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IRMA, Strasbourg, FR
sonnen@math.u-strasbg.fr

SYLVAIN SORIN
Combinat. et Optimisation, Univ. Paris 6, FR

sorin@math.jussieu.fr
ALAIN TROUVÉ
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Preface

This book has grown out of lecture notes for a course on mathematical meth-
ods in biomedical imaging at Ecole Polytechnique.

Biomedical imaging is a fascinating research area to applied mathemati-
cians. It is quite a hot topic that appeals to many students. Challenging
imaging problems arise and they often trigger the investigation of fundamen-
tal problems in various branches of mathematics (including inverse problems,
PDEs, harmonic analysis, complex analysis, numerical analysis, optimization,
image analysis). Many applied mathematicians have experienced a great feel-
ing of accomplishment when they saw their work having a real impact on
medical and clinical decision making.

In this book, we underscore the importance of mathematical aspects of
emerging biomedical imaging. We acknowledge that biomedical technology
has already had success in performing imaging in many different contexts,
however in this book we highlight the most recent developments in emerging,
non standard, techniques that are not yet established as standard imaging
tools. The contents of this book introduce the reader to the basic mathematical
concepts of biomathematical imaging and lay the ground for advanced issues
in innovative techniques in the field.

This book may be used for a graduate-level course in applied mathematics
and should help prepare the reader for a deeper understanding of research
areas in biomedical imaging. Some background knowledge of PDEs is assumed.

I thank Frank Bauer, Natacha Béreux, Yves Capdeboscq, and Darko
Volkov for reading an early version of this book and making a number of
helpful suggestions. I am also indebted to Sylvain Baillet and Mickael Tanter
for providing me with some of the illustrations presented in this book. Fi-
nally, I would like to acknowledge the support by the ANR project EchoScan
(AN-06-Blan-0089).

Paris, June 2007 Habib Ammari
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Introduction

Tomography is an important area in the ever-growing field of biomedical imag-
ing science. The term tomos means cut in Greek, but tomography is concerned
with creating images of the internal organization of an object without physi-
cally cutting it open. To a beginner, it might seem inconceivable, but as your
reading of this book progresses, you will appreciate not only the feasibility
but also the inherent beauty and simplicity of tomography.

The impact of tomographic imaging in diagnostic medicine has been rev-
olutionary, since it has enabled doctors to view internal organs with unprece-
dented precision and safety to the patient. Biomedical imaging has seen truly
exciting advances in recent years. These advances not only create new and
better ways to extract information about our bodies, but they also offer the
promise of making some imaging tools more convenient and economical.

The first medical application utilized X-rays for forming images of tissues
based on their X-ray attenuation coefficient. X-rays are a form of electromag-
netic radiation with a wavelength in the range of 10 to 0.01 nanometers. More
recently, however, medical imaging has also been successfully accomplished
with magnetic resonance (MRI), electrical impedance tomography (EIT), elec-
trical and magnetic source imaging, ultrasound, microwaves and elastography;
the imaged parameter being different in each case. Hybrid or multi-physics
techniques including magnetic resonance electrical impedance tomography
(MREIT), impediography, magnetic resonance elastography (MRE) are cur-
rently being researched. These very promising techniques are not yet estab-
lished as standard imaging tools in biomedicine. They are still the subject of
very active academic research. Future improvements in these exciting imag-
ing techniques require continued research in the mathematical sciences, a field
that has contributed greatly to biomedical imaging and will continue to do so.

Although these tomographic imaging modalities use different physical prin-
ciples for signal generation and detection, the underlying mathematics are, to
a large extent, the same. The tomographic imaging process essentially in-
volves two transformations. The first transformation, often referred to as the
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imaging equation, governs how the experimental data are collected, and the
second, often referred as the image reconstruction equation, determines how
the measured data are processed for image formation. The first step is known
as the forward problem and the second step is the so-called inverse problem.
The imaging equations are derived as approximations to complex physical phe-
nomena. A good formulation in terms of the tissue parameters relative to each
modality is the basis of any attack on the corresponding inverse problem. Con-
siderable effort should be spent producing increasingly realistic models that
allow for effective numerical simulation and validation in terms of real data.

This book focuses on the mathematical methods for the image reconstruc-
tion problem. In imaging with magnetic resonance we wish to reconstruct
the magnetic properties of the object. The problem can be set up as recon-
structing an image from its projections. This is not the case when ultrasound
waves or microwaves are used as energy sources; although the aim is the same
as X-rays. The X-rays are non-diffracting, i.e., they travel in straight lines,
whereas ultrasound and microwaves are diffracting. When an object is illu-
minated with a diffracting source, the wave field is scattered practically in
all directions. Both magnetic source imaging and electrical source imaging
seek to determine the location, orientation, and magnitude of current sources
within the body.

In this book we cover several aspects of tomography: tomography with non-
diffracting sources, tomography with diffracting sources, and multi-physics
approaches to tomographic imaging. The presentation is far from being com-
plete. However, we emphasize the mathematical concepts and tools for image
reconstruction. Its main focuses are, on one side, on promising anomaly de-
tection techniques in EIT and in elastic imaging using the method of small
volume expansions and, on the other side, on emerging multi-physics or hybrid
imaging approaches (MREIT, impediography, MRE).

The book is organized as follows. Chapter 1 outlines the biomedical
imaging modalities discussed in this book. Chapter 2 reviews some of the
fundamental mathematical concepts that are key to understanding imag-
ing principles. Chapter 3 collects some preliminary results regarding layer
potentials. This chapter offers a comprehensive treatment of the subject of
integral equations. Chapter 4 deals with the mathematical basis of tomog-
raphy with non-diffracting sources. Two fundamental image reconstruction
problems are discussed: (i) reconstruction from Fourier transform samples,
and (ii) reconstruction from Radon transform samples. Chapter 5 is devoted
to general algorithms in EIT and ultrasound imaging. Chapter 6 outlines
electrical and magnetic source imaging reconstruction methods for focal brain
activity. Chapter 7 covers the method of small volume expansions. Based on
this method we provide in Chapter 6 robust and efficient algorithms for imag-
ing small electrical and electromagnetic anomalies. Chapters 8 to 10 discuss
emerging multi-physics approaches for imaging, namely MREIT, impediog-
raphy, and MRE. The bibliography provides a list of relevant references. It
is by no means comprehensive. However, it should provide the reader with
some useful guidance in searching for further details on the main ideas and
approaches discussed in this book.
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Biomedical Imaging Modalities

The introduction of advanced imaging techniques has improved significantly
the quality of medical care available to patients. Noninvasive imaging modal-
ities allow a physician to make increasingly accurate diagnoses and render
precise and measured modes of treatment. A multitude of imaging modali-
ties are available currently or subject of active and promising research. This
chapter outlines those discussed in this book.

1.1 X-Ray Imaging and Computed Tomography

X-ray imaging is a transmission-based technique in which X-rays from a source
pass through the patient and are detected either by film or an ionization
chamber on the opposite side of the body. Contrast in the image between
different tissues arises from differential attenuation of X-rays in the body.
For example, X-ray attenuation is particularly efficient in bone, but less so
in soft tissues. In planar X-ray radiography, the image produced is a simple
two-dimensional projection of the tissues lying between the X-ray source and
the film. Planar X-ray radiography is used for example to study the liver and
the abdomen and to detect diseases of the lung or broken ribs.

Planar X-ray radiography of overlapping layers of soft tissue or complex
bone structures can often be difficult to interpret. In these cases, X-ray com-
puted tomography (CT) is used. In CT, the X-ray source is tightly collimated
to interrogate a thin slice through the patient. The source and detectors rotate
together around the patient, producing a series of one-dimensional projections
at a number of different angles. These data are reconstructed to give a two-
dimensional image and provide a reasonable contrast between soft tissues.
The mathematical basis for reconstruction of an image from a series of pro-
jections is the Radon transform. Recent developments in spiral and multi-slice
CT have enabled the acquisition of full three-dimensional images in a single
patient breath-hold.
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The biggest disadvantage of both X-ray and CT imaging is the fact that
the technique uses ionizing radiation. Because ionizing radiation can cause
tissue damage, there is a limit on the total radiation dose per year to which
a patient can be exposed. Radiation dose is of particular concern in pediatric
and obstetric radiology. Figure 1.1 shows an X-ray image of breast cancer.

Fig. 1.1. X-ray image of breast cancer.

1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-ionizing technique with full three-
dimensional capabilities, excellent soft-tissue contrast, and high spatial reso-
lution (about 1mm). In general, the temporal resolution is much slower than
for computed tomography, with scans typically lasting between 3 and 10 min,
and MRI is therefore much more susceptible to patient motion. The cost of
MRI scanners is relatively high, with the price of a typical clinical 1.5-T whole-
body imager on the order of 1 million euros. The major uses of MRI are in
the areas of assessing brain disease, spinal disorders, cardiac function, and
musculoskeletal damage.

The MRI signal arises from protons in the body, primarily water, but also
lipid. The patient is placed inside a strong magnet, which produces a static
magnetic field typically more than 104 times stronger than the earth’s mag-
netic field. Each proton, being a charged particle with angular momentum,
can be considered as acting as a small magnet. The protons align in two
configurations, with their internal magnetic fields aligned either parallel or
anti-parallel to the direction of the large static magnetic field. The protons
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process around the direction of the static magnetic field. The frequency of pre-
cession is proportional to the strength of the static magnetic field. Application
of a weak radio-frequency field causes the protons to process coherently, and
the sum of all the protons precessing is detected as an induced voltage in a
tuned detector coil.

Spatial information is encoded into the image using magnetic field gradi-
ent. These impose a linear variation in all three dimensions in the magnetic
field present within the patient. As a result of these variations, the preces-
sional frequencies of the protons are also linearly dependent upon their spa-
tial location. The frequency and the phase of the precessing magnetization is
measured by the radio-frequency coil, and the analog signal is digitized. An
inverse two-dimensional Fourier transform is performed to convert the signal
into the spatial domain to produce the image. By varying the data acquisi-
tion parameters, differential contrast between soft tissues can be introduced
with high spatial resolution. Figure 1.2 shows an MRI image of breast cancer.
MRI has high sensitivity but low specificity. It is not capable of discriminating
benign from malignant lesions.

Fig. 1.2. MRI image of breast cancer.

1.3 Electrical Impedance Tomography

Electrical impedance tomography (EIT) uses low-frequency electrical current
to probe a body; the method is sensitive to changes in electrical conductivity.
By injecting known amounts of current and measuring the resulting electrical
potential field at points on the boundary of the body, it is possible to “invert”
such data to determine the conductivity or resistivity of the region of the
body probed by the currents. This method can also be used in principle to
image changes in dielectric constant at higher frequencies, which is why the
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method is often called “impedance” tomography rather than “conductivity”
or “resistivity” tomography. However, the aspect of the method that is most
fully developed to date is the imaging of conductivity/resistivity. Potential
applications of EIT include determination of cardiac output, monitoring for
pulmonary edema, and screening for breast cancer.

There is a formal mathematical analogy between EIT and CT, since in
either case data must be processed to produce the desired image of interior
structure and, furthermore, the imaging is often performed on two-dimensional
slices through the body. EIT uses diffusion of current to deduce conductivity
distribution, unlike MRI and CT.

EIT is expected to have relatively poor resolution compared to MRI, and
CT. However, at the present time, EIT is the only method known that im-
ages electrical conductivity, although MRI and electromagnetic methods also
have some potential to measure conductivity. So, for applications requiring
knowledge of the distribution of this parameter through a body, EIT is an
important method to consider for medical imaging, regardless of its resolving
power.

On the other hand, EIT has some very attractive features. The technology
for doing electrical impedance imaging is safe and inexpensive, and therefore
could be made available at multiple locations (for example, at bedside) in
hospitals. At the low current levels needed for this imaging technique, the
method is not known to cause any long-term harm to the patient, and therefore
could be used to do continuous (or frequent, but intermittent) monitoring of
bedridden patients.

The impedance imaging problem is nonlinear and extremely ill posed,
which means that large changes in interior properties can result in only small
changes in the measurements. The classical image reconstruction algorithms
view EIT as an optimization problem. An initial conductivity distribution
is iteratively updated, so as to minimize in the least-squares sense the dif-
ference between measured and computed boundary voltages. This approach
is quite greedy in computational time, yet produces images with deceivingly
poor accuracy and spatial resolution.

In the 1980’s, Barber and Brown introduced a back-projection algorithm,
that was the first fast and efficient algorithm for EIT, although it provides im-
ages with very low resolution. Since this algorithm is inspired from computed
tomography, it can be viewed as a generalized Radon transform method.

A third technique is dynamical electrical impedance imaging to produce
images of changes in conductivity due to cardiac or respiratory functions. Its
main idea consists in viewing the conductivity as the sum of a static term
plus a perturbation. The mathematical problem here is to visualize the per-
turbation term by an EIT system. Although this algorithm provides accurate
images if the initial guess of the background conductivity is good, its reso-
lution does not completely satisfy practitioners especially when screening for
breast cancer.
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1.4 T-Scan Electrical Impedance Imaging System
for Anomaly Detection

Recently, a commercial system called TransScan TS2000 (TransScan Med-
ical, Ltd, Migdal Ha’Emek, Israel) has been released for adjunctive clinical
uses with X-ray mammography in the diagnostic of breast cancer. Interest-
ingly, the TransScan system is similar to the frontal plane impedance camera
that initiated EIT research early in 1978. The mathematical model of the
TransScan can be viewed as a realistic or practical version of the general EIT
system, so any theory developed for this model can be applied to other areas
in EIT, especially to detection of anomalies. In the TransScan, a patient holds
a metallic cylindrical reference electrode, through which a constant voltage of
1 to 2.5 V, with frequencies spanning 100 Hz-100 KHz, is applied. A scanning
probe with a planar array of electrodes, kept at ground potential, is placed on
the breast. The voltage difference between the hand and the probe induces a
current flow through the breast, from which information about the impedance
distribution in the breast can be extracted. See Fig. 1.3

Hand-held
Electrode

g

Wi

Probe+ −

Fig. 1.3. Tscan.

1.5 Electrical and Magnetic Source Imaging

Electrical source imaging (ESI) is an emerging technique for reconstruct-
ing brain or cardiac electrical activity from electrical potentials measured
away from the brain or heart. The concept of ESI is to improve on elec-
troencephalography (EEG) or electrocardiography (ECG) by determining the
locations of sources of current in the body from measurements of voltages.
ESI could improve diagnoses and guide therapy related to epilepsy and heart
conduction abnormalities through its capability for locating an electrical ab-
normality that is to be removed. Differences in potential within the brain,
heart, and other tissues reflect the segregation of electrical charges at certain
locations within these three-dimensional conductors as nerves are excited,
causing cell membrane potentials to change. While the potential measured at
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some distance from an electrical charge generally decreases with increasing
distance, the situation is more complex within the body; generators of the
EEG, for example, are not simple point-like charge accumulations but rather
are dipole-like layers. Moreover, these layers are convoluted and enmeshed in
a volume conductor with spatially heterogeneous conductivity. The particular
geometry and orientation of these layers determines the potential distribution
within or at the surface of the body. The classical approach to studying brain
electrical activity involves recognizing patterns in a set of waveforms showing
voltage as a function of time, acquired from about 20 electrodes placed on the
scalp. While frequency analysis methods can indicate probable Alzheimer’s
disease by the abnormal distribution of spatial frequency bands true distri-
bution of neuronal activity, knowledge of which could lead to more refined
diagnoses, is masked or blurred by the conducting tissue layers between the
central cortex and the electrodes. Cardiac electrical activity is likewise spa-
tially complex, and involves the propagation of excitation wave fronts in the
heart. Standard electrocardiographic techniques such as electrocardiography
(ECG) and vectorcardiography (VCG) are very limited in their ability to pro-
vide information on regional electrical activity and to localize bioelectrical
events in the heart. In fact, VCG lumps all cardiac wave fronts into a sin-
gle dipole located at the center of the heart and known as the heart vector.
Traditional ECG and VCG employ a small number of electrodes to measure
potentials from the body surface, and the patterns of electrical activity can-
not give the information required for characterizing the electrical activity of
the heart. Non-invasive electrocardiography requires simultaneous recordings
of electrical potential from 100 to 250 torso sites in order to map the body
surface potential. These body surface potential maps (BSPMs) reflect the
regional time course of electrical activity of the heart, information that is im-
portant for clinical treatment. Body surface potential distribution is a very
low resolution projection of cardiac electrical activity, and details of regional
electrical activity in the heart cannot be determined merely from visual in-
spection of the BSPMs. A mathematical method of reconstructing endocardial
potentials is greatly needed.

Ion currents arising in the neurons of the heart and the brain produce
magnetic fields outside the body that can be measured by arrays of SQUID
(superconducting quantum interference device) detectors placed near the chest
or head; the recording of these magnetic fields is known as magnetocardiog-
raphy (MCG) or magnetoencephalography (MEG). Magnetic source imaging
(MSI) is the reconstruction of the current sources in the heart or brain from
these recorded magnetic fields. These fields result from the synchronous ac-
tivity of tens or hundreds of thousands of neurons. Both magnetic source
imaging and electrical source imaging seek to determine the location, orienta-
tion, and magnitude of current sources within the body. The magnetic field at
the surface is most strongly determined by current sources directed parallel
to the surface, but the electrical potentials are determined by current sources
directed perpendicular to the surface. Other than the signal distortion from



1.6 Magnetic Resonance Electrical Impedance Tomography 9

the heterogeneity of tissue conductivity, there is no clear physical reason that
the clinical information produced by biomagnetic measurements could not as
well be obtained from electrical potential mapping. An advantage of MSI over
ESI is that all body tissues are magnetically transparent and the magnetic
fields propagate to the surface without distortion. The electrical potentials
at the surface, on the other hand, are distorted by variations in conductivity
within the body; this is especially true in the head, where the low conductiv-
ity of the skull both distorts and hides the electrical activity of the brain. A
disadvantage of MSI is that the need for cryogenic cooling and a magnetically
shielded room makes the procedure cumbersome with the present technology.

Biomagnetic source imaging offers a tool to study processes where elec-
trical function is important. Promising results have been obtained in the
fields of cardiology and epilepsy. An exciting research on challenging sig-
nal processing issues for EEG and MEG data analysis is being conducted
at Laboratoire de Neurosciences Cognitives & Imagerie Cérébrale in Paris
(http://cogimage.dsi.cnrs.fr/index.htm). A comprehensive set of tools ded-
icated to MEG and EEG data visualization and processing is available at
http://neuroimage.usc.edu/brainstorm/. Figure 1.4 shows a MEG imaging
system and a MEG reconstruction of electrical brain activity coherent with
the speed of hand movements.

(a) (b)

Fig. 1.4. (a) MEG imaging system; (b) Electrical brain activity coherent with the
speed of hand movements.

1.6 Magnetic Resonance Electrical Impedance
Tomography

Since all the present EIT technologies are only practically applicable in fea-
ture extraction of anomalies, improving EIT calls for innovative measurement
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techniques that incorporate structural information. A very promising direction
of research is the recent magnetic resonance imaging technique, called current
density imaging, which measures the internal current density distribution.

When one injects a current into a subject, it produces a magnetic field
as well as an electric field. In EIT, one utilizes only the electrical quantities.
Furthermore, since there is no noninvasive way of getting measurements of
electrical quantities from inside the subject, we are limited in EIT by the
boundary current-voltage data which is insensitive to internal conductivity
perturbations. Using a magnetic resonance imaging scanner, one can enrich
the EIT data by measuring the internal magnetic flux density. This technique
called magnetic resonance current magnetic resonance electrical impedance
tomography (MREIT) perceives the distortion of current pathways due to the
conductivity distribution to be imaged and overcomes the severe ill-posedness
character of EIT. It provides high-resolution conductivity images. However,
it has a number of disadvantages, among which the lack of portability and
a potentially long imaging time. Moreover, it uses an expensive magnetic
resonance imaging scanner.

MREIT has been developed at the Impedance Imaging Research Center
in Seoul (http://iirc.khu.ac.kr/). See Fig. 1.5.

Fig. 1.5. MREIT imaging system.

1.7 Impediography

Another mathematical direction for future EIT research in view of biomed-
ical applications, without eliminating the most important merits of EIT (real
time imaging, low cost, portability). The method named impediography is
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based on the simultaneous measurement of an electric current and of acoustic
vibrations induced by ultrasound waves. The core idea of impediography is
to extract more information about the conductivity from data that has been
enriched by coupling the electric measurements to localized elastic pertur-
bations. Its intrinsic resolution depends on the size of the focal spot of the
acoustic perturbation, and thus it provides high resolution images.

Impediography is being developed at Laboratoire Ondes et Acoustique
(LOA) in Paris (http://www.espci.loa.fr).

1.8 Ultrasound Imaging

Ultrasound imaging is a noninvasive, easily portable, and relatively inexpen-
sive diagnostic modality which finds extensive use in the clinic. The major
clinical applications of ultrasound include many aspects of obstetrics and gy-
necology involving the assessment of fetal health, intra-abdominal imaging of
the liver, kidney, and the detection of compromised blood flow in veins and
arteries.

Operating typically at frequencies between 1 and 10 MHz, ultrasound
imaging produces images via the backscattering of mechanical energy from
interfaces between tissues and small structures within tissue. It has high spa-
tial resolution, particularly at high frequencies, and involves no ionizing ra-
diation. The weakness of the technique include the relatively poor soft-tissue
contrast and the fact that gas and bone impede the passage of ultrasound
waves, meaning that certain organs can not easily be imaged. Figure 1.6 shows
an ultrasound probe and an ultrasound image of breast cancer. Compared to
Fig. 1.2, it is with much lower sensitivity.

Fig. 1.6. Ultrasound image of breast cancer.
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1.9 Microwave Imaging

Ultrasound specificity in breast cancer characterization is low as a result of
the overlapping acoustic characteristics of benign and malignant lesions. Re-
cently, microwave imaging is emerging as a new promising modality for the
detection of breast cancer because of the high electrical contrasts between ma-
lignant tumors and normal breast tissue. Microwaves interact with biological
tissues primarily according to the tissue water content, a fundamentally dif-
ferent mechanism from ultrasound. Due to the high vascular content or water
content related to tumor angiogenesis, malignant tumors have significantly
larger microwave scattering cross sections than normal fatty breast tissues.

1.10 Elastic Imaging

The mechanical properties of soft tissues are important indicators for bio-
medical research and diagnosis since they are generally correlated with the
tissue pathological changes. Although different in terms of elastic stiffness,
some tumors are not readily detectable by conventional imaging modalities
such as CT, ultrasound imaging, and MRI. Palpation is frequently used to
find firm lesions. However, deep lesions in large breasts may not be palpable
until they grow large and become incurable. Recognizing that the elastic mod-
ulus stiffness change of tissues could indicate the tissue pathological evolution,
elastic imaging was developed to detect and characterize tumors by combin-
ing some forms of tissue excitation techniques with methods for detection of
tissue response.

1.11 Magnetic Resonance Elastography

Magnetic resonance elastography (MRE) is a recently developed technique
that can directly visualize and quantitatively measure propagating acoustic
strain waves in tissue-like materials subjected to harmonic mechanical exci-
tation. Elastic waves at frequencies in the 10–1000 Hz range are used as a
probe because they are much less attenuated than at higher frequencies, their
wavelength in tissue-like materials is in the useful range of millimeters to tens
of millimeters. A phase-contrast MRI technique is used to spatially map and
measure the wave displacement patterns. From these data, local quantitative
values of shear modulus can be calculated and images that depict tissue elas-
ticity or stiffness can be generated. Very active research on MRE is being
conducted at LOA. See Fig. 1.7.

It is worth pointing out that impediography, MREIT, and MRE are not
yet established as standard imaging tools in medicine, and that they are still
the subject of mainly academic research.
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Fig. 1.7. MRE imaging system.

1.12 Optical Tomography

Optical tomography is a new technique being developed to estimate the optical
properties of the body. It is based on the discovery that human tissue has a
relative transparency to infra red light in the region 700-1000nm over the
highly attenuated visible spectrum. Its principle is to use multiple movable
light sources and detectors attached to the tissue surface to collect information
on light attenuation, and to reconstruct the internal absorption and scattering
distributions. Unusual growths inside the tissue may be discerned from the
recovered optical densities because tumorous tissue has different scattering
and absorption properties.

Applications of this emerging imaging technique also include a monitoring
of cerebral blood and tissue oxygenation of newborn infants and functional
mapping of brain activation during physical or mental exercise.

The most comprehensive mathematical model for optical tomography is
the radiation transfer equation for the particle flux. When the tissue is strongly
scattering, the signal propagation in the medium is diffuse and the particle
flux is essentially isotropic a small distance away from the sources. In this
case, the diffusion approximation can be used.

Single photon emission computed tomography (SPECT) and positron
emission tomography (PET) are not discussed in this book.
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Preliminaries

This chapter reviews some mathematical concepts essential for understanding
biomedical imaging principles. We first review commonly used special func-
tions, functional spaces, and two integral transforms: the Fourier transform
and the Radon transform. We then collect basic facts about the Moore-Penrose
generalized inverse, singular value decomposition, and compact operators. The
theory of regularization of ill-posed inverse problems is briefly discussed. The
final section examines image characteristics with respect to various data ac-
quisition and processing schemes. We focus specifically on issues related to
image resolution, signal-to-noise ratio, and image artifacts.

2.1 Special Functions

Bessel functions of the first kind of real order ν, denoted by Jν(x), are useful
for describing some imaging effects. One definition of Jν(x) is given in terms
of the series representation

Jν(x) = (
x

2
)ν

+∞∑

l=0

(−x2/4)l

l!Γ (ν + l + 1)
, (2.1)

where the gamma function Γ is defined by

Γ (z) =
∫ +∞

0

e−ttz−1 dt for �e(z) > 0.

Another formula, valid for �e ν > −1
2 , is

Jν(x) = [Γ (
1
2
)Γ (ν +

1
2
)]−1(

x

2
)ν

∫ 1

−1

(1− t2)ν− 1
2 eixt dt. (2.2)

Some useful identities for Bessel functions are summarized below. For further
details, we refer the reader to [118, pages 225–233].
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We have the recurrence relation

(
d

dx
+

ν

x
)Jν(x) = Jν−1(x) . (2.3)

For n ∈ Z, we have the integral representation

Jn(x) =
1
2π

∫ π

−π

eix sin φ−inφdφ ,

i.e., the functions Jn(x) are the Fourier coefficients of eix sin φ. Therefore

eix sin φ =
∑

n∈Z

Jn(x)einφ . (2.4)

By the principle of analytic continuation, formula (2.4) is even valid for all
complex φ. See Fig. 2.1 where Jn for n = 0, . . . , 5 are plotted.
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Fig. 2.1. Plots of Bessel functions Jn(x), n = 0, . . . , 5.

For arguments x < ν, the Bessel functions look qualitatively like simple
powers law, with the asymptotic form for 0 < x� ν

Jν(x) ∼ 1
Γ (ν + 1)

(x

2

)ν

.

For x > ν, the Bessel functions look qualitatively like cosine waves whose
amplitude decay as x−1/2. The asymptotic form for x� ν is

Jν(x) ∼
√

2
πx

cos
(
x− νπ

2
− π

4

)
.

In the transition region where x ∼ ν, the typical amplitude of the Bessel
functions is
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Jν(ν) ∼ 21/3

32/3Γ
(

2
3

) 1
ν1/3

∼ 0.4473
ν1/3

,

which holds asymptotically for large ν.
The Bessel function Jν solves the ODE, known as Bessel’s equation

(
d2

dx2
+

1
x

d

dx
+ (1− ν2

x2
)
)

Jν(x) = 0 , (2.5)

or equivalently,

(
d

dx
− ν − 1

x
)(

d

dx
+

ν

x
)Jν(x) = −Jν(x) . (2.6)

Note that adding and subtracting (2.3) and (2.6) produce the identities

2J ′
ν(x) = Jν−1(x)− Jν+1(x) ,

2ν

x
Jν(x) = Jν−1(x) + Jν+1(x) .

Equation (2.5), for each ν, has a two-dimensional solution space. Note that
J−ν is also a solution. From the expression (2.1) it is clear that Jν and J−ν

are linearly independent provided ν is not an integer. On the other hand,
comparison of power series shows

J−n(x) = (−1)nJn(x), n ∈ N .

A calculation of the Wronskian shows that

W (Jν , J−ν)(x) = −2
sin πν

πx
.

Therefore, Jν and J−ν are linearly independent, and consequently they form
a basis of solutions to (2.5), if and only if ν is not an integer. To construct a
basis of solutions uniformly good for all ν, it is natural to set

Yν(x) =
Jν(x) cos πν − J−ν(x)

sinπν
(2.7)

when ν is not an integer, and define

Yn(x) = lim
ν→n

Yν(x) .

We have
W (Jν , Yν)(x) =

2
πx

,

for all ν. Another important pair of solutions to Bessel’s equation is the pair
of Hankel functions

H(1)
ν (x) = Jν(x) + iYν(x), H(1)

ν (x) = Jν(x)− iYν(x) .
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It is worth pointing out that the Bessel functions Jn+1/2(x), for n an
integer, are elementary functions. For ν = n + 1/2, the integrand in (2.2)
involves (1 − t2)n, so the integral can be evaluated explicitly. We have, in
particular,

J1/2(x) = (
2

πx
)1/2 sinx .

Then (2.3) gives

J−1/2(x) = (
2

πx
)1/2 cos x ,

which by (2.7) is equal to −Y1/2(x). Applying (2.6) and (2.3) repeatedly gives

Jn+1/2(x) = (−1)n
n∏

l=1

(
d

dx
−

l − 1
2

x
)

sin x√
2πx

and the same sort of formula for J−n−1/2(x), with the (−1)n removed, and
sin x replaced by cos x.

The functions

jn(x) :=
√

π

2

Jn+ 1
2
(x)

√
x

,

and

yn(x) :=
√

π

2

Yn+ 1
2
(x)

√
x

are known as the spherical Bessel functions and form a basis for the solution
space of the spherical Bessel equation

(
d2

dx2
+

1
x

d

dx
+ (1− n(n + 1)

x2
)
)

f(x) = 0 .

2.2 Sobolev Spaces

For ease of notation we will sometimes use ∂ and ∂2 to denote the gradient
and the Hessian, respectively.

Let D be a bounded smooth domain. We define the Banach spaces
W 1,p(D), 1 < p < +∞, by

W 1,p(D) =
{

u ∈ Lp(D) :
∫

D

|u|p +
∫

D

|∇u|p < +∞
}

,

where ∇u is interpreted as a distribution, and Lp(D) is defined in the usual
way, with

||u||Lp(D) =
(∫

D

|u|p
)1/p

.
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The space W 1,p(D) is equipped with the norm

||u||W 1,p(D) =
(∫

D

|u|p +
∫

D

|∇u|p
)1/p

.

Another Banach space W 1,p
0 (D) arises by taking the closure of C∞0 (D), the set

of infinitely differentiable functions with compact support in D, in W 1,p(D).
The spaces W 1,p(D) and W 1,p

0 (D) do not coincide for bounded D. The case
p = 2 is special, since the spaces W 1,2(D) and W 1,2

0 (D) are Hilbert spaces
under the scalar product

(u, v) =
∫

D

u v +
∫

D

∇u · ∇v .

We will also need the space W 1,2
loc (Rd \D) of functions u ∈ L2

loc(R
d \D), the

set of locally square summable functions in R
d \D, such that

hu ∈W 1,2(Rd \D),∀ h ∈ C∞0 (Rd \D) .

Further, we define W 2,2(D) as the space of functions u ∈ W 1,2(D) such
that ∂2u ∈ L2(D) and the space W 3/2,2(D) as the interpolation space
[W 1,2(D),W 2,2(D)]1/2.

It is known that the trace operator u 
→ u|∂D is a bounded linear surjective
operator from W 1,2(D) into W 2

1
2
(∂D), where f ∈ W 2

1
2
(∂D) if and only if

f ∈ L2(∂D) and
∫

∂D

∫

∂D

|f(x)− f(y)|2
|x− y|d dσ(x) dσ(y) < +∞ .

We set W 2
− 1

2
(∂D) = (W 2

1
2
(∂D))∗ and let 〈, 〉 1

2 ,− 1
2

denote the duality pair be-
tween these dual spaces.

Finally, let T1, . . . , Td−1 be an orthonormal basis for the tangent plane to
∂D at x and let

∂/∂T =
d−1∑

p=1

(∂/∂Tp) Tp

denote the tangential derivative on ∂D. We say that f ∈ W 2
1 (∂D) if f ∈

L2(∂D) and ∂f/∂T ∈ L2(∂D).

2.3 Fourier Analysis

The Fourier transform plays an important role in imaging. For f ∈ L1(Rd),
the Fourier transform F(f) and the inverse Fourier transform F−1(f) are
defined by
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F(f) = (2π)−d/2

∫

Rd

e−ix·ξf(x) dx ,

F−1(f) = (2π)−d/2

∫

Rd

eix·ξf(x) dx .

We use both transforms for other functions f , such as for functions in L2(Rd)
and even for the tempered distributions S ′(Rd), the dual of the Schwartz space
of rapidly decreasing functions:

S(Rd) =
{

u ∈ C∞(Rd) : xβDαu ∈ L∞(Rd) for all α, β ≥ 0
}

,

where xβ = xβ1
1 . . . xβd

d ,Dα = Dα1
1 . . . Dαd

d , with Dj = −i∂/∂xj .
We list a few properties of the Fourier transform. It is easy to verify that

F : S(Rd)→ S(Rd) and

ξαDβ
ξF(f)(ξ) = (−1)|β|F(Dαxβf)(ξ) .

If fr(x) = f(rx), r > 0, we have

F(fr)(ξ) = r−dF(f)(r−1ξ) .

Likewise, if fy(x) = f(x + y) for y ∈ R
d, then

F(fy)(ξ) = eiξ·yF(f)(ξ) .

We have the inversion formula: FF−1 = F−1F = I on both S(Rd) and
S ′(Rd). If f ∈ L2(Rd), then F(f) ∈ L2(Rd), too. Plancherel’s theorem says
that F : L2(Rd) → L2(Rd) is unitary, with inverse F−1.

If f, g ∈ L2(Rd), then we have Parseval’s relation:
∫

Rd

F(f)g dx =
∫

Rd

fF(g) dx .

Since F−1(f) = F(f), these relations have their counterpart for F−1.
We now make some comments on the relation between the Fourier trans-

form and convolutions. For f ∈ S ′(Rd), g ∈ S(Rd), the convolution

(f � g)(x) =
∫

Rd

f(x− y)g(y) dy

is defined, and we have

F(f � g) = (2π)d/2F(f)F(g), F(fg) = (2π)−d/2F(f) � F(g) .

We need a few special Fourier transforms. For h a Gaussian function,

h(x) := e−|x|2/2, x ∈ R
d ,
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we have
F(h)(ξ) = e−|ξ|2/2, ξ ∈ R

d . (2.8)

For δ0 the Dirac function at the origin, i.e., δ0 ∈ S ′(Rd) and δ0f = f(0) for
f ∈ S(Rd), we have

F(δ0) = (2π)−d/2 .

An approximation δ̃K to δ0 can be defined by

F(δ̃K)(ξ) =

{
(2π)−d/2, |ξ| < K ,

0, |ξ| ≥ K .

We obtain

δ̃K(x) = (2π)−d/2 Jd/2(K|x|)
(K|x|)d/2

,

where Jd/2 is the Bessel function of the first kind of order d/2.
One useful result is the classification of distributions supported at a single

point. If f ∈ S ′(Rd) is supported by {0}, then there exist an integer n and
complex numbers aα such that

f =
∑

|α|≤n

aαDαδ0 .

The shah distribution
shahK =

∑

l∈Zd

δKl ,

where δyf = f(y), has the Fourier transform

F(shah2π/K) = (2π)−d/2KdshahK .

This is Poisson’s formula. More generally, we have for f ∈ S(Rd)

∑

l∈Zd

F(f)(ξ − 2πl

K
) = (2π)−d/2Kd

∑

l∈Zd

f(Kl)e−iKξ·l . (2.9)

2.3.1 Shannon’s Sampling Theorem

We call a function (or distribution) in R
d, d ≥ 1, whose Fourier transform

vanishes outside |ξ| ≤ K band-limited with bandwidth K. Shannon’s sampling
theorem is the following. The reader is referred to [94, page 41] for a proof.

Theorem 2.3.1 (Shannon’s Sampling Theorem) Let f ∈ L2(R) be band-
limited with bandwidth K, and let 0 < ∆x ≤ π/K. Then f is uniquely deter-
mined by the values f(l∆x), l ∈ Z. The smallest detail represented by such a
function is then of size 2π/K. We also have the explicit formula

f(x) =
∑

l∈Z

f

(
lπ

K

)
sin(Kx− lπ)

Kx− lπ
. (2.10)
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The sampling interval π/K is often imposed by computation or storage
constraints and the support of F(f) is generally not included in [−K,K]. In
this case the interpolation formula (2.10) does not recover f . We give a filtering
procedure to reduce the resulting error, known as the aliasing artifact.

To apply Shannon’s sampling theorem, f is approximated by the closest
function f̃ whose Fourier transform has a support in [−K,K]. Plancherel’s
theorem proves that

||f − f̃ ||2 =
∫ +∞

−∞
|F(f)(ξ)−F(f̃)(ξ)|2 dξ

=
∫

|ξ|>K

|F(f)(ξ)|2 dξ +
∫

|ξ|<K

|F(f)(ξ)−F(f̃)(ξ)|2 dξ .

The distance is minimum when the second integral is zero and hence

F(f̃)(ξ) = F(f)(ξ)χ([−K,K])(ξ) =
√

2πF(δ̃K)(ξ)F(f)(ξ) ,

where χ([−K,K]) is the characteristic function of the interval [−K,K]. This
corresponds to f̃ = f �δ̃K . The filtering of f(x) by δ̃K(x) = sin(K|x|)/(πK|x|)
remove any frequency larger than K. Since F(f̃) has a support in [−K,K], the
sampling theorem proves that f̃ can be recovered from the samples f̃(lπ/K).

In the two-dimensional case, we use the separable extension principle. This
not only simplifies the mathematics but also leads to faster numerical algo-
rithms along the rows and columns of images. If F(f) has a support included
in [−K1,K1]×[−K2,K2] then the following two-dimensional sampling formula
holds:

f(x, y) =
∑

l=(l1,l2)∈Z2

f

(
l1π

K1
,
l2π

K2

)
sin(K1x− l1π)

K1x− l1π

sin(K2y − l2π)
K2y − l2π

. (2.11)

If the support of F(f) is not included in the low-frequency rectangle
[−K1,K1] × [−K2,K2] then we have to filter f with the low-pass separable
filter δ̃K1(x) δ̃K2(y).

2.3.2 Fast Fourier Transform

In tomography fast Fourier transform techniques (denoted FFT) are mostly
used for the evaluation of the Fourier transform. Assume that f vanishes
outside [−K,K] and is sampled with stepsize h. Applying the trapezoidal
rule to F(f) leads to the approximation

F(f)(ξ) =
1√
2π

h
N−1∑

n=−N

e−iξhnf(hn) ,

where N = K/h. Since F(f) is band-limited with bandwidth K, F(f) needs
to be sampled with stepsize ≤ π/K. If we choose the coarsest possible stepzise
π/K, we have to evaluate
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F(f)(mπ/K) =
1√
2π

h

N−1∑

n=−N

e−iπmn/Nf(hn) (2.12)

for m = −N, . . . , N − 1. Evaluating (2.12) is a discrete Fourier transform of
length 2N and requires O(N2) complex multiplications and additions. Any
algorithm of lower complexity, usually O(N log2 N), is called a fast Fourier
transform. The possibility of doing this arises from observing redundancies
and reorganizing the calculations. Standard references are [106, 31]. We briefly
describe the well-known FFT algorithm of Cooley and Tukey for N a power
of 2. The basic idea in the Cooley-Tukey algorithm is to break the sum into
one part with n even and the rest with n odd. We have

F(f)(2mπ/K) =
1√
2π

h

N/2−1∑

n=−N/2

e
−iπmn

N/2 (f(hn) + f(h(n + N/2))) ,

and

F(f)((2m + 1)π/K) =
1√
2π

h

N/2−1∑

n=−N/2

e
−iπmn

N/2 (f(hn)− f(h(n + N/2))) .

A discrete Fourier transform of length 2N may thus be calculated with two
discrete Fourier transforms of size N plus O(N) operations. If this is done in a
recursive way we arrive at C(N) = O(N log2 N), where C(N) is the number of
elementary operations needed to compute a discrete Fourier transform with
the FFT. In fact, we have C(N) = 2C(N/2) + O(N). With the change of
variable l = log2 N and the change of function T (l) = C(N)/N , we derive
that T (l) = T (l − 1) + O(1). Since C(1) = 0 we obtain T (l) = O(l) and in
turn C(N) = O(N log2 N).

2.4 The Two-Dimensional Radon Transform

Let θ be on the unit circle S1, and take p ∈ R. The equation x·θ = p represents
the line L which has (signed) distance p from origin and is perpendicular to
the direction θ.

For any continuous function f of compact support, we can compute the
line integral, with respect to Euclidean arc length ds,

Rf(θ, p) :=
∫

x·θ=p

f(x) ds =
∫ +∞

−∞
f(x0 + tθ⊥) dt ,

where x0 is a fixed point on L and θ⊥ is the rotate of θ by π/2.
The map f 
→ Rf is called the Radon transform and Rf is called the

Radon transform of f . Clearly Rf is a function defined on S1 × R with the
compatibility condition: Rf(−θ,−p) = Rf(θ, p).
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There are several reasonable domains of definition for R such as L1(R2) and
S(R2), but in many applications it is enough to consider functions which are
of compact support, with singularities which are only jumps along reasonable
curves, and otherwise smooth.

Some easy properties of the Radon transform are obtained by observing
that Rf can be written using distributions. In fact, if we introduce the unit
density δp−x·θ which is supported by the line x · θ = p, then

Rf(θ, p) =
∫

R2
f(x)δp−x·θ dx , (2.13)

with the usual abuse of language.
It is also convenient to write

Rθ(f) = Rf(θ, p) .

Using the fact that δp−x·θ is homogeneous of degree −1, Rf can be extended
to R

2 \ {0} × R as follows

Rf(ξ, s) =
1
|ξ|Rf(

ξ

|ξ| ,
s

|ξ| ) .

We can therefore take derivatives of (2.13) with respect to the variables
ξj(ξ = (ξ1, ξ2)) and obtain

∂

∂ξj
Rf(ξ, s) =

∫

R2
f(x)

∂

∂ξj
δs−x·ξ dx, j = 1, 2 ,

but
∂

∂ξj
δs−x·ξ = −xjδ

′
s−x·ξ ,

and
∂

∂s
δs−x·ξ = δ′s−x·ξ ,

so that
∂

∂ξj
Rf(ξ, s) = −

∫

R2
f(x)xjδ

′
s−x·ξ dx

= − ∂

∂s

∫

R2
f(x)xjδs−x·ξ dx

= − ∂

∂s

[
R(xjf)(ξ, s)

]
.

On the other hand the Radon transform of the derivative of f is

Rξ(
∂f

∂xj
)(s) =

∫

R2

∂f

∂xj
(x)δs−x·ξ dx

= ξj

∫

R2
f(x)δ′s−x·ξ dx

= ξj
∂

∂s
(Rξf)(s) .
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In particular, we obtain

Rξ(∆f)(s) = (ξ2
1 + ξ2

2)
∂2

∂s2
(Rξf)(s) .

In other words, the Radon transform intertwines ∆ and ∂2/∂s2 when the
arguments are restricted to S1 × R.

Another useful property is the following.

Lemma 2.4.1 Let f, g ∈ S(R2). Then

Rθ(f � g) = Rθ(f) � Rθ(g) . (2.14)

The easiest way to verify (2.14) is via the Fourier Slice theorem, which we
recall here.

Theorem 2.4.2 (Fourier Slice Theorem) Let f ∈ S(R2). Then for θ ∈
S1, s ∈ R,

F(Rθf)(s) =
√

2πF(f)(sθ) .

Proof. The proof is as follows,

F(Rθf)(s) =
1√
2π

∫ +∞

−∞
e−itsRθ(f)(t) dt

=
1√
2π

∫ +∞

−∞
e−its

[ ∫ +∞

−∞
f(tθ + sθ⊥) ds

]
dt

=
1√
2π

∫

R2
e−itsf(tθ + sθ⊥) ds dt .

Letting now x = tθ + sθ⊥, we have t = x · θ and dt ds = dx, the Lebesgue
measure in R

2. Therefore,

F(Rθf)(s) =
1√
2π

∫

R2
e−isx·θf(x) dx =

√
2πF(f)(sθ) .

��
Recalling now that in R

2

F(f � g) = 2πF(f)F(g) ,

we can easily prove (2.14).
Let us also note that if τa denotes the translation by a, i.e., τaf(x) =

f(x− a), then

R(τaf)(θ, p) = Rθf(p− θ · a) = τθ·aRθf(p) .
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2.5 The Moore-Penrose Generalized Inverse

Let A be a bounded operator from a Hilbert space H into a Hilbert space
K. Let A∗ denote the adjoint of A (see for example [118, page 487]). The
Moore-Penrose generalized solution f+ to Af = g is defined as follows: f+ is
the element with the smallest norm in the set of the minimizers of ||Af − g||
(if this set is nonempty, i.e., if g ∈ Range(A) + Range(A)⊥). It can be shown
that f+ is the unique solution to the normal equation

A∗Af = A∗g

in Range(A∗). The linear operator A+ defined by

f+ = A+g for g ∈ Range(A) + Range(A)⊥

is called the Moore-Penrose generalized inverse.

2.6 Singular Value Decomposition

Let A be a bounded linear operator from a Hilbert space H into a Hilbert
space K. By the singular value decomposition (SVD) we mean a representa-
tion of A in the form

Af =
∑

l

σl (f, fl) gl ,

where (fl), (gl) are orthonormal systems in H,K, respectively, and σl are
positive numbers, the singular values of A. The sum may be finite or infinite.
The adjoint of A is given by

A∗g =
∑

l

σl (g, gl) fl ,

and the operators
A∗Af =

∑

l

σ2
l (f, fl) fl ,

AA∗g =
∑

l

σ2
l (g, gl) gl ,

are self-adjoint operators in H,K, respectively. The spectrum of A∗A,AA∗

consists of the eigenvalues σ2
l and possibly the eigenvalue 0, whose multiplicity

may be infinite.
The Moore-Penrose generalized inverse is given by

A+g =
∑

l

σ−1
l (g, gl) fl .

Let us now review the basic concepts of singular value decomposition of a
matrix. Let Mm,n(C) denote the set of all m-by-n matrices over C.
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The set Mn,n(C) is abbreviated to Mn(C). The spectral theorem applied to
the positive semi-definite matrices AA∗ and A∗A gives the following singular
value decomposition of a matrix A ∈ Mm,n(C). Here A∗ := A

T
, where T

denotes the transpose.

Theorem 2.6.1 (Spectral Theorem) Let A ∈ Mm,n(C) be given, and let
q = min{m,n}. There is a matrix Σ = (Σij) ∈ Mm,n(R) with Σij = 0 for all
i �= j and Σ11 ≥ Σ22 ≥ . . . ≥ Σqq ≥ 0, and there are two unitary matrices
V ∈ Mm(C) and W ∈ Mn(C) such that A = V ΣW ∗. The numbers {Σii} are
the nonnegative square roots of the eigenvalues of AA∗, and hence are uniquely
determined. The columns of V are eigenvectors of AA∗ and the columns of
W are eigenvectors of A∗A (arranged in the same order as the corresponding
eigenvalues Σ2

ii).

The diagonal entries Σii, i = 1, . . . , q = min{m,n} of Σ are called the
singular values of A, and the columns of V and the columns of W are the
(respectively, left and right) singular vectors of A.

SVD has the following desirable computational properties:

(i) The rank of A can be easily determined from its SVD. Specifically, rank(A)
equals to the number of nonzero singular values of A.

(ii) The L2-norm of A is given by ||A||2 =
√∑q

m=1 Σ2
mm.

(iii) SVD is an effective computational tool for finding lower-rank approxima-
tions to a given matrix. Specifically, let p < rank(A). Then the rank p
matrix Ap minimizing ||A − Ap||2 is given by Ap = V ΣpW

∗, where the
matrix Σp is obtained from Σ after the singular values Σnn, p+1 ≤ n ≤ q,
are set to zero.

2.7 Compact Operators

Let H be a Banach space. A bounded linear operator A is compact if when-
ever {xj} is a bounded sequence in H, the sequence {Axj} has a convergent
subsequence. The operator A is said to be of finite rank if Range(A) is finite-
dimensional. Clearly every operator of finite rank is compact.

We recall some basic results on compact operators.

(i) The set of compact operators on H is a closed two-sided ideal in the algebra
of bounded operators on H with the norm topology.

(ii) If A is a bounded operator on the Banach space H and there is a sequence
{AN}N∈N of operators of finite rank such that ||AN −A|| → 0, then A is
compact.

(iii) The operator A is compact on the Banach space H if and only if the dual
operator A∗ is compact on the dual space H∗.

We also recall the main structure theorem for compact operators. Let A be
a compact operator on the Hilbert space H (which we identify with its dual).
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For each λ ∈ C, let Vλ = {x ∈ X : Ax = λx} and Vλ = {x ∈ X : A∗x = λx}.
Then

(i) The set of λ ∈ C for which Vλ �= {0} is finite or countable, and in the
latter case its only accumulation point is zero. Moreover, dim(Vλ) < +∞
for all λ �= 0.

(ii) If λ �= 0,dim(Vλ) = dim(Vλ).
(iii) If λ �= 0, the range of λI −A is closed.

Suppose λ �= 0. Then

(i) The equation (λI −A)x = y has a solution if and only if y ⊥ Vλ.
(ii) (λI −A) is surjective if and only if it is injective.

We recall the concept of a Fredholm operator acting between Banach
spaces H and K. We say that a bounded linear operator A : H → K is
Fredholm if the subspace Range(A) is closed in K and the subspaces Ker(A)
and K/Range(A) are finite-dimensional. In this case, the index of A is the
integer defined by

index (A) = dim Ker(A)− dim(K/Range(A)) .

In the sequel, we encapsulate the main conclusion of Fredholm’s original the-
ory. If A = I +B, where B : H → H is compact, then A : H → H is Fredholm
with index zero. This shows that the index is stable under compact perturba-
tions. If A : H → K is Fredholm and B : H → K is compact, then their sum
A + B : H → K is Fredholm, and index (A + B) = index (A).

2.8 Regularization of Ill-Posed Problems

In this section we review some of the most commonly used methods for solving
ill-posed inverse problems. These methods are called regularization methods.
Although the emphasis in this book is not on classical regularization tech-
niques, it is quite important to understand the philosophy behind them and
how they work in practice.

2.8.1 Stability

Problems in image reconstruction are usually not well-posed in the sense of
Hadamard. This means that they suffer from one of the following deficiencies:

(i) They are not solvable (in the strict sense) at all.
(ii) They are not uniquely solvable.
(iii) The solution does not depend continuously on the data.
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To explain the basic ideas of regularization, let A be a bounded linear
operator from a Hilbert space H into a Hilbert space K. Consider the problem
of solving

Af = g (2.15)

for f .(i) means that g is not in the range of A, (ii) means that A is not
injective, and (iii) means that A−1 is not continuous.

One could do away with (i) and (ii) by using the generalized inverse A+.
But A+ does not have to be continuous. Thus, small error in g may cause
errors of arbitrary size in f . To restore continuity, we introduce the notion of
a regularization of A+. This is a family (Tγ)γ>0 of linear continuous operators
Tγ : K → H, which are defined on all of K and for which

lim
γ→0

Tγg = A+g

on the domain of A+. Obviously, ||Tγ || → +∞ as γ → 0 if A+ is unbounded.
With the help of regularization, we can solve (2.15) in the following way. Let
gε ∈ K be an approximation to g such that ||g − gε|| ≤ ε. Let γ(ε) be such
that, as ε → 0,

γ(ε) → 0, ||Tγ(ε)|| ε → 0 .

Then, as ε → 0,

||Tγ(ε)g
ε −A+g|| ≤ ||Tγ(ε)(gε − g)||+ ||Tγ(ε)g −A+g||

≤ ||Tγ(ε)|| ε + ||Tγ(ε)g −A+g||
→ 0 .

Hence Tγ(ε)g
ε is close to A+g if gε is close to g.

The number γ is called a regularization parameter. Determining a good
regularization parameter is a major issue in the theory of ill-posed problems.

A classical ill-posed inverse problem is the deconvolution problem. Define
the compact operator A : L2(R) → L2(R) by

(Af)(x) :=
∫ +∞

−∞
h(x− y)f(y) dy ,

where h is a Gaussian convolution kernel,

h(x) :=
1√
2π

e−x2/2 .

The operator A is injective, which can be seen by applying the Fourier trans-
form on Af , yielding

F(Af) = F(h � f) = F(h)F(f) ,

with F(h) given by (2.8). Therefore, if Af = 0, we have F(f) = 0, hence
f = 0. Formally, the solution to the equation Af = g is
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f(x) = F−1

(
F(g)
F(h)

)
(x), x ∈ R . (2.16)

However, the above formula is not well defined for general g ∈ L2(R) (or even
in S ′(R)) since 1/F(h) grows exponentially.

Measurement errors of arbitrarily small L2-norm in g may cause g to be
not in Range(A) and the inversion formula (2.16) practically useless.

The basic idea of regularization is that, instead of trying to solve (2.15)
exactly, one seeks to find a nearby problem that is uniquely solvable and that
is robust in the sense that small errors in the data do not corrupt excessively
this approximate solution.

We briefly discuss three families of classical regularization methods: (i)
regularization by singular value truncation, (ii) the Tikhonov-Phillips regu-
larization and (iii) regularization by truncated iterative methods.

2.8.2 The Truncated SVD

Let
Af =

∑

l

σl (f, fl) gl

be the SVD of A. Then

Tγg =
∑

σl≥γ

σ−1
l (g, gl) fl (2.17)

is a regularization with ||Tγ || ≤ 1/γ.
A good measure for the degree of ill-posedness of (2.15) is the rate of

decay of the singular value σl. It is clear from (2.17) that the ill-posedness is
more pronounced as the rate of decay increases. A polynomial decay is usually
considered manageable, while an exponential decay indicates that only very
poor approximations to f in (2.15) can be computed. The SVD gives us all
the information we need about an ill-posed problem.

There is a rule for choosing the truncation level, that is often referred to
as the discrepancy principle. This principle states that we cannot expect the
approximate solution to yield a smaller residual error, Afγ−g, than the noise
level ε, since otherwise we would be fitting the solution to the noise. It leads
to the following selection criterion for γ: choose the largest γ that satisfies
||g −

∑
σl≥γ(g, gl)gl|| ≤ ε.

2.8.3 Tikhonov-Phillips Regularization

Linear Problems

The discussion in the above subsection demonstrates that when solving the
equation (2.15) for a compact operator A, serious problems occur when the
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singular values of A tend to zero rapidly, causing the norm of the approximate
solution to go to infinity as the regularization parameter γ goes to zero. The
idea in the basic Tikhonov-Phillips regularization scheme is to control simul-
taneously the norm of the residual, Afγ−g, and the norm of the approximate
solution fγ .

To do so, we set
Tγ = (A∗A + γI)−1A∗ .

Equivalently, fγ = Tγg can be defined by minimizing ||Af − g||2 + γ||f ||2.
Here the regularization parameter γ plays essentially the role of a Lagrange
multiplier. In terms of the SVD of A, we have

Tγg =
∑

l

Fγ(σl)σ−1
l (g, gl) fl ,

where Fγ(σ) = σ2/(σ2 + γ).
The choice of the value of the regularization parameter γ based on the

noise level of the measurement g is a central issue in the literature discussing
Tikhonov-Phillips regularization. Several methods for choosing γ have been
proposed. The most common one is known as the Morozov discrepancy prin-
ciple. This principle is essentially the same as the discrepancy principle dis-
cussed in connection with the singular value truncation principle. It is rather
straightforward to implement numerically.

Let ε be the measurement error. Let

ϕ : R
+ → R

+, ϕ(γ) = ||Afγ − g||

be the discrepancy related to the regularization parameter γ. The Morozov
discrepancy principle says that γ should be chosen from the condition

f(γ) = ε , (2.18)

if possible, i.e., the regularized solution should not try to satisfy the data more
accurately than up to the noise level. Equation (2.18) has a unique solution
γ = γ(ε) if and only if (i) any component in the data g that is orthogonal to
Range(A) must be due to noise and (ii) the error level should not exceed the
signal level.

Nonlinear Problems

Tikhonov-Phillips regularization method is sometimes applicable also when
non-linear problems are considered. Let H1 and H2 be (real) Hilbert spaces.
Let A : H1 → H2 be a nonlinear mapping. We want to find f ∈ H1 satisfying

A(f) = g + ε , (2.19)

where ε is observation noise. If A is such that large changes in f may produce
small changes in A(f), the problem of finding f solution to (2.19) is ill-posed
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and numerical methods, typically, iterative ones, may fail to find a satisfactory
estimate of f .

The nonlinear Tikhonov-Phillips regularization scheme amounts to search-
ing for f that minimizes the functional

||A(f)− g||2 + γG(f) , (2.20)

where G : H1 → R is a nonnegative functional. The most common penalty
term is G(f) = ||f ||2. We restrict ourselves to this choice and suppose that
A is Fréchet differentiable. In this case, the most common method to search
for a minimizer of (2.20) is to use an iterative scheme based on successive
linearizations of A. The linearization of A around a given point f0 leads that
the minimizer of (2.20) (around f0) is

f = (R∗
f0

Rf0 + γI)−1R∗
f0

(
g −A(f0) + Rf0f0

)
,

where Rf0 is the Fréchet derivative of A at f0. We recall that A is Fréchet
differentiable at f0 if it allows an expansion of the form

A(f0 + h) = A(f0) + Rf0h + o(||h||) ,

where Rf0 is a continuous linear operator.

2.8.4 Regularization by Truncated Iterative Methods

The most common iterative methods are Landweber iteration, Kaczmarz iter-
ation, and Krylov subspace methods. The best known of the Krylov iterative
methods when the matrix A is symmetric and positive definite is the conju-
gate gradient method. In this section, we only discuss regularizing properties
of Landweber and Kaczmarz iterations. We refer to [74] and the references
therein concerning the Krylov subspace methods.

Landweber Iteration

The drawback of the Thikhonov-Phillips regularization is that it requires to
invert the regularization of the normal operator A∗A + γI. This inversion
may be costly in practice. The Landweber iteration method is an iterative
technique in which no inversion is necessary. It is defined to solve the equation
Af = g as follows

f0 = 0, fk+1 = (I − rA∗A)fk + rA∗g, k ≥ 0 ,

for some r > 0. By induction, we verify that fk = Tγg, with γ = 1/k, k ≥ 1,
and

Tγ = r

1/γ−1∑

l=0

(I − rA∗A)lA∗ =
+∞∑

l=1

1
σl

(1− (1− rσ2
l )1/γ)(g, gl)fl .
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Kaczmarz Iteration

Kaczmarz’s method is an iterative method for solving linear systems of equa-
tions. Let H,Hj , j = 1, . . . , p, be (real) Hilbert spaces, and let

Aj : H → Hj , j = 1, . . . , p ,

be linear continuous maps from H onto Hj . Let gj ∈ Hj be given. We want
to compute f ∈ H such that

Ajf = gj , j = 1, . . . , p . (2.21)

Kaczmarz’s method for the solution of (2.21) reads:

f0 = fk ,
fj = fj−1 + γA∗

j (AjA
∗
j )

−1(gj −Ajfj−1), j = 1, . . . , p ,

fk+1 = fp ,

with f0 ∈ H arbitrary. Here γ is a regularization parameter. Under certain
assumptions, fk converges to a solution of (2.21) if (2.21) has a solution and
to a generalized solution if not.

2.9 General Image Characteristics

Irrespective to the method used to acquire medical images, there are a number
of criteria by which the image characteristics can be evaluated and compared.
The most important of these criteria are spatial resolution and the signal-to-
noise ratio. This section covers a number of general concepts applicable to all
the imaging modalities in this book.

2.9.1 Spatial Resolution

There are a number of measures used to describe the spatial resolution of
an imaging modality. We focus on describing a point spread function (PSF)
concept and show how to use it to analyze resolution limitation in several
practical imaging schemes.

Point Spread Function

Consider an idealized object consisting of a single point. It is likely that the
image we obtain from it is a blurred point. Nevertheless, we are still able to
identify it as a point. Now, we add another point to the object. If the two points
are farther apart, we will see two blurred points. However, as the two points
are moving closer to each other, the image looks less two points. In fact, the
two points will merge together to become a single blob when their separation
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is below a certain threshold. We call this threshold value the resolution limit
of the imaging system. Formally stated, the spatial resolution of an imaging
system is the smallest separation of two point sources necessary for them
to remain resolvable in the resultant image. In order to arrive at a more
quantitative definition of the resolution, we next introduce the point spread
function concept. The relationship between an arbitrary object function I(x)
and its image Î is described by Î(x) = I(x) ∗ h(x), where the convolution
kernel function h(x) is known as the point spread function since Î(x) = h(x)
for I(x) = δx. In a perfect imaging system, the PSF h(x) would be a delta
function, and in this case the image would be a perfect representation of the
object. If h(x) deviates from a δ−function, Î(x) will be a blurred version of
I(x). The amount of blurring introduced to Î(x) by an imperfect h(x) can be
quantified by the width of h(x). The spatial resolution, Wh, is clearly related
to the PSF. It is defined as the full width of h(x) at its half maximum.

If the PSF is a sinc function,

h(x) =
sin kx

kx
(= j0(kx)) ,

then this definition of resolution coincides with the Rayleigh criterion which
states that the two point sources can be resolved if the peak intensity of
the sinc PSF from one source coincides with the first zero-crossing point of
the PSF of the other, i.e., if the two source points are separated by one-half the
wavelength λ := 2π/k. If the PSF is given by

h(x) =
J1(kx)

kx
,

J1 being the Bessel function of the first order, then the Rayleigh resolution
limit is given by Wh ≈ 0.61λ since the first zero of J1 is approximately 3.83.

If the PSF is a Gaussian function,

h(x) =
1√

2πσ2
e−(x−x0)

2/σ2
,

where σ is the deviation of the distribution and x0 is the center of the function,
then the resolution is given by 2

√
2 ln 2σ ≈ 2.36σ.

Consider now the problem of reconstructing an image from its truncated
Fourier series. The image reconstructed based on the truncated Fourier series
is given by

Î(x) =
1√
2π

∆k

N/2−1∑

n=−N/2

S(n∆k)ein∆k x ,

where S(n∆k) = 1√
2π

∫
R

I(x)e−in∆k x dx. The underlying PSF is given by

h(x) = ∆k
sin(πN∆k x)
sin(π∆k x)

,
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with ∆k being the fundamental frequency and N the number of Fourier sam-
ples. Then the full width of h at its half maximum is Wh = 1/(N∆k). There-
fore, we cannot improve image resolution and reduce the number of measured
data points at the same time. This assertion is often referred to as the uncer-
tainty relation of Fourier imaging, and in practice, one chooses N as large as
signal-to-noise ratio and imaging time permit.

2.9.2 Signal-To-Noise Ratio

Imaging involves measurement and processing of activated signals from an
object. Any practical measurement always contains an undesirable component
that is uncorrelated with the desired signal. This component is referred to as
noise or a random signal. Of great concern to imaging scientists is the question
of how noise is picked up or generated in an imaging system and how the
imaging process handles it-that is, whether it is suppressed or amplified. The
first aspect of the topic is related mostly to the imaging system hardware and
will not be discussed here. The second aspect is related to the mathematical
and processing principles used for the image formation and is discussed in
this section. We begin with a review of some fundamental concepts of noise
signals.

Random Variables

A characteristic of noise is that it does not have fixed values in repeated
measurements. Such a quantity is described by a random variable and follows
a certain statistical relationship, known as the probability density function
(PDF). The PDF of a random variable ξ is often denoted as pξ(x), which
represents the probability of obtaining a specific value x for ξ in a particular
measurement, the area under any PDF must be one. The mean of a random
variable, ξ, is defined as

E[ξ] =
∫

xpξ(x) dx .

It is the first-order statistical moment. The variance is defined as

var[ξ] = E[|ξ − E[ξ]|2] ,

which is a second-order statistical moment. σξ :=
√

var[ξ] is called the stan-
dard deviation, which is a measure of the average deviation from the mean.

The PDF of measurement noise is not always known in practical situations.
We often use parameters such as mean and variance to describe it. In fact,
based on the central limit theorem, most measurement noise can be treated
as Gaussian noise, in which case the PDF is uniquely defined by its mean
and variance. Recall here the central limit theorem: When a function h(x) is
convolved with itself n times, in the limit n → +∞, the convolution product



38 2 Preliminaries

is a Gaussian function with a variance that is n times the variance of h(x),
provided the area, mean, and variance of h(x) are finite. This theorem can be
interpreted as saying that convolution is a smoothing process. Therefore, it
is often appropriate to say that an image obtained from a practical imaging
system is a smooth version of the true image (or object) function.

The PDF of a Gaussian random variable is

pξ(x) =
1√
2πσ

e−(x−x0)
2/2σ2

.

It can be shown that E[ξ] = x0 and var[ξ] = σ2.
Let Î = I + ξ be a measured quantity containing the true signal I and the

noise component ξ with zero mean and standard deviation σξ. The signal-to-
noise ratio (SNR) for Î from a single measurement is defined by

(S/N)Î =
|I|
σξ

.

If N measurements are taken such that În = I + ξn are obtained to produce

1
N

N∑

n=1

În = I +
1
N

N∑

n=1

ξn ,

then the signal-to-noise ratio for (1/N)
∑N

n=1 În is

|I|√
var[ 1

N

∑N
n=1 ξn]

=
√

N
|I|
σξ

=
√

N(S/N)Î ,

assuming that the noise for different measurements is uncorrelated. Thus N
signal averaging yields an improvement by a factor of

√
N in the signal-to-

noise ratio. Recall that two signals, ξ1 and ξ2, are said to be uncorrelated if

E[(ξ1 − E[ξ1])(ξ2 − E[ξ2])] = 0.

Random Signals

Random signals picked up in an imaging experiment are described by functions
with random values, which are known as random (or stochastic) processes.
Denoting ξ(t) as a random process, ξ(t0) for any time instant t0 is a random
variable, but each sample of ξ(t) is a deterministic function of time. As in the
case of random variables, we may not always require a complete statistical
description of a random process, or we may not be able to obtain it even if
desired. In such cases, we work with various statistical moments. The most
important ones are
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(i) Mean: E[ξ(t)];
(ii) Variance: var[ξ(t)] = E[|ξ(t)− E[ξ(t)]|2];
(iii) and the correlation function: R(t, t + τ) = E[ξ(t)ξ(t + τ)].

For some random processes, the mean and the variance are independent
of time and the correlation function depends only on the time difference τ .
Those processes are termed stationary. Another important property of random
processes is ergodicity, which means that time and ensemble averages are
interchangeable. For example, if ξ(t) is an ergodic process, then

(i) E[ξ(t)] =< ξ(t) > ,

(ii) var[ξ(t)] =< |ξ(t)− E[ξ(t)]|2 > ,

(iii) R(τ) := E[ξ(t)ξ(t + τ)] =< ξ(t)ξ(t + τ) > ,

where < · > is the time average operator, defined as

< ξ(t) >:= lim
T→+∞

1
2T

∫ T

−T

ξ(t) dt .

Therefore, for ergodic processes, the statistical moments are measurable from
any sample function. Furthermore, for an ergodic process, R(τ) is a deter-
ministic function of time, and its Fourier transform gives the power spectral
density function- a relationship established by the well-known Wiener the-
orem. If the spectral density function is a constant over the measurement
frequency range, the noise is referred to as white noise in practice.

Noise signals we consider in this book are assumed to come from an ergodic,
stationary, uncorrelated, white noise process.

Image Artifacts

Image distortion or artifacts often arise in tomographic imaging owing ei-
ther to insufficient data or to inaccurate data, or both. An insufficiency of
measured data occurs because of practical physical and temporal constraints
in data acquisition. Data distortions are often due to imperfections in the
data acquisition system. Gibbs ringing artifact and aliasing artifacts are very
typical artifacts encountered in practice. Another typical artifact is motion ar-
tifact. Common motion artifacts are image blurring and ghost and are due to
the object motion during the experiment. The interested reader is referred to
[91, page 260] for a discussion on some concepts to understand motion effects
and motion compensation techniques. Aliasing artifacts have been discussed
in Sect. 2.3.1. Here, we only focus on Gibbs ringing artifact.

The Gibbs ringing artifact is a common image distortion that exists in
Fourier images, which manifests itself as spurious ringing around sharp edges.
It is a result of truncating the Fourier series model owing to finite sampling or
missing of high-frequency data. It is fundamentally related to the convergence
behavior of the Fourier series. Specifically, when I(x) is a smooth function,
Î(x) given by
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Î(x) =
1√
2π

∆k

N/2−1∑

n=−N/2

S(n∆k)ein∆k x ,

uniformly converges to I(x) as N → +∞ for bounded x. More precisely, if
I(x) ∈ Cp, then ||Î(x) − I(x)||2 approaches zero on the order of 1/Np+1. If
I has discontinuities then there is a nonuniform convergence of Î to I in the
vicinity of the discontinuous points of I. This nonuniform behavior of the limit
Î(x) → I(x) as N → +∞ is called the Gibbs phenomenon.

An obvious way to reduce the Gibbs ringing artifact is to collect more
high-frequency data. This may not be possible in practice because of practical
physical or temporal constraints on data acquisition. Another approach is to
filter the measured data before they are Fourier transformed. This operation
is described by

Î(x) =
1√
2π

∆k

N/2−1∑

n=−N/2

S(n∆k)wnein∆k x , (2.22)

where wn is a filter function. This method is motivated by the understanding
that the Gibbs ringing artifact is directly related to the oscillatory nature of
the PSF associated with rectangular window function implicitly used in the
Fourier reconstruction method. With the reconstruction formula in (2.22), one
can derive that the PSF is

h(x) =
1√
2π

∆k

N/2−1∑

n=−N/2

wnein∆kx .

Therefore, by properly choosing the filter function wn, one can significantly
suppress the oscillations in h(x), and thus the Gibbs ringing in Î(x). A variety
of filters have been proposed for this purpose. The most popular one is the
Hamming filter defined by wn = H(2πn/N), where

H(x) :=

{
0.54 + 0.46 cos(2πx), |x| ≤ 1/2 ,

0 otherwise.
(2.23)

Although the filtering approach is effective in suppressing the Gibbs ring-
ing, it is at the price of spatial resolution. This point can be understood by
examining the effective width of the resulting PSF. Specifically,

Wh =
1

∆k
∑N/2−1

n=−N/2 wn

∆k

2π

∫ π
∆k

− π
∆k

N/2−1∑

n=−N/2

wnein∆k x dx

=
1

∑N/2−1
n=−N/2(wn/w0)∆k

.

Since wn ≥ w0 for any practical filter function used for this purpose, we have
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Wh ≥
1

N∆k
.

This equation asserts that the filtering operation is a lossy process in terms
of image resolution. To overcome this problem, various sophisticated recon-
struction methods have been proposed. See [91].

Bibliography and Discussion

For reference books (written by mathematicians for mathematicians) on
Radon transform we recommend [65, 96]. For a complete account of the math-
ematical theory of regularization of inverse problems, the reader is referred to
the book by Engl, Hanke, and Neubauer [52]. See [74] where regularization
methods are analyzed from the point of view of statics. A convergence proof
of the Kaczmarz’s method can be found in the book [102].
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Layer Potential Techniques

The anomaly detection algorithms described in this book rely on asymptotic
expansions of the fields when the medium contains anomalies of small volume.
Such asymptotics will be investigated in the case of the conduction equation,
the Helmholtz equation, the operator of elasticity, and the Stokes system. As it
will be shown in the subsequent chapters, a remarkable feature of these imag-
ing techniques, is that they allow a stable and accurate reconstruction of the
location and of the geometric features of the anomalies, even for moderately
noisy data.

We prepare the way in this chapter by reviewing a number of basic facts
on the layer potentials for these equations which are very useful for anom-
aly detection. The most important results in this chapter are what we call
decomposition theorems for transmission problems. For such problems, we
prove that the solution is the sum of two functions, one solving the homo-
geneous problem, the other inheriting geometric properties of the anomaly.
These results have many applications. They have been used to prove global
uniqueness results for anomaly detection problems [75, 77]. In this book, we
will use them to provide asymptotic expansions of the solution perturbations
due to presence of small volume anomalies.

We begin with proving a decomposition formula of the steady-state volt-
age potential into a harmonic part and a refraction part. We then discuss the
transmission problem for the Helmholtz equation, and proceed to establish
a decomposition formula for the solution to this problem. Compared to the
conductivity equation, the only new difficulty in establishing a decomposition
theorem for the Helmholtz equation is that the equations inside and outside
the anomaly are not the same. We should then consider two unknowns and
solve a system of equations on the boundary of the anomaly instead of just one
equation. After that, we turn to elliptic systems, namely, the Lamé and the
Stokes systems. We investigate the transmission problems for these systems
and derive decomposition theorems for the solutions to the transmission prob-
lems. Due to the vectorial aspect of the equations, our derivations are more
complicate and our analysis is more delicate than in the scalar cases. We also
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note that when dealing with exterior problems for the Helmholtz equation
or the dynamic elasticity, one should introduce a radiation condition, known
as the Sommerfeld radiation condition, to select the physical solution to the
problem.

3.1 The Laplace Equation

This section deals with the Laplace operator (or Laplacian) in R
d, denoted

by ∆. The Laplacian constitutes the simplest example of an elliptic partial dif-
ferential equation. After deriving the fundamental solution for the Laplacian,
we shall introduce the single- and double-layer potentials. We then provide
the jump relations and mapping properties of these surface potentials. The
final subsection investigates the transmission problem.

3.1.1 Fundamental Solution

To give a fundamental solution to the Laplacian in the general case of the
dimension d, we denote by ωd the area of the unit sphere in R

d. Even though
the following result is elementary we give its proof for the reader’s convenience.

Lemma 3.1.1 A fundamental solution to the Laplacian is given by

Γ (x) =

⎧
⎪⎨

⎪⎩

1
2π

ln |x| , d = 2,

1
(2− d)ωd

|x|2−d , d ≥ 3.
(3.1)

Proof. The Laplacian is radially symmetric, so it is natural to seek Γ in the
form Γ (x) = w(r) where r = |x|. Since

∆w =
d2w

d2r
+

(d− 1)
r

dw

dr
=

1
rd−1

d

dr
(rd−1 dw

dr
),

∆Γ = 0 in R
d \ {0} forces that w must satisfy

1
rd−1

d

dr
(rd−1 dw

dr
) = 0 for r > 0,

and hence

w(r) =

⎧
⎨

⎩

ad

(2− d)
1

rd−2
+ bd when d ≥ 3,

a2 ln r + b2 when d = 2,

for some constants ad and bd. The choice of bd is arbitrary, but ad is fixed by
the requirement that ∆Γ = δ0 in R

d, where δ0 is the Dirac function at 0, or
in other words
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∫

Rd

Γ∆φ = φ(0) for φ ∈ C∞0 (Rd) . (3.2)

Any test function φ ∈ C∞0 (Rd) has compact support, so we can apply
Green’s formula over the unbounded domain {x : |x| > ε} to arrive at

∫

|x|>ε

Γ (x)∆φ(x) dx =
∫

|x|=ε

φ(x)
∂Γ

∂ν
(x) dσ(x)

−
∫

|x|=ε

Γ (x)
∂φ

∂ν
(x) dσ(x) ,

(3.3)

where ν = x/|x| on {|x| = ε}. Since

∇Γ (x) =
dw

dr

x

|x| =
adx

|x|d for d ≥ 2 ,

we have
∂Γ

∂ν
(x) = adε

1−d for |x| = ε .

Thus by the continuity of φ,
∫

|x|=ε

φ(x)
∂Γ

∂ν
(x) dσ(x) =

ad

εd−1

∫

|x|=ε

φ(x) dσ(x) → adωdφ(0)

as ε → 0, whereas

∫

|x|=ε

Γ (x)
∂φ

∂ν
(x) dσ(x) =

{
O(ε) if d ≥ 3 ,

O(ε| ln ε|) if d = 2 .

Thus, if ad = 1/ωd, then (3.2) follows from (3.3) after sending ε → 0. ��
Let p ∈ R

d and q ∈ R. The function qΓ (x−z) is called the potential due to
charges q at the source point z. The function p ·∇zΓ (x−z) is called the dipole
of moment |p| and direction p/|p|. It is known that using point charges one
can realize a dipole only approximately (two large charges a small distance
apart). See [108].

Now we prove Green’s identity.

Lemma 3.1.2 Assume that D is a bounded C2-domain in R
d, d ≥ 2, and let

u ∈ W 1,2(D) be a harmonic function. Then for any x ∈ D,

u(x) =
∫

∂D

(
u(y)

∂Γ

∂νy
(x− y)− ∂u

∂νy
(y)Γ (x− y)

)
dσ(y) . (3.4)

Proof. For x ∈ D let Bε(x) be the ball of center x and radius ε. We apply
Green’s formula to u and Γ (x− ·) in the domain D \Bε for small ε and get
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∫

D\Bε(x)

(
Γ∆u− u∆Γ

)
dy =

∫

∂D

(
Γ

∂u

∂ν
− u

∂Γ

∂ν

)
dσ(y)

−
∫

∂Bε(x)

(
Γ

∂u

∂ν
− u

∂Γ

∂ν

)
dσ(y) .

Since ∆Γ = 0 in D \Bε(x), we have
∫

∂D

(
Γ

∂u

∂ν
− u

∂Γ

∂ν

)
dσ(y) =

∫

∂Bε(x)

(
Γ

∂u

∂ν
− u

∂Γ

∂ν

)
dσ(y) .

For d ≥ 3, we get by definition of Γ

∫

∂Bε(x)

Γ
∂u

∂ν
dσ(y) =

1
(2− d)ωd

ε2−d

∫

∂Bε(x)

∂u

∂ν
dσ(y) = 0

and ∫

∂Bε(x)

u
∂Γ

∂ν
dσ(y) =

1
ωdεd−1

∫

∂Bε(x)

u dσ(y) = u(x) ,

by the mean value property. Proceeding in the same way, we arrive at the
same conclusion for d = 2. ��

3.1.2 Layer Potentials

In this subsection we show how important the fundamental solution is to
potential theory. It gives rise to integral operators that invert the Laplacian.
We need these integral operators (also called layer potentials) in the derivation
of the decomposition theorem for solutions to the transmission problem.

Given a bounded C2-domain D in R
d, d ≥ 2, we denote respectively the

single- and double-layer potentials of a function φ ∈ L2(∂D) as SDφ and DDφ,
where

SDφ(x) :=
∫

∂D

Γ (x− y)φ(y) dσ(y) , x ∈ R
d, (3.5)

DDφ(x) :=
∫

∂D

∂

∂νy
Γ (x− y)φ(y) dσ(y) , x ∈ R

d \ ∂D . (3.6)

We begin with the study of their basic properties. We note that for x ∈
R

d \ ∂D and y ∈ ∂D, ∂Γ/∂νy(x− y) is an L∞-function in y and harmonic in
x, and it is O(|x|1−d) as |x| → +∞. Therefore we readily see that DDφ and
SDφ are well-defined and harmonic in R

d \ ∂D. Let us list their behavior at
+∞.

Lemma 3.1.3 The following holds:

(i) DDφ(x) = O(|x|1−d) as |x| → +∞.
(ii) SDφ(x) = O(|x|2−d) as |x| → +∞ when d ≥ 3.
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(iii) If d = 2, we have

SDφ(x) =
1
2π

∫

∂D

φ(y) dσ(y) ln |x|+ O(|x|−1) as |x| → +∞ .

(iv) If
∫

∂D
φ(y) dσ = 0, then SDφ(x) = O(|x|1−d) as |x| → +∞ for d ≥ 2.

Proof. The first three properties are fairly obvious from the definitions. Let
us show (iv). If

∫
∂D

φ(y) dσ = 0, then

SDφ(x) =
∫

∂D

[Γ (x− y)− Γ (x− y0)]φ(y)dσ(y) ,

where y0 ∈ D. Since

|Γ (x− y)− Γ (x− y0)| ≤ C|x|1−d if |x| → +∞ and y ∈ ∂D (3.7)

for some constant C, SDφ(x) = O(|x|1−d) as |x| → +∞. ��
Lemma 3.1.2 now shows that if u ∈ W 1,2(D) is harmonic, then for any

x ∈ D,

u(x) = DD(u|∂D)− SD

(
∂u

∂ν

∣∣∣∣
∂D

)
. (3.8)

To solve the Dirichlet and Neumann problems, where either u or ∂u/∂ν
on ∂D is unknown, we need to well-understand the subtle behaviors of the
functions DDφ(x± tνx) and ∇SDφ(x± tνx) for x ∈ ∂D as t → 0+. A detailed
discussion of the behavior near the boundary ∂D of DDφ and ∇SDφ for a
C2-domain D and a density φ ∈ L2(∂D) is given below. For this purpose we
shall follow [59].

Assume that D is a bounded C2-domain. Then we have the bound
∣∣∣∣
〈x− y, νx〉
|x− y|d

∣∣∣∣ ≤ C
1

|x− y|d−2
for x, y ∈ ∂D, x �= y , (3.9)

which shows that there exists a positive constant C depending only on D such
that ∫

∂D

(
|〈x− y, νx〉|
|x− y|d +

|〈x− y, νy〉|
|x− y|d

)
dσ(y) ≤ C , (3.10)

and
∫

|y−x|<ε

(
|〈x− y, νx〉|
|x− y|d +

|〈x− y, νy〉|
|x− y|d

)
dσ(y) ≤ C

∫ ε

0

1
rd−2

rd−2 dr

≤ Cε ,

(3.11)

for any x ∈ ∂D, by integration in polar coordinates.
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Introduce the operator KD : L2(∂D) → L2(∂D) given by

KDφ(x) =
1
ωd

∫

∂D

〈y − x, νy〉
|x− y|d φ(y) dσ(y) . (3.12)

The estimate (3.10) proves that this operator is bounded. In fact, for φ, ψ ∈
L2(∂D), we estimate

∣∣∣∣
∫

∂D

∫

∂D

〈y − x, νy〉
|x− y|d φ(y)ψ(x) dσ(y) dσ(x)

∣∣∣∣ (3.13)

via the inequality 2ab ≤ a2 + b2. Then, by (3.10), (3.13) is dominated by

C

(
||φ||2L2(∂D) + ||ψ||2L2(∂D)

)
.

Replacing φ, ψ, by tφ, (1/t)ψ, we see that (3.13) is bounded by

C

(
t2||φ||2L2(∂D) +

1
t2
||ψ||2L2(∂D)

)
;

minimizing over t ∈]0,+∞[, via elementary calculus, we see that (3.13) is
dominated by C||φ||L2(∂D)||ψ||L2(∂D), proving that KD is a bounded operator
on L2(∂D).

On the other hand, it is easily checked that the operator defined by

K∗
Dφ(x) =

1
ωd

∫

∂D

〈x− y, νx〉
|x− y|d φ(y) dσ(y) , (3.14)

is the L2-adjoint of KD.
It is now important to ask about the compactness of these operators.

Indeed, to apply the Fredholm theory for solving the Dirichlet and Neumann
problems for the Laplace equation, we will need the following lemma.

Lemma 3.1.4 If D is a bounded C2-domain then the operators KD and K∗
D

are compact operators in L2(∂D).

Proof. It suffices to prove that KD is compact in L2(∂D) to assert that K∗
D

is compact as well.
Given ε > 0, set Γε(x) = Γ (x) if |x| > ε, Γε(x) = 0 otherwise, and define

Kε
Dφ(x) =

∫

∂D

∂Γε

∂νy
(x− y)φ(y) dσ(y) .

Then ∫

∂D

∫

∂D

∣∣∣∣
∂Γε

∂νy
(x− y)

∣∣∣∣
2

dσ(x) dσ(y) < +∞ ,
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hence the operator norm of Kε
D on L2(∂D) satisfies

||Kε
D|| ≤

∥∥∥∥
∂Γε

∂ν

∥∥∥∥
L2(∂D×∂D)

.

Let {φp}+∞
p=1 be an orthonormal basis for L2(∂D). It is an easy consequence

of Fubini’s theorem that if ψpq(x, y) = φp(x)φq(y), then {ψpq}+∞
p,q=1 is an

orthonormal basis for L2(∂D × ∂D). Hence we can write

∂Γε

∂νy
(x− y) =

+∞∑

p,q=1

〈∂Γε

∂ν
, ψpq〉ψpq(x, y) .

Here 〈, 〉 denotes the L2-product. For N ∈ N, N ≥ 2, let

Kε,N
D φ(x) =

∑

p+q≤N

∫

∂D

〈∂Γε

∂ν
, ψpq〉ψpq(x, y)φ(y) dσ(y) .

It is clear that the range of Kε,N
D lies in the span of φ1, . . . , φN , so Kε,N

D is of
finite rank. Moreover

∥∥∥Kε
D −Kε,N

D

∥∥∥ ≤

∥∥∥∥∥∥
∂Γε

∂ν
−
∑

p+q≤N

〈∂Γε

∂ν
, ψpq〉ψpq

∥∥∥∥∥∥
L2(∂D×∂D)

−→0 as N → +∞,

and then Kε
D is compact. On the other hand,

KDφ(x) =
1
ωd

∫

|y−x|>ε

〈y − x, νy〉
|x− y|d φ(y) dσ(y)

+
1
ωd

∫

|y−x|<ε

〈y − x, νy〉
|x− y|d φ(y) dσ(y) ,

= Kε
Dφ(x) +

1
ωd

∫

|y−x|<ε

〈y − x, νy〉
|x− y|d φ(y) dσ(y) ,

and then, by the estimate (3.11) the operator norm of KD−Kε
D tends to zero

as ε → 0, so KD is compact. ��
In the special case of the unit sphere, we may simplify the expressions

defining the operators KD and K∗
D.

Lemma 3.1.5 (i) Suppose that D is a two dimensional disk with radius r.
Then,

〈x− y, νx〉
|x− y|2 =

1
2r

∀ x, y ∈ ∂D, x �= y ,

and therefore, for any φ ∈ L2(∂D),

K∗
Dφ(x) = KDφ(x) =

1
4πr

∫

∂D

φ(y) dσ(y) , (3.15)

for all x ∈ ∂D.
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(ii) For d ≥ 3, if D denotes a sphere with radius r, then, since

〈x− y, νx〉
|x− y|d =

1
2r

1
|x− y|d−2

∀ x, y ∈ ∂D, x �= y ,

we have that for any φ ∈ L2(∂D),

K∗
Dφ(x) = KDφ(x) =

(2− d)
2r

SDφ(x) (3.16)

for any x ∈ ∂D.

Turning now to the behavior of the double layer potential at the boundary,
we first establish that the double layer potential with constant density has a
jump.

Lemma 3.1.6 If D is a bounded C2-domain then DD(1)(x) = 0 for x ∈
R

d \D, DD(1)(x) = 1 for x ∈ D, and KD(1)(x) = 1/2 for x ∈ ∂D.

Proof. The first equation follows immediately from Green’s formula, since
Γ (x− y) is in C∞(D) and harmonic in D as a function of y when x ∈ R

d \D.
As for the second equation, given x ∈ D, let ε > 0 be small enough so that
Bε ⊂ D, where Bε is the ball of center x and radius ε. We can apply Green’s
formula to Γ (x− y) on the domain D \Bε to obtain

0 = DD(1)(x)− ε1−d

ωd

∫

∂Bε

dσ(y)

= DD(1)(x)− 1 .

Now we prove the third equation. Given x ∈ ∂D, again let Bε be the ball
of center x and radius ε. Set ∂Dε = ∂D \ (∂D ∩ Bε), ∂B′

ε = ∂Bε ∩ D, and
∂B′′

ε = {y ∈ ∂Bε : νx · y < 0}. (Thus ∂B′′
ε is the hemisphere of ∂Bε lying

on the same side of the tangent plane to ∂D at x.) A further application of
Green’s formula shows that

0 =
1
ωd

∫

∂Dε

〈y − x, νy〉
|x− y|d dσ(y) +

∫

∂B′
ε

∂Γ

∂νy
(x− y) dσ(y) .

Thus

1
ωd

∫

∂Dε

〈y − x, νy〉
|x− y|d dσ(y) = −

∫

∂B′
ε

∂Γ

∂νy
(x− y) dσ(y) =

ε1−d

ωd

∫

∂B′
ε

dσ(y) .

But on the one hand, clearly
∫

∂D

〈y − x, νy〉
|x− y|d dσ(y) = lim

ε→0

∫

∂Dε

〈y − x, νy〉
|x− y|d dσ(y) .
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On the other hand, since ∂D is C2, the distance between the tangent plane to
∂D at x and the points on ∂D at a distance ε from x is O(ε2), so

∫

∂B′
ε

dσ(y) =
∫

∂B′′
ε

dσ(y) + O(ε2) ·O(εd−1) =
ωdε

d−1

2
+ O(εd+1) ,

and the desired result follows. ��
Lemma 3.1.6 can be extended to general densities φ ∈ L2(∂D). For con-

venience we introduce the following notation. For a function u defined on
R

d \ ∂D, we denote

u|±(x) := lim
t→0+

u(x± tνx), x ∈ ∂D ,

and
∂

∂νx
u

∣∣∣∣
±

(x) := lim
t→0+

〈∇u(x± tνx), νx〉 , x ∈ ∂D ,

if the limits exist. Here νx is the outward unit normal to ∂D at x, and 〈, 〉
denotes the scalar product in R

d. For ease of notation we will sometimes use
the dot for the scalar product in R

d.
We relate in the next lemma the traces DD|± of the double-layer potential

to the operator KD defined by (3.12).

Lemma 3.1.7 If D is a bounded C2-domain then for φ ∈ L2(∂D)

(DDφ)
∣∣
±(x) =

(
∓1

2
I +KD

)
φ(x) a.e. x ∈ ∂D . (3.17)

Proof. First we consider a density f ∈ C0(∂D). If x ∈ ∂D and t < 0 is
sufficiently small, then x + tνx ∈ D, so by Lemma 3.1.6,

DDf(x + tνx) = f(x) +
∫

∂D

∂Γ

∂νy
(x + tνx − y)(f(y)− f(x)) dσ(y) . (3.18)

To prove that the second integral is continuous as t → 0−, given ε > 0 let
δ > 0 be such that |f(y)− f(x)| < ε whenever |y − x| < δ.

Then
∫

∂D

∂Γ

∂νy
(x + tνx − y)(f(y)−f(x)) dσ(y)−

∫

∂D

∂Γ

∂νy
(x− y)(f(y)−f(x)) dσ(y)

=
∫

∂D∩Bδ

∂Γ

∂νy
(x + tνx − y)(f(y)− f(x)) dσ(y)

−
∫

∂D∩Bδ

∂Γ

∂νy
(x− y)(f(y)− f(x)) dσ(y)

+
∫

∂D\Bδ

(
∂Γ

∂νy
(x + tνx − y)− ∂Γ

∂νy
(x− y)

)
(f(y)− f(x)) dσ(y)

= I1 + I2 + I3 .
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Here Bδ is the ball of center x and radius δ. It easily follows from (3.10) that
|I2| ≤ Cε. Since

∣∣∣∣
∂Γ

∂νy
(x + tνx − y)− ∂Γ

∂νy
(x− y)

∣∣∣∣ ≤ C
|t|

|x− y|d ∀ y ∈ ∂D ,

we get |I3| ≤ CM |t|, where M is the maximum of f on ∂D. To estimate I1,
we assume that x = 0 and near the origin, D is given by y = (y′, yd) with
yd > ϕ(y′), where ϕ is a C2-function such that ϕ(0) = 0 and ∇ϕ(0) = 0. With
the local coordinates, we can show that

∣∣∣∣
∂Γ

∂νy
(x + tνx − y)

∣∣∣∣ ≤ C
|ϕ(y′)|+ |t|

(|y′|2 + |t|2)d/2
,

and hence |I1| ≤ Cε. A combination of the above estimates yields

lim sup
t→0−

∣∣∣∣
∫

∂D

∂Γ

∂νy
(x + tνx − y)(f(y)− f(x)) dσ(y)

−
∫

∂D

∂Γ

∂νy
(x− y)(f(y)− f(x) dσ(y)

∣∣∣∣ ≤ Cε .

Since ε is arbitrary, we obtain that

(DDf)
∣∣
−(x) = f(x) +

∫

∂D

∂Γ

∂νy
(x− y)(f(y)− f(x)) dσ(y)

=
(

1
2
I +KD

)
f(x) for x ∈ ∂D .

If t > 0, the argument is the same except that
∫

∂D

∂Γ

∂νy
(x + tνx − y) dσ(y) = 0 ,

and hence we write

DDf(x + tνx) =
∫

∂D

∂Γ

∂νy
(x + tνx − y)(f(y)− f(x)) dσ(y), x ∈ ∂D ,

instead of (3.18). We leave the rest of the proof to the reader.
Next, consider φ ∈ L2(∂D). We first note that by (3.10), limt→0+ DDφ(x±

tνx) exists and
∥∥∥∥lim sup

t→0+
DDφ(x± tνx)

∥∥∥∥
L2(∂D)

≤ C||φ||L2(∂D) ,

for some positive constant C independent of φ.
To handle the general case, let ε be given and choose a function f ∈ C0(∂D)

satisfying ||φ− f ||L2(∂D) < ε.
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Then
∣∣∣∣DDφ(x± tνx)−

(
∓ 1

2
I +KD

)
φ(x)

∣∣∣∣

≤
∣∣∣∣DDf(x± tνx)−

(
∓ 1

2
I +KD

)
f(x)

∣∣∣∣+
∣∣∣∣DD(φ− f)(x± tνx)

∣∣∣∣

+
∣∣∣∣

(
∓ 1

2
I +KD

)
(φ− f)(x)

∣∣∣∣ .

For λ > 0, let

Aλ =
{

x ∈ ∂D : lim sup
t→0+

∣∣∣∣DDφ(x± tνx)− (∓1
2
I +KD)φ(x)

∣∣∣∣ > λ

}
.

For a set E let |E| denote its Lebesgue measure. Then

|Aλ| ≤
∣∣∣∣

{
|DD(φ− f)| > λ

3

}∣∣∣∣+
∣∣∣∣

{
|φ− f | > 2λ

3

}∣∣∣∣+
∣∣∣∣

{
|KD(φ− f)| > λ

3

}∣∣∣∣

≤ (
3
λ

)2
(
||φ− f ||2L2(∂D) +

1
4
||φ− f ||2L2(∂D) + ||KD(φ− f)||2L2(∂D)

)

≤ C(
3
λ

)2ε2 .

Here we have used the L2-boundedness of KD which is an obvious consequence
of Lemma 3.1.4. Since ε is arbitrary, |Aλ| = 0 for all λ > 0. This implies that

lim
t→0+

DDφ(x± tνx) = (∓1
2
I +KD)φ(x) a.e. x ∈ ∂D ,

and completes the proof. ��
In a similar way, we can describe the behavior of the gradient of the single

layer potential at the boundary. The following lemma reveals the connection
between the traces ∂SD/∂ν|± and the operator K∗

D defined by (3.14).

Lemma 3.1.8 If D is a bounded C2-domain then for φ ∈ L2(∂D):

∂

∂T
SDφ

∣∣∣∣
+

(x) =
∂

∂T
SDφ

∣∣∣∣
−

(x) a.e. x ∈ ∂D , (3.19)

and
∂

∂ν
SDφ

∣∣∣∣
±

(x) =
(
±1

2
I +K∗

D

)
φ(x) a.e. x ∈ ∂D . (3.20)

Consider now the integral equations
(

I

2
+KD

)
φ = f and

(
I

2
−K∗

D

)
ψ = g , (3.21)

for f, g ∈ L2(∂D),
∫

∂D
g dσ = 0.
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By the trace formulae (3.20) and (3.17) for the single- and double-layer
potentials, it is easily seen that if φ and ψ are solutions to these equations
then DDφ solves the Dirichlet problem with Dirichlet data f and −SDψ solves
the Neumann problem with Neumann data g.

In view of Lemma 3.1.4, we can apply the Fredholm theory to study the
solvability of the two integral equations in (3.21).

3.1.3 Invertibility of λI − K∗
D

Let now D be a bounded domain, and let

L2
0(∂D) :=

{
φ ∈ L2(∂D) :

∫

∂D

φ dσ = 0
}

.

Let λ �= 0 be a real number. Of particular interest for solving the transmission
problem for the Laplacian would be the invertibility of the operator λI −K∗

D

on L2(∂D) or L2
0(∂D) for |λ| ≥ 1/2. The case |λ| = 1/2 corresponds to the

integral equations in (3.21).
To further motivate this subsection, suppose that D has conductivity 0 <

k �= 1 < +∞. Consider the transmission problem
⎧
⎨

⎩
∇ ·
(

1 + (k − 1)χ(D)
)
∇u = 0 in R

d ,

u(x)−H(x) → 0 as |x| → +∞ ,

where H is a harmonic function. It can be shown that this problem can be
reduced to solving the integral equation

(λI −K∗
D)φ =

∂H

∂ν
on ∂D .

First, it was proved by Kellog in [79] that the eigenvalues of K∗
D on L2(∂D)

lie in ]− 1/2, 1/2]. The following injectivity result holds.

Lemma 3.1.9 Let λ be a real number and let D be a bounded C2-domain.
The operator λI − K∗

D is one to one on L2
0(∂D) if |λ| ≥ 1/2, and for λ ∈

]−∞,−1/2]∪]1/2,+∞[, λI −K∗
D is one to one on L2(∂D).

Proof. The argument is by contradiction. Let λ ∈] −∞,−1/2]∪]1/2,+∞[,
and assume that φ ∈ L2(∂D) satisfies (λI−K∗

D)φ = 0 and φ is not identically
zero. Since KD(1) = 1/2 by Green’s formula, we have

0 =
∫

∂D

(λI −K∗
D)φ dσ =

∫

∂D

φ(λ−KD(1)) dσ

and thus
∫

∂D
φdσ = 0. Hence SDφ(x) = O(|x|1−d) and ∇SDφ(x) = O(|x|−d)

at infinity for d ≥ 2. Since φ is not identically zero, both of the following
numbers cannot be zero:
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A =
∫

D

|∇SDφ|2 dx and B =
∫

Rd\D

|∇SDφ|2 dx .

In fact, if both of them are zero, then SDφ = constant in D and in R
d \ D.

Hence φ = 0 by
∂

∂ν
SDφ

∣∣∣∣
+

− ∂

∂ν
SDφ

∣∣∣∣
−

= φ on ∂D,

which is a contradiction.
On the other hand, using the divergence theorem and (3.20), we have

A =
∫

∂D

(−1
2
I +K∗

D)φ SDφ dσ and B = −
∫

∂D

(
1
2
I +K∗

D)φ SDφ dσ .

Since (λI −K∗
D)φ = 0, it follows that

λ =
1
2

B −A

B + A
.

Thus, |λ| < 1/2, which is a contradiction and so, for λ ∈]−∞,−1
2 ]∪] 12 ,+∞[,

λI −K∗
D is one to one on L2(∂D).

If λ = 1/2, then A = 0 and hence SDφ = constant in D. Thus SDφ is
harmonic in R

d\∂D, behaves like O(|x|1−d) as |x| → +∞ (since φ ∈ L2
0(∂D)),

and is constant on ∂D. By (3.20), we have K∗
Dφ = (1/2)φ, and hence

B = −
∫

∂D

φ SDφ dσ = C

∫

∂D

φ dσ = 0 ,

which forces us to conclude that φ = 0. This proves that (1/2) I −K∗
D is one

to one on L2
0(∂D). ��

Let us now turn to the surjectivity of the operator λI − K∗
D on L2(∂D)

or L2
0(∂D). Since D is a bounded C2-domain then, as shown in Lemma 3.1.4,

the operators KD and K∗
D are compact operators in L2(∂D). Therefore, the

surjectivity of λI −K∗
D holds, by applying the Fredholm alternative.

3.1.4 Neumann Function

Let Ω be a smooth bounded domain in R
d, d ≥ 2. Let N(x, z) be the Neumann

function for −∆ in Ω corresponding to a Dirac mass at z. That is, N is the
solution to
⎧
⎨

⎩

−∆xN(x, z) = δz in Ω ,

∂N

∂νx

∣∣∣
∂Ω

= − 1
|∂Ω| ,

∫

∂Ω

N(x, z) dσ(x) = 0 for z ∈ Ω .
(3.22)

Note that the Neumann function N(x, z) is defined as a function of x ∈ Ω for
each fixed z ∈ Ω.
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The operator defined by N(x, z) is the solution operator for the Neumann
problem ⎧

⎨

⎩

∆U = 0 in Ω ,

∂U

∂ν

∣∣∣∣
∂Ω

= g ,
(3.23)

namely, the function U defined by

U(x) :=
∫

∂Ω

N(x, z)g(z) dσ(z)

is the solution to (3.23) satisfying
∫

∂Ω
U dσ = 0.

Now we discuss some properties of N as a function of x and z.

Lemma 3.1.10 (Neumann Function) The Neumann function N is sym-
metric in its arguments, that is, N(x, z) = N(z, x) for x �= z ∈ Ω. Further-
more, it has the form

N(x, z) =

⎧
⎪⎨

⎪⎩

− 1
2π

ln |x− z|+ R2(x, z) if d = 2 ,

1
(d− 2)ωd

1
|x− z|d−2

+ Rd(x, z) if d ≥ 3 ,
(3.24)

where Rd(·, z) belongs to W
3
2 ,2(Ω) for any z ∈ Ω, d ≥ 2 and solves

⎧
⎨

⎩

∆xRd(x, z) = 0 in Ω ,

∂Rd

∂νx

∣∣
∂Ω

= − 1
|∂Ω| +

1
ωd

〈x− z, νx〉
|x− z|d for x ∈ ∂Ω .

Proof. Pick z1, z2 ∈ Ω with z1 �= z2. Let Br(zp) = {|x − zp| < r}, p = 1, 2.
Choose r > 0 so small that Br(z1) ∩ Br(z2) = ∅. Set N1(x) = N(x, z1) and
N2(x) = N(x, z2). We apply Green’s formula in Ω′ = Ω \ Br(z1) ∪ Br(z2) to
get
∫

Ω′

(
N1∆N2 −N2∆N1

)
dx =

∫

∂Ω

(
N1

∂N2

∂ν
−N2

∂N1

∂ν

)
dσ

−
∫

∂Br(z1)

(
N1

∂N2

∂ν
−N2

∂N1

∂ν

)
dσ −

∫

∂Br(z2)

(
N1

∂N2

∂ν
−N2

∂N1

∂ν

)
dσ ,

where all the derivatives are with respect to the x−variable with z fixed.
Since Np, p = 1, 2, is harmonic for x �= zp, ∂N1/∂ν = ∂N2/∂ν = −1/|∂Ω|,
and

∫
∂Ω

(N1 −N2) dσ = 0, we have

∫

∂Br(z1)

(
N1

∂N2

∂ν
−N2

∂N1

∂ν

)
dσ +

∫

∂Br(z2)

(
N1

∂N2

∂ν
−N2

∂N1

∂ν

)
dσ = 0 .

(3.25)
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Thanks to (3.24) which will be proved shortly, the left-hand side of (3.25) has
the same limit as r → 0 as the left-hand side of the following identity:
∫

∂Br(z1)

(
Γ

∂N2

∂ν
−N2

∂Γ

∂ν

)
dσ +

∫

∂Br(z2)

(
N1

∂Γ

∂ν
− Γ

∂N1

∂ν

)
dσ = 0 .

Since
∫

∂Br(z1)

Γ
∂N2

∂ν
dσ → 0 ,

∫

∂Br(z2)

Γ
∂N1

∂ν
dσ → 0 as r → 0 ,

and
∫

∂Br(z1)

N2
∂Γ

∂ν
dσ → N2(z1) ,

∫

∂Br(z2)

N1
∂Γ

∂ν
dσ → N1(z2) as r → 0 ,

we obtain N2(z1)−N1(z2) = 0, or equivalently N(z2, z1) = N(z1, z2) for any
z1 �= z2 ∈ Ω.

Now let Rd, d ≥ 2, be defined by

Rd(x, z) =

⎧
⎪⎨

⎪⎩

N(x, z) +
1
2π

ln |x− z| if d = 2 ,

N(x, z) +
1

(2− d)ωd

1
|x− z|d−2

if d ≥ 3 .

Since Rd(·, z) is harmonic in Ω and ∂Rd(·, z)/∂ν ∈ L2(∂Ω), it follows from
the standard elliptic regularity theory that Rd(·, z) ∈W

3
2 ,2(Ω) for any z ∈ Ω.

��
Note that, because of (3.24), the formula

U(x) ≈ −SΩg in Ω ,

has been proposed as a first approximation of the solution to the Neumann
problem (3.23).

For D, a subset of Ω, let

NDf(x) :=
∫

∂D

N(x, y)f(y) dσ(y), x ∈ Ω .

The following lemma relates the fundamental solution Γ to the Neumann
function N .

Lemma 3.1.11 For z ∈ Ω and x ∈ ∂Ω, let Γz(x) := Γ (x− z) and Nz(x) :=
N(x, z). Then

(
−1

2
I +KΩ

)
(Nz)(x) = Γz(x) modulo constants, x ∈ ∂Ω , (3.26)

or, to be more precise, for any simply connected smooth domain D compactly
contained in Ω and for any g ∈ L2

0(∂D), we have for any x ∈ ∂Ω
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∫

∂D

(
−1

2
I +KΩ

)
(Nz)(x)g(z) dσ(z) =

∫

∂D

Γz(x)g(z) dσ(z) , (3.27)

or equivalently,
(
−1

2
I +KΩ

)(
(NDg)

∣∣
∂Ω

)
(x) = SDg(x) . (3.28)

Proof. Let f ∈ L2
0(∂Ω) and define

u(z) :=
∫

∂Ω

(
−1

2
I +KΩ

)
(Nz)(x)f(x) dσ(x), z ∈ Ω .

Then

u(z) =
∫

∂Ω

N(x, z)
(
−1

2
I +K∗

Ω

)
f(x) dσ(x) .

Therefore, ∆u = 0 in Ω and

∂u

∂ν

∣∣∣∣
∂Ω

= (−1
2
I +K∗

Ω)f .

Hence by the uniqueness modulo constants of a solution to the Neumann
problem we have

u(z)− SΩf(z) = constant, z ∈ Ω .

Thus if g ∈ L2
0(∂D), we obtain

∫

∂Ω

∫

∂D

(
−1

2
I +KΩ

)
(Nz)(x)g(z)f(x) dσ(z) dσ(x)

=
∫

∂Ω

∫

∂D

Γz(x)g(z)f(x) dσ(z) dσ(x) .

Since f is arbitrary, we have equation (3.26) or, equivalently, (3.27). This
completes the proof. ��

The following simple observation is useful.

Lemma 3.1.12 Let f ∈ L2(∂Ω) satisfy
(

1
2I−KΩ

)
f = 0. Then f is constant.

Proof. Let f ∈ L2(∂Ω) be such that ((1/2)I − KΩ)f = 0. Then for any
g ∈ L2(∂Ω) ∫

∂Ω

(
1
2
I −KΩ)f(x)g(x) dσ(x) = 0 ,

or equivalently, ∫

∂Ω

f(x)(
1
2
I −K∗

Ω)g(x) dσ(x) = 0 .

But Range((1/2)I −K∗
Ω) = L2

0(∂Ω) and so, f is constant. ��
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We mention that the Neumann function for the ball BR(0) is given, for
any x, z ∈ BR(0), by

N(x, z) =
1

4π|x− z| +
1

4π| R
|x|x−

|x|
R z|

+
1

4πR
ln

2

1− x·z
R2 + 1

R |
|x|
R z − R

|x|x|
− 1

2πR
for d = 3 ,

(3.29)

and by

N(x, z) = − 1
2π

(
ln |x− z|+ ln

∣∣∣∣
R

|x|x−
|x|
R

z

∣∣∣∣

)
+

ln R

π
for d = 2 . (3.30)

3.1.5 Transmission Problem

Let Ω be a bounded domain in R
d with a connected smooth boundary and

conductivity equal to 1. Consider a bounded domain D ⊂⊂ Ω with a con-
nected smooth boundary and conductivity 0 < k �= 1 < +∞.

Let g ∈ L2
0(∂Ω), and let u and U be respectively the (variational) solutions

of the Neumann problems
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(

1 + (k − 1)χ(D)
)
∇u = 0 in Ω ,

∂u

∂ν

∣∣∣∣
∂Ω

= g ,

∫

∂Ω

u(x) dσ(x) = 0 ,

(3.31)

and ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∆U = 0 in Ω ,

∂U

∂ν

∣∣∣∣
∂Ω

= g ,

∫

∂Ω

U(x) dσ(x) = 0 ,

(3.32)

where χ(D) is the characteristic function of D. Clearly, the Lax-Milgram
lemma shows that, given g ∈ L2

0(∂Ω), there exist unique u and U in W 1,2(Ω)
which solve (3.31) and (3.32).

At this point we have all the necessary ingredients to state a decomposition
formula of the steady-state voltage potential u into a harmonic part and a
refraction part. This decomposition formula is unique and seems to inherit
geometric properties of the anomaly D. We refer to [13] for its proof.
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Theorem 3.1.13 (Decomposition Formula) Suppose that D is a domain
compactly contained in Ω with a connected smooth boundary and conductivity
0 < k �= 1 < +∞. Then the solution u of the Neumann problem (3.31) is
represented as

u(x) = H(x) + SDφ(x), x ∈ Ω , (3.33)

where the harmonic function H is given by

H(x) = −SΩ(g)(x) +DΩ(f)(x), x ∈ Ω , f := u|∂Ω ∈W 2
1
2
(∂Ω) , (3.34)

and φ ∈ L2
0(∂D) satisfies the integral equation

(
k + 1

2(k − 1)
I −K∗

D

)
φ =

∂H

∂ν

∣∣∣∣
∂D

on ∂D . (3.35)

The decomposition (3.33) into a harmonic part and a refraction part is unique.
Moreover, ∀ n ∈ N, there exists a constant Cn = C(n,Ω, dist(D, ∂Ω)) inde-
pendent of D and the conductivity k such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω) . (3.36)

Furthermore, the following holds

H(x) + SDφ(x) = 0, ∀ x ∈ R
d \Ω . (3.37)

Another useful expression of the harmonic part H of u is given in the
following lemma.

Lemma 3.1.14 We have

H(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x)− (k − 1)
∫

D

∇yΓ (x− y) · ∇u(y) dy, x ∈ Ω ,

−(k − 1)
∫

D

∇yΓ (x− y) · ∇u(y) dy, x ∈ R
d \Ω .

(3.38)

Proof. We claim that

φ = (k − 1)
∂u

∂ν

∣∣∣∣
−

. (3.39)

In fact, it follows from the jump formula (3.20) and the equations (3.33) and
(3.35) that

∂u

∂ν

∣∣∣∣
−

=
∂H

∂ν
+

∂

∂ν
SDφ

∣∣∣∣
−

=
∂H

∂ν
+ (−1

2
I +K∗

D)φ =
1

k − 1
φ on ∂D .

Then (3.38) follows from (3.37) and (3.39) by Green’s formula. ��
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Let g ∈ L2
0(∂Ω) and

U(y) :=
∫

∂Ω

N(x, y)g(x) dσ(x) .

Then U is the solution to the Neumann problem (3.32) and the following
representation holds.

Theorem 3.1.15 The solution u of (3.31) can be represented as

u(x) = U(x)−NDφ(x), x ∈ ∂Ω , (3.40)

where φ is defined in (3.35).

Proof. By substituting (3.33) into (3.34), we obtain

H(x) = −SΩ(g)(x) +DΩ

(
H|∂Ω + (SDφ)|∂Ω

)
(x), x ∈ Ω .

It then follows from (3.17) that
(

1
2
I−KΩ

)
(H|∂Ω) = −(SΩg)|∂Ω +

(
1
2
I +KΩ

)
((SDφ)|∂Ω) on ∂Ω . (3.41)

Since U = −SΩ(g) +DΩ(U |∂Ω) in Ω by Green’s formula, we have
(

1
2
I −KΩ

)
(U |∂Ω) = −(SΩg)|∂Ω . (3.42)

Since φ ∈ L2
0(∂D), it follows from (3.26) that

−
(

1
2
I −KΩ

)
((NDφ)|∂Ω) = (SDφ)|∂Ω . (3.43)

Then, from (3.41), (3.42), and (3.43), we conclude that
(

1
2
I −KΩ

)(
H|∂Ω − U |∂Ω +

(
1
2
I +KΩ

)
((NDφ)|∂Ω)

)
= 0 .

Therefore, we have from Lemma 3.1.12

H|∂Ω − U |∂Ω +
(

1
2
I +KΩ

)
((NDφ)|∂Ω) = C (constant). (3.44)

Note from (3.28) that

(
1
2
I +KΩ)((NDφ)|∂Ω) = (NDφ)|∂Ω + (SDφ)|∂Ω .

Thus we get from (3.33) and (3.44) that

u|∂Ω = U |∂Ω − (NDφ)|∂Ω + C . (3.45)

Since all the functions entering in (3.45) belong to L2
0(∂Ω), we conclude that

C = 0, and the theorem is proved. ��
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3.2 Helmholtz Equation

Consider the scalar wave equation ∂2
t U−∆U = 0. We obtain a time-harmonic

solution U(x, t) = �e[e−iωtu(x)] if the space-dependent part u satisfies the
Helmholtz equation, ∆u + ω2u = 0.

Mathematical models for acoustical and microwave soundings of biological
media involve the Helmholtz equation.

This section begins by discussing the well-known Sommerfeld radiation
condition, and by deriving a fundamental solution. Next, we introduce the
single- and double-layer potentials, and state Rellich’s lemma. The final sub-
section establishes two decompositions formulae for the solution to the trans-
mission problem.

3.2.1 Fundamental Solution

A fundamental solution Γk(x) to the Helmholtz operator ∆ + k2 in R
d is a

solution (in the sense of distributions) of

(∆ + k2)Γk = δ0 , (3.46)

where δ0 is the Dirac mass at 0. Solutions are not unique, since we can add
to a solution any plane wave (of the form eikθ·x, θ ∈ R

d : |θ| = 1) or any
combination of such plane waves. We need to specify the behavior of the
solutions at infinity. It is natural to look for radial solutions of the form
Γk(x) = wk(r) that is subject to the extra Sommerfeld radiation condition
or outgoing wave condition

∣∣∣∣
dwk

dr
− ikwk

∣∣∣∣ ≤ Cr−(d+1)/2 at infinity. (3.47)

If d = 3, equation (3.46) becomes

1
r2

d

dr
r2 dwk

dr
+ k2wk = 0, r > 0 ,

whose solution is

wk(r) = c1
eikr

r
+ c2

e−ikr

r
.

It is easy to check that the Sommerfeld radiation condition (3.47) leads to
c2 = 0 and then (3.46) leads to c1 = −1/(4π).

If d = 2, equation (3.46) becomes

1
r

d

dr
r
dwk

dr
+ k2wk = 0, r > 0 .

This is a Bessel equation whose solutions are not elementary functions. From
Sect. 2.1, we know that the Hankel functions of the first and second kind of
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order 0, H
(1)
0 (kr) and H

(2)
0 (kr), form a basis for the solution space. At infinity

(r → +∞), only H
(1)
0 (kr) satisfies the outgoing radiation condition (3.47). At

the origin (r → 0), H
(1)
0 (kr) behaves like (2i/π) log(r). The following lemma

holds.

Lemma 3.2.1 (Fundamental Solution) The outgoing fundamental solu-
tion Γk(x) to the operator ∆ + k2 is given by

Γk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

− i

4
H

(1)
0 (k|x|) , d = 2 ,

− eik|x|

4π|x| , d = 3 ,

for x �= 0, where H
(1)
0 is the Hankel function of the first kind of order 0.

Let for x �= 0

Γ0(x) := Γ (x) =

⎧
⎪⎨

⎪⎩

1
2π

log |x| , d = 2 ,

− 1
4π|x| , d = 3 .

3.2.2 Layer Potentials

For a bounded smooth domain D in R
d and k > 0 let Sk

D and Dk
D be the

single- and double-layer potentials defined by Γk, that is,

Sk
Dϕ(x) =

∫

∂D

Γk(x− y)ϕ(y) dσ(y) , x ∈ R
d ,

Dk
Dϕ(x) =

∫

∂D

∂Γk(x− y)
∂νy

ϕ(y) dσ(y) , x ∈ R
d \ ∂D ,

for ϕ ∈ L2(∂D). Because Γk − Γ0 is a smooth function, we can easily prove
from (3.20) and (3.17) that

∂(Sk
Dϕ)

∂ν

∣∣∣∣
±

(x) =
(
± 1

2
I + (Kk

D)∗
)

ϕ(x) a.e. x ∈ ∂D , (3.48)

(Dk
Dϕ)

∣∣∣∣
±

(x) =
(
∓ 1

2
I +Kk

D

)
ϕ(x) a.e. x ∈ ∂D , (3.49)

for ϕ ∈ L2(∂D), where Kk
D is the operator defined by

Kk
Dϕ(x) =

∫

∂D

∂Γk(x− y)
∂νy

ϕ(y)dσ(y) , (3.50)

and (Kk
D)∗ is the L2-adjoint of K−k

D , that is,
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(Kk
D)∗ϕ(x) =

∫

∂D

∂Γk(x− y)
∂νx

ϕ(y)dσ(y) . (3.51)

Moreover, the integral operators Kk
D and (Kk

D)∗ are compact on L2(∂D).
We will need the following important result from the theory of the

Helmholtz equation. It will help us to prove uniqueness for exterior Helmholtz
problems. For its proof we refer to [44, Lemma 2.11] or [98, Lemma 9.8].

Lemma 3.2.2 (Rellich’s Lemma) Let R0 > 0 and BR(0) = {|x| < R}.
Let u satisfy the Helmholtz equation ∆u + k2u = 0 for |x| > R0. Assume,
furthermore, that

lim
R→+∞

∫

∂BR(0)

|u(x)|2 dσ(x) = 0 .

Then, u ≡ 0 for |x| > R0.

Note that the assertion of this lemma does not hold if k is imaginary or k = 0.
Now we can state the following uniqueness result for the Helmholtz

equation.

Lemma 3.2.3 Suppose d = 2 or 3. Let D be a bounded C2-domain in R
d. Let

u ∈ W 1,2
loc (Rd \D) satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∆u + k2u = 0 in R
d \D ,∣∣∣∣

∂u

∂r
− iku

∣∣∣∣ = O

(
r−(d+1)/2

)
as r = |x| → +∞ uniformly in

x

|x| ,

�m

∫

∂D

u
∂u

∂ν
dσ = 0 .

Then, u ≡ 0 in R
d \D.

Proof. Let BR(0) = {|x| < R}. For R large enough, D ⊂ BR(0). Notice
first that by multiplying ∆u + k2u = 0 by u and integrating by parts over
BR(0) \D we arrive at

�m

∫

∂BR(0)

u
∂u

∂ν
dσ = 0 ,

since
�m

∫

∂D

u
∂u

∂ν
dσ = 0 .

But

�m

∫

∂BR(0)

u

(
∂u

∂ν
− iku

)
dσ = −k

∫

∂BR(0)

|u|2 .

Applying the Cauchy–Schwarz inequality,
∣∣∣∣�m

∫

∂BR(0)

u

(
∂u

∂ν
−iku

)
dσ

∣∣∣∣≤
(∫

∂BR(0)

|u|2
)1/2(∫

∂BR(0)

∣∣∣∣
∂u

∂ν
−iku

∣∣∣∣
2

dσ

)1/2
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and using the Sommerfeld radiation condition
∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ = O

(
r−(d+1)/2

)
as r → +∞ ,

we get
∣∣∣∣�m

∫

∂BR(0)

u

(
∂u

∂ν
− iku

)
dσ

∣∣∣∣ ≤
C

R

(∫

∂BR(0)

|u|2
)1/2

,

for some positive constant C independent of R. Consequently, we obtain that
(∫

∂BR(0)

|u|2
)1/2

≤ C

R
,

which indicates by Rellich’s Lemma that u ≡ 0 in R
d \BR(0). Hence, by the

unique continuation property for ∆ + k2, we can conclude that u ≡ 0 up to
the boundary ∂D. This finishes the proof. ��

3.2.3 Transmission Problem

Introduce the piecewise-constant functions

µ(x) =

{
µ0 , x ∈ Ω \D ,

µ� , x ∈ D ,

and

ε(x) =

{
ε0 , x ∈ Ω \D ,

ε� , x ∈ D ,

where µ0, µ�, ε0, and ε� are positive constants.
Let f ∈ W 2

1
2
(∂Ω), and let u and U denote the solutions to the Helmholtz

equations ⎧
⎨

⎩
∇ · ( 1

µ
∇u) + ω2εu = 0 in Ω ,

u = f on ∂Ω ,
(3.52)

and {
∆U + ω2ε0µ0U = 0 in Ω ,

U = f on ∂Ω .
(3.53)

In electromagnetics, ε0, ε� are electrical permittivities, µ0 and µ� are mag-
netic permeabilities, and u and U are electric fields. In acoustics, one replaces
permittivity and permeability by compressibility and volume density of mass,
and the scalar electric field by the scalar acoustic pressure.

We now present two decompositions of the solution of (3.52) similar to the
representation formula (3.33) for the transmission problem for the harmonic
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equation. To do so, we first state the following theorem which is of importance
to us for establishing our decomposition formulae. We refer the reader to [13]
for its proof.

Theorem 3.2.4 Let k2
� := ω2µ�ε�. Suppose that k2

0 := ω2µ0ε0 is not a
Dirichlet eigenvalue for −∆ on D. For each (F,G) ∈ W 2

1 (∂D) × L2(∂D),
there exists a unique solution (f, g) ∈ L2(∂D) × L2(∂D) to the system of
integral equations

⎧
⎪⎨

⎪⎩

Sk�

D f − Sk0
D g = F

1
µ�

∂(Sk�

D f)
∂ν

∣∣∣∣
−
− 1

µ0

∂(Sk0
D g)

∂ν

∣∣∣∣
+

= G
on ∂D . (3.54)

Furthermore, there exists a constant C independent of F and G such that

‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C

(
‖F‖W 2

1 (∂D) + ‖G‖L2(∂D)

)
. (3.55)

The following decomposition formula holds.

Theorem 3.2.5 (Decomposition Formula) Suppose that k2
0 is not a

Dirichlet eigenvalue for −∆ on D. Let u be the solution of (3.52) and
g := ∂u

∂ν |∂Ω. Define

H(x) := −Sk0
Ω (g)(x) +Dk0

Ω (f)(x) , x ∈ R
d \ ∂Ω , (3.56)

and let (ϕ,ψ) ∈ L2(∂D)× L2(∂D) be the unique solution of
⎧
⎪⎨

⎪⎩

Sk�

D ϕ− Sk0
D ψ = H

1
µ�

∂(Sk�

D ϕ)
∂ν

∣∣∣∣
−
− 1

µ0

∂(Sk0
D ψ)

∂ν

∣∣∣∣
+

=
1
µ0

∂H

∂ν

on ∂D . (3.57)

Then u can be represented as

u(x) =

{
H(x) + Sk0

D ψ(x) , x ∈ Ω \D ,

Sk�

D ϕ(x) , x ∈ D .
(3.58)

Moreover, there exists C > 0 independent of H such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C

(
‖H‖L2(∂D) + ‖∇H‖L2(∂D)

)
. (3.59)

Proof. Note that u defined by (3.58) satisfies the differential equations and
the transmission condition on ∂D in (3.52). Thus in order to prove (3.58),
it suffices to prove that ∂u/∂ν = g on ∂Ω. Let f := u|∂Ω and consider the
following transmission problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + k2
0)v = 0 in (Ω \D) ∪ (Rd \Ω) ,

(∆ + k2
�)v = 0 in D ,

v|− − v|+ = 0 ,
1
µ�

∂v

∂ν

∣∣∣∣
−
− 1

µ0

∂v

∂ν

∣∣∣∣
+

= 0 on ∂D ,

v|− − v|+ = f,
∂v

∂ν

∣∣∣∣
−
− ∂v

∂ν

∣∣∣∣
+

= g on ∂Ω ,

∣∣∣∣
∂v

∂r
(x)− ik0v(x)

∣∣∣∣ = O(|x|−(d+1)/2) , |x| → ∞ .

(3.60)

We claim that (3.60) has a unique solution. In fact, if f = g = 0, then we can
show as before that v = 0 in R

d \D. Thus

v =
∂v

∂ν

∣∣∣∣
−

= 0 on ∂D .

By the unique continuation for the operator ∆ + k2
�, we have v = 0 in D, and

hence v ≡ 0 in R
d. Note that vp, p = 1, 2, defined by

v1(x) =

{
u(x) , x ∈ Ω ,

0 , x ∈ R
d \Ω ,

v2(x) =

{
H(x) + Sk0

D ψ(x) , x ∈ Ω \D ,

Sk�

D ϕ(x) , x ∈ D ,

are two solutions of (3.60), and hence v1 ≡ v2. This completes the proof of
solvability of (3.60). The estimate (3.59) is a consequence of solvability and
the closed graph theorem. ��

The following proposition is also of importance to us. We refer again to
[13] for a proof.

Proposition 3.2.6 For each n ∈ N there exists Cn independent of D such
that

‖H‖Cn(D) ≤ Cn‖f‖W 2
1
2
(∂Ω) .

We now transform the decomposition formula (3.58) into the one using
Green’s function and the background solution U , that is, the solution of (3.53).

Let Gk0(x, y) be the Dirichlet Green function for ∆ + k2
0 in Ω, i.e., for

each y ∈ Ω, G is the solution of
{

(∆ + k2
0)Gk0(x, y) = δy(x) , x ∈ Ω ,

Gk0(x, y) = 0 , x ∈ ∂Ω .

Then,

U(x) =
∫

∂Ω

∂Gk0(x, y)
∂νy

f(y)dσ(y) , x ∈ Ω .

Introduce one more notation. For a C2-domain D ⊂⊂ Ω and ϕ ∈ L2(∂D),
let
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Gk0
D ϕ(x) :=

∫

∂D

Gk0(x, y)ϕ(y) dσ(y) , x ∈ Ω .

Our second decomposition formula is the following.

Theorem 3.2.7 Let ψ be the function defined in (3.57). Then

∂u

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0
D ψ)

∂ν
(x) , x ∈ ∂Ω . (3.61)

To prove Theorem 3.2.7 we first observe an easy identity. If x ∈ R
d \ Ω

and z ∈ Ω then
∫

∂Ω

Γk0(x− y)
∂Gk0(z, y)

∂νy

∣∣∣∣
∂Ω

dσ(y) = Γk0(x− z) . (3.62)

As a consequence of (3.62), we have
(

1
2
I + (Kk0

Ω )∗
)(

∂Gk0(z, ·)
∂νy

∣∣∣∣
∂Ω

)
(x) =

∂Γk0(x− z)
∂νx

, (3.63)

for all x ∈ ∂Ω and z ∈ Ω.
Our second observation is the following.

Lemma 3.2.8 If k2
0 is not a Dirichlet eigenvalue for −∆ on Ω, then (1/2) I+

(Kk0
Ω )∗ : L2(∂Ω) → L2(∂Ω) is injective.

Proof. Suppose that ϕ ∈ L2(∂Ω) and
(

(1/2) I + (Kk0
Ω )∗
)

ϕ = 0. Define

u(x) := Sk0
Ω ϕ(x) , x ∈ R

d \Ω .

Then u is a solution of (∆ + k2
0)u = 0 in R

d \Ω, and satisfies the Sommerfeld
radiation condition

∣∣∣∣
∂u

∂r
− ik0u

∣∣∣∣ = O

(
r−(d+1)/2

)
as r → +∞ ,

and the Neumann boundary condition

∂u

∂ν

∣∣∣∣
∂Ω

=
(

1
2
I + (Kk0

Ω )∗
)

ϕ = 0 .

Therefore, by Lemma 3.2.3, we obtain Sk0
Ω ϕ(x) = 0, x ∈ R

d \ Ω. Since k2
0 is

not a Dirichlet eigenvalue for −∆ on Ω, we can prove that ϕ ≡ 0 in the same
way as before. This completes the proof. ��

With these two observations available we are now ready to prove Theorem
3.2.7.



3.2 Helmholtz Equation 69

Proof of Theorem 3.2.7. Let g := ∂u/∂ν and g0 := ∂U/∂ν on ∂Ω for conve-
nience. By the divergence theorem, we get

U(x) = −Sk0
Ω (g0)(x) +Dk0

Ω (f)(x) , x ∈ Ω .

It then follows from (3.56) that

H(x) = −Sk0
Ω (g)(x) + Sk0

Ω (g0)(x) + U(x) , x ∈ Ω .

Consequently, substituting (3.58) into the above equation, we see that for
x ∈ Ω

H(x) = −Sk0
Ω

(
∂H

∂ν

∣∣∣∣
∂Ω

+
∂(Sk0

D ψ)
∂ν

∣∣∣∣
∂Ω

)
(x) + Sk0

Ω (g0)(x) + U(x) .

Therefore the jump formula (3.48) yields

∂H

∂ν
= −

(
− 1

2
I + (Kk0

Ω )∗
)(

∂H

∂ν

∣∣∣∣
∂Ω

+
∂(Sk0

D ψ)
∂ν

∣∣∣∣
∂Ω

)

+
(

1
2
I + (Kk0

Ω )∗
)

(g0) on ∂Ω .

(3.64)

By (3.63), we have for x ∈ ∂Ω

∂(Sk0
D ψ)

∂ν
(x) =

∫

∂D

∂Γk0(x− y)
∂νx

ψ(y) dσ(y)

=
(

1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)
(x) . (3.65)

Thus we obtain
(
− 1

2
I + (Kk0

Ω )∗
)(

∂(Sk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)

=
(

1
2
I + (Kk0

Ω )∗
)((

− 1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)

∂ν

∣∣∣∣
∂Ω

))
on ∂Ω .

It then follows from (3.64) that

(
1
2
I + (Kk0

Ω )∗
)(

∂H

∂ν

∣∣∣∣
∂Ω

+
(
− 1

2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)
− g0

)
= 0

on ∂Ω and hence, by Lemma 3.2.8, we arrive at

∂H

∂ν

∣∣∣∣
∂Ω

+
(
− 1

2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)
− g0 = 0 on ∂Ω . (3.66)
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By substituting this equation into (3.58), we get

∂u

∂ν
=

∂U

∂ν
−
(
− 1

2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)
+

∂(Sk0
D ψ)

∂ν
on ∂Ω .

Finally, using (3.65) we conclude that (3.61) holds and the proof is then com-
plete. ��

Observe that, by (3.48), (3.66) is equivalent to

∂

∂ν

(
H + Sk0

Ω

(
∂(Gk0

D ψ)
∂ν

∣∣∣∣
∂Ω

)
− U

)∣∣∣∣
−

= 0 on ∂Ω .

On the other hand, by (3.62),

Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣∣∣∣
∂Ω

)
(x) = Sk0

D ψ(x) , x ∈ ∂Ω .

Thus, by (3.58), we obtain

H(x) + Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣∣∣∣
∂Ω

)
(x)− U(x) = 0 , x ∈ ∂Ω .

Then, by the unique continuation for ∆+k2
0, we obtain the following Lemma.

Lemma 3.2.9 We have

H(x) = U(x)− Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣∣∣∣
∂Ω

)
(x) , x ∈ Ω . (3.67)

3.3 Static Elasticity

In the preceding two sections, we considered the simplest and most important
examples of scalar elliptic equations. Now we turn to the best-known example
of an elliptic system, namely, the Lamé system.

This section begins with a derivation of the standard two- and three-
dimensional fundamental solutions. After that, we introduce the single- and
double-layer potentials and state their jump relations and their mapping prop-
erties. Extra difficulties in solving the elasticity system using a layer potential
technique come from the fact that the corresponding integral operators to KD

and K∗
D, that arise when studying Laplace’s equation, are not compact. We

also have to handle carefully the fact that the Neumann problem in linear
elasticity has a (finite-dimensional) kernel. The final subsection investigates
the transmission problem. A decomposition formula for the displacement field,
analogous to those established in the two previous subsections, is derived.
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3.3.1 Fundamental Solution

Let D be a bounded smooth domain in R
d, d = 2, 3, and (λ, µ) be the Lamé

constants for D satisfying

µ > 0 and dλ + 2µ > 0 .

See Kupradze [85]. The constants λ and µ are respectively referred to as the
compression modulus and the shear modulus.

In a homogeneous elastic medium, the elastostatic system corresponding
to the Lamé constants λ, µ is defined by

Lλ,µu := µ∆u + (λ + µ)∇∇ · u .

The corresponding conormal derivative ∂u/∂ν on ∂D is defined to be

∂u
∂ν

:= λ(∇ · u)N + µ(∇u +∇uT )N on ∂D , (3.68)

where N is the outward unit normal to ∂D and the superscript T denotes the
transpose of a matrix.

Notice that the conormal derivative has a direct physical meaning:

∂u
∂ν

= traction on ∂D .

The vector u is the displacement field of the elastic medium having the Lamé
coefficients λ and µ, and (∇u +∇uT )/2 is the strain tensor.

Let us state a simple, but important relation. The identity (3.69) is referred
to as the divergence theorem.

Lemma 3.3.1 If u ∈ W 1,2(D) and Lλ,µu = 0 in D, then for all v ∈
W 1,2(D),
∫

∂D

v · ∂u
∂ν

dσ =
∫

D

λ(∇·u)(∇·v)+
µ

2
(∇u+∇uT ) · (∇v+∇vT ) dx , (3.69)

where for d× d matrices a = (aij) and b = (bij), a · b =
∑

ij aijbij.

Proof. By the definition (3.68) of the conormal derivative, we get
∫

∂D

v · ∂u
∂ν

dσ =
∫

∂D

λ(∇ · u)v ·N + µv · (∇u +∇uT )N dσ

=
∫

D

λ∇ · ((∇ · u)v) + µ∇ · ((∇u +∇uT )v) dx .

Since

∇ ·
(

(∇u +∇uT )v
)

= ∇(∇ · u) · v + ∆u · v +
1
2
(∇u +∇uT ) · (∇v +∇vT ) ,

we obtain (3.69) and the proof is complete. ��
We give now a fundamental solution to the Lamé system Lλ,µ in R

d.
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Lemma 3.3.2 (Fundamental Solution) A fundamental solution Γ =
(Γij)d

i,j=1 to the Lamé system Lλ,µ is given by

Γij(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

− A

4π

δij

|x| −
B

4π

xixj

|x|3 if d = 3 ,

A

2π
δij ln |x| − B

2π

xixj

|x|2 if d = 2 ,

x �= 0 , (3.70)

where

A =
1
2

(
1
µ

+
1

2µ + λ

)
and B =

1
2

(
1
µ
− 1

2µ + λ

)
. (3.71)

The function Γ is known as the Kelvin matrix of fundamental solutions.

Proof. We seek a solution Γ = (Γij)d
i,j=1 of

µ∆Γ + (λ + µ)∇∇ · Γ = δ0Id in R
d , (3.72)

where Id is the d× d identity matrix and δ0 is the Dirac mass at 0.
Taking the divergence of (3.72), we have

(λ + 2µ)∆(∇ · Γ) = ∇δ0 .

Thus by Lemma 3.1.1

∇ · Γ =
1

λ + 2µ
∇Γ ,

where Γ is given by (3.1). Inserting this into (3.72) gives

µ∆Γ = δ0 Id −
λ + µ

λ + 2µ
∇∇Γ .

Hence it follows that

Γij(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

− A

4π

δij

|x| −
B

4π

xixj

|x|3 if d = 3 ,

A

2π
δij ln |x| − B

2π

xixj

|x|2 if d = 2 ,

x �= 0 ,

modulo constants, where A and B are given by (3.71). ��
We refer to McLean [98, Theorem 10.4] for an alternative approach for

obtaining a fundamental solution for the elasticity operator.
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3.3.2 Layer Potentials

The single- and double-layer potentials of the density function ϕ on D asso-
ciated with the Lamé parameters (λ, µ) are defined by

SDϕ(x) :=
∫

∂D

Γ(x− y)ϕ(y) dσ(y) , x ∈ R
d , (3.73)

DDϕ(x) :=
∫

∂D

∂

∂νy
Γ(x− y)ϕ(y) dσ(y) , x ∈ R

d \ ∂D , (3.74)

where ∂/∂ν denotes the conormal derivative defined in (3.68). Thus, for m =
1, . . . , d,

(DDϕ(x))m =
∫

∂D

λ
∂Γmi

∂yi
(x− y)ϕ(y) ·N(y)

+ µ
(∂Γmi

∂yj
+

∂Γmj

∂yi

)
(x− y)Ni(y)ϕj(y) dσ(y) .

Here we used the Einstein convention for the summation notation. As an
immediate consequence of (3.69) we obtain the following lemma which can
be proved in the same way as the Green representation (3.4) of harmonic
functions.

Lemma 3.3.3 If u ∈ W 1,2(D) and Lλ,µu = 0 in D, then

u(x) = DD(u|∂D)(x)− SD

(
∂u
∂ν

∣∣∣∣
∂D

)
(x) , x ∈ D , (3.75)

and

DD(u|∂D)(x)− SD

(
∂u
∂ν

∣∣∣∣
∂D

)
(x) = 0 , x ∈ R

d \D . (3.76)

As before, let u|+ and u|− denote the limits from outside D and inside D,
respectively.

Theorem 3.3.4 (Trace Formulae) Let D be a bounded smooth domain in
R

d, d = 2 or 3. For ϕ ∈ L2(∂D)

DDϕ|± = (∓1
2
I +KD)ϕ a.e. on ∂D , (3.77)

∂

∂ν
SDϕ

∣∣
± = (±1

2
I +K∗

D)ϕ a.e. on ∂D , (3.78)

where KD is defined by

KDϕ(x) := p.v.
∫

∂D

∂

∂νy
Γ(x− y)ϕ(y) dσ(y) a.e. x ∈ ∂D ,

and K∗
D is the adjoint operator of KD on L2(∂D), i.e.,
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K∗
Dϕ(x) := p.v.

∫

∂D

∂

∂νx
Γ(x− y)ϕ(y) dσ(y) a.e. x ∈ ∂D .

Here p.v. denotes the Cauchy principal value.

It must be emphasized once again that, in contrast with the corresponding
integral operators that arise when studying Laplace’s equation, the singular
integral operator KD is not compact. This causes some extra difficulties in
solving the elasticity system using a layer potential technique.

We now determine all solutions of the homogeneous Neumann problem.
Let Ψ be the vector space of all linear solutions of the equation Lλ,µu = 0
and ∂u/∂ν = 0 on ∂D, or alternatively,

Ψ :=
{

ψ : ∂iψj + ∂jψi = 0, 1 ≤ i, j ≤ d

}
. (3.79)

Here ψi for i = 1, . . . , d, denote the components of ψ.
Observe now that the space Ψ is defined independently of the Lamé con-

stants λ, µ and its dimension is 3 if d = 2 and 6 if d = 3. Define

L2
Ψ (∂D) :=

{
f ∈ L2(∂D) :

∫

∂D

f · ψ dσ = 0 for all ψ ∈ Ψ

}
(3.80)

a subspace of codimension d(d + 1)/2 in L2(∂D).
In particular, since Ψ contains constant functions, we get

∫

∂D

f dσ = 0

for any f ∈ L2
Ψ (∂D). The following fact, which immediately follows from

(3.69), is useful in later sections.

If u ∈W 1, 3
2 (D) satisfies Lλ,µu = 0 in D, then

∂u
∂ν

∣∣∣∣
∂D

∈ L2
Ψ (∂D). (3.81)

One of fundamental results in the theory of linear elasticity using layer
potentials is the following invertibility result.

Theorem 3.3.5 The operator KD is bounded on L2(∂D), and −(1/2) I +K∗
D

and (1/2) I +K∗
D are invertible on L2

Ψ (∂D) and L2(∂D), respectively.

As a consequence of (3.78), we are able to state the following.

Corollary 3.3.6 For a given g ∈ L2
Ψ (∂D), the function u ∈W 1,2(D) defined

by

u(x) := SD(−1
2
I +K∗

D)−1g (3.82)

is a solution to the problem
⎧
⎪⎨

⎪⎩

Lλ,µu = 0 in D ,

∂u
∂ν

∣∣∣∣
∂D

= g , (u|∂D ∈ L2
Ψ (∂D)) .

(3.83)
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If ψ ∈ Ψ and x ∈ R
d \ D, then from (3.69) it follows that DDψ(x) = 0.

Hence by (3.77), ψ satisfies (−(1/2) I + KD)ψ = 0. Since the dimension of
the orthogonal complement of the range of the operator −(1/2) I +K∗

D is less
than 3 if d = 2 and 6 if d = 3, which is the dimension of the space Ψ , we
obtain the following corollary.

Corollary 3.3.7 The null space of −(1/2) I +KD on L2(∂D) is Ψ .

3.3.3 Transmission Problem

We suppose that the elastic medium Ω contains a single anomaly D which
is also a bounded C2-domain. Let the constants (λ, µ) denote the background
Lamé coefficients that are the elastic parameters in the absence of any anom-
alies. Suppose that D has a pair of Lamé constants (λ̃, µ̃) which is different
from that of the background elastic body, (λ, µ). It is always assumed that

µ > 0, dλ + 2µ > 0, µ̃ > 0, and dλ̃ + 2µ̃ > 0 . (3.84)

We also assume that

(λ− λ̃)(µ− µ̃) ≥ 0,

(
(λ− λ̃)2 + (µ− µ̃)2 �= 0

)
. (3.85)

We consider the transmission problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d∑

j,k,l=1

∂

∂xj

(
Cijkl

∂uk

∂xl

)
= 0 in Ω, i = 1, . . . , d ,

∂u
∂ν

∣∣∣∣
∂Ω

= g ,

(3.86)

where the elasticity tensor C = (Cijkl) is given by

Cijkl :=
(
λ χ(Ω \D) + λ̃ χ(D)

)
δijδkl

+
(
µχ(Ω \D) + µ̃ χ(D)

)
(δikδjl + δilδjk) ,

(3.87)

and uk for k = 1, . . . , d, denote the components of the displacement field u.
In order to ensure existence and uniqueness of a solution to (3.86), we

assume that g ∈ L2
Ψ (∂Ω) and seek a solution u ∈ W 1,2(Ω) such that u|∂Ω ∈

L2
Ψ (∂Ω). The problem (3.86) is understood in a weak sense, namely, for any

ϕ ∈W 1,2(Ω) the following equality holds:

d∑

i,j,k,l=1

∫

Ω

Cijkl
∂uk

∂xl

∂ϕi

∂xj
dx =

∫

∂Ω

g · ϕdσ ,

where ϕi for i = 1, . . . , d, denote the components of ϕ.
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Let Lλ̃,µ̃ and ∂/∂ν̃ be the Lamé system and the conormal derivative asso-

ciated with (λ̃, µ̃), respectively. Then, for any ϕ ∈ C∞0 (Ω), we compute

0 =
d∑

i,j,k,l=1

∫

Ω

Cijkl
∂uk

∂xl

∂ϕi

∂xj
dx

=
∫

Ω\D

λ(∇ · u)(∇ · ϕ) +
µ

2
(∇u +∇uT ) · (∇ϕ +∇ϕT ) dx

+
∫

D

λ̃(∇ · u)(∇ · ϕ) +
µ̃

2
(∇u +∇uT ) · (∇ϕ +∇ϕT ) dx

= −
∫

Ω\D

Lλ,µu · ϕdx−
∫

∂D

∂u
∂ν
· ϕdσ −

∫

D

Lλ̃,µ̃u · ϕdx +
∫

∂D

∂u
∂ν̃
· ϕdσ ,

where the last equality follows from (3.69). Thus (3.86) is equivalent to the
following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µu = 0 in Ω \D ,

Lλ̃,µ̃u = 0 in D ,

u
∣∣
− = u

∣∣
+

on ∂D ,

∂u
∂ν̃

∣∣∣∣
−

=
∂u
∂ν

∣∣∣∣
+

on ∂D ,

∂u
∂ν

∣∣∣∣
∂Ω

= g ,

(
u|∂Ω ∈ L2

Ψ (∂Ω)
)

.

(3.88)

We denote by SD and S̃D the single layer potentials on ∂D corresponding
to the Lamé constants (λ, µ) and (λ̃, µ̃), respectively. Suppose that

∂D =
{

(x̃, xd) : xd = ϕ(x̃)
}

.

We refer to ||∇ϕ||L∞(Rd−1) as the Lipschitz-character of D.
The following result holds.

Theorem 3.3.8 Suppose that (λ − λ̃)(µ − µ̃) ≥ 0 and 0 < λ̃, µ̃ < +∞. For
any given (F,G) ∈ W 2

1 (∂D) × L2(∂D), there exists a unique pair (f ,g) ∈
L2(∂D)× L2(∂D) such that

⎧
⎪⎨

⎪⎩

S̃Df
∣∣
− − SDg

∣∣
+

= F on ∂D ,

∂

∂ν̃
S̃Df

∣∣∣∣
−
− ∂

∂ν
SDg

∣∣∣∣
+

= G on ∂D ,
(3.89)

and there exists a constant C depending only on λ, µ, λ̃, µ̃, and the Lipschitz-
character of D such that
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‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C

(
‖F‖W 2

1 (∂D) + ‖G‖L2(∂D)

)
. (3.90)

Moreover, if G ∈ L2
Ψ (∂D), then g ∈ L2

Ψ (∂D).

Proof. The proof of the unique solvability of the integral equation (3.89)
is omitted. By (3.81), ∂S̃Df/∂ν̃|− ∈ L2

Ψ (∂D). Thus if G ∈ L2
Ψ (∂D), then

∂SDg/∂ν|+ ∈ L2
Ψ (∂D). Since

g =
∂

∂ν
SDg

∣∣∣∣
+

− ∂

∂ν
SDg

∣∣∣∣
−

,

then, by (3.78) and ∂SDg/∂ν|− ∈ L2
Ψ (∂D), we conclude that g ∈ L2

Ψ (∂D).
��

Lemma 3.3.9 Let ϕ ∈ Ψ . If the pair (f ,g) ∈ L2(∂D)×L2
Ψ (∂D) is the solution

of ⎧
⎪⎨

⎪⎩

S̃Df
∣∣
− − SDg

∣∣
+

= ϕ|∂D ,

∂

∂ν̃
S̃Df

∣∣∣∣
−
− ∂

∂ν
SDg

∣∣∣∣
+

= 0 ,
(3.91)

then g = 0.

Proof. Define u by

u(x) :=

{
SDg(x) , x ∈ R

d \D ,

S̃Df(x)− ϕ(x) , x ∈ D .

Since g ∈ L2
Ψ (∂D), then

∫
∂D

g dσ = 0, and hence

SDg(x) = O(|x|1−d) as |x| → +∞ .

Therefore u is the unique solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µu = 0 in R
d \D ,

Lλ̃,µ̃u = 0 in D ,

u|+ = u|− on ∂D ,

∂u
∂ν

∣∣
+

=
∂u
∂ν̃

∣∣
− on ∂D ,

u(x) = O(|x|1−d) as |x| → +∞ .

(3.92)

Using the fact that the trivial solution is the unique solution to (3.92), we see
that

SDg(x) = 0 for x ∈ R
d \D .
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It then follows that Lλ,µSDg(x) = 0 for x ∈ D and SDg(x) = 0 for x ∈ ∂D.
Thus, SDg(x) = 0 for x ∈ D. Since

g =
∂(SDg)

∂ν

∣∣∣∣
+

− ∂(SDg)
∂ν

∣∣∣∣
−

,

it is obvious that g = 0. ��
We now state a decomposition theorem for the solution of the transmission

problem. Again, we refer to [13] for its proof.

Theorem 3.3.10 (Decomposition Formula) There exists a unique pair
(ϕ,ψ) ∈ L2(∂D)×L2

Ψ (∂D) such that the solution u of (3.88) is represented by

u(x) =

{
H(x) + SDψ(x) , x ∈ Ω \D ,

S̃Dϕ(x) , x ∈ D ,
(3.93)

where H is defined by

H(x) = DΩ(u|∂Ω)(x)− SΩ(g)(x) , x ∈ R
d \ ∂Ω . (3.94)

In fact, the pair (ϕ,ψ) is the unique solution in L2(∂D)× L2
Ψ (∂D) of

⎧
⎪⎨

⎪⎩

S̃Dϕ
∣∣
− − SDψ

∣∣
+

= H|∂D on ∂D ,

∂

∂ν̃
S̃Dϕ

∣∣∣∣
−
− ∂

∂ν
SDψ

∣∣∣∣
+

=
∂H
∂ν

∣∣∣∣
∂D

on ∂D .
(3.95)

There exists a positive constant C such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C‖H‖W 2
1 (∂D) . (3.96)

For any integer n, there exists a positive constant Cn depending only on c0

and λ, µ (not on λ̃, µ̃) such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω) . (3.97)

Moreover,
H(x) = −SDψ(x) , x ∈ R

d \Ω . (3.98)

We now derive a representation for u in terms of the background solution.
Let N(x, y) be the Neumann function for Lλ,µ in Ω corresponding to a Dirac
mass at y. That is, N is the solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lλ,µN(x, y) = −δy(x)Id in Ω,

∂N
∂ν

∣∣∣∣
∂Ω

= − 1
|∂Ω|Id ,

N(·, y) ∈ L2
Ψ (∂Ω) for any y ∈ Ω ,

(3.99)
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where the differentiations act on the x-variables, and Id is the d× d identity
matrix.

For g ∈ L2
Ψ (∂Ω), define

U(x) :=
∫

∂Ω

N(x, y)g(y) dσ(y) , x ∈ Ω . (3.100)

Then U is the solution to (3.83) with D replaced by Ω. On the other hand,
by (3.82), the solution to (3.83) is given by

U(x) := SΩ

(
− 1

2
I +K∗

Ω

)−1

g(x) .

Thus,
∫

∂Ω

N(x, y)g(y) dσ(y) =
∫

∂Ω

Γ(x− y)(−1
2
I +K∗

Ω)−1g(y) dσ(y) ,

or equivalently,
∫

∂Ω

N(x, y)(−1
2
I +K∗

Ω)g(y) dσ(y) =
∫

∂Ω

Γ(x− y)g(y) dσ(y) , x ∈ Ω ,

for any g ∈ L2
Ψ (∂Ω). Consequently, it follows that, for any simply connected

smooth domain D compactly contained in Ω and for any g ∈ L2
Ψ (∂D), the

following identity holds:
∫

∂D

(−1
2
I +KΩ)(Ny)(x)g(y) dσ(y) =

∫

∂D

Γy(x)g(y) dσ(y) ,

for all x ∈ ∂Ω. Therefore, the following lemma has been proved.

Lemma 3.3.11 For y ∈ Ω and x ∈ ∂Ω, let Γy(x) := Γ(x− y) and Ny(x) :=
N(x, y). Then

(
− 1

2
I +KΩ

)
(Ny)(x) = Γy(x) modulo Ψ . (3.101)

We fix now some notation. Let

NDf(x) :=
∫

∂D

N(x, y)f(y) dσ(y) , x ∈ Ω .

Theorem 3.3.12 Let u be the solution to (3.88) and U the background so-
lution, i.e., the solution to (3.83). Then the following holds:

u(x) = U(x)−NDψ(x), x ∈ ∂Ω , (3.102)

where ψ is defined by (3.95).
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Proof. By substituting (3.93) into the equation (3.94), we obtain

H(x) = −SΩ(g)(x) +DΩ

(
H|∂Ω + (SDψ)|∂Ω

)
(x) , x ∈ Ω .

By using (3.77), we see that

(
1
2
I −KΩ)(H|∂Ω) = −(SΩg)|∂Ω + (

1
2
I +KΩ)((SDψ)|∂Ω) on ∂Ω . (3.103)

Since U(x) = −SΩ(g)(x) +DΩ(U|∂Ω)(x) for all x ∈ Ω, we have

(
1
2
I −KΩ)(U|∂Ω) = −(SΩg)|∂Ω . (3.104)

By Theorem 3.3.8 and (3.101), we have

(−1
2
I +KΩ)((NDψ)|∂Ω)(x) = (SDψ)(x) , x ∈ ∂Ω , (3.105)

since ψ ∈ L2
Ψ (∂D). We see from (3.103), (3.104), and (3.105) that

(
1
2
I −KΩ)

(
H|∂Ω −U|∂Ω + (

1
2
I +KΩ)((NDψ)|∂Ω)

)
= 0 on ∂Ω ,

and hence, by Corollary 3.3.7, we obtain that

H|∂Ω −U|∂Ω + (
1
2
I +KΩ)((NDψ)|∂Ω) ∈ Ψ .

Note that

(
1
2
I +KΩ)((NDψ)|∂Ω) = (NDψ)|∂Ω + (SDψ)|∂Ω ,

which follows from (3.101). Thus, (3.93) gives

u|∂Ω = U|∂Ω − (NDψ)|∂Ω modulo Ψ . (3.106)

Since all the functions in (3.106) belong to L2
Ψ (∂Ω), we have (3.102). This

completes the proof. ��

3.4 Dynamic Elasticity

Consider the elastic wave equation ∂2
t U − Lλ,µU = 0. We obtain a time-

harmonic solution U(x, t) = �e[e−iωtu(x)] if the space-dependent part u sat-
isfies the equation, (Lλ,µ + ω2)u = 0.

We begin this section by establishing the radiation condition for the elastic
waves. This condition reduces to Sommerfeld radiation conditions for solutions
of two Helmholtz equations. Then we give formulae for the fundamental so-
lutions in the two- and three-dimensional cases. After that, the single- and
double layer potentials are defined and the transmission is investigated. Due
to the singular character of the kernels, the properties of these potentials are
completely analogous to those associated with the static elasticity. The de-
composition formula (3.3.10) is extended to the dynamic case. The method of
derivation is parallel to that in the static case.
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3.4.1 Radiation Condition

First, let us formulate the radiation conditions for the elastic waves when
�mω ≥ 0 and ω �= 0. Denote by

cL =
√

λ + 2µ, cT =
√

µ .

Any solution u to (Lλ,µ + ω2)u = 0 admits the decomposition, see [85,
Theorem 2.5],

u = u(L) + u(T ) , (3.107)

where u(L) and u(T ) are given by

u(L) = (k2
T − k2

L)−1(�+ k2
T )u ,

u(T ) = (k2
L − k2

T )−1(�+ k2
L)u ,

with kL = ω/cL and kT = ω/cT . Then u(L) and u(T ) satisfy the equations
{

(�+ k2
L)u(L) = 0 , ∇× u(L) = 0 ,

(�+ k2
T )u(T ) = 0 , ∇ · u(T ) = 0 .

(3.108)

We impose on u(L) and u(T ) the Sommerfeld radiation conditions for solutions
of the Helmholtz equations by requiring that
{

∂ru(L)(x)− ikLu(L)(x) = o(r−(d−1)/2)
∂ru(T )(x)− ikT u(T )(x) = o(r−(d−1)/2)

as r = |x| → +∞ . (3.109)

We say that u satisfies the radiation condition if it allows the decomposition
(3.107) with u(L) and u(T ) satisfying (3.108) and (3.109).

3.4.2 Fundamental Solution

We first consider the three-dimensional case. The Kupradze matrix Γω =
(Γω

ij)
3
i,j=1 of the fundamental outgoing solution to the operator Lλ,µ + ω2 is

given by

Γω
ij(x) = − δij

4πµ|x|e
iω|x|

cT +
1

4πω2
∂i∂j

e
iω|x|

cL − e
iω|x|

cT

|x| .

See [85, Chapter 2]. One can easily see that Γω
ij allows the following ex-

pansion:

Γω
ij(x) = − 1

4π

+∞∑

n=0

in

(n + 2)n!

(n + 1
cn+2
T

+
1

cn+2
L

)
ωnδij |x|n−1 (3.110)

+
1
4π

+∞∑

n=0

in(n− 1)
(n + 2)n!

( 1
cn+2
T

− 1
cn+2
L

)
ωn|x|n−3xixj .
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If ω = 0, then Γ0 is the Kelvin matrix of the fundamental solution to the
Lamé system, given by (3.70) for d = 3.

In the two-dimensional case, the fundamental outgoing solution Γω is given
by

Γω
ij(x) = − i

4µ
δijH

(1)
0

(
ω
√

ρ|x|
cp

)

+
i

4ω2ρ
∂i∂j

(
H

(1)
0

(
ω
√

ρ|x|
cs

)
−H

(1)
0

(
ω
√

ρ|x|
cp

))
,

(3.111)

where H
(1)
0 is the Hankel function of the first kind and of order 0. For ω = 0,

again we set Γ0 to be the Kelvin matrix of the fundamental solution to the
Lamé system.

3.4.3 Layer Potentials

The single- and double-layer potentials are defined by

Sω
Ωϕ(x) =

∫

∂Ω

Γω(x− y)ϕ(y)dσ(y) , (3.112)

Dω
Ωϕ(x) =

∫

∂Ω

∂

∂νy
Γω(x− y)ϕ(y)dσ(y) , (3.113)

for any ϕ ∈ L2(∂Ω). The following formulae give the jump relations obeyed
by the double layer potential and by the conormal derivative of the single
layer potential:

∂(Sω
Ωϕ)

∂ν

∣∣∣
±

(x) =
(
± 1

2
I + (Kω

Ω)∗
)
ϕ(x) , a.e. x ∈ ∂Ω , (3.114)

(Dω
Ωϕ)
∣∣∣
±

(x) =
(
∓ 1

2
I +Kω

Ω

)
ϕ(x) , a.e. x ∈ ∂Ω , (3.115)

where Kω
Ω is the operator defined by

Kω
Ω(x) = p.v.

∫

∂Ω

∂Γω(x− y)
∂νy

ϕ(y)dσ(y) , (3.116)

and (Kω
Ω)∗ is the L2-adjoint of K−ω

Ω , that is,

(Kω
Ω)∗(x) = p.v.

∫

∂Ω

∂Γω(x− y)
∂νx

ϕ(y)dσ(y) .

By a straightforward calculation one can see that the single- and double-
layer potentials satisfy the radiation condition (3.109). We refer to [85] for the
details.
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3.4.4 Transmission Problem

Let λ̃, µ̃ be another pair of Lamé parameters such that (3.84) and (3.85) hold.
Let S̃ω

D denote the single layer potential defined by (3.112) with λ, µ replaced
by λ̃, µ̃.

We now have the following solvability result which can be viewed as a
compact perturbation of the static case ω = 0.

Theorem 3.4.1 Suppose that (λ−λ̃)(µ−µ̃) ≥ 0 and 0 < λ̃, µ̃ < +∞. Suppose
that ω2 is not a Dirichlet eigenvalue for −Lλ,µ on D. For any given (F,G) ∈
W 2

1 (∂D)×L2(∂D), there exists a unique pair (f ,g) ∈ L2(∂D)×L2(∂D) such
that

⎧
⎨

⎩
S̃ω

Df |− − Sω
Dg|+ = F ,

∂

∂ν̃
S̃ω

Df |− −
∂

∂ν
Sω

Dg|+ = G .

If ω = 0 and G ∈ L2
Ψ (∂D), then g ∈ L2

Ψ (∂D). Moreover, if F ∈ Ψ and G = 0,
then g = 0.

Consider now the following transmission problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µu + ω2u = 0 in Ω \D ,

Lλ̃,µ̃u + ω2u = 0 in D ,
∂u
∂ν

= g on ∂Ω ,

u
∣∣
+
− u
∣∣
− = 0 on ∂D ,

∂u
∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D .

(3.117)

For this problem we have the following decomposition formula.

Theorem 3.4.2 (Decomposition Formula) Suppose that ω2 is not a
Dirichlet eigenvalue for −Lλ,µ on D. Let u be a solution to (3.117) and
f := u|∂Ω. Define

H(x) := Dω
Ω(f)(x)− Sω

Ω(g)(x), x ∈ R
d \ ∂Ω . (3.118)

Then u can be represented as

u(x) =

{
H(x) + Sω

Dψ(x), x ∈ Ω \D ,

S̃ω
Dφ(x), x ∈ D ,

(3.119)

where the pair (φ, ψ) ∈ L2(∂D)× L2(∂D) is the unique solution to
⎧
⎨

⎩

S̃ω
Dφ− Sω

Dψ = H|∂D ,

∂

∂ν̃
S̃ω

Dφ− ∂

∂ν
Sω

Dψ =
∂H
∂ν

∣∣∣
∂D

.
(3.120)

Moreover, we have

H(x) + Sω
Dψ(x) = 0, x ∈ R

d \Ω . (3.121)
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Proof. We consider the following two phases transmission problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lλ,µv + ω2v = 0 in (Ω \D)
⋃

(Rd \Ω) ,

Lλ̃,µ̃v + ω2v = 0 in D ,

v
∣∣
− − v

∣∣
+

= f ,
∂v
∂ν

∣∣
− −

∂v
∂ν

∣∣
+

= g on ∂Ω ,

v
∣∣
− − v

∣∣
+

= 0,
∂v
∂ν̃

∣∣
− −

∂v
∂ν

∣∣
+

= 0 on ∂D ,

(3.122)

with the radiation condition. This problem has a unique solution. See [85,
Chapter 3]. It is easily checked that both v and ṽ defined by

v(x) =

{
u(x), x ∈ Ω ,

0, x ∈ R
d \Ω ,

and ṽ(x) =

{
H(x) + Sω

Dψ(x) , x ∈ Ω \D,

S̃ω
Dφ(x), x ∈ D ,

are solutions to (3.122). Hence v = ṽ. This completes the proof. ��

3.5 Modified Stokes System

Consider the propagation of elastic waves in biological tissues. Let u be
the displacement field, and (λ, µ) be the Lamé coefficients of the tissue. By
(3.107), the elasticity system (Lλ,µ + ω2)u = 0 can be split into two parts:
u = u(T ) + u(L); a null divergence solution u(T ) (shear waves) and a non-
rotational solution u(L) (compression waves) having respective propagation
speeds of cT =

√
µ and cL =

√
λ + 2µ. These two waves interact via mode

conversation at boundaries and interfaces. The quasi-incompressibility of bio-
logical tissues leads to λ � µ and thus the compression waves u(L) propagate
much faster than the shear waves u(T ). To remove the compression modulus
from consideration, we reduce in this case, as will be shown later, the elasticity
system to a modified Stokes system.

In this section, we give a fundamental solution to the modified Stokes
system, construct potentials associated with the modified Stokes system, in-
vestigate their mapping properties and jump relations, and use them to solve
the transmission problem. We also prove a decomposition formula analogous
to the ones derived in the preceding sections for the solution to the transmis-
sion problem. The theory of potentials associated with the modified Stokes
system differs from the theory of potentials associated with linear elasticity
only in the concrete analytical form of its potentials.

3.5.1 Fundamental Solution

For simplicity we treat only the three-dimensional case, leaving the derivations
in two dimensions to the reader.

We consider the so-called modified Stokes system, i.e., the problem of
determining v and q in a domain Ω from the conditions:
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⎧
⎪⎨

⎪⎩

(∆ + κ2)v −∇q = 0 ,

∇ · v = 0 ,

v|∂Ω = g .

(3.123)

If κ = 0, then (3.123) becomes the standard Stokes system and we may regard
(3.123) as a compact perturbation of that system.

Fundamental tensors Γκ = (Γκ
ij)

3
i,j=1 and F = (Fi)3i=1 to (3.123) in three

dimensions are given by
⎧
⎪⎪⎨

⎪⎪⎩

Γκ
ij(x) = −δij

4π

eiκ|x|

|x| −
1

4πκ2
∂i∂j

eiκ|x| − 1
|x| ,

Fi(x) = − 1
4π

xi

|x|3 .

(3.124)

In fact, since eiκ|x|/(4π|x|) is a fundamental solution to the Helmholtz oper-
ator ∆ + κ2 and

∂i∂j
eiκ|x| − 1
|x| =

∞∑

k=1

(iκ)k+1

(k + 1)!
[
k(k − 2)|x|k−4xixj + kδij |x|k−2

]
, (3.125)

we have {
(∆ + κ2)Γκ

ij − ∂jFi = δijδ0

∂iΓ
κ
ij = 0

in R
3

in the sense of distributions. Note that we used the Einstein convention for the
summation notation omitting the summation sign for the indices appearing
twice. We will continue using this convention throughout this book. Moreover,
we have from (3.125) that

Γκ
ij(x) = Γ 0

ij(x) + O(κ) (3.126)

uniformly in x as long as |x| is bounded, where

Γ 0
ij(x) = − 1

8π

(
δij

|x| +
xixj

|x|3
)

. (3.127)

It is known (see for example [90]) that Γ0 = (Γ 0
ij)

3
i,j=1 and F are the fun-

damental tensors for the standard Stokes system. We refer to Ladyzhenskaya
[90, Chapter 3] for a complete treatment of the theory of potentials associated
with the Stokes system.

3.5.2 Layer Potentials

Introduce the single- and double-layer potentials on ∂D. For i = 1, 2, 3, ϕ =
(ϕ1, ϕ2, ϕ3) ∈ L2(∂D), and for x ∈ R

3 \ ∂D, let
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⎧
⎪⎪⎨

⎪⎪⎩

Sκ
D[ϕ]i(x) :=

∫

∂D

Γκ
ij(x− y)ϕj(y) dσ(y) ,

QD[ϕ](x) :=
∫

∂D

Fj(x− y)ϕj(y) dσ(y) ,

and
⎧
⎪⎪⎨

⎪⎪⎩

Dκ
D[ϕ]i(x) :=

∫

∂D

(
∂Γκ

ij

∂N(y)
(x− y) + Fi(x− y)Nj(y)

)
ϕj(y) dσ(y) ,

VD[ϕ](x) := −2
∫

∂D

∂

∂xl
Fj(x− y)ϕj(y)Nl(y) dσ(y) .

By abuse of notation, let

∂u
∂N

= (∇u +∇uT )N .

Note that

∂Γκ
ij

∂N(y)
(x− y) =

(
∂Γκ

ij(x− y)
∂yl

+
∂Γκ

il (x− y)
∂yj

)
Nl(y) .

Then (Sκ
D[ϕ],QD[ϕ]) and (Dκ

D[ϕ],VD[ϕ]) satisfy (3.123).
We define the conormal derivative ∂/∂n by

∂v
∂n

∣∣∣∣
±

=
∂v
∂N

∣∣∣∣
±
− q
∣∣
± N on ∂D

for a pair (v, q). Then, for any pairs (u, p) and (v, q) satisfying ∇ · u = 0 and
∇ · v = 0, the following Green formulae hold (see [90]):
∫

∂D

u · ∂v
∂n

dσ=
∫

D

1
2

3∑

i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

)(
∂vi

∂xj
+

∂vj

∂xi

)
+u · (�v −∇q) dx,

∫

∂D

(
u · ∂v

∂n
− v · ∂u

∂n

)
dσ =

∫

D

u · (�v −∇q)− v · (�u−∇p) dx .

We also obtain a representation formula for a solution (v, q) to (3.124):
⎧
⎪⎪⎨

⎪⎪⎩

v(x) = −Sκ
D

[
∂v
∂n

∣∣
−

]
(x) +Dκ

D[v](x) ,

q(x) = −QD

[
∂v
∂n

∣∣
−

]
(x) + VD[v](x) ,

x ∈ D .

For ϕ ∈ L2(∂D), the following trace relations for Dκ
D and the conormal

derivative of Sκ
D hold:

Dκ
D[ϕ]

∣∣
± = (∓1

2
I +Kκ

D)[ϕ] a.e. on ∂D , (3.128)

∂

∂n
Sκ

D[ϕ]
∣∣∣∣
±

= (±1
2
I + (Kκ

D)∗)[ϕ] a.e. on ∂D , (3.129)
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where Kκ
D is defined by

Kκ
D[ϕ]i(x) := p.v.

∫

∂D

∂Γκ
ij

∂N(y)
(x− y)ϕj(y) dσ(y)

+ p.v.
∫

∂D

Fi(x− y)ϕj(y)Nj(y) dσ(y) ,

(3.130)

for almost all x ∈ ∂D, and (Kκ
D)∗ is the adjoint operator of K−κ

D on L2(∂D),
that is,

(Kκ
D)∗[ϕ]i(x) := p.v.

∫

∂D

∂Γκ
ij

∂N(x)
(x− y)ϕj(y) dσ(y)

− p.v.
∫

∂D

Fi(x− y)ϕj(y)Nj(x) dσ(y) .

In fact, formulae (3.128) and (3.129) were proved in [90] when κ = 0. Since
Dκ

D − D0
D and Sκ

D − S0
D are smoothing operators according to (3.126), we

obtain (3.128) and (3.129) when κ �= 0. It would be of use to the reader to
note that by putting together the two integrals in (3.130), we have

K0
D[ϕ]i(x) := − 3

4π

∫

∂D

〈x− y,N(y)〉(xi − yi)(xj − yj)
|x− y|5 ϕj(y)dσ(y) . (3.131)

If ∂D is C2 as we assume it to be, then

|〈x− y,N(y)〉| ≤ C|x− y|2 , (3.132)

and hence K0
D is a compact operator on L2(∂D).

Formulae (3.128) and (3.129) show, in particular, that the double and
single layer potentials obey the following jump relations on ∂D:

Dκ
D[ϕ]|+ −Dκ

D[ϕ]|− = −ϕ a.e. on ∂D , (3.133)
∂

∂n
Sκ

D[ϕ]
∣∣∣
+
− ∂

∂n
Sκ

D[ϕ]
∣∣∣
−

= ϕ a.e. on ∂D . (3.134)

On the other hand, the conormal derivative of the double layer potentials does
not have a jump. In fact, if ϕ ∈ W 2

1 (∂D) then

∂

∂n
(Dκ

D[ϕ])i

∣∣∣∣
+

(x) =
∂

∂n
(Dκ

D[ϕ])i

∣∣∣∣
−

(x)

= p.v.
∫

∂D

∂2Γκ
ij

∂N(x)∂N(y)
(x− y)ϕj(y) dσ(y) (3.135)

a.e. on ∂D.
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Lemma 3.5.1 (Mapping Properties) Let L2
0(∂D) := {g ∈ L2(∂D) :∫

∂D
g ·N = 0}, and define (W 2

1 )0(∂D) likewise. Let L := Ker
(

1
2I +K0

D

)⊥ in
L2(∂D). Then the following holds:

(i) S0
D : L2

0(∂D) → (W 2
1 )0(∂D) is invertible.

(ii) 1
2I +K0

D : L→ L2
0(∂D) is invertible and so is 1

2I +(K0
D)∗ : L2

0(∂D) → L.
(iii) λI +K0

D and λI + (K0
D)∗ are invertible on L2(∂D) for |λ| > 1/2.

Proof. The assertion (ii) was proved in [90]. We also recall from [90] that

KerS0
D = Ker

(
1
2
I + (K0

D)∗
)

= 〈N〉 , (3.136)

where N is the outward normal to ∂D.
To prove (i), let g ∈ (W 2

1 )0(∂D) and v be the solution to the exterior
problem for the Stokes system, i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∆v −∇q = 0 in R
3 \D ,

∇ · v = 0 in R
3 \D ,

v = g on ∂D ,

v(x) = O(|x|−2) as |x| → ∞ .

(3.137)

Let φ ∈ L2(∂D) satisfy (1
2I + K0

D)[φ] = 0 on ∂D. Then, because of (3.132),
we have K0

Dφ ∈ W 2
1 (∂D), and hence φ ∈ W 2

1 (∂D). Moreover, by (3.128), we
have D0

D[φ] = 0 in D, and the corresponding pressure q = c in D for some
constant c. It thus follows from (3.136) and (3.135) that

∂D0
D[φ]

∂n

∣∣∣∣
+

=
∂D0

D[φ]
∂n

∣∣∣∣
−

=
∂D0

D[φ]
∂N

∣∣∣∣
−
− q|−N = −cN .

Applying Green’s formula, we have
∫

∂D

∂v
∂n
· φ = −

∫

∂D

∂v
∂n
·
(
−1

2
I +K0

D

)
φ = −

∫

∂D

v · ∂D0
D[φ]

∂n

∣∣∣∣
+

= 0 .

Thus
∂v
∂n

∈ L .

Let

ψ :=
(

1
2
I + (K0

D)∗
)−1 [

∂v
∂n

]
on ∂D .

Then, by (3.129), we get

∂(S0
D[ψ])
∂n

∣∣∣∣
+

=
∂v
∂n

∣∣∣∣
+

,
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and hence S0
D[ψ] = v in R

3 \ D. In particular, S0
D[ψ] = g and hence S0

D :
L2

0(∂D) → (W 2
1 )0(∂D) is onto. Therefore we obtain (i).

To prove (iii), suppose that
(
λI + (K0

D)∗
)
[φ] = 0 on ∂D. By Green’s

formula, we have

1
2

∫

D

3∑

i,k=1

(
∂S0

D[φ]i
∂xk

+
∂S0

D[φ]k
∂xi

)2

dx =
∫

∂D

(
−1

2
I + (K0

D)∗
)

[φ] · S0
D[φ]dσ

=
λ + 1

2

λ− 1
2

∫

∂D

(
1
2
I + (K0

D)∗
)

[φ] · S0
D[φ]dσ

= −1
2

λ + 1
2

λ− 1
2

∫

R3\D

3∑

i,k=1

(
∂S0

D[φ]i
∂xk

+
∂S0

D[φ]k
∂xi

)2

dx .

Since (λ + (1/2))/(λ− (1/2)) > 0, we have

∂S0
D[φ]i
∂xk

+
∂S0

D[φ]k
∂xi

= 0 in R
3 \ ∂D, i, j = 1, 2, 3 , (3.138)

which implies that S0
D[φ] = C in R

3 \D for some constant C. On the other
hand, S0

D[φ] vanishes at infinity, and hence it vanishes in R
3. Therefore, we

have

φ =
1

λ− 1
2

((
λI + (K0

D)∗
)
φ−

(
1
2
I + (K0

D)∗
)

φ

)
= 0 .

Thus
(
λI + (K0

D)∗
)

is injective on L2(∂D). Since (K0
D)∗ is compact on L2(∂D)

by (3.132), we have (iii) by the Fredholm alternative. This completes the proof.
��

3.5.3 Transmission Problem

Suppose that
∫

∂Ω
g ·N = 0. Let µ and µ̃ be two positive constants. Consider

the transmission problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + κ2)u−∇q = 0 in Ω \D ,

(∆ + κ̃2)u−∇q = 0 in D ,

u
∣∣
+
− u
∣∣
− = 0 on ∂D ,

µ
∂u
∂n

∣∣∣∣
+

− µ̃
∂u
∂n

∣∣∣∣
−

= 0 on ∂D ,

∇ · u = 0 in Ω ,

u = g on ∂Ω ,∫

Ω

q = 0 .

(3.139)
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We look for the solution to (3.139) in the form of

u =

{
S κ̃

D[φ] in D ,

Sκ
D[ψ] +Dκ

Ω [θ] in Ω \D
(3.140)

for some triplet (φ, ψ, θ) ∈ L2(∂D)×L2(∂D)×L2(∂Ω). Then (φ, ψ, θ) should
satisfy the following system of integral equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S κ̃
D[φ]− Sκ

D[ψ]−Dκ
Ω[θ] = 0 on ∂D ,

µ̃(−1
2
I + (Kκ̃

D)∗)[φ]− µ(
1
2
I + (Kκ

D)∗)[ψ]− ∂

∂n
Dκ

Ω [θ] = 0 on ∂D ,

Sκ
D[ψ] + (

1
2
I +Kκ

Ω)[θ] = g on ∂Ω ,

or
⎛

⎜⎝
S κ̃

D −Sκ
D −Dκ

Ω

µ̃(−1
2I + (Kκ̃

D)∗) −µ(1
2I + (Kκ

D)∗) − ∂
∂nDκ

Ω

0 Sκ
D

1
2I +Kκ

Ω

⎞

⎟⎠

⎛

⎝
φ
ψ
θ

⎞

⎠ =

⎛

⎝
0
0
g

⎞

⎠ . (3.141)

Denote the operator in (3.141) by Aκ. Then Aκ maps L2(∂D) × L2(∂D) ×
L2(∂Ω) into (W 2

1 )0(∂D)× L2(∂D)× L2
0(∂Ω).

We now investigate the solvability of the equation (3.141). Because of
(3.126), Aκ is a compact perturbation of A0, which is again a compact per-
turbation of

⎛

⎜⎝
S0

D −S0
D 0

µ̃(−1
2I + (K0

D)∗) −µ(1
2I + (K0

D)∗) 0
0 0 1

2I +K0
Ω

⎞

⎟⎠ . (3.142)

Define S := {(φ, ψ) ∈ L2(∂D) × L2(∂D) : φ − ψ ∈ L2
0(∂D)}. Denote

Ker
(

1
2I +Kκ

Ω

)⊥ by Lκ. Then the following holds.

Lemma 3.5.2 The operator A0 : S ×L0 → (W 2
1 )0(∂D)×L2(∂D)×L2

0(∂Ω)
is invertible. So is Aκ : S×Lκ into (W 2

1 )0(∂D)×L2(∂D)×L2
0(∂Ω), provided

that κ2 is not a Dirichlet eigenvalue of the Stokes system on either D or Ω.

Proof. Using Lemma 3.5.1, one can easily show that the operator in (3.142)
is invertible. Since A0 is its compact perturbation, it suffices to show that A0

is injective according to the Fredholm alternative.
Suppose that there exists (φ0, ψ0, θ0) ∈ S × L0 such that

A0

⎡

⎣
φ0

ψ0

θ0

⎤

⎦ = 0 .
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Then the function v defined by

v(x) :=

{
S0

D[φ0](x), x ∈ D ,

S0
D[ψ0](x) +D0

Ω [θ0](x), x ∈ Ω \D ,

is a solution to (3.139) with κ = κ̃ = 0 and g = 0. Since the solution to (3.139)
with κ = κ̃ = 0 is unique, we have

S0
D[φ0] = 0 in D , (3.143)

S0
D[ψ0] +D0

Ω [θ0] = 0 in Ω \D . (3.144)

Then (3.144) shows that S0
D[ψ0] can be extended to Ω as a solution to (3.123).

Hence by (3.134) we obtain ψ0 = cN for some constant c, and D0
Ω [θ0] = 0

in Ω. By (3.128) and part (ii) in Lemma 3.5.1, we have θ0 = 0. On the other
hand,

φ0 =
∂S0

D[φ0]
∂n

∣∣∣∣
+

− ∂S0
D[φ0]
∂n

∣∣∣∣
−

=
∂S0

D[φ0]
∂n

∣∣∣∣
+

− µ

µ̃

∂S0
D[ψ0]
∂n

∣∣∣∣
+

= 0 ,

and thus ψ0 = 0. Therefore, A0 is invertible.
Since the operator in (3.141) is a compact perturbation of A0, we can

show that it is invertible in exactly the same manner under the assumption
that κ2 is not a Dirichlet eigenvalue of the Stokes system in either D or Ω.
This completes the proof. ��

Thus we obtain the following theorem.

Theorem 3.5.3 Let (φ, ψ, θ) ∈ S × Lκ be the unique solution to (3.141).
Then the solution u to (3.139) is represented by (3.140).

Consider the following boundary-value problem for the modified Stokes
system in the absence of the elastic anomaly:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∆ + κ2)v +∇q = 0 in Ω ,

∇ · v = 0 in Ω ,
v = g on ∂Ω ,∫

Ω

q = 0 ,

(3.145)

under the compatibility condition
∫

∂Ω
g ·N = 0.

Let
θ0 = (

1
2
I +Kκ

Ω)−1[g] on ∂Ω .

Then the solution U to (3.145) is given by

U(x) = Dκ
Ω [θ0](x) = Dκ

Ω(
1
2
I +Kκ

Ω)−1[g](x), x ∈ Ω .
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By (3.140), we have

Dκ
Ω(

1
2
I +Kκ

Ω)−1
[
g − Sκ

D[ψ]|∂Ω

]
= Dκ

Ω(
1
2
I +Kκ

Ω)−1
[
Dκ

Ω[θ]|−
]

= Dκ
Ω [θ] ,

and hence we obtain

u(x) = U(x)+Sκ
D[ψ](x)−Dκ

Ω(
1
2
+Kκ

Ω)−1
[
Sκ

D[ψ]|∂Ω

]
(x), x ∈ Ω\D . (3.146)

Let Γκ = (Gκ
ij)

3
i,j=1 be the the Dirichlet Green function for the operator

in (3.123), i.e., for y ∈ Ω,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∆x + κ2)Gκ
ij(x, y)− ∂Fi(x− y)

∂xj
= δijδy(x) in Ω ,

3∑

j=1

∂

∂xj
Gκ

ij(x, y) = 0 in Ω ,

Gκ
ij(x, y) = 0 on ∂Ω .

Define for f ∈ L2
0(∂D)

Gκ
D[f ](x) :=

∫

∂D

Γκ(x, y)f(y) dσ, x ∈ Ω .

Then the following identity holds:

Gκ
D[f ](x) = Sκ

D[f ](x)−Dκ
Ω(

1
2

+Kκ
Ω)−1Sκ

D[f ](x), x ∈ Ω .

In fact, by the definition of the Green function, we have

Γκ(x, y) = Γκ(x, y)−Dκ
Ω(

1
2

+Kκ
Ω)−1[Γκ( · , y)](x), x ∈ Ω .

From (3.146), we obtain the following theorem.

Theorem 3.5.4 Let (φ, ψ, θ) ∈ S × Lκ be the unique solution to (3.141).
Then

u(x) = U(x) + Gκ
D[ψ](x), x ∈ Ω \D . (3.147)
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4

Tomographic Imaging with Non-Diffracting
Sources

Image reconstruction is an important topic of tomographic imaging because
spatial information is encoded into the measured data during the data acquisi-
tion step. Depending on how spatial information is encoded into the measured
data, the image reconstruction technique can vary considerably. In this chap-
ter we deal with the mathematical basis of tomography with non-diffracting
sources. We outline two fundamental image reconstruction problems for de-
tailed discussion: (i) reconstruction from Fourier transform samples, and (ii)
reconstruction from Radon transform samples. Many practical MRI data ac-
quisition schemes lend themselves naturally to one of these two reconstruction
problems while computed tomography (CT) produces data exclusively as a se-
ries of projections.

This chapter is organized as follows. First, some general issues in image
reconstruction are discussed. Then the algorithms of Fourier reconstruction
are described. Finally, image reconstruction from Radon transform data is
discussed, starting with a description of the inverse Radon transform, which
is followed by an exposition of the practical algorithms.

4.1 Imaging Equations of CT and MRI

4.1.1 Imaging Equation of CT

In CT, one probes an object with non-diffracting radiation, e.g., X-rays for
the human body. If I0 is the intensity of the source, a(x) the linear attenua-
tion coefficient of the object at point x, L the ray along which the radiation
propagates, and I the intensity past the object, then

I = I0e
−
∫

L
a(x) dx . (4.1)

In the simplest case the ray L may be thought of as a straight line. Modeling
L as a strip or cone, possibly with a weight factor to account for detector
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inhomogeneities, may be more appropriate. Equation (4.1) neglects the de-
pendence of a with the energy (beam hardening effect) and other nonlinear
phenomena (e.g., partial volume effect). The mathematical problem in CT is
to determine a from measurements of I for a large set of rays L. If L is simply
the straight line connecting the source x0 with the detector x1, equation (4.1)
gives rise to

ln(
I

I0
) = −

∫ x1

x0

a(x) dx . (4.2)

The task is to compute a in a domain Ω ⊂ R
2 from the values of equation

(4.2) where x0 and x1 run through certain subsets of ∂Ω. Equation (4.2) is
simply a reparametrization of the Radon transform R.

4.1.2 Imaging Equation of MRI

The physical phenomenon exploited in MRI is the precession of the spin of
a proton in a magnetic field of strength H about the direction of that field.
The frequency of this precession is the Larmor frequency γH where γ is the
gyromagnetic ratio. By making the magnetic field H space-dependent in a
controlled way, the local magnetization M0(x) (together with the relaxation
times T1(x) and T2(x)) can be imaged. The magnetization M(x, t) caused by
a magnetic field H(x, t) satisfies the Bloch equation

∂M

∂t
= γM ×H − 1

T2
(M1e1 + M2e2)−

1
T1

(M3 −M0)e3 . (4.3)

Here, Mi is the i−th components of M and ei is the i−th unit vector for
i = 1, 2, 3. The significance of T1, T2,M0 becomes apparent if we solve (4.3)
for the static field H = H0e3 with initial values M(x, 0) = M0(x). Setting
ω0 = γH0 leads to

M1(x, t) = e−t/T2(M0
1 cos ω0t + M0

2 sin ω0t) ,

M2(x, t) = e−t/T2(−M0
1 sinω0t + M0

2 cos ω0t) ,

M3(x, t) = e−t/T1M0
3 + (1− e−t/T1)M0 .

Thus the magnetization rotates in the (x1, x2) plane with Larmor frequency
ω0 and returns to the equilibrium position (0, 0,M0) with speed controlled by
T2 in the (x1, x2) plane and T1 in the x3-direction.

In an MRI scanner, one generates a field

H(x, t) = (H0 + G(t) · x)e3 + H1(t)(cos(ω0t)e1 + sin(ω0t)e2) ,

where G and H1 are under control. In the language of MRI, H0e3 is the
static field, G the gradient, and H1 the radio-frequency field. The input G,H1

produces in the detecting system the output signal

S(t) = − d

dt

∫

R3
M(x, t) ·B(x) dx ,



4.2 General Issues of Image Reconstruction 97

where B characterizes the detection system. Depending on the choice of H1,
various approximations to S(t) can be derived, two of which are detailed here.

Short π/2 pulse: In the first case, H1 is constant in the small interval [0, τ ]
and γ

∫ τ

0
H1 dt = π/2. In that case,

S(t) =
∫

R3
M0(x)e−iγ

∫ t
0 G(s) ds·x−t/T2 dx .

Choosing G constant for τ ≤ t ≤ τ + T and zero otherwise, we get for
T << T2,

S(t) ≈ (2π)3/2F(M0)(γG(t− τ)) , (4.4)

where F(M0) is the three-dimensional Fourier transform of M0. From here
we can proceed in two ways. We can use equation (4.4) to determine the
three-dimensional Fourier transform F(M0) of M0 and compute M0 by
an inverse three-dimensional Fourier transform. This requires F(M0) to
be known on a cartesian grid, which can be achieved by a proper choice of
the gradients or by interpolation. Alternatively, one can invoke the central
slice theorem to obtain the three-dimensional Radon transform R(M0) of
M0 by a series of one-dimensional Fourier transforms. M0 is then recovered
by inverting the three-dimensional Radon transform.

Shaped pulse: In this case, H1 is the shaped pulse

H1(t) = φ(tγG)eiγGx3t ,

where φ is a smooth positive function supported in [0, τ ]. Then, with x′, G′

the first two components of x,G, respectively, we have

M ′
0(x

′, x3) =
∫

M0(x′, y3)Q(x3 − y3) dy3 , (4.5)

with a function Q essentially supported in a small neighborhood of the
origin. Equation (4.5) is the two-dimensional analog of equation (4.4), and
again we face the choice between Fourier imaging (i.e., computing the
two-dimensional Fourier transform from (4.5) and doing an inverse two-
dimensional Fourier transform) and projection imaging (i.e., doing a series
of one-dimensional Fourier transforms on equation (4.5) and inverting the
two-dimensional Radon transform).

4.2 General Issues of Image Reconstruction

We may formally state that the image reconstruction problem (or inverse
problem) is finding an object function I that is consistent with the measured
signal S according to a known imaging equation (or forward problem):

S = T (I) ,
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where T is usually an integral transformation operator. The above equation
is often referred to as the data-consistency constraint, and any function satis-
fying this constraint is called a feasible reconstruction. The data-consistency
constraint is important because image reconstruction does no more than con-
vert information in the measured data into an image format. A violation of the
data-consistency constraint can mean that this conversion step is not faithful,
and a loss of valid information or a gain of spurious information may result.

If T is invertible, a data-consistent I can be obtained from the inverse
transform such that I = T −1(S). However, in practice, T −1 cannot be com-
puted because the data space is only partially sampled. Therefore, instead of
directly implementing the inversion formula, one focuses on finding an image
function that satisfies the data-consistency constraint either by an approxi-
mate implementation of the inverse transform or by methods that may have
nothing to do with it. Some general issues with such an image reconstruction
procedure are existence, uniqueness, and stability.

It is easy to understand that, given a set of measured data, an object
function I that is consistent with the data always exists since the data are
generated from a physical object.

Whether such an object function is unique depends on how the data space
is sampled. If finite sampling is used, as always the case in practice, there
are many feasible object functions for a given measured data. In this case, an
optimality criterion has to be applied to select an object function from the
many feasible ones.

Stability of an image reconstruction technique is related to how pertur-
bations in the data domain are translated to possible image errors. More
specifically, if the data are perturbed by ∆S and, as a consequence, the image
function is in error by ∆I, then S +∆S = T (I +∆I). An important practical
question is: will ∆I be small for a small ∆S? The answer is not necessar-
ily yes. For most imaging systems ∆S can be made negligible while ∆I is
arbitrarily large. Such imaging systems are ill-conditioned and do not have
a unique solution owing to finite sampling. In this case, the reconstruction
problem is considered to be an ill-posed problem. Consequently, obtaining the
exact true object function is theoretically impossible. However, if we pick the
object function appropriately, an acceptable image can be obtained with a
known deviation from true one. This deviation can be fully characterized by
a point spread function (if the imaging process is linear), and it can be made
negligible under certain circumstances.

4.3 Reconstruction from Fourier Transform Samples

4.3.1 Problem Formulation

For simplicity we only consider the one-dimensional case. The problem of re-
constructing a function from its Fourier transform samples can be formulated
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as follows: Given

S[n] =
1√
2π

∫

R

I(x)e−in∆k x dx, n ∈ Z ,

∆k being the fundamental frequency, determine the object function I(x). It
is now widely known that given a set of uniformly sampled Fourier transform
samples, the discrete Fourier transform (DFT) is the computational tool to
use for image reconstruction. This section discusses the basis and limitations
of the DFT image reconstruction technique.

4.3.2 Basic Theory

Poisson’s formula (2.9) yields

∑

n∈Z

S[n]ein∆k x =
√

2π

∆k

∑

n∈Z

I(x− 2πn

∆k
) , (4.6)

where the right-hand side is a periodic function with period 2π/∆k.
In the remainder of this section, we derive the Fourier reconstruction for-

mula based on (4.6). For clarity, we first discuss the infinite sampling case and
then extend the result to the practical case of finite sampling.

Infinite Sampling

Suppose that I(x) vanishes outside |x| < W , S[n] is available for any n ∈
Z, and ∆k < 2π/W . Then there is no overlap among the various replicas
I(x− 2πn/∆k). Hence, one can obtain I(x) from the Fourier series as formed
in (4.6):

I(x) =
∆k√
2π

Π(
πx

∆k
)
∑

n∈Z

S[n]ein∆k x , (4.7)

where Π(y) defined by

Π(y) := χ[−1/2, 1/2](y)

is the rectangular window function.

Finite Sampling

Suppose that S[n] is known for −N/2 ≤ n < N/2. This set is not sufficient
to define the Fourier series as required by the reconstruction formula (4.7).
As a result, the feasible reconstruction is not unique: If I(x) is a feasible
reconstruction, then I(x) + eim∆k x is also a feasible reconstruction for any
|m| > N/2.
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Moreover,

I(x) =
∆k√
2π

Π(
πx

∆k
)
[ N/2−1∑

n=−N/2

S[n]ein∆k x

]
+

∑

n<−N/2;n≤N/2

cnein∆k x ,

is a feasible reconstruction for arbitrary finite cn.
An important question regarding image reconstruction from finite Fourier

transform samples is: what values should we assign to the cn? In practice,
based on the minimum-norm constraint, the unmeasured Fourier series co-
efficients are all forced to be zero because, according to Parseval’s theorem,∫ π/∆k

−π/∆k
|I(x)|2 dx reaches the minimum when cn = 0. Therefore, the minimum-

norm, feasible reconstruction is in the form of a truncated Fourier series:

I(x) =
∆k√
2π

Π(
πx

∆k
)

N/2−1∑

n=−N/2

S[n]ein∆k x, |x| < π

∆k
. (4.8)

DFT and FFT can now be used to form an image from the continuous
image function given in (4.8). Note that in spite of the discreteness of the
measured data, the reconstructed image is a continuous function of space.
Discretization of the image function is required by numerical computation
and display.

Noise in Direct FFT Reconstruction

Suppose that N noisy data points are collected and processed using the (stan-
dard) FFT reconstruction algorithm. The image noise is given by

ξI [m] =
1√

2πN

N/2−1∑

n=−N/2

ξd[n]einm/N , −N/2 ≤ m < N/2 . (4.9)

Several statistical properties of ξI [m] can be directly derived from (4.9):

(i) The image noise ξI [m] is of zero mean, namely, E[ξI [m]] = 0.
(ii) The variance of ξI [m] is given by σ2

I = σ2
d/
√

2πN .
(iii) The image noise ξI [m] is uncorrelated from pixel to pixel. That is to say

E[ξI [m]ξI [m′]] = 0 for m �= m′ .

Moreover, by calculating the average strength per pixel Iavg from the
Fourier reconstruction, one can see that the signal-to-noise ration per pixel
SNR|pixel of an FFT image is inversely proportional to

√
N .
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Specifically,

I2
avg =

1
N

N/2−1∑

m=−N/2

|I[m]|2

=
1

2πN3

N/2−1∑

m=−N/2

N/2−1∑

p=−N/2

N/2−1∑

q=−N/2

S[p]S[q]ei(p−q)m/N

=
1

2πN2

N/2−1∑

n=−N/2

|S[n]|2 ,

which yields

SNR|pixel =
Iavg

σI
=

√∑N/2−1
n=−N/2 |S[n]|2
√

Nσd

.

Noting that
√∑N/2−1

n=−N/2 |S[n]|2 stays roughly constant after N reaches a cer-

tain value, one obtains that SNR|pixel is inversely proportional to
√

N .

4.4 Reconstruction from Radon Transform Samples

Image reconstruction from Radon transform samples is commonly known as
image reconstruction from projections. This problem can be formulated as
follows: Given the Radon transform Rf determine f .

As in the Fourier case, if the Radon space is fully sampled, f can be
uniquely determined from the inverse Radon transform formula. In practice,
the Radon space is partially sampled, leading to undetermined problem. Con-
sequently, the feasible reconstruction is not unique. Various reconstruction
techniques discussed in this section represent different ways to select a recon-
struction from the many feasible ones.

4.4.1 The Inverse Radon Transform

We first state some inversion formulae, which give different ways to recover a
function f from its Radon transform Rf .

4.4.2 Fourier Inversion Formula

The following lemma holds.

Lemma 4.4.1 Let f ∈ S(R2). Then

f(x) =
1

(2π)3/2

∫ +∞

0

τ dτ

∫

S1
eiτx·θF(Rθf)(τ) dθ .
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Proof. We begin with the (two-dimensional) inversion formula for the Fourier
transform. We have

f(x) =
1
2π

∫

R2
eix·ξF(f)(ξ) dξ .

Let ξ = τθ. Integrating in polar coordinates, we obtain that

f(x) =
1
2π

∫ +∞

0

τ dτ

∫

S1
eiτx·θF(f)(τθ) dθ .

We now apply the Fourier Slice Theorem to get

f(x) =
1

(2π)3/2

∫ +∞

0

τ dτ

∫

S1
eiτx·θF(Rθf)(τ) dθ ,

as desired. ��

4.4.3 Direct Backprojection Method

To obtain another inversion formula we observe the following:
∫ +∞

−∞
Rθf(s)g(s) ds =

∫ +∞

−∞

∫ +∞

−∞
f(sθ + tθ⊥)g(s) dt ds .

Let x = sθ + tθ⊥ so that s = x · θ, dx = dt ds, and therefore
∫ +∞

−∞
Rθf(s) g(s) ds =

∫

R2
f(x)g(x · θ) dx ,

i.e., the adjoint of Rθ is the operator R�
θ defined by

R�
θg(x) = g(x · θ) .

Consider for an arbitrary function g(θ, s), having the symmetry g(−θ,−s) =
g(θ, s). We then compute

∫

S1×R

Rf(θ, s)g(θ, s) dθ ds =
∫

S1
dθ

∫ +∞

−∞
Rθf(s)g(θ, s) ds

=
∫

S1
dθ

∫ +∞

−∞
f(sθ + tθ⊥)g(θ, s) ds dt

=
∫

S1
dθ

∫

R2
f(x)g(θ, θ · x) dx

=
∫

R2
f(x)R�g(x) dx ,

with the definition
R�g(x) :=

∫

S1
R�

θg(x) dθ .
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The operator R� is known by the name of backprojection operator. Note
that g(θ, x) is a function of lines and R�g is its integral over all lines passing
through x.

The backprojection operator maps a one-dimensional profile to a two-
dimensional function with constant values along a line defined by θ · x = s.
The term backprojection comes from the fact that mapping g(θ, s) to g(θ, θ ·x)
is to backproject the value of g(θ, s0) along the integration path of the Radon
transform.

It is easy to prove the following useful property of the backprojection
operator.

Lemma 4.4.2 Let f ∈ S(R2) and g ∈ S(C2). Then

(R�g) � f = R�(g � Rf) .

Finally, we get the following important result, which plays an important
role in the numerical inversion of the Radon transform. It is the starting point
for the filtered backprojection algorithm.

Lemma 4.4.3 Let f ∈ S(R2). Then

R�Rf =
2
|x| � f .

Proof. We have

R�Rf =
∫

S1
Rf(θ, θ · x) dθ

=
∫

S1
dθ

∫ +∞

−∞
f((θ · x)θ + sθ⊥) ds

=
∫

S1
dθ

∫ +∞

−∞
f(x + sθ⊥) ds

= 2
∫

S1
dθ

∫ +∞

0

f(x + sθ⊥) ds .

By setting y = sθ⊥, s = |y|, dy = s dθ ds, we get

R�Rf = 2
∫

R2

1
|y|f(x + y) dy

= 2
∫

R2

1
|x− y|f(y) dy ,

as desired. ��
From F(1/|y|) = 1/(2π|ξ|), it follows that

F(R�Rf)(ξ) =
2
|ξ|F(f)(ξ) .
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Therefore, we can conclude that the inversion operator Λ is such that

F−1(Λ) = |ξ|/2

so that
f(x) =

1
4π

∫

R2
eix·ξ|ξ|F(R�Rf)(ξ) dξ = ΛR�Rf(x) . (4.10)

Formula (4.10) is called the backprojection inversion formula.
Formula (4.10) is the general backprojection reconstruction formula where

the measured projection profiles are first backpropagated and then integrated
over the unit disk. The point spread function associated with backprojection
reconstruction is 1/|x|.

In practice, the measured projections are discretized both angularly and
radially. We may assume that Rf(θ, p) is available at the following points:

θ = θnθ
= (cos(nθ∆θ), sin(nθ∆θ)), nθ = 0, 1, . . . , Nθ − 1 ,

p = pnp
= np∆p, np = −Np/2, . . . , Np/2− 1 .

Then,

f(x) = ΛR�

[
∆θ

Nθ−1∑

nθ=0

Rf(θnθ
, pnp

)
]
(x) .

A notable limitation of the backprojection method is that it produces
blurred images. This problem can be overcome using the filtered backprojec-
tion reconstruction method.

4.4.4 Filtered Backprojection Reconstruction

Filtered backprojection reconstruction is a direct implementation of the in-
verse Radon transform formula. It differs from the direct backprojection re-
construction only in that measured projections are filtered before they are
backpropagated.

Let the Hilbert transform H be defined by

Hg(s) =
1
π

p.v.
∫ +∞

−∞

g(t)
s− t

dt .

Here p.v. means the Cauchy principal value. The filtered backprojection in-
version formula reads

f =
1
4π

R�H(Rf)′,

where
(Rf)′(θ, s) = (

∂

∂s
Rθf)(s) .
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In other words,

f(x) =
1

(2π)2

∫

S1

∫

R

(Rf)′(θ, t)
x · θ − t

dt dθ .

An approximate implementation of this formula can be given using the Fourier
inversion formula

f(x) ≈
∫ π

0

Q(x · θ) dt ,

where, θ = (cos t, sin t), and

Q(t) =
1√
2π

∫ b

−b

|τ |eitτF(Rf)(τ) dτ

≈ 1√
2π

∫ +∞

−∞
|τ |eitτF(Rf)(τ) dτ .

This last approximation constitutes a band limiting process, where the used
filter function is known by the name of Ram-Lak filter. Indeed, to limit the
unbounded nature of the |τ | filter in the high-frequency range, which amplifies
high-frequency noise, we can multiply it with a bandlimiting function such as
the rectangular window function Π(τ/b), where Π(x) = χ([−1, 1]). Other
filter functions such as the generalized Hamming filter

Gb(τ) := |τ |H(2π
τ

b
)Π(

τ

b
) ,

H being defined by (2.23), the Shepp-Logan filter or the low-pass cosine filter
can be used and yield noticeably different reconstructions.

4.4.5 Noise in Filtered Backprojection Reconstruction

Consider the filtered backprojection reconstruction. Let ξd[np, nθ] be the ad-
ditive noise in a polar data set consisting of Nθ radial lines, each with Np

points. Then, the image noise from filtered backprojection is given by

ξI [x] =
π√

2πNθNp

Nθ−1∑

nθ=0

NP /2−1∑

np=−Np/2

|np|
Np

ξd[np, nθ]einpnθ .

Based on this equation, it is easy to show that

E[ξI [x]] = 0 if E[ξd[np, nθ]] = 0 .

In other words, the image noise has a zero mean if the mean of the data noise
is zero, as is the often the case in practice.

To derive the image noise variance, we further assume that ξd[pnp
, θnθ

] is
uncorrelated from one measurement to another.
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Under this assumption, we have

var[ξI [x]] =
π

2

(
1

NθNp

)2 Nθ−1∑

nθ=0

NP /2−1∑

np=−Np/2

(
np

Np
)2var[ξd[np, nθ]] .

With the notation var[ξI ] = σ2
I [FBP ] and var[ξd] = σ2

d, we have

σ2
I [FBP ] =

(
π

NθNp

)2 Nθ−1∑

nθ=0

Np/2−1∑

np=−Np/2

(
np

Np
)2σ2

d

≈ π

24NθNp
σ2

d ,

where
∑N

n=0 n2 = (1/6)N(N + 1)(2N + 1) ≈ (1/3)N3 is used.
Note that for two-dimensional Fourier imaging with Np × Nθ Cartesian

points, we have

σ2
I [FT ] =

1
2πN2

p N2
θ

Np/2∑

np=−Np/2−1

Nθ/2−1∑

nθ=−Nθ/2

var[ξd[np, nθ]]

=
1

2πNpNθ
σ2

d .

Therefore,
σI [FBP ]
σI [FT ]

≈ π√
12

.

Bibliography and Discussion

An excellent reference on tomographic imaging with non-diffracting sources
is the book by Natterer and Wübbeling [103]. In particular, this book pro-
vides readers with a superior understanding of the mathematical methods in
computerized tomographic imaging and more advanced topics, such as the
attenuated Radon transform and the helical CT.
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Tomographic Imaging with Diffracting Sources

Tomographic imaging with diffracting sources can be modelled as inverse prob-
lems for partial differential equations. Linearized versions lead to problems
similar to those in tomographic imaging with non-diffracting sources, except
that the straight lines are replaced by more complex shapes. In this chapter,
we single out three non-ionizing imaging methods: (i) electrical impedance to-
mography; (ii) ultrasound imaging, and (iii) microwave imaging. These three
techniques form an important alternative to straight ray tomography (CT)
and MRI. In ultrasound and microwave imaging modalities, the interaction of
a field and an object is modelled with the Helmholtz equation while in EIT,
the mathematical model reduces to the conductivity equation. One general
reconstruction algorithm used in ultrasound and microwave imaging is the
diffraction tomography.

For some applications, the harm caused by the use of X-rays, an ionizing
radiation, could outweigh any benefits that might be gained from the tomo-
gram. This is one reason for the interest in imaging with electric, acoustic, or
electromagnetic radiation, which are considered safe at low levels. In addition,
these modalities measure the electrical, acoustic, and electromagnetic prop-
erties of tissues and thus make available information that is not obtainable
from X-ray tomography or MRI images. Thirdly, they are easily portable and
relatively inexpensive.

In this chapter we first describe general algorithms used in electrical im-
pedance tomography. Then we present the mathematical basis of diffraction
tomography.

5.1 Electrical Impedance Tomography

There are a variety of medical problems for which it would be useful to know
the distribution of the electrical properties inside the body. By electrical prop-
erties we mean specifically the electric conductivity and permittivity. The
electric conductivity is a measure of the ease with which a material conducts
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electricity; the electric permittivity is a measure of how readily the charges
within a material separate under an imposed electric field. Both of these prop-
erties are of interest in medical applications, because different tissues have
different conductivities and permittivities.

One important medical problem for which knowledge of internal electrical
properties would be useful is the detection of breast cancer.

In this section we present the mathematical model for EIT. We use this
model to describe some reconstruction algorithms.

5.1.1 Mathematical Model

The electric potential or voltage u in the body Ω is governed by the conduc-
tivity equation

∇ · γ(x, ω)∇u = 0, x ∈ Ω . (5.1)

Here γ is given by γ(x, ω) = σ(x, ω) + iωε(x, ω), where σ is the electric con-
ductivity, ε is the electric permittivity, and ω is the angular frequency of the
applied current.

In practice, we apply currents to electrodes on the surface ∂Ω of the body.
These currents produce a current density on the surface whose inward pointing
normal component is denoted by g. Thus,

γ
∂u

∂ν
= g on ∂Ω . (5.2)

The mathematical model of EIT is (5.1) and (5.2), together with the con-
servation of charge condition

∫
∂Ω

g = 0 and the condition
∫

∂Ω
u = 0, which

amounts to choosing a reference voltage. The injected currents can be approx-
imated by linear combinations of dipoles. A dipole at a point z ∈ ∂Ω is given
by −|∂Ω| ∂δz/∂T , ∂/∂T being the tangential derivative at ∂Ω. The operator
g 
→ u|∂Ω is called the Neumann-to-Dirichlet boundary map.

The reconstruction problem in EIT is to obtain an approximation of γ in
Ω from the boundary measurements of u on ∂Ω. This problem is challenging
because it is not only nonlinear, but also severely ill-posed, which means that
large changes in the interior can correspond to very small changes in the
measured data.

From a theoretical point of view, all possible boundary measurements
uniquely determine γ in Ω. However, in practice we are limited to a finite
number of current-to-voltage patterns.

Before describing classical reconstruction algorithms in EIT, we explain the
fundamental shortcomings of EIT in detail by use of its discretized version.

5.1.2 Ill-Conditioning

For simplicity, we suppose that Ω is a square region in R
2. We divide Ω

uniformly into N × N sub-squares Ωij with the center point (xi, yj), where



5.1 Electrical Impedance Tomography 109

i, j = 0, . . . , N−1. The goal of EIT is to determine N×N conductivity values
under the assumption that the conductivity γ is constant on each subsquare
Ωij , say γij . Let

Σ =
{

γ : γ|Ωij
= constant for i, j = 0, . . . , N − 1

}
.

For a given γ ∈ Σ, the solution u of the direct problem (5.1) and (5.2) can
be approximated by a vector U = (u0, u1, . . . , uN2−1) such that each interior
voltage uk, k = i + jN is determined by the weighted average (depending on
γ) of the four neighboring potentials. More precisely, a discretized form of
(5.1) is given by

uk =
1

akk

[
akkN

ukN
+ akkS

ukS
+ akkE

ukE
+ akkW

ukW

]
,

with

akk = −
∑

l

akkl
and akkl

=
γkγl

γk + γl
for l = N,S,E,W .

Here kN , kS , kE , kW denote north, south, east, and west neighboring of k−th
point. The discretized conductivity equation (5.1) with the Neumann bound-
ary condition (5.2) can be written as a linear system AγU = G, where G is
the injection current vector associated with g. Let F denote the small-size
sub-vector of U restricted to ∂Ω, which corresponds to the boundary voltage
potential on ∂Ω. Then the inverse conductivity problem is to determine γ, or
equivalently Aγ , from one or several measurements of current-to-voltage pairs
(Gm, Fm),m = 1, . . . ,M .

The fundamental shortcoming of EIT for providing high resolution images
is due to the fact that reconstructing Aγ from (Gm, Fm),m = 1, . . . ,M , is
exponentially difficult as the matrix size Aγ increases. More precisely, the
value of the potential at each Ωij inside Ω can be expressed as the weighted
average of its neighboring potentials where weights are determined by the
conductivity distribution. Therefore, the measured data F is entangled in the
global structure of the conductivity distribution in a highly nonlinear way
and any internal conductivity value γij has a little influence on boundary
measurements if Ωij is away from the boundary. This phenomenon causes the
ill-posedness nature of EIT.

5.1.3 Static Imaging

Static image reconstruction problem is based on iterative methods. An image
reconstruction algorithm iteratively updates the conductivity distribution un-
til it minimizes in the least-squares sense the difference between measured data
and computed boundary voltages. As part of each iteration in the minimiza-
tion, a forward solver is used to determine the boundary voltages that would
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be produced given the applied currents. This technique was first introduced
in EIT by Yorkey, Webster, and Tompkins in the 80’s following a number of
variations and improvements. These include utilization of a priori information,
various forms of regularization, and adaptive mesh refinement. Even though
this approach is widely adopted for static imaging by many researchers, it
requires a large amount of computation time for producing static images even
with low spatial resolution and poor accuracy.

Because of the fundamental limitations of EIT, it seems from a practical
point of view reasonable to restrict ourselves to find the deviation of the
conductivity from an assumedly known conductivity.

5.1.4 Dynamic Imaging

The algorithms described here are based on approximations to the linearized
EIT problem.

Barber-Brown Backprojection Algorithm

The Barber-Brown Backprojection algorithm is the first fast and useful algo-
rithm in EIT although it provides images with very low resolution. It is based
on the assumption that the conductivity does not differ very much from a
constant and can be viewed as a generalized Radon transform.

For simplicity, suppose that Ω is the unit disk in R
2 and γ is a small

perturbation of a constant γ = γ0 + δγ in Ω. In the simplest case we assume
γ0 = 1, so that

γ(x) = 1 + δγ(x), |δγ(x)| << 1, x ∈ Ω , (5.3)

and we further assume that δγ = 0 on ∂Ω. Let u0 and u denote the po-
tentials corresponding to γ0 and γ with the same Neumann boundary data
g = −2π∂δz/∂θ at a point z ∈ ∂Ω. Writing u = u0 + δu, δu satisfies approxi-
mately the equation

−∆δu ≈ ∇δγ · ∇u0 in Ω , (5.4)

with the homogeneous boundary condition. Here, the term ∇δγ · ∇δu is ne-
glected.

Observe that

u0(x) =
x · z⊥
|x− z|2 ,

where z⊥ is the rotate of z by π/2. Next, we introduce a holomorphic function
in Ω whose real part is −u0:

Ψz(x) := s + it := − x · z⊥
|x− z|2 + i

1− z · x
|x− z|2 .
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Then we can view Ψz as a transform which maps the unit disk Ω onto the upper
half plane Ω̃ := {s + it : t > 1/2}. Hence, we can view x as a function with
respect to Ψz = s + it defined in Ω̃. Let δ̃uz(Ψz(x)) = δu(x) and δ̃γ(Ψz(x)) =
δγ(x). Using the fact that ∇s · ∇t = 0 and |∇s| = |∇t|, it follows from (5.4)
that ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∆δ̃u = −∂δ̃γ

∂s
in Ω̃ ,

∂δ̃u

∂t

∣∣∣∣
t=1/2

= 0 .

Hence, if δ̃γ is independent of the t−variable, δ̃u depends only on s and δ̃γ.
With the notation z = (cos θ, sin θ), Barber and Brown derived from this idea
the following reconstruction formula:

δγ(x) = δ̃γ(Ψz(x)) =
1
2π

∫ 2π

0

∂

∂s
δ̃uz(s +

i

2
) dθ .

Dynamic Imaging

Suppose that currents gn, n = 1, . . . , N, are applied on ∂Ω. Application of
gn gives rise to the potential un inside Ω. In dynamic imaging, we measure
the boundary voltage potential fn = un|Ω to reconstruct the change of the
conductivity δγ from the relation between gn and fn. Let un

0 denote the
background potential, that is, the solution to

⎧
⎪⎪⎨

⎪⎪⎩

∆un
0 = 0 in Ω ,

∂un
0

∂ν
= gn on ∂Ω ,

∫
∂Ω

un
0 = 0 .

Set δun = un − un
0 . The reconstruction algorithm is based on the following

identity
∫

Ω

δγ∇un
0 · ∇um

0 =
∫

∂Ω

(gnfm
0 − fngm)−

∫

Ω

δγ∇δun · ∇um
0 .

Since the last term in the above identity can be regarded as negligibly small,
the perturbation δγ can be computed from

∫

Ω

δγ∇un
0 · ∇um

0 = b[n,m] ,

where b[n,m] =
∫

∂Ω
(gnfm

0 − fngm).
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5.1.5 Electrode Model

The continuum model (5.1) and (5.2) is a poor model for real experiments,
because we do not know the current density g. In practice, we know only the
currents that are sent down wires attached to discrete electrodes, which in
turn are attached to the body. One might approximate the unknown current
density as a constant over each electrode, but this model also turns out to be
inadequate. We need to account for two main effects: the discreteness of the
electrodes, and the extra conductive material (the electrodes themselves) we
have added. We should account for the electrochemical effect that takes place
at the contact between the electrode and the body. This effect is the formation
of a thin, highly resistive layer between the electrode and the body. The
impedance of this layer is characterized by a number zn, called the effective
contact impedance. See Fig. 5.1 for a prototype EIT probe.

Let en denote the part of ∂Ω that corresponds to the nth electrode and
let In be the current sent to the electrode en. The electrode model consists of
(5.1), ∫

en

γ
∂u

∂ν
= In, n = 1, . . . , N ,

γ
∂u

∂ν
= 0 in the gap between the electrodes,

the constraint

u + znγ
∂u

∂ν
= Vn on en, n = 1, . . . , N ,

where Vn, for n = 1, . . . , N , is the measured potential on the electrode en

and zn is the contact impedance assumed to be known, together with the
conditions

N∑

n=1

In = 0 (conservation of charge)

and
N∑

n=1

Vn = 0 (choice of a ground).

This model has been shown to have a unique solution and able to predict
the experimental measurements.

5.2 Ultrasound and Microwave Tomographies

Propagation of acoustical and electromagnetic waves in biological tissue is de-
scribed by linear wave equations. Although the physical interpretation varies,
these equations largely coincide. Ultrasound and microwave tomographies can
be done in the time domain and the frequency domain. A standard inversion
technique in ultrasound and microwave imaging in the frequency domain is
the diffraction tomography.
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Fig. 5.1. Electrodes.

5.2.1 Mathematical Model

In ultrasound and microwave imaging, the object to be imaged is irradiated
by a plane wave uI(x) = eiωx·θ, with the wavelength λ := 2π/ω, travelling
in the direction of the unit vector θ. The relevant equation is the Helmholtz
equation

∆u + ω2(1 + q)u = 0 in R
d ,

subject to the Sommerfeld radiation condition on the scattered field uS :=
u − uI at infinity, where the object is given by the function q, which van-
ishes outside the object. The total field u is measured outside the object for
many directions θ. From all these measurements, the function q has to be
determined.

The scattered field uS satisfies the Sommerfeld radiation condition and
the Helmholtz equation

∆uS + ω2uS = −ω2(uI + uS)q . (5.5)

Now we assume that the function q is supported in |x| < ρ and |q| << 1.
Then we can neglect uS on the right-hand side of (5.5), obtaining

∆uS + ω2uS ≈ −ω2uIq .

This equation can be solved for uS with the help of the outgoing Green func-
tion Γω for the Helmholtz operator ∆ + ω2. We have the so-called Born ap-
proximation

uS(x) ≈ −ω2

∫

|y|<ρ

Γω(x− y)eiωθ·yq(y) dy . (5.6)

Note that problem (5.5) is a regularly perturbed problem, and therefore,
neglecting uS on the right-hand side of (5.5) can be fully justified.
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5.2.2 Diffraction Tomography

In diffraction tomography, one computes for weakly scattering objects the
Fourier transform of the object function from the Fourier transform of the
measured scattered data.

To present the basics of diffraction tomography, we first recall that the
Green function Γω has the plane wave decomposition

Γω(x) = −icd

∫

Rd−1

1
β

ei(β|xd|+α·x̃) dα, x = (x̃, xd), x̃ = (x1, . . . , xd−1) ,

where

β =

{√
ω2 − |α|2, |α| < ω ,

i
√
|α|2 − ω2, |α| ≥ ω ,

and
c2 =

1
4π

, c3 =
1

8π2
.

Substituting this expression into the Born approximation (5.6) for the scat-
tered field uS yields

uS(x) ≈ iω2cd

∫

Rd−1

∫

|y|<ρ

q(y)
β

ei(β|xd−yd|+α·(x̃−ỹ))eiωθ·y dy dα , (5.7)

where y = (ỹ, yd).
Suppose for simplicity that d = 2, θ = (0, 1), and u, hence uS , is measured

on the line x2 = l, where l is greater than any y2-coordinate within the object.
Then (5.7) may be rewritten as

uS(x1, l) ≈
iω2

4π

∫ +∞

−∞
dα

∫

|y|<ρ

q(y)
β

ei(β(l−y2)+α·(x1−y1))eiωy2 dy .

Recognizing part of the inner integral as the two-dimensional Fourier trans-
form of the object function q evaluated at (α, β − ω) we find

uS(x1, l) ≈
iω2

2

∫ +∞

−∞

1
β

ei(βl+αx1)F(q)(α, β − ω) dα .

Taking the one-dimensional Fourier transform of uS(x1, l), we obtain

F(uS(·, l))(α) ≈ iω2

√
π

2
1√

ω2 − α2
ei

√
ω2−α2lF(q)(α,

√
ω2 − α2 − ω)

for |α| < ω.
This expression relates the two-dimensional Fourier transform of the object

function to the one-dimensional Fourier transform of the scattered field at the
receiver line x2 = l.
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The factor

iω2

√
π

2
1√

ω2 − α2
ei

√
ω2−α2l

is a simple constant for a fixed receiver line and operating frequency ω. As
α varies from −ω to ω, the coordinates (α,

√
ω2 − α2 − ω) in the Fourier

transform of q trace out a semicircular arc. The endpoints of this semicircular
arc are at the distance

√
2 ω from the origin in the Fourier domain. Therefore,

if the object is illuminated from many different θ-directions, we can fill up a
disk of diameter

√
2 ω in the Fourier domain and then reconstruct the object

function q(x) by direct Fourier inversion. The reconstructed object is a low
pass version of the original one.

Bibliography and Discussion

Static image reconstruction problem in EIT was first considered in [126, 124].
The backprojection algorithm was introduced by Barber and Brown in [25].
Santosa and Vogelius [111] recognized explicitly that some sort of Radon trans-
form was involved in backprojection. Dynamic imaging in EIT has been de-
veloped by Isaacson’s group [71, 69, 70, 62, 41, 40, 42]. The electrode model
was investigated in [117]. Kaczmarz’s method can be applied for solving the
nonlinear problem in EIT [103].

An important problem in EIT is to decide, what the optimal, or most infor-
mative measurement setting. This problem is referred to as the optimal current
pattern problem. It was proved in [62] that the optimal current pattern is the
eigenvalue corresponding to the maximal eigenvalue (in absolute value) of the
difference between the Neumann-to-Dirichlet boundary map associated with
the true conductivity and the one associated with an a priori estimate of it.

The reader is referred to Devaney [49] for diffraction tomography. A very
promising inversion approach in ultrasound in the time domain is the time-
reversal technique. This technique has been largely developed by Fink’s group
at LOA [56]. See Sect. 8.3.

For solving inverse problems in EIT and ultrasound imaging, it is impor-
tant to have fast and reliable algorithms for the forward problems. Such algo-
rithms are available for EIT, since algorithms for the conductivity equation
are a well-established field in numerical analysis. For ultrasound, one has to
solve Helmholtz-type equations at high frequencies, which still is a challenge.

One of the most challenging problems in EIT is that in practical measure-
ments, one usually lacks exact knowledge of the boundary of the domain Ω.
Because of this, the numerical reconstruction from the measured EIT data is
done using a model domain that represents the best guess for the true domain.
However, it has been noticed that an inaccurate model of the boundary causes
severe errors for the reconstructions. An elegant and original solution toward
eliminating the error caused by an incorrectly modeled boundary in EIT has
been proposed and implemented numerically in [84].
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Biomagnetic Source Imaging

The human brain is a complicated inhomogeneous and anisotropic conductor
(with conductivity showing directional dependence) within which primary cur-
rents of electrochemical origin are generated. All this electromagnetic activity
of the brain gives rise to electric and magnetic fields which can be measured
outside the head with very sophisticated and sensitive equipments. Given the
electromagnetic activity of the brain as well as its physical and geometrical
characteristics we can calculate the electric and/or the magnetic field outside
the head. This forms the forward electric or magnetic problem for the brain.
From the point of view of medical diagnosis though the importance lies with
the corresponding inverse problems, where we seek algorithms to recover the
activity of the sources that produced these fields.

Electroencephalography (EEG) and magnetoencephalography (MEG) are
two complementary non-invasive imaging modalities based, respectively, on
the measurement of the electric potential on the scalp (EEG), and of the
magnetic flux density 6-7 cm away from the head (MEG) produced by neural
current sources within the brain. Clinical applications of EEG and MEG in-
clude improved understanding and treatment of serious neurological and neu-
ropsychological disorders such as epilepsy, depression, and Parkinson’s and
Alzheimer’s diseases.

The reconstruction of the underlying sources in EEG and MEG is a
severely ill-posed inverse problem. Most approaches used to solve the source
estimation problem can be roughly classified as either imaging or parametric
source models. Imaging relies on assigning an element current source to each
area element of the cortex, and solving the resulting inverse problem. This
produces a highly under-determined problem, the regularization of it leads to
over-smoothed current distributions. An alternative approach is using a para-
metric representation for the neural source. Such methods include the equiv-
alent current dipole (ECD), its extension to multiple current dipole models,
and the multiple expansion methods which adequately describe sources with
significant spatial extent and arbitrary activation patterns.
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In this chapter, we only consider the ECD model which is adequate to
describe realistic generators of focal human brain activity. Such focal brain
activation can be observed in epilepsy, or it can be induced by a stimulus in
neurophysiological or neuropsychological experiments. We review basic results
on EEG and MEG for a spherical model of the brain.

6.1 Mathematical Models

Given a set of MEG or EEG signals from an array of external sensors, the
inverse problem involves estimation of the properties of the current sources
within the brain that produced these signals. Before we can make such an
estimate, we must first understand and solve the forward problem, in which
we compute the scalp potentials and external electromagnetic fields for a
specific set of neural current sources.

Let us begin with the introduction of some notation: let E be the electric
field, B the magnetic induction, µ the magnetic permeability. We assume
that µ is constant over the whole volume and is equal to the permeability of
vacuum.

In the considered low-frequency band (frequencies below 1 kHz for the
electromagnetic waves in the brain), the quasi-static theory of electromag-
netism is adequate to study the brain activity. This approximation ignores
the temporal variations of the electric and the magnetic fields, and therefore
it eliminates the wave character of the theory. Nevertheless, it is not a static
theory since it allows for current flows. Therefore, the governing equations,
called the quasi-static Maxwell equations in R

3, read as
{
∇×E = 0, ∇ ·E = 0 ,

∇×B = µJ, ∇ ·B = 0 ,
(6.1)

where
J = JP + γE

is the total current which is the superposition of the neural current (the so-
called primary or impressed current) JP , i.e., the current that is electrochem-
ically generated in the neurons, and the secondary or induction current, γE,
which is due to the conductivity of the brain tissues, the cerebrospinal fluid,
the bones of the skull and the scalp. The induction current is proportional to
the electric field.

Let Ω denote the head domain. We suppose that Ω is a simply connected
smooth domain and JP is compactly supported in Ω.

For a homogeneous model of the head system γ is constant in the head
and γ = 0 outside the head. The irrotationality of the electric field E implies
that there exists a scalar function u, called the voltage potential, such that

E = −∇u in R
3 .
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Therefore, from (6.1) it follows that

1
µ
∇×B = JP − γ∇u in R

3 . (6.2)

6.1.1 The Electric Forward Problem

Taking the divergence of equation (6.2) gives the equation

γ∆u = ∇ · JP in Ω , (6.3)

which describes the potential distribution in the head domain Ω due to a
primary current JP in the brain. For the electric forward problem, the primary
current and the conductivity are known, and the equation has to be solved for
the unknown potential u with the homogeneous Neumann boundary condition
on the head surface,

∂u

∂ν
= 0 on ∂Ω .

Additionally,
∫

∂Ω
u = 0.

Using the ECD model, JP =
∑m

s=1 qsδzs
, where m is the number of

sources, qs the dipolar moment of the source s and zs ∈ Ω its location. The
corresponding source term in equation (6.3) is

∑m
s=1 qs · ∇δzs

, which yields
the potential

u(x) =
1
γ

m∑

s=1

qs · ∇N(x, zs) , (6.4)

where N is the Neumann function given by (3.22).

6.1.2 The Magnetic Forward Problem

Since the divergence of B is zero, a magnetic potential A with B = ∇ ×A
can be introduced and, using Coulomb’s gauge ∇ · A = 0, the quasi-static
Maxwell equations (6.1) transform to

∇∇A = −∆A +∇∇ ·A = −∆A = µ(JP − γ∇u) in R
3 .

Since the source term is vanishing outside Ω, A is given by

A =
µ

4π

∫

Ω

JP (y)− γ∇u(y)
|x− y| dy .

Therefore,

B(x) =
µ

4π

∫

Ω

J(y)× x− y

|x− y|3
dy , (6.5)

which is the Biot-Savart law of magnetism.
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Inserting the expression

J(y) =
m∑

s=1

qsδzs
− γ∇u(y)

in the equation (6.5) we obtain

B(x) =
µ

4π

m∑

s=1

qs ×
x− zs

|x− zs|3
− µγ

4π

∫

Ω

∇u(y)× x− y

|x− y|3
dy . (6.6)

Since
∇yu(y)× x− y

|x− y|3
= ∇y × (u(y)

x− y

|x− y|3
) ,

and, by integrating by parts,
∫

Ω

∇y × (u(y)
x− y

|x− y|3
) dy =

∫

∂Ω

u(y)ν(y)× x− y

|x− y|3 dσ(y) ,

equation (6.5) can be transformed into Geselowitz formula

B(x) =
µ

4π

m∑

s=1

qs ×
x− zs

|x− zs|3
− µγ

4π

∫

∂Ω

u(y)ν(y)× x− y

|x− y|3 dσ(y) . (6.7)

The physical interpretation of the representation formula (6.7) is the fol-
lowing. The first term on the right-hand side represents the contribution of
the primary current dipoles while the integral represents the contribution of
the conductive medium. In formula (6.6) the conductive medium behaves as
a volume distribution of electric dipoles with moments equal to −γ∇u, while
formula (6.7) shows that this distribution can be also interpreted as an equiva-
lent surface distribution of dipoles over the boundary ∂Ω with moments −γu ν
normal to the boundary. Therefore, the exterior magnetic field B is strongly
dependent on the geometry of the conductive medium.

6.2 The Inverse EEG Problem

The ECD model assumes that the observed potentials are generated by a
few current dipoles. The inverse EEG problem is to determine the position,
orientation, and magnitude of these dipoles from the observed potentials.

From (6.4), it follows that

DΩ(u|∂Ω) =
m∑

s=1

qs · (x− zs)
4π|x− zs|3

for x ∈ R
3 \Ω .

The problem of localizing the dipoles qsδzs
can be formulated in terms

of finding a least-squares fit of current dipoles to DΩ(u|∂Ω) outside Ω, which
depends nonlinearly on the dipole positions.
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6.3 The Spherical Model in MEG

The spherical model in MEG is routinely used in most clinical and research
applications to MEG/EEG source localization.

Sarvas [112] has solved the inverse MEG problem for the spherical model
completely in a very elegant way. Actually, for a conductive sphere of radius
R with constant conductivity γ and a dipole of moment q located at a point
z, the Geselowitz formula (6.7) reads

B(x) =
µ

4π
q× x− z

|x− z|3 −
µγ

4πR

∫

∂Ω

u(y)× y × x

|x− y|3 dσ(y) , (6.8)

for every x with |x| > R. What Sarvas observed is that the radial component
of B is independent of the electric potential u and therefore it is known. In
fact,

x ·B(x) =
µ

4π
× x · (z × q)

|x− z|3 for |x| > R .

Since B is irrotational outside Ω there exists a magnetic potential U , which
decays as |x|−2 at infinity, such that

B(x) = µ∇U(x) for |x| > R . (6.9)

The crucial point now is that this potential U can be obtained from the known
radial component of B alone. Indeed, an integration along the ray given by
x + tx̂, for x̂ = x/R, and t ∈ [0,+∞[ yields

U(x) = −
∫ +∞

0

∂tU(x + tx̂)dt

= −
∫ +∞

0

x̂ · ∇U(x + tx̂)dt

= − 1
µ

∫ +∞

0

x̂ ·B(x + tx̂)dt

= − 1
4π

x̂ · (z × q)
∫ +∞

0

dt

|x + tx̂− z|3

= − 1
4π

x̂ · (z × q)
|x|

F (x, z)

=
1
4π

x · (q× z)
F (x, z)

,

where

F (x, z) = |x− z|
[
|x||x− z|+ x · (x− z)

]
.
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Therefore, it follows from (6.9) that

B(x) =
µ

4π
∇
(

x · (q× z)
F (x, z)

)
for |x| > R . (6.10)

Note that in this calculation for U , and therefore for B as well, the radius
R of the sphere is not present. A more careful observation though reveals
that this is a consequence of the fact that by using the radial component of B
alone, the surface integral in equation (6.8), which provides the contribution of
the conductive medium, disappears. Hence, the effect of the interface be-
tween the conducting and the non-conducting medium is eliminated. In other
words, the symmetry is so high that the B field does not see the sphere. The
conductive medium is transparent to the B field. We know though that this is
not true for less symmetric domains such as an ellipsoid where this interface
appears in the corresponding expressions.

It is an immediate consequence of (6.10) that if the direction of the mo-
ment becomes radial then B is zero in every point x outside the sphere. Ra-
dially oriented dipoles do not produce any external magnetic field outside a
spherically symmetric volume conductor. Such dipole sources are called silent.
Importantly, this is not the case for EEG, which is sensitive to radial sources,
constituting one of the major differences between MEG and EEG.

The most classical MEG reconstruction algorithm is based on finding a
least-squares fit of current dipoles to the observed B-data.

Bibliography and Discussion

The least-squares method works reasonably well in EEG/MEG for source
models with one or perhaps two dipoles but rapidly become more expensive
to compute and less reliable as the number of dipoles increases. See [30, 125].

An alternative approach to ECD model is a diffuse current distribution,
which can be discretized in terms of a large number of homogeneously distrib-
uted current dipoles. Models of this type have the advantage that the source
structure need not be defined in advance. However, the number of model pa-
rameters is generally much larger than the number of measurement points,
and so a solution has to be selected among an infinite number of possible so-
lutions. To choose a meaningful solution from all possible solutions, we need
to invoke a strong regularization scheme.

Realistic volume-conductor modeling of the head for accurate solution of
the forward problem is needed. The derivation of the head model for the
inverse source imaging can be done by integrating EEG/MEG with MRI.
Surface boundaries for brain, skull, and scalp can be extracted from MR
images.

In [122, 123], the finite element method is used for the forward problem.
It allows realistic representation of the complicated head volume conductor.
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In the case of a ECD model for the brain activity, the singularity of the po-
tential at the source position is treated with the so-called subtraction dipole
model; the model divides the total potential into the analytically known sin-
gularity potential and the singularity-free correction potential, which can then
be approximated numerically with a finite element approach. However, most
of the head models consider typical values for the conductivity of the brain,
skull, and skin. These values are measured in vitro, where conductivity can
be significantly altered compared to in vivo values. EIT may be used to esti-
mate the conductivity profile. By injecting a small current between pairs of
EEG electrodes and measuring the resulting potentials at all electrodes, EIT
techniques can be used to reconstruct the conductivity values given a model
for the head geometry.

We recommend [68] for a thorough review on MEG theory and instru-
mentation. We also refer to [23, 99] for excellent reviews on the underlying
models currently used in MEG/EEG source estimation and on the imaging
approaches to the inverse problem. The non-uniqueness question in the inverse
MEG problem is discussed in [57, 58, 45, 46].
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Small Volume Expansions

As shown in Sect. 5.1, in its most general form EIT is severely ill-posed and
nonlinear. These are the main obstacles to find non-iterative reconstruction
algorithms. If, however, in advance we have additional structural information
about the conductivity profile, then we may be able to determine specific fea-
tures about the conductivity distribution with a satisfactory resolution. One
such type of knowledge could be that the body consists of a smooth back-
ground containing a number of unknown small anomalies with a significantly
different conductivity. These anomalies might represent potential tumors.

Over the last 10 years or so, a considerable amount of interesting work has
been dedicated to the imaging of such low volume fraction anomalies. The
method of asymptotic expansions provides a useful framework to accurately
and efficiently reconstruct the location and geometric features of the anomalies
in a stable way, even for moderately noisy data. Using the method of matched
asymptotic expansions we formally derive the first-order perturbations due
to the presence of the anomalies. These perturbations are of dipole-type. A
rigorous proof of these expansions is based on layer potential techniques. The
concept of polarization tensor (PT) is the basic building block for the asymp-
totic expansion of the boundary perturbations. It is then important from an
imaging point of view to precisely characterize the PT and derive some of its
properties, such as symmetry, positivity, and optimal bounds on its elements,
for developing efficient algorithms to reconstruct conductivity anomalies of
small volume.

We then provide the leading-order term in this asymptotic formula of the
solution to the Helmholtz equation in the presence of small electromagnetic
(or acoustical) anomalies.

We extend the method of small volume expansions to isotropic elasticity.
We derive the leading order term in the displacement perturbations due the
presence of a small elastic anomaly in a homogeneous elastic body. The con-
cept of PT is extended to elasticity defining the elastic moment tensor (EM).
We provide some important properties of the EMT such as symmetry and
positive-definiteness. We give an explicit formula for EMT associated with
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anomalies of elliptic shape. Our derivations can again be made rigorous based
on layer potential techniques.

We also consider the elasticity problem in a quasi-incompressible body.
We show that the elasticity system can be replaced with a nonhomogeneous
modified Stokes system. We then (formally) establish an asymptotic develop-
ment of the displacement field perturbations that are due to the presence of
a small volume elastic anomaly. To construct this asymptotic expansion, we
introduce the concept of viscous moment tensor (VMT). Connections between
on one side the VMT and on the other side the EMT as well as the PT are
given.

It is worth emphasizing that all the problems considered in this chapter
are singularly perturbed problems. As it will be shown later, derivatives of
the solution to the perturbed problem are not, inside the anomaly, close to
those of the background solution. Consequently, a uniform expansion of the
solution to the perturbed problem can not be constructed in the whole back-
ground domain. An example of a regularly perturbed problem is the Born
approximation. See (5.5).

7.1 Conductivity Problem

In this section we derive an asymptotic expansion of the voltage potentials
in the presence of a diametrically small anomaly with conductivity different
from the background conductivity.

Consider the solution u of
⎧
⎪⎪⎨

⎪⎪⎩

∇ ·
(

χ(Ω \D) + kχ(D)
)
∇u = 0 in Ω ,

∂u

∂ν

∣∣∣∣
∂Ω

= g .

(7.1)

The following asymptotic expansion expresses the fact that the conductivity
anomaly can be modeled by a dipole.

Theorem 7.1.1 (Voltage Boundary Perturbations) Suppose that D =
δB + z, and let u be the solution of (7.1), where 0 < k �= 1 < +∞. Denote
λ := (k + 1)/(2(k − 1)). The following pointwise asymptotic expansion on ∂Ω
holds for d = 2, 3:

u(x) = U(x)− δd∇U(z)M(λ,B)∂zN(x, z) + O(δd+1) , (7.2)

where the remainder O(δd+1) is dominated by Cδd+1‖g‖L2(∂Ω) for some C
independent of x ∈ ∂Ω. Here U is the background solution, N(x, z) is the
Neumann function, that is, the solution to (3.22), M(λ,B) = (mpq)d

p,q=1 is
the polarization tensor (PT) given by
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mpq =
∫

∂B

(λI −K∗
B)−1(νp) ξq dσ(ξ) , (7.3)

where ν = (ν1, . . . , νd), ξ = (ξ1, . . . , ξd).

7.1.1 Formal Derivations

To reveal the nature of the perturbations in the solution u to (7.1) that are due
to the presence of the anomaly D, we introduce the local variables ξ = (y−z)/δ
for y ∈ Ω, and set û(ξ) = u(z+δξ). We expect that u(y) will differ appreciably
from U(y) for y near z, but it will differ little from U(y) for y far from z.
Therefore, using the method of matched asymptotic expansions, we represent
the field u by two different expansions, an inner expansion for y near z, and
an outer expansion for y far from z. The outer expansion must begin with U ,
so we write:

u(y) = U(y) + δτ1U1(y) + δτ2U2(y) + . . . , for |y − z| � O(δ) ,

where 0 < τ1 < τ2 < . . ., U1, U2, . . . , are to be found.
We write the inner expansion as

û(ξ) = u(z + δξ) = û0(ξ) + δû1(ξ) + δ2û2(ξ) + . . . , for |ξ| = O(1) ,

where û0, û1, . . . , are to be found. We suppose that the functions ûj , j =
0, 1, . . . , are defined not just in the domain obtained by stretching Ω, but
everywhere in R

d.
Evidently, the functions ûi are not defined uniquely, and the question of

how to choose them now arises. Thus, there is an arbitrariness in the choice
of the coefficients of both the outer and the inner expansions. In order to
determine the functions Ui(y) and ûi(ξ), we have to equate the inner and the
outer expansions in some overlap domain within which the stretched variable
ξ is large and y − z is small. In this domain the matching conditions are:

U(y) + δτ1U1(y) + δτ2U2(y) + . . . ∼ û0(ξ) + δû1(ξ) + δ2û2(ξ) + . . . .

If we substitute the inner expansion into the transmission problem (7.1)
and formally equate coefficients of δ−2, δ−1 we get û0(ξ) = U(z), and

û1(ξ) = v̂1(
x− z

δ
) · ∇U(z) ,

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∆v̂1 = 0 in R
d \B ,

∆v̂1 = 0 in B ,

v̂1|− − v̂1|+ = 0 on ∂B ,

k
∂v̂1

∂ν
|− −

∂v̂1

∂ν
|+ = 0 on ∂B ,

v̂1(ξ)− ξ → 0 as |ξ| → +∞ .

(7.4)
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Therefore, we arrive at the following inner asymptotic formula:

u(x) ≈ U(z) + δv̂1(
x− z

δ
) · ∇U(z) for x near z . (7.5)

Clearly, sup
D
||∇u(x) −∇U(x)|| does not approach zero as α goes to zero,

and therefore, the problem is singulary perturbed.
Note also that

v̂1(ξ) = ξ + SB(λI −K∗
B)−1(ν), ξ ∈ R

d .

We now derive the outer expansion. From (3.38) we have

u(x) = H(x) + (k − 1)
∫

D

∇yΓ (x− y) · ∇u(y) dy .

Since

H(x) = −SΩg +DΩ(u|∂Ω) = U(x) +DΩ((u− U)|∂Ω), x ∈ Ω ,

then, by the jump relation (3.17), it follows that

(
1
2
−KΩ)((u− U)|∂Ω) = (k − 1)

∫

D

∇yΓ (x− y) · ∇u(y) dy .

Applying Lemma 3.1.11, we obtain that

(u− U)(x) = (1− k)
∫

D

∇yN(x− y) · ∇u(y) dy

≈ (1− k)∇yN(x, z) ·
∫

D

∇u(y) dy ,

for x ∈ ∂Ω. By using the inner expansion, we arrive at the outer expansion:

u(x) ≈ U(x) + δd(1− k)∇yN(x, z)(
∫

B

∇v̂1(ξ) dξ) · ∇U(z), x ∈ ∂Ω .

Next, compute
∫

B

∇v̂1(ξ) dξ =
∫

B

(I +∇SB(λI −K∗
B)−1(ν)) dξ

= |B|I +
∫

∂B

(−I

2
+K∗

B)(λI −K∗
B)−1(ν)ξ dσ(ξ)

=
1

k − 1

∫

∂B

(λI −K∗
B)−1(ν) ξ dσ(ξ) ,

and therefore,

u(x) ≈ U(x)− δd∇yN(x, z)M(λ,B) · ∇U(z), x ∈ ∂Ω , (7.6)

where M(k,B) is the polarization tensor associated with B and the conduc-
tivity k = (2λ + 1)/(2λ− 1) defined by (7.3).
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7.1.2 Polarization Tensor

The polarization tensor M can be explicitly computed for disks and ellipses
in the plane and balls and ellipsoids in three-dimensional space.

Let |λ| > 1/2 and let k = (2λ + 1)/(2λ − 1). If B is an ellipse whose
semi-axes are on the x1− and x2−axes and of length a and b, respectively,
then its polarization tensor M takes the form

M(λ,B) = (k − 1)|B|

⎛

⎜⎝

a + b

a + kb
0

0
a + b

b + ka

⎞

⎟⎠ , (7.7)

where |B| denotes the volume of B.
For an arbitrary ellipse whose semi-axes are not aligned with the coordi-

nate axes, one can use the identity

M(λ,RB) = RM(λ,B)RT for any unitary transformation R,

to compute its polarization tensor.
In the three-dimensional case, a domain for which analogous analytical

expressions for the elements of its polarization tensor M are available is the
ellipsoid. If the coordinate axes are chosen to coincide with the principal axes
of the ellipsoid B whose equation then becomes

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= 1, 0 < c ≤ b ≤ a ,

then M takes the form

M(λ,B) = (k−1)|B|

⎛

⎜⎜⎜⎜⎜⎜⎝

1
(1−A) + kA

0 0

0
1

(1−B) + kB
0

0 0
1

(1− C) + kC

⎞

⎟⎟⎟⎟⎟⎟⎠
, (7.8)

where the constants A,B, and C are defined by

A =
bc

a2

∫ +∞

1

1

t2
√

t2 − 1 + ( b
a )2
√

t2 − 1 + ( c
a )2

dt ,

B =
bc

a2

∫ +∞

1

1
(t2 − 1 + ( b

a )2)
3
2
√

t2 − 1 + ( c
a )2

dt ,

C =
bc

a2

∫ +∞

1

1√
t2 − 1 + ( b

a )2(t2 − 1 + ( c
a )2)

3
2

dt .
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In the special case, a = b = c, the ellipsoid B becomes a sphere and
A = B = C = 1/3. Hence the polarization tensor associated with the sphere
B is given by

M(λ,B) = (k − 1)|B|

⎛

⎜⎜⎜⎜⎜⎝

3
2 + k

0 0

0
3

2 + k
0

0 0
3

2 + k

⎞

⎟⎟⎟⎟⎟⎠
.

We now list important properties of the PT.

Theorem 7.1.2 (Properties of the Polarization Tensor) For |λ|>1/2,
let M(λ,B) = (mpq)d

p,q=1 be the PT associated with the bounded domain B in
R

d and the conductivity k = (2λ + 1)/(2λ− 1). Then

(i) M is symmetric.
(ii) If k > 1, then M is positive definite, and it is negative definite if 0<k<1.
(iii) The following optimal bounds for the PT

⎧
⎪⎪⎨

⎪⎪⎩

1
k − 1

trace(M) ≤ (d− 1 +
1
k

)|B| ,

(k − 1) trace(M−1) ≤ d− 1 + k

|B| ,
(7.9)

hold, where trace denotes the trace of a matrix.

Note that by making use of bounds (7.9), an accurate size estimation of
B can be immediately obtained.

It is also worth mentioning that in the literature on effective medium the-
ory, the bounds (7.9) are known as the Hashin-Shtrikman bounds. The concept
of polarization tensors appear in deriving asymptotic expansions of electrical
effective properties of composite dilute media. Polarization tensors involve
microstructural information beyond that contained in the volume fractions
(material contrast, inclusion shape and orientation). See [16].

7.2 Helmholtz Equation

Suppose that an electromagnetic medium occupies a bounded domain Ω in R
d,

with a connected C2-boundary ∂Ω. Suppose that Ω contains a small anomaly
of the form D = δB + z, where z ∈ Ω and B is a C2-bounded domain in R

d

containing the origin.
Let µ0 and ε0 denote the permeability and the permittivity of the back-

ground medium Ω, and assume that µ0 > 0 and ε0 > 0 are positive constants.
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Let µ� > 0 and ε� > 0 denote the permeability and the permittivity of the
anomaly D, which are also assumed to be positive constants. Introduce the
piecewise-constant magnetic permeability

µδ(x) =

{
µ0 , x ∈ Ω \D ,

µ� , x ∈ D .

The piecewise constant electric permittivity, εδ(x), is defined analogously.
Let the electric field u denote the solution to the Helmholtz equation

∇ · ( 1
µδ
∇u) + ω2εδu = 0 in Ω , (7.10)

with the boundary condition u = f ∈ W 2
1
2
(∂Ω), where ω > 0 is a given

frequency.
Note that the use of the formal equivalence between electromagnetics and

acoustics, by term-to-term replacing permittivity and permeability by com-
pressibility and volume density of mass, and replacing the electric field by the
acoustic pressure, opens up the investigation below to ultrasound imaging of
small anomalies as well.

Problem (7.10) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + ω2ε0µ0)u = 0 in Ω \D ,

(∆ + ω2ε�µ�)u = 0 in D ,

1
µ�

∂u

∂ν

∣∣∣∣
−
− 1

µ0

∂u

∂ν

∣∣∣∣
+

= 0 on ∂D ,

u
∣∣
− − u

∣∣
+

= 0 on ∂D ,

u = f on ∂Ω .

Assume that

ω2ε0µ0 is not an eigenvalue for the operator −∆ in L2(Ω)
with homogeneous Dirichlet boundary conditions, (7.11)

we can prove existence and uniqueness of a solution to (7.10) at least for δ
small enough.

With the notation of Sect. 3.2, the following asymptotic formula holds.

Theorem 7.2.1 (Boundary Perturbations) Suppose that (7.11) holds.
Let u be the solution of (7.10) and let the function U be the background solu-
tion as before. For any x ∈ ∂Ω,

∂u

∂ν
(x) =

∂U

∂ν
(x) + δd

(
∇U(z)M(λ,B)

∂∇zGk0(x, z)
∂νx

+ ω2µ0(ε� − ε0)|B|U(z)
∂Gk0(x, z)

∂νx

)
+ O(δd+1) , (7.12)
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where M(λ,B) is the polarization tensor defined in (7.3) with λ given by

λ :=
(µ0/µ�) + 1

2((µ0/µ�)− 1)
. (7.13)

7.2.1 Formal Derivations

From the Lippman-Schwinger integral representation formula

u(x) = U(x) + (
µ0

µ�
− 1)

∫

D

∇u(y) · ∇Gk0(x, y) dy

+ k2
0(

ε�

ε0
− 1)

∫

D

u(y)Gk0(x, y) dy, x ∈ Ω ,

it follows that for any x ∈ ∂Ω,

∂u

∂ν
(x) =

∂U

∂ν
(x) + (

µ0

µ�
− 1)

∫

D

∇u(y) · ∂∇yGk0(x, y)
∂νx

dy

+ k2
0(

ε�

ε0
− 1)

∫

D

u(y)
∂Gk0(x, y)

∂νx
dy .

Using a Taylor expansion of Gk0(x, y) for y ∈ D, we readily see that for any
x ∈ ∂Ω,

∂u

∂ν
(x) ≈ ∂U

∂ν
(x) + (

µ0

µ�
− 1)

∂∇zGk0(x, z)
∂νx

· (
∫

D

∇u(y) dy)

+ k2
0(

ε�

ε0
− 1)

∂Gk0(x, z)
∂νx

(
∫

D

u(y) dy) .

(7.14)

Following the same lines as in the derivation of the asymptotic expansion
of the voltage potentials in Sect. 7.1, one can easily check that u(y) ≈ U(z),
for y ∈ D, and

∫

D

∇u(y) dy ≈ δd

(∫

B

∇v̂1(ξ) dξ

)
· ∇U(z) ,

where v̂1 is defined by (7.4) with k = µ0/µ∗. Inserting these two approxima-
tions into (7.14) leads to (7.12).

7.3 Static Elasticity

Suppose that the elastic body occupies a bounded C2-domain Ω in R
d, with a

connected boundary ∂Ω. Let the constants (λ, µ) denote the background Lamé
coefficients, that are the elastic parameters in the absence of any anomalies.
Suppose that the elastic anomaly D in Ω is given by D = δB + z, where B is
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a bounded C2-domain in R
d. Suppose that D has the pair of Lamé constants

(λ̃, µ̃) satisfying (3.84) and (3.85).
The purpose of this section is to find an asymptotic expansion for the

displacement field in terms of the reference Lamé constants, the location, and
the shape of the anomaly D. This expansion describes the perturbation of the
solution caused by the presence of D.

Consider the transmission problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d∑

j,k,l=1

∂

∂xj

(
Cijkl

∂uk

∂xl

)
= 0 in Ω, i = 1, . . . , d ,

∂u
∂ν

∣∣∣∣
∂Ω

= g ,

(7.15)

where the elasticity tensor C = (Cijkl) is given by

Cijkl :=
(
λ χ(Ω \D) + λ̃ χ(D)

)
δijδkl

+
(
µχ(Ω \D) + µ̃ χ(D)

)
(δikδjl + δilδjk) ,

and uk for k = 1, . . . , d, denote the components of the displacement field u.
In order to ensure existence and uniqueness of a solution to (7.15), we

assume that g ∈ L2
Ψ (∂Ω).

With the notation of Sect. 3.3, the following asymptotic formula holds.

Theorem 7.3.1 (Displacement Boundary Perturbations) Let u be the
solution of (7.15) and U the background solution. The following pointwise
asymptotic expansion on ∂Ω holds:

u(x) = U(x)− δd∂U(z)∂zN(x, z)M + O(δd+1) , x ∈ ∂Ω , (7.16)

where M = (mij
pq)i,j,p,q=1,...,d is the elastic moment tensor (EMT) given by

mij
pq =

∫

∂B

ξpeq · gj
i (ξ) dσ(ξ) . (7.17)

Here (e1, . . . , ed) is an orthonormal basis of R
d and (f j

i ,gj
i ) is the solution to

⎧
⎪⎨

⎪⎩

S̃Bf j
i |− − SBgj

i |+ = ξiej |∂B ,

∂

∂ν̃
S̃Bf j

i

∣∣∣∣
−
− ∂

∂ν
SBgj

i

∣∣∣∣
+

=
∂(ξiej)

∂ν
|∂B .

(7.18)

We note the analogy of the EMT with the PT. The expansion (7.16) can
be rewritten as follows: For x ∈ ∂Ω,

ui(x) = Ui(x)− δd
d∑

j,p,q=1

(∂pUj)(z) ∂zq
Nij(x, z)mij

pq, i = 1, . . . , d .
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7.3.1 Formal Derivations

Using again the method of matched asymptotic expansions, we give a for-
mal derivation of the leading-order term in the asymptotic expansion of the
displacement field u as δ → 0. The outer expansion reads:

u(y) = U(y) + δτ1U1(y) + δτ2U2(y) + . . . , for |y − z| � O(δ) ,

where 0 < τ1 < τ2 < . . ., U1,U2, . . . , are to be found.
The inner expansion is written as

û(ξ) = u(z + δξ) = û0(ξ) + δû1(ξ) + δ2û2(ξ) + . . . , for |ξ| = O(1) ,

where û0, û1, . . . , are to be found.
In some overlap domain the matching conditions are:

U(y) + δτ1U1(y) + δτ2U2(y) + . . . ∼ û0(ξ) + δû1(ξ) + δ2û2(ξ) + . . . .

If we substitute the inner expansion into the transmission problem (7.15)
and formally equate coefficients of δ−2 and δ−1, we get:

û0(ξ) = U(z), and û1(ξ) =
∑

(∂pUj)(z)v̂1ij(ξ) ,

where v̂1ij is the solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µv̂1ij = 0 in R
d \B ,

Lλ̃,µ̃v̂1ij = 0 in B ,

v̂1ij |− − v̂1ij |+ = 0 on ∂B ,

∂v̂1ij

∂ν̃
|− −

∂v̂1ij

∂ν
|+ = 0 on ∂B ,

v̂1ij(ξ)− ξiej → 0 as |ξ| → +∞ .

(7.19)

Therefore, we arrive at the following inner asymptotic formula:

u(x) ≈ U(z) + δ
∑

i,j,p

v̂1ij(
x− z

δ
)(∂pUj)(z) for x near z . (7.20)

Note that v̂1ij admits the following representation

v̂1ij(ξ) =

{
ξiej + SBgj

i (ξ) in R
d \B ,

S̃Bf j
i (ξ) in B ,

(7.21)

where (f j
i ,gj

i ) is the unique solution to (7.18).
We now derive the outer expansion. From (3.93),

u(x) = H(x) + SDψ(x) , x ∈ Ω \D ,
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where ψ ∈ L2
Ψ (∂D) and H(x) = DΩ(u|∂Ω)(x)− SΩ(g)(x), which yields

(
I

2
−KΩ)((u−U)|∂Ω) = SDψ on ∂Ω .

By using the jump relation (3.78),

ψ = ∂SDψ/∂ν|+ − ∂SDψ/∂ν|− . (7.22)

Combining (7.22) together with the transmission conditions (3.95), and
Green’s identity ∫

∂D

(
Γ

∂H
∂ν

− ∂Γ
∂ν

H
)

dσ = 0 ,

we get

SDψ =
∫

∂D

(
Γ

∂S̃Dϕ

∂ν̃
|− −

∂Γ
∂ν
S̃Dϕ

)
dσ on ∂Ω .

Thus,

SDψ = (λ̃− λ)
∫

D

∇ · Γ∇ · u +
(µ̃− µ)

2

∫

D

(∇Γ +∇ΓT ) · (∇u +∇uT ) .

Inserting the inner expansion (7.20) into the above identity and using
Lemma 3.3.11, we obtain after expanding

N(x, y) ≈ N(x, z) +∇N(x, z) · (x− z) for y ∈ ∂D ,

that for any x ∈ ∂Ω,

(u−U)(x) ≈ −δd∇N(x, z)
[
(λ̃− λ)(

∫

B

∇ · (ξpeq)∇ · v̂1ij(ξ) dξ) +
(µ̃− µ)

2

×
(∫

B

(∇(ξpeq) +∇(ξpeq)T ) · (∇v̂1ij(ξ) + (∇v̂1ij(ξ))T ) dξ

)]
(∂pUj)(z) .

Since ξpeq is linear, integrating by parts gives

(λ̃− λ)(
∫

B

∇ · (ξpeq)∇ · v̂1ij(ξ) dξ)

+
(µ̃− µ)

2

(∫

B

(∇(ξpeq) +∇(ξpeq)T ) · (∇v̂1ij(ξ) + (∇v̂1ij(ξ))T ) dξ

)

=
∫

∂B

v̂1ij(ξ) ·
(

∂

∂ν̃
− ∂

∂ν

)
(ξpeq) dσ(ξ) .

But, from (7.21) it follows again by integrating by parts that∫

∂B

v̂1ij ·
(

∂

∂ν̃
− ∂

∂ν

)
(ξpeq) dσ

=
∫

∂B

(
∂

∂ν̃
S̃Bf j

i

∣∣∣∣
−
− ∂

∂ν
(ξiej + SBgj

i )
∣∣∣∣
−

)
ξpeq dσ

=
∫

∂B

(
∂

∂ν
SBgj

i

∣∣∣∣
+

− ∂

∂ν
SBgj

i

∣∣∣∣
−

)
ξpeq dσ

= mij
pq ,

as desired.
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7.3.2 Elastic Moment Tensor

Let (mij
pq) be the EMT for the ellipse B whose semi-axes are on the x1− and

x2−axes and of length a and b, respectively, and let (λ̃, µ̃) and (λ, µ) be the
Lamé parameters of B and the background, respectively.

Then we have

m11
11 = |B|(λ + 2µ)

(µ̃− µ)(λ̃− λ + µ̃− µ)[m2 − 2(τ − 1)m] + c

(µ̃− µ)[3µ + (1− τ)(λ̃ + µ̃)]m2 + (µ + λ̃ + µ̃)(µ + τ µ̃)
,

m22
22 = |B|(λ + 2µ)

(µ̃− µ)(λ̃− λ + µ̃− µ)[m2 + 2(τ − 1)m] + c

(µ̃− µ)[3µ + (1− τ)(λ̃ + µ̃)]m2 + (µ + λ̃ + µ̃)(µ + τ µ̃)
,

m11
22 = |B| (λ + 2µ)[(µ̃− µ)(λ̃− λ + µ̃− µ)m2 + (λ̃− λ)(µ̃ + τµ) + (µ̃− µ)2]

(µ̃− µ)[3µ + (1− τ)(λ̃ + µ̃)]m2 + (µ + λ̃ + µ̃)(µ + τ µ̃)
,

m12
12 = |B| µ(µ̃− µ)(τ + 1)

−(µ̃− µ)m2 + µ + τ µ̃
,

where

c = (λ̃− λ + µ̃− µ)(µ + τ µ̃) + (τ − 1)(µ̃− µ)(µ + λ̃ + µ̃) ,

m = (a− b)/(a + b) and τ = (λ + 3µ)/(λ + µ). In particular, if m = 0, i.e., B
is a disk, then

⎧
⎪⎪⎨

⎪⎪⎩

m11
22 = |B| (λ + 2µ)[(λ̃− λ)(µ̃ + τµ) + (µ̃− µ)2]

(µ + λ̃ + µ̃)(µ + τ µ̃)
,

m12
12 = |B|µ(µ̃− µ)(τ + 1)

µ + τ µ̃
.

(7.23)

We now provide some important properties of the EMT such as symmetry,
positive-definiteness, and optimal bounds. Let us fix a notation first. In R

d,
d = 2, 3, let

I2 := δijei ⊗ ej ,

I4 :=
1
2
(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el .

Here, I2 is the d×d identity matrix or 2-tensor while I4 is the identity 4-tensor.
Set

Λ1 :=
1
d
I2 ⊗ I2, Λ2 := I4 −Λ1 . (7.24)

Since for any d× d symmetric matrix A

I2 ⊗ I2(A) = (A : I2) I2 = trace(A) I2 and I4(A) = A ,
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one can immediately see that

Λ1Λ1 = Λ1, Λ2Λ2 = Λ2, Λ1Λ2 = 0 .

With this notation, the EMT of a disk is given by

M = 2|B| (λ + 2µ)(λ̃ + µ̃− λ− µ)
µ + λ̃ + µ̃

Λ1 + 2|B|µ(µ̃− µ)(τ + 1)
µ + τ µ̃

Λ2 . (7.25)

The following holds.

Theorem 7.3.2 (Properties of the Elastic Moment Tensor) Let M be
the EMT associated with the domain B, and (λ̃, µ̃) and (λ, µ) be the Lamé
parameters of B and the background, respectively. Set κ = λ + 2µ/d, κ̃ =
λ̃ + 2µ̃/d. Then,

(i) For p, q, i, j = 1, . . . , d, the following holds:

mij
pq = mij

qp , mij
pq = mji

pq , and mij
pq = mpq

ij . (7.26)

(ii) Suppose that (3.85) holds. If µ̃ > µ (µ̃ < µ , resp.), then M is positive
(negative, resp.) definite on the space MS

d of d× d symmetric matrices.
(iii) Suppose for simplicity that µ̃ > µ. We have

1
|B|Tr(Λ1MΛ1) ≤ d(κ̃− κ)

dκ + 2(d− 1)µ̃
dκ̃ + 2(d− 1)µ̃

(7.27)

1
|B|Tr (Λ2MΛ2) ≤ 2 (µ̃− µ)

[
d2 + d− 2

2

− 2 (µ̃− µ)
(

d− 1
2µ̃

+
d− 1

dκ̃ + 2(d− 1)µ̃

)]
, (7.28)

|B|Tr
(
Λ1M

−1Λ1

)
≤ 1

d(κ̃− κ)
dκ̃ + 2(d− 1)µ
dκ + 2(d− 1)µ

, (7.29)

|B|Tr
(
Λ2M

−1Λ2

)
≤ 1

2(µ̃− µ)

[
d2 + d− 2

2

+ 2
(

µ̃− µ

)(
d− 1
2µ

+
d− 1

dκ + 2(d− 1)µ

)]
, (7.30)

where for C = (Cpq
ij ), Tr(C) :=

∑d
i,j=1 Cij

ij .

Note that Tr(Λ1) = 1 and Tr(Λ2) = (d(d + 1)− 2)/2. The symmetry
property (7.26) implies that M is a symmetric linear transformation on the
space MS

d . The bounds (7.27)–(7.30) are called Hashin-Shtrikman bounds for
the EMT.
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7.4 Dynamic Elasticity

Let ρ and ρ̃ be two positive constants. Physically, ρ and ρ̃ denote the densities
of the background and the anomaly, respectively. Consider the transmission
problem ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µu + ω2ρu = 0 in Ω \D ,

Lλ̃,µ̃u + ω2ρ̃u = 0 in D ,
∂u
∂ν

= g on ∂Ω ,

u
∣∣
+
− u
∣∣
− = 0 on ∂D ,

∂u
∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D .

(7.31)

Suppose that

ω2ρ is not an eigenvalue for the operator − Lλ,µ in L2(Ω)
with homogeneous Neumann boundary conditions,

we can prove existence and uniqueness of a solution to (7.31) for δ small
enough.

Let Nω(x, y) be the Neumann function for Lλ,µ +ω2ρ in Ω corresponding
to a Dirac mass at y. That is, Nω is the solution to

⎧
⎨

⎩

Lλ,µNω(x, y) + ω2ρNω(x, y) = −δy(x)Id in Ω ,

∂N
∂ν

∣∣∣∣
∂Ω

= 0 .

Following the same lines as in the derivation in the static case of the asymp-
totic expansion of the displacement field as δ →, we find that for any x ∈ ∂Ω,

u(x) = U(x)−δd

[
∂U(z)∂zNω(x, z)M+ω2(ρ−ρ̃)|B|Nω(x, z)U(z)

]
+O(δd+1) ,

where M is the EMT associated with B and the pairs of Lamé coefficients
(λ, µ) and (λ̃, µ̃).

7.5 Modified Stokes System

In soft tissues, quasi-incompressibility leads to λ � µ and thus the compres-
sion waves propagate much faster than the shear waves. To remove λ from
consideration, we replace the elasticity system in biological tissues with a
sequence of nonhomogeneous modified Stokes systems. Then we derive the
leading-order term in the displacement field perturbations that are due to the
presence of a small volume anomaly.
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7.6 Nearly Incompressible Bodies

We formally establish an asymptotic development of the solution to (7.15) as
λ and λ̃ go to +∞ with λ̃/λ of order one. We find that the displacement field
u can be represented in the form of a power series:

u = u0 + (
1
λ

χ(Ω \D) +
1

λ̃
χ(D)) u1 + (

1
λ2

χ(Ω \D) +
1

λ̃2
χ(D)) u2 + . . . ,

where ui for i = 0, 1, . . . , are solutions to modified Stokes systems, the one
used for computing the leading-order term u0 being homogeneous. It can
be proven that this asymptotic series strongly converges in an appropriate
Sobolev space.

Suppose for simplicity that
∫

∂Ω

g ·N = 0. Set

p :=

{
λ∇ · u in Ω \D ,

λ̃∇ · u in D ,
(7.32)

and rewrite (7.15) in the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆u + (1 +
µ

λ
)∇p + ω2u = 0 in Ω \D ,

µ̃∆u + (1 +
µ̃

λ̃
)∇p + ω2u = 0 in D ,

u
∣∣
− = u

∣∣
+

on ∂D ,

(pN + µ̃
∂u
∂N

)
∣∣∣∣
−

= (pN + µ
∂u
∂N

)
∣∣∣∣
+

on ∂D ,

u
∣∣
∂Ω

= g .

(7.33)

We look for a solution of (7.33) in the form of power series
⎧
⎪⎪⎨

⎪⎪⎩

u = u0 + (
1
λ

χ(Ω \D) +
1

λ̃
χ(D)) u1 + (

1
λ2

χ(Ω \D) +
1

λ̃2
χ(D)) u2 + . . . ,

p = p0 + (
1
λ

χ(Ω \D) +
1

λ̃
χ(D)) p1 + (

1
λ2

χ(Ω \D) +
1

λ̃2
χ(D)) p2 + . . . .

This leads to the recurrence relations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ∆ + ω2)u0 +∇p0 = 0 in Ω \D ,

(µ̃∆ + ω2)u0 +∇p0 = 0 in D ,

u0

∣∣
− = u0

∣∣
+

on ∂D ,

(p0|+ − p0|−)N + µ
∂u0

∂N

∣∣∣∣
+

− µ̃
∂u0

∂N

∣∣∣∣
−

= 0 on ∂D ,

∇ · u0 = 0 in Ω ,

u0 = g on ∂Ω ,∫

Ω

p0 = 0 ,

(7.34)
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and, for j ≥ 1,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ∆ + ω2)uj +∇pj + µ∇pj−1 = 0 in Ω \D ,

(µ̃∆ + ω2)uj +∇pj + µ̃∇pj−1 = 0 in D ,

uj

∣∣
− =

(
λ̃

λ

)j

uj

∣∣
+

on ∂D ,

(
λ̃

λ

)j (
pj |+N + µ

∂uj

∂N

∣∣∣∣
+

)
−
(

pj |−N + µ̃
∂uj

∂N

∣∣∣∣
−

)
= 0 on ∂D ,

∇ · uj = pj−1 in Ω ,

uj = 0 on ∂Ω ,∫

Ω

pj = 0 .

(7.35)

Equations (7.34) are the time-harmonic linearized equations of incompressible
fluids or the modified Stokes system. Equations (7.35) are nonhomogeneous.

Suppose that the anomaly D = δB + z. We derive the leading-order term
in the asymptotic expansion of u0 as δ goes to zero.

7.6.1 Formal Derivations

We give a formal derivation of the leading-order term in the asymptotic ex-
pansion of u0 as δ → 0. Let (U0, q0) denote the background solution to the
modified Stokes system (7.36), that is, the solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(µ∆ + ω2)U0 +∇q0 = 0 in Ω ,

∇ ·U0 = 0 in Ω ,

U0 = g on ∂Ω ,∫

Ω

q0 = 0 .

(7.36)

Note that if U is a shear wave (i.e. divergence-free) then q0 = 0.
We introduce the local variables ξ = (y − z)/δ for y ∈ Ω, and set û0(ξ) =

u0(z + δξ). We expect again that u0(y) will differ appreciably from U0(y)
for y near z, but it will differ little from U0(y) for y far from z. Therefore,
we shall represent the field u0 (and p0) by two different expansions, an inner
expansion for y near z, and an outer expansion for y far from z. The outer
expansion must begin with U0 (respectively q0), so we write:

u0(y) = U0(y) + δτ1U1(y) + δτ2U2(y) + . . . ,

p0(y) = q0(y) + δτ1q1(y) + δτ2q2(y) + . . . , for |y − z| � O(δ) ,

where 0 < τ1 < τ2 < . . ., U1,U2, . . . , and q1, q2, . . . , are to be found.
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We write the inner expansion as

û0(ξ) = u0(z + δξ) = v̂0(ξ) + δv̂1(ξ) + δ2v̂2(ξ) + . . . ,

p̂0(ξ) = p0(z + δξ) = p̂0(ξ) + δp̂1(ξ) + δ2p̂2(ξ) + . . . , for |ξ| = O(1) ,

where v̂0, v̂1, . . . , are to be found. We assume that the functions v̂j , j =
0, 1, . . . , are defined not just in the domain obtained by stretching Ω, but
everywhere in R

3.
In order to determine the functions Ui(y), qi(y) and v̂i(ξ), p̂i(ξ), we have

to equate the inner and the outer expansions in some overlap domain within
which the stretched variable ξ is large and y − z is small. In this domain the
matching conditions are:

U0(y) + δτ1U1(y) + δτ2U2(y) + . . . ∼ v̂0(ξ) + δv̂1(ξ) + δ2v̂2(ξ) + . . .

and

q0(y) + δτ1q1(y) + δτ2q2(y) + . . . ∼ p̂0(ξ) + δp̂1(ξ) + δ2p̂2(ξ) + . . . .

If we substitute the inner expansion into the transmission problem (7.34)
and formally equate coefficients of δ−2, δ−1 we get: v̂0(ξ) = U0(z), and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v̂1 +∇p̂0 = 0 in R
3 \B ,

µ̃∆v̂1 +∇p̂0 = 0 in B ,

v̂1|− − v̂1|+ = 0 on ∂B ,

(p̂0N + µ̃
∂v̂1

∂N
)|− − (p̂0N + µ

∂v̂1

∂N
)|+ = 0 on ∂B ,

∇ · v̂1 = 0 in R
3 ,

v̂1(ξ) → ∇U0(z)ξ as |ξ| → +∞ ,

p̂0(ξ) → 0 as |ξ| → +∞ .

(7.37)

Therefore, we arrive at the following (inner) asymptotic formula:

u0(x) ≈ U0(z) + δv̂1(
x− z

δ
) for x near z . (7.38)

Note that ∇ξ · (∇U0(z)ξ) = ∇ ·U0(z) = 0 in R
3. Furthermore, we can prove

that v̂1 admits the following representation

v̂1(ξ) =

{
∇U0(z)ξ + S0

B [ψ̂](ξ) in R
3 \B ,

S0
B [φ̂](ξ) in B ,

(7.39)

where (φ̂, ψ̂) is the unique solution to
⎧
⎨

⎩

S0
B [φ̂]− S0

B [ψ̂] = ∇U0(z)ξ on ∂B ,

µ̃(−1
2

+ (K0
B)∗)[φ̂]− µ(

1
2

+ (K0
B)∗)[ψ̂] =

∂

∂n
(∇U0(z)ξ) on ∂B .

(7.40)
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We now derive the outer expansion. Recall that kT = ω/
√

µ. One can see
from (7.34) and (7.36) that (u0 −U0, p0 − q0) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + k2
T )(u0 −U0) +

1
µ
∇(p0 − q0) = 0 in Ω \D ,

(∆ + k2
T )(u0 −U0) +

1
µ
∇(p0 − q0) = (k2

T − k̃2
T )u0

+
(

1
µ
− 1

µ̃

)
∇p0 in D ,

(u0 −U0)
∣∣
+
− (u0 −U0)

∣∣
− = 0 on ∂D ,

1
µ

(p0 − q0)
∣∣
+
N +

∂

∂N
(u0 −U0)

∣∣
+

=
1
µ

(p0 − q0)
∣∣
−N

+
∂

∂N
(u0 −U0)

∣∣
− +

µ̃− µ

µ

∂u0

∂N

∣∣∣∣
−

on ∂D ,

∇ · (u0 −U0) = 0 in Ω ,

u0 −U0 = 0 on ∂Ω .

(7.41)

Integrating the first equation in (7.41) against the Green function ΓkT (x, y)
over y ∈ Ω \ D and using the divergence theorem, we obtain the following
representation formula for x ∈ Ω:

u0(x) = U0(x) + (
µ̃

µ
− 1)

∫

∂D

ΓkT (x, y)
∂u0

∂N
|−(y) dσ(y)

+ (
1
µ
− 1

µ̃
)
∫

D

ΓkT (x, y)∇p0(y) dy + ω2(
1
µ
− 1

µ̃
)
∫

D

ΓkT (x, y)u0(y) dy .

Since ∫

∂D

∂u0

∂N
|−(y) dσ(y) +

1
µ̃

∫

D

∇p0(y) dy = −k̃2
T

∫

D

u0 dy ,

as can be seen by integration by parts, we obtain from the inner expansion
that for x far away from z,

u0(x) ≈ U0(x) + δ3
3∑

i,j,�=1

ei∂�G
kT
ij (x, z)

[
(
µ̃

µ
− 1)

∫

∂B

(
∂v̂1

∂N

)

j

∣∣∣∣
−

(ξ)ξ� dσ(ξ)

+ (
1
µ
− 1

µ̃
)
∫

B

∂j p̂0(ξ)ξ� dξ

]
,

where (∂v̂1/∂N)j is the j-th component of ∂v̂1/∂N, which we may simplify
as follows

u0 −U0 ≈ δ3(
µ̃

µ
− 1)

3∑

i,j,�=1

ei∂�G
kT
ij (·, z)

∫

B

(∂j v̂1� + ∂�v̂1j)(ξ) dξ . (7.42)

Here v̂1j denotes the j-th component of v̂1.
Formulae (7.38) and (7.42) are formally derived asymptotic inner and outer

expansions. They can be rigorously proven using layer potential techniques.
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7.6.2 Viscous Moment Tensor

Let d(ξ) := (1/3)
∑

k ξkek and v̂pq, for p, q = 1, 2, 3, be the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v̂pq +∇p̂ = 0 in R
3 \B ,

µ̃∆v̂pq +∇p̂ = 0 in B ,

v̂pq|− − v̂pq|+ = 0 on ∂B ,

(p̂N + µ̃
∂v̂pq

∂N
)|− − (p̂N + µ

∂v̂pq

∂N
)|+ = 0 on ∂B ,

∇ · v̂pq = 0 in R
3 ,

v̂pq(ξ) → ξpeq − δpqd(ξ) as |ξ| → ∞ ,

p̂(ξ) → 0 as |ξ| → +∞ .

(7.43)

We define the viscous moment tensor (VMT) (V pq
ij )i,j,p,q=1,2,3 by

V pq
ij = (µ̃− µ)

∫

B

∇v̂pq · (∇(ξiej) +∇(ξiej)T ) dξ . (7.44)

It is worth mentioning that the notion of a VMT can be defined in the same
manner for two dimensions.

We will realize the notion of a VMT as a limit of the corresponding notion
for the elasticity, the EMT, from which all the important properties of VMT
will immediately follow. Before doing that, we rewrite (7.38) and (7.42) using
the VMT.

Since U0 is divergence-free, we have

∇U0(z)ξ =
∑

p,q

∂qU0(z)p(ξpeq − δpqd(ξ)) ,

and hence

v̂1 =
3∑

p,q=1

∂qU0(z)pv̂pq .

By (7.38) and (7.42), we have the following asymptotic expansions. Let v̂pq

be the solution to (7.43). Then

u0(x) ≈ U0(z) + δ

3∑

p,q=1

∂qU0(z)pv̂pq(
x− z

δ
) for x near z .

Let (V pq
ij ) be the VMT defined by (7.44). The following expansion holds uni-

formly for x ∈ ∂Ω:

(u0 −U0)(x) ≈ δ3

[ 3∑

i,j,p,q,�=1

e�∂jG
kT

�i (x, z)∂qU0(z)pV
pq
ij

]
. (7.45)
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The viscous moment tensor can also be defined using the layer potentials.
Let (φ̂pq, ψ̂pq) be the unique solution to the following system of equations on
∂B:
⎧
⎨

⎩

S0
B [φ̂pq]− S0

B [ψ̂pq] = ξpeq − δpqd(ξ) ,

µ̃(−1
2

+ (K0
B)∗)[φ̂pq]− µ(

1
2

+ (K0
B)∗)[ψ̂pq] =

∂

∂n
(ξpeq − δpqd(ξ)) .

(7.46)

Then we have

v̂pq(ξ) =

{
ξpeq − δpqd(ξ) + S0

B [ψ̂pq](ξ) in R
3 \B ,

S0
B [φ̂pq](ξ) in B .

(7.47)

Integrating by parts, and using (7.46), and (7.47), we have

V pq
ij = (µ̃− µ)

∫

B

∇v̂pq : (∇(ξiej) +∇(ξiej)T ) dξ

= (µ̃− µ)
∫

B

∇v̂pq : (∇(ξiej − δijd(ξ)) +∇(ξiej − δijd(ξ))T ) dξ

= (µ̃− µ)
∫

∂B

v̂pq ·
∂

∂N
(ξiej − δijd(ξ))

=
∫

∂B

(
µ̃S0

B [φ̂pq]− µS0
B [ψ̂pq]− µ∇(ξiej − δijd(ξ))

)
· ∂

∂N
(ξiej − δijd(ξ))

=
∫

∂B

(
µ̃(−1

2
+ (K0

B)∗)[φ̂pq]− µ(−1
2

+ (K0
B)∗)[ψ̂pq]

− ∂

∂n
(ξiej − δijd(ξ))

)
· (ξiej − δijd(ξ))

= µ

∫

∂B

ψ̂pq · (ξiej − δijd(ξ)) .

Therefore,

V pq
ij = µ

∫

∂B

ψ̂pq · (ξiej − δijd(ξ)), i, j, p, q = 1, 2, 3 , (7.48)

where (φ̂pq, ψ̂pq) is the unique solution to (7.46).
As the Stokes system appears as a limiting case of the Lamé system, there

is a strong relation between VMT and EMT, which we give now.
Let M = (mpq

ij ) be the EMT associated with the domain B and the pairs
of Lamé parameters (λ, µ) and (λ̃, µ̃). We can prove that the following lemma
holds.

Lemma 7.6.1 For i, j, p, q = 1, 2, 3,

V pq
ij = lim

λ,λ̃→∞

⎛

⎝mpq
ij −

δij

3

3∑

k=1

mpq
kk −

δpq

3

3∑

s=1

mss
ij +

δijδpq

9

3∑

k,s=1

mss
kk

⎞

⎠ .
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As an immediate consequence of Lemma 7.6.1 and the symmetry proper-
ties of the EMT, we have the following corollary.

Corollary 7.6.2 For i, j, p, q = 1, 2, 3,

V pq
ij = V pq

ji , V pq
ij = V qp

ij , V pq
ij = V ij

pq . (7.49)

Moreover, the following holds:
∑

p

V pp
ij = 0 for all i, j and

∑

i

V pq
ii = 0 for all p, q . (7.50)

The relation in Lemma 7.6.1 has an interesting interpretation. The VMT V
and the EMT M are 4-tensors and can be regarded as linear transformations
on the space of symmetric matrices because of their symmetry. Recall that
Λ2 defined by (7.24) is the orthogonal projection from the space of symmetric
matrices onto the space of symmetric matrices of trace zero. Then the relation
in Lemma 7.6.1 is equivalent to

V = lim
λ,λ̃→+∞

Λ2MΛ2 . (7.51)

The formula (7.51) enables us to compute the VMT from the known for-
mula of the EMT. For example, if B is a two dimensional disk, then we have
from (7.51) and (7.25) that

V = 4 |B|µ (µ̃− µ)
µ̃ + µ

Λ2 .

Moreover, taking the limits of the bounds (7.28) and (7.30) as λ, λ̃ → +∞
shows that in two dimensions (1/(2µ))V satisfies the bounds

1
( µ̃

µ − 1)
Tr(

1
2µ

V ) ≤ |B|(1 +
µ

µ̃
) , (7.52)

(
µ̃

µ
− 1)Tr((

1
2µ

V )−1) ≤ 1
|B| (1 +

µ̃

µ
) . (7.53)

Note that, in view of Theorem 7.1.2, the right-hand sides of (7.52) and (7.53)
are exactly the Hashin-Shtrikman bounds (7.9) for the PT associated with
the same domain B and the conductivity contrast k = µ̃/µ.

7.7 Diffusion Equation

In optical tomography, the radiation transfer equation being an integro-
differential equation, it leads to numerical problems of prohibited size unless
simplifications are made. A common simplification, that is justified at least in
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the case of strongly scattering media, is the diffusion approximation. Assuming
the speed of the light is constant in the medium, the diffusion approximation
can be written as

⎧
⎪⎨

⎪⎩

i
ω

c
u−∇ · q∇u + σu = 0 in Ω ,

q
∂u

∂ν
= g on ∂Ω ,

(7.54)

where q is the diffusion coefficient, σ the absorption coefficient, c the presum-
ably constant speed of light, and ω a given frequency.

Suppose that Ω contains a small anomaly of the form D = δB+z, as before.
Denote by q0 and σ0 the diffusion coefficient and the absorption coefficient of
the background medium Ω, and assume that q0 > 0 and σ0 > 0 are positive
constants. Let q� > 0 and σ� > 0 denote the diffusion coefficient and the
absorption coefficient of the anomaly D, which are also assumed to be positive
constants.

In the exactly same manner as Theorem 7.2.1, we can prove that the
following asymptotic formula holds.

Theorem 7.7.1 If U denotes the background solution (in the absence of any
anomalies) then, for any x ∈ ∂Ω,

u(x) = U(x)− δd

(
∇U(z)M(λ,B)∇zN(x, z)

+ (σ� − σ0)|B|U(z)N(x, z)
)

+ O(δd+1) ,

where the Neumann function N is given by
⎧
⎪⎨

⎪⎩

i
ω

c
N(x, z)− q0∆xN(x, z) + σ0N(x, z) = δz in Ω ,

∂N

∂νx
= 0 on ∂Ω ,

and M the PT defined in (7.3) with λ given by

λ :=
(q�/q0) + 1

2((q�/q0)− 1)
.
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8

Imaging Techniques

In this chapter we apply the accurate asymptotic formulae derived in Chap. 7
for the purpose of identifying the location and certain properties of the shape
of the anomalies. We also discuss time-domain imaging of small anomalies.
We restrict ourselves to conductivity and electromagnetic imaging and single
out simple fundamental algorithms. Based on the asymptotic modeling in
Sect. 7.4, these algorithms can be extended in the context of elastic imaging
to detect the location and the EMT of a small elastic anomaly.

8.1 Projection Type Algorithms

The projection algorithm is a fast, stable, and efficient algorithm. It takes
advantage of the smallness of the anomalies. For the sake of simplicity, we
only consider the reconstruction of small conductivity anomalies. A similar
algorithm to the one described here can be designed for imaging small elastic
anomalies.

The method of finding conductivity anomalies is based on the asymptotic
expansion formula (7.2). However, the formula (7.2) is expressed in terms of
the Neumann function N(x, z) which depends on the domain Ω. There is a
trick to overcome this difficulty. For g ∈ L2

0(∂Ω), define the harmonic function
H[g](x), x ∈ R

d \Ω, by

H[g](x) := −SΩ(g)(x) +DΩ(u|∂Ω)(x) , x ∈ R
d \Ω . (8.1)

Since −SΩ(g)(x) +DΩ(U |∂Ω)(x) = 0 for x ∈ R
d \Ω, we have

H[g](x) = DΩ(u|∂Ω − U |∂Ω)(x) . (8.2)

Then by using a simple formula DΩ(N(· − z))(x) = Γ (x − z) for z ∈ Ω and
x ∈ R

d \Ω, we get

H[g](x) = −δd∂U(z)M(λ,B)∂zΓ (x− z) + O(δd+1) , (8.3)
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for all x ∈ R
d \Ω.

The projection algorithm makes use of constant current sources. We want
to apply a special type of current that makes ∂U constant in D. Injection
current g = a · ν for a fixed unit vector a ∈ R

d yields ∇U = a in Ω.
Let H[a ·ν] denote the function H in (8.2) corresponding to the Neumann

data g = a · ν. Assume for the sake of simplicity that d = 2 and D is a disk.
Then from (7.7) and (8.3), it follows that

H[a · ν](x) ≈ (k − 1)|D|
π(k + 1)

(x− z) · a
|x− z|2 + O(δ3) , x ∈ R

2 \Ω . (8.4)

The first step for the reconstruction procedure is to locate the anomaly.
The location search algorithm is as follows. Take two observation lines Σ1 and
Σ2 contained in R

2 \Ω given by

Σ1 := a line parallel to a ,

Σ2 := a line normal to a .

Find two points Pi ∈ Σi, i = 1, 2, so that

H[a · ν](P1) = 0, H[a · ν](P2) = max
x∈Σ2

|H[a · ν](x)| .

From (8.4), we can see that the intersecting point P of the two lines

{(x− P1) · a = 0} and {(x− P2) · a⊥ = 0}

is close to the center z of the anomaly D.
Once we locate the anomaly, the factor |D|(k − 1)/(k + 1) can be esti-

mated. Note that this information is a mixture of the conductivity and the
volume. It is impossible to extract the conductivity from the PT. A small
anomaly with high conductivity and larger anomaly with lower conductivity
can have the same PT.

An arbitrary shaped anomaly can be represented and visualized by means
of an ellipse or an ellipsoid with the same polarization tensor. See Fig. 8.1.

8.2 Multiple Signal Classification Type Algorithms

The MUSIC algorithm is essentially a method of characterizing the range of
a self-adjoint operator. Suppose A is a self-adjoint operator with eigenvalues
λ1 ≥ λ2 ≥ . . . and corresponding eigenvectors v1, v2, . . .. Suppose the eigen-
values λn+1, λn+2, . . . are all zero, so that the vectors vn+1, vn+2, . . . span the
null space of A. Alternatively, λn+1, λn+2, . . . could merely be very small,
below the noise level of the system represented by A; in this case we say
that the vectors vn+1, vn+2, . . . span the noise subspace of A. We can form
the projection onto the noise subspace; this projection is given explicitly by
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Fig. 8.1. Detection of the location and the polarization tensor of a small arbi-
trary shaped anomaly by a projection type algorithm. The shape of the anomaly is
approximated by an ellipse with the same polarization tensor.

Pnoise =
∑

p>n vpvp
T , where the subscript T denotes the transpose and the

bar denotes the complex conjugate. The (essential) range of A, meanwhile, is
spanned by the vectors v1, v2, . . . , vn.

The key idea of MUSIC is this: because A is self-adjoint, we know that
the noise subspace is orthogonal to the (essential) range. Therefore, a vector
f is in the range of A if and only if its projection onto the noise subspace is
zero, i.e., if ||Pnoisef || = 0, or equivalently,

1
||Pnoisef ||

= +∞ . (8.5)

Equation (8.5) is the MUSIC characterization of the range of A. If A is not
self-adjoint, MUSIC can be used with the singular-value decomposition (SVD)
instead of the eigenvalue decomposition.

MUSIC is generally used in signal processing problems as a method for
estimating the individual frequencies of multiple time-harmonic signals.

In this section we apply the MUSIC algorithm to determine the locations
of several small electromagnetic anomalies.

Suppose that an electromagnetic medium occupies a bounded domain Ω
in R

d, with a connected C2-boundary ∂Ω. Suppose that Ω contains a finite
number of well-separated small anomalies, each of the form Ds = δBs + zs,
where zs ∈ Ω and Bs is a C2-bounded domain in R

d containing the origin.
Let µ0 and ε0 denote the magnetic permeability and the electric permit-

tivity of the background medium Ω, and assume that µ0 > 0 and ε0 > 0
are positive constants. Let µs > 0 and εs > 0 denote the permeability and
the permittivity of the anomaly Ds, which are also assumed to be positive
constants. Introduce the piecewise-constant magnetic permeability

µδ(x) =

{
µ0 , x ∈ Ω \ ∪sDs ,

µs , x ∈ Ds, s = 1, . . . , m ,
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and define the piecewise constant electric permittivity, εδ(x), analogously.
Let the electric field u denote the solution to the Helmholtz equation

∇ · ( 1
µδ
∇u) + ω2εδu = 0 in Ω ,

with the boundary condition u = f ∈ W 2
1
2
(∂Ω), where ω > 0 the operating

frequency. Assume that (7.11) holds. Since the anomalies are well-separated,
it follows from (7.12) that the following asymptotic formula holds. For any
x ∈ ∂Ω,

∂u

∂ν
(x) =

∂U

∂ν
(x) + δd

m∑

s=1

(
∇U(zs)M(λs, Bs)

∂∇zGk0(x, zs)
∂νx

+ ω2µ0(εs − ε0)|Bs|U(zs)
∂Gk0(x, zs)

∂νx

)
+ O(δd+1) ,

where M(λs, Bs) is the polarization tensor defined in (7.3) with λs given by

λs :=
(µ0/µs) + 1

2((µ0/µs)− 1)
.

Therefore, for any smooth function V satisfying (∆ + k2
0)V = 0 in Ω, we

have
∫

∂Ω

(
∂u

∂ν
− ∂U

∂ν
)(x)V (x) dσ(x) ≈ δd

m∑

s=1

(
∇U(zs)M(λs, Bs)∇V (zs)

+ω2µ0(εs − ε0)|Bs|U(zs)V (zs)
)

.

Let (θ1, . . . , θn) be n unit vectors in R
d. For arbitrary θ ∈ {θ1, . . . , θn},

one assumes that one is in possession of the boundary data ∂u/∂ν when the
object Ω is illuminated with the plane wave U(x) = eik0θ·x. Therefore, taking
V (x) = eik0θ′·x for θ′ ∈ {θ1, . . . , θn}, shows that we are in possession of

δdk2
0

m∑

s=1

(
− θT ·M(λs, Bs) · θ′ + (

εs

ε0
− 1)|Bs|)

)
eik0(θ+θ′)·zs ,

for θ, θ′ ∈ {θ1, . . . , θn}. Define the matrix A = (All′)n
l,l′=1 ∈ C

n×n by

All′ =
m∑

s=1

(
θT

l ·Ms · θl′ + (1− εs

ε0
)|Bs|

)
eik0(θl+θl′ )·zs , l, l′ = 1, . . . , n ,

where Ms := M(λs, Bs). Introduce the notation

vs =
(

(1, θ1)T eik0θ1·zs , . . . , (1, θn)T eik0θn·zs

)T



8.2 Multiple Signal Classification Type Algorithms 155

to rewrite the matrix A as a sum of outer products:

A =
m∑

s=1

vs

⎛

⎝ (1− εs

ε0
)|Bs| 0

0 Ms

⎞

⎠ vT
s .

Our matrix A, called the multi-static response matrix (MSR), is symmet-
ric, but it is not Hermitian. We form a Hermitian matrix Ã = AA. We note
that A is the frequency-domain version of a time-reversed multi-static response
matrix; thus Ã corresponds to performing an experiment, time-reversing the
received signals and using them as input for a second experiment. The matrix
Ã can be written as follows

Ã =
m∑

s=1

vs

⎛

⎝ (1− εs

ε0
)|Bs| 0

0 Ms

⎞

⎠ vs
T

m∑

s=1

vs

⎛

⎝ (1− εs

ε0
)|Bs| 0

0 Ms

⎞

⎠ vT
s .

For any point z ∈ Ω we define gz by

gz =
(

(1, θ1)T eik0θ1·z, . . . , (1, θn)T eik0θn·z
)T

.

It can be shown that there exists n0 ∈ N, n0 > (d+1)m, such that for any
n ≥ n0 the following statement holds:

gz ∈ Range(Ã) if and only if z ∈ {z1, . . . , zm} .

The MUSIC algorithm can now be used as follows to determine the location
of the anomalies. Let Pnoise = I − P , where P is the orthogonal projection
onto the range of Ã. Given any point z ∈ Ω, form the vector gz. The point
z coincides with the location of an anomaly if and only if Pnoisegz = 0.
Thus we can form an image of the anomalies by plotting, at each point z, the
cost function 1/||Pnoisegz||. The resulting plot will have large peaks at the
locations of the anomalies. See Fig. 8.3.

As pointed out the eigenvectors of the Hermitian matrix Ã can be com-
puted by the SVD of the response matrix A. The eigenvalues of Ã are the
squares of the singular values of A. An immediate application of the SVD of
A is the determination of the number of anomalies. If, for example, µs �= µ0

and εs �= ε0 for all s = 1, . . . ,m, then there are exactly (d + 1)m significant
singular values of A and the rest are zero or close to zero. If therefore the SVD
of A has no significant singular values, then there are no detectable anomalies
in the medium. Now, when there are detectable anomalies in the medium,
we can use the eigenvectors corresponding to significant eigenvalues to locate
them since these vectors span the range of Ã. The eigenvectors corresponding
to significant eigenvalues span some kind of signal subspace in the sense that
they contain nearly all the information about the inclusions which can be ex-
tracted from the MSR matrix. The others span some kind of noise subspace.
See Fig. 8.2.
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The significant singular values of A can be used to estimate ((εs/ε0) −
1)|D| and the eigenvalues of δdMs. To illustrate this, let us for simplicity
consider the two-dimensional case and assume that there is only one anomaly
of circular shape in the background, i.e. m = 1. From the boundary data
∂u/∂ν corresponding to the illumination in the θ-direction of the object Ω
with the plane wave

U(x) = eik0θ·x, θ ∈ {θ1, . . . , θn} ,

we can reconstruct the coefficients

((ε1/ε0)− 1)|D| and 2|D|k2
0(µ1 − µ0)/(µ1 + µ0)

as the singular values of the matrix −δ2k2
0A, the second one being with mul-

tiplicity two.
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Fig. 8.2. SVD of the muti-static response matrix A corresponding to two well-
separated electromagnetic anomalies of general shape for n = 20, using a standard
log scale. 6 singular values emerge from the 14 others in the noise subspace.

Based on the asymptotic modeling in Sect. 7.4, our MUSIC-type algorithm
can be extended to elastic imaging. Again, it yields a fast numbering, accu-
rate localization, and optimal estimates of the elastic and geometric (elastic
moment tensors) of the anomalies from a singular value decomposition of the
corresponding MSR matrix.

8.3 Time-Domain Imaging

In this section, we briefly discuss some promising techniques for imaging small
anomalies in the time-domain. As with time-independent problems, asymp-
totic expansions are derived for the purpose of identifying the location and
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Fig. 8.3. MUSIC type reconstruction from the SVD of A represented in Fig. 8.2.

certain properties of the shape of the anomalies from measurements in the
time-domain. Two classes of imaging techniques are described: (i) Fourier
and MUSIC-type algorithms based on weighted asymptotic formulae and (ii)
a time-reversal approach based on a pointwise asymptotic formula together
with the spatial reciprocity and the time reversal invariance of the wave equa-
tion.

8.3.1 Fourier- and MUSIC-Type Algorithms

Let Tf be a final observation time, ΩTf
= Ω×]0, Tf [, ∂ΩTf

= ∂Ω×]0, Tf [, and
u1 ∈ L2(Ω). Suppose that the Neumann boundary data g ∈ C0(0, Tf ;L2(∂Ω))
and the initial data u0 ∈W 1,2(Ω) are subject to the compatibility condition

∂u0

∂ν
= g(·, 0) on ∂Ω .

Consider the initial boundary value problem for the wave equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2
t u−∇ ·

(
χ(Ω \D) + kχ(D)

)
∇u = 0 in ΩTf

,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) for x ∈ Ω ,

∂u

∂ν
= g on ∂ΩTf

.

(8.6)

Define the background solution U to be the solution of the wave equation
in the absence of any anomalies. Thus U satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂2
t U −∆U = 0 in ΩTf

,

U(x, 0) = u0(x), ∂tU(x, 0) = u1(x) for x ∈ Ω ,

∂U

∂ν
= g on ∂ΩTf

.

The following asymptotic expansion of weighted boundary measurements
holds as δ → 0.
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Theorem 8.3.1 (Weighted Boundary Measurements) Let w ∈ C∞
(ΩTf

) satisfy (∂2
t − ∆)w(x, t) = 0 in ΩTf

with ∂tw(x, Tf ) = w(x, Tf ) = 0
for x ∈ Ω. Define the weighted boundary measurements

Iw(Tf ) :=
∫

∂ΩTf

(u− U)(x, t)
∂w

∂ν
(x, t) dσ(x) dt .

Then, for any fixed Tf > diam(Ω), the following asymptotic expansion for
Iw(Tf ) holds as δ → 0:

Iw(Tf ) ≈ δd

∫ Tf

0

∇U(z, t)M(k,B)∇w(z, t) dt , (8.7)

where M(k,B) is defined by (7.3).

Let θ and θ′ be two vectors in R
d such that |θ| = |θ′|. Choose the w to be

the Dirac function at t = x · θ/|θ| and U to be a plane wave:

w(x, t) = δt=x·θ/|θ| and U(x, t) = ei(θ′·x+|θ′|t) .

With the notation of Sect. 8.2, the asymptotic expansion (8.7) yields

I(θ, θ′) := Iw(Tf ) ≈ iδd
m∑

s=1

θM(ks, Bs)θ′ei(θ+θ′)·zs ,

where zs for s = 1, . . . ,m, are the locations of the conductivity anomalies
Ds = zs + δBs that have conductivities ks �= 1.

Based on Theorem 8.3.1 we propose the following three direct algorithms.
The first and second algorithms are of Fourier type while the third one is of
MUSIC type.

Let r > 0 and let (θ1, . . . , θn) be n vectors in Sr, where Sr denotes the
(d−1)-sphere of radius r which is centered at the origin. Suppose that we are
in possession of I(θ, θ′) for θ, θ′ ∈ (θ1, . . . , θn).

First algorithm: Suppose that θ = θ′. Suppose that r takes values r0 = 0 <
r1 < . . . < rp = R. Then, applying Shannon’s sampling theorem 2.3.1, a
numerical discrete fast Fourier inversion of a sample of I(θ, θ) will yield
the locations zs with a spatial resolution of order 2π/R as δ goes to zero.

Second algorithm: Since any vector ζ ∈ B2r, where B2r is the ball of radius
2r centered at the origin, can be written as the sum of two vectors θ and
θ′ ∈ Sr, then defining I(ζ) := I(θ, θ′) for ζ = θ + θ′, a numerical discrete
fast Fourier inversion of a sample of I(ζ) will yield the locations zs with
a spatial resolution of order π/r as δ goes to zero.

Third algorithm: Fix r > 0. Consider the response matrix A = (All′)n
l,l′=1,

where All′ = I(θl, θl′). Let

gz =
(

θT
1 eiθ1·z, . . . , θT

n eiθn·z
)T

.
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We can prove that

gz ∈ Range (A) if and only if z ∈ {z1, . . . , zm} .

As with the Helmholtz equation, the MUSIC algorithm is as follows. De-
note Pnoise the orthogonal projection onto the left null space (noise space)
of the matrix A. We can form an image of the locations, z1, . . . , zm, by
plotting, at each point z, the quantity 1/‖Pnoisegz‖. The operator Pnoise
is computed via a singular value decomposition of the matrix A.

8.3.2 Time-Reversal Imaging

We shall present the time-reversal method in the context of imaging small
conductivity anomalies. The main idea of time-reversal is to take advantage
of the reversibility of the wave equation in a non-dissipative unknown medium
to back-propagate signals to the sources that emitted them.

For the sake of simplicity, we only consider the three-dimensional problem
but stress that the time-reversal imaging discussed here applies directly to
problems in two dimensions. The derivations in this section are formal.

Asymptotic Formula

Let y ∈ R
3 be such that |y − z| � δ. Set

U(x, t) := Uy(x, t) :=
δt=|x−y|
4π|x− y| for x �= y . (8.8)

Uy is a fundamental solution to the wave equation. It satisfies

(∂2
t −∆)Uy(x, t) = δx=yδt=0 in R

3×]0,+∞[ ,

in the sense of distributions, together with the initial conditions:

Uy(x, 0) = ∂tUy(x, 0) = 0 for x �= y .

Consider the wave equation in the whole three-dimensional space with
appropriate initial conditions:
⎧
⎪⎨

⎪⎩

∂2
t u−∇ ·

(
χ(R3 \D) + kχ(D)

)
∇u = δx=yδt=0 in R

3×]0,+∞[ ,

u(x, 0) = 0, ∂tu(x, 0) = 0 for x ∈ R
3, x �= y .

(8.9)

Let δu := u − U denote the perturbation due to the anomaly. Set T =
|y−z|. Note that Uy(z, t) �= 0 if and only if t = T . Using the method of matched
asymptotic expansions, we can find that, for x ∈ D and t = t(x) ≈ T ,

u(x, t) ≈ U(z, T ) + δv̂1(
x− z

δ
) · ∇Uy(z, T ) , (8.10)
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where v̂1 is given by (7.4). Hence, by (8.10) ∆u ≈ 0 in D. It then follows that
(

∂2
t −∆

)
δu =

(
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

)
δ∂D + (k − 1)χ(D)∆u ≈ (1− 1

k
)
∂u

∂ν

∣∣∣∣
+

δ∂D ,

where δ∂D is the surface Dirac function on ∂D. Therefore, by once again (8.10)
together with an integral representation formula for δu, we can readily get

δu(x, t) ≈ (
1
k
− 1)

∫ t

0

∫

∂D

δτ=t−|x−x′|
4π|x− x′|

∂u

∂ν

∣∣∣∣
+

(x′, τ) dσ(x′) dτ ,

and thus,

δu(x, t) ≈ (
1
k
− 1)

∫

∂D

δt=|x−x′|+T

4π|x− x′|
∂v̂1

∂ν

∣∣∣∣
+

(
x′ − z

δ
) dσ(x′) · ∇Uy(z, T ) .

The jump condition on the normal derivative of v̂1 yields

δu(x, t) ≈ −(k − 1)
∫

∂D

δt=|x−x′|+T

4π|x− x′|
∂v̂1

∂ν

∣∣∣∣
−

(
x′ − z

δ
) dσ(x′) · ∇Uy(z, T ) .

Now for |x− z| � δ, it follows from the identity

(k − 1)
∫

∂B

ξ
∂v̂1

∂ν

∣∣∣∣
−

(ξ) dσ(ξ) = M(k,B) ,

that

δu(x, t) ≈ −δ3∇(
δt=|x−x′|−T

4π|x− x′| )
∣∣∣∣
x′=z

M(k,B)∇Uy(z, T ) ,

or equivalently,

δu(x, t) ≈ −δ3∇Uz(x, t− T )M(k,B)∇Uy(z, T ), t > T .

Theorem 8.3.2 (Pointwise Perturbations) Let u be the solution to (8.9).
Set Uy to be the background solution. The following expansion holds

(u− Uy)(x, t) ≈ −δ3∇Uz(x, t− T )M(k,B)∇Uy(z, T ) for t > T , (8.11)

for x away from z, where T = |y − z|, M(k,B) is defined by (7.3), and Uy

and Uz are given by (8.8).

Theorem 8.3.2 says that the perturbation due to the anomaly is a wave
emitted from the point z at t = T . The anomaly behaves like a dipolar source.
Moreover, by the symmetry of the polarization tensor, (8.11) satisfies a reci-
procity principle, the statement of which is that the perturbation measured at
the source location is the same when one interchanges the source and anomaly
locations. We should be careful with the interpretation of Formula (8.11). As
shown in [6], (8.11) is valid only after truncating the high-frequency compo-
nents (for frequencies ω � O(δ−α) for some α < 1/2) of u,Uy, and Uz.
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Time-Reversal Technique

To image the anomaly by a time-reversal technique, one measures the per-
turbation on a closed surface surrounding the anomaly, and retransmits it
through the background medium in a time-reversed chronology. Then the
perturbation will travel back to the location of the anomaly.

More precisely, let p = M(k,B)∇Uy(z, T ). By changing the origin of time,
T can be set to 0 without loss of generality.

Suppose now that we are able to measure the perturbation u − U and
its normal derivative at any point x on a sphere S englobing the anomaly D
during the interval [0, t0] for t0 large enough. The time-reversal operation is
described by the transform t 
→ t0 − t. Both the perturbation u − U and its
normal derivative on S are time-reversed and emitted from S. Then a time-
reversed perturbation, denoted by (u−U)tr, propagates inside the volume Ω
surrounded by S.

Taking into account the definition (8.8) of the outgoing fundamental so-
lution, spatial reciprocity and time reversal invariance of the wave equation,
it can be shown from Theorem 8.3.2 that the following expression for the
time-reversed perturbation (u− U)tr due to the anomaly D holds in Ω:

(u− U)tr(x, t) ≈ −δ3p ·
∫

R

∫

S

[
Ux(x′, t− τ)

∂∇zUz

∂ν
(x′, t0 − τ)

−∇zUz(x′, t0 − τ)
∂Ux

∂ν
(x′, t− τ)

]
dσ(x′) dτ ,

≈ −δ3p · ∇z

∫

R

∫

S

[
Ux(x′, t− τ)

∂Uz

∂ν
(x′, t0 − τ)

−Uz(x′, t0 − τ)
∂Ux

∂ν
(x′, t− τ)

]
dσ(x′) dτ ,

where

Ux(x′, t− τ) =
δt−τ=|x−x′|
4π|x− x′| .

Multiplying the equation
(

∂2
τ −∆x′

)
Ux(x′, t− τ) = δτ=tδx′=x ,

by Uz(x′, t0 − τ), integrating by parts, and using the equation
(

∂2
τ −∆x′

)
Uz(x′, t0 − τ) = δτ=t0δx′=z ,

we have
∫

R

∫

S

[
Ux(x′, t− τ)

∂Uz

∂ν
(x′, t0 − τ)− Uz(x′, t0 − τ)

∂Ux

∂ν
(x′, t− τ)

]
dσ(x′) dτ

= Uz(x, t0 − t)− Uz(x, t− t0) ,
(8.12)
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and therefore,

(u− U)tr(x, t) ≈ −δ3p · ∇
(

Uz(x, t0 − t)− Uz(x, t− t0)
)

. (8.13)

Equation (8.13) can be interpreted as the superposition of incoming and out-
going spherical waves, centered on the location z of the anomaly. Note that
(u − U)tr remains finite for all time although the incoming and outgoing
spherical waves show a singularity at the point z.

By taking Fourier transform of (8.13) over the time variable t, we obtain
that

F((u− U)tr)(x, ω) ∝ δ3p · ∇
(

sin(ω|x− z|)
|x− z|

)
,

where ω is the wavenumber. This shows that the time-reversal perturbation
(u − U)tr focuses on the location z of the anomaly with a focal spot size
limited to one-half the wavelength which is in agreement with the Rayleigh
resolution limit. It should be pointed out that in the frequency domain, (8.13)
is only valid for 2π/ω � δ.

Connection with the Helmholtz Equation, the MUSIC-type
Algorithm and Backpropagation

Taking the Fourier transform of (8.9) over the time variable t yields the
Helmholtz equation:

∇ ·
(

χ(R3 \D) + kχ(D)
)
∇û + ω2û = −δx=y in R

3 ,

where ω > 0. Place on û the outgoing radiation condition. The background
solution is Ûy(x, ω) = eiω|x−y|/(4π|x−y|). As δ → 0, the following asymptotic
expansion for the perturbation δû due to the anomaly holds:

δû(x, ω) ≈ δ3∇Ûz(x, ω)M(k,B)∇Ûy(z, ω) (8.14)

for x away from z, where Ûz(x, ω) = eiω|x−z|/(4π|x− z|).
Suppose that one measures the perturbation δû and its normal deriva-

tive on a sphere S englobing the anomaly D. To detect the anomaly D one
computes

ŵ(x, ω) :=
∫

S

[
Ûx(x′, ω)

∂δû

∂ν
(x′, ω)− δû(x′, ω)

∂Ûx

∂ν
(x′, ω)

]
dσ(x′) ,

in the domain Ω surrounded by S. Observe that ŵ(x, ω) is a solution to the
Helmholtz equation: (∆ + ω2)ŵ = 0 in Ω.

The following identity, parallel to (8.12), plays a key role in achieving the

resolution limit. Applying Green’s theorem to Ûx(x′, ω) and Ûz(x′, ω), we have
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∫

S

[
Ûx(x′, ω)

∂Ûz

∂ν
(x′, ω)− Ûz(x′, ω)

∂Ûx

∂ν
(x′, ω)

]
dσ(x′) = −2i�mÛz(x, ω) .

(8.15)

In view of (8.15), we immediately find from the asymptotic expansion (8.14)
that

ŵ(x, ω) ∝ δ3p̂ · ∇
(

sin(ω|x− z|)
|x− z|

)
, (8.16)

where p̂ = M(k,B)∇Ûy(z, ω), which shows that ŵ(x, ω) has a peak at the
location z of the anomaly and also proves the Rayleigh resolution limit.

A formula similar to (8.16) can be derived in an inhomogeneous medium
Ω surrounded by S. If ŵ(x, ω) denotes the solution computed from δû and its
normal derivative on S by

ŵ(x, ω) =
∫

S

[
G(x, x′, ω)

∂δû

∂ν
(x′, ω)− δû(x′, ω)

∂G

∂ν
(x, x′, ω)

]
dσ(x′) ,

where G is the Green function in the inhomogeneous medium Ω, then we have

ŵ(x, ω) ∝ ∇�mG(x, z, ω) ,

which shows that the sharper the behavior of �mG at z, the higher the
resolution.

We now turn to the connection with the backpropagation- and MUSIC-
type algorithms. Let (y1, . . . , yn) be n (equidistant) points on S. The MUSIC-
type algorithm for locating D reads:

x ≈ z if and only if
1

∣∣∣∣
ω2

16π2R2
− 1

n

n∑

l=1

∇Ûyl
(x, ω) · ∇Ûz(yl, ω)

∣∣∣∣

≈ +∞ ,

(8.17)
as the radius R of the sphere S goes to +∞ while the backpropagation-type
algorithm is as follows:

x ≈ z if and only if
1
n

n∑

l=1

∇Ûyl
(x, ω) · ∇Ûz(yl, ω) ≈ ω2

16π2R2
.

For sufficiently large n, we have

1
n

n∑

l=1

∇Ûyl
(x, ω) · ∇Ûz(yl, ω) ≈ 1

4πR2

∫

S

∇Ûy(x, ω) · ∇Ûz(y, ω) dσ(y) .

Since

4π∇xÛy(x, ω) = −iω
eiω|y|

|y|
y

|y|e
−iω y

|y| ·x + O(
1
|y|2 ) ,

it follows that
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∫

S

∇Ûy(x, ω)·∇Ûz(y, ω) dσ(y)≈ ω2

16π2R2

∫

S

e−iω y
|y| ·(z−x) dσ(y)=

ω2

4π
j0(ω|z−x|),

as R → +∞, where j0 is the spherical Bessel function of order zero. Hence,

1
n

n∑

l=1

∇Ûyl
(x, ω) · ∇Ûz(yl, ω) ≈ ω2

16π2R2
j0(ω|z − x|)

(
∝ �m Ûz(x, ω)

)
,

which, if one compares with (8.16), shows that time-reversal and backpropa-
gation have the same resolution while (8.17) reduces to the following

x ≈ z if and only if
6R2

16π2ω4|z − x|2 ≈ +∞ ;

and so clearly proves that the MUSIC-type algorithm achieves a sub-wave-
length detection.

Bibliography and Discussion

The anomaly detection techniques developed in this chapter could be seen as
a regularizing method in comparison with iterative approaches; they reduce
the set of admissible solution. Their robustness is related to the fact that the
number of unknowns is reduced.

The projection algorithm was introduced in [87, 20]. The MUSIC algo-
rithm was originally developed for source separation in signal theory [119]. The
MUSIC-type algorithm for locating small electromagnetic anomalies from the
multi-static response matrix at a fixed frequency was developed in [9]. A va-
riety of numerical results was presented in [9, 10, 11] to highlight its potential
and their limitation.

In the case where the data is a discrete version of the Neumann-to-Dirichlet
boundary map, Brühl, Hanke, and Vogelius [32] were the first to use the as-
ymptotic perturbation formula (7.2) for small conductivity anomalies in com-
bination with MUSIC ideas to design a very effective algorithm to determine
the locations of the anomalies. The Neumann functions at the locations of
the anomalies are the eigenvalues of the leading-order term in the asymptotic
expansion of the perturbations in the Neumann-to-Dirichlet boundary map
that are due to the presence of the anomalies. Naturally, and in accordance
with the results proven in [62] on the optimal current pattern problem, these
functions are the optimal currents to apply in order to image the anomalies.

Theorem 8.3.1 is from [3] and Theorem 8.3.2 is from [6]. The inverse prob-
lems of identifying locations and certain properties of the shapes of small
anomalies from dynamic boundary measurements on only part of the bound-
ary and for a finite interval in time have been considered in [3]. In that paper,
a non-iterative algorithm for solving the inverse problems has been proposed
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using as weights particular background solutions constructed by a geometri-
cal control method. See [15] for the reconstruction of elastic anomalies in the
time-domain.

The physical literature on time-reversal is quite rich. See [56] and the ref-
erences therein. Some interesting mathematical works started to deal with
different aspects of time-reversal phenomena: see, for instance, [26] for time-
reversal in the time-domain, [50, 97, 64, 37, 38] for time-reversal in the fre-
quency domain, and [60, 29] for time-reversal in random media.

Up to now, the main clinical application of time-reversal is in ultrasound
therapy (tumor or kidney stone destruction). But, as shown in Sect. 8.3, time-
reversal is expected to lead to a very effective method for anomaly detection.
Focusing on the anomaly may be achieved without any knowledge of the
background medium. When a medium contains several anomalies, after a first
illumination of the medium, the reflected wavefronts can be recorded and time-
reversed. This process can be repeated iteratively. It has been shown by Prada
and Fink in [109] that this process converges and produces a wavefront focused
on the most conductive anomaly. See also [110]. The theoretical analysis of
this iterative time-reversal process led to an elegant method, known as the
DORT method (decomposition of the time-reversal operator in French).

It is worth mentioning that the MUSIC-type algorithm developed in this
chapter is related to the linear sampling method of Colton and Kirsch [43].
We refer to Cheney [39], Kirsch [83], and the recent paper [7] for detailed
discussions of the connection between MUSIC-type algorithms and the lin-
ear sampling method. Our MUSIC algorithm is also related to time-reversal
[110, 97]. With the notation of Sect. 8.2, if A is the multi-static response ma-
trix then Ā is the frequency-domain version of a time-reversed multi-static
response matrix. Thus the matrix Ã = ĀA corresponds to performing an ex-
periment, time-reversed the received signals and using them as input for a
second experiment. The backpropagation algorithm briefly described in the
last section is the analogous of the time-reversal in the frequency domain. The
DORT method is nothing else than saying that the corresponding eigenvec-
tors of ĀA generate incident waves that focus selectively on the anomalies.
As shown in [9], this result is not true in general, but does hold for small
and well-separated anomalies with distinct electromagnetic parameters. See
also [64] for point-like (or purely dielectric) anomalies. The MUSIC algorithm
could be seen as a post-processor to the DORT approach.

The MUSIC algorithm can be adapted to MEG/EEG source localization.
Recursively applied and projected MUSIC (RAP-MUSIC) is a recent exten-
sion of MUSIC for MEG and EEG applications. RAP-MUSIC refines the
MUSIC cost function after each source is found by projecting the signal sub-
space away from the singular vectors corresponding to the sources already
found. See [23].

Finally, it is worth emphasizing that the methods presented in this chapter
enable to detect the locations and the PT from the boundary measurements. It
is the detected PT which yields an information about the size (and orientation)
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of the anomaly. However, the information from the PT is a mixture of the con-
ductivity and the volume. It is impossible to extract the conductivity from
the PT. A small anomaly with high conductivity and larger anomaly with
lower conductivity can have the same PT. It would be interesting and impor-
tant to extract information about the property of the anomaly from boundary
measurements. It is likely that internal measurements yield such information.



9

Magnetic Resonance Electrical Impedance
Tomography

Magnetic resonance electrical impedance tomography (MREIT) is an imag-
ing technique of reconstructing the cross-sectional conductivity distribution
of a human body by means of the EIT technique integrated with the MRI
technique.

In MREIT, one uses a magnetic resonance imaging scanner to measure the
induced magnetic flux density due to an injection current. When one injects a
current into a subject, it produces a magnetic field as well as an electric field.
In EIT, one utilizes only the electrical quantities. Furthermore, since there
is no noninvasive way of getting measurements of electrical quantities from
inside the subject, we are limited in EIT by the boundary current-voltage
data which is insensitive to internal conductivity perturbations. However, one
can enrich the data by measuring the internal magnetic flux density. This
can be done using a magnetic resonance imaging scanner as a tool to capture
the internal magnetic flux density images. This technique is called magnetic
resonance current density imaging (MRCDI). Combining EIT and MRCDI,
MREIT perceives the distortion of current pathways due to the conductivity
distribution to be imaged and overcomes the severe ill-posedness character of
EIT.

In this chapter, we first formulate the forward and inverse problem in
MREIT utilizing the internal magnetic flux density in conductivity image re-
constructions. Then we discuss the uniqueness issue in MREIT. We show that
one should use at least two appropriate injection currents for the uniqueness of
reconstructed conductivity image. After that, we describe the J-substitution
algorithm which provides a high-resolution conductivity image. This algo-
rithm is involved with a nonlinear partial differential equation instead of the
linear conductivity equation.
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9.1 Mathematical Model

Let us explain the mathematical model in MREIT. Let the body occupy a
bounded domain Ω ⊂ R

d, d = 2, 3. When a current density g ∈ L2
0(∂Ω) is

injected through the outer surface of the body Ω, it induces an electrical po-
tential distribution u that satisfies the two-dimensional conductivity equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇x · (γ(x)∇xu) = 0 in Ω ,

γ(x)
∂u

∂ν
= g on ∂Ω ,

∫

∂Ω

u = 0 ,

(9.1)

where γ(x) denotes the conductivity coefficient of the body which we want
to reconstruct. The function γ may be regarded as a piecewise continuous
function because distinct tissues have different conductivities.

With this current g, the resulting internal current density vector is

J = −γ∇u .

The presence of the internal current density J generates a magnetic flux
density B and Ampére’s law J = (1/µ0)∇ × B holds inside the electrically
conducting subject, where the constant µ0 is the magnetic permeability of Ω.
Suppose d = 3 and let the x3-axis be the direction of the main magnetic field
of the MRI scanner. Using the MRI scanner, we can measure B3, the third
component of B. According to the Biot-Savart law, B3 can be expressed as

B3(x) =
µ0

4π

∫

Ω

γ(x′)
|x− x′|3

[
(x1 − x′

1)∂2u(x′)− (x2 − x′
2)∂1u(x′)

]
dx′ (9.2)

for x = (x1, x2, x3) ∈ Ω.
Assuming that one can rotate the subject, the MREIT system furnishes

the internal data J := |J| = γ|∇u|, which is measured and processed in the
MRI system.

Substituting

γ(x) =
J(x)
|∇u(x)| , x ∈ Ω ,

into the conductivity equation (9.1), we obtain that u satisfies the following
nonlinear Neumann boundary value problem (the 1–Laplacian)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ ·
(

J

|∇u|∇u

)
= 0 in Ω ,

J

|∇u|
∂u

∂ν
= g on ∂Ω ,

∫

∂Ω

u = 0 .

(9.3)
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Unfortunately, once (9.3) has a solution, then it always has infinitely many
solutions. Consequently, the model may have infinitely many distinct conduc-
tivity images. Moreover, (9.3) in general does not have an existence result even
if γ is smooth. Thus the model is not appropriate for making a reconstruction
algorithm and should be modified in order to guarantee the uniqueness. This
can be done by using two current patterns g1, and g2, and imposing that

γ =
J1

|∇u1|
=

J2

|∇u2|
∈ Σ ,

Σ being the class of piecewise continuous functions. Doing so, we arrive at
the following nonlinear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x ·
(

Ji(x)
|∇ui|

∇ui

)
= 0 in Ω ,

Ji(x)
|∇ui|

∂ui

∂ν
= gi on ∂Ω ,

J1

|∇u1|
=

J2

|∇u2|
∈ Σ ,

∫

∂Ω

ui = 0 .

(9.4)

For the uniqueness of a solution to the nonlinear system (9.4), the appro-
priate pair of current patterns g1 and g2 has to be chosen such that

|∇u1(x)×∇u2(x)| > 0 for all x ∈ Ω .

The following result is of importance to us.

Lemma 9.1.1 Suppose d = 2. Suppose that g is such that there exist two
disjoint arcs ∂Ω+ and ∂Ω− contained in ∂Ω such that

∂Ω+ ∪ ∂Ω− = ∂Ω and ∂Ω+ ⊂ {g ≥ 0}, ∂Ω− ⊂ {g ≤ 0} . (9.5)

Let u be the solution to (9.1). Then ∇u(x) �= 0 for all x ∈ Ω.

In practice, the current is applied through pairs of electrodes attached at
points on the boundary ∂Ω. Here, let P1, P2, Q1, and Q2 be situated along
∂Ω in this order and separated by a distance greater than 2δ. Suppose that

gj(x) =

⎧
⎪⎨

⎪⎩

+ I
2δ on {|x− Pj | < δ} ∩ ∂Ω ,

− I
2δ on {|x−Qj | < δ} ∩ ∂Ω ,

0 otherwise,
(9.6)

where I is the current sent to both electrodes Pj and Qj , and 2δ is the width
of each electrode. With these currents, we can easily see that the solution
(u1, u2) to (9.4) satisfies ∇uj(x) �= 0 for all x ∈ Ω, j = 1, 2.
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Moreover, using Lemma 9.1.1, we obtain the following.

Lemma 9.1.2 Suppose d = 2. Suppose that (u1, u2) is a solution to the non-
linear system (9.4) with the Neumann data g1 and g2 defined in (9.6). Then
we have

|∇u1(x)×∇u2(x)| > 0 for all x ∈ Ω .

Lemma 9.1.2 tells us that ∇u1 and ∇u2 are neither vanishing nor parallel
to each other at any points in Ω. Based on this fact, one can prove that the
region where the conductivity distribution has jumps can be uniquely detected
by the observation of the discontinuities of the measured data (J1, J2).

Theorem 9.1.3 (Edge Detection) Suppose d = 2. Suppose that (u1, u2),
(ũ1, ũ2) are solutions to the nonlinear system (9.4) with the Neumann data g1

and g2 defined in (9.6). Then the edge of the conductivity image is uniquely
determined by (J1, J2) in such a way that
{

x :
Ji

|∇ui|
is discontinuous at x

}
=
{

x :
Ji

|∇ũi|
is discontinuous at x

}
.

When the conductivity distribution is known to be piecewise constant, one
can show that the edge of the conductivity image as well as the conductivity
values can be determined.

Theorem 9.1.4 (Uniqueness) Suppose d=2. Suppose that (u1, u2), (ũ1, ũ2)
are solutions to the nonlinear system (9.4) with the Neumann data g1 and g2

defined in (9.6). Suppose that Ji/|∇ui| and Ji/|∇ũi| are piecewise constants.
Then (u1, u2) and (ũ1, ũ2) are the same.

9.2 J-Substitution Algorithm

The J-substitution algorithm uses two injection currents satisfying (9.6) and
is based on an iterative scheme of the following coupled system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x ·
(

Ji(x)
|∇ui|

∇ui

)
= 0 in Ω , (i = 1, 2)

J1(x)
|∇u1|

=
J2(x)
|∇u2|

in Ω ,

Ji(x)
|∇ui|

∂ui

∂ν
= gi on ∂Ω ,

∫

∂Ω

ui = 0 .

(9.7)
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The following is the J-substitution algorithm:

(i) Initial guess γ0 = 1.
(ii) For each n = 0, 1, . . . , solve

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇x · (γn(x)∇xun
1 ) = 0 in Ω,

γn(x)
∂un

1

∂ν
= g1 on ∂Ω,

∫

∂Ω

un
1 = 0.

(iii) Update γn+1/2 ⇐ J1/|∇un
1 |.

(iv) Solve ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇x ·
(
γn+1/2(x)∇xu

n+1/2
2

)
= 0 in Ω ,

γn+1/2(x)
∂u

n+1/2
2

∂ν
= g2 on ∂Ω ,

∫

∂Ω

u
n+1/2
2 = 0 .

(v) Update γn+1 ⇐ J2/|∇u
n+1/2
2 |.

(vi) Repeat the process (ii)-(iv) until
∣∣∣∣J2 − γn+1|∇un

2 |
∣∣∣∣ < ε.

The J-substitution algorithm has been successfully demonstrated to pro-
vide accurate high-resolution conductivity images. See Fig. 9.1.

Fig. 9.1. J-substitution algorithm: a simulation by O. Kwon, E. Woo, J. Yoon, and
J.K. Seo.
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9.3 The Harmonic Algorithm

The J-substitution algorithm suffers from the subject rotation process. In
order to eliminate this subject rotation, we should solve the problem of re-
constructing γ from only B3 data instead of complete set of data for B.

As in J-substitution algorithm, we apply two currents g1 and g2 through
electrodes placed on ∂Ω and measure the third components of the induced
magnetic flux densities, B1

3 and B2
3 . The harmonic algorithm is based on the

following identity derived from Ampére’s law:

⎡

⎢⎣

∂γ

∂x
∂γ

∂y

⎤

⎥⎦ =
1
µ0

⎡

⎢⎢⎣

∂u1[γ]
∂y

−∂u1[γ]
∂x

∂u2[γ]
∂y

−∂u2[γ]
∂x

⎤

⎥⎥⎦

−1

[
∆B1

3

∆B2
3

]
, (9.8)

where uj [γ] is the solution of (9.1).
Using the identity (9.8), we have the following representation formula for

each slice Ω ∩ {x3 = a}:

γ(x1, x2, a) = Hγ(x1, x2, a)

−
∫

Ω∩{x3=a}

(x1 − x′
1 , x2 − x′

2)√
|x1 − x′

1|2 + |x2 − x′
2|2

· A
−1[γ]

[
∆B1

3

∆B2
3

]
dx′

1dx′
2

(9.9)

where

A[γ] := 2πµ0

[
∂2u1[γ] −∂1u1[γ]
∂2u2[γ] −∂1u2[γ]

]
(9.10)

and

Hγ(x1, x2, a) :=
∫

∂(Ω∩{x3=a})

(x1 − x′
1 , x2 − x′

2) · ν

2π
√
|x1 − x′

1|2 + |x2 − x′
2|2

γ(x′
1, x

′
2, a) dσ′ .

Here, ν is the two dimensional unit outward normal vector to the boundary
∂(Ω ∩{x3 = a}) and dσ′ is the line element. Note that Hγ is harmonic in the
two-dimensional slice Ω∩{x3 = a}. It is known if γ is known on the boundary
∂(Ω ∩ {x3 = a}).

The harmonic algorithm for reconstructing γ is a natural iterative pro-
cedure of the identity (9.9). Suppose for simplicity that γ is known on the
boundary, say γ ≡ 1 on ∂(Ω ∩ {x3 = a}). The Harmonic algorithm is as
follows:

(i) Let n = 0. Solve (9.1) for u0
j with γ = 1 and g = gj .

(ii) Compute γn+1 using (9.9) with uj replacing un
j .

(iii) Compute un+1
j , j = 1, 2, by solving (9.1) with γ = γn+1.

(iv) If ‖γn+1 − γn‖2 < ε, stop and set γ = γn+1. Here, ε is a given tolerance.
Otherwise, set n ← (n + 1) and go to Step (ii).
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Bibliography and Discussion

This chapter was devoted to the breakthrough work by J.K. Seo and his
group. The results of this chapter are from [81, 88, 80]. A rigorous convergence
analysis of the J-substitution algorithm is still missing. Very recently, some
progress on the convergence and the stability of the harmonic algorithm has
been made in [93].
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Impediography

Impediography is another mathematical direction for future EIT research in
view of biomedical applications. It keeps the most important merits of EIT
(real time imaging, low cost, portability). It is based on the simultaneous
measurement of an electric current and of acoustic vibrations induced by
ultrasound waves. Its intrinsic resolution depends on the size of the focal spot
of the acoustic perturbation, and thus it provides high resolution images.

The core idea of impediography is to extract more information about the
conductivity from data that has been enriched by coupling the electric mea-
surements to localized elastic perturbations. More precisely, one perturbs the
medium during the electric measurements, by focusing ultrasonic waves on
regions of small diameter inside the body. Using a simple model for the me-
chanical effects of the ultrasound waves, we can show that the difference be-
tween the measurements in the unperturbed and perturbed configurations is
asymptotically equal to the pointwise value of the energy density at the cen-
ter of the perturbed zone. In practice, the ultrasounds impact a zone of a few
millimeters in diameter. The perturbation should thus be sensitive to conduc-
tivity variations at the millimeter scale, which is the precision required for
breast cancer diagnostic.

10.1 Physical Model

A body (a domain Ω ⊂ R
2) is electrically probed: One or several currents are

imposed on the surface and the induced potentials are measured on the bound-
ary. At the same time, a circular region of a few millimeters in the interior of
Ω is mechanically excited by ultrasonic waves, which dilate this region. The
measurements are made as the focus of the ultrasounds scans the entire do-
main. Several sets of measurements can be obtained by varying the ultrasound
waves amplitudes and the applied currents.
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Within each (small) disk volume, the conductivity is assumed to be con-
stant per volume unit. At a point x ∈ Ω, within a disk B of volume VB , the
electric conductivity γ is defined in terms of a density ρ as γ(x) = ρ(x)VB .

The ultrasonic waves induce a small elastic deformation of the sphere B.
See Fig. 10.1. If this deformation is isotropic, the material points of B occupy
a volume V p

B in the perturbed configuration, which at first order is equal to

V p
B = VB(1 + 2

∆r

r
) ,

where r is the radius of the disk B and ∆r is the variation of the radius due
to the elastic perturbation. As ∆r is proportional to the amplitude of the
ultrasonic wave, we obtain a proportional change of the deformation. Using
two different ultrasonic waves with different amplitudes but with the same
spot, it is therefore easy to compute the ratio V p

B/VB . As a consequence, the
perturbed electrical conductivity γp satisfies

∀ x ∈ Ω, γp(x) = ρ(x)V p
B = γ(x)ν(x) ,

where ν(x) = V p
B/VB is a known function. We make the following realistic

assumptions: (i) the ultrasonic wave expands the zone it impacts, and changes
its conductivity: ∀x ∈ Ω, ν(x) > 1, and (ii) the perturbation is not too small:
ν(x)− 1 � VB .

Fig. 10.1. Experimental setup.

10.2 Mathematical Model

We denote by u the voltage potential induced by a current g, in the absence
of ultrasonic perturbations. It is given by
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⎧
⎨

⎩

∇x · (γ(x)∇xu) = 0 in Ω ,

γ(x)
∂u

∂ν
= g on ∂Ω ,

(10.1)

with the convention that
∫

∂Ω
u = 0. We suppose that the conductivity γ is

known close to the boundary of the domain, so that ultrasonic probing is
limited to interior points. We denote the corresponding open set Ω1 .

We denote by uδ(x), x ∈ Ω, the voltage potential induced by a current g,
in the presence of ultrasonic perturbations localized in a disk-shaped domain
D := z + δB of volume |D| = O(δ2). The voltage potential uδ is a solution to

⎧
⎨

⎩

∇x · (γδ(x)∇xuδ(x)) = 0 in Ω ,

γ(x)
∂uδ

∂ν
= g on ∂Ω ,

(10.2)

with the notation

γδ(x) = γ(x)
[
1 + χ(D)(x) (ν(x)− 1)

]
,

where χ(D) is the characteristic function of the domain D.
As the zone deformed by the ultrasound wave is small, we can view it

as a small volume perturbation of the background conductivity γ, and seek
an asymptotic expansion of the boundary values of uδ − u. The method of
small volume expansions shows that comparing uδ and u on ∂Ω provides
information about the conductivity. Indeed, we can prove that

∫

∂Ω

(uδ − u)g dσ =
∫

D

γ(x)
(ν(x)− 1)2

ν(x) + 1
∇u · ∇u dx + o(|D|)

= |∇u(z)|2
∫

D

γ(x)
(ν(x)− 1)2

ν(x) + 1
dx + o(|D|) .

Therefore, we have

γ(z) |∇u(z)|2 = E(z) + o(1) , (10.3)

where the function E(z) is defined by

E(z) =

(∫

D

(ν(x)− 1)2

ν(x) + 1
dx

)−1 ∫

∂Ω

(uδ − u)g dσ . (10.4)

By scanning the interior of the body with ultrasound waves, given an
applied current g, we then obtain data from which we can compute

E(z) := γ(z)|∇u(z)|2 ,

in an interior sub–region of Ω. The new inverse problem is now to reconstruct
γ knowing E .
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10.3 E-Substitution Algorithm

The use of E leads us to transform (10.1), having two unknowns γ and u
with highly nonlinear dependency on γ, into the following nonlinear PDE
(the 0–Laplacian)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇x ·
(

E
|∇u|2

∇u

)
= 0 in Ω ,

E
|∇u|2

∂u

∂ν
= g on ∂Ω .

(10.5)

We emphasize that E is a known function, constructed from the measured
data (10.4). Consequently, all the parameters entering in equation (10.5) are
known. So, the ill-posed inverse problem of EIT model is converted into less
complicated direct problem (10.5). The E-substitution algorithm uses two
currents g1 and g2. We choose this pair of current patterns to have ∇u1 ×
∇u2 �= 0 for all x ∈ Ω, where ui, i = 1, 2, is the solution to (10.1). See Lemma
9.1.2 for an evidence of the possibility of such a choice.

The E-substitution algorithm is in the spirit of Subsect 5.1.4. It is based
on an approximation of a linearized version of problem (10.5).

Suppose that γ is a small perturbation of conductivity profile γ0: γ =
γ0 +δγ. Let u0 and u = u0 +δu denote the potentials corresponding to γ0 and
γ with the same Neumann boundary data g. It is easily seen that δu satisfies
∇ · (γ∇δu) = −∇ · (δγ∇u0) in Ω with the homogeneous Dirichlet boundary
condition. Moreover, from

E = (γ0 + δγ)|∇(u0 + δu)|2 ≈ γ0|∇u0|2 + δγ|∇u0|2 + 2γ0∇u0 · ∇δu ,

after neglecting the terms δγ∇u0 · ∇δu and δγ|∇δu|2, it follows that

δγ ≈ E
|∇u0|2

− γ0 − 2γ0
∇δu · ∇u0

|∇u0|2
.

The following is the E-substitution algorithm. We start from an initial
guess for the conductivity γ, and solve the corresponding Dirichlet conductiv-
ity problem {

∇ · (γ∇u0) = 0 in Ω ,
u0 = ψ on ∂Ω .

The data ψ is the Dirichlet data measured as a response to the current g (say
g = g1) in absence of elastic deformation.

The discrepancy between the data and our guessed solution is

ε0 :=
E

|∇u0|2
− γ . (10.6)
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We then introduce a corrector, δu, computed as the solution to
{
∇ · (γ∇δu) = −∇ · (ε0∇u0) in Ω ,

δu = 0 on ∂Ω ,

and update the conductivity

γ :=
E − 2γ∇δu · ∇u0

|∇u0|2
.

We iteratively update the conductivity, alternating directions (i.e., with g =
g2).

The efficiency of this approach have been tested on various problems and
domains. We present here one such test. The domain Ω is a disk of radius 8
centered at the origin, which contains three anomalies, an ellipse, an L-shaped
domain and a triangle, so as to image a convex object, a non-convex object,
and an object with a smooth boundary.

Fig. 10.2. Conductivity distribution.

The background conductivity is equal to 0.5, the conductivity takes the
values 2 in the triangle, 0.75 in the ellipse and 2.55 in the L–shaped domain.
See Fig. 10.2. We chose values corresponding to small and large contrast with
the background. Note that the smaller the contrast the easier the detection.
The choice of a significant contrast was not made to highlight the objects, but
rather to make the reconstruction more challenging.

Figure 10.3 shows the result of the reconstruction when perfect measures
(with very accurate precision) are available. We use two different boundary
potentials, ψ = x1 and ψ = x2. The initial guess is depicted on the left: it
is equal to 1 inside the disk of radius 6 centered at the origin, and equal to
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the supposedly known conductivity γ = 0.5 near the boundary (outside the
disk of radius 6). The two central pictures represent the collected data, E for
ψ = x1 on the left and E for ψ = x2 on the right. Given the values of the
contrast, we remark that although one can see the triangle and the L–shape
inclusions on these plots, the circle is hardly noticeable. On the far right, the
reconstructed conductivity is represented: it perfectly matches the target.

Fig. 10.3. Reconstruction test. From left to right, the initial guess, the collected
data E (x1 and x2) and the reconstructed conductivity.

Bibliography and Discussion

The conductivity imaging technique called impediography, which is investi-
gated in this chapter, was proposed in [5]. Motivated by the practical limi-
tations of EIT, researches on impediography can be pursued in the following
directions:

(i) Study the reconstruction capabilities of this method when only partial
data, measured on a small portion of the boundary, is available.

(ii) Study the dependence of the algorithm on the global geometry of the
body.

(iii) Study the sensitivity of the method to limitations on the intensities of
the applied voltages, as electrical safety regulations limit the amount of
the total current that patients can sustain.
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Magnetic Resonance Elastography

Extensive work has been carried out in the past decade to image, by inducing
motion, the elastic properties of human soft tissues. This wide application
field, called elasticity imaging or elastography, is based on the initial idea
that shear elasticity can be correlated with the pathological state of tissues.

Several techniques arose according to the type of mechanical excitation
chosen (static compression, monochromatic, or transient vibration) and the
way these excitations are generated (externally or internally). Different imag-
ing modalities can be used to estimate the resulting tissue displacements.

Magnetic resonance elastography (MRE) is a new way of realizing the
idea of elastography. It can directly visualize and quantitatively measure the
displacement field in tissues subject to harmonic mechanical excitation at
low-frequencies (10 to 1000 Hz). A phase-contrast MRI technique is used
to spatially map and measure the complete three-dimensional displacement
patterns. From this data, local quantitative values of shear modulus can be
calculated and images that depict tissue elasticity or stiffness can be gener-
ated. The inverse problem for MRE is to determine the shape and the elastic
parameters of an elastic anomaly from internal measurements of the displace-
ment field. In most cases the most significant elastic parameter is the stiffness
coefficient.

In this chapter, we combine the method of small volume expansions and a
binary level set algorithm to solve the full three-dimensional inverse problem
of the MRE.

11.1 Mathematical Model

Suppose that an elastic medium occupies a bounded domain Ω in R
3, with a

connected C2-boundary ∂Ω. Let the constants (λ, µ) denote the Lamé coeffi-
cients of Ω, that are the elastic parameters in the absence of any anomalies
and let the constant ρ denote the density of the background. Suppose that Ω
contains an elastic anomaly D given by D = δB + z, where B is a bounded
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C2-domain in R
3. The domain B is considered to be a reference domain, the

small number δ is the diameter of D, and z represents the location of D.
Suppose that D has the pair of Lamé constants (λ̃, µ̃) which is different from
that of the background elastic body, (λ, µ), and let ρ̃ denote its density. It is
always assumed that

ρ > 0, µ > 0, 3λ + 2µ > 0, ρ̃ > 0, µ̃ > 0 and 3λ̃ + 2µ̃ > 0 .

Consider the following transmission problem associated to the system of
elastodynamics with the Dirichlet boundary condition:
⎧
⎪⎪⎨

⎪⎪⎩

3∑

j,k,l=1

∂

∂xj

(
Cijkl

∂uk

∂xl

)
+ ω2(ρχ(Ω \D) + ρ̃χ(D))ui = 0 in Ω,

u
∣∣
∂Ω

= g ,

(11.1)

for i = 1, 2, 3, where the elasticity tensor C = (Cijkl) is given by

Cijkl :=
(
λ χ(Ω \D) + λ̃ χ(D)

)
δijδkl

+
(
µχ(Ω \D) + µ̃ χ(D)

)
(δikδjl + δilδjk) ,

(11.2)

ω > 0 is the angular frequency of the mechanical oscillations, and ui for
i = 1, 2, 3, denote the components of the displacement field u.

The Poisson ratios σ and σ̃ are given in terms of the Lamé parameters by

σ =
λ/µ

1 + 2λ/µ
and σ̃ =

λ̃/µ̃

1 + 2λ̃/µ̃
. (11.3)

It is known that in soft tissues, σ, σ̃ ≈ 1/2, or equivalently, λ � µ and
λ̃ � µ̃. This makes it very difficult to estimate both parameters µ̃ and λ̃
simultaneously.

From Sect. 7.6, the elasticity system (11.1) can be replaced with the mod-
ified Stokes system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ∆ + ω2ρ)u0 +∇p0 = 0 in Ω \D ,

(µ̃∆ + ω2ρ̃)u0 +∇p0 = 0 in D ,

u0

∣∣
− = u0

∣∣
+

on ∂D ,

(p0|+ − p0|−)N + µ
∂u0

∂N

∣∣∣∣
+

− µ̃
∂u0

∂N

∣∣∣∣
−

= 0 on ∂D ,

∇ · u0 = 0 in Ω ,

u0 = g on ∂Ω ,∫

Ω

p0 = 0 .

(11.4)
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Sect. 7.6.1 shows that the leading-order term in the displacement field
perturbations that are due to the presence the elastic anomaly D is given by

u0(x) ≈ U0(z) + δv̂1(
x− z

δ
) for x near z , (11.5)

where U0 is the background field and v̂1 is the unique solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v̂1 +∇p̂0 = 0 in R
3 \B ,

µ̃∆v̂1 +∇p̂0 = 0 in B ,

v̂1|− − v̂1|+ = 0 on ∂B ,

(p̂0N + µ̃
∂v̂1

∂N
)|− − (p̂0N + µ

∂v̂1

∂N
)|+ = 0 on ∂B ,

∇ · v̂1 = 0 in R
3 ,

v̂1(ξ)−∇U0(z)ξ → 0 as |ξ| → +∞ ,

p̂0(ξ) → 0 as |ξ| → +∞ .

(11.6)

11.2 Binary Level Set Algorithm

Based on the inner asymptotic expansion (11.5) of δu := u0 −U0, the per-
turbations in the displacement field that are due to the anomaly, we provide
a reconstruction method of binary level set type.

The first step for the reconstruction procedure is to locate the anomaly.
This can be done using the measurements δu of the perturbations in the
displacement field far away from the anomaly. Suppose that z is reconstructed.
Since the representation D = z + δB is not unique, we can fix δ. We use a
binary level set representation f of the scaled domain B:

f(x) =
{

1, x ∈ B ,
−1, x ∈ R

3 \B .

Let
h(x) = µ̃(f(

x− z

δ
) + 1)− µ(f(

x− z

δ
)− 1) ,

and let β be a regularization parameter.
The second step is to fix a window W (for example a sphere containing z)

and solve the following constrained minimization problem:

min
µ̃,f

L(f, µ̃) =
1
2

∥∥∥∥δu(x)− δv̂1(
x− z

δ
) +∇U0(z)(x− z)

∥∥∥∥
2

L2(W )

+ β

∫

W

|∇h(x)| dx ,

(11.7)

subject to (11.6).
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In the above,
∫

W
|∇h| dx is the total variation of the shear modulus, and

|∇h| is understood as a measure:
∫

W

|∇h| = sup
{∫

W

h∇ · v dx,v ∈ C1
0(W ) and |v| ≤ 1 in W

}
.

This regularization indirectly controls both the length of the level set curves
and the jumps in the coefficients.

The local character of the method is due to the decay of

v̂1((· − z)/δ)−∇U0(z)(· − z)/δ

away from z. Replacing W by Ω in the above formulation does not lead to
a better reconstruction of the shape and the shear modulus of the anomaly.
This is one of the main features of the method.

The minimization problem (11.7) corresponds to a minimization with re-
spect to µ̃ followed by a step of minimization with respect to f . The minimiza-
tion steps are over the set of µ̃ and f and can be performed using a gradient
based method with a line search. An augmented Lagrangian functional can
be defined where the constraints given by (11.6) are incorporated. To find a
discrete saddle point for this augmented Lagrangian functional, the Uzawa
algorithm for variational binary level set methods can be used.

Of importance to us are the optimal bounds satisfied by the viscous mo-
ment tensor V . We should check for each step whether the bounds on V
corresponding to (7.52) and (7.53) for d = 3 are satisfied. Set α = Tr(V ) and
β = Tr(V −1) and suppose for simplicity that µ̃ > µ. Then, these bounds can
be rewritten (when d = 3) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

α ≤ 2(µ̃− µ)(3 +
2µ

µ̃
)|D|,

2µ(µ̃− µ)
3µ + 2µ̃

|D| ≤ β−1.

In the case when they are not, we have to restate the value of µ̃. Another way
to deal with these bounds is to introduce them into the minimization problem
(11.7) as a constraint.

Bibliography and Discussion

Several techniques for the estimation of soft tissue elasticity are currently
being investigated. See for instance [107, 113, 105, 27, 28, 55].

MRE was first proposed in [101]. See also [95, 63, 116]. The results pro-
vided in this chapter are from [8]. In general, the viscoelastic parameters of
biological tissues show anisotropic properties, i.e., the local value of elasticity
is different in the different spatial directions [115]. It would be very interesting
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to extend the algorithm described in this chapter for detecting the shape and
the anisotropic shear modulus of an anisotropic anomaly.

Recall that the main idea behind impediography (EIT by ultrasound fo-
cusing) is to create, by a non intrusive method, controlled perturbations inside
the medium to be imaged, which in turn allow to reconstruct very accurately
the unperturbed medium. Interestingly, it turns out that he same idea applies
in elastic imaging. An ultrasound signal, focusing on a small spot localized at
a position is applied to the medium to be imaged. The displacement field in-
duced by the ultrasound wave is measured either inside the domain by an MRI
system or on its surface. This new and promising imaging method is being
developed at LOA. It offers a number of challenging mathematical problems
to be solved.
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