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Preface

Quantum Mechanics: 100 Years of Mystery Solved!

In the theoretical study of the application of quantum electrodynamics (QED),

recent progress in research has led to solving the mystery (as Feynman said)

involved in the foundation of quantum mechanics. Because this is a very big

achievement, we will first note this breakthrough in the title of this preface, and

later demonstrate the individual research outcomes.

QED is a relativistic quantum field theory, a quantum theory of photons with

electrons, and is considered the most successful accurate theory we have, e.g., to

explain the Lamb shift, the anomalous magnetic moment of the electrons, and so on

using the Feynman diagram technique of the covariant perturbation approach. We

will elaborate the non-perturbation approach in this book.

This book presents new aspects of QED from basic physics to physical chemistry

with mathematical rigor. Topics covered include spin dynamics, chemical reactiv-

ity, the dual Cauchy problem, and more. Readers interested in modern applications

of quantum field theory in nano-, bio-, and open systems will enjoy learning how

the up-to-date quantum theory of radiation with matter works in the world of QED.

In particular, chemical ideas restricted now to nonrelativistic quantum theory are

shown to be unified and extended to relativistic quantum field theory that is basic to

particle physics and cosmology: realization of the new-generation quantum theory.

Readers are assumed to have a background equivalent to an undergraduate student’s
elementary knowledge in electromagnetism, quantum mechanics, chemistry, and

mathematics. This book makes use of abundant figures to help the reader grasp

ideas quickly, includes many equations to help the reader to follow the logic step-

by-step, and provides an ample range of examples and references to facilitate

in-depth learning.

I would like to thank Drs. Koichi Nakamura, Kentaro Doi, Masato Senami,

Kazuhide Ichikawa, Ludwik Komorowski, Piotr Ordon, Andrzej Sokalski, Paweł

Szarek, Irene Yarovsky, David Henry, Hansong Cheng, Akinori Fukushima, Yuji
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Ikeda, Hiroo Nozaki, Masahiro Fukuda, and members of the Tachibana Laboratory

in Kyoto University for their collaboration and producing some of the figures of

numerical calculations.

Kyoto, Japan

31 August 2016

Akitomo Tachibana
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Chapter 1

Basic Physics of QED

Abstract Basic physics of quantum electrodynamics (QED) is reviewed in com-

parison with quantum mechanics. Under external source of electromagnetic fields,

charged particles can be accelerated by the Lorentz force. The Lorentz force is

compensated by tension at any point of the Minkowski space-time. The tension is

given by the divergence of internal self-stress tensor. The antisymmetric compo-

nent of the stress tensor leads to spin torque and drives time evolution of electron

spin. This is called the quantum electron spin vorticity principle. The spin torque

can be compensated by a force called zeta force.

Keywords Alpha-oscillator theory • Chirality • Double slit • Dual Cauchy

problem • Electromigration • Helicity • Measurement • Primary Rigged QED

theory • Principle of equivalence • Response • Rigged QED theory • Spin

torque • Spin vorticity • Spindle structure • Stress tensor • Tension • Zeta force •

Zeta potential

1.1 Introduction

1.1.1 QED and Quantum Mechanics

In the Einstein special theory of relativity, a measurement of an “event” α is

discussed on the Minkowski space-time. Let an event α be characterized in rela-

tivistic quantum field theory by a field operator bF ct, x, y, zð Þ at the Minkowski

space-time coordinates (ct, x, y, z) as shown in Fig. 1.1. This is the standard frame-

work of QED. In quantum mechanics, however, more operators bx ,by , and bz withbFðct,bx ,by ,bzÞ are required to discuss the measurement problem.

This additional expectation value problem of bx ,by , and bz with bFðct,bx ,by ,bzÞ in

quantum mechanics may be viewed as “the icing on the cake” from that in QED. In

QED, the Cartesian coordinates x , y, and z are merely the scale in inches or cm forbF ct, x, y, zð Þ and are not the objects of observation. In QED, the Cartesian coordi-

nates x , y, and z are not observables nor canonical variables nor operators. So that in
QED, we have no problem with the collapse of wave function nor classical

© Springer Nature Singapore Pte Ltd. 2017
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observer–apparatus since the Cartesian coordinates x , y, and z are determined well

before any discussion of measurement (see Fig. 1.2).

Historically, the foundation of quantum mechanics started with matrix mechan-

ics by Heisenberg, Born, and Jordan and later with the physically equivalent wave

mechanics by Schr€odinger. In QED, the matrix mechanics is attributed to the field

operator separated from wave mechanics. That’s why we treat the uncertainty of

measurement of the field operator bF ct; x; y; zð Þ in terms of the expectation value

separated from wave mechanics in QED. QED is a relativistic quantum field theory

and is considered the most successful accurate theory we have, e.g., to explain the

Lamb shift, the anomalous magnetic moment of electron, and so on using the

Feynman diagram technique of the covariant perturbation approach. We shall

elaborate the non-perturbation approach in this book.

Fig. 1.1 Measurement of an “event” α in QED with the Minkowski space-time coordinates (ct, x,
y, z) is different from that in quantum mechanics

Fig. 1.2 Expectation value in QED is different from that in quantum mechanics. See Eq. (4.197)

and Chap. 4 for further details with notation
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1.1.2 The Most Beautiful Scientific Experiment

Please refer to Fig. 1.3a. This is an experiment that has been done at Fundamental

Research Laboratory, Hitachi Ltd. In 2002, in a vote by readers of Physics World

magazine (is a member magazine of the IOP, the UK Institute of Physics), “the most

beautiful scientific experiment” was coined to the selected quantum mechanics

“double-slit experiment” (Crease 2006). Also shown in Fig. 1.3b is the double-slit

experiment of photon that has been done at Hamamatsu Photonics, K.K.

Looking at the integrated data of the electron and photon spots, only discrete

random spot as the number is low is observed. Gradually as the number increases

double-slit phenomenon in which the quantum mechanics of the wave function is to

be prophetic, probability distribution is emerging. But nobody has ever succeeded

in proving that the quantum mechanics of wave function gives the precise distri-

bution. As a matter of fact, nobody can (see Chap. 4). Not quantum mechanics but

QED gives the correct answer (Tachibana 2016).

Double-slit experiments with elementary particles like electrons and photons

have been carried out all over the world.

Fig. 1.3 Double-slit experiment of (a) electron (Reproduced from Hitachi, Ltd. http://www.

hitachi.com/rd/portal/highlight/quantum/index.html) and (b) photon (Reproduced from Hamama-

tsu Photonics, K.K. http://photonterrace.net/en/photon/duality/)
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1.1.3 Mystery of Quantum Mechanics

Quantum mechanics was founded around 100 years ago and is yet impossible to

predict momentarily where each one electron or one photon should go. Copenhagen

interpretation is accepted widely that Bohr, one of the founders of quantum

mechanics, was to advocate. According to the Copenhagen interpretation, quantum

mechanics of wave function is used in the description of the stochastic phenome-

non. In contrast there is also a multi-world interpretation of Everett, one also an

interpretation problem. The description of the phenomenon caused by the quantum

mechanics continues to be a challenge that has also been left in the modern science.

As shown in Fig. 1.4, Einstein has pointed out the imperfections that lurking in

the basic dynamics process of quantum mechanics, such as introduced in “God does

not play dice” claimed that upon. Feynman, in his famous quantum mechanics

textbook, described it as “the mystery of quantum mechanics” (Feynman et al.

1972).

1.1.4 New Theory

I recently found the “quantum mechanics of the mystery (Feynman says)” can be

every moment predicted by QED (Tachibana 2016). As shown in Fig. 1.5, the key

Fig. 1.4 Feynman said “the mystery of quantum mechanics” (Feynman et al. 1972)
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lies in solving the dual Cauchy problem, the algorithm discovered was given by the

alpha-oscillator theory.

Alpha-oscillator theory here was shown in the paper prior to this (Tachibana

2015). As has been presented in this series of papers, the new theory based on QED

rather than quantum mechanics can predict a lot of interesting new phenomena

including the double-slit phenomena (see Chap. 4 in details).

1.1.5 Survey of This Book

In Sect. 1.2 of this chapter, molecular dynamics of finite systems are unified with

QED in terms of the Rigged QED theory. The Rigged QED theory is a

non-perturbation approach to QED of finite systems. For finite systems, the local

quantum physics of field theory has been reviewed (Haag 1992). We shall invoke

the virial theorem (Landau and Lifshitz 1973) on the energetics of the finite systems

in terms of the energy-momentum tensor in Sect. 2.2, Chap. 2.

Since QED is based on the theory of relativity, electron spin~se should automat-

ically be plugged in. What is new here is the quantum electron spin vorticity

principle (see Fig. 1.6). What is vorticity of spin? It is defined by rot~se and it has

the dimension of momentum. Interestingly, half the vorticity 1
2
rot~se ~rð Þ contributes

to electron momentum. Why half?

Fig. 1.5 Quantum mechanics 100 years of mystery is solved
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In Chap. 2, the reasoning “half” is found in the principle of equivalence

(Tachibana 2012). The principle of equivalence requires that special relativity

should apply in locally inertial frames and, in particular, that it should make no

difference which locally inertial frame we choose at each point (Weinberg 1972).

The mechanical framework of QED is represented as the symmetry of the stress

tensor (see Fig. 1.7). So “energy-momentum tensor of QED” is the title of Chap. 2.

Fig. 1.6 Discovery of quantum electron spin vorticity principle

Fig. 1.7 Discovery of the symmetry-polarized stress tensor of electron
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The energetics of the Rigged QED theory will also be discussed in terms of the

energy-momentum tensor.

The symmetry of the stress tensor is polarized. The quantum electron spin

vorticity principle is ascribed to the antisymmetric component. The antisymmetric

component has the dimension of spin torque density. The symmetric component has

the dimension of energy density. The tensorial energy density has prominent role as

the spindle structure of covalency (Tachibana 2004).

“Chemical ideas of QED” is the title of Chap. 3 (see Fig. 1.8). Conventionally,

the relativistic theory has been considered as only a slight correction for the

interpretation in chemical phenomena. However, we have clarified that the Ham-

iltonian of QED, derived from the picture of “action through medium” based on the

relativistic theory, gives a novel image of the chemical interaction even in the

nonrelativistic limit (Tachibana 2013, 2014).

As a result, though the energy as an integrated value of the Hamiltonian of QED

with respect to the whole space is equivalent to that of the usual ab initio Hamil-

tonian, conventional images of the chemical interaction based on “action at a

distance” are replaced with the new images of them given by the picture of “action

through medium” without exception.

In Chap. 4, quantum mechanics 100 years of mystery is solved. We shall

apply the alpha-oscillator theory to QED, and find the dual Cauchy problem

is the key to the solution (see Fig. 1.9). So “alpha-oscillator theory” is the title of

Chap. 4.

Fig. 1.8 Discovery of the spindle structure for the Lewis electron pairing as a tensile stress; novel

local picture of covalency based on the electronic stress tensor
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1.1.6 Quick Review of the Standard Theory of QED

Since this book intends to show only new aspects of QED, all the standard materials

of QED are missing. The readers may consult the standard textbook for the

conventional aspect of QED (Wigner 1939; Bargmann and Wigner 1948; Heitler

1954; Sakurai 1967; Bogoliubov et al. 1975; Itzykson and Zuber 1980; Berestetskii

et al. 1982; Ryder 1985; Haag 1992; Nakanishi and Ojima 1990; Weinberg 1995;

Peskin and Schroeder 1995; Greiner and Reinhardt 2009). Albeit duplicate, a quick

review of the standard theory of QED will be introduced below.

In the standard model, the matter particles in general are spin-1/2 chiral fermions

bound by gauge bosons satisfying the Poincare and gauge symmetries. The gauge

fields of quantum chromodynamics (QCD) are reduced from the grand unified

theory (GUT) as SU(3)c� SU(2)w�U(1)y! SU(3)c�U(1)QED, where the Higgs

field breaks the Weinberg–Salam electroweak gauge group SU(2)w�U(1)y down
to U(1)QED, but the color and charge symmetries remain intact. Quarks are bound

by gluons Gμ
‘, while electron acquires its charge and mass through the Higgs

mechanism with the Yukawa coupling, when massless photon Aμ as well as the

massive bosons Zμ
0 and Wμ

� are emerging using the Glashow–Weinberg–Salam

theory of spontaneously broken gauge symmetry. The gauge symmetry of the field

theory is realized by the Becci–Rouet–Stora–Tyutin (BRST) symmetry of the

Lagrangian ∂θ

R
d4x1c

bL xð Þ ¼ 0 where ∂θ denotes the BRST operator. It follows

Fig. 1.9 Discovery of the alpha-oscillator theory
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that the physical content of the gauge theory is consistent with the cohomology of

the BRST operator.

1.1.7 New-Generation Quantum Theory

QED allows the clamped-nuclei Hamiltonian, where the atomic nuclei are clamped

in space and are treated as external static source of force for electrons. But in

chemical reaction systems, the rearrangement of atomic configuration is of interest,

and hence the dynamical treatments of atomic nuclei have been formulated by the

Rigged QED theory.

Chemical ideas restricted now to nonrelativistic quantum theory may be unified

and extended in the future to relativistic quantum field theory that is basic to particle

physics and cosmology: realization of the new generation quantum theory. In order

to accelerate this new trend, a topical symposium “New-Generation Quantum

Theory—Particle Physics, Cosmology, and Chemistry” was organized aiming at

mutually stimulating the cutting edge of basic theoretical approaches of quantum

theory. Topics to be covered include, but not limited to, the cutting edge of basic

theoretical approaches of quantum theory in particle physics, cosmology, and

chemistry (see Fig. 1.10).

Fig. 1.10 Symposium: new-generation quantum theory—particle physics, cosmology, and chem-

istry (http://www.tachibana.kues.kyoto-u.ac.jp/symposium/01_top.html)
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In this book, we have demonstrated preliminary numerical calculations of the

Rigged QED theory. The numerical recipes with more advanced technics are all

implemented in “QEDynamics,” a computer code for space-time-resolved

non-perturbation simulation of the Rigged QED theory (see Fig. 1.11).

We make every endeavor to realize the new generation quantum theory with the

Rigged QED theory. The interested readers are encouraged to join us with the

development of the new generation quantum theory.

1.1.8 Notation

The coordinate x with the contravariant components xμ and the covariant compo-

nents xμ and the metric tensor ημν¼ ημν of the Minkowski space-time, together with

the inner product of two 4-vectors A and B written as A�B as well as the inner

product of the Dirac gamma matrices γμ and a 4-vector A written as the Dirac slash

=A, are defined with the Euclidean inner product • as follows:

xμ ¼ x0; xk
� � ¼ x0; x1; x2; x3

� � ¼ ct; x; y; zð Þ ¼ ct;~rð Þ ¼ ct;~xð Þ
xμ ¼ ημνx

ν ¼ x0; xkð Þ ¼ x0; x1; x2; x3ð Þ ¼ ct;�x;�y;�zð Þ ¼ ct;�~rð Þ ¼ ct;�~xð Þ

Fig. 1.11 QEDynamics: computer code for space-time-resolved non-perturbation simulation of

the Rigged QED theory (http://www.tachibana.kues.kyoto-u.ac.jp/qed/index.html)
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ημν ¼
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0BB@
1CCA ¼ ημν , ημρηρν ¼ δμν ¼ 1, μ ¼ ν

0, μ 6¼ ν

�

A � B ¼ ημνA
μBν ¼ A0B0 � ~A • ~B, ~A • ~B ¼ AxBx þ AyBy þ AzBz

=A ¼ ημνγ
μAν ¼ γ0A0 �~γ • ~A, ~γ • ~A ¼ γ1Ax þ γ2Ay þ γ3Az

where the Greek letter runs from 0 to 3 and the Latin from 1 to 3 and the Einstein

summation convention is used. We use the chiral representation of γμ and the chiral
matrix γ5¼ � γ5 as

γμ ¼ γ0; γk
� � ¼ γ0; γ1; γ2; γ3

� �
, γ5 ¼ iγ0γ1γ2γ3 ¼ �γ5

γμ; γνf g ¼ γμγν þ γνγμ ¼ 2ημν

γ0 ¼ 0 1

1 0

� �
, γ1 ¼ 0 �σx

σx 0

� �
, γ2 ¼ 0 �σy

σy 0

� �
, γ3

¼ 0 �σz
σz 0

� �
, γ5 ¼ 1 0

0 �1

� �
with the Pauli matrices

σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
, σz ¼ 1 0

0 �1

� �
The Lorentz-invariant numerical tensor is the unit tensor δμν and the Levi–Civita

tensor (Landau and Lifshitz 1973)

εμνρσ ¼
1, if μνρσð Þ is an even permutation of 0123ð Þ
�1, if μνρσð Þ is an odd permutation of 0123ð Þ

0, otherwise

8<:
ε0123 ¼ 1, ε0123 ¼ �1

The gradient vectors are denoted as

∂μ ¼ ∂
∂xμ

¼ ∂
∂x0

;
∂
∂x1

;
∂
∂x2

;
∂
∂x3

� �
¼ 1

c

∂
∂t
; ~∇

� �
¼ 1

c

∂
∂t
; grad

� �
∂μ ¼ ημν

∂
∂xν

¼ ∂
∂x0

;� ∂
∂x1

;� ∂
∂x2

;� ∂
∂x3

� �
¼ 1

c

∂
∂t
;�~∇

� �
¼ 1

c

∂
∂t
;�grad

� �
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with the D’Alembertian

□ ¼ ∂2 ¼ 1

c

∂
∂t

� �2

� Δ

and the Laplacian

Δ ¼ ð~∇Þ2 ¼ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

The Dirac spinor ψ(x) in the chiral representation is constructed by ψR(x) with
right-handed chirality and ψL(x) with left-handed chirality as

ψ ¼ ψ chiral ¼ ψR

ψL

� �
, ψR ¼ 1

2
1þ γ5ð Þψ , ψL ¼ 1

2
1� γ5ð Þψ

while in the Dirac representation, ψA¼(ψRþψL)/√2, ψB ¼ (ψR�ψL)/√2. The spin
density of electron is written in the bilinear covariant form as the axial vector

(pseudovector):

~s xð Þ ¼ 1

2
hψ xð Þ~γγ5ψ xð Þ ¼ 1

2
h~σ xð Þ

~σ xð Þ ¼ ~σR xð Þ þ ~σL xð Þ
~σR xð Þ ¼ ψR

{ xð Þ~σψR xð Þ, ~σL xð Þ ¼ ψL
{ xð Þ~σψL xð Þ

which is the spatial part of the third-rank antisymmetric tensor.

Also we have the chiral decomposition of electron current jμ(x)

1

cq
jμ xð Þ ¼ ψ xð Þγμψ xð Þ

as

1

cq
j0 xð Þ ¼ ψ{ xð Þψ xð Þ ¼ N xð Þ

N xð Þ ¼ NR xð Þ þ NL xð Þ
NR xð Þ ¼ ψR

{ xð ÞψR xð Þ, NL xð Þ ¼ ψL
{ xð ÞψL xð Þ

and

1

cq
~j xð Þ ¼ ~σR xð Þ � ~σL xð Þ

Namely, the spatial part of the current density is given by the difference in the
chiral parts of the spin density.
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The chiral decomposition of the chiral current jμ5 xð Þ

1

cq
jμ5 xð Þ ¼ ψ xð Þγμγ5ψ xð Þ

is found to be

1

cq
j5
0 xð Þ ¼ NR xð Þ � NL xð Þ

1

cq
~j5 xð Þ ¼ ~σ xð Þ ¼ ~σR xð Þ þ ~σL xð Þ

Namely, the chiral charge density j5
0(x) is given by the difference in the chiral parts

of the charge density, and the spatial part of the chiral current density~j5 xð Þ is given
by the spin density.

The spinor ψ(x) in the chiral representation ψchiral(x) is also constructed by

the undotted spinor ψR(x)¼ ξA(x) with right-handed chirality and the dotted spinor

ψL xð Þ ¼ η _U xð Þ with left-handed chirality as

ψ ¼ ψ chiral ¼ ψR

ψL

� �
¼ ξA

η _U

� �
ξA ¼ ξ1

ξ2

� �
, η _U ¼ η _1 η _2

� �
The undotted and dotted capital Latin letters run from 1 to 2 and change position by

using the antisymmetric matrix ε as

ξA ¼ ξBεBA, η
_U ¼ ε

_U _V η _V

ξA ¼ εABξB, η _U ¼ η
_V ε _V _U

εAB ¼ 0 1

�1 0

� �
¼ εAB, ε

_U _V ¼ 0 1

�1 0

� �
¼ ε _U _V

where the Einstein summation convention is used.

The Pauli matrix σ with the contravariant components σμ and the covariant

components σμ as

σμ ¼ σ0; σk
� � ¼ σ0; σ1; σ2; σ3

� � ¼ 1; σx; σy; σz
� � ¼ 1; ~σð Þ

σμ ¼ ημνσ
ν ¼ σ0; σkð Þ ¼ σ0; σ1; σ2; σ3ð Þ ¼ 1;�σx;�σy;�σz

� � ¼ 1;�~σð Þ

(note the use of 1 as the unit matrix) are cast into the Misner–Thorne–Wheeler

(MTW 1973) representation as
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ðσ0ÞA _U ¼ ðσ0Þ _V B ¼ 1 0

0 1

� �
¼ σ0

ðσ1ÞA _U ¼ ðσ1Þ _V B ¼ 0 1

1 0

� �
¼ σx

ðσ2ÞA _U ¼ ðσ2Þ _V B ¼ 0 �i
i 0

� �
¼ σy

ðσ3ÞA _U ¼ ðσ3Þ _V B ¼ 1 0

0 �1

� �
¼ σz

Also, the Dirac gamma matrices γμ and the chiral matrix γ5¼ � γ5 are given in

the chiral representation using the MTW representation of the Pauli matrices as

γ0 ¼ 0 ðσ0ÞA _U

ðσ0Þ _V B 0

 !
¼ 0 σ0

σ0 0

� �
¼ 0 1

1 0

� �

γk ¼ 0 �ðσkÞA _U

ðσkÞ _V B 0

 !
¼ 0 �σk

σk 0

� �

γ5 ¼
ðσ0ÞAB 0

0 �ðσ0Þ _U

_V

 !
¼ σ0 0

0 �σ0

� �
¼ 1 0

0 �1

� �
¼ �γ5

where the following MTW representation is found for the diagonal block

σ0ð ÞAB ¼ σ0ð Þ _U

_V ¼ σ0

σ1ð ÞAB ¼ σ1ð Þ _U

_V ¼ σx

σ2ð ÞAB ¼ σ2ð Þ _U

_V ¼ σy

σ3ð ÞAB ¼ σ3ð Þ _U

_V ¼ σz

The Clifford algebra of the Dirac gamma matrices should be

fγμ, γνg ¼ 2ημν
ðσ0ÞAB 0

0 ðσ0Þ _U

_V

 !
¼ 2ημν

1 0

0 1

� �
¼ 2ημν

The charge conjugation matrix

C ¼ iγ2γ0 ¼
0 �1

1 0

� �A

B

0

0
0 1

�1 0

� �
_U

_V

0BBB@
1CCCA

with
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C ¼ C* ¼ �tC ¼ �C�1, C{C ¼ 1, CC ¼ �1

transforms the Dirac gamma matrices as

CγμC�1 ¼ �tγμ

Cγ5C
�1 ¼ tγ5 ¼ γ5

Complex conjugate (c . c.), transpose, the Hermitian conjugate (h . c.), and the

Dirac conjugate matrix or operator A, are denoted as A*, tA, A{¼ tA*, and �A¼A{γ0

respectively.

We write

A;Bf g ¼ ABþ BA ¼ A;B½ �þ; A;B½ � ¼ AB� BA ¼ A;B½ ��

Field variable F is denoted as

F xð Þ ¼ F ct;~rð Þ ¼ F ~rð Þ ¼ F tð Þ

where the dependence on the Minkowski space-time variables xμ is frequently

abbreviated if there arises no confusion.

The 3-vector external product is defined by using the Levi–Civita symbol as

~A� ~B
� �k

¼ ε‘nkA
‘Bn

ε‘nk ¼
1, if ‘nkð Þ is an even permutation of 123ð Þ
�1, if ‘nkð Þ is an odd permutation of 123ð Þ

0, otherwise

8<:
ε123 ¼ 1

For 3-vector ~A xð Þ ¼
Ax xð Þ
Ay xð Þ
Az xð Þ

0@ 1A, the rot~A xð Þ is defined by the rule

rot~A xð Þ ¼ ~∇ � ~A xð Þ ¼

∂
∂y

Az xð Þ � ∂
∂z

Ay xð Þ
∂
∂z

Ax xð Þ � ∂
∂x

Az xð Þ
∂
∂x

Ay xð Þ � ∂
∂y

Ax xð Þ

0BBBBBB@

1CCCCCCA

Likewise, for 3� 3 tensor T
$

xð Þ ¼
Txx xð Þ
Tyx xð Þ
Tzx xð Þ

Txy xð Þ
Tyy xð Þ
Tzy xð Þ

Txz xð Þ
Tyz xð Þ
Tzz xð Þ

0@ 1A, the ~r � T
$

xð Þ is

defined by the rule
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~r � T
$

xð Þ ¼

y
Tzx xð Þ
Tzy xð Þ
Tzz xð Þ

0@ 1A� z
Tyx xð Þ
Tyy xð Þ
Tyz xð Þ

0@ 1A
z

Txx xð Þ
Txy xð Þ
Txz xð Þ

0@ 1A� x
Tzx xð Þ
Tzy xð Þ
Tzz xð Þ

0@ 1A
x

Tyx xð Þ
Tyy xð Þ
Tyz xð Þ

0@ 1A� y
Txx xð Þ
Txy xð Þ
Txz xð Þ

0@ 1A

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
The divergence of tensor density T���k‘(x) is defined by the rule

divTð Þ���k xð Þ ¼ ∂‘T
���k‘ xð Þ

Whence

~r � divT
$

xð Þ ¼
y divT

$
xð Þ

� �
z
� z divT

$
xð Þ

� �
y

z divT
$

xð Þ
� �

x
� x divT

$
xð Þ

� �
z

x divT
$

xð Þ
� �

y
� y divT

$
xð Þ

� �
x

0BBBBB@

1CCCCCA ¼ div ~r � T
$

xð Þ
� �

The Kronecker delta symbol here is

δij ¼ 1, i ¼ j
0, otherwise

�
The generator U(Λ, a) of the Poincaré group reduces to the infinitesimal trans-

formation as

U 1þ ω; εð Þ ¼ 1� 1

2
iωμνJ

μν=hþ iεμP
μ=hþ � � �

Jμν{ ¼ Jμν ¼ �Jνμ, Pμ{ ¼ Pμ

U Λ; að ÞJμνU�1 Λ; að Þ ¼ Λρ
μΛσ

ν Jρσ � aρPσ þ aσPρð Þ
U Λ; að ÞPμU�1 Λ; að Þ ¼ Λρ

μPρ

leading to the Lie algebra

Pμ;Pν½ � ¼ 0

Pμ; Jρσ½ � ¼ ih ημρPσ � ημσPρð Þ
Jμν ; Jρσ½ � ¼ ih ηνρJμσ � ημρJνσ � ημσJρν þ ηνσJρμð Þ
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The chiral spinor representation D(Λ) of the Poincaré group reduces to the

infinitesimal Lorentz transformation as

D 1þ ωð Þ ¼ 1� 1

2
iωμνJ

μν=hþ � � �

X ¼ ξA

η _U

� �
, X0 ¼ DðΛÞX ¼ ðλξξÞA

ðληηÞ _U

� �
, DðΛÞ ¼ ðλξÞAB 0

0 ðληÞ _U

_V

 !

λξð ÞAB σμð ÞB _V λη
�1

� �
_V

_U ¼ λξð ÞAB σμð ÞB _V λξ
{

� �
_V

_U ¼ Λρ
μ σρð ÞA _U

λη
� �

_U

_V
σμð Þ _V B λξ

�1
� �B

A
¼ λη
� �

_U

_V
σμð Þ _V B λη

{
� �B

A
¼ Λρ

μ σρð Þ _U A

D Λð ÞγμD�1 Λð Þ ¼ Λρ
μγρ

D Λð ÞJμνD�1 Λð Þ ¼ Λρ
μΛσ

νJρσ

leading to

Jμν ¼ 1

4
ih γμ; γν½ � ¼ 1

2
hσμν , σμν ¼ 1

2
i γμ; γν½ �

Jk‘ ¼ 1

2
hεk‘m

ðσmÞAB 0

0 ðσmÞ _U

_V

 !
¼ 1

2
hεk‘m

σm 0

0 σm

� �
~J ¼ J23; J31; J12

� � ¼ 1

2
h ~σ 0

0 ~σ

� �

Jk0 ¼ 1

2
ih

�ðσkÞAB 0

0 ðσkÞ _U

_V

 !
¼ 1

2
ih �σk 0

0 σk

� �
~K ¼ J10; J20; J30

� � ¼ 1

2
ih �~σ 0

0 ~σ

� �
So that

Jk; J‘
	 
 ¼ ihεk‘nJn

J1 � iJ2
� �

m0m ¼ δm0m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� mð Þ j� mþ 1ð Þp

h

J3
� �

m0m ¼ δm0mmh

� ~J
� �*

m0,m ¼ �ð Þm�m0
~J
� �

�m,�m0

Jk;
H

c

� 

¼ 0, Jk;P‘

	 
 ¼ ihεk‘nPn

Kk;K‘
	 
 ¼ �ihεk‘nJn

Kk; J‘
	 
 ¼ Jk;K‘

	 
 ¼ ihεk‘nKn

Kk;
H

c

� 

¼ ihPk, Kk;P‘

	 
 ¼ ihδk‘
H

c
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and

~A ¼ 1

2
~J þ i~K
� �

, ~B ¼ 1

2
~J � i~K
� �

~J ¼ ~Aþ ~B, ~K ¼ �i ~A� ~B
� �

Ak;A‘
	 
 ¼ ihεk‘nAn

Bk;B‘
	 
 ¼ ihεk‘nBn

~A; ~B
h i

¼ 0

The Levi–Civita connection is defined as

λ
μν

n o
¼ 1

2
gλρ ∂μgνρ þ ∂νgμρ � ∂ρgμν

� �
More general connectionΓ λ

μν to define the covariant derivative “;” of the Lorentz

vector Aμ

Aμ;ν ¼ ∂νAμ � Γ λ
μνAλ

is used to define the curvature

Aμ;ν;σ � Aμ;σ;ν ¼ AρR
ρ
μνσ

with the Riemann-Christoffel curvature tensor Rρ
μνσ

Rρ
μνσ ¼ ∂νΓρ

μσ � ∂σΓρ
μν þ Γρ

λνΓ
λ
μσ � Γ ρ

λσΓ
λ
μν

The Ricci tensor defined as

Rμν ¼ Rρ
μνρ

is used to define the scalar curvature

R ¼ Rμ
μ

The Gaussian unit of electromagnetism is used with the elementary charge e and
the speed c of light in vacuum. When appropriate for numerical demonstration,

atomic unit is used unless otherwise stated explicitly. The suffixes “e” for electron

and “^” for operator are suppressed if there arises no confusion.
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1.2 Rigged QED Theory

1.2.1 Underlying History of the Rigged QED Theory

It seems to have been already known to Kepler that sunlight should have given

some kind of mechanical action on the tail of comet. Since a technique for

observing the diffraction of sunlight has not yet been developed in his time, it

seems it was mainstream of the time to consider sunlight from a mechanical point of

view (see Fig. 1.12).

Afterward, by Newton who decomposed the sunlight through a prism, the

sunlight was cast a particle theory of light, and the wave theory of light was not

of reasonable shape (see Fig. 1.13).

Young was a stir, as he proved experimentally the double-slit phenomenon of

sunlight from the analogy of a wave of water (see Fig. 1.14).

Since then, the wave theory of sunlight became dominant over the particle

theory. On the other hand, Maxwell unified the electrostatic force of Coulomb

and the electromagnetic induction of Faraday (see Fig. 1.15) and discovered the

wave equation of sunlight with electricity and magnetism.

Fig. 1.12 The comet Hale–

Bopp, seen here over the

Joshua Tree National Park

in Southern California on

the evening of 28 March

1997, has both a blue ion
tail and a white dust tail.
Whereas the ion tail is

carried away by the “solar

wind” of charged particles

from the Sun’s atmosphere,

the dust tail is pushed by the

radiation pressure of the

sunlight. The momentum

transfer in this second case

is weaker than that in the

first, resulting in the

splitting of the tails. This

view of sunlight pressure

dates back to the age of

Kepler (Reproduced from

Leonhardt 2006)
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The theory of electromagnetism by Maxwell is invariant under the Lorentz

transformation and has been formulated as the special theory of relativity by

Einstein (Jackson 1998).

The quantum theory of electromagnetism is QED (Weinberg 1995). According

to the theory of electromagnetism, moving charged particle modifies the associated

electromagnetic field with speed of light. The varying electromagnetic field prop-

agates through space and gives impetus to other moving charged particle according

to the Lorentz force. This demonstrates “action through medium” as the field

theoretical nature of the electromagnetic interaction of charged particles. QED

provides quantum mechanical framework for the field theoretical “action through

Fig. 1.13 Newton’s sketch of his crucial experiment (1672), demonstrating corpuscular theory of

sunlight (Reproduced from Fara 2015)

Fig. 1.14 Young’s sketch (1807) of double-slit interference of sunlight in analogy of water waves
(Reproduced from Rothman 2003)
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medium” as the fundamental law of electrons interacting with atomic nuclei and

radiation field of photons. QED gives rise to tension of stress tensor over and above

the Lorentz force (Tachibana 2003). Poincare devised to attach stress tensor the

equilibrium state of the charged particles that interact with the electromagnetic field

(Jackson 1998).

For light atoms the speed of electrons is much slower than the speed of light, and

hence we rely upon quantum mechanical electrostatic Coulomb law described by

conventional nonrelativistic ab initio electrostatic Hamiltonian (Tachibana 2001).

The Coulomb law demonstrates “action at a distance” as the electrostatic nature of

the conventional interaction of charged particles. In contrast to the correct “action

through medium” in QED, the conventional electrostatic interaction is instanta-

neous since the speed of light is eventually infinite for “action at a distance” in the

Coulomb law. The interaction of charged particles with radiation field is then

treated under the assumption that the Lorentz invariance is lost in the conventional

treatment of the ab initio Hamiltonian.

Conventional QED theory assumes clamped-nuclei Hamiltonian in finite sys-

tems (Weinberg 1995), where the atomic nuclei are clamped in space and are

treated as external static source of force for electrons. But in chemical reaction

systems, the rearrangement of atomic configuration is of primary interest, and

hence the dynamical treatments of atomic nuclei often play an important role.

We shall hence elaborate the incorporation of the kinetic energy density of

atomic nuclei into the general framework of QED and present the general theory

Fig. 1.15 Faraday’s experiment (1831) showing electromagnetic induction (Reproduced from

Poyser 1892)
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of the field energy density in finite chemical reaction systems. The atomic nucleus

is assumed to be treated as a Schr€odinger field. This is called the Rigged QED

theory.

1.2.2 Basic Physics of the Rigged QED Theory

In the Rigged QED theory, atomic nucleus is plugged in as a Schr€odinger field
which is not a classical observer–apparatus. This is an essential advantage of the

Rigged QED theory. In the conventional QED (Weinberg 1995), atomic nucleus is

often implicitly treated as external potential, which is nothing but classical

observer–apparatus. In quantum mechanics, moreover, the presence of classical

observer–apparatus is mandatory. In the Rigged QED theory, we are free from the

measurement problem of the Minkowski space-time coordinates, since we do not

invoke the concept of the classical observer–apparatus. Even though we use the

Schr€odinger field for the nuclear dynamics, the space-time coordinates are merely

the scale in inches or cm, not operators. In Chap. 2, the Schr€odinger field for

electron is derived in the primary Rigged QED theory. Again in the primary Rigged

QED theory, the space-time coordinates are merely the scale in inches or cm, not

the operators. In the primary Rigged QED theory also, we are free from the

measurement problem of the Minkowski space-time coordinates, since we do not

invoke the concept of the classical observer–apparatus.

We use the virial theorem (Landau and Lifshitz 1975) for the finite-system

energetics of the Rigged QED theory and the primary Rigged QED theory as

formulated so in Sect. 2.2, Chap. 2. For the sake of simplicity, the primary Rigged

QED theory is used for all the numerical calculations of wave functions in this book

unless otherwise stated explicitly. The wave functions are twofold: one for the

expansion functions of fields and another for the ket vectors (see Chap. 4 in details).

Atomic symbol is used to illustrate that the center of the wave function is localized

around there. We use preliminary wave packets of electrons and nuclei centered

around the atomic symbol. Albeit preliminary, it is based on the underlying physics

shown in Sect. 1.1.1. Namely, it does not mean that we are working on the Born–

Oppenheimer adiabatic approximation of quantum mechanics.

The equations of motion of fields are obtained using standard variation principle.

The variation principle is made to be invariant under the Abelian U(1)QED gauge

transformation. This is the gauge principle of the Rigged QED theory. The stress

tensor of the Rigged QED theory appears in the equation of motion of fields.

The Rigged QED theory is gauge invariant and preserves translational and

rotational symmetry but violates the Poincare symmetry. This is because the

presence of the Schr€odinger fields violates the Lorentz invariance of the Lagrangian
density. If we neglect the Schr€odinger fields, then we recover the conventional QED
with the Poincare symmetry as well as the gauge symmetry. The canonical quan-

tization is performed with the gauge-invariant Lagrangian density operator using

the Coulomb gauge at the starting point (see Fig. 1.16)
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bL xð Þ ¼ � 1

16π
bFμν xð ÞbFμν xð Þ

þbLe bψ ; bDeμbψn o
; x

� �
þ
X
a

bLa bχa; bDa0bχa; b~D2

abχa� �
; x

� � ð1:1Þ

where bLe bψ ; bDeμbψn o
; x

� �
is the Lagrangian density operator of electron

bLe bψ ; bDeμbψn o
; x

� �
¼ cbψ xð Þ ihγμbDeμ xð Þ � mec

� �bψ xð Þ ð1:2Þ

and bLa bχa; bDa0bχa; b~D2

abχa� �
; x

� �
is the Lagrangian density operator of a’th atomic

nucleus:

bLa bχa; bDa0bχa; b~D2

abχa� �
; x

� �
¼ bχ{a xð Þ ihbDa0 xð Þ � cþ h2

2ma

b~D2

a xð Þ
� �bχa xð Þ ð1:3Þ

The bDαμ xð Þ, where α¼ e stands for electron and α¼ a stands for a’th atomic

nucleus, is the covariant derivative operator using the Abelian gauge potential

operator bAμ xð Þ

bDαμ xð Þ ¼ ∂μ þ i
qα
hc
bAμ xð Þ, qα ¼ Zαe ð1:4Þ

with me and Ze¼ � 1 being the mass and charge number of electron and ma and Za
being the mass and charge number of the a’th atomic nucleus, respectively. The

Fig. 1.16 The gauge-invariant Rigged QED theory Lagrangian density operator
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nuclear spin is plugged in ad hoc. The canonical quantization rule of the

Schr€odinger field is anti-commutation relationship for fermions and commutation

relationship for bosons.

The theory is invariant under gauge transformation

bψ xð Þ ! bψ θð Þ xð Þ ¼ exp i
qe
hc
bθ xð Þ

� �bψ xð Þ ð1:5Þ

bχa xð Þ ! bχ a θð Þ xð Þ ¼ exp i
qa
hc
bθ xð Þ

� �bχa xð Þ ð1:6Þ

bAμ xð Þ ! bAμ
θð Þ

xð Þ ¼ bAμ xð Þ � ∂μ
bθ xð Þ ð1:7Þ

The gauge potential operators stand for

bAμ xð Þ ¼ bϕ xð Þ; b~A xð Þ
� �

ð1:8Þ

The covariant derivative operators satisfy

bDαμ xð Þ; bDαν xð Þ
h i

¼ i
qα
hc
bFμν xð Þ ð1:9Þ

with the gauge field operators bFμν xð Þ defined as

bFμνðxÞ ¼ ∂μ
bAνðxÞ � ∂νbAμðxÞ

¼

0 bExðxÞ bEyðxÞ bEzðxÞ
�bExðxÞ 0 �bBzðxÞ bByðxÞ
�bEyðxÞ bBzðxÞ 0 �bBxðxÞ
�bEzðxÞ �bByðxÞ bBxðxÞ 0

0BBBBB@

1CCCCCA
ð1:10Þ

Then, the electric field operator
b~E xð Þ and the magnetic field operator

b~B xð Þ are given
by using the Coulomb gauge potentials bAμ xð Þ as

b~E xð Þ ¼ �gradbA0 xð Þ � 1

c

∂b~A xð Þ
∂t

,
b~B xð Þ ¼ rot

b~A xð Þ, div
b~A xð Þ ¼ 0 ð1:11Þ

1.2.3 The Maxwell Equations

The Rigged QED theory Maxwell equations of motion are found for the electro-

magnetic fields

rot
b~E xð Þ þ 1

c

∂b~B xð Þ
∂t

¼ 0 ð1:12Þ
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div
b~B xð Þ ¼ 0 ð1:13Þ

div
b~E xð Þ ¼ 4πbρ xð Þ ð1:14Þ

rot
b~B xð Þ � 1

c

∂b~E xð Þ
∂t

¼ 4π

c
b~j xð Þ ð1:15Þ

where bρ xð Þ is the charge density operator and
b~j xð Þ is the current density operator

(see Fig. 1.17).

1.2.4 The Dirac–Schr€odinger Equations

The Rigged QED theory Dirac equation of motion for the Dirac spinor field is

ihγμbDeμ xð Þbψ xð Þ ¼ mecbψ xð Þ ð1:16Þ

�ih bDeμ xð Þbψ xð Þ
� �{

γ0γμ ¼ mecbψ xð Þ ð1:17Þ

Likewise, the Schr€odinger equation of motion for the Schr€odinger field is (see

Fig. 1.18)

ih
∂
∂t
bχ a xð Þ ¼ � h2

2ma

b~D2

a xð Þbχa xð Þ þ qabA0 xð Þbχ a xð Þ ð1:18Þ

�ih
∂
∂t
bχ{a xð Þ ¼ � h2

2ma

b~D2

a xð Þbχa xð Þ
� �{

þ qa bA0 xð Þbχ a xð Þ
� �{

ð1:19Þ

Fig. 1.17 The Rigged Maxwell equations with the electromagnetic fields
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1.2.5 Continuity Equations

It is easy to find that charge and current satisfy the Rigged QED theory continuity

equation

∂μ
bjμ xð Þ ¼ 0, bjμ xð Þ ¼ cbρ xð Þ;b~j xð Þ

� �
ð1:20Þ

∂
∂t
bρ xð Þ þ div

b~j xð Þ ¼ 0 ð1:21Þ

where bρ xð Þ is the charge density operator and
b~j xð Þ is the charge current density

operator (see Fig. 1.19).

The components satisfy

∂μ
bjαμ xð Þ ¼ 0, bjαμ xð Þ ¼ cbρα xð Þ;b~jα xð Þ

� �
ð1:22Þ

∂
∂t
bρe xð Þ þ div

b~je xð Þ ¼ 0 ð1:23Þ
∂
∂t
bρa xð Þ þ div

b~ja xð Þ ¼ 0 ð1:24Þ

The bρ xð Þ is decomposed into

bρ xð Þ ¼ bρe xð Þ þ
X
a

bρa xð Þ ¼
X
α

bρα xð Þ ð1:25Þ

bρα xð Þ ¼ qαbNα xð Þ ð1:26Þ

Fig. 1.18 The Rigged equations of motion with the Dirac and Schr€odinger fields
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where bρe xð Þ is the electronic charge density operator and bρa xð Þ is the charge density
operator of a’th atomic nucleus and where bNe xð Þ and bNa xð Þ are the position

probability density operator of electron and a’th atomic nucleus, respectively:

bNe xð Þ ¼ bψ xð Þγ0bψ xð Þ ð1:27ÞbNa xð Þ ¼ bχ {a xð Þbχa xð Þ ð1:28Þ

The
b~j xð Þ is decomposed into

b~j xð Þ ¼ b~je xð Þ þ
X
a

b~ja xð Þ ¼
X
α

b~jα xð Þ ð1:29Þ

b~jα xð Þ ¼ qα
b~vα xð Þ ð1:30Þ

where
b~je xð Þ is the electronic charge current density operator and

b~ja xð Þ is the charge
current density operator of a’th atomic nucleus and b~vα xð Þ denotes the velocity

density operator:

b~ve xð Þ ¼ cbψ xð Þ~γbψ xð Þ ð1:31Þ
b~va xð Þ ¼ 1

2ma
ihbχ{a xð Þb~Da xð Þbχa xð Þ þ h:c:
� �

ð1:32Þ

By the Gordon decomposition, we have

Fig. 1.19 Charge and current densities for the Rigged continuity equations
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b~ve xð Þ ¼ 1

2me

ihbψ xð Þb~De xð Þbψ xð Þ � ih b~De xð Þbψ xð Þ
� �{

γ0 � bψ xð Þ
� �

þ h
2me

rot bψ xð Þ~σbψ xð Þ
� �

� ih
2me

∂
∂t

bψ xð Þγ0~γbψ xð Þ
� �

ð1:33Þ

The b~va xð Þ may also be written as the flux density operator
b~Sa xð Þ as follows:

b~va xð Þ ¼ b~Sa xð Þ ð1:34Þ

1.2.6 The Lorentz Force and Stress Tensors

Under external source of electromagnetic fields, charged particles can be acceler-

ated by the Lorentz force. In the Rigged QED theory, the tension density given by

the divergence of stress tensor density bτ Π
e μν xð Þ acts as the counter force to the

Lorentz force. Pauli in quantum mechanical context formulated the differential

force law derived from the divergence relations applied to the energy-momentum

tensor under general situations in the presence of electromagnetic fields (Pauli

1933), while the basic idea dates back to Schr€odinger (1927). Moreover, the

antisymmetric part bτ A
e μν xð Þ has unique physical meaning of spin torque density

(Tachibana 2010). The spin torque density can be compensated by a force density,

called zeta force density (Tachibana 2012). The symmetric part bτ S
e μν xð Þ has the

physical meaning of tensorial energy density (see Fig. 1.20).

Fig. 1.20 Symmetry of the stress tensor of electron
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The origin of the sunlight pressure (see Fig. 1.12) is represented by the Poynting

electromagnetic field momentum density operator

b~G xð Þ ¼ 1

4πc
b~E xð Þ � b~B xð Þ ð1:35Þ

It satisfies the equation of motion

∂
∂t

1

2

b~G xð Þ þ b~G{ xð Þ
� �

¼ �1

2

b~L xð Þ þ b~L{ xð Þ
� �

� div
b
σ
$

xð Þ ð1:36Þ

where
b
σ
$

xð Þ is the Maxwell stress tensor density operator

bσ ij xð Þ ¼ 1

8π
b~E2 xð Þδij � bEi xð ÞbEj xð Þ þ bEj xð ÞbEi xð Þ

� �� �
þ 1

8π
b~B2 xð Þδij � bBi xð ÞbBj xð Þ þ bBj xð ÞbBi xð Þ

� �� �

¼ 1

8π

b~E2 xð Þ þ b~B2 xð Þ � 2 bEx
2
xð Þ þ bBx

2
xð Þ

� �
�2 bEy xð ÞbEx xð Þ þ bBy xð ÞbBx xð Þ
� �

�2 bEz xð ÞbEx xð Þ þ bBz xð ÞbBx xð Þ
� �

0BBB@
�2 bEx xð ÞbEy xð Þ þ bBx xð ÞbBy xð Þ
� �

b~E2 xð Þ þ b~B2 xð Þ � 2 bEy
2
xð Þ þ bBy

2
xð Þ

� �
�2 bEz xð ÞbEy xð Þ þ bBz xð ÞbBy xð Þ
� �

�2 bEx xð ÞbEz xð Þ þ bBx xð ÞbBz xð Þ
� �

�2 bEy xð ÞbEz xð Þ þ bBy xð ÞbBz xð Þ
� �

b~E2 xð Þ þ b~B2 xð Þ � 2 bEz
2
xð Þ þ bBz

2
xð Þ

� �
1CCCA

ð1:37Þ

and
b~L xð Þ is the Lorentz force density operator

b~L xð Þ ¼ b~Le xð Þ þ
X
a

b~La xð Þ ð1:38Þ

b~Le xð Þ ¼ b~E xð Þbρe xð Þ þ 1

c
b~je xð Þ � b~B xð Þ ð1:39Þ

b~La xð Þ ¼ b~E xð Þbρa xð Þ þ 1

c
b~ja xð Þ � b~B xð Þ ð1:40Þ

where
b~Le xð Þ is the electronic Lorentz force density operator and b~La xð Þ is the Lorentz

force density operator of a’th atomic nucleus. Note that
b
σ
$

xð Þ is symmetric

bσ ij xð Þ ¼ bσ ji xð Þ ð1:41Þ
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Secondly, the electronic kinetic momentum density operator (see Fig. 1.21)

b~Πe xð Þ ¼ 1

2
bψ { xð Þ ihb~De xð Þ

� �bψ xð Þ þ h:c:
� �

ð1:42Þ

satisfies the equation of motion

∂
∂t
b~Πe xð Þ ¼ b~Le xð Þ þ b~τΠe xð Þ ð1:43Þ

The b~τΠe xð Þ is the electronic tension density operator given as the divergence of

the electronic internal self-stress tensor density operator

b~τΠe xð Þ ¼ div
b
τ
$Π

e xð Þ, bτ Π
e k xð Þ ¼ ∂‘bτ Π

e k‘ xð Þ ð1:44Þ
bτ Π
e μν xð Þ ¼ c

2
bψ xð Þγν �ihbDe

μ
xð Þ

� �bψ xð Þ þ h:c:
� �

ð1:45Þ

It should be noted that
b
τ
$ Π

e xð Þ is Hermitean

b
τ
$Π{

e xð Þ ¼ b
τ
$Π

e xð Þ ð1:46Þ

Lastly, the kinetic momentum density operator ma
b~va xð Þ of atomic nucleus

a satisfies the equation of motion

∂
∂t

ma
b~va xð Þ

� �
¼ b~La xð Þ þ b~τ Sa xð Þ ð1:47Þ

The b~τ Sa xð Þ is the tension density operator given as the divergence of the nuclear

internal self-stress tensor density operator

Fig. 1.21 Gauge-invariant kinetic momentum and energy density operator of electron
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b~τ Sa xð Þ ¼ div
b
τ
$ S

a xð Þ, bτSka xð Þ ¼ ∂‘bτSk‘a xð Þ ð1:48Þ

bτ Skl
a xð Þ ¼ h2

4ma
bχ{a xð ÞbDak xð ÞbDal xð Þbχa xð Þ � bDak xð Þbχa xð Þ

� �{
� bDal xð Þbχ a xð Þ þ h:c:

� �
ð1:49Þ

It should be noted that the stress tensor density operator
b
τ
$ S

a xð Þ is Hermitean and

symmetric:

b
τ
$S{

a xð Þ ¼ b
τ
$ S

a xð Þ, bτ Skl
a xð Þ ¼ bτ Slk

a xð Þ ð1:50Þ

As a whole, we obtain

∂
∂t
b~Π xð Þ ¼ b~L xð Þ þ b~τ xð Þ ¼ b~L xð Þ þ div

b
τ
$

xð Þ ð1:51Þ
b~Π xð Þ ¼ b~Πe xð Þ þ

X
a

ma
b~va xð Þ ð1:52Þ

b~τ xð Þ ¼ b~τΠe xð Þ þ
X
a

b~τ Sa xð Þ ð1:53Þ

b
τ
$

xð Þ ¼ b
τ
$ Π

e xð Þ þ
X
a

b
τ
$ S

a xð Þ ð1:54Þ

To sum up, we have

∂
∂t

1

2

b~G xð Þ þ b~G{ xð Þ
� �

þ b~Π xð Þ
� �

¼ �div
b
σ
$

xð Þ � bτ$ xð Þ
� �

ð1:55Þ

which is the momentum conservation law of the Rigged QED theory.

It should be noted the stress tensor itself is not defined uniquely (Heitler 1954;

Tetrode 1928) since mathematically any tensor whose divergence is zero can be

added to. Our stress tensor is defined in such a way that it appears in the equation of

motion of
b~Π xð Þ as in Eqs. (1.51), (1.52), (1.53), (1.54), and (1.55).

1.2.7 Spin Torque of Electron

The electronic spin angular momentum density operator

b~se xð Þ ¼ 1

2
hb~σe xð Þ, b~σe xð Þ ¼ bψ { xð Þ~σbψ xð Þ ð1:56Þ

satisfies the equation of motion
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∂
∂t
b~se xð Þ ¼ b~te xð Þ þ b~ζe xð Þ ð1:57Þ

where b~te xð Þ denotes the spin torque density operator defined as

bt ke xð Þ ¼ �ε‘nkbτ Π‘n
e xð Þ ¼ �ε‘nkbτ A‘n

e xð Þ ð1:58Þ

The
b~ζe xð Þ denotes the zeta force density operator defined as

bζ k
e xð Þ ¼ �c∂k

bψ xð Þγk1
2
hσkbψ xð Þ

� �
; no sum over k ð1:59Þ

The alternative form using the gradient of the zeta potential ϕ5 xð Þ is obtained as

follows:

bζ k
e xð Þ ¼ �∂k

bϕ5 xð Þ ð1:60Þ
bϕ5 xð Þ ¼ hc

2qe
bj05 xð Þ ¼ hc2

2
bNR xð Þ � bNL xð Þ
� �

: ð1:61Þ

where bj05 xð Þ denotes the zeroth component of the chiral current density operator

bj μ5 xð Þ ¼ cqebψ xð Þγμγ5bψ xð Þ ð1:62Þ
γ5 ¼ iγ0γ1γ2γ3 ð1:63Þ

with the chiral bNR,L xð Þ components.

Thus, it is concluded that the electron spin torque is found to be counterbalanced

by the chiral electron density. The geometrical nature of this relationship will

further be discussed in Chap. 2.

1.2.8 Spin Vorticity of Electron

Since the vorticity rotb~se xð Þ is a solenoidal vector field, the spin b~se xð Þ itself may be

given by integration in the starlike domain using the rotation of torque b~te xð Þ as the
driving force

rot
∂
∂t
b~se ~rð Þ ¼ rot �~r �

Z 1

0

rot
∂
∂t
b~se λ~rð Þλdλ

� �
¼ rot �~r �

Z 1

0

rotb~te λ~rð Þλdλ
� �

ð1:64Þ
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where we have used that the zeta force
b~ζe xð Þ is an irrotational conservative vector

field as shown in Eq. (1.60). Moreover, it should be noted that

rotb~te xð Þ ¼ �2div
b
τ
$

e

A

xð Þ ð1:65Þ

and hence we obtain

rot ~se t;~rð Þ �~se t0;~rð Þð Þ ¼ rot 2~r �
Z t

t0

Z 1

0

divτ
$

e

A
t0; λ~rð Þλdλ

� �
dt0

� �
ð1:66Þ

with

∂
∂t

rotb~se xð Þ ¼ �2div
b
τ
$

e

A

xð Þ ð1:67Þ

This is called the quantum electron spin vorticity principle: the time evolution of

the electron spin b~se xð Þ is driven by the antisymmetric component of the electronic

stress tensor
b
τ
$

e

A

xð Þ through the vorticity rotb~se xð Þ. If one half of Eq. (1.67) is added
to Eq. (1.43), we get (see Fig. 1.22)

∂
∂t

b~Πe xð Þ þ 1

2
rotb~se xð Þ

� �
¼ b~Le xð Þ þ div

b
τ
$

e

S

xð Þ ð1:68Þ

Fig. 1.22 Quantum electron spin vorticity principle
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The applications to the other particles are also interesting. For example, for

chiral spin-1/2 fermion with the non-Abelian gauge potential, analogous equation

of motion of spin has been found (Tachibana 2010). Another example is the

Majorana particle, which is neutral (Tachibana 2013).

We have proved that the spin vorticity of electron contributes to the kinetic

momentum of electron. It raises a simple but “odd” question: what is momentum of

electron spin? How odd this question is should be obvious since electron is

considered a point particle, and spin is its internal degree of freedom and then

spin is considered to have nothing to do with momentum. In the next chapter, we

shall resolve this question.

1.2.9 Angular Momentum of QED

The angular momentum density operator b~u xð Þ of electromagnetic field defined as

b~u xð Þ ¼ ~r � b~G xð Þ ð1:69Þ

satisfies the equation of motion

∂
∂t

1

2
b~u xð Þ þ b~u{ xð Þ
� �

¼ �~r � 1

2

b~L xð Þ þ b~L{ xð Þ
� �

þ div
b
σ
$

xð Þ
� �

¼ �~r � 1

2

b~L xð Þ þ b~L{ xð Þ
� �

� div ~r � bσ$ xð Þ
� �

ð1:70Þ

The electronic orbital angular momentum density operator
b~‘e xð Þ defined as

b~‘e xð Þ ¼ ~r � b~Πe xð Þ ð1:71Þ

satisfies the equation of motion

∂
∂t
b~‘e xð Þ ¼ ~r � b~Le xð Þ þ div

b
τ
$

e

Π
xð Þ

� �
¼ ~r � b~Le xð Þ þ div ~r � bτ$e

Π
xð Þ

� �
ð1:72Þ

Sum of Eqs. (1.57) and (1.72) leads to

∂
∂t

b~‘e xð Þ þ b~se xð Þ
� �

¼ ~r � b~Le xð Þ þ div ~r � bτ$Π

e xð Þ
� �

þb~te xð Þ þ b~ζe xð Þ ð1:73Þ
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The a’th nuclear orbital angular momentum density operator
b~‘a xð Þ defined as

b~‘a xð Þ ¼ ~r � ma
b~va xð Þ ð1:74Þ

satisfies the equation of motion:

∂
∂t
b~‘a xð Þ ¼ ~r � b~La xð Þ þ div ~r � bτ$ S

a xð Þ
� �

ð1:75Þ

To sum up, we have

∂
∂t

b~‘e xð Þ þ b~se xð Þ þ
X
a

b~‘a xð Þ
 !

¼ ~r � b~L xð Þ þ div ~r � bτ$ xð Þ
� �

þb~te xð Þ þ b~ζe xð Þ

ð1:76Þ

If the time derivative of b~u xð Þ from Eq. (1.70) is further added to, we finally obtain

∂
∂t

1

2
b~u xð Þ þ b~u{ xð Þ
� �

þ b~‘e xð Þ þ b~se xð Þ þ
X
a

b~‘a xð Þ
 !

¼ �~r � div
b
σ
$

xð Þ � bτ$ xð Þ
� �

þb~te xð Þ þ b~ζe xð Þ ð1:77Þ

If we use the electron spin vorticity principle in the form

~r � ∂
∂t

1

2
rotb~se xð Þ

� �
¼ �~r � div

b
τ
$ A

e xð Þ
� �

¼ �div ~r � bτ$ A

e xð Þ
� �

ð1:78Þ

then we get

∂
∂t

~r � 1

2
rotb~se xð Þ � b~se xð Þ

� �
¼ �div ~r � bτ$ A

e xð Þ
� �

� b~te xð Þ þ b~ζe xð Þ
� �

ð1:79Þ

so that we arrive at

∂
∂t

1

2
b~u xð Þ þ b~u{ xð Þ
� �

þ b~‘e xð Þ þ~r � 1

2
rotb~se xð Þ þ

X
a

b~‘a xð Þ
 !

¼ �div ~r � b
σ
$

xð Þ � bτ$S xð Þ
� �� �

ð1:80Þ

which is the angular momentum conservation law of the Rigged QED theory.

Mechanical measurement of the angular momentum of light has been performed

experimentally (see Fig. 1.23).

1.2 Rigged QED Theory 35



1.3 Phenomenology of the Rigged QED Theory

1.3.1 Energy Density

The QED Hamiltonian density operator bHQED xð Þ is composed of the Hamiltonian

density operator of the electromagnetic field bHEM xð Þ and the Dirac electronic

Hamiltonian density operator bHDirac xð Þ interacting with the electromagnetic field

bHQED xð Þ ¼ bHEM xð Þ þ bHDirac xð Þ ð1:81ÞbHEM xð Þ ¼ bHγ xð Þ � bA0 xð Þbρe xð Þ ð1:82ÞbHDiracðxÞ ¼ bMeðxÞ þ bA0ðxÞbρeðxÞ ð1:83Þ

Fig. 1.23 Mechanical measurement of the angular momentum of light (Reproduced from Beth

1935)
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where bHγ xð Þ is the electromagnetic field energy density operator and bMe xð Þ is the
electronic mass density operator:

bHγ xð Þ ¼ 1

8π
b~E2 xð Þ þ b~B2 xð Þ
� �

ð1:84Þ

bMe xð Þ ¼ cbψ xð Þ �ihγk bDek xð Þ þ mec
� �bψ xð Þ ð1:85Þ

The electronic mass density operator bMe xð Þ may be written as the energy density

operator of electron bHe xð Þ as follows:

bMe xð Þ ¼ bHe xð Þ ð1:86Þ

Thus, the bHQED xð Þ reduces to (see Fig. 1.24)

bHQED xð Þ ¼ bHγ xð Þ þ bHe xð Þ ð1:87Þ

The Rigged QED Hamiltonian density operator denoted as bHRigged QED xð Þ is

derived as follows:

bHRigged QED xð Þ ¼ bHQED xð Þ þ bHatom xð Þ ð1:88Þ

where the energy density operator bHatom xð Þ of atomic nuclei interacting through the

electromagnetic field and the electron field is added to bHQED xð Þ. The bHatom xð Þ is

purely the kinetic energy density operator of atomic nuclei

bHatom xð Þ ¼
X
a

bTa xð Þ ð1:89Þ

bTa xð Þ ¼ � h2

2ma
� 1
2
bχ{a xð Þb~Da

2

xð Þbχ a xð Þ þ h:c:

� �
ð1:90Þ

Fig. 1.24 Energy density concept in the field theory
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The energy flow is found to be

∂
∂t
bHγ xð Þ ¼ �c2div

1

2

b~G xð Þ þ b~G{ xð Þ
� �

� 1

2

b~E xð Þ •b~j xð Þ þb~j xð Þ • b~E xð Þ
� �

ð1:91Þ
∂
∂t
bHe xð Þ ¼ �c2div

b~Πe xð Þ þ 1

2

b~E xð Þ •b~je xð Þ þb~je xð Þ • b~E xð Þ
� �

ð1:92Þ

∂
∂t
bHatom xð Þ ¼ �div

X
a

b~sa xð Þ þ 1

2

b~E xð Þ •
X
a

b~ja xð Þ þ
X
a

b~ja xð Þ • b~E xð Þ
 !

ð1:93Þ

with

bs ka xð Þ ¼ 1

2ih
h2

2ma

� �
�bχ{a xð ÞbDak xð Þb~D2

a xð Þbχa xð Þ þ bDak xð Þbχa xð Þ
� �{ b~D2

a xð Þbχa xð Þ � h:c:

� �
ð1:94Þ

leading to

∂
∂t
bHRigged QED xð Þ ¼ �div c2

1

2

b~G xð Þ þ b~G{ xð Þ
� �

þ c2
b~Πe xð Þ þ

X
a

b~sa xð Þ
 !

ð1:95Þ

which is the energy conservation law of the Rigged QED theory (see Fig. 1.25 with

Eqs. (1.55) and (1.80)).

Fig. 1.25 Energy, momentum, and angular momentum conservation laws of the Rigged QED

theory
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It should be noted that the application of the Noether theorem associated with the

canonical quantization is the textbook approach to derive the conservation laws

(Weinberg 1995).

We shall further use the virial theorem (Landau and Lifshitz 1975) for the finite-

system energetics of the Rigged QED theory in Sect. 2.2, Chap. 2.

1.3.2 Electromagnetic Energy Density in Magnetodielectric
Media

In the Rigged QED theory, the phenomenological interaction of a system A and its

environment background medium M is tractable using regional charge and current

densities. For phenomenological force concepts in magnetodielectric medium such

as chemical reaction systems in condensed phase, we may usually rely on a classical

analogy of parallel-plate capacitor filled with a dielectric (see Fig. 1.26). Nuclear

magnetic currents for nuclear spin (Itzykson and Zuber 1980) can be treated as if

they were within M.

The corresponding gauge potentials are the regional integrals of the charge and

transversal current densities, defined as follows (Tachibana 2010)

bA0A ct;~rð Þ ¼
Z
A

d3~s
bρ ct;~sð Þ
~r �~sj j ð1:96Þ

Fig. 1.26 Parallel-plate capacitor filled with a dielectric: a phenomenological model of a chem-

ical reaction system A embedded in an environmental background medium M
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bA0M ct;~rð Þ ¼
Z
M

d3~s
bρ ct;~sð Þ
~r �~sj j ð1:97Þ

and

b~AA ct;~rð Þ ¼ 1

c

Z
A

d3~s
b~jT cu;~sð Þ
~r �~sj j ð1:98Þ

b~AM ct;~rð Þ ¼ 1

c

Z
M

d3~s
b~jT cu;~sð Þ
~r �~sj j ð1:99Þ

where the subscript A or M of the integral sign denotes the regional integrals

confined to the region A or M, respectively, and where u ¼ t� ~r�~sj j
c (see Fig. 1.27).

Since the regions A and M altogether span the whole space, we have

bA0 xð Þ ¼ bA0A xð Þ þ bA0M xð Þ ð1:100Þb~A xð Þ ¼ b~Aradiation xð Þ þ b~AA xð Þ þ b~AM xð Þ ð1:101Þ

where the radiation gauge potential satisfies

1

c2
∂2

∂t2
� Δ

 !b~Aradiation ~rð Þ ¼ 0, div
b~Aradiation ~rð Þ ¼ 0 ð1:102Þ

Fig. 1.27 Gauge potentials

in an environmental

background medium M
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This is given as

bAradiation

μ
xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhð Þ3
q X

σ¼�1

Z
d3~pffiffiffiffiffiffiffi
2p0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
4πh2c

p
eμ ~p; σð Þba ~p; σð Þe�ix�p=h þ eμ*

�
~p; σ

�ba{ ~p; σð Þeix�p=h� � ð1:103Þ

The polarization vector is

eμ ~p; σð Þe�iσθ L p;kð Þ;p;kð Þ ¼ Rμ
ν
b~p� �

eν ~k; σ
� �

¼ 1ffiffiffi
2

p
0

cosϕ cos θ � i sinϕ
sinϕ cos θ � i cosϕ

� sin θ

0BB@
1CCA
ð1:104Þ

e0 ~p; σð Þ ¼ 0 ð1:105Þ
pkek ~p; σð Þ ¼ 0 ð1:106ÞX

σ¼�1

ei ~p; σð Þej* ~p; σð Þ ¼ �ηij þ pipj

�~p2
ð1:107Þ

The electric field
b~E xð Þ is decomposed into the electric displacement

b~D xð Þ of the
medium M and the polarization

b~P xð Þ of the system A, defined, respectively, as

b~D xð Þ ¼ �gradbA0M xð Þ � 1

c

∂
∂t
b~AM xð Þ ð1:108Þ

b~P xð Þ ¼ 1

4π
gradbA0A xð Þ þ 1

4πc

∂
∂t
b~AA xð Þ ð1:109Þ

so that we have (see Fig. 1.28)

Fig. 1.28 Electromagnetic fields in the system A and an environmental background medium M
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b~E xð Þ ¼ �gradbA0 xð Þ � 1

c

∂
∂t
b~A xð Þ ¼ b~D xð Þ � 4πb~P xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ ð1:110Þ

Likewise, let the magnetic field
b~H xð Þ of the medium M and the magnetizationb~M xð Þ of the system A be defined, respectively, as

b~HM xð Þ ¼ rot
b~AM xð Þ ð1:111Þb~M xð Þ ¼ 1

4π
rot
b~AA xð Þ ð1:112Þ

then we have (see Fig. 1.17)

b~B xð Þ ¼ rot
b~A xð Þ ð1:113Þ

rot
b~A xð Þ ¼ b~H xð Þ þ 4π b~M xð Þ ð1:114Þb~H xð Þ ¼ b~HM xð Þ þ rot

b~Aradiation xð Þ ð1:115Þ

The regional charge densities are then represented, respectively, as

bρA xð Þ ¼ � 1

4π
ΔbA0A xð Þ ð1:116Þ

bρM xð Þ ¼ � 1

4π
ΔbA0M xð Þ ð1:117Þ

and hence

bρ xð Þ ¼ bρA xð Þ þ bρM xð Þ ð1:118Þ

The regional charge current densities are represented as

b~jA xð Þ ¼ c

4π

1

c
grad

∂
∂t
bA0A xð Þ þ□b~AA xð Þ

� �
¼ ∂

∂t
b~P xð Þ þ crot

b~M xð Þ ð1:119Þ

b~jM xð Þ ¼ c

4π

1

c
grad

∂
∂t
bA0M xð Þ þ□b~AM xð Þ

� �
ð1:120Þ

b~j xð Þ ¼ b~jA xð Þ þb~jM xð Þ

¼ ∂
∂t
b~P xð Þ þ crot

b~M xð Þ þb~jM xð Þ
ð1:121Þ

The regional decomposition of the longitudinal and transversal components of

the current densities are represented as follows:
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b~j xð Þ ¼ b~jL xð Þ þb~jT xð Þ ð1:122Þ

with

b~jL xð Þ ¼ b~jLA
xð Þ þb~jLM

xð Þ ð1:123Þb~jT xð Þ ¼ b~jTA
xð Þ þb~jTM

xð Þ ð1:124Þ

where

b~jLA
xð Þ ¼ c

4π
� 1
c
grad

∂
∂t
bA0A xð Þ ð1:125Þ

b~jLM
xð Þ ¼ c

4π
� 1
c
grad

∂
∂t
bAM xð Þ ð1:126Þ

b~jTA
xð Þ ¼ c

4π
�□b~AA xð Þ ð1:127Þ

b~jTM
xð Þ ¼ c

4π
�□b~AM xð Þ ð1:128Þ

We have the alternative forms as

b~jA xð Þ ¼ b~jLA
xð Þ þb~jTA

xð Þ ð1:129Þb~jM xð Þ ¼ b~jLM
xð Þ þb~jTM

xð Þ ð1:130Þ

The linear response properties of the system A under the interaction with the

environment medium M may formally be represented with obvious notation as

follows

b~P xð Þ ¼ b
α
$

xð Þ b~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �
¼ b

χ
$

e xð Þb~E xð Þ
ð1:131Þ

b~M xð Þ ¼ b
χ
$

m xð Þb~H xð Þ ð1:132Þb~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ ¼ 1þ 4π

b
χ
$

e xð Þ
� �b~E xð Þ

¼ 1

1� 4π
b
α
$

xð Þb~E xð Þ

¼ b
ε
$

xð Þb~E xð Þ

ð1:133Þ
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b~B xð Þ ¼ 1þ 4π
b
χ
$

m xð Þ
� �b~H xð Þ

¼ b
μ
$

xð Þb~H xð Þ
ð1:134Þ

and

b~j xð Þ ¼ b
σ
$

ext xð Þ b~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �
¼ b

σ
$

ext xð Þbε$ xð Þb~E xð Þ
¼ b

σ
$

int xð Þb~E xð Þ

ð1:135Þ

Photon deflection is realized by the index of refraction

b
n
$

xð Þ ¼
ffiffiffiffib
μ
$

q
xð Þbε$ xð Þ ð1:136Þ

Chirality of matter affects the helicity of photon (photon spin)
b~S xð Þ in the wave zone

(see Fig. 1.29)

b~S xð Þ ¼ 1

4πc
b~E xð Þ � b~A xð Þ ¼ b~Sradiation xð Þ þ b~Smatter xð Þ ð1:137Þ

b~Sradiation xð Þ ¼ 1

4πc
b~Eradiation xð Þ � b~Aradiation xð Þ,

b~Eradiation xð Þ ¼ �1

c

∂
∂t
b~Aradiation xð Þ ð1:138Þ

Fig. 1.29 Photon spin originated from matter current in the wave zone
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If atoms and molecules are irradiated, then the electrons may be affected by

torque leading to the imbalance in between spin torque and zeta force. The back

reaction may also affect the torque on photon, leading to the circular dichroism, the

Kerr effect, or the Faraday effect. Forbidden processes may of course occur due to

forbidden symmetry of the ket vectors.

1.3.3 Effective Charge Number of Electromigration

Electromigration is the phenomena of nuclear current induced by electric current in

condensed phase (Lodder and Dekker 1998). The nuclei accept diffusive force from

the surrounding medium over and above the Lorentz force (Bosvieux and Friedel

1962). In our model, the tension is the origin of the medium effects.

The linear response of the force defines the effective charge number tensor

density operator
b
Z
$*

α xð Þ of α’th charged particle as

b
Z
$*

α xð Þe b~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �bNα xð Þ þ 1

c
b~jα xð Þ � b~B xð Þ ¼ b~Lα xð Þ þ b~τ Sα xð Þ

ð1:139Þ

Since the right-hand side of this equation is

b~Lα xð Þ þ b~τ Sα xð Þ ¼ b~E xð Þbρα xð Þ þ 1

c
b~jα xð Þ � b~B xð Þ þ b~τ Sα xð Þ ð1:140Þ

we then conclude

b
Z
$ *

α
xð Þe b~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �bNα xð Þ ¼ b~E xð Þbρα xð Þ þ b~τ Sα xð Þ

¼ b~D xð Þ � 4πb~P xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �
ZαebNα xð Þ þ b~τ Sα xð Þ

¼ b~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �
ZαebNα xð Þ � 4πb~P xð ÞZαebNα xð Þ þ b~τ Sα xð Þ ð1:141Þ

Now we define (Tachibana 2002)

b
Z
$*

α xð Þ ¼ Zα þ
b
Z
$

α wind xð Þ ð1:142Þb
Z
$

α wind xð Þ ¼ b
Z
$

α static wind xð Þ þ bZ$α dynamic wind xð Þ ð1:143Þ

and we conclude the response tensor operators
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b
Z
$

α static wind xð Þ ¼ �4πZα
b
α
$

xð Þ ð1:144Þb
Z
$

α dynamic wind xð Þe b~D xð Þ � 1

c

∂
∂t
b~Aradiation xð Þ

� �bNα xð Þ ¼ b~τ Sα xð Þ ð1:145Þ

It should be noted that the formulation for α¼ e leads to electronic conduction. The

usual textbook approach demonstrates the medium effect as the dissipative force

against Lorentz force: see, e.g., Eq. (1.16) of the Ashcroft–Mermin textbook on

solid-state physics (Ashcroft and Mermin 1976). In our present result, the dissipa-

tive force emerges from the tension density as the field theoretical force density

compensating the Lorentz force density (see Fig. 1.30).

It should be noted that the response tensor R
$Π xð Þ, such as the electronic

dielectric constant ε
$

~rð Þ, the magnetic permeability μ
$

~rð Þ, the conductivity

σ
$

int, ext xð Þ, the index of refraction n$ ~rð Þ, and the effective charge Z$ ~rð Þ, is symmetry

polarized in general inhomogeneous media. Mathematically, the response should

be studied through the Jordan normal form of the symmetry-polarized response

tensor operator
b
R
$Π xð Þ. More intuitively, the physical meaning of response may be

revealed through the directional and rotational responses corresponding to the

major elements of the symmetric
b
R
$

S xð Þ and antisymmetric
b
R
$

A xð Þ responses,

respectively (see Fig. 1.31).

Let the total angular momentum may be conserved globally, Eq. (1.80), yet the

particles may be locally deflected by inhomogeneity of the system. Actually, the

Fig. 1.30 Local equilibrium condition of the stationary state
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complex eigenvalue of the electronic dielectric constant ε
$

~rð Þ has been demon-

strated numerically (Doi et al. 2006). The rotational response of electron toward

applied electric field, namely, the electron deflection, should then be realized by the

complex eigenvalue of ε
$

~rð Þ. In general, the rotational deflected response of

electron toward applied electromagnetic field should be realized by the complex

eigenvalues of the electronic dielectric constant ε
$

~rð Þ, magnetic permeability μ
$

~rð Þ,
effective charge Z

$
~rð Þ, and electric conductance σ

$
~rð Þ (Tachibana 2010).

1.4 Examples

1.4.1 Torque in Analytical Examples

1.4.1.1 Spin Torque in Free Space

We may first examine free particle satisfying the Dirac equation

ih=∂� mc
� �

ψ xð Þ ¼ 0 ð1:146Þ

where the generic mass m of the Dirac particle denotes me for electron. The

stationary state solution with the third eigenvalue ζ ¼ �1
2
h of spin S3 ¼ ~S •~ez

using the unit vector ~ez along the third axis is

ψ xð Þ ¼ u ~p; ζð Þe� i
hx�p, =p� mcð Þu ~p; ζð Þ ¼ 0, ζ ¼ �1

2
h ð1:147Þ

Fig. 1.31 Response tensor operator
b
R
$Π xð Þ
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with

u ~p;
1

2
h

� �
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 p0 þ mcð Þp p0 þ mcþ pz

pþ
p0 þ mc� pz

�pþ

0BB@
1CCA, pþ ¼ px þ ipy ð1:148Þ

u ~p;�1

2
h

� �
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 p0 þ mcð Þp p�

p0 þ mc� pz
�p�

p0 þ mcþ pz

0BB@
1CCA, p� ¼ px � ipy ð1:149Þ

In the rest frame attached to the Dirac particle, the charge density and the chiral spin

density are

NR
~0;�1

2
h

� �
¼ 1

2

NL
~0;�1

2
h

� �
¼ 1

2

ð1:150Þ

~σR ~0;�1

2
h

� �
¼ �1

2
~ez

~σL ~0;�1

2
h

� �
¼ �1

2
~ez

ð1:151Þ

In the inertial frame attached to observer, we have instead

NR ~p;�1

2
h

� �
¼ 1

2p0
p0 � pz
� �

NL ~p;�1

2
h

� �
¼ 1

2p0
p0 � pz
� � ð1:152Þ

~σR ~p;�1

2
h

� �
¼ �mc

2p0
~ez þ

1� pz
p0 þ mc

2p0
~p

~σL ~p;�1

2
h

� �
¼ �mc

2p0
~ez �

1� pz
p0 þ mc

2p0
~p

ð1:153Þ

where the spin-orbit coupling appears in the chiral spin density, with polarization

~s ~p;�1

2
h

� �
¼ 1

2
h~σ ~p;�1

2
h

� �
¼ �1

2
h

mc

p0
~ez þ pz

p0 p0 þ mcð Þ~p
� �

ð1:154Þ

The spin torque does not of course work in this case, but if electron is accelerated by

the external electromagnetic field, further spin-orbit coupling, the Thomas
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precession, and therefore the spin torque emerge to bring about the resultant further

polarization.

The charge density, spin density, current, chiral current, and the zeta potential

are then

jμ ~p;�1

2
h

� �
¼ cq 1;

px
p0
;
py
p0
;
pz
p0

� �
ð1:155Þ

j5
μ ~p;�1

2
h

� �
¼ �cq

pz
p0
;

pzpx
p0 p0 þ mcð Þ ;

pzpy
p0 p0 þ mcð Þ ; 1þ

pz
2

p0 p0 þ mcð Þ
� �

ð1:156Þ

ϕ5 ~p;�1

2

� �
¼ � hc2

2

pz
z

p0
ð1:157Þ

where the generic charge q denotes qe for electron. The torque and zeta force are

calculated to be zero:

~ζ ¼ 0, ~t ¼ 0 ð1:158Þ

and hence the sum

∂
∂t

~s ¼~tþ~ζ ¼ 0 ð1:159Þ

which should be so since the state here is chosen stationary.

Now we have the null vorticity:

rot~s ¼ 0 ð1:160Þ

The null vorticity does not contribute to the kinetic momentum.

1.4.1.2 Plane Wave Radiation Field

The Volkov solution of the Dirac particle under a plane-wave radiation field (see

Fig. 1.32)

Aμ ¼ Aμ ϕð Þ, ϕ ¼ k � x ¼ k0ct�~k •~r, lim
ϕ!ϕinf

Aμ ϕð Þ ¼ 0 ð1:161Þ

is given as (Volkov 1935; Berestetskii et al. 1982)

ψ ¼ 1þ 1

2k � p
q

c
=k=A=

� �
e

i
hS0u ð1:162Þ
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S0 ¼ �x � p�
Z ϕ

ϕinf

1

k � p
q

c
p � A� 1

2k � p
q

c

� �2
A2

� �
dϕ ð1:163Þ

=p� mcð Þu ¼ 0, ∂ � u ¼ 0 ð1:164Þ
p2 ¼ mcð Þ2 ð1:165Þ

Let the asymptotic free boundary condition with the third eigenvalue ζ ¼ �1
2
h of

spin S3 ¼ ~S •~ez be

lim
ϕ!ϕinf

ζ ¼ �1

2
h ð1:166Þ

Then we have

jμ ~p;�1

2
h

� �
¼ cq

1

p0
pμ � q

c
Aμ þ kμ

1

k � p
q

c
A � p� 1

2k � p
q

c

� �2
A2

� �� �
ð1:167Þ

j5
0 ~p;�1

2
h

� �
¼ �cq

pz
p0

þ 1

2k � p
q

c

�2A0 k0
pz
p0

� 1

p0 p0 þ mcð Þpz
~k •~p� mc

p0
kz

� �
þ2k0 A0pz

p0
� 1

p0 p0 þ mcð Þpz
~A •~p� mc

p0
Az

� �
0BB@

1CCA
� 1

2k � p
q

c

� �2

2A2k0 k0
pz
p0

� 1

p0 p0 þ mcð Þpz
~k •~p� mc

p0
kz

� �

0BBBBBBBBBB@

1CCCCCCCCCCA
ð1:168Þ

Fig. 1.32 The Volkov solution of the Dirac particle under a plane-wave radiation field
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Assume then for simplicity, first, radiation field propagates along the third axis

associated with the electric field along the first axis and the magnetic field along the

second axis

Aμ ¼ 0;Ax; 0; 0ð Þ ð1:172Þ
kμ ¼ k0; 0; 0; k0

� � ð1:173Þ

~E ¼ �1

c

∂~A
∂t

¼ Ex;Ey;Ez

� � ¼ �k0
dAx

dϕ
; 0; 0

� �
ð1:174Þ

~B ¼ rot~A ¼ Bx;By;Bz

� � ¼ 0;�k0
dAx

dϕ
; 0

� �
ð1:175Þ

1.4 Examples 51



and, second, the Dirac particle propagates along the third axis asymptotically (see

Fig. 1.33)

pμ ¼ p0; 0; 0; pz
� � ð1:176Þ

It follows that the charge density, the spin density, and zeta potential are given as

(see Fig. 1.34)

N ¼ 1

cq
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2p0 p0 � pzð Þ
q

c
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Axð Þ2 ð1:177Þ
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� �
ð1:178Þ

ϕ5 ¼ �hc
2
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p0

� N � 1ð Þ
� �

ð1:179Þ

The spin torque and zeta force are calculated to be

~t ¼ tx; ty; tz
� � ¼ �1

2
h q

k0

p0
dAx

dϕ
; 0; 0

� �
ð1:180Þ
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2
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Fig. 1.33 The plane-wave radiation field and momentum of the Dirac particle
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Consequently, we have non-null spin dynamics, which should be so since the

Volkov state is not stationary:

∂
∂t

~s ¼~tþ~ζ 6¼ ~0 ð1:182Þ

The vorticity rot~s is

rot~s ¼ �1

2
h 0;� k0

p0
q

c

dAx

dϕ
; 0

� �
ð1:183Þ

Consequently, half the vorticity contributes to the kinetic momentum.

As a trivial limit of free electron in the stationary state, the torque and zeta force

are calculated to be zero:

~t ¼ ~0, ~ζ ¼ ~0 ð1:184Þ

and hence the sum:

∂
∂t

~s ¼~tþ~ζ ¼ ~0 ð1:185Þ

which should be so since the state here is chosen stationary.

Fig. 1.34 Charge density, spin density, and zeta potential of the Dirac particle
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1.4.1.3 Static Uniform Magnetic Field

The Landau levels of the Dirac particle under a static uniform magnetic field along

the third axis

Aμ ¼ 0;�1

2
Hy;

1

2
Hx; 0

� �
ð1:186Þ

is given in a textbook (Greiner and Reinhardt 2009). Using the Landau

eigenfunctions Rn,m‘,kz,σ ρð Þ with ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, the torque and zeta force are

calculated to be canceled with each other, which should be so since the state is

stationary

∂
∂t

~s ¼~tþ~ζ ¼ ~0 ð1:187Þ

But the vector components are nonzero in this case:

~ζ ¼ �gradϕ5 ¼ � ∂
∂x

ϕ5;�
∂
∂y

ϕ5; 0

� �
ð1:188Þ

with the zeta potential

ϕ5 ¼
hc

En,m‘,kz,σ

c
þ mc

kzσ

2πð Þ2 Rn,m‘,kz,σ ρð Þð Þ2 ð1:189Þ

where n and m‘ are the quantum numbers, kz is the wave number along the third

axis, and σ is the sign of the third eigenvalue ζ ¼ �1
2
h of spin S3 ¼ ~S •~ez.

1.4.1.4 Spin Torque in Static Spherically Symmetric Scalar Potential

Here we examine static spherically symmetric scalar potential in hydrogen-like

atom with the effective charge number Zeff

Aμ ¼ Zeffe

r
; 0; 0; 0

� �
, Zeff > 0 ð1:190Þ

The stationary state solution in the Dirac representation is obtained in a textbook

(Berestetskii et al. 1982) using the spherical coordinates r , θ ,ϕ as
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with the energy eigenvalues

En, j ¼mc2
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In the stationary state, the zeta potential is calculated to be null:

ϕ5 ¼ 0 ð1:193Þ

neither the torque nor zeta force:

~t ¼ 0, ~ζ ¼ 0 ð1:194Þ

Thus, as a matter of course, we have the stationary state of spin:

∂
∂t

~s ¼~tþ~ζ ¼ 0 ð1:195Þ

1.4.2 Torque in Molecules

1.4.2.1 Torque in Chiral Molecules

The spin torque, the zeta force, and the zeta potential, which are significant

quantities to describe the local picture of spin dynamics of electron, are studied
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by using allene-type molecules, an achiral molecule C3H4 and a chiral molecule

C3H2Li2 (Fukuda et al. 2013). The two molecules have different distribution

patterns of these quantities though their structures are similar to each other. It is

also shown that the zeta potential distribution is almost independent of the electron

density distribution (see Fig. 1.35).

Zeta potential is studied from the viewpoint of canonical orbitals (Fukuda et al.

2016a). Numerical example is C6H6 (see Fig. 1.36).

The local spin dynamics of electron is studied from the viewpoint of the electric

dipole moment (EDM) of electron (Fukuda et al. 2016b). Numerical example is

YbF (see Fig. 1.37).

Fig. 1.35 Electron density and zeta potential in C3H4 and C3H2Li2. Blue and red envelopes

represent positive and negative zeta potential iso-surfaces, respectively. The threshold value of

iso-surfaces of the zeta potential is taken as �7.5 � 10�6 [a.u.]. Green envelopes represent

electron density iso-surfaces. The threshold value of iso-surfaces of the electron density is taken

as 0.25 [a.u.]

Fig. 1.36 The distribution of (a) the spin torque density, (b) the zeta force density, (c) the sum of

them, and (d) the difference of large contributions in canonical orbitals in C6H6
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1.4.2.2 Spin Vorticity in Molecules

The spin vorticity of electron is studied from the viewpoint of the spin Hall effect

(SHE) and the inverse spin Hall effect (ISHE) (Fukuda et al. 2016c). Idea here is the

spin dynamics which may be realized in the bulk (see Fig. 1.38).

The realization of the bulk effect may be demanding. So numerical example is a

straight carbon chain with bond length of 1.5 Å under a finite bias voltage of 0.1 V

under an electronic temperature of 300 K (see Fig. 1.39).

Fig. 1.37 Distributions of (a) the vector potential term of the spin torque density, (b) the electric

term of the EDM torque density, and (c) the magnetic term of the EDM torque density in YbF. The

red sphere represents the Yb nucleus, and the blue one represents the F nucleus. The color shows
the value of the torque in atomic units

Fig. 1.38 Concept based on the quantum spin vorticity theory for (a) SHE and (b) ISHE
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1.4.3 Electromagnetic Properties of Matter
in Magnetodielectric Media

It is confirmed numerically that the tension density defined in quantum field theory

is the counter force to the Lorentz force density (Nozaki et al. 2016). Numerical

example is benzenedithiol (see Fig. 1.40).

We use a nonequilibrium steady state model (Ikeda et al. 2013) as an example

for system A embedded in an environmental background mediumM (see Fig. 1.26).

The response of electric current to electric field at a specific point in Si nanowire

(see Fig. 1.41) does not have corresponding macroscopic physical quantity (Nozaki

et al. 2016).

There are regions which show complicated response of electric current density to

electric field, in particular, opposite and rotational ones (see Fig. 1.31). Local

conductivities are considered to be available for the study of a negative differential

resistance (NDR), which may be related to this opposite response (Ikeda et al.

2012). Numerical example is the Ge-substituted Si nanowire model (see Fig. 1.42).

Effective charge number of electromigration is studied for reliability problems

of ultralarge-scale integration devices where extremely high current densities

should be maintained through ultrathin film interconnects (Doi et al. 2003). Quan-

tum mechanical wave-packet propagation of an Al atom has been examined in

some models of thin Al lines which contain atomic defects, using the first-principle

Fig. 1.39 (a) The distributions of the x component of the kinetic momentum density on the plane

z ¼ 0 [nm] and (b) y and z components on the plane x ¼ 1.65 [nm]. (c) The distributions of the

z component of the spin angular momentum density on the plane z ¼ 0 [nm] and (d) y and

z components on the plane x ¼ 1.65 [nm]. (e) The distribution of the x component of the spin

vorticity on the plane z ¼ 0 [nm]. The y and z components of the spin vorticity on the plane z ¼ 0

[nm] are negligibly small. In panels (b) and (d), the vectors consist of y and z components, and the

color maps represent the norm of the vectors
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electronic structure calculations under the periodic boundary condition (see

Fig. 1.43).

The dynamic wind charge demonstrates significant figure at some characteristic

point (see Fig. 1.44).

Fig. 1.40 Benzenedithiol A connected to external electrodes M

Fig. 1.41 Si nanowire

models. Light gray, green,
and white spheres
correspond to Si, Ge, and H

atoms, respectively
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Fig. 1.42 Complex eigenvalues of (a) first, (b) second, (c) third, and (d) the average σ
$

int ~rð Þ (a.u.)
for the Ge-substituted model Si nanowire model (see Fig. 1.41)
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Fig. 1.43 Periodic models of electromigration in Al (100) surface for (a) bulk, (b) surface, and (c)

grain boundary. Arrows point the direction of the external electric field, and squares inserted in the
models indicate planes for maps in Fig. 1.33 on which the wave-packet ion core is put

Fig. 1.44 Maps of the dynamic wind charge tensor density compared with the static one
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1.5 Summary

Under external source of electromagnetic fields, charged particles can be acceler-

ated by Lorentz force. Dissipative force can make the state of the charged particles

stationary. Tension density of QED is formulated in such a way that it can

compensate the Lorentz force density at any point of space-time. This formulation

can give mechanical description of local equilibrium leading to the quantum

mechanical stationary state.

The tension density is given by the divergence of stress tensor density. Elec-

tronic spin can be accelerated by torque density derived from the stress tensor

density. The torque density can be compensated by a force density, called the zeta

force density, which is another basic mechanism leading to the stationary state of

the spinning motion of electron. It should be noted that the Pauli Hamiltonian gives

equation of motion of electronic spin: see, e.g., Eq. (11.155) of the Jackson

textbook on classical electrodynamics (Jackson 1998). The Bargmann–Michel–

Telegdi (BMT) equation and Thomas precession are also the textbook matters.

Our present result incorporates all of them in a closed form plus the field theoretical

compensation mechanism leading to the stationary state of electronic spin. The

external effect for chemical reaction systems is realized where a chemical reaction

system A embedded in the environmental medium M is modeled as a parallel-plate

capacitor filled with a dielectric. The vibronic interaction that goes beyond the

adiabatic approximation has been incorporated as well as the electronic spin-

dependent interaction.
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Chapter 2

Energy-Momentum Tensor of QED

Abstract In Sect. 1.2.7, Chap. 1, it is found that the electron spin torque is

counterbalanced by the chiral electron density. In Sect. 1.2.8, Chap. 1, it is found

that the spin vorticity of electron contributes to the kinetic momentum of electron,

which raises a simple but “odd” question: what is momentum of electron spin? In

this Chapter, we shall show that the origin of both the chiral nature and the kinetic

nature is manifest in the principle of equivalence in general relativity.

Keywords Chirality • Primary Rigged QED theory • Principle of equivalence •

Rigged QED theory • Stress tensor • Spin torque • Spin vorticity • SUGRA • SUSY •

Tension • Zeta force

2.1 Energy-Momentum Tensor

Light bends in order to advance the space-time that has been distorted by heavy

mass objects (see Fig. 2.1). This is called the gravitational lens, a phenomenon

which is predicted by the general theory of relativity. It is one of the phenomena

that space-time has proven the curvature (Weinberg 1972; Hayashi and Shirafuji

1979; Nakanishi 2004). Dynamics of electrons as the vorticity contribution to the

momentum is derived from the geometric principle associated with the tetrad field

with torsion (Tachibana 2012). The action must be generally covariant, with all
fields treated as scalars, except for the tetrad field itself. The Weitzenb€ock space-

time is the key to warrant the tetrad field for the description of the Dirac spinor.

2.1.1 Principle of Equivalence

The most general setup of space-time for the Dirac spinor field in QED with the

principle of equivalence (see Fig. 2.2) is the Riemann–Cartan space-time (see

Fig. 2.3).

Torsion and curvature are the characteristics of the space-time geometry (see

Fig. 2.4). The tetrad field is associated with the Dirac spinor field (Hehl et al. 1976)
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The curvature-free but non-null torsion Weitzenb€ock space-time is indispensable

for the absolute parallelism of the tetrad field (see Fig. 2.5).

The Dirac spinor field is a coordinate scalar and a Lorentz spinor for the torsion-

free Riemann space-time (Weinberg 1972). Supersymmetry (SUSY) is the

nontrivial extension of the Poincaré algebra (Haag et al. 1975). The gauge boson

of the localized SUSY is spin-2 graviton, where the theory of supergravity

(SUGRA) emerges (Weinberg 1995). The quantum electron spin vorticity principle

is the consequence of the principle of equivalence both in QED equipped with

semiclassical Einstein–Hilbert action (Tachibana 2012) and simple SUGRA

(Tachibana 2014).

Fig. 2.1 X-ray selected sample of massive lensing clusters (Reproduced from Lopes 2011)

Fig. 2.2 Space-time

structure
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Fig. 2.3 The Riemann–

Cartan space-time

characteristics

Fig. 2.4 Torsion and

curvature of space-time

geometry

Fig. 2.5 The Weitzenb€ock
space-time characteristics
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2.1.1.1 The Einstein Tensor

To seek for the variation principle of the equation of motion on the background-

curved space-time, the semiclassical Einstein–Hilbert action integral has been used

under the symmetry of the general coordinate transformation of gravity

δI ¼ 0, I ¼ c

2κ

Z
R

ffiffiffiffiffiffiffi�g
p

d4xþ 1

c

Z
L

ffiffiffiffiffiffiffi�g
p

d4x, κ ¼ 8πG

c2
ð2:1Þ

where R is the Ricci scalar, G is the universal gravitational constant, and L is the

Lagrangian density of QED including the interaction with gravity. The gravitational

action IG is added to the system action IS and made stationary

δI ¼ 0, I ¼ IG þ IS ð2:2Þ

under the variation δgμν of the metric tensor gμν

IG ¼ c

2κ

Z
R

ffiffiffiffiffiffiffi�g
p

d4x, δIG ¼ c

2κ

Z
Rμν � 1

2
gμνR

� �
δgμν

ffiffiffiffiffiffiffi�g
p

d4x ð2:3Þ

IS ¼ 1

c

Z
L

ffiffiffiffiffiffiffi�g
p

d4x, δIS ¼ 1

2c

Z
Tμνδg

μν ffiffiffiffiffiffiffi�g
p

d4x ð2:4Þ

The Einstein equation is then derived (see Fig. 2.6)

Gμν xð Þ ¼ Yμν xð Þ ð2:5Þ

with the definition

Gμν xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi�g xð Þp δ

δgμν xð Þ
2κ

c
IG ¼ Rμν xð Þ � 1

2
gμν xð Þ ð2:6Þ

Yμν xð Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi�g xð Þp δ

δgμν xð Þ
2κ

c
IS ¼ � κ

c2
Tμν xð Þ ð2:7Þ

Since the Einstein tensor Gμν(x) is symmetric, so is the energy-momentum tensor

Tμν(x) (see Fig. 2.7).

Gμν xð Þ ¼ Gνμ xð Þ; symmetric ð2:8Þ
Tμν xð Þ ¼ Tνμ xð Þ; symmetric ð2:9Þ
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2.1.1.2 Tetrad Formalism

Using the tetrad formalism equipped with the principle of equivalence, the metric

tensor in any general noninertial coordinate system is given as

gμν xð Þ ¼ eaμ xð Þebν xð Þηab ð2:10Þ

where eaμ(x) denotes the tetrad field and the Latin letters a , b , c, and so on run from
0 to 3. The tetrad field eaμ(x) is a coordinate vector and a Lorentz vector for the

Lorentz transformation x! x0 associated with the vector representation Λa
b(x)

Fig. 2.6 The semiclassical

Einstein–Hilbert action

principle

Fig. 2.7 The semiclassical Einstein–Hilbert field theory
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eaμ xð Þ ! e0aμ x0ð Þ ¼ ∂xν

∂x0μ
eaν xð Þ ð2:11Þ

eaμ xð Þ ! e0aμ xð Þ ¼ Λa
b xð Þebμ xð Þ ð2:12Þ

and is parallely transported

∂νea
λ þ κ

λ
ν

� �
ea

κ � γa
b
νeb

λ ¼ 0 ð2:13Þ

We have used the Levi–Civita affine connection

μ
λ
ν

� � ¼ 1

2
gλρ ∂μgνρ þ ∂νgμρ � ∂ρgμν

� �
¼ ν

λ
μ

� � ð2:14Þ

and spin connection

γa
b
μ ¼ eaν;μη

bcec
ν ð2:15Þ

where the covariant derivative is defined as

ea
λ
;ν ¼ ea

λ
,ν þ κ

λ
ν

� �
ea

κ ð2:16Þ
eaλ;ν ¼ eaλ,ν � λ

κ
νf geaκ ð2:17Þ

with the usual partial derivative denoted as

f ,μ ¼ ∂μf ð2:18Þ

In the tetrad formalism, the absolute parallelism of the tetrad field eaμ(x) is found
to be

D*
νea

λ ¼ ∂νea
λ þ Γ*

μ
λ
νea

μ ¼ 0 ð2:19Þ

and the connection

Γ*
μ
λ
ν ¼ μ

λ
ν

� �� eaμγa
b
νeb

λ ð2:20Þ

is used to define the torsion tensor

T* λ
� μν ¼ Γ*

μ
λ
ν � Γ*

ν
λ
μ ð2:21Þ

and contorsion tensor
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K*
λμν ¼ 1

2
T*

λμν � T*
μλν � T*

νλμ

	 
 ð2:22Þ

The Dirac spinor field is a coordinate scalar and a Lorentz spinor

ψα xð Þ ! ψ 0
α x0ð Þ ¼ ψα xð Þ ð2:23Þ

ψα xð Þ ! ψ 0
α xð Þ ¼ Dαβ Λ xð Þð Þψβ xð Þ ð2:24Þ

Also, what is important, the covariant derivative Dμ(g), is not only a coordinate

scalar but also a Lorentz vector, as shown in Eqs. (12.5.15–12.5.17) and (12.5.24)

of Weinberg (1972):

Dμ gð Þ ¼ ∂μ þ Γμ ð2:25Þ
Γμ xð Þ ! Γμ

0 xð Þ ¼ D Λ xð Þð ÞΓμD
�1 Λ xð Þð Þ � ∂μD Λ xð Þð Þ	 


D�1 Λ xð Þð Þ ð2:26Þ

The Lagrangian density for the QED system under external gravity is then

given as

L ¼ LEM þ LDirac ð2:27Þ

with the definition

LEM ¼ � 1

16π
FμνF

μν ¼ � 1

16π
FμνFρσg

μρgνσ , Fμν ¼ ∂μAν � ∂νAμ ð2:28Þ

LDirac ¼ 1

2
cψ ihγaeaμDμ gð Þ � mc

	 

ψ þ h:c: ð2:29Þ

The gravitational covariant derivativeDμ(g) is concretely written as (see Fig. 2.8)

Dμ gð Þ ¼ ∂μ þ i
1

2h
γabμJ

ab þ i
q

hc
Aμ

¼Dμ þ i
1

2h
γabμJ

ab

ð2:30Þ

where the spin angular momentum Jab

Jab ¼ ih
4

γa; γb
� � ð2:31Þ

is added to Dμ through the coupling with spin connection γabμ given in Eq. (2.15).

The emergence of the spin connection is manifest as the consequence of the
principle of equivalence in general relativity.

It should be noted here that after some manipulation, we can rewrite Eq. (2.29)
in a very significant form as follows:
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12.5.15
12.5.17
12.5.24


LDirac ¼ 1

2
cψ ihγaeaμDμ gð Þ � mc

	 

ψ þ h:c:

¼ 1

2
cψ ihγaeaμ∂μ � mc

	 

ψ þ h:c:� 3h

4q
aμj5

μ � 1

c
Aμj

μ
ð2:32Þ

Namely, which is hidden in Eq. (2.29), but in this Eq. (2.32), minimal couplings are
manifestly shown; those not only of current jμ(x) with photon vector potential Aμ(x)
but also of chiral current jμ5 xð Þ with spin coupling vector aμ(x) defined as

aμ ¼ 1

6
εμνρσ gð ÞT*

νρσ ð2:33Þ

where T*νρσ is the torsion tensor given in Eq. (2.21), and we have used the Levi–
Civita tensor

εμνρσ gð Þ ¼ 1ffiffiffiffiffiffiffi�g
p εμνρσ , ε0123 ¼ 1 ð2:34Þ

εμνρσ gð Þ ¼ ffiffiffiffiffiffiffi�g
p

εμνρσ , ε0123 ¼ �1 ð2:35Þ

Using the Lagrangian density given in Eq. (2.27), the variation principle with

respect to the spinor field

δ

δψ
IS ¼ 0 ð2:36Þ

leads to the Dirac equation of the Dirac particle

ihγaeaμDμ gð Þ � mc
	 


ψ ¼ 0 ð2:37Þ

and similarly the Maxwell equation of photon

Fig. 2.8 Gravity covariant

derivative for the Dirac

spinor field
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Fνμ
;ν ¼ 4π

c
jμ ð2:38Þ

with the continuity equation of current

∂μj
μ ¼ 0 ð2:39Þ

Second, the variation principle with respect to the tetrad field leads to the

symmetric energy-momentum tensor Tμν and the conservation law as follows:

δIS ¼ δ
1

c

Z
L

ffiffiffiffiffiffiffi�g
p

d4x ¼ 1

c

Z
T�a
μ δea

μ ffiffiffiffiffiffiffi�g
p

d4x ð2:40Þ

Tμν
ffiffiffiffiffiffiffi�g

p ¼ ηabe
b
ν

∂
∂eaμ

L
ffiffiffiffiffiffiffi�g

p ð2:41Þ

The symmetric energy-momentum tensor

Tμν ¼ �εΠμν � τΠμν gð Þ � 1

4π
gρσFμρFνσ � gμν LEM þ Leð Þ ¼ Tνμ ð2:42Þ

Tμν ¼ TEMμν þ TDiracμν ð2:43Þ

TEMμν ¼ � 1

4π
gρσFμρFνσ � gμνLEM ¼ TEMνμ ð2:44Þ

TDiracμν ¼ �εΠμν � τΠμνðgÞ � gμνLDirac ¼ TDiracνμ ð2:45Þ

satisfies the conservation law

Tλ
μ;λ ¼ 0 ð2:46Þ

Also the antisymmetric angular momentum tensor

Mλμν ¼ xμTλν � xνTλμ ¼ �Mλνμ ð2:47Þ

satisfies the conservation law

∂λM
λk‘ ¼ 0 ð2:48Þ

In Eq. (2.42), we have shown that the symmetric energy-momentum tensor Tμν
comprises not only the symmetric tensors but also polarized geometrical tensor εΠμν
defined as
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εΠμν ¼ hc
4
eλνK

*
ρσμε

λρσκψγκγ5ψ

þ 2 D*
λ þ T* κ

� κλ
	 


Fμν
λ
� þ T*

ρσμF
ρ
�
σ
� ν � 1

2
T*

νρσF
�ρσ
μ

� � ð2:49Þ

with

Fabc ¼ hc
8
εdabcψγdγ5ψ ð2:50Þ

and polarized stress tensor τΠμν(g) with the covariant derivative Dμ(g) given in

Eq. (2.30):

τΠμν gð Þ ¼ c

2
ψγν �ihDμ gð Þ	 


ψ þ h:c:
	 
 ð2:51Þ

In this variation principle, due to the presence of the spin connection γabμ, a new
symmetry-polarized geometrical tensor εΠμν appears and whose antisymmetric
component cancels with that of τΠμν(g) as follows (see Fig. 2.9):

εAμν þ τAμν gð Þ ¼ 0 ð2:52Þ

where

εΠμν ¼ εSμν þ εAμν ð2:53Þ

Fig. 2.9 Covariant form of the quantum electron spin vorticity principle
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εSμν ¼ 1

2
εΠμν þ εΠνμ
	 
 ð2:54Þ

εAμν ¼ 1

2
εΠμν � εΠνμ
	 
 ð2:55Þ

and

τΠμν gð Þ ¼ τSμν gð Þ þ τAμν gð Þ ð2:56Þ

τSμν gð Þ ¼ 1

2
τΠμν gð Þ þ τΠνμ gð Þ	 
 ð2:57Þ

τAμν gð Þ ¼ 1

2
τΠμν gð Þ � τΠνμ gð Þ	 
 ð2:58Þ

2.1.2 The Minkowski Space-Time

2.1.2.1 Spin Vorticity Principle

In the limit to the Minkowski space-time

eaμ ! δaμ, gμν ! ημν ð2:59Þ

the equation of motion of the Dirac spinor field ψ(x) is reduced from Eq. (2.37) to

the Dirac Eq. (1.16) in due course. What is the physical meaning of Eq. (2.52)? The

answer is twofold as is found if we take the limit to the Minkowski space-time.

First, for the time sector with μ¼ 0, ν¼ 1 , 2 , 3, we obtain

rotb~sþ b~Π� 1

2
bψ~γ ihbD0

� �bψ þ h:c:
� �

¼ 0 ð2:60Þ

Second, for the space sector with μ , ν¼ 1 , 2 , 3, we obtain

∂
∂t

b~s�b~t� b~ζ ¼ 0 ð2:61Þ

with torque b~t and zeta force
b~ζ.

This Eq. (2.61) leads to the conclusion that the electron spin torque is

counterbalanced by the chiral electron density, as found in Sect. 1.2.7, Chap. 1.

The physical meaning of Eq. (2.52) is shown in Fig. 2.9.
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2.1.2.2 Energy Density

In the limit to the Minkowski space-time, the energy-momentum tensor TDiracμν is
reduced to

TDirac
μν !

1

2
M þ h:c:ð Þ c ~Πþ 1

2
rot~s

	 

x

c ~Πþ 1
2
rot~s

	 

y

c ~Πþ 1
2
rot~s

	 

z

c ~Πþ 1
2
rot~s

	 

x

�τSxx þ LDirac �τSxy �τSxz
c ~Πþ 1

2
rot~s

	 

y

�τSyx �τSyy þ LDirac �τSyz

c ~Πþ 1
2
rot~s

	 

z

�τSzx �τSzy �τSzz þ LDirac

0BBBBB@

1CCCCCA
ð2:62Þ

with the mass term M

M xð Þ ¼ cψ xð Þ �ihγkDk xð Þ þ mc
	 


ψ xð Þ ð2:63Þ

The electromagnetic component TEMμν of the energy-momentum tensor is also

reduced to

TEM
μν !

Hγ cGx cGy cGz

cGx σxx σxy σxz
cGy σyx σyy σyz
cGz σzx σzy σzz

0BB@
1CCA ð2:64Þ

with the Poynting vector ~G and the Maxwell stress tensor eσ . The conservation law

Eq. (2.46) of energy and momentum is then reduced to (see Figs. 2.10 and 2.11)

Tλ0
;λ ¼ 0 ! ∂

∂t
cP0þc2div~P ¼ 0 ð2:65Þ

Tλk
;λ ¼ 0 ! ∂

∂t
~Pþ div σ

$�τ
$S� �

¼ 0 ð2:66Þ

Pμ ¼
1
2
M þ h:c:ð Þ þ Hγ

c
; ~Πþ 1

2
rot~sþ ~G

� �
ð2:67Þ

It should be noted first that the vorticity plays an important role as momentum,

and it is associated with antisymmetric electronic stress tensor τ
$A. We may further

prove that symmetric electronic stress tensor τ
$S plays an important role as tension

~τ S ¼ div τ
$S compensating the Lorentz force ~L as
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∂
∂t

~G ¼ �~L� div σ
$ ð2:68Þ

PDirac ¼ ~Πþ 1

2
rot~s ð2:69Þ

Consequently, after some manipulations, we finally arrive at

∂
∂t

PDirac ¼ ∂
∂t

~Πþ 1

2
rot~s

� �
¼ ~Lþ~τS ð2:70Þ

~τS ¼ div τ
$S, ~τSk ¼ ∂‘τ

Sk‘ ð2:71Þ

Fig. 2.10 Energy conservation law in the limit to the Minkowski space-time

Fig. 2.11 Momentum conservation law in the limit to the Minkowski space-time
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τSμν ¼ 1

2
τΠμν þ τΠνμ
	 
 ð2:72Þ

This assures the equation of motion using solely the symmetric part of the tensor
τSk‘ in the right-hand side. This is the quantum electron spin vorticity principle in

Sect. 1.2.8, Chap. 1 (see Fig. 1.22). The physical meaning of Eq. (2.52) is shown in

Fig. 2.9.

Second, the conservation law Eq. (2.48) of angular momentum is then reduced to

(see Fig. 2.12)

∂λM
λk‘ ¼ 0 ! ∂

∂t
~J þ div ~r � σ

$� τ
$S

� �� �
¼ 0 ð2:73Þ

1

c
M0k‘ ! ~J ¼ ~r � ~Πþ~r � 1

2
rot~sþ~r � ~G ð2:74Þ

Finally, for finite systems, the virial theorem is invoked (Landau and Lifshitz

1973) to arrive at Z
d3~r T00


 � ! EQED ¼ mc2
Z

d3~r ψψh i ð2:75Þ

We have shown the spin torque intrinsic to the spin-1/2 fermion is controlled by

the chiral electron density, and the origin of the chiral nature is manifest in the

principle of equivalence in general relativity. The time evolution of the electron

spin is driven by the antisymmetric component of the electronic stress tensor

through the vorticity. This is referred to as the quantum electron spin vorticity

principle.

It is the relativity theory of spin, where inherent spin-orbit coupling is realized in

between spin and orbital angular momentum. Imagine a bulk magnet. The magnet

Fig. 2.12 Angular momentum conservation law in the limit to the Minkowski space-time
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is phenomenologically composed of many magnetic domains. Each magnetic

domain has its unique spin, which is the average of spin density within the domain.

For the sake of simplicity, let first electron spin density respond to an applied

magnetic field (or even an applied electric field in some cases in recent spintronics)

and change through the domain wall, which is called “spin torque transfer” in the

experiments of spintronics industry (note the simplification). Our prediction is that

the spin torque does exist even in the stationary state when the spin torque is exactly

canceled out with the zeta force. In the nonstationary state, however, the external

magnetoelectric medium disturbs the intrinsic balance in between the spin torque

and the zeta force established in the stationary state.

Of course, realistically, in addition to the spin of the electrons, the complexity

origin of the magnetic spin can be either from the motion of electrons or nuclei,

where the spin torque combinations totally can be treated by the equations of

motion of angular momentum augmented by the ad hoc nuclear spin or more

fundamentally the quark spin with the non-Abelian gauge.

For future technology of spintronics and photonics, the interaction of chirality of

electron spin with another particle such as electron, nucleus, and photon (vector

potential) should play an important role. Furthermore, the general relativity has

recently been of vital importance with our daily life in particular for ultrahigh-

precision communication with artificial satellite (e.g., GPS). The intrinsic formu-

lations and the concrete analytical examples of the spin torque and zeta force

presented in this book should help us understand the importance of chirality in

modeling of materials of technological importance.

2.2 Rigged Field Theory

In application to chemical reaction dynamics, we have the Rigged QED theory

where nuclear degrees of freedom are treated in a unified manner with QED. We

shall examine here the nonrelativistic treatment of the Rigged QED theory and call

it the primary Rigged QED theory. Note that in the nonrelativistic limit, we have a

similar treatment by Lepage (Caswell and Lepage 1986).

2.2.1 Rigged QED Theory

Since we plug in the nuclear fields, we may first distinguish electron by the obvious

suffix “e” in such a way as
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ihγaeaμDeμ gð Þ � mec
	 


ψ e ¼ 0 ð2:76Þ

We conventionally put the Schr€odinger field equation of a’th nucleus onto the

curved space-time. The procedures are (1) first, ignore the spin connection in

Deμ(g), (2) second, use the Dirac representation with ψe and approximate the

small component as the multiplication of � 1
2mec

ihσkekμDeμ to the large component,

and (3) third, ignore again the spin-dependent terms in the resulting equation

σkek
μDeμ

	 

σ‘e‘

νDeν

	 
 ! ek
μDeμ

	 
2 ð2:77Þ

leading to

ihe0μDaμ � mac
	 


ψa ¼
ihð Þ2
2mac

ek
μDaμ

	 
2
ψa ð2:78Þ

where the large component for electron is here used as ψa for the nuclear

Schr€odinger field. Note that the mass term is indispensable since we need it for

the source of gravitation. We may identify this as the Schr€odinger field equation

without a priori spin and use this to plug in nuclear degrees of freedom into our

formalism and call it as the Rigged QED theory in the curved space-time. In the

course to the Minkowski space-time limit, this equation reduces to the usual

Schr€odinger field equation plus gravitational potential maΦ as shown in Sect. 2.4.1.

In the limit to the Minkowski space-time, we use the Dirac field Eq. (1.16) with

the Schr€odinger field Eq. (2.178) of a’th nucleus as follows:

ihγμDeμ � mec
	 


ψ e ¼ 0 ð2:79Þ

ih
∂
∂t

χa ¼ � h2

2ma

~Da
2
χa þ qaA0χa ð2:80Þ

where the gravitational potential maΦ in Eq. (2.178) is neglected (see Sect. 2.4.1).

We have electron spin vorticity here but no spin vorticity for nuclei.

We get with obvious notation the momentum conservation law

∂
∂t

~PRigged QED ¼ �div σ
$� τ

$
Rigged QED

S
� �

ð2:81Þ

and the angular momentum conservation law

∂
∂t

~JRigged QED ¼ �div ~r � σ
$� τ

$
Rigged QED

S
� �� �

ð2:82Þ

The virial theorem for finite-system energetics is again used to obtain the

energetics of the Rigged QED theory
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ERigged QED ¼ Ee;Rigged QED þ
X
a

Ea;Rigged QED ð2:83Þ

Ee;Rigged QED ¼ mec
2

Z
d3~r ψ eψ eh i ð2:84Þ

Ea;Rigged QED ¼ �
Z

d3~r Tah i ð2:85Þ

Ta ¼ � h2

2ma
� 1
2

χ{a~D
2

aχa þ h:c:
� �

ð2:86Þ

2.2.2 Primary Rigged QED Theory

We make approximation to electron as with Eq. (2.78) using symbols α¼ e , a
collectively as

ihe0μDαμ � mαc
	 


ψα ¼
ihð Þ2
2mαc

ek
μDαμ

	 
2
ψα ð2:87Þ

In the limit to the Minkowski space-time, we further use approximation as of

Eq. (2.80):

ih
∂
∂t

χα ¼ � h2

2mα

~Dα
2
χα þ qαA0χα ð2:88Þ

We have lost the spin vorticity of electron and lost the antisymmetric component of

the stress tensor of electron. We have the momentum conservation law

∂
∂t

~PPrimary Rigged QED ¼ �div σ
$� τ

$
Primary Rigged QED

S
� �

ð2:89Þ

and the angular momentum conservation law

∂
∂t

~JPrimary Rigged QED ¼ �div ~r � σ
$� τ

$
Primary Rigged QED

S
� �� �

ð2:90Þ

Using the virial theorem for finite-system energetics again, Eqs. (2.83), (2.84),

(2.85), and (2.86) are reduced to the energetics of the primary Rigged QED theory

EPrimary Rigged QED ¼
X
α

Eα; Primary Rigged QED ð2:91Þ
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Eα; Primary Rigged QED ¼ 1

2

Z
d3~r τα; Primary Rigged QED

Skk

 � ¼ �

Z
d3~r Tαh i ð2:92Þ

τα; Primary Rigged QED
Sk‘ ¼ h2

4mα
χ{αDαkDαlχα � Dαkχαð Þ{Dαlχα þ h:c:

� �
ð2:93Þ

Tα ¼ � h2

2mα
� 1
2

χ{α~D
2

αχα þ h:c:
� �

ð2:94Þ

2.3 SUGRA Energy-Momentum Tensor

2.3.1 Stress Tensor

In Sect. 2.1.1.2, the Dirac spinor field is a coordinate scalar and a Lorentz spinor,

and the covariant derivative Dμ(g) is not only a coordinate scalar but also a Lorentz
vector. It should be noted that the spin connection in the tetrad formalism is not

unique. In SUGRA (see Sect. 2.3.3 for mathematical details), we have a new term

γabμ(SUGRA) added to γabμ as (Tachibana 2014)

Dμ SUGRAð Þ ¼ ∂μ þ i
q

hc
Aμ þ i

1

2h
γabμJ

ab þ i
1

2h
γabμ SUGRAð ÞJab

¼Dμ gð Þ þ i
1

2h
γabμ SUGRAð ÞJab

ð2:95Þ

Then the symmetry-polarized stress tensor of electron τΠμν(g) is changed

to τΠμν(SUGRA) with the covariant derivative Dμ(SUGRA)

τΠμν SUGRAð Þ ¼ c

2
ψγν �ihDμ SUGRAð Þ	 


ψ þ h:c:
	 
 ð2:96Þ

With the new spin connection term given, the new symmetry-polarized geometrical
tensorεΠμν(SUGRA) appears, and again now that the energy-momentum tensor
Tμν(SUGRA) is symmetric and hence the electronic part Teμν(SUGRA) is symmet-
ric, the resultant antisymmetric component of the εAμν(SUGRA) cancels with τAμν

(SUGRA):

εAμν SUGRAð Þ þ τAμν SUGRAð Þ ¼ 0 ð2:97Þ

where

εAμν SUGRAð Þ ¼ 1

2
εΠμν SUGRAð Þ � εΠνμ SUGRAð Þ	 
 ð2:98Þ

82 2 Energy-Momentum Tensor of QED



τAμν SUGRAð Þ ¼ 1

2
τΠμν SUGRAð Þ � τΠνμ SUGRAð Þ	 
 ð2:99Þ

2.3.2 Energy-Momentum Tensor

We shall examine an example of the symmetric energy-momentum tensor of

a simple SUGRA in the case of a simple SUSY with linearized gravity. See

Sect. 2.3.3 as mathematical Appendix.

A weak classical gravity is represented by the infinitesimal transformation

(Weinberg 1995)

xμ xð Þ ! x0μ xð Þ ¼ xμ xð Þ þ ξμ xð Þ ð2:100Þ
Λa

b xð Þ ! Λ0a
b xð Þ ¼ δab þ ωa

b xð Þ ð2:101Þ
eaμ xð Þ ¼ δaμ þ 2kϕa

μ xð Þ ! e0aμ x0ð Þ ¼ δaμ þ 2kϕ0a
μ x0ð Þ ð2:102Þ

ϕμν xð Þ ! ϕ0
μν x0ð Þ ¼ ϕμν xð Þ þ 1

2k
�∂ξμ xð Þ

∂xν
þ ωμν xð Þ

� �
ð2:103Þ

where

k ¼
ffiffiffiffiffiffiffiffiffi
8πG

p h
c2

ð2:104Þ

This leads to a weak gravitational field hμν(x) as

gμν xð Þ ¼ ημν þ 2khμν xð Þ ð2:105Þ
hμν xð Þ ¼ ϕμν xð Þ þ ϕνμ xð Þ ð2:106Þ

The action integral given in Eq. (2.1) is cast into the linearized form as

I ¼ c

2κ

Z
R

ffiffiffiffiffiffiffi�g
p

d4xþ 1

c

Z
L

ffiffiffiffiffiffiffi�g
p

d4x

�����!linearized
Ilinearized ¼ 1

c

Z
d4x �h2Eμνhμν � kTμνhμν þ L 0ð Þ

linearized

� � ð2:107Þ

Glinearized
μν ¼ 2kEμν , Eμν

¼ 1

2

□hμν � ∂α∂μ
hα

ν � ∂α∂ν
hα

μ

þ∂ν∂μ
hαα � ημν□hαα þ ημν∂α∂β

hαβ

� �
¼ Eνμ ð2:108Þ

where Eμν is the linearized Einstein tensor and L(0)linearized is the linearized Lagrang-
ian density of QED excluding the interaction with gravity. In the right-hand side of
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Eq. (2.107), we have the symmetric energy-momentum tensor Tμν¼ Tνμ and hence
the symmetric stress tensor Teμν¼ Teνμ as the electronic part.

In SUGRA, we have the gauge transformation of the spin-2 field of graviton

hμν(x) as

hμν xð Þ ! h0μν xð Þ ¼ hμν xð Þ � 1

2k

∂ξμ xð Þ
∂xν

þ ∂ξν xð Þ
∂xμ

� �
ð2:109Þ

The graviton is associated with the superpartner, called the gravitino ψμ(x),
represented by the spin-3/2 Rarita–Schwinger field, whose gauge transformation is

ψμ xð Þ ! ψ 0
μ xð Þ ¼ ψμ xð Þ � ∂μψ xð Þ ð2:110Þ

where ψ(x) is a spin-1/2 Majorana field. These are the components of the metric

superfield Hμ(x), whose gauge transformation is

Hμ xð Þ ! H0
μ xð Þ ¼ Hμ xð Þ � Δμ xð Þ ð2:111Þ

where Δμ(x) is given by the linear superfield �DΞ xð Þ as

Δμ xð Þ ¼ �DΞ xð Þγμ ð2:112Þ

The gauge fields are then calculated to be

ϕμν xð Þ ¼ VH
μν xð Þ � 1

3
ημνV

Hλλ xð Þ ð2:113Þ

ψμ xð Þ ¼ 2λHμ xð Þ � 2

3
γμ=λ

H xð Þ þ 2

3
ihγμ∂

ρωH
ρ xð Þ ð2:114Þ

with

ξμ xð Þ ¼ 2kvμ xð Þ ð2:115Þ
vμ xð Þ ¼ �hωΞ xð Þγμ þ const ð2:116Þ

ωμν xð Þ ¼ k ∂νvμ xð Þ � ∂μvν xð Þ � VΔ
μν xð Þ þ VΔ

νμ xð Þ	 
 ð2:117Þ
ψ xð Þ ¼ 4ihMΞ xð Þ � 4hγ5N

Ξ xð Þ þ const ð2:118Þ

Consequently, the gauge-invariant linearized SUGRA action integral is found

to be
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Ilinearized SUGRAð Þ

¼ Ilinearized � 1

c

Z
d4x

1

2
ψμL

μ � c� 1

2
kh�1�Snew

μ
ψμ �

4

3
bμbμ þ 2p2 þ 2s2
	 


þkh�1 �Rμbμ þ 2pAX�2sBX
	 


0@ 1A
ð2:119Þ

where Snew
μ is the supersymmetry current,

Rμ ¼ 2CΘμ ð2:120Þ

is theR-current, and the others are

Lσ ¼ �h
c
ενμκσ∂κγ5γνψμ ð2:121Þ

bσ ¼ DHσ � h2∂σ∂μC
Hμ þ 1

2
hενμκσ∂κV

H
μν ð2:122Þ

p ¼ ih∂μ
NH

μ ð2:123Þ
s ¼ ih∂μ

MH
μ ð2:124Þ

Further optimization of the auxiliary fields bμ , p, and s leads to

Ilinearizedopt SUGRAð Þ

¼ Ilinearized � 1

c

Z
d4x

1

2
ψμL

μ � c� 1

2
kh�1�Snew

μ
ψμ

þ3

8
k2h�2 1

2
RμRμ þ AX

	 
2 þ BX
	 
2� �

0B@
1CA ð2:125Þ

We may identify the negative energy density �3
8
k2h�2 AX

	 
2 þ BX
	 
2� �

for the

anti-de Sitter space-time.

ρVAC xð Þ ¼ ρSVAC xð Þ � 3

8
k2h�2 AX xð Þ	 
2 þ BX xð Þ	 
2� �

ð2:126Þ

We have the SUGRA action added toIlinearized, as shown in Eqs. (2.119) and
(2.125), so that we have again the symmetric energy-momentum tensor Tμν¼ Tνμ
and hence the symmetric stress tensor Teμν¼ Teνμ as the electronic part.

2.3.3 SUGRA Formalism

2.3.3.1 The Majorana Spinor

First, the Majorana spinor satisfies

Cθ ¼ �θ ð2:127Þ
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θ ¼ θ{γ0 ¼ �tθC ¼ tθ tC ¼ t Cθð Þ ð2:128Þ
t ∂

∂θ

� �
θMθ
	 
 ¼ 2Mθ ð2:129Þ

θ1Mθ2 ¼ θ2C
�1tMCθ1 ð2:130Þ

θθ ¼ �1

4
θθ
	 
þ 1

4
γμγ

5 θγ5γ
μθ

	 
þ 1

4
γ5 θγ5θ
	 
 ð2:131Þ

A spinor is decomposed into a pair of the Majorana spinors as

s ¼ θþ þ iθ� ð2:132Þ

θþ ¼ 1

2
1� Cð Þs, θ� ¼ 1

2i
1þ Cð Þs ð2:133Þ

Cθ� ¼ �θ� ð2:134Þ

2.3.3.2 The Haag–Lopuszanski–Sohnius Theorem

The 0; 1
2

	 

-fermionic generatorQ _U r is transformed under the Lorentz transformation

as

U Λ�1
	 


Q _U rU Λð Þ ¼ λη _U
_V Λð ÞQ _V r ð2:135Þ

~J;Q _Ur

� � ¼ �h
2
~σ _U

_V Q _V r,
~K;Q _Ur

� � ¼ �h
2
i~σ _U

_V Q _V r ð2:136Þ

~A;Q _Ur

h i
¼ 0, ~B;Q _Ur

� � ¼ �h
2
~σ _U

_V Q _V r ð2:137Þ

with the charge conjugation operator C and the complex conjugate operator K, the
Dirac spinor representation is

C
eAWKQ _W r

Q _U r

� �
C�1 ¼ � eAWKQ _W r

Q _U r

� �
ð2:138Þ

Likewise, the 1
2
; 0

	 

-fermionic generator PAs is transformed under the Lorentz

transformation as

U Λ�1
	 


PAsU Λð Þ ¼ λξ
A
B Λð ÞPBs ð2:139Þ
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~J;PAs
� � ¼ �h

2
~σ A
BP

Bs, ~K;PAs
� � ¼ þh

2
i~σ A

BP
Bs ð2:140Þ

~A;PAs
h i

¼ �h
2
~σ A
BP

Bs, ~B;PAs
� � ¼ 0 ð2:141Þ

with Dirac spinor representation

C
PAs

�e _U _B KP
Bs

� �
C�1 ¼ � PAs

�e _U _B KP
Bs

� �
ð2:142Þ

The Haag–Lopuszanski–Sohnius theorem states that

Q _Ur;KQ _Vs

� � ¼ 2δrs σ
μð Þ _U VPμ ð2:143Þ

fQ _U r,Q _V sg ¼ e _U _V Zrs, Zrs ¼ �Zsr ð2:144Þ
eAWKQ _W r

Q _U r

� �
;

eBXKQ _X s

Q _U s

� �{

γ0

( )
¼ 2γμPμδrs � 1þ γ5

2
KZrs

þ 1� γ5
2

Zrs ð2:145Þ

where Pμ is the 4-momentum operator and Zrs are the central charges. For simple

supersymmetry, we have null Zrs.

2.3.3.3 The Salam–Strathdee Superfield with Simple SUSY

The Salam–Strathdee superfield S with simple SUSY is constructed by using the

Majorana spinors θ,ω, and λ as

S ¼ C� i θγ5ω
	 


�1

2
i θγ5θ
	 


M � 1

2
θθ
	 


N � 1

2
θγ5γμθ
	 


Vμ

�i θγ5θ
	 


θ λ� 1

2
ih=∂ω

� �� �
� 1

4
θγ5θ
	 
2

D� 1

2
h2□C

� � ð2:146Þ

where the component C of S may be emphasized with superscript CS, etc. Taking

the h.c., we have

S{ ¼ C{ � i θγ5ω
	 


�1

2
i θγ5θ
	 


M{ � 1

2
θθ
	 


N{ � 1

2
θγ5γμθ
	 


Vμð Þ{

�i θγ5θ
	 


θ λ� 1

2
ih=∂ω

� �� �
� 1

4
θγ5θ
	 
2

D{ � 1

2
h2□C{

� � ð2:147Þ

If with the Hermitian superfield S{¼ S, we have
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C{,M{,N{,Vμ{,D{ ¼ C,M,N,Vμ,D ð2:148Þ

The infinitesimal translation δS is defined as

δS ¼ 1

i
α

eAWKQ _W r

Q _U r

� �� �
S

¼ αQð ÞS
ð2:149Þ

eAWKQ _W r

Q _U r

� ��
; S

�
¼ iQS ð2:150Þ

The generator Q should then satisfy

Q _U ;
t CQð ÞV� � ¼ �2ih σμð Þ _U V∂μ ð2:151Þ

Q _U ;Q _V

� � ¼ 0 ð2:152Þ

with the Dirac spinor representation

Q ‘;
�Q ‘

� � ¼ �2ih γμð Þ‘‘∂μ ð2:153Þ

Also, the generator in the superfield coordinate representation is given as

Q ¼ �t ∂

∂θ

� �
� ih=∂θ ¼ tC

∂
∂θ

� ih=∂θ ð2:154Þ

�Q ¼ t Cqð Þ ¼ t ∂
∂θ

� �
þ ihθ=∂ ð2:155Þ

with the Dirac spinor representation

Q ‘ ¼ C
‘‘

∂
∂θ‘

� ih γμ
	 


‘‘
θ
‘
∂μ ð2:156Þ

�Q ‘ ¼ Q ‘C‘‘ ¼ t ∂
∂θ‘

� �
� iht Cγμθð Þ‘∂μ ð2:157Þ

The derivative in the superfield coordinate representation is defined as

D ¼ �t ∂

∂θ

� �
þ ih=∂θ ¼ tC

∂
∂θ

þ ih=∂θ ð2:158Þ

�D ¼ t CDð Þ ¼ t ∂
∂θ

� �
� ihθ=∂ ð2:159Þ

with the Dirac spinor representation
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D‘; �D‘

� � ¼ 2ih γμð Þ‘‘∂μ ð2:160Þ

We have the commutation relationships

D;Qf g ¼ 0 ð2:161Þ

and

D; δ½ � ¼ 0 ð2:162Þ

The infinitesimal translation of the components of S should then be obtained as

δC ¼ i αγ5ωð Þ ð2:163Þ
δω ¼ �hγ5 =∂C�M þ iγ5N þ i=V

	 

α ð2:164Þ

δM ¼ � α λ� ih=∂ω
	 
	 
 ð2:165Þ

δN ¼ i αγ5 λ� ih=∂ω
	 
	 
 ð2:166Þ

δVμ ¼ αγμλð Þ � ih α∂μωð Þ ð2:167Þ

δλ ¼ 1

2
h ∂μ=V; γ

μ
� �þ iγ5D

� �
α ð2:168Þ

δD ¼ i αγ5 �ih=∂λ
	 
	 
 ð2:169Þ

Action integral for interaction of supercurrent and metric superfield is intro-

duced as

Iint ¼ 2k

Z
d4x Hμ xð ÞΘμ xð Þ� �

D

=hc ð2:170Þ

The supercurrent is defined as

Θμ ¼ i

12

X
n

�4h2 Φn
{∂μΦn �Φn∂μΦn

{	 
� ih �DΦn
{	 

γμ DΦnð Þ	 
	 
� c

ð2:171Þ

where Φn is the chiral superfield

Φn ¼ ϕn �
ffiffiffi
2

p
θ
1þ γ5

2
ψn

� �
þ θ

1þ γ5
2

θ

� �
Fn � 1

2
ih θγ5 =∂ϕnθ
	 


þ 1ffiffiffi
2

p ih θγ5θ
	 


θ
1� γ5

2
=∂ψn

� �
þ 1

8
h2 θγ5θ
	 
2

□ϕn

ð2:172Þ

The supercurrent conservation laws are found to be
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γμDΘμ ¼ DX ð2:173Þ
�DΘμγ

μ ¼ � �DX ð2:174Þ

where X denotes the real chiral superfield

X ¼ A� θψ
	 


�1

2
i θγ5θ
	 


Gþ 1

2
θθ
	 


Fþ 1

2
h θγ5γμθ
	 


∂μ
B

þ θγ5θ
	 


θ �1

2
ihγ5 =∂ψ

� �� �
þ 1

8
h2 θγ5θ
	 
2

□A

ð2:175Þ

2.4 Examples

2.4.1 Rigged QED Theory in the Curved Space-Time

Put

ψa ¼ χae
�imac

2t=h ð2:176Þ

in Eq. (2.78) under the weak gravitation condition with only non-Kronecker delta

insertion

e0
0 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Φc2

q � 1� Φ
c2

ð2:177Þ

Then we obtain

ih
∂
∂t

χa ¼ � h2

2ma

~Da
2 þ qaA0 þ maΦ

� �
χa ð2:178Þ

This is the correct equation of motion for neutron, if we identify Φ as the

gravitation potential

ih
∂
∂t

χneutron ¼ � h2

2mneutron

Δþ mneutronΦ
� �

χneutron ð2:179Þ

That Eq. (2.179) is correct has been demonstrated experimentally using a neutron

interferometer (Collela et al. 1975).
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2.4.2 The Majorana Particle

The fundamental equations of motion of the Majorana particle are summarized.

The Majorana equations are

ih∂ν σνð ÞA _U � mLe
iδLceAUK

� �
η _U ¼ 0 ð2:180Þ

ih∂ν σνð Þ _UA � mRe
iδRce _U _AK

	 

ξA ¼ 0 ð2:181Þ

with the Klein–Gordon equations

ih∂ð Þ2 � mLcð Þ2
� �

η _U ¼ 0 ð2:182Þ

ih∂ð Þ2 � mRcð Þ2
� �

ξA ¼ 0 ð2:183Þ

where mR , L are the real masses and δR , L are the real phases.

The charge conjugation properties are

C ψM1

�� � ¼ ξM1
ψM1

c

�� � ¼ ψM1

�� � ð2:184Þ
ψM1

c ¼ Cγ0KψM1
¼ �ψM1

ð2:185Þ
C ψM2

�� � ¼ ξM2
ψM2

c

�� � ¼ ψM2

�� � ð2:186Þ
ψM2

c ¼ Cγ0KψM2
¼ �ψM2

ð2:187Þ
ξM1

¼ ξM2
¼ �1 ð2:188Þ

The Dirac spinor representations are

ih=∂� mLe
iδLc

	 

ψM1

¼ 0, ψM1
¼ eAWKη _W

η _U

� �
ð2:189Þ

ih=∂� mRe
iδRc

	 

ψM2

¼ 0, ψM2
¼ ξA

�e _U _B Kξ
B

� �
ð2:190Þ

and

ih=∂ΨM � mMc �ð ÞΨMc ¼ 0 ð2:191Þ

ΨM ¼ ξA

η _U

� �
ð2:192Þ

ΨMc ¼ Cγ0KΨM ¼ �ð Þ eAWKη _W

�e _U _B Kξ
B

� �
ð2:193Þ
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mMc ¼ mLe
iδLc 0

0 mRe
iδRc

� �
ð2:194Þ

2.4.3 The Atiyah–Singer Index Theorem

We quickly review the radiation corrections to the currents of electron in QED.

The charge is conserved but not the chiral charge since we have no continuity

equation for the latter because of the nonzero mass of electron. Actually, we have

residual pseudoscalar as the fourth-rank antisymmetric tensor

1

cq
∂μj5

μ xð Þ ¼ i
2mec

h
ψ xð Þγ5ψ xð Þ ð2:195Þ

which is not zero unless me is zero.

The Euclidean path integrals have been widely used to treat the radiative

corrections, where we realize the corrected charge current Jμ(x) satisfies the con-

servation law

∂μJ
μ xð Þ ¼ 0 ð2:196Þ

by the Ward–Takahashi identities, but Eq. (2.195) is modified for the corrected

chiral current J5
μ(x)

1
cq∂μJ5

μ xð Þ
D E

H

���
A fixed

�i
2mec

h
Ψ xð Þγ5Ψ xð Þ
 �

H

����
A fixed

¼ 2� 1

32π2
q

hc

� �2

εμνρσFμν xð ÞFρσ xð Þ
ð2:197Þ

under the fixed background field Aμ(x) as

OH yð Þh iH
��
A fixed

¼

Z
dψ xð Þ½ � dψ xð Þ½ �exp i

hc

Z
d4xL xð Þ

� �
o yð ÞZ

dψ xð Þ½ � dψ xð Þ½ �exp i

hc

Z
d4xL xð Þ

� �
��������
A fixed

ð2:198Þ

The right-hand side of Eq. (2.197) is the Chern–Pontryagin density

A xð Þ ¼ 1

32π2
q

hc

� �2

εμνρσFμν xð ÞFρσ xð Þ ð2:199Þ

This is known as the axial anomaly and is proportional to the divergence of the

Chern–Simons class Gμ(x):

92 2 Energy-Momentum Tensor of QED



Gμ xð Þ ¼ εμνρσA
ν xð Þ∂ρ

Aσ xð Þ ð2:200Þ

∂μG
μ xð Þ ¼ 1

2
Fμν xð ÞeFμν xð Þ ð2:201Þ

with

eFμν xð Þ ¼ 1

2
εμνρσFρσ xð Þ ð2:202Þ

The topology of the gauge field obeys the Atiyah–Singer index theorem:

ν ¼
Z

d4xA xð Þ

¼
Z

d4x
1

32π2
q

hc

� �2

εμνρσFμν xð ÞFρσ xð Þ
ð2:203Þ

Here ν is the index of ih=D xð Þ:

ν ¼ ind ih=D xð Þð Þ ¼ nþ � n� ¼
Z

d4x
X
n0

ϕ �ð Þ
n0 xð Þγ5ϕ �ð Þ

n0 xð Þ ð2:204Þ

ih=D xð Þϕ �ð Þ
n0 xð Þ ¼ 0ϕ �ð Þ

n0 xð Þ ð2:205Þ
γ5ϕ

�ð Þ
n0 xð Þ ¼ �ϕ �ð Þ

n0 xð Þ ð2:206Þ

where n� are the number of zero modes of ih=D xð Þ that have eigenvalues �1 for γ5.

2.5 Summary

QED is reformulated in a way that is covariant under general coordinate transfor-

mation. The consequence gives the right answer to the odd question “what is

momentum of electron spin?” raised in Chap. 1. The whole picture of stress tensor

in Chap. 1 has thus been unified.

In application to chemical reaction dynamics in finite systems, we have devised

the Rigged QED theory where nuclear degrees of freedom are treated in a unified

manner with QED. The nonrelativistic treatment of the Rigged QED theory is also

examined as the primary Rigged QED theory. We have used the virial theorem for

the finite-system energetics of the Rigged QED theory and the primary Rigged

QED theory.

The theory has also been extended in this chapter using a simple SUGRA, which

is a simple SUSY model of gravity.
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Chapter 3

Chemical Ideas of QED

Abstract In Chap. 1, we have studied the symmetry-polarized internal self-stress

tensor of electron. In Chap. 2, we have studied the antisymmetric component of the

stress tensor of electron in detail. It remains a simple question: for what does the

symmetric component work? The answer is first chemical idea of QED is the

spindle structure of covalency predicted by the symmetric component of the stress

tensor of electron. We have so long considered relativistic theory as merely a slight

correction for the interpretation in chemical phenomena. However, we shall clarify

that the Hamiltonian of QED, derived from the picture of “action through medium”

based on the relativistic theory, gives a novel image of the chemical interaction

even in the nonrelativistic limit. Actually, we shall use the primary Rigged QED

theory for our purpose. As a result, conventional images of the chemical interaction

based on “action at a distance” are replaced with the new images of them given by

the picture of “action through medium” without exception. We shall visualize not

only the spindle structure but also various basic chemical concepts in chemical

reaction systems in real three-dimensional space. Shape volume discriminates the

region of classical atoms and molecules. The regional chemical potential inequality

principle gives the electron transferability from one region to another.

Keywords Lagrange point • Lagrange surface • Nonclassical bond order • Primary

Rigged QED theory • Regional chemical potential • Shape volume • Spindle

structure • Stress tensor • Tension

3.1 Overview

Atomic theory of the universe coined by an ancient Greek pre-Socratic philosopher

Democritus was reformulated by Einstein through his theory of the Brownian

motion of minute particles suspended in a liquid and has been proved by Perrin

experimentally (see Fig. 3.1). Pauling and Wilson have elaborated chemical bond

theory of atoms using quantum chemistry (Pauling and Wilson 1935).

Atom as minimum unit of human body is a cell. As an analogy to the spindle

structure observed in cell division (see Fig. 3.2), it is predicted by QED in covalent

bond division (see Fig. 3.3).
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The key idea underlying the spindle structure is the internal self-stress of QED
(see Chap. 1) as applied to study a unified scheme for generalized chemical

reactivity. The chemical reactivity in this scheme is the force acting on a pair of

electronic drop regions (Tachibana 2001, 2002). This is a new kind of chemical
force acting in between electrons not in between nuclei. A new look at the chemical

bond is thereby elucidated.

The spindle structure here in QED is a geometrical object of a region where

principal electronic stress is positive along a line of principal axis of the electronic

stress that connects a pair of the electronic drop region RDs of atoms and molecules.

The spindle structure of covalency is the first chemical idea of QED that is

alternative to the occupancy of bonding molecular orbital (see Fig. 3.4).

The anti-spindle structure of no covalency should also be characteristic of QED

that is alternative to the overwhelming occupancy of antibonding molecular orbital

over and above the bonding molecular orbital. The bonding and antibonding energy

densities are visualized locally.

The concept of energy density using the stress tensor of QED is found in Sect.

3.1.2 and onward in this chapter for more details (Tachibana 2003, 2004). The

symmetrical component τ
$S of the electronic stress tensor has been proved to predict

the emergence of the covalent bond in terms of the spindle structure; see Sect. 3.2

and onward in this chapter for more details. The theory of the spindle structure has

also been developed to visualize the nonclassical bond order concept of chemical

bond and the regional chemical potential. For physicochemical properties of

Fig. 3.1 Experimental proof of atom (Reproduced from Perrin 1914)
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materials, the Coulson conjecture of energy density (Coulson 1961) has been

organized in terms of thermodynamics by using the regional chemical potential;

see Sect. 3.5 and onward in this chapter for more details (Tachibana 2001).

In this chapter, all numerical calculations are shown in atomic unit using the

nonrelativistic limit of the primary Rigged QED theory (see Sect. 2.2.2, Chap. 2)

unless otherwise stated explicitly.

3.1.1 Primary Rigged QED Theory

We use the primary Rigged QED theory presented in Sect. 2.2.2, Chap. 2 as

bHPrimary Rigged QED xð Þ ¼ bHγ xð Þ þ
X
α

bTα xð Þ ð3:1Þ

bTα xð Þ ¼ � h2

2mα
� 1
2
bχ{α xð Þb~D2

α xð Þbχα xð Þ þ h:c:

� �
ð3:2Þ

The energy flow is found to be

Metaphase

Nature Reviews

a

b
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Anaphase Telophase

Mitotic spindle
Spindle midzone
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Midbody

Late anaphase

Late telophase Early telophase
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Central spindleCentrosome Microtubule Interpolar
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Astral
microtubuleKinetochore

10 mm

Fig. 3.2 Spindle structure of mitosis (Reproduced from Glotzer 2009)
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∂
∂t
bHPrimary Rigged QED xð Þ ¼ �div c2

1

2

b~G xð Þ þ b~G{ xð Þ
� �

þ
X
α

b~sα xð Þ
 !

ð3:3Þ

with

bs kα xð Þ ¼ 1

2ih
h2

2mα

� ��
� bχ{α xð ÞbDαk xð Þb~D2

α

xð Þbχα xð Þ

þ bDαk xð Þbχα xð Þ
� �{ b~D2

α xð Þbχα xð Þ � h:c:

�
ð3:4Þ

The virial theorem of the primary Rigged QED theory leads to

Fig. 3.3 Spindle structure for H2 (left) and anti-spindle structure for He2 (right)

Fig. 3.4 Orbital interaction

scheme of covalent bond

(left) and no covalent bond

(right)
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EPrimary Rigged QED ¼
X
α

Eα;Primary Rigged QED ð3:5Þ

Eα;Primary Rigged QED ¼ 1

2

ð
d3~r bτα;Primary Rigged QED

Skk xð Þ
D E

¼ �
ð
d3~r bTα xð Þ
D E

ð3:6Þ

where

bτα;Primary Rigged QED
Sk‘ xð Þ

¼ h2

4mα
bχ{α xð ÞbDαk xð ÞbDαl xð Þbχα xð Þ � bDαk xð Þbχα xð Þ

� �{bDαl xð Þbχα xð Þ þ h:c:

� �
ð3:7Þ

b
τ
$

α;Primary Rigged QED

S

xð Þ
� �

¼ τ
$ S

α xð Þ ¼
τ Sαxx xð Þ τ Sαxy xð Þ τ Sαxz xð Þ
τ Sαyx xð Þ τ Sαyy xð Þ τ Sαyz xð Þ
τ Sαzx xð Þ τ Sαzy xð Þ τ Sαzz xð Þ

0B@
1CA

��!diag
τS11α xð Þ 0 0

0 τS22α xð Þ 0

0 0 τS33α xð Þ

0@ 1A, τS11α xð Þ � τS22α xð Þ � τS33α xð Þ
ð3:8Þ

b~τSα xð Þ ¼ div
b
τ
$

α

S

xð Þ ð3:9Þ

bTα xð Þ ¼ � h2

2mα
� 1
2
bχ{α xð Þb~D2

α xð Þbχα xð Þ þ h:c:

� �
ð3:10Þ

It should be noted that the nuclear motion is cast in the field theory. So the wave-

packet prescription of the nuclear motion is indispensable for the simple picture of

the regional energy partitioning Eq. (3.5). The adiabatic approximation gives rise to

another virial for nuclei, which vanishes for equilibrium nuclear configurations but

remains finite for nonequilibrium nuclear configurations.

3.1.2 Shape Volume of Shell Structure and the Intrinsic
Electronic Transition State

The redistribution of electron is essential in the course of chemical reaction

coordinate (Tachibana 1987b, 1996, 1999a). This is because the associated lower-

ing in the electronic energy is the driving force of chemical reaction (Tachibana

and Parr 1992). The decomposition of the electronic energy in the abstract func-

tional space of orbital has played a significant role in the study of chemical

reactivity indices such as the Coulson valence bond theory (Coulson 1961), the

Woodward–Hoffmann law (Fleming 1976), and the Fukui frontier orbital

theory (Fukui 1981). The pathway of the nuclear configuration change is given

by using the theory of the intrinsic reaction coordinate (IRC) or meta-IRC
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(Tachibana 1991, 1994) and the nuclear dynamics in terms of differential geometry

(Tachibana and Iwai 1986; Tachibana 1999b) with the vibronic application to

superconductivity (Tachibana 1987a).

We have recently developed a novel theory of energy decomposition in the real

space (Tachibana 2002). The new energy decomposition scheme is exact and

complementary to the conventional orbital space energy decomposition scheme.

Namely, which region of space has significant contribution to chemical reaction

coordinate is easily recognized. This is advantageous in visualization of the chem-

ical interaction in real space. This new regional energy decomposition scheme has

been extended to infinitely small regional energy decomposition scheme, namely,

the electronic energy density decomposition scheme. Using the electronic energy

density, we can pick up any point in a chemical reaction system and find how the

electronic energy is assigned to the point. We can then integrate the electronic

energy density in a small region and find out the regional electronic energy

contribution to the global electronic energy. If the integration spans the whole

space, then the integral gives the total.

Another look at the density of electron is the kinetic energy density. This is based

on the observation of the Einstein equation

E

c
� qα

c
ϕ

� �2

� ~p� qα
c
~A

� �2
¼ mαcð Þ2 ð3:11Þ

which states that the square of the gauge-invariant 4-momentum pμ � qα
c A

μ should

be invariant under the Lorentz transformation. The field theoretical version for

electron reads

bψ { xð Þ 1
cih

∂
∂t � qe

c
bϕ xð Þ

� �2bψ xð Þ
� �

� bψ { xð Þ �ih~∇ � qe
c
b~A xð Þ

� �2bψ xð Þ
� �

¼ mecð Þ2 bψ { xð Þbψ xð Þ� 	 ð3:12Þ

The positivity of Eq. (3.12) is the measure of classical reality since it is proportional

to the kinetic energy density in the primary Rigged QED theory

nTe
xð Þ ¼ bT e xð Þ

D E
ð3:13Þ

The nTe
~rð Þ is a measure of the shell structure. In the very vicinity of atomic

nucleus, the electron feels infinitely large positive electric potential of the bare

nucleus. Then, in terms of classical mechanics, the electron that has constant

energy can acquire infinitely large positive kinetic energy at the position of the

nucleus. In terms of quantum mechanics as well, the nTe
~rð Þ should then become

infinitely positive at the position of nucleus, provided that, which is the very case of

normal chemistry, the intramolecular electric field ~Eintra ~rð Þ produced by the other

electrons does not exceed that of the bare nucleus (Kato 1957; Bingel 1963, 1967;
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Pack and Brown 1966). The nucleus is therefore normally surrounded by the

surface of zero kinetic energy density, nTe
~rð Þ ¼ 0, within which the kinetic

energy density nTe
~rð Þ > 0 where the electron density is amply accumulated and

classically allowed motion of electron is guaranteed. Then, we may call this the

region of the electronic drop denoted by RD and the complementary region of the

electronic atmosphere denoted by RA, being separated by the electronic interface S

(see Fig. 3.5)

RD ¼ ~rjnTe
~rð Þ > 0f g, RA ¼ ~rjnTe

~rð Þ < 0f g, S ¼ ~rjnTe
~rð Þ ¼ 0f g ð3:14Þ

Within RD, electrons can move freely as in classical mechanics, whereas toward

RA, they can tunnel through S. Then S describes the union of turning points for

electrons in RD in the generic sense.

Here we first pick up hydrogen-like atom in the ground state for which we have

nonrelativistic limit of the kinetic energy density nTe
~rð Þ (Tachibana 2013)

nTe
~rð Þ �����������!nonrelativistic limit Zeff

5e2

πa4
2

x
� 1

2

� �
e�x, x ¼ 2Zeff

a
r, a ¼ h2

mee2
ð3:15Þ

rSDirac in the ground state

¼
h

mecZeffα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeffαð Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeffαð Þ24

q� �
primary Rigged QEDð Þ

h
mecZeffα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeffαð Þ2

q
þ 1

� �
4-component Dirac wave functionð Þ

8>><>>:
ð3:16Þ

In the ground state, the nucleus is surrounded by the electronic interface of radius

rSDirac for the relativistic case and rS for the nonrelativistic case within which the

kinetic energy density is positive leaving negative outside (see Fig. 3.6).

So the intrinsic shape is this electronic drop region just surrounded by this

electronic interface. The radius for the relativistic case is smaller than the nonrel-

ativistic value rS, which ratio approaches 0 as Z approaches to 137. The rSDirac

Fig. 3.5 Electronic drop

and atmosphere regions
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intrinsic shape of H atom with Z ¼ 1 has the radius rSDirac � rS ¼2 [a.u.] �1.058A
∘
,

which is comparable to the standard atomic radius of H atom, 1.5 Bohr �0.794A
∘
,

reduced by a factor of ca. 75%.

In RA the electron density is dried up and the motion of electron is classically

forbidden. The boundary S in between RD and RA gives a clear image of the

intrinsic shape volume of the shell structure in the reactant atoms and molecules,

the reaction intermediates, and the reaction products along the course of the

chemical reaction coordinate. In Fig. 3.7 is shown the RD of H + H! H2 chemical

reaction system from top with internuclear distance R¼ 6.0Å to bottom 0.8Å. Two
initially disjoint RDs merge in between. The intrinsic electronic transition state is
defined for R¼R{ when two disjoint shape volumes of H atoms merge (Tachibana

2001): R{ is 4 Bohr � 2.117 Å according to Eq. (3.76) in an analytical model.

3.2 Stress Tensor and the Spindle Structure

The symmetric stress tensor τ
$

α
S
~rð Þ in Eq. (3.8) gives the tensorial energy density.

The eigenvalue of the symmetric stress tensor is the principal stress, and the

eigenvector is the principal axis (see Fig. 3.8).

Stress tensors of one-dimensional stationary states with rectangular potentials

and harmonic potentials have negative compressive stresses. In analogy with the

classical sense, the particle has one-dimensional liquid character (see Fig. 3.9).

Fig. 3.6 Turning point for the shape volume of hydrogen atom in the ground state
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The particle may be bound in a one-dimensional potential energy box or

quantum harmonic oscillator or scattering as a superposition of incident, reflected,

or transmitted component of the stationary wave.

Fig. 3.8 Principal stress

and principal axis of the

tensorial energy density
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Fig. 3.7 Shape volume RD along the reaction coordinate H+H ! H2 from top left with

internuclear distance R ¼ 6.0 Å to bottom right 0.8 Å using MRCI/6–311++G(3df,3pd)
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Stress tensor of free particle with plane wave has one negative and doubly

degenerate null eigenvalues. The particle has one-direction homogeneous propa-

gating liquid character (see Fig. 3.10).

Stress tensor for electron in the ground state under bare ionic core has degenerate

negative stresses for the surface mode: two-dimensional surface liquid character

with null stress in the radial mode (see Fig. 3.11).

Fig. 3.9 Stationary one-dimensional liquids

Fig. 3.10 Plane wave: one-direction homogeneous propagating liquid with the principal axis

~k= ~k
��� ���

104 3 Chemical Ideas of QED



The electronic tensile stress pulling up electron through a surface in between is

visualized as the spindle structure binding a pair of the electronic drop regions RDs

separated from each other through the electronic atmosphere region RA with the

interface S which separates them (see Fig. 3.12).

The spindle structure is mathematically proved to appear at any region where the

new Lewis electron pair is formed in association with inphase overlap of orbitals,

like in between a pair of H atoms (see Fig. 3.3). The spindle structure is hidden

Fig. 3.11 Bare ionic state: two-dimensional surface liquid with null stress in the radial mode

Fig. 3.12 The discovery of the “spindle structure” of the covalent bond and the long-range Lewis

pair formation, a novel local picture of chemical interaction based on the electronic stress tensor
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where out-of-phase overlap of orbitals overwhelms the former, like in between a

pair of He atoms, forming the anti-spindle structure (see Fig. 3.3). The compressive

stress pushing away electron in the remote electronic drop region RD from the

adjacent electronic atmosphere region RA through the interface S which separates

them. The consequence is the no reformation of the new Lewis pair of electron.

There appears no new spindle structure. The spindle structure is also hidden where a

pair of atomic nuclei is so closely combined, like in between a pair of C atoms in

C2H2. Since the RA, RA, and S are measures of the kinetic energy density, which

physically define the intrinsic shape volume of atoms and molecules, they are also

used to define the intrinsic electronic transition state along the course of the reaction

coordinate.

In a molecule AB composed of atoms A and B, the universal local equilibrium

picture in the electronic stationary state is shown in Fig. 3.13. The Heisenberg

uncertainty principle let electron diffuse away from each atomic center it belongs.

The diffusive force is the tension b~τSα ~rð Þ ¼ div
b
τ
$

α

S

~rð Þ given in Eq. (3.9) compen-

sating the Lorentz force exerting from each atomic center (see Fig. 1.30). The

tension vector field collides to form separatrix which discriminates the region of

atomic center. The separatrix is called the Lagrange surface; if the null tension field

on the Lagrange surface, it is called the Lagrange point (see Fig. 3.13).

3.3 Stress as the Energy Density

3.3.1 Liquid Character: Standing Wave Mode of Tensionless
Electron

Let an electron be bound in a box of rectangular cuboid with attractive potential

energy (Tachibana 2014)

Fig. 3.13 Local

equilibrium with the

Lagrange surface and the

Lagrange point
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V ~rð Þ ¼ Vinner ~rð Þ < 0 , ~r2Ωinner

Vouter ~rð Þ ¼ 0 , ~r2Ωouter

�
ð3:17Þ

with

Ωinner : xj j < ‘x, yj j < ‘y, zj j < ‘z
Ωouter : xj j > ‘x, yj j > ‘y, zj j > ‘z

ð3:18Þ

Let electron be in a steady state with the standing wave function

ψ ~rð Þ ¼ ψ inner ~rð Þ ¼ Nnorm Rð Þψ x xð Þψ y yð Þψ z zð Þ, ~r2R � Ωinner

ψouter ~rð Þ ¼ 0, ~r2Ωouter

�
ð3:19Þð

whole space

d3~r ψ ~rð Þj j2 ¼ 1 ð3:20Þ

ψ x xð Þ ¼ sin kx Rð Þ x� ax Rð Þð Þð Þ , ~r2R � Ωinner ð3:21Þ

where we assume region-wise resolution of Ωinner with real constants Nnorm(R),
kx(R), and ax(R) in a region of ~r2R � Ωinner together with similar forms for ψy(y)
and ψ z(z). Then the regional stress tensor of electron becomes block diagonal as

(see Fig. 3.14)

τ
$ S

e ~rð Þ ¼
τ
$ S

einner
~rð Þ, ~r2R � Ωinner

τ
$ S

eouter
~rð Þ ¼ 0, ~r2Ωouter

8<: ð3:22Þ

Fig. 3.14 Metallic state
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τ
$ S

einner
~rð Þ ¼

τ Sxxeinner
~rð Þ 0 0

0 τ Syyeinner
~rð Þ 0

0 0 τ Szzeinner
~rð Þ

0@ 1A ð3:23Þ

τ Sxxeinner
~rð Þ ¼ � h2kx2 Rð Þ

2me

Nnorm
2 Rð Þ ψ y yð Þψ z zð Þ�� ��2 < 0

τ Syyeinner
~rð Þ ¼ � h2ky2 Rð Þ

2me

Nnorm
2 Rð Þ ψ z yð Þψ x zð Þj j2 < 0

τ Szzeinner
~rð Þ ¼ � h2kz2 Rð Þ

2me

Nnorm
2 Rð Þ ψ x zð Þψ y yð Þ�� ��2 < 0

ð3:24Þ

Unless at the point of the node of wave function, the eigenvalues are all negative,

which represents compressive stress in every direction and demonstrates the “liq-

uid” character of the bound electron in the standing wave mode. This is compatible

with the vanishment of the tension as proved to be

~τ Se ~rð Þ ¼ ~τ Seinner ~rð Þ ¼ 0, ~r2R � Ωinner

~τ Seouter ~rð Þ ¼ 0, ~r2Ωouter

(
ð3:25Þ

which should be so since the internal force is null in R�Ωinner or Ωouter. As to the

trace of the electronic stress tensor τ
$ S

einner
~rð Þ, we have

1

2

ð
Ωinner

d3~r τ
$ S

einner
~rð Þ

� �kk
¼ �

ð
Ωinner

d3~rnTeinner
~rð Þ ð3:26Þ

where nTeinner
~rð Þ is the kinetic energy density of electron, which is regionally found

as

nTeinner
~rð Þ ¼ h2 kx

2 Rð Þ þ ky
2 Rð Þ þ kz

2 Rð Þ
 �
2me

ψ inner ~rð Þj j2 , ~r2R � Ωinner ð3:27Þ

Using the virial theorem, we confirm half the trace of τ
$ S

e ~rð Þbe the energy density of
electron

1

2

ð
whole space

d3~r τ
$ S

e ~rð Þ
� �kk

¼ Ee;primary Rigged QED ð3:28Þ

with

Ee;primary Rigged QED ¼
ð
Ωinner

d3~rnTeinner
~rð Þ þ

ð
Ωinner

d3~rVinner ~rð Þ ψ inner ~rð Þj j2 ð3:29Þ
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3.3.2 Liquid Character: Propagating Wave Mode
of Tensionless Electron

Let an electron be bound in the same box of rectangular cuboid but assume the size

be extremely large

‘x, ‘y, ‘z >> 1 ð3:30Þ

so that the electron may be in the regional traveling mode with wave function

ψ x xð Þ ¼ exp ikx Rð Þ x� ax Rð Þð Þð Þ , ~r2R � Ωinner ð3:31Þ

with the obvious notation for ψy(y) and ψ z(z).
Then the stress tensor of electron becomes

τ
$ S

e ~rð Þ ¼ τ
$ S

einner
~rð Þ , ~r2R � Ωinner

τ
$ S

eouter
~rð Þ ¼ 0 , ~r2Ωouter

8<: ð3:32Þ

τ
$ S

einner
~rð Þ ¼ � h2

me

kx
2 Rð Þ kx Rð Þky Rð Þ kx Rð Þkz Rð Þ

ky Rð Þkx Rð Þ ky
2 Rð Þ ky Rð Þkz Rð Þ

kz Rð Þkx Rð Þ kz Rð Þky Rð Þ kz
2 Rð Þ

0@ 1A Nnorm
2 Rð Þ ð3:33Þ

and the tension

~τ Se ~rð Þ ¼ ~τ Seinner ~rð Þ ¼ 0 , ~r2R � Ωinner

~τ Seouter ~rð Þ ¼ 0 , ~r2Ωouter

(
ð3:34Þ

which should be so since the internal force is null in the region of~r2R � Ωinner or

Ωouter. Diagonalizing ~τ Seinner ~rð Þ leads to the first negative eigenvalue and the

degenerate zero eigenvalues

τS11einner
~rð Þ ¼ �

h2 ~k Rð Þ
��� ���2
me

Nnorm
2 Rð Þ < 0, τS22einner

~rð Þ ¼ τS33einner
~rð Þ ¼ 0

~k Rð Þ ¼ kx Rð Þ; ky Rð Þ; kz Rð Þ
 � ð3:35Þ

with the eigenvector~k Rð Þ= ~k Rð Þ
��� ��� of the first eigenvalue corresponding to the liquid

character in the propagating wave mode (see Fig. 3.9). As to the trace of the

electronic stress tensor τ
$ S

einner
~rð Þ, we have
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1

2

ð
Ωinner

d3~r τ
$ S

einner
~rð Þ

� �kk
¼ �

ð
Ωinner

d3~rnTeinner
~rð Þ ð3:36Þ

where nTeinner
~rð Þ is the kinetic energy density of electron, which is regionally found

as

nTeinner
~rð Þ ¼

h2 ~k Rð Þ
��� ���2
2me

ψ inner ~rð Þj j2 , ~r2R � Ωinner ð3:37Þ

Using the virial theorem, we confirm half the trace of τ
$ S

e ~rð Þ to be the energy density
of electron

1

2

ð
whole space

d3~r τ
$ S

e ~rð Þ
� �kk

¼ Ee;Primary Rigged QED ð3:38Þ

with

Ee;Primary Rigged QED ¼
ð
Ωinner

d3~rnTeinner
~rð Þ þ

ð
Ωinner

d3~rVinner ~rð Þ ψ inner ~rð Þj j2 ð3:39Þ

3.3.3 Mixed Character: The Bloch Wave Mode of Tension
Finite Electron

Let an electron be bound in the same extremely large box of rectangular cuboid, but

here we assume lattice periodicity for the potential:

Vinner ~r þ ~T

 � ¼ Vinner ~rð Þ , ~r and~r þ ~T2R � Ωinner ð3:40Þ

with ~T as the lattice translational vector of the molecule at each lattice point. Then,

we may choose the Bloch orbital for electron (Tachibana 2014)

ψ ~rð Þ ¼ ψ inner ~rð Þ ¼ ψ~k ~rð Þ , ~r2R � Ωinner

ψouter ~rð Þ ¼ 0 , ~r2Ωouter

�
ð3:41Þð

whole space

d3~r ψ ~rð Þj j
2

¼ 1 ð3:42Þ

ψ~k ~rð Þ ¼ exp i~k Rð Þ •~r
� �

u~k ~rð Þ , u~k ~r þ ~T

 � ¼ u~k ~rð Þ ð3:43Þ

with the periodic function u~k ~rð Þ.
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Then the stress tensor of electron becomes periodic and decomposed into two

terms each periodic:

τ
$ S

e ~rð Þ ¼ τ
$ S

einner
~rð Þ ¼ τ

$ S

einner;band-like ~rð Þ þ τ
$ S

einner;molecule-like ~rð Þ, ~r2R � Ωinner

τ
$ S

eouter
~rð Þ ¼ 0, ~r2Ωouter

8<:
τ
$ S

einner
~r þ ~T

 � ¼ τ

$ S

einner
~rð Þ

ð3:44Þ

where

τ
$ Sij

einner;band-like ~rð Þ ¼ h2

4me

�2ki Rð Þkj Rð Þ u~k ~rð Þ�� ��2
þ2iki Rð Þu~k{ ~rð Þ ∂

∂xj
u~k ~rð Þ þ 2ikj Rð Þu~k{ ~rð Þ ∂

∂xi
u~k ~rð Þ

þc:c:

0BB@
1CCA

τ
$ Sij

einner;molecule-like ~rð Þ ¼ h2

4me

u~k
{ ~rð Þ ∂2

∂xi∂xj
u~k ~rð Þ � ∂

∂xiu~k ~rð Þ
 �{ ∂
∂xj

u~k ~rð Þ þ c:c:

 !
ð3:45Þ

and tension

~τ Se ~rð Þ ¼ divτ
$ S

einner
~rð Þ may not be null, ~r2R � Ωinner

~τ Seouter ~rð Þ ¼ 0, ~r2Ωouter

(
ð3:46Þ

which should be so since the internal force may not be null in R�Ωinner but null in

Ωouter.

As to the trace of the electronic stress tensor τ
$ S

einner
~rð Þ, we have

1

2

ð
Ωinner

d3~rτ
$ Skk

einner
~rð Þ ¼ �

ð
Ωinner

d3~rnTeinner
~rð Þ ð3:47Þ

where nTeinner
~rð Þ is the kinetic energy density of electron, which is regionally found

as

nTeinner
~rð Þ ¼ nTeinner;band-like ~rð Þ þ nTeinner;molecule-like ~rð Þ , ~r2R � Ωinner ð3:48Þ
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nTeinner;band-like ~rð Þ ¼ � h2

4me

�2 ~k Rð Þ
��� ���2 u~k ~rð Þ�� ��2

þ2i~k Rð Þ • u~k
{ ~rð Þ~∇u~k ~rð Þ � ~∇u~k ~rð Þ

� �{
u~k ~rð Þ

� �
0B@

1CA
nTeinner;molecule-like ~rð Þ ¼ � h2

4me

u~k
{ ~rð ÞΔu~k ~rð Þ þ Δu~k ~rð Þ
 �{

u~k ~rð Þ
� �

ð3:49Þ

Using the virial theorem, we confirm that half the trace of τ
$ S

e ~rð Þ be the energy
density of electron

1

2

ð
whole space

d3~rτ
$ Skk

e ~rð Þ ¼ Ee;primary Rigged QED ð3:50Þ

with

Ee;primary Rigged QED ¼
ð
Ωinner

d3~rnTeinner
~rð Þ þ

ð
Ωinner

d3~rVinner ~rð Þ ψ inner ~rð Þj j2 ð3:51Þ

Let the behavior of τ
$ S

einner;band-like ~rð Þ be further examined in the region far from the

atomic nucleus with the negligible gradient with respect to space, ~∇u~k ~rð Þ ! 0:

τ
$ S

einner;band-like ~rð Þ ! � h2

me

kx
2 Rð Þ kx Rð Þky Rð Þ kx Rð Þkz Rð Þ

ky Rð Þkx Rð Þ ky
2 Rð Þ ky Rð Þkz Rð Þ

kz Rð Þkx Rð Þ kz Rð Þky Rð Þ kz
2 Rð Þ

0@ 1A u~k ~rð Þ�� ��2
ð3:52Þ

This is proportional to Eq. (3.33), demonstrating the liquid character with the

propagating wave mode in the limit of constant density

u~k ~rð Þ�� ��2 ! Nnorm
2 Rð Þ ð3:53Þ

Also let the behavior of τ
$ S

einner;molecule-likee ~rð Þ be examined in the innermost region close

to the atomic nucleus of molecule that is responsible for making Vinner ~rð Þ periodic:
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τ
$ Sij

einner;molecule-like ~rð Þ ! τ
$ Sij

emolecule
~rð Þ

¼ h2

4me

umolecule
{ ~rð Þ ∂2

∂xi∂xj
umolecule ~rð Þ � ∂

∂xiumolecule ~rð Þ
 �{ ∂
∂xj

umolecule ~rð Þ
þc:c:

0@ 1A
ð3:54Þ

Thus, the liquid character now is mixed with the molecular character: this is the

stress tensor of electron adhered to the molecule, τ
$ S

emolecule
~rð Þ. This τ$ S

emolecule
~rð Þ itself

may bring about the tensile stress as well as the compressive stress with non-null

tension, depending on the bonding character of electron in molecule. The most

prominent character is the spindle structure.

3.3.4 Spindle Structure Along the Reaction Coordinate

3.3.4.1 Pairing Stress

Let the τ
$ S

emolecule
~rð Þ be examined by τ

$ S

e ~rð Þ for simple hydrogen molecule with a pair

of protons be clamped at positions ~a ¼ 0; 0;�R
2


 �
and ~b ¼ 0; 0; R

2


 �
. The Lewis

electron pairing is the inphase overlap of two remote electrons, the + form of the

Heitler–London wave functions u� ~rð Þ for umolecule ~rð Þ (see Fig. 3.15)

umolecule ~rð Þ ¼ u� ~rð Þ ¼ N� e�ζra � e�ζrb

 � ð3:55Þ

Fig. 3.15 The Lewis electron pairing (+) and antipairing (�) Heitler–London states

3.3 Stress as the Energy Density 113



N� Rð Þ ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� d2S Rð Þ
 �q ð3:56Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ð
d3~r e�ζr

 �2

vuuut ¼
ffiffiffiffiffi
ζ3

π

s
ð3:57Þ

S Rð Þ ¼
ð
d3~re�ζrae�ζrb ¼ π

ζ3
1þ ζRþ 1

3
ζRð Þ2

� �
e�ζR ð3:58Þ

R ¼ ~a� ~b
��� ��� ð3:59Þ

~r ¼ x; y; zð Þ, r ¼ ~rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ð3:60Þ

~ra ¼ ~r � ~a ¼ xa; ya; zað Þ, ra ¼ ~raj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ zþ R

2

� �2
s

ð3:61Þ

~rb ¼ ~r � ~b ¼ xb; yb; zbð Þ, rb ¼ ~rbj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� R

2

� �2
s

ð3:62Þ

The kinetic energy density becomes

nTe� ~rð Þ ¼ N�2
� ζ2

2
e�ζra � e�ζrb

 �2

þζ e�ζra � e�ζrb

 � 1

ra
e�ζra � 1

rb
e�ζrb

� �
0BB@

1CCA ð3:63Þ

The stress tensor is given as

τSe� xx ~rð Þ ¼ N�2

2

e�ζra � e�ζrb

 � �ζ

1

ra
� xa

2

ra3

� �
þ ζ2

xa
2

ra2

� �
e�ζra

� �ζ
1

rb
� xb

2

rb3

� �
þ ζ2

xb
2

rb2

� �
e�ζrb

8>><>>:
9>>=>>;

� ζxarae
�ζra � ζxbrbe

�ζrb
� �2

26666664

37777775
ð3:64Þ
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τSe� xy ~rð Þ ¼ τSe� yx ~rð Þ

¼ N�2

2

e�ζra � e�ζrb

 � ζ

xaya
ra3

þ ζ2
xaya
ra2

� �
e�ζra

� ζ
xbyb
rb3

þ ζ2
xbyb
rb2

� �
e�ζrb

8>><>>:
9>>=>>;

� ζ
xa
ra
e�ζra � ζ

xb
rb
e�ζrb

� �
ζ
ya
ra
e�ζra � ζ

yb
rb
e�ζrb

� �

26666664

37777775 ð3:65Þ

τSe� xz ~rð Þ ¼ τSe� zx ~rð Þ

¼ N�2

2

e�ζra � e�ζrb

 � ζ

xaza
ra3

þ ζ2
xaza
ra2

� �
e�ζra

� ζ
xbzb
rb3

þ ζ2
xbzb
rb2

� �
e�ζrb

8>><>>:
9>>=>>;

� ζ
xa
ra
e�ζra � ζ

xb
rb
e�ζrb

� �
ζ
za
ra
e�ζra � ζ

zb
rb
e�ζrb

� �

26666664

37777775 ð3:66Þ

τSe� yy ~rð Þ ¼ N�2

2

e�ζra � e�ζrb

 � �ζ

1

ra
� ya

2

ra3

� �
þ ζ2

ya
2

ra2

� �
e�ζra

� �ζ
1

rb
� yb

2

rb3

� �
þ ζ2

yb
2

rb2

� �
e�ζrb

8>><>>:
9>>=>>;

� ζyarae
�ζra � ζybrbe

�ζrb
� �2

26666664

37777775
ð3:67Þ

τSe� yz ~rð Þ ¼ τSe� zy ~rð Þ

¼ N�2

2

e�ζra � e�ζrb

 � ζ

yaza
ra3

þ ζ2
yaza
ra2

� �
e�ζra

� ζ
ybzb
rb3

þ ζ2
ybzb
rb2

� �
e�ζrb

8>><>>:
9>>=>>;

� ζ
ya
ra
e�ζra � ζ

yb
rb
e�ζrb

� �
ζ
za
ra
e�ζra � ζ

zb
rb
e�ζrb

� �

26666664

37777775 ð3:68Þ

τSe� zz ~rð Þ ¼ N�2

2

e�ζra � e�ζrb

 � �ζ

1

ra
� za

2

ra3

� �
þ ζ2

za
2

ra2

� �
e�ζra

� �ζ
1

rb
� zb

2

rb3

� �
þ ζ2

zb
2

rb2

� �
e�ζrb

8>><>>:
9>>=>>;

� ζzarae
�ζra � ζzbrbe

�ζrb
� �2

26666664

37777775
ð3:69Þ

Using the stress tensor, the tension vector becomes
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~τ Se� ¼ τSe� x; τ
S
e� y; τ

S
e� z

� �

¼ N�2ζ
e�ζra � e�ζrb

 � 1

ra
� ζ2

2
þ ζ

ra
þ 1

ra2

� �
e�ζra � 1

rb
� ζ2

2
þ ζ

rb
þ 1

rb2

� �
e�ζrb

� �
� 1

ra
e�ζra � 1

rb
e�ζrb

� �
� ζ2

2
þ ζ

ra

� �
e�ζra � � ζ2

2
þ ζ

rb

� �
e�ζrb

� �
2664

3775
� x; y; zð Þ

ð3:70Þ

3.3.4.2 The Lagrange Surface and the Intrinsic Electronic Transition

State

The Lagrange surface is then the bond bisector plane, z¼ 0, on which we use

x ¼ ρ cosϕ, y ¼ ρ sinϕ, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð3:71Þ

and then

ra ¼ rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2

� �2
s

ð3:72Þ

and the Lagrange point is the origin (see Fig. 3.13).

On the Lagrange surface, the kinetic energy density is circularly symmetric with

nTeþ ρð Þ ¼ Nþ2 4ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q e
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

1� 1

2
ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2

� �2
s0@ 1A ð3:73Þ

nTe� ρð Þ ¼ 0 ð3:74Þ

and the cross section of the electronic drop region RD with the Lagrange surface for

the Lewis electron pairing (+) states is a circle of radius ρRD
found as

ρRD
Rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ζ

� �2
� R

2


 �2r
, R < R{

0, R ¼ R{; null, R > R{

8<: ð3:75Þ

Here, the intrinsic electronic transition state is dictated by R¼R{ with
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R{ ¼ 4

ζ
ð3:76Þ

for which the shape volume defined by RD becomes disjoint for R>R{ along the

reaction coordinate. If we use the standard value ζ¼ 1, then R{ is 4 Bohr	 2.117 Å
(see Fig. 3.7).

3.3.4.3 Stress Tensor on the Lagrange Surface

In the Lagrange surface, the stress tensor is block diagonal.

As to the + case, we have

τ
$ S

eþ ¼
τSeþ xx τSeþ xy 0

τSeþ yx τSeþ yy 0

0 0 τSeþ zz

0B@
1CA ð3:77Þ

where

τSeþ xx ρ;ϕð Þ ¼ �Nþ22ζ
ρ2sin 2ϕþ R

2


 �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q� �3
e
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

ð3:78Þ

τSeþ xy ρ;ϕð Þ ¼ τSeþ yx ρ;ϕð Þ ¼ Nþ22ζ
ρ2cosϕsinϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q� �3
e
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

ð3:79Þ

τSeþ yy ρ;ϕð Þ ¼ �Nþ22ζ
ρ2cos2ϕþ R

2


 �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q� �3
e
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

ð3:80Þ

τSeþ zz ρð Þ ¼ Nþ22ζ2
R
2


 �2
ρ2 þ R

2


 �2 1� ρ2

R
2


 �2
ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q
0B@

1CAe
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

ð3:81Þ

The spindle structure is manifested as follows: τS11eþ ρð Þ < τS22eþ ρð Þ < τS33eþ ρð Þ where
τS33eþ ρð Þ is positive within the circle of radius ρspindle, with the first mode (see

Figs. 3.16, 3.17, and 3.18)
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Fig. 3.16 Lewis electron pairing (+) state

Fig. 3.17 Lewis electron pairing (+) state

118 3 Chemical Ideas of QED



τS11eþ ρð Þ ¼ �Nþ22ζ
ρ2 þ R

2


 �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q� �3
e
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

< 0 ð3:82Þ

as the breathing mode with the principal axis (cosϕ, sinϕ, 0), the second mode

τS22eþ ρð Þ ¼ �Nþ22ζ
R
2


 �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R

2


 �2q� �3
e
�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

< 0 ð3:83Þ

as the circulating mode with the principal axis (� sinϕ, cosϕ, 0), and the third mode

τS33eþ ρð Þ ¼ τSeþ zz ρð Þ; > 0, ρ < ρspindle ð3:84Þ

ρspindle Rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 R

2


 �4 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ4 R

2


 �8 þ 4ζ2 R
2


 �6q
2

vuut
ð3:85Þ

as the spindle mode with the principal axis (0, 0, 1).

It should be noted that the ρspindle diverges to infinity as R!1:

ρspindle Rð Þ!R!1
ζ

R

2

� �2

ð3:86Þ

Fig. 3.18 Spindle structure
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On the other limit, ρspindle shrinks to ρRD
in Eq. (3.75) from above at R¼Rc that is

smaller than R¼R{ with

Rc ¼ 4ffiffiffi
3

p
ζ
¼ 1ffiffiffi

3
p R{ < R{ ð3:87Þ

and further to zero as R! 0:

ρspindle Rð Þ!R!Rc
ρRD

Rcð Þ; !R!0
0 ð3:88Þ

As to the � case, we have

τ
$ S

e� ¼
0 0 0

0 0 0

0 0 τSe� zz

0@ 1A ð3:89Þ

where

τSe� zz ρð Þ ¼ �N�22ζ2
R
2


 �2
ρ2 þ R

2


 �2 e�2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ R

2ð Þ2
q

< 0 ð3:90Þ

We have the anti-spindle structure as (see Fig. 3.19)

τS11e� ρð Þ ¼ τSe� zz ρð Þ < 0 ð3:91Þ
τS22e� ρð Þ ¼ τS33e� ρð Þ ¼ 0 ð3:92Þ

3.3.4.4 Stress Tensor Along the Bond Axis: x¼ y¼ 0

The stress tensor along the bond axis x¼ y¼ 0 is symmetric with respect to z and

block diagonal.

As to the + case, we have

τ
$ S

eþ ¼
τSeþ xx 0 0

0 τSeþ yy 0

0 0 τSeþ zz

0@ 1A ð3:93Þ
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τSeþ xx zð Þ ¼ τSeþ yy zð Þ

¼ �Nþ2

2
ζ e�ζ zþR

2j j þ e�ζ z�R
2j j� � 1

zþ R
2

�� ��e�ζ zþR
2j j þ 1

z� R
2

�� ��e�ζ z�R
2j j

 !
ð3:94Þ

τSeþ zz zð Þ ¼ Nþ2

2
ζ2

e�ζ zþR
2j j þ e�ζ z�R

2j j� �2
� zþR

2

zþR
2j j e

�ζ zþR
2j j þ z�R

2

z�R
2j j e

�ζ z�R
2j j

� �2

8>><>>:
9>>=>>; ð3:95Þ

The spindle structure is manifested as

τS11eþ zð Þ ¼ τS22eþ zð Þ ¼ τSeþ xx zð Þ ¼ τSeþ yy zð Þ < 0 ð3:96Þ
τS33eþ zð Þ ¼ τSeþ zz zð Þ

¼
2Nþ2ζ2e�ζR > 0, � R

2
< z <

R

2

0, z < �R

2
or

R

2
< z

8><>: ð3:97Þ

Note the constancy 2N+
2ζ2e�ζR of the eigenvalue of the spindle mode within the

bond axis �R
2
< z < R

2
.

Fig. 3.19 The Lewis electron antipairing (�) state with the anti-spindle structure
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As to the � case, we have

τ
$ S

e� ¼
τSe� xx 0 0

0 τSe� yy 0

0 0 τSe� zz

0@ 1A ð3:98Þ

τSe� xx zð Þ ¼ τSe� yy zð Þ

¼ �N�2

2
ζ e�ζ zþR

2j j � e�ζ z�R
2j j� � 1

zþ R
2

�� ��e�ζ zþR
2j j � 1

z� R
2

�� ��e�ζ z�R
2j j

 !
ð3:99Þ

τSe� zz zð Þ ¼ N�2

2
ζ2

e�ζ zþR
2j j � e�ζ z�R

2j j� �2
� zþR

2

zþR
2j j e

�ζ zþR
2j j � z�R

2

z�R
2j j e

�ζ z�R
2j j

� �2

8>><>>:
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This is the anti-spindle structure since (see Fig. 3.19)

τSe� xx zð Þ ¼ τSe� yy zð Þ < 0, z 6¼ 0

0, z ¼ 0

�
ð3:101Þ

τSe� zz zð Þ

¼
�2N�2ζ2e�ζR < 0, � R

2
< z <

R

2

0, z < �R

2
or

R

2
< z

8><>: ð3:102Þ

3.3.4.5 Stress Tensor in the United Atom Limit: R! 0

Only for the + case, the exact solution in the united atom limit R! 0 makes sense.

Taking the limit R! 0 of the stress tensor in the Lagrange surface, we have

τSeþ xx ρ;ϕð Þ ¼ �Nþ22ζ
sin 2ϕ

ρ
e�2ζρ ð3:103Þ

τSeþ xy ρ;ϕð Þ ¼ τSeþ yx ρ;ϕð Þ ¼ Nþ22ζ
cosϕ sinϕ

ρ
e�2ζρ ð3:104Þ

τSeþ yy ρ;ϕð Þ ¼ �Nþ22ζ
cos2ϕ

ρ
e�2ζρ ð3:105Þ

τSeþ zz ρð Þ ¼ �Nþ22ζ
1

ρ
e�2ζρ ð3:106Þ
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In this limit, the spindle structure disappears

τS11eþ ρð Þ ¼ τS22eþ ρð Þ ¼ �Nþ22ζ
1

ρ
e�2ζρ < 0 ð3:107Þ

of the degenerate surface-circulating modes with the principal axes (� sinϕ,
cosϕ, 0) and (0, 0, 1), and

τS33eþ ρð Þ ¼ 0 ð3:108Þ

of the spherical-breathing mode with the principal axis (cosϕ, sinϕ, 0). This is again

for the surface liquid with Zeff ¼ ζh2

mee2
(see Fig. 3.11).

3.3.5 The Generic Lewis Pair Formation
and the Nonclassical Bond Order

The concept of covalency has long been known as a central guide in understanding

chemical bond. The term “chemical bond” describes chemical force to realize the

structure of compounds by specifying configuration of atoms in molecules. The

chemical force has conventionally been described by the “attractive” force that

drives atomic nuclei nearby with each other. The attractive force is the origin of

chemical reactivity of atoms and molecules over and above the electrostatic repul-

sive force of atomic nuclei. The attractive force acting on a pair of reactants is

synonymous to the chemical reactivity of the covalent bond formation.

The local stress of QED gives a unified scheme for generalized chemical

reactivity. The chemical reactivity in this scheme is the force acting on a pair of

electronic drop regions of reactants. This is a new kind of force acting on electrons

not on nuclei. A new look at the chemical bond is elucidated where covalency is the

rule of the new Lewis electron pair formation therein.

In QED the field carries the force. We are interested in the region where the force

is tensile, attracting the neighboring region through the interface. If the force is

repulsive through the interface, then the force is compressive. The discrimination of

the nature of the field is crucial for understanding the covalent bond. The covalent

bond is the region where the field is tensile, attracting the neighboring region

through the interface. On the contrary, if the field is compressive, then in the region,

the electrons are repulsive through the interface. Here we analyze the principal

stress. If the principal stress is positive, then it is called “tensile”; if it is negative, it

is called “compressive.” The covalent bonding is brought about by the tensile

principal stress. The force exerted on electron in the spindle structure dictates the

covalent 1sσ bond. On the other hand, the antibonding orbital interaction

1sσ*results in the repulsive orbital interaction (see Fig. 3.20).
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Furthermore, using the hydrogen-like atomic orbitals for the Heitler–London

wave function, it has been proved analytically that the bonding orbital interaction,

such as pσ or pπ type, does exhibit spindle structure that bridges disjoint electronic

drop regions, whereas the antibonding orbital interaction, such as pσ* or pπ* type,

does not. Thus, the spindle structure gives universal image of the covalent bonding.

Unlike covalency, metallicity may not be measured by a single bond order. In

case of metallic interaction, imagine a pair of metallic atoms with unpaired electron

situated far away from each other. The tensile stress pulls up electron in the remote

electronic drop region RD to the adjacent electronic atmosphere region RA through

the interface S which separates them. The consequence is the formation of the new

Lewis pair of electron. The spindle structure of covalency is universal even in this

sense. However, this fact demonstrates that metal atom itself may not be sufficient

to determine metallicity, where the question itself may be even meaningless. This is

because metallicity may be the property of the condensed matter. Actually, as the

distant pair of metallic atoms comes closer, metallicity of the condensed matter is

the rule of unbinding the Lewis electron pair ever once formed. Finally, in the

condensed matter, we may not be able to observe the spindle structure of covalency

in its strict sense. But if an atom is going to be separated from bulk metal, then the

spindle structure should emerge. This proves the emergence of covalency prereq-

uisite to condense separated atoms into the bulk metal. The metallicity may be

characterized by liquid with isotropic compressive stress in the ultimate case. The

electrons contributing to the bulk metallicity behave like gluon that binds quarks in

such a way that in metal bulk as condensed matter, the bond order may be small and

behave as weak bond, but once if an atom is going to be separated from bulk metal,

the spindle structure appears as if the bond should behave to be very strong. In other

Fig. 3.20 Potential energy

curve U with the 1sσ
bonding and

1sσ*antibonding orbital

interaction
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words, the bulk metallicity emerges as the long-range intrinsic electronic transition

state associated with the spindle structure: the long-range Lewis pair formation

For chemical reaction is the mixture of the Lewis electron pairing and antipairing,

ionicity, metallicity, lone pair, exchange repulsion, and inert gas interaction.

The regional energy decomposition is then found to be the integration over

region R of space as follows:

E ¼
X
R

ER, ER ¼
ð
~r2R

d3~rεSτ ~rð Þ ð3:109Þ

εSτ ~rð Þ ¼ 1

2

X
α

b
τ
$

α;Primary Rigged QED

Skk

~rð Þ
� �

¼ 1

2

X
α

τα
Skk ~rð Þ ð3:110Þ

where~r2Rmeans the regional integral confined within the region R exclusively. If

the whole space is decomposed into a set of regions, where
X
R

denotes summation

over the set of regions.

Likewise, the electron number N is defined and decomposed regionally as

follows:

N ¼
X
R

NR, NR ¼
ð
~r2R

d3~rn ~rð Þ ð3:111Þ

n ~rð Þ ¼
X
α

bNα;primary Rigged QED ~rð Þ
D E

ð3:112Þ

As shown in Fig. 3.21, the regional energy decomposition gives the nonclassical

bond order. The integral of the sum is compared with the Born–Oppenheimer

electronic energy (see Fig. 3.21).

Fig. 3.21 Regional energy density and nonclassical bond order

3.3 Stress as the Energy Density 125



It should be noted again that this does not mean that we are working on the

Born–Oppenheimer adiabatic approximation of quantum mechanics. As shown in

Eq. (3.110), the integral on the trace of nuclear stress tensor,ð
d3~r

1

2

X
a

X3
k¼1

τa
Skk ~rð Þ, should of course be added to the energetics in the whole

space.

3.4 Regional Chemical Potential

The regional chemical potential inequality principle (Tachibana 1999a) refers to

(see Fig. 3.22):

• The formalization of the nonequilibrium thermodynamics based on the Onsagar

local equilibrium hypothesis (Onsager 1931a, b) with considering quantum

mechanical interaction through the interface between separated regions.

• The formalization of the relationship among the regional electric chemical

potentials in the chemical equilibrium system by defining the regional electron

numbers, the regional electronic energies, and new properties about quantum

mechanical interference effect between separated regions (“the quantum

mechanical law of mass action”).

• The regional chemical potentials are not necessarily equal to each other, to the

Fermi level of standing wave on the whole system, nor to the chemical potential

of the whole system even in the chemical equilibrium system (“the regional

chemical potential inequality principle”).

Fig. 3.22 Regional partitioning with the Onsager local equilibrium: (a) interface in the system A

and (b) the Onsager hypothesis of local equilibrium
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Let us consider a chemical reaction system A embedded in a medium M, an

environmental system of chemical reaction (see Fig. 1.26). During the progress of

chemical reaction in A, the electronic subsystem of A can exchange heat, work, and

electrons with M through an interface which divides A from M. Moreover, the

electronic subsystem of A can exert work on the nuclear subsystem of A and vice

versa, where the nuclear subsystem of A is assumed to be thermally isolated from

the medium M as well as from the electronic subsystem of A. This is the adiabatic

approximation that we rely on throughout this discussion, and we neglect relativ-

istic effects as well. If the electronic subsystem of A is in chemical equilibrium with

the medium M and the chemical reaction in A is a quasi-static process, then the

maximum work is gained from the electronic subsystem of A, and therefore only

the minimum work is required for the nuclear subsystem of A. Gibbs proved the

usefulness of the constant chemical potential between two regions in space where

we observe no flux of particles whatsoever when chemical equilibrium is attained

globally (Landau and Lifshitz 1980). The constancy of the chemical potential is

perturbed if we put an object between a pair of regions, when the transfer of

particles is rather inhibited through the interface, bringing about a finite difference

in regional chemical potentials even after chemical equilibrium is attained globally

(Reichl 1980).

It is not, however, a trivial matter to “observe” the inhomogeneity of the regional

chemical potentials using appropriate apparatus. A promising candidate for this kind

ofmeasurementmay be found in a study of thework function ofmetals as a function of

crystallographic planes (Wigner and Bardeen 1935). The mediumM in this measure-

ment of the work function is used to observe the electrostatic potential energy of an

electron at a point in the neighborhood of the crystal surface plane just outside of it

(Bardeen 1936), where a clever choice of apparatus could allow the chemical potential

inequality principle to be proved. However, we are not in a position here in this article

to invent a device if the mediumM is situated in such a way as to discriminate against

the regional chemical potentials. Rather, we shall devise amethod to probe the transfer

of electrons within the electronic subsystem of A from one region to another through

the interface situated in-between. The subdivision of the electronic subsystem of A

into regions R,R0, R00, and so on is shown schematically in Fig. 3.22. In a region, R say,

the electronic subsystem of A is assumed to be in chemical equilibrium, but we allow

irreversible electron flow through the interface that divides R and the adjacent region,

R0 say. This situation is nothing but the local equilibrium hypothesis due to Onsager

(1931a, b) and is adapted in this article in order to treat irreversible electron transfer in

the electronic subsystem of A (see Fig. 3.22).

We are in a position to apply the electronic tensile stress analysis to the present

problem.

For example, removal of electron from the system to the reservoir gives the

Gibbs chemical potential μG. Using Gibbs grand canonical ensemble, we arrive at

the expression of the Gibbs chemical potential μG as follows (see Fig. 3.23):

μG ¼ μR þ
X

R0 6¼Rð Þ
αR0R ð3:113Þ

3.4 Regional Chemical Potential 127

http://dx.doi.org/10.1007/978-981-10-3132-8_1#Fig26


where

μR ¼ ∂ER

∂NR

� �
S, v,NR0 6¼Rð Þ

ð3:114Þ

αR0R ¼ ∂ER0

∂NR

� �
S, v,NR0 6¼Rð Þ

ð3:115Þ

The two-region case is found in Fig. 3.24.

Fig. 3.23 The Gibbs chemical potential and the regional chemical potential

Fig. 3.24 Regional chemical potential inequality principle for two-region case
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The regional chemical potential μR refers to the regional contribution to the μG. If an
electron is withdrawn from a region R and reach the reservoir, the regional electronic

energy ER changes and the μR gives the energy change per one electron. On the other

hand, the passage of the electron through the system to the reservoir should inevitably

influence the electronic energies of the other regions, Rs, where the regional electronic

energy ER0 changes and the αR0R gives the energy change per one electron.

If an electron is withdrawn from a region R and passes through another region

R0, then the electron is treated here external to the region R0. Namely, the R0 here
acts as a spectator to the passing electron and therefore the energy change in ER0 as

measured by αR0R should then be “electrostatic” in nature. This should be electric

potential first observed by Volta as proved by Herring and Nichols. It should be

noted that manipulation of electron solely in the particular region leads to the

thermodynamic definition of work function. As demonstrated by Volta for a pair

of regions R and R0 in contact with each other, the contact potential difference is the
difference in the regional work function as proved by Herring and Nichols (1949)

ϕR � ϕR0 ¼ ΦR0 �ΦR ð3:116Þ

where ϕR denotes the Volta electric potential for the region R and ΦR denotes the

work function of the region R. This is the consequence of the chemical equilibrium

in between a pair of regions in contact with each other

μG ¼ �eΦR � eϕR ¼ �eΦR0 � eϕR0 ð3:117Þ

where the Gibbs chemical potential μG is constant from region to region in contact

with each other under the condition of global chemical equilibrium (see Fig. 3.25).

Fig. 3.25 The Volta electric potential and the Herring and Nichols work function
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On the other hand, the electrostatic effect is long-ranged. As a matter of fact, the

electron is negatively charged and has non-negligible interaction with even for

spectator region R00 not directly in contact with the region R. For example, the

surface dipole of the spectator region R0 can contribute to the long-ranged electro-

static interaction with the electron. Hence, in our theory, the intrinsic Volta electric

potential ϕR for the region R is expressed by the sum of αR0R over the spectator

complementary regions R0 to R:

�eϕR ¼
X

R0 6¼Rð Þ
αR0R ð3:118Þ

Therefore, we arrive at the intrinsic Herring–Nichols work function ΦR for the

region R as follows:

�eΦR ¼ μR ð3:119Þ

Thus, the thermodynamic extension of the electronic energy density nE ~rð Þ turned
out to be observable in electrochemistry: in terms of the intrinsic Volta electric

potential φR and the intrinsic Herring–Nichols work functionΦR. Even for the same

crystal, the φR and the ΦR are dependent on surface morphologies or crystallo-

graphic orientations, while the sum of these gives the constant value μG for the same

crystal.

The regional chemical potential inequality principle gives another nonclassical

bond order of chemical reactivity (see Fig. 3.26).

Fig. 3.26 Another nonclassical bond order based on the regional chemical potential
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3.5 Examples

3.5.1 Chemical Bond

Shape volume is studied with the static dielectric properties of high-k dielectric

materials (Nakamura et al. 2005). Numerical examples are cluster models of silicon

dioxide and silicate oxides (see Fig. 3.27).

The constituent atomic shape volumes are studied from the viewpoint of the

shell structure (Nozaki et al. 2016). Numerical data are atomic numbers 1 through

18 (see Fig. 3.28).

Spindle structure of chemical reaction is studied with the shape volume along the

intrinsic reaction coordinate (IRC) (Tachibana 2001). Numerical example is C2H2þ
HF (see Fig. 3.29).

Marginal stability around atoms is represented by compressive principal

stresses. Only the bonds of a pair of electrons are singled out as the spindle

structure, like for C–C bond, C–H bond, and H–F bond. Apparently, the tensile

Fig. 3.27 Shape volumes of cluster models containing (a) three Si atoms, (b) Zr atom and two Si

atoms, (c) Hf atom and two Si atoms, (d) Zr atom and two Si atoms in siladioxyl groups, and (e) Hf

atom and two Si atoms in siladioxyl groups
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stress regions for the C–C σ and π bonds in C2H2 are immersed completely under

the atomic compressive ones. This is because the π bonds that spread perpendicular

to the molecular plane makes the C–C distance shorter, and therefore the C–C σ
bond approaches the united atom limit where the tensile stress region is immersed

under the atomic compressive one. However, it should be noted that the spindle

structure for the C–C σ bond is recovered in the CH2CHF case instead. This is

because one of the π bonds in C2H2 is lost with the reaction with HF, making the C–

C distance longer (Tachibana 2005).

The π bond is manifest as the dumbbell-type spindle structure, called a sheath

structure (Tachibana 2005). As in C2H4, the dumbbell-type spindle structure for

the C–C π bond spreads in a wider region than that of the C–C σ bond and shows

the magnitude of the tensile eigenvalue has two maxima in the symmetric position

out of the C–C axis (see Fig. 3.30). Since the spindle structure could be a

one-electron orbital property, it should be immersed in C2H2 (see Fig. 3.30) or

found intact in H2
+ (Ichikawa and Tachibana 2009).

The immersed spindle structure may be called the pseudo-spindle structure,

while the non-closed spindle structure may be called the pro-spindle structure

(Szarek et al. 2009).

Fig. 3.28 The size of the electronic interfaces, which is defined in section “Size of the electronic

interface and comparison with atomic and ionic radii,” are plotted for Souter (blue solid line) and
Sinner (red dotted line) of atoms, and Souter of cations (green dashed line). Covalent bond radii from
Pyykk€o and Atsumi (2009) (black thin solid line) and ionic radii from Pauling (1960) (black thin
dotted line) are plotted, too. As for the ionic radii, the crystal radii (line with filled square) and
univalent radii (line with asterisk) are plotted
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The homonuclear diatomic molecules in ground states of main group elements,

from first to fourth period, have been analyzed here with respect to the Lagrange

point (Szarek and Tachibana 2007). Among the elements of the first two groups,

one can notice that from Na2 to Ca2, the degeneracy of the largest eigenvalue

Fig. 3.29 Spindle structure with the shape volume along the IRC of HFþ C2H2! CH2¼ CHF in

five panels. In each panel are shown the kinetic energy density (left), the third principal stress, and
the third principal axis (right). The third panel corresponds to the transition state of the nuclear

motion
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occurs in contrast to the degeneracy of two minor eigenvalues of stress in other

cases. There appears clear tendency that among all noble gas interactions the

largest eigenvalue of stress in Lagrange point becomes negative (see Fig. 3.3).

This is because the antibonding orbital contribution overwhelms the bonding one

Fig. 3.29 (continued)
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Fig. 3.29 (continued)

Fig. 3.30 The spindle structures in C2H4 and C2H2: σ spindle structures of C–C bond and C–H

bond together with the sheath structure of π orbital of HOMO (Note that the spindle structure of

C–C is immersed in C2H2)
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(see Fig. 3.20) as realized by the simple orbital interaction scheme (see Fig. 3.4).

Actually the electron density is swept away from the Lagrange point (see

Fig. 3.31).

There also appears another clear tendency that among all metals and metalloids

bonds, the largest eigenvalue of stress in Lagrange point becomes negative. This

indicates a kind of fluidity or liquidity (see Figs. 3.9 and 3.10) of bonding/valance

electron density between species. There might be a connection between such a

feature and band properties of metals and semiconductors however not studied yet.

At least, we may say as mentioned in Sect. 3.3.5, the long-range Lewis electron pair

formation should emerge. Namely, as the internuclear distance is elongated the

spindle structure should be revealed (Ichikawa et al. 2012). Numerical example is

Li dimer (see Fig. 3.32).

3.5.2 Nonclassical Bond Order and Regional Chemical
Potential

The nonclassical bond order concept of energy density and regional chemical

potential based bond orders gives natural evaluation of interaction strength com-

pared with classical definition, considering delocalized nature of electrons (Szarek

Fig. 3.31 Electron density redistribution in noble gases calculated as difference of molecule and

atoms electron densities. The red dots show increased electron density; the blue dots apply to

decreased electron density. The size of dots corresponds to the magnitude of electron density

change. The diameter of cube is 20 [a.u.]
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et al. 2008). Numerical examples are organic compounds C2HnA with different

functional groups (see Fig. 3.33).

Integrated bond order works well for more advanced study of bond strength

(Ichikawa et al. 2011). Numerical examples are inverted sandwich-type and open

lantern-type dinuclear transition metal complexes (see Fig. 3.34).

The nonclassical bond order (Ichikawa et al. 2014) and the integrated one

(Nozaki et al. 2015) have the correlation with the bond force constant. Numerical

examples are GeSbTe (GST) alloy, the most popular material for phase change

memory (PCM) (see Fig. 3.35).

The local reactivity of hydrogenated Pt clusters has been studied (Szarek et al.

2009). The reaction sites are characterized by lowered electronic regional chemical

potential and strong directionality and exhibit electrophilic nature (see Fig. 3.36).

Electronic regional chemical potential work well for the adsorption of Li atoms

on the surface of the (12,0) single-wall carbon nanotube (SWCNT) model has been

studied (Senami et al. 2011). The adsorption of one lithium atom on the inside of

this SWCNT is favored compared to the outside (see Fig. 3.37).

Fig. 3.32 The largest eigenvalue of the stress tensor and corresponding eigenvector of Li2 at

various internuclear distances (a) 1.5 Å, (b) 2.69 Å (equilibrium distance), (c) 2.78 Å, (d) 3.31 Å,
(e) 3.36 Å, (f) 4.0 Å, (g) 5.43 Å (intrinsic electronic transition state), and (h) 6.0 Å
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Fig. 3.33 The stress rooted bond orders are blue and pink dots; NBO bond orders: Wiberg’s
indices yellow dot, atom–atom overlap NAO bond order blue ring, NLMO bond orders brown ring,
and Mayer’s bond order green ring

Fig. 3.34 As for the open lantern-type complex, the energy density-based bond order can properly

describe the relative strength of Cr–Cr and Mo–Mo bonds by the surface integration of the energy

density over the Lagrange surface which can take into account the spatial extent of the orbitals
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Fig. 3.35 Correlation of the nonclassical bond order and spring constant for GST models for

chemical species that may be present in chemical reactions of PCM

Fig. 3.36 Electronic properties of Pt2Hn¼ 8,10,12 clusters. From left to right, electronic chemical

potential, largest eigenvalue of stress tensor, and nonclassical bond orders
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Regional chemical potential in SWCNT

Fig. 3.37 Electronic regional chemical potential in single-wall carbon nanotube (SWCNT) model

Fig. 3.38 Electronic regional chemical potential for Al12X
z clusters
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The nonclassical bond orders and regional chemical potentials work well for the

study of the internal bonding, stability, and the regioselectivity of hydrogen on the

Al nanoclusters (Henry et al. 2011). Numerical examples are Al12X
z clusters (see

Fig. 3.38).

3.6 Summary

The concept of energy density has been developed using stress tensor machineries.

The energy density concept has been essential in the quantum field theory, and the

stress tensors are used ubiquitously for description of internal forces of matter.

Various basic chemical concepts in molecules and chemical reaction systems have

been clearly visualized in real three-dimensional space. The new regional energy

decomposition scheme has been extended to infinitely small regional energy

decomposition scheme, namely, the electronic energy density decomposition

scheme.

Not only the short-range force of chemical bonding but also the long-range

forces—such as the London force of the nonretarded interaction proportional to

R�6, with R being the typical intermolecular distance, and the Casimir–Polder

force of the retarded interaction proportional of R�7—are incorporated in this

scheme.

Of course, it should be noted that the fact that the adiabatic approximation gives

rise to another virial for nuclei, which remains finite for nonequilibrium nuclear

configurations. Therefore, we need, as mentioned in Sect. 3.1.1, the wave-packet

prescription of the nuclear motion for the simple picture of the regional energy

partitioning using Eq. (3.5).
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Chapter 4

Alpha-Oscillator Theory

Abstract Canonical quantization of QED in finite systems is performed in terms of

new b-photon, f-electron, and f c-positron, which are called alpha-oscillators. The

alpha-oscillator algebra is useful for non-perturbationally space-time resolved

simulation solving the dual Cauchy problems of the time-dependent QED Hamil-

tonian bHQED tð Þ. Time-dependent renormalization of QED is performed by using

q-number renormalization constants over and above alpha-resonance and thermal-

ization of alpha-oscillators. Quantum mechanics 100 years of mystery on the

measurement problem of the Minkowski space-time coordinates is solved.

Keywords Alpha-oscillator energy • Alpha-oscillator theory • Alpha-resonance •

Alpha-weighted state • b-photon • Coarse graining • Double slit • Dual Cauchy

problem • f-electron • fc-positron • Einstein–Podolsky–Rosen Measurement •

Normal mode • Particle • Q-number renormalization constant • SUGRA •

SUSY • Thermalization

4.1 Canonical Quantization

We have an evidence of the accelerated expansion of the universe (see Fig. 4.1).

Our universe is not closed but open dynamically. Namely, it is dependent on time.

Therefore, it should be remarked that the Hamiltonian of QED could also be

dependent on time.

Actually, in harmony with this remark, the QED Hamiltonian is proved to be

dependent on time (Tachibana 2016). This time dependence of the QED Hamilto-

nian does not contradict with that of our universe. It follows that we need time-

dependent renormalization of QED for the space-time resolved simulation of

molecular dynamics in finite systems. In this chapter, the time-dependent

renormalization of QED is performed in terms of the alpha-oscillator theory. The

alpha-oscillator theory may furthermore give a natural candidate for now unknown

dark energy, which is said to be abundant in our universe and to account for the

cause of the accelerated expansion of our universe.
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4.1.1 QED Hamiltonian

Here in this chapter again, first we start with the Coulomb gauge for the canonical

quantization of QED with the conjugate transversal electric field

~̂E T xð Þ ¼ �1

c

∂
∂t

~̂A xð Þ, div~̂A xð Þ ¼ 0 ð4:1Þ

The equal-time canonical quantization of the electromagnetic field leads to the

equal-time commutation relationships

bAi xð Þ; bAj yð Þ
h i

x0¼y0
¼ 0 ð4:2Þ

bET
i
xð Þ; bET

j
yð Þ

h i
x0¼y0

¼ 0 ð4:3Þ

1

4πc
bAi xð Þ; bET

j
yð Þ

h i
x0¼y0

¼ ih ηijδ3 ~x�~yð Þ þ ∂i∂j � 1

4π
� 1

~x�~yj j
� �� �

ð4:4Þ

Fig. 4.1 Estimates of the growth rate of cosmic structure compared to predictions from various

theoretical models (Reproduced from Guzzo et al. 2008)
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Second, the equal-time canonical quantization of the Dirac field leads to the equal-

time anti-commutation relationships

bψ ‘ xð Þ; bψ ‘0 yð Þf gx0¼y0 ¼ bψ ‘
{ xð Þ; bψ ‘0

{ yð Þ
n o

x0¼y0
¼ 0 ð4:5Þ

bψ ‘ xð Þ; bψ ‘0
{ yð Þ

n o
x0¼y0

¼ δ‘‘0δ
3 ~x�~yð Þ ð4:6Þ

The bψ xð Þ commutes with ~̂A xð Þ (Weinberg 1995)

bψ xð Þ; ~̂A xð Þ
h i

¼ 0 ð4:7Þ

These fields should of course be renormalized in a step-by-step time-dependent

manner, reflecting the time-dependent minimal coupling.

The bHQED tð Þ is given by using the normal order denoted as : : modulo c-number

albeit infinity if any with the obvious notation

bHQED tð Þ ¼
ð
d3~x : bHQED xð Þ : ð4:8Þ

bHQED xð Þ ¼ 1

8π
~̂ET xð Þ
� �2

þ rot~̂A xð Þ
� �2� �

� 1

c
~̂j xð Þ • ~̂A xð Þ

þ 1

2c
bj0 xð ÞbA0 xð Þ þ bψ xð Þ �ihγk∂k þ mc

� �bψ xð Þ � c ð4:9Þ

bA0 xð Þ ¼
ð1
�1

d3~y
bρ yð Þjy0¼x0

~x�~yj j ð4:10Þ

At the very beginning, bHQED tð Þ is defined by integrating theHamiltonian density operatorbHQED xð Þ, a Lorentz scalar under the Poincare symmetry transformation (Weinberg

1995), over the space variables in the Minkowski space-time. Then, it appears that thebHQED tð Þ is in general dependent on time. There exists the Cauchy problem in order to

obtain bHQED xð Þ for t> t0 (¼0) onward with causality and initial condition.With another

Cauchy problem for the time evolution of the ket vector with wave function added

to, we have the dual Cauchy problem at hand (Tachibana 2015, 2016).

This time-dependent QED Hamiltonian with the dual Cauchy problem fits well

with the time-dependent universe.

4.1.2 Conventional Conservative QED Hamiltonian

It should be noted that conventionally we make the QED Hamiltonian independent

of time. This is the conventional putative conservative QED HamiltonianbHEMstatic QED
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∂
∂t
bHQED ¼ 0 if bHQED ¼ bHEMstatic QED ð4:11Þ

with the putative conservative electromagnetostatic (EMstatic) field (see Fig. 4.2).

The basic idea behind this convention is to use the Noether theorem and the

putative boundary condition that fields disappear for point at infinity. As far as we

follow this convention, the consequence is that the QED Hamiltonian is made to be

independent of time, realization of the invariant fields (Landau and Lifshitz 1973)

or in other words the putative conservative EMstatic field (see Fig. 4.2).

If at once the putative boundary condition is met, say at the initial time

t¼ t0(¼0), then the putative EMstatic QED Hamiltonian may be used for future

time t with t> t0(¼0) onward. Then the time evolution of any field operator bF xð Þ
obeys the Heisenberg equation of motion in the well-known form

ih
∂
∂t
bF xð Þ

����
EMstatic QED

¼ bF xð Þ; bHEMstatic QED

h i���
EMstatic QED

ð4:12Þ

with the putative EMstatic QED Hamiltonian bHEMstatic QED with t> t0(¼0) onward.

In due course, we need to set up wave function at the initial time t¼ t0(¼0) in order

to discriminate numbers of electrons, positrons, and photons and calculate the

expectation value

bF xð Þ
D E���

EMstatic QED
¼ H Ψh jHbF xð Þ Ψj iH

H ΨjΨh iHH

�����
EMstatic QED

ð4:13Þ

where |ΨiH denotes the time-independent ket vector in the Heisenberg representa-

tion with t> t0(¼0) onward.

Thus, the Cauchy problem of the conventional putative conservative QED

Hamiltonian bHEMstatic QED is equivalent to that of quantum mechanics under the

Fig. 4.2 Conventional

conservative QED

Hamiltonian with the

EMstatic field
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putative conservative EMstatic field. It is very simple. Indeed, with initial wave

packet given under the putative conservative EMstatic field, the time evolution

depends only on the time duration. Namely, if at later time, say ti(>t0), and if with

the same wave packet given to initiate another event, then exactly the same time

evolution should occur. To conclude, if the double-slit phenomenon of Fig. 1.3 be

observed in this situation, then it is mystery to realize the stochastic distribution of

spots on the screen as Feynman claimed so (Feynman et al. 1965). The reason for

the stochastic distribution of spots on the screen is out of order.

This is not the case with the realistic QED Hamiltonian bHQED tð Þ that is

dependent on time. The Noether theorem is still applicable, but we abandon the

putative boundary condition that fields disappear for point at infinity. Equivalently,

this means that we abandon the putative conservative EMstatic field. With this

generic case in mind, the Cauchy problem of fields in QED in the Heisenberg

representation has been elaborated elegantly by Nakanishi using ghost field in the

Landau gauge (Nakanishi 2004). Here we use the Coulomb gauge, and we do not

invoke the additional ghost field. And, we shall apply the alpha-oscillator theory to

QED (Tachibana 2016) as elaborated below.

4.2 Alpha-Oscillator Theory

4.2.1 Synchronization

To solve for the Cauchy problem of fields in QED, clocks at different space points

are synchronized at t¼ t0, when canonical quantization is performed with the

definition of the vacuum ket vector |0i. The bjμ xð Þ develops forward t> t0 with the

retarded interactions mediated by photon. The vacuum and field operators are not

defined backward t< t0 (see Fig. 4.3).

4.2.2 Causality and Initial Condition

To obtain bF xð Þ with xμ ¼ ct;~xð Þ in the Minkowski space-time, we may

collect information of bjμ yð Þ with yμ ¼ cu;~yð Þ at distant ~y with the retarded time

u ¼ t� ~x�~yj j
c satisfying causality

bjμ cu;~yð Þ ¼ 0, u > t ð4:14Þ

and initial condition (see Fig. 4.4)

bjμ cu;~yð Þ ¼ 0, u < t0 ð4:15Þ
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For this purpose, in the following discussions, we may use that any function F(u)
satisfying

F uð Þ ¼ 0, u < t0, u > t ð4:16Þ

Fig. 4.4 Causality and initial condition

Fig. 4.3 Synchronization of clocks. The charge current develops forward t> t0 with the retarded

interactions mediated by photon. The vacuum and field operators are not defined backward t< t0
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may be obtained at u with t0 < u ¼ t� ~x�~yj j
c < t as (Tachibana 2013)

F uð Þj
u¼t� ~x�~yj j

c
¼
ð1
�1

du0F u0ð Þδ u0 � t� ~x�~yj j
c

� �� �
¼ ~x�~yj j

cπ

ð t
t0

du0
ð1
�1

dαF u0ð Þeiα u0�tð Þ2� ~x�~yð Þ2
c2

� �
ð4:17Þ

where we have used the delta function

δ u0 � tð Þ2 � a2
� �

¼ 1

2a
δ u0 � tð Þ � að Þ þ δ u0 � tð Þ þ að Þð Þ, a > 0 ð4:18Þ

with

δ u0 � tð Þ2 � ~x�~yð Þ2
c2

 !
¼ 1

2π

ð1
�1

dαeiα u0�tð Þ2� ~x�~yð Þ2
c2

� �
ð4:19Þ

4.2.3 Electromagnetic Field

The vector potential ~̂A xð Þ should satisfy the Maxwell equation

□~̂A xð Þ ¼ 4π

c
~̂j T xð Þ ð4:20Þ

with the transversal charge current

~̂j T xð Þ ¼ ~̂j xð Þ � 1

4π
grad

∂
∂t
bA0 xð Þ ð4:21Þ

Using the standard Green function, we have (Tachibana 2013)

~̂A xð Þ ¼ ~̂A radiation xð Þ þ ~̂A A xð Þ ð4:22Þ

~̂A A
ct;~xð Þ ¼ 1

c

ð1
�1

du

ð1
�1

d3~y
~̂j T cu;~yð Þ
~x�~yj j δ u� t� ~x�~yj j

c

� �� �
¼ 1

c2π

ð t

t0

du

ð1
�1

dα

ð1
�1

d3~y~̂j T cu;~yð Þeiα t�uð Þ2� ~x�~yð Þ2
c2

� �
ð4:23Þ
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where we omit the contribution of ~̂AM xð Þ in Eq. (1.101). It should be noted that we
have used the causality and initial condition and then obtained the retarded potential

~̂A A xð Þ with separation of space-time variables (see Fig. 4.5).

The ~̂A radiation xð Þ is given by the aradiation-photon field

~̂A radiation xð Þ ¼ ~̂a radiation xð Þ þ ~̂a {
radiation xð Þ ð4:24Þ

~̂a radiation xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4πh2c

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

ð1
�1

d3~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pradiation

0
p baradiation ~p; σð Þe�ixμpradiation

μ=h~e ~p; σð Þ

ð4:25Þ

with the usual dispersion relationship of spectrum

pradiation
μ ¼ pradiation

0; ~p
� �

, pradiation
0 ¼ hνradiation

c
¼ ~pj j ð4:26Þ

and the polarization vector ~e ~p; σð Þ from Eqs. (1.104), (1.105), (1.106), and

(1.107) as

~p •~e ~p; σð Þ ¼ 0 ð4:27Þ

Fig. 4.5 Separation of variables for real-time simulation. Non-causal data are swept out through

integration with α
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X
σ¼�1

ei ~p; σð Þej* ~p; σð Þ ¼ �ηij þ pipj

� ~pj j2 ð4:28Þ

X3
i¼1

ei ~p; σð Þei* ~p; σ0ð Þ ¼ δσσ0 ð4:29Þ

Note the usual commutation algebra of the aradiation-photon field

baradiation ~p; σð Þ; baradiation ~q; σ0ð Þ½ � ¼ ba{radiation ~p; σð Þ; ba{radiation ~q; σ0ð Þ
 � ¼ 0 ð4:30Þbaradiation ~p; σð Þ; ba{radiation ~q; σ0ð Þ
 � ¼ δσσ0δ
3 ~p� ~qð Þ ð4:31Þ

4.2.4 Alpha-Oscillator Algebra

4.2.4.1 Electromagnetic Field

Now with the alpha-oscillator theory applied, the generic solution of the electro-

magnetic field may be given by using the b-photon field defined as follows

(Tachibana 2015)

~̂A xð Þ ¼ ~̂b xð Þ þ ~̂b { xð Þ ð4:32Þ

~̂b xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4πh2c

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

ð1
0

dν
ð1
�1

d3~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 ν; ~pj jð Þp bb ν; ~p; σð Þe�i2πνt~e ~p; σð Þei~x •~p=h

ð4:33Þ

By using the integral form of the current

~̂j T xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q ð1
0

dν
ð1
�1

d3~p ~̂jT ν; ~pð Þe�i2πνtei~x •~p=h þ ~̂jT
{
ν; ~pð Þeþi2πνte�i~x •~p=h

� �
ð4:34Þ

the b-photon field may be represented asffiffiffiffiffiffiffiffiffiffiffiffi
4πh2c

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 ν; ~pj jð Þp � 2πν

c

� �2

þ ~pj j2
h2

 !X
σ¼�1

bb ν; ~p; σð Þ~e ~p; σð Þ ¼ 4π

c
~̂j T ν; ~pð Þ ð4:35Þ

Comparing Eq. (4.35) with Eqs. (4.22), (4.24), and (4.32), we may observe that

the aradiation-photon fields are sticking to the b-photon field through ~̂j T xð Þ. This
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sticking process may be called “thermalization” of the aradiation-photon fields to the

b-photon field. Note that the real positive number p0 ν; ~pj jð Þ in Eq. (4.33) is the

counterpart of pradiation
0 in Eqs. (4.25) and (4.26). The p0 ν; ~pj jð Þ is a function of ν

and ~pj j serving as the thermalized solution of Eq. (4.35).

The field algebra in Eqs. (4.2), (4.3), and (4.4) are recovered if we assume the b-
photon algebra

bb ν; ~p; σð Þ; bb ν0; ~q; σ0ð Þ
h i

¼ bb{ ν; ~p; σð Þ;bb{ ν0; ~q; σ0ð Þ
h i

¼ 0 ð4:36Þ
bb ν; ~p; σð Þ; bb{ ν0; ~q; σ0ð Þ
h i

¼ δσσ0δ
3 ~p� ~qð Þδ ν � ν ~pj jð Þb

� �
δ ν0 � ν ~qj jð Þb
� � ð4:37Þ

where ν ~pj jð Þb denotes real positive frequency that depends on ~pj j. The b-photon
field apparently includes the aradiation-photon field in a delta-function form

bb ν; ~p; σð Þ � baradiation ~p; σð Þδ ν � νradiationð Þ ð4:38Þ

Then, the electromagnetic part of ĤQEDðtÞ (modulo c-number vacuum energy) in

Eqs. (4.8) and (4.9) is given as

bHQEDðtÞ �
ð
d3~x :

1

8π
~̂ET xð Þ
� �2

þ rot~̂A xð Þ
� �2� �

:

¼ h2c
X
σ¼�1

ð1
0

dν
ð1
0

dν0
ð1
�1

d3~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 ν; ~pj jð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p0 ν0; ~pj jð Þp
� 2πν

c

� �
2πν0

c

� �
þ ~pj j2

h2

 !bb{ ν; ~p; σð Þbb ν0; ~p; σð Þei2π ν�ν0ð Þt

modulo c-numberð Þ

ð4:39Þ

which part may depend on t and t0 since ĤQEDðtÞ is dependent on t and t0. Moreover,

Eq. (4.39) includes the radiation part (modulo time-independent c-number vacuum

energy) given asð
d3~x :

1

8π
~̂ET xð Þ
� �2

þ rot~̂A xð Þ
� �2� �

:

�
ð
d3~x :

1

8π
~̂ETradiation

xð Þ
� �2

þ rot~̂Aradiation xð Þ
� �2� �

:

¼
X
σ¼�1

ð1
�1

d3~pcpradiation
0baradiation{ ~p; σð Þbaradiation ~p; σð Þ

modulo time-independent c-numberð Þ

ð4:40Þ

which is manifestly independent of t as well as t0.
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4.2.4.2 The Dirac Field

The bψ xð Þ may be given by using another standard Green function K(x, y) as

(Weinberg 1995)

bψ xð Þ ¼ bψ free xð Þ þ 1

ih

ð
d4yK x; yð Þ �q

c
b=A yð Þ

� �bψ yð Þ ð4:41Þ

�ih=∂þ mc
� �

K x; yð Þ ¼ ihδ4 x� yð Þ ð4:42Þ

where bψ free xð Þ denotes the free field. The bψ free xð Þ is given by the free efree-electron
and efree

c-positron fields

bψ free xð Þ ¼ befree xð Þ þ befreec{ xð Þ ð4:43Þ

befree‘ xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

2

ð1
�1

d3~p befree ~p; σð Þe�ixμpfree
μ=hu‘ ~p; σð Þ ð4:44Þ

befree‘ c{ xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

2

ð1
�1

d3~p befreec{ ~p; σð Þeþixμpfree
μ=hv‘ ~p; σð Þ ð4:45Þ

with the usual dispersion relationship of spectrum

pfree
μ ¼ pfree

0; ~p
� �

, pfree
0 ¼ hνfree

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcð Þ2 þ ~pj j2

q
ð4:46Þ

and the anti-commutation algebra

befree ~p; σð Þ;befree ~q; σ0ð Þf g ¼ befreec ~p; σð Þ;befreec ~q; σ0ð Þf g
¼ befree{ ~p; σð Þ;befree{ ~q; σ0ð Þ
n o

¼ befreec{ ~p; σð Þ;befreec{ ~q; σ0ð Þ� 
 ¼ 0

ð4:47Þ
befree ~p; σð Þ;befree{ ~q; σ0ð Þ
n o

¼ befreec ~p; σð Þ;befreec{ ~q; σ0ð Þ
n o

¼ δσσ0δ
3 ~p� ~qð Þ ð4:48Þ

The Dirac spinors u ~p; σð Þ for electron and v ~p; σð Þ for positron satisfy

pfree
μγμ � mc

� �
u ~p; σð Þ ¼ 0 ð4:49Þ

pfree
μγμ þ mc

� �
v ~p; σð Þ ¼ 0 ð4:50ÞX

σ¼�1
2

u ~p; σð Þ�u ~p; σð Þ ¼ 1

2pfree
0

pfree
μγμ þ mc

� � ð4:51Þ

X
σ¼�1

2

v ~p; σð Þ�v ~p; σð Þ ¼ 1

2pfree
0

pfree
μγμ � mc

� � ð4:52Þ
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�u ~p; σð Þγμu ~p; σ0ð Þ ¼ �v ~p; σð Þγμv ~p; σ0ð Þ ¼ pfree
μ=pfree

0
� �

δσσ0 ð4:53Þ
�u ~p; σð Þγ0v �~p; σ0ð Þ ¼ �v ~p; σð Þγ0u �~p; σ0ð Þ ¼ 0 ð4:54Þ

Now with the alpha-oscillator theory applied, the generic solution may be given

by using thef-electron and f c-positron fields defined as follows:

bψ xð Þ ¼ bf xð Þ þ bf c{ xð Þ ð4:55Þ
bf ‘ xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhð Þ3
q X

σ¼�1
2

ð1
0

dν
ð1
�1

d3~pbf ν; ~p; σð Þe�i2πνtu‘ ~p; σð Þei~x •~p=h ð4:56Þ

bf c‘{ xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

2

ð1
0

dν
ð1
�1

d3~pbf c{ ν; ~p; σð Þeþi2πνtv‘ ~p; σð Þe�i~x •~p=h ð4:57Þ

Applying the first thermalization of the b-photon field Eq. (4.35) to the Dirac

Eq. (1.16), we obtain the second thermalization of the f-electron field

q

c
γ0
ð1
0

dν0
ð1
�1

d3~qbA0 ν�ν0;~p�~qð Þ
X
σ¼�1

2

bf ν0;~q;σð Þu ~q;σð Þ

¼4π

c

ð1
0

dν0
ð1
�1

d3~q

� 2πν0

c

� �2

þ ~qj j2
h2

 ! γkbjTk ν0;~qð Þ
X
σ¼�1

2

bf ν�ν0;~p�~q;σð Þu ~p�~q;σð Þ
0@

þγkbjT{k ν0;~qð Þ
X
σ¼�1

2

bf νþν0;~pþ~q;σð Þu ~pþ~q;σð Þ
!

ð4:58Þ

with

bA0 ν; ~pð Þ ¼ q

2πhð Þ3
X
σ¼�1

2

X
σ0¼�1

2

ð1
0

dν0
ð1
�1

d3~q

� bf { ν0; ~q; σð Þbf ν þ ν0; ~pþ ~q; σ0ð Þu{ ~q; σð Þu�~pþ ~q; σ0
��

þbf { ν0; ~q; σð Þbf c{ �ν � ν0;�~p� ~q; σ0ð Þu{ ~q; σð Þv �~p� ~q; σ0ð Þ
þbf c ν0; ~q; σð Þbf ν � ν0; ~p� ~q; σ0ð Þv{ ~q; σð Þu ~p� ~q; σ0ð Þ
þbf c ν0; ~q; σð Þbf c{ �ν þ ν0;�~pþ ~q; σ0ð Þv{ ~q; σð Þv�� ~pþ ~q; σ0

��
ð4:59Þ
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and the third thermalization of the f c-positron field

q

c
γ0
ð1
0

dν0
ð1
�1

d3~qbA0

{
ν � ν0; ~p� ~qð Þ

X
σ¼�1

2

bf c{ ν0; ~q; σð Þv ~q; σð Þ

¼ 4π

c

ð1
0

dν0
ð1
�1

d3~q

� 2πν0

c

� �2

þ ~qj j2
h2

 ! γkbjTk ν0; ~qð Þ
X
σ¼�1

2

bf c{ ν þ ν0; ~pþ ~q; σð Þ
 

�v ~pþ ~q; σð Þ þ γkbjT{k ν0; ~qð Þ
X
σ¼�1

2

bf c{ ν � ν0; ~p� ~q; σð Þ � v ~p� ~q; σð Þ
!

ð4:60Þ

The field algebra in Eqs. (4.5) and (4.6) are recovered if we assume the f-electron
and f c-positron algebras

bf ν; ~p; σð Þ;bf ν0; ~q; σ0ð Þ
n o

¼ 0, bf c ν; ~p; σð Þ;bf c ν0; ~q; σ0ð Þ
n o

¼ 0bf { ν; ~p; σð Þ;bf { ν0; ~q; σ0ð Þ
n o

¼ 0, bf c{ ν; ~p; σð Þ;bf c{ ν0; ~q; σ0ð Þ
n o

¼ 0
ð4:61Þ

bf ν; ~p; σð Þ;bf { ν0; ~q; σ0ð Þ
n o

¼ δσσ0δ
3 ~p� ~qð Þδ ν � ν ~pj jð Þf

� �
δ ν0 � ν ~qj jð Þf
� �

,bf c ν; ~p; σð Þ;bf c{ ν0; ~q; σ0ð Þ
n o

¼ δσσ0δ
3 ~p� ~qð Þδ ν � ν ~pj jð Þf

� �
δ ν0 � ν ~qj jð Þf
� �

ð4:62Þ

where ν ~pj jð Þf denotes real positive frequency that depends on ~pj j. Also, Eq. (4.7) is
recovered if we assume

bf ν; ~p; σð Þ; bb ν0; ~q; σ0ð Þ
h i

¼ bf c ν; ~p; σð Þ; bb ν0; ~q; σ0ð Þ
h i

¼ bf { ν; ~p; σð Þ; bb ν0; ~q; σ0ð Þ
h i

¼ bf c{ ν; ~p; σð Þ; bb ν0; ~q; σ0ð Þ
h i

¼ 0

ð4:63Þ

The f-electron and f c-positron fields apparently include the efree-electron and efree
c-

positron fields, respectively, in the delta-function forms

bf ν; ~p; σð Þ � befree ~p; σð Þδ ν � νfreeð Þ ð4:64Þ
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bf c ν; ~p; σð Þ � befreec ~p; σð Þδ ν � νfreeð Þ ð4:65Þ

Then, the Dirac part of bHQED (modulo c-number vacuum energy) in Eqs. (4.8)

and (4.9) is given as

bHQEDðtÞ �
ð
d3~x : bψ xð Þ �ihγk∂k þ mc

� �bψ xð Þ � c :

¼
X
σ¼�1

2

ð1
0

dν
ð1
0

dν0
ð1
�1

d3~pcpfree
0 � bf {ðν~pσÞbf ν0; ~p; σð Þeþi2π ν�ν0ð Þt

�

þ bf c{; ν0; ~p; σð Þ;bf c; ν; ~p; σð Þ; e�i2π ν�ν0ð Þt
�
modulo c-numberð Þ ð4:66Þ

which part may depend on t and t0 since ĤQEDðtÞ is dependent on t and t0. Moreover,

Eq. (4.66) includes the free part (modulo time-independent c-number vacuum

energy) given asð
d3~x : bψ xð Þ �ihγk∂k þ mc

� �bψ xð Þ � c :

�
ð
d3~x : bψ free xð Þ �ihγk∂k þ mc

� �bψ free xð Þ � c :

¼
X
σ¼�1

2

ð1
�1

d3~pcpfree
0 befree{ ~p; σð Þbefree ~p; σð Þ þ befreec{ ~p; σð Þbefreec ~p; σð Þ
� �

modulo time-independent c-numberð Þ

ð4:67Þ

which is manifestly independent of t as well as t0.

4.2.4.3 Alpha-Oscillator with Resonance and Thermalization

We have performed quantization of QED using new sub-particles, b-photon,
f-electron, and f c-positron, which are called alpha-oscillators. The particle fields

of photon, electron, and positron are constructed by infinite superposition of those

corresponding fields of alpha-oscillators.

The alpha-oscillators are functions of ω denoting the collected set of variables of

ν-frequency, ~p-momentum, and σ-spin

ω ¼ ν; ~p; σf g ð4:68Þ
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A real positive number p0 ν; ~pj jð Þ is a function of ν and ~pj j. For any ~p-momentum,

there exists a particular ν-frequency ν ~pj jð Þ and satisfies

p0 ν ~pj jð Þ; ~pj jð Þ ¼ hν ~pj jð Þ
c

ð4:69Þ

which is called the alpha-resonance condition. The operator dynamics of the alpha-

oscillators has been formulated in terms of thermalization; see Eq. (4.35) for photon

and Eqs. (4.60), (4.61), and (4.62) for electron and positron.

4.3 Double-Slit Space-Time-Resolved Prediction of QED

4.3.1 The Feynman Mystery

Let us ask an apparently mysterious question: what causes the time-dependent

randomness of the sequential spots observed in the buildup of electron double-slit

interference pattern, an experiment performed by Tonomura (2005)? It is mysteri-

ous as so mentioned by Feynman et al. (1965). We should admit the mystery if we

rely on quantummechanics and even on QED under the conventional putative time-

independent EMstatic field (see Sect. 4.1.2). But if the Hamiltonian were time

dependent, then it might cause the time-dependent randomness of the sequential

spots. Then the next “consequent” question is do we have such reasonable time-

dependent Hamiltonian in reality? Yes, bHQED tð Þ is the key to answer the question

(see Fig. 4.6).

Now that we have bHQED tð Þ at hand (see Fig. 4.7), for an event αi starting at tiwith
t0< ti ; i¼ 1 , 2 , 3 , . . ., we set up the initial ket vector associated with the wave

Fig. 4.6 Double-slit space-

time resolved prediction of

QED using the time-

dependent HamiltonianbHQED tð Þ rather than the

conventional putative time-

independent EMstatic

Hamiltonian bHEMstatic QED or

the conventional time-

independent electrostatic

Hamiltonian bHelectrostatic of

quantum mechanics
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function. For example, first of all for electron (or positron), the phenomenon at tPi
following ti is not the collapse of wave packet but the reaction of electron

(or positron) with material at the screen. Second, for photon, the phenomenon at

tPi following ti is not the collapse of wave packet but the formation of electronic

excited state, say exciton pair, on the screen, where the photon disappears as shown

in Fig. 4.8 (Tachibana 2016). The combination of the particle number

nonconservation and the exciton pair formation associated with the time-dependentbHQED tð Þis the real phenomenon (see Fig. 4.8).

4.3.2 The Dual Cauchy Problem

The time evolutions of fields and ket vectors with wave functions in QED constitute

the dual Cauchy problem. The unified treatment is given as follows.

4.3.2.1 Time Evolution Operator

The time evolution of q-number bF tð Þð¼ bF ct;~xð ÞÞ for t> t0 (¼0) onward is brought

about by the time evolution operator bU t; t0ð Þ obeying

Fig. 4.7 Realistic nonconservative QED Hamiltonian at hand
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ih
∂
∂t
bU t; t0ð Þ ¼ bHQED tð ÞbU t; t0ð Þ, ih

∂
∂t
bU{ t; t0ð Þ ¼ �bU{ t; t0ð ÞbHQED tð Þ ð4:70Þ

and the solution (see Fig. 4.9)

bU t; t0ð Þ ¼ Te
1
ih

Ð t
t0
dt0 bHQED t0ð Þ ð4:71Þ

where T denotes the Dyson chronological operator (Sakurai 1985).

For bF tð Þwhose time evolution is solely brought about by the canonical variables

in the Heisenberg representation

Fig. 4.8 Photon number

nonconservation: space-

time-resolved prediction in

QED with time-dependentbHQED tð Þ. The conventional
putative time-independent

EMstatic HamiltonianbHEMstatic QED fails to account

for the photon number

nonconservation. Nor in

quantum mechanics also,

every particle number is

conserved, so that

mysterious “collapse of

wave packet” should be

invoked.

Fig. 4.9 The time evolution of q-number bF tð Þ ¼ bF ct;~xð Þ
� �

using the time evolution operator bU
t; t0ð Þ with t> t0 onward
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bF tð Þ ¼ bU{ t; t0ð ÞbF t0ð ÞbU t; t0ð Þ ð4:72Þ

we have

ih
∂
∂t
bF tð Þ ¼ bU{ t; t0ð Þ bF t0ð Þ; bHQED tð Þ

h ibU t; t0ð Þ ¼ bF tð Þ; bHQED

Hð Þ
t; t0ð Þ

h i
ð4:73Þ

where

bHQED

Hð Þ
t; t0ð Þ ¼ bU{ t; t0ð ÞbHQED tð ÞbU t; t0ð Þ ð4:74Þ

with

bHQED t0ð Þ ¼ bHQED

Hð Þ
t0; t0ð Þ ð4:75Þ

Alternatively, define

bF Hð Þ t; t0ð Þ ¼ bU{ t; t0ð ÞbF tð ÞbU t; t0ð Þ ð4:76Þ

with

bF t0ð Þ ¼ bF Hð Þ t0; t0ð Þ ð4:77Þ

then the time evolution of bF Hð Þ t; t0ð Þ is given as

ih
∂
∂t
bF Hð Þ t; t0ð Þ ¼ bU{ t; t0ð Þ bF tð Þ; bHQED tð Þ

h ibU t; t0ð Þ

þ bU{ t; t0ð Þ ih
∂
∂t
bF tð Þ

� �bU t; t0ð Þ

¼ bF Hð Þ t; t0ð Þ; bHQED

Hð Þ
t; t0ð Þ

h i
þ bU{ t; t0ð Þ ih

∂
∂t
bF tð Þ

� �bU t; t0ð Þ ð4:78Þ

The time evolution of bHQED tð Þ itself should also solely be brought about by the

canonical variables in the Heisenberg representation

bHQED tð Þ ¼ bU{ t; t0ð ÞbHQED t0ð ÞbU t; t0ð Þ ð4:79Þ

and then we have

ih
∂
∂t
bHQED tð Þ ¼ bU{ t; t0ð Þ bHQED t0ð Þ; bHQED tð Þ

h ibU t; t0ð Þ

¼ bHQED tð Þ; bHQED

Hð Þ
t; t0ð Þ

h i
ð4:80Þ
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The time evolution of bHQED

Hð Þ
t; t0ð Þ is given as

ih
∂
∂t
bHQED

Hð Þ
t; t0ð Þ ¼ bU{ t; t0ð Þ ih

∂
∂t
bHQED tð Þ

� �bU t; t0ð Þ ð4:81Þ

4.3.2.2 Initial Ket Vector with Wave Function

The wave function ΦN(t0;ω1, . . . ,ωN, t) in the Hilbert space of QED is equipped

with the ket vector

Ψ t0; tð Þj iH or S ¼
X1
N¼0

ð
dω1 . . .dωN t0;ω1; . . . ;ωN; tj iH or SΦN t0;ω1; . . . ;ωN; tð Þ

ð4:82Þ

in terms of the Heisenberg (H ) or Schr€odinger (S) representation satisfying the

Heisenberg equation

ih
∂
∂t

Ψ t0; tð Þj iH ¼ 0 ð4:83Þ

or the Schr€odinger equation

ih
∂
∂t

Ψ t0; tð Þj iS ¼ bHQED tð Þ Ψ t0; tð Þj iS, Ψ t0; tð Þj iS ¼ bU t; t0ð Þ Ψ t0; tð Þj iH ð4:84Þ

A primitive choice of the basis ket vector may be given as

t0;ω1; . . . ;ωN; tj iH ¼ bU{ t; t0ð Þ t0;ω1; . . . ;ωN; t0j iS ð4:85Þ
t0;ω1; . . . ;ωN; t0j iH ¼ t0;ω1; . . . ;ωN; t0j iS ð4:86Þ

with

t0;ω1; . . . ;ωN; t0j iS
¼ 1ffiffiffiffiffiffiffi

Nb!
p bb{ ω1bð Þ� � �bb{ ωNb

ð Þ

� 1ffiffiffiffiffiffiffi
Nf !

p bf { ω1f

� �� � �bf { ωNf

� �
� 1ffiffiffiffiffiffiffiffi

Nf c !
p bf c{ ω1f c

� �
� � �bf c{ ωNfc

� �
0j i

ð4:87Þ
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ΦN t0;ω1; . . . ;ωN; tð Þ ¼ ΦN t0;ω1b ; . . . ;ωNb
;ω1f ; . . . ;ωNf

;ω1f c ; . . . ;ωNfc
; t

� �
ð4:88Þ

N ¼ Nb � Nf � Nf c ð4:89Þ
ω ¼ ωb 	 ωf 	 ωf c ð4:90Þ

ωb,ωf ,ωf c ¼ ν; ~p; σf g ð4:91Þ

For permutation P of variables

ΦN t0;ωP1; . . . ;ωPN ; tð Þ
¼ ΦN t0;ωPb1b ; . . . ;ωPbNb

;ωPf 1f ; . . . ;ωPf Nf
;ωPfc1f c ; . . . ;ωPfcNfc

; t
� � ð4:92Þ

P ¼ Pb 	 Pf 	 Pf c ð4:93Þ

the wave function changes the antisymmetric (�) sign

sgn Pð ÞΦN t0;ωP1; . . . ;ωPN ; tð Þ ¼ ΦN t0;ω1; . . . ;ωN; tð Þ ð4:94Þ
sgn Pð Þ ¼ �ð ÞPf �ð ÞPfc ð4:95Þ

Here we have the time-dependent basis ket vector for the Heisenberg (H )

representation

ih
∂
∂t

t0;ω1; . . . ;ωN; tj iH ¼ �bU{ t; t0ð ÞbHQED tð Þ t0;ω1; . . . ;ωN; t0j iS

¼ �bHQED

Hð Þ
t; t0ð Þ t0;ω1; . . . ;ωN; tj iH ð4:96Þ

and the time-independent one for the Schr€odinger (S) representation

t0;ω1; . . . ;ωN; tj iS ¼ bU t; t0ð Þ t0;ω1; . . . ;ωN; tj iH
¼ t0;ω1; . . . ;ωN; t0j iS

ð4:97Þ

Using the primitive choice described above, the basis vectors are orthonormal

H t0;ω1; . . . ;ωN; tjt0;ω0
1; . . . ;ω

0
M; t

� �HH
¼ S t0;ω1; . . . ;ωN; t0jt0;ω0

1; . . . ;ω
0
M; t0

� �S
S ¼ δNMδ ω� ω0ð Þ

¼ δNbMb

1

Nb!

X
Pb

δb ω1b � ω0
Pb1b

� �
� � �δb ωNb

� ω0
PbNb

� �
� δNfMf

1

Nf !

X
Pf

�ð ÞPf δf ω1f � ω0
Pf 1f

� �
� � �δf ωNf

� ω0
Pf Nf

� �
� δNfcMfc

1

Nf c !

X
Pfc

�ð ÞPfc δf c ω1f c � ω0
Pfc1f c

� �
� � �δf c ωNfc

� ω0
PfcNfc

� �
ð4:98Þ
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with

δb ωb � ω0
b

� � ¼ δσσ0δ
3 ~p� ~p0ð Þδ ν � ν ~pj jð Þb

� �
δ ν0 � ν ~p0j jð Þb
� � ð4:99Þ

δf ωf � ω0
f

� �
¼ δf c ωf c � ω0

f c

� �
¼ δσσ0δ

3 ~p� ~p0ð Þδ ν � ν ~pj jð Þf
� �

δ ν0 � ν ~p0j jð Þf
� �

ð4:100Þ

Following this primitive choice, we shall find the way how to calculate the time

evolution of ΦN(t0;ω1, . . . ,ωN, t). This will be described in the following Sect.

4.3.2.3 for the case starting at ti> t0. Taking the limit ti! t0, we shall get to the

present case.

It should be noted that along with the time evolution of wave functions, we have

the time evolution of alpha-oscillators with thermalization among them (see

Figs. 4.10 and 4.11).

4.3.2.3 Time Evolution of Ket Vector with Wave Function

The wave function ΦN(αi, ti;ω1, . . . ,ωN, t) in the Hilbert space of QED is equipped

with the ket vector

Ψ αi; ti; tð Þj iH or S ¼
X1
N¼0

ð
dω1 . . .dωN ti;ω1; . . . ;ωN; tj iH or SΦN αi; ti;ω1; . . . ;ωN; tð Þ

ð4:101Þ

Fig. 4.10 Time evolution of alpha-oscillators
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in terms of the Heisenberg (H ) or Schr€odinger (S) representation satisfying the

Heisenberg equation

ih
∂
∂t

Ψ αi; ti; tð Þj iH ¼ 0 ð4:102Þ

or the Schr€odinger equation

ih
∂
∂t

Ψ αi; ti; tð Þj iS ¼ bHQED tð Þ Ψ αi; ti; tð Þj iS ð4:103Þ

Ψ αi; ti; tð Þj iS ¼ bU t; tið Þ Ψ αi; ti; tð Þj iH ð4:104Þ

Here we have used the time evolution operator obeying

ih
∂
∂t
bU t; tið Þ ¼ bHQED tð ÞbU t; tið Þ, ih

∂
∂t
bU{ t; tið Þ ¼ �bU{ t; tið ÞbHQED tð Þ ð4:105Þ

and the solution

bU t; tið Þ ¼ Te
1
ih

Ð t
ti
dt0 bHQED t0Þð ð4:106Þ

Now we find

bF tð Þ ¼ bU{ t; t0ð ÞbF t0ð ÞbU t; t0ð Þ ¼ bU{ t; tið ÞbF tið ÞbU t; tið Þ ð4:107Þ

and then we have

ih
∂
∂t
bF tð Þ ¼ bU{ t; tið Þ bF tið Þ; bHQED tð Þ

h ibU t; tið Þ ¼ bF tð Þ; bHQED

Hð Þ
t; tið Þ

h i
ð4:108Þ

Fig. 4.11 Thermalization of alpha-oscillators
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where

bHQED

Hð Þ
t; tið Þ ¼ bU{ t; tið ÞbHQED tð ÞbU t; tið Þ ð4:109Þ

with

bHQED

Hð Þ
ti; tið Þ ¼ bHQED tið Þ ð4:110Þ

and hence

ih
∂
∂t
bHQED

Hð Þ
t; tið Þ ¼ bU{ t; tið Þ ih

∂
∂t
bHQED tð Þ

� �bU t; tið Þ ð4:111Þ

It should be noted that the canonical quantization requires simple rule of the

Cauchy data

bF tð Þ
���
t¼ti

¼ bF tið Þ, ih
∂
∂t
bF tð Þ

����
t¼ti

¼ bF tið Þ; bHQED tið Þ
h i

ð4:112Þ

instead of Eq. (4.108). So the time-dependent nature of bHQED

Hð Þ
t; tið Þ in the right-

hand side of Eq. (4.108) is hidden.

The time evolution of the alternative field operator

bF Hð Þ t; tið Þ ¼ bU{ t; tið ÞbF tð ÞbU t; tið Þ ð4:113ÞbF Hð Þ ti; tið Þ ¼ bF tið Þ ð4:114Þ

obeys the Heisenberg equation of motion

ih
∂
∂t
bF Hð Þ t; tið Þ ¼ bU{ t; tið Þ bF tð Þ; bHQED tð Þ

h ibU t; tið Þ þ bU{ t; tið Þ ih
∂
∂t
bF tð Þ

� �bU t; tið Þ

¼ bF Hð Þ t; tið Þ; bHQED

Hð Þ
t; tið Þ

h i
þ bU{ t; tið Þ ih

∂
∂t
bF tð Þ

� �bU t; tið Þ ð4:115Þ

A primitive choice of the basis ket vector may be given as

ti;ω1; . . . ;ωN; tj iH ¼ bU{ t; tið Þ ti;ω1; . . . ;ωN; tij iS ð4:116Þ
ti;ω1; . . . ;ωN; tij iH ¼ ti;ω1; . . . ;ωN; tij iS ð4:117Þ

with
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ti;ω1; . . . ;ωN; tij iS
¼ bU{ ti; t0ð Þ t0;ω1; . . . ;ωN; t0j iS
¼ bU{ ti; t0ð Þ 1ffiffiffiffiffiffiffi

Nb!
p bb{ ω1bð Þ . . . bb{ ωNb

ð Þ

� 1ffiffiffiffiffiffiffi
Nf !

p bf { ω1f

� �
. . .bf { ωNf

� �
� 1ffiffiffiffiffiffiffiffi

Nf c !
p bf c{ ω1f c

� �
. . .bf c{ ωNfc

� �
0j i

ð4:118Þ

We have the time-dependent basis ket vector for the Heisenberg (H )

representation

ih
∂
∂t

ti;ω1; . . . ;ωN; tj iH ¼ �bU{ t; tið Þ bHQED tð Þ ti;ω1; . . . ;ωN; tij iS

¼ �bHQED

Hð Þ
t; tið Þ ti;ω1; . . . ;ωN; tj iH ð4:119Þ

and the time-independent one for the Schr€odinger (S) representation

ti;ω1; . . . ;ωN; tj iS ¼ bU t; tið Þ ti;ω1; . . . ;ωN; tj iH
¼ ti;ω1; . . . ;ωN; tij iS

ð4:120Þ

Using the primitive choice described above, the basis vectors are orthonormal

H ti;ω1; . . . ;ωN; tjti;ω0
1; . . . ;ω

0
M; t

� �
H

¼ S ti;ω1; . . . ;ωN; tijti;ω0
1; . . . ;ω

0
M; ti

� �
S

¼ S t0;ω1; . . . ;ωN; t0jt0;ω0
1; . . . ;ω

0
M; t0

� �
S¼ δNMδ ω� ω0ð Þ

ð4:121Þ

For an event αi starting at ti with t0< ti ; i¼ 1 , 2 , 3 , . . ., we set up the initial ket
vector for Eq. (4.101) and need to obtain the wave function ΦN(αi, ti;ω1, . . . ,ωN, t)
satisfying

ih
∂
∂t

ΦN αi; ti;ω1; . . . ;ωN; tð Þ

¼
X1
M¼0

ð
dω0

1 . . .dω
0
MHNM ti;ω1; . . . ;ωN;ω

0
1; . . . ;ω

0
M; t

� �
ΦM αi; ti;ω

0
1; . . . ;ω

0
M; t

� �
ð4:122Þ
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using the time-dependent function

HNM ti;ω1; . . . ;ωN;ω0
1; . . . ;ω

0
M; t

� �
¼ H ti;ω1; . . . ;ωN; th jbHQED

Hð Þ
t; tið Þ ti;ω0

1; . . . ;ω
0
M; t

�� �
H

¼ S ti;ω1; . . . ;ωN; tih jbHQED tð Þ ti;ω0
1; . . . ;ω

0
M; ti

�� �
S

ð4:123Þ

∂
∂t

HNM ti;ω1; . . . ;ωN;ω
0
1; . . . ;ω

0
M; t

� � 6¼ 0 ð4:124Þ

Finally, substituting this time-dependent ΦN(αi, ti;ω1, . . . ,ωN, t) into

Eq. (4.101), we calculate

bF tð Þ
D E

αi, ti
¼ H Ψ αi; ti; tð Þh jbF Hð Þ t; tið Þ Ψ αi; ti; tð Þj iH

H Ψ αi; ti; tð ÞjΨ αi; ti; tð Þh iH
ð4:125Þ

for each event αi starting at ti with t0< ti< t ; i¼ 1 , 2 , 3 , . . . developing onward

with xμ ¼ ct;~xð Þ at position ~x with time t using

H Ψ αi; ti; tð Þh jbF Hð Þ t; tið Þ Ψ αi; ti; tð Þj iH
¼
X1
N¼0

X1
M¼0

ð
dω1 . . .dωN

ð
dω0

1� � �dω0
M

� H ti;ω1; . . . ;ωN; th jbF Hð Þ t; tið Þ ti;ω0
1; . . . ;ω

0
M; t

�� �
H

�ΦN
* αi; ti;ω1; . . . ;ωN; tð ÞΦM αi; ti;ω0

1; . . . ;ω
0
M; t

� �
¼
X1
N¼0

X1
M¼0

ð
dω1 . . .dωN

ð
dω0

1 . . .dω
0
M

� S ti;ω1; . . . ;ωN; tih jbF tð Þ ti;ω0
1; . . . ;ω

0
M; ti

�� �
S

�ΦN
* αi; ti;ω1; . . . ;ωN; tð ÞΦM αi; ti;ω0

1; . . . ;ω
0
M; t

� �

ð4:126Þ

H Ψ αi; ti; tð ÞjΨ αi; ti; tð Þh iH ¼
X1
N¼0

ð
dω1 . . .dωN ΦN αi; ti;ω1; . . . ;ωN; tð Þj j2

¼
X1
N¼0

ð
dω1 . . .dωN ΦN αi; ti;ω1; . . . ;ωN; tið Þj j2

ð4:127Þ
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4.4 Normal Mode

4.4.1 Particle Picture

Since the Hamiltonian is time dependent, we need time-dependent renormalization

for particle picture (Tachibana 2016). The coarse-grained collective picture of

particle is realized through three steps with the time-dependent renormalization

(see Fig. 4.12).

They are (I) particle spectrum condition, the dispersion rule of the frequency ν
~pj jð Þ over and above the alpha-resonance condition Eq. (4.69); (II) algebra normal

mode condition, the coarse-grained collective picture of particle over and above the

sub-particle alpha-oscillators; and (III) field operator renormalization condition, the

renormalized field operators for the resultant particles. Since the Hamiltonian bHQED

tð Þ is time dependent, so are the steps (II) and (III). The renormalization constantsbz tð Þ are therefore time-dependent q-numbers, serving to collect sub-particle alpha-

oscillators among the time-dependent bHQED tð Þ. The concrete procedures are

described as follows. It should be noted that the particle is the complementary

picture of the field normal mode (see Fig. 4.13).

4.4.2 Electromagnetic Field Renormalization

(I) Particle spectrum condition

cpphoton
0 ¼ hνphoton ¼ c ~pj j ð4:128Þ

is the dispersion rule of photon, and consequently the alpha-resonance condition

Eq. (4.69) is further restricted to

Fig. 4.12 Time-dependent

renormalization with

coarse-grained collective

picture of particle
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cp0 ν ~pj jð Þb; ~pj j� � ¼ hν ~pj jð Þb ¼ c ~pj j i:e:;¼ cp0photon ¼ hνphoton
� � ð4:129Þ

(II) Algebra normal mode condition

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
b eωð Þ tð Þ

q bbphoton eω tð Þð Þ; bHQED tð Þ

264
375 ¼ hνphoton tð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz

b eωð Þ tð Þ
q bbphoton eω tð Þð Þ

ð4:130Þ

with the coarse-grained commutation relationship

bbphoton eω tð Þð Þ; bb{photon eω0 tð Þð Þ
h i

¼
ð1
0

dν
ð1
0

dν0 bb ωð Þ; bb{ ω0ð Þ
h i

¼ δ eω tð Þ � eω0 tð Þð Þ ¼ δσσ0δ
3 ~p� ~qð Þ

ð4:131Þ

where

eω tð Þ ¼
ð1
0

dνωδ ν � νphoton tð Þ� � ¼ νphoton tð Þ; ~p; σ� 
 ð4:132Þ

(III) Field operator renormalization condition

1ffiffiffiffiffiffiffiffiffiffibzb tð Þp ~̂b photon xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4πh2c

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

ð1
�1

d3~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pphoton

0 νphoton tð Þ; ~pj j� �q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz

b eωð Þ tð Þ
q bbphoton eω tð Þð Þe�i2πνphoton tð Þt~e ~p; σð Þei~x •~p=h

ð4:133Þ

using

Fig. 4.13 Normal mode with particle
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~̂b xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffibzb tð Þp ~̂b photon xð Þ ð4:134Þ

bb ωð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
b eωð Þ tð Þ

q bbphoton eω tð Þð Þδ ν � νphoton tð Þ� � ð4:135Þ

4.4.3 The Dirac Field Renormalization

(I) Particle spectrum condition

cp0electron ¼ hνelectron ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcð Þ2 þ ~pj j2

q
ð4:136Þ

is the dispersion rule of the Dirac particle, and consequently the alpha-resonance

condition Eq. (4.69) is further restricted to

cp0 ν ~pj jð Þf ; ~pj j
� �

¼ hν ~pj jð Þf

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcð Þ2 þ ~pj j2

q
i:e:;¼ cp0electron ¼ hνelectron
� � ð4:137Þ

(II) Algebra normal mode condition

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f eωð Þ tð Þ

q bf electron eω tð Þð Þ; bHQED tð Þ

264
375 ¼ hνelectron tð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz

f eωð Þ tð Þ
q bf electron eω tð Þð Þ

ð4:138Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f c eωð Þ tð Þ

q bf positronc eω tð Þð Þ; bHQED tð Þ

264
375

¼ hνelectron tð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f c eωð Þ tð Þ

q bf positronc eω tð Þð Þ ð4:139Þ

with the coarse-grained commutation relationship
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bf electron eω tð Þð Þ;bf {electron eω0 tð Þð Þ
n o

¼
ð1
0

dν
ð1
0

dν0 bf ωð Þ;bf { ω0ð Þ
n o

¼ δ eω tð Þ � eω0 tð Þð Þ ¼ δσσ0δ
3 ~p� ~qð Þ

ð4:140Þ

bf positronc eω tð Þð Þ;bf positronc{ eω0 tð Þð Þ
n o

¼
ð1
0

dν
ð1
0

dν0 bf c ωð Þ;bf c{ ω0ð Þ
n o

¼ δ eω tð Þ � eω0 tð Þð Þ ¼ δσσ0δ
3 ~p� ~qð Þ

ð4:141Þ

where

eω tð Þ ¼
ð1
0

dνωδ ν � νelectron tð Þð Þ ¼ νelectron tð Þ; ~p; σf g ð4:142Þ

(III) Field operator renormalization condition

1ffiffiffiffiffiffiffiffiffibzf tð Þp bf electron xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhð Þ3

q X
σ¼�1

2

ð1
�1

d3~p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f eωð Þ tð Þ

q bf electron eω tð Þð Þe�i2πνelectron tð Þtu ~p; σð Þei~x •~p=h

ð4:143Þ
1ffiffiffiffiffiffiffiffiffiffiffibzf c tð Þp bf positronc xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhð Þ3
q X

σ¼�1

2

ð1
�1

d3~p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f c eωð Þ tð Þ

q bf positronc eω tð Þð Þe�i2πνelectron tð Þtv{ ~p; σð Þei~x •~p=h

ð4:144Þ

using

bf xð Þ ¼ 1ffiffiffiffiffiffiffiffiffibzf tð Þp bf electron xð Þ ð4:145Þ

bf ωð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f eωð Þ tð Þ

q bf electron eω tð Þð Þδ ν � νelectron tð Þð Þ ð4:146Þ

bf c xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffibzf c tð Þp bf positronc xð Þ ð4:147Þ
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bf c ωð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f c eωð Þ tð Þ

q bf positronc eω tð Þð Þδ ν � νelectron tð Þð Þ ð4:148Þ

4.4.4 Renormalized Ket Vector and Wave Function

Let the dual Cauchy problem in QED for an event αi starting at ti with t0< ti ;
i¼ 1 , 2 , 3 , . . . be described by the renormalized wave functioneΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð Þ in the Hilbert space of QED equipped with the

renormalized ket vector (see Fig. 4.14)

eΨ αi; ti; tð Þ
��� E

H or S

¼
X1
N¼0

ð
deω1 tið Þ . . .deωN tið Þ ti; eω1 tið Þ; . . . ; eωN tið Þ; tj iH or S

eΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð Þ

ð4:149Þ

in terms of the Heisenberg (H ) or Schr€odinger (S) representation satisfying the

Heisenberg equation

ih
∂
∂t
eΨ αi; ti; tð Þ
��� E

H
¼ 0 ð4:150Þ

Fig. 4.14 Time-dependent renormalization with particle
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or the Schr€odinger equation

ih
∂
∂t
eΨ αi; ti; tð Þ
��� E

S
¼ bHQED tð Þ eΨ αi; ti; tð Þ

��� E
S
, eΨ αi; ti; tð Þ
��� E

S

¼ bU t; tið Þ eΨ αi; ti; tð Þ
��� E

H
ð4:151Þ

The basis ket vectors are given by

ti; eω1 tið Þ; . . . ; eωN tið Þ; tj iH ¼ bU{ t; tið Þ ti; eω1 tið Þ; . . . ; eωN tið Þ; tij iS ð4:152Þ
ti; eω1 tið Þ; . . . ; eωN tið Þ; tij iH ¼ ti; eω1 tið Þ; . . . ; eωN tið Þ; tij iS ð4:153Þ

with

ti; eω1 tið Þ; . . . ; eωN tið Þ; tij iS

¼ 1ffiffiffiffiffiffiffi
Nb!

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
b eω1bð Þ tið Þ

q bbphoton eω1b tið Þð Þ

0B@
1CA

{

� � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
b eωNbð Þ tið Þ

q bbphoton eωNb
tið Þð Þ

0B@
1CA

{

� 1ffiffiffiffiffiffiffi
Nf !

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f eω1f

� � tið Þq bf electron eω1f tið Þ� �0B@
1CA

{

� � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f eωNf

� � tið Þq bf electron eωNf
tið Þ� �0B@
1CA

{

� 1ffiffiffiffiffiffiffiffi
Nf c !

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f c eω1f c

� � tið Þr bf positronc eω1f c tið Þ
� �0BB@

1CCA
{

� � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
f c eωNf c

� � tið Þr bf positronc eωNfc
tið Þ

� �0BB@
1CCA

{

0j i

ð4:154Þ

We have the time-dependent basis ket vector

ih
∂
∂t

ti; eω1 tið Þ; . . . ; eωN tið Þ; tj iH ¼ �bHQED

Hð Þ
t; tið Þ ti; eω1 tið Þ; . . . ; eωN tið Þ; tj iH

¼ �bU{ t; tið ÞbHQED tð Þ ti; eω1 tið Þ; . . . ; eωN tið Þ; tij iS
ð4:155Þ

and the time-independent one

ti; eω1 tið Þ; . . . ; eωN tið Þ; tj iS
¼ bU t; tið Þ ti; eω1 tið Þ; . . . ; eωN tið Þ; tj iH
¼ ti; eω1 tið Þ; . . . ; eωN tið Þ; tij iS

ð4:156Þ

Using the primitive choice described above, the basis vectors are orthonormal
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H ti; eω1 tið Þ; . . . ; eωN tið Þ; tjti; eω0
1 tið Þ; . . . ; eω0

M tið Þ; t� �
H

¼ S ti; eω1 tið Þ; . . . ; eωN tið Þ; tijti; eω0
1 tið Þ; . . . ; eω0

M tið Þ; ti
� �

S¼ δNMδ eω tið Þ � eω0 tið Þð Þ
ð4:157Þ

4.4.5 Formal Solutions of bz
α eωð Þ tð Þ

Step (III) in Sect. 4.4.1 utilizes the q-number renormalization constant in Step (II),

whose solution is demonstrated here.

4.4.5.1 Setup

In Step (II) in Sect. 4.4.1, the algebra normal mode conditions in Eqs. (4.129),

(4.138), and (4.139) read

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q bαparticle eω tð Þð Þ; bHQED tð Þ

264
375¼hνparticle tð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz

α eωð Þ tð Þ
q bαparticle eω tð Þð Þ

ð4:158Þ

wherebz
α eωð Þ tð Þ denotes the q-number renormalization constant of bαparticle eω tð Þð Þwith

the energy hνparticle(t). Using the operator identity

bAbB; bCh i
¼ bA bB; bCh i

þ bA; bCh ibB ð4:159Þ

the left-hand side of Eq. (4.158) is reduced to

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q bαparticle eω tð Þð Þ; bHQED tð Þ

264
375

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q bαparticle eω tð Þð Þ; bHQED tð Þ
h i

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q ; bHQED tð Þ

264
375bαparticle eω tð Þð Þ

ð4:160Þ

Using Eqs. (4.158) and (4.160), we have
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q ; bHQED tð Þ

264
375bαparticle eω tð Þð Þ

¼ hνparticle tð Þbαparticle eω tð Þð Þ � bαparticle eω tð Þð Þ; bHQED tð Þ
h i ð4:161Þ

If bHQED tð Þ were the time-independent free field Hamiltonian bH free field, then

the right-hand side of Eq. (4.161) were zero because of the consequent time-

independent free particle operator bαfree particle with the energy hνfree particle; and

then the left-hand side of Eq. (4.161) were zero, since the q-number renormalization

constant should then be identity. Thus, the right-hand side of Eq. (4.161) is not null

for bHQED tð Þ and then we may write

hνparticle tð Þbαparticle eω tð Þð Þ � bαparticle eω tð Þð Þ; bHQED tð Þ
h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q bC
α eωð Þ tð Þbαparticle eω tð Þð Þ ð4:162Þ

with the non-null bC
α eωð Þ tð Þ so defined in the right-hand side of Eq. (4.162)

bC
α eωð Þ tð Þ 6¼ 0 ð4:163Þ

Using Eqs. (4.160) and (4.162), we arrive at

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q ; bHQED tð Þ

264
375 ¼ bC

α eωð Þ tð Þ ð4:164Þ

This is just an operator equation Eq. (4.166) in Sect. 4.4.5.2. With the proof

Eq. (4.168) given, a solution may be found using Eq. (4.167) as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz
α eωð Þ tð Þ

q ¼ f bB� �
þ
X1
n¼0

bHQED tð ÞnbC
α eωð Þ tð Þ 1bHQED tð Þ

 !nþ1

,

bHQED tð Þ; f bB� �h i
¼ 0, bHQED tð Þ; bBh i

¼ 0

ð4:165Þ

modulo a function f of bB commutable with bHQED tð Þ.
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4.4.5.2 Solutions

Let us solve bX in an operator equation

bX; bAh i
¼ bC, bA 6¼ 0 ð4:166Þ

A solution may be found as

bX ¼ f bB� �
þ
X1
n¼0

bAnbC 1bA
� �nþ1

, bA; f bB� �h i
¼ 0, bA; bBh i

¼ 0 ð4:167Þ

modulo a function f of bB commutable with bA.
ProofbX; bAh i

¼ f bB� �
þ
X1
n¼0

bAnbC 1bA
� �nþ1

; bA" #
¼
X1
n¼0

bAnbC 1bA
� �nþ1

; bA" #

¼
X1
n¼0

bAnbC 1bA
� �n

� bAnþ1bC 1bA
� �nþ1

 !
¼ bA0bC 1bA

� �0

¼ bC ð4:168Þ

4.4.5.3 Example

Let us find an example of bX in an operator Eq. (4.166) whose solution may be found

as Eq. (4.167) modulo a function f of bB commutable with bA.
The Pauli matrices

σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
, σz ¼ 1 0

0 �1

� �
ð4:169Þ

satisfy

σxð Þ2 ¼ σy
� �2 ¼ σzð Þ2 ¼ 1 means σxð Þ�1 ¼ σx, σy

� ��1 ¼ σy, σzð Þ�1

¼ σz ð4:170Þ
σzσy ¼ �iσx, σyσz ¼ iσx ð4:171Þ
σxσz ¼ �iσy, σzσx ¼ iσy ð4:172Þ
σyσx ¼ �iσz, σxσy ¼ iσz ð4:173Þ

Let X in
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Xσy � σyX ¼ 2iσz ð4:174Þ

be found as

X ¼ f Bð Þ þ
X1
n¼0

σy
� �n

2iσz σy
� �� nþ1ð Þ

, σy; f Bð Þ
 � ¼ 0, σy;B

 � ¼ 0 ð4:175Þ

Proof

X1
n¼0

ðσyÞn2iσzðσyÞ�ðnþ1Þ ¼
X1
n¼0

ðσyÞn2iσzðσyÞnþ1

¼ 2iðσzσy þ σyσzðσyÞ2 þ ðσyÞ2σzðσyÞ2þ1 þ ðσyÞ2þ1σzðσyÞ2þ2 þ � � �Þ
¼ 2iðσzσy þ σyσz þ σzσy þ σyσz þ � � �Þ
¼ 2ið�iσx þ iσx � iσx þ iσx � � � �Þ
¼ 2ið�iσxÞð1� 1þ 1� 1þ � � �Þ
¼ 2ið�iσxÞ1

2¼ σx

ð4:176Þ

where we have used Eqs. (4.170) and (4.171) and the Cesaro sum

1� 1þ 1� 1þ � � � ¼ 1

2
ð4:177Þ

It follows that Eq. (4.174) is solved by using Eq. (4.175) as

Xσy � σyX

¼ f Bð Þ þ
X1
n¼0

σy
� �n

2iσz σy
� �� nþ1ð Þ

 !
σy � σy f Bð Þ þ

X1
n¼0

σy
� �n

2iσz σy
� �� nþ1ð Þ

 !

¼
X1
n¼0

σy
� �n

2iσz σy
� �� nþ1ð Þ

 !
σy � σy

X1
n¼0

σy
� �n

2iσz σy
� �� nþ1ð Þ

 !
¼ σxσy � σyσx
¼ 2iσz

ð4:178Þ

where we have used Eqs. (4.176) and (4.173).
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4.5 Discussions

The commutation relationships of particles are obtained by coarse graining of the

alpha-oscillators. The generic feature may be written as

bαparticle; bβparticle

h i
�
¼
ð1
0

dν
ð1
0

dν0 bα νð Þ; bβ ν0ð Þ
h i

�
ð4:179Þ

The coarse graining is also applied to the wave function equipped with the ket

vector of the renormalized particles.

For an event αi starting at ti with t0< ti ; i¼ 1 , 2 , 3 , . . ., we set up the initial

ket vector for Eq. (4.149) and need to obtain the wave functioneΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð Þ satisfying

ih
∂
∂t
eΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð Þ

¼
X1
M¼0

ð
deω0

1 tið Þ . . .deω0
M tið Þ

�HNM ti; eω1 tið Þ; . . . ; eωN tið Þ; eω0
1 tið Þ; . . . ; eω0

M tið Þ; t� �eΦM αi; ti; eω0
1 tið Þ; . . . ; eω0

M tið Þ; t� �
ð4:180Þ

using the time-dependent function (see Fig. 4.15)

HNM ti; eω1 tið Þ; . . . ; eωN tið Þ; eω0
1 tið Þ; . . . ; eω0

M tið Þ; t� �
¼ H ti; eω1 tið Þ; . . . ; eωN tið Þ; th jbHQED

Hð Þ
t; tið Þ ti; eω0

1 tið Þ; . . . ; eω0
M tið Þ; t�� �

H

¼ S ti; eω1 tið Þ; . . . ; eωN tið Þ; tih jbHQED tð Þ ti; eω0
1 tið Þ; . . . ; eω0

M tið Þ; ti
�� �

S

ð4:181Þ

∂
∂t

HNM ti; eω1 tið Þ; . . . ; eωN tið Þ; eω0
1 tið Þ; . . . ; eω0

M tið Þ; t� � 6¼ 0 ð4:182Þ

Substituting this time-dependent eΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð Þ into Eq. (4.149),
we calculate the expectation value

Fig. 4.15 Time evolution

of the renormalized wave

function
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ebF tð Þ
D E

αi, ti
¼

H
eΨ αi; ti; tð Þ
D ���bF Hð Þ t; tið Þ eΨ αi; ti; tð Þ

��� E
H

H
eΨ αi; ti; tð ÞjeΨ αi; ti; tð Þ
D E

H

ð4:183Þ

for each event αi starting at ti with t0< ti< t ; i¼ 1 , 2 , 3 , . . . developing onward

with xμ ¼ ct;~xð Þ at position ~x with time t using

H
eΨ αi; ti; tð Þ
D ��� HbF Hð Þ t; tið Þ eΨ αi; ti; tð Þ

��� E
H

¼
X1
N¼0

X1
M¼0

ð
deω1 tið Þ . . .deωN tið Þ

ð
deω1

0 tið Þ� � �deωM
0 tið Þ

� H ti; eω1 tið Þ; . . . ; eωN tið Þ; th jHbF Hð Þ t; tið Þ ti; eω0
1 tið Þ; . . . ; eω0

M tið Þ; t�� �
H

� eΦN
*
αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð ÞeΦM αi; ti; eω0

1 tið Þ; . . . ; eω0
M tið Þ; t� �

¼
X1
N¼0

X1
M¼0

ð
deω1 tið Þ� � �deωN tið Þ

ð
deω0

1 tið Þ� � �deω0
M tið Þ

� S ti; eω1 tið Þ; . . . ; eωN tið Þ; tih jSbF tð Þ ti; eω0
1 tið Þ; . . . ; eω0

M tið Þ; ti
�� �

S

� eΦN
*
αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð ÞeΦM αi; ti; eω0

1 tið Þ; . . . ; eω0
M tið Þ; t� � ð4:184Þ

and

H
eΨ αi; ti; tð ÞjeΨ αi; ti; tð Þ
D E

HH

¼
X1
N¼0

ð
deω1 tið Þ . . .deωN tið Þ eΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tð Þ�� ��2

¼
X1
N¼0

ð
deω1 tið Þ . . .deωN tið Þ eΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tið Þ�� ��2

ð4:185Þ

The time evolution of the renormalized field operator is then (see Fig. 4.16)

ih
∂
∂t

ebF tð Þ
D E

αi, ti
¼

H
eΨ αi; ti; tð Þ
D ���ih ∂

∂t
bF Hð Þ t; tið Þ eΨ αi; ti; tð Þ

��� E
H

H
eΨ αi; ti; tð ÞjeΨ αi; ti; tð Þ
D E

H

¼
H
eΨ αi; ti; tð Þ
D ��� bF Hð Þ t; tið Þ; bHQED

Hð Þ
t; tið Þ

h i eΨ αi; ti; tð Þ
��� E

H

H
eΨ αi; ti; tð ÞjeΨ αi; ti; tð Þ
D E

H

þ
H
eΨ αi; ti; tð Þ
D ���bU{ t; tið Þ ih

∂
∂t
bF tð Þ

� �bU t; tið Þ eΨ αi; ti; tð Þ
��� E

H

H
eΨ αi; ti; tð ÞjeΨ αi; ti; tð Þ
D E

H

ð4:186Þ
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This concludes the way for solving the dual Cauchy problem in QED using the

renormalized fields of alpha-oscillators. The renormalization has been performed

over and above the alpha-resonance and thermalization. As compared with the

conventional Gell–Mann–Low relationship using covariant perturbation approach

(Weinberg 1995), this present approach paves the way for realizing

non-perturbationally space-time resolved simulation of the time-dependentbHQED tð Þ.
The interference pattern of the trajectory of

ebF tð Þ
D E

αi, ti
if any in the double-slit

phenomenon is guaranteed primordially by that of the field operator. In other

words, the interference pattern of the trajectory of
ebF tð Þ
D E

αi, ti
if any has already

been given prior to the assignment of the specific initial wave functioneΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tið Þ. As a corollary, for different time ti 6¼ tj, even if
the same initial wave function is given,eΦN αi; ti; eω1 tið Þ; . . . ; eωN tið Þ; tið Þ ¼ eΦN αj; tj; eω1 tj

� �
; . . . ; eωN tj

� �
; tj

� �
, the resultant

difference
ebF tPi
ð Þ

D E
αi, ti

6¼ ebF tPj

� �D E
αj, tj

is guaranteed primordially; moreover,

even if a pair of events are entangled within an Einstein–Podolsky–Rosen mea-
surement, the discrimination is guaranteed primordially. Quantum mechanics

100 years of mystery on the measurement problem of the Minkowski space-time

coordinate is solved.

It should be noted that if we were at the center of the spherical symmetric

universe, particle passing through the double slit should always be connecting the

image at the center of the screen. In other words, if the particles passing through the

double slit are not tied to the image at the center of the screen, we should not be at

the center of the spherical symmetric universe. Consequently, we observe that the

double-slit phenomenon (see Fig. 1.3) guarantees that we human beings are not

situated at the center of the spherical symmetric universe (see Fig. 4.17).

Fig. 4.16 Time evolution

of the renormalized field

operator
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In other words, we observe that the double-slit phenomenon (see Fig. 1.3)
concludes that we human beings are most probably living in the inhomogeneous
universe with the inhomogeneous initial condition at t¼ t0.

Every Boson in the standard model can be constructed by using the alpha-

oscillators with the b-boson and bc-anti-boson algebras as functions of ν-frequency,
~p-momentum, and σ-spin; with obvious notation, read

bb ν; ~p; σð Þ;bb ν0; ~q; σ0ð Þ
h i

¼ bbc ν; ~p; σð Þ; bbc ν0; ~q; σ0ð Þ
h i

¼ bb{ ν; ~p; σð Þ; bb{ ν0; ~q; σ0ð Þ
h i

¼ bbc{ ν; ~p; σð Þ;bbc{ ν0; ~q; σ0ð Þ
h i

¼ 0

ð4:187Þ

bb ν; ~p; σð Þ; bb{ ν0; ~q; σ0ð Þ
h i

¼ bbc ν; ~p; σð Þ; bbc{ ν0; ~q; σ0ð Þ
h i

¼ δσσ0δ
3 ~p� ~qð Þδ ν � ν ~pj jð Þb

� �
δ ν0 � ν ~qj jð Þb
� � ð4:188Þ

In due course, the alpha-resonance condition, the dispersion relationships, and the

coarse graining should also be met.

Likewise, every fermion can be constructed by using the alpha-oscillators with

the f-fermion and f c-anti-fermion algebras as functions of ν-frequency, ~p-momen-

tum, and σ-spin; with obvious notation, read

bf ν; ~p; σð Þ;bf ν0; ~q; σ0ð Þ
n o

¼ bf c ν; ~p; σð Þ;bf c ν0; ~q; σ0ð Þ
n o

¼ bf { ν; ~p; σð Þ;bf { ν0; ~q; σ0ð Þ
n o

¼ bf c{ ν; ~p; σð Þ;bf c{ ν0; ~q; σ0ð Þ
n o

¼ 0

ð4:189Þ

Fig. 4.17 If we were at the

center of spherical

symmetric universe, every

particle should reach at the

center, and therefore we

found no single stochastic

random spot away from the

center even for the double-

slit phenomenon
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bf ν; ~p; σð Þ;bf { ν0; ~q; σ0ð Þ
n o

¼ bf c ν; ~p; σð Þ;bf c{ ν0; ~q; σ0ð Þ
n o

¼ δσσ0δ
3 ~p� ~qð Þδ ν � ν ~pj jð Þf

� �
δ ν0 � ν ~qj jð Þf
� �

ð4:190Þ
In due course, the alpha-resonance condition, the dispersion relationships, and the

coarse graining should also be met.

Super alpha-oscillator algebra that granted SUSY as the local symmetry of the

alpha-oscillator theory gives the graviton of SUGRA.

Finally, it should be noted that in general, the alpha-resonance condition and/or

the dispersion relationships and/or the coarse graining may not be met; with

obvious notation, read

cp0 ν ~pj jð Þb, f ; ~pj j
� �

6¼ hν ~pj jð Þb, f , c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb, f c
� �2 þ ~pj j2

q
ð4:191Þð1

0

dν
ð1
0

dν0 bα νð Þ; bβ ν0ð Þ
h i

�
6¼ bαparticle; bβparticle

h i
�

ð4:192Þ

In other words, in the generic situation, we have dense set of ket vectors out of the

coarse graining, since normal modes are immersed in alpha-oscillators (see Fig. 4.18).

alpha-oscillatorsf g � normal modesf g ð4:193Þ

We may call the very basic energy as the alpha-oscillator energy as compared

with the particle energy. The alpha-oscillator energy may contribute to the total
energy but not as the known form of particles. In this sense, the alpha-oscillator

theory may give a natural candidate of dark energy, which is said to be abundant in

our universe not as the known form of particles and to account for the cause of the

accelerated expansion of our universe (see Fig. 4.19).
Moreover, the time evolution of ket vector with wave function of the thermal-

ized alpha-oscillators, Eq. (4.101), may be associated with the time evolution of ket

vector with wave function of particles, Eq. (4.149). This situation may be called

an alpha-weighted state. The time evolution of ket vector with wave function of

the alpha-weighted state is given for an event αi starting at ti with t0< ti;
i¼ 1 , 2 , 3 , . . ., with obvious notation as

eΨAlpha αi; ti; tð Þ
��� E

H or S

¼
X1
N¼0

ð
deω1 tið Þ� � �deωN

ω

 tið Þ

n o
	 dω1� � �dωNωf gω 6¼ω




� jti; feω11ðtiÞ, . . . , eωN
ω

 ðtiÞg 	 fω1, . . . ,ωNωgω6¼ω


 , ti⟩H or S

� eΦN
Alpha αi; ti; eω1 tið Þ; . . . ; eωNω


 tið Þ
n o

	 ω1; . . . ;ωNωf gω 6¼ω

 ; t

� �
ð4:194Þ

N ¼ Nω � Nω

 , ω 6¼ eω ð4:195Þ
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In this alpha-weighted state, we have the time evolution of wave functions with the

obvious notation

ih
∂
∂t
eΦN

Alpha
αi; ti; eω1 tið Þ; . . . ; eωN~ω tið Þf g 	 ω1; . . . ;ωNωf gω 6¼~ω ; t
� �

¼
X1
M¼0

ð
deω0

1 tið Þ . . . deω0
N~ω 0 tið Þ

n o
	 dω0

1� � �dω0
Nω0

n o
ω0 6¼~ω 0

� HNM ti; eω1 tið Þ; . . . ; eωN~ω tið Þf g 	 ω1; . . . ;ωNωf gω 6¼~ω ; eω0
1 tið Þ; . . . ; eω0

M~ω 0 tið Þ
n o�

	 ω0
1; . . . ;ω

0
Mω0

n o
ω0 6¼~ω 0

; t
�

� eΦM
Alpha

αi; ti; eω0
1 tið Þ; . . . ; eω0

M~ω 0 tið Þ
n o

	 ω0
1; . . . ;ω

0
Mω0

n o
ω0 6¼~ω 0

; t

� �
ð4:196Þ

Fig. 4.18 Normal modeseωf g, eω 0f g, eω 00� 

, . . . are

immersed in alpha-

oscillators {ω}

Fig. 4.19 Alpha-oscillator energy may contribute to the total energy but not as the known form of

particles
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For example, exchange of sub-particles with particles may be described by the

alpha-weighted state when the particle number changes. Most typical candidates

are the photon number nonconservation cases, such as the exciton pair formation

(see Fig. 4.8), photoelectric effect, and electron–positron pair production (see

Fig. 4.20).

As shown in Fig. 4.20, photon disappears from the wave function of particle but

can return to that of the alpha-oscillator in the form of sub-particle, b-photon, when
electron is irradiated to change the wave function to that of the specific excited

state. In the case with electron–positron pair production, the electron and positron

can emerge from the wave functions of sub-particles, f-electron andf c-positron,
respectively. The time evolution of the field operator, no matter whether it is

renormalized or not, in the alpha-weighted state is then (see Fig. 4.21)

ebFAlpha tð Þ
D E

αi, ti
¼

H
eΨAlpha αi; ti; tð Þ
D ���bF Hð Þ t; tið Þ eΨAlpha αi; ti; tð Þ

��� E
H

H
eΨAlpha αi; ti; tð ÞjeΨAlpha αi; ti; tð Þ
D E

H

ð4:197Þ

Fig. 4.20 The alpha-weighted state allows the thermalized alpha-oscillators be realized in the

time evolution of ket vector with wave function, when sub-particles be interchangeable with

particles in (i) exciton pair formation, (ii) photoelectric effect, and (iii) electron–positron pair

production (the hole should read positron in this last case)

184 4 Alpha-Oscillator Theory



ih
∂
∂t

ebFAlpha tð Þ
D E

αi, ti
¼ H

eΨAlpha αi; ti; tð Þ
D ���ih ∂

∂t
bF Hð Þ t; tið Þ eΨAlpha αi; ti; tð Þ

��� E
H

H
eΨAlpha αi; ti; tð ÞjeΨAlpha αi; ti; tð Þ
D E

H

¼
H
eΨAlpha αi; ti; tð Þ
D ��� bF Hð Þ t; tið Þ; bHQED

Hð Þ
t; tið Þ

h i eΨAlpha αi; ti; tð Þ
��� E

H

H
eΨAlpha αi; ti; tð ÞjeΨAlpha αi; ti; tð Þ
D E

H

þ
H
eΨAlpha αi; ti; tð Þ
D ���bU{ t; tið Þ ih

∂
∂t
bF tð Þ

� �bU t; tið Þ eΨAlpha αi; ti; tð Þ
��� E

H

H
eΨAlpha αi; ti; tð ÞjeΨAlpha αi; ti; tð Þ
D E

H

ð4:198Þ

More specifically in Fig. 4.20, if the field operator bF tð Þ is that of photon in the

double-slit phenomenon, then the expectation value
ebFAlpha tð Þ
D E

α1, t1
has finite value

at t¼ t1 around the first slit, but zero value at t¼ t3 around the screen later. In the

case of electron–positron pair production in Fig. 4.20, if the field operator bF tð Þ is
that of photon, then the expectation value

ebFAlpha tð Þ
D E

α1, t1
has finite value at t¼ t1

around the point of the electron–positron pair production, but zero value at t¼ t3

around there later; also, if the field operator bF tð Þ is that of electron or positron, then
the expectation value

ebFAlpha tð Þ
D E

α1, t1
has finite value at t¼ t3 around the point of the

electron–positron pair production, but zero value at t¼ t1 around there earlier.

Fig. 4.21 Time evolution of field operator, no matter whether it is renormalized or not, in the

alpha-weighted state
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4.6 Summary

We have generalized the time evolution operator machinery of quantum mechanics

to QED in such a way that it warrants the use of the time-dependent bHQED tð Þ.
Non-perturbational space-time-resolved simulation of QED has been realized in

terms of the dual Cauchy problem. The alpha-resonance condition has been

restricted to the dispersion relationship of particles for time-dependent

renormalization of the alpha-oscillators. The commutation relationships of particles

are obtained by coarse graining of the alpha-oscillators. The alpha-oscillator energy

may contribute to the total energy but not as the known form of particles.

The alpha-oscillator theory with the alpha-weighted state works well for

non-perturbationally space-time-resolved simulation of the time-dependent

nonconservation of particle number. The nonconservation of particle number is in
the heart of quantum field theory like QED that describes nature as is. The

conventional putative time-independent EMstatic Hamiltonian bHEMstatic QED fails

to account for the particle number nonconservation. In quantum mechanics also,

using the conventional time-independent electrostatic Hamiltonian bHelectrostatic,

every particle number is conserved, so that mysterious “collapse of wave packet”

should be invoked instead.
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