

Containerization with Ansible 2

Implement container management, deployment, and orchestration within the Ansible
ecosystem

Aric Renzo

BIRMINGHAM - MUMBAI

Containerization with Ansible 2

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1051217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-191-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Aric Renzo

Copy Editor

Safis Editing

Reviewer

Michael Bright

Project Coordinator

Judie Jose

Commissioning Editor

Vijin Boricha

Proofreader

Safis Editing

Acquisition Editor

Heramb Bhavsar

Indexer

Tejal Daruwale Soni

Content Development Editor

Devika Battike

Graphics

Tania Dutta

Technical Editor

Prachi Sawant

Production Coordinator

Melwyn Dsa

About the Author
Aric Renzo is a DevOps engineer based in Charlotte, North Carolina, and is a fan of
all things geeky and open source. He has experience working on many open source
and free software project deployments for clients based on OpenStack, Ansible,
Docker, Chef, SaltStack, and Kubernetes. Aric is a member of the Ansible
community and teaches courses on basic and advanced Ansible concepts. His past
projects include work on data center deployments, network infrastructure
automation, MongoDB NoSQL database architecture, and designing highly available
OpenStack environments. Aric is a fan of anything to do with DevOps, automation,
and making his workflow more efficient.

Aric is a lifelong geek and a graduate of Penn State University in the information
sciences and technology program. He is married to Ashley Renzo, an incredibly
beautiful and talented science teacher in Gaston County, North Carolina.

Dedicated to the love of my life, Ashley Renzo; without her unending love and
encouragement, this book would never have been written. Also to my dearest friends
and family who have prayed for me, advised me, and shared their amazing wisdom
with me throughout this project. I am so blessed to have these amazing people in my
life.

About the Reviewer
Michael Bright, RHCE/RHCSA, is a solution architect working in the HPE EMEA
Customer Innovation Center. He has strong experience across cloud and container
technologies (Docker, Kubernetes, AWS, GCP, Azure), as well as NFV/SDN. Based
in Grenoble, France, he runs a Python user group and is a co-organizer of the Docker
and FOSS Meetup groups. He has a keen interest in serverless, container,
orchestration, and unikernel technologies, on which he has presented and run
training tutorials at several conferences. He has presented many a time on subjects as
diverse as NFV, Docker, container orchestration, serverless, unikernels, Jupyter
Notebooks, MongoDB, and Tmux. Michael has a wealth of experience across pure
research, R&D, and presales consulting roles. The books that he has worked
on are CoreOS in Action, Manning and Kubernetes in Action, Manning.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1788291913.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1788291913

Table of Contents
Preface

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback
Customer Support

Downloading the color images for this book

Errata

Piracy

Questions

1. Building Containers with Docker
DevOps and the shifting IT landscape

Manual deployments of monolithic applications

An introduction to automation

Virtualization of applications and infrastructure

Containerization of applications and infrastructure

Orchestrating of containerized applications
Building your first docker container

Instantiating the lab environment

Installing the lab environment:

Starting your first Docker container
Building your first container

Dockerfiles

Container life cycle management

References

Summary

2. Working with Ansible Container
An introduction to Ansible Container and the microservice architecture

A quick introduction to Docker Compose

Ansible Container workflow
Ansible Container quick-start

Ansible Container init

Ansible Container build

Ansible Container run

Ansible Container destroy

Summary

3. Your First Ansible Container Project
What are Ansible roles and container-enabled roles?

Roles in Ansible Galaxy
Ansible Container NGINX role

Starting a new project

Installing the NGINX role

Running the NGINX role

Modifying the NGINX role

Running the modified role

Pushing the project to Docker Hub

Summary

4. What's in a Role?
Custom roles with Ansible Container

YAML syntax

Ansible modules

A brief overview of MariaDB
Initializing an Ansible Container role

What's in a container-enabled role?
Initializing the MariaDB project and role

container.yml
Writing a container-enabled role

roles/mariadb_role/meta/container.yml

tasks/main.yml

Task breakdown (main.yml)

tasks/initialize_database.yml

Task breakdown (initialize_database.yml)

templates/my.cnf.j2

Building the container-enabled role
Customizing the container-enabled role

variable_files/dev.yml

variable_files/test.yml

variable_files/prod.yml

container.yml

References

Summary

5. Containers at Scale with Kubernetes
A brief overview of Kubernetes

Getting started with the Google Cloud platform
Deploying an application in Kubernetes using kubectl

Describing Kubernetes resources

Exposing Kubernetes services

Scaling Kubernetes pods

Creating deployments using Kubernetes manifests

Creating services using Kubernetes manifests

References

Summary

6. Managing Containers with OpenShift
What is OpenShift?
Installing Minishift locally

Installing the Minishift binaries
Deploying containers using the web interface

OpenShift web user interface tips

An introduction to the OpenShift CLI
OpenShift and Ansible Container

References

Summary

7. Deploying Your First Project
Overview of ansible-container deploy

ansible-container deploy

Deploying containers to Kubernetes

Deploying containers to OpenShift

References

Summary

8. Building and Deploying a Multi-Container Project
Defining complex applications using Docker networking

Exploring the Ansible Container django-gulp-nginx project
Building the django-gulp-nginx project

Development versus production configurations
Deploying the project to OpenShift

References

Summary

9. Going Further with Ansible Container
Tips for writing roles and container apps

Use full YAML syntax

Use Ansible modules

Build powerful deployment playbooks with Ansible Core

Troubleshooting application containers

Create a build pipeline using Jenkins or TravisCI

Share roles and apps on GitHub and Ansible Galaxy
Containerize everything!

References

Summary

Preface
Over the last few years, the world of IT has seen radical shifts in the ways in which
software applications are developed and deployed. The rise of automation, cloud
computing, and virtualization has fundamentally shifted how system administrators,
software developers, and organizations as a whole view and manage infrastructure.
Just a few years ago, it would seem unthinkable to many in the IT industry to allow
mission-critical applications to be run outside the walls of the corporate data center.
However, now there are more organizations than ever migrating infrastructure to
cloud services such as AWS, Azure, and Google Compute in an effort to save time
and cut back on overhead costs related to running physical infrastructure. By
abstracting away the hardware, companies can focus on what really matters—the
software applications that serve their users.

The next great tidal wave within the IT field formally started in 2013 with the initial
release of the Docker container engine. Docker allowed users to easily package
software into small, reusable execution environments known as containers,
leveraging features in the Linux kernel for use with LXC (Linux Containers). Using
Docker, developers can create microservice applications that can be built quickly,
are guaranteed to run in any environment, and leverage reusable service artifacts
(container images) that can be version controlled. As more and more users adopted
containerized workflows, gaps in execution began to appear. While Docker was
great at building and running containers, it struggled to be a true end-to-end solution
across the entire container life cycle.

The Ansible Container project was developed to bring the power of the Ansible
configuration management and automation platform to the world of containers.
Ansible Container bridges the container life cycle management gap by allowing
container build and deploy pipelines to speak the Ansible language. Using Ansible
Container, you can leverage the powerful Ansible configuration management
language to not only build containers, but deploy full-scale applications on remote
servers and cloud platforms.

This book will serve as a guide to working with the Ansible Container project. It is
my goal that by the end of this book, you will have a firm understanding of how
Ansible Container works, and how to leverage its many capabilities to build robust

containerized software stacks from development all the way to production.

What this book covers
Chapter 1, Building Containers with Docker, introduces the reader to what Docker is,
how it works, and the basics of using Dockerfiles and Docker Compose. This chapter
lays down the foundational concepts needed to start learning how to use Ansible
Container.

Chapter 2, Working with Ansible Container, explores the Ansible Container
workflow. This chapter gives the reader familiarity with the core Ansible Container
concepts such as build, run, and destroy.

Chapter 3, Your First Ansible Container Project, gives the user experience in building
a simple Ansible Container project by leveraging a community role available on
Ansible Galaxy. By the end of this chapter, the reader will be familiar with building
projects and pushing container artifacts to container image repositories such as
Docker Hub.

Chapter 4, What's in a Role?, gives the user an overview of how to write custom
container-enabled roles for use with Ansible Container. The overarching goal of this
chapter is to write a role that builds a fully functional MariaDB container image from
scratch. By the end of this chapter, the user should have basic familiarity with
writing Ansible playbooks using proper style and syntax.

Chapter 5, Containers at Scale with Kubernetes, gives the reader an overview of the
Kubernetes platform and core functionality. In this chapter, the reader will have the
opportunity to create a multi-node Kubernetes cluster in the Google Cloud and run
containers inside it.

Chapter 6, Managing Containers with OpenShift, introduces the reader to Redhat's
OpenShift platform. This chapter gives the reader the steps required to deploy a local
OpenShift cluster using Minishift and run containerized workloads on it. This
chapter also looks at the key differences between Kubernetes and OpenShift, even
though the architectures are fundamentally similar.

Chapter 7, Deploying Your First Project takes an in-depth look at the final command
in the Ansible Container workflow—deploy. Using deploy, the reader will gain first-
hand experience of deploying previously built projects to Kubernetes and OpenShift

using the Ansible Container as an end-to-end workflow tool.

Chapter 8, Building and Deploying a Multi-Container Project, looks at how Ansible
Container can be used to build a project that leverages more than one application
container. Critical to a full understanding of this topic is an introduction to container
networking and configuring containers to access network resources. This chapter
will give the reader an opportunity to build and deploy a multi-container project
using Django, Gulp, NGINX, and PostgreSQL containers.

Chapter 9, Going Further with Ansible Container, gives the reader an idea of the next
steps to take after mastering the entire Ansible Container workflow. Topics explored
in this section include integrating Ansible Container with CICD tools, and sharing
projects on Ansible Galaxy.

What you need for this book
This book assumes a beginner-to-medium level of experience of working with the
Linux operating system, deploying applications, and managing servers. This book
walks you through the steps required to bring up a fully-functional lab environment
on your local laptop to quickly get up and running using a Virtualbox and Vagrant
environment. Prior to starting, it would be helpful to have Virtualbox, Vagrant, and
the Git command-line client installed and running on your personal computer. To run
this environment with full specifications, the following system requirements must be
met or exceeded:

CPU: 2 cores (Intel Core i5 or equivalent)
Memory: 8 GB RAM
Disk space: 80 GB

In this book, you will need the following software list:

VirtualBox 5.1 or higher
Vagrant 1.9.1 or higher
A text editor that edits YAML files (GitHub Atom or VIM preferred)

Internet connectivity is required to install the necessary packages.

Who this book is for
This book is designed to assist those currently working as system administrators,
DevOps engineers, or technical architects, (or similar roles) to quickly get up and
running with the Ansible Container workflow. It is helpful as well if the reader
already has a basic understanding of Docker, Ansible, or other related automation
platforms prior to reading the book, although not required. It is my hope that a user
can get a firm understanding of these basics while reading the book. The end goal is
to help readers gain a solid foundation on how Ansible Container can accelerate
building, running, testing, and deploying application containers from development to
production environments.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning. Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "We can include other contexts through the use of the include directive."

A block of code is set as follows:

- name: Create User Account
 user:
 name: MyUser
 state: present

- name: Install Vim text editor
 apt:
 name: vim
 state: present

Any command-line input or output is written as follows:

ubuntu@node01:/tmp$ ansible-galaxy init MyRole --container-enabled
- MyRole was created successfully

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of. To send us general
feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the
subject of your message. If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see our author guide at www.packt
pub.com/authors.

http://www.packtpub.com/authors

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images for
this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.pa
cktpub.com/sites/default/files/downloads/ContainerizationwithAnsible2_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/ContainerizationwithAnsible2_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books-maybe a mistake in the text or
the code-we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.com/su
bmit-errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata is verified, your submission will
be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title. To view the previously submitted
errata, go to https://www.packtpub.com/books/content/support and enter the name of the
book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so that we
can pursue a remedy. Please contact us at copyright@packtpub.com with a link to the
suspected pirated material. We appreciate your help in protecting our authors and our
ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Building Containers with Docker
In recent years, the landscape of the IT industry has dramatically shifted. The rise of
highly interactive mobile applications, cloud computing, and streaming media has
pushed the limits of the existing IT infrastructure. Users who were once happy with
web browsing and email are now taking advantage of the highly interactive services
that are available and are continually demanding higher bandwidth, reliability, and
more features. In the wake of this shift, IT departments and application developers
are continually attempting to find ways to keep up with the increased demand to
remain relevant to consumers who depend on their services.

As an application developer, infrastructure support specialist, or DevOps engineer,
you have no doubt seen the radical shift in how infrastructure is supported and
maintained. Gone are the days when a developer could write an application in
isolation, deploy it across an enterprise, and hand over the keys to operations folks
who may only have had a basic understanding of how the application functioned.
Today, the development and operations paradigms are intrinsically interwoven in
what most enterprises are calling DevOps. In the DevOps mindset, operations and
support staff work directly with application developers in order to write applications,
as well as infrastructure as code. Leveraging this new mindset allows services to go
live that may scale multiple tiers and spread between hundreds of servers, data
centers, and cloud providers. Once an organization adopts a DevOps mindset, this
creates a cultural shift between the various departments. A new team mentality
usually emerges, in which developers and operations staff feel a new sense of
camaraderie. Developers are happy to contribute to code that makes application
deployments easier, and operations staff are happy with the increased ease of use,
scaling, and repeatability that comes with new DevOps-enabled applications.

Even within the world of DevOps, containerization has been actively growing and
expanding across organizations as a newer and better way to deploy and maintain
applications. Like anything else in the world of information technology, we need
controlled processes around how containers are built, deployed, and scaled across an
organization. Ansible Container provides an abstracted and simple-to-implement
methodology for building and running containers at scale. Before we start to learn
about Ansible and containerization platforms, we must first examine how
applications and services were deployed historically.

Before we get started, let's look at the topics we will address in this chapter:

A historical overview of the DevOps and IT infrastructure:
Manual deployments
An introduction to automation
The virtualization of applications
The containerization of applications
The orchestrating of containerized applications

Building your first Docker container
Setting up a lab environment
Starting your first Docker container
Building your first Docker container
Container life cycle management

DevOps and the shifting IT
landscape
Let's take a quick look at the evolution of many IT departments, and the response to
this radical shift across the industry. Before we delve into learning about containers,
it is important to understand the history of deploying applications and services in
order to realize which problems containerization addresses, as well as how
infrastructure has changed and evolved over the decades.

Manual deployments of monolithic
applications
The manual deployment of large monolithic applications is where most application
deployments start out, and the state of most infrastructure in the late 1990's and early
to mid-2000's. This approach normally goes something like this:

1. An organization decides they want to create a new service or application.
2. The organization commissions a team of developers to write the new service.
3. New servers and networking equipment are racked and stacked to support the

new service.
4. The new service is deployed by the operations and engineering teams, who may

have little to no understanding of what the new service actually does.

Usually, this approach to deploying an application is characterized by little to no use
of automation tools, basic shell or batch scripts, and large complex overheads to
maintain the application or deploy upgrades. Culturally, this approach creates
information silos in teams, and individuals become responsible for small portions of
a complicated overall picture. If a team member is transferred between departments
or leaves the organization, havoc can arise when the people who are then responsible
for the service are forced to reverse engineer the original thought processes of those
who originally developed the application. Documentation may be vague if it exists at
all.

An introduction to automation
The next step in the evolution towards a more flexible, DevOps-oriented architecture
is the inclusion of an automation platform that allows operation and support
engineers to simplify many aspects of deployment and maintenance tasks within an
organization. Automation tools are numerous and varied, depending on the extent to
which you wish to automate your applications. Some automation tools work only at
an OS-level to ensure that the operating system and applications are running as
expected. Other automation tools can use interfaces such as IPMI to remotely power-
on bare-metal servers in order to deploy everything from the operating system
upward.

Automation tools are based around the configuration management concepts of
current state and desired state. The goal of an automation platform is to evaluate the
current state of a server against a programmatic template that defines the servers
desired state and only applies actions on the server that are required to bring it into
the desired state. For example, an automation platform checking for NGINX in a
running state may look at an Ubuntu 16.04 server and see that NGINX is not
currently installed.

To bring this server into the desired state, it may run the command apt-get install
nginx on the backend to bring that server into compliance. When that same
automation tool is evaluating a CentOS server, it may determine that NGINX is
installed but not running. To bring this server into compliance, it would run systemctl
start nginx to bring that server into compliance. Notice that it did not attempt to re-
install NGINX. To expand our example, if the automation tool was examining a
server that had NGINX both installed and running, it would take no action on that
server, as it is already in the desired state. The key to a good automation platform is
that the tool only executes the steps required to bring that server into the desired
state. This concept is known as idempotency, and is a hallmark of most automation
platforms.

We will now look at a handful of open source automation tools and examine how
they work and what makes them unique. Having a firm understanding of automation
tools and how they work will help you to understand how Ansible Container works,
and why it is an invaluable tool for container orchestration:

Chef: Chef is a configuration management tool written by Adam Jacobs in 2008
to address specific use cases he was tasked with at the time. Chef code is
written in a Ruby-based domain-specific language known as recipes. A
collection of recipes grouped together for a specific purpose is known as a
cookbook. Cookbooks are stored on a server, from which clients can
periodically download updated recipes using the client software running as a
daemon. The Chef Client is responsible for evaluating the current state against
the desired states described in the cookbooks.
Puppet: Puppet was written in 2005 by Luke Kaines and, similar to Chef,
works on a client-server model. Puppet manifests are written in a Ruby DSL
and stored on a dedicated server known as the Puppet Master. Clients run a
daemon known as the Puppet Agent, which is responsible for downloading
Puppet manifests and executing them locally across the clients.
Salt: Salt is a configuration management tool written by Thomas Hatch in 2011.
Similar to Puppet and Chef, Salt works primarily on a client-server model in
which states stored on the Salt Master are executed on the minions to bring
about the desired state. Salt is notable in that it is one of the fastest and most
efficient configuration management platforms, as it employs a message bus
architecture (ZeroMQ) between the master and nodes. Levering this message
bus, it is quickly able to evaluate these messages and take the corresponding
action.
Ansible: Ansible is perhaps one of the more unique automation platforms of the
ones we have looked at thus far. Ansible was written in 2012 by Michael
DeHaan to provide a minimal, yet powerful configuration management tool.
Ansible playbooks are simple YAML files that detail the actions and parameters
that will be executed on target hosts in a very readable format. By default,
Ansible is agentless and leverages a push model, in which playbooks are
executed from a centralized location (your laptop, or a dedicated host on the
network), and evaluated on a target host over SSH. The only requirements to
deploy Ansible are that the hosts you are running playbooks against need to be
accessible over SSH, and they must have the correct version of Python installed
(2.7 at the time of writing). If these requirements are satisfied, Ansible is an
incredibly powerful tool that requires very little effort in terms of knowledge
and resources to get started using it. More recently, Ansible launched the
Ansible Container project, with the purpose of bringing configuration
management paradigms to building and deploying container-based platforms.
Ansible is an incredibly flexible and reliable platform for configuration
management with a large and healthy open source ecosystem.

So far, we have seen how introducing automation into our infrastructure can help

bring us one step closer to realizing the goals of DevOps. With a solid automation
platform in place, and the correct workflows to introduce change, we can leverage
these tools to truly have control over our infrastructure. While the benefits of
automation are great indeed, there are major drawbacks. Incorrectly implemented
automation introduces a point of failure into our infrastructure. Before selecting an
automation platform, one must consider what will happen in the event that our
master server goes down (applicable to tools such as Salt, Chef, and Puppet). Or
what will happen if a state, recipe, playbook, or manifest fails to execute on one of
your bare metal infrastructure servers. Using configuration management and
automation tools is essentially a requirement in today's landscape, and ways to
deploy applications which actually simplify and sometimes negate these potential
issues are emerging.

Virtualization of applications and
infrastructure
With the rise of cloud computing in recent years, the virtualization of applications
and infrastructure has for many organizations replaced traditional in-house
deployments of applications and services. Currently, it is proving to be more cost-
effective for individuals and companies to rent hardware resources from companies
such as Amazon, Microsoft, and Google and spin up virtual instances of servers with
exactly the hardware profiles required to run their services.

Many configuration management and automation tools today are adding direct API
access to these cloud providers to extend the flexibility of your infrastructure. Using
Ansible, for example, you can describe exactly the server configuration you
require in a playbook, as well as your cloud provider credentials. Executing this
playbook will not only spin up your required instances but will also configure them
to run your application. What happens if a virtual instance fails? Blow it away and
create a new one. With the ushering in of cloud computing, so too comes a new way
to look at infrastructure. No longer is a single server or group of servers considered
to be special and maintained in a specific way. The cloud is introducing DevOps
practitioners to the very real concept that infrastructure can be disposable.

Virtualization, however, is not limited to just cloud providers. Many organizations
are currently implementing virtualization in-house using platforms such as ESXi,
Xen, and KVM. These platforms allow large servers with a lot of storage, RAM, and
CPU resources to host multiple virtual machines that use a portion of the host
operating system's resources.

Considering the benefits that virtualization and automation bring to the table, there
are still many drawbacks to adopting such an architecture. For one, virtualization in
all its forms can be quite expensive. The more virtual servers you create in a cloud
provider, the more expensive your monthly overhead fee will be, not considering the
added cost of large hardware profile virtual machines. Furthermore, deployments
such as these can be quite resourced-intensive. Even with low specifications,
spinning up a large number of virtual machines can take large amounts of storage,
RAM, and CPU from the hypervisor hardware.

Finally, consideration must also be paid to the maintenance and patching of the
virtual machine operating systems, as well as the hypervisor operating system. Even
though automation platforms and modern hypervisors allow virtual machines to be
quickly spun up and destroyed, patching and updates still must be considered for
instances that might be kept for weeks or months. Remember, even though the
operating system has been virtualized, it is still prone to security vulnerabilities,
patching, and maintenance.

Containerization of applications
and infrastructure
Containerization made an entrance on the DevOps scene when Docker was launched
in the month of March of 2013. Even though the concepts of containerization predate
Docker, for many working in the field, it was their first introduction to the concept of
running an application inside a container. Before we go forward, we must first
establish what a container is and what it is not.

A container is an isolated process in a Linux system that has control groups and
kernel namespaces associated with it. Within a container, there is a very thin
operating system layer, which has just enough resources to launch and run other
processes. The base operating system layer can be based on any operating system,
even a different operating system from the one that is running on the host. When a
container is run, the container engine allocates access to the host operating system
kernel to run the container in isolation from other processes on the host. From the
perspective of the application inside the container, it appears to be the only process
on that host, even though that same host could be running multiple versions of that
container simultaneously.

The following illustration shows the relationship between the host OS, the container
engine, and the containers running on the host:

Figure 1: An Ubuntu 16.04 host running multiple containers with different base operating systems

Many beginners at containerization mistake containers for lightweight virtual
machines and attempt to fix or modify running containers as you would a VM or a
bare metal server that isn't running correctly. Containers are meant to be truly
disposable. If a container is not running correctly, they are lightweight enough that
one can terminate the existing container and rebuild a new one from scratch in a
matter of seconds. If virtual machines and bare metal servers are to be treated as pets
(cared for, watered, and fed), containers are to be treated as cattle (here one minute,
deleted and replaced the next minute). I think you get the idea.

This implementation differs significantly from traditional virtualization, in that a
container can be built quickly from a container source file and start running on a host
OS, similar to any other process or daemon in the Linux kernel. Since containers are
isolated and extremely thin, one does not have to be concerned about running any
unnecessary processes inside of the container, such as SSH, security tools, or
monitoring tools. That container exists for a specific purpose, to run a single
application. Container runtime environments, such as Docker, provide the necessary
resources so that the container can run successfully and provide an interface to the
host's software and hardware resources, such as storage and networking.

By their very nature, containers are designed to be portable. A container using a
CentOS base image running the Apache web server can be loaded on a CentOS host,
an Ubuntu host, or even a Windows host; they all have the same container runtime
environment and run in exactly the same way. The benefits of having this type of
modularity are immense. For example, a developer can build a container image for
MyAwesomeApplication 1.0 on his or her laptop, using only a few megabytes of
storage and memory, and be confident that the container will run exactly the same in
production as it does on their laptop. When it's time to upgrade
the MyAwesomeApplication to version 2.0, the upgrade path is to simply replace the
running container image with the newer container image version, significantly
simplifying the upgrade process.

Combining the portability of running containers in a runtime environment such as
Docker with automation tools such as Ansible can provide software developers and
operations teams with a powerful combination. New software can be deployed faster,
run more reliably, and have a lower maintenance overhead. It is this idea that we will
explore further in this book.

Orchestrating of containerized
applications
Working towards a more flexible, DevOps-oriented infrastructure does not stop with
running applications and tools in containers. By their very nature, containers are
portable and flexible. As with anything else in the IT industry, the portability and
flexibility that containers bring can be built upon to make something even more
useful. Kubernetes and Docker Swarm are two container scheduling platforms that
make maintaining and deploying containers even easier.

Kubernetes and Docker Swarm can proactively maintain the containers running
across the hosts in your cluster, making scaling and upgrading containers very easy.
If you want to increase the number of containers running in your cluster, you can
simply tell the scheduling API to increase the number of replicas, and the containers
will automatically scale in real time across nodes in the cluster.

If you want to upgrade the application version, you can similarly instruct these tools
to leverage the new container version, and you can watch the rolling upgrade process
happen almost instantly. These tools can even provide networking and DNS services
between containers, such that the container network traffic can be abstracted away
from the host networking altogether. This is just a taste of what container
orchestration and scheduling tools such as Docker Swarm and Kubernetes can do for
your containerized infrastructure. However, these will be discussed in much greater
detail later in the book.

Building your first docker container
Now that we have covered some introductory information that will serve to bring the
reader up to speed on DevOps, configuration management, and containerization, it's
time to get our hands dirty and actually build our first Docker container from scratch.
This portion of the chapter will walk you through building containers manually and
with scripted Dockerfiles. This will provide a foundational knowledge of how the
Ansible Container platform works on the backend to automate the building and
deployment of container images.

When working with container images, it is important to understand the difference
between container images and running instances of containers. When you build a
container using Ansible Container or manually using Dockerfiles, there is a two-part
process required to run a container: Building the container image, and running an
instance of the container:

Building a Container: The build process involves downloading a base
container OS image, and executing the steps outlined in the Dockerfile or
Ansible Container playbooks to bring the container into the desired state. The
result of the build process is a cached container image that is ready to launch
container instances. The docker pull command can also be used to download
container images from the internet for your local Docker host to cache.
Running a Container: The process of starting a cached container image and
running it is known as running a container. You can start as many containers
you want from a single container image. If you attempt to run a container image
that is not already cached on your local Docker host, Docker will attempt to
download that container image from the internet.

Instantiating the lab environment
I would encourage you to follow along as we perform these lab exercises. To
simplify the process of getting an environment that has the tools covered in this
book up-and-running, I have created a Git repository with many example lab
scenarios covered throughout this book. We will start off by running through a quick
tutorial on how to set up the lab on your local workstation or laptop. To install the
lab components, I would suggest using a computer with at least 8 GB of RAM, a
virtualization-enabled CPU (Intel Core i5 or equivalent), and a 128 GB or higher
hard drive. Linux or macOS are the preferred operating systems for installing the lab,
as these tools generally work better on Unix-like operating systems. However, all of
these tools also support Windows, but your mileage may vary.

The lab environment will spin up a disposable Ubuntu 16.04 Vagrant VM which
comes preloaded with Docker, Ansible Container, and the various tools you will
need to successfully become familiar with how Ansible Container works. A text
editor geared towards development is also required and will be used to create and
edit examples and lab exercises throughout this book. I would suggest using GitHub
Atom or Vim, as both editors support syntax highlighting for YAML documents and
Dockerfiles. Both GitHub Atom and Vim are available as free and opensource
software and are available cross-platform.

Please note, you do not have to install this lab environment in order to
learn and understand Ansible Container. It is helpful to follow along
and have hands-on experience of working with the technology, but it is
not required.

The book should be simple enough to understand without instantiating the lab if you
lack the available resources. It should also be noted that you can instantiate your own
lab environment on your workstation as well, by installing Ansible, Ansible
Container, and Docker. Later in the book, we will cover Kubernetes and OpenShift,
so will need those as well for later chapters. These references can be found at the
back of the book.

Installing the lab environment:
Below are the steps required to set up the lab environment on your local workstation.
Details on installing Vagrant and Virtualbox for your respective platform can be
found on the main websites. Try and download similar version numbers to what is
listed to ensure maximum compatibility:

1. Download and install Git: https://git-scm.com/downloads
2. Download and install VirtualBox (version 5.1): https://www.virtualbox.org/wiki/D

ownloads

3. Download and install Vagrant (version 1.9.1): https://www.vagrantup.com/docs/ins
tallation/

4. Clone the Ansible Container Lab Git Repository:

git clone https://github.com/aric49/ansible_container_lab.git

In your Terminal, navigate to the ansible_container_lab Git repository and run: vagrant
up to start the virtual machine:

cd Ansible_Container_Lab
vagrant up

If Vagrant and VirtualBox are installed and configured correctly, you should start to
see the VM launching on your workstation, similar to the following:

user@host:$ vagrant up
Bringing machine 'node01' up with 'virtualbox' provider...
==> node01: Importing base box 'ubuntu/xenial64'...
==> node01: Matching MAC address for NAT networking...
==> node01: Checking if box 'ubuntu/xenial64' is up to date...
==> node01: Setting the name of the VM: AnsibleBook_node01_1496327441174_45550
==> node01: Clearing any previously set network interfaces...
==> node01: Preparing network interfaces based on configuration...
node01: Adapter 1: nat
==> node01: Forwarding ports...
node01: 22 (guest) => 2022 (host) (adapter 1)
==> node01: Running 'pre-boot' VM customizations...
==> node01: Booting VM...
==> node01: Waiting for machine to boot. This may take a few minutes...
node01: SSH address: 127.0.0.1:2022

Once the Vagrant box has successfully booted up, you can execute the command:
vagrant ssh node01 to get access to the VM.

https://git-scm.com/downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/docs/installation/

When you are done working in the Vagrant virtual machine, you can use the
command: vagrant destroy -f to terminate the VM. Destroying the VM should be
done when you are finished working with the machine for the day, or when you wish
to delete and re-create the VM from scratch, should you need to reset it to the
original settings.

Please note: Any work that is not saved in the /vagrant directory in the
lab VM will be deleted and will be unrecoverable. The /vagrant
directory is a shared folder between the root of the lab directory on
your localhost and the Vagrant VM. Save files here if you want to make
them available in the future.

Starting your first Docker container
By default, the lab environment begins running with the Docker engine already
started and running as a service. If you need to install the Docker engine manually,
you can do so on Ubuntu or Debian-based distributions of Linux using: sudo apt-get
install docker.io. Once Docker is installed and running, you can check the status of
running containers by executing docker ps -a:

ubuntu@node01:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ubuntu@node01:~$

We can see in the preceding output that we have column headers, but no actual
information. That's because we don't have any container instances running. Let's
check how many container images Docker knows about, using the docker images
command:

ubuntu@node01:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

Not much going on there either. That's because we don't have any container images
to play around with yet. Let's run our first container, the Docker hello-world
container, using the docker run command:

ubuntu@node01:~$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest: sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://cloud.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

The command we executed was: docker run hello-world. A lot of things happened

when we ran that command. The command docker run is the Docker command
required to start and run a container within the Docker engine. The container we are
running is hello-world. If you look through the output, you can see that Docker
reports that it is Unable to find image 'hello-world:latest' locally. The first step of the
Docker run is Docker testing to see if it already has the container image cached
locally, so it doesn't have to download and redownload containers that the host is
already running. We validated earlier that we currently have no container images in
Docker using the docker images command, so Docker searched its default registry
(Docker Hub) to download the image from the internet. When Docker downloads a
container image, it downloads the image one layer at a time and calculates a hash to
ensure that the image was pulled correctly and with integrity. You can see from the
preceding output that Docker provides the sha256 digest, so we can be certain that the
correct image was downloaded. Since we didn't specify a container version, Docker
searched the Docker Hub registry for an image called, hello-world and downloaded
the latest version. When the container executed, it printed the Hello From Docker
output, which is the job the container is designed to perform.

You can also use the docker ps command without the -a flag to show
only containers that are currently running, not exited or stopped
containers.

Docker containers are built based on layers. Every time you build a Docker image,
each command you run to create the image is a layer in the Docker image. When
Docker builds or pulls an image, Docker processes each layer individually, ensuring
that the entire container image is pulled or built intact. When you begin to build your
own Docker images, it is important to remember: the fewer the layers, the smaller
the file size, and the more efficient the image will be. Downloading an image with a
lot of layers is not ideal for users consuming your service, nor is it convenient for
you to quickly upgrade services if your Docker images take a long time to download.

Now that we have downloaded and run our first container image, let's take a look at
our list of local Docker images again:

ubuntu@node01:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest 48b5124b2768 4 months ago 1.84 kB
ubuntu@node01:~$

As you can see, we have the hello-world image cached locally. If we reran this
container, it would no longer have to pull down the image, unless we specify a

higher image version number than what was stored in the local cache. We can now
take another look at our docker ps -a output:

ubuntu@node01:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b0c4093ab38f hello-world "/hello" 28 minutes ago Exited (0) 28 minutes ago romantic_easley

From the preceding output, you can see that Docker created a new running container
with the container ID: b0c4093ab38f. It also listed the name of the source image used
to spawn this container, the command executed, (in this case: /hello), the time it was
created, as well as the current status and container name. You can see that this
particular container is no longer running, as the status is Exited (0). This particular
container is designed in such a way that it performs one single job and quits once
that job has finished. The Exited (0) status lets the user know that the execution
completed successfully. This functions very similarly to a binary executable, such as
cat or echo commands in a Unix-based system. These commands perform a single job
and stop once that job has completed. Building this type of container is useful if your
purpose is to provide a user with a container that provides an output, such as parsing
text, performing calculations, or even executing jobs on the Docker host. As you will
see later, you can even pass parameters to the docker run command so that we can
modify how the applications inside the container run.

Building your first container
Now that we have an understanding of how Docker containers run, as well as how
the Docker engine downloads and caches container images, we can start building
containers that run services such as web servers and databases. In this lesson, we will
build a container from a Dockerfile that will run the Apache web server. We will
then expose ports in the Docker engine that will allow us to access the running web
service we just instantiated. Let's get started.

Dockerfiles
As we learned previously, Docker containers consist of layers that are essentially
stacked on top of each other to form a Docker container image. These layers consist
of commands in a plain-text file that the Docker engine will sequentially execute to
build a final image. Each line of a Dockerfile represents a layer in the Docker image.
The goal of building our Dockerfiles is to keep them as small and concise as possible
so that our container images are not larger than necessary. In the /vagrant directory of
your VM, create a plain-text file called, Dockerfile, and open it in the text editor of
your choice. We will start with the following lines, which we will explore one by
one:

FROM ubuntu:16.04
RUN apt-get update; apt-get install -y apache2
EXPOSE 80
ENTRYPOINT ["apache2ctl"]
CMD ["-DFOREGROUND"]

Let's take a look at this Dockerfile line-by-line:

FROM: Indicates the base image from which we want our container to be built. In
this case, it is the Ubuntu base image, version 16.04. There are multiple base
images, and images with applications prebuilt, that you can leverage, available
for free on Docker Hub.
RUN: Any commands you want the container to execute during the build process
get passed in with the RUN parameter. We are executing apt-get update in
tandem with apt-get install. We are executing both of these commands using
the same RUN line in order to keep our container layers as small as possible. It is
also a good practice to group package management commands in the same RUN
lines as well. This ensures that apt-get install does not get executed without
first updating the sources list. It is important to note that, when a Docker image
gets rebuilt, it will only execute the lines that have been changed or added.
EXPOSE: The EXPOSE line instructs Docker about which ports should be open on the
container to accept incoming connections. If a service requires more than one
port, they can be listed separately with spaces.
ENTRYPOINT: The ENTRYPOINT defines which command you want the container to run
by default when the container launches. In this example, we are starting the
apache2 web server using apache2ctl. If you want your container to be persistent,
it is important that you run your application in a daemon mode or a background

mode that will not immediately throw an EXIT signal. Later in the book, we will
look at an open source project called, dumb-init, which is an init system for
running services in containers.
CMD: CMD in this example defines the parameters passed into the ENTRYPOINT
command at runtime. These parameters can be overridden at the time the
container is launched by providing additional arguments at the end of your
Docker run command. All of the commands or arguments you provide in CMD are
prefixed by /bin/sh -c, making it possible to pass in environment variables at
runtime. It should also be noted that, depending on how you want the default
shell to interpret the application that is being launched inside the container, you
can use ENTRYPOINT and CMD somewhat interchangeably. The online Docker
documentation goes into more in-depth details about best practices for using CMD
versus ENTRYPOINT.

Each line within Dockerfile forms a separate layer in the final Docker container
image as seen in the following illustration. Usually, developers want to try to make
container images as small as possible to minimize disk usage, download, and build
time. This is usually accomplished by running multiple commands on the same line
in the Dockerfile.

In this example, we are running apt-get udpate; apt-get install apache2 in order to try
and minimize the size of the resulting container image.

Figure 2: Layers in the Apache2 container image

This is by no means an exhaustive list of the commands available for you to use in a

Dockerfile. You can export environment variables using ENV, copy configuration files
and scripts into the container at build time, and even create mount points in the
container using the VOLUME command. More commands such as these can be found in
the official Dockerfile reference guide at https://docs.docker.com/engine/reference/buil
der/.

Now that we understand what goes into the Dockerfile, let's build in a functional
container using the docker build command. By default, docker build will search in
your current directory for a file called Dockerfile and will attempt to create a
container layer by layer. Execute the following command on your virtual machine:

docker build -t webservercontainer:1.0 .

It is important to pass in an image build tag using the -t flag. In this
case, we are tagging the image with the name webservercontainer and the
version 1.0. This ensures that you can identify the versions you have
built from the docker image list output.

If you execute the docker images command again, you will see that the newly built
image is now stored in the local image cache:

ubuntu@node01:$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
webservercontainer 1.0 3f055adaab20 7 seconds ago 255.1 MB

We can launch new container instances now using docker run:

docker run -d --name "ApacheServer1" -p 80:80 webservercontainer:1.0

This time, we are passing new parameters into docker run:

-d: Indicates that we are going to run this container in detached or background
mode. Running containers in this mode will not immediately log the user into
the container shell upon starting. Rather, the container will start directly in the
background.
--name: Gives our container a human-readable name so that we can easily
understand what the container's purpose is. If you don't pass in a name flag,
Docker will assign a random name to your container.
-p: Allows us to open ports on the host that will be forwarded to the exposed
port on the container. In this example, we are forwarding port 80 on the host to
port 80 on the container. The syntax for the -p flag is always <HostPort>:
<ContainerPort>.

https://docs.docker.com/engine/reference/builder/

You can test if this container is running by executing the curl command on the VM
against localhost on port 80. If all goes well, you should see the default Ubuntu
Apache welcome page:

ubuntu@node01:~$ curl localhost:80
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
...

This indicates to us that Docker is listening on the localhost on port 80 and
forwarding that connection to the container, also listening on port 80. The great thing
about containers is that you can launch multiple instances of the same container,
provided they are listening on the different port numbers. In a matter of seconds, you
can create a fleet of containers providing various services, and just as quickly wipe
them out.

Let's create two more Apache web server containers listening on ports 100 and 200 of
the host's networking interfaces. Note that in the following example, I have provided
different name parameters as well as different host ports:

docker run -d --name "ApacheServer2" -p 100:80 webservercontainer:1.0

docker run -d --name "ApacheServer3" -p 200:80 webservercontainer:1.0

If you run the same curl command again, this time on port 100 and 200, you will see
the same Ubuntu default web server page. That's boring. Let's give our containers
more personality. We can use the docker exec command to log in to running
containers and customize them slightly:

ubuntu@node01:~$ docker exec -it ApacheServer1 /bin/bash
root@bc951d6ec658:/#

The docker exec requires the following flags to access a running container:

-i: Run docker exec interactively, since we are going to be launching into a Bash
shell
-t: Allocate a pseudo-tty, or terminal session
ApacheServer1: The name (or container ID) of the container we want to log into
/bin/bash: The terminal or command we want to launch using the docker exec
command

Running the docker exec command should drop you directly into the Bash shell of the
first Apache container. Run the following command to change the index.html file in

the Docker container. When you've finished, you can exit out of the container's shell
session by typing exit.

root@bc951d6ec658:/# echo "Web Server 1" > /var/www/html/index.html

From the Docker host, run the curl command again on port 80. You should see that
the page your Apache web server is using has changed:

ubuntu@node01:~$ curl localhost:80
Web Server 1

Use docker exec to log into the other two containers and use echo to change the default
index.html page to something unique to all three web server containers. Your curl
results should reflect the changes you've made:

ubuntu@node01:~$ curl localhost:80
Web Server 1
ubuntu@node01:~$ curl localhost:100
Web Server 2
ubuntu@node01:~$ curl localhost:200
Web Server 3

Note: This exercise is for the purposes of demonstrating the docker exec command.
docker exec is not a recommended way to update, fix, or maintain running containers.
From a best practices standpoint, you should always rebuild your Docker containers,
incrementing the version tag when changes need to be made. This ensures that
changes are always recorded in the Dockerfile so containers can be stood up and torn
down as quickly as possible.

You may also have noticed that various Linux operating system tools, text editors,
and other utilities are not present in the Docker containers. The goal of containers is
to provide the bare-minimal footprint required to run your applications. When
building your own Dockerfiles, or later, when we explore Ansible Container
environments, think through what is going inside your containers and whether or not
your container meets the best practices for designing microservices.

Container life cycle management
Docker gives you the benefit of process isolation using Linux control groups and
namespaces. Similar to processes in Unix-like operating systems, these processes can
be started, stopped, and restarted to implement changes throughout the lifecycle of
the container. Docker gives you direct control of the state of your containers by
giving you the options to start, stop, reload, and even view containers logs that might
be misbehaving, as needed. Docker gives you the benefit of using either the
container's internal ID number or using the container name we assign it when we
start using docker run. The following is a list of Docker native commands that can be
used to manage the lifecycle of a container as you build and iterate through various
versions:

docker stop <ContainerID or Name>: Stops the running container and processes
within the container.
docker start <ContainerID or Name>: Starts a stopped or exited container.
docker reload <ContainerID or Name>: If the container is running, reload will
gracefully stop the container and start the container to bring it back into a
running state. If the container is stopped, reload will start the running container.
docker logs <ContainerID or Name>: Displays any logs generated by the container
or the application running inside the container leveraging STDOUT or STDERR. Logs
are useful for debugging a misbehaving container without having to exec inside
the container.

docker logs have a --follow flag, useful for streaming live log output.
This can be accessed using docker logs --follow <ContainerID or Name>.

From the preceding example, we can start, stop, reload, or view the logs of any of the
Apache web server containers we built earlier, like so:

docker stop ApacheServer2
docker start ApacheServer2
docker reload ApacheServer2
docker logs ApacheServer2

Similar to this example, you can validate the status of any containers by looking at
the output of docker ps -a.

For all Docker commands, including docker run, exec, and build, you
can see all of the options available for a given command by appending
the --help flag. For example docker run --help.

References
Dockerfile reference guide: https://docs.docker.com/engine/reference/builder/
Download Virtualbox: https://www.virtualbox.org/wiki/Downloads
Download Vagrant: https://www.vagrantup.com/docs/installation/
Download Git: https://git-scm.com/downloads

https://docs.docker.com/engine/reference/builder/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/docs/installation/
https://git-scm.com/downloads

Summary
In this chapter, we looked at the history of application deployments across IT
infrastructure, as well as the history of containers and why they are revolutionizing
software development. We also took our first steps in building Docker containers by
running containers manually, as well as by building them from scratch through
Dockerfiles.

I hope that, if you are new to containerization and Docker, this chapter gave you a
good starting point from which you can get hands-on in the world of
containerization. Dockerfiles are excellent tools for building containers, as they are
lightweight, easily version-controlled, and quite portable. However, they are quite
limited in the sense that they are the equivalent of a Bash shell script in the world of
DevOps. What happens if you need to tweak configuration files, dynamically
configure services based on the states of services, or configure containers based on
the environmental conditions they will be deployed into? If you have spent time
working on configuration management, you will know that, while shell scripts can
do the job, there are much better and easier tools available. Ansible Container is
exactly the tool we need in order to apply the power of configuration management to
the portability and flexibility that containers bring to our infrastructure. In Chapter
2, Working with Ansible Container, you will learn about Ansible Container and see
first-hand how quickly we can build and deploy containers.

Working with Ansible Container
As we saw in Chapter 1, Building Containers with Docker, containerization is
changing the way critical IT infrastructure is maintained and deployed. As DevOps
methodologies and mindsets evolve across organizations, the lines between
development and operations roles are becoming blurred. While tools such as Docker
continue to grow and evolve, tools need to be developed to leverage the ever-
increasing need to scale and deploy containerized applications.

Ansible is a unique framework for automation, as we saw in Chapter 1, Building
Containers with Docker, as it relies on an agent-less architecture, bringing servers
and virtualized applications into the desired state from a centralized location over the
SSH protocol. Compared to the other core automation tools discussed, Ansible
brings a different approach from other configuration management tools, such as Chef
and Puppet, which rely on agents and centralized servers to store and maintain
configuration states.

The Ansible Container project was launched to address the need to bring critical
configuration management techniques to the currently manual process of building
and deploying Docker container images with the standard Docker toolchain.
Currently, Docker and Docker tools are built with an emphasis on deploying
containers to Docker native environments using Swarm and Docker Compose.
Ansible Container is a wrapper around many of the standard Docker tools, and
provides the functionality to deploy your projects to various cloud providers,
Kubernetes, and OpenShift. At the time of writing other container orchestration tools
such as Docker Swarm and Apache Mesos are not currently supported. If
Dockerfiles are akin to shell scripts during the era of monolithic application
deployments, then Ansible Container is a solution for bringing automation and
repeatability to the container ecosystem. As Ansible Core uses playbooks and SSH
as an interface for bringing about desired states, Ansible Container can use your
same playbooks and native container APIs to build and deploy containers.

If you or your organization is already using Ansible roles for customized
deployments of applications and services, these same roles can be leveraged to turn
these applications and services into containers, helping to streamline your container
build pipeline. When making the leap from bare-metal and virtualized deployments,

you can be confident that your customized configurations and settings will be
preserved when building your containers.

In this chapter we will learn:

An introduction to Ansible Container and the microservice architecture
A quick introduction to Docker Compose
Ansible Container workflow
Ansible Container quick start

An introduction to Ansible
Container and the microservice
architecture
While using Ansible Container has a great number of benefits in reusing existing
Ansible artifacts, modules, and playbooks, careful consideration has to be given to
any changes required in porting over your existing services. Ansible gives you a
large amount of freedom in the way you write playbooks and roles to suite the
uniqueness of your organization's architecture and resource constraints. A typical
web application, for example, may have three distinct layers of functionality: a web
server, which provides your end users with a website; a database for storing data;
and a cache, providing the web server with commonly accessed data from the
database. Depending on the architecture and any resource constraints, these services
might be implemented in any number of ways. You may have your web server,
caching layer, and database on three separate and distinct clusters of servers. You
could opt to deploy the web server and caching layer on the same cluster, and the
database on a secondary cluster. Or all three layers might be deployed on the same
bare-metal or virtualized server cluster, with a load balancer providing redundancy
as necessary. Your infrastructure is a unique snowflake that Ansible gives you the
freedom to write and deploy playbook roles in almost any configuration that fits your
needs.

Microservice architecture is a term used to describe the independent and modular
breakout of application services to distinct and deployable units. In the world of
containers, you want each of your containers to conform to the microservice
architecture, creating each service as a separate container that can be deployed and
scaled independently of the other services. While it is possible to deploy multiple
services in the same container, it is generally a bad idea, as each service adds layers
to your containers, creating unnecessary overhead when building and deploying new
containers.

In the preceding example, each of the core services (web server, cache, and database)
will be a separate microservice you want to isolate and encapsulate into containers.
Having the flexibility to dynamically deploy more cache or database containers on

demand creates a huge advantage if your web application goes into production and
you realize that the projected traffic is much higher than originally anticipated and
database queries are becoming a bottleneck. Having a microservice-oriented design
to your containers will allow your infrastructure to be simplified, more easily
deployed, and more quickly scaled to meet the needs of demanding users.

The key takes-away when thinking about porting existing Ansible roles into Ansible
Container projects is to think through how tightly integrated your roles currently are.
Ideally, Ansible roles should be able to be standalone, with little to no reliance on
other environmental characteristics. Isn't this starting to sound a lot like the
containerized microservices we described before? This is what makes Ansible
Container a unique platform among other configuration management tools. Ansible
primitives are already designed to fit nicely into a containerized ecosystem. Even if
you are not currently using Ansible as your configuration management tool, Ansible
Container is still a fantastic tool for building, maintaining, and deploying containers,
from development all the way through to production.

A quick introduction to Docker
Compose
Docker Compose is one of the Docker workflow tools that allow you to easily build
and run multiple containers at once. It is important to have a basic understanding of
how Docker Compose works before we start working with Ansible Container since a
lot of Ansible Container's core functionality is wrapped around Docker Compose.

In the previous chapter, I illustrated an example in which three Apache web server
containers were created to demonstrate running multiple containers simultaneously
leveraging the same container base image. With Docker Compose, instead of
providing three separate docker run commands, one can simply provide a YAML
definition file that describes the containers you want to run, any docker run
parameters you want the containers to run with (ports, volumes, and so on), and any
links or dependencies you want to create for the containers prior to running them.
When Docker Compose is executed, it will automatically try to bring up the
containers described in the YAML file. If the images are not yet cached locally, it will
try to download them from the internet or will build the container images if the
Dockerfiles are provided. Let's do a quick exercise to get a feel for how Docker
Compose works.

If you are not using the provided Vagrant lab environment, as discussed in Chapter 1,
Building Containers with Docker, you will first need to download Docker Compose
using the following command. The steps provided assume you have Docker Engine
already installed and running on a Linux or macOS machine. Make sure you install
Docker Compose with the same version number as the Docker Engine you already
have running to ensure maximum compatibility. Execute the following commands to
download the Docker Compose executable and copy it to /usr/local/bin with execute
privileges.

sudo curl -L https://github.com/docker/compose/releases/download/1.17.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

The most up-to-date installation documentation can be found at https:/
/docs.docker.com/compose/install.

https://docs.docker.com/compose/install

By default, Docker Compose looks for a file in your current working directory
called docker-compose.yml. I have provided a sample docker-compose.yml file as an
example. On your workstation, create a directory called docker-compose and create a
blank docker-compose.yml file in that directory. Paste in the following content:

version: '2'
services:
 Cache_Server:
 image: memcached:1.4.36
 ports:
 - 11211:11211
 volumes:
 - .:/var/lib/MyVolume

Let's look at this file line by line:

version: This line indicates which version of the Docker Compose API to use. In
this case, we are using version 2. At the time of writing, there is also version 3
of the API, which provides some new features. For our purposes, however, we
are content to use version 2. The version parameter usually starts a Docker
Compose file and has no indentation.
services: The services line starts the section of your docker-compose.yml file that
lists each service container you are going to create. In this particular Docker
Compose file, we are going to create a service called Cache_Server, which spins
up a single memcached container. Each service you specify should be indented two
spaces under the services declarative. It should also be noted that the service
names are user-defined and are used to generate the container name. When
creating multi-container Docker Compose files, Docker provides simple DNS
resolution between containers, based on the service names. More on this in Chap
ter 8, Building and Deploying Multi-Container Projects.
image: image is used to specify the container image you want your container to be
based on. For this example, we are using the official memcached image from
Docker Hub, specifying version 1.4.36. We could also have used the latest
keyword in place of the version number if we had wanted to always have the
latest version of the image.
ports: The ports parameter indicate which ports on the host you want to be
forwarded to the container. In this case, we will forward port 11211 to the
exposed container port 11211. Similar to docker run, ports must be specified in
the format host:container. This is a YAML list, so each port must be indented and
prefixed with a hyphen (-).
volumes: This parameter specifies any directories or storage volumes on the
Docker host you would like to make accessible to the container. This is useful if
there is data in the container you may want to back up, export, or otherwise

share with the container. This volume mounting merely serves as an example of
the syntax. Similar to the ports parameter, volumes takes a list in the form of
hostDirectory:containerDirectory.

To start our container using Docker Compose, you simply execute the
command docker-compose up. This will, by default, start all of the containers in the
Docker Compose file one by one, unless container dependencies are specified.
Containers started using docker-compose will be started in attached mode, meaning that
the container process will run, taking over the Terminal you are using. Similar to
docker run, we can supply the -d flag to run the containers in detached mode, so we
can run some validations in the same Terminal:

docker-compose up -d

You will observe that, similarly to docker run, Docker Compose automatically
determines that the container image is not present on the Docker host and
successfully downloads the image and corresponding layers from the internet.

ubuntu@node01:/vagrant/Docker_Compose/test$ docker-compose up -d
Creating network "test_default" with the default driver
Pulling Cache_Server (memcached:1.4.36)...
1.4.36: Pulling from library/memcached
56c7afbcb0f1: Pull complete
49acdc7c75c9: Pull complete
152590a2a704: Pull complete
4dc7b8165378: Pull complete
4cb74c11bcdd: Pull complete
Digest: sha256:a2dfef5700944ec8bb2d2c0d6f5b2819324b1b91647dc09847ce81e7a91e3fe4n
Status: Downloaded newer image for memcached:1.4.36
Creating test_Cache_Server_1 ...
Creating test_Cache_Server_1 ... done

Running docker ps -a will reveal that Docker Compose was able to successfully
create the running container with the properly exposed ports and volume mounts
listed in our docker-compose.yml file:

ubuntu@node01:/vagrant/Docker_Compose/test$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
cacf58b455f3 memcached:1.4.36 "docker-entrypoint.sh" 7 minutes ago Up 7 minutes 0.0.0.0:11211->11211/tcp test_Cache_Server_1

We can use telnet to ensure the memcached application is functioning and forwarded
through the host networking. Using telnet, we can store and retrieve data from
Memcached directly:

ubuntu@node01:/vagrant/Docker_Compose/test$ telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.

Escape character is '^]'.
STAT active_slabs 0
STAT total_malloced 0
END

Running the stats slabs command lets us know that memcached has been deployed and
is functioning as expected.

Now that we have had a brief introduction to Docker and Docker Compose, we have
acquired the basic skills needed to start working with Ansible Container.

Ansible Container workflow
Similar to other orchestration and automation tools, Ansible Container contains a set
of utilities that constitute a containerized workflow. Using Ansible Container, you
can create, build, run, and deploy containers, from development all the way through
to production, using the suite of tools included with Ansible Container out of the
box. Ansible Core's batteries-included methodology carries over to Ansible
Container to provide developers and system administrators with a complete
containerized workflow solution. The following is an overview of the primary
Ansible Container functions and how they correspond to the typical lifecycle of a
containerized application:

ansible-container init: Used to initially start an Ansible Container project. init
builds and creates the directory scaffolding and base files that are required to
start an Ansible Container project.
ansible-container build: Similar to what the name suggests, build will parse the
primary files in your project and attempt to build the containers described.
Ansible Container is able to do this by first creating what is known as a
conductor container. The conductor container is a master container that is created
during the build phase of your project and contains a running copy of Ansible.
Once the other containers launch, the conductor container is responsible for
running the Ansible roles and playbooks against them to bring the containers
into the desired state.
ansible-container run: run works in a very similar way to docker run in the respect
that, when executed, run takes the built containers and attempts to run them in
the container engine on the host. By default, the run command takes into
consideration any development options listed in the container.yml file, unless the
-- production flag is passed in at runtime.
ansible-container destroy: Stops any running containers and also removes any
built image files. This command is useful when testing an end-to-end
deployment from scratch.
ansible-container push: This command pushes the container images you built
with Ansible Container to a container registry of your choice, such as Docker
Hub, Quay, or GCR. This command is similar to docker push.
ansible-container deploy: deploy (formerly ShipIt) takes your current project and
generates a customized Ansible playbook and role to deploy your container to a
cloud service provider. At the time of writing, deploy supports only OpenShift

and Kubernetes. Running this playbook using the ansible-playbook command,
will deploy your containers to the specified provider.

As you can see, Ansible Container comes prebuilt with an end-to-end lifecycle
management system that allows you to manage containers from development
through to production. Ansible Container leverages the powerful and customizable
Ansible configuration management system to allow containers to be created and
deployed similarly to bare-metal or virtual nodes.

All Ansible Container subcommands can be found by running ansible-
container --help.

Ansible Container quick-start
This portion of the chapter is going to focus on getting started with Ansible
Container, initializing a base project, and recreating the memcached example from
earlier. If you are not following along with the Vagrant lab provided on GitHub, the
first step is to install Ansible Container using the python-pip package manager. The
following steps will install Ansible Container with support for Docker on a Debian-
based distribution of Linux:

sudo apt-get update
sudo apt-get install python-pip
sudo pip install ansible-container docker

Ansible Container init
You should now have Ansible Container installed and ready to run in your
environment. The first command that's required to start a new Ansible Container
project is the ansible-container init command. After logging in to your vagrant VM,
create an empty directory in the /vagrant directory and type:

ubuntu@node01:~$ mkdir /vagrant/demo
ubuntu@node01:~$ cd /vagrant/demo
ubuntu@node01:/vagrant/demo$ ansible-container init
Ansible Container initialized.

It is important to note that the final lab exercise can be found in the
official book GitHub repository, in the directory: AnsibleContainer/demo.

When Ansible Container has successfully created a new project, it will return the
response Ansible Container initialized.

As discussed previously, init creates the basic directory structure and layout required
to start building Ansible Container projects. Navigating to that directory and looking
at the directory listing will give you an idea of what an Ansible Container project
looks like:

demo
├── ansible.cfg
├── ansible-requirements.txt
├── container.yml
├── meta.yml
└── requirements.yml

Let's look at these files individually to understand their purpose in an Ansible
Container project:

ansible.cfg: The primary configuration file for the Ansible engine. Any settings
you want the Ansible conductor container to leverage will go in this file. If you're
familiar with using Ansible for configuration management tasks, you will
already have a basic familiarity with the ansible.cfg file. For the most part, you
can safely leave this file alone, unless there is a specific way Ansible needs to
run during the container build process. More information about Ansible
configuration options can be found in the Ansible documentation at https://docs

https://docs.ansible.com

.ansible.com.

ansible-requirements.txt: The ansible-requirements.txt file is used to specify any
Python pip dependencies that your playbooks may need to run successfully.
Ansible Engine is built on a series of modules that perform the tasks described
in the playbooks. Any additional Python packages that are required to run the
Ansible roles are listed in this file.
container.yml: Describes the state of your containers, including base images,
exposed ports, and volume mounts. The syntax for container.yml is similar to the
Docker Compose format, with a few differences we will look at throughout this
book.
meta.yml: The meta.yml file includes any metadata about your container project,
including the name of the author, version information, software licensing
details, and tags. This information makes it easy for other users to find your
project should you choose to share it on Ansible Galaxy.
requirements.yml: Defines any Ansible Galaxy roles and version information
your container project will use. In this file, you can describe the exact roles and
role versions your project requires. Ansible Container will download these roles
from Ansible Galaxy prior to building your container project. By specifying
your roles in the requirements.yml file, you can be sure that your projects
consistently use the same roles to build the base container images. It is
important to keep in mind the distinction between ansible-requirements.yml and
requirements.yml. requirements.yml is used to manage the Ansible roles your
project depends on, whereas ansible-requirements.yml is used to manage the
Python pip packages those roles may require.

Now that we have a feel for what an Ansible Container project looks like, we can
dive in and start experimenting with creating a simple Ansible Container project.
Remember our Docker Compose project we created earlier? Let's use that as a
starting point and port this project to Ansible Container by editing the container.yml
file. In a text editor, open the container.yml file. By default container.yml comes with a
prepopulated structure, which in many ways resembles a Docker Compose file. Your
container.yml file should resemble the following. To conserve space, I have removed
many of the comments and example data:

version: "2"
settings:
 conductor_base: centos:7

services: {}

registries: {}

Each of these sections has a particular purpose for structuring your Ansible
Container project. It is important to understand what each of these YAML definitions is
used to describe. The comments that come in the file by default show examples of
the various settings each of these sections uses. The following is a list of the key
sections of the container.yml file and how to use these sections in your Ansible
Container project:

version: The version section signifies which version of the Docker Compose API
to use. As we discussed before, Ansible Container is a wrapper around many of
the Docker Compose services. Here, we can specify which version of the
Docker Compose API we want our containers to use.
settings: The settings section is used to specify additional integrations or
modify any default behaviors of our Ansible Container project. By default,
there is one setting enabled.
conductor_base: This indicates which base image we want our project to use. The
conductor container is responsible for creating a Python environment used for
running Ansible playbooks and roles. The conductor image will connect to the
other containers that it creates, providing access to its own Python environment
during the build process. Therefore, it is very important to use the same base
container operating system as the container images you plan on building. This
will ensure complete compatibility in terms of Python and Ansible. Think of the
conductor image as a container that works in a similar way to the Ansible
controller node in a standard Ansible implementation. This container will reach
out to the other nodes (containers), leveraging the Docker API directly to bring
our other containers into the desired state. Once we are done building our
containers, the conductor container deletes itself by default, unless you instruct
Ansible Container to retain the conductor image for debugging purposes. As
well as specifying our conductor image, we can also specify other integrations
in the settings section, such as Kubernetes credentials or OpenShift endpoints.
We will dig deeper into these in later chapters.
services: The services section is almost identical to the services section in our
Docker Compose file. In this section, we will provide our YAML definitions,
which describe the running state of our containers: which base image we will
use, the container name, exposed ports, volumes, and more. Each container
described in the services section is a node that will be configured by our
conductor image running Ansible. By default the services section is disabled
with two curly braces next to the YAML definition: {}. Before adding container
definitions, delete the curly braces so that Ansible Container can access the
child data.
registries: The final section of our container.yml file is the registries section. It

is here that you can specify container registries, from which Ansible container
will pull images. By default, Ansible Container uses Docker Hub, but you may
also specify other registries, such as Quay, gcr.io, or locally hosted container
registries. This section is also used in conjunction with the ansible-container
push command to push your built containers to the registry service of your
choice.

Ansible Container build
The second part of our Ansible Container workflow is the build process. Now that
we have our first project initialized, we can explore how the ansible-container build
function works even though we do not have any services or roles defined. From the
demo directory, run the ansible-container build command. You should see output
similar to the following:

ubuntu@node01:/vagrant/AnsibleContainer/demo$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=demo
All images successfully built.
Conductor terminated. Cleaning up. command_rc=0 conductor_id=c4f7806f8afb0910e4f7d25e5c37be32800ed8b41618d246f70da0508322c479 save_container=False

Running Ansible Container build for the first time on your local workstation might
take a few minutes to complete, as it needs to build the conductor container before it
can start. Keeping in mind that the conductor container is responsible for connecting
to the service containers using the Docker API and executing Ansible playbooks and
roles on them. Since this is a basic example of the ansible-container build command,
there are no Ansible playbooks to run on the containers we are creating. Later in the
book we will write our own roles to really explore how the conductor container
functions. The below illustration demonstrates the how the conductor container
connects to the service containers:

Figure 1: Conductor container bringing the service containers into the desired state

However, in this example, Ansible Container will first connects to the Docker API
on the localhost to determine the build context, download the required image
dependencies, and execute the build of the conductor container. You can see in the
preceding output that our conductor container was successfully built for our
project, demo. It also lists the return code, which confirms that our image was
successfully built, as well as an internal conductor ID, which Ansible Container
generates.

If we execute the command docker ps -a, we will see that no containers are currently
running or exited. This is expected since we have not yet defined any containers in
the services section of our container.yml file. You may also see that, since we did not
pass in any arguments or configuration to instruct Ansible Container to save our
conductor container, Ansible Container deleted the conductor after it had finished
running.

ubuntu@node01:demo$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

However, if we take a look at our docker images output, you will find that the conductor
image we built is cached, as well as the base image used to create it. Note that the
conductor image is prefixed with demo-*. Ansible Container automatically names
container images based on the project-service nomenclature. This ensures that, if you
are building and running multiple container projects at once, it is easy to tell which
containers belong to which projects.

In this case, our project is called, demo and the service we are building is conductor.

ubuntu@node01:demo$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
demo-conductor latest a24fbeee16e2 38 seconds ago 574.5 MB
centos 7 3bee3060bfc8 3 weeks ago 192.6 MB

We can also build our project by passing in the --save-conductor-container flag to keep
our conductor container after the ansible-container build process finishes. This is
useful for debugging failed builds by having the ability to view our containers from
the context that Ansible is running from. Let's try rebuilding our demo project, this
time saving the conductor container:

ubuntu@node01:demo$ ansible-container build --save-conductor-container
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=demo
All images successfully built.

Conductor terminated. Preserving as requested. command_rc=0 conductor_id=ff84fa95d5908b076ce432d1076533679d945104e506ad5599e417cece7c3a5d save_container=True

This time, you will see the output reflect a slight difference: Conductor terminated.
Preserving as requested, in addition to the output we observed earlier. This indicates
that, while the conductor has stopped due to it having finished its job, the container,
demo_conductor, remains for us to look at with docker ps -a:

ubuntu@node01:/vagrant/AnsibleContainer/demo$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c3c7dc04d251 a24fbeee16e2 "conductor build –pr" 3 minutes ago Exited (0) 3 minutes ago demo_conductor

With a firm understanding of how the Ansible Container build process works, as
well as how Ansible Container builds the conductor image, we can use this
knowledge to recreate the Docker Compose project we introduced at the beginning
of this chapter. We can use Ansible Container to spin up the memcached server
container we created before.

In your text editor, open the conductor.yml document we looked at earlier. Delete the
curly braces after our services: {} declaration, and add the following beneath it,
indented two spaces as per the YAML syntax:

services:
 AC_Cache_Server:
 from: memcached:1.4.36
 ports:
 - "11211:11211"
 volumes:
 - ".:/var/lib/MyVolume"

You can see that the syntax we are using to specify our service is remarkably similar
to the Docker Compose syntax we created earlier. For the purposes of this
demonstration, we are going to use the same parameters for ports and volume that we
used with Docker Compose earlier, so that the reader may easily see the slight
differences in the syntax. You will note that the container.yml syntax and Docker
Compose syntax have many similarities, but the primary differences allow Ansible
Container to be more flexible with how container services are built and deployed.

Save and close the file. If you execute the ansible-container build command again,
you should see the following output:

ubuntu@node01:demo$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=demo
Building service... project=demo service=AC_Cache_Server

Service had no roles specified. Nothing to do. service=AC_Cache_Server
All images successfully built.
Conductor terminated. Cleaning up. command_rc=0 conductor_id=22126436967e7810aff44c83fb75d2276bb9a66352ddbd44a68d44219fe97344 save_container=False

After Ansible Container has built our conductor image, we can observe from this
output that Ansible Container now recognizes that we have a service
called AC_Cache_Server enabled and it is attempting to build it. However, we do not
have any Ansible roles associated with this service, so it returns the message Nothing
to do. This would usually be the step in the process during which our playbooks
would be executed to build the services we are creating. Since we do not have any
roles defined, Ansible Container is going to skip this step and terminate the conductor
container as usual.

Ansible Container run
Now that we have a service defined, we can use the ansible-container run command
to start our service. The run command quickly generates a small Ansible playbook
that is responsible for starting the containers specified in the container.yml file. This
playbook leverages the docker_service Ansible module for starting, stopping,
restarting, and destroying containers. The docker_service module is also useful for
interfacing with the Docker daemon installed on the host OS to pull and delete
images from the Docker image cache. While it's not super important to understand
the implementation details behind the module at this point, it is helpful to understand
how Ansible Container is working behind the scenes to run containers. Executing the
ansible-container run command will display the stages of the playbook run, as well as
play recap, similar to the following output:

ubuntu@node01:demo$ ansible-container run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon
WARNING Image memcached:1.4.36 for service AC_Cache_Server not found. An attempt will be made to pull it.

PLAY [localhost] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=17aaa7aac99ff12427a7f4fb2671b24cc1ec33b774c701723dabb27eb6d75b07 save_container=False

As you can see by reading through the playbook run output, you can easily follow
the key highlights of our project as we bring it into a running state:

Our project cannot find the memcached image we specified, so Ansible Container
pulls it from the default repository (Docker Hub)
A single change has been made on our host to bring our container into a running
state
None of our plays failed; one task succeeded (bringing up our container), and
this successful task made a change on our host in order to bring up the container
The conductor service was terminated

Understanding the highlights from the Ansible Container playbook is critical to

seeing how Ansible orchestration deploys and maintains our applications. As we
discussed previously, the Ansible team works very hard to ensure that Ansible
playbook execution is very simple to understand and easy to debug. By displaying all
of the steps required to bring up container projects, it is very easy to debug failures
and see potential areas for improvement as we move forward into developing more
complex projects. The playbook that was just executed is generated on-the-fly when
ansible-container run is executed, and is located in the ansible-deployment directory.
Leveraging Ansible Container to run projects takes away much of the complexity of
deploying and maintaining projects since all of the deployment complexity is
abstracted away. From the perspective of the user, you are concerned with ensuring
the containers run and are built properly. Ansible Container becomes an end-to-end
lifecycle management tool that enables containers to be built consistently and to run
in an expected state every time. As we will see later in the book, having Ansible
Container streamline the deployment complexity is especially useful in environments
that leverage Kubernetes or OpenShift.

Now that our container run has completed, let's take a look to see what containers are
running on our host using the docker ps -a command:

ubuntu@node01:/vagrant/AnsibleContainer/demo$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c4a7792fb1fb memcached:1.4.36 "docker-entrypoint.sh" 14 seconds ago Up 13 seconds 0.0.0.0:11211->11211/tcp demo_AC_Cache_Server_1

As expected, it is easy to see that our memcached container (version 1.4.36) is in a
running state. Also, note that the conductor container is not running or showing up in
our docker ps output. Ansible Container only runs the containers defined in the
container.yml file as the desired state, unless you choose to keep the conductor
container for debugging purposes. The name of the container, as we specified in our
container.yml file, is demo_AC_Cache_Server_1. You may ask yourself why this is the
case, as we observed when we created the container.yml file that we had specifically
named our container AC_Cache_Server. One of the great features of Ansible Container
is that it understands that, as developers, we might be running and testing multiple
versions of our projects at once on the same host or group of hosts. By default, when
Ansible Container starts containers, it automatically appends the name of our project
(demo in this case) to the front of the name of the running container, and a number
indicating the instance ID of the running container.

In this case, since we have one instance of this container running, Ansible Container
automatically appended demo_ and _1 to the beginning and end of our container name
so that it would not conflict if we were testing multiple versions of this container on

the same host.

Since we are recreating the exercise we started at the beginning of the chapter on this
host, let's run the same telnet test using the stats slabs command we executed earlier
to see if our memcached container is running and responding as expected:

ubuntu@node01:/vagrant/AnsibleContainer/demo$ telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
STAT active_slabs 0
STAT total_malloced 0
END

It appears that our containerized service is running and properly accepting requests,
listening on the network interfaces of our Docker host. Keep in mind, we specified in
our container.yml file that our localhost port (11211) should be forwarded to the
container's listening port (also 11211).

Let's take a quick peek at the image cache on the Docker host. We can do this by
executing the docker images command:

ubuntu@node01:/vagrant/AnsibleContainer/demo$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
demo-conductor latest a24fbeee16e2 48 minutes ago 574.5 MB
centos 7 3bee3060bfc8 3 weeks ago 192.6 MB
memcached 1.4.36 6c32c12d9101 6 weeks ago 83.88 MB

Based on this output, we can understand more clearly how Ansible Container is
working on the backend. In order to bring up our demo project, Ansible Container had
to leverage three images: CentOS 7, memcached, and demo-conductor. The container image
named demo-conductor is the conductor image that was created during the build
process. To build the conductor image, Ansible Container had to download and
cache the CentOS 7 base image also seen in this output. Finally, memcached is the
container that Ansible had to pull from the image repository, as it was specified in
the services section of our container.yml file. The reader may also note that the
conductor image is prefaced with the name of our project demo, similarly to the
running state of our service container in the preceding output. This is again to avoid
name conflicts and to have the flexibility to run multiple container projects at once
on the same host.

Ansible Container destroy
Once you have finished experimenting with the demo project, we can use the ansible-
container destroy command to stop all running instances of our container and remove
all traces of it from our system. destroy is useful for cleaning up existing
deployments and testing our containers by rebuilding them from scratch. To destroy
a container, simply run ansible-container destroy in your project directory.

ubuntu@node01:/vagrant/AnsibleContainer/demo$ ansible-container destroy
Parsing conductor CLI args.
Engine integration loaded. Preparing to stop+delete all containers and built images.

PLAY [localhost] ***

TASK [docker_service] **
changed: [localhost]

TASK [docker_image] **
changed: [localhost]

TASK [docker_image] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=3 changed=3 unreachable=0 failed=0

All services destroyed. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=1dc36baefde06235a8c7c18733479501bfd48f7c8da0915f4bde1b196e3eff65 save_container=False

Similar to the run command seen earlier, destroy executes the same playbook that
was autogenerated by the run process. However, this time, it stops and deletes the
containers specified in the container.yml file. You may find that the docker ps -a
output now displays no running containers on our host:

Similarly, the destroy function has wiped out the conductor container image, as well as
the service container images on the Docker host. We can validate this with the docker
images command:

ubuntu@node01:/vagrant/AnsibleContainer/demo$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> e23c420b896a 43 minutes ago 576.3 MB
centos 3bee3060bfc8 4 weeks ago 192.6 MB

Note that the only container left on the system is the base CentOS container. This can
be manually deleted but, by default, Ansible Container leaves this on the system to
speed up the process of destroying and rebuilding projects.

Summary
Over the course of this chapter, we have learned some fundamental concepts about
how Ansible Container works, how it leverages the Docker Compose APIs, as well
as basic lifecycle management tools built-in to Ansible Container, including init,
build, run, and destroy. Having a firm grasp and understanding of what these features
do and how they work is foundational when it comes to going forward and digging
deeper into more complex projects we will create in Ansible Container. Although
this example is included in the official Git repository of the book, feel free to
recreate and tweak these examples to experiment further with how Ansible Container
works. In the next chapter, we will learn how to use Ansible Container with existing
roles, leveraging those roles to create reusable container artifacts.

Your First Ansible Container
Project
As we learned in Chapter 2, Working with Ansible Container, Ansible Container is a
powerful tool for orchestrating, deploying, and managing containers in a production
environment. Using a unique set of versatile tools to initiate, build, run, and deploy
Ansible Container enables developers to build containerized applications and deploy
them to local environments or cloud hosting providers. Using Ansible Container, we
can be sure that containers can be built accurately, will run reliably, and will provide
users with a consistent experience, no matter which application or platform the
containers are deployed to.

In this chapter, we will focus on building our first Ansible Container project by
building an application container, testing it in our local environment, and pushing
our container artifact to a container image repository. This will provide the user with
a real-world use case for Ansible Container and provide experience with leveraging
container-enabled roles. In this chapter, you will learn:

What are Ansible roles and container-enabled roles?
Roles in Ansible Galaxy
Ansible Container NGINX role

What are Ansible roles and
container-enabled roles?
Roles in Ansible are a way to organize playbooks into reusable, shareable, and
discrete units that are normally broken up by an application. Inside of a role are
typically a series of playbooks, configuration file templates, static files, and other
metadata that are required to bring the target host (or container) into a desired state.
In a typical three-tier application stack, consisting of a web server, database server,
and a load balancer, each of these components might be contained in three separate
Ansible roles. This provides the benefits of reuse across your infrastructure and a
simple way to share playbooks over the internet or with coworkers. For example, if
you wrote a load balancer role for one project, and needed to provision another load
balancer for an entirely different project, you could simply download the role and
assign it to another set of inventory hosts. In Ansible Core, roles are assigned to
servers or virtual machines through a parent playbook that describes what the
infrastructure looks like and how Ansible should bring that infrastructure into the
desired state. The main benefit of roles is that they provide the user with a simple
interface to access commonly used playbook tasks and resources so that the user can
be certain their infrastructure is configured and running precisely as expected.

In Ansible Container, roles work in a way that is remarkably similar to Ansible Core.
In Ansible Container, instead of assigning roles based on infrastructure components,
roles are assigned to individual containers, which are then built using the
configurations described in Ansible playbooks by the conductor container. One of
the major benefits of Ansible Container is that it greatly simplifies the curve to
enable containerized resources in your infrastructure. Many Ansible Core roles can
be reused to build containers that function very similarly to how your infrastructure
runs if you are currently using Ansible Core for configuration management.
Unfortunately, since containers and full infrastructure servers are fundamentally
different, not all tasks can be directly ported to Ansible Container roles without a
little rework. For example, since containers are much more lightweight than a full-
blown operating system, containers usually lack tools and components that come in
most operating system releases, such as init systems and resource managers.

To address this disparity, the Ansible Container project has created a different subset

of roles, known as container-enabled roles. These are roles that are designed with a
focus on containers and are usually more minimalistic then regular Ansible roles.
These are leveraged to create a final container image with the smallest footprint
possible while maximizing functionality and flexibility. Container-enabled roles
consist of many of the same constructs that regular Ansible roles do, such as
templates, tasks, handlers, and metadata. This makes it easy to get started writing
roles for Ansible Container if you are familiar with Ansible syntax and language
constructs.

Roles in Ansible Galaxy
Ansible Galaxy, located at https://galaxy.ansible.com, is a site created by the Ansible
Community to share, download, and encourage the reuse of Ansible roles. From
Ansible Galaxy, you can search and download roles for almost any application or
platform you wish to automate. If you have experience with Ansible Core, you have
undoubtedly used Ansible Galaxy to download, share, and explore roles written and
maintained by other Ansible users. If you are new to Ansible, Galaxy makes it easy
to find and leverage new roles from your web browser or the Ansible command line.
With the release of Ansible Container, you can browse Ansible Galaxy for core roles
as well as container-enabled roles. From the main website
(https://galaxy.ansible.com) you can select BROWSE ROLES | Role Type | Container
Enabled to search for roles that fit your particular requirements:

Figure 1: Ansible Galaxy website browsing for container-enabled roles

More recently, the Ansible Container community created the concept of container
apps, which are (sometimes) used to deploy multiple containers that constitute an
application stack. We will look into container apps later in the book.

https://galaxy.ansible.com/
https://galaxy.ansible.com/

Ansible Container NGINX role
Throughout this chapter, we are going to look at how to leverage pre-written Ansible
Container roles featured on Ansible Galaxy to quickly get up-and-running using
roles to deploy container-based services. One of the major benefits of Ansible
Galaxy is that it gives users the ability to leverage the collective knowledge pool of
other users who have opted to share their projects in the form of roles. Like many
DevOps engineers, you are probably not familiar with how every possible
application, framework, or service should be configured for optimal performance.
Online repositories such as Ansible Galaxy help to simplify the learning curve of
deploying many new applications, since the applications essentially work out-of-the-
box with little to no input required from the user. Users who consume roles from
Ansible Galaxy also have the option of customizing already-written roles to suit their
particular requirements. Throughout this chapter, we will be using the official
Ansible Container NGINX role to build and deploy a functional NGINX web server
container. The link to the role we are using can be found here: https://galaxy.ansible.
com/ansible/nginx-container/.

Before we start installing and using the NGINX role, let's review the Ansible
Container workflow and how it applies to prewritten roles:

ansible-container init: Used to initialize a new project to use our role with.
ansible-container build: Generates the conductor container that we will use to
install the NGINX role. build is also used after installing the role to build the
container image.
ansible-container install: Leverages the conductor container to download and
install our role within the project.
ansible-container run: Runs the project locally to test and verify that the NGINX
server is running as intended.
ansible-container push: Pushes the built container image to your Docker Hub
repository.

At any time during this chapter, you can review the completed lab exercise from the
GitHub repository at: https://github.com/aric49/ansible_container_lab/tree/master/Ansi
bleContainer/nginx_demo.

Prior to starting work on this lab exercise, it is a good idea to create a

https://galaxy.ansible.com/ansible/nginx-container/
https://github.com/aric49/ansible_container_lab/tree/master/AnsibleContainer/nginx_demo

free Docker Hub account, which will allow you to upload and share the
container you create. Go to https://hub.docker.com to create a free
account.

https://hub.docker.com/

Starting a new project
By now, you are probably quite familiar with initializing a new Ansible Container
project and generating the file and directory structure automatically using the
ansible-container init command. From a new directory on the Vagrant host, run
ansible-container init to begin your new project and ensure the required files are
automatically generated:

ubuntu@node01:$ ansible-container init
Ansible Container initialized.

Once you have validated that your new project files and directory scaffolding have
been created, we need to run an initial, blank build of our project to create a
conductor container. Before Ansible Container can install roles or build more
complex projects, a conductor container needs to be present on your workstation so
that Ansible Container can modify files locally and download the required
dependencies that allow container roles to function properly. Now that we have
initialized our project, let's do a blank build of the project in order to create a
conductor container:

ubuntu@node01:/vagrant/AnsibleContainer/nginx_webserver$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=nginx_webserver
All images successfully built.
Conductor terminated. Cleaning up. command_rc=0 conductor_id=1e8a3e0164cf617ad121c27b41dfcc782c0a2990eab54b70b687555726874e27 save_container=False

It is best practice to always use the same base image for your
conductor container that you are using to build your project containers
with to ensure compatibility. If you opt to use a different base image
than the default centos:7 you may need to modify the container.yml file
prior to building the project. More on this in later chapters.

Once the project has been built, you should see All Images Successfully Built and
command_rc=0 returned, indicating that the Ansible Container conductor container has
been successfully built. You may check to ensure the conductor image has been built
and resides locally on your host using the docker images command.

Newer versions of Ansible Container (1.0+) come with prebuilt
conductor images that do not require you to build projects prior to

installing roles. However, it is a good idea to build conductor images
unique to your projects in order to fully leverage the Ansible Container
workflow more effectively.

Installing the NGINX role
Now that we have a new project initialized and a conductor image built, we can use
the ansible-container install command to install the NGINX role from Ansible
Galaxy. The syntax for this command is pretty straightforward: execute ansible-
container install followed by the username of the user who owns the project, in this
case, ansible, then a period . and the name of the project, nginx-container. You should
see output similar to the following:

ubuntu@node01:$ ansible-container install ansible.nginx-container
Parsing conductor CLI args.
- downloading role 'nginx-container', owned by ansible
- downloading role from https://github.com/ansible/nginx-container/archive/master.tar.gz
- extracting ansible.nginx-container to /tmp/tmpip0YiN/ansible.nginx-container
- ansible.nginx-container (master) was installed successfully
Conductor terminated. Cleaning up. command_rc=0 conductor_id=a9e6723de6f3a236dd7823dbd999b97a5e1917bcb6794f3b0e9cd4b6bb54433b save_container=False

Upon successful completion, you should see the message:

- ansible.nginx-container (master) was installed successfully

This indicates that the role has been successfully downloaded and installed from
Ansible Galaxy and the parent GitHub repository. The install command also made
some modifications to the container.yml and requirements.yml files that already exist in
your project directory. If you open these files in a text editor, you will find that the
role has already been added to these files:

requirements.yml:

- src: ansible.nginx-container

container.yml:

services:
 ansible.nginx-container:
 roles:
 - ansible.nginx-container

It is important to note that the container role has already added itself to container.yml
with any pre-populated information the roles author wants us to use the role with. By
default, Ansible Container will look inside the role, use the default information
provided in the meta/main.yml and meta/container.yml files of the role, and pass this

information into the build process, if it is not overridden in the container.yml file.
Later in this chapter, we will look at how this works when we slightly customize
how the NGINX role works in our project.

The install process also added a reference to the name of the role, ansible.nginx-
container, to the requirements.yml file. This file is used to keep track of the Ansible
Galaxy roles and other dependencies that are being used in the project. If you are
sharing your project with another developer who wants to build the project locally,
the requirements.yml file is leveraged by Ansible Container to install all of the
dependency roles in one shot. This speeds up the development process quite a bit if
you are using multiple container-enabled roles in your project.

Now that we have installed the container-enabled role, let's rerun our build process
and build our new container image:

ubuntu@node01:$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=nginx_webserver
Building service… project=nginx_webserver service=ansible.nginx-container

PLAY [ansible.nginx-container] ***
TASK [Gathering Facts] *** ok:[ansible.nginx-container]
TASK [ansible.nginx-container : Install epel-release] **************************
changed:[ansible.nginx-container]

TASK [ansible.nginx-container : Install nginx] *********************************
changed: [ansible.nginx-container] => (item=[u'nginx', u'rsync'])

TASK [ansible.nginx-container : Install dumb init]

changed:[ansible.nginx-container]
TASK [ansible.nginx-container : Update nginx user]

changed:[ansible.nginx-container]

TASK [ansible.nginx-container : Put nginx config]

changed: [ansible.nginx-container]

TASK [ansible.nginx-container : Create directories, if they don't exist]

changed: [ansible.nginx-container] => (item=/static)
changed: [ansible.nginx-container] => (item=/run/nginx)
changed: [ansible.nginx-container] => (item=/var/log/nginx)
changed: [ansible.nginx-container] => (item=/var/lib/nginx)

TASK [ansible.nginx-container : Clear log files]

ok: [ansible.nginx-container] => (item=access.log)
ok: [ansible.nginx-container] => (item=error.log)
................

PLAY RECAP ***
ansible.nginx-container : ok=18 changed=14 unreachable=0 failed=0

Applied role to service role=ansible.nginx-container service=ansible.nginx-container
Committed layer as image image=sha256:e4416fbb0ba74f4d39a5b6522466f8c0087582de64298ac63bc43a73f577d85a service=ansible.nginx-container
Build complete. service=ansible.nginx-container
All images successfully built.
Conductor terminated. Cleaning up. command_rc=0 conductor_id=86b437e5e4ebca2d29ef89193be1bd7184b5bc9e8566305dbf470a8cd188ac7e save_container=False

It looks like, our build output is a bit more interesting than previous examples. You
can see that Ansible Container has recognized that our project now has a service
called ansible.nginx-container and proceeded to run the ansible.nginx-container role
associated with it in the container.yml file. During the build process, the conductor
image runs Ansible Core, passing in the playbook tasks located within the role in
order to bring the container image into the desired state. Each task that gets executed
from the role is displayed in the build output, which allows the developer to see
exactly what actions are being executed inside the container. Here are a few key
takeaways to keep in mind when examining the Ansible Container build output:

Executed tasks: In Ansible, each task has a unique name associated with it,
which helps to make the build output easy for just about anyone to read and
understand. Sometimes, logical conditions are not triggered correctly, which
can cause some tasks to be skipped. Read through the tasks to make sure those
tasks you are expecting to be run are actually run.
Changed tasks versus OK tasks: Since Ansible, at its core, is a configuration
management tool, it closely follows the principle of idempotency. In other
words, if Ansible sees that a task is not required to be run since the container
already has the desired state, Ansible will mark that task as OK. When Ansible
makes a change, it will mark tasks as CHANGED, indicating that Ansible modified
something in the base container image. It is important to note that all tasks,
regardless of whether they are SKIPPED, CHANGED, or OK, will be counted as OK at the
end of the build process, indicating that a failure has not occurred during the
task execution.
PLAY RECAP: At the end of every Ansible Container build, you will be
presented with a PLAY RECAP section highlighting the state of the Ansible
Container build. This provides a handy reference to show every task that
Ansible Container executed at a quick glance and the status of the tasks: OK,
Changed, Unreachable, or Failed. Tasks that have failed will cause the build process
to stop immediately at the failed task unless otherwise overridden in the role.

Once the build process has completed, Ansible Container commits the changes as a

single layer to the base image, creating a brand new container image for your project.
Remember, in Chapter 1, Building Containers with Docker, when we used
Dockerfiles to build container images? If you remember, each line in a Dockerfile
represents a layer in the container image. Using Dockerfiles to build complex
container images can quickly create large and unruly containers that have large file
sizes.

Using Ansible Container, we can make as many changes as we want by adding tasks
in the role and our final container image is still streamlined by only having one
container layer created:

Figure 2: Container image layers in a container image built by Ansible Container

However, do keep in mind that you should still strive to keep container images built
by Ansible Container as small as possible by only adding the most necessary files,
packages, and services. Having the benefits of Ansible Container creating only one
layer in the container can quickly be outweighed if having that single layer is 2 GB
in size!

Running the NGINX role
Now that our project has been built and the role has been applied without any errors,
we can run our container using the ansible-container run command. run will leverage
the local Ansible deployment playbooks, created during the build process, to bring
up our container so that we can test it and ensure it is running as expected:

ubuntu@node01:$ ansible-container run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon
Verifying service image service=ansible.nginx-container

PLAY [localhost] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=e62dc0e401d3d76bf771c6e8db74fb0970e9d5e57be9ad6642cff92592248215 save_container=False

Based on the provided PLAY RECAP, we can easily identify that the task that was
executed on our local VM to run the container has made one change in order to bring
our container into a running state. The docker ps -a output also shows that our
container is running:

ubuntu@node01:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f213412bd485 nginx_webserver.. "/usr/bin/dumb-ini..." 2 minutes ago Up 2 minutes 0.0.0.0:8000->8000/tcp nginxwebserver_ansible..

By default, this container uses the host and container TCP port: 8000 that comes out
of the box with the role. Let's use the curl utility to see if we can access the NGINX
default website on port 8000:

ubuntu@node01:$ curl localhost:8000
.....(output truncated)
<title>Test Page for the Nginx HTTP Server on Fedora</title>

Based on the output from curl, it looks like we have successfully deployed the
NGINX role on our workstation and have a functional NGINX server container
running. This is great if you want a web server to run on port 8000 and want it to use
only the absolute defaults. Unfortunately, this is probably not ideal for anyone to use.
Let's modify our role by overriding a few defaults to see if we can get a container

that runs a bit closer to what we might expect to see running in an actual functional
environment.

Modifying the NGINX role
Ansible, functions and behaves quite differently from a lot of configuration
management platforms such as Chef, Puppet, or Salt. Roles are seen as service
abstractions that can be tweaked and modified to function in almost any way the user
desires. Ansible provides the concept of variables and variable precedence, which
can take input from a number of sources and, in order of precedence, can modify the
role so that it will run differently depending on how the role itself is designed. It is
important to note that role variable precedence is more common for Ansible Core, in
which a user may have playbooks that need to run in development, staging, QA, and
production environments, and require different configurations based on the
environment they are deployed to.

It is still important to understand how overriding role variables and parameters can
be leveraged in Ansible Container in order to build resilient and customized
infrastructure artifacts. Ansible roles are designed in such a way that role variables
can be overridden without modifying the role itself. Using the concept of variable
precedence, Ansible Container will automatically identify role variable values in the
container.yml file and pass these values into the role, which can be accessed by the
playbooks. This allows the user to write code that is portable and repeatable simply
by downloading the correct role from Ansible Galaxy and building projects using the
correct container.yml file that contains all the customizations. Of course, not every
part of a role can be overridden in the container.yml file, but we will learn in this
section how we can make basic modifications and push our customized container
images to Docker Hub.

When leveraging a role written by another user on Ansible Galaxy, the first thing a
good Ansible Container engineer should do is read through the README file,
usually located in the root directory of the role. The README will usually provide a
guide on how to run the role in the most basic sense, as well as by providing a list of
common variables that can be overridden. Having a firm grasp of the README is
key to understanding how the role will function in the overall scheme of more
complex projects. You can view the README for the NGINX role here: https://git
hub.com/ansible/nginx-container/blob/master/README.md.

As you progress to writing your own Ansible Container roles and

https://github.com/ansible/nginx-container/blob/master/README.md

container-enabled applications, having an updated and accurate
README file will be helpful for other users trying to use your project.
Always update your README!

For this exercise, we are going to customize the container.yml file so that it will be
exposed on the host port 80 instead of the default 8000, and also pass in a new path for
the document root, from which websites will be served. It should also be noted that
we have changed the service name from the name of the role to a more commonly
understood name: webserver. The final container.yml file can be found in the GitHub
repository for the book in the AnsibleContainer/nginx_demo directory.

First, modify the container.yml file so that it resembles the following, keeping in mind
that we are passing in the overridden variable STATIC_ROOT as a child parameter of the
role we specified for our service. We determined that STATIC_ROOT was a valid variable
that can be overridden in the role based on the information the developer provided to
us in the role's README file. Essentially, this is telling Ansible Container to use the
value the user has provided over the default value, which is hardcoded inside the
role:

version: '2'
settings:
 conductor_base: centos:7

services:
 webserver:
 roles:
 - role: ansible.nginx-container
 STATIC_ROOT: /MySite
 ports:
 - "80:8000"

registries: {}

Upon rebuilding our project, Ansible Container will identify changes in the
container.yml file. This will prompt Ansible Container to rerun the role, using the
updated value for STATIC_ROOT. You will notice that, this time, the resulting build
process will take less time, and have fewer changed tasks from the first time we
executed the build. You should see an output similar to the following, keeping in
mind that this example is truncated:

ubuntu@node01:$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=nginx_webserver
Building service... project=nginx_webserver service=WebServer

PLAY [WebServer] ***

Running the modified role
Once the build has completed, you can execute the ansible-container run command to
ensure that our NGINX container is still running as expected:

buntu@node01:$ ansible-container run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon
Verifying service image service=WebServer

PLAY [localhost] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=b97bbb161e1a735891cacbbf1eae263c8947cf16d55480568aee8debe7763e17 save_container=False

As you can see from the preceding example, the run process completed as expected,
displaying the message All services running. Conductor Terminated. Cleaning Up with
the relevant zero return codes. This indicates that our container is running as
expected. We can validate this in the local Docker environment, using the docker ps -
a command again. In this example, we can see that port 8000 on the container is
mapped to port 80 on the host, indicating that the changes in our container.yml file
have been accurately built into the new iteration of our project:

ubuntu@node01:$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5d979fc13cad nginx_webserver-webserver:20170802144124 "/usr/bin/dumb-ini…" 3 minutes ago Up 3 minutes 0.0.0.0:80 -> 8000/tcp nginxwebserver_WebServer_1

To ensure our NGINX server is functioning as intended, we can use our trusty curl
command to make sure we are getting the expected response on the VM localhost
port 80:

ubuntu@node01:/vagrant/AnsibleContainer/nginx_webserver$ curl localhost:80
.....
<title>Test Page for the Nginx HTTP Server on Fedora</title>

Congratulations! You have successfully built a functioning NGINX server container
by leveraging a community role from Ansible Galaxy! We have even customized the
role slightly by passing our own parameters into the role to slightly tweak the way
the role functions and the resulting container. Unfortunately, the work we put into

the container isn't of much use to us running on our local workstation. One of the
major benefits of building containers is the ability to upload containers we build to
image registries for other users to deploy and use. For this purpose, we will learn
about the ansible-container push command to push our NGINX image to the free
Docker Hub repository we created at the beginning of the chapter for others to use
and download.

Pushing the project to Docker Hub
To enable this functionality, we will activate the final portion of the container.yml file
by removing the curly braces after the registries section. Under the registries
section, we will create a subsection called docker, that takes two major parameters:
URL and namespace. For this example, since we are using the Docker Hub registry,
we will provide the public API URL for Docker Hub (at the time of writing) and the
username we created at the beginning of the chapter as the namespace parameter.
The registries section of your container.yml should resemble the following:

registries:
 docker:
 url: https://index.docker.io/v1/
 namespace: username

It should also be noted that you can name your registry anything you want in the
container.yml file. In this example, since we are using Docker Hub, I am using the
name: docker. If you were using an internal or private registry, you could provide any
name that makes sense. For example, My_Corporate_Registry might be a good name for
an internal image registry hosted by your company. You can even list multiple
registries, provided they are each named differently.

It should also be noted here that the registries section is a completely optional
portion of the container.yml file. By default, the ansible-container push command will
push to Docker Hub if no entries are written in the registries section of the
container.yml. All that is required is for the user to provide a --username flag in the
ansible-container push command.

The following example demonstrates me uploading my project to my personal image
registry, supplying my username: aric49. Ansible Container will then prompt for
your Docker Hub password and push the container image to your free registry, as
shown. Ansible Container will automatically name your container based on the
service name in your container.yml file.

ubuntu@node01:$ ansible-container push --username aric49 --tag 1.0
Enter password for aric49 at Docker Hub:
Parsing conductor CLI args.
Engine integration loaded. Preparing push. engine=Docker™ daemon
Tagging aric49/nginx_webserver-webserver
Pushing aric49/nginx_webserver-webserver:1.0...
The push refers to a repository [docker.io/aric49/nginx_webserver-webserver]

Preparing
Layer already exists
1.0: digest: sha256:e0d93e16fd1ec9432ab0024653e3781ded3b1ac32ed6386677447637fcd2d3ea size: 741
Conductor terminated. Cleaning up. command_rc=0 conductor_id=6685c1596e1da31b90b2553a84c23e112c84eeb27573e33a6c5ef7389df58f56 save_container=False

It is important to always provide the --tag flag in the push command. This ensures
that you can maintain version control over the various iterations of your container
images in the future. In this example, we are uploading version 1.0 of our container
image. If you make changes to your project in the future, you can upload a version
2.0 tag and the image registry will automatically maintain the older version, 1.0, in
case you ever need to roll back or upgrade to another version of your project.

For the purposes of this demonstration, we are not going to use the default push
behavior to upload to Docker Hub, instead of uploading our container image to the
image registry we specified in the container.yml file, which just so happens to also be
Docker Hub. We can use the --push-to flag to specify the name of the image registry
we configured in our project, providing the username and image tagging details as in
the preceding example:

ansible-container push --username username --push-to docker --tag 1.0

Once the container has been uploaded to our image registry of choice, we can
execute a manual docker pull to download the container from our image registry. By
default, docker pull requires the user to provide the name of the container image
repository, the name of the image, as well as the tagged version you would like to
pull. When using Docker Hub, we will use your username as the image repository
since we are using our personal Docker Hub account. For example, you can pull my
NGINX web server image using the docker pull command:

ubuntu@node01:~$ docker -D pull aric49/nginx_demo-webserver:1.0
1.0: Pulling from aric49/nginx_demo-webserver
e6e5bfbc38e5: Pull complete
51c9be88e17b: Pull complete
Digest: sha256:e0d93e16fd1ec9432ab0024653e3781ded3b1ac32ed6386677447637fcd2d3ea
Status: Downloaded newer image for aric49/nginx_demo-webserver:1.0

Use the -D flag to enable debug mode. This allows you to see more
details about how the Docker image is being pulled.

You can see from the preceding output that the image we are pulling is only two
layers deep. This is due to the fact that Ansible Container commits all of the
playbook runs as a single layer in the container image. This allows the developer to
build a rather complex container while minimizing the size of the resulting image.

Just remember to keep your playbooks small and efficient, or you will start to lose
the benefits of containerized microservice architecture.

Now that our image has been cached locally, we can run the container manually
using Docker. Of course, we could always run our project using Ansible Container
directly, but the purpose of this example is to demonstrate running our container
directly in Docker, which may simulate environments in which you do not, or
cannot, install Ansible Container. The only caveat with this approach is that you
have to specify the port-forwarding manually since that configuration is a part of our
container.yml file and is not built intrinsically into the image itself. In this example,
we are going to run the container in Docker, giving it the name Ansible_Nginx and
specifying the container image in the following format: username/containername:tag

docker run -d -p 80:8000 --name Ansible_Nginx aric49/nginx_demo-webserver:1.0

The docker ps -a output should show the container running and functional:

ubuntu@node01:$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6061f0249930 aric49/nginx_demo-webserver:1.0 "/usr/bin/dumb-init n" 8 seconds ago Up 7 seconds 0.0.0.0:80->8000/tcp Ansible_Nginx

You may need to run the Ansible Container destroy command prior to
manually running the container through Docker, as port 80 may
already be used by your running project container.

Summary
In this chapter, you have learned one of the core concepts at the heart of Ansible
Container: building container images using roles. By leveraging Ansible roles to
create container images, you can be sure the resulting container images are built with
the exact configurations that are required for production-grade, reliable, container
services. Furthermore, this also ensures that container images are built using close to
the exact playbook roles that your infrastructure is already using, allowing container
services to be built with the assurance that services currently running in production
can be replicated with, generally, little rework effort. Ansible Container provides an
excellent shim between bare metal or virtualized application deployments and
containerized services. Leveraging Ansible Galaxy, you can even download and
share custom container-enabled roles built by yourself or other members of the
Ansible Container Community.

However, as already mentioned earlier in the chapter, existing Ansible roles cannot
be ported 1:1 directly to container-enabled roles, as containers function quite
differently to traditional infrastructures. In the next chapter, we will learn about how
to write custom Ansible container-enabled roles, as well as some best practices for
porting existing roles over to Ansible Container. Get your text editors ready, we are
about to get our hands dirty writing some code!

What's in a Role?
In Chapter 3, Your First Ansible Container Project, we learned the basics about
Ansible Container roles, what they do, and how to download, install, and tweak them
from Ansible Galaxy. In this chapter, we will look at writing our own Ansible
Container roles that we can use to build custom container images from scratch. You
will learn that Ansible provides an easy-to-learn, expressive language for defining
desired states, and service configurations. To illustrate how Ansible Container can be
used to quickly build services and run containers, over the course of this chapter we
will write a role that builds a MariaDB MySQL container that can be run on your
local workstation. In this chapter, we will cover:

Custom roles with Ansible Container
A brief overview of MariaDB
Initializing an Ansible Container role
What's in a container-enabled role?
Creating the MariaDB project and role
Writing a container-enabled role
Customizing a container-enabled role

Custom roles with Ansible
Container
One growing theme throughout the course of this book is how much freedom
Ansible Container gives you to build and deploy custom container images quickly,
efficiently, securely, and reliably. So far, we have looked at using Ansible Container
to define and run services from prebuilt community containers, as well as leveraging
community-written roles to instantiate, build, and customize our containers. This is
an excellent way to get started with Ansible Container and get a head start in
familiarizing yourself with the Ansible Container workflow. However, the real
power of Ansible Container begins to really show itself when you start writing roles
that build custom container images.

If you have experience using Ansible as a configuration management tool, you might
be familiar with writing Ansible playbooks and roles already. This will definitely
give you a head start with writing containerized roles, but it is not a prerequisite for
working through the examples in this chapter. To put everyone on a level playing
field, I am going to assume that you have no experience writing Ansible playbooks
or roles, and we will essentially start from scratch. For those of you who are Ansible
veterans, a lot of this will be a review, but hopefully you may learn something new.
For Ansible beginners, I hope this chapter will excite your curiosity, not only to go
forward into building more advanced Ansible Container roles but also to go further
and explore Ansible Core configuration management concepts as well.

The original motivation behind Ansible was to create a configuration management
and orchestration system that is easy for just about anyone to pick up and start
working with. Ansible quickly became immensely popular amongst software
developers, system administrators, and DevOps engineers as a tool that is not only
easy to adopt, but also easy to customize, and even incorporate into existing
platforms and configuration management tools. I first started using Ansible because,
at the time, I was working on projects that required me to log into numerous bare-
metal servers and virtual machines to perform the same set of commands over and
over again. At that time, I was trying to hack my way into making this easier by
writing flaky shell scripts that would use SSH to push remote commands to the
servers. Over the course of my research into how to make these scripts more

resilient, I discovered Ansible, which I immediately adopted and it made my work
far easier and more reliable then I had imagined. I believe there are two primary
reasons that Ansible is so popular in the IT industry:

Easy to understand YAML syntax for playbooks and roles. YAML is easy to
learn and write, which makes it perfect for Ansible.
Hundreds, if not thousands, of built-in modules that come with Ansible Core.
These modules allow us to do almost anything you can imagine, right out of the
box.

Let's look at these two unique aspects of Ansible and understand how we can
leverage this ease of use in our own projects.

YAML syntax
YAML is a data serialization format that recursively stands for, YAML Ain't Markup
Language. You may have worked with other serialization formats in the past, such as
XML or JSON. What makes YAML unique is that it is easy to write, and quite
possibly the most human-readable data format currently used. Ansible chose to use
YAML as the basis for defining its playbook syntax and language due to the fact
that, even if you do not come from a programming background, YAML is super-easy
to get started with writing, using, and understanding. YAML is unique in the way
that it uses a series of colons (:), dashes (-), and indentations (spaces, not tabs) to
define key-value pairs. These key-value pairs can be used to define almost every
type of computer science data types, such as integers, Booleans, strings, arrays, and
hash tables. Following is an example of a YAML document, illustrating some of
these constructs:

#This is a Comment in a YAML document. Notice the YAML document starts with a series of three dashes: ---

MyString: "This is a string"

MyArray:
 - "Item1"
 - "Item2"

MyBoolean: true

MyInteger: 10

MyHashTable:
 KeyOne: "ValueOne"
 KeyTwo: "ValueTwo"
 KeyThree: "ValueThree"

The preceding example demonstrates a simple YAML file consisting of the most
basic constructs: a string variable, an array (list of items), a Boolean (true/false)
variable, an integer variable, and a hash table holding a series of key-value pairs.
This may look quite similar to work we have done previously in this book when
modifying the container.yml files, as well as the Docker Compose files. These
formats are also defined in YAML and consist of many of the same constructs.

A few things that I would like to call your attention to in the preceding example (you
should also keep in them mind when you begin writing Ansible playbooks and roles)
are:

All YAML documents begin with three dashes: ---. This is important because
you may have multiple YAML documents defined in the same single file.
Documents would then be separated using the three dashes.
Comments are defined using the hash sign: #.
Strings are surrounded by quotation marks. This separates strings from literals,
such as Booleans (true or false words without quotation marks), or integers
(numbers without quotation marks). If you surrounded the words true/false, or a
numerical value with quotation marks, they will be interpreted as strings.
Colons (:) are used to separate key-value pairs, which define almost everything.
Indentation is indicated by two spaces. Tabs are not recognized in the YAML
format. When getting started with writing YAML documents, make sure your
text editor is configured to place two spaces into your document when you hit
the Tab key. This makes it easy to quickly and naturally indent text as you type.

I realize that there is much more to YAML syntax than what I have provided in this
example. My goal here is to dig a little deeper than in the earlier chapters to help
give the reader a deeper understanding of the YAML format going forward. This is
by no means a full description of the entire YAML format. If you want to read more
about YAML, I would recommend you check out the official YAML specification
website: http://yaml.org.

http://yaml.org/

Ansible modules
The second part of what makes Ansible so popular and easy to use is the plethora of
modules that Ansible can leverage right out of the box, which can do almost
anything the user can think of. Think of modules as the building blocks of Ansible,
that define what your playbook does. There are Ansible modules that can edit the
content of files on remote systems, add or delete users, install service packages, and
even interact with APIs for remote applications. Modules themselves are written in
Python and get called in a scripted format from YAML playbooks. The playbooks
themselves are simply just a series of calls to Ansible modules that perform a
specific series of tasks. Let's look at a very simple playbook to understand how this
works in practice:

- name: Create User Account
 user:
 name: MyUser
 state: present

- name: Install Vim text editor
 apt:
 name: vim
 state: present

This simple playbook consists of two separate tasks: creating a user account and
installing the Vim text editor. Each task in Ansible calls for exactly one module to
perform an action. Tasks in Ansible are defined using YAML dashes, followed by
the name of the task, the name of the module, and all of the parameters you want to
feed into that module indented as mentioned in the following. In our first task, we
are creating a user account by calling the user module. We are giving the user
module two parameters: name and state. The name represents the name of the user we
want to create, and the state represents how we want the desired state on our remote
system or container to look. In this case, we want a user to exist called MyUser and the
state we want that user to be in is present. If this Ansible playbook gets executed and
the user called MyUser already exists, Ansible will take no action since the system is in
the desired state.

The second task in this playbook installs the text editor Vim on our remote system or
container. To accomplish this, we are going to use the apt module to install a Debian
APT package. If this was a Red Hat or CentOS system, we would similarly use the

yum or dnf module. The name represents the name of the package we want to install,
and the state represents the desired state of the server or container. Thus, we would
like the Vim Debian package to be installed. As we mentioned earlier, there are
hundreds, if not thousands, of Ansible modules that can be leveraged in playbooks
and roles. You can find the full list of Ansible modules by category as well as
excellent examples of parameters that the modules take, in the Ansible
documentation at http://docs.ansible.com/ansible/latest/modules_by_category.html.

The state parameter also takes the value absent to remove a user,
package, or almost anything else that could be defined.

One of the major benefits of Ansible Container is that, in writing container
configuration using Ansible roles, you have the entire universe of Ansible modules
available to you to choose from. Unfortunately, not all Ansible modules work in the
context of a container. A traditional example of this is modules that manage the state
of running services, such as the service module. The service module does not run in
containers, since application containers typically lack traditional init systems that
you would find in a full operating system to start, stop, and restart running services.
In a containerized context, this is handled by starting your container with a CMD or
entrypoint statement that directly executes a service binary.

Furthermore, almost any module that manages the orchestration of cloud services or
call external APIs will not run in a containerized context. This is pretty
straightforward since you would usually not want to orchestrate the state of external
services when you are building an independent containerized microservice. Of
course, if you are writing an Ansible playbook that deploys a containerized
application you previously built using Ansible Container, you can use these
orchestration modules to react in certain ways when the container comes online.
However, for the purposes of this chapter, we will limit our discussion only to
writing roles that build containerized services.

http://docs.ansible.com/ansible/latest/modules_by_category.html

A brief overview of MariaDB
Throughout this chapter, we will be writing an Ansible Role that builds a MariaDB
database container. MariaDB is a fork of the MySQL relational database server,
which provides numerous customizations and optimizations that are not found in
vanilla MySQL. Out of the box, MariaDB supports numerous optimizations, such as
replication, query optimization, encryption, performance, and speed improvements
over standard MySQL, yet remains fully MySQL-compatible, leveraging a free and
open source GPL license. MariaDB was chosen for this example due to its relative
simplicity to deploy and the free nature of the application itself. In this chapter, we
will build a relatively basic single-node MariaDB installation that does not contain a
lot of features and performance tweaks that you would find in a production-ready
installation. The purpose of this chapter is not how to build a production-ready
MariaDB container, but rather to illustrate the concepts of building a containerized
service using Ansible Container. If you want to go further with this example, feel
free to tweak this code in any way you see fit. Extra credit to those of you who build
production-ready containers!

Initializing an Ansible Container
role
As discussed previously, Ansible roles are a self-contained, reusable set of
playbooks, templates, variables, and other metadata that defines an application or
service. Since Ansible roles are designed to work with Ansible Galaxy, Ansible
Galaxy command-line tools have built-in functionality to initialize roles that contain
all of the proper directories, default files, and scaffolding designed to create a
functioning Ansible role with minimal hassle. This works very similarly to the
ansible container init command for creating Ansible Container projects.

What's in a container-enabled role?
To create a new container-enabled role in Ansible Container, we are going to use the
ansible-galaxy init command with the container-enabled flag to create the new role
directory structure for us. To examine what happens when we use this command,
let's initialize a role in the /tmp directory on our Vagrant VM and see what Ansible
creates for us:

ubuntu@node01:/tmp$ ansible-galaxy init MyRole --container-enabled
- MyRole was created successfully

Upon successful execution of the init command, Ansible should return a message
indicating that your new role was created successfully. If you run the ls command,
you will find a new directory named after the role we just initialized. Everything that
comprises of the role resides in this directory, according to the default directory
structure. When you call a role from Ansible, Ansible will look in all of the locations
you indicated your roles should live in and will look for a directory with the same
name as your role. We will see this in more detail later in this chapter. If you
navigate inside this directory, you will find a folder structure similar to the
following:

MyRole/
├── defaults
│ └── main.yml
├── handlers
│ └── main.yml
├── meta
│ ├── container.yml
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── ansible.cfg
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Let's take a look at what each of these directories and files does:

defaults/: defaults is a directory that contains variables specific to your role and
has the lowest priority for overriding the values. Any variables that you want to

place in your role that you definitely want or require the user to override should
go in the main.yml file of this directory. This is not to be confused with the vars/
directory.
handlers/: handlers are a concept in Ansible that defines tasks that should be
executed in response to notify events sent from other tasks during a role
execution. For example, you may have a task that updates a configuration file in
your role. If your service needs to be restarted in response to that configuration
file update, you could specify a notify: the step in your task, as well as the name
of your handler. If the parent task executes and resolves a CHANGED status, Ansible
will look inside of the handlers/ directory for the task specified by the notify
statement and then execute that task. Please note that handlers do not execute
unless another playbook task specifically calls that task using the notify:
statement and results in a changed status. Handlers are not quite as common in
container-enabled roles since containers usually aren't dependent on external
events and circumstances.
meta: Meta is a directory which contains the metadata for Ansible roles. In a
container-enabled role, it contains two primary files: main.yml which contains
general metadata about the role, such as dependencies, Ansible Galaxy data,
and conditions upon which the role is contingent. For the purposes of this
example, we will not do very much with this file. The second file, container.yml,
is more important to us. This container.yml is specific to container-enabled roles
and is critical for specifying the default values that will be injected into the
project-level container.yml file when we call our role. Here, we can specify the
container image, volume information, as well as the default command and
entrypoint data that we want our container to run with by default. All of this data
can be overridden in our parent container.yml file if we so choose.
tasks: The tasks directory is where we specify the tasks that actually get
executed inside our container and build the service. By default, Ansible will
execute the main.yml file and execute all tasks in the order as specified. Any
other task files can go into this directory as well and can be executed using the
include: statement from our main.yml file.
templates: The templates directory stores the configuration file templates we
want to use in our role. Since Ansible is Python-based, it uses the Jinja2
templating engine to place configuration templates into the container and update
values based on variables identified in the defaults/ and vars/ directories. All
files in this directory should have the .j2 file extension, although this is not
required.
tests: Any automated testing that you would like a CICD tool to perform would
go here. Usually, developers would put any custom Ansible configurations,
parameters, or inventories that the CI/CD tool will requires as input in the

directories and files that are autogenerated in this directory.
vars: The vars/ directory is the location in which a developer can specify other
variables available to the role here. It is important to note that the vars/
directory has a lower precedence than the defaults/ directory, so variables
defined here are more difficult to override than the ones specified in defaults.
Usually, when I write a role, I will make all of my variables available in the
defaults directory, as I want the user to have full power to override anything
they desire. There might be circumstances in which you may not want your
variables as easy to access, in which case they could be specified in the vars/
directory.

Any file in your role named, main.yml indicates that the file is a default
and will be executed automatically.

Now that we know what makes up a container-enabled role, we can take this
knowledge and create a new Ansible Container project that will build our MariaDB
MySQL role. To accomplish this, we are going to initialize a new project and create
a subdirectory called roles/, which will contain the role we will create. When we
build our project, Ansible will know to look inside of our roles/ directory and find
all of the roles we have specified and created there. Please note that the following
sections of this chapter will get quite code-heavy. To make the process of following
along easier, the completed example can be found in the official book GitHub
repository under the AnsibleContainer/mariadb_demo directory. However, the best way
to learn how to write Ansible code is by repetition and practice, which can only be
attained by writing the code yourself. It is strongly suggested that, while it may not
be practical to copy the code written in this chapter verbatim, one should obtain
practice writing Ansible code by using these examples to create your own project or
modifying the example in the Git repository. The more code you write, the better and
more fluent of an Ansible developer you will become.

Initializing the MariaDB project and
role
Now that we have a feel for how a container-enabled role is structured, we can start
our MariaDB container by initializing a new Ansible Container project. In a new
directory on your Vagrant host, start a new project as usual by using the ansible-
container init command:

ubuntu@node01:$ ansible-container init
Ansible Container initialized.

Inside of our project directory, we can create a directory that will store our roles. In
the Ansible Core, the default location for a role is in the /etc/ansible/roles or a roles/
directory relative to the playbook you are executing. It should be noted, however,
that roles can be stored in any location provided the Ansible installation has read
access to the path. For the purposes of this demonstration, we are going to create our
roles path as a child directory of our project. Within our project directory, create a
new directory called roles and initialize our Ansible Container role inside of that
directory. We will call our role mariadb_role:

ubuntu@node01:$ mkdir roles/
ubuntu@node01:$ cd roles/
ubuntu@node01:roles$ ansible-galaxy init mariadb_role --container-enabled
- mariadb_role was created successfully

Now that our role has been created inside of our project, we need to modify our
project container.yml file so that it knows the path we are sourcing our roles from, as
well as to create a service that we will build using our role. The roles location can be
specified using the roles_path option as a child parameter of settings: in the
container.yml file. Here, we can specify the paths we want Ansible to search for roles
as list items of roles_path using the hyphen notation (-). We will specify the roles
directory we just created. Under the services: subsection, we can create a new
service called MySQL_database_container. This will leverage the role mariadb_role that
we just created. We also want to make sure that we specify the base image we want
to use for our service. For this example, the MariaDB container will be based on
Ubuntu 16.04, so we want to make sure our conductor_base image is the same to
ensure compatibility.

container.yml
Following is a sample of the container.yml file that provides these settings:

version: "2"
settings:
 conductor_base: ubuntu:16.04
 roles_path:
 - ./roles/

services:
services:
 MySQL_database_container:
 roles:
 - role: mariadb_role
registries: {}

At this point, we could build our project, but it would result in an empty container
since our role contains no tasks from which we can build a container image. Let's
make things interesting by adding tasks as well as updating the role-specific
container.yml file.

Always remember to use the same conductor base image that your
service containers will use. This will ensure maximum compatibility
when building your project.

Writing a container-enabled role
As we discussed previously, it is quite difficult to walk the reader through writing
code from scratch, due to the fact that file paths can get complicated rather quickly,
making it easy to lose your place. In this section, I will show what the modified files
look like and draw the reader's attention to the parts of the files that require
explanation. Since it is quite easy to get lost, I will direct the reader to follow along
in the official book GitHub repository located at the following URL: https://github.c
om/aric49/ansible_container_lab/tree/master/AnsibleContainer/mariadb_demo.

As developers of a container-enabled role, the most important parts of writing a role
is the role-specific container.yml file, which specifies the default values the container
will run with, as well as the tasks that are used to build the container and put all of
the pieces in place. The tasks you build the container with will often determine the
parameters in the role-specific container.yml file. When writing a role, developers
will often tweak and modify the container.yml file as they are writing the playbook
tasks. When you call a role from the project-specific container.yml file, the contents
of the role-specific container.yml file will be used to build your container. At any
point, a developer can override the role-specific container.yml file by simply
modifying the parameters in the project container.yml.

It is important as a role developer to write sane defaults for your role's container.yml
to enable other users to leverage your role quickly. For our MariaDB demonstration,
we will create a simple role-specific container.yml file that resembles the following:

https://github.com/aric49/ansible_container_lab/tree/master/AnsibleContainer/mariadb_demo

roles/mariadb_role/meta/container.yml
This file is located in the meta directory of the MariaDB role:

from: ubuntu:16.04
ports:
 - "3306:3306"
entrypoint: ['/usr/bin/dumb-init']
command: ['/usr/sbin/MySQLd']

The parameters we are defining in the role-specific container.yml should immediately
jump out at you in the exact same way in which we would define them in the project-
specific container.yml services section. Here, we are using the Ubuntu 16.04 base
image, which is the same as our conductor container. In order to make our MySQL
service accessible to outside users, we are going to expose the MySQL ports 3306 on
the host to ports 3306 on the container. Finally, we are going to specify a default entry
point and command that the container should run when it starts. A common practice
among container developers recently is to leverage lightweight init systems to start
and manage processes inside of containers. A popular init system for containers is
dumb-init, written by Yelp in 2013 to provide an easy to install, lightweight init
binary for managing processes inside of containers. dumb-init essentially starts as PID
1 inside of the container and takes the container service executable as an argument
provided to it. The benefit is that, since dumb-init is running as PID 1, all kernel
signals will first be intercepted by dumb-init and forwarded to the container service
(mysqld). dumb-init will also provide reaping services for our child process, should our
container be suddenly stopped or restarted ungracefully. Keep in mind, using a
container init system is not a requirement when building containers, but in some
cases, it will help with running, stopping, and restarting containers if the processes
don't exit cleanly. In this example, we will use dumb-init as our entrypoint for the
container, and use the command: parameter to specify the /usr/sbin/MySQLd command as
an argument into it. This will start the mysqld process under the supervision of dumb-
init, which will intercept all of the POSIX signals and forward them over to mysqld.

The second most important aspect of a containerized role is actually writing tasks
that are executed in our base image to create the project container. All tasks are
YAML files in the tasks directory of the role. Each task has a name and calls a single
Ansible module with parameters to perform a unit of work in the container. Although
there are no strict requirements on how to name tasks, or which order to place them

in, you do want to keep in mind the flow of the playbook in terms of dependencies
on other tasks that may come before or after certain steps. You also want to make
sure you name tasks in such a way that any user watching the build process has a
fairly good idea what is going on, even if they are not an Ansible developer. Named
tasks are what give Ansible the reputation of being self-documenting. This means
that, as you write code, the code basically documents itself since almost any user
reading your code should know immediately what it does based on the naming of the
tasks. It should also be noted that, as all services and applications are different, they
are all deployed and configured differently as well. With Ansible and
containerization, there is no one-size-fits-all approach that can adequately capture the
best practices for deploying and configuring your application. One of the benefits of
Ansible is that Ansible provides the tools needed to automate almost any
configuration one can think of to ensure applications get built and deployed reliably.
The following is the content of the tasks/main.yml file in the MariaDB role we are in
the process of writing. Take a moment and read through the playbook as it is; we
will go through each of these tasks one-by-one to provide more detail as to how the
playbook runs. As I describe how the playbook works, it would be helpful to glance
back at each task as you read the description.

tasks/main.yml
This file is located in roles/mariadb_role/tasks/main.yml:

- name: Install Base Packages
 apt:
 name: "{{ item }}"
 state: present
 update_cache: true
 with_items:
 - "ca-certificates"
 - "apt-utils"

- name: Install dumb-init for container init system
 get_url:
 url: https://github.com/Yelp/dumb-init/releases/download/v1.2.0/dumb-init_1.2.0_amd64
 dest: /usr/bin/dumb-init
 owner: root
 group: root
 mode: 0775

- name: Create MySQL Group
 group:
 name: mysql
 state: present

- name: Create MySQL Users
 user:
 name: mysql
 state: present
 groups: mysql
 append: true

- name: Install MySQL Server
 apt:
 name: mariadb-server
 state: present
 update_cache: true

- name: Change Permissions on directories
 file:
 path: "{{ item }}"
 owner: mysql
 group: mysql
 mode: 0777
 state: directory
 recurse: true
 with_items:
 - "/etc/mysql/"
 - "/var/lib/mysql/"
 - "/var/run/mysql/"

- name: Remove my.cnf

 file:
 path: /etc/mysql/my.cnf
 state: absent

- name: Install MySQL Configuration File
 template:
 src: my.cnf.j2
 dest: /etc/mysql/my.cnf
 owner: mysql
 group: mysql

- name: Initialize Database
 include: initialize_database.yml
 when:
 - initialize_database == true

Task breakdown (main.yml)
Install Base Packages: Since we are building an Ubuntu 16.04 image, the Install
Base Packages task calls the apt package module to install two packages: ca-
certificates and apt-utils, which are required for the preceding tasks. We want
the state of these packages to be present and installed in the container and the apt
database cache to be updated prior to installing the packages as well. We are
able to install multiple packages using the with_items operator. with_items iterates
over the list items specified and run each value through the apt module. Using
with_items, we don't have to create two or more separate tasks to perform the
same action repeatedly. In the name section of the task, we specify {{ item }},
which is a Jinja2 keyword variable that tells Ansible that it is about to iterate
over a list.
Install dumb-init for the Container Init System: This task leverages the get_url
module in order to download a remote file from the internet into the container.
In this particular case, we are downloading the dumb-init binary and placing it in
the container at the destination /usr/bin/dumb-init. We are changing the
permissions so the file will be owned by root, in the root group, and will be
executable. Ansible allows us to perform all of these actions in a single module
call.
Create MySQL User and Group: The next two tasks are quite similar. With these
tasks, we are starting to lay the groundwork for installing our MariaDB MySQL
service. We are calling the user and group module to create a user called mysql,
create a group also called mysql, and add the user to the group. Notice that, in the
group module, we specify append: true. This indicates that whatever groups are
already assigned to the mysql user, we also want to append mysql. This is a safe
option to add to any group declaration so that we don't accidentally remove
users from other groups they may need to belong to.
Install the MySQL Server: This task functions in a very similar way to the first
task that we saw in the playbook. However, instead of installing multiple
packages, we are calling the apt module to install only one package, the
MariaDB server. As usual, we want the package to be installed and present, as
well as having the package cache updated. Arguably, we could have added this
package to the list of installed packages in our very first task, and that would
definitely work. However, as a matter of development style, I like to provide a
logical distinction between steps in my playbooks so that things do not get
confusing further on. After all, installing the base packages is usually a separate

and distinct step from installing the core service package.
Change permissions on directories: This task is one of the more complex tasks in
the playbook. In this task, we have a handful of directory paths that need to
have their permissions changed so that the MySQL service can write data to
them. The file module allows us to create, delete, or modify any file present in
our container. Similarly to our first task, we are going to call the file module on
our {{ item }} keyword variable so that each list item specified in our with_items
will have the same permissions and attributes applied to it. If the paths specified
do not exist, Ansible will create them with the state directory and apply the
appropriate permissions to them. We are also providing the recurse: true option
so that the permissions will apply to all subdirectories from those locations
specified.
Remove my.cnf: my.cnf is the primary configuration file that is used by MySQL to
configure how the database service operates. When MariaDB is first installed, it
creates my.cnf as a symlink, which leads to another configuration file it uses
instead. We don't want this behavior; hence, we are going to delete the default
my.cnf file using the file module and set the state value to absent. We will use our
own my.cnf file instead.
Install the MySQL Configuration File: Now that the default my.cnf symlink has
been removed, we can call the template module to place a new my.cnf file in its
place. The templates module works by leveraging the local templates directory
and looking for a file that matches the name of the source file we are specifying,
my.cnf.j2. Templates use the Jinja2 templating language to put the new
configuration in place and replace any variables sourced from the role. The
location for the new configuration file will be /etc/MySQL/my.cnf and will have
the appropriate permissions applied to it.
Initialize the Database: The final task in this playbook is known as an include
task. Include statements, logically enough, include other playbook YAML files
for execution. Usually, include statements are a great way to break down your
playbooks into logically grouped blocks of similar tasks. In this scenario, we
want to include the playbook initialize_database.yml, based on the logical
condition that the variable initialize_database is set to true. In other
programming languages constructs such as if, else...if, and else exist, to indicate
logical evaluations. Ansible handles this using the keyword when to list the
conditions for when an action will occur. In this case, when the variable
initialize_database is true, the playbook initialize_database.yml will be executed.
If the variable is set to false, it will skip those tasks.

Now that we have a good understanding of what the tasks inside of the main.yml
playbook are running, let's take a look at the tasks inside of the

initialize_database.yml playbook to see what will happen if the initialize_database
variable evaluates to true:

tasks/initialize_database.yml
This file is located in roles/mariadb_role/tasks/initialize_database.yml.

- name: Temporarily Start MariaDB Server
 shell: MySQLd --user=MySQL &

- name: Create Initial Accounts
 shell: MySQL -e "CREATE USER '{{ default_user }}'@'%' IDENTIFIED BY '{{ default_password }}';"

- name: Grant Privileges to New Account
 shell: MySQL -e "GRANT ALL ON *.* TO '{{ default_user }}'@'%' WITH GRANT OPTION;"

- name: Create Default Databases
 shell: MySQL -e "CREATE DATABASE {{ item }};"
 with_items:
 - "{{ databases }}"

- name: Flush Privileges
 shell: MySQL -e "FLUSH PRIVILEGES;"

Task breakdown
(initialize_database.yml)

Temporarily Start MariaDB Server: By default, when MariaDB is first installed,
there are no databases created and no users have access to the database. In some
cases, we may want to spin up a vanilla MariaDB server and have an external
user or tool create the default databases and access credentials. However, there
may also be an equal number of circumstances in which we might need to
create database instances that come with built-in databases and user credentials.
In order to create these defaults, we will first need to start the MySQL server so
that it can be accessed from the command line. To start the server temporarily,
we will call the shell module, which evaluates shell commands in a very similar
manner, as if you were typing them on a Bash prompt. We will run the
command mysqld, specifying the user to run as mysql, and force the server to run
in the background using the ampersand indicator (&). The MySQL server will
continue to run at this point until the build has completed and the container has
been shut down.
Create Initial Accounts: The create initial accounts step similarly calls the shell
module in order to leverage the MySQL command-line client. The -e flag
allows us to pass in executable SQL commands, which will be evaluated by the
server. We will use this particular command to create a default username and
password that we can use to log in to the database. The default credentials will
be sourced from our variables, hence the double curly braces.
Grant Privileges to New Account: Using the shell module again, we can call the
MySQL client to grant privileges on the new account we created previously. In
this example, we will grant all privileges, connecting from any network
interface to have access to this MySQL server.
Create Default Databases: Using our iteration or looping operator with_items, we
can pass in a list of databases we want the MySQL client to create. In our
defaults/main.yml file, we have specified the databases variable as an array or list
of items. Ansible will identify the fact that our databases variable is actually a
list of strings and iterate over that. The result is that any number of databases
we specify as a list item of the databases variable will be iterated over and
created in our MySQL container.
Flush Privileges: One final call to the shell module will allow us to execute the
SQL command, FLUSH PRIVILEGES, which allows the new user accounts to take

effect in the database. After this command executes, the container build will
have finished, signaling Ansible Container to shut down the intermediate
container and commit the final changes to the container we just finished
building.

Now that we have had a look inside the tasks directory and learned about how the
role executes tasks, let's look inside of the templates/ directory to learn about the
templated configuration files we are generating and passing into the container. You
will observe that, in the roles templates directory, there is one file: my.cnf.j2. This is
the template for my.cnf file that we want Ansible to compile and pass into the
container during the build process. It is a best practice to always name your Ansible
template file after the destination filename with the .j2 extension. This indicates the
file is a Jinja2 template and contains variables and Jinja2 logic for Ansible to
evaluate.

Jinja2 is a powerful templating language that can do some pretty neat
stuff in your projects. Although not strictly required, having a working
understanding of Jinja2 can help you a lot in your Ansible
development. You can read more about the Jinja2 language at the
official website: http://jinja.pocoo.org/.

The following is the content of the my.cnf.j2 file in the templates directory:

http://jinja.pocoo.org/

templates/my.cnf.j2
This file is located in roles/mariadb_role/templates/my.cnf.j2:

Ansible Container Generated MariaDB Config File
[client]
port = 3306
socket = /var/lib/MySQL/MySQL.sock

The MariaDB server
[MySQLd]
user = MySQL
port = 3306
socket = /var/lib/MySQL/MySQL.sock
datadir = /var/lib/MySQL
bind-address = 0.0.0.0
skip-external-locking
key_buffer_size = {{ key_buffer_size }}
max_allowed_packet = {{ max_allowed_packet }}
table_open_cache = {{ table_open_cache }}
sort_buffer_size = {{ sort_buffer_size }}

Notice that, in the first line of the file, we are spelling out to the user in a comment
block that the file is an Ansible Container-Generated MariaDB Config File. If you
have experience of connecting into remote servers to troubleshoot problems, you will
know how handy it is to know exactly where the files come from, where the values
are populated from, and which configuration management tool is responsible for
putting those files there. While not strictly required, and surely as a matter of taste, I
like to place such banners on files that Ansible touches. This way, someone, later on,
will know exactly how this container came to be in this state.

The next thing you will notice is that the last four lines of the configuration file have
values set to double curly braces with the name of the configuration file key in
between them. As we discussed earlier, the double curly braces indicate Jinja2
variable parameters. When Ansible evaluates this template prior to installing it in its
destination inside the container, Ansible will parse the file for all Jinja2 blocks and
execute the instructions it reads to bring the template into the desired state. This
could mean populating the values of variables, evaluating logical conditions, or even
sourcing environment information that the template requires. In this case, Ansible
will see the double curly braces and replace them with the values defined for those
variables. By changing or overriding the variables, Ansible makes it quite easy to
change the way containers and applications function. Also, notice that the names of
the variables match the configuration option they are modifying. Variable names are

purely up to the developer, and as such, the developer may choose what they want
the names to be. However, it is usually a best practice to use descriptive variable
names so that it is very clear to the user what settings they are overriding or
modifying.

Reading through these role files, it is probably very clear to you that variables have a
lot to do with how Ansible runs, how templates are populated, and even how tasks
are executed and controlled. Let's now take a look at how variables are defined in
roles and how we can leverage variables to make roles more flexible and enable their
reuse. As stated before, role variables can be stored in two places: the defaults/
directory or the vars/ directory. As the developer, you can choose which location (or
both locations) you want to store your variables in. The only difference is the
variable precedence in which the variables are evaluated in. The variables stored in
defaults/ are the easiest to override. Variables stored in vars/ have a slightly lower
precedence and thus are more difficult to override. In this example, I have opted to
store all variables in the defaults/ directory in the main.yml file. Let's see what that file
looks like:

defaults file for MySQL_role
initialize_database: true
default_user: "root"
default_password: "password"
databases:
 - "TestDB1"
 - "TestDB2"
 - "TestDB3"

#MySQL Basic Tuning for my.cnf
key_buffer_size: "16K"
max_allowed_packet: "1M"
table_open_cache: 4
sort_buffer_size: "64K"

Here, you can see that these are all the variables we have seen before, referenced in
the role tasks as well as the templated file for my.cnf. Variable YAML files are
essentially just static YAML files that use exactly the same YAML constructs we
explored in the beginning of the chapter. For example, this file is, by default,
initializing the database by setting the initialize_database variable to the Boolean
value of true. We also can see that the default credentials that will be created in the
database are set to the strings root and password, as well as a list of test databases that
will get created during the initialize database tasks. Finally, towards the bottom, we
have a grouping of variables that define the values that will be incorporated into the
template. If we build the role as-is, without providing any variable overrides, we will

get a container built with exactly these specifications. However, this book would not
be complete without exploring exactly how we can go about customizing the role we
just wrote!

Building the container-enabled role
Before we begin customizing our role, let's first build the role and demonstrate the
default functionality using the default variables we specified. Let's go ahead and
return to our Ansible Container workflow and execute ansible-container build,
followed by the ansible-container run commands from the root directory of our
project:

ubuntu@node01:$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=mariadb_demo
Building service... project=mariadb_demo service=MySQL_database_container

PLAY [MySQL_database_container] **

TASK [Gathering Facts] ***
ok: [MySQL_database_container]

TASK [mariadb_role : Install Base Packages] ************************************
changed: [MySQL_database_container] => (item=[u'ca-certificates', u'apt-utils'])

TASK [mariadb_role : Install dumb-init for Container Init System] **************
changed: [MySQL_database_container]

TASK [mariadb_role : Create MySQL Group] ***************************************
changed: [MySQL_database_container]

TASK [mariadb_role : Create MySQL Users] ***************************************
changed: [MySQL_database_container]

TASK [mariadb_role : Install MySQL Server] *************************************
changed: [MySQL_database_container]

TRUNCATED

You may note from the build output that Ansible is taking the list items we provided
in the task using the with_items iteration operator and exactly building our image,
bringing it into the desired state based on the variables we have provided in our role,
which for now, are the default variables.

Let's run our project and attempt to access the MySQL services:

ubuntu@node01:$ ansible-container run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon
Verifying service image service=MySQL_database_container

PLAY [localhost] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=e33fb25670f1bc040a6edd19360ec528be28b9f14d4ccb0d9a8ed34a71d1c561 save_container=False

Executing docker ps -a will show that our container is running with port 3306 exposed
on the host:

ubuntu@node01:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
7cab59c33cfa mariadb_demo-MySQL_database_container "/usr/bin/dumb-ini…" About a minute ago Up About a minute 0.0.0.0:3306->3306/tcp mariadb_demo-MySQL_database_container

To test to ensure everything is working, we can download and install the mariadb-
client package, or any MySQL client of your choosing:

ubuntu@node01:~$ sudo apt-get install -y mariadb-client

Once the MariaDB client has been installed, you can use the following command to
connect to the MariaDB container exposed on the localhost of the Vagrant VM. If
you're unfamiliar with the MySQL client, remember that all flags passed into the
client do not have spaces after them. It looks a little strange, but it should drop you
into a MySQL console:

ubuntu@node01:~$ MySQL -h127.0.0.1 -uroot -ppassword
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 2
Server version: 10.0.31-MariaDB-0ubuntu0.16.04.2 Ubuntu 16.04

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

Let's run the show databases; command to see if the test databases we have specified
in our default variables are being created:

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| TestDB1 |
| TestDB2 |
| TestDB3 |
| information_schema |
| MySQL |
| performance_schema |
+--------------------+
6 rows in set (0.00 sec)

MariaDB [(none)]>

It appears as though everything was created properly and is working as expected.
When you are done working in this session, you can exit from the MySQL CLI using
the exit command. Use ansible-container destroy to reset your environment. Let's
make things interesting by customizing our role and sourcing external variable
values.

Customizing the container-enabled
role
As we saw in the previous chapter, it is very easy to abstract away from changes in
Ansible Container projects by adding variables directly to the project container.yml
file and rebuilding the project. This provides the added convenience of having all of
our configuration changes in a single location and functioning effectively as a single
point of truth. This might be sufficient for some use cases, but what about
circumstances in which one would need to provide containers configured differently
to support multiple environments or locations, such as the development, testing, QA,
and production environments? You could simply update the container.yml file and
build separate images for these scenarios. However, Ansible Container provides us
with a better way to handle this by providing the ability to source external variable
files. A part of the ansible-container parent command is the --var-files flag, which
provides the option to source an external YAML file for variable definitions. This
provides us with an abstraction that allows separate builds to run and exist in parallel
using different configuration options. This also allows us to customize our role using
separate variable files for almost any circumstance that can be version-controlled
along with our project.

To enable this functionality, let's create a directory in the root of our project (the
same level as the project-specific container.yml) called variable_files. Inside of this
directory, we will create three separate files: dev.yml, test.yml, and prod.yml with
slightly different configuration options. The following are examples of these three
files. Do enjoy my Star Trek references!

Before we begin, it would be a good idea to perform an ansible-
container destroy action before rebuilding the containers using different
variables. This way, you can see exactly what is being changed during
the build process.

In the development, the primary user of our database will be Yeoman Rand. She will
be primarily concerned with Starfleet data:

variable_files/dev.yml
This file is located in <project_root>/variable_files/dev.yml:

Development Defaults for MySQL role
initialize_database: true
default_user: "yeoman_rand"
default_password: "starfleet"
databases:
 - "starfleet_data"

In System Test, Mr. Spock will be the primary user of our database. He has slightly
more interest in data related to Planet Vulcan, ship ordinances, shuttlecraft, as well
as federation data.

variable_files/test.yml
This is located in <project_root>/variable_files/test.yml:

System Test Defaults for MySQL role
initialize_database: true
default_user: "MrSpock"
default_password: "theBridge"
databases:
 - "planet_vulcan"
 - "federation_data"
 - "shuttle_crafts"
 - "ship_ordinances"

variable_files/prod.yml
In production, Captain Kirk is going to need to store vastly different data than the
other crew members. We will need to enhance our MySQL configuration from a bit
to support the added overhead of storing the Captain's Logs, Enterprise data, as well
as federation mandates. This file is located in: <project_root>/variable_files/prod.yml:

defaults file for MySQL_role
initialize_database: true
default_user: "captainkirk"
default_password: "ussenterprise"
databases:
 - "CaptainsLog"
 - "USS_Enterprise"
 - "InterstellarColonies"
 - "FederationMandates"

#MySQL Basic Tuning for my.cnf
key_buffer_size: "128K"
max_allowed_packet: "20M"
table_open_cache: 12
sort_buffer_size: "128K"

You may also notice that not all variables are being overridden in every example
shown here. In cases where variables are not being overridden by the sourced files,
Ansible will take the values present in defaults/main.yml in the role. It is important
that your role defaults provide values for all variables, as variables referenced
without values will break the build process.

Variable files can be named anything you want. Since we are sourcing
these files during the build process, and they are not something that
Ansible Container will automatically discover, the naming convention
is entirely up to you.

We can build containers based on any of these variables by executing our ansible-
container build command and adding the --vars-files flag as a parameter of the
ansible-container command. Remember, we always run build commands in the same
directory as the project-specific container.yml file:

ansible-container --vars-files variable_files/dev.yml build

During the build, you should notice that many of the tasks look slightly different

based on the variables we are providing. For example, when sourcing development
variables, you will see that only one database gets created: starfleet_data. This is an
indication that the new variables have been sourced and are populated correctly in
the build process. Let's perform an ansible-container run of the new version of our
container and try to log in with the same credentials as before:

ubuntu@node01:$ ansible-container run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon
Verifying service image service=MySQL_database_container

PLAY [Deploy mariadb_demo] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=bf5221a710736d238b0995dd4ce42b57bcb9338131225d71c0d7d1b3cef85677 save_container=False

Now, to log in using the MariaDB client:

ubuntu@node01:$ MySQL -h127.0.0.1 -uroot -ppassword
ERROR 1698 (28000): Access denied for user 'root'@'172.18.0.1'

It is very clear to see that the default credentials we have in the role defaults are no
longer working. Let's try again using the credentials we specified in our development
variable file for the Yeoman Rand user:

ubuntu@node01:$ MySQL -h127.0.0.1 -uyeoman_rand -pstarfleet
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 3
Server version: 10.0.31-MariaDB-0ubuntu0.16.04.2 Ubuntu 16.04

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

It looks like our new container is working using the sourced variable files for
development. Let's run the show databases; command to make sure the database was

properly created and exists:

MariaDB [(none)]> show databases;
'+--------------------+
| Database |
+--------------------+
| information_schema |
| MySQL |
| performance_schema |
| starfleet_data |
+--------------------+
4 rows in set (0.04 sec)

MariaDB [(none)]>

As you can see, the database starfleet_data exists alongside the default MariaDB
databases such as information_schema, MySQL, and performance_schema. It appears that the
container was built properly and is ready for deployment in our development
environment (for the purposes of this example). We can now push the image to a
container registry of our choosing. For this example, I will add Docker Hub to the
registries section of our project-specific container.yml file, specifying the namespace
as my Docker Hub username (remember to remove the curly braces after the start of
the registries stanza). Once that file is saved, let's tag the image as dev and push it up
to our Docker Hub repository so that we have a build image artifact that we can use
to deploy our application:

container.yml
The project-specific container.yml file is located in the root directory of your project:

registries:
 docker:
 url: https://index.docker.io/v1/
 namespace: username

Push the image using the --push-to flag:

ubuntu@node01:$ ansible-container push --push-to docker --tag dev
Parsing conductor CLI args.
Engine integration loaded. Preparing push. engine=Docker™ daemon
Tagging aric49/mariadb_demo-MySQL_database_container
Pushing aric49/mariadb_demo-MySQL_database_container:dev...
The push refers to a repository [docker.io/aric49/mariadb_demo-MySQL_database_container]
Preparing
Waiting
Pushing
Pushed
Pushing
Pushed
Pushing
Pushed
dev: digest: sha256:98d288cfa09acc3f06578532cd6ccd78af0eb65b84ba3b0ee011105e59cfb588 size: 1569
Conductor terminated. Cleaning up. command_rc=0 conductor_id=323116464d8f687238ae6ab64f86fb54746b6c2f5f0b895754da6ef0ce540d76 save_container=False

It's not completely necessary to configure Docker Hub as the image
registry in the container.yml file, as Ansible Container will default to
using Docker Hub. However, I like to make sure I don't accidentally
push images to the wrong registries, so it is best practice to always
provide the image repository in the container.yml file and always push
using the -–push-to flag command to specify the correct repository.

We can do the same build process for our test.yml configuration as well as our
prod.yml configurations and push those up to the Docker Hub repository
(remembering to do a destroy between builds). Notice that, while uploading a
different version of the image, Docker will automatically identify layers of the image
that is identical to the previously uploaded version. In this case, Docker will help you
to save bandwidth and resources by not pushing layers that are identical, but only the
layers that have changed, as shown in the following. Note the Layer already exists
lines:

ubuntu@node01:$ ansible-container push --push-to docker --tag test
Parsing conductor CLI args.

Engine integration loaded. Preparing push. engine=Docker™ daemon
Tagging aric49/mariadb_demo-MySQL_database_container
Pushing aric49/mariadb_demo-MySQL_database_container:test...
The push refers to a repository [docker.io/aric49/mariadb_demo-MySQL_database_container]
Preparing
Waiting
Layer already exists
Pushing
Layer already exists
Pushing
Layer already exists
Pushing
Pushed
test: digest: sha256:1f9604585e50efe360a927f0a5d6614bb960b109ad8060fa3173d4ab259ee904 size: 1569
Conductor terminated. Cleaning up. command_rc=0 conductor_id=ef42185fab1cfe20de65101059957844bbc4a166a8ab10352fe1b796e7ea5c3d save_container=False

We should now have three different container image artifacts available to download.
These images are available to download and deploy in our imaginary development
lab, system test lab, as well as our production environment. These container images
are guaranteed to run in these environments in the exact same way as they do in our
local workstations. At this point, we can do a final exercise and run all three of these
containers on different ports in order to simulate these containers running in different
environments with different configurations. To quickly demonstrate this, we will use
the native docker run command to specify our tagged image and the ports we want the
container service to use; we also specify that our service should run in the
background using the -d flag. Notice that each instance of our container that we are
creating uses the dev, test, and prod tags as well as our user repository address. In my
case, it is aric49:

docker run -d --name MySQL_Dev -p 3308:3306 aric49/mariadb_demo-MySQL_database_container:dev

docker run -d --name MySQL_Test -p 3309:3306 aric49/mariadb_demo-MySQL_database_container:test

docker run -d --name MySQL_Prod -p 33010:3306 aric49/mariadb_demo-MySQL_database_container:prod

Testing the container functionality is exactly the same process as before. We can use
the MariaDB client to log into an instance of our containers. This time, however, we
will need to specify which port our service is listening on since all three instances
cannot listen on the default port 3306 on the host networking side. If we wanted to log
into our production container, we could specify the credentials for Captain Kirk
using port 33010 and the ussenterprise password:

ubuntu@node01:$ MySQL -h127.0.0.1 -ucaptainkirk -pussenterprise -P33010
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 2
Server version: 10.0.31-MariaDB-0ubuntu0.16.04.2 Ubuntu 16.04

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

Leveraging the same Ansible Container project and container-enabled role, we were
able to use the Ansible Container default primitives in order to build containers with
a variety of configurations that are available for use under different circumstances
and use cases. This approach enables us to be certain that the build process will
remain exactly the same throughout future build iterations, but we will have the
flexibility to supply new configuration values into our role without modifying the
code we wrote previously. Using container tagging, a snapshot of container
configurations can be captured and shared with other users. We now have a
tremendously useful and repeatable pipeline to ensure that future versions of our
application containers have traceability back to the source roles used to generate
them. Even if the container images are accidentally deleted from our image registry,
we can easily build and rebuild our containers at any time, since all configuration in
our containers is declared as code using the Ansible playbook language. If you have
worked in an IT-related DevOps or a systems administrator position for very long,
you will understand how valuable it is to have this level of insight into your
infrastructure.

References
Official YAML Standard Guide: http://yaml.org
Ansible Module Index: http://docs.ansible.com/ansible/latest/modules_by_catego
ry.html

Ansible Playbook Specification: http://docs.ansible.com/ansible/latest/playbook
s.html

http://yaml.org
http://docs.ansible.com/ansible/latest/modules_by_category.html
http://docs.ansible.com/ansible/latest/playbooks.html

Summary
Over the course of this chapter, we looked at how roles not only enable reuse in
Ansible Container but are actually the bread and butter of what makes Ansible
Container a powerful tool for building and managing containers.

We first looked at how we can use the Ansible Galaxy command-line tools to create
the shell for a container-enabled role, all necessary directories, and default YAML
files from which we can build our role. From there, we wrote a custom role that
builds a MariaDB container using a sane set of default configuration options. Finally,
we developed an abstraction layer on top of our role by passing in custom variable
configuration options, from which we can customize our container project without
modifying any code.

I hope this chapter has effectively demonstrated the raw power available to you
using the Ansible Container project. Up until this point, I think it is easy to make the
assumption that it is easier to build container images using Dockerfiles and not
worrying about the added overhead of Ansible Container. I hope you will now
understand that the benefits of using Ansible Container far outweigh the slight layer
of additional complexity required. Using Ansible Container, you can create a
powerful pipeline for building, running, testing, and pushing container images. By
leveraging the easy-to-understand Ansible playbook syntax language, we have a
basis from which we can start building a modern, agile, containerized infrastructure
that gives us the ability to deploy changes quickly and truly begin to embrace the
promise of genuinely modular infrastructure.

Now that we understand how to build and deploy truly custom containers we can
start to look at Kubernetes, an open source framework for automating the
deployment, orchestration, and management of containers at scale.

Containers at Scale with
Kubernetes
Kubernetes is by far one of the most popular open source projects to take the IT
world by storm. It seems like almost everywhere you go, every blog you read, or
news article you encounter, tells the tale of how Kubernetes has revolutionized the
way DevOps and IT infrastructure are handled. With good reason, Kubernetes has
truly taken a firm grasp of the IT landscape and introduced new concepts and ways
of looking at infrastructure like no other platform before it. You might be in the
camp of IT professionals who have heard of Kubernetes, but you have no idea what
it is or how it can really benefit your infrastructure. Or, you could be where most of
us are today, in the process of containerizing applications and workloads but don’t
want to dabble in the additional complexity and murky water of Kubernetes just yet.
Finally, you could be one of those lucky DevOps engineers or IT administrators who
have successfully adopted containers and Kubernetes and is able to really reap the
reliability and flexibility that Kubernetes provides.

The purpose of this chapter is to provide an overview of what Kubernetes is, how it
works (at a high level), and how to deploy your containerized applications to
Kubernetes clusters using Ansible Container. Before we dive in too deep, you might
ask, what is Kubernetes exactly? Kubernetes is a platform developed by Google for
deploying, managing, configuring, and orchestrating containers at both small and
large scales. Kubernetes was started as an internal project at Google, known as Borg,
for managing the automatic deployment and scaling of containers across the vast
Google infrastructure footprint. Based on some real-world lessons learned with Borg,
Google released Kubernetes as an open source project so that other users and
organizations could leverage the same flexibility to deploy containers at scale. Using
Kubernetes, one can easily run containerized applications across multiple clustered
nodes, automatically maintaining the desired number of replicas, service endpoints,
and loadbalancing across the cluster.

Throughout this book, we have looked closely at how we can use the Ansible
Container platform to quickly and reliably build container images using Ansible
Playbooks and run those containers on our local workstation. Since we now
understand quite well how to build version control and configuration management

inside of our containers, the next step is using configuration management to declare
how our applications should run outside of our container. This is the gap that
Kubernetes fills. And, yes, it is just as awesome as it sounds. Ready? Let’s get
started.

Throughout this chapter, we will cover:

A brief overview of Kubernetes
Getting started using Google Cloud Engine
Deploying an application in Kubernetes using kubectl
Writing a Kubernetes manifest
Deploying and updating containers in Kubernetes

A brief overview of Kubernetes
Admittedly, when one thinks of Kubernetes, one might immediately think of the
complexity and multifaceted hierarchy of concepts associated with Kubernetes and
be quick to think that this chapter will be over the reader's head in terms of how to
understand and apply these concepts. Most users who have unsuccessfully attempted
to venture into Kubernetes in the past may still feel the scars and be wary about
moving forward with Kubernetes. Container automation using Kubernetes can
quickly get quite complicated, but the rewards for learning and using Kubernetes are
vast. Before we go forward, I must stress to the reader that Kubernetes is quite a
complex platform. Attempting to explain in detail every feature and function of
Kubernetes would take an entire book, if not longer. In fact, there has been a
multitude of books written on container orchestration using Kubernetes that I would
direct the reader's attention to should you would want to dig deeper into your
understanding of these concepts. The point of this chapter is to introduce the reader
to a basic understanding of what Kubernetes is, the primary functionality, and how
the reader can quickly get started using it to optimize the deployment of containers.
There is a lot more to be said about Kubernetes than the scope of this book has the
time to go into, so if the reader wants to learn more about Kubernetes, I would
strongly suggest checking out the documentation on the Kubernetes website at https:
//kubernetes.io/docs.

Throughout the book so far, we have looked at using Ansible Container to build
Docker containers that run on our local workstation or a remote server that has
Docker installed and running on it. Docker provides us with a usable container
runtime environment that has the functionality to start containers, expose ports,
mount system volumes, and provide basic network connectivity using a bridged
interface and IP Network Address Translation, or NAT. Docker does a very good job
at running containers but does not provide the user with very much functionality
beyond that. What happens when your container crashes? What do you do when you
need to scale out your application to more nodes, racks, or data centers? What
happens when a container on one host needs to access resources in a container
running on a separate host? This is the exact type of use case that tools such as
Kubernetes address. Think of Kubernetes essentially as a service that uses a
scheduler and API to proactively monitor the current state of containers running in
Docker (or another container runtime) and continuously attempts to drive it towards

https://kubernetes.io/docs

the desired state specified by the operator. For example, say you have a 4-node
Kubernetes cluster running 3 instances of your application container. If the operator
(you) instructs the Kubernetes API that you want the fourth instance of your
application container running, Kubernetes will identify that you currently have three
running instances and immediately schedule a fourth container to be created. Using a
bin-packing algorithm, Kubernetes intrinsically understands that containers should
be scheduled to run on separate hosts to provide high availability and make the most
use of cluster resources. In the example above, the fourth container scheduled will
most likely be scheduled to run on the fourth cluster host, provided no outstanding
configuration has been put into place that would prevent new container workloads
from running on that host. Furthermore, if one of the hosts in our cluster goes down,
Kubernetes is intelligent enough to recognize the disparity and reschedule those
workloads to run on different hosts until the downed node has been restored.

In addition to the flexible configuration management capabilities Kubernetes
provides, it is also known for its unique ability to provide resilient networking
resources to containers such as service discovery, DNS resolution, and load
balancing across containers. In other words, Kubernetes has the innate ability to
provide internal DNS resolution based on the services running in the cluster. When
new pods are added to the service, Kubernetes will automatically see the new
containers and update the DNS endpoints so that the new containers can be served by
calling the internal service domain name within the cluster. This ensures that other
containers can talk directly to other containerized services by calling internal domain
names and cluster IP addresses within the Kubernetes overlay network.

Kubernetes incorporates many new concepts that might be somewhat foreign if you
come from a background of working with static container deployments. Throughout
this chapter, these concepts will be referred to as we learn more about Kubernetes, so
it is important to have a grasp of what these terms mean as we go forward:

Pod: a pod represents one or more application containers running in the
Kubernetes cluster. By default, a pod definition names at least one container
that the user wishes to run in the cluster, including any additional environment
variables, command or entrypoint configuration the user wants the pod to run
with. If the pod includes more than one container definition, all containers
running in the pod share the pod network and storage resources. For example,
you could run a pod that consisted of a web server container as well a caching
server. From the perspective of the pod, the web server might run on the
localhost port 80, and the cache would likewise run on localhost port 11211.

From the perspective of Kubernetes, the pod itself would have a single IP
address internal to the cluster the services would be exposed on, but in reality,
would consist of two entirely separate containers.
Deployment: A deployment is an object in Kubernetes that defines pods which
will be running in the cluster. Deployments consist of a variety of parameters,
such as the name of the container image, volume mounts, and the number of
replicas to run. In order to delete pods from a Kubernetes cluster, the
deployment must be deleted. If you simply attempt to delete pods, you will see
that Kubernetes attempts to recreate those pods. This happens due to the fact
that the deployment object is informing the cluster that those pods should be
running, and the controller manager (more on this later) will attempt to bring
the cluster back into the desired state.
Labels: Labels are key-value pairs that can be assigned to almost any object in
Kubernetes. Labels can be assigned to objects to organize subsets of resources
in the cluster. For example, if you have a cluster that runs multiple deployments
of the same pods, they can be labeled differently to indicate different uses.
Labels can even be leveraged to by the scheduler to determine where and when
pods should be running in across the cluster.
Service: A service defines a logical subgrouping of pods (usually by a label
selector) and the methods by which they should be accessed by other resources
in the cluster. For example, you could create a service that exposes a set of pods
to the outside world. A selector such as a label could be used to determine
which pods should be exposed. Later, if pods are added or removed from the
cluster, Kubernetes will automatically scale the service, provided the new pods
are running with the same selector.

To make this functionality transparent, Kubernetes provides multiple services
running in the cluster that work in conjunction to ensure that the cluster and
applications are continuously in the desired state. Collectively, these services are
known as the Kubernetes Control Plane. The control plane is what allows the
function, manage running containers, and maintain the state of nodes and resources
across the cluster. Let’s take a quick look at those now:

KubeCTL: kubectl, (pronounced kube-control), is the command-line tool for
interacting with Kubernetes. Kubectl gives you direct access to the Kubernetes
API to schedule new deployments, interact with Pods, expose deployments, and
more. The kubectl tool requires a set of credentials in order to access the
Kubernetes API.
Kubernetes API Server: The Kubernetes API server is responsible for
accepting input from the operator, either from the kubectl command-line tool or

by direct access to the API itself. The Kubernetes API is responsible for
coordinating information to the rest of the cluster to execute the desired state. It
should also be noted that the Kubernetes API server depends on the ETCD
service to store and retrieve information about the cluster nodes and services
running in the cluster.
Kubernetes Scheduler: The Kubernetes scheduler is responsible for scheduling
new workloads across the cluster nodes. Core to this responsibility is
monitoring the cluster to ensure that available resources are present in the
cluster to run pods, as well as ensuring that servers are available and reachable.
Kubernetes Controller Manager: The controller manager is primarily
concerned with desired state compliance across the cluster. The controller
manager service interacts with the ETCD service and watches for new jobs and
requests coming in through the API server. When a new request is received and
stored in ETCD, the controller manager kicks off a new job in tandem with the
scheduler to ensure that the cluster is in the desired state defined by the
operator. The controller manager accomplishes this by using control loops to
continuously monitor the state of the cluster and immediately correct any
discrepancies it sees between the current and desired state. When you delete a
Kubernetes pod and a new one automatically gets created, you have the
controller manager to thank for that.
ETCD: ETCD is a distributed key-value store created by CoreOS, which is
used to store configuration information across the Kubernetes cluster. As stated
previously, ETCD is primarily written to by the Kubernetes API server.
Container Networking Interface: The Container Network Interface project, or
CNI, attempts to bring additional network functionality then what comes out of
the box with Kubernetes. CNI provides interfaces and plugin support to allow
various network plugins to be deployed within Kubernetes clusters. This allows
Kubernetes to provide overlay network connectivity to containers distributed
across hosts so that containers do not have to rely on the relatively limited
networking space provided on the Kubernetes hosts. Common third-party
plugins that implement the CNI standard are Flannel, Weave, and Calico.
Kubelet: Kubelet is a service which runs on every host in the Kubernetes
cluster. The Kubelet’s primary responsibility is to leverage the underlying
container runtime (Docker or rkt) to create and manage pods on cluster nodes
according to the instructions received by the API, the scheduler, and controller
manager. The Kubelet service does not manage containers or pods running on
the host that were not created by Kubernetes. Think of the Kubelet as the
translation layer between Docker and Kubernetes.

Now that we have an understanding of the Kubernetes platform and how it works,

we can start using Kubernetes to run some of the containers we built earlier in this
book.

Getting started with the Google
Cloud platform
Throughout the many chapters in this book, we have worked primarily in a single-
node Vagrant lab that comes preloaded with most of the tools and utilities you need
to get started using Docker and Ansible Container to initialize, build, run, and
destroy containers through the various examples and lab exercises. Unfortunately,
due to the complexity of Kubernetes, it is very difficult to run a Kubernetes
environment within the Vagrant lab we have used so far. There are methods, but they
would require more computing power and explanation that extends beyond the scope
of this book. As a solution, I would suggest that the reader signs up for a free-tier
account on Google Cloud Platform to quickly spin up a three-node Kubernetes
cluster in only a few minutes, which can be used using kubectl command-line agent
from the single-node Vagrant lab. At the time of writing, Google is offering a free
$300.00 credit for signing up for a free-tier Google Cloud account. Once the $300.00
allowance has expired, Google will not charge you for further use without explicit
authorization. In and of itself, this is more than enough to run our simple cluster and
cover many of the major Kubernetes concepts.

If you are unable to sign up for a Google Cloud Platform account, you can spin up a
local Kubernetes node on your workstation absolutely free of charge using the
Minikube project. Configuring Minikube to work on your laptop with proper
reachability for kubectl commands to work is fairly straightforward if you are using
the Virtualbox hypervisor. If you are interested, you can find more information on
Minikube at https://github.com/kubernetes/minikube.

Before we can proceed with creating our Google Cloud Kubernetes cluster, we need
to first sign up for an account at https://cloud.google.com/free/.

Once you have created a free account, it will prompt you to create a new project.
You can name your project anything you like, as Google Cloud will assign a unique
identifier to it within the console. I named mine AC-Kubernetes-Demo. If the signup
process does not prompt you to create a new project, from the main console you can
select: Projects and click the + sign button to create a new project:

https://github.com/kubernetes/minikube
https://cloud.google.com/free/

Once a project has been created, we can create a Kubernetes cluster using the Google
Container Engine. From the main console window, on the left-hand side menu, select
Container Engine | Container Clusters from the submenu:

For the purposes of this example, and also to make the most of the free allowance
provided to use the Google Container Engine, we will create a three-node container
cluster using the minimum specifications. To do this, from the Container clusters
dashboard, select the button Create Cluster. This will drop you into a form that will
allow you to select your cluster specifications. I created mine to the following
specifications:

Name: Cluster-1
Cluster Version: 1.6.9
1 vCPU per Node (3 total vCPUs)
Container Optimized OS
Disabled Automatic Upgrades

Once the cluster has been created, you should see a cluster that resembles the
following screenshot:

The most recent versions of the Google Cloud interface may have
changed since the time of writing. You may have to set up your
Kubernetes cluster using a slightly different set of steps, or

customization options. The default settings should be sufficient to
create a cluster that isn’t so expensive that it quickly burns through
your $300.00 allowance. Remember, the more resources you allocate
to your cluster, the faster you will use up your credit!

Once our cluster has been fully deployed, we can connect to it from our Vagrant
development lab. To do this, we need to first initialize the kubectl tool using the
Gcloud interface. By default, these packages are not installed in the Vagrant lab to
save on time and complexity when provisioning the VM. To enable this
functionality, we need to modify the Vagrantfile, located in the root directory of the
official Git repository for this book. Towards the bottom of the Vagrant file, you will
see a section titled: #Un-Comment this section to Install the Google Cloud SDK. Un-
commenting this section should result in the following changes to the Vagrantfile:

##Un-Comment this to Install the Google Cloud SDK:
export CLOUD_SDK_REPO="cloud-sdk-$(lsb_release -c -s)"
echo "deb http://packages.cloud.google.com/apt $CLOUD_SDK_REPO main" | sudo tee -a /etc/apt/sources.list.d/google-cloud-sdk.list
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
apt-get update && sudo apt-get install -y google-cloud-sdk
apt-get install kubectl
SHELL
end

After making these changes, save the file, and launch the lab VM using the vagrant
up command. If the lab VM is already running, you can use the vagrant provision
command to re-provision the running VM, or simply destroy and re-create the VM as
follows:

user@localhost:~/$ vagrant destroy -f
==> node01: Forcing shutdown of VM...
==> node01: Destroying VM and associated drives...

user@localhost:~/$ vagrant up
Bringing machine 'node01' up with 'virtualbox' provider...
==> node01: Checking if box 'ubuntu/xenial64' is up to date..

Once the Vagrant lab VM has the Google Cloud SDK and kubectl installed, Execute the
command gcloud init and, when prompted to log in, enter Y to confirm and continue
logging in.

ubuntu@node01:~$ gcloud init
Welcome! This command will take you through the configuration of gcloud.

Your current configuration has been set to: [default]

You can skip diagnostics next time by using the following flag:
 gcloud init --skip-diagnostics

Network diagnostic detects and fixes local network connection issues.
Checking network connection...done.
Reachability Check passed.
Network diagnostic (1/1 checks) passed.

You must log in to continue. Would you like to log in (Y/n)? Y

The Gcloud CLI tool should then return a hyperlink that will allow you to authorize
your Vagrant lab with your Google Cloud account. Once you have granted
permission to use your Google Cloud account, your web browser should return a
code you can enter on the command line to complete the authorization process.

The CLI wizard should then prompt you to select a project. The project you just
created should be displayed with a list of options. Select the project we just created:

Pick cloud project to use:
 [1] ac-kubernetes-demo
 [2] api-project-815655054520
 [3] Create a new project
Please enter numeric choice or text value (must exactly match list
item): 1

It will then prompt you if you wish to configure the Google Compute Engine. This is
not a necessary step, but if you opt to perform it, you will be presented with a list of
geographic regions to select from. Select the one closest to you. Finally, your Google
Cloud account should be connected to your Vagrant lab.

Now, we can set up connectivity to our Kubernetes cluster using the kubectl tool.
This can be accomplished by selecting the Connect button on the Container Engine
dashboard, next to our cluster. A screen should pop up displaying details on how to
connect to our cluster from our initialized Vagrant lab:

Copy and paste that command into your Vagrant environment:

ubuntu@node01:~$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project ac-kubernetes-demo

WARNING: Accessing a Container Engine cluster requires the kubernetes commandline

client [kubectl]. To install, run
 $ gcloud components install kubectl

Fetching cluster endpoint and auth data.
kubeconfig entry generated for cluster-1.

This should cache the default Kubernetes credentials required for access to our
cluster from the kubectl command-line tool. kubectl will already be installed in the
Vagrant lab VM due to the changes made to the Vagrantfile earlier in the chapter.

Since kubectl is already installed, we can validate the connectivity to your
Kubernetes cluster by executing kubectl cluster-info to view details about our
running cluster. I censored the IP details for my cluster environment. However, your
output will show all the relevant addresses for the core services:

ubuntu@node01:~$ kubectl cluster-info
Kubernetes master is running at https://IPADDRESS
GLBCDefaultBackend is running at https://IPADDRESS/api/v1/namespaces/kube-system/services/default-http-backend/proxy
Heapster is running at https://IPADDRESS/api/v1/namespaces/kube-system/services/heapster/proxy
KubeDNS is running at https://IPADDRESS/api/v1/namespaces/kube-system/services/kube-dns/proxy
kubernetes-dashboard is running at https://IPADDRESS/api/v1/namespaces/kube-system/services/kubernetes-dashboard/proxy

You can also run kubectl get nodes to see an output of the nodes the cluster consists
of:

ubuntu@node01:~$ kubectl get nodes
NAME STATUS AGE VERSION
gke-cluster-1-default-pool-ca63b897-7pwx Ready 2d v1.6.9
gke-cluster-1-default-pool-ca63b897-d9cf Ready 2d v1.6.9
gke-cluster-1-default-pool-ca63b897-fnnt Ready 2d v1.6.9

Deploying an application in
Kubernetes using kubectl
KubeCTL or Kube Control is the official command line interface into the Kubernetes
API Server and the rest of the Kubernetes Control Plane. Using the kubectl tool, you
can view the status of pods, access cluster resources, and even exec into running
pods for troubleshooting purposes. In this portion of the chapter, we will look at the
basics of using kubectl to manually describe deployments, scale pods, and create
services to access the pods. This is beneficial to understanding the basic concepts of
Kubernetes to understand how Ansible Container is able to automate many of these
tasks using the native Kubernetes modules available to it.

Let’s take a look at some of the most common kubectl options and syntax you are
likely to run into working with Kubernetes:

kubectl get: kubectl get is used to return resources that currently exist in the
Kubernetes cluster. Commonly, this command is used to get a list of pods
currently running or nodes in the cluster. Think of this command as being
similar to the docker ps command. Examples of get commands are: kubectl get
pods and kubectl get deployments.
kubectl describe: describe is used to view more verbose details about a particular
cluster resource. If you want to know the latest state of a resource or current
details about how the resource is running you can use the describe command.
describe is very helpful since you can call out a specific cluster resource, such as
a pod, service, deployment, or replication controller to view the details
pertaining directly to that instance. describe is also very useful for
troubleshooting issues across Kubernetes environments. Examples of describe
are: kubectl describe pod, and kubectl describe node.
kubectl run: kubectl run functions quite similar to the docker run command we
explored earlier in this book. Run is primarily used to start a new deployment
and get pods up and running quickly in the Kubernetes cluster. The use case for
run is rather limited, since more complex deployments are better suited for the
create and apply commands. However, for testing or getting containers running
quickly and efficiently, run is a fantastic tool.
kubectl create: Create is used to create new cluster resources such as pods,
deployments, namespaces, or services. Create functions very similar to apply

and run, with the caveat that it is used solely for launching new objects. Using
create, you can use the -f flag to pass in a manifest file or direct URL to launch
more complex items than you could with kubectl run.
kubectl apply: Apply is often confused with create since the syntax and
functionality is so similar. Apply is used to update Kubernetes resources that
exist in the cluster, whereas create is used to create new resources. For example,
if you created a series of pods based on a Kubernetes manifest that you
launched using kubectl create, you could use kubectl apply to update any
changes you may have made to the manifests. The Kubernetes Control Plane
will analyze the manifest an attempt to make the changes necessary to bring the
cluster resources into the desired state.

kubectl delete: delete is rather self-explanatory since the primary function is
used to delete objects from the Kubernetes cluster. Similar to create and apply,
you can use the -f flag to pass in a Kubernetes manifest file that was created or
updated previously and use that as an identifier to delete those resources from
the cluster.

As you will notice, the kubectl uses a verb/noun syntax that is quite easy to
remember. Everything you do with kubectl will take a verb argument (get, describe,
create, apply), followed by the objects in kubernetes you wish to act on: (pods,
namespaces, nodes, and other specific resources). There are a lot more command
options available to you using the kubectl tool, but these are by far some of the most
common options you are likely to use when starting with Kubernetes.

To view all of the possible parameters that Kubectl takes, you can use
kubectl --help or kubectl subcommand --help to get help on a particular
function or subcommand.

Since we now have access to the Kubernetes cluster from our Vagrant lab, we can
use the kubectl tool to explore the cluster resources and objects. The first command
that we will look at is the kubectl get pods command. We will use this to return a list
of pods that exist in all namespaces across the cluster. Simply typing in kubectl get
pods will return nothing since Kubernetes resources are separated by namespaces.
Namespaces provide a logical separation of Kubernetes resources based on DNS and
networking rules, which allow users to have fine-grained control over multiple
deployments that simultaneously exist in the same cluster. Currently, everything that
exists in the Kubernetes cluster exists as running processes critical to the
functionality of the Kubernetes control plane and exist in the kube-system namespace.

To see a list of everything running in all namespaces, we can use the kubectl get pods
command, passing in the --all-namespaces flag:

ubuntu@node01:~$ kubectl get pods --all-namespaces
NAME READY STATUS RESTARTS AGE
fluentd-gcp-v2.0-k8nrl 2/2 Running 0 17m
fluentd-gcp-v2.0-l05dw 2/2 Running 0 17m
fluentd-gcp-v2.0-svnfw 2/2 Running 0 17m
heapster-v1.3.0-1288166888-cqpd3 2/2 Running 0 16m
kube-dns-3664836949-sl69q 3/3 Running 0 17m
kube-dns-3664836949-tbmvl 3/3 Running 0 17m
kube-dns-autoscaler-2667913178-vdjc5 1/1 Running 0 17m
kube-proxy-gke-cluster-1-default-pool-ca63b897-7pwx 1/1 Running 0 17m
kube-proxy-gke-cluster-1-default-pool-ca63b897-d9cf 1/1 Running 0 17m
kube-proxy-gke-cluster-1-default-pool-ca63b897-fnnt 1/1 Running 0 17m
kubernetes-dashboard-2917854236-sctqd 1/1 Running 0 17m
l7-default-backend-1044750973-68fx0 1/1 Running 0 17m

Your list may look slightly different to the output I have provided here, based on the
version of Kubernetes your cluster is running and any changes the Google Container
Engine platform may have introduced since the time of writing. However, what you
will see is a list of containers that are running to support the Kubernetes Control
Plane, such as the kube-proxy, kube-dns, and logging mechanisms using fluentd. The
default output will show the name of the pods, how long they have been running (the
age), the number of running replicas, and the number of times the pods have
restarted.

You can use the -o wide flag to see more details, such as the namespace
and overlay network IP addresses assigned to the pods. For example,
kubectl get pods -o wide --all-namespaces.

Now that we have a firm understanding of listing pods, we can use the kubectl run
command to start our first deployment. In Chapter 3, Your First Ansible Container
Project we learned how to build an NGINX container using a community-developed
container-enabled role and uploaded it to our personal Docker Hub repository. We
can use the kubectl run command to download our container, quickly create a new
Kubernetes deployment called nginx-web and get this pod running in our cluster. In
order to pull the pod from our repository, we will need to provide the fully qualified
container name in the format: image-repository/username/containername. Furthermore,
we need to map the port to port 8000 since the community-developed role leveraged
that port by default. Finally, we will be launching this deployment in the default
namespace, so no additional namespace configuration needs to be applied:

kubectl run nginx-web --image=docker.io/username/nginx_demo-webserver --port=8000

Now, if we try running kubectl get pods, we will see a single NGINX pod running the
default namespace:

ubuntu@node01:~$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE
nginx-web-1202329523-qjkwp 1/1 Running 0 3m

Similarly, we can use the kubctl get deployments function to see what the current state
of deployments for the default namespace looks like:

ubuntu@node01:~$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-web 1 1 1 1 12m

As you can see from the get pods and get deployments output, we have a single
deployment called nginx-web, which consists of a single pod and a single container
within that pod. This is in full agreement with the input we provided into the
Kubernetes API server using the kubectl run command. If we attempt to delete this
pod, there will be a delta between the desired state and the current status of our
deployment. Kubernetes will then attempt to bring the cluster back into the desired
state by recreating the deleted cluster resource. Let’s try doing a delete on the
NGINX pod we created and see what happens. Usually, this happens so quickly, you
will need to pay attention to the name of the pod as well as the age to see that the
change has occurred:

ubuntu@node01:~$ kubectl delete pod nginx-web-1202329523-qjkwp
pod "nginx-web-498735019-6llvp" deleted
ubuntu@node01:~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-web-498735019-xcp21 1/1 Running 0 15s

If we wanted to actually delete the pods from the cluster permanently, we could use
the delete command on the deployment itself, using the syntax: kubectl delete
deployment nginx-web This would declare a new desired state, namely that we no
longer want the deployment nginx-web present and all pods in that deployment should
likewise be deleted.

Describing Kubernetes resources
Kubernetes can also be used to view detailed information about the pods or other
objects we have instantiated in our cluster. We can do this using the kubectl describe
command. Describe can be used to see a detailed view of almost any resource in our
cluster.

Let’s take a moment to describe our NGINX pod and ensure that it is running as
expected:

ubuntu@node01:~$ kubectl describe deployment nginx-web
Name: nginx-web
Namespace: default
CreationTimestamp: Wed, 13 Sep 2017 19:36:48 +0000
Labels: run=nginx-web
Annotations: deployment.kubernetes.io/revision=1
Selector: run=nginx-web
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
 Labels: run=nginx-web
 Containers:
 nginx-web:
 Image: docker.io/aric49/nginx_demo-webserver
 Port: 8000/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-web-498735019 (1/1 replicas created)
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 59s 59s 1 deployment-controller Normal ScalingReplicaSet Scaled up replica set nginx-web-498735019 to 1

As you can see describe displays a lot of pertinent information about our cluster,
including details such as the namespace the pod is running in, any labels our pod is
configured with, the name and location of the container image that is running, as
well as the most recent events that have occurred to our pod. The describe output
shows us a wealth of information that can help us to troubleshoot or optimize the
deployments and containers in our cluster.

Exposing Kubernetes services
Since we now have a functional NGINX web server running in our cluster, we can
expose this service to the outside world so that others can use our shiny new service.
In order to do this, we can create a Kubernetes abstraction known as a service to
control how our pod is granted outside access. By default, Kubernetes pods are
assigned a cluster IP address by the overlay network fabric, which is only reachable
within the cluster by other containers and across nodes. This is useful if you have a
deployment that should never be directly exposed to the outside world. However,
Kubernetes also supports exposing deployments using the service abstraction.
Services can expose pods in a variety of ways, from allocating publicly routable IP
addresses to the services and load balancing across the cluster to opening a simple
node port on the master nodes, from which the service can listen. Google Container
Engine provides native support for the LoadBalancer service type which can allocate a
public virtual IP address to our deployment, making services extremely easy to
expose. In order to allow our service to see the outside world, we can use the kubectl
expose deployment command, providing the service type as LoadBalancer. Upon
successful completion, you should see the message service nginx-web exposed.

ubuntu@node01:~$ kubectl expose deployment nginx-web –type=LoadBalancer
service "nginx-web" exposed

We can see our newly created service by running the kubectl get services command.
You may notice that the EXTERNAL IP column may be in the pending state for a
moment or two while Kubernetes allocates a public IP for the cluster. If you execute
the kubectl get services command after a few minutes, you should notice it has an
external IP and is ready to be accessed:

ubuntu@node01:~$ kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.11.240.1 <none> 443/TCP 31m
nginx-web 10.11.255.240 <pending> 8000:32567/TCP 6s

After a minute or two:

ubuntu@node01:~$ kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.11.240.1 <none> 443/TCP 1h
nginx-web 10.11.241.144 35.202.165.54 8000:32567/TCP 1m

In this example, the external IP of 35.202.165.54 has been allocated to our

deployment. You can access this IP address in a web browser to actually see the
NGINX default web page in action. Remember, you have to access this service on
TCP port 8000 since that is how the container-enabled role is configured out of the
box. Bonus points if you want to go back and reconfigure your NGINX container to
run on port 80!

Google Cloud Platform has native integration with the Google Cloud
virtual load balancer resources, which allow Kubernetes to assign
external IP addresses to services. In baremetal environments or
clusters running on other clouds, an extra configuration will be
required to allow Kubernetes to seamlessly allocate publicly routed IP
addresses.

Scaling Kubernetes pods
Now that we have pods running in our cluster, we can use the powerful Kubernetes
primitives to scale out containers and running services across nodes for high
availability. As mentioned previously, as soon as a desire state is declared that
involves running more than one replica of a pod, Kubernetes will apply a bin-
packing algorithm to the deployment in an effort to determine which nodes the
service will run on. If you declare the same number of replicas as you have nodes in
your cluster, Kubernetes will run one replica on each node by default. If you have
more replicas declared then nodes, Kubernetes will run more than one replica on
some of the nodes, and on others, it will run a single replica. This provides us with
native high availability out of the box. One of the benefits of using Kubernetes is
that, by leveraging these features and functionality, operators no longer worry as
much about the underlying infrastructure the containers are running on as much as
the cluster abstractions themselves.

NOTE: Kubernetes can also use labels to control where certain
deployments should run. For example, if you have a high compute
capacity node, you could label that node as a compute node. You can
customize your deployment so that those pods will only run on nodes
with that particular label.

To demonstrate how powerful of a functionality this is, we use kubectl to scale out
our existing web server deployment. Since we are currently running a three-node
cluster, let’s scale out our NGINX deployment to four replicas. This way, we can
best illustrate what decisions Kubernetes is making on where to place our containers.
In order to scale our current deployment, we can use the kubectl scale deployment
command to increase our replica count from one to four:

ubuntu@node01:~$ kubectl scale deployment nginx-web --replicas=4
deployment "nginx-web" scaled

Using kubectl get deployments, we can see that Kubernetes is actively reconfiguring
our cluster towards the desired state. It might take a few seconds for Kubernetes to
get all four pods running, depending on the configuration you have chosen for your
cluster. Following we can see the desired number of pods, the current number of
pods running in the cluster, the number of pods that update, and the pods that are

ready and available to accept traffic. It looks like our cluster is in our desired state:

ubuntu@node01:~$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-web 4 4 4 4 14m

Running kubectl get pods with the -o wide flag, we can see that all four NGINX pods
are running with different IP addresses allocated and on different cluster nodes. It is
important to note that, since we specified four replicas and only have three nodes,
Kubernetes made the decision to have two pod replicas running on the same host.
Keep in mind that these are two separate and distinct pods with a different IP
address, even though they are running the same host.

ubuntu@node01:~$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx 1/1 Running 0 2m 10.8.2.5 7pwx
nginx 1/1 Running 0 2m 10.8.1.10 fnnt
nginx 1/1 Running 0 15m 10.8.1.9 fnnt
nginx 1/1 Running 0 2m 10.8.0.5 d9cf

The preceding output is slightly truncated since the -o wide output is
difficult to read properly in the context of a book page. Your output will
be slightly more verbose than mine.

Accessing the public IP address again will result in the service now load balancing
traffic across the pods in the cluster. Since we specified the service type as
LoadBalancer, Kubernetes will use a round-robin algorithm to pass traffic to our pods
with high availability. Unfortunately, this will not be obvious to the reader, since
each pod is running the same NGINX test web page. One of the major benefits of
Kubernetes is that services are usually tied to deployments. When you scale a
deployment, the service will automatically scale and start passing traffic to the new
pods!

Before we move forward to the next exercise, let’s delete the deployment we just
created, as well as the exposed service. This will return our cluster to a fresh state:

ubuntu@node01:~$ kubectl delete deployment nginx-web
deployment "nginx-web" deleted

ubuntu@node01:~$ kubectl delete services nginx-web
service "nginx-web" deleted

Creating deployments using
Kubernetes manifests
Along with the ability to create services and other objects directly from the
command line, Kubernetes also gives you the ability to describe desired states using
a manifest document. Kubernetes manifests give you the freedom to provide more
customization options in an easier to read, understand, and repeatable format, as
opposed to the command line, which is rather limited in its format. Since this chapter
is not designed to be a deep dive into Kubernetes, we will not spend a lot of time
going into all of the various configuration options that can be used in a Kubernetes
manifest. Rather, my intention is to show the reader what manifests look like and
how they work at a basic level.

Since you are already familiar with creating deployments using the kubectl
command-line tool, let’s demonstrate what our nginx-web deployment would look like
using a Kubernetes manifest. These examples are available in the official git
repository for the book, under the Kubernetes/nginx-demo directory. Open your text
editor and create a file: webserver-deployment.yml. The content of this file should
resemble the following. In this example, we are going to continue to use our
previously created NGINX container. However, feel free to use other container
URLs if you wish to experiment with using other types of services and ports.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: webserver-deployment
spec:
 replicas: 4
 template:
 metadata:
 labels:
 app: http-webserver

 spec:
 containers:
 - name: webserver-container
 image: docker.io/USERNAME/nginx_demo-webserver
 ports:
 - containerPort: 8000

Like all the YAML documents we have looked at thus far, Kubernetes manifest

documents begin with three dashes to indicate the start of a YAML file. Kubernetes
manifests always begin by specifying the API version, object kind, and metadata.
This is colloquially known as the header data and indicates to the Kubernetes API
the type of objects this document is going to create. Since we are creating a
deployment, we will specify the kind parameter as Deployment and provide the name of
the deployment as the metadata name. Everything listed underneath the spec section
provides configuration option parameters that are specific to the pod object the
document is creating. Since we are basically reverse engineering our previous
deployment, we are specifying the number of replicas as 4. The next few lines
specify metadata we are going to configure our pods with, specifically a key-value
pair label called, app:http-webserver. Keep this label in mind, as we are going to use it
when we create the service resource next.

Finally, we have another spec section, which lists the containers that are going to run
inside our pod. Earlier in the chapter, I mentioned that a pod can be one or more
containers running using shared network and cluster resources. Containers in a pod
share a pod IP address and localhost namespace. Kubernetes deployments allow you
to specify more than one pod under the containers: section, passing them in as listed
key-value pair items. This example, however, will create a single-pod container
known as webserver-container. It is here that we will specify the container image
version, as well as the container port (80).

This manifest can be applied using the kubectl create command, passing in the -f
flag, which indicates a manifest object, as well as the path to the manifest:

kubectl create -f webserver-deployment.yml

Upon successful completion, you should see the pods getting created using kubectl
get pods:

Creating services using Kubernetes
manifests
In a similar way to creating our deployment using Kubernetes manifest, we can
create other Kubernetes objects using manifests. The service we created earlier can
be described using the following Kubernetes manifest:

apiVersion: v1
kind: Service
metadata:
 name: webserver-service
spec:
 type: LoadBalancer
 selector:
 app: http-webserver
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8000

Notice in this example, we are specifying a different kind parameter to be Service as
opposed to our previous example, which used Deployment. This tells the Kubernetes
API to expect that the rest of the document will contain specifications that describe
services instead of other types of Kubernetes objects. In the metadata section, we
will name our service webserver-service (creative, no?). For the specification section,
we will provide the type of service we are exposing, LoadBalancer, and provide the
label we assigned to our deployment: app: http-webserver. When using kubectl to
expose deployments, the service you create is inherently tied to the deployment you
are exposing. When that deployment scales out, the service will be aware and will
adjust according to how many backend pods are running. However, when creating a
service using Kubernetes manifests, we can get more creative with how services are
tied to the services they are exposing. In this example, we are creating a service that
is associated with any pod that has the label app: http-webserver. In theory, this could
be any number of pods across different namespaces and deployments. This allows
for a lot of flexibility when designing applications around a Kubernetes architecture.

The final section of our manifest describes the ports we will perform load balancing
across. Remember how our NGINX container uses the fixed port 8000 by virtue of
the fact we built this container using the community-written role? Using the load

balancer service, we can expose any port we want on the frontend to forward traffic
to any port on the backend pods. The protocol we will use will be TCP. The port we
want to expose on the virtual IP address will be 80 for standard HTTP requests.
Finally, we will list the port that NGINX is listening to internally on our pods to
forward traffic to. In this case, 8000.

Using the kubectl create command, we can create our service very similar to how we
created our initial deployment:

ubuntu@node01:/vagrant/Kubernetes/nginx-demo$ kubectl create -f webserver-service.yml
service "webserver-service" created

Using kubectl get services, we can see which external virtual IP address gets
allocated to our cluster:

ubuntu@node01:$ kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S)
webserver-service 10.11.251.238 104.197.85.153 80:30600/TCP

Looking at the PORTS column, we can see that TCP port 80 is exposed in our cluster.
Using a web browser again, we can access our new public IP on port 80 and see
whether it’s working:

Using Kubernetes manifests, we can describe in greater detail the ways we want our
containerized applications to function. Manifests can easily be modified as well and
reapplied using the kubectl apply -f manifest.yml command. If at any time, we wanted
to update our application to a different version of the container image, or modify
exposed ports on the service, kubectl apply would only make the changes necessary
to bring our application into the desired state. Feel free to tweak these manifests on
your own and reapply them to see in what ways you can configure the services to
run.

Next, we will look at deploying containers to Kubernetes using Ansible Container.
Before we move forward, let’s remove the pods in your Kubernetes cluster using the
kubectl delete command, specifying the Kubernetes manifests we used to create or
modify the deployment and service:

ubuntu@node01:$ kubectl delete -f webserver-deployment.yml
deployment "webserver-deployment" deleted

ubuntu@node01:$ kubectl delete -f webserver-service.yml
service "webserver-service" deleted

For now, we have finished working work the Kubernets cluster. If you wish to
delete the cluster from Google Cloud, you can do so now. However, it is important
to note that Chapter 7, Deploying Your First Project covers deploying projects to
Kubernetes. I would suggest you keep your cluster active until you have finished
working on the material in Chapter 7, Deploying Your First Project.

References
Kubernetes Documentation: https://kubernetes.io/docs/home/
Google Cloud Platform: https://cloud.google.com
Running Kubernetes locally with Minikube: https://kubernetes.io/docs/gettin
g-started-guides/minikube/

https://kubernetes.io/docs/home/
https://cloud.google.com
https://kubernetes.io/docs/getting-started-guides/minikube/

Summary
Kubernetes is quickly becoming one of the most robust, flexible, and popular
container deployment and orchestration platforms that is taking the IT industry by
storm. Throughout this chapter, we have taken a close look at Kubernetes, learning
about how it works as a platform and some of the key features that make it so useful
and versatile. If you have worked in or around containers for very long, it will be
clear to you that Kubernetes is rapidly being adopted by organizations throughout the
world due to the extremely sophisticated mechanisms it uses to deploy and manage
containers at scale.

Due to the native support for Kubernetes in Ansible Container, we can use the same
workflow to build, run, test, and destroy containerized applications that we can
deploy to robust services such as Kubernetes. Ansible Container truly provides the
right tools to help drive complex deployments using a unified and reliable
framework.

However, Google Cloud and the Kubernetes framework are not the only cloud-based
container orchestration solutions on the market in today’s world. OpenShift is
quickly gaining popularity as a managed solution built by Red Hat that functions on
top of the Kubernetes platform. Next, we will apply the Kubernetes concepts we
learned in this chapter to deploy applications to the OpenShift software stack, using
the powerful tools offered to us by the Ansible Container platform to drive large-
scale application workloads.

Managing Containers with
OpenShift
Using a comprehensive suite of some of the best and most resilient open source
tooling available, Kubernetes is rapidly changing the way that software applications
are being built and deployed across organizations and in the cloud. Kubernetes
brings with it lessons learned from deploying a containerized infrastructure across a
company with one of the largest and most robust infrastructure footprints: Google.
As we saw in the previous chapter, Kubernetes is an incredibly flexible and reliable
platform for deploying containers at a very high scale, bringing with it the features
and functionality to deploy highly available applications across clusters of servers,
by running on top of native container engines such as Docker, rkt, and Runc. However,
with the great power and flexibility Kubernetes brings, also comes great complexity.
Arguably, one of the biggest downsides to deploying a containerized infrastructure
using Kubernetes is the high degree of knowledge regarding the Kubernetes
architecture that one must acquire prior to migrating workloads over to Kubernetes.

There is a solution to the high degree of overhead and technical complexity that puts
Kubernetes out of the reach of many organizations today. In recent years, Red Hat
has developed an answer to the problem of simplifying Kubernetes concepts and
making the platform more accessible for software developers and DevOps engineers
to quickly deploy and rapidly build upon. OpenShift is a suite of tools developed by
Red Hat that runs on top of the Red Hat distribution of Kubernetes that provides a
sophisticated, yet easy to understand platform for automating and simplifying the
deployment of containerized applications. The aim of OpenShift is to provide a
reliable and secure Kubernetes environment that provides users with a streamlined
web interface and command-line tool used for deploying, scaling, and monitoring
applications running in Kubernetes. Furthermore, OpenShift is the second of the
major cloud providers currently supported by the Ansible Container project
(Kubernetes and OpenShift).

In this chapter we will cover the following topics:

What is OpenShift?
Installing Minishift locally

Deploying containers from the web interface
OpenShift web interface tips
An introduction to the OpenShift CLI
OpenShift and Ansible Container

What is OpenShift?
OpenShift is a suite of products available from Red Hat for building a production-
ready, reliable, and secure Kubernetes platform. Using OpenShift, developers have a
tremendous amount of freedom when deploying containerized applications using the
OpenShift API, or accessing the Kubernetes API to fine-tune functionality and
features. Since OpenShift uses the same underlying container runtime environments,
Docker containers can be developed locally and deployed to OpenShift, which
leverages all of the Kubernetes primitives, such as namespaces, pods, and
deployments, to expose services to the outside world. At the time of writing, Red Hat
offers the OpenShift platform with the following configuration options:

OpenShift Origin: A fully free and open source version of OpenShift that is
community-supported. OpenShift Origin can be deployed locally using a project
known as Minishift.
OpenShift Online: OpenShift Online is a fully hosted public cloud offering
from Red Hat that allows individuals and organizations to take advantage of
OpenShift Origin without committing hardware resources to deploying
OpenShift on-premise. Users can sign up for OpenShift online free-tier
accounts that allow for application deployments up to 1 gigabyte of RAM, and
two vCPUs.
OpenShift Dedicated/Container Platform: OpenShift Dedicated and the
OpenShift Container Platform provide robust and scalable deployments of
OpenShift that are managed and supported by Red Hat either on-premises or
through public cloud providers such as Google Cloud, Azure, or AWS.

Throughout the course of this chapter, and going forward into the next chapters, we
will be using the fully free and open source OpenShift Origin to deploy a local
Minishift cluster. Unlike the previous chapter, the free-tier version of OpenShift is
unfortunately too limited to cover the breadth of examples this chapter is going to
cover. In an effort to fully demonstrate the capabilities of OpenShift, I have opted to
walk the user through a local installation of Minishift that is only limited by the
hardware running on your local workstation. If you have been tracking with us thus
far, Minishift is not much more complicated to set up on VirtualBox than the local
Vagrant lab environment we have been using. However, if you want to use the free
tier of OpenShift Online, most of these examples can replicated there, albeit in a
more limited way than running Minishift in your local environment.

Installing Minishift locally
Minishift is a local OpenShift cluster that can be downloaded and run on your local
PC to function as a development environment. The primary use case for Minishift is
to provide a sandbox that gives developers a functional development environment
that can be launched on your laptop. Minishift is also fully compatible with the
OpenShift Client (OC) CLI that is used to work with OpenShift clusters using a
command-line interface. In this portion of the chapter, we will learn how to install
Minishift and the OC in order to get it running in your local environment. Before
proceeding, you need to have VirtualBox installed on your PC; it will function as a
hypervisor for launching the Minishift VM. For the purposes of this demonstration,
we will be using Minishift version 1.7.0. Since the time of writing, newer versions of
Minishift will have undoubtedly been released. To have the best experience working
with Minishift, I would suggest you download the 1.7.0 release, although newer
releases will most likely work just as well.

Furthermore, Minishift and the OC are available cross-platform on Windows, Linux,
and macOS. This example is going to demonstrate downloading and installing
Minishift on Linux. For more information about installing Minishift on other
platforms, I have provided the following link: https://docs.openshift.org/latest/minish
ift/getting-started/installing.html.

https://docs.openshift.org/latest/minishift/getting-started/installing.html

Installing the Minishift binaries
The proceeding steps should be executed on your local workstation (not the Vagrant
lab VM) to install Minishift locally:

1. Download the Minishift binary: The Minishift 1.7.0 binary can be
downloaded from the following GitHub URL for all platforms (https://github.co
m/minishift/minishift/releases/tag/v1.7.0). You may download this binary using
a web browser, or by using wget as in this example:

aric@local:~/minishift$ wget https://github.com/minishift/minishift/releases/download/v1.7.0/minishift-1.7.0-linux-amd64.tgz
--2017-10-09 19:41:08-- https://github.com/minishift/minishift/releases/download/v1.7.0/minishift-1.7.0-linux-amd64.tgz
Resolving github.com (github.com)... 192.30.253.113, 192.30.253.112
Connecting to github.com (github.com)|192.30.253.113|:443... connected.
 'minishift-1.7.0-linux-amd64.tgz' saved [3980931/3980931]

2. Unpack the Minishift archive: Minishift comes packaged in an archive format
compatible with your operating system. For Linux and OSX, this is a zipped
tarball. For Windows, the format is a zipped archive:

aric@local:~/Development/minishift$ tar -xvf minishift-1.7.0-linux-amd64.tgz
minishift-1.7.0-linux-amd64/
minishift-1.7.0-linux-amd64/LICENSE
minishift-1.7.0-linux-amd64/README.adoc
minishift-1.7.0-linux-amd64/minishift

3. Copy the Minishift binary to your executable path: Copying the Minishift
binary to your local executable path will ensure the minishift command can be
executed from your command line in any context. In Linux, a common path
location is /usr/local/bin:

aric@local:~minishift/minishift-1.7.0-linux-amd64$ sudo cp minishift /usr/local/bin

You may need to check the permissions on the binary to ensure they are
set to executable, for example, chmod +x /usr/local/bin/minishift.

4. Validate the installation: Executing the minishift version command should
return the relevant Minishift version details, in this case, 1.7.0:

aric@local:~minishift$ minishift version
minishift v1.7.0+1549135

https://github.com/minishift/minishift/releases/tag/v1.7.0

5. Download the OC binary: The OC can be downloaded for Windows, macOS,
or Linux at the following URL: https://mirror.openshift.com/pub/openshift-v3/cli
ents/3.6.173.0.5/. For this demonstration, we will be using version 3.6 of the OC
client. Similar to MiniShift, newer versions might have been released since the
time of writing. For maximum compatibility with the examples, I suggest you
use version 3.6:

aric@local:~/minishift$ wget https://mirror.openshift.com/pub/openshift-v3/clients/3.6.173.0.5/linux/oc.tar.gz
--2017-10-09 20:03:57-- https://mirror.openshift.com/pub/openshift-v3/clients/3.6.173.0.5/linux/oc.tar.gz
Resolving mirror.openshift.com (mirror.openshift.com)... 54.173.18.88, 54.172.163.83, 54.172.173.155
'oc.tar.gz' saved [36147137/36147137]

6. Extract the OC client archive: After extracting this archive, a single
binary, oc, will be extracted. This is the executable binary for the OC:

aric@local:~/minishift$ tar -xvf oc.tar.gz
oc

7. Copy the OC to your executable path: Similar to the Minishift installation,
we will copy the OC binary to an executable path location:

aric@local~/minishift$ sudo cp oc /usr/local/bin

8. Validate installation: Execute the oc version command to ensure the OC has
been installed successfully and to return the relevant version details:

aric@local:~/minishift$ oc version
oc v3.6.173.0.5

9. Start the Minishift cluster: Now that Minishift and the OC are installed, we
start the Minishift cluster using the minishift start command. By default,
Minishift will start by expecting to use the KVM hypervisor and approximately
2 GB of memory. We are going to modify this slightly to use the VirtualBox
hypervisor, 8 GB of RAM, and 50 GB of storage. Once the Minishift cluster has
launched, it will return a URL you can use to access the OpenShift console:

aric@local:~$ minishift start --vm-driver=virtualbox --disk-size=50GB --memory=8GB
-- Starting local OpenShift cluster using 'virtualbox' hypervisor ...
-- Minishift VM will be configured with ...
 Memory: 8 GB
 vCPUs : 2
 Disk size: 50 GB

 Downloading ISO 'https://github.com/minishift/minishift-b2d-iso/releases/download/v1.2.0/minishift-b2d.iso'
 40.00 MiB / 40.00 MiB [===] 100.00% 0s
-- Starting Minishift VM OK
-- Checking for IP address ... OK
-- Checking if external host is reachable from the Minishift VM ...
 Pinging 8.8.8.8 ... OK

https://mirror.openshift.com/pub/openshift-v3/clients/3.6.173.0.5/

-- Checking HTTP connectivity from the VM ...
 Retrieving http://minishift.io/index.html ... OK
-- Checking if persistent storage volume is mounted ... OK
-- Checking available disk space ... 0% used OK
-- Downloading OpenShift binary 'oc' version 'v3.6.0'
 34.72 MiB / 34.72 MiB [===] 100.00% 0s-- Downloading OpenShift v3.6.0 checksums ...
-- OpenShift cluster will be configured with ...
 Version: v3.6.0
-- Checking `oc` support for startup flags ...
 host-config-dir ... OK
 host-data-dir ... OK
 host-pv-dir ... OK
 host-volumes-dir ... OK
 routing-suffix ... OK
Starting OpenShift using openshift/origin:v3.6.0 ...
Pulling image openshift/origin:v3.6.0
Pulled 1/4 layers, 26% complete
Pulled 2/4 layers, 71% complete
Pulled 3/4 layers, 90% complete
Pulled 4/4 layers, 100% complete
Extracting
Image pull complete
OpenShift server started.

The server is accessible via web console at:
 https://192.168.99.100:8443

You are logged in as:
 User: developer
 Password: <any value>

To login as administrator:
 oc login -u system:admin

If you do not have enough resources to allocate 8 GB of RAM to the
Minishift deployment, most of these examples can be run using the
default 2 GB of RAM.

10. Relax the default security permissions: On the backend, OpenShift is a highly
secured Kubernetes cluster that does not allow containers to run a local root
user. Before we dive into our new Minishift installation, we need to first relax
the default security context constraints so that we can run any Docker image.
Since this is a development environment, this will give us more freedom to
explore the platform and run different workloads. In order to do this, we will
use the OC to log in as the system administrator. From there, we can use the oc
adm command to add the anyuid security context constraint to all authenticated
OpenShift users:

aric@local:~/minishift$ oc login -u system:admin
Logged into "https://192.168.99.100:8443" as "system:admin" using existing credentials.

You have access to the following projects and can switch between them with 'oc project <projectname>':

 default

 kube-public
 kube-system
 * myproject
 openshift
 openshift-infra

Using project "myproject".

aric@local:~minishift$ oc adm policy add-scc-to-group anyuid system:authenticated

It is always a best practice to not modify the OpenShift security context
constraints in a production deployment. Container images should
always be running as their own user inside of a Docker container. The
unfortunate truth is that many developers use the default root user to
build and deploy applications. We are relaxing the security permissions
just so we can explore the platform more freely without the limitation of
only running containers built and run using a dedicated user.

When you have finished working in the Minishift environment, make sure you stop
the Minishift VM using the minishift stop command, as shown in the following
snippet. Unlike destroying your local Vagrant lab, the Minishift instance will retain
running deployments and service artifacts the next time the VM is started:

aric@local:~/minishift$ minishift stop
Stopping local OpenShift cluster...
Cluster stopped.

Deploying containers using the
web interface
As you may have noticed, when the minishift start command completed, it provided
an IP address that you can use to access the web user interface. One of the biggest
benefits of using OpenShift over standard Kubernetes is that OpenShift exposes
almost all of Kubernetes' core functionality through an intuitive web interface. The
OpenShift console works in a similar way to other cloud or service dashboards you
have used in the past. At a glance, you can see which deployments are running,
triggered alarms caused by failed pods, or even new deployments that other users
have triggered in the project. To access the web interface, simply copy and paste the
IP address in the output of the minishift start command in any modern web browser
installed on your local machine. You may then have to accept the self-signed SSL
certificate that comes with Minishift by default, after which you will be prompted
with a login screen similar to the following screenshot:

Figure 1: OpenShift login page

The default credentials to access Minishift are the username developer and any
password you want. It is not important to remember the password you enter, as each
time you authenticate as the developer user, you can simply supply any password.
Upon successfully logging in, you will be asked to access a project. The default
project that Minishift provides for you is called My Project. For the sake of
simplicity, we will use this project for the following lab examples, which you can
follow along with.

The web interface is laid out by two primary navigation bars along the left and top of
the screen, while the central portion of the interface is reserved for showing details
about the environment you are currently accessing, modifying settings, or deleting
resources:

Figure 2: Initial OpenShift project

Now that you are familiar with the OpenShift user interface, let's create a
deployment and see what it looks like when pods are running in the cluster. The
functionality for creating new pods and deployments can be found towards the top of
the screen by selecting the Add to Project drop-down box:

Figure 3: Adding services to your project

We can create a new deployment in a variety of different ways. The default options
OpenShift provides is to browse a catalog of pre-built images and services, deploy an
image based on a container registry URL, or importing a YAML or JSON manifest
that describes the services we are building. Let's deploy one of the catalog services
found in the web interface. Selecting the Browse Catalog option from the Add to
Project drop-down will open a screen for the OpenShift catalog. Any of the
OpenShift examples found in the catalog will run well in OpenShift, but for
demonstration purposes let's deploy the framework for a simple Python application.

To do this, click on the catalog option for Python, then the Python 3.5 Source Code
Application:

Figure 4: Creating a simple Python service from the OpenShift catalog

On the next screen, OpenShift will prompt you for options to deploy your application
with, namely a source code repository, which contains Python source code, and an
application name. You can choose any name for the Python application. For this
example, I will name mine oc-test-deployment. Since we do not have a pre-developed
Python application, we can click on the Try It link below the Git Repository URL
textbox to use the demo application provided by OpenShift:

Figure 5: Modifying the attributes of the Python application

If you are a Python developer and have a Django application you
would like to deploy instead, feel free to use another Git repository in
place of the demo one!

Clicking on the blue Create button will initiate the deployment and launch the
container. Depending on the specifications of your workstation, it might take a while
for the service to fully deploy. While it is deploying, you can watch the various
stages of the deployment by clicking through the pages of the user interface. For
example, clicking on Pods in the sidebar will show pods as they are created and go
through the various stages to become available in Kubernetes. OpenShift shows
circular graphs that describe the state of the resources that are running. Pods that are
healthy, responding to requests, and running as intended are shown by blue circles.
Other Kubernetes resources that might not be running as intended, throwing errors or
warnings instead, are represented by yellow or red circles. This provides an intuitive
way to understand how the services are running at a glance:

Figure 6: A successfully created test Python application

Once the service has been deployed fully, OpenShift will provide a link to access the
service. In OpenShift vernacular, this is known as a route. Routes function in a
similar way to exposed services in Kubernetes, with the exception that they leverage
nip.io DNS forwarding by default. You might notice that the service route pointing
to the service we just created has the fully qualified domain
name servicename.ipaddress.nip.io. This provides the user with routable access to
reach the Kubernetes cluster without the hassle of configuring external load
balancers or service proxies. Accessing that URL in a web browser should open a
page that looks similar to the following:

Figure 7: Python application test page

This is the default Python-Django index page for this simple demo application. If we
click back on the OpenShift console, we can go into more detail regarding the pods
that are running in this deployment. Similar to kubectl, OpenShift can give us details
about the deployment, including running pods, log events, and even allow us to
customize the deployment from the web user interface. To view these details, select
Applications | Deployments and click on the deployment you wish to look up. In this
case, we will look at the details of the only running deployment we have, oc-test-
deployment:

Figure 8: OpenShift deployments page

From this page, we can view the history of containers, modify the configuration,
check or change environment variables, and view the most recent event logs from the
deployment. In the upper-right corner of the screen, the Actions drop-down box
gives us even more options for adding storage, autoscaling rules, and even modifying
the Kubernetes manifest used to deploy this service:

Figure 9: Managing OpenShift applications and deployments

OpenShift provides a great interface for tweaking manifests and
experimenting with changes in real time. The OpenShift user interface
will give you feedback on changes you make and let you know when
there are potential problems.

Information related to the running pods within the deployment can also be accessed
through the web user interface. From the Applications menu, select Pods and click
on the pod you wish to view information for. In this case, we have a single running
pod, oc-test-deployment-1-l18l8:

Figure 10: Viewing pods within application deployments

On this page, we can view almost any pertinent detail regarding the pods that are
running within any of our deployments. From this screen you can view environment
configurations, access container logs in real time, and even log into containers
through a fully functional terminal emulator:

Figure 11: Viewing pod-specific details in OpenShift

Similar to the Deployments menu, we can select the Actions drop-down menu from
this screen as well to modify container settings in the YAML editor, or mount
storage volumes inside the container.

Finally, using the OpenShift web interface, we can delete deployments and pods.
Since OpenShift is essentially a layer that functions on top of Kubernetes, we need to
apply many of the same concepts. In order to delete pods, we must first delete the
deployment in order to set a new desired state within the Kubernetes API. Within
OpenShift this can be accomplished by selecting Applications | Deployments | Your
Deployment (oc-test-deployment). From the Actions drop-down menu, select Delete
Deployment. OpenShift will prompt you to make sure this is something you really
want to do; click Delete to finalize the operation:

Figure 12: Deleting deployments in OpenShift

In a similar fashion, you will have to go to Applications | Service and

then Applications | Routes in order to delete the services and routes that OpenShift
created for the service. Once this is complete, the screen produced by clicking on the
Overview button in the left menu bar will once again be blank, showing that nothing
is currently running in the OpenShift cluster.

OpenShift web user interface tips
The preceding example walked the user through some of the major OpenShift and
Kubernetes workflow steps for creating a new deployment, managing the
deployment, and ultimately deleting the deployment and other resources. OpenShift
exposes far more functionality through the web user interface than this book has time
to delve into; I suggest you take time to explore the web interface for yourself to
truly become familiar with the features that OpenShift provides. For the sake of not
being monotonous, I have provided a few key features to keep your eyes open for in
the OpenShift web interface:

Overview dashboard: The Overview dashboard can be accessed from the
navigation bar on the left side of the screen. The overview dashboard shows
information about the most recent activity inside the OpenShift cluster. This is
useful for accessing the latest deployments and having single-click access to
various cluster resources.
Applications menu: The Applications menu is a single location to view or
modify any deployments or pods that are running across the OpenShift cluster.
From Applications, you can access information related to deployments, pods,
stateful sets, services, and routes. Think of the Applications menu as a single
stop for anything related to the configuration of containers running within the
cluster.
Builds dashboard: The Builds dashboard features a light continuous
integration continuous delivery (CICD) workflow for Kubernetes. This is
useful for triggering image builds, establishing Jenkins-enabled workflow
pipelines, and building automation into OpenShift projects.
Resources menu: The Resources menu is used primarily to define quotas and
user account privileges used to manage access and limits for users and projects
within the OpenShift cluster. Also defined here is a lightweight secret storage
interface, as well as config map options to define the configurations for
containers within OpenShift projects.
Storage dashboard: The Storage dashboard is used to display information
regarding persistent volume claims used by containers and deployments on the
underlying hardware or VM OpenShift is running on. Volume claims can be
created or deleted from this portion of the web interface, as well as managed or
modified depending on new or changing requirements.
Monitoring dashboard: Finally, the Monitoring dashboard provides the user

with details about running pods, triggered events, as well as the historical
context regarding the changes in the environment leading up to the events
listed. Monitoring can be easily tied to build a pipeline or even used to report on
configured service health checks.

Leveraging the robust suite of tools provided by OpenShift helps to abstract and
simplify many of the Kubernetes concepts we learned about in Chapter 5, Containers
at Scale with Kubernetes.

An introduction to the OpenShift
CLI
The second primary way that users can interact with the OpenShift platform is
through the OpenShift command-line interface, OC (short for OpenShift Client). The
OpenShift command-line interface uses many of the same concepts we explored in Ch
apter 5, Containers at Scale with Kubernetes, using the kubectl command line
interface for managing pods, deployments, and exposing services. However, the
OpenShift client also supports many of the features that are specific to OpenShift,
such as creating routes to expose deployments and working with integrated security
context constraints for access control. Throughout this section, we will look at how
to use the OC to accomplish some of the basic workflow concepts we explored
through the web user interface, such as creating deployments, creating routes, and
working with running containers. Finally, we will look at some tips for diving deeper
with the OC and some of the more advanced features that are available. Before
proceeding, ensure the OC is installed (see the beginning of this chapter for
installation details):

1. Logging into OpenShift: Similar to the web user interface, we can use the CLI
to log into our local OpenShift cluster using the oc login command. The basic
syntax for this command is oc login URL:PORT, where the user replaces the URL
and port with the URL and port number of the OpenShift environment they are
logging into. Upon successful login, the prompt will return Login Successful and
grant you access to your default project. In this case, we will log into our local
environment at 192.168.99.100, using the developer username and anything as the
password:

aric@local:~$ oc login https://192.168.99.100:8443
Authentication required for https://192.168.99.100:8443 (openshift)
Username: developer
Password:
Login successful.

You have one project on this server: "myproject"

Using project "myproject".

2. Check status using OC status: The oc status command is used in a similar
way to the Overview dashboard in the web user interface to show critical

services deployed in the environment, running pods, or anything in the cluster
that might be triggering an alarm. Simply typing oc status will not return
anything, since we deleted the deployments, routes, and services we created
through the web user interface:

aric@local:~$ oc status
In project My Project (myproject) on server https://192.168.99.100:8443

You have no services, deployment configs, or build configs.
Run 'oc new-app' to create an application.

3. Create an OpenShift deployment: Deployments and other cluster resources
can easily be created using the oc create command. Similar to kubectl, you can
create deployments by using the oc create deployment command and referencing
the name of the container image you wish to use. It should be noted that
deployment names are sensitive to using special characters such as underscores
and dashes. For the purposes of simplicity, let's re-create our example from Chap
ter 5, Containers at Scale with Kubernetes, and create a simple NGINX pod
using the official NGINX Docker image using the oc create command and
specifying the object as deployment:

aric@local:~$ oc create deployment webserver --image=nginx
deployment "webserver" created

Another similarity to kubectl is that OpenShift supports creating
deployments based on Kubernetes manifest files using the -f option.

4. List pods and view the OC status: Now that we have a deployment and pod
running in the OpenShift cluster, we can view running pods using the oc get
pods command, and check the output of the oc status command to see an
overview of the running pods in our cluster:

aric@local:~/Development/minishift$ oc get pods
NAME READY STATUS RESTARTS AGE
webserver-1266346274-m2jvd 1/1 Running 0 9m

aric@local:~/Development/minishift$ oc status
In project My Project (myproject) on server https://192.168.99.100:8443

pod/webserver-1266346274-m2jvd runs nginx

You have no services, deployment configs, or build configs.
Run 'oc new-app' to create an application.

5. View verbose output using oc describe: Aside from simply listing objects that
are created and available in the OpenShift cluster, verbose details about specific

objects can be viewed using the oc describe command. Similar to kubectl
describe, oc describe allows us to view pertinent details about almost any object
defined in the cluster. For example, we can use the oc describe deployment
command to view verbose details about the web server deployment we just
created:

aric@local:~/Development/minishift$ oc describe deployment webserver
Name: webserver
Namespace: myproject
CreationTimestamp: Sun, 15 Oct 2017 15:17:30 -0400
Labels: app=webserver
Annotations: deployment.kubernetes.io/revision=1
Selector: app=webserver
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
 Labels: app=webserver
 Containers:
 nginx:
 Image: nginx
 Port:
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
OldReplicaSets: <none>
NewReplicaSet: webserver-1266346274 (1/1 replicas created)
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 11m 11m 1 deployment-controller Normal ScalingReplicaSet Scaled up replica set webserver-1266346274 to 1

6. Create an OpenShift service: In order to expose pods that are running in the
OpenShift cluster, we must first create a service. You may remember from Chapt
er 5, Containers at Scale with Kubernetes, that Kubernetes services are
abstractions that work in a similar way to internal load balancers inside of the
Kubernetes cluster. Essentially, we are creating a single internal (or external) IP
address from which traffic from other pods or services can access any number
of pods matched to a given selector. In OpenShift, we will create a service
simply called webserver that will use an internally routed cluster IP address to
intercept web server traffic and forward it to the web server pod we created as
apart of our deployment. By naming our service webserver, it will by default use
a selector criteria that matches the label app=webserver. This label was created by
default when we created the deployment in OpenShift. Any number of labels or
selector criteria can be created, which allows Kubernetes and OpenShift to

select pods to load-balance traffic against. For the purposes of this example, we
will use an internal cluster IP and map the selector criteria based on naming our
service with the same name we named our deployment. Finally, we will select
the ports we want to forward from our service externally, to the ports the
service is listening on inside the container. To keep things simple, we will
forward traffic destined to port 80 to the pod port 80:

aric@local:~$ oc create service clusterip webserver --tcp=80:80
service "webserver" created

We can check the service configuration using the oc get services
command. We can see that our service was created with an internally
routed cluster address of 172.30.136.131. Yours will most likely differ as
these addresses are pulled from the CNI subnet within Kubernetes:

aric@lemur:~$ oc get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
webserver 172.30.136.131 <none> 80/TCP 18m

7. Create a route to enable access: Finally, we can create a route to access our
service using the oc expose command, followed by the service name we are
exposing (webserver). To make this routable from our workstation, OpenShift
uses the nip.io DNS forwarding based on the IP address of the VM. We can
enable this by specifying the --hostname flag to be any name we want the service
to be accessed by, followed by the IP address of the VM, concluding with the
suffix nip.io:

aric@local:~$ oc expose service webserver --hostname="awesomewebapp.192.168.99.100.nip.io"
route "webserver" exposed

Executing the oc get routes command will display the route we just
created:

aric@local:~$ oc get routes
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
webserver awesomewebapp.192.168.99.100.nip.io webserver 80-80 None

To ensure the route is working, we can use a web browser and navigate to the
forwarded DNS address we assigned to the route. If everything is working, we will
be able to see the NGINX welcome screen:

Feel free to continue on deploying more complex containerized applications using
your local Minishift cluster. When you are finished, make sure you stop the
Minishift instance using the minishift stop command.

OpenShift and Ansible Container
As we have seen throughout this chapter, OpenShift is a rich platform that provides
valuable abstractions on top of Kubernetes. As such, Ansible Container provides
ample support for deploying and running containerized application life cycles
through OpenShift. Since OpenShift and Ansible Container are both products of the
same parent company, Red Hat, it is apparent that OpenShift and Ansible Container
will have excellent compatibility. So far, we have primarily discussed building
containers using Ansible Container and running them locally on a Docker host.

Now that we have a firm foundation from which to understand Kubernetes and
OpenShift, we can combine the knowledge we have gained so far with Ansible
Container to learn how to use Ansible Container as a true end-to-end production-
ready deployment and life cycle management solution. Things are about to get
interesting!

References
OpenShift project: https://www.openshift.com/
MiniShift project: https://www.openshift.org/minishift/
Installing MiniShift: https://docs.openshift.org/latest/minishift/getting-started
/installing.html

https://www.openshift.com/
https://www.openshift.org/minishift/
https://docs.openshift.org/latest/minishift/getting-started/installing.html

Summary
Container orchestration platforms such as Kubernetes and OpenShift are rapidly
being adopted by organizations to ease the complex process of scaling out
applications, deploying updates, and ensuring maximum reliability. With the
increasing popularity of these platforms, it is even more important that we
understand the implications of adopting these technologies in order to support the
organizational and cultural shift of mentality these technologies bring to the table.

OpenShift is a platform built on top of the Red Hat distribution of Kubernetes that
aims to provide the best experience for working with Kubernetes. At the beginning
of the chapter we learned what OpenShift is, and the various capabilities that Red
Hat is working to deliver with the OpenShift platform. Next, we learned how to
install the Minishift project, which is a developer-oriented solution for deploying
OpenShift locally.

Once we had Minishift installed and working locally, we learned how to run pods,
deployments, services, and routes from the Minishift web user interface. Finally, we
learned about the OpenShift command-line interface, OC, and how it functions in a
similar capacity to kubectl to provide CLI access to OpenShift and the innovative
functionality that OpenShift builds on top of Kubernetes.

In the next chapter, my aim is to tie our knowledge of OpenShift and Kubernetes
back into Ansible Container to learn about the final step in the Ansible Container
workflow, deployment. The deployment functionality sets Ansible Container apart as
a truly robust tool for not only building and testing container images, but also for
deploying them all the way through to containerized production environments
running on Kubernetes and OpenShift.

Deploying Your First Project
Throughout this book so far, we have looked at the various ways we can run builds
and containers using the Ansible Container workflow. We learned about running
containers in a local Docker daemon, pushing built containers to a remote Docker
image repository, managing container images, and even running containers at scale
using container orchestration tools such as Kubernetes and OpenShift. We have
almost come full circle, demonstrating the rich capabilities of Ansible Container and
how it can be leveraged as a fully functional tool for building, running, and testing
container images throughout an application's life cycle.

However, there is one aspect of the Ansible Container workflow we have not yet
looked at in depth. In previous chapters, we alluded to the deploy command, and how
deploy can be leveraged to run containers in production environments, or on remote
systems. Now that we have covered a lot of the basics of how Docker, Kubernetes,
and OpenShift work, it is time we turned our attention to the final Ansible Container
workflow component: ansible-container deploy. It is my goal that, by reading through
this chapter and following along with the examples, it will become evident to the
reader that Ansible Container is more than a tool used to build and run container
images locally. It is a robust tool for complex containerized application deployments
across a variety of popular container platforms.

Throughout this chapter, we will cover the following topics:

Overview of ansible-container deploy
Deploying containers to Kubernetes
Deploying containers to OpenShift

Overview of ansible-container
deploy
The ansible-container deploy command is the component of the Ansible Container
workflow that is responsible for, you guessed it, deploying containers to remote
container service engines. At the time of writing, these engines include Docker,
Kubernetes, and OpenShift. By leveraging configuration in the container.yml file,
Ansible Container has the ability to authenticate to these services and leverage API
calls to start containers according to the configuration specified by the user.
Deployment with Ansible Container is a two-step process. First, Ansible Container
pushes the built container images to a remote image registry, similar to Docker Hub
or Quay.io. This enables the remote container runtime service to have access to the
containers during the deployment process. Second, Ansible Container generates
deployment playbooks that can be executed locally and performs the deployment
using the ansible-container run command. Working through the deploy process can
be a little confusing at first. The following flowchart demonstrates the deployment
process after first building and running a project locally:

Figure 1: ansible-container deploy workflow

We are going to start out by looking at examples using our simple NGINX container
project. Later, we are going to look at deploying examples to Kubernetes and
OpenShift using the MariaDB project we built in Chapter 4, What's in a Role?

ansible-container deploy
Before we start looking at ansible-container deploy, let's first rebuild the NGINX
project we created earlier. In your Ubuntu Vagrant lab VM, navigate to the
/vagrant/AnsibleContainer/nginx_demo directory; or, if you built this example yourself in
another directory, navigate to it and run the ansible-container build command. This
will make sure that the lab VM has a fresh build of the project:

ubuntu@node01:/vagrant/AnsibleContainer/nginx_demo$ ansible-container build

Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=nginx_demo
Building service... project=nginx_demo service=webserver

PLAY [webserver] ***

TASK [Gathering Facts] ***
ok: [webserver]

TASK [ansible.nginx-container : Install epel-release] **************************
changed: [webserver]

TASK [ansible.nginx-container : Install nginx] *********************************
changed: [webserver] => (item=[u'nginx', u'rsync'])

TASK [ansible.nginx-container : Install dumb init] *****************************
changed: [webserver]

TASK [ansible.nginx-container : Update nginx user] *****************************
changed: [webserver]

TASK [ansible.nginx-container : Put nginx config] ******************************
changed: [webserver]

You can validate that the project has successfully been built and the container
images are cached by running the docker images command:

ubuntu@node01:/vagrant/AnsibleContainer/nginx_demo$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
aric49/nginx_demo-webserver 20171022202358 09f7b7cc3e3e 10 minutes ago 268MB

Now that we have the container cached locally, we can use the ansible-container
deploy command to simulate project deployment. Without providing any arguments
about what engine we will deploy our container to, ansible-container deploy will
generate playbooks that can be used to deploy our project onto a local or remote host

that is running Docker. It will also push our project to the registries configured in the
container.yml file located in the root directory of our project. Due to the fact that
deploy leverages much of the same functionality as ansible-container push, we will
provide deploy with the same flags we would provide the push command concerning
our container image registry. In this case, we will tell it to push to our Docker Hub
registry, as we will provide the username for our account and any tags we want to
use to differentiate this version of the container from previous versions. For the
purposes of demonstration, we will use the deploy tag:

ubuntu@node01:/vagrant/AnsibleContainer/nginx_demo$ ansible-container deploy --push-to docker --username aric49 --tag deploy

Enter password for aric49 at Docker Hub:
Parsing conductor CLI args.
Engine integration loaded. Preparing push. engine=Docker™ daemon
Tagging aric49/nginx_demo-webserver
Pushing aric49/nginx_demo-webserver:deploy...
The push refers to a repository [docker.io/aric49/nginx_demo-webserver]
Preparing
Pushing
Pushed
Pushing
Pushed
20171022202358: digest: sha256:74948d56b3289009a6329c0c2035e3217d0e83479dfaee3da3d8ae6444b04165 size: 741
Conductor terminated. Cleaning up. command_rc=0 conductor_id=4c7c43d090654e62869185458434941cb7718e257eeed80f03e846d460eae24f save_contain
er=False
Parsing conductor CLI args.
Engine integration loaded. Preparing deploy. engine=Docker™ daemon
Verifying image for webserver
Conductor terminated. Cleaning up. command_rc=0 conductor_id=acf8f1ec2adc821c33b2a341bc1404346b6d41f6ef18de5fb8dce7f98ddaea3f save_container=False

The deploy process, in a similar fashion to the push process, will prompt you for the
password for your Docker Hub account. Upon successful authentication, it will push
your container image layers to the container image registry. So far, this might look
exactly identical to the push process. However, you may notice that, in the root
directory of your project, a new directory called ansible-deployment now exists.
Within this directory, you will find a single Ansible playbook that is named
identically to that of your project, nginx_demo. Here is a sample of what this playbook
looks like:

 - name: Deploy nginx_demo
 hosts: localhost
 gather_facts: false
 tasks:
 - docker_service:
 definition:
 services: &id001
 webserver:
 image: docker.io/aric49/nginx_demo-webserver:deploy
 command: [/usr/bin/dumb-init, nginx, -c, /etc/nginx/nginx.conf]
 ports:
 - 80:8000

 user: nginx
 version: '2'
 state: present
 project_name: nginx_demo
 tags:
 - start
 - docker_service:
 definition:
 services: *id001
 version: '2'
 state: present
 project_name: nginx_demo
 restarted: true
 tags:
 - restart
TRUNCATED

You may have to ensure the image line reflects the image path in this
format, docker.io/username/containername:tag, as some versions of Ansible
Container supply the wrong path as input in the playbook. If this is the
case, simply modify the playbook in a text editor.

The deploy playbook works by making calls to the docker_service module running on
the target hosts. By default, the container uses localhost as the target host for
deployment. However, you can easily provide a standard Ansible inventory file to
have this project run on remote hosts. The deploy playbook supports full Docker life
cycle application management, such as starting the container, restarting, and
ultimately destroying the project by providing a series of playbook tags to
conditionally execute the desired functionality. You may notice that the playbook
inherits many of the settings we configured in the container.yml file. Ansible
Container uses these settings so that the playbooks can be executed independently of
the project itself.

Since we have already looked at using ansible-container run to run our containers
locally throughout this book, let's try executing the playbook directly to start the
container. This mimics the same process used if you want to manually run a
deployment outside of the Ansible Container workflow. This can be accomplished
by using the ansible-playbook command with the start tag to deploy a project on our
localhost. You may notice that this process is exactly the same process as running
the ansible-container run command. It is important to note that any of the core
Ansible Container functionality (run, restart, stop, and destroy) can be executed
independently of Ansible Container by running playbooks directly and supplying the
appropriate tag according to the functionality you are trying to achieve:

ubuntu@node01:$ ansible-playbook nginx_demo.yml --tags start

[WARNING]: Host file not found: /etc/ansible/hosts

 [WARNING]: provided hosts list is empty, only localhost is available

PLAY [Deploy nginx_demo] **

TASK [docker_service] **
changed: [localhost]

PLAY RECAP *************************************
localhost : ok=1 changed=1 unreachable=0 failed=0

Once the playbook execution has completed, PLAY RECAP will show that one task has
executed a change on your localhost. You can execute the docker ps -a command to
confirm the project has successfully been deployed:

ubuntu@node01:$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4b4b3b032c61 aric49/nginx_demo-webserver:deploy "/usr/bin/dumb-ini..." 5 minutes ago Up 5 minutes 0.0.0.0:80->8000/tcp nginxdemo_webserver_1

In a similar way, we can run this playbook again, passing in the --restart tag to
restart the container on the Docker host. After executing the playbook for a second
time, you should see that a single task has once more changed, indicating the
container has been restarted. This mimics the functionality that the ansible-container
restart command provides. The status column in docker ps -a will show that the
container has only been up for a handful of seconds after executing the restart:

ubuntu@node01:$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4b4b3b032c61 aric49/nginx_demo-webserver:deploy "/usr/bin/dumb-ini..." 7 minutes ago Up 2 seconds 0.0.0.0:80->8000/tcp nginxdemo_webserver_1

The stop tag can be passed into the ansible-playbook command to temporarily stop the
running container. Similar to restart, the docker ps -a output will show that the
container is in an exit status:

ubuntu@node01:$ ansible-playbook nginx_demo.yml --tags stop

[WARNING]: Host file not found: /etc/ansible/hosts

 [WARNING]: provided hosts list is empty, only localhost is available

PLAY [Deploy nginx_demo] *************************************

TASK [docker_service] **
changed: [localhost]

TRUNCATED

PLAY RECAP **
localhost: ok=4 changed=2 unreachable=0 failed=0

We can now check the status using docker ps -a command:

ubuntu@node01:$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4b4b3b032c61 aric49/nginx_demo-webserver:deploy "/usr/bin/dumb-ini..." 11 minutes ago Exited (0) 2 minutes ago nginxdemo_webserver_1

Finally, the project can be removed entirely from our Docker host by passing in the
destroy tag. Running this playbook tag will execute a few more steps in the playbook,
but will ultimately remove all traces of your project from the host:

ubuntu@node01:$ ansible-playbook nginx_demo.yml --tags destroy

[WARNING]: Host file not found: /etc/ansible/hosts

 [WARNING]: provided hosts list is empty, only localhost is available

PLAY [Deploy nginx_demo] *************************************

TASK [docker_service] **
changed: [localhost]

TASK [docker_image] **
ok: [localhost]

TASK [docker_image] **

TASK [docker_image] **
ok: [localhost]

TRUNCATED

PLAY RECAP **
localhost: ok=7 changed=2 unreachable=0 failed=0

Behind the scenes, when any of the core Ansible Container commands are executed,
they are essentially wrappers around the same playbook that gets generated as a part
of your project. The purpose of this portion of the chapter was to demonstrate to the
reader the overall flow of deploying projects using Ansible Container locally, and to
build upon these skills deeper in the lesson. Where deployment gets really interesting
is when using Kubernetes and OpenShift as the target deployment engines. Using the
Ansible Container workflow commands with the corresponding container platform
engine, we can manage containerized deployments directly using the Ansible
Container workflow commands instead of executing the playbooks directly.

Deploying containers to
Kubernetes
One of the many aspects that makes the Ansible Container workflow so flexible and
appealing to organizations and individuals looking to adopt Ansible as the native
support for remote deployments using Kubernetes and OpenShift. In this section, we
will look at using the ansible-container deploy command to deploy our containers to
our Google Cloud Kubernetes cluster we created in Chapter 5, Containers at Scale
with Kubernetes.

As we discussed in the previous section, running ansible-container deploy by itself
will, by default, push your container to any image registries you have configured in
your container.yml file and generate a new directory in the root of your project
called ansible-deployment. Inside of this directory, a single YAML playbook file
named after the project will be present. This playbook is used to deploy your
container to any Docker host, quite similar to the ansible-container run command. For
the purposes of this example, we are going to run ansible-container deploy using the
Kubernetes engine so we can leverage Ansible Container as a deployment tool for
Kubernetes, creating service definitions and deployment abstractions automatically.

In order to enable the Kubernetes to deploy functionality in Ansible Container, we
will add a couple of new parameters to the project container.yml file. Specifically, we
need to point our project to our Kubernetes authentication configuration file, and
define the namespace our container operates in within Kubernetes. For this example,
I will use our previously used MariaDB project, but with a few modifications to the
container.yml file to support Kubernetes. For reference, this project can be found in
the official Git repository for this book, in the Kubernetes/mariadb_demo_k8s directory.
Feel free to follow along, or modify the existing MariaDB project to support
Kubernetes. In the settings section, we will add the k8s_namespace and k8s_auth.

The Kubernetes namespace will contain the name of the namespace in our cluster we
want to deploy our project into, and the auth section will provide the path to our
Kubernetes authentication configuration file. The default location of the Kubernetes
authentication configuration is /home/user/.kube/config. If you are following along
using the Vagrant lab, Google Cloud SDK places this configuration file

at /home/ubuntu/.kube/config.

Before we can begin, though, we need to set up a default access token in order for
Ansible Container to access the Google Cloud API. We can do this by executing
the gcloud auth application-default login command. Executing this command will
provide you with a hyperlink you can use to allow permissions to the Google Cloud
API using your Google login credentials, similar to what we did in Chapter 5,
Containers at Scale with Kubernetes. The Google Cloud API will give you a token
you can enter at the command line that will generate an application default
credentials file, located at
/home/ubuntu/.config/gcloud/application_default_credentials.json:

ubuntu@node01:$ gcloud auth application-default login
Go to the following link in your browser:

 https://accounts.google.com/o/oauth2/TRUNCATED

Enter verification code: XXXXXXXXXXXXXXX

Credentials saved to file: [/home/ubuntu/.config/gcloud/application_default_credentials.json]

These credentials will be used by any library that requests access to any Google
Cloud resources, including Ansible Container.

The Google Container Engineer-specific steps are only required if you
are using a Google Cloud Kubernetes cluster. You can skip these step if
you are using a local Kubernetes environment such as Minikube.

Now that we have the proper permissions set in the Google Cloud API, we can
modify the container.yml file of our MariaDB project to support the Kubernetes
deployment engine:

version: "2"
settings:
 conductor_base: ubuntu:16.04
 project_name: mariadb-k8s
 roles_path:
 - ./roles/
 k8s_namespace:
 name: database
 k8s_auth:
 config_file: /home/ubuntu/.kube/config
services:
 mariadb-database:
 roles:
 - role: mariadb_role

registries:
 docker:
 url: https://index.docker.io/v1/
 namespace: username

You will notice the following changes we have made to support the Kubernetes
deployment:

project_name: For this example, we have added a field in the settings block
called project_name. Throughout this book, we have allowed our projects to take
the default name of the directory that it is built in. Kubernetes is limited as to
the characters it can use to define services and pods, so we want to ensure we
do not use illegal characters in our project name by overriding them in the
container.yml file.
k8s_namespace: This defines the Kubernetes namespace we will deploy our pods
into. Leaving this stanza blank will cause Ansible Container to use the default
namespace that we used in our NGINX deployment earlier in the chapter. In
this example, we will use a different namespace called database.
k8s_auth: This is where we specify the location of our Kubernetes authentication
configuration file. Within this file, Ansible Container is able to extract the IP
address of our API server, the access credentials to create resources in the
cluster, as well as the SSL certificates required to connect to Kubernetes.

Once these changes have been placed in your container.yml file, let's build the
project:

ubuntu@node01:$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=mariadb-k8s
Building service... project=mariadb-k8s service=mariadb-database

PLAY [mariadb-database] **

TASK [Gathering Facts] ***
ok: [mariadb-database]

TASK [mariadb_role : Install Base Packages] ************************************
changed: [mariadb-database] => (item=[u'ca-certificates', u'apt-utils'])

TASK [mariadb_role : Install dumb-init for Container Init System]

Once the project has finished building, we can use the ansible-container deploy
command, specifying the --engine flag to use k8s, and providing the details for the
Docker image registry we want to push to as configured in our container.yml file. For

the sake of separation, let's also tag the image version with kubernetes so we can keep
this version separate in our repository. Ansible Container will then push our image to
the Docker Hub repository and generate the deployment playbooks specific to
Kubernetes:

K8s is shorthand for Kubernetes since Kubernetes comprises the letter
K with 8 letters after it. This is commonly pronounced in the community
as Kay-Eights.

ubuntu@node01:$ ansible-container --engine k8s deploy --push-to docker --tag kubernetes
Parsing conductor CLI args.
Engine integration loaded. Preparing push. engine=K8s
Tagging aric49/mariadb-k8s-mariadb-database
Pushing aric49/mariadb-k8s-mariadb-database:kubernetes...
The push refers to a repository [docker.io/aric49/mariadb-k8s-mariadb-database]
Preparing
Waiting
Layer already exists
Pushing
Pushed
Pushing
Pushed
kubernetes: digest: sha256:563ec4593945b13b481c03ab7813bb64c0dc1b7a1d1ae8c4b61b744574df2926 size: 1569
Conductor terminated. Cleaning up. command_rc=0 conductor_id=27fd42d3920deb12f8c81802f151e95931315f516e04307a3a682bd9638fdf49 save_container=False
Parsing conductor CLI args.
Engine integration loaded. Preparing deploy. engine=K8s
Verifying image for mariadb-database
ansible-galaxy 2.5.0
 config file = /etc/ansible/ansible.cfg
 configured module search path = [u'/root/.ansible/plugins/modules', u'/usr/share/ansible/plugins/modules']
 ansible python module location = /usr/local/lib/python2.7/dist-packages/ansible
 executable location = /usr/local/bin/ansible-galaxy
 python version = 2.7.12 (default, Nov 19 2016, 06:48:10) [GCC 5.4.0 20160609]
Using /etc/ansible/ansible.cfg as config file
Opened /root/.ansible_galaxy
Processing role ansible.kubernetes-modules
Opened /root/.ansible_galaxy
- downloading role 'kubernetes-modules', owned by ansible
https://galaxy.ansible.com/api/v1/roles/?owner__username=ansible&name=kubernetes-modules
https://galaxy.ansible.com/api/v1/roles/16501/versions/?page_size=50
- downloading role from https://github.com/ansible/ansible-kubernetes-modules/archive/master.tar.gz
- extracting ansible.kubernetes-modules to /vagrant/Kubernetes/mariadb_demo_k8s/ansible-deployment/roles/ansible.kubernetes-modules
- ansible.kubernetes-modules (master) was installed successfully
Conductor terminated. Cleaning up. command_rc=0 conductor_id=d66eb0a142190022fee50de4e2560c11260bd69ec3cc634be2a389425e6bf477 save_container=False

Once this process has completed, you will notice that, similar to the last example, a
new directory has appeared in your project called ansible-deployment. Inside of this
directory, you will find a single playbook and a roles directory that is responsible for
performing the actual deployment of our service to Kubernetes. As with our previous
localhost example, this playbook is likewise divided up based on tags that control
starting, stopping, and restarting the service in our cluster. Since we have not yet
deployed our service, we can start the deployment using the ansible-container run

command with the --engine k8s flag to indicate a Kubernetes deployment. Assuming
we have configured everything correctly in the container.yml file, you should see a
successful playbook run, indicating the container has been deployed to the
Kubernetes cluster:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ ansible-container --engine k8s run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=k8s
Verifying service image service=mariadb-database
PLAY [Manage the lifecycle of mariadb-k8s on K8s] **

TASK [Create namespace database] ***
ok: [localhost]

TASK [Create service] **
ok: [localhost]

TASK [Create deployment, and scale replicas up] ***
changed: [localhost]

PLAY RECAP **
localhost: ok=3 changed=1 unreachable=0 failed=0

Using the kubectl get pods command from earlier, we can validate that our
Kubernetes pod has been deployed and is successfully running. Since we deployed
this particular pod in its own namespace, we need to use the --namespace flag to see
pods that are running in other namespaces:

ubuntu@node01:$ kubectl get pods --namespace database
NAME READY STATUS RESTARTS AGE
mariadb-database-1880651791-979zd 1/1 Running 0 3m

Using the ansible-container run command with the Kubernetes engine is a powerful
tool for creating cloud-native services that run on a Kubernetes cluster. Using
Ansible Container, you have the flexibility to choose how you want to deploy
applications, by executing the playbooks directly or automatically using the Ansible
Container workflow. If you wish to delete the current deployment from your
Kubernetes cluster, you can simply run the ansible-container --engine k8s destroy
command to completely remove the pods and deployment artifacts from the cluster.
It is important to note that the other Ansible Container workflow commands (start,
stop, and restart) are perfectly applicable suffixes to use with the Kubernetes
deployment engine. For the sake of reducing redundancy, let's take a look at how
ansible-container deploy and the workflow commands work with the OpenShift
deployment engine. Functionally, the Ansible Container workflow commands are
identical for Kubernetes and OpenShift.

Deploying containers to OpenShift
The ansible-container deploy command also supports deployments directly to
OpenShift using the native OpenShift APIs. Since OpenShift is built on top of
Kubernetes, you will discover that deploying containers to OpenShift is quite a
similar process to Kubernetes deployments, since OpenShift authentication works
very similarly to Kubernetes on the backend. Before beginning, these examples are
going to use the Vagrant lab VM running at the same time as the Minishift VM we
created in Chapter 6, Managing Containers with OpenShift. This can get quite CPU
and RAM intensive. If you're attempting to run these examples with 8 GB of RAM
or higher, you should get good performance.

However, if you are constrained on resources, these examples can run reasonably
well using the OpenShift free tier cloud account, although you may run into issues
with the limited quotas provided.

Before beginning, we need to first ensure that the Vagrant lab environment, as well
as our Minishift VM, are running and reachable from the VirtualBox network. Since
the hypervisors used to create our Vagrant lab environment and our Minishift cluster
are both using VirtualBox, we should by default have network connectivity between
the two VMs. We can validate this by attempting to ping the Minishift VM from our
Vagrant lab VM. First, we need to start the Minishift VM using reasonable
specifications for your local workstation. In this example, I am going to start the
Minishift VM allocating 8 GB of RAM and 50 GB virtual hard disk storage for it. If
you are running both VMs simultaneously, you may only be able to allocate the
minimum 2 GB of RAM for Minishift:

aric@lemur:~/Development/minishift$ minishift start --vm-driver=virtualbox --disk-size=50GB --memory=8GB

-- Starting local OpenShift cluster using 'virtualbox' hypervisor ...
-- Starting Minishift VM OK
-- Checking for IP address ... OK
-- Checking if external host is reachable from the Minishift VM ...
 Pinging 8.8.8.8 ... OK
-- Checking HTTP connectivity from the VM ...
 Retrieving http://minishift.io/index.html ... OK
-- Checking if persistent storage volume is mounted ... OK
-- Checking available disk space ... 7% used OK
-- OpenShift cluster will be configured with ...
 Version: v3.6.0
-- Checking `oc` support for startup flags ...
 host-config-dir ... OK

 host-data-dir ... OK
 host-pv-dir ... OK
 host-volumes-dir ... OK
 routing-suffix ... OK
Starting OpenShift using openshift/origin:v3.6.0 ...
OpenShift server started.

The server is accessible via web console at:
 https://192.168.99.100:8443

At the end of the startup process, you should receive an IP from which the OpenShift
Web UI is accessible. We need to ensure this IP address is reachable from our
Vagrant lab node:

ubuntu@node01:~$ ping 192.168.99.100
PING 192.168.99.100 (192.168.99.100) 56(84) bytes of data.
64 bytes from 192.168.99.100: icmp_seq=1 ttl=63 time=0.642 ms
64 bytes from 192.168.99.100: icmp_seq=2 ttl=63 time=0.602 ms
64 bytes from 192.168.99.100: icmp_seq=3 ttl=63 time=0.929 ms
^C
--- 192.168.99.100 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 0.602/0.724/0.929/0.147 ms

If this IP address is not pingable, you may have to configure your VirtualBox
networking so that network connectivity is available. A great resource to learn more
about configuring and debugging VirtualBox networks is the official VirtualBox
documentation: https://www.virtualbox.org/manual/ch06.html.

Once networking has been established and verified between the Minishift VM and
the Vagrant lab VM, next we will need to install the OC on our Vagrant lab VM to
allow us to authenticate to OpenShift. This will be the exact same process we
completed in Chapter 6, Managing Containers with OpenShift:

1. Download the OC binary packages using wget:

ubuntu@node01:~$ wget https://mirror.openshift.com/pub/openshift-v3/clients/3.6.173.0.5/linux/oc.tar.gz

Resolving mirror.openshift.com (mirror.openshift.com)... 54.173.18.88, 54.172.163.83, 54.172.173.155
Connecting to mirror.openshift.com (mirror.openshift.com)|54.173.18.88|:443...
HTTP request sent, awaiting response... 200 OK
Length: 36147137 (34M) [application/x-gzip]
Saving to: ‘oc.tar.gz'
2017-10-28 15:21:24 (6.79 MB/s) - ‘oc.tar.gz' saved [36147137/36147137]

2. Extract the TAR archive using the tar -xf command:

ubuntu@node01:~$ tar -xf oc.tar.gz
oc oc.tar.gz

https://www.virtualbox.org/manual/ch06.html

3. Copy the binary to a $PATH location:

ubuntu@node01:~$ sudo cp oc /usr/local/bin

If you have existing Kubernetes credentials in /home/ubuntu/.kube/config,
you will need to back them up to another location so the OC does not
overwrite them (or simply delete the config file if you have no further
use for it any longer: rm -rf ~/.kube/config).

Next, we need to authenticate to the local OpenShift cluster using the oc login
command in order to generate our Kubernetes credential file that Ansible Container
will leverage. The oc login command takes the URL endpoint of the OpenShift
cluster as a parameter. By default, the OC will write a Kubernetes configuration file
to /home/ubuntu/.kube/config. This file will serve as our means of authenticating to
OpenShift Kubernetes to perform automated deployments. Remember to log in as
the developer user, which uses any user-provided password to log in:

ubuntu@node01:$ oc login https://192.168.99.100:8443

The server uses a certificate signed by an unknown authority.
You can bypass the certificate check, but any data you send to the server could be intercepted by others.
Use insecure connections? (y/n): y

Authentication required for https://192.168.99.100:8443 (openshift)
Username: developer
Password:
Login successful.

You have one project on this server: "myproject"

Using project "myproject".
Welcome! See 'oc help' to get started.

Once you have successfully authenticated, you should notice there is now a new
Kubernetes configuration file written to the path /home/ubuntu/.kube/config. This is the
configuration file that Ansible Container will use for access to OpenShift:

ubuntu@node01:~$ cat .kube/config
apiVersion: v1
clusters:
- cluster:
 insecure-skip-tls-verify: true
 server: https://192.168.99.100:8443
 name: 192-168-99-100:8443
contexts:
- context:
 cluster: 192-168-99-100:8443
 namespace: myproject
 user: developer/192-168-99-100:8443
 name: myproject/192-168-99-100:8443/developer
current-context: myproject/192-168-99-100:8443/developer

kind: Config
preferences: {}
users:
- name: developer/192-168-99-100:8443
 user:
 token: TOKEN-CENSORED

Let's test authentication to the local OpenShift instance by using the oc get all
command. If authentication has been successful, you should see a list of pods,
deployments, services, and routes currently running in your local OpenShift
environment:

ubuntu@node01:~$ oc get all
NAME DOCKER REPO TAGS UPDATED
is/oc-test-deployment 172.30.1.1:5000/myproject/oc-test-deployment latest 13 days ago
is/test-deployment 172.30.1.1:5000/myproject/test-deployment latest 2 weeks ago

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/webserver 1 1 1 1 12d

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
routes/webserver awesomwebapp.192.168.99.100.nip.io webserver 80-80 None

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/webserver 172.30.136.131 <none> 80/TCP 12d

NAME DESIRED CURRENT READY AGE
rs/webserver-1266346274 1 1 1 12d

NAME READY STATUS RESTARTS AGE
po/webserver-1266346274-m2jvd 1/1 Running 3 12d

OpenShift, by default, leverages the same authentication mechanism that Kubernetes
uses in our container.yml file. The only thing we need to provide is the path to our
Kubernetes configuration file, as well as the Kubernetes namespace the project will
be deployed into. Since we have previously configured this in our MariaDB project
in the last section, let's reuse this same configuration to deploy our project to
OpenShift. As a review, let's look at the content of our MariaDB project in the
Vagrant Lab VM (/vagrant/Kubernetes/mariadb_demo_k8s), and look at the contents of
the container.yml file:

version: "2"
settings:
 conductor_base: ubuntu:16.04
 project_name: mariadb-k8s
 roles_path:
 - ./roles/
 k8s_namespace:
 name: database
 k8s_auth:
 config_file: /home/ubuntu/.kube/config
services:
 mariadb-database:

 roles:
 - role: mariadb_role

registries:
 docker:
 url: https://index.docker.io/v1/
 namespace: aric49

The only difference here is that the k8s_namespace parameter will define which
OpenShift project you want to deploy your container into. In OpenShift terminology,
project and namespace are essentially identical. For now, let's leave the configuration
as is and look at how to deploy our project using the OpenShift engine. Deploying
projects using OpenShift is very similar to how we deployed using Kubernetes, with
the exception that we will prefix our Ansible Container commands with the --engine
openshift flag so that our project will know to talk to the OpenShift API directly.
The same syntax rules apply here as well. We will give our deploy command the
name of the repository defined in the container.yml file to push our container image
to, and give it a unique tag to reference later:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ ansible-container --engine openshift deploy --push-to docker --tag openshift

Parsing conductor CLI args.
Engine integration loaded. Preparing push. engine=OpenShift™
Tagging aric49/mariadb-k8s-mariadb-database
Pushing aric49/mariadb-k8s-mariadb-database:openshift...
The push refers to a repository [docker.io/aric49/mariadb-k8s-mariadb-database]
Preparing
Waiting
Layer already exists
openshift: digest: sha256:99139cdd73b80ed29cedf8df4399b368f22e747f18e66e2529daf2e7fcf82c41 size: 1569
Conductor terminated. Cleaning up. command_rc=0 conductor_id=9b1bdcabd9399757c54a7218b8db2233503dacc4ecdde95d8a358a965bac954e save_container=False
Parsing conductor CLI args.
Engine integration loaded. Preparing deploy. engine=OpenShift™
Verifying image for mariadb-database
Conductor terminated. Cleaning up. command_rc=0 conductor_id=76e86c54e5545328a6806bb3315d604c8e7cdb59d4484a2c32f78ba35787716b save_container=False

Once our container image has been pushed, we can validate the deployment
playbooks have been generated in the ansible-deployment directory
(Kubernetes/mariadb_demo_k8s/ansible-deployment/mariadb-k8s.yml):

 - name: Manage the lifecycle of mariadb-k8s on OpenShift™
 hosts: localhost
 gather_facts: no
 connection: local
 # Include Ansible Kubernetes and OpenShift modules
 roles:
 - role: ansible.kubernetes-modules
 vars_files: []
 # Tasks for setting the application state. Valid tags include: start, stop, restart, destroy
 tasks:
 - name: Create project myproject
 openshift_v1_project:

 name: myproject
 state: present
 tags:
 - start
 - name: Destroy the application by removing project myproject
 openshift_v1_project:
 name: myproject
 state: absent
 tags:
 - destroy
TRUNCATED

Similar to the Docker and Kubernetes deployment engines, these playbooks can be
executed independently using the ansible-playbook command, or by using the ansible-
container run command. Let's run our project and deploy it into OpenShift using the
ansible-container run command:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ ansible-container --engine openshift run

Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=OpenShift™
Verifying service image service=mariadb-database

PLAY [Manage the lifecycle of mariadb-k8s on OpenShift?] ***********************

TASK [Create project database] ***
changed: [localhost]

TASK [Create service] **
changed: [localhost]

TASK [Create deployment, and scale replicas up] ********************************
changed: [localhost]

TASK [Create route] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=4 changed=4 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=ac5ead07a0bb145cc507b5cf815290597d1c1a8ee77a894c60916d2c0d543f18 save_container=False

Upon successful completion of the playbook run, we can log in to the OpenShift web
user interface to look at the deployment we just executed. In a web browser, navigate
to the URL provided in the output of the minishift start command (in my case, it is
192.168.99.100), accept the self-signed certificate, and log in as the developer user:

Figure 2: Logging into the OpenShift console

Upon logging in, you should see a new project has been created, called database. In
this project you can see everything that the Ansible Container deployment has
generated by default:

Figure 3: The database project has been created under My Projects in the OpenShift console

Clicking on the project, database will bring you to a dashboard showing the relevant
details for the deployment:

Figure 4: MariaDB database deployment

As you can see, by default the Ansible Container playbooks used to deploy
OpenShift run with a very useable set of default configuration options. Right away,
we can see that Ansible Container has created a new project for our project,
called database. Within this project, a default deployment exists that has our
MariaDB pod created and running. It has even taken the steps for us to create a
default service with a pre-configured set of labels, and created a route to access the
service using the nip.io DNS service. Essentially, our new service is deployed and
ready to go right out-of-the-box. In order to use the OpenShift deployment engine,
we didn't actually have to change any of the container.yml configuration; we used
exactly the same configuration we used to deploy to Kubernetes, with the exception
of using a different Kubernetes config file, and specifying the OpenShift engine in
our run command. As I'm sure you can see, having the ability to deploy to OpenShift
or Kubernetes transparently is immensely powerful. This allows Ansible Container
to function seamlessly no matter what target architecture your service is configured
to use.

We can also validate the deployment by using the OC command-line interface client.
From the Vagrant lab VM, you can use the oc project command to switch to the
database project:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ oc project database
Now using project "database" on server "https://192.168.99.100:8443".

Once we have switched to a new project context, we can use the oc get all command
to show everything configured to run in this project, including the pods, services, and
route configuration generated by Ansible Container:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ oc get all
NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/mariadb-database 1 1 1 config

NAME DESIRED CURRENT READY AGE
rc/mariadb-database-1 1 1 1 27s

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
routes/mariadb-database-3306 mariadb-database-3306-database.192.168.99.100.nip.io mariadb-database port-3306-tcp None

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/mariadb-database 172.30.154.77 <none> 3306/TCP 28s

NAME READY STATUS RESTARTS AGE
po/mariadb-database-1-bj19h 1/1 Running 0 26s

Along with ansible-container run, we can also use the standard Ansible Container

workflow commands to manage our deployment, such as stop, restart, and destroy.
As we discussed earlier, these workflow commands function identically with the
Kubernetes engine. Let's first start the ansible-container stop command. stop will
gracefully stop all running pods in the deployment, while keeping the other resources
deployed and active. Let's try stopping the deployment and re-running the get all
command to learn what happens:

ubuntu@node01:$ ansible-container --engine openshift stop
Parsing conductor CLI args.
Engine integration loaded. Preparing to stop all containers. engine=OpenShift™

PLAY [Manage the lifecycle of mariadb-k8s on OpenShift?] ***********************

TASK [Stop running containers by scaling replicas down to 0] *******************
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services stopped. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=8374839c00e2d92c02351905bd6dd463ba5592783430bc08c5b18ba068fece77 save_container=False

Once stop has completed successfully, re-run the oc get all command:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ oc get all
NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/mariadb-database 2 0 0 config

NAME DESIRED CURRENT READY AGE
rc/mariadb-database-1 0 0 0 7m
rc/mariadb-database-2 0 0 0 1m

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
routes/mariadb-database-3306 mariadb-database-3306-database.192.168.99.100.nip.io mariadb-database port-3306-tcp None

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/mariadb-database 172.30.154.77 <none> 3306/TCP 7m

From the preceding output, we can see that OpenShift has created a new revision for
the configuration change we deployed (REVISION 2), which describes the deployment
as having zero running pod replicas, indicative of the deployment existing in the
stopped state (Current 0, Desired 0, Ready 0). However, the route and service artifacts
still exist and are running in the cluster. One of the major benefits of OpenShift is the
nature of OpenShift to readily track the changes made to the project under various
revision definitions. This makes it very easy to roll back to a previous deployment
should a change fail or need to be rolled back. Complementary to the stop command
is the restart command, which ensures the current revision is in a running state, after
first stopping the service.

Unlike stop, restart does not create a new revision, since our current revision is
already scaled down to zero replicas, but instead will scale up the current revision to
ensure that the desired number of pods is running in the project. Let's execute the
ansible-container restart command for the OpenShift engine and see how this affects
our deployment:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ ansible-container --engine openshift restart
Parsing conductor CLI args.
Engine integration loaded. Preparing to restart containers. engine=OpenShift™

PLAY [Manage the lifecycle of mariadb-k8s on OpenShift?] ***********************

TASK [Stop running containers by scaling replicas down to 0] *******************
ok: [localhost]

TASK [Create deployment, and scale replicas up] ********************************
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

All services restarted. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=d54f160a64f5f57cfe88e6b824dfe609a9000355bc2e29584509ec3d97eee82f save_container=False

Executing the oc get all command once more, we will see that our current revision
(#2) is now running with the desired number of pods:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ oc get all
NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/mariadb-database 2 1 1 config

NAME DESIRED CURRENT READY AGE
rc/mariadb-database-1 0 0 0 31m
rc/mariadb-database-2 1 1 1 26m

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
routes/mariadb-database-3306 mariadb-database-3306-database.192.168.99.101.nip.io mariadb-database port-3306-tcp None

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/mariadb-database 172.30.154.77 <none> 3306/TCP 31m

NAME READY STATUS RESTARTS AGE
po/mariadb-database-2-g7r7f 1/1 Running 0 6m

Finally, we can use the ansible-container destroy command to completely remove all
traces of our service from the OpenShift (or Kubernetes) cluster. Keep in mind that
this will also remove the project as well as any other containers that are also running
within the project that may have been deployed manually or by other means outside
of Ansible Container. This is why it is important to separate application deployments
by OpenShift project and Kubernetes namespace, especially when running
commands such as ansible-container destroy:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ ansible-container --engine openshift destroy
Parsing conductor CLI args.
Engine integration loaded. Preparing to stop+delete all containers and built images.

PLAY [Manage the lifecycle of mariadb-k8s on OpenShift?] ***********************

TASK [Destroy the application by removing project database] ********************
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services destroyed. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=dde59aed5fb90b1e46df4fa9e4558a46ff043f89189cc101f25a01004878f472 save_container=False

According to the task execution, it appears that a single task that was run deleted the
entire OpenShift project. This is reflected if we execute the oc get all command one
final time:

ubuntu@node01:/vagrant/Kubernetes/mariadb_demo_k8s$ oc get all

Error from server (Forbidden): User "developer" cannot list buildconfigs in project "database"
Error from server (Forbidden): User "developer" cannot list builds in project "database"
Error from server (Forbidden): User "developer" cannot list imagestreams in project "database"
Error from server (Forbidden): User "developer" cannot list deploymentconfigs in project "database"
Error from server (Forbidden): User "developer" cannot list deployments.extensions in project "database"
Error from server (Forbidden): User "developer" cannot list horizontalpodautoscalers.autoscaling in project "database"
Error from server (Forbidden): User "developer" cannot list replicationcontrollers in project "database"
Error from server (Forbidden): User "developer" cannot list routes in project "database"
Error from server (Forbidden): User "developer" cannot list services in project "database"
Error from server (Forbidden): User "developer" cannot list statefulsets.apps in project "database"
Error from server (Forbidden): User "developer" cannot list jobs.batch in project "database"
Error from server (Forbidden): User "developer" cannot list replicasets.extensions in project "database"
Error from server (Forbidden): User "developer" cannot list pods in project "database"

These errors indicate that our user can no longer list anything that exists inside of the
database project due to the fact that it no longer exists. All traces of the project,
deployments, services, pods, and routes, have been deleted from the cluster. This is
also apparent from the web interface because refreshing the web page will indicate
that the projects no longer exist.

References
Ansible Container Deployment Guide: https://docs.ansible.com/ansible-contai
ner/reference/deploy.html

VirtualBox Networking Guide: https://www.virtualbox.org/manual/ch06.html

https://docs.ansible.com/ansible-container/reference/deploy.html
https://www.virtualbox.org/manual/ch06.html

Summary
Over the course of this chapter, we looked at the final Ansible Container workflow
command: ansible-container deploy. deploy is one of the most versatile commands
available in the Ansible Container arsenal since it allows us to run and manage
containers in production-grade Kubernetes and OpenShift environments. deploy
opens a new path in our journey to enable the flexibility and agility that containers
give our infrastructure. We can now truly use a single tool to not only build and
debug containerized applications locally, but also to deploy and manage these same
applications in production. Having the ability to use the same expressive Ansible
Playbook language to truly build reliable and scalable applications means that
deployments can be built around DevOps and automation best practices from day
one, instead of the painstaking task of re-engineering deployments so they are
automated after the fact.

Just because we have finished learning about the major Ansible Container workflow
components does not mean that our journey has ended. So far in this book, we have
looked at using Ansible Container to deploy single-function microservices that
require no dependencies on other services. Ansible Container being as powerful as it
is also has the innate ability to build and deploy multiple containerized applications
by expressing links and dependencies on other services. In the next chapter, we will
look at how to build and deploy multi-container applications.

Building and Deploying a Multi-
Container Project
So far, throughout the course of this book, we have explored the many facets of
Ansible Container and containerized application deployments. We have looked at
building Docker containers from basic Dockerfiles, using Ansible Container to
install roles, build containers, and even deploy applications to cloud solutions such
as Kubernetes and OpenShift. However, you may have noticed that our discussion so
far has been centered around deploying single microservice applications such as
Apache2, Memcached, NGINX, and MariaDB. These applications can be deployed
standalone, without any dependency on other services or applications aside from a
basic Docker daemon. While learning containerization from building single-
container microservices is a great way to learn the core concepts of containerization,
it isn't an accurate reflection of real-world application infrastructures.

As you may already know, applications usually comprise stacks of interconnected
software that work together to deliver a service to end users. A typical application
stack might involve a web frontend that receives input from a user. The web
interface might be responsible for knowing how to contact a database backend to
store the data provided to it by the user, as well as retrieve previously stored data.
Big data applications might periodically analyze the data within the database in an
attempt to figure out trends in data, analyze usage, or perform other functions that
give data scientists insight into how users are operating the application. These
applications live in a delicate balance that's dependent on network connectivity, DNS
resolution, and service discovery in order to talk to each other and perform their
overarching functions.

The world of containers is not very different at the outset. After all, the containerized
software still draws dependencies on other containerized and non-containerized
applications to store, retrieve, and process data, and perform distinct functions. As
we touched on in Chapter 5, Containers at Scale with Kubernetes, and Chapter 6,
Managing Containers with OpenShift, containers bring a lot more versatility and
much reduced management complexity to the problem of deploying and scaling
multi-tiered applications.

In this chapter we will cover the following topics:

Defining complex applications using Docker networks
Exploring the Ansible Container django-gulp-nginx project
Building the django-gulp-nginx project
Development and production configurations
Deploying the project to OpenShift

Defining complex applications
using Docker networking
Containerized environments are dynamic and apt to change state quickly. Unlike
traditional infrastructure, containers are continually scaling up and down, perhaps
even migrating between hosts. It is critical that containers are able to discover other
containers, establish network connectivity, and share resources quickly and
efficiently.

As we touched on in previous chapters, Docker, Kubernetes, and OpenShift have the
native functionality to automatically discover and access other containers using
various networking protocols and DNS resolution, not unlike bare-metal or
virtualized servers. When deploying containers on a single Docker host, Docker will
assign each container an IP address in a virtual subnet that can be used to talk to
other container IP addresses in the same subnet. Likewise, Docker will also provide
simple DNS resolution that can be used to resolve container names internally. When
scaled out across multiple hosts using container orchestration systems such as
Kubernetes, OpenShift, or Docker Swarm, containers use an overlay network to
establish network connectivity between hosts and run as though they exist on the
same host. As we saw in Chapter 5, Containers at Scale with Kubernetes, Kubernetes
provides a sophisticated internal DNS system to resolve containers based on
namespaces within the larger Kubernetes DNS domain. There is a lot to be said
about container networking, so for the purposes of this chapter, we will look at
Docker networking for service discovery. In this section, we will create a dedicated
Docker network subnet and create containers that leverage DNS to establish network
connectivity to other running containers.

To demonstrate basic network connectivity between Docker containers, let's use the
Docker environment in our Vagrant lab host to create a new virtual container
network using the bridge networking driver. Bridge networking is one of the most
basic types of container networks that is limited to a single Docker host. We can
create this using the docker network create command. In this example, we will create a
network called SkyNet using the 172.100.0.0/16 CIDR block, with the bridge
networking driver:

ubuntu@node01:~$ docker network create -d bridge --subnet 172.100.0.0/16 SkyNet

2679e6a7009912fbe5b8203c83011f5b3f3a5fa7c154deebb4a9aac7af80a6aa

We can validate this network has been successfully created using the docker network
ls command:

ubuntu@node01:~$ docker network ls
NETWORK ID NAME DRIVER SCOPE
2679e6a70099 SkyNet bridge local
truncated..

We can see detailed information about this network in JSON format using the docker
network inspect command:

ubuntu@node01:~$ docker network inspect SkyNet
[
 {
 "Name": "SkyNet",
 "Id": "2679e6a7009912fbe5b8203c83011f5b3f3a5fa7c154deebb4a9aac7af80a6aa",
 "Created": "2017-11-05T02:26:22.790958921Z",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.100.0.0/16"
 }
]
 },

Now that we have established a network on our Docker host, we can create
containers to connect to this network to test the functionality. Let's create two Alpine
Linux containers to connect to this network and use them to test DNS resolution and
reachability. The Alpine Linux Docker image is an extremely lightweight container
image that can be used to quickly spin up containers for testing purposes. In this
example, we will create two Alpine Linux containers named service1 and service2,
connected to the SkyNet Docker network using --network flag:

ubuntu@node01:~$ docker run --network=SkyNet -itd --name=service1 alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
b56ae66c2937: Pull complete
Digest: sha256:d6bfc3baf615dc9618209a8d607ba2a8103d9c8a405b3bd8741d88b4bef36478
Status: Downloaded newer image for alpine:latest
5f1fba3964fae85e90cc1b3854fc443de0b479f94af68c14d9d666999962e25a

In a similar way, we can start the service2 container, using the SkyNet network:

ubuntu@node01:~$ docker run --network=SkyNet -itd --name=service2 alpine
8f6ad6b88b52e446cee44df44d8eaa65a9fe0d76a2aecb156fac704c71b34e27

Although these containers are not running a service, they are running
by allocating a pseudo-tty instance to them using the -t flag. Allocating
a pseudo-tty to the container will keep it from immediately exiting, but
will cause the container to exit if the TTY session is terminated.
Throughout this book, we have looked at running containers using
command and entrypoint arguments, which is the recommended
approach. Running containers by allocating a pseudo-tty is great for
quickly spinning up containers for testing purposes, but not a
recommended way to run traditional application containers.
Application containers should always run based on the status of the
process ID (PID) running within it.

In the first example, we can see that our local Docker host pulled down the latest
Alpine container image and ran it using the parameters we passed into the docker run
command. Likewise, the second docker run command created a second instance of
this container image using the same parameters. Using the docker inspect command,
we can see which IP addresses the Docker daemon assigned our containers:

ubuntu@node01:~$ docker inspect service1
TRUNCATED..
"NetworkID": "2679e6a7009912fbe5b8203c83011f5b3f3a5fa7c154deebb4a9aac7af80a6aa",
"EndpointID": "47e16d352111007b9f19caf8c10a388e768cc20e5114a3b346d08c64f1934e1f",
"Gateway": "172.100.0.1",
"IPAddress": "172.100.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:64:00:02",
"DriverOpts": null

 And we can do the same for service2:

ubuntu@node01:~$ docker inspect service2
TRUNCATED..
"NetworkID": "2679e6a7009912fbe5b8203c83011f5b3f3a5fa7c154deebb4a9aac7af80a6aa",
"EndpointID": "3ca5485aa27bd1baffa826b539f905b50005c9157d5a4b8ba0907d15a3ae7a21",
"Gateway": "172.100.0.1",
"IPAddress": "172.100.0.3",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:64:00:03",
"DriverOpts": null

As you can see, Docker assigned the IP address of 172.100.0.2 to our service1

container, and the IP address of 172.100.0.3 to our service2 container. These IP
addresses provide network connectivity exactly as you would expect between two
hosts attached to the same network segment. If we use docker exec to log into the
service1 container, we can check to see whether service1 can ping service2 using the
IP addresses Docker assigned:

ubuntu@node01:~$ docker exec -it service1 /bin/sh
/ # ping 172.100.0.3
PING 172.100.0.3 (172.100.0.3): 56 data bytes
64 bytes from 172.100.0.3: seq=0 ttl=64 time=0.347 ms
64 bytes from 172.100.0.3: seq=1 ttl=64 time=0.160 ms
64 bytes from 172.100.0.3: seq=2 ttl=64 time=0.159 ms

Since these containers are running using a pseudo-tty instead of a
command or entrypoint, simply typing exit in the container shell will
kill the TTY session and stop the container. To keep the container
running when exiting the shell, use the Docker escape sequence from
your keyboard: Ctrl + P Ctrl + Q.

We can as well do this test likewise from the service2 container:

ubuntu@node01:~$ docker exec -it service2 /bin/sh
/ # ping 172.100.0.2
PING 172.100.0.2 (172.100.0.2): 56 data bytes
64 bytes from 172.100.0.2: seq=0 ttl=64 time=0.175 ms
64 bytes from 172.100.0.2: seq=1 ttl=64 time=0.157 ms

It is easy to see that IP-based networking works well to establish network
connectivity between running containers. The downside of this approach is that we
cannot always know ahead of time what IP addresses the container runtime
environment will assign our containers. For example, a container may require an
entry in a configuration file to point to a service it depends on. Although you might
be tempted to plug an IP address into your container role and build it, this container
role would have to be rebuilt for each and every environment it is deployed into.
Furthermore, when containers get stopped and restarted, they could take on different
IP addresses, which will cause the application to break down. Luckily, as a solution
to this issue, Docker provides a DNS resolution based on the container name, which
will actively keep track of running containers and resolve the correct IP address in
the event that a container should change IP addresses. Container names, unlike IP
addresses, can be known in advance and be used to point containers to the correct
services inside of configuration files, or stored in memory as environment variables.
We can see this in action by logging back into the service1 container and using the
ping command to ping the name service2:

ubuntu@node01:~$ docker exec -it service1 /bin/sh
/ # ping service2
PING service2 (172.100.0.3): 56 data bytes
64 bytes from 172.100.0.3: seq=0 ttl=64 time=0.233 ms
64 bytes from 172.100.0.3: seq=1 ttl=64 time=0.142 ms
64 bytes from 172.100.0.3: seq=2 ttl=64 time=0.184 ms
64 bytes from 172.100.0.3: seq=3 ttl=64 time=0.263 ms

Furthermore, we can create a third service container and check to see if the new
container has the ability to resolve the names of service1 and service2 respectively:

ubuntu@node01:~$ docker run --network=SkyNet -itd --name=service3 alpine
8db62ae30457c351474d909f0600db7f744fb339e06e3c9a29b87760ad6364ff

ubuntu@node01:~$ docker exec -it service3 /bin/sh
/ # ping service1
PING service1 (172.100.0.2): 56 data bytes
64 bytes from 172.100.0.2: seq=0 ttl=64 time=0.207 ms
64 bytes from 172.100.0.2: seq=1 ttl=64 time=0.165 ms
64 bytes from 172.100.0.2: seq=2 ttl=64 time=0.159 ms
^C
--- service1 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.159/0.177/0.207 ms
/ #
/ # ping service2
PING service2 (172.100.0.3): 56 data bytes
64 bytes from 172.100.0.3: seq=0 ttl=64 time=0.224 ms
64 bytes from 172.100.0.3: seq=1 ttl=64 time=0.162 ms
64 bytes from 172.100.0.3: seq=2 ttl=64 time=0.146 ms

Finally, if we log into the service2 container, we can use the nslookup command to
resolve the IP address of the newly created service3 container:

ubuntu@node01:~$ docker exec -it service2 /bin/sh
/ # nslookup service3

Name: service3
Address 1: 172.100.0.4 service3.SkyNet

Docker creates DNS resolution using the name of the Docker network as a domain.
As such, the nslookup results are showing the fully qualified domain name of service3
as service3.SkyNet. However, as I'm sure you could imagine, having DNS resolution
for containers is an incredibly powerful tool for building reliable and robust
containerized infrastructures. Just by knowing the name of the container, you can
establish links and dependencies between containers that will scale with your
infrastructure. This concept extends far beyond learning the individual IP addresses
of containers. For example, as we saw in Chapter 5, Containers at Scale with
Kubernetes, and Chapter 6, Managing Your Applications with OpenShift, Kubernetes
and OpenShift allow for the creation of services that logically connect to backend

pods using labels or other identifiers. When other pods pass traffic to the service
DNS entry, Kubernetes will load-balance traffic to the running pods that match the
label rules configured in the service entry. The only thing the containers that rely on
that service need to know is how to resolve the service FQDN, and the container
orchestrator takes care of the rest. The backend pods could scale up or down, but as
long as the container orchestrator's DNS service is able to resolve the service entry,
the other containers calling the service will not notice a difference.

Exploring the Ansible Container
django-gulp-nginx project
Now that we have a basic understanding of container networking concepts and
Docker DNS resolution, we can build projects that have multi-container
dependencies. Ansible Container has a concept of creating fully reusable full stack
containerized applications, aptly named Container Apps. Container Apps are able to
be downloaded and deployed quickly from Ansible Galaxy very similar to container-
enabled roles. Container Apps have the benefit of allowing users to get started
developing quickly against fully functional multi-tier applications that run as
separate microservice containers. In this example, we will use a community-
developed web application project that spins up a Python-based Django, Gulp, and
NGINX environment we can deploy locally and to a container orchestration
environment such as OpenShift or Kubernetes.

You can explore a wide range of container apps using Ansible Galaxy by simply
going to the Ansible Galaxy website at https://galaxy.ansible.com, selecting
BROWSE ROLES, clicking on Role Type from the Keyword drop-down box, and
selecting Container App from the search dialog:

Figure 1: Searching for Container Apps in Ansible Galaxy

In this example, we are going to leverage the pre-built Ansible django-gulp-nginx
Container App, which is an official Ansible Container project. This container app
creates a containerized Django framework web application that leverages NGINX as
a web server, Django and Gulp as a framework, and PostgreSQL as a database
server. In this project is an entirely self-contained demo environment we can use to

https://galaxy.ansible.com/

explore how Ansible Container works with other services and dependencies.

In order to get started with using this project, we need to first install it in a clean
directory on our Vagrant Lab VM. First, create a new directory (I will call mine
demo), and run the ansible-container init command followed by the name of the
Container App we want to install, ansible.django-gulp-nginx. You can find the full
name for this project on Ansible Galaxy, using the preceding steps to search for
Container Apps. Following code demonstrates creating a new directory and
initializing the Django-Gulp-NGINX project:

ubuntu@node01:~$ mkdir demo/
ubuntu@node01:~$ cd demo/
ubuntu@node01:~$ ansible-container init ansible.django-gulp-nginx
Ansible Container initialized from Galaxy container app 'ansible.django-gulp-nginx'

Upon successfully initializing the project, you should see the Ansible Container
initialized from Galaxy Container App ansible.django-gulp-nginx message appear.
This indicates that the container app was successfully installed from Ansible Galaxy.
Executing the ls command in the demo/ directory should display project files similar
to the following:

ubuntu@node01:~/demo$ ls
bower.json dist Makefile meta.yml package.json project requirements.txt roles src test
AUTHORS container.yml gulpfile.js manage.py node_modules package-lock.json README.md requirements.yml scripts temp-space update-authors.py

A lot of the files listed are configuration files that support the Gulp/Django
framework for the application we are going to create. The primary file we are
concerned with for the purposes of this demonstration is the core file in all Ansible
Container projects: container.yml. If you open the container.yml file in a text editor, it
should resemble the following:

version: '2'
settings:
 conductor:
 base: 'centos:7'
 volumes:
 - temp-space:/tmp # Used to copy static content between containers
 k8s_namespace:
 name: demo
 display_name: Ansible Container Demo
 description: Django framework demo
defaults:
 POSTGRES_USER: django
 POSTGRES_PASSWORD: sesame
 POSTGRES_DB: django
 DJANGO_ROOT: /django
 DJANGO_USER: django
 DJANGO_PORT: 8080

 DJANGO_VENV: /venv
 NODE_USER: node
 NODE_HOME: /node
 NODE_ROOT: ''
 GULP_DEV_PORT: 8080
services:
 django:
 from: 'centos:7'
 roles:
 - role: django-gunicorn
 environment:
 DATABASE_URL: 'pgsql://{{ POSTGRES_USER }}:{{ POSTGRES_PASSWORD }}@postgresql:5432/{{ POSTGRES_DB }}'
 DJANGO_ROOT: '{{ DJANGO_ROOT }}'
 DJANGO_VENV: '{{ DJANGO_VENV }}'
 expose:
 - '{{ DJANGO_PORT }}'
 working_dir: '{{ DJANGO_ROOT }}'
 links:
 - postgresql
 user: '{{ DJANGO_USER }}'
 command: ['/usr/bin/dumb-init', '{{ DJANGO_VENV }}/bin/gunicorn', -w, '2', -b, '0.0.0.0:{{ DJANGO_PORT }}', 'project.wsgi:application']
 entrypoint: [/usr/bin/entrypoint.sh]
 dev_overrides:
 volumes:
 - '$PWD:{{ DJANGO_ROOT }}'
 command: [/usr/bin/dumb-init, '{{ DJANGO_VENV }}/bin/python', manage.py, runserver, '0.0.0.0:{{ DJANGO_PORT }}']
 depends_on:
 - postgresql

 gulp:
 from: 'centos:7'
 roles:
 - role: gulp-static
 working_dir: '{{ NODE_HOME }}'
 command: ['/bin/false']
 environment:
 NODE_HOME: '{{ NODE_HOME }}'
 dev_overrides:
 entrypoint: [/entrypoint.sh]
 command: [/usr/bin/dumb-init, /usr/local/bin/gulp]
 ports:
 - '8080:{{ GULP_DEV_PORT }}'
 - 3001:3001
 links:
 - django
 volumes:
 - '$PWD:{{ NODE_HOME }}'
 openshift:
 state: absent

 nginx:
 from: 'centos:7'
 roles:
 - role: ansible.nginx-container
 ASSET_PATHS:
 - /tmp/dist
 PROXY: yes
 PROXY_PASS: 'http://django:8080'
 PROXY_LOCATION: "~* /(admin|api)"
 ports:
 - '{{ DJANGO_PORT }}:8000'

 links:
 - django
 dev_overrides:
 ports: []
 command: /bin/false

 postgresql:
 # Uses a pre-built postgresql image from Docker Hub
 from: ansible/postgresql:latest
 environment:
 - 'POSTGRES_DB={{ POSTGRES_DB }}'
 - 'POSTGRES_USER={{ POSTGRES_USER }}'
 - 'POSTGRES_PASS={{ POSTGRES_PASSWORD }}'
 - 'PGDATA=/var/lib/pgsql/data/userdata'
 volumes:
 - postgres-data:/var/lib/pgsql/data
 expose:
 - 5432

volumes:
 postgres-data:
 docker: {}
 openshift:
 access_modes:
 - ReadWriteMany
 requested_storage: 3Gi

 temp-space:
 docker: {}
 openshift:
 state: absent

registries:
 local_openshift:
 url: https://local.openshift
 namespace: demo
 pull_from_url: 172.30.1.1:5000

The output shown here is a reflection of the contents of container.yml at
the time of writing. Yours may look slightly different if updates have
been made to this project since the time of writing.

As you can see, this container.yml file contains many of the same specifications we
have covered already in previous chapters of the book. Out of the box, this project
contains the service declarations to build the Gulp, Django, NGINX, and Postgres
containers, complete with the role paths and various role variables defined to ensure
the project is able to run in a completely self-contained format. Also built into this
project is support for deploying this project to OpenShift. One of the benefits of this
project is that it exposes virtually every possible configuration option available in an
Ansible Container project, as well as the proper syntax to activate these features.
Personally, I like to use this project as a reference guide in case I forget the proper
syntax to use in my project's container.yml files. Following is a list of sections from
the container.yml that are useful for the user to have an understanding of, starting

from the top and moving towards the bottom:

conductor: As we have seen throughout this book, this section defines the
conductor container and the base container image to build the conductor from.
In this case, the conductor image will be a Centos 7 container that leverages a
volume mount from the temp-space directory in the root of the project to the /tmp
directory inside of the container. It is important to note here that the conductor
image can leverage volume mounts in order to store data during the build
process.
defaults: This section is known as the top-level defaults section and is used to
instantiate variables that can be used throughout the project. Here, you can
define variables that can be used in the service section of the project as role
variable overrides, or simply in place of hardcoding the same values over and
over again in the container.yml file. It is important to note that in the order that,
Ansible Container evaluates variable precedence, the top-level defaults section
has the lowest precedence.
services: In the services section, we see entries for the core service that will run
in this stack (django, gulp, nginx, and postgresql). This section, for the most part,
should be reviewed based on what we have covered in previous chapters up
until this point. However, you will notice that, in the container definition for
the django container, there is a link line that specifies the postgresql container
name. You will notice this as well in the other container definitions that list the
name of the django container. In previous versions of Docker, links were a way
of establishing networking connectivity and container name resolution for
individual containers. However, recent versions of Docker have deprecated the
link syntax in favor of the native container name resolution built into the
Docker networking stack. It is important to note that many projects still use
links as a way to establish network dependencies and container name resolution,
but will most likely be removed in future versions of Docker. Container
orchestration tools such as Kubernetes and OpenShift also ignore the link
syntax since they only use native DNS services to resolve other containers and
services. Another aspect I would like to draw the readers attention to in the
services section is the nginx, gulp, and django containers have a new sub-section
titled dev-overrides. This section is for specifying container configuration that
will only be present when building testing containers locally. Usually,
developers use dev-overrides to run containers with verbose debugging output
turned on, or other similar logging mechanisms are used to troubleshoot
potential issues. The dev-override configuration will be ignored when using the -
-production flag when executing ansible-container run.
volumes: The top-level volumes section is used to specify persistent volume

claims (PVCs) that continue to exist even if the container is stopped or
destroyed. This section normally maps volumes that have already been created
in the container-specific services section of the container.yml file to provide a
more verbose configuration for how the container orchestrator should handle
the persistent volume claim. In this case, the postgres-data volume that has been
mapped in the PostgreSQL container is given the OpenShift specific
configuration of ReadWriteMany access mode, as well as 3 GB of storage. PVCs
are usually required for applications dependent on storing and retrieving data,
such as databases or storage APIs. The overall goal of PVCs is that we do not
want to lose data if need to redeploy, upgrade, or migrate the container to
another host.

Building the django-gulp-nginx
project
Now that we have a firm understanding of some of the more advanced Ansible
Container syntax that is commonly found in Container Apps, we can apply the
knowledge we have learned so far of the Ansible Container workflow to build and
run the container App. Since container apps are full Ansible Container projects
complete with roles, a container.yml file, and other supporting project data, the same
Ansible Container workflow commands we used previously can be used here with no
modifications. When you are ready, execute the ansible-container build command in
the root directory of the project:

ubuntu@node01:~/demo$ ansible-container build
Building Docker Engine context...
Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.
Docker™ daemon integration engine loaded. Build starting. project=demo
Building service... project=demo service=django

PLAY [django] **

TASK [Gathering Facts] ***
ok: [django]

TASK [django-gunicorn : Install dumb init] *************************************
changed: [django]

TASK [django-gunicorn : Install epel] **
changed: [django]

TASK [django-gunicorn : Install python deps] ***********************************
changed: [django] => (item=[u'postgresql-devel', u'python-devel', u'gcc', u'python-virtualenv', u'nc', u'rsync'])

TASK [django-gunicorn : Make Django user] **************************************
changed: [django]

TASK [django-gunicorn : Create /django] **
changed: [django]

TASK [django-gunicorn : Make virtualenv dir] ***********************************
changed: [django]

TASK [django-gunicorn : Setup virtualenv] **************************************
changed: [django]

TASK [django-gunicorn : Copy core source items] ********************************
changed: [django] => (item=manage.py)
changed: [django] => (item=package.json)
changed: [django] => (item=project)

changed: [django] => (item=requirements.txt)
changed: [django] => (item=requirements.yml)
TRUNCATED...

Since the Container App is building four service containers, it may take a little
longer than usual for the build process to complete. If you are following along, you
will see Ansible Container go through each playbook role individually as it creates
the containers and works to bring them into the desired state described in the
playbooks. When the build has completed successfully, we can execute ansible-
container run command to start the containers and bring our new web service online:

ubuntu@node01:~/demo$ ansible-container run
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon
Verifying service image service=django
Verifying service image service=gulp
Verifying service image service=nginx

PLAY [Deploy demo] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=3109066bdb82a46e0b44fdbbbeaaa02fe8daf7bc18600c0c8466e19346e57b39 save_container=False

When the run playbooks have finished executing, the service containers should be
running on the Vagrant VM in developer mode, since the container.yml file specifies
dev-overrides for many of the services. It is important to note that ansible-container
run will, by default, run the service containers according to any dev-override
configuration listed in the container.yml file. For example, one developer override
configured is to not run the NGINX container when running in developer mode. This
is accomplished by setting a developer override option for the NGINX container so
that it will run /bin/false as the initial container command, immediately killing it.
Executing the docker ps -a command will show that the postgresql, django, and
gulp containers are running, with NGINX in a stopped state. Using the developer
overrides, NGINX is stopped and gulp is responsible for serving up the HTML page:

ubuntu@node01:~/demo$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c3e3c2e07427 demo-gulp:20171107030355 "/entrypoint.sh /u..." 56 seconds
0e14b6468ad4 demo-nginx:20171107031508 "/bin/false" Exited (1)
987345cf6460 demo-django:20171107031311 "/usr/bin/en" 57 seconds ago9660b816e86f ansible/postgresql:latest "/usr/bin/entrypoi..."

Once the containers have started, the django-gulp-nginx Container App will be

listening on the Vagrant lab VM's localhost address at port 8080. We can use the curl
command to test the application and ensure we are able to get the default Hello
World simple HTML page response the service is designed to provide:

ubuntu@node01:~/demo$ curl http://localhost:8080
<!DOCTYPE html><html lang="en-US"><head><title></title><meta charset="UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width,initial-scale=1"><link rel="stylesheet" href="style.css"></head><body><div class="content"><div class="visible"><p>Hello</p>world !users !you!everybody !</div></div><script src="js/bundle.min.js"></script></body></html>

Development versus production
configurations
By default, executing the ansible-container run command on a project that specifies
developer-overrides for a given service will run the service with the developer
overrides active. Often, the developer overrides expose verbose logging or
debugging options in an application that a developer would not want a general end
user to be exposed to, not to mention that it can be quite resource-intensive to run
applications with verbose logging stack tracing running constantly. The ansible-
container run command has the ability to be run with the --production flag to specify
when to run services in a mode that mimics a production-style deployment. Using
the --production flag ignores the dev_overrides sections in the container.yml file and
runs the services as explicitly defined in the container.yml file. Now that we have
verified that our web service is able to run and function in developer mode, we can
try running our service in production mode to mimic a full production deployment
on our local workstation.

First, we will need to run ansible-container stop in order to stop all running container
instances in developer mode:

ubuntu@node01:~/demo$ ansible-container stop
Parsing conductor CLI args.
Engine integration loaded. Preparing to stop all containers. engine=Docker™ daemon

PLAY [Deploy demo] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services stopped. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=8ab40a594ec72012afdf0abc31ff527925fc5960e4ecbb40eeb16763a12e973a save_container=False

Next, let's re-run the ansible-container run command, this time providing the --
production flag to indicate that we wish to ignore the developer overrides and run this
service in production mode:

ubuntu@node01:~/demo$ ansible-container run --production
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=Docker™ daemon

Verifying service image service=django
Verifying service image service=gulp
Verifying service image service=nginx

PLAY [Deploy demo] ***

TASK [docker_service] **
changed: [localhost]

PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

All services running. playbook_rc=0
Conductor terminated. Cleaning up. command_rc=0 conductor_id=1916f63a843d490ec936672528e507332ef408363f65387256fe8a75a1ed7a2f save_container=False

If we now look at the services running, you will notice that the NGINX server
container is now running and acting as the frontend service for the web traffic on
port 8080 instead of the Gulp container. Meanwhile, the Gulp container has been
started with the default command /bin/false, which instantly kills the container. In
this example, we have introduced a production configuration that terminates a
development HTTP web server, in favor of a production-ready NGINX web server:

ubuntu@node01:~/demo$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1aabc9745942 demo-nginx:20171107031508 "/usr/bin/dumb-ini..." 7 seconds ago
16154bbfae54 demo-django:20171107031311 "/usr/bin/entrypoi..." 14 seconds ago
ea2ec92e9c50 demo-gulp:20171107030355 "/bin/false" Exited (1) 15
9660b816e86f ansible/postgresql:latest "/usr/bin/entrypoi..." 20 minutes ago

We can finally test the web service once more to ensure that the service is reachable
and running on the Vagrant Lab VM on localhost port 8080:

ubuntu@node01:~/demo$ curl http://localhost:8080
<!DOCTYPE html><html lang="en-US"><head><title></title><meta charset="UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width,initial-scale=1"><link rel="stylesheet" href="style.css"></head><body><div class="content"><div class="visible"><p>Hello</p>world !users !you!everybody !</div></div><script src="js/bundle.min.js"></script></body></html>

Deploying the project to OpenShift
So far, we have looked at how to run the demo web application locally using the
production and development configurations provided by the dev_override syntax.
Now that we have an understanding of how the web application functions and
leverages other services, we can look at how to deploy this application in a
production-grade container orchestration environment such as OpenShift or
Kubernetes. In this section of the book, we will deploy this project using the
production configuration into the local Minishift cluster we created in Chapter 6,
Managing Applications with OpenShift. Prior to starting this example, make sure you
have a valid OpenShift credentials file that works with your local cluster, in
the /home/ubuntu/.kube/config directory. If new OpenShift credentials need to be
created, be sure to turn back to Chapter 7, Deploying Your First Project, for more
details.

In order to ensure our application can be deployed to OpenShift, we need to modify
the container app's container.yml file so it points to our Kubernetes configuration file
as well as to the Docker Hub registry for pushing our container images.

OpenShift comes with an integrated container registry you can use to
push container images to during the ansible-container deploy process.
However, it requires some additional configuration that is beyond the
scope of this book. For now, it will be sufficient to use the Docker Hub
registry as we have throughout this book so far.

In the settings section of the container.yml file, we will add a k8s_auth stanza to point
to the Kubernetes configuration file the OC generated:

 k8s_namespace:
 name: demo
 display_name: Ansible Container Demo
 description: Django framework demo
 k8s_auth:
 config_file: /home/ubuntu/.kube/config

Next, in the registries section, we will add an entry for the Docker Hub container
registry, using our user credentials:

registries:
 docker:

 url: https://index.docker.io/v1/
 namespace: aric49

Now that we have OpenShift and Docker Hub configured in our project, we can use
the ansible-container deploy command with the --engine openshift flag to generate the
OpenShift deployment and push the image artifacts to Docker Hub. In order to
differentiate the images, we can push them to Docker Hub using the containerapp tag.
Since we are pushing multiple images to Docker Hub, depending on your internet
connection speed, it may take a few minutes for this process to complete:

ubuntu@node01:~/demo$ ansible-container --engine openshift deploy --push-to docker --username aric49 --tag containerapp
Enter password for aric49 at Docker Hub:
Parsing conductor CLI args.
Engine integration loaded. Preparing push. engine=OpenShift™
Tagging aric49/demo-django
Pushing aric49/demo-django:containerapp...
The push refers to a repository [docker.io/aric49/demo-django]
Preparing
Pushing
Mounted from library/centos
Pushing
Pushed
containerapp: digest: sha256:983afc3cb7c0f393d20047d0a1aa75a94a9ab30a2f3503147c09b55a81e007a9 size: 741
Tagging aric49/demo-gulp
Pushing aric49/demo-gulp:containerapp...
The push refers to a repository [docker.io/aric49/demo-gul
TRUNCATED...

Once the deploy process has completed successfully, we can use the ansible-
container run command with the --engine openshift flag to launch our application and
run it in our simulated OpenShift production environment. Don't forget to specify the
--production flag so that our service gets deployed using the production configuration
and not the developer overrides:

ubuntu@node01:~/demo$ ansible-container --engine openshift run --production
Parsing conductor CLI args.
Engine integration loaded. Preparing run. engine=OpenShift™
Verifying service image service=django
Verifying service image service=gulp
Verifying service image service=nginx

PLAY [Manage the lifecycle of demo on OpenShift?] ******************************

TASK [Create project demo] ***
changed: [localhost]

TASK [Create service] **
changed: [localhost]

TASK [Create service] **
changed: [localhost]

TASK [Create service] **

changed: [localhost]

TASK [Remove service] **
ok: [localhost]

TASK [Create deployment, and scale replicas up] ********************************
changed: [localhost]

TASK [Create deployment, and scale replicas up] ********************************
changed: [localhost]
TRUNCATED..

Once the process has completed successfully, we can log into the OpenShift web
console to validate the service is running as expected. Unless it's otherwise changed,
the Container App was deployed into a new project called demo, but will be displayed
with the name Ansible Container Demo in the web interface, as per our container.yml
configuration:

Figure 2: The Ansible Container Demo project deployed to OpenShift

Clicking on the Ansible Container Demo project display name will show you the
standard OpenShift dashboard demonstrating the running pods according to the
production configuration. You should see the django, ngnix, and postgresql pods
running, along with a link to the route created to access the web application in the
upper-right corner of the console display:

Figure 3: Running pods in the demo project

We can test to ensure our application is running by clicking on the nip.io route

created in OpenShift and ensuring the NGINX web server container is reachable.
Clicking on the link should show the simple Hello you! Django application in its full
glory:

Figure 4: The Hello World page as viewed running in OpenShift

That looks a lot nicer then the curl testing we were running in the local Vagrant lab,
don't you think? Congratulations, you have successfully deployed a multi-container
application into a simulated production environment!

From the OpenShift console, we can validate that the various aspects of our
deployment are present and functioning as intended. For example, you can click on
the Storage link in the left-hand navigation bar to validate that the PVC Postgres data
was created and is functional in OpenShift. Clicking on postgres-data will show the
details of the PVC object, including the allocated storage (3 GiB), and the access
modes configured in the container.yml file, Read-Write-Many:

Figure 5: PostgreSQL PVC

References
Ansible django-gulp-nginx project: https://github.com/ansible/django-gulp-ngin
x/

Docker networking documentation: https://docs.docker.com/engine/userguide/n
etworking/

https://github.com/ansible/django-gulp-nginx/
https://docs.docker.com/engine/userguide/networking/

Summary
As we are nearing the end of our journey with Ansible Container, we have covered
what is perhaps the final hurdle in our quest to learn about automating containers
using the Ansible Container project, working with multi-container projects. Due to
the inherent networking functionality available in almost all container runtime
environments, such as Docker, Kubernetes, and OpenShift, building streamlined
microservice software stacks is a breeze. As we have seen throughout this chapter,
microservice containers can easily be connected with Lego-like efficiency to build
and deploy robust applications in production.

Throughout this section, we have looked at how container runtime environments
establish dependencies on other containers using the container networking fabric, as
well as creating link dependencies. We observed how these concepts work together
to build a rather complex multi-container application using Gulp, Django, NGINX,
and Postgres containers. We tested this stack in developer mode using dev_overrides,
as well as in production mode according to the project configuration. Finally, we
deployed this application into our local OpenShift cluster to simulate a real-world
production deployment, complete with container networking and persistent volume
claims.

The final chapter of the book will cover ways in which you can expand your
knowledge of Ansible Container and cover some practical tips on how to go forward
in your knowledge of Ansible Container, carrying forward the knowledge you have
obtained so far in this book.

Going Further with Ansible
Container
In the introductory chapters of this book, we learned how trends in the IT industry
have fundamentally shifted and shaped the ways in which applications and services
are designed and deployed. With the rise of consumption of high-CPU and
bandwidth-intensive services, consumers are regularly demanding more features,
have zero-tolerance to outages, and want more options to consume services and
applications. In response to this shift, no longer can monolithic application
deployments and static servers be the backbone of this aging infrastructure. Even
configuration management and automation tools, as dynamic as they are, cannot
keep up with the need for organizations to continually scale out existing
infrastructure footprints across a variety of platforms.

In response to this trend, containerization platforms such as Docker rose to the
challenge to address the need deploy and manage applications consistently and
reliably. Docker containers enable businesses and organizations to adopt a modular
infrastructure footprint in which applications can be built entirely self-contained and
guaranteed to run on any system that uses a compatible container runtime
environment. This allows software developers and DevOps engineers to rapidly
build microservice applications, similar in many respects to Lego bricks that can be
stuck together to design large and complex software stacks.

While microservice applications seem to be the answer to many problems plaguing
the industry today, conventional methods of building and deploying microservice
applications are proving to be less robust and give the operators of these services
fewer options to truly build and configure container images that meet the needs of
organizations. The Ansible Container project seeks to meet this need by filling the
gap between traditional configuration management and the container build and
deploy pipeline. As we have seen throughout this book, Ansible Container can be
leveraged to not only use the power of Ansible to build truly customized container
images, but also to manage the life cycle of containerized software from
development all the way to production.

In this, the final chapter of this book, I want to provide the reader with resources they

can use to move forward with building and deploying containerized projects using
Ansible Container, far beyond the scope of this book. Although we have covered all
of the functional aspects of using and working with Ansible Container, microservice
architecture is a rapidly growing field that is constantly changing and growing with
the open source communities that author them. This chapter aims to point the reader
in helpful directions that can be used as a starting point from which to grow in your
knowledge of containerized software, provide helpful hints and tips for managing
containers at scale, and also use your newly-found knowledge to help grow the open
source communities around these projects.

In this final chapter, we will cover the following topics:

Tips for writing roles and container apps
Building powerful deployment playbooks with Ansible Container
Tips for troubleshooting application containers
CICD deployments with Jenkins or Travis CI
Sharing roles and apps on GitHub and Ansible Galaxy
Containerize everything

Tips for writing roles and container
apps
If you are new to Ansible and playbook syntax, it can be quite easy to get confused
when writing playbooks for the first time. Although Ansible is inherently a very
readable and non-programmer friendly language to approach, there are a few gotchas
one should keep in mind when writing roles or container apps to maximize usability.

Use full YAML syntax
A personal pet peeve of mine when working with Ansible code is when the author
uses what I call the condensed method of writing a playbook. Essentially, functional
Ansible code can be written so that module calls and attributes can be written on the
same line, using an equals sign (=) to separate attributes and values, as seen in the
following code.

Condensed method sample code:

- name: Deploy configuration file
 template: src=ConfigFile.j2 dest=/etc/myApp/myConfig.yml mode=0644

- name: Install Package
 apt: name=myApp state=present update_cache=true

Proper YAML syntax sample code:

- name: Deploy configuration file
 template:
 src: ConfigFile.j2
 dest: /etc/myApp/myConfig.j2
 mode: 0644

- name: Install Package
 apt:
 name: myApp
 state: present
 update_cache: true

As you can see, the condensed method and proper YAML syntax are functionally the
same, but they are visually different. Using proper YAML syntax defines module
calls across multiple lines and requires the user to indent module attributes
underneath the definition of the module call itself. This makes playbooks much
easier to read at a glance, and a lot easier to debug when looking for errors. Using
proper YAML syntax also ensures that your text editor can perform proper syntax
highlighting of your code since it conforms to standard YAML conventions. Using
the condensed method, however, one can write Ansible code more quickly, but at the
cost of readability and usability for others who might use your playbooks in the
future. Not only is it visually unappealing, but makes reading the code and
understanding the functionality a difficult experience. A best practice is to get into
the habit of writing Ansible playbooks and roles using full YAML syntax and
indentation. Others who use your code and contribute to it will thank you.

Use Ansible modules
When first starting writing Ansible playbooks and roles, it is quite tempting to use
the shell or command modules for almost every task. If one has a firm understanding of
BASH and the suite of GNU/Linux tools and utilities that come natively with most
Linux-based operating systems, it is logical to want to build playbooks using the
shell or command modules. The problem with this approach is that it ignores the
family of over a thousand unique Ansible modules that ship out of the box with
Ansible.

While shell and command do have their place under some circumstances, you should
look first to see if there is an Ansible module that can programmatically do what you
are trying to accomplish. The benefit of using an Ansible module, instead of running
commands directly on the shell, is that Ansible modules have the ability to evaluate
idempotency and take action only if the target is not in the desired state. While it is
possible to use the command-line modules idempotently, it is far more difficult.
Furthermore, Ansible modules have the unique ability to store and retrieve metadata
about tasks in memory. For example, you could add the register line in a task
definition to store the task metadata to a variable named task_output. Later in the
playbook, you could check if that task performed a change on the system by
checking if task_output.changed == true and take action accordingly. Similarly, this
same logic can be used to check the return codes of tasks, search for metadata, or
take actions if tasks have failed. Using modules gives you the freedom to leverage
Ansible to work exactly the way you want it to.

Build powerful deployment
playbooks with Ansible Core
As we have looked at throughout this chapter, Ansible Core is essentially the engine
that works behind the scenes during the execution of a deployment. We looked at
extracting these playbooks from the ansible-deployment directory and running them
manually, passing in the corresponding tags to manually execute the run, stop,
restart, and destroy functionality. However, these playbooks are generally limited
and quite basic in form and function. Don't think for a moment that for deploying
projects you are only limited to running the ansible-container deploy command, or
executing the deployment playbooks manually. If you look at the deployment
playbooks that are automatically generated, you will notice that they make calls to
the docker_service module, which is a module featured in Ansible Core. Using a
similar methodology, you can write your own playbooks to build completely custom
deployments outside the scope of Ansible Container.

An excellent use case for this scenario might be that you have other services that are
dependent on the status of the containerized project you built with Ansible
Container. These services could be monitoring services, a database cluster, or even
an external infrastructure API that you want your containers to pull data from during
the launch process. Using a separate Ansible Core playbook, you could completely
orchestrate the process of launching your containers and interacting with the
dependent services. Here is an example code snippet, to help give you some
inspiration. Notice we are defining the project name as a variable that we are also
passing into the REST API call to register the service:

- name:Deploy New Service
 hosts: localhost
 connection: local
 gather_facts: no
 vars:
 ProjectName: "MyAwesomeApp"

 tasks:

 #Start the Container Service using the variable defined above
 - docker_service:
 project_name:"{{ ProjectName }}"
 definition:
 App:
 image: MyContainer:tag

 command: /usr/bin/dumb-init AwesomeApp
 register: ServiceStarted

#Register the service only when the container is updated (changed)
- name: Register Service in API
 uri:
 url: https://your.service.example.com/api/v2/
 method: POST
 body: "service: {{ ProjectName }}, state: deployed"
 body_format: yaml
 when: ServiceStarted.changed

As you can see, using Ansible Core playbooks to deploy containerized infrastructure
can be an immensely powerful tool. When Ansible Core playbook modules to
abstract your deployments, you are only limited by your imagination.

Troubleshooting application
containers
Inevitably during the course of building containerized services and applications, you
will encounter the need to troubleshoot misbehaving containers. Sometimes,
containers fail to start due to a misconfigured container start command or entry
point. Other times, the container itself starts to throw errors that need to be debugged
or diagnosed. Most of the time, these issues can be looked at by examining the
container logs or viewing the container runtime details in OpenShift, Docker, or
Kubenetes. Following is a list of commands for the respective containerized runtime
environment I have found the most helpful over the years:

Docker:
docker logs: Use the docker logs command to view the standard out logs for
any stopped, running, or exited container. Oftentimes, when containers
have stopped, the last message they logged to standard out will confirm the
cause of the container stop. Docker logs are also useful for debugging
errors as they happen in the container in real-time. The full syntax for this
command is docker logs [container name or ID].
docker inspect: This can be used to view the all attributes and configuration
details for almost any Docker resource, such as containers, networks, or
storage volumes, in JSON format. inspect is useful for understanding how
Docker itself sees the respective resource and whether it is picking up
certain configuration parameters. The full syntax for inspect is docker
inspect [docker resource name or ID].

Kubernetes:
kubectl logs: kubectl logs is used to view the logs of a pod running in
Kubernetes. Often, the kubectl logs output will be similar to the docker logs
output, if Kubernetes is using Docker as the underlying container runtime
environment. However, using Kubernetes to natively relay the log output
allows the user to retrieve the logs using native Kubernetes abstractions,
which may give an indication where the issue rests. It is also helpful to
view the container runtime logs in conjunction with the Kubernetes logs.
The full syntax for kubectl logs is kubectl logs [full pod name] --namespace
[namespace name].
kubectl describe: describe is useful for viewing verbose output and

configuration parameters for almost any Kubernetes resource. It can be
used on cluster nodes, pods, namespaces, replica sets, and services, to
name a few. Using describe, one can view resource labels, event messages,
and other configuration options. The major benefit of kubectl describe is
being able to describe almost any cluster resource to troubleshoot issues,
whether it is a cluster node or a misbehaving pod. The full syntax for
describe is kubectl describe [resource type] [resource name] --namespace
[namespace name if applicable].

OpenShift:
oc logs: oc logs is quite similar to kubectl logs and docker logs in that it
allows the user to view the logs specific to a specific running or restarting
pod. Similar to Kubernetes, it is often quite helpful to compare the oc logs
output with the output of docker logs to try and pinpoint the source of the
issue. The full syntax for oc logs is oc logs [pod or resource name].
oc debug: debug is used to create an exact copy of the troublesome pod or
deployment to examine without interrupting the running service. Using
debug, you can pass commands into the copied pod that can be used for
debugging purposes, such as opening a shell or dumping environment
variables. The full syntax for debug is oc debug [pod, deployment, or
resource name] -- [command to execute].

Create a build pipeline using
Jenkins or TravisCI
In recent years, the idea of continuous integration continuous deployment (CICD)
has taken the software development community by storm. Rich projects such as
Jenkins, TeamCity, and TravisCI have given developers automated frameworks from
which code changes can automatically be built, tested, and upon passing, deployed
across the infrastructure. Leveraging CICD tools, developers using rapid software
development methodologies such as Agile can deploy software faster and more
reliably than ever before.

Most CICD tools and workflows function by defining jobs that have specific triggers
they are listening for. These triggers could be code check-ins in a Git repository,
users manually kicking off builds, or automated processes that call the CICD API
directly. These jobs perform very specific and automated functions such as building
code, running tests against the newly built code, and even handling the deployment
of code changes. The CICD jobs even have the capability of sending notifications to
chatrooms or email if a build, testing, or deploy step fails. Some are even
sophisticated enough to notify the user who checked in the code if that particular
change is breaking the build. The major benefit of CICD rests in the automation it
provides to software developers to ensure these jobs are performed reliably,
consistently, and regularly.

Imagine for a moment what a huge benefit CICD tools could provide to Ansible
Container projects:

ansible-container build automatically executed upon checking code into a
certain Git repository branch
ansible-container run executed on the CICD host to bring up the containers
locally and fire off smoke tests to ensure the containers are running as expected
If the build and testing steps pass, ansible-container push could be executed on
the images, which tags them with a specific build number and pushes them to a
container image registry such as Docker Hub
Automatically kicking off ansible-container deploy and ansible-container run to
deploy projects into specific environments (even production!)

Using automated CICD tools, you can take steps towards moving your infrastructure
further towards a fully automatic build and deploy pipeline that does not involve
human intervention at all. If you are curious to see what CICD tools can do for you
and your workflow, I would suggest that you sign up for a free Travis CI account at h
ttps://travisci.org. If you are interested in a fully free and open source solution to
deploy in your own infrastructure, I would recommend Jenkins: https://jenkins.io.

Additionally, you can look at the Travis CI build pipelines that build some of the
Ansible Container projects we worked through throughout this book. For example,
you can find the django-gulp-nginx project here: https://travis-ci.org/ansible/django-gu
lp-nginx.

https://travisci.org
https://jenkins.io
https://travis-ci.org/ansible/django-gulp-nginx

Share roles and apps on GitHub
and Ansible Galaxy
Ansible Galaxy is an absolutely fantastic resource to leverage to reuse some of the
best playbooks and roles developed by the community. As we have seen throughout
the book, Ansible Galaxy hosts hundreds of Ansible Core roles, container roles, and
container apps. These projects are developed and shared with the community due to
the friendly and altruistic nature of the stellar and incredibly smart people who make
up the vast Ansible ecosystem. Sharing Ansible roles on Galaxy, however, is not just
reserved for a select few Ansible veterans. Anyone can sign up for an account on htt
ps://galaxy.ansible.com and share a project already hosted in a GitHub repository. In
my experience working with the Ansible community, if you develop a super-cool
role or app that solves a problem, it is almost guaranteed there are others out there
struggling with the same problem. By contributing your code to Ansible Galaxy, you
are not only helping others, you are also opening the door to allow others to help you
as well. Oftentimes, others will contribute to your code directly or by leaving
feedback for ideas and suggestions for how things can be improved or fixed. Newer
and better versions of your code can be contributed from community members and
reused to help make your life even easier. That's one of the most powerful things I
love so much about open source software: we can achieve as a community what is
oftentimes very difficult to achieve on our own.

At the very least, you should check your code into a GitHub repository to share your
projects and make your code accessible to other users in the future. GitHub
repositories are also useful for using version control on your projects and tracking
changes. To use GitHub, sign up for an account at https://github.com:

https://galaxy.ansible.com
https://github.com

Figure 1: github.com homepage

From the https://github.com/ homepage, you can sign up for a free account by
supplying a username, password, and valid email address. Once your account has
been created and you have signed in for the first time, you can create a GitHub
repository by clicking on the + (plus sign) dropdown in the upper-right corner of the
screen and selecting New Repository. This will direct you to a form from which you
can provide the details about the new project you wish to create:

Figure 2: Creating a new GitHub Repository

Once the new GitHub repository has been created, you can clone the repo using the
SSH or HTTPS link and start contributing code. Each GitHub repository has a
unique public URL that can be used to share the link to the GitHub repository. This
link is required to share your code on Ansible Galaxy:

Figure 3: Cloning an empty Git repository

https://github.com/

The following example demonstrates a sample Git workflow: cloning the repository,
creating initial files, and committing them into the repository.

aric@local:$ git clone https://github.com/aric49/AwesomeApplication.git
Cloning into 'AwesomeApplication'...
warning: You appear to have cloned an empty repository.

aric@local:$ git status
fatal: Not a git repository (or any of the parent directories): .git
aric@local:$ cd AwesomeApplication/
aric@local:AwesomeApplication$ touch file.txt
aric@local:AwesomeApplication$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 file.txt

nothing added to commit but untracked files present (use "git add" to track)

aric@local:AwesomeApplication$ git add file.txt

aric@local:AwesomeApplication$ git commit -m "Adding code to my git repo"
[master (root-commit) 8bfd103] Adding code to my git repo
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 file.txt

For more information about Ansible Galaxy and sharing roles or apps online, please
read the Ansible Galaxy documentation located at https://galaxy.ansible.com/intro.

https://galaxy.ansible.com/intro

Containerize everything!
Progressing on your journey to a fully modular containerized infrastructure is an
exciting one. I'm sure as you have worked your way through the examples contained
within this book, you have undoubtedly caught container fever. Hopefully, you have
seen how powerful containers can be, especially when run within container
orchestration solutions such as Kubernetes and OpenShift. My last word of advice to
you before our journey concludes is to keep it up! Now that you have a full
understanding of the entire Ansible Container workflow, keep building projects and
containerize as much as you possibly can. If the last few years have proven anything
in the world of DevOps and infrastructure, it is that containers are the future of
software as we know it. As more and more businesses and organizations adopt
containerized solutions, the demand for qualified developers who have a firm
understanding of building and deploying containers continues to grow.

It is my personal rule of thumb that I try to containerize everything, as often and as
much as possible. Having reusable Docker containers for the applications I am
working on gives me the ability to quickly build, destroy, deploy, and redeploy entire
projects completely on my laptop at a moments notice. Using Ansible Container
allows me, as a DevOps engineer, to build containers that speak the same language
that my infrastructure speaks: Ansible. Using Ansible, I no longer have to mentally
shift gears when working on infrastructure automation and building containerized
projects. I can just as quickly develop containers as I can any other Ansible project
I'm working on. This has given me tremendous drive and motivation to adapt my
previously written Ansible roles to build and deploy Ansible containers that can run
in any containerized environment, regardless of the platform or operating system.
Subsequently, this also makes me think about current projects I am working on and
how I can best adapt my automation strategy to fit into a containerized context.

Looking at projects out there, such as CoreOS's Container Linux (https://coreos.com/
why/) and other fully containerized operating system platforms, it is apparent that
everything, even entire operating systems, will eventually be containerized. Go
ahead. Start now! By containerizing everything you are working on, you will make
your work more efficient, repeatable, and locally testable. Not only that, but you are
ensuring your platforms, applications, and infrastructure is future-proof. Even if your
team isn't currently thinking about containers yet, you should be. The world of cloud

https://coreos.com/why/

infrastructure and containerization is moving so quickly that without embracing a
truly modular software development methodology, you will surely be left in the dust.

References
Travis CI: https://travis-ci.org/
Jenkins: https://jenkins.io/
Ansible Container Freenode IRC: http://docs.ansible.com/ansible-container/
Container Linux: https://coreos.com/why/

https://travis-ci.org/
https://jenkins.io/
http://docs.ansible.com/ansible-container/
https://coreos.com/why/

Summary
When I first started working with Docker containers around two years ago, I thought
at first that building and managing containers was quite a pain, given how quickly
and efficiently I could write Ansible playbooks that would do exactly the same thing.
Eventually, I got the hang of the Dockerfile syntax and started to finally see how
much power there was in deploying applications inside containers. What finally
convinced me how awesome containers are was when I built out an entire OpenStack
cloud using the Kolla project (https://docs.openstack.org/kolla/latest/). The Kolla
project aims to deploy a full OpenStack cloud solution using Ansible Playbooks to
deploy OpenStack services in Docker containers. Using Kolla, I could deploy an
entire multi-node OpenStack cluster in approximately 30 minutes. Coming from a
background of having previously automated various OpenStack components, using
Chef and Ansible, I was completely amazed.

Around a year ago, I started following the Ansible Container project as a supplement
to the Docker, OpenStack, and Kubernetes work I was engaged in at the time. At the
time, I saw Ansible Container as the missing piece of the puzzle that would allow me
to use Ansible as a full end-to-end development and deployment solution to my
container work. It has been an absolutely amazing journey so far. With the support of
the community, I have used Ansible Container both personally and professionally to
automate and deploy a multitude of projects over the last year or so. I have been
absolutely amazed with how much more flexibility Ansible Container gives me as a
DevOps engineer compared to building standard Dockerfiles.

It is my hope that you will finish reading this book with a sense of enthusiasm to
move forward with your work and career no matter what segment or industry you
work in. The thing that never ceases to amaze me with open source software is the
sheer number of diverse people in various industries that adopt these technologies. I
hope that, as you progress with Ansible Container, you will keep an eye on the future
and an ear to the ground. As more and more people adopt these technologies,
amazingly smart people will keep contributing features to make these platforms even
better. Thank you for taking the time to read this book. I wish to also thank the
amazing people who write Ansible Container: Chris Houseknecht (@chouseknecht) and
Joshua Ginsberg (@j00bar), who have supported me on many of these examples,
fixing bugs, and providing fantastic support for a project they are quite obviously

https://docs.openstack.org/kolla/latest/

passionate about. If this book has been helpful to you, please drop me a line on
Twitter or Freenode IRC: @aric49.

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer Support
	Downloading the color images for this book
	Errata
	Piracy
	Questions

	Building Containers with Docker
	DevOps and the shifting IT landscape
	Manual deployments of monolithic applications
	An introduction to automation
	Virtualization of applications and infrastructure
	Containerization of applications and infrastructure
	Orchestrating of containerized applications

	Building your first docker container
	Instantiating the lab environment
	Installing the lab environment:

	Starting your first Docker container
	Building your first container
	Dockerfiles

	Container life cycle management
	References

	Summary

	Working with Ansible Container
	An introduction to Ansible Container and the microservice architecture
	A quick introduction to Docker Compose
	Ansible Container workflow
	Ansible Container quick-start
	Ansible Container init
	Ansible Container build
	Ansible Container run
	Ansible Container destroy

	Summary

	Your First Ansible Container Project
	What are Ansible roles and container-enabled roles?
	Roles in Ansible Galaxy
	Ansible Container NGINX role
	Starting a new project
	Installing the NGINX role
	Running the NGINX role
	Modifying the NGINX role
	Running the modified role
	Pushing the project to Docker Hub

	Summary

	What's in a Role?
	Custom roles with Ansible Container
	YAML syntax
	Ansible modules

	A brief overview of MariaDB
	Initializing an Ansible Container role
	What's in a container-enabled role?
	Initializing the MariaDB project and role
	container.yml

	Writing a container-enabled role
	roles/mariadb_role/meta/container.yml
	tasks/main.yml
	Task breakdown (main.yml)
	tasks/initialize_database.yml
	Task breakdown (initialize_database.yml)
	templates/my.cnf.j2

	Building the container-enabled role
	Customizing the container-enabled role
	variable_files/dev.yml
	variable_files/test.yml
	variable_files/prod.yml
	container.yml

	References

	Summary

	Containers at Scale with Kubernetes
	A brief overview of Kubernetes
	Getting started with the Google Cloud platform
	Deploying an application in Kubernetes using kubectl
	Describing Kubernetes resources
	Exposing Kubernetes services
	Scaling Kubernetes pods

	Creating deployments using Kubernetes manifests
	Creating services using Kubernetes manifests
	References

	Summary

	Managing Containers with OpenShift
	What is OpenShift?
	Installing Minishift locally
	Installing the Minishift binaries

	Deploying containers using the web interface
	OpenShift web user interface tips

	An introduction to the OpenShift CLI
	OpenShift and Ansible Container
	References

	Summary

	Deploying Your First Project
	Overview of ansible-container deploy
	ansible-container deploy
	Deploying containers to Kubernetes
	Deploying containers to OpenShift
	References

	Summary

	Building and Deploying a Multi-Container Project
	Defining complex applications using Docker networking
	Exploring the Ansible Container django-gulp-nginx project
	Building the django-gulp-nginx project
	Development versus production configurations

	Deploying the project to OpenShift
	References

	Summary

	Going Further with Ansible Container
	Tips for writing roles and container apps
	Use full YAML syntax
	Use Ansible modules

	Build powerful deployment playbooks with Ansible Core
	Troubleshooting application containers
	Create a build pipeline using Jenkins or TravisCI
	Share roles and apps on GitHub and Ansible Galaxy
	Containerize everything!
	References

	Summary

