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Preface

This book is about modeling and solving

multi-item,
single/multi-machine,

single/multi-level,
production planning problems
with time-varying demands

by mixed integer programming.

Since the beginnings of operations research and management science, mod-
els for production planning have been an important object of study with the
Harris EOQ formula or Wilson’s (Q, r) model, and Wagner–Whitin’s dynamic
lot-sizing model, the cornerstones for the treatment of stationary and time-
varying (dynamic) demand, respectively.

The introduction of Materials Requirement Planning (MRP) systems in
the 1970s was a major step forward in the standardization and control of pro-
duction planning systems, but MRP and its successors were first and foremost
information systems necessary but not sufficient for the efficient planning of
the factory or enterprise. Much criticism was leveled at the inability of such
systems to deal effectively with lead times and capacity constraints. Even in
today’s Enterprise Resource Planning (ERP) systems and Advanced Plan-
ning and Scheduling (APS) systems, the planning modules are still seen as
unusable, or unable to handle the complexity of the underlying capacitated
planning problems.

Starting in the 1960s and 1970s, the first serious efforts were made to
describe mixed integer programming (MIP) models for single- and multi-stage
planning problems of the type that arise regularly in practice, and that MRP
and APS systems are designed to tackle.
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Unfortunately MIP systems at the time were only able to solve “toy” in-
stances, and so efforts were mainly concentrated on simple and rapid heuris-
tics.

Starting in the early 1980s, motivated by the successes in tackling pure
0–1 and traveling salesman problems by strong cutting planes, a systematic
study of the polyhedral structure of production planning models was initiated.
The result is that today we know a considerable amount about the “right”
way to formulate many simple production planning submodels as mixed inte-
ger programs, and this knowledge, combined with the remarkable progress of
general MIP systems, enables us to solve or approximately solve many prac-
tical production planning problems that were considered far out of reach ten
or so years ago.

The goal of this book is to enable a reader with a background in linear
programming to use the knowledge and tools provided here to solve real-world
production planning problems.

The book is addressed to practitioners with production planning or supply
chain planning problems to be solved, and to students in management, indus-
trial engineering, operations research, applied mathematics, computer science,
and the like from final-year undergraduate up to Masters and PhD levels.

The book can be tackled on three levels.
Part I has material for everyone with an introduction to the modeling, for-

mulation, and optimization approach to solving problems as MIPs, a chapter
on classical Manufacturing Planning and Control models and systems (includ-
ing MRP) and on more recent Advanced Planning and Scheduling systems, a
chapter providing an introduction to MIP algorithms (including branch-and-
bound, cutting plane, branch-and-cut, and neighborhood search MIP-based
heuristic algorithms) and to the key issue of the quality of formulations in
solving MIPs. These three chapters provide background material to render
the book accessible to the widest possible audience.

Then a central chapter (Chapter 4) presents the classification of simple
(single-item) production planning subproblems that is used throughout the
book, and a procedure to improve the formulation of real-life production plan-
ning problems. This procedure is based on the classification scheme and the
identification of the available reformulation results adapted to each problem
structure. In the final chapter of Part I (Chapter 5), the reader tackles his
first case studies, and is already required to improve the formulation and solu-
tion times of several production planning problems encountered in practice by
using a library of extended reformulations, cutting planes, and neighborhood
search heuristic algorithms, in combination with a standard MIP solver.

Part II provides a second-level course that could be entitled “Basic Poly-
hedral Combinatorics for Production Planning.” The first of three chapters
(Chapter 6) consists of a more rigorous introduction to the decomposition
and reformulation approach developed throughout the book. In particular,
different types of decomposition algorithm (reformulation and branch-and-
cut, column generation, Lagrangian relaxation) are described and discussed.
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The second (Chapter 7) contains a more or less complete polyhedral tour
of the uncapacitated lot-sizing problem (LS-U). This incredibly rich problem
allows us to present a wide variety of reformulation results using cutting planes
(the so-called (l, S) inequalities) or additional variables (facility location and
shortest path reformulations) and dynamic programming optimization algo-
rithms (forward and backward), and it is hoped, provides a guide on ways to
try to tackle other combinatorial/structured MIP problems.

Finally Chapter 8 presents the reformulation results known for the sim-
plest MIP models (simple mixed integer sets and mixing sets, knapsack sets
with a continuous variable and the Gomory mixed integer set, and single node
flow sets) that are necessary for an understanding of both the cutting planes
generated by today’s commercial MIP systems (mixed integer rounding (MIR)
and Gomory inequalities, knapsack cover inequalities and flow cover inequal-
ities), and the cutting planes and reformulations that arise later in the book
when examining different variants of lot-sizing models.

Parts III and IV provide a modeling and reference manual for the user
who has identified a particular production planning subproblem – using for
instance the classification scheme from Chapter 4 – and wishes to know and
understand what formulations are available to improve his MIP model, and
as a course for doctoral students in “Advanced Polyhedral Techniques and
Production Planning.”

Part III contains the important practical extensions of the single-item lot-
sizing model (including constant and varying capacities, backlogging, start-
ups, sales, more complicated cost functions and time windows, as well as other
classical variants).

Part IV has two chapters, one (Chapter 12) dealing with multi-item mod-
els, and in particular on the different ways to formulate the allocation of
resources to products (production modes) and the associated restrictions on
production quantities, and a second (Chapter 13) dealing with multi-level
problems, and in particular a presentation of the echelon stock reformulation.
This concept is essential for the application of the single-item reformulation
results to multi-level production planning problems, and to other supply chain
production and distribution problems. The classification scheme for produc-
tion planning problems presented in Part I for single-item problems is ex-
tended in Part IV to multi-item and multi-level problems.

Finally Part V (Chapter 14) contains three comprehensive case studies
where we illustrate the modeling, formulation, solution, and sensitivity anal-
ysis approach, and three more technical case studies where we illustrate the
various reformulation models and algorithms presented in the book. All case
studies are directly derived from or based on real-life planning problems.
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Figure 0.1 summarizes these three course levels, where the most important
chapters at each level are indicated in bold.

Level I: 
Production 
Planning 
by MIP

Level II: 
Basic Polyhedral 
Combinatorics 

for Production Planning

Level III: 
Advanced Polyhedral 

Techniques 
for Production Planning

Part I

Part II

Parts III-IV

Part V

Planning Systems 

MIP algorithms 

Classification 

Solution in practice 

Planning Systems 

MIP algorithms 

Classification

Solution in practice 

Planning Systems 

MIP algorithms 

Classification

Solution in practice 

Decomposition Alg. 

Uncap. Lot-Sizing 

Basic MIP models

Decomposition Alg.

Uncap. Lot-Sizing 

Basic MIP models

Single-Item Lot-S. 

Multi-Item Lot-S. 

Multi-Level Lot-S.

Case Studies Case Studies Case Studies

Figure 0.1. The three course levels.
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Case Studies and Web Site

This book contains problems and case studies in several chapters from Parts I
and V. The corresponding versions of the data files and initial formulations in
the Mosel modeling language, the modified formulations based on extended re-
formulations, cutting planes, and/or heuristic algorithms requiring both Mosel
and LS–LIB, as well as the limited version of the LS–LIB1 library, described
in Chapter 5 and sufficient to treat all the problems and cases, are available
on the Web site

http://www.core.ucl.ac.be/LS-LIB/PPbyMIP

Free restricted-size student versions of the modeling software Mosel and
the MIP solver Xpress-MP can be downloaded from the Dash Web site

http://www.dashoptimization.com

The reader interested in knowing more about the Mosel modeling language
may consult the documentation and reference manuals available at the same
address.

Both Mosel and Xpress-MP are required in order to use the library LS–
LIB. However the extended reformulation procedures (XForm) from LS–LIB
can be used just with Mosel to generate input or matrix files in standard math-
ematical programming format. The corresponding reformulated problems can
then be solved using any mixed integer programming system.

Apart from the black-box reformulation approach described in Chapter 5,
which requires LS–LIB, all the formulations presented in this book can be
implemented using the alternative classical reformulation approach described
in Chapter 5 and other modeling and optimization software, such as AMPL,
OPL/CPLEX, GAMS, and LINGO/LINDO.

1 A full version of the LS–LIB library [135], as well as any modifications
and updates, and instructions for use, can be obtained via the Web site
http://www.core.ucl.ac.be/LS-LIB. This site also contains a variety of other
lot-sizing test problems.
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Introduction

Production planning is viewed here as the planning of the acquisition of the
resources and raw materials, as well as the planning of the production ac-
tivities, required to transform raw materials into finished products meeting
customer demand in the most efficient or economical way possible.

In industrial environments, the problems to be addressed in this field call
for decisions about the size of the production lots of the different products to
be manufactured or processed, about the time at which such lots have to be
produced, and often about the machine or production facility on which the
production must take place, or about the sequencing of the production lots.
The usual objective is to meet forecast demand at minimum cost. These prob-
lems are typically short- to medium-term, or operational to tactical planning
problems.

Supply chain planning is similar to production planning, but extends its
scope by considering and integrating procurement and distribution decisions.
Supply chain design problems cover a longer time horizon and include addi-
tional decisions such as the selection of suppliers, the location of production
facilities, and the design of the distribution system.

The goal of production planning is thus to make planning decisions opti-
mizing the trade-off between economic objectives such as cost minimization
or maximization of contribution to profit and the less tangible objective of
customer satisfaction. To achieve this goal, manufacturing planning systems
are becoming more and more sophisticated in order to increase both the pro-
ductivity and the flexibility of the production operations. For instance, to
improve productivity, the current trend towards supply chain coordination
implies the integration of production planning models and models involving
procurement, production, distribution, and sales. Also, the need to be able to
respond quickly to market or customer demand changes has created a need for
refined production planning models better able to represent and exploit the
flexibility of the production process, without losing in overall productivity.

In this general context of more integrated and sophisticated manufacturing
systems, production planning models are very often mixed integer program-
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ming (MIP) models, because of problem features such as set-up costs and
times, start-up costs and times, machine assignment decisions, and so on. A
set-up occurs at the beginning of a new production lot. It typically implies ad-
ditional production costs and times to prepare the machines and tooling. Such
costs and times are fixed per batch and are not proportional to the batch size.
Therefore binary or integer variables are required to model them. A start-up
corresponds to the start of a sequence of batches of an item, following the
production of a different item. Such MIP planning models may be difficult to
solve for the large-size instances usually encountered in production planning
systems.

However, sophisticated techniques can be used to improve or tighten the
mathematical formulations of the models, or to design efficient optimization
algorithms for solving them. Using an adequate or tight reformulation for a
MIP model, or an efficient algorithm, may drastically reduce the running time
needed to solve it. For more difficult instances, these techniques allow one also
to increase the size of models solvable to optimality, or near optimality (i.e.,
giving solutions that are provably within a few percent of optimality).

It is the aim of Part I to provide the reader with the expertise re-
quired to model and solve industrial production planning problems
by using state-of-the-art optimization techniques and reformula-
tion results.

In order to be accessible to the widest possible audience, we
follow a step-by-step approach, from building an initial model and
a first mathematical formulation to solving industrial case studies
using sophisticated reformulations and algorithms.

We take a modeling perspective. The objective in this part is
to be able to use the reformulation results from the literature
by analyzing the structure of the initial model, and by applying
a classification scheme pointing to adequate reformulations. No
mathematical analysis of these reformulations is necessary in Part
I.

These reformulations – described in the subsequent Parts II to
IV – can then be implemented either using a classical reformu-
lation approach with any modeling language and MIP solver, or
using a “black box” approach based on a library of reformula-
tions and heuristics (LS–LIB). This library is designed in such a
way that the user only needs to follow the classification scheme,
without any knowledge of the mathematical description of the re-
formulations, but it requires the utilization of specific modeling
and optimization software, namely Mosel and Xpress-MP.

We present two case studies showing how to use these reformu-
lation approaches.
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We assume some prior but elementary knowledge of optimization (linear
programming models and the simplex algorithm). The knowledge required
corresponds to the level of an introductory undergraduate course in optimiza-
tion for engineering, business, or economics students.

In Parts II to IV of this book, we describe in detail all the reformulation
results and techniques mentioned and used in Part I. This deeper mathemat-
ical description and understanding allows one to develop more sophisticated,
and more efficient, tools for solving the same type of planning problems. The
effectiveness of this second level of improvement is demonstrated on some of
the case studies, but requires more taste for mathematical approaches.

We conclude this introduction by describing more precisely the contents
of Part I.

• We start in Chapter 1 by describing, with an example, the systematic
modeling approach that must be taken to build a correct initial model rep-
resenting a production planning problem. This example is a variation of
a well-known problem from the literature, namely the multi-item capaci-
tated lot-sizing problem. The results obtained by applying standard MIP
software to the example indicate the need for more sophisticated tools in
order to be able to solve large-size instances to optimality.

• In Chapter 2 we study the classical production planning models and sys-
tems. We first review some production planning models considered in
ERP (Enterprise Resources Planning) or MRP systems. We then present
and criticize the typical heuristic solution approach implemented in such
systems. Finally, we take a broader perspective and define the planning
tasks in the general context of the more recent APS (Advanced Planning
and Scheduling Systems), which include the well-known Manufacturing
Planning and Control Systems, Material Requirements Planning (MRP-
I), Manufacturing Resources Planning (MRP-II), and Hierarchical Pro-
duction Planning (HPP). We also provide examples of procurement, pro-
duction and distribution planning problems without mathematical models
or formulations to illustrate the planning tasks and the planning process
along the supply chain.

• Chapter 3 contains an introduction to mixed integer programming (MIP)
models and algorithms for those whose background is limited to linear
programming. This includes a description of the branch-and-bound, cut-
ting plane, and branch-and-cut optimization algorithms used to find the
optimal solution of a MIP problem. It also includes the description of
some neighborhood search MIP-based heuristic algorithms used either to
construct an initial feasible solution, or to improve the best known feasi-
ble solution, of a MIP problem. Some emphasis is also put on the impact
of the quality of the mathematical formulation used on the running time
of these algorithms. This chapter can be skipped by those with an appro-
priate background.
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• In Chapter 4 we present the algorithmic approach used to solve production
planning problems. First we briefly illustrate the reformulation approach
on the LS-U (uncapacitated single-item lot-sizing) model. Then we explain
informally how practical planning models that are almost always multi-
item and multi-period can be decomposed into single-item subproblems,
and solved using good formulations for appropriate single-item subprob-
lems.

We then introduce the classification scheme for single-item production
planning models that is central to our methodology because most opti-
mization approaches are based on the decomposition of the problem into
single-item subproblems.

The classification is then used to describe the reformulation results col-
lected from the literature. We propose a reformulation procedure designed
to identify and classify the structure of industrial applications, and to be
able to apply the known reformulation results for related or embedded
submodels to these applications.

Finally, we come back to our starting example from Chapter 1, and
analyze its structure using our classification scheme. We illustrate the use
of the reformulation procedure by showing how it allows one to reformulate
and solve this problem more efficiently.

• We conclude in Chapter 5 by showing how to use the reformulations,
the cutting plane routines, and the primal heuristics available for solv-
ing production planning problems. In particular, we describe the library
of procedures LS–LIB, and illustrate the proposed black-box reformulation
approach on two industrial case studies.
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The Modeling and Optimization Approach

Motivation

To cope with the increasing complexity of their business, many large- and
medium-size companies have implemented computerized manufacturing plan-
ning systems in the past decades. Such systems are used to standardize the
planning processes followed by the various plants or production departments.
In most cases, they are pure transactional systems maintaining up-to-date
procurement and production information on each item, recording and dis-
tributing planning decisions. This is of course crucial.

However, significantly superior results can be obtained by changing these
tools into planning systems for coordination and optimization. For instance,
the Kellogg Company has developed an optimization system to plan the pro-
duction and distribution decisions for its cereal and convenience foods busi-
ness. This planning system subsumes an operational short-term system to plan
and optimize the flow of goods, as well as a tactical medium-term system to
help in making budgets, in solving capacity expansion problems, and in the
consolidation of decisions. Kellogg reports annual cost savings of 4 million
dollars with the operational system, and projects annual savings of the order
of 40 million dollars with the consolidated tactical system.

Till now the mathematical program behind the Kellogg Planning System
(KPS) has been a linear program. This does not allow the KPS operational
model to account for production and packaging set-up times (the time lost
because of equipment adjustments in between batches of different products).
This severe restriction also obliges the managers to review and modify man-
ually the plans suggested by KPS in order to obtain feasible plans that take
into account plant floor reality. This also means that the model used needs to
be improved to allow Kellogg to fully optimize short-term productivity.

The extension of KPS to a mixed integer program, so that one is able
to take into account set-up times, is under consideration. This is also the
case for many other companies trying to develop planning systems able to
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optimize productivity. The necessary first step is often the development of
new production planning models.

The resulting large-size mixed integer programs are typically much harder
to solve to optimality, or near optimality, than linear programs. Nevertheless,
it is often possible to (re)formulate them in such a way that the solution time
is drastically reduced. Unfortunately some of these advanced or sophisticated
reformulation techniques are not generic, in the sense that they depend on
specific structure in the problem/model to be applicable. In other words, the
identification of structure in the production planning problem is important
during model construction, especially for the use of the reformulation tech-
niques. Therefore a systematic modeling approach must be taken.

Objective

As a starting step towards the final objective of solving mixed integer produc-
tion planning problems, the specific objective of this chapter is to learn how
to systematically transform a problem description into a mathematical model.
The problem description is usually unstructured and given as the minutes of
a meeting, an internal memo, or a report.

This mathematical model, an abstraction from the real problem, should
be

• correct, that is, planning decisions or solutions suggested by the model
should represent reality with the desired level of detail, both in terms of
feasibility (through model constraints) and optimality (objective function),
and

• structured, that is, described using standard objects (products, machines,
or resources,..,) and standard building blocks or generic constraints (flow
conservation, capacity,...).

The structuring of the model will later play an essential role during the
model classification and reformulation phases. The classification scheme will
formally describe these generic constraints, and the combinations of generic
constraints for which reformulation results are known.

Contents

In this chapter:

• We describe in Section 1.1 the concept of an optimization problem (indices
or objects, variables, constraints, objective function) with a tiny example.

• We illustrate in Section 1.2 the systematic modeling approach that must
be taken to build a correct and structured initial mathematical model of
a production planning problem on a more realistic multi-item example,
and we motivate the search for more sophisticated tools, by solving the
initial mathematical program obtained in this example, using standard
optimization software.
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1.1 A Tiny Planning Model

1.1.1 Problem Description

A manufacturer produces a wide variety of bicycles. We are interested in the
production plan of a single high-tech racing model whose production requires
special materials and production equipment. At most one batch is produced
per month, because of low demand and important economies of scale in the
manufacturing costs. Because of the need to install special equipment and
tools at the beginning of a batch, there is a high set-up cost, and thus it has
been decided that it makes no sense to produce more frequently.

The batch manufacturing cost is best approximated by the fixed charge
cost represented in Figure 1.1. The set-up cost represents the equipment and
tool installation and preparation costs, and then the constant marginal cost
corresponds to the constant time required to produce each bicycle. For the
racing model, the set-up cost is 5000 euros, and the marginal cost is 100 euros.
Hence, it costs 5100 euros to produce a batch of 1 bicycle, and 6000 euros for
a batch of 10 bicycles.

}

Batch
Production 
Cost

Batch Size

setup
cost

marginal 
cost

Figure 1.1. The fixed charge cost.

The capacity restrictions are ignored in planning this single-product vari-
ant because the work center and workers are shared by the many bicycle
variants, and because capacity can be increased by hiring temporary workers,
if necessary.

The company faces irregular or seasonal demand, sales being higher in
spring and summer. Table 1.1 gives the sales forecasts in number of bicycles
per month for the racing model in the coming year.

Moreover, there will be around 200 racing bicycles in stock at the end
of the current year. This projected inventory is based on current production
plans, sales forecasts, and customer orders up to the end of the year. To hold
one bicycle in inventory during one month costs on average 5 euros, including
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Table 1.1. Bicycle Manufacturer: Sales Forecasts for Next Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
400 400 800 800 1200 1200 1200 1200 800 800 400 400

the cost of capital and storage costs. Note that there is enough space available
in the warehouse to store the bicycles.

The manufacturer wants to plan the production and inventory levels of
this particular racing bicycle, in order to satisfy demand and minimize the
corresponding manufacturing and inventory costs. He wants to plan produc-
tion for next year up to the end of the peak demand period, that is, up to the
end of August. (Why ?)

1.1.2 Some Solutions

Many people would start by trying to find and enumerate some good solutions
of the above planning problem. And some people would be happy enough with
such an approach. In this toy problem, we only seek the best compromise
between inventory costs and production costs.

Because of the economies of scale, production costs are minimized by pro-
ducing very large batches. This leads one to produce the whole demand (7200
units up to end of August, minus the initial inventory of 200 units) in January,
but then to incur large inventory costs up to the end of August.

The opposite extreme is to minimize storage costs, which is one major
concern in production planning. The minimum inventory plan consists of pro-
ducing so as to just satisfy the demand in each month. But this requires one
to set up the machines every month, resulting in small batches, and therefore
significant manufacturing costs.

Table 1.2. Tiny Example: The Minimum Manufacturing Cost Solution

Jan Feb Mar Apr May Jun Jul Aug Total
Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200
Production 7,000 0 0 0 0 0 0 0 7,000
Unit cost 700,000 0 0 0 0 0 0 0 700,000
Set-up cost 5,000 0 0 0 0 0 0 0 5,000
End inventory 6,800 6,400 5,600 4,800 3,600 2,400 1,200 0
Inv. cost 34,000 32,000 28,000 24,000 18,000 12,000 6,000 0 154,000

These two extreme solutions, and their costs, are represented in Tables
1.2 and 1.3, respectively. To compute the inventory costs, we have assumed
that, during each month, the inventory level evolves linearly over time from
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Table 1.3. Tiny Example: The Minimum Inventory Cost Solution

Jan Feb Mar Apr May Jun Jul Aug Total
Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200
Production 200 400 800 800 1,200 1,200 1,200 1,200 7,000
Unit cost 20,000 40,000 80,000 80,000 120,000 120,000 120,000 120,000 700,000
Set-up cost 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 40,000
End Invent. 0 0 0 0 0 0 0 0
Invent. cost 0 0 0 0 0 0 0 0 0

the starting level to the ending level. If INVt represents the inventory level
at the end of month t, then the inventory cost can be represented by

inventory cost =
Aug∑

t=Jan

5 ∗ (INVt−1 + INVt)
2

which is equivalent to

inventory cost = 2.5 ∗ INV0 +
Jul∑

t=Jan

5 ∗ INVt + 2.5 ∗ INVAug ,

where INV0 is the initial stock (constant). Observe also that INVAug = 0 in
these two solutions. In Tables 1.2 and 1.3, we have used this last and simpler
expression to compute the inventory costs as a function of the monthly ending
inventory levels.

We observe that the total cost of the minimum inventory solution is
740,000 euros which is significantly cheaper than the total cost of 859,000
euros of the minimum production cost solution. However, is it optimal? By
using trial and error, it is often possible to improve such initial solutions. But
how can one guarantee that an improved solution is indeed optimal? We need
a more systematic approach able to provide a proof of optimality.

1.1.3 A First Model

Our approach is very different from the ad hoc approach suggested above.
The essence of the modeling and optimization approach is to distinguish or
separate the modeling and optimization phases, and to build a correct model,
before going to the optimization phase.

• The objective of the modeling phase is to describe a mathematical abstrac-
tion (a model) of the problem to be solved. This model identifies
− the objects to be manipulated (products, resources, time periods, etc.),
− the data associated with the objects (demand for products during time

periods, capacity of resources, etc.),
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− the decisions (also called decision variables, or simply variables) to be
taken relative to the objects in order to propose or define a solution to
the problem,

− the constraints to be satisfied by the decisions in order to define feasible
or acceptable solutions to the problem, and

− the objective function which provides a way to evaluate or compare
feasible solutions, and to select the best or optimal solution among the
feasible ones.

• The objective of the optimization phase is to find an optimal solution of
the model.

Some claim that modeling is an art. Our goal here is to show that it is
also a science. Thus, to build correct models with the right level of detail,
it is necessary to follow a systematic approach in defining the objects, data,
variables, constraints, and objective function corresponding to the problem
description.

Moreover, to ease this translation from the real problem to the abstract
model, it is often very helpful to define higher-level structures. This is usually
achieved by defining appropriate concepts and notation. Such higher-level
structures are also mandatory for our main classification and reformulation
phases presented later in Chapter 4. For instance:

• Similar objects are grouped into object classes represented by mathemat-
ical indices, allowing one to use indexed notation for data, variables, and
constraints.
− The index t is used to represent an element in the set {1, . . . , NT} of

time periods, where NT is defined as the number of time periods in
the planning horizon.

− The index i is used to represent an element in the set {1, . . . , NI}
of products, where NI is defined as the number of products in the
planning problem.

− And so on.
• Similar data or variables are grouped into data classes or variable classes,

allowing one to use generic definitions and naming conventions.
− The data demand(i, t) defines the demand for all products i and time

periods t.
− The variable prod(i, t) defines the production-level decisions for all

products i and time periods t.
− And so on.

• Similar constraints are grouped into constraint classes or global constraints,
allowing one to use generic definitions and common mathematical formu-
lations across a constraint class.
− The generic or global constraint demand satisfaction(i, t) defines the

demand satisfaction constraint for all products i and time periods t.
− And so on.
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To illustrate this systematic modeling approach, we now define the opti-
mization model associated with our tiny example.

(i) First the identification and naming of indices, data, variables, and con-
straints is performed by scanning through the problem description, and
systematically marking the objects, data, and so on, as they are encoun-
tered. This gives the following results.

Objects and Indices Mathematical Notation
One manufacturer
One product (racing bicycle) Object: bike
Monthly time periods Object: periods

Index: t = 1, . . . , NT and NT = 8
Production resources: ignored
Storage resources: ignored

Data Mathematical Notation
Production set-up cost For bike [euro]: q = 5 000
Production unit cost For bike [euro/unit]: p = 100
Demand forecasts For bike, period t [unit]: dt

d = [400, 400, 800, 800, 1200,
1200, 1200, 1200]

Initial stock For bike [unit]: s ini = 200
Inventory holding cost For bike [euro/unit, period]: h = 5

Variables Mathematical Notation
Production batch size For bike, period t [unit]: xt ≥ 0
End inventory level For bike, period t [unit]: st ≥ 0

Constraints Mathematical Notation
Demand satisfaction For bike, period t [unit]: dem satt

Objective function Mathematical Notation
Minimize sum of production

and inventory costs [euro]: cost

(ii) Then, to complete the model it remains to define the mathematical for-
mulation of the constraints and objective function.

The demand satisfaction generic constraint dem satt, defined for all
products (here, only bike) and all periods t ∈ {1, . . . , NT}, simply states
that the amount of product bike available in period t (which is defined
by the ending inventory st−1 from period t − 1 plus the production xt

in period t) must satisfy at least the demand dt of period t; that is,
st−1 + xt ≥ dt. The number of bikes in excess of the demand dt defines
the ending inventory st. This gives the constraint

dem satt := st−1 + xt = dt + st for t = 1, . . . , NT ,
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where the variable s0 occurring in dem sat1 represents the initial stock
and is replaced by the constant s ini.

This demand satisfaction constraint is common to almost all planning
models though it takes a slightly different form depending on the existence
of multiples machines, backlogging, or other variants. It is often called
a flow balance or flow conservation constraint because its feasible (x, s)
solutions correspond to the feasible flows in the network represented in
Figure 1.2, where the nodes correspond to time periods.

t=1

x1

t=2 t=3

d1

s1

x2 x3

d2 d3

s2 s3

t=4

x4

t=5 t=6

d4

s4

x5 x6

d5 d6

s5 s6

t=7

x7

t=8

d7

s7

x8

d8

s8
sini

Figure 1.2. The flow conservation global constraint.

Modeling the objective function requires the addition of new binary
variables, that take only the two values 1 or 0, to indicate the existence
(1) or nonexistence (0) of a set-up in each period. Remember that a set-
up, representing the installation and preparation of the equipment and
tools, is required to produce a batch.

Variables (Revised) Mathematical Notation
Production batch size For bike, period t [unit]: xt ≥ 0
Production set-up For bike, period t [-]: yt ∈ {0, 1}
End inventory level For bike, period t [unit]: st ≥ 0

Assuming that yt takes the value 1 when there is a set-up in period t,
the objective function can be modeled as the sum of the production set-up
costs, production unit or variable costs, and the inventory holding costs.

cost :=
NT∑
t=1

(p xt + q yt) +
NT∑
t=1

h
(st−1 + st)

2
,

which is equivalent to

cost :=
NT∑
t=1

(p xt + q yt) +
h

2
s ini +

NT−1∑
t=1

h st +
h

2
sNT .

Finally, we must add the necessary constraints to ensure that the re-
quired set-ups are performed in every period.



1.1 A Tiny Planning Model 15

Constraints (Revised) Mathematical Notation
Demand satisfaction For bike, period t [unit]: dem satt
Set-up enforcement For bike, period t [unit]: vubt

The classical generic constraint used to enforce a set-up is the so-called
variable upper bound (VUB) constraint defined as

vubt := xt ≤ (
NT∑
k=t

dk) yt,

where
∑NT

k=t dk is a true upper bound on xt when there is a set-up in
period t and no ending inventory (see Figure 1.2). Therefore, either there
is no set-up in period t (i.e., yt = 0) and the above constraint forces xt ≤ 0
(i.e., xt = 0), or there is a set-up in period t (i.e., yt = 1) at a cost of q
and the above constraint imposes a valid upper bound on xt, if we assume
that the ending stock sNT = 0. In this particular model instance, we can
assume without loss of generality that sNT = 0 because it holds for any
optimal solution.

(iii) The structure of the complete model is identified by
• the demand satisfaction global constraint for the single product bike

over eight consecutive time periods,
• the variable upper bound global constraint for the single product bike

over eight consecutive time periods,
• the initial inventory of product bike,
• the nonnegativity and integrality restrictions on the variables, and
• the cost function to be minimized.

min cost :=
NT∑
t=1

(p xt + q yt) +
NT−1∑

t=1

h st +
h

2
sNT

dem satt := st−1 + xt = dt + st for all t = 1, . . . , NT

s0 = s ini , sNT = 0

vubt := xt ≤ (
NT∑
k=t

dk)yt for all t = 1, . . . , NT

xt, st ∈ R+, yt ∈ {0, 1} for all t = 1, . . . , NT.

1.1.4 Optimizing the Model

Instances of optimization models involving only linear constraints and a linear
objective function, and both continuous variables (st and xt) and binary vari-
ables (yt), are called mixed integer or mixed binary programs (MIP ). Such



16 1 The Modeling and Optimization Approach

programs can be solved by general purpose branch-and-bound or branch-and-
cut algorithms.

These general-purpose algorithms, as well as an introduction to the ideas
of reformulation, are briefly described in Chapter 3.

For the more complex and larger size production planning applications
that we consider in this book, we need to use or develop more sophisticated
and specific optimization algorithms. We propose an approach based on model
classification and reformulation in Chapter 4.

For completeness, feeding our first model and data into a MIP optimizer,
we obtain the optimal solution of our tiny example given in Table 1.4. It has a
total cost of 736,000 euros and is similar to the minimum inventory solution,
but with two set-ups removed.

Table 1.4. Tiny Example: The Optimal Solution

Jan Feb Mar Apr May Jun Jul Aug Total
Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200

Production 600 0 1,600 0 1,200 1,200 1,200 1,200 7,000
unit cost 60,000 0 160,000 0 120,000 120,000 120,000 120,000 700,000

set-up cost 5,000 0 5,000 0 5,000 5,000 5,000 5,000 30,000
End Inventory 400 0 800 0 0 0 0 0

Inv. cost 2,000 0 4,000 0 0 0 0 0 6,000

1.2 A Production Planning Example

Here we take a more realistic example in order to further illustrate the system-
atic modeling approach that must be taken to build a mathematical model of
a production planning problem. We start by describing the problem and its
general context.

1.2.1 Problem Description

GW and the Global Supply Chain Department

GW is a large worldwide company in the fast-moving consumer goods indus-
try, selling hundreds of brands to millions of consumers dispersed all over the
world.

Bill Widge is the head of the Global Supply Chain Optimization (GSCO)
Department. He is responsible for the development, implementation, and in-
tegration into the manufacturing information system (the well-known PASI-2
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system) of new optimization approaches in order to improve capacity utiliza-
tion and process flexibility.

The company has installed a common manufacturing information, plan-
ning, and control system (MPCS) in all its facilities. This system is an ad-
vanced information system that allows the company to plan and coordinate
the procurement, production, and distribution activities. The implementation
and customization of this system has been a major project for the company,
spanning several years. It has led to major improvements in terms of supply
chain coordination.

Unfortunately, because the same planning system is used in all facilities,
the planning procedures used are generic procedures that have failed to im-
prove the productivity (broadly speaking, the ratio of the quantity of outputs
produced over the quantity of inputs utilized) and flexibility (ability to respond
quickly to the perpetually changing requirements from the marketplace) of
the manufacturing plants as much as their coordination.

Therefore, the Board has decided to create the GSCO department to rem-
edy this weakness. The objective assigned to GSCO is the development of
optimization based planning tools to support the planning tasks and improve
the productivity of key processes. The ultimate goal is to integrate specific
planning tools for these processes into the generic information system PASI-2.

The Problem

The problem we consider here is a successful GSCO project. It is aimed at
productivity optimization for the largest plant in the food sector. This plant
produces two families of products, designated Cereals and Fruits.

The following problem description is a summary of the information that
was available at the start of the project.

The Production Process

The production process is composed of three major steps: preparation, mixing,
and packaging.

• First, the raw materials, which are stored in huge tanks, need to be pre-
pared (cleaned, heated, etc.) before they can be used in the process. There
is only one preparation line.

• Next, the Cereals and Fruits are produced. This step is called mixing
because the major operation consists of blending the different ingredients.
Other operations at the mixing step include heating, crushing, and drying.
There is only one mixing line.

• Finally, the products are packed on two dedicated packaging lines, one for
Fruits and the other for Cereals.
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Figure 1.3. The Cereals and Fruits production process.

For each product obtained after mixing, there is only one packaging format
available. In other words, there is a one-to-one correspondence between mixing
products and finished products.

This production process is represented in Figure 1.3. Note that for build-
ing, and progressively fine-tuning a model, such a graphical flow representa-
tion of the problem elements helps to synthesize the information and is an
important part of the modeling process.

The Bottleneck

The bottleneck or the major constraint of the whole production process is the
mixing operation for the following reasons.

• There are very few raw materials. They have short and reliable procure-
ment lead times, and their storage capacity is high relative to the needs.

• The preparation step is a very fast continuous process, and takes very
little time. Thus a batch can always be prepared during the mixing of the
previous batch.

• The pace of the mixing step is dictated by the mixing operation/machine.
The other operations of the mixing step can be synchronized with the
mixing operation without slowing down the process.

• Moreover, the mixing machine is inflexible in the sense that there are
significant cleaning times at the end of each batch. These cleaning times
must be respected to guarantee product quality, and do not depend on the
sequence of products. They come from regulations imposed by the Food
Administration. There are no cleaning or machine preparation times for
the other operations of the mixing step. Apart from the cleaning times for
mixing, the production rate can otherwise be assumed to be constant on
every machine, with no economies of scale.

• Thanks to a recent investment in a second packing line, each line is now
dedicated to a specific product family, and packaging can be carried out
without switching times in between products. The joint packaging capacity
exceeds the mixing capacity.
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• The packaging lines are composed of flexible automated machines. Within
a product family, they can switch from one product to another with almost
no productivity loss.

• Finally, for quality reasons, the storage capacity of intermediate products
between mixing and packaging is very limited, and intermediate products
have to be packed almost directly after mixing.

In summary, the bottleneck of the process is the mixing operation, be-
cause there are large cleaning times at the end of each mixing batch. The
preparation and all the subtasks of the mixing step can be synchronized with
the mixing operation. The packaging operations involve no switching times
and have a large enough aggregate capacity (the total packing capacity for
the two product families) to absorb the output of the mixing operation. This
packaging step must be synchronized with mixing because of limited storage
capacity between these two production steps.

The Production Policy and Current Planning System

Because of limited product variety, and in order to reduce the global supply
chain lead time, the company has imposed a make-to-stock (MTS) production
policy at the plant level. This means that the plant production must be able
to meet the demand coming from the distribution system directly from stock,
that is, with zero delivery lead time at the plant level. To achieve this, the
company establishes forecasts of weekly demand addressed to the plant, and
computes safety stocks needed to cover the difference between actual and
forecast demand. This process has been effective in the past. The forecasts are
of good quality, and the safety stocks allow the company to achieve excellent
customer service levels.

This bottleneck and production policy information is used in Figure 1.4 to
update the flow representation of the process. The current planning system is
typical of ERP/MRP type systems.

• Once a week, a Master Production Schedule (MPS) is generated for the
next few weeks. This schedule plans the production at the finished product
level (packaging level) in order to meet forecast demand and safety stock
requirements.

• The MRP system determines when and how much to produce or order of
each intermediate product (mixing and preparation level) or raw material
over the schedule horizon. The MRP calculation is based on the packaging
orders (batches) defined at the MPS level.

• Finally, detailed scheduling of the packaging and mixing operations is car-
ried out a week in advance based also on the MPS.

The planning jargon used here (ERP, MRP, MPS, etc.) is briefly explained in
Chapter 2.
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Figure 1.4. The Cereals and Fruits production process and policy.

In the current MPS/MRP system, weekly time buckets are used for the
planning tools; that is, time is broken down into time periods of one week.
The plant operates five days a week, and the mixing machine must be cleaned
at the end of the week. Therefore no production batch runs over the weekend.
Weekly time buckets are also chosen because the forecasting system is using
weekly time buckets.

A time horizon of six weeks is currently used for the MPS and MRP. This
is slightly longer than the total procurement and manufacturing lead time
so as to allow GW to order and receive the raw materials on time. All raw
material purchasing orders can be calculated from the master production plan
for the finished products.

The Challenge

Unfortunately, the MPS process, which plays a central role in the planning
system, does not take the limited capacity of the bottleneck operation (mixing)
into account. Therefore the planner has to revise the MPS plan manually in
order to get a feasible production plan. This looks similar to the Kellogg case
mentioned at the beginning of the chapter, and has the same consequences: a
slow and inefficient planning process, unable to optimize capacity utilization
and to guarantee satisfaction of external demand.

The main difficulty in this planning problem is to optimize the trade-off
between productivity (which requires large mixing batches to avoid losing
capacity through frequent stoppages for cleaning at the bottleneck) and flex-
ibility (which requires small batches to be able to produce as late as possible
and to react quickly to market changes).

This difficulty arises because the MPS is not driven by the most scarce con-
straint in the process: the mixing capacity. Therefore, the goal of Bill Widge
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and the GSCO department is to design, develop, and install an efficient MPS
tool giving feasible production plans, both with respect to demand satisfaction
and capacity utilization. The aim is also to improve flexibility by producing
as late as possible.

1.2.2 Modeling

In the application of our stepwise modeling approach, we need to identify the
scope of the model, fix the boundaries of the model universe (which products
to consider? which resources to model?), and decide on the general struc-
ture of the model. The level of detail of the model is also a major decision:
enough detail is necessary to really optimize the productivity–flexibility trade-
off, whereas unnecessary detail will make the problem impossible or harder to
solve to optimality.

The role of the generic constraints becomes clear in this second example.
We are able to reuse some of the constraints encountered earlier, and thus
significantly simplify the modeling task.

(i) Identification and naming of indices, data, variables, and generic con-
straints by scanning through the problem description.

Objects and Indices Mathematical Notation
One plant −−
Product families C and F −−
Individual finished products Object: products

Index: i = 1, . . . , NI
Weekly time periods Object: periods

Index: t = 1, . . . , NT and NT = 15
Mixing line Object: machine

Index: k = 1
Packaging line for Cereals Object: machine

Index: k = 2
Packaging line for Fruits Object: machine

Index: k = 3
Other prod. resources: ignored −−
Storage resources: ignored −−

Remarks and Assumptions:
• The MPS model must consider finished products (or mixing products,

because there is a one-to-one correspondence between them) individ-
ually, in order to be able to represent satisfaction of forecast demand.

• Weekly time buckets are used as in the current system, because there
is no need to increase/decrease the level of detail.

• The time horizon needed to establish the MPS is much longer than the
total procurement and manufacturing lead time (about six weeks),
because it is necessary to anticipate the capacity requirements over
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a long enough horizon in order to optimize capacity utilization. A
horizon of 15 weeks was selected based on a deeper analysis of short-
term variations of demand.

• The capacity of the mixing stage is the main or global bottleneck be-
cause of the cleaning times, but the capacity of each individual pack-
aging line also needs to be taken into account because there is not
enough packaging capacity to produce (mix and pack) only Fruits or
only Cereals in a week.

• All operations other than mixing and packaging are neglected in the
model because they can be synchronized with mixing and do not im-
pose any additional capacity restrictions.

Data Mathematical Notation
Demand forecast For product i, period t [unit]: Di

t

End period safety stock For product i, period t [unit]: SSi
t

Initial stock For product i [unit]: SSi
0

Cleaning time after mixing For product i [hour]: βi

Constant production rate For product i, machine k [hour/unit]: αik

Machine capacity For machine k [hour]: Lk

Product family Cereals =F 2 (Subset of products)
Product family Fruits =F 3 (Subset of products)

Remarks and Assumptions:
• We assume that the cleaning times at the end of the mixing batches

are product-dependent, but not time-dependent.
• To be able to model mixing and packaging capacity utilization, we also

need to know the number of working hours for each time period and
each machine.

• Finally, the family (Cereal or Fruit) of each product must be known
in order to assign the mixing batches to the packaging lines, and to
model the packaging capacity restriction.

Variables Mathematical Notation
Mixing batch size For product i, period t [unit]: xi

t ≥ 0
Production set-up For product i, period t [-]: yi

t ∈ {0, 1}
End period inventory level For product i, period t [unit]: si

t ≥ 0

Remarks and Assumptions:
• The main decisions in the model are the batch sizes for the mixing

step for each finished product and each time bucket.
• To represent the machine cleaning times, we need to use production

set-up variables for each product and period.
• In order to represent the trade-off between productivity and flexibility,

we need to model the finished product inventory levels.
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Constraints Mathematical Notation
Demand satisfaction For product i, period t [unit]: dem satit
Set-up enforcement For product i, period t [unit]: vubi

t

Mixing capacity restriction fFor period t [hour]: mix capt

with cleaning times
Packaging capacity restriction For product i, machine k = 2, 3 [hour]:

without cleaning times pack capk
t

Remarks and Assumptions:
• The generic set-up enforcement constraint is used as in the first exam-

ple to assign correct values to the production set-up variables.
• It is also assumed that the packaging of a batch occurs in the same

time bucket as the corresponding mixing batch, because there is no
intermediate storage capacity.

Objective function Mathematical Notation
Minimize total inventory [euro]: inventory

Remarks and Assumptions:
• The objective of the model is to produce as late as possible, which can

be expressed by minimizing the level of finished product inventory.

The structure of the optimization model is identified by
• the generic demand satisfaction constraints for each finished product

over 15 consecutive weekly time periods, including initial stocks and
safety stocks,

• the generic capacity utilization constraint for the mixing machine in
each time period including cleaning times,

• the generic capacity utilization constraint for each packaging line in
each time period, and

• the inventory minimization objective function.
This structure is apparent in the final graphical description of the MPS
model in Figure 1.5.

(ii) Mathematical formulation of the generic constraints and objective func-
tion.

The demand satisfaction global constraint dem satit, defined for all
products i ∈ {1, . . . , NI} and all periods t ∈ {1, . . . , NT}, takes the same
general form as in the first example:

dem satit := si
t−1+xi

t = Di
t+si

t for i = 1, . . . , NI and t = 1, . . . , NT,

where again the variable si
0 occurring in dem sati1 represents the initial

stock and is replaced by the constant SSi
0, and with the additional safety

stock requirements:



24 1 The Modeling and Optimization Approach

packaging

Finished
Cereals
sales

Finished
Fruits
sales

1 to 1

1 to 1

mixing

constraint constraint

constraint

constraint

capacity
multi-product
+ cleaning times

capacity
multi-product

demand
satisfaction
+ safety stocks

demand
satisfaction
+ safety stocks

Figure 1.5. The structure of the Cereals and Fruits MPS model.

si
t ≥ SSi

t for i = 1, . . . , NI and t = 1, . . . , NT.

Modeling the cleaning times for the mixing capacity global constraint
requires the addition of the mixing binary set-up variables yi

t for all prod-
ucts i ∈ {1, . . . , NI} and all periods t ∈ {1, . . . , NT}. A set-up of product
i in period t is defined here as the realization of the cleaning operation
at the end of a batch of i in period t, and arises when the correspond-
ing binary variable yi

t takes the value 1. Again, a set-up is required when
there is a batch of product i in period t (i.e., xi

t > 0). This is modeled
as before with the variable upper bound constraint or set-up enforcement
constraint:

vubi
t := xt ≤ (

NT∑
k=t

Di
k + SSi

NT ) yt,

where we again assume that the end-stocks si
NT = SSi

NT for all i ∈
{1, . . . , NI}.

Now, using these set-up variables and remembering that k = 1 identifies
the mixing machine, the mixing capacity constraint simply ensures that
there is enough capacity in period t to produce all batches and perform
all required cleaning operations:

mix capt :=
∑

i

αi1xi
t +

∑
i

βiyi
t ≤ L1 for t = 1, . . . , NT .
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The packaging capacity constraints are similar, but do not contain any
cleaning times:

pack capk
t :=

∑
i∈F k

αikxi
t ≤ Lk for t = 1, . . . , NT and k = 2, 3.

Finally, the objective function simply corresponds to minimizing the
sum of ending inventory levels over all products and periods:

inventory :=
NI∑
i=1

NT∑
t=1

si
t .

This concludes the modeling of this Cereal and Fruit mix-and-pack MPS prob-
lem.

1.2.3 Mathematical Formulation

The following optimization model (mixed integer linear program) summarizes
the new MPS model designed by GSCO. It is based upon capacity utilization
at the bottleneck and demand satisfaction for finished products in each time
period as represented in Figure 1.5.

The indices identified are

• i ∈ {1, . . . , NI} representing one of the finished products whose production
has to be planned,

• t ∈ {1, . . . , NT} representing one of the time periods (time buckets or
weeks) of the planning horizon, and

• k ∈ {1, . . . , 3} representing one of the machines of the model (k = 1
corresponds to the mixing line, k = 2 corresponds to the Cereal packaging
line, and k = 3 corresponds to the Fruit packaging line).

Using these indices, the following data have been defined.

• Di
t represents the forecast demand for item i in period t in [units].

• SSi
t represents the safety stock of item i needed at the end of period t in

[units].
• SSi

0 represents the initial stock of item i at the beginning of the planning
horizon in [units].

• αik represents the capacity consumed on machine k to produce one unit
of product i in [hours/unit].

• βi represents the mixing capacity consumed per cleaning operation at the
end of a batch of product i in [hours/cleaning].

• Lk represents the capacity available on machine k in each time period in
[hours].

• F 2 and F 3 form a partition of the NI products into the Cereal family and
the Fruit family, respectively.
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The decision variables are

• xi
t to represent the amount of product i produced during time period t

[units];
• yi

t that takes the value 1 if there is a set-up of product i (i.e., a cleaning
operation because of the production of a batch of product i) in period t,
and 0 otherwise [0/1];

• si
t to represent the inventory level of product i at the end of time period

t [units].

The final formulation obtained is written as follows.

min inventory :=
∑

i

∑
t

si
t (1.1)

subject to

dem satit := si
t−1 + xi

t = Di
t + si

t for all i, t (1.2)

si
0 = SSi

0 , si
t ≥ SSi

t for all i, t (1.3)

vubi
t := xi

t ≤ M i
ty

i
t for all i, t (1.4)

mix capt :=
∑

i

αi1xi
t +

∑
i

βiyi
t ≤ L1 for all t (1.5)

pack capk
t :=

∑
i∈F k

αikxi
t ≤ Lk for all t and k = 2, 3 (1.6)

xi
t, s

i
t ∈ R+, yi

t ∈ {0, 1} for all i, t, (1.7)

where M i
t =

∑NT
k=t Di

k + SSi
NT is a valid upper bound on the production

quantity xi
t of item i in period t.

1.2.4 Implementation

To conclude this modeling chapter, we illustrate the resolution of this MPS
optimization model on an instance involving 12 finished products, 6 cereal
products and 6 fruit products, to be produced over a planning horizon of 15
time periods, using standard state-of-the-art optimization software. As you
will observe, the quality of the solutions obtained, in reasonable computing
time on such a small instance, is not good enough to use such a simple and
direct approach in the new industrial planning system of GW. This motivates
the development of more sophisticated and more efficient tools.

We implement and test the solution of this model using the Mosel algebraic
modeling language and the default version of the Xpress-MP Optimizer MIP
solver. This easy to read and straightforward Mosel implementation follows
closely the mathematical formulation, and proceeds by defining the indices,
data, variables, and constraints.
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In the first part of the Mosel program or file, the indices are defined, and
the data are declared and read from data files. Some auxiliary data such as
M i

t for all i and t are also computed using the Mosel programming language.

model GWGSCO
uses "mmetc","mmxprs","mmsystem" ! Mosel libraries

! INDICES ==================================================
declarations
NI=12 !number of products
NK=3 !number of machines
NT=15 !number of time periods

end-declarations

! DATA =====================================================
declarations
CAP: array (1..NK) of real
FAM: array (1..NI) of integer !=2 for cereals ;

!=3 for fruits
SS: array (1..NI) of real !constant over time
SSINIT: array (1..NI) of real
ALPHA: array (1..NI,1..NK) of real !=1 for all machines
BETA: array (1..NI) of real !defined only for k=1
DEM: array (1..NI,1..NT) of real

end-declarations

!READ DATA FILES ===========================================
initializations from ’gw_mps.dat’
CAP
[FAM, SS, SSINIT, BETA] as ’PRODUCT’
DEM

end-initializations

!ASSIGN TRIVIAL DATA VALUES ================================
forall (i in 1..NI, k in 1..NK)

ALPHA(i,k) := 1

!COMPUTE AUXILIARY DATA FOR VUB CONSTRAINT =================
declarations
DEMCUM: array (1..NI,1..NT) of real !residual demand till

! the end of the planning horizon
BIGM: array (1..NI,1..NT) of real !variable upper bound

end-declarations
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forall(i in 1..NI,t in 1..NT)
DEMCUM(i,t):= SS(i) + sum(tt in t..NT) DEM(i,tt)

forall(i in 1..NI,t in 1..NT)
BIGM(i,t):= DEMCUM(i,t)

forall(i in 1..NI,t in 1..NT, k in 2..NK | FAM(i)=k)
BIGM(i,t):= minlist((CAP(1) - BETA(i))/ALPHA(i,1),

CAP(k)/ALPHA(i,k),
BIGM(i,t) )

The second part of the Mosel program consists in the definition of the vari-
ables and constraints. Observe the two special object types used by Mosel:
mpvar for variables, and linctr for linear expressions and constraints. Ob-
serve also that the statement of the formulation in Mosel is very close to the
algebraic notation used to describe the mathematical formulation. The same
holds true for other algebraic modeling languages, such as AMPL, GAMS, or
OPL.

!VARIABLES =================================================
declarations
x: array(1..NI,1..NT) of mpvar
y: array(1..NI,1..NT) of mpvar
s: array(1..NI,1..NT) of mpvar

end-declarations

forall(i in 1..NI,t in 1..NT)
y(i,t) is_binary

!CONSTRAINTS ===============================================

declarations
inventory : linctr
dem_sat, inv_min, vub: array(1..NI,1..NT) of linctr
mix_cap: array(1..NT) of linctr
pack_cap: array(1..NK,1..NT) of linctr

end-declarations

inventory:= sum(i in 1..NI,t in 1..NT) s(i,t)

forall(i in 1..NI, t in 1..NT)
dem_sat(i,t) := if(t>1,s(i,t-1),SSINIT(i)) + x(i,t) =

DEM(i,t) + s(i,t)

forall(i in 1..NI, t in 1..NT)
inv_min(i,t) := s(i,t) >= SS(i)

forall(i in 1..NI, t in 1..NT)
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vub(i,t) := x(i,t) <= BIGM(i,t)*y(i,t)

forall(t in 1..NT) !k=1 for mixing
mix_cap(t) := sum(i in 1..NI)ALPHA(i,1)*x(i,t) +

sum(i in 1..NI)BETA(i)*y(i,t)<= CAP(1)

forall(k in 1..NK,t in 1..NT | k>1)
pack_cap(k,t):= sum(i in 1..NI |FAM(i)=k)

ALPHA(i,k)*x(i,t) <= CAP(k)

The final part of the Mosel program controls the execution of the mixed
integer programming algorithm (branch-and-cut), as well as the solution out-
put. Here we ask for the best solution found, without cutting planes, with a
time limit of 600 seconds, and then print out the solution obtained.

!SOLUTION =================================================
setparam("XPRS_verbose",true) ! Enable message printing
setparam("XPRS_CUTSTRATEGY",0) ! Disable automatic cuts
setparam("XPRS_MAXTIME",600) ! Maximum run time
minimize (inventory)

!PRINT SOLUTION ===========================================
forall (i in 1..NI, t in 1..NT) do
writeln("ITEM ",i," and PERIOD ",t,

": PROD= ",getsol(x(i,t)), " (", getsol(y(i,t)),
") STOCK= ", getsol(s(i,t)) )

end-do

!EXIT =====================================================
exit(0) end-model

The only addition with respect to the initial formulation consists in the
computation of the big M i

t parameter in constraint (1.4). For each i and t,
the batch size cannot exceed

M i
t = min{ SSi +

∑NT
l=t Di

l , (L1 − βi)/αi1 , Lk/αik }, (1.8)

where k is such that product i belongs to family F k (k = 2 or 3).
The data are read from the single data file gw mps.dat, which contains the

values of the capacity, product data – family, safety stock, and initial stock,
cleaning times β – and demand data.

CAP: [1400, 700, 700]
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PRODUCT:[!FAM,SS , SSINIT,BETA
( 1 ) [ 2, 10.00, 83.00, 30.]
( 2 ) [ 2, 10.00, 31.00, 20.]
( 3 ) [ 2, 10.00, 11.00, 30.]
( 4 ) [ 2, 10.00, 93.00, 40.]
( 5 ) [ 2, 10.00, 82.00, 40.]
( 6 ) [ 2, 10.00, 72.00, 10.]
( 7 ) [ 3, 20.00, 23.00, 30.]
( 8 ) [ 3, 20.00, 91.00, 20.]
( 9 ) [ 3, 20.00, 83.00, 10.]
( 10 ) [ 3, 20.00, 34.00, 50.]
( 11 ) [ 3, 20.00, 61.00, 30.]
( 12 ) [ 3, 20.00, 82.00, 20.]
]

DEM: [
0, 95, 110, 96, 86,124, 83,108, 114,121, 110,124, 104, 86, 87,
98, 96, 96, 98, 103,104, 122,101, 89,108, 101,109, 106,108, 76,
106, 0, 89,123, 96,105, 83, 82, 112,109, 119, 85, 99, 80, 123,
98,121, 0,105, 98, 96, 101, 81, 117, 76, 103, 81, 95,105, 102,
0,124, 113,123, 123, 79, 111, 98, 97, 80, 98,124, 78,108, 109,

103,102, 0, 95, 107,105, 107,105, 75, 93, 115,113, 111,105, 85,
110, 93, 0,112, 84,124, 98,101, 83, 87, 105,118, 115,106, 78,
85, 92, 101,110, 93, 96, 120,109, 121, 87, 92, 85, 91, 93, 109,
122,116, 109, 0, 105,108, 88, 98, 77, 90, 110,102, 107, 99, 96,
120,124, 94,105, 92, 86, 101,106, 75,109, 83, 95, 79,108, 100,
117, 96, 78, 0, 108, 87, 114,107, 110, 94, 104,101, 108,110, 80,
125,112, 75, 0, 116,103, 122, 88, 85, 84, 76,102, 84, 88, 82
]

1.2.5 Optimization Results

The results in Table 1.5 have been obtained with the default version of the
Xpress-MP Optimizer. The problem has been solved twice.

• In the first run, we have solved the problem by branch-and-bound, using
Xpress-MP defaults, except that cut generation has been switched off.

• In the second run, we have solved the problem by branch-and-cut using
Xpress-MP defaults including cut generation.

• In both cases Xpress-MP uses a branch-and-bound algorithm (see below
and in Chapter 3), but in the second case it tightens the formulation by
adding general cuts (MIR, knapsack and Gomory cuts; see Part II) so as
to obtain improved bounds.
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The general role of such cut generation procedures is explained in more
detail in Chapter 3, devoted to the description of mixed integer programming
algorithms, and is only roughly described here.

• The branch-and-bound algorithm is based on the solution of the linear
relaxation of the initial model, which is the model obtained by replacing
the integrality restrictions on the variables (in our example, yi

t ∈ {0, 1})
by their (relaxed) bound restrictions (in our example, 0 ≤ yi

t ≤ 1).
• The relaxed problem is a pure linear program, and is thus easy to solve,

but its optimal solution does not solve the initial problem if the relaxed
integer variables take on fractional optimal values (yi

t strictly between 0
and 1).

• In the latter case, the relaxed problem provides only a lower bound on
the optimal solution value (in a minimization problem), simply because
the relaxed problem is defined by adding feasible solutions to the original
problem. This is the lower bounding part of the algorithm.

• The branch-and-bound algorithm proceeds by enumerating a sequence of
linear relaxations, whose feasible solutions define some partition of the ini-
tial (i.e., nonrelaxed) model. Moreover, the best solution among all linear
relaxations is (proved to be) the optimal solution of the initial model. This
is the branching part of the algorithm.

• During this enumeration, some feasible solutions of the initial model are
generated, that is, solutions where the relaxed integer variables take integer
values. The objective value of each such feasible solution provides an upper
bound on the optimal objective value. This is the upper bounding part of
the algorithm.

• Finally, the branch-and-bound algorithm is exact if the enumeration is
complete, and provides only an approximate or heuristic solution if the
enumeration is truncated. In the latter case, the quality of the solution is
usually measured by the so-called duality gap defined as

Duality Gap =
Best UB - Best LB

Best UB
× 100%,

where Best LB and Best UB are, respectively, the best values found
for the lower bound and the upper bound when the enumeration is
stopped. As the optimal solution value must lie somewhere in the range
[BestLB , BestUB], the duality gap measures the maximum relative de-
viation from optimality of the best feasible solution.
Note that in the solution reports from the Xpress-MP Optimizer, the dual-
ity gap is computed relative to the best lower bound (dividing by BestLB)
instead of the best upper bound, and is therefore larger.

In general, the running time of the branch-and-bound algorithm (i.e., more
precisely, the number of linear programs to be solved during the enumeration),
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as well as the quality of its approximate solutions (measured by the duality
gap), depend heavily on the quality of the initial lower bound.

This is why the initial formulation of a model is so important in mixed
integer programming. This is also why adding cuts or constraints, either auto-
matically by Xpress-MP, or by any other reformulation technique, to improve
the initial lower bound allows one to obtain better solutions.

Coming back to our illustrative example, Table 1.5 reports the results
obtained within a a time limit of 600 seconds (industrial users are often in-
terested in getting good solutions quickly). It compares the behavior of the
branch-and-bound algorithm with and without Xpress-MP cuts.

Table 1.5. GW MPS Example (1.1)–(1.7)

Algorithm Vars LP Val. XLP Val. Best LB Best UB t. (secs)
Formulation Cons Ncuts Best UB Gap (%)
Basic form. B & B 540 2854 2854 3296 22
without Xpress-MP cuts 585 0 6295 47.64
Basic form. B & B 540 2854 5416 5620 147
with Xpress-MP cuts 585 280 5732 1.95

NI = 12, NT = 15. Maximum 600 second runs.

In Table 1.5, the column “Vars/Cons” shows the number of variables and
constraints in the formulation, “LP Val.” is the value of the initial linear
relaxation of the formulation, “XLP Val.” and “Ncuts” give the value of the
linear relaxation after the addition of the Xpress-MP cuts and the number of
cuts added, “Best LB” and “Best UB” give the value after 600 seconds of the
best lower bound and best upper bound (best feasible solution), respectively,
“Best UB t.” indicates the time in seconds needed to obtain this best feasible
solution, and “Gap” gives the final duality gap when the enumeration was
stopped.

• We see that the addition of 280 constraints by Xpress-MP has increased
the lower bound from 2854 to 5416. It means that the total inventory
objective function value will be at least 5416 in the optimal solution, and
this bound is known after a few seconds of computing time (after the
addition of cuts and the solution of the corresponding linear relaxation,
but before any enumeration). This is due to the automatic reformulation
of some low-level relaxation or structure identified by the optimization
system (see Chapter 3, Section 3.4 for the definition of this concept, and
Chapter 8 for the study of reformulations for such low-level relaxations).

• In comparison, without reformulation it takes as much as 600 seconds to
obtain a (weaker) best lower bound of 3296!
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• Also, the cuts have allowed the branch-and-bound algorithm to find good
feasible solutions in 600 seconds, whereas only bad solutions are found
without cuts.

• Moreover, the best feasible solution found in 600 seconds (found after 147
seconds) with cuts is guaranteed to be less than 2% away from the optimal
solution.

• Finally, it is impossible with this initial formulation and Xpress-MP cuts
to obtain the optimal solution and prove its optimality after several hours
of computing time.

It is not a simple matter to improve or tighten formulations. Our goal is
to provide the necessary modeling and reformulation tools to allow the reader
to perform this task. In particular, we illustrate this approach in Section 4.5
with the production planning example. We show how to use the classifica-
tion and reformulation scheme developed in Chapter 4 to improve the results
and obtain either good solutions quickly, or a provably optimal solution in
reasonable time.

These improvements are based on the identification of the specific produc-
tion planning structures contained in the model (called high-level relaxations
in Section 3.4), and on their reformulations. The mathematical study of these
reformulations is the main topic of Parts II to IV.

Exercises

Exercise 1.1 Consider the tiny example from Section 1.1, with a second type
of bike (mountain bike) whose production has to be planned over the same
planning horizon, from January to August.

The forecast demand for the mountain bikes is 200 bikes per month, except
in July and August when the demand will increase (most likely) up to 500
bikes per month.

Initially (January 1st), there is no mountain bike in stock. The production
set-up cost is 3000 euros, the unit production cost is 60 euros per bike, and
the inventory holding cost is 3 euros per bike, per month in inventory.
i. By using the same MIP model as for the racing bikes and changing the data,
determine the optimal production plan for the mountain bikes.
ii. In addition, there is a global production capacity restriction: at most 1500
bikes can be produced during each month. Change your MIP model to account
for the joint production capacity limit. Build a model to plan simultaneously
the production of both types of bike and optimize total production and in-
ventory costs.
iii. Solve the corresponding MIP, and analyze the optimal solution obtained. In
particular, what is the effect of the joint capacity restriction on the individual
production plans?
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Exercise 1.2 How would you change the GW–GSCO formulation from Sec-
tion 1.2 if only one product could be packed on each packaging line in each
time period?

Note that such constraints, called production mode constraints, are typi-
cally added in order to ease or simplify the organization of the mixing line,
or to reduce the cleaning costs, but have an impact on the line flexibility. We
assume implicitly here that the time periods are shorter than in the initial
model (e.g., days instead of weeks).

Exercise 1.3 How would you change the GW–GSCO model from Section 1.2
if only one product could be mixed on the mixing line in each time period?

We assume implicitly here that the time periods are shorter than in the
initial model (e.g., days instead of weeks). Given the current restriction on
the stock of intermediate products (no stock after mixing, before packing),
does this adapted model make sense?

Exercise 1.4 Consider the GW–GSCO model from Section 1.2, but under a
scenario in which we can carry a set-up over from one week to another on the
mixing line. That is, we do not have to clean the mixing line at the end of a
week if the last lot produced in a week is of the same product as the first lot
of the next week.
i. Change your MIP model to account for the set-up carryover possibility.
ii. Solve the corresponding MIP. Is it more difficult to solve than the initial
model? In what way is it more difficult?
Hint: Although there are different ways to model this, additional variables
are definitely needed, as well as new constraints to relate the new variables to
the set-up variables.

Exercise 1.5 Consider the GW–GSCO model from Section 1.2. How would
you change the model if the cleaning times on the mixing line were sequence-
dependent, that is, if the cleaning time for a lot of a given product depended
on what product was mixed immediately after it. The mixing line has to be
cleaned at the end of each week. This can be modeled as a special sequence-
dependent cleaning time, from the last product mixed to a dummy product
representing the idleness of the line at the end of the week.
i. Formulate this modified problem as a mixed integer (MIP) program. Is your
model correct?
ii. Create some data set for the sequence-dependent changeover times, and
solve the corresponding MIP. Is it more difficult to solve than the initial
model? In what way is it more difficult?
Hint: An additional set of variables is needed, as well as new constraints to
link this new set of variables to the set-up variables. Also, we can assume that
a product is never produced more than once in any time period.

Exercise 1.6 In the GW–GSCO model from Section 1.2, if it were possible
to hold products in inventory immediately after mixing, and before packing,
how would you change your model?



Exercises 35

i. Assuming that the objective is to minimize total inventory, defined as the
sum of stocks before and after packaging, change your MIP formulation to
account for this possibility.
ii. Solve the corresponding MIP. Is it more difficult to solve than the initial
problem? In what way is it more difficult?

Exercise 1.7 A company wants to plan the production of several finished
products (PRODUCTS = {A, B, C, D}), over the next four months. It is
using a make-to-stock production policy, and the estimated demands for each
product for the next four months are known. The demands are given in Table
1.6 in units of product.

Table 1.6. Demand, Production Capacity Limit and Inventory Cost

Demand Demand Demand Demand Production Inventory
Products Month 1 Month 2 Month 3 Month 4 Capacity Cost

[units] [units] [units] [units] [units/month] [euros/
(unit,month)]

Product A 5,000 6,000 3,000 10,000 8,000 35
Product B 900 1,000 4,000 5,000 5,000 39
Product C 6,000 9,000 4,000 2,000 8,000 45
Product D 10,000 11,000 14,000 16,000 15,000 85

There is a monthly production capacity limit for each product, because
each product has its own production facility, except for packaging. These
monthly capacity limits are constant over time and given in Table 1.6 in units
of product.

There is also a single packaging department in the company, transforming
each product into a finished or packed product. So, there is also a global
capacity limit on the total number of product units packed during a month.
This limit is constant over time, and is estimated to be 28,000 units per month.

It is possible to store the finished products, as well as the products be-
fore packaging, in unlimited quantity because the warehouse is big enough.
Nevertheless, there is a unit inventory cost for each product, corresponding
to storage costs and the opportunity cost of capital. These costs are given
for each finished product in Table 1.6, in euros per month and per finished
product unit. They are time-independent. The inventory of a product before
packaging is estimated to cost 4 euros less than after packaging, per month
and unit.

The current or initial inventory is empty, there is no final inventory re-
quirement, and there are no restrictions on the availability of raw materials.
The planning objective is to minimize inventory costs, and demand has to be
satisfied on time during the whole four-month horizon. The following steps
need to be carried out to achieve this objective.
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i. Formulate this problem as a Linear Program (LP).
ii. Develop a model, reading all the data from a file, and solving this LP, using
Mosel or any algebraic modeling language.
iii. Solve the model, and print the optimal solution, using Mosel/Xpress-MP
or any LP solver.
iv. If you were the chief operations officer (COO) of that company, would you
try to increase the packing capacity? What sort of data would you collect,
and what sort of computations would you perform in order to answer to this
question?

Exercise 1.8 Minimizing the inventory costs in Exercise 1.7 leads to an un-
satisfactory production plan in which each product is packed during each
month. This is not satisfactory because the packaging line has to be cleaned
between two campaigns of different products, and this cleaning or sterilization
process consumes very expensive products. So, we must try to avoid packaging
all products within the same month. We continue to work with and extend
the model of Exercise 1.7 to remedy this situation.

The company now also wishes to take into account the cost of setting up
or cleaning the packaging line. When a product is packed during a month, the
set-up cost is incurred once (only once because, usually, a product is packed
at most once in a month). These packing set-up costs are product-dependent,
but time-independent, and are (SUCOSTp) = (500, 000, 900, 000, 800, 000,
and 900, 000) euros, respectively, for products p = A, B, C, and D. Finally,
there is no set-up cost for making the products because the production lines
are dedicated to each product. Answer the following in order to optimize the
production plan.
i. Formulate this problem as a Mixed Integer Program (MIP).
ii. Develop a model, reading all the data from a file, and solving this MIP,
using Mosel or any algebraic modeling language.
iii. Solve the model, and print the optimal solution, using Mosel/Xpress-MP
or any MIP solver.
Hint: To model the set-up costs, first introduce 0/1 or binary variables ypt that
indicate whether product p is packed during month t. Then add constraints
to link the quantity xpt of product p packed during month t to the set-up
decision ypt. Finally add the set-up costs in the objective function.

Notes

Introduction The description of the planning system and models developed
by the Kellogg Company can be found in Brown et al. [31].

Section 1.1 We refer to Heipcke [88] for a more general introductory overview
of optimization models, with a larger scope of applications than production
planning.
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Section 1.2 The GW company case, and its MPS story, are pure fiction.
The case is inspired by several research projects in which the authors have
been involved. The data used in Section 1.2.4 are derived from the standard
test cases in Trigeiro et al. [161].

The model of Section 1.2.3 has been implemented and tested using the
Mosel algebraic modeling language (version 1.4.1) and the default version of
the Xpress-MP Optimizer MIP solver (version 15.30). More information about
this software can be found at http://www.dashoptimization.com.

Here we have always used the default version of this commercial software.
Similar results to those presented in this chapter are obtained using other
modeling and optimization software.

All the tests reported here have been carried out on a 1.7 GHz PC (cen-
trino) with 1 GB of RAM running under Windows XP.

Exercises Exercises 1.7 and 1.8 are adapted (and the data taken) from the
syllabus and teaching material delivered with the Xpress-MP software.
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Production Planning Models and Systems

Motivation

In the two industrial production planning systems, the Kellogg Company and
GW, mentioned or analyzed in Chapter 1, we observed some important re-
quirements for the new production planning model and tool.

• It was supposed to remedy important weaknesses of the current planning
system (the inability to model and plan capacity utilization accurately,
because of neglected machine preparation times in the case of the Kellogg
Company, and because of neglected machine cleaning times in the MPS
model for GW).

• It needed some coordination with the global planning system in charge of
supporting all planning decisions from the strategic and long-term horizon
level to the very detailed and short-term level. We heard about the tactical
plan and the operational plan for Kellogg, and the MRP, ERP, and MPS
for the GW Company case, and we observed that these planning levels
are not independent (decisions at one level act as constraints at another
level).

• It required a high level of integration in the decision processes in place, to
avoid manual replanning and make sure that the decisions suggested by
the model truly support and have an impact on the real planning decisions.

This need for improvement, coordination, and integration can be observed
in almost all industrial projects. In order to develop an effective planning
model, the modeler must be aware of the planning process and system used,
of the limitations of the current system, of the architecture and structure of
the existing system, and of the decision processes used by the planning teams.

This is our motivation for the inclusion of this chapter on production
planning models and systems.
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Objective

To do a useful job, the modeler must have sufficient knowledge about existing
planning models, systems, and processes to be able to evaluate the current
system, and in order to design improved, coordinated, and integrated solu-
tions.

The general objective of this chapter is to provide this necessary knowl-
edge. More specifically, the objective is to

• describe or survey the structure of the planning systems used by many –
or most – companies,

• learn the general principles of the planning procedures, and
• study some generic classes of production planning models encountered in

such systems.

We also provide some analysis and criticism of the planning models and
methods used in these systems to help readers to develop some evaluation
criteria to measure their performance, and to identify situations where the
optimization approach may help to improve the productivity and flexibility
of manufacturing systems.

Contents

In this chapter:

• In Section 2.1 we first give mathematical formulations of some of the clas-
sical production planning models considered in ERP (enterprise resource
planning) or MRP systems;

• Then we analyze in detail in Section 2.2 the well-known generic MRP
planning procedure used to solve these models by
– describing its inputs and its structured data model,
– presenting the single-item decomposition planning heuristic that forms

the basis of most MRP planning systems, and
– analyzing the limitations of the MRP decomposition approach;

• Next in Section 2.3 we take a broader view and define the planning tasks of
APS (Advanced Planning Systems), which subsume the well-known man-
ufacturing, planning, and control systems; material requirements planning
(MRP-I); manufacturing resource planning (MRP-II); and hierarchical
production planning (HPP); and

• Finally, to illustrate the planning tasks and the planning process along the
supply chain, we describe in Section 2.4, without mathematical models or
formulations, the generic strategic network design and supply chain master
planning problems as further examples of procurement, production, and
distribution planning problems.
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2.1 Some Production Planning Models

The purpose of this section is to provide further examples and mixed integer
programming formulations of production planning models. The formulations
described here correspond to classical models in ERP or MRP systems. The
next section describes the global structure of such systems.

Modeling Elements

There are a number of modeling elements present in many or most production
planning problems. Production planning deals mainly with the determination
of production lots or batches, specifically the size of batches and the time of
production, in order to meet some demand over a given finite horizon, called
the planning horizon. Demand is usually generated from forecasts in a make-
to-stock environment, or by customer orders in a make-to-order environment,
or often by a combination of the two.

In order to define feasible and economical production plans, several other
characteristics of the manufacturing system are usually taken into account:
the availability of resources (machine hours, workforce, subcontracting, etc.),
the production and inventory costs, and other performance measures such as
customer-service level.

The simplest such production planning model is presented next. It is known
as the single-item uncapacitated lot-sizing model (LS-U). It corresponds to the
planning of a single item to meet some dynamic demand over a discretized
planning horizon. It contains all the modeling elements cited above, apart from
the fact that there are no resource capacity restrictions. Our tiny economical
example in Chapter 1 is one instance of this LS-U model.

There are also modeling elements that are present in some, but not all,
models. Such elements usually make the models more complex and more dif-
ficult to solve.

• For instance, the products may compete for the allocation of capacity
from some shared resources. This has been illustrated with the mixer or
the packaging lines in our industrial example in Section 1.2, and is typical
of the Master Production Schedule (MPS) model presented hereafter. This
MPS approach is often used to plan the production of finished products.

• In some other cases, the products interact through multi-level product
structures. In other words, a product can be an output of some produc-
tion stage and also an input of some other production stage, or it may
be delivered from an external supplier. This creates some precedence con-
straints between the supply and the consumption of that product. These
restrictions are usually modeled through inventory balance constraints.
Examples of such models are the Material Requirements Planning (MRP)
model, or the MPS/MRP integrated model described later in this Section.
This MRP model is used to integrate the production and procurement
plans of all products and components.
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• Finally, there are other elements needed to refine the model, or to model
capacity utilization in a more precise way. For instance, the demand satis-
faction process may allow demand for finished products to be backlogged.
In this case, it is possible – but penalized because it has a negative impact
on customer satisfaction – to deliver to a customer later than required.
This occurs, for example, when a factory does not have enough capacity
to deliver to all customers on time.

• In some other cases, it is necessary to model capacity utilization more
precisely in order to guarantee to obtain feasible production plans. For
instance, the capacity consumed when a machine starts or finishes a pro-
duction batch, or when a machine switches from one product to another,
may need to be considered. In these cases, we obtain models with set-up
times, start-up times, changeover times, or models with sequencing re-
strictions. This was the case for the mixer in our industrial example in
Chapter 1. On the other hand, such models may be too complex to be
solved with set-up or start-up time restrictions, and then simpler models
involving only set-up or start-up costs may be worth considering.

Uncapacitated Lot-Sizing Model

The first model is the single-item, single-level, uncapacitated lot-sizing model.
This model is the core subproblem in production planning because it is the
problem solved repeatedly for each item (from end products to raw materials)
in the material requirements sequential planning system (see Section 2.2).

We use the index t, with 1 ≤ t ≤ n, to represent the discrete time periods,
and n is the final period at the end of the planning horizon. The purpose is
to plan the production over the planning horizon (i.e., fix the lot size in each
period) in order to satisfy demand, and to minimize the sum of production
and inventory costs.

Classically, as in our tiny economical example in Chapter 1, the production
costs exhibit some economies of scale that are modeled through a fixed charge
cost function. That is, the production cost of a lot is decomposed into a
fixed cost independent of the lot size, and a constant unit or marginal cost
incurred for each unit produced in the lot. The inventory costs are modeled
by charging an inventory cost per unit held in inventory at the end of each
period. Any demand in a period can be satisfied by production or inventory,
and backlogging is not allowed. The production capacity in each period is not
considered in the model, and is therefore assumed to be infinite.

For each period t, with 1 ≤ t ≤ n, the data pt, qt, ht, and dt model the
unit production cost, the fixed production cost, the unit inventory cost, and
the demand to be satisfied, respectively. For simplicity we suppose that dt ≥ 0
for all periods t. The decision variables are xt, yt, and st. They represent the
production lot size in period t, the binary variable indicating whether there
is a positive production in period t (yt = 1 if xt > 0), and the inventory at
the end of period t, respectively.
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The natural formulation of this uncapacitated lot-sizing problem can be
written as follows, using the demand satisfaction and set-up enforcement (vari-
able upper bound) generic constraints described in Chapter 1.

min
∑n

t=1(ptxt + qtyt + htst) (2.1)

subject to

st−1 + xt = dt + st for all t (2.2)
s0 = sn = 0 (2.3)
xt ≤ Mtyt for all t (2.4)

x ∈ R
n
+, s ∈ R

n+1
+ , y ∈ {0, 1}n , (2.5)

where Mt is a large positive number, expressing an upper bound on the max-
imum lot size in period t. Constraint (2.2) expresses the demand satisfaction
in each period, and is also called the flow balance or flow conservation con-
straint. This is because every feasible solution of LS-U corresponds to a flow
in the network shown in Figure 2.1, where d14 =

∑4
i=1 di is the total demand.

Constraint (2.3) says there is no initial and no final inventory. Constraint (2.4)
forces the set-up variable in period t to be 1 when there is positive produc-
tion (i.e., xt > 0) in period t. Constraint (2.5) imposes the nonnegativity and
binary restrictions on the variables. The objective function defined by (2.1) is
simply the sum of unit production, fixed production, and unit inventory costs.
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Figure 2.1. Uncapacitated lot-sizing network (n = 4).

Master Production Scheduling Model

The next model is known as the multi-item (single level) capacitated lot-sizing
model. It corresponds to the simplest Master Production Scheduling prob-
lem solved to plan the production of finished products in a Manufacturing
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Planning and Control System (MPCS) (see Section 2.3). Our GW example in
Section 1.2 is another example of such a MPS model.

The purpose is to plan the production of a set of items, usually finished
products, over a short-term horizon corresponding at least to the total pro-
duction cycle of these items. For each item, the model is the same as the LS-U
model in terms of costs and demand satisfaction. In addition, the production
plans of the different items are linked through capacity restrictions coming
from the common resources used.

We define the indices i with 1 ≤ i ≤ m to represent the set of items to
be produced, k with 1 ≤ k ≤ K to represent the set of shared resources with
limited capacity, and t with 1 ≤ t ≤ n to represent the time periods. The
variables x, y, s and the data p, q, h, d have the same meaning for each item
i as in the model LS-U . A superscript i has been added to represent the item
i for which they are each defined.

The data Lk
t represent the available capacity of resource k during period t.

The data αik and βik represent the amount of capacity of resource k consumed
per unit of item i produced, and for a set-up of item i, respectively. The
coefficient βik is often called the set-up time of item i on resource k, and
represents the time spent to prepare the resource k just before the production
of a lot of item i. Together with αik, it may also be used to represent some
economies of scale in the productivity factor of item i on resource k.

The natural formulation of this multi-item capacitated lot-sizing model,
or basic MPS model, can be written as follows,

min
∑

i

∑
t(p

i
tx

i
t + qi

ty
i
t + hi

ts
i
t) (2.6)

subject to

si
t−1 + xi

t = di
t + si

t for all i, t (2.7)

xi
t ≤ M i

ty
i
t for all i, t (2.8)∑

i

αikxi
t +

∑
i

βikyi
t ≤ Lk

t for all t, k (2.9)

x ∈ R
mn
+ , s ∈ R

m(n+1)
+ , y ∈ {0, 1}mn , (2.10)

where constraints (2.6)–(2.8) and (2.10) are the same as for the LS-U model,
and the generic constraint (2.9) expresses the capacity restriction on each
resource k in each period t.

Material Requirements Planning Model

As a last example model, we describe the multi-item multi-level capacitated
lot-sizing model, that can be seen as the integration of the previous MPS model
for finished products, and the LS-U models for all intermediate products and
raw materials, into a single monolithic model. It is often referred to as the
Material Requirements Planning model, or the integrated MPS/MRP model.
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The purpose of this model is to optimize simultaneously the production and
purchase of all items, from raw materials to finished products, in order to sat-
isfy for each item the external or independent demand coming from customers
and the internal or dependent demand coming from the production of other
items, over a short-term horizon.

The dependency between items is modeled through the definition of the
product structure, also called the bill of materials (BOM). The product struc-
tures are usually classified into Series, Assembly or General structures; see
Figure 2.2.

Series                         Assembly                                   General Structure

3 2
3

2

1

1

2

Figure 2.2. Types of product structures in multi-level models.

The indices, variables, and data are the same as before, except that, for
simplicity, we also use the index j with 1 ≤ j ≤ m to identify items. For item
i, we use the additional notation D(i) to represent the set of direct successors
of i, that is, the items consuming directly some amount of item i when they
are produced. Note that for series and assembly structures, these sets D(i) are
singletons for all items i, and for a finished product i, we always have D(i) = ∅.
For j ∈ D(i), we denote by rij the amount of item i required to make one
unit of item j. These rij values are indicated along the edges (i, j) in Figure
2.2. This parameter r is used to identify the dependent demand, whereas di

t

corresponds to the independent demand. For each item i, we denote by γi

the lead-time to produce or deliver any lot of i. More precisely, xi
t represents

the size of a production or purchase order of item i launched in period t, and
delivered in period t + γi.

The natural formulation for the general product structure capacitated
multi-level lot-sizing model, or the monolithic MRP model, is

min
∑

i

∑
t(p

i
tx

i
t + qi

ty
i
t + hi

ts
i
t) (2.11)

subject to
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si
t−1 + xi

t−γi = [di
t +

∑
j∈D(i)

rijxj
t ] + si

t for all i, t (2.12)

xi
t ≤ M i

ty
i
t for all i, t (2.13)∑

i

αikxi
t +

∑
i

βikyi
t ≤ Lk

t for all t, k (2.14)

x ∈ R
mn
+ , s ∈ R

m(n+1)
+ , y ∈ {0, 1}mn, (2.15)

where the only difference with respect to the previous MPS model resides in
the form of the generic demand satisfaction or flow conservation constraint
(2.12). For each item i in each period t, the amount delivered from production
or vendors is xi

t−γi ordered in period t− γi, and the demand to be satisfied is
the sum the independent demand di

t and the dependent demand
∑

j∈D(i) rijxj
t

implied by the production of direct successors j ∈ D(i).
Because of the multi-level structure, the presence of single item LS-U

models as submodels is less obvious, but we show in Part IV how to refor-
mulate this model in the form of single-item LS-U models linked by capacity
and product structure restrictions. This reformulation is known as the echelon
stock reformulation, and plays a very important role because it allows one to
use all the results on the reformulation of single-level problems when treating
multi-level problems.

2.2 The MRP Planning Model

Many industrial production planning models are variants or extensions of the
the generic MRP model (2.11)–(2.15), described in Section 2.1, which is typical
of discrete parts manufacturing systems. Provided that the BOM structure
allows one to describe the product structure, which is usually the case for
discrete parts manufacturing, this model potentially plans the procurement
or production of all components needed to satisfy external customer demand
over a medium-term horizon.

The numerous extensions or adaptations to this basic model correspond
usually to better or refined models to include overtime, product or compo-
nent substitutes in BOMs, alternate routings or machine selection to perform
production operations, shipping and transportation to and from other sites,
buying or subcontracting of some components, productivity and capacity uti-
lization, and so on.

Nevertheless, the basic MRP model (2.11)–(2.15) is the kernel of many or
most multi-item single-facility production planning models, and is solved in
most integrated planning systems (see Section 2.3 for a general introduction
to such systems). Moreover, most MRP and ERP planning systems use the
same basic or trivial decomposition approach based on LS-U in order to solve
this model or, at least, to provide feasible solutions.
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In this section, we describe this simple but generic MRP model and its
inputs, using the standard operations management terminology for produc-
tion planning models. We also describe the traditional and heuristic MRP
decomposition approach, and discuss its weaknesses.

In such boxes, we establish the link between the generic MRP
planning model and its inputs described here, and the
mathematical programming formulation (2.11)–(2.15).

A major difference between the traditional MRP approach and the model-
ing/optimization approach is that the latter forces the user/modeler to make
a clear distinction, and avoid some confusion, between the data required as
input to the model and the model formulation itself (decisions, constraints,
and objective), and also between the model formulation and the algorithm
used to build a feasible or optimal production plan.

2.2.1 The Planning Model and Its Inputs

The data required to define and implement the MRP model are now described.

Independent Demand over the Planning Horizon

The main objective of production planning is to meet the so-called independent
demand, which is defined for each facility as the demand coming from external
sources. This comprises demand from customers for the main finished prod-
ucts, but also spare parts demand and demands from the distribution system
or from other facilities.

The independent or external demand for item i in period t is
represented by di

t in Equation (2.12)

In a make-to-stock (MTS) production policy, this independent demand
must be already in stock when the customer demand arrives at the facility.
Therefore, all the procurement and production activities must be carried out
in anticipation of this demand, and be based on demand forecasts. This policy
is typically used for standard products, with little product variety or diversity,
such as fast-moving consumer goods and many standard items of household
equipment.

In a make-to-order (MTO) or assemble-to-order (ATO) production policy,
some activities can still be performed after the external ordering of the prod-
ucts. The delivery lead-time is the time promised to customers for delivery.
Therefore, at the time of ordering, the facility must hold enough raw mate-
rials or semi-finished products in inventory in such a way that the remaining
production lead-time required to terminate the finished products ordered is
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less than (or equal to) the commercial lead-time. This implies that planning
is decomposed in two phases or two separate problems. The upstream phase,
also called anticipation or “push” phase, plans the procurement and produc-
tion from raw materials up to some semi-finished products, and is based on
demand forecasts for these semi-finished products. This is similar to MTS
planning. The downstream phase, called the final assembly, on-order phase,
or “pull” phase, schedules the production from the semi-finished products held
in inventory up to the finished products, and is based on effective customer or-
ders. This decomposition is illustrated in Figure 2.3. This approach is typical
of production systems where there exists a large variety of finished product
variants, based on a limited variety of raw materials or semi-finished products.
This makes it more economical to hold these semi-products in inventory, but
imposes a positive commercial lead-time to complete production. This is, for
instance, the policy used by Dell to assemble its PCs.
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Figure 2.3. MTS and ATO production policies.

Formulation (2.11)–(2.15) is used to represent either a MTS
policy, or the push phase of an ATO policy.

For all production policies, the planning horizon must be long enough
to cover at least the total or cumulative lead-time, including procurement,
production, and satisfaction of demand. This is necessary if one is to reach
a high customer-service level, defined as the fraction of customer demands
delivered on time, because we need to order the right materials now from
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our suppliers (i.e., the right quantity of each material) to be included into
the finished products that will be delivered one lead-time from now. In other
words, the total lead-time represents the required anticipation time in the
planning process or, equivalently, the minimal planning horizon length. Then,
the planning model will be solved and used in a rolling horizon manner. That
is, the solution proposed for the early time periods will be implemented, the
model data and parameters will be updated for the subsequent time periods,
the model will be solved again, and so forth.

In formulation (2.11)–(2.15) the number of time periods n is at
least as large as the total cumulative lead-time from the ordering

of raw materials to the completion of finished products,
expressed in number of periods.

Bill of Materials (BOM) to Compute Dependent Demand

The bill of materials defines the product structure by specifying for each
component (finished or semi-finished product) all of its direct predecessor
components (raw materials or semi-finished products), as well as the number
of each required per unit of the successor component. This BOM information
allows one to transform the finished product or external time-phased demand –
forecasts or orders – into detailed time-phased requirements for all components
in the production system.

FP

A

B C C

1 1

2 3

(LT = 1 period)

(LT = 2)

(LT = 1) (LT = 2)

Figure 2.4. The bill of materials for finished product FP .

A BOM example is given in Figure 2.4, where

• each unit of finished product FP is obtained by assembling one unit of A
with one unit of C,

• each unit of A is itself directly obtained from two units of B and three
units of C, and
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• items B and C are raw materials.

We use this simple example to illustrate the MRP planning process. In this
example, a total of four units of raw material C are required to produce
each unit of FP , three units of C per unit of item A are consumed when a
production order of item A is performed, and one unit of C per unit of FP is
used when an order of FP is released.

The BOM structure is modeled in Equation (2.12) by rij for all
items i and all j ∈ D(i), that is, all direct successors j of i,
where rij is the number of units of i required per unit of j.

The demand for intermediate products (such as A or C in the example)
coming from the production orders of their successors is called dependent
demand, as opposed to independent for finished products, because it depends
entirely on the production plans of successor items. Such plans are controlled
by the planner, whereas independent or external demand is not. For instance,
item C will be consumed only when a production order of A or FP is started (a
decision under the control of the planner), but not when a finished product FP
is ordered or delivered. This distinction between dependent and independent
demand is crucial and constitutes the basis of the MRP planning process.

The dependent demand for item i in period t is represented by∑
j∈D(i) rijxj

t in Equation (2.12).

Procurement and Production Lead-Times

Procurement and production activities cannot be performed instantaneously.
In order to build realistic production plans, procurement or production lead-
times, lead-times for short, are taken into account for all components in the
BOM structure. They represent the total time needed to complete a pro-
curement or production order, including preparation, administration, wait-
ing, production, quality control and tests, and delivery, and are measured as
an integer number of time periods. This information is written next to each
component in Figure 2.4.

In the MRP planning model, such lead-times are constant over time, are
independent of the order sizes, and are an input of the planning process.

The constant procurement or production lead-time for item i is
represented by γi in Equation (2.12).

We can now rephrase our minimum length condition on the
planning horizon. The number of time periods n is at least as

large as the sum of γi values along any path in the BOM graph.
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However, there is an important difference between the value of γi used
in the planning optimization model (Equation (2.12)) and the value of the
production lead-time used in the MRP planning process.

In the optimization model, γi is the minimum lead-time required for a
batch of item i to be produced, minimum in the sense that no queue time
(waiting time for the availability of machines or resources) is included. This
holds because the explicit capacity constraints of the optimization model guar-
antee that there are enough capacity and resources to produce each lot without
any delay, and therefore no safety queue time is required.

In contrast, the MRP planning process does not take capacity restrictions
directly into account, and the constant production lead-time principle forces
the planner to take a worst-case approach. The minimum production lead-time
γi must be augmented by some safety lead-time to guarantee the feasibility
of the production plans. For instance, in Figure 2.4, the lead-time for A has
been fixed to two periods because item A is sometimes produced in large lots
or on machines that are heavily loaded. Therefore a lead-time of two periods
is reserved for all production orders, even though most of these orders are of
small size, and will be released when there is enough capacity to complete
them effectively after one time period. As a side effect, this also increases the
level of work-in-progress inventory.

We come back later to the dramatic effects of the necessary inflation of
production lead-times in the MRP planning process.

Routing of Components

In addition to the product structure defined by the BOM and to the pro-
duction lead-times, the routing of products through different work centers, as
well as the time and capacity consumed at each work center by a production
order, are described in order to model and control capacity utilization.
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Figure 2.5. The routing of semi-finished product A.
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The simplest routing model consists of the decomposition of the production
order of each BOM component into a sequence of production operations. This
is illustrated in Figure 2.5 where the production of component A is shown to
require three successive operations (cutting, assembling, and painting).

The corresponding routing data for component A is given in Table 2.1.
The sequence of operations is defined by numbering the operations. For each
operation in the sequence, and for important or critical resources (manpower,
machines, departments as a whole, etc.), the unit production time ([minutes
per unit]) and the resource preparation or set-up time ([minutes per order or
batch]) are defined. This set-up time is independent of the batch size. Usually,
transportation and transfer times between operations are also modeled.

Table 2.1. Routing Data of Semi-Finished Product A

Routing of Component i = A

Operation Operation Resource Unit Set-up
Number Description Time Time

(k) (αik, [min]) (βik, [min])
10 Cutting Mach S100 1.5 25
15 Transfer Forklift – 20
20 Assembling Mach ASS 0.5 10
30 Painting Mach PPP 2.5 30

For instance, according to Table 2.1, a production order of 10 (resp., 20)
units of component A requires 130 (resp., 175) minutes in total, assuming that
20 (resp., 40) units of component B and 30 (resp., 60) units of component C
are available, and assuming that the resources are also available when needed.
Even if the lot size of component A is almost always below 20 and requires
thus less than 200 minutes, the production lead-time for component A has
been fixed to two periods – two days or almost 1000 minutes – simply because
the machines used are not always available when they are required to produce
A.

These routing data are first used to model capacity utilization.

The unit production time of item i on resource k is denoted αik

in Equation (2.14). Similarly, the set-up or preparation time of
resource k to produce one batch of item i is denoted βik in

Equation (2.14).

The routing information allows one to compute the minimal lead-time
required for each production order, as well as their load profiles (i.e., the
evolution of the load over time) induced by the production plans in each work
center and on each critical resource.
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Capacity of Resources

To perform finite capacity planning, one needs additional information on the
actual or usable capacity of each resource in each time period. The actual
capacity is defined as the number of effective production hours that can be
performed on the resource during the time period. This capacity will be com-
pared with the load profiles computed from the production plans and routing
data.

Usually, the available capacity is obtained as the product of the gross ca-
pacity (i.e., the office or worked hours), and the productivity factor (i.e., the
fraction of worked hours that are effectively used for production). This pro-
ductivity factor accounts for unavoidable breaks, interruptions, disturbances,
or inefficiencies during the utilization of the resource.

Table 2.2. The Usable Capacity

Resource Gross Productivity Usable
Description Capacity Factor Capacity

[hours/day] [hours/day]
Mach S100 8 0.95 7.6
Forklift 8 0.85 6.8
Mach ASS 16 0.85 13.6
Mach PPP 8 0.95 7.6

The only capacity information needed in production planning models is
the net or usable capacity. These data are illustrated in Table 2.2 for the
resources used in the routing of component A, where the productivity factors
are higher for the automated cutting machine S100 and painting cell PPP
than for the resources and operations requiring some manual intervention.
There are 16 gross hours per day for assembly because two identical machines
are available during one shift.

The net capacity on resource k in time period t is represented by
Lk

t in Equation (2.14).

Inventory Records

For all components, the independent and dependent time-phased demand de-
fine together the so-called gross requirements, corresponding to the total con-
sumption, by external customers or internally by the production orders, of the
components over time. This consumption requirement can be satisfied either
from current inventory or from additional production or purchase orders. In
order to compute the amounts that still need to be produced or purchased,
the inventory status of each component must be known. This includes
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• the on-hand inventory, which is the physical inventory in the warehouses;
• the allocated or reserved inventory, which is the part of the on-hand inven-

tory that is reserved for production orders that have already been released,
and is therefore not available any more to satisfy the gross requirements;

• the back-orders, which correspond to overdue or late component orders,
and will be satisfied or delivered at the next reception; and

• the on-order inventory, which is the quantity of components already or-
dered (purchase or production) but not yet received, and for each such
released order the scheduled receipt time period is known.

The available inventory is the inventory status used in production planning
models, and is defined as the on-hand inventory minus the allocated inventory.
It is often called inventory. The inventory position is defined as the available
inventory augmented by the on-order inventory minus the back-orders. It is
the most useful inventory status for inventory control, but it is rarely directly
used in production planning models.

The planned available inventory of item i at the end of period t
is represented by the variable si

t in formulation (2.11)–(2.15).
The on-order inventory of item i, scheduled to be received in

period t, corresponds to the fixed quantity xi
t−γi released in the

past (typically with t − γi ≤ 0).
The planned back-orders of item i at the end of period t will be

represented by adding a new backlogging variable ri
t in the

formulation of the flow balance equation (2.12).

The net requirements of a component are the time-phased requirements
obtained by subtracting the available inventory, and the on-order inventory
when its reception is scheduled, from the gross requirements. They represent
the amount still to be purchased or produced in order to satisfy the total or
gross requirements.

The inventory status of each component is central and crucial informa-
tion for the reliability of MRP systems. They are updated very regularly to
incorporate the most recent events or transactions (order release, order recep-
tion, physical removal from stock, etc.) in order to reflect accurately the real
situation on the shop floor and in the warehouses.

Planning Rules

Finally, the product database has to contain some more information relative to
the definition and parameters of the planning rules used. Typically, it contains

• the rules and parameters for safety stocks, where the safety stock of a
component is defined as the minimum stock to be held at the end of each
planning period in order to be able to cover small variations of demand or
consumption during the realization of the plan;
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• the rules and parameters for safety times, where the safety time of a compo-
nent is the time added to the component lead-time to cover unpredictable
lead-time variations during the realization of the plan;

• the single-item lot-sizing rules and parameters for each component; such
rules are used to transform the computed net requirements into economi-
cal procurement and production plans satisfying the requirements; we de-
scribe below the role of such single-item plans in the global MRP planning
process; and

• component data required to use the lot-sizing rules: the procurement or
production cost, the inventory holding cost, and so on.

The unit production cost, fixed set-up cost, and per unit and per
period inventory holding cost are represented, respectively, by pi

t,
qi
t, hi

t in the objective function (2.11).
The safety times are part of the lead-time parameter γi in

Equation (2.11).
There is no safety stock in formulation (2.11)–(2.15). Such safety

stocks can be represented as simple lower bounds on the
inventory variables si

t.

2.2.2 The Planning Process: Single Item Decomposition

So far we have studied the MRP model as defined by its inputs – prod-
ucts, BOM, routing, resources, capacity, inventory – and its mathematical
representation. Now, the challenge is to design a solution approach for the
mathematical programming problem (2.11)–(2.15).

Unfortunately, this model is usually too large to be solved directly, for the
following reasons.

• Short time intervals/buckets are required to model demand satisfaction
and capacity utilization accurately.

• Long planning horizons, and thus a large number of time periods, are
required to cover the global procurement and production cycle.

• Capacity utilization needs to be tracked for all the critical resources.
• All the intermediate items need to be modeled in order to guarantee the

feasibility of the planned flow of materials.

Therefore, decomposition approaches have been proposed to solve the plan-
ning model, leading to suboptimal production plans. The typical approach
used in ERP/MRP planning systems is illustrated in Figure 2.6 for a MTS
production policy and consists of the following steps.

(i) Master Production Scheduling (MPS)

The process starts with the computation of the Master Production Schedule,
which, in a make-to-stock setting, is the production plan (lot or batch sizes
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Figure 2.6. Planning models for an MTS policy.

per period) for finished products. This means that the MPS is only concerned
with the plan of the last production operation yielding the finished product.

The MPS is built to satisfy the combination of firm customer orders – some
are usually available for the very short term – and forecasts of customer orders
throughout the planning horizon, as well as the required inventory levels at
the end of the planning horizon. This last requirement is in anticipation of
some future peak demand period, or simply to cover demand up to the next
production batch for low-demand items. The MPS must take into account the
existing inventory, the scheduled receipts of already released orders, as well
as some safety stock requirements to cover forecasting errors.

The MPS mechanics are illustrated in Table 2.3 for the finished product
FP from the BOM Figure 2.4, where the planning horizon has been fixed to
six time periods; we are currently at the end of period 0, and all inputs to the
MPS process are indicated in italics.
In this example:

• The gross requirements are defined, by convention, as the maximum of
firm orders and forecasts in each time period, and correspond to updated
forecasts.

• The required ending inventory plays the same role as an additional demand
forecast for period 6.

• The net requirements are the minimal additional production quantities
needed to satisfy the gross requirements, or equivalently the minimal quan-
tities needed for the projected inventory to reach the safety stock level.

• The MPS is chosen to correspond to the net requirements and, therefore,
the projected inventory corresponds to the safety stock after the consump-
tion of the initial stock (and where the projected inventory in each period
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Table 2.3. MPS Planning Process for Product FP

Planning Parameters Time Periods 1 2 3 4 5 6
Firm customer orders 17 9 2

Ending inventory = 10 Demand forecasts 15 25 40 40 20 20
Gross requirements 17 25 40 40 20 30
Scheduled receipts 20

Safety stock = 5 Net requirements 20 40 40 20 30
Current inventory = 7 Projected inventory 10 5 5 5 5 5

MPS planned orders (end) 20 40 40 20 30
Lead-time = 1 MPS planned orders (start) 20 40 40 20 30

Available to promise 10 11 38 40 20 30

is equal to initial inventory plus scheduled receipt plus finished MPS orders
minus gross requirements).

• The planned MPS orders have to start one period (the lead-time) before
their completion.

• The available to promise (ATP) row gives the basic information needed to
accept new customer orders; it indicates how many units of FP become
available to satisfy new customer orders in each period.

In this example, we have just tried to minimize the finished product inven-
tory by producing as little as possible. More economical plans can be built by
minimizing production and inventory costs, but this would remain a single-
item single-stage production plan.

(ii) Rough Cut Capacity Planning (RCCP)

The above approach can be used to determine, or even optimize, the MPS for
each finished product individually. However, such finished products usually
share some critical scarce resources, and some consolidation of the MPS plans
is needed. This is carried out in parallel to the MPS process and is known as
Rough Cut Capacity Planning. Its role is to check globally or “roughly” the
feasibility of the MPS with respect to capacity utilization.

In the simplest case, the MPS is established without considering the ca-
pacity restrictions and RCCP consists of the computation of approximate load
profiles implied by the MPS for some critical resources or for some aggregate
view of the capacity (e.g., by department) using historical capacity utilization
factors or simplified BOM structures. If the load exceeds the capacity, the
planner has to adapt the MPS or increase the capacity manually.

In more sophisticated systems, the consolidation and modification of the
MPS or the increase of capacity are suggested by the system.

In all cases, this approach remains approximate or rough because this
capacity planning process does not take into account production stages other
than the final one, and in particular does not consider
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• the current inventory and in-progress orders at various stages, as if net
requirements were equal to gross requirements at all stages but the final
one, and

• the size and timing of production orders required at various production
stages to produce the components consumed by the MPS.

Therefore, a detailed finite capacity verification step can only take place once
the detailed production plans for all components are known.

(iii) Final Assembly Scheduling (FAS)

In the case of an assemble-to-order (ATO) production policy, a similar ap-
proach is used but the MPS is established for the decoupling items. The
decoupling items are the semi-finished products at the interface between the
push and pull planning phases; they are thus the last items produced to stock.
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Figure 2.7. Planning models for an ATO policy.

For the MPS, the only modification with respect to the MTS policy is the
need to compute customer demand forecasts at the level of the intermediate
decoupling items, rather than at the finished product level. In other words,
to behave as if customers were ordering directly the semi-finished products to
be assembled.

Then, assuming that these decoupling items are available in stock when
needed, the Final Assembly Schedule (FAS) determines when to realize the
operations required to transform the intermediate items into the finished prod-
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ucts, in order to meet firm customer orders on time. This approach is illus-
trated in Figure 2.7.

(iv) Material Requirements Planning (MRP)

The MPS and RCCP fix the production plan for all finished products, or
decoupling items. Using a similar approach, that is, planning the production
to meet uncertain forecasts, does not make sense for the other items in the
BOM structure. One can do much better.

Once the production plan for finished products is fixed, one knows exactly
when and in what quantity the components entering in the final production
stage are required. This information has been called the dependent demand.
So, we can replace uncertain forecasts by certain dependent demands, com-
puted using the BOM structure. This eliminates the major source of uncer-
tainty from the planning process, and hence the major reason to hold huge
safety stocks. Then, we can plan the production of these components to meet
their dependent demand. These production plans determine in turn the de-
pendent demand of their immediate predecessors.

This process can be repeated, level by level in the BOM structure, all
the way through, from the finished products back to the raw materials. It is
known as the Material Requirements Planning process. Its sequential aspect
is illustrated in Figure 2.8 on the BOM structure from Figure 2.4, assuming
a MTS policy. Observe for instance that the total dependent demand and the
production plan of item C can only be computed after the production plans
of both FP and A have been fixed.
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Figure 2.8. The MRP planning process.
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For each item in the BOM structure subject to dependent demand, this
sequential MRP planning process involves the following steps.

MRP Process: Step 1. Computation of the gross requirements.
These are time-phased requirements equal to the sum of dependent and
independent demand. For some items such as spare parts, there can be
a mix of a dependent and independent demand. In this case, forecasts
must be computed for the independent part of the demand. The depen-
dent demand is derived directly from the production plans of the direct
successors in the BOM.

MRP Process: Step 2. Netting or computation of net requirements.
The net requirements are time-phased requirements. They correspond to
the minimal additional (i.e., in addition to available stock and scheduled
receipts) production quantities needed to satisfy the gross requirements.

MRP Process: Step 3. Planning or uncapacitated lot-sizing.
This last step consists in solving the single-item planning subproblem
(LS-U) to determine the production plan meeting the net requirements,
and satisfying some criterion. A production batch of an item in a period
is called a suggested production order, or a suggested procurement order,
or simply a suggested order.

Production plans or suggested orders are computed in MRP systems
by using so-called lot-sizing planning rules. For instance the lot for lot
(LFL) planning rule consists in taking the suggested orders equal to the
net requirements, in every time period. This means that one produces
exactly the demand, and therefore one minimizes the inventory level or
cost. Other heuristic planning rules try to balance the set-up and inventory
costs by grouping net requirements over several time periods in a static
way (economic order quantity (EOQ), period order quantity (POQ)) or
a dynamic way (part period balancing (PPB), least unit cost (LUC), or
least period cost (LPC)).

Finally, this single-item lot-sizing problem with the objective of min-
imizing the sum of unit production costs, set-up costs and inventory
costs (i.e., LS-U) can be solved to optimality by dynamic programming
and mixed-integer programming approaches. This single-item subproblem
plays a central role in our optimization approaches, and is studied exten-
sively in the sequel.

In all these solution methods, the single-item lot-sizing problem is
solved as an uncapacitated problem, simply because the problem is solved
separately for each item. This makes it impossible to take joint capacity
restrictions into account, and this is also why the lead-time is fixed and
independent of the production order sizes.

The MRP mechanism is illustrated in Table 2.4 for the raw material C from
the BOM Figure 2.4, using the usual MRP record presentation. According to
the sequential MRP process, we assume that production plans are available
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for FP and A, and all data available prior to the computation of the MRP
record are given in italics.

Table 2.4. MRP Record for Raw Material C

Planning Parameters Time Periods 1 2 3 4 5
Orders for FP (start) 20 40 40 20 30
Orders for A (start) 20 20 10 20 20
Gross requirements 80 100 70 80 90
Scheduled receipts 120

Safety stock = 0 Net requirements 60 90
Current inventory = 150 Projected inventory 70 90 20 70 110
Plan. rule: EOQ=130 Suggested orders (end) 130 130
Lead-time = 2 Suggested orders (start) 130 130

In the MRP record in Table 2.4:

• There is no independent demand for item C.
• The dependent demand for item C is three times the suggested orders of

A plus the planned orders of FP (see the BOM structure in Figure 2.4).
• The initial inventory is large enough to cover the gross requirements up to

period 3, and there are only net requirements in periods 4 and 5.
• The planning rule used is the fixed-order size rule (EOQ), and an order

of size 130 (this order size is computed using the EOQ formula as the
best compromise between inventory and set-up costs for the average net
requirement observed) is suggested each time the projected inventory be-
comes negative.

• The suggested MRP orders have to start two periods (the lead-time dura-
tion) before their completion.

This MRP planning process automatically computes suggested orders for
all components in the product structure. The MRP records are updated reg-
ularly to take into account all transactions that have occurred and have mod-
ified the status of the production system, such as new customer orders, new
order releases, order reception from suppliers, and so on.

In this dynamic context, the role of the planner (i.e., the user of the MRP
system) is first to check the availability of the components and of the resources
to perform the orders suggested in the coming or next few periods, and then to
release the corresponding orders to the shop floor or to the supplier. In some
cases, the MRP system makes infeasible or inadequate suggestions, mainly be-
cause it does not take capacity into account during the MRP process, and the
planner has to adapt or improve the suggested plan manually. In such cases,
the modified orders are transformed into firm suggested orders or blocked or-
ders to prevent the MRP system changing them on the next run or automatic
update.
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(v) Capacity Requirements Planning (CRP)

The above approach determines the production plan for each component in-
dividually. As for MPS and RCCP, some consolidation of the MRP plans is
needed. This is done after the MRP computations and it is known as Ca-
pacity Requirements Planning. Its role is to check the feasibility of the orders
suggested by the MRP with respect to capacity utilization.

As for RCCP, there are several versions of CRP. In the simplest case,
the CRP consists in the computation of detailed load profiles implied by the
MRP orders. This is done by starting each MRP suggested order at its earliest
start date, or at its latest finish date, and loading each work center or each
resource according to the detailed description of the sequence of operations in
the routing data. Once this is done for all suggested and in-progress orders, if
the load exceeds the capacity in a work center, the planner has to adapt the
suggested orders – start earlier or later to smooth the load – and to create
firm suggested orders, or has to increase the capacity, manually. Hence, CRP
identifies capacity problems, but does not resolve them.

In more sophisticated systems, the modification of the proposed orders or
an increase of capacity are automatically suggested by the system.

In all cases, this approach remains very heuristic and suboptimal. Un-
capacitated production plans are first generated, and then locally adapted
to become feasible, by moving orders backward and forward in time or by
increasing the capacity (overtime, alternate routing, etc.).

2.2.3 Limitations of MRP and the Optimization Answer

Although MRP systems are very powerful integrated production management
and information systems, their planning modules implementing the myopic
decomposition approach described above suffer from very severe limitations.
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Figure 2.9. A two-level serial production planning example: (a) the minimum cost
flow model; (b) its MRP solution with cost = 675; (c) an optimal solution with cost
= 575.
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This decomposition approach is called myopic because it does not exploit any
knowledge about the model in the decomposition.

In other words, the decomposition is carried out in the same naive way for
all models. The planning problem is decomposed into uncapacitated single-
item subproblems, that are solved independently and sequentially, without
backtracking, from finished products to raw materials. Capacity restrictions
are taken into account only after the calculation of the production plan, and
mainly to compute capacity requirements or to adapt the production plans
locally (i.e., using minor modifications) with the hope of making them feasible.

In particular, in terms of productivity optimization, the major drawbacks
of this myopic approach are the following.

Drawback 1:
Single-Level Decomposition ⇒ Suboptimal Productivity
(Inventory and Production Costs)

The level-by-level decomposition of the product structure leads to suboptimal
solutions with respect to the global minimum cost objective function. This
is illustrated in the following simple example, the simplest one can imagine,
involving only two items.

Suppose that we have an instance of the MRP model (2.11)–(2.15) with
three periods and a serial BOM structure with 2 levels, one item at each level,
where one unit of the raw material (i = 2) is required to produce one unit of
the finished product(i = 1). For simplicity, we assume that the lead-time γi

is zero for each item.
The external or independent demand for the finished product is d1 =

(10, 15, 20). There is no external demand for the raw material. There is a fixed
ordering cost of q2

t = 200 for the raw material, and fixed production cost of
q1
t = 100 for the finished product for all t. The unit production cost is constant

over time, and thus constant in all solutions, and therefore not considered. The
inventory cost is hi

t = 5 for all i, t. There are no capacity restrictions. This
planning problem can be viewed as the fixed charge minimum cost network
flow problem represented in Figure 2.9a.

In the MRP approach, we first determine the MPS for the finished product
i = 1 in order to satisfy its external demand. The optimal solution, minimizing
the set-up and inventory costs, is to produce 25 units in period 1, stock 15
from period 1 to period 2, and produce 20 units in period 3 with a total cost
of 275. This production plan defines the internal or dependent demand for the
raw material: 25 units of raw material have to be available in period 1, and
20 units have to be available in period 3. We then solve the MRP subproblem
for the raw material, and find that it is optimal to order 45 units in period
1, and stock 20 units from period 1 to period 3 at a cost of 400. Note that
an alternate optimal solution for the raw material is to order twice (25 units
in period 1 and 20 units in period 3), and avoid the inventory costs. So the
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MRP process has produced a global production plan with a cost of 675. This
MRP solution is represented in Figure 2.9b.

The optimal solution with a cost of 575 is represented in Figure 2.9c.
Furthermore, when determining the MPS (which corresponds to solving

the single-level minimum cost flow subproblem for item i = 1), the worst
possible solution for item 1 (which is to produce the 45 units in period 1, and
satisfy the demands in periods 2 and 3 from stock) forms part of the globally
optimal solution shown in Figure 2.9c. This holds because it avoids the very
costly procurement of the raw material. Such interactions between the items
are simply ignored in the MRP decomposition process.

This example illustrates the difficulty of optimizing the production plans
by solving independent single-level subproblems sequentially.

Drawback 2:
Single-Item Decomposition ⇒ Infinite Capacity Planning ⇒
Suboptimal Productivity (Capacity Utilization Plans)

The main characteristic of the MRP process is the decomposition into inde-
pendent single-item planning subproblems. Because the resources are usually
shared by several or many items, this decomposition scheme does not allow
one to take capacity restrictions directly into consideration, that is, into con-
sideration when the production plan is drawn up. In other words, the capacity
available for item i depends on the production plans of some other items, and
is therefore not known when planning item i.

Therefore finite capacity planning in MRP is carried out as follows. First,
infinite capacity production plans (i.e., production plans defined as if capacity
were infinite) are determined for all components (MPS and MRP). Next, these
plans are translated into capacity requirements (RCCP at the MPS level,
and CRP at the MRP level). Finally the plans are heuristically, and often
manually, adjusted when some resources are overloaded. This clearly defines
suboptimal capacity utilization plans. There is no reason to believe that the
best or even good plans can be obtained in this way. The bottleneck (i.e., the
most heavily loaded resource) capacity should be accounted for initially in the
planning procedure, and exploited optimally, in order to optimize the global
productivity.

Drawback 3:
Infinite Capacity Planning ⇒ Constant Lead-Times ⇒ Increased
Inventory, Decreased Flexibility

Another consequence of infinite capacity planning is the impossibility of deter-
mining the production cycle and production lead-times as part of the output
of the planning process.

As already explained in Section 2.2.1, in a finite capacity planning process
it is possible to build realistic or feasible production plans without adding
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safety waiting times to the minimum production lead-times (γi in the MRP
optimization model). This is done by taking work center capacity and routing
data explicitly into account, and by only releasing orders for which enough
capacity is available.

Unfortunately, in an infinite capacity planning approach, the load of the
resources cannot be estimated or anticipated. Therefore, the effective produc-
tion lead-time for each operation is the sum of the technical or minimum
production lead-time γi and the waiting time for the availability of the re-
sources. This waiting or queue time clearly depends on the resource load,
and consequently varies over time for each resource. Because these waiting
times cannot be anticipated, a worst-case approach has to be taken, and the
constant lead-time used in MRP is inflated by a large enough safety time to
guarantee that the lead-time can be met in all cases. This safety time is useful
in the rare cases when the resources are heavily loaded, and useless in all the
other cases.

A first consequence is that production orders are most often completed
well in advance of the due-date or requirement date. Thus the safety times
translate into increased work-in-progress inventory. A second and indirect
consequence is that the total production cycle is augmented by the safety times
at all production stages, the MPS time horizon is augmented accordingly,
and the whole MRP planning process is based on longer-term forecasts. As
long-term forecasts are usually much worse, larger end-product safety stocks
are needed to protect the system against larger forecast errors. Finally, this
longer MPS horizon requires more anticipation, and reduces the flexibility of
the production system.

Summary

In summary, the myopic MRP decomposition scheme leads to important pro-
ductivity and flexibility losses, two of the key levers in all manufacturing
strategies, which is exactly the opposite of what is expected from a good
planning system, and the opposite of what was initially expected from MRP
systems. Indeed, the starting idea of MRP was to distinguish the dependent
demand, which is computable, from the uncertain independent demand, for
which forecasts are needed, with the objective of knowing when and how much
is needed of each component, and thereby opening the way to a reduction of
the global inventory levels.

The Optimization Approach

The observed limitations all relate to the MRP decomposition approach and
planning process, and not to the MRP model itself. The MRP model formu-
lated and discussed above adequately represents the planning problem faced
by many companies, but a global solution and optimization approach is needed
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in order to reach the desired goal of improving the productivity and flexibility
simultaneously.

This global optimization approach depends on the two main modeling
ingredients to which we hope to contribute: the expertise needed to build
correct and adequate mathematical models, and the expertise required to
improve the initial problem formulations and to design optimization software
allowing one to solve larger instances globally, without resorting to myopic
decomposition.

2.3 Advanced Planning Systems

The purpose of this section is to describe the general context of production
planning and supply chain planning models and systems.

2.3.1 Supply Chain Planning

A supply chain (SC) consists of a set of organizations, often legally separated,
linked by materials, information, and financial flows, that produce value in the
form of products and services for the ultimate customer. It can also consist of
the geographically dispersed sites of a single and large company. Along this
supply chain, raw materials have to be purchased, intermediate and finished
products have to be produced or transformed, and finished products have to
be sold and distributed.

Therefore a SC is usually modeled as a network composed of vendor nodes;
plant nodes where products are produced or transformed; distribution center
nodes where products are received, stored, and dispatched but not trans-
formed; market nodes where products are sold or consumed; and transporta-
tion arcs connecting the nodes and supporting both the physical and infor-
mation flow.

Supply Chain Planning (SCP) is defined as an integrated planning ap-
proach used to organize the SC activities.

• This multi-dimensional integration is concerned with the functional inte-
gration of the primary activities – purchasing, manufacturing, warehous-
ing, transportation – and support activities that constitute the value chain
of the SC.

• It is also concerned with the inter-temporal integration – often called hi-
erarchical planning – of these activities over strategic, tactical, and oper-
ational planning horizons. Strategic problems deal with the management
of change in the production process and the acquisition of the resources
over long-term horizons based on aggregated data. Tactical problems ana-
lyze the resource allocation and utilization problems over a medium-term
planning horizon using aggregate information. This consists in making de-
cisions about, for instance, materials flow, inventory, capacity utilization,
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and maintenance planning. Operational problems aim at planning and
controlling the execution of the production tasks. For instance, produc-
tion sequencing and input/output analysis models fit into this category.
This integration is critical to success because the design of the SC must
take into account the operations performed under this design, and because
a company cannot maintain competitive operations and position with poor
strategic decisions regarding its technology or the location of its plants and
facilities.

• Finally it is concerned with the spatial integration of these activities.

Integrated planning is made possible because of the recent advances in
information technology (IT). Focusing only on the procurement and manu-
facturing or production functions of the supply chain, Manufacturing Plan-
ning and Control (MPC) systems are developed to cope with these complex
planning environments, and integrate these planning problems into a single
integrated management system.

Aggregate planning

Master production
scheduling

Material requirements
planning

Inventory
status

Shop floor 
scheduling
and control

Vendor control

Forecasting

BOM
product
structure

Figure 2.10. An MRP-II system.

For instance, Figure 2.10 describes how the tactical and operational plan-
ning problems are integrated in Manufacturing Resources Planning (MRP-II)
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systems, an example of an MPC system. In these systems, medium-term ag-
gregate or master planning consists in deciding about capacity utilization, and
aggregate inventory levels to meet the forecast demand over a medium-term
horizon of about one year. A medium-term horizon is usually needed to be
able to take into account some seasonal pattern in demand. MPS consists of
planning the detailed short-term production of end-products in order to meet
forecast demand and firm customer orders, taking into account the capac-
ity utilization and aggregate inventory levels decided at the master planning
stage. Here the time horizon is usually expressed in weeks and corresponds
to the duration of the production cycle. MRP-I establishes the short-term
production plans for all components (intermediate products and raw mate-
rials) from the production plan of end-products decided at the MPS stage,
and from the product structure database (bills of materials). Then, shop-floor
control systems (for manufactured components) and vendor follow-up systems
(for purchased components) control the very short-term execution of the plans
decided at the MRP-I stage. The time horizon at this stage is usually of a few
days.

Other well-known integrated production planning concepts and systems
fit into this general manufacturing, planning, and control framework. For in-
stance, the MRP-II system represented in Figure 2.10 subsumes the original
MRP-I system, and follows the Hierarchical Production Planning (HPP) prin-
ciples.

Such MPC systems are based on transactional databases. However, the
existence and storage of transactional data, as well as faster and cheaper
data communication, do not automatically lead to improved decisions. The
effective application of IT in SC management requires the building of effective
decision-support systems. These are called analytical IT systems, as opposed
to transactional IT systems.

Optimization planning models are an essential component of these ana-
lytical systems because they are able to evaluate and identify provably good
plans and optimize the trade-off between financial and customer satisfaction
objectives. In supply chain planning, as well as in operations management
in general, the financial objectives are usually represented by transportation
costs for purchasing and delivering products, production costs for machines,
materials, manpower, start-ups and overheads, inventory holding costs, op-
portunity costs of the capital tied up in the stocks, insurance, and so on.
Customer-service objectives are represented by the ability to deliver the right
product, in the right quantity, at the right date and place.

2.3.2 Advanced Planning Systems and the Supply Chain Planning
Matrix

The analytical IT or “computerized” planning systems, based on the trans-
actional data gathered from an Enterprise Resource Planning transactional
System, are called Advanced Planning Systems (APS). The structure of the
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planning tasks of such APS is described in Figure 2.11, and is known as the
Supply Chain Planning Matrix (SCPM).
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Figure 2.11. The Supply Chain Planning Matrix ([70]).

The main characteristics of an APS are the following:

• Integral or global planning: coordination of the planning of the entire sup-
ply chain;

• Optimization focus: the definition of alternatives, objectives, and con-
straints for all the planning tasks; and

• Hierarchical approach: the decomposition into planning modules, and their
vertical and horizontal coordination by information flows.

These characteristics are reflected in Figure 2.11. In most of the applications,
traditional MRP or ERP systems do not share these characteristics. They are
restricted to the production function, and they do not optimize. Moreover,
when they consider various planning horizons, they use essentially a sequential
or independent approach for the different planning tasks. In other words, with
respect to the APS as in Figure 2.11, there is no real bottom-up coordination
with respect to planning horizons, and no left–right coordination with respect
to planning functions.
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This SCP matrix is also used by APS software providers to offer a set of
software modules covering the matrix as much as possible. The typical module
architecture of such systems is depicted in Figure 2.12.
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Figure 2.12. Architecture of Advanced Planning Systems ([70]).

Of course, the SCPM defines the general structure of an APS, but a single
APS consisting of a fixed combination of software modules cannot respond
to the management requirements of all supply chains. Typologies of supply
chains are defined in the literature in order to identify supply chains having
or sharing the same major characteristics, and therefore sharing the same
planning requirements and tasks. One such typology is based on supply chain
functional attributes – related to the functions of procurement, production,
distribution, and sales – and structural attributes – related to the topography,
integration, and coordination of the SC. For instance, this typology has been
used to design APSs for specific industries, such as the computer assembly
and consumer goods industries.

In the context of APS and its planning matrix, the objective of this book
is to give a state-of-the-art description of the modeling and reformulation
theory needed to design efficient optimization- or mathematical programming-
based algorithms to support the supply chain planning tasks. In other words,
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we focus on one of the major characteristics of the APS approach, namely
optimization.

2.4 Some Supply Chain Planning Problems

We describe here briefly, without mathematical formulations, two generic
classes of supply chain planning problems. They extend the scope of pro-
duction planning models presented so far by considering the entire supply
chain rather than a single production facility or plant.

2.4.1 Strategic Network Design Problems

The purpose of supply chain strategic network design problems is to config-
ure the supply chain network as a whole, from suppliers through production,
warehousing, and distribution facilities, down to end customers, which can be
downstream subsidiaries.

Decisions

The main decisions to be taken at this stage are the status of the nodes
and arcs in the supply chain network. For each node, the decision is usually
whether to install a facility at a specific location or site, and also the amount
of product processed (bought, produced, transformed) at the node. For the
arcs, the decision is whether to use a specific route for a given product to
link some nodes in the network using a given transportation mode, and also
the amount of product flowing through that route. These major decisions
are either considered as static, requiring single-period decisions and a single-
period model, or dynamic, involving a multiple-period model. In the case of
a multiple-period model, similar decisions can be taken in each time period,
and inventory arcs are added in the network at some specific nodes, typically
modeling production and storage facilities.

Restrictions

These decisions have to be taken in order to satisfy the forecast demand of the
customers. Therefore, the main constraint in this problem is the flow conserva-
tion constraint for each product at each location or node in each time period.
This means that during each time period, the amount of product received
from the local suppliers plus the amount available from initial inventory, the
input flows, cover exactly the amount shipped to local customers or to other
facilities and the amount put into final inventory, output flows, at each node.

Moreover, there are usually capacity restrictions attached to the various
activities. These can be supply capacity, production, processing or trans-
portation capacity, or storage capacity restrictions. Capacity installation (the
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amount to install) and expansion (the increase of capacity) become decisions
to be taken in these problems.

Objective

The objective of the problem is to design a network able to satisfy customer
demand and to maximize the after-tax discounted yearly profit of the cor-
porations involved in the supply chain. This includes all costs and revenues
in the supply chain, namely revenues from sales and supply, manufacturing,
warehousing, inventory, and transportation costs. When the supply chain is
composed of different legal entities or covers several countries, this also re-
quires decisions to be taken regarding the product transfer prices between
these entities, and the modeling of the legal restrictions on the pricing mech-
anisms.

Model Type

The manufacturing costs and investment costs often exhibit economies of scale
with respect to the amount produced or the capacity installed. This is usually
approximated or modeled using fixed charge cost functions, that is, cost func-
tions with a fixed component to be paid if there is production/investment and
a linear component directly proportional to the amount produced or capacity
installed. In such cases, the resulting model is a mixed integer programming
model, very often linear.

The general structure of these problems is of the multi-period, multi-
product, multi-echelon or level, capacitated fixed charge network flow type.
This comprehensive modeling and optimization approach was used to design
the supply chain of Digital Equipment Corporation.

Challenges

Solving such complex and often large-scale models to optimality is still chal-
lenging. This is particularly true when transfer prices have to be incorporated
in these problems because this feature often makes the model nonlinear.

2.4.2 Supply Chain Master Planning Problems

The purpose of supply chain master planning problems is to optimize and syn-
chronize the materials flow along the complete supply chain over a medium-
term horizon. The main purpose is to adapt supply and production levels to
demand for aggregated products, taking the capacity of bottleneck resources
into account, with a centralized view considering all relevant costs and con-
straints. This global supply chain perspective for the mid-term decisions al-
lows one to reduce inventory levels by improved coordination and by removing
redundant buffers between supply chain entities.
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This problem takes the design of the supply chain network as fixed by
a higher-level, longer horizon, planning module. The results of master plan-
ning impose restrictions on lower level detailed planning modules, which are
very often functionally decomposed into short-term procurement, production,
distribution, and transportation modules. Feedback mechanisms have to be
implemented in order to coordinate these three planning levels.

Decisions

The main decisions are the aggregate production and distribution plan for all
supply chain entities. In particular, production quantities are decided for each
product group, each time period and location (plant or warehouse). Similarly,
transportation quantities are decided for each link in the supply chain network,
each product group and each time period.

These problems are always dynamic, multiple-period problems because
their major objective is to optimize the trade-off between variations in pro-
cessing levels and variations in inventory levels over time, in order to minimize
the cost of satisfying the global supply chain demand for all products. Inven-
tory levels over time are a consequence of the production and transportation
decisions.

The main difference with respect to the strategic network design problem is
the level of detail for the decisions modeled. Usually, the length of the planning
periods is shorter, more detailed product groups are modeled by incorporating
intermediate and storable products, and production and storage facilities are
modeled in more detail. For example, set-up times and changeover times,
the time or capacity consumed when a machine starts a production batch or
when a machine switches from one product to another, are incorporated in
master planning when they have a significant impact on capacity utilization.
This level of detail is required in order to exploit the flexibility of the supply,
production, and distribution processes in satisfying demand. To facilitate the
coordination with short-term planning, it is often the case that the short-
term horizon (the first few days or weeks) within the medium-term horizon is
modeled using smaller time period intervals.

Restrictions

As for the strategic problem, the decisions are taken in order to satisfy the
forecast demand. Therefore, the main constraint is again the flow conservation
constraint for each product at each location in each time period.

The other main constraints are the capacity restrictions on supply, pro-
duction, transportation, and inventory levels.

Objective

The objective of the problem is to optimize the trade-off among inventory
costs, production, and transportation costs.
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Model Type

Again, the manufacturing and transportation costs exhibit economies of scale
with respect to the amount produced, and are modeled using fixed charge cost
functions.

The general structure of these problems is of the multi-period, multi-
product, multi-echelon or level, capacitated fixed charge network flow type.
For instance, impressive returns with this master planning optimization ap-
proach have been obtained at the Kellogg Company.

Notes

Sections 2.1 and 2.2 In addition to the detailed planning case studies pro-
vided in this book, and to the generic planning models described here, we refer
the reader to Voss and Woodruff [186] for an introduction to the modeling
and solution of MRP optimization problems. For another general survey on
production planning, we refer to Graves et al. [78].

Section 2.3 Our general definitions of supply chains and supply chain man-
agement are adapted from Christopher [38], Shapiro [149], and Stadtler and
Kilger [155].

The presentation of the structure of Manufacturing Planning and Control
Systems is derived from Vollmann et al. [185], integrating original characteri-
zations of MRP-I systems by Orlicky [127] and Hierarchical Production Plan-
ning approaches by Hax and Meal [87]. The reader should refer to Vollman
et al. [185] and Browne et al. [32] for a general description of MRP systems,
to Hopp and Spearman [91] for a critical analysis of MRP systems, to stan-
dard operations management texts such as Silver et al. [151] and Johnson and
Montgomery [93] for a more extensive treatment of the heuristic lot-sizing
rules, and to Chopra and Meindl [37] for a modern textbook on Supply Chain
Management.

The important distinction between analytical and transactional IT systems
is emphasized in Shapiro [149] and Fleischmann et al. [70].

The description of the general architecture of Advanced Planning Systems
comes from Fleischmann et al. [70], where a complete description of the Supply
Chain Planning Matrix and its planning modules can be found. A similar
structure focusing on the difference between transactional and analytical IT
systems can be found in Shapiro [149].

The typology of supply chains we refer to is defined by Meyr at al. [120].
They illustrate how to use this typology to design an APS for the computer
assembly and the consumer goods industries (see also Fleischmann and Meyr
[69]) .

Section 2.4 Our description of the generic supply network design problem
is inspired by the more complete review on the subject by Goetschalckx [76].
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Its application to Digital Equipment Corporation can be found in Arntzen et
al. [12].

A more complete introduction to the required coordination between the
master planning SC module and the other SC modules, through disaggregation
and feedback mechanisms, can be found in Rohde and Wagner [146].

The application of master planning to the Kellogg Company, and its im-
pressive returns, can be found in Brown et al. [31].
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Mixed Integer Programming Algorithms

Motivation

Our approach to help in solving industrial production planning problems is
based on the solution of mixed integer programs by optimization methods.
This means that we want either to find provably optimal solutions to these
programs, or to find near-optimal solutions with a performance guarantee,
expressed usually in terms of a percentage deviation of the objective value
from the optimal value (duality gap; see Sections 1.2.5 and 3.3.4).

For readers that are not familiar with mixed integer programming, and
in order to make this book accessible to a wide audience, we provide a – not
too technical – introduction to mixed integer programming algorithms and
reformulation techniques. This introduction contains all the material necessary
to understand and to use the reformulation approaches and results presented
in later chapters.

Our motivation is also to help the reader to develop a less myopic un-
derstanding of the reformulation approach by carefully defining the concepts
and describing the main steps of the reformulation methods and the main
questions one needs to answer in order to use these methods.

Objective

The general objective of this chapter is to present

• the general optimization methods used to solve mixed-integer program-
ming models, namely the branch-and-bound and branch-and-cut methods,
and

• the different reformulation techniques used to improve the mathematical
formulations of these models.

Contents

More specifically:
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• In Section 3.1 we define a mixed integer program.
• In Section 3.2 we provide an intuitive introduction to the analysis of run-

ning times of algorithms,
• In Section 3.3 we formalize the branch-and-bound algorithm used to solve

general MIPs.
• In Section 3.4 we define the main steps of the a priori reformulation ap-

proach taken to tighten the initial mathematical formulation, including
the important concepts of valid inequalities, good and bad formulations,
and the ideal convex hull or tight reformulation.

• In Section 3.5 we formalize the branch-and-cut algorithm, using separation
algorithms and cutting plane algorithms as building blocks.

• Finally in Section 3.6 we describe basic construction and improvement
heuristics designed to find and improve feasible solutions quickly, and to
be used in combination with a branch-and-bound algorithm.

3.1 Mixed Integer Linear Programs

All the example models that we have formulated so far, and that we consider
in this book, belong to the general class of mixed integer linear programs.

Definition 3.1 A mixed integer linear program (MIP) is an optimization
program involving continuous and integer variables, and linear constraints.
Any MIP can be written as

(MIP ) Z(X) = min
(x,y)

{ cx + fy : (x, y) ∈ X },

where the set X is called the set of feasible solutions and is described by m lin-
ear constraints, nonnegativity constraints on the x, y variables, and integrality
restrictions on the y variables. In matrix notation

X = { (x, y) ∈ R
n
+ × Z

p
+ : Ax + By ≥ b },

where

• Z(X) denotes the optimal objective value when the optimization is per-
formed over the feasible set X.

• x and y denote, respectively, the n-dimensional (column) vector of non-
negative continuous variables and the p-dimensional (column) vector of
nonnegative integer variables.

• c ∈ R
n and f ∈ R

p are the (row) vectors of objective coefficients.
• b ∈ R

m is the (column) vector of right-hand side coefficients of the m
constraints.

• A and B are the matrices of constraints with real coefficients of dimensions
(m × n) and (m × p), respectively.
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Definition 3.2 A mixed binary linear program (MBP), or mixed 0–1 pro-
gram, is a MIP (according to Definition 3.1) in which the integer variables y
are further restricted to take binary values. This means that the feasible set
X of a MBP is defined by

X = { (x, y) ∈ R
n
+ × {0, 1}p : Ax + By ≥ b } .

In these definitions, we have indicated the dimensions of all vectors for
completeness. When these dimensions are clear from the context, or not im-
portant, they are usually omitted. Note also that the nonnegativity of variables
is not essential in this definition. We have included this restriction because it
is usually present in practice.

As we show, the linear relaxation of a MIP plays a very important role in
the optimization algorithm used to solve it. It is obtained by removing the
integrality restrictions on the y variables. Specifically if

PX = { (x, y) ∈ R
n
+ × [0, 1]p : Ax + By ≥ b } ,

then X is the set of points in PX with y integer; that is, X = PX ∩ (Rn ×Z
p).

Definition 3.3 The linear relaxation (LR) of the MIP min{cx+fy : (x, y) ∈
X} with X = PX ∩ (Rn × Z

p) is the linear program

(LR) Z(PX) = min
(x,y)

{ cx + fy : (x, y) ∈ PX },

where the feasible set is PX . We call PX a formulation for X.

It is important to note that the linear programming relaxation of a MIP
with feasible set X depends not just on X, but on the set of linear constraints
used in describing PX .

The set PX is a larger set than X. Indeed, to get PX we have just added to
X all the points (x, y) ∈ R

n
+ ×R

p
+ satisfying the linear constraints Ax+By ≥

b, and with some non-integer y-coordinate. Because we minimize the same
objective function over a larger set (i.e., PX ⊇ X), the optimal objective
values satisfy the following property.

Observation 3.1 For any MIP with a minimization objective function, the
linear relaxation defines a lower bound on the optimal objective value,

Z(PX) ≤ Z(X).

On the other hand, upper bounds are obtained from feasible solutions.
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Observation 3.2 For any MIP with a minimization objective function, the
objective value Z = cx + fy achieved by any feasible solution (x, y) ∈ X
provides an upper bound on the optimal objective value,

Z(X) ≤ Z.

These lower and upper bounds will play an essential role in the solution of
MIP using a branch-and-bound algorithm. This is explained in Section 3.3

To illustrate the notation of MIP, and the behavior of the branch-and-
bound and branch-and-cut algorithms, we use the following small example
involving only two integer variables (p = 2), and no continuous variables
(n = 0). Such MIP programs with only integer variables are called pure integer
programs (PIP).

Z(X) = min
y

{ −y1 − 2y2 : y = (y1, y2) ∈ X }, (3.1)

where the feasible set X is defined by

X = {y = (y1, y2) ∈ Z
2
+ : y1 ≥ 1

−y1 ≥ −5
−y1 −0.8y2 ≥ −5.8

y1 −0.8y2 ≥ 0.2
−y1 −8y2 ≥ −26 }.

This is a MIP as it fits Definition 3.1 with n = A = c = 0,

m = 5, p = 2, f = (−1,−2), B =

⎛
⎜⎜⎜⎜⎝

1 0
−1 0
−1 −0.8

1 −0.8
−1 −8

⎞
⎟⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎜⎝

1
−5

−5.8
0.2

−26

⎞
⎟⎟⎟⎟⎠ .

The MIP instance problem (3.1) is illustrated in Figure 3.1, where the feasible
set PX of the linear relaxation is represented by the shaded area. The feasi-
ble set X is the set of integer points satisfying the constraints defining PX .
Therefore X corresponds to the black dots inside PX . The line orthogonal to
the direction of minimization simply indicates points with the same objective
value.

Graphically, the objective is to translate this line, as far as possible in the
direction of minimization, and still find a feasible integer point lying on the
translated line. Clearly, the line in Figure 3.1 has been translated too far out
of the feasible set, and does not contain any feasible solution.
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Figure 3.1. The MIP instance (3.1), its formulation PX , and its feasible set X.

3.2 Running Time of Algorithms

Before describing the algorithms used to solve MIPs, we give now a very brief
and intuitive introduction to the classical way of representing and analyzing
the running time of (optimization) algorithms.

3.2.1 Performance of an Algorithm

Suppose that we want to solve a given optimization problem P , such as the
PIP defined in (3.1), or the single-item LS-U instance formulated in Section
2.1. In addition we are given an algorithm A that solves P , either exactly or
heuristically.

We suppose first that our intuitive understanding of the notion of an algo-
rithm – as a sequence of computations starting with a mathematical program
and its associated data, and producing a solution to the program – is precise
enough.

The basic question to ask in studying the optimization problem P and
algorithm A is the following.

Question 3.1 Is algorithm A a fast and good algorithm for the program P?

The two natural criteria or performance measures needed to analyze or
compare the behavior of algorithms are the quality of the solutions obtained
(good algorithm) and the time required (fast algorithm) to obtain these so-
lutions. In the case of a MIP, the quality of a solution (x, y) will be defined
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by the objective function value cx + fy, or by some function of this value
such as the duality gap (see Sections 1.2.5 and 3.3.4) when the algorithm out-
puts lower and upper bounds on the optimal objective value. The speed of an
algorithm will be defined by its running time or computing time.

Running Time of an Algorithm

In complexity theory, the running time of an algorithm is not measured di-
rectly by the time it takes to run on a computer, so as to

• avoid dependence on the software, compiler, or computer used, and
• define a run-time measure that is really characteristic of algorithm A,

rather than characteristic of the computing tools used.

Definition 3.4 The running time of an algorithm on a particular instance
is defined as the number of elementary operations performed. The elementary
operations are the elementary arithmetic operations (+, −, ×, /) and the
comparison of two numbers.

The assumption behind this definition is that the running time needed to
perform any elementary operation is a constant, and thus that the numbers
encountered are not enormous. For example, summing n real numbers, or
finding the minimum of n numbers, requires n elementary operations. Of
course this constant will depend on the computing tools used, but it is not a
characteristic of the algorithm itself.

Classes of Problems

In many cases, we are interested in designing algorithms to solve a more
general class of problems of which P is a member. We adopt the following
simple definition.

Definition 3.5 A class of problems is defined as a set of problems sharing
a common mathematical structure or model. Particular problems in a class,
often referred to as instances, differ in their size and their data.

Thus Definition 3.1 defines the class MIP and each problem instance P ∈
MIP is defined by the size parameters n, p, m, and by the data A, B, b, c,
f . Subclasses of the MIP class are the MBP class and the PIP class. The
example (3.1) is an instance from the class MIP and its subclass PIP.

We analyze algorithms and formulations for smaller subclasses of MIP.
For instance, the LS-U problem defined in Section 2.1 is such a subclass. The
problem classes we consider here are defined and classified in Chapter 4.
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Running Time of an Algorithm for a Problem Class

Now we are interested in the running time of algorithms for solving all problem
instances P belonging to a given class C. It is usual and natural to express
the running time for solving P ∈ C as a function of its size. For example,
the running time of an algorithm A on any instance of LS-U with n time
periods in the planning horizon is defined as the number N(A, n) of elementary
operations required, and could be equal to

N(A, n) = 3
n(n − 1)

2
+ n2. (3.2)

Remark: More precisely, note that the running time of an algorithm also
depends on the size of the data (and not only the number of data items),
because elementary operations on very large integer numbers take more
time than on small integers. In complexity theory, it is usual to capture
both the problem size and data size factors by expressing the running time
for solving P ∈ C as a function of the length of the data (string) required
to define problem instance P .

For example, consider the LS-U model with n time periods. There are
n demands to store, and if each demand is an integer between 0 and
31 = 25 − 1, then it takes a string of at most 5n bits to store the demand
data with the usual binary encoding scheme for integer numbers.

We do not enter into these details here, and express the running time
as a function of the problem size only, assuming implicitly that all the
elementary operations take constant time.

Run-Time Order of an Algorithm for a Problem Class

Finally, the running time required to solve small-size instances P of the class
C is often not very relevant. To analyze the running time of an algorithm, one
usually prefers to take an asymptotic perspective.

Definition 3.6 The run-time order of algorithm A for problem class C is
f(n) if there exists a constant µ such that the running time required to solve
any instance P is bounded from above by µ f(n), where n is the problem size
parameter and n is sufficiently large.

Typical values that one encounters for the run-time order f(n) are n, n2,
n3, . . ., log n, log2 n, . . ., 2n, or combinations thereof.

The mathematical notation for the run-time order is O(n), O(n2 log n),
. . ..

In other words, the run-time order of an algorithm is the dominating term
of an upper bound on the running time when the problem size goes to infinity.
For example, the complexity measured in (3.2) corresponds to a run-time order
of O(n2) because N(A, n) ≤ 5

2n2 (for large enough n).
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Definition 3.7 An algorithm with polynomial run-time order O(np) for some
fixed value p is called a polynomial algorithm.

For the problem classes that we consider here, the non-polynomial algo-
rithms are called exponential algorithms.

The distinction between polynomial and exponential algorithms is crucial
for the running time and the solution of large-size instances, as illustrated in
Table 3.1. Observe also the difference between log2 n and n.

Table 3.1. Illustration of Polynomial and Exponential Complexity

n = 10 102 103 104 105 106

log2 n = 3.32 6.64 9.97 13.29 16.61 19.93
log2

2 n = 11.04 44.14 99.32 176.56 275.88 397.27
n2 = 100 104 106 108 1010 1012

2n = 1024 1.27 1030 10.72 10300 19.95 103009 9.99 1030102

Definition 3.8 Problems for which there exists a polynomial algorithm are
considered to be “easy” problems, and belong to the “complexity” class of poly-
nomial problems.

Problem LS-U belongs to the class of polynomial problems. Also, the time
required to solve a linear program using the interior point (barrier) algorithm
is polynomial in its size. Therefore linear programs also belong to the class of
polynomial problems. Note that the time to solve a linear program using the
simplex algorithm is not polynomial, but is very fast in practice.

On the contrary, this does not hold for mixed-integer programs. The only
guaranteed bound on the running time required is in general exponential in
the size! Moreover, if a MIP is solved by a branch-and-bound approach, the
time required depends heavily on the way in which the problem is formulated.
This is the topic of the following sections.

3.2.2 The Size of a Formulation

By extension, we use the same asymptotic notation to define and characterize
the size of a mathematical program as for the running time of algorithms.

For instance, the LS-U formulation given in Sections 1.1 and 2.1 contains
3n variables and 2n constraints, on top of the nonnegativity and integrality
restrictions on the variables. This formulation is said to have O(n) (i.e., of
the order of n) variables and O(n) constraints. We often write that this LS-U
formulation is of size

O(n) × O(n),

where the first factor characterizes the number of constraints, and the second
the number of variables.
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This notation does not characterize the running time needed to solve a
mathematical program, but just the formulation size.

3.3 Branch-and-Bound Algorithm

We now describe the branch-and-bound algorithm which is the basic or general
algorithm used for solving mixed-integer programming programs as defined in
Definition 3.1. We illustrate the behavior of this algorithm on the simple two-
dimensional PIP example (3.1).

For simplicity, we repeat and generalize the description of the optimization
program MIP and its linear relaxation LR. Let

Z(V ) = min
(x,y)

{ cx + fy : (x, y) ∈ V }

be the optimal value of the optimization problem defined over the feasible set
V and with objective function cx + fy. By convention, we write Z(V ) = +∞
when the feasible set V is empty. Program MIP and its optimal value Z(X)
depend on the feasible set X, where

X = { (x, y) ∈ R
n
+ × Z

p
+ : Ax + By ≥ b } .

Similarly, the linear program LR and its optimal value Z(PX) are defined by
the feasible set PX , where

PX = { (x, y) ∈ R
n
+ × R

p
+ : Ax + By ≥ b } .

We also recall our basic observation regarding the lower and upper bounds.

Z(PX) ≤ Z(X) ≤ Z̄,

where Z̄ is the objective value of any feasible solution found.

3.3.1 The Enumeration Principle

We describe first the general “divide-and-conquer” principle of the branch-
and-bound algorithm for solving MIP .

(i) The initial lower bound on Z(X) is provided by the optimal value Z(PX)
of the linear relaxation LR. This program is easy to solve (in the com-
plexity sense and in practice) because it is a linear program. Let (x�, y�)
be an optimal solution to LR.

Assumption. We assume here without loss of generality that LR is
bounded. Otherwise, when Z(PX) = −∞, problem MIP is either un-
bounded too, or infeasible. To distinguish between these two cases, it
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suffices to impose arbitrarily large bounds on the variables to obtain a
bounded MIP , and to run the branch-and-bound algorithm on this mod-
ified problem. If it produces an optimal solution, then the original problem
was unbounded, and otherwise infeasible.

Observation. Solving MIP can be rephrased as finding the best (with
respect to the objective function) solution (x, y) in the set PX with y ∈ Z

p.

Principle. We try to solve MIP by solving a sequence of linear programs.

(ii) If y� ∈ Z
p, then it is feasible for MIP as (x�, y�) ∈ X and it

also provides an upper bound on Z(X). Therefore (x�, y�) is an opti-
mal solution to MIP , because the lower and upper bounds are equal
( cx�+fy� = Z(PX) ≤ Z(X) ≤ Z̄ = cx�+fy� implies Z(X) = cx�+fy�).

(iii) Otherwise, y∗ /∈ Z
p and the solution (x�, y�) is not feasible for MIP . We

try to eliminate this useless solution from LR by adding linear constraints
so as to keep a linear program.

Let yj with j ∈ {1, . . . , p} be some variable taking a fractional (non-
integral) value y�

j in the solution (x�, y�) to LR.

Observation. In any feasible solution (x, y) ∈ X, we must have either
yj ≤ 	y�

j 
 or yj ≥ �y�
j �, where 	y�

j 
 and �y�
j � denote the value of y�

j

rounded down and up to the nearest integer respectively.
For instance, with y�

j = 32
9 , we must have either yj ≤ 3 = 	 32

9 
 or
yj ≥ 4 = � 32

9 � for all (x, y) ∈ X.

Branching Step. To eliminate the solution (x�, y�), as well as all solu-
tions with 	y�

j 
 < yj < �y�
j �, we replace the set PX by the union of two

disjoint sets P 0
X and P 1

X , where

P 0
X = PX ∩ {(x, y) ∈ R

n
+ × R

p
+ : yj ≤ 	y�

j 
 } and

P 1
X = PX ∩ {(x, y) ∈ R

n
+ × R

p
+ : yj ≥ �y�

j � } .

The variable yj is called the branching variable, and the constraints yj ≤
	y�

j 
 and yj ≥ �y�
j � are called the branching constraints.

Observation. We can now replace the search for the best integer solution
in PX by the search for the best integer solution in P 0

X ∪ P 1
X . Unfortu-

nately, the price to pay in order to keep linear programs is that we have
replaced a single linear program by two linear programs defined over two
disjoint sets.

Example. The initial decomposition of PX into P 0
X and P 1

X by branching
on variable y1 is illustrated in Figure 3.2 for the MIP example (3.1). The
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point a = (32
9 , 101

36 ) is the optimal fractional solution (x�, y�) of the linear
relaxation (LR).

y2
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minimization

P1
X

X

P0
X

a

Figure 3.2. The MIP program (3.1) and its decomposition in the branch-and-bound
algorithm.

(iv) We look now for the best integer solution lying in one of the formulations
on the list L = {P 0

X , P 1
X}. We can continue the decomposition approach

in the same way. This requires us to analyze separately each formulation
in the list L.

Main iteration. We are given a list L of formulations, and the value Z̄
of the best integer solution found so far. As long as no feasible solution is
known, we set Z̄ = +∞.

Selection and Solution Step. We select one formulation V from the
list L, and solve the corresponding linear program (LP ) to obtain Z(V )
and an optimal solution (xV , yV ). This value Z(V ) is a lower bound on
the value of the best integer solution in the set V .

Pruning Step. As in the first iteration detailed above, several cases may
arise in examining the set V .

a. If Z(V ) ≥ Z̄, then the best solution in V cannot be strictly better than
Z̄, because Z(V ) is a lower bound on the value of the best solution is
V . Therefore we do not need to consider the integer solutions in V ,
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and we simply remove V from the list L. This is called pruning by
bound.

b. As a special case of the preceding one, when V is empty, we obtain
Z(V ) = +∞ ≥ Z̄, and we can remove V from the list. This is called
pruning by infeasibility.

c. If Z(V ) < Z̄ and yV ∈ Z
p, then we have found the best integer

solution (xV , yV ) in V (because the best solution in V is integral),
and this solution improves the value of the best known solution so far.
Therefore we do not need to decompose V further. We record the new
best solution value by setting Z̄ = Z(V ), and remove V from the list
L. This is called pruning by integrality.

d. If Z(V ) < Z̄ and yV /∈ Z
p, then the optimal solution of the linear

program V is fractional, and the value of the best integer solution in
V may still improve on the best known solution value Z̄. Therefore,
we need to decompose the problem further, remove V from the list
L, and add to L the two sets V 0 and V 1 obtained by branching as
described above. This is called branching.

(v) Termination. The algorithm stops when the problem list L is empty.
This is guaranteed to occur in finitely many steps, if the integer variables
y are bounded. However, the number of formulations to consider in the
list L can grow exponentially with the number p of integer variables.

Running Time. Theoretically, the branch-and-bound algorithm requires
a number of iterations that is exponential in the number of integer vari-
ables (p). Each iteration consists of the solution and treatment (pruning
or branching) of one linear program from the list L, which can be carried
out in polynomial time if an appropriate interior point algorithm is used.

3.3.2 The Branch-and-Bound Algorithm

We now summarize the branch-and-bound algorithm.
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Branch − and − Bound

1. Initialization
L = {PX}
Z̄ := +∞
Assume that LR is bounded (Z(PX) > −∞)

2. Termination
If L = ∅ Then
{ If Z̄ = +∞ Then X = ∅ (infeasible problem)

If Z̄ < +∞ Then the solution (x, y) ∈ X with
Z̄ = cx + fy is optimal

STOP
}

3. Node Selection and Solution
Select V ∈ L and let L := L \ {V }
Compute the optimal LP -value Z(V ) and solution (xV , yV ) of V

4. Pruning
If Z(V ) ≥ Z̄ Then GO TO 2. (V is either infeasible or dominated

by the best solution (upper bound) found so far)
If Z(V ) < Z̄ Then
{ If yV

j ∈ Z (i.e., is integral) for all j = 1, . . . , p Then
{ (a better feasible solution (upper bound) is found)

Update the upper bound by setting Z̄ := Z(V )
Update the list L by removing dominated programs

(for each W ∈ L: If Z(W ) ≥ Z̄, then L := L \ {W})
GO TO 2.

}
}

5. Branching
(occurs only when program V has not been pruned)
(i.e., when Z(V ) < Z̄ and yV

j /∈ Z for some j ∈ {1, . . . , p})
Select j for which yV

j /∈ Z (yj is the branching variable)
Update list L by adding programs with restricted yj values

Set L := L ∪ {V 0, V 1} where
V 0 = V ∩ {(x, y) ∈ R

n
+ × R

p
+ : yj ≤ 	yV

j 
 }
V 1 = V ∩ {(x, y) ∈ R

n
+ × R

p
+ : yj ≥ �yV

j � }
(yj ≤ 	yV

j 
 and yj ≥ �yV
j � are the branching constraints)

GO TO 2.

It is standard to represent the sequence of problems or sets obtained as
elements of the list L during the branch-and-bound algorithm by an enumer-
ation tree. The first node of the tree, called the root node, always represents
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the initial linear relaxation (LR). Then, the two sets V 0 and V 1 obtained by
branching from a set V are represented as child nodes of the node V .

A Branch-and-Bound Example

2

(xV,yV) = (3 , 2.875) = b
Z(V) = - 8.75
fractional sol. 

Branch

1=(LR)

(xV,yV) = (3.56 , 2.81) = a
Z(V) = - 9.16
fractional sol. 

Branch

5

(xV,yV) = (4 , 2.25) = d
Z(V) = - 8.5
fractional sol. 

Branch

3

(xV,yV) = (3 , 2) = c
Z(V) = - 7
integer sol. 

Best so far, Prune

6

(xV,yV) = (4.2 , 2) = e
Z(V) = - 8.2
fractional sol. 

Branch4

Z(V) = +
Infeasible,
Prune

9

Z(V) = +
Infeasible,
Prune

7

(xV,yV) = (4 , 2) = f
Z(V) = - 8
integer sol. 

Best so far, 
Prune

8

(xV,yV) = (5 , 1) = g
Z(V) = - 7
integer sol. 

Dominated,
Prune

y1  3 y1  4 

y2  2 y2  3 y2  2 y2  3 

y1  4 y1  5 

Figure 3.3. The branch-and-bound tree for Example (3.1).

The branch-and-bound enumeration tree corresponding to the simple ex-
ample (3.1) is represented in Figure 3.3. In the figure:

• The nodes are numbered according to the selection order in Step 3.
• The linear program corresponding to node n is defined by the initial lin-

ear relaxation (LR) (node 1 or root node) augmented by the branching
constraints on the path from the root node to node n.

• The solutions (xV , yV ) found in Step 3 are illustrated in Figure 3.4 by
letters from a to g in the graphical representation of program (3.1).

• The pruning status in Step 4 is indicated next to the nodes (not pruning
means going to branching in Step 5).

• The branching variables and constraints in Step 5 are indicated on the
branches (arcs) of the tree.
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Figure 3.4. The MIP program (3.1) and points (xV , yV ) found in Step 3 of the
branch-and-bound algorithm.

3.3.3 Node Selection and Branching Rules

Finally, note that to implement a branch-and-bound algorithm, one needs to
specify a node selection rule and a branching rule.

The node selection rule specifies which linear set from the list L to select
at each iteration of Step 3. This rule has an impact on the order in which
the nodes are treated, and therefore on the evolution of the lower and upper
bounds during the execution of the algorithm. Some standard rules are:

• Depth-first search in which one selects a child of the preceding node after
branching, and backtracks (i.e., moves back in the enumeration tree to
select the next node) as few nodes up as possible after pruning a node;

• Breadth-first search in which one selects nodes that are closest to the top
of the tree;

• Best-bound search in which one selects the node with the best (lowest)
lower bound;

• Combinations of these, such as
– breadth-first search for a certain number of nodes followed by depth-

first search, or
– depth-first search as long as branching is performed, and then best-

bound after pruning a node.

The choice of the rule is often heuristic. Depth-first search allows one to
obtain solutions quickly (because there are more branching constraints deep in
the tree, and such bound constraints help to obtain integer solutions), but with
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the risk that the solution quality suffers if wrong branching decisions are taken.
On the other hand breadth-first search avoids this risk by working in parallel
on all branches of the tree, but is rather slow to obtain feasible solutions. Best-
bound search minimizes the number of nodes treated to prove optimality, and
the combinations of rules are attempts to find a good compromise.

All MIP solvers offer the possibility of implementing and testing a number
of node selection rules.

The branching rule is concerned with the selection of the fractional variable
on which to branch. A common rule is most fractional (closest to one-half).
Here one selects the variable whose fractional part is closest to 0.5, or equiv-
alently the variable that is farthest from being integer. For instance, 3.6 is
more fractional than 2.3. In order to increase the lower bound as fast as pos-
sible, more sophisticated rules try to estimate the impact of the branching
variable on the lower bound values. Again, a number of basic branching rules
are implemented and may be selected in most MIP solvers.

In addition, the user can specify a branching priority for the variables.
The goal is to branch first on variables that have a major impact on the
solution quality. For instance, in production planning, it is sometimes useful
to branch first on the variables corresponding to the initial periods of the
planning horizon (if they take fractional values).

3.3.4 Solution Quality and Duality Gap

For large-size industrial applications, the branch-and-bound tree is often trun-
cated because solving the problem to optimality takes too much computing
time. In such cases, the node selection and branching rules also have an im-
portant impact on the quality of the solution obtained. The quality of the
solution is usually measured by the so-called duality gap.

Definition 3.9 When the branch-and-bound enumeration is unfinished, the
duality gap measures the maximum relative deviation from optimality of the
best feasible solution found. It is defined as

Duality Gap =
Best UB - Best LB

Best UB
× 100 [%] ,

where Best LB is the minimum lower bound among all outstanding problems
or nodes in the list L (i.e., Best LB = minV ∈L Z(V )), and Best UB is the
value of the best solution found, when the enumeration is stopped.

Note that in the solution reports from the Xpress-MP Optimizer, the du-
ality gap is computed relative to the best lower bound (dividing by Best LB)
instead of the best upper bound, and is therefore larger.
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3.4 Reformulation

The branch-and-bound algorithm is a general-purpose algorithm able in the-
ory to solve any MIP as described in Definition 3.1. However, in practice
the number of nodes may grow exponentially with the number p of integer
variables, and the computing time may become too large for the production
planning instances typically encountered in industrial applications.

3.4.1 The Quality of a Formulation

Good and Bad Formulations

However, there is still hope to solve large size instances, based partly on the
following observation.

Observation 3.3 The number of branch-and-bound nodes needed to solve a
MIP depends heavily on the formulation used. It is therefore crucial to iden-
tify a good formulation.

The importance of the initial formulation is now illustrated with our two-
dimensional PIP example. We have already seen in Figure 3.3 that nine nodes
were needed to complete the branch-and-bound enumeration using the initial
formulation given by

X = PX ∩ Z
2
+ and PX = {y = (y1, y2) ∈ R

2
+ : y1 ≥ 1

−y1 ≥ −5
−y1 −0.8y2 ≥ −5.8

y1 −0.8y2 ≥ 0.2
−y1 −8y2 ≥ −26 }.

On the other hand, we can check in Figure 3.1 that the following inequal-
ities are satisfied by all feasible points (x, y) ∈ X. Such inequalities are called
valid inequalities

−y1 −y2 ≥ −6 ,
y1 −y2 ≥ 0 ,

−y2 ≥ −2 .

By adding all these valid inequalities to the initial formulation, one gets the
formulation and linear relaxation represented in Figure 3.5. Observe that this
reformulation does not change the set of feasible solutions X (because we have
added valid inequalities only), but the linear formulation is now a smaller set.

Using this alternative and tightened formulation of X, one can solve the
same PIP problem, using the same branch-and-bound algorithm, at the root
node, as a pure linear program. This holds because the optimal solution of the
new linear relaxation is an integral solution, represented by point f in Figure
3.5, and therefore no branching is required.
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Figure 3.5. The MIP program (3.1) with an improved formulation.

Tight or Convex Hull Formulation

Moreover, this new formulation enables us to solve this PIP as a pure LP (i.e.,
without any branching step) for any linear objective function because our new
linear relaxation coincides with the convex hull of the points in X.

Without giving a formal definition before Part II, the convex hull of X,
denoted conv(X), is a formulation (i.e., its feasible set is defined by a set of
linear inequalities), and it is characterized by the fact that all its extreme
points (vertices in Figure 3.5) belong to X. In this sense, the convex hull
formulation is the smallest or tightest valid formulation or valid linear pro-
gramming relaxation for X. It is the best formulation (i.e., conv(X) ⊆ PX for
any formulation PX of X).

As all extreme points of conv(X) belong to X, all extreme optimal solu-
tions to the linear relaxation belong to X, whatever the direction of mini-
mization. Therefore it suffices to solve the linear relaxation to get an extreme
optimal solution to LR, which is also an optimal solution to MIP .

This can be generalized to any MIP with rational data.

Observation 3.4 Any MIP problem can be solved as a pure linear program
by using as formulation the description by linear inequalities (or polyhedral
description) of the convex hull of its feasible set X. Such a formulation is also
called a tight formulation. A feasible set, such as conv(X), described by linear
inequalities is called a polyhedron.

In practice, using this reformulation approach (replacing the formulation
by the polyhedral description of conv(X)) encounters two major difficulties.

1. The polyhedral description of conv(X) is not known, and finding this
description is, in general, at least as hard (in the complexity sense) as
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solving problem MIP . Thus, we have just moved the challenge from solv-
ing a hard MIP to finding the adequate formulation as an LP.

2. For most MIP instances, the polyhedral description of conv(X) involves a
number of linear inequalities that is exponential in the number of variables.
Solving this linear relaxation may not be possible, or may require a very
long computing time.

Therefore, one cannot expect to use this ideal or tight formulation (conv(X))
in a direct reformulation and solution approach. We postpone the discussion of
the second difficulty to Section 3.5 devoted to the branch-and-cut algorithm.

3.4.2 Valid Inequalities

Adding valid inequalities or constraints a priori to the initial formulation, that
is, before the optimization starts, is a first level of improvement. The objective
is

• to obtain a tightened formulation (tightened linear relaxation, i.e., closer
to conv(X)),

• in order to improve (increase) the lower bounds provided by the linear
relaxations solved at each node, and so

• to reduce the number of branch-and-bound nodes needed to solve the MIP
program, and finally

• to reduce the total branch-and-bound computing time.

Definition 3.10 A valid inequality (VI) for the feasible set X of MIP ,

X = { (x, y) ∈ R
n
+ × Z

p
+ : Ax + By ≥ b } ,

is a constraint or inequality αx + βy ≥ γ (with α ∈ R
n, β ∈ R

p and γ ∈ R)
satisfied by all points in X; that is,

αx� + βy� ≥ γ for all (x�, y�) ∈ X.

Of course, we are not interested in any VI, but only in the VIs tightening
the initial formulation, that is, eliminating part of the initial formulation or
linear relaxation. Otherwise the reformulation will have no impact on the
number of branch-and-bound nodes.

For instance, in the PIP represented in Figure 3.5, the inequality y1 ≤ 6
is valid, but it does not tighten the formulation. On the contrary, the valid
inequality y1+y2 ≤ 6 is very useful because it is one of the inequalities defining
conv(X).

Definition 3.11 A facet-defining valid inequality for X is a valid inequality
that is necessary in a description of the polyhedron conv(X).
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As we have already observed, facet-defining VIs are strong inequalities in
the sense that they must be part of the formulation if one wishes to solve MIP
(optimize over X for all objective functions cx + fy) without any branching.

Unfortunately, the polyhedron conv(X) and its facet-defining VIs are gen-
erally unknown. Therefore one performs a partial reformulation, where only a
subset of the (facet-defining) valid inequalities defining conv(X) are added to
the formulation. Moreover, the VIs added are not systematically facet-defining
for conv(X), because it is too difficult or time-consuming to check, or simply
unknown.

As a consequence, we expect such a partial reformulation to reduce the
number of nodes enumerated, but not to eliminate branching completely.

Analyzing Relaxations to Find Valid Inequalities

There are several ways to identify VIs, or classes of VIs, for a given formulation
or feasible set X. It is beyond the scope of this introduction to explain methods
of identifying classes of VIs. Nevertheless, we illustrate the general approach
in order to help the reader to use the available reformulation results and
software adequately (which is our main objective in Part I), to understand
our reformulation and decomposition approach, and to prepare the transition
to Part II.

Usually, finding facet-defining valid inequalities for conv(X) requires one
to take into account the complete structure of the set X, which is itself a very
hard problem.

Therefore, one uses a simpler approach which is to identify facet-defining
VIs for various relaxations of X, where a relaxation Y of X is any superset of
X (i.e., X ⊂ Y ). The following observation derives directly from the notion
of relaxation and the definition of valid inequality.

Observation 3.5 Any valid inequality for a relaxation Y of X is also a valid
inequality for X.

One typical low-level relaxation Y consists of a single constraint from the
inequalities defining X and the bounds on the variables. This clearly defines
a relaxation of X.

For instance, the initial inequality y1 + 0.8y2 ≤ 5.8 and the bounds 1 ≤
y1 ≤ 5, 0 ≤ y2 ≤ 3 from the PIP defined in (3.1) and represented in Figure
3.5, define the relaxation

Y = {(y1, y2) ∈ Z
2
+ : y1 + 0.8y2 ≤ 5.8

1 ≤ y1 ≤ 5
0 ≤ y2 ≤ 3 } ,

where the bound y2 ≤ 3 is derived directly from the initial constraint y1 +
8y2 ≤ 26 and the nonnegativity of y1 (26 ≥ y1 + 8y2 ≥ 8y2, which implies
y2 ≤ 	 26

8 
 = 3 as y2 must be an integer). Now, it is easy to verify that
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the inequality y1 + y2 ≤ 6 is valid for Y , and thus for X. This inequality is
facet-defining for conv(Y ) and also by chance for conv(X).

The low-level relaxation approach can also be used to derive the valid
inequality y1 − y2 ≥ 0 from the initial inequality y1 − 0.8y2 ≥ 0.2 and the
trivial bounds on y1 and y2.

Such valid inequalities based on low-level relaxations or structures are de-
rived automatically by the most advanced MIP solvers, that is, without any
prior knowledge of the structure of the model other than the matrix of con-
straint coefficients. Examples of such inequalities are the the Knapsack, the
Mixed Integer Rounding (MIR), and the Flow Cover VIs that we study in
Part II. They are all based on single constraints and simple or variable bounds
on the variables.

It is sometimes possible to derive valid inequalities and facets for more
global or high-level relaxations Y . This is of interest because more global
relaxations should lead to better or stronger reformulations of conv(X).

For instance, the single-item uncapacitated lot-sizing model (LS-U) is a
high-level structure or relaxation present in many production planning prob-
lems. This relaxation is defined by the demand satisfaction and set-up forcing
(variable upper bound) constraints described in Chapter 1.

Using the same approach, one can derive valid inequalities and facets for
conv(XLS−U ) in order to improve the formulation of production planning
models.

We illustrate the reformulation results known for model LS-U in Sections
4.1.1 and 4.1.2. It is the specific objective of Chapter 4 to classify the high-
level relaxations encountered frequently in production planning models, and
their known reformulation results that can be exploited in branch-and-cut
algorithms.

The automatic reformulation approach implemented in MIP solvers, as
well as the reformulations based on higher-level relaxations lead generally
to a very large number of valid inequalities. This is the reason why they
are sometimes added as cuts in a branch-and-cut approach (see Section 3.5),
rather than a priori to the initial formulation.

3.4.3 A Priori Reformulation

Suppose that the analysis of some relaxations of the feasible set X yields a
set or a family of valid inequalities. The inequalities can be added a priori to
the formulation (i.e., before the optimization starts), and used directly in the
branch-and-bound algorithm.

Let us first introduce some new concepts and notation. We are given a
MIP to solve over the feasible set X, defined by the formulation PX .

PX = { (x, y) ∈ R
n
+ × R

p
+ : Ax + By ≥ b }
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and
X = PX ∩ (Rn × Z

p) .

We have already seen that several formulations or reformulations exist for
the same feasible set X. For example, we have described three alternative
formulations of the set X in our small two-dimensional example defined in
(3.1).

The usual way to define valid or correct reformulations of X consists of
adding to the formulation a set or a family C of valid inequalities for X. For
simplicity of notation we assume that the family C of valid inequalities for X
is given explicitly by a list of constraints

C = {αjx + βjy ≥ γj for all j = 1, · · · , |C| } .

Definition 3.12 The reformulation of X by the family C of valid inequalities
is the formulation defined by the initial constraints Ax+By ≥ b and the valid
inequalities in C. It does not modify the set of feasible solutions X,

X = { (x, y) ∈ R
n
+ × Z

p
+ : Ax + By ≥ c }

= { (x, y) ∈ R
n
+ × Z

p
+ : Ax + By ≥ c

αjx + βjy ≥ γj for all j = 1, · · · , |C| } ,

but the reformulation allows one to obtain a tighter formulation P̃X , where

P̃X = PX ∩ C ⊆ PX

and C is the set of points satisfying all valid inequalities in the family C,

C = { (x, y) ∈ R
n × R

p : αjx + βjy ≥ γj for all j = 1, · · · , |C| }.

The a priori reformulation approach consists of using the reformulation
and its linear relaxation P̃X , instead of PX , in the branch-and-bound algo-
rithm. It is practical only if the number |C| of inequalities added is not too
large.

A Priori Reformulation Example

As an example of this approach, we come back to our two-dimensional pure
integer program defined in (3.1).

To illustrate the a priori reformulation approach, we suppose that we have
found two valid inequalities by analyzing the single constraint relaxations of
X. They define a partial description of conv(X):

C = { (y1, y2) ∈ R
2
+ :

−y1 −y2 ≥ −6
y1 −y2 ≥ 0

}
.
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Figure 3.6. The branch-and-bound tree for the a priori reformulation P̃X of Ex-
ample (3.1).
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Figure 3.7. The formulation P̃X of Example (3.1) and points (xV , yV ) found in
Step 3 of the branch-and-bound algorithm.
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Adding these inequalities a priori and solving by branch-and-bound allows
one to obtain the branch-and-bound tree represented in Figure 3.6. The corre-
sponding formulation and linear relaxation P̃X are represented in Figure 3.7.
Adding these two valid inequalities has tightened the linear relaxation, which
can also be observed by the increased lower bound obtained at the root node,
and has reduced the number of branch-and-bound nodes from 9 to 5.

3.4.4 A Priori and Extended Reformulation

Another way to obtain an a priori reformulation is based on an extended
reformulation.

Definition 3.13 An extended reformulation for the feasible set X of a MIP
is a formulation (defined by linear constraints in the sense of Definition 3.3)
involving new (and usually more) variables (see Chapter 6 for a formal defi-
nition).

By using the additional modeling flexibility offered by an extended space of
variables, it is often possible to obtain good reformulations of (some relaxation
of) conv(X) requiring far fewer constraints than good reformulations in the
original space of variables. Of course, there is a price to pay for increasing the
number of variables, and one has to find the best compromise among

− the increase in number of constraints to get a good formulation in the
original variable space,

− the increase in number of variables (and constraints) to get a good formu-
lation in an extended variable space, and

− the improved quality of the bounds obtained by the reformulations.

For example, for a program involving initially O(n) variables and con-
straints, we might have the choice between working in an extended variable
space involving O(n2) or O(n3) variables, providing a good reformulation with
only O(n2) or O(n3) constraints, or working in the original variable space, but
needing an exponential O(2n) number of constraints to obtain a formulation
of the same quality as the extended one.

Several examples of such a choice are shown in the reformulation results
for standard lot-sizing problems in Chapter 4. This choice is also illustrated
explicitly in Sections 4.1.1 and 4.1.2 on extended reformulation and original
space reformulation approaches for the LS-U model.

A compact extended reformulation has the advantage that it can be used
directly, that is, by adding the corresponding constraints a priori to the for-
mulation. In contrast, for reformulations in the original space having an ex-
ponential number of inequalities, the indirect cutting plane or branch-and-cut
approach described in Section 3.5 has to be used.
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3.5 Branch-and-Cut Algorithm

Motivation

Once valid inequalities have been derived to improve a formulation, we often
face the second difficulty mentioned for tight reformulations. In many cases,
the number of valid inequalities identified by analyzing X (or its relaxations)
grows exponentially with the number of variables. This occurs particularly
when the reformulation is carried out in the original space of variables.

In such a situation, it is not practical to add all the valid inequalities
a priori in the formulation. We look thus for another way to benefit from
the improved formulation (tighter formulation P̃X , increased lower bounds,
reduced number of branch-and-bound nodes), while keeping the time to solve
the linear relaxation reasonable.

The following observation gives us some indication on how to solve the
linear relaxation defined by the reformulation P̃X efficiently.

Observation 3.6 For a given MIP , let P̃X be the reformulation obtained by
adding an exponential number of valid inequalities to the initial formulation
PX . For a fixed objective function cx + fy, only a limited number (equal to at
most n+ p, the number of variables) of these valid inequalities is necessary to
solve the linear relaxation over the set P̃X to optimality.

This observation holds because, when solving the linear relaxation over P̃X ,
the valid inequalities that are inactive at the optimal solution can be dropped
from the formulation, and the optimal solution (a vertex of the polyhedron P̃X

in the geometrical interpretation) is obtained as the intersection of at most
n + p active constraints, where n + p is the dimension of the variable space.

For instance, in the pure integer program represented in Figure 3.5, the
optimal solution f of the linear relaxation defined over P̃X = conv(X) is the
intersection of two facet-defining inequalities for conv(X), where n + p = 2
is the dimension of the variable space and is independent of the number of
facets describing conv(X).

3.5.1 Separation Algorithm

Observation 3.6 suggests also the idea of the cutting plane algorithm and
separation algorithm used to solve the linear program over the set P̃X . Instead
of adding initially all valid inequalities from C to the formulation (in which case
most of these exponentially many inequalities will be inactive and useless),
the initial formulation PX is used and the linear relaxation LR is first solved.
Then the VIs from C are added only when they are needed, that is, only when
they are not satisfied at the optimal solution of LR.

The separation problem for valid inequality family C and a given point
(x, y) is the problem of deciding whether (x, y) ∈ C, that is, satisfies the
constraints in C.
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Definition 3.14 Given a feasible set X of a MIP , and a family C of
valid inequalities for X, the separation problem SEP ((x�, y�)|C) for a given
(x�, y�) ∈ PX is

• either to prove that (x�, y�) ∈ C, that is, to prove that (x�, y�) satisfies all
valid inequalities from C,

• or to find a valid inequality (αjx + βjy ≥ γj) ∈ C that is violated (not
satisfied) at (x�, y�), that is, such that αjx� + βjy� < γj.

In other words, solving the separation problem for a given point (x�, y�)
means finding an inequality from C that is violated at (x�, y�), or proving that
no such inequality exists.

An algorithm for solving the separation problem is called a separation
algorithm. It is of course often challenging to find an efficient separation algo-
rithm for a family involving exponentially many valid inequalities. This is an
important step in assessing the complexity of a cutting plane algorithm.

The separation algorithm is called exact if it guarantees to find a violated
inequality in the family C when one exists. Otherwise the separation algorithm
is called heuristic. Heuristic separation algorithms are often used to speed up
the solution of the separation problem.

3.5.2 Cutting Plane Algorithm

First, we recall the notation used to represent the optimal solution values
of the optimization problem MIP and its tightened linear relaxation P̃X =
PX ∩ C. Let

Z(P̃X) = Z(PX ∩ C) = min
(x,y)

{ cx + fy : (x, y) ∈ PX ∩ C}

be the optimal value of the optimization problem with objective function
cx + fy defined over the points in the sets PX and C, where C is the set
of points satisfying the valid inequalities in C. As before, Z(PX) denotes the
optimal value of the linear relaxation without reformulation, that is, without
the valid inequalities from C.

The tightened reformulation improves the lower bound value (i.e., Z(P̃X) ≥
Z(PX)), but the optimal value of program MIP is unchanged (i.e., Z(X ∩
C) = Z(X)) because the inequalities in C are valid for X.

The cutting plane algorithm solves the improved linear relaxation over P̃X

and computes Z(P̃X), without adding a priori the valid inequalities in C, but
by calling instead the separation algorithm repeatedly to generate the valid
inequalities needed from the family C.

We describe directly the cutting plane algorithm in a more general setting.
In the branch-and-cut algorithm, the cutting plane algorithm will be called
for each formulation V (defined by the initial formulation PX plus branching
constraints) in the list L; that is, it is called at each node, to compute the
improved lower bound Z(V ∩ C) ≥ Z(V ), where
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Z(V ∩ C) = min
(x,y)

{ cx + fy : (x, y) ∈ V ∩ C} .

Note that Z(PX ∩ C) will be the lower bound computed at the root node.
So, let V be a formulation with V ⊆ PX , that is, a subset of PX de-

fined by linear constraints (PX and branching constraints). The cutting plane
algorithm computes Z(V ∩ C).

Cutting Plane Algorithm to compute Z(V ∩ C)

a. Initialize W := V , where W will contain the final formulation at
the end of the cutting plane algorithm

Compute Z(W ) the optimal LP-value without VIs from C
Let (x�, y�) be an optimal LP-solution

b. Solve the separation problem SEP ((x�, y�)|C)

Either all inequalities from C are satisfied at (x�, y�) Then
{ (x�, y�) ∈ V ∩ C is an optimal solution with value Z(V ∩ C)

STOP
}

Or SEP returns some violated inequality (αjx + βjy ≥ γj) Then
{ Add (αjx + βjy ≥ γj) to the formulation:

W := W ∩ {(x, y) ∈ R
n × R

p | αjx + βjy ≥ γj}
Compute the optimal LP-value Z(W )
Let (x�, y�) be an optimal LP-solution
GO TO b.

}

During this algorithm, we always have V ∩ C ⊆ W ⊆ V because W is
initialized as the set V and is updated only by adding valid inequalities from
C. Therefore, when the optimal solution (x�, y�) over W belongs to C, it is
also the optimal solution over the set V ∩C. Finally, the algorithm terminates
because |C| is finite. Hence, the algorithm is correct.

The constraints returned by the separation problem are called cuts or
cutting planes because they are hyperplanes used to eliminate or cut off the
current solution (x�, y�).

By Observation 3.6, we can hope that the separation problem does not need
to be called too many times before the cutting plane algorithm terminates.
Experience shows that only a fraction of the total exponential number of valid
inequalities in C is indeed added. So, we have replaced the solution of a large
or huge LP, by a (it is hoped, short) sequence of smaller LPs.
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In practice, the total running time of the cutting plane algorithm is reduced
by generating and adding several cuts at each iteration. This is called the
multiple cut variant.

3.5.3 Branch-and-Cut Algorithm

Putting all the pieces together, the branch-and-cut algorithm is

• the branch-and-bound algorithm,
• applied to a reformulation defined by a family C of valid inequalities (i.e.,

each linear set V solved during branch-and-bound is tightened and re-
placed by V ∩ C), and

• where the solution of the linear program to compute Z(V ∩ C) at Step 3
of branch-and-bound is performed by a cutting plane algorithm.

The cut-and-branch variant is the branch-and-cut algorithm in which the
cutting plane algorithm is only called at the root node (first iteration of Step
3) to compute Z(PX ∩ C). So it consists of the computation of Z(PX ∩ C)
at the root node using a cutting plane algorithm, followed by pure branch-
and-bound applied to the resulting formulation (initial formulation PX plus
the cuts added at the root node). Compared to branch-and-cut, this variant
allows one to save processing time for the nodes in the enumeration tree, but
works with a weaker formulation.

In order to save some computing time in the separation algorithm, it is
usual to store the cuts added to a linear relaxation feasible set V for the
successor nodes. This is because cuts active at one node are likely to be active
at some later node. This is done either by keeping the cuts in the formulation
(i.e., keeping W instead of V at the end of the cutting plane algorithm in
Step 3, and branching on the set W in Step 5 of branch-and-bound), or by
storing the cuts in a “cut pool” containing a list of existing cuts. Then, before
calling the regular separation algorithm, one starts by checking if one of the
inequalities in the cut pool is violated. This is called cut pool separation.

The complete branch-and-cut algorithm, in which all the cuts generated
are kept in the formulation, is summarized next.

Branch-and-Cut for a family C of valid inequalities
1. Initialization

L = {PX}
Z̄ := +∞
Assume that LR is bounded (Z(PX) > −∞)

2. Termination
If L = ∅ Then
{ If Z̄ = +∞ Then X = ∅ (infeasible problem)

If Z̄ < +∞ Then the solution (x, y) ∈ X with
Z̄ = cx + fy is optimal

STOP
}



3.5 Branch-and-Cut Algorithm 105

Branch-and-Cut for a family C of valid inequalities (continued)

3. Node Selection and Solution with the Cutting Plane Algorithm
Select V ∈ L and let L := L \ {V }
3a. Compute Z(V ) and an optimal LP -solution (xV , yV ) over V
3b. Solve the separation problem SEP ((xV , yV )|C)

Either all inequalities from C are satisfied at (xV , yV ) Then
{ (xV , yV ) ∈ V ∩ C is an optimal solution with value Z(V ∩ C)

GO TO 4.
}
Or SEP returns a violated inequality (αjx + βjy ≥ γj) Then
{ Add (αjx + βjy ≥ γj) to the formulation:

V := V ∩ {(x, y) ∈ R
n
+ × R

p
+ | αjx + βjy ≥ γj}

Compute the optimal LP-value Z(V ) and solution (xV , yV )
Let (x�, y�) be an optimal LP-solution
GO TO 3b.

}
4. Pruning

If Z(V ) ≥ Z̄ Then GO TO 2. (V is either infeasible or dominated
by the best solution (upper bound) found so far)

If Z(V ) < Z̄ Then
{ If yV

j ∈ Z (i.e., is integral) for all j = 1, . . . , p Then
{ (a better feasible solution (upper bound) is found)

Update upper bound by setting Z̄ := Z(V )
Update list L by removing dominated programs

(for each W ∈ L: If Z(W ) ≥ Z̄ Then L := L \ {W})
GO TO 2.

}
}

5. Branching
(occurs only when program V has not been pruned)
(i.e., when Z(V ) < Z̄ and yV

j /∈ Z for some j ∈ {1, · · · , p})
Select j for which yV

j /∈ Z (yj is the branching variable)
Update list L by adding programs with restricted yj values

Set L := L ∪ {V 0, V 1} where
V 0 = V ∩ {(x, y) ∈ R

n
+ × R

p
+ | yj ≤ 	yV

j 
 }
V 1 = V ∩ {(x, y) ∈ R

n
+ × R

p
+ | yj ≥ �yV

j � }
(yj ≤ 	yV

j 
 and yj ≥ �yV
j � are the branching constraints)

GO TO 2.

Note finally that the branch-and-cut algorithm for solving program MIP
is an alternative to the a priori reformulation approach. If it takes as input
the same reformulation by the family C of valid inequalities, if the separation
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algorithm is exact and if the same node selection and branching rules are used,
then the branch-and-bound algorithm will enumerate the same sequence of
nodes with both the a priori reformulation and the branch-and-cut approaches.

Therefore, the choice between these two approaches depends mainly on
the running time required to solve each node of the enumeration tree.

Cutting Plane and Branch-and-Cut Example

For the two-dimensional pure integer program defined in (3.1), the branch-
and-cut enumeration tree based on exact separation of the two valid inequal-
ities

C =
{ −y1 −y2 ≥ −6

y1 −y2 ≥ 0

}

is exactly the same as the tree obtained with a priori reformulation. This tree
is given in Figure 3.6. The difference with a priori reformulation is in the
solution of the linear relaxations at each node of the tree.

y2

y11 2 3 4 5

1

2

3

direction 
of

minimization

W

X

ab

c
f

g

a’

cut 

y1+y2  6

Figure 3.8. The MIP program (3.1) and the cut generated in the cutting plane
algorithm.

The cutting plane algorithm at the root node will execute the following
steps:

• First solve the initial linear relaxation (with W = PX) to obtain point a
in Figure 3.8;

• Solve the separation problem SEP (a|C) and identify the violated inequal-
ity or cut y1 + y2 ≤ 6;
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• Update W by adding this cut, and resolve the linear relaxation over W to
obtain point a′ in Figure 3.8;

• Solve the separation problem SEP (a′|C) and prove (because no cut is
found in the family C) that a′ is the optimal solution of the improved
linear relaxation P̃X .

The shaded feasible set W in Figure 3.8 represents the set of solutions
satisfying the initial constraints with the single cut added. The cut added
has cut off the triangle aga′ from the linear relaxation set PX . The set W is
the feasible set of the linear program solved at the root node, and branching
constraints are added to this root node formulation. It is easy to check that
the other constraint from C is never violated and will not be generated at the
other nodes of the branch-and-cut enumeration.

We have described or surveyed here the generic algorithms, and their algo-
rithmic components, used to solve mixed integer programs. We specialize this
optimization approach in the next chapter to the solution of multi-item pro-
duction planning models. In particular, we describe how these models can be
decomposed into simpler single-item planning problems, and how to derive,
use, and integrate a priori reformulation, valid inequalities, and separation
algorithms for this class of models.

3.6 Primal Heuristics – Finding Feasible Solutions

So far we have worked mainly on improving the formulation of a specific
problem instance. There the main goal was to improve the quality of the linear
programming lower bound, but there was also the hope that the y variables
in the solution of the linear program would be closer to being integral so that
finding a good or optimal feasible integer solution would be easier.

Here we look directly at ways to find (it is hoped) good feasible integer
solutions. These may be useful when the branch-and-cut algorithm is too slow,
or takes a long time to find good feasible solutions. Most of the simple heuris-
tics we present can be implemented at each node of the branch-and-cut tree,
but for simplicity we just consider that we are at the root node in the branch-
and-cut tree. Thus we have the optimal LP solution (x̂, ŷ) obtained using the
initial formulation PX or some improved formulation P̃X , and possibly the
best known feasible solution (x̄, ȳ).

Typically there are two types of heuristics: construction heuristics that
produce a feasible solution from scratch, and improvement heuristics that try
to improve a given feasible solution (x̄, ȳ). We assume here that y ∈ {0, 1}p

for simplicity.

Truncated MIP

The first heuristic is the trivial heuristic MIP consisting of running a branch-
and-bound or branch-and-cut algorithm for a fixed amount of time. The best
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solution obtained when the time limit is reached is the MIP heuristic solution.
This heuristic is thus both a construction and an improvement heuristic.

Diving

A next class of heuristics is known as diving, and diving is in fact a strategy
for carrying out depth-first search in the branch-and-cut tree. At each node
all the y variables that take value 0 or 1 in the linear programming solution
are frozen at that value, and we need to create one branch by fixing one of
the y variables that is fractional to an integer value.

LP-driven dives traditionally use the latest LP solution (x̂, ŷ), and fix a
variable that is closest to integer. Namely, with F = {j : ŷj /∈ Z

1}, they find
gk = minj∈F gj , where gj = min[ŷj , 1 − ŷj ] for j ∈ F , and set yk = 0 if
ŷk ≤ 0.5 and yk = 1 otherwise.

IP-driven or guided dives use the incumbent solution (x̄, ȳ). Having chosen
the variable yk to be fixed next, the branching direction is fixed by setting
yk = ȳk, that is, equal to its value in the incumbent solution.

LP-driven diving is a construction heuristic, whereas guided diving is an
improvement heuristic. We do not emphasize such heuristics here because
they are typically implemented efficiently within the MIP systems, and their
implementation requires some minimal knowledge about how the tree is con-
structed, and so on. However, we already see that either the LP or the incum-
bent solution is usually the guide.

Below we concentrate on heuristics that just require us to solve one, two,
or a small number of modified LP or MIP versions of the original MIP

min{cx + fy : Ax + By ≥ b, x ∈ R
n
+, y ∈ {0, 1}p}.

The modifications consist of either the fixing of some variables, the addition
of a constraint, or the relaxation of some integrality constraints. They are
chosen in such a way that the modified LP s or MIP s are easier to solve than
the original MIP , and lead to a heuristic solution of the original MIP guided
by the information contained either in the linear relaxation solution or in the
incumbent solution, or both.

3.6.1 Construction Heuristics

We describe two procedures for building an initial solution for MIP .

Let Q = {1, . . . , p} be the index set of the y variables.

LP-and-Fix or Cut-and-Fix

This is a very simple heuristic closely related to diving. We just fix whatever
is integral in the LP solution (x̂, ŷ), and solve the resulting MIPLP−FIX
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(MIPLP−FIX) min{cx + fy : Ax + By ≥ b, x ∈ R
n
+, y ∈ {0, 1}p,

yj = ŷj for all j ∈ Q with ŷj ∈ {0, 1} }.

Either the problem is infeasible, and the heuristic has failed, or else it provides
an LP-and-fix heuristic solution.

In general, this heuristic produces better solutions when a tighter formu-
lation is used, and when the corresponding LP solution has fewer fractional y
variables. The cut-and-fix variant is the same heuristic applied to a formula-
tion that has been tightened either with cuts or with an extended reformula-
tion.

Relax-and-Fix

Here we suppose that the 0–1 variables y can be partitioned into R disjoint sets
Q1, . . . , QR of decreasing importance. We also generalize a little by choosing
subsets Ur with Ur ⊆ ∪R

u=r+1Q
u for r = 1, . . . , R − 1. We then solve sequen-

tially R MIPs, denoted MIP r with 1 ≤ r ≤ R, to find a heuristic solution to
the original MIP .

For instance, in a production planning problem, Q1 might be all the y
variables associated with time periods in {1, . . . , t1}, Q2 those associated with
periods in {t1 + 1, . . . , t2}, and so on, whereas U1 would be the y variables
associated with the periods in some set {t1 + 1, . . . , u1}, and so on.

In the first MIP 1, we only impose the integrality of the important vari-
ables in Q1 ∪U1 and relax the integrality restriction on all the other variables
in Q.

(MIP 1) min {cx + fy : Ax + By ≥ b

x ∈ R
n
+

yj ∈ {0, 1} for all j ∈ Q1 ∪ U1

yj ∈ [0, 1] for all j ∈ Q \ (Q1 ∪ U1) }.

Let (x1, y1) be an optimal solution of MIP 1. Then we fix the variables in Q1

at their values in y1, and move to MIP 2.
In the subsequent MIP r, for 2 ≤ r ≤ R, we additionally fix the values of

the y variables with index in Qr−1 at their optimal values from MIP r−1, and
add the integrality restriction for the variables in Qr ∪ Ur.

(MIP r) min { cx + fy :
Ax + By ≥ b

x ∈ R
n
+

yj = yr−1
j ∈ {0, 1} for all j ∈ Q1 ∪ · · · ∪ Qr−1

yj ∈ {0, 1} for all j ∈ Qr ∪ Ur

yj ∈ [0, 1] for all j ∈ Q \ (Q1 ∪ · · · ∪ Qr ∪ Ur) }.
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Let (xr, yr) be an optimal solution of MIP r for 2 ≤ r ≤ R.
Either MIP r is infeasible for some r ∈ {1, . . . , R}, and the heuristic has

failed, or else (xR, yR) is a relax-and-fix heuristic solution of the original MIP .
As an example to illustrate the notation, consider a production planning

problem defined over a planning horizon of 20 time periods. Using the cur-
rent formulation, assume that it is only possible to obtain good solutions in
reasonable computing time for problems with up to about 10 time periods.
Therefore a relax-and-fix heuristic is used with the following sets Qr and Ur,
with R = 4.

• Q1 contains all the y variables associated with periods in {1, . . . , 5}.
• Q2 = U1 contains all the y variables associated with periods in {6, . . . , 10}.
• Q3 = U2 contains all the y variables associated with periods in {11, . . . , 15}.
• Q4 = U3 contains all the y variables associated with periods in {16, . . . , 20}.

We describe now the iterations of the relax-and-fix heuristic.

• In the first MIP 1, the y variables associated with periods 1 up to 10 (i.e.,
in Q1∪U1) are restricted to be integer, the other y variables being relaxed.

• From the solution of MIP 1, we fix the y variables corresponding to periods
1 to 5 (i.e., Q1), and solve MIP 2 where the y variables associated to
periods 6 to 15 (i.e., in Q2∪U2) are now integer, and y variables associated
with periods 16 to 20 (i.e., Q \ (Q1 ∪ Q2 ∪ U2)) are relaxed.

• From the solution of MIP 2, we additionally fix the y variables correspond-
ing to periods 6 to 10 (i.e., Q2), and solve MIP 3 where the y variables
associated with periods 11 to 20 (i.e., in Q3∪U3) are now integer, and there
are no remaining variables to be relaxed because Q\(Q1∪Q2∪Q3∪U3) = ∅.

• The optimal solution to MIP 3 – if any – gives the relax-and-fix heuristic
solution, because of our choice of U3. In this case, there is no need to
proceed to MIP 4.

The status of the variables over the iterations is summarized in Table 3.2,
where we assume that the integer variables of the production planning model
are the binary set-up variables yi

t for each item i in each period t.

Table 3.2. Iterations of the Relax-and-Fix Heuristic

Iteration MIP Fixed Variables Binary Variables Relaxed Variables Solution
yi

t = (yi
t)r−1 yi

t ∈ {0, 1} 0 ≤ yi
t ≤ 1

for all i and for all i and for all i and
r = 1 MIP 1 - 1 ≤ t ≤ 10 11 ≤ t ≤ 20 (x1, y1)
r = 2 MIP 2 1 ≤ t ≤ 5 6 ≤ t ≤ 15 16 ≤ t ≤ 20 (x2, y2)
r = 3 MIP 3 1 ≤ t ≤ 10 11 ≤ t ≤ 20 - (x3, y3)

The basic idea of the relax-and-fix heuristic is clear in this example. At each
iteration, we solve a MIP problem involving ten periods of binary variables,
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and to avoid being too myopic we then only fix the values of the variables
corresponding to the first five of these periods. Thus the sets Ur allow us to
smooth the heuristic solution by creating some overlap between the successive
planning intervals.

Observe that the optimal objective value of MIP 1 provides a valid lower
bound on the optimal value of MIP , because MIP 1 is a relaxation of MIP .
This does not hold for the subsequent iterations r, with r ≥ 2, because some
integer variables have been heuristically fixed.

Finally, note that there are many variants of relax-and-fix, also called time
decomposition or time partitioning, where some problem-specific relaxations
or approximations are used to define the problems MIP r.

For instance, in our production planning example, assume that the prob-
lem involves 200 time periods. The first relaxation MIP 1 could be constructed
using the same sets Q1 and U1 as above, but with the difference that all vari-
ables and constraints for periods after period 20 are completely ignored. This
defines a smaller size relaxation MIP 1 than the original MIP 1, and is thus
easier and faster to solve. Then MIP 1 is solved, and the x and y variables cor-
responding to periods 1, . . . , 5 become fixed at their optimal values obtained
in MIP 1. Next, problem MIP 2 covering periods 6 to 25 is solved (with binary
set-up variables in periods 6, . . . , 15, and linearly relaxed set-up variables in
periods 16, . . . , 25), the solution obtained for periods 6, . . . , 10 is fixed, and
so on. In this way, all problems MIP r are defined over a planning horizon
involving only 20 time periods.

However, this procedure may fail to produce feasible solutions because of
capacity restrictions in later periods. If this occurs, one possibility is to add
lower bound constraints on the final inventory level (period 20 in MIP 1) that
guarantee feasibility for the complete problem without eliminating any feasi-
ble solutions. However such bounds can only be calculated fast for relatively
simple problems without set-up times. Otherwise one can guess such bounds,
in which case one is working with approximations instead of relaxations, and
the optimal value of MIP 1 no longer provides a valid lower bound on the
optimal value of MIP .

Finally observe that in certain cases relax-and-fix heuristics can also be
based on decomposition by machine, product family, or geographical location.

3.6.2 Improvement Heuristics

First, we consider two recent approaches. The information available is the
linear programming solution at the top node (x̂, ŷ), and the best known fea-
sible solution (x̄, ȳ). In both cases the idea is to use MIP to explore some
promising neighborhood for a limited amount of time. Then if a better (or
even worse) feasible solution is found, the step can be iterated.
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Relaxation Induced Neighborhood Search (RINS)

The idea here is to explore the neighborhood between the LP solution (x̂, ŷ)
and the IP solution (x̄, ȳ). If a yj variable has the same value in both solutions,
that value is fixed. Thus we solve the MIPRINS

(MIPRINS) min {cx + fy : Ax + By ≥ b

x ∈ R
n
+, y ∈ {0, 1}p

yj = ȳj for all j ∈ Q with ȳj = ŷj }.

Either MIPRINS is infeasible or does not find a feasible solution in the al-
lotted time, so the heuristic has failed, or else the best solution found is a
relaxation induced neighborhood search or RINS heuristic solution.

This heuristic can be seen as the improvement version of the cut-and-fix
construction heuristic.

Local Branching (LB)

Here the neighborhood is just constructed using the integer solution. An inte-
ger k is chosen, and the neighborhood consists of those y vectors that do not
differ from ȳ in more than k coordinates. So the MIPLB to be solved is

(MIPLB) min {cx + fy : Ax + By ≥ b

x ∈ R
n
+, y ∈ {0, 1}p

∑
j∈Q:ȳj=0

yj +
∑

j∈Q:ȳj=1

(1 − yj) ≤ k }.

Either MIPLB is infeasible or does not find a feasible solution in the allot-
ted time, so the heuristic has failed, or else the best solution found is a local
branching heuristic solution.

It is easy to see that there are many possible variants of these heuristics.
One may just consider a subset of the variables in Q, or one may distinguish
in importance between variables at value 0, and variables at value 1, and so
on. There are also some obvious ways to combine the heuristics.

Observation 3.7 Fixing constraints yj = ȳj for j ∈ Q∗, and for some Q∗ ⊆
Q (as in relax-and-fix or in RINS), can be represented using a single local
branching constraint

∑
j∈Q∗:ȳj=0

yj +
∑

j∈Q∗:ȳj=1

(1 − yj) ≤ 0.

This immediately suggests the possibility of generalizing (and relaxing)
the relax-and-fix or RINS fixing constraints by using constraints of the form
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∑

j∈Q∗:ȳj=0

yj +
∑

j∈Q∗:ȳj=1

(1 − yj) ≤ k,

with some value of k ≥ 1.

Exchange (EXCH)

Finally, we describe briefly an improvement version of the relax-and-fix heuris-
tic, called exchange.

We keep the same decomposition of integer variables in sets Qr and Ur,
with 1 ≤ r ≤ R. At each step r with 1 ≤ r ≤ R, all integer variables are
fixed at their value in the best solution (x̄, ȳ) found so far (or in the last
solution encountered), except the variables in the set Qr (or Qr ∪ Ur) which
are restricted to take integer values. So the problem MIPEXCH,r solved at
step r is defined by

(MIPEXCH,r) min {cx + fy : Ax + By ≥ b

x ∈ R
n
+

yj = ȳj for all j ∈ Q \ Qr

yj ∈ {0, 1} for all j ∈ Qr }.

Then, if a better solution is found, this exchange procedure can be repeated.
Note that the different steps r with 1 ≤ r ≤ R are independent of one another,
and any subset of steps can be performed in any order.

These construction and improvement heuristics are illustrated in some ap-
plications and case studies described in this book. In particular, they are ap-
plied at the end of Chapter 4 to the GW–GSCO master production scheduling
example from Section 1.2.

Notes

We refer to Wolsey [193] for a general introduction to integer programming
models and techniques.

Section 3.6 For heuristic procedures using the relax-and-fix idea, see Stadtler
[154] for an application to multi-level lot sizing with set-up times and capacity
constraints, and Federgrün and Tzur [64] and Federgrün et al. [62] for prob-
lems with family set-up variables, among others. Local Branching has been
proposed in Fischetti and Lodi [66]. The Relaxation Induced Neighborhood
Search and Guided Diving procedures have been described in Danna et al. [52].
Several of these improvement heuristics are implemented in state-of-the-art
MIP solvers.
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4

Classification and Reformulation

Motivation

Given the diversity of planning functions in the supply chain planning matrix
described in Chapter 2, and given the diversity of supply chains (each sup-
ply chain can be characterized by a combination of functional and structural
attributes, implying a huge diversity in planning requirements; see Section
2.3), a single advanced planning system or a single monolithic mathematical
programming planning model cannot represent all planning problems.

Therefore, in parallel to the supply chain typology, our approach for the
construction of planning models is to decompose and classify them based
on their main attributes: decisions, objectives, and constraints. This building
block approach and classification helps us and allows us first to construct a
model and an initial mathematical formulation for the planning problem to
be addressed.

Beyond modeling, there is a second and major motivation for this clas-
sification. Most real-life production planning problems are complex because
they involve many products and many resources, such as machines, storage
facilities, and plants, and many restrictions have to be satisfied by acceptable
production plans. This results in mixed integer programs of large size that are
usually very difficult to solve.

In Chapter 3 we have surveyed the state-of-the-art generic branch-and-
bound and branch-and-cut algorithms based on a priori reformulation, valid
inequalities, and separation. In the literature many reformulation results are
known and described for canonical production planning models, such as single-
item and/or single-resource problems, which are much simpler than the com-
plex real-life problems.

In order to be able to incorporate these reformulation results in specialized
branch-and-bound/cut algorithms for solving production planning models, it
is crucial to be able to identify which results to use, which requires one to
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identify which canonical submodels are present in a model. The classification
scheme presented here pursues exactly this goal.

Objective

In the context of a decomposition approach, it is the specific objective of this
chapter to

• describe and classify the canonical production models frequently occurring
as relaxations or sub-models in real life production planning problems,

• identify and classify the reformulation results that are known for these
canonical models in order to design efficient branch-and-bound/cut algo-
rithms for solving practical production planning models.

For complex planning problems, the objective is also to present and illus-
trate the effectiveness of a systematic reformulation procedure allowing us to
take advantage – through the classification scheme – of reformulation results
for standard single-item subproblems to obtain improved formulations and to
design branch-and-cut optimization algorithms.

In Chapter 5 we then demonstrate how to use the classification scheme
and the reformulation procedure in practice, with appropriate software tools.

The (more) technical and detailed presentation and derivation of the refor-
mulation results listed here, as well as some additional reformulation results
and techniques useful for more complex models (but requiring a less automatic
approach) are given in Parts II to IV, and illustrated in Part V.

Contents

Step by step:

• In Section 4.1 we illustrate on the LS-U (uncapacitated lot-sizing) produc-
tion planning model the use and impact of reformulations on the perfor-
mance of the branch-and-bound/cut algorithm, namely the effect of using
the extended (or compact linear) reformulation technique and the cutting
plane reformulation technique defined in Chapter 3.

• In Section 4.2 we describe the decomposition approach used to reformulate
and solve complex planning models involving many items and resources,
starting from available reformulations for simpler (i.e., single-item, single-
machine) planning models.

• In Section 4.3 we describe our classification scheme for canonical single
item production planning models in the form of a three-field identifier
PROB-CAP -V AR for each model, and by giving a conceptual or verbal
description as well as an initial mathematical formulation for each model.
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• In Section 4.4 we describe a systematic reformulation procedure relying on
tables of extended and cutting plane reformulation results for the most
common single-item production planning models, including LS-U .

• In Section 4.5 we put together these ideas to illustrate the use and effective-
ness of the systematic reformulation procedure on the Master Production
Scheduling example from Section 1.2.

4.1 Using Reformulations for Lot-Sizing Models

In earlier chapters we have presented and illustrated the modeling and opti-
mization approach, as well as the generic branch-and-bound and branch-and-
cut algorithms used to solve the resulting models.

Model LS-U is the simplest high-level relaxation occurring in most produc-
tion planning models. So, finding good reformulations for LS-U is an impor-
tant first step. Here we use this model to illustrate the type of reformulation
results available for canonical single-item planning models, namely a priori
reformulations and cutting planes with separation.

The approach is illustrated on the first LS-U example described in Section
1.1. For simplicity, we recall here the initial formulation of this LS-U instance
characterized by

• the demand satisfaction constraint for the single product bike over eight
consecutive time periods,

• the variable upper bound constraint for the single product bike over eight
consecutive time periods, and

• the initial inventory of product bike.

min cost :=
NT∑
t=1

(p xt + q yt) +
NT−1∑

t=1

h st (4.1)

dem satt := st−1 + xt = dt + st for 1 ≤ t ≤ NT (4.2)
s0 = s ini, sNT = 0 (4.3)

vubt := xt ≤ (
NT∑
k=t

dk)yt for 1 ≤ t ≤ NT (4.4)

xt, st ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ NT, (4.5)

where the variables are xt for production, st for inventory, and yt for set-
up in period t, and the data are NT = 8, p = 100, q = 5000, h = 5, d =
[400, 400, 800, 800, 1200, 1200, 1200, 1200] and s ini = 200. This formulation is
O(NT ) × O(NT ); that is, it involves on the order of NT constraints and NT
variables (see Section 3.2), where NT represents the number of time periods
in the planning horizon.
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The performance of the branch-and-bound algorithm (using the default
Xpress-MP optimizer, but without preprocessing and without using the cuts
generated by the solver) on this initial formulation (4.1)–(4.5) is reported in
Table 4.1.

Table 4.1. B&B Solution of the LS-U Example from Section 1.1

Formulation LP Val. CPLP Val. OPT Val.
Size Vars CPLP Time OPT Time
Algorithm Cons CPLP Cuts OPT Nodes
(4.1)–(4.5) 712,189 – 736,000
O(NT ) × O(NT ) 24 – 0
B & B 16 – 29

In Table 4.1, “Vars” and “Cons” represent the number of variables and
constraints in the formulation, “LP Val.” is the value of the initial linear
relaxation of the formulation. “CPLP Val.”, “CPLP Time” and “CPLP Cuts”
give, respectively, the value of the lower bound at the root node after the
addition of cutting planes, the cutting plane time at the root node, and the
number of cuts in the formulation at the end of the root node. “CPLP” values
are only reported for branch-and-cut algorithms (the Xpress-MP cuts are not
used in this toy example). “OPT Val.”, “OPT Time” and “OPT Nodes” are
the value of the optimal solution, the total run-time and total number of nodes
in the enumeration tree. Times are given in seconds, rounded to the nearest
integer.

In our analysis, we concentrate on the lower bound value at the root node
and on the total number of nodes in the enumeration tree. Both indicators
measure the quality of the formulation used. The run-time (rounded to 0
second) and the gap (always 0 when an optimal solution is found) do not give
much information in this tiny example.

Observation 4.1 There are 29 branch-and-bound nodes with the initial for-
mulation. Observe that this formulation is already using some tightening for
the variable upper bound constraint (4.4). If this constraint is replaced by the
simpler but usual big-M type constraint xt ≤ Myt, with M = 10, 000, that
is, if we do not introduce the tightest upper bound on xt in (4.4), then the
LP lower bound at the root node (“LP Val.”) is reduced to 703,500 and the
number of nodes needed to solve the model to optimality increases to 51 nodes.
So, some straightforward a priori formulation tightening is already included
in the initial model.

4.1.1 Using A Priori Extended Reformulations

As explained in Section 3.4, we look now for tight reformulations of LS-U , or
tight reformulations of high-level relaxations of LS-U .
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LS-U is polynomially solvable as it can be solved by dynamic program-
ming. Given the complexity equivalence between optimization and separation
discussed in Part II, it is natural to look for a compact (i.e., polynomial in
the number of variables and constraints) linear reformulation for LS-U . As
an example, we describe and test here a well-known extended reformulation
for LS-U .

Multi-Commodity Extended Reformulation

A classical way to tighten the formulation of fixed charge network flow prob-
lems is to decompose the flow along each arc of the network as a function
of its destination. This defines a so-called multi-commodity formulation by
assigning a different commodity to each destination node. The decomposition
by commodity allows one to tighten the formulation by decreasing the up-
per bounds in the variable upper bound constraints, which is important as
illustrated in Observation 4.1.

We have already given the network flow interpretation of LS-U in Figure
1.2 in Section 1.1. So we can apply the multi-commodity idea, and decompose
the flow (production) xt as a function of its destination node (demand period)
t, t + 1, . . ., NT . Similarly, we can decompose the flow (inventory) st as a
function of its destination node (demand period) t + 1, t + 2, . . ., NT .

So, we consider as one specific commodity the demand to be satisfied in
each time period, and do not mix the commodities. Commodity t corresponds
to the demand delivered in period t. We define the new variables xit (i ≤ t)
as the production in period i of commodity t, and the new variable sit (i < t)
as the inventory at the end of period i of commodity t.

In this reformulation, we further constrain the initial inventory s ini to be
consumed in the first period; that is, s01 = s ini and s0t = 0 for t = 2, . . . , NT .
This can be done without loss of optimality, because s ini ≤ d1 and there is
always an optimal solution where earlier production is delivered first (this is
called FIFO [= First In First Out] or FPFD [= First Produced First Delivered]
ordering).

Also, the variables stt, for t = 1, . . . , NT , do not exist because commodity
t must be delivered in period t, therefore no inventory of commodity t may
exist at the end of period t.

If needed, for instance, in case of positive minimal stock at the end of the
planning horizon, an additional commodity can be created to correspond to
the end horizon inventory. This is not necessary here, as we assume that the
stock at the end of the horizon is zero.

The flow conservation constraint obtained for commodity t = 5 is illus-
trated in Figure 4.1.

By modeling separately the demand satisfaction (flow conservation) for
each commodity, the LS-U model (4.1)–(4.5) can be reformulated as
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i=1

x1t

i=2 i=3
s1t

x2t x3t
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x4t

i=5=t
s4t

x5t

dt

Figure 4.1. The flow conservation global constraint for commodity t = 5.

min cost :=
NT∑
i=1

NT∑
t=i

(p xit + h sit) +
NT∑
i=1

q yi (4.6)

dem satit := si−1,t + xit = δitdt + sit for 1 ≤ i ≤ t ≤ NT (4.7)
s01 = s ini, s0t = 0 for 2 ≤ t ≤ NT (4.8)
stt = 0 for 1 ≤ t ≤ NT (4.9)

vubit := xit ≤ d̂tyi for 1 ≤ i ≤ t ≤ NT (4.10)
sit, xit ∈ R+, yi ∈ {0, 1} for 1 ≤ i ≤ t ≤ NT, (4.11)

where the notation δit denotes 1 if i = t, and 0 otherwise. Constraint (4.7)
is the flow conservation constraint of commodity t in all periods i = 1, . . . , t,
where the only period i with a demand for commodity t is i = t. Constraints
(4.8) and (4.9) impose that there is no initial and no final inventory (end
of period t) of commodity t, except the initial inventory of commodity 1.
Constraint (4.10) forces the set-up variable yi to be 1 when there is production
for commodity t in period i. Using the decomposition of the flow, the tightest
upper bound on xit is d̂t, where d̂1 = d1 − s ini and d̂t = dt for t > 1.
Constraint (4.11) imposes the nonnegativity and binary restrictions on the
variables. Finally, Constraint (4.6) expresses the cost of the production plan.

This extended reformulation does not contain the initial variables and
constraints. But it is nevertheless a valid reformulation of LS-U in the sense
of Definitions 3.3 and 3.13. This can observed because an equivalent refor-
mulation to (4.6)–(4.11) would be obtained by adding constraints to define
the initial variables as a function of the new decomposed variables (i.e.,
xi =

∑NT
t=i xit and si =

∑NT
t=i+1 sit for all i), and by keeping the original

objective function (4.1). The reformulation has then the same feasible solu-
tions in the original (x, s, y) space as the original model.

Testing the Multi-Commodity Extended Reformulation

Reformulation (4.6)–(4.11) is of size O(NT 2) × O(NT 2). We can now test
the effectiveness of the decomposition by commodity and tightening of the
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variable upper-bound constraints. The performance of the branch-and-bound
algorithm (again using the default Xpress-MP optimizer, but without prepro-
cessing and without the cuts generated by the solver) on the initial formulation
and on the multi-commodity reformulation are compared in Table 4.2.

Table 4.2. B&B Solution of the LS-U Example from Section 1.1, Comparison of
Initial and Multi-Commodity Formulations

Formulation LP Val. CPLP Val. OPT Val.
Size Vars CPLP Time OPT Time
Algorithm Cons CPLP Cuts OPT Nodes
(4.1)–(4.5) 712189 – 736,000
O(NT ) × O(NT ) 24 – 0
B & B 16 – 29
(4.6)–(4.11) 736,000 – 736,000
O(NT 2) × O(NT 2) 72 – 0
B & B 72 – 1

We observe in Table 4.2 that the multi-commodity reformulation solves
LS-U without any branching. The LP value is the optimal value, and one
node suffices. The following theorem shows that this is not chance. The multi-
commodity reformulation solves all instances of LS-U without branching.

Theorem 4.1 The linear relaxation of formulation ((4.6)–(4.11)) always has
an optimal solution with y integer, and solves LS-U . In other words, formula-
tion (4.7)–(4.11) is a tight extended formulation of the convex hull of feasible
solutions to LS-U . This is also called a complete linear description of LS-U .

The multi-commodity extended reformulation has been given here to illus-
trate the type of results one can obtain with reformulations. Other extended
reformulations giving a complete linear description of LS-U are known, as well
as extended reformulations for canonical models other than LS-U . Pointers
to these extended formulations are defined in our systematic reformulation
procedure in Section 4.4.

4.1.2 Using Cutting Planes

We have just described the multi-commodity reformulation for the single-
item model LS-U with NT periods. Although this reformulation is as tight as
possible, it has O(NT 2) constraints and O(NT 2) variables and a model with
32 time periods has over a thousand variables and a thousand constraints.
This may be too large a reformulation if it has to be applied to all items in a
large-size multi-item production planning model (see Section 4.2).

One way to overcome this difficulty is to look for a complete linear de-
scription of model LS-U in the initial variable space involving only O(NT )
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variables. And if this complete linear description needs an exponential (in NT )
number of constraints, we can use the cutting plane and separation approach
described in Section 3.5 to avoid adding all these constraints a priori.

A Class of Valid Inequalities

A first class of valid inequalities can be easily identified from the fractional
solution of the linear relaxation of the initial formulation. Figure 4.2 represents
the optimal solution of the linear relaxation of (4.1)–(4.5), where missing arcs
correspond to arcs with zero flow.
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t=2 t=3

400 400 800

t=4 t=5 t=6
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x5

y5

x6

y6

x7

y7

x8

y8

200 400 800 800 1200 1200 1200 1200

0.028 0.059 0.125 0.143 0.250 0.333 0.5 1

Figure 4.2. The solution of the linear relaxation of (4.1)–(4.5).

To eliminate or cut off this fractional solution we have to look at periods
in which the corresponding y variable is fractional. Consider period 2 with
x2 = 400 but y2 = 0.059. This value of y2 is minimized because of the objec-
tive function, therefore y2 is exactly the minimal value allowed by the set-up
forcing constraint (4.4); that is, y2 ≥ (=) x2

d2,8
where the notation dαβ denotes∑β

i=α di.
Observe that this reasoning also applies to y8, but y8 takes the value 1

because y8 ≥ (=)x8/d8,8 = 1.
So, if period 2 was the last period of the horizon, we could also write

x2 ≤ d2y2 as set-up forcing constraint, and y2 would take the value 1 with the
current value of x2.

But d2 is a valid upper bound on x2 only if period 2 is the last period or if
there is no stock at the end of period 2 (i.e., s2 = 0 and period 2 is separated
from the later periods as if period 2 were the last one). Hence a valid upper
bound on x2 is x2 ≤ d2 + s2.
Therefore, a logical implication is

s2 = 0 ⇒ x2 ≤ d2y2.

This implication can be converted into the valid linear inequality

x2 ≤ d2y2 + s2 ,

which is valid because in any feasible solution to LS-U :
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• Either y2 = 0 and the inequality is satisfied because y2 = 0 implies x2 = 0,
and 0 ≤ s2;

• Or y2 = 1 and x2 ≤ d2 + s2 is a valid upper bound on x2.

This inequality is violated by the current fractional point from Figure 4.2,
and so we have simulated one pass of the separation problem. Using the same
reasoning and starting from the upper bound xt ≤ dtl + sl for any l ≥ t
(remember that dtl denotes

∑l
i=t di), the above valid inequality can easily be

generalized to

xt ≤ dtlyt + sl for all 1 ≤ t ≤ l ≤ NT (4.12)

for arbitrary demand data and time period.

Complete Linear Description

We denote the set of feasible solutions of model LS-U , that is, the solutions of
(4.2)–(4.5), by XLS−U . The class (4.12) of valid inequalities does not suffice
to obtain a linear description of conv(XLS−U ) for any instance.

First we define the more general class of so-called (l, S) inequalities. It is
shown in Chapter 7, Proposition 7.4, that the inequalities∑

i∈S

xi ≤
∑
i∈S

dilyi + sl for all 1 ≤ l ≤ NT and S ⊆ {1, . . . , l}(4.13)

are valid for XLS−U . As an example, the valid inequality x2 + x3 ≤ d24y2 +
d34y3 + s4 corresponds to the inequality (4.13) with l = 4 and S = {2, 3} ⊂
{1, . . . , 4}.

The next theorem simply states that the (l, S) inequalities suffice to obtain
the desired complete linear formulation. We can always eliminate the initial
inventory, as we did in the multi-commodity formulation, by assuming a FPFD
ordering and updating the (residual) demand vector accordingly. So, without
loss of generality we assume that s ini = 0.

Theorem 4.2 Assuming dt ≥ 0 for all t and s ini = 0, a complete linear
description of conv(XLS−U ) is

st−1 + xt = dt + st for 1 ≤ t ≤ NT (4.14)
s0 = 0 , sNT = 0 (4.15)
xt ≤ dt,NT yt for 1 ≤ t ≤ NT (4.16)∑
i∈S

xi ≤
∑
i∈S

dilyi + sl for 1 ≤ l ≤ NT, S ⊆ {1, . . . , l} (4.17)

xt, st, yt ∈ R+, yt ≤ 1 for 1 ≤ t ≤ NT . (4.18)

Note that if d1 > 0, the (l, S) inequality x1 ≤ d1y1 + s1 together with the
initial equation x1 = d1 + s1 and y1 ≤ 1 imply the equality y1 = 1.
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Separation Algorithm

We have obtained a complete linear programming formulation of LS-U in the
original variables (x, s, y). However, this formulation contains an exponential
number of (l, S) inequalities (4.13), and a cutting plane approach must be
used to avoid adding all these inequalities a priori to the formulation.

In order to use a class of valid inequalities in a cutting plane algorithm, the
associated separation problem must be solved. Given a solution to the linear
relaxation, it consists of either finding an inequality from the class violated
by the solution, or proving that all inequalities from the class are satisfied by
the given solution; see Chapter 3.

We denote by PLS−U the initial (linear) formulation (4.2)–(4.4) of LS-U
together with xt, st ≥ 0 and 0 ≤ yt ≤ 1 for all t.

Separation Given (x∗, s∗, y∗) ∈ PLS−U :

• Either we find an (l, S) inequality violated by (x∗, s∗, y∗);
• Or we prove that all (l, S) inequalities are satisfied by (x∗, s∗, y∗).

As the (l, S) inequality may be rewritten as
∑

i∈S(xi − dilyi) ≤ sl, to find
the most violated (l, S) inequality for fixed l ∈ {1, . . . , n}, it suffices to set

S∗ = {i ∈ {1, . . . , l} : (x∗
i − dily

∗
i ) > 0 }

and test whether
∑

i∈S∗(x∗
i − dily

∗
i ) > s∗

l .

• If this holds, then the (l, S∗) inequality is the most violated inequality for
the given value of l.

• Otherwise, there is no violated (l, S) inequality for the given value of l.

By enumerating over all possible values of l, we obtain a separation algo-
rithm for the (l, S) inequalities whose running time is O(NT 2); see Section
3.2.

Testing the Cutting Plane Reformulation

Table 4.3 compares the performance of the three formulations (again using the
default Xpress-MP optimizer, without preprocessing or cuts generated by the
solver) proposed to solve our bike production planning example from Section
1.1:

• The initial formulation (4.1)–(4.5) solved by branch-and-bound.
• The multi-commodity a priori reformulation (4.6)–(4.11) solved by branch-

and-bound.
• The reformulation in the original space of variables using the initial formu-

lation (4.1)–(4.5) and the separation algorithm for the (l, S) inequalities
(4.13) in a branch-and-cut or cutting plane algorithm.
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Table 4.3. B&B and B&C Solution of the LS-U Example from Section 1.1, Com-
parison of Reformulations

Formulation LP Val. CPLP Val. OPT Val.
Size Vars CPLP Time OPT Time
Algorithm Cons CPLP Cuts OPT Nodes
(4.1)–(4.5) 712,189 – 736,000
O(NT ) × O(NT ) 24 – 0
B & B 16 – 29
(4.6)–(4.11) 736,000 - 736,000
O(NT 2) × O(NT 2) 72 – 0
B & B 72 – 1
(4.1)–(4.5) and (4.13) 712,189 736,000 736,000
O(NT ) × O(2NT ) 24 0 0
B & C 16 21 1

Our cutting plane algorithm requires six passes (and 21 cuts in total) to
solve this instance of LS-U without branching, where one pass is defined as
one iteration of cut generation for each l with 1 ≤ l ≤ NT , followed by a
single reoptimization.

4.1.3 Using Approximate Reformulations

The LS-U model is an ideal case. We know complete and compact (i.e., poly-
nomial in size) extended linear reformulations, as well as a complete linear
description in the original space of the convex hull of solutions conv(XLS−U )
with a fast separation algorithm. So, when a practical production planning
problem involves LS-U as a submodel for an item, these reformulations are
very effective in improving the formulation.

In many other cases, we only have partial reformulation results for the
single-item submodels, say XLS . That is, we have an initial formulation PLS ,
some extended reformulation, or a class of valid inequalities in the original
space that defines only an approximation conv(XLS) of the convex hull of
solutions, but is significantly smaller than the initial formulation; that is,

conv(XLS) ⊂ conv(XLS) ⊂ PLS .

These approximate or partial reformulations can be used in the same way –
a priori reformulations or cutting planes – as complete reformulations.

In all cases, the objective of the reformulation phase is to be able to use
the best known results for submodels embedded in the planning model to be
solved. This is the essence of the decomposition approach that we formalize
next.
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4.2 The Decomposition Approach for Complex Models

As we have already seen in the examples of Chapter 2, and in the master
production scheduling example from Section 1.2.3, the structure of many,
or most, multi-item production planning problems looks very similar when
represented as mixed integer programs.

To be specific, the MPS example is more or less of the form

(MIPP item) W � = min
∑

i

∑
t(p

i
tx

i
t + hi

ts
i
t + qi

ty
i
t)

[ si
t−1 + xi

t = di
t + si

t, xi
t ≤ Ci

ty
i
t, yi

t ≤ 1 for all t ], for all i (4.19)

[
∑

i

aik
t xi

t +
∑

i

bik
t yi

t ≤ Lk
t for all k ], for all t (4.20)

[ xi
t ≤ Ci

ty
i
t, yi

t ≤ 1 for all i ], for all t (4.21)

xi
t ∈ R

1
+, si

t ∈ R
1
+, yi

t ∈ Z
1
+ for all i, t.

This can be written more compactly as

(MIPP item) W � = min
∑

i

∑
t

(pi
tx

i
t + hi

ts
i
t + qi

ty
i
t)

(xi, si, yi) ∈ Y i for all i ,

(x, s, y) ∈ Z ,

where Y i represents the set of feasible solutions to the item i lot-sizing problem
(i.e., lot sizes xi, set-ups yi, and inventory levels si defined for all time periods
and satisfying the constraints (4.19) for item i), such as LS-U or some of its
variants. On the other hand Z represents the solutions satisfying the set of
linear constraints (4.20)–(4.21). The constraints defining Z are often called
coupling or linking constraints because they link together the items that have
to share the joint capacity.

This representation or scheme is not totally general, and certainly not
unique. For instance, we can also view the linking set Z as the intersection of
independent single-period sets. Now we can write the problem as the inter-
section of the time and period submodels as in formulation

(MIPP item
time ) W � = min

∑
i

∑
t

(pi
tx

i
t + hi

ts
i
t + qi

ty
i
t)

(xi, si, yi) ∈ Y i for all i

(xt, st, yt) ∈ Zt for all t ,

where Zt represents the set of feasible solutions to the period t submodel,
that is, the lot sizes xt, set-ups yt defined for all items, and satisfying the
constraints (4.20)–(4.21) for time period t.
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The branch-and-bound/cut methods studied in Chapter 3, like most opti-
mization methods, are based on easy-to-solve relaxations of the initial prob-
lem. For example, the above problem can be solved by some standard MIP
software using a branch-and-bound algorithm based on the linear program-
ming relaxation LR of the initial formulation. We suppose that the initial
formulation for the lot-sizing sets Y i is PY i

, and the initial formulation for
the period t linking constraints in Zt is PZt . So, LR is defined by

LR = min
∑

i

∑
t

(pi
tx

i
t + hi

ts
i
t + qi

ty
i
t)

(xi, si, yi) ∈ PY i

for all i

(xt, st, yt) ∈ PZt for all t.

Unfortunately, this direct branch-and-bound approach can only be used for
the solution of small-size problems. In order to solve, or to find good solutions,
for more realistic or real-size problems, one has to work with better or tighter
relaxations or formulations providing improved lower bounds. Because of the
multi-item structure of the initial problem, most efficient solution approaches
are based on the following reformulation.

LBitem = min
∑

i

∑
t

(pi
tx

i
t + hi

ts
i
t + qi

ty
i
t)

(xi, si, yi) ∈ conv(Y i) for all i

(xt, st, yt) ∈ PZt for all t,

where conv(Y i) represents a partial (or complete) reformulation of the convex
hull of the solutions of the single-item model Y i. This bound LBitem can be
obtained in several ways:

• Either by branch-and-bound using an a priori and compact linear refor-
mulation of conv(Y i);

• Or by branch-and-cut using a reformulation of conv(Y i) involving many
constraints, combined with a separation algorithm; see Chapter 3.

In some cases, we may also know good (or complete) linear reformulations
for the single-period submodel. This in turn leads us to a stronger linear
programming relaxation

LBitem
time = min

∑
i

∑
t

(pi
tx

i
t + hi

ts
i
t + qi

ty
i
t)

(xi, si, yi) ∈ conv(Y i) for all i

(xt, st, yt) ∈ conv(Zt) for all t,

where conv(Zt) represents an approximate (or complete) linear description of
the convex hull of the solutions of the single-period model Zt.
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These new lower bounds LBitem and LBitem
time are never worse, and typically

much tighter than the linear relaxation bound LR. The following relations
always hold between these bounds.

LR ≤ LBitem ≤ LBitem
time ≤ W � .

Better lower bounds LB usually allow one to reduce the number of nodes
needed to prove optimality, or to obtain good quality solutions. But obtaining
these bounds requires more computing time than the time needed to obtain
LR because of larger models or more cuts to be added in the cutting plane
phase.

For any complex multi-item production planning problem to be solved by
an optimization approach, the best reformulation thus depends on

• the existence of reformulation results (approximate or tight compact ex-
tended reformulations, valid inequalities, efficient separation algorithms)
for the corresponding single-item and/or single-period submodels, and

• the impact of the reformulations on the computing time through a de-
creased number of branch-and-bound nodes but increased computing time
at each node.

The model classification scheme presented next is crucial for an implemen-
tation of the decomposition approach. It forces us to present the description,
analysis, and structuring of models in a way that facilitates the identifica-
tion of structured submodels. Then, the systematic reformulation procedure
of Section 4.4 identifies the submodels for which reformulation results are
available.

Note finally that other optimization methods such as Lagrangian relax-
ation, Lagrangian decomposition, and Dantzig–Wolfe or column generation,
exploit the same decomposition properties of the models. Instead of compact
reformulations, these methods require the repeated solution of optimization
problems defined over the single-item lot-sizing sets Y i and the single-period
sets Zt. So to implement these algorithms, it is important to find efficient
algorithms to optimize over the single-item/period feasible sets.

The links with these other methods are discussed further in Chapter 6.

4.3 Model Classification

Most practical supply chain planning problems are multi-item, multi-machine,
and multi-level, but there exist very few reformulation results concerning such
models. Therefore, the main optimization approach in solving such problems
has been to integrate existing algorithms and known reformulation results for
single-item problems, using a decomposition approach.

We describe here a classification scheme for single-item production plan-
ning models that allows one to benefit from this knowledge. Based on this
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scheme, the procedure to systematically reformulate and solve production
planning models is described in Section 4.4, and illustrated in Section 4.5 on
the GW master production scheduling example from Sections 1.2.2 to 1.2.4.

Parts II and III of this book describe the reformulation results according
to our scheme for single-item models. Thus for each problem appearing in
our classification, we need to describe in detail what results are known and
can be used to implement the optimization/decomposition approach for these
models. In Part IV we extend our classification to multi-item and multi-level
production planning problems, and again present the useful reformulation
results that are available. This structured knowledge is then exploited in Part
V in solving several industrial cases.

In this section, we describe the basic single-item classification, its nota-
tional conventions, and the corresponding mathematical formulations.

4.3.1 Single-Item Classification

Planning problems deal with sizing and timing decisions for purchasing, pro-
duction, or distribution of lots or batches. An item represents a physical prod-
uct. The finite planning horizon is divided into time periods, indexed by t,
1 ≤ t ≤ n, where n is the given number of time periods.

When considering canonical single-item models, for compactness of nota-
tions we use n to represent the length of the planning horizon. This notation
is used throughout Sections 4.3 and 4.4, and in Parts II and III of the book.
Alternatively, when considering specific production planning instances, we use
NT to represent the number of time periods. Similarly, to represent the num-
ber of items in the multi-item models studied in Part IV, we use m in canonical
models and NI in any particular planning instance.

We start by defining the basic single-item lot-sizing problem (LS). For a
single item, we represent by

• dt the demand to be satisfied in period t, that is forecast demand or
customer orders due in period t;

• p′
t the variable or unit production cost in period t;

• h′
t the unit cost for holding one unit in inventory at the end of period t;

• qt the fixed set-up cost to be paid if there is a positive production in period
t;

• Ct the upper bound on production or capacity in period t.

The fixed charge production cost function in period t is characterized by
the set-up cost qt and the unit production cost p′

t.
Problem LS is the problem of finding the production plan for the single

item, meeting the demand in every period, and satisfying the capacity restric-
tions; that is, the production is less than or equal to Ct in every period t,
that minimizes the inventory and production costs. Note that in principle a
variable amount of initial stock is allowed, at a cost of h′

0 per unit.
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Our classification is dictated by the difficulty of solving single-item plan-
ning problems, or more precisely by the optimization and reformulation results
presented in the literature. There are three fields PROB-CAP -V AR. In each
field, we use [x, y, z]1 to denote the selection of exactly one element from the
set {x, y, z}, and [x, y, z]∗ to denote any subset of {x, y, z}. We simply use
x, y, z to denote the selection of all the elements in the set {x, y, z}. Fields
that are empty are dropped.

4.3.2 Description of the Field PROB

In the first field PROB, there is a choice of four problem versions PROB =
[LS, WW, DLSI, DLS]1.

LS (Lot-Sizing): This is the general problem defined above.

WW (Wagner–Whitin): This is problem LS, except that the variable pro-
duction and storage costs satisfy h′

t + p′
t − p′

t+1 ≥ 0 for 0 ≤ t ≤ n, where
p′
0 = p′

n+1 = 0. This condition means that, if set-ups occur in both periods t
and t + 1, then it is more costly to produce in period t and stock till period
t+1, than to produce directly in period t+1. In other words, given the set-ups
it always pays to produce as late as possible. This condition is often referred
to as the absence of speculative motive for early production. We define a new
inventory cost as ht = h′

t + p′
t − p′

t+1 ≥ 0 for 0 ≤ t ≤ n (see formulations
below).

We name this cost condition WW because it was first introduced in the
seminal paper of Wagner–Whitin. It is a little technical, but we show in Part
II that it allows one to reduce the running time of the optimization algo-
rithms, and to simplify the reformulation of the planning models. Moreover
this condition is very often satisfied by the cost coefficients encountered in
practice.

DLSI (Discrete Lot-Sizing with Variable Initial Stock): This is problem LS
with the restriction that there is either no production or production at full
capacity Ct in each period t.

DLS (Discrete Lot-Sizing): This is problem DLSI without an initial stock
variable.

4.3.3 Description of the Field CAP

The second field CAP concerns the production limits or capacities CAP =
[C, CC, U ]1. The three CAP variants of problem PROB are

PROB-C (Capacitated): Here the capacities Ct vary over time.
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PROB-CC (Constant Capacity): This is the case where Ct = C, a constant,
for all periods t.

PROB-U (Uncapacitated): This is the case when there is no limit on the
amount of the item produced in each period. In the absence of other con-
straints limiting the total amount produced over all items, this case means
that the capacity Ct in each period t suffices to satisfy all the demands up to
the end of the horizon.

Before presenting the third field V AR containing the many possible exten-
sions, we present mixed integer programming formulations of the four basic
variants with varying capacities PROB-C.

4.3.4 Mathematical Formulations for PROB-CAP

The standard formulation of LS as a mixed integer program involves the
variables

• xt the amount produced in period t for 1 ≤ t ≤ n,
• st the stock at the end of period t for 0 ≤ t ≤ n, and
• yt = 1 if the machine is set up to produce in period t, and yt = 0 otherwise,

for 1 ≤ t ≤ n.

We also use the notation dkt ≡ ∑t
u=k du throughout.

LS-C can be formulated as

min
n∑

t=1

p′
txt +

n∑
t=0

h′
tst +

n∑
t=1

qtyt (4.22)

st−1 + xt = dt + st for 1 ≤ t ≤ n (4.23)
xt ≤ Ctyt for 1 ≤ t ≤ n (4.24)

x ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0, 1}n , (4.25)

and XLS−C denotes the set of feasible solutions to (4.23)–(4.25). Constraint
(4.23) represents the flow balance constraint in every period t, the inflows are
the initial inventory st−1 and the production xt, the outflows are the demand
dt and the ending inventory st. Constraint (4.24) represents the capacity re-
striction and also fixes the set-up variable yt to 1 whenever there is positive
production (i.e., xt > 0). This constraint is also called a variable upper bound
(VUB) constraint. The objective (4.22) is simply the sum of the set-up, in-
ventory, and variable production costs.

WW -C can be formulated just in the space of the s, y variables as
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min
n∑

t=0

htst +
n∑

t=1

qtyt (4.26)

sk−1 +
t∑

u=k

Cuyu ≥ dkt for 1 ≤ k ≤ t ≤ n (4.27)

s ∈ Rn+1
+ , y ∈ {0, 1}n , (4.28)

and XWW−C denotes the set of feasible solutions to (4.27)–(4.28). To de-
rive this formulation, the constraint (4.23) is used to eliminate xt from the
objective function (4.22). Specifically,

n∑
t=1

p′
txt +

n∑
t=0

h′
tst =

n∑
t=1

p′
t(st − st−1 + dt) +

n∑
t=0

h′
tst

=
n∑

t=0

(h′
t + p′

t − p′
t+1)st +

n∑
t=1

p′
tdt

=
n∑

t=0

htst +
n∑

t=1

p′
tdt ,

where p′
0 = p′

n+1 = 0. So, by defining ht = h′
t + p′

t − p′
t+1, the objective

function (4.22) becomes (4.26) to within the constant
∑n

t=1 p′
tdt.

Now as ht ≥ 0 for all t, it follows that once the set-up periods are fixed (the
periods t in which yt = 1), the stocks will be as low as possible compatible
with satisfying the demand and respecting the capacity restrictions. Based
on this argument it is possible to prove that it suffices to find a minimum
cost stock minimal solution in order to solve WW -C, where a stock minimal
solution is a solution satisfying

sk−1 = max(0, max
t=k,...,n

[dkt −
t∑

u=k

Cuyu]). (4.29)

In the proposed formulation (4.26)–(4.28) for WW -C, because of the pres-
ence of the initial stock s0, any combination of set-up periods is feasible, and
constraint (4.27) imposes a lower bound on the stock variables. The objective
function (4.26), together with ht ≥ 0, guarantees that there exists an optimal
solution to (4.26)–(4.28) that satisfies (4.29). It follows that the proposed for-
mulation is valid, though its (s, y) feasible region is not the same as that of
LS-C. Specifically (s, y) is feasible in (4.27)–(4.28) if and only if there exists
(x, s′, y) feasible in (4.23)–(4.25) with s′ ≤ s.

Remark 1. Whether the Wagner–Whitin cost condition is satisfied or not,
the WW relaxation consisting of the constraints (4.27) is valid for problem
LS, and often provides a very good approximation to the convex hull of solu-
tions for problem LS.
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Remark 2. Even though each single item subproblem may have WW costs,
the existence of other constraints such as multi-item budget (production ca-
pacity) constraints or multi-item storage capacity constraints (PQ in the
multi-item classification of Section 12.1) destroys the stock minimal solution
property for individual items, and thus the items are more correctly classified
as LS, rather than WW .

Remark 3. On the other hand, if in a multi-item problem the constraints
linking together the different items involve only the set-up or start-up variables
(PM in the multi-item classification of Section 12.1), then the stock minimal
property of solutions is preserved, and the single items can be classified as
WW if their costs satisfy the WW condition.

DLSI-C can be formulated by adding xt = Ctyt in the formulation of
LS-C. By summing constraints (4.23) from 1 up to t, one gets st = s0 +∑t

u=1 xu − d1t. Then, after elimination of the variables st ≥ 0 and xt = Ctyt,
we obtain an equivalent formulation of DLSI-C just in the space of the s0 and
the y variables, and XDLSI0−C is used to denote the set of feasible solutions
to (4.31)–(4.32),

min h0s0 +
n∑

t=1

q′
tyt (4.30)

s0 +
t∑

u=1

Cuyu ≥ d1t for 1 ≤ t ≤ n (4.31)

s0 ∈ R1
+, y ∈ {0, 1}n , (4.32)

where h0 and q′
t are the new objective coefficients of variables s0 and yt ob-

tained after eliminating the variables st and xt by substitution. Specifically,
the objective function (4.22) can be rewritten as

n∑
t=0

h′
tst +

n∑
t=1

p′
txt +

n∑
t=1

qtyt

= h′
0s0 +

n∑
t=1

h′
t(s0 +

t∑
u=1

Cuyu − d1t) +
n∑

t=1

p′
tCtyt +

n∑
t=1

qtyt

= (h′
0 +

n∑
t=1

h′
t)s0 −

n∑
t=1

h′
td1t +

n∑
t=1

(qt + (p′
t +

n∑
u=t

h′
u)Ct)yt .

Then defining h0 = h′
0 +

∑n
t=1 h′

t and q′
t = qt + (p′

t +
∑n

u=t h′
u)Ct, it reduces

to (4.30) except for the constant −∑n
t=1 h′

td1t.
We also use the notation XDLSIk−C with 0 ≤ k ≤ n − 1 to denote the

set of solutions of problem DLSIk-C, which is problem DLSI-C except that
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the initial inventory is located in period k, and production can occur in pe-
riods k + 1 up to n. Problem DLSIk-C involves thus variables sk ∈ R1

+ and
yk+1, . . . , yn ∈ {0, 1}.

DLS-C can be formulated just in the space of the y variables by fixing
s0 = 0:

min
n∑

t=1

q′
tyt (4.33)

t∑
u=1

Cuyu ≥ d1t for all 1 ≤ t ≤ n (4.34)

y ∈ {0, 1}n. (4.35)

The set XDLS−C denotes the set of feasible solutions to (4.34)–(4.35). We
say that DLS has Wagner–Whitin costs if q′

t ≥ q′
t+1 for all t, and without

introducing a new problem class we denote this special case as DLS(WW )-C.

Observation 4.2 The constant or uncapacitated problems PROB-[CC, U ]1

are all polynomially solvable. There is a polynomial dynamic programming
algorithm solving LS-CC and the other seven problems can all be seen as
special cases.

All four varying capacity instances PROB-C are NP -hard, because all four
problems are polynomially reducible to the 0–1 knapsack problem. This means
that there are no polynomial algorithms known for them and, from complexity
theory, it is very unlikely that there exists a polynomial algorithm for any of
them.

We come back to the implications of these observations, to the relation-
ships between these different problems, and to the analysis of algorithms and
reformulations for these problems in Part II. So far, we consider that we have
different versions of the single-item lot-sizing problem, along with mixed in-
teger programming formulations adapted to each problem class.

4.3.5 Description of the Field V AR

The third field V AR concerns extensions or variants to one of the twelve prob-
lems PROB −CAP defined so far; that is, V AR = [B, SC, ST, LB, SL, SS]∗.
Although such variants can be combined, for simplicity we describe these
variants in turn, and give a typical formulation for each problem LS-C-
[B, SC, ST, LB, SL, SS]1.

B (Backlogging): Demand must still be satisfied, but it is possible to satisfy a
demand later than required. This occurs, for example, when a factory does not
have enough capacity to deliver to all customers on time in a given period.
Usually, the backlog or shortfall implies a penalty cost proportional to the
amount backlogged and to the duration of the backlog.
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Note that this backlogging variant is limited to independent or external
demand, as the quantity backlogged is only a virtual flow used to model
shortfalls in the delivery process and not a physical flow.

SC (Start-Up Costs): It is necessary to accurately model capacity utilization
to obtain feasible production plans. This often requires one to model the
capacity consumed when a machine starts a production batch, or when a
machine switches from one product to another. In these cases, we obtain so-
called set-up or start-up time models, changeover time models, or models
with sequencing restrictions. However, in many cases, less accurate models
involving only set-up or start-up costs are considered. Such models can be
seen as obtained by relaxing (in the Lagrangian sense; see Chapter 6) the
set-up or start-up time restrictions.

The simplest single-item start-up cost model is the following. If a sequence
of set-ups starts in period t, a start-up cost gt is incurred, which can be seen
as the direct start-up cost plus an estimate of the opportunity cost of the
start-up time or capacity consumed.

ST (Start-Up Times): As already explained, start-up times are used to model
capacity utilization more accurately. The resulting models are more precise,
but often more difficult to solve than their start-up cost variant.

If a sequence of set-ups starts in period t, the capacity Ct is reduced by
an amount STt. We use ST (C) to indicate the start-up time ST is constant
over time; that is, STt = ST for all t.

LB (Minimum Production Levels): In some problems, in order to guarantee a
minimum level of productivity, minimum batch sizes or production levels are
imposed. For instance, this feature is often used in combination with start-up
costs to approximate start-up time models and avoid small batches in the
solutions. This constraint may also be imposed for technological reasons.

If production takes place in period t, a minimum amount LBt must be
produced. We use LB(C) to denote constant lower bounds over time, i.e.
LBt = LB for all t. Note that this leads to variable lower-bound constraints,
and not simple lower bounds.

SL (Sales and Lost Sales): In some cases, the demands to be satisfied are not
fixed in advance. This occurs, for instance, when capacity is too low to satisfy
the total potential demand, or when the selling price does not always cover
the marginal cost of production. The optimization problem becomes then a
profit maximization problem, with additional sales variables.

In the single-item problem, we model this case in the following way. In
addition to the demand dt that must be satisfied in each period, an additional
amount up to ut can be sold at a unit price of ct.

Note that this variant can also be used to model the Lost Sales variant
in which, as opposed to backlogging, it is possible to not deliver part of the
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demand. In this case, the demand from period t that has to be satisfied is dt,
and the additional demand that may be lost or not delivered is ut. The unit
price ct represents in this case the penalty cost that is avoided for each unit
of the additional demand effectively delivered.

SS (Safety Stocks): The last variant that we consider is present in many
practical applications, and absent from most scientific publications. When the
demand is an output of a forecasting system, it is not known with certainty.
Therefore, a minimum amount of planned inventory, called the safety stock,
is required at the end of each period so as to handle this uncertainty, and to
avoid delivery shortages when actual demand exceeds forecast demand.

The variants described here are common variants included in the field
V AR. These plus additional variants concerning either changes in the demand
model, production constraints/costs, or sales constraints, are described and
analyzed in Chapter 11.

4.3.6 Mathematical Formulations for PROB-CAP -V AR

Backlogging

The standard formulation of PROB-CAP -B as a mixed integer program in-
volves the additional variables

• rt the backlog at the end of period t for t = 1, . . . , n.

This cumulated shortfall rt in satisfaction of the demand in period t is
charged at a cost of b′

t per unit. It is assumed throughout that r0 = 0.

This leads to the following formulation for problem LS-C-B.

min
n∑

t=0

h′
tst +

n∑
t=1

b′
trt +

n∑
t=1

p′
txt +

n∑
t=1

qtyt (4.36)

st−1 − rt−1 + xt = dt + st − rt for 1 ≤ t ≤ n (4.37)
xt ≤ Ctyt for 1 ≤ t ≤ n (4.38)

x, r ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0, 1}n , (4.39)

and XLS−C−B denotes the set of feasible solutions to the constraints (4.37)–
(4.39).

Problem WW -CAP -B is problem LS-CAP -B except that the costs satisfy
the WW cost condition. With backlogging, the costs are said to be Wagner–
Whitin if both ht = p′

t + h′
t − p′

t+1 ≥ 0 and bt = p′
t+1 + b′

t − p′
t ≥ 0 for

1 ≤ t ≤ n − 1. This means that, with respect to backlogging, there are no
speculative motives for late production.
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As an extension of the simple formulation (4.26)–(4.28) for WW -C, it can
be proved that the following formulation involving only the s, r, y variables,
is a valid and sufficient formulation for WW -C-B.

min
n∑

t=0

htst +
n∑

t=1

btrt +
n∑

t=1

qtyt (4.40)

sk−1 + rl +
l∑

u=k

Cuyu ≥ dkl for 1 ≤ k ≤ l ≤ n (4.41)

s ∈ R
n+1
+ , r ∈ R

n
+, y ∈ {0, 1}n . (4.42)

The notation XWW−C−B is used to represent the set of feasible solutions to
the constraints (4.41)–(4.42).

The validity and sufficiency of formulation (4.41)–(4.42) is based on the
following nontrivial result. When the objective function (4.40) of WW -C-B
satisfies ht, bt ≥ 0 for all t, it suffices to find a minimum cost stock minimal and
backlog minimal solution in order to solve WW -C-B, where a solution is called
stock minimal (resp., backlog minimal) if sk−1 = maxl≥k[dkl − ∑l

u=k Cuyu −
rl]+ (resp. if rl = maxk≤l[dkl − ∑l

u=k Cuyu − sk−1]+).
After elimination of the s1, . . . , sn variables, DLSI-C-B has the following

feasible region in the (s0, r, y) space,

s0 + rt +
t∑

u=1

Cuyu ≥ d1t for 1 ≤ t ≤ n (4.43)

s0 ∈ R1
+, r ∈ Rn

+, y ∈ [0, 1]n. (4.44)

and XDLSI0−C−B denotes the set of feasible solutions to (4.43)–(4.44).
Finally, DLS-C-B is obtained from DLSI-C-B by setting s0 = 0.

Start-Up Costs

The basic formulation for LS-C-SC requires the introduction of new variables

• zt = 1 if there is a start-up in period t; that is, there is a set-up in period
t, but there was not in period t − 1, and zt = 0 otherwise.

The resulting formulation for LS-C-SC is



138 4 Classification and Reformulation

min
n∑

t=1

p′
txt +

n∑
t=0

h′
tst +

n∑
t=1

qtyt +
n∑

t=1

gtzt (4.45)

st−1 + xt = dt + st for 1 ≤ t ≤ n (4.46)
xt ≤ Ctyt for 1 ≤ t ≤ n (4.47)
zt ≥ yt − yt−1 for 1 ≤ t ≤ n (4.48)
zt ≤ yt for 1 ≤ t ≤ n (4.49)
zt ≤ 1 − yt−1 for 1 ≤ t ≤ n (4.50)

x ∈ Rn
+, s ∈ Rn+1

+ , y, z ∈ {0, 1}n , (4.51)

and the set of feasible solutions to (4.46)–(4.51) is denoted by XLS−C−SC .
We assume that y0, the state of the machine at time 0, is given as data.
The additional constraints (4.48)–(4.50) define the values of the additional
start-up variables. These constraints are a linearization of the constraint zt =
yt(1 − yt−1), for all t. There can be a start-up in period t (i.e., zt = 1) only
if there is a start-up in period t (see (4.49)) and no start-up in period t − 1
(see (4.50)), and there must be a start-up in period t if both events occur
simultaneously (see (4.48)).

The formulations of [WW, DLSI, DLS]1-C-SC, as well as their corre-
sponding feasible sets X [WW,DLSI0,DLS]1−C−SC , are obtained by just adding
the constraints (4.48)-(4.50) and the integrality restrictions z ∈ {0, 1}n to the
formulations [WW ,DLSI,DLS]1-C given above.

Start-Up Times

The basic formulation for LS-C-ST requires the same start-up variables zt

as the start-up cost model LS-C-SC. The formulation for LS-C-ST is the
same as for LS-C-SC ((4.45)-(4.51)), except that the variable upper bound
constraint (4.47) has to be replaced by the constraint

xt ≤ Ctyt − STtzt for 1 ≤ t ≤ n.

Minimum Production Levels

The basic formulation for LS-C-LB requires no additional variables. The
formulation for LS-C-LB is the same as for LS-C ((4.22)–(4.25)), augmented
with the variable lower bound constraint

xt ≥ LBtyt for 1 ≤ t ≤ n.

Sales

The standard formulation of LS-C-SL as a mixed integer program involves
the additional variables
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• vt the amount sold in period t, on top of the fixed demand dt, for 1 ≤ t ≤ n,

and is given by

max
n∑

t=1

(ctvt − ptxt) −
n∑

t=0

h′
tst −

n∑
t=1

qtyt (4.52)

st−1 + xt = dt + vt + st for 1 ≤ t ≤ n (4.53)
xt ≤ Ctyt for 1 ≤ t ≤ n (4.54)
vt ≤ ut for 1 ≤ t ≤ n (4.55)

x, v ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0, 1}n , (4.56)

where the objective (4.52) maximizes the contribution to profit, and the flow
balance constraint (4.53) is updated to take the sales outflow into account.
Constraint (4.55) models the simple upper bound on sales.

Safety Stocks

To incorporate this requirement, we just need to add a simple lower bound
SSt on the stock level at the end of period t; that is, st ≥ SSt for all periods
t with 1 ≤ t ≤ n

4.3.7 The Classification PROB-CAP -V AR

We have described the three fields PROB-CAP -V AR of the single-item lot-
sizing classification, namely,

[LS, WW, DLSI, DLS]1−[C, CC, U ]1−
[B,SC, ST, ST (C), LB, LB(C), SL, SS]∗

where one entry is required from each of the first two fields, and any number
of entries from the third.

For instance, WW -U (in place of WW -U -∅) denotes the uncapacitated
Wagner–Whitin problem, whereas DLSI-CC-B, ST denotes the constant ca-
pacity discrete lot-sizing problem with initial stock variable, backlogging, and
start-up times.

Observation 4.3 It turns out that almost all the variants PROB-[CC, U ]1-
V AR are still polynomially solvable if the start-up times or lower bounds, if
any, are constant (versions ST (C), LB(C)).

This terminates the description of the classification for single-item prob-
lems. It is clearly beyond the scope of this description to give a complete
mathematical programming formulation of all possible variants from the clas-
sification. These different formulations are described in more detail in Parts
II and III.
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4.4 Reformulation Results: What and Where

In this section, we list first the reformulation results available (the “What”)
for the most common or standard single-item lot-sizing problems, classified
according to the scheme described in Section 4.3.

More precisely, we give the results in the form of three reformulation tables
for the uncapacitated and constant capacity single-item models:

• The basic models [LS, WW, DLSI, DLS]1-[U, CC]1 without variants.
• The models with backlogging [LS, WW, DLSI, DLS]1-[U, CC]1-B.
• The models with start-up costs [LS, WW, DLS]1-[U, CC]1-SC.

Note that we do not give reformulation tables for models with varying
capacity (value C of the field CAP ) because there are no complete reformula-
tion results available for these high-level relaxations, due to the fact all these
models define NP-hard optimization problems.

For variants other than backlogging or start-up costs, there are only a few
results available. The partial reformulation results known for these models,
and the reformulation results for lower-level relaxations contained in these
models, are given in Parts II to IV of the book.

For each model in these tables, we indicate the reformulation results in
three sections.

• Formulation reports on the existence and the size (order of the number
of constraints and variables) of tight and compact linear a priori reformu-
lations.

• Separation gives the complexity of the separation algorithms for the tight
reformulations in the original variable space.

• Optimization contains the complexity of the best optimization algorithm
known for the model.

In each case, we indicate a reference to the research paper or publication
containing, to our knowledge, the original result, as well as a pointer to the
section in this book where the result is described in detail.

The tables also indicate the missing results. An asterisk ∗ indicates that
the family of inequalities only gives a partial description of the convex hull
of solutions. A triple asterisk ∗∗∗ indicates that we do not know of any result
specific to the particular problem class.

Even if they are not used in a direct solution approach by branch-and-
bound/cut, we have included results for the associated optimization problems
because they are very much related to the other results, and because other
optimization methods such as Lagrangian relaxation or Dantzig–Wolfe de-
composition require the solution of the optimization version of these standard
models.

Finally, we conclude this section by providing a reformulation procedure
(the “Where”) indicating how to use the results in the tables, and build im-
proved formulations for complex production planning models. Note that this
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procedure requires the use of the classification scheme and reformulation ta-
bles, but does not require any knowledge about the mathematical description
or analysis of the reformulations.

4.4.1 Results for PROB-[U, CC]

In Table 4.4 we present results for the models [LS, WW, DLSI, DLS]-[U, CC].
Note that the entries [DLSI, DLS]-U have been left blank as the results and
algorithms are trivial. In the Formulation entries for LS-U , FL denotes a
facility location reformulation, SP denotes a shortest path reformulation, and
MC denotes the multi-commodity reformulation already presented in Section
4.1.1.

Table 4.4. Models PROB-[U, CC]

LS WW DLSI DLS

Formulation Cons × V ars Cons × V ars Cons × V ars Cons × V ars

U SP O(n) × O(n2) O(n2) × O(n) −− −−
FL O(n2) × O(n2)
MC O(n2) × O(n2)

Section 7.4.2 Section 7.5
[100, 61, 145] [140]

CC O(n3) × O(n3) O(n2) × O(n2) O(n) × O(n) O(n) × O(n)
Section 9.6.3 Section 9.5.3 Section 9.4.2 Section 9.3.1

[176] [140] [125, 140] Folklore

Separation
U O(n log n) O(n) −− −−

Section 7.4.1 Section 7.5
[23] [140]

CC ∗ O(n2 log n) O(n log n) O(n)
Section 9.6.2/3 Section 9.5.2 Section 9.4.1 Section 9.3.1

[139] [140] [85, 125, 140] Folklore

Optimization
U O(n log n) O(n) −− −−

Section 7.3 Section 7.3
[3, 63, 187] [3, 63, 187]

CC O(n3) O(n2 log n) O(n2 log n) O(n log n)
Section 9.6.1 Section 9.5.1 Section 9.4 Section 9.3.2

[71, 171] [178] [178] [178]

Reading these tables is straightforward. Looking at the WW–CC entry in
the Formulation block, we see that, for the problem with Wagner–Whitin
costs and constant capacities, there is an extended formulation with O(n2)
constraints and O(n2) variables that gives the convex hull. Details are to be
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found in Section 9.5.3. We see also in the WW–CC entry in the Separation
block that there is a separation algorithm for the same problem whose running
time is O(n2 log n). Finally we see from the WW–CC entry in the Optimiza-
tion block that the fastest known algorithm to find an optimal solution for
this problem runs in O(n2 log n).

4.4.2 Results for Backlogging Models PROB-[U, CC]-B

Now we consider the same problems but with backlogging. The results are
given in Table 4.5.

Table 4.5. Models with Backlogging PROB-[U, CC]-B

LS WW DLSI DLS

Formulation Cons × V ars Cons × V ars Cons × V ars Cons × V ars

U SP O(n) × O(n2) O(n2) × O(n) −− −−
FL O(n2) × O(n2)

Section 10.2.2 Section 10.2.3
[22, 137] [140]

CC O(n3) × O(n3) O(n3) × O(n2) O(n2) × O(n) O(n) × O(n)
Section 10.3.4 Section 10.3.3 Section 10.3.2 Section 10.3.1

[178, 180] [125, 178] [125, 176] [125]
Separation

U ∗ O(n3) −− −−
Section 10.2.2 Section 10.2.3

[137] [140]
CC ∗ ∗ O(n3) O(n)

Section 10.3.4 Section 10.3.3 Section 10.3.2 Section 10.3.1
[134, 104, 125] [125] [125]

Optimization
U O(n log n) O(n) −− −−

Section 10.2.1 Section 10.2.3
[3, 63, 187] [3, 63, 187]

CC O(n3) O(n3) O(n2 log n) O(n2)
Section 10.3.4 Section 10.3.3 Section 10.3.2 Section 10.3.1

[176] [176] [176] [176]

4.4.3 Results for Start-Up Cost Models PROB-[U, CC]-SC

Finally we list in Table 4.6 the results for problems with start-up costs.
DLS(WW ) refers to the special case of DLS-CC-SC with just set-up

and start-up costs in which the set-up costs are non-increasing over time (i.e.,
qt ≥ qt+1; see Section 10.5.1).



4.4 Reformulation Results: What and Where 143

Table 4.6. Models with Start-Up Costs PROB-[U, CC]-SC

LS WW DLS

Formulation Cons × V ars Cons × V ars Cons × V ars

U SP (SC) O(n2) × O(n2) O(n2) × O(n) −−
FL(SC) O(n3) × O(n2)

Section 10.4.2 Section 10.4.3
[170, 191] [140]

CC ∗ ∗ ∗ ∗ ∗ ∗ O(n2) × O(n2)
(WW ) O(n2) × O(n)

Section 10.5.1
[165, 163]

Separation
U O(n3) Exercise10.13 −−

Section 10.4.2 Section 10.4.3
[170, 191] [140]

CC O(n2) ∗ ∗ ∗ ∗ ∗
Section 10.5 Section 10.5.1

[46] [164]
Optimization

U O(n log n) O(n) −−
Section 10.4.1
[3, 63, 187] [3, 63, 187]

CC O(n4) ∗ ∗ ∗ O(n2)
(WW ) O(n log n)

Section 10.5 Section 10.6
[71] [67, 147, 164]

Finally there is a reformulation for WW -U -B, SC, described in Section
10.6, with O(n2) constraints and O(n) variables.

4.4.4 The Reformulation Procedure

Here we present general guidelines on how to use the classification scheme and
the reformulation tables in order to obtain good or state-of-the-art formula-
tions for production planning models.

We demonstrate the approach in detail in the next section on the Mas-
ter Production Scheduling Example from Chapter 1, and on elementary case
studies in Chapter 5.

Rule 1. Construct an initial model and a mathematical formulation using
the classification scheme from Section 4.3. In particular, characterize or
classify the single-item models as PROB-CAP -V AR.



144 4 Classification and Reformulation

Rule 2. For each single-item model, select appropriate reformulations by
identifying the closest cell or cells in the reformulation tables.
The choice of a reformulation depends often on a compromise between its
quality or tightness and its size. Therefore, several reformulations can be
selected. From a given cell identified from the classification, we can move
to other cells in order to obtain valid or allowed reformulations of the
model. The allowed moves are
• move upwards CC ⇒ U , usually performed to reduce the size of the

reformulation or the number of cuts generated.
• towards the right LS ⇒ WW , usually to reduce the size of the refor-

mulation or the number of cuts generated.
• towards the right WW ⇒ {DLSIk}k=0,...,n−1.
• towards the left WW ⇒ LS.

Rule 3. The different reformulations identified should then be implemented,
tested, and compared in terms of solution quality and computing time.

The allowed moves from cell to cell given in Rule 2, as well as some other
moves, are justified by the following relations that exist between the sets of
feasible solutions associated with the problems in the classification; see Section
4.3.

Xprob−cap−SC ⊆ Xprob−cap ,

Xprob−CC−var ⊆ Xprob−U−var ,

XLS−cap−var ⊆ XWW−cap−var ⊆
n−1⋂
k=0

XDLSIk−cap−var ,

where in each relation prob, cap, and var represent any fixed value of the
fields PROB, CAP , and V AR, respectively. For instance, as any solution of
Xprob−CC−var is included in the larger set Xprob−U−var, any valid constraint
or formulation for the larger set Xprob−U−var is also valid for Xprob−CC−var,
and thus the move CC ⇒ U is allowed.

The move WW ⇒ LS is justified by the discussion and remarks in Sec-
tion 4.3 relative to the choice between classification LS or WW for the field
PROB. In a multi-item lot-sizing problem where the single items satisfy the
WW cost condition, the classification and formulation LS are more appropri-
ate when additional constraints (such as linking capacity constraints) destroy
the stock minimal characteristic of optimal solutions.

As an illustration, consider a multi-item single-level single-machine prob-
lem. Suppose that the subproblem for each item is classified as WW -CC-B.

• We identify first the cell WW -CC-B in Table 4.5. A reformulation is
proposed, but O(n3)×O(n2) appears very large, because this reformulation
must be applied individually to all items.
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• We can move upwards from CC to U in Table 4.5 to find a relaxation.
The relaxation WW -U -B is obtained for which a tight and more compact
O(n2) × O(n) reformulation is indicated.

• We can move towards the right in Table 4.5 to find another relaxation.
We obtain the relaxations DLSIk-CC-B, for k = 0, . . . , n − 1, for which
a tight O(n2) × O(n) reformulation is again known for each k. However,
this leads to an O(n3) × O(n2) formulation, which is again large.

4.5 A Production Planning Example: Reformulation and
Solution

We have already illustrated on a MPS example in Section 1.2.4 that the struc-
ture of a MIP formulation can be used in order to improve both the quality of
the solution and the final duality gap (see Table 1.5). Such improvements were
based on the reformulation of simple (low-level) structures embedded in the
problem, such as single mixed integer constraints or single-node flow struc-
tures (see Chapter 8). Moreover, they are obtained automatically by using
state-of-the-art branch-and-cut solvers.

Here we show how to profit from the classification scheme to recognize more
global structures that are specific to production planning problems. It is then
possible to use the known reformulation results for these canonical planning
structures in order to obtain an even better formulation of the initial problem.

As a simple and basic illustration of this principle (more comes later in
the case studies in Chapter 5 and in Part V), we analyze the initial formu-
lation (1.1)–(1.7) of our MPS example and observe that the Wagner–Whitin
cost condition is satisfied because there are no production costs and there are
positive inventory costs. Moreover, constraints (1.2)–(1.4) define an uncapac-
itated lot-sizing structure for each product and constraint (1.3) defines safety
stocks for each item. Therefore each single-item submodel is classified as

WW−U−SS.

Observe that the single-item problems could be classified as LS-U -SS be-
cause the capacity constraints linking the different items are likely to destroy
the stock minimal structure of optimal solutions (see the discussion and re-
marks in Section 4.3 relative to the choice between classification LS or WW
for multi-item problems).

We illustrate here how to use some known a priori reformulation results
for these single-item submodels. These reformulations are given here for com-
pleteness, but they are analyzed in depth in Parts II and III.

Removing the Safety Stocks

First, note that the reformulation Table 4.4 does not include the safety stock
variant. So, before applying the WW−U reformulation with O(n2) constraints
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and O(n) variables from Table 4.4, we apply a standard linear programming
trick to remove the simple lower bound on the inventory variables, that is, to
remove the safety stocks.

The inequality si
t ≥ SSi

t−1 − Di
t always holds because the entering stock

of item i in period t that is not used to satisfy some demand in period t
must be part of the inventory at the end of period t. Therefore, and without
loss of generality, we can tighten the safety stock for each item i and for
t = 1, · · · , NT by setting

SSi
t := max{SSi

t−1 − Di
t, SSi

t},

where SSi
0 is the initial inventory of item i.

Then, we can eliminate the lower bounds on inventory by defining net
inventory variables nsi

t := si
t − SSi

t ≥ 0 for all i and t. After replacing the
inventory variables by the net inventory variables (i.e., replacing si

t everywhere
by nsi

t + SSi
t), we obtain the following equivalent formulation.

min
∑

i

∑
t

nsi
t +

∑
i

∑
t

SSi
t (4.57)

nsi
t−1 + xi

t = NDi
t + nsi

t for all i, t (4.58)

xi
t ≤ M i

ty
i
t for all i, t (4.59)∑

i

αi1xi
t +

∑
i

βiyi
t ≤ C1 for all t (4.60)

∑
i∈F k

αikxi
t ≤ Ck for all t and k = 2, 3 (4.61)

nsi
0 = 0 , nsi

t ∈ R
1
+ for all i, t (4.62)

xi
t ∈ R

1
+, yi

t ∈ {0, 1} for all i, t, (4.63)

where NDi
t := Di

t + SSi
t − SSi

t−1 ≥ 0 is the net demand of item i in period
t, and where the upper bound M i

t on the production of item i ∈ F k in period
t in constraint (4.59) is taken as

M i
t = min{

NT∑
l=t

NDi
l ,

C1 − βi

αi1 ,
Ck

αik
}.

Extended Reformulation WW -U

Each single-item model (4.57)–(4.59) and (4.62)–(4.63) in the above formula-
tion is classified as WW -U . Table 4.4 indicates the existence of the following
linear reformulation with O(n2) constraints and O(n) variables for this WW -
U model (written for item i, translated directly for the net demand data NDi

t

and the net inventory variables nsi
t); see Chapter 7.
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nsi
t−1 + xi

t = NDi
t + nsi

t for all t (4.64)

nsi
t−1 ≥

l∑
j=t

NDi
j(1 −

j∑
u=t

yu) for all t, l (4.65)

nsi
t, x

i
t ∈ R

1
+, yi

t ∈ [0, 1] for all i, t (4.66)

The O(n2) constraints (4.65) impose that the stock at the end of period t − 1
must contain the demand of period j ≥ t if there are no set-ups in periods t
up to j (i.e., if

∑j
u=t yu = 0).

The first reformulation consists of constraints (4.57)–(4.63), plus the con-
straints (4.65) for all items instead of the constraints (4.59). It is easily imple-
mented in Mosel. The results obtained with the Xpress-MP Optimizer using
this a priori reformulation are compared in Table 4.7 with the results ob-
tained using the initial or basic formulation (4.57)–(4.63), with and without
the Xpress-MP system cuts. Column “LP Val.” gives the initial linear relax-
ation or lower-bound value before the Xpress-MP cuts, and column “XLP
Val.” gives the lower bound obtained at the root node after the addition of of
Xpress-MP cuts.

Table 4.7. Extended Reformulation WW -U for the GW MPS Example

Algorithm Vars LP Val. XLP Val. Best LB Best UB t. (secs)
Formulation Cons Ncuts Best UB Gap (%)
Basic form. B & B 540 2893 2893 3341 0
(w/o Xpress-MP cuts) 405 0 6415 47.92
Basic form. B & C 540 2893 5481 5614 56
(with Xpress-MP cuts) 405 239 5746 2.30
WW − U B & C 540 5395 5496 5652 269
(with Xpress-MP cuts) 1845 18 5732 1.40

NI = 12 and NT = 15. Maximum 600 second runs.

The optimization was stopped after 600 seconds. With the WW -U re-
formulation, we obtain a slightly better feasible solution (see column “Best
UB”), and better initial (see column “XLP Val.”) and final lower bounds (see
column “Best LB”). The column “Best UB t.” gives the time in seconds to
find the best feasible solution. The duality gap is reduced to 1.40%. Note that
these results are obtained with the combination of the generic Xpress-MP cuts
(with default branch-and-cut parameter settings) and the specific production
planning reformulations.

Other Extended Reformulations

As we already observed, the single-item problems can also be classified as
LS-U because the capacity constraints linking the different items are likely to
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destroy the stock minimal structure of optimal solutions. Therefore the known
reformulations for model LS-U given in Table 4.4 (namely the facility loca-
tion (FL), shortest path (SP ), and multi-commodity (MC) reformulations;
see Chapter 7) could also be used and tested (Rule 3 of the reformulation
procedure).

We have described the multi-commodity reformulation at the beginning of
this chapter. As another example, the facility location reformulation for the
single-item LS-U model (4.58)–(4.59), (4.62)–(4.63) (without lower bounds on
the net inventory) is defined on the extended variable space xi

tl, for all items
i, periods t and l ≥ t, where xi

tl represents the amount of item i produced in
period t to satisfy net demand in period l ≥ t.

Using the facility location reformulation, and the substitutions xi
t =∑

l≥t xi
tl and nsi

t =
∑t

k=1
∑NT

l=t+1 xi
kl, the final facility location reformula-

tion of (4.57)–(4.63) is

min
∑

i

∑
t

∑
l≥t

(l − t)xi
tl +

∑
i

∑
t

SSi
t (4.67)

l∑
t=1

xi
tl = NDi

l for all i, l (4.68)

xi
tl ≤ NDi

ly
i
t for all i, t, l with l ≥ t (4.69)∑

i

∑
l≥t

αi1xi
tl +

∑
i

βiyi
t ≤ C1 for all t (4.70)

∑
i∈F k

∑
l≥t

αikxi
tl ≤ Ck for all t and k = 2, 3 (4.71)

xi
tl ∈ R

1
+, yi

t ∈ {0, 1} for all i, t, l with l ≥ t . (4.72)

The shortest path reformulation is derived directly from the dynamic pro-
gramming algorithm used to solve LS-U , and is described in Chapter 7.

As a last reformulation, we can also implement and test the O(n2)×O(n2)
extended reformulation for the single-item constant capacity model WW -CC
referred to in Table 4.4 and described in Chapter 9. For some items, the total
demand over the planning horizon is larger than the production capacity of
one period. Therefore, for each item i, with i ∈ F k, one can define a constant
upper bound on production

U i = min{
NT∑
t=1

NDi
t,

C1 − βi

αi1 ,
Ck

αik
},

such that xi
t ≤ U iyi

t is valid for all t. In any case, model WW -CC is larger
than, but at least as strong, as model WW -U .

The results obtained using these extended reformulations with the Xpress-
MP Optimizer are compared in Table 4.8 with the results obtained using the
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initial or basic formulation. All the results have been obtained with the default
branch-and-cut system from Xpress-MP.

Table 4.8. Extended Reformulations for the GW MPS Example

Algorithm Vars LP Val. XLP Val. Best LB Best UB t. (secs)
Formulation Cons Ncuts Best UB Gap (%)
Basic form. B & B 540 2893 2893 3341 0
(w/o Xpress-MP cuts) 405 0 6415 47.92
Basic form. B & C 540 2893 5481 5614 56
(with Xpress-MP cuts) 405 239 5746 2.30
WW-U B & C 540 5395 5496 5652 269
(with Xpress-MP cuts) 1845 18 5732 1.40
LS-U (MC) B & C 2880 5395 5503 5667 88
(with Xpress-MP cuts) 2925 26 5732 1.13
LS-U (FL) B & C 1620 5395 5526 5702 534
(with Xpress-MP cuts) 1665 59 5730 0.49
LS-U (SP) B & C 1620 5395 5486 5672 419
(with Xpress-MP cuts) 417 22 5730 1.01
WW-CC B & C 2160 5395 5480 5651 319
(with Xpress-MP cuts) 2205 23 5732 1.41

NI = 12 and NT = 15. Maximum 600 second runs.

We observe in Table 4.8 that the results obtained with the different re-
formulations are similar. In 600 seconds, the best lower bound is achieved by
the facility location reformulation, and the best feasible solution is obtained
by the shortest path and the facility location reformulations. As expected,
the LS-U reformulations tend to lead to (slightly) better lower bounds than
the WW -U reformulation. The capacitated model WW -CC has no additional
effect, probably because the capacity is always shared between items and the
bound U i on the individual production batches is not binding. The duality gap
computed with the best lower and upper bounds among all the reformulations
is 0.49%.

Given the good results obtained with the facility location reformulation,
we solved the problem with this reformulation without any time limit, in order
to obtain the optimal solution. The optimal solution is the solution of value
5730 found in less than 600 seconds, and it took 1195 seconds and 386,700
nodes in total to prove its optimality.

Reformulations in the Original Variable Space by Cutting Planes

We can observe in Table 4.8 that the better results (lower and upper bounds)
have been obtained at the price of a large increase in the size of the formu-
lation. This may slow down the solution of the linear relaxations, and reduce
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the number of branch-and-bound nodes evaluated within the time limit of 600
seconds.

An alternative leading to the same lower bound at the root node would
be to reformulate the single-item models LS-U using the complete linear re-
formulation by valid inequalities in the original variable space (4.14)–(4.18)
described in Section 4.1.2. It involves an exponential number of (l, S) con-
straints (4.17) that can be added using the separation algorithm described in
Section 4.1.2.

We have tested this approach at the root node, starting from the basic
formulation (4.57)–(4.63) where the safety stocks have been removed, by per-
forming the following:

• Solving the linear relaxation;
• Solving the separation problem for each item i and each period l;
• Adding to the formulation each violated (l, S) inequality identified;
• Re-optimizing the new linear relaxation (only after the generation of cuts

for all items i and all periods l);
• Solving again the separation problem for each item and period;
• Repeating this procedure until no more violated (l, S) inequalities are gen-

erated.

This can be easily implemented in the Mosel modeling language. On our
MPS test problem, this procedure requires 14 passes (i.e., 14 iterations of
cut generation for all items and periods with a single reoptimization) and
generates 933 violated (l, S) cuts in total, in about 20 seconds. In order to
reduce the size of the model, these cuts have been added as model cuts; that
is, inactive cuts are removed from the model and put into a cut pool. In this
way, only 458 of the cuts are kept in the final formulation at the top node.

Then the resulting formulation at the root node is passed to Xpress-MP,
and the default MIP solver is used. The results of this cut-and-branch ap-
proach are given in Table 4.9.

Table 4.9. Cutting Plane Reformulation for the GW MPS Example

Algorithm Vars LP Val. CPLP Val. XLP Val. Best LB Best UB t.
Formulation Cons Ncuts Ncuts Best UB Gap (%)
Basic form. B & C 540 2893 5395 5479 5672 492
with (l, S) cuts and 405 458 52 5730 1.01

Xpress-MP cuts

NI = 12 and NT = 15. Maximum 600 second runs.

We observe in Table 4.9 that the lower bound obtained with the 458 (l, S)
inequalities generated as cuts at the root node before the addition of Xpress-
MP cuts (see column “CPLP Val.”) is effectively the same as the lower bound
obtained with the extended reformulations (column “LP Val.” in Table 4.8).
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This holds because all reformulations define complete linear descriptions of
the single item models.

Although this formulation is of the same quality as and of smaller size
than the extended formulations, which allows one to evaluate more nodes in
the same amount of time, the best lower bound obtained after 600 seconds is
not better than with the extended reformulations. This may be due to the fact
that we do not generate additional violated (l, S) inequalities in the branch-
and-bound tree, and therefore the bounds in the tree may be worse than with
the tight extended reformulations.

Note also that the optimal feasible solution is again found in less than 600
seconds.

Heuristic Primal Solutions

The reformulations used and tested so far are mainly aimed at improving
the lower or dual bound on the objective function, but are not specifically
designed to produce good feasible or primal solutions quickly.

So to obtain better upper bounds, we apply the relax-and-fix construc-
tion heuristic and the relaxation-induced neighborhood search improvement
heuristic described in Section 3.6.

For relax-and-fix we have decomposed the planning horizon into three
equal parts.

• In the first iteration, we relax the set-up variables for periods in {6, . . . , 15},
solve the resulting MIP 1, and then fix the set-up decisions for periods in
{1, . . . , 5}.

• In the second iteration, with the fixed set-up decisions for periods in
{1, . . . , 5}, we relax the set-up variables for periods in {11, . . . , 15}, solve
the resulting MIP 2 and we additionally fix the set-up decisions for periods
in {6, . . . , 10}.

• In the third and last iteration, with the fixed set-up decisions for periods
in {1, . . . , 10}, we optimize the set-up decisions for periods in {11, . . . , 15}.

This corresponds to R = 3, Q1 = {1, . . . , 5}, Q2 = {6, . . . , 10}, Q3 =
{11, . . . , 15}, U1 = U2 = ∅ in the notation of Section 3.6.2.

To test the ability of the algorithm to generate good solutions quickly, we
have limited the computation time of each iteration to maximum 40 seconds.
So, we fix variables at their values in the best solution obtained after maximum
40 seconds, and the relax-and-fix algorithm takes maximum 120 seconds in
total. Note that the only true lower bound produced by this relax-and-fix
procedure is the best lower bound obtained at the end of the first iteration
(solution of MIP 1) before any variable fixing.

We have implemented the relax-and-fix procedure in Mosel. This simply
requires three successive runs of almost identical models. The only modifica-
tions are the status of the binary variables from relaxed to binary, and from
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binary to fixed. The results obtained are given in Table 4.10 using the WW -U
and WW -CC reformulations.

First, the running times of the relax-and-fix heuristic are only 41 and 43
seconds, respectively, with formulations WW -U and WW -CC, because the
time limit of 40 seconds is reached only for the second iteration MIP 2. Next,
the relax-and-fix heuristic produces feasible solutions quickly, but of relatively
moderate quality (“R&F Val.”) compared to those obtained in 600 seconds
without this procedure (see “Best UB” in Table 4.9). Also, the lower bounds
obtained are very weak (see “Best LB” in Tables 4.10 and 4.9).

Table 4.10. Heuristic solution for the GW MPS Example

Formulation Algorithm Vars LP Val. Best LB R&F Val. R&F Time
Cons RINS Val. RINS Time

WW-U B&C/R&F/RINS 540 5395 5429 5928 41
(with Xpress-MP cuts) 1845 5743 2
WW-CC B&C/R&F/RINS 2160 5395 5429 5770 43
(with Xpress-MP cuts) 2205 5730 2

NI = 12 and NT = 15; Maximum 160 second runs.

We have also tested the relax-and-fix heuristic on the basic formulation
(4.57)–(4.63). It failed to produce a feasible solution because the program
obtained at iteration 2, after fixing the set-up decisions for periods {1, . . . , 5},
was infeasible. Due to the weak relaxed model for periods {6, . . . , 15} (i.e., no
reformulation is used), the set-up decisions obtained for the first periods do
not anticipate the capacity problems in later periods and lead to an infeasible
solution.

Therefore, it appears to be very important for the feasibility and quality of
the relax-and-fix procedure to start with a good formulation of the problem,
that is, with a good linear relaxation, or to find another way to anticipate the
capacity restrictions in later periods.

Finally we have implemented and tested the relaxation-induced neighbor-
hood search improvement heuristic described in Section 3.6.2. Specifically, we
fix the set-up variables that have the same value (0 or 1) in the linear relax-
ation (root node solution) and in the solution obtained by relax-and-fix. We
then solve the resulting MIP using the default Xpress-MP, with a time limit
of 40 seconds (maximum 160 seconds, including relax-and-fix). The results in
Table 4.10 show that the RINS procedure is able to improve the relax-and-fix
solution, and even once to produce the optimal solution (“RINS Val.”), in
almost no additional running time.

The next chapter shows how to use the classification scheme and the re-
formulation procedure in practice, and includes two small case studies.
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The objective of Parts II to IV is to present all the available reformulation
approaches and results in a systematic way. Then, as in our illustrative exam-
ple, Part V uses these results with the support of the classification scheme to
solve industrial case studies.

Exercises

Applications and exercises relative to the classification scheme and the refor-
mulation procedure are given in the case studies of Chapters 5 and 14.

Notes

Sections 4.1 The multi-commodity reformulation for fixed charge network
flow problems, implemented and tested in Section 4.1.1, was proposed by
Rardin and Choe [145].

Sections 4.3 and 4.4 The classification scheme and the reformulation tables
are taken from Wolsey [194]. An earlier and somewhat different classification
scheme has been proposed by Bitran and Yanasse [28], and these authors
also prove that the four varying capacity problems PROB-C are NP -hard,
because these problems are polynomially reducible to the 0–1 knapsack prob-
lem.

Section 4.5 The formulations and results presented here (and in Section
4.1) have been implemented and obtained using the Mosel algebraic modeling
language (version 1.4.1) and the default version of the Xpress-MP Optimizer
MIP solver (version 15.30). In particular the separation algorithm used to
generate the (l, S) inequalities (4.13) has been directly coded in Mosel. See
http://www.dashoptimization.com for more information about this soft-
ware. All the tests reported here have been carried out on a 1.7 GHz PC
(centrino) with 1 GB of RAM running under Windows XP.

Apart from the multi-commodity reformulation, the reformulations of the
single-item problems WW -U and LS-U used here are studied in detail in
Chapter 7. The WW -CC reformulation is studied in Chapter 9. Appropriate
references to these results are given in these chapters.

An introduction to the techniques used to prove that some valid inequal-
ities suffice to describe the convex hull of solutions to a model is given in
Section 6.4. For a general presentation of the various techniques that can be
used to prove that some valid inequalities are facet defining, and for related
topics, we refer the reader to Nemhauser and Wolsey [126].
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5

Reformulations in Practice

Motivation

When tackling a new production planning problem it is interesting to try out
several algorithmic options rapidly to see which ideas work on the given prob-
lem. This is also true for reformulations, heuristics, and different branch-and-
cut options. Modern modeling languages and MIP solvers are sophisticated
tools that permit one to develop and test these algorithmic possibilities easily,
but this approach requires high-level algorithmic and mathematical expertise.

In addition to this first and classical approach, we describe here a library
LS–LIB of reformulations, cutting plane separation routines, and heuristics
that considerably simplifies and speeds up this (prototyping) process. Using
this library, the user just needs to follow the classification scheme, without any
knowledge of the mathematical description of the reformulations, and modify
his or her problem formulation and optimization calls by adding calls to the
chosen library routines/procedures (where the names of the appropriate data
and variables are passed to the routines).

The library LS–LIB requires the utilization of specific modeling and opti-
mization software, namely, Mosel and Xpress-MP. However, the extended re-
formulation procedures (XForm) from LS–LIB can be used just with Mosel
to generate input or matrix files of the tightened formulations that can be
read by almost any MIP solver.

Thus for our MPS example from Section 1.2, the results obtained in Section
4.5 with reformulations and heuristics (see Tables 4.8 to 4.10) can be obtained
easily with LS–LIB without knowing any description of the mathematical
reformulations used.

Objectives

As indicated in Chapter 4 the classification scheme permits us to choose an
appropriate formulation, or cutting planes, for a specific production planning
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problem. The resulting problem is then tackled using heuristics and/or branch-
and-cut.

The objective of this chapter is to demonstrate and teach the reader how to
use the classification scheme in practice, so as, it is hoped, to “better solve”
certain production planning problems, either by using a classical approach
based on a modeling language and a MIP solver, or by using the library of
reformulations and heuristic procedures LS–LIB.

Content

• In Sections 5.1, 5.2, and 5.3, we show how to use the reformulations, the
cutting plane routines, and the primal heuristics, respectively. In each case
we consider two versions:
i. The first classical approach in which the user studies the formula-

tions/cuts presented later in this book and, after writing his initial
formulation in some modeling language, either adds the extended for-
mulation using the same modeling language, or writes an appropri-
ate separation routine or heuristic using his favorite programming lan-
guage;

ii. The second black-box approach in which, once the user’s initial formu-
lation is written in Mosel, he uses LS–LIB, by calling the appropriate
procedures and passing the appropriate parameters (names of variables,
demand vectors, capacities, etc.) used in his model.

• Section 5.4 lists all the procedures for reformulation, cutting plane separa-
tion, and heuristics provided in LS–LIB as well as their calling parameters.

• The chapter terminates with two case studies, which are first described in
Section 5.5, and then formulated and solved using the classification scheme
of Chapter 4 and the library LS–LIB in Sections 5.6 and 5.7, respectively.

5.1 Extended Reformulations

We assume that we want to solve a production planning problem, for which we
have identified some valid relaxations WW -U and LS-U for each single item.
In this section we show how to use reformulations for WW -U and LS-U re-
spectively. For each we present the classical and black-box LS–LIB approach.
We also show how to use LS–LIB to reformulate with approximate or par-
tial extended formulations that are smaller, but potentially weaker than the
complete formulations.

5.1.1 The Classical Approach for WW -U

In Table 4.4 we see that an extended reformulation for WW -U is presented
in Section 7.5. There we see that the reformulation is
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sk−1 ≥
t∑

u=k

du(1 − yk − . . . − yu) for 1 ≤ k ≤ t ≤ NT.

These inequalities have already appeared as (4.65) in Section 4.5, and are
a subset of the (l, S) inequalities presented in Subsection 4.1.2. Collecting
terms, they can be rewritten as

sk−1 +
t∑

u=k

dutyu ≥ dkt for 1 ≤ k ≤ t ≤ NT. (5.1)

It is an easy task to add these inequalities to the initial formulation. Specif-
ically, for a multi-item model written in Mosel, we would typically add

!-----------------------------------------------------------
declarations
! NT,NI: integer ! Already declared
ww: array(1..NI,1..NT,1..NT) of linctr
CDEM: array(1..NI,1..NT,1..NT) of real !cumulative demand

end-declarations

forall(i in 1..NI,k in 1..NT,t in k..NT)
CDEM(i,k,t):=sum(u in k..t) DEM(i,u)

forall(i in 1..NI,k in 1..NT,t in k..NT)
ww(i,k,t):= s(i,k-1)+

sum(u in k..t) CDEM(i,u,t)*y(i,u) >= CDEM(i,k,t)
!-----------------------------------------------------------

5.1.2 The Black-Box Approach for WW -U

Here we make use of a procedure provided in the LS–LIB library, namely,

XFormWWU(S,Y,D,NT,TK,MC),

where the parameters are as follows:
NT is the number of periods,
S is a stock vector for periods 0, 1, . . . , NT ,
Y is a set-up vector for periods 1, . . . , NT ,
D is the demand vector for periods 1, . . . , NT ,
TK is an approximation parameter discussed below with 0 ≤ TK ≤ NT , and
MC ∈ {0, 1} is the Model-Cut parameter. If MC = 0, the reformulation
constraints are added a priori to the original matrix and, if MC = 1, they are
added as model cuts to the cutpool.

To call XFormWWU within the Mosel model, it suffices to add the fol-
lowing:
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!-------------------------------------------------------
! To include the reformulation library
uses ’lslib-PPbyMIP’
!-------------------------------------------------------
! Declare the parameters that must be passed
declarations

! NT,NI: integer ! Already declared
S: array(range) of linctr
Y: array(range) of linctr
D: array(range) of real
NT: integer
TK: integer
MC: integer

end-declarations

! Loop through the items
! Indicate variable names and data used in your Mosel file
! Add reformulation
TK:=NT
MC:=0
forall(i in 1..NI) do

S(0):= 0
forall(t in 1..NT) S(t):= s(i,t)
forall(t in 1..NT) Y(t):= y(i,t)
forall(t in 1..NT) D(t):= DEM(i,t)
XFormWWU(S,Y,D,NT,TK,MC)

end-do
!-------------------------------------------------------

Note that if the O(n2) constraints of the extended formulation lead to a
formulation that is too large, one has the option of using the approximate
reformulation with the approximation parameter TK < NT . In this case
the inequalities (5.1) will only be added for values 1 ≤ k ≤ t ≤ NT with
t − k ≤ TK. This leads to a smaller formulation with only O(NT × TK)
constraints. In addition, using a small value of TK, one often obtains as good
a lower bound as with large values of TK.

For this simple case, the classical approach is as simple as the black-box ap-
proach. However as we show later, the changes needed to call a reformulation
for LS-U , or any other reformulation, are trivial, whereas understanding and
writing out the correct reformulations oneself is nontrivial, requires further
reading, and is prone to error.
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5.1.3 The Classical Approach for LS-U

Here we use the so-called shortest path reformulation for LS-U . From Table
4.4, we see that it has O(n) constraints and O(n2) variables, and is described
in Subsection 7.4.2.

We see that the reformulation is:

min
n∑

u=1

puxu +
n∑

t=1

qtyt

−
n∑

t=1

φ1t = −1

t−1∑
u=1

φu,t−1 −
n∑

τ=t

φtτ = 0 for 2 ≤ t ≤ n

n∑
u=1

φun = 1

n∑
τ=t:dtτ>0

φtτ ≤ yt for 1 ≤ t ≤ n

n∑
τ=t

dtτφtτ = xt for 1 ≤ t ≤ n

φut ∈ R
1
+ , yt ∈ [0, 1] for 1 ≤ u ≤ t ≤ n,

where the variable φkt = 1 if production takes place in period k and the
amount produced is dkt; that is, in period k one produces to satisfy the demand
for periods k up to t.

The resulting block to be added to the initial formulation is, in Mosel, as
follows:

!------------------------------------------------------
declarations
! NT,NI: integer ! Already declared
CDEM: array(1..NI,1..NT,1..NT) of real

end-declarations

forall (i in 1..NI,t in 1..NT,l in t..NT)
CDEM(i,t,l):=sum(u in t..l) DEM(i,u)

declarations
sp: dynamic array(1..NI,1..NT,1..NT) of mpvar
node: array(1..NI,1..NT) of linctr
nodf: array(1..NI) of linctr
defy: array(1..NI,1..NT) of linctr
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defx: array(1..NI,1..NT) of linctr
end-declarations

forall(i in 1..NI,l in 1..NT,t in l..NT)
create(sp(i,l,t))

forall(i in 1..NI,t in 1..1)
node(i,t):= -SUM(l in t..NT)sp(i,t,l)=-1

forall(i in 1..NI,t in 2..NT)
node(i,t):= SUM(l in 1..t-1)sp(i,l,t-1) -

SUM(l in t..NT)sp(i,t,l)=0
forall(i in 1..NI)
nodf(i):= SUM(t in 1..NT)sp(i,t,NT)=1

forall(i in 1..NI,t in 1..NT)
defy(i,t):= SUM(l in t..NT|CDEM(i,t,l) > 0) sp(i,t,l) <=

y(i,t)
forall(i in 1..NI,t in 1..NT)
defx(i,t):= x(i,t)=SUM(l in t..NT)CDEM(i,t,l)*sp(i,t,l)

!---------------------------------------------------------

5.1.4 The Black-Box Approach for LS-U

Here we add the shortest path reformulation for LS-U by making use of the
LS–LIB procedure

XFormLSU2(S,X,Y,D,NT,TK,MC),

where again
NT is the number of time periods,
S is the stock vector,
X is production quantity vector,
Y is the set-up vector,
D the demand, and TK and MC are as before.

It suffices to add the following block to the initial Mosel program.

!----------------------------------
uses ’lslib-PPbyMIP’
!----------------------------------
declarations
! NT,NI: integer ! Already declared
S: array(0..NT) of linctr
X: array(1..NT) of linctr
Y: array(1..NT) of linctr
D: array(1..NT) of real
NT: integer
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TK: integer
MC: integer

end-declarations

TK:=NT
MC:=0
forall(i in 1..NI)do

S(0):= 0
forall(t in 1..NT) S(t):= s(i,t)
forall(t in 1..NT) X(t):= x(i,t)
forall(t in 1..NT) Y(t):= y(i,t)
forall(t in 1..NT) D(t):= DEM(i,t)
XFormLSU2(S,X,Y,D,NT,TK,MC)

end-do
!----------------------------------

Here again it is possible to use an approximate shortest path reformulation
that may give a weaker lower bound, but is smaller. By setting TK < NT , one
obtains a formulation with O(NT ) constraints and O(NT × TK) variables.
This approximate reformulation can be found in Section 7.6. In this case the
black-box approach is already significantly easier than the classical approach.

5.2 Cut Separation

Now suppose that we wish to solve a problem containing items classified as LS-
U using cutting planes. We see from Table 4.4 that the (l, S) inequalities and
their separation routine are described in Section 7.4.1. In fact these inequalities
were introduced and demonstrated in Subsection 4.1.2.

5.2.1 The Classical Approach for LS-U

Here the user must program the separation routine mentioned above to test
whether a given linear programming solution is cut off by one of the (l, S)
inequalities.

5.2.2 The Black-Box Approach for LS-U

The following block can be added to the initial Mosel formulation just be-
fore the call to the optimizer. The declarations are as for the reformulation
XFormLSU2(). The loop on “i in 1..NI” permits all the data and variable
names to be passed via the routine XCutLSU(), as well as preparation of the
appropriate separation routine. Finally the call XCut init actually activates
the separation routine.
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!----------------------------------
uses ’lslib-PPbyMIP’
!----------------------------------
declarations

! NT,NI: integer ! Already declared
S:array(0..NT) of linctr
X,Y:array(1..NT) of linctr
D:array(1..NT) of real

end-declarations

forall(i in 1..NI) do
S(0) := 0
forall(t in 1..NT) do
S(t):= s(i,t)
X(t):= x(i,t)
Y(t):= y(i,t)
D(t):= DEM(i,t)

end-do
XCutLSU(S,X,Y,D,NT)

end-do

XCut_init
!----------------------------------

5.3 Heuristics in LS–LIB

In Section 3.6 we presented several heuristics that work by fixing or dropping
the integrality constraints on some or all of the 0–1 variables. Here we suppose
specifically that these are the set-up variables yi

t.

5.3.1 Calling a Construction Heuristic

To call a simple version of the relax-and-fix heuristic described in Section
3.6.1, it suffices to add the following block to the Mosel formulation.

!---------------------------------------
uses ’lslib-PPbyMIP’
!---------------------------------------
declarations
! NT,NI: integer ! Already declared
CY: array(1..NI,1..NT) of linctr
HEURSOL:array(1..NI,1..NT) of integer
MAXTIME: integer
FIX,BIN: integer
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end-declarations

forall(i in 1..NI,t in 1..NT)
CY(i,t):= y(i,t)

MAXTIME:=30
FIX:= 4
BIN := 6

XHeurRF(CY,HEURSOL,COST,NI,NT,MAXTIME,FIX,BIN)
!---------------------------------------

where
FIX is the number of time periods in which the set-up variables are fixed
in each relax-and-fix iteration (i.e., FIX is the constant value of |Qr| for
1 ≤ r ≤ R in the relax-and-fix algorithm described in Section 3.6.1);
BIN is the number of time periods in which the set-up variables are not
relaxed (i.e., binary) in each iteration (i.e., BIN is the constant value of
|Qr ∪ Ur| for 1 ≤ r ≤ R in the relax-and-fix algorithm described in Section
3.6.1), with FIX ≤ BIN ;
HEURSOL contains the 0–1 solution produced by the heuristic;
CY is the set of linear constraints indexed over 1..NI, 1..NT and defining the
yi

t variables as binary variables;
MAXTIME is the number of seconds allowed for each partial MIP solved
(overridden if no feasible solution has been found); and
COST is the name of the expression containing the objective function (mini-
mization is assumed to be the direction of optimization).

In our simple implementation with R = � NT
FIX � iterations, and using the

notation of Section 3.6.1, MIP r optimizes over the 0–1 set-up variables yi
t

where the period t lies in the set Qr ∪ Ur = {(r − 1) FIX + 1, . . . , (r −
1) FIX + BIN}, and the 0–1 set-up variables yi

t where the period t lies in
the set Qr = {(r − 1) FIX + 1, . . . , r FIX} are fixed at their optimal value
in MIP r at the end of the rth iteration.

5.3.2 Calling an Improvement Heuristic

To call local branching (see Section 3.6.2) once just at the top node, it suffices
to replace the last line of the relax-and-fix Mosel block by

!-------------------------------------------------------
XHeurLB(CY,HEURSOL,COST,NI,NT,MAXTIME,PK)

!-------------------------------------------------------

where
HEURSOL must be initialized with a feasible yi

t solution, and on termination
contains the new heuristic solution; and
PK is the local branching parameter k described in Section 3.6.2.
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5.4 LS–LIB Procedures

In this section we present the procedures available in LS–LIB.

5.4.1 Reformulations – XForm

Each reformulation concerns a single-item subproblem. In Table 5.1, Columns
1 and 2 indicate the problem classification, and the first header row contains
the possible procedure parameters explained below.

S denotes the stock vector s0, s1, . . . , sNT .
R denotes the backlog vector r1, . . . , rNT .
X denotes the production vector x1, . . . , xNT .
Y denotes the set-up vector y1, . . . , yNT .
Z denotes the start-up vector z1, . . . , zNT .
W denotes the switch-off vector w1, . . . , wNT .
D denotes the demand vector d1, . . . , dNT .
C denotes the constant capacity C.
NT denotes the number of periods n = NT .
TK is the approximation parameter.
MC indicates if constraints are added to the cut pool as Model Cuts (MC = 1)
or are added a priori to the formulation (MC = 0).

A “Y” in the table indicates that the corresponding parameter is present.
A “-” indicates that the parameter is not present.
A “0” in the “S” column indicates that just s0 is present.
A “1” in the “C” column indicates that the constant capacity is assumed to
be C = 1.
An “L” in the “C” column indicates that the value of the constant lower bound
on production is passed to the routine in place of the capacity parameter.

N.B. In all the LS–LIB procedures, it is assumed that the time hori-
zon is represented in Mosel as the range 1..NT or 0..NT , and the set of
items/skus/products as the range 1..NI. If the time periods are represented
as a set of strings, or sets of integers, an appropriate translation is needed
before calling the procedures; see, for example, the Powder Production case
in Part V.

Example 5.1 Examination of the row WW−U−SC,B in Table 5.1 indicates
that we need to declare the variables and constants marked with a “Y”, and
then call the reformulation for each item. We assume that the variables and
data in the Mosel problem formulation are called “sname(i,t), dname(i,t),
etc”.
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!-------------------------------------------------------
declarations

! NT, NI: integer ! Already declared
S: array(0..NT) of linctr
R: array(1..NT) of linctr
Y: array(1..NT) of linctr
Z: array(1..NT) of linctr
D: array(1..NT) of real
TK: integer
MC: integer

end-declarations

TK:= NT
MC:= 0
forall(i in 1..NI) do

S(0):= sname(i,0)
forall (t in 1..NT) do
S(t):= sname(i,t)
R(t):= rname(i,t)
Y(t):= yname(i,t)
Z(t):= zname(i,t)
W(t):= wname(i,t)
D(t):= dname(i,t)

end-do
XFormWWUSCB(S,R,Y,Z,W,D,NT,TK,MC)

end-do
!-------------------------------------------------------

5.4.2 Cutting Plane Separation – XCut

To call cutting plane separation routines, the procedure arguments are shown
in Table 5.2, and are essentially identical to those in Table 5.1.

5.4.3 Heuristics – XHeur

In Table 5.3 we indicate the calling parameters for the heuristics. Remember
that:
CY denotes the linear expressions indexed over 1..NI, 1..NT defining the y
variables as binary variables.
SOL indexed over 1..NI, 1..NT contains as input an initial feasible solution
if it is an improvement heuristic, and as output the heuristic solution found
(if any).
COST is the name of the expression containing the objective function (mini-
mization is assumed to be the direction of optimization).
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Table 5.1. XForm

Classification S R X Y Z W D C NT TK MC Cons × Vars Reference
LS-U1 Y - Y Y - - Y - Y Y Y O(n2) × O(n2) [100] multicom
LS-U2 Y - Y Y - - Y - Y Y Y O(n) × O(n2) [61] short path
LS-U B Y Y Y Y - - Y - Y Y Y O(n2) × O(n2) [22, 137]
LS-U SC Y - Y Y Y - Y - Y - - O(n2) × O(n2) [170, 192]
WW-U Y - - Y - - Y - Y Y Y O(n2) × O(n) [140]
WW-U B Y Y - Y - - Y - Y Y Y O(n2) × O(n) [140]
WW-U SC Y - - Y Y - Y - Y Y Y O(n2) × O(n) [140]
WW-U SC,B Y Y - Y Y Y Y - Y Y Y O(n2)×O(n) [6]
WW-U LB Y - - Y - - Y L Y Y Y O(n3) × O(n2) [177]
WW-CC Y - - Y - - Y Y Y Y Y O(n2) × O(n2) [140]
WW-CC B Y Y - Y - - Y Y Y Y Y O(n3) × O(n2) [180]
DLSI-CC 0 - - Y - - Y Y Y Y Y O(n) × O(n) [140, 125]
DLSI-CC B 0 Y - Y - - Y Y Y Y Y O(n2) × O(n) [125, 179]
DLS-CC B - Y - Y - - Y Y Y Y Y O(n) × O(n) [125]
DLS-CC SC Y - - Y Y - Y 1 Y Y Y O(n2) × O(n) [163]

Table 5.2. XCut

Classification S R X Y Z W D C NT TK Separation Reference
LS-U Y - Y Y - - Y - Y - O(n2) [23]
LS-C Y Y Y - - - Y Y Y - [15]
WW-U Y - - Y - Y - Y - O(n) [140]
WW-U B Y Y - Y - - Y - Y - O(n3) [140]
WW-CC Y - - Y - - Y Y Y - O(n2 log n) [140]
DLSI-CC 0 - - Y - - Y Y Y Y O(n log n) [125]
DLSI-CC B 0 Y - Y - - Y Y Y Y O(n3) [179]

Table 5.3. XHeur

Algorithm CY SOL COST NI NT MAXT PAR1 PAR2 Reference
RF Y Y Y Y Y Y FIX BIN [153, 193]
MIP Y Y Y Y Y Y – – Section 3.6
CF Y Y Y Y Y Y – – Section 3.6.1
RINS Y Y Y Y Y Y – – [52]
LB Y Y Y Y Y Y PK – [66]
EXCH Y Y Y Y Y Y FIX – Section 3.6.2

The value returned by the function gives the value of the heuristic solution
(BIG if no solution is found).

All these heuristics are described in Section 3.6. The construction heuris-
tics are relax-and-fix (RF), truncated branch-and-cut (MIP), and cut-and-fix
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(CF), respectively. The improvement heuristics are relaxation-induced neigh-
borhood search (RINS), local branching (LB), and exchange (EXCH).

5.5 Two Practice Cases

Here we present two cases. The initial description of each problem consists of
a verbal description of the problem, its context, and data. Our approach in
the next two sections is to divide the solution and the report of each case into
two main parts:

i. A classification, complete or partial, of the problem based on the descrip-
tion, and an initial problem formulation in some modeling language;
ii. A discussion of possible reformulation and solution strategies, and a report
on computational results with two or more formulations or algorithms.

5.5.1 Consumer Goods Production Line: Problem Description

We consider a production line in the fast-moving consumer goods (FMCG)
industry producing 30 different skus (stock keeping units), which belong to six
different product families, using a make-to-stock production policy. Capacity
is limited and is not far in excess of average demand. Day-to-day demand is
fluctuating, and during the year there are two seasonal peaks.

Production is organized in batches of fixed duration corresponding to a full
shift (8 hours), and a single product or sku is produced during each batch.
Therefore, production of each sku is scheduled in multiples of full shifts. Ca-
pacity must be 100% utilized within each shift or batch to reduce backlogs
and to build up stocks. The process is continuous (24 hours per day, seven
days per week), with the exception of planned maintenance periods. Depend-
ing on the sku, a batch corresponds to a few days up to several months of
shipments/demand.

There are six product families, one standard and five variants. The pro-
duction process is such that one cannot switch directly from production of one
nonstandard family to another, but must first switch to the standard family.

Safety stock levels have been defined based on the current forecasting and
planning processes. These safety stock and initial stock restrictions have been
removed by computing net demands; see Section 4.5. Therefore the minimum
net stock level (i.e., stock above the safety stock) is zero at the end of each
time period.

Due to the fluctuating demands, the planning horizon is 20 days (60 peri-
ods). The production plan is regenerated weekly. The objective is to minimize
inventory holding and backlogging costs. It is suggested that the cost of hold-
ing stock be taken as 0.125 times the cost of backlog.

After looking at the production plans generated over several weeks, the
shop floor wishes to impose additional constraints, namely, that the number
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of production batches of each sku, and the number of campaigns of each
family, be as small as possible over the 20-day horizon. They claim that this
will not change the objective by more than 3 to 5%. Specifically they suggest
the following.

i. For all skus from a nonstandard family, if the minimum number of batches
required to meet demand is one or two, then this minimum number of
batches should be produced (i.e., there is no build-up of stocks for slow
moving items).

ii. If there is some nonstandard family for which the maximum number of
batches for any sku of the family over the 20-day horizon is two or less,
then the number of campaigns of the family should be restricted to this
maximum. A campaign of a given family is a set of consecutive batches or
shifts during which only skus of this family are produced.

What is the effect of these additional restrictions on the production plans
and objective function?

Data

There are NI = 30 items, NT = 60 shifts, and NF = 6 families. For any
sku, the quantity produced in an eight-hour shift is CAP = 20, 000. The
families are numbered from 1 to 6, with the standard family as number 1.
The NI-vector FAM indicates to which family each sku belongs.

FAM := [4, 1, 2, 1, 2, 1, 2, 5, 3, 1, 2, 4, 1, 2, 4, 5, 3, 6, 1, 2, 4, 5, 3, 1, 1, 2, 2, 4, 4, 1].

The cost of storage and backlog are 0.125 and 1 per unit of sku per period,
respectively.

The net demand data (after removal of initial and safety stocks) is in the
file cgpdemand.dat.

5.5.2 Cleaning Liquids Bottling Line: Problem Description

Here the items correspond to four product families produced on a single bot-
tling line. The time intervals are days, and the time horizon for planning is
30 days. Only one item is produced per day, and production each day is for
a maximum of two shifts (16 hours), with a minimum production time of 7
hours. When switching families, the line is modified during the night so as
not to interfere with production, so no time is lost, and only start-up and
switch-off costs are incurred. The production and storage costs per family are
constant over time. In certain periods the line is scheduled to be shut down
for maintenance. Such periods are indicated by a very high set-up cost.

Recently there has been considerable discussion about whether to allow
backlogging, and if so, how high the backlogging cost should be relative to
the storage cost. Factors of both 2 and 10 have been suggested, but some are
convinced that even with a factor of 10 the solution will not change much.
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Data

There are NI = 4 items, and NT = 30 periods.
The NT -vector q gives the item independent set-up cost per period.
The NI-vector a gives the number of units of item i produced per hour.
The NI-vector h gives the storage costs per item per period.

a:=[807,608,1559,1622]
h:=[0.0025,0.0030,0.0022,0.0022]
q:=[100,100,100,9999,100,100,100,100,100,9999,

100,100,100,100,100,100,100,100,9999,100,
100,100,100,100,9999,100,100,100,100,100]

Start-up and switch-off costs are both 50.
Lower and upper bounds on production in hours are 7 and 16, respectively.
The demands for each item and period contained in the file cldemand.dat
are measured in production hours.

5.6 The Consumer Goods Production Line Case

5.6.1 Initial Classification

Single-item: For each item, 100% capacity utilization means that it is a discrete
lot-sizing model. The capacity is constant by item and there is backlogging.
So, the classification is DLS-CC-B.
Multi-item resources: There is a single production line on which exactly one
sku is produced in each period.
Multi-item sequencing: The sequencing constraints only involve families.
These are problem specific, and are discussed further below.

5.6.2 Initial Formulation

min
∑
i,t

(bi
tr

i
t + hi

ts
i
t)

si
t−1 − ri

t−1 + Ciyi
t = di

t + si
t − ri

t for all i, t∑
i

yi
t = 1 for all t

si
t, r

i
t ∈ R

1
+, yi

t ∈ {0, 1} for all i, t

+ constraints on the sequencing of families.

We define φf
t = 1 if an sku from family f is produced in period t, and

let I(f) = {i : FAM(i) = f} be the skus in family f . Now the sequencing
constraints say that if an sku from some nonstandard family f is produced in
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period t, an sku from another nonstandard family g cannot be produced in
period t + 1. Recalling that Family 1 is the standard family, and the others
2,. . . ,6 are nonstandard, one possible formulation for the sequencing of families
is:

φf
t =

∑
i∈I(f)

yi
t for all f, t

∑
f

φf
t = 1 for all t

φf
t +

∑
g:g �=1,f

φg
t+1 ≤ 1 for 2 ≤ f ≤ 6, and all t

φf
t ∈ {0, 1} for all f, t .

5.6.3 Reformulation and Algorithms

In Table 4.5, we see that DLS-CC-B is treated in Section 10.3.1.

The Classical Approach

In Section 10.3.1, we learn that it suffices to eliminate the backlog variables
ri
t from the flow conservation constraints, and to add the corresponding MIR

inequalities, to obtain a tight formulation for DLS-CC-B. Here we work with
the equivalent tight formulation obtained by eliminating the inventory vari-
ables. First we rewrite the flow conservation constraints as

ri
t ≥ di

1t − Ci
t∑

u=1

yi
u for all i, t,

and then it suffices to add the MIR inequalities (see Section 8.1.1)

ri
t ≥ Cif i

t (�
di
1t

Ci
� −

t∑
u=1

yi
u) for i = 1, . . . , NI, t = 1, . . . , NT,

when f i
t = di

1t

Ci − 	di
1t

Ci 
 > 0.

The Black-Box Approach

In Table 4.5 we also see that the reformulation of DLS-CC-B is small (O(n)×
O(n)). We can therefore add the extended formulation with TK = NT = 60.
Using the LS–LIB library, we add the following Mosel block.
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!---------------------------------------
uses ’lslib-PPbyMIP’
!---------------------------------------
declarations
! NT, NI: integer ! Already declared
C= CAP
Y: array(1..NT) of linctr
R: array(1..NT) of linctr
D: array(1..NT) of real
CDEM(1..NI,1..NT,1..NT) of real !cumulative demand

end-declarations

forall(i in 1..NI,k in 1..NT,t in k..NT)
CDEM(i,k,t):=sum(u in k..t) DEM(i,u)

forall(i in 1..NI | CDEM(i,1,NT)>0) do
forall(t in 1..NT) Y(t):=y(i,1,t)
forall(t in 1..NT) R(t):=r(i,t)
forall(t in 1..NT) D(t):=DEM(i,t)
XFormDLSCCB(R,Y,D,C,NT,NT,0)

end-do
!---------------------------------------

5.6.4 Results

Based on the Mosel file cgp.mos, we obtain the results in Table 5.4 for the
basic problem with a run-time limit of 600 seconds. The first line indicates the
results with Xpress-MP default, and the second after addition of the Xform
reformulation block. The columns represent the formulation; the number of
columns, rows and 0–1 variables; followed by the initial LP value; the value
XLP after the system has automatically added cuts at the root node; the
best feasible solution obtained; the total time in seconds (a ∗ indicates that
optimality is not proved in 600 seconds); the number of nodes in the branch-
and-cut tree; and the gap (if any) after 600 seconds, respectively.

Table 5.4. Consumer Goods Before and After Reformulation

Formulation Vars Cons Int LP XLP Best UB Time Nodes Gap
(secs) (%)

cgp 4569 2275 1920 1627056 1779184 1987135 600∗ 98000 11.0
cgp-r 4569 3364 1920 1863547 1868012 1879048.5 78 939 0

It is standard to test whether setting priorities on the variables improves
the performance of the enumeration. Here it seems natural to first branch
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on family variables φf
t with priority to earlier periods, followed by the item

set-up variables again with priority to earlier periods. The additional Mosel
code required is

forall(f in 1..NF,t in 1..NT)
setmipdir(phi(f,t),XPRS_PR,50+t) !decide families first

forall(i in 1..NI,t in 1..NT|CDEM(i,1,NT)>0)
setmipdir(y(i,t),XPRS_PR,200+t)

The results in Table 5.5 show that these branching directives do not im-
prove the solution time and quality.

Table 5.5. Consumer Goods Before and After Reformulation with Priorities

Formulation Vars Cons Int LP XLP Best UB Time Nodes Gap
(secs) (%)

cgp 4569 2275 1920 1627056 1778278 2015702 600∗ 90300 12.1
cgp-r 4569 3364 1920 1863547 1868012 1887436 600∗ 27900 0.5

5.6.5 Sensitivity Analysis

Now we add the constraints suggested by the shop floor. First we define the
minimum number of batches of sku i required to satisfy its demand as:

nb(i) = �di
1,NT

CAP
� ,

where CAP is the output per shift, and the maximum number of campaigns
of family f as

nc(f) = max
i∈I(f)

nb(i) ,

and then we model the restrictions as:

i. If there exists some sku i with FAM(i) �= 1 with nb(i) ∈ {1, 2}, then add
the constraint ∑

t

yi
t ≤ nb(i).

ii. If there exists some family f > 1 with nc(f) ∈ {1, 2}, then create new
variables zf

t for all t to model the start-up of campaigns, and add the
constraints

zf
t ≥ φf

t − φf
t−1 for all t∑

t

zf
t ≤ nc(f)

zf
t ∈ {0, 1} for all f, t.
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Table 5.6. Consumer Goods with Shop Floor Recommendations

Formulation Vars Cons Int LP XLP Best UB Time Nodes Gap
(secs) (%)

cgp 4749 2472 2100 1627056 1744926 2147704 600∗ 44600 18.1
cgp-r 4749 3561 2100 1864253 1869864 1890699 291 3642 0

The results in Table 5.6 show first that the problem remains solvable to
optimality using the single-item reformulations, and that the duality gap ob-
tained without reformulations deteriorates. Next they show that there is an
increase of only 0.6% of the optimal objective function value. This is due to
the second restriction which forces the regrouping of batches of a same family
into a limited number of campaigns, and therefore implies additional back-
logs or stocks. The first restriction has no effect on global backlogging and
inventory costs.

5.7 The Cleaning Liquids Bottling Line Case

5.7.1 Initial Classification

Single-item: The single item problems have constant capacity (16 hours) and
constant lower bounds (7 hours), along with start-up and switch-off costs. As
the unit production costs are constant over time, they can be ignored without
loss of generality, and the Wagner-Whitin cost condition is satisfied because
the inventory costs are constant over time. Thus we obtain the classification
WW -CC-SC,LB.
Multi-item constraints and costs: There is only one machine, and at most one
item can be produced per period.

5.7.2 Initial Formulation

min
∑
i,t

hisi
t +

∑
i,t

qty
i
t +

∑
i,t

gzi
t +

∑
i,t

γwi
t

si
t−1 + xi

t = di
t + si

t for all i, t

xi
t ≤ Ciyi

t for all i, t

xi
t ≥ Liyi

t for all i, t

zi
t − wi

t−1 = yi
t − yi

t−1 for all i, t

zi
t ≤ yi

t for all i, t∑
i

yi
t ≤ 1 for all t

xi
t, s

i
t ∈ R

1
+, yi

t, z
i
t ∈ {0, 1} for all i, t.
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Here xi
t denotes the production time of item i during t, and si

t, ri
t, and di

t

are also measured in production hours. The variable wi
t models a switch-off

of item i at the end of period t. Note that wi
t is precisely the slack variable in

the usual constraint zi
t+1 ≥ yi

t+1 − yi
t used to define zi

t+1; see Section 4.3.6.

5.7.3 Reformulation and Algorithms

We treat first the problem without backlogging, and consider the single-item
aspects only. From Table 4.6, we see that valid inequalities are known for
LS-CC-SC and thus for WW -CC-SC, but no extended formulation of rea-
sonable size is known. However, to deal with the start-up variables a complete
O(n2) × O(n) formulation is available for WW -U -SC involving just the orig-
inal (s, y, z) variables. This suggests the addition of the constraints

si
t−1 ≥

l∑
u=t

di
u(1 − yi

t − zi
t+1 − · · · − zi

u)

for all i, and for 1 ≤ t ≤ l ≤ NT .
On the other hand, to deal with the capacities, an O(n2) × O(n2) refor-

mulation of WW -CC is available; see Section 9.5.3 as indicated in Table 4.4.
This implies the addition of the following reformulation for each item i:

sk−1 ≥ C
∑

t∈[k,n]

fk
t δk

t + Cµk for all k

t∑
u=k

yu ≥
∑

τ∈{0}∪[k,n]

�dkt

C
− fk

τ �δk
τ − µk for all k, t, k ≤ t

∑
t∈{0}∪[k,n]

δk
t = 1 for all k

µk ≥ 0, δk
t ≥ 0 for all t ∈ {0} ∪ [k, n] and all k

y ∈ [0, 1]n ,

where fk
0 = 0, [k, n] = {k, . . . , n} and fk

τ = dkτ

C − 	dkτ

C 
.
For the lower bound constraints, some valid inequalities are known, but

for this we choose to stick to the original formulation.

5.7.4 Results

In Table 5.7 we present computational results showing the effects of the re-
formulations. Instance cl is the original formulation. Instance cl-WWUSC
is with the addition of the inequalities for WW -U -SC with TK = 15 and
MC = 0. Instance cl-WWCC is with the addition of the inequalities for
WW -CC with TK = 15. Instance cl-WWUSC-CC has both the reformula-
tions of WW -U -SC and WW -CC for each item. The nine columns represent
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the instance, the number of rows, columns, and 0–1 variables, followed by
the initial LP value, the value XLP after the system has automatically added
cuts, OPT the optimal value, the total number of seconds required to prove
optimality, the number of nodes in the branch-and-cut tree, and the gap (if
any) after 600 seconds.

Table 5.7. Results for Cleaning Liquids without Backlogging TK = 15

Instance Cons Vars Int LP XLP OPT Time Nodes Gap
(secs) (%)

cl 510 720 120 1509 3676 4404.5 171 68234 0
cl-WWUSC 1873 720 120 3775 4328 4404.5 12 203 0
cl-WWCC 2130 2220 120 3520 3956 4404.5 40 1384 0
cl-WWUSC-CC 3493 2220 120 4292 4330 4404.5 9 105 0

5.7.5 Sensitivity Analysis

If we introduce backlogging, it is necessary to refer to the classification Ta-
ble 4.5, where we see that there exists a formulation for WW -CC-B. We
also see below Table 4.6 that there is a compact extended formulation for
WW -U -B, SC. As the formulations for WW -CC-B are large, we first try the
formulation for WW -U -B, SC.

In Table 5.8, the results with backlogging are presented, with a time limit
of 600 seconds. The parameter ρ = 2 is the ratio of unit backlogging cost over
inventory unit cost, and the problems solved are the following.

clb2 is the original formulation with backlogging.

clb2-WWUBSC is with the WW -U -B, SC formulation and TK = 15.

clb2-WWUBSC-b is clb2-WWUBSC plus the WW -CC-B formulation with
TK = 5.

clb2-WWUBSC-a is clb2-WWUBSC plus the WW -CC-B formulation with
TK = 15.

Table 5.8. Results for Cleaning Liquids: Backlogging ρ = 2

Instance Cons Vars Int LP XLP OPT Time Nodes Gap
(secs) (%)

clb2 510 720 120 1507 2755 3386 600� 205100 4.0
clb2-WWUBSC 3327 868 120 3150 3176 3386 252 14064 0
clb2-WWUBSC-b 7479 5092 120 3236 3247 3386 597 3134 0
clb2-WWUBSC-a 37673 9892 120 3360 3360 3386 217 20 0
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Next we try ρ = 5. One might expect this to give similar results to those
of the original instance without backlogging because the backlogging cost is
quite high.

Table 5.9. Results for Cleaning Liquids: Backlogging ρ = 5

Instance Cons Vars Int LP XLP OPT Time Nodes Gap
(secs) (%)

clb5 510 720 120 1509 3003 4074 600� 234800 11.8
clb5-WWUBSC 3327 868 120 3560 3564 4024 600� 38800 4.5
clb5-WWUBSC-b 7479 5092 120 3675 3702 4026 600� 4800 4.2
clb5-WWUBSC-a 37673 9892 120 3962 3962 4024 168 15 0

We observe that even with ρ = 5, there is a cost reduction of 380 which
is close to 8%. Even with ρ = 10, the optimal value is 4241, a decrease of
approximately 3% relative to the cost without backlogging.

5.7.6 Heuristics

Given that the instances with backlogging require 100 or more seconds to
solve with the most effective reformulation, the user might be interested in
finding good feasible solutions within 10–30 seconds. On the initial formulation
clb, we tested the relax-and-fix heuristic followed by the exchange heuristic
both with the parameters MAXTIME = 2 and FIX = BIN = 8, followed by the
RINS heuristic for 30 seconds. On the first reformulation WW -U -B, SC with
TK = 15, we tested the same heuristics but with MAXTIME = 5. The results
are shown in Table 5.10 for ρ = 2, 5, and 10.

Table 5.10. Heuristics for Cleaning Liquids with Backlogging

Instance RF EXCH EXCH EXCH EXCH RINS OPT
clb2 3386.0 3386.0 3386.0 3386.0 3386.0 3386.0 3386.0
clb5 4198.8 4198.8 4077.1 4047.5 4047.5 4024.2 4024.2
clb10 4456.2 4456.2 4378.2 4326.9 4326.9 4326.9 4241.1
clb2-WWUBSC-a 3386.0 3386.0 3386.0 3386.0 3386.0 3386.0 3386.0
clb5-WWUBSC-a 4153.1 4153.1 4056.6 4056.6 4056.6 4056.6 4024.2
clb10-WWUBSC-a 4241.1 4241.1 4241.1 4241.1 4241.1 4241.1 4241.1

In the last column, we have added the known optimal values to aid in
assessing the effectiveness of the heuristics for this instance. We observe that
relax-and-fix finds an optimal solution when ρ = 2 whether we start from
either the weak or strengthened formulation. With ρ = 5, the optimal so-
lution is found starting with the weak formulation with the RINS heuristic
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contributing to the quality. With ρ = 10, an optimal solution is found directly
by relax-and-fix starting from the strong formulation.

Exercises

Exercise 5.1 The black-box approach
Consider the GW–GSCO problem from Section 1.2. The results in Section 4.5
(see Tables 4.8 to 4.10) have been obtained by the classical implementation
approach for reformulations and heuristics.

Obtain similar results by using the black-box approach based on the li-
brary LS–LIB of reformulations and heuristics.

Exercise 5.2 Short-Term Formulation Planning in the Pharmaceu-
tical Industry
The production process for pharmaceutics consists of three main stages.

1. The bulk production stage. The bulk is the active substance contained in
the final product. Its production process is very long because of extensive
quality control and tests. Therefore, the production is made to stock, and
is based on long-term forecasts.

2. The formulation stage. The second step consists in the transformation
of the bulk product into medicines, that is, products in their final form:
pill, syrup, capsule, and so on. This step is also produced to stock with a
horizon of several months. Formulation is done in large lots for productiv-
ity and quality control reasons, and formulation planning must take into
account the bulk availability because it is impossible to adapt the bulk
production plan in the short term.

3. The packaging stage. This final step can be produced very fast (and does
not require quality tests) and is therefore made to order, just before the
delivery to customers.

We consider the formulation planning problem for a single bulk used to
formulate six products. One unit of bulk is used to formulate one unit of each
formulated product. Each product is sold either to subsidiaries, or to tender
contracts.

Given the bulk production plan and sales forecasts for each product and
each sales order type, the purpose is to plan the formulation of products over
a horizon of 42 weeks in order to satisfy the sales forecasts, without exceeding
the availability of the bulk.

The other major constraint in this model consists of the time window con-
straint. For each type of sales order, subsidiary sales or tenders, each product
must have a minimum remaining lifetime when packed and delivered to cus-
tomers. Therefore, there exists for each product, and each sales order type,
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a maximum duration between the start of the formulation and the packag-
ing/delivery to customers. This time duration is called the formulation time
window.

Finally, among the formulation plans satisfying bulk availability and for-
mulation time window restrictions, the operations manager first tries to min-
imize the number of formulation batches (maximum one batch per week per
formulated product is allowed) in order to minimize the quality control work-
load, to simplify the traceability of the batches, and to increase the formulation
productivity. In addition, for two formulation plans with the same total num-
ber of batches, the plan with the minimum overall stock levels is preferred. A
batch of a given product has a maximum batch size fixed by the formulation
equipment used.

The particular instance to be solved is defined by the following data.

a. The sales forecasts for each product-order type combination, and for each
time period, are given in the file pharma.dat. Each line contains the sales
forecasts over the planning horizon for one product-order type combi-
nation, in the order product1-subsid., product1-tender, product2-subsid.,
product2-tender, etc. All demands are net of initial inventory, and thus
there is no initial inventory of formulated products, and the demands in
the first periods are zero.

b. The initial bulk inventory allows one to formulate 3000 units of formulated
products. In addition, there is a planned receipt of 20,000 units of bulk in
the beginning of each week.

c. The formulation (including quality control) lead-time is 3 weeks for each
product. Hence, a product whose formulation starts in period x is available
to satisfy demands in period x + 3 and after.

d. The formulation time window is 5 weeks for subsidiaries, and 8 weeks for
tenders. Hence, a formulation batch of a single product started in period
x (and available in period x + 3) can only satisfy subsidiary demands up
to period x + 5 and tender demands up to period x + 8.

e. The maximum batch sizes for the six products are 30, 000, 4000, 5000,
8000, 8000 and 8000 units, respectively.

Answer the following questions.
i. Build an initial formulation, and solve the corresponding MIP.
ii. Using the classification scheme and the reformulation tables from Chap-
ter 4, identify valid relaxations for the problem. Reformulate the problem by
using tight reformulations for these relaxations. Implement and test your re-
formulations using LS–LIB.
iii. Try to obtain the best possible solution in less than 600 seconds.
iv. Try to obtain the best possible duality gap in less than 600 seconds.

Exercise 5.3 Short-Term Planning for Glass Production Lines
We consider the production planning of a single-site glass plant, where three
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production lines or floats are used to produce six different product qualities or
products. The daily demands of each product to be satisfied from production
in this site are known and given for the next 15 days. For multi-site companies,
such short-term and local demands are typically the output of a longer-term
planning and demand allocation module. The goal is to find minimum cost
production plans for the three floats satisfying the (allocated) demand for the
next 15 days.

Each float produces a single product at a time, but is able to produce
any product. A production campaign of a product on a float lasts for an
integer number of days. When there is a changeover from a campaign of one
product to a campaign of another product on a float at the beginning of a
day, the float cannot be stopped but some production capacity is nevertheless
lost. This lost capacity measures the quantity of waste produced during the
changeover operation because of bad product quality. This lost capacity is
machine- or float-dependent and is also sequence-dependent. The production
rates are constant over all lines and all products, and cannot be changed or
adapted to the demand.

The cost of a plan is the sum of the inventory holding costs for the products
made in advance and the production costs. We assume here that each pro-
duction day of a product on a line has a fixed cost, which is product-dependent.

The particular instance to be solved is defined by the following data.

a. The demands are given in the file float.dat. Each line contains the
demands for all products in a given time period. Demands are net of
initial inventory, and thus there is no initial inventory.

b. The production capacity per day is CAP = 342 units of product, for each
product and each line.

c. The inventory holding costs per day are h = (5, 5, 1, 3, 2, 1) for the different
products.

d. The fixed production costs per line per day are q = (800, 800, 600, 400,
400, 800) for the products.

e. The production capacity lost when switching from product i to product
j on float line k, measured in units of product j, is given by cij

k = stj +
10(k − 1) + 10|j − i|, where the start-up capacities st are 40, 20, 20, 20,
40, 50, respectively, for the six products.

f. Initially, the float line i is ready (without losing capacity) to produce
product i, for 1 ≤ i ≤ 3.

Using the variables

• si
t to represent the inventory of product i at the end of period t,

• yi
kt ∈ {0, 1} to indicate whether line k produces product i in period t,

• χij
kt ∈ {0, 1} to model whether there is a transition from product i in period

t − 1 to product j in period t on float line k,

an initial formulation for this planning problem is
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min
∑

i

∑
k

∑
t

qiyi
kt +

∑
i

∑
t

hisi
t (5.2)

si
t−1 +

∑
k

[
CAPyi

kt −
∑

j

cji
k χji

kt

]
= di

t + si
t for all i, t (5.3)

∑
i

yi
kt = 1 for all k, t (5.4)

χij
kt ≤ yi

k,t−1 for all i, j, k, t (5.5)

χij
kt ≤ yj

kt for all i, j, k, t (5.6)

χij
kt ≥ yi

k,t−1 + yj
kt − 1 for all i, j, k, t (5.7)

si
t ∈ R

1
+, yi

kt, χ
ij
kt ∈ {0, 1} for all i, j, k, t , (5.8)

where constraint (5.3) models demand satisfaction, constraint (5.4) imposes
that every day exactly one product is set up on each line; constraints (5.5)–
(5.7) define the changeover variables χ. Note that when t = 1 in constraint
(5.5), yi

k,t−1 must be replaced by the initial status of the production line i.
It is possible to tighten the initial formulation of the changeover variables

by replacing constraints (5.5)–(5.7) by the unit flow formulation, described in
Section 12.2.2, written as

∑
i

χij
kt = yj

kt for all j, k, t (5.9)

∑
j

χij
kt = yi

k,t−1 for all i, k, t . (5.10)

where again when t = 1 in constraint (5.10), yi
k,t−1 must be replaced by the

initial status of the production line i.
Answer the following questions.

i. Implement the initial and tightened formulations, and test their performance
by solving the corresponding MIPs. Compare the duality gaps obtained after
300 and 600 seconds.
ii. Using LS–LIB, implement relax-and-fix and RINS heuristics to solve this
planning problem; see Section 3.6. Test your heuristics with the initial and
tightened formulations, and try to obtain the best possible solution in less
than 20 seconds.

Notes

Section 5.1 The explicit use of extended formulations and approximate ex-
tended formulations, as well as the first XForm routines, were developed by
Van Vyve in his thesis [178]; see also Van Vyve and Wolsey [181] and Pochet
et al. [135].
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Section 5.2 Earlier attempts to automate the solution of production planning
problems formulated as mixed integer programs include the MPSARX cut-
and-branch system based on SCICONIC which recognized lot-sizing structure
and generated (l, S) inequalities from its path separation routines (see Van
Roy et Wolsey [175]), and BC-PROD based on EMOSL, a combined modeling
and optimization language, in which a special syntax was imposed so as to
recognize the embedded lot-sizing structures (variables, constraints, and data)
and to add appropriate cutting planes; see Belvaux and Wolsey [25].

Section 5.3 The general heuristics implemented in LS–LIB are described in
Section 3.6, and references are given in Section 3.6.2.

Section 5.4 LS–LIB and its global constraints are described in Pochet et al.
[135].

Section 5.5 The Consumer Goods problem is a modified instance of a prob-
lem reported on earlier in Miller and Wolsey [125], that was studied as part of
the EU-funded LISCOS project. The Cleaning Liquids Bottling line problem
has been reported on in Belvaux and Wolsey [25].
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6

Mixed Integer Programming Algorithms and
Decomposition Approaches

In Parts II to IV we adopt a more rigorous approach. Our specific goals in Part
II are both to provide a somewhat self-contained introduction to polyhedral
combinatorics based on the uncapacitated lot-sizing problem and simple mixed
integer sets, and to provide the background and results necessary to tackle
the more complicated variants tackled in Parts III and IV.

First in this chapter we briefly give some basics of polyhedral theory al-
lowing us to describe the general decomposition approaches for which finding
good formulations and/or algorithms for the subproblems is crucial, and which
allow us to distinguish between good and less good formulations. The uncapac-
itated lot-sizing problem studied in detail in Chapter 7 provides a remarkably
rich model allowing us to use and demonstrate nearly all the important con-
cepts of polyhedral combinatorics with many beautiful results in the form of
simple algorithms and effective linear programming formulations. It also pro-
vides a point of comparison when tackling more complicated variants later. In
Chapter 8 we present several fundamental results on valid inequalities, separa-
tion algorithms, and formulations for simple mixed integer sets that are either
used later in the book to develop strong formulations for lot-sizing models or
are used to generate strong cutting planes in several recent commercial mixed
integer programming systems.

Turning now specifically to the contents of this chapter, the goal is to in-
troduce more formally the important ideas about the formulation and decom-
position of integer programs that motivate the results for single-item problems
and multi-item problems presented in Parts II–IV. Some of these ideas were
introduced less formally in Chapter 4.

• We start in Section 6.1 by collecting the polyhedral concepts that we use.
We also present the theoretical equivalence between optimization and sep-
aration. This result is crucial – many variants of single-item lot-sizing
problems with constant capacities are polynomially solvable; this equiva-
lence tells us that for such problems finding the convex hull of the feasible
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region explicitly by inequalities or by an extended formulation is a possi-
bility.

• In Section 6.2 we formalize the approach by decomposition and reformu-
lation.

• In Section 6.3, we present various decomposition algorithms:
1. Algorithms based on valid inequalities or extended formulations for the

subproblems which are the topic of this book;
2. Algorithms based on Lagrangian relaxation or column generation that

are the algorithms of choice for many classes of problems in which it
is relatively easy in practice to optimize over the “subproblems,” but
little is known about improved formulations; and

3. Hybrid algorithms that combine both approaches.
• Having established the need to find improved formulations for a set X,

and if possible formulations giving its convex hull, some of the arguments
that can be used to show that a given formulation P for X is indeed the
convex hull of X are listed in Section 6.4. Specific examples of such proofs
are shown in later chapters.

6.1 Polyhedra, Formulations, Optimization, and
Separation

We suppose that the problem has been formulated as an integer program

(IP ) z = min{cx : Ax ≥ b, x ∈ Z
n
+}

or as a mixed integer program

(MIP ) z = min{cx + fy : Ax + By ≥ b, x ∈ R
n
+, y ∈ Z

p
+}.

For simplicity of notation we typically just discuss IP .

Definition 6.1 Given the integer program IP , the set X = {x ∈ Z
n
+ : Ax ≥

b} is the set of feasible solutions.

6.1.1 Formulations of an Integer Program

Definition 6.2 The set of points P = {x ∈ R
n : Ax ≥ b} satisfying a finite

set of linear inequalities is a polyhedron.

Definition 6.3 A polyhedron P is called a formulation for X if X = P ∩Z
n;

that is X is precisely the set of integer points in P .

We observe immediately that a set X can have an infinity of formulations.
In Figure 6.1, we show two formulations for X.

Given two formulations P 1 and P 2 for X, P 1 is better than P 2 if P 1 ⊂ P 2.
This makes sense because, for any objective function c ∈ R

n,

z ≥ min{cx : x ∈ P 1} ≥ min{cx : x ∈ P 2}.
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Figure 6.1. Two formulations for X.

Figure 6.2. The convex hull of X.

Definition 6.4 The convex hull of a set X, written conv(X), is the set of
points of the form x =

∑T
i=1 λix

i,
∑T

i=1 λi = 1, λi ≥ 0 for i = 1, . . . , T , where
{x1, . . . , xT } is any finite set of points of X. A point x expressed in this way
is said to be a convex combination of the points x1, . . . , xT .

For IPs and rational MIPs, conv(X) is a polyhedron. It follows that
conv(X) is the best of all possible formulations for X (see Figure 6.2), and

z = min{cx : x ∈ conv(X)} ≥ min{cx : x ∈ P},

for all formulations P of X.

6.1.2 Valid Inequality Representation of Polyhedra

In this subsection we have in mind that P is a polyhedron, X = P ∩ Z
n, and

in many cases P = conv(X).

Definition 6.5 An inequality πx ≥ π0 with (π, π0) ∈ R
n × R

1 is a valid
inequality for P ⊆ R

n if it is satisfied by all points in P , that is, if πx ≥ π0
for all x ∈ P .
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One is particularly interested in “strong” or “strongest” valid inequalities.
The natural candidates are the inequalities that are necessary to define the
polyhedron P . To distinguish between valid inequalities, we need a couple of
concepts.

Definition 6.6 A set x0, x1, . . . , xk of k + 1 points in R
n are affinely inde-

pendent if the unique solution of

k∑
i=0

αix
i = 0,

k∑
i=0

αi = 0

is αi = 0 for i = 0, . . . , k, or in other words if the k vectors of differences
x1 − x0, . . . , xk − x0 are linearly independent.

Definition 6.7 A set P ⊆ R
n is of dimension k (dim(P ) = k) if the maxi-

mum number of affinely independent points in P is k + 1.

Now we can single out special types of valid inequalities. Suppose that
dim(P ) = n − k for some k ≥ 0.

i. First there are valid inequalities that are satisfied at equality by all points
of P , that is, hyperplanes {x : πx = π0} that completely contain P . There
are k (linearly) independent equations with this property.

ii. Given a polyhedron P , a valid inequality πx ≥ π0
– that contains n − k (affinely) independent points of P satisfying the

inequality at equality, and
– such that πx > π0 for some x ∈ P ,

is called a facet-defining inequality, and the corresponding set F = P ∩{x :
πx = π0} is a facet of P . The dimension of F is dim(P ) − 1.

iii. Given a valid inequality πx ≥ π0 for P , the set F = P ∩ {x : πx = π0} is
called a face of P . It is a proper face if ∅ ⊂ F ⊂ P .

In Figure 6.2, consider P = conv(X). We have n = 2, k = 0, and
dim(P ) =dim(X) = 2. There is no equality π1x1 + π2x2 = π0 that com-
pletely contains all points of X. conv(X) is described by five facets, each of
dimension n − k − 1 = 1 and containing two affinely independent points. The
facet F = conv(X) ∩ {x : x2 = 1} is generated by the facet-defining valid
inequality x2 ≥ 1 and contains the affinely independent points (2, 1) and (3, 1).

Theorem 6.1 If P = {x ∈ R
n
+ : Ax ≥ b} with dim(P ) = n−k, the polyhedron

P is completely described by k independent equalities of type i and one of the
facet-defining inequalities of type ii for each facet of P .

The interest of having a complete linear description of P = conv(X) is
that any linear integer program min{cx : x ∈ X} can be solved as a linear
program min{cx : x ∈ conv(X)}. Whether or not such a description is known
and of manageable size, our basic working hypothesis is that
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– the better the formulation of our integer program, the more effective will
be the algorithm used to solve the problem, and

– adding “strong” valid inequalities, such as facet-defining inequalities for
conv(X), to our initial formulation improves the formulation.

In particular if we are using a mathematical programming system based
on linear programming and branch-and-bound, the better formulation will
typically lead to improved linear programming bounds and less nodes in the
branch-and-bound tree.

6.1.3 Extreme Point Representation of Polyhedra

Rather than being described by valid inequalities, polyhedra can also be de-
scribed in terms of points and rays.

Definition 6.8 x ∈ P is an extreme point of a polyhedron P if there do not
exist two points x1, x2 ∈ P , x1 �= x2 with x = 1

2x1 + 1
2x2.

In other words, an extreme point of P is a point of P that cannot be
written as the convex combination of two other points in P .

Definition 6.9 r �= 0 is a ray of a polyhedron P �= ∅ if x ∈ P implies
x + λr ∈ P for all λ ≥ 0.
A ray r of P is an extreme ray if there do not exist two rays r1, r2 of P ,
r1 �= λr2 for some λ > 0, with r = 1

2r1 + 1
2r2.

Theorem 6.2 Every polyhedron P = {x ∈ R
n : Ax ≥ b} �= ∅ with rank(A) =

n can be represented as a convex combination of extreme points {xt}T
t=1 and

a non-negative combination of extreme rays {rs}S
s=1:

P = {x : x =
∑T

t=1 λtx
t +

∑S
s=1 µsr

s,∑T
t=1 λt = 1, λ ∈ R

T
+, µ ∈ R

S
+}.

The condition on the rank ensures that P has at least one extreme point,
or equivalently that there is no ray r of P for which −r is also a ray of P .

Example 6.1 Consider the polyhedron P , shown in Figure 6.3:

s + y ≥ 2.7
2s + y ≥ 2
3s + y ≥ 3
s ≥ 0
s + 0.7y ≥ 2.1.

The points (6, 0), (7, 0), (0, 5) in P are affinely independent, so dim(P ) = 2.
Removing the two inequalities 2s + y ≥ 2 and 3s + y ≥ 3 that do not de-
fine facets, and are thus not necessary to describe P , we obtain a minimal
description of P :
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s

y

(2.7,0)

(0,3)

(0.7,2)

(0,1)

(1,-1)

Figure 6.3. A polyhedron P .

s + y ≥ 2.7
s ≥ 0
s + 0.7y ≥ 2.1.

To represent P in terms of extreme points and extreme rays, we see that there
are two extreme points (0.7, 2) and (0, 3), and two extreme rays (1,−1) and
(0, 1). Thus we obtain the alternative description:

P = {(s, y) ∈ R
2 :

( s
y

)
=

( 0
3
)
λ1 +

( 0.7
2

)
λ2 +

(0
1
)
µ1 +

( 1
−1

)
µ2,

λ1 + λ2 = 1, λ ∈ R
2
+, µ ∈ R

2
+}.

6.1.4 Cutting Planes and the Separation Problem

In principle one could add all the facet-defining inequalities a priori. However
as there is an infinity of valid inequalities, and even the number of facet-
defining inequalities can be incredibly large, it is not always possible or desir-
able to add all the inequalities to the formulation a priori.

Another possibility is to add valid inequalities as cuts or cutting planes
thereby removing a point x∗ that is not integral and that is part of the current
formulation. Such points are typically obtained as the optimal solution of the
linear program obtained by optimizing over the current formulation P of X;
see Figure 6.4.

The problem of finding whether there is a valid inequality for X cutting
off x∗ is an important one.
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min cx

x*

Cut

P

Figure 6.4. A cut removing x∗.

Definition 6.10 Given (X, x∗), the separation problem, denoted SEP (X, x∗)
or SEP (conv(X), x∗), is the problem of finding a valid inequality (π, π0) for
conv(X) cutting off x∗, or deciding that there is no such inequality.

Note that if no such inequality exists, x∗ ∈ conv(X).
Even if we do not have a complete description of conv(X), we may have a

family of valid inequalities F . These give us implicitly the polyhedron

PF = {x ∈ R
n
+ : πx ≥ π0 for all (π, π0) ∈ F},

for which we then wish to solve the separation problem SEP (PF , x∗).
A generic cutting plane algorithm based on the separation problem has

been described in Section 3.5.

6.1.5 Extended Formulations

Another way to strengthen a formulation is to look for an extended formulation
involving additional variables that somehow leads to a more precise description
of the problem. For X = {x ∈ Z

n
+ : Ax ≥ b}, suppose that it can be shown

that
X = {x ∈ Z

n
+ : Bx + Gz ≥ d for some z ∈ R

q}.

Now let Q = {(x, z) ∈ R
n
+ × R

q : Bx + Gz ≥ d}.
The projection of Q into the x-space, denoted projxQ, is the polyhedron

given by

projxQ = {x ∈ R
n : there exists z for which (x, z) ∈ Q}.

Now P̃ = projxQ is a formulation for X as X = P̃ ∩ Z
n. Such a projection is

shown in Figure 6.5.



192 6 Mixed Integer Programming Algorithms

Q

proj Q
x

z

Figure 6.5. Extended formulation and projection.

Definition 6.11 The polyhedron Q = {(x, z) ∈ R
n
+×R

q : Bx+Gz ≥ d} is an
extended formulation for X = {x ∈ Z

n
+ : Ax ≥ b} if projxQ is a formulation

for X.

An implicit formulation P̃ can be much stronger than the original formula-
tion, and there are extended formulations, that we call tight, whose projection
gives conv(X). What is particularly interesting is that the number of inequal-
ities needed to describe conv(X) with an extended formulation may be small
(perhaps polynomial) compared to the number of facet-defining inequalities
(possibly exponential) needed to describe conv(X) in the original space.

6.1.6 Optimization and Separation: Polynomial Equivalence

The discussion so far has been motivated by the idea of finding an explicit
description of conv(X), or a tight extended formulation. For which problem
classes can we hope to find such descriptions of conv(X)?

To get a partial answer to this question, we need to consider simultane-
ously the separation problem SEP (X, x∗) and the corresponding optimization
problem.

Definition 6.12 Given (X, c), the optimization problem, OPT (X, c), is to
find an optimal solution x∗ to the problem min{cx : x ∈ X}.

The following fundamental result tells us that these two problems are
either both easy, or both difficult.

Theorem 6.3 Subject to certain technical conditions, OPT is polynomially
solvable if and only if SEP is polynomially solvable .

The practical consequence of this is that there is only hope of finding
a good description of conv(X) (i.e., all facet-defining inequalities are easily
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described, or there exists a tight extended formulation that is compact in the
number of constraints and variables) if one of the problems OPT (X, c) or
SEP (X, x∗), and thus both, are polynomially solvable.

On the other hand, for problems that are difficult (NP-hard problems
in complexity theory), we can at best hope to find partial descriptions of
conv(X).

6.1.7 Optimization and Separation for Polynomially Solvable
Problems

A variety of algorithms is used in Parts III and IV to establish that various
OPT and SEP problems are polynomially solvable. However, throughout
there is a certain emphasis on finding an explicit description of conv(X) in the
original variable space, and/or a tight extended formulation whose projection
is conv(X). Here we address a few points that are important when using such
formulations.

Optimization by Linear Programming

Suppose that to solve OPT (X, c), we solve

max{cx : x ∈ conv(X)}
by linear programming. As X is typically a discrete set, we need to find an
optimal extreme point solution of conv(X) so as to be sure that the point
obtained lies in X. Otherwise, if the face of optimal solutions consists of more
than a single point, the linear program has nonextreme optimal solutions.
Thus it is important to use an algorithm that terminates with an extreme
point. Alternatively it is always possible to very slightly perturb the objective
function vector c, so that the linear program has a unique (and hence extreme
point) optimal solution.

Optimization Using a Tight Extended Formulation

Here, using the notation of Subsection 6.1.5, we wish to solve OPT (X, c) by
solving the linear program

max{cx + 0z : (x, z) ∈ Q} = max{cx + 0z : Bx + Gz ≥ d, x ∈ R
n
+, z ∈ R

q},

where projx(Q) = conv(X). Here there is a further potential difficulty. Even if
(x∗, z∗) is an optimal extreme point of the linear program and thus an extreme
point of Q, x∗ may not be an extreme point of conv(X). An example where
this occurs is shown in Figure 6.6. The solution is again to slightly perturb the
objective function vector c while keeping zero cost on the z variables. Now the
projection of the face of optimal solutions must be a single point, and hence
an extreme point of conv(X).
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Figure 6.6. (x3, z3) is extreme in Q, but x3 is not extreme in conv(X).

Separation Using a Tight Extended Formulation

Suppose that we know a tight extended formulation Q with projx(Q) =
conv(X) and we wish to solve SEP (X, x∗). We have that

x∗ /∈ conv(X) if and only if {z ∈ R
q : Bx∗ + Gz ≥ d} = ∅

if and only if {z ∈ R
q : Gz ≥ d − Bx∗} = ∅.

From Farkas’ lemma, the latter holds if and only if there exists a dual vector
π ≥ 0 with πG = 0 and π(d − Bx∗) > 0. It follows that

πBx ≥ πd

is a valid inequality for conv(X) cutting off x∗ and that

conv(X) = {x ∈ R
n
+ : πBx ≥ πd for all π ≥ 0 with πG = 0}.

Solving a standard Phase 1 linear program with artificial variables w such as

min{
∑

i

wi : Gz + Iw ≥ d − Bx∗, w ≥ 0}

provides a direct way to test if {z ∈ R
q : Gz ≥ d − Bx∗} = ∅, and, when x∗ /∈

conv(X), the optimal dual variables of this linear program provide a vector
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π satisfying the conditions of Farkas, and hence a valid inequality cutting off
x∗. So when there exists a polynomial size tight extended formulation, there
exists both a polynomial time LP optimization algorithm and a polynomial
time LP separation algorithm.

6.2 Decomposition and Reformulation

Suppose that the optimization problem OPT (X, c) that we are trying to solve
is hard. It follows that SEP (X, x∗) is hard, and and so there is no real chance
of finding a good description of conv(X).

Suppose in addition that the feasible region X for which we have a formu-
lation PX can be broken up into two (or more) parts

X = Y ∩ Z with Y, Z ⊆ Z
n
+,

so the problem to be solved can be written equivalently as

min{cx : x ∈ Y ∩ Z}.

Let PY , PZ be the initial formulations for Y and Z, respectively.
The best possible case is that in which both problems OPT (Y, c) and

OPT (Z, c) are easy. In this case both problems SEP (Y, x∗) and SEP (Z, x∗)
are easy, and there is the possibility of describing conv(Y ) and conv(Z) explic-
itly. If such descriptions can be found, we then have the improved formulation

P̃X = conv(Y ) ∩ conv(Z).

The second possibility is that OPT (Y, c) is easy, but OPT (Z, c) is hard.
In this case we can as a first step hope to obtain an improved formulation

P̃X = conv(Y ) ∩ PZ ,

and then possibly an even better formulation

P̃X = conv(Y ) ∩ P̃Z ,

where P̃Z is a good approximation to conv(Z).
In the case where both problems OPT (Y, c) and OPT (Z, c) are difficult,

we can still aim for an improved formulation

P̃X = P̃Y ∩ P̃Z ,

where P̃Y , P̃Z are good approximations to conv(Y ) and conv(Z), respectively.
Obviously these ideas can be repeated to break up the sets Y and Z. In

particular suppose that
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Y = Ŷ 1 × · · · × Ŷ m =
m∏

i=1

Ŷ i, and Z = Ẑ1 × · · · × Ẑn =
n∏

j=1

Ẑj ,

where each of the sets Ŷ i is of the form Ŷ , each of the sets Ẑj is of the form
Ẑ, and Y 1 × Y 2 = {(y1, y2) : y1 ∈ Y 1 and y2 ∈ Y 2}. Then if conv(Ŷ ) and
conv(Ẑ) are known, we have the reformulation

P̃X = conv(Y ) ∩ conv(Z)
= [conv(Ŷ 1) × · · · × conv(Ŷ m)] ∩ [conv(Ẑ1) × · · · × conv(Ẑn)].

6.2.1 Decomposition of a Multi-Item Lot-Sizing Problem

We consider a typical multi-item lot-sizing problem with m items, n periods,
demands di

t for item i in period t, individual production limits Ci
t , production,

storage, and fixed costs pi
t, hi

t and qi
t respectively, machine production rates

ai, set-up times bi, and machine capacity Bt. Taking the following variables

xi
t is the production of item i in period t,

si
t is the stock of item i at end of period t, and

yi
t = 1 if item i is set up in period t, and yi

t = 0 otherwise,

we obtain a first natural formulation

min
∑
i,t

pi
tx

i
t +

∑
i,t

hi
ts

i
t +

∑
i,t

qi
ty

i
t

si
t−1 + xi

t = di
t + si

t for all i, t (6.1)

xi
t ≤ Ci

ty
i
t for all i, t (6.2)∑

i

aixi
t +

∑
i

biyi
t ≤ Bt for all t (6.3)

xi
t, s

i
t ≥ 0, yi

t ∈ {0, 1} for all i, t. (6.4)

Here (6.1) are the product conservation equations, (6.2) the variable upper
bound capacity constraints imposing that a machine has to be set up for an
item before it can be produced, and (6.3) the machine capacity constraints
linking the production of different items.

Now we examine the structure of the feasible region X described by the
constraints (6.1)–(6.4). We note that X can be written as

X = (
m∏

i=1

Ŷ i) ∩ (
n∏

t=1

Ẑt),

where

Ŷ i = {(xi, si, yi) ∈ R
n × R

n × {0, 1}n : satisfying (6.1)-6.2) for all t}
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is a single item lot-sizing region, and

Ẑt = {(xt, st, yt) ∈ R
m × R

m × {0, 1}m : satisfying (6.2)-(6.3) for all i}
is a generalized single-node flow region (see Chapter 8).

This is precisely the structure discussed above, so this provides the mo-
tivation to study the separation and optimization problems associated with
Ŷ , the single-item lot-sizing set, and Ẑ, the single-node flow set, in order to
obtain improved formulations for X.

6.3 Decomposition Algorithms

6.3.1 Decomposition Algorithms I: Valid Inequalities and
Separation

Consider again the problem IP or OPT (X, c) in the form

min{cx : x ∈ Y ∩ Z} where X = Y ∩ Z, Y = PY ∩ Z
n, Z = PZ ∩ Z

n,

and PY and PZ are formulations for Y and Z, respectively. We suppose that
OPT (Y, c) is easy.

The discussion so far suggests several different approaches that can be
taken to solve this problem with a mixed integer programming system; see
Chapter 3.

Algorithm 1. A Priori Reformulation. Find a formulation P̃Y that ap-
proximates or describes conv(Y ). Use a standard MIP system to solve IP
using as initial formulation

P̃ 1
X = P̃Y ∩ PZ .

Algorithm 2. Use of an Extended Formulation. Find an extended for-
mulation QY = {(x, w) ∈ R

n × R
p : Bx + Gw ≥ d} of Y such that projx(QY )

provides a good approximation or an exact description of conv(Y ). Use a
standard MIP system to solve the mixed integer program

min{cx : (x, w) ∈ QY , x ∈ Z}

which is equivalent (in terms of linear relaxation or LP bound) to using the
formulation

P̃ 2
X = projx(QY ) ∩ PZ .

Algorithm 3. Reformulation by Cutting Planes. Here one needs an
exact or heuristic algorithm to solve SEP (Y, x∗). One then solves linear pro-
grams starting with the initial formulation PY ∩ PZ . At each iteration one or
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more cutting planes πtx ≥ πt
0 are generated, and added to the formulation.

The iterations stop when no more cuts are generated. Suppose that T cuts
are generated in all.

Now the resulting formulation

P̃ 3
X = PY ∩ PZ ∩ {x : πtx ≥ πt

0 for t = 1, . . . , T}
can be input to a standard MIP system. This approach is also known as
cut-and-branch when cuts are only added before the branch-and-bound enu-
meration.

Algorithm 4. Branch-and-Cut. If the cuts are also added at nodes of the
branch-and-bound tree, we attempt to go one step further and generate an
appropriate tight formulation at all (or many) nodes of the tree. As indicated
in Chapter 3 this is now possible with several of the state-of-the-art MIP
systems.

Should one of these methods be preferred to another? Let zi
LP for i = 1, 2, 3

be the value of the LP solution max{cx : x ∈ P̃ i
X}, measuring the strength of

the first three formulations.

Proposition 6.4 If the formulations giving conv(Y ) are tight formulations,
and the separation algorithm SEP(Y, x∗) for Y is exact,

z1
LP = z2

LP = z3
LP = min{cx : x ∈ conv(Y ) ∩ PZ}.

Therefore the approaches are equivalent, and ease of implementation and run-
ning times should be the deciding factor in choosing between them.

6.3.2 Decomposition Algorithms II: Lagrangian Relaxation and
Column Generation

There are cases in which OPT (Y, c) is relatively easy to solve in practice, and
next to nothing is known about a practical algorithm for SEP (Y, x∗), or even
about interesting classes of valid inequalities for Y . In such cases another class
of well-known decomposition algorithms is more appropriate.

Consider again the problem

z = min{cx : x ∈ Y ∩ Z}.

Here we suppose either that OPT (Y, c) is easy, or that small- to medium-sized
instances are well solved in practice (even though it may theoretically be a
hard problem). Also let PZ = {x ∈ R

n
+ : Dx ≥ d} be the formulation for Z.

We are interested in obtaining a strong lower bound by solving

w = min{cx : x ∈ conv(Y ) ∩ PZ} ≤ z

with no knowledge about valid inequalities or strong formulations for Y .
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Below we consider two classical approaches: (Dantzig–Wolfe) column gen-
eration and Lagrangian relaxation. Both algorithms iterate between two prob-
lems:

• A master problem in which, at iteration t, new “prices” πt on the linking
or complicating constraints Dx ≥ d (represented by a row vector, with one
price for each constraint) are calculated based on the previous prices πt−1

and a set x1, . . . , xt−1 ∈ Y of “proposals”.
• A subproblem OPT (Y, (c − πtD))

L(πt) = min{(c − πtD)x + πtd : x ∈ Y }

which provides a lower (or dual) bound on the optimal value w, and a new
proposal xt (xt is an optimal solution to problem OPT (Y, (c − πtD)) to
be sent to the master problem.

Observe that L(πt) ≤ w for any πt ≥ 0 because, for x� ∈ Y ∩ PZ with
w = cx� (i.e., x� is an optimal solution to OPT (conv(Y ) ∩ PZ , c)), we have

w = cx� ≥ cx� − πt(Dx� − d) = (c − πtD)x� + πtd ≥ L(πt) ,

where the first inequality holds because x� ∈ PZ and πt ≥ 0 and the second
inequality holds because x� is feasible but not necessarily optimal for the
subproblem OPT (Y, (c − πtD)).

The final result of column generation and Lagrangian relaxation is a solu-
tion to the Lagrangian dual problem

w = max
π≥0

L(π)

with w ≤ z.

Outline of the Column Generation Algorithm.
Let x1, . . . , xt−1 be a set of points of Y .

The master problem at iteration t is the linear program:

zt = min cx

Dx ≥ d

x ∈ conv{x1, . . . , xt−1}.

After substitution of x =
∑t−1

τ=1 λτxτ ,
∑t−1

τ=1 λτ = 1, λτ ≥ 0 for τ = 1, . . . , t−1
(i.e., x is a convex combination of points x1, . . . , xt−1), this problem can be
rewritten in the form:
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zt = min
t−1∑
τ=1

λτ (cxτ )

t−1∑
τ=1

λτ (Dxτ ) ≥ d

t−1∑
τ=1

λτ = 1

λτ ≥ 0 for τ = 1, . . . , t − 1.

Let (πt, πt
0) be optimal dual variables for this linear program, so πt ≥ 0 are

the dual variables on the constraints Dx ≥ d and πt
0 is the dual variable on

the convexity constraint
∑t−1

τ=1 λτ = 1. Note that zt = πt
0 + πtd ≥ w because

conv{x1, . . . , xt−1} ⊆ conv(Y ).
The subproblem at iteration t is

ζt = min (c − πtD)x − πt
0

x ∈ Y.

It computes the minimum reduced cost of a new column x ∈ Y to add to the
master. If ζt < 0, then the optimal solution xt to the subproblem is the new
“proposal” or column sent to the master problem for iteration t + 1.

Note that the subproblem gives also a lower bound on the optimal value
w because w ≥ L(πt) = ζt + πt

0 + πtd.
The algorithm terminates when ζt ≥ 0. Then w = L(πt) = cx̃t, where

x̃t ∈ {x : Dx ≥ d} ∩ conv(Y ) is a solution of the master problem.

Outline of the Lagrangian Relaxation Subgradient Algorithm.

Here the master problem at iteration t produces an update of the dual vari-
ables. This update is given by the simple formula

πt = max{0, πt−1 + µt(d − Dxt−1)}
where the sequence of values µt is chosen appropriately and converges to zero.

The subproblem at iteration t is the optimization problem obtained by
relaxing or dualizing the the constraints Dx ≥ d

L(πt) = min (c − πtD)x + πtd

x ∈ Y,

with solution xt ∈ Y . Observe that this is exactly the same subproblem as in
the Column Generation Algorithm.

The algorithm terminates if Dxt ≥ d and πt(Dxt − d) = 0. However, in
general one only obtains that limt→∞ L(πt) → w, so the algorithm typically
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terminates with a lower bound maxu=1,...,t L(πu) on w without necessarily
finding a good primal feasible solution x satisfying Dx ≥ d.

Finally both these algorithms need to be embedded into a branch-and-
bound scheme. Here the choice of branching variables or objects is not always
obvious, especially as the convexity variables from the column generation pro-
cedure are not good objects on which to branch.

Should one of these two algorithms be preferred? How does their common
bound w compare with the bound zLP given by the algorithms of the previous
section using cuts or reformulation?

Theorem 6.5 w = maxπ≥0 L(π) = zLP = min{cx : x ∈ conv(Y ) ∩ PZ}.
So the outcome of both these algorithms is to convexify the set Y while leaving
the formulation of Z unchanged.

6.3.3 Decomposition Algorithms III: Hybrid Algorithms

It is possible to obtain the stronger lower bound

w∗ = min{cx : x ∈ conv(Y ) ∩ conv(Z)}

when one has either a practical algorithm for separation or optimization for
both Y and Z. The case when one has a separation algorithm for both is
obvious, and is a direct extension of algorithms from Section 6.3.1. We now
consider briefly the other two possibilities.

Lagrangian Decomposition

OPT (Y, c) and OPT (Z, c) are both tractable.
The problem is reformulated as

min α cy + (1 − α) cz

y − z = 0
y ∈ Y, z ∈ Z,

where 0 ≤ α ≤ 1. The reformulated problem is then solved by Lagrangian
relaxation, dualizing the constraints y − z = 0. It follows immediately from
Theorem 6.5 that the bound w∗ is achieved.

Combined Column Generation and Cutting Planes

SEP (Y, c) and OPT (Z, c) are both tractable.

The master problem at iteration t.
This problem is constructed from a set {xi}i∈It−1 of points of Z and a set
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{(πj , πj
0)}j∈Jt−1 of valid inequalities for conv(Y ) giving either the linear pro-

gram:

zt = min cx

x −
∑

i∈It−1

λix
i = 0

∑
i∈It−1

λi = 1

∑
j∈Jt−1

πjx ≥ πj
0 for j ∈ J t−1

λi ≥ 0 for i ∈ It−1,

or, if we eliminate the x variables, the linear program:

zt = min
∑

i∈It−1

(cxi)λi

∑
i∈It−1

(πjxi)λi ≥ πj
0 for j ∈ J t−1

∑
i∈It−1

λi = 1

λi ≥ 0 for i ∈ It−1.

Let λt be a primal optimal solution and (µt, µt
0) ∈ R

|Jt−1|
+ × R

1 a dual
optimal solution.

The order in which the two subproblems are solved below is arbitrary. We
have chosen to look first for a violated inequality.

The Separation Subproblem – Adding Constraints.
Solve SEP (Y,

∑
i∈It−1

λt
ix

i).
If a valid inequality (πt, πt

0) is generated, cutting off the point
∑

i∈It−1 λt
ix

i,
set J t = J t−1 ∪ {t}, set t ← t + 1, and return to the Master.
Otherwise set J t = J t−1, and go to the optimization subproblem.

The Optimization Subproblem – Adding Columns.
Solve OPT (Z, c − ∑

j∈Jt−1 µt
jπ

j) with optimal value ζt and solution xt.
If ζt < µt

0, the column corresponding to xt has negative reduced cost. Set
It = It−1 ∪ {t}, set t ← t + 1, and return to the Master.
Otherwise stop.

On termination w∗ = cx∗, where x∗ =
∑

i∈It−1 λt
ix

i ∈ conv(Y ) ∩ conv(Z).
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6.4 Convex Hull Proofs

Suppose that X ⊂ Z
n is an integer set, and P is a formulation for X, so

P = {x ∈ R
n
+ : Ax ≥ b}, X = P ∩ Z

n, and conv(X) ⊆ P . Below we assume
for simplicity that conv(X) �= ∅, that both conv(X) and P have extreme
points, and that conv(X) is not just a single point.

We say that a nonempty polyhedron (with extreme points) is integral if
all its extreme points are integral. The extension to mixed integer sets is
straightforward. We say that an extreme point is integral if all the coordinates
of the integer variables are integral. For simplicity, we consider here only
integer sets.

How can one prove that P = conv(X), or equivalently that P is integral?
Below we indicate several ways of proving such a result. Several of them are
used later, particularly in Chapters 7 and 8.

First we list some of the ways that follow more or less from the definition

1. Show that all extreme points of P are integral.
The contrapositive is:

2. Show that all points of P with x /∈ Zn are not extreme points of P .
3. Show that all facets/faces of P have integral extreme points.
4. Show that the linear program: min{cx : x ∈ P} has an optimal solution

in X for all c ∈ R
n.

One way to do this is:
5. Show that there exists a point x∗ ∈ X and point u∗ feasible in the dual

linear program: wD = max{ub : uA ≤ c, u ∈ R
m
+} with cx∗ = u∗b.

Another is:
6. Assuming b ∈ Z

m, show that, for all c ∈ Z
n for which the optimal dual

value wD is bounded, wD is integer-valued.
7. Show that dim(conv(X)) = dim(P ), and that if πx ≥ π0 is a facet-defining

inequality for conv(X), then πx ≥ π0 must be identical to one of the
inequalities aqx ≥ bq defining P .

8. Show that dim(conv(X)) = dim(P ), and that for all c ∈ R
n for which

M(c) �= X and the optimum value is finite, M(c) ⊆ {x : aqx = bq} for
some inequality aqx ≥ bq defining P , where P ∩{x : aqx = bq} is a proper
face of P . Here M(c) = arg min{cx : x ∈ X} is the set of optimal solutions
for a given cost vector c ∈ R

n. This condition is sufficient because, if
πx ≥ π0 defines a facet of conv(X), and we take c = π, then M(π) can
only lie in that facet. It follows that the faces of P contain all the facets
of conv(X).

Another possibility is to show that conv(X) = projx(Q) where Q is
some extended formulation for X.

9. Show that Q is integral.
10. Show that the linear program: max{cx + 0w : (x, w) ∈ Q} always has an

optimal solution with x ∈ Z
n.

We terminate with one very important way of showing that P is integral.
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Definition 6.13 A {0,+1,−1} matrix A is totally unimodular (TU) if every
square submatrix of A has determinant 0, 1, or −1.

To recognize such matrices, we have the following very useful test.

Proposition 6.6 A {0,+1,−1} matrix A is totally unimodular if, for any
subset J of the set N = {1, . . . , n} of columns, there is a partition J1, J2 of J
such that for every row i = 1, . . . , m,

|
∑
j∈J1

aij −
∑
j∈J2

aij | ≤ 1.

The importance of TU matrices resides in the following well-known result.

Theorem 6.7 If A is totally unimodular, b ∈ Z
m, and l, h ∈ Z

n, then the
polyhedron

{x ∈ R
n : Ax ≤ b, l ≤ x ≤ h}

is integral, whenever it is nonempty.

Exercises

Exercise 6.1 Consider the set

X = {y ∈ Z
n
+ : C

n∑
j=1

yj ≥ b}.

i. Find conv(X).
ii. Find conv(X ∩ {0, 1}n).

Exercise 6.2 Consider the set

X = {(x, y) ∈ [0, 1]m × {0, 1} :
m∑

j=1

xj ≤ my}.

Show that

conv(X) = {(x, y) ∈ [0, 1]m × [0, 1] : xj ≤ y for j = 1, . . . , m}.

Exercise 6.3 Consider the set

X = {(x, y) ∈ R
n
+ × {0, 1}n :

n∑
j=1

xj ≤ b, xj ≤ yj for j = 1, . . . , n}.

i. Show that, if f = b − 	b
 > 0, the inequality∑
j∈S

xj + f
∑
j∈S

(1 − yj) ≤ b

is valid for X, and facet-defining if |S| > b.
ii. Given that all nontrivial facets of conv(X) are of the above form, give a
tight extended formulation for conv(X).
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Exercise 6.4 Show that if a 0–1 matrix A has the consecutive 1s property
(i.e., for all rows i = 1, . . . , m, if aij = aik = 1 for k > j + 1, then ait = 1 for
all j < t < k), then matrix A is totally unimodular.

Notes

Section 6.1 An introduction to polyhedra as they arise in integer programs
can be found in several books, in particular Schrijver [148] and Nemhauser
and Wolsey [126]. The equivalence of optimization and separation is due to
Grötschel, Lovász, and Schrijver [79, 80]. A large majority of the remark-
able developments in combinatorial optimization and polyhedral combina-
torics over the past 25 to 30 years have been concentrated in the development
of valid inequalities and in separation algorithms for these inequalities. The
equal emphasis placed in this book on extended formulations is relatively new.
However, such formulations have been known for some time; one of the ear-
liest is the representation of the closed convex hull of the union of polyhedra
of Balas [18, 21] that we present in Section 8.4.

Section 6.2 The decomposition approach described here is familiar to any-
one who has attempted to use a decomposition algorithm. The idea of decom-
posing multi-item lot-sizing problems was already examined in the papers of
Manne [115] and Dzielinski and Gomory [59].

Section 6.3 Details on different decomposition algorithms for integer pro-
gramming can be found in textbooks on integer programming, such as
Nemhauser and Wolsey [126], Martin [119], Parker and Rardin [131], and
Wolsey [193]. Decomposition for linear programs originated with Dantzig and
Wolfe [53], and column generation with Gilmore and Gomory [75]. Lagrangian
relaxation was first applied by Held and Karp [89] to the traveling salesman
problem. A fundamental paper showing its importance for integer program-
ming is that of Geoffrion [73]. Lagrangian relaxation methods and Dantzig–
Wolfe or column generation methods have been used to solve numerous pro-
duction planning models. See, for instance, Afentakis et al. [2], Afentakis and
Gavish [1], Chen and Thizy [36], Diaby et al. [56], Tempelmeier and Derstoff
[158], Thizy and Van Wassenhove [160], Trigeiro et al. [161] for Lagrangian re-
laxation approaches, and Kang et al. [95] and Vanderbeck [182] among others
for column generation approaches

Lagrangian decomposition was suggested in Jornsten and Nasberg [94] and
Guignard and Kim [84], and the combination of cutting planes and column
generation has been a challenge for several years; see, for instance, the recent
work of Poggi and Uchoa [143] and Fukasawa et al. [72].

Section 6.4 A simple example demonstrating the different convex hull proof
techniques can be found in Section 6.2 of Wolsey [193]. The classical primal–
dual method (5) is due to Edmonds [60], and the very useful approach (8) is
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attributed to Lovász [109]. Total unimodularity is also treated in most of the
books cited above. Proposition 6.6 is due to Ghoula-Houri [74].



7

Single-Item Uncapacitated Lot-Sizing

Here we consider the simplest possible production planning problem involving
time-varying demand, and fixed set-up or order placement costs. This prob-
lem has been introduced and classified as LS-U in Part I. By studying the
properties of this model and different ways to solve it, we hope to learn how to
analyze and solve more complicated single-item variants in Part III, as well as
to provide many of the results needed to tackle more complicated multi-item
problems by the decomposition approach in Part IV.

• In Section 7.1 we formulate problem LS-U . This formulation is repeated
here to make this chapter self-contained and independent of Part I.

• In Section 7.2 we characterize optimal solutions of LS-U .
• Then we describe and analyze dynamic programming algorithms for LS-U

in Section 7.3.
• In Section 7.4 we describe linear programming reformulations, and in par-

ticular the convex hull formulation in the original space, the associated
separation algorithm, and tight extended reformulations.

• In Section 7.5 we analyze the special case WW -U , where the cost function
satisfies the nonspeculative Wagner–Whitin condition.

• Partial reformulation results are described in Section 7.6. These are useful
in solving large problem instances.

• Finally in Section 7.7 we give proofs of some of the convex hull and tight
reformulation results presented earlier in the chapter.

7.1 The Uncapacitated Lot-Sizing Problem (LS-U)

The uncapacitated lot-sizing problem LS-U can be described as follows. There
is a planning horizon of n = NT periods. The demand for the item in period
t is dt ≥ 0 for t = 1, . . . , n. For each period t, there are unit production costs
p′

t, unit storage costs h′
t for stock remaining at the end of the period t, and a
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fixed set-up (or order placement) cost qt which is incurred to allow production
to take place in period t, but is independent of the amount produced.

A First Formulation of the Problem.
One natural way to view LS-U is as a minimum cost network flow problem
with, in addition, fixed costs for the use of certain arcs. In Figure 7.1 we show
such a network for an instance with n = 4 periods. The variable and fixed
costs associated with each arc are shown.

d d d d

1

2

31

11

2

2

2

3

33

4

44

0

1 2 3 4
(h’ , 0) (h’ , 0) (h’ , 0)

(p’ ,q )
(p’ ,q )

(p’ ,q )
(p’ ,q )

Figure 7.1. Formulation as a fixed charge network flow.

Note that the flow in arc (0, t) represents the amount produced in period
t, and the flow in arc (t, t + 1) represents the stock at the end of period t.

To formulate the problem as a mixed integer program, we first define
variables. Specifically we use

xt for the amount produced in period t,
st for the amount in stock at the end of period t, and
yt for the 0–1 set-up variable which must have the value 1 if xt > 0.

Now we can write a first mixed integer programming formulation:

min
n∑

t=1

p′
txt +

n∑
t=0

h′
tst +

n∑
t=1

qtyt (7.1)

st−1 + xt = dt + st for 1 ≤ t ≤ n (7.2)
xt ≤ Myt for 1 ≤ t ≤ n (7.3)

s ∈ R
n+1
+ , x ∈ R

n, y ∈ [0, 1]n (7.4)
y ∈ Z

n (7.5)
s0 = s∗

0, sn = s∗
n, (7.6)
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where M is a large positive number.
Here the constraint (7.2) represents conservation of product (or flow con-

servation at node t in the network of Figure 7.1). The constraint (7.3) ensures
that if xt > 0, then yt > 0 and so necessarily yt = 1. The constraint (7.6) is
optional in the sense that there are situations in which both the initial stock
s0 and the final stock sn may be decision variables. However, in the major-
ity of cases their values are fixed, and the values s∗

0, s
∗
n are part of the data.

Unless otherwise stated, we assume their values are fixed. What is more, we
assume that s∗

0 = s∗
n = 0, as in Figure 7.1. This assumption is justified by

Observation 7.1 in the next section.
We denote by XLS−U the set of feasible solutions to (7.2)–(7.6).

7.2 Structure of Optimal Solutions of LS-U

We start with an observation that allows us to simplify the presentation in
most of this section, and can be viewed as a basic preprocessing step for
problems with initial stocks and stock lower bounds (safety stocks).

Observation 7.1 In LS-U , if the initial and final stocks are fixed and there
are stock lower bounds, the problem can be reformulated with modified demands
so that initial and final stocks, and the stock lower bounds, are all zero.

Preprocessing step. Suppose that the initial fixed values are s0 = s∗
0, sn = s∗

n

and the lower bounds are st ≥ s∗
t for 1 ≤ t ≤ n − 1. To treat the stock lower

bounds, one first calculates updated lower bounds: S0 = s∗
0 and

St = max[St−1 − dt, s
∗
t ] for 1 ≤ t ≤ n.

Then one introduces net stock variables nst and makes the substitution nst =
st − St ≥ 0 for t = 0, . . . , n. The resulting balance equations are

nst−1 + xt = (dt + St − St−1) + nst.

Thus we have obtained a modified problem with dt replaced by dt+St−St−1 ≥
0 for 1 ≤ t ≤ n, and the amount

∑n
t=0 h′

tSt added to the objective function.
Finally we set ns0 = nsn = 0.

Suppose that it has been decided in which periods there are set-ups, that
is, y ∈ {0, 1}n is known. The optimal production plan is now a minimum
cost flow in the network of Figure 7.2 except that arcs (0, t) are suppressed if
yt = 0. Note that this is the same network as above (Figure 7.1), but now we
indicate the variables associated with each arc rather than the costs.

We now present a well-known and fundamental property of minimum cost
network flow problems.

Observation 7.2 In a basic or extreme feasible solution of a minimum cost
network flow problem, the arcs corresponding to variables with flows strictly
between their lower and upper bounds form an acyclic graph.
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Figure 7.2. The fixed charge network flow variables.

This immediately tells us something important about the structure of op-
timal solutions to LS-U .

Proposition 7.1 There exists an optimal solution to LS-U in which st−1xt =
0 for all t.

Proof. Given y ∈ {0, 1}n, consider an optimal basic feasible solution. Suppose
st−1 > 0. The stock must originate from production in some period k where
k < t. So the flow on arcs (0, k), (k, k + 1), . . . , (t − 1, t) is positive. As these
edges together with edge (0, t) form a cycle, it follows from Observation 7.2
that xt = 0. ��
Now we can fully describe optimal solutions.

Proposition 7.2 There exists an optimal solution to LS-U characterized by:
i. A subset of periods 1 ≤ t1 < · · · tr ≤ n in which production takes place. The
amount produced in tj is dtj + · · ·+dtj+1−1 for j = 1, . . . , r with tr+1 = n+1;
ii. A subset of periods R ⊆ {1, . . . , n}\{t1, . . . , tr}. There is a set-up in periods
{t1, . . . , tr} ∪ R.

The structure of an optimal solution is shown in Figure 7.3. The intervals
[t1, t2−1], [t2, t3−1],. . . of a basic solution with no stock entering or leaving the
interval, and production in the first period to satisfy demand in all periods of
the interval, are called regeneration intervals. So, Proposition 7.2 shows that
a basic optimal solution can be decomposed into a sequence of regeneration
intervals, plus some additional set-ups without production (periods in R).

Note that if s0 is a variable and s0 > 0, then the first regeneration interval
has a special form with s0 =

∑t
u=1 du for some t. Also in most practical

instances, we will have nonnegative fixed costs qt ≥ 0 for all t, and in these
cases, one can take R = ∅ in Proposition 7.2. However, if there are negative
fixed costs, we have the following simple solution.
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t t t t1 2 3 4

Figure 7.3. Structure of an optimal solution of LS-U .

Observation 7.3 For instances of LS-U with negative fixed costs, it suffices
to replace the fixed costs qt by q+

t = max[qt, 0] for t = 1, . . . , n, and add the
constant term

∑
t min[qt, 0] to the objective function.

Proof. If qt < 0, yt = 1 in any optimal solution. So replacing the term qtyt

by 0yt + qt does not affect the optimal value of the problem. ��

To terminate this section we introduce some notation, and then make a
simple observation that allows us to simplify calculations later.

Notation. Throughout the text we use dkl ≡ ∑l
u=k du.

Observation 7.4 The objective function (7.1) of LS-U can be alternatively
written as either

h0s0 +
∑n

t=1 ptxt +
∑n

t=1 qtyt + K1, (7.7)

where pt = p′
t +

∑n
j=t h′

j for t = 1, . . . , n, h0 =
∑n

t=0 h′
t, and K1 =

−∑n
t=1 h′

td1t, or as
∑n

t=0 htst +
∑n

t=1 qtyt + K2, (7.8)

where ht = h′
t + p′

t − p′
t+1 for t = 0, . . . , n with p′

0 = p′
n+1 = 0 and K2 =∑n

t=1 p′
tdt.

Proof. One can use the flow conservation constraints (7.2) to eliminate either
the production variables {xt}, or the stock variables {st} from the objective
function (7.1). Eliminating the stock variables using st = s0 +

∑t
u=1 xu − d1t

gives

n∑
t=1

p′
txt +

n∑
t=0

h′
tst =

n∑
t=1

p′
txt + (

n∑
t=0

h′
t)s0 +

n∑
t=1

h′
t

t∑
u=1

xu −
n∑

t=1

h′
td1t

= (
n∑

t=0

h′
t)s0 +

n∑
t=1

(p′
t + h′

t + · · · + h′
n)xt −

n∑
t=1

h′
td1t.

Similarly, eliminating the production variables, using xt = dt +st −st−1, gives

n∑
t=1

p′
txt +

n∑
t=0

h′
tst =

n∑
t=1

p′
t(dt + st − st−1) +

n∑
t=0

h′
tst
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=
n∑

t=0

(h′
t + p′

t − p′
t+1)st +

n∑
t=1

p′
tdt

with p′
n+1 = 0. ��

7.3 A Dynamic Programming Algorithm for LS-U

We now present an algorithm to solve LS-U . Using Observation 7.4, we take
as objective function

∑n
t=1 ptxt +

∑n
t=1 qtyt. In addition by Observation 7.1

we take s∗
0 = s∗

n = 0, and by Observation 7.3 we suppose that qt ≥ 0 for all t.
Let G(t) be the minimum cost of solving the problem over the first t

periods, that is, satisfying the demands d1, . . . , dt, and ignoring the demands
after period t, and let φ(k, t) be the minimum cost of solving the problem over
the first t periods subject to the additional condition that the last set-up and
production period is k for some k ≤ t. Now it follows from the definition that

G(t) = min
k:k≤t

φ(k, t).

How can we calculate the values φ(k, t)? Observe that given the structure
of the optimal solutions described in Proposition 7.2 and the condition that
the last production period is k (which implies that sk−1 = 0), the solution up
till period k − 1 must be an optimal solution up to period k − 1, and so it
necessarily has cost G(k − 1). This is an instance of the so-called Principle of
Optimality. So we have that

φ(k, t) = G(k − 1) + qk + pkdkt.

This is all that is needed to obtain a dynamic programming recursion.

Forward Dynamic Programming Recursion

G(0) = 0
G(t) = min

k:k≤t
[G(k − 1) + qk + pkdkt] for t = 1, . . . , n.

By calculating G(1), G(2), . . . , in order, one terminates with G(n), the value
of an optimal solution to LS-U .

To recover an optimal solution, a little more information must be kept.
Let κt = arg mink:k≤t[G(k − 1) + qk + pkdkt]. Then one can work backwards.
κn gives the information that yκn = 1 and xκn = dκn,n. Continuing, we need
to find an optimal solution for periods 1, . . . , κn − 1 of cost G(κn − 1), with
the last production period before κn − 1 given by κ(κn−1), and so on.

Note that in fact the calculations in the recursion are very simple because
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φ(k, t + 1) = φ(k, t) + pkdt+1 for all k, t with k ≤ t, and
φ(k, k) = G(k − 1) + qk + pkdk for all k.

This calculation can clearly be carried out in O(n2) operations. We now
demonstrate the algorithm.

Example 7.1 Consider an instance of LS-U with n = 5, d = (3, 2, 1, 2, 1),
q = (0, 12, 7, 4, 5), p = (3, 0, 1, 0, 2), and h = 0.

Applying the recursion, we obtain
G(1) = φ(1, 1) = q1 + p1d1 = 0 + 3 × 3 = 9, and so κ1 = 1.

G(2) = min[φ(1, 2), φ(2, 2)] = min[φ(1, 1) + p1d2, G(1) + q2 + p2d2]
= min{9 + 3 × 2, G(1) + 12 + 0} = min{15, 21} = 15, and so κ2 = 1.

G(3) = min[φ(1, 3), φ(2, 3), φ(3, 3)]
= min[φ(1, 2) + p1d3, φ(2, 2) + p2d3, G(2) + q3 + p3d3]
= min{15+3×1, 21+0×1, G(2)+7+1×1} = min{18, 21, 23} = 18, so κ3 = 1.

G(4) = min{18 + 3 × 2, 21 + 0 × 2, 23 + 1 × 2, G(3) + 4 + 0 × 2}
= min{24, 21, 25, 22} = 21, so κ4 = 2.

G(5) = min{24+3×1, 21+0×1, 25+1×1, 22+0×1, G(4)+5+2×1} = 21,
so κ5 = 2.

Thus the optimal value is G(5) = 21.

Working backwards to find an optimal solution, κ5 = 2 so an optimal so-
lution is obtained by setting y2 = 1 and x2 = d25 = 6, and completing with an
optimal solution for the first κ5 − 1 = 1 period of value G(1). Here κ1 = 1,
and so y1 = 1, x1 = d11 = 3. Therefore a complete optimal solution is given
by y1 = y2 = 1 with x1 = d1 = 3 and x2 = d25 = 6.

Now we look at a backward variant and also consider whether it is possible
to solve the problem faster.

A Faster Backward Dynamic Programming Recursion

Let H(t) be the optimal value for problem LS-U with planning horizon
t, . . . , n, ignoring periods 1, . . . , t − 1. We obtain a recursion by considering
for which interval [t, k] the demand is satisfied by production in t.

H(t) = min
k:k>t

[qt + ptdt,k−1 + H(k)] if dt > 0.

H(t) = min{H(t + 1), min
k:k>t+1

[qt + ptdt,k−1 + H(k)]} if dt = 0.
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Starting from H(n+1) = 0, and calculating H(n), H(n−1), . . . in order, one
obtains the optimal solution value H(1) of LS-U .

A straightforward implementation of this recursion again results in an
O(n2) algorithm. Now we indicate how it is possible to carry out the calcu-
lations faster leading to an O(n log n) algorithm. For simplicity we suppose
that dt > 0 in each period.

Rewriting the recursion, we have

H(t) = min
k:k>t

[−ptdkn + H(k)] + qt + ptdtn.

Thus the crucial calculation at each iteration is kt =arg mink:k>t[−ptdkn +
H(k)].

Consider now a plot of the points (xk, yk) = (d1,k−1, H(k)) for k = t +
1, . . . , n + 1 with H(n + 1) = 0.

Observation 7.5 The line through (xk, yk) with slope −pt intersects the ver-
tical line x = d1n in −ptdkn+H(k). Thus it suffices to find the lowest intercept.
In Figure 7.4 the same graph is shown twice: on the left one sees the slopes,
and on the right the resulting lower envelope.

d1,n-1

d1,nd1,t

(xi1,yi1) = ( d1,t , H(t+1) )

H(n)

H(n+1)

H(t+1)

d1,t

(xij,yij) = ( d1,ij-1 , H(ij) )

Figure 7.4. Backward DP and lower envelope.

Now consider the lower convex envelope of the points (xk, yk) for k =
t + 1, . . . , n + 1 with breakpoints (vertices of the lower convex envelope)
(xi1 , yi1), . . . , (xir , yir ) with {i1, . . . , ir} ⊆ {t + 1, . . . , n + 1} and ir = n + 1.

Observation 7.6 If (xk, yk) is not a breakpoint, there is some breakpoint
(xij

, yij
) with H(ij) − ptdij ,n ≤ H(k) − ptdkn. It follows that

H(t) = min
j=1,...,r

(H(ij) − ptdij ,n) + qt + ptdtn.

Observation 7.7 The segment of the lower convex envelope joining adjacent
breakpoints (xij−1 , yij−1) and (xij

, yij
) has slope
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mij
=

H(ij) − H(ij−1)
dij−1,ij−1

< 0

and the slopes are increasing in j.

Observation 7.8 If mij
≤ −pt < mij+1 , then

H(t) = H(ij) − ptdij ,n + qt + ptdtn.

d1,n

H(ij)

H(n+1)

H(t) - qt - pt dtn

= H(ij) - pt di ,n

1,ij-1
d

1,ij-1-1
d 1,ij+1-1

d

H(ij-1)

H(ij+1)

j

Figure 7.5. Backward DP, lower envelope, and computation of H(t).

The computation of ij such that mij
≤ −pt < mij+1 , and of H(t), is

illustrated in Figure 7.5.

Observation 7.9 Given the values mij in increasing order, the value for
which mij

≤ −pt < mij+1 can be found by bisection in O(log n).

Finally having obtained the new point (xt, yt) = (d1,t−1, H(t)), it is nec-
essary to update the lower convex envelope by adding the point (xt, yt), and
possibly removing some of the breakpoints from the beginning of the previous
ordered list.

Observation 7.10 For j = 1, . . . , r, if the slope of the line joining (xt, yt) to
(xij

, yij
) is greater than or equal to mij+1 , the points (xil

, yil
) for l = 1, . . . , j

are no longer breakpoints in the convex envelope.
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As there are at most n breakpoints that can be removed from the lower
convex envelope only once, the update of this lower envelope takes O(n) in
total. Therefore the running time of the backward algorithm is the following.

Proposition 7.3 The backward DP recursion can be implemented to run in
O(n log n).

Example 7.2 Consider an instance of LS-U with n = 5, d = (5, 4, 2, 3, 6), p =
(3, 1, 3, 2, 1), and f = (0, 30, 25, 15, 5).

Applying the above algorithm, we have

t = 6, (x6, y6) = (20, 0).

t = 5, p5 = 1, H(5) = q5 + p5d5 = 11, (x5, y5) = (14, 11).
Breakpoints z5, z6, slopes m5 = − 11

6 .

t = 4, p4 = 2, and − 2 < − 11
6 . Thus by Observation 7.8, k4 = 5.

Hence H(4) = q4 + p4d4 + H(5) = 32, and (x4, y4) = (11, 32).
The slope of (z4, z5) is −7. Using Observation 7.10, as −7 < − 11

6 , no break-
points are eliminated, and the new breakpoints are z4, z5, z6.
The slopes are (−7,− 11

6 ).

t = 3, p3 = 3, and − 7 ≤ −3 < − 11
6 . Thus by Observation 7.8, k3 = 5.

Hence H(3) = q3 + p3d34 + H(5) = 51, and (x3, y3) = (9, 51).
The slope of (z3, z4) is − 19

2 . Using Observation 7.10, as − 19
2 < −7, no break-

points are eliminated, and the new breakpoints are z3, z4, z5, z6.
The slopes are (−19

2 , −7,−11
6 ).

t = 2, p2 = 1, and − 11
6 < −1. Thus by Observation 7.8, k2 = 6.

Hence H(2) = q2 + p2d25 + H(6) = 45, and (x2, y2) = (5, 45).
The slope of (z2, z3) is 6

4 . Using Observation 7.10, as 6
4 > − 19

2 , the breakpoint
z3 is eliminated.
The slope of (z2, z4) is − 13

6 . As − 13
6 > −7, the breakpoint z4 is eliminated.

The slope of (z2, z5) is − 34
9 . As − 34

9 < − 11
6 , the new set of breakpoints is

z2, z5, z6.
The slopes are (− 34

9 , −11
6 ).

t = 1, p1 = 3, and − 34
9 ≤ −3 < −11

6 . Thus by Observation 7.8, k1 = 5.
Hence H(1) = q1 + p1d14 + H(5) = 53.
An optimal solution is y1 = y5 = 1, x1 = 14, x5 = 6.

We finish this section by viewing the forward recursion as a shortest path
problem.
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The Shortest Path Algorithm.

Consider a directed graph with nodes 1, 2, . . . , n+1, where each arc (i, j) with
i < j corresponds to the regeneration interval [i, j − 1], that is, to a set-up in
period i with production to satisfy demand for the interval [i, j − 1]. Clearly
any path from 1 to n+1 provides a feasible solution to LS-U . Furthermore this
solution satisfies the structure of extreme solutions described in Proposition
7.2. If arc (i, j) has cost c(i, j − 1) = qi + pidi,j−1, the length of a shortest
path will necessarily be G(n). Hence solving LS-U by the forward dynamic
programming algorithm is equivalent to solving the shortest path problem on
the graph described above. An instance of the directed graph for n = 4 is
shown in Figure 7.6.

1 2 3 4 5

c(1,4)

c(1,3)

c(1,2)

c(1,1) c(2,2) c(3,3) c(4,4)

c(2,4)

c(3,4)

c(2,3)

Figure 7.6. Shortest path to solve LS-U with n = 4.

7.4 Linear Programming Reformulations of LS-U

Here we use LS-U to demonstrate the classical polyhedral approach to the
study of formulations for a combinatorial optimization problem. We exhibit
valid inequalities for XLS−U , a description of the convex hull of feasible solu-
tions, extended formulations, and separation algorithms.

The first point to observe is that, because we have shown in the previ-
ous section that the optimization problem OPT (XLS−U , (p′, h′, q)) is poly-
nomially solvable, we know from Chapter 6 that the separation problem
SEP (XLS−U , (x∗, s∗, y∗)) is also polynomially solvable. Therefore it may be
possible to provide a complete inequality description of conv(XLS−U ), and a
fast combinatorial separation algorithm.

7.4.1 Valid Inequalities for LS-U

We want to find valid inequalities satisfied by all points in XLS−U , that is,
those satisfying (7.2)–(7.5). In particular we are looking for valid inequali-
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ties for XLS−U that are not just obtainable as linear combinations of the
constraints (7.2)–(7.4).

One such inequality already described in Chapter 4 is

xt ≤ dtyt + st. (7.9)

We provide here a different argument for its validity. Using st−1+xt = dt +st,
it can also be written as

st−1 ≥ dt(1 − yt).

In this form, it is easy to see that the inequality is valid. If yt = 0, then there is
no production in period t, and so the entering stock st−1 must at least contain
the demand for the period dt. On the other hand, if yt = 1, the inequality
reduces to st−1 ≥ 0, which is always valid.

It is not difficult to generalize the inequality (7.9).

Proposition 7.4 Let 1 ≤ l ≤ n, L = {1, . . . , l} and S ⊆ L, then the (l, S)
inequality

∑
j∈S

xj ≤
∑
j∈S

djlyj + sl (7.10)

is valid for XLS−U .

Proof. Consider a point (s, y) ∈ XLS−U . If
∑

j∈S yj = 0, then as xj = 0 for
j ∈ S and sl ≥ 0, the inequality is satisfied. Otherwise let t = min{j ∈ S :
yj = 1}. Then

∑
j∈S xj ≤ ∑l

j=t xj ≤ dtl + sl ≤ ∑
j∈S djlyj + sl where the

first inequality follows from the definition of S and the nonnegativity of xj ,
the second from the flow conservation equations, and the third using yt = 1
and the nonnegativity of the yj . ��

What is more, repeating Theorem 4.2, it has been shown that these are
the only inequalities needed.

Theorem 7.5 When s0 = sn = 0, the original constraints (7.2)–(7.4) plus
the (l, S) inequalities (7.10) give a complete linear inequality description of
conv(XLS−U ).

For later, using
∑

j∈L xj = d1l + sl, we observe that the (l, S) inequality
can be rewritten as either∑

j∈L\S

xj +
∑
j∈S

djlyj ≥ d1l, (7.11)

or, if k = min{i ∈ S}, using sk−1 +
∑l

j=k xj = dkl + sl, as

sk−1 +
∑

j∈{k,...,l}\S

xj +
∑
j∈S

djlyj ≥ dkl, (7.12)

or equivalently as
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sk−1 +
∑

j∈{k,...,l}\S

xj ≥
l∑

j=k

dj(1 −
∑

t∈S,t≤j

yt). (7.13)

The complication from a linear programming point of view is that there is an
exponential number of these inequalities. This means that it is impossible to
add all of them to the formulation a priori. The alternative is either to choose
a small subset to be added a priori (which inequalities?), or to generate them
as cutting planes when they are needed. Taking the cutting plane approach,
given a point (x∗, y∗, s∗) satisfying (7.2)–(7.4), nonintegral in y∗, we need to
find one or more of the (l, S) inequalities cutting it off.

The Separation Problem for (l, S) Inequalities
Given (x∗, s∗, y∗) satisfying (7.2)–(7.4), either find an (l, S) inequality cutting
off the point, or show that all the inequalities are satisfied, and so demonstrate
that (x∗, s∗, y∗) ∈ conv(XLS−U ).

It turns out that this separation problem is easily solved by inspection.
We consider the inequalities in the form (7.11).

Algorithm for (l, S) Separation
1. For l = 1, . . . , n,
2. Calculate αl ≡ ∑l

j=1 min(x∗
j , djly

∗
j ).

3. If αl < d1l, output L = {1, . . . , l}, S = {j ∈ L : x∗
j > djly

∗
j }.

4. end-For.

A straightforward implementation requires O(n2) comparisons in line 2.
However, it is possible to rearrange the computations to obtain a running
time of O(n log n). Observe that 0 ≤ djy

∗
j ≤ dj,j+1y

∗
j ≤ . . . ≤ djny∗

j . So, using
bisection, it is possible for each j to determine an integer l(j) ∈ {j, . . . , n}
such that dj,l(j)−1y

∗
j < x∗

j ≤ dj,l(j)y
∗
j in O(log n).

Then we can calculate αl recursively as follows:

αl = αl−1 + dl(
∑
j∈Yl

y∗
j ) +

∑
j∈Xl

(x∗
j − dj,l−1y

∗
j ),

where Yl = {j ∈ {1, . . . , l} : l(j) > l} and Xl = {j ∈ {1, . . . , l} : l(j) = l}. As
Yl = (Yl−1 ∪ {l}) \ Xl, the additional time needed to calculate all the αl is
O(n).

Example 7.3 Consider an instance with n = 4 and d = (7, 2, 6, 4). For l = 3,
the (l, S) inequalities are
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(x*, y* )=(7, 1)
1 1

(3, 0.25)
(5, 0.5)

(4, 1)

7 2 6 4

1 2 3 4
s* =1

2

0

Figure 7.7. Fractional solution of LS-U .

x1 ≤ 15y1 +s3
x2 ≤ 8y2 +s3

x3 ≤ 6y3 +s3
x1 +x2 ≤ 15y1 +8y2 +s3
x1 +x3 ≤ 15y1 +6y3 +s3

x2 +x3 ≤ 8y2 +6y3 +s3
x1 +x2 +x3 ≤ 15y1 +8y2 +6y3 +s3.

Suppose now that we are given the nonintegral solution x∗ = (7, 3, 5, 4), s∗ =
(0, 1, 0, 0), y∗ = (1, 1

4 , 1
2 , 1) shown in Figure 7.7.

Using the improved separation algorithm, we see that

x∗
1 ≤ d1y

∗
1 , so l(1) = 1.

d23y
∗
2 < x∗

2 ≤ d24y
∗
2 , so l(2) = 4.

d3y
∗
3 < x∗

3 ≤ d34y
∗
3 , so l(3) = 4.

x∗
4 ≤ d4y

∗
4 , so l(4) = 4.

l = 1. Initially X1 = {1}, Y1 = ∅ and α1 = 7 ≥ d1.
No violation.

l = 2. X2 = ∅, Y2 = {2} and α2 = 7 + 2y∗
2 = 7.5 < d12 = 9.

Violated inequality with S = Y2.
x1 + d2y2 ≥ d12 is violated by 9 − 7.5 = 1.5.

l = 3. X3 = ∅, Y3 = {2, 3} and α3 = 7.5 + 6(y∗
2 + y∗

3) = 12 < d13 = 15.
Violated inequality with S = Y3.
x1 + d23y2 + d3y3 ≥ d13 is violated by 15 − 12 = 3.

l = 4. X4 = {2, 3, 4}, Y4 = ∅ and α4 = 12+ (3− 2)+ (5− 3)+4 = 19 ≥ d14.
No violation.



7.4 Linear Programming Reformulations of LS-U 221

7.4.2 Extended Formulations for LS-U

Here we consider formulations for LS-U involving more informative variables
in which the link between the continuous variables (x, s) and the 0–1 variables
y is more precise. We present two such extended formulations. The first has
a very natural choice of variables.

The Facility Location Extended Formulation

Let wut with u ≤ t be the amount produced in period u to satisfy demand in
period t. This leads to the formulation

min
n∑

u=1

puxu +
n∑

t=1

qtyt (7.14)

t∑
u=1

wut = dt for 1 ≤ t ≤ n (7.15)

wut ≤ dtyu for 1 ≤ u ≤ t ≤ n (7.16)

xu =
n∑

t=u

dtwut for 1 ≤ u ≤ n (7.17)

y ∈ [0, 1]n, wut ∈ R
1
+ for 1 ≤ u ≤ t ≤ n, (7.18)

y ∈ Z
n. (7.19)

Here (7.15) ensures that the demand is satisfied in each period, and (7.16)
that the set-up variable yu = 1 whenever there is production in period u. The
equation (7.17) provides the link between the original production variables x
and the new variables w. Note that one can completely remove the x variables
by eliminating them from the objective function using (7.17). Alternatively
one could also add the constraints (7.2) to have the values of the original stock
variables s.

Question How good is this new extended formulation QFL−U = {(x, y, w) :
(7.15)- (7.18)}?

The answer is that the formulation cannot be bettered.

Theorem 7.6 The linear program

min{px + qy : (x, y, w) ∈ QFL−U} (7.20)

has an optimal solution with y integer, and thus it solves LS-U .

We can also say what this means theoretically.
To compare formulations, we need to consider solutions in the same space

of variables, so we need to look at the projection of QFL−U in the (x, y) or
(x, y, s)-space; see Section 6.1.5.
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Theorem 7.7 projx,yQFL−U =projx,yconv(XLS−U ).

Example 7.4 We consider an instance with n = 3. QFL−U is of the form:

w11 = d1
w12 +w22 = d2

w13 +w23 +w33 = d3
w11 ≤ d1y1

w12 ≤ d2y1
w13 ≤ d3y1

w22 ≤ d2y2
w23 ≤ d3y2

w33 ≤ d3y3
w11 +w12 +w13 = x1

w22 +w23 = x2
w33 = x3

w ∈ R
6
+, 0 ≤ y1, y2, y3 ≤ 1.

Formulation QFL−U has O(n2) constraints and O(n2) variables. We now
present a second reformulation that is more compact as it has only O(n)
constraints, apart from the nonnegativity constraints.

Shortest Path Formulation of LS-U

We saw above in Proposition 7.2 that an optimal solution consists of a se-
quence of regeneration intervals [i, j − 1] in which an amount di,j−1 is pro-
duced in period i. In fact in the shortest path algorithm of Section 7.3, the
arc (i, j) corresponds precisely to such an interval. This suggests the following
choice of variable:

φut = 1 if an amount dut > 0 is produced in period u. In addition, if the
first set-up period with production occurs in period t, then φ1,t−1 = 1 and
d1,t−1 = 0. Otherwise φut = 0. So essentially φut = 1 if the regeneration
interval [u, t] is part of the solution.

This leads to the following reformulation (assuming s0 = 0 and sn = 0).

min
n∑

u=1

puxu +
n∑

t=1

qtyt (7.21)

−
n∑

t=1

φ1t = −1 (7.22)

t−1∑
u=1

φu,t−1 −
n∑

τ=t

φtτ = 0 for 2 ≤ t ≤ n (7.23)

n∑
u=1

φun = 1 (7.24)
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n∑
τ=t:dtτ>0

φtτ ≤ yt for 1 ≤ t ≤ n (7.25)

n∑
τ=t

dtτφtτ = xt for 1 ≤ t ≤ n (7.26)

y ∈ [0, 1]n, φut ∈ R
1
+ for 1 ≤ u ≤ t ≤ n. (7.27)

The flow conservation constraints (7.22)–(7.24) model a solution as a sequence
of regeneration intervals. Again the constraints (7.26) allow us to relate the
new variables φut to the original production variables xt. Constraints (7.25)
define the set-up variables yt.

Let QSP−U = {(x, y, φ) ∈ R
n × [0, 1]n × R

n(n+1)
2

+ : (7.22)-(7.26)}.

To see why this extended reformulation is called a shortest path formu-
lation, it is best to extend the network to include the yt variables explicitly
as bounds on certain arcs. An instance of the extended network for n = 3 is
shown in Figure 7.8.

1 1’ 2 2’ 3
1

3’ 4
1  y

1
 y

2
 y

3

φ
13

φ
12

φ
23

φ
11

φ
22

φ
33

Figure 7.8. Shortest path reformulation of LS-U .

We see that the flow
∑

i φi,t−1 enters node t, is bounded by yt on arc (t, t′),
and the flow

∑
i φt,i leaves from node t′. Thus this network incorporates the

flow conservation constraints (7.22)–(7.24) and the set-up variable constraint
(7.25). Therefore formulation QSP−U is equivalent to the shortest path (i.e.,
minimum cost unit flow) in the extended network with a cost qt on arc (t, t′)
and a cost pudut on arc (u′, t + 1). By comparing Figures 7.6 and 7.8, we
can also observe that this shortest path formulation can be derived directly
from the shortest path representation of the forward dynamic program solving
LS-U .

Theorem 7.8 The linear program

min{px + qy : (x, y, φ) ∈ QSP−U} (7.28)

has an optimal solution with y integer, and thus solves LS-U .



224 7 Single-Item Uncapacitated Lot-Sizing

This implies the same result as above concerning the strength of the for-
mulation.

Theorem 7.9 projx,yQSP−U =projx,yconv(XLS−U ).

Example 7.5 We consider an instance with n = 3. We present QSP−U and
assume that dt > 0 for t = 1, 2, 3.

−φ11 −φ12 −φ13 = −1
φ11 −φ22 −φ23 = 0

φ12 +φ22 −φ33 = 0
φ13 +φ23 +φ33 = 1

φ11 +φ12 +φ13 ≤ y1
φ22 +φ23 ≤ y2

φ33 ≤ y3
d11φ11 +d12φ12 +d13φ13 = x1

+d22φ22 +d23φ23 = x2
d33φ33 = x3

x ∈ R
3
+, y ∈ [0, 1]3, φ ∈ R

6
+.

7.5 Wagner–Whitin Costs

As we indicated when defining our initial classification in Part I, it turns out
that in practice a large number of instances have a somewhat special cost
structure.

Definition 7.1 A lot-sizing problem has Wagner-Whitin costs if p′
t + h′

t ≥
p′

t+1 for all t.

Note that the modified objective function
∑

t ptxt +
∑

t qtyt is Wagner–
Whitin if pt ≥ pt+1 for all t, and the modified objective function

∑
t htst +∑

t qtyt is Wagner–Whitin if ht ≥ 0 for all t.

What are the consequences of Wagner–Whitin costs? The first remarkable
result is that for WW -U the faster backward dynamic programming recursion
of Section 7.3 can be made to run in O(n).

What about formulations and valid inequalities?

Observation 7.11 With Wagner–Whitin costs, it is optimal to produce as
late as possible. In other words, given the set-up periods y ∈ {0, 1}n, it is
optimal to satisfy the demand in period t from the last set-up period before or
equal to t. Alternatively sk−1 contains the demand dj for period j ≥ k only if
no set-up occurs in the time interval [k, . . . , j].

This suggests a new mixed integer programming formulation for WW -U :
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min
n∑

t=0

htst +
n∑

t=1

qtyt (7.29)

sk−1 ≥
l∑

j=k

dj(1 − yk − . . . − yj) for 1 ≤ k ≤ l ≤ n (7.30)

s ∈ R
n+1
+ , y ∈ [0, 1]n (7.31)

y ∈ Z
n. (7.32)

Because ht ≥ 0 for all t, there exists an optimal solution in which each sk−1
is as small as possible, and thus

sk−1 = max[0,max
l≥k

l∑
j=k

dj(1 − yk − . . . − yj)].

So we see that sk−1 = dkl if and only if yj = 0 for all j = k, . . . , l and yl+1 = 1.
This is exactly Observation 7.11. This formulation is useless when the costs
are not Wagner-Whitin, because if some ht < 0, the objective function will
be unbounded.

Observation 7.12 The inequality (7.30), called the (l, S, WW ) inequality

sk−1 ≥
l∑

j=k

dj(1 − yk − . . . − yj),

can be rewritten as

sk−1 +
l∑

j=k

djlyj ≥ dkl,

or as an (l, S) inequality

k−1∑
j=1

xj +
l∑

j=k

djlyj ≥ d1l.

What is really interesting in practice is that the above formulation is best
possible. Let PWW−U , XWW−U be the set of points (s, y) satisfying (7.30)–
(7.31), (7.30)–(7.32), respectively.

Theorem 7.10 i. Any optimal extreme point solution of the linear program
min{hs + qy : (s, y) ∈ PWW−U} solves WW -U .
ii. PWW−U = conv(XWW−U ).

This result tells us that there is a linear program with just 2n variables
and n(n + 1)/2 constraints that solves WW -U . What is more, it tells us that
the subset (l, S, WW ) of the (l, S) inequalities of the form (7.30) suffice in the
presence of Wagner–Whitin costs.
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Given such a compact formulation, there appears to be little need for a sep-
aration algorithm for the (l, S, WW ) inequalities. However, for large problems
with many periods and items, we may wish to add them as cuts.

An O(n) Algorithm to Separate the (l, S, WW ) Inequalities.

To separate the (l, S, WW ) inequalities, a most violated inequality for the
point (s∗, y∗) ∈ R

n+1
+ × [0, 1]n involving sk−1 is the inequality

sk−1 ≥
l(k)∑
j=k

dj(1 − yk − · · · − yj)

where l(k) = max{u : u ≥ k, du > 0,
∑u

j=k y∗
j < 1}.

As 1 ≤ l(1) ≤ l(2) · · · ≤ l(n) ≤ n, the values of l(k) and the corresponding
violations can be found in linear time.

In Table 7.1 we present a résumé of the results that we have seen in
this chapter. They are identical to those in Table 4.4 for problems LS-U and
WW -U .

Table 7.1. Reformulation results for LS-U and WW -U

LS WW

Formulation Cons × V ars Cons × V ars

U SP O(n) × O(n2) WW O(n2) × O(n)
FL O(n2) × O(n2)

Separation
U (l, S) (l, S, WW )

O(n log n) O(n)
Optimization

U O(n log n) O(n)

7.6 Partial Formulations

When solving large-size instances involving many time periods, or many items
for which extended reformulations need to be added to the initial formulation,
the resulting linear relaxation may become too large to be solved directly in a
branch-and-bound system. One option is then to use a cutting plane approach.
An alternative is to reduce the size of the reformulations by using partial or
approximate extended reformulations.

We illustrate this here with an approximate shortest path reformulation
of the uncapacitated lot-sizing set XLS−U .
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We choose some parameter k (≤ n) that determines the size and strength
of the formulation. For simplicity we assume that dt > 0 for all t = 1, . . . , n
and s0 = sn = 0. The variables are defined as follows:

zit = 1 if production takes place in period i, and the amount produced is dit

satisfying all the demands from periods i up to t, with t < i + k.
ui = 1 for 1 ≤ i ≤ n−k if production takes place in period i, and the amount
produced is dit for some t ≥ i + k.
vt = 1 for k + 1 ≤ t ≤ n if exactly dit is produced in some period i ≤ t − k.

wt = 1 for t = 2, . . . , n−k if demand for periods t−1, . . . , t+k is all produced
simultaneously in some period i ≤ t − 1.

The resulting approximate formulation XSP
k with O(nk) variables and

O(n) constraints is

−
k∑

i=1

z1i − u1 = −1 (7.33)

t∑
i=max[t−k+1,1]

zit + vt −
min[t+k,n]∑

i=t+1

zt+1,i − ut+1 = 0 for 1 ≤ t ≤ n − 1

(7.34)
n∑

i=n−k+1

zin + vn = 1 (7.35)

ut + wt − vt+k − wt+1 = 0 for 1 ≤ t ≤ n − k
(7.36)

min[t+k−1,n]∑
i=t

zti + ut ≤ yt for 1 ≤ t ≤ n (7.37)

xt ≥
min[t+k−1,n]∑

i=t

dtizti + dt,t+kut for 1 ≤ t ≤ n (7.38)

st−1 ≥
t−1∑
i=1

n∑
j=t

dtjzij +
t+k−1∑

i=t

dtivi + dt,t+kwt for 2 ≤ t ≤ n (7.39)

z, u, v ≥ 0, y ∈ [0, 1]n (7.40)
vt = 0 for t ≤ k (7.41)
ut = wt = 0 for t ≥ n − k + 1

(7.42)

w1 = 0, zit = 0 for t ≥ i + k. (7.43)
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In Figure 7.9, we show a shortest path representation of XSP
k for n = 5

and k = 2. In this example, u1 approximates or aggregates all regeneration
intervals [1, t] with t ≥ 3. In other words, u1 represents the flow

∑n
t=3 φ1t

of the shortest path formulation. Similarly, v5 approximates or aggregates all
regeneration intervals of length strictly larger than k ending in period 5, that
is, v5 represents

∑3
t=1 φt5.
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Figure 7.9. Approximate shortest path formulation for uncapacitated lot-sizing.

Proposition 7.11 The polyhedron (7.33)–(7.43) is integral.
If the linear program min{px + hs + qy : (x, y, s, z, u, v, w) satisfying (7.33)-
(7.43)} has an optimal solution with wt = 0 for all t, this solution is optimal
for the uncapacitated lot-sizing problem min{px+hs+qy : (x, y, s) ∈ XLS−U}.

Something can be said about the strength of such an approximation in
comparison with a cutting plane reformulation. For conv(XLS−U ), we know
from Section 7.4 that every facet-defining inequality is a (t, l, S) inequality
of the form

∑
j∈[1,t−1]∪S xj +

∑
j∈[t,l]\S djlyj ≥ dtl with 1 ≤ t ≤ l ≤ n and

S ⊆ [t + 1, l] = {t + 1, . . . , l}.

Proposition 7.12 If l ≤ t + k, the (t, l, S) inequality is valid for XSP
k . If

dt > 0 for all t, the (t, l, S) inequality is valid for XSP
k only if l ≤ t + k.

So reformulation XSP
k is equivalent to the formulation obtained by adding

all (t, l, S) inequalities with l ≤ t+k to the initial formulation (7.2)–(7.4) and
(7.6).

7.7 Some Convex Hull Proofs

Proof of Theorem 7.5.

We use the proof technique number 8 from Section 6.4. We assume that
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s0 = sn = 0, and also that d1 > 0. Rewriting the set XLS−U in the (x, y)
space we have

t∑
u=1

xu ≥ d1t for t = 1, . . . , n − 1 (7.44)

n∑
u=1

xu = d1n (7.45)

xt ≤ Myt for t = 1, . . . , n (7.46)
x ∈ R

n
+, y ∈ {0, 1}n, (7.47)

and P is described by the constraints (7.44), (7.45), x ∈ R
n
+, y ∈ [0, 1]n and

the (l, S) inequalities (7.11).
First we check that dim(conv(X)) = dim(P ). All points in X satisfy the

equation (7.45) and y1 = 1 as d1 > 0. It is not hard to show that X contains
2n − 1 affinely independent points, and so dim(conv(X)) = 2n − 2. Now P
also satisfies these equations as its description includes (7.45), y1 ≤ 1 and the
(l, S) inequality with l = 1, S = ∅ which is the inequality d1y1 ≥ d1.

Let M(p, q) be the set of all optimal solutions to the problem OPT (XLS−U ,
(p, q)) of minimizing the objective function (7.7) over the set XLS−U .

First we observe that as
∑n

t=1 xt = d1n, we can add any multiple of this
constraint to the objective function without modifying the set M(p, q). Thus
we suppose without loss of generality that mint pt = 0. In addition, as we have
that y1 = 1, we can also assume that q1 = 0.

If qt < 0 for some t ≥ 2, then M(p, q) ⊆ {(x, y) : yt = 1}, so we suppose
from now on that qt ≥ 0 for t ≥ 2.

Now let l =arg maxt{pt+qt > 0}. As (p, q) �= (0, 0), we have that 1 ≤ l ≤ n.
Suppose that pk = qk = 0 for some k < l. Then M(p, q) ⊆ {(x, y) : xl = 0}.

Otherwise we have that pi + qi > 0 for i = 1, . . . , l and pi = qi = 0 for
i = l + 1, . . . , n. Let L = {1, . . . , l} and S = {t ∈ L : pt > 0} with 1 ∈ S. Note
that, from the definition of l, all demand after period l can be produced at
zero cost. We show that

M(p, q) ⊆ {(x, y) :
∑
t∈S

xt +
∑

t∈L\S

dtlyt = d1l}.

Consider an optimal solution (x∗, y∗, s∗). Suppose that τ = min{t ∈ L\S :
y∗

t = 1}.
As pτ = 0, one can produce an amount dτl or more at zero variable cost

in τ . Also as pt + qt > 0 for all t ∈ L with t > τ , in an optimal solution
x∗

t = y∗
t = 0 for all t ∈ L with t > τ . This holds because otherwise a strictly

better solution would be obtained by reducing x∗
t and/or y∗

t and increasing
x∗

τ , which is a contradiction to the optimality of (x∗, y∗, s∗).
So

∑
t∈L\S dtly

∗
t = dτly

∗
τ = dτl and

∑
t∈S:t≥τ x∗

t = 0.

As y∗
t = x∗

t = 0 for all t ∈ L \ S with t < τ ,
∑τ−1

t=1 x∗
t =

∑
t∈S:t<τ x∗

t ≥
d1,τ−1. But as pt > 0 for all periods t ∈ S with t < τ , a solution can only
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be optimal if
∑

t∈S:t<τ x∗
t = d1,τ−1. This holds because otherwise a strictly

better solution can be obtained by reducing
∑

t∈S:t<τ x∗
t and increasing x∗

τ , a
contradiction.

So we have shown that
∑

t∈S:t<τ x∗
t +

∑
t∈S:t≥τ x∗

t +
∑

t∈L\S dtly
∗
t =

d1,τ−1 + 0 + dτl = d1l.
In the special case where y∗

t = 0 for all t ∈ L \ S, we obtain similarly that∑l
t=1 x∗

t =
∑

t∈S x∗
t = d1l, because production in period l + 1 has zero cost.

Finally note that when l = n, L \ S �= ∅ because mint pt = 0. Now it can
be readily checked that all the faces used above in the proof are proper faces
of P . ��

Proof of Theorem 7.8.

Observe that there exists an optimal solution in which yt = 1 for all
t ∈ {1, . . . , n} with qt ≤ 0. In this case, variable yt can be eliminated from
the linear program and the constant term

∑
t:qt<0 qt added to the objective

function.
On the other hand, when qt > 0, one must have yt as small as possible

and thus yt =
∑n

τ=t:dtτ>0
φtτ from (7.25). Eliminating xt using (7.26), the

resulting equivalent linear program is

min
∑n

u=1 pu

∑n
τ=u duτφuτ +

∑n
t=1:qt>0 qt

∑n
τ=t:dtτ >0 φtτ +

∑n
t=1:qt<0 qt

subject to

−
n∑

t=1

φ1t = −1

t−1∑
u=1

φu,t−1 −
n∑

τ=t

φtτ = 0 for 2 ≤ t ≤ n

n∑
u=1

φun = 1

φ ∈ R
n(n+1)/2
+ .

This is a shortest path problem in an acyclic network, and the underlying
matrix is TU, so using Theorem 6.7 it has an optimal solution with φ ∈
{0, 1}n(n+1)/2, and thus y ∈ {0, 1}n. ��

Proof of Theorem 7.10.

Here we pass by an extended formulation QWW−U for WW -U :
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st−1 =
n∑

j=t

djδ
j
t−1 for 1 ≤ t ≤ n (7.48)

δj
t +

j∑
u=t+1

yu ≥ 1 for 0 ≤ t < j ≤ n (7.49)

δj
t ∈ R

1
+ for 0 ≤ t < j ≤ n, y ∈ [0, 1]n, s ∈ R

n+1
+ , (7.50)

where δj
t = 1 if the stock st at the end of period t includes the demand dj for

period j > t. QWW−U is a correct formulation for the stock minimal solutions
of WW -U because δj

t is forced to 1 when
∑j

u=t+1 yu = 0.
The matrix corresponding to the constraints (7.49) consists of an identity

matrix and a matrix with consecutive 1s in each row, which is known to be
totally unimodular. Thus, by Theorem 6.7, QWW−U is an integral polyhedron.

Now consider its projection projs,yQWW−U into the (s, y) space. In the
projection, the only way to eliminate a δj

t variable is to replace it by either
its lower bound 1−∑j

u=t+1 yu, or by its lower bound of 0. So, for each subset
Tt of {t + 1, . . . , n}, we obtain an inequality of the form

st ≥
∑
j∈Tt

dj(1 −
j∑

u=t+1

yu).

However, some of these inequalities are redundant and can be eliminated.
Consider any point (s∗, y∗) that is cut off by one of the inequalities for
some t and some Tt ⊆ {t + 1, . . . , n}. Suppose that

∑k
u=t+1 y∗

u < 1 ≤∑k+1
u=t+1 y∗

u. This point is also cut off by the (at least as strong) inequality
st ≥ ∑k

j=t+1 dj(1 − ∑j
u=t+1 yu). It follows that the latter inequalities suffice

to describe conv(XWW−U ). ��

Exercises

Exercise 7.1 Consider an instance of LS-U with n = 4 and d = (8, 2, 6, 5)
in which there is an initial stock s0 = 11 and lower bounds on the stocks in
each period s = (1, 2, 2, 6). In addition q′ = (17, 29,−12, 43), p′ = (2, 7, 8, 3),
and h′ = (1, 2, 1, 2).
i. Convert into an instance of LS-U in standard form with no initial stock,
and lower bounds of zero on the stocks.
ii. Convert the objective function into an equivalent form with q ≥ 0 and
h = 0.
iii. Convert the objective function into an equivalent form with q ≥ 0 and
p = 0.

Exercise 7.2 Consider an instance of LS-U with n = 5 periods, costs p′ =
(7, 4, 2, 3, 4), h′ = (1, 3, 2, 1, 3), q′ = (25, 45, 26, 30, 20), and demands d =



232 7 Single-Item Uncapacitated Lot-Sizing

(5, 3, 7, 4, 9) for which initial and final stock must be zero.
i. Rewrite the objective function in normalized form so that all the unit storage
costs are zero.
ii. Rewrite the objective function in normalized form so that all the unit
production costs are zero.
iii. Is the objective function Wagner–Whitin?
iv. Find an optimal solution using forward dynamic programming.
v. Solve using the backward dynamic programming algorithm.

Exercise 7.3 Consider an instance of LS-U with n = 6 periods and demands
d = (4, 2, 5, 1, 7, 1). Suppose that you are given a fractional solution

x∗ = (10.99, 0.88, 0, 0.125, 7, 1), s∗ = (6.99, 5.875, 0.875, 0, 0, 0),
y∗ = (1, 0.0009, 0, 0.125, 1, 1).

i. Using the simple O(n2) algorithm, find an (l, S) inequality cutting off the
point, or show that no such inequality exists.
ii. Repeat with the improved separation algorithm.

Exercise 7.4 In practice finding a most violated inequality is not always the
best strategy. Consider the (l, S) inequality in the form

sk−1 +
∑
j∈S

xj +
∑

j∈[k,l]\S

djlyj ≥ dkl,

(see (7.13)), denoted (k, l, S). It is effective computationally to add violated
inequalities with l − k as small as possible.
i. Describe a separation algorithm to test if, for a fixed integer τ , there is a
violated inequality with l − k ≤ τ .
ii. What is the complexity of your algorithm for fixed τ?
iii. Apply your algorithm to the instance of Exercise 7.3.

Exercise 7.5 Write out the linear programming dual of the facility location
reformulation (7.14)–(7.18) of LS-U .
i. Interpret the dual variables and constraints.
ii. Find a dual feasible solution with the same value as that of the primal LP,
thereby showing that the reformulation is tight.

Exercise 7.6 Consider a different extended formulation for LS-U with the
additional variables:
πkl is the amount produced in period k used to satisfy demands in the interval
[k, l]. Thus πkl = min[xk, dklyk].
i. Show that

min px + qy∑t
u=1 π1u ≥ d1t for 1 ≤ t ≤ n

πkl ≤ xk for 1 ≤ k ≤ l ≤ n

πkl ≤ dklyk for 1 ≤ k ≤ l ≤ n

x ∈ R
n
+, y ∈ {0, 1}n, π ∈ R

n(n+1)/2
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is a valid formulation for LS-U .
ii. Show that this reformulation is tight.
Hint. Relate the formulation to the (l, S) inequalities.

Exercise 7.7 Solve an instance of WW -U with n = 5, d = (7, 2, 6, 4, 11),
p = 0, h = (1, 2, 3, 1, 3), and q = (34, 56, 21, 17, 39).

Exercise 7.8 Use the multicommodity reformulation of LS-U , introduced in
Section 4.1.1, to construct an approximate reformulation with similar proper-
ties to those of the approximate shortest path formulation of Section 7.6. Show
that with parameter τ , all (x, y, s) solutions of the approximate formulation
satisfy the (k, l, S) inequalities with l − k ≤ τ .

Notes

Section 7.2 The use of regeneration intervals or points of regeneration to
characterize the structure of optimal solutions is attributed to Manne [116].
The term regeneration point has been taken from the probability literature
and the study of renewal processes, and its application to inventory man-
agement problems, is due to Karlin [97]. Regeneration intervals are crucial to
the development of polynomial dynamic programming algorithms for different
lot-sizing variants.

Section 7.3 In [188], Wagner and Whitin presented an O(n2) dynamic pro-
gramming algorithm for LS-U . In the early 1990s, several ways of solving
LS-U in O(n log n) were developed, see Aggarwal and Park [3], Federgrün
and Tzur [63], and Wagelmans et al. [187].

Section 7.4 In Barany et al. [23], the (l, S) inequalities were introduced and
shown to provide the convex hull. The first extended formulation proposed
for LS-U was the facility location formulation of Krarup and Bilde [100]. The
shortest path reformulation is due to Eppen and Martin [61].

Section 7.5 The Wagner–Whitin cost hypothesis was first introduced by
Wagner and Whitin [188], even though the hypothesis was not needed for
their dynamic programming algorithm. However, when a faster algorithm was
developed for LS-U , it was also shown that WW -U could be solved in linear
time, see Aggarwal and Park [3], Federgrün and Tzur [63], and Wagelmans et
al. [187].

The expression for the stock minimal solutions under the Wagner-Whitin
cost condition, and the polyhedral characterization showing that only O(n2)
special (l, S) inequalities are needed to give the convex hull are from Pochet
and Wolsey [140]. An alternative proof based on a characterization of the faces
of the polyhedron can be found in Pereira and Wolsey [132].
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Section 7.6 The approximate extended shortest path formulation is taken
from Van Vyve and Wolsey [181], and is related to a formulation proposed
earlier by Stadtler [153].

Section 7.7 The proof of Theorem 7.5 presented here is a minor variant of a
proof due to Kolen [98] presented in detail in Pochet [133]. This variant has
already appeared in Pochet and Wolsey [141]. Another interesting proof of
Van Hoesel et al. [169] is based on a dual greedy algorithm. The first proof
of Theorem 7.8 by Eppen and Martin [61] was based on an original technique
of converting a dynamic formulation recursion into an extended formulation.
The proof of Theorem 7.10 is essentially that of Pochet and Wolsey [140].
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Basic MIP and Fixed Cost Flow Models

The aim in this chapter is to introduce some of the basic sets and valid in-
equalities that are useful in mixed integer programming, where useful means
here that either the sets and inequalities arise as submodels (or as what are
called low-level relaxations in Chapter 3) of lot-sizing problems studied in
later chapters, and/or that the inequalities are being used as cutting planes
in standard mixed integer programming solvers.

For each set X considered, we explore several possibilities:

• Characterize the optimal solutions of OPT (X, c).
• Describe an algorithm for OPT (X, c) and its complexity.
• Describe a family F of valid inequalities for X or describe conv(X).
• Describe a separation algorithm for conv(X), or for the polyhedron de-

scribed by the family F .
• Describe an extended formulation for X, if possible providing a tight for-

mulation of conv(X).

It should be clear from Chapter 6 on algorithms and decomposition why such
descriptions may be helpful when taking a decomposition approach. Our em-
phasis, however, is first on valid inequalities and reformulation, because if
possible we would like to solve problems by inputting a strong formulation to
a standard MIP solver. A second option, requiring more work, is to add one or
more separation routines to such a system. We do not solve any problems by
Lagrangian relaxation or column generation. However, as seen in Chapter 6,
efficient optimization algorithms are of importance in solving the subproblems
that arise when using these approaches.

We essentially study nine closely related sets.

• In Section 8.1 we study the simplest possible mixed integer set, the Basic-
MIP Set.

XMI = {(s, y) ∈ R
1
+ × Z

1 : s + y ≥ b}.
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The inequality derived for this two-variable set, called the simple mixed
integer rounding (SMIR) inequality, might equally well be called the basic
disjunctive, split cut, or mixed integer Gomory inequality; it is fundamen-
tal.

• In Section 8.2 we consider the intersection of K basic-MIP sets with the
same integer variable, called the MIP Set.

XMI
K = {(s, y) ∈ R

K
+ × Z

1 : sk + y ≥ bk for 1 ≤ k ≤ K}.

The K SMIR inequalities suffice to obtain the convex hull description.
This is used later to provide a tight formulation for DLS-CC-B.

• In Section 8.3 we consider the intersection of K basic-MIP sets with the
same continuous variable, called the Mixing Set.

XMIX
K = {(s, y) ∈ R

1
+ × Z

K : s + yk ≥ bk for 1 ≤ k ≤ K}.

Here an exponential family of mixing inequalities is needed to describe the
convex hull. This is used to model DLSI-CC and WW -CC.

• In Section 8.4 we review briefly three different methods that can be used
to derive extended formulations for more general mixing sets. Such sets
share the property that the fractional value of their “continuous” variable
s can only take a small number of values. These techniques are used to
reformulate other more complicated mixing sets in Sections 8.5 and 8.6.

• In Section 8.5 we consider a first generalization of the mixing set, called
the Continuous Mixing Set.

XCMIX
K = {(s, r, y) ∈ R

1
+ × R

K
+ × Z

K : s + rk + yk ≥ bk for 1 ≤ k ≤ K}.

This is useful in modeling the lot-sizing problems with constant capacities
and backlogging DLSI-CC-B and WW -CC-B.

• In Section 8.6 we consider two further closely related generalizations of
the mixing set, the Two-Capacity Mixing Set:

X2DIV = {(s, y, z) ∈ R
1
+ × Z

K
+ × Z

K
+ : s + yk + Czk ≥ bk for 1 ≤ k ≤ K}

and the Divisible Mixing Set

XDMIX = {(s, y) ∈ R
1
+ × Z

|K1|+|K2| : s + yk ≥ bk for k ∈ K1,

s + Cyk ≥ bk for k ∈ K2},

where C ≥ 2 is integer. These can be used to treat problems with a choice
of production capacities, and with production lower bounds, respectively,

• In Section 8.7, we pass from “easy” sets to “hard” sets for which no poly-
nomial description of the convex hull can be expected. We consider first
the Integer Continuous Knapsack Set, that is, the integer knapsack set
with a single continuous variable.
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KI = {(s, y) ∈ R
1
+ × Z

n
+ :

n∑
j=1

ajyj ≤ b + s}.

Here we derive the mixed integer rounding (MIR) inequality, and show
that, when applied to a row of an optimal LP tableau, it gives precisely
the mixed integer Gomory (MIG) cut. Both MIG and MIR inequalities are
now generated automatically in the standard MIP solvers.

• In Section 8.8, we again consider a set with a single constraint, but now the
integer variables are restricted to take 0–1 values. It is called the Binary
Continuous Knapsack Set

KB = {(s, y) ∈ R
1
+ × {0, 1}n :

n∑
j=1

ajyj ≤ b + s}.

Various versions of the cover inequalities derived here are generated in the
standard MIP systems.

• In Section 8.9 we consider a slightly more general mixed integer set, the
Binary Single-Node Flow Set

KF = {(x, y) ∈ R
n
+ × {0, 1}n :

∑
j∈N1

xj −
∑

j∈N2

xj ≤ b,

xj ≤ ajyj for 1 ≤ j ≤ n},

which appears as a simple relaxation of LS-C and WW -C. The flow cover
inequalities that are derived here are also generated in some MIP solvers.

8.1 A Two-Variable Basic Mixed Integer Set

We start by examining the simplest possible mixed integer set with just two
variables. We consider the basic-MIP set

XMI = {(s, y) ∈ R
1
+ × Z

1 : s + y ≥ b}.

8.1.1 Valid Inequalities and Formulations

Proposition 8.1 i. Let f = b − 	b
 ≥ 0. The simple mixed integer rounding
(SMIR) inequality

s ≥ f(�b� − y) (8.1)

is valid for XMI .
ii. The polyhedron

s + y ≥ b

s + fy ≥ f�b�
s ≥ 0

describes the convex hull of XMI .
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Proof. We prove here the validity result i. The convex hull result ii is proved
in Section 8.10.

Let X1 = XMI ∩ {(s, y) : y ≥ �b�} and X2 = XMI ∩ {(s, y) : y ≤ 	b
}.
For X1, we combine the valid inequalities 0 ≥ �b� − y and s ≥ 0 with weights
f and 1, respectively, to obtain s ≥ f(�b� − y). For X2, we combine the valid
inequalities s ≥ b − y and 0 ≥ y − 	b
 with weights 1 and 1 − f , respectively,
to obtain s ≥ b − y + (1 − f)(y − 	b
) = f(�b� − y).

As the SMIR inequality is valid for X1 and X2, it is valid for XMI =
X1 ∪ X2. ��

It is also useful to be able to recognize this set and its valid inequality when it
is written differently. Setting z = −y and d = −b, s+y ≥ b becomes z ≤ d+s.

Corollary 8.1 For the set

X = {(s, z) ∈ R
1
+ × Z

1 : z ≤ d + s},

the SMIR inequality takes the form

z ≤ 	d
 +
s

1 − fd
(8.2)

where fd = d − 	d
.
Similarly, setting x = b−s and eliminating s, the set s ≥ 0, s+y ≥ b becomes
the set x ≤ b, x ≤ y.

Corollary 8.2 For the set

X = {(x, y) ∈ R
1 × Z

1 : x ≤ b, x ≤ y},

the SMIR inequality takes the form

x ≤ 	b
 + f(y − 	b
). (8.3)

Example 8.1 Consider the set X = {(s, y) ∈ R
1
+ × Z

1 : s + y ≥ 2.25} shown
in Figure 8.1. From Proposition 8.1, we obtain the valid inequality

s ≥ (2.25 − 	2.25
)(�2.25� − y),

or
y ≥ 0.25 (3 − y),

or
s + 0.25y ≥ 0.75,

which states that s ≥ 0 when y = 3 and s ≥ 0.25 when y = 2. In Figure 8.1,
the two points (s, y) = (0, 3) and (s, y) = (0.25, 2) are the extreme points of
conv(XMI) limiting the shaded region cut off by inequality (8.1). Observe that
these two points suffice to prove that (8.1) is a facet-defining valid inequality
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y

s

Feasible points

MIR inequality

s+y  2.25

(0.25 , 2)

(0 , 3)

2.25

s  0

s + 0.25 y  0.75

Figure 8.1. Simple mixed integer rounding (MIR) inequality.

of conv(XMI).

Now consider the set

Y = {(x, y) ∈ R
1
+ × Z

1 : x ≤ 2.25, x ≤ y}.

Introducing s = 2.25 − x with s ≥ 0 and then eliminating x gives the set

{(s, y) ∈ R
1
+ × Z

1 : s + y ≥ 2.25}
considered above. Now the valid inequality s + 0.25y ≥ 0.75 gives after substi-
tution for s, 2.25 − x + 0.25y ≥ 0.75 or

x ≤ 2 + 0.25(y − 2),

the inequality given in Corollary 8.2.
Finally consider the set

Z = {(s, z) ∈ R
1
+ × Z

1 : z ≤ −2.25 + s}.

By Corollary 8.1, the SMIR inequality for Z takes the form

z ≤ 	−2.25
 +
s

1 − 0.75
or z ≤ −3 + 4s.

8.1.2 Optimal Solutions

Consider now the associated optimization problem
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min{cs + qy : s + y ≥ b, s ≥ 0, y ∈ Z},

and its linear programming relaxation

min{cs + qy : s + y ≥ b, s ≥ 0, y ∈ R}.

Both problems are clearly unbounded if c < 0 or q < 0. They are also un-
bounded if c < q because the objective is strictly decreased when s and y are
simultaneously increased and decreased by the same amount. This leads to
the following observation.

Observation 8.1 i. For the linear programming relaxation, if c ≥ q ≥ 0, the
point (s, y) = (0, b) is optimal, and otherwise the optimal value is unbounded.
ii. For the mixed integer program, if c ≥ q ≥ 0, then either (s, y) = (0, �b�) or
(s, y) = (f, 	b
) is optimal, and otherwise the objective value is unbounded.

8.2 The MIP Set

Here we consider the MIP set

XMI
K = {(s, y) ∈ R

K
+ × Z

1 : sk + y ≥ bk for k = 1, . . . , K}.

Note that XMI
K (b) = ∩K

k=1X
MI
1 (bk) ⊆ R

K
+ ×Z

1. Surprisingly it suffices to just
add an SMIR inequality for each of the sets XMI

1 (bk) to get the convex hull.
What is more, this is still true when several such sets XMI

K intersect by having
constraints linking the integer variables.

Throughout this chapter, we define fk = bk − 	bk
 for all k, and we let
f0 = 0.

Theorem 8.2 i. The polyhedron

sk + y ≥ bk for 1 ≤ k ≤ K

sk + fky ≥ fk�bk� for 1 ≤ k ≤ K

s ∈ R
K
+ , y ∈ R

1

describes the convex hull of XMI
K .

ii. Let Xi = {(si, yi) ∈ R
Ki
+ ×Z

1 : si
k +yi ≥ bi

k for 1 ≤ k ≤ Ki} for 1 ≤ i ≤ m,
let y = (y1, . . . , ym) ∈ Z

m, and consider the set

W = (∩m
i=1X

i) ∩ {y : By ≤ d} ⊆ R
K1
+ × · · · × R

Km
+ × Z

m.

The polyhedron

si
k + yi ≥ bi

k for 1 ≤ k ≤ Ki, 1 ≤ i ≤ m

si
k + f i

kyi ≥ f i
k�bi

k� for 1 ≤ k ≤ Ki, 1 ≤ i ≤ m

By ≤ d

y ∈ R
m, si ∈ R

Ki
+ for 1 ≤ i ≤ m
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is integral and describes conv(W ) if B is a totally unimodular matrix and d
is integer, where f i

k = bi
k − 	bi

k
 for all i, k.

The proof of Theorem 8.2 is given in Section 8.10.

Example 8.2 Consider the set

X = {(s, y) ∈ R
3
+ × Z

1 : s1 + y ≥ 1.4, s2 + y ≥ 2.3, s3 + y ≥ 0.7}.

By Theorem 8.2i, it suffices to add the three SMIR inequalities

s1 ≥ 0.4(2 − y), s2 ≥ 0.3(3 − y), s3 ≥ 0.7(1 − y)

to obtain conv(X).

Alternatively, the set X can be written as

s1 + y1 ≥ 1.4, s2 + y2 ≥ 2.3, s3 + y3 ≥ 0.7 (8.4)
y1 − y2 = 0, y2 − y3 = 0 (8.5)

(s, y) ∈ R
3
+ × Z

3. (8.6)

Here (8.4) and (8.6) are the constraints of three independent basic-MIP sets,
and the matrix associated with the additional linking constraints (8.5) is totally
unimodular. So by Theorem 8.2ii, it suffices to add the three SMIR inequalities

s1 ≥ 0.4(2 − y1), s2 ≥ 0.3(3 − y2), s3 ≥ 0.7(1 − y3)

to obtain conv(X). Substituting back y = y1 = y2 = y3 by Equation (8.5), we
obtain the same description of conv(X) as above.

As an application of the above reformulation, the discrete lot-sizing prob-
lem with constant capacity and backlogging (DLS-CC-B) can be expressed,
after elimination of the backlogging variables, as the intersection of n (n is the
number of time periods) basic MIP sets, where the linking constraints, involv-
ing only the integer variables, correspond to the arc-node incidence matrix of
a digraph. Because this matrix is totally unimodular, Theorem 8.2, part ii, can
be used to describe conv(XDLS−CC−B). This is presented in Section 10.3.1.

8.3 The Mixing Set

Here we consider the mixing set

XMIX
K = {(s, y) ∈ R

1
+ × Z

K : s + yk ≥ bk for 1 ≤ k ≤ K}.
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8.3.1 Extreme Points

Proposition 8.3 The extreme rays of conv(XMIX
K ) are the vectors (s, y) =

(0, ek) for 1 ≤ k ≤ K and the vector (1,−e), where ek ∈ R
K is the kth unit

vector and e ∈ R
K is the vector of all 1s.

The extreme points are (sj , yj) for 0 ≤ j ≤ K with sj = fj , y
j
k = �bk − fj�

for 1 ≤ k ≤ K.

Example 8.3 Consider the set

X = {(s, y) ∈ R
1
+ × Z

3 : s + y1 ≥ 1.4, s + y2 ≥ 2.6, s + y3 ≥ 0.7}.

By Proposition 8.3, the extreme rays of conv(X) are (s, y) = (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), and (1,−1,−1,−1). The extreme points of conv(X)
are the vectors (s0, y0) = (0, 2, 3, 1), (s1, y1) = (0.4, 1, 3, 1), (s2, y2) =
(0.6, 1, 2, 1), and (s3, y3) = (0.7, 1, 2, 0).

8.3.2 Valid Inequalities

Here the K SMIR inequalities s + fkyk ≥ fk�bk� do not suffice to give the
convex hull when K > 1. To fit with what follows, note that when 0 ≤ fk < 1,
the right-hand side of the SMIR inequality can be be rewritten as fk(	bk
+1).

Proposition 8.4 Let T ⊆ {1, . . . , K} with |T | = t, and suppose that i1, . . . it
is an ordering of T such that 0 = fi0 ≤ fi1 ≤ fi2 ≤ · · · ≤ fit

< 1. Then the
mixing inequalities

s ≥ ∑t
τ=1(fiτ

− fiτ−1)(	biτ

 + 1 − yiτ

) (8.7)

and

s ≥ ∑t
τ=1(fiτ

− fiτ−1)(	biτ

 + 1 − yiτ

) + (1 − fit
)(	bi1
 − yi1) (8.8)

are valid for XMIX
K .

Proof. We prove the validity of (8.8). The proof of (8.7) is similar.
Take any (s, y) ∈ XMIX

K , and define β = maxt
τ=1{	biτ


 + 1 − yiτ
}. If

β ≤ 0, then the inequality is satisfied at (s, y) because s ≥ 0 and all terms
in the right-hand side are nonpositive. So, it remains to prove validity for the
case β ≥ 1. We define ν = max{τ ∈ {1, . . . , t} : β = 	biτ 
 + 1 − yiτ }. Using
β ≥ 	biτ


 + 1 − yiτ
for τ ≤ ν, and β ≥ 	biτ


 + 2 − yiτ
for τ > ν, we can write
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t∑
τ=1

(fiτ
− fiτ−1)(	biτ


 + 1 − yiτ
) + (1 − fit

)(	bi1
 − yi1)

≤
ν∑

τ=1

(fiτ
− fiτ−1)(β) +

t∑
τ=ν+1

(fiτ
− fiτ−1)(β − 1) + (1 − fit

)(β − 1)

= fiν β + (1 − fiν )(β − 1)
= (β − 1) + fiν = 	biν 
 + 1 − yiν − 1 + fiν = biν − yiν

≤ s. ��

Theorem 8.5 i. The constraints

s + yk ≥ bk for 1 ≤ k ≤ K, s ≥ 0

and the mixing constraints (8.7),(8.8) completely describe the convex hull of
XMIX

K .

ii. Let Xi = {(si, yi) ∈ R
1
+ × Z

Ki : si + yi
k ≥ bi

k for 1 ≤ k ≤ Ki} for
1 ≤ i ≤ m, let y = (y1, . . . , ym) ∈ Z

K1 × · · · × Z
Km , and consider the set

(∩m
i=1X

i) ∩ {y : By ≤ d} ⊆ R
m
+ × Z

K1 × · · · × Z
Km .

The polyhedron

si + yi
k ≥ bi

k for all k, i

the mixing inequalities (8.7), (8.8) for 1 ≤ i ≤ m

By ≤ d

si ≥ 0 for 1 ≤ i ≤ m

is integral if the polyhedron {z : Bz ≤ d, lij ≤ zi − zj ≤ hij for i, j ∈
{1, . . . , K}, i �= j} is integral for all integral lij , hij. In particular, the con-
dition holds if B is the arc-node incidence matrix of a directed graph (i.e., B
is a {0,+1, −1} matrix with at most one entry +1 and one entry −1 in each
row), and d is integer.

Example 8.4 Consider again the set

X = {(s, y) ∈ R
1
+ × Z

3 : s + y1 ≥ 1.4, s + y2 ≥ 2.6, s + y3 ≥ 0.7}.

By Theorem 8.5, it suffices to add the following inequalities to obtain the
convex hull: first three SMIR inequalities, which are the inequalities of the
form (8.7) with |T | = 1,

s ≥ 0.4(2 − y1), s ≥ 0.6(3 − y2), s ≥ 0.7(1 − y3) ,

then the mixing inequalities (8.7) with |T | > 1



244 8 Basic MIP and Fixed Cost Flow Models

s ≥ 0.4(2 − y1) + (0.6 − 0.4)(3 − y2)
s ≥ 0.4(2 − y1) + (0.7 − 0.4)(1 − y3)
s ≥ 0.6(3 − y2) + (0.7 − 0.6)(1 − y3)
s ≥ 0.4(2 − y1) + (0.6 − 0.4)(3 − y2) + (0.7 − 0.6)(1 − y3)

and the mixing inequalities (8.8) with |T | > 1

s ≥ 0.4(2 − y1) +(0.6 − 0.4)(3 − y2) +(1 − 0.6)(1 − y1)
s ≥ 0.4(2 − y1) +(0.7 − 0.4)(1 − y3) +(1 − 0.7)(1 − y1)
s ≥ 0.6(3 − y2) +(0.7 − 0.6)(1 − y3) +(1 − 0.7)(2 − y2)
s ≥ 0.4(2 − y1) +(0.6 − 0.4)(3 − y2) +(0.7 − 0.6)(1 − y3) +(1 − 0.7)(1 − y1).

Note that the mixing inequalities (8.8) with |T | = 1 need not be added be-
cause they are the original inequalities s + yk ≥ bk for all k.

As there are an exponential number of mixing inequalities, it is important
to look for a separation algorithm if we want to use them computationally.
The alternative would be to find an extended formulation that gives conv(X)
implicitly.

8.3.3 Separation of the Mixing Inequalities

Given a point (s∗, y∗) ∈ R
1
+×R

K , it is not difficult to see that a most-violated
inequality of the form (8.7) or (8.8) can be found by the following procedure.

The general idea is to construct T = {i1, . . . , it} so as to maximize the
right-hand side of (8.7) or (8.8). We build a set T such that maxj=1,...,K(	bj
+
1−y∗

j ) = 	bi1
+1−y∗
i1

> 	bi2
+1−y∗
i2

> · · · > 	bit

+1−y∗

it
> (	bi1
−y∗

i1
)+.

Separation Algorithm for the Mixing Inequalities

Reorder the variables k = 1, . . . , K so that f1 ≤ · · · ≤ fK . Let β =
maxj=1,...,K(	bj
 + 1 − y∗

j ). If β ≤ 0, there is no violated inequality. Oth-
erwise, taking i0 = 0, find a subsequence i1, . . . ir of {1, . . . , K} so that:

ij = arg max
i:i>ij−1

{	bi
 + 1 − y∗
i : (	bi
 + 1 − y∗

i ) > (β − 1)+} for j = 1, . . . , r

	bi
 + 1 − y∗
i ≤ (β − 1)+ for i > ir.

Note that β = 	bi1
 + 1 − y∗
i1

, and let γ =
∑r

j=1(fij − fij−1)(	bij 
 + 1 − y∗
ij

).

Case a. β ≤ 1.
If γ > s∗, the mixing inequality (8.7)

s ≥
r∑

j=1

(fij
− fij−1)(	bij


 + 1 − y∗
ij

)



8.3 The Mixing Set 245

is most violated with violation γ − s∗, and otherwise no inequality is violated.

Case b. β > 1.
If γ + (1 − fir

)(β − 1) > s∗, the mixing inequality (8.8),

s ≥
r∑

j=1

(fij − fij−1)(	bij 
 + 1 − y∗
ij

) + (1 − fir )(	bi1
 − y∗
i1),

is most violated with violation γ + (1 − fir
)(	bi1
 − y∗

i1
) − s∗, and otherwise

no inequality is violated.

The complexity of this routine is O(n log n) as sorting the fi requires
O(n log n), and then starting from K and working backwards one can find
ir, . . . , i1 in linear time, where n is taken as the number of variables in the
mixing set.

Example 8.5 Consider again the set

X = {(s, y) ∈ R
1
+ × Z

3 : s + y1 ≥ 1.4, s + y2 ≥ 2.6, s + y3 ≥ 0.7},

and the point (s∗, y∗) = (0.21, 1.5, 2.9, 0.8).
Note that f1 < f2 < f3 so that we do not need to reorder the variables.

Here (	b1
+1−y∗
1 , 	b2
+1−y∗

2 , 	b3
+1−y∗
3) = (0.5, 0.1, 0.2). Thus β = 0.5,

i1 = 1, i2 = 3, and γ = f1(	b1
 + 1 − y∗
1) + (f3 − f1)(	b3
 + 1 − y∗

3) =
0.4 × 0.5 + (0.7 − 0.4) × 0.2 = 0.26.

Thus as β < 1 and γ − s∗ = 0.05 > 0, a most-violated inequality is

s ≥ 0.4(2 − y1) + (0.7 − 0.4)(1 − y3)

with violation 0.05.

8.3.4 An Extended Formulation for conv(XMIX
K )

Taking the convex hull of the extreme points and nonnegative multiples of the
extreme rays leads to an extended formulation. More precisely, we take

– nonnegative multiples δj of the extreme points (sj , yj) for j = 0, . . . , K

with
∑K

j=0 δj = 1,
– a nonnegative multiple µ of the ray (s, y) = (1,−e), and
– a nonnegative multiple of the ray (s, y) = (0, ek) defined implicitly as the

slack variable of the constraint defining yk for k = 1, . . . , K.

Theorem 8.6 An extended formulation for conv(XMIX
K ) is
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s =
K∑

j=0

fjδj + µ

yk ≥
K∑

j=0

�bk − fj�δj − µ for 1 ≤ k ≤ K

K∑
j=0

δj = 1

µ ∈ R
1
+, δ ∈ R

K+1
+ ,

with f0 = 0.

Note that the inequality bounding yk from below can be rewritten, after
addition of 	bk
 + 1 times the last equality as

µ + yk +
∑

{j:fj≥fk}
δj ≥ 	bk
 + 1. (8.9)

Consider now the reformulation obtained by introducing the new variables

µk = µ +
∑

j:fj≥fk
δj for k = 1, . . . , K, and

µK+1 = µ.

The above formulation now becomes

s =
K∑

k=1

(fj − fj−1)µj + (1 − fK)µK+1 (8.10)

µk + yk ≥ 	bk
 + 1 for k = 1, . . . , K (8.11)
µk − µk+1 ≥ 0 for k = 1, . . . , K (8.12)
µK+1 − µ1 ≥ −1 (8.13)
µK+1 ≥ 0. (8.14)

Changing the sign of the y variables, it is easily seen that the matrix
defined by the constraints (8.11)–(8.13) is the dual of a network matrix. It
follows that the optimization problem over a mixing set can be solved as a
minimum cost network flow problem. In addition the validity of the mixing
inequalities (8.7) and (8.8) is immediate by elimination of the µk variables in
(8.10), and the separation problem for these inequalities reduces directly to a
min-cut problem, see Exercise 8.8.

Example 8.6 Consider again the mixing set

X = {(s, y) ∈ R
1
+ × Z

3 : s + y1 ≥ 1.4, s + y2 ≥ 2.6, s + y3 ≥ 0.7}.

From Theorem 8.6, it has the tight reformulation
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s = 0δ0 +0.4δ1 +0.6δ2 +0.7δ3 +µ
y1 ≥ 2δ0 +1δ1 +1δ2 +1δ3 −µ
y2 ≥ 3δ0 +3δ1 +2δ2 +2δ3 −µ
y3 ≥ 1δ0 +1δ1 +1δ2 +0δ3 −µ
1 = δ0 +δ1 +δ2 +δ3

δ ∈ R
4
+, µ ∈ R

1
+.

With the introduction of the µk variables, this becomes

s = 0.4µ1 +0.2µ2 +0.1µ3 +0.3µ4
µ1 +y1 ≥ 2

µ2 +y2 ≥ 3
µ3 +y3 ≥ 1

µ1 −µ2 ≥ 0
µ2 −µ3 ≥ 0

µ3 −µ4 ≥ 0
−µ1 +µ4 ≥ −1

+µ4 ≥ 0.

8.3.5 Application of the Mixing Reformulation

The solution set of DLSI-CC can be expressed as a mixing set with linking
constraints, involving only the integer variables and a totally unimodular ma-
trix. Thus Theorem 8.5, part ii, can be used to describe conv(XDLSI−CC),
see Section 9.4. In addition, mixing sets are crucial to the description of the
constant-capacity lot-sizing problem with Wagner–Whitin costs WW -CC be-
cause the solution sets are the intersection of n DLSI-CC sets; see Section
9.5.

Finally we show in Section 9.7 how to use these mixing sets to improve the
formulation of lot-sizing problems WW -C where capacities vary over time.

8.4 Reformulation Approaches for More General Mixing
Sets

For the mixing set studied in the previous section, we were able to list ex-
plicitly all the extreme points and extreme rays. For more complicated sets
this is typically impossible, either because they are not easily characterized
or because there are too many of them. Though more complicated than the
mixing set, the sets we study in Sections 8.5 and 8.6 still have one impor-
tant property, the fractional values taken by the variable s in any extreme
point of the convex hull can only take a small number of values, that is, s
mod 1 ∈ {f0, . . . , fm}. This allows us to derive extended formulations for the
set based on these values. Below we derive such extended formulations for the
set X using three different arguments that we now briefly describe.
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Convex Hull Approach. The idea here, just demonstrated for the mix-
ing set, is to explicitly or implicitly represent the convex hull conv(X) in
terms of its extreme points and extreme rays.

Enumerative Approach. We start with an extended formulation

Y = X ∩ {(s, δ, µ) ∈ R
1 × Z

m
+ × Z

1
+ : s =

m∑
i=0

fiδi + µ,
m∑

i=0

δi = 1}

in which the continuous variable s is replaced by a small number of integer
variables. With these, it is often easy to derive valid inequalities so as to
tighten the formulation for Y . If one can derive a tight formulation for Y , this
then provides an extended formulation for conv(X).

As a simple example of the derivation of such an inequality, consider the
constraint s + yt ≥ bt from the description of the mixing set in the last
section. With ft = bt − 	bt
 for t = 1, . . . , m and f0 = 0, one obtains the
partial reformulation

∑m
i=0 fiδi + µ + yt ≥ bt∑m

i=0 δi = 1
δ ∈ Z

m+1
+ , µ ∈ Z

1
+, yt ∈ Z

1

for which one can derive the valid inequality
∑

i:fi≥ft

δi + µ + yt ≥ 	bt
 + 1.

Disjunctive Approach. Here we consider a disjunctive formulation

X = ∪m
t=0X

t,

where Xt = X∩{s : s−ft ∈ Z
1
+}. Suppose now that each set conv(Xt) has the

same extreme rays as conv(X) and that one can find an explicit polyhedral
description

conv(Xt) = {x : Atx + Btwt ≥ dt for some wt}.

Here x represents the variables in the original space of Xt including the vari-
able s, and wt are possible additional variables from an extended formulation.
Then conv(X) = conv (∪m

t=0conv(Xt)), and an explicit extended formulation
for conv(X) is
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x =
m∑

t=0

xt (8.15)

Atxt + Btwt ≥ dtδt for 0 ≤ t ≤ m (8.16)
m∑

t=0

δt = 1 (8.17)

x ∈ R
n, δ ∈ R

m+1
+ , (xt, wt) ∈ R

n × R
pt for 0 ≤ t ≤ m. (8.18)

8.5 The Continuous Mixing Set

Here we consider the continuous mixing set

XCMIX
K = {(s, r, y) ∈ R

1
+ × R

K
+ × Z

K : s + rk + yk ≥ bk for 1 ≤ k ≤ K}.

First we characterize the extreme points and extreme rays that will lead
us to define finite sets of values for s and rk.

Notation. As before fj = bj − 	bj
. We also use F j
i = (fj − fi) mod 1;

that is, F j
i = fj − fi if fj ≥ fi and F j

i = fj − fi + 1 otherwise, and also
f0 = 0, F j

0 = fj . Again, ek ∈ R
K is the kth unit vector and e ∈ R

K is the
vector of all 1s.

Proposition 8.7 The extreme rays of conv(XCMIX
K ) are of three types:

(s, r, y) = (0, 0, ej) for j = 1, . . . , K, or
(1, 0,−e), or
(0, ej ,−ej) for 1 ≤ j ≤ K.

The extreme points are of two types:

Type A: s = 0.
Also for all 1 ≤ j ≤ K,

either rj = 0 and yj = �bj�
or rj = fj and yj = 	bj
.
When bj ∈ Z1, the two cases coincide.

Type B: For all 1 ≤ i ≤ K,
s = fi, ri = 0, yi = 	bi
.
Also for j �= i,

either yj = �bj − fi� and rj = 0,
or yj = 	bj − fi
 and rj = (bj − fi) − 	bj − fi
 = F j

i .
Again when fj = fi, the two cases coincide.
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Example 8.7 Consider the set

X = {(s, r, y) ∈ R
1
+ × R

2
+ × Z

2 : s + r1 + y1 ≥ 1.4, s + r2 + y2 ≥ 2.7}.

The extreme points of type A are

(s, r1, r2, y1, y2) = (0, 0, 0, 2, 3), (0, 0.4, 0, 1, 3), (0, 0, 0.7, 2, 2), (0, 0.4, 0.7, 1, 2).

The extreme points of type B are

i = 1 : (0.4, 0, 0, 1, 3), (0.4, 0, 0.3, 1, 2)

i = 2 : (0.7, 0, 0, 1, 2), (0.7, 0.7, 0, 0, 2).

To obtain an extended formulation one possibility, following the convex
hull approach, is to introduce the variables:

δi = 1 if the fractional part of s takes the value fi for i = 0, . . . , K.
βj

i = 1 if the fractional part of s takes the value fi and the fractional part of
rj is F j

i for j = 1, . . . , K, i = 0, . . . , m and i �= j.

Theorem 8.8 An extended formulation for conv(XCMIX
K ) is

s =
K∑

i=0

fiδi + µ (8.19)

rj =
K∑

i=0

F j
i βj

i + νj for 1 ≤ j ≤ K (8.20)

yj ≥ 	bj
 +
∑

i:fi<fj

(δi − βj
i ) −

∑
i:fi>fj

βj
i − µ − νj for 1 ≤ j ≤ K

(8.21)

βj
i ≤ δi for 1 ≤ j ≤ K, 0 ≤ i ≤ K (8.22)
K∑

i=0

δi = 1 (8.23)

β ∈ R
K(m+1)
+ , δ ∈ R

K+1
+ , µ ∈ R

1
+, ν ∈ R

K
+ . (8.24)

Example 8.8 Consider again the set

s + r1 + y1 ≥ 1.4
s + r2 + y2 ≥ 2.7

s, r1, r2 ∈ R
1
+, y1, y2 ∈ Z

1.
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We have that f0 = 0, f1 = 0.4, f2 = 0.7, F 1
0 = 0.4, F 1

2 = 0.7, F 2
0 = 0.7, and

F 2
1 = 0.3.

The formulation (8.19)-(8.24) takes the form

s = µ + 0.4δ1 + 0.7δ2

r1 = ν1 + 0.4β1
0 + 0.7β1

2

r2 = ν2 + 0.7β2
0 + 0.3β2

1

µ + ν1 + y1 − (δ0 − β1
0) + β1

2 ≥ 1

µ + ν2 + y2 − (δ0 − β2
0) − (δ1 − β2

1) ≥ 2
δ0 + δ1 + δ2 = 1

β1
0 ≤ δ0, β2

0 ≤ δ0

β2
1 ≤ δ1

β1
2 ≤ δ2

µ, ν, δ, β ≥ 0.

The above formulation has O(K2) constraints and variables. The formula-
tion that we present below without justification is of practical interest because
it has only O(K) variables, and also because it permits us to see the structure
of the valid inequalities for XCMIX

K .

Theorem 8.9 An extended formulation for conv(XCMIX
K ) is

s + rj + F j
k (yj − 	bj
) ≥ fk + αj − αk for 1 ≤ j ≤ K 1 ≤ j < k ≤ K

(8.25)

rj + F j
k (yj − 	bj
) ≥ αj − αk for 1 ≤ j ≤ K 0 ≤ k < j ≤ K

(8.26)

s ≥ fk + α0 − αk for 1 ≤ k ≤ K (8.27)
s + rj + (yj − 	bj
) ≥ fj for 1 ≤ j ≤ K (8.28)

s ∈ R
1
+, r ∈ R

K
+ , α ∈ R

K+1, (8.29)

where it is assumed that f1 ≤ f2 ≤ · · · ≤ fK .

To obtain the projection of this formulation into the original (s, r, y) space,
we need to eliminate the variables α0, . . . , αK . As each occurrence of these
variables is in the form (αj −αk), we can associate a complete directed graph
D = (V, A) with nodes V = {0, . . . , K} and arcs A = {(j, k)}. The only way
to eliminate the α variables is to find a directed cycle C in D.

Proposition 8.10 Every valid inequality for XCMIX
K , other than a defining

inequality (8.28), is of the form∑
(j,k)∈C:1≤j<k[s + rj + F j

k (yj − 	bj
) − fk]

+
∑

(j,k)∈C:0≤k<j [rj + F j
k (yj − 	bj
)] +

∑
(0,k)∈C [s − fk] ≥ 0,
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where C is a directed cycle in D.

This immediately suggests a separation algorithm. For a point (s∗, r∗, y∗),
calculate the corresponding value associated with each arc and take this value
as arc weight. Now any negative weight directed cycle gives a violated inequal-
ity.

Example 8.9 Consider again the set

s + r1 + y1 ≥ 1.4
s + r2 + y2 ≥ 2.7

s, r1, r2 ∈ R
1
+, y1, y2 ∈ Z

1

The variables are ordered so that f1 = 0.4 ≤ f2 = 0.7, so from Theorem 8.9
we obtain the tight extended formulation

s + r1 + 0.7(y1 − 1) ≥ 0.7 + α1 − α2

r1 + 0.4(y1 − 1) ≥ 0 + α1 − α0

r2 + 0.7(y2 − 2) ≥ 0 + α2 − α0

r2 + 0.3(y2 − 2) ≥ 0 + α2 − α1

s ≥ 0.4 + α0 − α1

s ≥ 0.7 + α0 − α2

s + r1 + y1 ≥ 1.4
s + r2 + y2 ≥ 2.7
s, r ≥ 0.

Let us now modify the set by adding a third constraint

s + r3 + y3 ≥ 5.9 with r3 ∈ R
1
+, y3 ∈ Z

1.

Consider now the directed cycle C = {(0, 2), (2, 1), (1, 3), (3, 0)}. From Propo-
sition 8.10, the inequality

(s−f2)+[r2+F 2
1 (y2−	b2
)]+[s+r1+F 1

3 (y1−	b1
)−f3]+[r3+F 3
0 (y3−	b3
)] ≥ 0

or

2s + r1 + r2 + r3 + 0.5(y1 − 1) + 0.3(y2 − 2) + 0.9(y3 − 5) ≥ 1.6

is valid.

In Chapter 10 we show that the feasible region of DLSI-CC-B can be
viewed as a continuous mixing set with additional constraints in the form of
an arc-node incidence matrix, and the feasible region of WW -CC-B is the
intersection of n such sets.
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8.6 Divisible Capacity Mixing Sets

Here we consider two more general sets

X2DIV = {(s, y, z) ∈ R
1
+ × Z

m
+ × Z

m
+ : s + yt + Czt ≥ bt for 1 ≤ t ≤ m}

and

XDMIX = {(s, y) ∈ R
1
+ × Z

|K1|+|K2| : s + yk ≥ bk for k ∈ K1,

s + Cyk ≥ bk for k ∈ K2},

where C ∈ Z
1 with C ≥ 2.

8.6.1 The Two-Capacity Mixing Set

To derive a tight extended formulation for X2DIV , we use the disjunctive
approach outlined in Section 8.4. It is easily shown that in any extreme point
of conv(X2DIV ), s ∈ {f0, . . . , fm}(mod 1). So we consider the set

X2DIV
k = X2DIV ∩ {(s, σ) ∈ R

1 × Z
1
+ : s = σ + fk}.

Substituting for s, and rounding up the right-hand side, we obtain the formu-
lation

σ + yt + Czt ≥ �bt − fk� for 1 ≤ t ≤ m

(σ, y, z) ∈ Z
1
+ × Z

m
+ × Z

m
+

for X2DIV
k .

Now total unimodularity of the constraint matrix associated with the σ, y
and slack variables indicates that the integrality constraints on σ and y can
be dropped.

Proposition 8.11 (s, y, z) ∈ conv(X2DIV
k ) if and only if ( s−fk

C , y
C , z) ∈

conv(XCMIX(Bk)), where Bk
t = 
bt−fk�

C for 1 ≤ t ≤ m.

Taking the O(m2) × O(m) extended formulation for conv(XCMIX(Bk))
given by (8.25)–(8.29), and the convex hull of the union of these polyhedra us-
ing (8.15)–(8.18) gives a formulation for conv(X2DIV ) of size O(m3)×O(m2).

8.6.2 The Divisible Mixing Set

To obtain a tight extended formulation for XDMIX , we use the enumerative
approach outlined in Section 8.4.

We can again limit the values that s will take.
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Observation 8.2 Let fk = bk − 	bk
 for k ∈ K1 ∪ K2, f0 = 0, and m =
|K1 ∪ K2|. Then there exists an (extreme) optimal solution with

s mod 1 ∈ {f0, . . . , fm}.

Then we consider the set Y DMIX = XDMIX ∩ {(s, µ, δ) ∈ R
1 × Z

1
+ × Z

m+1
+ :

s = µ +
∑m

i=0 fiδi,
∑m

i=0 δi = 1}.

Proposition 8.12 The inequality

µ +
∑

i:fi≥fk

δi + yk ≥ 	bk
 + 1 (8.30)

is valid for Y DMIX for all k ∈ K1.

For j ∈ K2, let fp(j) = max{fi : fi < fj} and let fp(0) = 0. Set σj =
µ +

∑
i:fi≥fj

δi for j ∈ K2 ∪ {0}.

Proposition 8.13 The inequalities

σj + Cyk ≥ 	bk − fp(j)
 + 1 for k ∈ K2 (8.31)

are valid for Y DMIX for all j ∈ K2∪{0}. In other words, (σj

C , y) ∈ XMIX(Bj)

for all j ∈ K2 ∪ {0}, where Bj
k = �bk−fp(j)+1

C for k ∈ K2.

Now it is possible to show that we have a tight formulation.

Theorem 8.14 A tight extended formulation for conv(XDMIX) is given by

s = µ +
m∑

i=0

fiδi

m∑
i=0

δi = 1

µ +
∑

i:fi≥fk

δi + yk ≥ 	bk
 + 1 for k ∈ K1

σj = µ +
∑

i:fi≥fj

δi for j ∈ K2 ∪ {0}

(
σj

C
, y) ∈ conv(XMIX(Bj)) for j ∈ K2 ∪ {0}

s, y, σ, δ ∈ R
1
+ × R

|K1|+|K2|
+ × R

|K2|+1
+ × R

m+1
+ .

Example 8.10 Consider an instance of the set XDMIX with n = 4, C =
10, |K1| = |K2| = 2, namely,
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s + y1 ≥ 0.3
s + y2 ≥ 0.8
s + 10y3 ≥ 7.2
s + 10y4 ≥ 4.5

s ∈ R
1
+, y ∈ Z

4.

Here m = 4 and f = (0.0, 0.3, 0.8, 0.2, 0.5), so we introduce

s = µ + 0.3δ1 + 0.8δ2 + 0.2δ3 + 0.5δ4

δ0 + δ1 + δ2 + δ3 + δ4 = 1, δ ∈ R
5
+.

Proposition 8.12 gives the two inequalities

µ + δ1 + δ2 + δ4 + y1 ≥ 1
µ + δ2 + y2 ≥ 1.

Now we just choose one possible value of j ∈ K2 ∪ {0}. With j = 4, f4 =
0.5, fp(4) = 0.3, Theorem 8.14 gives the mixing set

σ4 + 10y3 ≥ 	7.2 − 0.3
 + 1 = 7
σ4 + 10y4 ≥ 	4.5 − 0.3
 + 1 = 5.

σ4 = µ + δ2 + δ4 ∈ R
1
+, y3, y4 ∈ Z

1
+.

Both of the sets studied here provide relaxations for capacitated lot-sizing
problems; X2DIV for the case where there are two machines of different ca-
pacity producing the same item, and XDMIX for the model with production
lower bounds; see Section 11.2.

8.7 The Continuous Integer Knapsack Set and the
Gomory Mixed Integer Set

For the sets that we consider in the rest of this chapter, the optimization
problem is NP-hard, so the best that we can hope to obtain are some families
of strong valid inequalities, and separation algorithms or heuristics so that
these inequalities can be used as cutting planes.

First we consider the continuous integer knapsack set

KI = {(s, y) ∈ R
1
+ × Z

n
+ :

n∑
j=1

ajyj ≤ b + s}.

Let fj = aj − 	aj
, and fb = b − 	b
.
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Proposition 8.15 The mixed integer rounding (MIR) inequality

∑
j

(	aj
 +
(fj − fb)+

1 − fb
)yj ≤ 	b
 +

s

1 − fb
(8.32)

is valid for KI .

Proof. Letting z =
∑

j:fj≤fb
	aj
yj +

∑
j:fj>fb

�aj�yj , we see that
z ≤ ∑

j ajyj +
∑

j:fj>fb
(1 − fj)yj ≤ b + s +

∑
j:fj>fb

(1 − fj)yj = b + s′,
where s′ = s +

∑
j:fj>fb

(1 − fj)yj ≥ 0 and z ∈ Z
1. Now by Proposition 8.1,

the SMIR inequality z ≤ 	b
 + s′
1−fb

is valid. Substituting for s′ and z gives
the inequality. ��
Note that if we define the functions Fα, F̄α : R

1 → R
1 for 0 < α < 1 by

Fα(d) = 	d
 + (d−�d−α)+

1−α , (8.33)

and F̄α(d) = min(d,0)
1−α , the MIR inequality can be written as

n∑
j=1

Fα(aj)yj + F̄α(−1)s ≤ Fα(b)

with α = fb = b − 	b
, the fractional part of b.
As a first example of an MIR inequality, one important class of cutting

planes for commercial MIP systems are the mixed integer Gomory cuts. These
are obtained from a row of a simplex tableau, that is, the set

XGOM = {(y0, y, x) ∈ Z
1 × Z

p
+ × R

q
+ : y0 +

∑
j

ajyj +
∑

k

gkxk = b}

with b /∈ Z
1.

Setting s = −∑
gj<0 gjxj ≥ 0, we see that y0 +

∑
j ajyj ≤ b + s with

y0 ∈ Z1, y ∈ Zp
+, and s ∈ R1

+. The corresponding MIR inequality is

y0 +
∑

j

(	aj
 +
(fj − fb)+

1 − fb
)yj ≤ 	b
 −

∑
k:gk<0

gk

1 − fb
xk.

Now we eliminate the y0 variable to obtain:

Proposition 8.16 The mixed integer Gomory cut

∑
j:fj≤fb

fjyj +
∑

j:fj>fb

fb(1 − fj)
1 − fb

yj +
∑

k:gk>0

gkxk −
∑

k:gk<0

fbgk

1 − fb
xk ≥ fb (8.34)

is valid for XGOM .
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Example 8.11 Consider the set

X = {(s, y) ∈ R
1
+ × Z

3
+ : 7.2y1 − 3.5y2 + 5.4y3 ≤ 12.0 + s},

and the point (s, y) = (0, 5
3 , 0, 0), which is feasible for the linear relaxation of

X.
Dividing by 7.2, the set can be rewritten as

X = {(s, y) ∈ R
1
+ × Z

3
+ : y1 − 35

72
y2 +

3
4
y3 ≤ 5

3
+

10s

72
}.

From Proposition 8.15, the MIR inequality for a set in this form with fb = 2
3 ,

f1 = 0, f2 = 37
72 , and f3 = 3

4 > fb, is

y1 − y2 +
1
4
y3 ≤ 1 +

10s

24
,

and this cuts off the point (s∗, y∗).
Alternatively suppose that we have a row of an optimal LP tableau:

(y1 − 35
72

y2 +
3
4
y3 − 10s

72
) + s′ =

5
3
, y ∈ Z

3
+, (s, s′) ∈ R

2
+.

Taking the MIR inequality from above and substituting for the variable y1, we
obtain the mixed integer Gomory cut for that row

37
72

y2 +
1
2
y3 +

10
36

s + s′ ≥ 2
3
,

which cuts off the basic solution y2 = y3 = s = s′ = 0.

8.8 The Continuous 0–1 Knapsack Set

Here we consider the continuous 0–1 knapsack set

KB = {(s, y) ∈ R
1
+ × {0, 1}n :

n∑
j=1

ajyj ≤ b + s}.

where the integer variables are further restricted to be binary. We can always
assume without loss of generality that aj > 0 for all j ∈ N = {1, . . . , n},
because binary variables can be complemented. For instance, −y1 ≤ b + s is
equivalent to ȳ1 ≤ (b + 1) + s, where ȳ1 = 1 − y1 ∈ {0, 1}.

We first derive a family of strong valid inequalities, based on covers (or
infeasible points).

Definition 8.1 A set C ⊆ N is a cover for KB if
i.

∑
j∈C aj = b + λ with λ > 0, and

ii. if k =arg max{aj : j ∈ C}, then ak > λ.
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Proposition 8.17 The MIR cover inequality

s +
∑

j∈C min[aj , λ](1 − yj) ≥ λ + λ
∑

j∈N\C Fα( aj

ak
)yj (8.35)

is valid for KB.

Proof. This inequality can be derived as a MIR inequality. By introducing
the complementary variables ȳj = 1 − yj for j ∈ C, the knapsack constraint
becomes

−
∑
j∈C

aj ȳj +
∑

j∈N\C

ajyj ≤ −λ + s,

or after division by ak

∑
j∈C

−aj

ak
ȳj +

∑
j∈N\C

aj

ak
yj ≤ −λ

ak
+

s

ak
.

With α = − λ
ak

− � λ
ak

� = ak−λ
ak

, the resulting MIR inequality is

−
∑
j∈C

min[1,
aj

λ
]ȳj +

∑
j∈N\C

Fα(
aj

ak
)yj ≤ −1 +

s

λ
,

which after multiplication by λ and substitution for ȳj gives the required
inequality. ��

The MIR cover inequality can be strengthened by taking into account the
fact that the variables yj for j ∈ N \ C are not just nonnegative integer, but
are 0–1 variables.

Let C̃ = {j ∈ C : aj > λ} and let r = |C̃| ≥ 1. Reorder the elements
so that C̃ = {a1, . . . ar} with a1 ≥ . . . ≥ ar > λ. Now let Aj =

∑j
i=1 ai for

1 ≤ j ≤ r.
Let φC(u) be defined as follows:

φC(u) = j − 1 if Aj−1 ≤ u ≤ Aj − λ

φC(u) = j − 1 +
u − (Aj − λ)

λ
if Aj − λ ≤ u ≤ Aj

φC(u) = r − 1 +
u − (Ar − λ)

λ
if u ≥ Ar − λ.

Theorem 8.18 The inequality

s +
∑
j∈C

min[aj , λ](1 − yj) ≥ λ + λ
∑

j∈N\C

φC(aj)yj

is valid and facet-defining for KB.

In Figure 8.2, we show the functions Fα(u/a1) and φC(u) for a(C) =
(10, 8, 5), b = 19, α = 6

10 , and λ = 4. The functions are identical for 0 ≤ u ≤
14.
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Figure 8.2. The functions Fα and φC .

Example 8.12 Consider the continuous 0–1 knapsack set

{(s, y) ∈ R
1
+ × [0, 1]6 : 10y1 + 9y2 + 7y3 + 16y4 + 5y5 + 19y6 ≤ 18 + s}.

Taking C = {1, 2, 3}, we have that λ = 8 and a1 = 10. Complementing the
variables in C, and dividing by a1 leaves

−ȳ1 − 9
10

ȳ2 − 7
10

ȳ3 +
16
10

y4 +
5
10

y5 +
19
10

y6 ≤ − 8
10

+
s

10
.

The resulting MIR inequality is

−ȳ1 − ȳ2 − 7
8
ȳ3 +

3
2
y4 +

1
2
y5 +

15
8

y6 ≤ −1 +
s

8
,

or
s + 8(1 − y1) + 8(1 − y2) + 7(1 − y3) ≥ 8 + 12y4 + 3y5 + 15y6.

Now using Theorem 8.18, the inequality can be strengthened giving

s + 8(1 − y1) + 8(1 − y2) + 7(1 − y3) ≥ 8 + 13y4 + 3y5 + 16y6.

Thus we see that in the 0–1 case the use of the lifting function φC leads to an
inequality that is stronger than that obtained using just complementation and
the MIR inequality.

A standard way to get further inequalities for knapsack-like sets is to con-
vert an inequality into an equality, and then into an inequality in the other
direction. This approach can be applied to sets such as KB in the following
way.

i. Introduce a nonnegative slack variable s′ such that
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n∑
j=1

ajyj + s′ = b + s.

ii. Drop the slack variable s giving

n∑
j=1

ajyj + s′ ≥ b.

iii. Complement the yj variables giving

KB′
= {(s′, ȳ) ∈ R

1
+ × [0, 1]n :

n∑
j=1

aj ȳj ≤ (
∑
j∈N

aj − b) + s′}.

iv. Generate a MIR cover inequality (8.35) and convert it back into the original
variables by substituting for ȳj and s′.

Example 8.13 Consider again the set KB of Example 8.12. Complementing
the y variables and introducing the slack variable s′ gives

10ȳ1 + 9ȳ2 + 7ȳ3 + 16ȳ4 + 5ȳ5 + 19ȳ6 ≤ 66 − 18 + s′.

The cover T = {1, 2, 3, 6} has excess λ = 1. Applying the same procedure as
in Example 8.12, we get

−10y1 + 9y2 + 7y3 + 16ȳ4 + 5ȳ5 + 19y6 ≤ −1 + s′.

Dividing by a1 = 19 with α = 18
19 , the MIR cover inequality (8.35) gives

−y1 − y2 − y3 + 0y4 + 0ȳ5 − y6 ≤ −1 + s′.

Substitution for s′ and complementation gives the MIR reverse cover inequality

9y1 + 8y2 + 6y3 + 16y4 + 5y5 + 18y6 ≤ 17 + s.

8.9 The Binary Single-Node Flow Set

Here we consider the set

KF = {(x, y) ∈ Rn
+ × {0, 1}n :

∑
j∈N1

xj −
∑

j∈N2

xj ≤ b,

xj ≤ ajyj for 1 ≤ j ≤ n}.

which can be viewed as the flow through a single node with fixed costs on the
arcs; see Figure 8.3. We now extend the definitions of cover and reverse cover.
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4

s

x1  3y1

x2  4y2

x3  5y3

x4  2y4

x5  3y5

Figure 8.3. Single node flow set.

Definition 8.2 A set (C1, C2) ⊆ (N1, N2) is a flow cover for KF if
i.

∑
j∈C1

aj − ∑
j∈C2

aj − b = λ > 0, and
ii. ā = maxj∈C1 aj > λ.

Proposition 8.19 If (C1, C2) is a flow cover for KF and (Ci, Li, Ri) is a
partition of Ni for i = 1, 2, the MIR flow cover inequality

∑
j∈C1

{xj + [aj + λF (−aj

ā
)](1 − yj)}

+
∑
j∈L1

xj −
∑
j∈L1

[aj − λF (
aj

ā
)]yj

≤ b +
∑
j∈C2

aj −
∑
j∈C2

λF (
aj

ā
)(1 − yj)

−
∑
j∈L2

λF (−aj

ā
)yj +

∑
j∈R2

xj + s (8.36)

is valid for KF , where F = Fα (see (8.33) with α = ā−λ
ā ).

Proof. Setting xj = ajyj − tj with tj ≥ 0 for j ∈ C1 ∪ C2 ∪ L1 ∪ L2 leads to
the relaxation

∑
j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj ≤ b + s +
∑
j∈R2

xj +
∑

j∈C1∪L1

tj .

Generating the MIR cover inequality (8.35) and substituting for tj gives the
inequality (8.36). ��

Historically various flow cover inequalities have been derived for the set
KF . The next corollary presents one of these inequalities.

Corollary 8.3 If ā = maxj∈C1 aj, the MIR flow cover inequality (8.36) is at
least as strong as the inequality
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∑
j∈C1

xj +
∑
j∈C1

[aj − λ]+(1 − yj)

+
∑
j∈L1

xj −
∑
j∈L1

(max[aj , ā] − λ)yj

≤ b +
∑
j∈C2

aj −
∑
j∈C2

min[λ, (aj − (ā − λ))+](1 − yj)

+
∑
j∈L2

max[aj − (ā − λ), λ]yj +
∑
j∈R2

xj + s,

known as the GFC2 flow cover inequality.

It is possible to strengthen the MIR flow cover inequality in the same
way that the MIR cover inequality was strengthened, as indicated in the next
example.

Example 8.14 Consider the single-node flow set

x1 + x2 + x3 + x4 + x5 + x6 ≤ 18 + s

x1 ≤ 10y1, x2 ≤ 9y2, x3 ≤ 7y3, x4 ≤ 16y4, x5 ≤ 5y5, x6 ≤ 19y6

x ∈ R
6
+, y ∈ {0, 1}6, s ∈ R

1
+

Taking (C1, C2) = ({1, 2, 3}, ∅) with λ = 8, substitution of ti = aiyi − xi ≥ 0
for i = 1, . . . , 6 gives the continuous knapsack set

10y1 + 9y2 + 7y3 + 16y4 + 5y5 + 19y6 ≤ 18 + s +
∑

j∈N1

tj ,

which is essentially the same set as in Example 8.12. The resulting MIR in-
equality is

−8ȳ1 − 8ȳ2 − 7ȳ3 + 12y4 + 3y5 + 15y6 ≤ −8 + s +
∑

j∈N1

tj ,

which after substitution gives the inequality (8.36) with L1 = {4, 6}

x1 + 2(1 − y1) + x2 + 1(1 − y2) + x3 + x4 − 4y4 + x6 − 4y6 ≤ 18 + s,

of Proposition 8.19.
On the other hand the strengthened MIR inequality computed in Example

8.12
−8ȳ1 − 8ȳ2 − 7ȳ3 + 13y4 + 3y5 + 15y6 ≤ −8 + s +

∑
j∈N1

tj

gives the inequality

x1 + 2(1 − y1) + x2 + 1(1 − y2) + x3 + x4 − 3y4 + x6 − 3y6 ≤ 18 + s.
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Finally we consider the reverse flow cover valid inequality. This inequality
can be obtained in the same way as the reverse MIR cover inequality for the
continuous 0–1 knapsack set.

Definition 8.3 (T1, T2) is a reverse flow cover for KF if
i. T1 ⊆ N1, T2 ⊆ N2.
ii.

∑
j∈T1

aj − ∑
j∈T2

aj − b = −µ < 0.

Proposition 8.20 Suppose that (T1, T2) is a reverse flow cover and ā > µ.
Then the MIR reverse flow cover inequality

∑
j∈T1

xj +
∑
j∈T1

µF (
aj

ā
)(1 − yj)

+
∑
j∈L1

xj +
∑
j∈L1

µF (−aj

ā
)yj

≤
∑
j∈T1

aj −
∑
j∈T2

[aj + µF (−aj

ā
)](1 − yj)

+
∑
j∈L2

[aj − µF (
aj

ā
)]yj +

∑
j∈R2

xj + s. (8.37)

is valid for KF , where (Ti, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα

with α = ā−µ
ā .

8.10 Some Convex Hull Proofs

Proof of Proposition 8.1
We give two proofs.

Proof 1. Let P be the formulation defined by the three inequalities. The
extreme points lie at the intersection of two tight inequalities.

The intersection of s = 0 and s + fy = f�b� is the point (s, y) = (0, �b�) ∈
XMI

1 .
The intersection of s+ fy = f�b� and s+ y = b is the point (s, y) = (f, 	b
) ∈
XMI

1 .
The intersection of s = 0 and s+y = b is the point (0, b) that is cut off by the
inequality s + fy ≥ f�b�. The two (feasible) extreme points of P lie in XMI

1 ,
and thus P =conv(XMI

1 ). ��
Proof 2. The second proof can also be used to tackle more complicated sets.
We show that every facet of P is integral.

In any facet, one of the inequalities defining P must be satisfied at equality.
So we must consider the three possibilities: F1 = {(s, y) ∈ P : s = 0}, F2 =
{(s, y) ∈ P : s + fy = f�b�}, and F3 = {(s, y) ∈ P : s + y = b}.
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F1 = {(s, y) : s = 0, 0 ≥ b − y, 0 ≥ f(�b� − y)}
= {(s, y) : s = 0, y ≥ �b�}.

F2 = {(s, y) : s = f�b� − fy, f�b� − fy ≥ 0, f�b� − fy ≥ b − y}
= {(s, y) : s + fy = f�b�, 	b
 ≤ y ≤ �b�}.

F3 = {(s, y) : s = b − y, b − y ≥ f�b� − fy, b − y ≥ 0}
= {(s, y) : s = b − y, y ≤ 	b
}.

Viewed in the y-space, all the extreme points of these facets have y in-
tegral. These facets are of the form s = πy + µ, α ≤ y ≤ β with α integral
or −∞, and β integer or +∞. Thus each facet is integral, and P is integral. ��

Proof of Theorem 8.2
We use the same argument as above. In a facet, one of the inequalities must be
tight for each k, and thus each facet is defined by K equations sk = πky + µk

defining each of the sk, along with the intersection of K intervals αk ≤ y ≤ βk,
where the αk, βk are integers, −∞, or +∞. Thus again each facet is integral
and the polyhedron is integral.

Now suppose that there are the additional constraints By ≤ d. Each face
is now of the form

{(s, y) : sk = πky + µk, αk ≤ y ≤ βk for 1 ≤ k ≤ K,By ≤ d},

which is integral by Theorem 6.7. ��

Proof of Theorem 8.6
Using (8.9), the proposed formulation in the (y, µ, δ) space can be written as

µ + yk +
∑

j:fj≥fk

δj ≥ 	bk
 + 1 for 1 ≤ k ≤ K

K∑
j=0

δj = 1

µ ∈ R
1
+, δ ∈ R

K+1
+ .

Apart from the y variables that form an identity matrix, if the remaining
variables are ordered as µ, δj1 , . . . , δjK

, where fj1 ≥ . . . ≥ fjK
, the resulting

matrix has the consecutive 1s property. Therefore the constraint matrix is
totally unimodular, and the claim follows. ��

Exercises

Exercise 8.1 Consider the set

X = {(s, y) ∈ R
1 × Z

1 : s + a1y ≥ b1, s + a2y ≥ b2}.
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i. Derive a valid inequality for this set, and show that it gives the convex hull.
ii. Apply to an instance with a = (−1, 2), b = (3.2, 5.7).

Exercise 8.2 Consider the set

x1 + y ≥ 1.5
x2 + y ≥ 2.6

x ∈ R
2
+, y ∈ Z

1.

Find a valid inequality cutting off the point (x1, x2, y) = (0.2, 1.3, 1.3).

Exercise 8.3 Consider the set

X = {(s, y) ∈ R
n
+ × Z

1
+ :

n∑
i=1

si + y ≥ b, si ≤ ui for 1 ≤ i ≤ n}.

i. Derive a family of SMIR inequalities for this set.
ii. For an instance with n = 3, b = 14.3, and u = (2.1, 4.8, 3.4), find a valid
inequality cutting off the point s = (2.1, 0, 3.4), y = 8.8.
iii.∗ Show that the MIR inequalities suffice to describe the convex hull.

Exercise 8.4 Consider the problem

min{g(y) + fy : y ∈ Z
1},

where g(y) = max{a1y − b1, a2y − b2, a3y − b3}.
i. Model as an optimization problem over a MIP set. See Exercise 8.1.
ii. Show how to solve this problem by linear programming.
iii. Consider an instance with a = (−1,−0.5, 1), b = (−1.5,−1.25, 2.5). Draw
the function g, and redraw with the function providing a tight formulation.
iv. Use this to describe an algorithm for the separable convex network flow
problem

min{
∑

(i,j)∈A

gij(xij) : Nx = b, x ∈ Z
m
+},

where D = (V, A) is a digraph with n × m node-arc incidence matrix N ,
b ∈ Z

n, and each function gij is piecewise linear and convex described in the
same way as the function g.

Exercise 8.5 Consider the divisible knapsack set

X = {(s, y) ∈ R
1
+ × Z

n
+ : s +

m∑
i=1

Ciyi ≥ b},

where C1| · · · |Cn, and C1, . . . , Cn and b are positive integers.
i. Find valid inequalities for X.
ii.∗ Give an inequality description of conv(X).
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Exercise 8.6 Consider the set

x + 5y1 ≥ 3
x + 5y1 + 5y2 ≥ 6
x + 5y1 + 5y2 + 5y3 ≥ 8

x ∈ R
1
+, y ∈ Z

3
+.

i. Generate a variety of valid inequalities for this set.
ii. Find a valid inequality cutting off the point (x∗, y∗) = (1, 2

3 , 1
3 , 2

3 ).

Exercise 8.7 Consider the mixing set XMIX
K with the additional constraint

s ≤ d. Find valid inequalities for this set.
Apply your result to the instance of Example 8.4 with s ≤ 0.5.

Exercise 8.8 Consider the mixing set of Section 8.3. Write the optimization
and separation problems as network flow problems for
i. the instance of Example 8.6,
ii. the general case, and
iii. show why addition of constraints of the form αij ≤ yi − yj ≤ βij with
αij , βij ∈ Z

1 does not destroy the network structure.

Exercise 8.9 Consider the set

x + 5y1 + z1 ≥ 3
x + 5y1 + 5y2 + z2 ≥ 6
x + 5y1 + 5y2 + 5y3 + z3 ≥ 8

x ∈ R
1
+, y ∈ Z

3
+, z ∈ R

3
+.

Write down an extended formulation for this set.
Explain how such an extended formulation can be used to find a valid

inequality cutting off points (x∗, y∗, z∗) with y∗ fractional.

Exercise 8.10 Consider the set

s + 5y11 + 10y12 ≥ 3
s + 5y21 + 10y22 ≥ 9

s ∈ R
1
+, y ∈ Z

4
+.

Write down an extended formulation for this set.

Exercise 8.11 Consider the set XCMIX
K with in addition y ∈ Z

K
+ and

0 < b1 ≤ · · · ≤ bK < 1.
i. For T = {i1, . . . , it} ⊆ {1, . . . , K} with i1 < · · · < it, show that the inequal-
ities

s +
∑
j∈T

rj ≥
t∑

u=1

(biu − biu−1)(1 − yiu)
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are valid for XCMIX
K .

ii.∗ Show that every nontrivial facet-defining inequality is of this form.

Exercise 8.12 Consider the following formulation for XCMIX .

s =
K∑

i=0

fiδi + µ (8.38)

rj =
K∑

i=0

f j
i βj

i + νj for 1 ≤ j ≤ K (8.39)

µ + νj + yj +
∑

k:fk>fi

δk

+
∑

k:fk≥F j
i

βj
k ≥ �bj − fi� for 1 ≤ j ≤ K, 0 ≤ i ≤ K (8.40)

K∑
i=0

δi = 1 (8.41)

K∑
i=0

βj
i = 1 for 1 ≤ j ≤ K (8.42)

µ ∈ R
1
+, δ ∈ R

K+1
+ (8.43)

ν ∈ R
K
+ , β ∈ R

K(K+1)
+ , (8.44)

where
δi = 1 if the fractional part of s takes the value fi;
µ is the integer part of s;
βj

i = 1, for i �= j, if the fractional part of rj is F j
i ,

νj is the integer part of rj ;
plus the additional variables βj

j = 1 if δ0 = 1 and rj = 0.

i. Show that it is a valid formulation for the problem.
ii.∗ Show that the formulation is tight by showing that the matrix associated
with the constraints (8.40)–(8.42) is totally unimodular.

Exercise 8.13 Consider a row of an optimal LP tableau

y0 + 7
5y1 − 2

5y2 + 11
5 x3 − 4

5x4 = 6
5

y ∈ Z
3
+, x ∈ R

2
+.

i. Construct an MIR inequality cutting off y0 = 6
5 , y1 = y2 = x3 = x4 = 0.

ii. Construct the mixed integer Gomory cut, and verify that it is the same as
the MIR inequality.

Exercise 8.14 Consider the set
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KB = {(x, y) ∈ R
1
+ ×{0, 1}6 : 15y1 +11y2 +10y3 +6y4 +5y5 +2y6 ≤ 19+x}.

i. Taking C = {2, 4, 5}, generate the corresponding MIR cover inequality.
ii. Taking the same cover, generate the strengthened inequality of Theorem
8.18.
iii. Complement the 0–1 variables, take C = {1, 2, 4} and construct the MIR
reverse cover inequality.
iv. By inspection, find a MIR cover inequality cutting off the point (x∗, y∗) =
(1, 0, 4

11 , 1
2 , 1, 1, 0).

Exercise 8.15 Consider the set

KF = {(x, y, s) ∈ R
6
+ × {0, 1}6 × R

1
+ :

x1 + x2 + x3 − x4 − x5 − x6 ≤ 5 + s

x1 ≤ 14y1, x2 ≤ 9y2, x3 ≤ 8y3, x4 ≤ 12y4, x5 ≤ 10y5, x6 ≤ 6y6}.

Taking (C1, C2) = ({2, 3}, {5}), compare the MIR inequality (8.36) with the
inequality in Corollary 8.3.

Exercise 8.16 Consider the set

s + xt ≥ bt for 1 ≤ t ≤ n

xt ≤ zt for 1 ≤ t ≤ n

s ∈ R
1
+, x ∈ R

n
+, z ∈ Z

n
+,

denoted XFM and called a mixing set with flows.
Suppose that 0 = b0 < b1 ≤ · · · ≤ bn. Let σ0 = s ≥ 0 and let σt =

s+xt −bt ≥ 0 be the slack variable in the first set of constraints for 1 ≤ t ≤ n.
i. Show that the mixing set XMIX

t :

σt + zk ≥ bk − bt for k + 1 ≤ t ≤ n

σt ∈ R
1
+, zt ∈ Z

1
+ for k + 1 ≤ t ≤ n

is a valid relaxation of XFM .
ii.∗ Show that conv(XFM ) = ∩n

t=0conv(XMIX
t ) ∩ {(σ, x) : σt = s + xt −

bt for all t} ∩ {(x, z) : 0 ≤ xt ≤ zt for all t}.

Exercise 8.17 Consider the set

X = {(y, s) ∈ Z
2
+ × R

1
+ : 3y1 + 7y2 ≤ 31 + s}.

Derive two or more MIR inequalities for this set and check whether they are
facet-defining.

∗ Starred exercises are more difficult and require more mathematical or tech-
nical developments.
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Notes

Section 8.2. The MIP set is studied in Miller and Wolsey [124]. The single
arc set arising in Exercise 8.3 was studied by Magnanti et al. [113], and later
by Atamturk and Rajan [16]. The divisible knapsack set of Exercise 8.5 was
studied by Pochet and Wolsey [142]; see also Pochet and Weismantel [136] for
the 0–1 case. The modeling of a separable piecewise convex function over an
integer variable is also from [124]; see also Ahuja et al. [7] for an alternative
reformulation and Hochbaum and Shantikumar [90].

Section 8.3. The mixing set is studied in Günlük and Pochet [85]. The mixing
inequalities first arose in the context of constant capacity lot-sizing studied
by Pochet and Wolsey [139]. Part ii of Theorem 8.5 and the extended formu-
lation are from Miller and Wolsey [124]. The dual network reformulation is
from Conforti et al. [43].

Section 8.4. The enumerative approach to develop more general mixing sets
was developed explicitly by Van Vyve [178]. The disjunctive approach was
used by Atamtürk [13], and developed independently by Conforti and Wolsey
[44]. The latter approach is based on the extended formulation for the union
of polyhedra from Balas [21].

Section 8.5. The first formulation of the continuous mixing set is from Miller
and Wolsey [124] and the more compact formulation from Van Vyve [179]. A
third formulation was proposed by Van Vyve in [178]. The uncapacitated case
is treated by Atamtürk [13]; see Exercise 8.11.

Section 8.6. The set with two divisible capacities is from Conforti and Wolsey
[44]. The results on the divisible mixing set are from Van Vyve [178].

Section 8.7. Mixed integer Gomory cuts are from Gomory [77]. Disjunctive
cuts were introduced by Balas in [18]. The mixed integer rounding inequality
is from Nemhauser and Wolsey [126], and the alternative split cut viewpoint
is presented in Cook et al. [49]. Superadditive functions such as Fα are the
basis of a general duality theory for integer programming. Using superadditive
functions such as φC to strengthen valid inequalities was proposed by Gu et
al. [81].

Section 8.8. Cover inequalities for binary knapsack sets were studied by
Balas [19], Hammer et al. [86] and Wolsey [190]. The development of the
heuristic separation algorithm for cover inequalities, and the first effective
computational study are due to Crowder et al. [50]. Marchand and Wolsey
[117] studied the continuous 0–1 knapsack set, and in [118] they proposed a
heuristic separation procedure for mixed integer programs based on aggrega-
tion of constraints, substitution, and complementation of variables followed
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by the generation of MIRs.

Section 8.9. Single-node flow sets were first studied in Padberg et al. [130];
see also Van Roy and Wolsey [174]. Computational results using flow cover
inequalities were given in Van Roy and Wolsey [175]. The MIR flow cover in-
equality was obtained by Gu et al. [81]; see also a recent survey of Louveaux
and Wolsey [108]. Reverse flow cover inequalities were first explicitly proposed
by Stallaert [156].

Section 8.10. The proof of Proposition 8.1 based on the integrality of the
facets is from Pereira and Wolsey [132]. The proof of Theorem 8.6 exemplifies
the most important proof technique for most of the mixing problems which is
to find an extended formulation with integer right-hand side whose associated
constraint matrix is totally unimodular.

Exercises. The result of Exercise 8.16 on mixing sets with flows is from
Conforti et al. [42].
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9

Lot-Sizing with Capacities

Part III consists of three chapters dealing with many of the significant variants
of the single-item lot-sizing problem, apart from the uncapacitated problems
LS-U and WW -U already presented in detail in Chapter 7. We continue to
use the classification scheme introduced in Chapter 4. Specifically we deal in
this chapter with capacities, either constant or time-varying, namely, the mod-
els PROB-{CC, C}. In Chapter 10 we consider two of the most important
variants, the problems with backlogging PROB-CAP -B and with start-up
variables PROB-CAP -SC, and in Chapter 11 we study several other single-
item variants, including piecewise concave production costs, piecewise convex
storage costs, sales, minimum length set-up sequences, production time win-
dows, and so on.

Remember that the general problem LS-C can be formulated as

min
n∑

t=1

p′
txt +

n∑
t=0

h′
tst +

n∑
t=1

qtyt

st−1 + xt = dt + st for 1 ≤ t ≤ n

xt ≤ Ctyt for 1 ≤ t ≤ n

s ∈ R
n+1
+ , x ∈ R

n
+, y ∈ {0, 1}n.

For LS − CC, we have the same formulation but with Ct = C for all t.

Note that in addition to the basic preprocessing of initial stocks and stock
lower bounds presented in Section 7.2, there is an elementary preprocessing
step for LS-C depending on the capacities. Below we assume without loss of
generality that dt ≤ Ct. If dt > Ct, then by setting dt = Ct and adding dt −Ct

to dt−1 for t = n, n − 1, . . . , 1, we obtain an equivalent problem.
We now describe briefly the contents of this chapter.

• In Section 9.1 we consider the complexity issue, showing that all the vary-
ing capacity problems PROB-C are NP-hard. This is in contrast to the
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constant capacity problems PROB-CC that are all shown to have poly-
nomial algorithms in the course of the chapter.

• In Section 9.2 we examine regeneration intervals for problems with capac-
ities that are fundamental in describing optimal solutions of single-item
problems, and form the basis for the dynamic programming algorithm for
LS-CC and other models.

• In the following sections we examine in turn the four different constant ca-
pacity problems. First in Section 9.3 we present both a linear programming
formulation and a combinatorial algorithm for DLS-CC.

• In Sections 9.4 and 9.5 we present valid inequalities describing the convex
hull, combinatorial separation algorithms and tight extended formulations
for DLSI-CC and WW -CC respectively, all based on the mixing set stud-
ied in Section 8.3.

• In Section 9.6 the main result is a dynamic programming algorithm for
LS-CC based on regeneration intervals.

• In Section 9.7 we turn to the varying capacity problem LS-C, and present
several classes of valid inequalities. One class for WW -C is based on the
mixing set studied in Section 8.3, while two of the classes for LS-C are
based on the continuous knapsack set studied in Section 8.8 and on an
alternative formulation using submodularity respectively.

9.1 Complexity

The first thing to observe is that the 0–1 knapsack problem:

min
∑n

j=1 qjyj∑n
j=1 Cjyj ≥ b

y ∈ {0, 1}n

is a special case of DLS-C in which the demands are dt = 0 for t = 1, . . . , n−1,
and dn = b. As DLS-C is in turn a special case of DLSI-C, WW -C and LS-
C, and as the 0–1 knapsack problem is NP-hard, we obtain the complexity
status of these problems.

Proposition 9.1 Problems DLS-C, DLSI-C, WW -C and LS-C are NP-
hard.

This tells us immediately that we have little hope of finding a good char-
acterization of conv(XDLS−C), or of conv(XLS−C).

9.2 Regeneration Intervals

As for LS-U , it is necessary to understand the structure of optimal solutions
of LS-C and LS-CC if one wants to develop an optimization algorithm. It
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is again important to think of the fixed cost network flow representation. We
assume for the discussion below that s0 = sn = 0, and repeat the definition
of a regeneration interval from Chapter 7.

Definition 9.1 The interval [k, l] is a regeneration interval for a solution
(x, y, s) ∈ XLS−C if and only if sk−1 = sl = 0, but st > 0 for t = k, . . . , l − 1
(see Figure 9.1).

dk dl

k l
> 0> 0sk-1 = 0 sl = 0> 0

Figure 9.1. A regeneration interval for LS-C.

Every extreme solution of conv(XLS−C) corresponds to a partition of [1, n]
into regeneration intervals. We now examine what happens within each regen-
eration interval. Again we use the fact that, for fixed y ∈ {0, 1}n, the problem
in the (x, s) variables is a network flow problem, and an optimal basic solution
is acyclic, so that there exists an optimal solution in which the arcs with flow
strictly between the lower and upper bound (0 < xt < Ct, or st > 0) form an
acyclic subgraph in the network.

Observation 9.1 Suppose that [k, l] is a regeneration interval forming part
of an optimal solution of LS-C. Then within the interval [k, l] there exists a
solution of the following form: there exists a period p with k ≤ p ≤ l such
that xj = Cjyj for all j ∈ {k, . . . , l} \ {p}. In other words there is at most
one period in the regeneration interval in which xp /∈ {0, Cp}. Such a period
is referred to as a fractional period.

Observation 9.2 Let αkl be the minimum cost of a [k, l]-regeneration inter-
val for all 1 ≤ k ≤ l ≤ n, and D = (V, A) be an acyclic digraph with nodes
V = {1, . . . , n + 1}, and arcs A = {(k, l + 1) : 1 ≤ k ≤ l ≤ n} with cost αkl

for 1 ≤ k ≤ l ≤ n. A minimum cost path from node 1 to n + 1 solves LS-C.

We have already used regeneration intervals and this minimum cost path
in the uncapacitated case LS-U . See Figure 7.6, where αkl = qk + pkdkl.

In the general LS-C case, calculating the optimal cost αkl of a regeneration
interval is hard. However, we see below that it can be calculated efficiently in
the constant capacity cases WW -CC and LS-CC. As a minimum cost path
can be found in O(n2), this will obviously lead to a polynomial algorithm.
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9.3 Discrete Lot-Sizing with Constant Capacities

With constant capacities, XDLS−CC is of the form

C

t∑
u=1

yu ≥ d1t for 1 ≤ t ≤ n (9.1)

y ∈ {0, 1}n. (9.2)

Clearly XDLS−CC �= ∅ if and only if t ≥ �d1t

C � for t = 1, . . . , n. From now on,
we assume that XDLS−CC �= ∅.

9.3.1 Valid Inequalities for DLS-CC

We immediately observe that Gomory fractional cuts can be used to tighten
this formulation.

Proposition 9.2 The inequalities

t∑
u=1

yu ≥ �d1t

C
�

are valid for XDLS−CC for 1 ≤ t ≤ n.

What is more, they can be used in place of the existing constraints and
suffice to describe conv(XDLS−CC).

Theorem 9.3 The polyhedron

t∑
u=1

yu ≥ �d1t

C
� for 1 ≤ t ≤ n

y ∈ [0, 1]n

describes conv(XDLS−CC).

In Chapter 12, we show that the same inequalities suffice for the multi-item
variant in which at most one item is produced per period.

9.3.2 Optimization for DLS-CC

To solve the optimization problem without using linear programming, it suf-
fices to use a greedy algorithm. By setting yj = 1 and modifying the demands
whenever qj < 0, we can assume that qj ≥ 0 for all j. Then we complement
the variables, setting ȳj = 1 − yj for j = 1, . . . , n, giving
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max
n∑

j=1

qj ȳj

t∑
u=1

ȳu ≤ t − �d1t

C
� for 1 ≤ t ≤ n

ȳ ∈ {0, 1}n.

Algorithm for DLS-CC
1. Find an ordering j1, . . . , jn of {1, . . . , n} with qj1 ≥ . . . ≥ qjn

≥ 0.
2. Initialize δt = t − �d1t

C � ≥ 0 for all t.
3. For k = 1, . . . , n,

If mint:t≥jk
δt > 0, set yjk

= 0 (or ȳjk
= 1) and set δt ← max{δt − 1, 0}

for all t ≥ jk.
Otherwise set yjk

= 1.
Augment k.

Example 9.1 Consider an instance of DLS-CC with n = 6, C = 10, d =
(0, 5, 3, 6, 8, 1), and q = (34, 20, 35, 40, 33, 21). Initially δ = (1, 1, 2, 2, 2, 3).

Iteration 1. j1 = 4, y4 = 0, δ = (1, 1, 2, 1, 1, 2),
Iteration 2. j2 = 3, y3 = 0, δ = (1, 1, 1, 0, 0, 1),
Iteration 3. j3 = 1, y1 = 1, δ = (1, 1, 1, 0, 0, 1),
Iteration 4. j4 = 5, y5 = 1, δ = (1, 1, 1, 0, 0, 1),
Iteration 5. j5 = 6, y6 = 0, δ = (1, 1, 1, 0, 0, 0),
Iteration 6. j6 = 2, y2 = 1, δ = (1, 1, 1, 0, 0, 0),
giving as optimal solution y = (1, 1, 0, 0, 1, 0) with cost 87.

The above algorithm can be viewed as the greedy algorithm for a matroid.
Its complexity as described is O(n2). It can, however, be implemented to run
in O(n log n).

9.3.3 Parametric Optimization for DLS-CC

Here we describe an O(n log n) algorithm that solves a family of problems.
For simplicity we assume that the constant capacity C has been normalized
so that C = 1. Specifically we consider three closely related problems:

problem Q(j):

zj = max
j∑

i=1

qiyi

t∑
i=1

yi ≤ δt for 1 ≤ t ≤ j

y ∈ {0, 1}j ,
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problem Q′(j):

max
j∑

i=1

qiyi

t∑
i=1

yi ≤ δt for 1 ≤ t ≤ j − 1

y ∈ {0, 1}j ,

and problem R(j, βj):

max
j∑

i=1

qiyi

t∑
i=1

yi ≤ δt for 1 ≤ t ≤ j − 1

j∑
i=1

yi = βj

y ∈ {0, 1}j .

Our goal is to solve the family of problems Q(j) and R(j, βj) for j = 1, . . . , n
efficiently. DLS-CC is equivalent to Q(n), with δt = t − �d1t

C � for all t.

Observation 9.3 The feasible region X(j) of problem Q(j) is the set of in-
dependent sets of a matroid. It follows that every maximal feasible solution of
X(j) is of the same cardinality,

ρj = max{
j∑

i=1

yi : y ∈ X(j)} = min
t=0,...,j

[δt + (j − t)].

Observation 9.4 R(j, βj) is feasible if and only if βj ≤ ρj.

Suppose now that y′ is an optimal solution of Q′(j), or in other words
(y′

1, . . . , y
′
j−1) is an optimal solution of Q(j − 1) and y′

j = 1. Each iteration of
the algorithm computing Q(j) and R(j, βj) for increasing values j = 1, . . . , n
consists of two simple steps.

i. Convert an optimal solution y′ to Q′(j) into an optimal solution ỹ of R(j, βj);
necessarily ỹ ≤ y′ (if βj ≤ ρj).
ii. Convert ỹ into an optimal solution y∗ of Q(j); necessarily y∗ ≤ ỹ.

Because of the matroid structure, the construction of ỹ from y′ and of y∗

from ỹ just involves removal of the least profitable elements.
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Example 9.2 Consider an instance with n = 6, q = (34, 20, 35, 40, 33, 21),
δ = (1, 1, 2, 2, 2, 3), and β = (1, 2, 2, 3, 3, 3). Here problem Q(6) is precisely the
problem solved in Example 9.1.

j = 1. Q′(1) : y′
1 = 1

R(1, 1) : ỹ1 = 1
Q(1) : y∗

1 = 1, z1 = 34

j = 2. Q′(2) : y′
1 = 1, y′

2 = 1
R(2, 2) : ỹ1 = 1, ỹ2 = 1

As δ2 = 1, we must remove the least profitable variable.
As q1 = 34 > q2 = 20, we set y2 = 0.

Q(2) : y∗
1 = 1, z2 = 34

j = 3. Q′(3) : y′
1 = 1, y′

3 = 1
R(3, 2) : ỹ1 = 1, ỹ3 = 1
Q(3) : y∗

1 = 1, y∗
3 = 1, z3 = 69

j = 4. Q′(4) : y′
1 = 1, y′

3 = 1, y′
4 = 1

R(4, 3) : ỹ1 = 1, ỹ3 = 1, ỹ4 = 1
As δ4 = 2, we remove the least profitable variable. We set y1 = 0.

Q(4) : y∗
3 = 1, y∗

4 = 1, z4 = 75

j = 5. Q′(5) : y′
3 = 1, y′

4 = 1, y′
5 = 1

R(5, 3) : ỹ3 = 1, ỹ4 = 1, ỹ5 = 1
As δ5 = 2, we remove the least profitable variable. We set y5 = 0.

Q(5) : y∗
3 = 1, y∗

4 = 1, z5 = 75

j = 6. Q′(6) : y′
3 = 1, y′

4 = 1, y′
6 = 1

R(6, 3) : ỹ3 = 1, ỹ4 = 1, ỹ6 = 1
Q(6) : y∗

3 = 1, y∗
4 = 1, y∗

6 = 1, z6 = 96.

Observe that this agrees with the solution of Example 9.1.

9.4 Discrete Lot-Sizing with Initial Stock and Constant
Capacities

Here XDLSI−CC takes the form

s0 + C
t∑

u=1

yu ≥ d1t for 1 ≤ t ≤ n (9.3)

s0 ∈ R
1
+, y ∈ {0, 1}n. (9.4)

Perhaps surprisingly, it is not known if problem DLSI-CC with an initial
stock variable can also be solved faster than O(n2 log n).
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9.4.1 Valid Inequalities for DLSI-CC

Letting zt =
∑t

u=1 yt, s = s0
C , and bt = d1t

C , the solution set XDLSI−CC can
be rewritten as

s + zt ≥ bt for 1 ≤ t ≤ n

0 ≤ zt − zt−1 ≤ 1 for 2 ≤ t ≤ n

z1 ≤ 1

s ∈ R
1
+, z ∈ Z

n
+.

This is an instance of a mixing set (see Section 8.3) in which the additional
constraints are of the form Bz ≤ d with B the arc-node incidence matrix of a
digraph and d integer. From Theorem 8.5, we obtain immediately:

Theorem 9.4 conv(XDLSI−CC) is described by s0 ∈ R
1
+, y ∈ [0, 1]n, the

initial inequalities (9.3), and the inequalities

s0 ≥ C

t∑
τ=1

(fiτ
− fiτ−1)(	

d1iτ

C

 + 1 −

iτ∑
j=1

yj)

and

s0 ≥ C

t∑
τ=1

(fiτ
− fiτ−1)(	

d1iτ

C

 + 1 −

iτ∑
j=1

yj) + C(1 − fit
)(	d1i1

C

 −

i1∑
j=1

yj),

for all T = {i1, . . . , it} ⊆ {1, . . . , n}, where fτ = d1τ

C − 	d1τ

C 
 for all τ , and
0 = fi0 ≤ fi1 ≤ . . . ≤ fit

< 1.

Example 9.3 Given an instance of DLSI-CC with n = 4, C = 10, and
d = (4, 3, 6, 2), we have (d1t) = (4, 7, 13, 15) and f = (0.4, 0.7, 0.3, 0.5). For
T = {3, 1, 2}, the two inequalities of Theorem 9.4 are

s0 ≥ 3(2 − y1 − y2 − y3) + 1(1 − y1) + 3(1 − y1 − y2) and

s0 ≥ 3(2 − y1 − y2 − y3) + 1(1 − y1) + 3(1 − y1 − y2) + 3(1 − y1 − y2 − y3).

To separate these inequalities in O(n log n), we take the separation algorithm
for the mixing set of Section 8.3 using the substitutions for s, z, and b presented
above.

9.4.2 Extended Formulation for DLSI-CC

Theorem 8.6 also leads to an extended formulation.
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Theorem 9.5 The linear program

min h0s0 +
n∑

t=1

qtyt

s0 = C
n∑

j=1

fjδj + Cµ

k∑
u=1

yu ≥
n∑

j=0

�d1k

C
− fj�δj − µ for 1 ≤ k ≤ n

n∑
j=0

δj = 1

y ∈ [0, 1]n, µ ∈ R
1
+, δ ∈ R

n+1
+ ,

where f0 = 0, solves DLSI-CC.

9.5 Lot-Sizing with Wagner–Whitin Costs and Constant
Capacities

Here we consider the Wagner–Whitin problem with constant capacities. The
objective function is written as

∑n
t=0 htst +

∑n
t=1 qtyt with ht = p′

t + h′
t −

p′
t+1 ≥ 0 for all t. This is an important variant in practice because many

small-bucket multi-item problems (problems with at most one item produced
per period: M1 in the classification of Chapter 12) satisfy the Wagner–Whitin
cost hypothesis, and a single machine or line often has constant capacities,
corresponding to a time period such as a shift, or a day. XWW−CC takes the
form

sk−1 + C

t∑
u=k

yu ≥ dkt for 1 ≤ k ≤ t ≤ n (9.5)

s ∈ R
n+1
+ , y ∈ {0, 1}n. (9.6)

9.5.1 Optimization for WW -CC

The following proposition is a direct consequence of the fact, that with
Wagner–Whitin costs, it pays to produce as late as possible, once the periods
with a set-up have been determined.

Proposition 9.6 With Wagner–Whitin costs, if [a, b] is a regeneration inter-
val and ρab = dab − C	dab

C 
 > 0, then period a is the fractional period, and
the amount produced in period a is xa = ρab.
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We can now write the minimum cost αab of the [a, b] regeneration interval
as the following integer program,

αab =

min
b∑

i=a

(qi + C

b−1∑
u=i

hu)yi +
b−1∑
i=a

hidi+1,b − (
b−1∑
i=a

hi)C�dab

C
� (9.7)

b∑
i=t

yi ≤ �dtb

C
� − 1 for a + 1 ≤ t ≤ b (9.8)

b∑
i=a

yi = �dab

C
� (9.9)

y ∈ {0, 1}b−a+1, (9.10)

where the stock available si for i = a, . . . , b − 1 is eliminated by substitution
of si = di+1,b − C

∑b
t=i+1 yt = di+1,b − C

∑b
t=a yt + C

∑i
t=a yt in the objec-

tive function, and the constraints are obtained from si/C ≥ 0 tightened by
Chvátal–Gomory rounding.

Observing that for varying a = b, b − 1, . . . , 1, this is precisely the para-
metric problem R(j, βj) solved in the previous subsection in O(b log b), we
have

Proposition 9.7 There is an O(n2 log n) algorithm for the optimization
problem WW -CC.

Example 9.4 Consider an instance of WW -CC with n = 6, C = 10, h0 =
3, h = (1, 1, 1, 1, 1, 1), q = (16, 2, 2, 5, 9, 7), and d = (4, 3, 5, 6, 5, 1). We have
that

α36 = min 32y3 + 25y4 + 19y5 + 7y6 + 1(12 + 6 + 1) − (1 + 1 + 1)20
y6 ≤ 0

y5+ y6 ≤ 0
y4+ y5+ y6 ≤ 1

y3+ y4+ y5+ y6 = 2
y ∈ {0, 1}4.

Applying the parametric algorithm of Subsection 9.3.3 to solve the IP
(9.7)–(9.10), we obtain α66 = 7, α56 = 10, α46 = ∞, α36 = 16, α26 = 23, α16 =
∞.

In particular, for α36 the optimal solution is y3 = y4 = 1 giving α36 =
32 + 25 + 19 − 60 = 16. Working with the initial costs, we have y3 = y4 =
1, x3 = 7, x4 = 10, s3 = 2, s4 = 6, s5 = 1 with cost 2 + 5 + 1(2 + 6 + 1) = 16.
Two of the regeneration intervals are shown in Figure 9.2.
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(a,b)=(2,6)
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(a,b)=(3,6)

Figure 9.2. Two regeneration intervals for WW -CC.

9.5.2 Valid Inequalities for WW -CC

Letting XDLSI−CC
k = {(s, y) ∈ R

n+1
+ × {0, 1}n satisfying (9.5) for k ≤ t ≤ n}

with k fixed, we see that

XDLSI−CC
1 = XDLSI−CC and

XWW−CC =
n⋂

k=1

XDLSI−CC
k .

It follows that conv(XWW−CC) ⊆ ⋂n
k=1 conv(XDLSI−CC

k ), so that any valid
inequality for XDLSI−CC

k is valid for XWW−CC . Surprisingly, the two sets are
equal.

Theorem 9.8

conv(XWW−CC) =
n⋂

k=1

conv(XDLSI−CC
k ).

Now we combine this with the results for mixing sets of Section 8.3.

Corollary 9.1 All nontrivial facet-defining inequalities of conv(XWW−CC)
are of the form

sk−1 ≥ C

t∑
τ=1

(fk
iτ

− fk
iτ−1

)(	dkiτ

C

 + 1 −

iτ∑
j=k

yj) (9.11)

or

sk−1 ≥ C

t∑
τ=1

(fk
iτ

− fk
iτ−1

)(	dkiτ

C

 + 1 −

iτ∑
j=k

yj)

+C(1 − fk
it

)(	dki1

C

 −

i1∑
j=k

yj), (9.12)

where T = {i1, . . . , it} ⊆ {k, . . . , n}, fk
iτ

= dkiτ

C − 	dkiτ

C 
 for all τ , and 0 =
fk

i0
≤ fk

i1
≤ · · · ≤ fk

it
< 1, and 1 ≤ k ≤ n.
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Corollary 9.2 There is a separation algorithm for conv(XWW−CC) of com-
plexity O(n2 log n).

9.5.3 Extended Formulations for WW -CC

One can also use the extended formulation for mixing sets of Section 8.3.

Corollary 9.3 A tight extended formulation for conv(XWW−CC) is

sk−1 = C
∑

t∈[k,n]

fk
t δk

t + Cµk for all k

t∑
u=k

yu ≥
∑

τ∈{0}∪[k,n]

�dkt

C
− fk

τ �δk
τ − µk for all k, t, k ≤ t

∑
t∈{0}∪[k,n]

δk
t = 1 for all k

µk ≥ 0, δk
t ≥ 0 for all t ∈ {0} ∪ [k, n], and all k

y ∈ [0, 1]n ,

where fk
0 = 0, [k, n] = {k, . . . , n} and fk

τ = dkτ

C − 	dkτ

C 
. The additional
variables δk

t indicate that sk−1 = Cfk
t mod C.

Example 9.5 Consider an instance of WW -CC with again n = 4, C = 10,
and d = (4, 3, 6, 2). For k = 2, the constraints of the extended formulation of
Corollary 9.3 take the form

s1 = 3δ2
2 + 9δ2

3 + 1δ2
4 + 10µ2

y2 ≥ 1δ2
0+ 0δ2

2 + 0δ2
3 + 1δ2

4 − µ2

y2 + y3 ≥ 1δ2
0+ 1δ2

2 + 0δ2
3 + 1δ2

4 − µ2

y2 + y3 + y4 ≥ 2δ2
0+ 1δ2

2 + 1δ2
3 + 1δ2

4 − µ2

1 = δ2
0+ δ2

2 + δ2
3 + δ2

4

δ2 ∈ R
4
+, µ2 ∈ R

1
+, y ∈ [0, 1]4.

9.6 Lot-Sizing with Constant Capacities

9.6.1 Optimization: An Algorithm for LS-CC

For simplicity of notation, we here consider the objective function in the form:

min
n∑

t=1

ptxt +
n∑

t=1

qtyt.
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For given k and l, we present a dynamic programming algorithm to find an
optimal solution to the subproblem on the regeneration interval [k, l]. Let
ρkl = dkl − 	dkl

C 
C with 0 ≤ ρkl < C. From Observation 9.1, there must be
exactly 	dkl

C 
 periods within the regeneration interval in which production is
at full capacity, and one period in which ρkl is produced.

Let Gk(t, τ, δ) be the value of a minimum cost solution for periods k up to
t during which production occurs τ times at full capacity and δ ∈ {0, 1} times
at level ρkl. If τC + δρkl ≤ dkl, it is impossible to have st > 0 for these (τ, δ)
values and so we define Gk(t, τ, δ) = ∞. Also if τ + δ > t − k + 1 for some
(τ, δ) values, it is not possible to produce τ + δ times in the interval [k, t] and
again Gk(t, τ, δ) = ∞.

We fix initially Gk(k − 1, τ, δ) = 0 for all (τ, δ) with τ ≤ 0 and δ ≤ 0, and
Gk(k − 1, τ, δ) = ∞ otherwise. A forward recursion to compute Gk(t, τ, δ) for
the case ρkl > 0 is:

Gk(t, τ, 0)

=

⎧⎨
⎩

∞ if τC ≤ dkt or τ > t − k + 1

min
{

Gk(t − 1, τ, 0),
Gk(t − 1, τ − 1, 0) + qt + ptC

}
otherwise (9.13)

for t = k, . . . , l, τ = 0, . . . , 	dkl

C

 ,

Gk(t, τ, 1)

=

⎧⎪⎪⎨
⎪⎪⎩

∞ if τC + ρkl ≤ dkt or τ > t − k

min

⎧⎨
⎩

Gk(t − 1, τ, 1),
Gk(t − 1, τ − 1, 1) + qt + ptC,
Gk(t − 1, τ, 0) + qt + ptρkl

⎫⎬
⎭ otherwise (9.14)

for t = k, . . . , l, τ = 0, . . . , 	dkl

C

.

Starting from Gk(k, 1, 0) = qk + pkC if dk ≤ C, and Gk(k, 0, 1) = qk +
pkρkl if dk ≤ ρkl, Gk(k, 0, 0) = 0 if dk = 0 and Gk(k, τ, l) = ∞ otherwise,
evaluating (9.13)–(9.14) for increasing values of t and all values of τ computes
αkl = Gk(l, 	dkl

C 
, 1), the value of a minimum cost solution for the regeneration
interval [k, l] with ρkl > 0.

When ρkl = 0 and dkl > 0, it suffices to use the same recursion for
Gk(t, τ, 0) to calculate αkl = Gk(l, 	dkl

C 
, 0).

Example 9.6 Consider an instance of LS-CC with an interval [k, l] =
[2, 6], (d2, . . . , d6) = (4, 2, 7, 3, 6), (p2, . . . , p6) = (3, 1, 2, 1, 2), (q2, . . . , q6) =
(24, 17, 35, 42, 11), and C = 10.

Note that dkl = 22 and ρkl = 2. Using the above recurrence, we calculate
first G2(t, τ, 0). This gives
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G2(2, 0, 0) = G2(2, 2, 0) = ∞,

G2(2, 1, 0) = min[G2(1, 1, 0), G2(1, 0, 0) + q2 + Cp2]
= min[∞, 0 + 24 + 10 × 3] = 54,

G2(3, 0, 0) = ∞,

G2(3, 1, 0) = min[G2(2, 1, 0), G2(2, 0, 0) + q3 + Cp3]
= min[54,∞] = 54,

G2(3, 2, 0) = min[G2(2, 2, 0), G2(2, 1, 0) + q3 + Cp3]
= min[∞, 54 + 17 + 10 × 1] = 81,

G2(4, 1, 0) = ∞ and G2(4, 2, 0) = 81,
G2(5, 1, 0) = ∞, and G2(5, 2, 0) = 81.

Now we calculate G2(t, τ, 1), and obtain

G2(2, 0, 1) = G2(2, 1, 1) = G2(2, 2, 1) = ∞,

G2(3, 0, 1) = G2(3, 2, 1) = ∞,

G2(3, 1, 1) = min[G2(2, 1, 1), G2(2, 0, 1) + q3 + Cp3, G2(2, 1, 0) + q3 + ρ26p3]
= min[∞,∞, 54 + 17 + 2 × 1] = 73,

G2(4, 0, 1) = G2(4, 1, 1) = ∞,

G2(4, 2, 1) = min[G2(3, 2, 1), G2(3, 1, 1) + q4 + Cp4, G2(3, 2, 0) + q4 + ρ26p4]
= min[∞, 73 + 35 + 10 × 2, 81 + 35 + 2 × 2] = 120,

G2(5, 0, 1) = G2(5, 1, 1) = ∞ and G2(5, 2, 1) = 120,
G2(6, 2, 1) = min[G2(5, 2, 1), G2(5, 1, 1) + q6 + Cp6, G2(5, 2, 0) + q6 + ρ26p6]

= min[120,∞, 81 + 11 + 2 × 2] = 96.

Working backwards, we see that an optimal solution for the interval [2, 6]
is x2 = x3 = 10, x6 = 2 with a cost of q2 + q3 + q6 + 10p2 + 10p3 + 2p6 = 96.

As there always exists an optimal solution consisting of a sequence of
regeneration intervals, we can restate Observation 9.2.

Theorem 9.9 Let D = (V, A)be a digraph with node set V = {1, . . . , n + 1}
and arc set A = {(k, l + 1), 1 ≤ k ≤ l ≤ n}. The shortest path problem from
node 1 to node n + 1 in the digraph D with costs αkl on arcs (k, l + 1) with
dkl > 0, and cost 0 on arcs (k, l + 1) with dkl = 0, solves LS-CC.

Figure 9.3 illustrates the digraph D for n = 3.

Example 9.7 Consider an instance of LS-CC with n = 5, C = 10, d =
(4, 2, 7, 3, 6), p = (3, 1, 2, 1, 2), and q = (24, 17, 35, 42, 11).
We have that
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Figure 9.3. Shortest path formulation of LS-CC (n = 3).

α11 = 36, α22 = 19, α33 = 49, α44 = 45, α55 = 23,
α12 = 42, α23 = 26, α34 = 55, α45 = 51,
α13 = 74, α24 = 74, α35 = 78,
α14 = 69, α25 = 77,
α15 = 96.

Solving the resulting shortest path problem, an optimal solution of cost 92
consists of the regeneration intervals [1, 4], [5], and the corresponding solution
is x1 = 6, x2 = 10, and x5 = 6 with y1 = y2 = y5 = 1.

The dynamic program for each interval is O(n2), and as there are O(n2)
intervals this gives an algorithm for LS-CC whose running time is O(n4).
However, it is possible to reduce the running time to O(n3).

9.6.2 Valid Inequalities for LS-CC

As in the uncapacitated case, the inequalities (9.11) and (9.12) for the
Wagner–Whitin case generalize to give valid inequalities for LS-CC. Given k,
T = {i1, . . . , it} ⊆ {k, . . . , n} with i1 < · · · < it and V ⊆ {k, . . . , n}, we can
apply the mixing procedure to the constraint system

sk−1 +
∑

j∈V ∩[k,it]

xj + C
∑

j∈[k,iτ ]\V

yj ≥ dkiτ for 1 ≤ τ ≤ t

sk−1 +
∑

j∈V ∩[k,it]

xj ∈ R1
+,

∑
j∈[k,iτ ]\V

yj ∈ Z
1
+ for 1 ≤ τ ≤ t.

Proposition 9.10 The inequalities

sk−1 +
∑

j∈V ∩[k,it]

xj ≥ C

t∑
τ=1

(fk
iτ

− fk
iτ−1

)(	dkiτ

C

 + 1 −

∑
j∈[k,iτ ]\V

yj)

and

sk−1 +
∑

j∈V ∩[k,it]

xj ≥ C

t∑
τ=1

(fk
iτ

− fk
iτ−1

)(	dkiτ

C

 + 1 −

∑
j∈[k,iτ ]\V

yj)

+C(1 − fk
it

)(	dki1

C

 −

∑
j∈[k,i1]\V

yj),
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are valid for XLS−CC , where T = {i1, . . . , it} ⊆ {k, . . . , n}, fk
iτ

= dkiτ

C −	dkiτ

C 

for all τ , and 0 = fk

0 ≤ fk
i1

≤ . . . ≤ fk
it

< 1, and 1 ≤ k ≤ n.

It is clear that there are an exponential number of these inequalities, and
till now no combinatorial polynomial separation algorithm is known for this
family. There are also examples showing that this family of inequalities does
not suffice to describe conv(XLS−CC).

Example 9.8 Consider an LS-CC instance with n = 5, d2 = 7, d3 =
4, d4 = 2, d5 = 3, and capacity C = 10.

Taking k = 2, T = {2, 4, 5}, and V = {4}, we see that {i1, i2, i3} = {4, 5, 2}
with fi1 = 0.3, fi2 = 0.6, fi3 = 0.7. Using Proposition 9.10, the first inequality
takes the form

s1 + x4 ≥ 3(2 − y2 − y3) + 3(2 − y2 − y3 − y5) + 1(1 − y2).

9.6.3 Extended Formulation for LS-CC

First we consider writing down an extended formulation to calculate the op-
timal cost of a [k, l] regeneration interval.

Let zt = 1 if xt = C and zt = 0 otherwise, and
εt = 1 if xt = ρkl > 0 and εt = 0 otherwise.

The problem can now be formulated as the integer program

αkl = min
l∑

t=k

qt(zt + εt) + C
∑

t

ptzt + ρkl

∑
t

ptεt

t∑
u=k

zu +
t∑

u=k

εu ≥ �dkt

C
� for k ≤ t < l with ρkt ≤ ρkl

t∑
u=k

zu ≥ �dkt

C
� for k ≤ t < l with ρkt > ρkl

l∑
u=k

zu +
l∑

u=k

εu = �dkl

C
�

l∑
u=k

zu = �dkl − ρkl

C
�

zt + εt ≤ 1 for k ≤ t ≤ l

z, ε ∈ Z
l−k+1
+ .

However, the corresponding matrix is totally unimodular, and therefore:

Proposition 9.11 The linear programming relaxation has an optimal solu-
tion with z, ε integer, and optimal value αkl.



9.6 Lot-Sizing with Constant Capacities 289

Now, it is possible to use such a linear program to model the cost of every
arc or regeneration interval of the shortest path formulation (7.22)–(7.27).
This defines the following large linear program with O(n3) constraints and
variables that solves LS-CC.

min
n∑

k=1

n∑
l=k

l∑
t=k

[qt(zkl
t + εkl

t ) + pt(Czkl
t + ρklε

kl
t )] (9.15)

−
n∑

l=1

φ1l = −1 (9.16)

t−1∑
k=1

φk,t−1 −
n∑

l=t

φtl = 0 for 2 ≤ t ≤ n (9.17)

n∑
k=1

φkn = 1 (9.18)

t∑
u=k

zkl
u +

t∑
u=k

εkl
u ≥ �dkt

C
�φkl for 1 ≤ k ≤ t < l ≤ n with ρkt ≤ ρkl

(9.19)
t∑

u=k

zkl
u ≥ �dkt

C
�φkl for 1 ≤ k ≤ t < l ≤ n with ρkt > ρkl

(9.20)
l∑

u=k

zkl
u +

l∑
u=k

εkl
u = �dkl

C
�φkl for 1 ≤ k ≤ l ≤ n (9.21)

l∑
u=k

zkl
u = �dkl − ρkl

C
�φkl for 1 ≤ k ≤ l ≤ n (9.22)

zkl
t + εkl

t ≤ φkl for 1 ≤ k ≤ t ≤ l ≤ n (9.23)

φ ∈ R
n(n+1)/2
+ (9.24)

zkl, εkl ∈ R
l−k+1
+ for 1 ≤ k ≤ l ≤ n. (9.25)

9.6.4 Résumé of Results

In Table 9.6.4 we summarize the results that are known for PROB-CC, where
LP indicates that the separation problem can be solved as a linear program
using the polynomial-size extended formulation as discussed in Section 6.1,
and � indicates that an explicit description of a family of valid inequalities is
known but it only gives a partial description of the convex hull of solutions.
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Table 9.1. Models PROB-CC

LS WW DLSI DLS

Formulation
CC O(n3) × O(n3) O(n2) × O(n2) O(n) × O(n) O(n) × O(n)

Separation
CC LP and � O(n2 log n) O(n log n) O(n)

Optimization
CC O(n3) O(n2 log n) O(n2 log n) O(n log n)

9.7 Lot-Sizing with Varying Capacities

Here we describe several classes of valid inequalities for the problems WW -C,
LS-C and DLSI-C.

9.7.1 Valid Inequalities for WW -C

Consider the set

XWW−C = {(s, y) ∈ R
n+1
+ ×{0, 1}n : st−1+

l∑
u=t

Cuyu ≥ dtl for 1 ≤ t ≤ l ≤ n}.

For 1 ≤ t ≤ l ≤ n, we define the following values:

δtl = min{st−1 + Ct

l∑
u=t

yu : (s, y) ∈ XWW−C}. (9.26)

Observation 9.5 The inequality

st−1 + Ct

l∑
u=t

yu ≥ δtl

is valid for XWW−C for 1 ≤ t ≤ l ≤ n.

Calculation of δ

First note that if α = st−1 is known, then the calculation of δtl reduces to the
problem

min
l∑

u=t

yu

j∑
u=t

Cuyu ≥ dtj − α for t ≤ j ≤ l

y ∈ {0, 1}l−t+1.
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Proposition 9.12 When the Ct are nondecreasing (i.e., Ct ≤ Ct+1 for all
t), the {δtl}1≤t≤l≤n can be calculated in polynomial time.

We now indicate how the δtl can be calculated in the case where Ct ≤ Ct+1
for all t.

After preprocessing so that dt ≤ Ct for all t, the following simple greedy
algorithm gives the optimal lexico-min 0–1 vector yα,t for fixed t and α.

Calculation of yα,t

For k = t, . . . , n, let φk(α, t) =
∑k−1

j=t Cjy
α,t
j − (dtk − α)+.

If φk(α, t) < 0, set yα,t
k = 1, and otherwise set yα,t

k = 0.

Now we need to choose st−1 = α. One can show that there always exists
an optimal solution to (9.26) with αt < Ct, so we have

δtl = min
0≤α<Ct

{α + Ct

l∑
u=t

yα,t
u }.

The following procedure selects the values of α that one needs to consider.
For fixed t, we start by computing yα,t

k for α = 0 and k = t, . . . , n.

Iterating over α
Initialize with α = 0.
While α < Ct, compute yα,t

k for k = t, . . . , n.
Let γ = maxk:φk(α,t)<0 φk(α, t). Note that γ < 0.
Set α ← α − γ and iterate.

It can then be shown that, for each t, at most O(n2) values of st−1 need
be considered.

Valid Inequalities

The relaxation

st−1 + Ct

l∑
u=t

yu ≥ δtl for 1 ≤ t ≤ l ≤ n

s ∈ R
n+1
+ , y ∈ {0, 1}n

is the intersection of n mixing sets, so we obtain as an improved relaxation
the convex hull of this set:

n⋂
t=1

conv
(
XMIX(st−1/Ct, (yt, . . . , yn), (δtt, . . . , δtn)/Ct)

)
.
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Example 9.9 Consider an instance with n = 5, C = (5, 7, 8, 10, 12), and
d = (3, 3, 5, 2, 4). We just treat the case t = 1.
For α = 0, we have the constraints:

5y1 ≥ 3 − 0
5y1 +7y2 ≥ 6 − 0
5y1 +7y2 +8y3 ≥ 11 − 0
5y1 +7y2 +8y3 +10y4 ≥ 13 − 0
5y1 +7y2 +8y3 +10y4 +12y5 ≥ 17 − 0.

The algorithm for the determination of yα,t gives φ(0, 1) = (−3,−1, 1,−1, 5)
and y0,1 = (1, 1, 0, 1, 0). Now γ = −1, so we pass to α = 1.

Altogether, iterating over α, we obtain
α = 0, y0,1 = (1, 1, 0, 1, 0), γ = 1
α = 1, y1,1 = (1, 0, 1, 0, 1), γ = 2
α = 3, y3,1 = (0, 1, 1, 0, 0), γ = 1,
α = 4, y4,1 = (0, 1, 0, 1, 0), γ = 2

from which we can calculate
δ11 = 3, δ12 = 6, δ13 = 9, δ14 = 11, δ15 = 13. The corresponding valid inequali-
ties are:

s0 +5y1 ≥ 3
s0 +5y1 +5y2 ≥ 6
s0 +5y1 +5y2 +5y3 ≥ 9
s0 +5y1 +5y2 +5y3 +5y4 ≥ 11
s0 +5y1 +5y2 +5y3 +5y4 +5y5 ≥ 13.

Finally, observe that with arbitrary capacities, one can, for each t, con-
struct a set {C̄l}n

l=t of nondecreasing capacities by setting C̄t = Ct and
C̄l = max[C̄l−1, Cl] for l = t + 1, . . . , n. With these modified capacities, the
corresponding δ values can be calculated as above, and the resulting reformu-
lation is then valid.

9.7.2 Simple Valid Inequalities for LS-C

We first show two relaxations of the set XLS−C that can be used to gen-
erate valid inequalities. For both we start by aggregating the flow balance
constraints for periods k, . . . , l. This gives

sk−1 +
l∑

j=k

xj = dkl + sl (9.27)

xt ≤ Ctyt for k ≤ t ≤ l (9.28)
sk−1, sl ≥ 0, yt ∈ {0, 1} for k ≤ t ≤ l. (9.29)
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Relaxation 1: A Continuous 0–1 Knapsack Set

Using the nonnegativity of sl, and replacing each xj by its variable upper
bound constraint, we obtain

X1 = {sk−1 ≥ 0, (yk, . . . , yl) ∈ {0, 1}l−k+1 : sk−1 +
l∑

j=k

Cjyj ≥ dkl}.

Valid inequalities for such sets have been presented in Section 8.8. In fact
we can work with a slightly smaller set

X̃1 = {sk−1 ≥ 0, (yk, . . . , yl) ∈ {0, 1}l−k+1 : sk−1 +
l∑

j=k

min[Cj , djl]yj ≥ dkl}.

Relaxation 2: A Single-Node Flow Set

Dropping the variables sk−1, using the (l, S) inequalities xj ≤ djlyj + sl, and
fixing sl = 0 temporarily, we obtain the single-node flow set X2 :

l∑
j=k

xj ≤ dkl (9.30)

xj ≤ min[Cj , djl]yj for k ≤ j ≤ l (9.31)

(yk, . . . , yl) ∈ {0, 1}l−k+1. (9.32)

Flow cover inequalities for such sets were derived in Section 8.9.

Proposition 9.13 If
∑

j∈S xj ≤ β0 +
∑

j∈S βjyj is a valid inequality for X2

with S ⊆ {k, . . . , l}, then
∑
j∈S

xj ≤ β0 +
∑
j∈S

βjyj + sl

is a valid inequality for XLS−C .

Example 9.10 Consider an instance of LS-C with n = 6, d = (4, 2, 8, 5, 7, 1),
C = (7, 4, 14, 5, 9, 6), and the point x∗ = (6, 0, 14, 0, 7, 0), s∗ = (2, 0, 6, 1, 1, 0),
and y∗ = (1, 0, 1, 0, 0.875, 0).

Taking k = 3 and l = 6, we obtain the continuous 0–1 knapsack set relax-
ation

s2 + 14y3 + 5y4 + 8y5 + 1y6 ≥ 21
s2 ∈ R

1
+, y ∈ {0, 1}4.

Dividing by 14 and taking the MIR inequality (8.32), we obtain the inequality
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s2 + 7y3 + 5y4 + 7y5 + 1y6 ≥ 14

that is violated by 0.875.
Again with k = 3 and l = 6, the single-node flow set X2 obtained is

x3 + x4 + x5 + x6 ≤ 21
x3 ≤ 14y3, x4 ≤ 5y4, x5 ≤ 8y5, x6 ≤ 1y6, x ∈ R

4
+, y ∈ {0, 1}4.

Using the cover C1 = {3, 5} with λ = 1 in Proposition 8.19 combined with
Proposition 9.13 gives the flow cover inequality

x3 + x5 ≤ 21 − 13(1 − y3) − 7(1 − y5) + s6

which is also violated by 0.875.

9.7.3 Submodular Inequalities for LS-C

Consider now an alternative formulation for LS-C, namely the set

X̃LS−C = {(x, sn, y) ∈ R
n
+ × R

1
+ × {0, 1}n :

n∑
u=t

xu ≤ dtn + sn, xt ≤ Ctyt for 1 ≤ t ≤ n},

obtained by eliminating the entering stock variables in the equations

st−1 +
n∑

u=t

xu = dtn + sn.

Let v be the set function defined on any subset of periods

v(T ) = max{
∑
j∈T

xj : (x, sn, y) ∈ X̃LS−C

yt = 1 for j ∈ T

yt = 0 for j ∈ N \ T

sn = 0 } ,

for all T ⊆ N = {1, . . . , n}. The value v(T ) is easy to calculate as it is just a
maximum flow (or minimum cut) in a very special network; see Figure 9.4.

Observation 9.6

v(T ) = mint∈T∪{n+1}[
∑

u∈T :u<t Cu + dtn],

where dn+1,n = 0.

What is more, v has special structure.
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Cuts
1 2 3 4 5

T={1,2,4,5}

Figure 9.4. Min cuts in the calculation of v(T ).

Definition 9.2 A set function f : P (N) → R
1 is supermodular if

f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B) for all A, B ⊆ N.

If the set function −f is supermodular, the set function f is submodular.

Observation 9.7 Let ρj(S) = f(S ∪ {j}) − f(S) for ∅ ⊆ S ⊆ N \ {j}.
f is supermodular (submodular) if and only if ρj(S) ≤ ρj(T ) (ρj(S) ≥ ρj(T ))
for all S ⊂ T ⊆ N \ {j}.
Observation 9.8 The set function v : P(N) → R

1 is submodular and non-
decreasing.

Submodularity provides us with a valid inequality for X̃LS−C based on
the following result.

Proposition 9.14 The submodular inequality
∑
j∈T

xj +
∑
j∈T

[v(T ) − v(T \ {j})](1 − yj) ≤ v(T ) + sn

is valid for X̃LS−C .

Example 9.11 Consider an instance of LS-C with n = 6, d = (1, 6, 2, 4, 3, 2),
and C = (12, 9, 5, 7, 6, 15).

The constraints of the new formulation are x ∈ R
6
+, y ∈ {0, 1}6, s6 ∈ R

1
+,

xj ≤ Cjyj for j ∈ {1, . . . , 6}, and

x6 ≤ 2 + s6
x5 + x6 ≤ 5 + s6

x4 + x5 + x6 ≤ 9 + s6
x3 + x4 + x5 + x6 ≤ 11 + s6

x2 + x3 + x4 + x5 + x6 ≤ 17 + s6
x1 + x2 + x3 + x4 + x5 + x6 ≤ 18 + s6.
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Using Observation 9.6,

v({2, 4, 5}) = min[d26, C2 + d46, C2 + C4 + d56, C2 + C4 + C5]
= min[17, 9 + 9, 9 + 7 + 5, 9 + 7 + 6] = 17.

As v({2, 4}) = 16, v({2, 5}) = 14 and v({4, 5}) = 9, we obtain the valid
submodular inequality

x2 + x4 + x5 + 8(1 − y2) + 3(1 − y4) + 1(1 − y5) ≤ 17 + s6.

Lifting the Submodular Inequalities

To strengthen the submodular inequalities by a procedure known as lifting, we
only consider inequalities for sets T for which v(T ) = maxj∈T djn. We order
the values v(T ) − v(T \ {j}) for j ∈ T in nonincreasing order α1 ≥ · · · ≥ α|T |.
Similarly we order the values Cj − (v(T ) − v(T \ {j})) in nondecreasing order
β1 ≤ · · · ≤ β|T |.

Now consider the function ψ on R
1
+ defined as follows.

ψ(u) =
∑r

i=1 βi if
∑r

i=1(αi + βi) ≤ u <
∑r

i=1(αi + βi) + αr+1

ψ(u) =
∑r

i=1 βi + (u − ∑r
i=1(αi + βi) + αr+1)
if

∑r
i=1(αi + βi) + αr+1 ≤ u <

∑r+1
i=1 (αi + βi).

α2

α3

β1

β2

β3

α1

α1
α2β1

β2 β3
α3

u

ψ(u)

Figure 9.5. The function ψ used for lifting.
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Now, for k in N \ T , consider the function Fk(u) = ψ(u − δk), where
δk = [dkn − v(T )]+. Based on the properties of Fk, the following proposition
holds.

Proposition 9.15 If v(T ) = maxj∈T djn, and (πk, µk) satisfy πk + µku ≤
Fk(u) for 0 ≤ u ≤ min[Ck, dkn] for all k ∈ N \ T , then the lifted submodular
inequality∑
j∈T

xj +
∑
j∈T

[v(T ) − v(T \ {j})](1 − yj) +
∑

k∈N\T

(πkxk + µkyk) ≤ v(T ) + sn

is valid for X̃LS−C .

Example 9.11 continued.
Construction of the functions ψ and Fk. With T = {2, 4, 5}, v(T )−v(T \{j})
takes the values 8, 3, 1 for j = 2, 4, 5, so α = (8, 3, 1). Also as Cj −ρj(T \ {j})
takes the values (9 − 8, 7 − 3, 6 − 1) for j = 2, 4, 5, β = (1, 4, 5).

So ψ(u) = 0 for 0 ≤ u ≤ 8, ψ(u) = u − 8 for 8 ≤ u ≤ 9, ψ(u) = 1 for
9 ≤ u ≤ 12, and so on.
Now we calculate the lifting functions. For k = 1, δ1 = d1n − v(T ) = 1, so
F1(u) = ψ(u − 1). It is easily checked that the function −3 + 1

3u ≤ F1(u) on
0 ≤ u ≤ 12, and in addition equality holds for u = 9 and u = 12; see Figure
9.6.

0 9 10 13 17 18

1

2

3

4

5

12

F1 (u)

-3

u

Figure 9.6. Lifting function F1 and its support on [0, 12].

For k = 3, δ3 = 0, and so F3 = ψ. As C3 = 5, the only support is
(π3, µ3) = (0, 0).

For k = 6, δ6 = 0, and so F6 = ψ. As min[C6, d6] = 2, the only support is
again (π6, µ6) = (0, 0).
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Thus from Proposition 9.15 we obtain the lifted submodular inequality

1
3
x1 − 3y1 + x2 + x4 + x5 + 8(1 − y2) + 3(1 − y4) + 1(1 − y5) ≤ 17.

9.7.4 Lifted (l, S) Inequalities for DLSI-C

Valid Inequalities for DLSI-C

Here we develop a class of valid inequalities for DLSI-C. We then briefly
indicate how they also lead to inequalities for WW -C and LS-C.

We start from the following formulation

s0 +
t∑

j=1

min[Cj , djt]yj ≥ d1t for all t

s0 ≥ 0, y ∈ {0, 1}n.

Now choose a subset T ⊆ N = {1, . . . , n} of periods, and set yj = 1 for j ∈ T .
The resulting set X̃T is

s0 +
∑

j∈[1,t]\T

min[Cj , djt]yj ≥ d1t −
∑

j∈[1,t]∩T

Cj for all t (9.33)

s0 ≥ 0, y ∈ {0, 1}|N\T |. (9.34)

This can be interpreted as a new instance of DLSI-C involving set-up
decisions in the periods N \ T , and a new demand vector dT ∈ R

n
+, so that

(9.33) can be strengthened to

s0 +
∑

j∈[1,t]\T

min[Cj , d
T
jt]yj ≥ dT

1t for all t,

where dT is calculated as follows.

dT
1t = max

j:j≤t
(d1j −

∑
u∈T :u≤j

Cj)+,

with dT
1 = dT

11 and dT
t = dT

1t − dT
1,t−1 for t = 2, . . . , n.

We require that dT
jn < Cj for all j ∈ N \ T , otherwise we choose some

other set T . Now we take the (l, S) inequality

s0 +
∑

j∈[1,n]\T

dT
jnyj ≥ dT

1n

that is valid for X̃T .
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Next we reintroduce the variables yj for j ∈ T that have been set to 1.
Specifically to lift back the variable yk, we set it to zero, while keeping yj = 1
for j ∈ T \ {k}. To see the effect of bringing in yk, we calculate

πk = min s0 +
∑

j∈[1,n]\T

dT
jnyj − dT

1n (9.35)

s0 +
∑

j∈[1,t]\T

min[Cj , d
T\{k}
jn ]yj ≥ d

T\{k}
1t for all t (9.36)

s0 ≥ 0, y ∈ {0, 1}|N\T |. (9.37)

Though in general the lifting coefficients are order-dependent, here it can be
shown that the {πk} give a valid inequality directly.

Theorem 9.16 The inequality

s0 +
∑

j∈N\T

dT
jnyj ≥ dT

1n +
∑
k∈T

πk(1 − yk)

is valid and facet-defining for conv(XDLSI−C).

Example 9.12 Consider an instance of DLSI-C with n = 5, d = (4, 3, 4, 3, 6),
and C = (10, 5, 4, 7, 12). The initial formulation is

s0 +10y1 ≥ 4
s0 +10y1 +5y2 ≥ 7
s0 +10y1 +5y2 +4y3 ≥ 11
s0 +10y1 +5y2 +4y3 +7y4 ≥ 14
s0 +10y1 +5y2 +4y3 +7y4 +6y5 ≥ 20

s0 ≥ 0, y ∈ {0, 1}5.

Setting T = {1, 4}, the new demand vector is dT = (0, 0, 1, 0, 2), and the (l, S)
inequality

s0 + 3y2 + 3y3 + 2y5 ≥ 3

is valid for X̃T .
To calculate the lifting coefficient πT

1 , we calculate dT\{1} = d{4} =
(4, 3, 4, 0, 2) and solve

min s0 +3y2 +3y3 +2y5 −3
s0 ≥ 4
s0 +5y2 ≥ 7
s0 +5y2 +4y3 ≥ 11
s0 +5y2 +4y3 ≥ 11
s0 +5y2 +4y3 +6y5 ≥ 13

s0 ≥ 0, y ∈ {0, 1}3
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with optimal solution s0 = 4, y2 = y3 = 1, and πT
1 = 7.

By a similar calculation we get that πT
4 = 2 and the resulting facet-defining

inequality for conv(XDLSI−C) is

s0 + 7y1 + 3y2 + 3y3 + 2y4 + 2y5 ≥ 3 + 7 + 2 = 12.

Note that as XWW−C =
⋂n

k=1 XDLSI−C
k , the same approach also provides

valid inequalities for WW -C.
A related approach of fixing set-up variables to one, setting the correspond-

ing production variables to their capacity, and then lifting an (l, S) inequality
can be applied to generate facet-defining inequalities for LS-C. However the
lifting is more complicated as it now involves both continuous xj and 0–1
variables yj .

Exercises

Exercise 9.1 Consider an instance of DLS-CC with C = 7 and d =
(4, 2, 5, 1, 4). Observe that the constraints

∑t
u=1 yu ≥ �d1t

C � imply certain
lower bounds on the stocks st ≥ st. Use these lower bounds to change vari-
ables such that the basic unit of demand is in multiples of C units, and all
the new variables are in terms of these units.

Exercise 9.2 Show how the greedy algorithm for DLS-CC can be imple-
mented to run in O(n log n).

Exercise 9.3 Consider an instance of DLS-CC with n = 6, C = 9, d =
(5, 3, 1, 4, 3, 4), and q = (42, 68, 31, 93, 72, 53).
Solve by the greedy algorithm and by linear programming.

Exercise 9.4 Consider an instance of WW -CC with n = 5, C = 10, costs
p′ = (7, 4, 2, 3, 4), h′ = (1, 3, 2, 1, 3), q′ = (25, 45, 26, 30, 20), and demands d =
(5, 3, 7, 4, 9) for which initial and final stock must be zero.
Find an optimal solution.

Exercise 9.5 Consider an instance of the problem WW -CC. Show that if
n = 5, C = 10, and d = (5, 3, 7, 4, 9), the regeneration interval [2, 5] cannot be
part of an optimal solution.

Exercise 9.6 Consider an instance of LS-CC with n = 5, C = 10, costs
p′ = (7, 4, 2, 3, 4), h′ = (1, 3, 5, 1, 3), q′ = (25, 45, 26, 30, 20), and demands d =
(5, 3, 7, 4, 9) for which initial and final stock must be zero.
Solve by dynamic programming, MIP, and using LS–LIB.

Exercise 9.7 Consider an instance of WW -C with n = 6, d = (4, 2, 8, 5, 7, 1),
C = (7, 4, 14, 5, 9, 6), q = (10, 20, 30, 30, 40, 10), and h = (1, 2, 1, 3, 1, 0).
i. Calculate the minimum cost of the [2, k] regeneration intervals for k ≥ 2.
ii. Solve the instance by MIP.
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Exercise 9.8 Consider an instance of LS-C with n = 6, d = (4, 2, 8, 5, 7, 1),
C = (7, 4, 14, 5, 9, 6), and costs h′ = (1, 2, 1, 3, 1, 0), q = (10, 20, 30, 30, 40, 10),
and p′ = (4, 8, 5, 3, 6, 3).
i. Solve the instance by MIP.
ii. Solve with LS–LIB comparing the effectiveness of the reformulations for
WW -U, LS-U , and WW -CC with C = maxt Ct, and the cutting planes for
LS-U, WW -CC and WW -C.
iii. Find a valid inequality for LS-C cutting off the point x∗ = (6, 0, 13, 0, 7, 1),
y∗ = (6

7 , 0, 13
14 , 0, 7

9 , 1
6 ), s∗ = (2, 0, 5, 0, 0, 0).

iv. Find a submodular valid inequality for LS-C cutting off the point x∗ =
(7, 0, 12.47, 0.55, 6.98, 0), y∗ = (1, 0, 0.89, 0.109, 0.872, 0), and s∗ = (3, 1,
5.47, 1.02, 1, 0).
v. Find a violated valid inequality for LS-C cutting off the point x∗ =
(7, 0, 13.14, 0, 6.86, 0), y∗ = (1, 0, 1, 0, 0.857, 0), and s∗ = (3, 1, 6.14, 1.14, 1, 0).

Exercise 9.9 Prove that the matrix occurring in the integer program of Sec-
tion 9.6.3 for the calculation of αkl is totally unimodular using the character-
ization of Proposition 6.6.

Exercise 9.10 Rewrite the constraint matrix from Corollary 9.3 equivalently
as

t∑
u=k

yu +
∑

τ∈{0}∪[k,n]:fk
τ ≥fk

t

δk
τ + µk ≥ 	dkt

C

 + 1 for all k, t, k ≤ t

∑
t∈{0}∪[k,n]

δk
t = 1 for all k

µk ≥ 0, δk
t ≥ 0 for all k and t ∈ {0} ∪ [k, n]

y ∈ [0, 1]n ,

and prove that the matrix is totally unimodular. Show that the matrix remains
totally unimodular with the additional constraints

∑t
u=k yu ≥ βkt for all 1 ≤ k ≤ t ≤ n.

Notes

Section 9.1 The complexity of various special cases of LS-C is studied in
Bitran and Yanasse [28].

Section 9.2 Regeneration intervals or points of regeneration were first for-
mally introduced to characterize the structure of optimal solutions by Manne
[116]. The term itself of regeneration point has been taken from the renewal
processes literature and was first applied to inventory management by Karlin
[97].
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Section 9.3 The reformulation of DLS-CC by normalizing so that the ca-
pacity becomes one is part of the folklore; see for example, Fleischmann [68].
See Van Vyve [178] for the O(n log n) variant of the greedy algorithm, and
the parametric algorithm.

Section 9.4 The treatment of DLSI-CC as a mixing set with additional
constraints is from Miller and Wolsey [124].

Section 9.5 The polyhedral characterization, the extended formulation, and
the separation algorithm for WW -CC are from Pochet and Wolsey [140]. The
O(n2 log n) optimization algorithm is from Van Vyve [178].

Section 9.6 The dynamic programming algorithm based on regeneration
intervals is from Florian and Klein [71]. An improved implementation running
in O(n3) was given by Van Hoesel and Wagelmans [171]. The O(n3) × O(n3)
extended formulation for LS-CC is based on Pochet and Wolsey [139].

Section 9.7 Fully polynomial approximation schemes for LS-C have been
given by van Hoesel and Wagelmans [172] and Chubanov et al. [39]. The valid
inequalities for WW -C are new, motivated by the polynomial algorithm of
Bitran and Yanasse [28] in the case where the capacities are nondecreasing
and the fixed costs nonincreasing. An improved O(n2) algorithm for the latter
problem is given by Chung and Lin in [40]. Valid inequalities for LS-C have
been proposed by Pochet [134] based on flow cover inequalities. The submod-
ular inequalities and their lifted version based on the superadditive lifting
function Fk of Subsection 9.7.3 were proposed by Atamtürk and Munoz [15].
The lifted (l, S) inequalities for DLSI-C and LS-C are from Loparic et al.
[106].
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Backlogging and Start-Ups

Here we consider two of the most important variants of the single-item prob-
lem, namely the problems with backlogging and with start-ups. Throughout
the chapter, we concentrate on the results that we believe can be used in
practice. We now briefly describe its contents.

• Sections 10.1 to 10.3 treat the problem with backlogging PROB-CAP -B,
whereas Sections 10.4 to 10.5 treat the problem with start-up variables
PROB-CAP -SC.

• In Section 10.2 we describe a dynamic programming algorithm for LS-
U -B, present some valid inequalities, and give a tight reformulation. For
WW -U -B we obtain a more compact extended formulation, a characteri-
zation of the valid inequalities, and a combinatorial separation algorithm.

• In Section 10.3 we describe the convex hull of solutions of DLS-CC-B us-
ing MIR inequalities and give a combinatorial optimization algorithm. For
DLSI-CC-B we give a tight extended formulation based on the continuous
mixing set, and for WW -CC-B we generate a tight extended formulation
that is unfortunately large with O(n3) rows and O(n2) variables.

• In Section 10.4 we consider the uncapacitated problems with start-up vari-
ables LS-U -SC and WW -U -SC giving complete descriptions of the valid
inequalities and tight extended formulations.

• In Section 10.5 we consider constant capacity problems with start-up vari-
ables. We describe valid inequalities for DLS-CC-SC that suffice to solve
the problem by linear programming with a certain class of costs, and also
an extended formulation for the general case. We also present classes of
valid inequalities for LS-CC-SC and LS-C-SC that have combinatorial
separation algorithms.

• Finally in Section 10.6, we present a tight extended formulation for the
uncapacitated problem with both backlogging and start-up variables WW -
U -B, SC.
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10.1 Backlogging

We first formulate the general single-item lot-sizing problem with backlogging
LS-C-B. The additional data needed is b′

t, the per unit backlogging cost in
period t.

The new variable rt denotes the total accumulated backlog at the end of
period t, that is, rt = max[0, d1t − s0 − ∑t

u=1 xu]. With this, we obtain the
formulation

min
n∑

t=1

p′
txt +

n∑
t=0

h′
tst +

n∑
t=1

b′
trt +

n∑
t=1

qtyt

st−1 − rt−1 + xt = dt + st − rt for 1 ≤ t ≤ n

xt ≤ Ctyt for 1 ≤ t ≤ n

s ∈ R
n+1
+ , x, r ∈ R

n
+, y ∈ {0, 1}n.

Throughout we assume that r0 = 0.
Note that the objective function can always be rewritten as

min
n∑

t=0

htst +
n∑

t=1

btrt +
n∑

t=1

qtyt (+
n∑

t=1

p′
tdt),

with ht = h′
t +p′

t −p′
t+1 and bt = b′

t +p′
t+1 −p′

t, where we take p′
0 = 0. We say

that a problem with backlogging has Wagner–Whitin costs if p′
t + h′

t ≥ p′
t+1

for t = 0, . . . , n − 1 and p′
t + b′

t−1 ≥ p′
t−1 for t = 2, . . . , n. So the problem has

Wagner–Whitin costs precisely when ht and bt are nonnegative for all t.

10.2 Backlogging: The Uncapacitated Case

10.2.1 Extreme Points and Optimization

For LS-U -B, the structure of extreme optimal solutions is very similar to that
of LS-U . Essentially whenever xt > 0, then xt = dt−k,t+l for some k ≥ 0 and
l ≥ 0. The structure of such an extreme point is illustrated in Figure 10.1.

y  = 1y  = 1
x  > 0x  = 0

t

t

t

t

t

t

y  = 1

x  > 0

Figure 10.1. Form of an extreme point solution of LS-U -B.

This means that the dynamic programming recursion to solve LS-U -B is
not much more complicated than that for LS-U .
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A Dynamic Programming Algorithm for LS-U -B

For periods u, v ∈ {1, . . . , n}, let φ(u, v) denote the minimum cost of satisfying
demands for periods v, . . . , n in which the demand for period v is satisfied by
production in u where the fixed cost in u is only counted if u ≥ v, and let
G(v) denote the minimum cost solution of problem LS-U -B defined over the
horizon v, . . . , n.

We have

G(v) = min
u≥v

φ(u, v)

φ(u, v) = (
v−1∑
t=u

ht)dv + min[φ(u, v + 1), G(v + 1)] for u < v

φ(u, v) = (
u−1∑
t=v

bt)dv + φ(u, v + 1) for u > v

φ(u, u) = qu + min[φ(u, u + 1), G(u + 1)] for u = v.

G(1) and a corresponding optimal solution can be found using this recursion
in O(n2). As for LS-U , it is possible to reduce the running time to O(n log n).

Note that when there is an initial stock variable s0, or items can be back-
logged after the end of the time horizon rn > 0, minor modifications need to
be made to the above recursion. Specifically u and v run from n + 1 down to
0, G(n + 1) = φ(u, n + 1) = 0 for all u, φ(u, 0) = φ(u, 1) for all u ≥ 1, and the
optimal value G(0) = φ(0, 0) = min[φ(0, 1), G(1)].

Example 10.1 Consider an instance of LS-U -B with n = 4, h0 = 6, h =
(1, 1, 1, 1), b = (3, 3, 3, 10), q = (100, 81, 70, 40), and d = (8, 4, 0, 5).

In Table 10.1 we give the values of φ(u, v) and G(v) as we work through
calculating terms row by row. Note that G(v) can be found once φ(v, v) has
been calculated.

Table 10.1. φ(u, v) Values for Example 10.1

φ(u, v) v = 5 v = 4 v = 3 v = 2 v = 1 v = 0
u = 5 0 50 50 114 266 266
u = 4 0 40 40 64 136 136
u = 3 0 5 75 87 135 135
u = 2 0 10 10 91 115 115
u = 1 0 15 15 19 119 119
u = 0 0 45 40 68 112 112
G(v) 0 40 40 64 115 112

The individual calculations of the values φ(u, 2) and G(2) in column v = 2
of Table 10.1 are as follows.
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φ(5, 2) = (b2 + b3 + b4)d2 + φ(5, 3) = 114.
φ(4, 2) = (b2 + b3)d2 + φ(4, 3) = 64.
φ(3, 2) = b2d2 + φ(3, 3) = 87.
φ(2, 2) = q2 + min[φ(2, 3), G(3)] = 91.
G(2) = min[114, 64, 87, 91] = 64.
φ(1, 2) = h1d2 + min[φ(1, 3), G(3)] = 19.
φ(0, 2) = (h0 + h1)d2 + min[φ(0, 3), G(3)] = 68.

Working backwards to find an optimal solution, G(0) = φ(0, 1) = h0d1 +
G(2) = h0d1 + φ(4, 2) = h0d1 + (b2 + b3)d2 + φ(4, 3) = h0d1 + (b2 + b3)d2 +
b3d3 + φ(4, 4) = h0d1 + (b2 + b3)d2 + b3d3 + q4.

Thus an optimal solution is s0 = d1, y4 = 1, x4 = d24, r3 = d23, r2 = d2.

10.2.2 Tight Formulations and Inequalities for LS-U -B

Valid inequalities

Some simple valid inequalities are obtained by adding backlog variables to the
(l, S) inequalities for LS − U .

Proposition 10.1 Given the interval [k, l] with periods t0 = k − 1 < t1 <
· · · < tp = l, the following inequality is valid for XLS−U−B:

sk−1 +
p∑

q=1

rtq
+

p∑
q=0

tq+1∑
u=tq+1

dtq+1,lyu ≥ dkl

One way to show the validity of these inequalities is by applying mixing to
the surrogate inequalities sk−1 + rtq + M

∑tq

u=k yu ≥ dk,tq for q = 1, . . . , p,
obtained by summing the flow balance constraints for periods k up to t, re-
placing rk−1 and st by the lower bound of zero and

∑t
u=k xu by the upper

bound of M
∑t

u=k yu.

Example 10.2 With [k, l] = [2, 6], t0 = 1, t1 = 3, t2 = 5, and t3 = 6, we
obtain the surrogates

s1 + r3 + My2 + My3 ≥ d23

s1 + r5 + My2 + My3 + My4 + My5 ≥ d25

s1 + r6 + My2 + My3 + My4 + My5 + My6 ≥ d26.

Proposition 10.1 gives the valid mixing inequality

s1 + r3 + r5 + r6 ≥ d23(1 − y2 − y3)
+ d45(1 − y2 − y3 − y4 − y5) + d6(1 − y2 − y3 − y4 − y5 − y6).

To understand the coefficient of d45, note that the demands d4 and d5 must
be satisfied either from s1, or from r5, or from production in the interval [2, 5].
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A complete description of the valid inequalities for this problem is un-
known. However, in discussing WW -U -B below, a larger class of inequalities
is demonstrated.

Extended Formulations

Both the facility location and the shortest path reformulations for LS-U ex-
tend to LS-U -B. We just present the latter.

The Shortest Path Reformulation of LS-U-B.

Let wtt = 1 if the demand for t is produced in t.
Let φut = 1 if production in u includes the future demand precisely up to
period t ≥ u.
Let ψut = 1 if production in u includes backlogged demand precisely from
period t ≤ u.

The resulting reformulation QLS−U−B presented now corresponds to a short-
est path formulation in the directed graph in Figure 10.2, where the regen-
eration interval [k, l] with production in period u ∈ {k, . . . , l} is decomposed
into 1 unit of flow through the sequence of arcs with flows ψuk, wuu, and φul.

n∑
k=1

ψk1 = 1 Node 1

t−1∑
k=1

φk,t−1 −
n∑

k=t

ψkt = 0 Node t, for 2 ≤ t ≤ n

−
t∑

l=1

ψtl + wtt = 0 Node t′, for 1 ≤ t ≤ n

− wtt +
n∑

l=t

φtl = 0 Node t′′, for 1 ≤ t ≤ n

wtt − yt ≤ 0 for 1 ≤ t ≤ n

xt =
n∑

u=t+1

dt+1,uφtu +
t−1∑
u=1

du,t−1ψtu + dtwtt for 1 ≤ t ≤ n

st−1 =
∑

u,l:u<t,l≥t

dtlφul for 1 ≤ t ≤ n

rt =
∑

u,l:u>t,l≤t

dltψul for 1 ≤ t ≤ n

ψ, φ ∈ R
n(n+1)/2
+ , w ∈ R

n
+, y ∈ [0, 1]n.
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Theorem 10.2 conv(XLS−U−B) =projx,s,r,yQLS−U−B.

1 1’ 1" 2 2’ 2" 3 3’ 3" 4

w11 w22
w33

ψ11

ψ21

ψ31

ψ22

ψ32

ψ33φ11

φ12
φ23

φ22

φ13

φ33

Figure 10.2. Shortest path formulation for LS-U -B.

10.2.3 Tight Formulations and Inequalities for WW -U-B

The results for WW -U -B are surprising and useful. Here it turns out that
there is an exponentially large number of facet-defining inequalities, so a sep-
aration algorithm is required. However it suffices just to add 2n additional
variables to obtain a tight extended formulation with only O(n2) constraints.

An Extended Formulation

With Wagner–Whitin costs, when some demand dt is satisfied through in-
ventory, it is produced in the last set-up period before t. Similarly when the
demand dt is satisfied through backlogging, it is produced in the first set-up
period after t. These observations are used to construct an extended formu-
lation. We define new variables for each period t in which dt > 0.

αt = 1 if the demand dt is satisfied from stock, and
βt = 1 if the demand dt is satisfied from backlog.

The resulting reformulation QWW−U−B is

αt + yt + βt = 1 for all t with dt > 0

sk−1 ≥
t∑

l=k

dl(αl −
l−1∑
u=k

yu) for all k, t with k ≤ t

rk ≥
k∑

l=t

dl(βl −
k∑

u=l+1

yu) for all k, t with k ≥ t

s ∈ R
n+1
+ , r, α, β ∈ R

n
+, y ∈ [0, 1]n,
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where the first constraint says that dt is either satisfied from stock, or from
backlogging, or from production in period t. The constraints defining sk−1

stipulate that sk−1 includes the demand dl for l ≥ k if αl = 1 and
∑l−1

u=k yu =
0. The constraint for rk has a similar interpretation.

Theorem 10.3 conv(XWW−U−B) =projx,s,r,yQWW−U−B.

Example 10.3 The costs in Example 10.1 are Wagner–Whitin. As d =
(8, 4, 0, 5), the polyhedron QWW−U−B takes the form

α1 + y1 + β1 = 1, α2 + y2 + β2 = 1, α4 + y4 + β4 = 1
s0 ≥ 8α1, s0 + 4y1 ≥ 8α1 + 4α2

s0 + 9y1 + 5y2 + 5y3 ≥ 8α1 + 4α2 + 5α4

s1 ≥ 4α2, s1 + 5y2 + 5y3 ≥ 4α2 + 5α4

s2 + 5y3 ≥ 5α4

s3 ≥ 5α4

r4 ≥ 5β4, r4 + 4y3 + 4y4 ≥ 5β4 + 4β2

r4 + 8y2 + 12y3 + 12y4 ≥ 5β4 + 4β2 + 8β1

r3 + 4y3 ≥ 4β2, r3 + 8y2 + 12y3 ≥ 4β2 + 8β1

r2 ≥ 4β2, r2 + 8y2 ≥ 4β2 + 8β1

r1 ≥ 8β1

s ∈ R
5
+, r, α, β ∈ R

4
+, y ∈ [0, 1]4.

From this, we can also eliminate the α and β variables by projection, so as to
obtain a characterization of the valid inequalities in the original space.

Valid Inequalities and the Convex Hull

Proposition 10.4 Every facet-defining inequality of conv(XWW−U−B) is of
the form

n∑
k=1

n∑
t=k

vkt(sk−1 +
t∑

l=k+1

dl

l−1∑
j=k

yj) +
n∑

k=1

k∑
t=1

wkt(rk +
k∑

l=t

dl

k∑
j=l+1

yj)

≥
n∑

l=1

uldl(1 − yl),

where (v, w) is the characteristic vector of an elementary cycle in the digraph
D = (V, A) with V = {1, . . . , n + 1}, forward arcs (k, t + 1) corresponding to
vkt, backward arcs (k+1, t) corresponding to wkt, and ul =

∑
k:k≤l

∑
t:t≥l vkt.

Example 10.4 Suppose that n = 4, and consider the elementary cycle ob-
tained by taking v12 = w22 = v24 = w44 = w31 = 1 illustrated in Figure 10.3.
The resulting inequality is
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[(s0 + d2y1) − d1(1 − y1) − d2(1 − y2)] + r2

+ [s1 + d3y2 + d4(y2 + y3) − d2(1 − y2) − d3(1 − y3) − d4(1 − y4)]
+ r4 + [r3 + d1(y2 + y3) + d2y3] ≥ 0,

or

s0 + s1 + r2 + r3 + r4 ≥ d1(1 − y1 − y2 − y3)
+ d2(1 − y2)
+ d2(1 − y1 − y2 − y3)
+ d3(1 − y2 − y3)
+ d4(1 − y2 − y3 − y4).

1 2 3 4 5

v12 v24

w22

w31

w44

Figure 10.3. Cycle (1, 3, 2, 5, 4, 1) in the separation digraph.

The Separation Problem

Separation of the point (s∗, r∗, y∗) reduces to finding a negative cost cycle in
the digraph of Proposition 10.4, where the costs on the arcs are precisely

(s∗
k−1 +

t∑
l=k

dl

l−1∑
j=k

y∗
j ) −

t∑
l=k

dl(1 − y∗
l )

on the arcs (k, t + 1) corresponding to the variables vkt, and

(r∗
k +

k∑
l=t

dl

k∑
j=l+1

y∗
j )

on the arcs (k + 1, t) corresponding to the variables wkt.
A straightforward implementation of the minimum mean cost cycle algo-

rithm that allows one to detect a negative cost cycle (if any) has complexity
O(n3).
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Example 10.5 Consider an instance of WW -U -B with n = 4, d = (8, 4, 0, 5),
h = (1, 1, 1, 1), b = (3, 3, 3, 10), and q = (100, 81, 70, 40). This is the same as
Example 10.1 except that s0 = 0. After adding a priori the inequalities

st−1 + rt + dtyt ≥ dt for t = 1, . . . , n

st−1 + rt + rt+1 + dt,t+1yt + dt+1yt+1 ≥ dt,t+1 for t = 1, . . . , n − 1,

we obtain a fractional solution y∗ = (0, 0.615, 0.128, 0.256), s∗ = (0, 0, 3.72, 0),
and r∗ = (8, 1.54, 3.08, 0).

We obtain the cost matrix cv =

⎛
⎜⎜⎝

−8 −9.54 −9.54 −9.54
−1.54 −1.54 −1.54

0 −3.08
0

⎞
⎟⎟⎠ for the vari-

ables vkt, and the cost matrix cw =

⎛
⎜⎜⎝

8
6.46 1.54
9.54 3.59 3.08
9.54 1.54 0 0

⎞
⎟⎟⎠ for the variables wkt.

The minimum mean cycle is given by v12 = w21 = 1, and the corresponding
inequality is

(s0 + d2y2) + (r2 + d1y2) ≥ d1(1 − y1) + d2(1 − y2) or

r2 + d12y1 + d12y2 ≥ d12 .

When this inequality is added to the linear program and one reoptimizes, one
obtains an integer feasible solution y∗ = (0, 1, 0, 0), s∗ = (0, 5, 5, 0), and r∗ =
(8, 0, 0, 0).

10.3 Backlogging: The Constant Capacity Case

10.3.1 Discrete Lot-Sizing with Backlogging DLS-CC-B

The flow conservation constraints for DLS-C-B can be rewritten as

t∑
u=1

Cuyu = d1t + st − rt,

or, if we eliminate the rt variables, as

st ≥
t∑

u=1

Cuyu − d1t.

Similarly the objective function
∑n

t=1(h
′
tst + b′

trt + q′
tyt) can be written,

after elimination of the rt variables, as
∑n

t=1[(h
′
t + b′

t)st +(q′
t −Ct

∑n
u=t b′

u)yt]
plus the constant term

∑n
t=1 b′

td1t.
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We now consider the problem with constant capacities and constraint set

st ≥ C

t∑
u=1

yu − d1t for 1 ≤ t ≤ n (10.1)

s ∈ R
n
+, y ∈ {0, 1}n, (10.2)

denoted XDLS−CC−B , and we assume that h′
t + b′

t ≥ 0 for all t.

The Convex Hull

Setting σt = st/C ∈ R+, zt =
∑t

u=1 yu ∈ Z+, bt = d1t/C, the set
XDLS−CC−B is the intersection of n basic mixed integer sets XMI

1 with link-
ing constraints (1 ≥ zt − zt−1 ≥ 0) for which the corresponding matrix is the
arc-node incidence matrix of a digraph; see Section 8.2.

Theorem 10.5 conv(XDLS−CC−B) is obtained by adding the MIR inequali-
ties

st ≥ C(1 − ft)(
∑t

u=1 yu − 	d1t

C 
) for 1 ≤ t ≤ n

to the constraints (10.1), and the bound constraints s ∈ R
n
+, y ∈ [0, 1]n, where

ft = d1t

C − 	d1t

C 
 for all t.

Optimization

Consider the optimization problem

zDLS−CC−B = min{
n∑

i=1

qiyi +
n∑

i=1

hisi : (x, s) ∈ XDLS−CC−B},

with ht ≥ 0 for all t.
To obtain an efficient algorithm for this problem, we consider the family

of problems Q(j, p):

z(j, p) = min{
j∑

i=1

[qiyi + hi(C
i∑

u=1

yu − d1i)+] :
j∑

i=1

yi = p, y ∈ {0, 1}j}.

We now suppose that y ∈ {0, 1}n is the characteristic vector of S ⊆ N =
{1, . . . , n}, and rephrase the problem.

For S ⊆ N , let

v(S) =
∑
i∈S

qi +
∑
i∈N

hi(C|S ∩ Ni| − d1i)+,

where Ni = {1, . . . , i} for i = 1, . . . , n. Thus z(j, p) = minS⊆N,|S|=p v(S).
Moreover, v has important structure.
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Observation 10.1 The set function v is a supermodular function, as C|S ∩
Ni| − d1i is supermodular and nondecreasing, max[g(S), k] is supermodular
when g is supermodular, and the sum of supermodular functions is supermod-
ular.

Supermodularity was defined in Definition 9.2. The very special structure
of v leads to the following important properties.

Proposition 10.6 If S ⊆ Nj is optimal for Q(j, p) and l < j, then S ∩ Nl is
optimal for Q(l, |S ∩ Nl|).
Proposition 10.7 If S ⊆ Nj is the lex-optimal solution of Q(j, p − 1), then
there exists t ∈ Nj such that S ∪ {t} is the lex-optimal solution of Q(j, p).

It follows that a simple greedy algorithm can be used to solve

zDLS−CC−B = min
p

z(n, p) = min
S⊆N

v(S)

by computing iteratively v(Sp) = minS⊆N,|S|=p v(S) for p = 1, . . . , |N |.
Example 10.6 Consider an instance of DLS-CC-B with n = 6, C =
10, d = (3, 6, 2, 3, 7, 5), q′ = (70, 20, 50, 30, 40, 10), h′ = (1, 2, 3, 2, 1, 3), b′ =
(2, 3, 6, 4, 2, 4).

After elimination of the backlog variables {rt} from the objective function
we obtain q = (−140,−170,−110,−70,−20,−30) and h = (3, 5, 9, 6, 3, 7) with
constant

∑
t b′

td1t = 301.
Using the notation ρj(S) = v(S ∪{j})− v(S) for S ⊆ N, j /∈ S, the greedy

algorithm gives:
Initialization. S0 = ∅.

Iteration 1.
ρj(S0) = (−114,−165,−110,−70,−20,−30), S1 = {2}, v(S1) = −165.

Iteration 2.
ρj(S1) = (48,−, 7,−34,−20,−30), S2 = {2, 4}, v(S2) = −199.

Iteration 3.
ρj(S2) = (127,−, 86,−, 35,−2), S3 = {2, 4, 6}, v(S3) = −201.

By the supermodularity of v, the ρj(S) are increasing with S. Hence
ρj(S3) ≥ 0 for all j /∈ S3, and thus S3 = {2, 4, 6} is optimal with origi-
nal cost 301 − 201 = 100. The corresponding solution is y2 = y4 = y6 =
1, r1 = 3, s2 = 1, r3 = 1, s4 = 6, r5 = 1, s6 = 4.

To obtain a more efficient implementation, one does not need to calculate
all the values v(S) or ρj(S) from scratch. Let γi = C�d1i

C � − d1i, and T δ
S =

{i ∈ N : |S ∩ Ni| − d1i/C ∈ [−δ − 1,−δ)} for δ = 0, 1.
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Observation 10.2 ρj(S ∪{k})−ρj(S) = v(S ∪{j, k})− v(S ∪{k})+ v(S)−
v(S ∪{j}) = [v(S ∪{j, k})−v(S)]− [v(S ∪{j})−v(S)]− [v(S ∪{k})−v(S)] =∑

i∈T 0
S :i≥max[j,k] hi[(C + γi) − γi − γi] +

∑
i∈T 1

S :i≥max[j,k] hiγi.

We can now describe the improved greedy algorithm.

Initialization.
Iteration 0. S0 = ∅. Initialize T 0

S0 and T 1
S0 .

Iteration 1. ρj(∅) = v({j}) = qj +
∑

i∈T 0
S0 :i≥j hiγi. k1 = argmin ρj(∅).

S1 = {k1}.

Iterations t = 2, . . . , n. For j /∈ St−1, given that St−1 = St−2 ∪ {kt−1}, use
the values

ρj(St−1) − ρj(St−2) =
∑

i∈T 0
St−2 :i≥max[j,kt−1]

hi(C − γi)

+
∑

i∈T 1
St−2 :i≥max[j,kt−1]

hiγi

to calculate ρj(St−1). Let kt = argminj /∈St−1 ρj(St−1).

If ρkt
(St−1) ≥ 0, stop. St−1 is optimal.

Otherwise St = St−1 ∪ {kt}, and update T 0
St and T 1

St .
If t = n, stop. Sn = N is optimal.
Otherwise increase t.

Note that the complexity is O(n2).

Example 10.7 We return to the previous example, and calculate with the
improved greedy algorithm.

Initialization.
d1t = (3, 9, 11, 14, 21, 26), γ = (7, 1, 9, 6, 9, 4).
S0 = ∅.
T 0

S0 = {1, 2}, T 1
S0 = {3, 4}.

Iteration 1.
ρj(S0) = (−114,−165,−110,−70,−20,−30), k1 = 2, S1 = {2}, v(S1) =
−165.
T 0

S1 = {1, 3, 4}, T 1
S1 = {5, 6}.

Iteration 2.
ρj(S1) − ρj(S0) = (162,−, 117, 36, 0, 0),
ρj(S1) = (48,−, 7,−34,−20,−30), k2 = 4, S2 = {2, 4}, v(S2) = −199.
T 0

S2 = {1, 3, 5, 6}, T 1
S2 = ∅.
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Iteration 3.
ρj(S2) − ρj(S1) = (79,−, 79,−, 55, 28),
ρj(S2) = (127,−, 86,−, 35,−2), k3 = 6, S3 = {2, 4, 6}, v(S3) = −201.
T 0

S3 = ∅, T 1
S3 = ∅.

10.3.2 Discrete Lot-Sizing with Initial Stocks and Backlogging
DLSI-CC-B

We consider the set XDLSI−CC−B described by

{(s, r, y) ∈ R
n+1
+ × R

n
+ × Z

n
+ : s0 + C

t∑
u=1

yu = d1t + st − rt for t = 1, . . . , n}.

After elimination of the variables {st}n
t=1, the set can be rewritten as

s0 + rt + Czt ≥ d1t for 1 ≤ t ≤ n

0 ≤ zt − zt−1 ≤ 1 for 2 ≤ t ≤ n

z1 ≤ 1

s0 ∈ R
1
+, r ∈ R

n
+, z ∈ Z

n
+.

Now we have a continuous mixing set XCMIX with additional constraints.
Based on the extended reformulation for conv(XCMIX) given in Theorem 8.9,
we can obtain the following reformulation which can be shown to be tight.

Theorem 10.8 A tight extended formulation for conv(XDLSI−CC−B) is
given by

s + rj + CF j
k (

j∑
u=1

yu − 	bj/C
) ≥ Cfk + αj − αk for 1 ≤ j < k ≤ n

rj + CF j
k (

j∑
u=1

yu − 	bj/C
) ≥ αj − αk for 0 ≤ k < j ≤ n

s ≥ Cfk + α0 − αk for 1 ≤ k ≤ n

s + rj + C(
j∑

u=1

yu − 	bj/C
) ≥ Cfj for 1 ≤ j ≤ n

s ∈ R
1
+, r ∈ R

n
+, y ∈ [0, 1]n, α ∈ R

n+1

where fi = d1i

C − 	d1i

C 
, f0 = 0, F j
i = fj − fi if fi ≤ fj, and F j

i = fj − fi + 1
if fi > fj.

Observe that this formulation has O(n2) constraints and O(n) variables. A
complete description of conv(XDLSI−CC−B) in the (s, r, y) space is obtained
by projection; see Proposition 8.10.
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10.3.3 Lot-Sizing with Wagner–Whitin Costs and Backlogging
WW -CC-B

The first nontrivial result concerns a formulation.

Theorem 10.9 With constant capacities and backlogging, a minimum cost
stock and backlog minimal solution of

min
n∑

t=0

htst +
n∑

t=1

btrt +
n∑

t=1

qtyt

sk−1 + rl + C

l∑
u=k

yu ≥ dkl for 1 ≤ k ≤ l ≤ n (10.3)

s ∈ R
n+1
+ , r ∈ R

n
+, y ∈ {0, 1}n (10.4)

solves WW -CC-B, where a solution of (10.3)–(10.4) is called stock minimal
(resp., backlog minimal) if sk−1 = maxl≥k[dkl − C

∑l
u=k yu − rl]+ (resp., if

rl = maxk≤l[dkl − C
∑l

u=k yu − sk−1]+).

Thus we let XWW−CC−B denote the feasible set (10.3)–(10.4).

Extended Formulation

Here we consider the structure of extreme solutions of LS-CC-B. In fact it
suffices to observe that if sk +rk > 0, then k lies in some regeneration interval
[α, β], and then either the fractional period (the period t in which 0 < xt < C)
occurs after k in which case C

∑k
u=α yu−dα,t = sk−rk, or the fractional period

occurs in or before k in which case sk − rk = dk+1,β − C
∑β

u=k+1 yu.

Proposition 10.10 In an extreme solution of LS-CC-B with s0 = sn =
rn = 0,

sk mod C ∈ { 0,−d1k, −d2k,− . . . ,−dk−1,k,−dk,

dk+1, dk+1,k+2, . . . , dk+1,n} mod C,

and

rk mod C ∈ { 0, d1k, d2k, . . . , dk−1,k, dk,

− dk+1, −dk+1,k+2, . . . ,−dk+1,n} mod C.

Example 10.8 Suppose n = 6, d = (4, 2, 3, 6, 7, 5), C = 10, and k = 3. Then
s3 mod 10 ∈ {0,−9,−5,−3, 6, 13, 18} mod 10 = {0, 1, 5, 7, 6, 3, 8} and r3
mod 10 ∈ {0, 9, 5, 3,−6,−13,−18} mod 10 = {0, 9, 5, 3, 4, 7, 2}.
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Now observe that XWW−CC−B =
( ⋂

1≤k≤l≤n X∗
kl

) ⋂{(y, z) : zkl =∑l
u=k yu, y ∈ [0, 1]n} where X∗

kl is the set

sk−1 + rl + Czkl ≥ dkl

sk−1 ∈ {γs,k−1
0 , . . . , γs,k−1

n }
rl ∈ {γr,l

0 , . . . , γr,l
n }

sk−1, rl ≥ 0, zkl ∈ Z+,

where γs,k
i are the values {0,−d1k,−d2k,− . . . ,−dk, dk+1, . . . , dk+1,n} mod C

in order, and γr,l
i are the values {0, d1l, d2l, . . . , dl,−dl+1, . . . ,−dl+1,n} mod C

in order. Using the enumerative approach described in Section 8.4, one can de-
rive an extended formulation Qkl for X∗

kl. Again based on total unimodularity,
one obtains

Theorem 10.11 A tight extended formulation for XWW−CC−B is given by

sk−1 = Cµk−1 +
n∑

i=0

γs,k−1
i δs,k−1

i for 1 ≤ k ≤ n

n∑
i=0

δs,k−1
i = 1 for 1 ≤ k ≤ n

rl = Cνl +
n∑

i=0

γr,l
i δr,l

i for 1 ≤ l ≤ n

n∑
i=0

δr,l
i = 1 for 1 ≤ l ≤ n

µk + vl +
l∑

u=k+1

yu +
∑

γs,k
j >γs,k

i

δs,k
j +

∑
j∈Γ (k,l,i)

δr,l
j ≥ �dkl − γs,k

i

C
�

for 0 ≤ k < l ≤ n, 0 ≤ i ≤ n

µ, ν, δ, y ≥ 0, y ≤ 1,

where γs,k and γr,l are defined above and where Γ (k, l, i) = {j : �dkl−γs,k
i

C � >

�dkl−γs,k
i −γr,l

j

C �} .

This reformulation has O(n3) constraints and O(n2) variables.

Example 10.9 We consider an instance of WW -CC-B with n = 4, d =
(2, 5, 7, 4), and C = 10. For k = 1 and l = 4, we get that
s1 mod 10 ∈ {0,−2, 5, 12, 16} mod 10 = {0, 8, 5, 2, 6} and
r4 mod 10 ∈ {0, 18, 16, 11, 4} mod 10 = {0, 8, 6, 1, 4}.

Thus we have the constraints
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s1 = 10µ1 + 8δs,1
1 + 5δs,1

2 + 2δs,1
3 + 6δs,1

4

δs,1
0 + δs,1

1 + δs,1
2 + δs,1

1 + δs,1
3 + δs,1

4 = 1

r4 = 10ν4 + 8δr,4
1 + 6δr,4

2 + 1δr,4
3 + 4δr,4

4

δr,4
0 + δr,4

1 + δr,4
2 + δr,4

1 + δr,4
3 + δr,4

4 = 1,

which, using the symbol σ as shorthand for the expression µ1+ν4+y2+y3+y4,
give

i = 0 : σ +δs,1
1 +δs,1

2 +δs,1
3 +δs,1

4 +δr,4
1 +δr,4

2 ≥ ⌈16 − 0
10

⌉
= 2

i = 1 : σ +δr,4
1 ≥ ⌈16 − 8

10
⌉

= 1

i = 2 : σ +δs,1
1 +δs,1

4 +δr,4
1 +δr,4

2 +δr,4
3 +δr,4

4 ≥ ⌈16 − 5
10

⌉
= 2

i = 3 : σ +δs,1
1 +δs,1

2 +δs,1
4 +δr,4

1 +δr,4
2 +δr,4

4 ≥ ⌈16 − 2
10

⌉
= 2

i = 4 : σ +δs,1
1 ≥ ⌈16 − 6

10
⌉

= 1.

Valid Inequalities

Although an explicit linear description of conv(XWW−CC−B) in the original
space of variables is not known, conv(XWW−CC−B) can be viewed as the
intersection of 2n sets of the form XDLSI−CC−B where each stock variable
sk−1 and each backlog variables rl plays the role of the initial stock variable,
so the continuous mixing inequalities provide a very significant class of valid
inequalities for XWW−CC−B ; see Section 8.5 and Subsection 10.3.2.

10.3.4 Lot-Sizing with Backlogging LS-CC-B

The Optimization Problem

For the optimization problem LS-CC-B there is a simple O(n4) algorithm
generalizing the algorithm for LS-CC in which the optimal cost αkl of a
regeneration interval is calculated in O(n2). There is a much less obvious
version in which all O(n2) values αkl are calculated in O(n3), giving total
running time for LS-CC-B of O(n3).

An Extended Formulation

Similarly there is an immediate O(n4) × O(n3) tight reformulation in which
each value αkl is obtained as the solution of an O(n2) × O(n) linear program,
and an improved formulation in which each linear program is O(n) × O(n)
leading to an O(n3) × O(n3) reformulation.
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10.3.5 Résumé of Results

In Table 10.3.5 we summarize the results that are known for PROB-[U, CC]-
B, where LP indicates that the separation problem can be solved as a lin-
ear program using the polynomial-size extended formulation as discussed in
Section 6.1, and � indicates that an explicit description of a family of valid
inequalities is known, but it only gives a partial description of the convex hull
of solutions.

Table 10.2. Models with Backlogging PROB-[U, CC]1-B

LS WW DLSI DLS

Formulation Cons × V ars Cons × V ars Cons × V ars Cons × V ars

U O(n) × O(n2) O(n2) × O(n) − −
CC O(n3) × O(n3) O(n3) × O(n2) O(n2) × O(n) O(n) × O(n)

Separation
U LP and � O(n3) − −

CC LP LP and � O(n3) O(n)
Optimization

U O(n log n) O(n) − −
CC O(n3) O(n3) O(n2 log n) O(n2)

10.4 Start-Up Costs: The Uncapacitated Case

Here the additional data are the start-up costs gt for t = 1, . . . , n. The cost
gt is incurred if there is a set-up in period t, but there was no set-up in t − 1.
To model such situations, a new start-up variable zt is added that takes the
value zt = 1 if there is a set-up in t and not in t − 1, and zt = 0 otherwise. So
if n = 8, and y = (0, 1, 1, 1, 0, 0, 1, 0), then there are set-ups in periods 2,3,4,7,
but there are start-ups only in periods 2 and 7.

A basic formulation is obtained by taking the formulation of LS-C, adding
a term

∑
t gtzt in the objective function, and the constraints

zt ≥ yt − yt−1 for all t (10.5)
zt ≤ yt for all t (10.6)
zt ≤ 1 − yt−1 for all t (10.7)
z ∈ {0, 1}n. (10.8)

The constraints zt ≤ 1 − yt−1 are required to ensure that zt = 1 if and only
if there is a start-up in t. However, these constraints can often be dropped
because cost minimization and gt > 0 ensure that zt = 0 if yt−1 = 1.
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10.4.1 A Dynamic Programming Algorithm for LS-U -SC

When some regeneration interval starts in period t (i.e., xt = dtk for some
k ≥ t), it may be optimal to perform a start-up in period i < t and to
set up between i and t so as to avoid a costly start-up in period t. A simple
backward dynamic programming recursion is presented here for the case where
set-up and start-up costs are nonnegative. Below we assume that the unit
production and storage costs have been normalized, using the flow balance
constraints, so that ht = 0 for all t, and the objective function to be minimized
is

∑n
t=1(qtyt + gtzt + ptxt).

Let G(t) be the value of an optimal solution for periods t up to n when
production occurs in period t (i.e., xt = dtk for some k ≥ t) but with the
possibility of performing a start-up earlier than period t. Thus G(t) includes
the start-up cost before t and the set-up costs between the start-up period
and period t. On the other hand, let G′(t) be the value of an optimal solution
for periods t up to n when production occurs in period t , but where start-up
and set-up costs in and before period t are ignored.

G(t) and G′(t) can be calculated recursively as follows.

G(t) = min
1≤τ≤t

[
gτ +

t∑
i=τ

qi

]
+ G′(t) for t = n, . . . , 1 (10.9)

G′(t) = min
t<τ≤n+1

[
ptdt,τ−1 + min{G(τ),

τ∑
i=t+1

qi + G′(τ)}
]

for t = n, . . . , 1 (10.10)

with G′(n + 1) = G(n + 1) = 0 and qn+1 = 0.
To obtain G′(t), we minimize the cost over the first production period

τ after t. For each such τ , xt = dt,τ−1 with variable cost ptdt,τ−1 and the
optimal cost for the remaining periods τ up to n is G(τ) if it is cheaper to
start up between t and τ , or

∑τ
i=t+1 qi + G′(τ) if a start-up is best avoided

by performing set-ups in periods t + 1 to τ . G(t) is then obtained from G′(t)
by finding the best choice of start-up period prior to t so as to be ready to
produce in period t.

G(1) provides the optimal value of LS-U -SC and working forward from
periods 1 to n gives a corresponding optimal solution. A direct implementation
of the above recursion gives an O(n2) algorithm. This can be improved to
O(n log n).

Example 10.10 Suppose that n = 5, d = (4, 2, 1, 3, 6), p = (4, 2, 3, 1, 1),
q = (2, 10, 3, 4, 7), and g = (15, 10, 30, 10, 40).

Below we show some of the values obtained using the recursion.

G′(5) = p5d5 = 6.
G(5) = min{15+(2+10+3+4+7), 10+(10+3+4+7), 30+(3+4+7), 10+
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(4 + 7), 40 + 7} + G′(5) = 27.
G′(4) = min{p4d4 + min[G(5), q5 + G′(5)], p4d45 + min[0, q5]} = 9.
G(4) = 23.
G′(3) = 16.
G(3) = 39.
. . . .
G(1) = 65.
Solution y = (1, 1, 1, 1, 0), z = (1, 0, 0, 0, 0), x = (4, 3, 0, 9, 0).

10.4.2 Tight Formulations and Inequalities for LS-U -SC

Valid Inequalities and Convex Hull of XLS−U−SC

Consider the set of feasible set-up and start-up plans satisfying the constraints
(10.5)–(10.8).

Observation 10.3 In any feasible production plan, yk + zk+1 + zk+2 + · · · +
zt = 0 for some k < t if and only if yk = yk+1 = · · · = yt = 0.

This suggests the following simple valid inequality:

sk−1 ≥
l∑

u=k

du(1 − yk − zk+1 − . . . − zu) for k ≤ l ≤ n. (10.11)

This inequality can then be generalized to give the so-called (k, l, L1, L2) in-
equalities.

Proposition 10.12 Let L = {k, . . . , l} with k ≤ l ≤ n. Let S, L1, L2 be a
partition of L with k ∈ L1. For j ∈ L2, define p(j) = max{i ∈ L1∪L2 : i < j}.
Then the (k, l, L1, L2) inequality

sk−1 +
∑
i∈S

xi ≥
l∑

j=k

dj

[
1 −

∑
i∈L1,i≤j

yi −
∑

i∈L2,i≤j

(zp(i)+1 + · · · + zi)
]
(10.12)

is valid for XLS−U−SC .

Proof. To show validity, it suffices to show that if∑
i∈L1,i≤j

yi +
∑

i∈L2,i≤j

(zp(i)+1 + · · · + zi) = 0,

then yi = 0 for all i ∈ [k, j] ∩ (L1 ∪ L2). Clearly yi = 0 for all i ∈ [k, j] ∩ L1.
Now consider i ∈ [k, j] ∩ L2. Let p1(i) = p(i) and pt(i) = p(pt−1(i)). Find
the smallest i such that pt(i) ∈ L1. Such a t exists as pτ (i) ∈ L1 ∪ L2, p

τ (i) <
pτ−1(i), and k ∈ L1. Now

(ypt(i) + zpt(i)+1 + · · · + zpt−1(i)) + (zpt−1(i)+1 + · · · + zpt−2(i))
+ · · · + (zp1(i)+1 + · · · + zi) = 0,

implying, by Observation 10.3, that yi = 0. ��
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Example 10.11 Consider LS-U -SC and take k = 2, l = 8, S = {4, 6}, L1 =
{2, 7}, and L2 = {3, 5, 8}. The (2, 8, {2, 7}, {3, 5, 8}) inequality is

s1 + x4 + x6 ≥ d2(1 − y2)
+ d3(1 − y2 − z3)
+ d4(1 − y2 − z3)
+ d5(1 − y2 − z3 − z4 − z5)
+ d6(1 − y2 − z3 − z4 − z5)
+ d7(1 − y2 − z3 − z4 − z5 − y7)
+ d8(1 − y2 − z3 − z4 − z5 − y7 − z8),

where each term j (j = 2, . . . , 8) in the right-hand side determines whether
dj has to be produced in periods of S or before period k. For example, the last
term implies that if y2 + z3 + z4 + z5 + y7 + z8 = 0, then y2 = y3 = y5 =
y7 = y8 = 0, so demand d8 must be produced in S or before period 2, and thus
s1 + x4 + x6 ≥ d8.

Theorem 10.13 The convex hull of XLS−U−SC is completely described by
the flow balance and bound constraints, the start-up constraints (10.5)–(10.7)
and the (k, l, L1, L2) inequalities (10.12) for all 1 ≤ l ≤ n and all disjoint
subsets L1, L2 of {1, . . . , l} with k = min{i : i ∈ L1} < min{i : i ∈ L2}.

The separation problem for the (k, l, L1, L2) inequalities can be solved for
fixed l as a shortest path problem over an acyclic network with O(l2) arcs.
Solving for each l leads to an O(n3) algorithm.

Extended Formulations for LS-U -SC

The facility location reformulation seen earlier can be applied to LS-U -SC
by defining new variables wit which represent the fraction of the demand of
period t produced in period i. Now, again based on Observation 10.3, the
following constraints

i2∑
i=i1

wit ≤ yi1 + zi1+1 + · · · + zi2 , (10.13)

where 1 ≤ i1 ≤ i2 ≤ t ≤ n can easily be seen to be valid.
This leads to the extended formulation QLS−U−SC

t∑
s=1

wst = 1 for 1 ≤ t ≤ n

wst ≤ ys for 1 ≤ s ≤ t ≤ n
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zt ≥ yt − yt−1 for 1 ≤ t ≤ n

zt ≤ yt for 1 ≤ t ≤ n

t∑
i=k

wit ≤ yk + zk+1 + . . . + zt for 1 ≤ k < t ≤ n

xu =
n∑

t=u

dtwut for 1 ≤ t ≤ n

w ∈ R
n(n+1)/2, y, z ∈ [0, 1]n,

which can be shown to be tight.

Theorem 10.14 conv(XLS−U−SC) = projx,y,zQ
LS−U−SC .

10.4.3 Wagner–Whitin Costs WW -U-SC

Here the formulations are remarkably compact, and thus very useful in prac-
tice. Let XWW−U−SC denote the set of solutions of

sk−1 +
l∑

u=k

dulyu ≥ dkl for 1 ≤ k ≤ l ≤ n (10.14)

zt ≥ yt − yt−1 for 1 ≤ t ≤ n (10.15)
zt ≤ yt for 1 ≤ t ≤ n (10.16)

s ∈ Rn+1
+ , y, z ∈ {0, 1}n. (10.17)

We consider again the inequalities (10.11). Clearly they dominate the (l, S)
inequalities (10.14) as zt ≤ yt for all t.

Theorem 10.15 The inequalities (10.11),(10.15),(10.16), and the bound con-
straints s ∈ R

n+1
+ , y ∈ [0, 1]n describe conv(XWW−U−SC) in the (s, y, z) space.

10.5 Start-Up Costs: The Capacitated Case

10.5.1 The Discrete Lot-Sizing Problem DLS-CC-SC

This problem is also known in the literature as the discrete lot-sizing and
scheduling problem. Using the tight formulation for DLS-CC derived in Sub-
section 9.3.1, we can assume that C = 1 and dt ∈ {0, 1} for all t. Now we
obtain the formulation
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min
n∑

t=1

qtyt +
n∑

t=1

gtzt (10.18)

t∑
u=1

yu ≥ d1t for all t (10.19)

zt ≥ yt − yt−1 for all t (10.20)
zt ≤ yt for all t (10.21)
y, z ∈ {0, 1}n. (10.22)

We let XDLS−CC−SC denote the feasible region (10.19)–(10.22), and note that
st =

∑t
u=1 yu − d1t. Note also that in contrast to LS-U -SC, in this model we

are not allowed to start up in a period without producing.

Valid Inequalities for DLS-CC-SC

Proposition 10.16 Consider an interval [t, l] ⊆ [1, n] with dl = 1. Let dtl =
p > 0, and let t1 < t2 < · · · < tp = l be the periods in the interval [t, l] with
nonzero (unit) demand. The inequality

st−1 +
t+p−1∑

u=t

yu +
t+p−1∑
u=t+1

[dul − (t + p − u)]zu +
l∑

u=t+p

dulzu ≥ dtl (10.23)

is valid for XDLS−CC−SC .

Proof. First we rewrite the inequality as

st−1 +
p∑

j=1

(yt+j−1 + zt+j + · · · + ztj
) ≥ p.

Given a feasible solution, let τj for j = 1, . . . , p be the period in which the
demand of period tj is produced with τ1 < τ2 < · · · < τp and τj ≤ tj . Let
k = max{j : τj < t + j − 1}. It follows that

yt+j−1 + zt+j + · · · + ztj
≥ 1 (10.24)

for j > k, and, as τk < t + k − 1, that the demands for periods t1, . . . , tk
are all produced by period t + k − 2 at latest. But this means that st−1 +∑k

j=1(yt+j−1 + zt+j + · · · + ztj ) ≥ st−1 +
∑k−1

j=1 yt+j−1 ≥ k, where the last
inequality follows from flow conservation. Summing (10.24) for j = k+1, . . . , p
and adding to this last inequality establishes validity. ��

An Extended Formulation for DLS-CC-SC

Suppose again that dt ∈ {0, 1} for all t, d1n = p and 1 ≤ t1 < t2 < · · · < tp ≤ n
are the demand periods.
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Let yt,i = 1 if there is production in period t and this production is used
to satisfy the unit demand in period ti, and yt,i = 0 otherwise with i ≤ t ≤ ti
and 1 ≤ i ≤ p.

Let zt,i = 1 if there is production in period t, this production is used to
satisfy the unit demand in period ti, and there is a start-up in period t with
i ≤ t ≤ ti and 1 ≤ i ≤ p.

This leads to the following formulation QDLS−CC−SC that can be obtained
by projecting into the (y, z) space a shortest path formulation derived from a
dynamic program solving problem DLS-CC-SC.

ti∑
t=i

yt,i = 1 for 1 ≤ i ≤ d1n (10.25)

yt,1 = zt,1 for 1 ≤ t ≤ t1 (10.26)
yt,i ≥ zt,i for 2 ≤ i ≤ d1n, i < t ≤ ti−1 + 1 (10.27)
yt,i = zt,i for 2 ≤ i ≤ d1n, ti−1 + 1 < t ≤ ti (10.28)
yi−1,i−1 ≥ yi,i for 2 ≤ i ≤ d1n (10.29)
zt,i ≥ yt,i − yt−1,i−1 for 2 ≤ i ≤ d1n, i < t ≤ min[ti−1 + 1, ti − 1]

(10.30)

zt,i ≥ yt,i − yt−1,i−1 for 2 ≤ i ≤ d1n, t = ti−1 + 1 = ti (10.31)

zt,i +
ti−1∑

u=t−1

yu,i−1 ≤
ti∑

u=t

yu,i for 2 ≤ i ≤ d1n, i < t ≤ ti−1 + 1 (10.32)

yt,i, zt,i ≥ 0 for i ≤ t ≤ ti, 1 ≤ i ≤ p. (10.33)

Here each constraint has a natural interpretation. (10.25) states that each
demand in period ti must be produced in the interval [i, ti]. (10.26) states
that the first production period is the first start-up period. (10.27) states
that if one starts up in a period, one must produce in that period. (10.28)
states that if i > 1 and if the demand for ti is produced in t ∈ [ti−1 + 2, ti],
then t must also be a start-up period. (10.29) states that if i > 1 and the
demand for ti is produced in i, the demand for ti−1 must be produced in i−1.
(10.30) and (10.31) are standard start-up constraints. Finally (10.32) states
that for i > 1, (a) producing demand i − 1 in [t − 1, ti−1] and starting up and
producing demand i in t are mutually exclusive because together they imply
that yt−1,i−1 = yt,i = 1 which implies that zt,i = 0, and (b) if either occurs,
then demand i cannot be produced before period t.

Theorem 10.17 The linear program

min
n∑

t=1

qtyt +
n∑

t=1

gtzt
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yt =
∑

i

yti for all t

zt =
∑

i

zti for all t

{(yti, zti)i≤t≤ti,1≤i≤p} ∈ QDLS−CC−SC

solves DLS-CC-SC.

When the total batch production costs are nondecreasing qt ≥ qt+1 for all
t, a compact formulation is known just involving the original variables. This
special case is denoted WW in Table 10.5.3.

Theorem 10.18 If qt ≥ qt+1 for all t, the the linear program

min {qy + gz : (s, y, z) satisfy (10.23) for all intervals [t, ti]

st =
t∑

u=1

yu − d1t for all t

yt ≥ zt ≥ yt − yt−1 for all t

s ∈ R
n
+, y, z ∈ [0, 1]n }

solves DLS-CC-SC.

Example 10.12 Consider an instance of DLS-CC-SC after normalization
of the demands with n = 10 and d = (0, 0, 1, 0, 1, 1, 0, 0, 1, 0). Taking t = 2
and i = 3, the [t, ti] = [2, 6] inequality (10.23) is of the form

s1 ≥ 1(1 − y2 − z3) + 1(1 − y3 − z4 − z5) + 1(1 − y4 − z5 − z6), or
s1 + y2 + y3 + y4 + z3 + 2z4 + 2z5 + z6 ≥ 3.

10.5.2 Capacitated Lot-Sizing with Start-Up Costs LS-C-SC

Valid Inequalities

We take as starting set XLS−C−SC :

st−1 + xt = dt + st for all t

xt ≤ Ctyt for all t

zt ≥ yt − yt−1 for all t

zt ≤ yt for all t

zt ≤ 1 − yt−1 for all t

s ∈ R
n+1
+ , x ∈ R

n
+, y, z ∈ {0, 1}n.

Note that for any k ∈ N = [1, n] and S ⊆ [k, n], the function
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gk(S) = max
j∈[k,n]

(dkj −
∑

i∈[k,j]\S

Ci)+ (10.34)

gives a lower bound on sk−1 provided that there is no set-up in any period in
S.

Observation 10.4 If S ⊆ [k, n], u = min{i ∈ S}, and v = max{i ∈ S}, the
inequality

sk−1 ≥ gk(S)(1 − yu − zu+1 − · · · − zv)

is valid for XLS−C−SC .

The function gk has special structure.

Proposition 10.19 For gk defined as in (10.34),
i. gk is nonnegative and nondecreasing.
ii. gk is supermodular on {k, . . . , n}; see Definition 9.2.
iii. βuv = gk([u, v]) + gk([u + 1, v − 1]) − gk([u + 1, v]) − gk([u, v − 1]) ≥ 0 for
k ≤ u ≤ v ≤ n, where gk([a, b]) = 0 for a > b, a < k or b > n.
iv. gk([u, v]) =

∑
u≤ū≤v̄≤v βūv̄ for k ≤ u ≤ v ≤ n.

This structure leads to the left supermodular inequalities generalizing the
inequality of Observation 10.4.

Proposition 10.20 Let F ⊆ {(u, v) : k ≤ u ≤ v ≤ n}. The inequality

sk−1 ≥
∑

(u,v)∈F

βuv(1 − yu −
v∑

j=u+1

zj) (10.35)

is valid for XLS−C−SC .

Proof. Consider a point (x, s, y, z) ∈ XLS−C−SC and let T = {j ∈ [k, n] :
yj = 0} be the periods from k onwards in which there is no set-up. If T = ∅,
then yj = 1 for all j ∈ [k, n], so 1− yu −∑v

j=u+1 zj ≤ 0 for all (u, v) ∈ F , and
the inequality is implied by sk−1 ≥ 0.

Otherwise suppose that T = ∪p
i=1[ui, vi] is the union of disjoint intervals

with vi + 1 < ui+1 for all i. Consider a pair (u, v) ∈ F . If [u, v] does not lie in
[ui, vi] for some i, a set-up occurs in [u, v] and thus 1 − yu − ∑v

j=u+1 zj ≤ 0.
Thus we have

∑
(u,v)∈F βuv(1 − yu − ∑v

j=u+1 zj)

≤ ∑p
i=1

∑
(u,v)∈F,[u,v]⊆[ui,vi] βuv(1 − yu − ∑v

j=u+1 zj)

≤ ∑p
i=1

∑
(u,v)∈F,[u,v]⊆[ui,vi] βuv

≤ ∑p
i=1

∑
(u,v):[u,v]⊆[ui,vi] βuv =

∑p
i=1 gk([ui, vi])

≤ gk(
∑p

i=1[ui, vi]) by supermodularity
= gk(T ) ≤ sk−1 by definition (10.34) of gk . �
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Example 10.13 Suppose that n = 5, C = (4, 3, 6, 7, 6), and d = (2, 1, 5, 3, 2).
Taking k = 2, we obtain

g2([k, l]) =

l = 2 3 4 5
k = 2 1 6 9 11
k = 3 3 6 8
k = 4 0 2
k = 5 0

and (βkl) =

l = 2 3 4 5
k = 2 1 2 0 0
k = 3 3 3 0
k = 4 0 2
k = 5 0

For example, g2([3, 4]) = max(d2−C2, d23−C2, d24−C2, d25−C2−C5)+ =
max(1−3, 6−3, 9−3, 11−9)+ = 6, and β23 = g2([2, 3])−g2([2, 2])−g2([3, 3]) =
6 − 1 − 3 = 2.

Taking k = 2 and F = {(2, 2), (2, 3), (3, 3), (3, 4), (4, 5)}, the valid inequal-
ity (10.35) is of the form

s1 ≥ 1(1 − y2) + 2(1 − y2 − z3) + 3(1 − y3) + 3(1 − y3 − z4) + 2(1 − y4 − z5).

Separation for Left Supermodular Inequalities

Observe that βuv > 0 only if gk([u, v]) > 0 and gk([u+1, v−1]) = 0. It follows
that the βuv > 0 lie on a frontier involving at most 2(n − k + 1) pairs (u, v).
This frontier is illustrated in Example 10.13. By following this frontier, it is
easy to find a most violated inequality for fixed k in O(n).

Similar inequalities can be obtained by working backwards, and looking
for lower bounds on the stock at the end of an interval. Specifically

hl(T ) = max
j=1,...,l

(
∑

i∈[j,l]∩T

Ci − djl)+

is a lower bound on the end-stock sl if production takes place at full capacity
in periods T ⊆ [1, l].

Observing that yv − ∑v
j=u+1 zj = 1 if and only if yj = 1 for all j ∈ [u, v],

we obtain the basic inequality

sl +
∑
j∈T

(Cjyj − xj) ≥ hl(T )(yv −
v∑

j=u+1

zj),

where u = min{i : i ∈ T}, v = max{i : i ∈ T}. The set function hl(T ) is again
supermodular, and the above inequality can be generalized in the same way
as in Proposition 10.20 leading to a family of right supermodular inequalities.

Valid Inequalities for LS-CC-SC

Using the disjunction yj +
∑l

u=j+1 zu = 0 (implying no set-ups in the interval

[j, l]), or yj +
∑l

u=j+1 zu ≥ 1, one obtains:
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Proposition 10.21 The (k, j, l) inequality

sk−1 + C(
j∑

u=k

yu +
l∑

u=j+1

zu) ≥ dk,j−1 + min[djl, C] (10.36)

is valid for XLS−CC−SC .

The family of left extended klSI inequalities is obtained by applying the
mixing procedure to these inequalities.

Example 10.14 Let n = 4, d = (7, 4, 5, 6), and C = 10.
With (k, j, l) = (1, 3, 4), the inequality (10.36) gives

s0 + 10(y1 + y2 + y3 + z4) ≥ d12 + C = 21,

and with (k, j, l) = (1, 2, 3) gives

s0 + 10(y1 + y2 + z3) ≥ d1 + d23 = 16.

We also have the standard surrogates

s0 + 10(y1 + y2 + y3 + y4) ≥ d14 = 22, and

s0 + 10y1 ≥ 7.

Mixing these four inequalities gives a left extended klSI inequality:

s0 ≥ 1(3 − y1 − y2 − y3 − z4) + (2 − 1)(3 − y1 − y2 − y3 − y4)
+(6 − 2)(2 − y1 − y2 − z3) + (7 − 6)(1 − y1).

Optimization for LS-CC-SC

It is easily seen that the dynamic programming recursion for LS-CC of Section
9.6.1 extends to include start-up costs.

10.5.3 Résumé of Results

In Table 10.5.3 we summarize the results that we know for PROB-[U, CC]-
SC. � � � indicates that nothing is known about the specific question. LP
indicates that separation by linear programming is possible because there is
a tight polynomial-size extended formulation, and � indicates that an explicit
description of a family of valid inequalities is known but it only gives a partial
description of the convex hull of solutions. The reader is asked to work out
the complexity of the separation problem for WW -U -SC in Exercise 10.13.
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Table 10.3. Models with Start-Up Costs PROB-[U, CC]1-SC

LS WW DLS

Formulation Cons × V ars Cons × V ars Cons × V ars

U O(n2) × O(n2) O(n2) × O(n) −
CC � � � � � � O(n2) × O(n2)

(WW ) O(n2) × O(n)
Separation

U O(n3) Exercise10.13 −
CC O(n2) and � � � � LP and �

Optimization
U O(n log n) O(n) −

CC O(n4) ∗ ∗ ∗ O(n2)
(WW ) O(n log n)

10.6 Backlogging and Start-Ups WW -U -B, SC

Consider the problem

min
n∑

t=0

htst +
n∑

t=1

btrt +
n∑

t=1

qtyt +
n∑

t=1

gtzt

st−1 − rt−1 + xt = dt + st − rt for all t

xt ≤ Myt for all t

zt − wt−1 = yt − yt−1 for all t

zt ≤ yt for all t

x ∈ R
n
+, s, r ∈ R

n+1
+ , y, z, w ∈ {0, 1}n, r0 = 0.

The extended formulation QWW−U−B,SC below, generalizing that for
WW -U -B in Subsection 10.2.3, is based on two observations. If du is sat-
isfied from stock, and there is no switch-off in the interval [t, u − 1], then
there is no set-up in [t, u], and st−1 contains the demand du. Similarly if du

is satisfied by backlogging, and there is no start-up in [u + 1, t], then there is
no set-up in [u, t] and rl contains the demand du.

αt + yt + βt = 1 for all t with dt > 0
βt+1 + zt+1 ≥ βt for all t

st−1 ≥
k∑

u=t

du(αu −
u−1∑
j=t

wj) for all t, k with t ≤ k

rt ≥
t∑

u=k

du(βu −
t∑

j=u+1

zj) for all k, t with k ≤ t
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zt − wt−1 = yt − yt−1 for all t

zt ≤ yt for all t

x ∈ R
n
+, s, r ∈ R

n+1
+ , y, z, w ∈ [0, 1]n, r0 = 0.

Theorem 10.22 The linear program:

min{hs + br + qy + gz : (x, s, r, y, z, w, α, β) ∈ QWW−U−B−SC}
solves WW -U -{B, SC}.

Using the same approach as in Subsection 10.2.3, a complete linear descrip-
tion of conv(XWW−U−B,SC) is obtained by separating out the α, β variables,
and the separation problem can be solved in O(n3) by finding a minimum
mean cost cycle.

Exercises

Exercise 10.1 Consider an instance of LS-U -B with s0 = 0, n = 5, h′ =
(0,5,1,1,2,1), p′ = (2, 4, 3, 5, 3), b′ = (3, 3, 3, 5, 4), q = (70, 81, 70, 80, 63), and
d = (8, 0, 7, 5, 11).
i. Find an optimal solution by dynamic programming.
ii. Solve using LS–LIB and an extended formulation.

Exercise 10.2 Derive a shortest path algorithm for LS-U -B resembling that
for LS-U . In particular, indicate how to compute the cost αkl of any regener-
ation interval [k, l].

Exercise 10.3 i.∗ Derive an O(n log n) dynamic programming algorithm for
LS-U -B.
ii.∗ Derive an O(n) dynamic programming algorithm for WW -U -B.

Exercise 10.4 Derive a facility location reformulation for LS-U -B by start-
ing from the known facility location formulation for LS-U .

Exercise 10.5 Consider an instance of WW -U -B with n = 5, h =
(9, 1, 3, 2, 1, 4), b = (3, 3, 5, 5, 8), q = (80, 21, 39, 50, 73), and d = (8, 0, 7, 5, 11).
i. Find an optimal solution by dynamic programming.
ii. Solve using LS–LIB and an extended formulation.
iii. Consider the fractional solution given by x∗ = (0, 18.5, 12.5, 0, 0), y∗ =
(0, 1, 0.125, 0, 0), s∗ = (0, 0, 10.5, 16, 11, 0), r∗ = (8, 0, 0, 0, 0). Find a valid
inequality cutting off this point.

Exercise 10.6 Consider an instance of DLS-CC-B with n = 5, h =
(5, 1, 1, 2, 1), b = (3, 3, 3, 5, 9), q = (20, 31, 15, 19, 23), d = (6, 0, 7, 5, 4), and
C = 10.
i. Find an optimal solution.
ii. Find a valid inequality cutting off the point y∗ = (1, 0, 0.3, 0.5, 0.4), s∗ =
(4, 4, 0, 0, 0), r∗ = 0.
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Exercise 10.7 Consider an instance of WW -CC-B with n = 5, h =
(0, 5, 1, 1, 2, 1), b = (3, 3, 3, 5, 9), q = (40, 51, 65, 59, 43), d = (6, 0, 7, 5, 4), and
C = 10. Find a valid inequality cutting off the point y∗ = (1, 0.3, 0, 0.9, 0), s∗ =
(0, 4, 7, 0.9, 4, 0), r∗ = (0, 0, 0.9, 0, 0), x = (10, 3, 0, 9, 0).

Exercise 10.8 Consider the extended formulation for WW -CC-B defined in
Theorem 10.11.
i. Show that it is a valid formulation for WW -CC-B.
ii. Prove the theorem by showing that the underlying matrix (without the
equality constraints defining the sk−1 and rl variables) is totally unimodular.

Exercise 10.9 Consider an instance of LS-CC-B with n = 6, and data
defined by h′ = (0,1,2,1,1,3,1), b′ = (1, 1, 1, 1, 1, 0), p′ = (1, 3, 5, 5, 3, 5), q =
(15, 12, 32, 31, 24, 17), d = (8, 3, 5, 6, 1, 4), s0 = s6 = r6 = 0, and C = 10.
i. Solve with a MIP solver.
ii. Solve with LS–LIB using extended formulations of appropriate relaxations.

Exercise 10.10 Consider an instance of LS-U -SC with n = 5, and data h =
(5,1,1,1,1,1), p = (5, 3, 8, 4, 6), g = (30, 30, 40, 40, 30), q = (40, 51, 65, 59, 43),
and d = (6, 0, 7, 5, 4).
i. Find an optimal solution by dynamic programming.
ii. Solve using LS–LIB and an extended formulation.

Exercise 10.11 Prove Theorem 10.14 by showing that every (k, l, L1, L2)
inequality is valid for QLS−U−SC .

Exercise 10.12 Consider an instance of WW -U -SC with n = 5, and data
defined by h = (5, 4, 4, 3, 1, 2), g = (30, 30, 40, 40, 30), q = (40, 51, 65, 59, 43),
and d = (6, 0, 7, 5, 4).
i. Find an optimal solution by dynamic programming with s0 = 0.
ii. Find an optimal solution by dynamic programming with s0 ≥ 0.
iii. Solve using LS–LIB and an extended formulation.

Exercise 10.13 i. Describe a separation algorithm for WW -U -SC based on
the inequalities (10.11), and analyze its complexity.
ii. For the instance of Exercise 10.12, find a valid inequality cutting off the
point x∗ = (6, 4.364, 7.447, 4.189), y∗ = (0.273, 0.273, 0.465, 0.465, 0), z∗ =
(0.273, 0, 0.192, 0, 0), s∗ = (0, 0, 4.364, 4.811, 4, 0).

Exercise 10.14 Derive a polynomial time dynamic programming algorithm
for DLS-CC-SC.

Exercise 10.15 Consider an instance of DLS-CC-SC with n = 10, g =
(30, 43, 48, 40, 30, 20, 15, 34, 12, 33), q = (80, 65, 61, 59, 43, 34, 33, 32, 29, 27),
and d = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1).
i. Find an optimal solution.
ii. Solve as a linear program using LS–LIB.
iii. Find a valid inequality cutting off the point y∗ = (1

3 , 1
3 , 1

3 , 1
4 , 1

4 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 ),

z∗ = (1
3 , 0, 0, 0, 0, 1

4 , 0, 0, 0, 0).
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Exercise 10.16 Consider an instance of LS-CC-SC with n = 5, C = 10,
p = 0, h = (5, −4, 4,−3,−1, 2), g = (30, 30, 20, 40, 30), q = (40, 71, 25, 59, 13),
and d = (6, 0, 7, 5, 4).
i. Find a left supermodular inequality cutting off the point x∗ = (10, 0, 10, 1, 1),
y∗ = (1, 0, 1, 0.1, 0.1), z∗ = (1, 0, 1, 0, 0), s∗ = (0, 4, 4, 7, 3, 0).
ii. Find a left extended klSI inequality cutting off the above point.

Exercise 10.17 Consider an instance of WW -U -B, SC with n = 5, h =
(5, 4, 4, 3, 1, 2), b = (5, 6, 4, 3, 10), g = (30, 30, 40, 40, 30), q = (40, 51, 65, 59, 43),
and d = (6, 0, 7, 5, 4).
i) Solve with a MIP solver.
ii) Solve with a MIP solver, using a tight extended formulation for the WW -
U -B relaxation from LS–LIB.
iii) Solve as a linear program by using an appropriate reformulation.

∗ Starred exercises are more difficult and require more mathematical or tech-
nical developments.

Notes

Section 10.2. Zangwill [196, 198] studied the uncapacitated lot-sizing prob-
lem with backlogging LS-U -B and developed dynamic programming recur-
rences for the problem. As for LS-U , a faster implementation is possible as
shown in Aggarwal and Park [3], Federgrün and Tzur [63], and van Hoesel
[164]. The observation that the facility location and shortest path reformula-
tions are tight follows from Barany et al. [22]. The extended formulation and
convex hull description of WW -U -B are from Pochet and Wolsey [140]. A
description of the minimum mean cost cycle algorithm can be found in Ahuja
et al. [7].

Section 10.3. The convex hull description of DLS-CC-B is from Miller and
Wolsey [124], and the optimization algorithm is due to Van Vyve [176]. The
reformulation for DLSI-CC-B was proposed by Miller and Wolsey [125], and
shown to be tight by Van Vyve [178]. A proof of the validity of the formulation
(10.3)–(10.4) for WW -CC-B and the tight formulations for WW -CC-B and
LS − CC − B are from Van Vyve [178, 180].

Section 10.4. The basic dynamic programming algorithm for LS-U -SC, as
well as a faster O(n log n) version, appears in van Hoesel [164]. More gener-
ally he shows that there is an O(n log n) algorithm for LS-U -B, SC and an
O(n) algorithm for WW -U -B, SC. The convex hull description of LS-U -SC
by (k, l, S1, S2) inequalities is from van Hoesel et al. [170]. The extended for-
mulation was proposed in Wolsey [192] and shown to be tight in [170]. That
for WW -U -SC is from Pochet and Wolsey [140].
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Section 10.5. The valid inequalities for DLS-CC-SC and Theorem 10.18 are
from van Eijl and van Hoesel [163], and the extended formulation is from van
Hoesel and Kolen [165]. Other classes of valid inequalities such as hole-bucket
inequalities are described in van Eijl [162]. For optimization an O(n2) dynamic
programming algorithm is given in Fleischmann [67] and an algorithm of the
same complexity is obtained as a special case of a multi-item recursion of
Salomon [147]. With nondecreasing set-up costs (WW), faster algorithms are
presented in van Hoesel et al. [166].

The left supermodular and left extended klSI inequalities for LS-C-SC
and LS-CC-SC, respectively, are from Constantino [46]. The paper also con-
tains two related families of inequalities, the right supermodular and the right
extended klSI inequalities as well as combinatorial separation algorithms.

Section 10.6. The results for WW -U -B, SC are from Agra and Constantino
[6].
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Single-Item Variants

Here we consider several important variants of the single-item problem. After
listing the variants, we examine each of them in turn and give results on
valid inequalities, tight formulations, and so on. Throughout the chapter, we
concentrate on variants for which reformulation results are available.

The variants treated concern either changes in demand, production con-
straints and costs, or stock constraints and costs.

First we consider variants in the demands.

• In Section 11.1 we consider a problem with potential sales limited by a
fixed upper bound (in place of fixed demands) SL, and derive both a
valid inequality description, and a tight extended formulation in a slightly
restricted case. This is also known as the problem with lost sales.

Next we consider different production options.

• In Section 11.2, we suppose that if there is production in a period, at least
a certain amount must be produced. We classify this as (Constant) Lower
Bounds LB.

• In Section 11.3, we suppose that there are restrictions related to the pro-
duction sequence rather than just the production in one period. We study
the case where production is at full capacity, except in the first and last
periods of a production sequence, which we call Almost Full Capacity Pro-
duction or AFC, and also the case with lower bounds on the total amount
produced during a production sequence, which we call Minimum Runs or
MR.

• In Section 11.4 we consider bounds on the length of a production sequence,
or Restricted Length Set-Up Sequences RLS.

• In Section 11.5 we treat the modeling of Piecewise Concave Production
Costs CP .

• In Section 11.6, we consider the problem with production time windows
TWP , in which each customer demand has to be satisfied from products
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manufactured within a given time window. This variant is usually consid-
ered to model product perishability constraints, and implicitly or explicitly
leads to bounds on the stock levels.

Next we examine two different options for the stocks.

• In Section 11.7, we consider the effect of limited storage capacities, or
Upper Bounds on Stocks SUB.

• In Section 11.8, we generalize by allowing for Safety Stocks or Piecewise
Convex Stock Costs SS.

Finally we consider a model incorporating several of these features simul-
taneously, and a model that allows us to treat uncertainty.

• In Section 11.9 we provide a tight extended formulation for a model with
backlogging, piecewise concave production costs, and sales.

• In Section 11.10 we formulate a lot-sizing model on a tree which allows us
to model a stochastic lot-sizing problem with a tree of scenarios.

Other variants including fixed costs on stocks, limits on the number of
set-ups, and constant set-up times are treated in the Exercises and Notes.

11.1 Sales or Variable Demand (SL)

Here the additional data are upper bounds ut on the potential sales in period
t, and a unit selling price γt.

If vt is a variable representing the quantity sold (distinct from the fixed
demand dt) in period t, a formulation for the profit maximization problem
LS-C-SL is

max
n∑

t=1

γtvt −
n∑

t=1

ptxt −
n∑

t=0

htst −
n∑

t=1

ftyt

st−1 + xt = dt + vt + st for all t

xt ≤ Ctyt for all t

vt ≤ ut for all t

s ∈ R
n+1
+ , x, v ∈ R

n
+, y ∈ {0, 1}n.

In this model dt may represent a fixed dependent demand or an indepen-
dent demand. The constant objective term

∑n
t=1 γtdt can be added without

changing the problem. Note that this model also allows one to treat the case
of lost sales with a linear penalty cost. Specifically the slack variable in the
constraint vt ≤ ut is the amount lost.

In discussing this model, we allow the demands dt to be negative in certain
cases. This can arise, for example, as the result of a purchase order for the
item from an outside vendor.
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11.1.1 The Uncapacitated Case: Sales and Arbitrary Demands

Here we allow demands to be negative and take s0 = 0. We consider the set
XLS−U−SL in the form

t∑
j=1

xj ≥
t∑

j=1

vj + d1t for all t (11.1)

xt ≤ Myt for all t (11.2)
vt ≤ ut for all t (11.3)
x, v ∈ R

n
+, y ∈ {0, 1}n. (11.4)

By analyzing the structure of optimal extreme point solutions, and extending
the definition of a regeneration interval, a polynomial dynamic program that
finds an optimal sequence of regeneration intervals can be constructed to solve
LS-U -SL. Here we describe valid inequalities for XLS−U−SL.

Consider a subset R ⊆ N . We then calculate new nonnegative demands
dR ∈ R

n
+, based on the idea that vt = ut for t ∈ R, and vt = 0 otherwise.

Specifically, we set the cumulative demand

dR
1t = max

j:j≤t
[d1t +

∑
j∈[1,t]∩R

uj ]+ for t = 1, . . . , n,

and from this we calculate the demand for individual time periods dR
1 = dR

11
and dR

t = dR
1t − dR

1,t−1 for t = 2, . . . , n. We can now describe a generalization
of the (l, S) inequality.

Proposition 11.1 For 1 ≤ l ≤ n, with R,S ⊆ L = {1, . . . , l} and dR
1,l−1 <

dR
1l, the (l, S, R) inequality

∑
j∈L\S

xj +
∑
j∈S

dR
jlyj ≥

∑
j∈R

vj + d1l (11.5)

is valid for XLS−U−SL.

The proof of validity is very similar to the proof of validity for the (l, S)
inequality, and is based on the fact that dR

jl = dR
1l − dR

1,j−1 is the maximum
of the demands in {1, . . . , l} and sales in {1, . . . , l} \ R that can be satisfied
from production in j when yj = 1. In fact these inequalities suffice to give
conv(XLS−U−SL).

Theorem 11.2 conv(XLS−U−SL) is completely described by the initial con-
straints (11.1),(11.3), the (l, S, R) inequalities (11.5), and the bounds x, v ∈
R

n
+, y ∈ [0, 1]n.

Example 11.1 Consider an instance with n = 5, d = (3, −4, 2,−1, 2), and
u = (2, 3, 4, 3, 5). Taking R = {2, 4}, we obtain that (dR

11, d
R
12, d

R
13, d

R
14, d

R
15) =
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(3, 3, 4, 6, 8) and thus dR = (3, 0, 1, 2, 2). Now a sample of the (l, S, R) inequal-
ities with R = {2, 4} is:

l = 1, S = {1} 3y1 ≥ 3
l = 3, S = {3} x1 + x2 + y3 ≥ 1 + v2

l = 4, S = {2, 4} x1 + 3y2 + x3 + 2y4 ≥ 0 + v2 + v4

l = 5, S = {2, 4, 5} x1 + 5y2 + x3 + 4y4 + 2y5 ≥ 2 + v2 + v4.

Unfortunately a fast combinatorial separation algorithm for the (l, S, R) in-
equalities is not known in this general case.

11.1.2 The Uncapacitated Case: Sales and Nonnegative Demands

Here we suppose that dt ≥ 0 for all t, and that there is no initial and no ending
stock (i.e.,

∑n
j=1 xj =

∑n
j=1 vj +d1n), and derive an extended formulation for

conv(XLS−U−SL). In this case the extreme points of conv(XLS−U−SL) are
readily characterized.

Proposition 11.3 Every extreme point is characterized by three sets I, J, K ⊆
{1, . . . , n}, where I ⊆ J and I = {t1, . . . , tq} with t1 < t2 < · · · < tq. The
corresponding extreme point is:
yt = 1 for t ∈ J , and yt = 0 otherwise; vt = ut for t ∈ K, and vt = 0
otherwise; xt =

∑tj+1−1
i=tj

(vi + di) if t = tj ∈ I, and xt = 0 for j /∈ I.

It is now easy to derive an extended formulation generalizing the facility
location formulation (7.14)–(7.18) for LS-U .

Let αit = 1 if the demand dt is produced in period i, and αit = 0 otherwise.
Let βit = 1 if the demand dt + ut is produced in period i, and βit = 0

otherwise.
The corresponding formulation QLS−U−SL is

max
n∑

t=1

γtvt −
n∑

t=1

ctxt −
n∑

t=1

ftyt

∑
i:i≤t

(αit + βit) = 1 for all t

αit + βit ≤ yi for all i, t with i ≤ t if dt > 0
βit ≤ yi for all i, t with i ≤ t if dt = 0, ut > 0

xi =
∑
t:t≥i

dtαit +
∑
t:t≥i

(dt + ut)βit for all i

vt = ut

∑
i:i≤t

βit for all t

x, v ∈ R
n
+, α, β ∈ R

n(n+1)/2
+ , y ∈ [0, 1]n.

Theorem 11.4 conv(XLS−U−SL) =projx,y(QLS−U−SL).
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11.2 Lower Bounds on Production (LB)

We suppose that the constraints

xt ≥ Lyt for t = 1, . . . , n

have been added to a given single-item lot-sizing model, and that L divides C
exactly. If not, we can obtain a valid relaxation with this property by taking
C ← L�C

L � or taking C very large. It also means that we can rescale so that
L = 1 and C is an integer.

11.2.1 A Wagner–Whitin Relaxation WW -CC-LB

For a fixed period t, we have the two sets of valid balance constraints

sl−1 +
t∑

u=l

xu = dlt + st for l = 1, . . . , t

st +
l∑

u=t+1

xu = dt+1,l + sl for l = t + 1, . . . , n.

Using the variable lower bounds xt ≥ Lyt on the first set of inequalities, and
the variable upper bounds xt ≤ Cyt on the second, we obtain the relaxation

st − L

t∑
u=l

yu ≥ −dlt for l = 1, . . . , t

st + C

l∑
u=t+1

yu ≥ dt+1,l for l = t + 1, . . . , n.

Still with t fixed, setting zl = −∑t
u=l yu for 1 ≤ l ≤ t and zl =

∑l
u=t+1 for

t + 1 ≤ l ≤ n, the result is a divisible mixing set

st + Lzl ≥ bl for l = 1, . . . , t

st + Czl ≥ bl for l = t + 1, . . . , n

st ∈ R
1
+, z ∈ Z

n

with some additional constraints. Thus one can use the results of Section 8.6
to generate a tightened extended formulation, or valid inequalities.

Example 11.2 Consider an instance with n = 5, C = 8, L = 4, and
d = (7, 3, 2, 2, 6). For t = 2, we obtain the surrogates

s2 −4y1 −4y2 ≥ −10
s2 −4y2 ≥ −3
s2 +8y3 ≥ 2
s2 +8y3 +8y4 ≥ 4
s2 +8y3 +8y4 +8y5 ≥ 10.
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11.2.2 A Wagner–Whitin Relaxation with Backlogging
WW -CC-B, LB

With backlogging, constructing similar surrogates to those above we obtain
for fixed t

st + rl−1 − L

t∑
u=l

yu ≥ −dlt for 1 ≤ l ≤ t,

st + rl + C

l∑
u=t+1

yu ≥ dt+1,l for t + 1 ≤ l ≤ n.

This can be viewed as a continuous mixing set with divisible capacities and
additional constraints, generalizing the sets XCMIX and XDMIX studied in
Sections 8.5 and 8.6, respectively.

11.3 Lower Bounds on Production in a Set-Up Sequence

11.3.1 Almost Full Capacity Production (AFC)

Here production is at full capacity in all but the first and last periods of a set-
up sequence. This may arise in multi-item models (classified as PM = M1, M2
in Chapter 12) due to start-up or cleaning times, or the possibility of producing
a second item in the period.

A simple formulation is

xt ≥ Ct(yt−1 + yt + yt+1 − 2),

but a more effective formulation using the start-up and switch-off variables is

xt ≥ Ct(yt − zt − wt).

11.3.2 Minimum Production Level per Set-Up Sequence (MR)

Suppose now that once a start-up occurs, a minimum amount P , called a
minimum run, must be produced, and it must be produced in the next α
periods (because of almost full capacity production, or for other reasons).

A basic formulation is given by∑
u∈[t,t+α−1]

xu ≥ Pzt.

By considering intervals [k, l] whose length exceeds α, but whose demand is
less than P , we obtain the valid inequality

rk−1 + sl ≥ (P − dkl)+
l−α+1∑
u=k

zu

if we can assume that there is at most one start-up in the interval [k, l−α+1].
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11.4 Restricted Length Set-Up Sequences (RLS)

Here we consider the set-up and start-up sequences for a single-item indepen-
dently of the production quantity. Thus the base model is

yt − zt = yt−1 − wt−1 for all t (11.6)
zt ≤ yt for all t (11.7)
y, z, w ∈ [0, 1]n (11.8)
y, z, w ∈ Z

n. (11.9)

11.4.1 Varying Length Sequences

Suppose that a sequence of set-ups starting in period t must last for between
a minimum of αt ≥ 1 and a maximum of βt periods, and also that if the item
is switched off in t, then it remains off for between a minimum of γt ≥ 1 and
a maximum of δt periods. In the (y, z, w) space, each of the four cases has a
simple formulation.

If there is a start-up in t, there must be a set-up for every period in the
interval [t, t + αt − 1]. This gives

zt ≤ yl for t ≤ l ≤ t + αt − 1.

If there is a switch-off in t, there must be a start-up in the interval [t−βt+1, t],
and hence

wt ≤ ∑t
l=t−βt+1 zl.

If there is a switch-off in t, there is no set-up in any period in the interval
[t + 1, t + γt], which gives

wt ≤ 1 − yl for t + 1 ≤ l ≤ t + γt.

If there is a switch-off in t, there must be a start-up in the interval in the
interval [t + 2, t + δt + 1], and we have the inequality

wt ≤ ∑t+δt+1
l=t+2 zl.

To obtain a tight formulation with such restricted length sequences, it is
once again possible to model the problem as a unit flow in a network.

Let ξtl = 1 if there is a start-up in t and the following switch-off is in l
with necessarily t + αt − 1 ≤ l ≤ t + βt − 1, and ωtl = 1 if there is a switch-off
in t and the following start-up is in l with necessarily t+γt +1 ≤ l ≤ t+δt +1.
Then we have the flow conservation constraints
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∑
t:t≤l

ξtl = wl for all l

∑
t:t≤l

ωtl = zl for all l

∑
l:l≥t

ξtl = zt for all t

∑
l:l≥t

ωtl = wt for all t

∑
τ :τ≤t

∑
l:l≥t

ξτl = yt for all t

ξ, ω, y, z, w ∈ {0, 1}n ,

as well as constraints defining the initial state at time t = 0 or t = 1 giving
an entering flow of one unit into the network.

Example 11.3 See Figure 11.1 for an example with n = 8 and time inde-
pendent sequence length values α = 2, β = 3, γ = 1, δ = 4. A flow through
a node t at the upper level implies that zt = 1 and a flow through a node
τ at the lower level means that wτ = 1. The flow, indicated by the arrows,
that is, ξ12 = ω25 = ξ57 = 1, corresponds to a feasible set-up sequence with
y = (1, 1, 0, 0, 1, 1, 1, 0).

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1        1         0         0        1         1        1         0y =

Start-up

Switch-off

Figure 11.1. Restricted set-up sequences.

11.4.2 Constant Length Sequences

Here we assume that all four parameters αt, βt, γt, δt take constant values
α, β, γ, δ. Now each of the four inequalities proposed in Section 11.4.1 can be
strengthened. For example, if there is a start-up in the interval [t − α + 1, t],
the item must still be set up in period t giving

α∑
u=1

zt−u+1 ≤ yt.
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The next result gives a complete linear description of the convex hull of the
set of feasible sequences. It can be proved by verifying that (11.10)–(11.13)
plus the bound constraints (11.8) provides a valid formulation and by showing
that the corresponding matrix is totally unimodular.

Proposition 11.5 Adding the constraints
α∑

u=1

zt−u+1 ≤ yt (11.10)

β∑
u=1

zt−u+1 ≥ yt (11.11)

γ∑
u=1

zt+u ≤ 1 − yt (11.12)

δ∑
u=1

zt+u ≥ 1 − yt (11.13)

to the basic formulation (11.6)–(11.8) gives the convex hull of the constant
restricted length sequence model.

In certain circumstances, one may want to have restricted sequence lengths
when only modeling in the set-up space. The valid inequalities providing lower
bounds on zt are

zt ≥ yt − yt−1, zt ≥ 0,

so the projection of the minimum time inequalities (11.10) and (11.12) gives∑
j∈S

(yj − yj−1) ≤ yt for ∅ ⊂ S ⊆ [t − α + 1, t] and

∑
j∈T

(yj − yj−1) ≤ 1 − yt for ∅ ⊂ T ⊆ [t + 1, t + γ],

respectively.
Similarly for the maximum time constraints, the inequalities providing

upper bounds on zt are

zt ≤ yt, zt ≤ 1 − yt−1.

Applied to the inequalities (11.11) and (11.13), the inequalities obtained by
projection are∑

j∈S

yj +
∑

j∈[t−β+1,t]\S

(1 − yj−1) ≥ yt for ∅ ⊂ S ⊆ [t − β + 1, t] and

∑
j∈T

yj +
∑

j∈[t+1,t+δ]\T

(1 − yj−1) ≥ 1 − yt for ∅ ⊂ T ⊆ [t + 1, t + δ].

Separation of these inequalities is very simple.
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11.5 Piecewise Concave Production Costs (CP )

Suppose that the production cost function is p(xt) = minK
k=1[q

k
t δ(xt) + pk

t xt]
where δ(x) = 1 if x > 0 and δ(x) = 0 otherwise, and 0 ≤ q1

t ≤ q2
t ≤ . . . qK

t

and p1
t ≥ . . . ≥ pK

t ≥ 0. See Figure 11.2.

x

p(x )

q3 + p3 x

C

q1 + p1 x

q2 + p2 x

Figure 11.2. Piecewise linear concave production costs.

Introducing variables xk
t and yk

t to model the production level and set-ups
corresponding to each cost segment k, we obtain the following formulation for
LS-C-CP .

min
K∑

k=1

n∑
t=1

pk
t xk

t +
K∑

k=1

n∑
t=1

qk
t yk

t +
n∑

t=0

htst

st−1 +
∑

k

xk
t = dt + st for all t (11.14)

xk
t ≤ Cty

k
t for all k, t (11.15)∑

k

yk
t ≤ 1 for all t (11.16)

s ∈ R
n+1
+ , x ∈ R

Kn
+ , y ∈ {0, 1}Kn. (11.17)

Note that if items can be bought from the outside at cost βt per unit, this can
be modeled by setting p1

t = βt, q
1
t = 0. Observe also that in the uncapacitated

case, constraints (11.16) are automatically satisfied when qk
t > 0 for all k, t.

For the uncapacitated problem LS-U -CP with s0 = 0, one obtains the
constraint set:
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st−1 +
∑

k

xk
t = dt + st for all t

xk
t ≤ Myk

t for all k, t

s ∈ R
n+1
+ , x ∈ R

Kn
+ , y ∈ {0, 1}Kn, s0 = 0,

denoted XLS−U−CP .

Proposition 11.6 The generalized (l, S) inequalities

K∑
k=1

∑
j∈Sk

xk
j +

K∑
k=1

∑
j∈L\Sk

djly
k
j ≥ d1l,

with Sk ⊆ L = {1, . . . , l} for k = 1, . . . , K, are valid for XLS−U−CP . Adding
these inequalities to the initial formulation gives conv(XLS−U−CP ).

It is also possible to generalize the facility location and shortest path extended
formulations for LS-U to this more general case; see Section 11.9 below.

11.6 Production Time Windows (TWP )

Here we consider the problem in which, instead of the standard demands, one
has a set of orders. Order k for 1 ≤ k ≤ K consists of a quantity Dk > 0 and
a time window [bk, ek] with 1 ≤ bk ≤ ek ≤ n in which the Dk units must be
produced. Delivery is in period ek. By regrouping orders with the same time
window, one can assume that K ≤ n(n + 1)/2.

Two variants of the problem arise: the case of distinguishable or client-
specific orders in which the time windows must be individually respected, and
the case of indistinguishable or nonclient-specific orders.

We now attempt to clarify the distinction. Below the “bottles” play the role
of “raw materials” provided by the clients. Suppose that production involves
filling bottles of liquid gas. The bottles are provided empty by the client in
period bk and he picks up the full bottles in period ek. In the distinguishable
case, the bottles carry the name of the client, so they cannot be mixed up
and the client will leave in ek with the same bottles that he provided in bk.
On the other hand, in the indistinguishable case, all that matters is that the
client retrieves Dk units of full (but possibly different) bottles in period ek.

We first introduce some notation and then we present two MIP formu-
lations of the distinguishable order version. Note that with distinguishable
orders, it is natural to take s0 = 0.

Dtl =
∑

k:t≤bk,ek≤l D
k is the amount that must be produced in the interval

[t, l].
∆t = D1t − D1,t−1 =

∑
k:ek=t Dk is the amount that must be delivered in
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period t, and ∆tl =
∑l

u=t ∆u.
Γt = Dtn − Dt+1,n =

∑
k:bk=t Dk is the amount that becomes available for

production in period t, and Γtl =
∑l

u=t Γu.

In addition to the standard variables xt, st, yt, we introduce

zk
t is the amount of order k produced in period t ∈ [bk, ek].

The following formulation of LS-CC-TWP is now self-explanatory.

min
n∑

t=1

p′
txt +

n∑
t=0

h′
tst +

n∑
t=1

qtyt (11.18)

st−1 + xt = ∆t + st for 1 ≤ t ≤ n (11.19)
ek∑

u=bk

zk
u = Dk for 1 ≤ k ≤ K (11.20)

∑
{k:u∈[bk,ek]}

zk
u = xu for 1 ≤ u ≤ n (11.21)

xu ≤ Cyu for 1 ≤ u ≤ n (11.22)

s ∈ R
n+1
+ , x ∈ R

n
+, y ∈ {0, 1}n, z ≥ 0, s0 = 0. (11.23)

Eliminating the zk
t variables using the max flow–min cut theorem on the trans-

portation problem defined by the constraints (11.20)-(11.21), and eliminating
the st variables, we obtain the equivalent formulation:

min
n∑

t=1

ptxt +
n∑

t=1

qtyt (11.24)

l∑
u=t

xu ≥ Dtl for 1 ≤ t ≤ l ≤ n (11.25)

xu ≤ Cyu for 1 ≤ u ≤ n (11.26)
x ∈ R

n
+, y ∈ {0, 1}n. (11.27)

11.6.1 An Algorithm for WW -U-TWP and Extended Formulation
for WW -CC-TWP

Here we suppose that the costs are Wagner–Whitin. First we describe a dy-
namic programming algorithm for the uncapacitated problem WW -U -TWP ,
and then we give a tight extended formulation for the constant capacity case
WW -CC-TWP .

Let H(t) be the cost of an optimal solution of WW -U -TWP in which the
horizon is the interval [1, t] and only the orders with ek ≤ t are considered.
One obtains the following simple recurrence,
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H(l) = min
{t:t≤l,Dt+1,l=0}

[H(t − 1) + ft + pt∆tl],

using the fact that if t is the last production period in the interval [1, l], all
that must be delivered in the interval [t, l] will be produced in t because it
pays to produce as late as possible, and on the other hand if Dt+1,l > 0, then
there must be production within the interval [t + 1, l].

To describe a tight extended formulation, we work in the (s, y) space. By
combining (a) the constraints (11.25), and (b) the aggregate balance con-
straints st−1 +

∑l
u=t xu ≥ ∆tl derived from (11.19) with the variable upper

bound constraints (11.26), we obtain the relaxation:

min
n∑

t=0

htst +
n∑

t=1

qtyt (11.28)

st−1 + C

l∑
u=t

yt ≥ ∆tl for 1 ≤ t ≤ l ≤ n (11.29)

C
l∑

u=t

yt ≥ Dtl for 1 ≤ t ≤ l ≤ n (11.30)

s ∈ R
n+1
+ , y ∈ {0, 1}n, s0 = 0. (11.31)

From the analysis of stock-minimal solutions for WW -CC, we can observe
that this is a correct formulation for WW -CC-TWP . Specifically note that,
without the constraints (11.30), the feasible region resembles the basic formu-
lation of WW -CC with ∆tl in place of dtl, and thus the convex hull is known;
see Section 9.5. On the other hand Chvátal–Gomory rounding applied to the
constraints (11.30) gives the valid inequalities

l∑
u=t

yu ≥ �Dtl

C
� for 1 ≤ t ≤ l ≤ n.

This leads to a tight formulation.

Theorem 11.7 The linear program

min
n∑

t=0

htst +
n∑

t=1

qtyt

(s, y) ∈ conv(XWW−CC(∆))
l∑

u=t

yu ≥ �Dtl

C
� for 1 ≤ t ≤ l ≤ n

s ∈ R
n+1
+ , y ∈ [0, 1]n, s0 = 0,

solves WW -CC-TWP , where XWW−CC(∆) is the set XWW−CC with de-
mand vector ∆.
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In the uncapacitated case, the formulation is simpler.

Corollary 11.1 The linear program

min
n∑

t=0

htst +
n∑

t=1

qtyt

st−1 ≥
∑

{k:bk<t≤ek≤l}
Dk(1 − yt − . . . − yek) for 1 ≤ t ≤ l ≤ n

ek∑
u=bk

yu ≥ 1 for k = 1, . . . , K

s ∈ R
n+1
+ , y ∈ [0, 1]n, s0 = 0 ,

solves WW -U -TWP .

11.6.2 Indistinguishable Time Windows LS-C-TWP (I) and an
Equivalent Problem

Here we consider the problem with indistinguishable orders LS-C-TWP (I).
The crucial order information is all contained in the arrival quantities Γt and
the delivery quantities ∆t that satisfy:

Γ1t ≥ ∆1t for 1 ≤ t ≤ n − 1 (11.32)
Γ1n = ∆1n (11.33)
Γ,∆ ∈ R

n
+. (11.34)

For this case the basic MIP formulation simplifies to

min
n∑

t=1

ptxt +
n∑

t=1

ftyt (11.35)

l∑
u=1

xu ≥ ∆1l for 1 ≤ l ≤ n (11.36)

l∑
u=1

xu ≤ Γ1l for 1 ≤ l ≤ n (11.37)

xu ≤ Cuyu for 1 ≤ u ≤ n (11.38)
x ∈ R

n
+, y ∈ {0, 1}n. (11.39)

Now we show that this problem is equivalent to the distinguishable order
problem with special time windows.

Definition 11.1 A set of distinguishable orders has noninclusive time win-
dows [bk, ek]Kk=1 if there is no pair k, κ with bk < bκ ≤ eκ < ek.
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This property turns out to be very useful.

Observation 11.1 Given an availability vector Γ and a delivery vector ∆
satisfying (11.32)–(11.34), there is a unique set of orders Dk with non-
inclusive time windows associated with the (Γ,∆) pair.

Algorithm to Compute the Orders
Initialization Set Lt = Γt, Rt = ∆t for all t. k = 1
While L, R �= 0

Set σ = min{t : Lt > 0}, τ = min{t : Rt > 0}.
Set Dk = min{Lσ, Rτ}, bk = σ, ek = τ .
Lσ ← Lσ − Dk, Rτ ← Rτ − Dk

k ← k + 1
end-While.

Clearly there are at most 2n − 1 orders and they are uniquely defined.
It follows that an instance of LS-U -TWP with noninclusive time windows

can be treated as if the orders were indistinguishable; that is, it suffices to
solve the relaxation LS-U -TWP (I), and conversely given a problem with
indistinguishable orders but arbitrary time windows, the time windows can
be modified so as to be noninclusive using the above algorithm.

11.6.3 A Dynamic Programming Algorithm for LS-U -TWP (I)

Here we see some of the consequences of the noninclusive time window prop-
erty.

Observation 11.2 i. A set of noninclusive time windows can be ordered so
that for all k either bk < bk+1 and ek ≤ ek+1, or bk = bk+1 and ek < ek+1.
ii. With noninclusive time windows ordered as in i, there exists an optimal
solution in which order k is produced before (or at the same time) as order
k + 1 for all k.
iii. In the uncapacitated case there exists an optimal solution in which each
order k is produced in a single period.

Now we can describe the dynamic programming algorithm. We take the
objective function in the form

min
∑

t

ptxt +
∑

t

qtyt,

and we assume that the orders k = 1, . . . , K are numbered from earliest to
latest as in i of Observation 11.2.

Using iii of the same observation, we define the following quantities.

H(t, k) is the value of an optimal solution for periods 1, . . . , t in which the
demands D1, . . . , Dk are produced in or before period t. Note that H(t, k) =
∞ if bk > t.
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G(t, k) is the value of an optimal solution for periods 1, . . . , t in which the
demands D1, . . . , Dk−1 are produced in or before period t and Dk is produced
in t. Also G(t, k) = ∞ if ek < t or bk > t.

The recursion is

H(t, k) = min[H(t − 1, k), G(t, k)] for t, k with bk ≤ t (11.40)
G(t, k) = min[H(t − 1, k − 1) + qt + ptD

k, G(t, k − 1) + ptD
k]

for t, k with t ∈ [bk, ek], (11.41)

where the first equation just uses the observation that order k is produced
either before, or in period t, and the second the fact that order k − 1 is
produced either before, or in t. Obviously this provides an O(n2) algorithm
for the problem.

11.6.4 A Tight Extended Formulation for LS-U -TWP (I)

We now use the above dynamic program to get an extended formulation.
Specifically the recursion suggests the linear program

max H(n, K)

H(t, k) − H(t − 1, k) ≤ 0 for all k, t with bk ≤ t

H(t, k) − G(t, k) ≤ 0 for all k, t with t ∈ [bk, ek]

G(t, k) − G(t, k − 1) ≤ ptD
k for all k, t with t ∈ [bk, ek]

G(t, k) − H(t − 1, k − 1) ≤ qt + ptD
k for all k, t with t ∈ [bk, ek].

Let the dual variables be vtk, wtk, xtk, ztk, respectively. The dual of this linear
program is then

min
∑
t,k

[(qt + ptD
k)ztk + ptD

kxtk] (11.42)

ztk + xtk − xt,k+1 − wt,k = 0 for all k, t with bk ≤ t (11.43)

vtk − vt+1,k + wtk − zt+1,k+1 = 0 for all k, t with t ∈ [bk, ek] (11.44)
vn,K + wn,K = 1 (11.45)
v, w, x, z ≥ 0. (11.46)

This can be seen as a shortest path problem. An interpretation of the vari-
ables is:
ztk = 1 if there is production in t and order k is the first order produced in t
(i.e., order k − 1 is produced earlier).
xtk = 1 if orders k and k − 1 are produced in t.
wtk = 1 if there is production in t and the last order produced is order k.
vt,k = 1 if last order produced in or before t is order k.
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To obtain a complete formulation, we just need to add:

1 ≥ yt ≥
∑

k

ztk for all t (11.47)

xt =
∑

k

Dk(ztk + xtk) for all t. (11.48)

Theorem 11.8 Let XLS−U−TWP (I) be the set of feasible solutions of (11.36)–
(11.39) of the uncapacitated problem LS-U -TWP (I). A tight extended formu-
lation for conv(XLS−U−TWP (I)) is given by the polyhedron (11.43)–(11.48).

11.7 Upper Bounds on Stocks (SUB)

Here we consider the case with upper bounds st ≤ St for all periods t, and
we assume that Sn = 0.

11.7.1 Equivalence to LS-CAP -TWP (I)

As st−1 ≤ dt + St, we can assume without loss of generality that St−1 ≤
dt + St for all t. Now x ∈ R

n
+ is a feasible production vector if and only if

st =
∑t

u=1 xu − d1t ≥ 0 for all t, and

st =
t∑

u=1

xu − d1t ≤ St for all t.

Setting ∆t = dt ≥ 0 and Γt = dt+St−St−1 ≥ 0, we have that Γ and ∆ satisfy
(11.32)–(11.34), and thus we obtain precisely the formulation (11.35)–(11.39)
of LS-CAP -TWP (I).

Because of the equivalence with LS-U -TWP (I), LS-U -SUB can be solved
by the dynamic programming recurrence (11.40)–(11.41).

For the constant capacity problem LS-CC-SUB, it is not difficult to gen-
eralize the concept of regeneration interval appropriately, and derive a poly-
nomial shortest path algorithm; see Exercise 11.8.

11.7.2 Valid Inequalities for LS-U -SUB

Let XLS−U−SUB = XLS−U ∩ {(s, y) : st ≤ St for all t}. Obviously we have
the surrogate constraints

M

t∑
u=k

yu ≥ dkt − Sk−1.
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This gives immediately the inequality

t∑
u=k

yu ≥ 1

which is valid whenever Sk−1 < dkt.
Another obvious valid inequality is the variable upper bound constraint

xt ≤ (dt + St)yt. (11.49)

Other stronger inequalities are variants of the (l, S) inequalities.

Proposition 11.9 Given an interval [k, l] and S ⊆ [k, l], the inequalities

sk−1 +
∑
u∈S

xu ≤ Sk−1 +
∑
u∈S

[dku + Su − Sk−1]yu (11.50)

and

sk−1 +
∑
u∈S

xu

≤ Sk−1 +
∑
u∈S

min[dku + Su − Sk−1, dkl − Sk−1, dul]yu + sl (11.51)

are valid for XLS−U−SUB.

Example 11.4 Consider an instance of LS-U -SUB with n = 5, d =
(3, 4, 2, 1, 2), S = (3, 3, 4, 3, 5), and the fractional solution y∗ = (1, 0.25, 1, 0, 0),
x∗ = (6, 1, 5, 0, 0), s∗ = (3, 0, 3, 2, 0).

It is easily checked that the inequality (11.51) with k = 2 and S = {2},
namely

s1 + x2 ≤ 3 + (4 − 3)y2 + s2,

cuts off this point. Note that with k = t = 2, the inequality (11.49) gives

y2 ≥ 1,

which is also violated.

11.7.3 Valid Inequalities for WW -CC-SUB and WW -CC-B, SUB

Let XWW−CC−SUB = XWW−CC ∩ {(s, y) : st ≤ St for all t}. Again we use
the surrogate constraints

C
t∑

u=k

yu ≥ dkt − Sk−1.

These can be strengthened by the corresponding Gomory fractional cuts.
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Proposition 11.10 The convex hull conv(XWW−CC−SUB) is obtained by
adding the constraints

t∑
u=k

yu ≥ �dkt − Sk−1

C
� for 1 ≤ k ≤ t ≤ n

to conv(XWW−CC).

With backlogging, the corresponding surrogate constraints are

rt + C

t∑
u=k

yu ≥ dkt − Sk−1 for 1 ≤ k ≤ t.

Fixing t, we can generate mixing inequalities; see Section 8.3.
Finally we note that stock upper bounds can be viewed as a limiting case

of the convex storage cost functions examined in the next section.

11.8 Safety Stocks or Piecewise Convex Storage Costs
(SS)

Suppose that the inventory costs H(s) in each period are as shown in Figure
11.3, with safety stock levels SS1, SS2, . . . , SSL, nondecreasing slopes h, h +
h1, . . . , h +

∑L
l=1 hl, where hl ≥ 0 for l = 1, . . . , L, and intercept H(0) = H0.

Such a model allows more flexibility than one in which a fixed minimum
(safety) stock level is imposed at the end of each period, and linear holding
costs are incurred for stocks above these minima.

H(s)

H
0

SS
1

SS
2

SSs 3

h

h + h

h + h +h

1

1 2

s

σ

σ

1

2

Figure 11.3. Piecewise convex inventory holding costs.
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Introducing the variables σl
t to be the amount, if any, by which st exceeds

SSl, we obtain the following formulation for LS-C-SS

min
n∑

t=1

ptxt +
n∑

t=0

hst +
n∑

t=1

L∑
l=1

hlσl
t +

n∑
t=1

qtyt

st−1 + xt = dt + st for 1 ≤ t ≤ n

xt ≤ Ctyt for 1 ≤ t ≤ n

σl
t ≥ st − SSl for 1 ≤ t ≤ n, 1 ≤ l ≤ L

s ∈ R
n+1
+ , x ∈ R

n
+, σ ∈ R

Ln
+ , y ∈ {0, 1}n,

with feasible region XLS−C−SS .

11.8.1 Mixing Set Relaxations for LS-CC-SS

Combining the constraint σl
t ≥ st − SSl with the surrogate constraint

sk−1 + C
∑t

u=k yu ≥ dkt, obtained by summing the flow balance constraints
for periods k up to t, gives, for fixed k and l, a mixing set XMIX

kl of the form

σl
k−1 + Czkt ≥ dl

kt for k ≤ t ≤ n

σl
k−1 ∈ R

1
+, zkt ∈ Z

1
+ for k ≤ t ≤ n,

where zkt =
∑t

u=k yu and dl
kt = (dkt − SSl)+ for k ≤ t ≤ n.

If in addition we write SS0 = 0, σ0
t = st for all t and d0

kt = dkt for all k, t,
it follows that

XLS−CC−SS ⊆
L⋂

l=0

n⋂
k=1

XMIX
kl .

In the same way that conv(XWW−CC) is the intersection of n mixing sets, it
can be shown that

Proposition 11.11

conv(
L⋂

l=0

n⋂
k=1

XMIX
kl ) =

L⋂
l=0

n⋂
k=1

conv(XMIX
kl ).

In practice the reformulation obtained by intersecting the mixing reformu-
lations describing conv(XMIX

kl ) for all k, l, or the equivalent mixing inequali-
ties, appear to provide very good dual bounds for LS-CC-SS, especially when
the costs satisfy p = 0 and h ≥ 0.

Example 11.5 Consider an instance with n = 5, d = (5, 8, 4, 7, 2), L =
1, SS1 = 5, C = 12, h = 2, and h1 = 3. For k = 3, we have d1

33 =
(d3 − SS1)+ = 0, d1

34 = (d34 − SS1)+ = 6 and d1
35 = (d35 − SS1)+ = 8,

so we obtain the surrogate inequalities
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σ1
2 +12y3 ≥ 0

σ1
2 +12y3 +12y4 ≥ 6

σ1
2 +12y3 +12y4 +12y5 ≥ 8,

from which we obtain mixing inequalities such as

σ1
2 ≥ 6(1 − y3 − y4),

σ1
2 ≥ 6(1 − y3 − y4) + 2(1 − y3 − y4 − y5).

This way of modeling piecewise convex storage costs extends to the case
with h < 0 and also to the case of piecewise linear backlog costs. Now we allow
the holding costs to vary with time. In such cases, the storage and backlog
cost function Ht(s) is defined for s ∈ R and all periods t. One approach is to
move the origin to the point SSt = arg minl Ht(SSl) at which the function
Ht(s) is minimized. Now with new variables s′

t = (st − rt − SSt)
+ and r′

t =
(rt − st + SSt)

+, we have

s′
t − r′

t = st − rt − SSt for all t

which in turn gives the modified demand vector d̃, with d̃t = dt+SSt−SSt−1,
for the new balance equations from which we obtain standard surrogates

s′
k−1 + r′

t + C

t∑
u=k

yu ≥ d̃kt.

Now for breakpoints with SSl > SSt, we can introduce the new variables
σl

t ≥ s′
t − (SSl − SSt), and for breakpoints with SSl < SSt, we introduce in

similar fashion the variables ρl
t ≥ r′

t − (SSt − SSl).
Now the storage and backlog costs in the objective function can be written

as a nonnegative combination of the variables s′
t, r

′
t, σ

l
t, ρ

l
t. The surrogates now

give rise to continuous mixing sets based on constraints such as

s′
k−1 + r′

t + C

t∑
u=k

yu ≥ d̃kt for 1 ≤ k ≤ t ≤ n

and

σl
k−1 + ρl′

t + C
∑t

u=k yu ≥ d̃kt − (SSl − SSk−1) − (SSt − SSl′)
for 1 ≤ k ≤ t ≤ n and all l, l′.

Example 11.6 Consider the same instance as above but with h = −2. Intro-
ducing s′

t−r′
t = st−SS1 as rt = 0, we obtain standard flow balance constraints

with the modified demand vector d̃ = (10, 8, 4, 7, 2). We also have r′
t ≤ 5 as

st ≥ 0. The backlog cost for r′
t is now −h = 2, and the storage cost for s′

t is
h + h1 = 1, so the objective function can be written (modulo a constant) as∑

t

(2r′
t + 1s′

t).



356 11 Single-Item Variants

11.9 A Model with Backlogging, Sales Markets, and
Concave Production Costs

Problem LS-U -B, SL, CP can be formulated as

min
K∑

k=1

n∑
t=1

(pk
t xk

t + qk
t yk

t )

+
n∑

t=0

htst +
n∑

t=1

btrt −
L∑

l=1

n∑
t=1

el
tv

l
t (11.52)

st−1 − rt−1 +
∑

k

xk
t = dt +

∑
l

vl
t + st − rt for all t (11.53)

vl
t ≤ V l

t for all l, t (11.54)

xk
t ≤ Myk

t for all k, t (11.55)

s ∈ R
n+1
+ , r ∈ R

n
+, x ∈ R

Kn
+ , v ∈ R

Ln
+ , y ∈{0, 1}Kn, (11.56)

where we assume that 0 ≤ q1
t ≤ q2

t ≤ · · · qK
t , p1

t ≥ p2
t ≥ · · · pK

t ≥ 0 and
e1

t ≥ e2
t · · · ≥ eL

t for all t. Note that if qk
t = 0, xk

t can be viewed as the amount
bought in from outside in period t. Variables vl

t can be viewed as potential
sales to different markets l = 1, . . . , L at unit price el

t in period t.

An Extended Formulation

Observation 11.3 Following standard network-flow-based arguments for the
uncapacitated lot-sizing problem, there exists an optimal solution in which if
xk

t > 0, then xk
t =

∑t+b
u=t−a(du +

∑
l∈S(u) V l

u) for some a, b ≥ 0, and S(u) ⊆
{1, . . . , L} for all u.

Define V̄ l
t =

∑l
λ=1 V λ

t for 0 ≤ l ≤ L and 1 ≤ t ≤ n. In particular, V̄ 0
t = 0

for all t. Observe that, because e1
t ≥ e2

t . . . for all t, there always exists an
optimal solution with

∑L
λ=1 vλ

t = V̄ l
t for some l ≥ 0 and all t.

We use the following variables in our extended formulation.

αkl
ut = 1 if production takes place in period u using production type k to

satisfy a demand of dt + V̄ l
t in period t.

zk
ut = 1 if production takes place in period u using production type k to satisfy

some demand in period t.

We now consider the following formulation:
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min
K∑

k=1

n∑
t=1

(pk
t xk

t + qk
t yk

t )

+
n∑

t=0

htst +
n∑

t=1

btrt −
L∑

l=1

n∑
t=1

el
tv

l
t (11.57)

zk
ut =

L∑
l=0

αkl
ut for 1 ≤ u, t ≤ n, for all k

(11.58)
K∑

k=1

n∑
u=1

zk
ut = 1 for 1 ≤ t ≤ n (11.59)

yk
t ≥ zk

tt for 1 ≤ t ≤ n, for all k
(11.60)

zk
ut ≥ zk

u,t+1 for 1 ≤ u ≤ t ≤ n, for all k

(11.61)

zk
ut ≥ zk

u,t−1 for 1 ≤ t ≤ u ≤ n, for all k

(11.62)

vl
t =

K∑
k=1

n∑
u=1

L∑
λ=l

V λ
t αkl

ut for 1 ≤ t ≤ n, for 1 ≤ l ≤ L

(11.63)

xk
u =

L∑
l=0

n∑
t=1

(dt + V̄ l
t )αkl

ut for 1 ≤ u ≤ n, for all k

(11.64)

st−1 =
K∑

k=1

L∑
l=0

∑
u,τ :u<t≤τ

(dτ + V̄ l
τ )αkl

uτ for 1 ≤ t ≤ n (11.65)

rt =
K∑

k=1

L∑
l=0

∑
u,τ :τ≤t<u

(dτ + V̄ l
τ )αkl

uτ for 1 ≤ t ≤ n (11.66)

α ∈ R
K(L+1)n2

+ , z ∈ R
Kn2

+ , y ∈{0, 1}Kn. (11.67)

Note that the constraints zk
ut ≥ zk

u,t+1 and zk
ut ≥ zk

u,t−1 are justified by Ob-
servation 11.3.

This formulation can be shown to be equivalent to the minimum cost
path in a network representing the sequences of regeneration intervals [a, b] as
defined in Observation 11.3. From this we obtain the following result.

Theorem 11.12 The linear program (11.57)–(11.67) solves problem LS-U -
B, SL, CP .
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11.10 Stochastic Lot-Sizing on a Tree

Here we present a problem of lot-sizing on a rooted tree, and then show by
example how this model enables us to tackle a single-item stochastic lot-sizing
problem.

Given a rooted directed out-tree T = (N, A), let D(v) be the direct suc-
cessors of v, S(v) the set of all successors of v, and P (j, k) with k ∈ S(j)
the set of nodes on the path from j to k. Node r = 1 ∈ N is the root.
L = {v ∈ N : S(v) = ∅} are the leaves. We add a dummy node 0 and an arc
(0, 1), and let p(v) be the unique predecessor of v, for all v ∈ N .

The lot-sizing problem on a tree LS-C-TREE is defined as the following
mixed integer program,

min
∑

v∈N (P ′
vxv + Qvyv) +

∑
v∈N∪{0} H ′

vsv (11.68)

sp(v) + xv = dv + sv for all v ∈ N (11.69)
xv ≤ Cvyv for all v ∈ N (11.70)

s ∈ R
|N |+1
+ , x ∈ R

|N |
+ , y ∈ [0, 1]|N |, (11.71)

with production costs P ′
v, fixed costs Qv and demands dv for all v ∈ N , and

storage costs H ′
v for all v ∈ N ∪ {0}. Note the special form of the balance

constraint in which the flow sv out of node v ∈ N \ L is the inflow to each
direct successor node w ∈ D(v).

Eliminating the xv variables by substitution using (11.69), the objective
function can be rewritten as:

min
∑

v∈N∪{0}
Hvsv +

∑
v∈N

Qvyv + K1,

where Hv = H ′
v + P ′

v − ∑
w∈D(v) P ′

w and K1 =
∑

v∈N P ′
vdv.

We now consider an example of a stochastic lot-sizing problem with a tree
of scenarios, and show how it can be modeled as a problem of lot-sizing on a
tree.

Example 11.7 Consider an instance with three periods and four scenarios,
and an initial stock variable s0.

In period 1 the demand d1 = 3 and the set-up cost q1 = 18 are known with
certainty.

In period 2 there are two possible events. Either the demand and set-up cost
will be d2 = 4, q2 = 18 with probability 0.5, or they will be d3 = 3, q3 = 24
with probability 0.5. Which of these two events occurs is known before the
production decision in period 2.

In period 3, if the outcome in period 2 was d2 = 4, q2 = 18, then with
probability 1/3 it will be d4 = 7, q4 = 30, and with probability 2/3 it will
be d5 = 1, q5 = 30. On the other hand, if the outcome in period 2 was
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d3 = 3, q3 = 24, then with probability 1/5 it will be d6 = 2, q6 = 20, and
with probability 4/5 it will be d7 = 5, q7 = 25. Again the period 3 outcome is
known before the production decision in period 3 is taken.

The storage costs are h0 = 4 and ht = 1 in periods t = 1, 2, 3 whatever the
outcomes. The production capacity is C = 10 throughout.

The corresponding tree and optimal solution are shown in Figure 11.4.
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Figure 11.4. Scenario and lot-sizing tree.

Taking into account the probabilities, the expected cost to be minimized is

min 4s0 + (1s1 + 18y1) + 0.5(1s2 + 18y2) + 0.5(1s3 + 24y3)
+ 0.5(1/3)(1s4 + 30y4) + 0.5(2/3)(1s5 + 30y5)
+0.5(1/5)(1s6 + 20y6) + 0.5(4/5)(1s7 + 25y7)

= 4s0 + s1 + 0.5s2 + 0.5s3 + (1/6)s4 + 1/3s5 + 0.1s6 + 0.4s7

+ 18y1 + 9y2 + 12y3 + 5y4 + 10y5 + 2y6 + 10y7.

Note that the coefficients Hv for v ≥ 1 are precisely the probabilities of out-
come dv occurring (because we have taken h = 1 throughout).

11.10.1 Mixing Set Relaxations with Constant Capacities

First we rewrite the constraints (11.69) defining LS-C-TREE in the form

s0 +
∑

u∈P (1,v)

xu ≥ d1v for all v ∈ V,

where duv =
∑

w∈P (u,v) dw for all u ∈ V and v ∈ S(u) ∪ {u}.
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Now for each U ⊂ V , we use surrogate inequalities to construct obtain a
mixing set for the problem LS −CC −TREE. Specifically, using the capacity
constraints xv ≤ Cyv, we obtain the mixing set XMIX(U):

sU + CzU,v ≥ d1v for all v ∈ V

sU ≥ 0, zU,v ∈ Z
+ for all v ∈ V,

where sU = s0 +
∑

u∈U xu, and zU,v =
∑

u∈P (1,v)\U yu for all v ∈ V .

Example 11.8 Suppose that the scenario tree has just two levels as shown in
Figure 11.5,
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Figure 11.5. Scenario tree with two levels.

and suppose in addition that d1 > 0 and 0 < d2 ≤ d3 ≤ · · · ≤ dn.
The mixing set XMIX(∅) is

s0 + Cy1 ≥ d1

s0 + C(y1 + yt) ≥ d1 + dt for t = 2, . . . , n

s0 ∈ R
1
+, y1 ∈ Z

1
+, y1 + yt ∈ Z

1
+ for t = 2, . . . , n,

the mixing set XMIX({1}) is

s0 + x1 ≥ d1

s0 + x1 + Cyt ≥ d1t for t = 2, . . . , n
s0 + x1 ∈ R

1
+, yt ∈ Z

1
+ for t = 2, . . . , n,

or alternatively, using s1 = s0 + x1 − d1,

{(s1, y) ∈ R
1
+ × {0, 1}n−1 : s1 + Cyt ≥ dt for t = 2, . . . , n},

and similarly the mixing set XMIX({1, v}) for nodes v ∈ {2, . . . , n} can easily
be rewritten as the mixing set
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sv + Cyt ≥ dt − dv for t = v + 1, . . . , n

sv ∈ R
1
+, yt ∈ Z

1
+ for t = v + 1, . . . , n.

11.10.2 Valid Inequalities for LS-CC-TREE

As the feasible region XLS−CC−TREE lies in the intersection of the mixing
sets XMIX(U) for U ⊆ V , the corresponding mixing inequalities are valid
inequalities for problem LS-CC-TREE, and for fixed U one can separate
each of these families of inequalities in time polynomial in n = |V |.
Example 11.7 cont. We give an example of three types of valid inequalities
arising just from consideration of the first two periods. The inequality

s0 + 7y1 + 1y2 + 3y3 ≥ 7

is a a mixing inequality for the set XMIX(∅). The inequality

s0 + 7y1 + 1y2 + x3 ≥ 7

is a mixing inequality for the set XMIX({3}), and the inequality

s0 + x1 + 1y2 + x3 ≥ 7 or s3 + 1y2 ≥ 1

is a mixing inequality for the set XMIX({1, 3}).

Finally note that the convex hulls of the mixing set relaxations defined in
Section 11.10.1 suffice to define conv(XLS−CC−TREE) when s0 = 0 and the
scenario tree has just two levels (see Exercise 11.11).

Exercises

Exercise 11.1 Prove the validity of the (l, S, R) inequalities for the lot-sizing
set with sales XLS−U−SL.

Exercise 11.2 We say that a hot start-up occurs if it is at most α periods
since the item was switched off (last produced), and it is a cold start-up oth-
erwise.
i. Model such start-ups by adding to the basic (yt, zt, wt) model.
ii. Generate tight valid inequalities.
iii. Give an extended reformulation as a unit flow in a network.

Exercise 11.3 Consider an instance of LS-U -SUB with data n = 5, d =
(3, 4, 2, 1, 3), S = (6, 3, 4, 3, 5), and the fractional solution y∗ = (1, 1, 0, 0.75, 0),
x∗ = (3, 7, 0, 3, 0), s∗ = (0, 0, 3, 1, 3, 0). Find a valid inequality cutting off this
point.
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Exercise 11.4 Solve the instances of WW -CC-SS in Examples 11.5 and 11.6
where q = (20, 25, 20, 44, 22) just by reformulations and linear programming.

Exercise 11.5 (Lot-Sizing with Warm-Starts)
Consider the following variant of WW -CC. If a set-up takes place in period
t, it is a cold set-up if xt−1 < Q in which case one has to pay a set-up cost qt,
or it is a warm set-up if xt−1 ≥ Q in which case there is no set-up cost, but
there is a keep warm cost of α(C − xt−1). Here Q ≤ C.
i. Formulate as a MIP.
ii. Show that an optimal solution consists of sequences of set-ups of the form:
“Cold, Warm, . . . , Warm, Warm” or “Cold, Off, . . . ,Off”. Use this to derive
a dynamic programming algorithm for the problem.

Exercise 11.6 (Lot-Sizing with a Perishable Product)
Consider the following variant of LS-U . The product becomes unusable after
τ periods for some positive integer τ .
i. Derive a polynomial algorithm for this problem.
ii. Propose an extended formulation for this problem.

Exercise 11.7 (Lot-Sizing with Delivery Time Windows)
Suppose that production, storage, and set-up costs are as usual, but that de-
mand consists of a set of client orders of size {Dv}v∈V each with an associated
time window [bv, ev] during which the client must receive the order. Suppose
that there is no backlogging. If the order v is produced during the [bv, ev]
interval, no storage costs are paid. On the other hand, if some of the order
is produced before period bv, storage costs will be paid until period bv and
that part of the order is delivered in period bv. Note that there are at most
n(n + 1)/2 distinct time windows, so we can assume that |V | ≤ n(n + 1)/2.
i. Formulate as an MIP.
ii. Show that if the problem is uncapacitated, each order Dv is produced
completely in one period, so there is no order splitting. Use this to derive a
polynomial algorithm for the case of Wagner–Whitin costs.
iii. With Wagner–Whitin costs, show that the following inequalities are valid
and provide a tight formulation. For each interval [k, l],

sk−1 ≥
∑

v∈V :k≤bv,ev≤l

Dv(1 − yk − . . . − yev
).

Exercise 11.8 (Lot-Sizing with Constant Capacities and Upper Bounds on
Stocks)
Define a regeneration interval [t, l] for LS-CC-SUB as a partial solution with
st−1 ∈ {0, S̄t−1}, sl ∈ {0, S̄l} and 0 < su < S̄u for t ≤ u < l. Show
i. how, for each of these four possibilities, the cost of a minimum cost partial
solution can be calculated in polynomial time by dynamic programming,
ii. how these costs can be used to solve LS-CC-SUB, and
iii. how to derive a tight extended formulation.
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Exercise 11.9 (Lot-Sizing with Constant Start-Up Times)
Consider WW -CC-SC with in addition a loss of capacity, or start-up time
(xt ≤ Cyt − Lzt for all t). Derive a polynomial dynamic programming algo-
rithm to solve the problem.
Hint: Build a recurrence based on G(t, k, p, q, δ), the minimum cost of a
production plan for periods t, . . . , n, where k is the first regeneration point
(sk−1 = 0), p is the number of set-ups, q is the number of start-ups, and
yt−1 = δ ∈ {0, 1} indicates the start-up state.

Exercise 11.10 (Lot-Sizing with a Restricted Number of Set-Ups)
Consider an uncapacitated problem with the additional constraint that there
can be at most K periods of production.
i. Show that conv(XWW−U ) ∩ {(s, y) :

∑n
u=1 yu ≤ K} is an integral polyhe-

dron.
ii. Show by example that conv(XLS−U ) ∩ {(s, x, y) :

∑n
u=1 yu ≤ K} is not

integral.

Exercise 11.11 (Lot-Sizing on a Tree)
Consider the special case of the two-level lot-sizing problem on a tree examined
in Example 11.8 with s0 = 0, Q1 = 0 and no limit on the production in period
1, so that the first period decision is just to choose the end stock level.
i. With constant capacities in period 2, formulate the set of feasible solutions
as a mixing set with flows as described in Exercise 8.16.
ii. Use this to show that under the above conditions the mixing set relaxations
presented in Section 11.10.1 suffice to describe conv(XLS−CC−TREE).

Notes

Section 11.1 The uncapacitated lot-sizing model with sales LS-U -SL is
treated in Loparic et al. [107]. It is also shown there that, when the demands
are nonnegative, the separation problem for the (l, S, R) inequalities can be re-
duced to the problem of maximizing a quadratic Boolean function in which all
the quadratic terms have nonnegative coefficients, which is in turn reducible
to a maximum flow problem. In Aksen et al. [8], an O(n2) dynamic program-
ming algorithm is presented for uncapacitated lot-sizing with lost sales which
is precisely the problem LS-U -SL with nonnegative demands.

Section 11.2 The lot-sizing model with constant lower bounds on production
is treated in Van Vyve [178]. See also Constantino [47] for results on a multi-
item single-period submodel.

Section 11.3 The results for a model with almost full capacity production
are from Belvaux and Wolsey [26].
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Section 11.4 Minimum and maximum length set-up sequence, or up/down
times arise in many production planning problems as well as in job scheduling
and unit commitment problems. The inequalities of Proposition 11.5 have
been rediscovered many times, see, for instance, Lee et al. [103], Belvaux and
Wolsey [26], and Kondili et al. [99]. The proof of Proposition 11.5 is due to
Malkin [114].

Section 11.5 The formulation of piecewise linear concave production costs
is standard. Aghezzaf and Wolsey [5] show that one obtains the convex hull
for LS-U -CP with the generalized (l, S) inequalities. With varying capaci-
ties, piecewise linear production costs and general holding costs, Shaw and
Wagelmans [150] present a computationally effective pseudopolynomial dy-
namic programming algorithm.

Section 11.6 The study of the two different lot-sizing problems with pro-
duction time window appears in the thesis of Brahimi [29]; see also Brahimi
[30], and Dauzère-Pérès et al. [54], including MIP formulations for LS-U -
TWP , the DP algorithm for WW -U -TWP , the equivalence of LS-U -TWP (I)
with the noninclusive time window problem, and an O(n4) DP algorithm for
LS − U − TWP (I). The other results and reformulations are from Wolsey
[195].

Section 11.7 Love [111] demonstrated an O(n3) DP algorithm for LS-U -
SUB. The equivalence with the production time window problem with in-
distinguishable orders implying the existence of an O(n2) algorithm is from
Wolsey [195]. The valid inequalities for the LS-U -SUB model are due to
Atamtürk and Küçükyavuz [14]. The tight formulation for the Wagner–Whitin
constant capacity model is from Pochet and Wolsey [140]. See Exercise 11.8
for an algorithm for LS-CC-SUB.

Section 11.8 Piecewise convex storage costs are treated implicitly in Miller
and Wolsey [125].

Section 11.9 The formulation for LS-U -B, SL, PC is from Verweij and
Wolsey [184].

Section 11.10 A family of valid inequalities for stochastic uncapacitated
lot-sizing on a scenario tree, called (Q, SQ)-inequalities, have been studied
recently by Guan et al. [83]. The (Q, SQ)-inequalities are a subset of the
mixing inequalities presented here.

For the special two-level tree discussed in Example 11.8 with no initial
stock, it follows from Exercise 11.11 that the convex hull is obtained by adding
the mixing set relaxations conv(X(1)) ∩n

v=2 conv(X(1, v)) in the constant ca-
pacity case. A similar result for the uncapacitated case using only (Q, SQ)
inequalities appears in Guan et al. [82]. However, for an uncapacitated three-
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level problem, the mixing inequalities do not suffice to give the convex hull of
solutions.

Other Extensions and Exercises. Formulations for several other exten-
sions have been addressed in the literature. Fixed costs on stocks have been
treated by Ortega and van Vyve [129] and the general case with bounds and
fixed costs is treated in Atamtürk and Küçükyavuz [14]. Dynamic program-
ming algorithms for lot-sizing of a perishable good are presented in Hsu [92],
and formulations and valid inequalities are examined in Ortega [128]; see Ex-
ercise 11.6. In the simplest case, this is a special case of the problem with
production time windows. Bounds on the number of set-ups are discussed in
Aghezzaf and Wolsey [4]; see Exercise 11.10. A problem with demand time
windows is discussed in Lee et al. [102] (see Exercise 11.7), and a problem with
constant start-up times is treated in Vanderbeck [182] (see Exercise 11.9).



This page intentionally left blank



Part IV

Multi-Item Lot-Sizing



This page intentionally left blank



12

Multi-Item Single-Level Problems

So far, we have only studied the formulations of single-item models. Part IV
consists of two chapters dealing with multi-item models. We derive formu-
lations for the most important classes of multi-item models and extend the
classification scheme introduced in Chapter 4.

Specifically in this chapter we present multi-item models with single-level
product structure. In such models, the different items interact because their
manufacture involves the use of common equipment or resources. In Chapter
13 we deal with multi-item multi-level models, where the different items may
also interact because of the product structure. In these models, some items
are inputs for the production of other items, so their production is inevitably
linked.

We now consider the formulation of single-level multi-item problems. Typ-
ically we consider that all production takes place on one machine, or in one
department or location. Such problems were discussed in the chapter on de-
composition and algorithms, as they are the simplest problems that are en-
countered in practice, and often decompose very naturally.

These problems typically have a feasible solution set of the form

ZMI =
( NI∏

i=1

XLS−C
i

) ⋂
Y L,

where XLS−C
i represents the solution set of the item i lot-sizing subproblem

and Y L is the set resulting from constraints dealing with the interaction be-
tween items, either because the items are competing for scarce resources such
as machines, manpower, or finance, or because there are switch-over times
or costs that depend on the order of production (set-up) of the items. Thus
sometimes Y L decomposes into

Y L = Y PM
⋂

Y PQ,

where Y PM is the production mode set modeling the restrictions on set-ups
and start-ups, and Y PQ the production quantity set indicating the restrictions
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on the production levels. As both production mode and production quantity
constraints are typically by time period, Y PM and Y PQ often decompose
further into

Y PM =
NT∏
t=1

Y PM
t and Y PQ =

NT∏
t=1

Y PQ
t .

In this chapter we study ways to model the linking set Y L, or more specifically
the sets Y PM and Y PQ. This leads us to extend the single-item classification
introduced in Chapter 4 to include a classification of the production con-
straints linking items, leading to

{PROB−CAP−V AR}−PM−PQ.

One important aspect of the linking constraints is the restriction that they
impose on the set of production, or set-up sequences. Thus in Figure 12.1 we
show graphically three different production plans covering four periods. The
length of each rectangle indicates the time spent in producing the item during
the given period.

t=1 t=2 t=3 t=4

2 3 1 4 4 1 2 1 3 42 3

1 2 2 42

1 2 2 3 4

4

2

Figure 12.1. Three different production plans.

We observe that in the first sequence many items are produced in each
period, while in the last two sequences there are at most one, respectively
two, set-ups in each period. This turns out to be an important distinction in
our study of the linking sets Y L.

We now describe the contents of the chapter.

• We start in Section 12.1 by extending our single-item classification scheme
to multi-item problems by describing the sort of constraints encountered
in each time period. Specifically we distinguish between a production mode
classification that essentially characterizes the constraints on set-ups and
start-ups linking the items in each period, and a production quantity clas-
sification that describes the sort of resource or budget type constraints
that limit the total amount produced in each period.
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• Next we present in Section 12.2 formulations for the case where only one
set-up is allowed per period, problems often referred to as small bucket
problems. We present tight formulations when each individual item is
of the form DLS-CC, DLS-CC-B, and for submodels consisting just of
set-ups and start-ups or sequence-dependent changeovers. Problems with
discrete lot-sizing and start-ups are often called discrete lot-sizing and
scheduling problems.

• Problems with two or more set-ups are presented in Section 12.3. The case
of at most two set-ups, sometimes referred to as the proportional lot-sizing
problem, forms the basis for the general case.

• Production quantity constraints are presented in Section 12.4. Here the
single-period problem is already NP-hard, so all that is known are various
families of valid inequalities. These constraints often arise in applications
and are difficult to treat effectively in practice.

• Finally in Section 12.5 we consider a multi-item constant capacity problem
with a family set-up variable in addition to, or in place of, the individual
item set-up variables. The uncapacitated version with both family and
item set-up costs is known as the joint replenishment problem.

12.1 Joint Resource Classification

Many items may require the same resources. Such a resource may be a ma-
chine, a specialized set of workers, a facility, and so on. Each of these may lead
to a production mode PM constraint restricting set-ups and/or a production
quantity PQ constraint limiting the amount that can be produced.

As earlier, we use the compact notation n and m to represent, respectively,
the number of time periods and number of items in canonical multi-item
models, whereas we use NT and NI for specific production planning instances.

12.1.1 Production Mode Classification

First we consider the structure of the single-period sets Y PM
t . In the first field

PM , we limit the choice to one out of six versions

PM = [M1, M1−SC,M1−SQ,Mk, Mk−SC,Mk−SQ]1,

where Mk indicates at most k set-ups, and M∞ indicates no restriction on the
number of set-ups.

M1: This is the simplest case in which there is at most one set-up per pe-
riod. Here there is just the additional constraint

m∑
i=1

yi
t ≤ 1 for all t.
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M1-SC: This is the same as M1, except for the additional presence of start-up
and/or switch-off variables defined exactly as in Chapter 10:

zi
t = 1 if yi

t = 1 and yi
t−1 = 0

for the start-up variables and

wi
t = 1 if yi

t = 1 and yi
t+1 = 0

for the switch-off variables.

M1-SQ: This is the same as M1-SC, except for the additional presence of
sequence-dependent changeover variables indicating that one switches from a
set-up of item i in period t − 1 to a set-up of item j in period t. For this one
introduces the variables

χij
t = 1 if yi

t−1 = 1 and yj
t = 1.

When more than one item can be produced per period, we need to make
precise what we mean by a start-up. First we assume that only one item is
set up at any moment during a period. Also, as before, an item can only be
produced if it is set up. Now we say that an item i starts up in period t if it
is set up in period t, and item i has not been set up continuously since before
the end of period t − 1. Thus in the first production plan shown in Figure
12.1, item 1 has a start-up in period 2, but item 4 does not.

We now continue with the production mode options.

Mk-SC: Here at most k ≥ 2 items can be set up in a period, and start-up
variables are present.

Mk-SQ: Here at most k ≥ 2 items can be set up in a period, and sequence-
dependent changeover variables are present.

M∞: Here any number of items can be set up in a period.

The production mode classification is thus

PM = [M1, M1−SC,M1−SQ,Mk, Mk−SC,Mk−SQ]1.

12.1.2 Production Quantity Classification

In the field PQ, there is a choice of at most one out of six versions

PQ = [PC, PC−SU, PC−ST, PC−SQ,PC−U, PC−FAM ]1 .

PC: This is the simplest case in which there is just limited production capac-
ity. Here there is just the additional resource capacity constraint:
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m∑
i=1

aixi
t ≤ Lt for all t,

where ai is the amount of capacity, often production time, consumed per unit
of item i produced.

PC-SU : This is similar to the previous case PC, except for the addition of set-
up times that reduce the available production capacity of the joint resource.
Here one adds

m∑
i=1

aixi
t +

m∑
i=1

biyi
t ≤ Lt for all t,

where bi is the amount of capacity consumed per set-up of item i.

PC-ST : This is similar to the previous case PC-SU , except for the replace-
ment of set-up times by start-up times. Here one adds

m∑
i=1

aixi
t +

m∑
i=1

cizi
t ≤ Lt for all t,

where ci is the amount of capacity consumed per start-up of item i. Note that
in this case the production mode Mk-SC is necessarily required to complete
the model.

PC-SQ: This is similar to the previous case PC-ST , except for the replace-
ment of set-up times by sequence-dependent changeover times. Here one adds

m∑
i=1

aixi
t +

m∑
i,j=1

cijχij
t ≤ Lt for all t,

where cij is the amount of capacity consumed per changeover from item i to
item j. Note that in this case the production mode Mk − SQ is also required.

PC-U : This indicates that there is no joint limit on the production level.

PC-FAM : This indicates that there are family set-up variables associated to
the multi-item production constraint of the form:

m∑
i=1

aixi
t ≤ LtYt for all t,

where Yt is a 0-1/integer variable indicating a family set-up or number of
set-ups in period t.

The production mode classification is thus
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PQ = [PC, PC−SU, PC−ST, PC−SQ,PC−U, PC−FAM ]1.

We have already seen that several problems involve modeling of both the
production mode and the production quantity constraints.

The combined PM -PQ classification is now

[M1, M1−SC,M1−SQ,Mk, Mk−SC,Mk−SQ]1 /

[PC, PC−SU, PC−ST, PC−SQ,PC−U, PC−FAM ]1.

We now consider how to model, or remodel these different cases. In the
next two sections, we consider different production modes. First the case with
one set-up per period, and then with more than one set-up. After that we
consider the production quantity constraints.

12.2 Production Mode Models: One Set-Up

12.2.1 Single Set-Up Constraint: M1

The basic single level multi-item problem with a single set-up per period and
backlogging LS-C-B/M1 can be formulated as

min
∑
i,t

p′i
t xi

t +
∑
i,t

h′i
t si

t +
∑
i,t

b′i
t ri

t +
∑
i,t

qi
ty

i
t

si
t−1 − ri

t−1 + xi
t = di

t + si
t − ri

t for all i, t

xi
t ≤ Ci

ty
i
t for all i, t∑

i

yi
t ≤ 1 for all t

s ∈ R
m(n+1)
+ , r, x ∈ R

mn
+ , y ∈ {0, 1}mn,

where, as before, the variables ri
0 do not exist. This problem is tradition-

ally called small bucket because M1 is often used to model problems with
small time windows/periods/buckets during which the machine set-up status
remains constant. For certain special cases, the convex hull of solutions is
known.

Discrete Lot-Sizing with Constant Capacities

The reformulation that is tight for a single item carries over to this multi-item
case, and again leads to a network flow problem.
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Theorem 12.1 The polyhedron
t∑

u=1

yi
u ≥ �di

1t

Ci
� for all i, t

∑
i

yi
t ≤ 1 for all t

y ∈ [0, 1]mn

gives conv(XDLS−CC/M1). Optimization over this polyhedron is a network flow
problem.

As in Chapter 9, it suffices to introduce the variables zi
t =

∑t
u=1 yi

u. Figure
12.2 shows that the resulting problem is a network flow problem (with lower
bounds on the zi

t flows).
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Figure 12.2. Small bucket discrete lot-sizing as a network flow.

Discrete Lot-Sizing with Constant Capacities and Backlogging

Theorem 12.2 Optimizing over the polyhedron

ri
t + Ci

t∑
u=1

yi
u ≥ di

1t for all i, t

ri
t + Cif i

t

t∑
u=1

yi
u ≥ Cif i

t �
di
1t

Ci
� for all i, t

∑
i

yi
t ≤ 1 for all t

r ∈ R
mn
+ , y ∈ [0, 1]mn
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solves DLS-CC-B/M1, where f i
t = di

1t

Ci − 	di
1t

Ci 
 for all i, t.

This result also follows directly by applying Theorem 8.2 to the system

r̃i
t + zi

t ≥ bi
t, r̃

i
t ≥ 0, zi

t ∈ Z for all t,

where r̃i
t = ri

t/Ci, bi
t = di

1t/Ci and zi
t =

∑t
u=1 yi

u as above. Again using Figure
12.2, the matrix arising from the additional constraints∑

i

yi
t ≤ 1 for all t,

zi
t − zi

t−1 = yi
t for all i, t

is a network matrix, and so is totally unimodular.
Note that in practice the reformulation of PROB-CAP -V AR/M1

obtained by intersecting an exact or approximate formulation for
conv(XPROB−CAP−V AR

i ) for each item i with Y M1
t = {yt :

∑
i yi

t ≤ 1}
for all periods t is typically very strong. A partial explanation is that the
latter constraints do not destroy the structure of the optimal solutions of
XPROB−CAP−V AR

i .

12.2.2 Start-Ups and Changeovers M1-{SC, SQ}
In this single set-up model, the production sequences are very simple. It suf-
fices to indicate which item, if any, is set up in each period. With start-ups
and changeovers, the sets to be studied are, respectively,

Y M1−SC = { (y, z) ∈ {0, 1}mn × {0, 1}mn :∑
i

yi
t ≤ 1 for all t

zi
t ≥ yi

t − yi
t−1, zi

t ≤ yi
t, zi

t ≤ 1 − yi
t−1, for all i, t}

and

Y M1−SQ = { (y, χ) ∈ {0, 1}mn × {0, 1}m2n :∑
i

yi
t ≤ 1 for all t

χij
t ≥ yi

t−1 + yj
t − 1, χij

t ≤ yi
t−1, χij

t ≤ yj
t for all i, j, t}.

For simplicity below, we assume that a dummy job 0 (machine idle) has
been added, so that the machine restriction will now be written as an equality

m∑
i=0

yi
t = 1 for all t.

To understand the tight formulations for these sets, we consider a simple
example.
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Example 12.1 Consider the five-period production sequence 1-2-2-4-3 (i.e.,
y1
1 = y2

2 = y2
3 = y4

4 = y3
5 = 1). Graphically this can be represented as a path

through a directed graph as shown in Figure 12.3.
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t=1 t=2 t=3 t=4 t=5

i=1

i=2

i=3

i=4

Figure 12.3. A five-period production sequence.

This immediately suggests an alternative formulation for Y M1−SQ, namely

1 =
∑

i

yi
1 (12.1)

yi
t−1 =

∑
j

χij
t for all i, and t ≥ 2 (12.2)

∑
i

χij
t = yj

t for all j, and t ≥ 2 (12.3)

y ∈ [0, 1]mn, χ ∈ [0, 1]m
2n. (12.4)

As this is the standard formulation for the flow of one unit through a network,
the resulting coefficient matrix is known to be totally unimodular, and we have

Proposition 12.3 The polyhedron (12.1)–(12.4) gives conv(Y M1−SQ).

To link the start-up and changeover variables, we have

zj
t =

∑
i:i�=j

χij
t = yj

t − χjj
t .

Therefore to find conv(Y M1−SC), it suffices to find the projection of
conv(Y M1−SQ) onto the (yi

t, χ
jj
t ) space, and then substitute for χjj

t .

Proposition 12.4 conv(Y M1−SC) is given by
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∑

i

yi
t = 1 for all t

zi
t ≥ yi

t − yi
t−1 for all i, t

zi
t ≤ yi

t for all i, t

zi
t +

∑
j:j �=i

(yj
t − zj

t ) ≤ 1 − yi
t−1 for all i, t

y, z ∈ [0, 1]mn.

Note that the last inequality is a strengthening of the initial constraint
zi

t ≤ 1 − yi
t−1. It says that the three possibilities “item i is set up in period

t − 1,” “item i is started up in period t,” and “some item other than i is
produced in both periods t − 1 and t” are mutually exclusive.

12.3 Production Modes: Two or More Set-Ups

When dealing with problems involving both more than one set-up per period
and start-ups, we make two slightly restrictive assumptions.

i. The last item set up in one period is always the first item set up in the
following period.
ii. Each item is set up at most once in each period.

Thus the five-period production set-up sequences

{12}{2}{24}{43}{3}
and

{142}{2}{2534}{4513}{3}
are allowed. On the other hand the sequence

{12}{2}{24}{13}{3}
is not allowed because item 4 is set up last in period 3, and a different item 1
is set up first in period 4. However, it can be replaced by the feasible sequence

{12}{2}{24}{413}{3}
with zero production of item 4 in period 4. Also the sequence

{142}{2}{2532}{2513}{3}
is not allowed because item 2 is set up twice in period 3. However, it is
equivalent in certain circumstances to the feasible sequence

{142}{20}{0532}{2513}{3},

where item 0 is a dummy or idle item.
The general case Mk-SC, with any number k > 2 of set-ups per period, is

closely related to that with at most two set-ups M2 − SC, so we start with
the latter case.
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12.3.1 Two Set-Ups: M2

Here we allow up to two items to be set up in each period. Our assumptions
imply that there is at most one start-up per period.

Proposition 12.5 With the introduction of an “idle” item “ 0”, the set of
feasible set-up sequences Y M2−SC is described by the following constraint set,

zi
t ≥ yi

t − yi
t−1 for all i, t∑

i

(yi
t − zi

t) = 1 for all t

∑
i

zi
t ≤ 1 for all t

zi
t + zi

t−1 ≤ yi
t for all i, t

y, z ∈ {0, 1}mn.

In this formulation, the basic constraint
∑

i yi
t ≤ 2 is decomposed into∑

i(y
i
t − zi

t) = 1 stating that there is exactly one item set up but not started
up in each period, and

∑
i zi

t ≤ 1 stating that at most one item can be started
up. The constraint that zi

t + zi
t−1 ≤ yi

t says that i can start up at most once
in periods t − 1 and t, and if it starts up in either period, then it is set up in
period t. This particular tightening of the defining constraint zi

t ≤ yi
t is only

valid in the two set-up case.
To understand whether this formulation can be improved, we again look

at the problem with changeovers, namely the set Y M2−SQ which can be for-
mulated as Y M2−SC plus additional constraints on the (y, z, χ) variables that
ensure the following.

χij
t = 1 if yi

t = yj
t = zj

t = 1 for all i, j, t, i �= j,
χii

t = 1 if yi
t = 1 and

∑
j zj

t = 0 for all i, t.

To obtain a tight formulation of Y M2−SQ, we consider again a unit flow
model, but with a different interpretation. Here the polyhedron (Q) represents
the flow of a single unit from item to item over time

∑
i

χij
t = δj

t for 1 ≤ j ≤ m, 1 ≤ t ≤ n

∑
j

χij
t = δi

t−1 for 1 ≤ i ≤ m, 1 ≤ t ≤ n

∑
i

δi
0 = 1

χ ∈ [0, 1]m
2n

shown in Figure 12.4, where δi
t is the flow through node (i, t) and represents

the set-up status at the end of period t, that is, δi
t = 1 if the machine is set
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up for item i at the end of period t, and χij
t is the flow from node (i, t − 1) to

node (j, t), and the path shown corresponds to the four period set-up sequence
(12)(2)(24)(43).

1,0

2,0

3,0

4,0

1,1

2,1

3,1

4,1

1,2

2,2

3,2

4,2

1,3

2,3

3,3

4,3

1,4

2,4

3,4

4,4

t=1 t=2 t=3 t=4

i=1

i=2

i=3

i=4

t=0

χij χij χij χijδi δi δi δi

1 2 3 44321
δi

0

Figure 12.4. M2: Four-period production sequence.

In this formulation, the set-up variable yi
t is obtained from the equation

yi
t = δi

t−1 + δi
t − χii

t . As for M1-SQ, to convert this into a tight formulation
for M2-SC, we can use the equation zj

t =
∑

i:i�=j χij
t to link the start-up and

changeover variables, and then we need to take the projection of Q.

Proposition 12.6 conv(Y M2−SC) is given by
∑

i

(yi
t − zi

t) = 1 for 1 ≤ t ≤ n (12.5)

zi
t + zi

t−1 ≤ yi
t for 1 ≤ i ≤ m, 1 ≤ t ≤ n (12.6)

yi
t − zi

t ≤ yi
t−1 for 1 ≤ i ≤ m, 1 ≤ t ≤ n (12.7)

yi
t +

∑
j:j �=i

(yj
t+1 − zj

t+1 − zj
t ) ≤ 1 for 1 ≤ i ≤ m, 1 ≤ t ≤ n (12.8)

y, z ∈ [0, 1]mn. (12.9)

Note that here (12.8) is a constraint strengthening the initial formulation.
It says that “item i is set up during period t” and “some item other than i is
set up throughout period t” are mutually exclusive.

12.3.2 Any Number of Set-Ups

Surprisingly, passing from k = 2 set-ups to an arbitrary number of set-ups
turns out to be very simple. The crucial observations are:
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i. Any item that is not set up first or last in a period t satisfies zi
t = yi

t whether
it is set up or not.
ii. The previous unit flow model for k = 2 models precisely those items that
are first and last.

Sequence-Independent Variables Mk-SC

From the above observations, we obtain:

Proposition 12.7 conv(Y M∞−SC) is the (y, z, w)-projection of the polyhe-
dron

m∑
j=1

(yj
t − zj

t ) = 1 for all t

yi
t − zi

t = yi
t−1 − wi

t−1 for all i, t ≥ 2

yi
t − zi

t ≥ φii
t for all i, t

yi
t − wi

t ≥ φii
t for all i, t

φii
t ≥ yi

t − zi
t − wi

t for all i, t

yi
t +

∑
j:j �=i

φjj
t ≤ 1 for all i, t

y, z, w, φ ∈ [0, 1]mn.

In this formulation, the additional 0–1 variable φii
t takes the value 1 when

item i is the last item set up in period t − 1, is the only item set up in period
t, and is the first item set up in period t + 1. This implies that, when φii

t = 1,
no item is started up or switched off in period t.

Observation 12.1 To obtain conv(Y Mk−SC) for k > 2, it suffices to add the
constraints

m∑
j=1

zj
t ≤ k − 1 for all t

to the formulation of conv(Y M∞−SC).

Sequence-Dependent Variables Mk-SQ

Here we allow more generality in that each item can be produced more than
once per period. This occurs for instance when there are production batches
of bounded or fixed size. For simplicity, consider just one time period, and
suppose that dummy products, denoted by i = 0 and i = m+1, are used so as
to determine the first and last items produced in the period. The formulations
described here can be easily extended to multiple time periods.
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A first formulation for Y Mk−SQ can be obtained by adapting the known
unit flow formulation (12.1)–(12.4) for Y M1−SQ. It suffices essentially to re-
define or interpret the variable χij

t as the batch changeover from product i
produced as batch number t − 1 to product j produced as batch number
t. So, the index t now represents the batch instead of the time period. The
only modification in the formulation is that Equation (12.2) becomes a ≥-type
constraint to reflect the fact that the number of batches processed is not fixed.

Unfortunately, this unit flow formulation involves a large number of vari-
ables, especially in multi-period models with many batches per period. There-
fore we suggest another formulation with fewer variables and constraints. We
now temporarily modify our standard interpretation for the variables y.

Let yi be the number of set-ups of item i in the period, χij be the number
of times production is changed from i to j, and q be an a priori upper bound
on the number of times any item is produced in the period.

Note that in uncapacitated models we can take q = 1, but if items are
produced in batches of a fixed maximum size, one may wish to produce the
same item several times within a period.

Copying well-known formulations for the prize-collecting traveling sales-
man and vehicle routing problems, we obtain the formulation

∑
j �=0

χ0j = 1 (12.10)

∑
j

χij = yi for i �= 0, m + 1 (12.11)

∑
i

χij = yj for j �= 0, m + 1 (12.12)

∑
i�=m+1

χi,m+1 = 1 (12.13)

yi, χij ∈ {0, 1, . . . , q} for all (i, j) (12.14)
Subtour elimination constraints. (12.15)

Here the constraint (12.10) says that there is a first job, and the second set
of constraints (12.11) that the number of times item i is produced is equal to
the number of changeovers from i to some other item (itself included). The
other constraints are similar.

As we must deal with integer rather than 0–1 variables, the subtour elim-
ination constraints are somewhat non-standard.

Proposition 12.8 i. A vector (y, χ) satisfying the system (12.10)–(12.14)
provides a feasible production sequence if and only if the induced directed multi-
graph does not contain a disconnected directed Eulerian (i.e., all nodes have
even degree) subgraph.
ii. The valid inequality
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∑
(i,j)∈E(S)

χij ≤
∑
i∈S

yi − 1
q
yk for k ∈ S (12.16)

eliminates such a disconnected multigraph on the node set S ⊆ {1, . . . , m},
where E(S) is the set of pairs (i, j) with i, j ∈ S.

Example 12.2 i. Suppose that m = 4, q = 2 and consider the set-up sequence
1, 2, 2, 4, 3, 3. This sequence is represented by y1 = y4 = 1, y2 = y3 = 2, and
χ01 = χ12 = χ22 = χ24 = χ43 = χ33 = χ35 = 1.
ii. Suppose now that m = 6, q = 2, and consider the vector y1 = y2 = 2, y3 =
y4 = y6 = 1, χ02 = χ13 = χ14 = χ22 = χ26 = χ31 = χ41 = χ67 = 1 that
satisfies the system (12.10)–(12.14). However, as shown in Figure 12.5, it is
not a feasible production sequence.

Taking S = {1, 3, 4} and k = 1 in Proposition 12.8, we obtain the inequal-
ity

χ13 + χ31 + χ14 + χ41 + χ34 + χ43 ≤ y1 + y3 + y4 − 1
2
y1,

which is violated by one unit, and thus cuts off the above vector.

0 2 2 6 7

44 1

31

7

Figure 12.5. A “non-sequence”.

The exponential number of valid inequalities (12.16) can be added as cut-
ting planes at nodes of the branch-and-cut tree having either fractional or
integer (y, χ) values. In the latter case it is trivial to identify violated inequal-
ities as shown in Example 12.2.

12.4 Production Quantity Constraints PQ

12.4.1 Product Resource Constraints PC and PC-SU

The solution set of the typical single-level problem LS-C/PC-SU can be
formulated as
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si
t−1 + xi

t = di
t + si

t for all i, t (12.17)

xi
t ≤ Ci

ty
i
t for all i, t (12.18)∑

i

aixi
t +

∑
i

biyi
t ≤ Lt for all t (12.19)

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn. (12.20)

Viewed as the set
( ∏m

i=1 XLS−C
i

) ⋂ ( ∏n
t=1 Y PC−SU

t

)
, a natural candidate

choice for the capacity constraint set Y PC−SU is
m∑

i=1

aixi +
m∑

i=1

biyi ≤ L

xi ≤ Ciyi for all i

x ∈ R
m
+ , y ∈ {0, 1}m,

where the index t has been dropped for simplicity of notation to represent the
single-period model Y PC−SU . When bi = 0 for all i, we write Y PC .

Valid Inequalities for Y PC and Y PC−SU

We now present valid inequalities for variants of the set Y PC−SU . All the
inequalities are based on the fact that the set is closely related to the single-
node flow set studied in Section 8.9.

Proposition 12.9 For Y PC , if S ⊆ {1, . . . , m} is a cover with
∑

i∈S aiCi −
L = λ > 0, then ∑

i∈S

aixi +
∑
i∈S

(aiCi − λ)+(1 − yi) ≤ L (12.21)

is valid for Y PC .

Example 12.3 Suppose that m = 3, production of each item is at constant
capacity with C1 = 5, C2 = 4, C3 = 3, the resource consumption rates are
a1 = 1, a2 = 2, a3 = 3, respectively, set-up times are bi = 0 for i = 1, 2, 3,
and the total machine availability is L = 20. The machine constraint in each
period is then:

x1 + 2x2 + 3x3 ≤ 20
x1 ≤ 5y1, x2 ≤ 4y2, x3 ≤ 3y3

x ∈ R
3
+, y ∈ {0, 1}3,

or

x1 + 2x2 + 3x3 ≤ 20
x1 ≤ 5y1, 2x2 ≤ (2 × 4)y2, 3x3 ≤ (3 × 3)y3

x ∈ R
3
+, y ∈ {0, 1}3.
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For the flow cover C = {1, 2, 3} with λ = 2, the flow cover inequality (12.21)

x1 + 2x2 + 3x3 ≤ 20 − (5 − 2)(1 − y1) − (8 − 2)(1 − y2) − (9 − 2)(1 − y3)

is obtained.

A more restricted single-period production quantity set is obtained by also
incorporating some knowledge from the lot-sizing model. Now consider the set

Ỹ PC−SU = Y PC−SU ∩ {(σ, x, y) ∈ R
m
+ × R

m
+ × R

m
+ : xi ≤ ρiyi + σi for all i}.

Proposition 12.10 If T ⊆ {1, . . . , m} is a cover with
∑

i∈T (aiρi + bi)−L =
λ > 0, the inequality

∑
i∈T

aixi +
∑
i∈T

biyi +
∑
i∈T

[aiρi + bi − λ]+(1 − yi) ≤ L +
∑
i∈T

aiσi (12.22)

is valid for Ỹ PC−SU .

In particular suppose that the single-item problems are uncapacitated (Ci

is large for all i). One obvious choice for ρi and σi is given by the most basic
(l, S) inequality

xi
t ≤ di

ty
i
t + si

t.

However, the (l, S) inequalities allow a much larger choice. Specifically con-
sider the two inequalities

xi
t +

∑
u∈Si

xi
u ≤ di

tliy
i
t +

∑
u∈Si

di
uliy

i
u + si

li and

∑
u∈Si

xi
u ≤

∑
u∈Si

di
uliy

i
u + si

li ,

where Si ⊆ {t + 1, . . . , li}. If we take σi
t to be the slack variable of the second

inequality, the first can be written as

xi
t ≤ di

tliy
i
t + σi

t, σi
t ≥ 0,

and thus this inequality can be used in Proposition 12.10.
Suppose now that we wish to find a separation algorithm for a point

(x∗, y∗, s∗) with respect to the set Ỹ PC−SU . Note that once li is chosen for
each i ∈ T , and assuming that there is no violated (l, S) inequality for item
i, the smallest value for σi

t is obtained by setting Si = {u ∈ {t + 1, . . . , li} :
x∗i

u > di
uli

y∗i
u }.

Another family of valid inequalities for Ỹ PC−SU can be obtained from the
reverse flow cover inequalities; see Section 8.9.
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Proposition 12.11 If T ⊆ {1, . . . , m} is a reverse cover with L−∑
i∈T (aiρi +

bi) = µ > 0, and T ′ ⊆ N \ T , the inequality
∑
i∈T

aixi +
∑
i∈T

biyi +
∑
i∈T ′

[aixi + (bi − µ)yi] ≤
∑
i∈T

(aiρi + bi) +
∑
i∈T

aiσi

(12.23)

is valid for Ỹ PC−SU .

Example 12.4 Suppose that m = 3, and for some period t, a = (1, 2, 1), b =
(4, 10, 7), L = 21, d = (6, 2, 5) and the capacities are large. The original re-
source constraint is

x1 + 2x2 + x3 + 4y1 + 10y2 + 7y3 ≤ 21,

and we use the (l, S) inequalities xi ≤ diyi + si to define the set Ỹ PC−SU .
Taking T = {1, 2} as flow cover,

∑
i∈T (aidi +bi) = 1×6+4+2×2+10 = 24,

so λ = 3, and we obtain the flow cover inequality (12.22),

x1 + 2x2 + 4y1 + 10y2 + 7(1 − y1) + 11(1 − y2) ≤ 21 + s1 + 2s2.

Now consider a second instance with m = 4, a = (1, 1, 1, 1), b = (2, 2, 1, 3),
d = (5, 4, 5, 6), and L = 16. Taking T = {2, 3} as a reverse cover with µ =
16 − (4 + 2) − (5 + 1) = 4, and T ′ = {1}, we obtain the reverse flow cover
inequality (12.23)

x1 − 2y1 + x2 + 2y2 + x3 + y3 ≤ 12 + s2 + s3.

12.5 Family Set-Ups: PC-FAM

Consider the problem LS-C, PC-FAM :

min
∑

i

∑
t

hi
ts

i
t +

∑
i

∑
t

qi
ty

i
t +

∑
t

QtYt

si
t−1 + xi

t = di
t + si

t for all i, t∑
i

xi
t ≤ LtYt for all t

xi
t ≤ Ci

ty
i
t for all i, t

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn, Y ∈ {0, 1}n,

where Yt here represents the family set-up if any of the items {1, . . . , m} are
produced in period t and Lt is the maximum amount that can be produced
in period t. Note that we assume that the costs have been rewritten so that
pi

t = 0 for all i, t.
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Here we consider specifically a no individual set-up variant, denoted LS∗-
U, PC-FAM with uncapacitated production of each item (Ci

t = Lt) and no
individual set-up costs (qi

t = 0 for all i, t). This has the simpler formulation

min
∑

i

∑
t

hi
ts

i
t +

∑
t

QtYt

si
t−1 + xi

t = di
t + si

t for all i, t∑
i

xi
t ≤ LtYt for all t

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , Y ∈ {0, 1}n.

We now derive a relaxation for LS∗-U, PC-FAM taking into account the
family set-up variables. We restrict our attention to the problem in which the
budget is constant Lt = L in each period.

We construct aggregated products consisting of the items {i, i+1, . . . , m}.
Let Si

t =
∑

j≥i sj
t , Xi

t =
∑

j≥i xj
t ,Di

t =
∑

j≥i dj
t , and Hi

t = hi
t − hi−1

t for all
i, t. Now the storage costs can be rewritten as∑

i

∑
t

hi
ts

i
t =

∑
i

∑
t

Hi
tS

i
t .

As Si
t−1 + Xi

t = Di
t + Si

t and Xi
t ≤ LYt, a relaxation for the aggregate

products is obtained by taking any formulation of conv(XWW−CC). Thus the
formulation

(Si, Y ) ∈ conv(XWW−CC) for all i (12.24)

si
t = Si

t − Si+1
t for all i, t (12.25)

is a relaxation of the problems LS∗-U, PC-FAM and LS-C, PC-FAM .
As it is a relaxation, it does not follow automatically that the s obtained

from (12.25) and the production vector x obtained from the flow balance
constraints will be feasible. However, for certain objective functions this re-
laxation can be shown to solve the original problem.

Theorem 12.12 The polyhedron

{(S1, . . . , Sm, Y ) ∈ R
n
+ ×· · ·×R

n
+ ×Z

n
+ : (Si, Y ) ∈ conv(XWW−CC) for all i}

is integral.
With Wagner–Whitin costs (hi

t ≥ 0 for all i, t) and ordered storage costs
(Hi

t = hi
t − hi−1

t ≥ 0 for all i, t), the linear program

min{
∑

i

∑
t

Hi
tS

i
t +

∑
t

QtYt : (s, S, Y ) satisfy (12.24) and (12.25)}

solves WW ∗-U, PC-FAM .

The same result holds when the family set-up variables Yt represent
batches, and are restricted to unbounded or bounded integer values.
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Exercises

Exercise 12.1 Consider an instance of DLC-CC/M1 with NI = 3, NT = 4,

(di
t) =

⎛
⎝0 5 3 8

7 0 4 2
0 0 6 7

⎞
⎠, (hi) = (1, 2, 3), (qi) = (30, 10, 50), and (Ci) = (10, 10, 12).

i. Convert to a network flow problem.
ii. Solve by a network flow or linear programming algorithm.

Exercise 12.2 Consider an instance of DLC-CC-B/M1 with the same data
as in Exercise 12.1 and backlogging costs bi = (2, 4, 4). Solve using LS–LIB.

Exercise 12.3 Consider an instance of a multi-item discrete lot-sizing prob-
lem with sequence-dependent changeover costs in which at most one item can
be produced per period. The instance has 10 items and 35 periods. The de-
mands have been normalized so di

t ∈ {0, 1}. Below we list the periods in which
there is demand for the 10 items and the changeover costs. The unit storage
costs are 10 per unit per period independent of the item and the time period.
Solve using tight formulations for DLS-CC-SC and M1-SQ, and appropriate
equations linking the start-up and changeover variables.

i = 1 16 17 21 25 30
i = 3 9
i = 4 14 33
i = 5 18 27 31 35
i = 6 9 17 34
i = 7 7 9 20 21 24 30
i = 8 21 25 28
i = 9 24
i = 10 10 11 12

(cij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

78 86 172 211 134 146 232 229 191
165 193 166 214 139 182 159 153 204
214 170 149 166 223 124 212 198 148
157 115 178 72 125 197 234 204 224
164 104 132 169 90 77 147 108 87
163 210 133 188 92 112 220 213 217
112 89 167 145 83 124 122 211 141
133 132 235 123 185 181 232 122 76
214 150 217 100 213 104 230 170 133
231 160 96 147 215 210 210 164 215

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Exercise 12.4 Consider a problem with mode constraints WW -U/M1 with
NT = 15, NI = 6,

(di
t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 83 108 114 121 110 124 104 86 87
0 0 0 0 0 0 122 101 89 108 101 109 106 108 76
0 0 0 0 0 0 83 82 112 109 119 85 99 80 123
0 0 0 0 0 0 101 81 117 76 103 81 95 105 102
0 0 0 0 0 0 111 98 97 80 98 124 78 108 109
0 0 0 0 0 0 107 105 75 93 115 113 111 105 85

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(qi) = (600, 1000, 800, 400, 800, 400) and (hi) = (3, 1, 1, 3, 2, 2).

Solve this problem using a tight extended formulation for conv(XWW−U ) or
using LS–LIB.

Exercise 12.5 Consider a problem with mode constraints WW -U/Mk with
the same data as in the previous exercise. How much does the increased flex-
ibility of k = 2, 3 bring?
What happens if there are in addition start-up costs g = (30, 20, 30, 40, 40, 10)?
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Exercise 12.6 Consider an instance with production quantity constraints
LS-U/PC and the same data as above, and a production limit of L = 500 for
the joint production constraint. Solve this instance.
Solve also with the addition of set-up times ST = (30, 20, 30, 40, 40, 10).

Exercise 12.7 Consider the following planning and scheduling problem in-
volving the allocation and sequencing of NI = 10 products with sequence-
dependent costs on NK = 10 parallel facilities. There is a single time period
(NT = 1). Let I = {1, . . . , NI} be the set of products, and K = {1, . . . , NK}
be the set of facilities.

For each product i, there is some minimum demand di to satisfy, there is
no initial inventory, and any amount larger than or equal to the demand di

(i.e., backlogging is not allowed) can be sold at a unit selling price pi:

(di) = (221, 118, 81, 25, 12, 56, 16, 78, 76, 24),

(pi) = (0.01, 0.01, 0.01, 0.01, 0.01, 0.09, 0.08, 0.09, 0, 10, 0, 11).

For each machine or facility k, the set PAk ⊆ I is the subset of products
that can be processed on facility k. Products are processed in batches, and
each batch outputs a single product. When one batch of product i is pro-
cessed on facility k, there is a minimum batch size MIN i

k and a maximum
batch size MAXi

k (because of required maintenance or cleaning operations, or
tool lifetime) representing the minimum and maximum quantity of product i
produced. Several batches of the same product can be produced on a facility.
PA1 = {1, 2, 8}, PA2 = {1, 2, 4, 5, 10}, PA3 = {1, 3, 4},
PA4 = {1, 2}, PA5 = {1, 2}, PA6 = {1, 6, 7, 8, 10},
PA7 = {1, 3, 9}, PA8 = {1, 2}, PA9 = {1, 2, 3},
PA10 = {1, 3, 8, 10},

MIN i
k = 5, MAXi

k = 120 for all i, k with i ∈ PAk.

For each facility k, the set TRk ⊆ PAk × PAk defines the feasible transi-
tions or product changeovers on facility k. In this particular problem instance
we assume that TRk = PAk × PAk.

For each feasible transition (i, j) ∈ TRk, the changeover cost is TCij
k . Note

that when the maximum batch size MAXi
k for a batch of product i on facility

k is reached, then a changeover from product i to itself is required to continue
to produce the same product i.

(TCij
1 ) =

⎛
⎜⎜⎝

1 2 8
1 0 0.25 0.5
2 0.5 0 0.5
3 0.5 0.5 0

⎞
⎟⎟⎠ , (TCij

2 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 4 5 10
1 0 0.5 48 48 48
2 0.5 0 48 48 48
4 48 48 0 0.5 0.5
5 48 48 0.5 0 0.5
10 48 48 0.5 0.5 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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(TCij
3 ) =

⎛
⎜⎜⎝

1 3 4
1 0 8 48
3 8 0 48
4 48 48 0

⎞
⎟⎟⎠ , (TCij

4 ) =

⎛
⎝ 1 2

1 0 1
2 1 0

⎞
⎠ , (TCij

5 ) =

⎛
⎝ 1 2

1 0 8
2 8 0

⎞
⎠ ,

(TCij
6 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 6 7 8 10
1 0 16 16 16 16
6 16 0 1 16 1
7 16 1 0 16 1
8 8 16 16 0 16
10 16 1 1 16 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (TCij
7 ) =

⎛
⎜⎜⎝

1 3 9
1 0 72 72
3 72 0 8
9 72 8 0

⎞
⎟⎟⎠ ,

(TCij
8 ) =

⎛
⎝ 1 2

1 0 2
2 2 0

⎞
⎠, (TCij

9 ) =

⎛
⎜⎜⎝

1 2 3
1 0 2 12
2 2 0 12
3 12 12 0

⎞
⎟⎟⎠, (TCij

10) =

⎛
⎜⎜⎜⎜⎝

1 3 8 10
1 0 1 8 48
3 1 0 8 48
8 8 8 0 48
10 48 48 48 0

⎞
⎟⎟⎟⎟⎠ .

Initially each machine k is ready to produce the item STk ∈ PAk without any
preparation or changeover cost,

(STk) = (8, 2, 1, 1, 2, 6, 3, 1, 3, 10).

To set a boundary condition and assign a cost to the machine status at the
end of the schedule, it costs ECi

k when item i is the last item produced on
machine k, where

ECi
k = min

j:(i,j)∈TRk

TCij
k for all i, k with i ∈ PAk.

Finally, the production time of a batch is proportional to the batch size.
In other words, for i ∈ PAk, PT i

k is the production time per unit of product i
on facility k. The capacity or production time available on facility k is CAPk.

(PT i
k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i, k 1 2 3 4 5 6 7 8 9 10
1 5.348 6.024 11.905 11.236 4.0 6.061 6.897 9.524 9.524 11.111
2 5.319 6.024 10.989 4.0 9.091 9.091
3 12.346 6.897 8.696 11.111
4 5.650 12.658
5 5.650
6 6.061
7 6.061
8 5.465 6.494 15.385
9 7.407
10 6.024 6.061 11.765

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and
(CAPk) = (480, 480, 480, 480, 672, 672, 672, 480, 480, 480).
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i. Use the classification scheme to propose a mathematical formulation for this
problem, and solve the problem.
ii. Solve the variant with changeover times TT ij

k instead of changeover costs,
and with

TT ij
k = γ TCij

k for all i, j, k and for some γ ∈ R+.

iii. Propose a formulation for the multi-period extension.

Exercise 12.8 For an instance of PC-SU with L = 500, ST = (30, 40),
and (d1

9, d
1
10, d

1
11) = (114, 121, 110), (d2

9, d
2
10, d

2
11) = (117, 76, 103), the follow-

ing partial fractional solution is obtained for two of the items (x1
9, x

2
9) =

(245.6, 193.0), (y1
9 , y2

9) = (0.71, 1), (s1
9, s

1
10, s

1
11) = (164.7, 117.9, 7.9), and

(s2
9, s

2
10, s

2
11) = (76.0, 0, 81.0).

Find a valid inequality cutting off this solution.

Exercise 12.9 Consider the single-period submodel (12.18)–(12.20) with
ai = 1, bi = b, Ci

t = B for all i with subscript t dropped. Show that the
following inequalities are valid
i. xi ≤ (B − b)yi.
ii.

∑
i∈S xi + b

∑NI
i=1 yi ≤ B − (B − bη)(1 − ∑

i∈{1,...,NI}\S yi),
where η = 	B

b 
 and S ⊆ {1, . . . , NI}.
iii. b

∑NI
i=1 yi ≤ bq − ∑

i∈{1,...,NI}\S [xi − (B − bq)yi]
with q = min{η, |S|}.

Exercise 12.10 Suppose that there are two items that a retailer requires
over the next four periods. The required amounts are d1 = (0, 0, 6, 6) for item
1 and d2 = (4, 4, 0, 0) for item 2. To be sure that the items arrive on time,
the retailer can rent one or more standard trucks to deliver the items in each
period. The rental cost per period is 100 and the capacity of a truck is 10.
Once delivered, items can be stored. The per unit storage costs for the items
are 1 and 100, respectively. Decide on an optimal rental and storage plan.

Notes

Section 12.1 A first very partial classification of multi-item problems was
proposed in Wolsey [194]. The classification used here is a little more general,
and some names and notation have changed. In particular M1 and M2 were
earlier referred to as small-bucket models, and Mk for k > 2 was a big-bucket
model. Drexl and Kimms [58] classify certain single-level multi-item problems;
specifically their classification consists of the capacitated lot-sizing problem
CLSP (called WW -U/PC or WW -C/PC in our classification), the discrete
lot-sizing and scheduling problem DLSP (called DLS-C/M1-SC/PC), the
continuous set-up lot-sizing problem CSLP (called WW -C/M1-SC/PC), the
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proportional lot-sizing and scheduling problem PLSP (called WW -C/M2-
SC/PC), and the general lot-sizing and scheduling problem GLSP (called
WW -C/Mk-SC/PC). A taxonomy of multi-item lot-sizing models, along with
a classification of the literature, is also provided in Kuik et al. [101].

Section 12.2 The results for DLS-CC/M1 are part of the folklore. The
tight formulation for DLS-CC-B/M1 is from Miller and Wolsey [125]. With
sequence-dependent changeover variables, the formulation for M1-SQ is from
Constantino [45].

Section 12.3 The formulation of M2-SQ is from Belvaux and Wolsey [26].
That for Mk-SQ was proposed by Surie and Stadtler [157] and shown to
be tight by Waterer [189]. The model in which the number of set-ups per
period can exceed one appeared in the Chesapeake models [17]. Different ways
used to tackle these problems include column generation in Kang et al. [95]
and cutting planes in Belvaux and Wolsey [26]. The prize-collecting traveling
salesman problem and subtour elimination constraints are discussed in Balas
[20].

Section 12.4 The flow and reverse flow cover inequalities for PC and PC-SU
were proposed by Miller et al. [121, 123]. In [122] they gave a tight formulation
for the special case with constant demands and set-up times. A related model
with lower bounds was studied by Constantino [47].

Though not discussed in this book, numerous specialized heuristics have
been proposed for the multi-item big bucket problem LS-U, PC-M∞ and its
variants. One of the earliest is from Dixon and Silver [57]. Very simple heuris-
tics were also proposed by Maes and van Wassenhove [112]. A Lagrangian
relaxation approach was developed by Diaby et al. [56] and column genera-
tion based heuristics can be found in Cattrysse et al. [34, 35]. An extensive
literature survey including heuristics is provided in Kuik et al. [101]. See also
Salomon [147].

Section 12.5 The problem LS-C/PC-FAM was considered by Kao [96]. The
special case with unrestricted capacities (Ci

t = M) and unrestricted family
budget (Lt = M), known as the joint replenishment problem, was shown to be
NP-hard in Arkin et al. [11]. Federgrün and Tzur [64] proposed a partitioning
heuristic, a variant of relax-and-fix, showed that it can produce ε-optimal so-
lutions, and devised a branch-and-bound algorithm for the problem. Recently
a 2-approximation primal-dual algorithm for it has been given by Levi et al.
[105].

For the no-individual set-up problem LS∗-U/PC-FAM , Federgrün et al.
[62] discuss a family of progressive interval heuristics, variants of relax-and-fix,
that provide polynomial approximation schemes, and show that they can be
effectively used to solve large problems. The special polynomial case treated
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in Theorem 12.12 was shown to be polynomial for a fixed number of items by
Anily and Tzur [9] based on a dynamic programming recursion. The theorem
itself is from Anily et al. [10].

Exercises Exercise 12.3 is an instance based on an article of Fleischmann [68]
that has been tackled in Wolsey [194]. Exercise 12.7 is the first test problem
in the Chesapeake problem set [17]. Exercise 12.9 is based on Constantino
[47] in which he showed that adding the families of valid inequalities (i) and
(ii)/[respectively, (i) and (iii)] suffices to give the convex hull of solutions when
yi are integer (resp. 0–1) variables. Exercise 12.10 is an instance taken from
Anily and Tzur [9].
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13

Multi-Level Lot-Sizing Problems

Here we consider production systems in which two or more items are produced,
and at least one item is required as an input (component, subcomponent, part)
of another. To represent the component or product structure, also known as
the bill of materials, we use a directed acyclic graph G = (V, A). Here the
nodes V represent the items, and an arc (i, j) ∈ A with associated value
rij > 0 indicates that rij units of item i are needed in the production of each
unit of item j. See Figure 13.1. Throughout D(i) = {j : (i, j) ∈ A} denotes
the set of direct successors of i ∈ V , S(i) the set of all successors, and P (i)
the set of predecessors.
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Figure 13.1. Different production structures.

It is also usual to distinguish different forms of product structure. In Figure
13.1, structure (i) is called production in series, (ii) is an assembly structure,
(iii) is a general product structure, and (iv) is a distribution or arborescence
structure. Note that it is possible to redefine the items so that rij ≡ 1 on all
arcs in the series, assembly and distribution structures, but not for the general
structure.
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Example 13.1 For the assembly structure (ii) in Figure 13.1, if we define a
new item 5´ to be 2 units of the old item 5, 6´ to be 3 units of item 6, 4´ to
be 8 units of item 4, and 2´ to be 4 units of item 2, the new product structure
is the same as before, but rij = 1 for all arcs (i, j) ∈ A.

Similarly for the distribution structure (iv), it suffices to take the new
item 3´ to be 1

3 of the old, 2´ to be 1
4 of the old, and adjust the demands

d3′
t = 3d3

t , d
2′
t = 4d2

t , d
1′
t = d1

t . The new digraphs are shown in Figure 13.2.
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3d 4d
3 1

Figure 13.2. Modified items and structures.

Before discussing properties of the different structures, we introduce what
turns out to be an important concept for our modeling of multi-level problems.
We consider here the base case where the production lead-times or produc-
tion time lags (see Chapter 2) are zero. Extensions to positive lead-times are
considered later in the chapter.

Definition 13.1 When the production lead-times are equal to zero, the eche-
lon stock of item i in period t is the total stock of item i within the system at
time t, whether held directly as stock, or as the stock of other items containing
one or more units of item i.

Thus in Figure 13.2, the echelon stock of item 4´ in the assembly structure
is the sum of the stocks of items 4´ , 2´ and 1, and the echelon stock of item
4 in the distribution structure is the sum of the stocks of items 4, 3´ , 2´ and
1´ .

As a classification scheme for multi-level problems, we just add ML-
[S,A,G,D]1 where S, A, G and D denote series, assembly, general, and dis-
tribution structure respectively.

We now outline the contents of this chapter.
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• In Section 13.1 we consider the lot-sizing in series problem. For the unca-
pacitated problem, we demonstrate a polynomial dynamic programming
algorithm. We then discuss two reformulations: one based on echelon stocks
permits a partial decomposition into single-item subproblems, and the sec-
ond multi-commodity reformulation generalizes that for the single-item
problem. Also some valid inequalities are derived, and we present the
nested property of solutions for certain classes of objective functions.

• In Sections 13.2 and 13.3 we show how the echelon stock reformulation
can be extended and can also take into account lead-times in production
for the assembly and general product structures, respectively.

• In Section 13.4 we extend the multi-level production model to include
transportation to one or more demand areas. We indicate by example how
the concept of echelon stock generalizes so that the various inequalities and
reformulations derived earlier can also be used to tighten the formulations
of these problems.

13.1 Production in Series ML-S

If there are m items, the product structure digraph is G = (V, A) with V =
{1, . . . , m} and A = {(2, 1), (3, 2), . . . , (m, m − 1)}. Thus D(i) = i − 1 and
S(i) = {1, . . . , i − 1} for i ≥ 2, D(1) = S(1) = ∅, and P (i) = {i + 1, . . . , m}
for i < m. As indicated above we can take rij = 1 on all the arcs.

The basic formulation of ML-S/LS-C, without time lags or produc-
tion/operations lead-times (see Chapter 2) and with n time periods, is:

min
m∑

i=1

n∑
t=1

pi
tx

i
t +

m∑
i=1

n∑
t=0

hi
ts

i
t +

m∑
i=1

n∑
t=1

qi
ty

i
t (13.1)

si
t−1 + xi

t = xi−1
t + si

t for 2 ≤ i ≤ m, 1 ≤ t ≤ n (13.2)

s1
t−1 + x1

t = d1
t + s1

t for 1 ≤ t ≤ n (13.3)

xi
t ≤ Ci

ty
i
t for 1 ≤ i ≤ m, 1 ≤ t ≤ n (13.4)

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈{0, 1}mn. (13.5)

In this formulation, the term xi−1
t in the flow conservation constraint (13.2) is

the dependent demand of item i in period t. The flow conservation constraint
(13.3) takes the classical form with the external (or independent) demand d1

t of
item 1 in period t. Note that in some applications there is also an independent
demand term di

t for intermediate items in the right-hand side of (13.2).
We see in Figure 13.3 that ML-S/LS-C can be viewed as a fixed charge

network flow problem.
As before we can always eliminate the production variables xi

t, or the stock
variables si

t, from the expression of the objective function. Thus often in this
chapter we assume that pi

t = 0 for all i and t.
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Figure 13.3. ML-S as fixed charge network flow.

13.1.1 Optimization for ML-S/LS-U

From the fixed charge network flow representation of ML-S, extreme solutions
correspond to acyclic support subgraphs as illustrated in the right part of
Figure 13.3, and one obtains immediately the following.

Proposition 13.1 For the uncapacitated lot-sizing in series problem ML-
S/LS-U , there exists an optimal solution with si

t−1x
i
t = 0 for all i, t, and if

xi
t > 0, then xi

t = di
αβ for some t ≤ α ≤ β.

From this it is possible to develop a dynamic programming algorithm to
solve ML-S/LS − U . The recursion is based on finding the optimal cost of
converting a quantity d1

αβ of item i available in period t into final product
item 1 so as to satisfy the demands d1

α, . . . , d1
β over the interval [α, β].

Let H(i, t, α, β) with 1 ≤ t ≤ α ≤ β ≤ n be the minimum cost of such a
transformation, and assume that H(i, t, α, β) = +∞ in all other cases.

d

x   = d

s = d

1

1

1

αβ

α,γ-1

γ,β
i,t

i

t

i-1

t

Figure 13.4. Production/stock division of the entering flow.
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What can happen to the flow of d1
αβ units flowing through the node (i, t)?

Typically it splits into two parts; see Figure 13.4. An amount d1
α,γ−1 of item

i is used up to produce the same quantity of item i − 1 in period t, and an
amount d1

γβ of item i is stocked till period t + 1.
The resulting recursion is

H(i, t, α, β) = min
(

hi
td

1
αβ + H(i, t + 1, α, β),

min
γ=α+1,...,β

[
qi−1
t + H(i − 1, t, α, γ − 1)

+ hi
td

1
γβ + H(i, t + 1, γ, β)

]
,

qi−1
t + H(i − 1, t, α, β)

)
if dα > 0

H(i, t, α, β) = H(i, t, α + 1, β) if dα = 0, α < β

H(i, t, α, α) = 0 if dα = 0.

Note that if dα = 0 and α < β, H(i, t, α, β) = H(i, t, α + 1, β) for all i, t.
Now, to obtain a complete recursion solving ML-S/LS-U , we initialize the

recursion with

H(1, t, α, β) = h1
t d

1
max[t+1,α],β + H(1, t + 1,max[t + 1, α], β) and

H(1, t, t, t) = 0 for all 1 ≤ t ≤ α ≤ β ≤ n.

Then we add a preproduct m + 1 representing the raw material used in
the production at level m. The total requirement d1

1n of this preproduct is
available at time t = 1, and it can be stored at no cost; that is, hm+1

t = 0 for
all t. We compute H(i, t, α, β) for 1 ≤ t ≤ α ≤ β ≤ n and 2 ≤ i ≤ m+1 using
the above recursion. The optimal value of problem ML-S/LS-U is given by
H(m + 1, 1, 1, n).

Example 13.2 We consider an instance of ML-S/LS-U with m = n = 3,

(hi
t) =

⎛
⎝8 8 8

4 2 2
1 1 1

⎞
⎠ , (qi

t) =

⎛
⎝ 145 74 52

78 34 83
26 79 98

⎞
⎠ and d = (0, 19, 24).

The values of H(i, t, α, β) and γ(i, t, α, β) from the dynamic programming re-
cursion are shown in Table 13.1, where γ(i, t, α, β) ∈ {α, . . . , β + 1} is the
optimal way of splitting the demand d1

αβ in the computation of H(i, t, α, β).
The entries are calculated column by column in the order shown. As d1 = 0,
we only need to consider values of α ≥ 2. We now present a sample of the
calculations arising in generating the values in Table 13.1.
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Table 13.1. Values of H(i, t, α, β)

i = 1 i = 2 i = 3 i = 4
t, α, β H γ H γ H γ H γ

3,3,3 0 3 52 4 135 4 233 4
2,3,3 184 100 3 134 4 135 3
2,2,3 184 174 3 208 4 306 4
2,2,2 0 79 3 113 3 211 3
1,3,3 368 270 3 158 3 135 3
1,2,3 528 346 2 251 2 277 4
1,2,2 152 155 2 132 2

H(1, 1, 2, 3) = h1
1d23 + H(1, 2, 2, 3) = 8 × 43 + 184 = 528

H(2, 3, 3, 3) = q1
3 + H(1, 3, 3, 3) = 52, γ = 4

H(2, 2, 2, 3) = min{q1
2 + H(1, 2, 2, 2) + h2

2d3 + H(2, 2, 3, 3), q1
2 + H(1, 2, 2, 3)}

= min{74 + 0 + 2 × 24 + 52, 74 + 184} = 174, γ = 3

H(3, 1, 2, 3) = min{h3
1d23 + H(3, 2, 2, 3),

q2
1 + H(2, 1, 2, 2) + h3

1d3 + H(3, 2, 3, 3),

q2
1 + H(2, 1, 2, 3)}

= min{1 × 43 + 208, 78 + 155 + 1 × 24 + 100, 78 + 346} = 251,

γ = 2.

The optimal value is given by H(4, 1, 1, 3) = H(4, 1, 2, 3) = 277. Working
backwards to find an optimal solution, we have that γ(4, 1, 2, 3) = 4 and thus
x3

1 = d23, y3
1 = 1, and we move to state (3,1,2,3).

As γ(3, 1, 2, 3) = 2, we see that s3
1 = d23, and we move to state (3,2,2,3).

As γ(3, 2, 2, 3) = 4, we see that x2
2 = d23, y2

2 = 1, and we move to state
(2,2,2,3).
As γ(2, 2, 2, 3) = 3, we have that x1

2 = d2, y1
2 = 1 moving to state (1,2,2,2)

and s2
2 = d3 moving to state (2,3,3,3).

In state (1,2,2,2), H(1, 2, 2, 2) = 0 and the amount d2 has been delivered.
In state (2,3,3,3), γ(2, 3, 3, 3) = 4, so we have that x1

3 = d3, y1
3 = 1 moving

to the end state (1,3,3,3).

Thus the complete production schedule is is x3
1 = d23, x2

2 = d23, x1
2 =

d2, x1
3 = d3.

13.1.2 The Echelon Stock Reformulation for ML-S

For the production in series model, the echelon stock of i in t is just the sum
of the stocks of all items containing i, namely the items j with j ≤ i.
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Let the variable ei
t represent the echelon stock of i in t. As ei

t =
∑i

j=1 sj
t ,

we can rewrite the formulation (13.1)–(13.5) with the variables ei
t in place

of the variables si
t. Summing the constraints (13.2) for j = 2, . . . , i plus the

constraint (13.3), we obtain the equation

i∑
j=1

sj
t−1 + xi

t = d1
t +

i∑
j=1

sj
t

which gives
ei

t−1 + xi
t = d1

t + ei
t,

and the constraint si
t ≥ 0 gives

ei
t ≥ ei−1

t .

Also
∑

i,t hi
ts

i
t =

∑
i,t hi

t(e
i
t − ei−1

t ) =
∑

i,t(h
i
t − hi+1

t )ei
t. Thus we obtain the

reformulation

min{
∑
i,t

(hi
t − hi+1

t )ei
t +

∑
i,t

qi
ty

i
t : (xi, yi, ei) ∈ X̃LS−C

i , ei
t ≥ ei−1

t for all i, t},

where X̃LS−C
i is the single item set

ei
t−1 + xi

t = d1
t + ei

t for all t

xi
t ≤ Ci

ty
i
t for all t

ei ∈ R
(n+1)
+ , xi ∈ R

n
+, yi ∈ {0, 1}n,

studied in Parts II and III. Note that whereas the original formulation contains
a lot-sizing subproblem only for the final product item 1, this new formulation
includes a single-item lot-sizing subproblem for each item i. Hi

t = hi
t − hi+1

t

is called the echelon holding cost of item i in period t.
Taking ZML to be the feasible region, we can write

ZML =
m∏

i=1

X̃LS−C
i ∩ {e ∈ Rm(n+1) : ei

t ≥ ei−1
t for all i, t},

where we take e0
t = 0 for all t. Using the reformulations of the earlier chapters,

we can immediately obtained the improved formulation

QML =
m∏

i=1

conv(X̃LS−C
i ) ∩ {e ∈ Rm(n+1) : ei

t ≥ ei−1
t for all i, t}

in the uncapacitated ML-S/LS-U and constant capacity ML-S/LS-CC
cases, respectively.
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13.1.3 Multi-Commodity Reformulations: Uncapacitated Case

Another way to obtain a tighter formulation of ML-S/LS-U is by using a
multi-commodity reformulation with the following variables:

zj
ut is the amount of component j, measured as a fraction of the demand dt,

produced in period u destined to end up in the finished product delivered in
period t with u ≤ t, and
wj

ut is the stock of component j, measured as a fraction of the demand dt,
in stock at the end of period u destined to end up in the finished product
delivered in period t with u ≤ t.

This leads to the formulation

min
m∑

j=1

n∑
t=0

hj
ts

j
t +

m∑
j=1

n∑
t=1

qj
t y

j
t

wj
u−1,t + zj

ut = zj−1
ut + wj

ut for 2 ≤ j ≤ m, 1 ≤ u ≤ t ≤ n

w1
u−1,t + z1

ut = δut + w1
ut for 1 ≤ u ≤ t ≤ n

xj
u =

n∑
t=u

dtz
j
ut for 1 ≤ j ≤ m, 1 ≤ u ≤ n

sj
u =

n∑
t=u+1

dtw
j
ut for 1 ≤ j ≤ m, 0 ≤ u ≤ n − 1

zj
ut ≤ yj

u for 1 ≤ j ≤ m, 1 ≤ u ≤ t ≤ n

z ∈ R
mn(n+1)/2
+ , w ∈ R

mn(n+1)/2
+ , y ∈{0, 1}mn,

where δut = 1 if u = t and δut = 0 otherwise.
Eliminating the multi-commodity stock variables and using the equivalent

form of the objective function in the (x, y) variables, one obtains a facility
location variant

min
m∑

j=1

n∑
t=1

p̃j
tx

j
t +

m∑
j=1

n∑
t=1

qj
t y

j
t (13.6)

t∑
u=1

zj
ut = d1

t for 1 ≤ j ≤ m, 1 ≤ t ≤ n (13.7)

zj
ut ≤ yj

u for 1 ≤ j ≤ m, 1 ≤ u ≤ t ≤ n (13.8)
k∑

u=1

zj
ut ≥

k∑
u=1

zj−1
ut for 2 ≤ j ≤ m, 1 ≤ k ≤ t ≤ n (13.9)

xj
u =

n∑
t=u

dtz
j
ut for 1 ≤ j ≤ m, 1 ≤ u ≤ n (13.10)

z ∈ R
mn(n+1)/2
+ , y ∈ {0, 1}mn. (13.11)
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Here the constraint (13.9) is a strengthened version of the constraint ei
t ≥ ei−1

t .
Therefore the linear relaxation of (13.6)–(13.11) is at least as strong as the
echelon stock reformulation QML derived in the last subsection. However it
can be shown that solving the linear relaxation of (13.6)–(13.11) does not
always lead to an integer solution.

13.1.4 Valid Inequalities for ML-S/LS-U

Here we use the echelon stock reformulation to suggest a first class of valid
inequalities for ML-S/LS-U . We then interpret these inequalities as a compar-
ison of inflows and outflows over a subgraph of the product structure digraph.
This allows us to obtain several more general classes of inequalities.

As we have shown that (xj , ej , yj) ∈ XLS−U ⊂ XWW−U for each compo-
nent j, the valid inequality (7.33) immediately provides us with a first class
of valid inequalities

ej
k−1 =

j∑
i=1

si
k−1 ≥

l∑
u=k

du(1 − yj
k − · · · − yj

u). (13.12)

We now give a direct interpretation of these inequalities. If yj
k = · · · =

yj
u = 0, there is no production of item j in the interval [k, u], and thus the

du units of item j that form part of the final delivery of du units of item 1
in period u must already have been produced prior to period k and so must
form part of the echelon stock ej

k−1.
Now observe that if yjk

k = y
jk+1
k+1 = · · · = yju

u = 0 for some sequence of
items jk, jk+1, · · · , ju with j ≥ jk ≥ jk+1 ≥ . . . ≥ ju ≥ 1, it is still impossible
for any units of item j produced in the interval [k, u] to end up in the final
product du delivered in period u. Therefore the following holds.

Proposition 13.2 If j ≥ jk,u ≥ jk+1,u ≥ · · · ≥ ju,u ≥ 1 for all u = k, . . . , l,
the inequality

ej
k−1 =

j∑
i=1

si
k−1 ≥

l∑
u=k

du(1 − y
jk,u

k − · · · − yju,u
u ) (13.13)

is valid for XML−S/LS−U .

Example 13.3 Taking j = 3, k = 2, and l = 5, the first inequality (13.12)
takes the form:

e3
1 ≥ d2(1 − y3

2) + d3(1 − y3
2 − y3

3) + d4(1 − y3
2 − y3

3 − y3
4)

+ d5(1 − y3
2 − y3

3 − y3
4 − y3

5);

see Figure 13.5a.
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Figure 13.5. Valid inequalities: inflow versus outflow.

If we use the same nonincreasing item sequence {j2, . . . , j5} = {3, 2, 2, 1}
for each u, we obtain

e3
1 ≥ d2(1 − y3

2) + d3(1 − y3
2 − y2

3) + d4(1 − y3
2 − y2

3 − y2
4)

+ d5(1 − y3
2 − y2

3 − y2
4 − y1

5);

see Figure 13.5b.
Finally, if we use a different sequence for each u, that is, the sequence {2}

for u = 2, {3, 1} for u = 3, {3, 2, 1} for u = 4, and {2, 2, 1, 1} for u = 5, we
obtain

e3
1 ≥ d2(1 − y2

2) + d3(1 − y3
2 − y1

3) + d4(1 − y3
2 − y2

3 − y1
4)

+ d5(1 − y2
2 − y2

3 − y1
4 − y1

5).

Comparing the inequalities and their representations in Figure 13.5, we
see that in each inequality we have the constant term d2 + d3 + d4 + d5 = d25
which is the outflow from the subgraph, whereas the inflows are either the
horizontal flows in e3

1 = s3
1 + s2

1 + s1
1, or the vertical inflows with the set-up

variable yj
t times the amount of outflow that needs to be covered by inflow

on that vertical arc. For the first two inequalities in the example, it is the
maximum amount of flow entering on that arc that can be used to satisfy the
demands d2, . . . , d5. The third example is less obvious because each demand
du is treated individually in the inequality (13.13).

This inflow–outflow viewpoint allows us to generalize even further. We
demonstrate just by example.

Example 13.4 One possibility is to use more general subgraphs. For instance
for the subgraph shown in Figure 13.6, we have modified the horizontal inflows,
and we obtain
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s3
1 + s2

2 + s1
2 ≥ d3(1 − y3

2 − y3
3) + d4(1 − y3

2 − y3
3 − y2

4)
+ d5(1 − y3

2 − y3
3 − y2

4 − y2
5).

A second possibility is to replace the set-up variables yj
u due to the vertical

arcs by the corresponding production levels xj
u (flows). Replacing the period 3

variables in the second inequality of Example 13.3 gives

e3
1 + x2

3 ≥ d2(1 − y3
2) + d3(1 − y3

2) + d4(1 − y3
2 − y2

4) + d5(1 − y3
2 − y2

4 − y1
5).

3,2

2,3 2,4

1,3 1,4

s
2

2

3 4d d

3,3

2,5

1,5

d
5

s

s3

1

1

2

y
3

2
y

3

3

y
2

4
y

2

5

 Μ  Μ

 Μ  Μ

Figure 13.6. Valid inequalities: modifying stock and set-up inflows.

13.1.5 Nested Solutions

Under certain circumstances, optimal solutions have even more structure.

Definition 13.2 A solution to a multi-level lot-sizing problem is said to be
nested when, for all i,t, if xi

t > 0, then xj
t > 0 for all j ∈ D(i).

A nested solution for the series product structure is shown in Figure 13.7.

Proposition 13.3 If either
i. the echelon holding costs are Wagner–Whitin for each item, that is, pi

t +
Hi

t − pi
t+1 ≥ 0 for all i, t, and the set-up costs qj

t are nonincreasing in t for
each j, or
ii. all objective coefficients are independent of time, that is, pi

t = pi, hi
t =

hi, qi
t = qi for all i, t,

then there exists an optimal solution that is nested for ML-S/LS-U .
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Figure 13.7. A nested solution.

Note that combined with Proposition 13.1, it follows that in a nested
solution, if xi

t > 0, then xi
t = dtβ for some t ≤ β ≤ n. Therefore the complexity

of the dynamic program solving ML-S/LS-U can be reduced by computing
only the values H(i, t, t, β) for all 1 ≤ i ≤ m and 1 ≤ t ≤ β ≤ n.

13.2 Assembly Systems

For assembly systems, |D(i)| = 1 for all intermediate products, and S(i) is
the set of items on the path from D(i) to the unique end-product containing
i. The arcs of the production structure digraph are of the form (i, D(i)). In
Figure 13.1ii, item 3 is the direct successor of item 5, so D(5) = 3. Both items
1 and 3 contain item 5, so S(5) = {1, 3}. Here, assuming that the utilization
factor rij = 1 for all j ∈ D(i), we obtain the mixed integer programming
formulation

min
m∑

i=1

n∑
t=1

pi
tx

i
t +

m∑
i=1

n∑
t=0

hi
ts

i
t +

m∑
i=1

n∑
t=1

qi
ty

i
t

si
t−1 + xi

t = x
D(i)
t + si

t for 2 ≤ i ≤ m, and all t

s1
t−1 + x1

t = d1
t + s1

t for all t

xi
t ≤ Ci

ty
i
t for 1 ≤ i ≤ m, and all t

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn

This problem is no longer a fixed charge network flow problem. However, in
the uncapacitated case the extreme points still have a very simple structure.

Proposition 13.4 For ML-A/LS-U , there exists an optimal solution with
si

t−1x
i
t = 0, and if xi

t > 0, then xi
t = d1

αβ for t ≤ α ≤ β.
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In practice it is again of interest to use the echelon stock reformulation.
Now clearly ei

t = si
t + e

D(i)
t = si

t +
∑

j∈S(i) sj
t is the echelon stock, and Hi

t =
hi

t − ∑
j:D(j)=i hj

t is the echelon holding cost. The reformulation obtained is
thus

min
m∑

i=1

n∑
t=1

pi
tx

i
t +

m∑
i=1

n∑
t=0

Hi
te

i
t +

m∑
i=1

n∑
t=1

qi
ty

i
t

ei
t−1 + xi

t = d1
t + ei

t for all i, t

xi
t ≤ Ci

ty
i
t for all i, t

ei
t ≥ e

D(i)
t for all i, t

e ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn.

This assembly problem can be treated in much the same way as the series
model. One can generalize the multi-commodity reformulation, and the valid
inequalities (13.13), and the echelon stock reformulation allows us to apply
our knowledge about single item formulations to each component.

13.2.1 Nested Solutions

Nested solutions also arise naturally in assembly problems.

Proposition 13.5 For ML-A, if the echelon holding costs are Wagner–
Whitin for each item, that is, pi

t + Hi
t − pi

t+1 ≥ 0 for all i, t and the fixed
costs are nonincreasing over time qi

t ≥ qi
t+1 for all i, t, then there exists an

optimal solution that is nested.

When, in addition, the set-up costs are nonnegative, this suggests a dy-
namic programming recursion for ML-A/WW -U that is polynomial in m,
but exponential in n.

Specifically, let Gi(y) be the minimum cost for component i and all its
predecessors of satisfying the external demands d1

t for all t at the level of
component i, when yi = y ∈ {0, 1}n are the set-up periods for item i.

We obtain

Gi(y) =
∑

t

Hi
te

i
t +

∑
t

qi
tyt +

∑
j:D(j)=i

min
z

{Gj(z) : z ≤ y, z ∈ {0, 1}n},

where ei
t is uniquely defined by producing as late as possible, that is, ei

t−1 =
maxk≥t[dtk(1 − yt − · · · − yk)].

13.2.2 Lead-Times and Echelon Stocks

Suppose now that the production of component i requires a lead-time γi,
consisting of a nonnegative integer number of periods, and that xi

t is the
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quantity whose production is started in period t and which becomes available
in period t + γi. Thus we have the model:

min
m∑

i=1

n∑
t=1

pi
tx

i
t +

m∑
i=1

n∑
t=0

hi
ts

i
t +

m∑
i=1

n∑
t=1

qi
ty

i
t

si
t−1 + xi

t−γi = x
D(i)
t + si

t for 2 ≤ i ≤ m, and all t

s1
t−1 + x1

t−γ1 = d1
t + s1

t for all t

xi
t ≤ Ci

ty
i
t for all i, t

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn.

How should we now define the echelon stock of i?
To preserve the decomposition into single-item lot-sizing problems, it is

easily checked that it suffices to define

ej
t = sj

t + e
D(j)
t+γD(j) .

This echelon stock of component j in period t can be interpreted as the total
amount of component j held in inventory, as component j or as part of its
successors, that can be used to satisfy the final demand of item 1 from period
t + γ̃j on, where γ̃j =

∑
i∈S(j) γi is defined as the cumulative production

lead-time from component j till component 1. This concept leads to the new
echelon stock reformulation:

ei
t−1 + xi

t−γi = d1
t+γ̃i + ei

t for all i, t (13.14)

xi
t ≤ Ci

ty
i
t for all i, t (13.15)

ei
t ≥ e

D(i)
t+γD(i) for all i, t (13.16)

e ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn. (13.17)

Example 13.5 Consider the assembly system of Figure 13.8 with five items,
and lead-times γ = (1, 3, 3, 2, 1).

1

2 3

45γ5  = 1 γ4  = 2

γ2  = 3 γ3  = 3

γ1  = 1

Figure 13.8. Assembly structure with lead times.
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Just taking the flow conservation equation for item 4 and its successors we
have γ4 = 2, γ2 = 3, and γ1 = 1 and γ̃4 = 4 giving

s4
t−1 + x4

t−2 = x2
t + s4

t

s2
t+2 + x2

t = x1
t+3 + s2

t+3

s1
t+3 + x1

t+3 = d1
t+4 + s1

t+4.

With e1
t = s1

t , e
2
t = s2

t + e1
t+1, e

4
t = s4

t + e2
t+3 = s4

t + s2
t+3 + s1

t+4, the sum of
the three balance constraints gives

e4
t−1 + x4

t−2 = d1
t+4 + e4

t

which is precisely of the form (13.14).

13.3 General Systems

For general production systems the values rij cannot all be set to 1, so these
values need to be taken into account in the formulations.

The initial formulation takes the form

min
m∑

i=1

n∑
t=1

pi
tx

i
t +

m∑
i=1

n∑
t=0

hi
ts

i
t +

m∑
i=1

n∑
t=1

qi
ty

i
t

si
t−1 + xi

t =
∑

j∈D(i)

rijxj
t + si

t for 2 ≤ i ≤ m, and all t

s1
t−1 + x1

t = d1
t + s1

t for all t

xi
t ≤ Ci

ty
i
t for all i, t

s ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn,

and defining the echelon stock of item i in period t as

ei
t = si

t +
∑

j∈D(i)

rijej
t ,

the echelon stock reformulation becomes

min
m∑

i=1

n∑
t=1

pi
tx

i
t

+
m∑

i=1

n∑
t=0

(hi
t −

∑
j:D(j)=i

rjihj
t )e

i
t +

m∑
i=1

n∑
t=1

qi
ty

i
t (13.18)

subject to
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ei
t−1 + xi

t = R(i)d1
t + ei

t for all i, t (13.19)

xi
t ≤ Ci

ty
i
t for all i, t (13.20)

ei
t ≥

∑
j∈D(i)

rijej
t for all i, t (13.21)

e ∈ R
m(n+1)
+ , x ∈ R

mn
+ , y ∈ {0, 1}mn, (13.22)

where R(i) is the total number of item i in one unit of item 1, the final product.
More generally let R(i, j) be the total amount of item i in one unit of item
j, so that R(i) = R(i, 1). The values R(i, j) can be calculated recursively as
R(i, j) =

∑
l∈D(i) rilR(l, j). It then follows that

ei
t = si

t +
∑

j∈D(i)

rijej
t =

∑
j∈V

R(i, j)sj
t .

Example 13.6 For the general structure iii) in Figure 13.1, R(1, 1) =
1, R(2, 1) = 2, R(3, 2) = 2, R(3, 1) = 5, R(4, 1) = 6, R(5, 1) = 19, R(6, 1) = 5.
Similarly R(2, 2) = 1, R(3, 2) = 2, R(5, 2) = 3R(3, 2) + 2R(2, 2) = 8, and
R(5, 3) = 3.

Taking the flow conservation equations for item 5 and its successors, we
have

s5
t−1 + x5

t = 3x3
t + 2x2

t + s5
t

3s3
t−1 + 3x3

t = 6x2
t + 3x1

t + 3s3
t

8s2
t−1 + 8x2

t = 16x1
t + 8s2

t

19s1
t−1 + 19x1

t = 19d1
t + 19s1

t .

With e5
t = s5

t + 3e3
t + 2e2

t = s5
t + 3(s3

t + 2e2
t + 1e1

t ) + 2e2
t = · · · = s5

t + 3s3
t +

8s2
t + 19s1

t , we obtain
e5

t−1 + x5
t = 19d1

t + e5
t ,

which is precisely the balance equation (13.19).

Finally, for general product structures with nonzero lead-times, the echelon
stock of component i in period t is defined by

ei
t = si

t +
∑

j∈D(i)

rijej
t+γj ,

and the echelon stock reformulation can be derived in much the same way as
before.

Example 13.7 For the general structure iii) in Figure 13.1, and assuming
that γi = 1 for all i, we obtain for item 3 and its successors

e3
t = s3

t + 2e2
t+1 + 1e1

t+1

= s3
t + 2(s2

t+1 + 2e1
t+2) + 1e1

t+1

= s3
t + 2s2

t+1 + 4s1
t+2 + 1s1

t+1
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and the flow balance constraints for item 3 in the echelon stock formulation
take the form

e3
t−1 + x3

t−γ3 = [d1
t+1 + 4d1

t+2] + e3
t .

In all these cases, the echelon stock reformulation allows us to apply our
knowledge about single-item formulations to each item in the product struc-
ture.

13.4 Production and Distribution

Our goal in this section is to indicate how the reformulations and valid inequal-
ities derived for both single-level and multi-level problems can be extended to
include both production and distribution. For simplicity we consider a supply
chain for a single item consisting of two production centers each consisting of a
single production facility and of two sales areas with storage facilities; see Fig-
ure 13.9. The ideas extend directly to multi-item and multi-level production
and distribution systems.

Production Center 
p=1

Production Center 
p=2

Sales Area 
c=1

Sales Area 
c=2

Figure 13.9. Schematic production-location network.

To describe the sample problem, we introduce the following notation:

dc
t is the demand at sales area c ∈ {1′, 2′} in period t;

hp
t is the storage cost at production site p ∈ {1, 2} at the end of period t;

hc
t is the storage cost at sales area c ∈ {1′, 2′} at the end of period t;

kp,c
t is the per unit transportation cost between production center p and sales

area c in period t;

and variables:
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sp
t is the stock at production site p ∈ {1, 2} at the end of period t;

σc
t is the stock at sales area c ∈ {1′, 2′} at the end of period t;

vp,c
t is the amount sent from production center p to sales area c in period t.

Again for simplicity we assume that there are no shipments between pairs
of production centers or pairs of sales areas and no time lags. The resulting
formulation is:

min
∑
p,t

[hp
t s

p
t + qp

t yp
t ] +

∑
c,t

hc
tσ

c
t +

∑
p,c,t

kp,c
t vp,c

t (13.23)

sp
t−1 + xp

t =
∑

c

vp,c
t + sp

t for all p, t (13.24)

xp
t ≤ Cpyp

t for all p, t (13.25)

σc
t−1 +

∑
p

vp,c
t = dc

t + σc
t for all c, t (13.26)

xp
t , s

p
t , σ

c
t , v

p,c
t ∈ R+, yp

t ∈ {0, 1} for all p, c, t. (13.27)

A four-period instance is shown in Figure 13.10. Note that for our simple case
the problem is a fixed charge network flow problem. Clearly this would no
longer be the case if there were multi-level production at any of the production
sites.

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

1’,1 2’,11’,2 1’,3 1’,4 2’,2 2’,3 2’,4

dd
1

d
1

d
1

d
1 2

d
2

d
2

d
2

1 2 3 4 2 3 41

Figure 13.10. Schematic production-location network.

We now consider a few of the ways to obtain tightened reformulations
and/or valid inequalities.

13.4.1 Production Center and Sales Area Aggregation

We describe the main steps of a reformulation procedure.
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i. Aggregation/Relaxation. Aggregating the two production centers, and also
aggregating the two sales areas, we obtain the relaxation:

st−1 +
∑

p

xp
t = vt + st for all t

xp
t ≤ Cpyp

t for all p, t

σt−1 + vt = dt + σt−1 for all t

xp
t , st, σt, vt ∈ R+, yp

t ∈ {0, 1} for all p, t,

where st =
∑

p sp
t , σt =

∑
c σc

t , dt =
∑

c dc
t , and vt =

∑
p,c vp,c

t . This can be
viewed as a two-level production in series system (see Figure 13.11a) in which
there are two production modes at the upper level, and no fixed costs at the
lower level.

ii. Defining Echelon Stocks. Letting e2
t = st + σt, the relaxation can now

be rewritten as

e2
t−1 +

∑
p

xp
t = dt + e2

t for all t (13.28)

xp
t ≤ Cpyp

t for all p, t (13.29)
σt−1 + vt = dt + σt for all t (13.30)

e2
t ≥ σt for all t (13.31)

xp
t , vt, e

2
t , σt ∈ R+, yp

t ∈ {0, 1} for all p, t. (13.32)

Observe that dropping the constraints (13.30) and (13.31), we now have a
single-item lot-sizing problem with two different production possibilities.

iii. Deriving Mixing Sets. Combining (13.28) and (13.29), we obtain

e2
t−1 +

∑
p

Cpyp
t ≥ dt,

which after introduction of C̄ = max{C1, C2}, Yt =
∑

p yp
t , Zk =

∑k
u=t Yu,

bk = (
∑k

u=t d1,2
u )/C̄, and τ = e2

t−1/C̄ gives the mixing set

τ + Zk ≥ bk for t ≤ k ≤ n

τ ∈ R+, Zk ∈ Z
1
+ for t ≤ k ≤ n.

for which valid inequalities or extended reformulations are described in Section
8.3.

This three step procedure indicates one of the many possibilities for gen-
erating valid inequalities or extended formulations for such a problem.
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Figure 13.11. Different aggregations of the production-location network.

13.4.2 Sales Area Aggregation

Here we keep the production centers separate, but again aggregate together
the sales areas.

i. Aggregation/Relaxation. Using similar notation to that above, we obtain

sp
t−1 + xp

t = vp
t + sp

t for all p, t (13.33)
xp

t ≤ Cpyp
t for all p, t (13.34)

σt−1 +
∑

p

vp
t = dt + σt for all t (13.35)

xp
t , v

p
t , sp

t , σt ∈ R+, yp
t ∈ {0, 1} for all p, t , (13.36)

where vp
t =

∑
c vp,c

t for all p, t. The resulting two-level feasible region is shown
in Figure 13.11b. Note that, although it resembles the assembly product struc-
ture digraph, the region (13.33)–(13.36) is a pure fixed charge network flow
problem, and thus it is not the same as the assembly model.

ii. Defining Echelon Stocks. To link the production at sites p = 1, 2 to the
final demand, one possibility is the introduction of the echelon stock variables

ep
t = sp

t + σt for p = 1, 2, and all t.

The set can now be rewritten as

ep
t−1 + xp

t + vp̄
t = dt + sp

t for all p, t

xp
t ≤ Cpyp

t for all p, t

σt−1 +
∑

p

vp
t = dt + σt for all t

xp
t , v

p
t , ep

t , σt ∈ R+, yp
t ∈ {0, 1} for all p, t,

where p̄ = {1, 2} \ {p}.
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iii. Deriving Mixing Sets. For each p, we now have a single-item lot-sizing
problem, except for the presence of the transportation inflow vp̄

t from the other
center. Fixing an interval [t, l], it suffices to define τ = (ep

t−1 +
∑l

u=t vp̄
t )/C1,

Zk =
∑k

u=t yp
u, and bk =

∑k
u=t du to obtain the mixing set

τ + Zk ≥ bk for t ≤ k ≤ l

τ ∈ R+, Zk ∈ Z
1
+ for t ≤ k ≤ l,

which again indicates one possible way to obtain valid inequalities.

Many other aggregations allow us to generate valid inequalities for pro-
duction and distribution problems, and as a result the choice is far from easy.
Given an LP solution for the initial formulation, the goal in deciding how to
reformulate or separate is to isolate a part of the network for which the flows
on the entering stock and transportation variables are small, and the values of
the entering set-up variables with positive flows are fractional. As in deriving
valid inequalities in Section 13.1, it may be appropriate to take entering arcs
corresponding to different time periods and different production/distribution
levels.

Other single-item subproblems may also be of interest for more compli-
cated problems, such as the very general uncapacitated model with sales,
backlogging, and buying studied in Section 11.9. The model with sales is par-
ticularly useful when there are upper bounds on the transportation flows in
each period, and the solution values are close to this upper bound. With time
lags in production or transportation, it is again appropriate to define the
echelon stock variables taking these lags into account in the same way as in
Section 13.2.

Exercises

Exercise 13.1 Consider the following instance of production in series with
n = NT = 5, m = NI = 3. Storage and set-up costs vary by item, but are
constant over time. Specifically (hi) = (4, 12, 16), (qi) = (16, 45, 94) and the
demands for item 1, the final product, are (d1

t ) = (11, 15, 19, 0, 24).
i. Solve by dynamic programming.
ii. Solve by mixed integer programming with and without a single item refor-
mulation.

Exercise 13.2 Consider the following instance of assembly production with
n = NT = 10 and m = NI = 7. The assembly structure is indicated by the
successor products as follows: D(6) = D(7) = 3, D(4) = D(5) = 2, D(2) =
D(3) = 1. The storage costs are (hi) = (4, 12, 16, 17, 19, 24, 21), the set-up
costs (qi) = (16, 45, 94, 23, 24, 35, 47), and the final demands for item 1 are
(d1

t ) = (11, 15, 19, 0, 24, 56, 12, 0, 9, 22).
Solve as a mixed integer program.
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Exercise 13.3 Consider the same instance of assembly production as above,
but with a budget constraint so that the total production in each period
cannot exceed 100 units.

Exercise 13.4 Write out a multi-commodity reformulation for the single-
item multi-level problem with assembly product structure.

Exercise 13.5 Consider an instance of ML-S/WW -U with n = NT =
4, m = NI = 2. Storage and set-up costs vary by item, and over time, but
the Wagner–Whitin cost condition is fulfilled. Specifically (h1

t ) = (0, 2, 1, 1, 0),
(h2

t ) = (0, 4, 3, 2, 0), (q1
t ) = (0, 4, 6, 2), (q2

t ) = (0, 4, 4, 2), pi
t = 0 for all i, t, and

the demands for item 1, the final product, are d1
t = 1 for all t.

i. Solve the linear relaxation of the basic formulation (13.1)–(13.5).
ii. Cut the fractional solution obtained by a valid inequality of type (13.12).
iii. Solve the linear relaxation of the echelon stock reformulation, improved by
a tight formulation for each single-item lot-sizing subproblem WW -U .
iv. Cut the fractional solution obtained by a valid inequality (13.13).
v. Solve by using the multi-commodity reformulation, and compare the qual-
ity of the formulations.

Notes

Section 13.1. The dynamic program for the uncapacitated lot-sizing in series
problem is due to Zangwill [198]. Echelon stocks were introduced by Clark and
Scarf [41] in the study of (s, S) policies. Valid inequalities for multi-level lot-
sizing including the series model were studied in detail in Pochet [133]. For
the production in series model, the different inequalities proposed can all be
seen as generalizations of the inflow–outflow inequalities proposed by Van Roy
and Wolsey [173].

By generalizing further the two inequalities derived in Example 13.4, one
obtains a family of dicut inequalities that are essentially equivalent to the
projection of the multi-commodity reformulation of Subsection 13.1.3 into
the original (x, y, s) space; see Rardin and Wolsey [144]. Nested schedules for
series lot-sizing were studied by Love [110]; see also Pochet [133].

Section 13.2. Veinott [183] established Proposition 13.4 based on the study
of Leontief substitution systems, thereby significantly generalizing the results
of Zangwill [197] on concave cost flows in networks. Veinott also showed that
for distribution structures this leads to a dynamic programming recursion
polynomial in the number of periods, but exponential in the number of end-
products. In fact the complexity of the uncapacitated assembly problem ML-
A, LS-U is still not known in spite of the development of several formulations
that have been conjectured to be tight. See Bussieck et al. [33] for a recent
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counterexample. However a 2-approximation primal–dual algorithm is given
in Levi et al. [105].

The idea of using echelon stocks for the assembly lot-sizing problem and
the dynamic program for the nested case can be found in Crowston and Wag-
ner [51]. Computational results using the echelon stock reformulation and La-
grangian relaxation are reported in Afentakis et al. [2]. Lead-times are cited
regularly, but there does not appear to be any literature on the reformulation
of problems combining echelon stocks and lead-times.

Numerous heuristics have been proposed for multi-level problems, and in
particular problems with assembly structure, including Billington et al. [27],
Tempelmeier and Helber [159], Tempelmeier and Derstoff [158], Dellaert and
Jeunet [55], and Stadtler [154], among others.

Section 13.3. Afentakis and Gavish [1] proposed solving a problem with
general product structure by reformulating the problem as an assembly prob-
lem with additional equality constraints. Pochet and Wolsey [138] applied the
echelon stock approach directly to the general product structure.

Section 13.4. The idea of extending the use of echelon stocks to include both
production and distribution was initially explored in the Liscos project [48].
Recently polynomial dynamic programming recursions have been developed
for a constant capacity model with a single production level and a multi-
level distribution system, and also for serial supply chains by Van Hoesel et
al. [167, 168]. The special distribution system consisting of one warehouse
and multiple retailers has been tackled using time partitioning heuristics in
Federgrün and Tzur [65].

Exercises. Exercise 13.5 showing that the multi-commodity formulation for
ML-S/WW -U is not tight is from Pochet and Wolsey [140].
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14

Test Problems

In this final chapter, we present six more cases covering a wide range of prob-
lems. The first three are presented in considerable detail. For these three cases,
the description of each problem involves six parts:

i. A verbal description of the context and the problem;
ii. A classification, complete or partial, of the problem based on the descrip-
tion;
iii. An initial problem formulation;
iv. A discussion of possible reformulation and solution strategies;
v. A report on computational results with one or more formulations or algo-
rithms;
vi. A discussion of some algorithmic or modeling questions.

In addition for each of these three cases, we suggest in the problem descrip-
tion some study questions to be used to continue the analysis of reformulations
and algorithms, or to put the case study into a managerial context. The ex-
ercises at the end of the chapter are designed to help in tackling some ques-
tions left open or not addressed in the text.

The last three cases are presented more briefly, starting directly from an
initial MIP formulation and concentrating more on the technical details.

All models and data for these cases are available on the book Web site.

In Table 14.1 we indicate for all eight cases (including the two from Chapter
5) what structures appear in each instance according to our classification
scheme, and in Table 14.2 whether and what formulations, reformulations,
and heuristics are used in our treatment of each case.
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Table 14.1. Classification of Test Cases

Name PROB-CAP-VAR PM PQ ML
Consumer Goods Production DLS-CC-B M1 – –
Cleaning Liquids Bottling WW-CC-SC,LB M1 – –
Making and Packing LS-CC-B,ST(C) M1-SC PC-ST D
Storage Rack Production WW-U M∞ PC-ST, FAM A
Insulating Board Extrusion LS-C M∞-SQ PC-SQ –
Pigment Sequencing DLS-CC-SC M1-SQ PC-U –
Process Manufacturing LS-C-B,SC,CLT,AFC, M2-SC PC-CLT D

MR,RLS,SS,SUB
Powder Production LS-U-B,LB,PER M∞ PC D

Table 14.2. Reformulation of Test Cases

Name Reformulation Xform LIB Xcut LIB XHeur LIB
Consumer Goods Prod. – DLSCCB – –
Cleaning Liquids Bottl. – WWUSC,WWCC – RF, RINS,

EXCH
Making and Packing Echelon WWUB,WWCCB – RF
Storage Rack Prod. Echelon WWU – RF,RINS
Insulating Board Extr. VRP, M∞-SQ WWU, WWCC WWU, –

WWCC
Pigment Sequencing M1-SQ DLSCCSC – –
Process Manufacturing M2-SC, AFC, WWUSCB – –

MR, RLS, SS
Powder Production Echelon, PER WWUB, WWUB RF,EXCH

WWUCLB

14.1 Making and Packing

14.1.1 Problem Description

General Context

A large company from the consumer goods industry is considering investing in
new automated technology for one of its high-volume product families. This
family contains several product variants that must be first produced and then
packed into several packing formats and sizes.

The current production process is not flexible enough, and a large portion
of the production capacity is lost in changeover times at the production and
packing stages. In the past, to increase the productivity or reduce the impact
of these changeovers, the company has used large production lots and regular
cyclic schedules consisting of producing each product variant at regular time
intervals. This has resulted in increased working capital tied up in stocks, and
reduced flexibility to react to market demand.
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The new production line contains several automated and non-dedicated
production and packing machines, and limited storage capacity between pro-
duction and packing. The increased flexibility of the line would come from
several factors: the ability to produce and pack several products at the same
time (because each production or packing machine can work independently
of the other machines), the reduced changeover times between products or
packagings due to the new automated technology, and the increased inter-
mediate storage capacity. Nevertheless, the remaining changeover times and
the diversity of products to make and pack still restrict productivity of the
line. Therefore, there is again a balance to be reached in the operation of the
new line between high-capacity utilization (large production lots) and reduced
inventory, depending on the product mix and demand levels.

The objective of this case is to build a model in order to optimize the
planning and operation of the new line, and analyze the global line capacity
for the current and foreseeable product mix and demand levels. The output
of this case (global line capacity, inventory levels, customer service, etc.,)
will serve as an input to a more detailed operations simulation model, and
ultimately to the financial investment decision model.

Problem Description

This case is inspired by a real case study, but we only use generic terms such
as products, machines, and so on in our description.

• We consider a two-stage (two-level) problem. The first stage is the produc-
tion stage and the second is the packing stage. There are three different
types of products to be packed into five different packagings, making 15
end products in total. The three bulk products (bulks) can be stored be-
fore packing in three dedicated storage tanks (i.e., one tank for each bulk),
with a large storage capacity. We do not consider here the storage capacity
because sufficiently large tanks can be built relatively cheaply, so this is
a secondary design question. Also, the raw materials for the production
stage are not considered in this study because they do not influence the
global line capacity, and their procurement is reliable.

• There are five non-dedicated making machines producing the items to be
packed, and each of them can only produce one type of product per plan-
ning period (i.e., per day). This last restriction is imposed to ease the
planning and operation of the line, but could be relaxed to increase the
line flexibility and global line capacity. In a planning period, the capacity
of a machine is reduced if there is a product changeover with respect to the
previous period. This changeover time is a constant for each machine; that
is, it is independent of the items produced before and after the changeover,
and independent of the time period in the planning horizon. The five mak-
ing machines are partly specialized in the sense that each machine cannot
produce the same subset of bulk products.
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• There are three partly specialized packing lines that can produce at most
one of the 15 end items per planning period. This last restriction could
also be relaxed. The capacity of a packing line is reduced in the current
period if there is a changeover. Again, the changeover time is constant for
each packing line. The packing rates are machine- and product-dependent.

• One or more of the six identical robots feed each packing line. The number
of robots assigned to a packing line (one robot cannot be assigned simul-
taneously to several lines) is kept fixed during one planning period, and
determines the total production capacity on that packing line. In other
words, the packing capacity of a line is limited by the number of robots
assigned to the line times the capacity of a single robot.

• These robots are fed themselves by three identical feeders, whose function
is to get the products out of their intermediate storage tank and to supply
the robots. Each feeder can only be connected to one tank (i.e., process
one of the three product types) per planning period, but can feed sev-
eral robots. Several feeders can be connected to a single tank. The feeder
capacity may depend on the product type. Therefore, the global packing
capacity in a planning period for a product (global means aggregated over
all packing lines and all packaging types) is limited by the number of feed-
ers assigned to the product times the capacity of a single feeder for that
product.

• The company is using a make-to-stock policy for this product family, with
a planning horizon of 15 days, not only to cover the very short production
and procurement cycles, but mainly to allow some grouping of demands
in order to reduce the number of changeovers. The plant is operated 24
hours per day. Hence there are 15 periods in this planning problem, each
representing one day of operation. Demand forecasts for the next two weeks
are available and are usually quite reliable.

• The objective is to meet the forecasted demand at minimum cost, while
respecting the capacity restrictions of the line. Given the fact that the
demand has to be satisfied, most of the costs are constant over such a
short planning horizon. Moreover, the end products are not produced long
in advance, and their inventory is very limited. Therefore, the cost will be
modeled as the sum of end-of-day inventory levels over all bulk products
and all planning periods (assuming that all bulks have similar production
costs and added values).

• For the end products, backlogging of forecast demand is allowed, because it
allows further grouping of demands and improves capacity utilization, but
it is penalized because it leads to a deterioration of the customer service
level. In the company, it is usually assumed that backlogging one unit of
demand for one day costs as much as stocking one unit of intermediate
bulk for eight days.

The product flow through the making machines, storage tanks, feeders,
robots, and packing lines is illustrated in Figure 14.1.
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Figure 14.1. Making and packing product flow.

Study Questions

The first objective of the case study is to construct a model and an algorithm
in order to solve this production planning problem, and furthermore:

• Analyze whether the new production line has enough capacity to meet the
current demand, with or without backlogging;

• Analyze the impact on the customer service level of a uniform 10% increase
in the end product demand.

Additional questions have been raised in the problem description.

• Current practice in the company is to fix machine assignments, as well as
feeder and robot assignments, for a whole shift or planning period. This
simplifies the teamwork organization, but is also a consequence of the lack
of flexibility of the current technology. Because the new technology allows
more flexibility in running the lines, the question of whether this assign-
ment restriction has strong implications on the global line productivity
needs to be addressed.
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• The next question deals with the identification of the bottleneck stage
given the current product mix, that is, the production stage most limiting
the total production of the line. In particular, in order to respond to a
market increase, it would be technically easy and relatively cheap to invest
in new feeders and robots. Would such investments make sense?

• Finally, the operations manager would like to know whether the relative
backlogging cost has a strong impact on the solutions of the planning
model. Would a higher backlogging cost substantially improve customer
service levels, and would a lower cost improve the line productivity?

14.1.2 Classification

This problem is a multi-level (two-level: making and packing) production plan-
ning problem classified as follows.

Multi-Level

• A distribution product structure ML-D with divergent bills of materials,
that is, there are 3 bulk products at level 2 and each bulk product at level
2 corresponds to 5 end products at level 1.

Multi-Item

• Structure PM = [M1-SC] for the mode constraints because each machine
is set up to produce only one item per planning period, and start-up vari-
ables need to be introduced to model the constant start-up time. This
holds at both levels, for the making and packing machines.

• Structure PQ = [PC-ST ] for the resource constraints because the capacity
of each making machine or packing line is reduced by a constant start-up
time in the case of a changeover.

Additional resource constraints exist on the assignment of feeders to
bulk products (or to the dedicated storage tanks) and on the feeding ca-
pacity per bulk product from the tanks to the packing lines. Similarly,
robots must be assigned to packing lines, and there exists a robot capac-
ity constraint for each packing line. These constraints are specific to this
problem, and cannot be classified.

• Both at the making and the packing levels, there are multiple machines in
parallel.

Single-Item

• Structure WW -CC-B, ST (C) for each end product (level 1), for the fol-
lowing reasons:
– The objective function consists of the sum of the backlogging variables

and satisfies the nonspeculative WW cost condition;
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– The packing capacity per period is constant over time;
– There exists a constant start-up time on each packing line;
– The end products can be back-ordered.
Because of the resource constraints PQ linking the different items, it is
likely that the optimal solutions of the problem will not be stock minimal
solutions. Therefore, even if the objective satisfies the WW condition,
the single item subproblems could also be classified as LS-CC-B, ST (C)
(see the discussion and remarks in Section 4.3 about the choice between
classification LS or WW in multi-item problems).

• In each period, observe that the packing capacity of each end product is
limited by the number of robots assigned, and the global packing capacity
of the five end products obtained from each intermediate bulk product is
limited by the number of feeders assigned to the intermediate product.

• Structure WW -CC-B, ST (C) can also be built for each intermediate bulk
product (level 2) by using the echelon stock reformulation. Again, because
of the linking resource constraints destroying the stock minimal structure
of optimal solutions, the classification LS-CC-B, ST (C) can also be con-
sidered.

14.1.3 Initial Formulation

Using the modeling approach outlined in Chapter 1, and the structures iden-
tified during the classification process, we construct a first formulation of the
problem.

Objects and Indices Mathematical Notation
Bulk products Object: set of bulks Ibulk with |Ibulk| = 3

Index: i ∈ Ibulk

End products Object: set of end products Iend

with |Iend| = 15
Index: i (or j) ∈ Iend

Daily time periods Object: time periods
Index: t = 1, . . . , NT and NT = 15

Making machines Object: set of making machines Kbulk

with |Kbulk| = 5
Index: k ∈ Kbulk

Packing lines Object: set of packing lines Kend

with |Kend| = 3
Index: k ∈ Kend

Remarks:

• Note that we do not explicitly define objects for the intermediate storage
tanks, the feeders and the robots so as to keep the notation as simple as
possible.
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Data Mathematical Notation
Set of end products obtained ∀i ∈ Ibulk [-]: succ(i) ⊂ Iend

or packed from each bulk
Demand forecasts (end products) ∀ i ∈ Iend, t = 1, . . . , NT [units of i]: Di

t

Production rate ∀ (i, k) ∈ (Ibulk × Kbulk) ∪ (Iend × Kend),
[units of i/hour of k]: PRi

k

Machine changeover time ∀ k ∈ Kbulk ∪ Kend [hours]: STk

Feeder rate ∀ i ∈ Ibulk [units of succ(i)/hour]: FRi

Robot rate ∀ i ∈ Iend [units of i/hour, rob.]: RRi

Working hours per period [hours]: NH
Number of feeders [-]: NF
Number of robots [-]: NR
Relative backlogging cost

(wrt storage cost) [-]: RBACK = 8

Remarks:

• Note that the production rate PRi
k represents the maximum rate of pro-

duction of item i on machine k (k ∈ Kbulk is a making machine if i ∈ Ibulk

and k ∈ Kend is a packing line if i ∈ Iend), assuming that the machine is
not limited by feeder capacity or robot capacity, and is not performing a
changeover. This rate is product- and machine-dependent, with PRi

k = 0
whenever product i cannot be produced or packed on machine k.

• The feeder rate FRi of bulk i represents the maximum packing rate cu-
mulated over all end products associated with bulk i, per feeder connected
to the storage tank of bulk i. The robot rate RRi of end product i is the
maximum packing rate of end product i on a single packing line, per robot
assigned to the packing line.

Variables Mathematical Notation
Production lot size ∀ (i, k) ∈ (Ibulk × Kbulk) ∪ (Iend × Kend),

t = 1, . . . , NT [units of i]: xi
kt ≥ 0

Production set-up (machine or ∀ (i, k) ∈ (Ibulk × Kbulk) ∪ (Iend × Kend),
line assignment) t = 1, . . . , NT [-]: yi

kt ∈ {0, 1}
Machine start-up ∀ k ∈ Kbulk ∪ Kend,

t = 1, . . . , NT [-]: zkt ∈ {0, 1}
Inventory level ∀ i ∈ Ibulk ∪ Iend,

t = 1, . . . , NT [units of i]: si
t ≥ 0

Backlogging level ∀ i ∈ Iend,
t = 1, . . . , NT [units of i]: ri

t ≥ 0
Number of feeders assigned ∀ i ∈ Ibulk,

(to bulk and period) t = 1, . . . , NT [-]: ηi
t ∈ Z+

Number of robots assigned ∀ k ∈ Kend,
(to packing line and period) t = 1, . . . , NT [-]: πkt ∈ Z+
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Remarks:

• Note that the backlogging variables are only defined for end products. In-
ventory and backlogging variables represent the inventory and backlogging
level at the end of each time period.

• Note also that the start-up variables zkt need not be defined for each
product i. Because the start-up time is constant over the products, we
only need to identify whether there is a start-up on each machine in each
time period.

Constraints Mathematical Notation
ML-D/WW -CC-B
Demand satisfaction ∀ i ∈ Ibulk ∪ Iend,

(flow conservation) t = 1, . . . , NT [units of i]: dem satit
Set-up enforcement ∀ (i, k) ∈ (Ibulk × Kbulk) ∪ (Iend × Kend),

(single item capacity) t = 1, . . . , NT [units of i]: vubi
kt

PM = [M1-SC]
Machine modes ∀ k ∈ Kbulk ∪ Kend,

(one product at a time) t = 1, . . . , NT [-]: modekt

Start-up enforcement ∀ (i, k) ∈ (Ibulk × Kbulk) ∪ (Iend × Kend),
(per product and mach.) t = 1, . . . , NT [-]: start − upi

kt

PQ = [PC-ST ]
Machine capacity ∀ k ∈ Kbulk ∪ Kend,

(with start-up times) t = 1, . . . , NT [mach. hours]: capakt

Feeder assignment (to bulk) for t = 1, . . . , NT [-]: feed asst

Feeder capacity ∀ i ∈ Ibulk,
(for each bulk and period) t = 1, . . . , NT [feed. hours]: feed capi

t

Robot assignment (to line) for t = 1, . . . , NT [-]: rob asst

Robot capacity ∀ k ∈ Kend,
(for each line and period) t = 1, . . . , NT [rob. hours]: rob capkt

Remarks:

• We have listed the set of constraints that can be identified from the
problem description. They are directly derived from the structure ML-
D/PM = [M1-SC]/PQ = [PC-ST ]/WW -CC-B, ST (C). Next we will
formulate each constraint separately.

Objective function Mathematical Notation
Minimize sum of

inventory and backlogging [-]: inv back

The Complete Formulation

The complete mathematical formulation of the model is the following.
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inv back := min
∑

i∈Iend

NT∑
t=1

ri
t +

∑
i∈Ibulk

NT∑
t=1

1
RBACK

si
t (14.1)

dem satit := si
t−1 + ri

t +
∑

k∈Kend

xi
kt = Di

t + ri
t−1 + si

t

for i ∈ Iend, 1 ≤ t ≤ NT (si
0 = ri

0 = 0) (14.2)

dem satit := si
t−1 +

∑
k∈Kbulk

xi
kt =

∑
k∈Kend

∑
j∈succ(i)

xj
kt + si

t

for i ∈ Ibulk, 1 ≤ t ≤ NT (si
0 fixed ) (14.3)

vubi
kt := xi

kt ≤ (NH ∗ PRi
k) yi

kt

for (i, k) ∈ Iend × Kend ∪ Ibulk × Kbulk, 1 ≤ t ≤ NT
(14.4)

modekt :=
∑

i

yi
kt ≤ 1

for k ∈ Kend ∪ Kbulk, 1 ≤ t ≤ NT (14.5)

start upi
kt := zkt ≥ yi

kt − yi
k,t−1

for (i, k) ∈ Iend × Kend ∪ Ibulk × Kbulk, 1 ≤ t ≤ NT
(14.6)

capakt :=
∑

i∈Ibulk

1
PRi

k

xi
kt ≤ NH − STkzkt

for k ∈ Kbulk, 1 ≤ t ≤ NT (14.7)

capakt :=
∑

i∈Iend

1
PRi

k

xi
kt ≤ NH − STkzkt

for k ∈ Kend, 1 ≤ t ≤ NT (14.8)

feed asst :=
∑

i∈Ibulk

ηi
t = NF

for 1 ≤ t ≤ NT (14.9)

feed capi
t :=

∑
j∈succ(i)

∑
k∈Kend

1
FRi

xj
kt ≤ NH ηi

t

for i ∈ Ibulk, 1 ≤ t ≤ NT (14.10)

rob asst :=
∑

k∈Kend

πkt = NR

for 1 ≤ t ≤ NT (14.11)

rob capkt :=
∑

i∈Iend

1
RRi

xi
kt ≤ NH πkt

for k ∈ Kend, 1 ≤ t ≤ NT (14.12)
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where the variables must satisfy the following additional restrictions

ri
t, s

i
t ∈ R

1
+, xi

kt ∈ R
1
+, yi

kt ∈ {0, 1}
for (i, k) ∈ Iend × Kend ∪ Ibulk × Kbulk, 1 ≤ t ≤ NT (14.13)

zkt ∈ {0, 1} for k ∈ Kend ∪ Kbulk, 1 ≤ t ≤ NT (14.14)

πk
t , ηi

t ∈ Z+ for k ∈ Kend, i ∈ Ibulk, 1 ≤ t ≤ NT . (14.15)

In the above formulation, constraints (14.2) and (14.3) are the classical
flow balance constraints in multi-level lot-sizing, and where we assume that
there is some initial inventory of the bulk products. Constraint (14.4) forces
the set-up, constraint (14.5) defines the modes, and constraint (14.6) defines
the start-ups. Constraints (14.7) and (14.8) are the machine capacity con-
straints with start-up times. Constraint (14.9) defines the feeder assignments,
and constraint (14.10) is the feeder capacity constraint. Similarly, constraint
(14.11) defines the robot assignments, and constraint (14.12) is the robot ca-
pacity constraint. Note that the feeder capacity and robot capacity constraints
(14.10) and (14.12) are usual resource capacity constraints, except that the
capacity appearing at the right-hand side depends on the number of feeders
or robots assigned. Finally, the objective function (14.1) is the weighted sum
of inventory and backlogging levels.

14.1.4 Reformulations and Algorithms

Using this initial formulation, the first line of results in Table 14.3 shows
the performance of the default branch-and-cut algorithm of Xpress-MP on
this model instance with a run time limit of 7200 seconds, where the field
“(Bin/Int)” indicates the number of binary and integer variables. The LP
relaxation is very weak: the initial lower bound on bulk inventory and end
product backlogging is zero, see column “LP” in Table 14.3. However, Xpress-
MP generates strong cuts improving the initial lower bound at the root node
(see column “XLP” in Table 14.3) and, after 7200 seconds, there is a remaining
gap of 19%. Column “Best Lower Bound” indicates the smallest LP relaxation
value among the active or remaining nodes after 7200 seconds, and column
“Best Upper Bound” indicates the value of the best feasible solution found,
after 7200 seconds. The gap is defined as usual as a percentage given by the
formula 100 × (best UB − best LB)/best UB.

Using an echelon stock reformulation for the bulk level (i.e., defining
variables esi

t = si
t +

∑
j∈succ(i) sj

t , eri
t =

∑
j∈succ(i) rj

t , for i ∈ Ibulk and
t = 1, . . . , NT ), and aggregating the making across all machines (i.e., defining
variables axi

t =
∑

k∈Kbulk
xi

kt and ayi
t =

∑
k∈Kbulk

yi
kt for i ∈ Ibulk) one gets

the following valid formulation (relaxation) from constraints (14.2)–(14.4).
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edem satit := esi
t−1 + eri

t + axi
t = (

∑
j∈succ(i)

Dj
t ) + eri

t−1 + esi
t

for i ∈ Ibulk, 1 ≤ t ≤ NT (esi
0 fixed ; eri

0 = 0) (14.16)

evubi
t := axi

t ≤ ( max
k∈Kbulk

NH ∗ PRi
k) ayi

t

for i ∈ Ibulk, 1 ≤ t ≤ NT (14.17)

eri
t, es

i
t ∈ R

1
+, axi

t ∈ R
1
+, ayi

t ∈ Z+

for i ∈ Ibulk, 1 ≤ t ≤ NT . (14.18)

The same aggregation process at the end product level gives the following
similar formulation:

edem satit := si
t−1 + ri

t + axi
t = Di

t + ri
t−1 + si

t

for i ∈ Iend, 1 ≤ t ≤ NT (si
0 = ri

0 = 0) (14.19)

evubi
t := axi

t ≤ ( max
k∈Kend

NH ∗ PRi
k) ayi

t

for i ∈ Iend, 1 ≤ t ≤ NT (14.20)

ri
t, s

i
t ∈ R

1
+, axi

t ∈ R
1
+, ayi

t ∈ Z+

for i ∈ Iend, 1 ≤ t ≤ NT . (14.21)

In these reformulations (14.16)–(14.18) and (14.19)–(14.21), all items are
seen to involve constant capacity and backlogging. We first ignore the capac-
ities and add the extended reformulation for WW -U -B for all items, using
LS–LIB. We set the approximation parameter to 4 at the bulk level and to
8 at the end product level. The results can be found in Table 14.3. Due to
the size of the resulting formulation, far fewer nodes can be explored within
the time limit. However, significantly better bounds and better solutions are
obtained.

Table 14.3. Reformulation Results for Making and Packing

Kbulk
U−B Kend

U−B Kend
CC−B Cons Vars LP XLP Best Best Number Total

(Model (Bin/ Lower Upper of Nodes Time
Cuts) Int) Bound Bound (secs)

0 0 0 1,692 1,635 0 17,760 18,443 22,843 108,500 7,200
(705)

4 8 0 4,678 2,175 18,039 18,444 19,375 22,548 12,200 7,200
(705)

4 8 6 24,028 9,375 20,115 20,377 20,701 21,463 4,000 7,200
(3,867) (705)

Next, we tighten the formulation even more by adding the reformulation
for WW -CC-B at the end product level ((14.19)–(14.21)), using 6 as value of
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the approximation parameter. In order to reduce and control the size of the
resulting formulation, we add some of the constraints as model cuts, which
means that only the violated ones are generated at the end of the root node
linear relaxation. The number of model cuts added is indicated by “(Model
Cuts)” in the column “Cons” of Table 14.3. The results in Table 14.3 show
that even fewer nodes are explored in 7200 seconds, but better bounds and
solutions are found. The resulting gap is 3–4%, which is acceptable for the
purposes of the company. It is worthwhile pointing out that, in this instance,
good solutions are typically available after a few hundred seconds.

Although we obtain good enough solutions to answer to our design ques-
tions with reasonable accuracy, the time needed to obtain these solutions or
to guarantee their quality is long, and does not allow us to run many sce-
narios to perform sensitivity analysis. To reduce this run-time without losing
too much in solution quality, our final test consists of the implementation of
a time decomposition relax-and-fix heuristic (see Section 3.6). The results are
given in Table 14.4, where the column “R&F Bin” indicates the number of non
relaxed time periods at each iteration, and the column “R&F Fix” indicates
the number of time periods whose solution is fixed at the end of each iteration
(see the description of the relax-and-fix LS–LIB procedure in Section 5.3).

For instance, with bin = 4 and fix = 2:

• We first solve the relaxed program in which the integer variables for periods
1 to 4 are not relaxed (i.e., they keep their integrality status), whereas all
variables for later periods are relaxed into continuous variables;

• We then keep the solution obtained for the periods 1 and 2 by fixing the
corresponding integer variables at their current values;

• We resolve the program where now the integer variables for periods 3 to
6 are not relaxed;

• Then we fix the solution for periods 3 and 4;
• And so on, up to the last subproblem to be solved in which all binary and

integer variables for periods 1 to 12 are fixed, and variables for periods 13
to 15 are not relaxed.

The relaxed subproblems involve fewer binary and integer variables (see
column “(Bin/Int)” in Table 14.4, and thus can be solved faster. We have
thus solved each relaxed MIP subproblem to optimality. The time indicated
in the table is the total time needed to solve all the relaxed subproblems (i.e.,
up to the end of the planning horizon). The number of nodes is the sum of
the number of branch-and-bound nodes explored over all subproblems. Note
that we relax some variables in each subproblem, but in fact only the first
subproblem – before any fixing – is a true relaxation of the initial problem.
Therefore, the best global lower bound one can obtain with this method is
the optimal solution value of the first relaxation. The best upper bound is the
optimal solution value of the last subproblem solved.

First we have used the relax-and-fix heuristic on the initial formulation;
see the first two lines in Table 14.4. We obtain good solutions quickly if the
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relaxed subproblems do not contain too many binary and integer variables
(parameter bin). We do not report the results obtained with bin = 8 and
fix = 2 because we were not able to solve the first subproblem to optimality
in less than 1800 seconds. Observe also that we get poor lower bounds (11,920
and 16,974) with this approach based on the initial formulation. So, we get
good solutions quickly without being able to guarantee their quality (the final
gap is about 27%).

Table 14.4. Reformulation and Relax-and-Fix Results for Making and Packing

Kbulk
U−B Kend

U−B Kend
CC−B R& F R& F Cons Vars Best Best Number Total

Fix Bin (Model (Bin/ Lower Upper Nodes Time
Cuts) Int) Bound Bound (secs)

0 0 0 2 4 1,692 1,635 11,920 21,553 2,590 51
(188)

0 0 0 2 6 1,692 1,635 16,974 21,515 28,557 467
(282)

4 8 0 2 4 4,678 2,175 19,539 21,261 5,113 1,655
(188)

4 8 6 2 4 24,028 9,375 20,774 21,188 1,148 1,201
(3,784) (188)

In the last two rows of Table 14.4, we analyze the combined impact of the
relax-and-fix heuristic and the reformulations. We have tested the heuristic
with the various reformulations WW -U -B and WW -CC-B described above.
Note that we have included these reformulations for the whole planning hori-
zon in all subproblems, and not just for the non relaxed part of the horizon. So
our initial linear relaxations are as good with the time decomposition relax-
and-fix approach as with the direct (single problem) approach. We observe
the complementary role of relax-and-fix and reformulations, and we obtain
the overall best lower and upper bounds with a final gap of about 2% in 1200
seconds.

14.1.5 Analysis of Capacity and Customer Service Level

We discuss here the most important study questions mentioned in the case
description. The other questions are suggested as exercises in Section 14.6.5.
Recall that the first objective of the case study is to analyze whether the new
production line has enough capacity to meet the current demand, with or
without backlogging.

In the best solution obtained, the production facility has enough capac-
ity to meet current demand, without unsatisfied demand at the end of the
planning horizon. However there is some backlogging in the first periods of
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the horizon because there is no initial end product inventory. With the cur-
rent demand, and the current flexibility (i.e., one product per making line
or packing line, per day), it seems necessary to hold end product inventory.
However, very little intermediate product inventory is necessary to be able
to meet demand. Table 14.5 summarizes some information about this best
solution.

Table 14.5. Making and Packing Solution

Objective function value 21,188
Backlogging [units*days] 20,919
Intermediate Inventory [units*days] 2,154
End product Inventory [units*days] 117,691
Average making capacity utilization [%] 57
Average packing capacity utilization [%] 78
Average feeder capacity utilization [%] 47
Average robot capacity utilization [%] 56
Number of making changeovers [-] 17
Number of packing changeovers [-] 37

The next question raised is to analyze whether there is enough capacity
to be able to satisfy a uniform 10% increase in the end product demand, and
what would be the impact on the customer service level of such a demand
increase.

With this increase in demand, we solved the problem with the extended
reformulations WW -U -B and WW -CC-B, and with the initial formulation
using a relax-and-fix time decomposition heuristic. The results are given in
Table 14.6, where the best lower bound is obtained using the 4/8/6 refor-
mulation and the best upper bound using the relax-and-fix heuristic without
reformulation. The overall duality gap obtained is 8.4% .

Table 14.6. Results for Making and Packing with 10% Demand Increase

Kbulk
U−B Kend

U−B Kend
CC−B R& F R& F Cons Vars Best Best Number Total

Fix Bin (Model (Bin/ Lower Upper Nodes Time
Cuts) Int) Bound Bound (secs)

0 0 0 2 4 1,692 1,635 16,173 39,153 7,167 121
(188)

0 0 0 2 6 1,692 1,635 23,001 37,158 115,266 2,415
(282)

4 8 6 0 0 24,028 9,375 34,053 – 1,184 7,200
(4,672) (705)
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Table 14.7. Making and Packing Solution with 10% Demand Increase

Objective function value 37,158
Backlogging [units*days] 35,773

Intermediate Inventory [units*days] 11,080
End product Inventory [units*days] 104,939

Average making capacity utilization [%] 61
Average packing capacity utilization [%] 82
Average feeder capacity utilization [%] 50
Average robot capacity utilization [%] 60

Number of making changeovers [-] 22
Number of packing changeovers [-] 35

The information shown in Table 14.7 about the best solution obtained sug-
gests the possible impact of this demand increase. The end product inventory
levels are decreased, the intermediate inventory level is increased by a factor
of five, and total inventory is decreased. There is enough capacity on aver-
age to satisfy a 10% demand increase, but the backlogging is almost doubled.
However, testing the validity of such a conclusion would require considerably
more analysis and computation.

14.2 Storage Rack Production

14.2.1 Problem Description

General Context

Many discrete manufacturing companies are confronted with multi-level pro-
duction planning problems and have implemented integrated manufacturing
planning and control systems, like ERP or MRP systems, in the past decades.
In most cases, these systems (or the first versions of these) have been pure
transactional IT systems able to record, update, and communicate the status
of the production system (i.e., in progress and planned purchase and manu-
facturing orders, customer orders, demand forecasts, available and allocated
inventory, etc.); see Chapter 2.

Unfortunately, these systems and their underlying production planning
models are not detailed and powerful enough to build optimized production
plans. In this respect, the stakes for the future of analytical planning IT
systems will be the ability to model accurately and take into account the
joint optimization of capacity utilization and customer demand satisfaction.
This is illustrated in the following case study where the emphasis is put on
modeling the joint resource utilization of the various products or components
in an MRP like planning problem.
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Description

We start our analysis from a very standard initial formulation. Before that,
and in order to allow the reader to practice the modeling approach outlined in
Chapter 1, we give a complete and verbal description of the planning problem
to be solved.

• A plant produces storage racks of differing height and depth giving in
total six end products. Production of each storage rack (end product) is
organized so that each item or component (i.e., end product, semi-finished
product or raw material) has only one successor item. The assembly prod-
uct structure or bill of materials of a typical storage rack is illustrated in
Figure 14.2, in which the material flow is from bottom to top. This pure
assembly structure comes from the kitting of varied amounts of the same
key components required by different end products. The six end product
structures are independent of one another, and there are 78 items in total.

1.1

1.2 1.3 1.4 1.5

1.6 1.7 1.8 1.9

1.10 1.11

1.12

1.13

Figure 14.2. Multilevel BOM for storage rack production.

• Items (end products and intermediate items) are grouped into item fami-
lies, and each item may belong to several families. A family is defined as a
set of technologically similar items in the sense that the members of a fam-
ily are grouped together for some production stages, and therefore share
some resources or consume the same resources at these stages (machines
and machine set-ups).

Families are defined by the planning team in order to model capacity
utilization more accurately. More precisely, they represent machines and
set-ups in the following way.
– A C-family models a set-up cost, which means that a set-up cost is

incurred (once) in each period in which any member of the family is
set-up or produced.
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– A T-family models a set-up time, which means that a set-up time is
incurred (once) in each period in which a member of the family is set
up or produced. This set-up time consumes the available capacity of
an associated machine (associated R-family).

– An R-family models a manufacturing machine or resource, which means
that the family has a given available capacity (in hours per planning
period), and family members are characterized by a unit production
time (in hours per unit) on the resource. The capacity is also consumed
by the set-up times from some associated T-families. The available
capacity of a resource (in hours per period) may be period dependent.

Note that a given family may be simultaneously of the C-type, S-type,
and/or R-type. For example, a C-family may consist of all items using
some equipment, an R-family contains all items produced on the assembly
machine, and a T-family contains all items of a certain depth and produced
together (single preparation) on the R-family assembly machine.

Resource consumption rates vary greatly from product to product, but
are constant over the planning time horizon.

• The plant produces standard products and is operated under a make-
to-stock production policy. Given the limited number of bill of materials
levels, and the automated material handling systems allowing the company
to use small transfer batches, the production cycle is quite short, and a
short-term planning horizon of 16 time periods is used for the MPS and
the MRP. Each production activity is planned using zero lead-times.

• Demand forecasts for the six end products are available for each period
of the planning horizon. To maintain a high level of customer service, the
planning must fulfill demand without backlogging. There is no external
demand – as spare parts – for the intermediate items.

• The objective of the planning team is to build, and maintain over time
using a rolling schedule approach, a short term production plan meet-
ing demand without backlogging, satisfying the capacity restrictions, and
minimizing the inventory and set-up costs. Items vary greatly in echelon
holding costs but these are constant over the time horizon.

Study Questions

The main objective of this project is to build a model and a MIP optimization
algorithm to solve this planning problem. In particular, the following techni-
cal questions about the model and its mathematical formulation should be
addressed.

• How well does the initial formulation perform?
• Are there ways in which the formulation can be improved?
• In using the extended formulations in a black box approach, how should

one choose the approximation parameter TK?
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• If one only has limited computation time, what approach gives the best
feasible solution, or the smallest duality gap?

• Are there heuristics that work well for the problem, or should one run the
MIP for all the computing time that is available?

In addition, and once an efficient optimization tool is available, the follow-
ing modeling question should be tackled.

• Given the very short production cycle (lead-times can be assumed to be
zero), and given the fact that the planning tool will be used in a rolling
horizon manner, is it really necessary to optimize production over a plan-
ning horizon of 16 periods? What does one lose by considering a planning
horizon of 8 periods ?

We analyze the technical questions in this section, and leave the modeling
question as an exercise for Section 14.6.5.

14.2.2 Classification

This problem is a multi-level production planning problem classified as follows.

Multi-Level

• An assembly or convergent product structure ML-A, with six independent
bills of materials (one for each end product) and 78 items in total.

Multi-Item

• There are no mode constraints in this problem because there is no limit
on the number of items set up or produced on each resource per planning
period.

• Structure PQ = [PC-ST (C)] for the resource constraints because there is
a capacity constraint limiting production for each R-family in each period.
This constraint involves both production levels for the members of the R-
family, and constant (over time) set-up times for members of an associated
T-family.

Nevertheless, observe that the set-up times are defined here for item
families rather than for individual items. A set-up time is incurred in a
period on a resource (i.e., a R-family) if any member of an associated
T-family is set up for production. We thus need to adapt our usual or
classical formulation to model this particular feature.

• All the machines are supposed to work in parallel, and there are no machine
choice or machine assignment decisions in this problem. Each R-family
models a machine or resource, and each member of the R-family represents
an item that is produced on that resource.
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Single-Item

• Structure WW -U for each individual item because the objective func-
tion involves only inventory and set-up costs, and therefore satisfies the
nonspeculative WW cost condition. There are no individual capacity con-
straints.

This structure WW -U is part of the initial formulation for end products,
and can be built for each intermediate item by using the classical echelon
stock reformulation.

Again, observe that the set-up costs are defined here for item families
rather than for individual items. The set-up cost of a C-family is incurred
in a period if any member of the C-family is set up for production. We
need to adapt our classical formulation to this feature.

• We could as well classify the individual items as LS-U because the joint
capacity restrictions impose implicit and time-dependent unit production
costs on the items, and optimal solutions may not be stock minimal solu-
tions.

14.2.3 Initial Formulation

The main feature of this problem is the definition of item families to model
joint set-up costs and times. The rest of the problem is a classical multi-level
MRP planning problem with resource capacity constraints. Here we transform
the verbal problem description into a mathematical formulation using our
systematic modeling approach outlined in Chapter 1. The resulting initial
formulation is the one proposed in the original publication describing this
case.

Objects and Indices Mathematical Notation
Items or components Object: set of (all) items I : |I| = NI = 78

Index: i ∈ I = {1, . . . , NI}
Time periods Object: set of time periods T : |T | = NT = 16

Index: t ∈ T = {1, . . . , NT}
Set-up cost families Object: set of C-families CF

Index: f, g ∈ CF
Set-up time families Object: set of T-families TF

Index: f, g ∈ TF
Resource families Object: set of R-families RF

Index: f, g ∈ RF
Families Object: set of families F = CF ∪ TF ∪ RF

Index: f, g ∈ F

Remarks:

• Note that each family is defined by a subset of items.
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Data Mathematical Notation
Assembly product structure:

Immediate succ. of an item ∀i ∈ I [-]: σ(i) ∈ I ∪ {0}
Independent demand ∀ i ∈ I with σ(i) = 0, t ∈ T [units of i]: di

t

Definition of item families ∀ f ∈ F [-]: IF (f) ⊆ I
Unit production time ∀ f ∈ RF , i ∈ IF (f),

[hours of f/unit of i]: αif

Resource capacity ∀ f ∈ RF , t ∈ T [hours]: Lf
t

Associated resources ∀ g ∈ TF [-]: ARF (g) ⊆ RF
Resource set-up times ∀ g ∈ TF , f ∈ ARF (g) [hours]: βgf

Family set-up cost ∀ f ∈ CF [hours]: cf

Inventory cost ∀ i ∈ I [euro/unit of i, period]: hi

Remarks:

• In the assembly product structure, end products have no successor item.
We model this by defining the successor of item i as σ(i) = 0 when i is
an end product, and σ(i) ∈ I otherwise. Note that there is no external or
independent demand di

t for intermediate items (i.e., items i with σ(i) ∈ I).
Each family f ∈ F is defined as a subset IF (f) of items.

• For each R-family f ∈ RF , the unit production time is defined for all items
belonging to the resource family (i.e., all i ∈ IF (f)) and the production
capacity in period t is denoted by Lf

t . For each T-family g ∈ TF , a set-up
time is incurred on the subset ARF (g) of the resource families when at
least one member of the T-family is set up for production in a period. This
set-up time for family g on resource f ∈ ARF (g) is defined by βgf . For
the C-family f ∈ CF , the set-up cost is denoted by cf .

Variables Mathematical Notation
Production lot size ∀ i ∈ I, t ∈ T [units of i]: xi

t ≥ 0
Production set-up ∀ i ∈ I, t ∈ T [-]: yi

t ∈ {0, 1}
Inventory level ∀ i ∈ I, t ∈ T [units of i]: si

t ≥ 0
Family set-up ∀ f ∈ CF ∪ TF , t ∈ T [-]: ηf

t ∈ {0, 1}

Remarks:

• The variables in this model are classical production, set-up, and inventory
variables defined for all items in every time period.

• As usual, inventory variables represent the inventory at the end of each
time period.

• In addition, set-up variables must be defined for C- and T-families in every
period to model the family set-up costs and times, respectively.
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Constraints Mathematical Notation
ML-A/LS-U
Demand satisfaction ∀ i ∈ I, t ∈ T [units of i]: dem satit
Item set-up enforcement ∀ i ∈ I, t ∈ T [units of i]: vubi

t

PQ = [PC-ST (C)]
Resource capacity ∀ f ∈ RF , t ∈ T [res. hours]: capaf

t

Family set-up enforcement ∀ f ∈ CF ∪ TF , i ∈ IF (f), t ∈ T [-]: famif
t

Remarks:

• We have listed first the set of constraints that can be identified from the
problem description and derived from the classification ML-A/PQ = [PC-
ST (C)]/LS-U . Next we will formulate each constraint separately.

• The only nonclassical constraints are the constraints famif
t required to

model the family set-ups.

Objective function Mathematical Notation
Minimize sum of

inventory and set-up costs [euro]: cost

The Complete Formulation

The complete initial formulation of the model, called INI, is the following.

(INI) cost := min
∑
i∈I

∑
t∈T

hisi
t +

∑
f∈CF

∑
t∈T

cfηf
t (14.22)

dem satit := si
t−1 + xi

t = di
t + x

σ(i)
t + si

t

for all i ∈ I, t ∈ T (si
0 = 0) (14.23)

vubi
t := xi

t ≤ Myi
t

for all i ∈ I, t ∈ T (14.24)

capaf
t :=

∑
i∈IF (f)

αifxi
t +

∑
g∈TF :f∈ARF (g)

βgfηg
t ≤ Lf

t

for all f ∈ RF, t ∈ T (14.25)

famif
t := yi

t ≤ ηf
t

for all f ∈ CF ∪ TF, i ∈ IF (f), t ∈ T
(14.26)

si
t, xi

t ∈ R
1
+, yi

t ∈ {0, 1}
for all i ∈ I, t ∈ T (14.27)

ηf
t ∈ {0, 1}

for all f ∈ CF ∪ TF, t ∈ T, (14.28)
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where in constraint (14.23), variable x
σ(i)
t represents the dependent demand of

item i and is assumed to be zero (or does not exist) when i is an end product,
that is, when σ(i) = 0. On the contrary, di

t represents the independent demand
and only exists for end products (i.e., di

t = 0 for all i with σ(i) > 0). In
constraint (14.24), M is a large positive value because there is no individual
capacity constraint. Constraint (14.25) is the classical big bucket capacity
constraint with family set-up times. Finally, constraint (14.26) defines the
link between the item set-up and the family set-up. A family f is forced to be
set up in period t (i.e., ηf

t = 1) when any of its members i ∈ IF (f) is set up
in period t (i.e., yi

t = 1).

14.2.4 Improving the Initial Formulation

We now make several observations relative to the initial formulation INI.

Observation 14.1 i. The integrality constraints on the item set-up variables
yi

t can be relaxed, thereby significantly decreasing the number of integer vari-
ables.
ii. As there are no item set-up costs, the yi

t variables can be eliminated. To
obtain a valid formulation, we can replace the constraints (14.24) and (14.26)
by

xi
t ≤ Mηf

t for all f ∈ CF ∪ TF, i ∈ IF (f), t ∈ T

The formulation obtained by relaxing the integrality requirements on the
y variables is denoted INI − yreal. The formulation obtained by removing
the y variables, denoted INI − red, is

(INI−red) min
∑
i∈I

∑
t∈T

hisi
t +

∑
f∈CF

∑
t∈T

cfηf
t

si
t−1 + xi

t = di
t + x

σ(i)
t + si

t

for all i ∈ I, t ∈ T

xi
t ≤ Mηf

t for all f ∈ CF ∪ TF, i ∈ IF (f), t ∈ T∑
i∈IF (f)

αifxi
t +

∑
g∈TF :f∈ARF (g)

βgfηg
t ≤ Lf

t

for all f ∈ RF, t ∈ T

xi
t, s

i
t ∈ R

1
+ for all i ∈ I, t ∈ T

ηf
t ∈ {0, 1} for all f ∈ CF ∪ TF, t ∈ T .

As we are dealing with a multi-level assembly problem, we can also rewrite
the two formulations using echelon stock variables, as described in Chapter
13. We need to introduce the following notation.
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• The echelon stock variable ei
t, for all i ∈ I and t ∈ T , is defined (for an

assembly product structure) recursively as ei
t = si

t + e
σ(i)
t . In other words,

by expanding the recursion, the echelon stock ei
t represents the sum of

the inventory levels of item i and of all its successors up to the single end
product obtained from i.

• In the assembly product structure, we denote by q(i) the single end product
obtained from item i, for all i.

• We define the echelon holding cost vi, that is, the holding cost associated
with the echelon stock, as vi = hi − ∑

j∈I:σ(j)=i hj .

Using the equality si
t = ei

t − e
σ(i)
t to replace the inventory variables si

t

by the echelon stock variables ei
t, we obtain the echelon reformulation of the

reduced formulation, denoted by INI-red-ech, see Chapter 13 for further or
more detailed explanations:

(INI−red−ech) min
∑
i∈I

∑
t∈T

viei
t +

∑
f∈CF

∑
t∈T

cfηf
t

ei
t−1 + xi

t = d
q(i)
t + ei

t

for all i ∈ I, t ∈ T

ei
t ≥ e

σ(i)
t for all i ∈ I : σ(i) > 0, t ∈ T

xi
t ≤ Mηf

t for all f ∈ CF ∪ TF, i ∈ IF (f), t ∈ T∑
i∈IF (f)

αifxi
t +

∑
g∈TF :f∈ARF (g)

βgfηg
t ≤ Lf

t

for all f ∈ RF, t ∈ T

xi
t, e

i
t ∈ R

1
+ for all i ∈ I, t ∈ T

ηf
t ∈ {0, 1} for all f ∈ CF ∪ TF, t ∈ T.

14.2.5 Choosing the Appropriate Extended Reformulations

The next possibility is to tighten the two echelon stock formulations using the
LS-U classification of single-item subproblems.

Rather than using the extended reformulations for LS-U involving O(n)
or O(n2) constraints (with n = NT ) and many (O(n2)) new variables, we
have used the reformulation WW -U by moving to the right in Table 4.4; see
Section 4.4.4.

This WW -U reformulation does not require any new variables, and for
INI-red-ech and each item i ∈ I, these additional constraints take the form

ei
t−1 +

l∑
u=t

d
q(i)
ul ηf

u ≥ d
q(i)
tl for all t, l ∈ T, and l ≥ t,
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where f is any family containing item i; that is, f ∈ CF ∪TF and i ∈ IF (f).
The resulting formulation is denoted INI-red-ech-WWU .

Clearly, these inequalities are only unique when each item belongs to just
one family. If item i belongs to several families, but forming a nested set of
families, then the above inequalities have to be added only for the smallest
family. In other words, if i ∈ IF (f1) ⊆ IF (f2) ⊆ IF (f3) ⊆ · · · , then the
WW -U inequalities can be added for f1 only, and the following constraints
added to the formulation to link the family set-ups:

ηf1
t ≤ ηf2

t ≤ ηf3
t ≤ · · · .

If item i belongs to several nonnested families of items, then the WW -U
inequalities must be added for these multiple families.

Note that the trade-off between the size and the quality of these reformu-
lations can also be controlled by the approximation parameter TK introduced
in Chapter 5 and used in our library of extended reformulations LS–LIB.

14.2.6 Results with Extended Reformulations

To analyze the best way of using the extended reformulations, we start from
the initial problem, formulation, and data proposed in the literature.

We know that there are 6 end products, and that 6 independent assembly
product structures are used to manufacture these end items. There are 78
items in total, and 16 planning periods. There are 20 nested families of items
(i.e., any two families are either disjoint, or one is included in the other). All
the data used here correspond to the low level of resource availability (C1) and
low level of fixed costs (S1) from the original publication (see Section 14.6.5).
Only the demand set has been generated randomly based on the distribution
proposed.

We first ran each of the different formulations in default MIP mode for
450 seconds. The results are shown in Table 14.8. Column “Int” contains the
number of integer variables, “LP” is the value of the first linear relaxation,
“XLP” is the value of the first node relaxation after addition of the Xpress-
MP cuts. Columns “BUB” and “BLB” give, respectively, the value of the
best feasible solution and the best lower bound after 450 seconds. In the last
column we show the best solution found after 60 and 150 seconds, respectively.
The duality gap is computed as usual by Gap = BUB−BLB

BUB × 100.
The results in Table 14.8 show that:

• It seems very important to eliminate the y variables from the model, and
to express the variable upper bound constraints using directly the η set-up
variables; see model INI-red. This improves both the initial lower bound
(through some system preprocessing) and the root node lower bound after
the addition of Xpress-MP cuts. So, this substitution improves the effec-
tiveness of the system cuts, and allows one to reduce the gap substantially.
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Table 14.8. Storage Rack Model: Reformulation Results in 450 Seconds

Formulation Cons Vars LP BLB Gap % BUB-60 secs
Int XLP BUB Nodes BUB-150 secs

INI 3,312 3,648 2,111.3 6,493.2 48.2 ∞
1,152 5,532.9 12,531.0 27,524 ∞

INI − yreal 3,312 3,648 997.5 6,683.8 45.1 12,217.0
192 4,900.0 12,166.2 41,390 12,217.0

INI − red 2,352 2,688 4,033.1 10,421.4 12.6 12,219.7
192 9,998.1 11,928.9 18,245 12,066.3

INI − red − ech 3504 2,688 4,035.4 9,792.9 18.0 12,083.9
192 9,202.3 11,937.5 31,935 12,017.3

INI − red − ech − WWU 6,528 2,688 10,777.0 11,166.2 3.6 11,810.6
192 10,841.5 11,587.9 4,074 11,587.9

• The echelon stock reformulation by itself does not improve or tighten the
formulation of the model; see INI-red-ech.

• The echelon stock reformulation exhibits LS-U structure for each item.
Using an extended reformulation WW -U for all the items is crucial in
reducing the gap down to less than 4% in 450 seconds; see INI-red-ech-
WWU .

• Using a tight reformulation allows one to obtain good solutions quickly. It
takes less than 1 minute with formulation INI-red-ech-WWU to obtain a
solution with a gap of 5.5%, and less than 2.5 minutes for a gap of 3.8% (it
takes 450 seconds to prove that the actual gap is 3.8%, after 150 seconds
the best lower bound is only 11065.7, and the provable gap is only 4.5%).

14.2.7 Results with Primal Heuristics

Next, to answer the study questions, we consider the effect of certain simple
MIP-based heuristics described in Chapter 3, Section 3.6. In particular, we
check whether it is possible to

• reduce the duality gap,
• improve the quality of the feasible solutions obtained, or
• reduce the time needed to obtain good solutions

by using these heuristics. The heuristics were applied to our best reformulation
INI-red-ech-WWU .

The heuristics tried were the following:

i. Default MIP search truncated after 150 seconds of running time;
ii. Relax-and-fix with R = 2 iterations, time intervals Q1 = [1, 11] ; U1 = ∅;

Q2 = [12, 16], and 75 seconds of running time for each subproblem;
iii. Relax-and-fix with R = 2 iterations, time intervals Q1 = [1, 8] ; U1 =

[9, 11] ; Q2 = [9, 16], and 75 seconds of running time for each subproblem;
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iv. Relax-and-fix with R = 2 iterations, time intervals Q1 = [1, 9] ; U1 = ∅ ;
Q2 = [10, 16], and 75 seconds of running time for each subproblem;

v. Relax-and-fix with R = 2 iterations, time intervals Q1 = [1, 6] ; U1 = [7, 9]
; Q2 = [7, 16], and 75 seconds of running time for each subproblem;

vi. Relax-and-fix with R = 2 iterations, time intervals Q1 = [1, 6] ; U1 =
[7, 9] ; Q2 = [7, 16], and 50 seconds of running time for each subproblem,
followed by one iteration of 50 seconds of the RINS heuristic;

vii. Default MIP search truncated after 75 seconds of running time, followed
by one iteration of 75 seconds of the RINS heuristic.

The time intervals in the relax-and-fix heuristic define the status of the ηf
t

variables; see Section 3.6 for details. When applied, relax-and-fix (R&F) has
been applied in two iterations, where

• ηf
t variables with t ∈ Q1 ∪ U1 were binary at iteration 1,

• ηf
t variables with t ∈ Q1 were fixed at the end of iteration 1,

• ηf
t variables with t ∈ Q2 were binary at iteration 2.

The relaxation-induced neighborhood search (RINS) heuristic consists of

• fixing the ηf
t variables that have the same value in the linear relaxation

solution of formulation INI-red-ech-WWU and in the current best integer
feasible solution (obtained by MIP or by R&F), and

• then solving the restricted MIP problem using the default MIP solver; see
Section 3.6 for details.

Table 14.9. Storage Rack Model: Heuristic Results in 150 Seconds

Heuristic Run T. R&F Time Intervals BLB BUB Gap
(secs) (secs) (%)

MIP 150 11,065.7 11,587.9 4.5
R&F 75, 75 Q1 = [1, 11]; U1 = ∅; Q2 = [12, 16] 11,019.1 11,535.1 4.5
R&F 75, 75 Q1 = [1, 8]; U1 = [9, 11]; Q2 = [9, 16] 11,019.1 11,518.4 4.3
R&F 75, 75 Q1 = [1, 9]; U1 = ∅; Q2 = [10, 16] 11,011.9 11,589.9 5.0
R&F 75, 75 Q1 = [1, 6]; U1 = [7, 9]; Q2 = [7, 16] 11,011.9 11,589.9 5.0
R&F-RINS 50, 50, 50 Q1 = [1, 6]; U1 = [7, 9]; Q2 = [7, 16] 10,975.2 11,654.4 5.8
MIP-RINS 75, 75 – 10,979.8 11,656.4 5.8

In Table 14.9, we show the running times and parameters of the various
heuristics tested, the value of the best valid lower bound (“BLB”) obtained (if
any), the best feasible solution (“BUB”), and the gap after a maximum of 150
seconds. These results have not been obtained with LS–LIB, but with a direct
Mosel implementation of the heuristics. In all these heuristics, the best valid
lower bound is the best lower bound obtained before any heuristic variable
fixing has been applied. For instance, in the R&F heuristic, this corresponds
to the best lower bound obtained at the end of iteration 1.
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In Table 14.9, we compare the default MIP branch-and-bound search with
the heuristics, and we observe that the heuristics can typically improve the
quality of the best feasible solution found in 150 seconds, but provide weaker
lower bounds. The best heuristic solution is obtained here by relax-and-fix
where enough variables keep their binary status during iteration 1 (i.e., Q1∪U1

is large), but not all of these variables are fixed at the end of iteration 1 (i.e.,
U1 �= ∅).

In conclusion, by using MIP-based heuristics and tight reformulations it
seems possible to obtain good solutions quickly, better than those obtained
from a pure MIP approach, but at the price of weaker lower bounds.

14.3 Insulating Board Extrusion

14.3.1 Problem Description

General Context

This case is an example of planning and scheduling in the process industry,
where planning and scheduling cannot be as easily separated as in the case of
discrete manufacturing. Here the distinction between planning and scheduling
is not solely based on the production cycle length and on the production pol-
icy, but should also depend or be based on production process characteristics.
For instance, when production runs take many days, the scheduling problem
must be defined over a longer horizon. When set-ups are time-consuming,
lot-sizing and product processing frequency decisions become crucial in opti-
mizing capacity utilization and have to be taken into account in medium-term
planning models. When set-ups are sequence-dependent, which is very often
the case in the process industry, sequencing decisions have an impact on the
processing capacity. As a consequence, planning and scheduling decisions have
to be coordinated or jointly optimized.

We illustrate this required coordination on a real case taken from the lit-
erature. In this case, production planning decisions (i.e., the quantity to be
produced in the coming month for each product) have already been made
based on existing inventory, global available capacity, short-term customer
orders, and sales forecasts. The objectives of the short-term (monthly) inte-
grated batching and scheduling problem are the following:

• Define the production batches of each product to be processed during
the month on each machine, in such a way that the global production
quantities decided at the higher planning level are met for each product;

• Assign the batches to the different machines, taking into account the ca-
pability and relative speed of machines, as well as their available capacity;

• Sequence the batches on the machines in order to optimize capacity uti-
lization.
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We start our analysis by describing the initial MIP formulation proposed
in the original publication. Then we reformulate the model by using the stan-
dard formulations proposed in Chapter 12 to represent a sequence of set-ups
with sequence-dependent changeover times, and compare the numerical re-
sults obtained with these different reformulations. Finally, we analyze the
multi-period extension, as suggested in the problem description.

Description of the Short-Term Batching and Scheduling Problem

• A plant produces insulating boards by extrusion. Several ingredients and
additives are mixed in an extruding machine; this mix is conducted through
the machine by screws and heated by friction. The resulting paste expands
at the end of the extruder through a die. The die controls the final width
and thickness, and is thus specific to each product. The production quan-
tity is measured in [m3].

• There are several extruders working in parallel (four in our test instances).
The production rates ([m3/h]) are known for each feasible assignment
of a product to a machine. A given machine is only able to process a
subset of the products. There are sequence-dependent changeover times
between the products corresponding to die removal, die installation, and
process stabilization times. These production rates and changeover times
are machine dependent.

• A die has a limited lifetime, and if the extrusion time of a given product
exceeds this lifetime then the die has to be replaced. This corresponds to a
changeover time of a product to itself. A batch is defined as the processing
of a product on a machine without any interruption. The duration of a
batch is therefore limited by the die-lifetime.

• There is at most one campaign (i.e., one sequence of consecutive batches of
a same product) of each product per machine per month. This restriction
is imposed to simplify the plant organization. There is some flexibility in
the duration of a campaign. The end of a campaign can be delayed by at
most 24 hours. This means that the length of the campaign, and the total
lifetime of all dies used in the campaign, can be increased by 24 hours.

• The status of each machine at the beginning of the scheduling horizon is
known and described by the product being processed and by the age of
the die, that is, the duration in the past of the current batch.

• The products are grouped into families of products (seven in our tests).
Each group corresponds to a specific die, and the changeover time between
products of the same group, as well as the differences in production rates
among products of a group, are neglected. A global quantity to be produced
during the scheduling horizon is given for each product group (in [m3]).
This quantity is typically the output of the master planning system. For
the rest of this case a product refers to a product family.
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• The capacity available on each machine over the horizon is also given (in
[hours]). It is machine-dependent because of planned shifts, maintenance,
holidays, and so on.

• The objective of the integrated batching and scheduling problem is to be
able to produce the planned quantities and to minimize the total machine
utilization time required. If the machines are under-utilized in the optimal
solution, then the master planning system will be allowed to increase the
production requirements and a new iteration will be performed. If there
is no feasible solution, then the master planning system will be asked to
reduce the production requirements.

Study Questions

The first objective in the development of this model is the integration or
common optimization of the batching and scheduling decisions over a single-
period horizon of one month. A secondary or future objective would be to go
one step further by integrating also the medium-term planning decisions over
a horizon of three to four months. These objectives suggest the study of the
following questions.

• Does the integrated approach for batching and scheduling provide globally
better solutions than the traditional procedure? The current procedure
first creates batches of products for the different machines, with only a
rough estimate of capacity available for extrusion (changeover times and
sequencing decisions are totally ignored at this stage). This estimate is
equal to total capacity available minus estimated changeover times. Then
the sequence is optimized for each machine individually in order to min-
imize real or effective capacity utilization. Finally, several iterations of
successive batching and scheduling are performed, and the capacity avail-
able for extrusion in a batching iteration is updated to reflect the solution
of the previous scheduling iteration. This process is repeated as long as
global (i.e., over all machines) capacity utilization is decreased.

• Is it possible to formulate and solve the multi-period master planning and
scheduling problem that integrates the production quantity decisions over
several months with the batching and scheduling decisions within each
month? Such an integration allows one to plan the whole plant in a single
step, instead of using several iterations of separated planning and batch-
ing/scheduling steps. Here again, several iterations are needed because
exact capacity utilization depends on the batches and on the sequence of
products, and is not known initially when solving the planning subprob-
lem.

• Does this integrated planning and batching/scheduling approach give sig-
nificantly better solutions than the traditional iterative approach?

• The objective function used for the batching and scheduling has always
been machine capacity utilization. This is because the main objective of
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batching and scheduling was to offer the largest possible capacity to the
planning module. When these planning, batching, and scheduling decisions
are integrated into a single module, are there other objective functions to
use than global capacity utilization over all machines and over the whole
planning horizon?

The feasibility of the multi-period extension is treated later in this section.
The problems/exercises posed in Section 14.6.5 provide a way to answer the
other questions.

14.3.2 Classification

This problem is a single-level, single-period, multi-item production planning
problem classified as follows.

Multi-Item

This problem is mainly a sequencing problem, with no limit on the number of
items produced per period, and with sequence-dependent changeover times.

• For each machine k, the production mode classification is PM = [M∞-
SQ], where sequence-dependent changeover variables are required to model
the capacity constraints and the objective function.

• There is an additional mode-type restriction that there exists at most one
campaign of each product on each machine. Our basic formulations for
M∞-SQ proposed in Section 12.3 need to be adapted to take this into
consideration.

• For each machine k, the production quantity classification for capacity
constraints is PQ = [PC-SQ] in order to model the capacity or time
consumed during the changeover operations.

Single-Item

The single-item classification is degenerate in this case because there is a single
time period.

• For each product, there is a global net requirement or demand to be sat-
isfied from production on different machines. The initial inventory has
already been deducted from the gross requirements.

• All the machines are supposed to work in parallel, and the machines used
to satisfy the demand, as well as the lot sizes on these machines, have to
be decided upon.

• For each product on each machine, a number of batches can be produced,
and the capacity or maximum size of a single batch is limited by the die
life time.

• Therefore, the single-item subproblem exhibits all the characteristics of
LS-C, but with multiple machines, and any number of batches per ma-
chine.
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14.3.3 Initial Formulation

We start with the description of the formulation proposed in the literature.

Objects and Indices Mathematical Notation
Product (families) Object: set of products I : |I| = NI = 7

Index: i ∈ I = {1, . . . , NI}
Extruders (machines) Object: set of machines K : |K| = NK = 4

Index: k ∈ K = {1, . . . , NK}

Remarks:

• The products considered here are the families of products, because there
is no need to distinguish the individual products within a family. We also
denote by I0 the set of products I ∪ {0}, where the additional dummy
product 0 is used to represent the idle state of a machine.

Data Mathematical Notation
Feasible assignments:
Products made on each machine ∀k ∈ K [-]: I(k) ⊆ I
Machines used for each product ∀i ∈ I [-]: K(i) ⊆ K
Demand or required production ∀ i ∈ I [m3]: Di

Production rates ∀ i ∈ I, k ∈ K(i) [m3/h]: αi
k

Changeover times ∀i, j ∈ I(k) ∪ {0} [h]: γij
k

Production capacity ∀ k ∈ K [h]: Lk

Die lifetime ∀ i ∈ I, k ∈ K(i) [h]: βi
k

Extra die lifetime per campaign [h]: ν
Starting product ∀ k ∈ K [-]: Pk ∈ I(k) ∪ {0}
Starting age of die ∀ k ∈ K [h]: Ak ∈ [0, βPk

k ]

Remarks:

• For each machine k, the die lifetime is the maximum duration of a batch.
• The extra die lifetime ν (24 hours in our tests) is the additional duration

of a campaign allowed in excess of the normal die lifetime.
• The starting age of die Ak is the past duration of the batch of product

Pk which is in process at the beginning of the planning horizon. Note that
when machine k is initially idle, we take Pk = 0 and Ak = 0.

Variables Mathematical Notation
Production or extrusion times ∀ i ∈ I, k ∈ K(i) [h]: xi

k ∈ R+
Campaign changeovers ∀ k ∈ K, i, j ∈ I(k) ∪ {0},

i �= j [-]: χij
k ∈ {0, 1}

Batch changeovers in a campaign ∀ k ∈ K, i ∈ I(k) [-]: zi
k ∈ Z+

Campaign sequence number ∀ i ∈ I, k ∈ K(i) [h]: ui
k ∈ R+
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Remarks:

• The variables in this model are classical production and changeover vari-
ables, plus some additional variables to take into account the restrictions
on campaigns and on die lifetimes.

• We define two types of die changes or changeovers. The campaign change-
over variable χij

k represents a transition from a campaign of product i
to a campaign of a different product j. The batch changeover variable zi

k

represents the number of die changes within the campaign of product i (i.e.,
a changeover from product i to itself). Therefore, if there is a campaign of
product i on machine k, there are zi

k + 1 batches in this campaign.
• The continuous variable ui

k is used to model the elimination of subtours,
and represents the sequence number of the campaign of product i on ma-
chine k, if such a campaign exists.

Constraints Mathematical Notation
PM = [M∞-SQ]
Single predecessor ∀ k ∈ K, i ∈ I(k) ∪ {0} [-]: predi

k

Single successor ∀ k ∈ K, i ∈ I(k) ∪ {0} [-]: succi
k

Subtour elimination ∀ k ∈ K, i, j ∈ I(k), i �= j [-]: subtourij
k

Continuation starting campaign ∀ k ∈ K [-]: startk
PQ = [PC–SQ]
Machine capacity ∀ k ∈ K [h]: capak

LS–C
Demand satisfaction ∀ i ∈ I [m3]: dem sati

Campaign capacity ∀ k ∈ K, i ∈ I(k) [m3]:
vub predi

k and vub succi
k

Batch capacity ∀ k ∈ K, i ∈ I(k) [m3]: vub batchi
k

Remarks:

• We have listed the set of constraints that can be identified from the prob-
lem description. Although this formulation has been derived independently
of the classification, to facilitate the analysis, we associate each constraint
with the structures identified in the classification. Then we will formulate
each constraint separately.

Objective function Mathematical Notation
Minimize total capacity utilization [h]: used capa

The Complete Formulation

The complete initial formulation of the model, called INI, is the following.
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(INI) used capa := min
∑
k∈K

[ ∑
i∈I(k)

(xi
k + γii

k zi
k)+

∑
i,j∈I(k)∪{0}:j �=i

γij
k χij

k − γ0,Pk

k

]
(14.29)

predi
k :=

∑
j∈I(k)∪{0}

χji
k ≤ 1 for k ∈ K, i ∈ I(k) ∪ {0} (14.30)

succi
k :=

∑
j∈I(k)∪{0}

χij
k ≤ 1 for k ∈ K, i ∈ I(k) ∪ {0} (14.31)

subtourij
k := uj

k ≥ ui
k − |I(k)| + (|I(k)| + 1)χij

k

for k ∈ K, i, j ∈ I(k) : i �= j (14.32)

startk := 1 = χ0,Pk

k for k ∈ K (14.33)

capak :=
∑

i∈I(k)

(xi
k + γii

k zi
k) +

∑
i,j∈I(k)∪{0}:j �=i

γij
k χij

k −

γ0,Pk

k ≤ Lk for k ∈ K (14.34)

dem sati :=
∑

k∈K(i)

αi
kxi

k ≥ Di for i ∈ I (14.35)

vub predi
k := xi

k ≤ Lk

∑
j∈I(k)∪{0}

χji
k for k ∈ K, i ∈ I(k) (14.36)

vub succi
k := xi

k ≤ Lk

∑
j∈I(k)∪{0}

χij
k for k ∈ K, i ∈ I(k) (14.37)

vub batchi
k := xi

k + Ak ≤ βi
kzi

k + βi
k + ν

for k ∈ K, i ∈ I(k) : i = Pk (14.38)

vub batchi
k := xi

k ≤ βi
kzi

k + βi
k + ν

for k ∈ K, i ∈ I(k) : i �= Pk, (14.39)

where constraints (14.30) and (14.31) express the condition that each prod-
uct has at most one predecessor and one successor in the campaign sequence
relative to each machine. Constraint (14.32) eliminates subtours, which are
defined as campaign sequences leaving a product i and coming back to i after
some transitions. Such subtours form infeasible campaign sequences and are
eliminated by associating a label or sequence number ui

k with each product
i on each machine k, and by imposing uj

k ≥ ui
k + 1 when there is transition

from i to j. Constraint (14.33) treats the initial transition from 0 to Pk. Con-
straint (14.34) is the usual single-machine capacity constraint with changeover
times, taking all transition types into account. The objective (14.29) is the to-
tal capacity utilization over all machines. Constraint (14.35) models demand
satisfaction. Constraints (14.36) and (14.37) ensure that the production of
product i on machine k is zero when there is no campaign of i on k. Finally,
constraints (14.38) and (14.39) ensure that there are enough batches (zi

k + 1
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of them) in a campaign of product i on machine k, in the case when i is the
starting product on machine k and when it is not.

14.3.4 Improving the Initial Formulation

We now make several observations based on the classification in order to
improve the initial formulation INI.

• For each machine k, we may use the vehicle routing formulation (12.10)–
(12.14) of PM = [M∞-SQ] to get a tight formulation for the sequence of
campaigns.

• In this formulation, we restrict variables yi
k, the number of set-ups of prod-

uct i on machine k, to be binary because there is at most one campaign
of each product on each machine.

• In order to improve the formulation of the production quantity structure
PQ = [PC-SQ], we can, as suggested in Section 12.4, build single-node
flow relaxations of our model, and add flow cover or reverse flow cover
valid inequalities; see Section 8.9. As these flow cover inequalities, as well
as other mixed integer rounding inequalities based on the same relaxations,
are now generated automatically in the standard MIP solvers, the easiest
and fastest way to test this idea is to provide these (or some) single-node
flow relaxations as part of the initial formulation.

• These relaxations are defined by flow constraints – capacity and demand
satisfaction constraints – and variable upper bound constraints. To obtain
pure variable upper bound constraints in the formulation:
– We decompose the extrusion time in a campaign into normal extrusion

time (limited by the die lifetime) and additional extrusion time at the
end of a campaign (limited to 24 hours).

– We artificially fix the start of the planning horizon on each machine
at the past date at which the last batch was started, which requires
us to update the product demands and the production capacities (see
below).

• Finally, in order to keep a compact formulation and because the number
of items is small, we retain the weak initial formulation of the subtour
elimination constraints. An alternative to be tested here would be to add
the subtour constraints (12.16) with q = 1. This would allow us to avoid
the creation of the ui

k variables, but at the potential expense of many
subtour inequalities.

V RP Variables

We redefine the variables as

• xi
k ∈ R+ denotes the normal extrusion time of the campaign of product i

on machine k, for k ∈ K and i ∈ I(k) (i.e., without the additional lifetime).
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• vi
k ∈ R+ denotes the additional extrusion time of the campaign of product

i on machine k, for k ∈ K and i ∈ I(k).
• yi

k ∈ {0, 1} takes the value 1 if there exists a campaign of product i on
machine k, and 0 otherwise, for k ∈ K and i ∈ I(k).

• zi
k ∈ Z+ denotes the total number of batches in the campaign of product

i on machine k, for k ∈ K and i ∈ I(k).
• χij

k ∈ {0, 1} takes the value 1 when there is a changeover from a campaign
of product i to a campaign of product j on machine k, and 0 otherwise,
for k ∈ K and i, j ∈ I(k) ∪ {0}, i �= j.

• ui
k ∈ R+ is used to model the subtour elimination restrictions, for k ∈ K

and i ∈ I(k).

V RP Formulation

The above observations lead to the following alternative formulation, called
V RP .

(V RP )

used capa := min
∑
k∈K

[ ∑
i∈I(k)

(xi
k + vi

k + γii
k zi

k) − Ak − γPk,Pk

k +

∑
i,j∈I(k):j �=i

(γij
k − γjj

k )χij
k +

∑
j∈I(k)

(γ0j
k − γjj

k )χ0j
k δ0,Pk

]
(14.40)

pred0
k :=

∑
j∈I(k)∪{0}

χj0
k = 1 for k ∈ K (14.41)

predi
k :=

∑
j∈I(k)∪{0}

χji
k = yi

k for k ∈ K, i ∈ I(k) (14.42)

succ0
k :=

∑
j∈I(k)∪{0}

χ0j
k = 1 for k ∈ K (14.43)

succi
k :=

∑
j∈I(k)∪{0}

χij
k = yi

k for k ∈ K, i ∈ I(k) (14.44)

subtourij
k := uj

k ≥ ui
k − |I(k)| + (|I(k)| + 1)χij

k

for k ∈ K, i, j ∈ I(k) : i �= j (14.45)

startk := χ0,Pk

k = 1 for k ∈ K with Pk �= 0 (14.46)
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capak :=
∑

i∈I(k)

(xi
k + vi

k + γii
k zi

k) +

∑
i,j∈I(k):j �=i

(γij
k − γjj

k )χij
k +

∑
j∈I(k)

(γ0j
k − γjj

k )χ0j
k δ0,Pk ≤

Lk + γPk,Pk

k + Ak for k ∈ K (14.47)

dem sati :=
∑

k∈K(i)

αi
k(xi

k + vi
k) ≥

Di +
∑

k∈K:Pk=i

αi
kAk for i ∈ I (14.48)

pastk := xi
k ≥ Ak for k ∈ K, i ∈ I(k) : i = Pk (14.49)

vub xi
k := xi

k ≤ βi
kzi

k for k ∈ K, i ∈ I(k) (14.50)

vub vi
k := vi

k ≤ νyi
k for k ∈ K, i ∈ I(k) (14.51)

vlb zi
k := zi

k ≥ yi
k for k ∈ K, i ∈ I(k) (14.52)

vub zi
k := zi

k ≤ � Di

αi
kβi

k

�yi
k for k ∈ K, i ∈ I(k) (14.53)

flow1i
k :=

∑
k∈K(i)

αi
k βi

k zi
k +

∑
kinK(i)

αi
k vi

k ≥

Di +
∑

k∈K:Pk=i

αi
kAk for i ∈ I (14.54)

flow2i
k :=

∑
k∈K(i)

αi
k βi

k zi
k +

∑
kinK(i)

αi
k ν yi

k ≥

Di +
∑

k∈K:Pk=i

αi
kAk for i ∈ I, (14.55)

where constraints (14.41)–(14.44) model the sequence of campaigns, and con-
straint (14.46) fixes the starting product, on each machine. Note that all cam-
paign sequences start from the dummy product, and end with the dummy
product. In the capacity constraint (14.47), each batch of product i on ma-
chine k requires a batch start-up time γii

k to change the die, and an additional
changeover time of γji

k −γii
k when the batch start-up coincides with the begin-

ning of a new campaign of product i, coming from product j. The only case
where the transition from the idle state 0 consumes capacity is when the start-
ing product is the idle product, with the notation δ0,Pk = 1 when Pk = 0 and 0
otherwise. Because of the redefinition of the beginning of the planning horizon,
the capacity in the rhs of (14.47) is increased by the past production time Ak

and the past changeover time γPk,Pk

k . The objective function (14.40) is again
the total machine utilization time, without past utilization. Similarly, in the
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demand satisfaction constraint (14.48), the required production of product i is
increased by its past production

∑
k∈K:Pk=i αi

kAk. This past production level
is imposed as a constraint in (14.49). The modification of the planning horizon
allows us to write the variable lower and upper bound constraints simply as
(14.50)–(14.53). Finally, the constraints (14.47)–(14.48),(14.54), and (14.55)
define single-node flow and integer continuous knapsack relaxations, together
with the variable upper bounds (14.50)–(14.51). The latter two relaxations
are obtained from (14.48) by replacing the extrusion times using the variable
upper bound constraints.

UF Variables

Finally, an alternative formulation to V RP is to formulate explicitly the se-
quence of campaigns on each machine by adapting the unit flow formulation
(12.1)–(12.4) from Chapter 12.

We keep the variables xi
k, yi

k, zi
k, vi

k as in formulation V RP , and introduce
the following new variables to represent the sequence of campaigns.

• ui
kc ∈ {0, 1} takes the value 1 if the cth campaign on machine k is of

product i, and 0 otherwise, for k ∈ K, and either i ∈ I(k), c ∈ {1, . . . , |I0|},
or Pk = i = 0, c = 1.

• χij
kc ∈ {0, 1} takes the value 1 when there is a changeover on machine k

from the (c − 1)th campaign which is of product i to the cth campaign
which is of product j, and 0 otherwise, for k ∈ K, and either i, j ∈ I(k),
i �= j, c ∈ {2, . . . , |I0|}, or Pk = i = 0, j ∈ I(k), c = 2.

Note that the only case in which we need to use the dummy product 0 is when
it is the starting product or campaign on a machine.

UF Formulation

This leads to the following alternative formulation called UF .

(UF )

used capa := min
∑
k∈K

[ ∑
i∈I(k)

(xi
k + vi

k + γii
k zi

k) − Ak − γPk,Pk

k +

∑
i,j∈I(k)∪{0}:j �=i

∑
c≥2

(γij
k − γjj

k )χij
kc

]
(14.56)

predi
k1 := uPk

k1 = 1 for k ∈ K (14.57)

predi
k1 := ui

k1 = 0 for k ∈ K, i ∈ I(k) : i �= Pk (14.58)

predi
kc := ui

kc =
∑

j∈I(k)∪{0}:j �=i

χji
kc

for k ∈ K, i ∈ I(k), c ≥ 2 (14.59)
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succi
kc := ui

k,c−1 ≥
∑

j∈I(k)∪{0}:j �=i

χij
kc

for k ∈ K, i ∈ I(k), c ≥ 2 (14.60)

campaigni
k := yi

k =
∑
c≥1

ui
kc for k ∈ K, i ∈ I(k) (14.61)

capak :=
∑

i∈I(k)

(xi
k + vi

k + γii
k zi

k) +

∑
i,j∈I(k)∪{0}:j �=i

∑
c≥2

(γij
k − γjj

k )χij
kc ≤

Lk + γPk,Pk

k + Ak for k ∈ K (14.62)

(x, y, z, v) satisfy (14.48)–(14.55), (14.63)

where constraints (14.57)–(14.58) define the first campaign (entering flow),
constraint (14.59) defines the cth campaign as the result of a transition from
the previous (c − 1)th campaign, whereas constraint (14.60) allows a transi-
tion from the (c − 1)th campaign to the next cth campaign. Observe that the
inequality ≥ constraint permits termination of the sequence after any cam-
paign. Constraint (14.61) defines whether there exists a campaign of product
i on machine k (yi

k = 1), or not (yi
k = 0). Finally, the capacity constraint

(14.62) and the objective function (14.56) are similar to those in the V RP
formulation.

14.3.5 Results with Reformulations

We have solved a test instance of the problem involving seven products and
four machines, for which we ran each of the different formulations in default
MIP mode with Xpress-MP. All three formulations INI, V RP , and UF solved
this single-period batching and scheduling problem to optimality. The results
are shown in Table 14.10. Columns “Cons,” “Vars,” and “Int” contain, respec-
tively, the number of constraints, variables, and integer or binary variables.
“LP” is the value of the first linear relaxation; “XLP” is the value of the
first node relaxation after addition of the Xpress-MP cuts. Column “OPT”
gives the common value of the optimal (integer) solution. Columns “Nodes”
and “Time” give the total number of nodes and the running time to prove
optimality.

The results show the effectiveness of the proposed V RP and UF refor-
mulations in solving this problem. This is due to a much better quality lower
bound. Although the linear relaxation of UF gives a slightly better bound, it
takes more nodes than the V RP formulation to solve the problem to optimal-
ity.
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Table 14.10. Insulating Boards: Reformulation Results

Formulation Cons Vars Int LP XLP OPT Nodes Time
INI 206 186 146 2,003.44 2,054.33 2,077.09 36,553 67
V RP 257 222 162 2,046.26 2,066.48 2,077.09 611 1
UF 447 814 774 2,046.55 2,066.21 2,077.09 729 2

14.3.6 The Multi-Period Planning and Scheduling Extension

We now consider the multi-period master planning, batching, and scheduling
problem that optimizes all such decisions over a horizon of several months.
We propose and test a formulation based on the single-period reformulations
studied before. Given the results in Table 14.10, we use formulation V RP as
a starting point. A similar model can easily be built from formulation UF .

As the extension is straightforward, we only comment on the modifications
with respect to formulation V RP . Except for the demands, all sets and data
remain the same as in the single-period model. An additional index t is used
for time periods t ∈ T = {1, . . . , NT}. The demand for item i in time period
t is denoted Di

t, and the capacity of machine k in period t is denoted Lkt.

MV RP Variables

The following V RP variables are retained and have the same interpretation.
The only difference is that all these decisions have to be taken in each time
period: yi

kt ∈ {0, 1}, χij
kt ∈ {0, 1}, ui

kt ∈ R+.
The other variables, defined for t ∈ T , k ∈ K, and i ∈ I(k), are new or

have a slightly different interpretation.

• xi
kt ∈ R+ denotes the normal extrusion time of the campaign of product i

on machine k in period t, without the additional lifetime at the end of a
campaign (variable v) and without the remaining extrusion time performed
in period t from the last batch of period t − 1 (variable r).

• vi
kt ∈ R+ denotes the additional extrusion time at the end of the campaign

of product i on machine k in period t.
• ri

kt ∈ R+ denotes the remaining extrusion time in period t from the last
batch of period t − 1 on machine k, if this last batch is of product i, and
0 otherwise.

• zi
kt ∈ Z+ denotes the number of batches of product i started on machine

k in period t.
• si

t ∈ R+ denotes the inventory of product i at the end of period t.

So, the main difference with respect to V RP is the decomposition of the
extrusion times into three distinct sources: remaining time r from the previous
period, normal time x, and additional time v.
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MV RP Formulation

The formulation of the multi-period extension is called MV RP .

(MV RP )

used capa := min
∑
t∈T

∑
k∈K

ρt
[ ∑

i∈I(k)

(ri
kt + xi

kt + vi
kt + γii

k zi
kt)+

∑
i,j∈I(k):j �=i

(γij
k − γjj

k )χij
kt

]
+

∑
k∈K

∑
j∈I(k)

ρ (γ0,j
k − γjj

k )χ0,j
k1 δ0,Pk (14.64)

pred0
kt :=

∑
j∈I(k)∪{0}

χj,0
kt = 1 for k ∈ K, t ∈ T (14.65)

predi
kt :=

∑
j∈I(k)∪{0}

χji
kt = yi

kt for k ∈ K, i ∈ I(k), t ∈ T (14.66)

succ0
kt :=

∑
j∈I(k)∪{0}

χ0,j
kt = 1 for k ∈ K, t ∈ T (14.67)

succi
kt :=

∑
j∈I(k)∪{0}

χij
kt = yi

kt for k ∈ K, i ∈ I(k), t ∈ T (14.68)

subtourij
kt := uj

kt ≥ ui
kt − |I(k)| + (|I(k)| + 1)χij

kt

for k ∈ K, i, j ∈ I(k) : i �= j, t ∈ T (14.69)

startik,1 := χ0,i
k1 = δi,Pk for k ∈ K, i ∈ I(k) (14.70)

startikt := χ0,i
kt = χi,0

k,t−1 for k ∈ K, i ∈ I(k), 2 ≤ t ≤ NT (14.71)

capak,1 :=
∑

i∈I(k)

(ri
k,1 + xi

k,1 + vi
k,1 + γii

k zi
k,1) +

∑
i,j∈I(k):j �=i

(γij
k − γjj

k )χij
k,1 +

∑
j∈I(k)

(γ0,j
k − γjj

k )χ0,j
k1 δ0,Pk ≤ Lk,1 for k ∈ K (14.72)

capakt :=
∑

i∈I(k)

(ri
kt + xi

kt + vi
kt + γii

k zi
kt) +

∑
i,j∈I(k):j �=i

(γij
k − γjj

k )χij
kt ≤ Lkt

for k ∈ K, 2 ≤ t ≤ NT (14.73)
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dem satit := si
t−1 +

∑
k∈K(i)

αi
k(ri

kt + xi
kt + vi

kt) =

Di
t + si

t for i ∈ I, t ∈ T (14.74)

ub ri
k,1 := ri

k,1 ≤ (βi
k − Ak) δi,Pk for k ∈ K, i ∈ I(k) (14.75)

vub ri
kt := ri

kt ≤ βi
kχ0i

kt for k ∈ K, i ∈ I(k), 2 ≤ t ≤ NT (14.76)

vub xi
kt := xi

kt + ri
k,t+1 ≤ βi

kzi
kt for k ∈ K, i ∈ I(k), t ∈ T (14.77)

vub vi
kt := vi

kt ≤ ν (yi
kt − χi,0

kt ) for k ∈ K, i ∈ I(k), t ∈ T (14.78)

vub zi
kt := zi

kt ≤ � Lkt

βi
k + γii

k

�yi
kt for k ∈ K, i ∈ I(k), t ∈ T (14.79)

vlb zi
kt := zi

kt ≥ yi
kt − χ0,i

kt for k ∈ K, i ∈ I(k), t ∈ T, (14.80)

where constraints (14.65)–(14.69) model the sequence of campaigns on each
machine in each time period, constraints (14.70)–(14.71) impose the initial
conditions and transitions between periods; that is, the ending batch of pe-
riod t − 1 is the starting batch of period t. Constraints (14.72)–(14.74) model
the capacity restrictions and demand satisfaction, taking into account the de-
composition of the extrusion times from three sources. The objective function
(14.64) is the sum of machine utilization times, with a discount factor ρ < 1 to
penalize capacity utilization in earlier periods, or to minimize stocks expressed
in terms of production hours.

Constraint (14.75) limits the remaining production from the last batch
prior to the planning horizon, and constraint (14.76) prevents any remaining
production in period t if the production campaign is not the first in period t,
that is, the last in period t − 1. Constraint (14.77) ensures in each period a
number zi

kt of batches that is large enough to cover the normal production xi
kt

in period t, plus the remaining production ri
k,t+1 postponed till period t + 1.

Constraint (14.78) restricts the extra production to campaigns that are fin-
ished in period t. Constraint (14.79) limits the number of batches in a period,
and prevents the creation of batches in a period without an active campaign in
that period. Finally, constraint (14.80) ensures that a new campaign contains
at least one batch.

Improving Formulation MV RP

As for V RP , formulation MV RP can be improved by adding low-level relax-
ations in order to help the MIP solver to generate mixed integer rounding and
flow covers cuts. To take into account the integer variables involved in the for-
mulation, we have added the following integer continuous knapsack sets (see
Section 8.7) obtained by first summing the demand satisfaction constraints
over periods t up to l, 1 ≤ t ≤ l ≤ NT , and then replacing the continuous
variables using their variable upper bounds:
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si
t−1 +

∑
k∈K(i)

αi
kβi

kχ0,i
kt +

∑
k∈K(i)

l∑
u=t

αi
kβi

kzi
ku

+
∑

k∈K(i)

l∑
u=t

αi
kν(yi

ku − χi,0
ku) ≥

l∑
u=t

Di
u for i ∈ I, 2 ≤ t ≤ l ≤ NT

(14.81)

∑
k∈K(i)

αi
k(βi

k − Ak) δi,Pk +
∑

k∈K(i)

l∑
u=1

αi
kβi

kzi
ku

+
∑

k∈K(i)

l∑
u=1

αi
kν(yi

ku − χi,0
ku) ≥

l∑
u=1

Di
u for i ∈ I, 1 ≤ l ≤ NT.

(14.82)

The formulation MV RP augmented by constraints (14.81)–(14.82) is called
MV RP+.

Another way to improve formulation MV RP is to add extended formula-
tions for higher-level relaxations of the model. We have identified three such
relaxations for the multi-period single-item subproblems.

First, a LS-U relaxation is defined for each product i. If (s, r, v, x, y, z, χ)
is feasible for MV RP , then (S, X, Y ) ∈ conv(XLS−U (DD)) with

S(t) := si
t for all t,

X(t) :=
∑

k∈K(i)

αi
k (ri

kt + xi
kt + vi

kt) for all t,

Y (t) :=
∑

k∈K(i)

yi
kt for all t,

DD(t) := Di
t for all t,

where XLS−U (DD) denotes the set of feasible solutions of LS-U with demand
vector DD. This is a valid relaxation because for all (s, r, v, x, y, z, χ) feasible
for MV RP , we have S(t − 1) + X(t) = DD(t) + S(t) and Y (t) = 0 implies
X(t) = 0, for all t.

Next, we have identified two relaxations WW -U and WW -CC for each
product i.

If (s, r, v, x, y, z, χ) is feasible for MV RP , this implies that (S, Y ) ∈
conv(XWW−U (DD)) and (S, Y ) ∈ conv(XWW−CC(DD, CC)) with
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S(t) := si
t +

∑
k∈K(i)

αi
k (ri

k,t+1 + ν χi,0
kt ) for all t,

Y (t) :=
∑

k∈K(i)

zi
kt for all t,

DD(t) := Di
t for all t,

CC := max
k∈K(i)

αi
k (βi

k + ν),

where XWW−U (DD) denotes the set of feasible solutions of WW -U with
demand vector DD, and XWW−CC(DD, CC) denotes the set of feasible solu-
tions of WW -CC with demand vector DD, and constant capacity CC. These
are valid relaxations because Y (t) is the number of new batches started in
period t, CC is an upper bound on the capacity of a single new batch (the
term ν is needed because campaigns of a single batch are allowed, and there-
fore a single batch can give as much capacity as αi

k (βi
k + ν)), and S(t) is an

upper bound on the demand after period t satisfied from batches started
before or in period t. In other words, these are valid relaxations because
S(t − 1) + CC

∑l
u=t Y (u) ≥ ∑l

u=t DD(u), for 1 ≤ t ≤ l ≤ NT . Observe
that we would obtain a tighter relaxation by taking into account the varying
capacities among the machines, but no appropriate (approximate) extended
formulation is known.

These reformulations can be easily implemented using the LS–LIB library,
either using the extended reformulations from the XForm procedures, or the
cutting planes from the Xcut procedures. Formulation MV RP augmented
with the three extended formulations is denoted by MV RP -F , whereas for-
mulation MV RP tightened by the three cutting plane procedures is denoted
by MV RP -C.

Results for the Multi-Period Extension

Here we compare different versions of formulation MV RP , namely

MV RP, MV RP+, MV RP−F, MV RP+−C, MV RP+−F ,

for problem instances with NT = 3 and 4 time periods, with NI = 7 products,
NK = 4 machines, and with a discounting factor ρ = 0.98. In our implemen-
tation of MV RP -C, we generate up to 20 rounds of cuts at the root node,
and in the branch-and-bound tree with a cut frequency of 3, and a maximum
depth of 30.

The results obtained with a maximum run-time of 600 seconds for each
problem instance are given in Table 14.11. Column “LP” gives the value of
the linear relaxation, before any cut. Column “XLP” reports on the objec-
tive value at the root node, after the addition of Xpress-MP and LS–LIB
cuts. Columns “BUB” and “BLB” contain the best solution and the best
lower bound at the end of the computing time (optimum proved or time limit
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reached). Column “Gap” gives the final duality gap at the end of the com-
putation. Columns “Nodes” and “Time” contain the final information at the
end of the computation. A ∗ indicates that the time limit has been reached
and the optimization stopped.

Table 14.11. Insulating Boards: Multi-Period Results

Formulation-NT Cons Vars Int LP XLP BUB BLB Nodes Time Gap
(secs) (%)

MV RP -3 851 747 486 4,886 4,899 4,922 4,922 53,314 358 0
MV RP+-3 899 749 486 4,886 4,900 4,922 4,922 29,859 241 0
MV RP+-C-3 899 749 486 4,886 4,902 4,922 4,922 24,054 294 0
MV RP -F -3 1,103 894 486 4,895 4,904 4,922 4,922 18,372 213 0
MV RP+-F -3 1,151 896 486 4,895 4,903 4,922 4,922 15,271 185 0
MV RP -4 1,144 996 648 7,035 7,048 7,091 7,061 51,286∗ 600∗ 0.42
MV RP+-4 1,224 999 648 7,035 7,049 7,094 7,063 43,472∗ 600∗ 0.44
MV RP+-C-4 1,224 999 648 7,035 7,053 7,091 7,063 28,467∗ 600∗ 0.39
MV RP -F -4 1,536 1,234 648 7,043 7,052 7,086 7,065 30,859∗ 600∗ 0.30
MV RP+-F -4 1,616 1,237 648 7,043 7,052 7,088 7,066 26,872∗ 600∗ 0.31

The instance with three time periods can be solved easily by all formula-
tions, but the instance with four time periods cannot be solved to optimality
in less than ten minutes. However, in all cases the V RP -based formulations
give very good quality solutions very quickly. In less than one minute, these
formulations suggest solutions where capacity utilization is less than 1% away
from optimality.

There is little difference between the various formulations, but it seems
that formulation MV RP -F (or MV RP+-F ) outperforms the others. The
performance of MV RP -C is a little worse although, in theory, the bounds it
provides are as good as those obtained with MV RP -F . This is partly due to
the fact that, in the current version of Mosel/Xpress-MP, the preprocessing
has to be turned off when LS–LIB cuts are generated (bounds are not strength-
ened, redundant variables and constraints are not removed). Nevertheless,
observe that more nodes are inspected in 600 seconds in MV RP+-C-4 than
in MV RP+-F -4, which means that the cut generation and cut management
times are compensated by the reduced optimization time for a smaller-size
formulation.

These results are very preliminary, and this problem deserves further anal-
ysis. In particular, new formulations and specific valid inequalities for the
structure PQ = [PC-SQ] (a way to achieve this is described in Section 12.4)
seem necessary, as well as some better formulations for the single-item LS-C
and WW -C structures identified above with varying capacities and several
machines.
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14.4 Pigment Sequencing

This is a multi-item lot-sizing problem with capacity constant over time and
production at full capacity. There are storage costs and sequence-dependent
changeover costs , and at most one item is produced per period. Backlogging
is not allowed.

Below we first discuss this basic problem and how to improve its formula-
tion. In a second stage we consider how to formulate correctly several natural
ways of assigning costs when there are idle or “no production” periods.

14.4.1 Initial Formulation

The basic problem we start from, with m items, n time periods, and no initial
stock, is defined by the formulation

min
m∑

i=1

n∑
t=1

hisi
t +

m∑
i,j=1

n∑
t=1

cijχi,j
t (14.83)

si
t−1 + xi

t = di
t + si

t for all i, t (14.84)

si
0 = 0 for all i (14.85)

xi
t ≤ yi

t for all i, t (14.86)
m∑

i=1

yi
t = 1 for all t (14.87)

χij
t ≥ yi

t−1 + yj
t − 1 for all i, j, t (14.88)

x, y ∈ {0, 1}mn, s ∈ R
mn
+ , χ ∈ R

m2n
+ . (14.89)

where constraint (14.84) is the classical flow balance constraint, with zero
initial inventory by (14.85). Constraint (14.86) is the set-up forcing constraint,
where we suppose without loss of generality that the demands have been
normalized so that di

t ∈ {0, 1}; see Section 10.5.1. Constraint (14.87) is the
production mode restriction, and (14.88) defines the changeover variables. The
objective (14.83) is the sum of inventory and changeover costs. We denote
this basic problem PIG-A, and PIG-A-1 is the specific formulation (14.83)–
(14.89).

14.4.2 Classification

This model has the following classification:

• Single machine;
• Single level;
• Multi-item with production mode PM = [M1-SQ], and production quan-

tity PQ = [PC-U ] (i.e., there is no joint production quantity restriction);
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• Each single item has classification DLS-CC-SC.

Note that the sequence-dependent changeover costs necessarily call for
information about start-ups and switch-offs of single items, which explains
the SC in the single-item classification.

14.4.3 Reformulations

Reformulation of the Changeover Variables

The weak formulation (14.88) of the changeover variables can be replaced
by the unit flow reformulation presented in Section 12.2.2. This leads to the
constraints

∑
i

χij
t = yj

t for all j, t

∑
j

χij
t = yi

t−1 for all i, t

∑
i

yi
0 = 1

y ∈ {0, 1}mn, χ ∈ R
m2n
+ ,

representing the flow of a single unit passing from item set-up to item set-up
over time, plus the constraints linking the changeover variables to the start-up
and switch-off variables

yj
t − zj

t = yj
t−1 − wj

t−1 = χjj
t for all j, t.

The formulation in which the constraints (14.88) are replaced in this way is
denoted PIG-A-2.

Reformulation of the Single-Item Subproblems

Next we see in Table 4.6 that there is a tight reformulation of DLS-CC-SC
with O(n2) constraints and O(n) variables described in Section 10.5.1; see
Theorem 10.18. Adding this to formulation PIG-A-2 gives a final formulation
PIG-A-3.

14.4.4 Computational Results with Reformulations

We consider an instance with n = NT = 100, m = NI = 10; the storage costs
hi = 10 are item-independent. The changeover costs cij are nonnegative, with
cii = 0 for all i. They do not satisfy the triangle inequality. Total demand for
the instance is 83, whereas total production capacity is 100, the number of
periods. In Table 14.12 we present computational results showing the effects of
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the reformulations. These results have been obtained using the default version
of Xpress-MP and LS–LIB to implement the single item reformulation. For
the final formulation PIG-A-3, we set TK = 31, with model cuts switched
on (MC = 1). The time limit has been fixed to 1800 seconds. As usual, the
first four columns represent the formulation used, the number of constraints,
variables, and integer variables. The next four columns represent the value
of the linear programming relaxation at the root node before cuts, and after
both the model cuts from DLS-CC-SC and system cuts from Xpress-MP,
and the best upper and lower bounds at the end of the computation. The last
three columns give the total time in seconds, the total number of nodes, and
the final duality gap. A ∗ indicates that the time limit has been reached and
the optimization stopped.

Table 14.12. Results with Different Formulations for Problem PIG–A

Formulat. Cons Vars Int LP XLP BUB BLB Time Nodes Gap
(secs) (%)

PIG–A–1 31,800 12,900 1,000 1,661.6 2,251.2 13,178 2,603.7 1,800∗ 17,800∗ 80.2
PIG–A–2 6,060 14,880 1,990 3,282.6 3,839.2 12,213 4,061.5 1,800∗ 17,300∗ 66.7
PIG–A–3 8,498 14,880 1,990 3,282.6 8,282.5 8,312 8,312 133 48 0

Note that with formulations PIG-A-1 and PIG-A-2, the instance of prob-
lem PIG-A is unsolved after 1800 seconds. Note also that most of the gap
closed at the root node in formulation PIG-A-3 is due to the extended re-
formulation for DLS-CC-SC. In fact the value of the LP relaxation with the
model cuts from DLS-CC-SC but without the Xpress-MP cuts is 8270.

14.4.5 Modeling Periods with No Production

Consider a time interval [τ, τ +1, . . . , τ +p] with p ≥ 2, in which some item i is
produced in period τ (xi

τ = 1), nothing is produced in periods τ+1, . . . , τ+p−1
(xl

k = 0 for k = τ + 1, . . . , τ + p − 1 and all items l) and then item j is pro-
duced in period τ + p (xj

τ+p = 1). There are different ways of modeling such
idle time intervals, and of computing the corresponding changeover costs, such
as:

a. Default Changeover Costs. This corresponds to the basic model PIG-A
represented by the formulation (14.83)–(14.89). The changeover costs asso-
ciated with such a sequence will be mini1,...,ip−1(c

i,i1 + ci1,i2 + · · · + cip−1,j)
because the set-up sequence yi

τ = yi1
τ+1 = · · · = y

ip−1
τ+p−1 = yj

τ+p = 1 is feasible
for any selection of items i1, . . . , ip−1.
b. Direct Changeover Costs. The changeover cost of the sequence is cij (which
may be costlier than the earlier solution if the triangle inequality is not satis-
fied). The corresponding model is denoted PIG-B.
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c. Switch-Off and Switch-On Costs. Here we assume that there is a cost cf i

of passing from production of i to idle, and a cost cnj of passing from idle to
production of j. The changeover cost of the sequence is thus cf i + cnj . The
corresponding model is denoted PIG-C.
d. No Idle Periods. In this case some item must be produced in every pe-
riod, and sequences with idle periods are not feasible. So there is a build up of
stock if the capacity exceeds the demand. The corresponding model is denoted
PIG-D.

Now we consider how to modify our basic formulation PIG-A-{1, 2, 3} so
as to treat cases b, c and d.

Modeling case b: Assuming that cii = 0 for all i, it suffices to add zi
t ≤ xi

t

for all i, t. This ensures that the set-up sequence for the idle time interval
[τ, τ + 1, . . . , τ + p] will be yi

τ = yi
τ+1 = · · · = yi

τ+p−1 = 1, yj
τ+p = 1 giving the

required changeover cost cij .
Modeling case c: Here it is natural to introduce a dummy item i = 0 to corre-
spond to “no production”. The changeover formulation is extended to include
this new item. We set ci0 = cf i and c0i = cni for all i �= 0 and c00 = 0, and
add xi

t = yi
t for all i, t to the original PIG-A-{1, 2, 3} formulation.

Modeling case d: Here it suffices to add xi
t = yi

t for all i, t to the original PIG-
A-{1, 2, 3} formulation. Note that when the storage costs are item-independent
hi = h for all i, the overall storage cost is constant, and can be dropped.

In Table 14.13, we show results using the tight formulation on the four
different problem variants PIG-{A, B, C, D}.

Table 14.13. Various Idle Time Cost Models: Tightened Formulations PIG-{�}-3

Formulat. Cons Vars Int LP XLP BUB BLB Time Nodes Gap
(secs) (%)

PIG-A-3 8,498 14,880 1,990 3,282.6 8,282.5 8,312 8,312 133 48 0
PIG-B-3 9,488 14,880 1,990 3,285.9 8,300.8 8,360 8,360 133 41 0
PIG-C-3 7,795 16,367 2,189 3,567.4 8,513.9 8,627 8,267 266 190 0
PIG-D-3 7,498 13,880 1,990 13,890.4 16,084.8 16,831 16,115.5 1,800∗ 1,300∗ 4.3
PIG-D-3-r 7,498 13,880 1,990 13,889.1 16,289.8 16,392 16,392.0 6,700 5,382 0

We observe that the variants PIG-A, PIG-B, and PIG-C have solution
values that are fairly close to one another. On the other hand, due to the
forced production in each period, problem PIG-D is significantly different
from the others both in cost and in solution difficulty, leaving a gap of of
4.3% after 1800 seconds. To obtain this relatively small gap, we removed the
Gomory cuts (set gomcuts and treegomcuts to 0) of Xpress-MP. To solve this
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instance to optimality, we used the observation from above that the solution
was independent of the storage costs. Thus we removed the constant storage
cost (equal to 1381 times the unit storage cost) and increased the approxi-
mation parameter to TK = 61 to get a stronger lower bound. The results for
this revised formulation PIG-D-3-r are shown in the last line of Table 14.13.
Note that it took just over one hour to prove optimality.

14.5 Process Manufacturing

This is a multi-item, multi-level, multi-machine production planning problem
with backlogging and lower bounds on stocks for finished products, and upper
bounds on stocks for each product.

There are two production levels treating the intermediate items IP and
the end items EP , respectively. For each item i, the machines have different
production rates. The number of intermediate products is small, with a few
machines dedicated to them. The coefficients RMLij represent the number
of units of intermediate product i ∈ IP required to produce one unit of final
product j ∈ EP . Note that the production structure is of distribution type:
the set of end items is partitioned according to the unique intermediate item
that each uses as input.

It is a small bucket model with at most two set-ups allowed per period.
The special feature of the problem is the requirement of lower bounds MBi

(in units of item i) on production runs for each end-item i ∈ EP . A typical
production run lasts for several periods, and full capacity production in all
but the first and last periods of a production run is imposed. As opposed to a
model with only one set-up per period, this two set-up model is used to allow
some flexibility at the beginning and end of a production run. Finally, there
are item dependent cleaning times CLT i at the end of each production run.

14.5.1 Classification

This model has the classification:

• Multi-machine, where several machines can produce the same item but at
different production rates;

• Two-level, with intermediate items IP , end items EP , and an ML-D
structure;

• Multi-item with production mode PM = [M2-SC], and production quan-
tity PQ = [PC-CLT ] ( the same as PC-ST but cleaning times instead of
start-up times);

• Each single item has classification LS-C-B, SC, CLT , AFC, MR, RLS,
SS, SUB.

Note that there is no pure lower bound LB in the single-item classification
because lower bounds are imposed only on the total size of each production
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run. Note also that the restricted (minimum) length sequences appear as a
consequence of mode M2 combined with AFC and MR.

14.5.2 Initial Formulation

We define first some additional notation:

• ρik is the amount of item i produced on machine k per unit of time.
• Lk is the time available for production on machine k in each period.
• βik = �MBi

Lk �, where βik + 1 is the maximum number of periods required
to produce the amount MBi if i is produced on k.

• αik = �MBi+CLT i−Lk

Lk � where αik + 1 is the minimum number of periods
in a production run or set-up sequence.

Before writing an initial formulation, we remove the lower bounds on stocks
by using net stock variables (i.e., si

t will be the stock level above the minimum
stock) and adapt the demands for end items accordingly, as in Section 4.5.
Using lot-size variables xik

t representing the production time of item i on
machine k in period t, an initial and natural formulation of this problem is

min
∑
i,k,t

(piρikxik
t + ciwik

t ) +
∑
i,t

(hisi
t + biri

t) (14.90)

si
t−1 +

∑
k

ρikxik
t =

∑
j,k:j �=i

RMLijρjkxjk
t + si

t for i ∈ IP, all t

(14.91)

si
t−1 − ri

t−1 +
∑

k

ρikxik
t = di

t + si
t − ri

t for i ∈ EP, all t

(14.92)

wik
t−1 ≥ yik

t−1 − yik
t for all i, k, t (14.93)

xik
t + CLT iwik

t ≤ Lkyik
t for all i, k, t (14.94)∑

i

xik
t +

∑
i

CLT iwik
t ≤ Lk for all k, t (14.95)

wik
t + wik

t+1 ≤ yik
t for all i, k, t (14.96)∑

i

yik
t −

∑
i

wik
t ≤ 1 for all k, t (14.97)

∑
i

wik
t ≤ 1 for all k, t (14.98)

xik
t ≥ Lk(yik

t−1 + yik
t − wik

t − wik
t−1 − 1) for all i, k, t (14.99)

wik
l ≤ yik

t for i ∈ EP, all k, t, l :

t ≤ l ≤ t + αik

(14.100)



472 14 Test Problems

t∑
l=t−βik

ρikxik
l ≥ MBiwik

t for i ∈ EP, all k, t (14.101)

si
0 = Si

0, r
i
0 = 0, si

t ≤ Si
t for all i, t (14.102)

si
t, r

i
t ∈ R

1
+, xik

t ∈ R
1
+, yik

t , wik
t ∈ {0, 1} for all i, k, t, (14.103)

where constraints (14.91)–(14.92) are the flow balance constraints, (14.93) de-
fines the switch-off variables, (14.94) the individual capacity constraints with
cleaning times, and (14.95) the machine capacity constraints with cleaning
times. Constraints (14.96)–(14.98) model the restriction of two set-ups per
period, (14.100) the minimum run length constraint expressing the minimum
number of periods in a production run, (14.101) the minimum run constraint
in units of products, and (14.99) the almost full capacity production con-
straint.

14.5.3 Reformulation

Below we reformulate the problem. From Section 12.3, we obtain (14.110)–
(14.111) to represent the two set-ups per period model Y M2−SC . From Section
11.3, we use the stronger constraint (14.112) to describe the almost full ca-
pacity constraint, and we add the minimum run valid inequalities (14.115)
to strengthen the minimum production run constraint (14.114). From Section
11.4 we adapt constraint (11.10) to get (14.113) representing a minimum run-
time of αik+1 time periods. Note that in each case the version of the constraint
is expressed with the switch-off variables wik

t rather than the start-up vari-
ables zik

t . Finally each end item has as a compact relaxation WW -U -B, SC,
for which its extended formulation can be easily added using LS–LIB.

min
∑
i,k,t

(piρikxik
t + ciwik

t ) +
∑
i,t

(hisi
t + eiri

t) (14.104)

si
t−1 +

∑
k

ρikxik
t =

∑
j,k:j �=i

RMLijρjkxjk
t + si

t for i ∈ IP, all t

(14.105)

si
t−1 − ri

t−1 +
∑

k

ρikxik
t = di

t + si
t − ri

t for i ∈ EP, all t

(14.106)

wik
t−1 ≥ yik

t−1 − yik
t for all i, k, t (14.107)

xik
t + CLT iwik

t ≤ Lkyik
t for all i, k, t (14.108)∑

i

xik
t +

∑
i

CLT iwik
t ≤ Lk for all k, t (14.109)

∑
i

yik
t −

∑
i

wik
t ≤ 1 for all k, t (14.110)
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∑

i

wik
t ≤ 1 for all k, t (14.111)

xik
t ≥ Lk(yik

t−1 − wik
t − wik

t−1) for all i, k, t (14.112)
t+αik∑

l=t

wik
l ≤ yik

t for i ∈ EP, all k, t (14.113)

t∑
l=t−βik

ρikxik
l ≥ MBiwik

t for i ∈ EP, all k, t (14.114)

ri
t−1 + si

l ≥ (MBi − di
tl)

+
∑

k

l∑
τ=t+βik

wik
τ for all i, k, l, t

with t + βik ≤ l (14.115)

si
0 = Si

0, r
i
0 = 0, si

t ≤ Si
t for all i, t (14.116)

si
t, r

i
t ∈ R

1
+, xik

t ∈ R
1
+, yik

t , wik
t ∈ {0, 1} for all i, k, t. (14.117)

14.5.4 Computational Results

Below we provide results for the original formulation (14.90)–(14.103), denoted
pm-NT -a, and the tightened formulation (14.104)–(14.117) to which we have
added the reformulation for WW -U -B, SC for each end-product with TK =
NT , denoted pm-NT -b. The formulations have been adapted to reflect the
initial conditions of the facility (machines set-up status and past production
for in-process batches). Results are for instances with NT = 12 periods and
NT = 20 periods with a time limit of 1800 seconds. After a run of several
hours, the optimal value of pm-20-b has been proven to be 23,358.2.

Table 14.14. Results for Process Manufacturing

Instance Cons Vars Int LP XLP BUB BLB Time Nodes Gap
(secs) (%)

pm-12-a 1,911 1,416 804 1,421.5 15,002.2 16,103.9 16,075.4 1,800∗ 225,300 0.2
pm-12-b 4,268 1,459 785 15,499.6 15,740.3 16,103.9 16,103.9 61 1,763 0
pm-20-a 3,544 2,640 1,520 19,841.7 20,837.2 23,710.4 22,321.2 1,800∗ 73,500 5.9
pm-20-b 6,507 2,730 1,498 22,005.3 22,332.2 23,407.9 23,168.6 1,800∗ 9,600 1.0

14.6 Powder Production

This problem is a simplified version of a laundry powder production/packing
problem. There are 60 types of packed powder, which are the end products.
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There is a known demand to be met for each of these 60 end products over
30 periods. Backlogging is allowed. The set of end products is partitioned
into seven different groups sharing a common production line (resource) and,
on the other hand, into two distinct groups sharing a common manpower
resource.

The production of each end product consumes one given type among 17
available powders (bulk products). Planning the production of the bulk prod-
ucts is also part of the problem. There is a common resource shared by all
bulks. Other complicating constraints at the bulk level are perishability (the
powder must be packed at the latest one period after production), and a
maximum total stock level for the powders.

None of the resources in the problem involve set-up times. However, there
is a time-independent minimum production quantity for all end and bulk
products. The objective is to minimize the sum of the stocks of intermediate
and end products and the sum of backlogs of end products, with a higher
cost/weight for the backlogs.

14.6.1 Classification

The model is classified as:

• Two-level with a distribution structure ML-D;
• Multi-machine with 10 resources (7 specialized machines for end products,

2 specialized manpower resources for end products, 1 machine for bulks),
no mode restrictions PM = [M∞] and big bucket resource constraints
without set-up times PQ = [PC];

• Multi-item with 60 end products denoted Iend and 17 bulks denoted Ibulk;
• End products are classified as WW -U -B, LB with constant lower bounds

on production;
• Bulk products are classified as WW -U -LB, PER with constant lower

bounds on production and perishability restrictions.

14.6.2 Initial Formulation

An initial MIP formulation is as follows.

min
∑

i∈Iend

∑
t

ri
t +

∑
i∈Iend

∑
t

0.5si
t +

∑
i∈Ibulk

∑
t

0.25si
t (14.118)

si
t−1 + ri

t + xi
t = di

t + ri
t−1 + si

t for i ∈ Iend, 1 ≤ t ≤ NT (14.119)

si
t−1 + xi

t =
∑

j∈succ(i)

xj
t + si

t for i ∈ IBulk, 1 ≤ t ≤ NT (14.120)
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LBiyi
t ≤ xi

t ≤ di
1,NT yi

t for i ∈ Iend ∪ IBulk, 1 ≤ t ≤ NT (14.121)∑
i∈If

xi
t ≤ Lf for 1 ≤ f ≤ NF, 1 ≤ t ≤ NT (14.122)

si
t−1 ≤

∑
j∈succ(i)

xj
t for i ∈ IBulk, 1 ≤ t ≤ NT (14.123)

∑
i∈Ibulk

si
t ≤ S for 1 ≤ t ≤ NT (14.124)

ri
0 = si

0 = 0 for i ∈ Iend ∪ IBulk (14.125)

ri
t, s

i
t ∈ R

1
+, yi

t ∈ {0, 1} for i ∈ Iend ∪ IBulk, 1 ≤ t ≤ NT, (14.126)

where Equations (14.119)–(14.120) are the balance constraints for a two-level
lot-sizing problem, where succ(i) is the set of end items using bulk i. Equations
(14.121) are the set-up forcing constraints. Note that each item is uncapaci-
tated and involves a constant lower bound on production. There are 10 joint
resources in this problem, modeled as (14.122) where the set If is the set of
items using resource f . As resources are specialized, variables s, r, x and de-
mand d are expressed in capacity units (production hours). Equation (14.123)
models the perishability at the bulk product level: the stock of i in t must
come directly off the production line (i.e., cannot originate from the stock in
period t−1). Finally, Equation (14.124) imposes a global limit on the amount
of bulk product that can be in stock at any time.

14.6.3 Testing the Initial Formulation and Reformulations

We first carry out several runs to see whether the problem is easy to solve.
First we run the above formulation, denoted pp-a in default branch-and-cut
mode with MAXTIME of 900 seconds. The results are shown in the row pp-a
of Table 14.15.

We then make some important observations concerning the initial formu-
lation pp-a. Note first that the perishability constraints (14.123) are written
more naturally, but equivalently, as si

t ≤ xi
t by using the flow constraints

(14.120). In addition there are several end items for which the total demand
is less than the minimum production quantity. Given the objective to minimize
stocks and backlogs, it follows that these items are not produced more than
once in an optimal solution. Thus for the items i ∈ Iend with di

1,NT ≤ LBi,
if we introduce an additional 0–1 variable zi where zi = 1 indicates that end
item i is not produced at all, we can write
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NT∑
t=1

yi
t + zi = 1

xi
t = LBiyi

t for all t

si
t = (LBi − di

1t)
t∑

τ=1

yi
τ for all t

ri
t = di

1t(
NT∑

τ=t+1

yi
t + zi) for all t .

Furthermore, this reformulation can be added also for each bulk product
i ∈ Ibulk by using the echelon stock transformation from Section 13.3, where
we define the echelon stock variable as esi

t = si
t +

∑
j∈succ(i) sj

t , the echelon
backlog variable as eri

t =
∑

j∈succ(i) rj
t and the echelon demand as edi

t =∑
j∈succ(i) dj

t . So, for i ∈ Ibulk with edi
1,NT ≤ LBi, we add also the formulation

NT∑
t=1

yi
t + zi = 1

xi
t = LBiyi

t for all t

esi
t = (LBi − edi

1t)
t∑

τ=1

yi
τ for all t

eri
t = edi

1t(
NT∑

τ=t+1

yi
t + zi) for all t .

After making these changes to the model, we denote the new formulation
pp-b and obtain the results shown in Table 14.15.

For the third test run, we use the fact that the reformulation WW -U -
B is compact and can be added for all items. We add this reformulation
with TK = 5 to pp-b for each bulk item i for which edi

1,NT > LBi using
variables es, er and demand vector ed, and for each end item i for which
di
1,NT > LBi using s, r, and d. Results for the resulting formulation, denoted

pp-c, and using model cuts (MC) are given in Table 14.15. Here it takes
114 seconds to obtain the LP–MC value corresponding to the initial linear
relaxation plus the model cuts from WW -U -B, 193 seconds in total to obtain
the XLP value with automatically generated system cuts of Xpress-MP, using
covercuts = 20, Gomcuts = 2. The lower bound is drastically improved, but
no feasible solution is found within 900 seconds. We then reduce the parameter
to TK = 3, but still no solution is found within 900 seconds.

To keep the size of the reformulation as small as possible, another option is
to add cutting planes for WW -U -B in place of the extended formulation. This
corresponds to formulation pp-cc in Table 14.15. The XLP bound is obtained
by switching off the preprocessing, and then adding system cuts followed by
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Table 14.15. Powder Production: Initial Runs with MAXTIME=900

Formulation Cons Vars Int LP(-MC) XLP BUB BLB Gap (%)
pp-a 7,693 8,867 2,310 217.1 822.4 2,531.4 868.2 66
pp-b 8,308 8,878 2,321 471.4 1,029.8 2,545.8 1,081.0 58
pp-c 27,545 12,598 2,321 1,548.3 1,587.8 ∞ 1,602.3 ∞
pp-cc 8,308 8,878 2,201 470.1 1,710.7 ∞ 1,711.3 ∞

WW -U -B cuts. The observation that the XLP bound is better than that of
instance pp-c can be explained by the fact that there is no approximation
parameter TK in the separation routine, so essentially TK = NT = 30 here.

Our tentative conclusion from these initial runs is that proving optimality
for this problem is probably out of the question. So we decide to address the
question of finding a feasible solution guaranteed within 25% of optimality or
better within say 30 minutes, and a solution within 10% of optimality within
several hours.

14.6.4 Finding Lower Bounds for Powder Production

Here we have little choice but to use the linear programming bounds provided
by the extended formulations, as improving the lower bounds through partial
enumeration only will be very slow.

In Table 14.16 we show the results of runs for pp-c with four different values
of TK in reformulation WW -U -B. In a fifth run we combine the formulation
of WW -U -B with TK = 8 with the less compact reformulation WW -U -B, LB
for all items with significant demands (i.e., edi

1,NT > LBi for i ∈ Ibulk and
di
1,NT > LBi for i ∈ Iend) using TK = 4. The latter formulation is called

pp-d.

Table 14.16. Powder Production: Lower Bounds by Reformulation and LP

U − B U − B, LB Cons Vars LP XLP Time
Formulation TK TK (secs)
pp-c 3 0 20,423 12,598 1,399.9 1,456.3 115
pp-c 5 0 26,653 12,598 1,547.2 1,601.2 178
pp-c 8 0 35,089 12,598 1,657.3 1,716.0 287
pp-c 15 0 52,948 12,598 1,692.1 1,728.9 403
pp-d 8 4 134,106 76,094 1,682.2 1,717.3 3915

14.6.5 Finding Upper Bounds for Powder Production

Given our preliminary tests, it appears likely that we can apply our full range
of heuristics to the weak formulations pp-a and pp-b. However, if we want to
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use the tightened formulation pp-c to find feasible solutions, we will need to
start with a decomposition heuristic such as relax-and-fix or exchange, which
divides the problem up into smaller subproblems.

In Table 14.17 we show our results starting first with the weak formu-
lation pp-b, and then with the tightened formulation pp-c. In both cases we
have applied relax-and-fix followed by two rounds of exchange. The parame-
ter “MAXT” is the maximum time given to the subproblems, more precisely
the running time for a subproblem is the maximum of “MAXT” and the
run-time to find the first feasible solution. As usual “FIX” is the number of
variables fixed in each subproblem, and here BIN = FIX for all the relax-and-
fix runs. The columns “R&F”, “EXCH1”, and “EXCH2” contain, respectively,
the value of the feasible solution after relax-and-fix, the first and second ex-
change rounds. On the tightened formulation pp-c, the time to find a feasible
solution even for the smaller subproblems is long and somewhat unpredictable.

Table 14.17. Powder Production: Primal Heuristics – Upper Bounds

Formulation MAXT FIX R&F EXCH1 EXCH2 Time Time Time
(secs) (secs) (secs)

pp-b 60 5 2,239.4 2,136.0 2,128.3 < 360 < 360 < 360
pp-b 30 5 2,254.7 2,191.7.0 2,153.5 < 180 < 180 < 180
pp-c(TK=8) 60 5 2,126.2 2,053.2 2,051.0 300 301 303
pp-c(TK=5) 60 5 2,093.3 2,049.1 2,037.4 1,510 302 302

Thus using reformulation pp-c with TK = 8 we can obtain a lower bound
of 1716.0 in 287 secs, and using formulation pp-b an upper bound of 2136.0 in
less than 360 secs. This gives a gap of 19.67%. Using the best possible bounds,
a lower bound of 1728.9 in 403 secs and an upper bound of 2037.4 in about
2100 secs give a gap of 15.1%.

To get a further improvement, we probably need to run RINS or Local
branching using a tight formulation, starting from our best feasible solution.
Such runs will almost certainly take a long time.

Exercises

Making and Packing

Exercise 14.1 Because the new technology allows more flexibility in running
the lines, one would like to analyze whether the assignment restrictions have
strong implications on the global line productivity.

Formulate and solve the problem in which it is possible to change the
product assignment at each shift rather than at each day, for all machines,
feeders, and robots. This can be done simply by using the same formulations
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but with reduced length time periods. Backlogging and inventory costs are per
period costs; consequently they have to be divided by three to keep comparable
units in the objective function.

Try to obtain good lower and upper bounds, using reformulations and
heuristics. What is the impact of this more flexible organization on customer
service level, and on inventory costs?

Exercise 14.2 Given the current product mix, what is the bottleneck stage ?
To respond to a uniform market increase, does it make sense to invest in new
feeders and robots?

Exercise 14.3 To find out whether the relative backlogging cost has a strong
impact on the solutions of the planning model, answer the following questions.
Would a higher relative backlogging cost substantially improve customer ser-
vice level, and would a lower backlogging cost improve line productivity? Run
some tests to answer these questions.

Storage Rack Production

Exercise 14.4 Given the very short production cycle (lead-times can be as-
sumed to be zero), and the fact that the planning system will be used in a
rolling horizon manner, analyze whether the planning horizon can be reduced
to eight periods, without affecting the quality of solutions.

Run tests to simulate the rolling horizon procedure, and compare the re-
sults obtained using different planning horizons.

Insulating Board Extrusion

Exercise 14.5 For the single-period batching and scheduling model, imple-
ment the current [first batching – then scheduling] iterative procedure, and
compare its performance with that of the integrated [batching–scheduling]
approach using formulation V RP or UF . Use the data available on the book
Web site.

Exercise 14.6 Compare the performance (quality of solutions versus run
time) of the integrated [planning–batching–scheduling] approach using for-
mulation MV RP with the performance of the current [first planning – then
[batching–scheduling]] iterative procedure.

In order to assess the specific contribution of the multi-period extension,
use formulation V RP for the [batching–scheduling] subproblem in the imple-
mentation of the current procedure. The data Di

t of model V RP is the output
of the planning subproblem of the current procedure.

This planning subproblem is a single-level multi-item problem with a single
global capacity constraint per time period, that is, LS-U/PM = [M∞]/PQ =
[PC, PC-SU ]1, where the capacity is an estimate (supposed to become more
accurate from iteration to iteration) of the total amount of extrusion time
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available in each time period. It does not contain any decision variable for the
number of batches (batching) or changeover times (scheduling).

Compare also the design and performance of the current procedure with
that of a time decomposition relax-and-fix heuristic for MV RP .

Exercise 14.7 For formulation MV RP , suggest different objective func-
tions, test them on the data available on the Web site, and compare the
solutions obtained. In particular, is it necessary to introduce inventory hold-
ing costs, and how should they be computed?

Process Manufacturing

Exercise 14.8 The results given in Table 14.14 show that it is possible to
obtain good solutions for the instance of the process manufacturing problem
with NT = 20 time periods by using appropriate reformulations. However. it
takes about 30 minutes to obtain a solution with a gap of 1%.

In order to obtain good solutions quickly, develop construction and im-
provement heuristics based on the initial formulation and on the reformula-
tions; see Section 3.6. Analyze the performance of these heuristics on the same
problem instance.

Exercise 14.9 In the process manufacturing problem, there is an upper
bound on the stock level of each item at the end of each time period. There-
fore, there exists a relaxation WW -U -B, SUB for each end product and a
relaxation WW -U -SUB for each intermediate product.

Use the reformulation results and valid inequalities from Section 11.7 to
improve the formulation of the problem to see if you can obtain better lower
and upper bounds. Test your reformulations on the two instances with NT =
12 and NT = 20 time periods.

Notes

Section 14.1. This case is inspired by a real case study, but its data are
disguised.

Section 14.2. This case, its mathematical programming formulation, and
data are taken from Simpson and Erenguc [152]. Results have been given
earlier in Wolsey [194], Danna et al. [52], and Belvaux and Wolsey [25].

Section 14.3. This real case of the required coordination between planning
and scheduling, as well as the initial mathematical programming formulation,
are taken from Batta and Teghem [24]. The multi-period extension presented
here is original.
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Section 14.4. The problem description and its mathematical programming
formulation are from Fleischmann [68].

Section 14.5. This industrial application has been described and tackled
earlier in Belvaux and Wolsey [26]. It is inspired by a real case study, but its
data are disguised.

Section 14.6. This industrial application has been described and tackled
earlier in Van Vyve [178] and Van Vyve and Wolsey [181].
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catholique de Louvain, 1995.

46. M. Constantino. A cutting plane approach to capacitiated lot-sizing with start-
up costs. Mathematical Programming, 75:353–376, 1996.

47. M. Constantino. Lower bounds in lot-sizing models: A polyhedral study. Math-
ematics of Operations Research, 23:101–118, 1998.

48. M. Constantino, A. Miller, Y. Pochet, M. Van Vyve, B. Verweij, and L.A.
Wolsey. New MIP cuts for supply chain structures: Final report on MIP
cuts. Technical Report LISCOS: Large Scale Integrated Supply Chain Opti-
misation Software based upon Branch-and-Cut and Constraint Programming,
GROWTH Project G1RD-1999-00034, DR2.3.1/U, CORE, 2002.

49. W.J. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer
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129. F. Ortega and M. Van Vyve. Lot-sizing with fixed charges on stocks: The

convex hull. Discrete Optimization, 1:189–203, 2004.
130. M.W. Padberg, T.J. Van Roy, and L.A. Wolsey. Valid inequalities for fixed

charge problems. Mathematical Programming, 33:842–861, 1985.
131. G. Parker and R. Rardin. Discrete Optimization. Academic Press, 1988.
132. O. Pereira and L.A. Wolsey. On the Wagner–Whitin lot-sizing polyhedron.

Mathematics of Operations Research, 26:591–600, 2001.
133. Y. Pochet. Lot-sizing problems: Reformulations and cutting plane algorithms.
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Multi-Item PM , 371
M1, 374
M1-{SC, SQ}, 376
M1/DLS-CC, 374
M1/DLS-CC − B, 375
M2, 379
Mk, 380
Mk-SC, 381
Mk-SQ, 381

Multi-Item PQ, 372, 383
PC, 383
PC-FAM , 386
PC-SU , 383

Multi-Level ML

A, 395, 406
D, 395
G, 395, 409
S, 395, 397

Single-Item
DLS-CC, 276
DLS-CC-B, 311
DLS-CC-SC, 323, 324
DLSI-C, 298
DLSI-CC, 279
DLSI-CC-B, 315
LS-C, 273, 292
LS-C-SC, 319, 326
LS-C-SUB, 351
LS-CC, 284
LS-CC-B, 318
LS-CC-SC, 328
LS-CC-SS, 354
LS-CC-TREE, 361

LS-CC-TWP , 346
LS-U -B, 304
LS-U -B, SL, CP , 356
LS-U -CP , 344
LS-U -SC, 320
LS-U -SL, 337
LS-U -SUB, 351
LS-U -TWP (I), 349
WW -C, 290
WW -C-LB, 339
WW -CC, 281
WW -CC-B, 316
WW -CC-B, LB, 340
WW -U -B, SC, 330
WW -U -SC, 323
WW -U -SUB, 352
WW -U -TWP , 346

CAP

C Varying Capacity, 130
CC Constant Capacity, 130
U Uncapacitated, 130

ML

A Assembly Product Structure, 395
D Distribution Product Structure,

395
G General Product Structure, 395
S Series Product Structure, 395

PM

M1 1 Set-Up at most, 371
Mk k Set-Ups at most, 372
SC Start-Ups/Switch-Offs, 372
SQ Sequence-dependent Changeovers,

372
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PQ
PC Joint Capacity Constraint, 372
PC-FAM Family Set-Up Con-

straints, 373
PC-SQ Joint Capacity Constraint

with Changeover Times, 373
PC-ST Joint Capacity Constraint

with Start-Up Times, 373
PC-SU Joint Capacity Constraint

with Set-Up Times, 373
PROB

DLS: Discrete Lot-Sizing, 134
DLSI: Discrete Lot-Sizing with

Initial Stock, 133
LS: Lot-Sizing, 131
WW : Lot-Sizing with Wagner–Whitin

Costs, 131
V AR

B: Backlogging, 136
LB: Lower Bound, 138
SC: Start-Up Cost, 137
SL: Sales, 138
ST : Start-Up Time, 138
AFC: Almost Full Capacity, 335
CP : Piecewise Concave Production

Costs, 335
MR: Minimum Production Run, 335
RLS: Restricted Length Set-Up

Sequence, 335
SS: Safety Stocks, 336
SUB: Stock Upper Bounds, 336
TREE: Lot-Sizing on a Tree, 336
TWP : Production Time Window,

335

acyclic subgraph, 275
Advanced Planning Systems (APS), 68
affine independence, 188
aggregate product, 387
aggregation, 413, 414
algorithm, 81

exponential, 84
polynomial, 84

almost full capacity (AFC), 340
approximate reformulation, see

reformulation, partial
approximation algorithm

primal-dual, 392, 417
assembly, see bill of materials (BOM)

asymptotic notation, 83, 84
available to promise (ATP), 57

back-order, 54
backlog minimal solution, 137, 316
backlogging, 134, 136, 304

constant capacity, 311
cost, 304
variable, 136, 304

batch, 381
big bucket, 392
bill of materials (BOM), 45, 49, 395

assembly, 45, 395, 406
echelon stock formulation, 407

distribution, 395, 411, 417
general, 45, 395, 409

echelon stock formulation, 409
nested solutions, 405
series, 45, 395, 397

echelon stock formulation, 400
facility location formulation, 402
multi-commodity formulation, 402
optimization, 398
valid inequality, 403

Binary Program
Mixed (MBP), 79

bisection, 215
bottleneck, 18
branch-and-bound, 85

algorithm, 88
branching, 86

priority, 92
rule, 92

lower bound, 79
node, 89
node selection rule, 91
pruning, 87
root node, 89
tree, 89
upper bound, 80

branch-and-cut, 101, 198
algorithm, 104

branching, 86

campaign, 36, 168, 179, 449
capacity

gross, 53
multi-item, see PQ
nondecreasing, 291
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single item, see CAP
usable, 53

Capacity Requirements Planning
(CRP), 62

cases
Chesapeake, 389, 392, 393
classification, 422
cleaning liquids bottling, 168
consumer goods production, 167
glass production, 178
GW MPS example, 16, 145
heuristics, 422
insulating board extrusion, 448
making and packing, 422
pharmaceutics formulation, 177
pigment sequencing, 466
powder production, 473
process manufacturing, 470
reformulations, 422
storage rack production, 436

changeover
cost, 42, 388, 389, 466
formulation

M1, 376
M2, 379
Mk, 380

lost capacity, 179
sequence-dependent, 34, 371
time, 34, 42, 73, 373, 391, 422, 449
variables, 372, 453, 467

Chvátal–Gomory rounding, 282, 347
classification scheme, 128

black box utilization, 156
classical utilization, 156
joint resource, 371

production mode (PM), 371
production quantity (PQ), 372, 383

multi-item, 391
multi-level (ML), 396
single item, 129

CAP , 130
PROB, 130
PROB-CAP -V AR, 130, 139
V AR, 134

cleaning time, see changeover time
column generation, 198, 392
complementation, 260
complete linear description, 123
complexity, 274

constant set-up sequences, 342
continuous set-up lot-sizing problem,

391
convex combination, 187
convex hull, 94, 187

approach, 248
proofs, 203, 228, 263

cover, 257, 384
inequality, see MIR inequality
reverse inequality, see MIR inequality

customer service, 48
cut-and-branch, 104, 150
cutting plane, 103, 121, 149, 383, 392,

464, 476
algorithm, 102
separation, see separation problem

decomposition, 126, 195, 196
algorithms, 197

decoupling items, 58
demand, 45

dependent, 46, 50, 59
independent, 46, 47
negative, 337
nonnegative, 338

dicut inequality, 416
Digital Equipment Corporation, 72
dimension, 188
directed cycle, 252
discrete lot-sizing and scheduling

problem, 323, 391
disjunctive approach, 248
distribution, see bill of materials (BOM)
dual variable, 350
duality gap, 31, 92
dummy item, 378
dynamic program, 212, 213, 287, 305,

320, 337, 346, 349, 393, 398
backward, 320
forward, 285

echelon stock, 396, 413, 414
enumerative approach, 248
equivalent problems, 351
extreme point, 189, 242, 249
extreme ray, 242, 249

facet, 188, 258
family set-up, 386
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variables, 373
Farkas’ lemma, 194
feasible solution, 78, 186
final assembly, 48
Final Assembly Scheduling (FAS), 58
flexibility, 17
flow cover, 261

inequality, see MIR inequality
reverse inequality, see MIR inequality

formulation, 79, 186
compact, 100
extended, 100, 121, 146, 191, 193
quality, 93
tight, 94, 121, 193

fractional period, 275, 281

global constraint, 12
capacity, 24, 44
demand satisfaction, 23, 43
flow balance (conservation), 14, 71,

119
production mode (PM), 34, 371
production quantity (PQ), 372
set-up enforcement, 24, 43
variable upper bound (VUB), 15, 24

Gomory fractional cut, 276
greedy algorithm, 276, 313

improved, 314

heuristic, 107, 162, 165, 392, 417
construction, 108

cut-and-fix (CF), 108
relax-and-fix (RF), 109, 151, 162,

176
time partitioning, 111

diving, 108
improvement, 111

exchange (EXCH), 113, 176
local branching (LB), 112, 163
relaxation induced neighborhood

search (RINS), 112, 152, 176
partitioning, 392, 417
progressive interval, 392
truncated MIP, 107

Hierarchical Production Planning
(HPP), 68

hybrid algorithms, 201

incidence matrix

arc-node, 243
inequality

(l, S), 150, 161, 218, 385
lifted, 298
separation, 219

(l, S, WW ), 225
separation, 226

facet-defining, 95, 188
flow cover, see MIR inequality
generalized (l, S), 345
left extended klSI, 329
left supermodular, 327

separation, 328
mixed integer rounding (MIR), 256
mixing, 242, 243, 361
production capacity (PC), 384
reverse flow cover, see MIR inequality
simple mixed integer rounding

(SMIR), 237
strengthened, 258
valid, 95, 122, 187

infinite capacity planning, 64
instance, 82
Integer Program, 186

Mixed (MIP), 15, 78, 186
Pure (PIP), 80

inventory, 53
available, 54

inventory position, 54
IT system

analytical, 68
transactional, 68

joint replenishment problem, 392

Kellogg Company, 7, 74
knapsack problem

binary, 274
knapsack set

continuous binary, 237, 257, 293
continuous integer, 236, 255

Lagrangian
decomposition, 201
dual, 199
relaxation, 198, 392, 417

lead-time, 50, 407
cumulative, 48
delivery, 47
minimum, 51, 65
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production, 47
safety, 51, 65

Leontief substitution system, 416
library LS–LIB, xi, 155

calling XCut, 161
calling XForm, 157, 160
calling XHeur, 162
XCut procedures, 165
XForm procedures, 164
XHeur procedures, 165

lifting, 296
load profile, 52
lot-sizing, 130

capacitated, 130
constant capacity, 276, 279, 281,

284, 289, 311, 315, 323, 374, 375
varying capacity, 274, 290

discrete, 130, 134, 311, 315, 323, 374,
375

multi-item, 43, 196
single level, 369

multi-level, 44
on a tree, 358
planning rule, 55, 60
single item, see PROB
stochastic, 358
uncapacitated (LS-U), 117, 207

dynamic program, 212, 213
facility location formulation, 148,

221
linear programming reformulation,

217
multi-commodity formulation, 119
optimal solutions, 209
shortest path algorithm, 217
shortest path formulation, 148, 159,

222
uncapacitated (LS − U), 42, 60

lower bound
branch-and-bound, 79
production (LB), 135, 138, 339
production sequence (MR), 340

lower envelope, 214

Manufacturing Planning and Control
(MPC), 67

Manufacturing Resources Planning
(MRP-II), 67

master problem, 199

Master Production Scheduling (MPS),
19, 25, 43, 55, 68

Material Requirements Planning
(MRP), 44, 59, 68

inputs, 47
MRP record, 60
planning process, 55

mathematical
formulation, 13, 25
model, 8

matroid, 278
maximum flow, 294
minimum cost path, 275, 357
minimum mean cost cycle, 310, 331
MIP set, 236, 240

basic, 235, 237
MIR inequality, 256, 293

cover, 258
flow cover, 261, 293, 294, 385
reverse cover, 260
reverse flow cover, 263, 385

mixed integer Gomory cut, 256
mixing

inequality, 242, 243, 361
set, 236, 241, 280, 283, 291, 413, 415

continuous, 236, 249, 250, 315, 355
divisible, 236, 253, 339
two-capacity, 236, 253

model cut, 150, 157, 164, 433, 476
modeling

constraints, 12
data, 11
indices, 11
objective function, 12
systematic approach, 11
variables, 12

Mosel, xi
data file, 29
program file, 27

nested solutions, 407
network flow

concave cost, 416
fixed charge, 208
fixed charge problem, 397, 412
minimum cost, 209
problem, 275, 375

NP-hard, 274
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optimization problem, 192
order (production or procurement)

suggested, 60
firm, 61

orders (customer), see time window
(TWP )

distinguishable, 345
indistinguishable, 348

parametric algorithm, 282
planning horizon, 48
polyhedron, 94, 186, 188
polynomial

approximation scheme, 392
problem, 84
solvability, 192
time, 291

preprocessing, 209, 273
prize-collecting traveling salesman

problem, 382, 392
problem class, 82
product structure, see bill of materials

(BOM)
production bounds

lower (LB), 135, 138, 339
minimum run (MR), 340
upper

multi-item, see PQ
single item, see CAP

production capacity (PC)
valid inequality, 384

production centers, 411
production costs

nonincreasing, see Wagner–Whitin
costs (WW)

piecewise concave (CP ), 344
production mode (PM), 370
Production Planning (PP ), 3

example, 16
modeling elements, 41
the goal, 3
uncapacitated lot-sizing (LS − U),

42, 60
production policy

assemble-to-order (ATO), 47
make-to-order (MTO), 47
make-to-stock (MTS), 47

production quantity (PQ), 370
productivity, 17

factor, 53
projection, 191, 343, 380
proportional lot-sizing and scheduling

problem, 392
pruning, 87
push/pull phases, 48

ray, 189
extreme, 189

recursion, see dynamic program
reformulation, 98, 195

a priori, 98, 118
extended, see formulation, extended
partial, 96, 125, 158, 161, 226
procedure, 116, 143
tables, 140

PROB-[U, CC], 141, 226, 289
PROB-[U, CC]-B, 142, 319
PROB-[U, CC]-SC, 142, 329

regeneration interval, 210, 217, 222,
233, 274, 275, 281, 285, 307, 316

relaxation, 96
high-level, 97
linear (LR), 79
low-level, 96

requirement
gross, 53, 60
net, 54, 60

resource consumption rate, 384
reverse flow cover, 263
reverse flow cover inequality, see MIR

inequality
rolling horizon, 49
Rough Cut Capacity Planning (RCCP),

57
routing data, 51

set-up time, 52
transfer time, 52
unit production time, 52

run-time order, 83
running time, 82

safety stock, 54, 136, 139, 209, 353
removing, 145

safety time, 55
sales, 135, 138, 336

areas, 411
lost, 336
variable, 139, 336
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scheduled receipt, 54
selling price, 336
separation

algorithm, 102, 124, 140, 161, 219,
226, 235, 244, 252, 269, 284, 310,
322, 328, 331

cut pool, 104
LP algorithm, 195, 289, 329
problem, 102, 124, 191

series, see bill of materials (BOM)
set-up

cost, 9, 42, 129, 437
time, 42, 44, 52, 73, 373, 438

set-ups
restricted length sequences (RLS),

341
sequence-dependent, see changeover
sequence-independent, 381
several (Mk), 378, 380
single (M1), 374
two (M2), 379

shortest path
formulation, 325
problem, 286, 307, 350

single node flow set, 293
binary, 237, 260

small bucket, 374
start-up

cost, 42, 135, 137, 319
time, 42, 135, 373
variable, 137, 138, 319, 372

stock bounds
lower, see safety stock
upper (SUB), 351

stock minimal solution, 132, 137, 144,
145, 231, 316, 427, 440

storage costs
nonnegative, see Wagner–Whitin

costs (WW)
ordered, 387
piecewise convex, 353

subgradient algorithm, 200
submodular function, 295
submodular inequality, 294, 295

lifted, 297, 298
subproblem, 199
subtour elimination constraint, 382
supermodular function, 295, 313, 327
Supply Chain (SC), 66

typology, 70
Supply Chain Planning (SCP), 3, 66

master planning, 72
network design, 71

Supply Chain Planning Matrix (SCPM),
69

surrogate constraints, 306, 329, 339,
340, 351, 353, 354, 360

table of results
PROB-[CC], 289
PROB-[U, CC]-B, 319
PROB-[U, CC]-SC, 329
PROB-[U ], 226

time window, 177
non-inclusive TWP (I), 349
production TWP , 345

totally unimodular matrix, 204, 241,
253, 288, 317, 343, 376, 377

unit flow, 341
formulation, 180, 382, 458, 467
model, 377, 379

upper bound
branch-and-bound, 80
production

multi-item, see PQ
single item, see CAP

stocks (SUB), 351

valid inequality, see inequality
variants, see V AR

single-item, 134, 335
varying capacity, see lot-sizing

Wagner–Whitin costs (WW), 130, 136,
144, 224, 387

work center, 51

Xpress-MP, xi
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