
designs of material microstructures and macrostructures are relative 
solutions depending upon the scale. Likewise, designs of periodical 
cellular structures can also be extended to circular structures of cyclic 
symmetry. 



2  

Low-Density Areas  
in Topology Optimization 

2.1. Localized mode in low-density areas 

Localized mode often appears in topology optimization for 
maximizing the natural frequencies or buckling loads [NEV 95,  
PED 00, ZHO 04]. It means that the vibration or buckling takes place 
only in the low-density areas related to void elements that should  
not physically have a mechanical effect. Consequently, structural 
responses and sensitivities are incorrectly calculated which misleads 
the optimization process. This phenomenon is actually recognized as a 
type of numerical singularity due to the improperly defined material 
properties for the void elements, especially when the popular SIMP 
model is directly used.  

A simple example of a cantilevered beam is illustrated in  
Figure 2.1. The cross-section of the beam is a square with a size of 
0.05 m × 0.05 m. Suppose that the beam is discretized into  
two elements. Only nodes A and B are free and 4 degrees of freedom 
exist altogether, i.e. the vertical displacements and the rotations of the 
two nodes ( , , ,A A B Bv vθ θ ). Based on the SIMP interpolation model, 
pseudo-density variables are penalized in different orders and related 
to material properties in the following form: 
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Element 1: elastic modulus E1 = η1
3×106 Pa, density ρ1 = η1 ×  

100 kg/m3, Poisson’s ratio 0.3; 

Element 2: elastic modulus E2 = η2
3×106 Pa, density ρ2 = η2 ×  

100 kg/m3, Poisson’s ratio 0.3; 

 

Figure 2.1. A cantilevered beam with two elements 

Theoretically, the stiffness and mass matrices of element i are 
expressed as: 

3 2 3 2
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where A and I are the area and moment of inertia of the beam cross-
section. L is the length of one beam element. 

 

Element 1 Element 2A B

5m 5m
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By assembling the element matrices and removing the DOFs fixed 
by the boundary conditions, the global stiffness and mass matrices are 
expressed as: 

2 2
1 2 1 23 2 3 2

2 2
1 2 1 22 2

2 2 2 2
3 2 3 2

2 2 2 2
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First, suppose elements 1 and 2 are solid with pseudo-density 
variables η1 = 1 and η2 = 1. The assembled global stiffness and mass 
matrices correspond to 
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Figure 2.2. Four mode shapes of the cantilevered beam 

By solving the eigenequation, the four eigenvalues and 
corresponding eigenvectors are obtained as: 

2 2 2 2
1 2 3 4, , , 0.0026 0.1029 1.1768 9.9134ω ω ω ω⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ =  [2.7] 
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−
−
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The first- to fourth-order mode shapes are shown in Figure 2.2. 
Nothing abnormal is observed in the obtained natural frequencies and 
mode shapes. Notice that the eigenvectors are normalized by assuming 
the vertical displacement of node B to be 1. 

2nd

1st

3rd

4th

AElement 1 Element 2
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Now, the material property of element 2 is perturbed by setting  
η2 = 0.01 to represent a void element of low-density in topology 
optimization. The global stiffness and mass matrices become 

8 7

7 7
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Notice that in the global stiffness matrix, the absolute values of 
terms related to element 2 decrease much faster than those in the mass 
matrix because of the power-law penalization. After solving the 
eigenequation, eigenvalues and eigenvectors are obtained as: 

2 2 2 2 6
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The first and second eigenvalues are greatly reduced because of  
the significant difference between the stiffness and mass matrices. 
Specifically, in the first and second eigenvectors, node A has very  
small displacements and nearly stops vibrating. This indicates that 
only element 2 vibrates. Figure 2.3 shows that the vibrations act as 
localized modes only in the low-density element at the first- and 
second-order vibrations. The reason is that the material interpolation 
model leads to the mismatch between the stiffness and mass matrices. 
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Therefore, avoiding the localized mode is a serious problem to be 
dealt with in practice. In order to have a detailed view of the localized 
mode, the material property of element 2 is weakened step-by-step 
from η2 = 1 to η2 = 0.01. The modal analysis is carried out 
correspondingly to show the variations of the eigenvalues and mode 
shapes.  

 

Figure 2.3. Mode shapes of the cantilevered 
 beam including localized modes 

Since the localized modes appear in the first- and second-order 
vibrations, only these two modes are analyzed. Figures 2.4 and 2.5 
show the variations of the two eigenvectors and eigenvalues versus η2. 

Figure 2.4 indicates that the first-order vibration of element 1 
decreases monotonically while element 2 tends toward void.  
Figure 2.5 indicates that the localized mode occurs continuously. 
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4th
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Figure 2.4. Displacements of node A versus η2 

 
Figure 2.5. First- and second eigenvalues versus η2 
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It is obvious that no clear bound can be defined for the occurrence 
of localized mode. When the elements in the low-density area are 
compliant enough, the solid elements stop their vibrations and act as 
an approximately rigid part which can be removed from the stiffness 
and mass matrices. In this case, the eigenequation can be simplified 
as: 

( )2
2 2- 0ω =K M U  [2.13] 

so that 

( ) 12 1 3
2 2 2 2,0 2 2,0

2 1
2 2,0 2,0

ω η η

η

−−

−

=

=

U M K U M K U

M K U

=
 [2.14] 

where K2 and M2 are the stiffness matrices of element 2, and K2,0 and 
M2,0 are the corresponding stiffness and mass matrices at the solid 
element state. Equation [2.14] shows that the first two eigenvalues 
related to the localized modes depend upon η2 in the parabolic way. 
Figure 2.6 compares these variations with the solutions before 
simplification. 

Curves related to first and second eigenvalues start to coincide with 
the simplified parabola at around η2 = 0.14 and η2 = 0.06, respectively. 
These coincidences are also confirmed by the displacement variations 
of the mode shape in Figure 2.4 where node A stops vibrating around 
these critical values. 

According to the above analysis, the lower bound of the pseudo-
density variable in the SIMP model must be greater than these critical 
values to ensure the threshold stiffness of the low-density areas. 
Although a lower penalty factor can be used in SIMP to moderate the 
mismatch between the stiffness and mass matrices, this will 
unfortunately weaken the key penalty effect of the SIMP model in 
generating clear black and white structural patterns. In conclusion, the 
standard SIMP interpolation model with the power-law penalization 
cannot directly be used in topology optimization of eigenvalue 
maximization. 
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Figure 2.6. Comparisons between real  
eigenvalues and simplified parabola  

A test of maximizing the fundamental frequency is further carried 
out to show how the localized modes influence the topological design. 
As illustrated in Figure 2.7, a 4 m × 4 m square plate completely 
clamped at four edges is divided into 40 × 40 fine quadrangular shell 
elements. A 0.8 m × 0.8 m square area at the center of the plate is 
supposed to be non-designable. 

The material properties are defined as: elastic modulus 7 × 1010 Pa, 
density 2,700 kg/m3 and Poisson’s ratio 0.3 

The SIMP model with the penalty factor p = 3 is used here and a 
volume fraction of solid material is limited to 50%. In this case, the 
localized modes start to appear at the eighth iteration where the  
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Figure 2.9. The first mode shape at the 16th iteration 

 

Figure 2.10. The iteration history of the fundamental frequency 

Figure 2.10 shows the variation of the fundamental frequency 
during the iteration. A sudden decrease in the frequency value occurs 
at the eighth iteration because the localized mode is very different 
from the normal mode that occurs. Physically, the low-density areas 
are so compliant that a rather low fundamental frequency is obtained. 
Therefore, the phenomenon of localized mode is an ill-conditioned 
issue due to the mismatch between the mass and stiffness. 
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2.2. Localized deformation 

Similar to the localized mode in vibration problems, the localized 
deformation often occurs in the presence of design-dependent loads. 
Here, design-dependent loads refer to those loads that change with 
respect to design variables, e.g. body force, inertia load and pressure 
load on a movable surface. Due to their existences, low-density areas 
are too weak to support themselves. Consequently, deformations in 
the low-density areas become much more important than those in the 
solid parts. Further discussions can also be found in the work of 
Bruyneel and Duysinx [BRU 04]. 

Here, new formulations are derived and numerical tests are made 
to highlight the problem. The same beam studied in section 2.1 is 
considered again. Suppose the beam undergoes a vertical gravity 
acceleration of 10 m/s2. Material properties of the solid element are: 

Elastic modulus 1011 Pa, density 1,000 kg/m3 and Poisson’s  
ratio 0.3 

Figure 2.11 shows that the gravity acceleration force is discretized 
into nodal loads over the beam. Elastic modulus of element 2 is 
interpolated with the SIMP model (penalty factor p = 3), while 
element 1 is a solid element that is supposed to be unchanged. The 
gravity acceleration force of element 2 is linearly penalized in terms of 
η2 so that elastic modulus decreases more rapidly. Figure 2.12 plots 
the vertical displacements of nodes A and B versus η2. 

 

Figure 2.11. The equivalent nodal loads when gravity is applied 

Both nodal loads vary linearly with η2. As the material properties 
of element 1 remain unchanged with η1 = 1, a linear relation exists 
between the displacement of node A and η2. Comparatively, as the 
stiffness of element 2 varies with the cubic exponent of η2, the 

5m 5m
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absolute displacement of node B increases sharply as a relatively large 
localized deformation around η2 = 0.05 and should be avoided. 

 

Figure 2.12. Nodal displacements versus η2 

Topology optimization of a two-dimensional (2D) problem  
with inertial load is considered. The standard SIMP model is used here 
with penalty factor p = 3. The design domain consists of 50 × 100 
quadrangular finite elements, as shown in Figure 2.13. Because of the 
symmetry, only half of the domain is taken into account. Material 
properties are: 

Elastic modulus 7 × 1010 Pa, density 2,700 kg/m3 and 
Poisson’s ratio 0.3. 

 

Figure 2.13. Design domain of the test problem 
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2.3. Polynomial interpolation model 

The SIMP model corresponds to a power-law interpolation 
expressed as: 

( ) 0 0

0

p
i i ii i

i i i

P η η
η

= =
=

K K K
M M

 [2.15] 

where the stiffness and the mass matrices depend upon pseudo-density 
variables in the exponential and linear form, respectively.  

As discussed in sections 2.1 and 2.2, the SIMP model is not 
suitable for vibration problems and problems with design-dependent 
loads due to the mismatch penalty between the mass and stiffness. 
According to Pedersen [PED 00], a ratio of the pseudo-density 
variable to the penalty function is introduced as: 

( )
i

MK
i

R
P

η
η

=  [2.16] 

 

Figure 2.15. Interpolation model and ratio function of standard SIMP 

Both the SIMP model (p = 3) and the ratio function RMK are plotted 
with respect to the pseudo-density variable in Figure 2.15. The value 
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of the ratio function tends to infinity when the pseudo-density variable 
approaches zero, which indicates the mismatch between the stiffness 
and mass matrices. 

To avoid this problem, Pedersen [PED 00] constrained the lower 
bound of the elastic modulus to be 1/1,000 of the solid one. 

(1) 1
(0) 0.001

P
P

=
=

 [2.17] 

A cubic function is built accordingly as: 

( ) ( )3 30.001 1i i iP η η η= + −  [2.18] 

 
Figure 2.16. Improved model and ratio function 

The modified function and the ratio function RMK are plotted in 
Figure 2.16. The value of the ratio function will no longer tend to the 
infinity when the pseudo-density variable approaches zero.  

To a certain extent, this interpolation model can be used to solve 
eigenvalue maximization problems and avoid the localized modes. 
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However, the peak value of the ratio function around ηi = 0.1 is still 
unsatisfied and could possibly lead to localized modes.  

Later, it was found that the microstructures of low densities can 
retain more stiffness than the SIMP model. Take a square shape 
microstructure “□” as an example. The equivalent tensile stiffness 
is calculated by virtue of the strain energy based method [PED 98, 
ZHA 07]. This method proved to be equivalent to the homogenization 
method in predicting the effective elastic material properties  
[HOR 99]. Let us take an example. The boundary conditions are 
defined in Figure 2.17. Horizontal displacements on the left edge are 
constrained. A uniform horizontal displacement u is imposed on the 
right edge. The volume fraction of the microstructure is calculated as: 

2 2
1 2

2
1

l l
l

η −=  [2.19] 

 
Figure 2.17. Definition of the microstructure  

and the boundary conditions 
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Figure 2.18. The horizontal tensile elastic modulus versus  

the volume fraction of the “□” shaped microstructure 

The tensile elastic modulus is calculated as: 

1 1

RfEu
l l t

=  [2.20] 

RfE
ut

=  [2.21] 

where E is the equivalent tensile elastic modulus, fR is the resultant of 
reaction forces on the left edge. t is the thickness of the 
microstructure. Assume that l1 = u = t = 1 and l2 varies from 0.005 to 
0.995 in the test. The relationships between the tensile elastic modulus 
and the volume fraction are plotted in Figure 2.18. Here, the ratio just 
corresponds to the ratio function RMK. 

In comparison to the curves related to the SIMP in Figure 2.15, the 
slope of the tensile elastic modulus is positive at η = 0 and the ratio of 
the volume fraction to the tensile elastic modulus is limited to a small 
value approximately equal to 2.  
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The maximum value of the ratio can be proved by ignoring the two 
vertical columns of the microstructure when η is rather small. As a 
result, the resultant reaction forces are approximately calculated as the 
inner tensile forces of the two horizontal bars. 

( )
0

1 2 1

R E uf
l l t l

=
−

 [2.22] 

where E0 is the elastic modulus of the solid material forming the 
microstructure. The equivalent tensile elastic modulus is then 
calculated by  

( )0 1 2
2

1 1 1

R E u l lfEu
l l t l

−
= =

 [2.23] 

( )0 1 2

1

E l l
E

l
−

=  [2.24] 

And the ratio of the volume fraction to the tensile elastic modulus 
is expressed as: 

( )
( )2 1 2 1

2 2
1 2 1 1 2

20
0 1 2 1 0 01

2lim lim lim
l l l l

l l l l l
E E l l l E Elη

η
→ → →

− += ⋅ = =
−

 [2.25] 

In this example, E0 is predefined as 1. At η = 0, the derivative of E 
with respect to η is 0.5, which makes the curve different from that of 
the SIMP model. However, the homogenization method involves 
greatly computational complexities. 

RAMP [STO 01] is an alternative interpolation model. The penalty 
function and its derivative at ηi = 0 are expressed as: 

( ) ( )1 1
i

i
i

P
q

ηη
η

=
+ −

 [2.26] 



46     Topology Optimization in Engineering Structure Design 

( )
( )20 0

1 1lim lim
11i i

i
i

qP
qq qη η

η
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+′ = =
++ −

 [2.27] 

where q is the penalty factor, which is always positive. Figure 2.19 
shows the penalty function and the ratio function at q = 5. It is obvious 
that RMK is actually a linear function of pseudo-density variable. 

 

Figure 2.19. RAMP model and the ratio function 

Abundant numerical examples using RAMP can be found in the 
work of Luo et al. [LUO 04]. Moreover, Pedersen [PED 00] presented 
a modified SIMP model that was further studied by Bruyneel and 
Duysinx [BRU 04]. 
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where two parts exist for the penalty function. They are linear 
interpolation with a slope of 1/α and power-law interpolation of the 
standard SIMP model. The linear penalty is defined to ensure the 
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positive derivative near ηi = 0. Two independent parameters α and p 
can adjust the RMK and the penalty effect separately.  

In Figure 2.20, both the penalty function and the ratio function are 
plotted at α = 16 and p = 3. Thus, the maximum value of RMK is 
limited by the constant value of α to control the mismatch between the 
mass and stiffness. 

 

Figure 2.20. Modified SIMP model and the ratio function 

The modified SIMP model was found to be effective for topology 
optimization of problems with body force or natural frequency 
maximization. However, critical comments are received for the non-
differentiability at ηi = α1/(1-p). Here, a polynomial interpolation 
function [ZHU 09] is presented in the following form.  
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2) the first-order derivative at ηi = 0 

( )0 ,  0wP w′ = >  

Figure 2.21 shows the new penalty function and the ratio function, 
respectively. RMK is limited to the value 1/w at ηi = 0 and the 
derivative of the penalty function is continuous everywhere to favor 
gradient-based optimization methods. 

 

Figure 2.21. Polynomial interpolation model and the ratio function 

Now, the polynomial interpolation model is examined based on the 
previously tested two examples. For the vibrating square plate shown 
in Figure 2.7, material layouts and the mode shape at the 30th iteration 
are shown in Figure 2.22(a). It is obvious that the mode shape is a 
global mode without localized mode.  

The optimization is further processed and convergence attained at 
the 42nd iteration. The non-designable area is finally supported as  
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2.4. Breakdown issue in ESO 

The topic discussed in this section is an important issue involved in 
the family of evolutionary structural optimization (ESO) methods 
from the viewpoint of low-density areas. Its implementation is easily 
understood with less mathematical rigor. Based on the heuristic 
engineering concepts and sensitivity results, the material layout of a 
structure is optimized by removing inefficient elements systematically 
from the ground structure. Numerical results have shown that a variety 
of problems, e.g., maximizations of structural stiffness [XIE 94a], 
natural frequency [XIE 94b, XIE 96] and buckling load [RON 01] can 
be dealt with by this method. However, the breakdown issue 
discovered by Zhou and Rozvany [ZHO 01] is still a fatal drawback of 
this method. 

ESO/BESO method works directly with 0–1 discrete design 
variables. Element deletions and recoveries are carried out by virtue of 
the element efficiency which is measured by the sensitivity values. As 
we cannot directly obtain all the sensitivity values of the finite 
difference with only one finite element analysis, sensitivity values 
used in the hard-killing scheme of ESO/BESO are analytical 
sensitivities. 

T1
2

U K Ui i i i
i

C C
η

∂ = − = −
∂

 [2.30] 

T 2 T2

T
U K U U M U

U MU
i i i i i i

i

ωω
η

−∂ =
∂

 [2.31] 

where Ci is the strain energy of the ith element. The sensitivities can 
be derived by supposing a linear interpolation model for Ki and Mi as 
a function of ηi with 

0

0

K K
M M

i i i

i i i

η
η

=
=

 [2.32] 
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Ki0 and Mi0 denote the stiffness and mass matrices of the ith 
element when it is solid. In fact, the analytical sensitivities are unable 
to represent the real change of the objective function whenever an 
inefficient element is directly removed (Δηi = -1) or an efficient 
element is recovered (Δηi = 1). To solve this problem, consider two 
kinds of sensitivities shown in Figure 2.26. 

The solid curve in Figure 2.26 represents the objective function 
versus ηi. This is typically the case for the structural strain energy with 
values of other design variables being invariable. ΔC1 corresponds to 
the change of C evaluated with the analytical sensitivity value when 
the ith element is removed by ESO/BESO from the design domain, 
whereas ΔC2 represents the exact change of C after the removal of the 
ith element. Clearly, both are quite different from each other. 

The change of the objective function will be overestimated when 
ΔC1>ΔC2. This is a conservative situation so that some inefficient 
elements are retained in the actual iteration. In contrast, when 
ΔC1<ΔC2, particularly when a sharp difference exists, there is the 
danger that related elements could be erroneously considered to be 
inefficient, removed and no longer recoverable during the iterations. 

 

Figure 2.26. Comparison of two kinds of sensitivities 
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Figure 2.27. A test example for the failure of ESO 

Although lots of existing results have shown that the convergence 
of the iteration procedure is not deteriorated by ESO/BESO, 
understanding the nature of the solid curve in Figure 2.26 is essential 
to reveal the underlying trouble of ESO/BESO. 

To illustrate the phenomenon and reasons for the failure of ESO, a 
test example from Zhou and Rozvany [ZHO 01] is analyzed here in 
detail. The FE model shown in Figure 2.27 consists of a 32 m × 3 m 
horizontal beam and a 1 m × 4 m vertical link meshed with 0.25 m × 
0.25 m 4-node quadrangular elements. The material properties are: 

Elastic modulus 1 Pa, Poisson’s ratio 0 

To figure out the difficulty, the initial distribution of elemental 
strain energies representing the absolute sensitivity values is shown  
in Figure 2.28(a). It is found that the elements on the vertical link 
 take the lowest strain energy and should be removed in the  
ESO procedure. Based on the reanalysis of the updated model,  
Figure 2.28(b) shows a new distribution of the element strain energies 
with a sudden increase of the structural strain energy C by a factor of 
10. This implies that a fatal iteration occurs. As the elements with the 
maximum strain energies are unfortunately relocated at the left bottom 
corner of the horizontal part, erroneously removed elements on the 
vertical link are no longer recovered by BESO. 

1N/m
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slope is very small near E = 1 and E = 0. This indicates that both solid 
and void elements are not sensitive. As a result, the solid elements are 
removed in ESO and cannot be recovered by BESO.  

However, a significant change of C is observed for values of E 
between 10-2 and 10-5 Pa. However, the sensitivity values used in ESO 
cannot detect the sharp variation of the global strain energy as 
discussed before. Thus, the vertical link is apparently considered to be 
inefficient and completely removed. This is the reason why the ESO 
fails. 

According to the above discussions, the standard ESO/BESO 
approach cannot detect the sharp increase in the strain energy of the 
vertical link. Figure 2.29 illustrates high absolute sensitivity values 
when E varies between 10-2 and 10-5 Pa. This means that the elements 
on the vertical link should take the maximum strain energies of all the 
elements for a wide range of E. To make things clear, Figure 2.30 
shows the variation of the strain energy of the vertical link in terms of 
its elastic modulus, varying from 1 to 10-7 Pa. 

 

Figure 2.30. Strain energy of the vertical link versus its elastic modulus 
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interpolation models. The great difference between mass and stiffness 
of the low-density elements will thus be limited to avoid these 
problems. Several interpolation models, e.g. limiting the minimum 
value of the elastic modulus or the derivative of the interpolation, are 
evaluated. A polynomial interpolation model is also presented and 
discussed through numerical tests.  

Finally, the breakdown of the ESO/BESO method is discussed. It is 
found that the sensitivity values cannot correctly describe the practical 
operations on the elements. The check position scheme is then 
proposed by introducing moderate low-density elements into design 
iterations. Consequently, erroneously removed elements can be 
identified and recovered. Two typical examples are examined to 
illustrate how to achieve reasonable results. 



3 

Dynamic Problems 

3.1. Introduction 

Topology optimization of dynamic problems is a challenging topic, 
and mainly includes optimization problems related to structural 
eigenfrequency and dynamic responses. 

Relevant research on structural eigenfrequency optimization have 
been focused on free vibration problems, such as the maximization of 
fundamental frequency and the gap between two consecutive natural 
frequencies. For example, based on the homogenization method,  
Díaz and Kikuchi [DÍA 92] and Ma et al. [MA 95] studied the 
maximization of the fundamental frequency and a set of eigenvalues 
of the structure, respectively. Later, Pedersen [PED 00] studied the 
maximization of eigenvalues using the density method. In his work, 
specific attention was paid to the localized modes in low-density areas 
and an improved interpolation scheme based on SIMP was developed 
to solve this problem. Also using the density method, Du and Olhoff  
[DU 07] dealt with the topology optimization involving the 
maximization of eigenfrequencies and frequency gaps. In their work, 
another improved interpolation scheme based on [TCH 02] was used 
to avoid the localized modes. The RAMP model introduced by Stolpe 
and Svanberg [SVA 01] and the polynomial interpolation model 
introduced by Zhu et al. [ZHU 09] were also implemented to  
eliminate the localized modes. These research achievements 
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concerning localized modes have benefited the study of dynamic 
response optimization. 

Dynamic response optimization mainly includes problems related 
to harmonic responses [JOG 02, KAN 12, LIU 15, MA 95,  
OLH 05, YAN 14] and random vibration responses [LIN 11, RON 00, 
ZHA 10a, ZHA 12, ZHA 15]. Physically, the minimization of the 
dynamic response subjected to harmonic excitations is a basic concern 
since the major source of vibration or noise in a structure system or a 
machine approximately corresponds to a harmonic force due to 
rotating components. For example, practical implications range from 
household appliances and construction machinery to cars and ships. 
All kinds of periodic excitations can be interpreted as the 
superposition of a set of harmonic excitations.  

Until now, considerable effort has been made to study topology 
optimization for harmonic responses. Ma et al. [MA 95] defined the 
“dynamic compliance” as the objective function without considering 
structural damping, and successfully implemented the homogenization 
technique for topology optimization under harmonic excitations. Jog 
[JOG 02] also minimized the “dynamic compliance” for which 
structural damping was taken into account. The frequency response 
amplitude at a given point was also optimized in his work. Tcherniak 
[TCH 02] designed the layout of resonating actuators by maximizing 
the magnitude of steady-state vibrations at a given excitation 
frequency. Yoon [YOO 10] investigated the applicability of model 
reduction techniques in topology optimization of harmonic problems, 
including the mode displacement method (MDM), the Ritz vector 
method and the quasi-static Ritz vector method. Shu et al. [SHU 11] 
minimized the frequency response based on the level set method. 
Kang et al. [KAN 12] studied the optimal distribution of damping 
material in vibrating structures subjected to multiple harmonic 
excitations in phase, using the topology optimization method.  

Random excitations such as earthquake ground motions, ocean 
wave-induced forces, aerodynamic and turbulent pressures can be 
classified into stationary and non-stationary random excitations. In  
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general, if the overall averages for a random excitation were  
time-independent, the excitation would be stationary. Otherwise, it 
would be non-stationary. To a large extent, some secondary structure 
designs are mostly based on stationary random excitations 
 [WIJ 09] that were closely considered in the advanced formulations 
of dynamic optimization problems [BUC 98, MA 11, MIS 13,  
PAG 12]. 

Rong et al. [RON 00] optimized the structural topology using the 
ESO method with stationary random responses constrained in design. 
Dynamic responses were calculated by means of the complete 
quadratic combination method (CQC). Comparatively, as CQC was 
cost-ineffective in random analysis, the pseudo-excitation method 
(PEM) [JIA 92, LIN 01, LIN 85, LU 09, ZHA 10b] was thus 
introduced to transfer the solving of random responses into the solving 
of pseudo-harmonic responses. Although both methods can achieve 
the same solution with the same number of structural modes, the 
efficiency of the PEM is much higher than the CQC. Lin et al. [LIN 
11] adopted the PEM as an efficient optimization procedure in the 
maximization of energy harvesting performance under stationary 
random excitation.  

However, structures were mostly limited to a small number of 
DOFs due to the inherent complexity of the problem in the previous 
work. How to deal with dynamic topology optimizations of large-scale 
problems remains a great challenge, even though different topology 
optimization formulations and methods have been developed. 

In this chapter, linear dynamic systems with classical damping and 
steady-state responses are considered. A comparative study of 
different dynamic analysis methods is first made to highlight their 
computing accuracy and efficiency for problems under harmonic force 
excitations [LIU 15]. Their effectiveness in topology optimization 
under harmonic force excitations at one specific frequency and with 
multiple frequencies is, respectively, investigated, especially for large-
scale problems. Investigations are also made into structural topology  
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optimization related to dynamic responses under stationary random 
force excitations [ZHA 15]. It is shown that the commonly used  
CQC in previous optimization work is not only computationally 
costly, but also results in a non-convergent design pattern due to  
the low computing accuracy of random responses for large-scale 
problems. To circumvent these difficulties, an efficient and  
accurate optimization procedure integrating the PEM and mode 
acceleration method (MAM) is introduced into the dynamic topology 
optimization. In this framework, random responses are calculated 
using the PEM to ascertain a high efficiency over the CQC. More 
importantly, the accuracy of random responses is improved indirectly 
by solving the pseudo-harmonic responses involved in the PEM with 
the help of the MAM. Numerical examples fully demonstrate the 
validity of the developed optimization procedure and its potential 
applications in practical designs. 

3.2. Analysis methods for harmonic force excitations 

Although harmonic response analysis methods such as MDM, 
MAM [COR 83] and full method (FM) were widely implemented in 
commercial CAE software, how to use them correctly in topology 
optimization is still a basic issue to be clarified in practice.  
Generally, MDM is adopted by default due to its simplicity and 
efficiency from the engineering viewpoint. However, the poor 
response accuracy would affect the optimization convergence, 
especially for large-scale problems. Therefore, MAM and FM are 
introduced into the framework of topology optimization. MAM has a 
higher accuracy than MDM in the case of using the same modes  
and can easily be implemented. FM is an exact analysis method  
and can be used as a benchmark. A comparative study among  
MDM, MAM and FM is presented to highlight their effectiveness in 
topology optimization under harmonic force excitation for large-scale 
problems. 

Here, linear dynamic systems with classical damping and steady-
state responses under harmonic force excitations are considered. As is  
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known, the governing equation of a discretized n-DOF structure under 
harmonic force excitation can generally be written as: 

( ) ( ) ( ) ( )t t t t+ + =Mu Cu Ku f&& &  [3.1] 

where M, C and K represent the mass matrix, damping matrix and 
stiffness matrix. u(t) represents the displacement vector. f(t) denotes 
the harmonic force vector of form f(t) = Feιωt(ι2 = -1). F and ω denote 
the magnitude vector of harmonic force and excitation frequency, 
respectively. In this section, three typical methods, i.e. MDM, MAM 
and FM, are briefly introduced before studying their applications in 
topology optimization. 

3.2.1. Mode displacement method 

Suppose ωk and φk are the kth circular eigenfrequency and 
eigenvector, respectively. The mode shape matrix φ = [φ1…φn] is 
normalized by mass matrix. Classical damping is supposed, with ζk 
being the kth damping ratio so that following relations hold 

T

T 2

T

( )
(2 )

k

k k

diag
diag

ω
ζ ω

⎧ =
⎪

=⎨
⎪ =⎩

φ Mφ I
φ Kφ
φ Cφ

 [3.2] 

By introducing the notation, 

( ) ( )t t=u φy  [3.3] 

where y(t) is the vector of generalized coordinates. A number  
n of uncoupled equations of motion can be obtained by substituting 
equation [3.3] into equation [3.1] and by premultiplying φT.  

2 T( ) 2 ( ) ( ) ( )k k k k k k ky t y t y t tζ ω ω+ + = φ f&& &  [3.4] 

The solution of the above equation yields 

2 2 1 T( ) ( 2 ) ( )k k k k ky t tω ω ιζ ω ω −= − + φ f  [3.5] 
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Thus, the displacement response related to equation [3.3] under 
harmonic force can be expressed as: 

T

1 1
( ) ( ) ( )

n n

k k k k k
k k

t y t H t
= =

= =∑ ∑u φ φ φ f  [3.6] 

Hk is the frequency domain transfer function between loading and 
response: 

2 2 1( 2 )k k k kH ω ω ιζ ω ω −= − +  [3.7] 

Considering the computing efficiency, only lower l modes are 
usually employed with  l<<n  so that: 

T

1
( ) ( )

l

k k k
k

t H t
=

=∑u φ φ f  [3.8] 

3.2.2. Mode acceleration method 

The solution of the uncoupled system in equation [3.4] is rewritten 
as: 

T

2 2

( ) 2 ( ) ( )( ) k k k k
k

k k k

t y t y ty t ζ
ω ω ω

= − −
φ f & &&  [3.9] 

The substitution of equation [3.9] into equation [3.6] leads to:  

T

2 2
1

( ) 2 ( ) ( )( ) ( )
l

k k k k k k k

k k k k

t y t y tt ζ
ω ω ω=

= − −∑ φ φ f φ φu
& &&

 [3.10] 

According to Besselink et al. [BES 13], the inverse of the stiffness 
matrix can be represented as  

T
1

2
1

n
k k

k kω
−

=

=∑φ φK  [3.11] 
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Notice that in MDM, n is reduced to l for all three terms in 
equation [3.10]. However in MAM, it is not necessary to approximate 
the first term in equation [3.10] using only l modes, because this term 
can be exactly solved as a static problem by means of equation [3.11] 
to include all n modes. According to equation [3.9], the second and 
third parts of equation [3.10] can be written as:  

T

2 2
1 1

2 ( ) ( ) ( )( ) ( ( ) )
l l

k k k k k k k
k k

k kk k k

y t y t ty tζ
ω ω ω= =

− − = −∑ ∑φ φ φ φ fφ
& &&  [3.12] 

Hence, based on the substitution of equation [3.11] into equation 
[3.10] and the combination with equation [3.12], the MAM results in 
the approximation of the displacement response: 

T
1

2
1

( )( ) ( ) ( ( ) )φ φ fu K f φ
l

k k
k k

k k

tt t y t
ω

−

=

= + −∑  [3.13] 

The further introduction of equation [3.11] simplifies equation 
[3.13] into: 

T T
T

2 2
1 1 1 1

( ) ( ) ( ) ( ) ( )
l n l n

k k k k
k k k k k

k k l k k lk k

t y t t H t t
ω ω= = + = = +

= + = +∑ ∑ ∑ ∑φ φ φ φu φ f φ φ f f  [3.14] 

The comparison between formulations of MDM and MAM 
indicates that the second term of equation [3.14] related to MAM 
could be treated as the correction term of MDM related to equation 
[3.8]. The computing error related to MDM increases, along with the 
increase in the number of DOFs. Obviously, more modes should be 
employed if MDM is used for large-scale problems. However, it is 
hard to decide how many modes should be employed in advance to 
obtain the prescribed accuracy. In the works of [BES 13] and  
[COR 83], detailed comparisons between the computing accuracies of 
MDM and MAM were made. It was concluded that the MAM 
outperformed the MDM in all cases. Here, their effects will be 
focused on topology optimization. Besides, other approximation 
methods such as the modal truncation augmentation method [DIC 97], 
Ritz vector method [WIL 82], quasi-static Ritz vector method [GU 00]  
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and Pade approximation method [JEN 07] could also be employed to 
improve the accuracy of dynamic responses without increasing the 
computing cost prohibitively.  

3.2.3. Full method 

As an exact method of harmonic analysis, the FM is formulated by 
introducing the following solution form: 

( ) tt eιω=u U  [3.15] 

where U is the complex amplitude vector of displacement response. 
Equation [3.1] can then be rewritten as: 

2( ) =ω ιω− +K M C U F  [3.16] 

U can directly be solved as 

2 1( )= ω ιω −− +U K M C F  [3.17] 

in which Rayleigh damping corresponds to 

C = aM+bK [3.18] 

Notice that constants a and b are Rayleigh damping coefficients of 
the structure. From the third relation of equation [3.2], the damping 
ratio ζk  can be expressed as  

2

2
k

k
k

a bωζ
ω

+=  [3.19] 

Equation [3.16] can be solved using the same sparse direct solver 
as in a static analysis but with complex arithmetic by default. So the 
displacement response related to FM can be written as: 

2 1( ) ( ) tt eιωω ιω −= − +u K M C F  [3.20] 
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3.2.4. Comparative tests of harmonic analysis methods 

In this section, three numerical tests are studied to compare the 
above three analysis methods. The computing results obtained by FM 
are regarded as the exact solution in the comparison. In all numerical 
tests, the Young’s modulus, Poisson ratio and density of the solid 
material are 200 GPa, 0.3 and 7,800 kg/m3 respectively. 

Structure 1: 2D cantilever beam 

The structure is a rectangular domain of size 80 mm × 50 mm ×  
1 mm. It is clamped at the left side, as shown in Figure 3.1. Here, the 
domain is meshed into 48 × 30 plane stress elements with 3,038 DOFs 
in all. A harmonic force with the amplitude of 9 kN is applied at the 
middle node of the right edge.  

 

Figure 3.1. Structure 1: 2D cantilever beam (3,038 DOFs) 

Structure 2: short 3D beam 

The beam structure has a size of 2 m × 1 m × 1 m. It is simply 
supported at the four corners of the bottom as shown in Figure 3.2. 
The design domain is meshed into 40 × 20 × 20 solid elements with 
54,243 DOFs in all. A harmonic force with the amplitude of 1,000 kN 
is applied at the middle point of the tip face.  

The same Rayleigh damping is adopted in all cases with a = 10-3 
and b = 10-6. Here, MDM and MAM are all implemented with the first 
l = 30 modes for structures 1 and 2. Notice that structure 1 represents 
the common problem studied in the previous research with thousands 
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of DOFs. Structure 2 (Figure 3.2) is used to illustrate large-scale 
problems of huge numbers of DOFs that really represent dynamic 
topology optimization from the engineering viewpoint. 

 

Figure 3.2. Structure 2: 3D beam (99,603 DOFs) 

3.2.4.1. Computing accuracy 
The displacement amplitude at the loaded point along the force 

direction is obtained by three different methods. They are compared in 
form of logarithm in Figures 3.3 and 3.4. Notice that the excitation 
frequency in each problem is always covered by the first l 
eigenfrequencies selected in MDM and MAM by default. 

 

Figure 3.3. Displacement amplitudes obtained  
by three methods for structure 1  

0 10000 20000 30000 40000 50000
-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

lo
g⎪

u s⎪
/m

Excitation frequency/Hz

 FM
 MAM
 MDM

 



Dynamic Problems     71 

 

Figure 3.4. Displacement amplitudes obtained  
by three methods for structure 2 

In both examples, we see that the displacement amplitude using the 
MAM is close to the exact solution obtained by the FM. Instead, the 
accuracy of the MDM is acceptable only when the excitation 
frequency is low. We also note that the error of MDM is relatively 
small near the peaks of response curves where the excitation 
frequency attains the resonant eigenfrequency.  

Moreover, with the dramatic increase in the DOF number, the ratio 
of the employed mode numbers (l = 30) to n greatly decreases in the 
MDM and MAM. Naturally, the accuracy of MDM and MAM would 
also decrease. To further confirm the above statement, structure 1 is 
analyzed using different meshes, while l = 30 is unchanged  
in the calculation of the harmonic response at the loading position. 
Here the excitation frequency is f = 1,500 Hz. The displacement 
amplitudes of structure 1 along with the mesh refinement are plotted 
in Figure 3.5.  
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Figure 3.5. Displacement response amplitudes  
versus mesh refinements for structure 1  

As is seen, both MAM and FM converge asymptotically along with 
the increase in element number or equivalently the number of DOFs. 
Comparatively, the computing error related to MDM increases along 
with the increase in the number of DOFs. Obviously, more modes 
should be employed if MDM is used for large-scale problems. 
However, it is hard to decide how many modes should be employed in 
advance to obtain the prescribed accuracy. Hence, FM and MAM 
outperform the MDM in computing accuracy, especially for large-
scale problems.  

3.2.4.2. Computing efficiency 
Regarding the computing efficiency, the following two situations 

are considered.  

Case 1: Harmonic analysis at one specific excitation frequency 

Noticeably, the computing cost of FM is a little more than the 
static analysis due to the complex arithmetic. For MDM and MAM, 
most computing time is sacrificed to calculate modes while the mode 
superposition process is trivial. In fact, various methods exist to obtain 
the modes and detailed information about numerical algorithms can be 
found in [GRI 94, WIL 82]. Suppose that the computing time is tFM = τ 
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for FM under the harmonic force excitation with one specific 
frequency, and the computing time for MDM is tMDM consisting of 
mode computing time δ and computing time λ for the mode 
superposition process. Then, 

MDM

FM   
t
t

δ λ
τ

= +
=

 [3.21] 

As is well known, the mode computing time δ is usually greater 
than τ, especially when the number of selected modes is large with 
tMDM>>tFM. In order to ascertain the above conclusion, structure 1 is 
used to test the efficiency of MDM and FM. All the calculations are 
implemented in ANSYS software with a mesh of 320 × 200 plane 
stress elements, and the Block Lanczos method is adopted to  
proceed the modal analysis. Here, the specific excitation frequency is 
1,500 Hz. Finally, we have tFM = 8.53s, while tMDM depends upon the 
number of included modes l, as shown in Figure 3.6. Meanwhile, the 
computing time δ for the modal analysis extracting l modes is also 
plotted.  

 

Figure 3.6. Computing time comparisons of FM, MDM and modal analysis 
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increases in a linear way with respect to l. Oppositely, little time  
(λ = 2.1 s) is consumed for the mode superposition process in the case 
of l = 100. FM demonstrates its great advantage in both computing 
efficiency and accuracy for the harmonic analysis with one specific 
frequency.  

Case 2: Harmonic analysis at multiple excitation frequencies 

Suppose g is the number of sampling excitation frequencies. The 
computing time can then be estimated as: 

MDM

FM   
t g
t g

δ λ
τ

= +
=

 [3.22] 

Each excitation frequency implies that one independent complex 
analysis is required if FM is used. Comparatively, the computing cost 
related to MDM and MAM would not increase greatly because only 
one modal analysis is needed for a given structure and the cost of 
superposition process λ is trivial. Therefore, tFM>>tMDM and tFM>>tMAM 
hold if g is large enough. This is why MDM is widely used in practice 
because hundreds even thousands of excitation frequencies may  
be sampled to capture the corresponding displacement amplitudes. But 
considering both the efficiency and the accuracy, the MAM would be 
the best choice for the harmonic problems in this situation.  

3.3. Topology optimization under harmonic force excitations 

3.3.1. Topology optimization formulation 

For a dynamic problem under harmonic force excitations, topology 
optimization formulation is often stated as: 

{ } e
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find           1,...,
min           ( )
s.t              

             0 1
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i n

u t
V V

η

η η

= =
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η

 [3.23] 
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where ηL is the lower bound of the set of design variables defined by 
element pseudo-densities. Here, ηL = 0.001 is used to prevent the 
mass, stiffness and damping matrices from becoming singular. i and V 
denote element number and the solid volume fraction, respectively. VU 
is the upper bound of the latter. 

In topology optimization of dynamic problems, it is recognized that 
the SIMP interpolation scheme would cause localized modes 
phenomena for the stiffness and mass matrices, because of the 
mismatch between element stiffness and mass. This has been 
discussed in detail in Chapter 2 and the polynomial interpolation 
model is adopted here. 

3.3.2. Sensitivity analysis 

For a harmonic problem, the sensitivity of displacement with 
respect to pseudo-density variables ηi is introduced in this section. 
Using MDM or MAM, the sensitivity of displacement can be obtained 
by directly differentiating equation [3.8] or equation [3.13]. Thus, the 
MDM corresponds to: 

T
T T

1

( ) ( )
l

k k k
k k k k k k

ki i i i

Ht H H t
η η η η=

⎛ ⎞∂ ∂ ∂∂ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑ φ φu φ φ φ φ f  [3.24] 

Suppose:  

2 2 1 2( 2 )k k k k kZ ω ω ιζ ω ω ω− −= − + −  [3.25] 

The sensitivity of displacement using MAM can be written as:  

( )1 T
T T
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( ) ( )
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t k k k
k k k k k k

ki i i i i

Zt e Z Z tιω

η η η η η

−

=

∂ ⎛ ⎞∂ ∂ ∂∂ = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∑

K F φ φu φ φ φ φ f  [3.26] 

Obviously, sensitivities of eigenfrequencies and eigenvectors are 
basic calculations for solutions of equation [3.24] and equation [3.26].  
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The sensitivity of eigenfrequency can be obtained by the following 
equation: 

T 2

2

k k k
i ik

i k

ω
ω

ω
η η

η

⎛ ⎞∂ ∂−⎜ ⎟∂ ∂∂ ⎝ ⎠=
∂

K Mφ φ
 [3.27] 

The derivatives of the eigenvectors hold the following form  
[ALV 97]: 
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where Bkr is calculated as: 
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Suppose Λ is the column vector with all terms being zero except 
term s being 1. So the sensitivity of displacement of concerned DOF s 
can be calculated as: 

T( ) ( )s

i i

u t t
η η

∂ ∂=
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uΛ  [3.30] 

As for the displacement response using FM, the differentiation of 
equation [3.16] gives rise to  

d
d

i iη η
∂ ∂+ =
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K UU K 0  [3.31] 
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where the following notation is used: 

2( )d ω ιω= − +K K M C  [3.32] 

Suppose 

T
su = Λ U  [3.33] 

By virtue of the adjoint method, the following equation is then 
established: 

T T

T T T

( )

( )

s d
d

i i i i

d
d

i i

u
η η η η

η η

∂ ∂∂ ∂= − +
∂ ∂ ∂ ∂

∂∂= − −
∂ ∂

KU UΛ λ U K

KUΛ λ K λ U
 [3.34] 

where λ is the adjoint vector obtained by 

d =K λ Λ  [3.35] 

As a result, equation [3.34] can be written as: 

Ts d

i i

u
η η

∂ ∂
= −

∂ ∂
Kλ U  [3.36] 

After the sensitivity of displacement under harmonic force 
excitation is obtained by means of MDM, MAM and FM, the 
sensitivity of displacement amplitude can be derived through the chain 
rule as:  

1( )
( ) ( ) ( ) ( ) ( )s s s

s s s
i i i

u t u ureal u real imag u imag u t
η η η

−∂ ⎛ ⎞∂ ∂
= ⋅ + ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠

 [3.37] 

3.3.3. Numerical examples 

In this section, topology optimization problems under harmonic 
force excitation at one specific frequency and multiple frequencies are 
solved. The GCMMA algorithm is used as the optimizer.  
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First, as a kind of approximate method, MDM would introduce 
errors because of the truncation modes. Although more modes may 
reduce the error, it is difficult to decide how many modes should be 
employed to ensure the accuracy of dynamic solutions in advance. 
Meanwhile, as the structure is modified in each iteration of 
optimization, it is difficult to choose a proper l instantaneously. The 
best way is to deal with the problem by selecting the value of l large 
enough for all iterations, which means a huge computing cost. 

Second, as mentioned in section 3.2.4.1, the large error of MDM 
occurs when the excitation frequency is far from the resonant 
eigenfrequencies. The dynamic response minimization aims at 
pushing the eigenfrequencies far away from the excitation frequency , 
which will further deteriorate the accuracy of harmonic response for 
the prescribed excitation frequency. This might explain why the MDM 
leads to the incorrect solution for large-scale problems. It should be 
considered that this problem could be avoided at the cost of huge 
amounts of computing by employing enough numbers of modes in 
MDM. Therefore, MDM is preferable to deal with small-scale 
problems. 

– 3D examples 

A literature review indicates that topology optimizations of large-
scale dynamic problems are rarely reported due to the prohibitive 
computing time and convergence difficulty related to the MDM. To 
further verify the effects of three analysis methods within this context, 
consider now 3D structures of huge numbers of DOFs. Suppose the 
displacement amplitude at the loading position along the force 
direction is minimized. For all tests below, l = 30 modes are employed 
in MDM and MAM. The volume fraction is constrained to be less 
than 10% and the initial values of all pseudo-densities are uniformly 
set to be 0.1 correspondingly. 

The 3D beam structure illustrated in Figure 3.2 is also studied. The 
first eigenfrequency of the initial structure is 2.95 Hz. Optimization 
results with excitation frequency f = 2.5 Hz are shown in Figure 
3.10(a) and the iteration histories of the objective function are also 
presented in Figure 3.10(b). 
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                        MDM                    MAM                    FM 
                                                              a) 

 
                                                                   b) 

Figure 3.10. Optimization results of structure 2 (72,782 DOFs):  
a) optimized configurations; b) iteration curves of objective function 

It can be seen from all the above numerical tests that the final 
design configuration with MDM becomes unreasonable with the 
increase in DOFs, while MAM or FM can ensure the optimized 
configurations of the structure due to their high accuracy. The 
iteration curves of objective function also illustrate that FM is the 
most powerful in convergence.  

3.3.3.2. Harmonic excitations with multiple frequencies 
In topology optimization related to harmonic responses, a 

converged solution could be easily obtained if the excitation  
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frequency is lower than the resonant eigenfrequency, as shown in 
section 3.3.3.1. However, in the case of single excitation frequency 
with a higher value than the resonant eigenfrequency, the optimization 
iteration would be difficult to converge. Meanwhile, the parasitic 
effect of the material layout is mostly evident in the obtained 
configurations and the static stiffness is usually quite weak. This 
phenomenon was also mentioned by Olhoff and Du [OLH 05]. 
Actually, practical structures are usually excited by the harmonic load 
in a frequency interval, not just at a prescribed frequency value. 
Meanwhile, the static stiffness is also an essential requirement. As is 
well known, the minimization of dynamic response under one low 
frequency excitation is consistent with the maximization of static 
stiffness, to some extent. Therefore, in order to achieve practical 
optimized configurations, two schemes are adopted in structural 
design. One is to introduce the static compliance into the optimization 
formulation as an additional constraint, as detailed by Olhoff and Du 
[OLH 05]. The other scheme is to handle the harmonic excitations 
with multiple frequencies or in frequency intervals, which will be 
presented below. 

For the optimization problem under harmonic excitations with 
multiple frequencies, the integral of displacement amplitude in a 
frequency interval [ωA, ωB] is usually considered as the objective 
function. The optimization formulation can be stated as 

{ }
( )

e

U

L

find           1,2,...,

min           

s.t              
             0 1

B

A

i

s

i

i n

u d

V V

ω

ω

η

ω ω

η η

= =

≤
< ≤ ≤

∫

η

 [3.38] 

The calculation of the integral in a frequency interval is crucial to 
the optimization. As is well known, the curve of harmonic response 
demonstrates a very sharp jump around the resonant eigenfrequency. 
It therefore takes a significant effort to yield converged solutions  
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[CHE 98]. In this section, the numerical integration method, i.e. 
Gauss–Legendre integration, is used to calculate the integral: 

( )
1

 ( )
2 2 2

B

A

N
B A B A B A

s su d x
ω

ς ςω
ς

ω ω ω ω ω ωω ω γ ν
=

− − +≈ +∑∫  [3.39] 

where γς is the weight factor for the ςth Gaussian-point, νς is  
the Gaussian-point within [–1,1] and N is the number of Gaussian-
points.  

When the integrand is very complicated or the integration interval 
is very large, the subdivision of the integration interval is necessary to 
ensure the computing accuracy. Considering the sharp jumps of 
harmonic response curve and the large frequency interval, the latter is 
subdivided by the eigenfrequencies first. Each subinterval between 
adjacent eigenfrequencies will be further subdivided by m additional 
points. The distribution of the jth point within the subinterval [ωk, 
ωk+1] is then defined by 

( ), 1   1 ,   0 1k j k j k k jw j m wω ω ω ω+= + − ≤ ≤ < <  [3.40] 

where wj is the proportional factor of the jth point in the subinterval. 
In order to represent the sharp jumps, wj should be selected  
properly to form small subintervals near the eigenfrequency and large 
subintervals far from the eigenfrequency. In this chapter, m = 5 
additional points are chosen in the following way between adjacent 
eigenfrequencies: 

( )
( )

( )
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( )
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+
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+
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= + −
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= + −

 [3.41] 

Figure 3.11 illustrates the subdivision of the frequency interval. 
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Figure 3.11. Schematic of the frequency interval subdivision 

After the subdivision, each subinterval would be calculated  
by the Gauss–Legendre integration method with 15 Gaussian-points. 
Examples show that this method works well in the optimization to 
deal with harmonic responses with hundreds of excitation frequencies. 
Optimization with FM is too time-consuming to implement and hence 
only MDM and MAM are adopted in this section.  

The 3D cantilever beam has a size of 0.8 m × 0.4 m × 0.06 m and 
is clamped at the left side, as shown in Figure 3.12. The design 
domain is meshed into 80 × 40 × 6 solid elements. A harmonic force 
with the amplitude of 1,000 kN is applied at the center of the right 
side. The integral of vertical displacement amplitude at the loading 
position is minimized and the volume fraction is constrained to be less 
than 30%. Initial values of all pseudo-densities are set to be 0.3. 
Correspondingly, the first eigenfrequency of the initial structure is  
21 Hz.  
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Figure 3.12. Structure 3: 3D cantilever beam (69,741 DOFs)  

Three frequency intervals are considered here, namely,  
[0–100] Hz, [0–300] Hz and [0–900] Hz. Notice that only MDM and 
MAM are adopted due to the prohibitive computing time of the FM.  
Here, l = 15 modes are employed in MDM and MAM for the first two 
frequency intervals, while l = 20 modes are employed for the  
last interval. Optimized configurations with MDM and MAM are 
shown in Figures 3.13 and 3.14, respectively. Obviously, the 
convergence is very poor with MDM, while the configurations by 
MAM are quite clear. For the optimized configurations in Figure 3.14, 
the response curves calculated using FM are shown in Figure 3.15. It 
can be clearly seen that the responses in the frequency intervals 
decrease.  

 
    f = [0–100] Hz                  f = [0–300] Hz              f = [0–900] Hz 

Figure 3.13. Optimized configurations  
of structure 3 using MDM  
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      f = [0–100] Hz                 f = [0–300] Hz             f = [0–900] Hz 

Figure 3.14. Optimized configurations  
of structure 3 using MAM 

 

Figure 3.15. Displacement amplitudes of initial 
 and three optimized structures using FM. For a color version  

of this figure, see www.iste.co.uk/zhang/topology.zip 

Numerical tests find that the MAM is the most favorable method, 
considering the balance between computing accuracy and efficiency, 
for the optimization problem under harmonic force excitations with 
multiple excitation frequencies. Comparatively, the computing 
accuracy of the MDM makes the optimization process difficult to 
converge. The computing cost of the FM is unacceptable in the case of 
harmonic excitations with multiple frequencies.  
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3.4. Analysis methods for stationary random force excitations 

3.4.1. Complete quadratic combination method 

Now, consider a discretized n-DOF structure subjected to 
stationary random force excitation. The motion equation can be 
written as: 

( ) ( ) ( ) ( )t t t t+ + =Mu Cu Ku bp&& &  [3.42] 

p(t) is a d-dimension stationary random force vector of non-zero 
values, whose power spectral density (PSD) matrix is of d-dimension 
and denoted by Sp(ω). Notice that b is a n × d transformation matrix 
representing the force distribution. Here, bp(t) is assumed to be white-
noise excitation with zero mean value, i.e. a uniform power spectral 
density over the frequency interval.  

As discussed in section 3.2.1, a number of n uncoupled equations 
of motion can be obtained.  

( )2 T( ) 2 ( ) ( )k k k k k k ky t y t y t tζ ω ω+ + = φ bp&& &  [3.43] 

By means of the Duhamel integral, the time-domain solution of 
this equation is [CLO 75]: 

T( ) ( ) ( )k k ky t t h dτ τ τ
∞

−∞

= −∫ φ bp  [3.44] 

where hk(τ) is the unit impulse response function related to the single 
DOF system of equation [3.43]: 

sin     0
( )

0                       0

k k

k
k k k

e
h m

ξ ω τ

ω τ τ
τ ω

τ

−⎧
≥⎪= ⎨

⎪ <⎩

 [3.45] 
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with 
T

k k km = φ Mφ  [3.46] 

It follows that: 

T

1 1
( ) ( ) ( )

n n

k k k k k
k k

t y t h dτ τ τ
∞

= = −∞

= = −∑ ∑ ∫u φ φ φ b p  [3.47] 

The autocorrelation function of displacement response u(t) reads 
[CLO 75]: 

T

T T T
1 2 1 2 1 2

1 1

( ) E[ ( ) ( ) ]

( ( ) ( ) ( ) )

u

n n

k k p k j j j
k j

t t

h h d dτ τ τ τ τ τ
∞ ∞

= = −∞ −∞

Δ = + Δ

= Δ + −∑∑ ∫ ∫

R u u

φ φ b R b φ φ
 [3.48] 

The PSD matrix of random displacement response Su(ω) can then 
be obtained by Fourier transformation of the above autocorrelation 
function: 

( ) ( )* T T T

1 1

1= ( ) d =
2

n n

u u k j k k p j j
k j

e H Hιωω ω
π

∞
− Δ

= =−∞

Δ Δ ∑∑∫S R φ φ bS b φ φ  [3.49] 

Actually, it is almost impossible to use all the n modes in the 
computing process of equation [3.49], especially for large-scale 
problems. Suppose l is the number of modes employed in the 
computing with l << n, equation [3.49] is then approximated as: 

( ) ( )* T T T

1 1
=

l l

u k j k k p j j
k j

H Hω ω
= =
∑∑S φ φ bS b φ φ  [3.50] 

The CQC method [CLO 75, LIN 92] consists of obtaining the PSD 
matrix of random displacement response by computing equation 
[3.50] directly. Since the latter involves the cross-correlation terms 
between all l participant modes, the computing would be very 
expensive for large values of l.  
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3.4.2. Conventional pseudo-excitation method 

Since the PSD matrix Sp(ω) is Hermitian, it can be decomposed 
into [LIN 01]: 

( ) ( ) ( )* T

1

Q

p q q
q

ω
=

=∑S γ γ  [3.51] 

in which Q is the rank of Sp(ω). Therefore, equation [3.50] can be 
rewritten as: 

( )
* T

T T

1 1 1
=

Q l l

u j j j q k k k q
q j k

H Hω
= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑S φ φ bγ φ φ bγ  [3.52] 

Suppose  

T

1
( )   

l
t

q k k k q
k

t H eιω

=

=∑g φ φ bγ  [3.53] 

According to the MDM, gq(t) is the displacement response vector 
of equation [3.42] under the qth pseudo harmonic force vector bγqeιωt. 
Equation [3.52] can then be rewritten as: 

( ) * T

1
=

Q

u q q
q

ω
=
∑S g g  [3.54] 

This is the conventional PEM [LIN 92, LIN 01]. It holds exactly 
the same accuracy as the CQC but is more efficient than the CQC for 
random vibration analysis. This method means that the PSD matrix of 
random displacement response can be solved through the harmonic 
responses under pseudo-harmonic excitations. To have a clear idea, 
suppose all the vectors and matrixes in equation [3.50], equation 
[3.53] and equation [3.54] are known in advance. The computing of 
equation [3.50] related to the CQC implies n2(3l2 + 2dl2) + nd2l2 

multiplication operations of real numbers, while equation [3.53] and 
equation [3.54] related to the PEM imply n2Q + n(2l + dl)Q 
multiplication operations. Generally, as n is great in comparison with  
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l, d and Q (Q ≤ d), the coefficient of n2 for the PEM is therefore 
much smaller than that for the CQC. 

3.4.3. The combined method of PEM and MAM 

Other than the computing efficiency, the accuracy of random 
response is also very crucial to topology optimization. In fact, both the 
CQC and PEM belong to the same kind of mode superposition method 
and the truncation modes would undoubtedly introduce computing 
errors into the random responses. To remedy this, one possibility for 
the CQC so far is to increase the number of modes at the expense of 
huge computing cost especially for large-scale problems. Notably, this 
would make the dynamic topology optimization impractical. 
Meanwhile, it is difficult to decide how many modes should be 
employed in advance to guarantee the accuracy for a specified 
structure. Therefore, adopting a great number of modes is neither a 
reasonable nor practical strategy.  

With the help of the conventional PEM, random responses are now 
solved through the pseudo-harmonic responses. This implies that the 
improvement of random response accuracy can be achieved by 
increasing the accuracy of pseudo-harmonic responses. Equation 
[3.53] is the so-called MDM commonly used in solving the harmonic 
responses due to its simplicity from the engineering viewpoint. 
However, the truncation of n-l high-order modes would decrease the 
accuracy of response. Shi et al. [SHI 11] introduced MAM to replace 
MDM involved in the conventional PEM for structural analysis under 
multisupport excitations. As discussed below, the combined method of 
PEM and MAM makes it possible to improve the accuracy of random 
response with high efficiency. Generally, the MAM has a higher 
accuracy than the MDM in the case of using the same number of 
modes and can easily be implemented. Detailed comparisons between 
the computing accuracies of both methods have been made [COR 83, 
BES 13]. It was concluded that the MAM outperformed the MDM in 
all cases. The error of truncation modes in equation [3.53] related to  
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the MDM can be remedied by the MAM using a pseudo-static 
solution. In this sense, equation [3.53] reads: 

( )
T

1 T
2

1
( ) ( )

l
tk k

q q k k k q
k k

t H eιω

ω
−

=

⎛ ⎞
= + −⎜ ⎟
⎝ ⎠

∑ φ φg K bγ φ φ bγ  [3.55] 

where K-1(bγq) is the pseudo-static displacement under static  
force vector (bγq). As equation [3.55] just needs one more additional 
static analysis than equation [3.53], efficiencies of MAM and  
MDM would be very close. Equation [3.55] can also be written as 
[BES 13]: 

T
T

2
1 1

( )
l n

t tk k
q k k k q q

k k l k

t H e eιω ιω

ω= = +

= +∑ ∑ φ φg φ φ bγ bγ  [3.56] 

The second term of equation [3.56] related to MAM could be 
treated as the correction term to equation [3.53] of MDM. Thus, the 
accuracy of random response can be improved significantly by 
replacing equation [3.53] with equation [3.56].  

In order to compare the accuracy between the conventional PEM 
involving the MDM and the combined method of PEM and MAM, the 
exact solution of PSD obtained by means of the full method (FM) is 
used as the benchmark for comparison. As an exact method of 
harmonic analysis, the FM directly solves the displacement response 
vector dominated by equation [3.42] under the qth pseudo-harmonic 
force vector bγqeιωt. 

2 1( ) ( ) t
q qt eιωω ιω −= − +g K M C bγ  [3.57] 

The Rayleigh damping is also adopted as presented in  
section 3.2.3. Equation [3.57] can be handled by sparse direct solver 
as used in static analysis, but with complex arithmetic by default.  
By replacing equation [3.53] with equation [3.57], the PSD of  
random response would be the exact solution and will be used  
as the benchmark in the following comparisons. Notice that  
each excitation frequency ω implies one independent complex 
analysis of equation [3.57] if the FM is used. The reason why the 
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exact PEM is not suggested in topology optimization lies in the fact 
that the computing cost is prohibitive in practice for the multiple 
excitation frequencies.   

3.4.4. Comparative tests of stationary random analysis 
methods 

Two examples are dealt with by means of the conventional PEM, 
the combined method of PEM and MAM as well as the exact PEM. In 
all numerical tests of this chapter, Young’s modulus, Poisson ratio  
and density of the solid material are set to be 200 GPa, 0.3 and  
7,800 kg/m3, respectively. The same Rayleigh damping is also 
adopted with α = 10-2 and β = 10-5. To simplify the discussion, the 
combined method of PEM and MAM is termed improved PEM. 

Structure 1: 2D cantilever beam 

The structure is a rectangular domain of size 0.8 m × 0.4 m ×  
0.001 m. It is clamped at the left side, as shown in Figure 3.16. Here, 
the domain is meshed into 40 × 20 plane stress elements with 1,722 
DOFs in all. The white-noise force excitation of PSD value 2,500 
N2/(rad/s) is applied at the middle node of the right edge.  

 

Figure 3.16. 2D cantilever beam  
(800 plane elements, 1,722 DOFs) 
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Structure 2: 3D beam 

The beam structure has a size of 0.5 m × 0.3 m × 0.2 m. It is 
simply supported at four corners, as shown in Figure 3.17. The 
domain is meshed into 50 × 30 × 20 solid elements with 99,603 DOFs 
in all. The white-noise force excitation of PSD value104 N2/(rad/s) is 
applied at the middle bottom point of the other side. 

 

Figure 3.17. 3D beam (30,000 solid  
elements, 99,603 DOFs)  

Here, the first l = 30 modes are employed in both examples. Notice 
that structure 1 represents the common problem studied previously 
with a discretization of roughly thousands of DOFs. Structure 2 is 
adopted to illustrate the large-scale problems of huge numbers of 
DOFs that are rarely studied in dynamic topology optimization.  

According to equation [3.54], the PSD value of random 
displacement at the loading point along the force direction is 
calculated as: 

( ) ( ) ( ) ( )
2* T

1 1
s

Q Q

u q q qs s s
q q

S ω
= =

= =∑ ∑g g g  [3.58] 



94     Topology Optimization in Engineering Structure Design 

where s denotes the concerned DOF number. The solution of equation 
[3.58] will be obtained by the exact FM, the improved PEM as well as 
the conventional method. Suppose 

( ) ( )( )log
su= SΩ ω ω  [3.59] 

Results are then compared in the above form of logarithm in 
Figures 3.18 and 3.19. Notice that the excitation frequency (ω = 2πf) 
in each problem is always covered by the first l eigenfrequencies by 
default. 

 

Figure 3.18. PSD curves obtained using three  
different methods for structure 1 

In both examples, it is shown that the PSD curves using the 
improved PEM are very close to the exact solution. Instead, the 
conventional PEM is acceptable only when the excitation frequency is 
low. The error is relatively small near the peaks of PSD curves, where 
the excitation frequency attains the resonant eigenfrequency. In  
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Figures 3.18 and 3.19, it is also seen that the accuracy of the 
conventional PEM decreases with the dramatic increase in the DOF 
number, while the improved PEM maintains its accuracy. Hence, the 
improved PEM outperforms the conventional PEM in terms of 
accuracy for large-scale problems. 

 

Figure 3.19. PSD curves obtained using  
three different methods for structure 2 

3.5. Topology optimization under stationary random force 
excitation 

3.5.1. Topology optimization formulation 

The root mean square (RMS) of random response can be used to 
represent the vibration level in practice. Here, the RMS of random 
displacement response of the concerned rth DOF is considered as the 
objective function.  
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[ωA, ωB] refers to the frequency interval of random excitation. 
Therefore, dynamic topology optimization is stated as: 

{ } e

U

L

find           1,2,...,

min           
s.t              

             0 1

s

i

u

i

i n

R

V V

η

η η

= =

≤
< ≤ ≤

η

 [3.61] 

3.5.2. Sensitivity analysis 

The sensitivity of RMS with respect to pseudo-density variable ηi 
is presented below. The differentiation of equation [3.60] can be 
written as: 

( )1
2

Bs s

A
s

u u

i u i

R S
d

R
ω

ω

ω
ω

η η
∂ ∂

=
∂ ∂∫  [3.62] 

According to equation [3.58], the following equation holds:  

( ) ( )
( )

1
2s

Q q su
q s

qi i

S ω
η η=

∂∂
=

∂ ∂∑
g

g  [3.63] 

Clearly, the sensitivity of displacement amplitude of  
pseudo-harmonic response is the basic calculation for equation [3.62]. 
With the implementation of the MDM, the sensitivity of pseudo-
harmonic displacement can be obtained by directly differentiating 
equation [3.53]. 

T
T T

1

l
q tk k k

k k k k k k q
ki i i i

HH H eιω

η η η η=

∂ ⎛ ⎞∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑

g φ φφ φ φ φ bγ  [3.64] 
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With the implementation of the MAM, the sensitivity of  
pseudo-harmonic displacement corresponds to 

( )1

T
T T

1

qq t

i i

l
tk k k

k k k k k k q
k i i i

e

ZZ Z e

ιω

ιω

η η

η η η

−

=

∂∂
=

∂ ∂

⎛ ⎞∂ ∂ ∂+ + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∑

K bγg

φ φφ φ φ φ bγ
 [3.65] 

where Zk is defined in equation [3.25]. 

3.5.3. Numerical examples 

In this section, topology optimization problems under stationary 
random force excitation are addressed. The conventional PEM and the 
improved PEM are used to solve large-scale problems. The GCMMA 
algorithm is used as the optimizer.  

Structure 1 

The problem is illustrated in Figure 3.16. Suppose the RMS  
of vertical displacement at the loading position is minimized. The 
volume fraction of solid material is constrained to be less than  
50% of the design domain. Initial values of all pseudo-densities  
are set to be 0.5. Two frequency intervals of random force excitation 
are considered with f = [0, 100] Hz and [0, 500] Hz. Here,  
l = 30 modes are employed with the first eigenfrequency being  
152 Hz and the 30th eigenfrequency being 4,541 Hz for the initial 
structure.  

Nearly the same configurations are obtained by the conventional 
PEM and the improved PEM, as shown in Figures 3.20 and 3.21. 
Exact solutions of PSD curves are shown in Figure 3.22 for the 
optimized configurations related to Figure 3.21. It can be seen that the 
PSD within the prescribed optimization frequency intervals decreases 
obviously for the minimization of the RMS of random displacement 
response. 
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eigenfrequency being 30 Hz and the 30th eigenfrequency being  
2,476 Hz for the initial structure. Configurations optimized by the 
conventional PEM and the improved PEM are shown in Figures 3.25 
and 3.26, respectively. 

 
                          f = [0, 100] Hz                    f = [0, 500] Hz 

Figure 3.25. Optimized configurations of structure 2  
by the conventional PEM (99,603 DOFs) 

Likewise, it is difficult for the conventional PEM to achieve 
convergence, especially with the expanding interval of excitation 
frequency. Comparatively, the improved PEM is very efficient in both 
frequency intervals. Optimized configurations and exact solutions of 
PSD curves are shown in Figures 3.26 and 3.27, respectively. It is 
shown that PSD curves of optimized structures globally decrease 
within the prescribed frequency intervals. 

 
                   f = [0, 100] Hz                             f = [0, 500] Hz 

Figure 3.26. Optimized configurations of structure 2  
by the improved PEM (99,603 DOFs) 
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Figure 3.27. Exact solutions of PSD curves for  
optimized configurations shown in Figure 3.26 

Structure 3 

A bracket structure is illustrated in Figure 3.28. It is clamped by 
four bolts and loaded by a white-noise force excitation at the middle 
node of the top edge with PSD value of 104 N2/(rad/s). Suppose the 
RMS of displacement at the loading position along the force direction 
is minimized. Notice that materials around the loading point and four 
bolt holes are set as non-designable solids. The volume fraction of 
solid material in the design domain is constrained to be less than 10%. 
Initial values of all pseudo-densities of elements in the design domain 
are set to be 0.1. Two frequency intervals are considered with f = [0, 
400] Hz and [0,3000] Hz. Here, l = 20 modes are employed with the 
first eigenfrequency being 356 Hz and the 20th eigenfrequency being 
5,537 Hz for the initial structure. Within the above frequency 
intervals, optimized configurations shown in Figures 3.29 and 3.30 are 
obtained by the conventional PEM and the improved PEM. As  
indicated in Figure 3.31, PSD curves related to optimized structures  
given in Figure 3.30 globally decrease within the prescribed frequency 
intervals. 
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Figure 3.28. Bracket structure (42,300  
solid elements, 145,104 DOFs) 

 
                                f = [0, 400] Hz                 f = [0, 3,000] Hz 

Figure 3.29. Optimized configurations of structure 3  
by the conventional PEM (145,104 DOFs) 
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                          f = [0, 400] Hz                       f = [0, 3,000] Hz 

Figure 3.30. Optimized configurations of structure 3  
by the improved PEM (145,104 DOFs) 

 

Figure 3.31. Exact solutions of PSD curves for the  
optimized configurations given in Figure 3.30 

From the above examples, it may be concluded that the 
conventional PEM is only limited to small-scale problems. For large-
scale problems the convergence is very poor, especially at high  
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excitation frequency intervals. It is almost impossible to identify clear 
configurations from obtained results. In contrast, the improved PEM is 
efficient in all cases for dynamic topology optimization. 

3.6. Conclusions 

In topology optimization related to harmonic responses, the MDM 
was generally adopted as the dynamic analysis method. However, 
unsatisfactory convergences become inevitable due to the low 
computing accuracy of harmonic responses when large-scale problems 
are concerned in practice. In this chapter, effects of the MDM on 
topology optimization results are investigated, and the reasons for the 
low accuracy of structural response are discussed to highlight the 
errors caused by the truncation modes and by the augmented gap 
between excitation frequency and eigenfrequencies of optimized 
structures. It is shown that the MDM would become critical with the 
increase in DOFs. Therefore, both the MAM and the FM are proposed 
to improve the computing accuracy and the convergence of large-scale 
topology optimization problems. Theoretical analysis and numerical 
tests demonstrate that the FM outperforms the MDM and MAM in the 
aspect of analysis accuracy and efficiency in the case of harmonic  
excitation with one specific frequency. For the optimization problems 
under harmonic excitations with multiple frequencies, the MAM is 
suggested because of its compromise between computing accuracy 
and efficiency. 

In topology optimization related to random responses, the CQC 
was generally adopted as the dynamic analysis method. However, 
prohibitive computing cost and unsatisfactory convergences became 
inevitable when large-scale problems were concerned in practice. The 
introduction of the conventional PEM can greatly improve efficiency, 
while unsatisfactory convergence is still a great difficulty due to the 
low accuracy of the CQC and PEM. Therefore, the improved PEM is 
introduced in the current work. The advantage is twofold: the 
embedded PEM can improve the computing efficiency in the 
optimization, while the computing accuracy of random response is  
 
 



Dynamic Problems     105 

guaranteed by means of the embedded MAM. Finally, theoretical 
analysis and numerical tests demonstrate that the proposed 
optimization procedure outperforms the existing methods in terms of 
efficiency and convergence, and opens its great practicability in 
dynamic topology optimization of large-scale structures subjected to 
stationary random excitations. 



4 

Thermo-Elastic Problems 

4.1. Introduction 

Thermo-elastic topology optimization is complicated because it 
belongs to a kind of design-dependent problem [ZHA 14b] with the 
thermal stress load changing along with the spatial distribution of 
solid material phases. Generally, the aim is to achieve one such design 
that produces a optimized structure that is stiff enough to support the 
mechanical load and compliant enough in proper areas to release the 
thermal stress. 

Most works on thermo-elastic topology optimization have been 
limited to the case of one single material phase. For example, 
Rodrigues and Fernandes [ROD 95] adopted the homogenization 
method to formulate the thermal stress load for the mean compliance 
minimization. Li et al. [LI 99] used the ESO method with element 
thickness to be design variables. An adjoint design sensitivity analysis 
method [CHO 05] was developed for the topology optimization of 
weakly coupled thermo-elastic problems. Structural rigidity 
optimization with an initial design-dependent thermo-elastic  
stress field was also presented [DES 13]. Deng et al. [DEN 13] 
optimized the microstructure of homogeneous porous material and 
macrostructure topology. Pedersen and Pedersen [PED 12] found that 
minimization of the maximum von-Mises stress can be achieved 
through accomplishing a uniform energy density recursively. Recent 
results from Zhang et al. [ZHA 14a] indicated that the elastic strain 
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energy minimization and mean compliance minimization led to 
different configurations if thermal loads exist. The elastic strain 
energy minimization particularly favors stress reduction.  

Meanwhile, multiple materials were taken into account and the 
concept of thermal stress coefficient (TSC) defined as the product 
between Young’s modulus and coefficient of thermal expansion was 
introduced [GAO 10]. The TSC was adopted later in the thermo-
elastic topology optimization of stress-constrained problems  
[DEA 13] and dynamic compliance minimization [YAN 14]. 

The outline of this chapter is as follows. First, the concept of TSC 
is introduced to model the thermal stress load. Second, suppose that 
only one solid material is used. Thermo-elastic topology optimization 
is formulated as the minimization of the structural compliance 
subjected to the volume constraint. Numerical tests are performed to 
illustrate the formulation and comparison is made between the SIMP 
and RAMP models. Third, a general formulation is proposed for 
thermo-elastic topology optimization with multiple materials and  
mass constraint. Finally, the mean compliance and strain energy are 
compared for the definition of the objective function. 

4.2. Thermo-elastic analysis 

The particularity of the thermo-elastic topology optimization is that 
the thermal stress load relies upon both the Young’s modulus and the 
coefficient of thermal expansion. The inherent issue is therefore how 
to establish the formulation in the case of the thermal stress load. 

 

Figure 4.1. Elastic body under thermal and mechanical loads 

Ω
Ωs

ܶ߂
Fm
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First, it is necessary to recall some basic concepts. For a thermo-
elastic structure undergoing thermal and mechanical loads, the stress-
strain relation reads 

m

m th th
i i

i i i i i

=

= − = ∂ −

σ Dε
ε ε ε U ε

 [4.1] 

where D is the Hooke matrix, Ui is the displacement that is often 
calculated by the FEM and εi is the strain. Notice that superscripts m 
and th denote mechanical and thermal parts, respectively. As  
shown in Figure 4.1, designs can be made to improve the structural 
rigidity or to reduce the thermal stress by optimizing the material 
layout either over the main structural domain Ω or the elastic  
support Ωs. 

In this chapter, the finite element equilibrium equation  
corresponds to 

m th+= =KU F F F  [4.2] 

Here, K is the global stiffness matrix of the structure. U is the 
nodal displacement vector. Fm and Fth are nodal force vectors related 
to mechanical and thermal loads, respectively. 

The nodal thermal stress force vector of the ith element can be 
written as 

th T th

i
i i i i d

Ω
= Ω∫F B D ε  [4.3] 

By definition, Bi and Di are element strain-displacement matrix and 
elasticity matrix, respectively. The former consists of derivatives of 
element shape functions that are independent of topology design 
variables. In this work, isotropic linear elastic materials are used, and 
the elasticity matrix D can be written as:  
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 [4.4] 

Suppose that the coefficient of thermal expansion is temperature-
independent. Thus, the thermal strain vector εi

th is written as: 

th
i i iT= Δε α  [4.5] 

where ΔTi denotes the temperature rise of the ith element. The vector 
of the coefficient of thermal expansion, αi, can be written as:  

[ ]T1 1 1 0 0 0
i iα=

=

α φ

φ
 [4.6] 

where αi is the coefficient of thermal expansion. The substitution of εi
th 

into equation [4.3] then produces 

th T

i
i i i i iT d

Ω
= Δ Ω∫F B D α  [4.7] 

Then, the vector of the thermal stress coefficient (TSC) is defined 
as:  

i i i=β D α  [4.8] 

The substitution of equations [4.4] and [4.6] into equation [4.8] 
yields 

1 2

i i

i i
i

i

E
β

αβ
μ

=

=
−

β φ
 [4.9] 
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Thus, TSC can be treated as an inherent material property. Fi
th is 

then rewritten as: 

thth

th T

F F

F B
i

ii

i i iT d

β

Ω

=

= Δ Ω∫ φ
 [4.10] 

4.3. Thermo-elastic topology optimization with single material 

In this section, the basic thermo-elastic topology optimization is 
presented to minimize the structural compliance subjected to the 
volume constraint. Here, single solid material and void are considered. 
The models and conclusions can be extended into design problem with 
multiple materials studied later. 

4.3.1. Topology optimization formulation 

The topology optimization problem involving thermo-elastic stress 
load can be expressed as a compliance minimization subjected to the 
volume constraint.  

{ } e
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η

F U
F KU
Q HT  [4.11] 

where Q, T and U are the global thermal flux vector, nodal 
temperature vector and nodal displacement vector. K is the global 
stiffness matrix and H is the global heat conductivity matrix. VU 
denotes the upper bound of the volume constraint of the candidate  
material VC. The upper bound of the volume fraction, vfU, is defined as  
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the ratio of VU to the total volume of all designable elements V with 
vfU = VU/V. Obviously, 0 < vfU < 1 for a meaningful volume constraint. 

4.3.2. Sensitivity analysis 

As detailed in Chapter 2, the SIMP interpolation model of 
exponential form might lead to a mismatch between force and 
stiffness for low-density elements with very small values of ηi when 
design-dependent body forces such as self-weight and centrifugal 
forces are present. Here, the RAMP model is adopted with 
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ηκ κ
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+ −
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+ −
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 [4.12] 

Here, interpolations of the Young’s modulus (E), thermal stress 
coefficient (β) and heat conductivity coefficient (κ) are made 
simultaneously to compute element stiffness matrix and thermal stress 
load. The subscript 0 denotes the solid material. In the case of  
a single material, the Poisson’s ratio is supposed to be constant and  
β0 = E0α0/(1-2μ0).  

When gradient-based optimizers are used to solve topology 
optimization problems, it is necessary to carry out a sensitivity 
analysis with respect to pseudo-density variables. The sensitivity of 
the structural compliance corresponds to 

thm th
T T T T2 2 i i

i i i
i i i i i i

C
η η η η η η

⎛ ⎞ ∂ ∂∂ ∂ ∂ ∂= + − = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

F KF F KU U U U U U  [4.13] 

Term ∂Fm/∂ηi is often equal to zero when Fm is design-independent 
except for inertial forces, such as gravity and centrifugal loads. 
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Evidently, ∂Ki/∂ηi and ∂Fi
th/∂ηi can easily be derived at the element 

level.  

For the ith element, the stiffness matrix is expressed as  

TK B D B
i

i i i i dΩ
= Ω∫  [4.14] 

Mathematically, ∂Ki/∂ηi can be written as 

( )( )
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,02

T
,0 0
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1 1
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i i E
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qd
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η η ηΩ

Ω

∂ ∂ += Ω =
∂ ∂ + −

= Ω

∫

∫
 [4.15] 

where D0 is the elasticity matrix related to the solid material. As to 
term ∂Fi

th/∂ηi, it is derived from equation [4.10]. 

thth th th T

i

ii i i i
i ii i i

i i i i i

T dβ ββ β
η η η η ηΩ

∂ ∂ ∂ ∂Δ∂= + = + Ω
∂ ∂ ∂ ∂ ∂∫
F FF F B φ  [4.16] 

Theoretically, two cases exist in the calculation of ∂ΔTi/∂ηi: 
∂ΔTi/∂ηi≡0 for a design-independent temperature field whatever the 
material layout. ∂ΔTi/∂ηi≠0 for a design-dependent temperature field. 
In our implementation, a constant temperature field (zero-order 
approximation) is assumed in sensitivity analysis, while the 
temperature field is updated on the finite element analysis level of 
steady-state heat conduction. In this way, the efficiency of the design 
procedure can be largely improved without deterioration of the design 
accuracy. Thus, the sensitivity of the thermal stress force vector of the 
ith element can be approximately simplified as: 

th thi i
i

i i

β
η η

∂ ∂
=

∂ ∂
F F  [4.17] 
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4.3.3. Numerical examples 

4.3.3.1. Constant temperature rise 

Numerical comparisons between SIMP and RAMP models 

A biclamped structure with two non-designable domains (the dark 
areas) is shown in Figure 4.2. It was studied previously by Rodrigues 
and Fernandes [ROD 95]. A mesh of 60 × 40 elements is used here. 
Assume that Young’s modulus of the solid material is 210 GPa, the 
coefficient of thermal expansion is 1.1×10-5/°C and the Poisson’s ratio 
is 0.3. The applied force has a value of 10 kN and a uniform 
temperature rise is 1 K over the domain. 

mF  

Figure 4.2. Structure 1: biclamped rectangular domain (unit: cm) 

The upper bound of the volume fraction is vfU = 0.4. The SIMP 
model is applied first. With one solid material and void, SIMP models 
of the Young’s modulus and TSC correspond to 0

Ep
i iE Eη=  and 

0
p

i i
ββ η β= . As usual, the penalty factor pE = 3 is used for Young’s 

modulus here. For different values of penalty factor for TSC (pβ), 
iteration curves of the normalized compliance and optimized 
configurations are shown in Figure 4.3. It is found that the iteration 
history is unstable and small oscillations exist at the end of iteration 
when pβ =1. Meanwhile, the parasitic effect of the material layout is 
quite evident. For pβ>1, although the iteration history becomes stable, 
the unexpected gray areas exist for pβ >2 and the gray area increases. 
A clear configuration is obtained only for pβ = 2. Unfortunately,  
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Figure 4.4 indicated that the SIMP model is unable to yield a clear 
configuration if the uniform temperature rise is 3K with pβ = 2 and  
pE =3. 

Alternatively, the RAMP model is now applied for the same 
problem. Iteration histories and the optimization results for ΔT = 1 K 
and ΔT = 3 K are shown in Figures 4.5 and 4.6, respectively. With  
qE = 8 and qβ = 0, the RAMP model leads to stable iterations and clear 
configurations in both cases. Accordingly, the RAMP model seems to 
be more robust than the SIMP model for this kind of problem. 

 
                                                               a) 

`  
                                                                 b) 

Figure 4.3. Optimization design with SIMP model (ΔT = 1 K, pE = 3): 
a) iteration histories of the normalized compliance with different pβ;  

b) structural configuration at last iteration 
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                                                               a) 

 
b) 

Figure 4.4. Optimization design with SIMP model (ΔT = 3 K pE = 3, pβ = 2): 
a) iteration histories of the normalized compliance and the volume  

fraction; b) structural configuration at last iteration 

It should be remarked that at ΔT = 1 K, the volume fraction always 
attains the prescribed upper bound for both SIMP and RAMP models. 
At ΔT = 3 K, Figures 4.4(a) and 4.6(a) indicate that the volume 
fraction constraint behaves differently for each model. The RAMP 
produces an optimization structure slightly stiffer than using the SIMP 
model. 

In fact, from the work of Stolpe and Svanberg [STO 01], it is 
known that the RAMP is always first-order infinitesimal with  
non-zero slope when the element pseudo-density tends to zero. In 
contrast, the SIMP has a zero slope when the element pseudo-density 
tends to zero if the penalty factor is larger than 1. This difference 
means that both the element stiffness and the thermal load related to 
the SIMP model are insensitive to the zero value of pseudo-density.  
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Influence of the upper bound of volume constraint upon the 
optimization results 

With qE = 8 and qβ = 0, initial values of all design variables are set to 
be the prescribed upper bound of volume fraction. As shown in Figure 
4.7, the compliance of the optimized structure decreases monotonously 
and is then stabilized when vfU > 0.7. Note that the normalized 
compliance is even less than 1 when vfU > 0.8. This means that the 
corresponding optimized configurations are better than a fully solid 
structure. Furthermore, it should be highlighted that the volume 
constraint is active only if the upper bound is 0.965. This is just like the 
similar phenomenon observed in the body force problem [BRU 05]. 

 

 

Figure 4.7. Influence of the upper bound of volume constraint upon the 
optimization results: a) influence upon the normalized compliance;  

b) influence upon the volume fraction of optimized configuration 
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The optimized structures are shown in Figure 4.8. The 
configurations have similar topologies and are in good accordance 
with the results of Rodrigues and Fernandes [ROD 95] for a wide 
range when 0.2 ≤ vfU ≤ 1. Moreover, a two-branch configuration is 
obtained for very small value vfU = 0.1.  

 

Figure 4.8. Influence of the upper bound of volume  
constraint upon the optimal configuration 
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Figure 4.9. Evolution curve of the compliance according to the design 
variable: a) optimization result after six iterations; b) evolution curve of  
the compliance versus the design variable (i = 1,094); c) evolution curve of the 
compliance versus the design variable (i = 3); d) evolution curve of the 
compliance versus the design variable (i = 576) 

2.6382E-01

2.6383E-01

2.6384E-01

2.6385E-01

0 0.2 0.4 0.6 0.8 1

Co
m

pl
ia

nc
e

Design variable

2.638E-01

2.638E-01

2.639E-01

2.639E-01

2.640E-01

0 0.2 0.4 0.6 0.8 1

Co
m

pl
ia

nc
e

Design variable

2.6376E-01

2.6378E-01

2.6380E-01

2.6382E-01

2.6384E-01

2.6386E-01

2.6388E-01

0 0.2 0.4 0.6 0.8 1

Co
m

pl
ia

nc
e

Design variable

a) 

d) 

c) 

b) 



Thermo-Elastic Problems     121 

Discussions 

In sensitivity analysis, it is found that the sensitivity may have a 
non-constant sign due to the design-dependence of the thermal stress 
load. Actually, the thermal stress load makes the structural compliance 
complicated and the evolution curves of the objective function are 
plotted and illustrated here. Take the optimization problem of  
Figure 4.5 as an example and consider three elements related to the 
design result after six iterations shown in Figure 4.9(a). The evolution 
curves of the compliance versus these design variables are plotted in  
Figures 4.9(b–d). The solid point refers to the current solution. 
Obviously, the evolution curves of the compliance might be convex, 
concave or even non-monotonous with respect to the concerned 
design variable so that local solutions might exist in these 
optimization problems. 

As is well known, concave functions will bring more difficulties 
into the approximation and numerical optimization. The popular 
optimizations, such as ConLin, MMA, GCMMA and MDQA,  
are all based on convex approximations and lack the ability to find out 
the global optimal solution. Thus, the solution presented here is not 
guaranteed to be the global optimal solution. 

4.3.3.2. Computing the rise in temperature 
As problems considered in section 4.3.3.1 are subjected to a 

constant temperature field, interpolation models are only applied to 
Young’s modulus and TSC. In this section, the steady-state heat 
conduction is taken into account so that the interpolation model is also 
adopted for the thermal conductivity. 

Suppose vfU = 0.4 for structure 1 illustrated in Figure 4.2. Apart 
from the applied external force 10 kN, a fixed heat flow Q is applied 
at the same point.  

Effects of the heat flow upon the normalized optimization 
compliance are shown in Figure 4.10. The normalized compliance 
curve is approximately linear with respect to the heat flow. 
Corresponding optimized configurations are shown in Figure 4.11. 
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Noticeably, the optimized configuration with Q = 0 is quite different 
from those with Q > 0. It implies that the existence of the heat flow 
makes the material layout more complicated. Likewise, the optimized 
configurations are considerably different from those with a constant 
temperature field. Both the temperature and displacement fields of the 
optimal structure are illustrated in Figure 4.12. 

 
Figure 4.10. Influence of the heat flow upon  

the normalized optimization compliance 

 

Figure 4.11. Influences of the heat flow upon the optimized configuration 
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a) 

 
b) 

Figure 4.12. Distributions of temperature and displacement  
fields of the optimized structure for Q = 2: a) distribution of  

the temperature field; b) distribution of the displacement field 

4.4. Thermo-elastic topology optimization with multiple 
materials 

From the engineering viewpoint, it is a common practice to use 
multiphase materials for the sake of lightweight and multifunctional 
designs. Topology optimization with multiphase materials was first 
investigated by Thomsen [THO 92]. Later, typical works were 
focused on the extension of the SIMP/RAMP models and varieties of 
topology optimization problems with multiple materials including 
designs of microstructures with the extreme equivalent property  
[SIG 97], thermo-elastic problem subjected to the volume constraint 
[GAO 10] and multiphysics actuator design [SIG 01b]. Simultaneous 
design of the structural layout and discrete fiber orientation was also 
dealt with using an extension of the SIMP scheme, for example, the 
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so-called discrete material optimization (DMO) scheme [STE 05], 
shape functions with penalization (SFP) scheme [BRU 11] and  
bi-value coding parameterization (BCP) scheme [GAO 12].  

The ESO was also applied to address multiple materials [HUA 09]. 
An evolutionary approach using discrete variables was proposed to 
solve the mass minimization problem with multiple materials and 
strength constraints [RAM 11]. Alternatively, the level set method and 
the phase field method were applied to address topology optimization 
problems with multiple materials, including both the stiffness 
maximization problem [MEI 04a] and heat conduction problem  
[ZHU 10b]. It should be noted that the implicit description of the 
interfaces between two distinct solid material phases is the basis of 
this approach. Some other schemes should be mentioned here: Yin 
and Ananthasuresh [YIN 01] proposed a multimaterial interpolation 
model based on the so-called peak function; Jung and Gea [JUN 06] 
constructed a variable-inseparable multimaterial model for the design 
of an energy-absorbing structure; Yoon [YOO 11] presented the  
so-called patch stacking method for the nonlinear dynamic problem 
with multiple materials. 

In the earlier work, the material amount was controlled by the 
volume constraint of each candidate material phase. In the engineering 
design sense, the volume constraint is less significant than the mass 
constraint to the whole structure. Although both constraints are 
identical when only one single solid material phase is present, the 
situation changes completely in the case of multiple materials due to 
the differences in material densities. The mass constraint of multiple 
materials was investigated under pure mechanical loads for the 
structural compliance minimization [GAO 11]. Two interpolation 
schemes, namely, recursive multiphase materials interpolation 
(RMMI) and uniform multiphase materials interpolation (UMMI) 
were discussed. It was demonstrated that the mass constraint is more 
beneficial than the volume constraint in the sense that the structural 
stiffness can be further increased and multiple material properties can 
be automatically matched. 
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This section focuses on topology optimization with multiple 
materials subject to the mass constraint and both mechanical and 
thermal loading are taken into account. 

4.4.1. Standard optimization formulation 

In this section, topology optimization with multiple materials is 
stated as 

{ } e
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L

find           1,2,..., ; 1,2,...,

min           
s.t              
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ij

ij

i n j m
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 [4.18] 

in which m is the number of candidate material phases and ηij 
represents the presence (1) or absence (0) of the jth candidate material 
in the ith finite element. The structural mass M should be less than its 
upper bound MU.  

4.4.2. Sensitivity analysis 

In a design problem involving both mechanical and thermal loads, 
the elasticity matrix and TSC should be parameterized to compute the 
element stiffness matrix and thermal stress load vectors, respectively. 
If a heat conduction analysis is required to compute the temperature 
field, the heat conductivity coefficient κi should be parameterized  
as well. Generally, these parameterized material properties can be 
expressed as the weighted summation of all of the candidate material 
phases. 
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Herein, the superscript (j) denotes the jth candidate material phase. 
The TSC of the jth material phase corresponds to β (j) = E (j)α (j)/ 
(1-2μ(j)).  

In [GAO 10], the UMMI was found to be superior to the RMMI 
because the former made it possible to formulate the mass constraint 
in a linear form with separable design variables. One such formulation 
benefits the problem resolution by means of mathematical 
programming approaches, specifically convex programming methods. 
Hence, the RAMP scheme is utilized in combination with the UMMI 
scheme known as DMO in the work of Stegmann and Lund [STE 05]. 
The weighting functions in the above parameterization models then 
correspond to 
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where Rij
D, Rij

β and Rij
κ are calculated using qD, qβ and qκ which are 

internal parameters in the RAMP scheme.  

By combining the UMMI and RAMP schemes, the sensitivity of 
the structural compliance then corresponds to  

thm th
T T T T2 2 i i

i i i
ij ij ij ij ij ij

C
η η η η η η

⎛ ⎞ ∂ ∂∂ ∂ ∂ ∂= + − = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

F KF F KU U U U U U  [4.21] 

Evidently, ∂Ki/∂ηij and ∂Fi
th/∂ηij can be easily derived at the 

element level. Mathematically, ∂Ki/∂ηij is written as 
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A constant temperature rise (∂ΔTi/∂ηij = 0) is assumed and the 
partial derivative of the thermal stress load is stated as 
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According to the sensitivity analysis, ∂C/∂ηij is positive  
or negative depending on the relative magnitudes of the  
partial derivatives of the stiffness matrix and thermal stress  
load. This implies that the compliance formulation might be  
non-monotonic. 
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4.4.3. Mass constraint 

4.4.3.1. Mass constraint formulation 
The formulation of the mass constraint depends on how the 

densities of the candidate material phases are interpolated. First, 
consider the linear formulation [GAO 11] with the density of element 
i interpolated as  

( )

1

m
j

i ij
j

ρ η ρ
=

=∑  [4.24] 

The corresponding mass constraint of multiple materials then reads 
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Obviously, the linear form and separability of the design variables 
are favorable to the optimization procedure. The sensitivity of the 
mass constraint can easily be derived as  
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In this section, an alternative formulation of the density using the 
UMMI scheme is also studied, 
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The corresponding mass constraint is then written as  
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and the sensitivity is expressed as 

( ) ( ) ( ) ( )N

11 1
,

1 1
m mm

j
i i i i

ij
jj j

M Vς
ξ ς ξ

ςξ ξ
ςξ ξ ξ ς

η ρ η η ρ
η == =

≠≠ ≠ ≠

⎛ ⎞⎛ ⎞
∂ ⎜ ⎟⎜ ⎟= − − −⎜ ⎟⎜ ⎟∂ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ ∏  [4.29] 

In numerical tests, the nonlinear mass constraint is found to be 
frequently violated, which will terminate the optimization process. 
Therefore, ML is used instead of MN in this work.  

In comparison, the volume constraint related to multiple materials 
is also presented below. For each candidate material phase j, the 
volume constraint is written as 

e
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Herein, VUj denotes the prescribed upper bound of the volume 
constraint of the jth candidate material. The upper bound of the 
volume fraction vfUj is defined as the division of VUj by the summation 
of all designable elements V, namely, vfUj = VUj/V. Obviously, 
0<vfUj<1 for each meaningful volume constraint. Usually, the number 
of volume constraints equals the number of candidate material phases 

m and U
1

1
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j
j
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≤∑  for all volume constraints. The sensitivity of the 

volume constraint is obviously constant,  
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4.4.3.2. Relationship between volume and mass constraints 

Without a loss of generality, suppose that an arbitrary feasible 
solution η = {ηij} exists in the sense that the set of volume constraints 
is satisfied. Based on the condition 0≤ 1-ηij<1, it follows that 
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The multiplication of this term by the density of the material phase 
j, ρ(j), gives rise to 
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Then, the summation of all solid materials results in  
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Now, suppose that the structure mass is specified as the upper 
bound MU, we then have 
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The combination of equation [4.34] and equation [4.35] yields the 
linear and nonlinear forms of the mass constraint given in equation 
[4.25] and equation [4.28], respectively. This means that an arbitrary 
feasible solution of the volume-constrained optimization problem is 
always within the feasible domain of the mass-constrained design 
problem.  

It concludes that the following relation theoretically exists for 
design spaces defined by the volume and mass constraints. 

L NV M MΩ ⊆ Ω ⊆ Ω  [4.36] 

 



Thermo-Elastic Problems     131 

Geometrically, this means that under the precondition of the same 
mass of the structure, the volume constraint defines a subdesign space 
of the linear mass constraint, while the latter defines a subdesign space 
of the nonlinear mass constraint. Therefore, the mass constraint 
always produces a stiffer configuration than the volume constraint in 
the compliance minimization sense. 

At the same time, the following relation holds: 

N LM M≤  [4.37] 

Note that MN = ML only if ηij = 1 and ηiξ = 0 (ξ≠j) with one single 
material or ηij = 0 with a void in each element. Although MN is not 
adopted in the optimization formulation, values of MN and ML can be 
utilized to check the status of the presence or absence of mixed 
material.  

4.4.4. Improved optimization formulation 

In this section, a typical numerical example is tested to illustrate 
the mixed material status if the presented standard optimization 
formulation is used. Then, an improved optimization formulation is 
proposed to overcome the resulting defect.  

4.4.4.1. Mixed material status 

Consider the biclamped plane structure with two non-designable 
domains (the dark areas) on both sides, as shown in Figure 4.2. The 
upper bound of the mass constraint is MU = 10. A vertical force Fm = 
8kN is applied, and the reference temperature for the thermal strain 
calculation is 20°C. Suppose two isotropic solid material phases are 
available (black for M2 and gray for M1) with their properties listed in 
Table 4.1. Note that M2 has large values of the Young’s modulus, 
stiffness-to-density ratio and TSC. This implies that M2 is superior to 
M1 in bearing mechanical loads, but the produced thermal stress load 
from M2 does not favor the reduction of structural compliance. 
According to [GAO 11, STE 05], a uniform initial weighting in the 
UMMI scheme is helpful for topology optimization problems under 
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pure mechanical loads to avoid the local optimum close to the initial 
point. Therefore, uniform initial design variables (ηi1 = ηi2 = 0.05) are 
adopted here as a feasible starting point. 

Material phase M1 
(TC4) 

M2 
(18Mn2CrMoBA) 

Density (kg/m3) 4,440 7,850 

Young’s modulus (GPa) 105 190 

Thermal conductivity (W/(m ·°C)) 8.7 35.38 

Poisson’s ratio 0.34 0.28 

Coefficient of thermal expansion (×10-6/°C) 9.10 12.4 

Thermal stress coefficient (MPa/°C) 2.986 5.355 

Table 4.1. Basic properties of two solid material phases 

Suppose a uniform temperature of 100 K is applied over the whole 
structure, the optimization results are illustrated in Figure 4.13. It is 
found that MN<ML, even after 80 iterations, which means that the 
mixed material status still exists in some elements. Consider elements 
3 and 33 as examples, with the evolution histories of their design 
variables plotted in Figures 4.13(c) and (d). ηi2 = 0 after tens of 
iterations, while ηi1 approaches 0.039 and 0.177, respectively, for 
elements 3 and 33. Of particular interest, the evolution track is self-
intersecting for element 33.  

4.4.4.2. Optimization formulation with an artificial penalty term 

To avoid the mixed material status of each element, we introduce 
the following artificial penalty term 

e

1 1 1

n m m

i i
i

ξ ζ
ξ ζ ξ

δ η η
= = = +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑  [4.38] 
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                                  c)                                                           d) 

Figure 4.13. Optimization results under uniform ΔT = 80 K: a) iteration  
histories of the compliance and mass; b) distribution of Young’s  

modulus; c) evolution track (i = 3); d) evolution track (i = 33) 
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The optimization formulation is then rewritten as 

{ } e

th m

U

L

find           1,2,..., ; 1,...,

min           
s.t              

             
             
             0 1

ij

ij

i n j m

C a

M M

η

δ

η η

= = =

+ ⋅
+ =

=
≤

< ≤ ≤

η

F F KU
Q HT

 [4.39] 

Here, δ acts as a positive penalty to force the design variables in 
each element toward a solid (ηij = 1 and ηiξ = 0 (ξ≠j)) or void (ηij = 0) 
material status. This situation occurs at δ = 0 so that the objective 
function in equation [4.39] equals the structural compliance. Note that 
a = ãC0/δ0 is a scale parameter defined to avoid large differences 
between δ and C. δ0 and C0 are the initial values.  

With the updated formulation in equation [4.39], the biclamped 
rectangular structure is optimized. The influence of parameter ã upon 
the optimization process is first studied. As shown in Figure 4.14(a), 
the iterations of δ oscillate for ã = 0 and ã = 0.04, while large values 
of ã lead to stable iterations. In Figure 4.14(b), it is shown that a large 
value of ã will push δ toward zero, but increases the structural 
compliance. In summary, a small value for the parameter ã leads to 
stiff configurations with mixed material status, while large values of ã 
yield clear but weak configurations. 

A treatment using variable ã is proposed to seek clear and stiff 
configurations where ã is gradually increased from 0.01 to 0.1 in 40 
iterations. The δ stabilizes as the iteration count increases, as plotted 
in Figure 4.14(a). The optimization results are shown in Figure 4.15. 
Clearly, the iteration processes of the compliance and material costs 
are globally stable. Linear and nonlinear formulations of the mass 
constraint are used to evaluate the effect of the artificial penalty term. 
Because the masses of the linear and nonlinear forms converge and are  
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nearly identical after 40 iterations, the value of δ tends to zero. 
Consequently, a clear configuration is obtained without mixed 
material status. The optimization formulation in equation [4.39] is 
thus adopted in the following numerical tests instead of the original 
one that was used in equation [4.18]. 

 
                               a) 

 
                               b) 

Figure 4.14. Influence of ã upon the optimization process:  
a) influence of ã on the iteration histories of δ; b) influence  

of ã on the compliance and δ of the optimized results. For a color  
version of this figure, see www.iste.co.uk/zhang/topology.zip 
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either a small or absent temperature rise, only M2 is used due  
to its large Young’s modulus value. Therefore, the optimized 
configuration result is a compromise between mechanical and thermal 
stress loads. 

 
           a) 

 
               b) 

Figure 4.17. Influence of the temperature rise on the optimized result at  
MU = 10: a) influence of the temperature rise on the compliance; b) influence  

of the temperature rise on the volume of each candidate material phase 
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Figure 4.18 indicates that the structural compliance of the optimized 
configuration naturally decreases with the increase in MU. The mass 
constraint reaches its upper bound in all tests. If the mass is strongly 
limited by a small value of MU, the solution corresponds to a  
two-branch structure consisting of only M2. In contrast, a large value 
of MU results in similar optimized configurations that are filled with 
both materials. In detail, M2 is placed around the mechanical loads 
and lower corners of the non-designable area. M1 transfers loads to 
both vertical edges. The compliances are almost the same for MU≥8 
despite differences in both the amount of each available material and 
the optimized configurations. 

 
a) 

 
b) 

Figure 4.18. Influence of the upper bound of  
the mass constraint on the optimized result 
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Furthermore, the volume and mass constraints are compared. To do 
this, two volume constraints are introduced for M1 and M2 to replace 
the linear mass constraint. The upper bound of each volume constraint 
is correspondingly defined to match MU = 10. As shown in  
Figure 4.19, the optimized configuration with the mass constraint is 
found to be the stiffest whatever the upper bounds of the volume 
constraints are. This situation theoretically confirms the benefit of 
using the mass constraint over the volume constraint according to 
equation [4.36]. 

 

Figure 4.19. Comparisons of optimized results under  
mass or volume constraints with the same MU = 10 

Now, the effects of the initial values of the design variables are 
highlighted in the case of multiple materials. Tests are conducted with 
fixed ηi2 = 0.05 and different ηi1 as initial values. Figure 4.20(a) 
indicates that the resulting curve is non-monotonic. Uniform initial 
weights are not the absolute best choice, although they are suggested 
to address problems under a design-independent mechanical load. 
Figure 4.20(b) indicates that the amount of M2 obviously decreases 
with the increase in the initial value of ηi1. In these tests, the mass 
constraint always remains active. 
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According to [GAO 11] and [STE 05], a uniform initial weighting 
in the UMMI scheme is desirable for topology optimization problems 
under pure mechanical loads to avoid the local optimum. In this work, 
due to the presence of a design-dependent thermal stress load, the non-
uniform initial weighting might yield a local optimum, which is better 
than the uniform initial weighting. 

 
a) 

 
b) 

Figure 4.20. Influence of the initial value of ηi1 on the optimized result  
(ηi2 = 0.05); a) influence of the initial value of ηi1 on the compliance;  
b) influence of the initial value of ηi1 on the volume of each candidate  

material phase 
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3D structure 

The proposed method is now tested for a large-scale engineering 
problem. The structure used is shown in Figure 4.21. It is fixed on the 
ends of two horizontal arms. Herein, two candidate materials, M1 and 
M2, are available. The structure undergoes a temperature rise and 
mechanical load simultaneously. The latter consists of pressure 
applied to the inner surface of the hole with a cosine distribution 
function over θ = 120° (the peak value p1 = 50 MPa) and uniform 
pushing force (p2 = 8 MPa). Suppose the loading area is a  
non-designable one filled with material phase M2. The reference 
temperature for the thermal strain calculations is assumed to be 20°C. 
The whole structure is meshed into 39,352 solid elements and the 
design variables are uniformly set to initial values of ηi1 = ηi2 = 0.05, 
which is a feasible starting point.  

 

Figure 4.21. Structure 2 (unit: m) 

At MU = 40, the optimized results are illustrated in Figure 4.22 (red 
for M2 and cyan for M1). In the case of pure mechanical loads, the 
whole structure consists of only M2 due to its high Young’s modulus 
value, as shown in Figure 4.22(a). If the uniform temperature rise  
(ΔT = 60 K) is applied, the optimized structure shown in  
Figure 4.22(b) is obviously different. The structure is mainly 
composed of M1 due to its small TSC value, and M2 is distributed 
around clamped areas. A non-uniform temperature rise is tested as 
well. Temperatures on the inner surface of the hole and the upper 
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surface of the structure are set to 110 and 50°C, respectively. In each 
iteration, a steady-state heat conduction analysis is carried out  
to obtain the temperature field over the whole structure. The 
optimized configuration and its temperature field are illustrated in 
Figure 4.22(c). Note that the mass constraint reaches its upper bound 
in all test cases. 

 

Figure 4.22. Optimized results for the 3D structure: a) ΔT = 0°C  
(M2: 5.095 × 10-3 m3); b) uniform temperature rise (ΔT = 60°C) (M1: 6.051 × 
10-3 m3, M2:1.673 × 10-3 m3); c) non-uniform temperature rise (M1: 6.199 × 
10-3 m3, M2: 1.589 × 10-3 m3). For a color version of this figure, see 
www.iste.co.uk/zhang/topology.zip 
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4.5. Distinction between mean compliance and elastic 
strain energy 

In all the above work, the mean compliance is used as the objective 
function. When only mechanical loads exist, the mean compliance and 
strain energy are identical. However, as the thermal loading is  
design-dependent, it contributes to each objective formulation 
differently so that both metrics are no longer the same. In fact, the 
thermal load follows the rule of “no material, no thermal load” in the 
optimization process, while the mechanical load is a fixed one. To 
study each formulation, the effects of mechanical and thermal loads 
upon the structural compliance and strain energy are investigated in 
detail. As shown later, the difference between both metrics results in a 
big difference between the optimized configurations as the thermal 
load increases. In this section, single material is the candidate. 

4.5.1. Formulations of mean compliance and elastic strain 
energy 

The discrete form of the mean compliance C of an elastic body is 
written as: 

T m th T T th T m1 1 1 1
2 2 2 2

m T -1 m th T -1 th m T -1 th1 1
2 2

= ( ) =

= ( ) ( ) ( )

C = + +

+ +

U KU F F U U F U F
F K F F K F F K F

 [4.40] 

It should be noted that a coefficient 1/2 is added in the mean 
compliance formulation in order to conveniently compare with the 
elastic strain energy defined below. The mean compliance can be 
regarded as a combination of three terms: mechanical, thermal and 
coupled. 

m th mth

m m T -1 m m T m1 1
2 2

th th T -1 th th T th1 1
2 2

mth m T -1 th m T th th T m

( ) ( )

( ) ( )

( ) ( ) ( )

C C C C
C

C

C

= + +
= =

= =

= = =

F K F F U
F K F F U
F K F F U F U

 [4.41] 

Physically, Cmth refers to the coupled effect between thermal and 
mechanic loads. It can be positive or negative depending upon the 
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relative direction between the displacement and load vectors involved 
in the expression. 

Accordingly, the elastic strain energy CE is defined as the potential 
mechanical energy stored in the configuration of an elastic body as 
work is performed to distort its volume or shape. 

th T th1
E 2

T T th th T th1 1
2 2

( ) ( )

( )
V

V V V

C dV

dV dV dV

= − −

= − +

∫
∫ ∫ ∫

ε ε D ε ε

ε Dε ε Dε ε Dε
 [4.42] 

where the third integral term on the right refers to the energy 
generated by the initial thermal strain. It equals the total strain energy 
when the domain is fully constrained with ε = 0. Based on the finite 
element method, the above relation can be discretized as: 

T T th ith1
E E2

ith th T th1
E 2 ( )

C C

C dV
Ω

= − +

= ∫
U KU U F

ε Dε
 [4.43] 

where CE
ith is the initial thermal strain energy. In addition, it can  

easily be proved that the elastic strain energy consists of two 
independent parts contributed from the mechanical and thermal  
loads, respectively. 

m th
E E E
m m T 1 m m1
E 2

th th T 1 th th T th th ith1 1
E E2 2

= ( ) =

= ( ) ( ) =
V

C C C
C C

C dV C C

−

−

= +

− + − +∫
F K F

F K F ε Dε

 [4.44] 

4.5.2. Comparisons between mean compliance and elastic 
strain energy 

4.5.2.1. Comparisons in analysis 

It is important to note that the following relationship holds between 
the elastic strain energy CE and the mean compliance C. 

T th ith
E E=C C C− +U F  [4.45] 
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Clearly, CE is equivalent to C when thermal loads disappear with 
ΔT = 0. This is the common case mostly studied in topology 
optimization. However, for ΔT≠0, CE and C have different 
expressions and should be carefully investigated in the formulation of 
the optimization model.  

To some extent, the strain energy measures the stressed state of a 
structure. Physically, if a structure deforms in a free stress state, the 
strain energy tends to zero. 

 
                                  a)                                                      b) 

Figure 4.23. Illustration of a slender bar under uniform heating:  
a) free expansion case; b) completely constrained case 

For example, Figure 4.23 illustrates a uniformly heated slender bar 
only with axial thermal deformation. Suppose the bar is fixed at two 
ends or only at one end. It therefore follows that 

Case (a): ( )2 21/2 C EAL Tα= Δ , E 0C = , m 0ε = , th Tε α= Δ  

Case (b): 0C = , 2 2 ith1
E E2 ( )C EAL T Cα= Δ = , m ,Tε α= − Δ  

th Tε α= Δ  [4.46] 

where, E, A, L and α denote the Young’s modulus, cross-section area, 
length and coefficient of thermal expansion. It is seen that the mean 
compliance and strain energy change from one case to the other case. 
In case (a), no thermal stress exists because the bar is in the state of 
free expansion. In case (b), the thermal stress is calculated as  
σ = -αEΔT. 

In fact, the von-Mises stress can be expressed in quadratic form of 
the stress vector, 

VM 2 T( )σ = σ Jσ  [4.47] 

 

, , , ,E A L Tα Δ, , , ,E A L Tα Δ
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where J is a constant symmetrical matrix of form similar to the 
inverse of the elastic matrix D-1. For 2D plane stress problems and 3D 
problems, J is expressed as, 

3 3

3 3

1 1 2 0
1 2 1 0 for 2D problems
0 0 3

1 1 2 1 2
1 2 1 1 2
1 2 1 2 1

for 3D problems
1 0 0

3 0 1 0
0 0 1

×

×

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤− −⎡ ⎤
⎢ ⎥⎢ ⎥− −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥=
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
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0

J

0

 [4.48] 

In comparison, D-1 can be written as 

1

3 3

1

3 3

1 0
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1
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 [4.49] 

This indicates that the element strain energy is close to element 
von-Mises stress in form. The reduction of maximum value of the 
element strain energy can result in the reduction of maximum value of 
element von-Mises stress. Therefore, the strain energy of an element is 
related to the stress state to some extent. 
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4.5.2.2. Comparisons in topology optimization 
In this chapter, two formulations are investigated for topology 

optimization of thermo-elastic problems subjected to the volume 
constraint. One is to use the mean compliance as the objective 
function. The other is to use the elastic strain energy as the objective 
function.  

The aim of this section is to show how the mean compliance, strain 
energy and von-Mises stress change when each formulation is used for 
topology optimization. To avoid the local stress concentration at the 
load application point, distributed loads or point-wise loads applied on 
a non-designable domain are considered as shown in Figure 4.24. 

 

Figure 4.24. Biclamped domain under thermo-mechanical loads 

In these three tests, assume that the Young’s modulus and 
coefficient of thermal expansion of the solid material are E = 210 GPa 
and α = 1.1×10−5/℃, respectively. The domain is uniformly heated 
with a temperature variation ΔT = 50 K. The distributed load is 100 
N/m and the point load is 10 kN. The whole domain is discretized 
with a 60 × 40 mesh of eight-node bilinear elements for finite element 
analysis. Element size is about 12 mm×11.9 mm. The volume fraction 
40% is used as the upper bound of the volume constraint.  

Figures 4.25 and 4.26 show the optimized configurations and 
corresponding distributions of von-Mises stresses for the mean 
compliance and strain energy minimizations, respectively. It should be 
remarked that for elements with intermediate pseudo-densities  
(not 0/1), stress computations become dependent on the choice of  
the interpolation parameters. This is, however, negligible if few 
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intermediate elements exist in the final configuration. For the purpose 
of illustration, Figure 4.27 gives the iteration histories of structure 3. 
Based on numerical results, the following conclusions can be drawn 
out. 

 

Figure 4.25. Comparisons of optimized configurations 

 

Figure 4.26. Stress distributions of the optimized configurations 

 Structure 3 Structure 4 Structure 5

min C   
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.007586 38.678 77.349 116.019 154.69 193.36 232.031 270.701 309.372 348.042
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Figure 4.27. Iteration histories (structure 3). For a color version  
of this figure, see www.iste.co.uk/zhang/topology.zip 

1) The mean compliance minimization can achieve a lower mean 
compliance value than that using the strain energy minimization. 
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Likewise, the strain energy minimization can produce a lower strain 
energy value than that using the mean compliance minimization. 

2) As mentioned previously, the strain energy depends upon  
the stressed state of the structure. So the strain energy minimization  
tends to release the constraints related to the thermal deformation of 
the structure as much as possible. This is why less material is  
used and retained in both fixed ends of the domain after optimization. 
More importantly, the maximum and average stress values in the 
optimized configuration using the strain energy minimization are 
reduced and more uniformly distributed than those in the mean 
compliance minimization. In other words, the strain energy 
minimization provides a better strength design than the mean 
compliance minimization.  

3) Since Cmth is the coupling term of mechanical and thermal loads 
in the mean compliance, Cmth even decreases to negative values along 
with the increase in Cth and the decrease in Cm in the mean compliance 
minimization. Instead, CE

m and CE
th are two independent terms. In  

the strain energy minimization, both CE
m andCE

th decrease. As a result, 
the value of CE

m becomes greatly dominant over CE
th in the 

composition of CE. 

4.5.3. Effects of thermal and mechanical loads on the 
optimized configurations 

As shown in numerical tests above, the optimized configuration 
may change greatly depending upon whether the load is dominated  
by the mechanical or thermal load. In order to reveal the effects of 
each load upon the structural compliance and strain energy, thermal 
and mechanical load sensitivity analyses are carried out. To do this, 
load coefficients λm and λth are first introduced as coefficients  
applied to initial mechanical load vector Fm0 and thermal load  
vector Fth0.  

m m m0

th th th0 th
0

,
, T T

λ
λ λ

=
= Δ = Δ

F F
F F

 [4.50] 
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Consider now the objective function defined by the mean 
compliance or the strain energy. The following expressions can be  
derived 

m th mth m 2 m0 th 2 th0 m th mth0

m th m 2 m0 th 2 th0
E E E E E

( ) ( )
=( ) +( )

C C C C C C C
C C C C C

λ λ λ λ
λ λ

= + + = + +
= +

 [4.51] 

where Cm0, Cth0, Cmth0, CE
m0 and CE

th0 refer to corresponding parts of 
the mean compliance and the strain energy under initial loads. 

Without loss of generality, the topology optimization problem can 
be written in the following general form 

{ }
( ) ( )
( )

e

1 2

find           1,2,...,

min           , , , ,
s.t              1

i

s

i n

f

h

η
λ λ λ

= =

=

≤

η
η λ λ
η

L  [4.52] 

where η denotes the ne-dimensional vector of topological design 
variables; λ denotes the s-dimensional vector of fixed parameters, i.e. 
load coefficients in our case; f denotes the objective function;  
h denotes the volume constraint function, which is independent of 
fixed parameters. 

Suppose the gradient of the objective function f with respect to η is 
expressed as 

( ) ( ) ( ) ( )
e

T

1 2

f , f , f ,
f , =

nη η η
⎡ ⎤∂ ∂ ∂

∇ ⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

η λ η λ η λ
η λ L  [4.53] 

The Karush–Kuhn–Tucker (KKT) condition can be used to 
characterize the influences of load amplitudes characterized by load 
coefficients λm and λth upon the optimum solution related to each 
metric. In our case, it is theoretically stated that at an optimum point, 
the negative gradient of the objective function can be expressed as a  
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linear combination of gradients of active constraints with non-negative 
Lagrangian multipliers. Since the gradients of the volume constraint 
and side constraints involved in the topology optimization problem are 
constant and independent of λm and λth in topology optimization, the 
deviation of the optimized solution will be made possible only if any 
perturbation of λm and λth changes the gradient direction of the 
objective function. Hence, the gradient deviation of the objective 
function can be quantified by the angle between the perturbed gradient 
vector with Δλ and the original gradient vector to measure the gradient 
direction variation. 

( ) ( )
( ) ( )

f , f ,
cos

f , f ,
θ

∇ + Δ ⋅∇
=

∇ + Δ ⋅ ∇
η λ λ η λ

η λ λ η λ
 [4.54] 

cosθ is an important indicator of the load effects upon the optimized 
configuration. If the value of cosθ is close to 1, it means that the 
gradient directions before and after the load change are nearly parallel 
so that small changes will appear in the optimized configurations. 
Otherwise, closer to 0 for cosθ, greater changes will appear in the 
optimized configurations.  

The structure 1 is tested here for detailed illustrations. Suppose that 
the initial mechanical load is Fm0 = 104 N and temperature variation is 
ΔT0 = 1 K. Figure 4.28 shows the corresponding gradient  
direction variations of each metric when only thermal loads  
increase with respect to the reference value of λth = –5. Topologies  
of the optimized structures achieved by both formulations are  
quite different at λth≠0. Notice that at ΔT = λth = 0, the mean 
compliance is identical to the strain energy for the definition of 
objective function. 

Figure 4.28 indicates the significant changes of optimized 
configurations compared with the reference when cosθ increases and 
decreases. As shown in Figure 4.29, the same conclusion can be 
drawn out when mechanical loads change. 
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                a) 

 
      b) 

Figure 4.28. Gradient direction variations and  
corresponding optimized configurations under different  
thermal loads (λth = –5 as the reference value): a) mean  
compliance minimization; b) strain energy minimization 
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    a) 

 
b) 

Figure 4.29. Gradient direction variations and corresponding  
optimized configurations under different mechanical loads  

(λm = 2 as the reference value): a) mean compliance  
minimization; b) strain energy minimization 
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Although the optimized configurations related to both formulations 
are sensitive to the variations of thermal and mechanical loads, the 
influence measured by the load sensitivity is physically different. In 
the mean compliance minimization, the load change will change the  
pattern of material layout. In the strain energy minimization, the load 
change will only change the member thickness, while the pattern of 
material layout remains unchanged. 

4.6. Conclusions 

In this chapter, the concept of TSC is first introduced as an 
inherent property of material to favor the formulation of topology 
optimization problems involving thermo-elastic stress. With numerical 
examples, the RAMP model demonstrates superior advantages over 
the SIMP model for this kind of problem. Moreover, the internal 
RAMP parameters are studied to reveal the penalty effects upon the 
structural stiffness and thermal stress load. 

A mass constraint is implemented into thermo-elastic topology 
optimization for structures of multiphase materials to reflect  
the engineering design needs of light weightness. To avoid the 
possible mixed material status within each element, the optimization 
formulation is improved by introducing the artificial penalty term at 
the objective function level. The influence of the additive parameter ã 
is studied and the variable ã is then suggested. Due to the presence of 
thermal stress loads, numerical tests highlight that non-uniform initial 
weighting in the UMMI might be more advantageous than the uniform 
initial weighting in obtaining the optimum solution. In contrast, for the 
case with pure mechanical loads, uniform initial weighting is 
preferable to avoid the local optimum. 

Two formulations related to the mean compliance minimization 
and strain energy minimization are studied for thermo-elastic topology 
optimization. Based on theoretical and numerical comparisons, it  
is found that both formulations lead to different optimized 
configurations when thermo-elastic load exists. Meanwhile, the strain 
energy minimization is more beneficial for the stress reduction than 
the mean compliance minimization. In addition, although the 
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optimized configurations related to both formulations are sensitive to 
the variations of thermal and mechanical loads, the influence 
measured by the load sensitivity is physically different. In the mean 
compliance minimization, the load change will change the pattern of 
material layout. In the strain energy minimization, the load change 
will only change the member thickness, while the pattern of material 
layout remains unchanged. 



5 

Integrated Layout and  
Topology Optimization 

5.1. Introduction to integrated optimization 

A multicomponent system is a structural system consisting of a 
certain number of components of specific form, a container and the 
supporting structure that interconnects the components and the 
container for its integrity. Most structural systems in mechanical and 
aerospace engineering can be considered as a kind of multicomponent 
system, as shown in Figure 5.1. Compactness, structural efficiency, 
static and dynamic responses have to be optimized for the 
functionality and mechanical performance. On the one hand, the given 
components are assembled in the limited space of the container to 
satisfy various functional constraints, which are a packing 
optimization or a layout optimization. On the other hand, proper 
supporting structures have to be identified to satisfy the mechanical 
performances of the system, which is a typical topology optimization. 
In this work, the integrated layout and topology optimization are 
discussed for the maximum rigidity design where the spatial 
placement of components and the configuration of the supporting 
structure have to be optimized simultaneously, as illustrated in  
Figure 5.2. 
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Generally speaking, there are two main difficulties involved in the 
integrated optimization design [ZHU 06b]. First, non-overlapping 
constraints will be properly defined to avoid the collision of 
components. Second, the integrated finite element model including the 
modeling of the components, structures and their interfaces will be 
studied to favor the simultaneous design. 

 

Figure 5.1. Typical multicomponent system 

 
                                      a)                                                   b) 

Figure 5.2. Illustration of integrated layout and topology optimization  
design of multicomponent systems: a) initial definition; b) optimized design 

5.2. Finite-circle method 

5.2.1. Formulation of finite-circle method 

According to the definition of integrated optimization, packing 
optimization with non-overlapping constraints has to be performed to  
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figure out the proper layout of components. Until now, packing 
optimization problems are still CAD based. Simple geometrical or 
physical measures like the system compactness, gravity center, 
configuration cost, etc., are optimized in the packing design by 
assigning the location and orientation of the components as design 
variables. As indicated by Cagan et al. [CAG 98, CAG 02], the 
underlying difficulties are concerned with the modeling of the 
components, the packing area and selection of efficient search 
strategies, etc. Among others, one of the key issues is that the non-
overlapping constraints have to be properly introduced in order to 
avoid both the components’ overlapping and their overlapping with 
the design domain boundaries. Theoretically, it was proved that 
packing optimization is a type of NP-hard problem [DEB 88]. 
Varieties of component shapes and design domain boundaries will 
lead to high nonlinearity and even discontinuity of the non-overlap 
constraint functions. Consequently, the gradient-based optimization 
algorithms will be strongly limited in solving packing problems when 
the components or the design domain boundary have complex and 
concave shapes. Even for the simplest bin-packing problem with 
rectangular components, different overlap cases exist and should be 
analyzed carefully [PAL 06, HUA 07].  

Practically, techniques such as octrees [MEA 82, SAM 89], sphere 
trees [MOO 02, HUB 93, QUI 94] and S-bounds based trees  
[CAM 91] have been proposed to detect object collision. These 
techniques approximate the components with various levels of small 
cubes or spheres and refine the model partition iteratively. However, 
these methods are limited to detecting rather than evaluating the 
overlapping. More interesting information cannot be provided to 
identify the search directions and to verify attainment of the optimum 
solution. For more overlapping detection methods, we can refer to the 
work of Lin and Gottschalk [LIN 98].  

In this section, the Finite-circle method (FCM) is presented to 
adapt gradient-based algorithms to the packing design. Consider a 2D 
packing problem as shown in Figure 5.3. Suppose several components 
will be located inside the design domain and no overlapping will be 
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found between different components. Mathematically, the following 
conditions should be retained 

1 1 1 1 2 2 2 2

1,2,..., ;  
s.t.:  ( , , )

1 1,2,..., ;  2 1,2,..., ;  1 2
s.t.:  ( , , ) ( , , )
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⊂

∀ = = ≠
∩ = ∅

Ω Ω

Ω Ω

 [5.1] 

where Ωψ and ΩD denote the area occupied by the ψth component and 
the global design domain, respectively. Ωψ is described as the function 
of the location and orientation of the component, i.e. (xψ, yψ, θψ). nc  
is the number of components. ψ1 and ψ2 denote two different 
components. This equation is a symbolic presentation. When gradient-
based algorithms are applied, it is necessary to have the design 
sensitivities in order to understand how much the components are 
overlapped with each other, in which direction they should move to 
escape from the overlapping and possible overlapping. 

 

Figure 5.3. A 2D packing problem 

 

Figure 5.4. Components approximation with single circle 
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Although it is difficult to describe overlapping for components 
with arbitrary shapes, overlapping between circles and spheres can be 
easily calculated by comparing the distances of the centers with the 
summation of their radii. This is the idea of approximating all the 
components of arbitrary shapes with circles or spheres. For clarity of 
presentation, only the formulation related to 2D components is 
discussed here. If only one single circle is used for the approximation 
of one component as shown in Figure 5.4, the approximation error 
will be large. Consequently, the two components are still far away 
from each other but the circles have already overlapped. Here, FCM 
uses the idea similar to the sphere-trees. The components and the 
design domain are approximately modeled with numbers of circles 
(2D) or spheres (3D) as shown in Figure 5.5. For each component, a 
family of circles may have different radii and be placed at different 
locations to approximately cover the boundary of the components. 
Clearly, the approximation accuracy can be improved by refining the 
circles’ definition or simply using more circles. 

 

Figure 5.5. The FCM approximation of the components 

In this way, the complex non-overlapping constraint can be 
transformed and simplified into a standard form of constraint between 
circles 

1, 1 2, 2 1, 1 2, 2O O R Rψ ς ψ ς ψ ς ψ ς≥ +  [5.2] 

where Oψ1,ϛ1 is the center of the (ϛ1)th circle defined in the (ψ1)th 
component. Rψ1,ϛ1 is the corresponding radius. This relationship refers 
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to the distance condition between the circle centers. The gradients 
with respect to the involved design variables can thus be easily 
calculated by differentiating the constraint function. From this 
viewpoint, FCM can be considered a common approach for packing 
optimization problems with components and design domain of 
arbitrary shapes.  

Compared with the sphere-trees methods, the iterative 
approximation refinements of the circles’ discretization are not 
employed in FCM, which implies that the FCM uses a fixed number 
of design constraints during the packing optimization. In fact, FCM is 
more than a collision detection method. It identifies how to relocate 
the components to avoid overlap by calculating the sensitivities of the 
distances between the circles with respect to the location and 
orientation of the components. Note that although FCM proposes to 
favor the gradient-based algorithms, it does not limit the application of 
the gradient-free methods. 

A simple packing optimization problem consisting of six identical 
equilateral triangle components and an equilateral hexagon design 
domain is illustrated in Figure 5.6. The characteristic length l is now 
assigned as the edge length of the triangular component and each 
component is approximated with nine identical circles with a 
maximum approximation error of 7.22%l. Likewise, the design 
domain is approximated with six big circles and the maximum error is 
3%l. The problem is now to find the optimal locations of all 
components inside the design domain with a minimum packing area. 
Mathematically, the problem can be stated as the height minimization 
of the equilateral hexagon. 

 

Figure 5.6. The triangle component and the design domain 
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Figure 5.7. The design iteration and the optimized result 

Finally, 1,215 constraints are retained to avoid overlap between the 
components and 324 constraints to keep all the components inside the 
design domain. Based on the initial configuration shown in  
Figure 5.7(a), the optimization problem is programmed and sensitivity 
analysis is carried out in the framework of Boss-Quattro, the design 
process converges to the configuration shown in Figure 5.7(d) after 13 
iterations. Because FCM uses conservative approximation, there are 
always safety gaps between the design domain contour and the 
components. 

To improve the approximation accuracy, more circles are used as 
shown in Figure 5.8 with the uniform discretization. Although the 
approximation error is reduced, the great number of the circles leads 

a) The initial configuration b) Iteration 4

 
c) Iteration 8 

 
d) The final configuration
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to a large number of design constrains which requires tremendous 
computing time. 

 
Number of circles 1 3 6 9 12 15 18 21 
Number of constraints 51 243 756 1539 2592 3915 5508 7371 
Computing time for 
one iteration (s) 4.90 6.68 19.48 24.71 158.79 216.46 232.82 335.28 

Figure 5.8. Effects of circle and constraint numbers  
upon the computing time for one single iteration 

5.2.2. Improved adaptive constraint aggregation 

FCM possesses the advantage of simple and explicit formulation 
which can be easily differentiated to yield sensitivities for gradient-
based optimizations. Moreover, FCM can easily be extended to deal 
with 3D overlapping problems by using spheres instead of circles.  

However, precise description of components’ geometries requires 
more circles which will lead to large numbers of overlapping 
constraints and costly computing times when the packing optimization 
problem is solved iteratively. It is therefore crucial to use fewer circles 
on the one hand while maintaining the approximation precision. On 
the other hand, some constraint aggregation approaches such as KS  
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function, etc., are applicable to reduce the number of constraints. The 
standard form of KS function is expressed as: 

( )
1

1( ) ln exp
gN

m
m

KS gτ τ
τ =

= ∑  [5.3] 

where Ng stands for the number of constraints.τ is the aggregation 
parameter. Generally, the constraints should be normalized into the 
same scale, which will be helpful, especially when the constraints are 
in different magnitudes.  

Normally, an equivalent form is used to avoid some numerical 
difficulties. 

( )max max
1

1( ) ln exp
gN

m m
m

KS g g gτ τ
τ =

= + ⎡ − ⎤⎣ ⎦∑  [5.4] 

where gmax stands for the maximum value of all the constraints. We 
also have 

( )max max

max

1( ) ln

lim ( )

gg KS g N

KS g
μ

τ
τ

τ
→+∞

< < +

=
 [5.5] 

Obviously, choosing larger values for aggregation parameters has 
the advantages of a precise description of the feasible region. 
However, too large a value of the aggregation parameter will lead to 
an ill-conditioned Hessian matrix of the KS function and result in 
optimization instability when the current design point is located very 
close to, or directly at the points where multiple constraints are active. 
Practically, τ should be properly defined considering both the 
precision and stability of optimization iteration. 

In the existing adaptive aggregation method [MAR 05, POO 07], 
|dKS/dτ| is chosen as the criterion to determine the aggregation 
parameters adaptively during each iteration. 

d
d
KS δ
τ

≤  [5.6] 
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δ  is a prescribed small positive value. By assuming a linear 
relationship between |dKS/dτ| and τ in logarithmic scale, the derivative 
of |dKS/dτ| w.r.t.τ was then obtained with a finite difference scheme. 
The desired value of τ = τd satisfying equation [5.6] was thus directly 
obtained by 

1 0 0

1 0 0

d d d dlog log log log
d d d d

log log log log

d

d

KS KS KS KS
τ τ τ τ τ τ τ ττ τ τ τ

τ τ τ τ

= = = =− −
=

− −
 [5.7] 

where τ0 is assigned as an initial value of 50, andτ1 = τ0+ 10-3. Note 
that when τ = τd, |dKS/dτ| is equal to δ. 

Here, we explain the conditions in which equation [5.7] holds. By 
considering the standard form of the KS function, we have its first 
derivative 

( )
1

1

exp( )
d
d exp( )

Ng

m m
m

Ng

m
m

g KS g
KS

g

τ

τ τ τ

=

=

−
=
∑

∑
 [5.8] 

In most cases, the linear relationship between |dKS/dτ| and τ  in 
logarithmic scale cannot be attained. However, in some special 
situations, e.g. when all the constraints’ values are equal, the 
aggregation absolute error can be written as 

max
1 ln gKS g N
τ

− =  [5.9] 

we have 

2

lnd
d

gNKS
τ τ

= −  [5.10] 
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Therefore, the linear relationship between |dKS/dτ| and τ in 
logarithmic scale can be obtained. 

dlog log(ln ) 2log
d g
KS N τ
τ

= −  [5.11] 

As the linear assumption only exists in few particular cases, the 
adaptive approach may therefore fail in obtaining proper aggregation 
parameters. To solve this problem, an improved adaptive approach 
based on the Steffensen iteration is presented. First, we have 
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It is easy to obtain 
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1 1

0;

ln ( )exp( ) 0;

1 ( ) exp( ) 0,m n.
2

g

g g

N

m m
m

N N

m n m n
m n

a

a a b a KS b KS g g

ac b g g g g

τ τ τ τ τ

τ τ

=

= =

>

− = − = − >

− = − + ≥ ≠

∑

∑∑

 [5.14] 

Consequently, we can prove 

2

2
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d

KS
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dlim 0
d
KS

μ τ
−

→+∞
=  [5.15] 

By giving a small positive value δ, there is one and only one 
positive τδ  satisfying the following equation  

d d
d

KS τ τ δτ
=

=  [5.16] 

So, we propose using an iterative adaptive approach to search the 
aggregation parameter by introducing both upper and lower bounds 
for |dKS/dτ|. 

d d , 0 1KSυδ τ δ υ≤ ≤ ≤ ≤  [5.17] 

Here, we use the equivalent form of KS function, its derivative can 
be expressed as 
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Then, we assume 
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which leads to 

( )max 2
d 1
d m
KS fKS g
τ τ τ

= − − +  [5.20] 
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We use the Steffensen iteration to obtain the root of the following 
equation 

( )max 2
1

m
fKS g δ

τ τ
− − + = −  [5.21] 

The stable point formula chosen for the Steffensen iteration can be 
reorganized as 

( )maxm
fKS gττ

δ δ
= − −  [5.22] 

Then the final formula of the Steffensen iteration can be expressed 
as 
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 [5.23] 

whereτk is initially set to be 50, a common value chosen in many 
previous works. Then dKS/dτ is iteratively calculated and evaluated 
until equation [5.17] is satisfied. Since the Steffensen iteration proves 
to be at least quadratically convergent, the proper value of τ can be 
obtained efficiently. 

As a substantial member of non-overlapping constraints have been 
aggregated into one with high nonlinearity, precise sensitivity analysis 
becomes an important issue. The finite difference and the analytical 
scheme are two usual methods to achieve design sensitivities. 

The finite difference scheme is easy to implement but leads to 
inaccurate sensitivities. It has been proven that each design variable in 
different iterations needs adaptive step lengths to ensure a stable 
sensitivity output. Typically, tiny finite difference step lengths will not 
improve the precision as expected due to the numerical calculation 
errors. 
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On the contrary, the analytical method holds the advantage of 
accuracy. However, compared with the finite difference scheme, the 
analytical method for the aggregated non-overlapping constraint needs 
more operations due to the tedious formulations and derivations. 

As a result, we chose to use the complex step derivative 
approximation [SQU 98, MAR 03, LAI 08] here. Consider a complex 
function with one complex variable. It can be expanded by using a 
Taylor series at the current design point 

2 3( ) ( )( ) ( ) ( )
2! 3!

f x f xf x ih f x ihf x h ih
′′ ′′′′+ = + − − +L  [5.24] 

Then, only the imaginary parts are extracted 

2Im[ ( )] ( )( )
3!

f x ih f xf x h
h

′′′+′ = + +L  [5.25] 

Ignoring the high-order items, we obtain an approximation form by 
using a small value of h 

Im[ ( )]( ) f x ihf x
h

+′ ≈  [5.26] 

This formulation ensures a more accurate sensitivity output than 
the standard finite difference method. On the one hand, it is based on 
an O(h2) approximation of f'(x). On the other hand, subtraction 
operation leading to roundness error is avoided in the complex 
formulation. 

The complex step derivative approximation used in our problem is 
expressed as 

( ) Im[ ( )]KS s KS s ih
s h

ψ ψ

ψ

∂ +
≈

∂
 [5.27] 

where Im[KS(sψ+ih)] denotes the imaginary output after a small 
imaginary perturbation ih is brought into the KS function. Normally, 
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we use h = 10-12 in our work. Here, sψ is one of the geometry design 
variables such as xψ, yψ or θψ. 

5.3. Density points and embedded meshing 

5.3.1. Definition of the density points 

Another key difficulty of the integrated optimization lies in the 
description of the interfaces between the components and supporting 
structures. In traditional density-based topology optimization such as 
the SIMP model-based method, it is known that the pseudo-density 
variables used to describe the material layout are always defined  
with respect to a fixed finite element mesh, i.e. one pseudo-density is 
related to one element. However, for an integrated layout and 
topology optimization problem, components’ positions will be 
designed simultaneously with the material layout of the supporting 
structure. Consequently, the finite element mesh of the design domain 
has to be updated iteratively to follow the variations of the component 
positions in a body-fit way. 

Suppose an intermediate topology pattern is generated as shown in 
Figure 5.9. The black and white colors denote the solid and void 
material properties, respectively. The optimization aims to update the 
geometry variables and pseudo-densities simultaneously. When  
the locations and orientations of the components are changed during 
the iteration, a new finite element mesh has to be generated to make 
sure the components are still embedded and joined together with the 
structure. However, after the remeshing, the pseudo-densities cannot 
find the previous corresponding elements and the structural material 
layout cannot be further updated. 

Accordingly, the method of density points is proposed to solve this 
confliction. The idea is to relate the pseudo-densities with the points 
rather than elements. To do this, some fixed points named density 
points are first defined in the design domain and the pseudo-densities 
are then attributed to these points. The material properties will be, in 
turn, spread out from these points to the neighborhood elements. 
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the design iteration. Both of them will cost much computing time. For 
this reason, the technique of embedded meshing is introduced to 
embed the components of designable locations and orientations in the 
design domain with fewer elements and easier mesh updating. As 
shown in Figure 5.11, the initial mesh of the design domain referred to 
as the basic mesh or background mesh is first created by fine 
quadrangular elements. The components are also meshed with refined 
element size. 

When the component is located in the design domain, as shown in 
Figure 5.12(a), Boolean operations have to be carried out in such a 
way that some elements of the basic mesh overlapping with the 
component, as indicated with gray color, will be refined locally to 
ensure the elements of the component are embedded in the design 
domain. The modified elements belonging to the design domain will 
also be restricted in the small square elements of the basic mesh as 
shown in Figure 5.12(b). Material properties of these elements will 
still be covered by the proper density points except those belonging to 
the components. In this way, only a few density points that  
are located around the component will cover more than one element, 
which avoids using a large number of the elements to mesh the whole 
structural system. Furthermore, when the component changes its 
location and orientation as shown in Figure 5.12(c), the basic mesh is 
simply restored and only the Boolean operations and modification of 
the affected elements will be repeated at the new position, rather than 
remeshing the global system. The final element mesh is shown in 
Figure 5.12(d). 

 

Figure 5.11. Basic mesh with density points and the component mesh 

Basic mesh Component mesh

Density Points
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Figure 5.12. Process of embedded meshing 

5.3.2. Superelement and semi-analytical sensitivities 

To enhance the design efficiency, components can generally be 
modeled as a superelement whose stiffness matrix can be  
analytically calculated as a function of its orientation. Only the DOFs 
associated with boundary nodes of the component are retained, while 
the interior DOFs are condensed. The reduced stiffness matrix is thus 
expressed as 

1
bb bi ii ibψ

−−= K K K ΚK  [5.28] 

Note that the submatrices correspond to the following partitioned 
matrix form of the boundary and interior DOFs 

ii ib

bi bb
ψ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

K K
K

K K
 [5.29] 

 
a) 

 
b) 

 
c) 

 
d) 
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Clearly, when the component location is modified by translation in 
the design procedure, the stiffness matrix of the superelement remains 
unchanged. In contrast, when the design modification concerns the 
change of its orientation angle θ, the stiffness matrix can be 
analytically calculated in a cost-effective way by means of the 
following transformation: 

*T(θ) (θ) (θ)ψ ψ=K T K T  [5.30] 

Meanwhile, the stiffness matrix of the superelement can be 
calculated only once for all the identical components. 

During the sensitivity analysis, the global stiffness is partitioned 
into three parts contributed from connecting structure, transitional 
structures and components; 

( ) ( )
1 1

K K K K
c cn n

S T ψ ψ
ψ ψ= =

= + +∑ ∑  [5.31] 

K(S) is the stiffness matrix of the connecting structure, K(T)ψ is the 
transition stiffness matrix of the ψth component and Kψ is the stiffness 
matrix of the ψth component.  

The differentiation of the finite element static equation with respect 
to sj of component j gives 

( ) ( )
( ) ( )

1 1 1 1
( ) ( ) 0

K K K UU K K K
c c c cn n n n

S T
S T

j j j js s s s
ψ ψ

ψ ψ
ψ ψ ψ ψ= = = =

∂ ∂ ∂ ∂+ + + + + =
∂ ∂ ∂ ∂∑ ∑ ∑ ∑  [5.32] 

While the derivative of the system strain energy with respect to sj is 
expressed as 

( ) ( ) ( )
1 1

( ) ( ) ( )

1 1

1 1 ( )
2 2

1 ( )
2

U Uf U K K K

K K K
U U

c c

c c

n n
T T

S T l C l
l lj j j

n n
S T l C lT

l lj j j

C
s s s

s s s

= =

= =

∂ ∂ ∂= = + +
∂ ∂ ∂

∂ ∂ ∂
= − + +

∂ ∂ ∂

∑ ∑

∑ ∑
 [5.33] 
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K(S) is independent of sj. The derivative term is then equal to  
zero. For K(T)ψ, the derivative can be calculated by finite difference so 
that 

*
( ) ( ) ( )

1 1

K K Kc cn n
T T T

j js s
ψ ψ ψ

ψ ψ= =

∂ −
=

∂ Δ∑ ∑  [5.34] 

For Kψ, it is only sensitive to the rotation angle θj of its own, i.e. 
when j=ψ. The derivative of Kψ can be simplified as 

1

0 ,

( ) ( )
( ) ( ) ,

K
T T

K T T K

c
j jn

T
j j j jT

j jl j j j j j j j
j j

s θ

θ θ
s θ θ s θ

θ θ

ψ

=

≠⎧
∂ ⎪

= ∂ ∂⎨∂ + =⎪ ∂ ∂⎩

∑  [5.35] 

The sensitivity of global strain energy with respect to  
the pseudo-density variables can be derived analytically, which  
can be found in many existing literatures and will not be provided 
here. 

Consider a rectangular domain of 0.4 m × 0.5 m containing nine 
identical rectangular components of 0.05 m × 0.1 m, as shown in 
Figure 5.13. The rectangular domain is meshed with 40 × 50 four-
node quadrilateral membrane elements and each component is 
modeled as a superelement containing 25 × 50 four-node membrane 
elements. Two point-wise forces and a moment approximated  
by a pair of equal and opposite forces are applied on the structure. The 
right part of the upper edge and the lower part of the left edge are 
fixed. To avoid possible overlapping during the optimization,  
each component is approximated with eight circles. Due to the 
presence of nine components, the volume fraction of the domain is 
limited to 27.5%. In this way, the final configuration is mainly 
composed of the components. Here, the elastic modulus of the  
design domain and the components are 7 × 1010 Pa and 2 × 1011 Pa, 
respectively. 
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Figure 5.13. Integrated optimization of a nine-component problem 

The evolution of the design configuration is shown in Figure 5.14. 
Nine components move inside the design domain together with the 
progressive appearance of the structural framework. The  
final optimized design is shown in Figure 5.15(a). For the purpose of 
comparison, Figure 5.15(b) shows the optimized configuration 
without components, obtained by standard topology optimization  
with a 50% volume fraction. It is observed that the components’ 
packing design and the structure topology design are integrated 
simultaneously. 

 

Figure 5.14. Design iterations of a nine-component system 

0.5m

0.4m
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(a) 4th iteration              (b) 8th iteration 

     

(c) 11th iteration             (d) 15th iteration
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                                    a)                                             b) 

Figure 5.15. Comparison of the integrated optimization  
and the standard optimization: a) integrated optimization, 

 C = 28.4 J; b) standard optimization, C = 34.6 J 

5.3.3. Decomposition optimization strategies 

Considering the nature of the integrated optimization, 
decomposition optimization strategies are used by means of the 
Kuhn–Tucker optimality condition to carry out the packing design and 
topology design separately, which makes it possible to explore better 
optimization solutions. In packing optimization, only geometry 
variables are optimized iteratively, while the pseudo-density design 
variables are considered as fixed parameters and will be updated  
in topology optimization. Likewise, in topology optimization, only 
pseudo-density variables are optimized iteratively with the location 
design variables fixed. In this context, two decomposition 
formulations, i.e. parallel design strategy and sequential design 
strategy, are tested. 

In order to have the feature of the considered optimization 
problem, the formulation can be written in a general form 

( )
( ) ( )

min : ,

. .: ,  

f

s t ≤ ≤

η S
h η 0 g S 0

 [5.36] 

This formulation is characterized by the fact that two kinds of 
design variables are separated at the level of constraints but coupled 
by the objective function. Based on the Kuhn–Tucker optimality 
condition, the corresponding Lagrangian function is expressed as 



Integrated Layout and Topology Optimization     181 

( ) ( ) ( ) ( ), , , , T TL f= + +η S μ λ η S μ h η λ g S  [5.37] 

According to the stationary condition, it follows that 

0

0

T

T

L f

L f

∂ ∂ ∂= + =
∂ ∂ ∂
∂ ∂ ∂= + =
∂ ∂ ∂

hμ
η η η

gλ
S S S

 [5.38] 

The satisfaction of optimality conditions implies that the original 
optimization problem is split into two subproblems and each of them 
contains only one kind of design variable. 

( ) ( )
( )

( ) ( )
( )

1 0

2 0

min : ,

. . : 0

min : ,

. . : 0

f f

s t

f f

s t

=

≤

=

≤

η η S
h η

S η S
g S

 [5.39] 

 

Figure 5.16. Parallel design strategy (V: variables, P: parameters) 
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Figure 5.17. Sequential design strategy  
(V: variables, P: parameters) 

The advantage of this decomposition is twofold. On the one hand, 
the problem scale can be reduced to some extent and each subproblem 
can be solved independently at the current step. On the other hand, 
proper approximation concepts and optimization algorithms can be 
applied independently for pure topology optimization and packing 
design, because the nature of each set of design variables is different.  
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This is beneficial in improving the computing efficiency and iteration 
convergence. Here, two design strategies, i.e. parallel strategy and 
sequential strategy, are tested in order to save computing time and 
achieve high-quality convergence of optimization. Parallel strategy 
refers to the parallel running of two subproblems independently. The 
flowchart is illustrated in Figure 5.16.  

In contrast, the flowchart of sequential design strategy is illustrated 
in Figure 5.17. The main difference from the parallel strategy is that 
two kinds of design variables are updated sequentially. 

 

 

Figure 5.18. Cantilever beam with three components 

A cantilever beam with three components is presented here to 
investigate different design strategies, i.e. simultaneous design, 
parallel design and sequential design. As shown in Figure 5.18, the 
sizes of the three components are different. Material properties are the 
same as in the previous examples. 

As shown in Figure 5.19, the optimized designs achieved by three 
design strategies are different in the component layout, while the final 
values of structural strain energy are quite close to each other. This 
confirms the existence of multiple minima for this kind of NP-hard 
problem. 
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Figure 5.19. Optimized designs obtained with three design strategies 

Besides, it is shown in Figure 5.19(a) that about 40 iterations are 
required by the simultaneous strategy and oscillations take place at 
iteration 8 and iteration 13. This is because few materials are available 
to connect the shortest component as shown in Figure 5.20(a). The 
values of local pseudo-density variables covered by the component 
reach the lower bound instantly due to its movement and they are 
quickly recovered after several iterations. After the 13th iteration, only 
slight changes occur for the component positions so that the iteration 
history becomes stable. 

For the parallel design strategy, nearly the same iteration number is 
required. However, oscillations become more serious because the 
coupling between two sets of design variables is greatly weakened. 
Instead, one such coupling is relatively strengthened by the sequential 
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design strategy so that the corresponding iteration history shown in 
Figure 5.19(c) converges smoothly. 

 

Figure 5.20. Optimization iterations with three design strategies 

5.4. MPC-based component-structure connections 

In many practical industrial cases, components and supporting 
structures are mostly assembled together by rivets or bolts with the 
connecting positions designated in advance as shown in Figure 5.21. 

 
Iter. 2 (C=49.6 J) Iter. 4 (C=22.5 J) Iter. 7 (C=12.0 J) Iter. 8 (C=33.0 J)

 
Iter. 12 (C=8.1 J) Iter. 13 (C=24.7 J) Iter. 19 (C=6.4 J) Iter. 25 (C=4.5 J)

(a) Simultaneous design optimization

 
Iter. 3 (C=54.5 J) Iter. 4 (C=45.4 J) Iter. 9 (C=12.1 J) Iter. 13 (C=59.8 J)

 
Iter. 14 (C=13.2 J) Iter. 18 (C=5.1 J) Iter. 20 (C=60.4 J) Iter. 21 (C=8.7 J)

(b) Parallel design optimization

 
Iter. 3 (C=23.9 J) Iter. 6 (C=9.0 J) Iter. 7 (C=16.8 J) Iter. 8 (C=8.4 J)

 
Iter. 9 (C=12.8 J) Iter. 10 (C=6.9 J) Iter. 18 (C=4.5 J) Iter. 25 (C=4.4 J)

(c) Sequential design optimization
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The components are actually floating on the surface of the topological 
design domain and direct nodal connections are not applicable. Here, 
we propose to use multipoint constraints (MPCs) to define rivet or 
bolt connections. The displacement consistence is strictly maintained 
by satisfying the MPC equations. When the components move, only 
the MPC connections are rebuilt at new positions. In this way, the 
advantages of remesh-free, analyticity as well as the precise material 
description, are simultaneously maintained. 

 

Figure 5.21. Connections between components and supporting structures 

To use MPC as the connections, the topological design domain and 
the components are discretized, respectively, into finite elements as 
illustrated in Figure 5.22. Assume M1 is one of the connecting nodes 
on the component, which is projected to the point M1

* inside the 
structural element e1. Then, we enable the following MPC equation. 

( )
( )

*
1 1

*
1

*
1 1 1

1

1

1 ee

e e

⋅

− =

=

⋅

=M M

M

U U N U

U U

M

MN 0
 [5.40] 

where UM1 and U*
M1 denote the displacement vectors of node M1 and 

point M1
*.Ue1 and Ne1(M1

*) are the displacement vectors of the 
element e1 and the shape function coefficient matrix at the point M1

*. 

Note that the MPC equation is a linear combination of the nodal 
displacements. Multiple MPC equations as well as the boundary 
conditions can be organized as the following linear equations. 

=HU 0  [5.41] 
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where H is the coefficient matrix determined by the shape functions  
of the connected elements, connection positions and boundary 
conditions. U is the global displacement vector. 

 

Figure 5.22. Definition of MPC connections 

Considering the above displacement constraints, the revised form 
of the overall potential energy of the global system can be expressed 
as: 

T T T1( , )
2

Π = − +λ K FU U U λU HU  [5.42] 

where K and F are, respectively, the global stiffness matrix and the 
global nodal load vector. λ is the Lagrange multiplier vector. The 
stiffness matrix can be expressed as 

1

2

c

s

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K 0 0 0 0
0 K 0 0 0
0 0 K 0 0K
0 0 0 0
0 0 0 0 K

O

 [5.43] 

Ks is the stiffness matrix of the supporting structure. K1, K2 and 
Knc, respectively, stand for the stiffness matrices of the first, second 
and ncth components. Similar definitions are used for the global  
load vector and displacement vector. Then, we apply the stationary 
conditions and obtain: 
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T⎧ +
⎨
⎩ =

=K H λ FU
HU 0

 [5.44] 

By solving the above equations, the displacement vector U  
and Lagrange multiplier vector λ can be finally obtained. Similar 
explanations of MPC equations can be found in some existing works 
such as Ainsworth [AIN 01] and Yoon et al. [YOO 04]. Typically, to 
move the components during the optimization iteration, we only have 
to relocate the finite element models of the components at the new 
positions and rebuild the MPC equations. Since there are no direct 
nodal connections between the components and the supporting 
structures, the element remeshing is avoided in this procedure. 

Considering the sensitivity analysis, the differentiation of the static 
equation with respect to the pseudo-density variable ηi can be written 
as: 

T

=
i i iη η η

∂ ∂ ∂ −+
∂ ∂ ∂

K (F H λ)K UU  [5.45] 

Assuming F=Fm+Fg, where Fm and Fg stand for design independent 
external loads and design dependent inertial loads, respectively, we 
have: 

T T
g( ) ( )

i i iη η η
∂∂ − ∂= −

∂ ∂ ∂
FF H λ H λ  [5.46] 

Then, we have the derivative of the overall strain energy: 
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where the derivatives of the inertial load vector Fg and the stiffness 
matrix K can be easily obtained according to the material interpolation 
model for the element mass and stiffness. 

The derivative of the strain energy with respect to the geometry 
design variable sj is similarly written as: 

T
T T1

2j j j

C
s s s

∂ ∂ ∂= − −
∂ ∂ ∂

U UH Kλ U  [5.48] 

Suppose sj is a translational variable of the jth component, both the 
stiffness matrix of the supporting structure and the components will 
remain unchanged after a translational moving. So, we yield: 

T
T

j j

C
s s

∂ ∂= −
∂ ∂

HU λ  [5.49] 

If sj is a rotational variable, the derivative of the stiffness matrix 
can be done in a similar way to equations [5.30]–[5.35]. 

Figure 5.23 illustrates an example. A hexagonal plate with a 
thickness of 0.036 m is discretized into three layers of total 18,000 
solid hexahedron elements. External loads are applied at three 
different positions. Each position has four nodes and a 500 N 
downward force has been applied on each single node. The design 
domain is described with six large circles by FCM. The elastic 
modulus and the Poisson’s ratio are 7.0 × 1010 Pa and 0.3. 

The first two identical six-foot components are approximately 
described by four circles. Their elastic modulus and the Poisson’s 
ratio are 1.1 × 1011 Pa and 0.3. The elastic modulus and the Poisson’s 
ratio of the second group of two four-foot components described by 
three circles are 2.0 × 1011 Pa and 0.3. Detailed configurations of the 
components are illustrated in Figure 5.24 and all four components are 
connected to the supporting structure surface through the nodes in 
their foot areas. 
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There are in total 109 non-overlapping constraints aggregated by 
the improved adaptive method based on KS function in this problem. 
The material volume fraction is constrained to 0.4. 

 

Figure 5.23. Optimization problem with four components 

 
                                                             a) 

 
                                                              b) 

Figure 5.24. Detailed illustrations of the components: a) the  
3D models of two sets of components; b) circle approximation by FCM 

As shown in Figures 5.25(a–g), clear structural topologies are 
obtained and all four components find their proper locations to 
reinforce the structure locally. The optimization converges after 70 
iterations with the global strain energy decreasing smoothly from an 
initial 11.267 J to a final value of 0.877 J as plotted in Figure 5.26. In 
the optimized design, it is found that the two four-foot components are 
relatively ineffective in carrying loads, which ultimately behave as the 
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adhering and reinforcing components. In contrast, the six-foot 
components are much stiffer and they are thus located on the key load 
carrying path.  

 

Figure 5.25. Design iterations of structural topology and components’ layout 

For the purpose of comparison, this problem is solved again with 
the existing adaptive constraint aggregation approach [MAR 05,  
POO 07] based on KS function. The final structural topology shows 
that the optimization does not converge after 70 iterations, as shown in 
Figure 5.25(h). Its final global strain energy is also higher than that 

(a) iteration 20 (b) iteration 30

(c) iteration 40 (d) iteration 50

(e) iteration 60 (f) iteration 70 (front view)

(g) iteration 70 (back view) (h) final design obtained by the existing 
adaptive constraint aggregation approach
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obtained by the improved approach in Figure 5.26. The final design is 
also found to be infeasible due to overlapping between one component 
and the design domain boundary. The iteration histories of aggregated 
constraints using the improved adaptive approach and the existing 
adaptive approach are shown in Figure 5.27. 

 

Figure 5.26. Iteration history of the global strain energy 

 

Figure 5.27. Iteration history of aggregated constraint 

The evolutions of aggregation parameters and their derivatives in 
both adaptive approaches are also shown in Figures 5.28 and 5.29.  
It is found that the aggregation parameters and the derivatives of 
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aggregated constraints obtained by the improved adaptive approach 
show a convergent and stable history, while those calculated by the 
existing approach stay divergent during the whole optimization.  

 

Figure 5.28. Iteration history of aggregation  
parameters obtained by both approaches 

 

Figure 5.29. Comparison of |dKS/dτ| calculated by both approaches 
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Figure 5.30. Multicomponent layout design  
of a four-satellite supporting system 

Integrated optimization was recently applied to design a launching 
vehicle structure which supports four satellites as shown in Figure 
5.30. One satellite was located on the top and three satellites were 
evenly located on a lower plate. The orientation of the top satellite and 
distances of the lower satellites to the central axis are assigned as the 
geometry variables. The supporting structure below the plate was 
assigned as the topological design domain. The objective is to 
maximize the designated natural frequencies. A prescribed weight 
limit together with several other design constraints on the structural 
symmetry, such as inner space for other devices, etc., has been 
considered in the design. Figure 5.30 shows the topology optimization 
result and the final engineering design. Compared with the original 
design, the optimization has increased the fundamental natural 
frequency by 17% and reduced the weight by 7%. 

5.5. Integrated optimization based on implicit model 

5.5.1. Implicit representation of component geometry 

In topology optimization, the density-based method has been 
acknowledged as a promising method with countless extensions and 
industrial applications and is commonly used with different material 
interpolation schemes. The proposed integrated optimization using 
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density points, embedded meshing and MPC has proved effective in 
obtaining reasonable optimization design. Here, new schemes based 
on the implicit model will be presented including improvements in 
components modeling and sensitivity analysis.  

The FE discretization of an integrated system with a circular 
component and a square host structure illustrated in Figure 5.31(a) can 
be considered as a local Lagrangian mesh as shown in Figure 5.31(b). 
The adjacent elements attaching to the moving boundary of the 
component need to be locally refined by adding transition elements. 
Although the Lagrangian mesh provides the accuracies of geometry and 
material distribution, in some case it will fail to prevent poor element 
qualities and difficulties in mesh generation and design iterations. 

Here, we employ a fixed Eulerian mesh, as shown in  
Figure 5.31(c). As the material interfaces do not coincide with the real 
geometrical interface, the discontinuity of material properties over 
adjacent elements attaching to the boundary is smoothed 
approximately [QIA 04, CHE 07]. Such a regular mesh type 
automatically favors standard topology optimization related to a fixed 
FE mesh. Obviously, a refined mesh shown in Figure 5.31(d) will 
increase the computing accuracy at the cost of computing time. 

 
            (a)                            (b)                           (c)                           (d) 

Figure 5.31. Different meshing strategies: a) initial material layout,  
b) local Lagrangian mesh, c) Eulerian mesh and d) refined Eulerian mesh 

By means of the level set method and R-function theory, the free-
form shape of a component can be represented by an implicit function. 
This is an alternative method to explicit parameterization such as 
Bezier, Nurbs curves and surfaces for B-reps, and can be well adapted 
to the Eulerian mesh. As shown in Figure 5.32(a), a 3D level set 
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function Φ(x) is constructed according to the center coordinates and 
radius of a circular component in Figure 5.32(b). Suppose x denotes 
the coordinates of a point in the design domain D. Φ(x) then 
corresponds to 

inside , if ( ) > 0
on Γ, if ( ) = 0
outside , if ( ) < 0

Ω Φ⎧
⎪ Φ⎨
⎪ Ω Φ⎩

x x
x x
x x

 [5.50] 

where Φ(x)>0, Φ(x)<0 and Φ(x)=0 denotes the solid, void and 
boundary, respectively. 

 
                                      a)                                                        b) 

Figure 5.32. Level set representation: a) 3D-level  
set model; b) 2D design domain 

Likewise, we can resort to R-functions for the implicit 
representations of complicated boundary shapes. The mathematical 
formulation is based on the following Boolean operations on 
constitutive functions. 

2 2
1 0 2 1 2 1 2

1 2
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1 0 2 1 2 1 2
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 [5.51] 

For example, a rectangular domain Ω with dimensions of a × b can 
be represented by the R-function as 
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2 2
1 2 1 2 1 2

2 2
1

2 2
2

0
0

f f f f f

f a x
f b y

−
⎧ = + − +
⎪⎪
⎨ = − ≥
⎪

= − ≥⎪⎩

 [5.52] 

Such interesting features provide great flexibility in shape 
representation of components. The component geometry can be 
decomposed into several basic elements, such as rectangles, ellipses, 
etc. Through R-function-based Boolean operations, such a complex 
geometry could be implicitly represented. The following equation 
gives a possible implicit representation function formation for  
ellipse: 

2 2

1 c cx x y yf
a b
− −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 [5.53] 

where (xc, yc) gives the center coordinate of the ellipse and a and b are 
the radii in two axes.  

Theoretically, with the Boolean operations we can implicitly 
represent shapes of any complexity in required precision with an 
unlimited number of basic elements. Although the constructed implicit 
function could be too complicated to be expressed in an  
exact formulation after several levels of Boolean operations,  
its exact formulation is not a necessity in the optimization design. 
Suppose Φψ  is an implicit function representing the higher 
dimensional shape representation function of the ψth component. Sψ 
represents the set of involved shape parameters, e.g. length,  
width, radius, etc. Such an implicit representation makes it possible to 
construct higher dimensional shape representation functions 
analytically. 

For the structural elements in the design domain, we take the SIMP 
model penalizing the material properties, for example: 

( ) 0

0

i i

i i

pE E
v v

η
η

⎧ =⎪
⎨
⎪⎩ =

 [5.54] 
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where ηi is the pseudo-density variable of the element i, and p is the 
penalty factor (typically p = 3). Ei is the element Young’s modulus 
and E0 is the Young’s modulus of solid material.  

For the components, suppose the ψth component has a 
homogenous Young’s modulus Eψ. xi denotes the centroid coordinate 
of element i in the Cartesian coordinate system. As a result, a standard 
material interpolation model is formulated. 

( ) ( )0 0
1

( ( , ))
cn

p
i i iE E A E Eψ ψ ψ

ψ
η

=

⎛ ⎞
= + Φ −⎜ ⎟

⎝ ⎠
∑ x S  [5.55] 

A(Φψ(xi,Sψ)) acts as a compressing function to transform values of 
Φψ(xi,Sψ) into the range of 0–1. One of its expressions can be written 
as: 

( ) arctan( ) 1Α
π 2

tt Δ= +  [5.56] 

its derivative w.r.t. t is then analytically expressed as: 

( )
( )2 2

dΑ
d π

t
t t

Δ=
Δ +

 [5.57] 

Figure 5.33 shows A(t) and its derivative at different values of Δ. 
Obviously, Δ  of a small value might lead to instabilities in sensitivity 
analysis, while a large Δ may result in imprecise modeling. In fact, Δ  
controls the local approximation smoothness of material discontinuity 
over the boundary region. An alternative choice of the compression 
function is the modified Heaviside function, which is a piecewise-
function but has a similar effect to the above function. 
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Figure 5.33. Curves of A(t) and its derivative  
of different Δ value with respect to t 

To have a clear idea, the following equations give the level set 
functions representing a circle and a rectangle illustrated in  
Figures 5.34 and 5.35. Using Δ = 4, the compression functions A(Φ) 
are correspondingly shown. 
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Figure 5.34. Compression of a circle representation function. For a color 
version of this figure, see www.iste.co.uk/zhang/topology.zip 

 

Figure 5.35. Compression of a rectangle representation function. For  
a color version of this figure, see www.iste.co.uk/zhang/topology.zip 
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Figure 5.36. Illustration of a component with two material phases 

It is easy to decide the material properties of the elements inside 
and outside the ψth component, respectively. Notice that each 
component is assumed to be homogeneous with elasticity Eψ. In fact, 
equation [5.55] can be generalized to variant material models when 
multiphase materials are involved in a component. For instance, 
consider a two-phase component consisting of materials with elastic 
moduli Eψ1 and Eψ2 as shown in Figure 5.36. Φψ1 and Φψ2 denote the 
geometry of different material phases in the ψth component. The 
material model can be defined as: 

( ) ( ) ( )( )0 1 1 0 2 2 1A( ( , )) A( ( , ))p
i i i iE η E E E E Eψ ψ ψ ψ ψ ψ ψ= + Φ − + Φ −x S x S  [5.59] 

Clearly, whatever the complexity of the component shape, the 
number of material phases, and the number of involved components, 
the material model can be constructed in a generalized manner: 

( ) ( )0 0 1
1 1

A( (x , )) , ,...,
c nn

p
i i iE E f E E E

ψ

ψψς ψ ψ ψ ψ
ψ ς

η
= =

⎛ ⎞
= + Φ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ S n  [5.60] 

in which nψ denotes the number of material phases related to the ψth 
component and fψ defines the composition function of related material 
phases. 

Structure
Material E0

Component
Material Phase 1    Eε1

Component
Material Phase 2    Eε2
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5.5.2. Sensitivity analysis and examples with implicit 
functions 

The sensitivity analysis with respect to the pseudo-density 
variables is similar to the standard topology optimization and will not 
be provided here. Suppose sψ  represents one of the geometry design 
variables xψ, yψ, θψ  of the ψth component. The derivative of the 
element elastic modulus with respect to sψ is 

( ) ( )

( ) ( )

0 0 1
1 1

1

A( ( , )) , ,...,

A( ( , ))

c

ψ

nn
p

i i

n
p i

i 0 ψ1 n

i

ψ

η E f E E E
s

η f E ,E ,. ,E

E

..
s

ψ

ψ

ψ

ψς ψ ψ ψ ψ
ε ςψ ψ

ψ ψ
ψ

ψ

ξ = =

=

⎛ ⎞
+ Φ⎜ ⎟⎜ ⎟

⎝ ⎠
Φ

=

∂ ∂=
∂ ∂

∂
∂

∑∑

∑

x S

x S

n

ς

ς

[5.61] 

By applying the chain rule, the above equation can be further 
expressed as: 

( ) ( )0 1
1

A( ( , )) ( , )
, , ,

( , )

n
p i i

i n
i

i η f E E E
s s
E ψ

ψ

ψ ψ ψ ψ
ψ ψ ψ

ψ ψ ψ ψ=

∂∂ =
∂

Φ Φ
Φ∂ ∂

∂
∑

x S x S
x S

ς ς

ς ς
L [5.62] 

Submitting the derivative of the compressing function, we finally 
have: 

( ) ( )
( )( )2

1

( , )

π 1 ( )
ψ

n
0 ψ1 ψnp i

i

i

i
f E ,E ,...,E

η
s
E

s

ψ ψ ψς ψ

ψ ψψ
=

∂Φ

+ Φ
=

Δ

∂
∂ ∂∑

x S

xς ς

 [5.63] 

For a certain component with its implicit function, i.e. Φψ(xi,Sψ), 
its derivative can be analytically calculated according to the explicit 
relationship between the function and the component location design 
variables. For example, if the ψth component is a circle, the higher 
dimensional function used for implicit representation can be 

( ) ( )2 22( , , ) i ix y R x x y y
ψψ ψ ψ ψ ψ ψΦ = − − − −x  [5.64] 
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Thus, the derivatives of the above function with respect to xψ and 
yψ  are: 

( )

( )

( , , )
2

( , , )
2

i

i

x y
x x

x
x y

y y
y

ψ ψ ψ ψ
ψ

ψ

ψ ψ ψ ψ
ψ

ψ

∂Φ⎧
= −⎪ ∂⎪

⎨∂Φ⎪ = −⎪ ∂⎩

x

x
 [5.65] 

If the ψth component is a rectangle, the higher dimensional 
function used for representation is composed with two subfunctions as 
follows: 

( ) ( )

2 2
1 2 1 2

2 22 2
1 2

( , , , ) ( ) ( ) ( ) ( )

( ) b ; ( ) a

i i i i i

i i

x y θ f f f f

f y f x

ψ ψ ψ ψ

ψ ψ ψ
∗ ∗

⎧Φ = + − +⎪
⎨

= − = −⎪⎩

x x x x x

x x ε

 [5.66] 

Note that rotational location design variables need to be considered 
for a rectangular component. x*

ψ and y*
ψ are transformed variables of 

xψ and yψ with respect to θψ. 

cos sin
sin cos

i

i

x θ θ
θ

x x
yθ yy

ψ ψψ ψ

ψ ψ ψψ

∗

∗

⎧ ⎫ −− ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ −⎪ ⎪⎣ ⎦⎪ ⎪ ⎩ ⎭⎩ ⎭
 [5.67] 

Thus, the derivative can be calculated by the chain rule as follows: 

1 2 1 2
1 22 2

1 2

( , , , ) 1i x y f f f ff f
s s s s sf f

ψ ψ ψ ψ

ψ ψ ψ ψ ψ
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x θ
 [5.68] 

The derivatives of the two subfunctions are 

( ) ( )( )
1

2 sin ,

2 cos ,

2 sin cos ,i i

θ

θ

y s
f

θ θ θ

y s
s

y y y x x s

ψ ψ ψ ψ

ψ ψ ψ ψ
ψ

ψ ψ ψ ψ ψ ψ ψ

∗

∗

∗

⎧ =⎪∂ ⎪= =⎨∂ ⎪
− − −⎪⎩

x

y

=

 



204     Topology Optimization in Engineering Structure Design 
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 [5.69] 

A variety of numerical tests are solved here to illustrate the 
effectiveness and flexibility of the proposed implicit model. A  
100 mm × 200 mm rectangular design domain is discretized with  
100 × 200 quadrangular plane stress elements, as shown in  
Figure 5.37(a). The Young’s modulus of structural elements is 1 MPa, 
and the Poisson’s ratio is 0.3. A 1 N force is applied on the middle 
point of the right edge and the left edge is fixed. A pure topology 
optimization without component is first tested for the purpose of 
comparison, and the solution is given in Figure 5.37(b) with a 50% 
volume fraction.  

 

Figure 5.37. The definition of the design domain  
and a standard topology optimization result 

Then different variants of void components are tested under the 
same conditions. If we introduce three circular holes, an extremely 
small value of Young’s modulus is thus attributed to the elements 
inside the hole. Because the initial configuration is symmetrical, the 
hole is placed in an asymmetric location to generate an original 
perturbation in sensitivity analysis.  

(a) Design domain 

 
(b) Topology optimization result 
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Figure 5.38. Integrated optimization with three holes 

The three holes are initially located at the coordinates (50 and  
70 mm), (100and 30 mm) and (150 and 70 mm). As shown in  
Figure 5.38, two of the three holes move quickly toward both ends of 
the design domain and the middle one finds its position in the right 
part. The existence of the holes does not break the integrity of the 
structure, but slightly changes the material distribution of the 
structure.  
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In some cases, it is necessary to keep the shapes of the holes as 
functional parts. Therefore, tolerance zones surrounding the holes 
makes sense in design. Two-phase circular components are defined 
using R-function. In contrast from the above case, the circular 
component possesses a certain volume. Therefore, we restrict the 
volume of the structure together with the component. Figure 5.39 
gives the design evolution process and the convergence history. All 
components are embedded as basic loading parts of the integrated 
structure due to their stiffness. 

 

Figure 5.39. Integrated optimization with three holes with tolerance zones 

The proposed model can easily be extended to three-dimensional 
problems. On the one hand, a fixed FE mesh greatly simplifies the 
modeling process. On the other hand, the implicit representation of 
components greatly saves computational cost in sensitivity analysis 
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w.r.t. location variables. Take a cuboid design domain (30 mm ×  
60 mm × 90 mm for example), discretized with 30 × 60 × 90 uniform 
eight-node cubic elements. Material property of the structure is the 
same as the previous example. The left end of the beam is fixed and a 
force of 1 N is applied on the bottom edge of the right end. Two solid 
sphere components with radius 10 mm and Young’s modulus 2 Mpa 
are initially located at the coordinates (15, 30 and 30 mm) and (15, 60 
and 30 mm). The volume constraint is set as 18.5%, including the 
volume occupied by the sphere component. Similarly to the 2D 
situation, the sphere components move quickly to the fixed end and 
the loading end due to its high modulus. The optimization evolution is 
shown in Figure 5.40.  

 

Figure 5.40. Integrated optimization with two sphere components.  
For a color version of this figure, see www.iste.co.uk/zhang/topology.zip 

5.5.3. Integrated optimization based on XFEM 

The integrated layout and topology optimization of 
multicomponent systems are further addressed within the XFEM 
framework here. XFEM using Eulerian mesh is based on a fixed mesh 

(a) initial state (b) iteration 6 (c) iteration 10 

(d) iteration 22 (e) iteration 32 (f) final result 
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that works with the level set method, which was first proposed by 
Osher and Sethian [OSH 88], to represent moving interfaces and has 
been extensively applied to structural optimization [ALL 04b,  
WAN 03, LUO 07, LUO 08]. XFEM has the advantage of handling 
problems with material discontinuities across elements. As shown in 
Figure 5.41, a material interface exists between the structure and 
embedded component when they have different material attributes. In 
order to model the local discontinuity, the standard finite element 
approximation within a narrow domain Ωenr is enriched in XFEM. 
Usually, the interface boundary shape is described implicitly as a 
curve of a higher dimension level set function.  

 

Figure 5.41. Local enrichment of the material interface with XFEM 

To favor the XFEM-based integrated optimization, a general 
formulation of the strain energy is stated as 

( ) ( ) ( )T1
2D

C d= ⋅ ⋅ Ω∫U ε U D ε U  [5.70] 

where D is the material elastic matrix. ε is the strain vector. In the case 
of material–void interface problems (e.g. a hole in the structure), 
XFEM is always implemented by neglecting the integration over the 
void part [WEI 10, VAN 07], such as 

( ) ( ) ( ) ( )T1
2D

C H d= ⋅ ⋅ ⋅ Φ Ω∫U ε U D ε U  [5.71] 
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But for a material–material interface problem (e.g. solid 
component and supporting structure), additional degrees of freedom 
have to be introduced in the enriched domain. As a result, the global 
strain energy can be calculated as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

* *

T T

T

1 1
2 2

1 , ,
2

b c

enr

b cC d d

d

Ω Ω

Ω

= ⋅ ⋅ Ω + ⋅ ⋅ Ω

+ Φ ⋅ Φ ⋅ Φ Ω

∫ ∫

∫

U ε U D ε U ε U D ε U

ε U D ε U
 [5.72] 

Here, the level set function is chosen as the signed distance 
function with the definition of 

( )
( )

, min
t

t
Γ

Γ∈Γ
Φ = ± −

x
x x x  [5.73] 

The sign is positive or negative when x is outside or inside the 
design domain boundary Γ(t). t is a pseudo-time describing the shape 
variation process of a component in shape sensitivity analysis. 

 

Figure 5.42. Partition of structural region and element classifications 
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Practically, the base domain is uniformly discretized with finite 
element meshes. Figure 5.42 shows the structural elements, 
component elements and enriched elements. The last set belongs to 
bimaterial elements and others are one-material elements. A  
bi-material element domain can be considered as a combination of the 
structure part and the component part. 

In XFEM, the level set surface is always approximated by discrete 
values at nodes and then interpolated over the elements by finite 
element shape functions as: 

( ) ( )h
i i

i I∈

Φ = Φ∑x N x  [5.74] 

where Φh(x) refers to the approximation of the level set surface. Ni 
denotes the standard finite element shape functions. I represents the 
set of all nodes in the domain. 

The material elastic matrix at a spatial point x within the structure 
can thus be expressed by the level set function Φh(x) and the 
Heaviside function H(). 

( ) ( ) ( )( )h
s c s H= + − ΦD x D D D x  [5.75] 

where Ds and Dc are the elastic matrices related to the structure and 
component, respectively. The above relationship means that any point 
x in the component domain (Φh(x) > 0) will have an elastic matrix 
equal to Dc. Otherwise, the elastic matrix will be equal to Ds. Once the 
coordinates of a spatial point in the structure are given, the material 
property can be determined. 

Under the XFEM framework, the displacement field is interpolated 
by 

( )
*

h
i i i i

i I i I

ϕ
∈ ∈

= +∑ ∑U x N U N a  [5.76] 

where Ui  is the nodal displacement vector of the standard FE part. ai  
is the additional nodal unknown vector. I *is the set of all enriched 
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nodes, which is a subset of I. Function ϕ  is the enrichment function 
whose selection depends upon the nature of the problem.  

For the integrated optimization with solid components, which is 
considered a weak discontinuity, the following function proposed by 
Moës et al. [MOE 03] can be used as the enrichment function: 

( ) ( ) ( )-i i i i
i I i I

ϕ
∈ ∈

= Φ Φ∑ ∑x N x N x  [5.77] 

In the case of material–void interface problems, there are no 
additional degrees of freedom, a change will be introduced in the 
approximation of displacement so that: 

( ) ( ) ( )h
i i

i I
H

∈

=∑U x N x x U  [5.78] 

Here, an analytical XFEM-based sensitivity calculation method is 
developed. The derivative of an element stiffness matrix Ke can be 
calculated via the chain rule: 

e e i

i I is sψ ψ∈

∂ ∂ ∂Φ=
∂ ∂Φ ∂∑K K  [5.79] 

The derivative of the structural strain energy with respect to nodal 
level set function value Φi can be written as: 

T
T T T1

2
enr e

e e
ei i i i

C d
∈Ω Ω

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂= − ⋅ + + Ω ⋅⎜ ⎟⎜ ⎟⎜ ⎟∂Φ ∂Φ ∂Φ ∂Φ⎝ ⎠⎝ ⎠
∑ ∫

B B DU B D DB B B U  [5.80] 

Due to the fact that any change of nodal level set function value Φi 
for a one-material element does not affect element stiffness matrices, 
it follows that: 

T1
2

enr

e
e e

ei i

C
∈Ω

⎛ ⎞∂∂ = − ⋅⎜ ⎟∂Φ ∂Φ⎝ ⎠
∑ KU U  [5.81] 
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Comparing the above two equations, the derivative of element 
stiffness matrix Ke can be written as: 

T
T T

e

e

i i i i

d
Ω

⎛ ⎞∂ ∂ ∂ ∂= + + Ω⎜ ⎟∂Φ ∂Φ ∂Φ ∂Φ⎝ ⎠
∫

K B B DB D DB B B  [5.82] 

The derivative of the geometry matrix B can be derived according 
to the discretization of the level set functions using the shape 
functions. The derivatives of the level set value with respect to the 
geometry variables can then be approximated by finite difference as: 

( ) ( )i ii
s s s

s s
ψ ψ ψ

ψ ψ

Φ + Δ − Φ∂Φ ≈
∂ Δ

 [5.83] 

Numerical examples with different component geometries are 
studied to verify the proposed approach. Here, the elastic modulus of 
the design domain and the components are 7 × 1010 Pa and 2 × 1011 Pa, 
respectively. The strain energy of the global structure is minimized 
subject to the non-overlapping constraints based on FCM. Besides, the 
volume fraction is constrained to 35% of the whole domain. 

 

Figure 5.43. Definition of the design domain  
and the finite circles for the components 

Figure 5.43 shows a 45 m × 30 m design domain discretized with 
45 × 30 four nodes quadrilateral finite elements. A point force of 
100,000 N is applied on the lower left corner. To avoid possible 
overlap between components, each of them is approximated with a 

F
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specific number of circles, as illustrated also in Figure 5.43. Iterative 
design patterns are shown in Figure 5.44. In the final design, three 
components act as essential parts of the structure due to their high 
elastic modulus. 

The convergence histories of the objective function and the volume 
fraction are also shown in Figure 5.44. It can be seen that the volume 
fraction reaches its upper bound. There also exists an oscillation of the 
volume fraction, caused mainly by the movements of components.  

 

Figure 5.44. The convergence history of the structural  
configuration, objective function and the structural volume 

Another example is to include two L-shaped solid components. 
The structural domain and boundary conditions are the same as in the 
previous example. As shown in Figure 5.45, each component is 
approximated with nine finite circles. Initial values of pseudo-
densities are set at 0.35. Iterative design patterns are shown in  
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Figure 5.46. Both components are properly placed as essential parts of 
the structure. The iteration history of the objective function has a 
stable convergence, as shown in Figure 5.46.  

 

Figure 5.45. Finite circles approximation  
of an L-shaped component 

 

Figure 5.46. The convergence history of the structural  
configuration, objective function and the volume fraction 

5.6. Conclusions 

Several important issues such as non-overlapping constraints and 
integrated modeling for integrated layout and topology optimization 
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are discussed in this chapter. First, based on the finite circle method, 
proper circle definitions are used to approximate the contour of the 
components and to formulate the non-overlapping constraints. To 
avoid using large numbers of non-overlapping constraints, an 
improved constraint aggregation method based on the KS function and 
a Steffensen iteration is proposed to aggregate the constraints into a 
single constraint. With an additional complex step derivative 
approximation, the design sensitivities can be precisely obtained.  

Second, based on body-fit modeling, density points and embedded 
meshing techniques are proposed to establish exact nodal connections 
between the components and to ensure the simultaneous optimization 
of different design variables. Instead of using global element 
remeshing, local embedded meshing and superelement techniques are 
used to improve the efficiency of the modeling process. The MPC 
connections between components and structures are later introduced to 
simulate bolt or rivet joints.  

The implicit model for the component is then introduced. The 
contour of the component is described by level set function. Elements 
located on the boundary of the component will thus have their 
material properties interpolated or described by XFEM. The 
movement of a component is actually represented by a movement of 
the component material property, without any element remesh. 
Benefitting from the fixed finite element, the design sensitivities with 
respect to the geometry design variables can be transferred into the 
derivatives of the level set functions and those with respect to the 
pseudo-densities in turn. The optimization iteration will thus avoid the 
procedures of finite difference or semi-analytical calculation with 
additional finite element analysis.  

Using the above techniques, integrated layout and topology 
optimization can be implemented in different numerical examples. 
The convergence of the objective functions, the effect of different 
optimization strategies, and the applications are discussed in detail 
with reasonable results obtained. 



6 

Optimization with Constraints on 
Multifastener Joint Loads 

6.1. Introduction 

In an assembled aircraft structure, bolts or rivets are widely used as 
multifastener joints. They are sometimes the weakest component of a 
structure due to the high intensity of joint load [NIU 88, BAR 92, 
WAN 00, CHI 10]. Earlier studies were focused on developing 
analytical and numerical methods for stress and failure predictions of 
multifastener joints. Typical models concerned panels joined by single 
or multiple joints, in which joint loads as well as stress distributions 
around pin holes, etc., are mostly analyzed [ROW 82, WAN 88,  
ZHA 96, CAM 97]. Poon and Xiong [POO 95] and Oh et al. [OH 97] 
considered the optimization of fastener joint locations, ply angles and 
stacking sequences of laminates, fastener diameters and edge 
distances, etc., to avoid the failure of fasteners. Bianchi et al. [BIA 07] 
developed an optimization procedure maximizing the load-carrying 
capability of the joint system to balance the number and size of bolts. 
Ekh and Schön [EKH 08] evaluated the effects of different parameters 
on the load distribution, such as the mismatch of member plates, 
length of the overlap region and the fastener’s stiffness. Optimization 
was then carried out to minimize the bearing stress. In the work of 
Oinonen et al. [OIN 10], a “weakest link” method was proposed to 
optimize the layout of fasteners for the bracket-to-beam joints. The 
design objective was to ameliorate Von-Mises equivalent strain as 
well as shear loads in the joints. 
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method is applied to deal with the above problem by introducing 
additional multifastener joint load constraints for the first time. Unlike 
the existing works, dominant shear loads over joints are controlled by 
optimizing the stiffness distribution of connected structures. In the 
calculation of shear loads, short beam elements are used to model 
multifastener joints with the negligence of bolt-hole clearance, clamp-
up and friction effects. The proposed optimization method can be 
considered an effective way to limit the joint loads during the design 
procedure of assembled aircraft structures. Meanwhile, designers can 
also benefit from the optimized load carrying path for detailed 
structure design. 

6.2. Joint load calculation and sensitivity analysis 

In the topology optimization model, a precise calculation of shear 
loads in fasteners can involve deep studies of relative displacements of 
hole centers, fastener deformation, conforming contact between 
fasteners and member plates as well as effects of fastener clamp-up, 
friction and out of plane deformation, etc. This brings extra 
complexities and intractable computational difficulties. Here, 
multifastener joints are approximated by numbers of beam elements as 
used by Chickermane et al. [CHI 99], Ekh and Schön [EKH 08]. 

For a short beam of two nodes A and B shown in Figure 6.2, the 
total shear load is calculated as: 

2 2
j jx jyF F F= +  [6.1] 

with: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3 2 2

3 3 2 2

2

12 12 6 6
1 1 1 1

12 12 6 6
1 1 1 1

12

jx jAx jBx jAy jBy

jy jAy jBy jAx jBx

EI EI EI EIF u u θ θ
L L L L

EI EI EI EIF u u θ θ
L L L L
EI

GSL
γ

= ⋅ − ⋅ + ⋅ + ⋅
+ Θ + Θ + Θ + Θ

= ⋅ − ⋅ − ⋅ − ⋅
+ Θ + Θ + Θ + Θ

Θ =

 [6.2] 
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where E and G are the elastic and shear moduli. I, S and L denote the 
moment of inertia, the cross-section area and the beam length. Θ is the 
shear coefficient. γ = 10/9 is the shear factor of the cross-section. ujAx 
and θjAx are the corresponding nodal displacement and rotation angle 
of node A in x direction. Similar definitions are used for ujAy, θjAy, ujBx, 
θjBx, ujBy and θjBy. 

 

Figure 6.2. Beam element and its coordinate system,  
tension force, moments and shear forces 

Sensitivity analysis of elastic strain energy with respect to pseudo-
densities is very popular. Here, we are focused on the sensitivity 
analysis of the joint load Fj, whose components are denoted by Fjx  and 
Fjy. For example, Fjx can be expressed as a linear function of nodal 
displacements 

( ) ( ) ( ) ( )3 3 2 2

12 12 6 6
1 1 1 1jx jAx jBx jAy jBy

T
jx

EI EI EI EIF u u θ θ
L L L L

= ⋅ − ⋅ + ⋅ + ⋅
+ Θ + Θ + Θ + Θ

= λ U
 [6.3] 

where λjx is a constant vector with the same dimension as the 
displacement vector U. Items of λjx corresponding to the four degrees 
of freedom are defined by the coefficients in the above equation, while 
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the rest are set to be zero. Accordingly, the sensitivity of Fjx is 
calculated as: 

( )T
jxjx T

jx
i i i

F
η η η

∂∂ ∂= = ⋅
∂ ∂ ∂

λ U Uλ  [6.4] 

Similar calculations of Fjy can be performed to obtain constant  
vector λjy. As a result, the derivative of the total joint load  
corresponds to: 

( ) ( )2 2 2 2

2 2

T T

T T

T

1
2

1 2 2
2

jx jy jx jyj

i i ijx jy

jx jx jy jy
j i i

jx jx jy jy

j i

j
i

F F F FF

F F

F F
F

F F
F

η η η

η η

η

η

∂ + ∂ +∂
= = ⋅

∂ ∂ ∂+

⎛ ⎞∂ ∂= ⋅ ⋅ + ⋅⎜ ⎟∂ ∂⎝ ⎠
+ ∂= ⋅

∂

∂= ⋅
∂

U Uλ λ

λ λ U

Uλ

 [6.5] 

Based on the finite element equilibrium equation, the above 
equation can further be written as: 

( )TT T 1 1
j j j

i i i i iη η η η η
− −⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⋅ = ⋅ − − = − ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

U F K F Kλ λ K U K λ U  [6.6] 

The above expression can be simplified by the following notation: 
1 *

j
− =K λ U  [6.7] 

Notice that the stiffness matrix K is symmetric. U* can be 
interpreted as the displacement vector related to the adjoint load 
vector λj applied on the structure. The substitution gives rise to: 

( )T*

i

j

i i

F
η η η

∂ ⎛ ⎞∂ ∂= − ⋅ −⎜ ⎟∂ ∂ ∂⎝ ⎠

F KU U  [6.8] 
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In the above equation, the derivative of the load vector is zero 
when only design-independent loads are applied to the structure. 
Derivatives of the stiffness matrix K with respect to the pseudo-
densities are easily obtained by means of SIMP material interpolation 
model used in this chapter. 

In practice, sensitivity analyses of the joint loads will be 
computationally expensive due to the additional finite element 
analyses required for large numbers of fasteners and joint load 
constraints. To solve the problem, methods like KS function and  
P-norm function can be used to merge large numbers of design 
constraints into only one constraint. In addition, as shown in 
numerical examples, only a small number of fasteners need to be 
constrained, because the rest joint loads are small enough to be 
neglected during optimization. 

In the following sections, two numerical examples are presented to 
illustrate the efficiency and validity of the proposed optimization 
model. One is further validated with a loading test of fabricated resin 
models. We use the optimization algorithm GCMMA (globally 
convergent method of moving asymptotes, [SVA 95]) implemented in 
the general-purpose design platform BOSS Quattro [RAD 02]. The 
density filter technique [BRU 01] is applied, with the filter radius 
being three times of the average element size in both examples to 
avoid the checkerboards. 

6.3. Numerical examples and discussions 

6.3.1. Cantilever beam with experiments 

Here, we will design an I-shaped cantilever beam joined with a thin 
sheet by two rows of evenly distributed fasteners. Dimensions and 
layout of joints are shown in Figure 6.3. As the shear load 
distributions are identical in both rows, fasteners are numbered only 
for one row from the beam root to the tip. 
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The assembled structure is meshed with quadrangular shell 
elements of size 1 mm × 1 mm and thickness 1 mm. The design 
domain of the structure is the I-shaped beam web. The elastic modulus 
of the solid material is 2.6 × 109 Pa and Poisson’s ratio is 0.3. 

 

Figure 6.3. I-shaped cantilever beam connected with a thin sheet 

A point force of 150 N is applied on the bottom right corner of the 
design domain. In Figure 6.4, we present the shear load distribution 
over fastener joints after static analysis of the initial solid FE model. 
We find that the maximum shear load occurs at the beam root, which 
indicates the most vulnerable position. 

For the purpose of comparison, a standard strain energy minization 
topology optimization is firstly carried out without joint load 
constraints. The only constraint is defined by limiting the volume 
fraction of the design domain to 30%. Figure 6.5 presents the 
optimized design and related joint loads after 36 design iterations.  
The mean compliance is 0.660 J. The maximum tip displacement is 
8.887 mm, while the maximum shear load rises to 30.13 N at the  
beam root. The optimized topology seems to be the classical topology 
solution of a pure cantilever beam. There are no materials distributed 
near the joint for the structure reinforcement, even where the 
maximum shear load occurs, which implies that the increase in the 
maximum joint load does not significantly affect the minimization of 
the mean compliance. 
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Figure 6.4. The initial distribution of the shear loads in the joints 

 

Figure 6.5. Optimized design and joint load distribution without joint load 
constraint (mean compliance 0.660 J, maximum joint load 30.13 N) 

Now, the same topology optimization problem is considered with 
the introduction of joint load constraints. The upper bound of the shear 
load is limited to 20 N. Due to the symmetry, we only constrain the 
shear loads in one row of fasteners. Figure 6.6 shows the optimized 
design and joint loads distribution after 30 design iterations. To ease 
the comparison, load distribution in Figure 6.5 is also plotted here. 
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Figure 6.6. Optimized design and comparison of joint  
load distribution with joint load constraint (Mean  

compliance 0.667 J, maximum joint load 19.97 N) 

Detailed results are listed and compared in Table 6.1. The mean 
compliance is now 0.667 J, while the maximum tip displacement 
reaches 8.988 mm. Although the structural stiffness is slightly smaller 
than before, the maximum shear load in the joints is now 19.97 N with 
a great reduction by more than 10 N, i.e. 33.7% of the previous 
design. The maximum joint load appears still at the beam root and all 
the loads now satisfy the design constraints. 

Items 
Optimized design 
without joint load 

constraints 

Optimized design 
with Fj ≤ 20N 

Initial 
solid beam 

Mean compliance (J) 0.660 0.667 0.335 
Maximum displacement (mm) 8.887 8.988 4.53 

Maximum shear loads (N) 30.13 19.97 26.3 
Volume fractions 0.3 0.3 1 

Table 6.1. Comparison of optimized results 
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easy-buckling, some extra stiffeners are added to the structure. 
Because failures of practical bolt and rivet joints appearing around the 
joined holes on the member plates are not easily detectable, all the 
joints are directly fabricated as small vulnerable resin beams of 
identical size and cross-section with approximately the same strength, 
as shown in Figure 6.8(b). These resin joints can thus be considered as 
simple breaking sensors of shear loads. Although the experiment 
cannot precisely determine the magnitude of the shear loads, a 
significant tendency should be persuasive due to the fact that the 
optimized design with joint load constraints remarkably reduces the 
shear loads. 

   
                                        (a)                                                      (b) 

Figure 6.8. Solid CAD model of the optimized  
beam and joints with engineering features 

  

Figure 6.9. Resin models fabricated according  
to the topology optimization result 

In Figure 6.9, transparent outlines of the resin models are plotted 
over the material density distribution for comparison. Resin models  
 
 

 

a) 

  

b) 
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marked as A and B in Figure 6.9 are then fabricated with a SPS-350B 
stereolithography machine. 

The loading test is set up in the following way: resin models are 
installed onto static stretching machine as cantilever beams with a 
fixture as shown in Figure 6.10. A strong string bounds the lower right 
corner to the dynamometer. The aim of the experiment is to find the 
minimum stretching force breaking the joints in both models. Three 
groups of specimens are tested. By slowly increasing the stretching 
force, the force value is recorded from the dynamometer once the first 
joint is broken. All the experimental data are compared in Table 6.2, 
and model B with broken joints is shown in Figure 6.11. 

 

 

Figure 6.10. Resin model installed onto  
the static stretching machine 

Fixture

Dynamometer 

String
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Figure 6.11. Model B with broken joints 

 
Minimum stretching forces (N) 

Model A Model B 
Group 1 27.6 42.8 
Group 2 32.1 40.6 
Group 3 31.7 44.2 

Table 6.2. Comparison of loading test results 

Magnitudes of the stretching forces in Table 6.2 have clearly 
indicated that the resin joints related to model B can undertake a larger 
stretching force. In other words, optimized design with joint load 
constraints can reduce the shear loads significantly. 

It should be noted that the displacements of the resin models are 
not evaluated in the experiment. This is because the maximum 
displacements are 0.621 and 0.624 mm, respectively, according to 
finite element analyses of both models when a 20 N force is applied. 
The difference is only 0.003 mm, which cannot be precisely 
distinguished by our existing equipment in the experiment. 

Later, the optimization designs with different shear load constraints 
are implemented and results are achieved as shown in Figure 6.12. We 
find that shear load constraint affects the optimized configuration 
significantly. Meanwhile, the strain energy of the optimized structure 
will be greater than the standard one. As the constraint upper bounds 
decrease, some truss-like structural branches appear. The delicate 
structures can offset the shear effect in the joints. But at the same time 
it reduces manufacturability and structural stiffness. At this point, the 
choice of constraint upper bound is very important. 
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Figure 6.12. Optimized structures and load  
distributions with different constraints 

6.3.2. Two different wing boxes 

Consider now a wing box structure shown in Figure 6.13. It 
consists of two tapered I-beams covered with two thin sheets. Both 
beams are clamped at one end. A distributed pressure of 5 × 104 Pa is 
applied on the lower skin. Due to the symmetry, only one of the two 
beams is considered. 

Suppose skins and webs of the I-beams have a thickness of 2 mm. 
The beams and skins are meshed with quadrangular shell elements of 
size 1 mm × 1 mm and 2 mm × 2 mm, respectively. Each beam is 
fastened to the thin sheets with four rows of joints marked as Rows A, 
B, C and D. For the whole structure, the elastic modulus is 2.6 ×  
109 Pa and Poisson’s ratio is 0.3. After the first FE analysis, the shear 
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(a) Load constraint: 25N  
Strain energy: 0.7229 J  

Maximum max shear load: 25.0 N 
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(b) Load constraint: 18N  
Strain energy: 0.7591 J 

Maximum shear load: 18.0 N  
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(c) Load constraint: 15N 
Strain energy: 0.7909 J 

Maximum max shear load: 15.0N 
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(d) Load constraint: 10N  
Strain energy: 0.8478 J  

Maximum max shear load: 10.0N 
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Figure 6.22. Distribution of the joint loads on the chosen wing box 

 
                              a)                                                        b) 

Figure 6.23. Topology optimization result of: a) a standard  
design and; b) the design with joint load constraints 
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Figure 6.24. Comparisons of the joint loads of the standard  
design (black) and those with joint load constraints (white) 

A volume constraint is imposed and bounded by a volume fraction 
35% in both standard topology optimization and those with constraints 
on joint loads limited to be lower than 19.5 KN. The final designs are 
shown in Figure 6.23. Comparisons are shown in Figure 6.24 and 
Table 6.3.  
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Items 
Optimized design 
without joint load 

constraints 

Optimized design 
with Fj ≤ 20N 

Related 
difference 

Mean compliance (J) 131.9 133.4 +1.1% 
Maximum shear loads (N) 21.01 19.36 –7.9% 

Volume fractions 0.35 0.35 0 

Table 6.3. Comparison of optimized results 

6.4. Conclusions 

In this chapter, we present a structural topology optimization 
method with constraints on the shear loads of multifastener joints, 
which is inspired from practical aircraft design. The joints are 
modeled as short beam elements. Design sensitivities of shear loads 
with respect to pseudo-densities are derived using the adjoint method 
in terms of the derivatives of nodal displacements of beam elements, 
where additional finite element analyses are needed. 

Several numerical examples, including aircraft wing section 
design, are tested and optimization results are compared with standard 
topology optimization designs. It is shown that the joint loads are 
strongly affected by the structural layout and the load carrying path. 
With an optimized distribution of structural stiffness, all the shear 
loads in the joints are perfectly controlled by the prescribed upper 
bound.  

To validate the proposed optimization method, loading tests are 
carried out with the help of stereolithography resin models. By 
comparing the minimum stretching force breaking the joints in the 
resin model, three groups of experiments have obviously verified the 
effect of the joint load constraints upon the optimized topology. 



7 

Potential Applications of  
Topology Optimization 

7.1. Shape-preserving design 

In most existing work on engineering structural designs, typical 
conceptual designs were obtained from the best load carrying path 
generated by a global strain energy-based topology optimization design. 
Further detailed shape and sizing optimization designs were 
subsequently carried out to improve local performances such as strength 
and stability, etc. However, in many cases, it is crucial to restrain the 
warping deformations and maintain the coordinated displacements 
during the procedures of structural design, manufacturing, assembling 
and service [NIU 88, CAI 06, XIE 07]. The design specification is to 
obtain better deformation behaviors of the elastic bodies, which is more 
than a global strain energy design. For example, structures on the 
aircraft front fuselage, as shown in Figure 7.1, will be designed properly 
not only for strength and stiffness performance, but also to ensure a 
coordinate deformation of the windshield to avoid cracking. Similar 
design requirements can be found for the supporting structures of the 
large numbers of openings and components on the aircraft. 

In fact, techniques of topology optimization have long been used to 
obtain required structural deformation patterns, which mainly results 
in the design of compliant mechanisms. In the existing literature, 
constraints on a single nodal displacement or multiple displacements 
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were normally issued. The magnitudes of different nodal 
displacements were controlled to form a better deformation. 

 

Figure 7.1. Structure layout and windshield of front fuselage 

However, obtaining a coordinated displacement with least warping 
deformation is rather complicated and computationally expensive,  
with large numbers of constraints on magnitudes of nodal 
displacements. The key difficulty lies in how to distinguish the rigid 
body motion and warping deformation from the total deformation 
patterns.  

Recently, we have proposed a shape-preserving topology 
optimization method. Local strain energies on specified shape 
preserving were assigned as design constraints. The structural total 
deformation consists of the warping deformation and rigid body 
motion. As the strain energy of the rigid body motion is completely 
zero, the warping deformation can be easily distinguished and 
suppressed in this way, as shown in Figure 7.2.  

Typical designs can be found as shown in Figure 7.3. Structural 
configuration of a front fuselage was designed to obtain a minimum 
global strain energy with control of local warping deformation on the 
windshield in Figure 7.3(b). Compared with the standard topology 
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optimization result shown in Figure 7.3(a), the shape-preserving 
design reduced the local strain energy in the windshield up to 20%, 
while the cost of the global strain energy increased only by 5%. 

 

Figure 7.2. Different deformation patterns 

 
                         a)                                                       b) 

Figure 7.3. Topology optimization of a front fuselage: a) standard 
 topology optimization and b) shape-preserving design 

Potential applications of shape-preserving design can be extended 
to aircraft assembly jigs design and precision design of some other 
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7.2. Smart structure design 

Recently, smart structures have been recognized as one of the most 
important structural styles for next-generation aircrafts and aerospace 
vehicles. Existing attempts to use topology optimization in designing 
smart structures were based on aerodynamic performance, i.e. the 
morphing aircraft structure design. For example, Reich et al. [REI 07] 
proposed a two-step topology optimization design for morphing 
vehicle skins. The substructures of the aircraft skin were first 
considered as truss-like mechanisms. Driven by actuators, the global 
structure will deform to a specific goal shape. The material properties 
of the skin were optimized to meet the global deformation 
requirement. In the second step, multi-phase material microstructures 
were designed using topology optimization to satisfy prespecified 
requirements for the skin design. The effective properties of the 
microstructures were further evaluated with loading test.  

Inoyama et al. [INO 08] later presented new topology optimization 
approaches that determine the distribution of structural properties and 
actuators, to obtain a morphing wing with multiple target shapes. By 
acquiring the constraints on the truss volume and actuators’ 
distribution, the topological design results satisfied the design 
requirements effectively. Figure 7.6 shows the typical designs where 
three different configurations of the morphing wing for different flight 
cases are presented. The topological design includes the distribution of 
trusses, different actuators, structural components and linkages. 

In topology optimization of smart structures, actuators are the key 
elements to realize structural morphing. These actuators may be 
replaced with some smart structural components, e.g. shape memory 
alloys (SMAs), whose solid-to-solid phase transformations induced by 
appropriate temperature and/or stress changes can recover structural 
deformations. These components have been widely used in many 
practical areas due to their particular properties. Early works of SMA 
applications have been summarized by Van Humbeeck [VAN 99]. In 
the work of Beauchamps et al. [BEA 92], SMA was used to control 
the surfaces of the wings and rotor blades in adaptation to different  
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deformation and actuation under thermal or stress inputs, such as the 
work done by Langelaar et al. [LAN 11]. Third, due to the damping 
properties, SMA structures can be good alternatives to current 
damping materials and structures. The material distribution of SMA 
can be optimized to improve the global dynamic responses. 

 

Figure 7.7. Structural layout of UAV using SMA actuators [KUD 04] 

7.3. Structural features design 

Existing topology optimization techniques, such as density-based 
methods and level set methods, have been developed rapidly  
to improve mechanical performances and obtain reasonable load-
carrying paths. But to gain wide acceptance from the engineering side, 
more structural engineering features will be imposed in topology 
optimization.  

Engineering features are not new in topology optimization. The 
abovementioned topological design with stiffeners, structural 
components and fasteners based on pseudo-density variables can be 
considered as different kinds of features design. Some other feature-
based design has focused on the sizing control for level set methods 
topology optimization, such as the work of Mei et al. [MEI 08], Chen 
et al. [CHE 08] and Guo et al. [GUO 14a].  
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                                                 a) Iteration 1 

 
                                                 b) Iteration 10 

 
                                               c) Iteration 18 

 
                                    d) Optimized configuration 

Figure 7.9. Evolutions of structural configuration involving 
features/components with different geometries 

7.4. Topology optimization and additive manufacturing 

Most topology optimization researchers have been questioned 
about the manufacturability of their optimized structures. Before, the 
performance of topology optimization was compromised with some 
additional manufacturing constraints, such as sizing constraints, 
casting directions, symmetry and repeated patterns, etc. Recently, the 
rapidly growing additive manufacturing techniques, also known as 3D 
printing, which directly fabricate structures from a CAD model, 
change the situation and may prove to be beneficial for both sides. On 
the one hand, additive manufacturing techniques currently provide 
possibly the best manufacturing solutions for topology optimization. 
On the other hand, additive manufacturing needs something to prove 
its abilities of forming very complicated structures. Topology 
optimization is among the best choices. 
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In the upcoming future, it is believed that aircraft and aerospace 
structures, especially most UAV structures, will be designed and 
fabricated as unconventional integral structures to save weight and 
simplify the assembling procedure. With this new concept, the 
combination of topology optimization and additive manufacturing will 
surely play an important role in developing high-performance and 
lightweight structure systems. 
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