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Preface

Quantum Mechanics: 100 Years of Mystery Solved!

In the theoretical study of the application of quantum electrodynamics (QED),
recent progress in research has led to solving the mystery (as Feynman said)
involved in the foundation of quantum mechanics. Because this is a very big
achievement, we will first note this breakthrough in the title of this preface, and
later demonstrate the individual research outcomes.

QED is a relativistic quantum field theory, a quantum theory of photons with
electrons, and is considered the most successful accurate theory we have, e.g., to
explain the Lamb shift, the anomalous magnetic moment of the electrons, and so on
using the Feynman diagram technique of the covariant perturbation approach. We
will elaborate the non-perturbation approach in this book.

This book presents new aspects of QED from basic physics to physical chemistry
with mathematical rigor. Topics covered include spin dynamics, chemical reactiv-
ity, the dual Cauchy problem, and more. Readers interested in modern applications
of quantum field theory in nano-, bio-, and open systems will enjoy learning how
the up-to-date quantum theory of radiation with matter works in the world of QED.
In particular, chemical ideas restricted now to nonrelativistic quantum theory are
shown to be unified and extended to relativistic quantum field theory that is basic to
particle physics and cosmology: realization of the new-generation quantum theory.
Readers are assumed to have a background equivalent to an undergraduate student’s
elementary knowledge in electromagnetism, quantum mechanics, chemistry, and
mathematics. This book makes use of abundant figures to help the reader grasp
ideas quickly, includes many equations to help the reader to follow the logic step-
by-step, and provides an ample range of examples and references to facilitate
in-depth learning.

I would like to thank Drs. Koichi Nakamura, Kentaro Doi, Masato Senami,
Kazuhide Ichikawa, Ludwik Komorowski, Piotr Ordon, Andrzej Sokalski, Pawet
Szarek, Irene Yarovsky, David Henry, Hansong Cheng, Akinori Fukushima, Yuji
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Ikeda, Hiroo Nozaki, Masahiro Fukuda, and members of the Tachibana Laboratory
in Kyoto University for their collaboration and producing some of the figures of
numerical calculations.

Kyoto, Japan Akitomo Tachibana
31 August 2016
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Chapter 1
Basic Physics of QED

Abstract Basic physics of quantum electrodynamics (QED) is reviewed in com-
parison with quantum mechanics. Under external source of electromagnetic fields,
charged particles can be accelerated by the Lorentz force. The Lorentz force is
compensated by tension at any point of the Minkowski space-time. The tension is
given by the divergence of internal self-stress tensor. The antisymmetric compo-
nent of the stress tensor leads to spin torque and drives time evolution of electron
spin. This is called the quantum electron spin vorticity principle. The spin torque
can be compensated by a force called zeta force.

Keywords Alpha-oscillator theory ¢ Chirality ¢ Double slit « Dual Cauchy
problem e Electromigration  Helicity « Measurement ¢ Primary Rigged QED
theory < Principle of equivalence ¢ Response ¢ Rigged QED theory ¢ Spin
torque ¢ Spin vorticity ¢ Spindle structure ¢ Stress tensor * Tension ¢ Zeta force ¢
Zeta potential

1.1 Introduction

1.1.1 QED and Quantum Mechanics

In the Einstein special theory of relativity, a measurement of an “event” a is
discussed on the Minkowski space-time. Let an event a be characterized in rela-

tivistic quantum field theory by a field operator F (ct,x,y,z) at the Minkowski
space-time coordinates (ct, x,y,z) as shown in Fig. 1.1. This is the standard frame-
work of QED. In quantum mechanics, however, more operators X,y, and Z with

o~

F(ct,X,y,Z) are required to discuss the measurement problem.

This additional expectation value problem of X,y, and Z with F(ct,X,y,Z) in
quantum mechanics may be viewed as “the icing on the cake” from that in QED. In
QED, the Cartesian coordinates x ,y, and z are merely the scale in inches or cm for

~

F(ct,x,y,z) and are not the objects of observation. In QED, the Cartesian coordi-
nates x , y, and z are not observables nor canonical variables nor operators. So that in
QED, we have no problem with the collapse of wave function nor classical

© Springer Nature Singapore Pte Ltd. 2017 1
A. Tachibana, New Aspects of Quantum Electrodynamics,
DOI 10.1007/978-981-10-3132-8_1



2 1 Basic Physics of QED

Measurement problem

Remark!
Quantum . Description of /- (ct.x,3,2) at (ct,x,,2)
Electrodynamics Ny —
but X
Quantum Description of F (ct, %, 7, 2) 5
Mechanics in terms of %, ,and 2 of F*(ct,%,7,%) att

Fig. 1.1 Measurement of an “event” a in QED with the Minkowski space-time coordinates (ct, x,
¥, z) is different from that in quantum mechanics

No collapse of wave function nor classical observer-apparatus

s (liww (af’rf;r)|ﬁ(m(t’tf)|qﬂw (a"'tf;r»ﬁ

A (:)) - k :
< a . <‘I"“”h' (.1 0) 2 (a,,r,;t))H
Remark!
The Minkowski space-time

QED “coordinates” are

-not "canonical variables” in QED!

[ e Lin -not "observables”in QED!
2 -not "operators”in QED!
but
Quantum mechanics
[%.p,]=ih

Fig. 1.2 Expectation value in QED is different from that in quantum mechanics. See Eq. (4.197)
and Chap. 4 for further details with notation

observer—apparatus since the Cartesian coordinates x,y, and z are determined well
before any discussion of measurement (see Fig. 1.2).

Historically, the foundation of quantum mechanics started with matrix mechan-
ics by Heisenberg, Born, and Jordan and later with the physically equivalent wave
mechanics by Schrodinger. In QED, the matrix mechanics is attributed to the field
operator separated from wave mechanics. That’s why we treat the uncertainty of

measurement of the field operator F (ct,x,y,z) in terms of the expectation value
separated from wave mechanics in QED. QED is a relativistic quantum field theory
and is considered the most successful accurate theory we have, e.g., to explain the
Lamb shift, the anomalous magnetic moment of electron, and so on using the
Feynman diagram technique of the covariant perturbation approach. We shall
elaborate the non-perturbation approach in this book.


http://dx.doi.org/10.1007/978-981-10-3132-8_4
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1.1.2 The Most Beautiful Scientific Experiment

Please refer to Fig. 1.3a. This is an experiment that has been done at Fundamental
Research Laboratory, Hitachi Ltd. In 2002, in a vote by readers of Physics World
magazine (is a member magazine of the IOP, the UK Institute of Physics), “the most
beautiful scientific experiment” was coined to the selected quantum mechanics
“double-slit experiment” (Crease 2006). Also shown in Fig. 1.3b is the double-slit
experiment of photon that has been done at Hamamatsu Photonics, K.K.

Looking at the integrated data of the electron and photon spots, only discrete
random spot as the number is low is observed. Gradually as the number increases
double-slit phenomenon in which the quantum mechanics of the wave function is to
be prophetic, probability distribution is emerging. But nobody has ever succeeded
in proving that the quantum mechanics of wave function gives the precise distri-
bution. As a matter of fact, nobody can (see Chap. 4). Not quantum mechanics but
QED gives the correct answer (Tachibana 2016).

Double-slit experiments with elementary particles like electrons and photons
have been carried out all over the world.

[) souce
. /\ A Eleclronbiptism.

£ ), L]

|  Detector| wTAcH!
| 3 ™
‘\\a ”

@

(b)

Fig. 1.3 Double-slit experiment of (a) electron (Reproduced from Hitachi, Ltd. http://www.
hitachi.com/rd/portal/highlight/quantum/index.html) and (b) photon (Reproduced from Hamama-
tsu Photonics, K.K. http://photonterrace.net/en/photon/duality/)


http://dx.doi.org/10.1007/978-981-10-3132-8_4
http://www.hitachi.com/rd/portal/highlight/quantum/index.html
http://www.hitachi.com/rd/portal/highlight/quantum/index.html
http://photonterrace.net/en/photon/duality/
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1.1.3 Mystery of Quantum Mechanics

Quantum mechanics was founded around 100 years ago and is yet impossible to
predict momentarily where each one electron or one photon should go. Copenhagen
interpretation is accepted widely that Bohr, one of the founders of quantum
mechanics, was to advocate. According to the Copenhagen interpretation, quantum
mechanics of wave function is used in the description of the stochastic phenome-
non. In contrast there is also a multi-world interpretation of Everett, one also an
interpretation problem. The description of the phenomenon caused by the quantum
mechanics continues to be a challenge that has also been left in the modern science.

As shown in Fig. 1.4, Einstein has pointed out the imperfections that lurking in
the basic dynamics process of quantum mechanics, such as introduced in “God does
not play dice” claimed that upon. Feynman, in his famous quantum mechanics
textbook, described it as “the mystery of quantum mechanics” (Feynman et al.
1972).

1.1.4 New Theory

I recently found the “quantum mechanics of the mystery (Feynman says)” can be
every moment predicted by QED (Tachibana 2016). As shown in Fig. 1.5, the key

Bohr (Copenhagen

interpretation) : Einstein (rebuttal)
Where to reach the particles? Deb Alte witirfelt tickt
(DStochastic =

(@The probability distribution

L]
.
is given by the quantum IO

mechanics wave function
2

(God does not play dice)

Q Q

P1 P2

Fig. 1.4 Feynman said “the mystery of quantum mechanics” (Feynman et al. 1972)
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Tachibana (new theory)
Where to reach the particles !
(DDetermined

(QED dual Cauchy problem)
(@The calculation algorithm is
given by the alpha-oscillator
theory

Rather than quantum
mechanics:
Relativistic quantum
field theory

@QOO:--

t=11, 12, ..

Q Q

P1 P2

Fig. 1.5 Quantum mechanics 100 years of mystery is solved

lies in solving the dual Cauchy problem, the algorithm discovered was given by the
alpha-oscillator theory.

Alpha-oscillator theory here was shown in the paper prior to this (Tachibana
2015). As has been presented in this series of papers, the new theory based on QED
rather than quantum mechanics can predict a lot of interesting new phenomena
including the double-slit phenomena (see Chap. 4 in details).

1.1.5 Survey of This Book

In Sect. 1.2 of this chapter, molecular dynamics of finite systems are unified with
QED in terms of the Rigged QED theory. The Rigged QED theory is a
non-perturbation approach to QED of finite systems. For finite systems, the local
quantum physics of field theory has been reviewed (Haag 1992). We shall invoke
the virial theorem (Landau and Lifshitz 1973) on the energetics of the finite systems
in terms of the energy-momentum tensor in Sect. 2.2, Chap. 2.

Since QED is based on the theory of relativity, electron spin s, should automat-
ically be plugged in. What is new here is the quantum electron spin vorticity
principle (see Fig. 1.6). What is vorticity of spin? It is defined by rots, and it has
the dimension of momentum. Interestingly, half the vorticity 1 rot5, () contributes
to electron momentum. Why half?


http://dx.doi.org/10.1007/978-981-10-3132-8_4
http://dx.doi.org/10.1007/978-981-10-3132-8_2#Sec8
http://dx.doi.org/10.1007/978-981-10-3132-8_2
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Quantum electron spin vorticity principle

Antisymmetric stress tensor drives electron spin torque through vorticity

[ﬁ: (;)%m&,(ﬂ] =L, (F)+divi* (7)

2.
ot

rots, (F)
spin vorticity -r'- ( _;) spin velocity

Fig. 1.6 Discovery of quantum electron spin vorticity principle

Symmetry-polarized stress tensor of electron
armmery. BN %(y%(f) 7" (~inD (F))qi}(r‘-)+h.c.)
antsym 2% (7) = 22 ()= 2. (7))
. = s oo =
sym g K¢ (r) =E(r,n" (r)+r‘,lm (r))
24 (y] - | torque 25217 _| force | _| energy
[f' (7 )] [volume] [f' (r)] [ma ] [vohme]
<5 -
Spin torque density ~ Tensorial energy density

Fig. 1.7 Discovery of the symmetry-polarized stress tensor of electron

In Chap. 2, the reasoning “half” is found in the principle of equivalence
(Tachibana 2012). The principle of equivalence requires that special relativity
should apply in locally inertial frames and, in particular, that it should make no
difference which locally inertial frame we choose at each point (Weinberg 1972).
The mechanical framework of QED is represented as the symmetry of the stress
tensor (see Fig. 1.7). So “energy-momentum tensor of QED” is the title of Chap. 2.


http://dx.doi.org/10.1007/978-981-10-3132-8_2
http://dx.doi.org/10.1007/978-981-10-3132-8_2
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Electronic tensile stress binds a pair of the electronic drop regions Ry's where
the compressive stress is predominant: ‘co'valent bond visualization!

— —

Compressive stress @ Compressive stress

:push away electron Tenfule stlres15 :push away electron
pull up electron

£5(7)

Fig. 1.8 Discovery of the spindle structure for the Lewis electron pairing as a tensile stress; novel
local picture of covalency based on the electronic stress tensor

The energetics of the Rigged QED theory will also be discussed in terms of the
energy-momentum tensor.

The symmetry of the stress tensor is polarized. The quantum electron spin
vorticity principle is ascribed to the antisymmetric component. The antisymmetric
component has the dimension of spin torque density. The symmetric component has
the dimension of energy density. The tensorial energy density has prominent role as
the spindle structure of covalency (Tachibana 2004).

“Chemical ideas of QED” is the title of Chap. 3 (see Fig. 1.8). Conventionally,
the relativistic theory has been considered as only a slight correction for the
interpretation in chemical phenomena. However, we have clarified that the Ham-
iltonian of QED, derived from the picture of “action through medium” based on the
relativistic theory, gives a novel image of the chemical interaction even in the
nonrelativistic limit (Tachibana 2013, 2014).

As aresult, though the energy as an integrated value of the Hamiltonian of QED
with respect to the whole space is equivalent to that of the usual ab initio Hamil-
tonian, conventional images of the chemical interaction based on ‘“action at a
distance” are replaced with the new images of them given by the picture of “action
through medium” without exception.

In Chap. 4, quantum mechanics 100 years of mystery is solved. We shall
apply the alpha-oscillator theory to QED, and find the dual Cauchy problem
is the key to the solution (see Fig. 1.9). So “alpha-oscillator theory” is the title of
Chap. 4.


http://dx.doi.org/10.1007/978-981-10-3132-8_3
http://dx.doi.org/10.1007/978-981-10-3132-8_4
http://dx.doi.org/10.1007/978-981-10-3132-8_4
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alpha-oscillator

Fig. 1.9 Discovery of the alpha-oscillator theory

1.1.6 Quick Review of the Standard Theory of QED

Since this book intends to show only new aspects of QED, all the standard materials
of QED are missing. The readers may consult the standard textbook for the
conventional aspect of QED (Wigner 1939; Bargmann and Wigner 1948; Heitler
1954; Sakurai 1967; Bogoliubov et al. 1975; Itzykson and Zuber 1980; Berestetskii
et al. 1982; Ryder 1985; Haag 1992; Nakanishi and Ojima 1990; Weinberg 1995;
Peskin and Schroeder 1995; Greiner and Reinhardt 2009). Albeit duplicate, a quick
review of the standard theory of QED will be introduced below.

In the standard model, the matter particles in general are spin-1/2 chiral fermions
bound by gauge bosons satisfying the Poincare and gauge symmetries. The gauge
fields of quantum chromodynamics (QCD) are reduced from the grand unified
theory (GUT) as SU(3). x SUQR)y x U(1)y — SU3). X U(1)qep, wWhere the Higgs
field breaks the Weinberg—Salam electroweak gauge group SU(2),, x U(1), down
to U(1)qep, but the color and charge symmetries remain intact. Quarks are bound
by gluons G/, while electron acquires its charge and mass through the Higgs
mechanism with the Yukawa coupling, when massless photon A, as well as the
massive bosons ZMO and WMi are emerging using the Glashow—Weinberg—Salam
theory of spontaneously broken gauge symmetry. The gauge symmetry of the field
theory is realized by the Becci—Rouet—Stora—Tyutin (BRST) symmetry of the

Lagrangian Oy [ d4x%2(x) = 0 where 0y denotes the BRST operator. It follows
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that the physical content of the gauge theory is consistent with the cohomology of
the BRST operator.

1.1.7 New-Generation Quantum Theory

QED allows the clamped-nuclei Hamiltonian, where the atomic nuclei are clamped
in space and are treated as external static source of force for electrons. But in
chemical reaction systems, the rearrangement of atomic configuration is of interest,
and hence the dynamical treatments of atomic nuclei have been formulated by the
Rigged QED theory.

Chemical ideas restricted now to nonrelativistic quantum theory may be unified
and extended in the future to relativistic quantum field theory that is basic to particle
physics and cosmology: realization of the new generation quantum theory. In order
to accelerate this new trend, a topical symposium ‘“New-Generation Quantum
Theory—Particle Physics, Cosmology, and Chemistry” was organized aiming at
mutually stimulating the cutting edge of basic theoretical approaches of quantum
theory. Topics to be covered include, but not limited to, the cutting edge of basic
theoretical approaches of quantum theory in particle physics, cosmology, and
chemistry (see Fig. 1.10).

Symposium: New Generation Quantum Theory
-Particle Physics, Cosmology, and Chemistry-

High-energy phenomena Low-energy phenomena
Minori Abe * Paul Ayers * Keisuke Fujii * David Henry * Junji March 7-9, 2016, Kyoto University,
Hlsa_no '. M.\s.flnto Ibe * Samantha ?cnl«lns - M_:Isum Yoshida CFI I'l'l]Jl.l s,
Kakizaki * Shinta Kasuya * Masahiro Kawasaki * Paul Mezey * 5 2 = 3 .
Shigehiro Nagataki + Daisuke Nomura * Kin-ya Oda * Akbar Faculty of Engineering, Engineering
Salam * Andreas Savin * Kalidas Sen * Harris J. Silverstone - Science Dept. Bldg, Room 313

Tomo Takahashi + Atsushi Taruya + Masahide Yamaguchi

et

Kyoto University |

QQee-

‘ t=tyt2, .

Q Q

tr1 tr2 ® xvodei semanmes 7] || Yourida Shring

QED, a relativistic quantum field theory, prediction in reality!
Committee: Akitomo Tachibana (Chair), Masato Senami, Kazuhide Ichikawa, Koji Tsumura

Fig.1.10 Symposium: new-generation quantum theory—particle physics, cosmology, and chem-
istry (http://www.tachibana.kues.kyoto-u.ac.jp/symposium/01_top.html)


http://www.tachibana.kues.kyoto-u.ac.jp/symposium/01_top.html
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Gﬁdinlinn =

SUSY (Supersymmetgx)si !

M SUGRA (Supergravity)
B

M. Senami, K. Ichikawa, and A. Tachibana,
http://www.tachibana.kues.kyoto-u.ac.jp/qed/index.html

Fig. 1.11 QEDynamics: computer code for space-time-resolved non-perturbation simulation of
the Rigged QED theory (http://www.tachibana.kues.kyoto-u.ac.jp/qed/index.html)

In this book, we have demonstrated preliminary numerical calculations of the
Rigged QED theory. The numerical recipes with more advanced technics are all
implemented in “QEDynamics,” a computer code for space-time-resolved
non-perturbation simulation of the Rigged QED theory (see Fig. 1.11).

We make every endeavor to realize the new generation quantum theory with the
Rigged QED theory. The interested readers are encouraged to join us with the
development of the new generation quantum theory.

1.1.8 Notation

The coordinate x with the contravariant components x* and the covariant compo-
nents x,, and the metric tensor 1,,, =" of the Minkowski space-time, together with
the inner product of two 4-vectors A and B written as A-B as well as the inner
product of the Dirac gamma matrices y* and a 4-vector A written as the Dirac slash
A, are defined with the Euclidean inner product  as follows:

X = (xo,xk) = (xo,xl,xz,x3) = (ct,x,y,2) = (ct, ¥) = (ct, X)

Xy = ’IWXV = (anxk) = (Xo,xl,X2,X3) = (Ct, —X, =Y, _Z) = (Ctv _?) = (Ctv _)_C')


http://www.tachibana.kues.kyoto-u.ac.jp/qed/index.html
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1 0 O 0
{0 =1 0 O | _ W o L p=v
’7/41/_ 0 0 _1 0 _’7 ”7 ’/Ipl/_éﬂl/_ O,/l?él/
0 0 0 -1

A-B=n,A'B" =A°B — A+B, A+B=AB,+AB,+AB.
A= Muv HAY = 70A0 - 7'25 7e A= 71Ax + 72Ay + 73Az
where the Greek letter runs from O to 3 and the Latin from 1 to 3 and the Einstein

summation convention is used. We use the chiral representation of y* and the chiral
matrix ys= —° as

=007 = (AP rs =i = =
oy =yt =2

0 __ 0 1 1 _ 0 —Oy 2 0 —Oy 3
7‘(10’7_0,\,0’7’_%0’7
(0 -0 (1 0
“\e. 0 )57 0 —1

with the Pauli matrices

/(01 (0 i /1 0
=\ 1 0) 2 \i o) %" o -1

The Lorentz-invariant numerical tensor is the unit tensor &, and the Levi—Civita
tensor (Landau and Lifshitz 1973)

1, if (uvpo) is an even permutation of (0123)
e’ = ¢ —1, if (uvpo) is an odd permutation of (0123)
0, otherwise

0123
e 7 =1, g =-1

The gradient vectors are denoted as
0 o 0 0 0 10 = 10
= aw = (FT?F) B (27 V) B (EE’grad)

0
g O (0 0 0 0 _
o T \o T o o o)
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with the D’Alembertian

o (10Y
smeo(12)

and the Laplacian

> ot &

A:(V)2:W+a—)}2+ﬁ

The Dirac spinor y(x) in the chiral representation is constructed by yg(x) with
right-handed chirality and w; (x) with left-handed chirality as

YR 1 1
= L= , = — 1 . = — 1 —
W = Wehiral ( v ) Ve =5 (I+7ys)w. w 3 (1—7rs)y

while in the Dirac representation, wa=Qyg + wiN2, wg = (wr —w)N2. The spin
density of electron is written in the bilinear covariant form as the axial vector
(pseudovector):

which is the spatial part of the third-rank antisymmetric tensor.
Also we have the chiral decomposition of electron current /*(x)

%ﬂﬂ=w@ﬂﬂ@

as

%ﬂmzw@wmzNw
N(x) = N(x) + No (x)
NR(X) = WR+(X)WR(X)’ NL(X) = WLT(X)V/L(X)

and
— j(x) = or(x) — GL(x)

Namely, the spatial part of the current density is given by the difference in the
chiral parts of the spin density.
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The chiral decomposition of the chiral current j£ (x)

éﬁ@ZW@WhMﬂ

is found to be

%ﬁmzmw—mm

I~ - S -
5]5(}6) = 6(x) = 6r(x) + 6L(x)
Namely, the chiral charge density js°(x) is given by the difference in the chiral parts

of the charge density, and the spatial part of the chiral current density 75 (x) is given
by the spin density.

The spinor w(x) in the chiral representation w p;i(x) is also constructed by
the undotted spinor yg(x) = £*(x) with right-handed chirality and the dotted spinor
v (x) = 5 (x) with left-handed chirality as

v~ (1) = (1)
= (&) =

The undotted and dotted capital Latin letters run from 1 to 2 and change position by
using the antisymmetric matrix € as
B U uv
Sa=2E¢pa, - =€ "ny

=" ny =0 ey

0 1 7V 0 1
EABZ(_I 0>:€AB, EUVZ(_l 0)280\7

where the Einstein summation convention is used.
The Pauli matrix ¢ with the contravariant components ¢* and the covariant
components ¢, as

o' = (O'O,Uk> = (UO,61,02,03) = (1,0x,0y,6_,) = (1, )
Ou = ’1;41/61/ = (0070k) = (60:01702763) = (la —0x, — 0y, _Gz) = (17 _3)

(note the use of 1 as the unit matrix) are cast into the Misner—Thorne—Wheeler
(MTW 1973) representation as
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Also, the Dirac gamma matrices y* and the chiral matrix ys = — y° are given in
the chiral representation using the MTW representation of the Pauli matrices as

(i )G D00
7k:<<ak(;v~3 _(GS)AU>:(3< V)
y5:<(0(2AB —<ag>u-v>:<60() —(3:):((1) _Ol)Z—f

where the following MTW representation is found for the diagonal block

(@) = (") =0
(@)= (") =0
(UZ)AB = (Gz)U‘T ¥
(@)= ()" =0

The Clifford algebra of the Dirac gamma matrices should be

, o[ (6! 0 (1 0 }
{7”,;/}:211"( OB ()" ="y ) =2

The charge conjugation matrix

with
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C=C=-'c=-Cc", C'c=1, cCc=-1
transforms the Dirac gamma matrices as

Cy'C—1 = —'y#
C}’sc_l ="y5=ys
Complex conjugate (c.c.), transpose, the Hermitian conjugate (%.c.), and the
Dirac conjugate matrix or operator A, are denoted as A™, ‘A, AT="A" and A :ATyO

respectively.
We write

{A,B} =AB + BA = [A,B]+; [A,B] =AB — BA = [A,B]_
Field variable F is denoted as
F(x) = Flct, F) = F(F) = F(i)

where the dependence on the Minkowski space-time variables x* is frequently
abbreviated if there arises no confusion.
The 3-vector external product is defined by using the Levi—Civita symbol as

N N\ k ’
(A x B) — ey A'B"

1, if (¢nk) is an even permutation of (123)
emr = { —1, if (fnk) is an odd permutation of (123)
0, otherwise

g3 =1

X(x)

A
For 3-vector A(x) = [ A,(x) |, the rotA(x) is defined by the rule
A;

S0 = 5,00
rotA(x) = V x Alx) = aaZAx(x) - %Az(x)
0 0
aAy (x) a_A.r(x)
o Txx(x) Txy (x) T, ()C) o
Likewise, for 3 x 3 tensor T (x) = | Ty (x) Tyy(x) T.(x) |, the 7x T (x) is
Too(x) Toy(x) Too(x)

defined by the rule
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T=i(x) Ty(x)

y| Toy(x) | — 2| Tyy(x)

T..(x) T, (x)

- Ty(x) T.c(x)
FXT(x)=| z| Tylx) | —x| Toy(x)
T,.(x) T..(x)

T, (x) To(x)

x| Tyy(x) | =y| Tylx)

Ty.(x) T,.(x)

The divergence of tensor density T *(x) is defined by the rule
(divT) *(x) = 0,7 (x)

Whence

7 x divT (x) = z(div? (x)) - x( )
X (div? (x)) -y (div? (x))x

The Kronecker delta symbol here is

s L Q=)
Y710, otherwise

The generator U(A, a) of the Poincaré group reduces to the infinitesimal trans-
formation as

1
Ull+w,e)=1- Eiw,,,,.l"”/h +ie, Pl A+ -
gt — guv — —J pri — pr
U(A,a)J* U™ (A, a) = AN (JP° — a’P° + a”PP)
U(A,a)P*U (A, a) = AJPP

leading to the Lie algebra

[P, P"] =0
[P, J9°) = iR(sP? P — 1o P")
[Jpw’]pa] — ih(ﬂz/pjy(r _ ﬂﬂpjua _ ”ﬂajpu + ”Vo'Jpﬂ)
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The chiral spinor representation D(A) of the Poincaré group reduces to the
infinitesimal Lorentz transformation as

1
D1+w)=1 —Eia),,,,f"”/h—i— e

() oo (G o= (W5

Ge)' o)™ (o), = Gy (o™ (1), = A (o)
(’%)UV( )VB(ifil)A (’%)U (@ )y 5 (A )BA:AP”(G!))UA
DD (N = A

D(A)J JHpD=1 A) = ASANSIP?
leading to
W 1 MoV nz Hv oV
J —Zh[%r]: he, o =Zily",y"]
1 Gm)A Gm O
Jk hewm B . | ==he ,,( )
1 c 0
23 431 _ 1
J=(>J J)_zh(o 3>
_ (kA 0 _k
J"Oflzh (‘7)3 v 11h< o Ok)
2 0 (Gk)U 2 O (o2
1 —-c 0
10 720 130 1.
K= "J77°7") 21h< 3)
So that

[75,J"] = ihegn]"

(i)

mm
() i = ot
~() o = ")
[Jk,IZ] =0, [J*P] = ihey,P"
[K*K'] = —ihegad"
[K*, 0] = [J*K"] = ihew,K”

)

H H
[K" —] =ihP*, [K* P'| = ihdu—
c c
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and

The Levi—Civita connection is defined as

1
A _ A
A EEPICRISERER

More general connection F,f,, to define the covariant derivative ;” of the Lorentz

vector A,
Ay = 0,4, —Th A,
is used to define the curvature
Apvioc — Ao = A/)Rpuw
with the Riemann-Christoffel curvature tensor R”,,,

Rpﬂyo = aul—‘,{,}o— - aO'F[l)y + F,{)J/F;jo' - Ff{rrjl/

The Ricci tensor defined as

Ryu = Rp/u/p

is used to define the scalar curvature
_ pH
R=FR',

The Gaussian unit of electromagnetism is used with the elementary charge e and
the speed ¢ of light in vacuum. When appropriate for numerical demonstration,
atomic unit is used unless otherwise stated explicitly. The suffixes “e” for electron
and “7” for operator are suppressed if there arises no confusion.
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1.2 Rigged QED Theory

1.2.1 Underlying History of the Rigged QED Theory

It seems to have been already known to Kepler that sunlight should have given
some kind of mechanical action on the tail of comet. Since a technique for
observing the diffraction of sunlight has not yet been developed in his time, it
seems it was mainstream of the time to consider sunlight from a mechanical point of
view (see Fig. 1.12).

Afterward, by Newton who decomposed the sunlight through a prism, the
sunlight was cast a particle theory of light, and the wave theory of light was not
of reasonable shape (see Fig. 1.13).

Young was a stir, as he proved experimentally the double-slit phenomenon of
sunlight from the analogy of a wave of water (see Fig. 1.14).

Since then, the wave theory of sunlight became dominant over the particle
theory. On the other hand, Maxwell unified the electrostatic force of Coulomb
and the electromagnetic induction of Faraday (see Fig. 1.15) and discovered the
wave equation of sunlight with electricity and magnetism.

Fig. 1.12 The comet Hale—
Bopp, seen here over the
Joshua Tree National Park
in Southern California on
the evening of 28 March
1997, has both a blue ion
tail and a white dust tail.
Whereas the ion tail is
carried away by the “solar
wind” of charged particles
from the Sun’s atmosphere,
the dust tail is pushed by the
radiation pressure of the
sunlight. The momentum
transfer in this second case
is weaker than that in the
first, resulting in the
splitting of the tails. This
view of sunlight pressure
dates back to the age of
Kepler (Reproduced from
Leonhardt 2006)
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Fig. 1.13 Newton’s sketch of his crucial experiment (1672), demonstrating corpuscular theory of
sunlight (Reproduced from Fara 2015)

. \N\\ \\' \]\\“\1{\\
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Fig. 1.14 Young’s sketch (1807) of double-slit interference of sunlight in analogy of water waves
(Reproduced from Rothman 2003)

The theory of electromagnetism by Maxwell is invariant under the Lorentz
transformation and has been formulated as the special theory of relativity by
Einstein (Jackson 1998).

The quantum theory of electromagnetism is QED (Weinberg 1995). According
to the theory of electromagnetism, moving charged particle modifies the associated
electromagnetic field with speed of light. The varying electromagnetic field prop-
agates through space and gives impetus to other moving charged particle according
to the Lorentz force. This demonstrates “action through medium” as the field
theoretical nature of the electromagnetic interaction of charged particles. QED
provides quantum mechanical framework for the field theoretical “action through
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Fig. 1.15 Faraday’s experiment (1831) showing electromagnetic induction (Reproduced from
Poyser 1892)

medium” as the fundamental law of electrons interacting with atomic nuclei and
radiation field of photons. QED gives rise to tension of stress tensor over and above
the Lorentz force (Tachibana 2003). Poincare devised to attach stress tensor the
equilibrium state of the charged particles that interact with the electromagnetic field
(Jackson 1998).

For light atoms the speed of electrons is much slower than the speed of light, and
hence we rely upon quantum mechanical electrostatic Coulomb law described by
conventional nonrelativistic ab initio electrostatic Hamiltonian (Tachibana 2001).
The Coulomb law demonstrates “action at a distance” as the electrostatic nature of
the conventional interaction of charged particles. In contrast to the correct “action
through medium” in QED, the conventional electrostatic interaction is instanta-
neous since the speed of light is eventually infinite for “action at a distance” in the
Coulomb law. The interaction of charged particles with radiation field is then
treated under the assumption that the Lorentz invariance is lost in the conventional
treatment of the ab initio Hamiltonian.

Conventional QED theory assumes clamped-nuclei Hamiltonian in finite sys-
tems (Weinberg 1995), where the atomic nuclei are clamped in space and are
treated as external static source of force for electrons. But in chemical reaction
systems, the rearrangement of atomic configuration is of primary interest, and
hence the dynamical treatments of atomic nuclei often play an important role.

We shall hence elaborate the incorporation of the kinetic energy density of
atomic nuclei into the general framework of QED and present the general theory
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of the field energy density in finite chemical reaction systems. The atomic nucleus
is assumed to be treated as a Schrodinger field. This is called the Rigged QED
theory.

1.2.2 Basic Physics of the Rigged QED Theory

In the Rigged QED theory, atomic nucleus is plugged in as a Schrodinger field
which is not a classical observer—apparatus. This is an essential advantage of the
Rigged QED theory. In the conventional QED (Weinberg 1995), atomic nucleus is
often implicitly treated as external potential, which is nothing but classical
observer—apparatus. In quantum mechanics, moreover, the presence of classical
observer—apparatus is mandatory. In the Rigged QED theory, we are free from the
measurement problem of the Minkowski space-time coordinates, since we do not
invoke the concept of the classical observer—apparatus. Even though we use the
Schrodinger field for the nuclear dynamics, the space-time coordinates are merely
the scale in inches or cm, not operators. In Chap. 2, the Schrodinger field for
electron is derived in the primary Rigged QED theory. Again in the primary Rigged
QED theory, the space-time coordinates are merely the scale in inches or cm, not
the operators. In the primary Rigged QED theory also, we are free from the
measurement problem of the Minkowski space-time coordinates, since we do not
invoke the concept of the classical observer—apparatus.

We use the virial theorem (Landau and Lifshitz 1975) for the finite-system
energetics of the Rigged QED theory and the primary Rigged QED theory as
formulated so in Sect. 2.2, Chap. 2. For the sake of simplicity, the primary Rigged
QED theory is used for all the numerical calculations of wave functions in this book
unless otherwise stated explicitly. The wave functions are twofold: one for the
expansion functions of fields and another for the ket vectors (see Chap. 4 in details).
Atomic symbol is used to illustrate that the center of the wave function is localized
around there. We use preliminary wave packets of electrons and nuclei centered
around the atomic symbol. Albeit preliminary, it is based on the underlying physics
shown in Sect. 1.1.1. Namely, it does not mean that we are working on the Born—
Oppenheimer adiabatic approximation of quantum mechanics.

The equations of motion of fields are obtained using standard variation principle.
The variation principle is made to be invariant under the Abelian U(1)qgp gauge
transformation. This is the gauge principle of the Rigged QED theory. The stress
tensor of the Rigged QED theory appears in the equation of motion of fields.

The Rigged QED theory is gauge invariant and preserves translational and
rotational symmetry but violates the Poincare symmetry. This is because the
presence of the Schrodinger fields violates the Lorentz invariance of the Lagrangian
density. If we neglect the Schrodinger fields, then we recover the conventional QED
with the Poincare symmetry as well as the gauge symmetry. The canonical quan-
tization is performed with the gauge-invariant Lagrangian density operator using
the Coulomb gauge at the starting point (see Fig. 1.16)


http://dx.doi.org/10.1007/978-981-10-3132-8_2
http://dx.doi.org/10.1007/978-981-10-3132-8_2#Sec8
http://dx.doi.org/10.1007/978-981-10-3132-8_2
http://dx.doi.org/10.1007/978-981-10-3132-8_4
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Gauge-invariant Lagrangian density operator
L(x)=- Ten F, (x)F* (x)

+ L ({9, D,0}:0+ XL #0r Do 2 D2, }3)

ﬁr({!,.f;, f)‘,ﬂy}};x) =(x)(ihy" D, (x)~mc)j(x)xc

[‘(n’({xd"‘!)&lu;c’ﬂ',;)(:kzﬂ };_\T) = Xﬂ('r)[;hj):ro{x)xc-'— 2m ;)(;k(x)JZa['r)

a

—The Poincare symmetry broken

Fig. 1.16 The gauge-invariant Rigged QED theory Lagrangian density operator

~ 1 ~

L(x) = _EFW()C)F‘W()C)

(D)) Sn({bar )

where Ze ({1/7, Beﬂlﬁ};x) is the Lagrangian density operator of electron

~

Le ({7, Deuiv bs) = () (it Do () = mec )i (+) (12)

~ ~ 52
and L, <{;?w Doy, D a;?a};x) is the Lagrangian density operator of a’th atomic

nucleus:

EG%%%D%})—@@@QWMC+W@@ﬁM)U&

The 50,” (x), where a=e stands for electron and @ =a stands for a’th atomic
nucleus, is the covariant derivative operator using the Abelian gauge potential

operator A u(%)

Day(x) = 0, + %K” (). o = Zae (1.4)
with m, and Z. = — 1 being the mass and charge number of electron and m, and Z,

being the mass and charge number of the a’th atomic nucleus, respectively. The
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nuclear spin is plugged in ad hoc. The canonical quantization rule of the
Schrodinger field is anti-commutation relationship for fermions and commutation
relationship for bosons.

The theory is invariant under gauge transformation

(@) = 77 (x) = exp(i20() ) (x) (15)
7al) = 2,7(0) = exp(49.(x) )7,(x (1.6)
A0 - 4,70 =A,() - 0,0(x) (1.7)

The gauge potential operators stand for

() = ($(), A()) (1:8)
The covariant derivative operators satisfy
D). Do ()| = i34 Fo () (19)

with the gauge field operators F v (x) defined as

F(x) = 0,A,(x) — 0,4,(x)
0 E(x) E/(~x) E.()
_ ~E(x) 0  -B.(x) B, (1.10)
~E,(x) B.(x) 0 -B.(v)

Then, the electric field operator E(x) and the magnetic field operator B(x) are given

by using the Coulomb gauge potentials A u(x) as

1)

(x) = —gradgo(x) —l 0

8(tX) , B(x) = rotj(x), diVX(x) =0 (1.11)

i)

[

1.2.3 The Maxwell Equations

The Rigged QED theory Maxwell equations of motion are found for the electro-
magnetic fields

=0 (1.12)
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The Rigged Maxwell equations of motion

10B(x) _

rod?'[x)+ — 0, div};‘(,\-) -0
c of
divE(x) = 47p(x), I'oLé(x} JLestx) 4}3—.;"“)
c ot c

Electric field and magnetic flux density

!2'(.\') = —grad@(x)— : (".‘A.(r.r)‘ .‘}(x) = ror.:i'(x), div;i(x) =0
c 0

Fig. 1.17 The Rigged Maxwell equations with the electromagnetic fields

divB(x) = 0 (1.13)
divE(x) = 475 (x) (1.14)
rotB(x) — % ag(tx) _ 47”?()() (1.15)

where /(x) is the charge density operator and j(x) is the current density operator
(see Fig. 1.17).

1.2.4 The Dirac-Schrodinger Equations

The Rigged QED theory Dirac equation of motion for the Dirac spinor field is
i Doy (0)7 () = mecip (x) (1.16)

(Do () ¥ = mecii () (1.17)

Likewise, the Schrodinger equation of motion for the Schrodinger field is (see
Fig. 1.18)

0 200) = — 2 BA02.(0) + o070 (1.18)

n _Zma

22

2710 = (Bioguw) +a(hwre) )
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The Dirac spinor field of electron

ih y'”f:)m(,\‘)r;}{x) = m_cyr(x)

The Schrodinger field of nucleus

" B2+ AW,

a0
ih- x)=-
ar’{"{ ) 2

Fig. 1.18 The Rigged equations of motion with the Dirac and Schrodinger fields

1.2.5 Continuity Equations

It is easy to find that charge and current satisfy the Rigged QED theory continuity
equation

0, (¥) = 0, 7(x) = (), J(x) ) (1.20)
0 .. .3
a—tp(x)—i—dlw(x) =0 (1.21)
where 5 (x) is the charge density operator and j(x) is the charge current density

operator (see Fig. 1.19).
The components satisfy

0 () = 0. 7, () = (Pul), 7o) (1.22)
gtﬁe(x) + divi(x) =0 (1.23)
%ﬁa(x) + div?a(x) =0 (1.24)

The p(x) is decomposed into
PY) = Pe(¥) + Y _Pulx) =Y Pal) (1.25)

Pa(X) = 4N o(x) (1.26)
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The Rigged charge and current density operators
A= p(x)+ Y pu(x). P (%)=, N, (x)

J0 =50+ 70, 10 =45,

Nuclear density operator
N, (x) = 2,(0) 2,(x)

Nuclear probability current density operator
$*(x)= ZILH (=ih g} (x)D 4 (x) 7,(x) + he.)

Fig. 1.19 Charge and current densities for the Rigged continuity equations

where p, (x) is the electronic charge density operator and p,(x) is the charge density

operator of a’th atomic nucleus and where N.(x) and N,(x) are the position
probability density operator of electron and a’th atomic nucleus, respectively:

() = W07 W (x) (1.27)

N
No(x) = 75074 () (1.28)

The j(x) is decomposed into

) +Zja AL (1.29)

o~
-

Tul®) = quVa(x) (1.30)

where J,(x) is the electronic charge current density operator and j, (x) is the charge

current density operator of a’th atomic nucleus and ¥,(x) denotes the velocity
density operator:

cy(x) 7 (x) (1.31)
"(0) Da(0)F )+ he) (1.32)

By the Gordon decomposition, we have
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5.0 = 5o (5B 0) — n (Bt ) 7 7))
b omrot (087 () — 52 (77 7)) (1.33)

The 7, (x) may also be written as the flux density operator S,(x) as follows:

%0 = Sa(v) (1.34)

1.2.6 The Lorentz Force and Stress Tensors

Under external source of electromagnetic fields, charged particles can be acceler-
ated by the Lorentz force. In the Rigged QED theory, the tension density given by
the divergence of stress tensor density 7.'uv(x) acts as the counter force to the
Lorentz force. Pauli in quantum mechanical context formulated the differential
force law derived from the divergence relations applied to the energy-momentum
tensor under general situations in the presence of electromagnetic fields (Pauli
1933), while the basic idea dates back to Schrodinger (1927). Moreover, the
antisymmetric part 72uv(x) has unique physical meaning of spin torque density
(Tachibana 2010). The spin torque density can be compensated by a force density,
called zeta force density (Tachibana 2012). The symmetric part 75uv(x) has the
physical meaning of tensorial energy density (see Fig. 1.20).

Stress tensor of the Dirac spinor of electron

symmetry- 147 (x) = %(lf/(x)y" (_ihﬁeﬂ(x})y}(x)+ h.C.)

polarized
sym  £3(x)= %(fe““ (x)+2,™ (x))

e

25, ]| force | _| energy 24,7 _| torque
[f' (x)] —[ area } [volume] [r' (x)] [valume]
- -
Tensorial energy density  Spin torque density

antsym. .44 (x) =2 (7% ()2 (x))

Fig. 1.20 Symmetry of the stress tensor of electron
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The origin of the sunlight pressure (see Fig. 1.12) is represented by the Poynting
electromagnetic field momentum density operator

= 1 = >
G(x) = 4—”CE(x) x B(x) (1.35)
It satisfies the equation of motion
o1 (6w +G'w) = (Lo + D'w) —diva () (136
0r2 2

o~

where & (x) is the Maxwell stress tensor density operator

E2(n) + B2(x) — 2(E () +B. ()
—o| 2B WEW + BB
—2(E.(x)E.(x) + B. x)Ex(x)>
—2<Ex(x)Ey(x) + B, (0)B,(x ) —Z(Ex(x)ﬁ,(x) + Ev(x)gz(x))
E2(x) + B2(x) — 2(E, (x) + §y2(x)) —z(Ey(x)E,(x) +B,(x)B.(x )
(BB, () + B.By(v))  EX(x) + B() — 2(E(v) + B (v)
(1.37)
and /L;(x) is the Lorentz force density operator
L) = L) + 3 L) (1.38)
L) = Epe(x) +— 7o) % B() (1.39)
Lu(9) = EWP,(0) +-7,(3) x B(w) (1.40)

where L, (x) is the electronic Lorentz force density operator and L, (x) is the Lorentz

force density operator of a’th atomic nucleus. Note that & (x) is symmetric

6 (x) = &' (x) (1.41)
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Kinetic momentum density operator

l:‘lc(,r) = ;(g.r}*(,"](ih,’i(,\'))y}(.\'] + J‘a.c,)

Kinetic energy density operator

f.(x)=- :;” - ;(y}*(x)ﬁj(,\-)g}(,\-) & h.c.)

Fig. 1.21 Gauge-invariant kinetic momentum and energy density operator of electron

Secondly, the electronic kinetic momentum density operator (see Fig. 1.21)

1

ﬁd@::§<aum(m84@)$@)+hc) (1.42)

satisfies the equation of motion

o) = Le(x) + 21(x) (1.43)

SIS
=0

The ?en (x) is the electronic tension density operator given as the divergence of
the electronic internal self-stress tensor density operator

o~

() = dive, (1), 2% = 02 ke() (1.44)
THuv(x) = % (ﬁ(x)y”(—ihﬁe”(x))f/}(x) + h.c.) (1.45)

~

> H . .
It should be noted that 7 , (x) is Hermitean

=W (1.46)

Lastly, the kinetic momentum density operator m,V,(x) of atomic nucleus
a satisfies the equation of motion

%@ﬁ@ﬁ:i@+%@ (1.47)

The ?5 (x) is the tension density operator given as the divergence of the nuclear

internal self-stress tensor density operator
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) = dive . (), ) = 0% (x) (1.48)
2 ~ ~ ~

20 = 2 (FUDaIDaE () — (D7) D)zl + hc

(1.49)

o~

«— S . .
It should be noted that the stress tensor density operator 7, (x) is Hermitean and
symmetric:

O ) = o), 7 = () (1.50)

5 () = L(x) + 2(x) = L(x) + divs (x) (1.51)
i(x) = fe(x) + 3 mavia(x) (1.52)
) = 0+ Y7 ) (1.53)
2 oo o8
T =7, )+ Y 7T, (1.54)
To sum up, we have
% <%(8(x) + (A_ﬁ(x)) + ﬁ(x)) = —div (g(x) — %(x)) (1.55)

which is the momentum conservation law of the Rigged QED theory.

It should be noted the stress tensor itself is not defined uniquely (Heitler 1954;
Tetrode 1928) since mathematically any tensor whose divergence is zero can be
added to. Our stress tensor is defined in such a way that it appears in the equation of

motion of ﬁ(x) as in Egs. (1.51), (1.52), (1.53), (1.54), and (1.55).

1.2.7 Spin Torque of Electron

The electronic spin angular momentum density operator

~ 1~ o~ N o

Se(x) = 5 hGe(x), Ge(x) =y (x)6w (x) (1.56)

satisfies the equation of motion
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2500 =10 + LW (1.57)

where 7.(x) denotes the spin torque density operator defined as

?ek(x) = —Stznk?emn(x) = _Eénk??[n(x) (1.58)

The E .(x) denotes the zeta force density operator defined as

o~

CEx) = —cox (t//;(x)yk%haky/;(x)) ;N0 sum over k (1.59)

The alternative form using the gradient of the zeta potential ¢s(x) is obtained as
follows:

CE(x) = —0us () (1.60)
- hc ~, he? [ ~
$s(x) =24 J5(x) :7<NR(X) *NL(X))- (1.61)

where 7(5)()() denotes the zeroth component of the chiral current density operator

J5(x) = cqp (X)r'ysi (v) (1.62)

vs=ir’r'r’r’ (1.63)

with the chiral Ng_; (x) components.

Thus, it is concluded that the electron spin torque is found to be counterbalanced
by the chiral electron density. The geometrical nature of this relationship will
further be discussed in Chap. 2.

1.2.8 Spin Vorticity of Electron

Since the vorticity rots, (x) is a solenoidal vector field, the spin s (x) itself may be

given by integration in the starlike domain using the rotation of torque 7. (x) as the
driving force

ot 23 (7¥) = rot [ —7 x /lr 23 (AF)AdA
oatser—o v C'oatser

[N
= rot <F X / rot?e(/lf')/ld/l) (1.64)
0
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where we have used that the zeta force . .(x) is an irrotational conservative vector
field as shown in Eq. (1.60). Moreover, it should be noted that

~ ~ A
rotf(x) = —2divr . (x) (1.65)

and hence we obtain
t 1 A
rot(5e (¢, 7) — Se(to, 7)) = rot(27 X / (/ divz, (t’,ﬂ?)idﬂ)d/) (1.66)
to 0

with

0 = oA
Erotse(x) = —-2divt. (x) (1.67)

This is called the quantum electron spin vorticity principle: the time evolution of

the electron spin 5. (x) is driven by the antisymmetric component of the electronic
~ A

stress tensor 7. (x) through the vorticity rots. (x). If one half of Eq. (1.67) is added

to Eq. (1.43), we get (see Fig. 1.22)

~ S

% <ﬁe(x) n %rot?e (x)> = Lo(x) + divF. (x) (1.68)

0

ot (ﬁ (x)%mf;@ (x)] =L, (x)+divE® (x)

ot () S5 (0= L)

spin vorticity 1__*. i (x) spin velocity

Antisymmetric stress tensor
drives electron spin torque
through vorticity

Fig. 1.22 Quantum electron spin vorticity principle
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The applications to the other particles are also interesting. For example, for
chiral spin-1/2 fermion with the non-Abelian gauge potential, analogous equation
of motion of spin has been found (Tachibana 2010). Another example is the
Majorana particle, which is neutral (Tachibana 2013).

We have proved that the spin vorticity of electron contributes to the kinetic
momentum of electron. It raises a simple but “odd” question: what is momentum of
electron spin? How odd this question is should be obvious since electron is
considered a point particle, and spin is its internal degree of freedom and then
spin is considered to have nothing to do with momentum. In the next chapter, we
shall resolve this question.

1.2.9 Angular Momentum of QED

The angular momentum density operator /L";’(x) of electromagnetic field defined as
Gi(x) = 7 x G(x) (1.69)
satisfies the equation of motion

o1

2 (700 + 7)) = 7 x (—(Z(x) I () + diva (x)

I
&
=

—Fx%(z(x)—&—zT(x))— i (in(x)) (1.70)

~
—

The electronic orbital angular momentum density operator £ (x) defined as

I
=1
X
=
o
=

70 (1.71)

satisfies the equation of motion

~ ~ II

03 - o -~ oo
= le(x) =7 X (Le(x) +divr, (x)) =7 X Le(x) +div<?>< Te (x)) (1.72)
Sum of Eqs. (1.57) and (1.72) leads to

a%(i’e(x) +§e(x)> — 7 x Lo(x) +div<7~>< %&x)) R0+ ) (173)
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The a’th nuclear orbital angular momentum density operator l, (x) defined as
a(x) = F X myva(x) (1.74)

satisfies the equation of motion:

Ty() = 7 x La(x) +div<?>< %jm) (1.75)

(1.76)

If the time derivative of a'(x) from Eq. (1.70) is further added to, we finally obtain

~

5 (50 + ) +
+ + Lo )+ Ly
2 (300 S
= —fxdw(E’(x) —?(x)) + 1) + L) (1.77)
If we use the electron spin vorticity principle in the form

0 (1 = oA SA
7 X 3 <§rot§e(x)) =—-rx (div‘?e (x)) = —div(? X T, (x)) (1.78)

then we get

~

% (7 x %rot?e(x) —?e(x)) = —diV(? x %::(x)) - (?e(x) + Ze(x)) (1.79)

so that we arrive at

ot

_ —div(? y (}?(x) _ %S(@)) (1.80)

which is the angular momentum conservation law of the Rigged QED theory.
Mechanical measurement of the angular momentum of light has been performed
experimentally (see Fig. 1.23).

9 (;(ﬁ(x) + () + () + 7 x %rotse( )+ ?a(ﬂ)
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Fig. 1.23 Mechanical measurement of the angular momentum of light (Reproduced from Beth

1935)

1.3 Phenomenology of the Rigged QED Theory

1.3.1 Energy Density

The QED Hamiltonian density operator H Qep(X) is composed of the Hamiltonian
density operator of the electromagnetic field ILAIEM(x) and the Dirac electronic
Hamiltonian density operator H Dirac (¥) interacting with the electromagnetic field

ﬁQED(X) ( )+HDlrac( ) (181)
Hew(x) = H,(x) — Ao (x)p (x) (1.82)
Hipyiree () = M () + Ay (%) (x) (1.83)
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where H ,(x) is the electromagnetic field energy density operator and M e(x) is the
electronic mass density operator:

() = % (B + Bw) (1.84)
M(x) = () (—iny Des ) + mec ) (x) (1.85)

The electronic mass density operator M. (x) may be written as the energy density
operator of electron H e(x) as follows:

M(x) = He(x) (1.86)
Thus, the H QeD (¥) reduces to (see Fig. 1.24)

Hoen(x) = H,(x) + He(x) (1.87)

The Rigged QED Hamiltonian density operator denoted as ﬁkigged Qep(¥) is
derived as follows:

o~

P]Rigged Qep(x) = ﬁQED (xX) + H giom (%) (1.88)

where the energy density operator H aom (x) of atomic nuclei interacting through the

electromagnetic field and the electron field is added to H Qep (). The H aiom (x) is
purely the kinetic energy density operator of atomic nuclei

Ii\]atom (x) = Z Ta(x) (189)
7 = 2L (21w B, Wz, + e (1.90)
alx) = o 2 2xX)Dy (x)x,(x .C. .
Hamiltonian density operator Hamiltonian operator

Hp(x) (The Lorentz scalar) ﬁQED(z)zj'd-‘#:ﬁQED(x):

expectation integral J‘d-*f expectation
value <> _— value <>
Energy density Energy

My o (X) =<f;’m£b(x)> Eqep (1) = IdBF”HQm (x) =<HQED(*')>

Fig. 1.24 Energy density concept in the field theory
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The energy flow is found to be

0 ~ 5 >
EH,,(x) = —c*div= (G(x) + GT(x)) - % (E(x)
0 ~ S 5 05 =~ =~
2 Ael) = ~CdivTio(e) + 5 (B0 + 7o) + 7.0)+ () (1.92)
 Haon() = ~div 5,0 + 4 (Em VAR IACE E(x)) (193)
with
500 = 317 () (ZODUIBL07,0) + (P20 Bo70) —
(1.94)
leading to
0 ~ = = > ~
= Hrigsed Qo () = —div (czl(G@c) + G*(x)) + e () + > mx)) (1.95)

which is the energy conservation law of the Rigged QED theory (see Fig. 1.25 with
Egs. (1.55) and (1.80)).

Energy conservation law
a
)

— Hpigpet oan (%) = —div(& %((}(x) + (}+{x)} + clﬁ‘_{x) +3'5, (x)]

ot
Momentum conservation law

0 (l[(}(r) + (}*(_\-)) + IEI(X)J = —div (é‘(x) - i:'(x}]

~
F/

Angular momentum conservation law

|M

or\ 2
= —div(Fx(6(0 -7 ())

Fig. 1.25 Energy, momentum, and angular momentum conservation laws of the Rigged QED

2 (l(z}{x)ﬂ}*(x)] 4 %r(x) +Fx Erot;"c{x) + }”(x)]

theory



1.3 Phenomenology of the Rigged QED Theory 39

It should be noted that the application of the Noether theorem associated with the
canonical quantization is the textbook approach to derive the conservation laws
(Weinberg 1995).

We shall further use the virial theorem (Landau and Lifshitz 1975) for the finite-
system energetics of the Rigged QED theory in Sect. 2.2, Chap. 2.

1.3.2 Electromagnetic Energy Density in Magnetodielectric
Media

In the Rigged QED theory, the phenomenological interaction of a system A and its
environment background medium M is tractable using regional charge and current
densities. For phenomenological force concepts in magnetodielectric medium such
as chemical reaction systems in condensed phase, we may usually rely on a classical
analogy of parallel-plate capacitor filled with a dielectric (see Fig. 1.26). Nuclear
magnetic currents for nuclear spin (Itzykson and Zuber 1980) can be treated as if
they were within M.

The corresponding gauge potentials are the regional integrals of the charge and
transversal current densities, defined as follows (Tachibana 2010)

~ . _plet, s
Ag, (ct, 7) = /d3s/|)’_£_ §|) (1.96)
A

T —

X7y, BiF) S e ey

Fig. 1.26 Parallel-plate capacitor filled with a dielectric: a phenomenological model of a chem-
ical reaction system A embedded in an environmental background medium M
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—~ o(ct. 5
AM%a:/fﬁS? (1.97)
M
and
An(ct, 7) = C/lﬂ*ﬁ@%?é% (1.98)
S o1 _,; (cu, s)
Am(ct AR 1.99
wler, 7) = C{f — (199)

where the subscript A or M of the integral sign denotes the regional integrals

confined to the region A or M, respectively, and where u = ¢ — ‘FL;KI (see Fig. 1.27).
Since the regions A and M altogether span the whole space, we have

Ao(x) = Ao, (x) + Ao, (v) (1.100)

A(x) = Apdiation (X) + Aa(x) + Ap(x) (1.101)

where the radiation gauge potential satisfies

19 5
<C_2ﬁ - A) Aradiation( ) - O leArddldtlon( ) =0 (1102)

Fig. 1.27 Gauge potentials
in an environmental
background medium M

System A embedded in the medium M
y Wi :,,[‘){L‘-"S‘)
A, (u,r}_{d e

(c.' s}

AQ“(LH) jd\

jﬁﬂJﬂ=1jd31{“g9
¢ A F—5|

Ay (ct,F) = jd‘ “{“”)

J—S
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This is given as

- p 1 &p
Ar diation (X) =
o ,/(2,,;1)3,;;1 v’ (1.103)

VAR (e(5, 0)a(p,0)e P/ + o (7, 0)a" (B, o)e*?")

The polarization vector is

0
N ) o~ - 1 | cos¢pcos@Fising
" iof(L(p:k).pik) _ pu ( ) _
(P, o)e k V(p)e ko V2 | singpcos@+icosep
—sinf
(1.104)
(p,6) =0 (1.105)
pe(B,0) =0 (1.106)
i L - i pipj
> e(p o) (p,0) = —n s (1.107)
o==+1

The electric field E(x) is decomposed into the electric displacement D(x) of the

medium M and the polarization P (x) of the system A, defined, respectively, as

= ~ 103

D(x) = —gradAo,, (x) — - a_tAM(x) (1.108)
3 1 ~ 1 03
P(x) = EgradAoA (X) + R EAA(X) (1109)

so that we have (see Fig. 1.28)

Electric field
B(x)=-gradd, ()1 2 A(0) = Do) -anBy)-12 4y )
c ot cot
f:"(.r):—grad_io (.\‘)—] 0 1‘}”(,‘}.‘ l"’(r): : gradd, (x)+ L @ ,:iﬂ(.\‘)
M cdt 4 A dre ot
Magnetic field
f}(_\‘] = rot.:i(_r) = I-}(x] + 4;‘?’1"‘}[}')

!-}{.\') = !;?M(x)+r0l;i

radiation

(x), M(x)=-rotd, (x)
4r

Fig. 1.28 Electromagnetic fields in the system A and an environmental background medium M
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. —~ S i~ > 103
E(x) = —gradAo(x) — A(x) = D(x) —4=P(x) — - EAradia[ion(x) (1.110)

Likewise, let the magnetic field H (x) of the medium M and the magnetization

M (x) of the system A be defined, respectively, as

Hy(x) = rotAy(x) (1.111)
= 1 >
M(x) :ErotAA(x) (1.112)
then we have (see Fig. 1.17)
B(x) = rotA(x) (1.113)
rotA(x) = H(x) + 4z M(x) (1.114)
F[(.X?) = FIM(X) + I‘OtA'radialion(X) (1115)

The regional charge densities are then represented, respectively, as

Pal) = 3= A0, (9 (1.116)

Puile) = A0, () (L117)
and hence

PX) = Pa) + Pualo) (1118)

The regional charge current densities are represented as

Talx) = 4; <1grad ngA( )+ D&(x)) = %?(x) LerotM(x)  (1.119)
?M(X) = 46” %gradaaAoM( )+ DZM(x)> (1.120)
70 = 700 + )
2~ R R (1.121)
a—P( X) + crotM(x) + jy(x)

The regional decomposition of the longitudinal and transversal components of
the current densities are represented as follows:
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o~

700 = L) + e ()

43

(1.122)

with
To00) = T, () + Ty () (1123)
Tr(x) = T, (0) + Ty () (1.124)
where
G =< grada%AOA(x) (1.125)
e c 0 ~
Ji () = - —grad = Am(x) (1.126)
?‘TA(X) —%- XA(X) (1.127)
?’TM(x) %- DZM(x) (1.128)
We have the alternative forms as
Tale) = 7, () + 7, () (1.129)
@) = iy () + Ty () (1.130)

The linear response properties of the system A under the interaction with the
environment medium M may formally be represented with obvious notation as

follows

= = = 1073
P()C) =a (.X‘) (D(x) - ;E Aradiation(x))

(1.131)

— 7. WEW
W) = 7 () H ) (1.132)
B(x) - B afradlallon (x) = (1 + 4n;§e(x)) E()
_ ! :(X)E(x) (1.133)
—4dna
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Ex =(1+4zy x)l?lx
0= (1 4nt0t0)) ity s
= j (x)H(x)
and
g 3 103
=0¢ <D - EE Aradiation (X))
2 2 = (1.135)
= 0 ext(X)€ (¥)E(x
=Cin (X)E(X)
Photon deflection is realized by the index of refraction
n(x) =\ ux)e(x) (1.136)

Chirality of matter affects the helicity of photon (photon spin) S (x) in the wave zone
(see Fig. 1.29)

~

1 = = > >
4-_77C‘E(x) X A(x) = Sradiation(x) + Smatter(x) (1137)

o~
o~ >
—

S'radiation (X) = EEradiation (X) X Aradialion (X),

5 103
Eradiation (.X) = _; E Aradiation (X) ( L. 138)

Matter contribution to photon spin

‘S:(x) = Lé(x) x A(x) = Ls;radialiurl (x) + Smallt.r( )
dre

Vector potential from matter current

A lchi)== Id’ J"l;"j‘é“) —Id’s;,(cu 5)
u:;_r_.. =r-i, F—s|xr-nes,

=)
Il

~ | =

9
©

Fig. 1.29 Photon spin originated from matter current in the wave zone
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If atoms and molecules are irradiated, then the electrons may be affected by
torque leading to the imbalance in between spin torque and zeta force. The back
reaction may also affect the torque on photon, leading to the circular dichroism, the
Kerr effect, or the Faraday effect. Forbidden processes may of course occur due to
forbidden symmetry of the ket vectors.

1.3.3 Effective Charge Number of Electromigration

Electromigration is the phenomena of nuclear current induced by electric current in
condensed phase (Lodder and Dekker 1998). The nuclei accept diffusive force from
the surrounding medium over and above the Lorentz force (Bosvieux and Friedel
1962). In our model, the tension is the origin of the medium effects.

The linear response of the force defines the effective charge number tensor

Sk

density operator z .(x) of a’th charged particle as

P

g 3 1 a 3> -~ 1/—\' > > ~S
Z,09e(B) ~ £ 52 A ) Nale) + 1 1,00) % B = L) + 7,09
(1.139)
Since the right-hand side of this equation is
> ~ S 13 = ~
La(x) + 73(x) = E()Da(x) +~ Jalx) ¥ B(x) + 7 (x) (1.140)

we then conclude

7 00e( D) = L5, Asi0) ) al0) = E7, ) + 3500
= <B(x) - 47r/1§( ) — %%gradiation(x)>zaeNa(x> +7,(x)

_ (B(x) _ %% A giion (x))Zaeﬁa(x) AnP(V)ZaeNo(x) + () (1.141)

Now we define (Tachibana 2002)

Nk

Z () = Za + Z o wina (%) (1.142)
-z

o~

N1)

a wind (X) a static wind (X) +Z a dynamic wind ()C) (1 143)

and we conclude the response tensor operators
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Z 4 static wind ()C) = —47[20,3 (x) (1144)
- = 103 ~ ~
Z(l dynamic wind(x)e (D(X) - EE Aradiation(x)>Na (X) = Tﬁ (X) (1 145)

It should be noted that the formulation for a = e leads to electronic conduction. The
usual textbook approach demonstrates the medium effect as the dissipative force
against Lorentz force: see, e.g., Eq. (1.16) of the Ashcroft—-Mermin textbook on
solid-state physics (Ashcroft and Mermin 1976). In our present result, the dissipa-
tive force emerges from the tension density as the field theoretical force density
compensating the Lorentz force density (see Fig. 1.30).

It should be noted that the response tensor R'(x), such as the electronic

dielectric constant € (7), the magnetic permeability 4 (7), the conductivity

—

G int.ext (), the index of refraction 7 (7), and the effective charge Z (7), is symmetry
polarized in general inhomogeneous media. Mathematically, the response should
be studied through the Jordan normal form of the symmetry-polarized response

tensor operator R '!(x). More intuitively, the physical meaning of response may be
revealed through the directional and rotational responses corresponding to the

o~

major elements of the symmetric RS (x) and antisymmetric R A(x) responses,
respectively (see Fig. 1.31).

Let the total angular momentum may be conserved globally, Eq. (1.80), yet the
particles may be locally deflected by inhomogeneity of the system. Actually, the

Local equilibrium condition for the
stationary state

Repulsive electronic tension drives the quantum mechanical electronic “diffusion”

(i(x))+(é(x)) -0

Equation of motion Force density operator

%ﬁ(x) —F6) = E)=E) 50

B & : Tension density operator represents the
“quantum mechanical field force”; e.g. for electronic
diffusion by the Heisenberg uncertainty principle

B I(x) :Lorentz force density operator represents the
“classical” force

Fig. 1.30 Local equilibrium condition of the stationary state
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Symmetry-polarized response tensor operator

.I’n_—Ouf veclor operalors - ~ ~ The Jordan normal form of
with symmelry-polanized 0( ) — RH ( x) 1f (x) the symmelry-polarized
response tensor operalor response lensor operator

More intuitively, physical responses may be characterized by
n 17 -
om R (x) =2 (R (x) + R™ (x))

antisym | Rkt (x) o _%(Rm: (x) _ R (x))
Directional response € ﬁ‘(x)

Rotational response €  &'(x)
Fig. 1.31 Response tensor operator R T(x)

complex eigenvalue of the electronic dielectric constant & (7) has been demon-
strated numerically (Doi et al. 2006). The rotational response of electron toward
applied electric field, namely, the electron deflection, should then be realized by the

complex eigenvalue of & (7). In general, the rotational deflected response of
electron toward applied electromagnetic field should be realized by the complex

—»
k)

eigenvalues of the electronic dielectric constant & (7), magnetic permeability j (7)

effective charge z (7), and electric conductance & (7) (Tachibana 2010).

1.4 Examples
1.4.1 Torque in Analytical Examples
1.4.1.1 Spin Torque in Free Space
We may first examine free particle satisfying the Dirac equation
(ihd — mc)y(x) =0 (1.146)

where the generic mass m of the Dirac particle denotes m,. for electron. The
stationary state solution with the third eigenvalue { = j:%h of spin §* = Seé.
using the unit vector €, along the third axis is

i 1
w(x) =u(p,0)e P, (p—mc)u(p,{)=0, = :I:Eh (1.147)
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p0 +mc +p,

1 1 »
w(pooh) =— o + , pa=pti 1.148
<p 2 > 24/p°(p° + mc) P’ +me—p, Pe =Pty ( )

—p.
p_
L1 1 PO+ mec—p, .
7 R — 2, p_=p,—i 1.149
(p 2) N/ . p-=p.—ipy ( )
p()+mc+p

In the rest frame attached to the Dirac particle, the charge density and the chiral spin
density are

- 1 1
1 1 (1.150)
N0, +=h ) ==
L< ) 2 ) 2
- 1 1
_'R (O7i§h = :l:igz
1 1 (1.151)
o 0,4+=h | = +=2.
6L< ) ) ) Zek
In the inertial frame attached to observer, we have instead
| |
Ng| Ps iih = F(P :I:pz)
v (1.152)
N, <p7 +- h> % —(° Fp.)
. 1+ 0”72
& (ﬁ, ﬁ:h) + 4 Ly
2 2 w (1.153)
1 mc ! :Fpo —i:mc
oL| pt=h | =t—¢,. ————p
" (p’ 2 > 20 2 7

where the spin-orbit coupling appears in the chiral spin density, with polarization

- 1 1 P, -
4+ —— +— 4+ _ 1.154
S(p’ 2h) 2" (”’ h) h(ﬁ o+ 0@°+mc>”> (1.154)

The spin torque does not of course work in this case, but if electron is accelerated by
the external electromagnetic field, further spin-orbit coupling, the Thomas
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precession, and therefore the spin torque emerge to bring about the resultant further

polarization.
The charge density, spin density, current, chiral current, and the zeta potential
are then
y = 1 px py pz
-] p. DDy P-py p.?
K\ p,t=h | = +cq| =, = , 1 = 1.156
i (5.30) = 0 (5 gty ey ) (14159
1 he* pf
p,t— | =4+ —-% 1.157
¢5 (pa 2) 2 po ( )

where the generic charge ¢ denotes ¢, for electron. The torque and zeta force are
calculated to be zero:

£=0, 7=0 (1.158)

and hence the sum

%E:HE:O (1.159)

which should be so since the state here is chosen stationary.
Now we have the null vorticity:

rots =0 (1.160)

The null vorticity does not contribute to the kinetic momentum.

1.4.1.2 Plane Wave Radiation Field

The Volkov solution of the Dirac particle under a plane-wave radiation field (see
Fig. 1.32)

AP =AMP), p=k-x=FK'ct—k-F, Jim A () =0 (1.161)
—@Pint

is given as (Volkov 1935; Berestetskii et al. 1982)

1 ;
W= (1 +2k'p‘C’kA>ezS°u (1.162)
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The Dirac equation
(J‘MD (x)- mc)t;/(x) =0, D(x)=y"D,(x)

-~ g
D,(x)=9, +1§ij (x)

Plane wave gauge with boundary condition

A" =4"(¢). $=k-x=Kci—keF, lim 4" (4)=0

. 1
lim ¢ =+—h
¢ 1’];::1 é— 2

Fig. 1.32 The Volkov solution of the Dirac particle under a plane-wave radiation field

¢ 1 g L g\
So = —x-p—/m (k.pcp~A—2k.p(E) A >d¢ (1.163)
(p—mc)u=0, 0-u=0 (1.164)
p* = (me)? (1.165)

Let the asymptotic free boundary condition with the third eigenvalue { = :i:%h of
spin §° = Se 2. be

1
lim {=+=h 1.166
=it ¢ 2 ( )

Then we have

uf = 1 1 q 1 q L 4\,
H +-h | =cq— — A+ —Ap———ri)[=) A 1.1
/ (p, 2 ) quo <pﬂ rali <k-pc P 2k~p(c) (1.167)

p.

pO

(Wt e = )

w2 (A}'?— - mﬂf‘ P Z—A)
1 2 1 . .

~(ape) 2 (V5 o Ko7 ok

(1.168)

of - ] L
Js p,:l:ih = +cq 2% - pe
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Assume then for simplicity, first, radiation field propagates along the third axis
associated with the electric field along the first axis and the magnetic field along the
second axis

A* = (0,A,,0,0) (1.172)
k= (k°,0,0,K°) (1.173)

. 10A dA
E=——=(E,E,E,) = | —k"— 1.174
=5, = (EcEyE) (kd¢,0,0> (1.174)

o S dA,
B =rotA = (B,,B,,B.) = (o, —k° dq;,o) (1.175)
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Radiation field

4% =(0,4,,0,0), k*=(k",0,0,k")
fo_lod_
== (E-E,.E.)

{5
d¢

B=rotd=(B,.B,.B.)

(o)
dg’
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=

Momentum of the Dirac particle

P =(r",0,0,p,)

Fig. 1.33 The plane-wave radiation field and momentum of the Dirac particle

and, second, the Dirac particle propagates along the third axis asymptotically (see
Fig. 1.33)

P = (p°,0,0,p.)

(1.176)

It follows that the charge density, the spin density, and zeta potential are given as
(see Fig. 1.34)

Lo

1
N=—j =1+

- 1

s:iihc 94,,0,1 — (N 1))
b= (G- -1)

The spin torque and zeta force are calculated to be

—

1. ( k" dA,
r= (tx7t)’7t2) = iih(qp_owv 07 0)

ck®

T ) ()

- 1
g = (Cx?gy,gz) = iih(oao

dA

)

dg

P () O

(1.177)
(1.178)

(1.179)

(1.180)

(1.181)
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1.4 Examples

Number density

N=1p =1++[,:)(%T(A’)J

cq 2p"(p°
Spin density ;
- 1 1 g X
=tx—h| —=4,0,1-(N-1 4
b La01-(v-1) .

p
Spin torque and zeta force
15, he( p.
(&-(v-1)

- 0 =
t=|—s,00], =—grad¢, =| 0,0,—s, ) =+ —
(26.00) 6= (0025 42t

ot
Spin vorticity
]
mﬁ':ilfi ‘_k_oﬂﬂ,{}
2 p ¢ dg

Fig. 1.34 Charge density, spin density, and zeta potential of the Dirac particle

Consequently, we have non-null spin dynamics, which should be so since the

Volkov state is not stationary:

0. . o+, =
S 5=1 0 1.182
5 =t (1.182)
The vorticity rots is
1 K g dA,
rots = +- (0, = 9% ¢ (1.183)
2 plc do

Consequently, half the vorticity contributes to the kinetic momentum.
As a trivial limit of free electron in the stationary state, the torque and zeta force

are calculated to be zero:
(1.184)

and hence the sum:
(1.185)

o

which should be so since the state here is chosen stationary.
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1.4.1.3 Static Uniform Magnetic Field

The Landau levels of the Dirac particle under a static uniform magnetic field along
the third axis

1.1

A* = 0,—=Hy,-Hx,0 (1.186)
2772

is given in a textbook (Greiner and Reinhardt 2009). Using the Landau

eigenfunctions Ry m,.r..(p) with p = +/x* +y?, the torque and zeta force are
calculated to be canceled with each other, which should be so since the state is
stationary

§=7+(=0 (1.187)

Qo

But the vector components are nonzero in this case:

S 0 0
{ = —gradgs = (_ 54557 —a—yd’s»o) (1.188)

with the zeta potential

fic k.o

¢5 = (Rn,nr,k;,a(p))z (1189)
En,m;,k:,(f + mc (27[)2 1

where n and my, are the quantum numbers, &, is the wave number along the third
axis, and o is the sign of the third eigenvalue § = :i:%h of spin §° = Seé..

1.4.1.4 Spin Torque in Static Spherically Symmetric Scalar Potential

Here we examine static spherically symmetric scalar potential in hydrogen-like
atom with the effective charge number Z.¢

)
r

Z
Al — ( eff® 070,0), Zeig > 0 (1.190)

The stationary state solution in the Dirac representation is obtained in a textbook
(Berestetskii et al. 1982) using the spherical coordinates 7,6, ¢ as
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o1
up =f(r)Qjm, € =j=* 3
ug = il+/f+[j’g(r)gj[m’ él — 2_] _ g
1
é + E +m
+A|—=— T
o B 2041 b
e+l m = 1 (1.191)
{+=Fm
2 YL .
2£+1 /,WI‘FE
Yorm =iYom

(204 1)(¢ — m)!

= ()" 4r(0 4+ m)! P{"(cos )™
with the energy eigenvalues
1 2
E,; =mc* a=<
Zeffz(lz hC

(,/Kzfzgﬂ2a2+n,<)2 (1.192)

Y N e (2 ) R |
e+ ) 2 {0, s

m{QLZ&“gK<0n_Q+1>
1,2,3,---, k>0 2
In the stationary state, the zeta potential is calculated to be null:
¢s =0 (1.193)
neither the torque nor zeta force:
7=0, {=0 (1.194)

Thus, as a matter of course, we have the stationary state of spin:

§=7+=0 (1.195)

Qo

1.4.2 Torque in Molecules
1.4.2.1 Torque in Chiral Molecules

The spin torque, the zeta force, and the zeta potential, which are significant
quantities to describe the local picture of spin dynamics of electron, are studied
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by using allene-type molecules, an achiral molecule C3;H, and a chiral molecule
CsH,Li, (Fukuda et al. 2013). The two molecules have different distribution
patterns of these quantities though their structures are similar to each other. It is
also shown that the zeta potential distribution is almost independent of the electron
density distribution (see Fig. 1.35).

Zeta potential is studied from the viewpoint of canonical orbitals (Fukuda et al.
2016a). Numerical example is C¢Hg (see Fig. 1.36).

The local spin dynamics of electron is studied from the viewpoint of the electric
dipole moment (EDM) of electron (Fukuda et al. 2016b). Numerical example is
YbF (see Fig. 1.37).

Fig. 1.35 Electron density and zeta potential in C3H, and C3H,Li,. Blue and red envelopes
represent positive and negative zeta potential iso-surfaces, respectively. The threshold value of
iso-surfaces of the zeta potential is taken as £7.5 x 107 [a.u.]. Green envelopes represent
electron density iso-surfaces. The threshold value of iso-surfaces of the electron density is taken
as 0.25 [a.u.]

(@) (iel) ) (E (=)

1.0 x 10~* 1.0 x 1074

ol e

—e
?

1.0 x 10 l

(©) {E(2) + (E(2)) (d) |
1.0x 107y 1.0 =

@ L]
1||-1||" 1.0 x

Fig. 1.36 The distribution of (a) the spin torque density, (b) the zeta force density, (¢) the sum of
them, and (d) the difference of large contributions in canonical orbitals in C¢Hg
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Fig. 1.37 Distributions of (a) the vector potential term of the spin torque density, (b) the electric
term of the EDM torque density, and (c) the magnetic term of the EDM torque density in YbF. The
red sphere represents the Yb nucleus, and the blue one represents the F nucleus. The color shows
the value of the torque in atomic units

Spin vorticity

(a) SHE (b) ISHE

spin angular momentum spin vorticity -

conductor

Kinetic momentum t t" spin torque
i

Fig. 1.38 Concept based on the quantum spin vorticity theory for (a) SHE and (b) ISHE

1.4.2.2 Spin Vorticity in Molecules

The spin vorticity of electron is studied from the viewpoint of the spin Hall effect
(SHE) and the inverse spin Hall effect (ISHE) (Fukuda et al. 2016c¢). Idea here is the
spin dynamics which may be realized in the bulk (see Fig. 1.38).

The realization of the bulk effect may be demanding. So numerical example is a
straight carbon chain with bond length of 1.5 A under a finite bias voltage of 0.1 V
under an electronic temperature of 300 K (see Fig. 1.39).
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(a) (11.), (b) (1), (M.).
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Fig. 1.39 (a) The distributions of the x component of the kinetic momentum density on the plane
z =0 [nm] and (b) y and z components on the plane x = 1.65 [nm]. (¢) The distributions of the
z component of the spin angular momentum density on the plane z = 0 [nm] and (d) y and
z components on the plane x = 1.65 [nm]. (e) The distribution of the x component of the spin
vorticity on the plane z = 0 [nm]. The y and z components of the spin vorticity on the plane z = 0
[nm] are negligibly small. In panels (b) and (d), the vectors consist of y and z components, and the
color maps represent the norm of the vectors

1.4.3 Electromagnetic Properties of Matter
in Magnetodielectric Media

It is confirmed numerically that the tension density defined in quantum field theory
is the counter force to the Lorentz force density (Nozaki et al. 2016). Numerical
example is benzenedithiol (see Fig. 1.40).

We use a nonequilibrium steady state model (Ikeda et al. 2013) as an example
for system A embedded in an environmental background medium M (see Fig. 1.26).
The response of electric current to electric field at a specific point in Si nanowire
(see Fig. 1.41) does not have corresponding macroscopic physical quantity (Nozaki
et al. 2016).

There are regions which show complicated response of electric current density to
electric field, in particular, opposite and rotational ones (see Fig. 1.31). Local
conductivities are considered to be available for the study of a negative differential
resistance (NDR), which may be related to this opposite response (Ikeda et al.
2012). Numerical example is the Ge-substituted Si nanowire model (see Fig. 1.42).

Effective charge number of electromigration is studied for reliability problems
of ultralarge-scale integration devices where extremely high current densities
should be maintained through ultrathin film interconnects (Doi et al. 2003). Quan-
tum mechanical wave-packet propagation of an Al atom has been examined in
some models of thin Al lines which contain atomic defects, using the first-principle



1.4 Examples 59

A

M M
033300 [amums
9

Fig. 1.40 Benzenedithiol A connected to external electrodes M

Fig. 1.41 Si nanowire
models. Light gray, green,
and white spheres
correspond to Si, Ge, and H
atoms, respectively

Rotational response

b
5.0x107 12 5.0x107
=
0 S0 0
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Fig. 1.42 Complex eigenvalues of (a) first, (b) second, (c) third, and (d) the average & in (7) (a.u.)
for the Ge-substituted model Si nanowire model (see Fig. 1.41)

electronic structure calculations under the periodic boundary condition (see
Fig. 1.43).

The dynamic wind charge demonstrates significant figure at some characteristic
point (see Fig. 1.44).
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Electromigration

@) () ©

Fig. 1.43 Periodic models of electromigration in Al (100) surface for (a) bulk, (b) surface, and (c)
grain boundary. Arrows point the direction of the external electric field, and squares inserted in the
models indicate planes for maps in Fig. 1.33 on which the wave-packet ion core is put

Dynamic wind charge

Za dynamic wind {Fa)
Za static wind (Faﬂ

effective charge 7 (7))

—_— |00 ~
— 10t~ 100 — 10~ 1073

— 102~101 —* ~ 107

Fig. 1.44 Maps of the dynamic wind charge tensor density compared with the static one
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1.5 Summary

Under external source of electromagnetic fields, charged particles can be acceler-
ated by Lorentz force. Dissipative force can make the state of the charged particles
stationary. Tension density of QED is formulated in such a way that it can
compensate the Lorentz force density at any point of space-time. This formulation
can give mechanical description of local equilibrium leading to the quantum
mechanical stationary state.

The tension density is given by the divergence of stress tensor density. Elec-
tronic spin can be accelerated by torque density derived from the stress tensor
density. The torque density can be compensated by a force density, called the zeta
force density, which is another basic mechanism leading to the stationary state of
the spinning motion of electron. It should be noted that the Pauli Hamiltonian gives
equation of motion of electronic spin: see, e.g., Eq. (11.155) of the Jackson
textbook on classical electrodynamics (Jackson 1998). The Bargmann—Michel—
Telegdi (BMT) equation and Thomas precession are also the textbook matters.
Our present result incorporates all of them in a closed form plus the field theoretical
compensation mechanism leading to the stationary state of electronic spin. The
external effect for chemical reaction systems is realized where a chemical reaction
system A embedded in the environmental medium M is modeled as a parallel-plate
capacitor filled with a dielectric. The vibronic interaction that goes beyond the
adiabatic approximation has been incorporated as well as the electronic spin-
dependent interaction.
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Chapter 2
Energy-Momentum Tensor of QED

Abstract In Sect. 1.2.7, Chap. 1, it is found that the electron spin torque is
counterbalanced by the chiral electron density. In Sect. 1.2.8, Chap. 1, it is found
that the spin vorticity of electron contributes to the kinetic momentum of electron,
which raises a simple but “odd” question: what is momentum of electron spin? In
this Chapter, we shall show that the origin of both the chiral nature and the kinetic
nature is manifest in the principle of equivalence in general relativity.

Keywords Chirality ¢ Primary Rigged QED theory ¢ Principle of equivalence ¢
Rigged QED theory ¢ Stress tensor * Spin torque * Spin vorticity « SUGRA « SUSY
Tension ¢ Zeta force

2.1 Energy-Momentum Tensor

Light bends in order to advance the space-time that has been distorted by heavy
mass objects (see Fig. 2.1). This is called the gravitational lens, a phenomenon
which is predicted by the general theory of relativity. It is one of the phenomena
that space-time has proven the curvature (Weinberg 1972; Hayashi and Shirafuji
1979; Nakanishi 2004). Dynamics of electrons as the vorticity contribution to the
momentum is derived from the geometric principle associated with the tetrad field
with torsion (Tachibana 2012). The action must be generally covariant, with all
fields treated as scalars, except for the tetrad field itself. The Weitzenbock space-
time is the key to warrant the tetrad field for the description of the Dirac spinor.

2.1.1 Principle of Equivalence

The most general setup of space-time for the Dirac spinor field in QED with the
principle of equivalence (see Fig. 2.2) is the Riemann—Cartan space-time (see
Fig. 2.3).

Torsion and curvature are the characteristics of the space-time geometry (see
Fig. 2.4). The tetrad field is associated with the Dirac spinor field (Hehl et al. 1976)
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Fig. 2.1 X-ray selected sample of massive lensing clusters (Reproduced from Lopes 2011)

Fig. 2.2 Space-time

structure Riemann-Cartan Space-Time

U4
T=0 ~ N\, R=0

Riemann Space-Time | | Weitzenbock Space-Time
V4 A4

R=0 . S T=0

Minkowski Space-Time

The curvature-free but non-null torsion Weitzenbock space-time is indispensable
for the absolute parallelism of the tetrad field (see Fig. 2.5).

The Dirac spinor field is a coordinate scalar and a Lorentz spinor for the torsion-
free Riemann space-time (Weinberg 1972). Supersymmetry (SUSY) is the
nontrivial extension of the Poincaré algebra (Haag et al. 1975). The gauge boson
of the localized SUSY is spin-2 graviton, where the theory of supergravity
(SUGRA) emerges (Weinberg 1995). The quantum electron spin vorticity principle
is the consequence of the principle of equivalence both in QED equipped with
semiclassical Einstein—Hilbert action (Tachibana 2012) and simple SUGRA
(Tachibana 2014).
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Fig. 2.3 The Riemann—
Cartan space-time
characteristics

Fig. 2.4 Torsion and
curvature of space-time
geometry

Fig. 2.5 The Weitzenbock
space-time characteristics
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2.1.1.1 The Einstein Tensor

To seek for the variation principle of the equation of motion on the background-
curved space-time, the semiclassical Einstein—Hilbert action integral has been used
under the symmetry of the general coordinate transformation of gravity

1 8nG
6l =0, I:%/R./—gd“x—k;/b/—gd“x, KZZ—z (2.1)

where R is the Ricci scalar, G is the universal gravitational constant, and L is the
Lagrangian density of QED including the interaction with gravity. The gravitational
action I is added to the system action /g and made stationary

SI=0, I=1Ig+]Is (2.2)

iz

under the variation §g*” of the metric tensor g

c c 1

Ic =— | Ry=gd*x, 6l = — R,, ——g. R |8¢"/—gd* 2.3

G ZK/ ga X, G 2K'/< " 2g/u/ > g ga x ( )
1 1

Is = E / L/—gd*x, 65 = 5 / T,,6¢" /—gd*x (2.4)

The Einstein equation is then derived (see Fig. 2.6)
G (x) = Y, () (2.5)

with the definition

1 5 2k 1
Gu(x) = Nern o) o = Ru(x) =58,/ (x) (2.6)
1 o 2 K
Y/W(x) = \/:Tg‘(xA)(Sg””(x) ?IS - _C_ZTHV(X) (27)

Since the Einstein tensor G,,(x) is symmetric, so is the energy-momentum tensor
T,.(x) (see Fig. 2.7).
G (x) = Gyu(x); symmetric (2.8)
=T

T, (x) wu(¥); symmetric (2.9)
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Fig. 2.6 The semiclassical ~ The Einstein eq uation
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the Einstein tensor

1
G,ur(x) =Ryv(x)_iggv(x)R(x) T.‘"f'(x)
872G energy-momentum tensor
= [l B T
Y. (x)=- pe T,.(x) G=6.67x10"cm'g’s
gravitational constant

I,,(x) = Quantum mechanics of Momentum,
Stress tensor, Energy density

Electromagnetic field of photon
and the Dirac spinor of electron

Quantum field theory

Fig. 2.7 The semiclassical Einstein—Hilbert field theory

2.1.1.2

Using the tetrad formalism equipped with the principle of equivalence, the metric

Tetrad Formalism

tensor in any general noninertial coordinate system is given as

where e“M(x) denotes the tetrad field and the Latin letters a, b, ¢, and so on run from
0 to 3. The tetrad field e“,,(x) is a coordinate vector and a Lorentz vector for the

a

gu(x) =e

Lorentz transformation x — x” associated with the vector representation A?(x)

u (X)€" ()11 (2.10)
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ox¥

eu(x) = ) = e ) @.11)

e, (x) — €, (x) = Ay (x)eb, (x) (2.12)
and is parallely transported

ayea/1 + {Kﬂu}eak - 7/ahVeb/1 =0 (213>

We have used the Levi—Civita affine connection

{//y} = %gﬂp(aﬂgl/p + a’/gﬂp - a,,gm,) = {’/Aﬂ} (2.14)
and spin connection
Vd'u = Canu” e’ (2.15)
where the covariant derivative is defined as

eal;y = eal,u + {ley}eax (216)

Caly = Calv — {/le}eaK (217)
with the usual partial derivative denoted as
fou= 0.f (2.18)

In the tetrad formalism, the absolute parallelism of the tetrad field e"”(x) is found
to be

D'yel =0,e +T7,% e =0 (2.19)
and the connection
F*/V = {ﬂix/} - ea/ﬁ’abvehi (2.20)
is used to define the torsion tensor
T'w=r"" -T2, (2.21)

and contorsion tensor
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*

K Ay — 5 (T Ay — T pAv T Vﬂﬂ) (222)

The Dirac spinor field is a coordinate scalar and a Lorentz spinor

Wo(X) = o () = o (x) (2.23)
Wo(X) = o (%) = Dap(A(x))yy(x) (2.24)

Also, what is important, the covariant derivative D,(g), is not only a coordinate
scalar but also a Lorentz vector, as shown in Egs. (12.5.15-12.5.17) and (12.5.24)
of Weinberg (1972):

Dy(g) = 0+ T, (2.25)
L,(x) = T,/ (x) = D(A@))0,D ™ (A)) = (0,D(A)))DT (AY))  (226)

The Lagrangian density for the QED system under external gravity is then
given as

L = Lgm + Lpirac (2.27)
with the definition

1
167z

L
Lbirac = Ecl/_/(lhy e'D,(g) — mc)y/ + h.c. (2.29)

1
Fl P =

E F”VF/)D-gW)gVo, FIW = 5,,AV — a,,A}, (228)

Lgm = —

The gravitational covariant derivativeD,(g) is concretely written as (see Fig. 2.8)

1 ab 4
DM (g) = all + lﬁyalm‘] b + I%AH
) (2.30)
=D, + i2—hya,,”J”b
where the spin angular momentum J*
a lh a
I =y (2.31)

is added to D,, through the coupling with spin connection y,, given in Eq. (2.15).
The emergence of the spin connection is manifest as the consequence of the
principle of equivalence in general relativity.

It should be noted here that after some manipulation, we can rewrite Eq. (2.29)
in a very significant form as follows:


12.5.15
12.5.17
12.5.24
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Fig. 2.8 Gravity covariant ; G
derivative for the Dirac The coordinate-scalar Lorentz-vector derivative

spinor field al= be
D =g (;ﬂ+.l—0',|_m"
i} a 2 i3 I

The spin angular momentum

a _ﬂ a
J% = 4|:;V ,,Vb:I

The Ricci rotation coefficient

ab _ b di 8 . MV
Dy =Vl T €ys Vabe = o &

1
Lpirae = =¥ (ihy“e'Dy(g) — me)y + h.c.
g (2.32)
= lcw(ihyae "0, —mc)y + h.c. — ﬁa,,j * lAMj" '
2 a H 4q 5 ¢

Namely, which is hidden in Eq. (2.29), but in this Eq. (2.32), minimal couplings are
manifestly shown; those not only of current j*(x) with photon vector potential A*(x)
but also of chiral current j(x) with spin coupling vector a"(x) defined as

*

1
@ = ()T e (2.33)

where T*,,p(, is the torsion tensor given in Eq. (2.21), and we have used the Levi—
Civita tensor

1
£hvro g) = g;wp(r’ €0123 =1 234
(g) = (2.34)
Sﬂlfﬂff(g) =V —8Eupo> €0123 = -1 (235)

Using the Lagrangian density given in Eq. (2.27), the variation principle with
respect to the spinor field

5
ZIs=0 (2.36)

N

leads to the Dirac equation of the Dirac particle
(ihy“es"Dy(g) — me)y =0 (2.37)

and similarly the Maxwell equation of photon
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4
o, =t (2.38)
c
with the continuity equation of current
=0 (2.39)

Second, the variation principle with respect to the tetrad field leads to the
symmetric energy-momentum tensor 7, and the conservation law as follows:

1 1
ols = - / Ly—gd*x = - / T e, \/—gd*x (2.40)
0
Tyn/—8 = nabebymu /=g (2.41)
a

The symmetric energy-momentum tensor

T, = —€n;u/ — Tn;w(g) - % P FupFve — 8 (Lim + Le) = Toy (2.42)
T, = Temuw + Tpiracur (2.43)

Tempw = —i 8 FupFus — 8 Lim = Temuy (2.44)

Tpiracyy = _€HW - THW(g ) — g;wLDirac = Tiracvu (2.45)

satisfies the conservation law
T ;=0 (2.46)
Also the antisymmetric angular momentum tensor
MM = T — T = — M+ (2.47)
satisfies the conservation law
O,M* =0 (2.48)
In Eq. (2.42), we have shown that the symmetric energy-momentum tensor 7,,,

comprises not only the symmetric tensors but also polarized geometrical tensor &,
defined as
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o fic

&y = ZelVK*pauSApaKl/_/7x75W
. . ) -, (2.49)
+2 ((D 2+ T kAt + T pouF? v — 5T V,,UF;’”)
with
'l hc anc—-,
F = — ¢y ysw (2.50)

8

and polarized stress tensor rnﬂ,,(g) with the covariant derivative D,(g) given in
Eq. (2.30):

c

Tn/u/(g) )

(@7, (—inDu(g))w + h.c.) (2.51)

In this variation principle, due to the presence of the spin connection yp,, a new
symmetry-polarized geometrical tensor eHW appears and whose antisymmetric
component cancels with that of rn,“,(g) as follows (see Fig. 2.9):

M 4 M (g) =0 (2.52)
where

g = S 4 g (2.53)

Quantum electron spin vorticity principle

e+ (g)=0
Minkowsky
space-time
(5] .

time- E e 7 =8
derivative |t $(x)=1(x)+{(x) spma:eabr::?y

£(x) £(x)

spin lorque zeta force

space- = EESIEEIE %(tﬁ(x)?tho (x)w(x)+he)-Ti(x) T8

derivative spin vorticity

Fig. 2.9 Covariant form of the quantum electron spin vorticity principle
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S — % (e M) (2.54)
A _ % (e — ) (2.55)
and
(g) = (g) + 7 (g) (2.56)
(g) =5 (P (3) + () 25)
o (g) = 3 (Z(g) — () (2:58)

2.1.2 The Minkowski Space-Time
2.1.2.1 Spin Vorticity Principle
In the limit to the Minkowski space-time

e (2.59)
the equation of motion of the Dirac spinor field y(x) is reduced from Eq. (2.37) to
the Dirac Eq. (1.16) in due course. What is the physical meaning of Eq. (2.52)? The

answer is twofold as is found if we take the limit to the Minkowski space-time.
First, for the time sector with =0, v=1,2,3, we obtain

~

~ 3 1 ~ 0\
rot§ + 1 — 3 (W(ihDo)y/ n h.c.) ~0 (2.60)
Second, for the space sector with u,v=1,2,3, we obtain

_Z-0 (2.61)

with torque 7 and zeta force Z .

This Eq. (2.61) leads to the conclusion that the electron spin torque is
counterbalanced by the chiral electron density, as found in Sect. 1.2.7, Chap. 1.
The physical meaning of Eq. (2.52) is shown in Fig. 2.9.


http://dx.doi.org/10.1007/978-981-10-3132-8_1#Sec17
http://dx.doi.org/10.1007/978-981-10-3132-8_1
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2.1.2.2 Energy Density

In the limit to the Minkowski space-time, the energy-momentum tensor Tpiracy 18
reduced to

—(M 4+ h.c. c( + Lrots) (M + drots ¢ (T + Lrots)
2 2 X 2 y 2 z
TDiraCIW N C(li[: + %I'OtE)x 7’Z'Sxx + LDirac 7Tsxy 7TSXZ
C(H + %rot@')y —Tsyx —rsyy + Lpirac —”L'Syz
C(ﬁ + %I'Ot__f’)z —TSZX —Tszy _TSzz ~+ Lpirac
(2.62)
with the mass term M
M(x) = e (x) (—ihy* Di(x) + me )y (x) (2.63)

The electromagnetic component Ty, of the energy-momentum tensor is also
reduced to

H, Gy G, cG;
Gy on Oxy Oy
cG, oy 0y Oy
cG;, o0, 05 O

Tem"” —

(2.64)

with the Poynting vector G and the Maxwell stress tensor & . The conservation law
Eq. (2.46) of energy and momentum is then reduced to (see Figs. 2.10 and 2.11)

0 -
™, =0— EcPoqLchivP =0 (2.65)
o g - (o =S\
T ;ﬂ—O—>atP+d1v c—t | =0 (2.66)
IM+hc)+H, - 1 .
Pt = <2(cc)y, Im+ §r0t§+ G> (2.67)

It should be noted first that the vorticity plays an important role as momentum,
and it is associated with antisymmetric electronic stress tensor 74. We may further
prove that symmetric electronic stress tensor 75 plays an important role as tension
75 = div?S compensating the Lorentz force L as
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Energy conservation law

Minkowsky space-time

T'w,',l =0 (" acP°+czdiv;°. =0
1 = -
’ E(M+h.c.)+H, N Nl G
= — H"‘Emts +G | kinetic Poynting

momentum vector

spin vorticity

Fig. 2.10 Energy conservation law in the limit to the Minkowski space-time

Momentum conservation law

Minkowsky space-time o -

T#,=0 — 5P+djv(&—fs)=0
0 = L
5 =-L-dive Lorentz

force

Q(ﬁ.,_l ﬁ)=j+{-‘3 7% =dive®
ot 2 tension

spin vorticity

Fig. 2.11 Momentum conservation law in the limit to the Minkowski space-time

a = =g —

E‘ G=-L—dive (2.68)
1

Ppirac = 1+ EI’Ot? (269)

Consequently, after some manipulations, we finally arrive at

0 0/ 1 _ >
EPDirac =3 <H + 5r0ts> =L+7 (2.70)

P =diveS, 7% =0, (2.71)
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Angular momentum conservation law

Minkowsky space-time

oM™ =0 — aj+div(?‘x(o" -#°))=0
J=FxP
=75 fl+lrot.§'+(_?]
2

spin vorticity

Fig. 2.12 Angular momentum conservation law in the limit to the Minkowski space-time

TS;n/ —

1
3 (¢ + ) (2.72)
This assures the equation of motion using solely the symmetric part of the tensor
5 in the right-hand side. This is the quantum electron spin vorticity principle in
Sect. 1.2.8, Chap. 1 (see Fig. 1.22). The physical meaning of Eq. (2.52) is shown in
Fig. 2.9.

Second, the conservation law Eq. (2.48) of angular momentum is then reduced to
(see Fig. 2.12)

a—’ — —
oMM =0 EJ+div<7><(a—rs))=0 (2.73)
L oke e U
-M J:rxH+rx§r0ts+r><G (2.74)
c

Finally, for finite systems, the virial theorem is invoked (Landau and Lifshitz
1973) to arrive at

/ PRI Eqep = me? / L7y (2.75)

We have shown the spin torque intrinsic to the spin-1/2 fermion is controlled by
the chiral electron density, and the origin of the chiral nature is manifest in the
principle of equivalence in general relativity. The time evolution of the electron
spin is driven by the antisymmetric component of the electronic stress tensor
through the vorticity. This is referred to as the quantum electron spin vorticity
principle.

It is the relativity theory of spin, where inherent spin-orbit coupling is realized in
between spin and orbital angular momentum. Imagine a bulk magnet. The magnet


http://dx.doi.org/10.1007/978-981-10-3132-8_1#Sec18
http://dx.doi.org/10.1007/978-981-10-3132-8_1
http://dx.doi.org/10.1007/978-981-10-3132-8_1#Fig22
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is phenomenologically composed of many magnetic domains. Each magnetic
domain has its unique spin, which is the average of spin density within the domain.
For the sake of simplicity, let first electron spin density respond to an applied
magnetic field (or even an applied electric field in some cases in recent spintronics)
and change through the domain wall, which is called “spin torque transfer” in the
experiments of spintronics industry (note the simplification). Our prediction is that
the spin torque does exist even in the stationary state when the spin torque is exactly
canceled out with the zeta force. In the nonstationary state, however, the external
magnetoelectric medium disturbs the intrinsic balance in between the spin torque
and the zeta force established in the stationary state.

Of course, realistically, in addition to the spin of the electrons, the complexity
origin of the magnetic spin can be either from the motion of electrons or nuclei,
where the spin torque combinations totally can be treated by the equations of
motion of angular momentum augmented by the ad hoc nuclear spin or more
fundamentally the quark spin with the non-Abelian gauge.

For future technology of spintronics and photonics, the interaction of chirality of
electron spin with another particle such as electron, nucleus, and photon (vector
potential) should play an important role. Furthermore, the general relativity has
recently been of vital importance with our daily life in particular for ultrahigh-
precision communication with artificial satellite (e.g., GPS). The intrinsic formu-
lations and the concrete analytical examples of the spin torque and zeta force
presented in this book should help us understand the importance of chirality in
modeling of materials of technological importance.

2.2 Rigged Field Theory

In application to chemical reaction dynamics, we have the Rigged QED theory
where nuclear degrees of freedom are treated in a unified manner with QED. We
shall examine here the nonrelativistic treatment of the Rigged QED theory and call
it the primary Rigged QED theory. Note that in the nonrelativistic limit, we have a
similar treatment by Lepage (Caswell and Lepage 1986).

2.2.1 Rigged QED Theory

Since we plug in the nuclear fields, we may first distinguish electron by the obvious
suffix “e” in such a way as
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(ihy“e " Deu(g) — mec)y, =0 (2.76)

We conventionally put the Schrodinger field equation of @’th nucleus onto the
curved space-time. The procedures are (1) first, ignore the spin connection in
D.,(g), (2) second, use the Dirac representation with y. and approximate the
small component as the multiplication of —ﬁcc ihc*e;” Dy, to the large component,

and (3) third, ignore again the spin-dependent terms in the resulting equation
(e Dey) (6'e"Dey) — (e"Dey)’ (2.77)
leading to

, in)?
(zheo"DaH — mac)y/a = é )

(ek”Daﬂ)zy/a (2.78)

Mg

where the large component for electron is here used as y, for the nuclear
Schrodinger field. Note that the mass term is indispensable since we need it for
the source of gravitation. We may identify this as the Schrodinger field equation
without a priori spin and use this to plug in nuclear degrees of freedom into our
formalism and call it as the Rigged QED theory in the curved space-time. In the
course to the Minkowski space-time limit, this equation reduces to the usual
Schrodinger field equation plus gravitational potential 7, as shown in Sect. 2.4.1.

In the limit to the Minkowski space-time, we use the Dirac field Eq. (1.16) with
the Schrodinger field Eq. (2.178) of a’th nucleus as follows:

(ihy"Dey — mec)y, =0 (2.79)

0 o2
hey —— B, A 2.80
l at)(a 2m, Xa+ 4.A0%, ( )

where the gravitational potential m,® in Eq. (2.178) is neglected (see Sect. 2.4.1).
We have electron spin vorticity here but no spin vorticity for nuclei.
We get with obvious notation the momentum conservation law

a =4 . — — S
EPRigged QED — —le(G — TRigged QED ) (281)

and the angular momentum conservation law

a 7 . — — — S
E JRigged QED — —div (r X (6 — TRigged QED )) (282)

The virial theorem for finite-system energetics is again used to obtain the
energetics of the Rigged QED theory
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ERigged QED = EeiRigged QED + Z EqRigged QED (2.83)
Ee;Rigged QED — mec2/ d3 ?<Wel//e> (284)
Ea;Rigged QED — _/d3 7<Ta> (285)
ol .2
T, = — .—(TD ) 2.
=5 g Walatathe (2.86)

2.2.2 Primary Rigged QED Theory

We make approximation to electron as with Eq. (2.78) using symbols a=e,a
collectively as

(iheOMDay - mrxc) Yo = él )

- (e¢"Day) v (2.87)

In the limit to the Minkowski space-time, we further use approximation as of
Eq. (2.80):

iy = B e (2.88)
at}(a_ Zm(l a Xa T 4aA0X a .

We have lost the spin vorticity of electron and lost the antisymmetric component of
the stress tensor of electron. We have the momentum conservation law

0

=4 . — — S
o Pprimary Rigged QED = —div (6 — T Primary Rigged QED ) (2.89)

and the angular momentum conservation law

0

7 . — — > S
a_l JPrimary Rigged QED — —div (r X (0 — T Primary Rigged QED )) (290)

Using the virial theorem for finite-system energetics again, Eqs. (2.83), (2.84),
(2.85), and (2.86) are reduced to the energetics of the primary Rigged QED theory

EPrimary Rigged QED — § Ea; Primary Rigged QED (291)

a
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1 5 S
Ea; Primary Rigged QED = 5/ d "<Ta; Primary Rigged QEDSkk> = _/ a F<Ta> (292)

ke H .
Tq: Primary Rigged QED” = Im (ZlDakDa/Za — (Darx a)TDal)(a + h-C-) (2.93)
o

/B R
— -§<;(;Da;(a+h.c.> (2.94)

T, =

2.3 SUGRA Energy-Momentum Tensor

2.3.1 Stress Tensor

In Sect. 2.1.1.2, the Dirac spinor field is a coordinate scalar and a Lorentz spinor,
and the covariant derivative D, (g) is not only a coordinate scalar but also a Lorentz
vector. It should be noted that the spin connection in the tetrad formalism is not
unique. In SUGRA (see Sect. 2.3.3 for mathematical details), we have a new term
Yaru(SUGRA) added to y,, as (Tachibana 2014)

.q 1 ab 1 ab
D,(SUGRA) =0 —A —Y b — SUGRA)J
ﬂ( ) /i + th U + IZhyuhﬂ + ZZhyabﬂ( ) (295)

1
=D,(g) + iﬁyahﬂ(SUGRA)J""

Then the symmetry-polarized stress tensor of electron 1H,,,,(g) is changed
to TH#,,(SUGRA) with the covariant derivative D, (SUGRA)

M, (SUGRA) = % (@, (—ihD,(SUGRA) )y + h.c.) (2.96)

With the new spin connection term given, the new symmetry-polarized geometrical
tensore™ (SUGRA) appears, and again now that the energy-momentum tensor
T,,(SUGRA) is symmetric and hence the electronic part T, (SUGRA) is symmet-
ric, the resultant antisymmetric component of the €**(SUGRA) cancels with t**”
(SUGRA):

% (SUGRA) + %" (SUGRA) = 0 (2.97)

where

¢ (SUGRA) = - (¢/*"(SUGRA) — ¢"*(SUGRA)) (2.98)

N —
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1

7(SUGRA) = - (¢"*"(SUGRA) — 7""#(SUGRA)) (2.99)

NS}

2.3.2 Energy-Momentum Tensor

We shall examine an example of the symmetric energy-momentum tensor of
a simple SUGRA in the case of a simple SUSY with linearized gravity. See
Sect. 2.3.3 as mathematical Appendix.

A weak classical gravity is represented by the infinitesimal transformation
(Weinberg 1995)

K (x) — X (x) = 2 (x) + & (x) (2.100)
A% (x) — NY(x) = 6% + 0" (x) (2.101)
e (x) = 8 + 2k, (x) — € (xX') = &) + 2kg' ,(X) (2.102)

/ / 1 a
Bul) = #u0) = a0+ 5 (- TE D 0u)) 203

where

k=+v 87zGcz2 (2.104)

This leads to a weak gravitational field 4,,(x) as
8 (X) = 1y, 4 2k (%) (2.105)
My (x) = @, (x) + ¢, () (2.106)

The action integral given in Eq. (2.1) is cast into the linearized form as

1
1 :ZL/R./—gd4x+—/L\/—gd4x
K c

. | (2.107)
M}Ilinearized = _/ d4x(*h2EﬂVh,41/ — kTﬂVhlw + L(O)linearized>
&
Glinearizedul’ = 2kE”V, E*
L (oW — 30 h,” — 03" hy y
_5<+al’a#haa_nﬂumhaa+nyyaaaﬂhaﬁ> =E (2108)

where E*” is the linearized Einstein tensor and L} earizeq 1S the linearized Lagrang-
ian density of QED excluding the interaction with gravity. In the right-hand side of
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Eq. (2.107), we have the symmetric energy-momentum tensor T,,,=T,, and hence
the symmetric stress tensor Te,,, =T, as the electronic part.
In SUGRA, we have the gauge transformation of the spin-2 field of graviton
h,,(x) as
Hv

05,(x) , aé,,(x>> (2.109)

, 1
o) = 1, 3) = ) — 3 (0 284

The graviton is associated with the superpartner, called the gravitino y,(x),
represented by the spin-3/2 Rarita—Schwinger field, whose gauge transformation is

W (x) = W, () = w, (x) — Quw(x) (2.110)

where w(x) is a spin-1/2 Majorana field. These are the components of the metric
superfield H,(x), whose gauge transformation is

Ho(x) — Hy(x) = Hy(x) — A (%) (2.111)

where A,(x) is given by the linear superfield DE(x) as

A, (x) = DE(x)y, (2.112)

The gauge fields are then calculated to be

1
¢;u/(x) = VH/U/ (X) - g”IﬂVVH/l/ﬁt(X) (21 13>
2 2
W x) = 20,0 = Sy, ) + S iy, & () (2114
with

&, (x) = 2kv,(x) (2.115)
v, (x) = —h@=(x)y* + const (2.116)
0 (x) = k(0 v (x) — O (x) — VA, (x) + VA, () (2.117)
w(x) = 4ihM= (x) — 4hysN=(x) + const (2.118)

Consequently, the gauge-invariant linearized SUGRA action integral is found
to be
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Ilinearized (SUGRA)

1 1 = 4
1 e — Zpp! My —— 2 §2
A __/ PO T e SR 3(b"bﬂ +2p” +257)
¢ +kn~" (—Rtb, + 2pAX —2sB¥)
(2.119)
where Sp.” is the supersymmetry current,
R* = 20% (2.120)
is theR-current, and the others are
h
L7 = — "™ 05y, (2.121)
c
1
b = D" — n*070,C" + Ehe””K”aKVHW (2.122)
p = ihd*N", (2.123)
s = ihdo"M", (2.124)
Further optimization of the auxiliary fields b, p, and s leads to
Ilinearized,),,, (SUGRA)
1 1 _

7 TH 2| H

21//”L X ¢ 2kh Shew 79 (2.125)

1
= Ilinearized - Z/ d4x 3 2, 0 1 X\ 2 X\ 2
kT SRRy + (%) + (BY)

We may identify the negative energy density —% Kh? ((AX )2 + (BX )2) for the

anti-de Sitter space-time.

3 5. 2 2
pvac(X) = psvac(x) — gkzh 2((AX(X)) + (B¥(x)) ) (2.126)
We have the SUGRA action added tolyinearized, @S Shown in Egs. (2.119) and

(2.125), so that we have again the symmetric energy-momentum tensor T,,=T,,
and hence the symmetric stress tensor Ty, =T, as the electronic part.

2.3.3 SUGRA Formalism
2.3.3.1 The Majorana Spinor

First, the Majorana spinor satisfies

Co

I
I
S

(2.127)
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0=07°"=-0C="0'C ='(CO) (2.128)
’(i) (6M0) = 2M0 (2.129)
00
01M0, = 6,C~""MC#), (2.130)
N | _ |
00 = — (00) + Zyﬂys (Orsr+0) + ZyS (6y56) (2.131)

A spinor is decomposed into a pair of the Majorana spinors as

s =0, +i0_ (2.132)
1 1
= (1— =1 2.1
0, =5(1-C)s. 0= (1+C)s (2.133)
CoL = —0, (2.134)

2.3.3.2 The Haag-Lopuszanski—Sohnius Theorem

The (O, %) -fermionic generator Q;, is transformed under the Lorentz transformation
as

U(A)Qy, U(A) = 4y ¥ (A)Qy, (2.135)
- h ; . A .
- 5 7 .
[A, Qm] =0, [B,Qy,]= =) é;" Oy, (2.137)

with the charge conjugation operator C and the complex conjugate operator K, the
Dirac spinor representation is

C(eAWKQW,.>C_1 _ _(eAWKQw,-> (2.138)
Ur Qu,

Likewise, the (%, 0) -fermionic generator P4 is transformed under the Lorentz

transformation as

U(ANPYU(A) = 2 p(A)PP (2.139)
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[J,PY] = —g GyP%, (K, PM] = +§i3§PB“ (2.140)
AP = % aPP, [B,P™] =0 (2.141)

with Dirac spinor representation

PAS o PAX
C(—eugKPB“>C B _<_"UBKPBS) (2.142)

The Haag—Lopuszanski—Sohnius theorem states that

{QUr’ qu} = eUVZ"S’ Zys=—Zy (2144)
€AWKQW ) ) <eBXKQXs )T 1+ 75
! ) = 2*P 6,~ ——‘KZ,
{( QU}' QUS Yo V' FpOrs D) s
1 —
+ 2“ Zys (2.145)

where P, is the 4-momentum operator and Z,, are the central charges. For simple
supersymmetry, we have null Z,,.

2.3.3.3 The Salam-Strathdee Superfield with Simple SUSY

The Salam—Strathdee superfield S with simple SUSY is constructed by using the
Majorana spinors 6, @, and 1 as

S =C—i(fysw)
—§f<9y5e>M—i@le)fv—;@yslmw | 2.146)
—i(0ys0) (0 (/1 - Eih@w)) — Z(@ysa)z <D — 5hzmc)

where the component C of S may be emphasized with superscript C5, etc. Taking
the h.c., we have

st=ct - i(@ySw)
1' — 1 1 T
—5i(@rsO)M" — S(OO)NT — 3(Brs7,0) (V*)' (2.147)

—i(Bys6) (5 (ﬂ - ;ih%;)) - i(ém)z (D* - éhZDCT)

If with the Hermitian superfield S "=, we have
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ct, M ,NT,v*'. D" = C,M,N,V*,D (2.148)

The infinitesimal translation 6S is defined as

_ (o VKQy,
o5 _l-(“( 0y, S (2.149)
= (@Q)s
AW k() .
[(e KOy, )S} =i9S (2.150)
Qy,
The generator Q should then satisfy
{Qy,"(CQV} = 2ih(c") O (2.151)
{Q_U,QV} =0 (2.152)
with the Dirac spinor representation
{Q(v QZ} = _2177(7#)[26/4 (2.153)
Also, the generator in the superfield coordinate representation is given as
9= AN ihdo = ’Ci — ihdo (2.154)
00 00 '
_— N o
Q="(Cq) ="(75) +ino? (2.155)
with the Dirac spinor representation
= o in(y") ;0,0 2.156
Qz—Cz/a—gz—l(V)ezw (2.156)
5 of O o
Qr=9iC;= 20,) ~ i’ (Cy"0) L0, (2.157)

The derivative in the superfield coordinate representation is defined as

D=-' (%) +ihdo = 'c% + ih@o (2.158)
D="'(CD) = ’(%) — ih0J (2.159)

with the Dirac spinor representation
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{Dy, D;} = 2in(y") 70, (2.160)
We have the commutation relationships
{D,2}=0 (2.161)
and
[D,s5]=0 (2.162)

The infinitesimal translation of the components of S should then be obtained as

6C = i(aysw) (2.163)

Sw = (—hys@C — M + iysN + iy )a (2.164)
M = —(a(1 — ihdw)) (2.165)

SN = i(ays(1 — ihdw)) (2.166)

SV* = (ay*2) — ih(ad”" w) (2.167)

64 = Gh[a,,y/, ]+ iy5D)a (2.168)
8D = i(ays(—ind1)) (2.169)

Action integral for interaction of supercurrent and metric superfield is intro-
duced as

Iine = 2k / d*x[H,(x)0"(x)] /hc (2.170)
D
The supercurrent is defined as

0, = éz (—4n*(@,70,®, — ©,0,®,") — in((D®@,")r,(DD,))) x ¢

(2.171)
where @, is the chiral superfield
1 + Vs ~1 + Vs 1 =
q)n = ¢n — \/E 0 2 v, + QTG Fn — Elh(Q}/Sa(ﬁ,ﬂ)
1 1=y 1, (2.172)

The supercurrent conservation laws are found to be
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7" DO, = DX (2.173)
DO,y = —DX (2.174)

where X denotes the real chiral superfield

X=A— (0y)
—5i(0rs0)G + S(B0)F + 31 (Frs7,0) "B 2175
+(By56) (? (—%z’h;{g ay/> ) + éhz (6y50)°0A
2.4 Examples
2.4.1 Rigged QED Theory in the Curved Space-Time
Put
Yo = s ™ (2.176)

in Eq. (2.78) under the weak gravitation condition with only non-Kronecker delta
insertion

1—— (2.177)

Then we obtain

iy = (— 5.2 4 g he + me (2.178)
at)(a_ zmg a 4440 a Xa .

This is the correct equation of motion for neutron, if we identify ® as the
gravitation potential

., 0 2
in E}(neutron = A + Myeutron P X neutron (2 179)

Zmneulron

That Eq. (2.179) is correct has been demonstrated experimentally using a neutron
interferometer (Collela et al. 1975).
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2.4.2 The Majorana Particle

91

The fundamental equations of motion of the Majorana particle are summarized.

The Majorana equations are
(ihay(a,,)AU + mLei‘SLceAUK) ng =0
(iha,,(a”)UA T mRei‘sRceUAK)Eé‘ =0
with the Klein—Gordon equations
()" = (me) g =0
((ih8)2 - (ch)z)gA =0

where my ; are the real masses and og ; are the real phases.

The charge conjugation properties are

C’WM1> =&wm, ‘WM11'> = ‘V/M1>
wue = Cr'Kyy, = —yy,
C|l//M2> = 5M2|1//M2<'> = |‘//M2>
Wy = Cr'Kynyg, = =y,
fMl = 5M2 = -1

The Dirac spinor representations are

(iha imLeiﬁLC)y/Ml =0, Ym, = ( 1y
U

(ih@ j:mRe"‘sRc)l//l\,[2 =0, wy, = (

and

lha‘FM + mMc(f)‘I‘Mt =0

- (2)
o

- 0 o eAWKnW)
TM —C}’K‘PM—( )<—€UBK(§B

eAWKnW

ko)
—eyKE

(2.180)

(2.181)

(2.191)

(2.192)

(2.193)
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[ mpeic 0
mMC—< 0 mRei5R6'> (2.194)

2.4.3 The Atiyah-Singer Index Theorem

We quickly review the radiation corrections to the currents of electron in QED.

The charge is conserved but not the chiral charge since we have no continuity
equation for the latter because of the nonzero mass of electron. Actually, we have
residual pseudoscalar as the fourth-rank antisymmetric tensor

1 2mec _
S A —
o Qi) = 1 s ) (2.195)

which is not zero unless mi, is zero.

The Euclidean path integrals have been widely used to treat the radiative
corrections, where we realize the corrected charge current J*(x) satisfies the con-
servation law

0,0 (x) =0 (2.196)

by the Ward-Takahashi identities, but Eq. (2.195) is modified for the corrected
chiral current J5"(x)

<$8,,J5”(x)>H ‘A fixed (P75 P 0))y

2w (9N g (oF
=2x53050) € /w(x) o (X)

2me

A fixed (2, 197)

under the fixed background field A*(x) as

[ avaesn i [ st |ot

<0H H‘A fixed ~ (2 198)
[ wtiapeless - [t
A fixed
The right-hand side of Eq. (2.197) is the Chern—Pontryagin density
Alx) = —— (i)zeﬂ”f”’F (X)F o () (2.199)
3272 \hc m re

This is known as the axial anomaly and is proportional to the divergence of the
Chern—Simons class G,(x):
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G (%) = EupaA” (x)0°A% (x) (2.200)
0,G"(x) = %F,,,,(x)f"”(x) (2.201)

with
F*(x) = %s"”””Fp,, (x) (2.202)

The topology of the gauge field obeys the Atiyah—Singer index theorem:
v= / d*xA(x)

L r4\? e
/ d%W(%) EPTE L (X)F o ()

Here v is the index of ifiD(x):

(2.203)

v =ind(ihp(x)) = n, —n_ = / d4xZ¢ ()rsp'™,, (%) (2.204)

PP, (x) = 04, (x) (2:205)
75 () = £, (x) (2:206)

where n. are the number of zero modes of i) (x) that have eigenvalues +1 for ys.

2.5 Summary

QED is reformulated in a way that is covariant under general coordinate transfor-
mation. The consequence gives the right answer to the odd question “what is
momentum of electron spin?” raised in Chap. 1. The whole picture of stress tensor
in Chap. 1 has thus been unified.

In application to chemical reaction dynamics in finite systems, we have devised
the Rigged QED theory where nuclear degrees of freedom are treated in a unified
manner with QED. The nonrelativistic treatment of the Rigged QED theory is also
examined as the primary Rigged QED theory. We have used the virial theorem for
the finite-system energetics of the Rigged QED theory and the primary Rigged
QED theory.

The theory has also been extended in this chapter using a simple SUGRA, which
is a simple SUSY model of gravity.
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Chapter 3
Chemical Ideas of QED

Abstract In Chap. 1, we have studied the symmetry-polarized internal self-stress
tensor of electron. In Chap. 2, we have studied the antisymmetric component of the
stress tensor of electron in detail. It remains a simple question: for what does the
symmetric component work? The answer is first chemical idea of QED is the
spindle structure of covalency predicted by the symmetric component of the stress
tensor of electron. We have so long considered relativistic theory as merely a slight
correction for the interpretation in chemical phenomena. However, we shall clarify
that the Hamiltonian of QED, derived from the picture of “action through medium”
based on the relativistic theory, gives a novel image of the chemical interaction
even in the nonrelativistic limit. Actually, we shall use the primary Rigged QED
theory for our purpose. As a result, conventional images of the chemical interaction
based on “action at a distance” are replaced with the new images of them given by
the picture of “action through medium” without exception. We shall visualize not
only the spindle structure but also various basic chemical concepts in chemical
reaction systems in real three-dimensional space. Shape volume discriminates the
region of classical atoms and molecules. The regional chemical potential inequality
principle gives the electron transferability from one region to another.

Keywords Lagrange point « Lagrange surface « Nonclassical bond order ¢ Primary
Rigged QED theory * Regional chemical potential « Shape volume < Spindle
structure « Stress tensor ¢ Tension

3.1 Overview

Atomic theory of the universe coined by an ancient Greek pre-Socratic philosopher
Democritus was reformulated by Einstein through his theory of the Brownian
motion of minute particles suspended in a liquid and has been proved by Perrin
experimentally (see Fig. 3.1). Pauling and Wilson have elaborated chemical bond
theory of atoms using quantum chemistry (Pauling and Wilson 1935).

Atom as minimum unit of human body is a cell. As an analogy to the spindle
structure observed in cell division (see Fig. 3.2), it is predicted by QED in covalent
bond division (see Fig. 3.3).

© Springer Nature Singapore Pte Ltd. 2017 95
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DOI 10.1007/978-981-10-3132-8_3
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i

Fig. 3.1 Experimental proof of atom (Reproduced from Perrin 1914)

The key idea underlying the spindle structure is the internal self-stress of QED
(see Chap. 1) as applied to study a unified scheme for generalized chemical
reactivity. The chemical reactivity in this scheme is the force acting on a pair of
electronic drop regions (Tachibana 2001, 2002). This is a new kind of chemical
force acting in between electrons not in between nuclei. A new look at the chemical
bond is thereby elucidated.

The spindle structure here in QED is a geometrical object of a region where
principal electronic stress is positive along a line of principal axis of the electronic
stress that connects a pair of the electronic drop region Rps of atoms and molecules.
The spindle structure of covalency is the first chemical idea of QED that is
alternative to the occupancy of bonding molecular orbital (see Fig. 3.4).

The anti-spindle structure of no covalency should also be characteristic of QED
that is alternative to the overwhelming occupancy of antibonding molecular orbital
over and above the bonding molecular orbital. The bonding and antibonding energy
densities are visualized locally.

The concept of energy density using the stress tensor of QED is found in Sect.
3.1.2 and onward in this chapter for more details (Tachibana 2003, 2004). The

symmetrical component 73 of the electronic stress tensor has been proved to predict
the emergence of the covalent bond in terms of the spindle structure; see Sect. 3.2
and onward in this chapter for more details. The theory of the spindle structure has
also been developed to visualize the nonclassical bond order concept of chemical
bond and the regional chemical potential. For physicochemical properties of
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a Metaphase Anaphase Telophase

L Spindle midzone
Mitotic spindle _~ Contractile ring

Centrosome | Microtubule Interpolar | Central spindle | Astral
Kinetochore microtubules microtubule Midbody

Metaphase === Early anaphase

[6]0]c

Late telophase

Fig. 3.2 Spindle structure of mitosis (Reproduced from Glotzer 2009)

Mid anaphase ===——# |Late anaphase

Nature Reviews Molecular Cell Biology

materials, the Coulson conjecture of energy density (Coulson 1961) has been
organized in terms of thermodynamics by using the regional chemical potential;
see Sect. 3.5 and onward in this chapter for more details (Tachibana 2001).

In this chapter, all numerical calculations are shown in atomic unit using the
nonrelativistic limit of the primary Rigged QED theory (see Sect. 2.2.2, Chap. 2)
unless otherwise stated explicitly.

3.1.1 Primary Rigged QED Theory

We use the primary Rigged QED theory presented in Sect. 2.2.2, Chap. 2 as

Hana:y Rigged QED( y + Z T (31)
2 ~
Tuld) = 5 ;(ﬂ B a<x>+h.c.> (32)

The energy flow is found to be
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Spindle structure

0.2 0.2
0.15 0.15
0.1 01
0,05 0.05
0 0
0,05 -0.05
J!i'H I -0.1 =
|“ i I -0.15 Rl
-0.2 e
H,, R =0.7343 A (optimized) RHF/6-311++G(3df, 3pd) He,, R =0.7343 A RHF/6-311++G(3df,3pd)
Spindle Structure Anti-Spindle Structure

Fig. 3.3 Spindle structure for H, (left) and anti-spindle structure for He, (right)

Fig. 3.4 Orbital interaction lscs 1so*
scheme of covalent bond C

(left) and no covalent bond
(right)
His His Hels Hels
Iso 1so

%ﬁpﬁm Rigeed QED(X) = —div [ ¢ 2(8( )+ G (x () + Z Su(x (3.3)
with
1 (7 P
500 = 37 (3 ) (- 200D 0B (0200
+ (Da07.()) Dy)Za(0) - h.c.) (3.4)

The virial theorem of the primary Rigged QED theory leads to
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EPptimary Rigged QED = E E 4:Primary Rigged QED (3.5)

a

1 R ke YA
E g.primary Rigged QED = 5 JCP I‘<Ta;Primary Rigged QEDS (X)> = —st r<Ta(x)> (3-6)

where

~ skt
T a;Primary Rigged QED ()C)

2 o~ o~ ~ ~
(P D7) ~ (Dus07a(0) Dl +
(3.7)
~ S Tix;x (X ) T(fxy (X ) Tgxz (X )
<?<I:Primary Rigged QED ()C)> = ?j(x) = Tgyx(x) T(fyy (X) Tgyz (X)
ngx(x Tzfz (X) ngz(x) (38)
e (BN 0 0
— | 0 Z2x 0 |, M <P <5 k)
0 0 £¥
R ~ S
Bo(x) = divr, (x) (3.9)
2 ~2
Tolr) = — 2’; = % (Al(x)l_ja(x)Aa(x) + h.c.> (3.10)

It should be noted that the nuclear motion is cast in the field theory. So the wave-
packet prescription of the nuclear motion is indispensable for the simple picture of
the regional energy partitioning Eq. (3.5). The adiabatic approximation gives rise to
another virial for nuclei, which vanishes for equilibrium nuclear configurations but
remains finite for nonequilibrium nuclear configurations.

3.1.2 Shape Volume of Shell Structure and the Intrinsic
Electronic Transition State

The redistribution of electron is essential in the course of chemical reaction
coordinate (Tachibana 1987b, 1996, 1999a). This is because the associated lower-
ing in the electronic energy is the driving force of chemical reaction (Tachibana
and Parr 1992). The decomposition of the electronic energy in the abstract func-
tional space of orbital has played a significant role in the study of chemical
reactivity indices such as the Coulson valence bond theory (Coulson 1961), the
Woodward-Hoffmann law (Fleming 1976), and the Fukui frontier orbital
theory (Fukui 1981). The pathway of the nuclear configuration change is given
by using the theory of the intrinsic reaction coordinate (IRC) or meta-IRC
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(Tachibana 1991, 1994) and the nuclear dynamics in terms of differential geometry
(Tachibana and Iwai 1986; Tachibana 1999b) with the vibronic application to
superconductivity (Tachibana 1987a).

We have recently developed a novel theory of energy decomposition in the real
space (Tachibana 2002). The new energy decomposition scheme is exact and
complementary to the conventional orbital space energy decomposition scheme.
Namely, which region of space has significant contribution to chemical reaction
coordinate is easily recognized. This is advantageous in visualization of the chem-
ical interaction in real space. This new regional energy decomposition scheme has
been extended to infinitely small regional energy decomposition scheme, namely,
the electronic energy density decomposition scheme. Using the electronic energy
density, we can pick up any point in a chemical reaction system and find how the
electronic energy is assigned to the point. We can then integrate the electronic
energy density in a small region and find out the regional electronic energy
contribution to the global electronic energy. If the integration spans the whole
space, then the integral gives the total.

Another look at the density of electron is the kinetic energy density. This is based
on the observation of the Einstein equation

(E—Q—“ )2— (5~ 224" = (mecy? (3.11)

c c

which states that the square of the gauge-invariant 4-momentum p* — %A” should
be invariant under the Lorentz transformation. The field theoretical version for
electron reads

<q7*(x) Gih% —";@(x))zu?(x)> - <',‘A/T(x)<—ihﬁ - (ICCX(X)>2'/A’(X)> (3.12)
= (mec) (7" (1) (x))

The positivity of Eq. (3.12) is the measure of classical reality since it is proportional
to the kinetic energy density in the primary Rigged QED theory

e (x) = (Te(x)) (3.13)

The nr,(7) is a measure of the shell structure. In the very vicinity of atomic
nucleus, the electron feels infinitely large positive electric potential of the bare
nucleus. Then, in terms of classical mechanics, the electron that has constant
energy can acquire infinitely large positive kinetic energy at the position of the

nucleus. In terms of quantum mechanics as well, the nr, (7) should then become
infinitely positive at the position of nucleus, provided that, which is the very case of

normal chemistry, the intramolecular electric field Eimra(?) produced by the other
electrons does not exceed that of the bare nucleus (Kato 1957; Bingel 1963, 1967,
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Fig. 3.5 Electronic drop
and atmosphere regions

Electronic drop region

R, :[ﬂ”;—, (7) >0} = Neoclassical reality
Electronic atmosphere region

R, = {F|n}..(;‘-)<0} = Quantum tunneling
Electronic interface

S={7|n, (7)=0}

Pack and Brown 1966). The nucleus is therefore normally surrounded by the
surface of zero kinetic energy density, nr (7) =0, within which the kinetic
energy density nr,(F) > 0 where the electron density is amply accumulated and
classically allowed motion of electron is guaranteed. Then, we may call this the
region of the electronic drop denoted by Rp and the complementary region of the
electronic atmosphere denoted by R4, being separated by the electronic interface S
(see Fig. 3.5)

Rp = {Fnr.(¥) > 0}, Ra = {F|nr.(¥) <0}, S={Fnr.(¥)=0} (3.14)

Within Rp, electrons can move freely as in classical mechanics, whereas toward
Ra, they can tunnel through S. Then S describes the union of turning points for
electrons in Rp in the generic sense.

Here we first pick up hydrogen-like atom in the ground state for which we have
nonrelativistic limit of the kinetic energy density nr (7) (Tachibana 2013)

5,2 2
o nonrelativistic limit  Zegr€” (2 1\ . 2Zg R 315
nr,(7) o5t x= r, a=—-> (3.15)
na x 2 a mee
T Spirae 1N the ground state

<\/ 1 — (Zegra)® + \/ 1 — (Zera) ) (primary Rigged QED)
mecZeffa

( 1 — (Zegra)® + 1) (4-component Dirac wave function)
mecZeffa

(3.16)

In the ground state, the nucleus is surrounded by the electronic interface of radius
sy fOr the relativistic case and rg for the nonrelativistic case within which the
kinetic energy density is positive leaving negative outside (see Fig. 3.6).

So the intrinsic shape is this electronic drop region just surrounded by this
electronic interface. The radius for the relativistic case is smaller than the nonrel-
ativistic value rs, which ratio approaches 0 as Z approaches to 137. The rg,,
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N . Z,é
S : turning point WF)=——2 |
R R F
o— = ’
/ )L:
ry, _in the ground state =
h
—1-(2, H1- (Primary Rigged QED)
meZ  a
h 2 . .
7( 1 -(Zw.a) + ]J(4-c0mp0nent Dirac wave funcnon]
meZ o
nonrelativistic limit fjs- Lo 2 h
meZ o

“efl

Fig. 3.6 Turning point for the shape volume of hydrogen atom in the ground state

intrinsic shape of H atom with Z = 1 has the radius rg,,. ~ rs =2 [a.u.] %1.05810\,

which is comparable to the standard atomic radius of H atom, 1.5 Bohr m0.794j\,
reduced by a factor of ca. 75%.

In R, the electron density is dried up and the motion of electron is classically
forbidden. The boundary S in between Rp and R, gives a clear image of the
intrinsic shape volume of the shell structure in the reactant atoms and molecules,
the reaction intermediates, and the reaction products along the course of the
chemical reaction coordinate. In Fig. 3.7 is shown the R of H + H — H, chemical
reaction system from top with internuclear distance R = 6.0 A to bottom 0.8 A. Two
initially disjoint Rps merge in between. The intrinsic electronic transition state is
defined for R =R" when two disjoint shape volumes of H atoms merge (Tachibana
2001): R" is 4 Bohr ~ 2.117 A according to Eq. (3.76) in an analytical model.

3.2 Stress Tensor and the Spindle Structure

The symmetric stress tensor ?as(?) in Eq. (3.8) gives the tensorial energy density.
The eigenvalue of the symmetric stress tensor is the principal stress, and the
eigenvector is the principal axis (see Fig. 3.8).

Stress tensors of one-dimensional stationary states with rectangular potentials
and harmonic potentials have negative compressive stresses. In analogy with the
classical sense, the particle has one-dimensional liquid character (see Fig. 3.9).
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R=60A

0.5
045
04
035
03
0.25
02
0.15
0.1
0.05

Fig. 3.7 Shape volume Rp along the reaction coordinate H+H — H, from top left with
internuclear distance R = 6.0 A to bottom right 0.8 A using MRCI/6-311++G(3df,3pd)

Fig. 3.8 Principal stress
and principal axis of the
tensorial energy density

The particle may be bound in a one-dimensional potential energy box or
quantum harmonic oscillator or scattering as a superposition of incident, reflected,
or transmitted component of the stationary wave.
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Scattering state: _ Bound states:
Tunneling states: 1-dim liquid

1-dim liquid

qolCi ol
©)

1-dim liquid

| S,

L =

Compressive stress
Fig. 3.9 Stationary one-dimensional liquids

Plane wave:

v ?_") _ 1 eiE-F

(2;:?‘:)3

1-direction homogeneous propagating liquid

Compressive stress

k1
fﬂ,s” F g rﬂSZZ F :z,533 F @
()= L))

Fig. 3.10 Plane wave: one-direction homogeneous propagating liquid with the principal axis
b

Stress tensor of free particle with plane wave has one negative and doubly
degenerate null eigenvalues. The particle has one-direction homogeneous propa-
gating liquid character (see Fig. 3.10).

Stress tensor for electron in the ground state under bare ionic core has degenerate
negative stresses for the surface mode: two-dimensional surface liquid character
with null stress in the radial mode (see Fig. 3.11).
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Bare ionic core Bare ionic state:
effective potential 2-dim surface liquid null stress with
¢ ( ) - Zeﬂ'e radial eigenvector
r)=—"-—>0
r

Compressive stress

Fig. 3.11 Bare ionic state: two-dimensional surface liquid with null stress in the radial mode

Spindle structure

Electronic tensile stress binds a pair of the electronic drop regions Rp's where
the compressive stress is predominant: ‘co'valent bond visualization!

Compressive stress Compressive stress

:push away electron Tensile stress :push away electron
:pull up electron

Fig. 3.12 The discovery of the “spindle structure” of the covalent bond and the long-range Lewis
pair formation, a novel local picture of chemical interaction based on the electronic stress tensor

The electronic tensile stress pulling up electron through a surface in between is
visualized as the spindle structure binding a pair of the electronic drop regions Rps
separated from each other through the electronic atmosphere region R with the
interface S which separates them (see Fig. 3.12).

The spindle structure is mathematically proved to appear at any region where the
new Lewis electron pair is formed in association with inphase overlap of orbitals,
like in between a pair of H atoms (see Fig. 3.3). The spindle structure is hidden
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Fig. 3.13 Local Local equilibrium in the stationary state

equilibrium with the Repulsive electronic tension drives the quantum mechanical electronic “diffusion
Lagrange surface and the

Lagrange point Repulsive electronic tension

compensates the attractive electric
/ field of atomic nucleus

Lagrange point: the null tension field
on the Lagrange surface

Lagrange surface: the tension field separatrix

where out-of-phase overlap of orbitals overwhelms the former, like in between a
pair of He atoms, forming the anti-spindle structure (see Fig. 3.3). The compressive
stress pushing away electron in the remote electronic drop region Rp from the
adjacent electronic atmosphere region R through the interface S which separates
them. The consequence is the no reformation of the new Lewis pair of electron.
There appears no new spindle structure. The spindle structure is also hidden where a
pair of atomic nuclei is so closely combined, like in between a pair of C atoms in
C,H,. Since the R4, R4, and S are measures of the kinetic energy density, which
physically define the intrinsic shape volume of atoms and molecules, they are also
used to define the intrinsic electronic transition state along the course of the reaction
coordinate.

In a molecule AB composed of atoms A and B, the universal local equilibrium
picture in the electronic stationary state is shown in Fig. 3.13. The Heisenberg
uncertainty principle let electron diffuse away from each atomic center it belongs.

~ S
The diffusive force is the tension %sa(;:) =div7r, (7) given in Eq. (3.9) compen-
sating the Lorentz force exerting from each atomic center (see Fig. 1.30). The
tension vector field collides to form separatrix which discriminates the region of
atomic center. The separatrix is called the Lagrange surface; if the null tension field
on the Lagrange surface, it is called the Lagrange point (see Fig. 3.13).

3.3 Stress as the Energy Density

3.3.1 Liquid Character: Standing Wave Mode of Tensionless
Electron

Let an electron be bound in a box of rectangular cuboid with attractive potential
energy (Tachibana 2014)


http://dx.doi.org/10.1007/978-981-10-3132-8_1#Fig30
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= Vinner(F ) <0 5 ?E Qinner
V(Fr) = _, - 3.17
<r) { Vouter(r ) =0, 7FeQouter ( )
with
Qinner = [X| <l Y| < &y, )2] < £, (3.18)

Qouter : |x| > L, |}’| > Ly, |Z| > L

Let electron be in a steady state with the standing wave function

—~
Y

l/Iouter ) = 0’ ? S Qouter

w(F) = {Winner(F) = NHOHH(R)V’x(x)Wy(y)WZ(Z)’ FER C Qinner (3.19)

J Erw(F)IF =1 (3.20)
whole space

w (x) = sin (k(R)(x — ax(R))) , FER C Qimer (3.21)

where we assume region-wise resolution of Q... with real constants N om(R),
k«(R), and a(R) in a region of FER C Qjnner together with similar forms for y,(y)
and y.(z). Then the regional stress tensor of electron becomes block diagonal as
(see Fig. 3.14)

nd S — —
oS 7. (7), FER C Qinner
NGER (3.22)
T emner(r> =0, 7€ Qouter
Fig. 3.14 Metallic state Bulk metallic state:
3-dim liquid
-—

L =

Compressive stress



108 3 Chemical Ideas of QED

s Tg‘:i‘(f) 0 0
T () = 0 () 0 (3.23)
0 0 Tesaiiu(?)
Y k(R
o (1 = =Ry 2R ) <0
me
o 7k,2 (R
W@ =-To By . ow@r <o (29
€
_Pk(R)

o 2
Tgi;;er(r) = Nnormz(R)|Wx(Z)Wy(y)| <0

2me

Unless at the point of the node of wave function, the eigenvalues are all negative,
which represents compressive stress in every direction and demonstrates the “lig-
uid” character of the bound electron in the standing wave mode. This is compatible
with the vanishment of the tension as proved to be

=S
() = { o

=~

) - O, FER - Qinner

3.25
= Os re Qouter ( )

-
3

Couter

which should be so since the internal force is null in R C Qjper OF Qouter- AS to the

s
trace of the electronic stress tensor ‘?eim(r), we have

1 .S kk
—J FF(7, (7)) = —J NG (3.26)
2 Quoner inner Quner inner

where nr,_(7) is the kinetic energy density of electron, which is regionally found

as

P (k2 (R) + k2 (R) + k2(R . 7
( ( ) p) ( ) ( )) |l//inner(r)|2 , TER C Qinper (327)

nTeinner (F) = 2me

> S — .
Using the virial theorem, we confirm half the trace of 7 , (¥) be the energy density of
electron

1 A kk
EJ d3 r (T e (i’)) = Ee;primary Rigged QED (328)
whole space

with

Fecprimary Rigsed QED =J P (7) +j Y s (P (PP (3.29)
Qinner

Cinner
Cinner
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3.3.2 Liquid Character: Propagating Wave Mode
of Tensionless Electron

Let an electron be bound in the same box of rectangular cuboid but assume the size
be extremely large

l by, 0, >> 1 (3.30)
so that the electron may be in the regional traveling mode with wave function
v (x) = exp(iky(R)(x — ax(R))) , FER C Qinner (3.31)

with the obvious notation for y,(y) and y.(2).
Then the stress tensor of electron becomes

<—>S — - .
?:(?) — ie§‘ne|.(i) ’ 7 GR_‘C aner (332)
T eoum(r) =0, 7F€EQouer
s e KAR)  k(R)ky(R) ko (R)k.(R)
T () ==— | K(RK(R)  k*R)  ky(R)k=(R) | Noom’(R) (3.33)
Te \k:(R)kc(R)  k:(R)ky(R)  k2(R)

and the tension

LS (o S
asin ) Te () =0, FERC Qinper
(7) S M —0 . Feo (3.34)
eoum(’) = s TE80yter

which should be so since the internal force is null in the region of 7ER C Qiyper OF
Qouter- Diagonalizing ?gmner(?) leads to the first negative eigenvalue and the
degenerate zero eigenvalues

TSll (’—;) — _hz‘E(R)lz

Cinner m Cinner
€

K(R) = (k(R). ky(R), k:(R))

Noom?(R) <0, 22 () =3 () =0  (335)

Cinner

with the eigenvector k(R)/ ‘ lz(R)’ of the first eigenvalue corresponding to the liquid
character in the propagating wave mode (see Fig. 3.9). As to the trace of the

. — N —»
electronic stress tensor 7, _(7), we have
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1 3ol S . kk 3 .
—J d r(re, (l)) = —J d&’rnr,  (7F) (3.36)
2 Qunner inner Qunner inner

where nz, (7) is the kinetic energy density of electron, which is regionally found
as

L2
il
nr, (7)) = —5—Wimer(F)" » TER C Qinner (3.37)

Cinner

2me

> S — .
Using the virial theorem, we confirm half the trace of 7, () to be the energy density
of electron

1

J s
2 whole space

kk
d’ F(?e (7)) = Ee:Primary Rigged QED (3.38)
with

Ee;Primary Rigged QED — J d3 7]17‘ (?) + J d3 ’_:Vinner(?)h//inner(?)‘2 (339)

Cinner
Qinner Qinner

3.3.3 Mixed Character: The Bloch Wave Mode of Tension
Finite Electron

Let an electron be bound in the same extremely large box of rectangular cuboid, but
here we assume lattice periodicity for the potential:

Vioner (F+ T) = Vignes(F) , Fand 7+ TE€R C Qiper (3.40)

with T as the lattice translational vector of the molecule at each lattice point. Then,
we may choose the Bloch orbital for electron (Tachibana 2014)

2 — l//irmer(?) :WZ(?) , FER C Qinper 3.41
v = { Ym0 28 (341)
2
J Sy (F)| =1 (3.42)
whole space
welF) = exp (iKR) * F)ug(F) . up(F+T) = ug(?) (3.43)

—

with the periodic function u(7)
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Then the stress tensor of electron becomes periodic and decomposed into two
terms each periodic:

<_>S — PN N — — N — —
T S(F ) = T inner ( )‘) = T Cinnerand-iike ( I’) +7 Cinner;molecule=like ( I‘), FER C Qinner
e N . .
v eoulcr(r) = O’ re -Qouler
— N — = — —»
Cinner ( + T) =7 elnner(’)
(3.44)
where
i P |2
. 2 —2K' (R)K (R)|uz(7)|
ot Py — , 0 - v, 0
T Cinner;band~like (’ ) - 4,7/1e +2lk1 (R)M]:T(F) wul‘(’(?) =+ 2lkj(R)M]:y (F) @ MZ(?)
+c.c.
o Sij . H? L0 . o ot O .
2 einner;molecule—like(r) = 4—I,ne<u]?T ( A) axlaxjulz(r) - (W”E(r)) axj ui{‘(r) + c.c.
(3.45)
and tension
. <—>S — —
%,es(?) _ (_i;vr ei“_’m(r) may not be null, r_’eR C Qinner (3.46)
Teouler(r) = 0’ r Egzouter

which should be so since the internal force may not be null in R C Q;;,e; but null in
Qouter~

—

oS
As to the trace of the electronic stress tensor 7, _(7), we have

1 Skk
3 -
2 Q d'rz Cinner ( r)
inner

—J d’rng, () (3.47)
Qinner

where ny,  (7) is the kinetic energy density of electron, which is regionally found
as

(F) = nr, (F) + nr,

- o
F), TERCL (3.48)
Cinner Sinner;band-like Cinner;molecule~like ( ’ €K C Sdinner
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2 4‘/2(R)]2|uk~,(f)|

dme | 0if(R) - (ug(?ﬁu,;(?) - (W;(?)yu,;(?))

n () =
Teinner:band'like -

Cinner:molecule=like

(3.49)

<—>S —
Using the virial theorem, we confirm that half the trace of 7, () be the energy
density of electron

1

J Skk
2 whole space

d3 F?e (7) = Ee;primary Rigged QED (35())
with

inner

O+ | VM O 351

3
Ee;primary Rigged QED = J d rar,
Qinner

Qinner

Aand S — . . .
Let the behavior of 7 (7) be further examined in the region far from the

Cinner;band-like

atomic nucleus with the negligible gradient with respect to space, 614,;(?) —0:

s w2 [ kER)  k(R)ky(R)  ki(R)k:(R) ,
?einner:band'like(?) - _E ky( )kX(R) ky2(R) ky(R)kZ(R) |uE(7)|
*\k:(R)k(R) k:(R)ky(R)  k*(R)
(3.52)

This is proportional to Eq. (3.33), demonstrating the liquid character with the
propagating wave mode in the limit of constant density

Jug(F)]” = Noom(R) (3.53)

> S — . . . .
Also let the behavior of 7 (7) be examined in the innermost region close

Cinner;molecule=likee

to the atomic nucleus of molecule that is responsible for making Vigne (7) periodic:
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=S o =S

Cinner;molecule=like ( r) - T €molecule ( 7)
2 . 02 . 4+ D )
= 4h—n/le Ij—nz)lzculeT ( r) axi_axfumOIScule ( }") — (%Mmolecule ( r)) Eumolecule ( ’»)

(3.54)

Thus, the liquid character now is mixed with the molecular character: this is the

<—>S N\ .
(7). This 7 L (7) itself

Cmolecule

oS
stress tensor of electron adhered to the molecule, 7 —_—
may bring about the tensile stress as well as the compressive stress with non-null
tension, depending on the bonding character of electron in molecule. The most

prominent character is the spindle structure.

3.3.4 Spindle Structure Along the Reaction Coordinate

3.3.4.1 Pairing Stress

N
e

.S
Let the 7

- . o
. (7) be examined by 7
‘molecule

(7) for simple hydrogen molecule with a pair
of protons be clamped at positions d = (O, 0, —§) and b= (O, O,g). The Lewis
electron pairing is the inphase overlap of two remote electrons, the + form of the
Heitler—London wave functions u. (¥) for umoecule (7) (see Fig. 3.15)

umolecule(F) = u:t<7) =Ny (eféra + eigrh) (355)

Lewis electron pairing (+) and antipairing {-) wave:

u, (F)=N, (e e

P Lagrange surface

¢ ; %
¢ iR \
©.'(p) O 0
fﬂ_\-{’;) diag 0 r:;:: [,0) 0 I r:!II < fin < riis
0 0 1'::“ (P}

Fig. 3.15 The Lewis electron pairing (+) and antipairing (—) Heitler—London states



114 3 Chemical Ideas of QED

(3.56)

(3.57)

(1 + (R + %(ng) ek (3.58)

(3.59)

F=(x,y,2), r=|F=+/x*+y*+z? (3.60)

R\ 2
Fa=T—03d= X0,y %a), ra:|7a=\/x2+y2+ Z—I—E) (3.61)

2
o= F— B = (koo zs), 15 = |l = \/ e (z——) (3.62)

4'2
_7(6 R
nr,, () = N.* (3.63)
+C(e7§’u + e*ﬁ"h) (_eC"u + _eth>
I'q I'p

The stress tensor is given as
2 2
<_é* (l — XL3> + 2 XLZ) e ra
—(rg —{r q Tq Fa
S . Niz (6 te b) 1 be szz ‘
Teixx(r)*T + —g —— 3 +C — e*‘f’*’

_ é’%efér'a iéﬂ:fbeférh 2
a b
(3.64)
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Tseixy ( 7) = Tseiyx( F)

X, X, T
(C ’aya + 4/2 aya) —ry
0 g o) a
N.? (e XYy | 2 %XbYp :
_E 4+ (=222 220 ) ol 3.65
2 ¢ 73 +< ) e (3.65)

( 24 p=Cra igxb —C'h> (C a,=CTa ié‘&e—@‘h>
Tq I'p i

(Cxaz;l + Cz va;) e—Cra 1
(e %0 £ e70m) Ta Va

SAL + (g’ﬂ 2’%) b (3.66)

_ (C&e&‘a + é)&eg"h) (C_aeCr‘a + Cz_beir‘h)
L 'p r .

a a

[ 1 Ya 2) Zya ) —Cr
_g(_ _ + {ra

e (e*Cra + e*ﬁfrh) ( Fa T ¢

Tseiyy(l_:) :T (_C(___) CZyZ )e Cry

b
2
:ya —(ry Vb ,—
( ,,e ! :térh'e C’h)

(3.67)
Do (1) = Pe (1)
- (é,yaza_’_é?ya a) —ry
~Cra 4 e*(l‘h) re T'a
N | (e R
=— + —Crs 3.68
2 3 73 +¢ 2 )€ (3.68)
_ <é‘eé'l‘a + é’beirh) (é’aegra + zJ,Zlyegvm)
L a I'p I'a I'p
[ 1 z2 242
{1-2)-e5)e
—Cra —Cry ( Fa Fa Iaq
S . ]V_:tz (e te [) 1 Zh2 ) th
Tenll) == (=) + 2 e
I'p I'p I'p
2
_ [ frap—Cra 2p ,—(,
(g ge)
(3.69)

Using the stress tensor, the tension vector becomes
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?gi = (Tgeix’ TSeiy’ Tseiz>
-, —(r, 1 4’2 C 1 -, 1 52 C 1 —r
(e g”iegh){a<—5+a+m)e ia —5+E+rb—2 e =’

2 2
— leﬂfra + iefér;, _Z"’__i_é e %ra 4 _é’_ + £ )
Ta Tp 2 Fq 2 rp

X (x,y,2)

=Ni%¢

(3.70)

3.3.4.2 The Lagrange Surface and the Intrinsic Electronic Transition
State

The Lagrange surface is then the bond bisector plane, z=0, on which we use
x=pcos¢, y=psing, p=/x2+y? (3.71)

and then

R\ 2
rg =71y =4{/p*+ <5) (3.72)

and the Lagrange point is the origin (see Fig. 3.13).
On the Lagrange surface, the kinetic energy density is circularly symmetric with

50 (R)? 2
%ypwﬂ—ﬁ;ﬁxw“”ngw+@) (3.73)
P ) : :

nr, (p) =0 (3.74)

and the cross section of the electronic drop region Rp with the Lagrange surface for
the Lewis electron pairing (+) states is a circle of radius pg found as

2
2\ _ (R)? T
B =4\ ()~ @ R<r (3.75)
0, R=R"; null, R>R'

Here, the intrinsic electronic transition state is dictated by R =R" with
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Rf =- 3.76
¢ (3.76)

for which the shape volume defined by R, becomes disjoint for R >R" along the

reaction coordinate. If we use the standard value { = 1, then RYis4 Bohr ~2.117 A
(see Fig. 3.7).

3.3.4.3 Stress Tensor on the Lagrange Surface

In the Lagrange surface, the stress tensor is block diagonal.
As to the + case, we have

e, . Do, 0
S xx Xy
T, = | Peryy ey 0 (3.77)
0 0 €42z

where

20 2 R\2 [ 5. (k)2
e 0 d) = —Nﬁzcwe% ) (3.78)
( PP (%)2)
e (0 9) =7 (0, ¢) = NﬁZCMe_%V a (3.79)
Vﬁ+®ﬁ
2.2 R\2 [ 5. (k)2
e (0 #) = N2 M‘f—% o) (3.80)
@)

2 2
Pe.(p) = N20° G v TV

PO\ @@

The spindle structure is manifested as follows: 73! (p) < 73°*(p) < 73 (p) where

St

123 (p) is positive within the circle of radius pgyingie, With the first mode (see
Figs. 3.16, 3.17, and 3.18)
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1-st stress: compressive
{5
S (p)=-N2Y 2l eV
+(5)
P 2
Eigenvector: breathing mode (cos ¢,sing,0)
2-nd stress: compressive
& w
£ M
O Y)W
2
8 i R

Eigenvector: circulating mode (— sing,cos g, 0)

+

Fig. 3.16 Lewis electron pairing (+) state

3-rd stress: spindle structure

riss ( p) = N+2 3
J 0
72
{@ tensile if ngspmme Eigenvector: (0.0 l)

@ CompreSSlVe if P pspmdle Spmdb mode

Peginae (R) = (};] +\/ 4(:;] +4¢? ( Jé /’Y
&,5(3)2 poon (R) s

2

Fig. 3.17 Lewis electron pairing (+) state
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Bond lines: spindle mode eigenvectors

Lewis electron pairing (+) wave
75 (F)—2%— i

D——

Bond lines

Electronic tensile siress binds a pair of the electronic drop regions Ry's where
the compressive stress is predominant: ‘co'valent bond visualization!
One-electron ‘co'valency!

One-electron ‘inter'ference with double-slit ‘co’herence!

Fig. 3.18 Spindle structure

2 R 2 _ 24 (R 2
Si(p) = N 2op LT G ¢ 2/ @) (3.82)
(Vr+ @)
as the breathing mode with the principal axis (cosg, sing, 0), the second mode
R)?2 opa ] 21 (RY?
%e 280/ r Jr(2) <0 (3.83)
2
(Vo @)

as the circulating mode with the principal axis (— sin ¢, cos¢, 0), and the third mode

22 (p) = N2

€+

TgiB (,0) = TSe+zz(p); > 0» P < pspindle (384)
C2§4+ /4'4884_4(:2&6
pspindle(R) = (2) 2(2) (2) (385)

as the spindle mode with the principal axis (0,0, 1).
It should be noted that the pypinaiec diverges to infinity as R — oo:

—o (R’
pspindle(R) R—) Z:(E) (386)
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On the other limit, pgyinaie shrinks to pg in Eq. (3.75) from above at R =R, that is

smaller than R =R with

4 1

=V

and further to zero as R — 0:

pspindle(R) — PRp (RC); —0

As to the — case, we have

where

We have the anti-spindle structure as (see Fig. 3.19)

Tgil(p) = Tse—zz(p) < 0
2(p) =7 (p) = 0

3.3.4.4 Stress Tensor Along the Bond Axis: x=y=10

(3.87)

(3.88)

(3.89)

(3.90)

The stress tensor along the bond axis x =y =0 is symmetric with respect to z and

block diagonal.
As to the + case, we have

1'Se+ . 0 0
o S XX
Te = Tepy O
0 0 A

€tzz

(3.93)
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2)
S (p)==N 224> 2 e_zg\'

e 2+(£)3
& 2

533
T, ( p) €0
Lewis electron antipairing (-) wave:
null stress with surface eigenvectors

~

B

3

[}

_—
!

—
Il

Anti-bond lines

Fig. 3.19 The Lewis electron antipairing (—) state with the anti-spindle structure

TSe+M(Z) = TSe+yy(Z)
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(3.94)
2
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The spindle structure is manifested as
11 22
T‘§+ (2) = T§+ (z2) = 1Se”x(z) =1,,(2) <0 (3.96)
7233 (Z) = Tse+zz(z)
R R
272 =R _— —
_ 2N “f7e " >0, 2<Z<2 (3.97)
0, z< R or R <z
’ 2 2

Note the constancy 2N,*¢%¢ <R of the eigenvalue of the spindle mode within the
bond axis —& <z <%
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As to the — case, we have

. . 0 0
o S XX TS
T, = 0 ey O (3.98)
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This is the anti-spindle structure since (see Fig. 3.19)
_ <0, z#0
Peuld) =P, 0 3.7 (3.101)
Tse—zz(z)
R R
22 (R
_ —2N_“{%e ¢ <0, —§<Z<§ (3102)
- 0 < R or R <z
, Z A ~
2 2

3.3.4.5 Stress Tensor in the United Atom Limit: R — 0

Only for the + case, the exact solution in the united atom limit R — 0 makes sense.
Taking the limit R — 0 of the stress tensor in the Lagrange surface, we have

sin
e (P ) = =N 22 qu e (3.103)
cosgsing _,.,
Tse+xy(p ¢) T e+)x(p ¢) +22§M€ % (3104)
Ccos
e (i) = =N 220 —— b 2 (3.105)

1
TSe+zz(p) = _N+22CE 6726_,’/) (3 106)
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In this limit, the spindle structure disappears
1
o' (p) =372 (p) = =N 22{—e " < 0 (3.107)
+ + p

of the degenerate surface-circulating modes with the principal axes (— sing,
cos¢g,0) and (0,0, 1), and

B3 () =0 (3.108)

of the spherical-breathing mode with the principal axis (cos¢, sing, 0). This is again

for the surface liquid with Z.¢ = % (see Fig. 3.11).

3.3.5 The Generic Lewis Pair Formation
and the Nonclassical Bond Order

The concept of covalency has long been known as a central guide in understanding
chemical bond. The term “chemical bond” describes chemical force to realize the
structure of compounds by specifying configuration of atoms in molecules. The
chemical force has conventionally been described by the “attractive” force that
drives atomic nuclei nearby with each other. The attractive force is the origin of
chemical reactivity of atoms and molecules over and above the electrostatic repul-
sive force of atomic nuclei. The attractive force acting on a pair of reactants is
synonymous to the chemical reactivity of the covalent bond formation.

The local stress of QED gives a unified scheme for generalized chemical
reactivity. The chemical reactivity in this scheme is the force acting on a pair of
electronic drop regions of reactants. This is a new kind of force acting on electrons
not on nuclei. A new look at the chemical bond is elucidated where covalency is the
rule of the new Lewis electron pair formation therein.

In QED the field carries the force. We are interested in the region where the force
is tensile, attracting the neighboring region through the interface. If the force is
repulsive through the interface, then the force is compressive. The discrimination of
the nature of the field is crucial for understanding the covalent bond. The covalent
bond is the region where the field is tensile, attracting the neighboring region
through the interface. On the contrary, if the field is compressive, then in the region,
the electrons are repulsive through the interface. Here we analyze the principal
stress. If the principal stress is positive, then it is called “tensile”; if it is negative, it
is called “compressive.” The covalent bonding is brought about by the tensile
principal stress. The force exerted on electron in the spindle structure dictates the
covalent 1so bond. On the other hand, the antibonding orbital interaction
1so*results in the repulsive orbital interaction (see Fig. 3.20).
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Fig. 3.20 Potential energy U Lewis electron antipairing (-) wave

curve U with the 1so 4
bonding and i 5 diag
B . . T ¥ |——
Iso*antibonding orbital ¢ ( )
interaction
0 > R

.

Furthermore, using the hydrogen-like atomic orbitals for the Heitler—London
wave function, it has been proved analytically that the bonding orbital interaction,
such as po or px type, does exhibit spindle structure that bridges disjoint electronic
drop regions, whereas the antibonding orbital interaction, such as pe™* or pz* type,
does not. Thus, the spindle structure gives universal image of the covalent bonding.

Unlike covalency, metallicity may not be measured by a single bond order. In
case of metallic interaction, imagine a pair of metallic atoms with unpaired electron
situated far away from each other. The tensile stress pulls up electron in the remote
electronic drop region Rp, to the adjacent electronic atmosphere region R 5 through
the interface S which separates them. The consequence is the formation of the new
Lewis pair of electron. The spindle structure of covalency is universal even in this
sense. However, this fact demonstrates that metal atom itself may not be sufficient
to determine metallicity, where the question itself may be even meaningless. This is
because metallicity may be the property of the condensed matter. Actually, as the
distant pair of metallic atoms comes closer, metallicity of the condensed matter is
the rule of unbinding the Lewis electron pair ever once formed. Finally, in the
condensed matter, we may not be able to observe the spindle structure of covalency
in its strict sense. But if an atom is going to be separated from bulk metal, then the
spindle structure should emerge. This proves the emergence of covalency prereq-
uisite to condense separated atoms into the bulk metal. The metallicity may be
characterized by liquid with isotropic compressive stress in the ultimate case. The
electrons contributing to the bulk metallicity behave like gluon that binds quarks in
such a way that in metal bulk as condensed matter, the bond order may be small and
behave as weak bond, but once if an atom is going to be separated from bulk metal,
the spindle structure appears as if the bond should behave to be very strong. In other
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words, the bulk metallicity emerges as the long-range intrinsic electronic transition
state associated with the spindle structure: the long-range Lewis pair formation
For chemical reaction is the mixture of the Lewis electron pairing and antipairing,
ionicity, metallicity, lone pair, exchange repulsion, and inert gas interaction.
The regional energy decomposition is then found to be the integration over
region R of space as follows:

E=YEx, Ex= J Pred(7) (3.10)
R TR
—~ Skk

| N 5 1 Kk,
ef(r) = 52 <T a;Primary Rigged QED (r)> = EZTO,S (7) (3.110)

a

where 7€ R means the regional integral confined within the region R exclusively. If
the whole space is decomposed into a set of regions, where Zdenotes summation
R

over the set of regions.
Likewise, the electron number N is defined and decomposed regionally as
follows:

N =N, NR:J & in(7) (3.111)
R R

n(7r) = Z <ﬁa;primary Rigged QED(7)> (3.112)

a

As shown in Fig. 3.21, the regional energy decomposition gives the nonclassical
bond order. The integral of the sum is compared with the Born—Oppenheimer
electronic energy (see Fig. 3.21).

Energy density and non-classical bond order

Energy density s
R B T
5 Sk
gp(F)= 5 Z Ton(F)
k=1
Non-classical bond order
5 =
B srAB (’I.agrangc )

£778 i
ErHH (r]_agrang.c }

The Born-Oppenheimer potential energy curve U

5.1 - Skk f = a GUB
Id rEZre (F) =UBO+Zq N
k=1 -]

-~ a
BO ogq

Fig. 3.21 Regional energy density and nonclassical bond order
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It should be noted again that this does not mean that we are working on the
Born—-Oppenheimer adiabatic approximation of quantum mechanics. As shown in
Eq. (3.110), the integral on the trace of nuclear stress tensor,

1 3
Ja’3 ?EZ Z Taskk(?), should of course be added to the energetics in the whole
a k=1

space.

3.4 Regional Chemical Potential

The regional chemical potential inequality principle (Tachibana 1999a) refers to
(see Fig. 3.22):

e The formalization of the nonequilibrium thermodynamics based on the Onsagar
local equilibrium hypothesis (Onsager 1931a, b) with considering quantum
mechanical interaction through the interface between separated regions.

e The formalization of the relationship among the regional electric chemical
potentials in the chemical equilibrium system by defining the regional electron
numbers, the regional electronic energies, and new properties about quantum
mechanical interference effect between separated regions (“the quantum
mechanical law of mass action”).

» The regional chemical potentials are not necessarily equal to each other, to the
Fermi level of standing wave on the whole system, nor to the chemical potential
of the whole system even in the chemical equilibrium system (“the regional
chemical potential inequality principle”).

EOOE

)

Fig. 3.22 Regional partitioning with the Onsager local equilibrium: (a) interface in the system A
and (b) the Onsager hypothesis of local equilibrium
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Let us consider a chemical reaction system A embedded in a medium M, an
environmental system of chemical reaction (see Fig. 1.26). During the progress of
chemical reaction in A, the electronic subsystem of A can exchange heat, work, and
electrons with M through an interface which divides A from M. Moreover, the
electronic subsystem of A can exert work on the nuclear subsystem of A and vice
versa, where the nuclear subsystem of A is assumed to be thermally isolated from
the medium M as well as from the electronic subsystem of A. This is the adiabatic
approximation that we rely on throughout this discussion, and we neglect relativ-
istic effects as well. If the electronic subsystem of A is in chemical equilibrium with
the medium M and the chemical reaction in A is a quasi-static process, then the
maximum work is gained from the electronic subsystem of A, and therefore only
the minimum work is required for the nuclear subsystem of A. Gibbs proved the
usefulness of the constant chemical potential between two regions in space where
we observe no flux of particles whatsoever when chemical equilibrium is attained
globally (Landau and Lifshitz 1980). The constancy of the chemical potential is
perturbed if we put an object between a pair of regions, when the transfer of
particles is rather inhibited through the interface, bringing about a finite difference
in regional chemical potentials even after chemical equilibrium is attained globally
(Reichl 1980).

It is not, however, a trivial matter to “observe” the inhomogeneity of the regional
chemical potentials using appropriate apparatus. A promising candidate for this kind
of measurement may be found in a study of the work function of metals as a function of
crystallographic planes (Wigner and Bardeen 1935). The medium M in this measure-
ment of the work function is used to observe the electrostatic potential energy of an
electron at a point in the neighborhood of the crystal surface plane just outside of it
(Bardeen 1936), where a clever choice of apparatus could allow the chemical potential
inequality principle to be proved. However, we are not in a position here in this article
to invent a device if the medium M is situated in such a way as to discriminate against
the regional chemical potentials. Rather, we shall devise a method to probe the transfer
of electrons within the electronic subsystem of A from one region to another through
the interface situated in-between. The subdivision of the electronic subsystem of A
into regions R, R’, R”, and so on is shown schematically in Fig. 3.22. In aregion, R say,
the electronic subsystem of A is assumed to be in chemical equilibrium, but we allow
irreversible electron flow through the interface that divides R and the adjacent region,
R’ say. This situation is nothing but the local equilibrium hypothesis due to Onsager
(1931a, b) and is adapted in this article in order to treat irreversible electron transfer in
the electronic subsystem of A (see Fig. 3.22).

We are in a position to apply the electronic tensile stress analysis to the present
problem.

For example, removal of electron from the system to the reservoir gives the
Gibbs chemical potential yg. Using Gibbs grand canonical ensemble, we arrive at
the expression of the Gibbs chemical potential yg as follows (see Fig. 3.23):

HG = Hr + Z OR'R (3.113)
RI(ZR)


http://dx.doi.org/10.1007/978-981-10-3132-8_1#Fig26
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Chemical potentials

The Gibbs chemical potential

Ho =M+ ) O
R(»R)
Regional chemical potential

sy =(%J
aNR S, v, Ngomy

Spectator measure to the passing electron

e [ B
= aNR 5,%, Nprapy

Fig. 3.23 The Gibbs chemical potential and the regional chemical potential

Regional chemical potential inequality principle

Sum Rule pg=1p+ 1T

Difference Rule Up - Ug=1Tp- Tq
I'I— ‘J-Q

up ——

Fig. 3.24 Regional chemical potential inequality principle for two-region case

where
OE
pr = (—R> (3.114)
ONR S,V Nri(4r)
OEg
ONR S,V Nri(4r)

The two-region case is found in Fig. 3.24.
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The regional chemical potential ug refers to the regional contribution to the yg. If an
electron is withdrawn from a region R and reach the reservoir, the regional electronic
energy Ex changes and the uy gives the energy change per one electron. On the other
hand, the passage of the electron through the system to the reservoir should inevitably
influence the electronic energies of the other regions, Rs, where the regional electronic
energy Ey' changes and the agr gives the energy change per one electron.

If an electron is withdrawn from a region R and passes through another region
R/, then the electron is treated here external to the region R’. Namely, the R’ here
acts as a spectator to the passing electron and therefore the energy change in Ey’ as
measured by agr should then be “electrostatic” in nature. This should be electric
potential first observed by Volta as proved by Herring and Nichols. It should be
noted that manipulation of electron solely in the particular region leads to the
thermodynamic definition of work function. As demonstrated by Volta for a pair
of regions R and R’ in contact with each other, the contact potential difference is the
difference in the regional work function as proved by Herring and Nichols (1949)

PR — pr = Pr — Pr (3.116)

where ¢ denotes the Volta electric potential for the region R and ®y denotes the
work function of the region R. This is the consequence of the chemical equilibrium
in between a pair of regions in contact with each other

Ug = —e®r — e = —e®p — eghy (3.117)

where the Gibbs chemical potential yg is constant from region to region in contact
with each other under the condition of global chemical equilibrium (see Fig. 3.25).

The Volta electric potential difference
Pz —@0p =0y — Dy
@ : the intrinsic Volta electric potential
@, : the intrinsic Herring-Nichols work function

The Gibbs chemical potential
He =—eDy —epy =—eDy —epy

—egp = Z Uypx
R(=R)
—e®y = 1y

Fig. 3.25 The Volta electric potential and the Herring and Nichols work function
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Energy density per electron and another non-classical bond order

Energy density per electron

A7 —

Another non-classical bond order
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Fig. 3.26 Another nonclassical bond order based on the regional chemical potential

On the other hand, the electrostatic effect is long-ranged. As a matter of fact, the
electron is negatively charged and has non-negligible interaction with even for
spectator region R” not directly in contact with the region R. For example, the
surface dipole of the spectator region R’ can contribute to the long-ranged electro-
static interaction with the electron. Hence, in our theory, the intrinsic Volta electric
potential ¢y for the region R is expressed by the sum of agg over the spectator
complementary regions R’ to R:

—efr = > arr (3.118)
)

R'(#R

Therefore, we arrive at the intrinsic Herring—Nichols work function ®g for the
region R as follows:

—e®g = g (3.119)

Thus, the thermodynamic extension of the electronic energy density ng(7) turned
out to be observable in electrochemistry: in terms of the intrinsic Volta electric
potential g and the intrinsic Herring—Nichols work function ®. Even for the same
crystal, the @r and the @y are dependent on surface morphologies or crystallo-
graphic orientations, while the sum of these gives the constant value yg for the same
crystal.

The regional chemical potential inequality principle gives another nonclassical
bond order of chemical reactivity (see Fig. 3.26).
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3.5 Examples

3.5.1 Chemical Bond

Shape volume is studied with the static dielectric properties of high-k dielectric
materials (Nakamura et al. 2005). Numerical examples are cluster models of silicon
dioxide and silicate oxides (see Fig. 3.27).

The constituent atomic shape volumes are studied from the viewpoint of the
shell structure (Nozaki et al. 2016). Numerical data are atomic numbers 1 through
18 (see Fig. 3.28).

Spindle structure of chemical reaction is studied with the shape volume along the
intrinsic reaction coordinate (IRC) (Tachibana 2001). Numerical example is C,H,+
HF (see Fig. 3.29).

Marginal stability around atoms is represented by compressive principal
stresses. Only the bonds of a pair of electrons are singled out as the spindle
structure, like for C—C bond, C-H bond, and H-F bond. Apparently, the tensile

Shape volume

i

Fig. 3.27 Shape volumes of cluster models containing (a) three Si atoms, (b) Zr atom and two Si
atoms, (¢) Hf atom and two Si atoms, (d) Zr atom and two Si atoms in siladioxyl groups, and (e) Hf
atom and two Si atoms in siladioxyl groups



132 3 Chemical Ideas of QED

4 T T T T T T T T

S (atom) —— covalent
35 F S?ﬂ“;::(atom) ....... = ionic(cryst‘)
Souter(Cation) = ionic(univ.)

Size[A]
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Nuclear charge

Fig. 3.28 The size of the electronic interfaces, which is defined in section “Size of the electronic
interface and comparison with atomic and ionic radii,” are plotted for Sqye, (blue solid line) and
Sinner (red dotted line) of atoms, and S, of cations (green dashed line). Covalent bond radii from
Pyykko and Atsumi (2009) (black thin solid line) and ionic radii from Pauling (1960) (black thin
dotted line) are plotted, too. As for the ionic radii, the crystal radii (line with filled square) and
univalent radii (/ine with asterisk) are plotted

stress regions for the C—C ¢ and # bonds in C,H, are immersed completely under
the atomic compressive ones. This is because the 7 bonds that spread perpendicular
to the molecular plane makes the C—C distance shorter, and therefore the C-C ¢
bond approaches the united atom limit where the tensile stress region is immersed
under the atomic compressive one. However, it should be noted that the spindle
structure for the C—C o bond is recovered in the CH,CHF case instead. This is
because one of the 7 bonds in C,Hj is lost with the reaction with HF, making the C—
C distance longer (Tachibana 2005).

The 7 bond is manifest as the dumbbell-type spindle structure, called a sheath
structure (Tachibana 2005). As in C,Hy, the dumbbell-type spindle structure for
the C—C z bond spreads in a wider region than that of the C—C ¢ bond and shows
the magnitude of the tensile eigenvalue has two maxima in the symmetric position
out of the C-C axis (see Fig. 3.30). Since the spindle structure could be a
one-electron orbital property, it should be immersed in C,H, (see Fig. 3.30) or
found intact in H," (Ichikawa and Tachibana 2009).

The immersed spindle structure may be called the pseudo-spindle structure,
while the non-closed spindle structure may be called the pro-spindle structure
(Szarek et al. 2009).
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Fig. 3.29 Spindle structure with the shape volume along the IRC of HF + C,H, — CH, = CHF in
five panels. In each panel are shown the kinetic energy density (/ef?), the third principal stress, and
the third principal axis (right). The third panel corresponds to the transition state of the nuclear
motion

The homonuclear diatomic molecules in ground states of main group elements,
from first to fourth period, have been analyzed here with respect to the Lagrange
point (Szarek and Tachibana 2007). Among the elements of the first two groups,
one can notice that from Na, to Ca,, the degeneracy of the largest eigenvalue
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Fig. 3.29 (continued)

occurs in contrast to the degeneracy of two minor eigenvalues of stress in other
cases. There appears clear tendency that among all noble gas interactions the
largest eigenvalue of stress in Lagrange point becomes negative (see Fig. 3.3).
This is because the antibonding orbital contribution overwhelms the bonding one
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Fig. 3.30 The spindle structures in C,H, and C,H,: o spindle structures of C—C bond and C-H
bond together with the sheath structure of z orbital of HOMO (Note that the spindle structure of
C-C is immersed in C,H,)
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Ar, Kr,

Fig. 3.31 Electron density redistribution in noble gases calculated as difference of molecule and
atoms electron densities. The red dots show increased electron density; the blue dots apply to
decreased electron density. The size of dots corresponds to the magnitude of electron density
change. The diameter of cube is 20 [a.u.]

(see Fig. 3.20) as realized by the simple orbital interaction scheme (see Fig. 3.4).
Actually the electron density is swept away from the Lagrange point (see
Fig. 3.31).

There also appears another clear tendency that among all metals and metalloids
bonds, the largest eigenvalue of stress in Lagrange point becomes negative. This
indicates a kind of fluidity or liquidity (see Figs. 3.9 and 3.10) of bonding/valance
electron density between species. There might be a connection between such a
feature and band properties of metals and semiconductors however not studied yet.
At least, we may say as mentioned in Sect. 3.3.5, the long-range Lewis electron pair
formation should emerge. Namely, as the internuclear distance is elongated the
spindle structure should be revealed (Ichikawa et al. 2012). Numerical example is
Li dimer (see Fig. 3.32).

3.5.2 Nonclassical Bond Order and Regional Chemical
Potential

The nonclassical bond order concept of energy density and regional chemical
potential based bond orders gives natural evaluation of interaction strength com-
pared with classical definition, considering delocalized nature of electrons (Szarek
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Fig. 3.32 The largest eigenvalue of the stress tensor and corresponding eigenvector of Li, at

various internuclear distances (a) 1.5 A, (b) 2.69 A (equilibrium distance), (¢) 2.78 A, (d) 3.31 A,
(e)3.36 A, (f) 4.0 A, (g) 5.43 A (intrinsic electronic transition state), and (h) 6.0 A

et al. 2008). Numerical examples are organic compounds C,H,A with different
functional groups (see Fig. 3.33).

Integrated bond order works well for more advanced study of bond strength
(Ichikawa et al. 2011). Numerical examples are inverted sandwich-type and open
lantern-type dinuclear transition metal complexes (see Fig. 3.34).

The nonclassical bond order (Ichikawa et al. 2014) and the integrated one
(Nozaki et al. 2015) have the correlation with the bond force constant. Numerical
examples are GeSbTe (GST) alloy, the most popular material for phase change
memory (PCM) (see Fig. 3.35).

The local reactivity of hydrogenated Pt clusters has been studied (Szarek et al.
2009). The reaction sites are characterized by lowered electronic regional chemical
potential and strong directionality and exhibit electrophilic nature (see Fig. 3.36).

Electronic regional chemical potential work well for the adsorption of Li atoms
on the surface of the (12,0) single-wall carbon nanotube (SWCNT) model has been
studied (Senami et al. 2011). The adsorption of one lithium atom on the inside of
this SWCNT is favored compared to the outside (see Fig. 3.37).
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Non-classical bond order
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Fig. 3.33 The stress rooted bond orders are blue and pink dots; NBO bond orders: Wiberg’s
indices yellow dot, atom—atom overlap NAO bond order blue ring, NLMO bond orders brown ring,
and Mayer’s bond order green ring

Non-classical bond order in open-lantern-type complex

Fig. 3.34 As for the open lantern-type complex, the energy density-based bond order can properly
describe the relative strength of Cr—Cr and Mo—Mo bonds by the surface integration of the energy
density over the Lagrange surface which can take into account the spatial extent of the orbitals
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Non-classical bond order and spring constant

be exhibits much better correlation with the spring constant than with
the bond dissociation energy.
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Fig. 3.35 Correlation of the nonclassical bond order and spring constant for GST models for
chemical species that may be present in chemical reactions of PCM
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Fig. 3.36 Electronic properties of Pt,H,, = 8,10,12 clusters. From left to right, electronic chemical
potential, largest eigenvalue of stress tensor, and nonclassical bond orders
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Regional chemical potential in SWCNT
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Fig. 3.37 Electronic regional chemical potential in single-wall carbon nanotube (SWCNT) model
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Fig. 3.38 Electronic regional chemical potential for Al;,X” clusters
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The nonclassical bond orders and regional chemical potentials work well for the
study of the internal bonding, stability, and the regioselectivity of hydrogen on the
Al nanoclusters (Henry et al. 2011). Numerical examples are Al;,X” clusters (see
Fig. 3.38).

3.6 Summary

The concept of energy density has been developed using stress tensor machineries.
The energy density concept has been essential in the quantum field theory, and the
stress tensors are used ubiquitously for description of internal forces of matter.
Various basic chemical concepts in molecules and chemical reaction systems have
been clearly visualized in real three-dimensional space. The new regional energy
decomposition scheme has been extended to infinitely small regional energy
decomposition scheme, namely, the electronic energy density decomposition
scheme.

Not only the short-range force of chemical bonding but also the long-range
forces—such as the London force of the nonretarded interaction proportional to
R ¢, with R being the typical intermolecular distance, and the Casimir—Polder
force of the retarded interaction proportional of R~ ’—are incorporated in this
scheme.

Of course, it should be noted that the fact that the adiabatic approximation gives
rise to another virial for nuclei, which remains finite for nonequilibrium nuclear
configurations. Therefore, we need, as mentioned in Sect. 3.1.1, the wave-packet
prescription of the nuclear motion for the simple picture of the regional energy
partitioning using Eq. (3.5).
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Chapter 4
Alpha-Oscillator Theory

Abstract Canonical quantization of QED in finite systems is performed in terms of
new b-photon, f-electron, and f“-positron, which are called alpha-oscillators. The
alpha-oscillator algebra is useful for non-perturbationally space-time resolved
simulation solving the dual Cauchy problems of the time-dependent QED Hamil-

tonian H qep(f). Time-dependent renormalization of QED is performed by using
g-number renormalization constants over and above alpha-resonance and thermal-
ization of alpha-oscillators. Quantum mechanics 100 years of mystery on the
measurement problem of the Minkowski space-time coordinates is solved.

Keywords Alpha-oscillator energy ¢ Alpha-oscillator theory  Alpha-resonance ¢
Alpha-weighted state ¢ b-photon ¢ Coarse graining ¢ Double slit « Dual Cauchy
problem e f-electron « f“-positron * Einstein—Podolsky—Rosen Measurement e
Normal mode ¢ Particle ¢ Q-number renormalization constant ¢ SUGRA e
SUSY ¢ Thermalization

4.1 Canonical Quantization

We have an evidence of the accelerated expansion of the universe (see Fig. 4.1).
Our universe is not closed but open dynamically. Namely, it is dependent on time.
Therefore, it should be remarked that the Hamiltonian of QED could also be
dependent on time.

Actually, in harmony with this remark, the QED Hamiltonian is proved to be
dependent on time (Tachibana 2016). This time dependence of the QED Hamilto-
nian does not contradict with that of our universe. It follows that we need time-
dependent renormalization of QED for the space-time resolved simulation of
molecular dynamics in finite systems. In this chapter, the time-dependent
renormalization of QED is performed in terms of the alpha-oscillator theory. The
alpha-oscillator theory may furthermore give a natural candidate for now unknown
dark energy, which is said to be abundant in our universe and to account for the
cause of the accelerated expansion of our universe.

© Springer Nature Singapore Pte Ltd. 2017 143
A. Tachibana, New Aspects of Quantum Electrodynamics,
DOI 10.1007/978-981-10-3132-8_4
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Fig. 4.1 Estimates of the growth rate of cosmic structure compared to predictions from various
theoretical models (Reproduced from Guzzo et al. 2008)

4.1.1 QED Hamiltonian

Here in this chapter again, first we start with the Coulomb gauge for the canonical
quantization of QED with the conjugate transversal electric field

;i’( ), divA(x) =0 (4.1)

[esTH
=
—
=
S~—
||
a I —_
Q)l )

The equal-time canonical quantization of the electromagnetic field leads to the
equal-time commutation relationships

W=y0
[ET’@),ET" (v Lo:yo = (4.3)
ﬁ[A’(x),ETJ(y)LO:O h( i3 )+a"af<—$ |ziy|>) (4.4)
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Second, the equal-time canonical quantization of the Dirac field leads to the equal-
time anti-commutation relationships

7070 = {7/ @56 )}, =0 (4.5)

0.0 0}, = w8 —3) (4.6)

The i (x) commutes with A (x) (Weinberg 1995)
709, 4] =0 (4.7)
These fields should of course be renormalized in a step-by-step time-dependent

manner, reflecting the time-dependent minimal coupling.

The H oep(7) is given by using the normal order denoted as : : modulo c-number
albeit infinity if any with the obvious notation

Hoep(1) = Jd%-e : Hopp(x) : (4.8)
Howo() = - (Ert)) " + (roti)”) = 9+ 9
+ %}\()(X)ZO(X) + 7 (x) (—ify* Oy + me) @ (x) x ¢ (4.9)
~ _ (o] 3_»2)\(_))) yU:XU
Ag(x) = J_Oo &y A (4.10)

Atthe very be ginning,fl qep (?) is defined by integrating the Hamiltonian density operator
H Qep(x), a Lorentz scalar under the Poincare symmetry transformation (Weinberg
1995), over the space variables in the Minkowski space-time. Then, it appears that the
H qep(?) is in general dependent on time. There exists the Cauchy problem in order to

obtain H qep () for £ > £, (=0) onward with causality and initial condition. With another
Cauchy problem for the time evolution of the ket vector with wave function added
to, we have the dual Cauchy problem at hand (Tachibana 2015, 2016).

This time-dependent QED Hamiltonian with the dual Cauchy problem fits well
with the time-dependent universe.

4.1.2 Conventional Conservative QED Hamiltonian

It should be noted that conventionally we make the QED Hamiltonian independent
of time. This is the conventional putative conservative QED Hamiltonian

HeMstatic QED
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Fig. 4.2 Conventional Conventional EMstatic QED Hamiltonian

conservative QED —
Hamiltonian with the o Ga)= o [ dHcen ()
EMstatic field )

“}QED(’]=[}.(’sfn)“}QED(’n)(}(’sfn) . ‘r}(")=0'({»50)‘&(‘0){}("‘0)

| conventionally "made” to be independent of time |

fhe Nocther EMstatic boundary condition:
theorem fields disappear for point at
infinity
2 = = i
Hoen ()= H ey QED» EHQED ("] #0= EHE.\hmk o =0
0 ~ PN =
EHQED =0 if Hoep = HEMstatic QED (4.11)

with the putative conservative electromagnetostatic (EMstatic) field (see Fig. 4.2).

The basic idea behind this convention is to use the Noether theorem and the
putative boundary condition that fields disappear for point at infinity. As far as we
follow this convention, the consequence is that the QED Hamiltonian is made to be
independent of time, realization of the invariant fields (Landau and Lifshitz 1973)
or in other words the putative conservative EMstatic field (see Fig. 4.2).

If at once the putative boundary condition is met, say at the initial time
t =ty(=0), then the putative EMstatic QED Hamiltonian may be used for future

time ¢ with ¢ > t5(=0) onward. Then the time evolution of any field operator F (x)
obeys the Heisenberg equation of motion in the well-known form

o 0
lha—tF(x)

= [F(x)vHEMstalic QED} ‘ ) (412)
EMstatic QED EMstatic QED

with the putative EMstatic QED Hamiltonian H EMstatic QED With 7 > #(=0) onward.
In due course, we need to set up wave function at the initial time ¢ = 74(=0) in order
to discriminate numbers of electrons, positrons, and photons and calculate the
expectation value

~ (P|"F (x)|¥)
<F(x)>‘ o = e 413)
EMstatic QED H<\P|IP> H EMstatic QED

where %), denotes the time-independent ket vector in the Heisenberg representa-
tion with 7 > t,(=0) onward.
Thus, the Cauchy problem of the conventional putative conservative QED

Hamiltonian H EMstatic QED 1S equivalent to that of quantum mechanics under the
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putative conservative EMstatic field. It is very simple. Indeed, with initial wave
packet given under the putative conservative EMstatic field, the time evolution
depends only on the time duration. Namely, if at later time, say #,(>t,), and if with
the same wave packet given to initiate another event, then exactly the same time
evolution should occur. To conclude, if the double-slit phenomenon of Fig. 1.3 be
observed in this situation, then it is mystery to realize the stochastic distribution of
spots on the screen as Feynman claimed so (Feynman et al. 1965). The reason for
the stochastic distribution of spots on the screen is out of order.

This is not the case with the realistic QED Hamiltonian Hqgp(r) that is
dependent on time. The Noether theorem is still applicable, but we abandon the
putative boundary condition that fields disappear for point at infinity. Equivalently,
this means that we abandon the putative conservative EMstatic field. With this
generic case in mind, the Cauchy problem of fields in QED in the Heisenberg
representation has been elaborated elegantly by Nakanishi using ghost field in the
Landau gauge (Nakanishi 2004). Here we use the Coulomb gauge, and we do not
invoke the additional ghost field. And, we shall apply the alpha-oscillator theory to
QED (Tachibana 2016) as elaborated below.

4.2 Alpha-Oscillator Theory

4.2.1 Synchronization

To solve for the Cauchy problem of fields in QED, clocks at different space points
are synchronized at t=t,, when canonical quantization is performed with the

definition of the vacuum ket vector 10). The j*(x) develops forward ¢> t, with the
retarded interactions mediated by photon. The vacuum and field operators are not
defined backward ¢ < 1 (see Fig. 4.3).

4.2.2 Causality and Initial Condition

To obtain F(x) with x* = (ct,X) in the Minkowski space-time, we may

collect information of j* (y) with y* = (cu, y) at distant ¥ with the retarded time

— ¢ I3 qatistvi ;
u=t = satisfying causality

e, 3) =0, u>t (4.14)
and initial condition (see Fig. 4.4)

Jeu,5) =0, u<t (4.15)
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Synchronization of clocks located at different space points at t=t0
Canonical quantization at t=t0
Definition of vacuum at t=t0

_— |F (1)-5 (u)‘ charge current j*(F,t) ——
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¥ ( 7 ) photon

s — N A
/ v/ 77 - i
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Fig. 4.3 Synchronization of clocks. The charge current develops forward ¢ > f, with the retarded
interactions mediated by photon. The vacuum and field operators are not defined backward ¢ < o

causality j“(s,u)=0, u>t

\initial condition j*(5,u)=0, u<0
~

|F(:)—§(u)|{r charge current j* (¥ ,1) -

c

O<u=t-

ct

=

X event horizon

VACUUM

Fig. 4.4 Causality and initial condition

For this purpose, in the following discussions, we may use that any function F(u)
satisfying

Flu)=0, u<ty, u>t (4.16)
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may be obtained at u with ) < u =1t — @ < t as (Tachibana 2013)

umr-HE = J d”,F(”/)5(u’ — (t — M))
- . -

x— 9 (! o0 o (9?2
- uj d“'J daF(u')e’“((“ —P L)
cr .

fo

where we have used the delta function

5 1 ) = o (3l —1) @) + 8 ~1) + @), a>0

with

=2 =2 00 ) (17
5((’/[/ . t)2 N (X - y) > _ ij daeia((u’ft)'f(‘(—zy)z)

4.2.3 Electromagnetic Field

The vector potential A (x) should satisfy the Maxwell equation

oA () =)

with the transversal charge current

> > 1 0 ~
T =) - 5-grad S Aol

Using the standard Green function, we have (Tachibana 2013)

‘1 ()C) = A‘rzldiation(x) + AA(X)

) e s .
A, (et ®) = _J duJ pylrlend) 5(u - (z _Ix y'))
) Joo |X = ¢

1 t lo'e] lo'e] 2 . 7*,\72
_TJ d“J d"‘J P x(cu, Fee(0-0" =)

cr to —00 —00

149

(4.17)

(4.18)

(4.20)

(4.21)

(4.22)

(4.23)
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Fig. 4.5 Separation of variables for real-time simulation. Non-causal data are swept out through

integration with o

where we omit the contribution of A y(x) in Eq. (1.101). It should be noted that we
have used the causality and initial condition and then obtained the retarded potential

A 4(x) with separation of space-time variables (see Fig. 4.5)
The A radlatlon( ) is given by the dragiaion-photon field
(4.24)

(:i radiation (X) + Ei Tradiation (X)

K radiation (X) =
(ﬁ7 )eiixﬂpradialion% /h z( , 0—)

\/47rh2 ro &Py
radlatlon ——7———— {radiation
(27[h)3 o=+l V 2pradiationo
(4.25)
with the usual dispersion relationship of spectrum
“ 0 = 0 hVradiation -
Pradiation = (pradiation 7p)’ Pradiation = f = |p| (426)
and the polarization vector ¢é(p,o) from Egs. (1.104), (1.105), (1.106), and
(4.27)

(1.107) as
Beé(p,0) =0
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p'p

2
—|p

S €5, o) (B.o) = —n +

o==+1

(4.28)
> € (p,0)e" (B, 0') = bar (4.29)
i=1

Note the usual commutation algebra of the a,,gjaion-photon field

o~

[aradiation (ﬁa 6); /a\radiation ( 677 6/)] [ATradlcmon (ﬁ )7 ATradiation ( Ziv O'/):I =0 (430)
[aradiation ( ﬁ ) )7 Tradlatlon C] ) }

- 506’5 ( q) (431)

4.2.4 Alpha-Oscillator Algebra
4.2.4.1 Electromagnetic Field
Now with the alpha-oscillator theory applied, the generic solution of the electro-

magnetic field may be given by using the b-photon field defined as follows
(Tachibana 2015)

AX)=b@x) + b (4.32)
7 R
br) =< j duj 2L, B,0)e M E(p, g) P
(21h)> o=51 90 (v, 1)
(4.33)
By using the integral form of the current
i} 1 > > —i2rvt iXe 2avt —iXe
Jr\X) = —F—— v PJTVP Jr (v, p)e
() ﬁod d ( )2r p/h+ ( )+2z p/h
2nh %0
(4.34)

the b-photon field may be represented as

5 2 =12 A
_ Vdh'e <(2,,> +p|>25(v,ﬁ,a)é’(ﬁ,6)4C”7T(Vvﬁ) (4.33)

2p0(y7 ‘ﬁl) ¢ hz o==+1

Comparing Eq. (4.35) with Egs. (4.22), (4.24), and (4.32), we may observe that
the apagiation-photon fields are sticking to the b-photon field through 7T(x) This
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sticking process may be called “thermalization” of the @ agjaion-photon fields to the
b-photon field. Note that the real positive number p°(v,|p|) in Eq. (4.33) is the
counterpart of Pragiaion” in Egs. (4.25) and (4.26). The p°(v,|p|) is a function of v
and || serving as the thermalized solution of Eq. (4.35).

The field algebra in Egs. (4.2), (4.3), and (4.4) are recovered if we assume the b-
photon algebra

b, 5.0)b(.G,0)] = |

(6, 5,0),5"(, 4.0')| = 608" (5 — D)3(v — v(|1),)3(/ = w(|),) (437)

b (v, 5.0) bV, G.0)] =0 (4.36)

where v(|p|), denotes real positive frequency that depends on |p|. The b-photon
field apparently includes the a@,4iaion-photon field in a delta-function form

~

b(Vv ﬁa (7) D) aradiation([_jy 6)5(1/ - Vradiation) (438)

Then, the electromagnetic part of H OED (#) (modulo c-number vacuum energy) in
Egs. (4.8) and (4.9) is given as

o) o Jd%-e : 81”((&()())2 4 (roti(x)f) :

5 Z 00 00 ) 00 d%ﬁ
=hc J va duJ = =
Sdo Jo e V200 (v, [B1) V200 (v [ B]) (4.39)

2av\ [2nV/ |ﬁ|2 R ~ | |
X <c>< c )+hz bt (v, B,0)b(V, B, o)e2m )

(modulo c-number)

which part may depend on ¢ and ¢, since H OED (¢) is dependent on ¢ and fo. Moreover,

Eq. (4.39) includes the radiation part (modulo time-independent c-number vacuum
energy) given as

1 A, 2 2, 2
Jd%-e:—(( r(x)) "+ (rotd(x)) ):

8

P ((B ’ A :

X:— Er ) ( t Aradiation ) :
DJ 87t<< Tosin (¥) ) { O Araition () ) (4.40)
= Z J d3 ﬁcpradiationoa\radialion% (ﬁv G)aradiation (ﬁv 6)

o=+17—

(modulo time-independent c-number)

which is manifestly independent of ¢ as well as ¢,.



4.2 Alpha-Oscillator Theory 153

4.2.4.2 The Dirac Field

The w(x) may be given by using another standard Green function K(x,y) as
(Weinberg 1995)

700) = Freel) + 5 [ a5k 2 (9400 )70) (4.41)
(=ih@ + mc)K(x,y) = ihd*(x — y) (4.42)

where ¥/, (x) denotes the free field. The @y, (x) is given by the free eg..-electron
and ey -positron fields

W ree (¥) = Crree (¥) + Crree” (x) (4.43)
. 1 o e b S
Cfree, (X) = ———= Z J d3p Clree (P, 0)e e /hul(P>U) (4.44)
(27h)* =247 -

1 o — R
Z J d%p efree (ﬁv U)eﬂhpﬁee /hVZ (pv 6) (445)
+197

~ ct
Efree, (X) =7
A/ (277,'}31)3 o=15

with the usual dispersion relationship of spectrum

0 hv free

pfreeﬂ = (pfreeoa P), Pfree = c = (mc) + |p| (446)

and the anti-commutation algebra

{/éfree(ﬁ7 O—)v/e\free(qa Ul)} = {/e\freec(ﬁ7 6)7 /e\free(l(‘_]‘7 OJ)}
- {/e\freeT(ﬁ7 0')7Efree.r(qv U/)} = {/éfree”(ﬁv U)vgfreed(é7 OJ)} =0
(4.47)

{/e\free (ﬁv a)a/éfreeT(Zia 5/)} = {?freec(l_j, 6)7?freec'r(qa G/)} = 50‘0’63 (ﬁ - 6) (448)

The Dirac spinors u(, o) for electron and v(p, ¢) for positron satisfy

(pfree”yy )u(ﬁ ) 0 (449)
(pfree " + m(*)v( ) 0 (450)
N 1
u(p,a)u(p, ) 2 (pfree }//4 + mc) (451>
0:i% pfree
. o 1
v(P,0)V(P,0) = 53— (Ptrec v, — mc) (4.52)
zptree
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ﬁ(ﬁ> a)y"u(ﬁ, 0/) = V(ﬁa G)Y”V(ﬁ, OJ) = (pfreeﬂ/pfreeo)éo'o" (453)
u(p,0)y"v(~p.o') = v(p,0)r"u(~p,¢') =0 (4.54)

Now with the alpha-oscillator theory applied, the generic solution may be given
by using thef-electron and f“-positron fields defined as follows:

P() =f )+ () (4.55)
~ 1 00 0 —~ . R
Fol) = ——— J duj & (v, B o) ™ uy(,0)e % N (4.56)
(27h)? g=21 70 J-ec
s 1 oo poo . . o
fcj'(x) - - Z J dVJ d3ﬁ (T(Z/, ﬁ7 U)e“z’””v((ﬁ, G)efzx-p/h (4.57)
(27h)? g=z2 10 J-oc

Applying the first thermalization of the b-photon field Eq. (4.35) to the Dirac
Eq. (1.16), we obtain the second thermalization of the f-electron field

L[| #dha—v -9 T dou(d0)
e :
”:ii
00 00 3 = ~ k — “~ - = - =
4—”J dl/J d 4q YT (I/l,q)Zf(l/—yl,p—q,a)u(p—q’g
0 oo< (27w’)2 |a|2> o=t
c h

&
-~ Tk o -~ o oo
+ 7t (1/,61)Zf(V+V’7p+q,6)u(p+q,a)>

|
—tl
=5

(4.58)

with

0]

Ao, p) = ﬁz Zr du’Lo ey

%(F10/.G.0/f v+, 5+ .0l (3. 0)u(F + G,0)

o~ .

’6) (:%(71/7 I/,fﬁf Zl'a o./)uv(

q
WG w5~ 4.0 (G o)
G o (v 4V, B+ GO0 (G o) (~ 5+ G.0) )
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and the third thermalization of the f“-positron field

st L “e _ -
qJ/OJ dV’J dgho (v, -4 (W, 4,0)v(F,0)
0 —00

1
—!
775

- ~ k N ot . 5
_ 4_”J°c dV/JOC &g <MT @)Y v+, P+ G.o)
0 >

¢ —00 27[1/, 2 n |6|2 6::!:%
c n?

S o -~ tk o et . S o
(P + G,0) +rdr (V. @) > FTw—v,F—G o) xv(p- qm))

1
—e
=5

(4.60)

The field algebra in Egs. (4.5) and (4.6) are recovered if we assume the f-electron
and f“-positron algebras

{F0.5.00. 0. q.0)} =0, {F(v.B,0).F (. G.0) | =0 o
{Fl0.5.0.F'(/.3.0) ) =0. {F1w.po)f 0 40 =0

)
(l/ — (]
(v -u(

{F0.5.0).7'(/,d,0) } = 8,08 (5 — @) (v = v(I5l); ) (v = (1) )
{F0.5,0). 79/, 4,0} = 8,08 (5 — @)5(v = v(15]); )8 (v — (1))

(4.62)

where v(|p|); denotes real positive frequency that depends on |p|. Also, Eq. (4.7) is
recovered if we assume

F(.5,0).5(/.3.0)] =
(4.63)

The f-electron and f “-positron fields apparently include the ep..-€lectron and ey -
positron fields, respectively, in the delta-function forms

f(’/a ﬁa 6) > gfree(ﬁa 5)5(’/ - Vfree) (464)
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FE W, B, 6) D Cree’ (,0)8(1 — Viree) (4.65)

Then, the Dirac part of H Qep (modulo c-number vacuum energy) in Egs. (4.8)
and (4.9) is given as

Hogp (1) D Jd3)?: W (x) (—ihy* Ok + me) @ (x) x c:

= ZJ dVJ dI/J &’ Peppee’ (f vpo)f (v, B, o)e )
l
o=t
+7(/, Byo) fC (v, o), e‘iz”(”_’/’)’) (modulo c-number) (4.66)

which part may depend on ¢ and ¢, since H OED (¢) is dependent on ¢ and fo. Moreover,

Eq. (4.66) includes the free part (modulo time-independent c-number vacuum
energy) given as

Jd35c' L (x) (—ify* O + me) @ (x) x ¢ :

) Jd?ﬁf : ﬁfree(x) (_ihykak + mc)&free(x) xXc:
~ (4.67)

- Z J d3 ﬁcpfreeo </‘e\freeT (ﬁa G)é\free (ﬁ7 6) + /e\freecT (ﬁ; G)EfreeC (ﬁa 6)
n'—i% >
(modulo time-independent c-number)

which is manifestly independent of ¢ as well as ¢,.

4.2.4.3 Alpha-Oscillator with Resonance and Thermalization

We have performed quantization of QED using new sub-particles, b-photon,
f-electron, and f“-positron, which are called alpha-oscillators. The particle fields
of photon, electron, and positron are constructed by infinite superposition of those
corresponding fields of alpha-oscillators.

The alpha-oscillators are functions of @ denoting the collected set of variables of
v-frequency, p-momentum, and o-spin

o ={v,p,o} (4.68)
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A real positive number p° (v, |p|) is a function of v and |j|. For any p-momentum,
there exists a particular v-frequency v(|p|) and satisfies

P, 1)) = 07 (4.69)

which is called the alpha-resonance condition. The operator dynamics of the alpha-
oscillators has been formulated in terms of thermalization; see Eq. (4.35) for photon
and Egs. (4.60), (4.61), and (4.62) for electron and positron.

4.3 Double-Slit Space-Time-Resolved Prediction of QED

4.3.1 The Feynman Mystery

Let us ask an apparently mysterious question: what causes the time-dependent
randomness of the sequential spots observed in the buildup of electron double-slit
interference pattern, an experiment performed by Tonomura (2005)? It is mysteri-
ous as so mentioned by Feynman et al. (1965). We should admit the mystery if we
rely on quantum mechanics and even on QED under the conventional putative time-
independent EMstatic field (see Sect. 4.1.2). But if the Hamiltonian were time
dependent, then it might cause the time-dependent randomness of the sequential
spots. Then the next “consequent” question is do we have such reasonable time-

dependent Hamiltonian in reality? Yes, H oep(7) is the key to answer the question
(see Fig. 4.6).

Now that we have H oep(?) at hand (see Fig. 4.7), for an event o, starting at #; with
to<t;; 1=1,2,3,..., we set up the initial ket vector associated with the wave

Fig. 4.6 Double-slit space-
time resolved prediction of
QED using the time-
dependent Hamiltonian

H qep(?) rather than the
conventional putative time-
independent EMstatic

@QO---

Hamiltonian ﬁEMslalic QED OF t tl’ tz’ —
the conventional time-

independent electrostatic

Hamiltonian i'\] electrostatic OF [ ] = ———

quantum mechanics

P1 P2
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Realistic non-conservative QED Hamiltonian

X . o -
Ho (0} [ 5 H o (o) & aHQH,(r);eo

QED Hamiltonian density operator

the Lorentz scalar

Hl g () = é((f:, (x))2 +(rot§'(x))ﬂ

== ) () + 2= (0 A+ ) (i, + me)i (e

the Coulomb gauge 4= [ & P

Fig. 4.7 Realistic nonconservative QED Hamiltonian at hand

function. For example, first of all for electron (or positron), the phenomenon at #p;
following #; is not the collapse of wave packet but the reaction of electron
(or positron) with material at the screen. Second, for photon, the phenomenon at
tp; following ¢; is not the collapse of wave packet but the formation of electronic
excited state, say exciton pair, on the screen, where the photon disappears as shown
in Fig. 4.8 (Tachibana 2016). The combination of the particle number
nonconservation and the exciton pair formation associated with the time-dependent

H Qep(?)is the real phenomenon (see Fig. 4.8).

4.3.2 The Dual Cauchy Problem

The time evolutions of fields and ket vectors with wave functions in QED constitute
the dual Cauchy problem. The unified treatment is given as follows.
4.3.2.1 Time Evolution Operator

The time evolution of g-number F (r)(= F (ct, X)) for ¢ > fo (=0) onward is brought
about by the time evolution operator U (¢, ) obeying



4.3 Double-Slit Space-Time-Resolved Prediction of QED 159

Fig. 4.8 Photon number 7 O \

nonconservation: space-
time-resolved prediction in

QED with time-dependent ‘
H qep(t). The conventional

putative time-independent
EMstatic Hamiltonian

H EMstatic QED fails to account
for the photon number
nonconservation. Nor in .
quantum mechanics also,
every particle number is
conserved, so that
mysterious “collapse of O

wave packet” should be L / t=tri
invoked.

N[

EF@)=U" (,1,) Ft,)U (1,1,)

/—?~ y m F(r) U'( rto)[F(t ) H m(:)]U(r )
<G =[F<f>’ " (b1)]
Heer™ (1,4,) = U" (1,1, ) Hoe (1) U (1,1,)

//////////////// //
7277777 7T 77777

an(f Idx HQED(x)

Vi D AD D TP
LLLLLAL O LLLLLLLL LS

Fig. 4.9 The time evolution of q-number F (t)< Fct, x)) using the time evolution operator U
(t,10) with 1> o onward

in % U(t,10) = Haen (U (1, 10), ih% U'(t,10) = —U"(t,t0)Hqen(t)  (4.70)

and the solution (see Fig. 4.9)

= if[ dr'Hoep(?)

Ut tg) = Te™no = 7P (4.71)
where T denotes the Dyson chronological operator (Sakurai 1985).

ForF (¢) whose time evolution is solely brought about by the canonical variables
in the Heisenberg representation
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~

F(t) = U (t,10)F (t0)U (1, o) (4.72)

we have

ih%ﬁ(r) = 0" (t,10) [P (t0), e (1) U1, 10) = [F(0), Hlaen ™ (1,0)]  (4.73)

where
~  (H) s ~ .
Hoep  (1,10) = U'(t,t0)Hqep (1)U (1, 10) (4.74)
with
77 _ 5 #H)
Haep(to) = Hqep  (fo, f0) (4.75)

Alternatively, define
F(t,10) = U (t,10)F (1)U (t, 10) (4.76)
with

F(to) = F" (1o, to) (4.77)
then the time evolution of ) (¢, 1) is given as

0

a_tﬁ“') (t,10) = Ut (t,10) [ﬁ(r), HQED(f)} U(t,10)

ih
i L0~ N\~
+U'(t, 1) zhaF(t) U(t, 1)
= |:ﬁ(H)(l‘7 1‘0),[/']QE[)U{)(Z‘7 l‘o):|

+ U (t,1) (ih 8%1?(;)) U1, 10) (4.78)

The time evolution of H oep (7) itself should also solely be brought about by the
canonical variables in the Heisenberg representation

Hoep(1) = UT (1, 10)H gep (1)U (1, 10) (4.79)
and then we have
I PN SR P - -
lhaHQED(f) =U'(t,1) [HQED(fo%HQED(f)}U(R to)

= [AQED(I),?IQED(M(@ to)} (4.80)
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=~ H L
The time evolution of H QED( >(t, fo) is given as

0 ~ ~ 0~ ~
ihEHQED(m(t, t0) = U'(t,10) (ih §HQED(t)>U(t, f0) (4.81)

4.3.2.2 Initial Ket Vector with Wave Function

The wave function ®n(fg; @1, ..., wp, ) in the Hilbert space of QED is equipped
with the ket vector

W (0;0)) g or s = Zjdwl . daoylto; o1, .. on, 1y o PN (10301, - oy, 1)
N=0
(4.82)

in terms of the Heisenberg (H) or Schrodinger (S) representation satisfying the
Heisenberg equation

ih% I (to; )y = 0 (4.83)

or the Schrodinger equation

i 2 19 0:0)5 = Poeo ({0, (00} = D) ¥y (484)

A primitive choice of the basis ket vector may be given as

lto; @1, - .., on, 1)y = Ut (t,00)|to; 01, - . ., o, t0) (4.85)
lto; @1, ..., 08, t0)y = |to; @1, ..., 0N, To)g (4.86)
with
[to; 01, ..., 08, T0)g
- wlv_h' b'(@1,) b (wn,)

(4.87)

x %N;f (w1,)- 7' (any)
7t (w1, ) 7 (an, ) 10

1
) V/Nge!
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Oy (to; wy, ..., 0N, 1) = @N(to;a)lh, e ON Dy e DN Dy - - - 7a)N/L.,t)
(4.88)
N = N, & Ny ® Ny (4.89)
0 =0, oF ® o (4.90)
wp, wf, 0 = {v,p,0} (4.91)
For permutation P of variables
@y (to; @p1, - - -, WpN, 1)
_ ) (4.92)
= q)N 10; WP, 1,y -+ - s DPNy Ll)pflf7 Ce ,Cl)prf, wvalfm . ,a)pf{.Nf(.,t
P =P, ®P;® P (4.93)
the wave function changes the antisymmetric (—) sign
sgn(P)CDN(tO; wply...,0OpN, l) = (DN(Z‘(); @1, ...,0N, l) (494)
sen(P) = (=) (=)™ (4.95)

Here we have the time-dependent basis ket vector for the Heisenberg (H)
representation

2 . .
ihaﬁo;wl» cos oy, )y = =UN 1, 00)Haep (1)]to; @15, o, to)g
=~ (H)
= _HQED (l, l())|l‘0;a)1,...,0)N,l‘>H (496)

and the time-independent one for the Schrodinger (S) representation

lto; @1, .. .,y 1)g = U(t,10)|t0; @1, - . ., 0w, )y (4.97)
= |t0;0)1,...,Cl)N,t0>S

Using the primitive choice described above, the basis vectors are orthonormal

. c / H
H<to,a)1,...,a)N,t|to,a)1,...,a)M,t> H

S
= S<[0;0)1, .. .,a)N,t0|t0;a)/1, . ,a);w,l‘()> S = 5NM5(0) — a)')

1
= 5N/;Mhlwz p (wlh - w;hlh)' “+0p (a)N;, - wJID,,Nh)
b*"p,
i ,
X BNfo]WZ (—) /(sf (wlf _ a);’flf) .. 5f (C‘)Nr - Cl)jprf)
7

1 -
" 5Nf{'Mf"WZP (=) & (wlﬂ‘ ., ) e (wap — ), Nﬂ) (4.98)
-
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f€-positron

i+2
1 i|+1

I,l—r % f -electron
‘/t ti

b-photon

ég%éééﬁ oo, ooy
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777777 7X77V770777777

alpha-oscillator

Fig. 4.10 Time evolution of alpha-oscillators
with
8y (wp — @) = 8008 (P — P)8(v —v(IpD),)s(v = v(I17'))) (4.99)
& (wf - w}) = & (a’f" - w‘,’u‘)
= 6,08 (5 — )6 (v—v(IPl);)8(v = v(F1)y)  (4.100)

Following this primitive choice, we shall find the way how to calculate the time
evolution of ®p(ty; w1, ...,wy,t). This will be described in the following Sect.
4.3.2.3 for the case starting at f; > ty. Taking the limit #; — #,, we shall get to the
present case.

It should be noted that along with the time evolution of wave functions, we have
the time evolution of alpha-oscillators with thermalization among them (see
Figs. 4.10 and 4.11).

4.3.2.3 Time Evolution of Ket Vector with Wave Function

The wave function ®y(a;, t;; @1, - . ., wy, t) in the Hilbert space of QED is equipped
with the ket vector

o0

|‘P(aivtn HorS — Zjda)l~~'dwN|ti;a)la'"7wN7t>Hoqu)N(ai;ti;a)1,~'-;a)Nat)

(4.101)
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bh-photon f-electron  f*-positron

P \ T / thermalization

alpha-oscillator

Fig. 4.11 Thermalization of alpha-oscillators

in terms of the Heisenberg (H) or Schrodinger (S) representation satisfying the
Heisenberg equation

0
ihE|‘P(ai7t,-;t)>H =0 (4.102)
or the Schrodinger equation
. 0 -~
zha|‘P(a,-,z,-;t)>S = Hqep(1)|¥(ai, ti;1))g (4.103)
W (ai, ;1)) = U (6, 6) ¥ (e, 1531)) (4.104)

Here we have used the time evolution operator obeying

ih%ﬁ(t,ti)=I?QED(t)l7(r,t,»), "h%ﬁ(f’h)Z—ﬁT(t,ti)ﬁQED(z) (4.105)

and the solution

t N
T (1,1) = Tehl 4/ Pal?) (4.106)

Now we find

~

F(t) = U (t,10)F (1)U (1,10) = U (1,)F (1)U (¢, 1) (4.107)
and then we have

ih%ﬁ(r) = 0" (1,0 [F (1), Hoeo (1) U1, 1) = [ﬁ(r),ﬁQED(m(z, 1) (@108)
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where
HQED (l, I,‘) =U (I, l‘,‘)HQED(l‘)U(I, l,‘) (4109)
with
HQED (l‘,', l‘,‘) = HQED(t,-) (4.1 10)
and hence
I ~ L 0~ ~
Zha_[HQED (l‘, t,') = U*(Z, l,‘) (lhEHQED(t)> U(l, l‘,‘) (4111)

It should be noted that the canonical quantization requires simple rule of the
Cauchy data

F@)| =F@), ihgl?(t)

= ot = [ﬁ(ti)ai_\[QED(ti)} (4.112)

1=t;

instead of Eq. (4.108). So the time-dependent nature of H QED(H) (t,1;) in the right-

hand side of Eq. (4.108) is hidden.
The time evolution of the alternative field operator

F (1) = U1, ) F()U (1, 1) (4.113)
F (4, 1) = F(1;) (4.114)

obeys the Heisenberg equation of motion

ih%ﬁ“ﬂ(r, ) =0 (t,1) [ﬁ(z)ﬁQED(t)} Ut,0) + U (1) (m a%ﬁ(r)) Ut,1)

- [ﬁ("’)(z, ti),ﬁQED(H)(t, t,«)} +U'(t,1) (ih%ﬁ(r)) Ut 1) (4.115)

A primitive choice of the basis ket vector may be given as

|[f;0)1, . ,CUN,1>H = (7-"-([, ti)|ti;w|,. .. ,(DN7[,'>S (4116)

|t,~;a)1,...,a)N,t,~>H = |t,~;a)1,...,a)N,t,~>S (4117)

with
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lti;g)la ce. 7wN7ti>S
= U'(t;,10)t0; 01, . . ., o, To) g

Lo Il
—_b (wlb) N b (th)
! N (4.118)

We have the time-dependent basis ket vector for the Heisenberg (H)
representation

0 ~ ~
l.hEVi;a)lv .. 7a)Nat>H = _UT(tv ti)HQED(t)‘ti;wla U 7wN7ti>S

= (H)
=—Hgep (t,4)|t;o1,. .., 08, )y (4.119)

and the time-independent one for the Schrodinger (S) representation

ltiiwr,...,0n, 1) =UL) |t 01, ... 0N, )y (4.120)
= |ti;w17"'7wN7ti>S

Using the primitive choice described above, the basis vectors are orthonormal

H<ti;a)1,...,a)N,t|t,»;a)'1,...,a);w,t>H
:S<ti;a)la"'7wN7[i‘ti;wlla"'7w1,l45ti>S (4121)
:S<t0;wl7-~~7a)NatO|t0;wl11"'7w;\41t0>s

= 5NM5(CO — a)’)
For an event q; starting at #; with to <t;; 1=1,2,3,..., we set up the initial ket

vector for Eq. (4.101) and need to obtain the wave function ®y(a;, t;; @1, - . ., @y, 1)
satisfying

.0
lh—tq)N(ai, iy, ..., 0N,1)

0
o0
/ / / / / /
= Zjdwl .. .da)MHNM(t,-;a)l, L ON, O, 7wM,t)d>M(oz,-,t,~; @y, .. .,a)M,t)
M=0

(4.122)
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using the time-dependent function
HNM(I,-;a)l,...,wN,a)’l,...7a)}w,t)
~ (H)
= u(ti;o1,...,0n,t|HqED (f7fi)}li;w/1,---7wfu,l>f, (4.123)
= s{ti o1, ... ;wN;ti|i:[QED(t)|ti§w/1a e 7wﬁ4,fi>5

0
a—tHNM(t,-;a)l,...,wN,w’l,...7a);u,t) £0 (4.124)

Finally, substituting this time-dependent ®p(a;,t; @1, ..., wN,1) into
Eq. (4.101), we calculate

R 4\ | (H) . g
< > _ H<‘P(0(,,t,, Z‘)|F (Z‘, t,)|lP(0{,,t,,l)>H (4.125)
i, t;

F(1) H (WP (ai, ti;0)|W(ai, 1))y

for each event ¢; starting at ¢; with 1o <t; <t ; i=1,2,3,... developing onward
with x* = (ct, X) at position ¥ with time ¢ using

1 (P (i, 155 0)|[F (1,6) [, 1151))

= iijdwl .. .dwNdell' . ~dw;l,,

N=0M=0
X 1-1<t,';w1, e ,wN,t|1?<H)(t, li)|fi;(1)/|, .. .,a);w, t>H
X q)N*((Xi, ti;wy,...,0N, l)(DM (a,-, t;; a)’l, . 7601/”, l) (4126)
00 00
= ZZJda)l . .da)NJda)'1 ...do),
N=0M=0

X stz o1, ..., on, HF (1) |t 0], ... 0y, 1)

x Oy (aj, ti; 01, . . ., O, t)(DM(ai, t @, ..., Wy, t)
0
H(‘P(a[, t;; t)|‘P(a,», ti; I)>H = ZJ doi .. .da)N|(I)N((xf, tiwy,...,0N, [)|2
N=0 (4.127)

de] .. .dCl)]\/|q)]\/(th'7 tiywy,...,0N, [,')|2
N=0
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4.4 Normal Mode

4.4.1 Particle Picture

Since the Hamiltonian is time dependent, we need time-dependent renormalization
for particle picture (Tachibana 2016). The coarse-grained collective picture of
particle is realized through three steps with the time-dependent renormalization
(see Fig. 4.12).

They are (I) particle spectrum condition, the dispersion rule of the frequency v
(|P|) over and above the alpha-resonance condition Eq. (4.69); (II) algebra normal
mode condition, the coarse-grained collective picture of particle over and above the
sub-particle alpha-oscillators; and (III) field operator renormalization condition, the

renormalized field operators for the resultant particles. Since the Hamiltonian H QED
(¢) is time dependent, so are the steps (II) and (IIT). The renormalization constants
Z(t) are therefore time-dependent g-numbers, serving to collect sub-particle alpha-

oscillators among the time-dependent fIQED(t). The concrete procedures are
described as follows. It should be noted that the particle is the complementary
picture of the field normal mode (see Fig. 4.13).

4.4.2 Electromagnetic Field Renormalization
(D Particle spectrum condition

CPphoton” = Mphoton = €| (4.128)

is the dispersion rule of photon, and consequently the alpha-resonance condition
Eq. (4.69) is further restricted to

renomalizaton with
renormalization with Coarse graining
coarse-grained collective

picture of particle [&mkk _ﬁ‘_*k ] = I: dvll: dv'[&(V)'B(V ')]t

=
Three steps with renormalization

) Particle spectrum condition
(II)  Algebra normal mode condition
(III)  Field operator renormalization condition

Time-dependent renormalization
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X /‘%%ﬁu ;‘__/5}
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B Mg iy P, S )
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particle: LA
y complementary ;
picture of field

normal mode
Fig. 4.13 Normal mode with particle

ep" (v 1B1) = o (1B1), = eIl (-0 = P ppoon = Mpron) (4129

(Il) Algebra normal mode condition

P S 1 o~
— bphoton(w(t))aHQED(t) = thhoton(t)Ai bphoton(w(t))
Zb(’(;) (l) Zb(’(;) (l)
(4.130)
with the coarse-grained commutation relationship
B @(0). B en(@(0)] = | "] v p)B@)] g
0o Jo s L :
=68(a(1r) — @' (1)) = 86w 5” (P — §)
where
o(t) = J dvd (v — Vphoton (1)) = {Vphoton (), B, 0} (4.132)
0
(IIT) Field operator renormalization condition
1z Varh’c > &p
= b photon (X) =
Zb(t) (277-'h)3 o=+1+7% \/2pph0ton0 (Vpholon(t>7 |ﬁ|)
1~ _ , e
X ——Dpnaon (@ (1)) e, o) 7
b(@) (t)
(4.133)

using
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b (x) = ——— b photon () (4.134)
Zp(1)
B(0) = Boporen@()5(v — gnoron(1)) (4.135)
“b(@) (®)

4.4.3 The Dirac Field Renormalization
(D) Particle spectrum condition

Cpoelectron = MVelectron = € (mc)2 + |ﬁ|2 (4136)

is the dispersion rule of the Dirac particle, and consequently the alpha-resonance
condition Eq. (4.69) is further restricted to

e’ (v(I71) 151) = (1)),

= c\/(me) + | (i-e; = cp’aectron = MVelecron)  (4.137)
(Il) Algebra normal mode condition

1 ~ 1 ~

= electron (g)(t))7ﬁQED([) = hVClCCU'OH(t)Aifelectron (&V)(t))
(@) oK
(4.138)
1o e
Af((;;) (t)fpositron (w(t))’ HQED(I)
1 c
(4.139)

= NVelectron 7? ositron w
ectron (£) o0 » (@(1))

with the coarse-grained commutation relationship
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{Forrn @) Flosam@ )} = | "] @/ fFo)F @)} )
=5(a(t) — @' (1)) = 6,08 (P — G)
{Froson @) Froswn @O} = | ] -/ {F0) T} )
=8(a (1) — @' (1)) = 8,05 (P — §)
where
5([) = J:O dua)é(u — Veleclron(t)) - {Velectron([)y ﬁa 0} (4142)

(IIT) Field operator renormalization condition

1 - 1 * -
,\—f electron (X) = 3 Z J d3p
z¢ (1) (zﬂh)~6:i% —o0
f~ feleC[rOn(&V)(t))eiiz,”/elear(m(t)tu(ﬁ’ 6)€’z.ﬁ/h
i)
(4.143)
1 - c 1 L
— positron (x) = J d3p
Vi@ Ve Tl

1 n €~ —i27Velec = iXep
X positron (@))€ e T (5, ) ¥ P/
/Zf,-(;]')(l‘)

(4.144)
using
f(x) = %felectron(x) (4145)
zr(2)
]/C\(w) = A;feleclron(ai)(t))é(y - Velectron(t)) (4146)
Vi@
“~ (X) _ 1 c

/Z\ff’ (t)fpositron (X) (4 147)
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fc(w) = Aifpositronc(a}(t))a(y - VCI@CUOH(I)) (4148)
th.(;;) (t)

4.4.4 Renormalized Ket Vector and Wave Function

Let the dual Cauchy problem in QED for an event ¢; starting at #; with 75 <1;;
i=1,2,3,... be described by the renormalized wave function

&)N(ai,ti;@(z‘i), ...,on(t;),t) in the Hilbert space of QED equipped with the
renormalized ket vector (see Fig. 4.14)

’{i}(ai’ fi t)>H or S
= Zjdﬁl(t,) .. .dcT)N(t,-)|t,-; 51([{), e g)N(li), t>H or SQNDN(ai, ti; 51([{), - ,51\/(&), l)
N=0
(4.149)

in terms of the Heisenberg (H) or Schrodinger (S) representation satisfying the
Heisenberg equation

y a 7 . p—
in=. "P(ai,t,-,t)>H —0 (4.150)

particle:
complementary
picture of field
normal mode

renormalization

o normal mode

y ﬁQED(I.‘) =% ﬁqm(ﬂu) =2 I;rqm(fm) i

Fig. 4.14 Time-dependent renormalization with particle
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or the Schrodinger equation

05 N :
ih= |V i,ft;f> =H l"P t,lt;f>, ¥ i,fi;f>
ih= (ai, t531) ) = Haen (0)|¥ (i, 1551) ) o |¥(a, 1551) )
—U(1,1) @(a,-,t,-;t)>H (4.151)
The basis ket vectors are given by
|li; cT)l(t,-), e ,C,BN(Z,'), t>H = ﬁT(f, f,‘)|t,'; (,I)l([,'), . ,&N(li), l,’>5 (4152)
|l‘,'; a)] ([i), . ,5}\1(&), ti>1—1 = |l‘l‘; a)] (l‘,‘), . ,a)N(Ii), ti>S (4153)
with
|l‘i;&v)1(l‘,'),...,(T)N(l‘i),l‘l)S
il il
: By @1, (1) e Boon (@3, (1)
= ' photon \ @ 1, \Zi f photon \WN, (1
VP Vo) ) Zo(om) )

1 1

\/__‘ )J electron (w]f tl T <= electron wa tl
\/ f (a)lf) O)Nf
1

1 T .
J positron a)lj posllmn a)N/ tl ‘O>
/N | [,) P
f <m|f > (U\/f

(4.154)

We have the time-dependent basis ket vector

~ ~ N (H) ~ ~
l'haitﬁ,-;col(t,-)7 v on(ti) thy = —Hagep (1) |t @1(4), . . ., on (1), 1)

= U (t,t)Hoep (0|t 01 (1), - .., aon (1), 1)
(4.155)

and the time-independent one
|ti§§)l(ti>7 o on(t),t)g
=U(t6)|tso1(t), ... on(t), Oy (4.156)
= [tz o1(ti), ..., On (), ti)s

Using the primitive choice described above, the basis vectors are orthonormal
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H<ti§ 5)1 (ti), . ,wN(ti), t|li; CT)II (li), - ,&V)},W([l‘), t>H
= S<ti; 6&/(1,’), .. ;’,E)N(ti)’ t,‘|l,'; 5)/1 (Z{), - ,63,,(2‘,’), ti>S (4157>
= 6NM5(a)(ti) — a)’(l‘,-))

4.4.5 Formal Solutions of ?a(;;) (7)

Step (III) in Sect. 4.4.1 utilizes the q-number renormalization constant in Step (1),
whose solution is demonstrated here.

4.4.5.1 Setup
In Step (I) in Sect. 4.4.1, the algebra normal mode conditions in Egs. (4.129),
(4.138), and (4.139) read

= apa:ticle(a)(t»j:[QED(t) = hVparticte (1) —=———==0particte (@ (1))
Za(a) 1 “u(@) )
(4.158)

where? @) (1) denotes the g-number renormalization constant of &paricie (@ (#)) With

the energy hvparicie(?). Using the operator identity
[Kf?,@} :K[E,@} + [K,@]E (4.159)

the left-hand side of Eq. (4.158) is reduced to

L @), Horo (1)

W/}amae

- /a\particle » 71/-; ED +
= (1)[ (@(1), Hoeo (1) —

) , ﬁQED (1) aparlicle (@(1))

(4.160)

Using Egs. (4.158) and (4.160), we have
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Zu@) W Hoep (1) | @paricte (@ (7)) (4.161)

= thanicle(Z)aparlicle(a)(t)) - {apanicle(&(t))7ﬁQED(l)}

If H qep(f) were the time-independent free field Hamiltonian ﬁfree field, then
the right-hand side of Eq. (4.161) were zero because of the consequent time-
independent free particle operator @free paricle With the energy Algee paricte; and
then the left-hand side of Eq. (4.161) were zero, since the q-number renormalization
constant should then be identity. Thus, the right-hand side of Eq. (4.161) is not null

for Hep(f) and then we may write

tharlicle (t)aparlicle(é(t)) - [aparlicle (a)(t)),HQED(t)}

- S (4.162)
= Z‘,(g)(l)Ca(g)(f)apamcle(w(f))

with the non-null C o(@) (¢) so defined in the right-hand side of Eq. (4.162)

C (0 #0 (4.163)

Using Egs. (4.160) and (4.162), we arrive at

1

[~

Y

Haen(n)| =C o)) (4.164)

Za(a)

This is just an operator equation Eq. (4.166) in Sect. 4.4.5.2. With the proof
Eq. (4.168) given, a solution may be found using Eq. (4.167) as

1 "C h
W ( )-l—ZHQED Co( U(p,QED(;)) ’ (4.165)

[ﬁQED(t), f(?;)] —o, [EQED(z),E] —0

modulo a function f of B commutable with H Qep ().
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4.4.5.2 Solutions
Let us solve X in an operator equation

{f(,?x} —C, A#0 (4.166)

A solution may be found as
X :f<§) n gﬁ"é (f—l\)ﬁl, [X,f(iz)} —0, [E,E] —0 (4.167)

modulo a function f of B commutable with A.

Proof

%.4] = [f(l?) +izna(%)"“,;] 3

4.4.5.3 Example

Let us find an example of Xinan operator Eq. (4.166) whose solution may be found

as Eq. (4.167) modulo a function f of B commutable with A.
The Pauli matrices

0 1 0 —i 1 0
O'X—(l O),U),—<i O)’GZ_<0 _1> (4.169)

satisfy
(0,)? = (6}.)2 = (6.)> =1 means (s,)"" = oy, (ay)_l =0y, (0.)""
—a, (4.170)
0,0y = —i0y, 0,0, = i0 (4.171)
0.0, = —ioy, 0.0, = i0) (4.172)
0,6y = —i0;,0:0y = i0; (4.173)

Let X in
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Xoy — 0,X = 2io; (4.174)

be found as

B)+ Y (0,)"2ic:(ay) "V, [0y, f(B)] =0, [0,,B] =0  (4.175)
n=0

Proof

Z(”y)nzigz ((7,\')7("“)

n=0

(O'y))12i0'2(0')’)n+1

Il
g

=2i(0.0y +0y0 (Uy)2 + (03)2‘7 (‘7v)2-H + (Uy)ZHGZ(Uy)HZ +)
= 2i(6.0y + 0y0: + 6.0y + 0,0: + - - -)
= 2i(—io, + ioy — iy + i6, — -+ +)
=2i(— lal)(l—l—i—l—l—i— )
= Oy
(4.176)
where we have used Eqgs. (4.170) and (4.171) and the Cesaro sum
1
1_1+1_1+...:§ (4.177)

It follows that Eq. (4.174) is solved by using Eq. (4.175) as

Xoy, — 0,X

Il
N
+
Q
»

S
—~
S
S—

=
+
~
%Q
Q
//\Z\
=
+
[

i) ")
— Z(ay)nZiaz(ay)_("H ) Y(Z O'y 210, 6} <n+])>
n=0

I
=}

(4.178)

where we have used Egs. (4.176) and (4.173).
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4.5 Discussions

The commutation relationships of particles are obtained by coarse graining of the
alpha-oscillators. The generic feature may be written as

apmde,ﬁpmk] = ro durc dv [a(y),ﬁ(y')} (4.179)

0 0 +

The coarse graining is also applied to the wave function equipped with the ket
vector of the renormalized particles.

For an event o; starting at ¢; with tc<t; ; i=1,2,3,..., we set up the initial
ket vector for Eq. (4.149) and need to obtain the wave function
Oy (i, ti;w1(ti), - ., oN(t;), 1) satisfying

i B (e, 501 (6). .. (0).1)

= Zjdwl t) .. .dah ()

><[’]1\/M(l‘l,61)1([1)7 A 75)1\](1‘,‘),67)&([,‘), A ,g)gl([i),l)&)M(ai,li;g)a (l,'), - ,g);u([i),[)

(4.180)
using the time-dependent function (see Fig. 4.15)
Hyu (ti01(1), . .. on(t:), @) (1), - .., @), (1), 1)
= wlts@r(6), . an ()l gen " (6 8) 1@ (1), .. @y (8),1),, (4.181)
=s{tso1(t), ... ,6N(ti),ti|HQED(z)|t,»;cT)’l (t)y ... ,cT)jw(ti),zi)S
%HNM(ti;a)l(ti),...,cT)N(ti),a)’l(ti),...,a);w(zi),z) #0 (4.182)

Substituting this time-dependent CTDN(a,-, ti;o1(t), ..., on(),t)into Eq. (4.149),
we calculate the expectation value

of the renormalized wave
function fh%&)_\.(a,,f,;@ (1)5- 0y (1,),0)

= gld&’ Y {‘J )"dd}lﬁt (ﬂ )HNH("r;E’l (fr}""*éh' ('rr]*érl {‘r]!""&'u {"r]"’}

x®D, (e, 1:0' (1, )oes @' (4):0)

Hy 0, (1), 05 (1,),8', ()08, [‘ .0
=, (30, (1) .0y (1), 1| A geo '"’{t 0)]1:8' (6),,0" (1,).1),,
i (“11"1 ("-)-' LBy {" |HQED ("}|r @ l(" } By ("i)"-)s

d

EH"W (1,:6, ("l)‘””a},\‘ ("1 )"ﬁll ("4 )""'ﬂ.’ln (": )"') #0
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~ - H<‘~f'(a,-,t,-;t)‘1?(m(t7 ) lfl(o:,-,t,-;t)>H
<F(t)>“”” - H<‘I’(ai,ff;f)|li’(ai,if;f)>H

(4.183)

for each event q; starting at ; with to <t; <t ; i=1,2,3,... developing onward
with x* = (ct, X) at position X with time ¢ using

H<(I](aia 1 f)‘ Hﬁ(H)(l‘, t)

¥ (o, 1;; Z)>H

= iijda)l(h) .. .dcT)N(ti)Jdﬁ)l'(zi). —day (1)

N=0M=0

X H<ti;a)l(ti)a v 76)N(ti)7t|Hﬁ(H>(t7 ti)|ti;&/1 (ti)a v 7&)1,%(1‘5)5 t>H

~
X (I)N (a,-, t;; Cl)l(ll‘), e ,a)N(t,-), t)(DM (a,-, ti; a)’l (li), e 70);,,(1}), [)

= ii]d&)l (#)-- .dﬁ)N(t,-)Jda)/l (t)- 'dCTwa(fi)

N=0M=0
X s{ti;@1(8), . - aon (), G1SF (0) |t @ (), .., @y (1), 1)

X Dy (ai, ti;@1 (1), ..., on(t), I)E)M(afa t@y (1), -, @y (1), 1) (4.184)
and
H<{Ivl(a,‘,l‘,‘;l)|"fl(ai7ti;t>>HH

= in@l(t,) .. .dcT)N(ti)|&)N(ai, ti; g)l(t,‘), R ,61\1(1‘,‘), t)|2
N=0

(4.185)

N - ~ - - 2
= Zjdwl (l‘i) .. .da)N(ti)|(I)N(a,-, ti; w1 (t,'), . ,a)N(l‘,’), ti)|
N=0
The time evolution of the renormalized field operator is then (see Fig. 4.16)

- H<‘f’(a,-, ) ‘ih%ﬁ“’”(r, 1) | (a, 133 t)>H
H<"I7(a,-, 1:0)[¥ (e, 1 t)>H
(e, 15| [FO i), Hom' (¢, )] [ @, 1 r)>H

H<{Ij(ai; t5:0)|¥ (@i, 1 t)>H

(a1 0|070.0) (10 30 00,00 [Blanrin),

+ = =
H<lP(ai7 ti; )W (ai, i f)>H

(4.186)
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Fig. 4.16 Time evolution Field operator

of the renormalized field
operator ; (@ 0| )| ¥ (a850),
( -
< ( )> ’ (‘P(aﬂ, ‘,r)|‘P(a_,r',.f))

- . (‘i"(a‘.,f‘;f)|fhg }:‘“"’(.r,.'r.)]‘i‘(a,.,f,.;.f))hr
ma <P( )>a,1, - (q‘(a,.,f:.fﬂ ¥(ant:0),
(¥ (a,, ,,;)|[p“”(.- ), H o™ (1,1 )]|\p(a,, 1)
(‘P(a‘,ri 1) ¥ (a,.1; r))”

(@, 1:0)|0" (n1, (m r(.-)]U(u)|w(a,,, 1),

(¥ (e 20) ¥ (t20)),

+

This concludes the way for solving the dual Cauchy problem in QED using the
renormalized fields of alpha-oscillators. The renormalization has been performed
over and above the alpha-resonance and thermalization. As compared with the
conventional Gell-Mann-Low relationship using covariant perturbation approach
(Weinberg 1995), this present approach paves the way for realizing
non-perturbationally space-time resolved simulation of the time-dependent

I/‘\IQED(I) .
The interference pattern of the trajectory of <ﬁ (t)> if any in the double-slit

isli

phenomenon is guaranteed primordially by that of the field operator. In other

words, the interference pattern of the trajectory of <1? (t)> if any has already

isli

been given prior to the assignment of the specific initial wave function
Oy (aj, tis 1 (i), ..., on(4), ;). As a corollary, for different time t; #t;, even if
the same initial wave function is given,

(AISN(a,', t; &31 (ti), e ,O)N(fj), l‘,’) = &SN (aj, 1 g)] (Ij), Ceey CUN (fj) , lj), the resultant
difference <ﬁ (tp,.)> # <ﬁ (tp/.)> is guaranteed primordially;, moreover,
a;, b aj,t,

AR
even if a pair of events are entangled within an Einstein—Podolsky—Rosen mea-
surement, the discrimination is guaranteed primordially. Quantum mechanics
100 years of mystery on the measurement problem of the Minkowski space-time
coordinate is solved.

It should be noted that if we were at the center of the spherical symmetric
universe, particle passing through the double slit should always be connecting the
image at the center of the screen. In other words, if the particles passing through the
double slit are not tied to the image at the center of the screen, we should not be at
the center of the spherical symmetric universe. Consequently, we observe that the
double-slit phenomenon (see Fig. 1.3) guarantees that we human beings are not
situated at the center of the spherical symmetric universe (see Fig. 4.17).


http://dx.doi.org/10.1007/978-981-10-3132-8_1#Fig3
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Fig. 4.17 If we were at the
center of spherical

symmetric universe, every
particle should reach at the
center, and therefore we
found no single stochastic
random spot away from the
center even for the double-

\ F
\f}

In other words, we observe that the double-slit phenomenon (see Fig. 1.3)
concludes that we human beings are most probably living in the inhomogeneous
universe with the inhomogeneous initial condition at t=t,.

Every Boson in the standard model can be constructed by using the alpha-
oscillators with the b-boson and b°-anti-boson algebras as functions of v-frequency,
p-momentum, and o-spin; with obvious notation, read

)
v, 5.0)b' (v, 3,7 (4.187)

(b, 5,0).5"(,G.0")| = [, 5. 0), B (v, G. 0] (4.188)
= 8,08 (P — §)5(v — v(|p]),)6 (v — v(]d]),)
In due course, the alpha-resonance condition, the dispersion relationships, and the
coarse graining should also be met.
Likewise, every fermion can be constructed by using the alpha-oscillators with
the f~fermion and f “-anti-fermion algebras as functions of v-frequency, p-momen-
tum, and o-spin; with obvious notation, read

.07/ 3.0)} = {Fw.B.0.F V. d.0)}
{f*(u,ﬁ,ef) < )} (4.189)


http://dx.doi.org/10.1007/978-981-10-3132-8_1#Fig3
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{05,010, 4.0) ) = {F (v, ,0). 7 (/. G.0)
= 8008 (5 — D)3 (v — (IBl); ) 6(v' — v(1d),)
(4.190)

In due course, the alpha-resonance condition, the dispersion relationships, and the
coarse graining should also be met.

Super alpha-oscillator algebra that granted SUSY as the local symmetry of the
alpha-oscillator theory gives the graviton of SUGRA.

Finally, it should be noted that in general, the alpha-resonance condition and/or
the dispersion relationships and/or the coarse graining may not be met; with
obvious notation, read

— — — 2 -
0" (V1) 1) # 1B e/ (mnge)” + 1P (4.191)

Joo duro av [a(y),ﬁ(y’)} # [apmde,ﬁpme} X (4.192)

0 0

In other words, in the generic situation, we have dense set of ket vectors out of the
coarse graining, since normal modes are immersed in alpha-oscillators (see Fig. 4.18).

{alpha-oscillators} O {normal modes} (4.193)

We may call the very basic energy as the alpha-oscillator energy as compared
with the particle energy. The alpha-oscillator energy may contribute to the total
energy but not as the known form of particles. In this sense, the alpha-oscillator
theory may give a natural candidate of dark energy, which is said to be abundant in
our universe not as the known form of particles and to account for the cause of the
accelerated expansion of our universe (see Fig. 4.19).

Moreover, the time evolution of ket vector with wave function of the thermal-
ized alpha-oscillators, Eq. (4.101), may be associated with the time evolution of ket
vector with wave function of particles, Eq. (4.149). This situation may be called
an alpha-weighted state. The time evolution of ket vector with wave function of
the alpha-weighted state is given for an event a; starting at ¢ with 7, <t;
i=1,2,3,..., with obvious notation as

‘\?Alpha(ah ti; t)>

HorS
= ZJ {a’a)] Il d@]\]g (fi)} ® {dwl . 'dwNw}waéE;
x [t {@11(t), ... oy ()} @{or, ... ON,, } oo tidH or §

% @ Alpha (a,»,zi; {(T)l(tl-), ey DN (tl-)} ®{w,.. .,a)Nw}m#(;),t)

N=N,®N,;, o+ao (4.195)

(4.194)



4.5 Discussions 183

Fig. 4.18 Normal modes
{o},{0'}, {(T)"}, ...are
immersed in alpha-
oscillators {w}

| Alpha-oscillatorenergy |
o' ({12, 1pl) # v (71) . y(m ) +1oF
Nocoarsegraining
j': dv j':’ dv'[& v). ,f‘a(v')]t - [&m,,, foce ]t

Fig. 4.19 Alpha-oscillator energy may contribute to the total energy but not as the known form of
particles

In this alpha-weighted state, we have the time evolution of wave functions with the
obvious notation

i@y (a1, (@1 (1) v, (1)} @ {01, 08, i)

- ZJ{ @y () ... day ,(t,)} ® {da’ll ' -dwfvw,}w/;é@,
X Hym (tﬁ {o1(1), ..., on, (6)} @ {o1, ... 0N, }p {a/l(ti)’ By (ti)}

/ /
® {a)l, . ’wa/}m,#,ﬁt)

~ Alpha ~ ~
X q)M <a,-,t,-; {a)'l(t,-),...,wﬁ,,_,(t,-)}(@{w’l,...,wfwd} ~ ,l)
(2} w/#w/

(4.196)
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~

photon — 2y

sge=
‘BM&-O[C}H&IZ J t=t1

4 )

/7

electron

O
hole —>
S&% $ t=13...
o J

Fig. 4.20 The alpha-weighted state allows the thermalized alpha-oscillators be realized in the
time evolution of ket vector with wave function, when sub-particles be interchangeable with
particles in (i) exciton pair formation, (ii) photoelectric effect, and (iii) electron—positron pair
production (the hole should read positron in this last case)

For example, exchange of sub-particles with particles may be described by the
alpha-weighted state when the particle number changes. Most typical candidates
are the photon number nonconservation cases, such as the exciton pair formation
(see Fig. 4.8), photoelectric effect, and electron—positron pair production (see
Fig. 4.20).

As shown in Fig. 4.20, photon disappears from the wave function of particle but
can return to that of the alpha-oscillator in the form of sub-particle, b-photon, when
electron is irradiated to change the wave function to that of the specific excited
state. In the case with electron—positron pair production, the electron and positron
can emerge from the wave functions of sub-particles, f-electron andf“-positron,
respectively. The time evolution of the field operator, no matter whether it is
renormalized or not, in the alpha-weighted state is then (see Fig. 4.21)

~ H<{IVIA1pha(ai7 ti; f))ﬁ(H)(h )PP (o, 1 ’)>
<FAlpha(t)> _ _ _ H (4.197)
aj,t; H<lPAlpha(ai t; t)|\PAlpha(ai ti't)>
) ) ) ) H
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Field operator in the alpha-weighted state

. ("i"*"""’ (o:,.,r,;:)|ﬁ‘”’(r,r,.)l(l"“"’"’ (a,.,:,;r))H
i ; SRR (a,.,r..;f))g

(o)

ir%is

s Alpha Al @A) D )
mi(f-mph. (I)) _ H(‘y (a:'sff,f)lm‘é;}? (f,f,-)“i’ o 1))H

ot a R ('i”“"h’ (o, tis0) e (a,,r,;f))ﬂ

; ((pA!pha (a.-,f.-;f)l[ﬁ{m(f,f.- ), [;,erﬁ) (,,,I_)]‘\?Abha (“v‘i;‘)),,
LRAER (o) | PR (o))

i* i

SRR () O (0 )(fh g ﬁ‘(r))t}(f,:,. N (e )

+ = =
H <‘PMPM (ai "i”)' e (ai Jﬁ’))ﬁ

Fig. 4.21 Time evolution of field operator, no matter whether it is renormalized or not, in the
alpha-weighted state
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More specifically in Fig. 4.20, if the field operator F (¢) is that of photon in the

double-slit phenomenon, then the expectation value <1? Alpha(r)> has finite value
ai,h

at t=1t; around the first slit, but zero value at t =1¢; around the screen later. In the
case of electron—positron pair production in Fig. 4.20, if the field operator F(¢) is

that of photon, then the expectation value <ﬁ Alpha(z)> has finite value at t =1¢,

ai,l
around the point of the electron—positron pair production, but zero value at t=t;

around there later; also, if the field operator F (¢) is that of electron or positron, then

the expectation value <1? Alpha(t)> has finite value at ¢ = 3 around the point of the
a,l

electron—positron pair production, but zero value at r = ¢; around there earlier.
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4.6 Summary

We have generalized the time evolution operator machinery of quantum mechanics

to QED in such a way that it warrants the use of the time-dependent H Qep (7).
Non-perturbational space-time-resolved simulation of QED has been realized in
terms of the dual Cauchy problem. The alpha-resonance condition has been
restricted to the dispersion relationship of particles for time-dependent
renormalization of the alpha-oscillators. The commutation relationships of particles
are obtained by coarse graining of the alpha-oscillators. The alpha-oscillator energy
may contribute to the total energy but not as the known form of particles.

The alpha-oscillator theory with the alpha-weighted state works well for
non-perturbationally space-time-resolved simulation of the time-dependent
nonconservation of particle number. The nonconservation of particle number is in
the heart of quantum field theory like QED that describes nature as is. The

conventional putative time-independent EMstatic Hamiltonian H gmgaiic Qep fails
to account for the particle number nonconservation. In quantum mechanics also,

using the conventional time-independent electrostatic Hamiltonian H electrostatic s
every particle number is conserved, so that mysterious “collapse of wave packet”
should be invoked instead.
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