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Abstract

The basic motivation of this work was the integration of biophysical models within the
interval constraints framework for decision support. Comparing the major features of
biophysical models with the expressive power of the existing interval constraints
framework, it was clear that the most important inadequacy was related with the
representation of differential equations. System dynamics is often modelled through
differential equations but there was no way of expressing a differential equation as a
constraint and integrate it within the constraints framework.

Consequently, the goal of this work is focussed on the integration of ordinary
differential equations within the interval constraints framework, which for this purpose is
extended with the new formalism of Constraint Satisfaction Differential Problems. Such
framework allows the specification of ordinary differential equations, together with related
information, by means of constraints, and provides efficient propagation techniques for
pruning the domains of their variables. This enabled the integration of all such information
in a single constraint whose variables may subsequently be used in other constraints of the
model. The specific method used for pruning its variable domains can then be combined
with the pruning methods associated with the other constraints in an overall propagation
algorithm for reducing the bounds of all model variables.

The application of the constraint propagation algorithm for pruning the variable
domains, that is, the enforcement of local-consistency, turned out to be insufficient to
support decision in practical problems that include differential equations. The domain
pruning achieved is not, in general, sufficient to allow safe decisions and the main reason
derives from the non-linearity of the differential equations. Consequently, a complementary
goal of this work proposes a new strong consistency criterion, Global Hull-consistency,
particularly suited to decision support with differential models, by presenting an adequate
trade-of between domain pruning and computational effort. Several alternative algorithms
are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort
was made to provide implementations able to supply any-time pruning results.

Since the consistency criterion is dependent on the existence of canonical solutions, it
is proposed a local search approach that can be integrated with constraint propagation in
continuous domains and, in particular, with the enforcing algorithms for anticipating the
finding of canonical solutions.

The last goal of this work is the validation of the approach as an important contribution
for the integration of biophysical models within decision support. Consequently, a
prototype application that integrated all the proposed extensions to the interval constraints
framework is developed and used for solving problems in different biophysical domains.
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Chapter 1

Introduction

The original motivation for this work derives from our past experience in the design of
decision support systems for medical diagnosis. Knowledge representation has always been
a major concern in the design of decision support systems, namely those applied to the
medical domain. The early medical knowledge based systems were designed to accomplish
some specific medical task (typically diagnosis) and the medical knowledge was mostly
embedded in the procedures designed to accomplish that task. This led to problems of
consistency (the medical knowledge reflected the views of the medical experts that advised
the design of such systems, which by no means was consensual within the health care
community) and also of reuse (the same knowledge could not be used in two different tasks
— e.g. diagnosis and treatment).

This problem was soon recognised and several approaches were proposed to overcome
it, namely to represent medical knowledge declaratively. As such the systems could
represent medical knowledge proper (i.e. anatomical, physiological or pathological
knowledge) separately from task related knowledge (i.e. what are the necessary steps to be
executed when performing diagnosis, treatment or monitoring tasks). Moreover, task
knowledge could be formalised and (re)used in several specific medical domains
(cardiology, neurology, etc.).

Such a view was particularly useful for systems based on logic, in that useful relations
between medical concepts are stored as facts (e.g. causal relations, associations, risk
factors) that could be handled by the reasoning process. Nevertheless, the medical concepts
and relations represented were usually relatively high level abstractions of the underlying
processes and this led to the problem of handling uncertainty - the more abstract are the
concepts and relations the more uncertain are the statements that can be made about them.

This problem can be alleviated if the knowledge handled by the systems would
represent less abstract concepts whose underlying uncertainty is more controlled. This is
the approach taken by systems based on “deep medical knowledge”. In contrast with
systems that represent causal but “shallow” relations, say, between a disease and a
symptom, these systems would represent a more detailed set of pathophysiological states
and processes that could explain the shallow relation between the disease and the symptom.

This was the kind of approach used for the development of our own decision support
system for the diagnosis of neuromuscular diseases [32, 34, 35]. Such an approach was
based on a causal-functional model for the representation of anatomical and physiological
domain knowledge which supported a diagnostic reasoning strategy that mimics the
medical reasoning usually performed over those dimensions of medical knowledge.

However, the approach still presented certain difficulties, both with the representation
of the domain knowledge and with the soundness of the diagnostic reasoning. To avoid
complexity, the quantitative knowledge about the elementary physiological processes was
abstracted into simpler qualitative relations where the continuous domains were partitioned
into symbolic values. Such simplifications prevented, for example, an adequate modelling
of the evolution of processes over time. On the other hand, the reasoning strategy was only
justified by clinical practice and not by the underlying knowledge model, thus lacking
automatic mechanisms for guaranteeing its soundness.
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The difficulties found in our practical approach seem to generalise for decision support
systems in other biomedical domains where there is a clear gap between theoretical and
practical approaches. Despite the existence of “deep” biophysical models generally
accepted by the biomedical community (e.g. cardiovascular models, respiratory models,
compartment models, etc), they are not explicitly incorporated into decision support
systems due to their complexity. They are often highly non-linear models based on
differential equations and these are difficult to reason about with simple “logical”
procedures. In most existing decision support systems, specialised on practical tasks such as
diagnosis or prognosis, this “deep” theoretical knowledge is still implicitly hidden in the
heuristics and rules used to perform those tasks.

In this context, constraint technology seems to have the potential to bridge the gap
between theory and practice. The declarative nature of constraints makes them an adequate
tool for the explicit representation of any kind of domain knowledge, including “deep”
biophysical modelling. The constraint propagation techniques provide sound methods, with
respect to the underlying model, that can be used to support practical tasks (e.g.
diagnosis/prognosis may be supported through propagation on data about the patient
symptoms/diseases). In particular, the interval constraints framework seems to be the most
adequate for representing the non-linear relations on continuous variables, often present in
biophysical models. Additionally, the uncertainty of biophysical phenomena may be
explicitly represented as intervals of possible values and handled through constraint
propagation.

The basic motivation of this work was then the integration of biophysical (or more
general physical) models within the interval constraints framework for decision support. On
the one hand, it would be necessary that biophysical models and phenomena could be
represented as interval constraints. On the other, to be of any practical use, the underlying
constraint propagation techniques should be efficient enough to support the decision
making process.

Comparing the major features of biophysical models with the expressive power of the
existing interval constraints framework, it was clear that the most important inadequacy
was related to the representation of differential equations. System dynamics is often
modelled through differential equations but there was no way of expressing a differential
equation as a constraint and integrate it within the constraints framework.

Consequently, the goal of this work is focussed on the integration of ordinary
differential equations within the interval constraints framework. In particular, in the context
of managing uncertainty in biophysical models for decision support, there is a special
interest in representing uncertainty in the model parameters by ranging them over intervals
of possible values.

In this work we extend the interval constraints framework with a new approach for
handling differential equations by means of Constraint Satisfaction Differential Problems
(CSDPs). Such framework allows the specification of ordinary differential equations,
together with related additional information, by means of constraints, and provides efficient
propagation techniques for pruning the domains of their variables. Such techniques are
based on existing reliable enclosure methods developed for solving ordinary differential
equations with initial value conditions.

The introduction of this new approach enabled the integration of all such information
into a specific constraint (of a different kind), relating several variables (e.g. representing
trajectory point values, parameter values, trajectory maximum value, etc). Such variables
may subsequently be used in other constraints of the model. The specific method used for
pruning its variable domains can be combined with the pruning methods associated with the
other constraints within an overall propagation algorithm for reducing the bounds of all
model variables.
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The application of a constraint propagation algorithm for pruning the variable domains
of a constraint system can be regarded as enforcing some form of local-consistency, since it
depends on the pruning methods associated with each individual constraint. The quality of
such local-consistency, that is, the pruning that may be achieved, is highly dependent on the
ability of these pruning methods (narrowing functions) for discarding value combinations
that are inconsistent with the respective constraint.

Enforcing local-consistency turned out to be insufficient to support decision in practical
problems that include differential equations. If uncertainty is included in the differential
model, the domain pruning achieved by such techniques would not, in general, be sufficient
to allow safe decisions since a wide range of possibilities would still be possible after
propagation.

The main reason for this poor performance derives from the non-linearity of the
differential equations. In case of parametric differential equations, parameter uncertainty is
quickly propagated and increased along the whole trajectory. Such behaviour is not a
consequence of the enclosure method adopted but rather an effect of the non-linearity of the
differential equation which in the extreme case of chaotic differential equations prevent any
reasonable, long-term, trajectory calculation (even without any significant initial
uncertainty).

Insufficiency of local-consistency was already recognised in many practical problems
not involving differential equations. In continuous domains, stronger consistencies were
proposed for dealing with such problems. These are higher order generalisations of local-
consistency criteria (Hull or Box-consistency for continuous domains) enforced by
algorithms that interleave constraint propagation with techniques for the partition of the
variable domains.

However, for many practical differential problems, such stronger consistency criteria
are still not adequate for decision support. Either the pruning is unsatisfactory or the
respective enforcing algorithms are too costly (computationally). Consequently, a
complementary goal of this work proposes a new strong consistency criterion particularly
suited to decision support with differential models, by presenting an adequate trade-of
between domain pruning and computational effort.

This new strong consistency criterion, Global Hull-consistency, is a generalisation of
Hull-consistency to the whole set of constraints, which is regarded as a single global
constraint. The criterion relies on the basic concept of a canonical solution, aiming at
finding the smallest domains enclosure that includes all canonical solutions. Several
alternative algorithms are proposed for enforcing Global Hull-consistency and an effort was
made to provide implementations able to supply any-time pruning results. This is
particularly useful in the context of decision support where the domain pruning is not the
ultimate goal in itself (the computation may be interrupted whenever pruning is sufficient
to make safe decisions).

All the proposed enforcing algorithms combine constraint propagation with domains
partition, and terminate whenever they find canonical solutions bounding each edge of the
current domains box. To anticipate the finding of canonical solutions, and eventually the
termination of the algorithm, it seemed natural to extend such algorithms with local search
capabilities.

In this work we thus propose a local search approach that can be easily integrated with
constraint propagation and domains partition. It is based on a technique commonly adopted
in multidimensional root finding over the reals, namely, line search minimisation along a
vector obtained by the Newton-Raphson method. In the context of a constraint system, the
points of the search space are complete real valued instantiations of all its variables and the
search is directed towards the simultaneous satisfaction of all its constraints.
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All the extensions to the interval constraints framework were proposed in the context of
integrating biophysical models within decision support. It would be important to validate
our approach in the sense that it provides an important contribution along such a direction.
Consequently, the final goal of this work is the application of our proposals to practical
problems of decision support based on biophysical models.

In this work we have developed a prototype application that integrates all the proposed
extensions to the interval constraints framework, and uses it for solving problems in
different biophysical domains. In particular, the problems addressed (the diagnosis of
diabetes, the tuning of drug design and the study of epidemics) are representative of the
kind of applications our approach is suited for.

1.1 Contributions

This work extends the interval constraints framework to handle differential equations. It
provides a new approach to model differential equations (subsection 1.1.1), a new
consistency criterion for pruning the variable domains (subsection 1.1.2), and a new
approach for integrating local search (subsection 1.1.3). A prototype was implemented and
applied to practical biophysical problems with good results (subsection 1.1.4).

1.1.1  Interval Constraints for Differential Equations

The interval constraints framework is extended with a new formalism to handle ordinary
differential equations (ODEs): the Constraint Satisfaction Differential Problem (CSDP). In
this formalism, ODEs are included as constraints, together with other restrictions further
required on its solution functions. Such restrictions may incorporate in the constraint model
all the information traditionally associated with differential problems, namely, initial and
boundary conditions. Moreover, the expressive power of this framework is extended to
represent several other conditions of interest that cannot be handled by -classical
approaches. These include maximum, minimum, time, area, first, and last restrictions.

The CSDP framework includes a solving procedure for pruning the domains of its
variables. A constraint may be defined as a CSDP and integrated with other constraints,
using its solving procedure as a safe narrowing function. This allows, for the first time, the
full integration of ODEs and related information within a constraint model.

1.1.2 Global Hull-consistency — A Strong Consistency Criterion

A new strong consistency criterion, dubbed Global Hull-consistency, is introduced for
pruning the domains of the constraint variables.
Several different approaches are proposed for enforcing Global Hull-consistency:

A higher order consistency approach with algorithm (n+1)B-consistency;

Backtrack search approaches that include algorithms BSy, BS;, BS>, and BS3;

Ordered search approaches that include algorithms OS; and OS3;

A tree structured approach, based on the 754 algorithm.
The TSA algorithm, the most competitive of the above algorithms, maintains a binary
tree representation of the search space and allows for dynamic focussing on specific
relevant regions, losing no information previously obtained in the pruning process.
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1.1.3  Local Search for Interval Constraint Reasoning

A local search approach is proposed for integration with constraint reasoning in continuous
domains. Despite their success in solving optimisation problems, local search techniques
have not been applied for constraint reasoning with continuous domains. The link with the
constraint model is achieved through the specification of a multidimensional function,
defined for each point of the search space, quantifying at each component the “distance”
from satisfying a required constraint.

The originality of the approach is to confine the local search procedure to specific
boxes of the search space, relying on the generic branch and bound strategy of the
constraint reasoning algorithm to overcome problems traditionally found in the local
optimisers (local optimum traps).

1.1.4  Prototype Implementation: Applications to Biophysical Modelling

A prototype application has been implemented integrating all the proposed extensions to
the interval constraints framework. It is written in C++ and based on the interval constraint
language OpAC [61] (for enforcing box-consistency) and the software packages FADBAD
[6] and TADIFF [7] (for the automatic generation of Taylor coefficients).
Three applications to biophysical modelling illustrate the potential of the proposed
framework:
e The diagnosis of diabetes based on a parametric differential model of the
glucose/insulin regulatory system;
e The tuning of drug design supported on a two-compartment differential model of the
oral ingestion/gastro-intestinal absorption process;
e An epidemic study based on a parametric differential model for the spread of an
infectious disease within a population.

1.2 Guide to the Dissertation

The dissertation is organised into two parts. The first one addresses the interval constraints
framework, its basic concepts and techniques, together with our proposals, which can be
incorporated in the framework independently from the context of differential equations.
The second part is concerned with the representation of differential equations and their
integration in the interval constraints framework.

PART I: INTERVAL CONSTRAINTS

Chapters 2 to 5 overview the interval constraints framework. In Chapter 2 we describe the
Constraint Satisfaction Problem paradigm in general and characterise the particular features
associated with continuous domains. Chapter 3 addresses interval analysis, focussing on the
methods and properties that are useful for the interval constraints framework. Chapter 4
explains the constraint propagation techniques and how they take advantage from interval
methods. Chapter 5 overviews the consistency criteria usually enforced in continuous
domains. Chapter 6 discusses maintaining Global Hull-consistency as an alternative
consistency criteria. Chapter 7 describes the integration of a local search procedure within
the interval constraint propagation. Chapter 8 presents the experimental results.
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Chapter 2: Constraint Satisfaction Problems

The generic paradigm of a Constraint Satisfaction Problem (CSP) is introduced, its main
concepts are defined, and a solving procedure is presented in terms of a search process over
a domains lattice. The special case of CSPs with continuous domains is addressed, leading
to the basic notions of interval domains and Continuous Constraint Satisfaction Problems
(CCSPs). Intervals are identified as elementary objects for representing continuous
domains, their basic operations are defined, and different notions of interval
approximations are presented. The interval concept is extended to the multidimensional
case, leading to the definition of boxes. The generic solving procedure for CSPs is refined
to CCSPs by considering the specificity of the continuous domains.

Chapter 3: Interval Analysis

Interval arithmetic is presented as an extension of real arithmetic for real intervals. Its basic
operators are defined together with their evaluation rules and algebraic properties. Interval
functions are introduced as the interval counterparts of real functions which can be
represented by means of interval expressions. The soundness of the evaluation of interval
expressions is stressed. The key concept of an interval extension of a real function, widely
used in the interval constraints framework, is defined and related to the sound evaluation of
its range. Several important forms of interval extensions are addressed, and the general
properties of their intersection and decomposition are discussed. The overestimation
problem, known as the dependency problem, regarding the evaluation of an interval
expression is identified, and its absence is noted when the expression does not contain
multiple occurrences of the same variable. The main interval methods used in interval
constraints are presented. The interval Newton method is described and its fundamental
properties analysed.

Chapter 4: Constraint Propagation

Constraint propagation for pruning the variable domains is described together with
enforcing algorithms based on narrowing functions associated with the constraint set. The
attributes of such narrowing functions are identified and the main properties of the resulting
constraint propagation algorithms are derived accordingly. The main methods used in the
interval constraint framework for associating narrowing functions with constraints are
presented. Their common strategy of considering each projection with respect to each
constraint variable is stressed, and their extensive use of interval analysis techniques for
guaranteeing the correctness of the resulting narrowing functions is emphasised. In
particular, the constraint decomposition method and the Newton constraint method are fully
described.

Chapter 5: Partial Consistencies

Local consistency is defined as a property that depends exclusively on the narrowing
functions associated with the constraint set. The main local consistency criteria used in
continuous domains, Interval-, Hull- and Box-consistency, are defined and identified as
approximations of Arc-consistency used in finite domains. The methods for enforcing such
criteria are discussed: being Hull- and Box-consistency associated with the constraint
decomposition method, and the Newton constraint method, respectively. The insufficiency
of enforcing local consistency on some problems is illustrated. Higher order consistency
criteria are then defined as generalisations of the local consistency criteria, and a generic
enforcing algorithm is presented.
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Chapter 6: Global Hull-Consistency

Global Hull-consistency is proposed as an alternative consistency criterion in continuous
domains. Several approaches are devised for enforcing Global Hull-consistency. A
suggested approach ((nt+1)B-consistency) is based on existing higher order consistency
criteria and the corresponding generic enforcing algorithm. Four different alternative
approaches (BSy, BS;, BS,, and BSj3) are proposed based on backtrack search over the space
of possibilities. Two additional approaches (OS; and OS;) are derived from the
modification of the backtrack search into an ordered search of the space of possibilities. A
final approach (7S4) is proposed based on a binary tree representation of the search space.
For each of the above approaches the respective enforcing algorithm is explained and its
termination and correctness properties justified.

Chapter 7: Local Search

A local search procedure is proposed for integration with the interval constraints
framework. It is based on a line search minimisation along a direction determined by the
Newton-Raphson method. All the underlying algorithms used by the approach are fully
explained, and the termination and convergence global properties are derived. Alternative
local search approaches are suggested and discussed. The integration of the proposed local
search procedure with Global Hull-consistency enforcement is presented for each of
algorithms discussed in the previous chapter.

Chapter 8: Experimental Results

Preliminary results on the application of the Global Hull-consistency criterion are
presented. The need for strong consistency requirements such as Global Hull-consistency is
illustrated with simple examples where weaker alternatives are clearly insufficient. A more
realistic problem based on data from the USA census is fully discussed. It aims at finding
parameter ranges of a logistic model such that the difference between the predicted and the
observed values does not exceed some predefined threshold. The pruning and time results
obtained with the Global Hull-consistency approach (with 7S4 algorithm) are compared
with those obtained by enforcing 2B-, 3B-, and 4B-consistency. Similar comparisons are
presented on the different problem of finding the structure of a (very simple) protein from
distance constraints among its atoms. The integration of local search within the best Global
Hull enforcing algorithms is discussed on another instance of the protein structure problem.

PART II: INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

Chapter 9 introduces Ordinary Differential Equations (ODEs) and reviews the existing
approaches for solving problems with ODEs. In chapter 10 we present our proposal of
Constraint Satisfaction Differential Problems (CSDPs) for integrating differential equations
within the interval constraints framework. Chapter 11 describes the procedure that is
proposed for solving CSDPs. Chapter 12 tests our proposal on several biomedical problems
for decision support with ODEs. In chapter 13 conclusions are discussed and future work is
suggested.

Chapter 9: Ordinary Differential Equations

Ordinary differential equations and initial value problems (IVPs) are presented. Solutions
of ODEs and IVPs are defined. Classical numerical approaches for solving IVPs are
reviewed. Taylor series methods are addressed in more detail. Different sources of errors
and its consequences in numerically solving an IVP are discussed. Interval approaches for
solving IVPs are reviewed. Interval Taylor Series (ITS) methods are fully described. The
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existing approaches that apply interval constraints for ODE solving are reviewed. The early
constraint approaches that maintain an extensive constraint network along the ODE
trajectory are described. The recent proposals for solving IVPs with constraint propagation
techniques are surveyed.

Chapter 10: Constraint Satisfaction Differential Problems

The Constraint Satisfaction Differential Problem (CSDP) is presented as a special kind of
CSP for handling differential equations with related additional information expressed as a
set of restrictions. Its definition is given and its expressive power illustrated with the
definition and explanation of each possible restriction type. The Continuous CSP
framework is extended for the inclusion of a new kind of constraint defined as a CSDP. The
concept of canonical solution is redefined for such extended context and its consequences
on Global Hull-consistency are discussed. The integration of CSDP constraints with local
search is explained. The modelling capabilities of the extended framework are illustrated
for representing parametric ODEs, interval valued properties and properties depending on
the combination of different components of an ODE system.

Chapter 11: Solving a CSDP

The procedure proposed for solving a CSDP is described as a constraint propagation
algorithm, based on a set of narrowing functions associated with its constraints, that
maintains a safe enclosure for the whole set of possible ODE solutions. The representation
of such an enclosure is explained and the narrowing functions for enforcing each type of
CSDP restriction are fully characterised. Additional narrowing functions, based on reliable
Interval Taylor Series methods, are defined for further reducing the uncertainty of the ODE
trajectory. The combination of all such different narrowing functions into the constraint
propagation algorithm is explained and the termination and correctness properties of the
solving procedure are derived.

Chapter 12: Biomedical Decision Support with ODEs

The extended interval constraints framework is applied to biomedical decision support
problems based on differential models. In a first problem, a parametric differential model of
the glucose/insulin regulatory system is used for supporting the diagnosis of diabetes during
a glucose tolerance test (GTT). This example illustrates the use of value restrictions for
modelling initial and boundary conditions (provided by the blood exams) and their
integration for reducing the parameter ranges allowing for decisions based on some non-
linear combination of these parameters. In a second problem, the tuning of a drug design is
supported based on a two-compartment differential model of its oral ingestion/gastro-
intestinal absorption process. This example illustrates the usefulness of the integration in
the constraint model of other important restrictions such as maximum, minimum, area, and
time restrictions. The last problem is based on a parametric differential model for the spread
of an infectious disease within a population. An epidemic study is accomplished for
predicting the effects of an infectious disease and determining the vaccination rate
necessary to guarantee some desirable conditions. This example illustrates the expressive
power of non-conventional restrictions, such as first and last restrictions, and its inclusion
into a more complex differential model for which there are no analytical solution forms.

Chapter 13: Conclusions and Future Work

The contributions of this work are analysed, some open problems are identified, and
directions for future work are set.
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Chapter 2

Constraint Satisfaction Problems

A constraint is a way of specifying a relation that must hold between certain variables. By
restricting the possible values that variables can take, it represents some partial information
about these variables, and can be regarded as a restriction on the space of possibilities.

Mathematical constraints are precise specifiable relations among variables, each
ranging over a given domain, and are a natural way for expressing regularities upon the
underlying real-world systems and their mathematical abstraction.

Many problems of the real world can thus be modelled as constraint satisfaction
problems (CSPs), in particular, problems involving inaccurate data or partially defined
parameters. The CSP is a classic Artificial Intelligence paradigm whose theoretical
framework was introduced in the seventies [136, 98, 97].

A CSP is defined by a set of variables each with an associated domain of possible
values and a set of constraints on subsets of the variables. A constraint specifies which
values from the domains of its variables are compatible. These can be done explicitly, by
presenting the consistent or inconsistent value combinations, or implicitly, by means of
mathematical expressions or computable procedures determining these combinations. A
solution to the CSP is an assignment of values to all its variables, which satisfies all the
constraints.

More formally we will use the following general definitions (similar to definitions used
by other authors [4, 83]).

Definition 2-1 (Constraint). A constraint c is a pair (s,p), where s is a tuple' of m variables
<xy, X2, ..., Xp>, the constraint scope, and p is a relation of arity m, the constraint relation.
The relation p is a subset of the set of all m-tuples of elements from the Cartesian product
DxDyx...xD,, where D; is the domain of the variable x;:

pC {<d1, dsy ..., dp> | dieD;,d>eD,,...,d,e Dm} a

The tuples in the constraint relation (p) indicate the allowed combinations of simultaneous
values for the variables in the scope. The length of these tuples (m) is called the arity of the
constraint.

Definition 2-2 (Constraint Satisfaction Problem). A CSP is a triple P=(X,D,C) where X is
a tuple of n variables <x;, x,, ..., x,>>, D is the Cartesian product of the respective domains
D;xDyx...xD,, i.e. each variable x; ranges over the domain D;, and C is a finite set of
constraints where the elements of the scope of each constraint are all elements of X. (N

In order to give a formal definition for the satisfaction of a particular constraint, it is
necessary to identify from a tuple of elements (associated with all the CSP variables) those
that are associated with the variables of the scope of the constraint. This is achieved by
tuple projection with respect to the variables of the scope.

! Tuples with m elements ¢, #,, ..., t,, will be written in the form <t,, t,, ..., t,>.
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Definition 2-3 (Tuple Projection). Let X=<x;x,,...,x,> be a tuple of n variables, and
d=<d,,d>,...,d,> a tuple? where each element d; is associated with the variable x;. Let
§=<Xi Xip---»Xi, > be a tuple of m variables where 1< i; < n. The tuple projection of d wrt s,

denoted d[s], is the tuple:
d[S] = <d,‘ d, .,dim> D

1 igse -

A tuple satisfies a constraint if and only if its projection wrt the scope of the constraint is a
member of the constraint relation.

Definition 2-4 (Constraint Satisfaction). Let P=(X,D,C) be a CSP. Let (s,p) be a
constraint from C and d an element of D:
d satisfies (s,p) iff d[s] € p a

A tuple is a solution of the CSP if and only if it satisfies all the constraints.

Definition 2-5 (Solution). A solution to the CSP P=(X,D,C) is a tuple deD that satisfies
each constraint ce C, that is:
d is a solution of P iff V.. d satisfies c a

Two important notions in constraint satisfaction problems are those of consistency and
equivalence.

Definition 2-6 (Consistency). A CSP P=(X,D,C) is consistent iff it has at least one solution
(otherwise it is inconsistent):
P is consistent iff 37< p d is a solution of P a

Definition 2-7 (Equivalence). Two constraint satisfaction problems with the same tuple of
variables P=(X,D,C) and P’=(X,D’,C’) are equivalent iff both have the same set of
solutions:
P and P’ are equivalent iff
Vdep (dis a solution of P = d is a solution of P’) A

Vd’eD’ (d’is a solution of P’ => d’ is a solution of P) ]

The definition of equivalence between two CSPs assumes that both of them have the same
tuple X of variables, however these could easily be extended to the case where they both
have the same set of variables. Moreover, it could be extended to the case where the set of
variables of one CSP is a subset of the set of variables of the other CSP. In this case they
would be equivalent wrt this subset if it is possible to define a bijective function between
the set of solutions of each CSP mapping solutions that share the values of all the common
variables®.

2 For simplicity, the same notation is used either if the element of &; represents a particular value or a set of values from
the domain of variable x;.

3 iff stands for: if and only if

4 This extension will be later used, in subsection 4.2.1, for defining equivalent CSPs obtained by constraint
decomposition, which includes necessarily new variables.
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2.1 Solving a Constraint Satisfaction Problem

A CSP can have one, several or no solutions. In many practical applications the modeling
of a problem as a CSP is embedded in a larger decision process. Depending on this decision
process it may be desirable to determine whether a solution exists (verify the consistency of
the CSP), to find one solution, to compute the space of all solutions of the CSP, or to find
an optimal solution relative to a given objective function.

Solving a CSP can be seen as a search process over the lattice of the variable domains.
For a given CSP (X,D,C) let us consider the complete domain lattice L defined by the
elements obtained from the power set of D partially ordered by set inclusion (<) and closed
under arbitrary intersection (M) and union (V). Figure 2.1 shows an example of a CSP P
(with finite domains) and figure 2.2 the corresponding domain lattice L.

i

P=(<x;,x>,DxDs,{c1,¢2}) C2
D~{0,1} D={0-1} ‘
X1

eyt x <4 e=(x-1) +H(x-1)224 cy

Figure 2.1 An example of a CSP with finite domains. The figure represents the two axes x; and
X, the four points are the domain set, the circumferences are the two constraints (inside ¢; and
outside ¢,). The solutions are the two points (<0,-1> and <1,-1>) inside the dashed area.

{<0,0>,<0,-1>,<1,0>,<1,-1>}
{<0,0>,<0,-1>,<1,0>}  {<0,0>,<0,-1>,<1,-1>}  {<0,0>,<1,0>,<1,-1>}  {<0,-1>,<1,0>,<1,-1>}

{<0,0>,<0,-1>} {<0,0>,<1,0>} {<0,0><1,-1>} {<0,-1>,<1,0>} {<0,-1><1,-1>} {<1,0><1,-1>}
{<0,0>} {<0,-1>} {<1,0>} {<L,-1>}

{

Figure 2.2 Domain lattice of the previous example partially ordered by set inclusion ().

The search procedure starts at the top of the domain lattice (the original domain D) and
navigating over the lattice elements it will eventually stop, returning one of them. If it
returns the bottom element (the empty set {}) then the CSP has no solution.

In the example of figure 2.1 the returned element should be:

(i) {<0,-1>} or {<1,-1>} if the goal is to find at least one solution;

(i) {<0,-1>,<1,-1>} if the goal is to compute the space of all solutions;

(iii) {<0,-1>} if the goal is to find the solutions that minimize x,*+ x,°.

The navigation over the lattice elements usually alternates pruning with branching steps
and ends whenever a stopping criterion is satisfied.

2.1.1  Pruning

The pruning consists on jumping from an element of the lattice to a smaller element (with
respect to the set inclusion partial order) as a result of applying an appropriate filtering
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algorithm which eliminates some value combinations that are inconsistent with the
constraints. All lattice elements containing value combinations that were eliminated in the
pruning step will not be considered any further. The elements remaining form a sub-lattice
with non-eliminated value combinations as a top element.

Figure 2.3 shows the result of applying a pruning step on the top element of the domain
lattice of the above example. The combination of values x;=0 and x,=0, proved to be
inconsistent with the constraints by some filtering algorithm, is absent in the resulting
lattice.

{<0.0>,<0,1>} {<0.0><1,0>} {<0.0><1-1>} {<0-1><1,0>} (<0 1><1-1>} {<1,0><1-1>}

{<0,0>} {<0,-1>} {<1,0>} {<1,-1>}

n_ e o B

{

Figure 2.3 Pruning some value combinations. From the top element of a lattice (A), a new top
element (A’) is obtained. In the example <0,0> was proved inconsistent by a filtering algorithm.

The filtering algorithm must guarantee that no possible solution is eliminated from the set
of value combinations of the original lattice element. If the filtering algorithm were
complete, all inconsistent combinations of values would be deleted and so, the new top
element would contain all the solution space. However this is not generally the case, and
several inconsistent combinations may still remain (in the example, combination <1,0> is
inconsistent but it was not detected in the pruning step).

2.1.2  Branching

The branching step may be applied when the pruning step fails to further eliminate
inconsistent combinations of values. The idea is to split a set of value combinations into
smaller sets (two or more), for which the pruning step will hopefully result in better
filtering. In the domains lattice the branching step corresponds to consider separately
smaller elements whose union is the original element.

Figure 2.4 illustrates this for the above example, where the top element {<0,-1>,<1,0>,
<1,-1>} was split into two smaller elements {<0,-1>} and {<1,0>,<1,-1>} for future
consideration.
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A

01,5105 <115

{t

Figure 2.4 Branching a lattice element (A) into smaller elements (A; and A;). The original
element is the union of all the new smaller elements (A=A;UA;).

2.1.3  Stopping

The search over the different branches may be done concurrently or by some backtracking
mechanism until a stopping criterion is attained. This stopping criterion may be the
achievement of the intended goal (find one, all or the best solution) or the satisfaction of
some specific properties imposed to avoid the complexity explosion of the search
procedure. Figure 2.5 shows the final results after searching each branch of the previous

example.
{<0,-1>,<1,0>,<1,-1>}

{<0,1>,<1,0>} =0,-1><1,-15]) {<1,0><1,-1>}

</

{

Figure 2.5 Stopping the search when the goal of finding all solutions (A, and A,) is achieved.
The result is the top element (A=A;UA;) of the remaining lattice.

In the example of figure 2.5, <0,-1> and <1,-1> were proved to be solutions of the CSP and
<1,0> was proved to be inconsistent, thus, if the goal was to compute the solution space, the
final result would be the top element {<0,-1>,<1,-1>} of the remaining lattice.

2.2 Constraint Satisfaction Problems With Continuous Domains

The notion of CSP was initially introduced to address combinatorial problems over finite
domains. Thus in the original framework the domains of the variables were expected to be
finite sets. However, the above definitions are general enough to represent constraint
satisfaction problems with either finite or infinite domain sets.

Numeric CSPs (NCSPs), initially proposed by Davis in [44], are extensions of the
earlier CSP framework to address variables with continuous domains. In our formalization
NCSPs are a special kind of CSPs where the constraints cannot be given extensionally, they
must be specified as numeric relations, and the domains are either integer domains or
continuous domains.
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Definition 2.2-1 (Numeric Constraint Satisfaction Problem). A NCSP is a CSP
P=(X,D,C) where

) Vp.ep DicZ v DR

ii) V(5 p)e C p is defined as a numeric relation between the variables of s Q

Further restrictions, either on the allowed variable domains or on the kind of numeric
expressions used for specifying the numeric relations, may be imposed to address
subclasses of problems and eventually to take advantage of their specific properties. For
example, if only linear equations over the real numbers are allowed then the subclass of
linear constraint satisfaction problems could be considered and some particular methods for
solving systems of linear equations would be used. However, the expressive power of these
restricted classes of CSPs would be decreased, possibly preventing the modelling of some
important relationships among the problem variables. If only linear constraints are allowed,
problems with non-linear relations between variables could not be easily represented.

Continuous CSPs (CCSPs), are an important subclass of NCSPs where all variable
domains are continuous real intervals and all the numeric relations are equalities and
inequalities. The following formal definition is based on [69]

Definition 2.2-2 (Continuous Constraint Satisfaction Problem). A CCSP is a CSP

P=(X,D,C) where each domain is an interval of R and each constraint relation is defined as
a numerical equality or inequality:

i) D=<Dj,....D,> where D; is a real interval (1<i<n)

ii) Voe ¢ cis defined as e.0  where e, is a real expression’ and ¢ € {<,=>} 1

The CCSP framework is powerful enough to model a wide range of problems, in particular
physical systems whose components may be described as sets of continuous valued
variables, and whose relations among these variables may be defined by numerical
equalities or inequalities, eventually with uncertain parameters.

2.2.1  Intervals Representing Unidimensional Continuous Domains

In CCSPs, the initial domains associated with the variables are infinite sets of real numbers
called real intervals. The following is a general definition for any real interval, either open,
half-open or closed interval.

Definition 2.2.1-1 (R-interval). A real interval is a connected set of reals. Let a<b be reals,
the following notations for representing real intervals will be used:

[a.bl={reR|a<r<b} (a.b)y={reR|a<r<b}
(a.b]={reRla<r<b} [a.b)={reR|a<r<b}
[a.t0)={reR|a<r} (a.to)={reRla<r}
(-0.b]={reR|r<b} (-0.b)={reR|r<b}
(<. 40) = R o=

The notation <a..b> will represent a nonempty real interval of any of the defined forms. U

5 Real expressions will be defined later in section 3.2 (definition 3.2-1). Constraints expressed as e;<e, are also
considered since they can be rewritten into the forme; - ¢, ¢ 0.
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In practice, computer systems are restricted to represent a finite subset of the real numbers,
the floating-point numbers. Several authors [91, 14, 134, 74] have defined the set of
machine numbers (F-numbers) as the set of floating-point numbers augmented with the two
infinity symbols (-c0 and +). In the formal definition we will also include the real number
0 which is always a member of the set of floating-points.

Definition 2.2.1-2 (F-numbers). Let F be a subset of R containing the real number 0 as

well as finitely many other reals, and two elements (not reals) denoted by -oo and +oo:
F={r0,...,rn} U {-00,+0} with 0 € {r0,...,)n} c R

The elements of F are called F-numbers. a

F is totally ordered: any two real elements of F are ordered as in R; for all real element r,
-oo<p<too. If fis an F-number £ and /" are the two F-numbers immediately below and
immediately above f'in the total order (-co-=-00 and +ooT=+00; -00™ is the smallest real in F

and +oo- is the largest real in F).

Given the above definition, we can now define the subset of real intervals that can be
represented by a particular machine as the set of real intervals bounded by F-numbers
(F-intervals).

Definition 2.2.1-3 (F-interval). An F-interval is a real interval &J or <a..b> where a and b
are F-numbers. In particular, if b=a or b=a™ then <a..b> is a canonical F-interval. a

Figure 2.6 illustrates the above concepts, showing a degenerate¢ and an half-open R-interval
([r;..r/] and (7>..r;3] respectively), and two F-intervals ([a..h] and [c..d]). [a..b] is a canonical

F-interval because a and b are consecutive F-numbers in the total order (b=a™).

degenerate \

[r1..r1] (Vg.. }"3]
R-intervals . e
" r2 13
R
e o o 9 o 0 0 P o 0 0 p o 0 0 0 0 o o
-0 a b c d +o0
F-intervals —
[a..b] [c..d]

canonical/

Figure 2.6 R-intervals and F-intervals.

In the rest of this work we further restrict the nonempty F-intervals to the forms with the
closed bounds whenever the bound is a real value ([a..b], [a..t), (-..b] and (-c0..+o0) with
a and b real values)’. However, the framework can be naturally extended to consider any of

¢ Degenerate intervals [r..7] (either R-intervals or F-intervals) may also be denoted as [r], {r} or even r if it is clear in the
context that it is an interval and not a real value.

7 The notation [a..b] will be generically used to represent any F-interval where [-00..5], [a..+o0] and [-o0..+00] denote
respectively (-0..5], [a..+o0) and (-c0..+0).
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the real interval forms defined in 2.2.1-1 (see [11] and [29] for a detailed discussion on this
issue).

2.2.2  Interval Operations and Basic Functions

All the usual set operations, namely, intersection (M), union (V) and inclusion (<), may
also be applied on intervals, either R-intervals or F-intervals, since intervals are connected
sets of real values. A particularly useful operation between two intervals is the union hull

(w) where the result is the smallest interval containing all the elements of both interval
arguments. The resulting interval is only different from the normal union operation when
the intersection of the two arguments is the empty set, in which case all real values between
the two interval arguments (not belonging to any of them) are also included.

Definition 2.2.2-1 (Union Hull). Let / =<a 1..b1>1 and ]2:<2a2..b2>2 be two intervals, either

R-intervals or F-intervals. The union hull operation (W) is defined as:

vl if [1ﬁ]2¢®
LWl = <1a1..b2>2 if vr,ehvrgelg ri<r;
<2a2..b1>1 if V,,IEIIVUEIZ ro<r; a

Several basic functions with an interval argument are usually defined for obtaining the
extreme values (left, cleft, right and cright), the mid value (center) or the size (width) of an
interval.

Definition 2.2.2-2 (Interval Basic Functions). Let [a..h] be a closed interval, either an
R-interval or an F-interval. The following basic functions return a real value and are
defined as:

left([a..b]) = a right([a..b]) =b

center([a..b]) = (a+b)/2 width([a..b]) = b-a
Let [a..b] be a closed F-interval. The following basic functions return a canonical F-interval
and are defined as:

[a] if a=b ) { [p] if a=b

clefi(la..b) = { [a.a™] ifa<b crighta-bD =1 - b1 if a<h Q

The union hull operation together with the interval basic functions is exemplified in figure

2.7.
lefie-dD~__ C@”fe'r([c--d] | right(e.d)

R
© o 6 5 9 0 0 p o o 0 p o 00 o 0 o 0
-0 a b c d +o0
[a..b] === [c..d]
F-intervals [a..b] W [c..d]

clefi([c..d]) == = cright([c..d]

Figure 2.7 Interval operations and basic functions.
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2.2.3  Interval Approximations

For any real number » we will denote by L] the largest F-number not greater than » and (7]
the smallest F-number not lower than . Any real interval can be associated to an F-interval
which is the closest approximation that can be represented by a particular machine.

Definition 2.2.3-1 (RF-interval approximation). Let /R=<a..b> be a real interval. The
RF-interval approximation of /R, denoted /,,.(IR), is the smallest F-interval including /R
(IR < Iyp(IR)):

Lp(IR)=[La] T B T}s.
In the special case where IR is a single real {r}=[r..r] then I,W(IR)=[LrJ ..|—r—|]. a

The definition of RF-set approximation extends the above definition to represent any set of
real values, either connected or not.

Definition 2.2.3-2 (RF-set approximation). Let SR be a set of real values defined by the
union of n real intervals (SR=IR;u...UIR,). The RF-set approximation of SR, denoted
Supx(SR), is the set defined by the union of the n corresponding RF-interval approximations:

Supr(SR) = Lpx(IR)) ...V L;p(IR) a

If in the above definition the union operation is substituted by the union hull operation then,
the result is the smallest F-interval containing all the elements of a set of reals.

Definition 2.2.3-3 (RF-hull approximation). Let SR be a set of real values defined by the
union of n real intervals (SR=IR;u...UIR,). The RF-hull approximation of SR, denoted
Ina(SR), is the F-interval defined by:

Luil(SR) = Ly (IR) .0 1, (IR,) Q

Figure 2.8 summarizes the above interval approximation definitions.

R h 12 I3

F © © 6 0 9 0 o o o o 06 o 0 0 0 o 0 o o
-0 Lr 1 L] [7s] +0
Lp([r1..71]) == " Ip((r2..73])

F-intervals — — Supl[r1..11] Y (r2..73])

D[ 1711 © (r2..73])
Figure 2.8 Interval approximation.

2.2.4  Boxes Representing Multidimensional Continuous Domains

Extending to several dimensions the concepts of an R-interval and F-interval, we will get
respectively the notions of an R-box and F-box.

Definition 2.2.4-1 (R-box). An R-box BR with arity n is the Cartesian product of n
R-intervals and is denoted by </Ry,...,IR,> where each /R; is an R-interval:
BR = {<}’1, F2y ooy P> | rrelR;, r; e IRz, ey € IRH} a

8 Extending the notation [-o0 ] and [+o0 | to denote respectively -oo and +oo.
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Definition 2.2.4-2 (F-box). An F-box BF with arity n is the Cartesian product of n
F-intervals and is denoted by </F,...,[F,,> where each [F; is an F-interval:

BE={<r;,ra ...,tw>|ri € IF,r; € IFs ...;1y € IF,}
In particular, if all the F-intervals /F; are canonical then BF is a canonical F-box. a

During the solving process of a CCSP several value combinations between the variables
may be discarded from the original domains box. Moreover, each variable domain may no
longer be a connected set of real values but rather a disconnected set corresponding to the
union of multiple connected sets.

Some approaches [77, 128] consider structures composed of several F-intervals to
represent each variable domain. In [77] a sequence of disjunct F-intervals is organized in a
structure called a division. In [128] a hierarchical arrangement of F-intervals constitutes a
taxonomy. In these approaches the space of possibilities of several variables is represented
by the set of the structures (divisions or taxonomies) associated with each variable and
corresponds to the set of F-boxes obtained by all combinations of the possible F-intervals
from the variable domains.

In [69] the feasible space between k variables is represented by 2*trees. A 2*-tree is a
hierarchical decomposition of the solution space into k-arity F-boxes which summarizes the
subset of constraints between the & variables.

In most interval constraint approaches the basic structures are F-intervals and the
solutions space is represented by enclosing F-boxes. In particular a single real value is
represented by a canonical F-interval and the assignment of a single real value to each
variable of a set of variables is represented by a canonical F-box. Consequently, canonical
F-boxes are the closest representations of CCSP solutions. In practice, if the system is not
able to prove the inconsistency of a canonical F-box then the box may contain a real
solution that is not accessible due to precision limitations. We will call a canonical solution
of a CCSP any canonical F-box that cannot be proved inconsistent (wrt to the CCSP) either
because it contains solutions or due to approximation errors in the evaluation of the
constraint set.

Definition 2.2.4-3 (Canonical Solution). Let P=(X,D,C) be a CCSP. Let BF be a canonical
F-box included in D (BFcD) and E.(BF) denote the F-interval obtained by the evaluation
of the expression E. with argument BF'°.

BF is a canonical solution of P iff V.c ¢ 3,e g, (BF) 700 a

2.2.5  Solving Continuous Constraint Satisfaction Problems

In a CCSP P=(X,D,C), since the initial variable domains are infinite sets (real intervals), the
domains lattice obtained from the power set of D, is also infinite. Thus the search process
for solving a CCSP is theoretically performed over an infinite space. In practice, due to the
computer limitations for representing real values, only a finite subset of the domains lattice
is representable, and so, the navigation process is limited to these elements. The search
procedure starts at the top of the domain lattice'® and navigates over the accessible elements
of the lattice until eventually stopping, returning one of them. The accessible elements of
the lattice are those representable by an F-box or by the union of several F-boxes.

% Each constraint ¢ is defined as E.00 with ¢ € {<,=>} (see definition 2.2-2). The evaluation of expressions with interval
arguments will be addressed later in section 3.2.

1% In practice, if D=D;xD,x...xD, then D’=l,,(D;)xI,p(D2)x...x I, (D,) will be the top element of the domain lattice
defined as the power set of D’.
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The pruning step consists on jumping from an element 4 of the lattice to a smaller
element A°, both representable by an F-box or by the union of several F-boxes. Despite
dealing with F-boxes, the filtering algorithm must still guarantee that no possible real
solution is lost, that is, any solution in 4 must also be in 4’. Nevertheless, the filtering
algorithm may be unable to prune some inconsistencies due to the limited representation
power (i.e., if the solution set in A is not representable then the best pruning achievable is
its tightest representable approximation which include several inconsistent real valued
combinations). For example, if the only solution of a CCSP asserts the real value & to a
variable then the best possible pruning is the canonical F-box including such © value for
that variable, which also includes other nearby values that do not belong to any solution of
the CCSP.

The branching step consists on splitting an element A4 of the lattice into » smaller
elements A;,...,4,, each representable by an F-box or by the union of several F-boxes. The
union of all the smaller elements must be equal to the original element.

To simplify the domains representation, most solving strategies impose that the only
lattice elements considered in the pruning and branching steps are representable by single
F-boxes (as opposed to a union of F-boxes). Pruning corresponds to narrowing the original
F-box into a smaller one where the lengths of some F-intervals are decreased by the
filtering algorithm (eventually being zeroed, proving the original F-box to be inconsistent).
The branching step usually consists on splitting the original F-box into two smaller F-boxes
by splitting one of the original variable domains around an F-number (usually the
F-number nearest to the mid value of the F-interval representing the domain).

With the above restriction on the search procedure, and noting that the top lattice
element (the starting point of the search) is representable by a single F-box, all navigation
is performed over the subset of the lattice elements representable by single F-boxes (the
reachable sub-lattice). Nevertheless, the final result may be any representable lattice
element, since it corresponds to the union of all elements remaining at the end of the search
process.

Despite being a finite search space, the domains lattice of a CCSP usually contains a
huge number of elements, and any strategy to navigate over it must be aware that the
underlying real valued search space is infinite. To be effective, a solving strategy cannot
rely exclusively on branching expecting the splitting process to stop eventually because the
search space is finite. In fact, the splitting process is theoretically guaranteed to stop but the
combinatorial number of necessary splits usually prevents such stopping from being
achieved in a reasonable amount of time. One approach often adopted imposes conditions
on the branching process, for instance, branching may only be performed on lattice
elements with some variable domains larger" than a predefined threshold and this may only
be done by splitting one of this domains.

23 Summary

In this chapter the paradigm of the Constraint Satisfaction Problem (CSP) was introduced
and the particular case of Continuous CSPs was presented. Intervals were introduced as the
elementary objects for representing continuous domains and boxes as their
multidimensional counterpart. Several interval basic functions and operators were defined
and different notions of interval approximation were given. The following chapter will
address interval analysis, focussing in the methods and properties that are useful for the
interval constraints framework.

! If the domain is represented by an F-interval [a..b] its size may be given by its width b-a; if the domain is represented
by the union of F-intervals its size may be given by the sum of their widths.
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Chapter 3

Interval Analysis

Interval Analysis was introduced by Moore [99] with the purpose of providing upper and
lower bounds for the effects of mathematical computation errors arising from different
sources, rounding errors, approximating errors and uncertainty data errors. The main goal is
to perform interval arithmetic operations to achieve sound mathematical computations over
intervals (instead of reals). A major concern in Interval Analysis is to develop interval
algorithms that make the interval bounds as narrow as possible.

The original goal of interval constraints [27] was to address the incorrectness of
numerical computations due to the floating-point representation of real numbers, offering a
sound computation model based on interval arithmetic. Additionally, the soundness of
interval arithmetic computations provided the right tools for defining sound filtering
algorithms to prune the variable domains when solving CCSPs. Hence, the pruning step is a
proof that the real valued combinations removed from the original variable domains do not
belong to a solution of the CCSP and the validation of this proof is guaranteed by the
soundness of interval arithmetic. Moreover, efficient interval methods developed in Interval
Analysis (e.g. the interval Newton method) are used in interval constraints to implement
efficient filtering algorithms.

31 Interval Arithmetic

Interval arithmetic is an extension of real arithmetic for real intervals. The basic operations
of real arithmetic, sum, difference, product and quotient, are redefined for real intervals.
The intended meaning of these operations between pairs of intervals is the set obtained by
applying them to all pairs of real numbers, one from each of the two intervals. The
following formal definition is based on the original one given by Moore [99].

Definition 3.1-1 (Basic Interval Arithmetic Operators). Let /; and /; be two real intervals

(bounded and closed)'. The basic arithmetic operations on intervals are defined by:
]1cD[g={l"1q)I’2|l"1€1] /\I"gé]g} with ®€{+,-,X,/}

except that [;/I, is not defined if 0 /.. a

Accordingly to the above definition a set of algebraic rules may be defined to evaluate the
result of any basic arithmetic operation on intervals in terms of formulas for its bounds.

Definition 3.1-2 (Evaluation Rules for the Basic Operators). Let [a..5h] and [c..d] be two
real intervals (bounded and closed):

[a..b] + [c..d] = [a+tc..b+d] [a..b] - [c..d] = [a-d..b-c]
[a..b] x [c..d] = [min(ac,ad,bc,bd)..max(ac,ad,bc,bd)]
[a.b] /[c..d] =[a..b] x [1/d..1/c] if 0¢[c..d] a

!'In definition 2.2.1-1 it would correspond to the form [a..5].
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Interval arithmetic is thus a generalization of real arithmetic. In the extreme case where
both interval operands are degenerate (i.e. a single real number of the form [r..r]) interval
arithmetic reduces to ordinary real arithmetic. Most algebraic properties of real arithmetic
also hold for interval arithmetic. However, the distributive law is an important exception.

Definition 3.1-3 (Algebraic Properties of the Basic Operators). Let /;, I>, I3 and I, be real
intervals (bounded and closed). The following algebraic properties hold for the basic
interval operations:

Commutativity: 1+1=1+1; (interval addition)

IixL=DxI; (interval multiplication)
Associativity: UL+ =1+(H) (interval addition)

(U< D) I=Ix(Irx13) (interval multiplication)
Neutral Element: 1;+[0..0]=I, (interval addition)

Iix[1..1]=I; (interval multiplication)
Subdistributivity: I[X(12+[3)§I1 ><12+[1 ><13
Inclusion Monotonicity: I,cl; A Lc Iy = I[P < LD I,

(with: ®e{+,-,x,/} and [;®1, defined) a

Figure 3.1 shows an example of the subdistributivity property. The evaluation of both sides
of the subdistributivity expression (I;x(/,+13) and I;xI,+1;xI3) is performed in parallel for a
particular case ({;=[0..1], 1,=[2..3] and I;=[-2..-1]) by consecutively applying the evaluation
rules defined in 3.1-2.

[1><(]2+]3) e ]1><[2+]1><13

1,=10..1] [0..1]x([2.31+[-2.-1])  [0..1]x[2..3]+[0..1]x[-2..-1]

[=[2.3] [0.1] x [0.2] [0.3] + [2.0

I=[-2..-1] [0..2] c [-2.3]
Figure 3.1 An example of subdistributivity.

The key idea of interval arithmetic is that despite the different sources of error in arithmetic
computations the correct real values are always within the bounds of the resulting real
interval. One of these error sources is the limitation of computer systems to the floating-
point representation of real numbers. The solution of interval arithmetic is to represent real
numbers as F-intervals (the F-interval approximation of a real number) and to evaluate the
basic interval arithmetic rules by outward rounding. The outward rounding forces the result
of any basic interval arithmetic operation to be an F-interval which is the F-interval
approximation of the real interval that would be obtained by evaluating the corresponding
rule with infinite precision. The following is the redefinition of the four basic interval
arithmetic rules with outward rounding evaluation.

Definition 3.1-4 (Outward Rounding Evaluation Rules of the Basic Operators). Let
[a..b] and [c..d] be two F-intervals (bounded and closed):

[a..b] + [c..d] = [Latc | b+d]] [a..b] - [c..d] = [La-d]..[b-c ]
[a..b] x [c..d] = [min(Lac], Ladl, Lbcl, Lbd]).. max(ac |, T ad,[ be |, [ bd )]
[a.b]/ [c.d]=[a.b] x [L1/d]T1/cT]  if 0g[c..d] Q

Outward rounding preserves the inclusion monotonicity property of interval arithmetic. In
the following, if @ is a basic interval arithmetic operator then ®,, denotes the
corresponding outward evaluation rule. For an m-ary basic interval arithmetic operator ®
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and the real intervals I;,...,1.: @upel11,.. . L)=lap(PU},. . ..I)). Moreover, when mentioning
the interval arithmetic evaluation to be performed with infinite precision, this corresponds
to the unrealistic extreme situation where all real numbers are also F-numbers and so:
V,eR Lrd=1r1=r making @, (1},....L)=0},....L,).

The correctness of the interval arithmetic computations is guaranteed by the inclusion
monotonicity property because, if the correct real values are within the operand intervals
then the correct real values resulting from any interval arithmetic operation must also be
within the resulting interval. Moreover, the computation of any interval arithmetic
expression (a successive composition of arithmetic operations over real intervals) will
preserve the correct real values within the final resulting interval.

The inclusion monotonicity property of the interval arithmetic expressions (for the basic
arithmetic operators +, -, x and /) and its consequences on the correctness of the interval
arithmetic computations were firstly addressed by Moore in [99].

3.1.1  Extended Interval Arithmetic

Later generalizations of Moore’s work included: extensions on the definition of the division
operator; extensions on the forms of real intervals allowed as operator arguments; and
extensions on the set of basic interval operators allowed in the arithmetic expressions.

The redefinition of the division operator, allowing the division by an interval containing
zero, implies the consideration of unbounded intervals and the redefinition of other
operators with possible unbounded arguments. The resulting arithmetic, called extended
interval arithmetic, was first suggested in [68] and in [84] and later modified in [110] and
[122]. Such approaches restricted the division operator to bounded interval arguments.

If unbounded intervals are allowed as arguments of the division operation then the
resulting interval is no longer guaranteed to be a closed interval. For example, if the
numerator is the degenerate interval [1..1] and the denominator is the unbounded interval
[1..400), the resulting real interval is half open [1..1]/[1..4+0)=(0..1]. The generalization of
the extended interval arithmetic to F-intervals, not necessarily closed, was proposed in [75].

In the interval arithmetic framework it is assumed that the result of any interval
operator is a single real interval. This was true for the original definitions (3.1-1 and 3.1-2)
of the basic interval operators but in extended interval arithmetic the result may be the
union of two disjunct real intervals. For example [4..8]/[-2..1]=(-..-2]U[4..4+). In many
approaches the pair of disjoint real intervals is replaced by the smallest single interval
containing their union (their union hull as defined in 2.2.2-1). In the previous example the
result would be (-c0..+0). Other solution proposed in [111] is based on the observation that
the pair of disjoint real intervals is normally only required for intersection with another
single interval (see interval Newton method). Thus an additional three-argument operation
could be considered representing the common operation (/,/1;)"1;, and the result would be
the smallest real interval containing it. Internally the implementation of the operator (the
rules defining the bounds of the resulting interval) would consider the possible disjoint
result of 7;/I,. However the final result would be a single interval. If in the previous
example the result of the division were to be intersected with [0..10] then the final real
interval would be [4..10] (as opposed to [0..10] obtained by the other approaches).

Similarly, several other elementary functions (exp, In, power, sin, cos) may be included
as basic interval arithmetic operators. The definition of rules for these new operators may
benefit from the study of the monotonic properties of these functions within their domains
of application. For example, the exponential unary-operator (exp) may be defined by rule

exp([a..b])=[exp(a)..exp(b)] since the exponential function is increasing monotonic in R.
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3.2 Interval Functions

The sound evaluation of interval functions is perhaps the major contribution of Interval
Analysis within the Interval Constraints framework. In order to understand this contribution
it is necessary to make explicit the difference between a function (either a real or interval
function) and the expression used to represent it in terms of the arithmetic operators,
variables and constants. Although a function may be represented by several equivalent
expressions, the interval arithmetic evaluation of these expressions may yield different
interval results due to its approximate nature. Nevertheless, the soundness of interval
arithmetic guarantees that all these intervals contain the intended correct function results.

The following are formal definitions of real/interval expressions, and how they may be
used to represent real/interval functions.

Definition 3.2-1 (Real and Interval Expressions). An expression £ is an inductive
structure defined in the following way:

6)] a constant is an expression;

(i1) a variable is an expression;

(i)  if Ey,...,E,, are expressions and @ is a m-ary basic operator then ®(E,,...,E,)

is an expression;

A real expression is an expression with real constants, real valued variables and real
operators. An interval expression is an expression with real interval constants, real interval
valued variables and interval operators. (N

If x;, x, and x; are real valued variables then (x;+x;)x(x;3-7) is a real expression with three
binary real operators (+, x and -) and a real constant (). If X; and X, are real interval
valued variables then (X;+cos([0..1]xX>)) is an interval expression with two binary interval
operators (+ and x), a unary interval operator (cos) and an interval constant ([0..]). Note
that the above definition does not restrict a constant to be representable by an F-number or
an F-interval (in both previous examples 7 and [0..7] are non-representable constants). To
improve readability, a degenerate interval constant [a..a] will be represented within the
interval expressions as a real constant a.

Definition 3.2-2 (Real and Interval Functions). A function is a mapping from elements of
a set (the domain) to another set (the codomain). The subset of the codomain consisting on
those elements that are mapped by the function is called the range of the function. In an
n-ary real function, f; the elements of the domain are n-ary tuples of real values and the
elements of the codomain are real values. The range of a real function fover a domain D is

denotedf’k (D). In an n-ary interval function, F, the elements of the domain are n-ary tuples
of real intervals (R-boxes) and the elements of the codomain are real intervals. An n-ary
function may be represented by an expression, where each occurrence of the i function
argument is designated by a variable. The real expression representing the real function fis
denoted by fr and its variables by x;. The interval expression representing the interval
function F is denoted by F and its variables by X. [l

Several different real expressions may represent the same real function. This is a direct
consequence of the properties of the real operators used in the expression. For example, the
real expressions fr =(x;+x2)x(x3-1) and f,=((x;xx3)+(x2%x3))-((xx)H(7xx2)) both represent
the same real function f'due to the distributive and commutative properties of the addition
(+) and multiplication (x) real operators.
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However, the floating-point evaluation of a real expression for a particular tuple of real
values is not guaranteed to return the correct real value (the element of the codomain
associated with the tuple in the real function represented by the expression) but an
F-number approximation of it. Moreover, different expressions representing the same
function may yield different approximations of the correct real value, and without further
numerical analysis it is not possible to assess the accuracy of the approximations.

When an interval expression Fg is used to represent an interval function F then this
function maps an R-box into the smallest real interval containing all the real values that
would be obtained for each real valued combination within the interval domains of the
R-box.

Definition 3.2-3 (Semantic of an Interval Expression?). Let F' be the n-ary interval
function represented by the interval expression Fg, and B an n-ary R-box. The interval,
denoted by F(B), obtained by applying the interval function F' to B, is the smallest real
interval containing the range /*(B) of the real function f over B:

FB= <ty ™) | <ri,...,r»>€B}cF(B) A V<a“b>f*(B)g<a..b> = F(B)c<a..b>
The real function f'is expressed by the real expression fz which is obtained by replacing in
Fg each interval variable X; by the real variable x; and each interval operator by the
corresponding real operator. d

Interval arithmetic provides a method for evaluating an interval expression by substituting
each variable by its interval domain and applying recursively the basic operator evaluation
rules. The evaluation process may be seen as an interval function as well, once it maps R-
boxes into R-intervals (in particular into F-intervals).

Definition 3.2-4 (Interval Arithmetic Evaluation of an Interval Expression). Let F be
the n-ary interval function represented by the interval expression Fg, and B an n-ary R-box.
The interval arithmetic evaluation of Fg wrt B is an interval function recursively defined as:
Lp(D) ifFg=1 (/ is an interval constant)
Fi(B) = < L, (B[X)]) if Fp=X; (X; is an interval variable)
Dy E1(B),..., En(B))if Fg= D(E,...,E,) (P is an interval operator) a

We will denote an interval expression with a subscripted capital letter (F) which is also the
name of the interval function defined by its interval arithmetic evaluation (as in definition
3.2-4). The capital letter (F) refers to the intended interval function that is represented by
the interval expression (as in definition 3.2-3).

The interval arithmetic evaluation of an interval expression provides a sound
computation of the interval function represented by the expression.

Theorem 3.2-1 (Soundness of the Interval Expression Evaluation)’. Let Fz be an
interval expression representing the n-ary interval function F, and B an n-ary R-box. The
interval arithmetic evaluation of F with respect to B is sound:

F(B) cFg(B) g

Figure 3.2 illustrates the intended interval function F that is represented by the expression
Fg=X;x([0.5..1.5]-X;). Any interval obtained with a degenerate interval argument F([r])
corresponds in the figure to a vertical bar within the two solid lines. The intervals F([0.5]),

2 This definition assumes that the interval expression does not contain any interval constants. Otherwise, if there are m
interval constants, then f'should have m more arguments with the domains defined by the interval constants.
3 The demonstrations of theorem 3.2-1 and the other theorems of Interval Arithmetic are presented in Appendix A.
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F([1.0]), F([1.5]) and F([2.0]) are explicitly represented in the figure. For non degenerate
interval arguments /=[a..b] the result F(/) may be obtained by projecting on the vertical axis
all the possible intervals obtained by any degenerate arguments within / (F([r]) Vre[a..b)).
This process is exemplified for the argument /=[0.5..2.0] (the arrowhead dashed lines
represent the intervals projection). The interval obtained by the interval arithmetic
evaluation of the expression Fr with the same argument /=[0.5..2.0] is also shown in figure.
As expected, and accordingly to theorem 3.2-1, the evaluated interval encloses the intended
interval: F'([0.5..2.0])=[-3.0..0.5625] < Fg([0.5..2.0])=[-3.0..2.0].

2.0 Fp=X; x ([0.5..1.5] - X))

Fg()  F()

1=10.5.2.0]

Figure 3.2 The intended interval function represented by an interval expression.

3.2.1  Interval Extensions

An important concept relating interval with real functions is that of interval extension.

Definition 3.2.1-1 (Interval Extension of a Real Function). Let f be an r-ary real function
with domain Dy and F an n-ary interval function. The interval function F is an interval
extension of the real function fiff:

V<. r>eDy (<t )€ F(<[rn],..[r.1a]>) a

Thus, if F is an interval extension of f'then each real value mapped by f must lie within the
interval mapped by F when the argument is the corresponding R-box of degenerate
intervals. Consequently, F provides a sound evaluation of f'in the sense that the correct real
value is not lost. Moreover, the interval arithmetic evaluation of any expression
representing an interval extension of a real function provides a sound evaluation for its
range and is itself an interval extension of the real function.

Theorem 3.2.1-1 (Soundness of the Evaluation of an Interval Extension). Let 7 be an
interval extension of an n-ary real function £, F an interval expression representing F, and
B be n-ary R-box. Then, both F(B) and Fg(B), enclose the range of fover B:

f*(B) = F(B)  Fi(B) o

Figure 3.3 shows an example of a function f represented by the real expression fr = x ]fxi
together with the interval function F presented in the previous example. Clearly F' (and also
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Fp) is an interval extension of f since f{r)e F([r]) for any real value r (the thick solid line is
always within the two thin solid lines). In addition, figure 3.3 illustrates the enclosing for
the range of function f (with the argument x; between 0.5 and 2.0) obtained by both, the
interval extension F and the interval arithmetic evaluation of its expression Fg:

£4(10.5..2.0])=[-2.0..0.25] < F([0.5..2.0]) < Fx([0.5..2.0]).

2.0 Fr=X; x ([0.5..1.5] - X))

1.0 fr=xi—xs

F, F
D F() o)

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

1=1[0.5.2.0]
Figure 3.3 An interval extension of an interval function.

A particular interval extension of a real function, called Natural interval extension, is
directly obtained from the real expression representing it.

Definition 3.2.1-2 (Natural Interval Expression). If f; is a real expression representing the
real function f, then its natural interval expression F), is obtained by replacing in fz: each
real variable x; by an interval variable X;; each real constant & by the real interval [£..k], and
each real operator by the corresponding interval operator. (|

Theorem 3.2.1-2 (Natural Interval Extension). Let fz be a real expression representing
the real function f, and F,, be the natural interval expression of fz. The interval function F
represented by F, is the smallest interval enclosure for the range of f and the interval
arithmetic evaluation of F, is an interval extension of f denominated Natural interval
extension with respect to fz. a

As seen before, several equivalent real expressions may represent the same real function f.
Consequently, the natural interval extensions wrt these equivalent real expressions are all
interval extensions of f.

Figure 3.4 shows three equivalent real expressions (fg,, fz, and f,) that represent the
same real function f presented in the previous example and their natural interval
expressions (Fg,, F, and F;). The interval function F is the intended function represented
by any of these interval expressions and, accordingly to theorem 3.2.1-2, is the smallest
interval enclose for the range of f (in the figure this is illustrated for /=[0.5..2.0] with
f* (D=F()=[-2.0..0.25]). The interval arithmetic evaluation of different forms of interval
extensions of f may lead to different accuracy for the resulting interval (the width of the
interval may be different). Figure 3.4 shows the different enclosures obtained by the three
different extensions for the range of function f (with the argument x between 0.5 and 2.0).
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2
— fEIEXI—)Q FEIEXI_X§
240: fEZEX1><(1-0—x1) FEEEXIX(I.OfX,)
1.0 fe,=2025-(x,-05)°  Fp =025-(X,- 0.5

Fe() Fe(D e I S
Fe, (D -4.0 . . ; ;
0.5 1.0 1.5 2.0
1=10.5.2.0]

Figure 3.4 Natural interval extensions of a real function wrt three equivalent real expressions.

Because any interval extension evaluation returns an interval enclosure for the range of f
the intersection of different extension evaluations will possibly provide a better enclosure.

Theorem 3.2.1-3 (Intersection of Interval Extensions). Let F; and F, be two n-ary
interval functions and B an n-ary R-box. Let F' be an n-ary interval function defined by:
F(B)=F(B)"Fx(B). If F; and F are interval extensions of the real function f, then F is also
an interval extension of f. a

Moreover, the overestimation of the enclosure may be reduced if, instead of evaluating an
expression over an R-box, the box is firstly split into sub-boxes (whose union is the original
R-box) and the union of all the intervals obtained by the separate evaluation of each sub-
box is considered.

Theorem 3.2.1-4 (Decomposed Evaluation of an Interval Extension). Let F be an
interval extension of the n-ary real function f, and F an interval expression representing F.
Let B, B; and B; be n-ary R-boxes. If B=B;UB; then:

F(B) € F(B))VIFK(B,) c Fe(B) d
Figure 3.5 exemplifies the decomposed evaluation of the interval expression F;,.
2.0
i fElEx,—xf FE]EXI—Xi
1.0
Ty
0.0 i Sixr)
-1.0
Fg () T
e ;
F() 7 i
Fp(IDVFp(l)  Fi(l) -3.07] A
Fe (D) -4.0 T T i
0.5 1.0 L5 2.0
1=1[0.5.2.0]
L,=[1.25.2.0]
1;=10.5..1.25]

Figure 3.5 The decomposed evaluation of an interval expression.
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It is shown that by dividing the argument /=[0.5..2.0] into /,=[0.5..1.25] and /,=[1.25..2.0]
the overestimation of the #(/) enclosure is reduced: F({) < Fr,(I))VFg (I2) € Fr /(D).

The quality of the enclosure for the ranges of a real function depends on the way that its
interval extension is expressed. When a variable occurs repeatedly in an interval
expression, its interval arithmetic evaluation usually produces an overestimated result due
to the problem known as the dependency problem.

Definition 3.2.1-3 (Dependency Problem). In the interval arithmetic evaluation of an
interval expression, each occurrence of the same variable is treated as a different variable.
The dependency between the different occurrences of a variable in an expression is lost. O

Informally, if each basic interval operator is able to compute the exact ranges for its interval
arguments then the overestimation of the interval arithmetic evaluation must be a
consequence of considering real valued combinations where different occurrences of the
same variable are assigned with different real values. No overestimation would be obtained
if an interval expression, where no variable occurs more than once, is evaluated with
infinite precision. This is expressed in an important theorem of Interval Analysis, firstly
proved by Moore [99].

Theorem 3.2.1-5 (No Overestimation Without Multiple Variable Occurrences). Let Fir
be an interval expression representing the n-ary interval function F, and B an n-ary R-box.
If Fr is an interval expression in which each variable occurs only once then:

F(B) = Fg(B) (w/ exact interval operators and infinite precision arithmetic evaluation)d

In the example of figure 3.4 we can see that no overestimation is obtained with the interval
arithmetic evaluation of expression Fg, because in this expression variable X; occurs only

once.

For a particular real function the best interval extensions, in terms of minimal
overestimation, are those that minimize the effects of the dependency problem. Although it
is often impossible to get interval extensions without repeated variable occurrences, interval
extensions with fewer multiple occurrences are usually preferable.

Several typical forms of interval extensions studied in interval analysis were used in
interval constraints to take advantage of their specific properties. In the following we will
consider different forms of interval extensions for univariate real functions, however these
forms can be easily extended for the multivariate case (see [66] for further details on this
issue).

Centered forms, introduced by Moore in [99], may be used to get tighter enclosures
when the interval domains of the variables are sufficiently small. The key idea is that for
any real function f'there is a real function g such that:

fix)) =fe)tg(x-c) where c is a real value at which f'is defined.

For an original expression fr representing f and a particular interval I, a generic
procedure is described in [99] to obtain an expression f. representing f{c)+g(x;-c), with ¢
defined as the center of 7 (c=center(l)). The Centered interval extension of /' wrt this interval
1 is the Natural interval extension F. of the expression obtained by algebraically simplifying
the expression f;. F, is an interval extension of f'since it is an interval extension of f. which
is equivalent to f5.

Consider function f represented by the real expression fz=x 1—x3 (see figures 3.3 through
3.5). An equivalent representation of / for a given interval /=[a..b] is fi=c—c*+(x;—c)x((1—
(at+b))—(x;—)). For the particular interval [0.5..2], the center ¢ is 1.25 and the Centered
interval extension F. is expressed by -0.3125+(X;-1.25)x(=X;—0.25) whose evaluation
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results in the interval [-2.375..1.75] (which is a better enclosure of f*([0.5..2]) than the
obtained by the natural interval extension of x;—x?). For the particular interval [0..1] the
center ¢ is 0.5 and the Centered interval extension F, is expressed by 0.25-(X;-0.5)* whose
evaluation results in the interval [0..0.25] (which is the exact range /*([0..1])). Note that the
Centered interval extensions are not guaranteed to be inclusion monotonic since the interval
expression of F, is different for different interval arguments.

It was proved in [64] that a Centered interval extension approximates the range of a
function quadratically as the width of the interval argument tends to zero. This property
makes them particularly useful when the width of the interval is small. With large intervals
the enclosure obtained by the Centered interval extension may be even worst than the
obtained by the Natural interval extension of the original form.

Another class of centered forms is derived from the mean value theorem [3, 120].

Consider a univariate function f differentiable over the interval /. By the mean value
theorem, for any real value re/ and a fixed ce/ there is a £between r and ¢ such that:

L= o)t (Ex(r-c) where f” is the derivative of

Let F and F’ be interval extensions of f'and f” respectively. By definition of an interval
extension flc)eF([c]) and f*(&) e F'([£])<F (1) thus:

Vyel fir) € F([c)HF (Dx(r-c)

The interval function F,, defined by F([c])+F (I)x(I-c) where c=center(]) is called the Mean
Value interval extension of f wrt /. The above property guarantees that F,, is a interval
extension of f for interval / (see definition 3.2.1-1). The Mean Value interval extension F,
depends on the evaluation of the interval extension F’ chosen for the derivative of f.
Different expressions for F’ lead to different values for the mean value form.

. . 2 .

In the case of a real function f represented by the real expression x;—x;, consider the
interval extensions F and F’ represented respectively by X, 1—X§ and 1-2.X;. The Mean Value
interval extension of / for a given interval / is expressed by c—c*+(1-2X,)x(X;-c) where
c=center(l). For the particular interval [0.5..2], F}, is expressed by -0.3125+(1-2X,)x(X;-
1.25) whose evaluation results in the interval [-2.5625..1.9375]. For the particular interval
[0..1], F,, is expressed by 0.25+(1-2X;)x(X;-0.5) whose evaluation results in the interval
[-0.25..0.75].

The Mean Value interval extension, which is proved to be inclusion monotonic, is
easier to compute than the Centered interval extension (does not require any algebraic
manipulations) and possesses the quadratic approximation property too [3, 120].

The Mean Value interval extension is just a special case of the Taylor interval
extension, which can be derived from the Taylor series expansion of a function f about a
point ¢. Assuming that f has continuous derivatives /7 of any order i<m+1 within interval /
then, for any real value </ and a fixed ce[ there is a £e/ such that:

(r=c) f< '@, =™ " @)
+
S()=1() Z —ry
Let F and F' a w1th 1<i<m+1 be interval extensions of fand / respectively. The Taylor
interval extension of order m of the real function f wrt / is the interval function, denoted
Fm), and defined by:

moox, — iF(i) X, — m+1F(m+1) X
F([c])+Z( =0’ (), xy c)(m“)! (X))

The Taylor expansion guarantees that Fy, is a interval extension of f for interval 7, and
in the particular case of m=0, the Taylor interval extension Fjq) is the Mean Value interval
extension F,.

In the previous example, F¥ is —2 and F” is 0 for i>2. Consequently, the Taylor
interval extension of order m>1 for a given interval / is expressed by c—c*+(1-2¢)x(X;-c)-

where c=center(I)
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(X;-¢)* where c=center(l). For the particular interval [0.5..2], F, ) (With m>1) is expressed
by -0.3125-1.5x(X;-1.25)~(X;-1.25)* whose evaluation results in the interval [-2..0.8125].
For the particular interval [0..1], Fisy (with m>1) is expressed by 0.25-(X; 1-0.5)* whose
evaluation results in the interval [0..0.25].

Non centered forms, as the distributed form, are also used in interval constraints [134].
An univariate real function f'is expressed in the distributed form f; if:

k

fi= Z r,-xl"" where r; and »; are real and natural numbers, respectively, and n;=n; if iz

i=1

The Distributed interval extension F; of a real function f is the Natural interval
extension of its distributed form. Not all real functions can be expressed in the distributed
form and so not all real functions have a Distributed interval extension. However,
distributed forms can be used for the canonical representation of polynomials. The
enclosures obtained by the Distributed interval extension are often worst than those
obtained by the Natural interval extension of the original expression since it imposes
several (k) occurrences of the same variable, possibly increasing the dependency problem.
The use of the Distributed interval extension in interval constraints is justified, not by the
precision of the obtained enclosures, but rather by its efficiency w.r.t. the constraint
techniques that will be discussed in the next chapter, in particular, the constraint Newton
method (subsection 4.2.2).

In the case of the example that has been presented, the real expression fEExrx? is
already in the distributed form, and so the Distributed interval extension F, of the real
function f'is its Natural interval extension expressed by X rX§ . As can be seen in figure 3.4
this extension (F, in the figure) obtains less accurate enclosures of the range of f for the

interval [0.5..2.0] than the other non distributed interval extensions (Fg, and F,).

33 Interval Methods

Interval methods for finding roots of equations with one variable are frequently used in
interval constraints due to its efficiency and reliability. In particular, the interval Newton
method, a generalization of the Newton’s method for finding zeros of real functions, is the
most commonly used since it presents several remarkable properties quite useful for
filtering algorithms.

Extensions of the univariate root finding methods to the multivariate case are rarely
used in interval constraints as they are more complex to implement. Instead interval
propagation techniques are used, generally with better performance. However, in some
situations, they can be effectively applied. In particular, in cases where the search space is a
small box enclosing a single root, multivariate interval methods may be quite useful either
for isolating the root or for proving its existence and uniqueness.

3.3.1 Univariate Interval Newton Method

The interval Newton method for searching zeros of univariate functions, introduced by
Moore in [99], is based on the mean value theorem which can be formulated as:
34:6 [a..b] SrD)-fra)=(ri-r)xf"(&) (a=min(r,,r;) and b=max(r;,r2))
where fis a real function, continuous in [a..b] and differentiable in (a..).
Let 7 be a closed real interval containing both r; and r,. If the real function f is
continuous and differentiable in / then from the mean value theorem:

Vel 3gel fr)Ar)=(rimr)xf(&)
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If there is a zero of f'in I (3,1 Ar0)=0), let us represent it by ry and instanciate the
universal quantifier for », with it in the above first order formula:
Viyer3ger Arn) = rrroxf(S)
Instanciating »; with any real value ¢ within 7, for example its mid value (c=center(l)):

3 geIA~c-ro)*f ()
Solving the equation for 7y and considering g(x)=c—
Feerl(ro=2g(0) AL(9#0) v (le)=0 A f(£)=0)]
Which is equivalent to:

()20 v Vyel f(1)20) = 3ger (ro=g(OAS(9#0)
The universal quantified condition V.o /()20 expresses that the real value zero does

A
J'(x)

we obtain:

not belong to the range of f"over /. Similarly, the right side of the implication el (ro=

g(&A f(&=0) implies that rg must be within the range of g over 1. Consequently we will
finally get the following formula:
()20 v 02/ (D) = roeg"() o

From the above implication we can conclude that, if there is a zero ry of f within / and if
the left side of the implication is true, then ry must also be within the range g*(l) of the real
function g over the interval /. Thus, in this case, and according to theorem 3.2.1-1, any zero
of f'within 7 must also be within any extension G of the real function g. Moreover, if IcG(])
when the left side of the implication is false then, in all cases, it follows that whenever a
zero of f'is within / then it must be also within G(/): V. e fro)=0 = rp € G().

The interval Newton method consists on applying function G over a real interval / and
intersecting the result with the original interval to obtain a set S with the guarantee that if a
zero is within / then it must also be within S. (S=ING(1)).

The extension G of the real function g originally proposed in [99], is the Newton
function:

Definition 3.3.1-1 (Newton Function). Let ' be a real function, continuous and
differentiable in the closed real interval 7, and f” its derivative. Let F' and F" be interval
extensions of fand f°, respectively. Let ¢ be the mid value of the interval [ (c=center(])).
F ([C]) Q

The interval Newton function N with respect to fis: N(/) = [c]— (D)

In the original proposal the interval division operator was not defined if the denominator
was an interval containing zero (see definition 3.1-1). Thus the Newton function was not
defined if 0eF (/) and so, it could only be applied when the left side of the implication in
(1) was true because if 0¢F’(/) then necessarily Oef’*(l) (according to theorem 3.2.1-1:
5 c F ).

The Newton method would then consist on iterating the following Newton step only on
intervals where the Newton function was defined.

Definition 3.3.1-2 (Newton Step). Let / be a real function, continuous and differentiable in
the closed real interval /. Let N be the Newton function with respect to f. The Newton step
function NS with respect to fis:

NS(I) =1 N() a
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If division by intervals containing zero is not allowed, then the result of the Newton
function is a single interval. Consequently the result of the Newton step is also a single
interval (NS(/)c/) and the successive iteration of Newton steps until a fix point is obtained
may be defined as an interval narrowing function NN (narrowing because NN(/)c/).

Definition 3.3.1-3 (Newton Narrowing)’. Let f/ be a real function, continuous and
differentiable in the closed real interval /. Let NS be the Newton step function with respect
to f. The Newton narrowing function NN with respect to fis:

% if  NSU)=O
NN ={ I if  NS()=I
NN(NS(I))  if  NS()cI Q

The original restriction on the domain of definition for the Newton function restrained the
Newton narrowing to intervals where the Newton function is defined. Whenever an interval
failed that restriction the narrowing could not be applied to the entire interval and further
analysis would require its partition.

With extended interval arithmetic the division by an interval containing zero became
possible and unrestricted approaches for the application of the Newton function were firstly
proposed in [2] and [65]. Extended interval arithmetic not only guarantees that the Newton
function N is an extension of the real function g if the left side of the implication in (1) is
true but also, in the special case where it is false it guarantees that /IcN(J). This last property

derives from the fact that if it is false then f{c)=0 and Oef’ ’*(1), consequently both F([c])
and F’(I) contain zero, and the evaluation of F([c])/F’(I) would return the interval (-00,+0)
so, in this case, ICN(/)=(-00,+0).

Using extended interval arithmetic, the result of the Newton function is not guaranteed
to be a single interval. As seen in section 3.1, the division by an interval containing zero
may yield the union of two intervals. In this case the Newton function is not even an
interval function in the form of definition 3.2-2 since it does not map an R-box into a single
interval. Several different strategies were devised to deal with this problem.

One strategy is to work with the two obtained intervals and, in the Newton step,
intersect their union with the original interval. If the result of the intersection is a single

interval, the Newton narrowing can normally continue. Otherwise, the union hull (W) of the
obtained intervals could be considereds or else, the two obtained intervals would have to be
considered separately. Other strategy is to redefine the extended interval arithmetic division
rules to always obtain a single interval. If the result were the union of two intervals then the
result is redefined to be the single interval obtained by their union hull.

Figure 3.6 shows an example of the application of the interval Newton method for
isolating a zero of a real function within an interval. The real function f (solid line) is the
same presented in figures 3.3 through 3.5, represented by the expression fz = x;—x; and the
initial interval that is narrowed without loosing any zero of f'is [0.5..2.0]. The derivative of
fis function f” (dashed line) represented by the expression f’r = 1-2x;. The Natural interval
extensions of fand f” are Fr= X, I—Xi and F’g = 1-2X], respectively. The Newton function N
is defined according to the definition 3.3.1-1. The table in figure 3.6 summarizes the results
obtained by successive application of the Newton step¢. In each line i is shown the current
interval ([;), the intervals needed to compute the Newton function ([¢;], Fe([¢;]) and F’g(1}))

4 This definition assumes that the result of the Newton step function is always an interval.

S As suggested in section 3.1, the whole Newton step function could be considered a interval arithmetic operator internally
implemented with the extended interval arithmetic rules.

© It is assumed in all the interval arithmetic evaluations that the distance between any two consecutive F-numbers is the
constant 0.001 (for any F-number f: fr-f‘ =0.001)




36 Chapter 3. Interval Analysis

and the interval obtained by applying the Newton function to the current interval (N(Z)).
The initial interval (/) is [0.5..2.0] and for each line >0 the current interval is updated
accordingly to the Newton step I;=1.; N N(l.;). The process stops at line 4 since
Is=1, "~ N(l;) =1, (see definition 3.3.1-3 of the Newton narrowing function). As can be
seen in the figure, the Newton narrowing with argument [0.5..2.0] quickly converges to the
unique zero of the real function f'within this interval: NN([0.5..2.0])=[1.000..1.000].

I; [e] Filled) Fi(l) NI
[0.500..2.000] |{1.250} |[-0.313..-0.312]| [-3.000..0.000] | [-00..1.146]
[0.500..1.146] |{0.823}| [0.145..0.146] | [-1.292..0.000]| [0.936.+]
[0.936..1.146] |{1.041}|[-0.042..-0.042]|[-1.292..-0.872]| [0.991..1.009]
[

[

0.991..1.009] |{1.000}| [0.000..0.000] |[-1.018..-0.982]| [1.000..1.000]
1.000..1.000] [{1.000} | [0.000..0.000] |[-1.000..-1.000]| [1.000..1.000]

fr=x—x1 Fe=X,- X, [er] = [center(l)]
: , Fr(le:
o ! fe=1-2¢  Fip=1-2% Ny =[e]- E,([C’])
; Fg(1;)
-4.0 t T T
0.5 1.0 1.5 2.0

Figure 3.6 An example of the application of the interval Newton method.

The remarkable properties of the interval Newton method, specially suited for filtering
algorithms will be addressed in the following theorems (firstly formulated by Moore [99]).

Theorem 3.3.1-1 (Soundness of the Interval Newton Method with Roots). Let f'be a real
function, continuous and differentiable in the closed real interval /. If there exists a zero ry
of f'in I then ry is also in N(I), NS(I) and NN(I), where N, NS and NN are respectively the
Newton function, the Newton step function and the Newton narrowing function with
respect to f:

Vi el Sro=0 = rg eN{I) A rg eNSU) A ro eNN(I) a

The above theorem guarantees the soundness of the Newton narrowing function (and its
interval arithmetic evaluation) for narrowing the search space of a possible zero of a real
function. If a zero of a function is searched within / then it may be searched within NN(/)
which is possibly a narrower interval. This narrowing is a proof that no zero of the function
was within the discarded values of 1.

Theorem 3.3.1-2 (Soundness of the Interval Newton Method without Roots). Let fbe a
real function, continuous and differentiable in the closed real interval 1. If NS(I)= or
NN(I)=J (where NS and NN are respectively the Newton step function and the Newton
narrowing function with respect to f) then there is no zero of f'in I:

NS(Iy=2 v NN(I)=3 = =3, fro)=0 a

The above theorem guarantees that whenever the result of the Newton narrowing function
(or its interval arithmetic evaluation) is the empty set (NN(/)=J), [ does not provedly
contains any zero of the real function.
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Despite its soundness, the method is not complete, that is, in case of non existence of a
root within an R-box, the result of the Newton narrowing function is not necessarily the
empty set. Therefore obtaining a non empty set does not guarantee the existence of a root.
However, in some cases, the Newton method may guarantee the existence of a root. The
next theorem is due to Hansen [64]:

Theorem 3.3.1-3 (Interval Newton Method to Prove the Existence of a Root). Let f'be a
real function, continuous and differentiable in the closed real interval /. Let N be the
Newton function wrt f. If the result of applying the Newton function to / is included in /
then there exists a zero of fin [:

NI 1= 3p)eg firo)=0 Q

The convergence theorem, adapted from [65], assures that the interval arithmetic evaluation
of any Newton narrowing function is guaranteed to stop:

Theorem 3.3.1-4 (Convergence of the Interval Newton Method). Let /' be a real function,
continuous and differentiable in the closed real interval /. The interval arithmetic evaluation
of the Newton narrowing function (NVN) with respect to f'will converge (to an F-interval or
the empty set) in a finite number of Newton steps (NS). a

The following two theorems address the efficiency of the interval Newton method. They
are adapted from the original ones, formulated by Moore [99] and Hansen [66]
respectively.

Theorem 3.3.1-5 (Efficiency of the Interval Newton Method - Quadratic). Let /' be a
real function, continuous and differentiable in the closed real interval /. Let f” be the
derivative function of fand F’ its interval extension. Let NS be the Newton step function
with respect to f. If f'has a simple zero 7y in I and 0¢ F’(I) then the Newton narrowing (with
infinite precision arithmetic) is asymptotically error-squaring, i.e. there is an interval [y < /
containing ry and a positive real number & such that:

width(NS™ (1)) < kx(width(NS™(Ip))* w/ NS™()=NS(NS™"(I)) and NS’()=NS() Q

Theorem 3.3.1-6 (Efficiency of the Interval Newton Method - Geometric). Let /' be a
real function, continuous and differentiable in the closed real interval /. Let f* be the
derivative function of /. Let F and F’ be respectively interval extensions of fand f”. Let ¢ be
the mid value of the interval I (c=center(l)). Let NS be the Newton step function with
respect to /. If 0¢ F([c]) and 0¢ F’(/) then:

width(NS(I)) < 0.5xwidth(I) a

The first of the two efficiency theorems states that convergence may be quadratic for small
intervals around a simple zero of the real function whereas the second theorem says that
even for large intervals the rate of convergence may be reasonably fast (geometric).

In the above presentation we assume that the interval Newton’s method is applied to a
real function as defined in 3.2-2. However, the method can be naturally extended to deal as
well with real functions that include parametric constants represented by intervals [66]. In
this case, the intended meaning is to represent the family of real functions defined by any
possible real valued instantiation for the interval constants. The existence of a root means
that there is a real valued combination, among the variable and all the interval constants,
that zeros the function.

Figure 3.7 shows an example of the application of the interval Newton method for
enclosing the zeros of the family of functions defined by f{x;)=x,;x([0.5..1.5]-x;). Any
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instantiation of the interval constant with a real value within [0.5..1.5] produces a function
whose graphic lies within the two solid lines represented in the figure (a particular
instantiation with the real value 1 is represented in figure 3.3). Consequently, the interval
arithmetic evaluations of Fr=X; x([0.5..1.5]-X;) and F’g=[0.5..1.5]-2X; define interval
extensions for this family of functions and their derivatives, respectively. The zeros of this
family of functions are explicitly represented in the figure as a point {0.0} and a thick
horizontal line [0.5..1.5]. At the bottom of the figure are represented 4 cases of the
application of the Newton narrowing function with different initial intervals (the precision
assumptions are the same as in the example of figure 3.6). In the first case the initial
interval was [-0.5..0.2] and the unique zero was successfully enclosed within a canonical F-
interval [0..0.001]. In the second case the initial interval was [0.3..1.0] which could not be
narrowed because both Fg([0.65]) and F’([0.3..1.0]) include zero. In the third case the
initial interval was [1.1..1.8] and the right bound was updated to 1.554. In the fourth case
the initial interval was [1.9..2.6] and it was proven that there is no zero within this interval.

1.0
i Fr=X, % ([05..1.5]- X))
0.0 : . .
i /—\ F'y=[0.5.1.5] - 2X,
| s ;
3.0
40 :
s é s
. i i . i . .
0.5 0.0 0.5 1.0 1.5 2.0 2.5
, [0.5.0.2] [03..1.0] [1.1..1.8] [1.9.2.6]
0
NNo) [0.:0.001] [0.3..1.0] [1.1..1.554] %)

Figure 3.7 The interval Newton method for enclosing the zeros of a family of functions.

3.3.2  Multivariate Interval Newton Method

The interval Newton method extended for the multivariate case may be used to solve
systems of n equations of the form:

fi(B)=0, where i=1,...,n and B is an n-ary R-box.
Similarly to the reasoning for the univariate case, it is possible to conclude that all solutions
of the above system must lie within the set S defined in vector notation by:

S ={yeB: fle)+J(x)(y-c)=0, x B} where ceB and J is the Jacobian of f.
The idea is the same of the univariate method, that is, to define a Newton function whose
result, when applied to an R-box, includes all the possible solutions of the system within
that box. Intersecting the result with the original box and iterating the process, the search
space will be eventually reduced.

The formal definitions of the Newton step and Newton narrowing functions (NS and
NN) are almost identical to the univariate case (definitions 3.3.1-2 and 3.3.1-3 respectively)
except that their mappings are, in the n dimensional case, from r-ary R-boxes into n-ary
R-boxes. The definition of the Newton function distinguishes the various multidimensional
interval Newton methods.



Chapter 3. Interval Analysis 39

In the first proposal [99] the Newton function was a direct extension of that for the

univariate case, written in vector notation as:

N(B)=C-WV(B)F(C)
where: B is an n-ary R-box; C is a degenerate R-box including the mid point of B; F is a
vector with elements F; which are interval extensions of f; and; V(B) is an interval matrix
containing the inverse of every real matrix within J(B) (the extension of the Jacobian
matrix of f).

In order to compute the interval matrix V(B) the nonsingularity of the matrices within
J(B) was required, implying that the method can only be directly applied (without split) if
there is at most one isolated root within B.

Other proposals avoid the accurate computation of the inverse interval matrix which is a
quite complex process and not always achievable. Instead, these proposals, use efficient
interval approximation methods to solve, for N(B), the linear equation
F(C)+J(B)(N(B)-C)=0, which defines an enclosing box for the solution set. The resulting
Newton function may return less accurate enclosing boxes but it can be applied without
restrictions and computed more efficiently. The first proposal, due to Krawczyk [86] and
called the Krawczyk method, was later improved by Hansen and Sengupta [67] with a
faster method known as the Hansen and Sengupta Gauss-Seidel method.

The properties presented before for the unidimensional case may be extended to the
interval Newton methods for the multidimensional case. An exception is made for the
efficiency properties of which only the asymptotic quadratic convergence was proven [3]
for the special case where the inverse interval matrix V(B) can be obtained. This last
property makes the multidimensional interval Newton methods particular effective for
narrowing small boxes enclosing a single root, whose existence may eventually be proven
during the narrowing process (see theorem 3.3.1-3). However, for large boxes, the
narrowing achieved by these methods apparently does not justify the computational costs of
their implementation, at least compared with competing constraint propagation techniques.

34 Summary

In this chapter, interval analysis techniques relevant for the interval constraints framework
were introduced. Interval arithmetic and its main properties were presented. Interval
functions and interval expressions were defined and related with the sound evaluation of
the range of a real function through the basic concept of an interval extension of the real
function. The properties of interval extensions were analysed and several important forms
identified. The interval Newton method, widely used in the interval constraints framework,
was described and its fundamental properties analysed. The next chapter will address
constraint propagation approaches which extensively use interval analysis techniques to
guarantee their correctness.
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Chapter 4

Constraint Propagation

The filtering algorithms used in Interval Constraints for pruning the variable domains are
based on constraint propagation techniques initially developed in Artificial Intelligence for
finite domains. They use partial information expressed by a constraint to eliminate some
incompatible values from the domain of the variables within the scope of the constraint.
Once the domain of a variable is reduced, this information is propagated to all constraints
with that variable in their scopes, which must be checked again possibly to further reduce
the domains of the other constrained variables. The constraint propagation is terminated
when a fixed-point is attained, that is, the variable domains can not be further reduced by
any constraint.

In the next section the propagation process is described as successive reduction of
variables domains by successive application of narrowing functions associated with the
constraints of the CCSP. The properties of the propagation algorithm are derived from the
properties of the narrowing functions used for pruning the variable domains.

In the interval constraints framework, a set of narrowing functions is associated to each
constraint of the CCSP. The evaluation of each narrowing function is accomplished by
algorithms based on Interval Analysis techniques. Section 4.2 discusses the main
approaches used to associate narrowing functions to constraints and the algorithms used for
their evaluation.

4.1 The Propagation Algorithm

The overall functioning of the propagation algorithm used for pruning the variable domains
is based on narrowing functions. A narrowing function is a mapping between elements of
the domains lattice where the new element is obtained from the original by eliminating
some value combinations incompatible with a particular constraint of the CCSP.

Definition 4.1-1 (Narrowing Function). Let P=(X,D,C) be a CCSP. A narrowing function
NF associated with a constraint ¢=(s,p) (with ceC) is a mapping between elements of 2”
(Domaiang2D and CodomainNFQZD)‘ with the following properties (where A is any
element of Domainyg):

P1) NF(4)cA (contractance)

P2) Vjcq deNF(A) = d[s]l¢p (correctness) a

Property P1 from the above definition assures that the new element is not larger (wrt set
inclusion) than the original element, which guarantees that a fixed-point will be eventually
reached when the narrowing functions are successively applied. Property P2 guarantees the
correctness of the application of a narrowing function since every value combination
eliminated does not satisfy the constraint ¢ (see definition 2-4) and so, cannot be a solution
of the CCSP.

! We further impose that for any narrowing function the domain and the codomain must be the same subset of the
representable elements of 2° (the reachable sub-lattice - see sub-section 2.2.5).
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Monotonicity and idempotency are additional properties common to most of the
narrowing functions used in interval constraints. Several authors [114, 12] denominate
narrowing operators the narrowing functions which satisfy both monotonicity and
idempotency (or at least monotonicity [9]).

Definition 4.1-2 (Monotonicity and Idempotency of Narrowing Functions). Let
P=(X,D,C) be a CCSP. Let NF be a narrowing function associated with a constraint of C.
Let 4A; and A, be any two elements of Domainyz. NF is respectively monotonic and
idempotent iff the following properties hold:

P3) A; < A,= NF(4;) < NF(4,) (monotonicity)

P4) NF(NF(A;)) = NF(A;) (idempotency) a

An important concept related with the narrowing functions is the notion of a fixed-point.
For a particular element of the domain of a narrowing function, the set of all fixed-points
smaller (wrt set inclusion) than this element may be defined.

Definition 4.1-3 (Fixed-Points of Narrowing Functions). Let P=(X,D,C) be a CCSP. Let
NF be a narrowing function associated with a constraint of C. Let 4 be an element of
Domainyy. 4 is a fixed-point of NF iff:

NF(A) = A.
The set of all fixed-points of NF within 4, denoted Fixed-Pointsyr(4), is the set:
Fixed-PointsyA(4) = { A4; € Domainyr | A; c A A NF(4;))=A4; } a

The following theorem, based on [114], asserts that the union of all fixed-points of a
monotonic narrowing function within an element of its domain is itself a fixed-point which
is the greatest fixed-point within the element.

Theorem 4.1-1 (Union of Fixed-Points). Let P=(X,D,C) be a CCSP. Let NF be a
monotonic narrowing function associated with a constraint of C, and 4 an element of
Domainyr. The union of all fixed-points of NF' within A, denoted UFixed-Pointsys(4), is
the greatest fixed-point of NF in 4:

UFixed-Pointsy+(4) € Fixed-Pointsy(4)

V 4; eFixed-Pointsy{(4) 4i € IFixed-Pointsy-(4) a

From the above theorem it is possible to prove that the contraction resulting from the
application of a monotonic narrowing function to an element of its domain is limited by the
greatest fixed-point within the element. In other words, no value combination included in
the greatest fixed-point may be discarded in the contraction. Moreover, if the monotonic
narrowing function is idempotent, the result of the contraction is precisely the greatest
fixed-point within the element of application.

Theorem 4.1-2 (Contraction Applying a Narrowing Function). Let P=(X,D,C) be a
CCSP. Let NF be a monotonic narrowing function associated with a constraint of C and 4
an element of Domainyy. The greatest fixed-point of NF' within A4 is included in the element
obtained by applying NF to 4:

UFixed-Pointsy{(4) < NF(4)
In particular, if NF is also idempotent then:

UFixed-Pointsyr(A4) = NF(A) d

2 The theorems presented in this Chapter are proved in Appendix B.
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In the interval constraints framework, each constraint originates several narrowing
functions responsible for the elimination of some incompatible value combinations.
Function prune, implemented in pseudo-code in figure 4.1, describes the overall
propagation algorithm which applies successively each narrowing function until a fixed-
point is attained. The algorithm is an adaptation of the original propagation algorithm AC3
[98] used for solving CSPs with finite domains.

function prune(a set Q of narrowing functions, an element 4 of the domains lattice)
n ST
@  while O #J do
3) choose NF € Q;
e A’ <« NF(4);
) if A’ = then return J ;
© P« { NF" € §: IycRelevanty AX] # 4x] } ;
(7) O« QUP; S« S\P;
®) if A=A then Q « Q\ {NF} ;S <« SU {NF} end if;
©) A« A,
(10)  end while
(11) return4;
end function

Figure 4.1 The constraint propagation algorithm.

The first argument Q of the function prume is a set of narrowing functions initially
composed of all the narrowing functions associated with the constraints of the CCSP. The
second argument A4 is initially instantiated with an element of the domains lattice
representing the original variable domains (before applying the propagation algorithm). The
result is a smaller (or equal) element of the domains lattice.

The algorithm is based on a cycle (lines 2-10) where, in each step of the cycle, 4 is
narrowed by applying a narrowing function NF selected from Q. During the whole process,
set S contains the narrowing functions for which 4 is necessarily a fixed-point and set Q
contains the remaining narrowing functions. Initially there are no guarantees on whether the
original domains 4 is a fixed-point of any narrowing function and so S is empty (line 1) and
O contains all the narrowing functions.

The following is an explanation of the sequence of actions executed at each step of the
cycle. If O is the empty set then 4 is a fixed-point for all the narrowing functions and it
cannot be further pruned by them, so the cycle is terminated (line 2) and A4 is returned (line
11). If Q is not empty then one of its elements NF, chosen accordingly to a selection
criterion (line 3), is applied to 4 with result 4’ (line 4). If this is the empty set then it is
proved that there is no possible value combination within 4 capable of satisfying the
constraint associated with NF' and the execution is terminated (line 5)* returning &, which
means that 4 does not contain any solution of the CCSP. Otherwise P is defined (line 6) as
a subset of S composed of all the elements of S for which 4’ is no longer guaranteed to be a
fixed-point. These elements, which are the narrowing functions with relevant variables*
whose domains were changed by applying NF to 4, must be moved from S to Q (line 7). If
A’ is a fixed-point of NF (which is guaranteed if 4=4")* then NF' must be moved from Q to
S (line 8). Finally, A4 is updated with the new narrowed set of domains 4’ (line 9), the
current cycle ends (line 10) and a new step cycle restarts (line 2).

3 Actually, line 5 is only written for clarity, in practice it could be dropped since the empty set is a fixed-point of any
narrowing function and in the end the result would be the same.

4 Let NF be a narrowing function associated with a constraint c=(s,p). We will say that a variable x is relevant wrt NF
(xeRelevantyy) iff x is an element of 5.

3 Knowing that NF is idempotent, 4 is necessarily a fixed-point of NF, and the if condition of line 8 may be dropped.
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From the properties of the narrowing functions it is possible to prove that the
propagation algorithm terminates and is correct. Moreover, if all the narrowing functions
are monotonic then the propagation algorithm is confluent (the result is independent from
the selection criteria used in line 3) and computes the greatest common fixed-point included
in the initial domains.

Theorem 4.1-3 (Properties of the Propagation Algorithm). Let P=(X,D,C) be a CCSP.
Let set Sy be a set of narrowing functions (obtained from the set of constraints C). Let Ay be
an element of Domainnr (Where NFeS)) and d an element of D (deD). The propagation
algorithm prune(S), Ap) (defined in figure 4.1) terminates and is correct:

Vd e 4,4 is asolution of the CCSP = d e prune(Sy, 4o)
If Sy is a set of monotonic narrowing functions then the propagation algorithm is confluent
and computes the greatest common fixed-point included in 4. a

Although, in the case of monotonic narrowing functions, the selection criterion is irrelevant
for the pruning obtained by the propagation algorithm, it may be very important for the
efficiency of the propagation. In [92, 93] problems of slow convergence of the propagation
algorithm are associated with cyclic phenomena (in the successive application of the
narrowing functions) and a revised propagation algorithm is suggested for identifying and
simplifying such cyclic phenomena dynamically (dynamically adapting the selection
criterion).

4.2 Associating Narrowing Functions to Constraints

In the interval constraints framework, a set of narrowing functions associated with a
constraint of the CCSP is defined by considering its projections with respect to each
variable in the scope of the constraint.

The projection function identifies from a real box B (representing a set of value
combinations between the variables of the scope s of a constraint ¢=(s,p)) all the possible
values of a particular variable x;es for which there is a value combination belonging to the
constraint relation p.

Definition 4.2-1 (Projection Function). Let P=(X,D,C) be a CCSP. The projection

function with respect to a constraint c¢=(s,p)eC and a variable x;€s, denoted ﬂ?xip, obtains a

set of real values from a real box B (with Be2”)) and is defined by:
n(B)={dx]|deprdeB}=(pnB)x] 0

Clearly, all value combinations within B with x; values outside TE):(B) are guaranteedly

outside the relation p and so they do not satisfy the constraint c.
Figure 4.2 gives an example of a CCSP P with a constraint x;x(x,-x;)=0 and shows the
sets obtained by applying its projection functions on the real box B=<[-0.5..2.5],[0.5..1.5]>.
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P=(X,D,C) = (<x;,x>,DxD{c})
X2
D=[-1..3] D,=[-0.5..2] c=xx(xx)=0

1.5 ¢ =(<x1,x2>,0)
p={<xpx>eD |xx(xyx)) =0}

. (B) = [0.5..1.5]

B =<[-0.5..2.5],[0.5..1.5]>
05 [0.5.2.51[0.5.1.5]

0 05 15
7/(B) = {0} U[0.5..1.5]

Figure 4.2 An example of a constraint and its projection functions.

Any solution of the constraint must be a point within the line x,=0 or within the line x,=x;
(thin solid lines in the figure). These points within the real box B define the segments
represented in the figure as thick solid lines within the grey rectangle. The projections of
these segments with respect to each variable are the sets obtained by applying the
respective projection function to B.

Given the above definition, a box-narrowing function may be defined which narrows
the domain of one variable x;es from a box B (representing all the variables of the CCSP)

eliminating some values of x; not belonging to nxf(B[s]).

Definition 4.2-2 (Box-Narrowing Function). Let P=(X,D,C) be a CCSP (with
X=<x1,....Xi,...,X>). A box-narrowing function with respect to a constraint (s,0)eC and a
variable x;es is a mapping, denoted BNFxf, that relates any F-box B=<I, Jpeens ]Xi"“’ ]Xn>
(B<D) with the union of m (1<m) F-boxes, defined by:

BNF,f(<Ix1,..., Lieois I >) = <Lipeos 1oy L >0 o0 O <l Ly, I >

satisfying the property:
noBlhchv... Ul 0

The box-narrowing functions satisfy both properties of the narrowing functions:
contractance follows from the property /;U...Ul, < Iy, (the only changed domain is smaller

than the original) and correctness follows from the property nxf(B[s]) cliu...uUl,(the

eliminated combinations have x; values outside the projection function). However these
properties are insufficient to make them narrowing functions (see definition 4.1-1) since
they are not guaranteed to be closed under composition (a box-narrowing function may
only be applied to a single F-box but the result may be the union of disjoint F-boxes).

Most approaches solve the above problem by imposing that the result of applying a
box-narrowing function to an F-box must be a single F-box. This can always be achieved
by substituting the union operations of definition 4.2-2 by union hull operations (see
definition 2.2.2-1). With this restriction a box-narrowing function is a narrowing function
accordingly to definition 4.1-1 and may be applied within the propagation algorithm.
Moreover, the complete set of narrowing functions may be obtained by considering a box-
narrowing function associated with each variable of each constraint of the CCSP.
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Other approaches [77, 128] that consider structures for representing unions of F-boxes
(see subsection 2.2.4), define each narrowing function as a function that applies a
box-narrowing function to each F-box represented in the structure. The result is the union
of several F-boxes (which is representable by a structure) each one smaller than the original
(contractance) and containing the same set of solutions (correctness).

What still remains to be explained is how to obtain an enclosure of a projection function
which is necessary to define the associated box-narrowing function. Because the goal is to
narrow as much as possible the original domain loosing no solutions, the best possible
enclosure is the RF-set approximation (see definition 2.2.3-2) of the set of reals that would
be obtained by the projection function. This best possible enclosure cannot be easily
obtained for all kinds of constraints so, several interval constraint approaches transform the
original CCSP into an equivalent one (see definition 2-7) where all the constraints are in a
suitable form for obtaining such enclosure. This method is known as the constraint
decomposition method to emphasise the decomposition of a complex constraint into a set of
primitive constraints. An alternative approach, denoted here as the constraint Newton
method, is to handle directly the original set of constraints and for each one obtain a coarser
approximation of the enclosing set by applying an algorithm that alternates bisection with
Newton steps (see subsection 3.3.1). Both methods will be described in the next two
sub-sections whereas complementary alternatives will be addressed in subsection 4.2.3.

4.2.1  Constraint Decomposition Method

The constraint decomposition method [77, 128, 91, 15] was the original technique used for
defining box-narrowing functions capable of narrowing a variable domain into the RF-set
approximation (or at least the RF-hull approximation) of the set obtained by the respective
projection function. It is based on the transformation of complex constraints into an
equivalent set of primitive constraints whose projection functions can be easily computed.

Definition 4.2.1-1 (Primitive Constraint). Let e. be a real expression with at most one
basic operator (see definition 3.2-1) and with no multiple occurrences of its variables. Let
ey be a real constant or a real variable not appearing in e.. The constraint ¢ is a primitive
constraint iff it is expressed as:

e. 0 ey with ¢ e {<,=>} Q

A set of primitive constraints can be easily obtained from a non-primitive constraint. Recall
that by definition 2.2-2 any constraint of a CCSP is expressed in the form e.<¢0 (where e, is

a real expression and ¢ € {<,=>}) and the only reason why it is not a primitive constraint
is that the real expression e, may contain more than one basic operator or may contain
multiple occurrences of the same variable. However, if there are n basic operators within
expression e,, then n-1 basic operators must be within the expressions that are arguments of
the other basic operator (see the recursive definition 3.2-1 of a real expression). Thus, the
original constraint may be decomposed by considering new variables (and new equality
constraints), one for each of these arguments containing basic operators. The whole set of
primitives may be obtained by repeating this process until all constraints contain at most
one basic operator. Similarly, for each multiple occurrence of the same variable a new
variable may be considered together with a new equality constraint. Alternatively,
constraints with multiple occurrences of the same variables could be solved in order to
obtain a single occurrence of each variable, which is always possible because, after the
previous decomposition, these constraints contain at most a single basic operator.




Chapter 4. Constraint Propagation 47

Consider the CCSP P presented in figure 4.2 which includes the single constraint

c=x;x(x2-x;)=0. The constraint is not primitive since it contains two basic arithmetic
operators and the variable x; occurs twice. Applying the decomposition technique described
above, the new variable x; is introduced for representing the second argument of the

multiplication operator and the primitive constraints c¢;= x;xx3=0 and c,= x,-x;=x3 are
obtained. The CCSP P=(<x;x,>,D;xD,,{c}) may thus be transformed into the equivalent
CCSP P’=(<x1,x2,x3>,DxDyx[-00..+],{c;,c>}) where all the constraints are primitive.

The next step of the constraint decomposition method is to solve algebraically each
primitive constraint wrt each variable in the scope and to define an interval function
enclosing the respective projection function. This is always possible because the constraints
are primitive. However an extra care must be taken due to the indefinition of some real
expressions for particular real valued combinations (for example: x;xx,=x; is not equivalent
to x;=x3/x; if x; and x; are both zero, in which case the expression x;/x; is not defined). The
later problem is naturally handled by considering the natural interval extension of the
obtained real function, which includes all the defined real valued combinations (in the
above example X;cX53/X>).

Definition 4.2.1-2 (Inverse Interval Expression). Let ¢=(s,0) be a primitive constraint
expressed in the form e.¢e) where e.=e; or e=0(ey,...,e,) (P is an m-ary basic operator
and e; a variable from s or a real constant). The inverse interval expression of ¢ with respect
to e;, denoted Ve, is the natural interval expression of the expression obtained by solving
algebraically, wrt e;, the equality e.=ey if c is an equality or e.~eytk if ¢ is an inequality
(with k<0 for inequalities of the form e .<ejy and k>0 for inequalities of the form e.>¢;). O

Table 4.1 shows the inverse interval expressions of primitive constraints with no operators
or with one of the four basic arithmetic operators defined in 3.1-1. The inverse interval
expressions associated with primitive constraints including other basic operators could be
defined similarly.

Table 4.1 Inverse interval expressions of some primitive constraints.

Ve, Ve, Ve oef<,=>}
erte;oe; | (EstK)-E; | (EstK)-E; | (E/+E)-K e;is a real variable or a real constant
eresoe; | (EstK)tE, | E-(EstK) | (Er-E>)-K E;is the natural interval extension of ¢;
epxe;oe; | (EstK)VE; | (EstK)E; | (ExE;)-K [-0.0] ifo =<
el/exoe; | (EstK)xE; | EJ(EstK) | (E/E»)-K K=< [0.0] ifo==
e/0e; (E+K) E-K [0.400] if 0 =>

Table 4.2 presents the inverse interval expressions associated with the primitive constraints
of the decomposed CCSP P’ described in the previous example.

Table 4.2 Inverse interval expressions of ¢;= x;xx;=0 and c,= x,-x;=x;.

We, W@Z “V€3
xl><x3:() 0/X3 0/X1 X[XXj
XX =X3 XX, Xo-X3 Xo-X;
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The inverse interval expression wrt a variable allows the definition of the projection
function of the constraint wrt to that variable.

Theorem 4.2.1-1 (Projection Function based on the Inverse Interval Expression). Let
P=(X,D,C) be a CCSP. Let c=(s,p)eC be an n-ary primitive constraint expressed in the

form e ¢ ey where e=e; or e=D(ey,...,e,) (With ® an m-ary basic operator and e; a variable
from s or a real constant). Let Wx; be the inverse interval expression of ¢ with respect to the
variable x; (e; = x;). The projection function nxf of the constraint ¢ wrt variable x; is the
mapping:

nxip(B) = VYxi(B) N B[xi] where B is an n-ary real box a

An enclosure of the projection function wrt a variable x; is obtained by firstly applying the
evaluation rules of the basic operators (see section 3.1) to obtain the respective inverse
interval expression Vx; with the real box B, and secondly by intersecting the result with the
projection of B wrt x;.

Table 4.3 shows the projection functions obtained by this method for the primitive
constraints of the previous example.

Table 4.3 Projection functions of ¢;= x;xx3=0 and ¢,= x,-x;=x;.

xxx3=0 XX 1=X;3
o (<1115>) = (0/1;) N I, (<L) = (L) N 1
mo(<I1L>) = (01) N n (< Ld3) = (Ut A L
foj(<1 12 l5>) = -l N I

The soundness of the interval evaluation rules guarantees the enclosure of the projection
function. However, the quality of this enclosure depends on the evaluation rules used (as
discussed in section 3.1) and the restrictions imposed on the result (a single F-interval or
the union of multiple F-intervals). The best possible enclosure (the RF-set approximation of
the projection function) is obtainable by using extended interval arithmetic and allowing the
result to be composed of multiple F-intervals.

The inclusion monotonicity property of interval arithmetic evaluation guarantees the
monotonicity of the box narrowing functions defined by the decomposition method.

In the case of the above example, the interval evaluations will always result in a single
F-interval and so these could directly define the narrowing functions that will be considered
by the propagation algorithm for pruning the variable domains of the decomposed CCSP P’
(see Table 4.4).

Table 4.4 Narrowing functions of CCSP P ’=(<x;,x2,x3>,D;xD,x[-0..400],{x;xx;=0, x-x;=x3})

NF; | BNF(<ILL>) =<(0/L) O 1L, 05>

x;xx3=0 »
NF, BNFX3(<11912913>) = <I,I,,(0/I}) N I>

NFs | BNF(<I.1o.0>) = <(-L3) O 1L 05>

XX =X5 | NFy | BNEG(<ILL>) = <D0+ O s>

NFs | BNF (<L) = <LuL(I-L) O 1>
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If the original goal is, according to the CCSP P=(<x;,x;>,D;xD;,{x;x(x2-x;)=0}), to prune
F-box B=<I,,I,>eD;xD;, then, using the decomposition method, the narrowing is executed

on the decomposed CCSP P ’=(<x;x2,x3>,D;xDyx[-00..40],{x;xx3=0, x,-x;=x3}) by
applying the propagation algorithm (prune) to the initial F-box B;=<I},I;,[-o..+c0]> and
using the narrow functions defined in table 4.4. From the resulting F-box B;=<I;",I,’,I;"> a
box B’=<[;’,I,”> can be obtained by considering only the domains of the variables
appearing in the original CCSP P. Table 4.5 summarises the pruning results obtained by
this method for four different initial domains.

Table 4.5 Examples of the application of the decomposition method on a CCSP. The CCSP is
P=(<x;,x;>,D;xD,,{x;x(x,-x;)=0}) and Q={NF;, NF,, NF;,NF,NFs} (see table 4.4).

B=<I,,I,> B'=<X;"X,">
prune(Q,<X;,X5,[-00..+0]>)
I I I’ L’
Case 1: [-0.5..2.5] [0.5..1.5] <[-0.5..2.5],[0.5..1.5],[-2.0..2.0]> | [-0.5..2.5] | [0.5..1.5]
Case 2: [0.25..1.0] [0.5..1.5] <[0.5..1.01,[0.5..1.0],[0..01> [0.5..1.0] [0.5..1.0]
Case 3: | [-1.0.025] | [0.5..1.5] <[0..0],[0.5..1.51,0.5..1.5]> [0.0] | [0.5.1.5]
Case 4: | [-1.0..-0.25] | [0.5..1.5] (%) %)

Note that in the first case the original variable domains could not be pruned by the
decomposition method. However, in this case, the smallest box within B that encloses all
the CCSP solutions is <[0.0..1.5],[0.5..1.5]> (as can be checked in figure 4.2). In the other
three cases the results obtained were the narrowest possible results without loosing
solutions (in particular, in case 4, it was proven that box B is inconsistent).

4.2.2 Constraint Newton Method

Instead of decomposing each complex constraint into a set of primitive constraints, the
constraint Newton method [14, 134] manipulates complex constraints as a whole by using a
technique based on the interval Newton’s method for searching the zeros of univariate
functions (see 3.3.1).

The approach is based on a set of auxiliary functions, that we will denote interval
projections, one for each variable of each constraint.

Definition 4.2.2-1 (Interval Projection). Let P=(X,D,C) be a CCSP. Let ¢=(s,p)eC be an

n-ary constraint expressed in the form e.©0 (with ¢ €{<,=>} and e, a real expression). Let
B be an n-ary F-box. The interval projection of ¢ wrt x;es and B is the function, denoted
HXfB, represented by the expression obtained by replacing in e, each real variable x; (x;#x;)
by the interval constant B[x;]. (|

The interval projections, HXfB and HX;JB, associated with the constraint x;x(x,-x;)=0 and an
F-box B=<[-0.5..2.5],[0.5..1.5]> (see example of figure 4.2) are the family of univariate real
functions represented by the expressions x;x([0.5..1.5]-x;) and [-0.5..2.5]x(x,-[-0.5..2.5]),
respectively.

From the properties of the interval projections, a strategy is devised for obtaining an
enclosure of the respective projection function.
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Theorem 4.2.2-1 (Properties of the Interval Projection). Let P=(X,D,C) be a CCSP. Let
c=(s,p)eC be an n-ary constraint and B an n-ary F-box. Let l_[Xl.pB be the interval projection
of ¢ wrt variable x;es and B. The following properties are necessarily satisfied:

(i) if ©=“="thenV,¢p[y,] rem (B) = 0<l,, )

(i) if ©=“<" thenVy e[y rems, (B) = lefi(Tl., ") <0

(ili) if © =“>" thenV,¢ gy,] reme (B) = right(Tly; ")) 20

We will say that a real value r satisfies the interval projection condition if the right side of
the respective implication (i), (ii) or (iii) is satisfied. (N

Property (i) claims that in equality constraints each element of a projection function wrt a
variable must be a zero of the interval projection, that is, zero must be within the interval
obtained by its evaluation. Properties (ii) and (iii) claim that in inequality constraints each
element of a projection function wrt a variable when evaluated by the complex interval
projection will produce an interval where at least some elements are smaller/larger (or
equal) than zero.

The key idea of the strategy used in the constraint Newton method is to search for the
leftmost and the rightmost elements of the original variable domain satisfying the interval
projection condition. The next theorem guarantees that these elements define an interval
that contains the projection function.

Theorem 4.2.2-2 (Projection Function Enclosure based on the Interval Projection). Let
P=(X,D,C) be a CCSP. Let ¢=(s,p)eC be an n-ary constraint, B an n-ary F-box and x; an
element of s. Let a and b be respectively the leftmost and the rightmost elements of B[x;]
satisfying the interval projection condition. The following property necessarily holds:

i (B) < [a..b] 0

From the above theorem, the natural strategy to obtain a new left (right) bound is firstly to
verify the interval projection condition in the left (right) extreme of the original variable
domain and secondly, only in case of failure, to search for the leftmost (rightmost) zero of
the interval projection. This strategy assumes the continuity of the interval projection
function since in case of failure of an inequality condition, it assumes that the leftmost
(rightmost) element satisfying the interval projection condition must be a zero of the
interval projection.

Figure 4.3 presents the pseudocode of function narrowBounds, which implements this
narrowing strategy. It uses the function intervalProjCond for verifying whether the interval
projection condition is satisfied at the original interval bounds and uses the searchLeft and
searchRight functions for finding new bounds. The unique argument of the function
narrowBounds is an F-interval representing the domain of a variable x;. The result is a
smaller F-interval enclosing the projection function (or the empty set if it is proved that the
interval projection condition cannot be satisfied).
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function narrowBounds(an F-interval [a..b])
1y  if a = b then if intervalProjCond([a]) then return [a] else return J; end if; end if;
@  if not intervalProjCond([a..a™]) then a < searchLeft([a™..b]);
@3) if a = then return J;
@  if a = b then return [b];
5)  if not intervalProjCond([b™..b]) then b < searchRight([a..b™]);
6)  return [a..b];
end function

Figure 4.3 The narrowing algorithm for finding an enclosure of the projection function.

The algorithm works as follows. If the original F-interval [a..b] is degenerate (line 1) then,
it either satisfies the interval projection condition and cannot be further narrowed or it
doesn’t and the empty set is returned because the constraint cannot be satisfied. If [a..5] is
not degenerate then the algorithm proceeds (line 2) by inspecting the satisfiability of the
interval projection condition in the left bound ([a..a™]) and, in case of failure, a is updated
to the left bound of the leftmost canonical interval (within [¢T..b]) that zeros the interval
projection. If there are no zeros (line 3), the constraint cannot be satisfied and the empty set
is returned. If the only zero is the right bound b (line 4) then the degenerate F-interval [b] is
returned. Otherwise the algorithm proceeds (line 5) by inspecting the satisfyability of the
interval projection condition within the right bound ([b~..h]) and, in case of failure, b is
updated to the right bound of the rightmost canonical interval (within [a..h™]) that zeros the
interval projection. In this case, the empty set cannot be returned since the left canonical
bound is a zero of the interval projection, and so, the F-interval [a..b] is returned (line 6).
Function intervalProjCond is described in figure 4.4. It uses the interval projection
fo,)B and assumes that the constraint is expressed in the form e.<¢0. Its unique argument is a

canonical F-interval / and the result is a boolean which is set to false iff it can be proved
that the interval projection condition cannot be satisfied by any real value within /.

function intervalProjCond(a canonical F-interval [)
B
M [a.b] < TL. (0

2 case ¢ of
3) “=": return O€[a..b];
4) “<”: return a<0;
6) “>”: return 5>0;
6) end case;
end function

Figure 4.4 The function that verifies if the interval projection condition may be satisfied.

In line 1 the interval projection function is evaluated for the canonical F-interval / and the
result is the interval [a..b]. Lines 3, 4 and 5 verify if the appropriate interval projection
condition (see theorem 4.2.2-1) may be satisfied for a real value within / returning true in
that case and false otherwise.

The algorithm for searching for the leftmost zero of an interval projection is specified in
function searchLeft, implemented in pseudocode in figure 4.5 (function searchRight is
defined similarly). The algorithm is analogous to the ShrinkLeft and LNAR algorithms
PB

proposed in [14] and [134] respectively. It uses the interval projection function [],, and an

associated Newton Narrowing function NN as described in subsection 3.3.1 (see definition
3.3.1-3).
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function searchLeft(an F-interval [)
O« {I}
@ whileQ #J do
?3) choose /; € O with the smallest left bound (V¢ 0 left(I))< lefi(1));
@ 0« O\ {[1};
PA
(5) if OeHXi (1;) then
©) I; <~ NN(1));
) if I; # & then
®) [0 < cleft(],), 11 < [rlght([o)rlght(lj)],
©) if OeHXf_)B(I(,) then return lefi(1y);
(10) else O « Q U {[lefu(l)).L.center(1))]], [Lcenter(I)) J..right(1;)]}; end if;
an end if;
(12) end if;
(13)  end while;
(14)  return J;
end function

Figure 4.5 The algorithm for searching the leftmost zero of an interval projection.

The only argument / of the function searchLeft is an F-interval representing the domain of
the variable x; where the search takes place. The returned result is either the empty set if it

. B L. . P
is proven that there are no zeros of fo within /, or else is an F-number a satisfying:

B
eIl ([a..a™]).

The algorithm is based on a recurring cycle (lines 2 through 13) where, in each cycle, a

B
partition /; of the original interval I (I,c/) is inspected for its leftmost zero of fo . During
the whole process, a set Q will contain partitions of the original interval that might include

B
zeros of fo . This set is initialised with the whole original interval / (line 1). If Q becomes
B

empty then it is proved that there are no zeros of fo within / and so the cycle terminates
and the empty set is returned (line 14). If O is not empty then its member with the smallest
left bound is chosen for inspection (line 3) and is removed from Q (line 4). The inspection
of an interval I; proceeds as follows. Line 5 verifies if zero is contained in the interval

B B
evaluation of fo with /; as argument. In case of failure, /; cannot contain a zero of fo
(see theorem 3.2-2) and will not be further considered (a new cycle begins). In case of

B
success, /; might contain zeros of fo and so, the Newton Narrowing function is applied
(line 6) for obtaining a smaller interval without losing any existing zero (see theorem 3.3.1-
1). Line 7 verifies if the obtained interval is not empty. If it is empty then /; cannot contain
B
a zero of l_[Xip (see theorem 3.3.1-2) and a new cycle begins. Otherwise a canonical F-
interval [, (enclosing the left bound of ;) is isolated for inspection (line 8). If zero is
B

contained in the interval evaluation of ]_[Xip with 7, as argument then the left bound of /j is
returned (line 9); else /; is split at its mid point and both intervals are added to Q (line 10).

The algorithm, which takes advantage from the efficiency of the Interval Newton
method (see theorems 3.3.1-5 and 3.3.1-6), is correct and terminates.

Correctness is guaranteed in the sense that the returned real value is smaller (or equal)
than any possible real value within the original domain that is a zero of the interval
projection function. On the one hand, the fact that sub-regions of the original domain are
only discarded by applying the Newton Narrowing function guarantees that no existing zero
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is lost. On the other hand, the returned real value is the left bound of a canonical F-interval
1y that “zeros” H,:B (its interval evaluation contains zero) and this value is smaller than any
real value contained in any partition in Q.

However, the fact the interval evaluation of HxipB(Ig) contains zero does not guarantee

that the left bound of I is a zero of the function (the returned real value may not be the
leftmost zero of the function). Moreover, it does not even guarantee the existence of a real
value within 7 that zeros the function (it could be a consequence of the approximate nature
of interval arithmetic evaluation).

Termination is guaranteed because at each cycle a sub-region of the original domain is
discarded or split into two smaller sub-regions which is a finite process that necessarily
ends when canonical sub-regions are obtained.

As a consequence of the above properties of the searchLeft/searchRight functions, the
interval obtained by applying the narrowBounds function to a domain of variable x; within
a box B, necessarily encloses the interval [a..b] whose bounds are the leftmost and the
rightmost elements of B[x;] satisfying the interval projection condition. Hence, and
accordingly to theorem 4.2.2-2, the narrowBounds function computes an enclosure of the
projection function:

TE,:(B) c [a..b] < narrowBounds(B[x;])

In the unrealistic case where the interval arithmetic evaluations were performed with
infinite precision, [a..b] is the interval obtained by the narrowBounds function. However, in
this case, the termination property of the searchLeft/searchRight functions is no longer
guaranteed.

The box narrowing functions defined by the narrowBounds functions are not
guaranteed to be monotonic. On the one hand, the Newton Narrowing functions used in the
searchLeft/searchRight functions are non monotonic since the Newton function (definition
3.3.1-1) is not monotonic (due to its dependence on the centre of an interval). On the other
hand, they may be able to prove the non-existence of zeros on entire sub-regions of a
domain where the interval evaluation of particular canonical intervals within this region
may be insufficient to discard this possibility. Consequently, the interval obtained by the
narrowBounds function is not necessarily the smallest interval containing all canonical
intervals whose evaluation satisfy the interval projection condition. It may be even smaller
than this interval because, during the narrowing process, the Newton Narrowing functions
may be able to prove that some of these canonical intervals cannot satisfy the interval
projection condition.

However, with infinite precision, the monotonicity of the narrowBounds functions is
guaranteed since the obtained interval is bounded by the leftmost and the rightmost
elements of the original interval satisfying the interval projection condition.

Consider the example of the CCSP P=(<x;x,>,D;xD,,{x;x(x>-x;)=0}) presented in
figure 4.2. Using the constraint Newton method, since there is no need to decompose the
unique constraint into primitives, the pruning results over the original box
B=<[-0.5..2.5],[0.5..1.5]> are much better than the obtained by the previous method. The
following is a step by step description of the application of the narrowBounds function for
narrowing the domain of variable x;. As in the example of figure 3.6, it is assumed a three
digits precision, that is, the distance between two consecutive F-numbers is 0.001.

The narrowBounds function is applied over the original interval [-0.5..2.5] with the

B
associated interval projection fo represented by the expression x;x([0.5..1.5]-x)

¢ Due to the splitting strategy (line 9) and the choosing criterion (line 3), all values of the inspected partition /; are smaller
(or equal) than any value of any other partition in O
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(represented in figure 3.2). Since the original interval is not degenerate, the
intervalProjCond function is applied to its left canonical bound [-0.5..-0.499]. Because

OeEHXfB([-O.S..-O.499])=[-1..-0.499], this bound does not satisfy the interval projection

condition and the search for a new left bound within [-0.499..2.5] is accomplished by
function searchLeft.

Table 4.6 summarises the process, each line illustrating the principal actions executed at
each cycle within the searching algorithm described in figure 4.5. The first column shows
the set of interval partitions that are considered at the beginning of the cycle. The second
column is the verification that the leftmost interval partition /; may contain zeros of the
interval projection (fig. 4.5, line 5). The third column is the interval obtained by applying
the Newton Narrowing function to this partition (fig. 4.5, line 6) where the Newton
function is defined accordingly definition 3.3.1-1 with Fr = X rXi and F’p=1-2X; (see
example of figure 3.6). The fourth column is the verification if the left canonical bound of
the previously obtained interval may contain zeros of the interval projection (figure 4.5,
line 9).

Table 4.6 Searching a new left bound for x; within the interval [-0.499..2.5].

searchLeft([-0.499..2.5])
O=11..1} 0ell,” (1) NN() 0el1.” (1)
{[-0.499..2.5]} 0€[-5..4.998] [-0.499..2.5] 0¢[-0.998.. -0.497]
{[-0.498..1.001],[1.001..2.5]} 0€[-0.995..2] [-0.498..1.001] | 0¢[-0.997..-0.496]
{[-0.497..0.252],[0.252..1.001],[1.001..2.5]} | 0&[-0.992..0.504] [0..0.001] 0€[0..0.002]
return 0

In the first two cycles, the Newton Narrowing function was unable to reduce the leftmost
interval and the algorithm proceeded by considering smaller partitions. However, in the
third cycle, the Newton Narrowing function was powerful enough to isolate a canonical
zero of the interval projection. The final returned value is the left bound (0) of this
canonical interval.

After verifying that OgﬂxfB([2.499..2.5])=[-5..-2.497], the search for a new right bound

was performed similarly, by applying function searchRight to the interval [0..2.499],
obtaining the new bound 1.501. Consequently, the final result obtained by the
narrowBounds function for narrowing the domain [-0.5..2.5] of variable x; is the new and
smaller interval [0..1.501].

The pruning achieved by using the constraint Newton method to solve any of the cases
presented in table 4.5 is identical to the pruning achieved by the decomposition method. An
exception is the first case, presented above, where the x; domain was narrowed into a
smaller interval [0..1.501] which is a fairly good approximation of [0..1.5] (the smallest
interval enclosing the projection function —see figure 4.2).

4.2.3  Complementary Approaches

Several variations of the two basic methods for obtaining box-narrowing functions have
been considered. The idea is to take advantage of the properties of these methods when
applied to constraints that are expressed in a particular form.

A modification of the Newton’s method, firstly presented in [134], is to use other
interval extensions of the interval projection function associated with a constraint.
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As defined in the previous subsection, the interval projection is a univariate function
obtained from the original constraint expression by a process similar to the one presented in
the definition of the natural interval extension (see definition 3.2-6) except that some
variables are replaced by their interval values. Consequently, the interval arithmetic
evaluation of this function with an interval argument, which computes an enclosure of the
function range, corresponds to the evaluation of its natural interval extension. If instead of
this natural interval extension, other interval extension (expressed in some other form) is
considered, then its interval arithmetic evaluation would still compute an enclosure of the
function range (see section 3.2). Moreover, the quality of this enclosure is dependent on the
form of the interval extension.

Pascal V. Hentenryck et al propose in [134] the use of the Distributed and the Taylor’
interval extensions together with the natural interval extension for obtaining different
enclosures of the interval projection function. This way, different box-narrowing functions
are simultaneously defined wrt the same variable of the same constraint and may be applied
at different stages of the pruning process accordingly to their specific properties.

A modification of the decomposition method, presented in [77] and known as global
tolerance propagation, does not require the complete decomposition of the whole set of
constraints into primitive constraints. It transforms the original set of constraints into an
equivalent one where for each constraint (not necessarily primitive) the inverse interval
expressions can be easily computed by interval arithmetic evaluations. Moreover, for
enforcing global consistency it is sufficient to obtain a set of constraints whose variables
are not connected circularly to each other by a chain of mutually different constraints [77].

In practice, this equivalent set of constraints is often impossible to obtain, either due to
algebraic limitations or the imprecision of the interval arithmetic evaluations, and the
approach may only be applied in a few special situations.

Another modification to the general basic methods is the introduction of a pre-processing
phase preceding the definitions of the box-narrowing functions. The goal is to define an
equivalent CCSP by applying symbolic rewriting techniques over the original set of
constraints. The obtained equivalent CCSP will be expressed in a more suitable form for
applying efficiently the narrowing propagation algorithm.

Benhamou in [9] characterised the pre-processing techniques in terms of constraint
rewriting operators. Practical proposals for applying these techniques aim at improving
propagation efficiency by introducing redundant constraints. In particular, for CCSPs
addressing the solution of multivariate polynomials over the reals, rewriting approaches
were defined where Grobner bases are computed [12] (or partially computed [13]) from the
original set of constraints.

Another variation based on the two basic methods for obtaining box-narrowing functions
was presented in [11]. In this work, the authors developed an algorithm, denoted
HC4revise, capable of implementing a narrowing function associated with any complex
constraint without decomposing it. Moreover, the narrowing results achieved by HC4revise
are the same as those that would be obtained if the decomposition method were applied to
this constraint and the narrowing propagation executed with the resulting box-narrowing
functions. This allowed the implementation of a more efficient algorithm, denoted HC4,
with the same results as the decomposition method, which does not require the
decomposition of complex constraints into primitives.

7 The Taylor interval extension does not require the usage of the narrowBounds function because it can be solved wrt the
variable. However it requires that the constraint must be of the form E.=0 where E, denotes a function which has
continuous partial derivatives [VMK97].
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Based on the HC4revise algorithm, a complementary approach was proposed in [11],
which may take advantage of the way that a complex constraint is expressed. The idea is
that having an algorithm, such as the HC4revise algorithm, that does not require
decomposing complex constraints, makes it possible to combine the essence of both basic
methods, and choose either one or the other, according to the form of the expression of the
interval projection.

The evaluation error of the interval projection function is a consequence of the
dependency problem (see definition 3.2-7) and so, when there are no multiple occurrences
of the same variable (the unique variable) the HC4revise may be applied without
introducing errors, otherwise, the Newton’s method may be preferable. The resulting
algorithm, denoted BCY, integrate the efficiency of the HC4revise algorithm (and efficacy
without dependency) with the efficacy of the Newton’s method for the narrowing
propagation of complex constraints.

Finally, some approaches [125], complementary to the box-narrowing functions associated
with each variable of each constraint, consider narrowing functions capable of narrowing
several variable domains simultaneously.

These functions are based on the multivariate interval Newton’s method (see subsection
3.3.2) and require the grouping of constraints into a square subsystem (the number of
considered constraints equals the total number of variables within their scopes) which can
be seen as a single complex constraint. Despite the inherent complexity of this multivariate
approach, it may be particularly effective where the projection approaches may fail,
namely, in pruning space regions in the neighbourhood of a root [125].

4.3 Summary

In this chapter the generic constraint propagation algorithm was described in terms of
narrowing functions associated with the constraint set. Its properties were derived from the
properties of the narrowing functions. The main methods used in the interval constraint
framework for associating narrowing functions to constraints were presented. Their
extensive use of interval analysis techniques for guaranteeing correctness of the resulting
narrowing functions was emphasised. The next chapter defines local consistency as a
property that depends exclusively on the narrowing functions associated with the constraint
set, and overviews the main consistency criteria used in continuous domains.
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Chapter 5

Partial Consistencies

The fixed-points of a set of narrowing functions associated with a constraint characterize a
local property enforced among the variables of the constraint scope. Such property is called
local consistency since it depends exclusively on the narrowing functions associated with a
single (local) constraint and defines the value combinations that are not pruned by them
(consistent). Section 5.1 characterizes the main types of local consistency types used in
continuous domains.

Local consistency is a partial consistency, in the sense that imposing it on a CCSP is not
sufficient to remove all inconsistent value combinations among its variables. Stronger
higher order consistency requirements may be subsequently imposed establishing global
properties over the variable domains. Higher order consistencies will be discussed in
section 5.2.

5.1 Local Consistency

Local consistencies used for solving CCSPs are approximations of arc-consistency, a local
consistency developed in Artificial Intelligence [97, 98] for solving CSPs with finite
domains. A constraint is said to be arc-consistent wrt a set of value combinations iff, within
this set, for each value of each variable of the scope there is a value combination of these
variables that satisfy the constraint.

Definition 5.1-1 (Arc-Consistency). Let P=(X,D,C) be a CSP. Let c¢=(s,p) be a constraint
of the CSP (ceC). Let 4 be an element of the power set of D (4€2”). The constraint c is
arc-consistent wrt 4 iff:
Vxies VdieAlx;] IdeA[s) @dxil=di ~ d €p)
which, extending the definition of a projection function to any element of 27, is equivalent
P
to:  Vyes Al ={ dlx]|d epnAls] } = n(ALs) 0

Consider the example of figure 4.2 with box B,=<[-0.5..2.5],[0.5..1.5]>, box
B,=<[0..1.5],[0.5..1.5]> and the element 4=<[0..0],[0.5..1.5]>U<[0.5..1.5],[0.5..1.5]>. In
this example the variables of the CCSP are all represented in the constraint scope s=<x;,x,>
thus B,[s]=B,, B:[s]=B, and A[s]=A4. The boxes B; and B, are not arc-consistent since, in
both, there are x; values (for example x;=0.25) without any corresponding x, value
satisfying the constraint (T[xf(B 1)=Tcxf(Bg)={0}u[0.5..1.5] is different from their respective
domains B;[x;]=[-0.5..2.5] and B[x;]=[0..1.5]). However, element A is arc-consistent
because nxf(A):A[xI]:{O}u[O.S..1.5] and nx';(A):A[xg]:[O.S..l.S].

In continuous domains, arc-consistency cannot be obtained in general due to machine
limitations for representing real numbers. In practice, each real value must be approximated
by a canonical F-interval and so, the best possible approximation of arc-consistency wrt a
set of real valued combinations is the RF-set approximation of each variable domain within
this set.
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This is the idea of interval-consistency, which can be defined by replacing, in the
definition of arc-consistency, the notion of a real value by the notion of a canonical F-
interval. A constraint is said to be interval-consistent wrt a set of real valued combinations
iff for each canonical F-interval representing a sub-domain of a variable there is a real
valued combination of the variables of the scope satisfying the constraint.

Restricting F-intervals to closed form, a non degenerate canonical F-interval will only
be considered within a variable domain if there is a real valued combination satisfying the
constraint in its interior. However, due to the closed form imposition, a degenerate
canonical F-interval will be considered either if there is a real valued combination
satisfying the constraint with this value for that variable or if this real valued combination is
within the interior of the adjacent canonical F-intervals.

Definition 5.1-2 (Interval-Consistency). Let P=(X,D,C) be a CCSP. Let c=(s,p) be a
constraint of the CCSP (ceC). Let A be an element of the power set of D (4€2”). The
constraint c is interval-consistent wrt 4 iff:
Vxies V[a.at]cAlx] IdeA[s] (dlx]e(a.a™) A dep) A
V[a]gA[x,«] EIdEA[S] (d[x]e(a..a™) A dep) (where a is an F-number)
which, extending the definition of a projection function to any element of 27, is equivalent
P
t0: Vy,es ALl = Sup({ dlxi] | d € p Als] }) = Syl (Als]) 0

Consider again the example of figure 4.2 and a three digits machine precision. The boxes
B; and B, of the previous example, which were not arc-consistent, are also not interval-
consistent since they include, in the domain of x;, non degenerate canonical F-intervals
with no corresponding x, value in its interior satisfying the constraint (for example
[0.250..0.251]<B;[x;1=B[x/] and if x;€(0.250..0.251) there is no x, value satisfying the
constraint). The element 4 of the previous example, which was arc-consistent, is also
interval-consistent since it is representable by a three digits machine precision and so
S ()= (A)=Alx;]  and  Syu(miAA)=n(A)=Clx2]. However, the box
B3=<[0.5..7/2],[0.5..7/2]>, which is arc-consistent, is not representable and the smallest
interval-consistent F-box including B; is B3 '=<[0.5..1.571],[0.5..1.571]>.

Interval-consistency was one of the first local consistency types used in continuous
domains [77, 128]. It can only be enforced on primitive constraints (decomposition method)
where the RF-set approximation of the projection function can be obtained by using
extended interval arithmetic. Structures, like divisions in [77] and taxonomies in [128],
must be considered for representing each variable domain as a non-compact set of real
values. The narrowing functions are defined from the application of a box-narrowing
function to each F-box obtained by all possible F-interval combinations between the
domains represented in each structure.

In practice, the enforcement of interval-consistency can be applied only to small
problems [77]. In order to maintain the RF-set approximation of the projection functions,
the number of non-contiguous F-intervals represented within each structure may grow
exponentially, requiring an unreasonably number of computations for each box-narrowing
function.

Because it may be computationally too expensive to keep a structure for representing
multiple F-intervals, the approximations of arc-consistency most widely used in continuous
domains assume the convexity of the variable domains, in order to represent them by single
F-intervals.

Hull-consistency (or 2B-consistency), firstly introduced by Lhomme in [91] and
extensively used in continuous domains [8, 74, 15], is a coarser approximation of arc-
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consistency than interval-consistency, which requires the satisfaction of the arc-consistency
property only at the bounds of the F-intervals that represent the variable domains.

A constraint is said to be hull-consistent wrt an F-box iff, for each bound of the
F-interval representing the domain of a variable there is a real valued combination of the
variables of the scope satisfying the constraint. Due to machine limitations for representing
real numbers, the notion of a bound of an F-interval must be extended to a canonical bound
(an extreme canonical F-interval) which also includes all non-representable real values
within two consecutive F-numbers.

The definition of hull-consistency can be derived from the definition of
interval-consistency by simply considering, for each variable domain, the two extreme
canonical F-intervals instead of all possible canonical intervals. Consequently, the
hull-consistency approximation of arc-consistency wrt a set of real valued combinations is
the RF-hull approximation of each variable domain within this set.

Definition 5.1-3 (Hull-Consistency). Let P=(X,D,C) be a CCSP. Let c=(s,p) be a
constraint of the CCSP (ceC). Let B be an F-box which is an element of the power set of D
(Be2”). The constraint ¢ is hull-consistent wrt B iff:

Vyes 3dieBls] (@lxiela.a®) ndiep) A
3d,eB[s] (dilxi]€(b™..b] A d,ep) (where B[x;]=[a..b])
which is equivalent to:
Vaes Blxl = lu{ dlx | d € p O Bls] }) = lums, (BIs) a

In the previous example (with three digits machine precision) box B; is not hull-consistent
because within the x; bounds there are no corresponding x, values satisfying the constraint
(for example, if x;€[-0.500..-0.499) there is no x value satisfying the constraint). However,
box B, is hull-consistent since, for example, if x,=0.000<[0.000..0.001), any x, value
satisfies the constraint and if x;,=1.500€(1.499..1.500], then x,=1.500 satisfies the constraint
(and similarly wrt the domain of the other variable). Element 4 and real box B; are not
F-boxes, so the hull-consistency criterion is not applicable in these cases. Box B;’, which
was interval-consistent, is also hull-consistent since any interval-consistent box is

hull-consistent. In this case, n,rl.p(B[s]) must be a single F-interval and so

Supel ey (BIST)) =T, (BIs1).

The existing approaches to enforce hull-consistency are all based on the constraint
decomposition method where the RF-hull approximation of the projection function of each
primitive constraint is obtained by using extended interval arithmetic complemented with
union hull operations to avoid multiple disjoint F-intervals.

The major drawback of this decomposition approach is the worsening of the locality
problem, which is a direct consequence of the dependency problem (see definition 2.2.2-7).
The existence of intervals satisfying a local property on each constraint does not imply the
existence of value combinations satisfying simultaneously all of them. When a complex
constraint is subdivided into primitive constraints this will only worsen this problem due to
the addition of new variables and the consequent loss of dependency between values of
related variables. Hull-consistency enforcement is particularly ineffective if the original
constraints contain multiple occurrences of the same variables.

An example of the bad results obtained by the decomposition approach was given in
subsection 4.2.1 for pruning the domains of box B=<[-0.5..2.5],[0.5..1.5]> (figure 4.2). As
seen above, box B is not hull-consistent. However, the enforcement of hull-consistency in
the decomposed CCSP did not prune its domains (<[-0.5..2.5],[0.5..1.5],[-2.0..2.0]> is hull-
consistent in the decomposed CCSP — see table 4.5, case 1).
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The drawbacks of the decomposition approach motivated the constraint Newton
method, which can be applied directly to complex constraints. The local consistency
achieved by this method, known as box-consistency and firstly characterized in [14], has
been successfully used in many applications on continuous domains [134, 135]. It was
developed with the goal of providing a better trade-off between efficiency (of the enforcing
algorithm) and pruning (of the variable domains).

Box-consistency is a coarser approximation of arc-consistency than hull-consistency.
Instead of requiring the existence of a consistent real valued combination within each
bound of each scope variable, it replaces the real valued combination by an enclosing box
and requires a weaker form of consistency. The box is formed by the respective bound
together with the F-intervals of the other variables of the scope. The weaker form of
consistency is associated with a particular interval extension of the left side (e.) of the

constraint (e.<0) and is satisfied iff the F-interval obtained by applying this interval
extension to the box contains at least a real value satisfying the constraint'.

Definition 5.1-4 (Box-Consistency). Let P=(X,D,C) be a CCSP. Let ¢=(s,p) be a constraint
of the CCSP (ceC) expressed in the form e, ¢ 0 (with ¢ €{<,=>} and e, a real expression).
Let Fz be an interval expression representing an interval extension F of the real function
represented by e.. Let B be an F-box which is an element of the power set of D (Be2”). ¢ is
box-consistent wrt B and F iff:

VX;€s ElrleFE(Bl) 1100 A A eFg(By) 1,00
where B;and B;are two F-boxes such as:

Bi[xi]=cleft(B[x.]), Bo[xi]=cright(B[x;]) and V. ¢ s (x7xi=B:[x;]=B:[x;]=B[x.]). Q

With three digits machine precision, the constraint c=x;x(x,-x;)=0 is not box-consistent wrt
B/=<[-0.5..2.5],[0.5..1.5]> and the interval extension represented by X;x(X>-X;) since
0¢[-0.5..-0.499]%([0.5..1.5]-[-0.5..-0.499])=[-1..-0.498]. However, the constraint is
box-consistent wrt B,=<[0..1.5],[0.5..1.5]> and the same interval extension because, wrt
variable x; 0€[0..0.001]x([0.5..1.5]-[0..0.001]) and 0€[1.499..1.5]x([0.5..1.5]-[1.499..1.5]),
and wrt variable x, 0e[0..1.5]x([0.5..0.501]-[0..1.5]) and 0[0..1.5]x([1.499..1.5]-[0..1.5]).

Notice that the notion of box-consistency is always associated with a particular interval
extension of the left hand side of the constraint. Enforcing box-consistency with different
interval extensions may lead to different pruning results. However, if a constraint is hull-
consistent wrt an F-box, it must also be box-consistency wrt the same F-box for any
possible interval extension. The reason is that, independently from the interval extension
used, the weaker form of consistency required by box-consistency is always satisfied when
consistency required by hull-consistency is satisfied.

Although box-consistency is weaker than hull-consistency for the same constraint, in
practice, the enforcement of box-consistency may achieve better pruning results since it
may be directly applied to complex constraints whereas hull-consistency is only enforced in
primitive constraints implying the previous decomposition of a complex constraint (see, in
subsection 4.2.2, the better results obtained by the constraint Newton method for pruning
the domains of box B=<[-0.5..2.5],[0.5..1.5]>).

For primitive constraints box-consistency and hull-consistency are equivalent if the
interval extension used in box-consistency does not contain multiple occurrences of the
same variable and its evaluation is computed with infinite precision. This was proved in
[28] and is a consequence of the absence of the dependency problem in the evaluation of

! The satisfaction of this weaker form of consistency for a consistent real valued combination is guaranteed by the
soundness properties of interval extensions and their evaluations (theorem 3.2-2).
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the interval extension, which guarantees that no overestimation error is made with infinite
precision.

For complex constraints box-consistency is stronger than hull-consistency applied on
the primitive constraints obtained by decomposition [28]. This is a consequence of the
amplification of the locality problem induced by the constraint decomposition.
Enforcement of a consistency criterion directly to a complex constraint is necessarily
stronger (or equal) than its enforcement on the primitive constraints obtained by the
decomposition of the constraint. In particular, this is the case for the box-consistency
criterion, and because for primitive constraints box-consistency and hull-consistency are
equivalent, box-consistency on complex constraints must be stronger (or equal) than
hull-consistency on the respective primitive constraints.

Nevertheless, the pruning obtained by box-consistency is often insufficient for non
linear constraints. If there are several uncertain variables, the Newton method to enforce
box-consistency aims at tightening the bounds of each one substituting the other variables
by their F-interval domains. Hence, if there are n uncertain variables, it is still necessary to
work with 7 univariate functions with n-1 interval values. Depending on the complexity of
the constraint, the uncertainty of the xn-1 interval values may cause a wide range of possible
values for the univariate functions, preventing possible domain reduction.

Consider again constraint c=x;x(x,-x;)=0 and a different interval extension of its left
side represented by Fr=X;x(2X>-(X;+X>)). Note that the real function f represented by
fe=xix(x2-x;) is the same represented by fr=x;x(2x,-(x;+x,)) (the real expressions are
equivalent) and F is the natural interval expression of fr and consequently an interval
extension of f. Constraint ¢, which was not box-consistent wrt B;=<[-0.5..2.5],[0.5..1.5]>
and F, is box-consistent wrt B; and Fg. Using the interval expression Fj: (instead of F)
for verifying the criterion for each bound of each variable, the uncertainty of the interval
values allows a wider range of possible values. For example, the condition on the left
bound of variable x; is now satisfied since 0€ Fg(<[-0.5..-0.499],[0.5..1.5]>)=[-1.5..0.001].

Generalising the concept of local consistency from a constraint to the set of constraints
of a CCSP, we can say that a CCSP P=(X,D,C) is locally consistent (interval, hull or box-
consistent) wrt a set of real valued combinations 4e2” iff all its constraints are locally
consistent wrt A. Since the propagation algorithm obtains the greatest common fixed-point
(of the monotonic narrowing functions) included in the original domains, then the result of
applying the propagation algorithm to a set A2” is the largest subset 4’4 for which each
constraint is locally consistent.

Definition 5.1-5 (Local-Consistency). Let P=(X,D,C) be a CCSP. Let 4 be an element of
the power set of D (4 e2P ). P is locally-consistent wrt A iff:

Ve cis locally-consistent wrt 4
Let S be a set of monotonic narrowing functions associated with the constraints in C which
enforce a particular local consistency by constraint propagation:

P is locally-consistent wrt prune(S,4)

V 4°—4 (P is locally-consistent wrt 4" => 4 ' prune(S,4)) a

When only local consistency techniques are applied to non-trivial problems the achieved
reduction of the search space is often poor (a problem called early quiescence in [44]).
Consider the CCSP represented in figure 5.1 where there are two real variables, x; and
x; with values ranging within [-5..5] and two constraints, c¢ sz3+x§—22so and
c=(x 1—1)2+(x2—1)2—2.5220. The thick solid square is the initial domain box. The two
circumferences represent the two constraints. The grey area represents the complete set of
solutions. The thin solid square is the box obtained by enforcing a local consistency, either
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box-consistency (with the natural interval extensions represented by Fg IEX21+X§-22 and
Fp =X, 1—1)24-()(2—1)2-2.52 respectively) or hull-consistency (on the decomposed problem).
The dashed square is the smallest /-box enclosing all solutions within the initial box.

5
Box obtained by enforcing a local
consistency on the initial box - Initial box
Vo
X2
Smallest box enclosing all //\
solutions within the initial box
-5
-5 X; 5

Figure 5.1 Insufficient pruning achieved by local consistency enforcement.

The figure shows that the local consistency criterion cannot prune the search space inside
the smaller circumference — the pruning is the same as it would be without the constraint
associated with the larger circumference. Depending on the decision problem to solve, this
may be irrelevant or, on the contrary, it may justify the enforcement of a stronger
consistency.

5.2 Higher Order Consistency

Better pruning of the variable domains may be achieved if, complementary to a local
property, some (global) properties are also enforced on the overall constraint set.

As in local consistency, higher order consistency types used in continuous domains are
approximations of similar concepts originally developed for solving CSPs over finite
domains. The most general concept to capture a global property among the overall
constraint set of a CSP is the definition of strong k-consistency given by Freuder in [55].

A CSP is k-consistent (k>2) iff any consistent instantiation of k-1 variables can be
extended by instantiating any of the remaining variables. A CSP is strongly k-consistent if
it is i-consistent for all i<k.

In particular, strong 2-consistency corresponds to arc-consistency (see definition 4.3-1)
and hull-consistency (see definition 4.3-3) can be seen as an approximation of strong
2-consistency restricted to the bounds of the variable domains (that is why the original
denomination was 2B-consistency: B for bounds).

Similarly, higher order consistency types used in continuous domains are
approximations of strong k-consistency (with £>2) restricted to the bounds of the variable
domains.

Strong 3-consistency adapt path-consistency, a higher order extension of
arc-consistency [97, 98], to continuous domains. Specifically, 3B-consistency [91] and
Bound-consistency [119], are generalisations of hull and box-consistency respectively. In
both, the property enforced on the overall constraint set is the following: if the domain of
one variable is reduced to one of its bounds then the obtained F-box must contain a sub-box
for which the CCSP is locally consistent (hull or box-consistency respectively).

The following is a generic definition for the consistency types used in continuous
domains. Accordingly to this definition local consistency is just a special case of the
generic kB-Consistency with £=2.
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Definition 5.2-1 (kB-Consistency). Let P=(X,D,C) be a CCSP. Let 4 be an element of the
power set of D (4€2”) and k an integer number.
P is 2B-Consistent wrt A iff P is locally-consistent wrt 4
V> P is kB-Consistent wrt 4 iff
Vy,eX (34,cB, P is (k-1)B-Consistent wrt 4; A 34,p, P is (k-1)B-Consistent wrt 4>)
where B;and B;are two elements of the power set of D such that:
B/[xi]=cleft(B[xi]), B:[x;]=cright(B[x;]) and ije x (2= B [x]]=B:[x;]=B[x;]). Q

In the rest of this work we will denote by kB-Hull-consistency and kB-Box-consistency the
cases where the local consistency enforced is respectively Hull- and Box-consistency. If
k=2 the designation kB may be omitted and the generic term Local-consistency may be
used to designate an unspecified type of local consistency. kB-Hull-consistency
corresponds to the notion of kB-consistency proposed by Lhomme in [91] and 3B-Box-
consistency corresponds to the notion of Bound-consistency introduced in [119].

The algorithms to enforce these stronger consistencies interleave constraint propagation
with search techniques. The price to pay for stronger consistency is thus the growth in
computational cost of the enforcing algorithm, limiting the practical applicability of such
criteria.

Figures 5.2 and 5.3 present an algorithm for enforcing kB-Consistency, either kB-Box-
consistency or kB-Hull-consistency. The algorithm is a generalisation of the 3B-
consistency algorithm proposed in [91] with some improvements suggested in [20]. The
input is the order k, a CCSP P=(X,D,C) and an F-box BcD. The output is the largest kB-
Consistent F-box within B or the empty set if it is proved that there is no such box.

The main function named kB-consistency uses an auxiliary function with the same
name but an extra parameter (size). This auxiliary function computes the largest F-box
within F-box B with the following property: if the domain of one variable is reduced to its
leftmost/rightmost subinterval (with width not exceeding size) then the obtained F-box
must contain a sub-box for which the CCSP is (k-1)B-Consistent?. Therefore, when size is
small enough to force such subintervals to be canonical, the auxiliary function computes the
largest kB-Consistent F-box within B.

function kB-consistency(an integer k22, a CCSP P=(X,D,C), an F-box B)
(1) if k=2 then return prune(set of NF from C,B);
) size < largestWidth(B);
(3) repeat
) size < size/2;
) B <« kB-consistency(size,k,P,B);
(6) if B = then return J;
(7 until canonical(size,B);
(8) return B;
end function

Figure 5.2 The generic kB-consistency algorithm.

The main kB-consistency function (figure 5.2) first checks (line 1) whether the enforcement
of a local consistency (if £=2) is sufficient and, in that case, it calls the propagation
algorithm with the appropriate set of narrowing functions for enforcing the local criterion
(Box-consistency or Hull-consistency). Otherwise, if the enforcement of an higher order
consistency is required, the size value is initialised with the largest domain width within the

2 In the following this property will be denoted kB(size)-Consistency.
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original F-box (line 2) and smaller values are subsequently considered (line 4) for
improving the domain reduction computed by the auxiliary kB-consistency function (line
5). The procedure terminates when the box is proved to be inconsistent returning the empty
set (line 6) or when the size value is smaller enough to assure the kB-consistency wrt the
current F-box B (line 7), in which case this box is returned (line 8).

The generic kB-consistency algorithm is correct and terminates if the kB-consistency
function terminates and computes the largest kB(size)-Consistent F-box within B.

function kB-consistency(F-number size, an integer k>2, a CCSP P=(<x,,...,x,>>,D,C), an F-box B)
(1) if k=2 then return prune(set of NF from C,B);
@ forj=1to2n do mem[j] < universalBox;
©3) <« 1; unfixedBounds < 2n;
@) while unfixedBounds>0 do

) if mem([j] £ B then

(6) fixed <~FALSE;

7 repeat

®) if isOdd(j) then

) i« (j+1)/2;

(10) I, < [left(B[x:])..min(right(B[x:]). left(B[x:])+size )];
(11 I « [min(right(B[x.])J lefi(Blx.])+size l)..right(Blx)];
(12) else

(13) i« jl2;

(14) I; < [max(left(Bx,]) L right(B[x,])-size ))..right(Blx)];
(15) I « [left(B[x:])..max(left(B[x:])Lright(B[x;])-size)];
(16) end if;

an Blxi] < 1;

(18) mem[j] <« kB-consistency(size,k-1,P, mem[j] N B);

(19) Blxj] < I; VI

(20) if mem([j] # < then

@n fixed < TRUE;

(22) adjustBound(j,mem[j),B);

23) else

(24) if lefi(1,) = right(1;) then return J;

(25) Blx;] <« I;

(26) mem[j] <« universalBox;

@27 unfixedBounds < 2n;

(28) B’ <« kB-consistency(size,k-1,P,B);

(29) if B’=( then return J;

(30) for /=1 to 2n do adjustBound(l,B’,B);

(31) end if;

(32) until fixed

(33) end if;

(34) unfixedBounds < unfixedBounds-1;

(35) if j=2nthenj < 1; elsej < j +1; end if;
(36) end while;
(37) return B;

end function

Figure 5.3 The auxiliary kB-consistency function used by the generic algorithm.

The auxiliary kB-consistency function (figure 5.3) also calls the propagation algorithm if
local consistency is all that is required (line 1). Otherwise, all 2n bounds of the n variables
must be fixed (narrowed) in a round robin fashion until the kB(size)-Consistency property
is achieved (while cycle from line 4 to line 36).
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In order to narrow a particular variable bound (lines 6-32), a sub-box is considered
(lines 9-11,17 for the left bound and 13-15,17 for the right bound) where the domain of that
variable is reduced to its leftmost/rightmost subinterval with width equal to size (if the
original domain is smaller than size then the whole box is considered). The possibility of
(k-1)B(size)-Consistency is verified for this sub-box (line 18) and if it succeeds (line 20)
the bound j may have to be adjusted in line 22 (the procedure adjustBound(j,B’,B) verifies
if the value of the bound j in B’ is different from the one in B, in which case the later is
updated and mem/[;] is reinitialized into the universalBox). In case of failure the sub-box is
discarded from the original box (line 25) and, after narrowing the remaining F-box (lines
28-30), the next leftmost/rightmost subinterval is considered for the same variable bound
until its satisfaction (line 20) or the complete elimination of the original box (line 24).

Once a particular variable bound is changed, all the other variable bounds must be
checked again (line 27) to guarantee that the while cycle (lines 4-36) only terminates when
(k-1)B(size)-Consistency is satisfied simultaneously for all bounds. The above procedure
assures the correctness of the algorithm and termination is guaranteed due to the fact that
after any 2n steps of the while cycle either all the bounds are fixed (and the algorithm
terminates) or at least one bound is reduced (and after a finite number of such reductions
the original box will be completely discarded).

The mem vector of F-boxes, one for each variable bound (initialized with the
universalBox where every variable domain ranges between - and +o0), implements the
improvements suggested in [20] to the original algorithm. The idea is to memorize the
result of the previous bound reduction (line 18) and use it in the next reduction attempt for
the same bound, either by guaranteeing the property satisfaction without checking (in line
5, if mem[j]cB the bound is not narrowed) or, by reducing the subbox that is checked (in
line 18, (k-1)B(size)-Consistency is verified in mem[j]NB instead of in B).

All the consistency criteria used in continuous domains, either local or higher order
consistencies, are partial consistencies. The adequacy of a partial consistency for a
particular CCSP must be evaluated taking into account the trade-off between the pruning it
achieves and its execution time. Moreover, it is necessary to be aware that the filtering
process is performed within a larger procedure for solving the CCSP and it may be globally
advantageous to obtain faster, if less accurate, results.

53  Summary

In this chapter Interval-, Hull- and Box-consistency were identified as the main local
consistency criteria used in continuous domains. Their definitions were presented and the
methods for enforcing them discussed. Higher order consistency criteria were defined as
generalisations of the local consistency criteria, and a generic enforcing algorithm was
presented. In the next chapter Global Hull-consistency is proposed as an alternative
consistency criterion in continuous domains. Several alternative enforcing algorithms are
suggested and their properties derived.



This page intentionally left blank



67

Chapter 6

Global Hull-Consistency

The pruning of the search space achieved by local consistency techniques on non-trivial
problems is often poor. Nevertheless, the computational cost of enforcing stronger
consistencies may limit their practical applicability.

In this context we propose a strong consistency criterion, Global Hull-consistency, and
show that its use in some such problems has reasonable computational costs. The need for a
strong consistency requirement originated on solving constraint problems which include
parametric ordinary differential equations [36, 37, 38], which will be addressed in part II.

The key idea of Global Hull-consistency is to generalise local Hull-consistency
criterion to a higher level, by considering the set of all constraints as a single global
constraint. Hence, it must guarantee arc-consistency at the bounds of the variable domains
for this single global constraint: if a variable is instantiated with the value of one of its
bounds then there must be a consistent instantiation of the other variables, and this
complete instantiation is a solution of the CCSP.

If real values could be represented with infinite precision, Global Hull-consistency
would be similar to the notion of e-consistency (e- for external) presented in [30]. In this
case, enforcing Global Hull-consistency (or e-consistency) on a real box corresponds to
obtaining the smallest external real box enclosing all solutions of a CCSP within the
original box.

However, due to limitations of the representation of real values, the result of enforcing
Global Hull-consistency on a box of domains must be an F-box, enclosing the real box
obtained by enforcing e-consistency. These limitations prevent the enforcing algorithms
from dealing directly with real valued instantiations, requiring them to operate with their
canonical F-box approximations. Because within a canonical solution there might be a
solution of the CCSP (and this possibility cannot be discarded due to the system
limitations), the best thing that can be done is to guarantee that for each bound of each
variable there is a canonical F-box instantiation which is a canonical solution. This is
formalised in the following definition of Global Hull-consistency.

Definition 6-1 (Global Hull-Consistency). Let P=(X,D,C) be a CCSP. Let B be an F-box
which is an element of the power set of D (Be2”). P is Global Hull-consistent wrt B iff:
Vy,eX 3B,cB (Bilxi]=clefi(B[x;]) A B, is a canonical solution of P) A
3B,cB (B/[xi]=cright(B[xi]) A B, is a canonical solution of P) a

Any strategy to enforce Global Hull-consistency must be able to localise the canonical
solutions within a box of domains that are extreme with respect to each bound of each
variable domain. Global Hull-consistency is the strongest criterion for narrowing a box of
domains into a single smaller F-box that looses no possible solution. Narrowing the
obtained F-box further would necessarily exclude one extreme canonical solution, possibly
discarding a solution.

Figure 6.1 shows the box obtained by enforcing Global Hull-consistency on the
example presented in figure 5.1. The small boxes (1, 2, 3 and 4) represent the extreme
canonical solutions (wrt each variable bound) that were found by the enforcing algorithm.
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Figure 6.1 Pruning achieved by enforcing Global Hull-consistency.

The obtained F-box is an approximation of the smallest real box enclosing the solution
space and the quality of the enclosure depends on the width of the canonical F-boxes (the
available precision for the representation of two consecutive real values). Narrowing this F-
box further would result in the elimination of at least one of the extreme canonical solutions
(1, 2, 3 or 4) and all the real solutions that it might contain.

The existing constraint systems developed for continuous domains are able to enforce
some kind of partial consistency (usually Local-consistency or eventually 3B-Consistency)
and use it for isolating solutions of a CCSP through a branch and bound strategy,
implementing a backtrack search of the space of possibilities (see chapter 2). Thus, the
ultimate goal of these systems is to find individual solutions and not to enclose the
complete solution space within a single box.

In CCSPs where the number of solutions is small the strategy aiming at identifying
them all could be used for enforcing Global Hull-consistency, and the resulting box should
enclose the complete set of solutions. However, in the case of under-constrained CCSPs,
the huge number of solutions (usually infinite in continuous domains) makes this strategy
inadequate and specialised algorithms are needed for enforcing Global Hull-consistency
within reasonable computational costs.

In the rest of this chapter several algorithms will be presented for enforcing Global
Hull-consistency. The next section discusses the relations between Global Hull-consistency
and kB-Consistency and shows how the former can be obtained by an algorithm that
enforces an appropriate higher order consistency. Section 6.2 addresses algorithms which
can be easily implemented by the existing backtrack search systems without significant
modifications of their propagation mechanisms. Section 6.3 proposes the substitution of
backtrack search by ordered search and discusses which of the previous algorithms may
profit from it. Section 6.4 presents a specialised algorithm which uses a binary tree for the
representation of the search space and includes a local search procedure for anticipating the
localisation of extreme canonical solutions.

6.1 The Higher Order Consistency Approach

If a CCSP contains only a single variable then enforcing a Local-consistency
(2B-Consistency), either Hull-consistency or Box-consistency, is sufficient to guarantee
that each bound is a canonical solution of the CCSP and so, the resulting box is Global
Hull-consistent. The reason for this is that according to the definitions of Hull and
Box-consistency (definitions 5.1-3 and 5.1-4) if the variable is instantiated with its
leftmost/rightmost canonical subinterval then each constraint must be satisfied (in the sense
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that within the interval obtained by its interval arithmetic evaluation there is a real value
satisfying the constraint). Because there is only one variable in the CCSP, its instantiation is
a complete instantiation which satisfies all the constraints and, consequently, is a canonical
solution of the CCSP.

When a CCSP contains two variables, enforcing 3B-Consistency guarantees that if the
domain of one variable is reduced to one of its (canonical) bounds the resulting F-box (with
at most one non-canonical domain) must contain a sub-box for which the CCSP is locally
consistent (see definition 5.2-1). But if this sub-box is locally consistent, the instantiation of
the non-canonical domain to one of its bounds satisfies all the constraints and,
consequently, there is at least a canonical solution within the sub-box. Therefore, enforcing
3B-Consistency on a CCSP with two variables guarantees Global Hull-consistency.

The above property between Global Hull-consistency and kB-Consistency may be
generalised for any number of variables occurring in a CCSP and is formalised in the
following theorem.

Theorem 6.1-1 (Equivalence between Global Hull-consistency & (n+1)B-Consistency).
Let P=(X,D,C) be a CCSP with n variables (X=<xj,...,x,>). Let B be an F-box which is an
element of the power set of D (Be2”). The following property necessary holds:

P is Global Hull-consistent wrt B iff P is (n+1)B-Consistent wrt B a

6.1.1  The (n+1)B-consistency Algorithm

Given theorem 6.1-1, a straightforward approach for enforcing Global Hull-consistency is
to use the kB-conmsistency algorithm (Chapter 5, section 5.2) and choose an appropriate
value for the order £ (it must be equal to the number of variables plus one).

Figure 6.2 illustrates this approach whose algorithm will be denoted (n+1)B-consistency
to emphasise its dependency on the number of variables of the CCSP.

function (n+1)B-consistency(a CCSP P=(<x,...,x,>,D;x...xD,,C), an F-box B)
(1) return kB-consistency(n+1,P,B);
end function

Figure 6.2 The (n+1)B-consistency algorithm.

The input is a CCSP P with n variables and an F-Box B (with B&<I,,(D)),..., Lap(Dn)>).
The result (line 1) is the largest (n+1)B-Consistent F-box within B (which is equivalent to
the largest Global Hull-consistent F-box within B) or the empty set if it is proved that there
is no such box. The correctness of the algorithm is guaranteed by theorem 6.1-1.

6.2 Backtrack Search Approaches

Most interval constraint systems provide a search mechanism (alternating pruning and
branching steps) which implements a backtracking search for obtaining canonical solutions.
The pruning is normally achieved by enforcing some Local-consistency (Hull/Box-
consistency or eventually 3B-Consistency) but it can be generalised for any kB-
Consistency criterion (with 1<k<n+1, n being the number of variables). The branching is
normally achieved by choosing a variable domain (according to a split strategy) and to
separately consider the two boxes obtained by dividing this domain at the mid point. In
order to keep track of search space regions that may contain canonical solutions, a stack of
F-boxes is maintained and explored throughout backtracking.
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Figure 6.3 presents the function backtrackSearch which implements this generic
algorithm. It assumes that the pruning is achieved by the kB-consistency function with some
predefined value for the order k and a predefined type of local consistency (Hull or Box-
consistency). It also assumes that the branching is implemented by procedure splitBox
according to some, not shown, split strategy (LW, RR or x;) and a side (LEFT or RIGHT).
The procedure receives the F-box to split and returns the branches that will be explored
subsequently. The split strategy determines the variable to split: if LW, the chosen variable
is that with the largest domain width; if RR, each variable is chosen accordingly to a round-
robin strategy; and if x;, variable x; is chosen if its domain is not canonical, otherwise one of
the other split strategies is used. The side determines which branch will be explored first.

Function backtrackSearch has two arguments, the first is a CCSP P and the second a
stack S of F-boxes where the canonical solutions of P will be searched from. The second
argument is also an output argument returning the remaining values of S, which account for
the reduction of the search space achieved during the search. The result of the function is a
canonical solution of P within one of the F-boxes of S or the empty set if no such canonical
solution exists.

function backtrackSearch(a CCSP P=(X,D,C), inout a stack S of F-boxes)
(1) while S.size()>0 do
@ B« Spop();
3) B <« kB-consistency(P,B);
4) if B # & then

5) if isCanonical(B) then return B;
(6) splitBox(B,B,,B>);

@) S.push(B;);

®) S.push(B));

) end if;

(10) end while;
(11) return J;
end function

Figure 6.3 The generic backtrack search algorithm for finding canonical solutions.

During the execution of the backtrackSearch function the stack S of F-boxes representing
the remaining search space is maintained by a set of functions which implement the usual
stack operations: size returns the number of elements; pop returns the top element and
removes it from the stack; push adds a new top element.

The function is implemented as a while cycle (lines 1-10) executed as long as there are
F-Boxes in the stack (line 1) and no canonical solution was found. If the stack becomes
empty then there are no more canonical solutions and the empty set is returned (line 11).
Otherwise the top element is removed from the stack (line 2) and narrowed by the pruning
function (line 3). If it is inconsistent then nothing is done in this cycle and a new one is
started with the next top element. If the resulting box is canonical then a canonical solution
has been found and the box is returned (line 5). Otherwise, if the pruning function could not
discard the F-box obtaining a smaller F-box which is not canonical then the box is split by
the splitBox function (line 6) and the two resulting F-boxes are added to the top of the stack
(lines 7 and 8).

The algorithm is correct and terminates. On the one hand, the narrowing of the search
space is achieved by enforcing a partial consistency requirement (kB-Consistency) which
does not eliminate canonical solutions. On the other hand, the split of the boxes that cannot
be further pruned guarantee that canonical F-boxes are eventually analysed, either reducing
the search space (if such boxes violate the partial consistency criterion), or returning the
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canonical solution found. The finite number of canonical F-boxes within any search space
guarantees termination of the algorithm.

The following subsections present four different algorithms, based on the above generic
backtrack search mechanism, for enforcing Global Hull-consistency.

6.2.1 The BSy Algorithm

The simplest backtracking algorithm, BSy, for enforcing Global Hull-consistency on an F-
box uses backtrackSearch for finding all the solutions within the box and returns the
smallest F-box enclosing them.

The algorithm is presented in Figure 6.4. The input is a CCSP P and an F-Box B (with
Bc<lyp(D)),. .., Lop(Dy)>). The result is the smallest F-box containing all the canonical
solutions within B (which is equivalent to the largest Global Hull-consistent F-box within
B) or the empty set if B does not contain any canonical solutions.

function BS)(a CCSP P=(X,D;x...xD,,C), an F-box B)
1) S« B;
() Bsor < backtrackSearch(P,S);
@3) if By,; = & then return J else B;, < B,,;;
(4) repeat
5) By < backtrackSearch(P,S);
(©6) if By, # & then B;, < B;, W B,,;
(7 until By, =,
8) return B;,;
end function

Figure 6.4 The BS) algorithm.

The algorithm maintains an inner box B;, that is the smallest box enclosing all the currently
found canonical solutions. When all the canonical solutions have been found this inner box
must be the largest Global Hull-consistent F-box within the original domains and is
returned as the final result of the algorithm (line 8).

A stack S of F-boxes is initialised with the single box B (line 1) and a canonical
solution is searched through backtracking on this stack (line 2). If no canonical solution is
found the empty set is returned; otherwise, the inner box is initialised to the obtained
canonical solution (line 3). The algorithm proceeds with a repeat cycle, where new
solutions are searched within the remaining search space (line 5) and the inner box is
enlarged to include them (line 6)', until there are no more solutions (line 7).

The correcteness of the algorithm is guaranteed by the correcteness of the
backtrackSearch algorithm and by definition 6-1 which implies that the smallest box
containing all the canonical solutions is the largest Global Hull-consistent F-box.

Termination is guaranteed by the termination of the backtrackSearch function that
reduces the finite search space in each invocation (at least the box associated with the new
canonical solution is removed from S) thus requiring a finite number of steps of the repeat
cycle.

! The symbol @ represents the union hull operation - see definition 2.2.2-1.
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6.2.2  The BS; Algorithm

The previous brute-force algorithm blindly searches for new canonical solutions ignoring
those already found. Consequently, many space regions which are searched are irrelevant to
Global Hull-consistency. In particular, canonical solutions inside the inner box (which
encloses all known solutions) are useless regarding Global Hull-consistency.

The backtrack search algorithm, BS;, thus avoids searching regions within the inner
box. To achieve this, it separately searches extreme canonical solutions with respect to each
variable bound and adds a new constraint whenever a new canonical solution is found to
narrow the relevant search space.

Figure 6.5 presents the algorithm. The input is a CCSP P and an F-Box B=<[,,(D)),...,
1,p(Dy)>, and the result is the largest Global Hull-consistent F-box within B or the empty
set if it does not contain any canonical solutions.

function BS;(a CCSP P=(<x,,...,x,>,Dx...xD,,C), an F-box B)
(1) S <« B; splitSide < LEFT;
@) By, < backtrackSearch(P,S);
3) if By, = then return O else B;, < B,,;;
4 fori=1tondo
) while left(B[x;]) < left(B;,[x;]) do

©6) Byo < backtrackSearch((<xj,...,x,>,Dx...xD,,CU{x; < left(Bi[x:])}),9);
) if By, = O then B[x;] < [lefi(B,[x.])..right(B[x])];

®) else B, < Bi, W By, ; end if;

) end while;

(10) S < B; splitSide < RIGHT;
(11) while right(B[x;]) > right(B,[x;]) do

(12) Bio < backtrackSearch((<xy,....x,>,Dx...xD,,CU{x; > right(B;,[x,])}).S);
(13) if B,,; = & then B[x;] « [left(B[x;])..right(B:[x:])];

(14) else B;, < B;, W By, ; end if;

(15) end while;

(16) S <« B; splitSide < LEFT,;

(17) end for;

(18) return B;,;
end function

Figure 6.5 The BS; algorithm.

Similarly to BSy, function BS; maintains an inner box B, that is returned as the final result
when a solution exists (line 18).

The initialisation of the stack S of F-boxes (line 1), the search for a first canonical
solution (line 2) and the initialisation (line 3) of the inner box (or returning of the empty
set) are identical to BS). However, BS; proceeds by considering each variable domain
separately (the for cycle between lines 4 and 17), to search the extreme canonical solutions
with respect to its left (lines 5-9) and right (lines 11-15) bounds.

The search for the leftmost canonical solution for a variable is executed in a while cycle
(lines 5-9) within the regions of the current search space where this variable has values
which are less than any known solution (line 6). While new solutions are found, the inner
box is updated to enclose them (line 8) and the cycle continues. Eventually, the last
canonical solution found is the leftmost solution and the original search box is updated
accordingly (line 7) terminating the cycle. The search for the rightmost solution is similar.

Before every search for an extreme canonical bound, the search space S must be
reinitialised with the current domains box (lines 1, 10 and 16) in order to disregard all the
previous additional constraints that were considered for restraining the search space in other
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search contexts and the side branching option used by function backtrackSearch is
redefined towards the appropriate direction (variable splitSide).

The algorithm is correct since each while cycle obtains an extreme canonical solution
wrt the variable under consideration. This is achieved in a finite number of steps because
the backtrack search either fails, terminating the algorithm at once with the correct result, or
finds a new solution and reduces the finite search space for the following iteration.

6.2.3  The BS; Algorithm

The key idea of the next algorithm, BS,, (suggested by Frédéric Benhamou in a personal
communication), is to control the branching strategy to direct the search towards the
extreme canonical solutions. Instead of constraining the search space whenever a new
canonical solution is found, the branching strategy guarantees that the first solution found is
already an extreme canonical solution with respect to some variable bound. The search is
separately executed for each bound of each variable domain and the branching options, of
strategy and side, adopted by function backtrackSearch, are explicitly controlled by
variables splitStrategy and splitSide, respectively

Figure 6.6 illustrates the BS, algorithm. The input is a CCSP P and an F-Box B
(Bc<IpDy),....Lops(Dn)>), and the result is the largest Global Hull-consistent F-box within
B or the empty set if it does not contain any canonical solutions.

function BS,(a CCSP P=(<x,,....x,>,D;x...xD,,C), an F-box B)
1) S« B;
) splitStrategy < x;; splitSide <— LEFT; B, < backtrackSearch(P,S);
@3) if By, = & then return J else B;, < B,,;
4 forj=2to 2n do
5) if isOdd(j) then

(6) splitSide < LEFT; i < (j+1)/2;

) Blx;.;] < [left(B[xi.1])..right(Bi,[xi.1])];
) else

©) splitSide < RIGHT; i « j/2;

(10) Blx;] < [left(Bi[x:])..right(B[x:])];

an end if;

(12) S« B;

(13) splitStrategy < x;; By < backtrackSearch(P,S);
(14) Bin <~ Bin W Bsul;
(15) end for;
(16) return B;,;
end function

Figure 6.6 The BS, algorithm.

When the splitStrategy and the splitSide are respectively x; and LEFT/RIGHT, the
backtrackSearch function returns the leftmost/rightmost canonical solution wrt the variable
x;. Consider the stack S of F-boxes, representing the search space at a given moment, as a
sequence of k F-boxes Bj,...,Bi, with By its top element. If S is obtained from an original F-
box B after several iterations of the while cycle of the backtrackSearch function and during
the process only variable x; was split then for any two consecutive F-boxes within S, B; and
Bji1,  right(Bjvi[xi))<left(Bi[x;]) if splitSide=LEFT and right(B[x;))<left(B;+:[xi]) if
splitSide=RIGHT. Thus, if there are no other split variables, when a solution is found, it
must be the result of narrowing the top element into a canonical box and so any x; value
must be smaller/larger or equal than any other x; value of any other F-box implying that the
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canonical solution is the leftmost/rightmost canonical solution wrt the variable x;. With an
x; split strategy the only possible cases where the split variable is not x; is when the domain
of x; is already canonical and so both subboxes will have the same x; domain which must
contain the smallest/largest possible value for x; within S. Therefore, with an x; split
strategy, the search space at any given moment may be represented as a sequence of k+m F-
boxes By,...,BiBkt1s- - -»Bitm, With By, its top element and where all the By 4,...,Brm boxes
have the same smallest/largest x; canonical domain (for some m>0) and for any two
consecutive F-boxes B; and Bj+;, with 1<j<k, right(B;+;[x;])<left(B[x,]) if splitSide=LEFT
and right(B/[x;))<left(B;+:[x;]) if splitSide=RIGHT. Thus, in any case, if a solution is found
within the top element it must be the leftmost/rightmost canonical solution wrt variable x;.

During the whole execution of the BS, algorithm, exactly 2n canonical solutions are
found (if there are any canonical solutions, otherwise the empty set is returned in line 3),
one for each variable bound, and the enclosing inner box B;, that is maintained (line 14) is
returned in the end (line 16).

After the initialisation of the stack S of F-boxes with the original box (line 1), the
branching options set the search for the leftmost canonical solution of variable x; (line 2).
Then, the algorithm proceeds by separately searching the extreme canonical solutions of the
remaining 2n-1 variable bounds (for cycle, in lines 4-15).

The search for the leftmost (rightmost) canonical solution wrt a particular variable is
executed by a single function call to the backtrackSearch algorithm over the current
domains box (line 13) whose branching options (variable and side) must be appropriately
set (lines 13 and 6/9).

Before every new search for an extreme canonical bound, the current search space S
must be set to the current domains box (line 12) that considers the latest update on its
bounds (lines 7/10).

Clearly the algorithm terminates (it does not contain any possibly infinite cycles and the
backtrackSearch function terminates) and is correct. As proved before, with an x; split
strategy for a particular split side, left or right, the first canonical solution found by the
generic backtrack search algorithm is the leftmost/rightmost.

6.2.4 The BS; Algorithm

All previous approaches independently search for each extreme variable bound. In BS;, the
addition of new constraints improve the search by preventing search on irrelevant space
regions. In BS,, the branching strategy exploits a partition on the search space that
guarantees that the canonical solutions found are indeed extreme canonical solutions.

The last of the backtrack search algorithms, BS3, tries to reuse the computational effort
as much as possible within the limitations imposed by a stack data structure for
representing the search space. It is a branch and bound algorithm where the extreme
canonical solutions with respect to each bound of each variable domain are searched
simultaneously within a round robin scheme.

The basic idea is to maintain an outer box that includes all possible canonical solutions
and an inner box that is the smallest box enclosing all currently found canonical solutions.
The search for extreme canonical bounds is restricted to the region between these two
boxes.

The algorithm stops when the inner box equals the outer box returning it as the largest
box within the original domains satisfying the Global Hull-consistency criterion.

Figure 6.7 shows BS;. From a CCSP P and an F-Box B, the function BS; computes the
largest Global Hull-consistent F-box within B or the empty set if it does not contain any
canonical solutions.
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function BS;(a CCSP P=(<x,,...,x,>,D;x...xD,,C), an F-box B)
(1) S <« B; By < backtrackSearch(P,S);
@) if By,; = & then return J else B;, < B,,;; Bouw < B; end if;
(3) repeat
4) fixed < TRUE;
5) for j=1 to 2n do
(©6) if isOdd(j) then
©) i<« (j+1)/2;
®) splitSide < LEFT;
©) Ly «[left(Bou[xi]). left(Bin[xi])]; I «—[left(Bi[xi])..right(Bou[xi])];
10) I < [lefil12).] center(1;) N:Lo <[l center(I,5) 1. right(I;5)];
(11) else
(12) i<« jl2;
13) splitSide <— RIGHT;
(14) 15 <[ right(Bin[xi])..right(Boulxi)1; 15 < [left(Boulx:]).. right(Bu[x:])];
as) I «[Lcenter(I})))..right(1;2)]; L« [lefi(I,2). Leenter(I;5) ];
(16) end if;
a7n if width(l;;) > 0 then
(18) fixed <« FALSE;
(19) B < Boy; Bi[xi]« 1;; S < By; Byoy < backtrackSearch(P,S);
(20) if B;,; = & then
@n Boulxi] = LU I
(22) if width(l;) > 0 then
(23) By < Boy; Bo[xi]«— I; S < B2; Byt < backtrackSearch(P,S);
(24) if B;,; = & then B, [x;] < I5; else B, < B;, & By, end if;
(25) end if;
(26) else B;, < B;, W By, end if;
27 end if;
(28) end for;
29) until fixed;
(30) return B;,;
end function

Figure 6.7 The BS; algorithm.

Initially, the generic backtrack search mechanism is applied to the original box to obtain a
first canonical solution (line 1). If no canonical solution is found then the CCSP has no
solutions and the empty set is returned. Otherwise the inner box is initialised to the
canonical solution and the outer box is initialised to the original box (line 2).

The algorithm searches extreme canonical solutions for each variable bound in round
robin until all of them are found. This is implemented as a for cycle (lines 5-28) (with 2n
iterations, one for each bound) within a repeat cycle (lines 3-29) which terminates when the
inner box equals the outer box, returning it (line 30).

In each iteration for searching the left/right bound of a particular variable x; the
following steps are accomplished.

Firstly, the branching option of side (splitSide) is set appropriately (lines 8/13).

Secondly two F-intervals, /;, and I3, are considered, where the first defines the portion
with values smaller/larger than the left/right bound of the inner box and the second contains
the remaining values (lines 9/14). Interval I;; is subsequently split at its mid point
originating two subintervals /; and I, (lines 10/15).

If the width of ;> is zero, the inner and outer boxes have equal bounds, that of the
extreme canonical solution already found, and nothing else needs to be done in the
iteration. Otherwise (line 17), the relevant search space is set to that between the inner and
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the outer boxes. More precisely, to an F-box equal to the outer box but for the domain of x;.
To improve efficiency, a canonical solution is searched within this search space, with the
domain of x; firstly set to /; (line 19) and subsequently set to 7, (line 23). If no canonical
solution is found, the x; domain of outer box is updated to the remaining interval (lines 21
and 24 respectively). Otherwise the inner box is updated to include the newly found
canonical solution (lines 24 and 26 respectively).

Notice that each iteration for a left/right bound of a particular variable x; eliminates at
least half of the relevant search space. In fact, the search space is divided into two halves,
the F-boxes B; and B,. If a canonical solution is found within B; then the inner box is
enlarged to include it and F-box B, will be considered no further. Otherwise, B; is
eliminated from the search space.

The algorithm is correct and terminates. Correcteness is guaranteed by the correcteness
of the backtrackSearch algorithm and because the termination of the repeat cycle implies
that for every bound it is proved that there are no more canonical solutions outside the inner
box (which is returned in the end). Termination is guaranteed by the reduction of the finite
search space performed at each iteration.

6.3 Ordered Search Approaches

All the previous algorithms use a generic backtrack search mechanism for finding
individual canonical solutions, in order to enforce Global Hull-consistency. Thus the
ultimate goal is not merely finding canonical solutions but among them the most extreme
with respect to a variable bound. However, the simple generic backtrack search mechanism
makes no preferences on the order in which the boxes of the search space are explored,
following the natural backtracking sequence.

If an ordered search is performed instead, the Global Hull-consistency enforcing
algorithms might anticipate the exploration of preferable space regions, thus compensating
the extra computational cost of such strategy.

The algorithms in the following subsections are variations of the backtrack searching
algorithms that use instead a generic ordered search mechanism for finding canonical
solutions.

The generic ordered search mechanism is implemented by the function orderedSearch
represented in figure 6.8. Its overall functioning is similar to the backtrackSearch function
except that in this case the search space is represented by a different data structure, which is
a list of F-boxes sorted by a particular variable bound. It is assumed that the variable and
the bound are determined by the global parameters orderedVariable and orderedSide
respectively.

function orderedSearch(a CCSP P=(X,D,C), inout an ordered list L of F-boxes)
(1) while L.size()>0 do
@) B « L.pop_front();
3) B < kB-consistency(P,B);
) if B # & then

5) if isCanonical(B) then return B;
©6) splitBox(B,B;,B>);

(7 L.insertOrdered(B,);

@®) L.insertOrdered(B));

©) end if;

(10) end while;
(11) return J;
end function

Figure 6.8 The generic ordered search algorithm for finding canonical solutions.
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The function orderedSearch has two arguments, the first is a CCSP P and the second an
ordered list L of F-boxes where the canonical solutions of P will be searched. The second
argument is also an output argument allowing multiple calls to this function with the side
effect of reducing the remaining search space. If the orderedSide parameter is set to
LEFT/RIGHT, then the F-boxes within L are in ascending/descending order of their
left/right bounds of the domain of the variable defined in the orderedVariable parameter.
The result of the orderedSearch function is a canonical solution of P within one of the F-
boxes of L or the empty set if there are no such canonical solutions.

During the execution of the orderedSearch function the ordered list L of F-boxes
representing the remaining search space is maintained by a set of functions which
implement the usual list operations: size returns the number of elements; pop_front returns
the first element and removes it from the list; insertOrdered adds a new element in its
appropriate position with respect to the order determined by the orderedVariable and
orderedSide parameters.

The only differences between this algorithm and the backtrackSearch algorithm result
from the maintenance of the different data structures for representing the search space. The
pop and push functions, which are typical for stack data structures, are replaced, in the
orderedSearch algorithm, by the pop_front and insertOrdered functions, which are
common in list data structures.

The algorithm is correct and terminates due to the same reasons that guarantee the
correcteness and termination of the backtrackSearch algorithm. The only difference
between the algorithms is the order in which the F-boxes are explored and this cannot
affect their correcteness or termination properties.

The following two subsections present ordered search algorithms which are variations
of the BS; and BS; backtrack search algorithms. Algorithms BS, and BS, would not profit
from an ordered search. In algorithm BS, every F-box must be explored and so it is
indifferent the order by which this is accomplished. In algorithm BS,, the stack of F-boxes
used in each backtrackSearch function remains ordered due to the branching strategy, and
no specialised data structure for that purpose is needed.

6.3.1 The OS; Algorithm

BS; may benefit from an ordered search since finding better (wrt to a variable bound)
canonical solutions improves the pruning of the search space.

The modified algorithm, OS}, is obtained from the original BS; function (see figure 6.5)
by calling function orderedSearch (lines 2, 6 and 12) whose parameters must be previously
defined. The orderedSide parameter must be set instead of the now useless splitSide
parameter (lines 1, 10 and 16). The orderedVariable parameter is initialised to variable x;
(line 1) and updated to the current variable x; at the beginning of each iteration of the for
cycle (between lines 4 and 5).

Again the correctness and termination of the OS; algorithm are guaranteed by the
correctness and termination of the BS; algorithm since the only difference between them is
the order by which the F-boxes are explored.

6.3.2  The OS3 Algorithm

The BS; algorithm may also take advantage from an ordered search in that better (wrt to a
variable bound) canonical solutions may cause a faster approximation of the inner box
towards the outer box.
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The new algorithm, OS3, is obtained from the original BS; function (see figure 6.7) by
simply calling (in lines 19 and 23) function orderedSearch whose parameters must be
previously set. The orderedSide parameter must be set instead of the splitSide parameter
(lines 8 and 13). The orderedVariable parameter is updated to the current variable x; before
the function call in lines 19 and 23.

The correctness and termination of the OS; algorithm are guaranteed by the correctness
and termination of the BSj; algorithm.

6.4 The Tree Structured Approach

In all previous algorithms the search for a different variable bound does not take full
advantage from the search for previous bounds. The main reason for such behaviour is that
the data structures used for representing the search space, either a stack or a list of F-boxes,
are optimised during the search for a particular bound and cannot be easily reused in the
search for different bounds.

Alternatively, a different data structure for the representation of the search space may
be used, which is simultaneously optimised with respect to each variable bound, enabling
an efficient search on any of these dimensions. In this section we present a tree data
structure for the representation of the complete search space which is complemented by a
set of ordered lists, one for each variable bound, to keep track of the relevant F-boxes and
the actions that must be executed on each of them.

The next subsections describe the data structure in more detail, and its use by an
improved tree structured algorithm (7S4) for enforcing Global Hull-consistency.

6.4.1 The Data Structures

Besides the inner box, the F-box enclosing all known canonical solutions already used
before, the basic data structures maintained by the algorithm are a binary tree and a vector
of ordered lists.

Each node of the binary tree is an F-box which represents a sub-region of the search
space that may contain solutions of the CCSP. By definition, each parent box is the smallest
F-box enclosing its two children. Consequently, the union of all leaves of the binary tree
determines the complete search space and the root of the tree defines the smallest F-box
enclosing it.

The binary tree of F-boxes is maintained by the following set of basic operations: size
returns the number of elements; delete(B) removes leaf B from the tree; update(B,B))
changes the value of leaf B into Bj; split(B,B;,B>) turns leaf B into the parent box of two
new leaves B; and B..

The vector of ordered lists has 2n elements (where # is the number of variables of the
CCSP) each being an ordered list associated with each bound of each variable. Each
element of a list is a pair (F-box, Action) where Action is a label representing the next
action (PRUNE, SEARCH or SPLIT) to perform on the F-box. The list associated with the
left (right) bound of variable x; maintains the leafs of the binary tree in ascending
(descending) order of their left (right) bounds for the x; domain.

The ordered lists are maintained by the following set of basic operations: size returns
the number of elements; firont returns the first element; delete(B) removes the element with
F-box=B; insertOrdered(B) adds a new element (B,PRUNE) in its appropriate position;
deleteOrdered(B) removes all the elements with F-boxes following F-box=B in the ordered
list; update(B,A) changes into A the Action label of the element with F-box=B; reset(B)
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changes into PRUNE the Action labels of all the elements in the list whose F-box is
intersected by B;

The coordination between the different data structures is guaranteed by a set of
procedures, illustrated in figures 6.10 and 6.11, and is based on the notion of relevance
which is related with the inner box basic structure and is implemented by the functions in
figure 6.9. To avoid oversized lists of parameters, it is assumed that the basic data
structures are accessed through global variables, namely, B;, T and L to represent
respectively, the inner box, the binary tree and the vector of ordered lists.

The notion of relevance with respect to a variable bound is a key concept in the enforcing
algorithm. Only regions of the search space outside the inner box (that encloses all the
known canonical solutions) are relevant. Therefore before exploring a particular F-box, it is
necessary to check whether this F-box includes some relevant region with respect to a
variable bound, and eventually to extract it from the F-box. Figure 6.9 presents a function
(isRelevant) for checking the relevance of an F-box with respect to a variable bound and a
complementary function (relevantSubbox) to extract the relevant sub-box. Both functions
have two arguments, an F-box B and a bound represented by an integer value j between 1
and 2n (where 7 is the number of variables).

function isRelevant(an F-box B, a bound ;)

1) if B;=J then return TRUE;

@) ifisOdd(j) then i<« (j+1)/2; return left(B[x;])<left(Bi[x:]);

3) else i<« j/2; return right(B[x;])>right(B.[xi]);
end function

function relevantSubbox(an F-box B, a bound ;)
() By« B;
@) if B;, # & then
3) if isOdd(j) then i<« (j+1)/2; B;[x;] < [left(B[x:])..min(right(B[x.]),left(B.[xi]))];
4) else i<« j/2; B[x;] < [max(left(B[x;]),right(Bi,[x:]))..right(B[x:])];
(5) return By

end function

Figure 6.9 The relevance of an F-box with respect to a variable bound.

Function isRelevant returns a boolean value indicating if B is relevant with respect to the
bound j. When the inner box is empty (i.e. no canonical solutions were found yet) all boxes
are relevant with respect to any variable bound, and so the true value is returned (line 1).
Otherwise, since bound j refers to the left/right bound of variable x;, box B is relevant if the
left/right bound of its x; domain lies outside the inner box (lines 2/3).

Function relevantSubbox assumes that B is relevant and returns the largest sub-box for
which all the values of the x; domain are outside the inner box (smaller/larger for a left/right
bound of variable x;). When the inner box is empty, the whole box is relevant and is
returned without changes (line 1 followed by line 5). Otherwise, it returns the original box
B discarding the right/left subinterval of its x; domain which lies inside the inner box (3/4).

Whenever a new canonical solution is found, the inner box must be enlarged to enclose
it, and the ordered lists associated with each variable bound must be updated to remove
irrelevant elements. Moreover, if the relevant search region of some element is narrowed,
the next action to be executed over it must be a prune (propagating the domain reduction of
the search region).

Figure 6.10 shows the procedure updatelnnerBox to enclose a new canonical solution
into the inner box B;,. Its unique argument is a canonical F-box B, representing the new
found canonical solution.
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procedure updatelnnerBox(a canonical F-box By,

1) if B;, = & then B,.,, < B,y ; else B,,,, < Bi, W By, ; end if;
2 forj=1to2ndo
6)) if isRelevant(B,...j) then
4) L[j].deleteOrdered(B,..);
®) L[j].reset(Buew);
6) end if
(7) end for
®) Bin <~ Bnew;
end procedure

Figure 6.10 The procedure that updates the inner box to enclose new canonical solutions.

Procedure updatelnnerBox firstly computes the new inner box By.,: an enlargement of the
current inner box B;, that encloses the new canonical solution (line 1).

Subsequently, for each variable bound (the for cycle lines 2-7), if the inner box changed
that bound (line 3), the ordered list associated with it is updated accordingly. All its
elements that became irrelevant are eliminated (line 4) and the Action label of those with a
changed relevant sub-box is reset to PRUNE (line 5). Finally the inner box is updated with
the new value (line 8).

The procedures illustrated in figure 6.11 coordinate the changes, on the binary tree and
on the vector of ordered lists, that result from the deletion, narrowing and branching of a
leaf of the tree.

procedure deleteLeaf(an F-box B)

(1) T.delete(B);

@) for j=1 to 2n do if isRelevant(B,j) then L[j].delete(B);
end procedure

procedure narrowLeaf(an F-box B, an F-box B))
(1) T.update(B,B));
@ forj=1to 2n do
?3) if isRelevant(B,j) then L[j].delete(B);
@) if isRelevant(B,,j) then L[j].insertOrdered(B));
(5) end for;
end procedure

procedure branchLeaf(an F-box B, an F-box B, an F-box B;)
 T.split(B,B},B>);
2 forj=1to2ndo
3) if isRelevant(B,j) then L[j].delete(B);
@) if isRelevant(B,,j) then L[j).insertOrdered(B));
4) if isRelevant(B.,j) then L[j].insertOrdered(B.);
6) end for;
end procedure

Figure 6.11 The procedures for deleting, narrowing and branching a leaf of the binary tree.

When a leaf is deleted from the tree, any associated element in the ordered lists must also
be removed. When a leaf is narrowed, any associated element may be reordered and
eventually eliminated if it becomes irrelevant. When a leaf is split into two new leaves, then
its associated elements must be removed and two new elements considered for insertion in
the lists. The first argument of all the procedures in figure 6.11, deleteLeaf, narrowLeaf and
branchLeaf, is a leaf of the binary tree (an F-box). The second argument of procedures
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narrowLeaf and branchLeaf, and the third argument of procedure branchLeaf are F-boxes,
B, and B,, which are sub-boxes of B.

All three procedures firstly change the binary tree (line 1) and subsequently consider
the ordered list associated with each variable bound and change their elements if needed
(the for cycle).

The changes on the binary tree are respectively, to remove leaf B from the binary tree
(deleteLeaf), to update the value of leaf B into B; (narrowLeaf) and to make leaf B as the
parent box of the two new leaves B; and B, (branchLeaf).

The changes on each ordered list are the following: if B is a relevant box (wrt the bound
associated with the ordered list) then the element of the list with F-box=B is removed
(deleteLeaf: line 2; narrowLeaf and branchLeaf: line 3); if B; is a relevant box then
procedures narrowLeaf and branchLeaf (line 4) insert a new element with F-box=B, in the
appropriate position; if B, is a relevant box then procedure branchLeaf (line 5) inserts a
new element with F-box=B; in the appropriate position.

6.4.2 The Actions

The tree structured algorithm for enforcing Global Hull-consistency alternates prune,
search and split actions performed over specific sub-regions (F-boxes) of the current search
space. The pruning of an F-box is achieved by enforcing a kB-Consistency criterion (either
kB-Hull-consistency or kB-Box-consistency). The search action is performed with the goal
of finding a canonical solution within an F-box (previously pruned) and may be
implemented as a simple check of an initial guess or as a more complete local search
procedure (see next chapter). The split of an F-box (previously searched) is done by
splitting one of its variable domains at the mid point.

Any action is performed over some leaf of the binary tree, and in particular over a
subbox which must be relevant with respect to some variable bound. Its consequences must
be propagated throughout the data structures maintained by the algorithm. The resulting
procedures implementing the prune, search and split actions are presented in figs. 6.12-14.

The first action, PRUNE, must be performed before any other action in order to reduce
the relevant search space.

Figure 6.12 shows procedure pruneAction, which has three arguments. The first, B,, is
the leaf of the binary tree where the pruning takes place. The second, B, is a subbox of B, on
which the kB-Consistency requirement is enforced. The last argument, integer j, represents
the bound for which the sub-box B is relevant. The search space discarded in the pruning is
removed from the binary tree. This may imply to eliminate, narrow or branch leaves from
the tree, which is achieved by procedures deleteLeaf, narrowLeaf and branchLeaf
previously presented.

procedure pruneAction(an F-box B,, an F-box B, a bound j)
(1) B’ <« kB-consistency(P,B);
@) if B’= then
?3) if B~B then deleteLeaf(B,); else narrowLeaf(B,,B,\B); end if

4) else

®) if B’=B then L[j].update(B,, SEARCH);

(6) else

) if B~B then narrowLeaf(B,,B’); else branchLeaf(B,,B’,B,\B); end if
8) L[j).update(B’, SEARCH);

9) end if

10) end if

end procedure

Figure 6.12 The procedure for pruning a subbox of a leaf of the binary tree.
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Initially, pruneAction narrows the subbox B into B’ through the kB-consistency algorithm
(line 1).

If the result is the empty set (line 2) then subbox B must be completely discarded from
the binary tree (line 3): if B is the whole leaf B,, then it must be removed; if it is only a part
of B, this leaf must be narrowed to B\B obtained by removing B from B,.

If the pruning of sub-box B did not narrow the box (line 5) then the next action to be
executed over leaf B; wrt bound j must be a SEARCH. Thus, in the ordered list associated
with bound j, the Action label of the element with F-box=B; is changed into SEARCH (line
3).

Otherwise, if sub-box B is narrowed into the non empty F-box B’ then, either B is the
whole leaf B,, which must be narrowed into B’, or B is a fraction of the leaf B,, which must
be branched into B’ and the F-box remaining after removing B from B, (line 7). In either
case, since the new leaf B’ was already pruned wrt to bound j, the respective Action label is
changed into SEARCH (line 8).

The next action is the search action, which must only be performed over a space region if
this region cannot be further pruned. This action precedes the split action in order to avoid
unnecessary over branching of the binary tree.

Figure 6.13 shows the searchAction procedure with the same three arguments: a leaf of
the binary tree B, its subbox B where the search takes place, and an integer value j
representing the searched bound. It is assumed that the search for a canonical solution of
the CCSP P within the F-box B is accomplished by the searchSolution function which may
be implemented as a simple check of an initial guess or as local search procedure. Together
with the CCSP P and the F-box B, the searchSolution function includes a third argument
specifying the bound j, to allow its implementation in the context of finding an extreme
canonical solution with respect to this variable bound (the details of the searchSolution
function will be presented in the next chapter).

procedure searchAction(an F-box B,, an F-box B, a bound j)

(1)  Byor < searchSolution(P,B,j);

@ if By, # & then updatelnnerBox(Bs,); else L[j].update(B,,SPLIT); end if
end procedure

Figure 6.13 Procedure for searching a canonical solution within a subbox of a binary tree leaf.

Initially procedure searchAction uses the searchSolution function to search a canonical
solution of P within subbox B (line 1). If a new canonical solution is found then the inner
box must be updated to enclose it (line 2). Otherwise, the next action to perform over leaf
B, wrt bound j must be a split action. Thus, in the ordered list associated with bound j, the
Action label of the element with F-box=B, is changed into SPLIT (line 2).

The last action is the split action, which must only be performed over a space region if this
region cannot be further pruned and the search for a canonical solution within it had failed.

Figure 6.14 presents the splitAction procedure. It has three arguments, a leaf of the
binary tree B,, its subbox B that is going to be split, and a bound . It is assumed that there is
a splitBox procedure identical to the one described in section 6.2 for branching an F-box B
into two subboxes B; and B, (except that it contains an additional output parameter
indicating which variable domain was split).
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procedure splitAction(an F-box B,, an F-box B, a bound j)
(1) if isOdd(j) then i «<— (j+1)/2; splitSide <— LEFT; else i < j/2; splitSide <— RIGHT; end if;
) splitBox(B,B;,B2,xy);
@) if i#k then I« B;[x;]; B; < By Bi[xi] < [;
@4) branchLeaf(B,B;,B\B));
end procedure

Figure 6.14 The procedure to split a subbox of a binary tree leaf.

Initially the procedure splitAction determines which variable x; and which side splitSide is
associated with bound j (line 1). Then, the splitBox procedure is used to split the subbox B
into B; and B; (line 2). If the split variable x; is not that associated with bound j, then all the
domains of box B;, except the domain of variable x;, are redefined to their respective values
in the leaf B, (line 3). Finally, the leaf B, is branched into B; and the F-box remaining after
removing B; from B, (line 4). Note that the redefinition of B; in line 3 is necessary since
otherwise the search space remaining after removing B; from B, (B\B;) would not be
necessarily an F-box.

6.4.3  The TSA Algorithm

The TSA algorithm for enforcing Global Hull-consistency takes advantage of the binary tree
representation of the search space which allows the dynamic focussing on specific relevant
regions without losing information previously obtained in the pruning process.

Within a round-robin fashion, the most relevant sub-region, with respect to each
variable bound, is chosen for performing an adequate action. As a result, the binary tree
structure will evolve updating the most relevant sub-regions and the respective adequate
actions (see previous subsections). The algorithm stops when there are no more relevant
space regions to analyse, that is, all the search space is contained within the inner box (or is
proved that there are no canonical solutions).

Figure 6.15 shows the T7SA algorithm. From a CCSP P and an F-Box B
(Bc<IpDy),..., Isp(D,)>), function 7SA computes the largest Global Hull-consistent
F-box within B or the empty set if it does not contain any canonical solutions.

function 7S4(a CCSP P=(<x,,...x,>,D;x...xD,,C), an F-box B)
(1) B« O, T« B;
@ forj=1to 2n do L[j] < (B,PRUNE);
(3) repeat
@) fixed-point < TRUE;
5) for j=1 to 2n do

(©) if 7.size()=0 then return &J;

(7 if L[j].size()>0 then

®) fixed-point < FALSE;

©) (B, Action) < L[j].fron!();

(10) B « relevantSubbox(B..j);

n if Action=PRUNE then pruneAction(B.B.));
(12) if Action=SEARCH then searchAction(B,,B,);
(13) if Action=SPLIT then splitAction(B,B);

(14) end if

(15) end for;
(16) until fixed-point=TRUE;
(17) return B;,;

end function

Figure 6.15 The 7'SA algorithm.
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At the beginning, the data structures are initialised: the inner box is empty (line 1); the
binary tree contains only a single box with the original domains (line 1); each ordered list
associated with each variable bound contains a single element which points to the unique
leaf of the tree and defines the next adequate action to be a prune action (line 2).

The algorithm proceeds by alternating, the most relevant action with respect to each
variable bound until all canonical bounds are found. This is implemented as a for cycle
(lines 5-15) (with 2n iterations, one for each bound) within a repeat cycle (lines 3-16)
which only terminates when the inner box encloses all the search space (returned at line
17), or the search space becomes empty (line 6).

Each iteration of the for cycle is only executed if the associated ordered list is not
empty (line 7), otherwise the respective extreme bound would have already been found. If
the bound was not found yet then, its most relevant leaf B, and the respective next action
Action are determined from the first element of the associated ordered list (line 9).
Subsequently, a relevant subbox is computed by the relevantSubbox function (line 10) and
the appropriate action is performed on it (line 11, 12 or 13).

The correcteness of the algorithm is guaranteed by the correcteness of the kB-
Consistency function for pruning the search space and the properties of the ordered lists
which only become empty when the respective canonical bound is found. Since the
algorithm only terminates when all the lists become empty, this guarantees that all the
canonical bounds have been found when the algorithm stops.

The algorithm is guaranteed to terminate since at least after 3 iterations performing
different actions on the same leaf of the binary tree, either the relevant search space is
reduced (either by the prune or the search action) or the leaf is split into two smaller leafs.
After a finite number of these iterations the relevant search space must necessarily be
reduced since the leafs eventually become canonical, and either the prune or the search
action must then succeed. Since the relevant search space is finite, eventually it will be
completely eliminated, terminating the algorithm.

6.5 Summary

In this chapter Global Hull-consistency was proposed as an alternative consistency criterion
in continuous domains. Several different approaches were suggested for enforcing Global
Hull-consistency, their enforcing algorithms were explained and its termination and
correctness properties were derived. In the next chapter a local search procedure is
proposed for interval constraints and its integration with the Global Hull-consistency
enforcing algorithms is described.
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Chapter 7

Local Search

The definition of Global Hull-consistency, demanding the existence of extreme canonical
solutions with respect to each variable bound, requires enforcement strategies not only to
prune the search space, proving the non-existence of canonical solutions, but also to
localise canonical solutions within a box.

In the approaches of the previous chapter, whereas the pruning of the search space is
achieved by a specialised partial consistency enforcement algorithm, the localisation of new
canonical solutions has no specific method and is a consequence of reducing a sub-region
of the search space into a canonical box that cannot be further pruned'.

However, the enforcing algorithms that maintain an inner box enclosing all the known
canonical solutions, might benefit from anticipating the localisation of new canonical
solutions since the outward relevant search space would be reduced as a result of the
enlargement of these inner box. Consequently, these algorithms could take advantage from
the integration of a specialised approach for searching new canonical solutions.

A natural approach for searching new canonical solutions is to apply local search
techniques. Local search techniques navigate through points of the search space by
inspecting some local properties of the current point, and choosing a nearby point to jump
to. In the CCSP context, the points of the search space are complete real valued
instantiations of all its variables (degenerated F-boxes) and the navigation should be
oriented towards the simultaneous satisfaction of all its constraints (the solutions of the
CCSP).

Local search techniques are commonly used for solving optimisation problems, which
may be seen as CSPs where the goal is to find solutions that optimise (minimise or
maximise) an objective function. In general, these are based on numerical methods working
on floating point arithmetic [46, 58, 101] for efficiently obtaining local optimisers, which
may be embedded within an interval branch and bound approach [100, 129, 66, 78, 121,
Jan92, CGM93] to guarantee global optimality.

Within the context of Global Hull-consistency enforcement, the goal is not necessarily
to minimise a given objective function but rather to satisfy the set of constraints of a CCSP.
Nevertheless, from some initial point chosen within an F-box, a floating point numerical
method may be used for converging to another point of the F-box which is a local
minimiser of some function representing how “distant” is a point from satisfying all the
constraints?.

In the next section a local search approach is proposed for integration with the Global
Hull-consistency enforcement algorithms described in the previous chapter. In section 7.2
alternative local search approaches are analysed. Section 7.3 discusses which algorithms
could benefit from such integration and how this could be implemented.

! An exception must be made to the 7.S4 algorithm which includes the searchSolution function for finding new solutions.
2 In the following this function will be denoted the distance function.
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71 The Line Search Approach

The local search approach proposed for finding canonical solutions within an F-box is a
line search approach, that is, the movement is always done along lines of the
multidimensional space. From a particular current point, a convenient direction must be
defined, determining a line on which the new point is searched. The chosen direction is
obtained by the Newton-Raphson method for multidimensional root finding of nonlinear
systems of equations. The new chosen point along this direction must lie within the original
F-box and ensure a sufficient decrease of the distance function.

Figure 7.1 presents function searchSolution that implements the local search approach.
It uses the kB-conmsistency algorithm for verifying if a canonical F-box is a canonical
solution of the CCSP. Function Newton-Raphson (explained in the next subsection)
calculates the vector that defines the line search direction and function /ineMinimisation
(presented in the subsection 7.1.2) computes a new point along that line. Function
searchSolution has three arguments, a CCSP P, an F-box B (with Bc<[,,(D)),...,
Lypx(Dy)>), and a bound j. The output is a canonical solution of P within B or the empty set
if no solution was found.

function searchSolution(a CCSP P=(<x,,...,x,>,D;x...xD,,C), an F-box B, a bound ;)
@ for i=1 to n do i] < |Lcenter(B[i]);
@ if isOdd(j) then r{(j+1)/2] < left(B[(j+1)/2]); else #[j/2] < right(B[j/2]); end if;
(3) repeat
“ for i=1 to n do if 7[i]# right(B[i]) then B,,[i] < [r[i]../[i]] else B,,[i] < cright(B[i]);
) if kB-consistency(P,Bsy) # < then return B,,;
(6) Vold <= T
@) Or < Newton-Raphson(P,B.j,r);
®) r < lineMinimisation(P,B,r,0r);
© until r,;=r;
(10) return J;
end function

Figure 7.1 The local search algorithm.

Initially a starting point (a degenerate F-box) within the search box B is chosen to be the
current point r. If the goal is to find the left (right) bound of variable x;, the point is the mid
point of the box (line 1) except that the i™ domain is instantiated with the smallest (largest)
x; value within B (line 2). This heuristic bias the search towards the extreme bound that
characterises the context in which the search is performed.

The remainder of the algorithm (lines 3 through 9) is a repeat cycle that implements the
local navigation from point to point until a convergence point is reached (line 9) or a
canonical solution is found (line 5).

At each iteration of the repeat cycle, the current point is firstly enlarged into a non-
degenerate canonical box (line 4). If the empty set is not obtained when the kB-consistency
algorithm is applied to this canonical box then it must be a canonical solution and is
returned (line 5). Otherwise, the current point is saved (line 6) and a multidimensional
vector is obtained based on the Newton-Raphson method for multidimensional root finding
(line 7). Subsequently, a minimisation process obtains a new point inside the search box
and within the line segment defined by the current point and the point obtained by applying
the multidimensional vector to the current point (line 8).

A convergence point is reached when the next point is the same as the previous one. In
this case the repeat cycle terminates (line 9) and the empty set is returned (line 10).
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The algorithm is correct in that it either returns a canonical solution within the search
box (guaranteed by the application of the kB-consistency algorithm) or the empty set.

The algorithm terminates since the lineMinimisation function ensures the minimisation
of the distance function for which any solution of the CCSP is a zero, and the convergence
to a local minimum is detected in line 9 terminating the repeat cycle.

7.1.1  Obtaining a Multidimensional Vector - the Newton-Raphson Method

The ultimate goal of obtaining a multidimensional vector is to apply it to the current point
to find a solution of a CCSP. The idea is to reduce the problem of finding a solution of a
CCSP into the problem of finding a root of a multidimensional vector function F, which
can be tackled by an appropriate numerical method, such as the Newton-Raphson Method
[115,133].

If the vector function F is defined in such a way that a zero of each element F; satisfies
some constraint form the CCSP (and a non zero value implies that the constraint is not
satisfied) then, any zero of F must satisfy simultaneously all the associated constraints.

In the case of equality constraints, the associated element on the vector function may be
defined by the real expression of the left hand side of the constraint. For example, if the
CCSP has two equality constraints ¢; = x§+x§-1=0 and ¢, = x;x(x2-x;)=0 then F, Ex§+x§-1
and F'; = x;x(xz-x;) would define a vector function F whose zeros are CCSP solutions.

If there are inequality constraints in the CCSP then they will only be included in the
vector function if they are not satisfied in the current point. If an inequality constraint is
already satisfied in the current point then, there is no advantage in forcing it to became zero
(transforming the inequality into an equality constraint). On the contrary, if the inequality is
not yet satisfied then at least the zero value must be obtained for its satisfaction. Consider
the example of figure 5.1 with two inequality constraints ¢; = x§+x§—22£0 and ¢; =
(x1—1)2+(x2—1)2—2.5220. If the current point is (2.0,2.0) satisfying none of the constraints,
then the vector function would be defined by the elements F;=x 1+x§—22 and F, =
(x1—1)2+(x2—1)2—2.52. However, at the current point (0.0,0.0) only constraint ¢, is not
satisfied and consequently, the vector function would only contain the single element

2 2, 2 . o
Fi=(x;—1) +(x,—1)—2.5" associated with it.

Figure 7.2 shows how function F could be obtained for a particular current point. The

two arguments are the CCSP P and a degenerated F-box r representing the current point.

function defineFunction(a CCSP P=(<xy,...,x,>,Dx...xD,,{c,...,cn}), a degenerated F-box r)
1 =0,
@) forj=1tomdo

3) case ¢c; =

4) e=0i«i+1;F=e;

5) e; < 0:if left(E(r))>0 then i« i+ 1; F;=¢; end if;
(©6) e; 2 0:if right(E(r))<0  theni <« i+ 1; F;=¢; end if;
@) end case;

®) return F;
end function

Figure 7.2 The definition of the vector function F.

The algorithm is a for cycle (lines 2 through 7), where each of the CCSP constraints is
analysed for deciding whether it must be associated with a component of the vector
function F.
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For equality constraints (line 4), a new component of the vector function is defined by
the real expression of the left hand side of the constraint expression. Otherwise, (lines 5 or
6), the new component is only added to the vector function if the constraint is not satisfied
at the current point, that is, its approximate interval arithmetic evaluation (represented as
E{(r)) does not satisfy the constraint.

Once obtained the multidimensional function F, a multidimensional vector or,
corresponding to one step of the Newton-Raphson iterative method for multidimensional
root finding, is computed. The Newton-Raphson method is known to rapidly converge to a
root given a sufficiently good initial guess. Local quadratic convergence was firstly proved
by Runge in 1899 and later, under more general assumptions by Kantorovich in 1948. The
book by Ortega and Rheinboldt [115] is a classical reference for many of the convergence
theoretical results of the Newton-Raphson method.

The method aims at computing a multidimensional real vector or (the Newton vector)
which applied to the current point » reaches a root of the multidimensional function:

F@+or)=0 (1)

Expanding the multidimensional function F in Taylor series around the current point 7,

and neglecting the higher order terms, the following approximation is obtained:

F(r+or)=F(@)+ J(r)or 2) (where J(r) is the Jacobian matrix at
point r)
which, due to 1, may be rewritten as:

J(r)or=-F(r) 3)

A solution of (3) in order to Jr, is an estimation of the corrections to the current point »
that move all functions F; closer to zero, simultaneously. Equation (3) represents a linear
system with n unknowns (the or value with respect to each variable) and m algebraic
equations (one for each component of the vector function F). Depending on the number of
linear independent equations, the system may have zero, one or several solutions. Since
there are no guarantees about the non-singularity of the Jacobian matrix J(r), it may be
impossible to solve the system by inverting it by a classical method as the Gauss-Jordan
elimination or LU decomposition.

Hence, it is convenient to use a numerical technique called Singular Value
Decomposition (SVD) adequate for any set of linear equations. The numerical aspects of
the SVD technique are discussed in Golub and Van Loan’s textbook [60] whereas practical
implementational issues may be found in [45]. Efficient implementations of the SVD
technique are presented in [54] (Fortran version) and [118] (C version) which are based on
the original algorithm introduced by Golub and Reinsch in [59], whereas a new algorithm is
presented in [62].

The basic concepts of the SVD technique are introduced next, and its potential
application for finding a suitable multidimensional vector is discussed subsequently.

A singular value decomposition of a matrix 4eR™" is a factorisation of the form:
A=U"

where U R™™ and Ve R™" are both orthogonal matrices (U'U=I and V' V=I), and e R™"

is a matrix where all the non-diagonal elements Z;; (i#) are zero. The diagonal elements ;;

(denoted o,) are non-negative, and are called the singular values of 4 and the columns of U

and V are the left and right singular vectors. The singular values of a matrix are uniquely

defined, but not the corresponding orthogonal matrices.

Any matrix 4eR™", either singular or non-singular, may be factorised into an SVD

where the diagonal elements of X (the singular values) are in descending order (ci>oc; if
i<j), the first » (r<min(m,n)) being positive and the others zero. The value r is the rank of
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the matrix 4 (the number of independent rows or columns). The right singular vectors that
are columns v; of ¥V whose same-numbered singular values o; are zero define an

orthonormal basis V) for the null space of 4, which is the subspace of R” defined by all the
elements x that satisfy Ax=0.

Any matrix 4eR™", either singular or non-singular, has a unique pseudoinverse
ATeR™™ (a formal definition of a matrix pseudoinverse may be found in [133]), that can be
obtained from its SVD by:

A' =t
where 2'eR™" is a matrix where all the non-diagonal elements 2';; (i#/) are zero and the
diagonal elements ETU (denoted ;) are zero if the respective singular value o; is zero, or
1/c; otherwise. When 4 is a square and non-singular matrix, its pseudoinverse coincides
with its inverse, that is, AT=4"

Consider the generic linear system:

Ax=b with AeR™”, beR" and xeR"
Such system may have zero, one or infinitely many solutions. A least-squares solution

of the system is a vector xeR”, that minimises the least-squares distance between Ax and
b, that is:

|4% — b, = min

xeR”

Ax—bH2

When there are solutions, one or many, the least-squares solutions are the real solutions
of the system (|| 4X - 5|, = 0).When there are no solutions, the least-squares solutions are the

vectors, among all the possible vectors, that, although not solving the system, provide the
closest approximation of the right hand side.

The least-squares solution of minimal norm is the smallest vector x which is a least-
squares solution of the system:

¢, = min,

For any linear system Ax=>b there is always a unique least-squares solution of minimal
norm x , which may be obtained by multiplying the pseudoinverse of matrix 4 and the right
hand side vector b:

=4

From the SVD, not only the pseudoinverse 4" may be computed, allowing the computation
of the least-squares solution of minimal norm x , but also an orthonormal basis V) for the
null space of 4 may be defined, allowing the assessment of other least-squares solutions.
This last observation results from the fact that any vector obtained by adding a linear
combination of the vectors within 7 to x must give an equal approximation of the right
hand side 4 and so, it must also be a least-squares solution of the system. If V) contains k&
vectors, vy, ...,V for any linear combination o, ...,04:
A(x+ o+ . Fopp)=Ax+advi+ ..+ ogdvi=Ax+0+..+0=4x

Moreover, based on the factorisation of the matrix 4 into USV" it is easy to assess
whether the least-squares solution of minimal norm x obtained is a real solution of the
system, or a mere approximation. In fact, the original system may be transformed into a
diagonal system:

Ax=b & UZV'x=b < UULV'x=U"b © 2V'x=U"b < Sz=d withz=V'x and d=U"b
and a solution of the diagonal system exists if and only if =0 whenever ;=0 or i>n.
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In the context of the Newton-Raphson method, the linear system J(r)dor=-F(r) must be
solved to estimate the corrections o to the current point  that approximates F to zero. We
must take into account that the quality of the approximation given by the Taylor series of
equation 2 will in general decrease when larger neighbourhoods around the current point
are considered.

If the system has one or more solutions, the application of the SVD technique to
calculate the pseudoinverse J(+)' of the jacobian matrix and computing the least-squares
solution of minimal norm &=-J(r)'F(r), results in the smallest solution vector,
corresponding to the smallest correction leading to a zero of F according to the
approximation of equation 2. In this case, besides finding solutions of the system, that one
requiring smaller corrections is chosen, since the quality of the approximation given by the
equation is probably better.

If the system has no solutions, the least-squares solution of minimal norm &=-J() F(r)
computed by the SVD is the smallest vector of those that give the best possible correction
leading to a zero of F according to the approximation of equation 2. Since, in this particular
case, the search seems to be approaching a non-zero local minimum, it may be preferable to
choose some other least-squares solution, which could be obtained by adding to o a linear
combination of the right singular vectors that define an orthonormal basis for the null space
of J(r). Moreover, this linear combination could be determined to maximise/minimise the
extreme bound that characterises the local search context.

The complete algorithm for obtaining the multidimensional vector is implemented as
function Newton-Raphson presented is figure 7.3. From a CCSP P, an F-box B representing
the search box, a bound j representing the local search context, and a degenerate F-box r
representing the current point, it computes the multidimensional vector or based on the
Newton-Raphson method. The algorithm uses function defineFunction for the definition of
the vector function F that must be associated with a CCSP at a given point. A function
defineJacobian computes the Jacobian matrix at a given point and a procedure SVD
computes the SVD factorisation of a matrix. This procedure has four arguments, the first is
an input argument representing the original matrix J,, and the remaining are output
arguments representing the matrices U, ¥ and V such that J, = UZV'. A function
hasSolution is used for verifying whether the linear system has a solution based on the
relevant information (X and d) about the equivalent diagonal system (Xz=d). A function
defineOrthonormalBasis is used to, based on the singular values in X, extract from the set
of right singular vectors ¥ those that constitute an orthonormal basis ¥ of the null space. A
function linearCombination is used for obtaining a linear combination of these vectors in
order to redirect the vector or towards the bound j of the search box B.

function Newton-Raphson(a CCSP P, an F-box B, a bound j, a degenerated F-box r)
(1) F « defineFunction(P,r);
@ J, < defineJacobian(F,r);
@) SVD(J,,UZL,V);
@ d< -UF@),
) o« Veia;
6) if not hasSolution(Z,d) then
©) Vo < defineOrthonormalBasis(Z,V);
®) O « or + linearCombination(B,j,r,or,Vy);
© end if
(10) return or;
end function

Figure 7.3 The algorithm that computes the Newton-Raphson vector.
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Initially the vector function F, associated to the CCSP P at the current point » is defined
(line 1). Then its Jacobian matrix J, at that point is computed (line 2) and decomposed by
the SVD procedure (line 3) obtaining the matrices U, ¥ and ¥ such that J,=Us V"

The computation of the least-squares solution of minimal norm of the linear system
J(r)&=-F(r), which is &=J(r)'(-F(r))=V='U"(-F(r)), is performed in two stages: firstly
d=U"(-F(r)) is computed (line 4) and then the remaining &= V='d is calculated (line 5). The
reason for these two steps is to separately obtain vector d, which will be used by the
hasSolution function (line 6) to verify whether the linear system has real solutions.

If the obtained vector Jr is not a solution of the linear system then an orthonormal basis
Vy of the null space is extracted from the vector within V" (line 7), and other least-squares
solution is obtained by adding to Jr a linear combination of these vectors (line 8).

Finally the obtained multidimensional vector dr is returned (line 10).

Figure 7.4 illustrates the multidimensional vectors obtained at different points of the search
space for the example presented in figure 5.1, with the two inequality constraints ¢; =
X-2°<0 and ¢ = (x,~1) +(e—1)=2.5">0.

~(if min x;€[0..4])

1:)l()

.\ (if max x;€[0..4])

Figure 7.4 The multidimensional vectors obtained at different points of the search space.

If the current point is outside both circumferences (P; to P4) then ¢; is the only constraint
unsatisfied (a solution must be inside the smaller circumference) and the Newton vector
points towards the centre of the smaller circumference.

Similarly, if the current point is inside both circumferences (Ps, Ps) then c; is the only
constraint unsatisfied (a solution must be outside the larger circumference) and the Newton
vector points outwards the larger circumference (with a direction opposite to the centre of
the circumference).

If both constraints are unsatisfied (P; to Pjo) then the Newton vector is some weighted
combination of the two previous cases. In the particular case where x,=x, (Pio), the
resulting linear system has no solutions and the set of least-squares solutions define a
straight line like the dotted line presented in the figure. Which of these points will be
chosen for defining the multidimensional vector, depends upon the search box and the
extreme bound which is being searched. In the example, if the search box constrain the
values of the variable x; to be between 0 and 4 then the multidimensional vector points to
(4,0) or (0,4) depending on whether the goal is to find its upper or its lower bound,
respectively.

The Newton-Raphson method requires the computation of a Jacobian matrix at each of the
points considered during the search. Besides implying the existence of the first derivatives
at each of these points with respect to each variable, its computation may be expensive,
depending on the number of variables. An alternative strategy could be based on a Secant
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method such as the Broyden’s method [24] which works with cheaper approximations of
the Jacobian matrix and still preserves similar convergence properties.

7.1.2  Obtaining a New Point

One problem of the Newton’s iterative method is that it may fail convergence if the initial
guess is not good enough (see [115]). To correct this we followed a globally convergent
strategy that guarantees some progress toward the minimisation of the distance function at
each iteration. This kind of strategy is often combined with the Newton-Raphson method
originating the modified Newton method. The idea is that while such methods can still fail
by converging into a local minimum of the distance function, they often succeed where the
Newton-Raphson method alone fails convergence.

The distance function that must be minimised at each iteration of the method is defined
at each point r as the Euclidian vector norm [F(r)|, of the vector function F(r) associated

with the point (see previous subsection). With the above definition, the distance function
has exactly the same zeros as the vector function F. Thus, a zero of the distance function is
a solution of the CCSP whereas a non zero value gives a measure of how distant a point is
from satisfying simultaneously all the constraints.

If there are one or more solutions of the linear equation J(r)x = -F(r) then the Newton
vector or defines a descent direction for the distance function, that is, the inner product
between the gradient of the distance function and the Newton vector dr is always negative.
This can be easily verified since the gradient of the distance function is:

F J
V|E@)|, = ~v(F" F(r))/ (0" J(r)
[Fol,
which multiplied by the Newton vector gives:
T
vIF(), o = F(r)” J(ror
G )Hz

If or is a solution of the equation then J(7)dr must be equal to -F(r) and so:
2

_FO'(Fm)_ FO'Fey _ [FO,
[F@L, [l IR,
which is necessary negative since the Euclidian vector norm |[F(r)] , is always positive.

VI, o =F@,

In the particular case where there are no solutions for J(r)x = -F(r), vector or is no
longer guaranteed to be a descent direction for the distance function since J(7)dr is not -
F(r) but rather some approximation of it (which may be represented as -F(r)+e where e is a
vector whose size is minimised at each least-squares solution of the system). In this case
the inner product between the gradient of the distance function and the Newton vector or is:

_F)'CF(+e) _ F()'(F(r)—e)
|7, |7,
which is only negative if:

m
D (F () - Fyr)e; >0
i=1
Since, the size of the vector e is minimised at each least-squares solution of the system
the odds are that the above inequality is satisfied. Moreover, since in this particular case a
suitable linear combination of the right singular vectors will be used to choose some other
least-squares solution, different from the minimal norm, the above inequality could be used

VIF, o
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as an additional constraint to enforce the resulting vector to be a descent direction for the
distance function.
If the Newton vector & defines a descent direction for the distance function |F(r)|, then

it is guaranteed that it is always possible to obtain along that direction a point closer to a
zero of F (in the sense that its distance function value is smaller than the current one). This
new point must lie in the segment defined by:

r+Aor with A€[0..1]

The strategy to obtain the new point consists on trying different A values, starting with
the largest possible value without exceeding the search box limits, and backtracking to
smaller values until a suitable point is reached. If the current point is close enough to the
solution then the Newton step has quadratic convergence. Otherwise a smaller step is taken
still directed towards a solution (or a mere local minimum of the distance function),
guaranteeing convergence.

Since the current point » must be within the search box B, constraining the new point to
be within the search box limits is the same as imposing

i+ 7\,57‘, S B[X,‘]
for each variable x; (1<i<n). Defining o associated to each x; as:

min&leﬂB[x’])J,lJ if on<0

o
a, = 1 if & =0
minﬂrighl;?[x"])J,l) if 5 >0

The new point is kept inside the search box, when A does not exceed any of these o; values:
A€]0.. 1min(oz,-) ]
<i<n

Instead of changing the maximum value of A, an equivalent alternative is to keep the A
value between 0 and 1 but to adjust the Newton vector dr by multiplying it by the constant

min(e;) .
1<i<n

With this adjusted Newton vector, the backtrack search consists on starting at A=1 and
trying consecutively smaller values of A until an acceptance criterion is achieved or a
convergence point is reached.
The acceptance criterion should not only guarantee that the new point decreases the
distance function, but also that it avoids a too slow convergence rate (see [46]). The latter
can be achieved by requiring the average rate of decrease of the distance function
|F(r+ 26|, =|F(r)], to be at least some fraction Kyecepr[0..1] of the initial rate decrease
V|F ()|, 6.
A convergence point is reached when the value of A nears the canonical precision,
making the canonical approximations of » and » + AJr indistinct. A practical criterion is to
consider that a convergence point is reached whenever the value of A is smaller than some
predefined threshold £, (close to the canonical precision).
The choice of the consecutively smaller values of A to be considered during the
backtracking search should be based on some model for the function g() defined as:
g =|F(r+26r),  with g'(0)=V|F(r)|, s

If a quadratic model is used then:
gy =a)+bL+c and g'(W)=2al+b

From the value of g at A; (a previous value of A) the following equations are obtained:
2(0)=a0?+ b0 + ¢ 2’(0)=2a0+b g =al®+bh+c
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which define the quadratic model:

) g(m—gﬁgm 50 2, )14 20)

1

The value of A that minimises the above quadratic function can be easily computed by
calculating the unique zero of its derivative:

- g'(0)A
2(g(4))-g'(0)4; —g(0))

With this quadratic model, the value of A that should be considered after A; is Apin.
Since, in general, there are no guarantees about the value Ay, it is convenient, in order to
avoid too smaller or too larger steps, to bound the next A value relatively to the previous
value A;. For example, A could be forced to be between 0.1A; and 0.5A; by choosing Ay, if
it is within this range or the closest of these bounds otherwise.

If instead of a quadratic model, a cubic model or other higher order model is used for
representing function g, then a similar approach would have to be considered. In this case,
the complete characterisation of the model would require the knowledge of the function
value at several previous values of A (k-1 values of A different from zero for a k order
model).

The function presented in figure 7.5 implements a backtracking search along the line
segment defined by the current point and the Newton vector. From a CCSP P, an F-box B
representing the search box, a degenerate F-box r representing the current point and a
degenerate F-box Jr representing the Newton vector, it computes the next point to jump to.
The algorithm uses function defineFunction (see previous subsection) for the definition of
vector function F associated to a CCSP at a given point. It is assumed that functions
quadraticModel and cubicModel compute the minimum of an univariate function G
assuming a quadratic or a cubic model respectively. These functions need as input the
values of G and its derivative at point zero, as well as the value of G at one or two other
points, for the quadratic and the cubic models, respectively (see [118] for a practical
implementation of these functions).

Amin -
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function /ineMinimization(a CCSP P, an F-box B, a degenerated F-box r, a degenerated F-box or)
(1) F « defineFunction(P,r); Gy < F(r);
2)  Opin < 1:
3) fori=1tondo
@ if 6+<0 then ¢, < min(QLlef{(B[x])/ o)) end if;
&) if 520 then a, < min( . Lright(B[x;])/d.) end if;
6) end for;
(1) OF ¢ QpinF" ;
® Gy |F(r) L0

© if Gy=0 then return r;

10) A<« 1;
(11) repeat;
(12) F « defineFunction(P+Aor); G, < F(r+\Lor);
(13) if G, < Gy + Kuceepr L. Gy then return r+idr;
(14) if L =1 then Ao, < quadraticModel(Gy, G A, G));
(15) else Aney < cubicModel(Gy, G() A, G 1, M prevs G aprev);
(16) xprev <_7\', Glpr‘ev <~ G/;
17 A <= max(Apew,0. 1 4prey); A «<— min(A,0.5A,ey);
(18) until A< kypp;
(19) returnr;

end function

Figure 7.5 The algorithm that computes a new point along the Newton’s vector direction.

Initially vector function F, associated with the CCSP P at the current point r is defined and
its value Gy is computed (line 1). Subsequently, the Newton vector dr is adjusted in order to
guarantee that the new point is within the search box B. The minimum of the a; values
associated to each variable x; is determined (lines 2 through 6) and the Newton vector Jr is
updated by multiplying it by the obtained value (line 7). The slope G at the current point
in the direction of the Newton vector is calculated (line 8) and, if nonnegative, the
algorithm stops returning the current point  (line 9).

The backtrack search along the Newton’s vector direction is implemented as a repeat
cycle (lines 11-18). At each iteration of the cycle, a A value is tested and if it does not meet
the acceptance criterion (according to the definition given previously in the current
subsection) a new A value is calculated for the next iteration. The verification of the
acceptance criterion implies the redefinition of the vector function F associated with the
respective point 7+Adr and the computation of its value G; (line 12). If the acceptance
criterion is satisfied then the new point 7+Adr is returned (line 13). Otherwise a new A value
is calculated, which minimises the function G according to its quadratic (line 14 - only used
for the first iteration) or cubic (line 15) model. The previous values of A and G, are saved
(line 16) and the new A value is guaranteed to be between 0.1 and 0.5 of the previous A
value (line 17).

The repeat cycle is exited either when a new point satisfying the acceptance criterion is
found (line 13) or when the A value is smaller than the predefined threshold £y, (line 18).
In this last case, the current point », which is a convergence point, is returned (line 19).

The algorithm is correct since it either returns a new point with an associated value of
the distance function smaller than at the current point (this is guaranteed by the acceptance
criterion) or it returns the current point if no better point was found.
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The algorithm terminates because at each iteration of the repeat cycle the A value is at
least halved and in a finite number of iterations the decrease of the A value is such that is
necessary smaller than the threshold k.

Figure 7.6 illustrates the new points obtained by applying the lineMinimization algorithm
on the multidimensional vectors exemplified in figure 7.4. The dashed lines represent the
original Newton vectors and the crosses are the points associated with A values that did not
satisfy the acceptance criterion. It is assumed that the search box is big enough to include
the complete Newton vector (except in the case where x; must be minimised or maximised
between 0 and 4).

<. (ifminx;€[0..4])

| (if max x;€[0..4])
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Figure 7.6 The new points obtained by the lineMinimization algorithm over the vectors of
figure 7.4.

As shown in the figure, only for points in the first quadrant, the new point obtained is not
the same obtained by applying the complete Newton vector. These points are too far from a
solution of the CCSP for the quadratic approximation implicit in the Newton method to be
effective, and a smaller step in Newton’s direction is preferable. On the contrary, the other
points are close enough of a solution so that the full Newton step is the best choice,
eventually leading to quadratic convergence towards a solution.

Figure 7.7 shows the number of iterations of the complete local search algorithm
(function searchSolution), necessary for reaching a convergence point (assuming a 4 digits
precision) by starting at each of the previous points. It is assumed that the search box is big
enough to include all the full Newton vectors computed during the local search.

3

4
Figure 7.7 Convergence of the local search algorithm.

The number of necessary iterations is shown above the respective starting point, and is
smaller when this is closer to a solution of the CCSP. Moreover, for this particular CCSP,
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the complete search space may be partitioned into four different regions (represented in the
figure as R; through R4) whose points share the same convergence behaviour.

From any starting point within the regions Ry or R,, the convergence point is a solution
near the closest point of the arcs A; or A,, respectively. If the starting point is within the
regions R; or Ry, excluding the dotted line bordering these two regions, then the
convergence points are solutions near points P; or P,, respectively. In the particular case
where the starting point is in the dotted line®, the convergence point may be to a solution
near point P, or P, depending on the context of the local search: P, if either the x; left bound
or the x; right bound is searched; P, if either the x; right bound or the x, left bound is
searched.

Consequently, for this particular CCSP, from any starting point and with a big enough
search box, the local search algorithm converges towards the closest solution of the CCSP,
being trapped in no local minimum.

The introduction of the line search minimisation along the Newton’s vector direction is
justified to achieve a globally convergent behaviour which could not be guaranteed by the
Newton-Raphson method alone. However, since the local search is to be integrated within a
branch and bound algorithm orienting and constraining the search into the most relevant
regions of the search space, a globally convergent behaviour is desirable but not strictly
necessary.

An alternative strategy could be to use the line minimisation algorithm exclusively for
keeping the new point within the search box bounds and ignoring all the backtracking
search along the Newton’s vector. These simplified version would still present quadratic
convergence for good initial guesses and would rapidly fail for starting points distant from
the CCSP solutions.

7.2 Alternative Local Search Approaches

An alternative to the proposed local search approach based on the Newton-Raphson method
for multidimensional root finding, could be based on the collapsing of the multiple
dimensions into a single one by considering a nonnegative scalar function whose zeros are
solutions of the CCSP. One such function could be the distance function defined in the
previous subsection.

Once reduced the problem into an unconstrained multivariate minimisation problem, an
efficient minimisation method [46] could be applied for searching the solutions of the
CCSP. The choice of the more appropriate method should take into account the
computational effort required for the calculation of the first derivatives of the scalar
function and the storage required.

An efficient method not requiring the computation of derivatives is Powell’s method
[22], with a storage requirement of order n° (where n is the number of variables).
Alternative methods, both requiring the computation of first derivatives, are the Conjugate
Gradients methods (Fletcher-Reeves algorithm [53], Polak-Ribiere algorithm [117]) and the
Quasi-Newton methods (Davison-Fletcher-Powell algorithm [52], Broyden-Fletcher-
Goldfarb-Shanno algorithm [50]), with a storage requirement of order n and n’
respectively.

The major drawback of these alternative local search strategies is that the early
collapsing of the various dimensions of the vector function, whose components represent
each unsatisfied constraint, implies the lack of information about each individual constraint
and makes them more vulnerable to local minima. Strictly following a descent path of a

3 To be precise, the singular point (1,1) must also be included in this case and not within region R;.
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scalar function such as the distance function often ends up in a local minimum which
cannot be improved by local refinement.

However, since the local search is to be integrated within a branch and bound
algorithm, the convergence to local minima is not restrictive, making any efficient local
search strategy also competitive.

To avoid the convergence to local minima that are not solutions of the CCSP, other
alternative approaches could be based on strategies used for solving constrained
optimisation problems [57, 51, 17], namely Penalty methods or Lagrange-Multiplier
methods. These methods reduce the constrained problems into one or a sequence of
unconstrained multivariate minimisation problems by adding to the objective function
terms that reflect the violation of each constraint.

The Penalty methods [49], which are easier to implement, introduce for each violated
constraint a penalisation term, whose degree of penalisation must be tuned either before of
during the optimisation process. This tuning is not trivial since too large penalties may
result in a very irregular search space whereas too small penalties may lead convergence to
unfeasible points.

The Lagrange-Multiplier methods [16], widely used for their numerical stability and
accuracy, use Lagrange multipliers to combine the constraints with the original objective
function obtaining a new multivariate function denoted Lagrangian function. All the
minima of the Lagrangian function are minima of the original objective function which are
guaranteed to satisfy the set of constraints. The price to pay for such nice properties is the
increase on the number of variables that must be considered for the unconstrained
minimisation of the Lagrangian function. Besides the original variables an additional
variable (the respective Lagrange multiplier) is introduced for each constraint.

In our context, which does not explicitly requires the minimisation of a particular
objective function, such optimisation methods could be applied, either by considering the
distance function as the original objective function to minimise, or by performing an
optimisation with respect to the variable bound that characterises the context of the local
search.

Nevertheless, any of the above alternative approaches would still require the adoption
of some strategy to bound the local search within the original search box limits. In the line
search method this was accomplished by the line minimisation algorithm which avoided the
larger Newton steps that escaped the search box limits. The possible drawback of such
strong restriction, eventually avoiding the convergence to a solution just because the search
path is not entirely contained in the search box, is largely compensated within the branch
and bound context that guides the search to the most relevant subregions of the search
space.

7.3 Integration of Local Search with Global Hull-Consistency Algorithms

The local search algorithm was originally conceived for providing the 7SA4 algorithm with a
specialised method for the localisation of new canonical solutions within a search box. In
this algorithm the local search function searchSolution is naturally integrated as a step of
the searchAction procedure (see figure 6.13).

The integration of the local search algorithm with the other enforcing algorithms
presented in the previous chapter may be accomplished by minor changes in their generic
search mechanisms (backtrackSearch or orderedSearch).

The functions backtrackSearch (figure 6.3) and orderedSearch (figure 6.8) may easily
accommodate the local search algorithm by including a new argument j for representing the
search context and by changing line 5 into:
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) B,,1 < searchSolution(P,B,j); if By, # < then return By,;

This approach may be adopted for the integration of the local search with the backtrack
search algorithms BS; and BS; as well as with their ordered modifications OS; and OS3,
respectively.

A similar approach could be used for integrating local search with the BSy and BS,
algorithms. However, the BS, algorithm does not profit from local search since no inner
box is maintained, and with the above change, the BS; algorithm could no longer guarantee
that the first canonical solution found by the generic search is the leftmost/rightmost (which
is a crucial property for the correcteness of the algorithm).

In order to allow a correct integration with the BS> algorithm the first canonical solution
found must be an extreme bound and so, the generic search should not terminate whenever
a new solution is found, but rather when this solution is extreme with respect to the search
context.

Figure 7.8 presents the function backtrackSearchWithLocalSearch, which is a modified
version of the backtrackSearch function to integrate the local search algorithm, that may be
used by any of the backtrack search algorithms (including the BS, algorithm). It is identical
to the original backtrackSearch function of figure 6.3 except that it includes an additional
third argument, the bound j, to represent the context of the local search, and the original
lines 5-6 are replaced by the lines 5-16. It assumes that all the algorithms use a splitStrategy
LW (largest width) or RR (round robin) except the BS; algorithm that uses a splitStrategy x;
(identifying the variable that must be firstly split).

function backtrackSearchWithLocalSearch(CCSP P=(X,D,C), inout stack S of F-boxes, bound j)
(1) while S.size()>0 do
@ B« Spop();
3) B « kB-consistency(P,B);
) if B # < then

) Byo1 < searchSolution(P,B,));

(6) if By, # & then

7 if splitStrategy = LW or splitStrategy = RR then return B;,;

®) if splitSide = LEFT and splitStrategy = x; then

© if leﬁ(Bsol[x[]): leﬂ(B[xt]) then return Bsol;

(10) else B; < B; B [x;] < [left(B[x:])..left(Bsolx:])]; Bz < Bsos; end if;
an end if;

(12) if splitSide = RIGHT and splitStrategy = x; then

(13) if right(Bse[x;])= right(B[x;]) then return B;,;

(14) else B, < B; B [x;] < [right(Bs.[xi])..right(B[x;])]; B: < B,.; end if;
(15) end if;

(16) else splitBox(B,B;,B,); end if;

a7 S.push(B,);

(18) S.push(B));

(19) end if;

20) end while;
(21) return J;
end function

Figure 7.8 The modified generic backtrack search algorithm with local search.

The overall functioning of the backtrackSearchWithLocalSearch is similar to the
backtrackSearch function except that a canonical solution is searched through a call to the
local search function (line 5) and if a new solution is found (line 6), its consequences must
be processed (lines 7-15). If the algorithm is not the BS, algorithm then the backtrack
search terminates returning the new canonical solution (line 7). In the case of the BS;
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algorithm (lines 8-13) with a splitStrategy x;, the backtrack search only terminates if the
new solution is the leftmost/rightmost wrt x; (line 9/13); otherwise (line 10/14), the two new
F-boxes to include in the stack are the new canonical solution B, and the sub-box B; of B
that remains relevant after considering this new solution (notice that B; is inserted at the top
of the stack and so, the new canonical solution will only appear at the top if B; contains no
solutions).

The correcteness and termination properties of the algorithm may be derived similarly
to the case of the original backtrackSearch function as long as the searchSolution function
is correct and terminates.

74  Summary

In this chapter a local search procedure based on a line search minimisation along a
direction determined by the Newton-Raphson method was proposed for integration with the
interval constraints framework. Its integration with Global Hull-consistency enforcement
was presented for each of algorithms suggested in the previous chapter. In the next chapter
preliminary results obtained with the application of Global Hull-consistency criterion are
presented and compared with weaker consistency alternatives. The integration of local
search within the best Global Hull enforcing algorithms is also illustrated on a simple
problem.
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Chapter 8

Experimental Results

In the context of decision making the trade-of between precision in the definition of the
solution space and the computational efforts required to achieve it must be a major concern
when solving CCSPs. In this context, our proposed approach to enforce a Global Hull-
consistency may be an appropriate choice, achieving acceptable precision with relatively
low computational cost. Such effort depends of course on the algorithms used to enforce
such consistency. Among the set of algorithms we developed, the one that integrates
constraint propagation within a tree-structured representation of the domain (algorithm
TSA presented in section 6.4), has clearly shown the best performance.

In this chapter we present results obtained by imposing Global Hull-consistency in a
number of problems and compare them with those obtained with (various levels of)
alternative high order consistency requirements. In the first section a simple example
motivates the need for strong consistency requirements such as Global Hull-consistency.
Sections 8.2 and 8.3 present two practical examples illustrating the benefits of using TSA
for enforcing Global Hull-consistency. In section 8.4 we compare the efficiency of TSA
with the other algorithms for enforcing Global Hull-consistency presented in chapter 6, and
address the potential benefit of including local search.

We implemented all Global Hull-consistency and kB-consistency (section 5.2)
algorithms, based on the procedures for achieving 2B-consistency (Box-consistency)
available in the OpAC library (a C++ interval constraint language [61]), and executed in a
Pentium IIT computer at 500 MHz with 128 Mbytes memory.

8.1 A simple example

To understand the pitfalls often arisen with kB-consistency we have considered a small

problem consisting of two constraints:
2+ y? <1 and x4+ y? 22

Of course, the two constraints are unsatisfiable. Figure 8.1 illustrates the problem,
which requires the solutions to be within the inner circle (first constraint) and outside the
outer circle (second constraint).

y

X2+y2=1\ —\

x2+y2=zﬁ/
\

Figure 8.1 A simple unsatisfiable constraint problem.

2B-consistency
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However, 2B-consistency (Box-consistency) does not detect such inconsistency, merely
pruning the initial unbounded domains of the variables to the interval [-1.001..1.001] (with
107 precision). With these domains (obtained by applying 2B-consistency to the first
constraint) the second constraint does not prune the domain of any of its variables when the
other is fixed to any of its bounds. Of course, x =+1 is only compatible with y = 0 in the
first constraint whereas it requires y = £ 1 in the second, but the local nature of 2B-
consistency does not detect this situation. Since there are only 2 variables involved, 3B-
consistency is equivalent to Global Hull-consistency and detects the inconsistency.

With an increased number of variables the insufficiency of 2B-consistency also arises
in higher order consistencies. For example, in the following problem

2
X

2

+ y? + 22 <2 and 2+ v+ z2 >3

rather than detecting inconsistency, as Global Hull-consistency does, 3B-consistency
prunes the variables to [-1.001 .. 1.001] whereas 2B-consistency performs even worse,
pruning the domains to [-1.416..1.415].

In general, the difference obtained with kB-consistency and Global Hull-consistency is
not so significant, but still different bounds are obtained.

For example with the slightly modified problem

>

2+ yP+ 22 <2 and (x-0.5)? + y? + z? > 2.25

the results obtained are shown in Table 8.1. Both 2B- and 3B-consistency, although faster
than Global Hull-consistency, report quite inaccurate upper bounds for variable x.

Table 8.1 Pruning domains in a trivial problem.

2B 3B Global Hull
x [-1.416.. 1.415] [-1.415 .. 1.002] [-1.415..0.001]
y [-1.416.. 1.415] [-1.415 .. 1.415] [[1.415.. 1.415]
z [-1416.. 1.415] [-1415 .. 1.415] [-1415.. 1.415]

7 (ms) 10 50 1860

8.2 The Census Problem

The Census problem models the variation with time of a population with limited growth by
means of a parametric differential equation (logistic). The equation has an analytical

solution of the form:
kx g rt
xole” =1)+k

x(1) =

Given a set of observations vy,...,v, at various time points f,...,4, the goal of the problem is
to adjust the parameters x, » and k of the equation to the observations.

We used the USA Census over the years 1790 (normalised to 0) to 1910 with a 10 year
period. Table 8.2 shows the population values observed at those time points.

Table 8.2 US Population (in millions) over the years 1790 (0) to 1910 (120).

10 20 30 40 50 60 70 80 90 100
5.308 | 7.239 | 9.638 |12.866(17.069|23.191|31.433|39.818|50.155|62.947

110
75.994

120
91.972

t; 0
3.929

Vi

Figure 8.2 illustrates the problem showing its best fit solution (xo = 4.024, » = 0.031 and k=
198.2). Such solution minimises the expression: y_ (x(r,) v, )’

1
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Figure 8.2 The best fit solution for the USA Census problem.

In order to adjust the parameters of the logistic equation to the observations, instead of
searching for the best fit solution, we considered as acceptable a distance of up to +1
(million) between each observed value v; and the respective predicted value x(#). This is
achieved by imposing the following constraint' at each observed time point #:

Jor g e 0001 7

i~ :
xo(eo'om”‘ —1)+k

X with xje[vi—1..vi+1]

In Table 8.3 we show the results of enforcing 2B-, 3B- and Global Hull-consistency on
this problem (with 10 precision). The table shows the poor pruning results achieved by
2B-consistency alone, and the much better pruning achieved by Global Hull-consistency
with respect to 3B-consistency.

Table 8.3 Comparing 2B-, 3B- and Global Hull-consistency in the Census problem.

2B 3B Global Hull
Xo [2.929 .. 4.930] [2.929 .. 4.862] [3.445 .. 4.547]
k [1.1..1000] [102.045 .. 306.098] [166.125 .. 260.401]
r [1.1..100] [27.474 .. 39.104] [28.683 .. 33.714]
#(ms) 10 56 990 458 840

Although this improvement is achieved at the cost of a much longer execution time
(about 8 times slower than 3B), it is important to notice that OS; and 754 algorithms for
achieving Global Hull-consistency are anytime algorithms, and good results may be
obtained much earlier.

Table 8.4 shows that the pruning achieved by Global Hull, at approximately 30% of the
execution time spent with 3B enforcing algorithm, is already significantly better than it. For
similar execution times (about 1 minute), the pruning is almost as good as the final one.

Table 8.4 Comparing anytime GH and 3B in the Census problem.

Global Hull Global Hull Global Hull 3B
X, [3.445 .. 4.547] [3.040 .. 4.775] [3.142 .. 4.567] [2.929 .. 4.862]
k [166.125 ..260.401] [129.863 .. 282.040] [148.153 .. 261.157] [102.045 .. 306.098]
r [28.683 .. 33.714] [27.777 .. 36.730] [28.646 .. 35.296] [27.474 .. 39.104]
¢ (ms) 458 840 15 030 55110 56 990

! The parameter », with much smaller values than the other parameters, is re-scaled into the interval [1..100] by
multiplying it by a factor of 0.001 (its best fit value is now 31.0).
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Figure 8.3 illustrates such pruning results. The black area represents the uncertainty about
the trajectory of a logistic function with the parameters ranging within the box obtained by
enforcing Global Hull-consistency on this problem (the second column of table 8.4). A
slightly wider uncertainty (with the extra dark-gray area) is obtained if the Global Hull-
consistency enforcing algorithm is interrupted after 1 minute of execution time (the time for
enforcing 3B-consistency). However, a much wider uncertainty (with the extra light-gray
area) must be considered if the box is obtained by enforcing 3B-consistency (the last
column of table 8.4).
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Figure 8.3 Comparing 3B with GH, and GH with similar execution time (about 1°).

Also notice that, since there are only 3 variables, imposing 4B-consistency provides the
same final results than Global Hull-consistency. However, as shown in the table 8.5, the
algorithm is much slower. The table compares the pruning achieved during the CPU
execution time. The values are given as a percentage of the area of the box obtained by
Global Hull with respect to the area of the box obtained by 4B at the same execution times
(both with 107 precision).

Table 8.5 Comparing anytime GH and 4B in the Census problem.

GH/4B 27.1% 43.0% 67.3% 81.6% 100%
t (min) 0.25 1 8 16 180

When the Global Hull algorithm stops, after about 8 minutes of CPU time, it obtains a
domains box that is approximately 2/3 of current box of the 4B algorithm (at the same
time). The equivalent pruning results, which are theoretically achievable, take in practice
about 22 times more CPU time with the 4B algorithm than with the Global Hull algorithm.

Finally we compare the performance of the TSA algorithm with different precision
requirements, namely, 107 , 10, 10” and 107" Table 8.6 shows the results where the unit
of time is the execution time with 10™ precision. The first row indicates the precision &
required; the second row shows the time # at which the pruning results were already
identical to those obtained with 10™ precision; the third row presents the total execution
time fna; and the fourth row indicates the storage used by the algorithm in terms of the
maximum number of F-boxes considered.

Table 8.6 Comparing GH with different precision requirements in the Census problem.

£ 10”° 10° 10”7 10"
t 1 1.2 1.7 2.4
Tfinal 1 2.9 5.0 7.5
F-boxes 1290 2938 4711 6314
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Clearly, for this problem, there is not an explosion of execution time or storage
requirements with increasing precision requirements. Both, time and storage, seem to
increase linearly with the number of significant digits required. Moreover, if we consider
the uncertainty obtained with 10~ precision, identical results may be obtained much before
the ending of the algorithm.

8.3 Protein Structure

The next problem we report is a simplification of that of finding the structure of a protein
from distance constraints, e.g. obtained from Nuclear Magnetic Resonance data (see [87,
88]). The simplified problem uses Euclidean distance constraints similar to those presented
in section 8.1 above, where variables X;, y; and z; represent the centres of atom a;.

In this problem, we place 6 atoms, whose centres must all be, at least, 1A apart. For
some atom pairs, the square of the distances are provided and shown in table 8.7.

Table 8.7 Square distances between pairs of atoms of the protein.

Atoms a a) a3 ay as ag
a 2 4 - 4 4
a, 2 2 4 2 -
a3 4 2 2 4 4
ay - 4 2 2 2
as 4 2 4 2 -
ag 4 - 4 2 -

To solve the problem we placed 3 atoms (a;-a3) arbitrarily in the XY plane and the
distances allow that the other 3 atoms are either above the plane (positive Z) or the
corresponding quiral solution below the plane (negative Zs).

In table 8.8 we show the pruning achieved on the values of atoms a4 to ag by 2B-, 3B-
and Global Hull-consistency (as before, results with 4B-consistency are similar to those
with Global Hull but take much longer to obtain).

Table 8.8 Comparing 2B, 3B and GH in the Protein problem.

2B 3B Global Hull
X4 [-1.001 .. 1.415] [-0.056 .. 0.049] [-0.004 .. 0.004]
Vi [0.585 .. 3.001] [1.942 .. 2.047] [1.996 .. 2.004]
24 [-1.415 .. 1.416] [-1.415.. 1.415] [-1.415 .. 1.415]
Xs [-0.415 .. 2.001] [0.998 .. 1.002] [0.999 .. 1.001]
Vs [-0.001 .. 2.001] [0.999 .. 1.001] [0.999 .. 1.001]
Zs [-1.415 .. 1.416] [-1.415 .. 1.415] [-1.415 .. 1.415]
Xs [-2.001 .. 2.001] [-1.110.. 1.053] [-1.008 .. 0.992]
Ve [-0.001 .. 2.001] [-0.894 .. 1.169] [0.999 .. 1.001]
Z [-2.001 .. 2.001] [-1.483 .. 1.483] [-1.420 .. 1.402]

7 (ms) 10 7380 62 540

Given the uncertainty in the Z value of the atoms, neither 2B- nor 3B-consistency could
prune the size of their other dimensions to the amount that Global Hull-consistency does.
The most important difference between 3B- and Global Hull-consistency lies on atom a.
Whereas the x¢ and ys are “fixed” (respectively at around —1 and 1) by Global Hull, 3B-
consistency could not prune the value of these variables beyond the typical [-1 .. 1]
interval.
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8.4 Local Search

In the above experiments Global Hull-consistency was enforced with the TSA algorithm
without local search, a precision & = 10~ and an underlying 2B-consistency procedure. To
check whether the above timings were truly representative of Global Hull enforcement, we
decided to test the efficiency of the different algorithms presented in chapter 6.

The results presented in Table 8.9 refer to another instance of the Protein structure (with
8 atoms), more representative of the kind of problems Global Hull is aimed at, in that they
have many adjacent solutions, i.e. the final domains of all variables are relatively large.

Table 8.9 Comparing various Global Hull-consistency enforcing algorithms.

Time (s) Max Storage (F-boxes)
k | Ls | e=10"] £=107 | =107 e=10" | =107 | £=107
o | 734 | 600+ | 600+ 407 55711 | 63465
2 y | 87.52 | 78.48 | 600+ 407 414 | 25580
0S, o | 2357 [139.84 | 600+ 27 339 1584
3 y | 12.80 | 5039 [191.41 2 15 51
o | 299 [ 11.37 | 600+ 30 47 60
2 [y 1497 | 3846 | 600+ 14 16 2
BS, o | 4101 | 150.21 | 359.69 22 37 53
3 y | 1914 [ 7598 [234.65 3 3 25
o | 519 | 600+ | 600+ 132 66410 | 63445
2 y | 2329 | 2072 | 600+ 51 104 | 25037
OS; o 1 2551 [ 185.99 | 600+ 19 695 1676
3 y | 1308 | 4541 [ 16250 2 10 32
o | 10.16 | 60.96 | 600+ 332 6786 | 76506
2 y | 4479 | 4759 | 600+ 221 621 16764
TS4 o | 4252 184387 600+ 52 207 843
3 y | 3863 | 97.88 [ 27585 99 185 392

The first thing to notice is the importance of the precision used. Of course, with less
precision, all algorithms are faster, since less canonical F-boxes are considered. More
interestingly, as precision increases (smaller €) local search becomes more important. The
reason for this is that with larger canonical F-boxes the underlying 2B-consistency
algorithm does not prune them and so accepts them as canonical solutions, making the local
search for “real” solutions useless. With higher precision, canonical F-boxes are smaller
and the 2B-consistency algorithm does not detect solutions as easily, as the pruning of most
F-boxes does not result into canonical F-boxes. Hence, the advantage of local search in
such situations.

Local search is also shown to improve the memory requirements, since it often finds
solutions near the intended bounds of the variables in the F-boxes under consideration,
rather than simply bisecting them (thus originating additional boxes).

Memory requirements are also much lower when the underlying enforcement procedure
is 3B-consistency (rather than 2B), as the pruning achieved in any F-box is much more
significant. Because of its better pruning, and despite its higher complexity, enforcing 3B-
consistency provides in general better results than 2B-consistency, as precision increases.

Regarding the variety of Global Hull-consistency enforcing algorithms, their
differences are less evident. Given the discussion above it might be important to impose
some thresholds on the execution time of the algorithms, in which case the OS; and BS,
have the disadvantage of not being anytime algorithms. Although OS; proved better than
TSA in this problem, this behaviour is not observed consistently in other problems, and 754
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offers the advantage of keeping a tree-based compact description of the feasible space,
which is very convenient for an interactive use as envisaged in [69]. Moreover, and
although not visible in the table, the anytime results of 7S4 are consistently better than
those obtained with OS3.

8.5  Summary

In this chapter our proposals were tested on simple examples such as the USA census
problem and the protein structure problem. The pruning and time results obtained with the
Global Hull-consistency approach (with 7SA4 algorithm) were compared with those
obtained by enforcing 2B-, 3B- and 4B-consistency. The integration of local search within
the best Global Hull enforcing algorithms was discussed. This ends the first part of this
dissertation. The next part is dedicated to handling constraints over ordinary differential
equations, where the constraint methods discussed so far will be used.
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Chapter 9

Ordinary Differential Equations

Differential equations are equations involving derivatives. Ordinary Differential Equations
(ODEs) involve derivatives with respect to a single independent variable. The order of an
ODE is determined by the highest derivative appearing in the equation.

A first-order ODE will be generically represented as:

Y _
it = /(0,0

where, for historical reasons, the independent variable, often associated with time, is
denoted as ¢. If it is clear from the context, the above representation may be shortened to:
y'=f(,0
A system of » first-order ODEs is the set of equations:
V1= S1 D15 Vs 1)

Yo =Jn (V1o Vs 1)
which, if there is no ambiguity with the single equation case, may be represented in vector
notation as:
i S11ses Vs 1)

y'=f(y0) with y'=| ... | and f(p,t)=

Yn Jn(Vises s 1)
Any explicit' differential equation of order m defined as:

Y = 3y Y ey "0

may be transformed into an equivalent system of m first-order ODEs:

’
Z1 22
z'= f(z,1) with z'=| 7 | and f(z,)=
Zm-1 m
Z;n f(ZI,ZZa'“va’t)

Given the above property we will only consider, without loss of generality, systems of
first-order ODEs and will denote them as ODE systems.

Definition 9-1 (ODE system). An ODE system O is a system of # first-order ODEs defined

as:
i J1W oo Vs 1)
y'=f(y,t) with y'=| ... | and f(y,t)=
Vi SnWiseees Y1)
When the independent variable ¢ does not appear explicitly in function f; that is, y'= (),
the ODE system is called autonomous?. a

! A differential equation is called explicit if the highest derivative is isolated in the left-hand side.

2 Any ODE system with n equations may be transformed into an equivalent autonomous system with n+1 equations by
replacing any occurrence of ¢ with a new dependent variable y,.; and by adding the associated derivative equation:
V=l
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An ODE system may be regarded as a restriction on the sequence of values that y can take
over t. Informally, for any particular instantiation of y and ¢, it determines the evolution of y
at time ¢ associated with an increment of z. An ODE system does not determine a unique
sequence of values of y associated with z; it rather characterises a family of functions whose
slope must satisfy the equations for all values of #. This family of functions are the solutions
of the ODE system.

Definition 9-2 (Solution of an ODE system). Consider an ODE system O as defined in
s1(0)

9-1. The function s(¢)=| ... | is a solution of O wrt the interval [,..z,] iff:
$,(1)

d
Vielty. 1] f = f(s(),0) -

In order to uniquely identify a particular function from the solutions of an ODE system,
further information must be added. Traditionally this is accomplished either by completely
specifying the value of y associated with a particular value of ¢ (initial condition), or by
partially specifying the value of y associated with different values of ¢ (boundary
conditions).

Given an ODE system and a value for y at a given ¢y, the initial value problem (IVP)
aims at determining the value of y for other values of 7. A solution of the ODE system that
satisfies the initial condition is a solution of the IVP.

Definition 9-3 (Solution of an IVP). Consider the IVP I defined by the ODE system O as
V1o 51(0)
expressed in 9-1 and the initial condition y(¢,)=y, =| ... |. Function s(r)=| .. |is a
Vo 8, (1)
solution of / wrt an interval [#,..t;] that includes #, iff:

d:
s(0)=70 A Vieltyts] 5 =S 0.0) g

In general it is not possible to solve an IVP analytically, that is, the function s(#) that is the
solution of the IVP cannot be represented in a closed-form expression. Consequently,
several approaches have been proposed for solving this kind of problems numerically.

The classical numerical approaches attempt to compute numerical approximations of
the solution s() at some discrete points of 7. These methods, addressed in the next section,
are usually very efficient but do not provide any guarantee on the accuracy of the
approximations or even the existence of a unique solution.

Interval approaches, discussed in section 9.2, attempt to produce bounds for the solution
s(t) not only at some discrete points of ¢ but also for all the continuous range of
intermediate values between any two consecutive discrete points. These methods, also
known as validated methods, verify the existence and uniqueness of a solution for the IVP.

The relative unpopularity of the direct application of interval methods to ODE problems
(at least compared with their numerical alternatives) stems from the additional
computational effort required and, in many early approaches, to the insufficient tightness
provided by the enclosing bounds. To overcome such difficulties, research has been carried
out to take advantage of the efficiency and soundness of constraint technique, as
overviewed in section 9.3.
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9.1 Numerical Approaches

Classical numerical approaches for solving the initial value problem consider a sequence of
discrete points #, t;, ..., t,, for which the solution is approximated. The distances z=t;+,-t;
between two consecutive points do not need to be equally spaced. At each new point #,,
the solution s(#+,) is approximated by a value s;+; computed from the approximated values
at the previous points. Whether this computation requires only the most recent value (s;) or
also other earlier values (si.s, si.2, ...) qualifies if the method is a single-step or a multistep
method.

A k-step method provides a formula that approximates the solution function at the next
discrete point #;+; which may be generically?® represented as:

St = DS pr15055 ) where j=i or j=i+1

If the approximate value s;+; does not appear in the right-hand side of the equation (j=i),
the formula is explicit and its evaluation is straightforward. Otherwise (if j=it1), the
formula is implicit since its evaluation may involve solving the above vector equation (a
system of possibly nonlinear equations) where s;+; appears in both sides.

To avoid solving the vector equation, some methods, known as predictor-corrector
methods, use both an explicit formula and an implicit formula. Initially, the explicit
(predictor) formula is used to obtain a first value approximation for s;+;. Then the implicit
(corrector) formula is used, with the s;+; of the right-hand side replaced by the predicted
value, to obtain a final improved value.

Although there are many variations within the different numerical methods for solving
IVPs they may be classified into four general categories: Taylor series, Runge-Kutta,
multistep and extrapolation methods.

Taylor series methods are single-step methods that use the Taylor series expansion of
the solution function around a point, to obtain an approximation of its value at the next
point. This series is computed up to a given order, requiring the evaluation of higher order
derivatives of the function.

Runge-Kutta methods are single-step methods that approximate the Taylor series
methods without requiring the evaluation of derivatives of the solution function beyond the
first. This is accomplished at the expense of several evaluations of the first derivative of the
solution function, whose expression is given by the ODE. The idea is to compute a linear
combination of this function at different points to match as much as possible the Taylor
series up to some higher order.

Multistep methods use a polynomial of degree k-1 to approximate either the solution
function (as in backward differentiation methods) or its derivative (as in Adams methods).
The coefficients of the polynomial are determined from the values of the approximated
function at k& different points. Implicit or explicit formulas for approximating the value of
the solution function at the next point #;+; may be obtained depending on whether this point
is considered in the determination of the polynomial coefficients.

In contrast to the previous methods, extrapolation methods (as the Bulirsch-Stoer
method [25, 133]), consider larger steps (non-infinitesimal) between consecutive discrete
points of z. To compute the approximation of the solution function at the discrete point #;
from the previous one, #;, a single-step method is used to integrate the differential equation
along the interval [#..1;+;] considering an increasing sequence of finer and finer substeps.
During this process an interpolating polynomial or rational function is constructed through
the computed intermediate values and in the end the value at #;+, is extrapolated to a zero
substep size.

3 For simplicity, the values of the discrete points of ¢ are not explicitly represented as arguments of the function ®.
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A detailed overview of the above numerical methods may be found in many text books
dealing with the numerical solution of initial value problems. Classical books on this
subject are [72, 70, 56] and more recent overviews can be found in [63, 90, 127]. Several
public domain software packages provide efficient implementations of the numerical
methods, in particular for the Runge-Kutta (as the RKSUITE [21]) and the multistep
methods (as the VODE [23]). For practical discussions on the software implementation see
also [126, 54, 118, 5].

In the next subsection the Taylor series methods will be addressed in more detail.
Subsection 9.1.2 discusses the different sources of errors and its consequences in solving an
IVP numerically.

9.1.1  Taylor Series Methods

The simplest single-step methods are based on the Taylor series expansion of the solution
function. If the solution s(f) of an ODE system, as defined in 9-2, is a function which is p
times continuously differentiable on the closed interval [#..z;+;] and p+1 times differentiable
on the open interval (#;..t;+ 1) then, from the Taylor theorem, we have:

p+1
s(t,+1)—s(t)+2( s®, )J e s with h=te,-t; and &€ [ti.ti+]]
Since s(f) is a solution of the ODE system (wrt the interval [t..t;+]), then, from
definition 9-2, Vye[y, 1, ,]ds/dt = f(s(t),1) , and so:

Vie[1.p+175% @0 = f D (s(),0)
Hence, the Taylor series expansion may be rewritten as:

s(t,+1)—s(r>+2[ A ”(s(t)t)J Tl

If, additionally, s " is continuous throughout the closed interval [#..1;+;], it must be
bounded on that interval and so, the last term of the Taylor series expansion is also bounded
on [f;..t;+1], being of order O(W**).

Consequently, a Taylor method of order p can be obtained by neglecting this last term,
providing the following formula that approximates the value s;; of the solution function at
the next discrete point #; given its approximated value s; and at the previous point #;:

N :
Sivl :Si+z — ¥ (si) with A =t,-1
AL

FP(s(8),&) W/ h=tit;and Ee[ti.tis]]

The total derivatives of f may be computed recursively in terms of its partial
derivatives. Since the vector function f, as defined in 9-1, is composed by n elementary
functions fi(y1,...,Vnt), the total derivatives may be obtained component wise as:

r < 6ﬁ(y15"~7yn>t) r a.fi(yls"'synat)
; s Vo l) = m |t
S Vst mzl( o y =
< af‘l(y ?‘“’ynﬁt) a.f;(y ’“"yﬂ’t)
[ F Dy, D)
m=1 Ym o
(o (e vl AR TP )
.fi(k)(yla'--aynJ):Z —lfm(yls'“,ynat) +—1
o OV ot

k
S D sees v )
with f® (y,1) = )
k
LD rees v )
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In the special case of autonomous ODE systems, ¢ does not appear explicitly in f, so
neither does the last term of the above definition of the total derivatives.

Despite the existence of quite efficient methods for the automatic generation of the
Taylor coefficients for autonomous ODE systems (see section 9.3), the Taylor series
methods are not as competitive as other numerical methods such as the Runge-Kutta which
do not require higher derivative evaluations (they do not even require the existence of such
derivatives). Hence, existing software packages for solving numerically an IVP do not
usually employ Taylor series methods. Nevertheless, methods based on the Taylor series
(not neglecting the last term) seem to be more suitable for interval approaches, which aim
at computing reliable interval bounds for the enclosure of the solution function.

9.1.2  Errors and Step Control

The ultimate goal of a numerical approach for solving an IVP over an interval range of 7 is
to approximate as much as possible its solution at some discrete points placed along that
interval. Usually, by starting at point # (whose solution value is known: s(f)=yy) an
increasing (decreasing) sequence of discrete points is considered by adjusting the step size
(the gap between two consecutive discrete points) as the calculation proceeds. The purpose
of this adaptive step size policy is to keep some control over the accuracy of the
approximation with minimum computational effort.

Since this effort is proportional to the total number of discrete points considered, such
points should be separate from each other as much as possible. However, too wide gaps
may lead to unacceptable approximation errors.

There are two different sources of errors for the numerical solution of an IVP: the
discretization error (also known as truncation error) and the computational error. Whereas
the first depends exclusively on the properties of the numerical method adopted, the second
is due to round-off errors and errors committed in the approximated evaluation of implicit
formulas.

The approximation error committed at a new point #;, is partially caused in the current
step (from # to #;+1) by the chosen method, and partially due to propagation of errors made
at previous steps (from 7 to #;). Accordingly, there are two measures of the discretization
error, the local discretization error and the global discretization error.

The local discretization error is the error committed in one step by the approximation
method assuming that the previous values were exact and the absence of computational
errors. If s; and s;; are approximations of the correct solution values s(#) and s(f1),
computed by the numerical method at two consecutive points, the local discretization error
div1, from t; to t;1, is given by:

diyg =8 —ultiyg)
where u is the solution function of an IVP with the original ODE and the initial condition
u(t;)=s;.

The global discretization error is the error accumulated along the whole sequence of
discrete points (starting at the initial condition point #) again in the absence of
computational errors. If s; is the approximation of the correct solution value s(#;), computed
by the numerical method along the sequence of discrete points ..., #;, the global
discretization error e; accumulated so far is given by:

e; =s; =s(t;)

Figure 9.1 illustrates the notions of local and global discretization errors associated with
two different IVPs. The initial condition is defined at point #), and the approximated
solution is computed at three subsequent discrete points, #;, #; and #;. The local
discretization errors in each of these points are represented as d;, d»> and d;, respectively.
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The correct solution function is line s(f) and functions u,() are the solutions of similar IVPs
with initial conditions y(#,)=s;, respectively. The global discretization error accumulated at
13, represented as e3, is compared with the sum off all the previous local errors.

us(t)
uy(t)

dy+dy+ds

s(t) 1

tz!
(@ y'=Ay

Figure 9.1 Local and global discretization errors for an unstable (a) and a stable (b) differential
equation. In both equations A is a positive real value.

The concept of stability is associated with the effect of local errors on global errors.
Instability occurs when small local errors introduced during the approximation procedure
are magnified into larger global error (as in Figure 9.1a). On the contrary, when local errors
introduced are attenuated into a smaller global error, the problem is called stable (Figure
9.1b). Unfortunately nonlinear ODE systems are often unstable, at least in some regions.

The best that can be expected from any numerical method for solving an IVP is to
maintain the inherent behaviour of the actual solution. An unstable problem cannot become
stable by any numerical method. However, instability may be introduced by the numerical
method in originally stable regions of the actual solution. Avoiding such instabilities may
require the introduction of additional restrictions limiting the length of the step sizes.

Roughly speaking, the global error of an approximation corresponds to a sum of local
errors weighted by factors associated with the stability of the equation and, in particular,
with the numerical method adopted. In practice, the control of the approximation accuracy
is achieved by controlling the local error up to a specified tolerance and keeping an
estimation of the global error within acceptable bounds. These estimations, which may be
more or less sophisticated, are all based on assumptions about the global behaviour of the
numerical method for solving the IVP, but do not provide any guarantee on the actual
accuracy of the approximation.

Computational errors, which are of a more random nature, increase the difficulty in
defining correct global error estimates, specially for unstable problems. Moreover, this
effect imposes practical limitations on the reduction of the step size. In general, when the
step size is decreased, the global discretization error is decreased by the same factor raised
to some power p (wWhere p is defined as the order of the method), thus reducing the global
error. However, more steps are required for covering the same interval of ¢. If the step size
becomes too small, the accumulation of computational errors eventually exceed the
reductions achieved on the local discretization errors. Consequently, smaller step sizes
eventually become useless to reduce the global error, limiting in practice the maximum
precision attainable for the computed approximation of the actual solution.

9.2 Interval Approaches
The first interval approaches for solving initial value problems had their sources in the

interval arithmetic framework introduced by Moore [99]. They use interval arithmetic to
calculate each approximation step explicitly, keeping the error term within appropriate
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interval bounds. Discretization and computational errors are thus encapsulated within
bounds of uncertainty around the true solution function. In addition to providing guaranteed
enclosures of the actual solution function, interval methods also verify the existence of a
unique solution for the IVP.

Most interval methods for solving IVPs [99, 89, 48, 95, 123, 132, 103] are explicit
methods based on Taylor series since this provides a simple form for the error term which
can be bound as long as some enclosure of the actual solution function is provided.
Moreover, the Taylor series coefficients can be efficiently computed through automated
differentiation techniques, and both the step size and the order of the method may be easily
modified during the approximation process. Changes on the step size do not require
recomputing these coefficients, and to increase or decrease the order of the method it is
sufficient to add or delete Taylor series terms.

In the mentioned approaches, each step between two consecutive points ¢ and f;4;
generally consists of two phases. The first validates the existence of a unique solution and
calculates an a priori enclosure of it between the two points. In the second phase, a tighter
enclosure of the solution function at point 7, is obtained through interval arithmetic over a
chosen numerical approximation step, with the error term bound as a result of the enclosure
of the previous phase.

The next subsection presents the main ideas of the Interval Taylor Series (ITS) methods
and how they take advantage from the automatic generation of the Taylor coefficients.
Subsections 9.2.2 and 9.2.3 summarise the principal techniques used by ITS methods
during, respectively, the first and the second phases of the enclosing steps.

It is worth mentioning that, alternatives to the explicit interval Taylor series approaches
were recently proposed. An implicit interval method based on the Taylor expansion was
proposed by Rihm in [124]. An interval Hermite-Obreschkoff method which outperforms
the explicit interval Taylor series methods was proposed by Nedialkov in [103, 104] for
improving the quality of the enclosures obtained at the second phase. In [19] Berz and
Makino present a method, known as Taylor model, based on Taylor series expansions on
both time and the initial conditions for solving IVPs, and the framework was extended later
for dealing with implicit ODEs and differential algebraic equations [76]. Work on Runge-
Kutta interval methods has been carried out by Hartmann and Petras, and presented at
ICIAM’99 [71] and SCAN’2000 [116].

Some widely used software was developed based on the above interval methods.
Lohner’s AWA program [94, 95], written in Pascal-XSC [85], and Stauning’s ADIODES
package [132], written in C++, were the first public domain implementations of the explicit
interval Taylor series methods. Nedialkov’s VNODE [103, 105, 107], also written in C++,
is a more recent package that includes an implementation of the interval Hermite-
Obreschkoff method. Berz’s COSY INFINITY [18] is a software package designed for
beam physics applications, in a Pascal like language, which provides an efficient
implementation of the Taylor model approach.

9.2.1  Interval Taylor Series Methods

Similarly to the traditional numerical Taylor Series methods (see subsection 9.1.1), ITS
methods, are based on the Taylor series expansion of the solution function s(f) around point
t:

+1
s(tl+1)—s(t)+2[ s®, )] - pl) sP(E)  with h=t,-t; and & € [ti.ti4]]
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However, instead of neglecting the error term, ITS methods use interval arithmetic to
obtain reliable enclosures not only for the error term but also for every term of the series,
allowing the computation of a reliable enclosure of the solution function at the point #;;.

Usually, and without loss of generality, the ITS methods assume that the ODE system is
autonomous and rewrite the above equation into:

P
ste) = s+ Y0 s+ ho f s with h=t- 4 and €€ [fti]

k=1
where f [k](s(ti )) denotes the kth Taylor coefficient of function s at the point #;:

TG = (s1), = <“a>

For any £ (>0) dlfferentlable function g(7) the relation between its kth Taylor coefficient
and the (k-1)th Taylor coefficient of its derivative may be expressed as:

k-1 k-1
(1), =~ gM (1) =~ ( L _d ]dg()—[ L_d jg()— ('),

k! k\ (k=D gi* =1 ) dt (k=1 gk
Since function s is the solution of an ODE system y'= f(y), each kth Taylor

coefficient of s at point #; may be computed from the (k-1)thTaylor coefficient of its
derivative expressed by the ODE:

fW@m»:%U@m»n4

Vector function f, as defined in 9-1, is composed by n elementary functions fi(y1,...,n),
and its k-Taylor coefficient may be obtained component wise:

(fl (yl s Vi ))k
(F»); = :
(Dt )i

In [99], Moore proposed a simple procedure for the automatic generation of Taylor
coefficients of a given function. The method, applicable to functions expressed as in
definition 3.2-1, allows the reliable computation of the Taylor coefficients up to a desired
order. An efficient implementation of this method may be found at the public domain
software package TADIFF [7] (implemented in C++).

The procedure defines recursive rules associated with each of the basic operators (and
elementary functions) and use, as base of recursion, the fact that (f(»)), =f(»). For

example, the rules associated with the basic arithmetic operators (+, -, x and /) are:

(8 +h(); =) + )y @wrmw»:@um—w@»
(e xh() :i(g(y))r(h(y))kfr (‘igi) h(ly) {(g(y)) Z(g(y)) Eg(y )jk ]

r=0 r=1 h( )

From this set of rules it is always possible to compute the k-Taylor coefficient (with
k>0) of a function through decomposition. Note that when the function cannot be further
decomposed (is expressed as a variable or a constant) its kth Taylor coefficient can be
obtained from the (k-1)th Taylor coefficient of its derivative. The derivative of constant
functions is 0 and so is the corresponding kth Taylor coefficient. Otherwise, if the function
is represented as a variable, and in the case of an autonomous ODE system y’'= f(y), the
variable must be an y; and its kth Taylor coefficient may be computed from:

1, , 1
(J’i )k :z(yi )k_1 :;(fz (P1sees Y ))k_1

An efficient method using the above rules for computing the Taylor coefficients up to
an order p firstly considers the Taylor coefficients of order k=0 for any variable and
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constant appearing in the expressions, then computes the kth Taylor coefficients for their
compositions (accordingly to the expressions) and increments the order k=k+1, repeating
the process until k=p.

The above computations may be performed either in real arithmetic (with finite
precision), with real values representing the variables y; and the constants appearing in the
expressions, or in interval arithmetic where interval enclosures for these values are used
instead. Whereas in the former an approximation of the Taylor coefficients is obtained, in
the later reliable enclosures are computed.

With reliable enclosures for the Taylor coefficients, interval extensions (as defined in
3.2.1-1) of the Taylor series expansion of ODE solution functions may be computed. This
is extensively used in ITS methods not only for enclosing the value, at point #;, of a single
solution function s(¢) with initial condition s(#;)=s;, but also to enclose such value for the set
of solution functions whose values at the point #; are within interval ;.

9.2.2  Validation and Enclosure of Solutions Between two Discrete Points

Usually the validation and enclosure of solutions of an ODE system between two discrete
points # and #+; is based on the Banach fixed-point theorem and the application of the
Picard-Lindelof operator (see [108, 131] for details).

The following theorem (proved in [48, 95]) may be used for defining a first order
enclosure method based on the (first-order) interval Picard operator.

Theorem 9.2.2-1 (Interval Picard Operator). Let O be the autonomous ODE system of n
equations defined by y’'= f(y). Let f be continuous and with first order partial derivatives
over te[t...t;+1]. Let S; and S be n-ary real boxes with S,cS. Let F' be an interval extension of
- The interval Picard operator @ is a vector interval function:

O(S)=S8;+[0.A]F(S) with h=t;-¢
If ®(S)S then for every s;€S;, the IVP defined by O and the initial condition y(#)=s; has a
unique solution s and Ve[, 4, ] ()€ D(S) a

Based on the interval Picard operator, algorithms to obtain an enclosure for the set of
solution functions whose values at #; are within the box S; may be described as follows.
Firstly, a desired step size 4 is chosen together with an initial guess S” for the enclosure
(with S,cS%). Then the interval Picard operator is applied to obtain the box S = d(S”). If
S=0(5")=S’ then, by theorem 9.2.2-1, S is an enclosure for the set of solution functions
between t; and #+h. Otherwise, two different strategies may be recursively applied: either
the initial guess S’ is inflated to enclose more solutions of the ODE for the same step size;
or the step size is reduced to satisfy ®(S’)=S’ (note that for a small enough step 4 this
property can always be satisfied). The final result of such algorithms is a box Sj; i+1j and a
step size & (not necessarily the initially one) for which the box is an enclosure of the set of
solution functions whose values at ¢; are within the box S;.

Several ITS proposals [89, 48, 95, 132] rely on the use of a first order enclosure method
for the validation and enclosure of ODE solutions at its first phase. The major drawback of
these approaches is that the step size restriction imposed by the (first-order) interval Picard
operator is often much more severe than the limitations imposed in the second phase, based
on higher order Taylor series expansions.

Alternative higher order enclosure methods were also proposed for this first phase,
allowing larger step sizes more compatible with the second phase algorithms. A polynomial
enclosure method was proposed by Lohner in [96] and several high-order Taylor series
enclosure methods [31, 103, 109] were proposed after the original work of Moore [99]. The
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main advantage of the latter proposals is the possible reuse of the Taylor coefficients
computations in both the first and the second phases of the ITS method.

9.2.3  Computation of a Tight Enclosure of Solutions at a Discrete Point

Once obtained an enclosure box Sj; ;+1] of the set of solutions between two points, #; and #;+,
a straightforward ITS method for computing a tight enclosure at ¢+, is directly based on:

Vi
S =S+ Y W FE sy e nP  EP s gy with h=- 1
k=1
where S; and S;4; are enclosing boxes at points #; and #; respectively, and F[k](B) is a
reliable enclosure (computed as described in subsection 9.2.1) of the kth Taylor coefficient
of the solution function at any point within the box B (vye ijk](y)eﬁ{k](B)).

The above method usually leads to large overestimations of the enclosing box at point
t;+1. Since this box is computed from S; (the enclosing box at point #;) enlarged as a result of
the addition of the other Taylor terms, from # to 7+, the size of the enclosing box cannot
decrease as it would be expected if, for example, the ODE system is stable within that
region (see figure 9.1b).

A better approach is to use a Mean Value interval extension of the Taylor series with
respect to the box S;. This form, presented in subsection 3.2.1 of chapter 3 for scalar
interval functions, can be easily extended component wise for vector interval functions. In
this case, a method known as the ITS direct method is obtained:

p p
Si = c+thF[k](c)+h"“F["”](S[I»“M])+{I+thJ( s, )}x(si —¢) with h=t;-t;
k=1 k=1
where ¢ is the mid point of box S; and J(#1,S;) is the Jacobian of %1 evaluated at box S;. The
Jacobian may be obtained by automatic differentiation of the Taylor coefficient [6, 7].

The above form allows the decrease in size of consecutive enclosing boxes and
provides a quadratic approximation (see subsection 3.2.1), quite advantageous when the
boxes are small. However, the overestimation of enclosing boxes at the consecutive points
may accumulate as the integration proceeds (a phenomenon known as the wrapping effect)
and lead to unreasonable results.

In [48] and [103] it is shown that the overestimation made in one step of the ITS direct
method for the last two terms of the expression which contains interval arguments, that is,

n? EPHeS L and {I+ih"]( W s, )}x(s,. —¢), is O(h”*?) and O(hxwidth(S)),
k=1
respectively.

A consequence of this analysis is that whereas the error induced by the first term may
be controlled by adjusting the step size and the order of the method, on the contrary, the
error induced by the last term is highly dependent on the initial box S;, which may be
oversized due to previous errors. This dependency on the size of S; may be insignificant for
initial conditions represented as points or small boxes but may become quite significant
with the accumulation of errors during the integration process.

In interval methods for solving IVPs, the accumulation of errors at each integration step
is magnified by the effect of always enclosing (wrapping) the set of solutions at each
discrete point within boxes regardless of its correct shape. In practice this means that, at
each step, besides the overestimation due to the interval arithmetic evaluation of some
interval extension (such as the above Mean Value form) of the real set of solutions,
additional overestimation is introduced because entire boxes must be considered for
representing the domains.
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Several strategies have been proposed for reducing the overestimation and, in
particular, for handling the wrapping effect [99, 89, 48, 95, 123]. They choose an interval
extension of the Taylor series suitable for the interval arithmetic evaluation (for example
minimizing the multiple occurrences of the interval variables) complemented with an
effective enclosing method for representing the intermediate values of the set of solutions.
The most successful enclosing methods (the Lohner’s QR-Factorization method [94, 95]
and its simplifications [106]) are based on changes of the coordinate system at each step of
the integration process, aiming at reducing as much as possible the overestimation of the
representation of domains by means of boxes.

9.3  Constraint Approaches

The application of the interval constraints framework for validated ODE solving was firstly
suggested by Older [112] and Hickey [73]. Both approaches are extensions of the constraint
programming language CLP(BNR) [113, 15] for handling constraints expressed as ODE
systems. They represent an ODE system by a constraint network determined by a set of
discrete points of ¢ and the restrictions between the respective enclosing boxes derived from
a chosen approximation step (as in the interval approaches).

In these early approaches, the goal was not to improve efficiency (compared to the
interval approaches) but rather to extend the generality of a constraint approach. Once an
ODE system is translated into a constraint network, the solving mechanism of a constraint
language such as CLP(BNR) may efficiently propagate any restriction imposed on any of
its variables (see chapter 4). Hence, not only can IVPs be solved, but also any additional
information (e.g. final or boundary conditions) may propagate throughout the constraint
network, reducing the enclosures, with the guarantee that no possible ODE solution
function is lost.

The major drawbacks of both approaches, which limit its practical application on real
world problems, are the huge number of constraints that must be maintained in the
constraint network and the required specification of additional a priori information about
the solutions of the ODE system.

More recently, the research group of Jansen, Deville and Van Hentenryck developed a
new alternative constraint satisfaction approach to ODEs [47, 79, 80, 81]. Their goal is to
extend the interval approaches with constraint propagation techniques to enhance the
quality of the enclosure bounds for the solution of the IVP and to improve the efficiency of
the computations. Therefore, their work focuses on overcoming the main difficulties
presented by the interval approaches for IVPs and not on the full integration of ODE
systems into the interval constraint framework.

The next subsections summarise the main characteristics of each of these constraint
approaches.

9.3.1  Older’s Constraint Approach

The constraint approach proposed by Older in [112] allows the definition of an ODE* as an
interval arithmetic expression F(S,7) which is extensively used for the generation of
interval constraints (processed by the CLP(BNR) language) relating an enclosure S for the
set of solution values at a discrete point ¢ (or an interval 7 of values of £) with an enclosure
of its derivative.

4 For simplicity a single differential equation is considered, as in the original work. However, this framework can be easily
extended component wise for ODE systems.
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In order to solve an ODE problem, in addition to the specification of the ODE, it is also
required the definition of the initial and final integration points, #y and ¢ respectively, the
number d of recursive subdivisions that will be considered between these points, and an a
priori enclosure Sy 5 for the set of solution functions between these points.

Between the initial and final integration points, a sequence of 2% —1 equally spaced
intermediate points are considered. Two interval variables, S; and Fj;, representing
enclosures of solution values and of its derivatives, are associated with each discrete point ¢
and the respective interval constraints ¢; are generated restraining their possible value
combinations according to the ODE specification:

ci=Fi=F(Spt;)

Moreover, between each two consecutive discrete points # and f4;, two additional
constraints, ¢;;+1 and ¢; ;+1, are generated based on second order Taylor series expansions
around these points. With A=t;,-#; the second order Taylor series expansions of a solution
function of the ODE around ¢ and ¢, are:

2
(i) = S(ti)+hf(S(f,-),t,-)+h7f'(S(§1 ):61) with & € [#i..ti+1]

2
S0 = 5005 ) = 5l )+ (5, 62) with & € [foti-1]

Taking the difference between the two above equations, it follows:

2
s(ti)—s(t;) :%h(f(s(rl- )t)+ [ (st tf+1))+”7(f'<s(§1 ) ED=f1(5(6,),65))

which is an equation relating the values of a solution function and of its derivative at the
two discrete points # and #;+;.

A reliable enclosure Rj; ;+;; of the difference (f"(s(él),él)— f(s(&,),¢5 )) appearing in
the last term of the equation may be obtained from the interval evaluation of the derivative
of f with the argument s(¢&) replaced by the a priori enclosure Sy ; and & replaced by the
interval [#..t;+,]. If the result of such evaluation is an interval F’j; ;+;; then the magnitude of
the difference, which is between two real values belonging to this interval, cannot exceed
its  width. Consequently a reliable enclosure is given by the interval
R[,‘,_,'-;.[]:[-Wl'dth(F’[,'__,'+1])..Wl'dlh(F’[,'__,'H])].

Reliable enclosures for s(t;), s(t+1), fis(#),t;)) and f(s(ti+;),ti+;) are represented by the
interval variables S;, Si+;, F; and F;1; that were initially associated with the points # and #;+;.

Given these reliable enclosures for each term of the above equation, a first constraint
¢i i1 1s directly obtained:

1 h?
Ciiy1 =S8 —S; = Eh(Fi +Fip )+T(R[z:.i+1])
Moreover, generalizing the equation for any intermediate point of ¢ between ¢ and ¢+,
and representing the enclosure for Vie[s, 1,,] s(f) by a new interval variable Sy i+
initialised with the a priori enclosure Sy g, a second constraint ¢; ;+ is obtained:

1 0.h]
Ciiv1 =S[iv1] —Si = 5[0"h](Fi +F(S[i,.i+l]’[ti“ti+1]))+ ! 4] (R[L,H—l])

With this approach the problem of integrating an ODE is transformed into a CCSP with:
(i)  3x2™2 variables, S; (0<i<2%), F; (0<i<2%) and Sy ;1 (0<i<2);

(i) 3x2%+1 constraints, ¢; (0<i<2), ¢;1+; (0<i<2%) and ¢; 1+ (0<i<29).

There are several drawbacks with this constraint approach. Firstly, the number d of
subdivisions must be specified in advance and the interpolation points must be
homogeneously distributed along the whole interval of integration. Thus, the approach has
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no error control mechanism and is insensitive wrt the stability of the differential equation
(see subsection 9.1.2).

Secondly, given the lack of an error control mechanism, the number d of subdivisions
needs often to be very large, leading to a constraint network with a huge number of
variables and constraints, which is difficult to handle, even for a specialised constraint
programming language such as CLP(BNR).

Thirdly, the constraints between any two consecutive discrete points contain an interval
constant R ;+;; which is only computed once and is not updated by propagation, even when
the range of the enclosure Sy ;+;; for the set of solution functions between these points is
changed.

Finally, the approach is highly dependent on the specification of a tight enough a priori
enclosure Sy g for the set of solution functions between the initial and the final integration
points. This is a main problem since there is usually no clue for the specification of such
enclosure which must hold along the whole interval of integration. Moreover, if the values
of the solution functions vary considerably along this interval then there is no single tight
enclosure for the complete interval, limiting the practical applicability of such approach.

9.3.2  Hickey’s Constraint Approach

Independently from Older’s work, Hickey in [73] proposed a somewhat similar constraint
approach for solving constrained ODE problems. It shares the same ideas of associating
interval variables for representing the enclosures of solutions and their derivatives at
discrete points of ¢ (or between two consecutive points) and generating constraints to bound
its possible values. However, instead of considering only enclosures for the solution
function and its first derivative, it considers enclosures for all the derivatives of the solution
function up to a given order and uses constraints based on Taylor series expansions whose
remainder term does not exceed that order.

From the specification of the ODEs, together with a sequence of integration points
(between #) and #) and an integer p (representing the maximum order of the Taylor
expansions used for generating constraints), the following variables are considered (for
which a priori enclosures may be specified):

@) S;,S!,S!,...,8'") associated with each discrete point # (0<i<f) and representing
the enclosures for s(t;) , As(t),t;) , L (S(t)ti) ..., £ PV (s(2,).1,) respectively;

(ii) S[,-”M],S[',-",.H],S{,.”,-H],...,S[(l._‘?;ll)] associated with each interval [#:..t;+/] (0<i<f) and

representing  the enclosures  for  Vie[s, 1,.,150) . Ve[t 5.0

Vieltiting) SO0 s Ve[t tig] £ P (s(2),1) respectively;

Expressions for each of the derivatives associated with the above variables are
computed through automated differentiation and the corresponding constraints are
generated, relating its value at each point (¢, or interval ([¢;..t;+;]).

Between each two consecutive discrete points # and ¢+, several additional constraints
are generated based on Taylor series expansions around these points. For any pair of
integers k and m such that 0<k<m<p, the following four constraints are generated
(assuming that the solution function s is p+1 times continuous differentiable and #=t;-t,):

3 Again only a single differential equation is considered. The generalization for ODE systems is straightforward.
¢ In practice, these constraint are generated in a different form, more suitable for the interval arithmetic evaluation.
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where the R[('””]) are different interval variables representing the enclosure S[('"“]) These

new variables are introduced to avoid the narrowing of the remainder term as a result of
propagation of the Taylor series expansion. This narrowing can only be achieved through
the last two constraints and is propagated to the remainder terms via an additional
unidirectional CLP(BNR) constraint defined as:

(m+1) (m+1)

- R[l 1+1] is S[l l+1]

Note that the constraint c?;ﬁl is the natural interval extension of the Taylor series

expansion of order p around #;, which is the base of the ITS methods (see subsection 9.2.1).
Note also that the ranges of the variables S[(p ”)] are not constrained, implying the

specification of their a priori enclosures.

This approach presents the same general drawbacks of the previous approach. It lacks
an error control mechanism, generates a huge constraint network and requires the
specification of the integration points and tight a priori enclosures for the values that each
variable can take along the whole interval of integration.

9.3.3  Jansen, Deville and Van Hentenryck’s Constraint Approach

The approach proposed by Janssen et al [47, 79, 80, 81] is a more direct extension of
interval approaches for solving IVPs. It does not translate the IVP into a CCSP through a
constraint network, but rather follows the traditional methods. It performs the integration
step by step, from the initial to the final integration point, using reliable interval methods
improved with constraint propagation techniques.

Each integration step is quite similar to the two phases process of the interval methods.
Firstly, the validation and enclosure of solutions between the two discrete points is
achieved by a first order enclosure method based on the interval Picard operator ( cf. 9.2.2).
Afterwards, a tight enclosure of the solution at the next discrete point is computed. The
novelty of the approach is the subdivision of this second phase into a predictor process, for
computing an initial enclosure, and a pruning (corrector) process, for narrowing this
enclosure, both based on constraint techniques.

The predictor process is based on a traditional ITS method for the generation of an interval
extension of the Taylor series (see subsection 9.2.3). In particular, [47] suggests the ITS
direct method complemented with a co-ordinate transformation strategy, based on Lohner’s
QR-factorisation method [94], to reduce the wrapping effect.

As a result, some (vector) interval expression E(S;Sy i+1),fiti +1) 1S obtained for the
computation of an enclosure S;; at the next point #+; from the enclosure at the previous
point #; and the enclosure Sj; ;+1) between the two points obtained in the first phase.
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A major difficulty of the interval methods is the overestimation obtained from the
direct interval evaluation of such expression. In this approach, the overestimation is
reduced by the application of constraint techniques for the decomposed evaluation of the
interval expression (see theorem 3.2.1-4), and several such techniques are proposed [47].

A first technique is based on the piecewise interval extension of the solution function,
defined as the smallest enclosure for the expression E(S;,S[; i+13t:t +1) When evaluated at
each element of S;:

Si+1= Buull { EBauar($:),Spi.iv1pstisti +1) | 5:1€8i })
where Bj,(S) is the smallest F-box enclosing S.

To compute such enclosure, 2n unconstrained optimisation problems are generated for
finding the minimum/maximum possible value of each component of S;;,. For the practical
implementation of these optimisation problems, an appropriate constraint programming
language such as Numerica [135] is used.

Since the above multidimensional optimisation problems may be computationally
expensive, alternative coarser approximations of the piecewise interval extension were
proposed, using projections into a smaller number of variables.

A box-piecewise interval extension is defined as the intersection on every component j
of the piecewise interval extensions obtained when all the other components are replaced
by the respective interval constants:

Sis1= m Bhujl({E(<]1,...,]j,1,[apx(}’j),]j+1,..., ]n>,S[i..i+1] Jiti+1) | VjEIj }) w/ S=<I,,...,.I,>

1<j<n

Despite providing a less accurate enclosure, this is computationally less expensive, only
requiring the solution of unidimensional unconstrained optimisation problems.

Other alternative techniques lie half-way between the two extreme alternatives above. If
instead of using projections into a single component, any k& components are considered
then, box(k)-piecewise interval extensions may be obtained from the solution of -
dimensional optimisation problems.

For the pruning process, two alternative techniques were proposed: a one-step method
which uses the forward step backwards [47] and a multistep method that uses Hermite
interpolation polynomials [79, 80, 81].

The one-step method generates a constraint ¢; from each component j of the vector
interval expression E, which is the same used in the predictor process but applied
backwards (from #;+; to #;), and enforces box-consistency wrt the enclosure S;+1:

¢ == E(Si1,Sp.irptivnnti)  With S;=<Iy,.. >

The multistep method aims at narrowing the predicted enclosure S;;; for the solution
functions at time #;4; from the knowledge about reliable enclosures at &k previous discrete
points. It is based on the fact that if a real function at #:1,...,t,t:r1 passes through
Sickt1s---58i8i+1, With the derivatives s ix+1,...,5 5,8 it1, then there is a unique polynomial of
degree 2k+1, the Hermite polynomial, which simultaneously interpolates both the real
function and its derivative at these points (see [133] for details). Moreover, it is possible to
bind the error of the Hermite polynomial for the approximation of the real function at some
te[tis1.-ti+1] and so, it is possible to derive an interval extension of the original real
function based on the Hermite polynomial. Consequently, denominating
HP(Sikt15-.-,555:41,) the Hermite interval polynomial obtained from enclosures at k+1
discrete points (and their respective derivative satisfying the ODE) the following relation
holds for any solution function s of the ODE:

Vte[t,—.kﬂ..t,-ﬂ] S(ti_k+1)€Si_k+1 A oo AS(tir) €S = S([) S HP(Si_kH,. - S5Sin,t)

Additionally, through differentiation on HP, an interval extension DHP of the
derivative of any solution function s may be obtained:
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ds(t)
dt

The multistep pruning methods use the interval expressions HP and DHP together with
the interval expression F' defining the ODE to generate a set of constraints based on:

DHP(Si-it15- - - 5Si,Si41,t) = F(HP(Sikt1,- - -58i58i1,8),1)
which can be rewritten in a suitable Mean Value form (see [79]). By choosing a particular
value for t€[t;4+1..t:+1], and enforcing box-consistency (or other type of consistency) on the
enclosure S;11, this box may be effectively narrowed.

The method is improved in [80] by considering several successive multistep constraints
together for pruning simultaneously several enclosing boxes. The best choice of the
particular value for z€[f4+1..4;+1] 1s independent from the ODE and may be precomputed
before the integration process starts [81]. Experimental results on several benchmarks were
presented confirming the advantages of the constraint approach compared with the best
interval approaches.

Vte [tige1.tis1] S(tiks1) ESikr1 A oo AS(ti1)ESi1 = € DHP(Sik+1,- - -,Si,Si1,t)

9.4  Summary

In this chapter ordinary differential equations and initial value problems were introduced.
Classical numerical approaches for solving IVPs were overviewed, and sources of errors
and its consequences were discussed. Interval approaches for solving IVPs were reviewed
and, in particular, Interval Taylor Series methods were fully described. The existing
approaches that apply interval constraints for ODE solving were surveyed. In the next
chapter our proposal of Constraint Satisfaction Differential Problems for handling
differential equations is presented.
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Chapter 10

Constraint Satisfaction Differential Problems

In this work, we propose an interval constraint approach for dealing with differential
equations, by considering each ODE system together with related additional information as
a special kind of CSP. We will refer such approach as a Constraint Satisfaction Differential
Problem (CSDP).

Whereas in a CCSP the values of all the variables are real numbers and their domains
are sets of real numbers represented by real intervals, in a CSDP there is a special variable
whose values are functions and whose domain is a set of functions. Such special variable is
named the solution variable and represents the functions that are solutions of the ODE
system and satisfy all the additional restrictions.

The other variables of the CSDP are all real valued variables, and will be denoted as
restriction variables, which represent each of the required restrictions. Solving the CSDP
may be seen as a correct narrowing procedure for reducing the domains of the restriction
variables without loosing any possible solution.

The full integration of a CSDP within a CCSP (as defined in 2.2-2) is accomplished by
sharing common variables (the restriction variables of the CSDP) and by considering the
CSDP as a special constraint restraining the possible value combinations of those variables.
For pruning the domains of its variables, this constraint has an associated narrowing
function derived from the procedure for solving the CSDP.

This chapter characterises a CSDP. The next section identifies its variables and
restrictions. Section 10.2 addresses its integration within a larger CCSP framework. Section
10.3 discusses some modelling issues. The procedure for solving a CSDP is presented in
the next chapter.

10.1 CSDPs are CSPs

A CSDP is a CSP with a special variable (the solution variable xopg), a special constraint
(the ODE constraint copg) and other constraints and variables for representing additional
required restrictions. Before presenting the definition of a CSDP, the special variable and
constraint must be characterised together with the type of constraints allowed for the
representation of additional restrictions.

Let S}, . be the set of all n-ary vector functions s from the real interval [#,..t/] to R™:

S[,U,_t]] = { N ‘ s [to..ti] R > R" }

The association of an n-ary ODE system y'= f(y,t) (as defined in 9-1) with a real
interval [fy..t;] may be seen as a restriction on the set of functions Sy, ) to a subset defined
by those functions that are solutions of the ODE system with respect to [#..t;] (as defined
in 9-2). This is represented in the CSP framework (see definitions 2-1 and 2-2) by
considering the solution variable xopg with the initial domain Dopg = S[,ﬂ,‘t[] and the ODE

constraint copg=(<xopg™>, popg) Where

d.
pooe = {<s>€Dovk | Ve [t)..4/] d% =f(s(,0)}
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The specification of additional information, such as initial conditions, boundary conditions,
or other more complex restrictions on the ODE solutions is represented in the CSP
framework by a finite set of binary constraints, denoted ODE restrictions. Each of these
ODE restrictions ¢,=(<xopg,xi>,0,) defines a relation p, between the solution variable xopg
and some other interval variable x; of the CSDP. The relation p, must be defined through a
function r : Sy, _,1 — R in the following way:

Pr={<s,y>€<Dopg,Di> | v=r(s) }
In the following subsection we will define several such functions to account for value,

maximum, minimum, time and area restrictions. First we present a formal definition of a
CSDP that summarises the above concepts.

Definition 10.1-1 (CSDP). Let y'= f(y,t) be an n-ary ODE system as defined in 9-1. Let
[t0..#1] be a real interval and Sj, ., be the set of all n-ary vector functions from the real
interval [#..¢;] to R". A CSDP is a CSP P=(X,D,C) (see definition 2-2) where:

X =<XODEX1>- - -, Xm>

D =<Dopg,Dx,...,Din> with DODE:S[,OJI] and D; (1<i<m) real intervals

C={cope} U C;
and:

¢opE=(<X0DE™, PODE) with

ds
ODE = {<S>€<DODE> ‘ VIE [tOtI] E = ‘f(S(l‘),t) }
V¢,eC, &=(<XopEXi>,0,) W/ 1<i<m, p={<s,v>e<Dopg,Di>|v=r(s) } and r: 8}, .1 —> R

xopg is called the solution variable, copg is called the ODE constraint, each variable x;
(1<i<m) is called a restriction variable and each constraint ¢,€ C, is an ODE restriction. U

The following subsections describe different typical ODE restrictions which can be
combined together within the same CSDP for the specification of many common ODE
problems. Several examples of CSDPs will be presented for illustration purposes. They are
all based on one of the two following ODE systems and their respective CSDPs.

Example P1:
The first example is the unary ODE system y'(r) = —y(¢) defined for #€[0.0..4.0]. This is
represented by CSDP PI:(<XODE>5<DODE>5{CODE}) where:

Dopg = S[vou4A0] = { N | A [0.0..4.0] - R }

CODE=(<XODE>, ,DODE) with PODE = {<S>€DODE | Vl€[0040] s'(t) =-s(1) }

Without further constraints, CSDP P/ has an infinite number of solutions which may
be represented analytically as s(f) =ke ™ for any real number k. Figure 10.1 shows CSDP
P1I together with some of its solutions.

P1 = (<Xopr>,<Dopr>,{copE})

1.0 7 Xope Dopg = S[0.0.401=1{ 5| s:[0.0.4.0] > R}
—
() s()y=ke™ (keR copE=(<XopE>, PoDE)
0.5 7

povk = {<s>€Dopk | Y1[0.0..4.0] 5'(6)=—s() }

0.0 ‘ ‘ - ‘ ‘
0.0 1.0 2.0 3.0 4.0 t

Figure 10.1 CSDP PI, representing the ODE system y'(z) = — y(t) for [0.0..4.0].
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Example P2:
The second ODE system is the following binary system' defined for 1&[0.0..6.0]:

110 ==0.7y,(t)
y2(0)=0.7y, (1) - y2(1)
This is represented by CSDP P2=(<xope>,<Dope>,{copk }) where:
Dopk = S100.601={ 5| 5:[0.0.6.0] > 3*}
copE=(<XODE>, ODE)

In(2)
5

LI

Again, without further constraints, CSDP P2 has an infinite number of solutions. These
solutions may be represented analytically as:

_ Sl(l‘): (bla—V)k,e™
S(t)_{sz(t) {kle“t+k2€bt

In(2)

pope = {<s>€Dopk | V1e[0.0..6.0] (51(1)=—0.7s,(t) A s5(t)=0.7s,(t)—

where a =0.7, b= , and ki, k, are real numbers.

Figure 10.2 shows CSDP P2 together with some of its solutions. For keeping the
illustration in two dimensions, each component (s; and s;) of each solution (s) is
represented in a different graphic sharing the same time axis (in the graphics corresponding
solutions share the same line type).

)([)DE
= A —
157 sn=O_J®la=Dhke™  witha=0.7 and b=in(2)/5
s ke ™ +hkye™ (ki.keR)
1.0 7
" P2 = (<Xope>,<Dope>,{copE})
05 |- Dope={ 5| 5:[0.0.6.0] > R}
0.0 ----...:;;;=;==‘..... CODE= (<XODE>= ,DODE)
1.5 7

/\ popk = {<s>€Dopk | V1€[0.0..6.0]
1.0 //—\ (s{()=-07s5,() A
52(9)

O s3(1) :0.7s1(t)7ln(52)

0.0 T T T T T 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 t

Figure 10.2 CSDP P2, representing a binary ODE system for #€[0.0..6.0].

55(1)}

In the following subsections, the short notation “P with C and D” is used to designate a
CSDP similar to P but with the additional constraints (and respective variables) appearing
in C. The initial domains of the new restriction variables are specified in D.

10.1.1 Value Restrictions

An initial condition, which together with an ODE system defines an IVP (see definition 9-
3), specifies the value that a solution of the ODE system must have at a particular point of
t. Hence, if s is such solution and ¢, such time point, the initial condition specifies a value
si(tp) for each component s; (1<j<n) of s at point =f,. A boundary condition is similar to an
initial condition, except that only a proper subset of the components of s are specified.

! See section 12.2 for a “physical” justification of the In(2)/5 constant.
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In a CSDP, initial and boundary conditions are represented by a set of constraints
denoted Value restrictions. Each of these constraints is an ODE restriction that relates an
ODE solution with the value of one of its components at a particular point of ¢.

Definition 10.1.1-1 (Value restrictions). Let CSDP P=(X,D,(C) be defined as in 10.1-1.
Let j be an integer (1<j<n) representing a component of the n-ary system, t,€[#..t;] a real
value representing a point of ¢, ¢,€ C, an ODE restriction and x; its restriction variable.

(i) c- is a Value restriction wrt j and #,, denoted Valuej’tp(xi), iff: r(s) = si(p) a

Consider the IVP determined by the ODE of CSDP P/ (see figure 10.1) and the initial
condition y(0.0)=1.0. This IVP is represented by a CSDP similar to P/ but with an extra
restriction variable x; with the interval domain D;=[1.0] and an extra value restriction
Value1 (,0(x1), which associates this variable with the value of the 1" (and unique)
component of the solution at #=0.0. Additionally, if we are interested in the value of the
solution of the above IVP at =4.0, then a new restriction variable x, and a new value
restriction Valueq 4 ((x2), associating that variable with such value, are required. Since
there is no a priori information about this value, the initial domain D, of the new restriction
variable is the interval [—co..+o0]. The result is CSDP P/a as follows:
Pla= Pl with {Value] () o(x1),Value| 4 0(x2)} and {D,=[1.0],D,=[-o00.. 0]}

CSDP PJa has a single solution <e™,1.0, %> shown in figure 10.3. Therefore,

solving problem Pla completely would narrow D, from [—o0..+o0] to [e *°] which is the
required value at =4.0.

Pla=PI with {Value| ( o(X1) , Value1 4.0(X2)}

§0-0)= 191 and {Dy=[1.0],D,=[—o0..+o0]}
Xi
) Xo
= 5(4.0)

0.0

Figure 10.3 CSDP P]a, representing the IVP: »(0.0) =1.0 and y'(¢) = —y(¢) for t€[0.0..4.0].

A real interval 7 (or a real box B for multidimensional ODE systems) may be used instead
for the specification of the initial condition at some point #, of ¢. In this case a solution of
the ODE must have at time #, a value within interval 7 (or within box B). This can be easily
accommodated in the CSDP framework by considering the interval 7 as the initial domain
of the respective variable restriction (or, in the multidimensional case, by initializing each
variable restriction with the correspondent component of B).

Considering the previous example with (0.0)=[0.5..1.0] (instead of »(0.0)=1.0), the

solutions of this problem may be expressed analytically as s(f) = ke’ for any k<[0.5..1.0].
CSDP P1b, illustrated in figure 10.4, represents the problem.
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PIb =PI with {Value] (.0(X1) ,Value] 4.0(X2)}

1.0 4 X
RF and {D;=[0.5..1.0],D,=[—o0..+o0]}

Xi=15(0.0 s(t)=ke™ (kel0.5.1.01)
0.5
s()

— — X,=5(4.0)=[05¢7*0 1.0e7*]
0.0 1.0 2.0 3.0 4.0

Figure 10.4 CSDP P/b, representing the IVP: y(0.0) =[O.5..1.0]and ¥'(t) =—)(¢) for t€[0.0..4.0].

The grey area in the figure represents the set of all solutions of P/b. Solving this CSDP,

would narrow D, from [—o0..+o0] to [0.5¢7*?..1.0e7*°], the smallest interval containing all
the real values of these solutions at time =4.0.

A boundary value problem may be derived from CSDP P2 (see figure 10.2) by adding
boundary restrictions specifying the value of the solutions components at different points of
time. The specification of real values for y, at any two different time points f,; and £,
completely determines the values of k; and k, of the analytical solution, restricting the
infinite set of solutions of P2 to a single solution.

For example, let us consider the boundary conditions y,(0.0)=0.75 and y»(6.0)=1.0 for
the ODE system of CSDP P2, for which we are interested in solution values at time #=3.0.
This new CSDP, P2a, is derived from P2 by adding one value restriction for each boundary
condition and two more value restrictions (for obtaining the solution value of each
component at time #=3.0). Figure 10.5 illustrates the problem and shows its single solution.

XobE
I Y a=0.7  b=In(2)/5
510 _ | (bfa-Dkye™™ ~6.0b
157 s(t)= = ith: 1.0-0.75¢™
@ {92 () {kleﬂ" + kzefb' with: ky = S yE—T 6_6 o
e N —e™™
1.0
s1(9) k=10-k
0.5
X; P2a= P2 with {Valuep o o(X1),
0.0 Valuey 6 0(X2)
= X, Valuel,3_0(X3) ,
1.0 X, Valuey 3 0(Xa)}
52(0) X and {D,=[0.75],
0.5 D,=[1.0],
Dy=[—o0..400],
0.0 T T T T T 1 D4: [—OO_,+OO]}

0.0 1.0 2.0 3.0 4.0 5.0 6.0
t

Figure 10.5 CSDP P2a, representing a boundary value problem.

Similarly to the previous examples, instead of real values, interval values may be used for
the specification of the boundary conditions.

10.1.2  Maximum and Minimum Restrictions
Traditionally, the numerical problems dealing with ODEs are initial and boundary value

problems, which, as we have seen in the previous subsection, can be easily represented in
the CSDP framework through an adequate set of Value restrictions.
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However, thinking of an ODE solution as a continuous vector function, and in
particular thinking of each of its components as a continuous real function, several other
conditions of interest may be imposed.

Important properties of a continuous function are its maximum and minimum values. In
the CSDP framework, a Maximum restriction is an ODE restriction that relates an ODE
solution component with its maximum value within an interval of time2. A Minimum
restriction is similar.

Definition 10.1.2-1 (Maximum and Minimum restrictions). Let CSDP P=(X,D,C) be
defined as in 10.1-1. Let j be an integer (1<j<n) representing a component of the n-ary
system, [#,0..t,/]<[#y.-t;] be a real interval, ¢,€C, be an ODE restriction and x; its restriction
variable.
(i) ¢ is a Maximum restriction wrt j and [#,..t,;] (denoted Ma"ximum]"[tp()“,p 1) iff:
r(s) =sj(tp)  with tp€[tpo..tpr] and Ve [1,. 1,1 Si(0) < 5i(8p)
(ii) ¢» is a Minimum restriction wrt j and [#y..t,;] (denoted Minimumj [1, 1, 16) iff:
r(s) = si(tp)  with f,€[#0..1,/] and Vie[ty..t,1] (D) 2 8i(tp) Q

Consider CSDP P2 (figure 10.2) with boundary condition s;(0.0)=1.25 specifying the value
of the first solution component at r=0.0 and an additional restriction requiring the
maximum value of the second solution component between =1.0 and =3.0 to lie within
interval [1.1..1.3]. Moreover, let us assume that we are interested in the value of the second
solution component at =6.0.

Figure 10.6 illustrates the problem, CSDP P2b, showing its solutions (represented in
the figure by the grey area).

1.5 7 P2b= P2 with {Valuel,O.O(Xl),

Xi— Valuep 6 0(X2) ,
0 1.0 1 Maximumz,[l.ony).o]()g),
s | and {D,=[1.25],

‘ Dy=[—c0.. 4],

0.0 Dy=[1.1..1.3]}

1.5 7

X4+

1.0 1
52(2) X

0.5 1

0.0 : : ‘ ‘ ‘ ‘

0.0 1.0 2.0 3.0 4.0 5.0 6.0
t
Figure 10.6 CSDP P2b, representing a problem with a Maximum restriction.

By solving CSDP P2b exactly, domain D, would be narrowed from [—co..+o0] to the
smallest interval containing the second component values at time =6.0 of all possible
solutions.

2 In finite domains a similar type of constraint, the global commulative constraint, may be imposed for requiring that the
usage of some resource cannot exceed some threshold during some interval of time.
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10.1.3 Time and Area Restrictions

Other important property of a continuous real function, particularly useful for modelling
many biophysical problems, regards the length of time in which its value remains
above/below some predefined threshold. In this case, we are no longer interested in some
particular value of the function, but rather to compute the time during which its value
exceeds (or not) the threshold.

A Time restriction is an ODE restriction that captures such property from an ODE
solution component given an interval of time 7 (specifying where to consider the time) and
a threshold £. Such restriction is defined through a real function » which is a unity integral
over a region determined by those points within 7" that satisfy the goal.

Definition 10.1.3-1 (Time restrictions). Let CSDP P=(X,D,C) be defined as in 10.1-1. Let
j be an integer (1<j<n) representing a component of the n-ary system, [#,9..t,;]<[#y..t;] a real

interval, ©¢e{<,>}, k a real value, ¢,€C, be an ODE restriction and x; its restriction
variable.

(1) ¢+ is a Time restriction wrt /, [5..2,1] and Ok (denoted Timej [1,, 1], o k(xi) iff:
r(s) = jR dt with R = { t€[tpp..t,/] | s(1) © k } Q

The previous definition for the real function » may be generalised to other integrand
functions to represent other properties of an ODE solution component. In particular, the
area above (or under) the specified threshold may be obtained if the integrand measures the
distance between the function value and this threshold value. This leads to the following
definition of the Area restrictions.

Definition 10.1.3-2 (Area restrictions). Let CSDP P=(X.,D,C) be defined as in 10.1-1. Let
j be an integer (1<j<n) representing a component of the n-ary system, [#,..t,/]<[#y..2/] a real

interval, ¢ €{<,>}, k a real value, ¢,€C, be an ODE restriction and x; its restriction
variable.

() ¢+ is an Area restriction wrt /, [#y..t,/] and Ok (denoted Areaj (1, 1,1, o k(xi)) iff:
r(s) = jR\sj(z) — ar with R = { t€[tp0..1,1] | si(t) © k } a

The following is an example of a CSDP that adds Time and Area restrictions to CSDP P2b
(figure 10.6). It requires that at least half of the time (between 0.0 and 6.0) the second
solution component has a value no less than 1.1. Moreover, we are interested in the area of
the solutions (the second component) above that threshold. This is represented by CSDP
P2c illustrated in figure 10.7 (only the graphic of the second component s»(¢) is shown in
the figure; the first component is as in figure 10.6). This CSDP includes Time and Area
restrictions, which are associated with new restriction variables x4 and xs, respectively. For
imposing the required Time restriction, x4 is initialised to an interval whose left bound is
half of the total time (the right bound is the total time). Variable xs, initially unbounded,
represents the value of the required areas of all possible CSDP solutions.
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X,~a..b] P2c= P2b with { Time‘27[0‘0”6.0],21‘1(X4),
s a b Areay [0.0..6.0],1.1%:)}
'k P d and { D,~[3.0..6.0],
1.0 7 ¢ \"—‘-’Xz Ds=[—o0..400]}
00 Xefe.c+d)
0.5
0.0 T T T T T T

0.0 1.0 2.0 3.0 4.0 5.0 6.0
t
Figure 10.7 CSDP P2c, representing a problem with Time and Area restrictions.

The set of solutions of P2c is restricted by the Time restriction to the grey area represented
in figure 10.7 (smaller than that in figure 10.6), since solving P2c exactly, narrows the final
domains of x; and x3 with respect to problem P2b. Figure 10.7 also shows the final domains
of the Time variable x4 (whose right bound was reduced from 6.0 to b) and the Area
variable x5 (Where c is the area between the lower curve and the straight line &; and d is the
area above that line and between the two curves).

10.1.4 First and Last Value Restrictions

The final important properties of real functions that we will represent as ODE restrictions
are related with particular points of time for which the value of the real function satisfies
some criterion.

First (Last) Value restrictions relates an ODE solution component s; with the first (last)
point of time #, (within some interval #,e€[t,..t,;]) such that the criterion is satisfied for
sij(t). If the criterion cannot be satisfied by any of those points the restriction fails. The
possible criteria are the sj(#,) to be less or equal, or greater or equal, than some predefined
threshold £.

The real function » which defines such restriction is itself defined in two
complementary and exclusive parts. If there is no point within the interval [£,..t,/]
satisfying the criterion then it returns a value outside this interval (+oo/-00), which will
make the constraint unsatisfiable. If there is one or more points within the interval [#,9..t,/]
satisfying the criterion then one of them must be the first (last), which is returned. In this
case, for any precedent (subsequent) point the criterion cannot be satisfied.

Definition 10.1.4-1 (First and Last Value restrictions). Let CSDP P=(X,D,C) be defined
as in 10.1-1. Let j be an integer (1<j<n) representing a component of the n-ary system,

[tp0..tp11<[t0.-11] a real interval, ¢ €{<,>}, k a real, ¢,€C, be an ODE restriction and x; its
restriction variable.
(i) ¢, is a First Value restriction wrt j, [£,..t,;] and ¢k (denoted ﬁrstValuej’[tPO._tp 1.0 K(xD)
iff: ) too i Vie(,.0,,] —(si0) © k)

Iy if tp€tpo.tp1), si(tp) © kand Yie(z,.1,] (¢ < tp = =(si(t) © k)
(ii) ¢ is a Last Value restriction wrt /, [£y0..1/] and <k (denoted lastValuej[1,, 1], o k(Xi)

iff: -0 if Vgl —(si(?) © k)
r(s) =

tp()..tpj]

ty if tp€ltpp..tpi], si(tp) © kand Vie(s,. 1,1 (6> tp = —(si(0) © k) (
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Consider the example in figure 10.4 (CSDP PIb) with an additional First Value restriction
requiring that, within time interval [0.0..2.0], the first solution value not exceeding 0.25
occurs sometime between 1.0 and 2.0. This is represented in CSDP PId of figure 10.8
where, associated with the First Value restriction, a new restriction variable x3 was
introduced with domain D;=[1.0..2.0].

Pl1d=PIb with {ﬁrstValuel’[0.0“2.0],§0.25(X3)}
1.04 and {D;=[1.0..2.0]}
X, = [0.25e..1.0]{ TP
0.5
5@
0.25
: : ‘ X, =[025¢70 1.0e74]
0.0 1.0 2.0 3.0 4.0

Figure 10.8 CSDP PId, representing a problem with a First Value restriction.

The grey area, representing the set of possible solutions, is reduced, comparatively to
CSDP PIb, which implies the narrowing of x; and x, variable domains. Moreover, the final
right bound of variable x3 is also reduced since the Value restrictions prevent any solution
from having its first value not exceeding 0.25 after time =In(4.0).

10.1.5 First and Last Maximum and Minimum Restrictions

A natural extension of the First (Last) Value restrictions is to consider the special case
where the threshold £ is the maximum or minimum value of the real function. In this case
the defining function » no longer needs to be defined in parts since within any interval
[#50.-2,1] there must exist a point that maximises (minimises) the real function.

Definition 10.1.5-1 (First and Last Maximum and Minimum restrictions). Let CSDP
P=(X,D,C) be defined as in 10.1-1. Let j be an integer (1<j<n) representing a component of
the n-ary system and [#,..t,/]<[#y.-t;] an interval. Let ¢,€ C, be an ODE restriction and x; its
restriction variable.
(i) ¢, is a First Maximum restriction wrt j and [#,..2,/] (ﬁrstMaximumj,[tpo“ ) 1](xi)) iff:
rs)=t,  withtye[tpy..tp] and Vee[s o 1, [(8i(0) < si(8p) A (2 <t = 5i(8) < 5i(2p))]
(ii) ¢, is a First Minimum restriction wrt j and [#,..t,/] (ﬁrstMinimumj’[tpou ) ] (i) iff:
ris)=t,  withtyeltpg.tp] and Vee(s o 1, [(si(0) 2 si(8p) A (2 <15 = 5i(8) > 51(1p)]
(iii) ¢, is a Last Maximum restriction wrt j and [#,9..t,;] (lastMaximumj’[tpou ) 1](xi)) iff:
ris)=t,  withtyeltpy..tpr] and Vie[s 1, [(si(0) < si(8p) A (2> 1 = 5i(8) < 5i(1p)]
(iv) ¢ is a Last Minimum restriction wrt j and [#y..t,/] (ZastMinimumj,[tpo__ 5 16) iff:
r(s)=t,  with tpeltpo.tp] and Ve [z, 1,1 (i) 2 5i(1p)) A (1> 1, = 5i(1) > 5i(2,))] D

10.2 Integration of a CSDP within an Extended CCSP

In the previous section, a CSDP is defined as a CSP specialised in the specification of
constraints restraining the set of possible solutions of an ODE system, and consequently,
the possible values of the restriction variables associated with properties of such solutions.
Each of these properties is characterised by a function » which associates a real value to
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each possible solution of the ODE system. Hence, the restriction variables are real valued
variables and their domains are represented as real intervals.

In section 2.2, a CCSP is defined as a CSP specialised in the specification of constraints
as numerical equalities or inequalities, restraining the set of possible values of real
variables with initial domains ranging over real intervals.

Since the restriction variables are similar to the variables of a CCSP, the CCSP
framework may be extended to allow the specification of constraints as CSDPs, sharing
some CCSP variables. A CSDP may be seen as a constraint (see definition 2-1), where the
constraint scope is the set of its restriction variables and the constraint relation is the set of
their possible combination values from the whole set of solutions (as defined in 2-5) of the
CSDP. The following definition formalises an extended CCSP, including constraints
specified as CSDPs.

Definition 10.2-1 (Extended Continuous Constraint Satisfaction Problem). An

extended CCSP is a CSP P=(X,D,C=Cccsp WCcspp) Where each domain is an interval of R
and each constraint relation is defined either as a numerical equality or inequality, or as a
constraint satisfaction differential problem:

i) D=<Dy,....D,> where D; is a real interval (1<i<n)

i) VeeCpesp €18 defined as e, 00 where e, is a real expression and ¢ € {<,=,2}

iii) VeeCespp c=(s,p)is defined as a CSDP (<xopg,X1 ..., Xm >,D",C")
where s=<x1’,....xm >cX, D’=D[s] and p= {d[s] | deD’ A Y (se,p0)e C dlsclep: } a

The next chapter presents a procedure for handling a CSDP, aiming at pruning the domains
of its restriction variables, implemented as a function solveCSDP. From an F-box
representing the domains of the restriction variables, it returns a smaller F-box where some
value combinations that can be proved to be inconsistent with the CSDP are discarded.

Hence, when a CSDP is used for the definition of an extended CCSP constraint, a
function NFcspp may be associated to it to discard the same value combinations of its scope
variables that would be discarded by the solveCSDP function. As long as the solveCSDP
function is correct, not eliminating any possible CSDP solution, and contracting, returning
a smaller F-box, the associated function NFcspp is a narrowing function for the CCSP
according to definition 4.1-1.

The following definition formalises a narrowing function NFcspp associated with a
constraint defined by a CSDP. The solveCSDP function is used for narrowing the domains
of a subset of the CCSP variables, namely those belonging to the scope of the constraint,
that is, the restriction variables of the CSDP. The other variable domains are unchanged.

Definition 10.2-2 (CSDP Narrowing Functions). Let P=(X,D,C=CccspVCcspp) be an
extended CCSP as defined in 10.2-1. Each constraint ¢=(s,0)€ Ccspp defined as a CSDP
(X°,D’,C’) with a solving procedure solveCSDP, has associated the following narrowing
function:

(i) NFcspp(d)=A4" (withd’ c 4 c D)
where B = solveCSDP(A[s]) (with B < A[s] < D’[s])

VxjeX ((xjes = A'[x]=B[x;]) A (xjes = A [xj]= A[x;])) a

These additional narrowing functions associated with the CSDP constraints, together with
the narrowing functions associated with the numerical constraints, completely characterise
the set of narrowing functions of an extended CCSP. This set may be used by a constraint
propagation algorithm (such as the prune function of figure 4.1) for pruning the domains of
the extended CCSP variables.
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As discussed in chapter 5, the set of narrowing functions together with a constraint
propagation algorithm characterise a local property denoted local consistency. Moreover,
higher order consistency requirements may be imposed through an algorithm (such as the
kB-consistency function in figure 5.2) interleaving search techniques with the above
constraint propagation algorithm. A generic definition of kB-Consistency (definition 5.2-1)
was given for including all the consistency types commonly required in CCSPs (when i=2
it designates local consistency). This definition applies equally well to the case of extended
CCSPs as long as local consistency is regarded, not as pure hull-consistency or pure box-
consistency, but rather as the local property enforced by the constraint propagation
algorithm with the set of narrowing functions associated to the constraints of the extended
CCSP.

The definition of Global Hull-Consistency (definition 6-1) can also be applied to
extended CCSPs if the definition of a canonical solution (definition 2.2.4-3) is redefined
for this context. Moreover, any algorithm (such as those from chapter 6), for enforcing
Global Hull-Consistency can be directly applied in this context except that the local search
procedure must be able to deal with CSDP constraints. The next two subsections address
respectively the redefinition of canonical solutions and the adaptation of the local search
procedure for extended CCSPs.

10.2.1 Canonical Solutions for Extended CCSPs

In an extended CCSP, since a new type of constraints defined as CSDPs is allowed, in
addition to defining how a canonical F-box may satisfy a numerical constraint, it is also
necessary to define how it satisfies a CSDP constraint. In the formal definition below, a
canonical box satisfies a constraint if it cannot be proved that the box does not contain any
real valued combination, for the variables of the constraint scope, satisfying the constraint
relation. In the case of a CSDP constraint, it is satisfied by a canonical box if it cannot be
proved that the box does not contain solutions of the CSDP, that is, if the empty set is not
obtained when the narrowing function associated to the CSDP constraint is applied to the
box.

Definition 10.2.1-1 (Canonical Solution of an extended CCSP). Let P=(X,D,C) be an
extended CCSP as defined in 10.2-1. Let BcD be a canonical F-box and e.(B) denote the
F-interval obtained by the interval evaluation of expression e, with argument B.

B is a canonical solution of P iff :

1) Vee ¢ is defined as e.00 = 3¢ (B) 700
ii) V¢ c is defined as a CSDP = NFcspp(B) # I

where e, is a real expression, ¢ €{<,=>} and NFcspp is the CSDP narrowing function
defined in 10.2-2 a

There are some important consequences of the above definition regarding the extent of
domain pruning that may be achieved by enforcing Global Hull-Consistency with different
precision requirements.

In a CCSP with numerical constraints alone, due to the properties of the interval
arithmetic evaluation (in particular theorem 3.2.1-4), it is expected that smaller intervals
are obtained when evaluating an interval expression (such as e, in the definition of the
constraint c¢) with smaller arguments. This implies that, considering a larger finite set of F-
numbers (see definition 2.2.1-2), and consequently smaller canonical F-boxes, the
evaluation of the constraint expressions with canonical arguments becomes more precise,
decreasing the likelihood of its wrong classification as canonical solutions. In the limit,
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with infinite precision arithmetic, a canonical solution is equivalent to a real valued
solution. Because by definition, the pruning of domains achieved by enforcing Global
Hull-Consistency is bound by canonical solutions, better results may be obtained with
smaller canonical F-boxes. In the limit, with infinite precision arithmetic, the smallest box
enclosing all real solutions would be obtained.

However, this desirable effect is not guaranteed in the case of extended CCSPs. In fact,
even with infinite precision arithmetic, a complete real valued instantiation of its variables
could be considered a canonical solution without satisfying some CSDP constraint.

One reason for such phenomenon derives from the approximate nature of any
procedure based on ODE interval approaches (presented in section 9.2) for solving the
CSDP. Since the CSDP narrowing function is based on this solving procedure, it is
impossible to discard non solution instantiations which are enclosed within the safe bounds
computed by such procedure.

Another reason for the phenomenon derives from the limitations of the particular
procedure used for solving the CSDP. For example, a solving procedure (like that
presented in the next chapter) for computing a safe enclosure for the ODE solutions of a
CSDP, requires the initial trajectory to be bound at least at one time point of the ODE
trajectory (otherwise the interval step method cannot be applied at any point, preventing the
reduction of the trajectory uncertainty — see next chapter, third section). As a consequence,
if the above requirement is not satisfied with a real (or interval) valued instantiation of the
CSDP variables (even if such instantiation theoretically implies the elimination of the
trajectory uncertainty) the solving procedure is unable to prune any trajectory enclosures.

In order to minimise the wrong labelling of canonical boxes as canonical solutions of
an extended CCSP, each CSDP constraint should satisfy the solving requirement specified
in definition 10.2.1-3. Before presenting such definition, the concept of a CSDP solving
relaxation is introduced.

Definition 10.2.1-2 (CSDP Solving Relaxation). Let c=(s,p) be a constraint defined as a
CSDP P=(<x0pE,X15- - - sXm>,D,C).
CSDP P=(X ’=<x0DE,x1(”,x1(2),...,xl(kl),...,xm(”,xm(z),...,xm(km)>,D ,C’) is the solving
relaxation of P iff it is obtained from P by:

(i) Renaming each variable x; into xi(l),xi(z),...,xi(ki) where k; is the number of ODE

restrictions in C containing x; in its scope.

(i1) Redefining Cto C’ according to the renaming introduced in (i).

. L. . o (k

(iii) Unbounding the restriction variables: V. Vie[1. 4] D [ ®1=[~o0..400].
In P’ there is one and only one ODE restriction ¢;”eC” for each restriction variable x;*.

m
The set s’ of all its restriction variables contains N = Zki elements. a
i=1

Definition 10.2.1-3 (CSDP Solving Requirement). Let constraint ¢=(s,p) be defined as a
CSDP P=(X,D,C) and P'=(X",D’,C’) be its solving relaxation.
Constraint ¢ satisfies the CSDP solving requirement iff there is a minimal subset s, of
restriction variables s’ such that for every F-box BcD’ where VxeX’ ((xesy=B[x] is
degenerate)A(x ¢ s,=>B[x]=D [x])):

(1) CSDP (X’,B,C’) has a single solution

(ii) the result of applying the solving procedure to CSDP (X",B,C") is a bound F-box:

B’=s0lveCSDP(B[s’]) = Vxes’ ((left(B’[x]) # —©) A (right(B’[x]) # +0))

The set of variables sy, is denoted the solving base and the set s. of remaining restriction
variables is denoted the evaluated set (spUse=s " and spMs.=3). a
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The first requirement guarantees that with infinite precision arithmetic it is theoretically
decidable whether a canonical box satisfies the CSDP constraint. The second requirement
guarantees that the solving procedure may contribute for such decision returning a safe
approximation enclosure for every variable domain.

For the solving procedure of the next chapter, the CSDP solving requirement could be
easily achieved by imposing that at least one point #, has Value restrictions Valuej,tp(xi) for

all the trajectory components. The set of restriction variables would define the solving base
of its solving relaxation. Note that such imposition does not imply the specification of
initial bounds for the domains of these variables, and if some CSDP does not satisfy the
solving requirement, an equivalent CSDP could be considered by introducing extra Value
restrictions with new unbounded restriction variables.

If the CSDP solving requirement is satisfied by every CSDP constraint belonging to an
extended CCSP, the improvement of the pruning results with precision is similar to that
discussed for CCSPs (differing only in the limit: even with infinite precision arithmetic, the
smallest box enclosing all real solutions would never be obtained).

10.2.2  Local Search for Extended CCSPs

As explained in chapter 7, the local search procedures navigate throughout points of the
search space, inspecting some local properties of the current point to select a nearby point
to jump to. In the CCSP context, such navigation is oriented towards the simultaneous
satisfaction of all its constraints.

The search approach presented in section 7.1 is based on the definition of a vector
function F(r). When evaluated in a particular point » of the search space (a degenerate F-
box) it returns a real value Fj(r) for at each component j, which represents the amount by
which some CCSP constraint is violated at that point. The goal is thus to reach a point that
zeroes all function components simultaneously. From the Jacobian matrix J(r) of such
function at that point (which summarises the effects on the function of small local changes
at the current point) a procedure was devised to compute a new better point.

The integration of a CSDP constraint implies the addition of extra components on the
vector function F(7) and the Jacobian matrix J(r). These extra components may be obtained
as long as the CSDP solving requirement is satisfied.

As in the case of a non extended CCSP, the values of the vector function F(r) must be
computed from the evaluation of each constraint at the current point . However, in the
case of a CSDP constraint, such evaluation no longer returns a single value, but rather a set
of values (grouped in a box) representing the deviations from each ODE restriction
associated with a variable from the evaluation set (see definition 10.2.1-3). The input of
this evaluation is the set of values from the solving base variables at the current point. The
following is a formal definition for the evaluation of a CSDP constraint at some point r.

Definition 10.2.2-1 (CSDP Evaluation). Consider an extended CCSP (X,D,C) and a
degenerate F-box rcD. Let ceC be a constraint defined as a CSDP P and its solving
relaxation P’=(X",D’,C’) with the solving base s, and the evaluated set s (the set of its
restriction  variables is s'=spUse). Let BcD’[s’] be an F-box where Vx®es’
(i ese= B =rxD AP gs0=B[x1=D "[x{"])). Let B =solveCSDP(B).

The evaluation of constraint ¢ at point , denoted evaluationcspp(7), is the degenerate F-box
EcD’[s.] where: vxPes. E [x;(k)] = Lcenter(B ’[xi(k)]—r[x;])l a
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For each CSDP constraint, the values of the new components of the vector function F at the
current point 7 are given by its evaluation box at that point. Moreover, their derivatives
with respect to any CCSP variable x; may be approximately computed by re-evaluating the
constraint at a nearby point where only the x; domain is increased by a small amount /4. The
next definition characterises the new components of the vector function F and its Jacobian
J, associated with each CSDP constraint.

Definition 10.2.2-2 (F(r) and J(r) values associated with a CSDP constraint). Consider
an extended CCSP (X=<xj,...,x,>,D,C) and a degenerate F-box r—D. Consider a constraint
ceC defined as a CSDP P and its solving relaxation P’ with the evaluated set s.
Let fx],(r) denote the value of some variable x; of s. obtained from the evaluation of c at
point r:
ﬁi(r) = evaluationcspp(r)[x;] for every x;€s..
Let 2>0 be a small real value and 7.+, be an n-ary degenerate F-box where:
Vyex ((=xi= rxi+;,[x]:|_r[x]+h DA Gxi = Feen[X1=r[x])).
For each variable x;j of s., a new component j of the vector function F is associated and
defined as:
Fi(r) = /(1)
The derivatives of such function at point » with respect to each variable x; of X (which
define the new line j of the Jacobian J(r)) are approximated by:

f:’c~(rx-+ )7fx(r)
in(r)=0;’c.ij<r)={’ Ty J Q

h

In practice, besides the evaluation at the current point », only & more CSDP evaluations
(where k is the number of solving base variables sp) are required for computing all the new
components of F' and J associated with the CSDP (the evaluation at point 7y is only

necessary if xjesp). Otherwise, either x; does not belong to the scope of the CSDP
constraint (i.e. ﬁj(Kxi+h) = ﬁj(r) and J;(r) = 0) or it belongs to its evaluated set s, in which
case ij(r_x#h) = ij(r) —hand Jji(r) = -1.

With the introduction of components derived from each CSDP constraint in the vector

function F and its Jacobian matrix J, the local search methods described in chapter 7 may
be applied to extended CCSPs.

10.3 Modelling with Extended CCSPs

This section discusses modelling capabilities of the extended CCSPs framework that take
advantage of the integration of CSDP constraints and may be used for solving many real
world problems.

In the next subsection, the parametric specification of ODE systems is addressed
together with possible application to problems with fitting constraints. Subsection 10.3.2
discusses the representation of properties which are usually associated with the ODE
systems but are naturally expressed as interval values. Subsection 10.3.3 discusses the
possibilities derived from the combination of several ODE solution components and its
application to the representation of periodic and distance constraints.
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10.3.1 Modelling Parametric ODEs

In the definition of an ODE system (definition 9-1) it was assumed that function f depends
exclusively on y(f) and ¢. However, many important ODE problems are based on a
parametric specification of the function f, which may also depend on several parameters
ranging within predefined interval bounds. The semantics of such specification is the
characterisation of the derivative of y as a family of functions, each one corresponding to a
particular instantiation of these parameters.
b4 S11sees Vs Provess P> 1)
Let y'=f(y,p,t) with y'=| .. |and f(y,p,t)= be a

’

yn Afn(yl""’yﬂ’pl’“"pk’t)
s1(0)

parametric n-ary ODE system with k parameters p; €1,..., px€lx. The function s(7) =
s, (1)
is one of its solutions with respect to the interval [#y..7] iff:
ds
le el "ElpkEIk @=Ip1,---.px] AV¢e [to..1/] E = f(s(2), p,1)).

Since along the whole trajectory, between ¢, and ¢,, the values of each parameter remain
constant (its time derivative is zero), the above parametric system may be equivalently
represented by a non parametric ODE system with n+k equations:

] [ f1(Z s Zys Prsvees Ppst) |

z'=f(z)  with z/=|“" | and f(z,1)= fn(er"’zn(;PlMPn”)

Py
| Pk | L 0 |
together with the boundary restrictions pi(t,)eli A ... A pi(t,)€l for some time point

e [2o..t1].

Any k-parametric n-ary ODE system (such as the y'= f(y, p,7) above), may thus be
modelled by a CSDP with a non parametric ODE system of n+k equations (such as shown
above with z'= f(z,¢)) and k additional Value restrictions Valuen+j’tp(xj) with initial
domains Dj=1; (15j<k).

An equivalent alternative to such representation would change the ODE constraint
definition (see definition 10.1-1) to allow a direct representation of the parametric ODE
system. This would imply the extension of its scope for the inclusion of k£ additional real
valued variables xp;,...,xpx and the redefinition of its constraint relation:

CODE=(<XODEXP1,. - - XPk>, PODE)

ds
PODE = {<8,D1,..,Pk>E<DopE,Dp1s. . ..Dp> | p=[p1s-.-x] AYtelt..t1] E:f(s(t),p,t) }.

The domains of the new variables xp,...,xpx would be initialized by the respective
parameter ranges: Dp=Ii,....Dpi=I. Such representation has the advantage of avoiding the
introduction of new dimensions on the ODE system, but the disadvantage of introducing
new variables into the ODE constraint scope and consequently on any narrowing function
associated to it.

For simplicity, it is assumed in the next chapter that a CSDP is defined as in 10.1-1,
and so, the first alternative is adopted for modelling parametric ODE problems.
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Consider, for example, the parametric ODE fitting problem defined by the k-parametric
unary system y'= f(y,p,t) (with t€[tp..t;] and p=[pi,....px]€lix...xI) and the set of m
observed values y(lpi)=vtpi (with tp1= ty, tpm= t; and V1 <j<y tri€lto.-t1]).

The CSDP:

(X=<XODEX15--- XksXpls-- - Xpm™>D=<DoDE,D15...,.Di; Dp15-.., Dpie™, C={ CODE,C1,-.-,CsCpl---5Cpm} )
where:

Dopg = { s ‘ S [l‘()..l/] - 3k+1 } and CQDE=(<)C()DE>, pODE)

PopE = {<s>€DopE | Ve [to..t7] 51 = F(51(0), 52 (D5 (0, 0) A5 () =0 AAs) (1) =0}

V1<i<k Di=li and ¢; = Valuei+1,t()(xi) V 1<i<m Dpi=[—00..4+0] and c; = Valuel,tpi(xpi)
may be used for the definition of a CSDP constraint c=(<xi,...,Xk,Xp,....Xpm™>,0) Telating the
predicted values x;; at each time point #,; with some real valued instantiation of the &
parameters (represented by the real variables xi,...,xx) of the system y'= f(y, p,?).

An extended CCSP with such CSDP constraint together with other numerical
constraints including the x;1,...,xpm variables and the respective observed values vyi,...,Vpm
could be used for modelling a variety of fitting problems.

For instance, several important statistical quantities, such as the total sum of squares
(SSTot), the residual sum of squares (SSres), the regression sum of squares (SSreg) and the
coefficient of determination (R”) could be easily encapsulated into the respective real
valued variables through the addition of the numerical constraints:

m m m X m
XTot :Z(vpi 7\7)2 XRes :Z(Vpi =Xy )2 XReg :Z(xpi 7\7)2 Xp2= xReg with v = Zvl,i
i=1 i=1 i=1 Tot i=1

With such constraints, fitting problems requiring these quantities to range within
predefined bounds can be modelled by the appropriate specification of the initial domains
of these variables. Enforcing some consistency requirement on the resulting extended
CCSP, the initial parameter domains are pruned by eliminating some values for which the
requirements cannot be satisfied.

Other less usual constraints, such as particular time point requirements, could also be
easily added, with the guarantee that no excluded parameter value can satisfy all the
constraints. Moreover, a best fit constrained problem could be modelled by such extended
CCSP with a solving procedure for searching solutions that optimise some predefined
criterion.

10.3.2  Representing Interval Valued Properties

As stated previously, each ODE restriction of a CSDP associates a restriction variable to
some real valued property of some component of the ODE solutions. However, since the
components of the ODE solutions are real functions defined along an interval of time, some
of their properties are interval valued properties that cannot be expressed as single real
values.

For example, the set of all the function values within an interval of time is an interval
valued property of a real function (ranging along that interval of time) that cannot be
expressed by a single real value. Such property, Valuej 7(x), would be a variant of the

Value restriction corresponding to the union of this real valued property along the whole
interval of time T:
x= U X, where Ve T Value; 1(x;)

teT
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Since by definition, the restriction variable of a CSDP and all variables of a CCSP (and
an extended CCSP) must be real valued variables, interval valued properties cannot be
modelled by a single variable.

For integrating interval valued properties into a CSDP (and consequently into an
extended CCSP), their intervals must be represented by pairs of real valued variables
identifying its upper and lower bounds. Thus, any such property must be modelled by a
pair of ODE restrictions associating one real variable to its maximum possible value and
other real variable to its minimum possible value.

For example, the set of all the function values within an interval of time 7 can be
modelled by a Maximum restriction for identifying its upper bound and a Minimum
restriction for identifying its lower bound:

Maximumj, T(Xmaxt) and Minimumj’y(xm,-,,T)

In an extended CCSP with a CSDP constraint that represents an interval valued
property with two extreme real variables X7 and X7, other important information can be
modelled by the addition of further numerical constraints including those variables.

For instance, a particular real value within the interval associated with the property
could be modelled by the real variable x;,7 through the additional pair of numerical
constraints:

XminT < XinT and XinT < XmaxT

The maximum distance (amplitude) between the two extremes of the property interval
could be modelled by the real variable x,u,r through the additional pair of numerical
constraints:

xampT = XmaxT — XminT and xampT 20

The center of the property interval could be modelled by the real variable x,,.,r through
the additional numerical constraint:
r+x

2

Similarly to the case of Maximum and Minimum restrictions, First and Last restrictions
(either Value, Maximum or Minimum) may be combined together for defining the smallest
interval containing all the time points that satisfy the respective condition.

X max min7

XmedT =

10.3.3  Combining ODE Solution Components

An important modelling issue of the CSDP framework is the possibility of combining
several equations of an ODE system into a new equation that is added to the system as a
new component. This may be used for modelling properties that do not depend exclusively
on a single component of the original system but rather on some composition of a subset of
its components.

Consider, for example, some vector function y(f). The function is periodic if there is a
positive constant £ such that y(++k)=y(¢) for all ¢. The smallest value of £ that satisfies the
previous condition is called the period of the function.

Suppose that the vector function is represented as an homogeneous n-ary ODE system
y'= f(») (within an interval of time [#,..t;] where 7,=0) with the initial value condition
1(0)=yy. In order to associate a real variable to the value of the period of such function it is
necessary to identify the first point of time #, (greater than 0) such that y(#,)=yo.

This is similar to the definition of a First Value restriction (see subsection 10.1.4),
except that in this case the condition y(#,)=yy does not refer to a single component but
rather requires that the equality must hold simultaneously for all the components of the n-
ary system.
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However, the n-ary system may be transformed into an equivalent system with an extra
component whose value at any time ¢ represents the square of the distance between the
vector y(tp)=yo and y(?).

This extra component defined by y,,ﬂ(t):Z(y,-(t)—y,-(O))2 is added as the n+l

component:
a0 =2" (1O (0 -y;0) =2 (/O () - y,(0))

together with the initial value y,.;(0)=0. With this new component the period of y(f) could
be associated with the real valued variable x, by the ODE restriction:

SirstValuep+ ] [ty+¢..1/],<0()

With the same kind of technique it is possible to model the distance at any time point
between the trajectories of two different ODEs which may be used for imposing proximity
requirements that will eventually lead to some adjustments on their parameters.

10.4 Summary

In this chapter the CSDP framework was characterised. The different types of restrictions
supported by the framework were defined and illustrated with simple modelling examples.
Continuous CSPs were extended for the inclusion of a new kind of constraint defined as a
CSDP. The integration of CSDP constraints with the Global Hull-consistency criterion and
with local search procedures was discussed. The next chapter presents a solving procedure
for pruning the domains of the CSDP variables taking its restrictions into account.

3 ¢ is some small positive value necessary for avoiding that the first time value satisfying the condition is at /=0.
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Solving a CSDP

The solving procedure for CSDPs must maintain a safe enclosure for the whole set of
possible ODE solutions based on the interval approaches described in chapter 9 (section
9.2). This enclosure, used for the representation of a subset of the domain Dopg of the
solution variable xopg, will be called the ODE trajectory.

The solving algorithm is based on the improvement of the quality of such ODE
trajectory (the reduction of the enclosing uncertainty), combined with the enforcement of
the ODE restrictions through a constraint propagation algorithm (similar to the one
presented in chapter 4, figure 4.1). A set of narrowing functions (see definition 4.1-1)
associated with the ODE restrictions and the ODE constraint are the basis of such
algorithm.

For each ODE restriction a pair of narrowing functions are defined: one reduces the
domain of the restriction variable according to the ODE trajectory and the other decreases
the uncertainty of the ODE trajectory according to the domain of the restriction variable.

Two narrowing functions are additionally included for reducing the uncertainty of the
ODE trajectory: one propagates any domain narrowing along the trajectory, from a time
point to a neighbouring point; the other links two consecutive time points through the
application of an interval step method. Moreover, for each ODE restriction, a narrowing
function may also be associated with the ODE constraint for improving the ODE trajectory,
aiming at reducing the uncertainty of its restriction variable domain.

The next section describes the ODE trajectory, its implementation and functions for
accessing and changing its contents. The narrowing functions associated with each type of
ODE restrictions are presented in section 11.2. Section 11.3 presents the narrowing
functions for reducing the uncertainty of the ODE trajectory. Section 11.4 describes how
the previous set of narrowing functions is integrated in the constraint propagation algorithm
for narrowing the domains of the CSDP variables.

11.1 The ODE Trajectory

An ODE trajectory TR is implemented as a tuple of 4 ordered lists TR=<TP,TG,TF,TB>.

A first list, TP, defines a sequence of k trajectory time points t, along the interval of
time [#..t;] (associated with the CSDP, cf. definition 10.1-1) together with the
corresponding n-ary boxes, representing enclosures for the ODE solution values at those
points. The first and last time points of such list are 7, and ¢, respectively.

A second list, 7G, defines the sequence of k—1 trajectory time gaps (between each pair
of consecutive time points, #,; and #,+1, of the previous list) and the associated n-ary boxes
representing enclosures for the ODE solution values between those points.

The third and fourth lists, 7F and 7B, are auxiliary lists, representing at each trajectory
time point ¢, the enclosure for the ODE solution value when the interval step method was
lastly applied from #, to the next or to the previous point, respectively. This forward and
backward information are used exclusively in the definition of appropriate narrowing
functions for the ODE trajectory through the successive application of the interval step
method over different pairs of consecutive time points (see section 11.3).
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The boxes associated with the elements of these lists are represented respectively as
TP(ty), TG([tpi.-tpi+1]), TF(t,) and TB(t,).The intervals associated with the component j (1<
Jj<n) of the previous boxes are represented respectively as TPi(t,), TGi([tpi..tpir1]), TFi(tp)
and TBj(t,).

Figure 11.1 shows an example of an ODE trajectory (the forward and backward
information is omitted) representing a safe enclosing of the set of possible ODE solutions
of CSDP P2b (see figure 10.6). The set of possible ODE solutions is illustrated by a single
line for its first component s; and by the grey area for its second component s,. The ODE
trajectory is defined through a sequence of seven time points and the time gaps in between.
For each component, the intervals associated to each time point and time gap are
represented, respectively, as a vertical line and a dashed rectangle.

1.5 7

RN
031 \S:;_ ********** y

0.0 T T T T T T

510

Figure 11.1 An ODE trajectory enclosing the ODE solutions of the CSDP P2b.

The ODE trajectory of figure 11.1 represents a subset of the Dopg ,defined in figure 10.2,
containing all functions whose components are continuous functions enclosed by the
rectangles and crossing all the vertical lines. This definition includes any possible ODE
solution and so this ODE trajectory is a safe enclosing for the set of ODE solutions for
CSDP P2b.

In general, an ODE trajectory TR=<TP,TG,TF,TB> may be viewed as a finite
representation of an infinite set of triples <s,sgs,> of functions from Dopg satisfying the
enclosures associated with the respective time points and gaps':

(1) For every trajectory time point t,: s(t,) € TP(t,), s(t,) € TF(t,) and sp(tp) € TB(t,).
(ii) For every trajectory time gap [#pi..tpi+1]: vte[tpi..tpi+1]s(t)e TG([tyi..tpi+1])-

During the solving process, the current ODE trajectory TR=<TP,TG,TF,TB> is modified by
the narrowing functions associated with the constraints of the CSDP. Each individual
change of the trajectory is either the narrowing of some box (associated with a time point
or gap) or the addition of a new time point (and subsequent reformulation of the ordered
lists).

The assignments TP(t,) < S and TPj(t,) < I will be used to denote respectively, the
association of a box S to the time point £, of 7P and the association of an interval / to the
component j of the time point ¢, of TP (similar denotations will be used for assignments of

! This view is consistent with the narrowing functions definition 4.1-1, if the effect on the xopg domain of each narrowing
function application is the elimination of some such triples without discarding any possible solution function s.
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the lists 7G, TF and TB). “TR with C” will be used as a short notation for an ODE
trajectory TR’ obtained from TR after performing all the assignments specified in C.
Procedures insert(TP(t,)=S) and delete(TP(t,)), respectively, introduce a new time point
t, in the ordered list of points of 7P (initially associated with the box S), and remove one
such time point from the list (similar denotation will be used for the lists TG, TF and TB).

Some of the narrowing functions are defined through the values of the ODE trajectory. The
data of an ODE trajectory TR=<TP,TG,TF,TB> may be accessed through the following set
of auxiliary functions (where #, and #,;, with #,0 < t,1, are two trajectory time points and j is
one of its components; to simplify the notation, the F-interval is omitted if it denotes the
entire sequence of points [#..1]):

(i) Functions timePoints[tPO..tpl](TR), leﬁPointsj-,[tpo__tpl](TR), rightPointSj,[tPO..tpj](TR),
return a list of F-numbers representing for each point #,€[ty0..tp1] of TR, its time value
tp, the left bound of its j-th component, lef{(TPj(t,)), and the right bound of its j-th
component, right(TP;(t,)), respectively.

(i1) Function timeGaps[Zpo__tpl](TR) returns a list of F-intervals representing each gap
[tpj..fpi+1]g[tpo..tp1] of TR.

(iii) Functions leftGasz',[tpo“tp JJ(TR) and ”ghtGaPSj,[tpo..tp JJ(TR), return a list of F-
numbers representing for each gap [fpi..tpi+1]<[fpo..2p1] of TR, the left bound of its j-th
component left(TGi([tpi..tpi+1])), and the right bound of its j-th component,
Vight(TGj([l‘Pi..tpiH])).

As usual, min(L) and max(L) return the minimum and maximum values from a list L of
F-numbers.

At the beginning of the solving process, the ODE trajectory 7R is initialised with function
initialiseTrajectory() that:

(i) Introduces a time point for the f, of each Value restriction and for the #, and #,; of
each of the other ODE restrictions (as defined in the previous chapter).

(i) For the First and Last Value restrictions (subsection 10.1.4) and for the First and Last
Maximum and Minimum restrictions (subsection 10.1.5), the initial left and right
bounds of the associated restriction variable are also considered as initial time points.

(iii) Each of the time points and respective time gaps is associated to an n-ary box with all
its components unbounded.

Considering again the example of CSDP P2b, whose ODE restrictions are
Value1 (.0(x1), Valuep 6 o(x2) and Maximum) [1.0..3.0](x3), function initialiseTrajectory()
returns, an ODE trajectory TR=<TP,TG,TF,TB> with:

(i) the time points 0.0, 1.0, 3.0 and 6.0 associated to the boxes:
TP(0.0) = TP(1.0) = TP(3.0) = TP(6.0) = <[—o0..+0],[-00..+o0]>
TF(0.0) = TF(1.0) = TF(3.0) = TF(6.0) = <[—o0..+00],[-00..+0]>
TB(0.0) = TB(1.0) = TB(3.0) = TB(6.0) = <[—o0..+0],[-00..+o0]>

(ii) the time gaps [0.0..1.0], [1.0..3.0] and [3.0..6.0] associated to the boxes:
TG([0.0..1.0))=TG([1.0..3.0])=TG([3.0..6.0])=<[—o0..+0],[-00..+o0]>

11.2 Narrowing Functions for Enforcing the ODE Restrictions

According to definition 4.1-1, the narrowing functions associated with the ODE restrictions
must satisfy the contractness and correctness properties.

The contractness property is easily guaranteed by preventing the enlargement of any
interval domain, either from a restriction variable or from a component of any box of the
ODE trajectory. The insertion of a new time point cannot enlarge the subset of functions
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represented by the ODE trajectory since it represents an additional restriction to such
functions (assuming, of course, that when inserting a point f,€[t..fpi+1] the boxes
associated to the two new gaps TG([ty..t,]) and TG([#p..t,i+1]) are included in the box
associated with the whole gap TG([tpi..tpi+1])).

For a narrowing function that reduces the domain of an ODE restriction variable, the
correctness property may be achieved by identifying, within the ODE trajectory, the
functions that maximise and minimise the values of such variable and guaranteeing that its
new domain includes those values.

When a narrowing function reduces the trajectory uncertainty from the domain 7 of a
restriction variable, this reduction is achieved through the narrowing of one or more boxes
of the ODE trajectory (namely the interval component j associated with the ODE
restriction). Correctness is guaranteed if considering in isolation each narrowed interval
(without any other interval reductions), there are no discarded functions with a value (of
the restriction variable) within /.

The definition of narrowing functions in the following subsections are based on the
above properties.

11.2.1 Value Narrowing Functions

From definition 10.1.1-1, the ODE restriction Valuej’tp(xi) relates a function with the value

of its j component at time #,. If TR=<TP,TG,TF,TB> is an ODE trajectory representing a set
of possible functions, then those that maximise/minimise the value of its j component at
time £, must have this value equal to right(TPi(t,))/left(TPj(t,))* (values for the restriction
variable x; outside the interval 7Pj(¢,) cannot be associated with any function represented in
the ODE trajectory 7R). On the other hand, if the values for the restriction variable x; lie
within F-interval 7;, any function whose j°s component value at time £, is outside /; may be
safely discarded from the ODE trajectory.

The above reasoning justifies the following formal definition for the narrowing
functions associated with a Value restriction. The definition (and all the following
subsequent narrowing function definitions) represents any domain element 4 of a
narrowing function NF, (AcD for a CSDP (X,D,C)), as a tuple where only the relevant
variable domains are shown. All the other domains are kept unchanged by NF.

Definition 11.2.1-1 (Value Narrowing Functions). Let CSDP P=(X,D,(C) be defined as in
10.1-1. Let TR=<TP,TG,TF,TB> be the ODE trajectory representing the domain of xopg
and /; the domain of x;. The ODE Value restriction c¢= Valuej’tp(xi)eC (defined in 10.1.1-1)
has associated the following pair of narrowing functions:

(1) NFI(<TR,...I,...>)=<IR,....TP(t,)NL,...>

(i1) NFy(<TR,...,I,...>) =<TR with {TPj(t,) < TP{(t,)N\L},....L;,...> a

If an enclosure TP;j(t,) of some component j of the trajectory 7R becomes empty at some
point ¢, then 7R can no longer represent any function and the domains box that includes 7R
(and represents the Cartesian product of its components) also becomes empty.

The previous definition could be exemplified with narrowing functions for the Value
restrictions of CSDP P2b. For instance, for the ODE trajectory enclosure of figure 11.1,
narrowing function NF associated with the restriction Valuep g ((x2) would narrow an

2 Note that, due to the initialisation procedure, 7, must be a time point of the ODE trajectory. Similarly, any point used in
the definition of any narrowing function is, due to the initialisation procedure, within the time points of the ODE
trajectory.
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initially unbounded domain of x; to the interval 7P»(6.0) (represented as the vertical line of
the second component graphic at time 6.0). Conversely, if an interval I, represents the
domain of x, then, narrowing function NF, could narrow the associated interval 7P»(6.0) of
the ODE trajectory into TP,(6.0)n/. If, by any of the above narrowing operations, the
empty set is obtained then the ODE restriction cannot be satisfied and the CSDP has no
solutions.

11.2.2  Maximum and Minimum Narrowing Functions
According to definition 10.1.2-1, the ODE restriction Maximumj’[tpontp]](xi) relates a
function with the maximum value of its j component within time interval [fy..tp1]. If
TR=<TP,TG,TF,TB> is an ODE trajectory representing a set of possible functions then
their maximum value within [fy..t,1] cannot exceed the maximum of the right bounds of
their j component enclosures (possibly corresponding to several time points and gaps)
within that interval. Moreover, since for every time point #,€[fy..t,1] of TR all functions
must have its j component value within the interval TPj(t,), they must have some value not
less than the maximum of the left bounds of these intervals. On the other hand, if the values
for the restriction variable x; lie within the F-interval [, then any function whose j
component has values higher than righ#(f;) within the time interval [fy..t,1] may be safely
discarded from the ODE trajectory.

A similar reasoning, but with respect to the minimum value, may be used for deriving
the narrowing functions associated with the ODE restriction Minimumj [y, r,(xi). Both

are formally defined as follows.

Definition 11.2.2-1 (Maximum and Minimum Narrowing Functions). Let CSDP
P=(X,D,C) be defined as in 10.1-1. Let TR=<TP,TG,TF,TB> be an ODE trajectory
representing the domain of xopg, /i the domain of x; and ceC a Maximum or Minimum
restriction (as defined in 10.1.2-1).

If e=Maximumj (¢ , 1 ,1(x), let:

a:max(leftPoints]-’[l«ﬂg._t’] J(TR)), b:max(rightGaij’[ (TR)) and I=[—o..right([;)].

fp()..tpl]
If e=Minimum; [1, 1 (x)), let:
a=min(leftGasz',[tp0..tpl](TR)), b=min(rightP0intsj"[[no"tpj](TR)) and I=[left([;)..+o0].

The ODE restriction ¢ has associated the following pair of narrowing functions:

(i) NF\(<TR,...,L,...>) =<TR,.. . [a..b]N,...>

(ii) NF»(<TR,....I;,...>) =<TR’,...L,...>
where TR’ = TR with

{thetimePoints[tpo._ t,/)(TR) TPi(ty) <= TPi(t,) N 1,

V[tpi..tp,'ﬂ]etimeGaps[tpO_.tpl](TR) TGi([tpi.-tpi+1]) < TGi([tpi--tpiv1]) N1 } Q

Figure 11.2 illustrates the above definition for the narrowing functions associated with
restriction Maximum) [1 0..3.0](x3) to CSDP P2b for the ODE trajectory TR represented in

figure 11.1.
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Figure 11.2 Narrowing functions associated with a Maximum restriction.

The figure shows the values of @ and b for the definition of the narrowing function NF. It
is clear that the maximum value of any trajectory function within the time interval
[1.0..3.0] cannot be outside the dashed box, upper bounded by
b=max(rightGaps3 [1.0..3.0](TR)) and lower bounded by

a:max(leﬁPointszb[1.0“3_0](TR)). On the other hand, if the interval 5=[1.1..1.3] represents

the domain of x3 then, any value of the second solution component represented by 7R
cannot exceed 1.3 (within the time interval [1.0..3.0]) and so the NF», narrowing function
may discard the region of the ODE trajectory (represented in the figure as rectangles and
vertical lines within the dashed box) above this value, that is, outside [—0..1.3].

11.2.3  Time and Area Narrowing Functions

To simplify the specification of the narrowing functions associated with the Time and Area

restrictions, two auxiliary functions Time ¢ j(I) and Area ¢ (1) are defined (where ¢ € {<,>}

and £ is a real number) for representing respectively, the values of time and area that will
be considered at some time gap. The argument / of these functions represents the possible

solution values along the time gap. The argument ¢k specifies a filtering condition. We are
only interested in solution values within the interval /oy which is I>p=[k..+0] or
I<j=[—o0..k].

The definitions of the Time ¢ j(I) and Area j(I) functions, below, consider 3 different
situations:

[ if Icley -t if Ilek
Timeo (D= [0] if INlep=D Areag (1) = [0] if Inl =3
[0]w[1] otherwise [0]w|I — [k]| otherwise

If all the solution values satisfy the condition (Ic/ ), function Time ¢ j(I) returns the
degenerate interval [1] specifying that the whole width of the time gap must be considered.
Function Area ¢ j(I) returns an interval, bounded by the maximum and minimum distances
of the solution values to threshold £.

If none of the solution values satisfy the condition (/N/¢ =), both functions return
the degenerate interval [0] specifying that there is nothing to be considered.

If some solution values satisfy the condition and others do not (I £l 5) A (I N Lo j#D)

then, both functions must take into account that there are possible solution values that must
be considered, as in the first case, and there are possible solution values that should not be
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considered, as in the second case. This is represented by returning the union hull of the
intervals returned in the previous cases.

Figure 11.3 illustrates function Areaxj(I) when applied to each of the above possible
cases. The width of the rectangle represents the time gap and the height the possible
solution values /.

right(I) — k +

I 7= T&1]

P right(l) — k Ik

\JL (017 |1 —[4]]

N~

Ic g

I? GpAr(Inlsp# ;| 1o
D)

In Izk =g
Figure 11.3 The three possible cases for the definition of the Areas (/) function.

The auxiliary functions Time j(I) and Areac j(I) are used for the specification of the

narrowing function associated with the Time and Area restrictions. Note that for these
restrictions no narrowing function can be defined to reduce the uncertainty of an ODE
trajectory from the domain of the restriction variable. Both Time and Area values are
compound from the function values for every time point within an interval of time and the
existence of high or low peaks for a short period of time cannot be prevented. These do not
affect significantly the overall area/time to be considered, but avoid a safe narrowing of
any interval enclosing.

Definition 11.2.3-1 (Time and Area Narrowing Functions). Let CSDP P=(X,D,C) be
defined as in 10.1-1. Let TR=<TP,TG,TF,TB> be the ODE trajectory representing the
domain of xopg, /i the domain of x;, and ceC a Time or Area restriction (as defined in
10.1.3-1 and 10.1.3-2, respectively).

Ifc= Timej,[t,,o..tpz],Ok(xi)’ let F(X) = Time ¢ j(X).

Ifc= A’"eaj,[tpg..t,,;],ok(xi)a let F(X) = Area ¢ j(X).
The ODE restriction ¢ has associated the following narrowing function:

(i) NFU(<TR,....Lye.. ) = <TRy..s (Y Lopnl(tpinr—to)xF(TGi([tpin-tyie D)) O .. >
[tpi-tpir1] € timeGaps[tpoutp]](TR) d

Figure 11.4 illustrates the Time and Area narrowing functions for CSDP P2c (see figure
10.8), assuming that 7R is the ODE trajectory represented in figure 11.1 (only the
enclosing bounds associated with the time gaps are represented in figure 11.4).
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Figure 11.4 Time and Area narrowing functions for CSDP P2c.

From the narrowing function associated with restriction Time) [0.0..6.0],>1.1(X4), x4 is

guaranteed to be between 0 and the length of the horizontal solid line. From the narrowing
function associated with restriction Area [0.0..6.0],>1.1(xs), xs will lie between 0 and the

value of the dashed area.

11.2.4  First and Last Value Narrowing Functions

The specification of narrowing functions associated with the First and Last Value
restrictions is based on the auxiliary function timeEnclosurej’[tpontp ;] Where j is an integer

representing a solution component and [#y..5,1] is an F-interval representing a time interval.

The function is defined in the pseudocode of figure 11.5. In addition to the solution
component j and the interval of time [#y..f,1], it has three arguments: an ODE trajectory 7R,
an F-interval [ and a label type € {first, last}. If the label type is set to first/last then it
returns the smallest interval of time [a..b] which may be obtained by narrowing [#y..ty1]
without discarding any value of # which may be the first/last of any function f represented
by the component j of 7R such that f{f)el.

function timeEnclosurej [y, ¢ 1(an ODE trajectory TR=<TP,TG,TF,TB>, an F-interval ],
a label type € {first, last})
(1)  a< +0; b« —ow;
@ Lgaps < timeGaps[y , 1, (TR);

(3)  repeat
e [#pi.-tpir1] <—Laps-pop_front();
) if 7Gi([tpi..tyix1]) N [ # D then a < t,; end if;

6)  until a#t+oo or Lgyps.size()=0;

(7)  if a=too then return J;

(®)  Lgaps < timeGapS[a“tm](TR);

9) repeat

(10) [#pi--tpis1] <—Lgaps-pop_back();

11 if TGi([tpi..tyis1]) N [ # D then b « t,;1; end if;
(12)  until b#—o0;

(13)  Lpoinis <= timePoints[q_p)(TR);

(14)  repeat

(15) if type=first then t, <—Lpoins.pop_front(); else t, <—Lpoins-pop_back();
(16) if 7P;(t,) c I then

17 if type=first then return [a..7,]; else return [,..5]; end if;
(18) end if;

(19)  until Lpgip.size()=0;
(200  return [a..b];
end function

Figure 11.5 The definition of the timeEnclosure function.
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The correctness of such function is achieved by firstly discarding all the extreme left (lines
2-6) and right (lines 8-12) time intervals [#..%5i+1] Where the values of all the associated
functions are guaranteedly outside / (for which TGj([tyi..tpir1])N = ). Secondly, the
obtained interval [a..b] is further narrowed. If the label type is set to first (last) this interval
can be safely narrowed to [a..t,] ([£,..b]) (lines 13-19) if somewhere in the sequence of time
(toela..b]) it is guaranteed that the value of any represented function is within / (if
TPi(t,)c). In this case, and given the continuity of any function f represented by
component j of 7R, the value ¢ which is the first (last) time such that f{r)el must be within
such interval, that is, t€[a..tp] (t€[t,..0]).

On the other hand, the knowledge that the value of the restriction variable x;, of a
First/Last Value restriction must be within the real interval /;, may be used to safely discard

from the ODE trajectory TR any function with values satisfying the condition <k
before/after that interval of time. If the first/last value of /; does not coincide with first/last
value of the relevant time interval [#y..7p1] then, by continuity, any function at that extreme

point of J; either equals k or does not satisfy the condition ¢k.
Definition 11.2.4-1 formalises the pair of narrowing functions associated with First and
Last Value restrictions.

Definition 11.2.4-1 (First and Last Value Narrowing Functions). Consider CSDP
P=(X,D,C) as defined in 10.1-1. Let TR=<TP,7G,TF,TB> be an ODE trajectory
representing the domain of xopg, /i the domain of x; and ceC a First or Last Value
restriction (as defined in 10.1.4-1). Let / be an interval with all the real values satisfying

ok, and I its complement: /=[k..+o0] and 7=[—0..k] if >k; or I=[—o0..k] and I=[k..+o0] if <k.
If c=firstValue; [1, 1,1, kX)), let type=first, a=left(l;) and Tou=[tp0..a].
If czlastValuej,[tp()__ 11], K(x0), let type=last, a=right(l;) and Tou=[a..tp1].
The ODE restriction ¢ has associated the following pair of narrowing functions:
(1) NF\(<TR,.. . I;,...>) =<TR,..., timeEnclasurej’]i(TR,I,type),. L>
“ if EltpvtaetimePointsTOm(TR) TP(tp) =1 v
(ii) NFx(<TR,.. . 1L,...>) (Width(Tou)>0 A TPi(a) N I= D)
<TR’,...L,...> otherwise
where TR’ =TR w/ { V¢ 24 etimePointsT, (TR) TPi(ty) <= TPi(t) N I,
TP{(a) < TPj(a) N I (if width(Tou)>0),
Y(tyi..tyir1]€timeGaps, (TR) TGty tyin1]) <= TGi([tpi--tpira]) NI 31

Figure 11.6 illustrates the narrowing functions associated with the First Value restriction
firstValue] [0.0..2.0],<0.25(x3) of CSDP PId (see figure 10.9) and the ODE trajectory TR

represented in the figure by the vertical solid lines and the dashed rectangles.
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Figure 11.6 First Value narrowing functions for CSDP P/d.

Function timeEnclosurey [(.0..2.0](TR,Lfirst) first excludes from interval [0.0..2.0] the first

three interval gaps for which all the associated rectangles are guaranteedly above 0.25, and
then it excludes all times after =1.5 since at this point the condition $(£)<0.25 is already
satisfied. On the other hand, if the domain variable x3 is [; = [1.0..2.0] then the ODE
trajectory is narrowed, namely the rectangle associated with time gap [0.7..1.0] and the
vertical line of =1.0 are reduced by discarding any region outside 1.

11.2.5 First and Last Maximum and Minimum Narrowing Functions

The definition of narrowing functions associated with the First and Last Maximum and
Minimum restrictions is similar to the previous definition. The main difference is that in

this case there is no previous knowledge about a value k determining the condition ¢k that
must be satisfied. This value, the maximum or minimum value of any possible function of
component j of TR, lies within an interval which can be computed similarly to definition
11.2.2-1.

According to this definition, and regarding time interval [£y..tp1], the maximum of any
function  represented by component j of TR must be  between
kozmax(leftPointSj’[tpoutp ;J(TR)) and max(rightGaij’[tp()__tp /J(TR)). However, if Lic[fpo..tp1]
is the domain of x; that must contain the maximum of any such function, then this
maximum cannot exceed klzmax(rightGapSJ’ I(TR)). Consequently, the maximum of any

function must be between ko and k;. This allows the definition of the interval Iy=[k..+] to
contain any possible maximum value, the interval /=[k;..+o] to be greater or equal than any
function value within /; and its complement Z=[—oc0..k;] to contain any possible value of any
function within 7o, (Where Ty, defined as in definition 11.2.4-1, represents the interval of
time within [fp..#,1] that precedes/succeeds the subinterval ;). A symmetrical reasoning
may be used for obtaining the intervals 7, T and I, in the case of a Minimum restriction.

The following formal definition, for the narrowing functions associated with the First
and Last Maximum and Minimum restrictions, is based on definition 11.2.4-1, but using
intervals 7, I and I, as defined above and an auxiliary function extremeEnclosurej’[tpo__tp ne
This is similar to function timeEnclosurej,[tpoutp ;] but without the lines 13 to 19 (this is a
consequence of working with intervals for representing 7P;j(#,) which give no guarantees
regarding its value being a maximum or a minimum value). Moreover, note that the special

case for #=a no longer exists since, from the definition of I, we always have TPj(a) NI =
TPj(a).
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Definition 11.2.5-1 (First and Last Maximum and Minimum Narrowing Functions).
Consider CSDP P=(X,D,C) as defined in 10.1-1. Let TR=<TP,TG,TF,TB> be the ODE
trajectory representing the domain of xopg, /i the domain of x; and ce C an ODE restriction
as defined in 10.1.5-1. If ¢ 1is a First/Last Maximum restriction, let
k():max(leﬁPointSj’[tpo__tp [J(TR)), klzmax(rightGaij’ L(TR)), [I=[k..Fo0], I=[~..ki] and
ly=[ko..+o0]. If ¢ is a First/Last Minimum restriction, let kg=min(rightPointsj [z , t,/](TR)),
klzmin(leftGaij’ [(TR)), I=[~0..k1], I=[ki..+o0] and Jp=[—o0.. ko].

If c=firstMaximum i [tp0..t, 1](xi), let type=first, a=left(l;) and Tou=[tp0..a].

If czﬁrstMinimumj’[tp()_'tp /)&, let type=first, a=lefi(l;) and Tou=[tp0..a].

If c=lastMaximum Uil (x1), let type=last, a=right(I;) and Tou=[a..tp1].

tpo..lpj]
If e=lastMinimum; |1, 1 1(x), let type=last, a=right(l}) and Tou=[a..tp1].
The ODE restriction ¢ has associated the following pair of narrowing functions:

(1) NF\(<TR,....I;,...>) =<TR,..., extremeEnclosurej’[i(TR,Io,type),. >
. g if 3t actimePointsy_(TR) TPiltp) =1
(ii) NFx(<TR,.. . IL,...>) out

<TR’,....I,,...> otherwise

where TR’ =TR W/ { V¢ 24 etimePoints, (TR) TPi(ty) <= TPi(t,) N I,

Vtpio.tpin] etimeGapsT, (TR) TG{([tyi- tyin1]) < TGy([tyin-tpint]) NI 31

11.3 Narrowing Functions for the Uncertainty of the ODE Trajectory

The uncertainty of the ODE trajectory may be decreased by narrowing functions associated
with the ODE constraint, based on two basic functions: pruneGap and insertPoint.

The pruneGap function aims at reducing the set of possible ODE solutions that may
link two consecutive points along the sequence of time points. To maintain the correctness,
this reduction is achieved through a safe interval step method (cf. chapter 9).

The insertPoint function introduces a new time point in the sequence of time points.
Although not decreasing the ODE trajectory uncertainty on its own, it may lead to
important overall reductions when combined with the previous function.

Figure 11.7 shows the pseudocode of function pruneGap. It has 4 arguments, the ODE
trajectory TR, a vector function f{S,f) defining the ODE system (see definition 9.1), and two
F-numbers ¢ and ¢ (with ##t). It returns an ODE trajectory removing from the set of
possible ODE solutions of TR, those discarded by the interval step method applied between
time points # and .

The interval step method is represented in the figure as a procedure intervalStep. The
first 4 arguments input the vector function f{S,7), the enclosure box TP(t) associated in the
ODE trajectory for the time #, and the specification of the initial and final time points, £
and ¢ respectively. The procedure returns a time point # (between 4 and f) and safe
enclosures Sy and Si for the possible solution values, at # and between # and ¢,
respectively. It is assumed that the Sic enclosure is the result of some enclosure method (cf.
9.2.2) that firstly tries the validation of the whole time gap between # and ¢ (with #=t)
according to some predefined error tolerances (local and global), and reducing the gap size
in case of failure. The S enclosure is achieved by the subsequent application of some
appropriate interval method (cf. 9.2.3), and the whole process may be repeated until the
given tolerance is satisfied.
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function pruneGap(ODE trajectory TR=<TP,TG,TF,TB>, vector function F(S,t), F-numbers #, ;)
(1) intervalStep(F(S,t),TP(ti),ti,ti,Sik,Sk,tk);
@ T « [min(ti,t)..max(t,5)]; Tic <= [min(t,h)..max(t,4)];
@3) if t, = t; then return 7R; end if;
4 ift #t then
®) if ;< t; and not TF(t,)=Unbound then TF(t;) < TP(t); return TR; end if;
(6) if ;> t; and not TB(t;)=Unbound then TB(t;) < TP(t,); return TR; end if;
(7 if nmbPoints(TR) = MaxPoints then return 7R; end if;
®) TR <« insertPoint(TR,Ti,t);
© end if;
(10) if ;<t; then TF(t;) < TP(t); if Sx < TB(t) then TB(#) < Si; end if; end if;
1y if ;> t; then TB(t;) <— TP(t); if Sx < TF(%) then TF(#) < Sy; end if; end if;
(12) if TP(ty) N Sy =D or TG(Ty) N Sik = & then return J;
13) TP(t) < TP(t) N Sx; TG(Tx) < TG(Ti) N S
(14) return TR;

end function

Figure 11.7 The definition of the pruneGap function.

Firstly, the intervalStep procedure is called from ¢ to ¢ (line 1). If ¢ is smaller than £, the
interval method is applied in the forward time direction, otherwise it is applied in the
backward time direction.

Subsequently, the time gaps Tj; and T, are defined (line 2), to represent, respectively,
the whole time gap and its subset validated by the interval method.

If the validation procedure fails (#=t;), the trajectory is returned unchanged (line 3).

If the validation procedure does not fail but can not validate the whole time gap (#f)
then there are 3 possibilities (lines 5-8): either the validation was previously achieved® and
nothing else is done except updating the respective forward/backward information
(lines 5/6); or the maximum number of points (MaxPoints) has been reached and the ODE
trajectory is returned unchanged (line 7); or a new time point # is inserted by the
insertPoint function (line 8).

Finally, if the procedure did not terminate before, lines 10 through 13 update the ODE
trajectory 7R according to the enclosures obtained by the interval step method validation
from # to #. Lines 10 and 11 are responsible for updating the forward/backward
information (represented by the 7F and 7B lists, respectively) which keep track of the point
enclosures used in the latest application of the interval step method. If the interval method
was applied in the forward direction (line 10), point # of the TF list is updated with the
current enclosure 7P(f), and point # of the 7B list is updated if it contains the obtained
enclosure Sy*. Similarly, line 11 updates the TF and 7B lists if the interval method was
applied in the backward direction. Line 13 updates the ODE trajectory enclosures at point
tx (TP(tc)) and at the validated time gap (7G(Ti)) according to the obtained enclosures
(after verifying in line 12 that none of these new enclosures becomes empty).

Function insertPoint is shown in figure 11.8. It has 3 arguments, the ODE trajectory
TR, an F-interval [#..t,i+1] and an F-number # (with #,<t,<tyi+1). It returns an ODE
trajectory representing the same set of possible ODE solutions as 7R, but including a new
time point # within time gap [#y..ti+1], replaced by the new time gaps [#;..4] and [#k..tpi+1].

3 Unbound is used to denote an n-ary F-box with all its elements unbounded: [—o0..+00].
4 This is justified for preventing the subsequent pruning in the opposite direction without an enclosure smaller than S;.
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function insertPoint(an ODE trajectory TR=<TP,TG,TF,TB>, F-interval [t,;..tpi11], F-number f)
M) Sii <« TG([tpi.-tyix1]);
@) insert(TP(t)=S;); insert( TF(t)=Unbound); insert(TB(ty)=Unbound),
3) delete(TG([tpi..IDM])); insert(TG([t,,i..tk]): Sii); inS@Vf(TG([Zk..tpH]]):Sii);
4) return 7R;
end function

Figure 11.8 The definition of the insertPoint function.

The enclosures associated with the new time point and the new time gaps are initialised
with the enclosure associated with the previous entire gap. Since no forward or backward
interval step method was yet applied starting at the new time point this information is kept
unbound.

All narrowing functions described in the next subsections are based on the selection of an
appropriate time gap from the ODE trajectory and subsequent application of one or both
the above basic functions to such gap.

11.3.1 Propagate Narrowing Function

If an enclosure for the ODE solutions at some time point is reduced by any narrowing
function, the reapplication of the interval step method over the adjacent time gaps may
further prune these gaps. Moreover, the repeated application of the interval step method
triggered by the reduction of the enclosures, propagates this pruning along the ODE
trajectory gaps, previously validated with larger starting enclosures.

The propagate narrowing function tries to prune the ODE trajectory through the
reapplication of the interval step method over some time gap. This is heuristically chosen
to contain the time point with the largest enclosure reduction since the previous application
of the interval step method.

Figure 11.9 shows the pseudocode of function propagateTrajectory, used for the
definition of the propagate narrowing function. It has 2 arguments, the ODE trajectory TR
and a vector function F(S.f) (required by function pruneGap). It returns the trajectory 7R
possibly pruned by the interval step method applied from ¢ to #. These time points are the
bounds of a time gap chosen from the existing ODE trajectory by function
choosePropagationGap (if no time gap is chosen by such function then the ODE trajectory
is returned unchanged).

function propagateTrajectory (an ODE trajectory TR, a vector function F(S,f))
(1) if choosePropagationGap(TR,t,,t;) then return pruneGap(TR,F(S,t),t;,t); else return TR; endif;
end function

Figure 11.9 The definition of the propagateTrajectory function.

Function choosePropagationGap is shown in figure 11.10. It has an ODE trajectory 7R as
input argument and two F-numbers # and # as output arguments. If it finds some time gap
to propagate then it succeeds and outputs # and ¢ with the time gap bounds, otherwise it
fails.
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function choosePropagationGap(an ODE trajectory TR=<TP,TG,TF,TB>, out F-numbers t, t;)
(1) bestP < 1-MinProp;

(2)  Lgaps < timeGaps(TR);

(3) repeat

“) [toi--tois1] «=Laaps-pOp_firont();

) if TF(t,)#=Unbound then

©® w= ] width(TP(t))width(TF (t));
1<j<n
) if w < bestP then t; < t,;; t; < tpi+1; bestP < w; end if;
®) end if;
) if TB(tyir1)2Unbound then
(10) w= 1 widh(TP{(tyi))width(TB(tyi.1));
1<j<n
11 if w < bestP then t; < t,.1; t; < t,i; bestP < w; end if;
(12) end if;

(13) until Lg,ps.size()=0;
(14) if bestP = 1-MinProp then return false; else return true; end if;
end function

Figure 11.10 The definition of the choosePropagationGap function.

The goal of function choosePropagationGap is to chose the best starting point and
direction (from £ to £) to reapply the interval step method, comparing the current enclosure
at the starting point 7P(t;) and the enclosures TF(t) and TB(#) at the previous application of
the interval step method. The strategy adopted is to choose the starting point and direction
with the smallest ratio between the sizes of the current and the previous enclosures.

Firstly (line 1), a threshold for deciding whether an enclosure reduction is propagated is
initialised (MinProp is some positive value smaller than 1 indicating the minimum
enclosure reduction necessary for triggering the propagation). Then, each time gap is
analysed within a repeat cycle (lines 3-13) and the function succeeds if the ratio of the best
choice is smaller than the defined threshold (line 14).

Each cycle computes for some time gap [f..fpi+1] Where the interval step method has
already been applied (lines 5 and 9 ensure this) the ratios associated with the reapplication
of the method starting at £, in the forward direction (line 6) and starting at #,+; in the
backward direction (line 10). The best choice is updated whenever the associated ratio
becomes smaller (lines 7 and 11).

The formal definition of the propagate narrowing function relies on function
propagateTrajectory to reduce the uncertainty of ODE trajectory. The first argument of
such function is the current value of the ODE trajectory TR, and the second argument is an
interval vector function f{S,f), which defines the popg relation of the ODE constraint
according to definition 10.1-1.

Definition 11.3.1-1 (Propagate Narrowing Function). Let CSDP P=(X,D,C) be defined
as in 10.1-1 and 7R be the ODE trajectory representing the domain of xopg. The ODE
constraint copge C has associated the following propagate narrowing function:

(1) NFpropagate(<TR,...>) = <propagateTrajectory(TR f(S.1)),...> a

11.3.2  Link Narrowing Function

Whereas the propagate narrowing function reapplies the interval step method over some
previously validated time gap, the link narrowing function tries to validate (link) some time
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gap for which the interval step method was never applied in either direction. As a
consequence, besides the safe elimination from the ODE trajectory of functions
incompatible with the ODE constraint, the time gap may become completely or partially
validated (in this case, a new time point is inserted as described earlier).

Figures 11.11 and 11.12 show the pseudocode of function linkTrajectory and the
auxiliary function chooseUnlinkedGap which are quite similar in structure to functions
propagateTrajectory and choosePropagationGap, respectively.

function /inkTrajectory(an ODE trajectory TR, a vector function F(S,f))
(1) if chooseUnlinkedGap(TR,t,,t;) then return pruneGap(TR,F(S,t),t.,t;); else return 7TR; end if;
end function

Figure 11.11 The definition of the linkTrajectory function.

function chooseUnlinkedGap(an ODE trajectory TR=<TP,TG,TF,TB>, out F-numbers t;, #,)
(1) bestWl1 < +oo; bestW2 «— +w;
) Lcaps < timeGaps(TR);
(3) repeat
“4) [toi--tyie1] «=Laaps:p0p_firont();
6] if TF(t,;)=Unbound and TB(t,i+1)=Unbound then

©) wl « max|<j<p(width(TP|(t))); w2 < max| <j<p(width(TP{(ti+1)))

@) if w2<wl then w<—w2; w2 < wi; wl <— w; d < backward; else d < forward; end if;
®) if wi <bestWl or (wl = bestW1 and w2 < bestW?2) then

) bestW1 «<wl; bestW2 < w2; direction < d; T < [ty..tyir1];

(10) end if;

1) end if;

(12) until Leyps.size()=0;
(13) if bestW1 = +oo then return false;
(14) if direction = forward then t; <—lefi(T); t; <— right(T); end if;
(15) if direction = backward then t; <right(T); t; < left(T); end if;
(16) return true;

end function

Figure 11.12 The definition of the chooseUnlinkedGap function.

The main difference is that the time gap chosen by the function chooseUnlinkedGap must
be some unlinked gap (where no interval step method was ever applied in either direction).
The goal of function chooseUnlinkedGap is to pick the best time gap (starting point and
direction: from ¢ to t) where to apply, for the first time, the interval step method. The
chosen gap is that with the lowest uncertainty on the current enclosures at the starting point
TP(t) and ending point TP(t) (line 6). The direction is defined accordingly (line 7).

During the repeat cycle (line 3-11) where each non linked (ensured in line 5) time gap
is considered, whenever the smallest uncertainty w/ is smaller than any previously found
(or equal but with the other bound uncertainty w2 smaller) the best choice is updated (lines
8-10).

If at the end of the cycle no time gap was chosen, the function fails (line 13). Otherwise
it updates # and # with the bounds of the chosen gap according to the defined direction
(lines 14 and 15) and succeeds (line 16).

The formal definition of the link narrowing function is based on function linkTrajectory
to reduce the uncertainty of ODE trajectory. As in the case of the propagate narrowing
function, the first argument is the current value of the ODE trajectory 7R, and the second
argument is an interval vector function f{S,), which defines the popg relation.
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Definition 11.3.2-1 (Link Narrowing Function). Let CSDP P=(X,D,C) be defined as in
10.1-1 and 7R be the ODE trajectory representing the domain of xope. The ODE constraint
copge C has associated the following link narrowing function:

(1) NFiink(<TR,...>) = <linkTrajectory(TR AS.)),...> a

11.3.3  Improve Narrowing Functions

When the whole ODE trajectory is completely validated through the application of the
interval step method at every time gap, the precision of the enclosures obtained for each
time point agrees with the error tolerances imposed on the method. However, even with
accurate precision on the time point enclosures, there are no guarantees about the quality of
the enclosures associated with the time gaps that represent the set of ODE solution
functions. The reason is that the representation of the time gap enclosures as intervals
(rectangles in the two dimensional visualization) makes them unsuitable for an accurate
representation of the intermediate function values, in particular if the function is increasing
or decreasing (or both) along the time gap. To minimize this effect it is necessary to
partition the time gap into a set of smaller subintervals and compute the new enclosures
associated with each one (if some of these new enclosures is smaller than the original
enclosure then the uncertainty around the ODE trajectory is reduced).

All the narrowing functions responsible for reducing the domain of a restriction
variable (except the Value narrowing functions) depend on time gap enclosures of the ODE
trajectory (see subsections 11.2.2 through 11.2.5). Therefore, by reducing such time gap
enclosures, the restriction variable domain may eventually be narrowed. This is the goal of
an improve narrowing function, that is, to reduce some time gap enclosure that may later
trigger some other narrowing function associated with an ODE restriction and reduce the
domain of a restriction variable. The reduction of the time gap enclosure is achieved
through the insertion of a new intermediate time point within the gap and the subsequent
application of the interval step method linking this point with its adjacent neighbours.

Within a CSDP there are several improve narrowing functions (one for each ODE
restriction, except Value restrictions) which, according to definition 4.1-1, are associated
with the ODE constraint (in the sense that the values discarded by such functions are those
proved incompatible with the popg relation through the reapplication of the interval step
method).

In order to decide whether it is worth to improve the ODE trajectory enclosure with
respect to some ODE restriction and to choose the most adequate time gap some heuristic
values are needed. In the following we will use function heuristicValue to obtain such
heuristics. This function, which has 3 input arguments, an ODE trajectory 7R, an ODE
restriction ¢ and an F-interval T, returns an heuristic value for the domain of the restriction
variable of ¢ that is expected when the segment of 7R included in 7 is enclosed with
maximum precision.

The rational for the implementation of such heuristic function is to consider an
evaluation procedure similar to the procedure used for pruning the domain of the restriction
variable of ¢ from the ODE trajectory 7R, which is applied on a changed trajectory 7R’.
This trajectory is identical to TR except on the enclosures of the time gaps included in 7.
Such enclosures are replaced with smaller enclosures that are expected to be obtained when
T is enclosed with maximum precision (above the lines connecting the lower bounds and
under the lines connecting the upper bounds of consecutive point enclosures). A possible
implementation of the heuristicValue function is exemplified in figure 11.13 for the case
where the restriction ¢ is a Maximum restriction (other cases are similar).
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function AeuristicValue(an ODE trajectory TR, an ODE restriction ¢, an F-interval T)
 if CEMaximumj’[ty oot 1](xi) then

?) a < —0; b <« —o0;

3) Laps < ’imEGaPS[tDO..tHI](TR);

4) repeat

) [tniutpiﬂ] FLGaps-POP_fVO”t();

(6) if [#pi..tpi1] < T then upper <— max(right(TR;(1,)),right(TRi(tpi+1)));
) else upper < right(TR([t:..tyi+1])); end if;

®) lower <— max(left(TR;(t,:)),left(TR;(tyi+1)));

©9) if upper > b then b < upper;

(10) if lower > a then a < lower,

() until Lgyps.size()=0;
(12) end if;

(...) return [a..b];
end function

Figure 11.13 The definition of the heuristicValue function.

The only difference with respect to definition 11.2.2-1 is in lines 6-7. Whenever a gap
lies within 7' the computed maximum value is given by the maximum of the respective
points upper bound instead of the entire gap upper bound.

Figure 11.14 shows the pseudocode of function improveTrajectory, used for the
definition of the improve narrowing function. It has 4 arguments, the first 2 are the ODE
trajectory 7R and a vector function F(S,f). The third and fourth arguments are an F-interval
I and an ODE restriction ¢, where [ represents the current domain of the restriction variable
of ¢. It returns the ODE trajectory 7R pruned by the application of the interval step method
for linking a new time point that is inserted within some chosen time gap.

function improveTrajectory(an ODE trajectory TR, a vector function F(S.f),
an F-interval /, an ODE restriction c¢)
(1) if nmbPoints(TR) = MaxPoints then return 7R,
@ Iy < heuristicValue(TR,c,[ty..t1]);
) At < lefi(hy) — lefi(D);
@) Asigne < right(l) — right(l,);
(5) if Aier < € and A g < € then return 7R;
©6) if chooselnsertionGap(TR,c,T) then
@) t, < left(T); ti < Lcenter(T)J; t; < right(T);
®) TR « insertPoint(TR,T t);
©) TR < pruneGap(TR,F(S,1),t;,t);
(10) if TR # & then TR < pruneGap(TR,F(S,¢),t;,1); end if;
(11) end if;
(12) return 7R,
end function

Figure 11.14 The definition of the improveTrajectory function.

Initially, the number of points considered in the ODE trajectory 7R is checked. If it has
already reached its maximum value (MaxPoints), TR is returned unchanged (line 1).

Lines 2-5 subsequently check whether it is worth to improve the ODE trajectory
enclosure with respect to the ODE restriction c¢. The heuristicValue function (line 2)
predicts the best possible narrowing of the domain 7, of the restriction value that would be
obtained if the whole ODE trajectory enclosure were known with maximum precision.
Then, this interval /;, is compared with the current domain 7 of the restriction variable. The
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improvement procedure is abandoned (line 5) if the maximum predicted gain does not
exceed some predefined threshold € in none of the bounds.

Otherwise, a time gap T is chosen by function chooselnsertionGap from the ODE
trajectory (line 6), and a new intermediate time point, the mid point of time gap T (line 7),
is inserted (line 8), and linked with its left bound (line 9). If the trajectory does not become
empty, the time point is also linked to its right bound (line 10).

Function chooselnsertionGap is illustrated in figure 11.15. Besides the ODE trajectory
TR, it has an ODE restriction ¢ as input argument and outputs an F-interval T. If successful,
T is updated with the time gap from the ODE trajectory which, according to the
heuristicValue function, would narrow the most the domain of the restriction variable of c.
It fails if any expected improvement on the ODE trajectory uncertainty is not able to
sufficiently narrow the restriction variable domain.

function chooselnsertionGap(an ODE trajectory TR, an ODE restriction ¢, out an F-interval 7)
1) bestW « 1; T« O,
@) I <« heuristicValue(TR,c,D);
(3)  Lgaps < timeGaps(TR);
(4) repeat
®) G < Lgaps:pop_froni();
() if not isCanonical(G) then

) I < heuristicValue(TR,c,G);,

®) w <« width(Ig)/width(l);

) if w < bestW then T < G; bestW < w; end if}
(10) end if;

(1) until Lg,ps.size()=0;
(12) if 7= then return false; else return true; end if;
end function

Figure 11.15 The definition of the choosePropagationGap function.

The value 7 for the restriction variable domain, that may be obtained from the ODE
trajectory without any further information, is computed by the heuristicValue function with
the empty set as third argument (line 2). The heuristic value I for the restriction variable
domain, obtained from the ODE trajectory when considering the best predicted enclosure
for some time gap G, is computed by the heuristicValue function with the interval G as
third argument (line 7). Since the heuristic value /g must be included within the current
value 7, a measure for the best predicted narrowing associated with G is given by the ratio
between the widths of /g and 7 (line 8). Analysing all the non canonical time gaps (line 6)
within a repeat cycle (lines 4-11), the gap that minimises such ratio is chosen to update the
output variable 7.

The formal definition of an improve narrowing function regarding an ODE restriction ¢
is based on function improveTrajectory where the first argument is the current value of the
ODE trajectory TR, the second argument is the interval vector function f{S,?), the third
argument is the current domain /; of the constraint variable and the fourth argument is the
ODE restriction c,.

Definition 11.3.3-1 (Improve Narrowing Functions). Let CSDP P=(X,D,C) be defined as
in 10.1-1, 7R be the ODE trajectory representing the domain of xopg and /; be the domain
of xi. For each non Value ODE restriction ¢,=(<xopg,Xi>,0,) € C the ODE constraint copge C
has associated the following improve narrowing function:

(1) NFimprove(e, (TR, . .. Li,...>) = <improveTrajectory(TR,F(S,t).1i,cy),. . .. [;,..> a
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11.4 The Constraint Propagation Algorithm for CSDPs

The constraint propagation algorithm for pruning the domains of the CSDP variables is
derived from the generic propagation algorithm for pruning the domains of the variables of
a CCSP (see function prune, illustrated in figure 4.1).

Since there are no guarantees of monotonicity for the narrowing functions associated
with the CSDP constraints, the order of their application may be crucial, not only for the
efficiency of the propagation but also for the pruning achieved.

The strategy followed by the algorithm is to propagate as soon as possible any
information related with the restriction variables and delay as much as possible the
application of the narrowing functions for reducing the ODE trajectory uncertainty. The
reason is that whereas the former are easy to deal with and may provide fast domain
pruning, the latter may be computationally more expensive as they require the application
of the interval step method.

Among the narrowing functions for the ODE trajectory uncertainty, the selection
criterion favours the propagate narrowing function for spreading as soon as possible any
domain reduction achieved by any other narrowing function. Moreover, since it does not
make sense to try to improve an ODE trajectory that is not completely validated, the link
narrowing function is always preferred to any of the improve narrowing functions.

Figure 11.16 shows the constraint propagation algorithm for CSDPs represented by
function pruneCSDP. The first argument Q is a set of narrowing functions composed of all
the narrowing functions associated with the constraints of the CSDP (see subsections 11.2
and 11.3). The second argument 4 is an element of the domains lattice representing the
original variable domains (before applying the propagation algorithm). The result is a
smaller (or equal) element of the domains lattice.

function pruneCSDP(a set Q of narrowing functions, an element 4 of the domains lattice)
(1) O, « {NF € Q: NF is a propagate, link or improve narrowing function}; Q; <— O\ O;
2 S« T;85«T,;
3) while 9, U 0, = J do
4) if O, # & then choose NF € Qy;
(5) else if NFpropagate € Q2 then NF « NFpropagate;

(6) else if NFlink € QZ then NF « NFlink;
) else choose NF € Os;
(8) end if;

©) A’ <« NF(A) ;
(10) if A’ = & then return J ;
(11) Py« {NF’ €S EIxeRelevanth’A[x] #A'[x] };
(12) Py« {NF’ €8, ElxeRelevanthA[x] #A'[x] };
(13) Q1< Q1 VUP ;S < S\Py;
(14) O~ QUP ;S5\ Py
(15) if NF € O, then O, < O, \ {NF} ; S, < S, U {NF};
(16) elseif 4" = A then O, « O, \ {NF} ; S, < S U {NF};
17) end if;
(18) A« A,
(19) end while
(20) return 4 ;

end function

Figure 11.16 The constraint propagation algorithm for CSDPs.

The structure of the algorithm is identical to the constraint propagation algorithm described
in chapter 4. The main difference is that the set Q of narrowing functions is subdivided into
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two sets, 0> containing all the narrowing functions associated with the ODE constraint and
Q) containing the remainder (line 1). Similarly, two different sets, S; associated with Q;
and S, with O, are maintained to keep track of the narrowing functions for which 4 is a
fixed-point (lines 2,11-16). The selection criterion (line 4-8) only chooses a narrowing
function from Q, if Q; is empty. In this case, it tries first the propagate narrowing function
(line 5), then the link narrowing function (line 6), and only as a last option chooses it some
improve narrowing function (line 7). After applying some narrowing function NF from Q,
it is assumed that the obtained element 4’ is a fixed-point of NF since all the narrowing
functions of Q; are necessarily idempotent (line 15). Such assumption is not made for the
narrowing functions of O and so, it must be verified if the new element 4 is equal to the
previous element A4 (line 16).

The algorithm is correct and terminates. The correctness of the algorithm derives from
the correctness of each narrowing function as proved in the case of the constraint
propagation algorithm for CCSPs. The termination of the algorithm is only guaranteed by
the imposition of a maximum number of points (MaxPoints) to consider for the ODE
trajectory and can be proved by contradiction. Suppose that the algorithm does not
terminate. Then, there are always some narrowing functions for which the current element
A is not a fixed-point. If no new point is introduced in the ODE trajectory 7R (only the link
and improve narrowing functions may insert new points in 7R) then the number of
applications of the narrowing functions must be finite. This is justified because, in this
case, either the current element 4 is a fixed-point of a narrowing function (and it is not
applied) or its application will narrow some F-interval domain in the representation of 4.
Without considering new points, such representation is always the same finite set of
F-intervals, whose lattice is finite and, as in the CCSP case, the process of obtaining a
smaller element will necessary stop. So, the termination of the algorithm is only
problematic if new points are inserted in the ODE trajectory TR. However the maximum
number of points is limited to MaxPoints since, when this number is reached, both the link
and the improve narrowing functions do not insert new points. Consequently, if the
algorithm did not terminate before, then after reaching the maximum number of points no
new point can be further introduced and, as proved above, the number of additional
applications of the narrowing functions must be finite and the algorithm terminates.

The goal of a solving procedure for a CSDP is to prune as much as possible the initial
domains of the restriction variables Ii,...,[,. This goal is achieved through function
pruneCSDP  with the ODE trajectory TR previously initialised by function
initializeTrajectory (as described in section 11.2). This is illustrated in figure 11.17 in the
pseudocode of function solveCSDP. From the initial domains of the restriction variables
Ii,...,I it either returns the empty set, or narrows them further through the constraint
propagation algorithm for CSDPs.

function solveCSDP(<I,,...,I,;>)

(1) TR <« initializeTrajectory();

@2 A <« pruneCSDP(Q,< TR,1,,...,I>);

3) if A = then return J;

4 ifA=<TR’I’,... I,> then return </,’,....[I,">;
end function

Figure 11.17 The solving function associated with an CSDP.
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11.5 Summary

In this chapter a procedure was described for solving a CSDP based on constraint
propagation over a set of narrowing functions associated with the CSDP. An ODE
trajectory was defined and represents an enclosure of the ODE solution set. All the
narrowing functions, either for enforcing the ODE restrictions or for reducing the
uncertainty of the ODE trajectory, were fully characterised. In the next chapter the
extended interval constraints framework is used for solving several problems in different
biomedical domains.
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Chapter 12

Biomedical Decision Support with ODEs

Biomedical models provide a representation of the functioning of living organisms, making
it possible to reason about them and eventually to take decisions about their state or
adequate actions regarding some intended goals. Parametric differential equations are
general and expressive mathematical means to model systems dynamics, and are suitable to
express the deep modelling of many biophysical systems. Notwithstanding its expressive
power, reasoning with such models may be quite difficult, given their complexity.

Analytical solutions are available only for the simplest models. Alternative numerical
simulations require precise numerical values for the parameters involved, which are usually
impossible to gather given the uncertainty on available data. This may be an important
drawback since, given the usual non-linearity of the models, small differences on the input
parameters may cause important differences on the output produced.

To overcome this limitation, Monte Carlo methods rely on a large number of
simulations, that may be used to estimate the likelihood of the different options under
study. However, they cannot provide safe conclusions regarding these options, given the
various sources of errors that they suffer from, both input precision errors and round-of
errors accumulated in the simulations.

In contrast with such methods, constraint reasoning assumes the uncertainty of
numerical variables within given bounds and propagates such knowledge through a
network of constraints on these variables, in order to decrease the underlying uncertainty.
To be effective it must rely on advanced safe methods so that uncertainty is sufficiently
bound as to be possible to make safe decisions.

The extended CCSP framework offers an alternative approach for modelling system
dynamics with uncertain data as a set of constraints and provides reliable reasoning
methods for supporting safe decisions. In this chapter, the expressive power of the
extended CCSP framework is illustrated for decision support in several examples from
biomedicine: diagnosis of diabetes (section 12.1), tuning of drug design (section 12.2) and
epidemic studies (section 12.3).

12.1 A Differential Model for Diagnosing Diabetes

Diabetes mellitus prevents the body from metabolising glucose due to an insufficient
supply of insulin. A glucose tolerance test (GTT) is frequently used for diagnosing
diabetes. The patient ingests a large dose of glucose after an overnight fast and in the
subsequent hours, several blood tests are made. From the evolution of the glucose
concentration a diagnosis is made by the physicians.
Ackerman and al [1] proposed a well-known model for the blood glucose regulatory

system during a GTT, with the following parametric differential equations:

% =-pig(t) = poh(?) ? =—p3h(1) + pag(?)
where g is the deviation of the glucose blood concentration from its fasting level,

h is the deviation of the insulin blood concentration from its fasting level;

P1, P2, p3 and py are positive, patient dependent, parameters.
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Let =0 be the instant immediately after the absorption of a large dose of glucose, go, when
the deviation of insulin from the fasting level is still negligible. According to the model, the
evolution of glucose and insulin blood concentrations is described by the trajectory of the
above ODE system, with initial values g(0)=gy and /#(0)=0, and depends on the parameter
values p; to pa.

Figure 12.1 shows the evolution of the glucose concentration for two patients with a
glucose fasting level concentration of 110 mg glucose/100 ml blood. Immediately after the
ingestion of an initial dose of glucose, the glucose concentration increases to 190 (i.e. go =
190-110 = 80). The different trajectories are due to different parameters.

210
5175 In case A (thick line), typical
g 140 normal values were used:
£ 105 p1=0.0044  p,=0.04
o p5=0.0045  p,=0.03
g 70
3 3 In case B (thin line), parameters p,

0 - T T T T T T T T and p, were reduced:
0 60 120 180 240 300 360 420 480 1,=0.03 p=0.015
time (minutes)

Figure 12.1 Evolution of the blood glucose concentration.

The general behaviour of the glucose trajectory (and insulin trajectory as well) oscillates
around, and eventually converges to, the fasting concentration level. The natural period T
2z

\NPiPst DDy

A criterion used for diagnosing diabetes is based on the natural period 7, which is
increased in diabetic patients. It is generally accepted that a value for T higher than 4 hours
is an indicator of diabetes, otherwise normalcy is concluded.

We next show how the extended CCSP framework can be used to support the diagnosis
of diabetes, possibly interrupting the sequence of blood tests if a safe decision can be made.

of such trajectory is given (in minutes) by: 7=

12.1.1 Representing the Model and its Constraints with an Extended CCSP

The decision problem regarding the diagnosis of diabetes may be modelled by an extended
CCSP with a CSDP constraint and a numerical constraint.

The CSDP constraint relates the evolution of the glucose and insulin concentrations
with the trajectory values obtained through the blood tests. It is associated with the
following ODE system S based on the original system of differential equations but with the
parameters included as new components with null derivatives:

sit) = —s3(051() = 54(1)s, (1)
S=dsy(t) = —s5(5)s,(1) +55(0)s,(£) where s1=g, s;=h, s3=p1, s4=p2, s5=p3, S6=pa
s5(0) = s4(1) = 55(1) = 56(5) = 0

If n blood tests were made at times 7,...,4, the constraint is defined by CSDP Pg,
which includes the ODE constraint enforcing the trajectories to satisfy ODE system S
between =0.0 and 7=t,, together with Value restrictions representing each known trajectory
component value. Variables go, ko, p1, p2, p3 and py, are the initial values and variables
&uls- . -,gm, the glucose values at times #,...,f,.
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CSDP Pgy=(Xy,Dh,Cp) where:

an <xODE9 80, hO) P1, P2, P3, P4y Ltlseeos gtn>
D= <Dopg, Dgo, Dho, Dp1, Dp», Dp3, Dps, Dgy, ..., Dgwn>
CGi={ ODEg 100 .. m(xopE), Valuey, 0.0(go), Values, oo(ho),

Values o.0(p1), Values oo(p2), Values oo(ps), Values,oo(ps),
Value, u(gu) »..., Value, n(gwm) }

The numerical constraint is a simple equation relating the natural period with the ODE
parameters according to its defining expression. With # blood tests performed, the resulting
extended CCSP is:

CSDP P,=(X,D,C) where:

X=< go, ho, p1, D2 P35 Pi Gilses &Qm» 1>
D =< Dgo, Dho, Dp1, Dp2, Dp3, Dp4, Dgu, ..., Dgw, DT>

C = { Psn(go, ho, D1, P2, P35 Pas &t 5---> &) T = 2T/sqri(p\pstpaps) }

Here and in the remainder of this chapter we will use the following denotation: if a CSDP
constraint is defined by the CSDP P=(<xopg,X1s. - .,»Xn><Dopg,Dx1,. . .,Dx,>,C) then it will be
referred in an extended CCSP as P (<x’y,...,x"»>) where x’j,...,x ", are the CCSP variables
that are shared by the CSDP.

12.1.2  Using the Extended CCSP for Diagnosing Diabetes

By solving the extended CCSP P, with the initial variable domains set up to the available
information, the natural period 7 will be safely bounded, and a guaranteed diagnosis can be
made if T is clearly above or below the threshold of 240 minutes.

In the following we assume that the acceptable bounds for the parameter values are
50% above/below the typical normal values (p;=0.0044, p,=0.04, p3=0.0045, p,=0.03) and
study two different patients, A and B, whose observed values agree with Figure 12.1.

The first blood test on patient A, performed 1 hour after the glucose ingestion, indicates
a glucose deviation from the fasting level concentration of —29.8 (an error of +£0.05 is
always considered with regard to the precision of the measuring process).

The extended CCSP P; (with a single blood test) is solved by enforcing Global Hull-
consistency on the following initial variable domains:

Dp;=[0.0022..0.0066], Dp,=[0.0200..0.0600], Dps=[0.0022..0.0068], Dp,;=[0.0150..0.0450],

Dgi=[80.0], Dhy=[0.0], Dgso=[-29.85..-29.75], DT=[—o0.+o0]

Table 12.1 shows results for 7 obtained after 10, 30 and 60 minutes of CPU execution
time' (with 10 precision).

Table 12.1 Narrowing results obtained for patient 4 from the information of the first blood test.

10 minutes 30 minutes 60 minutes
[ T [140.5..233.3] | [149.6..213.9] | [154.9..206.0]

After 10 minutes of CPU time (in fact after 7 minutes), the natural period is proved to be
smaller than 240 minutes and a normal diagnosis can be guaranteed with no need of further
examinations. When the next blood test were due, 60 minutes later, 7 was proved to be
under 206, much less than the threshold for diagnosing diabetes.

! The tests of this chapter were all performed on a Pentium III with 128MBytes RAM running at S00MHz. The CPU
execution times were divided by a factor of 3 to provide more realistic real time results that can be easily obtained by
up-to-date computer configurations.



170 Chapter 12. Biomedical Decision Support with ODEs

In patient B, the observed glucose deviation at the same first blood examination is 17.9.
The initial domains for the variables of P; are thus the same of the previous case, except for
the observed glucose value Dge=[17.85.. 17.95].

Enforcing Global Hull-consistency on P; with such information alone, no safe
diagnosis can be attained before the next blood test (1 hour later). After 60 minutes of CPU
time, 7 was proved to be within [236.4..327.9] and both diagnoses, normal or diabetic, are
still possible, though diabetes is quite likely. Further information is required, and a second
test is performed, indicating a glucose concentration of -38.9. The extended CCSP P, (two
blood tests) is solved with the initial domains:

Dgeo=[17.85..17.95], Dg20=[-38.95..-38.85], DT=[236.4..327.9]

In less than 20 minutes, T was proved to be above 240. One hour later, when the next
examination would be due, T is clearly above such threshold (7€[245.0..323.8]), and the
patient is safely diagnosed as diabetic, requiring no further blood tests.

Note the importance of using a strong consistency requirement such as Global Hull-
consistency. Table 12.2 presents the narrowing results, for patient 4 and B, obtained by
enforcing Global Hull-consistency, together with those obtained by other strong
consistency requirements such as 3B- and 4B-consistency (all with 10 precision). Each
row shows the narrowing of 7" domain achieved by considering the number of blood tests
specified in the first column, when the next blood examination is due.

Table 12.2 Narrowing of 7' domain achieved by enforcing 3B-, 4B- and Global Hull-consistency.

tests 3B 4B Global Hull tests 3B 4B Global Hull

1 |[126.4.257.7]

[144.8.222.0]

[154.9..206.0] 1

[191.2.344.9]

[211.8.340.7]

[236.4.327.9]

2

[126.4.257.5]

2

[192.6..344.9]

[228.9.340.7]

[245.0.323.8]

3

[126.4.257.5]

3

[192.6..344.9]

[232.1.339.9]

Patient A Patient B

Clearly, if 3B-consistency is enforced, the results obtained are insufficient to make any safe
decision. In fact, for both patients, even after the 3" blood examination, no safe diagnosis
can be made since, in either cases, the interval obtained for the 7 domain contains the
diagnosis threshold of 240 minutes.

Enforcing 4B-consistency (stronger than 3B-consistency) patient 4 can be safely
diagnosed with the information of the first examination alone, requiring no further blood
tests. For this patient case, and comparing with the Global Hull-consistency results, the
reduction of the T domain is about 3 times slower (only after 23 minutes can it be proved
that the value of T is under 240) and 50% wider, but a safe diagnosis still can be made.
However, in the case of patient B, the pruning achieved (with 7 domain about 40% wider
than when enforcing Global Hull-consistency) is again insufficient to make a safe diagnosis
in time for avoiding further blood examinations.

12.2 A Differential Model for Drug Design

Pharmacokinetics studies the time course of drug concentrations in the body, how they
move around it and how quickly this movement occurs. Oral drug administration is a
widespread method for the delivery of therapeutic drugs to the blood stream. This section is
based on the following two-compartment model of the oral ingestion/gastro-intestinal
absorption process (see [130] and [138] for details):
O x(+ D) DD~ i) a0

where x is the concentration of the drug in the gastro-intestinal tract;

y is the concentration of the drug in the blood stream;

D is the drug intake regimen; p; and p, are positive parameters.
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The model considers two compartments, the gastro-intestinal tract and the blood stream.
The drug enters the gastro-intestinal tract according to a drug intake regimen, described as
a function of time D(#). It is then absorbed into the blood stream at a rate, p;, proportional
to its gastro-intestinal concentration and independently from its blood concentration. The
drug is removed from the blood through a metabolic process at a rate, p,, proportional to its
concentration there.

The drug intake regimen D(f) depends on several factors related with the production of
the drug by the pharmaceutical company. We assume that the drug is taken on a periodic
basis (every six hours), providing a unit dosage that is uniformly dissolved into the gastro-
intestinal tract during the first half hour. Consequently, for each period of six hours the
intake regimen is defined as:

{2 i£0.0<1<0.5
D=1 .
0 if0.5<1<6.0

The effect of the intake regimen on the concentrations of the drug in the blood stream
during the administration period is determined by the absorption and metabolic parameters,
p1 and p,. Maintaining the above intake regimen, the solution of the ODE system
asymptotically converges to a six hours periodic trajectory called the limit cycle, shown in
figure 12.2 for specific values of the ODE parameters.

1

15
t
05 x(1) 1 )
0 T T T T T 1 05+ T T T T T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t t

Figure 12.2 The periodic limit cycle with p;=1.2 and p,=In(2)/5.

In designing a drug, it is necessary to adjust the ODE parameters to guarantee that the drug
concentrations are effective, but causing no significant side effects. In general, it is
sufficient to guarantee some constraints on the concentrations over a limit cycle.

One constraint is to keep the drug concentration at the blood within predefined bounds,
namely to prevent its maximum value (the Peak Concentration) to exceed a threshold
associated with a side effect. Other constraint imposes bounds on the area under the curve
of the drug blood concentration (known as AUC) guaranteeing that the accumulated dosage
is high enough to be effective. Finally, bounding the total time that such concentration
remains above or under some threshold is an additional requirement for controlling drug
concentration during the limit cycle. Figure 12.3 shows maximum, minimum, area (> 1.0)
and time (=1.1) values for the limit cycle of figure 12.2.

maximum 4
] t
] area (21)\ &

17_/ \\w

minimum - ]

T T
time (21.1)

Figure 12.3 Maximum, minimum, area and time values at the limit cycle (p;=1.2 and p,=In(2)/5).

We show below how the extended CCSP framework can be used for supporting the drug
design process. We will focus on the absorption parameter, p;, which may be adjusted by
appropriate time release mechanisms (the metabolic parameter p,, tends to be characteristic
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of the drug itself and cannot be easily modified). The tuning of p; should satisfy the
following requirements on the drug concentration in the blood during the limit cycle,
namely:

(1) Its “instantaneous” value bounded between 0.8 and 1.5;

(ii) Its area under the curve (and above 1.0) bounded between 1.2 and 1.3;

(iii) Its value above 1.1 should not last more than 4 hours.

12.2.1 Representing the Model and its Constraints with an Extended CCSP

The expressive power of the extended CCSP framework allows its use for representing the
limit cycle and the different requirements illustrated in figure 12.3. Due to the intake
regimen definition D(7), the ODE system has a discontinuity at time 7=0.5, and is
represented by two CSDP constraints, Ps; and Ps, in sequence.

The first, Pg;, ranges from the beginning of the limit cycle (+=0.0) to time 7=0.5, and a
second Psg», is associated to the remaining trajectory of the limit cycle (until 7=6.0). S1 and
S2 are the corresponding ODE systems, where p; and p, are included as new components
with null derivatives and the intake regimen D(?) is a constant:

s = =535 (1) +2 s = —s3(0s,(0)
Sl=455(0) = s3(0)87(t) — 54(1)s, (1) S2=<s5() = 53(1)51(2) — 54 (1), (2)
s3() = s(0)=0 s3() = s(0=0

The CSDP constraints for Ps; are defined as shown below (Ps; is similar). Besides the
ODE constraint, Value, Maximum, Minimum, Area and Time restrictions associate
variables with different trajectory properties relevant in this problem. Variables Xinit, Vinit, P1
and p, are the initial trajectory values, and xg, and yg, are the final trajectory values of the
1 and 2™ components. Variables ymay and ymin are the maximum and minimum trajectory
values of the 2™ component (drug concentration in the blood stream) for this period.
Variables y, and y; denote the area above 1.0 and the time above 1.1 of the 2™ component
in this same period.

CSDP PSI = (Xl,Dl,Cl) Where:
Xi=<XODE, Xit, YVinitt Pl, P2 Xfin, Vi, Vmaxs Ymins Var Yt
D1=<DopE, Dxinit, Dyinit, Dp1, Dp2, DXfin, DYftin, DYmaxs DYmin, Dya, Dye>
Ci= {ODEzs, (00 .. 0.5(X0DE),
Valuey, o.0(Xinit), Values 00(Vinit), Values o.o(p1), Values, o.0(p2),
Value, .5(xsn), Values, o5(ytn),
Maximums [0, .. 0.51(Vmax), Minimumy [0 .. 0.5(Vmin)s
Areas 100. 0.5, 21.00a), Timez 0.0 .05, 21100}

The extended CCSP P connects the two ODE segments in sequence by assigning the same
variables xos and yys to both the final values of Ps; and the initial values of Ps, (parameters
pi1 and p; are shared by both constraints). Moreover, the 6 hours period is guaranteed by the
assignment of the same variables x¢ and y, to both the initial values of Ps; and the final
values of Ps,. Besides considering all the restriction variables (Vmax....,t) of each ODE
segment, new variables for the whole trajectory yaea and ytme sum the values in each
segment.
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CCSP P=(X,D,C) where:
X=< x, Yos P15 P2, X055 Y055 Vmaxls Vmax2s Yminls Vmin2s Vals Va2, Vareas Vi, V2o Vime™
D= <Dx,Dy0,Dp1,Dp2,Dx05,Dy05,DVmax1,DVmax2,DYmint, DYVmin2: DYa1,DYaz, DYareas Dy, Dy, Dyiime™
C= {Psi(xo, Yo, P1, P2, %05, Y05, Ymaxl> Vminl» Val, Vi1),
Psy(x05, y0s, P1, P2, X0, Y0, Ymax2> Ymin2> Va2, Vi2)s
Yarea = Va1t Va2, Viime = Yu+ Yo }

12.2.2  Using the Extended CCSP for Parameter Tuning

The tuning of drug design may be supported by solving P with the appropriate set of initial
domains for its variables. We will assume p, to be fixed to a five-hour half live
(Dpo=[In(2)/5]) and p, to be adjustable up to about ten-minutes half live (Dp;=[0..4]). The
initial value xo, always very small, is safely bounded in interval Dx,=[0.0..0.5].

The assumptions about the parameter ranges together with the bounds imposed by the
above requirements justify the following initial domains for the variables of P (all the
remaining variable domains are unbounded):

Dxe= [0.0..05], Dyy= [0.8..15], Dp =[00. 4.0] Dp, = [In(2)/5],
Dyuaai=[0.8 . 1.5,  Dymac=[0.8..1.5],  Dymm=[0.8 .. 1.5], DYminy =[0.8..1.5],
Dyue=[12..13],  Dygme=[0.0 .. 4.0]

Solving the extended CCSP P (enforcing Global Hull-consistency), with a precision of
107, narrows the original p; interval to [1.191..1.543] in less than 3 minutes. Hence, for p,
outside this interval the set of requirements cannot be satisfied.

This may help to adjust p; but offers no guarantees on specific choices within the
obtained interval. For instance, the two extreme canonical solutions for p;, [1.191.. 1.192]
and [1.542..1.543], contain no real solution, since when solving the problem with a higher
precision (10 - which took about 18 minutes of CPU time), the domain of p; is narrowed
to [1.209233..1.474630] that does not include the above canonical solutions (obtained with
the lower 107 precision).

Nevertheless, using CCSP P with different initial domains, may produce guaranteed
results for particular choices of the p; parameter values. For example, for p;€[1.3..1.4] (an
acceptable uncertainty in the manufacturing process), and the following initial domains (the
remaining are unbounded):

Dx=[0.0..0.5], Dy=[0.8..1.5], Dp,=[1.3..14], Dp,=[In(2)/5]
Global Hull-consistency on P (with 107 precision) narrows the following, initially
unbounded, domains to:

Yumin1 €[0.881..0.891], Ymax1 €[1.090..1.102], Varea€[1.282..1.300],
Vmin2€[0.884..0.894], Va2 €[1.447..1.462], Jime€[3.908..3.967].

Notwithstanding the uncertainty, these results do prove that with p; within [1.3..1.4], all
limit cycle requirements are safely guaranteed (the obtained bounds are well within the
requirements). Moreover, they offer some insight on the requirements showing, for
instance, the area requirement to be the most critical constraint.

The above bounds were obtained in about 13 minutes. However, faster results may be
obtained if the goal is simply to check whether the requirements are met. Since Global
Hull-consistency is enforced by an any time algorithm, its execution may be interrupted as
soon as the requirements are satisfied (10 minutes in this case).

A Dbetter approach in this case would be to prove that the CCSP P with the initial
domains Dx(=[0.0..0.5], Dy,=[0.8..1.5], Dp;=[1.3..1.4] and Dp,=[In(2)/5] together with
each of the following domains cannot contain any solution (again, the remaining domains
are kept unbound):
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Dymax1=[l.5..+00], Dymax2=[l.5..+00], Dymin1=[—00..0.8], Dymin2=[—00..0.8],
Dyarea=[1.3..40], Dygrea=[—0..1.2], Dytime=[4.0..+0].

By independently proving that no solutions exist for the above 7 problems, which cover
all non satisfying possibilities, it is proved that all the requirements are necessarily
satisfied. This was achieved in less than 5 minutes.

Again the requirement of a strong consistency is important for obtaining good pruning
results. A possible alternative would be to enforce 3B-consistency. In this case, the initial
domain of parameter p; would be narrowed from [0..4] to [1.158..1.577] which is 20%
wider than the obtained with Global Hull-consistency, but could be obtained faster (in
about 1 minute and half). Despite providing the same p; domain reduction, 4B-consistency
is not a good alternative for Global Hull-consistency since it is 4 times slower (about 14
minutes of CPU execution time).

12.3 The SIR Model of Epidemics

The time development of epidemics is the subject of many mathematical models that have
been proved useful for the understanding and control of infectious diseases. The SIR model
[102] is a well known model of epidemics which divides a population into three classes of
individuals and is based of the following parametric ODE system:
ds() dI(t) dR(t)
Cdr dr

= —rS(OI(1) = rS(I(t) - al (1) ==

where S are the susceptibles - individuals who can catch the disease;
I are the infectives - individuals who have the disease and can transmit it;
R are the removed - individuals who had the disease and are immune or died;
rand a are positive parameters.

The model assumes that the total population N is constant (N=S(?)+I(f)+R(¢)) and the
incubation period is negligible. Parameter » accounts for the efficiency of the disease
transmission (proportional to the frequency of contacts between susceptibles and
infectives). Parameter a measures the recovery (removing) rate from the infection.

Important questions in epidemic situations are: whether the infection will spread or not;
what will be the maximum number of infectives; when will it start to decline; when will it
ends; and how many people will catch the disease.

Figure 12.4 shows the number of susceptibles, infectives and removed as a function of
time, as predicted by the SIR model with S(0)=762, 1(0)=1, R(0)=0, =0.00218 and a=0.44.
In this case, the infection will spread up to a maximum number of infected of about 294
individuals (imax), starting to decline after 6.5 days (fmax), ending after 22.2 days (Zenq) and
affecting a total of 744 individuals (7end).
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Figure 12.4 SIR model predictions with S(0)=762, 1(0)=1, R(0)=0, =0.00218 and a=0.44036.



Chapter 12. Biomedical Decision Support with ODEs 175

Frequently, there is information available about the spread of a disease on a particular
population. This is usually gathered as series of time-infectives (#,/}) or time-removed
(#,R;) data points together with the values (#,5), (?%.lo) or (#,Ro) that initiated the
epidemics on the population. An important problem is to predict the behaviour of a similar
disease (with similar parameter values) when occurring in a different environment, namely
with a different population size or a different number of initial infectives.

The following study is based on data reported in the British Medical Journal (4™ March
1978) from an influenza epidemic that occurred in an English boarding school (taken from
[102]): a single boy (from a total population of 763) initiated the epidemics and the
evolution of the number of infectives, available daily, from day 3 to day 14, is shown in
table 12.3.

Table 12.3 Infectives reported during an epidemics in an English boarding school.

t 0 3 4 5 6 7 8 9 10 11 12 13 14
1, 1 22 78 222 | 300 | 256 | 233 | 189 | 128 72 28 11 6

The goal of our study is to predict what would happen if a similar disease occurs in a
different place, say a small town with a population of about 10000 individuals. Moreover,
if there is a vaccine to that disease, what would be the vaccination rate necessary to
guarantee that the maximum number of infectives never exceeds some predefined
threshold, for example, half of the total population.

12.3.1 Using the Extended CCSP for Predicting the Epidemic Behaviour

The first step for solving the above problem is to characterize an epidemic disease which is
similar to the one reported in the boarding school. The classical approach would be to
perform a numerical best fit approximation to compute the parameter values »’and @’ that
minimize the residual:

m

Z(I(tj)—ltj)2

=
where Ity are the infectives observed at times #i,...,tm, and I(t),...,I(tx) their respective
values predicted by the SIR model with »=r’ and a=a’. In [102] this method is used to
compute =0.00218 and a=0.44036 with a residual of about 4221 (figure 12.4 shows the
best fit solution).

However, generating a single value for each parameter does not capture the essence of
the problem which is not to determine the most similar disease but rather to reason with a
set of similar enough diseases. Moreover such approach does not provide any sensitive
analysis about the quality of the data fitting, namely on the effects of small changes on the
parameter values.

An alternative, possible in a constraints framework, is to relax the imposition of the
“best” fit and merely impose a “good” fit. This can be achieved either by considering
acceptable errors & for each observed data and computing ranges for the parameters such
that the distance between the model predictions and the observed data does not exceed
these errors or by imposing some upper bound on the residual value (or any other measure
of the unfitness of the model).

Either the first approach, known as the data driven inverse problem, or the second
approach, denoted here as the maximum residual problem, cannot be solved by classical
constraint approaches since the epidemic model has no analytical solution form.

However, both problems can be represented as extended CCSPs, P, and P,
respectively, which include a CSDP constraint P, representing the evolution of the
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susceptibles and infectives during the reported period of time (the first 14 days). The
associated ODE system S is composed by the first two components of the SIR model
together with two extra components with null derivatives for representing the parameters?:
si() = =0.01s3(1)s,(1)s,(2)
S=155() = 0.01s3(2)sy ()5, () — 54 ()5, (2)
s3()= s =0

CSDP Ps contains several Value restrictions for associating variables with: the initial
values of the susceptible (s¢) and infective (ip); the parameter values (» and a); and the
values of the infective at times 3,...,14 (i3,...,i14).

CSDP Ps= (X,D,C) where:
X=< Xxopg, S0, o, ¥, a, I3, .., 114>
D= < Dopg, Dsg, Diy, Dr, Da, Dis, ..., Dij4>
C={ ODEjs 00 . 14.0)(X0DE),
Valuel, o‘o(So), Valuez, vo(l-()), Value3, ().()(}"), Value4, (),0((,1),
Valu€2,3_0(l'3), veesy Valuez, 14_o(i14) }

The extended CCSP P, which represents the data driven inverse problem, contains a
single constraint defined as CSDP Ps. The extended CCSP P,, which represents the
maximum residual problem, besides CSDP constraint Ps, contains also a numerical
constraint defining the residual (R) from the variables is,...,ij4 and the observed values
(represented as constants £3,...,k14).

CCSP P,=(X1,D,,C}) where: CCSP Py=(X;,D,,C,) where:
X1:< S50, io, r, a, i3,..., i14> X2:< S50, io, r, a, i3,..., i14, R>
D]:< DSO, Dio, Dr, Da, Dig,..., Di14> D2:< DS(), Dio, DV, Da, Di3,..., Di14, DR >
C={ Ps(s0, i0, 7, @, I3,..., I14) } Co={ Ps(S0, iv, 7, 4, 13,..., i14), R = Z(ii—H;)* }

Assuming very wide initial parameter ranges (Dr=Da=[0..1]), the “good” fit
requirement can now be enforced by solving either P; or P, with appropriate initial
domains for the remaining variables (the values of the susceptible and infective are
initialized accordingly to the report, Dso=[762] and Diy=[1]). In the case of P, each Dj;
should be initialized with the interval [Lki—gJ.| ki+¢ ] (for example with §=30). In the case
of P,, all Di; are kept unbounded, but the residual initial domain DR must be upper
bounded (for example with DR=[0..4800]).

Enforcing Global Hull-consistency (with precision 10°) on P, with &§=30, the
parameter ranges are narrowed from [0..1] to »€[0.214..0.222] and a<[0.425..0.466] in
about 50 minutes. Identical narrowing would be obtained by enforcing Global Hull-
consistency (with precision 10°®) on P, with DR=[0..4800]: re[0.213..0.224] and
ae[0.423..0.468].

As in the case of the preceding problems, the enforcing of less strong consistency
requirements such as 3B- or 4B-consistency is not a good alternative. For example,
enforcing 3B-consistency on P; the r domain is only reduced to [0.143..0.495] (43 times
wider than with Global Hull-consistency) and the domain of a cannot be pruned at all.
Enforcing 4B-consistency on P; the domains reduction is similar to the obtained with
Global Hull-consistency, but the execution time is much slower (the execution was
interrupted after 5 hours of CPU time).

2 In the equations r is multiplied by 0.01 re-scaling it to the interval [0..1] (its best fit value 0.00218 is re-scaled to 0.218).
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Once obtained the parameter ranges that may be considered acceptable to characterize
epidemic diseases similar to the one observed, the next step is to use them for making
predictions in the new context of a population of 10000 individuals.

In this case a single CSDP constraint Py represents the first two components of the
model together with ODE restrictions associating variables with the predicted values
(besides the Value restrictions to associate variables with the parameter values » and a and
the initial values so and ip). A Maximum restriction represents the infectives maximum
value imax and a First Maximum restriction represents the time of such maximum f#,x. A
Last Value restriction represents the duration z.,q of the epidemics as the last time that the
number of infectives exceeds 1. Finally a Value restriction represents the number of people
8525 that are still susceptible at a time (25) safely after the end of the epidemics.

CSDP Ps = (X,D,C) where:
X=< xopg, S0, 0, ¥, @ Imax, [fmaxs lend, S25>
D = <Dopg, Dsoy, Diy, Dr, Da, Diax, Dtmax, Dtend, Ds2s >
C = {ODEg 0, .. 25.0)(xX0DE),
Valuel,olo(S()), Valueg, 0'0(1.0), Value3, 0(0(7‘), Value4, vo(Cl),
Maximumy [0.0.25.0)(imax), firstMaximumy [0.0.25.0)(fmax),
lastValue 0.0.25.0121.0(fend), Value 2s0(s25) }

Solving such problem with the parameters ranging within the previously obtained intervals
(for example, Dr=[0.213..0.224] and Da=[0.423..0.468]), the initial value domains
Ds¢=[9999] and Diy=[1], and all the other variable domains unbounded, the results
obtained for these domains indicated that:

imax€[8939..9064] clearly suggesting the spread of a severe epidemics;

max€[0.584..0.666] and #,a€[20.099..22.405] predicting that the maximum will occur
during the first 14 to 16 hours, starting then to decline and ending before the 10™ hour of
day 22;

525 €[0..0.001] showing that everyone will eventually catch the disease.

If the administration of a vaccine is considered at a rate A proportional to the number of
susceptibles then, the differential model must be modified into:
BO _ i1 - as(0) O _ i) -al(t) IRE) _ a1y + 250)
dt dt dt
The requirement that the maximum number of infectives cannot exceed half of the
population is represented by adding the numerical constraint i;,,,x<5000. Solving this new
CCSP with the A initial domain [0..1.5], its lower bound is raised up to 0.985 indicating

that at least such vaccination rate is necessary to satisfy the requirement.

124 Summary

In this chapter the potentiality of the extended interval constraints framework was tested
for solving decision problems based on differential models. The diagnosis of diabetes, the
tuning of drug design and an epidemic study were effectively supported. Such examples
illustrated the expressive power of CSDP restrictions strengthening the importance of our
contribution for the integration of biophysical models in decision support. In the next
chapter the contributions of this work are analysed and directions for future work are
suggested.
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Chapter 13

Conclusions and Future Work

In this chapter we overview each individual contribution of this work, discuss its usefulness
and applicability, and identify related directions for further research. In the last section we
analyse the global value of our contribution to the more ambitious goal of integrating
biophysical models within decision support.

13.1 Interval Constraints for Differential Equations

The interval constraints framework was extended to handle Constraint Satisfaction
Differential Problems (CSDPs), which, for the first time, provide the full integration of
ordinary differential equations in constraint reasoning. Many existing ordinary differential
models may be represented as CSDP constraints and combined with other constraints in a
constraint model. Moreover, its expressive power, enhanced with non-conventional
restrictions, may encourage the development of new differential models that cannot be
handled by traditional techniques.

Previous versions of our approach were already proposed in [36, 37, 38], but they were
specially developed for handling initial value problems, and lacked the formalism and
adequate methodology for the integration of differential models into constraint reasoning.
Only recently such an integration could be achieved and evaluated by both the
mathematical community [41] and the constraint community [42]', with positive results.

Despite its encouraging results the approach can still be further improved and several
research directions are worth exploring.

Firstly, new kinds of ODE restrictions could be considered. The type of restrictions
considered in the CSDP formalism were derived from our experience in the biomedical
context, namely from the representation needs evidenced by the underlying differential
models. However, the expressive power can be improved by allowing new types of
restrictions more adequate for different kinds of differential models. For instance, a new
restriction could be considered for representing the period of an ODE.

Secondly, different representations of the ODE system could be supported. An
assumption of our approach is the continuity of the right hand side of the differential
equations. When there are discontinuities, a sequence of CSDP constraints is considered,
new variables are added for representing the restrictions at each continuous segment, and
new constraints are included to combine them and obtain its global value (see subsection
12.2.1). However, maximum, minimum, first and last restrictions cannot be easily
combined in numerical constraints without comparison operators. An useful direction for
research would be to extend the CSDP framework to allow the definition by segments of
the ODE system.

Thirdly, alternative solving procedures could be implemented. The procedure
developed for solving a CSDP relies on an Interval Taylor Series (ITS) method which was
originally conceived for solving initial value problems (IVPs), obtaining reliable enclosures

! “This paper is an interesting contribution to the handling of differential equations in constraint programming that goes
beyond simple initial values problems” (a citation from a reviewer of CP’2003).
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along the ODE trajectory. One limitation of our approach is a direct consequence of such a
method, which requires that at least one time point should be completely confined (even if
within wide bounds). Research could be accomplished for allowing other complementary
solving methods. For instance, methods used for solving boundary problems could be
studied. Moreover, from the different reliable approaches for solving IVPs, the ITS direct
method (see subsection 9.2.3) was selected due to its simplicity of implementation rather
than its efficiency. The application of more competitive approaches, such as the Hermite-
Obreschkoff interval method [103] or the Hermite interpolation constraint method [81],
should be considered, or alternatively, new Runge-Kutta interval methods could be
developed.

13.2  Global Hull-consistency

The interval constraints framework was extended with the new consistency criterion of
Global Hull-consistency, for which several enforcing algorithms were developed. Among
such algorithms, the Tree Structured Algorithm (TSA) presented the best performances
offering the advantages of keeping a tree-based compact description of the feasible space
and providing any-time results. Constraint problems, for which weaker consistency criteria
provide insufficient pruning of variable domains, may be solved, with reasonable
computing costs, by enforcing Global Hull-consistency. Such improvement on domains
pruning is especially important in problems that include differential equations (see chapter
12). In general, due to its complexity, the applicability of the Global Hull-consistency
criterion is not suitable for problems with a large number of variables.

The criterion of Global Hull-consistency was firstly introduced in [39], where only
preliminary results on a simple example were presented. The complete description of the
various Global Hull-consistency enforcing algorithms (presented in chapter 6) and their
experimental results (as discussed in chapter 8) was published in [40].

Several research directions can be envisaged for improving the constraint pruning
techniques in continuous domains and, in particular, for ameliorating our Global
Hull-consistency approach.

Firstly, the underlying algorithm for enforcing Local-consistency can be further
improved. The local consistency criterion currently required is Box-consistency, which is
enforced by the constraint Newton method (see subsection 4.2.2). The method associates a
narrowing function to each variable of each constraint for reducing its domain bounds
accordingly to the constraint. Since only a single smaller box is required, the narrowing
algorithm is exclusively concerned with the outer limits of the variable domains. However,
during the narrowing process unfeasible regions within each variable domain may be
detected. Such knowledge could be incorporated in the tree-based description of the
feasible space. Other related research directions would be the development of alternative or
complementary narrowing functions. For instance, any of the complementary approaches
described in 4.2.3 could be considered for improving the domains pruning achieved
through constraint propagation.

Secondly, the branching strategy of the Global Hull-consistency enforcing algorithms
may be refined. Currently, whenever a box is subdivided, two sub-boxes are considered,
sharing all variable domains of the original box, except the one with largest width, which is
split by its mid point. Better strategies could be implemented taking into account other
domains to split, other split points, or even more subdivisions. Such decision should be
equated in the context of both the overall enforcing algorithm requiring the subdivision and
the underlying constraint propagation algorithm that will eventually prune each sub-box.

Thirdly, the advantages of having a tree-based compact description of the feasible
space could be further explored. The tree structure representation of the search space is
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exclusively used by the 7SA4 algorithm for supporting the search without losing any
previously obtained pruning information. An interesting research direction would be to
develop a visual interface tool for user interaction, based on the current state of the
domains tree. Such a tool could provide the user with a general perspective on the feasible
space, allowing for the interactive specification of sub-regions of interest which would be
further pruned by reinforcing Global Hull-consistency. A direct consequence of the
generalisation of this idea is the definition of even stronger consistency criteria based on
the recursive enforcement of Global Hull-consistency. Another appealing research area
related with the domains tree and with both of the above extensions is the parallel
exploration of the different branches of the tree.

13.3 Local Search for Interval Constraint Reasoning

A local search procedure was developed for integration with constraint reasoning in
continuous domains. The local search is confined to specific boxes of the search space,
relying on the generic branch and bound strategy of the constraint reasoning algorithm to
overcome local minimum. It can be used for accelerating the finding of canonical solutions
in CCSPs. In particular, the integration of local search with the enforcement of Global
Hull-consistency may be advantageous for reducing both the overall execution time and the
memory storage required.

The local search procedure was introduced in association with the Global
Hull-consistency criterion and described as an optional tool for enhancing its enforcing
algorithms [39, 40]. Not enough testing was yet performed for identifying the kind of
constraint problems where the application of local search is advantageous. Future work
should be done to evaluate the impact of local search in continuous constraint
programming and, in particular, for enforcing Global Hull-consistency.

The integration of local search in continuous constraint programming is a widely open
research area. In particular, our local search approach may be improved in several ways.

Firstly, the line search procedure may be modified. In the proposed approach, new
points are obtained through minimisation along the Newton vector, as long as they are kept
inside the search box. Since local minima are overcome by a generic branch and bound
strategy, a natural variation could be to skip the minimisation procedure and to take
complete Newton steps bounded within the search box. Another alternative that is worth
further research could be to allow the search to evolve outside the original search box.

Secondly, different kinds of local search procedures could be explored. Any of the
alternatives described in section 7.2 could be considered. For instance, the alternatives
based on strategies for solving constrained optimisation problems, such as Penalty methods
and Lagrange-Multiplier methods, seem to be the best candidates.

Thirdly, the integration of local search with the CSDP constraints can be improved. In
the Jacobian matrix, necessary for computing the Newton vector, the elements associated
with variables of the solving base of a CSDP constraint are computed approximately from
the derivative definition (see definition 10.2-7). Such a method implies an extra ODE
evaluation on a nearby point, and is subject to errors depending on the distance of such a
point from the current one. A better alternative could be to use the available information
about the ODE system to obtain the partial derivatives with respect to those variables.

13.4 Prototype Implementation: Applications to Biophysical Modelling

All the proposed extensions to the interval constraints framework were implemented in a
prototype application. The usefulness of the application for supporting decisions based on
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differential models was tested in diverse biophysical domains. It proved to be a valuable
supporting tool for the diagnosis of diabetes, the tuning of drug design, and the study of
epidemics. In general, its ability to handle parametric differential models makes the
approach potentially applicable on a wide range of problems, namely, those requiring the
integration of a dynamics model into decision support.

The practical application of our approach combines constraint reasoning with
mathematical modelling and biomedical knowledge. Consequently, an evaluation of the
approach should verify its correctness on these complementary perspectives. The results on
biomedical decision support with ODEs (chapter 12) were published in a constraint
programming conference [42], a mathematical conference [41], and a biomedical
conference [43].

With respect to the implementation of our prototype application many improvements
are conceivable. The application was developed for testing the feasibility of our approach
and does not pretend to be competitive with other well established constraint programming
systems. Consequently, an important practical issue is the full revision of the code for
efficiency proposes.

Another important topic for further research is the tuning of the prototype parameters.
Several decisions with respect to the functioning of the underlying algorithms were left as
parameters of the prototype application and may be adjusted for each specific problem.
Examples of such parameters are the order of the Interval Taylor Series method, the error
tolerances accepted, the maximum number of time points considered, etc. A thorough study
should be made to try to understand which parameter values are more suitable for each
particular problem.

Finally, the application of our approach for modelling other domains is an open area
with a variety of research possibilities. In particular, we plan to apply it to predator-prey
models, neurophysiology models, reaction kinetic models, satellite localisation models, and
aerodynamic models.

13.5 Conclusions

The integration of deep biophysical models into decision support is a challenging goal,
difficult to accomplish, but fundamental for the development of model-based reasoning in
biomedical domains. Our work is a contribution towards that. Several differential models
can now be used for decision support through constraint reasoning. The constraint
reasoning techniques were extended for a better adequacy to such a demanding context of
decision support based on complex non linear models.

However, there are still important research areas that may provide valuable
contributions for adapting constraint reasoning to such context.

The expressive power on the constraints framework can be further extended. Given the
hybrid nature of many biophysical models, combining real variables with integer and
boolean variables, integer constraints and conditional constraints should also be supported.
Another possibility is to provide a new domain type for representing functions as primary
objects, allowing to reason about their properties. This is an idea borrowed from the CSDP
framework, where there is a variable for representing a function and restrictions on its
properties. Constraints on the maximum or minimum values of a real function over some
interval are not specific of differential equations, and should also be handled in the case
where the function is defined analytically.

Additionally, the representation of other kinds of differential equations could be
supported by the CSDP framework, broadening the spectrum of its potential applications.
Ordinary differential equations are the present scope of the CSDP framework. However,
many differential models (e.g. econometric models, flow models) cannot be represented by
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ODEs. An important area for future research is the extension of the framework for handling
other kinds of differential equations such as Partial Differential Equations (PDEs) or Delay
Differential Equations (DDEs).

Finally, constraint reasoning could be extended with probabilistic reasoning. In

decision problems there are often several possible options, all of them consistent with the
constraint set. In practice, whenever a decision is required, the choice is made based on the
probability/likelihood of the possible options. Uncertainty may be naturally represented in
the constraints framework as intervals of possible values. However, there is often also
information about the distribution of the different value possibilities, some values being
more likely than others. Defining a distribution function for each variable range and
knowing how each individual contribution would be combined (for example, assuming its
independence), a global probability/likelihood value could be computed. Such knowledge
could be subsequently included in the constraint model and used for supporting
probabilistic reasoning based on the ranking of each canonical solution.
We believe that the relative unpopularity of constraint reasoning in continuous domains (at
least compared with finite domains) is essentially due to not providing what is needed in
practice. Problems in continuous domains are very demanding and solutions are required to
be obtained efficiently. Users are willing to sacrifice safety for speed. They are used to the
traditional mathematical tools capable of “quickly” providing approximations that are
usually good enough for their needs. To change this situation constraint programming must
impose itself as a convincing better alternative. It must be able to provide modelling and
reasoning capabilities that go beyond what is traditionally offered by the competing
alternatives, namely supporting safe decisions with acceptable computational resources.
We hope that this work has been a valuable contribution in such a direction.



This page intentionally left blank



(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

185

References

E. Ackerman, L. Gatewood, J. Rosevar, and G. Molnar. Blood Glucose Regulation
and Diabetes. In: Concepts and Models of Biomathematics, Chapter 4:131-156, F.
Heinmets (Ed.), Marcel Dekker, 1969.

G. Alefeld. Intervallrechnung uber den Komplexen Zahlen und einige Anwendungen.
Ph.D. Thesis, University of Karlsrube, 1968.

G. Alefeld, and J. Herzberger. Introduction to Interval Computations. Academic
Press, New York, USA, 1983.

K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179-210, 1999.

UM. Ascher, and L.R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, Philadelphia, USA, 1998.

C. Bendsten, and O. Stauning. FADBAD, a Flexible C++ Package for Automatic
Differentiation Using the Forward and Backward Methods, Technical Report 1996-
x5-94, Department of Mathematical Modelling, Technical University of Denmark,
Lyngby, Denmark, 1996.

C. Bendsten, and O. Stauning. TADIFF, a Flexible C++ Package for Automatic
Differentiation Using Taylor Series, Technical Report 1997-x5-94, Department of
Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark,
1997.

F. Benhamou. Interval Constraint Logic Programming. In: Constraint Programming:
Basics and Trends, LNCS 910, 1-21, A. Podelski (Ed.), Springer-Verlag, 1995.

F. Benhamou. Heterogeneous Constraint Solving. In: Proceedings of 5™ International
Conference on Algebraic and Logic programming (ALP’96), LNCS 1139, 62-76,
M. Hanus, and M. Rodriguez-Artalejo (Eds.), Springer-Verlag, Aachen, Germany,
1996.

F. Benhamou, F. Goualard, and L. Granvilliers. An Extension of the WAM for
Cooperative Interval Solvers. Technical Report, Department of Computer Science,
University of Nantes, France, 1998.

F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box
Consistency. In: Proceedings of International Conference on Logic Programming
(ICLP’99), 230-244, D. De Schreye (Ed.), MIT Press, Las Cruces, New Mexico,
USA, 1999.

F. Benhamou, and L. Granvilliers. Combining Local Consistency, Symbolic
Rewriting and Interval Methods. In: Proceedings of 3™ International Conference on
Artificial Intelligence and Symbolic Mathematical Computation (AISMC-3), LNCS
1138, 144-159, J. Calmet, J.A. Campbell, and J. Pfalzgraf (Eds.), Springer-Verlag,
Steyr, Austria, 1996.

F. Benhamou, and L. Granvilliers. Automatic Generation of Numerical Redundancies
for Non-Linear Constraint Solving. Reliable Computing, 3(3):335-344, 1997.



186

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

References

F. Benhamou, D. McAllester, and P. Van Hentenryck.. CLP(Intervals) revisited.
In: Proceedings of International Logic Programming Symposium (ILPS’94), 124-
138, M. Bruynooghe (Ed.), MIT Press, Ithaca, New York, USA, 1994.

F. Benhamou, and W.J. Older. Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. Journal of Logic Programming, 32(1):1-24, 1997.

D.P. Bertsekas. Constrained Optimisation and Lagrange Multiplier Methods,
Academic Press, New York, USA, 1982.

D.P. Bertsekas. Nonlinear Programming. (2" Edition) Athena Scientific, Belmont,
1999.

M. Berz. COSY INFINITY version 8 reference manual. Technical Report MSUCL-
1088, National Superconducting Cyclotron Lab., Michigan State University, East
Lansing, Michigan, USA, 1997.

M. Berz, and K. Makino. Verified Integration of ODEs and Flows Using Differential
Algebraic Methods on High-Order Taylor Models. Reliable Computing, 4:361-369,
1998.

L. Bordeaux, E. Monfroy, and F. Benhamou. Improved bounds on the complexity of
kB-consistency. In: Proceedings of 17" International Joint Conference on Artificial
Inteligence (IJCAI’2001), Volume 1, 640-650, B. Nebel (Ed.), M. Kaufmann
Publishers Inc., Seattle, Washington, USA, 2001.

R.W. Brankin, I. Gladwell, and L.F. Shampine. RKSUITE: a Suite of Runge-Kutta
Codes for the Initial Value Problem of ODEs. Softreport 92-S1, Department of
Mathematics, Southern Methodist University, Dallas, Texas, USA, 1992.

R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1973.

P.N. Brown, G.D. Byrne, and A.C. Hindmarsh. VODE: a Variable-coefficient ODE
Solver. STAM Journal on Scientific Computing, 10(5):1038-1051, 1989.

C.G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations.
Mathematics of Computation. 19: 577-593, 1965.

R. Bulirsch, and J. Stoer. Numerical treatment of ordinary differential equations by
extrapolation methods. Numerische Mathematik, 8(1): 1-13, 1966.

O. Caprani, B.Godthaab, and K. Madsen. Use of a Real-Valued Local Minimum in
Parallel Interval Global Optimization. Interval Computations, 2:71-82, 1993.

J.G. Cleary. Logical Arithmetic. Future Computing Systems, 2(2):125-149, 1987.

H. Collavizza, F. Delobel, and M. Rueher. A Note on Partial Consistencies over
Continuous Domains. In: Proceedings of 4™ International Conference on Principles
and Practice of Constraint Programming (CP’98), LNCS 1520, 147-161, M.J. Maher,
and J.-F. Puget (Eds.), Springer Verlag, Pisa, Italy, 1998.

H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Reliable
Computing, 5:1-16, 1999.

[CDR99b] H. Collavizza, F. Delobel, and M. Rueher. Extending Consistent
Domains of Numeric CSP. In: Proceedings of 16" International Joint Conference on
Artificial Inteligence (IJCAI’99), 406-413, T. Dean (Ed.), Morgan Kaufmann,
Stockholm, Sweden, 1999.



[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

References 187

G.F. Corliss, and R. Rihm. Validating an A Priori Enclosure Using High-Order
Taylor Series. In: Scientific Computing, Computer Arithmetic and Validated
Numerics: Proceedings of the International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics (SCAN’95), 228-238, G. Alefeld, A.
Frommer, and B. Lang (Eds.), Akademie Verlag, Wuppertal, Germany, 1996.

J. Cruz. Um Modelo Causal-Funcional para o Diagndstico de Doengas
Neuromusculares, Masters Thesis in Informatics Engineering, Science and
Technology Faculty of the New University of Lisbon, Portugal, 1995

J. Cruz, P. Barahona, and F. Benhamou. Integrating Deep Biomedical Models into
Medical Decision Support Systems: an Interval Constraint Approach. In: Proceedings
of the 7™ Joint European Conference on Artificial Intelligence in Medicine and
Medical Decision Making (AIMDM’99), LNAI 1620, 185-194, W. Horn, Y. Shahar,
G. Lindberg, S. Andreassen, J. Wyatt (Eds.), Springer, Aalborg, Denmark, 1999.

J. Cruz, P. Barahona, A. Figueiredo, M. Veloso, and M. Carvalho, DARE: A
Knowledge-Based System for the Diagnosis of Neuromuscular Disorders,
Applications of Artificial Intelligence, Advanced Manufacturing Forum, 1:29-40,
J. Mamede, and C. Pinto-Ferreira (Eds.), N. Scitec Publications, 1996.

J. Cruz, and P. Barahona. A Causal-Functional Model Applied to EMG Diagnosis.
In: Proceedings of the 6™ Conference on Artificial Intelligence in Medicine in Europe
(AIME’97). LNCS 1211, 249-260, E.T. Keravnou, C. Garbay, R.H. Baud, and J.C.
Wyatt (Eds.), Springer, Grenoble, France, 1997.

[CB99a]J. Cruz, and P. Barahona. An Interval Constraint Approach to Handle
Parametric Ordinary Differential Equations for Decision Support. In: Proceedings of
the 5" International Conference on Principles and Practice of Constraint
Programming (CP’99), LNCS 1713, 478-479, J. Jaffar (Ed.), Springer, Alexandria,
Virginia, USA, 1999.

[CB99b]J. Cruz, and P. Barahona. An Interval Constraint Approach to Handle
Parametric Ordinary Differential Equations for Decision Support. In: Proceedings of
the 2" International Workshop on Extraction of Knowledge from Data Bases
(EKDB’99), associated with 9" Portuguese Conference on Artificial Intelligence
(EPIA’99), 93-108, F. Moura Pires, G. Guimardes and A. Jorge (Eds.), Springer,
Evora, Portugal, 1999.

J. Cruz, and P. Barahona. Handling Differential Equations with Constraints for
Decision Support. In: Proceedings of the 3™ International Workshop on Frontiers of
Combining Systems (FroCoS’2000), LNAI 1794, 105-120, H. Kirtchner, and C.
Ringeissen (Eds.), Springer, Nancy, France, 2000.

J. Cruz, and P. Barahona. A Global Hull Consistency with Local Search for
Continuous Constraint Solving. In: Proceedings of the 10™ Portuguese Conference on
Artificial Intelligence (EPIA’2001). LNCS 2258, 349-362, P. Brazdil, and A. Jorge
(Eds.), Springer, Porto, Portugal, 2001.

J. Cruz, and P. Barahona. Maintaining Global-Hull Consistency with Local Search
for Continuous CSPs. In: Proceedings of the 1** International Workshop on Global
Constrained Optimisation and Constraint Satisfaction (Cocos’02), Springer,
Valbonne, Sophia-Antipolis, France, 2002.



188

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

References

[CBO03a]J. Cruz, and P. Barahona. Constraint Reasoning with Differential Equations.
In: Proceedings of the International Conference on Applied Numerical Analysis &
Computational Mathematics (NaCoM-2003), NaCoM-2003 Extended Abstracts, 38-
41, G. Psihoyios (Ed.), Wiley, Cambridge, UK, 2003.

[CBO3b]J. Cruz, and P. Barahona. Constraint Satisfaction Differential Problems.
In: Proceedings of the 9" International Conference on Principles and Practice of
Constraint Programming (CP’03), LNCS, Springer, Cork, Ireland, 2003 (accepted for
publication).

[CBO03c]J. Cruz, and P. Barahona. Constraint Reasoning in Deep Biomedical Models.
In: Proceedings of the 9™ Conference on Artificial Intelligence in Medicine
(AIME’03), LNAI, Springer, Cyprus, 2003 (accepted for publication).

E. Davis. Constraint Propagation with Interval Label. Artificial Intelligence,
32:281-331, 1987.

J.W. Demmel. Applied Numerical Linear Algebra. SIAM Publications, Philadelphia,
1997.

J.E. Dennis, and R.B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Least Squares. Prentice-Hall, Englewood Cliffs, New Jersey, USA,
1983.

Y. Deville, M. Janssen, and P. Van Hentenryck. Consistency Techniques for
Ordinary Differential Equations. In: Proceedings of the 4™ International Conference
on Principles and Practice of Constraint Programming (CP’98), LNCS 1520, 162-
176, M. Maher, and J.-F. Puget (Eds.), Springer, Pisa, Italy,1998.

P. Eijgenraam. The Solution of Initial Value Problems Using Interval Arithmetic.
Mathematical Centre Tracts N°144. Stichting Mathematisch Centrum, Amsterdam,
The Netherlands, 1981.

A. V. Fiacco, and G. P. McCormick. Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. SIAM Publications, Philadelphia, USA,
1990.

R. Fletcher. A New Approach to Variable Metric Algorithms. Computer Journal,
13:317-322, 1970.

R. Fletcher. Practical Methods of Optimization, 2nd Edition, Wiley, Chichester &
New York, 1987.

R. Fletcher, and M. Powell. A Rapidly Convergent Descent Method for
Minimization. Computer Journal, 6:163-168, 1963.

R. Fletcher, and C. Reeves. Function Minimization by Conjugate Gradients.
Computer Journal, 7:149-154, 1964.

G.E. Forsythe, M.A. Malcolm, and C.B. Moler. Computer Methods for Mathematical
Computations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1977.

E.C. Freuder. Synthesizing Constraint Expressions. In: Communications of the ACM
(CACM), 21(11):958-966, 1978.

C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1971.

P.E. Gill, and W. Murray. Numerical Methods for Constrained Optimization,
Academic Press, 1975.



[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

References 189

P.E. Gill, W. Murray, and M. Wright. Practical Optimization, Academic Press, New
York, USA, 1981.

G.H. Golub, and C. Reinsch. Singular Values Decomposition and Least Squares
Solution. Contribution I/10 in [WR71], 1971.

G.H. Golub, and C.F. Van Loan. Matrix Computations, 3™ Edition, Johns Hopkins
University Press, Baltimore and London, 1996.

F. Goualard. Langages et environnements en programmation par contraintes
d'intervalles. Ph.D. Thesis, Institut de Recherche en Informatique de Nantes,
Université Nantes, Nantes, France, 2000.

M. Gu, J.W. Demmel, and I. Dhillon. Efficient Computation of the Singular Value
Decomposition with Applications to Least Squares Problems. Technical Report
LBL-96201, Lawrence Berkeley National Laboratory, 1994.

E. Hairer, S.P. Nersett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems, 2" Edition, Springer-Verlag, Berlin, Germany, 1991.

E. Hansen. Topics in Interval Analysis, Oxford University Press, London, UK, 1969.

E. Hansen. A Globally Convergent Interval Method for Computing and Bounding
Real Roots. BIT 18:415-424, 1978.

E. Hansen. Global Optimization Using Interval Analysis. 2" Edition, Marcel Dekker,
New York, USA, 1992.

E. Hansen, and S. Sengupta. Bounding Solutions of Systems of Equations Using
Interval Analysis. BIT 21:203-211, 1981.

R.J. Hanson. Interval Arithmetic as a Closed Arithmetic System on a Computer.
Technical Report 197, Jet Propulsion Laboratory, 1968.

D. Sam-Haroud, and B.V. Faltings. Consistency Techniques for Continuous
Constraints. Constraints, 1(1-2):85-118, 1996.

P. Hartman. Ordinary Differential Equations. John Wiley and Sons, New York, USA,
1964.

M. Hartmann. Runge-Kutta Methods for the Validated Solution of ODEs. In:
Proceedings of the 4™ International Congress on Industrial and Applied Mathematics
(ICTIAM’99), 202, Edinburgh, Scotland, UK, 1999.

P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. John
Wiley & Sons, New York, USA, 1962.

T.J. Hickey. CLP(F) and Constrained ODEs. In: Proceedings of the Workshop on
Constraint Languages and their use in Problem Modelling, ECRC Technical Report
ECRC-94-38, 69-79, Jourdan, Lim, and Yap (Eds.), 1994.

T.J. Hickey, M.H. van Emden, and H. Wu. A Unified Framework for Interval
Constraints and Interval Arithmetic. In: Proceedings of the 4™ International
Conference on Principles and Practice of Constraint Programming (CP’98), LNCS
1520, 250-264, M. Maher, and J.-F. Puget (Eds.), Springer, Pisa, Italy, 1998.

T.J. Hickey, Q. Ju, and M.H. van Emden. Interval Arithmetic: from Principles to
Implementation. Technical Report CS-99-202, Brandeis University, USA, 1999.



190

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

References

J. Hoefkens, M. Berz, and K. Makino. Verified High-Order Integration of DAEs and
Higher-Order ODEs. In: Scientific Computing, Validated Numerics and Interval
Methods, 281-292, W. Kraemer, and J.W.V. Gudenberg (Eds.), Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2001.

E. Hyvonen. Constraint Reasoning based on Interval Arithmetic: the Tolerance
Propagation Approach. Artificial Intelligence, 58(1-3):71-112, 1992.

K. Ichida, and Y. Fugii. An Interval Arithmetic Method for Global Optimization.
Computing, 23(1):85-97, 1979.

M. Janssen, Y. Deville, and P. Van Hentenryck. Multistep Filter Operators for
Ordinary Differential Equations. Proceedings of the 5™ International Conference on
Principles and Practice of Constraint Programming (CP’99), LNCS 1713, 246-260, J.
Jaffar (Ed.), Springer, Alexandria, Virginia, USA, 1999.

M. Janssen, P. Van Hentenryck, and Y. Deville. A Constraint Satisfaction Approach
to Parametric Differential Equations. In: Proceedings of the 17" International Joint
Conference on Artificial Intelligence (IJCAI’2001), Volume 1, 297-302, B. Nebel
(Ed.), M. Kaufmann Publishers Inc., Seattle, Washington, USA, 2001.

M. Janssen, P. Van Hentenryck, and Y. Deville. Optimal Pruning in Parametric
Differential Equations. In: Proceedings of 7™ International Conference on Principles
and Practice of Constraint Programming (CP’01), LNCS 2239, 539-562, T. Walsh
(Ed.), Springer-Verlag, Paphos, Cyprus, 2001.

C. Jansson. A Global Optimization Method Using Interval Arithmetic. In: Proceeding
of the 3™ IMACS-GAMM Symposium on Computer Arithmetic and Scientific
Computing (SCAN’92), 259-268, L. Atanassova (Ed.), 1992.

P. Jeavons. Constructing Constraints. In: Proceedings of 4™ International Conference
on Principles and Practice of Constraint Programming (CP’98), LNCS 1520, 2-16,
M.J. Mabher, and J.-F. Puget (Eds.), Springer-Verlag, Pisa, Italy, 1998

W.M. Kahan. A More Complete Interval Arithmetic. Technical Report, University of
Toronto, Canada, 1968.

R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and C. Ullrich. Pascal-XSC: Language
Reference with Examples. Springer-Verlag, Berlin, Germany, 1992.

R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlershranken, Computing, 4:187-201, 1969.

L. Krippahl, and P. Barahona. Applying Constraint Propagation to Protein Structure
Determination. In: Proceedings of the 5" International Conference on Principles and
Practice of Constraint Programming (CP’99), LNCS 1713, 289-302, J. Jaffar (Ed.),
Springer, Alexandria, Virginia, USA, 1999.

L. Krippahl, and P. Barahona. PSICO: Solving Protein Structures with Constraint
Programming and Optimisation, Constraints, 7(3-4):317-331, 2002.

F. Kriickeberg. Ordinary Differential Equations. In: Topics in Interval Analysis, 91-
97, E. Hansen (Ed.), Clarendon Press, Oxford, UK, 1969.

J.D. Lambert. Numerical Methods for Ordinary Differential Systems. Wiley, London,
UK, 1991.

O. Lhomme. Consistency Techniques for Numeric CSPs. In: Proceedings of the
13™ International Joint Conference on Artificial Intelligence (IICAI’1993), 232-238,
R. Bajcsy (Ed.), Morgan Kaufmann, Chambéry, France, 1993.



References 191

[92] O. Lhomme, A. Gotlieb, M. Rueher, and P. Taillibert. Boosting the Interval
Narrowing Algorithm. In: Proceedings of the Joint International Conference and
Symposium on Logic Programming (JICSLP’96), 378-392, M.J. Maher (Ed.), MIT
Press, Bonn, Germany, 1996.

[93] O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic Optimization of Interval
Narrowing Algorithms. Journal of Logic Programming, 37(1-3):165-183, 1998.

[94] R.J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems.
In: Computer Arithmetic: Scientific Computation and Programming Languages. 255-
286, E.W. Kaucher, U.W. Kulisch, and C. Ullrich, (Eds.), Wiley-Teubner Series in
Computer Science, Stuttgart, Germany, 1987.

[95] RJ. Lohner. Einschliefung der Loésung Gewdohnlicher Anfangs- und
Randwertaufgaben und Anwendungen, Ph.D. Thesis, Universitit Karlsruhe,
Germany, 1988.

[96] R.J. Lohner. Step Size and Order Control in the Verified Solution of IVP with ODEs.
In: Proceedings of International Conference on Scientific Computation and
Differential Equations (SciCADE’95), Stanford, California, USA, 1995.

[97] A.K. Mackworth. Consistency in Network of Relations. Artificial Intelligence,
8(1):99-118, 1977.

[98] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to
Picture Processing. Information Science, 7(2):95-132, 1974.

[99] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA,
1966.

[T100]R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Studies in
Applied Mathematics 2, Philadelphia, USA, 1979.

[101]J.J. Moré, and S.J. Wright. Optimization Software Guide. STAM, Frontiers in Applied
Mathematics 14, Philadelphia, USA, 1993.

[102] J.D. Murray. Mathematical Biology, 2™ Edition, Springer, 1991.

[T03]N.S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial Value
Problem for an Ordinary Differential Equation. Ph.D. Thesis, Department of
Computer Science, University of Toronto, Canada, 1999.

[104]N.S. Nedialkov, and K.R. Jackson. An Interval Hermite-Obreschkoff method for
Computing Rigorous Bounds on the Solution of an Initial Value Problem for an
Ordinary Differential Equation. Reliable Computing 5(3), 289-310, 1999.

[T0STN.S. Nedialkov, and K.R. Jackson. ODE Software that Computes Guaranteed Bounds
on the Solution. In: Advances in Software Tools for Scientific Computing, 197-224,
H.P. Langtangen, A.M. Bruaset and E. Quak (Eds.), Springer-Verlag, 2000.

[T06] N.S. Nedialkov, and K.R. Jackson. A New Perspective on the Wrapping Effect in
Interval Methods for Initial Value Problems for Ordinary Differential Equations. In:
Perspectives on Enclosure Methods, 219-264, A. Facius, U. Kulisch, and R. Lohner
(Eds.), Springer-Verlag, Vienna, Austria, 2001.

[107]1N.S. Nedialkov, and K.R. Jackson. The Design and Implementation of an Object-
Oriented Validated ODE Solver. Submitted to Advances of Computational
Mathematics, 2002.



192 References

[108]N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Validated Solutions of Initial Value
Problems for Ordinary Differential Equations. Applied Mathematics and
Computation 105(1):21-68, 1999.

[T09]N.S. Nedialkov, K.R. Jackson, and J.D. Pryce. An Effective High-Order Interval
Method for Validating Existence and Uniqueness of the Solution of an IVP for an
ODE. Reliable Computing 7(6):1-17, 2001.

[110] M. Novoa. Theory of Preconditioners for the Interval Gauss-Siedel Method and
Existence/Uniqueness Theory with Interval Newton Methods. Department of
Mathematics, University of Southwestern Louisiana, USA, 1993.

[111]W. Older. Interval Arithmetic Specification. Technical Report, BNR Computing
Research Laboratory, 1989.

[112] W. Older. Application of Relational Interval Arithmetic to Ordinary Differential
Equations. In: Proceedings of the Workshop on Constraint Languages and their use in
Problem Modelling, International Logic Programming Symposium, M. Bruynooghe
(Ed.), Ithaca, New York, USA, 1994.

[113]W. Older, and F. Benhamou. Programming in CLP(BNR). In: Proceedings of the
International Conference on Principles and Practice of Constraint Programming
(PPCP’93), 228-238, Newport, Rode Island, USA, 1993.

[114] W. Older, and A. Vellino. Constraint Arithmetic on Real Intervals. In: Constraint
Logic Programming: Selected Research, 175-196, A. Colmerauer, and F. Benhamou
(Eds.), MIT Press, London, UK, 1993.

[115]J. Ortega, and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, USA, 1970.

[116] K. Petras. Validating Runge-Kutta Methods for ODEs with Analytic Right-Hand
Side. Oral Communication at the International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics (SCAN’00), Karlsruhe, Germany,
2000.

[117]E. Polak, and G. Ribiere. Note sur la Convergence de Methods de Directions
Conjuges. Revue Francaise Informat, Recherche Operationelle, 16:35-43, 1969.

[118] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing, 2" Edition, Cambridge University Press,
1992.

[119]J-F. Puget, and P. Van Hentenryck. A Constraint Satisfaction Approach to a Circuit Design
Problem. Journal of Global Optimization, 13:75-93, MIT Press, 1997.

[120] H. Ratschek, and J. Rokne. Computer Methods for the Range of Functions. Ellis
Horwood Limited, Chichester, UK, 1984.

[121] H. Ratschek, and J. Rokne. New Computer Methods for Global Optimization. Wiley,
New York, USA, 1988.

[122] D. Ratz. On Extended Interval Arithmetic and Inclusion Monotonicity. Institut fur
Angewandte Mathematik, University of Karlsrube, Germany, 1996.

[123]R. Rihm. Interval Methods for Initial Value Problems in ODEs. In: Topics in
Validated Computations: Proceedings of the IMACS-GAMM  International
Workshop on Validated Computations, 173-207, University of Oldenburg, J.
Herzberger, (Ed.), Elsevier Studies in Computational Mathematics, Elsevier,
Amsterdam, New York, USA, 1994.



References 193

[124]R. Rihm. Implicit Methods for Enclosing Solutions of ODEs. Journal of Universal
Computer Science, 4(2): 202-209, 1998.

[125] A. Semenov, T. Kashevarova, A. Leshchenko, and D. Petunin. Combining Various
Techniques with the Algorithm of Subdefinite Calculations. In: Proceedings of the
3rd International Conference on the Practical Application of Constraint Technology
(PACT'97), 287-306, London, UK, 1997.

[126] L.F. Shampine, and M.K. Gordon. Computer Solution of Ordinary Differential
Equations: the Initial Value Problem. W.H. Freeman and Company, San Francisco,
USA, 1975.

[127]L.F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman
and Hall, New York, USA, 1994.

[128] G. Sidebottom, and W.S. Havens. Hierarchical Arc Consistency for Disjoint Real
Intervals in Constraint Logic Programming. Computational Intelligence, 8(4):601-
623, 1992.

[129]S. Skelboe. Computation of Rational interval Functions. BIT, 14:87-95, 1974.

[130] E. Spitznagel. Two-Compartment Pharmacokinetic Models. Consortium for Ordinary
Differential Equations Experiments Newsletter (C-ODE-E). Harvey Mudd College,
Claremont, California, USA, (1992).

[131]O. Stauning. Enclosing Solutions of Ordinary Differential Equations.Technical
Report IMM-REP-1996-18, Department of Mathematical Modelling, Technical
University of Denmark, Lyngby, Denmark, 1996.

[132] O. Stauning. Automatic Validation of Numerical Solutions. Ph.D. Thesis, Technical
University of Denmark, Lyngby, Denmark, 1997.

[133]1J. Stoer, and R. Bulirsch. Introduction to Numerical Analysis. 2™ Edition, Springer,
New York, USA, 1992.

[134]P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems
Using a Branch and Prune Approach. SIAM Journal of Numerical Analysis, 34(2):
797-827, 1997.

[135]P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language for
Global Optimization. MIT Press, 1997.

[136] D.L. Waltz. Generating Semantic Descriptions from Drawings of Scenes with
Shadows. Techical Report AI-TR-271, MIT, Cambridge, USA, 1972.

[137]J.H. Wilkinson, and C. Reinsch. Linear Algebra. Handbook for Automatic
Computation II. Springer, Berlin, Germany, 1971.

[138]E.K. Yeargers, R.W. Shonkwiler, and J.V. Herod. An Introduction to the
Mathematics of Biology: with Computer Algebra Models. Birkhéuser, Boston, USA,
1996.



This page intentionally left blank



195

Appendix A

Interval Analysis Theorems

The demonstrations of the Interval Arithmetic theorems are based on several assumptions
about the basic interval arithmetic operators and their approximate evaluation. These
assumptions are in accordance with the original interval arithmetic proposal [99] where
division by an interval containing zero was not considered. However to integrate the
interval arithmetic theorems within the broader context of extended interval arithmetic it
would be necessary to extend the definitions of an interval arithmetic operator and of the
interval expression evaluation to handle multiple intervals'.

Assumption A-1 If ® is an m-ary basic interval arithmetic operator then, for the real
intervals 1y,...,0L,, ®(},...,I,,) is the smallest real interval enclosing the set S obtained by
applying it to m-tuples of real numbers, one from each of the m intervals:

S={D(r,....rm) | riel Ao ATwEly} Oy, 0n) A Vs ®Uy,....1n) <1
In particular, if @ is said to be able to compute the exact ranges within its interval
arguments then:

S={O),....rm) | r1€l; A A el = OU,.. L) a

Assumption A-2 The basic interval arithmetic operators are all inclusion monotonic. If ®
is an m-ary basic interval arithmetic operator then, for any real intervals [j,...,J,, and
1;,....I,’, the following property holds:

Vi<icm Ii'cli = O .. dy") € OUs,..... 1) Q

Assumption A-3 If ® is an m-ary basic interval arithmetic operator then, for the real
intervals Iy,...,I,, its approximate evaluation ®,.(;,...,,) with the outward evaluation
rules is defined as:

Dopi(11,- . )= Lap:( DU, . ., 1))
In particular, when the interval arithmetic evaluation is said to be performed with infinite
precision:

D11, .. L)=DU . .., I1) u

The following lemmas will be used in the demonstrations of the Interval Arithmetic
theorems.

Lemma A-1 Let /; and /> be two real intervals. If /;Ul, is a real interval then:
Iapx(lj) U Iapx(fg) = Iapx(bulg) a

Proof:

Let I;=<a..b> and I,=<c..d> with a<d (this is always possible by choosing appropriately I,
and 1,). If [;Ul; is a real interval then there cannot exist any real value r such that b<r<c
(otherwise there would be a gap within /;Ul>). Moreover, the smallest of the left bounds

! As discussed in subsection 3.1.1 multiple intervals may be originated from a division by an interval containing zero.
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and the largest of the right bounds of both intervals /; and /> must bound the real interval
I 0l,. Consequently its RF-interval approximation is (see definition 2.2.3-1):
LI 0L) = [Lmin(a,c) | max(b,d) ] (1)
On the other hand, the RF-interval approximations of each interval /; and I, are:
LI = [Lal T B ]
Lopllo) = [Lel. T d ]
Their union is necessarily a real interval because if it cannot exist any real value r such
that b<r<c then it also cannot exist any real value r such that b bl<r< c<c.
And so their union is:
LplD)) O Ipn(D) =[Lal T o UL ) [ dT) = [min(allc)). max( 6 1] dD)]  (2)
If ac then lald ] and S0 min(la ] ¢y a H min(a,c)] else
min(Lal] cJ)= cJH min(a,c)]. So, in both cases:
min(lal ¢y min(a,c) 3)
If b<d then [blKdl and so max(bl[dh=dHmax(bd)] else
max([ b 1] d )= b H max(b,d) | So, in both cases:

max( 5 1] d )= max(b,d) | )
From (3) and (4) it follows that the right sides of equations (1) and (2) are equal thus:
Iapx(ll) U [apx(IZ) = [apx([lU[Z) u

Lemma A-2 Let Fy be an interval expression. Let B, B; and B, be n-ary R-boxes. If
B=B;UB; then Fr(B;)UFg(B>) is a real interval. a

Proof:

Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions:
the two base clauses (i and ii) specify that interval constants (/) and interval variables (X;)
are the basic elements of the defined set; the inductive clause (iii) specifies how to generate
additional elements from existing elements £;,...,E,, and an m-ary basic interval arithmetic
operator ©.

We will present an inductive proof that for every interval expression Fr belonging to
this set, the property that F(B;)JFg(B>) is a real interval must hold (where B, B; and B; be
n-ary R-boxes and B=B;UB;). The proof consists on a basis step which shows that the
property holds for the basic elements (Fz(B;)UFg(B;) is a real interval with Fz=[ and with
Fg=X)) and an inductive step which shows that if the property holds for some elements
Ey,....E, (inductive hypothesis: E{B;)JE(B;) is a real interval with 1<i<m) then it holds
for any elements generated from them by the inductive clause (Fg(B;)UFg(B:) is a real
interval with F=®(E,,....Ey)).

Basis Step

® Proof that Fg(B,)UFk(B;) is a real interval with F=I (where [ is a real interval):

Accordingly to definition 3.2-4, in the case of Fx=I:
FE(B]) = FE(B2) = [apx([)

Consequently:
Fi(B)OFp(B2) = lapx(1)
which is a real interval (see definition 2.2.3-10of RF-interval approximation) (1]

@ Proof that Fg(B;)UFg(B;) is a real interval with Fg=X; (where X; is an interval
valued variable):
Accordingly to definition 3.2-4, in the case of F=X:
FE(B])zlapx(BI [A/t])
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FE(B2)=Iapx(B2[)(i])

Consequently:

FE(BI)UFE(BZ) = IapX(BI[Xi]) o IapX(BZ[/Yi]) (1)

If B=B;UB; and B, B, and B, are n-ary R-boxes then:

V1<i<m BIXi=B1[Xi]VB;[X]]

So, for any 1<i<m, B;[X;]UB;[X;] is a real interval since B[X;] is a real interval (see
definition 2.2.4-1 of an R-box). Because B,[X;] and B,[X;] and both real intervals and their
union is a real interval then, by Lemma Al it follows:

Lop(B1[Xi]) O Lupd( Bo[Xi]) = Lopu(B1[Xi]\WB:[Xi]) )
From (1) and (2) it follows that:
Fr(B1)VFE(B2) = Lip(B [ X]]WB:[Xi])
which is a real interval. (2]

Inductive Step
® Proof that Fg(B;)JFg(B;) is a real interval with Fg=®(E},...,E,,) and E(B;)JE(B>)
real intervals (1<i<m):
Accordingly to definition 3.2-4 in the case of Fe=®(E},...,E,,) and Assumption A3:
Fe(B1)= Oupl E1(B1),. .., En(B1)) = Lip(D(E((B)), ..., En(B1)))
Fi(B2)= Qupu E1(B2), ..., En(B2)) = Lyp(D(E((B>),..., Ex(B>)))

Consequently:
Fi(B1) W Fi(B2) = Lp P(E(B)),..., En(B1))) W Lap( P(E1(B2),..., En(B2))) 3
But by Assumption Al:
Si={®(r,....rm) | 1€ Ei(B1) Aeo.AFm€ En(B1)} < ©(E((B)),- .., En(B1)) 4
S2:{¢)(r1,...,rm) ‘ rie E[(Bg) N NTpE Em(Bg)} [ (D(E](BQ),..., E,,,(Bz)) (5)

The union of these two sets gives:

S]USZ = {CD(}"],. . .,rm)|r1 €E1(B1)UE1(BQ)/\. . ./\I"mEEm(Bj)UEm(Bg)}g CD(E[(B]),. . Em(B]))

UD(E((B2),..., En(B2))

From the inductive hypothesis we know that each Ei(B;)UE(B;) is a real interval
denoted as IR;:

S]USZZ {d)(r;,. . .,}"m) | }”]E[R}/\. . ./\}"mEIRm} c q)(E](B]), . .,Em(Bj))U(D(Ej(Bg),. cey Em(Bz))
And again by Assumption Al, ®(IRy,...,IR,) must be the smallest real interval enclosing
S[USQI

S1uS, < O(URy,. .. IR, € P(E(B)),..., En(B1)) W ®(E(B>),..., Ex(B2)) (6)
From (4), (5) and (6) we may conclude that ®(E(B)),...,E.(B))VD(E(B>),...,En(B>)) is
necessarily a real interval. This fact will be proved by contradiction where it is assumed
that ®(E(B)),....En(B1)VDP(E(B,),....Ex(B2)) is not a real interval and a contradiction is
proved:

Suppose  D(E(B)),...,En(B)VDP(E((B>),....En(B2)) 1s not a real interval then
O(IRy,...,IR,) which is an interval must be a subset of ®(E(B)),...,E.(B;)) or a subset of
O(E((B,),..., En(B)). The reason for this is that there is no way of some elements of the
interval ®(IRy,...,IR,) be within O(E/(B)),...,En(B;)) and other elements be within
O(E((B)),..., En(B2)) without these two intervals be connected (and their union be a real
interval).

If ®(IRy,...,IR,) < D(E((B)),..., En(B))) then from (6):

S[USQQ@(E](B/),. cey Em(B1))

But in (4) we said that ®(E(B)),..., Ex(B;)) is the smallest real interval enclosing S;, so
S1US,=S;, which means that:

Ayl

And from (4) and (5) because they are the smallest real intervals enclosing these sets:
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(D(E](Bg),. “ey Em(Bg))g(D(E](Bj),. vy Em(B]))
which is contradictory with the assumption that ®(E(B)),...,Ex(B;)VP(E(B>),..., Ex(B2))
is not a real interval.

If ®(Ry,....IR,) < D(ENB2),..., En(B)) a similar reasoning may reach to the
analogous conclusion that ®(E(B)),....En(B1)P(E(B>),...,.En(B2)) which is
contradictory with the assumption that ®(E;(B)),...,En(B1)VP(E(B2),..., Ex(B>2)) is not a
real interval.

Consequently ®(E(B)),...,En(B1)VP(E(B2),...,Ex(B2)) is necessarily a real interval.
But if it is a real interval and both, ®(E(B)),....E.(B;)) and ®(E,(B,),...,E.(B>)), are real
intervals, then from Lemma Al:

Lip(D(E((B)),. ... En(B 1)L up D(E((B2),. . ..Ei(B2))=Lap(P(E ((B)), - . .. En(B 1)) OD(E(B2),
e s Em(B2)))
And from (3) it follows that:
FE(BI) |\ FE(BQ) = Iapx((D(Ej(B]), e ,E,n(BI))Uq)(E1(Bg), .. .,Em(Bg))
which is a real interval. (3]
|

Lemma A-3 The RF-interval approximation of a real interval is inclusion monotonic, that
is, for any real intervals 7 and I’ the following property holds:
'Sl = () S Lp]) a

Proof:
Let I=<a..b> and I'=<a’..b "> be two real intervals. If I'c/ then a<a’ and b ’<b.

From definition 2.2.3-1 of RF-interval approximation we know that:
LoplD)=Lp(<a’.b>)=[La’] [b'T] (1)
Lp(D=Lp(<a..b>)=[La] I b]] )

But Lalis the largest F-number not greater than a and so, because a<a’, it must also be

not greater than a’. Consequently:
lal<la’] 3)
Similarly, [b]is the smallest F-number not lower than b and so, because b '<h, it must
also be not lower than b’. Consequently:
[b1<[b] )

From (1) and (2) together with (3) and (4) it follows:

L) S Lpx(D) u

Lemma A-4 If @ is an m-ary basic interval arithmetic operator then its approximate
evaluation is inclusion monotonic, that is, for any real intervals /;,...,1,, and I;’,...,I ,,’, the
following property holds:

v 1<i<m Il ’gll' = q)apx(ll ," . -,Im ’) < q)apx(lj,. . ,Im) 4
Proof:
If V| <j<m I '<I;, then from Assumption A3 we know that:

(I)apx([] ’a cee ,Im ’)=]apx(q)(11 ,9- .. alm ,)) (1)

Doy, L) =Lape( DU, . ., 1)) 2)

But due to the inclusion monotonicity property of the basic interval arithmetic operator
@ (Assumption A3):
;.. L") < DUy, .. L)
From the inclusion monotonicity property of the RF-interval approximation (Lemma
A3):
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Lap( DUy, L) S Lap( DU, . ., 11m)) 3)
From (1) and (2) together with (3) it follows:
DLy, L") S DL, . s Im) u

Lemma A-5 If Fg be an interval expression representing the n-ary interval function F' then
its interval arithmetic evaluation is inclusion monotonic, that is, for any two n-ary R-boxes
B and B’, the following property holds:

B'CB = Fe(B’) C Fe(B) d

Proof:

Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions:
the two base clauses (i and ii) specify that interval constants (/) and interval variables (X;)
are the basic elements of the defined set; the inductive clause (iii) specifies how to generate
additional elements from existing elements £/,...,E,, and an m-ary basic interval arithmetic
operator O.

We will present an inductive proof that for every interval expression Fr belonging to
this set, the inclusion monotonicity property must hold. The proof consists on a basis step
which shows that the property holds for the basic elements (Fg=/ and Fz=X;) and an
inductive step which shows that if the property holds for some elements Ej,....E,
(inductive hypothesis: V|<;j<y; E; is inclusion monotonic) then it holds for any elements

generated from them by the inductive clause (Fg=®(E},....Ey,)).

Basis Step

® Proof that Fz=I is inclusion monotonic (where / is a real interval):

Accordingly to definition 3.2-4, in the case of F=I, for any two R-boxes B and B
Fp(B) = Fe(B") = lup])

Consequently:
B'CB = Fr(B’) C Fr(B) o

@ Proof that Fz=X; is inclusion monotonic (where X; is an interval valued variable):
Accordingly to definition 3.2-4, in the case of Fz=X;, for any two R-boxes B and B

Fu(B ) =lapx(B[Xi]) (1

Fe(B)=lp:(B[Xi]) 2
But if B'cB then for every 1<i<m it follows:

B’lX]] < B[X]

And from the inclusion monotonicity property of the RF-interval approximation
(Lemma A3):
Lop(B'[Xi]) S Lopn(B[Xi]) 3
From (1) and (2) together with (3) it follows:
B'CB = Fy(B")  Fi(B) e

Inductive Step
® Proof that Fg=®(E|,...,E,) is inclusion monotonic (where V{<j<;, E; is inclusion
monotonic):
Accordingly to definition 3.2-4, in the case of Fr=®(E,,...,E),), for any two R-boxes B
and B™:
Fp(B’)= Qg EL(B),..., En(B’)) “)
Fi(B)= ®gp(E((B),..., Ex(B)) ®)
But if B'cB and for every 1<i<m E; is inclusion monotonic it follows:
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V1<i<m E{B’)< Ei(B)
And from the inclusion monotonicity property of approximate evaluation of the basic
interval arithmetic operator (Lemma A4):

cDapX(EI(B ’)" ces Em(B J)) - (DapX(EI(B)s~ ) Em(B)) (6)
From (4) and (5) together with (6) it follows:
B'CB = Fi(B") € Fi(B) ©
|

Lemma A-6 If F' is an n-ary interval function represented by interval expression F then F'
is inclusion monotonic, that is, for any two n-ary R-boxes B and B’, the following property
holds:

B'cB = F(B’) < F(B) Q

Proof:

Let B’ and B be the two n-ary R-boxes <[;,...,I, > and <[,,...,I,> respectively (with B'cB).
Accordingly to definition 3.2-3, F(B’) and F(B) are the smallest real intervals containing
respectively the ranges f*(<I;’,....L Ly 1o slysi>) and f5(<Ip,....LuLyer,.... L) (where
Lys1,... L4 are all the interval constants appearing in Fg) and f is expressed as fg
=D(ey,...,em) (obtained by replacing in Fr each interval variable X; by the real variable x;,
each interval constant /,.; by the real variable x,+; and each interval operator by the
corresponding real operator).

In this case the rangesj*(<11 VTN Sy SR S 3 andj*(<11,. woslnslys1,. .1y >) are:

j*(<11 ooy i tye S L>)= AR | de<dy’y. L Ly Gdn> S F(BY) 4)
f*(<[1,---a1n>[n+l;---,[n+k>): {f(d) | d6<11a-~-sIna[n+ls~--a[n+k>} < F(B) (5)
But if B’cB then for every 1<i<m it follows:
Ii'cl;
And so:
VlSiSm de<l;’,...L. Lyt Ly>= de<ly,... Dyl g, Dy
Consequently:
{f(d) | d€<1] ,,...,1,, ’,In+],...,ln+k>}g{f(d) ‘ d€<1],...,1,,,1,,+1,...,],,+k>} (6)

Because F(B’) is the smallest real interval enclosing the range {f(d) |
de<l;’,....I, JJy+1,... . L,1i>} (from (4)) and F(B) is also a real interval enclosing it (from (5)
and (6)), it follows:

F(B’) c F(B) [ |

Theorem 3.2-1 (Soundness of the Interval Expression Evaluation). Let F be an interval
expression representing the n-ary interval function F. Let B be an n-ary R-box. The interval
arithmetic evaluation of Fz with respect to B is sound:

F(B) cFp(B) Q

Proof:
Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions:
the two base clauses (i and ii) specify that interval constants (/) and interval variables (X;)
are the basic elements of the defined set; the inductive clause (iii) specifies how to generate
additional elements from existing elements E,...,E,, and an m-ary basic interval arithmetic
operator ©.

We will present an inductive proof that for every interval expression Fg belonging to
this set, the property F(B) cFg(B) must hold (where F is the n-ary interval function
represented by Fz and B is an n-ary R-box). The proof consists on a basis step which shows
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that the property holds for the basic elements (F(B)cFg(B) with Fr=I and with Fz=X;) and
an inductive step which shows that if the property holds for some elements Ej,...,E,
(inductive hypothesis: V|<;<;, F{B)CE{(B) where E; represents F;) then it holds for any

elements generated from them by the inductive clause (F(B)cFg(B) with Fg=®(E,...,E,)).

Basis Step
® Proof that F(B)cFg(B) with Fg=I[ (where [ is a real interval):

Accordingly to definition 3.2-3 (extended for allowing the representation of interval
constants — see footnote), in the case of Fg=I, F(B) is the smallest real interval containing

the range f* (1) with fexpressed as fz=x,. By the definition of the range of a real function f
over [

F D= | el

and in this particular case:
f 0=t | rien=1

Since [ is a real interval, it is the smallest real interval containing the range f* (/) and so:

F(B)=1 1)
Accordingly to definition 3.2-4, in the case of F=I
Fr(B)=Iop:(1) 2

Because /Rc/,,«(IR) for any real interval IR (see definition 2.2.3-1), from (1) and (2) it
follows:

F(B)cFE(B) o

@ Proof that F(B)cFg(B) with Fr=X; (where X; is an interval valued variable):
Accordingly to definition 3.2-3, in the case of Frg=X;, F(B) is the smallest real interval
containing the range f* (1) with I=B[X;] and f expressed as fz=x;. So, in this particular case:
S W={ri| rely=1=BLX]
Since B[X]] is a real interval, it is the smallest real interval containing the range fl< )
and so:
F(B)=B[Xi] 3)
Accordingly to definition 3.2-4, in the case of Fr=X;:
Fe(B)=lap(B[Xi]) “)
From (3) and (4) it follows:
F(B)<F«(B) )

Inductive Step

® Proof that F(B)cFg(B) with Fg=®(E,,....E,) and V{<j<y; F{B)CE(B) (where E;
represents F;):

Let B be the n-ary R-box <Ij,...,I,>. Accordingly to definition 3.2-3, if Fp=®(E},...,Ey)
then F(B) is the smallest real interval containing the range f* (B’) with
B=<Iy,....Li,Ly+1,....Insi> (Where I,1y,... I+ are all the interval constants appearing in Fp)
and fis expressed as fr =®(ey,...,e,) (obtained by replacing in Fz each interval variable X;
by the real variable x;, each interval constant /,+; by the real variable x,; and each interval
operator by the corresponding real operator).

Let f; be the real function represented by e;, and s; the variables appearing in e; (with

1<i<m). In this case the rangef*(B ) is:
S B'y= {fid) | deB"} = {D(fildls1])..... fuldlsn]) | deB'}

Moreover, the range of each f; over B [s;] (with 1<i<m) is:
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FBTs)={ fid) | dieB Tsi)}
and accordingly to definition 3.2-3, F{(B) is the smallest real interval containing it:
f (B [sDSFAB)
Consequently:
7B = {OF(ds1])s- - fuldlsm])|deB’} < {D(F1s...stm) | FIEFIB) Ao .A Fm€FW(B)}
But by Assumption Al:
.f*(B V{1 .. tm) | 1EF(B) Ao A 1m€Fw(B)} < O(F((B),..., Fu(B))
Because F(B) is the smallest real interval enclosing the range f* (B’) and ©(F(B),...,
Fu(B)) is also a real interval enclosing it:
F(B) € ©®(F(B),..., Fu(B))
Assuming the inductive hypothesis, Fi(B)cE(B) (with 1<i<m), and from the inclusion
monotonicity of the basic interval operators (Assumption A2), it follows that:
F(B) € ®(Fi(B),..., Fu(B)) € ©(E((B),..., En(B)) %)
On the other hand, in the case of Fp=®(E),...,E,) (see definition 3.2-4 and Assumption
A3):

Fp(B)= @y E((B),..., Ex(B)) = Lp(D(E((B),..., Ex(B))) (6)
From (5) and (6) it follows:
F(B)cF(B) ©
|

Theorem 3.2.1-1 (Soundness of the Evaluation of an Interval Extension). Let F be an
interval extension of an n-ary real function f. Let Fz be an interval expression representing
F. Let B be an n-ary R-box. Then, both F(B) and Fg(B), enclose the range of fover B:

f*(B) < F(B) < Fx(B) a|
Proof:
By the definition of the range fX< (B) of a real function f'over the n-ary R-box B:

7B = { f<rp,...r>) | <ri....r>€B} 1)

By definition 3.2.1-1, if F'is an interval extension of f'within B then:
V<p,...r>€eB A<ry ™) € F(<[rp.r),...[Fnra>)
If Fr is an interval expression representing F then /' must be inclusion monotonic
(Lemma A6), so:
<[r;.ri),...[Fn.0a><B = F(<[r;..r1].....[rn..r2]>) < F(B)
thus:
V<ry...r>eB A<r...r>) < F(B) (2)
From (1) and (2) it follows:
j*(B) ={f<ri....,r>) | <rp,...,r>€B} < F(B)
and from theorem 3.2-1, F(B) < Fr(B), consequently:
f'(B) < F(B) < Fx(B) u

Theorem 3.2.1-2 (Natural Interval Extension). Let fz be a real expression representing
the real function f. Let F, be the natural interval expression of fz. The interval function
represented by F), is the smallest interval enclosing for the range of f and the interval
arithmetic evaluation of F, is an interval extension of f denominated Natural interval
extension with respect to fz. (N




Appendix A. Interval Analysis Theorems 203

Proof:
The intended meaning of an interval expression Fp, as defined in 3.2-3, is to represent an
interval function F which applying to an R-box B obtains the smallest real interval
containing the range, within this box, of an associated real function. In the particular case
of the Natural interval extension F, with respect to fz, the associated real function is the
function represented by the real expression fz. Thus by definition 3.2-3, F obtains the
smallest interval enclosing for the range of f. Moreover, from theorem 3.2-1, F(B) < Fu(B),
and so interval arithmetic evaluation of F), is also an interval extension of f.

|

Theorem 3.2.1-3 (Intersection of Interval Extensions). Let F; and F, be two n-ary
interval functions and B an n-ary R-box. Let F' be an n-ary interval function defined by:
F(B)=F|(B)"F(B). If F; and F, are interval extensions of the real function f, then F is also
an interval extension of f. a

Proof:
By definition 3.2.1-1, if ; and F are interval extensions of f'within B then:

Vep, .. .r>eB < .n>)eFi(<[ri.ri),....[rura]>)
Ve, .. r>eB <ry . r>)eF(<[ri.ri],....[ru.ra]>)
Consequently:
V<r1”..’rn>EB[f(<r1,...,r,,>)eF1(<[r,..r,],...,[r,,,.r,,]>)/\f(<r1,...,rn>)ng(<[r1..r1],..‘,[rn..rn] >)]
which is equivalent to:
V<,ﬁ1’“”rn>€B A<ry,...r>)eF(<[r1.ril....[Fnetu)>) O Fo(<[r1.71),.... [Fnen]>)]
and if F is the interval function defined by F(B)=F;(B)NF>(B) then:
V<r1,...),ﬁn>€Bﬂ<r1,.‘.,r,,>)eF(<[r1..r1],...,[r,,..r,,]>)
which proves (definition 3.2.1-1) that F is also an interval extension of f. ]

Theorem 3.2.1-4 (Decomposed Evaluation of an Interval Extension). Let 7' be an
interval extension of the n-ary real function f. Let Fz be an interval expression representing
F. Let B, B; and B; be n-ary R-boxes. If B=B;UB, then:

F(B) € F(B))VFK(B2) < Fi(B) a

Proof:

The proof of the above theorem is divided in two sub-proofs. In the first it is demonstrated
that Fg(B;)UFg(B;)cFe(B) whereas in the second sub-proof F(B)cFg(B;)JFE(B,) is
asserted.

®  Proof that Fr(B;)JFg(B;)cFr(B) with B=B;UB;and Fr an interval expression:
If B=B;UB; then B,cB and B,cB, and from the inclusion monotonicity property of the
evaluation of an interval expression Fz (Lemma A5):

Fg(B2) € Fe(B)
and consequently (carrying out the union of the two left sides and the two right sides):

@ Proof that F(B)cFg(B;)VFg(B;) with B=B;UB, and Fg an interval expression
representing F’ which is an interval extension of the n-ary real function f:
Let B be the n-ary R-box <[j,...,I,>. Accordingly to definition 3.2-3, if F is an interval

expression representing F then F(B) is the smallest real interval containing the range g*(B )
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of a real function (not necessarily f) with B'=<[,,....[,,ly+1,....L,+i> (Where L,+y,... ., are
all the interval constants appearing in Ff)

If B=B,UB; (with B/=<I1,,...,I1,> and B,=<I[2,,...,I12,>) then the range g*(B ) is:
g*(B ) =GPl Fut i tse o0tk | <1 > €EB A <tuityeuii> €<y sy o Iyii>}
S (B) = {G(<r 1t ns 1 st usk®) | <Flree s> EBI A <Fyspye. i €<lyiny.. sy
U{g(<l"1,. < osPnslnt1s- .,}"n+k>)|<}"1,.. I E€B A<yt gy. > €<y, -7[n+k>}
=g"(Br) Vg (By) (By=<Ily,... Illysty....Tpei> and By'=<I21,... 20101, .1 i)
But again, accordingly to definition 3.2-3, F(B;) and F(B,) are the smallest real
intervals enclosing g"(B;") and g*(B,’) respectively, thus:
g(B)=g"(B) Ug (B:) C F(B)) U F(B)
By theorem 3.2.1-1 F(B) < Fr(B;) and F(B;) < Fg(B>), so:
g'(B") S F(B)) U F(B) € Fe(B1) U Fi(B.)
From Lemma A2 we know that if B, B; and B, are n-ary R-boxes with B=B;UB; then
Fr(B;)UFE(B;) is a real interval. Because F(B) is the smallest real interval enclosing the

range g*(B ) and Fg(B,)UFE(B,) is also a real interval enclosing it:
F(B) € Fi(B1)VFKB>) e
|

Theorem 3.2.1-5 (No Overestimation Without Multiple Variable Occurrences). Let F
be an interval expression representing the n-ary interval function F. Let B be an n-ary R-
box. If Fg is an interval expression in which each variable occurs only once, then:

F(B) = Fg(B) (with exact interval operators and infinite precision arithmetic evaluation)d

Proof:

Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions:
the two base clauses (i and ii) specify that interval constants (/) and interval variables (X;)
are the basic elements of the defined set; the inductive clause (iii) specifies how to generate
additional elements from existing elements E£,...,E,, and an m-ary basic interval arithmetic
operator ©.

We will present an inductive proof that for every interval expression Fy belonging to
this set, if Fg is an interval expression in which each variable occurs only once then
F(B)=Fg(B) (where F is the n-ary interval function represented by F, B is an n-ary R-box).
During this proof it is assumed that each basic interval operator appearing in F is able to
compute the exact ranges within its interval arguments and all the interval arithmetic
evaluations are performed with infinite precision. The proof consists on a basis step which
shows that the property holds for the basic elements (F(B)=Fg(B) with Fr=I and with
Fp=X;) and an inductive step which shows that if the property holds for some elements
E,,....E, (inductive hypothesis: V|<;<;,; Fi(B)=E{(B) where E; represents F;) then it holds
for any elements generated from them by the inductive clause (F(B)=Fg(B) with
Fi=®(E,,....En)).

Basis Step

® Proof that F(B)=Fg(B) with Fg=I (where I is a real interval):

Accordingly to definition 3.2-3 (extended for allowing the representation of interval
constants — see footnote), in the case of Fg=I, F(B) is the smallest real interval containing

the range f* (1) with fexpressed as fz=x,;. By the definition of the range of a real function f
over [:

FD={fr) | riel}




Appendix A. Interval Analysis Theorems 205

and in this particular case:

S W=tri | rieh=1
Since / is a real interval, it is the smallest real interval containing the range fk (/) and so:
F(B)=I 1)
Accordingly to definition 3.2-4, in the case of Fg=I:
Fp(B)y=lypA1)
Because we are assuming infinite precision arithmetic 7,,«(/)=I and so:
FoB)yLyp(D)-1 @
From (1) and (2) it follows:
F(B)=Fg(B) (1]

@ Proof that F(B)=Fg(B) with Fg=X; (where X; is an interval valued variable):
Accordingly to definition 3.2-3, in the case of Fz=X;, F(B) is the smallest real interval
containing the range f* (1) with I=B[X;] and f expressed as fr=x;. So, in this particular case:
S W={ri| riely=1=BLX]
Since B[Xj] is a real interval, it is the smallest real interval containing the range fk 0))
and so:
F(B)=B[Xi] 3)
Accordingly to definition 3.2-4, in the case of Fz=X;:
Fp(B)=lp(B[Xi])
Because we are assuming infinite precision arithmetic 7,,«(B[X;])=B[Xi] and so:
Fu(B)=lapx(B[Xi])=B[Xi] “)
From (3) and (4) it follows:
F(B)=Fg(B) e

Inductive Step

®  Proof that F(B)=Fg(B) with Fg=®(E,,...,E,) and V{<j<; F{B=E{B) (where E;
represents F):

Let B be the n-ary R-box <I,,...,I,>. Accordingly to definition 3.2-3, if Fi=®(E,,...,E,)
then F(B) is the smallest real interval containing the range j* (B’) with
B=<Iy,....Li,Ly+1,....Insi> (Where I,4y,...,1,+ are all the interval constants appearing in Fp)
and f'is expressed as fp =D(ey,...,e,) (obtained by replacing in Fr each interval variable X;
by the real variable x;, each interval constant /,.; by the real variable x,+; and each interval
operator by the corresponding real operator).

Let f; be the real function represented by e;, and s; the variables appearing in e; (with
1<i<m):

[ (B)={fid)| deB’} = {O(fild[s1]),.... fldlsn))) | dEB’}

Because there are no multiple occurrences of the X; variables, each s; must contain a
different subset (with no common variables) of the all set of variables. Consequently, if d;
denotes a tuple of real values associated with the subset s;, the range fk (B’) may be
rewritten as:

S BYHOGi(dls D). S dlsn)dEB }={ D). .. [ dn)|d1€B [s IA....AdwEB [s]}

The range of each f; over B [s;] (with 1<i<m) is:

S B Ts)={ fid) | dieB Tsi)}

Note that in the basis step it was proved that the range associated with each basic

element (Fg=I and with Fg=X) is a real interval. In the following we will prove that if the

ranges f;* associated with each E,...,E,, are all real intervals then the range /* associated
with Fp=®(E},...,E,) must also be a real interval. This will prove by induction that the
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range associated with any interval expression (in the conditions of the theorem) is a real
interval.

If the range ﬁ*(B [s:]) is a real interval then, accordingly to definition 3.2-3, F(B) must
be exactly this range since it is the smallest real interval containing it:

S (B [s)=Fi(B)

Consequently:

S BV ). [l du))|d1€B [ IA. .. Adw€B [, ]}={ @ ... 1)r1 €F(B)A... AT EF,(B)}

But by Assumption Al, in the particular case that @ is an m-ary basic interval operator
which is able to compute the exact ranges within its interval arguments:

j*(B N=A{D ... rm) | FIEFI(B) Ao A Tm€Fm(B)} = ®(F((B),..., Fu(B))

/*(B’) must be a real interval because it is defined as the result of a basic interval
operation and the result of a basic interval operation is a real interval (Assumption Al).
This completes the proof that the range associated with any interval expression (in the
conditions of the theorem) is a real interval.

Because F(B) is the smallest real interval enclosing fk (B’) and ®(F(B),..., Fu(B)) is a
real interval:

F(B) = ©(F((B),..., Fu(B))

Assuming the inductive hypothesis, Fi(B)=E{(B) (with 1<i<m) it follows that:
F(B) = ©(F((B),..., Fu(B)) = D(E((B),..., En(B)) (%)

On the other hand, and accordingly to definition 3.2-4, in the case of Fp=®(E},....Ey):
Fp(B)y= Qyp(E(B),..., Ex(B))

Because we are assuming infinite precision arithmetic, with Assumption A3:

Fi(B) = ®upd E((B),..., En(B)) = P(E((B),..., En(B)) (6)
From (5) and (6) it follows:
F(B)=Fg(B)

no



207

Appendix B

Constraint Propagation Theorems

The demonstrations of the first three Constraint Propagation theorems (4.1-1, 4.1-2 and
4.1-3) rely on one of the following assumptions about the restrictions on the representation
of the domains of the variables of a CCSP (see subsection 2.2.5).

Assumption B-1 Let P=(X,D,C) be a CCSP where X is the n-ary tuple of variables
<xp,....x,> and D is the Cartesian Product of their respective original domains
D;xDyx...xD,. The domains of the variables of the CCSP must be represented by unions of
n-ary F-boxes. The domain of any narrowing function associated with any constraint of C
is the set of all the elements within 7,,(D;)xIyp(D2)X...xI,d(D,) that are representable by
the union of n-ary F-boxes. u

Assumption B-2 Let P=(X,D,C) be a CCSP where X is the m-ary tuple of variables
<xp,....x,> and D 1is the Cartesian Product of their respective original domains
D;xDyx...xD,. The domains of the variables of the CCSP must be represented by single n-
ary F-boxes. The domain of any narrowing function associated with any constraint of C is
the set of all the elements within Z,,(D;)xIap(D2)x. .. xI4d(D,) that are representable by a
single n-ary F-box. (W

The following assumption is used in the demonstration of theorem 4.2.1-1.

Assumption B-3 Let ¢=(s,p) be an n-ary primitive constraint of a CCSP P=(X,D,C) with
§=<x,,...,X,>. Let @ be an m-ary basic operator and e; (with 0<i<m) a variable from s or the
real constant k.. Let v, be either 7; if e; is the variable x; or kg, if e; is the constant k.. Let
¢ e{<,=,>} and K be a set of real numbers defined as:
[0.40] ifo =<
K= [0] ifo==
[(©.0] iifo=2>
If ¢ is expressed in the form e; ¢ ey then it represents the relation (with n<2):
={<rty. o> FrEDX A . AP ED[x,A Ve, Ve, Tk A keK}
If ¢ is expressed in the form ®(ey,...,e,) <O ey then it represents the relation (W/ n<m+1):
<> TIEDX A AT ED[XIA @ (Ve ...y Ve, )=V, Th A kK
and is assumed that for any 1<i<m there is a basic ®, operator such that:

<1t P €DX A AP EDIAD o (Ve TV oo Ve, Ver o -Ve,) Ve MkEK A

The following lemmas will be used in the demonstrations of the Constraint Propagation
theorems.

Lemma B-1 If the union of two fixed points, 4; and 4,, of a monotonic narrowing function
NF is an element of its domain then it is also a fixed point:
VAI,AZ c DomainNF NF(A[):AI/\NF(AQ):AQ/\AIUAZ € DOIl’laiIlNFDNF(A1UA2):A1UA2 (]
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Proof:
If NF is a monotonic narrowing function, because 4,24, UA; and both A; and 4,UA; are
elements of its domain then, from definition 4.1-2 (property P3) it follows:

NF(A;) € NF(4,94>)

Since A4; is a fixed point of the narrowing function, NF(4;)=A; and, rewriting the left

side:

A; € NF(A4,VA>) 1)
If NF is a monotonic narrowing function, because 4>cA4,UA; and both A, and 4,UA; are
elements of its domain then, from definition 4.1-2 (property P3) it follows:

NF(A4>) € NF(A;945)
Since A4, 1s a fixed point of the narrowing function NF(A42)=A,, rewriting the left side:
A2 c NF(A]UAZ) (2)

From (1) and (2), carrying out the union of the two left sides and the two right sides, it
follows:
A]UAZ gNF(A;uAg) |\ NF(A]UAZ): NF(A[UAZ) (3)
On the other hand, due to the contractance property of any narrowing function
(definition 4.1-1, property P1):

NF(A]UAQ) c A1VA> (4)
Consequently, from (3) and (4), 4,04, must be a fixed point of NF:
NF(A;VAz) = A VA3 u

Lemma B-2 If the elements of the domain of a monotonic narrowing function NF are those
representable by unions of n-ary F-boxes then the union of any two fixed points, 4; and A4,,
is also a fixed point:

VAI,AgeDomaian NF(A 1)=A1 N NF(Az)zAZ = NF(A[UA2)= A[UA2 a

Proof:
If A; and 4, are representable by unions of n-ary F-boxes then they can be rewritten as:
A1:BI UL Bk’
A>=B;”U...uUB,”
Where each B;’ (with 1<i<k) and each B;” (with 1<i<k) are n-ary F-boxes.
Consequently, the union of these elements is:
A VA=B; U.. OB, UB;”U...UB,”
Which is also representable by unions of n-ary F-boxes and so, is an element of the
domain of the narrowing function:
A; U A; € Domainyg
Therefore, from Lemma B1, it follows that 4, U A, is also a fixed point of the
narrowing function:
NF(A]UAQ)ZA]UAZ |

Lemma B-3 If the elements of the domain of a monotonic narrowing function NF are those
representable by unions of n-ary F-boxes then the union of all its fixed points within an
element A4 of its domain is its greatest fixed point:

UFixed-Pointsys(4) e Fixed-PointsyA)

V 4; eFixed-Pointsy(4) 4i & JFixed-Pointsy(4) Q

Proof:
Consider the set of all fixed points of NF within an element 4 of its domain:
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Fixed-Pointsys(4) = { 4; € Domainyr | A; c A A NF(4;) = A4; }
This set must be a finite set because the number of elements 4; of the domain of NF which
are subsets of 4 must be finite (see subsection 2.2.5). Thus if the number of its elements is
m the set may be represented as:
Fixed-Pointsys(A) = { A4; € Domainyr | 4, A ANF(A)=A; } ={ Ap,..., An }
Consider the union of all the elements of the above set:
UFixed-Pointsys{(4) = 4; L...U 4,
Let 4’ be the element of the domain of NF resulting from the union of 4,,.; and 4,,:
4= Am-l (% Am
As seen in Lemma B2 the union of these two elements is also representable by unions
of n-ary F-boxes and so 4’ must be an element of the domain of NF. 4’ must be within 4
because both 4,,.; and 4,, are within 4 and, since 4,,.; and 4,, are fixed points of NF, from
Lemma B2, the element A4’ is also a fixed point of NF. Consequently it must be a member
of the set of all fixed points of NF' within A4:
Ae{An.. ., An}
So if we add the F-box A’ to the union of all fixed points of NF, it will have no effect:
UFixed-Pointsys(4) =4, U...U 4, =A;U...U A4, VA’
But if 4 '=4,,.;VA4,, then the elements A4,,.; and 4,, may be removed from the union of all
fixed points of NF without changing its result:
UFixed-PointsyA{(4) =A4;U...U A,y WA =A;U...U A2 VA’
This way, the union of all fixed points of NF, which was represented by a union of m
fixed points of NF, is now equivalently represented by a union of m-1 fixed points of NF.
Repeating the above procedure m-1 times, the union of all fixed points of NF will be
represented by a single element of the domain of NF. This element must be a fixed point of
NF (all the elements in the union are fixed points of NF) and must be its greatest fixed
point since it includes all the other fixed points (it results from the union of all of them). H

Lemma B-4 If the elements of the domain of a monotonic narrowing function NF are those
representable by a single n-ary F-box then the smallest F-box B enclosing any two fixed
points, B; and B, is also a fixed point:

VB,.B,eDomainys NF(B)=Bi A NF(B2)=B = NF(B)=B Q

Proof:
Let the fixed points B; and B, be the n-ary F-boxes <[;’,....[,”> and <[;”,....I,">
respectively. If B is the smallest F-box enclosing B; and B, then:
B=<I;’Wl;”,... . I,’WI, ">
If NF is a monotonic narrowing function then, because B; — B and B> c B, it follows:

NF(B;) < NF(B)
NF(B2) < NF(B)
Because B; and B; are fixed points of NF, NF(B;)=B; and NF(B,)=B,, hence:
B;c NF(B) (1)
B> c NF(B) (2

We will prove by contradiction that the above F-box B must be a fixed point of NF. We
will assume that B is not a fixed point of NF' and prove a contradiction.

Assuming that B is not a fixed point of NF' then, due to the contractance property
(definition 4.1-1, property P1), NF(B) must be a proper subset of B (if equality holds then B
would be a fixed point):

NF(B)c B
If <1,,...,I,> denotes the F-box obtained by NF(B) then:
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<l,...L>c<[;’Wl;”,.. 1, ">
and so there must be an i, between 1 and n, for which:
Lic WL
Let I=[a..b], I;’=[a’..b"] and [;"=[a"..b ] (these are all closed intervals since B, B’ and
B are F-boxes) then, by definition 2.2.2-1 of union hull:

[a.b]c [a’.b"|w [a”..b”] = [min(La’)La"))..max( 1] 5" ])] = [min(a’,a ”)..max(b’,

b")]
Implying that one of the following inequalities must be true:
min(a’,a”)<a (3)
max(b’,b”)> b “)

From (3) or (4) it follows that ;'€ I; or I,”¢ I; because:
if (3) is true and a’<a " then [;’¢ I;
if (3) is true and a "<a’then ;"¢ I;
if (4) is true and b’<b " then [;"¢E I;
if (4) is true and b ’<b’ then [;’¢ I;

But if [;’¢ I then B;£NF(B) contradicting (1) and if ;"¢ I; then B,Z£NF(B)
contradicting (2). In any case a contradiction is derived which proves that B must be a fixed
point of NF. u

Lemma B-5 If the elements of the domain of a monotonic narrowing function NF are those
representable by a single n-ary F-box then the union of all its fixed points within an
element B of its domain is its greatest fixed point:

UFixed-PointsyAB) € Fixed-PointsyB)

V B; eFixed-Pointsy(B) Bi = UFixed-Pointsyx(B) a

Proof:
Consider the set of all fixed points of NF within the F-box B:

Fixed-PointsyA(B) = { B; € Domainyr | B;< B A NF(B;)=B; }
This set must be a finite set because the number of F-boxes B; which are subsets of an F-
box B must be finite (see subsection 2.2.5). Thus if the number of its elements is m the set
may be represented as:

Fixed-Pointsy+(B) = { B; € Domainyr | B;< B A NF(B;))=B; } ={ Bi,..., B }

Consider the union of all the elements of the above set:

UFixed-Pointsys(B) = B; U...U B,

Let B’ be the smallest F-box enclosing both B, ; and B,,. B’ must be within F-box B
because both F-boxes B,,.; and B,, are within B. Moreover, since B,.; and B,, are fixed
points of NF, from Lemma B4, the F-box B’ is also a fixed point of NF. Consequently it
must be a member of the set of all fixed points of NF’ within B:

B’e{Bj,...,Bn}
So if we add the F-box B’ to the union of all fixed points of NF, it will have no effect:
UFixed-Pointsy~(B) =B;U...u B,=B;U...U B, UB’

But if B’ encloses both B,,.; and B,, then B,,.; UB,cB’ and so the F-boxes B,,.; and B,,

may be removed from the union of all fixed points of NF without changing its result:
UFixed-Pointsys(B) =B;U...u B, UB ' =B;U...UB,,UB’

This way, the union of all fixed points of NF, which was represented by a union of m
F-boxes (fixed points of NF), is now equivalently represented by a union of m-1 F-boxes
(also all of them fixed points of NF).
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Repeating the above procedure m-1 times, the union of all fixed points of NF will be
represented by a single F-box. This F-box must be a fixed point of NF (all the F-boxes in
the union are fixed points of NF) and must be its greatest fixed point since it includes all
the other fixed points (it results from the union of all of them). v

Theorem 4.1-1 (Union of Fixed-Points). Let P=(X,D,C) be a CCSP. Let NF be a
monotonic narrowing function associated with a constraint of C. Let 4 be an element of
Domainyr. The union of all fixed-points of NF within A, denoted UFixed-Pointsys(A4), is
the greatest fixed-point of NF within 4:

UFixed-PointsyAA) e Fixed-Pointsy(4)

V 4; eFixed-Pointsy(4) 4i = UFixed-Pointsys(4) a

Proof:
Let X be the n-ary tuple of variables <x;,...x,>.

If Assumption Bl is considered then, the elements of the domain of the monotonic
narrowing function NF are those representable by unions of n-ary F-boxes and so, from
Lemma B3, the union of all its fixed points within an element of its domain is its greatest
fixed point.

If Assumption B2 is considered then, the elements of the domain of a monotonic
narrowing function NF are those representable by a single n-ary F-box, from Lemma BS,
the union of all its fixed points within an element of its domain is its greatest fixed point.

In either case, it is proved that the union of all the fixed points of NF within an element
of its domain is its greatest fixed point. u

Theorem 4.1-2 (Contraction Applying a Narrowing Function). Let P=(X,D,C) be a
CCSP. Let NF be a monotonic narrowing function associated with a constraint of C and 4
an element of Domainyr. The greatest fixed-point of NF' within A4 is included in the element
obtained by applying NF to A:

UFixed-Pointsy«{(4) < NF(A)
In particular, if NF is also idempotent then:

UFixed-PointsyA(A4) = NF(A) a

Proof:
Let A’ be the union of all the fixed points of NF within element 4:
A’= UFixed-Pointsys(4)
From theorem 4.1-1 4 is the greatest fixed point of NF within A4, so it is a fixed point
of NF:

NF(A4)=4" (1)
But 4’ is within element 4:
A’ cA

Therefore, from the monotonicity property of a narrowing function (definition 4.1-2,
property P3) it follows:
NF(A’) € NF(A)
And from (1) NF(A4’) is the same as 4 which proves that:
A’ < NF(4) 2)
In particular, if NF is also idempotent then from definition 4.1-2, property P4:
NF(NF(A)) = NF(A)
Implying that NF(A) is a fixed point of the narrowing function NF. But from (2), if 4’
is smaller or equal than NF(A), it follows that the equality must hold: 4" = NF(A)
otherwise 4~ would not be the greatest fixed point of NF' within A. u
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Theorem 4.1-3 (Properties of the Propagation Algorithm). Let P=(X,D,C) be a CCSP.
Let set Sy be a set of narrowing functions (obtained from the set of constraints C). Let 4y be
an element of Domainng (Where NFeSy) and d an element of D (deD). The propagation
algorithm prune(S), 4o) (defined in figure 4.1) terminates and is correct:

Vd e 4,4 is asolution of the CCSP = d e prune(Sy, 4o)
If Sy is a set of monotonic narrowing functions then the propagation algorithm is confluent
and computes the greatest common fixed-point included in 4. a

Proof:

The propagation algorithm prune(Sy,4y) (defined in figure 4.1) is a procedure that obtains
smaller domain elements 4; (see assumption B1 and B2) from an original element 4y by
consecutively applying narrowing functions from a set Sy (obtained from the constraints of
the CCSP) until obtaining an element 4, which is a fixed point of every narrowing function
within Sj.

Due to the contractance property of the narrowing functions (definition 4.1-1, property
P1), the propagation algorithm terminates. The reason is that due to contractance, a smaller
(or equal) representable element (accordingly to assumptions B1 or B2) is obtained from
each application of a narrowing function (4;1;c4;). Moreover, because the set of
representable elements is finite (see subsection 2.2.5) this procedure is guaranteed to stop.

Due to the correctness property of the narrowing functions (definition 4.1-1, property
P2), the propagation algorithm is correct. No solution is lost because the value
combinations discarded by the application of a narrowing function do not satisfy at least
one constraint of the CCSP (the constraint associated with the narrowing function).

When the algorithm stops, which was proved above, the obtained element 4, is a
common fixed point of every narrowing function within Sy (otherwise a narrowing function
for which the element is not a fixed point would be applied). Moreover, if all narrowing
functions within Sy are monotonic then 4, must be the greatest common fixed-point
included in 4y. Otherwise, if there would have been a common fixed-point 4~ included in
Ay and greater than 4, (4,c4 'cAy) then, somewhere in the narrowing sequence from A, to
A, there would have been a step from A4, to 4;+; such that:

A cA'C 4;

But in this case, 4’ could not be a fixed point of the narrowing function NF for which
NF(A;)=A;+; because theorem 4.1-2 guarantees that NF(4;) includes all the fixed points of
NF within A4;. This fact contradicts the assumption that 4’ is a common fixed-point of every
narrowing function within Sy, proving that 4, must be the greatest common fixed-point
included in 4.

Because the above result was derived independently of the order for the application of
the monotonic narrowing functions within S, it is valid to any particular order and so the
propagation algorithm is confluent and computes the greatest common fixed-point included
in Ao. |

Theorem 4.2.1-1 (Projection Function based on the Inverse Interval Expression). Let
P=(X,D,C) be a CCSP. Let c=(s,0)eC be an n-ary primitive constraint expressed in the

form e ey where e=e; or e=D(ey,...,e,) (With @ an exact m-ary basic operator and e; a
variable from s or a real constant). Let Vx; be the inverse interval expression of ¢ with
respect to the variable x; (e; = x;). The projection function nxip of the constraint ¢ wrt
variable x; is the mapping:

nxf(B) = Vx4(B) N B[xi] where B is an n-ary real box a
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Proof:
The projection function n,f of the constraint ¢ wrt variable x; is, accordingly to definition
4.2-1:
T, (B)= (p N Blx] (1)
We will prove for both cases, where the primitive constraint is either expressed in the
form e; ¢ ey or in the form ®(ey,...,e,) < ey, that:
. (B) = Vxi(B) N Blx,] )

® Proof that nxf(B) = Vx4(B) N B[x;] with ¢ expressed as e;<ep:
Accordingly to Assumption B3, the relation represented by the constraint is (with n<2):
=<t 1y >| FIEDX A . AP ED[x,IA ve[:veo+k A keK}
and so its intersection with the F-box B is:
PB ={<r,...,r,>| r1€D[x/1NB[x]] A...AF€D[x,JNB[x,]A ve]:veg-i-k A keK}
Since the F-box B must be a subset of the original domains of the respective variables
of the CCSP:
B < DIs]
Implying that for each i (with 1<i<n) B[x;]cD[x;], and so D[x;JnB[x;]=B[xi],
consequently:
POB ={<rp,....ry>| r1€B[x/] A.. . AP EB[X,]A ve]:veo+k A keK}
The projection of the above set with respect to the variable x; depends if this variable is
the expression ey or is the expression e;.
If x;= ey then Ve, = i (see Assumption B3) and so:
(pNB)[xi]= { ri| rieBlxi] A...Arn€B[X,]A Ve = ri Tk A keK}
which is equivalent to:
(PNB)[xi]={ 71 | r1€BlX/IA.. AP E€BXA 1 = Vo -k A keK}
and may be rewritten as:
(PNB)[Xi1={ ve -k | ri€Blxi]A...Ari € BIXi IAFi1€B[Xiv1].. . AP, € Blx,)Ake K}NBx;]
Considering I, = B[x;] if e/=x; or I,= [ke,] if e=k,,, from the definition 3.1-1 of the
basic interval arithmetic operator (-) (see also Appendix A, Assumption A1), it follows:
(pPB)[xil= (Ig-K) N Blxi]
But 7, 1'K is the Natural interval extension of the real expression e;-k and so,
accordingly to definition 4.2.1-2, it corresponds to the interval arithmetic evaluation of the

inverse interval expression of ¢ with respect to x; =ey, denoted by Wx;. Therefore we have
proven that, for this case:

(pnB)[xi] = Vxi(B) N Blxi]
If x;= e; then v, = r; (see Assumption B3) and so:

(pNB)[xi]= { ri| rieBlxi] A...Arn€B[X,]A 11 = v, Tk A keK}
which may be rewritten as:

(POB)[xi]={ ve,th | rieBlxiIA...Ari € B[Xi IAFi1€B[Xi11]. . . APy € Blx,)Ake K}NB[xi]
,» from the definition 3.1-1 of the
basic interval arithmetic operator (+) (see also Appendix A, Assumption Al), it follows:

(pNB)[xi]= (Ig;+K) M Blxi]

Considering Ip,= B[x;] if eg=x; or Ip,= [ke,] if es=k,
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But /o, tK is the Natural interval extension of the real expression ejtk and so,
accordingly to definition 4.2.1-2, it corresponds to the interval arithmetic evaluation of the

inverse interval expression of ¢ with respect to x; =e;, denoted by Vx;. Therefore we have
proven that, for this case also:

(pNB)[x:] = Vxi(B) N B[xi]
Consequently, if the above is true for any possible case then, from (1), we have proven
that if ¢ expressed as e; O ey:

i (B) = Vx(B) N Blx,] 0

@  Proofthat TE,:(B) = Vx«(B) N Blx;] with c expressed as ®(ey,...,en)Oep:

Accordingly to Assumption B3, the relation represented by the constraint is (with
n<m+1):

A<, >| 11EDX A AT ED[XIA (Ve ..., Ve, )=Ve, kA keKS

and so its intersection with the F-box B is:

PB ={<rp,....1,>| r1€Dx1NBx[] A...AFnEDX]NBXIA @(Ves. ., Ve, Vet A
keK}

Since the F-box B must be a subset of the original domains of the respective variables
of the CCSP:

B c D[s]

Implying that for each i (with 1<i<n) B[x;JcD[x;], and so D[x;JnB[x;]=B[xi],
consequently:

POB ={<rp,....r> 1€B[xX1] A ATREBX,IA (Ve ..., Ve, )=V, Tk A keK}
The projection of the above set with respect to the variable x; depends if this variable is
the expression e, or is some expression ¢; with j between 1 and n.
If x;= ey then Ve, = i (see Assumption B3) and so:
(oNB)[x:]= { ri| r1eB[x/] A...AryE€B[x,]A OWe,s---» Ve, 711 Th A keK}

which is equivalent to:
(oNB)[x1={ ri | ri€Blx/IA.. . Ar€B[X A 1 = D(ve,s---» Ve, )k A keK}

and may be rewritten as:
(me)[x;]={CD(vel,...,vem)-k\r,eB[x,]/\.../\r,-,,eB[x;,,]/\rH,eB[xM].../\r,,eB[x,,]/\keK}mB[x;]

Considering I, = B[x] if e=x; or Ip=[k¢ ] if e=ke,, from the definition of any exact basic
interval arithmetic operator (@) (see Appendix A, Assumption Al), it follows:

(PNB)[xi]= (P, - -» Le,)-K) M Blxi]

O(lg)s---5le,)-K is the Natural interval extension of the real expression ®(ej,....en)-k
and so, accordingly to definition 4.2.1-2, it corresponds to the interval arithmetic evaluation
of the inverse interval expression of ¢ with respect to x; =ey, denoted Wx;. Therefore we
have proven that, in this case:

(oNB)[xi] = Yx4(B) M B[xi]
If x; = e, with j between 1 and n, then Ve Ti and from Assumption B3 there is a basic
operator @, such that:
(oNB)[x1={ri| rieBx/IA...Ary€B[x,]A 1= @ej(ve“-i-k,ve],. . .,vej_],vej+1,...,vem)/\keK}
which may be rewritten as:
(me)[xi]={q)ej("e,f"kavep- . ’Vej.]’vej+]7' . svem)|
r1€Bx/IA.. AP €Bxi A+ 1€B[Xi+1]). . .Arm€B[x,] A k€K } M Blx;]
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Considering Io= B[x/] if e=x; or Ieiz[ke,«] if e,-skel,, from the definition of any exact basic

interval arithmetic operator (D) (see Appendix A, Assumption Al), it follows:
(POB)x1= Do Lo Kole s ey ple, p-ole,) O Blxi]

But @ (Ie +K. Ie peeolegplegy - -»lg,) is the Natural interval extension of the real
expression (De (egtk.ey,..., €.1,€+1,....em) and so, accordingly to definition 4.2.1-2,
corresponds to the interval arithmetic evaluation of the inverse interval expression of ¢ w1th
respect to x;=¢;, denoted by Vx;. Therefore we have proven that, for this case also:

(prB)Lxi] = V(B) N Blx]

Consequently, if the above is true for any possible case then, from (1), we have proven
that if ¢ expressed as ®(ey,...,en) < ep:

. (B) = Vxi(B) M Blx,] 2]
|

Theorem 4.2.2-1 (Properties of the Interval Projection). Let P=(X,D,C) be a CCSP. Let
c=(s,p)eC be an n-ary constraint and B an n-ary F-box. Let H,:B be the interval projection
of ¢ wrt variable x;es and B. The following properties are necessarily satisfied:

(i) if & =%="thenV,cp[y]reny, (B) = Oel_[X ([r])

(i) if ©="<"thenV,¢p[y,] reny, (B) = leﬁ(l_[X ([r])) <0

(iii) if © =2 thenV, ¢ p[y,] ren, (B) = rzght(]_[X ([ D) =0
We will say that a real value r satisfies the interval projection condition if the right side of
the respective implication (i), (ii) or (iii) is satisfied. a

Proof:
Consider that the n-ary constraint ¢ is expressed in the form fz<¢0. Let F,, be the Natural
interval extension of f with respect to fz (see definition 3.2.1-2). Let B be the n-ary F-box.
<lj,...I, > From definition 4.2.2-1, the interval projection of ¢ wrt x;€s and B is:
Hx (1) Fu<Ip,.. L, LLs,. .1, >)  (for every ICI)
Moreover, if F, is an 1nterva1 extension of f'then from definition 3.2.1-1, it follows:
Vi Fint Tt o> €B KTt i ) €F (<), [re [ e, o [1>) (1)

And due to the monotonicity property of the interval function F, (Lemma A5 from
Appendix A):

Fu(<rils- S lria L lriesds. o Irad>)SF (<. i [P L g, 1n>)= Hx ([”]) (2)
From (1) and (2) it follows:
B
V<r1,...,r,-_l,r,r,-+1,...,r,,>eB ﬂ<’”15-~-J’t-IJ’,Vm,---J”n>)€fo D (3)

On the other hand, from definition 4.2-1, the projection function wrt ¢ and a variable
X;Es 18:
P
oy, (B) = (p N B)[x}]
and so, for every real value r within nxf(B) there must be an tuple from B with x=r
satisfying c:
P
vreB[x,—] remy, (B) = <t it i g S EBT Do Vil ST it Ly sV ™ €
which is equivalent to:

p
VI"EB[XI-] remy (B) = 3<r13~--,ri-l,ryrHI,...,rn >€Bf(<r1,...,r,-.;,r,r,-+1,...,r,,>)<>0 (4)
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Case ¢ = “="then (4) is:
P
vreB[x,v] refy (B) = 3<p . ritrivts >e B 15 sits vty >0
If fi<ry,...,rinr rivs,..../>) denotes the real value zero then, any interval including it
includes zero. Consequently, from (3), it follows the interval projection condition (i):
P PB
vreB[x,-] remny (B) = OEHxi ()]
Case ¢ = “<” then (4) is:

VreBlx] renxf(B) = A<ty >€BAT Lt i) <0
If i<ry,...,rinrrivs,. ... 1) denotes a real value less or equal than zero then, the left
bound of any interval including it must also be less or equal than zero. Consequently, from
(3), it follows the interval projection condition (ii):

P pB
VyeBlx;] "€, (B) = lefi(Ily, ([r])) <O
Case ¢ =“>" then (4) is:
P
VieB[x] "€ (B) = 3<p;  riprgist,..in >€BAST 1 it Fivts . 1>)20
If f(<ri,...riprrivs,... k) denotes a real value greater or equal than zero then, the

right bound of any interval including it must also be greater or equal than zero.
Consequently, from (3), it follows the interval projection condition (iii):

Ve Blx] rem(B) = right(Tl (I1)20 -

Theorem 4.2.2-2 (Projection Function Enclosure based on the Interval Projection). Let
P=(X,D,C) be a CCSP. Let c=(s,p)eC be an n-ary constraint, B an n-ary F-box and x; an
element of 5. Let a and b be respectively the leftmost and the rightmost elements of B[x;]
satisfying the interval projection condition. The following property necessarily holds:

T (B) C [a..b] O

Proof:

If a and b are respectively the leftmost and the rightmost elements of B[x;] satisfying the
interval projection condition then outside this interval there are no elements of B[x;]
satisfying this condition. However, from theorem 4.2.2-1, any element of B[x;] within the

projection function nxf(B) must satisfy the respective interval projection condition.
Consequently outside the interval [a..h] there are no elements of B[x;] within the projection
function Tcxf(B).
Since from definition 4.2-1 nxf(B)= (p N B)[x:] < B[xi] it follows:
TE,:(B) c [a..b] u




	Title page
	Table of Contents
	Introduction
	Contributions
	Interval Constraints for Differential Equations
	Global Hull-consistency - A Strong Consistency Criterion
	Local Search for Interval Constraint Reasoning
	Prototype Implementation: Applications to Biophysical Modelling

	Guide to the Dissertation


	Interval Constraints
	Constraint Satisfaction Problems
	Solving a Constraint Satisfaction Problem
	Pruning
	Branching
	Stopping

	Constraint Satisfaction Problems With Continuous Domains
	Intervals Representing Unidimensional Continuous Domains
	Interval Operations and Basic Functions
	Interval Approximations
	Boxes Representing Multidimensional Continuous Domains
	Solving Continuous Constraint Satisfaction Problems

	Summary

	Interval Analysis
	Interval Arithmetic
	Extended Interval Arithmetic

	Interval Functions
	Interval Extensions

	Interval Methods
	Univariate Interval Newton Method
	Multivariate Interval Newton Method

	Summary

	Constraint Propagation
	The Propagation Algorithm
	Associating Narrowing Functions to Constraints
	Constraint Decomposition Method
	Constraint Newton Method
	Complementary Approaches

	Summary

	Partial Consistencies
	Local Consistency
	Higher Order Consistency
	Summary

	Global Hull-Consistency
	The Higher Order Consistency Approach
	The (n+1)B-consistency Algorithm

	Backtrack Search Approaches
	The BS0 Algorithm
	The BS1 Algorithm
	The BS2 Algorithm
	The BS3 Algorithm

	Ordered Search Approaches
	The OS1 Algorithm
	The OS3 Algorithm

	The Tree Structured Approach
	The Data Structures
	The Actions
	The TSA Algorithm

	Summary

	Local Search
	The Line Search Approach
	Obtaining a Multidimensional Vector - the Newton-Raphson Method
	Obtaining a New Point

	Alternative Local Search Approaches
	Integration of Local Search with Global Hull-Consistency Algorithms
	Summary

	Experimental Results
	A simple example
	The Census Problem
	Protein Structure
	Local Search
	Summary


	Interval Constraints for Differential Equations
	Ordinary Differential Equations
	Numerical Approaches
	Taylor Series Methods
	Errors and Step Control

	Interval Approaches
	Interval Taylor Series Methods
	Validation and Enclosure of Solutions Between two Discrete Points
	Computation of a Tight Enclosure of Solutions at a Discrete Point

	Constraint Approaches
	Older's Constraint Approach
	Hickey's Constraint Approach
	Jansen, Deville and Van Hentenryck's Constraint Approach

	Summary

	Constraint Satisfaction Differential Problems
	CSDPs are CSPs
	Value Restrictions
	Maximum and Minimum Restrictions
	Time and Area Restrictions
	First and Last Value Restrictions
	First and Last Maximum and Minimum Restrictions

	Integration of a CSDP within an Extended CCSP
	Canonical Solutions for Extended CCSPs
	Local Search for Extended CCSPs

	Modelling with Extended CCSPs
	Modelling Parametric ODEs
	Representing Interval Valued Properties
	Combining ODE Solution Components

	Summary

	Solving a CSDP
	The ODE Trajectory
	Narrowing Functions for Enforcing the ODE Restrictions
	Value Narrowing Functions
	Maximum and Minimum Narrowing Functions
	Time and Area Narrowing Functions
	First and Last Value Narrowing Functions
	First and Last Maximum and Minimum Narrowing Functions

	Narrowing Functions for the Uncertainty of the ODE Trajectory
	Propagate Narrowing Function
	Link Narrowing Function
	Improve Narrowing Functions

	The Constraint Propagation Algorithm for CSDPs
	Summary

	Biomedical Decision Support with ODEs
	A Differential Model for Diagnosing Diabetes
	Representing the Model and its Constraints with an Extended CCSP
	Using the Extended CCSP for Diagnosing Diabetes

	A Differential Model for Drug Design
	Representing the Model and its Constraints with an Extended CCSP
	Using the Extended CCSP for Parameter Tuning

	The SIR Model of Epidemics
	Using the Extended CCSP for Predicting the Epidemic Behaviour

	Summary

	Conclusions and Future Work
	Interval Constraints for Differential Equations
	Global Hull-consistency
	Local Search for Interval Constraint Reasoning
	Prototype Implementation: Applications to Biophysical Modelling
	Conclusions


	References
	Appendix A: Interval Analysis Theorems
	Appendix B: Constraint Propagation Theorems



