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link between imaging and computers was strikingly powerful. . . 
my father had me hooked. I was extraordinarily fortunate to 
continue to benefit from this confluence of technology with 
the help of Dr Ralph Alfidi and my colleagues Jeff Ross, Paul 
Ruggieri, and Mike Modic, and perhaps more importantly the 
indulgence of my wife, Midge, and our four daughters. 

 Ingenious innovators such as Serbinenko, Engleson, Guglielmi 
and others have helped transform imaging from diagnostic 
adjunct to sophisticated guidance for definitive treatments (in a 
fashion analogous to the evolution of neurosurgical management 
hemostasis and intracranial pressure). Therapeutic devices will 
continue to develop in parallel with advances in image guided 
techniques. Presently, many of these are complimentary to con-
ventional, open, neurosurgical procedures. As some techniques 
replace surgery, it seems unrealistic for radiologists to presume 
that surgeons will either watch idly or that, as imagers, they 
can remain uninvolved in pre- and post-procedure care and 
follow-up. In this respect I have been blessed to work as a true 
team with Peter, Henry, and David as well as the dedicated nurses 
and technologists in the angiography suite and the operating 
room at the Cleveland Clinic. Each contributes a unique and 
valuable skill set based on their training background; everyone 
recognizes that as a whole, the team functions better because 
of it . . . and (I truly believe) patients do better. In 2003 the 
group established the second formally credentialed fellowship in 
Endovascular Surgical Neuroradiology. In our own way, we each 
felt that a new specialty had arrived. 

 To each and every one, our sincerest thanks.      

Thomas J Masaryk
2008

 In his biography of Cleveland native Harvey Cushing, John 
Fulton describes the fortuitous series of circumstances that 
conspired to create the specialty of neurological surgery. The 
compulsive and competitive Dr Cushing trained as a surgeon 
under the precise tutelage of William Hallsted. On the recom-
mendation of his friend and mentor, William Osler, Cushing 
spent the year following completion of his surgical residency 
traveling Europe. It was then, under the guidance of Professor 
Theodor Kocher in the laboratory of Professor Hugo Kronecker 
in Berne, Switzerland, that Cushing described the relationship 
between intracranial pressure and systemic blood pressure 
regulated by the vasomotor center in the medulla that would 
ultimately be known as the ‘Cushing reflex’. Prior to this time, 
vital signs (and in particular blood pressure) were not routinely 
charted during surgical procedures. Cushing continued his 
experiments as he toured Europe, performing studies in dogs 
in Professor Angelo Mosso’s laboratory in Turin, Italy. While 
in Italy, Cushing was serendipitously introduced to Scipione 
Riva-Rocci’s elegantly simple sphygmomanometer, which he 
promptly recognized as a significant addition to the operating 
room. Upon his return home the combination of his compulsive 
personality, watchful (albeit indirect) management of systemic 
and intracranial pressure, and career-long obsession with hemo-
stasis (Cushing developed the silver hemoclip, and, with physicist 
W Bovie, introduced electrocoagulation) precipitated the begin-
ning of neurosurgical practice. 

 In 1979, I came to Cushing’s home town as a medical student 
at the suggestion of my father. A local medical imaging company, 
Technicare, had just installed their first commercial digital 
subtraction angiography system at the Cleveland Clinic. Drs Paul 
Duscheneau, Mickey Weinstein, and Michael Modic were furiously 
imaging patients with the new device and publishing papers. The 
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 Team photo. Front row: Dr Harvey Cushing. Back row (left to right): Drs Peter Rasmussen, David Fiorella, Thomas Masaryk, 
Henry Woo. 



 Neurosurgery and neuroradiology have historically been 
complementary specialties: neurosurgery demands logical deci-
sion making and accurate therapeutic planning while diagnostic 
neuroradiology supplies ever more clinical data points through 
the evolution and application of digital imaging technologies. 
Endovascular surgical neuroradiology (also known as endovascu-
lar neurosurgery) combines the clinical needs of the former with 
the technical sophistication of the latter in a single specialty. The 
importance of mastery of the imaging concepts as a prerequisite 
to expeditious, yet thoughtful, decision making and safe clinical 
practice cannot be underestimated. 

 This is perhaps best exemplified in the setting of acute 
stroke, where the operative word is indeed ‘expeditious  ’  . 
Intravenous thrombolysis using simple, single-slice CT scanning 
became the only approved therapy in the USA for acute 
ischemic stroke within the first 3 hours of onset on the basis 
of the National Institute of Neurological Disorders and Stroke 
rt-PA Stroke Study Group (the NINDS rt-PA Trial). 1  Similar 
trials performed in Europe demonstrated no benefit to throm-
bolytic therapy. 2    –  4  A major difference in the trials was the time 
window for treatment: 3 hours in the North American study, 
6 hours in Europe. Indeed, review of the US data demonstrates 
significantly better outcomes the sooner patients are treated 
( Figure 1.1 ). 5  

  Hence the first caveat of acute stroke imaging: patients 
should be emergently transported to a facility with immediate 
imaging capability and a mechanism in place for rapid, accurate 
interpretation. Pre-emptive warning should be provided to 
the radiology department to facilitate imaging as rapidly as 
possible, regardless of the modality employed. National guide-
lines developed by the NINDS and adopted by the American 
Heart Association (AHA) suggest that acute stroke patients 
should be imaged within 20 minutes of initial arrival in the 
emergency department. The importance of efficient, detailed, 
and accurate communication among the transport team, clinical 
services, and radiology personnel cannot be overemphasized. 
(Indeed, the medical – legal implications are so great that the 
American College of Radiology has explicit recommendations 
regarding the documentation of the imaging and interpretation 
process and the communication to the requesting service.) 6  
Familiarity with frequently used clinical scoring scales (Glasgow 
Coma Scale, National Institutes of Health Stroke Scale, Hunt –
 Hess Grade) by the imaging service and conversely the imaging 
signposts (hyperdense middle cerebral artery, decreased 
attenuation in greater than one-third of the vascular territory, 
Fisher Score) by the clinical services greatly facilitate the decision-
making process.  

                     1
Imaging: informed decision-making   

   Bryson   Borg   ,    David   Fiorella    and    Thomas J   Masaryk      

 CT scanning 
 Shortly following Roentgen ’ s discovery of the X-ray at the end 
of the 19th century, Johan Rand, a Czech mathematician, began 
publishing his treatises on line integrals. Allan Cormack postu-
lated, and documented, that the attenuation of X-rays through an 
object could be represented by such mathematical modeling. 7  ,  8  
With the subsequent development and refinement of the analog-
to-digital converter and the application of evolving computer 
technology, Godfrey Hounsfield produced the first transaxial 
tomographic maps of X-ray attenuation utilizing filtered back-
projection reconstruction in the early 1970s. 9  In 1979 Hounsfield 
and Cormack were awarded the Nobel Prize in Medicine. 

 While the basic principles of CT have remained the same, 
the engineering refinements have been impressive. Specifically, 
the X-ray source and opposing detector continue to be mechani-
cally rotated about the patient but with broader coverage by the 
beam and detector at ever faster speeds of rotation. Eventually, 
data acquisition became so fast that the patient could be simply 
‘pulled through  ’   the scanner during rotation and completely 
isotropic three-dimensional data sets could be acquired utilizing 
special ‘spiral reconstruction  ’   methods. 10  Recent innovations 
using this technology have included small portable scanners 
designed for neurologic intensive care units, which move to 
the bedside, and multi-row spiral scanners ( Figure 1.2a ). 11  ,  12  
Another exciting innovation is the high-end, vascular scanner 
with two X-ray sources and two sets of multi-row detectors. 
Such scanners may not only permit faster scanning, but also 
dual energy (‘subtracted  ’  ) angiographic studies ( Figure 1.2b ). 13  

    CT scanning of the brain for 
cerebrovascular disease 
 There are advantages and disadvantages to the use of CT scanning 
in cerebrovascular disease. Advantages include: 

■   ready accessibility  
■   rapid acquisition  
■   high sensitivity to acute blood  
■   high-quality vascular imaging of occlusions, stenoses, and 

aneurysms is obtainable with contemporary scanners  
  ■ three-dimensional stereotactic targeting  
■   targeted relative perfusion maps.    
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 Disadvantages include: 

  ■ less sensitivity to hyperacute infarction than diffusion-
weighted MRI  

■   limited coverage for perfusion maps  
■   qualitative, not quantitative nature of perfusion imaging 

(unless performed with xenon)  
■   ionizing radiation, particularly to the lens  
■   artifact, particularly in the posterior fossa.     

 Conventional CT scanning 
of the brain 
 CT for acute stroke is commonly performed using 5 – 8 mm con-
tiguous transverse sections obtained without intravenous contrast 
administration. Primary goals of the initial head CT head are: 

■   to exclude intracranial hemorrhage ( Figure 1.3 );  
■   to identify early signs of ischemic stroke (see below); and  

 Figure 1.1    
Graph derived from NINDS data 
demonstrating odds ratio of 
favorable stroke outcome versus 
time to treatment. The data 
indicates that there may be marginal 
benefit to patients after 3 hours 
(not otherwise pre-selected, by 
imaging). Reprinted with permission 
from Neurology 2000; 55:1649–55.  
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 Figure 1.2   
(a) Portable, ICU CT brain scanner. 
Geometry of gantry and use of spiral 
technology eliminates need for 
special shielding, power source and 
movable gantry table. Scans are 
reconstructed on a laptop computer.  
(Courtesy of Neurologica) 
(b) Schematic representation of dual 
X-ray source/dual detector CT scan 
which may permit not only rapid 
acquisitions, but also dual energy 
subtraction angiography. (c) Dual 
energy CTA of a giant proximal 
basilar aneurysm. (Courtesy of 
Siemans Medical Systems)
(d) Corresponding conventional 
digital subtraction angiogram.  

Tube A

Tube B

(a) (b)

(c) (d)
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■   to exclude neoplastic, inflammatory, or other processes that 
can mimick stroke clinically.    

  CT has an extraordinarily high sensitivity for detecting acute 
intracranial hemorrhage. The importance of appreciating early 
signs of stroke is exemplified by missed cases in ECASS trial, 
resulting in poorer outcomes after thrombolytic therapy. 14      –  17  The 
conspicuity of infarcts on unenhanced CT images can be increased 
by the use of variable window width and center level settings at a 
workstation (in contrast to standard fixed windows on the printed 
films) in order to accentuate the gray matter – white matter 
contrast, 18  as well as by contrast enhancement. 19  

 Findings of acute ischemia within hours of onset, if present, 
are usually very subtle. Early CT findings of cerebral ischemia 
(which may or may not be visible) include: 20  

■   hypoattenuation of gray matter structures  
■   mass effect  
■   hyperdense arteries.     

 Hypoattenuation of gray matter 
structures 
 There may be blurring of the gray matter – white matter junction, 
owing to cytotoxic edema, which can be seen as early as 2 hours 
after onset. 21  A specific example of the phenomenon is the 

so-called insular ribbon sign 22  ( Figure 1.4 ), in which the 
temporal lobe insula (which is composed of gray matter) becomes 
isodense to adjoining white matter. This sign of early middle 
cerebral artery (MCA) occlusion can be explained by its water-
shed position far from the collateral supply of both the anterior 
and posterior cerebral arteries, which leads to early irreversible 
damage. 22  

Another example is ‘obscuration of the lentiform nucleus 
sign  ’   or decreased attenuation of the basal ganglia gray matter, 
which becomes isodense to adjacent white matter structures such 
as the internal capsule and the external capsule (see  Figure 1.4 ). 21  
This region is supplied by lenticulostriate branches of the MCA 
that are end vessels and therefore prone to early irreversible 
damage after proximal MCA occlusion. 23  A key parameter to 
document in the report is the geographic extent to which these 
changes are present. Specifically, retrospective review of the 
ECASS results suggest that when these subtle CT changes of 
completed strokes involve more than one-third of the suspected 
involved vascular territory, outcomes with thrombolytics are 
generally poor. 14  

    Mass effect 
 Examples of early mass effect include asymmetry or narrowing 
of the Sylvian fissure (in MCA infarcts) or subtle effacement of 
cortical sulci ( Figure 1.5 ). 20  

 Figure 1.3   
(a) CT scan of the brain demonstrating diffuse subarachnoid blood within the basal cisterns. (b) Simultaneously performed 
CT angiogram demonstrates a basilar summit aneurysm. (c) Confirmatory catheter angiography.  

(a) (b) (c)

A
F

 Table 1.1    Fisher Grading System  

Fisher 
Group

Blood on CT Number of 
patients

Vasospasm

Angiographic Clinical vasospasm 
(DIND)Slight Severe

1 No subarachnoid blood detected 11 2  2  0

2 Diffuse or vertical layers <1 mm thick  7 3  0  0

3 Localized clot and/or vertical layer   ≥   1mm 24 1 23 23

4 Intracerebral or intraventricular clot with diffuse or no 
subarachnoid hemorrhage

 5 2  0  0

 Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm of subarachnoid hemorrhage visualized by CT scanning. Neurosurgery 1980; 6: 1–9. Reprinted with 
permission. 
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  The sensitivity of detecting acute hemorrhage is excellent with 
CT scanning, exceeding 90 % , 29  although the specificity of increased 
attenuation continues to concern many. 30  The increased attenua-
tion coefficient of blood is primarily related to the attenuation coef-
ficient of hemoglobin (contracted thrombus is 80–85 hounsfield 
units (HU)), which may degrade with time from ictus onset or 
even severe anemia to lessen the sensitivity of CT. 31  Fisher et al. 
developed a grading scale that is often used in clinical practice; it 
has some predictive value in assessing the risk of developing 
vasospasm secondary to SAH ( Table 1.1 ). 32         

 CT angiography 
 As alluded to above, the dissemination of faster spiral CT 
scan technology and the increased public awareness of acute 
stroke therapies has prompted the increasing adoption of 
advanced imaging techniques (CT angiography and relative 
perfusion mapping) in the setting of emergent cerebrovascular 

    Hyperdense arteries 
 A typical example is the ‘hyperdense MCA sign  ’   (HMCAS), which 
represents fresh thrombus in an occluded MCA. The MCA 
appears hyperdense relative to the contralateral MCA with unen-
hanced CT ( Figure 1.6 ). 24  ,  25  Unlike the other early signs, this sign 
indicates occlusion of the MCA, not infarction within the MCA 
territory, and it can be seen within minutes of the acute event. 
The specificity of this sign has been reported as 100 % , but 
sensitivity is only about 30 % . 25  The hyperdense dot signs refer to 
thrombus in other smaller branches. 26  There are potential pitfalls 
related to the HMCAS, including the fact that a patent vessel with 
atherosclerotic changes can appear hyperdense, and that a hyper-
dense appearance can be due to presence of contrast in the circu-
lation, (e.g. as may happen when a patient undergoes an emergent 
CT scan of the head after cardiac catheterization). 

  Although not routinely used in clinical practice, ischemic 
MCA stroke scans can be interpreted in a standardized fashion 
and scored according to a qualitative scale, the Alberta Stroke 
Program Early CT Score (ASPECTS), which reduces the observer 
variability reported in many clinical trials ( Figure 1.7 ). 19  ,  27  ,  28  

 Figure 1.5    

Early left MCA infarct demonstrating loss of grey-white contrast 
on the left with subtle mass effect resulting in effacement of 
the local sulci (red arrow).  

 Figure 1.6    
Hyperdense middle cerebral artery reflecting embolic thrombus 
on the left (arrow).  

 Figure 1.4 
  CT signs of early infection. 
(a) Decreased attenuation coefficient 
involving the insula 
(red arrow), indicates early MCA 
ischemia. Obscured lentiform 
nucleus (white arrow) reflecting 
ischemia in the distribution of the 
M1 segment/lenticulostriate artery 
branches. (b) Follow-up scan 
demonstrating completed MCA 
infarct with local mass effect.  

(a) (b)
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 Figure 1.7 
  ASPECTS (Alberta Stroke Program 
Early CT Score) diagram 
demonstrating 10 compartments of 
the middle cerebral territory, each 
compartment scoring one point on a 
cumulative scale. Score of 10 is 
normal. ASPECTS score > 7 consistent 
with significant injury. Adapted with 
permission from Stroke 2004; 
35: e103–5.  
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accidents (CVAs). (Minor drawbacks to this approach are the 
need for large-bore intravenous access, the need for iodinated 
contrast and concern over contrast reactions, and additional 
radiation exposure.) 33  

 Despite these concerns, the introduction of helical or spiral 
CT scanning, coupled with multi-row detectors, has greatly 
rejuvenated the role of CT in modern cerebrovascular imaging. 34  
The relatively high-kilovoltage, thinly collimated X-rays used in 
contemporary CT scanners result in linear attenuation, due to 
tissue density, thereby providing excellent contrast resolution. 
The enormous increase in gantry rotation speed, coupled with 
improved heat tolerance of the X-ray tube, provides improved 
temporal resolution such that dynamic, thin-section, volumetric 
spiral CT examination can be performed as an ‘arterial snap-shot  ’   
approaches the anatomic information provided by catheter 
angiography. 35   

 Data acquisition 
 The important first step with any dynamic contrast study is to 
determine the exact time to start scanning after intravenous con-
trast administration in order to capture the bolus while it resides 
only within the vessels of interest. Two methods are used: 

■   bolus tracking, in which the software measures the attenua-
tion values for a region of interest (e.g. the common carotid 
artery), and spiral scanning is automatically started as soon 
as a certain threshold is exceeded; 36  and  

  ■  test bolus administration, in which bolus transit time to the 
carotid arteries is estimated by injecting a small test volume 
of contrast with axial ‘same-level  ’   scans performed in the 
lower neck; scanning with the examination bolus is then 
initiated with an appropriate time delay. 37       

 Post-processing 
 Before starting the post-processing, it is frequently helpful to 
review the source data and axial images for calcifications, high-grade 

stenoses or occlusion. Subsequently a variety of post-
processing computer algorithms can be applied to create two- 
and three-dimensional angiographic displays: 

■   multi-planar reformation (MPR), which essentially 
involves sagittal, axial, and coronal anatomic reconstruc-
tions ( Figure 1.8 ); curved multi-planar reformation (cMPR) 
can be manually applied along the vessel course to provide 
excellent linear demonstration of the vessel lumen;  

■   maximum intensity projection (MIP), which is most com-
monly used three-dimensional technique for vascular 
imaging, in which a single layer of brightest voxels along a 
line of site (or projection) at a specified angle (orthogonal 
or oblique) is displayed (see  Figure 1.8 ); a major drawback is 
that there is no depth information (i.e. it displays only 
the density of objects, not spatial information), and 
evaluation of the vascular lumen in regions of dense 
calcifications may be impossible with conventional MIP 
techniques;  

■   shaded surface display (SSD), in which the first layer of 
voxels within defined density thresholds is used for display, 
leading to the visualization of the surface of all structures 
that fulfill the threshold conditions. Depth information 
is preserved but the attenuation information is scaled 
proportionately. While very helpful in evaluation for intrac-
ranial aneurysms, SSD is less useful for the evaluation for 
stenoses, particularly those that are calcified;  

■   volume rendering (VR), in which all the information in 
the volume data set is used to select groups of voxels within 
a defined threshold density, after which a color and 
shading or opacity are assigned (e.g. low opacity for 
semitransparent structures); VR maintains both depth 
and density information, and it is perhaps the best three-
dimensional technique for intra- and extracranial vessels 
(see  Figures 1.2  ,     1.8 ).    

    Image interpretation and analysis 
 The overall accuracy of CT angiography for detecting thromboses 
and stenoses of large intracranial and extracranial arteries is 
approximately 95 – 99 % . 38      –  41  It is comparable to catheter angiogra-
phy in distinguishing between total and near-total occlusions. 42  
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The following approach is very helpful in interpreting extra and 
intracranial CT angiography: 

  1.   All three-dimensional methods are subject to some loss of 
information, and therefore source data images are inspected 
first for quality of the study, calcifications, stenoses, and 
occlusions.  

  2.   MIP images inspected in multi-planar format are examined 
for vascular detail. Thin MIPs (10 – 20 mm) are preferred for 
intracranial circulation.  

  3.   Finally, if there is arterial wall calcification, curved MIP and 
VR are examined to evaluate vascular lumen and plaque 
dimensions.       

 Perfusion Imaging 
 Perfusion of normal brain tissue is maintained within a narrow 
range by auto-regulation of the cerebral vasculature. Cerebral 
blood volume (CBV) is normally 4 – 5 mL per 100 g. Normal blood 
flow in human gray matter is about 50 – 60 mL per 100 g 
per minute. 43  Decreasing cerebral blood flow to < 35 mL per 100 g 
per minute (50 – 60 %  of normal) leads to the cessation of protein 
synthesis, although tissue can survive with no further additional 
insult to cerebral blood flow (CBF). With CBF reduced to 
< 20 mL per 100 g per minute (30 – 40 %  of normal) there is loss 
of neural function, and the tissue is at risk. (At these levels 

 Figure 1.8    

Aneurysm reconstruction.
(a) Multiplanar reconstruction of CT 
angiogram demonstrating left 
carotid terminus aneurysm. 
(b) Maximum intensity projection 
(MIP), coronal and (c) axial of 
carotid terminus aneurysm. 
(d) Volume rendered 3D CT 
angiogram, viewed from behind.  

(a) (b)

(c) (d)

Table 1.2   Cerebral blood flow (CBF) and oxygen 
utilization  

Effects of variations in CBF

CBF (ml per 100 g 
tissue per minute)

Condition

45–65 Normal brain at rest

75–80 Gray matter

20–30 White matter

25 EEG becomes flatline

15 Physiologic paralysis

12 Brain stem auditory evoked response 
changes

10 Alterations in cell membrane transport 
(cell death; cerebrovascular accident)

CBF = CPP/CVR = MAP  −  ICP/CVR
 CBF, cerebral blood flow; CPP, cerebral perfusion pressure; 
CVR, cerebrovascular resistance; ICP, intracranial pressure; 
MAP, mean arterial pressure. 

    

the patient will be neurologically impaired, but may recover.) 
Finally, when CBF falls to < 10 mL per 100 g for minute (< 20 %  
of normal) there is irreversible cell death ( Table 1.2 ).   

 The evolution of cerebral hemodynamic compromise can be 
described in stages. 44  In stage 1, the cerebral vasculature 
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xenon inhalation at a concentration of approximately 28 %  over 
4.3 minutes. The initial scans can be used as masks to produce 
subtracted images, which can be used to calculate tracer accumu-
lation over time. Xenon concentrations can be measured in the 
expiratory ventilation circuit to calculate the AIF. The Kety – 
Schmidt equation is then solved voxel by voxel via iterative 
calculation to produce quantitative CBF maps. Despite the 
singular advantage of quantitative blood flow, this technique has 
historically been arduous and is practiced at only a limited 
number of centers. 

 Non-diffusable tracer techniques have become more popular 
with the advent of temporally faster spiral scanners. The central 
volume principle states that CBF  =  CBV divided by mean transit 
time (MTT) from the time of arterial input to venous drainage. 
Calculation of MTT and CBF requires knowledge of the AIF, which, 
in the context of an intact blood – brain barrier, can be approxi-
mated by mathematical deconvolution. Contemporary CTP as well 
as MR perfusion measures brain perfusion by analyzing this 
dynamic enhancement of cerebral vasculature and parenchyma 
after a single intravenous bolus injection of contrast material.  

 Data acquisition 
 CTP has been performed with single-slice scanners but the 
examination is limited to 1 cm thickness. 46  With multi-slice CT, 
a 2 – 3 cm-thick section can be examined. The anatomic region 
that clinical symptoms indicate is most likely affected by ischemia 
must be selected  a priori  for the examination (e.g. basal ganglia 
in most cases of MCA disease). A bolus of contrast material 
is injected at a high rate (usually 8 ml/s) using a power injector, 
and tissue attenuation is monitored as the contrast first reaches 
and then perfuses the brain with one image per second acquired 
during wash-in and wash-out. For each voxel from these scans, 
a time-attenuation plot is generated that corresponds to the 
relative wash-in – wash-out of contrast ( Figure 1.9 ). From these 
plots parameters such as time-to-peak can be measured or 
calculated (ascending slope of the curve is the CBF, while the 
area under the time-attenuation curve is the CBV) for each voxel 
in the image. 

attempts to maintain normal CBF by vasodilating (CBV 
increased). As hemodynamic compromise progresses to stage 2, 
CBF diminishes as autoregulatory vasodilatation is superseded. 
The brain continues to remain viable by increasing the fraction of 
oxygen extracted from the circulation – so called misery perfusion. 
If hemodynamic compromise continues, the final stage is cell 
death and infarction. 

 The imaging techniques utilized to evaluate cerebral perfusion 
can categorized as follows: 

■   indicator dilution methods involving injection of a tracer 
detected over time;  

■   techniques that identify the degree of pre-existing auto-
regulatory reserve and vasoreactivity by imaging before and 
after a vasodilatory stimulus (e.g. Diamox SPECT); and  

■   techniques that measure oxygen extraction fraction 
(O15–PET).    

 Perfusion techniques may also be categorized as those that use 
diffusible tracers or those that rely on non-diffusable contrast 
agents. 45  This is an important distinction in that the mathematical 
models used to quantify the data are unique to each.   

 CT perfusion 
 One of the early attempts at CTP imaging relied on stable 
xenon gas, which had the characteristics of being biologically 
inert, having a k-edge similar to that of iodinated contrast, being 
soluble in both water and lipid, and being freely diffusible across 
the blood – brain barrier. With this technique the measurement of 
CBF is a determination both of the amount of contrast agent in 
the feeding arteries as well as the amount that has passed into the 
brain parenchyma. Quantification of CBF requires knowledge of 
the arterial concentration (arterial input function, or AIF) and 
the tissue concentrations, or the partition coefficient between 
these two compartments. Following a baseline non-contrast 
scan, serial CT scans at preset locations are acquired during 

 Figure 1.9    

CT perfusion imaging based on time 
density curve created voxel by voxel 
during bolus administration of 
iodinated contrast. (a) Time 
attenuation plot. (b) Mean transit 
time calculated as the FWHM of the 
curve while time to peak (TTP) is 
calculated from the start to peak 
attenuation. (c) Relative cerebral 
blood volume (rCBV) is calculated as 
the area under the curve while 
relative cerebral blood flow (rCBF) is 
the upslope. HU, hounsfield units.  

HU HU

TTP

MTT

0 30 0 30
Time (seconds)(a) (b)

(c)

Time (seconds)

HU

0

Maximum slope = rCBF

Area under
normalized
curve =
rCBV

30
Time (seconds)
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assessed by comparing the cerebral hemispheres, with a sensitivity 
of over 90 %  in larger ischemic lesions. 57  ,  58  When unilateral or 
regional ischemic lesions are suspected, corresponding regions of 
interest in the two hemispheres can be drawn for comparison, 
yielding a percentage of reduction of both CBF and CBV for the 
affected hemisphere versus the normal side. As discussed above, 
TTP and MTT are very sensitive indicators of hemodynamic 
disturbances, while CBF and CBV may help to predict the 
outcome of an ischemic lesion. 

  In cases where there is arterial stenosis or occlusion with good 
cerebrovascular compensation or good collateral circulation, 
there may be prolonged TTP, normal CBF and normal or 
increased CBV. In patients with oligemic tissue, TTP may be 
prolonged, CBF reduced (but still > 60 % ) and CBV reduced (but 
still > 80 % ). In areas where tissue is at risk, TTP will be pro-
longed, CBF reduced (but still > 30 % ), and CBV reduced (but still 
> 60 % ). And in areas of completed infarction there will be marked 
prolongation or non-measurable TTP, CBF (reduced to < 30 % ) 
and CBV (reduced to < 40 % ). These parameter guidelines are 
based on comparison studies between CT and diffusion weighted 
MRI attempting to differentiate between reversible ‘penumbra  ’   
and irreversible infarction. 57  ,  59  

 As noted previously, an additional, simplified CTP technique 
(PBV) is used by some institutions to triage patients for throm-
bolysis. In this technique, data acquired for CT angiography are 
also used to approximate only the CBV for assessing areas of 
severe oligemia. 38  ,  47  ,  48      

 Magnetic resonance imaging 
 Edward M Purcell and Felix Bloch were independently awarded 
the 1952 Nobel Prize in Physics for thier development of new 
methods for nuclear magnetic precession (i.e. nuclear magnetic 
resonance, or NMR). Purcell first observed NMR signaling in 
1945 while working at the Massachusetts Institute of Technology 
Radiation Laboratory. Along with similar research by Nicolaas 
Bloembergen and Robert Pound, this work was later expanded 
to a comprehensive theory of nuclear magnetic relaxation; while 
his contributions with Herman Carr on improved spin-echo tech-
niques laid the groundwork for future techniques in MRI. 60  
Although Damadian patented the design and use of NMR for 
detecting cancer in 1974, he did not describe a method for gene-
rating pictures. The use of magnetic field gradients to localize and 
map the signals described by Purcell to a digital image matrix is 

  A simplified CTP technique called perfused blood volume 
(PBV) is used by some institutions to triage patients for throm-
bolysis. With this technique, data acquired for CT angiography 
are used at the same time to assess perfusion of the whole brain 
CBV but, unlike the quantitative dynamic perfusion technique 
described above, PBV images do not provide information about 
CBF or mean transit time, which may be important parameters 
for assessing ‘tissue at risk  ’  . 37  ,  47  ,  48    

 Post-processing 
 Semiautomatic post-processing is used to create scaled, color 
maps of TTP or MTT, CBF, and CBV in less than 1 minute (see 
 Figure 1.9 ). 49  Two mathematical approaches are used to calculate 
these parameters: 50  

  1.   The maximum slope model requires a rapid, tight bolus to 
calculate the slope of the time-attenuation curve, which is 
used to approximate CBF. CBV is calculated from an 
enhancement ratio relative to the superior sagittal sinus. It is 
relatively insensitive to motion.  

  2.   Deconvolution analysis models calculate regional MTT by 
deconvolving the time-attenuation curve. 51  This method 
requires an arterial input function to deconvolve the curve, 
and it utilizes the central volume principle to calculate 
CBF  =  CBV/MTT. 52    –  54  This method theoretically provides 
absolute values for CBF and CBV. Nevertheless, there are 
variables (choice of input function, recirculation correc-
tion), which may limit the accuracy of these values. 55     

 For practical purposes, ‘r  ’   is added before CBF and CBV 
indicating relative rather than absolute values of CBV and 
CBF because both techniques used for measurement of these 
parameters are limited in giving absolute values for a variety of 
reasons. Fiorella et al. recently demonstrated the variability in 
post-processing dynamic CTP data, suggesting that the current 
techniques are not sufficient to allow the use of quantitative 
values in clinical practice. 56    

 Image interpretation and analysis 
 CTP has much higher sensitivity than unenhanced CT for 
detecting early ischemia. 57  During interpretation of CTP studies, 
color-coded parameter maps ( Figure 1.10 ) are first visually 

 Figure 1.10  

  Clinical study demonstrating 
vascular occlusion with delayed 
time to peak (TTP) on the right 
image. In the left image MCA 
territory with more subtle 
diminished relative cerebral blood 
flow (CBF) (left image).  
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is placed in a powerful, uniform magnetic field, the spinning 
protons align either parallel to or against the main magnetic 
field. The difference in the number of parallel and anti-parallel 
nuclei is only about one in a million. However, the vast quantity 
of nuclei produce a detectable change in field  –  a radio signal. 
(The magnetic dipole moment of the nuclei precess about the axis 
of the main field; the frequency with which the dipole moments 
precess is called the Larmor frequency, governed by the Larmor 
equation. At conventional field strengths used in clinical practice 
the frequency approaches that of citizen band radio.) The tissue 
is then briefly exposed to stimulating pulses of synchronous 
(i.e. resonant) electromagnetic energy (i.e. a radiofrequency 
(RF) pulse) in a plane perpendicular to the magnetic field, caus-
ing some of the magnetically aligned hydrogen nuclei to assume 
a temporary non-aligned higher energy state. (The frequency 
of the pulses is also governed by the Larmor equation.) Upon 
termination of the stimulating pulse, the protons ‘relax  ’   by 
emitting a radio signal as they again align parallel to the magnetic 
field. In order to localize the signal from tissue in three-
dimensional space within the magnet, three orthogonal magnetic 
gradients are applied. The first is the slice selection, which is 
applied during the RF pulse. Next comes the phase encoding 
gradient, and then finally the frequency encoding gradient, 
during the signal sampling period. In order to create the image, 
spatial information must be recorded along with the received 
tissue-relaxation RF signal. For this reason, the linearly variable 
magnetic fields, or gradients, are applied in addition to the strong 
static, or baseline, main field to allow encoding of the position 
of the nuclei. When received, the signals are recorded in a 
temporary memory termed k-space; this is the spatial frequency 
weighting in two or three dimensions of a real space object 
as sampled by MRI. The RF information is subsequently 
inverse-Fourier transformed by a computer into real space to 
obtain the desired image. 

 While CT provides good spatial resolution, MRI provides 
far better contrast resolution (the ability to distinguish subtle 
differences between two tissues). The basis of this ability is the 
complex library of RF pulse sequences, which is optimized to pro-
vide image contrast based on subtle chemical sensitivities of MRI. 
For example, injured tissue tends to develop edema, which 
makes a T2-weighted sequence that is sensitive for detection of 
pathology, and it is generally able to distinguish pathologic tissue 
from normal tissue. A notable eccentricity of conventional MRI 
is the changing, evolutionary pattern of fresh blood on different 
pulse sequences, caused by the changes in oxidative state of iron 
(hemoglobin): oxy-, deoxy-, met-hemoglobin, and finally ferritin 
or hemosiderin. Such changes occur over a period of days to 
months, producing paramagnetic effects (bright) on T1-weighted 
scans and susceptibility effects (dark) on gradient echo studies 
( Table 1.3 ).   

credited to Paul Lauterbur and Sir Peter Mansfield, who were 
themselves awarded the 2003 Nobel Prize in Physiology and 
Medicine for their ingenuity. 61  While the technique is exception-
ally valuable in many cases of cerebrovascular disease, one must 
be aware of magnetic interactions between therapeutic implants 
and the main or gradient fields. Although beyond the scope of 
this text, an extensive review of this subject can be found in the 
work of Shellock. 62    

 Magnetic resonance imaging 
for the evaluation of 
cerebrovascular disease 
 There are advantages and disadvantages to the use of MRI in 
cerebrovascular disease. Advantages include: 

■   extraordinary sensitivity of diffusion-weighted imaging to 
acute cerebral hemispheric ischemia  

■   contrast sensitivity to parenchymal blood breakdown 
products  

■   non-ionizing radiation  
■   vascular imaging without or with exogenous contrast  
■   selective vascular imaging of arteries or veins  
■   perfusion scanning of the entire brain  
■   three-dimensional stereotactic targeting.    

 Disadvantages include: 

■   hostile environment for acutely ill patients, (inherently takes 
more time)  

■   contraindicated in some patients with implants, whether 
risking actual harm to the patient (e.g. those with cerebral 
aneurysm clips, pacemakers, DBS electrodes) or merely 
degrading the image due to artifact (e.g. carotid stent, 
platinum coil)  

■   limited by patient motion/ artifact  
■   Gd-DTPA not FDA approved as a susceptibility contrast 

agent for perfusion imaging     

 Magnetic resonance imaging 
of the brain 
 Clinical MRI is predicated upon the relaxation properties of 
excited hydrogen nuclei in water. When the object to be imaged 

 Table 1.3    MR signal changes in hemorrhage at high field (1.0–3.0T) relative to cortex  

Heme moiety Time of appearance T 
1 

T 
2
 

Oxyhemoglobin Immediately – first several hours Unchanged or decreased Increased

Deoxyhemoglobin Hours—several days Unchanged or decreased Decreased

Intracellular methemoglobin First several days Increased Increased

Extracellular methemoglobin Several days – months Increased Increased

Ferritin/hemosiderin Several days – indefinitely Unchanged or decreased Decreased

 Adapted from Gomori et al. 64  
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created from these data sets that display the correlation coefficient 
of diffusion as a gray scale image. Images are acquired at multiple 
b-values in order to calculate apparent diffusion co-efficients 
(ADC) and generate ADC map images. Any process causing 
restricted diffusion appears darker on ADC map images, and 
vice versa. 

 Acute ischemic lesions are characterized by high signal inten-
sity on DWI and low ADC values. The signal intensity of acute 
stroke on DWI increases during the first week after symptom 
onset and decreases thereafter, but it may retain a significant 
amount of brightness for longer periods. 66  The signal on DWI 
often remains hyperintense for weeks, 68  while ADC values gradu-
ally increase over 7 – 10 days (seen as lesions getting brighter on 
ADC map images). 69  Lesion size on DWI is a good predictor of 
minimal completed infarct volume. 70  

 Several patterns of ischemic lesions can be differentiated on 
DWI in patients with underlying anterior circulation ischemic 
disease: 71,72  

■   typical large confluent ‘cortical territorial infarct  ’   ( Figure 1.13a ) 
(e.g. MCA or anterior cerebral artery occlusion in absence of 
adequate collateral circulation);  

■   ‘subcortical infarcts  ’   due to deep perforator occlusions (e.g. 
proximal M1 occlusion in the presence of good collateral 
vessels);  

■   ‘typical territorial infarct with fragmentation  ’   (e.g. spontane-
ous or induced thrombolysis of a large vascular territory with 
dissemination of emboli in the same territory ( Figure 1.13b ));  

■   ‘shower of infarcts  ’   (e.g. fragmented embolus of cardiac 
or cervical carotid origin to multiple vascular territories 
( Figure 1.13c )); and  

■   ‘Border zone infarcts  ’  , which may be cortical (superficial) or 
subcortical watershed infarcts ( Figure 1.13d ).    

  Microembolism during endarterectomy and carotid stenting has 
been shown by intraoperative Doppler sonography, 73  while DWI 
can show evidence of infarcts caused by these microemboli. 74      –  77  
The incidence of intraprocedure microembolism is related to 
multiple risk factors, including symptomatic status of the patient 
and plaque morphology. Fortunately, most of the resulting micro-
infarcts are clinically silent. 78  However, this opens a new avenue 
of stroke prediction based on clinically silent micro-infarcts seen 
on DWI. 79  

 Posterior circulation acute infarcts ( Figure 1.14 ) have basically 
the same imaging features (i.e. they are brighter on DWI and 

 The term ‘conventional MRI  ’   typically denotes those imaging 
techniques that do not require special, high-speed gradient sys-
tems (i.e. spin echo and gradient echo) from those that do (e.g. 
echo planar diffusion and perfusion imaging). Conventional MRI 
continues to have a role in the patient who presents with stroke 
symptoms because it can reliably rule in or rule out non-ischemic 
processes, and because it is better able to discriminate between 
acute, subacute, and chronic infarcts ( Figure 1.11 ). It can also 
differentiate venous from arterial ischemic infarcts by demon-
strating vasogenic edema and hemorrhage (a common finding 
even in early venous infarcts) ( Figure 1.12 ), and it can detect inci-
dental arterial stenosis or occlusions by showing diminished or 
absent normal flow voids on spin echo images. It can also detect 
carotid or vertebral dissections using fat-suppressed pulse 
sequence. 65  

    Diffusion imaging of the brain 
 Diffusion-weighted imaging (DWI) is a high-speed imaging tech-
nique with remarkable sensitivity and specificity to acute infarc-
tion compared to CT and conventional MRI. DWI can depict 
infarcted tissue in the cerebral hemispheres as early as minutes 
after the occlusion of the feeding vessel. 66,67  In DWI, the sensitiv-
ity is derived from additional pulsed gradients that are applied 
before and after the signal-producing RF pulse. These gradients 
sensitize the sequence to random molecular (Brownian) motion 
or ‘diffusion  ’   of water protons. (This motion may be restricted or 
limited by cell membranes, e.g. intracellular water of ischemic 
edema, versus free water in the extracellular space.) The gradients 
are applied in three different directions (anterior – posterior, 
superior – inferior, and side-to-side) during three different image 
acquisitions. Because of the directionality of the brain ’ s fiber 
tracts, this helps to counteract the problems caused by anisotropy 
(direction-dependant movement). Ultimately, these image data 
sets can be combined to produce a so-called a trace image, which 
is typically used for interpretation/ diagnostic screening. 

 This diffusion sensitivity is quantified by a term, the b-value of 
a pulse sequence (determined primarily by the magnitude and 
duration of motion sensitizing gradients). The higher the b-value, 
the greater the sensitivity to restricted diffusion (i.e. ischemic 
edema). Any process causing restriction of diffusion appears 
brighter on DWI, and vice versa. Calculated images can also be 

 Figure 1.11    

(a) T2 weighted FLAIR examination 
demonstrating focal defect in the 
right frontal lobe with diffuse, 
punctate changes in both 
hemispheres. (b) Diffusion weighted 
imaging demonstrates the largest 
defect on the right to be chronic 
while the bi-hemispheric defects are 
acute focal areas of infarction.  

(a) (b)
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dental amalgam) in the presence of strong diffusion 
gradients;  

■   lesions are usually smaller, and therefore they may not show 
up on DWI or may not be appreciated by some readers; and  

■   the different degree of packing of infratentorial fiber tracts 
and gray matter relative to the hemispheres. 80,81     

darker on ADC maps). However, DWI has relatively lower 
sensitivity to brainstem and cerebellar infarcts for a variety of 
reasons: 

■   image degradation occurs close to the skull base by suscepti-
bility artifact (because of bones, the paranasal sinus, and 

Figure 1.12 

Vernous infarction (a) T2 weighted scan 
demonstrating heterogeneous defect in the 
left inferior temporal lobe of mixed increased 
and decreased signal (open arrow). Notice 
lack of “flow void” in the left sigmoid sinus. 
(b) Higher slice demonstrating finger-like 
projection of subcortical high signal 
consistent with vasogenic edema with areas 
of low signal in the adjacent cortex (arrow) 
suspicious for susceptibility artifact of blood 
breakdown products. (c,d) Diffusion tensor 
image and ADC map confirm ischemia only in 
the cortex (bright on diffusion, low on ADC) 
with “T2 shine-through” (bright on diffusion, 
bright on ADC) secondary to vasogenic edema. 
(e) MR venogram confirming transverse-
sigmoid sinus thrombosis resulting in a 
hemorrhagic temporal lobe infarction and 
venous hypertension.

(a) (b)

(c)

(e)

(d)
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application over 10 years ago. 88  It is an established clinical tool 
in extracranial carotid disease, with sensitivity and specificity 
of around 90 % . 89,90  While technical details of MRA techniques 
are beyond the scope of this chapter, the three major techniques 
currently used for MRA are summarized below. 91,92  The goal of 
each method is to distinguish between flowing blood and sur-
rounding stationary soft tissues.  

 Time-of-flight (saturation) method 
 The time-of-flight (TOF) method is commonly used and has 
a very high sensitivity to flow. There are two- and three-
dimensional TOF techniques. The accuracy of the TOF method, 
particularly as a non-invasive complement to carotid duplex 
scanning, is well established. 93  The basic mechanism is 
suppression of the stationary background tissues by repeated 
RF pulses while a good signal is acquired from fresh flowing, 
fully magnetized blood entering the image slice or volume (‘flow 
related enhancement  ’  ).   

 Phase contrast (subtraction) method 
 The phase contrast method is a more time-consuming technique, 
and it is not commonly used in routine neurovascular evaluation. 
It is based on the phase shifts between stationary tissues and flow-
ing blood, and it can provide both qualitative information and 
quantitative (direction and velocity) information about blood 

   Venous infarcts can be bright on DWI but because there is often 
a combination of cytotoxic and vasogenic edema, the signal is 
more heterogenous and the evolutionary pattern is different (see 
 Figure 1.12 ). 82    –  84  

 It is important to remember that other pathologic entities 
(notably abscess or neoplasm) may also be increased in signal on 
DWI ( Figure 1.15 ). In the case of an abscess, this distinction can 
be particularly difficult, although with other pathologic processes 
the DWI may be less hyperintense, a function of so-called T2 
shine-through. 86  Additionally, because DWI is inherently a very 
highly T2-weighted sequence, lesions with vasogenic edema appear 
brighter on DWI, not because of restricted diffusion but because 
of its T2 characteristic; hence the shine-through effect. This is the 
major advantage of the ADC map: these mimics of stroke do not 
have low signal on the ADC map as an infarct would. 

  Hence, this pitfall can be avoided by examining the ADC map 
( Figure 1.16 ). However, a potential pitfall in this approach has 
been termed ‘pseudo-normalization  ’   of the infarct on the ADC 
map (usually on day 5), which is due to a balancing effect between 
cytotoxic and vasogenic edema at about this time. 66,87  Fortunately, 
the diagnosis has usually been established by this point in the 
clinical time course, and patients are seldom imaged as remotely 
as that from the onset of ictus. 

    Magnetic resonance angiography 
 MRA has proven to be a useful, non-invasive tool for evaluation 
of the intra-and extracranial vasculature since its first clinical 

 Figure 1.13    

(a) MRD cortical infarct, (b) MRD fragmented 
embolus–MCA infarct, (c) MRD embolic shower, 
(d) watershed infarction MRD.  

(a) (b)

(c) (d)
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  For three-dimensional post-processing, only multi-planar 
reformation and maximum intensity projection (MIP) 
methods (as discussed above under CTA) are routinely used 
for MRI studies. For practical purposes, the following points 
are important to remember during image analysis and 
interpretation: 

■   always thoroughly inspect the source data images to avoid 
misinterpretations related to post-processing errors and 
artifacts; 99,100   

■   diminished signal or flow defect should not be attributed 
solely to stenosis or occlusion unless other technical causes 
are excluded (e.g. the presence of a metallic stent, signal 
loss due to vascular looping or tortuosity, flow saturation 
or intravoxel dephasing; 99,100  note that maximum intensity 
projection images (a post-processing method) are prone to 
overestimate stenosis); 89,100   

■   the question of occlusion versus near occlusion and tandem 
or diffuse stenosis is best solved by contrast MRA (if not 
primarily performed) or by correlation with ultrasound.    

 As one can appreciate, it is critical to understand the technical 
aspects and flow dynamics in order to grade stenosis accurately as 
well as to lower the observer variability. 101     

flow in the vessels. Technically this method is very analogous to 
DWI, but the imaging gradients are scaled to detect macroscopic, 
faster arterial or venous flow, rather than the microscopic molec-
ular, Brownian motion of DWI.   

 Contrast MRA (luminal 
opacification) method 
 Analogous to CT angiography ( Figure 1.17 ), contrast MCA 
enables vessels take visualized by virtue of enhancement of the 
lumen with MRI contrast agents during the arterial phase of an 
intravenously administered bolus of a paramagnetic contrast 
agent. Likewise, this is a dynamic technique, and therefore the 
timing of the start of acquisition is critical; the two methods used 
for this purpose are essentially the same as discussed above under 
CTA (timing bolus and bolus tracking). Contrast MRA is increas-
ingly being used for examining the extracranial vasculature, 89  and 
it is considered an adequate diagnostic test before surgery. 94,95  
Additionaly, intracranial studies performed with exceedingly 
short echo times (to minimize susceptibility artifact from coils) 
may be used in lieu of conventional angiography to follow 
aneurysms after treatment for coil compaction. 96    –  98  

(a) (b) (c)

(d) (e) (f)

 Figure 1.14  

  (a) Hyperdense basilar artery on CT, suspicious for thrombotic embolus. (b) Delayed diffusion scan demonstrates clear-cut infarction, 
confirmed with ADC map (c). (d) FLAIR T2 weighted scan shows infarct. Confirmed basilar occlusion on native (e) and MIP (f) MR 
angiogram.  
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■   to detect cerebral hemodynamic impairment, 105  (e.g. in the 
right cerebral hemisphere when the right internal carotid 
artery is occluded).    

 The key points of MR perfusion imaging in acute stroke 
studies can be summarized as follows: 70,106 – 109  

■   infarct size on initial CBV map is the best predictor of final 
infarct volume, compared to other parameters;  

■   CBF and MTT map defects (meaning decreased flow and 
increased mean transit time) generally have poor correlation 
with final infarct volume;  

■   CBF and MTT map defects indicate hemodynamic impair-
ment and are better predictors of lesion growth (probably as 
a result of threshold effects);  

■   TTP, if increased (   >   6 seconds) indicates hemodynamic 
impairment,  –  increased TTP is the most commonly seen 
perfusion abnormality in early stroke but, like MTT and 
CBF, it overestimates the final infarct volume. 110     

 MR and CT perfusion studies, in conjunction with parenchymal 
scanning and angiographic techniques, already appear to be 
having an impact in patient selection for treatment of acute cere-
brovascular disease, extending the time window for treatment in 
those patients with the necessary vascular reserve to sustain viable 
brain tissue beyond 3 hours. 111,112     

 Magnetic resonance perfusion 
imaging 
 MR perfusion imaging can be performed by several techniques: 
arterial spin labeling and the more common, dynamic method of 
bolus infusion of susceptibility contrast. Like CT perfusion, a 
bolus of contrast material is rapidly infused intravenously and a 
hemodynamic map is generated that is based on the degree of 
susceptibility produced by the contrast material. 102  In clinical 
practice this represents an ‘off-label  ’   use of Gd-DTPA in which 
the agent is used not to increase signal (its normal use as a 
paramagnetic contrast) but to decrease signal on the basis of 
its susceptibility effect on T2-weighted sequences used for 
perfusion imaging ( Figure 1.18 ). This hemodynamic map makes 
possible the calculation of the same parameters as discussed 
above under CTP (although the time-intensity curve is 
inverted); MTT, TTP, CBV, and CBF maps are then generated for 
interpretation. 

  The significance of MR perfusion imaging in the setting 
of stroke (often in combination with DWI) is basically 
threefold: 

■   identify tissue at risk;  
■   to predict the final infarct volume 103,104  and hence the clinical 

outcome; and  

 Figure 1.15  

  (a) Wedge-shaped defect in the left 
occipital lobe FLAIR image. 
(b) Post-contrast T1 weighted image 
demonstrates ring enhancing defect 
with  “ daughter  ”   lesions suspicious 
for abscess. (c, d) Diffusion imaging 
and ADC map demonstrate 
increased signal intensity on the 
diffusion scan with diminished 
signal intensity on the ADC map, a 
pattern most often seen in 
association with infarction. In this 
particular case, the etiology was 
abscess.   

(a) (b)

(c) (d)
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(g)

TTP

(a) (b) (c)

(d)

rCBV

(e) (f)

rCBF

 Figure 1.16  

  Right middle cerebral artery infarct. (a) FLAIR, (b) Diffusion, (c) ADC, (d) TTP map 
demonstrating virtually no flow centrally. (e) rCBV and (f) rCBF maps suggest 
persistent lack of flow centrally with increased flow at the margins of the defect 
consistent with recanalization of a thrombotic embolus after completion of the 
infarct. (g) MRA demonstrates partial right MCA recanalization.  

 Nuclear medicine 
 In the 1950s and early 1960s, Hal Anger developed a device to 
detect iatrogenically administered, gamma-emitting, radioiso-
topes within the body for diagnostic and therapeutic purposes. 
His work serves as the basis for most contemporary nuclear 
imaging. The Anger camera consists of a series of lead collima-
tors, placed between the detector surface and the patient; these 
collimators serve to minimize scatter. The detector is a scintilla-
tion crystal, which produces light flashes when an impinging 

gamma-ray reaches and interacts with the crystal. The scintilla-
tions are detected by an array of photomultiplier tubes optically 
coupled to the crystal. The photomulipliers produce an output 
signal in the form of an electrical current, which is proportional 
to the energy of the incident-stimulating gamma-ray. The electri-
cal signal may be amplified, sorted by a pulse height analyzer, and 
then registered as a ‘count  ’  . Depending on the position of the 
event, the phototubes are variably activated. Hence, the entire 
system response yields positional information, although the 
spatial resolution is less than that of CT or MRI.   
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 SPECT is a nuclear imaging technique much like CT, except that 
rather than producing cross-sectional images from external 
X-rays passing through the body, gamma-emitting radiopharma-
ceuticals (single photon emitters or positron emitters) are detected 
in multiple views by rotating a single (or, preferably, multiple) 
Anger camera(s) about the area of interest. Scintillation crystals 
for SPECT imaging are typically composed of sodium iodide with 
trace amounts of thallium. Using back projection techniques, 
cross-sectional images are then computed with the axial field of 
view determined by the axial field of view of the gamma-camera. 
Data reconstruction must account for emitted rays and also those 
attenuated within the patient (i.e. photons emanating from deep 
inside the patient are considerably attenuated by surrounding tis-
sues). Whereas in CT, attenuation is a key component of the 
imaging process, in SPECT attenuation degrades the image and 
this must be corrected or accounted for. 

 A radioisotope such as technetium-99 m is attached to a 
delivery compound that passes through the blood – brain barrier 
and is avidly taken up by the brain parenchyma, with uptake 
proportional to cerebral blood flow. 113  Two common delivery 
compounds are hexamethylpropyleneamine oxime (HMPAO) 
and ethyl cysteinate dimer (ECD). Scans may be performed before 
and after administration of a cerebral vasodilator (e.g. Diamox) 
to provide a qualitative assessment of the level of vasomotor 
reserve ( Figure 1.19 ). 45  

    Positron emission tomography 
imaging for cerebrovascular 
disease 
 The main advantage of positron emission tomography (PET) is 
that it provides quantitative physiologic data. 

 Its disadvantages include: 

■   expense;  
■   low spatial and contrast resolution;  
■   its technically demanding nature; and  
■   the fact that it cannot be performed emergently.    

 PET is a tomographic nuclear imaging procedure first described 
in the early 1970s by Hoffman and Phelps. It uses radiopharma-
ceutical-labeled positron emitters (i.e. electron annihilation reac-
tion induced gamma-rays). Positron emitters are attractive on the 
basis of their active participation in physiologic pathways, but 
they have the drawback of exceedingly short half-lives (e.g. O-15 
has a half life of approximately 2 minutes), which necessitates a 
cyclotron for on-site production. 

 The PET principle is as follows. A low dose of labelled positron 
emitter such as C-11, N-13, O-15 or F-18 is injected into the 
patient, who is scanned by the tomographic system. Scanning 
consists of either a dynamic series of images or a static image 
obtained after an interval during which the radiopharmaceutical 
enters the biochemical process of interest. The scanner detects the 
spatial and temporal distribution of the radiolabel by detecting 
gamma-rays during the so-called emission scan. The gamma-rays 
emitted occur by positive beta-decay, the annihilation reaction 
between the positron and a shell electron of a neighbouring atom, 
which produces two 511 keV gamma-rays, that travel in diametri-
cally opposite directions (owing to the conservation of energy 
and momentum laws). The two gamma-rays are detected by a 

 Single photon emission 
computed tomography imaging 
for cerebrovascular disease 
 Advantages of single photon (computed) tomography (SPECT or 
SPET) include: 

■   its ready accessibility; and  
■   its ability to test cerebrovascular reserve.    

 Its disadvantages include the fact that it: 

■   is time-consuming;  
■   provides limited spatial resolution; and  
■   is non-quantitative.    

 Figure 1.17    

Gadolinium enhanced MR angiography of the aortic arch and 
cervical vessels.  
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 Figure 1.18    
Time intensity curve of MR perfusion study (MRP) utilizing 
gadolinium-DTPA, in this instance a susceptibility contrast 
agent, which produces a transient decrease in signal intensity 
with time.  
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 Ultrasound 
 Cardiovascular and cerebral ultrasonography was first performed in 
the early 1950s at Lund University by cardiologist Inge Edler and 
physicist Carl Hertz. Hertz was familiar with using ultrasonic reflec-
toscopes for non-destructive materials testing, and together they 
developed the idea of using this method in medicine. In December 
1953, the method was used to generate an ‘echo-encephalogram  ’  , 
and Edler and Hertz published their ideas in 1954. 118  

 The Doppler effect was first described by the Austrian mathe-
matician and physicist, Johann Christian Doppler (1803 – 1853) in 
1842. Although it was first described in reference to light emitted 
by stars, the Doppler effect is applicable to any kind of wave, 
whether electromagnetic or mechanical, and thus also to ultra-
sound. Shortly thereafter, in 1880, the brothers Jacques and Pierre 
Curie demonstrated the ‘piezoelectric effect  ’  . Piezoelectric crystal 
are capable of generating high frequency pressure waves in a 
predetermined direction, as well as detecting their echo from 
reflected objects (stationary or moving). 

 It wasn ’ t until 1959 that DL Franklin et al. produced a 
piezoelectric flowmeter that could be mounted directly on blood 
vessels, in which short ultrasound pulses were transmitted 
through the vessel lumen between two piezoelectric crystals, and 
the difference in transit time between upstream and downstream 
ultrasound pulses was used for measurement of instantaneous 

coincidence counting detection system, and, after proper filter-
ing, the collected raw data sinograms are reconstructed into a 
cross-sectional image. Because the ‘coincidence event  ’   must have 
occurred along a straight line connecting two detectors, and 
because the probability of absorption of the two gamma-rays is 
independent of the position of the event along that imaginary 
line, PET is an inherently quantitative imaging method allowing 
the measurement of regional concentrations of the radiopharma-
ceutical injected after proper calibration. To achieve quantitative 
detection, several problems have to be overcome, including 
Compton scattering, random coincidences, and tissue absorp-
tion. It is worth noting that, owing to the high energy gamma-
rays emitted by beta-decay, these systems require special detectors 
(e.g. bismuth germanate, BGO). 

 Dynamic data acquisition is performed when the data are to be 
quantified. In this technique, scans are acquired over times as 
short as 30 seconds. The most important technique for analysis of 
dynamic data is input deconvolution. Using this mathematical 
technique, quantitative tissue perfusion can be performed. 

 The major problems with three-dimensional data acquisition 
are the large number of random coincidences counted and the 
data acquisition and reconstruction time. Presently oxygen extrac-
tion fraction (OEF) as determined by PET is being used to define 
patients who may be amenable to extracerebral – intracerebral 
bypass. 114      –  117    

 Figure 1.19  

  Acetazolamide SPECT study of right MCA ischemia. Notice the defect worsens on the  “ Post  ”   scans indicative of a lack of additional 
vascular reserve in the right MCA territory with acetazolamide stimulated vasodilatation.  
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hemorrhage (at the bedside); document and follow focal, athero-
sclerotic intracranial stenoses pre- and post-treatment; detect 
microemboli; and also confirm clinical suspicions of brain death 
( Figure 1.20 ) ( Table 1.4 ). 73,122 – 125  More recently, transcranial and 
intravascular ultrasound probes have been used as an adjunct to 
thrombolytic therapy for acute stroke. 126,127    

  Doppler ultrasound is likewise popular and readily available 
for extracranial disease. And, like transcranial studies, these 
examinations are not only subject to the vagaries of individual 
operators, but the velocity measurements may also be signifi-
cantly affected by hardware and signal processing. Thus these 
studies require diligent attention to technique with a systematic 
quality-assurance progam in order to serve as reliable (reproduc-
ible) indicators of extent of stenosis. This was perhaps best 
demonstrated during the ACAS trial in which all screening ultra-
sound laboratoriess were vetted before patients were recruited; 
substantial variability was found in velocity measurements, based 
on hardware manufacturer. 128    

 Cerebral angiography 
 In the same year that Cushing recorded his seminal observations 
regarding intracranial pressure, Roentgen was awarded the Nobel 
Prize for his discovery of X-rays. Already in use in medicine, 
Haschek and Lindenthal were creating radiographs of blood ves-
sels by performing experiments in cadavers using radio opaque 
solutions. 129  However, it wasn ’ t until the late 1920s that the first 
attempt to create cerebral angiograms in humans were made by 
Egaz Moniz, using crude halide solutions; many of the first 
patients did not survive. 130,131  (Moniz, a neurologist, also received 
a Nobel Prize for his work on frontal leukotomy in 1949.) 

 In the first half of the 20th century, fluoroscopic imaging was 
dreadfully dim. It was not until the introduction of the image 
intensifier and television systems in the 1950s that image quality 
improved to the extent that intravascular maneuvers could be 
performed with any degree of safety. The formulation of more 
physiologic (and safe) iodinated contrast agents, the development 
of rapid film changers, and the introduction of new techniques 

flow velocity. 119  Subsequently, Doppler frequency shift was used 
for the detection of blood velocity patterns transcutaneously, first 
desribed by S Satomura in 1959. 120  

 Today ’ s ultrasound instruments represent serial refinements 
of these early observations, primarily through evolution of 
Doppler spectral analysis (again with the aid of the analog-to-
digital converter and improved computer technology allowing 
real-time Fourier transformation). Although coupled with 
increasingly sophisticated imaging (e.g. color flow, power 
Doppler), the primary diagnostic metric continues to be velocity 
measurements (as a reflection of underlying vascular pathology), 
the imaging component primarily being used as a means to 
ensure the accuracy and reproducibility. Indeed, ‘reproducibility  ’   
is the operative word relative to cerebrovascular ultrasound.   

 Doppler ultrasound for 
cerebrovascular disease 
 Advantages of Doppler ultrasound include: 

■   its ready accessibility and the fact that it can be performed at 
the bedside; and  

■   the fact that it can test for flow-limiting stenoses as well as 
emboli.    

 Its disadvantages include the facts that it is: 

■   operator-dependent;  
■   potentially time-consuming;  
■   able to give only poor spatial resolution of distal 

vasculature; and  
■   non-quantitative.    

 Transcranial Doppler was initially described by Aaslid et al. in 
the 1980s utilizing a 2 MHz transducer. 121  Subsequently it has 
gained popularity as means to follow patients (serially and repro-
ducibly) who have suspected vasospasm following subarachnoid 

 Figure 1.20  

  TransCranial Doppler (TCD) of (a) dramatic left MCA vasospasm velocity profiles over time. Notation on the right indicates the depth 
of insonation (66 mm) as well as mean velocity (134 cm/sec). (b) Relatively blunted and  “ bi-phasic  ”   velocity profiles reflective of 
extraordinarily high intracranial pressure and consistent with brain death.  

(a) (b)
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■   dynamic images showing arterial, capillary, and venous 
phases;  

■   three-dimensional stereotactic imaging; and  
■   parenchymal imaging.    

 Its disadvantages include 

■   its invasive nature and associated risks;  
■   the use of ionizing radiation; and  
■   the expense.    

 Digital angiography systems potentially stand at the threshold 
of another round of innovation with the introduction of digital, 
flat-panel detectors and the gradual passing of older image 
intensifier systems. X-ray detectors based on flat-panel arrays 
derived from a hydrogenated amorphous silicone (a-Si:H) have 
become increasingly available in recent years. These detectors are 
available in two basic types: direct X-ray detectors and indirect 
X-ray detectors. 141  In direct X-ray detectors the flat-panel array 
is coupled to a photo-conductor, which detects the X-rays and 
produces an electrical charge that is then stored in the pixel 
storage capacitance until read out. In indirect detectors, the flat– 
panel array is coated with a phosphor material, which converts 
the detected X-rays to visible photons; these are then detected 
using a photoelectric converter in the pixel structure and stored 
in the pixel until read out ( Figure 1.22a,b ). 

  Evaluation of existing flat-panel X-ray detector technology 
shows that all current panels are based on thin film transistor 
(TFT) arrays. The TFT array consists of photo-diodes that collect 
light from a phosphor (selenium, cesium, or gadolinium); the 
photo-diodes cover the TFT array and convert incident x-rays 
to photons. Detector signal processing electronics convert the 
analog photo-diode signal to a true digital signal. TFT technology 
requires all connections between photo-diode to run horizon-
tally, occupying potential active area. The TFT technology in 
medical applications limits active photo-diode area to about 50 % , 
meaning that 50 %  of photons produced miss an active area and 
are discarded or contribute to noise by scattering into the adja-
cent detector areas. 

 Complementary metal oxide silicone (CMOS) is an alternate 
technology for producing flat-panel X-ray detectors. 142  CMOS 
allows much higher density circuits to be fabricated. CMOS is a 
three-dimensional process that allows active fill areas to approach 
100 % . CMOS flat panels have nearly double the efficiency of 
their TFT counterparts. The ability to incorporate the electronics 
on the same substrate as the detector array also allow significant 
reduction in heat. This technology also potentially allows 
more compact plates, greatly increased manufacturing yield by 
reducing physical connections, and improved system reliability 
and reduced service cost. Nevertheless, it remains to be seen 
whether this type of technology can be adapted for medical 
applications, and in particular angiographic systems, in an 
economic fashion. 

 One significant difference in the use of direct digital detectors 
versus image intensifiers in angiography systems is the much 
higher contrast sensitivity of the FD detectors as well as the lack 
of distortion (e.g. pin-cushion artifact) normally associated with 
image intensifiers. 143  ,  144  Three-dimensional rotational acquisitions 
and reconstructions much more closely approximate conven-
tional CT. 144    –  146  This may have significant implications in the 
detection of complications such as vascular perforation and 
hemorrhage ( Figure 1.22c,d ). 147  Additionally, when used with 
image fusion software and stereotactic techniques, such systems 
are likely to broaden the range of therapeutic maneuvers that are 

for vascular access at approximately the same time (1952) led to 
the rise of cerebral angiography as a legitimate diagnostic tool, 132  
and by extension neuroradiology as a subspecialty. 

 Film screen angiography, while having excellent spatial 
resolution, was low in contrast and had the distinct disadvantage 
that each image was serially developed in a chemical film proces-
sor. But, as with the imaging modalities described above, the 
introduction of the analog-to-digital converter and of real-time, 
computerized signal processing led to the digitization of angiog-
raphy and the potential for dynamic, real-time, high-contrast 
subtracted angiograms ( Figure 1.21a,b ). 13,133 – 135  While image quality 
initially did not compete with the film screen, the near real-time 
feedback of any maneuver performed under fluoroscopy imme-
diately transformed the angiography system from a diagnostic 
device to a therapeutic tool. 

  The digitization of cerebral angiography took place in the 
mid- and late 1970s. Simultaneously with these developments, 
physicians began to perform bolder and more ambitious percuta-
neously paced, catheter-directed treatments. In 1974 Serbinenko 
described the use of balloon-tipped catheters and detachable 
balloons for the treatment of cerebral aneurysms. 136  In 1978, 
Andres Gruntzig captivated the imagination of an even broader 
audience with the first reports of coronary balloon angioplasty. 136,137  
The inevitable introduction of real-time digital roadmapping 
for complex catheterizations solidified the role of the angiogra-
phy system as more than a ‘camera  ’  . In the interval since the 
late 1970s the technological evolution in endovascular surgical 
neuroradiology have been primarily catheter- and implantable 
device-related. 

 Nevertheless, transaxial rotation of the C-arm with the image 
intensifier (through an arc of 270 ° ) detecting exposures from the 
X-ray source at three frames per second can produce projections 
that may be reconstructed in a fashion comparable to CT. Unfor-
tunately the contrast resolution of image intensifiers is limited 
such that the vasculature can only be visualized with intra-arterial 
injections. Nevertheless, three-dimensional surface-rendered and 
multi-planar reconstructions of lesions such as aneurysms and 
vascular malformations with this technique can be extraordi-
narily helpful in the planning and execution of endovascular 
treatment ( Figure 1.21c  – e). 138    –  140    

 Digital catheter angiography for 
cerebrovascular disease 
 Advantages of digital catheter angiography are that it can 
provide: 

■   the highest resolution and contrast images of cerebral vas-
cular anatomy (the ‘gold standard  ’  );  

Table 1.4   Interpretation of transcranial Doppler for 
vasospasm  

Mean MCA velocity MCA:ICA ratio  *  Interpretation

< 120 cm per second < 3 Normal

120–200 cm per second 3–6 Mild vasospasm

   >    200 cm per second    >    6 Severe vasospasm

   ∗  The Lindegaard ratio. 
 MCA, middle cerebral artery; ICA, internal cerebral artery. 
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While much of the information is anatomic, increasingly studies 
are performed to provide at least relative flow and physiologic 
insights. CT is widely available and offers the most rapid initial 
assessment. In the subacute time period (   >    6 hours), MRI is 
extremely helpful in assessing the extent of injury as well as 
looking for the presence of more chronic hemorrhagic injuries. 
Ultrasound can be repeatedly transported into the intensive 
care unit for serial studies in critically ill patients. Nuclear 
medicine provides insights into complex conditions of cerebral 
ischemia. Catheter angiography provides increasingly detailed 
delineation of cerebral vascular anatomy in virtual real time, 

possible using minimally invasive techniques. Possible limitations 
relate primarily to uncorrected artifact, which may be magnified 
by beam hardening (bone) and diminished by improved algo-
rithms and additionally acquired projections. 145  ,  148  ,  150            –  156    

 Summary 
 Digital imaging techniques afford critical information for 
the diagnosis and management of cerebrovascular disease. 

 Figure 1.21    ✈

(a) Lateral carotid angiogram, 
arterial phase demonstrating 
anterior cerebral (red arrow), middle 
cerebral (blue arrows) and posterior 
cerebral (green arrows) arteries. 
(b) Lateral carotid angiogram, 
venous phase, demonstrating Vein 
of Trolard (VT), Vein of Labbe (VL), 
Superior Sagittal Sinus (SSS), Torcula 
Herophili (Torc), Transverse Sinus 
(TS) Sigmoid Sinus (Sig S), Cavernous 
Sinus (CS), and SphenoParietal sinus 
(SPS). (c) 3D Surface reconstruction 
of a giant juxta-sellar aneurysm 
clearly demonstrates aneurysm neck 
and dome geometries. 
(d) Planar angiogram with overlap 
obscuring aneurysm detail. 
(e) Post-endovascular treatment 
enabled by 3D data.  

(a) (b)

(c)

(e)

(d)
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 While the full digitization and post-processing of cerebral 
angiography has evolved in remarkable ways to create a new 
repertoire of therapeutic procedures, there are basic elements of 
the suite that have remained constant. Diligent attention to these 
fundamental components is required to insure safe delivery of 
efficacious care.  

 The endovascular suite: room 
design and radiation safety 
 As with many contemporary hospital endeavors, purchasing 
and siting a dedicated cerebral angiography suite is an inherently 
expensive and complex proposition. Typical competitors involved 
in the negotiation for resources and space will include (at a mini-
mum) the departments of radiology, neurosurgery, anesthesia, 
pharmacy, central supply, nursing, and information technology. 
As with an operating room, the pivot points about which 
these accommodations are made are the location of the patient 
table and the anesthesia machine, gas lines, and suction. Unlike 
the operating room there are large, mobile, radiation-producing 
C-arms integral to the configuration, that pose special safety 
issues (particularly in the era of rotational three-dimensional 
angiography and flat-panel CT). 1  Co-ordinated efforts to maximize 
patient access while minimizing the radiation exposure risk to 
personnel and patients have perhaps been best articulated for 
pediatric patients (for whom the stochastic effects of radiation 
are greater) in the form of ‘the ALARA concept’ (As Low As 
Reasonably Achievable) ( Figure 2.1 ). 2  

  Radiation safety  

 Rationale 
 With the advance of endovascular techniques from surgical 
complement to primary treatment 3  and the introduction of 
new devices 4  more patients and healthcare workers are being 
exposed to ever larger doses of radiation. This has led to public 
expression of concern by numerous healthcare regulatory agen-
cies within the USA. 5  –  7  
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 The health hazards inherent in exposure to diagnostic X-rays 
are produced through the transfer of energy to tissue by indirect 
ionization. This process can be further subdivided into:

■    photoelectric effect  
■   Compton effect  
■   coherent scattering.    

 Photoelectric effect (i.e. the discharge of inner shell electrons 
from atoms by X-rays) is useful insofar as it creates angiographic 
image contrast (the effect is proportional to the third power of 
atomic number) through ready visualization of bone or iodinated 
contrast. Alternatively, as this occurs with lower energy X-rays, 
and all of the energy is absorbed by the tissue, it is a substantial 
contributor to patient dose. (This effect can be minimized by 
maximizing the energy of the X-rays through increases in voltage, 
although at the expense of image contrast.) 

 The Compton effect describes an incident X-ray photon that 
loses only a fraction of its incident energy by discharging an outer 
shell target electron, but the X-ray continues, albeit deflected, at 
a lower energy. These ‘scattered’ X-Rays result in most of the 
radiation exposure to healthcare personnel, at energies near those 
of the incident photon. This can reduced by limiting the amount 
of X-rays used (i.e. reducing mA), but at the expense of image 
signal to noise. 

 Coherent scattering contributes a minimal amount to indirect 
ionization. The ionizing effects of radiation (i.e. the creation 
of photoelectrons or recoil electrons) lead to the formation of 
free radicals, which may interact with, and thus damage, tissue 
(notably nucleic acid base pairs). It should be noted that different 
tissues vary in their susceptibility to the ionizing effects of diag-
nostic X-rays.   

 Nomenclature and definitions 
 The effect of tissue damage created by radiation exposure can be 
subdivided into genetic effects (the effects created by DNA injury 
to normal germ cells), and somatic effects (local tissue damage 
and future carcinogenesis). Genetic and carcinogenic effects 
are often referred to as stochastic effects. Although the tissue 
response is clearly dose dependent, the severity of the effect is not 
precisely known at typical levels of exposure seen with diagnostic 
studies, and it is thus best described in the form of a probability. 
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Non-genetic, non-carcinogenic effects can be described by a 
dose–response relationship in which the severity beyond a 
threshold is known, and it is thus termed ‘deterministic.’ Certain 
medical conditions may predispose to deterministic effects, 
these including diabetes mellitus, mixed connective tissue dis-
orders, and hereditary telangiectasia. 8  

 The word ‘kerma’ is an acronymn for ‘kinetic energy released 
in material’, ‘kinetic energy released in matter’, or sometimes 
‘kinetic energy released per unit mass’. Kerma is the sum of 
the initial kinetic energies of all the charged particles liberated by 
uncharged ionizing radiation in a sample of matter, divided by 
the mass of the sample. The unit for kerma is Joule per kilogram, 
and the name given it is the gray (Gy), where 1 Gy = 1 J/kg. 
The amount of ionizing radiation that exists at a position in 
space (e.g. the output of a fluoroscope) is defined as ‘air kerma’ 
and designated as Gy 

a
 . Given that radiation can be distributed 

over a variable region, the concentration of energy imparted to 
a cross-sectional area of air (air kerma multiplied by the area of 
the X-ray beam) is referred to as the dose–area product (DAP). 
Contemporary X-ray equipment (manufactured on or after June 
10, 2006) must display the operator’s air kerma rate and cumula-
tive air kerma (equivalent to the estimated cumulative skin 
dose.) 

 The concentration of energy actually deposited in tissue, and 
thus of potential health consequence, is the ‘absorbed dose’. 
Absorbed tissue dose is likewise measured in gray but is desig-
nated Gy 

t
 . For the purposes of specifying the risk of skin injury, 

cataract, and so on (i.e. dose to the patient), absorbed dose is the 
term most often used. This is often referred in with a temporal 
reference (e.g. Gy/hour). The absorbed dose rate in the skin from 
direct beam fluoroscopy is 0.02–0.05 Gy/minute, but may range 
from 0.01 to more than 0.5 Gy/minute depending on the fluoro-
scopic mode and the size of the patient. Typical concerns 
for patients undergoing neuroendovascular procedures include 
the dose to the skin as well as dose to the lens of the eye and 
thyroid ( Table 2.1 .) It is also worth noting that specific procedures 
(e.g. staged embolization of an arteriovenous malformation) are 
associated with greater exposure. 4  ,  9  Presently, for the purposes of 
quality assurance, we document the dose in each plane for every 
procedure, and we follow up clinically with special attention 
where cumulative skin exposures dose exceeds 1Gy.   

 ‘Equivalent dose’ is the tissue dose that accounts for the dif-
ferent ionizing properties of other forms of radiation, and 
the unit of measure is the Sievert (Sv). When used in the 
context of gamma-radiation used for fluoroscopy and diagnostic 

angio graphy, the absorbed dose in Gy is the same quantitative 
value as the equivalent dose (i.e 1 Sv = 1 Gy). 

 ‘Effective dose’ is the quantitative value designed to account 
for the fact human exposure is typically non-uniform. The effec-
tive dose is that dose that would have to be given to the entire 
unprotected body to produce the same health effect as a non-
uniform dose delivered to a specific tissue. This too is measured 
in Sievert or milliSievert. As noted previously, different tissues 
(e.g. bone marrow, neurons, gonads) have varying sensitivities 
to ionizing radiation. Based on recommendations of the Inter-
national Commission on Radiological Protection (ICRP), different 
tissues are assigned weighting factors based on their inherent 
sensitivity to ionizing radiation. 10  These weighting factors can be 
used to calculate equivalent whole body exposure. For regulatory 
and protection purposes of healthcare personnel, exposure limits 
are given in terms of effective dose. 11  This exposure is serially 
monitored with film badges worn at the point of highest exposure 
between the waist and neck. Typical annual threshold occupa-
tional doses for healthcare workers are listed in  Table 2.2 .    

 Maneuvers to minimize risk to 
patients  
■   Monitor dose to patient. Include in quality-assurance 

program.  
■   Keep the kVp as high as possible (and mA as low as possible) 

to achieve the appropriate compromise between image 
quality and low patient dose. As kVp increases, image 

Table 2.2 Annual threshold for healthcare workers

Exposure area Exposure limit (mSv)

Deep (whole body)  50

Lens of eye 150

Shallow (skin) 500

Extremities 500

Table 2.1 Radiation-induced skin injuries

Effect Dose (Gy) Time to Onset

Early transient erythema  2 Hours

Temporary epilation  3 3 weeks

Main erythema  6 10 days

Permanent epilation  7 3 weeks

Dry desquamation 10 4 weeks

Invasive fibrosis 10 Varies

Dermal atrophy 11 > 14 weeks

Telangiectasis 12 > 52 weeks

Moist desquamation 15 4 weeks

Late erythema 15 6–10 weeks

Dermal necrosis 18 > 10 weeks

Secondary ulceration 20 > 6 weeks

Adapted from Wagner LK, Eifel PJ, Geise RA. Potential biological effects 
following high X-ray dose interventional procedures. J Vas Intervent Radiol 
1994; 5: 71–84.

Figure 2.1
As Low As Reasonably Achievable (ALARA) steps to reduce radia-
tion exposure. Reprinted with permission from Radiology.
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contrast decreases. Patient dose decreases if mA is reduced, 
and dose to personnel in the room usually decreases.  

■   Keep the X-ray source as far away from the patient to 
minimize dose to the skin  

■   Keep the image intensifier as close to the patient as possible.  
■   Do not overuse geometric or electronic magnification. 

Magnification almost always results in increased dose rate 
to the patient’s skin. The least magnification consistent with 
the goals of the procedure should be used in conjunction 
with collimation to manage radiation properly.  

■   Always collimate down to the area of interest. Applying 
tight collimation improves image quality by reducing scatter, 
lessens the radiation burden to the patient by reducing the 
volume of tissue exposed, and reduces dose to personnel in 
the room by reducing scatter.  

■   Minimize fluoroscopy time.  
■   Minimize the number of digital subtraction runs and three-

dimensional rotational angiograms.     

 Maneuvers to minimize risk to 
personnel  
■   Monitor dose to staff.  
■   Wear protective equipment and use shielding. Lead screens, 

walls or curtains can be particularly helpful not only for the 
primary operator, but also for ancillary personnel such as 
the anesthesiologists ( Figure 2.2 ).  

■   Distance: staff should position themselves (relative to the 
X-ray source) for minimum dose. The ‘inverse square law’ 
applies such that exposure is reduced by a factor of four for 
every doubling of distance from the source.  

■   Keep fluoroscopy time to a minimum.  
■   Pulsed fluoroscopy: use the least number of pulses neces-

sary to perform the procedure – usually 15 pulses/second or 
less.  

■   Minimize the number of digital subtraction runs and expo-
sures. The X-ray flux produced by full-image exposure is 
substantially higher than conventional fluoroscopy or road-
map fluoroscopy. This is the single largest determinant of 
X-ray dose for endovascular neurosurgical procedures. 9  For 
complex vascular anatomy, the ability of three-dimensional 
rotational studies to preclude a multitude of conventional 
planar exposures (as well as the inherently lower dose 
technique) may afford a substantial dose savings. 1  ,  12       

 The angiography system 
 As noted previously, the features included in contemporary cere-
bral angiography systems are ever expanding. Key components 
and potential features that may play a role in safety, as well as in 
the ability to complete treatments successfully, include the patient 
task, the C-arms, and the host computer. 

 Features of the patient table to consider are: 

■   weight limit  
■   tilt (+/ −  degree Trendelenberg)  
■   break  
■   adaptable radiolucent head-holder.    

 Features of the C-Arms to consider are: 

■   X-Ray source  
■   focal spot size  
■   heat limit  
■   pulsed fluoroscopy  
■   X-ray detector (analog II versus digital flat panel, size (area 

covered), magnification steps, and spatial resolution and 
matrix)  

■   mechanization  
■   arc of rotation  
■   speed of rotation.    

Figure 2.2
Angiography suite with C-arms in 
place and patient under general 
anesthesia. Curved arrows identify 
lead wall, lead skirt (below table), 
and lead shield (suspended above 
table) for radiation protection of 
operator and anesthesiologist. 
Arrowheads depict distributed 
physiologic monitors. Thick arrow 
points to lighted anesthesia 
machine. Long arrows identify 
operator controls and table pedestal. 
Asterisk denotes the power injector 
mount on the table in close proxi-
mity to the vascular access site.
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 Catheters 
 Vascular access, while occasionally creative, is most frequently 
performed utilizing the Seldinger technique via one of the 
common femoral arteries. 18  Per Amundsen of Norway, working 
in San Francisco, is often credited with refining and popularizing 
this technique in the USA, and with good reason. It has the 
advantage of physically removing the operator from the X-ray 
beam, allowing for aggressive hemostasis (particularly in cases 
requiring continuous anticoagulation), and it is more easily 
tolerated in awake patients. 19  The use of micro-puncture access 
kits for these maneuvers has greatly minimized the risk of 
vascular trauma and associated complications. Once obtained, 
vascular access can be secured with a hemostatic sheath utilizing 
a one-way valve with side port for pressurized anticoagulant 
flush solution. 

 In most adult patients the distance from the lower torso to the 
neck will necessitate diagnostic catheters (4–5 F diameter) or 
guiding catheters for therapeutic devices (5–9 F) of 90–100 cm 
in length. These devices are made from a variety of polymers 
(e.g. polyurethane, PVC, polyamides, fluoropolymers) with addi-
tional enhancements to increase strength and maneuverability 
(braided reinforcement), increase radio-opacity, resist clotting, 
reduce friction, and withstand high-volume injection under 
considerable pressure. 

 To access the intracranial circulation a coaxial system that 
routes longer and more flexible micro-catheters (2–3 F) of 
150–170 cm in length through the (guide catheter) conduit from 
the arch is utilized. The development of variable-stiffness micro-
catheters represents an infrequently acknowledged, but major, 
milestone in the advancement of endovascular surgical neurora-
diology. 20  Use of these devises in a coaxial configuration requires 
meticulous attention to potential sources of emboli and the use of 
pressurized anticoagulant solutions (4000 IU of heparin per liter), 
with a rota ting hemostatic valve (a Tuohy–Borst adapter) to 
prevent retrograde accumulation of thrombus within the guide 
( Figure 2.3 ). The micro-catheters are similarly engineered for a 
specific purpose (aneurysm or AVM embolization) and are gen-
erally limited to hand injection of small volumes under low 
pressure. 

   The success of diagnostic and therapeutic cerebral vascular 
procedures is in large part predicated upon navigation of the 
aortic arch. In children and young adults the brachiocephalic 
vessels are relatively straight and aligned with the descending 
aorta. Under posterior–anterior fluoroscopic guidance the origins 
of the vessels are engaged by a subtle distal curve of the catheter, 
and a guiding wire (typically 0.035 in in diameter) is advanced 
cephalad, and the catheter is then advanced by pushing or strip-
ping the catheter over the wire. These wires are composed of a 
variety of metal alloys with polymeric coatings, which may limit 
thrombus formation and reduce friction. 21  These are essentially 
visual maneuvers, not tactile. As the wire ascends the neck, location 
(vertebral versus carotid) may often be confirmed by noting the 
position relative to the lateral mass of sixth cervical vertebra and 
above in the oblique or lateral projections (the vertebral arteries 
reside within the transverse foramina at this level whereas carotid 
arteries lie within the soft tissue). 

 With age, the aorta may dilate and elongate, the net effect of 
which may be that the brachiocephalic origins are no longer 
aligned with the descending aorta, but are positioned more 
anterior in the mediastinum. As a consequence, cephalad catheter 
advancement becomes progressively more difficult as the force 
of stripping or pushing the catheter is no longer directed up, 

 Features of the host computer to consider are: 

■   disk space  
■   user interface (tableside or control console)  
■   image recall and display (for angiography and non-

angiographic studies)  
■   three-dimensionality  
■   reconstruction time  
■   display and interface.      

 Ancillary equipment 
 As the angiography suite has come to assume a greater therapeu-
tic role in cerebral vascular disease, additional accommodations 
have become necessary to fulfill this role successfully. Already 
alluded to is the need for anesthesia gas lines, suction, and the 
floor space for anesthesia machines, warming and cooling devices, 
etc. Distributed physiologic monitoring for pulse, blood pressure, 
heart rhythm, oxygen saturation, and intracranial pressure are 
available not only to the anesthesiologist but also to the operator 
and in the control room (see  Figure 2.2 ). For specific cases 
there may be a need for surgical instruments, electrocautery 
(e.g. for cut-down vascular access) or for specialized cardiovas-
cular devices (e.g. transvenous pacemaker for high-risk carotid 
stenting) to be available in the room during the procedure.   

 There will also need to be some accommodation for a wider 
spectrum of pharmacologic agents and means for their safe and 
secure storage (see Chapter 3). Likewise, one may need point-of-
service testing to facilitate patient monitoring and therapeutic 
titration of these agents. This type of testing may include spot 
serum creatinine, blood sugar, activated clotting time, and even 
platelet function studies. Use of such testing requires implemen-
tation of a documented quality-assurance program to ensure 
accuracy and precision over time.   

 Diagnostic angiography devices 
and maneuvers 
 The ability to perform and interpret a cerebral angiogram safely 
and successfully is a function of many variables, not the least of 
which are:

■    a full understanding of the diagnostic goals of the study 
(including review of previous imaging studies)  

■   unique patient risk factors (allergies; previous surgery; 
vascular risk factors (such as smoking, diabetes, and hyper-
tension); and medications (such as warfarin and metformin)  

■   the experience and training of the operator.    

 The last-named variable above is perhaps the most impor-
tant, yet the most difficult to quantify. 13  Although endovascular 
surgical neuroradiology is now a subspecialty with ACGME-and-
RRC-vetted training guidelines, few training programs are for-
mally approved. Even in the context of formal instruction, 
objective assessment of one’s own skill set, judicious planning, 
conservative management, and willingness to consult colleagues 
and to participate in continuous quality improvement are charac-
teristics not easily quantified by mere case log numbers. 14    –  17   
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   In extremely difficult cases, and certainly in all cases of intrac-
ranial access, one can make use of available digital technology to 
facilitate catheterization. 22  Contrast injections made in the vascular 
territory of interest can be recorded and superimposed over real-
time fluoroscopy to provide a ‘roadmap.’ The superimposition is 
obviously most accurate if the patient remains motionless, a 
precondition best met by patients who are either remarkably co-
operative or anesthetized. Even under these conditions, physio-
logic cardiac and respiratory motion degrade the map, a scenario 
obviously more problematic near the aortic arch. 

but across the elongated aorta. This may be overcome initially 
by more robust (i.e. stiffer) guidewires placed more cephalad to 
anchor the system during advancement. Ultimately, this too 
may fail and one may need to resort to the use of catheters, with 
extreme distal curvature. The best examples of these are the 
Simmons catheters which are shaped like a shepherd’s crook. The 
catheter shape is initially re-formed in the aorta. Subsequently, 
the distal catheter (i.e. the side-arm) is advanced by pulling the 
catheter back, or out, at the groin, causing the tip to ascend the 
brachiocephalic vessels ( Figure 2.4 ). 

Figure 2.3
Coaxial system with heparinized 
saline flush driven out the catheter 
by a color coded (in this case, blue) 
pneumatic pressure bag (long thin 
arrows). The blue line control is 
connected to a three-way stopcock, 
which allows close regulation of the 
drip, aspiration or flush of the guide 
catheter, and contrast injections 
(pictured here with a red contrast 
syringe). The stopcock is in turn 
connected to the rotating hemo-
static valve (RHV), which in this case 
has two valves. Through one of the 
valves is placed a micro-catheter, 
likewise connected to a separate 
RHV with a three-way stopcock, 
pressurized flush, and contrast 
(partially obscured).

Figure 2.4
As the arch ages, progressively more 
angulation is required at the catheter 
tip to engage and advance the 
devices into the brachiocephalic 
vessels.  Catheters from left to right: 
a) Hinck Headhunter (H1) catheter, 
b)  Bentson-Hanafee-Wilson (JB1) 
catheter, c) Bentson-Hanafee-Wilson 
(JB3) catheter, d) Vitek catheter,  
and e) Simmons II (Sim2) catheter.

(a) (b) (c) (d) (e)
Aging
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ionic material was used and was often unpleasant and more 
often associated with bizarre symptoms or unusual reactions. 31  
Occasionally these materials were associated with histamine 
release and thus the reactions were generically termed ‘allergic 
reactions.’ Although much less common with non-ionic agents 
injected intra-arterially at body temperature, 32  –  34  one must be pre-
pared for such a history and have plan for pre-medication as well 
as treatment of an actual untoward response. 32  ,  35  –  37  Beyond the 
rare idiosyncratic reactions to iodinated contrast there is often 
concern over the impact of these materials on renal function, par-
ticularly in patients with pre-existing compromised glomerular 
filtration rate or those on specific medications. 36  ,  38  These concerns 
can be addressed by minimizing dose (typically a maximum dose 
of 150–250 ml or 0.5 ml per kilogram of body weight), by main-
taining hydration, and by alkalinization of the urine. 39  

    Positioning 
 With much of diagnostic neuroradiology now commanded by 
MRI and CT, and with the impressive three-dimensional angio-
graphic displays of those non-invasive modalities, it occasionally 
seems that the creation of high detail cerebral vascular images is a 
lost art. But these modalities are static and have little of the 
dynamic vascular physiology displayed with catheter angiography. 
Similarly, they cannot match the high contrast (12 bit) or spatial 
resolution (2000  ×  2000) of contemporary digital angiography 
systems.  

 Standard angiographic projections and 
acquisition parameters  
 Clearly, the limitations lie with either inexperienced or indifferent 
operators and technologists; however as the ‘captain of the ship’, 
the operator carries ultimate responsibility for optimal images. 
By convention, radiographic projections are named according to 
the direction of the X-ray beam from source to target. Standard 
PA and lateral digital subtraction runs are performed at 2 frames 

 The first attempts at cerebral angiography by Egaz Moniz were 
characterized by morbidity, mortality and little in the way of 
angiographic images. 23  Although the morbidity and mortality 
were very likely a result of the toxicity of the crude halide solu-
tions used as contrast material, these problems serve to emphasize 
the potentially devastating, and utterly irretrievable, consequences 
of anything less than the most meticulous technique. Studies 
using diffusion-weighted MRI suggest that the incidence of silent 
ischemic injury for diagnostic transarterial catheter studies is 
approximately 5–25 % . 13  ,  24        –  29  

 For diagnostic angiography of the aortic arch and brachio-
cephalic vessels, an automated power injector is often employed 
(see  Figure 2.2 ). This has the advantage of operator-selectable 
parameters for injection (pressure, volume, time, and rate of 
rise), with the benefit of standardizing the procedure (and thus 
enhancing reproducibility); injection of larger volumes (20–40 ml 
for adult aortic studies); and allowing the operator to leave 
the room and thus reduce his or her radiation exposure. In the 
context of therapeutic procedures performed through coaxial 
systems utilizing small volume, low (pressure) tolerance micro-
catheters, expediency and a theoretical tactile margin of safety 
often lead operators to inject contrast by hand. (However, rather 
than watching the fluoroscope screen during the injection, it is 
wiser to watch the syringe for previously unidentified bubbles 
or thrombus material moving toward the hub of the catheter: 
the images can always be recalled and reviewed, but an embolus 
cannot.) 

 Other proposed technical nuances to minimize risk include 
the use of heparin or filters (or both). 25  Repetitive and frequent 
double flushing and wiping of the wire to minimize the risk of 
thromboembolism are also useful. Plastic syringes may be color-
coded and labeled for local anesthetic, iodinated contrast, hepa-
rinized flush solution, vasodilators, and so on to avoid confusion 
and possible additional risk of emboli ( Figure 2.5 ). 30  

     Iodinated contrast 
 The use of iodinated contrast has been greatly facilitated by the 
use of non-ionic agents ( Table 2.3 ). Before their use, hyperosmolar 

Figure 2.5
Color-coded syringes are invaluable in minimizing 
mistakes of injection of otherwise identical 
appearing liquids. For our laboratory, contrast is 
red, flush solution is white or clear, lidocaine is 
maroon, and pharmacologic agents 
(e.g. nitroglycerine) may be blue.
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canthus of the eye to the external auditory meatus (the cantho-
meatal line). Caldwell or Waters views can provide cranial–
caudal angulation of lesions at the M1 segments of the middle 
cerebral arteries or those along the basilar trunk ( Figures 2.9 , 
 2.10 ). The Townes view is the optimal means to visualize the 
distal (P2, P3) posterior cerebral pial vessels ( Figure 2.11 ). 
Alternatively submental vertex positioning is often an excellent 
means to visualize complex anatomy at the anterior communi-
cating artery or the M1–M2 junction ( Figure 2.12 ). Often, faith-
ful reproduction and maximum benefit of the submental 
vertex view will require more than simple gantry angulation: 
building up of the shoulders and head extension is frequently 
necessary. 

        Anticipating and documenting 
collateral pathways 
 The dynamic character of catheter angiography provides a 
unique gauge of collateral circulation to the brain. Cerebrovascular 
occlusions are often met with near instantaneous recruitment of 
alternative sources of perfusion. Anticipation of such perfusion 
pathways is a major key to successful diagnostic angiography and 
therapeutic endovascular procedures in both ischemic and hem-
orrhagic cerebral vascular disease. Hence, accurate angiographic 
documentation is crucial. (Normal vascular anatomy is outlined 
in Figure 2.13.) 

per second for most disorders. For high-flow lesions (e.g. direct 
arterial–venous fistulae) the rate may be increased to 6 frames per 
second; above this level there are often trade-offs in image qual-
ity (signal-to-noise, spatial resolution). Injections of contrast 
6–8 ml in the carotid artery 3–5 ml in the vertebral artery with 
240–300 mg/ml of iodine solution typically produces excellent 
opacification of the intracranial vessels. Arterial–venous circulation 
is usually 4.5–6.0 seconds ( ± 1.5 seconds), necessitating exposures 
lasting approximately 7–10 seconds or between 14 and 20 images. 

 PA and lateral views are standard for most ischemic stroke 
studies, which should include the opacified vascular territories 
centered in the image but magnified just enough to include 
the draining dural sinuses ( Figures 2.6 ,  2.7 ). The PA image 
should be positioned such that the superior orbital rim overlies 
the petrous ridge (see  Figure 2.7 ). In the lateral projection, the 
orbital roofs will not overlap (the bony orbit distant 
to the detector will appear magnified) but should be parallel 
(see  Figure 2.6 ). 

 Once the screening dynamic study is claimed, high magnifica-
tion and angulated views may be obtained to demonstrate the 
pathology to greatest advantage. For some lesions, such as aneu-
rysms, these runs may be limited to the arterial phase only in 
order to reduce radiation exposure. Additional views include 
transorbital obliques (the Reese view) to display anterior circula-
tion aneurysms at the circle of Willis ( Figure 2.8 ). The degree of 
right–left obliquity (yaw of the C-arm) is defined from midline 
sagittal. 

     For projections using cranial–caudal angulation, the degree 
of pitch is defined according to the zero line drawn from the 

 Table 2.3    Intravascular iodinated contrast agents  

Class Generic name Trade name Iodine content (mg/ml) Osmolality (mosm/ µ g)

High osmolality – ionic Sodium and/or 
methylglucamine 
iothalamate

Conray (Mallinckrodt) 141  633

282 1415

370 2016

Low osmolality – ionic – 
nonionic monomeric

Sodium meglumine 
ioxaglate

Hexabrix (Mallinckrodt, Guerbet) 320  602

Ioversol Optiray (Mallinckrodt) 160  355

320  680

350  702

Iohexol Omnipaque (Nycomed–Amersham) 240  520

300  672

350  844

Iopamidol Isovue (Bracco) 200  413

300  616

370  796

Iopromide Optivist (Berlex, Schering) 300  605

370  780

Ioxilan Oxilan (Cook) 300  585

Nonionic dimer 350  695

Iodixanol Visipaque (Nycomed–Amersham) 270  290

320  290
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Figure 2.6
Lateral view of the anterior circulation, center just above the 
ear. Correct positioning can be gauged by the degree of overlap 
of the orbital roofs, These structures should be parallel, but the 
side that is away from the detector should be larger and project 
above the closer side. In the preliminary run it is important to 
visualize the carotid siphon and the dural sinus at at least 2 
frames per second to assess filling patterns, vascular anomalies, 
and arterial–venous circulation time. Higher frame rates will be 
necessary to see especially rapid arteriovenous shunting.

Figure 2.7
The AP view is performed with reference to a line drawn from 
the external auditory meatus to the canthus of the eye (the 
anatomic baseline: 0° cranial–caudal angulation). A true AP 
film is performed with zero angulation to this line. If position-
ing with fluoroscopy, one can appreciated the orbital roof 
aligning at the level of the petrous ridge in this position. As 
with the AP view, the field should be collimated for safety; 
however the carotid siphon, all major pial vessels, the cortical 
veins, and the dural sinuses should be visible. This is helpful 
with AVMs and most posterior circulation aneurysms.

0°

Figure 2.9
Waters view is a continuation of the angle begun with the 
Caldwell view, although in this instance the petrous ridge is 
now in alignment with the orbital floor and the inferior orbital 
rim. This typically occurs with an angulations of 37°. This view 
may be useful in cases of middle cerebral artery and basilar 
terminus aneurysms.

37°

Figure 2.8
The Caldwell view is performed by continuing the forward 
rotation of the image intensifier (II) to approximately 20° below 
the canthomeatal line. In this position the petrous ridges 
should appear within each orbit. It is helpful in cases of AVMs 
and basilar summit aneurysms.

20°
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Figure 2.10
The SMV view is the ultimate in forward angulation of the II in 
the supine, AP-facing, obedient patient. This view can be 
facilitated by elevating the patient’s shoulders, if permitted. 
This view is often helpful in anterior cerebral artery and 
middle cerebral artery aneurysms.

30°

Figure 2.11
The Townes view represents the reverse angulation (to the 
canthomeatal line) compared with those previously 
discussed. It is the view best for depicting distal posterior 
cerebral artery lesions.

70°-90°

Figure 2.12
Oblique view through the orbit (the Rhese view) is approximately 
10° off midline and is excellent for ophthalmic, hypophyseal, 
posterior communication, anterior choroidal, posterior 
communicating and carotid terminus lesions.

10°

 Potential collateral cerebral circulation includes:

■    congenital collateral circulation (e.g. persistent trigeminal 
or hypoglossal arteries)  

■   external–internal collateral circulation (e.g. facial-to-
ophthalmic carotid, occipital-to-vertebral)  

■   circle of Willis (via communicating arteries)  
■   pial (watershed) collateral circulation  
■   iatrogenic collateral circulation (e.g. superficial temporal–

middle cerebral bypass.)    

 Congenital deviations of the cerebral circulation are usually 
obvious but occasionally go unrecognized by the inexperienced 
operator. Pial collateral routes are often more subtle and 
require detailed extended filming for adequate documentation. 
(Figures 2.14 and 2.15.)  

 Manual compression of non-injected 
arteries 
 Side-to-side or front-to-back flow from the communicating 
arteries can be either obvious or quite subtle. They are often sub-
tle even in the presence of large communicating arteries by virtue 
of the fact the flow in the circle of Willis is isobaric, and flow 
through the communicating vessel may be visible only in the set-
ting of a unilateral drop in pressure. This can be facilitated by 
manual compression of a carotid artery: injection of the contra-
lateral carotid artery will expose the anterior communicating 
artery, while injection of a dominant vertebral artery will expose 
the ipsilateral posterior communicating artery. This is the Allcock 
maneuver ( Figure 2.16 ). 40  –  42  
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include some form of perfusion imaging (e.g. SPECT, xenon 
CT). 43  –  45  Integral to the accuracy and success of this maneuver is 
the familiarity of the operator with the patient’s baseline neuro-
logical examination. 

 The basic principle is an extension of catheter angiography 
performed with bilateral vascular access. The second femoral 
catheterization can be used to access the vessel contemplated 
for sacrifice with a guide catheter (typically 6 F). Through this 

     Balloon test occlusion 
 In the setting of more definitive delineation of collateral support 
beyond mere anatomy, one can assess the ability of collateral 
pathways to support normal neurologic function (in anticipation 
of possible iatrogenic sacrifice) by temporarily occluding a vessel 
with the patient awake. This procedure has been variously 
described with much nuance and many permutations, which 
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Figure 2.13
Normal vascular anatomy summed arterial (black structures labeled in red) and venous (white structures labeled in blue) phases. 
a, b) AP and lateral right internal carotid injection. C1 = cervical carotid, C2 = petrous carotid, C3 = lacerum carotid, C4 = carotid 
siphon, C5 = clinoid carotid, C6 = opthlamic carotid segment, C7 = communicating carotid segment.  M1, M2, M3 = horizontal 
segment, insular segment, cortical branches of the middle cerebral artery. A1, A2 = horizontal and proximal interhemispheric 
anterior cerebral branches. c, d) Townes and lateral left vertebral injections. B = basilar artery, PCA = posterior cerebral artery 
(P1, P2, P3 segments), PICA = posterior inferior cerebellar artery, SCA = superior cerebellar artery, AICA = anerior inferior cerebellar 
artery. SSS = superior sagiatal sinus, SS = straight sinus, SigS = sigmoid sinus, T = torcula, Tr = vein of Trolard, TS = transverse tinus, 
BVR = basal vein Of Rosenthal, VG = vein of Galen.
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with an arterial line to accurately monitor blood pressure and 
every effort made to lower the patients blood-pressure to two-
thirds of the baseline mean arterial pressure for 15–20 minutes 
of the examination (‘hypotensive challenge’). This may prove 
challenging, requiring impressive titration of nitrates and intra-
venous administration of beta-blockers. 47  

 Despite precautions, which include hypotensive challenge or 
sophisticated imaging, a small percentage of patients may have 
false-negative examinations such that when treatment is executed 
and the cerebral vessel is permanently sacrificed, the patient then 
becomes symptomatic. 45  In the absence of clear imaging evidence 
of completed infarction, this situation represents a post-operative 
dilemma of the worst kind. The scenario is often typified by anx-
ious attempts to decide if the issue is one of hypoperfusion, 
requiring emergency surgical bypass, or if there are ‘stump emboli’ 
sent downstream of the occluded vessel by the collaterals, requir-
ing anti-coagulation of a post-operative patient. When thought-
fully considered, this is perhaps the best rationale for careful and 
conservative interpretation of balloon test occlusion findings.       

conduit a soft silicone balloon catheter can be placed distally 
while the patient is fully anticoagulated (confirmed with in-
suite activated clotting time of 250–300 seconds). Potential 
collateral pathways are catheterized via the alternative access 
site ( Figure 2.17 ). The sterile field is covered with additional 
drapes, and the patient’s upper extremities are freed to be visible 
and interactive above the drapes. The balloon is inflated, the 
diagnostic catheter injected and exposures acquired over the 
area of interest. The diagnostic catheter is withdrawn and neuro-
logical testing is conducted with the balloon inflated. If the 
patient develops symptoms the balloon is deflated, the patient 
will rapidly recover, the catheters are withdrawn, and the 
procedure is discontinued. 

   If the patient remains asymptomatic occlusion typically 
continues for 30 minutes with intermittent neurological testing. 
Often when temporary occlusion is performed in the carotid 
territory, the patients may become intractably hypertensive, and 
this may distort what is essentially a functional test of cerebral 
perfusion. 46  For this reason the examination should be performed 

Figure 2.14
Developmental collateral pathways.  
a, b) AP and lateral carotid 
injections demonstrating a 
persistent trigeminal artery (arrow) 
arising from the proximal carotid 
siphon. c, d) AP and lateral carotid 
injections demonstrating a 
persistent hypoglossal artery 
(long arrow) arising from the 
cervical carotid and coursing to the 
posterior circulation near the 
anterior foramen magnum. 
Note the incidental aneurysm 
(black arrow).
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Figure 2.15
Acquired collateral pathways. a) Vigorous injection of the ascending pharyngeal branch of the external carotid fills ipsilateral vertebral artery (arrow). 
b) Vertebral artery injection with retrograde filling of the ipsilateral occipital and internal maxillary branches of the external carotid (arrow). 
c) Internal carotid occluded at the origin with the siphon filling via the artery of the foramen Rotundum via branches of the internal maxillary artery 
(arrow). d) Proximal internal carotid occlusion with intracranial supply from retrograde flow in the ophthalmic artery (arrow) reconstituted via the 
internal maxillary, superficial temporal and facial branches of the external carotid. e) Selective external carotid injection with flow through the 
inferolateral trunk and other small branches of the carotid siphon (arrows) drawn to fill a large Rolandic pial AVM.
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Figure 2.15 (Continued)
Acquired collateral pathways. f) Left supra-ophthalmic carotid occlusion (arrow) with g) pial supply partially derived from an isolated right middle 
cerebral artery which fills the ipsilateral ACA, then the Acom, then the contralateral ACA and PCA via pial watershed anastamotic channels (arrows). 
h) Mid-Basilar occlusion (black arrow) with compensatory pial watershed collaterals from the inferior vermian to superior vermian branched of the 
PICA to SCA respectively (red arrows).
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(a) (b) 

Figure 2.16
a) Lateral internal carotid injection 
demonstrates a focal defect arising from 
the supraclinoid segment, suspicious for 
possible posterior communicating artery 
aneurysm. b) Diligent angiography of 
the vertebrobasilar system with 
simultaneous manual compression of 
the same carotid (aka Allcock’s 
Maneuver) demonstrates that this defect 
is actually an infundibulum of the 
posterior communicating artery.

(a) (b) 

Figure 2.17
a) Unsubtracted PA right carotid 
angiogram with a silicone balloon 
temporarily occluding the left internal 
carotid artery while the patient is fully 
awake and fully anticoagulated. 
This requires vascular access via both 
femoral arteries. b) Subtracted image 
better demonstrating collateral support 
via the anterior communicating artery.
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 Historically, in both surgery and interventional radiology, 
emphasis has always been placed on devices, instrumentation, 
routes of access, and means of exposure. However, in recent 
years there has been a growing awareness of the importance of 
intraprocedural pharmacology in the success of endovascular 
treatments for cerebrovascular disease. This chapter is an intro-
ductory primer on these critical therapeutic adjuncts.  

 Anticoagulants 
 The vast majority of neurologic complications encountered 
during neuroendovascular procedures are thromboembolic. This 
holds true whether the lesion being treated is a hemorrhagic 
entity (an aneurysm or an arterial – venous malformation) or a 
thrombotic entity (a carotid atherostenosis). Correspondingly, a 
successful approach to the management of coagulation is para-
mount for minimizing complications and maximizing the risk –  
benefit profile of all neuroendovascular interventions. Given the 
broad spectrum of disease processes addressed, multiple different 
regimens of anticoagulation are required. To adequately con-
struct a rational treatment plan for each individual patient and 
scenario, the operator must possess a thorough knowledge of the 
available pharmacological agents.  

 Antithrombotic agents  

 Heparin 
 Unfractionated heparin is a collection of glycosaminoglycans, 
which range widely in molecular size and anticoagulant activity. 
The anticoagulant activity of heparin is derived from a pentasac-
charide component with a high-affinity binding site for anti-
thrombin III (ATIII). However, only one-third of the molecules 
possess this activity. Heparin binds ATIII and thrombin to form 
a ternary complex. The bound ATIII undergoes a conformational 
change that greatly enhances its ability to inactivate thrombin, 
factor Xa and factor IXa. 

 Heparin has a unique pharmacokinetic profile. Heparin is 
removed from the circulation by two mechanisms:

■    surface receptors on endothelial cells and macrophages 
binding and internalizing the heparin; and  

■   first-order renal clearance.    
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 Because the first mechanism can be saturated, the half-life 
of heparin varies with dosage, ranging from 30 minutes with a 
dose of 25 IU per kilogram up to 150 minutes with doses of 
400 IU per kilogram. The heparin doses used in neuroendo-
vascular therapeutics are entirely dependent on the clinical 
setting. 

 Because of the variable effects of the same heparin dose on 
different patients, monitoring the anticoagulant effect is ultimately 
more important than the recommended starting dose. After the 
initial dose is given, the measured effect governs further therapy. 
When administered in lower doses, such as those prescribed 
for deep venous thrombosis or acute coronary syndromes, the 
activated partial thromboplastin time (aPTT) may be used, with 
the typical goal of achieving a ratio of 1.5 times the normal value. 
However, at higher concentrations, such as those used during 
angioplasty and stenting, the aPTT becomes prolonged beyond 
measurable levels. In these cases, an activated clotting time (ACT) 
is used with a target of 250–300 seconds ( Figure 3.1 ). 

      Direct thrombin inhibitors  

 Bivalirudin 

 Despite a growing literature supporting the application of direct 
thrombin inhibitors in percutaneous coronary intervention 
(PCI), the application of these agents in neuroendovascular 
therapeutics remains limited. Currently, only bivalirudin is 
commercially available as an approved alternative to heparin 
for PCI. 

 Bivalirudin has a number of important therapeutic advantages:

■    it acts directly on thrombin and does not require a cofactor 
interaction (e.g. AT-III);  

■   it does not bind plasma proteins and has a predictable dose  –  
response relationship;  

■   it does not bind platelet factor 4 and thereby does not induce 
or perpetuate heparin-induced thrombocytopenia;  

■   it has no potential for activating platelets; and  
■   it binds both bound fibrin as well as fluid-phase thrombin.    

 Bivalirudin has a short half-life (25 minutes) in comparison 
with heparin. PCI studies indicate that it is at least as effective as 
heparin with respect to the prevention of procedural thrombosis 
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and that it has a lower risk of associated peri-procedural 
bleeding complications. 1    –  3  In the REPLACE-2 trial, bivalirudin 
was administered as a 0.75 mg per kilogram bolus followed by 
an at 1.75 mg per kilogram per hour infusion (with the provi-
sional administration of a IIb – IIIa antagonist allowed). 3  This 
regimen was found not to be inferior to heparin administered 
with a IIb – IIIa antagonist. ACTs were monitored and tended to 
be significantly higher in patients given bivalirudin in compa-
rison with those given unfractionated heparin with a IIb/IIIa 
antagonist. 4  

 Like heparin, bivalirudin may be used safely in conjunction 
with the IIb – IIIa inhibitors. In the CACHET trial, provisional 
abciximab therapy was required in 24 %  of the patients treated 
with bivalirudin. 2  These patients experienced a 4.7 %  incidence of 
major bleeding, a rate that was no statistically different from that 
observed in patients receiving heparin with abciximab (6.3 % ).    

 Antiplatelet agents 
 Platelets represent the predominant component of arterial 
thrombi that form in response to stimuli such as endothelial 
injury, turbulent blood flow with associated high wall shear 
stress, and the introduction of an intravascular foreign body. 
Correspondingly, it follows that platelet inhibition represents 
the cornerstone of antithrombotic therapy in cerebrovascular 
intervention.  

 Mechanism of Platelet Aggregation 
 Platelets are anucleate blood cells with a tremendous capacity 
for interaction with their surrounding vascular environment. 
Platelets contain storage granules, which hold multiple chemo-
kines, cytokines and growth factors. In addition, platelets can syn-
thesize bioactive prostaglandins from membrane phospholipids. 

 In the resting state, the intact endothelium releases inhibitory 
factors, such as prostaglandin (PG)-I 

2
  ( =  prostacyclin) and nitric 

oxide, which function to maintain platelets in a nonactivated 
state ( Figure 3.2a ). Following the introduction of a stimulus, a 
cascade of events begins that ultimately results in thrombus 
formation. This cascade consists of platelet adhesion, activation, 
secretion, and finally aggregation (see  Figure 3.2 ). The most 
common and best understood stimulus is endothelial injury. 
However, high wall shear stress and the introduction of an intra-
vascular foreign body both represent additional stimuli that can 
also activate the process of platelet aggregation. 

  When an endothelial injury exposes thrombogenic collagen 
and subendothelial matrix, platelets adhere to the injured surface 
primarily via the interactions between the platelet surface Ib 
receptor with von Willebrand ’ s Factor (vWF) bound to the 
exposed collagen ( Figure 3.2b ). These adherent platelets spread to 
form a monolayer along the surface of the injured endothelium. 
The adherent platelets become activated after adhesion. Endothe-
lial injury also exposes tissue factor (TF) to the blood stream. TF 
is expressed exclusively by cells that are not in contact with the 
blood under normal circumstances (e.g. fibroblasts). Exposed TF 
binds factor VIIa, leading to the activation of the intrinsic and 
extrinsic coagulation pathways that ultimately result in thrombin 
formation. Thrombin, in addition to converting fibrinogen to 
fibrin monomers, also functions as a potent platelet agonist, 
resulting in further platelet activation. The activated platelets 
secrete additional soluble agonists including adenosine diphos-
phate (ADP), calcium and serotonin (5-HT), which are pre-
packaged in storage granules, and the platelets synthesize and 
secrete thromboxane A 

2
  (TXA 

2
 ). These substances all result in the 

further amplification of platelet activation ( Figure 3.2c ). Platelet 
activation by this myriad of agonists results in the stimulation of 
multiple different intracellular signaling pathways. These path-
ways all ultimately converge to induce a conformational change 
in the platelet surface glycoprotein (GP) IIb – IIIa receptor. This 
conformational change converts the IIb – IIIa receptor from a 
quiescent, low-affinity state to an activated, high-affinity binding 
site for fibrinogen and vWF. The stronger platelet agonists 
(i.e. thrombin and collagen) also recruit additional GPIIb – IIIa 
receptors from the intracellular storage pool to the platelet 
surface. 

 The binding of the active platelet IIb – IIIa receptor to fibrino-
gen (and vWF) results in the formation of platelet – platelet and 
platelet – matrix adhesive interactions and the formation of stable, 
larger platelet aggregate at the site of injury ( Figure 3.2d ). While 
there is a significant level of redundancy built into the cascade of 
platelet activation, the binding of the IIb – IIIa receptor to fibrino-
gen (or vWF) represents the final common pathway to platelet 
aggregation and thus the formation of stable thrombus. As this 
stable platelet aggregate forms, insoluble fibrin monomers begins 
precipitating around the aggregated platelets and eventually 
become cross-linked to form a more permanent thrombus.   

 Aspirin 
 The initial activation of platelets results in the activation of 
phospholipase A2 (PLA 

2
 ), leading to the liberation of arachidonic 

acid (AA) from membrane phospholipids. AA is immediately 
converted by cylco-oxygenase (COX)-1 to PGG 

2
  and PGH 

2
  and 

then by thromboxane synthase (TS) to thromboxane A2 (TXA-2). 
TXA-2 is then released from the platelet to participate in a platelet-
 receptor-mediated positive feedback loop, which plays a critical 
role in the further amplification of regional platelet activation. 
TXA 

2
  also functions to recruit additional platelets to the site of 

 Figure 3.1 

  Hemochron Response for point of service testing of activated 
clotting time (ACT). (With premission from International 
Technidyne Corporation (ITC).)  
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thrombus formation and induces local vasoconstriction. Aspirin 
irreversibly inactivates COX-1 through the acetylation of a serine 
residue at position 529, thus blocking the conversion of AA to 
PGG 

2
  and PGH 

2
  and ultimately therefore the production of 

TXA-2. Platelets lack the synthetic machinery to generate new 
COX-1. Therefore this inhibition of TXA-2 synthesis persists for 
the lifetime of the platelet. 5  

 Aspirin also has effects on vascular endothelial cells, in which 
the blockade of COX activity inhibits the synthesis of prostacy-
clin, a prostaglandin that functions to decrease platelet activation. 
These effects are typically seen only at higher aspirin doses, at 
which the activity of both COX-1 and COX-2 are inhibited. This 
phenomenon has been termed the ‘aspirin dilemma  ’   and has led 
to the hypothesis that an optimal aspirin dose could provide max-
imal inhibition of TXA-2 synthesis with minimal disruption of 
the production of PGI 

2
 . In addition, this phenomenon may 

explain the relatively decreased efficacy of aspirin administered in 

higher doses. 6  Unlike platelets, vascular endothelial cells have the 
synthetic machinery to generate new COX enzyme, so the inhibi-
tion of PGI 

2
  synthesis is likely to be fully reversed within the inter-

val between the once per day doses of aspirin administered for 
platelet inhibition. 7  

 The onset of antiplatelet activity following an oral dose of 
aspirin is remarkably fast. Serum levels of thromboxane B2 
(a marker of TXA 

2
  production) are significantly reduced as early 

as 5 minutes after oral administration, with the maximum effect 
occurring within 30 – 60 minutes and remaining stable for 24 hours. 
The rapid rate of onset has been attributed to the acetylation of 
COX-1 in platelets within the pre-systemic portal circulation. 7  ,  8  

 Aspirin has a myriad of effects in addition to its antiplatelet 
activity, functioning as it does as an analgesic, an antipyretic, and 
an anti-inflammatory. These effects all exhibit different dose  – 
 response relationships, with the lowest doses required to achieve 
platelet inhibition. Ex-vivo studies of platelet inhibition have 

 Figure 3.2 

a) Intact endothelium releases inhibitory factors, such as prostacyclin (PGI
2
) and nitric oxide (NO), which function to maintain platelets in a non-

activated state. b) Endothelial injury exposes the thrombogenic collagen and subendothelial matrix; platelets adhere to the injured surface primarily 
via the interactions between the platelet surface Ib receptor (yellow) with von Willebrand’s Factor (vWF, red) bound to the exposed collagen. Injury to 
the endothelium also exposes tissue factor (green triangles). Note Glycoprotein Ib (yellow) and inactivated glycoprotein IIbIIIa (dark blue). c) Activated 
platelets secrete additional soluble agonists which are prepackaged in storage granules (including adenosine diphosphate [ADP], calcium and 
serotonin [5-HT]) and synthesize and secrete thromboxane A

2
 (TXA

2
). These substances all result in the further amplification of platelet activation. 

Fibrinogen (F) activated IIbIIa (light blue). Also, exposed TF (green) binds factor VIIa leading to the activation of the intrinsic and extrinsic coagulation 
pathways that ultimately result in thrombin (T) formation. Thrombin, in addition to converting fibrinogen to fibrin monomers, also functions as a 
potent platelet agonist, resulting in further platelet activation. d) Platelet activation by myriad agonists results in the stimulation of multiple 
different intracellular signaling pathways which induce a conformational change in the platelet surface glycoprotein IIb/IIIa receptor (light blue). 
This conformational change converts the IIb/IIIa receptor from a quiescent low-affinity state to an activated high-affinity binding site for fibrinogen 
(F) and vWF (red). The binding of the active platelet IIb/IIIa receptor (light blue) to fibrinogen (and vWF) results in the formation of platelet-platelet 
and platelet-matrix adhesive interactions and the formation of a stable, larger platelet aggregate at the site of injury. Reprinted with permission.
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cyclase) system, which functions to amplify regional platelet 
activation by stimulating secretion and ultimately modulates 
the conversion of the GP IIb – IIIa receptor to its high-affinity 
state. 

 Ticlopidine usage has declined substantially over the past 
decade, owing to the associated side-effect of bone marrow 
depression, with neutropenia occurring in 2.4 %  of patients, and 
the emergence of clopidogrel as an adequate substitute. 17  In 
CLASSICS (a direct comparison of ticlopidine and clopidogrel 
administered in combination with aspirin), clopidogrel demon-
strated a superior safety profile and comparable efficacy in pre-
venting thrombotic complications after coronary stenting. 18  
Studies of the pharmacokinetics of both agents indicate that 
clopidogrel also demonstrates a prompter onset of maximal 
platelet inhibition in comparison with ticlopidine. 19  Currently, 
the use of ticlopidine is largely restricted to patients who are 
intolerant of clopidogrel. For this reason, the remainder of this 
section focuses on the pharmacology of clopidogrel. 

 Clopidogrel is rapidly absorbed and quickly metabolized, with 
very low plasma concentrations of the drug measured in patients 
on daily therapy. 20  The active metabolites produce an irreversible 
alteration of the ADP binding site, and subsequently the effect 
persists for the duration of the platelet’s lifespan, with 7 days 
required for return of normal platelete function after therapeutic 
levels are have been attained. 

 The time required to establish maximally therapeutic levels of 
platelet inhibition with clopidogrel is dependent on the dosing 
regimen employed. 21  If a standard daily dose of 75 mg is adminis-
tered without a loading dose, only 25 – 30 %  inhibition at 48 hours. 
An average of 5 days (range of 3 – 7 days) is required to achieve 
maximal steady state levels (50 – 60 % ) of platelet inhibition at 
this dose. 22  ,  23  However, if a loading dose (300 – 600 mg) is adminis-
tered, maximal levels of inhibition are achieved within 2 – 6 hours 
and remain relatively stable for up to 48 hours. 22  ,  24  ,  25  In the 
CREDO study, patients who received the 300 mg loading dose of 
clopidogrel 6 hours or more before their procedure had a 38.6 %  
reduction in death, myocardial infarction or urgent target vessel 
revascularization at 1 month, whereas no benefit was observed in 
patients receiving the loading dose before the 6 hour time 
point. 26  

 The efficacy of clopidogrel differs between patients, with a 
significant incidence of resistance described in the literature. 
Unlike aspirin, clopidogrel resistance has been classified as both a 
binary and a graded phenomenon by different investigators. 
Resistance is measured by determining the degree of reduction in 
ADP-induced platelet aggregation. Gurbel et al. 27  observed resis-
tance in 31 %  of patients at 24 hours and 5 days, decreasing to 15 %  
at 30 days, following a 300 mg loading dose of clopidogrel and a 
dose of 75 mg per day dose after that. When resistant patients 
were subcategorized, Muller et al. 28  reported that 5 – 11 %  were 
non-responders and 9 – 26 %  were semi-responders, depending 
on the dose of ADP employed to stimulate platelet aggregation. 
Lau et al. 29  reported rates of clopidogrel resistance in 22 %  of 
patients and 16 %  of volunteers, with an additional 23 %  of patients 
and 12 %  of volunteers categorized as ‘low  ’   responders. 

 As with aspirin, clopidogrel resistance has been demonstrated 
to have significant clinical implications. For example, individual 
variability in response to clopidogrel in the setting of percutane-
ous coronary intervention after myocardial infarction was found 
to predict an increased risk of recurrent cardiovascular events. 30  

 Unlike aspirin, clopidogrel resistance does not appear to 
develop with time. Thus, if a patient is confirmed to be responsive 
to clopidogrel initially, a durable antiplatelet effect can be antici-
pated with long-term administration. 31  This durability may 

demonstrated that similar levels of inhibition can be achieved 
with daily aspirin doses ranging from 30 mg to 325 mg. 7  ,  8  In a 
large meta-analysis, the Anti-Platelet Trialists Collaboration 
found no evidence to support high-dose aspirin therapy. The 
meta-analysis demonstrated that doses of 75 – 150 mg (a 32 %  
decrease), 160 – 325 mg (26 % ) and 500 – 1500 mg (19 % ) produced 
similar reductions in vascular events. 9  In this same meta-analysis, 
doses of less than 75 mg (13 % ) demonstrated a significantly 
smaller beneficial effect. In the ASA and Carotid Endarterectomy 
Trial, lower doses of aspirin (81 mg or 325 mg) resulted in lower 
rates of stroke, death and myocardial infarction than higher 
dosing regimens (625 – 1300 mg) at 3 months. 6  

 Taken together, the available data would suggest that an 
aspirin dose between 81 mg and 325 mg would provide an optimal 
risk profile. If the lower range is to be used (i.e. 81 mg per day), 
the operator should consider the administration of a 160 – 325 mg 
loading dose so that a therapeutic level of antiplatelet activity can 
be achieved immediately. 

 Aspirin resistance is a significant problem that has been recog-
nized recently as tests for the adequacy of platelet blockade have 
become more available (see below). Between 5 and 40 %  of 
patients are resistant to the antiplatelet effects of standard 
doses of aspirin. 10  ,  11  The incidence of aspirin resistance has been 
found to be related to aspirin dose, with 56 %  resistance observed 
at an 81 mg daily dose and 28 %  resistance at a 325 mg dose. 12  
The same authors reported that 65 %  of patients taking enteric-
coated aspirin had normal platelet function tests. In addition, 
aspirin resistance may progressively develop over time with 
long-term therapy. Pulcinelli et al. 13  observed a significant reduc-
tion in platelet sensitivity to aspirin therapy over a 24-month 
period. 

 A growing volume of data suggests that aspirin resistance has 
significant clinical implications. Gum et al. 10  reported a three 
times higher risk of death, myocardial infarction, and cerebrovas-
cular accident over an approximately 2-year period. Chen et al. 11  
found that aspirin-resistant patients had a three times greater risk 
of having creatine kinase-MB elevations following non-emergent 
percutaneous coronary intervention. In patients with a previous 
stroke, those with aspirin resistance were 89 %  more likely to have 
a recurrent cerebrovascular accident within 2 years. 14  After 
peripheral intervention, an increase in arterial re-occlusion has 
been observed in a cohort of aspirin non-responders. 15  

 Although no studies currently exist, similar implications 
should be anticipated for neuroendovascular patients undergoing 
procedures requiring stent deployment or angioplasty. A knowl-
edge of previous aspirin resistance could have a significant impact 
on the treatment plan, particularly in those cases in which other 
reasonable therapeutic options exist (e.g. carotid endarterectomy 
versus carotid stenting, balloon assisted versus stent-assisted 
aneurysm embolization). This is the rationale for pre- and intra-
procedure monitoring of platelet function. 16    

 Thienopyridines (Clopidogrel) 
 Clopidogrel and ticlopidine are the two commercially available 
thiopyridines that have been routinely used as antiplatelet agents. 
Both agents have no activity  in vitro , as because they require 
hepatic transformation to active metabolites, which mediate 
the antiplatelet effect. The active metabolites irreversibly inhibit 
ADP from binding to its platelet surface P2Y12 receptor. This 
blockade prevents the soluble platelet agonist ADP from stimu-
lating activation of the intracellular second-messenger (adenylate 
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    Glycoprotein IIb – IIIa inhibitors 
 The IIb – IIIa inhibitors block platelet aggregation by preventing 
fibrinogen and other adhesion molecules such as vWF from bind-
ing to the IIb – IIIa integrin on platelets. There are two general 
classes of antagonists: the irreversible antagonist, abciximab, and 
the reversible antagonists, eptifibatide and tirofiban. 

 Abciximab is a monoclonal antibody that binds irreversibly to 
the IIb – IIIa receptor at the beta-chain of the integrin. Eptifibatide 
and tirofiban are peptides that mimic the naturally occurring 
arginine – glycine – aspartic acid (RGD) sequence, which is avidly 
bound by the IIb – IIIa receptor. This RGD binding site mediates 
the binding of vWF, vitronectin, fibronectin, and fibrinogen to 
platelets. Eptifibatide and tirofiban compete with these factors for 
binding at the RGD site, functioning as reversible, competitive 

account for the added benefit observed when clopidogrel is added 
to supplement long-term aspirin therapy (see below). 

 The mechanisms of clopidogrel resistance are incompletely 
understood. The leading hypothesis is that individual differences 
in hepatic metabolism result in variable rates of conversion of the 
clopidogrel to its active metabolite. 29  

 As with aspirin, platelet inhibition by the theinopyridines is 
durable for the lifetime of the platelet. Platelet function gradually 
returns to normal, via platelet turnover, over a period of 7 days 
after the last dose of clopidogrel is administered. (Correspond-
ingly, immediate reversal can be achieved only with a platelet 
transfusion.) In an effort to ensure patient compliance and reduce 
delayed thromboembolic effects, patients requiring oral platelet 
inhibition following intervention are encouraged to wear a medi-
cal bracelet ( Figure 3.5 ). 

Aspirin

Collagen

Thrombin

EpinephrineADP

ADP

Clopidogrel
Ticlopidine

Thienopyridines

GP IIb/IIIa

TXA-2

TXA2

Fibrigen

IIB/IIIa Antagonists
Abciximab
Eptifibatide
Tirofiban

Figure 3.4
Accumetrics ‘Verify Now’ point-of-service testing for platelet 
function. This device has seperate cartridges, which test for 
sensitivity to IIb–IIIa inhibitors, aspirin, and clopidigrel. 
(With permission from Accumetrics.)

Figure 3.3
Points of attack of various platelet 
inhibitors: aspirin, thienopyridines, 
and IIb–IIIa inhibitors. Because their 
mechanisms of action are different, 
the effects of each class of drug are 
believed to be additive. ADP, 
adenosine diphosphate, TXA-2, 
thromboxane A2.

 Figure 3.5 

  Medical bracelet reinforcing the importance of dual 
antiplatelet therapy in patients in whom a cerebral stent has 
been placed.  

I TAKE ASPIRIN
AND PLAVIX

FOR BRAIN STENT
BEFORE DISCONTINUING

CALL 216-444-2200



48     Endovascular Techniques in the Management of Cerebrovascular Disease

patients with normal renal function. Bleeding times begin to 
return toward normal shortly (within 15 minutes) after the dis-
continuation of eptifibatide, with return to greater than half of 
the normal platelet aggregation response within 4 hours. Bleeding 
times also return to normal within approximately 4 hours after 
the discontinuation of tirofiban infusion, with platelet aggrega-
tion inhibition declining to levels  >  50 %  at this time point. 

 The PRIDE (Platelet Aggregation and Receptor Occupancy 
with Integrillin) study demonstrated that a 180  µ g per kilogram 
bolus of eptifibatide followed by an infusion at 2.0  µ g per kilogram 
per minute for 12 hours consistently resulted in  >  90 %  platelet 
inhibition within 5 minutes. 36  However, this effect decreased at 
1 hour and did not return to the targeted therapeutic level until 
a steady state was reached at 8 – 24 hours. For this reason, it is 
currently recommended that two boluses (180  µ g per kilogram) 
be administered 10 minutes apart, followed by a continuous infu-
sion at 2.0  µ g per kilogram per minute to achieve a more stable 
therapeutic effect. 36  ,  37  Tirofiban is administered as a 10  µ g per 
kilogram bolus, followed by an infusion at 0.15  µ g per kilogram 
per minute for 12 hours. This regimen results in a mean inhibi-
tion of platelet aggregation (5  µ mol/l ADP) of 96 %  at 5 minutes, 
100 %  at 2 hours, and 95 %  at the end of the infusion. 38     

 Dosage and use of glycoprotein II – IIIa 
inhibitors 
 When IIb – IIIa receptor inhibitors are used in conjunction with 
heparin, the dose of heparin should be decreased (50 – 70 IU/kg) 
slightly, as the existing literature indicates an increased risk of 
bleeding without a significantly increased efficacy. 39  ,  40  

 The therapeutic window for these agents is narrow, as the 
occupation of approximately 80 %  of IIb – IIIa receptors is 
required for clinically effective inhibition of platelet aggregation, 
however, greater than 90 %  inhibition may result in excessive 
bleeding complications. 35  The number of platelet receptors 
available for binding varies with the relative state of platelet 
activation. 41  In addition, the actual platelet counts and conse-
quently the number of receptors vary quite substantially across 
patients. 42  As such, determining a universal dose of IIb – IIIa 
inhibitors is challenging. 

 In a study directly comparing the efficacy of all three IIb – IIIa 
inhibitors in the setting of high-risk PCI, it was determined that 
only 52 %  of patients achieved targeted levels of platelet inhibition 
after administration of the recommended bolus dose of IIb – IIIa 
inhibitor (41 % , 66 % , and 49 %  with tirofiban, eptifibatide and 
abciximab, respectively). The remaining 48 %  of patients required 
a second half-bolus to achieve the target levels. 43  In the GOLD 
study, 16  25 %  of all patients administered the recommended bolus 
doses of IIb – IIIa inhibitors did not achieve adequate platelet 
inhibition and experienced a significantly higher incidence of 
adverse cardiac events. 

 Thus, as with aspirin and the thiopyridines, there is substantial 
variability in the level of platelet function inhibition achieved 
with standard regimens of GP IIb – IIIa antagonist therapy, and 
the level of platelet function inhibition is an independent predic-
tor for the risk of complications during PCI. 

 Abciximab has a protracted duration of action and, as such, 
reversal requires platelet transfusion. The antiplatelet effects of 
the competitive antagonists will abate over a relatively short 
period of time if the infusion is discontinued. While platelet 
transfusions will hasten the return of normal function, they are 
less effective in this setting, as the competitive antagonists have a 

inhibitors of the IIb – IIIa receptor. By eliminating the function 
of the IIb – IIIa receptor, these agents block the final common 
pathway of platelet function and platelet aggregation. At approx-
imately 80 %  IIb – IIIa receptor blockade, platelet aggregation is 
nearly completely abolished, and at levels greater than 90 % , 
platelet function is ablated to the point that bleeding times 
become markedly elevated. 32  

 In addition to its effects at the platelet IIb – IIIa receptor, abcix-
imab also binds to the vitronectin receptor (on vascular smooth 
muscle and endothelial cells) and the integrin MAC1 (on acti-
vated neutrophils and monocytes). The consequences of these 
additional receptor interactions remain to be elucidated; how-
ever, some researchers have hypothesized that these interactions 
may play a role in decreasing the inflammatory reaction that fol-
lows angioplasty and stenting, thus limiting subsequent intimal 
hyperplasia. 

 All three IIb – IIIa inhibitors have the potential to induce 
thrombocytopenia. This occurs at a slightly higher rate with 
abciximab (up to 6.5 % ) than with the competitive antagonists. 33  
Thrombocytopenia induced by IIb – IIIa inhibitors is usually 
quickly reversed by stopping the drug. Typically, a complete 
recovery evolves over several days.  

 Abciximab 
 Abciximab, a monoclonal antibody, is a large molecule with 
very high affinity for platelet IIb – IIIa receptors. Correspondingly, 
the plasma half-life of the free drug is short, approximately 
10 minutes, as the agent binds immediately to circulating 
platelets. The agent not bound to platelet receptors is quickly 
cleared from the circulation. Once bound to platelets, the disso-
ciation time is very long and the molecule remains biologically 
active on the surface of platelets for 12 – 14 hours. These charac-
teristics result in a rapid onset of action and a slow reversal of 
activity after cessation of administration. 34  After the administra-
tion of a bolus and an infusion of abciximab, 28 %  occupation of 
the IIb – IIIa receptors is sustained at 8 days, declining to 13 %  at 
15 days. 

 Abciximab is typically administered as a loading dose of 
0.25 mg per kilogram, followed by an infusion at 0.125  µ g per 
kilogram per minute (maximum 10  µ g per minute) for 12 hours. 35  
If the bolus is given alone, bleeding times and platelet function 
recover to near-normal values by 12 hours, with platelet aggrega-
tion returning to greater than 50 %  of baseline within 24 – 48 hours 
in almost all patients. If the infusion is administered, platelet 
inactivation is maintained throughout the duration of the 
infusion.   

 Eptifibatide and tirofiban 
 Eptifibatide, a synthetic peptide, is a structural analog of bar-
bourin, a snake venom disintegrin polypeptide. Tirofiban is 
non-peptide tyrosin derivative that is also based on the structure 
of a known disintegrin polypeptide. These agents have less 
affinity than abciximab for the IIb – IIIa receptor and their 
binding to the receptor is reversible. 35  Eptifibatide, in particular, 
is a low-affinity agonist for the IIb – IIIa receptor. Both com-
pounds demonstrate a very rapid dissociation (in seconds) from 
the receptor. Correspondingly, after cessation of administration, 
platelet function returns rapidly to normal. Both agents 
are cleared through the kidneys and, as such, the effects of these 
agents may persist for longer in patients with renal failure. The 
plasma half-time of both agents is approximately 1.5 hours in 
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intervention, we generally have stopped the intravenous rt-PA 
infusion while the patient is being prepped for angiography and 
the table is being prepared. 

 rt-PA may also be administered as a continuous infusion in 
cases of venous sinus thrombosis. In these cases, the infusion is 
typically preceded by catheterization of the occluded sinus with 
subsequent mechanical or rheolytic thrombolysis and/or local 
pharmacological thrombolysis (1 – 2 mg aliquots delivered through 
the microcatheter directly into the clotted sinus, up to a total of 
10 mg rt-PA). We then prepare a solution of 1–5 mg rt-PA per 
10 ml of normal saline and run the infusion through a microcath-
eter hooked up to an infusion pump at a rate of 1 – 5 mg per hour 
for 12 – 24 hours, with control angiography performed after at 
least 12 hours of therapy. During the infusion, therapeutic hepa-
rinization is maintained (aiming at an aPTT 1.5 times normal). 52     

 Vasodilators 
 The vasodilators are primarily applied during neuroendovascular 
interventions for medically refractory cerebral vasospasm involv-
ing segments of the cerebrovasculature that are not amenable to 
compliant balloon angioplasty. Occasionally, these agents are also 
required for the treatment of persistent or severe catheter-induced 
vasospasm. 

 Nimodipine, a calcium-channel blocker, is prophylactically 
administered orally to patients after subarachnoid hemorrhage to 
decrease the risk of cerebral vasospasm.  

 Papaverine 
 Papaverine is a benzylisoquinolone derivative of opium. It func-
tions as a vasodilator, probably via the inhibition of phosphodi-
esterase. Since the early 1990s, papaverine infusions have been 
employed as a treatment for cerebral vasospasm after aneurysmal 
subarachnoid hemorrhage, with varying degrees of success. When 
effective, the vasodilatory effects of papaverine are typically 
short-lived, often lasting less than a few hours. 53  ,  54  During the 
intra-arterial infusion, intracranial pressure (ICP) monitoring is 
essential, as the agent may produce significant elevations in ICP. 55  
Recently Smith et al. 56  have documented a direct neurotoxic effect 
of papaverine. 

 For these reasons, we have completely abandoned papaverine 
as an agent for the management of cerebral vasospasm in favor of 
the calcium-channel blocker nicardipine (see below).   

 Calcium-channel blockers 
 There are five major classes of calcium channel blockers:

■    bensothazepines (diltiazem)  
■   dihydropyridines (nicardipine, nifedipine, nimodipine)  
■   phenylalkylamines (verapamil)  
■   diarylaminopropylamine ethers (bepridil)  
■   benzimidazole-substituted tetralines (midefradil).    

 Three of these agents  –  nicardipine, nimodipine and verapamil  –  
are applied frequently in neuroendovascular therapeutics. 

very short dissociation time and maintain higher plasma con-
centrations. Fibrinogen supplementation, in the form of cryopre-
cipitate or fresh frozen plasma, represents a useful means by 
which to achieve reversal of these agents. The increasing concen-
tration of fibrinogen tips the balance of competition at the IIb  – 
 IIIa receptor in the favor of fibrinogen, counteracting the effects 
of the circulating IIb/IIIa inhibitors. 44  

 In a direct comparison, abciximab was superior to tirofiban for 
the prevention of ischemic events after percutaneous coronary 
angiography (PTCA). 45  However, in a comparison of all three 
agents in high risk patients undergoing PTCA, no difference in 
major cardiac events was detected at 30 days. 43      

 Thrombolytics 
 Thrombolytic agents function by converting plasminogen (which 
is inactive) to plasmin. Plasmin functions to cleave fibrin enzy-
matically, fibrin being the primarily constituent of clot. These 
agents fall into two general categories:

■    fibrin-specific agents  –  alteplase (rt-PA), reteplase (r-PA), 
and tenecteplase (TNK); those which preferentially activate 
fibrin-bound plasminogen; and  

■   non-fibrin-specific agents  –  urokinase (UK) and strepto-
kinase (SK); which non-specifically activate plasminogen.    

 The fibrin-specific agents, primarily rt-PA, are preferred in 
neuroendovascular therapeutics. The remainder of this section 
pertains to rt-PA.  

 Alteplase 
 rt-PA has a relatively short half-life, requiring a bolus and 
continuous infusion technique to maintain steady-state plasma 
concentrations. The plasma concentrations decrease in a biphasic 
pattern, which is dominated by a very short alpha-phase half-life 
(3.5 minutes). The beta-phase is somewhat longer, at 72 minutes. 
Despite the rapid clearance of the agent from plasma, rt-PA 
induces a fibrinolytic state, which persists for hours in the region 
of the thrombus. Measurable elevations of fibrin degradation 
products and peripheral markers of plasmin activity remain ele-
vated for more than 7 hours after the initiation of rt-PA therapy. 46  ,  47  
This is attributable to the continued activity of both fibrin-bound 
rt-PA and plasmin long after measurable rt-PA is cleared from 
the systemic circulation. 

 rt-PA dosing is covered in more detail in Chapter 5. While 
there is no officially recommended dosing for intra-arterial 
therapy, doses of up to 40 mg have been used. 48  The tendency is 
to use much lower doses for direct intra-arterial stroke therapy, 
ranging between 2 mg and 15 mg. In most cases rt-PA is adminis-
tered in conjunction with small doses of intra-arterial abciximab 
(2 – 10 mg). The synergistic combination of the two agents is 
supported by the coronary thrombolysis literature 49  as well as by 
observations during intra-arterial stroke thrombolysis. 50  ,  51  If 
intra-arterial pharmacological thrombolysis is anticipated or if 
intravenous thrombolysis has already been initiated, half of the 
typical heparin dose is given (30 – 40 IU/kg) as a bolus after femo-
ral access is achieved. In cases where intravenous lytic therapy 
has been initiated in the interim before neuroendovascular 
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administered up to 27 mg of nicardipine into a single vascular 
distribution during one session. 

 Preliminary experience with nicardipine has been favorable 
with respect to its efficacy in producing angiographic improve-
ment in cerebral vasospasm. 61  However, the durability of the 
observed effects and its impact on patient outcome remain 
unknown.   

 Nitroglycerine 
 Nitroglycerine, a paste preparation, represents an inexpensive, 
readily accessible, and relatively efficacious means by which 
to treat catheter-induced vasospasm. In the setting of spasm, 
2.5 – 5.0 cm of topical nitropaste can be applied to the patient ’ s 
chest. This is often effective in resolving the spasm. However, it is 
critical that the operator remembers to remove the nitropaste at 
the conclusion of the intervention.    

 Neuroprotective agents 
 Despite extensive translational research, currently no pharma-
cological agents have been proven effective for peri-procedural 
neuroprotection. While hypothermia has been demonstrated to 
improve neurological outcome after cardiac arrest 62  and perinatal 
asphyxia, 63  no beneficial effect has been demonstrated during 
aneurysm surgery. 64  Some studies have suggested a beneficial 
effect of barbiturates, 65  but other studies have indicated no 
benefit. 66    –  68  Although the evidence for a beneficial effect of 
barbiturates is conflicting, there is general agreement that the 
application of these agents results in myocardial depression, 
increased need for vasopressors, and prolonged time to tracheal 
extubation. 65  ,  68  Several animal studies have suggested that propo-
fol, which has a superior pharmacologic profile to barbiturates, 
may also have additional, unique neuroprotective properties. 
However, these benefits were not manifest in a human investiga-
tion of neurological outcomes after open cardiac surgery. 69  

 Encouraging pre-clinical data exist for the alpha-2 adreno-
receptor agonist dexmedetomidine; 70  however, it has yet to be 
tested clinically.  

 Statins 
 Statins are among the most commonly prescribed medications, 
ranking second after hydrocodone. Statins are competitive inhib-
itors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase, which catalyzes an early, rate-limiting step in choles-
terol biosynthesis. Decreased cholesterol synthesis in the liver 
results in increased expression of the low-density lipoprotein 
(LDL) receptor gene. The greater number of LDL receptors on 
the surface of hepatocytes results in increased removal of LDL 
from the blood, thereby lowering the LDL-cholesterol levels. 
Although the most pronounced effect of the statins is reduction 
of LDL cholesterol, there is also a reduction in the cholesterol 
content of very low-density lipoprotein particles, while high-
density lipoprotein cholesterol may increase slightly. As a result, 
statins are the most effective and best tolerated agents available 
for treating dyslipidemias. 

 All of the calcium-channel blockers decrease coronary vascular 
resistance and increase coronary blood flow, decrease peripheral 
vascular resistance via vasodilatation of arterioles, and are with-
out significant effect on venous tone at normal doses. The relative 
inotropic and chronotropic effects of the different classes of 
calcium-channel blockers are related to the class of calcium 
channels that they block. Negative inotropic effects dominate in 
those agents that preferentially block  L -type channels. Dihydro-
pyridines (nimodipine and nicardipine) have minimal negative 
inotropic effects and do not directly effect the atrioventricular 
(AV) conduction system or the sinoatrial (SA) node (and there-
fore do not effect conduction or automaticity). In fact, these 
agents may cause a reflex tachycardia in response to their potent 
vasodilating effects. In addition, any weak negative inotropic 
effects that these agents may possess are overcome by the reflex 
sympathetic response that they engender. Overall, they typically 
produce a drop in blood pressure, an increase in heart rate and 
contractility, and an increase in cardiac output. 

 Verapamil, in comparison to the dihydropyridines, has greater 
negative chronotropic and inotropic effects and also slows car-
diac conduction. The effects of the drug are generally more than 
sufficient to overcome the reflex sympathetic response stimulated 
by peripheral vasodilation, resulting in a lower blood pressure 
and lower heart rate. The negative inotropic effects may be 
particularly important in patients with underlying left ventricular 
dysfunction either from ‘cardiac stunning  ’   (frequently seen in the 
setting of aneurysmal subarachnoid hemorrhage) or ischemic 
coronary disease. In addition, verapamil is specifically contrain-
dicated in combination with beta-blockers, or in patients with SA 
node or AV conduction abnormalities because of the possibility 
of AV block or severe ventricular dysfunction. For these reasons, 
we have chosen not to use verapamil for the treatment of cerebral 
vasospasm. 

 In addition to having a favorable cardiac pharmacological 
profile, the dyhydropyridines (whether administered orally or 
intravenously) have been shown to reduce delayed ischemic injury 
after subarachnoid hemorrhage. 57  Intravenous nicardipine has 
been demonstrated to have efficacy as a prophylactic agent for 
the prevention of angiographic and clinical vasospasm. 58    –  60  
Nimodipine (60 mg orally every 4 hours) has been demonstrated 
to improve patient outcome at 3 months. One meta-analysis 
demonstrated a 27 %  relative risk reduction (95 %  CI, 13 – 39 % ) 
with only 13 patients (8 – 30) needing to be treated with oral 
nimodipine to avoid one poor outcome. 57  

 Nicardipine is metabolized primarily by the liver, with a half-
life of approximately 3 – 4 hours. Drug levels can be significantly 
prolonged in patients with challenged liver function. 

 For catheter-induced vasospasm, nicardipine (10 mg in 25 ml) 
may be diluted in sterile water to a concentration of 0.25 – 0.5 mg/ml. 
A dose of 2 – 3 mg can be administered through the guiding catheter 
over 5 minutes. Typically this results in complete resolution of 
catheter-induced spasm, and it the resolution is usually main-
tained throughout the case. 

 For cerebral vasospasm, nicardipine is diluted in normal saline 
to a concentration of 0.1 – 0.2 mg/ml and administered through a 
diagnostic catheter, a guiding catheter or a microcatheter at a rate 
of 3 – 6 mg over 10 minutes using a mechanical power injector. 
After each 10-minute infusion, control angiography is performed. 
Additional infusions are performed (as tolerated by the patient ’ s 
hemodynamic status) until angiographic resolution of vasospasm 
is achieved. In our experience, the primary limiting factor is the 
induction of hypotension. To counter this, we routinely begin a 
phenylephrine drip simultaneously with the nicardipine infusion, 
titrating the drip to maintain the mean arterial pressure. We have 
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of clopidogrel on platelet aggregation. 78  However, the clinical 
importance of this interaction is unclear, and the post-hoc analy-
sis of the CREDO trial demonstrated that there was no difference 
in clinical outcomes. 79  

 Many landmark lipid-lowering trials have shown that treat-
ment with statins is associated with a significant decrease in 
risk of stroke and transient ischemic attack (TIA) in patients with 
symptomatic coronary artery disease or multiple risk factors for 
atherosclerosis. 80  Statins have been shown to be efficacious 
in secondary prevention of stroke as well; in the Heart Protection 
Study, major vascular event rates were reduced from 30 %  to 25 %  
( p   =  0.001) in a cohort of 3280 patients with a history of stroke or 
TIA. 81  The national guidelines produced by the American Stroke 
Association and the American Heart Association recommend 
that a statin should be initiated during hospitalization for first 
ischemic stroke caused by atherosclerosis of small and or large 
vessels. 82  The target cholesterol level is < 100 mg/dL for patients at 
low risk and < 70 mg/dL for patients at high risk. 

 It has been shown that intracellular adhesion molecule 
(ICAM)-1-mediated leukocyte extravasation contributes to the 
pathogenesis of cerebral vasospasm. 83  Experimental evidence 
suggests that statins competitively inhibit leukocyte function 
antigen (LFA)-1 binding to endothelium and also decrease 
ICAM-1 expression, and hence they may play an important 
role in alleviating vasospasm. 73  A phase 2 randomized placebo 
controlled study by Tseng et al. 76  demonstrated that acute treat-
ment with pravastatin after a subarachnoid hemorrhage amelio-
rates cerebral vasospasm, improves cerebral autoregulation, and 
reduces vasospasm-related delayed ischemic deficits. Statins 
may up-regulate endothelial NO synthetase to improve cerebral 
vasomotor reactivity, increase cerebral blood flow, and poten-
tially modulate the development of cerebral proliferative 
vasculopathy. 76  

 Less well defined, but equally compelling, is the protective 
effect that statins appear to convey in ischemic cerebrovascular 
disease, not only in acute stroke syndromes but also during 
elective cerebral revascularization. 71  ,  75  ,  76  ,  84  ,  85       
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 The field of endovascular surgical neuroradiology is predicated 
upon the development of minimally invasive techniques and 
implantable devices. While freely borrowing from the fields of 
cardiology and interventional radiology, the seminal innovation 
of devices and procedures for specific neurological disorders 
has been in many ways the defining milestone of the specialty; 
certainly Serbinenko ’ s detachable balloons, Engleson ’ s variable 
stiffness microcatheter, and the Guglielmi detachable coil system 
rank among them. 1      –  4  Less conspicuous, but no less influential, has 
been the role of the government regulatory agencies charged with 
ensuring the safety and efficacy of such products. 

 In the USA, regulatory oversight is provided by the Food 
and Drug Administration (FDA). The FDA is a dynamic organi-
zation, which continually changes and adapts to the vagaries of 
politics, public opinion, the marketplace, and the technological 
and scientific advances in healthcare. The FDA possesses federal 
authority to regulate medical devices via the secretary of the 
Department of Health and Human Services (DHHS), a cabinet-
level position within the executive branch of government. 5  There 
is also legislative oversight via the Senate and House of Represen-
tatives, as well as judicial checks and balances, via the Department 
of Justice, in the US attorneys. 

 The FDA came into being with the Food and Drug Act of 1906, 
primarily in response to public outcry over contaminated food. 6  
In 1938, the Food and Drug Act was amended, mentioning 
for the first time oversight of medical devices. 5  Nevertheless, 
this legislation focused primarily on pharmaceuticals and thus 
had numerous shortcomings and limitations. A major regula-
tory watershed came with the passage of the Medical Devices 
Amendment of 1976 5  (coincidentally, this was about the time 
that Serbinenko began using balloons to treat cerebrovascular 
disease). This amendment clearly defined oversight for new or 
high-risk medical devices and it attempted to ‘grandfather  ’   those 
known to be safe and efficacious by previous experience. With 
the passage of this amendment, the FDA was charged with 
categorizing all medical devices into a three-tier classification 
and regulatory system on the basis of their risk. It specified two 
types of pre-marketing procedures for ‘approval.  ’   A detailed 
submission, called a pre-market approval (PMA) was implemented 
for new and high-risk devices. A less thorough submission was 
implemented for devices that were substantially equivalent to 
those marketed before the amendment (and deemed safe). This 
submission was called a pre-market notification, or ‘510(K)  ’   in 
reference to the section of the Act specifying this approach. 
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Another milestone came with the Medical Devices Act of 1990, 
which was primarily concerned with user and manufacturer 
medical device reporting and with post-marketing surveillance 
and tracking for safety. 5  

 The FDA ’ s Center for Devices and Radiological Health has 
primary responsibility for regulating medical devices. As noted 
above, the Center divides these into three classes (the higher the 
class, the higher the risk): 7  ,  8  

■   class I  –  those devices that do not support human life, and 
are not important in preventing impairment of human 
health, and do not pose significant risk of illness or injury. 
Examples would include dental filling, daily-wear contact 
lenses, and tongue depressors. These devices are regulated by 
‘general controls  ’  , which are primarily post-marketing and 
meant to ensure safety, purity, and accurate labeling.  

■   class II  –  those devices that require performance standards 
to assure safety and efficacy for the intended use, as well as 
standards for the manufacturing and operation of the device. 
In addition to general controls of class I, these devices are 
also subject to ‘special controls  ’   concerned with performance 
and design standards, post-market surveillance, patient reg-
istries, guidelines, and other actions. Examples would 
include lead wires and cables to medical devices.  

■   class III  –  those devices with potential for serious risk to 
health, safety, and welfare and are intended as an implant, 
used in sustaining or supporting human life, or are of sub-
stantial importance in diagnosing, curing, mitigating, or 
treating disease or preventing impaired health.    

 Commercial interstate marketing and sale of medical devices in 
the USA typically involves successful 510(K) or PMA. However, 
medical devices may also be obtained for use with an investiga-
tional device exemption (IDE), humanitarian device exemption 
(HDE)  –  custom device and emergency device mechanisms prior 
to any approval. 7  These latter mechanisms are highly regulated 
to ensure patient safety with strict oversight by an independent 
Investigational Review Board under guidelines established by the 
FDA and the DHHS. Key to this process is intimate familiarity 
with state and local common law regarding informed consent 
standards (which may vary). 7  ,  9      –  12  If a device is already approved 
for another marketed indication but is used in a non-approved 
fashion, this may be acceptable medical practice (assuming this 
use is not marketed). This is termed ‘off-label  ’   use, and it should 
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be employed when such practice is widely recognized in the 
specialty, and the operator is trained and familiar with the use as 
well as its limitations. Informed consent may also be an issue in 
these cases, although it may be reasonable to assume the ‘prudent 
patient doctrine.  ’   Much more detailed discussions of these com-
plex topics may be found in the bibliography references at the end 
of this chapter. 7    –  9  ,  13        –  17  

 This chapter is not meant to be a compendium of neuroendo-
vascular devices, rather it is meant as a broad overview, with 
special attention focusing on implantable, therapeutic devices. 
The use of guide catheters, sheaths, connectors, torque devices, 
and the like, (while the basic substrate and foundation of cerebral 
endovascular access) is often defined by training, familiarity, and 
subjective impressions of success (not to mention luck), and they 
are thus excluded from this discussion.  

 Liquid embolic agents 
 Liquid embolic agents are primarily used for the embolization of 
arterial – venous shunts [arterial – venous malformations (AVMs) 
and dural arteriovenous fistulae (dAVF)]. On occasion, these 
agents can be employed for tumor embolization as well. 18   

 Cyanoacrylates 
 These liquid adhesive polymer agents offer several important 
advantages:

■    they have the potential for penetration deep into an AVM 
nidus, as well the potential for transarterial-to-venous pouch 
penetration for a dAVF.  

■   they can achieve permanent embolization with durable 
occlusion of the vessel or pedicle being embolized.  

■   they can be delivered through small, flexible, flow-directed 
catheters, which can be safely and atraumatically manipu-
lated into the most distal and tortuous locations within the 
cerebral vasculature.  

■   they can be easily and quickly delivered into the pedicle, 
with infusions generally requiring less than 1 minute (unlike 
particulate embolization, which can require numerous 
prolonged injections from a given catheter position).    

 Several different polymers have been employed. The first agent 
available was iso-butyl-2-cyanoacrylate (IBCA): however, this 
was discontinued after studies demonstrated that it possessed 
some carcinogenic potential in animals. Currently, n-butyl-
cyanoacrylate (nBCA) (Cordis Neurovascular, Miami Lakes, 
Florida) is the cyanoacrylate of choice for AVM embolization. 

 These agents are introduced as liquid monomers that subse-
quently polymerize to form a stable solid when they come into 
contact with a solution that contains anions, such as the hydroxyl 
groups in blood. The rate of polymerization and the rate of injec-
tion determine how far the agent will travel within the cerebral 
vasculature before solidifying. nBCA itself is radiolucent and 
must be mixed with a radio-opaque agent, typically ethiodized oil 
(e.g., lipiodol, ethiodol)  –  we employ a 1.5:1 – 3:1 oil – nBCA mix-
ture for most applications ( Figure 4.1 ). In addition to imparting 
radio-opacity to the nBCA, the oil acts as a retardant, slowing the 
rate of polymerization and acting to allow the nBCA to travel 

further in the vessel before solidifying. Several investigators have 
observed that increasing the volume of ethiodized oil increases 
the time to polymerization. 19  ,  20  Glacial acetic acid may also be 
added in small quantities to the mixture to retard further the rate 
of polymerization. 21  

  nBCA is, for all intents and purposes, a permanent embolic 
agent. Once solidified, the cyanoacrylates (if a sufficient volume 
has been injected) create an immediate occlusion of the embo-
lized pedicle. An intense inflammatory reaction follows, which 
leads to fibrous in-growth, which in turn produces a durable 
occlusion. 22  Although recanalization can occur, it is rare after an 
adequate embolization. 

 Disadvantages of the liquid adhesives include:

■    the high level of expertise required to control safely the 
injection in order to achieve adequate nidal penetration 
without allowing the agent to extend into the vein; and  

■   the risk of nBCA adhering to the catheter, making with-
drawal traumatic or impossible.      

 Ethylene-vinyl alcohol copolymer 
in dimethyl sulfoxide solvent 
 Ethylene-vinyl alcohol (EVOH) is a polymeric agent recently 
approved by the FDA for the preoperative embolization of brain 

 Figure 4.1 
  n-butyl-2-cyanoacrylate (nBCA) supplied with ethiodol used to 
radiographically opacify this liquid embolic agent, as well as 
prolong polymerization time.  
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AVMs (EV3 Neurovascular, Irvine, California). EVOH is an 
insoluble co-polymer, which is dissolved in dimethyl sulfoxide 
(DMSO) to form a viscous suspension (Onyx). After the DMSO 
solvent dissipates from the solution, the EVOH precipitates to 
form a coherent embolus. 

 As a liquid embolic agent, EVOH is in many respects similar to 
nBCA. However, EVOH is non-adhesive, reducing the possibility 
of the catheter adhering to the injected polymer. This allows 
the operator a much greater degree of flexibility with respect 
to the volume and rate of the injection. The operator may 
even temporarily halt an EVOH – DMSO infusion in progress to 
perform control angiography and assess the status of the AVM 
nidus and draining veins before continuing the infusion. In 
addition, the behavior of the agent during the injection is vastly 
superior to that of nBCA. The EVOH precipitates from the out-
side in, forming a ‘skin  ’   around the outside of a centrally liquid 
core ( Figure 4.2a ). This phenomenon allows the continued 
forward flow of the embolic agent after an initially occlusive 
proximal cast is created. The ‘plug-and-push  ’   technique takes 
advantage of this property of EVOH. After reflux is observed, 
the infusion may be temporarily suspended for 30 seconds 
and then resumed. Not infrequently, the agent will then prog-
ress through the fluid center of the pre-existing, proximally 
occlusive embolic cast to penetrate antegrade further into the 
AVM nidus. Using this technique, very large volumes of the 
agent ( > 1 ml) can be routinely infused safely into the AVM 
nidus, yielding much deeper nidal penetration and much more 
complete occlusion of the AVM nidus. 

  Two different preparations of Onyx are commercially avail-
able in the USA, Onyx-18 and Onyx-34, to accommodate diffe-
rences in pedicle flow characteristics. The Onyx-18 preparation 
is less viscous and is recommended for most injections. The 
Onyx-34 is more viscous and is recommended for high-flow 
pedicles and fistulae. A third, yet more viscous, preparation has 
been developed for treatment of aneurysms, but is not yet widely 
available. 23    –  25  

 Initial studies demonstrated that the DMSO component of 
the mixture induced vasospasm and angionecrosis. 26  ,  27  Subse-
quent investigations indicated that these effects could be largely 
eliminated by limiting the volume of DMSO injected and 
limiting the rate at which it was introduced. 28  Jahan et al 29  
did report one complication (proximal reflux) related to distal 
vasospasm that developed during an injection. To avoid prob-
lems with spasm, Onyx is injected at a slow, steady rate of 
approximately 0.15 ml per minute. In addition, the total volume 
of DMSO used to purge the catheter before the injection should 
be limited to the dead space of the microcatheter, a feature 
emphasized through the use of separate, color-coded syringes 
( Figure 4.2b ). At the current time, only the Marathon (0.23 ml 
dead space, EV3), UltraFlowHPC (0.26 ml EV3), Rebar 10 
(0.27 ml, EV3) and Rebar 14 (0.29 ml, EV3) are approved for 
use with Onyx. 

 In the US AVM IDE trial, a multi-center, randomized study 
in pre-surgical AVM patients, Onyx was demonstrated to be 
non-inferior to nBCA in achieving  >  50 %  AVM volume reduc-
tion when all patients entered into the study were considered 
( p   =  0.00002) and it was significantly better if only those patients 
who were evaluable ( p  < 0.04) were considered. It is important 
to note that at the time this study was conducted, the injection 
techniques that are currently employed with EVOH were not 
yet fully refined. Thus, it is possible that the true extent of the 
superiority of EVOH was underestimated in this initial trial. 
Whether the widespread application of Onyx using the current 
infusion techniques results in substantially higher angiographic 

cure rates and improved patient outcomes after surgery remains 
to be seen. 

 The EVOH – DMSO mixture itself is radiolucent. Commercially 
available EVOH – DMSO comes pre-packaged as a suspension 
containing micronized tantalum. The tantalum is maintained in 
suspension by placing the agent on a mechanical shaker, Vortex 
Genie-2 ( Figure 4.2c ), which provides continuous agitation of 
the mixture to avoid sedimentation during the procedure. The 
suspension must be agitated on the shaker for a minimum of 
20 minutes prior to use. Additionally, it is important to note 
that the use of electrocautery on tantalum containing Onyx may 
produce sparks and at least one instance of spontaneous intra-
operative combustion has been reported. 30  

 Although long-term data are lacking, EVOH is, like nBCA, for 
all intents and purposes, a permanent agent. Jahan et al. 29  reported 
no recanalization in a small number of patients imaged up to 20 
months after embolization. Murayama et al. 28  demonstrated no 
recanalization in swine rete at 6 month follow-up.   

 Ethyl alcohol 
 On the basis of their success using ethanol to eradicate peripheral 
vascular malformations, Yakes et al. 31  have advocated the use of 
undiluted absolute ethyl alcohol (ETOH) (98 %  dehydrated alco-
hol injection USP) for the embolization of central nervous system 
AVMs. They reported their initial results in a series of 17 patients. 
They were able to cure seven patients with ETOH alone, three 
additional patients were cured after surgery, and one after radio-
therapy. Despite this impressive cure rate, it is important to note 
that two patients with partially treated lesions died and eight 
patients suffered complications related to the therapy. No other 
similar case series describing the application of ethanol has been 
reported to date. 

 ETOH is a sclerosant, functioning to dehydrate and denude 
the endothelium, creating fractures within the vessel wall that 
extend to the level of the internal elastic lamina. These changes 
result in acute thrombosis of the vessel. 32  

 ETOH causes significant brain edema, necessitating treatment 
with high doses of corticosteroids immediately before and for 
2 weeks after the procedure. In some cases, brain edema and 
increases in intracranial pressure necessitate mannitol therapy. In 
high doses, ETOH has been also found to induce pulmonary 
pre-capillary vasospasm, which can lead to cardiopulmonary 
collapse. This effect has been reported in humans after the embo-
lization of peripheral AVMs with ETOH. It is critical that the 
appropriate anesthesia and critical care resources are alerted to 
this possibility. Given these risks, the high level of experience 
required to perform ETOH embolization safely, and the relatively 
widespread experience and comfort level with the cyanoacrylates, 
there has been a general reluctance amongst most endovascular 
neurointerventionalists to use ETOH for the embolization of 
brain AVMs.    

 Particulate embolic agents 
 Many different particulate embolysates have been employed 
for the embolization of vascular malformations, tumors, and 
miscellaneous sources of uncontrolled head and neck bleeding. 



58     Endovascular Techniques in the Management of Cerebrovascular Disease

These agents initially included such items as silk sutures and 
micro fibrillar collagen material, eventually evolving to more 
refined materials including polyvinyl alcohol (PVA) and 
embolization microspheres. The application of particulate 
embolysates for the pre-operative embolization of vascular 
malformations has gradually declined with the increasing use 
of the liquid embolic agents (see above), which can be delivered 
through lower-profile microcatheter systems and provide a 
more complete and permanent occlusion. Currently, we do not 
employ particulate embolysates for the embolization of AVMs 
or AVF.  

 Polyvinyl alcohol and 
embospheres 
 Embolization with particulate agents is fundamentally different 
from embolization with liquid agents.  

 Durability 
 Vessels embolized with particulate agents recanalize over time 
(i.e. these are temporary embolic materials). Sorimachi et al. 33  

 Figure 4.2 
  (a) Ethylene-vinyl alcohol (EVOH) copolymer radiographically 
opacified with tantalum powder (Onyx) suspended in saline. 
(b) Onyx is dissolved in dimethyl sulfoxide (DMSO) which must 
be injected precisely and slowly to avoid toxicity. This is 
facilitated through the use of color-coded syringes. 
(c) Tantalum remains suspended in the EVOH solution 
through continuous, vigorous agitation prior to injection. 
(Provided by ev3 with permission.)  

(a)

(c)

(b)
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all tumor and head and neck embolizations, we use PVA 
250 – 350  µ m particles.   

 Preparation 
 PVA particles are mixed with high-density non-ionic contrast 
(Ultravist-300, Visipaque-320). The volume of contrast (typically 
30 – 35 ml per bottle of PVA particles) should produce a suspen-
sion that can be injected without producing excessive clogging 
at the microcatheter hub. Periodically between particulate 
injections, the hub should be cleared of particles using a saline 
syringe with an attached needle. Injections of particles should be 
periodically followed with an injection of saline to keep the 
microcatheter clear. Whenever the micro-catheter is being 
injected, whether with particles or with saline, the operator should 
be conscious of watching on fluoroscopy to avoid an unintended, 
unobserved injection of embolysate. 

 Embospheres come pre-loaded in a syringe into which con-
trast is aspirated. The suspension is prepared within the pre-
loaded syringe and injected using a three-way stopcock and an 
additional 1 ml or 3 ml syringe.     

 Detachable balloons 
 The use of catheter-delivered, inflated, detached, and implanted 
embolic balloons is regarded by many as marking the beginning 
of endovascular surgical neuroradiology, and most credit 
Serbinenko as the first user. 2  ,  36  This work was followed by the 
contributions of Debrun and Heishima in North America, where 
the use of such devices became popular: for endovascular occlu-
sion of direct carotid cavernous fistulae; Hunterian occlusion of 
skull base aneurysms following test occlusion; and finally, with 
the adaptation of variable stiffness micro-catheters, balloon 
occlusion of intracranial aneurysms. 37    –  39  This last-mentioned 
application has been supplanted by detachable coil embolization, 
which affords much more control over subarachnoid aneurysm 
treatment; it is consequently also much safer. 

 The devices themselves are characterized by the composition 
of the shell (latex or silicon) in a variety of sizes and shapes; by the 
valve mechanism, whose function is to sustain inflation over time 
and to occlude permanently large cranial vessels (from 3 – 10 mm 
in diameter); by the radio-opaque, compatible material used to 
inflate the balloon; and by the mechanism of detachment. In 
today ’ s practice, the advantage of detachable silicon balloons is 
conferred by their ability to create large vessel occlusions rapidly 
and economically. The disadvantages reside in their limited 
availability and relatively limited control for placement and 
detachment. 

 Debrun ’ s initial balloons were latex, fixed to the catheter by a 
manually tied string of latex thread, which would tighten as a 
result of elastic tension when the balloon was detached, in effect 
serving as a valve. These are no longer widely used. 

 Heishima introduced a simple, elegant silicon balloon with a 
more standardized silicon mitral valve that was open when 
mounted on the catheter ( Figure 4.3 ). Silicon is semi-permeable 
so that contrast used to opacify the embolus needs be mixed to 
an osmolality that closely approximates that of blood, to avoid 
the risk of the device changing its size (and hence, secondarily, 
its position) after it had been implanted. Originally produced 
by a small company (International Therapeutics Corporation, 

reported a 43 %  rate of nidal recanalization after particulate 
embolization with PVA. Mathis et al. 34  reported a 12 %  recanali-
zation rate for AVMs embolized with PVA in preparation for 
radiosurgery when portions of the AVM were not included in the 
radiation field. With the exception of preoperative embolization 
in anticipation of a prompt and complete resection to follow, 
particulate agents are relatively contraindicated given the availa-
bility of more permanent embolysates.   

 Microcatheter selection 
 To perform particulate embolization, a microcatheter with an 
internal diameter (ID) large enough to accept the particulate 
agent without clumping and clogging must be employed [Rapid 
Transit (Cordis Neurovascular, Miami, Florida), Prowler Plus 
(Cordis Neuromuscular), Excelsior 1018 (Boston Scientific, 
Natick, Massachusetts), Renegade (Boston Scientific)]. These 
catheters are of higher profile and are considerably less flexible 
than the smaller diameter flow-directed catheters [Elite 1.5F 
or 1.8F (Boston Scientific), Marathon (EV3, Irvine California)]. 
Correspondingly, an over-the-wire technique must be employed 
to negotiate the micro-catheter into the targeted vessel. These 
technical factors make superselective catheterization of pedicles 
that feed the target more labor-intensive and, in the case of an 
intracranial AVM, more hazardous, with a greater potential for 
vascular perforation. 35    

 Particle size selection 
 Particulate embolysates are available in a variety of size ranges. 
Choice of embolysate type (PVA or Embospheres) and size is 
critical and varies to some extent with the targeted lesion. 

 PVA particles (Cordis Neurovascular) and Embospheres 
(Biosphere Medical, Rockland, Massachusetts) come in a wide 
variety of sizes ranging from 40  µ m to 1200  µ m. Although mech-
anistically similar, the application of the particles are fundamen-
tally different, owing to differences in their respective properties. 
PVA particles are irregularly shaped and tend to clump together 
within the vessel, creating an occlusion. The PVA particles 
also elicit an inflammatory response, eventually inciting a 
foreign-body giant-cell reaction and necrotizing vasculitis. 
Embospheres are spherical, hydrophilic and compressible. For 
these reasons, similarly sized particles of the two agents produce 
markedly different types of occlusions, with the Embospheres 
achieving much more distal penetration and a more complete 
obliteration of the targeted vascular bed. When substituting 
Embospheres for PVA, a substantial increase in particle size 
selection is required to avoid tissue excessive tissue necrosis 
(when this is not the goal of the procedure, e.g. in treating 
epistaxis by embolization), cranial nerve damage, and uninten-
tional embolization through small non-visualized artery-to-artery 
collaterals. 

 It is important to keep in mind that the types of procedures 
requiring particulate embolization are typically non-life-
threatening (e.g. epistaxis embolization, preoperative tumor 
embolization) and the clinical difference between a very distal 
embolization with very small particles and a standard emboliza-
tion is usually minimal. At the same time, as the size of the 
embolization particles decrease, the risk of significant complica-
tions (including blindness, stroke, tissue necrosis, and cranial 
nerve injury) increase substantially. For this reason, for almost 
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helix. The majority of aneurysm embolization coils are of 
either 0.010 inch (0.25 mm) outer diameter (OD) (e.g. GDC-10 
Guglielmi detachable coils (GDC-10)) or 0.015 inch (0.38 mm) 
OD (e.g. GDC-18). Some manufactures have recently intro-
duced coils with intermediate ODs (Orbit, Cordis Neurovascular: 
0.012 inch (0.3 mm) OD). The coils also have a secondary 
helix, which defines the diameter that the coil would take if 
delivered unconstrained, measuring between 2 mm and 20 mm. 
Finally, coils have a defined length, which varies between 1 cm 
and 50 cm.   

 Shapes 
 In general, there are two varieties of coil shapes used for 
aneurysm embolization. Framing coils (three-dimensional or 
complex coils) are designed to emerge from the microcatheter 
in a configuration that results in the formation of a ‘basket  ’   
distributed about the periphery of the aneurysm ( Figure 4.4a ). 
This basket then functions to contain the subsequent filling 
coils (standard, two-diameter or helical aneurysm coils of varing 
diameter, length and softness) within the central portion of the 
aneurysm ( Figure 4.4b ). Recently, several vendors have developed 
systems which are designed to fill the aneurysm via the succes-
sive use of multiple, complex framing-type coils, which are 
introduced in successively smaller sizes to form concentric baskets 
(Orbit, Cordis Neurovascular; GDC-360, Boston Scientific). 

       Detachment mechanism 
 Detachable coils are manipulated via an extended radiolucent 
‘pusher  ’   segment, which extends from the proximal end of the 
radio-opaque platinum embolization coil. Once the coil has 
been introduced into the aneurysm and is in an acceptable 
position, the coil may be permanently detached from the 
pusher wire. Complete extrusion of the embolization coil from 
the micro-catheter is signaled in a variety of ways. All micro-
catheters employed for aneurysm embolization have two mark-
ers, one indicating the distal tip of the micro-catheter and another 
3 cm proximal to the distal tip marker. The pusher wires for 
embolization coils likewise have a radio-opaque proximal marker. 
The orientation of the proximal markers of the coil and micro-
catheter serves to indicate that the coil has completely exited 
the microcatheter and may be detached ( Figure 4.4c,d ). Different 
vendors use different proximal marker configurations to indicate 
adequate coil introduction. The operator must remain cognizant 
of the appropriate configuration for the coil being used to avoid 
over- or under-deployment before attempted detachment. 

 The mechanisms for coil detachment also differ quite substan-
tially between vendors. GDCs are deployed by passing a 9 volt 
current through the coil, which results in electrolysis of the 
distal segment of the radiolucent stainless steel pusher wire 
( Figure 4.4e ). The initial generation of this technology was asso-
ciated with prolonged detachment time, typically ranging 
between 4 and 12 minutes, but sometimes becoming substan-
tially prolonged as the current was dissipated within a large 
coil mass. Further iterations of the detachment system with 
insulation added at the junction between the pusher wire and 
coil resulted in decreased dissipation of current and improved 
rapidity of detachment, which now typically requires less than 

Fremont, California) but later produced by Boston Scientific 
(Natick, Massachusetts), these devices were painted with the 
same broad brush as silicon gel breast implants in the 1990s. 
Negative press, the small market, and the arrival of detachable 
coils designed expressly for aneurysms ultimately led to their 
removal from the marketplace. The lone remaining commercially 
produced detachable balloon is the latex Gold Valve Balloon 
(Nycomed, Paris; Acta Vascular, Santa Clara, California), which 
at present is not FDA-approved for use in the USA. 

  Once the target vessel has been catheterized with an 8F guide 
(or larger) with a double tuoy, the balloon is mounted on a 
micro-catheter and all air is purged. Valve competency should 
be test on the bench top. The catheter-mounted balloon may be 
positioned for deployment by successive inflation and deflation, 
which will cause the device to ‘sail  ’   with the flow of the vessel to 
the target point. A second balloon may be used to provide stabil-
ity (by inflating it immediately proximal to the first balloon) so 
that, during traction on the initial balloon catheter, there is no 
movement during deployment. The second balloon may then be 
similarly deployed; in the event that one of these lesions fails, the 
alternate balloon continues to cede flow and thus precludes 
downstream embolization. 40    

 Detachable coils 
 The introduction of detachable embolization coils has been 
the single largest advance in the field of neuroendovascular 
intervention. These coils greatly facilitate the safe percutaneous 
endovascular treatment of cerebral aneurysms. The available 
shapes, stiffness, and composition of the coils have changed 
dramatically over the past two decades.  

 Sizes 
 The weave of the platinum fibers that ultimately constitute the 
coil and define its outer diameter is referred to as the primary 

 Figure 4.3 

  Detachable silicon balloon, no longer commercially available.  
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Figure 4.4
(a) Boston Scientific detachable framing coil. (b) Framing and packing coils (Left to right). The packing coils have variable degrees of 
‘softness’, which is reflected by their ability to maintain shape when they are extended from the stylet (with permission from Boston 
Scientific). (c) Placement of coils under roadmap guidance within an anterior communicating artery aneurysm via the left internal 
carotid artery. Arrow indicates the coil marker along the stylet. (d) Fully placed framing coil. The arrow indicates the coil stylet 
marker ‘T’d’ at the proximal catheter marker. (e) Power pack and soldered junction used to detach coils. (f) Bare platinum, unex-
panded hydrocoil, expanded hydrocoil. (Courtesy of Terumo.)

(a) (b)

(c) (d)

(e) (f)

PlatinumPlatinum
10 coil10 coil

UnexpandedUnexpanded
HydroHydroCoilCoil-14-14

ExpandedExpanded
HydroHydroCoilCoil-14-14
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 Hydrocoil 
 The Hydrocoil Embolic System (HES Microvention-Terumo, 
Tokyo, Japan) contains an inner platinum core coil that is 
coated with a dehydrated hydrogel. When exposed to blood, the 
hydrogel expands over 20 minutes, substantially increasing the 
volume of the coils ( Figure 4.4f ) and thereby significantly aug-
menting packing density. The long-term durability of these coils, 
as well the full short-term impact upon the biology of subarach-
noid aneurysms, is only beginning to be realized with clinical 
experience. 46        –  50      

 Pushable or injectable coils 
 Pushable or injectable coils are relatively inexpensive and can be 
delivered quickly in large numbers. As such, they are most 
useful in situations in which a large volume of embolic material 
is required to achieve the desired therapeutic effect. However, 
because these coils are not detachable, they can only be 
safely applied in those situations in which precise control of coil 
positioning is not absolutely required.  

 Berenstein liquid coils 
 This unique product is made in two ODs  –  0.008 inch (0.2 mm) 
and 0.016 inch (0.4 mm) outer and in various lengths up to 30 cm. 
These coils are pre-loaded in a clear plastic launching tube, 
which is flushed and then used to load the coils into a micro-
catheter. The coils are then injected using a 3 ml saline syringe 
with fluoroscopic observation, usually under blank fluoroscopic 
roadmap control. These small, long coils are excellent for filling 
space and achieving a dense packing over a long segment. 
They are very useful for parent vessel occlusion and fistula 
embolization (i.e. cases in which a large embolic coil mass is 
typically required).   

 Pushable Coils 
 There are numerous available fibered and non-fibered pushable 
coils available in a wide range of sizes (0.010 – 0.035 inches; 
0.25  –   0.9 mm) and shapes (straight, complex or helical, and 
conical). These coils are loaded into the micro-catheter and either 
injected with saline or pushed out of the micro-catheter or 
diagnostic catheter with a coil pusher or wire. These coils can 
be quickly deployed and are very thrombogenic; again, they 
are most useful in achieving parent vessel occlusion and fistula 
embolization.    

 Stents 
 The term    stent      refers to an appliance used to correct a stenosis, 
(which derives from the Greek  “ to narrow.  ”  ) It is believed to have 
arisen from a dentist, Charles Thomas Stent (1807 – 1885), who 
gained notoriety through the introduction of a substance that 

2 minutes. Other systems employ different pusher wire – coil 
detachment schemes; these alternative systems are all substantially 
faster then the initial GDC electrolytic detachment mechanism. 
Hydraulic detachment mechanisms used by Microvention-
Terumo (Aliso Viejo, California) and Cordis Neurovascular are 
nearly instantaneous. ACT MicroCoils (Micrus Corp, Sunnyvale, 
California) use resistive heat-induced fracture of a tensioned 
polyester fiber that connects the platinum coil and pusher wire 
in Mircus coils, a process that takes approximately 5 seconds.   

 Stretch Resistance 
 During the repositioning of coils within an aneurysm, friction 
between the coils and within the microcatheter can result in a loss 
of coil integrity, with stretching or even breaking of the coil. To 
avoid this problem, some coils are designed with an internal 9.0 
polypropylene thread, which confers some additional tensile 
strength and increases the tolerance of the coil to stretching.   

 Composition 
 Detachable embolization coils were initially composed purely of 
platinum. 41  Later, detachable coils with bound Dacron fibers were 
provided to augment thrombogenicity. However, these coils are 
significantly less compliant than bare platinum coils and are used 
primarily for vessel sacrifice and fistula occlusion. 42  

 Studies of aneurysms treated with platinum embolization 
coils have demonstrated recurrence rates ranging between 20 %  
and 35 % , with a significant percentage of those patients requir-
ing re-treatment. 43  ,  44  Correspondingly, histological studies of 
explanted aneurysms after endovascular coil embolization 
have demonstrated that intra-aneurysmal clot organization is 
typically delayed and incomplete, with tiny open spaces left 
between coils  –  even in aneurysms that appear completely 
occluded angiographically. In addition, there is frequently 
incomplete or absent endothelialization of the aneurysm neck. 45  
For these reasons, newer generations of detachable coils were 
developed in an attempt to promote more complete and durable 
aneurysm occlusion.  

 Polyglycolic polylactic coils 
 Polyglycolic polylactic acid (PGPLA) has been used extensively 
as suture material. The co-polymer undergoes hydrolysis over a 
period of several months, resulting in an inflammatory reaction 
that stimulates a more rapid organization of intra-aneurysmal 
thrombus and eventually a durable intra-aneurysmal scar. Three 
different preparations of PGPLA coils are currently available. The 
Matrix Detachable Coil System (MDC, Boston Scientific) is 
composed of a central platinum coil coated with PGPLA. The 
Cerecyte coil (Micrus, Sunnyvale, California) is composed of 
an outer platinum coil with an inner polyglycolic acid (PGA) 
filament. The Nexus coil (Microtherapeutics, Irvine, California) 
is composed of a platinum coil with numerous tiny PGPLA 
filaments, which extend from the inside of the coil outward. The 
durability advantages of these coils have yet to be demonstrated 
in humans.   
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coronary stenting. A newer generation of drug-eluting stents 
has been developed, which, over time, release antiproliferative 
drugs (e.g. paclitaxel) or antineoplastic drugs (e.g, sirolimus, 
tacrolimus, everolimus), drugs which prevent smooth muscle 
cell in-growth and proliferation. These stents have led to a 
dramatic reduction in the rate and severity of ISR. To date, only 
balloon-mounted coronary drug-eluting stents are commercially 
available  –  Taxus Express-2 (Boston Scientific, which releases 
paclitaxel) and Cypher (Cordis, which releases sirolimus).     

 Self-expanding stents  

 Large self-explanding stents 
 Balloon-expandable stents are prone to kinking with normal 
physiologic neck motion, which can result in the stents being 
crushed or permanently deformed with subsequent occlusion 
or in-stent stenosis. For this reason, self-expanding devices 
are used almost exclusively for extracranial carotid stenting. 
A number of different carotid stent systems are available. The 
first FDA-approved stent was the Guidant Acculink system 
( Figure 4.5a ), which may be used with or without a distal 
protection device (Accunet). The Acculink stent comes in dia-
meters between 5 mm and 10 mm, including two tapered sizes 
( Figure 4.5b ), which graduate from 6 mm to 8 mm from 7 mm 
to 10 mm over their length. The stents come in sizes 
from 20 mm to 40 mm. Other available self expanding stent 
systems include the Magic WallStent (Boston Scientific, 3.5 – 6 mm 
in diameter, 11 – 43 mm in length, reconstrainable), WallStent 
(Boston Scientific, 5 – 12 mm diameter, 20 – 90 mm in length, recon-
strainable), Precise (Cordis Neurovascular, 5 – 10 mm, 20 – 40 mm, 
non-reconstrainable). 

    Small self-expanding stents  
 Neuroform 
 The Neuroform (Boston Scientific), a small (2.5 – 4.5 mm) self-
expanding, flexible, micro-catheter-delivered, nitinol stent was 
introduced in 2002 for the treatment of wide-necked cerebral 
aneurysms ( Figure 4.6 ). This very low radial force stent is com-
posed of very thin (60  µ m) struts separating large (2Fch) inter-
stices, through which a microcatheter can be passed. The stent is 
deployed across the neck of a cerebral aneurysm, functioning to 
support aneurysm embolization by preventing the prolapse of 
coils from the aneurysm into the parent vessel. 53  Flexibility of 
these devices is afforded by the open-cell design and variable 
cross-linking ( Figure 4.6b ). Recently available is the Enterprise 
Stent (Cordis Neurovascular), which has a tear-drop-shaped, 
closed-cell design. 

    Wingspan 
 The Wingspan (Boston Scientific) is a small, self-expanding 
stent, which is very similar in design to the Neuroform. As 
opposed to Neuroform, Wingspan has been engineered to have a 
significantly greater radial force, and it is designed for the treat-
ment of intracranial atheromatous disease. Following pre-dilation 
with a companion balloon (Gateway PTA Balloon Catheter, 
Boston Scientific), the lesion is crossed with the Wingspan delivery 

became known as Stent ’ s compound used to form molded dental 
appliances or obturators (Stent ’ s Dressing) in the 1800 ’ s. Ulti-
mately this was commercialized in London and became widely 
used by English speaking oral and plastic surgeons. It 
has been posited that in the generalized training of surgeons, 
principles and applications of one specialty merged into another 
with ultimate use of the term to other applications and new 
technologies. 51  

 In the context of endovascular therapeutics, the term refers 
flexible mesh tubes used primarily to preserve the luminal 
diameter of arteries. Typically these begin as solid metal of a 
given diameter which is precision cut and finished to a desired 
pattern of varying cell size and cross-linking.52 Vascular stents can 
be characterized by size, shape, alloy (e.g. stainless steel, cobalt 
chromium, nitinol), delivery mechanism and the presence or 
absence of coating polymer or mesh covering.  

 Balloon expandable stents  

 Large ( >  4 mm) stents 
 The larger available balloon expandable stents are useful primar-
ily for stenting the proximal extracranial vessels as they arise 
from the aortic arch, usually the subclavian or innominate arteries. 
In these cases, precise stent delivery is absolutely essential. These 
segments of the vessels are within the thorax and are therefore 
protected from significant deformation. As such, a self-expanding 
stent is not required. A variety of balloon-mounted stent systems 
are available, such as the Herculink [Abbott Vascular Devices, 
Santa Clara, CA, 4 – 7 mm diameter, 12 – 18 mm length, 0.014 inch 
(0.36 mm) microwire system], Omnilink [Abbott Vascular 
Devices, 4 – 10 mm diameter, 12 – 58 mm length, 0.035 inch (0.9 mm) 
guidewire system), Express (Boston Scientific, 4 – 7 mm, 15 – 19 mm), 
Racer (Medtronic, 4 – 7 mm, 12 – 18 mm), Palmaz Genesis (Cordis 
Neurovascular, 5 – 12 mm, 12 – 59 mm), and Palmaz Blue Cobalt 
Chromium (Cordis Neurovascular, 4 – 7 mm, 12 – 24 mm).   

 Small (2.25 – 4.0 mm) stents  
 Non-drug-eluting stents 
 The non-drug eluting or ‘bare metal  ’  , stainless steel stents 
were originally introduced as an inflexible ‘slotted tube  ’   design 
(Palmaz, Cordis Neurovascular). Progressive iterations of 
balloon-mounted stents were increasingly flexible and much 
better suited to intracranial delivery and deployment. These 
stents and the balloon catheters upon which they are mounted 
have continued to evolve, increasing the ease with which they 
can be used for neuroendovascular applications. The currently 
available devices include Driver and S660 (Medtronic), Multilink 
Vision, Minivision, Zeta, and Pixel (Abbott); Express-2 and 
Liberte (Boston Scientific). The only balloon-expandable stent 
specifically designed for use in the cerebrovasculature for the 
treatment of atherostenoses was the Neurolink (Guidant), which 
is no longer manufactured.   

 Drug-eluting stents 
 Delayed in-stent re-stenosis (ISR), attributable to intimal hyper-
plasia, has been noted to occur in up to 35 %  of patients after 
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Wallgraft (7 – 14 mm in diameter, 20 – 70 mm in length; Boston 
Scientific, made of polyethyelene teraphthalate), and Viabahn 
( Figure 4.7 ) (5 – 13 mm in billion, 25 – 150 mm in length; WL Gore 
and Associates, made of expanded PTFE). 

  Smith et al. 54  reported in-stent stenosis or occlusion in three 
of four Wallgraft stents implanted for the management of carotid 
pseudoaneurysms. This was attributed to an inflammatory 
response caused by the polyethyelene teraphthalate material. The 
durability and rates of in-stent stenosis for these devices has not 
yet been established, and their application in the cerebrovascula-
ture remains off-label and should probably be reserved for des-
perate situations in which few other options exist (e.g., carotid 
blowout).    

 Emboli protection and retrieval 
devices 
 Although technically not ‘implantables  ’   devices, emboli protec-
tion and retrieval devices are often used in the course of device 

system and the self-expanding stent is delivered, functioning 
to prevent post-angioplasty re-coil and to secure any post-
angioplasty dissection or endothelial injury.     

 Covered stent grafts 
 Metal stents covered with a membrane were introduced in the 
late 1990s for the treatment of coronary atheromatous disease, 
coronary artery aneurysms, and pseudoaneurysms and for the 
management of iatrogenic vessel perforation. The neuroendo-
vascular applications of these devices has been limited to the 
exclusion of extracranial and proximal intracranial aneurysms 
and pseudoaneurysms. 

 The Jostent Graftmaster (9 – 26 mm in length, 3 – 5 mm in diam-
eter; Abbott Vascular Devices, Santa Clara, California) is a 
balloon-mounted system that consists of two coaxially aligned, 
stainless steel stents which encompass a microporous polytetra-
fluoro-ethylene (PTFE) membrane that sits between the two 
stents. Several self-expanding, covered stents are also available, 
including the Symbiot (Boston Scientific, made of PTFE), 

 Figure 4.5 

  (a) Unexpanded and expanded nitinol, Acculink carotid stent. 
(b) Non-tapered and tapered carotid stents. (Courtesy of Abbott 
Vascular.)  

(a)

(b)

 Figure 4.6 

  (a) Neuroform Boston Scientific self-expanding micro-stent 
(Courtesy of Boston Scientific). (b) Neuroform III (above) and 
Neuroform II stents. Notice the difference in strut cross-linking.  

(a)

(b)
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   Distal occlsion 
 An alternative approach to the use of filtration is complete distal 
occlusion utilizing a low-profile balloon on a 0.014 inch (0.36 mm) 
guidewire (GuardWire, Medtronic, Santa Rosa, California). 
Immediately prior to angioplasty and stenting the balloon is 
inflated. Afterward, the area is cleaned by aspiration and 
flushed via an aspiration catheter (Export XT Catheter, Medtronic 
Vascular, Santa Rosa, California) advanced over the wire. 59  
Limited comparisons suggest that this may have success similar 
to that of other embolic protection techniques. 60    

 Proximal occlusion 
 A third approach to limiting distal embolization during cervical 
intervention is the use of a proximal occluding balloon on 
the guide catheter to suspend antegrade flow. The Parodi 
antiembolization catheter (ArteriA, San Francisco, California) is 
a guiding catheter with an occlusion balloon attached at the 
distal end of the catheter. The main lumen has an inner diameter 
of 7F, which allows the passage of balloons and stents. When 
the Parodi catheter is inserted in the common carotid artery, a 
Parodi external balloon is inserted and inflated in the artery. 
Then, the occlusion balloon, attached on the outer surface of 
the Parodi catheter, is inflated, thereby occluding inflow to the 
carotid bifurcation while maintaining access to the carotid 
bifurcation lesion through the main lumen. The side port of 
the Parodi catheter may then connected to a sheath that is percu-
taneously inserted into the femoral vein to create a temporary 
arterial  –  venous shunt. This shunt, along with the Parodi cathe-
ter, will create reversal of flow in the internal carotid artery. One 
might presume that the ease of use and success of the device is 
predicated on a functional circle of Willis; however, the technique 
appears to be quite robust. 61  ,  62  A similar rationale underlies 

implantation in order to prevent or reverse catastrophe. 
Increasingly, such devices are being specifically designed for use 
in acute stroke (e.g. the Merci Retriever) in an effort to mitigate 
the time constraints imposed by thrombolytic therapy alone.  

 Embolic protection 
 In the infancy of endovascular treatment of cerebral atheroscle-
rotic disease, angioplasty and stent implantation were simply 
conducted over a guidewire. Perhaps in recognition of the for-
midable competition of relatively low risk carotid endarterec-
tomy, the procedure evolved with implementation devices to 
limit embolization of atherosclerotic debris. There are essentially 
three strategies to such devices:

■    filtration using modified quidewires  
■   cessation of antegrade flow utilizing a balloon-mounted 

guidewire, followed by vigorous flushing  
■   reversal of antegrade flow with temporary proximal occlu-

sion utilizing a balloon-mounted guide catheter.     

 Filter wires 
 There are a variety of distal embolic protection devices that 
also serve as the guidewire for angioplasty and stent placement 
in the cervical carotid arteries. These include Angioguard 
(Cordis Neurovascular) Filterwire EX (Boston Scientific), Trap 
(Microvena, White Bear Lake, Minnesota), Neuroshield and 
Accunet (Abbott) ( Figure 4.8a ) and the Spider Fx (Ev3, Plymouth, 
Minnesota). The simple concept behind these devices is similar, 
although they do differ in important ways such as the materials, 
they are made of and the mechanism of deployment and 
recapture. It is important to emphasize that while emboli 
protection devices may be useful, they are not fool-proof, 
and emboli do occur despite their routine use. 55  Likewise, 
depending upon the local anatomy (tortuosity of the aortic 
arch and target vessel, the presence of atherosclerotic plaque) 
these devices also have the potential to produce significant 
vascular trauma, and in some circumstances they may be contra-
indicated. 56    –  58  

 Figure 4.7 

  Nitinol stent covered in expanded polytetrafluoroethylene. 
(Viabahn, WL Gore and Associates.)  

 Figure 4.8 

  (a) Accunet embolic protection device/ filter. (Courtesy of Abbott 
Vascular). (b) Alligator retrieval device. (Courtesy of Chestnut 
Medical.)  

(a)

(b)
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since their initial introduction to clinical practice. Optimally, 
each is introduced through a balloon-occluding guide catheter, 
which facilitates retrieval of emboli by reversing flow (or at 
least limiting antegrade flow) in the carotid or vertebral arteries. 
( Figure 4.9a ) The retriever itself began as a simple 0.014 inch 
(0.36 mm) nitinol corkscrew (models X5, X6,  Figure 4.9b ), but 
has since evolved to a more complex configuration with filaments 
meant to ensure a greater yield in securing distal embolic material 
(Model L5) ( Figure 4.9c ). The obvious advantage of these devices 
is the potential for rapid re-canalization relative to pharmacologic 
therapy. 

    AngioJet 
 If the Merci retriever is the ‘hand vacuum  ’   for small distal emboli, 
the AngioJet (Possis Medical, Minneapolis, Minnesota) is the 
‘industrial shop vacuum  ’  . The AngioJet is actually a variety of 

 Figure 4.9 

  (a) Merci balloon guide catheter permits reversal of flow and 
facilitates intracerebral thrombectomy. (Courtesy of Concentric 
Medical.) (b) Original Merci retriever (model X5) used to ensnare 
intracerebral vascular emboli. (c) Merci L5 retriever.  

(a)

(b)

(c)

the use of balloon-mounted guide catheters (Concentric Medical, 
Mountain View, California) for mechanical thrombectomy in the 
setting of acute stroke. 63  ,  64     

 Retrieval devices 
 Although fortunately a rare occur, the vagaries of anatomy, 
pathology, device malfunction or operator error may conspire 
against optimal or safe implantation of a neurovascular device. 
After such incidents one is often reminded of Hippocrates: ‘Life 
is short, the art is long. Opportunity is fleeting, experiment 
dangerous, judgment difficult. Desperate cases need desperate 
remedies.     65  

 The decision to retrieve a foreign body or embolus mechani-
cally, and the selection of the appropriate device, is dictated by 
multiple factors, including the clinical presentation (e.g. hemor-
rhagic or ischemic), the need for adjunctive pharmacologic 
therapy (e.g. thrombolysis or anticoagulation), and the projected 
risk and clinical consequences of failure ( primum non nocere  – first, 
do no harm). 64   

 Devices for foreign body removal  
 Gooseneck snare 
 A simple wire loop [e.g. the Anplatz Goose Neck Snare (Microvena 
Corporation, White Bear Lake, Minnesota)] may be advanced 
through a micro-catheter in an effort to ensnare and retrieve a 
foreign object. 67  This maneuver is best accomplished when the 
object has a free edge projecting to the lumen of the vessel and the 
snare loop approximates the diameter of the lumen. The device 
can be tightened to the target by advancing the delivery catheter 
and thus closing the loop. Occasionally this maneuver can be per-
formed over an existing catheter, delivering the loop directly to 
the target. 68    

 Alligator retrieval device 
 The Alligator retrieval device (Chestnut Medical Technologies, 
Menlo Park, California) operates under a similar strategy as the 
snare; however, rather than lassoing the target object, the device 
has four arched prongs that close or grasp an object when the 
delivery microcatheter is advanced distally ( Figure 4.8b ). This 
device is capable of retrieving small stents and aneurysm coils as 
well as large thrombotic emboli. 69    

 Baskets 
 The Neuronet or In-Time retrieval devices (Boston Scientific and 
Target Therapeutics)  are the natural engineering extension of the 
Microsnare and the Alligator: a miniature wire basket deployed 
through a microcather, which can be engaged and tightened upon 
a foreign body for retrieval. 68  ,  70     

 Mechanical thrombectomy  

 Merci retriever 
 The Merci retriever system of devices (Concentric Medical, 
Mountain View, California) have undergone multiple iterations 
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Minnesota), Vasoseal (Datascope Corp, Montvale, New Jersey), 
Perclose or Starclose (Abbott Vascular, Santa Clara, California), 
and Duett (Vascular Solutions, Minneapolis, Minnesota). 
Although no sufficiently powered study currently exists to dem-
onstrate the superiority of these devices over mechanical com-
pression, they do allow a shorter time to hemostasis and patient 
ambulation, particularly when patients are anticoagulated or on 
antiplatelet medications. The available devices employ a variety 
of different mechanisms, including delivery of sealant [e.g. Bovine 
collagen (Angioseal) or collagen plus thrombin (Duett), suture 
(Perclose), or hemostatic clip placement (Starclose). Some devices 
can also be classified as intravascular (Angioseal, Perclose) or 
extravascular (Duett, Starclose). 

 Angioseal achieves hemostasis by anchoring an exovascular 
bovine collagen plug to the arteriotomy site via an intravascular 
bioabsorbable anchor ( Figure 4.11 ). Both components of the 
sealing device are absorbed in 8 – 12 weeks. This device comes in 

mechanical thrombectomy catheters ( Figure 4.10a ) connected to 
a high-pressure, pulsed saline pump ( Figure 4.10b ) to create a 
low-pressure Venturi effect that fragments and  ‘ sucks ’  thrombus 
into the catheter lumen. The device also aspirates effluent from 
the catheter and pump circuit (see  Figure 4.10b ). 71  ,  72  Originally 
used for coronary revascularization and lower extremity occlusive 
disease, it has also been applied to the cerebral circulation. While 
reports of use in the carotid and vertebral arteries are limited, 73  ,  74  
there are multiple reports of successful revascularization of large 
clot burden in cases of extensive dural sinus thrombosis. 75    –  77  

        Closure devices 
 A number of devices are available for arteriotomy closure, includ-
ing the Angioseal STS Platform (St Jude Medical, St Paul, 
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6 F and 8 F sizes. The Vasoseal system delivers an extraluminal 
purified collagen plug over the arteriotomy site. The Duett 
system delivers an extravascular pro-coagulant mixture of collagen 
and thrombin into the soft tissues around the arteriotomy site. 
The Perclose system delivers a suture at the arteriotomy site, 
providing immediate hemostasis when effective, while the Star-
close system uses a circular, crenated nitinol clip. 
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 According to the Oxford English Dictionary a sudden  inexplicable 
cerebrovascular accident was first likened to a ‘stroke of God’s 
hand’ in 1599. 1  The relationship of cerebral infarction to an act of 
God exists in other cultures: the Greek verb  plesso  means ‘stroke, 
hit, or beat’ and its derivative  plegia  is the root of the term 
 ‘hemiplegia’. 

 Stroke is the third most common cause of death and the lead-
ing cause of adult disability in the USA. It afflicts approximately 
700,000 Americans each year. 2  Classically, stroke is defined as a 
sudden focal, non-convulsive neurological deficit lasting 24 hours 
or more and caused by disruption of the cerebral circulation. It is 
a syndrome with multiple potential etiologies: embolism, throm-
bosis, and hemorrhage. Cerebral infarction, which comprises 
80–85 %  of all strokes, is the result of an irreversible derangement 
in cellular metabolism that rapidly occurs after interruption of 
blood flow to a portion of the brain. 3  

 Up to the 1980s the approach to patients with acute ischemic 
stroke was often nihilistic, and to some extent it remains so. 4  
It is estimated that following acute vascular occlusion, one loses 
1.9 million neurons per minute. 5  However, in the late 1970s 
experimental evidence began to accumulate that this is not an 
immediate or an ‘all-or-none’ phenomenon, and that patients 
may have additional neural dysfunction far in excess of the initial 
region of infarction. 6  This border-zone region – ischemic and 
dysfunctional yet (at least temporarily) potentially viable – became 
known as ‘the ischemic penumbra’. 7  ,  8  It was this knowledge, cou-
pled with the ability of CT to expeditiously exclude hemorrhagic 
 etiologies and cases of completed infarction that prompted early 
clinical trials for acute stroke treatment to preserve this  potentially 
viable tissue.  

 Intravenous thrombolytic 
therapy 
 The 1990s witnessed a renewed devotion to the treatment of acute 
ischemic stroke with several randomized prospective trials con-
ducted to assess the outcome of patients treated with  thrombolytic 
agents. 9  The pivotal study was the National Institutes of Neuro-
logical Disorders and Stroke (NINDS) randomized, prospective 
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trial of recombinant tissue plasminogen activator (rt-PA) for 
acute ischemic stroke. 10  Confirmed using other thrombolytic 
agents, 11  results from this trial demonstrated that with medical 
intervention within 3 hours of ictus:

 ■   the number of patients with favorable outcomes for each of 
the primary measurements was higher in the rt-PA group;  

■   there was a 12 %  absolute (32 %  relative) increase in the num-
ber of patients with minimal or no disability;  

■   there was an 11 %  absolute (55 % relative) increase in the num-
ber of patients with a National Institutes of Health Stroke 
Score (NIHSS) of 0 or 1; and  

■   there was no significant difference in mortality, although 
symptomatic intracerebral hemorrhage was significantly more 
common in the rt-PA group (6.4 %  compared to 0.6 %  in the 
placebo group).    

 There were several key features of this trial, including:

■    the routine use of a numeric score assessing the severity of 
stroke at the time of presentation and at follow-up;  

■   the rapidity at which treatment was given (within 3 hours 
from the onset of symptoms); and  

■   the use of limited, unenhanced computed tomography.    

 Generalizability of the safety risks in general clinical practice has 
been demonstrated. 12  

 Two clinical, reliable, numeric scoring systems were estab-
lished. The NIHSS is a 42-point scale used to quantify the sever-
ity of stroke deficit ( Table 5.1 ). 13  Although the score is skewed 
toward the hemisphere involved in language, 14  the scale has been 
found in multiple stroke treatment trials to be reproducible, and 
it provides a good sense of the gravity of the clinical problem at 
hand:15–17

■    NIHSS 4–10 represents moderate severity of stroke with 
potential for good outcome  

■   NIHSS 11–20 represents severe deficit with greater  likelihood 
of severe disability or death  

■   NIHSS    >   20 represents impending catastrophe.    
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 Table 5.1    National Institutes of Health Stroke 
Scale  ∗   (NIHSS)  

Administer in order shown. Record initial performance (do not go 
back).
 1a. Level of consciousness 

0 Alert; keenly responsive
1  Not alert, but arousable by minor stimulation to obey, answer

or respond
2  Not alert, requires repeated stimulation to attend, or is obtunded 

and requires strong painful stimulation to make movements 
(not stereotyped)

3  Comatose: responds only with reflex motor (posturing) or 
autonomic effects, or totally unresponsive, flaccid and areflexic]

 1b. Level of consciousness questions 

Patient is asked the month and his or her age.

0 Answers both questions correctly (no credit for being close)
1  Answers one question correctly or cannot answer because of: 

ET tube, orotracheal trauma, severe dysarthria, language barrier, 
or other problem not secondary to aphasia

2  Answers neither question correctly, or is: aphasic, stuporous, or 
does not comprehend the questions

 1c. Level of consciousness commands 

Patient is asked to open and close the eyes, and then to grip and 
release the non-paretic hand. Substitute another one-step command 
if both hands cannot be used. Credit is given for an unequivocal 
attempt even if it cannot be completed because of weakness. If there 
is no response to commands, demonstrate (pantomime) the task. 
Record only first attempt.

0 Performs both tasks correctly
1 Performs one task correctly
2 Performs neither task correctly

 2. Best gaze 

Test only horizontal eye movement. Use motion to attract attention 
of aphasic patients.

0 Normal
1  Partial gaze palsy (gaze abnormal in one or both eyes, but forced 

deviation or total gaze paresis are not present) or patient has an 
isolated cranial nerve III, IV or VI paresis

2  Forced deviation or total gaze paresis not overcome by 
oculocephalic (doll’s eyes) maneuvers, do not do caloric testing

 3. Visual 

Visual fields (upper and lower quadrants) are tested by 
confrontation. May be scored as normal if patient looks at side of 
finger movement. Use ocular threat where consciousness or 
comprehension limits testing. The test with double-sided 
simultaneous stimulation:

0 No visual loss
1  Partial hemianopia (clear cut asymmetry), or extinction to 

double-sided simultaneous stimulation
2 Complete hemianopia
3 Bilateral hemianopia (blind, including cortical blindness)

 4. Facial palsy 

Ask patient (or pantomime to patient) to show their teeth, or raise 
eyebrows and close eyes. Use painful stimulus and grade grimace 
response in poorly responsive or non-comprehending patients.

0 Normal symmetrical movement
1  Minor paralysis (flattened nasolabial fold, asymmetry on smiling)
2 Partial paralysis (total or near-total paralysis of lower face)
3  Complete paralysis of one or both sides (absent facial movement 

in upper and lower face)

(Continued)

 Table 5.1   Continued 
 5. Motor arm (5a, left; 5b, right) 

Instruct patient to hold the arms outstretched, palms down (at 90° if 
sitting or 45° if supine). If consciousness or comprehension-
impaired, cue patient by actively lifting arms into position while 
verbally instructing patient to maintain position.

0 No drift (holds arm at 90° or 45° for full 10 seconds)
1  Drift (holds limbs at 90° or 45° position, but drifts before full 10 

seconds but does not hit bed or other support)
2  Some effort against gravity (cannot get to or hold initial position, 

drifts down to bed)
3 No effort against gravity, limb falls
4 No movement
9 Amputation or joint fusion: explain
 6. Motor leg (6a, left; 6b, right) 

Instruct patient (while patient is supine) to maintain the non-paretic 
leg at 30°. If consciousness-or comprehension-impaired, cue patient 
by actively lifting leg into position and verbally instruct patient to 
maintain position. Then repeat in paretic leg.

0 No drift (holds leg at 30° full 5 seconds)
1 Drift (leg falls before 5 seconds, but does not hit bed)
2 Some effort against gravity (leg falls to bed by 5 seconds)
3 No effort against gravity (leg falls to bed immediately)
4 No movement
9 Amputation or joint fusion: explain

 7. Limb ataxia 

(Looking for unilateral cerebral lesion.) Finger–nose–finger and 
heel–knee–shin tests are performed on both sides. Ataxia is scored 
only if clearly out of proportion to weakness. Ataxia is absent in the 
patient who cannot comprehend or is paralyzed.

0 Absent
1 Present in one limb
2 Present in two limbs
9 Amputation or joint fusion: explain

 8. Sensory 

Test with pin. When consciousness- or comprehension-impaired, 
score sensation as normal unless a deficit is clearly recognized (e.g. 
clear-cut asymmetry of grimace or withdrawal). Only hemisensory 
losses attributed to stroke are counted as abnormal.

0 Normal, no sensory loss
1  Mild to moderate sensory loss (pin-prick feels dull or less sharp 

on the affected side, or loss of superficial pain to pin-prick but 
patient aware of being touched)

2  Severe to total (patient unaware of being touched in the face, arm, 
and leg)

 9. Best language 

In addition to judging comprehension of commands in the preceding 
neurologic examination, the patient is asked to describe a standard 
picture, to name common items, and to read and interpret the standard 
text in the box below. The intubated patient should be asked to write.

You know how.
Down to earth.

I got home from work.
Near the table in the dining room.

They heard him speak on the radio last night.

0 Normal, no aphasia
1  Mild to moderate aphasia (some loss of fluency, word-finding 

errors, naming errors, or paraphasias or impairment of 
communication by either comprehension or expression disability)

2  Severe aphasia (great need for inference, questioning and guessing 
by listener; limited range of information can be exchanged)

3  Mute or global aphasia (no usable speech or auditory 
comprehension) or patient in coma (item 1a = 3)

(Continued)
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       Another routine scale emphasized by the NINDS rt-PA study 
was the modified Rankin score, used to gauge clinical outcome 
and disability at 90 days ( Table 5.2 ). 

   The second, but perhaps most important, feature of the NINDS 
trial was the fact that all patients were treated in under 3 hours 
from the onset of symptoms. Other acute stroke trials have con-
firmed the crucial role played by expediency, with clinical benefit 
falling off rapidly by 3 hours. ( Figure 5.1 ). 9  ,  11  Indeed, as in many 
areas of emergency medicine, the ability to distill the delivery of 
care to rote efficiency is crucial. ( Table 5.3 ). 18  ,  19  This has further 
led to the recognition that this level of efficiency is likely to be 
obtained only at well-equipped centers that routinely see stroke 

patients and where personnel are motivated to maintain a certain 
level of preparedness. 20  –  22  Implicit within the last statement is the 
ability of the center to marshal the appropriate personnel and 
communicate clearly and efficiently the clinical situation: 23  –  25  the 
meter is running at 1.9 million neurons per minute. Hence, there 
must be coordinated efforts with emergency medical services, 
immediate availability of physicians and surgeons knowledgeable 
in the diagnosis and management of acute stroke, CT  technologists, 
nurses, and anesthesiologists accessible via emergency pager 
24 hours a day and able to be on site within minutes. 26  

        Finally, in an effort to meet the time commitment of 3 hours, 
the NINDS trial adhered to the most basic form of neuroimaging 
for quickly excluding hemorrhage, neoplasm, and the possibility 
of fully completed infarction. The combination of clinical history, 
NIHSS, and simple CT scan creates a heuristic setting in which 
the diagnosis of ischemic stroke is possible. The interpretation of 
the unenhanced CT scan is crucial not only in excluding hemor-
rhage prior to administration of thrombolytic agents, but also in 
identifying subtle clues to areas of completed infarction. 27    –  30  
Within the parameters of the NINDS trial, predictors of outcome 
included:

■    age 31   
■   presenting NIHSS 15  ,  31   
■   time to treat 9  ,  31   
■   serum glucose level 32  –  34   
■   pre-existing medical regimen (specifically the positive impact 

of statins and the potentially negative effect of aspirin). 35  ,  36       

 Intra-arterial thrombolysis 
 With the experience gained in the NINDS trial, and careful 
analysis of contemporary clinical studies, came an appreciation of 
the full spectrum of ischemic stroke, and also of the limitations of 
the 3-hour time window and of intravenous thrombolytic infu-
sion therapy. 

 In angiography-based pilot trials of intravenous rt-PA, the rate 
of re-canalization of major arterial occlusions was low, with par-
tial or complete re-canalization of only 10 %  of occluded internal 
carotid arteries and 25 %  of occluded proximal middle cerebral 
arteries. 37  ,  38  The majority of cases in these trials had only partial 
re-canalization (TIMI-2), with a minority having complete reper-
fusion (TIMI-3). By comparison, TIMI-3 perfusion flow occurs 
in 50–55 %  of subjects with acute myocardial infarction treated 
with thrombolytic agents and in 75 %  of subjects treated with 
 primary angioplasty and stenting. 39  ,  40  

 The large majority (75–80 % ) of acute stroke subjects with 
NIHSS scores   ≥  10 have occlusions of a major extracranial or 

 Table 5.2    Modified Rankin scale  

0 No symptoms at all
1  No significant disability despite symptoms; able to carry out all 

usual duties and activities
2  Slight disability; unable to carry out all previous activities but able 

to look after own affairs without assistance
3  Moderate disability requiring some help, but able to walk without 

assistance
4  Moderate severe disability; unable to walk without assistance and 

unable to attend to own bodily needs without assistance
5  Severe disability; bedridden, incontinent, and requiring constant 

nursing care and attention

 Table 5.1    Continued  

 10. Dysarthria 

Patient may be graded on the basis of information already gleaned 
during evaluation. If patient is thought to be normal, have the 
patient read (or repeat) the standard text shown in this box.

Mama
Tip-top

Fifty–fifty
Thanks

Huckleberry
Baseball player

Caterpillar

0 Normal speech
1  Mild to moderate impairment (slurs some words, can be 

understood with some difficulty)
2  Severe impairment (unintelligible slurred speech in the absence of, 

or out of proportion to, any dysphasia, or is mute or anarthric)
9 Intubated or other physical barrier

 11. Extinction and inattention (formerly neglect) 

Sufficient information to identify neglect may have already be 
gleaned during evaluation. If the patient has severe visual loss 
preventing visual double-sided simultaneous stimulation, and the 
cutaneous stimuli are normal, the score is normal. Scored as 
abnormal only if present.

0 Normal, no sensory loss
1  Visual, tactile, auditory, spatial, or personal inattention or 

extinction to double-sided simultaneous stimulation in one of the 
sensory modalities

2  Profound hemi-inattention or hemi-inattention to more than one 
modality. Does not recognize own hand or orients to only one 
side of space

 A. Distal motor function (not part of NIHSS) (a, left arm; 
b, right arm) 

Patient’s hand is held up at the forearm by the examiner, and patient 
is asked to extend the fingers as much as possible. If the patient 
cannot do so, the examiner does it. Do not repeat the command.

0 Normal (no finger flexion after 5 seconds)
1  At least some extension after 5 seconds (any finger movement is 

scored)
2 No voluntary extension after 5 seconds

 Revised January 24, 1991. Based on the Cincinnati stroke scale. i  Contact the 
Public Health Service, National Institutes of Health, National Institute of 
Neurologic Disorders and Stroke, Bethesda, Maryland, USA for copies of a 
grading form (which has more details on some aspects of grading) and for 
training information. ii  
 i. Brott T, Adams HP, Ollinger CP et al. Measurements of acute cerebral 
infarction: a clinical examination scale. Stroke 1991; 20: 864–70. 
 ii. Lyden P, Brott T, Tilley B et al. Improved reliability of the NIH Stroke Scale 
using videotraining. Stroke 1994; 25: 2220–6. 
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Furthermore, these same subjects with a high NIHSSS who often 
failed to re-canalize with intravenous rt-PA were also at increased 
risk of symptomatic intracranial  hemorrhage – risk as high as 
17 %  for an NIHSS    >   20. 44  

 Given the time imperative, the risk of hemorrhage, and the 
continued high morbidity and mortality of severe strokes 
treated with intravenous thrombolytic agents, a logical next 
step was emergency intra-arterial therapy. Trial design poses 
significant logistical and ethical hurdles in acute stroke, 
particularly in patients eligible for an accepted intravenous 
treatment. 45  –  47  Consequently, data from randomized, controlled 
trials of intra-arterial thrombolytics (Prolyse in Acute Cerebral 
Thromboembolism, or PROACT) is limited to the use of 
recombinant pro-urokinase (proUK) in patients within 6 hours 
of angiographically documented middle cerebral artery 
occlusion. 17  ,  48    –  51  The follow-up study, PROACT II, was con-
ducted at 54 North American centers where 180 patients 
with middle cerebral artery occlusion within 6 hours of onset 
of symptoms were  randomized to intra- arterial proUK plus 
heparin or heparin only. A total of 40 %  of the thrombolysis 
patients versus 25 %  of control patients had a  modified Rankin 
score of 2 or less at 90 days ( p  = 0.04), indicating mild to 
no disability. Mortality was similar between groups, although 
the early symptomatic hemorrhage rate was higher in the 
proUK group (10 %  vs. 2 % ). While not surprising that the 
re- canalization rate was higher with lytics than without (66 %  
versus 18 % ), it is worth noting that the infusion was carried 
out over 2 hours. 49  Additionally, the median time to start of 
intra-arterial therapy in the PROACT II was 5.3 hours, and 
only three subjects had therapy started within 3 hours. Re-
canalization, when it occurred, often happened more than 
7 hours after stroke onset. Thus, using current intra- arterial 
strategies and systems, the time from symptom onset to 
 re-canalization is often greater than 7 hours. Two published 
reports of intra-arterial thrombolytic therapy indicate that treat-
ment begun within 3–4 hours of symptom onset is associated 
with higher rates of re-canalization and better outcome. 52  ,  53  
Additional variables that appeared to affect success of therapy 
in PROACT were similar to those of the NINDS: age, pre-
senting NIHSS, CT signs of completed stroke, and location of 
thrombus. 17  ,  51    

intracranial trunk artery even after initiation of intravenous 
rt-PA. 41  ,  42  The overall prognosis for these subjects after rt-PA 
therapy in the NINDS rt-PA trial was poor (albeit better than 
for those treated with placebo). Given the apparent failure 
of intravenous thrombolysis to re-canalize major arterial 
occlusions in earlier angiography-based trials, the overall out-
come in this NINDS rt-PA trial subgroup is not surprising. 43  

 Figure 5.1 
  Odds ratio for favorable outcome 
3 months post-stroke versus time 
to treatment with intravenous 
thrombolysis for acute ischemic 
stroke. rt-PA, alteplase. Reprinted 
with permission.  
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 Table 5.3    Acute stroke checklist  

Time of onset
Age of patient

■    Able to consent  

■   Pregnant   

Right- or left-handed
   ■ NIHSS  
■   Able to consent   

Vital signs
■    Blood pressure  
■   Heart rate and rhythm  
■   Anticoagulation status   

Contraindications to thrombolysis
■    Recent surgery  
■   Systolic blood pressure >180 mm Hg  
■   Coagulopathy  
■      >   3 hours post-ictus  
■   Known intraparenchymal central nervous system neoplasm   

Imaging available
■    Blood  
■   Parenchymal changes in over one-third of the vascular territory  
■   Vascular occlusion  
■   Perfusion mismatch   

Contact information
■    Parent or spouse or medical power of attorney  
■   Living will  
■   Immediate activation of emergency endovascular technologist,

nurse and physician   

 NIHSS, National Institutes of Health Stroke Scale. 
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 Glycoprotein IIb–IIIa inhibition certainly has a role in acute 
intervention involving thrombolytics, implantable stents, and 
acute coronary syndromes. 84  ,  98        –  103  These agents are potent anti-
platelet agents; they include abciximab, eptifibatide, and tirofiban. 
Controlled trials of these agents for stroke have been without 
great success, but they were limited to use of these anti-platelet 
agents alone. 97  While anecdotal reports of their use in combina-
tion with other agents have been more encouraging, their precise 
role in stroke therapy remains to be defined. 82  ,  91  

 Additional pharmacologic manipulation has been directed at 
minimizing complications from ischemia, both by reducing 
 secondary morbidity and by affording neuroprotection. 35  In both 
the NINDS rt-PA and PROACT studies, hypertension was 
aggressively managed in an effort to minimize hemorrhagic 
complications ( Table 5.5 ). These efforts primarily involved the use 
of beta-blockers and nitroprusside. Hydroxymethylglutaryl CoA 
reductase inhibitors (statins) appear to have a neuroprotective effect 
in ischemia, over and above the intended impact on serum 
cholesterol. 35  ,  104  –  106  This positive impact has been appreciated only 
since the publication of the larger stroke studies. Significant efforts 
have been made to identify additional pharmacologic agents 
that can be used as an adjunct to thrombolysis for stoke, including 
glutamate receptor inhibitors, estrogen, erythropoietin, and anti-
oxidants. However, these agents have not proven  effective for 
wide clinical use. 

   Mechanical devices 
 On the basis of the limited ability of intravenous thrombolytic 
therapy to recanalize acute large vessel occlusions, and the logisti-
cal and pharmacological delays imposed by intra-arterial therapy, 
a variety of physical maneuvers have been proposed to expedite 
re-canalization. These include:

■    ultrasound 107    –  110   
■   foreign body retrieval devices ( Figures 5.4 ,  5.5 ,  5.6 ) 111    –  114   
■   aspiration systems 115   
■   emergent stenting ( Figures 5.7 ,  5.8   ) 116  –  118     

  The largest experience to date has been with the Merci retriever 
device (see  Figure 5.4 ). This device is approved by the Food and 
Drugs Administration (FDA), and it is currently available for use 
by any interventionalist treating a patient with an acute stroke 
who is ineligible for intravenous rt-PA or a patient who has failed 
thrombolytic therapy . The Merci device is a system consisting of 
a balloon-tip guiding catheter and retriever. The inflated balloon 
of the guide catheter placed in the proximal vasculature inter-
rupts or reverses flow. The retriever itself is a flexible, tapered 
core nitinol wire with a helical shaped tip used to ensnare and 
retrieve the thrombus. 

 The clinical basis for FDA 510(K) clearance was the Mechani-
cal Embolus Removal in Cerebral Ischemia (MERCI) Trial, 111  
which was a prospective, single-arm multicenter trial conducted 
at 25 US centers in two parts. Part I enrolled 55 subjects and 
part II enrolled an additional 96 subjects, for a total of 151 sub-
jects. Primary outcomes, which were reported on the basis of an 
intention-to-treat analysis, were the rate of vessel re-canalization 
and rate of observed device related complications. Complications 
were defined as vessel perforation, arterial dissection, or embo-
lization of a previously uninvolved territory. The primary 
efficacy endpoint of vascular re-canalization (TIMI grades 2 or 3) 
was compared to the data published on the spontaneous 

 Beyond intra-arterial 
thrombolysis: adjunctive 
mechanical thrombectomy 
and stenting  

 Imaging 
 The FDA approval of intravenous rt-PA for stroke led to a focus 
on acute ischemic stroke as a true medical emergency, as well as a 
careful and continuous reexamination of how acute stroke 
 evaluation and management can be improved. 22  ,  54  Since the pub-
lication of the NINDS trial, imaging has evolved that can rapidly 
identify the vascular anatomy and the location of the occlusion; it 
can also estimate the degree of completed infarction and  potential 
salvageable surrounding brain parenchyma. 55                    –  66  

 Subsequent stroke treatment trials have attempted to use 
advances in neuroimaging to improve patient selection by identi-
fying specific etiologies responsible for the variety of clinical 
 presentations of ischemic stroke (i.e. cardioembolic stroke, stroke 
due to small vessel or lacunar disease, stroke of determined etiol-
ogy such as large vessel disease or dissection, and ischemic stroke 
of unknown etiology), as well as the patients who may potentially 
benefit from treatment (i.e. even those beyond the 3-hour window). 
The primary imaging modalitites include CT angiography and 
perfusion imaging ( Figure 5.2 ) and magnetic resonance (MR) 
angiography and diffusion and perfusion imaging ( Figure 5.3 ). 
Certainly each modality has strengths and weaknesses. Multi-row 
detector CT scanners (with 16 rows or more) allow ready access 
to acutely ill patients, can rapidly identify acute hemorrhage, and 
produce excellent quality angiographic images from the aortic 
arch to vertex, but provide limited perfusion information (see 
 Figure 5.2 ). Conversely MR studies are exquisitely sensitive to early 
changes of hemispheric ischemia with full-coverage perfusion 
studies, but they must be performed in the somewhat hostile 
environment of a high magnetic field with limited patient visibil-
ity, and they provide somewhat limited angiographic imaging. In 
the context of how data impact time to treatment (see  Figure 5.1 ), 
it is our practice to use CT as the modality of choice in cases less 
than 6 hours from onset of symptoms (see  Figure 5.2 ). Beyond 
that time, and in cases where there may be fewer negative out-
come predictors (particularly age and NIHSS), we often resort to 
MR studies to assist clinical decision making (see  Figure 5.3 ). 

 It is worth noting that the sensitivity of diffusion-weighted 
imaging with b values   ≥   1000 that enables it to detect areas of 
infarction in patients who might otherwise have been clinically 
labeled as having transient ischemic attacks is remarkably high 
(   >    40 % ). 67  –  69  The propensity for early recurrent infarction in such 
cases has led to an appreciation of the need to identify and  manage 
such patients more aggressively ( Table 5.4 ). 67                      –  79  

   Pharmacological adjuncts 
 Pharmacologic adjuncts to intravenous therapy have been 
 proposed (in a fashion analogous to treatment for acute 
myocardial infarction) in an effort to improve both the odds 
as well as the speed of cerebral artery re-canalization. 80      –  84  
However, analogies to coronary intervention must be tempered 
by concern for further exacerbating the risk of intracranial 
hemorrhage. 65  ,  82  ,  85                      –  97  
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 Figure 5.2  
  (a) CT angiogram in an acute stroke 
involving the dominant hemisphere of 
a 47-year-old man. There is a severe 
stenosis involving the left internal 
carotid artery (LICA) origin (left 
arrow) with a thrombotic saddle 
embolus in the ipsilateral M1–M2 
junction (right arrow). (b) CT perfusion 
study demonstrating a delayed time-
to-peak map (left), limited perfusion 
map (center), and cerebral blood 
volume (right), which demonstrates 
relative preservation of the cortex in 
the left middle cerebral artery (MCA) 
territory. (c) Near-complete occlusion 
of the LICA, which a microcatheter 
easily passed. When the MCA is 
injected, the saddle embolus is 
obvious. Recognizing the need to lyse 
the thrombus as well as the likely 
necessity of opening the carotid, 5mg 
rt-PA was administered as well 
as half the loading dose of abciximab. 
(d) While the pharmacologic treatment 
works (above), the carotid is stented 
(left, solid arrow). LICA injection post-
stent demonstrates early lysis of the 
thrombus.   

(a)

(b)

(c)

(d)
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(e) (f)

 Figure 5.2  (Continued )
(e) View with an additional 5 mg of rt-PA and additional abciximab has been titrated to 70 %  inhibition. (f) Follow-up CT. The patient 
walked out of the hospital on discharge and on return at 8 weeks to clinic he was neurologically normal. Note that this use of rt-PA 
and abciximab is not FDA-approved.

(a)

(c)

(b)

Figure 5.3 

(a) Initial MR diffusion scan and angiogram of a 40-year-old woman with transient speech disturbance and hemiparesis caused by left 
internal carotid artery dissection (arrow). Two days post-admission, symptoms returned while she was being anticoagulated. 
(b) The patient was transferred from the outside hospital 72 hours from the time of deterioration. MR diffusion study demonstrates a 
typical watershed pattern of infarction in the white matter with sparing of the cortex (lower right, arrows). The perfusion study 
demonstrates markedly delayed time to peak map, diminished cerebral perfusion and compensatory increased cerebral blood volume 
in the affected left hemisphere. (c) 80 hours after the return of her fixed deficit, repeat angiography demonstrates extension of the 
dissection (arrow), which was successfully stented (center and right.) The patient slowly improved and was normal at 8 weeks 
follow-up.
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 Figure 5.4  

  (a) Carotid, AP and lateral RCCA 
angiographic views demonstating a 
filling defect (convex margin, arrow) 
in the right M1 segment. (b) AP and 
lateral RICA injections after 
successful thrombectomy using the 
Merci retriever. A small residual 
filling defect can been seen in the 
M1 segment.  

(a)

(b)

Table 5.4   ‘ABCD2’ patient profile to identify patients at 
high early risk of stroke after a transient ischemic attack  

Age 60 years or older
Blood pressure   ≥  140/90 mm Hg
Clinical signs and symptoms of hemiparesis or speech disturbance
Duration of symptoms 60 minutes or more
Diabetes

i. Rothwell PM, Giles MF, Flossmann E et al. A simple score (ABCD) to identify 
individuals at high early risk of stroke after transient ischaemic attack. Lancet 
2005; 366: 29–36.
 ii. Johnston SC, Rothwell PM, Nguyen-Huynh MN et al. Validation and 
refinement of scores to predict very early stroke risk after transient ischaemic 
attack. Lancet 2007; 369: 283–92. 

     

 Table 5.5    Management of hypertension after adminis-
tration of rt-PA for acute cerebrovascular accident  

Blood pressure Intervention

Systolic 180–230 mmHg 
and/or Diastolic 
110–120 mmHg

Labetalol 10 mg intravenously over 
1–2 minutes, repeat or double dose 
every 10–20 minutes up to 150 mg

Systolic  >      230 mmHg and/or 
Diastolic 121–140 mmHg

As above, but if labetalol is 
contraindicated or ineffective, use 
nitroprusside

Diastolic    >   140 mmHg Start nitroprusside 0.5–10  µ g per 
kilogram per minute

recanalization rate in the control arm of the PROACT II study. 
Under the protocol up to six passes with retriever devices were 
allowed. 

 A total of 1809 patients were screened to recruit the 151 subjects. 
Subjects had to have completed the first pass with the device within 
8 hours of onset of symptoms and had to have a baseline NIHSS 
score of   ≥  10 in part I or   ≥  8 in part II. Vessels eligible for treatment 
with the retriever device included the internal cerebral artery (ICA), 
the ICA terminal bifurcation, the M1 section of the middle cerebral 
artery (MCA), the M2 section of the MCA (allowed in Part II), the 
basilar artery, or the vertebral artery. Ten of the 151 subjects 
enrolled did not have the device deployed for a variety of reasons, 
many of which were technical and related to catheter access. 

 In comparison to PROACT, patients enrolled in the MERCI 
trial with MCA occlusion presented with slightly higher NIHSS 
and also a slightly higher rate of modified Rankin score of    >   2 
(mild or no disability) at 90 days. Re-canalization rates for 
vertebral or basilar artery occlusion were also higher. 

 This study was followed by the Multi-Merci trial, which was 
likewise a prospective, single-arm trial of patients with large 
vessel stroke (vertebral, basilar, ICA, ICA-terminus, M1 or M2 
occlusion) treated within 8 hours of symptom onset. Primary 
outcome was vascular re-canalization (TIMI 2 or TIMI 3) and 
safety. Physicians used a newer generation device (L5) first and 
subsequent passes could be made with the L5 or with the first-
generation devices (X5 or X6). Adjuvant therapy with intra-
arterial rt-PA was allowed after retriever use, with a maximum 
dose of 24mg. 

 Preliminary Multi-Merci data indicated that the baseline 
NIHSS score was similar to that of the MERCI Trial. However, 
there was significant decrease in the mortality rate, with similar 
rate of symptomatic hemorrhage when compared with subjects 
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of the Merci device during acute ischemic stroke in patients who 
are either ineligible for intravenous thrombolytic therapy or in 
whom intravenous thrombolytic therapy has failed. 

 Ultrasound-enhanced thrombolysis is another potential com-
bination therapy. The Combined Lysis of Thrombus in Brain isch-
emia with Transcranial Ultrasound and Systemic Tpa (CLOTBUST) 
II trial was a prospective randomized clinical trial of 126 patients 
with MCA occlusions. The patients were randomized to receive 
intravenous rt-PA alone or rt-PA plus low intensity ultrasound 
using a 2MHz transcranial Doppler probe placed on the affected 
artery. 109  Complete re-canalization or dramatic clinical recovery 
within 2 hours of rt-PA bolus occurred in 49 %  of the ultrasound 
plus rt-PA group and in 30 %  of the rt-PA only group ( p  = 0.03). 
Several trials are currently evaluating the use of microbubble and 
ultrasound in combination with intravenous thrombolysis in 
patients with MCA occlusion. Additional studies utilizing locally 
applied, intra-arterial ultrasound devices have also suggested 
improved re-canalization rates, although the exact mechanism of 
therapeutic augmentation is not well understood. 119     

treated in the MERCI trial. On the basis of the preliminary 
Multi Merci data, the use of intravenous rt-PA before 
mechanical thrombectomy appears safe, with a symptomatic 
hemorrhage rate of 7.8 % . Mechanical thrombectomy with both 
first- and second-generation Merci devices is effective to open 
intracranial vessels, with a re-canalization rate of 48 % . This is 
significantly better than the spontaneous rate of 18 %  seen in 
the PROACT II control group. Enthusiasm for the device 
should be tempered by a comparison with the treatment group 
for intra-arterial rt-PA in PROACT II, for whom re-canalization 
occurred in 66 % . 

 These trials also emphasize the observation that clinical out-
come is tied to successful re-vascularization. The collective 
MERCI data demonstrated that clinical improvement was seen 
with successful re-canalization, whether a device was used or not. 
Ninety-day outcomes for modified Rankin scores of 0–2 was 39 %  
for those patients in whom recanalization occurred, compared 
with only 3 %  for those in whom it did not. Similar patterns were 
seen for mortality and NIHSS scores. These data support the use 

Figure 5.5 
(a) Carotid, anterior–posterior (AP) and lateral 
right common carotid artery (RCCA) angiographic 
views demonstating a filling defect (convex margin, 
arrow) in the left M1 segment. (b) AP view 
demonstrating Merci retriever at the defect using 
simultaneous guide and distal micro-catheter 
roadmap. (c) Following unsuccessful attempts to 
re-canalize using the Merci device, a stent was 
placed across the occlusion (tines highlighted 
by arrows on this unsubtracted view. (d) AP and 
lateral angiogram after stent placement. Note 
that this is not an FDA-approved use 
of intra-cranial stents.(a)

(d)

(b) (c)
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Figure 5.6
(a) CT angiography demonstrates a filling defect secondary to a saddle embolus at the basilar summit (block arrow). Notice the lack 
of filling of the posterior communicating artery (long arrows). (b) Confirmatory conventional angiogram demonstrating convex 
margin of the filling defect (arrow). (c) Anterior–posterior (AP) and lateral unsubtracted views of the micro-catheter in the distal 
basilar artery, from which extends the tines of the alligator retriever (arrows). (d) AP and lateral posterior circulation angiograms 
post-thrombectomy. Note that this is not an FDA-approved use of the alligator retrieval device.

(a)

(d)

(b) (c)
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(a)

(b)

(c)

Figure 5.7 
(a) Anterior–posterior (AP) and lateral angiogram in a patient with an acute carotid terminus occlusion, probably due to saddle 
thrombo-embolism (block arrow). (b) Micro-catheter view confirming distal middle cerebral artery patency (left) before stent 
placement (right). (c) Oblique, AP and lateral left common carotid artery angiographic views post-stent. Stenting across soft thrombus 
almost universally produces immediate re-canalization, with soft clot bulging at the interstices of the stent creating a ‘quilt-like’ 
pattern. Following stent placement and re-canalization, lysis can occur in a more controlled fashion. Note that this is not an 
FDA-approved use of intra-cranial stents.
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(c)

(a) (b)

(d)

Figure 5.8 
(a) Aortic arch angiogram demonstrates delayed filling of both vertebral arteries. (b) Anterior–posterior (AP) and lateral delayed 
views from a left internal carotid artery angiogram demonstrate watershed collateral circulation and delayed filling to the posterior 
cerebral artery territory. (c) Lateral and AP left vertebral artery (LVA) angiograms demonstrate poor intracranial filling with a distal 
LVA stenosis. The right vertebral artery is filling retrogradely. A distal micro-catheter view (right) demonstrates that the distal 
posterior circulation remains patent. Proximal posterior circulation occlusions are often secondary to thrombosis in situ, while 
thromboemboli are often carried to the basilar summit. (d) Post-angioplasty (left), unsubtracted view, post-Wingspan stent (center), 
and post-procedure angiogram (right).
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example, a distal embolism should be lysed or retrieved before a 
proximal bifurcation stenosis is stented. In cases of purely intrac-
ranial emboli without proximal vascular disease, a removable 
mechanical device, such as the Merci system, would not necessi-
tate antiplatelet therapies and their additional risks of hemor-
rhage. 97  As suggested by Fiorella et al., newer non-implanted 
devices that readily facilitate re-canalization and adjunctive 
thrombolysis (while avoiding post-procedure anticoagulation) 
are likely to be the technique of the future. If however, there is a 
proximal stenosis or dissection (see  Figures 5.2 ,  5.8 ) the use of 
permanent implantable stents will necessitate the use of antiplate-
let agents to prevent acute, in-stent thrombosis. In such dire 
cases, in which the use of antiplatelet agents is pre-ordained, we 
have followed the experience outside the cerebral circulation and 
incorporated their administration (calibrated by point-of-service 
testing to minimize the risk of hemorrhage; see Chapter 3) with 
any initial attempts at intra-arterial thrombolysis. This may then 
be followed by proximal stenting during the preliminary period, 
in which lytic therapy is given the opportunity to work.     
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 Hippocrates was the first to describe transient ischemic attacks 
(TIA’s), noting that ‘unaccustomed attacks of numbness and 
anesthesia are signs of impending apoplexy.’ 1  ,  2  And while Sir 
Thomas Willis appreciated the significance of the communicating 
arteries in preserving cerebral collateral flow, 3  it was not until 
the 1950s that C Miller Fisher associated TIAs with carotid 
bifurcation disease and stroke. 4  The first successful carotid endar-
terectomy (CEA) was performed shortly thereafter. 5  ,  6  By the early 
1980s CEA was the most frequently performed vascular surgical 
procedure. Nevertheless, the subsequent failure of the external 
carotid–internal carotid bypass operation to prevent stroke 7  
and the absence of randomized clinical endarterectomy trial data 
provoked challenges about the procedure’s safety and efficacy. 8  
In early 1990s, six randomized clinical trials established the 
efficacy of CEA plus aspirin compared with aspirin alone in pre-
venting stroke in patients with atherosclerotic carotid bifurcation 
stenosis. ( Figures 6.1 ,  6.2 ). 9               – 16  Similarly, long-term outcome stud-
ies have better defined the natural history of intracranial 
atherosclerotic disease treated medically ( Figure 6.3 ). 

  Minimally invasive, percutaneous techniques to re-establish 
arterial blood flow paralleled the development of vascular 
surgery (although in a delayed fashion, reflecting the evolution 
and ultimate digitization of real-time angiography). In 1964, 
Charles Dotter and Melvin Judkins reported the first translumi-
nal angioplasty using a series of catheters of ever-increasing 
diameter. 17  Subsequently Andreas Grundzig reported and popu-
larized balloon angioplasty for (initially) the coronary circulation 
and (ultimately) the peripheral circulation. 18  Almost 10 years 
later, Palmaz was the first to report the implantation of vascular 
stents to preserve luminal diameter following angioplasty. 19  

 One of the benefits of large, well-controlled randomized 
surgical trials is the establishment of accepted primary and 
secondary outcome benchmarks as well as the natural history of 
the underlying disease. Enthusiasm for the adaptation of the 
endovascular innovations of angioplasty to the cerebral circula-
tion was initially tempered by a healthy respect for potential 
thromboembolic complications, intracranial hemorrhage, and 
the excellent results achievable by capable surgeons as docu-
mented using these benchmarks. Nevertheless, in the context of 
what is now known regarding the natural history of the disease 9             –

 16  ,  20  ,  21  and further refinements in percutaneous techniques, selec-
tive application of angioplasty and stenting has become established 
as a tool in the armamentarium against stroke. 22     – 25  In the USA in 
2005, carotid revascularization volumes include 103,000 CEA, 26  
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and there are ever-increasing numbers of carotid artery stenting 
procedures. Indications may include selective instances of 
extra- and intracranial atherosclerosis, dissection, post-surgical 
re-stenosis, arteritis, erosion and stenosis by neoplasm, and 
penetrating trauma.  

 Atherosclerotic cerebrovascular 
disease 
 Atherosclerosis accounts for up to one-third of all strokes. 
Approximately 50% of strokes occur in the territory of the 
carotid arteries, and while extracranial carotid disease is more 
frequent in Caucasians, intracranial disease is more frequent in 
non-whites ( Figure 6.4 ). 27   – 29  Carotid disease that is amenable to 
revascularization accounts for 5–12% of new strokes. 30   – 32  Carotid 
atherosclerosis is typically unifocal, and 90% of lesions are located 
within 2cm of the origin of the internal carotid artery (ICA) (see 
 Figure 6.4 ). 4  ,  33  The degree of carotid stenosis is associated with 
stroke risk in symptomatic patients. Carotid atherosclerosis can 
produce retinal and cortical symptoms by either progressive 
carotid stenosis leading to hypoperfusion (less commonly) or by 
intracranial arterial embolization (more commonly). The risk of 
progression of carotid stenosis is 9.3% per year, and risk factors 
for progression include: 34  

■   ipsilateral or contralateral ICA stenosis greater than >50%;  
■   ipsilateral external carotid artery (ECA) stenosis >50%; and  
■   systolic blood pressure >160 mmHg. 34     

  Nearly 80% of strokes due to carotid atherosclerosis occur 
without warning, emphasizing the need for careful screening and 
follow-up. 30   – 32  In patients who do present with a sentinal TIA, the 
risk of secondary stroke in temporal proximity to the initial 
symptoms is high. 35  ,  36   

 Medical therapy 
 A demographic profile can gauge the risk of stroke based on 
age, systolic blood pressure, antihypertensive therapy, diabetes, 
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cigarette smoking, and history of coronary artery disease (CAD), 
congestive heart failure, or atrial fibrillation. 35  ,  37  Clinical findings 
must be correlated with brain and vascular imaging to determine 
whether or not suspected atherosclerotic cerebrovascular disease 
is symptomatic. Imaging is critical to assess the anatomy and 
structural pathology of the brain (e.g. mass, old or new stroke, 
presence of hemorrhage) and the cervical vessels (e.g. stenosis, 
plaque morphology, dissection), and to guide treatment. In 
asymptomatic patients there are no guidelines to support routine 
carotid imaging, except for some candidates for coronary artery 
bypass grafting (CABG.) Prior to CABG, carotid duplex studies 
are recommended in asymptomatic patients who are older 
than 65 years or who have left main coronary artery stenosis; 
peripheral arterial disease; a history of smoking, TIA, or stroke; or 
a carotid bruit. 12  

 Hypertension is major risk factor for all forms of cerebrovas-
cular disease by virtue of its direct atherogenic effects on the 
systemic and cerebral circulations, and by association with 
CAD and atrial fibrillation. 38  Control of blood pressure is key 
to modification of atherogenic risk factors: there is a linear 
relationship between increasing blood pressure and stroke risk. 

 Figure 6.1 
  NASCET Kaplan–Meier survival curves for stroke in symptomatic patients with severe carotid stenoses treated by surgery (red) or best 
medical therapy (blue). (Reprinted with permission from Barnett et al. 10   )
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Figure 6.2
Survival curves for asymptomatic 
patients with severe carotid stenoses 
treated with endarterectomy and 
medical therapy. TIA, transient 
ischemic attack. Reprinted with 
permission from: Endarterectomy 
for Asymptomatic Carotid Artery 
Stenosis. JAMA 1995; 273: 1421–28.

Figure 6.3
Cumulative incidence of ischemic stroke, intracranial 
hemorrhage and death in patients with intracranial stenoses 
treated with either aspirin or warfarin. (Reprinted with 
permission from Chimowitz MI et al.20)
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Even small reductions in systolic pressure (10 mmHg) and 
diastolic pressure (3–6 mmHg) result in a 30–42% decline in the 
risk of stroke. 39  ,  40  Systolic hypertension is an especially important 
risk factor in the elderly. 41  

 Recent trials of angiotensin converting enzyme (ACE ) inhibi-
tors and angiotensin receptor blockers (ARBs) suggest that 
these agents may have benefits for stroke reduction that extend 
beyond their antihypertensive effects. The Heart Outcomes and 
Prevention Evaluation (HOPE) trial studied 9297 patients with 
high cardiovascular risk, including 1013 patients with previous 
TIA or stroke. 42  Patients were randomized to ramipril 10mg daily 
or placebo, and ramipril was associated with a 32% reduction 
in stroke over 5 years. Although ramipril was associated with a sig-
nificant antihypertensive effect (2–3 mmHg decline in systolic and 
diastolic blood pressure) these benefits were felt to be insufficient 

to explain the dramatic decline in stroke. In the Losartan Inter-
vention for Endpoint (LIFE) trial, losartan and atenolol achieved 
similar degrees of blood pressure reduction, but losartan was 
associated with a 13% reduction in cardiovascular events and a 
25% reduction in stroke. 43  Potential added benefits of ACE inhib-
itors and ARBs include inhibition of angiotensin II-mediated 
vasoconstriction and vascular smooth cell hyperplasia, improved 
endothelial function, and enhanced fibrinolysis. 

 Smoking increases the risk of ischemic and hemorrhagic stroke 
(particularly subarachnoid hemorrhage), and the risk is directly 
proportional to the number of cigarettes smoked. 44  ,  45  The risk is 
higher in female smokers who use oral contraceptives. Passive 
exposure to cigarette smoke nearly doubles the risk of stroke 
in spouses of smokers. 46  The risk of stroke decreases to that of 
non-smokers within 5 years of smoking cessation. 47  

 Figure 6.4 

  Percentage distribution of 
atherosclerotic stenoses (green) and 
occlusion (blue). (Adapted from the 
work of Fields et al. and Hass et al., 
JAMA 1968; 203: 955–60, 961–68.  )
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largely replaced ticlopidine because of a superior safety profile 
and its once-daily dosing. For preventing stroke in secondary 
prevention trials, clopidogrel was similar to aspirin in the 
Clopidogrel versus Aspirin in Patients at Risk of Ischemic Events 
(CAPRIE) trial. 78  The combination of clopidogrel plus aspirin 
was similar to aspirin alone in the Clopidogrel for High Athero-
thrombotic Risk and Ischemic Stabilization, Management, and 
Avoidance (CHARISMA) trial. 80  In the Atherothrombosis with 
Clopidogrel in High-Risk Patients With Recent Transient 
Ischemic Attack or Ischemic Stroke (MATCH) trial, the combi-
nation of aspirin plus clopidogrel increased the risk of systemic 
and intracerebral hemorrhage, but it did not decrease the risk of 
stroke compared with clopidogrel alone. 74  Hence, aspirin and 
clopidogrel appear to have similar efficacy, but the combination 
may increase the risk of serious bleeding and is not superior 
to either drug alone. 82  Nevertheless, In cases of recurrent 
symptoms despite antiplatelet therapy, dual therapy with may be 
warranted. 

 Warfarin is recommended for primary and secondary preven-
tion of stroke in patients with atrial fibrillation. However, in 
patients with non-cardioembolic stroke there were no differences 
between warfarin and aspirin in stroke, death, or major bleed-
ing. 81  Moreover, the Warfarin Aspirin Symptomatic Intracranial 
Disease (WASID) trial failed to show an advantage for warfarin 
compared with aspirin, and there was additional morbidity. 85  

 In summary, antiplatelet therapy is favored over warfarin in 
patients with cerebral atherosclerotic disease who are not at risk 
of cardioembolic stroke   

 Revascularization of carotid 
atherostenosis  

 Work-up and indications 
 Indications for carotid stenting must always be framed in the 
context of the more established alternative, endarterectomy. 
Guidelines from the American Heart Association (AHA) recom-
mend CEA in symptomatic patients with a stenosis of 50–99%, 
when the risk of periprocedure stroke or death is less than 6%. 69  
Pooled analysis of 6092 patients with 35,000 patient–years follow-up 
(using uniform definitions of stenosis severity and outcome) 
revealed a 1.1% mortality and a 7.1% incidence of stroke or death 
at 30 days after CEA. 86  After 5 years, CEA was associated with a 
48% relative risk reduction in ipsilateral stroke in patients with a 
stenosis of 70–99%, a 28% relative risk reduction in ipsilateral 
stroke in patients with a stenosis of 50–69%, and no benefit in 
patients with stenosis of less than 50%. 

 For asymptomatic patients, AHA guidelines recommend 
CEA for patients with a stenosis of 60–99%, when the risk of 
perioperative stroke or death is less than 3%. Pooled analysis of 
asymptomatic carotid endarterectomy trials include 5,223 patients 
with 17,037 patient years follow-up, averaging 3.3 years per 
patient. 87  At 30 days, the risk of stroke or death after CEA was 
2.9%. In comparison with aspirin alone, CEA was associated 
with a 31% relative risk reduction in stroke or perioperative death 
during the study period, but the absolute risk reduction was 
only 1% per year. Interestingly, all of the risk was in men 
(51% relative risk reduction) rather than in women (4% relative 
risk reduction), and in younger patients. Also, outcome after 
CEA in asymptomatic patients was not associated with stenosis 
severity. 

 The relationship between dyslipidemia and stroke has not been 
demonstrated consistently. However, there is a relationship 
between total cholesterol, low-density lipoprotein cholesterol, 
and the extent of extracranial carotid artery atherosclerosis and 
wall thickness. 48  Furthermore, efforts to manage hypercholester-
olemia with statins may have the added benefit of a protective 
effect in the event of actual ischemic insult. 49         – 54  

 Gemfibrozil reduced stroke rates by 24% in the Veterans 
Affairs High Density Lipoprotein Cholesterol Intervention Trial 
(VA-HIT) study. 55  Niacin reduced stroke by 22% in the Coronary 
Drug Project. 56  Pravastatin, simvastatin, and atorvastatin are 
approved by the Food and Drug Administration (FDA) in the 
USA for stroke prevention in patients with CAD, 49  ,  51  ,  57  although 
the benefits may be mediated by anti-inflammatory, plaque 
stabilization, and neuroprotective effects (rather than by direct 
cholesterol reduction). The Stroke Prevention with Aggressive 
Reduction of Cholesterol Levels (SPARCL) trial studied atorvas-
tatin 20mg for secondary prevention of stroke in 4731 patients 
without CAD and documented a 16% relative risk reduction for 
recurrent stroke. 54  ,  58  

 Statins may be effective for secondary prevention in patients 
undergoing CEA. 59  The National Cholesterol Education Program 
(NCEP) guidelines and the American Stroke Association (ASA) 
recommend statins in patients with prior TIA or stroke or carotid 
stenosis >50%. 50  ,  60  

 Diabetes is a major independent risk factor for stroke. 61  ,  62  The 
combination of diabetes and hypertension increases the risk of 
stroke six-fold compared with normal patients, and the risk is 
two-fold higher than in normotensive diabetics. Abdominal 
obesity contributes more than body mass index to the presence 
of insulin resistance, hypertension, and dyslipidemia, and 
secondarily to the risk for stroke; 63  however, there are no reports 
correlating weight loss with reduced stroke risk. 

 Additional risk factors include the use of oral contraceptives 
(especially in women over 35 years), elevated fibrinogen, and 
elevated C-reactive protein. 64     – 67  These factors exacerbate the 
primary risk factors of hypertension, smoking, and diabetes 
listed above. 

 Risk factor modification with medical therapy is recommended 
to limit progression of atherosclerosis and to decrease clinical 
events, irrespective of carotid artery revascularization. 68  ,  69  Ther-
apy should also include an antiplatelet agent. For asymptomatic 
patients with one or more cardiovascular risk factors, antiplatelet 
therapy is indicated. For symptomatic patients (with a recent 
TIA or minor cerebrovascular accident), the recommendations 
for antiplatelet therapy are based on large stroke prevention 
studies 70                     – 81  that included patients with a variety of stroke 
etiologies. 

 The relative risk reduction conferred by aspirin therapy is 16% 
for fatal stroke and 28% for nonfatal stroke. 82  Randomized trials 
indicate that aspirin is superior to CEA for symptomatic patients 
with carotid stenosis <50% 9  ,  10  ,  13  ,  14  and for asymptomatic patients 
with carotid stenosis <60%. 83  ,  84  Early studies suggested benefit with 
low-dose aspirin. 70   – 72  The risk of myocardial infarction, stroke, 
and death within 1–3 months of CEA was lower for patients 
taking low-dose aspirin (81mg or 325mg daily) than for those 
taking high-dose aspirin (650mg or 1300mg daily). 73  

 Ticlopidine has been shown to be useful for secondary 
prevention after stroke in the Canadian–American Ticlopidine 
Study (CATS); it resulted in a 23% reduction in cardiovascular 
events. 76  The Ticlopidine Aspirin Stroke Study (TASS) looked 
at patients after TIA or major stroke; 77  ticlopidine caused signifi-
cantly fewer cerebrovascular events and less bleeding, but neutro-
penia complicated therapy in 0.9% of patients. Clopidogrel has 
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and in one study it altered surgical planning in 11% of cases. 112  
Comparing CTA with enhanced MRA, one study showed that 
CTA was less reliable. 101  With CTA, the sensitivity and specificity 
for detecting carotid stenosis of more than 70% was 85–95% 
and 93–98%, respectively. 113  ,  114  CTA sensitivity and accuracy 
can be increased by examining axial source images 113  and volume-
rendered projections, 115  and by the use of faster, high-resolution 
multi-slice scanners. 116  

 Carotid and cerebral angiography has the same complications 
as other arterial catheterization techniques: access site injury, 
blood loss requiring transfusion, contrast nephropathy, anaphy-
lactoid reactions, and stroke. In symptomatic patients undergo-
ing cerebral angiography, the risk of stroke is 0.5–5.7%, and the 
risk of TIA is 0.6–6.8%. 117  In asymptomatic patients in the ACAS 
trial, stroke occurred in 1.2% of patients after angiography. 118  
More recent studies reported stroke and TIA rates of less 
than 1%, suggesting that the risk may be lower. 119  Possible expla-
nations include faster digital equipment, technique, operator 
experience, and the use of antiplatelet agents. 

 In the USA, Medicare and Medicaid reimbursement for carotid 
stenting is limited to the use of facilities and to physicians that 
meet minimum standards and use FDA-approved stents and 
emboli protection devices (EPDs) for high-risk patients with 
symptomatic stenosis >70%. The minimum standards include 
credentialing of all operators as well as a continuous quality 
assessment program. The term ‘high risk’ applies to conditions 
outlined in  Table 6.1 . Additional high-risk patients (symptomatic 
stenosis >50%, asymptomatic stenosis >80%) may also be eligible 
if enrolled in a category B Investigational Device Exemption 
(IDE) trial or post-approval studies that are under FDA sponsor-
ship and FDA Institutional Review Board supervision. 

    Stenting carotid atherosclerotic 
stenosis: risks and benefits 
 The risk of stroke in patients with carotid stenosis is primarily 
dependent on symptom status and stenosis severity, 10  and it is 

 Implicit in these guidelines is the accurate assement of carotid 
stenosis as measured the in the North American Symptomatic 
Carotid Endarterectomy Trial (NASCET) and the Asymptomatic 
Carotid Atherosclerosis Study (ACAS). This method utilizes 
the diameter of the proximal ICA above the carotid bulb as the 
reference diameter relative to the diameter of the stenosis, as seen 
in the projection in which it appears most severe. 88  All patients 
being considered for carotid artery stenting (CAS) must meet 
these angiographic criteria. Nevertheless, carotid duplex studies, 
magnetic resonance angiography (MRA), and CT angiography 
(CTA) are often recommended for the initial evaluation of 
patients with carotid artery disease. 

 The mainstay of carotid duplex evaluation is the determina-
tion of flow velocity using spectral Doppler analysis. Meta-
analyses 89  ,  90  and a multidisciplinary consensus conference 91  
suggest that peak systolic velocity is the single most accurate 
duplex parameter for determination of stenosis severity. Com-
pared with angiography, carotid duplex has a sensitivity of 
between 77% and 98% and a specificity of between 53% and 82% 
for identifying or excluding an ICA stenosis >70%. 89  Women 
have higher flow velocities than men. 92  In patients with a severe 
carotid stenosis or occlusion, compensatory increases in contra-
lateral blood flow may result in spuriously high velocities in the 
patent ICA. In this situation, the ratio of peak systolic flow 
velocities in the proximal ICA and the distal common carotid 
artery (the ICA–CCA peak systolic velocity ratio) is a better deter-
minant of stenosis severity. 93  ,  94  The accuracy of diagnostic criteria 
may vary substantially between laboratories, 95   – 97  optimal diagnos-
tic criteria may change over time, 98  and there is significant intra-
observer variability. 89  ,  95  ,  99  Hence ultrasound laboratories must have 
strict quality-assurance programs to establish optimal internal 
diagnostic criteria. When carotid duplex results are unclear, diag-
nostic accuracy may increase to >90% when it is used in conjunc-
tion with CTA and/or MRA. 100  

 MRA allows imaging of aortic arch, cervical carotid and intrac-
ranial lesions that are not accessible by carotid duplex studies. 101  
Newer reconstruction algorithms 101  as well as newer contrast 
agents have increased speed and study consistency. 102  ,  103  When 
compared with conventional angiography, first-pass contrast 
enhanced three-dimensional MRA maximum-intensity projec-
tions correlate with angiography stenosis in 90% of cases, and 
correlation is best for severe stenoses. 102  Additional benefits 
include the ability to image the aortic arch and the circle of Willis 
as well as highly sensitive diffusion techniques for acute ischemic 
brain injury (within minutes, up to 14 days). 104  ,  105  Limitations 
include the inability to perform MRA because of claustrophobia, 
pacemakers, implantable defibrillators, and obesity. 

 The combination of these ultrasound and MRA techniques 
provides better concordance with digital subtraction angiography 
than either test alone (combined 96% sensitivity and 80% speci-
ficity), but is not cost-effective for routine use. 106  MRA following 
stent placement is safe and has been attempted; however, mag-
netic susceptibility artifact and Faraday shielding significantly 
degrade the image about the implant. 104  ,  105  ,  107       – 111  

 CTA with multi-row spiral scanners (with more than 16 rows) 
allows axial carotid imaging at speeds capable capturing a three-
dimensional arterial snapshot from the aortic arch to the vertex 
of the cerebrum. Like MRA, CTA is useful when carotid duplex 
studies are ambiguous, permitting as it does visualization of aor-
tic arch or high bifurcation pathology, reliable differentiation of 
total and subtotal occlusion, assessment of ostial and tandem 
stenoses, and evaluation of carotid disease in patients with arrhyth-
mias, valvular heart disease, or cardiomyopathy. When compared 
with carotid duplex, CTA is more specific for high-grade lesions, 

Table 6.1   High-risk conditions  for carotid 
endarterectomy  

Previous radiation therapy to the neck

Previous CEA with recurrent re-stenosis

High cervical internal carotid artery stenosis or below-the-clavicle 
common carotid artery stenosis

Severe tandem lesions

Contralateral carotid artery occlusion

Contralateral laryngeal nerve palsy

Age >80 years

Severe pulmonary disease.

Significant cardiac co-morbidity

■  Congestive heart failure (New York Heart Association Class III or 
IV) and/or known severe left ventricular dysfunction;

■ Open heart surgery needed within 6 weeks

■  Recent myocardial infarction (more than 24 hours and less than 
4 weeks ago)

■ Unstable angina (Canadian Cardiovascular Society Class III or IV)

 CEA, carotid endarterectomy .
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undergo CAS. A list of contraindications to carotid stenting is 
included in  Table 6.2  

    Carotid artery stenting: technique 
 Beyond indications and informed estimation of risk versus 
benefit, there are additional lessons to be learned from the 
experience of CEA. Centers were selected to participate in CEA 
trials based on volume and vetting of low complication rates, 
raising concern that the results might not be applicable to 
community practice. 137  In fact, operative mortality is higher in 
Medicare audits 138  ,  139  and in high-risk patients who would have 
been excluded from the randomized trials. 139  Bond et al. have also 
confirmed lower complication rates for high-volume operators 
and high-volume centers. 140  ,  141  This raises the often prickly issue 
of credentialing for CAS ( Table 6.3 ). 117  Additionally, the standard 
medical therapy for the randomized CEA trials was aspirin, and 
many physicians believe that ‘best medical therapy’ with statins, 
ACE inhibitors, and stricter control of risk factors may be supe-
rior to aspirin alone. 142  Finally, standard practice after CEA does 
not include routine evaluation by a neurologist. In a large meta-
analysis of nearly 16,000 symptomatic patients with CEA, the 
30-day risk of stroke and death was 7.7% if a neurologist evalu-
ated the patient, and 2.3% if a vascular surgeon performed the 
evaluation. 143  These data support the need for independent 
neurological evaluation pre- and post-CAS. 

  A summary of pre-CAS evaluation and preparation is included 
in  Table 6.4 . With rare exceptions great care must be taken 
to optimize fully the patient’s medical regimen prior to the 
procedure. In particular it has become our practice to insure that 
the patient is therapeutic (>70% inhibition of platelet function) 
relative to aspirin and clopidogrel prior to CAS and that the 
patient is receiving statins. 50  ,  53  

  Initial intraprocedure management consists of mild sedation 
and analgesia, anticoagulation, hemodynamic monitoring (ECG 
and arterial pressure monitoring) and support, and intermittent 
neurological assessment. Once arterial access has been achieved, 
unfractionated heparin is given to maintain the activated clotting 
time between 250 and 300 seconds. There are no published data 
on low-molecular-weight heparin. The use of bivalirudin was 

secondarily influenced by the presence of silent infarction, con-
tralateral disease, extent of collaterals, atherosclerotic risk factors, 
plaque morphology, and other clinical features. 120  ,  121  

 Patients with asymptomatic carotid bruits are more commonly 
seen than patients with symptomatic carotid stenosis. A carotid 
bruit is identified in 4–5% of patients aged between 45 and 80 
years (it is higher in patients with known atherosclerosis), and it 
may be appreciated in most patients with carotid stenosis 
≥75%. 122  ,  123  Carotid stenoses ≥50% have been identified in 7% of 
men and 5% of women older than 65 years. However, a bruit 
may be absent if there is slow flow through a severe stenosis, so 
cervical bruits are neither specific nor sensitive for identifying 
severe carotid stenosis. 

 In asymptomatic patients, the annual stroke risk is less than 
1% for carotid stenoses <60% and 1–2.4% for carotid stenoses 
>60%. 84  ,  118  In the Asymptomatic Carotid Surgery Trial (ACST), 
there was no relationship between the risk of stroke and increas-
ing stenosis severity from 60% to 99% for asymptomatic patients. 84  
Patients referred for CABG have a particularly high incidence of 
asymptomatic carotid stenosis with a prevalence of 17–22% for 
carotid stenosis >50% and 6–12% for carotid stenosis >80%. The 
risk of perioperative stroke after CABG is 2% for carotid stenosis 
<50%, 10% for carotid stenosis of 50–80%, and as high as 19% 
for carotid stenosis >80%. 12  

 The prevalence of silent cerebral infarction in patients with 
asymptomatic carotid stenosis is estimated to be 15–20%, 118  
and appears to be associated with a higher risk of subsequent 
stroke. In patients with ICA occlusion, the annual stroke risk is 
influenced by the number of intracranial collateral pathways. 124  

 The risk of stroke is substantial in symptomatic patients; 10  ,  15  
and it is highest immediately after the initial ischemic event. In 
NASCET, the risk of stroke in the first year was 11% for carotid 
stenosis of 70–79% and 35% for carotid stenosis ≥90%. 9  ,  10  ,  35  
Patients with carotid stenosis of 70–99% had a 2-year ipsilateral 
stroke risk of 26%. Somewhat perversely, patients with near-
occlusion have a lower stroke risk. 125  ,  126  

 Other factors that influence the risk of stroke include the 
clinical manifestations, contralateral disease, intracranial disease, 
intracranial collaterals, and plaque morphology. 120  ,  127  In the 
NASCET, the 3-year risk of ipsilateral stroke was 10% after retinal 
TIAs and 20.3% after hemispheric TIAs. 128  The presence of 
concomitant intracranial disease raised the 3-year risk of stroke 
from 25% to 46% in patients with carotid stenosis of 85–99%. 129  
In NASCET patients with carotid stenosis of 70–99%, the 
presence of contralateral carotid occlusion increased stroke risk 
by more than two-fold, 130  whereas the presence of collaterals 
decreased the stroke risk by more than two-fold. 131  Stroke risk in 
symptomatic patients may also be influenced by plaque morphol-
ogy, including the presence of hypoechoic or echolucent 
plaque 132  ,  133  and plaque ulceration, 127  ,  134  irrespective of the degree 
of stenosis. 

 Beyond stroke risk, many patients with carotid stenosis are 
elderly and may have additional co-morbidities. Given the risk of 
revascularization, patients must live several years to reap the full 
benefit of either CEA or CAS (see the Kaplan–Meier survival 
curves in  Figures 6.1 ,  6.2 ) Indeed, in the European Long-term 
Carotid Artery Stenting Registry (ELOCAS), which included 2172 
CAS patients from four centers, despite a high rate of procedural 
success at 1, 3, and 5 years of follow-up, stroke or death occurred 
in 4.1%, 10.1%, and 15.1%, respectively. 135  Similarly, the early 
experience in the Carotid Revascularization Endarterectomy 
versus Stent Trial (CREST) cautioned against stenting in octoge-
narians. 136  The fact that CEA is associated with more risk in 
patients with co-morbidities does not mandate that patients 

 Table 6.2    Contraindications to carotid artery stenting  

Clinical

■ Life expectancy < 5 years

■ Strict contraindication to antiplatelet agents

■ Renal dysfunction precluding contrast administration

Neurological

■ Sustained major functional or cognitive impairment 

■ Major stroke within 4 weeks

Anatomical

■ Inability to achieve safe vascular access

■ Severe tortuosity of aortic arch

■  Severe tortuosity of common carotid artery or the internal 
carotid artery

■ Extensive plaque calcification

■ Intra-luminal thrombus

■ Total occlusion

■  Intracranial aneurysm, arterial–venous malformation or primary 
intra-axial neoplasm requiring treatment
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proximal to the bifurcation, usually by exchange over a relatively 
stiff 0.035-inch (0.9 mm) exchange length (300cm) guidewire 
with the tip located in a distal branch of the ECA artery under 
roadmap guidance. The guide is connected to a pressurized hepa-
rin flush solution (4,000 IU/liter), which is fixed to a rotating 
hemostatic valve. 

 As with angioplasty performed elsewhere in the body, the 
stenosis is first crossed with a guidewire under roadmap guid-
ance. Given the eloquent nature of the end-organ, this and any 
future manipulation of the atherosclerotic plaque must be kept to 
a minimum and performed with great care to avoid embolic 
events. Several systems or EPDs have been developed to minimize 
this risk. There are two categories of EPDs: proximal EPDs and 
distal EPDs. 

 Proximal EPDs rely on transient occlusion of the CCA 
proximal to the target lesion (with a balloon) and the ECA (with 
a smaller balloon), resulting in stagnant or reversed flow in 
the ICA. 107  ,  149  ,  150  An advantage of such a system is that embolic 
protection is established even before the lesion is crossed with a 
guidewire. After stent placement and angioplasty, aspiration of 
blood from the carotid bifurcation removes any debris; this is 
followed by re-establishment of antegrade flow with balloon 
deflation. 

 Distal EPDs are deployed after crossing the stenosis. 104  ,  125  ,  151                   – 161  
Generally these systems consists of a 0.014-inch (0.36 mm) guide-
wire-mounted occlusive balloon or filter, over which angioplasty 
and stenting are performed. Disadvantages of this design include 
the necessity of traversing the atherostenosis prior to full deploy-
ment of the balloon or filter, as well as the fact that the diameter 
of the filter sheath is substantially larger than the guidewire alone. 
In the case of balloon occlusion, once it has been inflated, debris 
is aspirated from the occluded carotid artery after manipulation 
and prior to deflation and re-establishment of antegrade flow. 
With filter devices, collected debris within the filter is captured 
and removed when the filter is reconstrained with a sheath 
( Figures 6.5 ,  6.6 ). 

  Controlled studies of proximal and distal EPDs for CAS have 
not been performed, and to date distal EPDs have advantages as 
well as limitations. 107  ,  149  ,  152   – 154  ,  156  ,  157  ,  159     – 162  Certainly even in skilled 
hands these devices do not guarantee that an embolic event 
will not occur as the result of failed deployment, vascular trauma, 

 Table 6.3    Requirements for performance of carotid 
artery stenting 117   

 Cognitive requirements 

I. A fund of knowledge regarding stroke syndromes and TIA 
etiologies, evaluation of traumatic and/or atherosclerotic 
neurovascular lesions, and inflammatory conditions of the central 
nervous system

II. Formal training that imparts an adequate depth of cognitive 
knowledge of the brain and its associated pathophysiological vascular 
processes, including management of complications of endovascular 
procedures

III. Diagnostic and therapeutic acumen, including the ability to 
recognize and manage procedural complications

IV. Ability to recognize clinical intra- or post-procedural neurological 
symptoms, as well as pertinent angiographic findings and the proper 
cognitive and technical skills to offer the most appropriate therapy. 
This might also entail optimal hemodynamic management 
necessitating sufficient neurointensive skills

 Technical requirements 

I. Technical requirements for performance of carotid stenting, 
including adequate procedural skill achieved by repetitive training in 
an approved clinical setting by a qualified instructor. This includes 
the ability to correctly interpret a cervicocerebral angiogram, which 
serves as the prerequisite and foundation for the technical 
performance of cervicocerebral angiography. Minimum numbers of 
procedures to achieve competence: 100 diagnostic cervicocerebral 
angiograms

 Clinical management requirements 

I. In addition to procedural technical experience requirements, a 
minimum of 6 months of formal cognitive neuroscience training in 
a program in radiology, neuroradiology, neurosurgery, neurology, 
and/or vascular neurology approved by the Accreditation Council for 
Graduate Medical Education is required

II. Formal training and competency in the National Institutes of 
Health Stroke Scale

III. Maintenance of proficiency by lifelong continuing medical 
education and continuing performance of cases with adequate success 
and outcomes with minimal complications

 Table 6.4    pre-carotid artery stent protocol  

History and physical examination

■ NIHSS 

■ Rankin score

Vascular imaging of vascular anatomy (carotid duplex scans, CTA, 
or MRA)

■ Preferably to include aortic arch

■ Brain imaging in symptomatic cases

Basic laboratory tests including renal function, coagulation profile 
(including aspirin and clopidogrel platelet function testing), and 
blood counts

Medication

■ Aspirin 81–325 mg per day  for at least 4 days

■ Clopidogrel: 600mg loading dose, then 75mg per day (orally)

■ Statins

■ ACE inhibitors (If indicated)

 NIHSS, National Institutes of Health Stroke Scale; CTA, computed tomography 
angiography; MRA, magnetic resonance angiography; ACE, angiotensin 
converting enzyme 

  

permitted in some CAS trials, but data in large numbers of 
patients are not available. 144  Potential advantages with bivalirudin 
include lower bleeding risk, rapid offset that permits early sheath 
removal, and no need for monitoring of the activated clotting 
time. The use of glycoprotein IIb–IIIa inhibitors has not been 
established as routine with CAS. 145  ,  146  

 Experience accessing the brachiocephalic vessels is also integral 
to successful CAS planning. 147  ,  148  It is important to recognize the 
type of aortic arch, the configuration of the great vessels, and 
the anatomic variants, because these features influence the 
complexity of the procedure and, by extension, the choice of 
catheters. (see Chapter 2). Although most procedures are 
performed utilizing femoral access to the CCA, a brachial or 
radial approach may in rare instances be necessary. 

 Following preliminary angiography to assess the precise 
location of the target lesion, a 6F interventional sheath or an 
8F guiding catheter (internal diameter 0.087–0.090 inches, 
2.2–2.3 mm) may be exchanged to provide a conduit from the 
femoral access site to the target lesion. For CCA lesions at the 
brachiocephalic origins, the conduit may only extend to the 
aortic arch. Alternatively in the more common case of a lesion 
at the bifurcation, the guide or sheath is placed in the CCA 
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carotid bifurcations, stimulation of the carotid sinus may lead to 
significant hemodynamic instability with profound bradycardia 
and hypotension, despite pre-medication with anticholinergics 
(atropine or glycopyrrolate). Vasopressors such as phenylephrine 
(10–100 mg per minute intravenously) and dopamine (5–15 µg 
per kilogram per minute intravenously) should be pre-drawn and 
available in case hypotension does not respond to fluid adminis-
tration and anticholinergics. Sustained bradycardia is unusual, 
but a temporary transvenous pacemaker should be readily 
available. Hypertension should be treated if the systolic blood 
pressure is >180 mmHg, to decrease the risk of intracranial 
hemorrhage. A more complete list of complications of CAS is 
presented in  Table 6.5 . 

  With respect to stent selection, balloon expandable stents are 
generally used for ostial lesions of the brachiocephalic origins (as 
they allow for relatively precise placement), while cervical stenoses 
are addressed by self-expanding (nitinol) stents (primarily 
because they resist deformation during neck movement or 
compression). Many companies manufacture stents with rapid-
exchange delivery systems; some also have tapered designs for 
the transition from the common to the internal carotid artery 
(see Chapter 4).   

 Carotid artery stenting: results 
 Initial experience in the USA included a variety of stents and vari-
able pre-medication and anticaogulation regimens, and the pro-
cedures were performed without the routine use of emboli 
protection. In an effort to address these limitations, one study 
reported the results of CAS after pooling data from 26 observa-
tional studies between 1990 and 2002, which included nearly 
3,500 CAS procedures. 165  This analysis suggested that stroke or 
death at 30 days was observed in 5.5% of patients who were 
treated without EPD and 1.8% of patients who were treated 
with EPD. Furthermore, CAS without EPD was associated 
with more cases of major (1.1% vs. 0.3%) and minor (3.7% vs. 
0.5%) strokes. Nevertheless, it should be noted that operator 
experience, devices, and medical regimens also evolved over this 
same period. 

 Subsequently, the Global Carotid Artery Stent Registry 166  
surveyed 12,392 CAS procedures in 11,243 patients from 53 sites 
from 1997 to 2002. 166  The technical success rate was 98.9%; while 
at 30 days TIA was noted in 3.1% of patients, minor stroke in 

or incomplete capture of debris. 156  ,  163  ,  164  Furthermore, certain 
situations such as severe tortuosity of the ICA or precarious 
positioning of the guide catheter extending from the arch may 
predispose to such failures and are relative contraindications to 
the use of EPDs. 153  

 If a patient does develop focal neurological symptoms or 
signs during the procedure, removal of the protection device 
(or deflation of the occlusion balloon) may result in resolution. 
Alternatively if, after this maneuver, the patient remains symp-
tomatic, it is important to assess for evidence of distal emboli. 
Distal ICA or proximal middle cerebral artery occlusions are 
associated with a high degree of morbidity and should entertain 
consideration of mechanical means of thrombectomy (see 
Chapter 5). Alternatively if there is no evidence of occlusion, and 
particularly if symptoms are accompanied by acute headache, 
hypertension, and bradycardia, an emergent head CT scan (con-
ventional or cone bean with flat-panel digital systems) should be 
obtained to exclude hemorrhage. 

 After placement of the EPD, the stenosis is usually under-
dilated with a small diameter angioplasty balloons (2–4 mm 
in diameter and 20 mm in length) to allow passage of the stent 
delivery system. With placement of the stent, the carotid stenosis 
is again dilated using an undersized balloon (typically 5mm in 
diameter and 15–30 mm in length) to expand the stent more fully 
( Figure 6.7 ). Because over-aggressive balloon inflation increases 
the risk of embolic complications there is no need for an angio-
graphically perfect result. Additionally, in previously unoperated 

 Figure 6.5 

  FilterWire (Boston Scientific, Natick, Massachusetts) post-carotid 
angioplasty, demonstrating atherosclerotic debris (arrow).  

Figure 6.6
Accunet (Abbott Vascular, Abbott Park, Illinois) closed (above) and open (below), demonstrating a captured thrombotic embolus.

(a) (b)
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were roughly 2.5%, and ipsilateral neurological events were 
observed in approximately 1.5% of patients ( Figure 6.8 ). The 
Prospective Registry of Carotid Angioplasty and Stenting 
(Pro-CAS) was started the following year, and showed similarly 
high rates of technical success. 167  However, in-hospital events 
included TIA in 6.0% of patients, stroke in 2.5%, and stroke or 
death in 2.8%. The risk of stroke or death was 2.1% with EPD, 
2.2% without EPD, 3.1% in symptomatic patients, and 2.4% in 
asymptomatic patients. 

  Early randomized trials of CAS compared with CEA suffered 
from patient selection bias, rudimentary technology, and 
operator inexperience; not surprisingly, results were mixed. The 
first trial enrolled symptomatic low-risk patients with carotid 
stenosis >70%. 168  After five of seven CAS patients suffered a 
stroke, the study was terminated. The Wallstent trial was similarly 
halted prematurely when the 30-day incidence of stroke or death 
was 12.1% after CAS and 4.5% after CEA. 169  Brooks et al. reported 
104 patients with symptomatic stenosis >70% and 85 patients 
with asymptomatic stenosis >80%; there was no in-hospital 
stroke or death after CEA or CAS. 170  The Carotid and Vertebral 
Artery Transluminal Angioplasty Study (CAVATAS) randomized 
504 patients, but only 22% of the angioplasty group received 
stents. 139  Although stroke or death rates at 30 days occurred in 
10% of patients in both groups, angioplasty was associated with 
lower rates of cranial neuropathy, major hematoma, myocardial 
infarction, and pulmonary embolism, and with a higher rate of 
restenosis at 1 year. The rate of stroke or death at 3 years was 
similar. 139  

 More recently the Stenting and Angioplasty with Protection in 
Patients at High Risk for Endarterectomy (SAPPHIRE) study 
randomized high-risk patients and compared CAS with EPD 

Figure 6.7
(a) Severe carotid stenosis with guide catheter in place. (a) Relatively straight distal internal carotid is optimal for the use of an 
emboli protection device. (b) Angioplasty balloon in place following pre-dilatation with a 3 mm × 20 mm balloon. (c) Angiogram 
following stent deployment and post-dilatation.

(a) (b) (c)

 Table 6.5    Complications of carotid artery stenting  

Cardiovascular
   ■  Vasovagal reaction (5–10%)  
■    Vasodepressor reaction (5–10%)  
■    Myocardial infarction (1%)   

Carotid artery
   ■ Dissection (≤1%)  
■    Thrombosis (≤1%)  
■    Perforation (≤1%)  
■    External carotid artery stenosis or occlusion (5–10%)  
■    Transient vasospasm (10–15%)  
■    Re-stenosis (3–5%)   

Neurological
   ■  Transient ischemic attack (1–2%)  
■    Stroke (2–3%)  
■    Intracranial hemorrhage (≤1%)  
■    Hyperperfusion syndrome (≤1%)  
■    Seizures (≤1%)   

General
   ■  Access site injury (5%)  
■    Blood transfusion (2–3%)  
■    Contrast nephropathy (2%)  
■    Contrast reactions (1%)  
■    Death (1%)   

2.1%, major stroke in 1.2%, death in 0.6%, and stroke or death in 
4.7%. The risk of stroke or death was 6.2% without EPD and 
2.8% with EPD. Stroke or death was seen in 4.9% of symptomatic 
patients and in 2.9% of asymptomatic patients. During the first 
3 years of follow-up, re-stenosis rates (by carotid duplex studies) 
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with accelerated intimal hyperplasia post-endarterectomy and in 
patients who have previously had radiation therapy to the affected 
region. Before the era of drug-eluting coronary stents, there were 
case reports of successful intraluminal brachytherapy coronary 
systems adapted for carotid in-stent stenosis. 172  ,  173  In the absence 
of such systems (plagued by both FDA and Nuclear Regulatory 
Commission (NRC regulations), there are few alternatives. One 
promising technology may be the use of angioplasty balloons 
impregnated with paclitaxel. 174     

 Revascularization of intracranial 
atherosclerotic stenoses 
 As noted previously, intracranial atherosclerotic disease is 
more frequently identified in non-whites (see  Figure 6.4 ). 27   – 29  
Nevertheless, many patients with asymptomatic intracranial 
disease are identified during evaluation for suspected carotid 
artery disease. The presence of asymptomatic intracranial stenosis 
usually does not influence decision-making about extracranial 
carotid revascularization. 129  ,  175  

 As with carotid atherosclerotic stenosis, symptomatic high-
grade (>70%) intracranial atheromatous disease is characterized 
by a malignant natural history despite optimal medical therapy. 20  ,  21  
In the recent Warfarin–Aspirin Symptomatic Intracranial Disease 
(WASID) study, 25% of patients presenting with 70–99% stenosis 
experienced a stroke in the ipsilateral vascular territory within 
2 years despite treatment with either warfarin or aspirin. 21  
However, unlike lesions of the bifurcation, there is no commonly 
accepted surgical option. 7  Consequently, there have been numer-
ous attempts to apply a variety endovascular techniques and 
devices to intracranial stenoses, many of them not originally 
designed for this purpose. 

against CEA; the trial was stopped prematurely because of slow 
enrollment due to high surgical risk for CEA. 171  Inclusion criteria 
included symptomatic stenosis >50% or asymptomatic stenosis 
>80%, plus at least one high-risk criterion (see  Table 6.1 ). Tech-
nical success was achieved in 95.6% of CAS patients. The inci-
dence of the composite endpoints (myocardial infarction, stroke, 
or death within 30 days or ipsilateral stroke or death at 1 year) 
was 12% after CAS and 20.1% after CEA (p = 0.048). However, 
when myocardial infarction was excluded, the difference in stroke 
and death between CAS and CEA was not statistically significantly 
different. In the patients with symptomatic stenosis, the primary 
endpoints after CAS and CEA were 16.8% vs. 16.5%, while in 
asymptomatic patients, there were fewer primary endpoints after 
CAS (9.9%) vs. CEA (21.5%) (p = 0.02).   

 Post-procedure care 
 Post-procedure monitoring should include assessment of the 
arterial puncture site as well as routine neurological checks in a 
unit capable of hemodynamic monitoring. All patients should 
undergo a formal National Institutes of Health Stroke Scale 
(NIHSS) assessment within 24 hours of CAS, or sooner if symp-
tomatic. Patients who are neurologically and hemodynamically 
stable (90% of patients) can usually be discharged the following 
day with continuation of statins, clopidogrel, and aspirin. Aspirin 
is typically given indefinitely while clopidogrel is discontinued at 
6–8 weeks. Patients who have no deficits but are hemodynamially 
unstable will require fluids, and possibly pressors, usually for 
24–48 hours. Patients with stroke or TIA will require appropriate 
imaging (usually diffusion-weighted MRI), intensive care, and 
supportive measures based on the extent of injury. 

 Carotid duplex surveillance is performed at 6 months and 
1 year to check for re-stenosis. Anecdotally, personal experience 
would lead us to believe that re-stenosis is commoner in patients 

 Figure 6.8 

  (a) Post-stent severe re-stenosis at 
the distal tines of the initial stent. 
(b) Postangioplasty and re-stenting of the distal 
margin of the first stent. Notice the degree of 
persistent intimal hyperplasia at the proximal 
margin of the stent.  

(a) (b)
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 Intracranial angioplasty and 
stenting: technique 
 More recently, a prospective, multi-center study reported on the 
use of a self-expanding stent and angioplasty balloon system 
specifically tailored to the intracranial circulation (Wingspan 
System, Boston Scientific). 24  ,  25  In this system, guide catheter access 
and anticoagulation regimens are similar for cervical stent proce-
dures. The diameter of the stenotic lesion was measured using 
biplane angiography, and compared to a reference diameter 
of the normal vessel (usually proximal to the lesion) using the 
technique in the WASID study. 20  Subsequently, a 2.3F micro-
catheter is passed under roadmap guidance across the target 
lesion using a 0.014-inch (0.36 mm) guidewire. The micro-cathe-
ter is then exchanged over a 0.014-inch (0.36 mm), 300 cm 
exchange wire for a Gateway angioplasty balloon. The balloon 
diameter is typically under-sized to 80% of the ‘normal’ parent 
vessel diameter proximal to the lesion. The balloon length is 
selected to match the length of the lesion. Angioplasty is per-
formed with a slow graded inflation of the balloon to a pressure 
of between 6 and 12 atmospheres, typically for a duration of 
120 seconds. Following angioplasty, the balloon is removed and 
conventional angiography is repeated ( Figure 6.9 ). 

  The Wingspan delivery system is then prepared and manipu-
lated over the exchange wire across the target lesion. The stent is 
purposely sized to exceed the diameter of the normal parent 
vessel by 0.5–1mm. The stent length is selected to equal or exceed 
the length of the angioplasty balloon and diseased segment. 

 Preliminary results using this technique suggest a far lower 
complication rate (2%) than seen with previously used balloon 
mounted stents. 24  Additional evidence of procedural safety was 
provided in this study by post-procedure diffusion-weighted 
MRI, which revealed new embolic lesions in only 29% of patients 
(seven of 24 patients for whom this information is available, all 
but one of whom were asymptomatic) – a rate that compares very 
favorably with the 70% rate of diffusion-positive lesions reported 
after the use of balloon-mounted coronary stents. 182  The dramatic 
reduction in procedural complications can be attributed to 
the device design and to the recommended treatment strategy 
of under-sizing the angioplasty balloon and over-sizing the 
self-expanding stent to achieve the desired angiographic result 
( Figures 6.10 ,  6.11 ). 

  Turk et al. reported follow-up (mean 7.3 months) of 93 of 
155 intracranial stenoses (equally distributed in the anterior 
and posterior circulation) treated with Wingspan. 25  In this series, 
re-stenoses were more commonly seen in patients under the 
age of 55 years (odds ratio 2.6) and more often seen in the 
anterior circulation (particularly the supraclinoid internal carotid 
artery – 88.9% of this subset). 25  Excluding supraclinoid lesions, 
the re-stenosis rate was only 24.4%. Similarly symptoms were 
more likely to return in carotid lesions (40%) versus other 
intracranial sites (3.9%) – a much more favorable comparison to 
medical therapy. In-stent stenosis generally appears within the 
first 6 months and typically presents with TIA (delayed 
stroke more commonly presents as a result of failure of medical 
therapy.) As with carotid re-stenosis, treatment options are 
limited to angioplasty 174  or rarely, re-stenting.   

 Follow-up: transcranial Doppler 
 Imaging evaluation of symptomatic intracranial stenosis is similar 
to that of extracranial atherosclerotic disease. In the presence of 

 Data continue to demonstrate that angioplasty alone is a safe 
and often effective treatment. 176   – 178  The major limitations of 
angioplasty without stenting include vessel recoil with acute re-
stenosis and acute vessel occlusion secondary either to procedural 
dissection or to recoil with regional platelet aggregation. 

 Additionally, series have suggested that some patients often 
require multiple procedures, owing to recurrent stenosis. Mori et 
al. reported a series of 42 patients undergoing angioplasty for 
symptomatic intracranial stenoses in which the procedural success 
rate was 76% (32 of 42 lesions). 178  Two of 42 patients (4.8%) expe-
rienced major procedural strokes, and an additional eight lesions 
could not be treated. Of the 32 patients treated successfully, 
nine (28%) demonstrated re-stenosis at follow up and were 
re-treated one or more times. During these secondary treatments, 
two patients had experienced ipsilateral TIAs and one patient 
suffered a subarachnoid hemorrhage. A very useful contribution 
from this work was the characterization of stenoses (according to 
length, shape, and so on) such that relative risk as well as benefit 
could be stratified ( Table 6.6 ). 178  In effect, the more focal the 
stenosis and the less tortuous the vessel, the better the results are 
likely to be. 

  Marks et al. analyzed 36 patients with symptomatic ICA 
disease who underwent angioplasty only. Two procedural deaths 
and one symptomatic re-perfusion hemorrhage occurred. Eleven 
of 36 patients had radiographic dissections. Clinical follow-up 
(average 52.9 months) in the surviving 34 patients showed two 
strokes occurring in the ipsilateral hemisphere (15.3%). A more 
recent, multi-center, retrospective experience of 120 patients 
reported a 5.8% rate of stroke and death within 30 days of 
the procedure, with an additional 5.2% of patients experiencing 
a recurrent stroke during long-term (average 42.3 months) 
follow-up. 176  

 Angioplasty with balloon-mounted coronary stents has been 
associated with high rates of procedural morbidity and 
mortality. 179   – 181  In one of the largest available series of patients 
with symptomatic vertebrobasilar insufficiency undergoing treat-
ment with balloon-expandable stents, nine periprocedural neu-
rological complications (stroke or death) were encountered 
during the treatment of 39 patients (23.1%). 179  Hence, even those 
patients who are at the greatest risk of recurrent stroke on best 
medical therapy (take those with high-grade intracranial stenoses 
presenting with stroke) are exposed to the equivalent of up to 
2 years of stroke risk on medical therapy during attempted 
placement of these devices.  

 Table 6.6    Mori classification of intracranial stenoses 178   

 Type A 

■ Short, focal (≤ 5mm)
■ Concentric or moderately eccentric
■ Non-occlusive

 Type B 

■ Tubular (5–10mm)
■ Extremely eccentric, and moderately angulated
■ Occluded (< 3 months )

 Type C 

■ Diffuse (≥10mm)
■ Severely angulated or tortuous proximal segment
■ Chronic occlusion (>3 months)
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in cases of immediate post-procedure symptoms, transcranial 
Doppler may be useful to detect emboli and secondarily to assess 
the effectiveness of the anticoagulation regimen. 184  ,  185      

 Dissection and blunt trauma 
 Dissection of the carotid artery is uncommon with an average 
annual incidence of 2.6 per 100,000 (Rochester, Minnesota 

symptoms, preliminary evaluation is likely to include initial 
imaging of the brain. Given the availability of multi-row spiral 
CT scanners and MRI, CTA and MRA are both reasonable first 
steps in the work-up. However, because of the unknowns regard-
ing re-stensosis of treated intracranial lesions, regular follow-up 
is needed. Both CTA and MRA may be subject to significant post-
stent artifact as well, and the expense may limit their utility for 
routine follow-up in the absence of symptoms. Transcranial 
Doppler, like carotid duplex studies, measures intracranial blood 
flow patterns and so indirectly assesses stenoses. 183  Additionally, 

 Figure 6.9 

  (a, b) Anterior–posterior and oblique 
views of a focal stenosis of the distal 
right middle cerebral artery beyond the 
origin of the anterior temporal 
branches. (c, d) Corresponding views 
after Gateway and Wingspan 
revascularization.  

(a) (b)

(c) (d)

 Figure 6.10
   Lateral views. (a) Before and (b) after 
Gateway and Wingspan revasculariza-
tion of a severe, focal proximal basilar 
artery stenosis (Mori type A).  

(a) (b)
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the stenoses in the traumatic group progressed to occlusion. 196  
These data suggest that the insult in traumatic dissection is 
probably more severe than that of the spontaneous group, as 
might be expected. 

 The association of intrinsic arteriopathies with dissection, 
including fibromuscular dysplasia, Marfan syndrome, Ehlers–
Danlos syndrome type IV, and cystic medial necrosis, is well 
known. It is estimated that 15% of intrinsic arteriopathies are 
related to underlying fibromuscular disease ( Figure 6.12 ) 193  ,  195  ,  197  ,  198  
In such cases, 197  ,  198  multiple cervical arteries may be involved at 
the time of diagnosis, although recurrent dissection is uncommon 
and rarely involves the same vessel segment in the absence of 
underlying vasculopathy. 193  ,  195  ,  198   – 200  

  Whatever the etiology, the injury to the vessel results in blood 
penetrating the intima into the vessel wall, with variable cephalad 
extension though rarely beyond the petrous segment. 193  ,  197   – 199  
Dissections involving the intracranial vessels have a catastrophic 
clinical course. 187  ,  201  ,  202   

 Imaging manifestations 
 Classically, the angiographic findings have been described as 
a tapered narrowing that begins in or about the carotid bulb 
and ends at the base of the skull. 203  In addition to luminal 
compromise and vessel thrombosis, irregularity and pseudoaneu-
rysms may occur. 193  ,  204  Houser et al. detailed the temporal 
evolution of the angiographic findings in dissection in 1984. 197  In 
their series, the appearance of the dissection varied, depending 
on its severity and extent and the interval between onset and 
angiography. The disruption initially manifested itself as an 
eccentric tapered stenosis in 47% of cases, a tapered stenosis and 
a dissecting aneurysm in 28%, an occlusion in 18%, and a dissect-
ing aneurysm alone in 7%. Subsequently, stenotic dissections 
angiographically resolved in 60% of cases, improved in 20%, and 
progressed in 15%, while dissecting aneurysms diminished in half 

epidemiologic data from the Mayo Clinic). 186  Nevertheless, it 
should be emphasized that dissection represents a significant 
cause of stroke in young adults. 187  ,  188  In some series, up to 80% of 
patients with carotid dissection will present during the first month 
with ipsilateral symptoms of cerebral ischemia. 189  Equally 
concerning is the report by Mokri et al., which documented 
subsequent development of stroke as late as 6–10 years after the 
initial insult. 190  

 The diagnosis cervical vascular dissection requires a high 
index of suspicion, as the presenting symptoms are frequently 
non-specific. Headache is the most common symptom, often 
with pain in the neck directly over the course of the ipsilateral 
carotid artery and/or ipsilateral headache. A total of 90% of 
patients experience symptoms within the first month after 
the injury. 191  Other clinical manifestations in decreasing order 
of frequency include: focal cerebral ischemic symptoms, 
neck pain, bruit, and tinnitus. Less common symptoms are 
Horner’s syndrome, syncope, scalp tenderness, or neck 
swelling. 192  ,  193  

 Most carotid dissections are either a result of blunt trauma 
or occur spontaneously (and are frequently idiopathic). 190  ,  194  
The role of minor trauma in the absence of an arteriopathy 
has been questioned because of the difference in the clinical 
course of dissections resulting from severe trauma and spontane-
ous dissection or those resulting from minor trauma. 193  ,  195  In his 
review, Mokri analyzed 70 patients with spontaneous dissection 
and 21 patients with traumatic dissection, with a follow-up 
period of 64 months for the spontaneous group and 40 months 
for the traumatic group. 196  In this series traumatic dissections 
were less common than spontaneous dissections, although 
traumatic were associated with a worse prognosis. The traumatic 
group had a higher incidence of focal cerebral ischemic manifes-
tations than the spontaneous group (71% versus 61%), although 
the difference was not statistically significant. Patients with 
traumatic dissections demonstrated a higher incidence of 
aneurysmal degeneration with a lower likelihood that the aneu-
rysms would resolve with conservative treatment. Also, more of 

Figure 6.11
Oblique views. (a) Before and 
(b) after Gateway and Wingspan 
revascularization of a longer segment 
of atherosclerotic stenosis of the 
basilar artery (Mori type B).

(a) (b)
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20 patients with 26 spontaneous dissecting aneurysms with 
MRA over a mean duration of 41 months; no progression was 
noted, four dissecting aneurysms decreased in size, and two 
resolved. 215    

 Medical treatment of dissection 
 The etiology for the ischemic symptoms begins with thrombus 
formation on the damaged endothelial surface. Subsequently 
the natural history is one of either complete thrombosis of the 
arterial lumen or distal embolization leading to stroke in the 
majority of cases. 189  Therefore, the initial treatment for patients 
with carotid dissections, of any etiology, has centered on the 
use of anticoagulation in an attempt to limit this potential for 
embolization or vessel thrombosis. 204  At this time, no data exist 
from controlled randomized trials; however, through the use of 
transcranial Doppler monitoring, therapeutic levels of systemic 
heparin resulted in reduced frequency of high-intensity transient 
signals corresponding to a reduced incidence of intracranial 
emboli. 216  In uncomplicated dissection, the initial therapy remains 
anticoagulation for a period of 3 months followed by surveillance 
using either duplex scanning or MRA. 217  ,  218  If there is a persistent 
abnormality, anticoagulation is usually continued for a period of 
3 more months, with repeat imaging. It has been reported that 
47–85% of stenosed or occluded arteries will re-canalize over a 
period of 6 months with anticoagulation. 193  ,  199  

 In a minority of patients (7–14%), new ischemic neurologic 
symptoms will develop despite adequate anticoagulation. These 
are related either to embolization or to occlusion of the dissected 
carotid artery, the majority being related to embolization. 193  ,  219  ,  220  
In their review of the literature on traumatic carotid dissections, 
Krajewski and Hertzer noted a much higher complication rate in 
the patients with traumatic carotid dissections treated conserva-
tively. 221  Their evaluation revealed that 86% of patients treated 
non-surgically suffered either death or severe neurologic deficit, 
while only 53% of those undergoing surgical intervention and 
correction suffered the same fate.   

and resolved in one-quarter of cases. An angiographic residuum 
was evident in 25% of dissections. 

 MRI and color-flow Doppler ultrasound are efficacious, non-
invasive methods of diagnosis and longitudinal evaluation of a 
patient with a clinical suspicion of dissection, 205  and they are 
frequently complementary. 188  ,  206  Ultrasound may demonstrate 
both the true and false lumen. The true lumen is perhaps best 
identified with color-flow Doppler as antegrade signal in the 
absence of atherosclerotic change (plaque or calcification), and it 
may gradually re-canalize (in 68% of cases) after the initial 
injury. 207  Alternatively, the appearance of the false lumen is quite 
variable depending on the extent of dissection and the presence 
of thrombus, but it is typically described as having high-resistance 
flow, which may be forwards, reversed, or bidirectional. 208  A key 
limitation in the ultrasound evaluation of dissection is the limited 
ability to establish reliably the distal extent of the flap. 209  

 MR scanners may apply multiple techniques to the diagnosis 
of carotid dissection. Conventional T1-weighted MRI may 
directly image subintimal thrombus with its high signal paramag-
netic effect in addition to the patent lumen, which is character-
ized by low signal on the basis of persistent flow (this can be 
best visualized with the elimination of flow artifacts with special 
presaturation pulses (see  Figure 6.12a ) 205  ,  210   – 212  MRA with or 
without contrast may also be used to evaluate the brachiocephalic 
vessels, although because of the method by which these images 
are produced, subacute intramural thrombus may erroneously 
produce an image of a dilated (rather than tapered) lumen. 
Unencumbered by facial and skull bones, MRI is helpful in 
assessing the distal extent of dissection as well as its temporal 
resolution with medical management. Levy et al., in a prospective 
blinded study, compared MRI to three-dimensional time-of-flight 
MRA to conventional angiography in a series of 19 patients with 
spontaneous or traumatic dissections (comprising 19 carotid 
and 5 vertebral vessels). 205  MRI and MRA demonstrated excellent 
sensitivity and specificity (84% and 99%, respectively, for MRI, 
and 95% and 99%, respectively, for MRA). 205  MRA is also useful 
in follow-up of patients with dissections by monitoring the 
resolution of an intramural hematoma or the development of 
complications of dissection. 204  ,  210  ,  213  ,  214  Djouhri et al. followed 

 Figure 6.12 

  (a) Axial T1-weighted MRI with flow saturation demonstrating subintimal thrombus compromising the lumen (arrow) in a right 
carotid artery dissection. (b) Corresponding angiogram. Beaded distal appearance suggested fibromuscular disease. (c) Aortic 
angiogram demonstrating renal artery involvement by fibromuscular dysplasia (arrow).  

(a) (b) (c)
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 Another retrospective review from Malek et al. included 
10 patients over an 18-month period treated with angioplasty and 
stenting. 224  The etiology of the dissection was spontaneous in five 
patients, iatrogenic in three, and traumatic in two. They used 
Wallstents in eight patients, SMART stents in two patients, and 
GFX balloon-expandable stents in one patient (some patients 
required multiple stents), with an initial technical success rate 
of 100% as well. The stenoses improved form a mean stenosis 
of 74 ± 5.5% to 5.5 ± 2.8% without any peri-procedural TIAs, 
cerebrovascular accidents, or deaths, and without the use of any 
angioprotection devices. The mean follow-up was 16.5 ± 1.9 months, 
during which time there was one cerebrovascular accident. This 
complication was in a patient with a contralateral ICA occlusion, 
and it followed an episode of hypotension 8 months after the 
initial procedure. 224  

 Schievink et al. reported a retrospective review focusing only 
on the surgical treatment of extracranial ICA aneurysms second-
ary to dissection. 222  In this study, there were 22 patients with 
chronic carotid dissections and subsequent aneurysm formation. 
The etiology of the initial dissection was traumatic in 11 patients 
and spontaneous in 11 patients. The mean age of the patients was 
39 years (21–57 years). Five patients underwent cervical carotid 
ligation, 13 patients were treated with resection of the aneurysm 
and reconstruction, and the final four patients were treated with 
ECA–ICA bypass. In this group of patients, there were two post-
operative strokes (9%). Cranial nerve complications were again 
frequent; they included 12 cases of transient palsies. There were 
no long-term neurologic sequelae during the mean follow-up of 
6.2 years. 222  In the context of contemporary endovascular tech-
niques, such pseudoaneurysms are better treated with covered 
stents (if the vessel is relatively straight) or with stenting followed 
by coil embolization in cases involving the skull base or where 
there is significant tortuosity.    

 Penetrating trauma 
 The frequency of firearm-related injuries has increased dramati-
cally in many US urban centers. 225  It is estimated that there are 
7.4 non-fatal shootings for each murder, with firearms fatalities 
rivaling those from motor vehicle trauma in the USA. 226  ,  227  

 The leading cause of death in penetrating neck trauma is 
vascular injury. 228  However, predicting vascular injury in gunshot 
wounds of the neck is difficult because of erratic trajectories 
and the variety of ballistic missiles, which can have different char-
acteristics, and because cavitation and bullet fragmentation can 
produce tissue damage far beyond the immediate path of the pri-
mary projectile. 229  ,  230  High-velocity weapons impart kinetic energy 
in a radial direction, stretching tissue 231  and creating a temporary 
cavity that can be 30 times larger than the bullet diameter. 232  
Bleeding, shock from injury to the major vessels in the neck, and 
compromise of the airway are the major factors causing death 
after penetrating neck injury. Clinical evidence of active bleeding, 
shock, or an expanding hematoma or airway compromise all 
mandate immediate surgical exploration. 228  ,  233  ,  234   

 Classification and clinical course 
 In the absence of clinical evidence of cervical vascular injury, a 
grading scheme is used to classify penetrating neck injuries on the 
basis of the anatomic zone of the injury: 235  ,  236  

 Revascularization strategy 
for dissection 
 In the setting of an acute dissection, there are two indications for 
immediate intervention. The primary indication is fluctuating or 
deteriorating neurologic symptoms despite adequate anticoagu-
lation. Additionally, there are a number of patients who are poor 
candidates for anticoagulation who may be offered surgical or 
endovascular repair, even though some would argue that these 
patients may be adequately treated with antiplatelet therapy 
alone. In the setting of the chronic dissection, there are two 
sequelae – persistent high-grade stenosis and aneurysmal degen-
eration – which offer relative indications for therapeutic inter-
vention. Normally, those patients with a persistent aneurysm in 
the setting of chronic dissection may be offered treatment to 
minimize the risk of thromboembolization and subsequent 
stroke. However, these pseudoaneurysms rarely enlarge and there 
are no reports of ruptured extracranial ICA aneurysms secondary 
to dissection in the literature to date. 222  

 Surgical treatment of the dissected carotid artery is associated 
with a much higher morbidity and mortality than is open surgery 
for atherosclerotic stenosis of the carotid artery; these higher rates 
are primarily related to the greater cephalocaudad extent of 
disease. Additionally, there has been reported a higher incidence 
of facial and lower cranial nerve palsies. The major morbidity 
associated with the high cervical exposure necessary for repair is 
injury to the pharyngeal and superior laryngeal branches of the 
vagus nerve. This usually leads to dysphasia and dysphonia, 
which are usually transient. Additionally, the incidence of neuro-
logical complications of surgical repair of carotid dissection is 
also higher (9–10%) than after CEA. 222  

 Contemporary experience suggests that endovascular tech-
niques have a significant role in carotid dissection with symptom-
atic high-grade stenosis or pseudo-aneurysm. Key to the success 
of these maneuvers is the judicious use of digital roadmapping 
in order to navigate safely and access the true lumen with a 
guidewire; failure to do so will undoubtedly lead to inadvertent 
extension of the false lumen. This maneuver may also be safer 
with the pre-operative knowledge of the cephalocaudal extent 
of the lesion on pre-procedure imaging studies. Given these 
limitations and the underlying pathologic process, the use of 
EPDs is contraindicated. 

 These procedures include balloon angioplasty and stent place-
ment in patients with stenotic lesions, and stenting in conjunc-
tion with coil embolization of the aneurysm through the struts of 
the stent in patients with aneurysmal degeneration of the carotid 
artery. Typically, the self-expanding stents are preferred in this 
location because of the sustained radial force that they provide. 
Balloon-expandable stents are occasionally utilized in the higher 
cervical or intracranial portions of the carotid artery. 

 Liu et al. reported a series of seven patients over an 8-year 
period who were treated with angioplasty and stenting of carotid 
artery dissection. 223  They placed a total of 11 stents [eight Palmaz 
(balloon-expandable) stents and three Wallstents (self-expanding)] 
with an initial technical success rate of 100%. A total of 86% of 
the patients (six of the seven) demonstrated no evidence of re-
stenosis at a mean follow-up of 20.2 months (1–67 months). One 
patient who was treated for pseudo-aneurysm of the carotid 
artery as a direct result of a dissection occluded at 3 months. This 
patient was treated with a polytetrafluoroethylene-covered stent. 
None of the seven patients experienced new or recurrent ischemic 
neurologic symptoms. The mean follow-up for this study was 
42.9 months (13–72 months). 223  
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 Figure 6.13 

  (a) Lateral plain film, and (b) MRI of a 55-year-old woman with a self-inflicted high-caliber (short arrow) gunshot wound 20 years 
previously, transecting the left optic nerve (long arrow). (c) Anterior–posterior (AP) Plain film and the coronal CT (d) demonstrating 
recent self-inflicted small-caliber rifle wound with the missile embedded in the sphenoid bone (arrow). (e) AP and (f) Lateral right 
internal carotid artery angiogram demonstrating a high-flow carotid cavernous fistula secondary to as lacerated carotid artery within 
the cavernous sinus. Extensive venous outflow (arrows) is compromising vision in the remaining right eye (g) Clinical image. 
(h) AP unsubtracted and (i) lateral subtracted angiogram following detachable balloon embolization (block arrow) (j) Clinical image 
24 hours post-embolization (notice the persistent pupillary defect on the right).  
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■   zone I extends from the root of the neck and involves the 
area from thoracic inlet to the cricoid cartiledge  

■   zone II extends from the cricoid region to the angle of the 
mandible  

■   zone III extends from the angle of the mandible to the base 
of the skull.    

 Although there are no prospective data demonstrating signifi-
cant advantages of a surgical approach, often the injury zone 
dictates the treatment strategy. Surgical exploration is often 
recommended for asymptomatic patients with zone II injuries 
because such surgery is associated with low morbidity and 
mortality. Vascular injuries in zone I have the highest mortality 
rate, owing to concomitant injury to the subclavian and innomi-
nate arteries and veins, which results in rapid exsanguination. 228  
Physical examination of zones I and III is very difficult, and 
angiography is often performed in these circumstances.   

 Endovascular management 
 In the past, expectant management was often recommended 
for asymptomatic zone I and III injuries, because these areas are 
difficult to explore and exploration was associated with greater 
surgical morbidity and mortality; conversely, endovascular access 
to these regions is relatively straightforward. This approach is 
dictated by three factors: 

■   the hemodynamic status of the patient and presence of 
hypovolemic shock;  

■   the neurologic status of the patient and the ability to 
respond to commands during a test balloon occlusion 
( Figure 6.13 ); and  

■   the extent of non-cerebrovascular injury and the extent to 
which this may limit post-procedure anticoagulation.    

   In the event of significant hemodynamic instability, all bets are 
off: the hemorrhage must be stopped even if by vascular sacrifice 
( Figure 6.14 ). Under optimal conditions this would be best 
accomplished by test balloon occlusion (TBO) for 30 minutes 
followed by hypotensive challenge to ensure neurologic integrity 
by virtue of collateral support (e.g. from the circle of Willis). 
(Of course, this procedure requires an interactive, oriented, and 
non-medicated patient.) If the patient were to pass the TBO, the 
injured vessel could merely be sacrificed. 

  Alternatively if the patient fails TBO, another option would be 
stenting following by embolization or possibly primary treatment 
utilizing a covered stent. The presumption in these cases is that 
the patient can be anticoagulated with antiplatelet agents.    

 Arteritis 
 Takayasu arteritis (TA) is a chronic, inflammatory vascular disease 
that affects the aorta and its primary branches ( Figure 6.15 ). It 
was initially described by an ophthalmologist, Mikito Takayasu, 
who reported the case of a 21-year-old woman who had sudden 
loss of vision accompanied by a wreath of vessels around the optic 
disc on fundoscopic examination. 237  Although originally described 

 Figure 6.14 

  (a) Laryngoscopic image of the 
oropharynx in a 2-year-old child 
referred for severe epistaxis 
demonstrates a puncture wound on 
the right (block arrow). Uvula (u) and 
tongue (t). This was believed to 
have resulted from fall while the 
child was chewing on a sharpened 
pencil. (b) The patient was 
emergently intubated followed by 
torrential hemorrhage. Rapid 
vascular access and angiography 
demonstrated a right internal 
carotid artery (RICA) 
pseudoaneurysm, with serial views 
(c) demonstrating rupture and 
extravazation.  The patient suffered 
cardiovascular collapse and arrested 
twice on the angiography table. 
Despite the lack of complete 
angiography or test balloon 
occlusion, (d) the RICA was sacrificed 
in desperation using detachable 
and fibered (pushable) coils. The 
patient sustained no neurological 
deficit and was discharged to home 
4 days later.  
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45 patients who had TA, with a preliminary success rate of 89% 
and a patency rate of 79% at a mean follow-up of 43 months. 251  
More recent US data were less optimistic, with initial success rates 
of 56% and a high rate of complication, including re-stenosis in 
(up to 80% of cases). 240  ,  242  One factor that has been associated 
with the procedural failure is the presence of active inflammatory 
disease at the time of revascularization. 252     

 Conclusion 
 The treatment of all forms of ischemic cerebrovascular disease 
has changed dramatically in the past 10 years. Endovascular tech-
niques are now often considered a first-line means of treatment 
for many conditions. Nevertheless, many additional refinements 
remain to be implemented in an effort to broaden the scope of 
endovascular treatment to the majority of ischemic stroke 
patients.     
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 Introduction 
 The term ‘aneurysm’ comes from the Greek, meaning a ‘widening’, 
and it most commonly refers to a pathologic dilatation or 
outpouching of an artery. The most feared manifestation of this 
condition exists within the cerebral arteries residing within the 
subarachnoid space; the most serious sequelae of an aneurysm in 
these arteries is hemorrhage leading to precipitous, and often 
fatal, increases in intracranial pressure. 

 Aneurysms have been recognized since ancient times. Premor-
bid recognition awaited the routine use of lumbar puncture 
for diagnosis of subarachnoid hemorrhage and radiography 
to detect subtle signs of mass effect or calcification. 

 Successful initial attempts at aneurysm treatment occurred in 
the late 1800s primarily through the use of parent artery ligation 
(the ‘Hunterian closure’). 1  With the introduction of cerebral 
angiography in   1927 and the progression of surgical techniques, 
the first successful surgical clipping was performed 10 years later 
by Dandy. 2  The evolution of surgical clipping was significantly 
enhanced by the introduction of the bipolar microscope in the 
1940s and 1950  s and the micro-surgical dissections that were 
enabled with the gradual acceptance of the operating microscope 
in the 1960s. 1  ,  3  ,  4  This remained the only primary treatment for the 
next 35 years, with additional refinements coming in the form of 
earlier diagnosis of hemorrhage and hydrocephalus with CT 
scanning (1972), unique exposures, and earlier surgery coupled 
with aggressive treatment for vasospasm. 5  Over this period, 
clipping became viewed as safe in skilled hands and durable over 
the life of the patient. 

 The digitization of radiology with CT in the early 1970s 
extended to angiography by the end of that decade. 6  The real-time 
production of high-contrast subtracted images and implementa-
tion of roadmapping marked the transformation of the angiogra-
phy suite from a diagnostic modality to image-guided minimally 
invasive surgery. However, even early in the 1980s brave pioneers 
were exploring possible aneurysm treatments using endovascular 
methods. The Russian neurosurgeon Serbinenko is widely recog-
nized as the first to be successful; 7  although in North America the 
popularity was spread by the wider availability of more sophisti-
cated imaging as well as the broader circulation of literature 
from Debrun, Heishima and Berenstein through the 1980s. 7     – 10  
These early efforts focused on the use of detachable balloons 
(latex or silicon), which, while elegant for the closure of direct 
carotid cavernous fistulae, were more cumbersome for the 
treatment of intracranial aneurysms if one was intent on sparing 
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the parent artery. During this period there were great strides 
made in the production of variable stiffness micro-catheters and 
guidewires, which significantly improved access to the intracra-
nial circulation by an endovascular approach. 11  

 In the early 1990s, Guglielmi, working with Vinuela and 
colleagues, described an ingenious device of soft coils mounted 
on a stylet, which could be positioned, withdrawn, and reposi-
tioned in an aneurysm until an optimum configuration was 
achieved, filling the aneurysm while sparing the parent artery. 12,13  
At this point the coil could be electively detached at the leisure 
of the operator. Serially smaller coils could be nested one within 
the next much like Russian dolls (a nod to Serbinenko?). These 
devices have likewise been modified and improved; matched with 
sophisticated, high-speed biplane digital angiography systems, 
they now complement surgery by providing lower-risk options 
for the most difficult surgical lesions.   

 Etiology  

 Saccular aneurysms 
 The majority of intracranial aneurysms are saccular aneurysms. 
The true cause of saccular aneurysms is not well understood. 
Saccular aneurysms are focal protrusions that arise at vessel 
wall weaknesses at major bifurcations of intracranial arteries 
( Figure 7.1 ). 14  It is likely that a congenital deficit in the arterial 
wall predisposes to aneurysm formation secondary to the influ-
ences of ‘vascular disease’ such as hypertension and atheros-
clerosis. Aneurysms tend to form at arterial branch points or 
curves in the vessel. Hemodynamic influences and the biologic 
response of the vessel wall lead to aneurysm formation. If an 
aneurysm forms along a curve, it tends to form in the direction 
that the blood would have flowed if the vessel had not altered 
course. 15    

 Other forms of aneurysm 
 Dissecting (so-called blood blister) aneurysms often form in 
response to traumatically induced or spontaneous dissection of 
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the intracranial artery. They tend to appear saccular in mor-
phology, but they more often occur at atypical locations on 
the circle of Willis and large conducting arteries. Fusiform 
aneurysms can be of two varieties: large or giant saccular aneu-
rysms that are partially thrombosed with a serpentine channel 
through them to the distal vasculature, or smaller dilatations 
of the parent vessel in which a large portion of the circumference 
of the vessel wall is aneurysmal ( Figure 7.2 ). They may have a 
component that appears saccular, but no obvious neck is 
apparent. Embolic aneurysms usually form in the distal cerebral 
vasculature, most commonly the distal middle cerebral territory 
(the M4 branches). They can form in response to pathologic 
processes involving the heart (e.g. infective endocarditis, whether 
bacterial or fungal, or atrial myxomas) ( Figure 7.3 ). All of these 
other types of aneurysms can cause subarachnoid hemorrhage 
(SAH).    

 Epidemiology  

 Prevalence of unruptured 
intracranial aneurysms 
 The overall prevalence of unruptured intracranial aneurysms in 
the general population is between 0.8% and 6%. These numbers 
can be derived from numerous studies examining prevalence. 
Sekhar and Heros 16  published, in 1982, a prevalence rate of 5% in 
a single-center study. A single-center autopsy study by Inagawa 
and Hirano examined 10,259 autopsies and found 102 aneurysms 
in 84 patients, giving a prevalence of 0.8%. 17  Rinkel reported that 
aneurysms are found in approximately 2% of the population if 
one considers all the available evidence. 18     

 Anatomy and pathophysiology  

 Anatomy 
 Saccular aneurysms form around the vessels of the circle of 
Willis at the base of the brain. Approximately 85–90% of them 
are found around the anterior circulation (the anterior cerebral 
artery, the middle cerebral artery, or the internal carotid artery). 
Posterior circulation aneurysms can arise from the posterior 
inferior cerebellar artery, the vertebral artery, the basilar artery, 
the posterior cerebral artery, the superior cerebellar artery, and 
the basilar apex. The specific locations are shown in  Table 7.1  
and  Figure 7.1 . Aneurysms are also classified according to size. 
Small aneurysms are ≤ 8 mm in diameter; large are 8–24 mm and 
giant are ≥25 mm ( Figure 7.4 ). 

       Pathophysiology 
 As discussed above, saccular aneurysms that arise at the branch 
points of the intracranial arteries or off a parent vessel are usually 
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Distribution of intracranial
aneurysms.

Table 7.1 Location of aneurysms

Anterior circulation (85–95%)99

Anterior communicating complex: 30%98–100

Cavernous carotid artery: 3–5%99–101

Ophthalmic segment of internal carotid artery: 5%100

Posterior communicating artery: 10–25%98,99

Middle cerebral artery: 20%98,99

Internal carotid artery terminus: 5–10%

Distal anterior cerebral artery: 3%

Posterior circulation (5–15%)99,102

Basilar apex (tip): 8–15%98,99

Basilar trunk: 1–5%

Posterior inferior cerebellar artery and vertebral artery: 1–5%99,103
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at a curve and point in the direction of blood flow. The pulsatile 
flow of the blood leads to wall stress and is believed to cause local 
destruction of the internal elastic lamina. Turbulent flow within 
the aneurysm can lead to aneurysm growth. Aneurysms rupture 
is most often related to size. With the growth of the aneurysm the 
wall thickness is frequently reduced. This leads to increased wall 
tension with an increased risk of rupture. 14  ,  16  ,  19  

 There are several connective tissue disorders that have been 
associated with intracranial aneurysm formation: autosomal-
dominant polycystic kidney disease (ADPKD), α 

1
 -antitrypsin 

deficiency, Marfan syndrome, neurofibromatosis type 1, pseudo-
xanthoma elasticum, and Ehlers–Danlos syndrome type IV. 

 ADPKD affects between one in 400 and one in 1000 people. 20  
It is a systemic disease with cystic involvement of the kidneys, 
lungs, liver, pancreas, and intracranial vasculature. Rinkel et al. 18  

recently reported a relative risk of 4.4 times the normal popula-
tion for developing intracranial aneurysms. Gieteling and Rinkel 21  
reported that patients with ADPKD have a familial SAH pattern, 
bleed at a younger age, and are more often men. The most 
commonly involved site is the middle cerebral artery. 21  

 Because of the high rate of aneurysm formation and the 
increased risk of rupture, screening is recommended for those 
with ADPKD. Screening can be complicated by poor renal 
function in these patients. Magnetic resonance angiography 
(MRA) is generally accepted as the imaging procedure of choice 
because of improved safety compared with CT angiography 
(CTA) and conventional intra-arterial digital subtraction 
angiography (DSA), because of the use of iodinated contrast 
with CTA and DSA. MRA will reliably detect aneurysms >2 mm 
in diameter. 

Figure 7.2
Dissecting fusiform aneurysm of the 
basilar artery. While these rarely 
produce subarachnoid hemorrhage, 
they often cause 
symptoms by virtue of mass effect 
on the brainstem and adjacent cra-
nial nerves. Additionally, the patu-
lous lumen results in 
slow flow, which may lead to throm-
bus formation and symptoms of ver-
tebrobasilar ischemia. Notice on 
these two successive 
images the layering of contrast 
(arrow), due to slow flow.

Figure 7.3
A 20-year-old heroin addict presented with seizures and fever. Initial CT scan demonstrated edema surrounding a focal area of 
ischemia in the right occipital lobe. Conventional angiography confirmed the presence of a mycotic aneurysm due to Staph aureus 
(arrow). Follow-up angiography after surgery and 1 week of antibiotics demonstrated resolution of the treated aneurysm, but also 
showed a second lesion in the posterior temporal branch of the same posterior cerebral artery (arrow).

(a) (b)
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peri-mesencephalic hemorrhage, and intracranial carotid and 
vertebral artery dissection ( Figure 7.5 ). 

  Intracranial aneurysm rupture accounts for approximately 
85% of non-traumatic SAH. The incidence of aneurysmal SAH is 
between 10 and 15 per 100,000 people per year. This is a generally 
accepted rate and is derived from pooled data from various 
studies. 29         – 34   

 Natural history of aneurysms 
and rupture 
 There are several risk factors that predispose patients harboring 
intracranial aneurysms to suffer SAH. Juvela et al. 35  published 
their results in 142 patients with 181 unruptured aneurysms. 
They followed these patients until death or SAH or for at least 
10 years after the unruptured aneurysm was diagnosed. The 
median follow-up time was 13.9 years (0.8–30.0 years). During the 
1944 patient–years of follow-up study there were 27 first episodes 
of hemorrhage from a previously unruptured aneurysm, giving 

 Aneurysms can also affect multiple family members. It is 
estimated that 7–20% of patients who suffer from SAH have 
first- of second-degree relatives with aneurysms. 22   – 24  The 
Familial Intracranial Aneurysm (FIA) study is trying to identify 
genes that may be related to aneurysm development and 
rupture. 25  

 It has also been reported that patients with familial aneu-
rysms have SAH at a younger age than the previous generation. 26  
Familial aneurysms are also larger and have a higher prevalence. 
People with two or more first-degree relatives or three family 
members (first- or second-degree relatives) should be investi-
gated and offered treatment.    

 Natural history of aneurysm 
and the etiology of 
subarachnoid hemorrhage 
 Head trauma is the most common cause of SAH. 27  ,  28  Other 
etiologies include aneurysms, arteriovenous malformations, 

Figure 7.4
(a) Axial T2-weighted MRI demonstrating a heterogenous left temporal mass with vasogenic edema secondary to laminated 
thrombus or blood breakdown products, as well as flow void from a giant fusiform aneurysm of the left middle cerebral artery 
aneurysm. (b) Confirmatory catheter angiogram.

(a) (b)

Table 7.2 Five-year cumulative rupture rates according to size and location of unruptured aneurysm from the 
International Study of Unruptured Aneurysm (ISUIA)

 < 7 mm 7–12 mm 13–24 mm ≥ 25 mm

 Group 1* Group 2**    

Cavernous carotid artery 
(n = 210)

0 0  0  3.0%  6.4%

AC, MC, IC (n = 1037) 0 1.5%  2.6% 14.5% 40%

Post P comm (n = 445) 2.5% 3.4% 14.5% 18.4% 50%

AC, anterior communicating or anterior cerebral artery; IC, internal carotid artery (not cavernous carotid artery); MC, middle cerebral artery; Post P comm, 
vertebrobasilar, posterior cerebral arterial system, or the posterior communicating artery
Reprinted with permission from Forbes et al.35

*Group 1: patients with no prior history of subarachnoid hemorrhage (SAH).
**Group 2: patients with a history of SAH.
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that cannot cause SAH, and there were a large number 
of patients excluded from the study. Nonetheless, this is currently 
the most important study regarding the natural history of unrup-
tured aneurysms and should be considered when advising patients 
on treatment options. 37  

 Besides size and location, described above, there are several 
other risk factors that can predispose the patient with an unrup-
tured aneurysm to SAH. The highest incidence is seen in older 
patients (55–60 years). Smoking and hypertension have been 
associated with an increased risk of SAH. 32  Feigin et al. 38  reviewed 
26 prospective cohort studies and identified 306,620 participants. 
They found that cigarette smoking and systolic blood pressure 
were the most important risk factors for SAH in the Asia–Pacific 
region. 38  In the Cooperative study, hypertensive patients had a 
higher mortality after SAH than normotensive patients. 39  In 
addition, use of cocaine and its derivatives is a significant risk 
factor for aneurysmal SAH. 

 Patients with aneurysmal SAH have a high morbidity and 
mortality. Approximately one-third of patients will die before 
reaching the hospital. The overall mortality is around 50%. 
Hop et al. 40  looked at 21 studies between 1960 and 1992 to try to 
assess the case–fatality rate. The case–fatality rate ranged from 
32% to 67%. The authors also noted a recent decline in the 
overall case–fatality rate and attributed this to improved manage-
ment of patients with SAH, which may be attributable to a trend 
towards early treatment of the aneurysm and advances in neuro-
critical care.   

 Clinical presentation of 
aneurysmal subarachnoid 
hemorrhage 
 Patients can present for evaluation secondary to rupture (SAH), 
headache, mass effect (e.g. a cranial nerve deficit), seizure, or 
an incidental finding on imaging for some other reason. By far 
the most common presentation is SAH, usually accompanied 
by severe headache, nausea, and vomiting. With aneurysm 
rupture there is a significant and sudden increase in intracranial 
pressure. Arterial blood is released into the subarachnoid space, 
where it produces a chemical meningitis. Intracerebral hematoma 
formation can occur if the aneurysm ruptures from a point on 
the dome that points toward the brain parenchyma. This presen-
tation is so stereotypical that focal neurologic deficit with or 
without headache that is associated with nausea or vomiting 
should be assumed to be hemorrhage in the intracranial compart-
ment until proven otherwise by CT scanning. Over 90% of 
patients with SAH will complain of headache, and it is usually 
described as the worst headache of their life. The headache is 
often accompanied by meningismus and photophobia and the 
patient will prefer to keep the eyes closed. More profound 
impact on the level of consciousness can occur with hemorrhage, 
including lethargy, stupor, and coma. Occasionally, there will 
be a focal neurologic deficit such as a cranial nerve palsy (e.g. III 
nerve palsy) or a hemiparesis or visual field defect. Headache 
without associated hemorrhage is usually new for the non-
headache patient and different or more severe for the known 
cephalgic. The location of the headache will depend on the loca-
tion of the aneurysm, but it is most commonly seen with posterior 
communicating artery aneurysms, in which case the headache 
will be unilateral and retro-orbital. Unruptured aneurysms with 

an average annual rupture incidence of 1.4%. Fourteen of these 
bleeding episodes were fatal. The cumulative rate of bleeding was 
10% at 10 years after the diagnosis, 26% at 20 years, and 32% at 
30 years. The only predictor for the rupture was the size of the 
aneurysm ( p =0.036). However, in patients with multiple aneu-
rysms (the main subgroup) the only variable that tended to pre-
dict rupture was the age of the patient: risk of rupture was 
inversely associated with age ( p =0.080). A new aneurysm was 
found in six of 31 patients. 35  

 The most important study relating to the natural history 
of aneurysm rupture is by Wiebers et al. 36  This was a prospective 
multi-center study with centers in the USA, Canada and Europe. 
The purpose of the study was to assess the natural history of 
unruptured intracranial aneurysms and also to measure the risks 
associated with treatment. There were 4060 patients assessed for 
the study. Of these, 1692 did not have aneurysmal repair and were 
followed. The 5-year cumulative rupture rate was calculated and 
is shown in  Table 7.2.  The authors note that 5-year cumulative 
rupture rates for patients who did not have a history of SAH with 
aneurysms located in the internal carotid artery, the anterior 
communicating, the anterior cerebral artery, or the middle 
cerebral artery were 0%, 2.6%, 14.5%, and 40% for aneurysms 
< 7 mm, 7–12 mm, 13–24 mm, and ≥25 mm, respectively, com-
pared with rates of 2.5%, 14.5%, 18.4%, and 50%, respectively, 
for the same size categories involving posterior circulation and 
posterior communicating artery aneurysms. 36  

       Of the treatment group, 1917 had open surgery and 451 had 
endovascular procedures. These rates were often equaled or 
exceeded by the risks associated with surgical or endovascular 
repair of comparable lesions. Poorer surgical outcome was 
strongly predicted by patient age. Poor outcome with either 
surgical or endovascular treatment was seen in patients with 
larger aneurysms and aneurysms in the posterior circulation. 36  

 There are several criticisms of this study. Posterior commu-
nicating artery aneurysms were placed in the posterior circulation 
group but are generally considered anterior circulation aneu-
rysms. There were a high number of cavernous segment aneurysms 

 Figure 7.5 

  A 35-year-old woman with spontaneous dissection of both 
carotid and both vertebral arteries. The right vertebral 
dissection was irregular and appeared to be the source of 
subarachnoid hemorrhage. The right vertebral artery was 
sacrificed. The remaining left vertebral artery dissection has 
a prominent, persistent fusiform aneurysm.  
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associated headache should be treated expeditiously as there is an 
increased risk of hemorrhage in this setting. Seizures are an 
uncommon presentation for unruptured aneurysms and are 
usually secondary to a large or giant aneurysm that exerts mass 
effect, with accompanying edema, on the temporal lobe. 
Complete or partial III cranial nerve palsy in a non-diabetic 
should prompt an immediate imaging evaluation looking for a 
posterior communicating artery or a superior cerebellar artery 
aneurysm. Approximately 25% of patients will have preretinal or 
subhyoid hemorrhages. 41  

 The hunt for the etiology of the SAH should culminate in 
catheter angiography if no aneurysm is disclosed on less invasive 
imaging studies such as CTA or MRA. Patients are graded 
clinically using either the Hunt–Hess Scale 42  ( Table 7.3 ) or 
the World Federation of Neurological Surgeons Subarachnoid 
Hemorrhage Grading System (WFNS) ( Table 7.4 ). 43  These scales 
are based on the Glasgow Coma Score (GCS) ( Table 7.5 ). 44  

                      Direct complications from 
aneurysmal subarachnoid 
hemorrhage  

 Re-bleeding 
 Re-bleeding is the third most common cause of death from 
aneurysmal SAH. The rate of re-bleeding is highest within the 
first 24 hours (4%), with a rate of 1.5% over the first 2 weeks. 39  By 
6 months the risk of re-bleeding is 50% without treatment. After 
6 months, the re-bleeding rate levels off to approximately 3% per 
year. 39  When re-rupture does occur it is often fatal or associated 
with significant neurological deficit. 45  There is an 80% mortality 
associated with re-bleeding. The goal of early treatment is to pre-
vent re-bleeding by securing the aneurysm by either surgical or 
endovascular techniques.   

 Vasospasm 
 Vasospasm is the leading cause of morbidity and mortality in 
patients with SAH. The incidence of vasospasm increases with the 
volume of SAH. 46  Approximately 50–70% of patients will have 
angiographic evidence of vasospasm, 20–30% will have clinical 
symptoms from vasospasm, and 10–15% are left with permanent 
neurological sequelae. 47  

 Vasospasm usually occurs within a defined time period after 
SAH from day 4 to day 14. The etiology of vasospasm is not clear 
but is related to the release of red blood cells and subsequently 
oxyhemoglobin into the subarachnoid space. Several other theo-
ries also exist. 48     – 51  

 Two forms of vasospasm exist. One is radiographic vasospasm. 
In this form, the patient has no neurologic symptoms referable 
to the spasm, but vascular imaging studies such as transcranial 
Doppler, MRA, or CTA suggest narrowed vessel luminal diameters. 
Clinical vasospasm represents the form that occurs when 
patients have new neurologic symptoms in conjunction with 
imaging studies that suggest narrowed vascular lumen diamters. 
In addition, other causes of neurologic deterioration such as 

Table 7.3 Hunt–Hess classification of subarachnoid 
hemorrhage41

Grade Description

1 Asymptomatic, or mild headache and slight nuchal rigidity

2 Cranial nerve palsy (e.g., III, VI), moderate to severe 
headache, nuchal rigidity

3 Mild focal deficit, lethargy, or confusion

4 Stupor, moderate to severe hemiparesis, early decerebrate 
rigidity

5 Deep coma, decerebrate rigidity, moribund appearance

Add one grade for serious systemic disease (e.g., hypertension, 
diabetes nellitus, severe atherosclerosis, chronic obstructive 
pulmonary disease) or severe vasospasm on arteriography.

Modified classification41 adds the following:

0 Unruptured aneurysm

1a No acute meningeal or brain reaction, but with fixed 
neurologic deficit

Original paper did not consider patient’s age, site of aneurysm, or time since 
bleed; patients were graded on admission and pre-operatively
From Shaibani et al.41

Table 7.4 World Federation of Neurological Surgeons 
Subarachnoid Hemorrhage Grading System

Grade GCS Score Major focal deficit*

0†

1 15 −

2 13–14 −

3 13–14 −

4 7–12 + or −

5 3–6 + or −

GCS, Glasgow Coma Scale (see Table 7.5)
*aphasia, hemiparesis or hemiplegia (+, present; −, absent)
†intact aneurysm
From Teasdale et al.42

Table 7.5 Glasgow Coma Score (GCS)43

Score* Best eye opening Best verbal Best motor

6 — — Obeys

5 — Oriented Localizes pain

4 Spontaneous Confused Withdraws to pain

3 To speech Inappropriate Flexion (decorticate)

2 To pain† Incomprehensible Extensor (decerebrate)

1 None None None‡

Technically, this is a scale of impaired consciousness, whereas ‘coma’ implies 
unresponsiveness
*Range of total points: 3 (worst) to 15 (normal)
†When testing eye opening to pain, use peripheral stimulus (the grimace 
associated with central pain may cause eye closure)
‡If no motor response, it is important to exclude spinal cord transection
From Teasdale et al.43
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related to the amount of intraventicular and subarachoid blood. 
Early treatment of hydrocephalus is performed by external 
ventricular drainage. It should be considered in all poor grade 
patients because significant improvement can be observed after 
such management.   

 Seizures 
 Seizures develop in approximately 5% of SAH patients. They 
usually occur within the first 2 weeks after SAH and have the 
highest incidence during the first 24 hours. Prophylactic anti-
convulsant use remains controversial but is often considered to 
reduce the risk of seizure before the securing of the aneurysm. 
Recent data suggest that anticonvulsants should be used for at 
least 3 days after SAH providing that the aneurysm has been 
secured.56    

 Diagnosis of aneurysmal 
subarachnoid hemorrhage 
 As mentioned above, there is often a high degree of clinical 
suspicion that prompts further investigations. The first test to be 
performed is a plain CT scan of the brain. The amount of 
SAH can be scored using the scale by Fisher et al. ( Table 7.6 ). 46  
 Figure 7.7  illustrates the CT appearance of a Fisher grade 3 SAH. 
When this study is performed with a newer-generation scanner 
within 24 hours of ictus, >97% of SAH can be detected. 39  How-
ever, when the diagnosis is delayed and the CT is negative but 
there is a high degree of clinical suspicion, lumbar puncture is 
recommended. At our institution, the initial CT is combined with 
CTA, which is very good at detecting intracranial aneurysms over 
2–3 mm in size. Often there is sufficient information obtained 
from CTA to proceed with treatment planning ( Figure 7.8 ). CTA 
is used to define the anatomy and often to determine if a patient 
should undergo surgical clipping or endovascular coil emboliza-
tion. Surgical clipping of aneurysms can often be performed using 
CTA alone. 

        Cerebral angiography remains the gold standard for the diag-
nosis of intracranial aneurysms. It should be performed when the 

re-bleeding, hydrocephalus, hypoxemia, hyponatremia, infection, 
and fever must be ruled out. 

 Early securing of the aneurysm allows for improved treatment 
of vasospasm. Treatment of the patient with hypertension, 
hypervolemia, and hemodilution is often instituted. This is the 
so-called triple-H therapy. Prophylactic triple-H therapy is insti-
tuted in all patients with Hunt–Hess grade 3 and in those with 
radiographic vasospasm. This treatment consists of keeping the 
patient on the high end of euvolemia (as measured by central 
venous pressure) and allowing the systolic blood pressure to seek 
its own level. At our institution we feel the ideal hematocrit level 
is in the 32–34 range. If patients develop clinical vasospasm, then 
active triple-H therapy is instituted. This consists of driving 
the systolic blood pressure to the 200–220 mmHg range and 
inserting a Swan–Ganz catheter to achieve a pulmonary capillary 
wedge pressure (PCWP) in the range of 14–16 mmHg. This must 
be done expeditiously because no benefit from the treatment of 
vasospasm is seen if treatment is delayed beyond 4 hours. 52  It 
should be remembered that patients with clinical vasospasm have 
a brain at risk of infarction, that this is the clinical correlate of the 
penumbra concept, and that there is a ‘stroke in evolution’. This 
is a neurologic emergency. 

 In patients in whom active ‘triple-H therapy’ fails, intra-
arterial administration of nicardipine or another vasodilator with 
or without balloon angioplasty can be performed ( Figure 7.6 ). 
Balloon angioplasty has a longer-lasting effect but carries 
some risk of arterial injury or vessel rupture. Neither of these 
techniques has been well studied. 

   Calcium-channel blockers have been studied in aneurysmal 
SAH. Several large randomized studies have been performed 
analyzing the effect of nimodipine on vasospasm. The British 
Aneurysmal Nimodipine Trial (BRANT) showed that there was 
no significant change in the angiographic appearance of vaso-
spasm, but the rate of poor outcome and stroke decreased from 
33% to 20% when nimodipine was given for 21 days after SAH. 53  ,  54  
It is standard care to give nimodipine to all patients with 
aneurysmal SAH. Recent data suggest that good grade patients 
can have an abbreviated course of nimodipine. 55    

 Hydrocephalus 
 Hydrocephalus is common in patients with aneurysmal SAH 
(with a rate of 25–70%). The development of hydrocephalus is 

(a) (b)

Figure 7.6
(a) Post subarachnoid 
hemorrhage with 
parenchymal hematoma 
in the left frontal lobe 
(note the shift of the 
ipsilateral A2 segment 
with significant vasos-
pasm of the vessels in 
the basal cisterns). 
(b) Post angioplasty 
the caliber of the A1 
and M1 branches are 
significantly improved.
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placement performed in patients who have hydrocephalus 
requiring drainage or who are Hunt–Hess grade 3 or greater. 

 The majority of middle cerebral artery aneurysms have a wide 
neck, limiting the potential for acute endovascular coiling, while 
the location within the Sylvian fissure is readily amenable to 
surgical exposure and clipping. Otherwise, strategy is guided 
by the International Subarachnoid Hemorrhage Trial (ISAT), 
which suggests improved acute clinical outcome with endovas-
cular coiling. However, if successful coiling cannot be performed 
or is judged too difficult on anatomic grounds, surgery is then 
performed. 

 In the 2002 ISAT, a randomized, multi-center studyl compared 
the safety and efficacy of endovascular coiling to standard neuro-
surgery clipping for good grade patients after aneurysmal SAH. 58  
ISAT has significantly changed the manner in which ruptured 
aneurysms should be managed. In ISAT, 2143 patients were 
enrolled at centers mainly from the UK, Europe and Canada. 
Patients were candidates for the trial when it was deemed that 
either coiling or clipping were appropriate methods for treat-
ment. The two study groups were similar in baseline characteris-
tics. Endovascular specialists were required to have previously 
treated 30 or more aneurysms. The experience of the surgeons 
was not described. The primary outcome was the proportion of 
patients with a modified Rankin score of 3–6 (dead or disabled) 
at 1 year. The trial was halted by the steering committee because 
of a statistically better outcome in the endovascularly treated 
patients. There were 190 of 801 (23·7%) patients allocated to 
endovascular treatment that were dependent or dead at 1 year 
compared with 243 of 793 (30·6%) in the neurosurgical treatment 
group ( p  = 0·0019). This resulted in a relative and absolute risk 
reductions in dependency or death of 22·6% (95% CI 8·9–34·2) 
and 6·9% (95% CI 2·5–11·3) for endovascular versus neurosurgi-
cal treatment. The risk of re-bleeding from the ruptured aneu-
rysm after 1 year was 2 per 1276 and 0 per 1081 patient–years 
for patients allocated endovascular and neurosurgical treatments. 

plain head CT, the lumbar puncture and the CTA are negative 
but a high degree of clinical suspicion remains. The angiogram 
must include all four intracranial vessels and include the external 
carotid systems as well to search for dural arterial–venous fistulae. 
 Figure 7.8  compares CTA with conventional DSA in a patient 
with a ruptured right posterior communicating artery aneurysm 
that was treated with endovascular coiling. 

 MRI and MRA are also occasionally used in the diagnosis of 
aneurysmal SAH. They are used in conjunction with CTA and 
DSA to define anatomy and possible areas of infarction related to 
the SAH.   

 Treatment of aneurysmal 
subarachnoid hemorrhage  

 Patient selection 
 Surgical and endovascular techniques are complementary in the 
management of patients with aneurysmal SAH. The decision on 
the treatment modality is determined by the patient ’ s age and 
clinical condition, the aneurysm anatomy, and the operator ’ s 
experience. Consultation with endovascular and cerebrovascular 
surgeons is important to decide on the best treatment for the 
patient. 

 Presently, patients who present with an aneurysmal SAH 
are best managed in the setting of a large clinical experience 
with both endovascular and surgical cases, supported by skilled 
neurointensivists. 57  Patients are rapidly assessed and examined; 
measures are taken to ensure adequate airway protection and 
cardiac stability. Prophylactic phenytoin is given. CT scanning 
and CTA are performed, and external ventricular drain is 

Table 7.6 Fisher computed tomography scan 
classification system for subarachnoid hemorrhage 45

Fisher 
grade

Blood on CT* Score Vasospasm

Angiographic Clinical 
vasospasm 
(DIND)**

   Slight Severe 

1 No subarachnoid blood 
detected

11 2  2  0

2 Diffuse or vertical layers 
<1 mm thick

 7 3  0  0

3 Localized clot and/or 
vertical layer‡ ≥ 1 mm 
thick

24 1 23 23

4 Intracerebral or 
intraventricular clot with 
diffuse or no SAH

 5 2  0  0

SAH, subarachnoid hemorrhage
*Measurements made in the greatest longitudinal and transverse dimension 
on a CT scan performed within 5 days of SAH in 47 patients
**Delayed ischemic neurological deficits (DINDs)
Reprinted with permission from reference 45.

 Figure 7.7 

  (a) CT of a Fisher grade 3 subarachnoid hemorrhage (SAH) 
from a 10 mm, left ophthalmic artery aneurysm. SAH is seen in 
the basal cisterns, the subfrontal region, and bilateral Sylvian 
fissures. Hydrocephalus is present.  
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(a) (b)

(c)

there was no requirement for the surgeons to have treated a preset 
number of patients prior to being in the study. The duration of 
follow-up and use of a mail questionnaire has also been criticized. 
The durability of coiling is still not known because of the rela-
tively short angiographic follow-up, 61  although initial estimates 
indicate that re-bleeding rates are unlikely to negate the initial 
advantages of endovascular treatment over surgical clipping 
suggested by ISAT. 60    

 Surgical clipping 
 Before the ISAT study, surgical clipping was the standard modality 
of aneurysm treatment. As emphasized in that study, there is 
certainly proven durability with surgical clipping. By using an 
operating microscope and micro-instruments, the majority of 
anterior circulation aneurysms can be successfully clipped in 
experienced hands. Once the clip is secured across the neck of 
the aneurysm and angiography does not reveal any residual 
aneurysm, the patient is considered cured, although new aneu-
rysms can occur over time. 

The study concluded that patients with a ruptured intracranial 
aneurysm for which either surgical clipping or endovascular 
coiling are acceptable options have an improved outcome in 
terms of survival free of disability at 1 year with endovascular 
treatment. 

 The authors published their 1-year outcomes for 1063 of 1073 
patients in the study and 1055 of 1070 patients allocated to neu-
rosurgical treatment. 59  A total of 250 (23·5%) of 1063 patients 
allocated to endovascular treatment were dead or dependent at 
1 year, compared with 326 (30·9%) of 1055 patients allocated 
to neurosurgery, an absolute risk reduction of 7·4% (95% CI 
3·6–11·2,  p  = 0·0001). Nine patients had re-bleeding: seven were in 
the endovascular group and two were in the surgical group. The 
risk of epilepsy was significantly lower in the endovascular group. 
The survival advantage of coiling was maintained for up to 7 years. 

 The data available to date suggest that the long-term risks of 
further bleeding from the treated aneurysm are low with either 
therapy, although somewhat more frequent with endovascular 
coiling. 60  There are several criticisms of the ISAT study. There was 
a large percentage of patients that were excluded because either 
surgery or coiling was the preferred technique (approximately 
80%). The majority of the study patients were from the UK and 

Figure 7.8
Comparison between (a) CT angiography and (b) conventional 
angiography in a 63-year-old woman with subarachnoid 
hemorrhage from a ruptured right posterior communicating 
artery aneurysm. (c) This aneurysm was successfully treated 
with endovascular coil embolization. Note the small thrombus 
at the neck of the aneurysm. This cleared with time and did not 
require treatment.
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 Angiography is the best way to ensure complete clipping. The 
aneurysm can be opened after clipping, but this does not ensure 
that there is not a significant residual aneurysm. 65  Feuerberg et al. 
reported a re-bleeding rate of 0.38–0.79% per year from residual 
aneurysm. 66  

 Intraoperative angiography ensures that there is not occlusion 
of either the parent vessel or a major branch vessel. If it is 
performed prior to dural closure and immediately after clip 
application, neurological complications can be reduced. To 
perform intraoperative cerebral angiography a 5F or 6F sheath 
is placed into the common femoral artery in the operating 
room. Depending on the surgeon’s room set-up, the right or 
left groin may be preferred. The sheath is connected to a hepa-
rinized saline infusion during the craniotomy. Immediately 
after placement of the clip, sterile drapes are placed over the 
craniotomy site and sterile bags are placed over the C-arm. 
Standard diagnostic catheters are then used to select the vessel 
of concern. A standard C-arm fluoroscopy unit is used to select 
the vessel initially and to perform the angiographic runs. 
Muliple angiographic runs are performed to study completeness 
of clipping as well as parent and branch vessel patency. If an 
unsatisfactory clip position is seen, the diagnostic catheter is 
removed, the clip is immediately readjusted, and repeat angio-
graphy is performed.   

 Endovascular therapy 
 The Guglielmi Detachable Coil (GDC) was first introduced in 
1990. 12,13  There has been a continued increase in the number of 
aneurysms managed by coil embolization. The addition of 
adjunctive techniques such as three-dimensional rotational 
angiography ( Figure 7.9 ), balloon remodeling, stent-assisted 
coiling, and bioactive coils have further increased the number of 
aneurysms that can be treated with endovascular techniques. 
 Figure 7.10  illustrates a wide-necked basilar apex aneurysm that 
was treated with balloon remodeling and Y-stenting with two 
Neuroform micro-stents. 

   Anatomic considerations 
 Aneurysms with a narrow neck are generally considered more 
suitable for coil embolization. There are several factors that are 
important for determining whether the patient is a candidate for 
endovascular coil embolization. 67   – 69  Aneurysms with a dome to 
neck ratio of less than 2 have a higher rate of incomplete coil 
embolization. 67   – 69  Also related to this are aneurysms with a 
neck width >4 mm; they also represent a less likely chance of 
having complete embolization coiling. Aneurysms that are multi-
lobulated are more difficult to treat with coil embolization than 
spherical aneurysms. When the parent or branch vessels are 
incorporated into the aneurysm, the chances of achieving complete 
coil occlusion of the aneurysm decrease. 67  

 Unstable thrombus and giant aneurysms often have a high 
rate of re-canalization with coil embolization. A final important 
anatomical factor relates to the tortuosity of the neck vessels 
and aorta. The tortuosity can lead to markedly increased 
difficulty with coiling procedures. This can sometimes be over-
come by using extra-long groin sheaths or radial or brachial 
access for vertebral artery catheterization when the aorta is 
tortuous. 70     – 73    

 The Cooperative Study found that patients had a poorer out-
come with surgical clipping after SAH when the surgery was 
performed between day 7 and day 10. 39  This is probably secondary 
to the peak incidence of vasospasm in these patients. It is not 
uncommon for patients to present within this window. Our 
practice is to attempt coiling in these patients. If the patient 
presents at post-bleed day 7–10 and the aneurysm is not amen-
able to coiling, we wait until day 11 to proceed with surgical 
clipping. 

 Patients who present with acute neurological deterioration 
from an intracerebral hematoma can be managed in two ways. 
At our institution, we perform an emergent CTA to define the 
aneurysm anatomy. In patients with imminent herniation, clot 
evacuation and aneurysm clipping is performed. In patients who 
are more stable, we prefer to attempt coiling of the aneurysm 
followed by surgical evacuation of the aneurysm. Excellent clinical 
judgment is required in this situation to determine which patients 
are likely to decompensate, and surgical clot evacuation cannot 
be delayed. 

 Specific aneurysms are more likely to be amenable to clipping 
than coiling. Middle cerebral artery aneurysms are often difficult 
to coil. This is related to the aneurysm morphology. The majority 
of these aneurysms are wide-necked and occur at the middle 
cerebral artery bifurcation. The neck of the aneurysm often 
incorporates the M2 branches of the middle cerebral artery and 
the lateral lenticulostriate arteries. In addition, it is often difficult 
to obtain a safe ‘working angle’ fluoroscopically to allow the 
endovascular surgeon to preserve the M2 branches safely. These 
aneurysms can be formidable to coil and often require adjunctive 
techniques such as balloon remodeling or stenting. They can be 
clipped very effectively in expert hands with a lower degree of 
risk. These aneurysm are more superficial than others, which can 
makes surgical treatment more straightforward in the setting of 
an edematous and swollen brain. 

 Anterior communicating artery aneurysms are another exam-
ple of aneurysm that often require surgical clipping in preference 
to coiling. Specific problems related to the coiling of anterior 
communicating artery aneurysms are the acute angle of the A1 
branches of the artery, its wide neck with perforators or branches 
arising from the neck, and the tortuous carotid anatomy. Poste-
rior directed anterior communicating artery aneurysms are the 
most difficult to clip because of small anterior communicating 
artery perforators that are frequently located adjacent to the 
aneurysm. 

 Surgical treatment of posterior circulation aneurysm is often 
more difficult because of limited surgical corridors and injury to 
brainstem perforators from either the surgical approach or clip 
placement. This is in contrast to endovascular methods, which 
work very well for the treatment of posterior circulation aneu-
rysms. This is because of a direct and straight approach up the 
vertebral artery and into the basilar artery, which facilitates endo-
vascular treatment. 

 Post-operative or intraoperative angiography should be per-
formed in most patients who undergo aneurym surgery. 62   – 64  In a 
consecutive series of 200 patients, intraoperative angiography 
was deemed to be necessary in 20% of patients. 62  In this study, 
there was a 0.5% complication rate that was directly attributable 
to angiography. The authors conclude that, given the frequency 
of significant disease that remains undetected if intraoperative 
angiography is used on a selective basis and the low complication 
rate associated with the procedure, the use of intraoperative 
angiography should be considered in the majority of aneurysm 
cases. 62  
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have a layer of hydrogel polymer around the platinum core. This 
polymer expands inside the body in a delayed fashion after being 
hydrated by warm blood. This delay allows for proper coil position 
and removal if needed. There is a limited working time of 
approximately 5–7 minutes. After this time, it is not usually 
possible to remove the coil through the micro-catheter, and often 
the micro-catheter and coil must be removed from the aneurysm 
if the position of the coil is unsatisfactory. 74  The fully expanded 
coils have an increased diameter of 67–107%. This expansion is 
thought to reduce aneurysm recurrence by increasing packing 
density and leading to improved endothelization of the aneu-
rysm neck. 

 Other examples of a bioactive coil are the Matrix coil (Boston 
Scientific, Fremont, CA) and the Cerecyte coil (Micrus Endo-
vascular, San Jose, CA). The Matrix coil has a platinum core 
that is covered with a bioactive and bioabsorbable polymer 

 Technical considerations 
 Bare platinum coils remain in use today. They consist of a tightly 
wound platinum wire that is 0.0001–0.003 inches (0.0025–
0.0076 mm) in diameter. The coils have a two-dimensional or three-
dimensional configuration, depending on the coil type and 
manufacturer. The coil is deployed into the aneurysm, usually under 
fluoroscopic roadmap guidance, and then detached. As first desc-
ribed by Guglielmi, 12,13  the detachment of the coil from the pusher 
wire occurs when an electrical current is passed across the pusher 
wire–coil junction. The initial coil that is placed should form a bas-
ket outlining the wall of the sac of the aneurysm. This is the ‘framing 
coil’, and successive coils can then be deployed within this coil. 

 A newer type of coil has become available in which the plati-
num coils are covered with a bioactive polymer. An example of 
this is the Hydrocoil (Microvention, Aliso Viejo, CA). Hydrocoils 

 Figure 7.9 

  (a) Early and (b) late arterial-phase lateral carotid angiogram showing a large aneurysm of the carotid siphon. Rapid filling 
precludes optimal demonstration of the neck. (c) Three-dimensional rotational angiography demonstrates the aneurysm neck 
with high fidelity, facilitating endovascular treatment. (d) Post-coil lateral angiogram.  

(a) (b)

(c) (d)
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One major disadvantage of the Neuroform stent is the requirement 
for the patient to be therapeutic on aspirin and clopidogrel in order 
to prevent serious thrombo embolic complications. This limits the 
application of stenting in patients with acute SAH. Also, patients 
that require external ventricular drainage after stent placement are 
at a significantly increased risk of intracerebral hemorrhage from 
the passage of the drainage catheter through the brain. We prefer 
to protect the aneurysm dome with coiling and then re-admit 
patient in the subacute period (2–6 weeks) to perform stent 
placement and residual aneurysm coiling. 

   Neuroform stent placement has been described as mono-
therapy for uncoilable aneurysms (e.g. dissecting pseudo-
aneurysms) that involve the entire vessel wall. In this case, 
multiple stents can be placed to help redirect flow through the 
arterial lumen and away from the aneurysm wall. It is also 

(polyglycolic acid–lactide). 75  The Cerecyte coil has a novel poly-
glycol acid loaded onto a platinum coil. Neither of these coils 
expand but are postulated to improve aneurysm thrombosis and 
healing.   

 Adjunctive Endovascular Manuevers 
 The use of an intracranial stent has allowed for wide-necked aneu-
rysms, long the ‘contraindication to coiling,’ to be effectively treated 
by endovascular techniques. 76–79  The Neuroform stent (Boston 
Scientific, Fremont, CA) and the Enterprise Stent (Cordis Neuro-
vascular, Miami Lakes, FL) are approved by the Food and Drug 
Administration  (FDA) for this use in the USA. The stent acts as a 
bridge to help hold the coils in position inside the aneurysm and to 
prevent coil herniation into the parent vessel ( Figures 7.10 ,  7.11 ). 

Figure 7.10
(a) An example of Y-stenting and balloon remodeling for endovascular coiling in a 36 year-old man with an unruptured wide-necked 
10 mm basilar apex aneurysm. (b) The patient had bilateral groin access. A micro-catheter has been placed in the aneurysm and a 
4 mm × 10 mm Hyperglide balloon (eV3 Neurovascular, Irvine, CA) placed in the right posterior cerebral artery, and a 4 mm × 7 mm 
Hyperform balloon placed in the left posterior communicating artery, with balloon-assisted coiling of the aneurysm. (c) The native 
image shows the distal and proximal markers (arrows) of two Neuroform microstents (Boston Scientific, Natick, MA) in a 
Y-configuration. (d) Final digital subtraction angiogram (left vertebral artery injection) showing complete coil obliteration of the 
aneurysm. Arrows demonstrate proximal and distal markers of the intersecting stents.

(a) (b)

(c) (d)



Intracranial aneurysms and subarachnoid hemorrhage     123

in dimethylsulfoxide. Several reports exist of utilizing Onyx to 
treat intra cranial aneurysms. 89–91    

 The Cerebral Aneurysm Multi-center European Onyx (CAMEO) 
trial was undertaken to study the efficacy of Onyx for the treat-
ment of intracranial aneurysms. This multi-center prospective 
observational study had119 patients with 123 aneurysms that 
were judged suitable for Onyx treatment. 91  Clinical and angio-
graphic outcomes were recorded at discharge, 3 months, and 
12 months. Of 71 aneurysm with available 12-month follow-up, 
56 (79%) had complete occlusion. Procedure- or device-related 
permanent neurologic morbidity at final follow-up was present in 
eight of 97 patients. 91  Onyx HD 500 has recently been approved 
by the FDA, which will very likely lead to an increase in the use of 
Onyx for treatment of intracranial aneurysms. Further studies are 
needed to determine its final safety and efficacy. Presently this 
technique is most often employed in North American for vessel 
sacrifice in peripheral, mycotic aneurysms where the patients are 
poor candidates (usually because of valvular heart disease) for 
operative clipping ( Figure 7.14 ). 

    Deconstructive techniques for treatment 
of aneurysms 
 In some instances, parent vessel arterial sacrifice is a viable option 
over coil embolization or surgical clipping. Proximal arterial liga-
tion often leads to a change in the hemodynamic flow pattern of 
the aneurysm and can cause thrombosis of the aneurysm. Tradi-
tionally, surgical clipping was the mainstay of treatment but endo-
vascular techniques are being used more frequently. 92  Aneurysms 
of the vertebral artery can often be cured by deliberate occlusion 
at the site of the aneurysm, with relatively good results. 93  There are 
several indications for arterial sacrifice. They include symptomatic 
cavernous internal carotid artery aneurysm, arterial dissections of 
the anterior or posterior circulation, fusiform aneurysms, and 
recurrent aneurysms that are not amenable to repeat coiling or 
surgical treatment. Complications related to this treatment include 
unintended branch vessel occlusion, thromboembolic events, and 
stroke from unanticipated poor collateral circulation. 

speculated that there is significant endothelial healing that occurs 
along the stent, and that the previously diseased vessel can 
remodel over several months. 80  ,  81  

 Other novel techniques have been described, such as Y-stent 
reconstruction of basilar apex aneurysms or other bifurcations 
aneurysms, trans-posterior communicating artery stenting of 
basilar apex aneurysms, and trans-anterior communicating artery 
stenting of carotid terminus aneurysms. 82     – 85  

 Balloon-assisted coiling involves placing a small balloon across 
the neck of the aneurysm at the point of coil deployment. The 
balloon helps to mold the coils into the aneurysm and to prevent 
coil prolapse into the parent vessel. Several authors have reported 
excellent results with this technique. 86   – 88  We frequently employ 
this technique at our institution and find it extremely useful in 
patients with SAH where stenting is relatively contraindicated 
with wide necked aneurysms ( Figures 7.12 ,  7.13 ). 

 There are several types of balloons available. Two commonly 
used ones are the Hyperglide and Hyperform balloons (eV3 
Neurovascular, Irvine, CA). They are highly compliant balloons 
that allow for balloon-assisted coiling. The Hyperglide balloon is 
4 mm wide and has a length of between 10 mm and 30 mm, 
depending on the balloon selected. It tends to assume a tubular 
shape that works well in longer arterial segments such as the 
internal carotid artery and anterior cerebral artery. The Hyperform 
balloon is 4 mm × 7 mm is size and is often used at the basilar 
apex for wide-necked basilar apex aneurysms that may incor-
porate either of the posterior communicating arteries. It differs 
from the Hyperglide balloon in that it tends to be more ovoid-
shaped and will more readily assume the shape of the space that 
it is placed within.   

 Liquid embolic agents for endovascular 
aneurysm treatment 
 Onyx (eV3 Neurovascular, Irvine, CA) is a newly available 
liquid embolic agent approved for pre-surgical embolization 
of arterial–venous malformations. It is composed of ethylene-
vinyl alcohol and micronized tantalum powder suspended 

(a) (b)

Figure 7.11
A clear phantom of a Neuroform stent spanning a wide-neck aneurysm. (b) Neuroform stent with detachable coils.(Courtesy of Bos-
ton Scientific, Natick, MA.)
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(a)

(c)

(e)

(d)

(b)

Figure 7.12
(a) Anterior inferior cerebellar artery aneurysm angiogram following subarachnoid hemorrhage. (b) Balloon-assisted coiling 
demonstrating errant coil loop above the expected location of the aneurysm dome. (c) Post-re-positioning of the coil demonstrating 
extravasation of contrast (arrows). Heparin was reversed, ventriculostomy opened, balloon re-inflated, and additional soft, 
smaller coils placed. (d, e) Repeat angiography demonstrates good, brisk filling of the intracranial circulation with no additional 
extravasation.
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Figure 7.13
(a) CT scan in a 50-year-old women who presented with Hunt–Hess 4 status after a Fischer grade 4 subarachnoid 
hemorrhage. (b) CT angiogram viewed as through the left mastoid and occiput demonstrating a wide-necked right posterior inferior 
cerebellary artery (PICA) aneurysm arising from a proximal PICA that supplies both cerebellar hemispheres (a normal variant). 
(c) The approach to the parent artery by the re-modeling balloon is most direct from above (i.e. across the vertebrobasilar junction) 
(black arrow), while the aneurysm dome can be directly approached from below via the ipsilateral vertebral artery (white arrow). 
(d) Post-coil right vertebral angiogram.

(a)

(b)

(c) (d)
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 Figure 7.14 

  (a,b) Lateral view of a conventional carotid angiogram in a patient with endocarditis. While the early arterial phase appears 
normal, delayed and magnified views demonstrate a mycotic aneurysm. (c) Selective catheterization of a pial pedicle during 
Onyx embolization.  

(a) (b)

(c)

 Prior to undertaking internal carotid artery parent vessel 
occlusion, the patient can undergo an ‘awake temporary balloon 
test occlusion’ to assess collateral supply. Adjunctive methods 
such as somatosensory evoked potentials, motor evoked poten-
tials, and electroencephalography can be utilized. As technologi-
cal improvements have been made in endovascular devices, the 
indications for deconstructive aneurysm treatment have become 
decreasingly common.    

 Complications of endovascular 
aneurysm therapy  

 Aneurysm rupture 
 Intraprocedural aneurysm rupture is reported to occur in 2–8% 
of cases. 94  The result can be catastrophic and life-threatening 

but this is not always the case. Rupture occurs from protrusion 
of the coil or micro-catheter or from microwire perforation 
through the aneurysm dome. Anecdotally, we have seen this 
more commonly in cases of acute SAH using balloon remo-
deling where the balloon fixes the coiling catheter in place 
and does not allow ‘unloading’ of the forward force of the 
advancing coil by displacement of the catheter from the aneu-
rysm lumen (i.e. the coil is unloaded by perforating the 
aneurysm) (see  Figure 7.12 ). When perforation occurs, the 
following steps should be taken: the heparin (if used) should 
be reversed immediately with protamine sulfate; coils should 
be delivered to the remainder of the aneurysm and, if present, 
a balloon can be inflated across the neck of the aneurysm; and 
the blood pressure should be lowered to a mean arterial 
pressure of 60–70 mmHg. The remaining lumen of the 
aneurysm should be coil occluded as rapidly as possible. 
If an external ventricular drain is not present this should be 
considered immediately; if it is present it should be opened 
at 0 cmH

2
O.   
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 Figure 7.15 

  (a,b) Subtracted and unsubtracted views of 
a wide-necked supraclinoid aneurysm, 
coiled after stent placement. (c) Delayed 
formation of thrombus on the stent (arrow), 
initially without distal emboli (d). 
(e) Following intra-arterial administration 
of glycoprotein IIb–IIIa inhibitors, the filling 
defect begins to lyse, although in the views 
of the pial vessels one can appreciate a 
filling defect (f) (arrow). (g) Selective 
catheterization of the M2 segment 
under roadmap with additional lytic 
therapy demonstrates restoration of distal 
flow with only a small residual ‘saddle 
embolus’ defect. (h) Post-lysis.  

(a) (b)

(c) (d)

(e) (f)

(g) (h)



128     Endovascular Techniques in the Management of Cerebrovascular Disease

studies, MRI with diffusion-weighted imaging, and repeat angiog-
raphy if necessary. 

    Coils in the parent vessel and 
misplaced coils 
 Rarely, a coil can embolize from the aneurysm into the distal 
circulation. If this situation arises, several measures can be taken. 
If the coil is small and has embolized distally and it is not occlu-
sive, the patient can be left on aspirin, although there is the risk of 
more distal embolism. Two devices, the Amplatz Nitinol 
Microsnare (Microvena, Vadnais Heights, MN) and the Alligator 
Retrieval Device (Chestnut Medical Technologies, Menlo Park, CA) 
can both be used to extract coils from the parent vessel. 98  ,  99  As one 
would expect, this procedure carries an increased risk of vessel 
perforation and dissection, but if the coil is occluding a major 
vessel the risk is warranted. 

 On occasions is there will be one or more coil loops that 
protrude into the parent vessel. This is usually not clinically 
significant, and if there is no limitation of flow the patient can 
be managed conservatively and is usually placed on aspirin with 
or without clopidogrel for 2–4 weeks. If the patient has been pre-
viously loaded on aspirin and clopidogrel, consideration can be 
given to placing a stent across the aneurysm to attempt to move 

 Thromboembolic complications 
 Thromboembolic complications have been reported as occurring 
in 2.5–28% of patients. 95  ,  96  This risk can be significantly reduced 
by heparinizing the patient during the procedure and loading 
the patient with aspirin and clopidrogel in the setting of possible 
stenting. Difficulty arises in the setting of SAH, when hepariniza-
tion is more dangerous and loading with aspirin and clopidogrel 
is relatively contraindicated, especially if there is to be a future 
placement of an external ventricular drain. In our experience, the 
risk of thromboemboli is relatively low, and aggressive over-
heparinization is not warranted in SAH. When thromboembolic 
complications arise, they are usually from activation of platelets 
on the coil surface. Intra-arterial or intravenous glycoprotein 
IIb–IIIa inhibitors work very effectively to prevent further clot 
formation, and their use often leads to dissolution of the aggre-
gated platelets. 97  Our strategy in the setting of thromboembolism 
formation is to ensure that the anticoagulation time is between 
250 and 300 seconds and then to administer an intra-arterial 
IIb–IIIa inhibitor, followed by serial angiographic runs until 
improvement or at least clot stability is obtained ( Figure 7.15 ). 
This strategy is safe even in the setting of acute SAH. Patients are 
then placed on aspirin and occasionally clopidogrel for 2–3 weeks, 
and also on low-dose intravenous heparin for the next 24 hours. 
It is vital to follow these patients with transcranial Doppler 

 Figure 7.16 

  A 48-year-old man presented with an unruptured left V4 segment vertebral artery aneurysm. The initial treatment was placement 
of a coronary stent and balloon-assisted coiling. (a) The patient had enlargement of the aneurysm and underwent placement of two 
Neuroform stents (Boston Scientific, Freemont, California) within the coronary stent. However, the aneurysm continued to enlarge. 
(b) Immediately following placement of two 4.25 mm × 20 mm Pipeline embolization devices (Chestnut Medical Technologies, Menlo 
Park, California), there has been complete occlusion of the fusiform aneurysm with restoration of normal vessel anatomy of the 
V4 segment of the vertebral artery. This result was maintained during serial angiographic follow-up to 1 year. There were no 
periprocedural or post-procedural complications noted.  

(a) (b)
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 One example of this kind of stent is the Pipeline Neuroendo-
vascular Device (Chestnut Medical Technologies, Menlo Park, CA). 
The Pipeline device is a braided, tubular, bi-metallic endoluminal 
implant. It can occlude both saccular and fusiform aneurysms by 
disrupting flow along the aneurysm neck or inside the fusiform 
component of the aneurysm. 106  Currently, the device is not 
approved for use in the USA by the FDA, but it has been used 
under an emergency FDA exemption in two patients. 107  Both 
patients had wide-necked V4 segment vertebral artery aneurysms 
that had failed other endovascular treatments. ( Figure 7.16  shows 
a patient who had undergone two previous treatments with 
placement of a coronary stent and balloon-assisted coiling 
followed by placement of two Neuroform stents when the aneu-
rysm enlarged. After the placement of the three stents and 
attempted coiling, the aneurysm had further enlargement 
(see  Figure 7.16a ). After placement of two Pipeline Emboli 
Devices, an immediate and complete occlusion of the aneurysm 
and anatomical reconstruction of the vertebral artery was 
achieved (see  Figure 7.16b ). Angiographic follow-up at 6 months 
and 12 months showed continued cure. The Pipeline device and 
other new treatment modalities are allowing for the safe and 
effective treatment of previously untreatable vascular lesions. 

    Summary 
 Intracranial aneurysms represent unique surgical and endovascu-
lar challenges. Surgical clipping and endovascular coiling should 
not be viewed as competing techniques but as complementary 
modalities. Patients are best managed in a setting where both 
treatments can be readily offered in an unbiased manner.     
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the prolapsed coil back into position or to trap it against the 
vessel wall. This strategy increases the risk of the procedure and 
necessitates post-procedural antiplatelet therapy, which in itself is 
not risk-free. A final strategy is to place a balloon across the neck 
of the aneurysm and attempt to drive the loop back into the 
aneurysm. This technique is moderately successful in our hands.     

 Post-coiling follow-up strategy 
and re-canalization 
 Until the long-term durability of coiling is known, patients should 
be carefully followed for aneurysm recurrence. At our institution 
we perform a 6-month angiogram on most patients but have 
begun to rely on MRA in some patients. If the aneurysm appears 
to be completely coiled, the patient is followed by MRI or MRA. 
If there is residual neck or a slight recurrence, the patient under-
goes repeat angiography at 1 year and then at 3 years. 

 Re-canalization of embolized aneurysms has been reported 
at a wide range of frequencies in the literature, ranging from 10% 
to 50%, with an average of 20–35%. 100     – 103  Re-canalization is 
affected by size, with greater stability seen in small embolized 
aneurysms and lesser stability in large and giant aneurysms. 101  ,  103  
When re-canalization occurs, a decision must be made about 
re-treatment. 

 To follow the coiled aneurysms with MRA, we use 1.5 Tesla 
contrast-enhanced three-dimensional MRA using a three-
dimensional ultrafast spoiled gradient-recalled acquisition in 
the steady state (SPGR) sequence. 104  This sequence provides very 
clear anatomical definition of the parent vessel. We have found 
that this sequence will detect re-canalizations >3 mm. The ability 
to detect aneurysm re-canalization >3 mm is important because 
this is the size for which we will consider re-treatment. When 
there is a residual neck, we will generally follow these patients 
when the neck size is <4 mm. 

 When recanalization is detected on either angiography or 
MRA, a decision about for re-treatment must be made. Several 
factors are important when deciding on re-treatment. The size 
of the re-canalization is the most important. It is likely that smaller 
recanalizations can be followed, but they must be carefully 
followed. Any noticeable change in the degree of re-canalization 
is an indication for treatment. Large re-canalizations warrant 
treatment. Re-treatment options include repeat coiling, stent-
assisted coiling, and surgical clipping.   

 Future devices and innovations 
 There are newer devices on the horizon that will expand the 
spectrum of aneurysms that can be treated by endovascular 
techniques. The use of covered stents has been shown to be effec-
tive for the definitive treatment of wide-necked aneurysms. 81  ,  105  
However, these devices are often stiff and difficult to navigate into 
the intracranial circulation. The development of newer stents is 
on the horizon. While not covered these devices have a much 
higher metal surface area. Also, they are much softer and there-
fore navigation into the intracranial circulation is easier. When 
multiple stents are deployed, aneurysm thrombosis can be 
induced without entering the aneurysm as with coil emboliza-
tion. However, this may raise some concerns relative to branch 
vessel or parent vessel thrombosis. These stents are not commer-
cially available. 
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 Pial arteriovenous malformations  

 Classification 
 Vascular malformations of the central nervous system can be cat-
egorized in a number of ways. A simplistic and utilitarian clas-
sification is to divide the lesions into those that involve the brain 
substance and those that that primarily involve the dura. Vascular 
lesions of the parenchyma are characterized by the McCormick 
system (recognizing that individual lesions may overlap or occur 
simultaneously.) 1  This scheme recognizes: 

■   capillary telangectasias  
■   slow-flow cavernous malformations  
■   venous angiomas  
■   high-flow arteriovenous malformations (AVMs) of the pial 

arteries.      

 Capillary telangiectasias 
 Capillary telangiectasias are composed of small capillary-like 
blood vessels that resemble normal capillaries surrounded by 
normal brain parenchyma. They are often small ( < 1 cm) in diam-
eter, they are poorly marginated, and they occur frequently in 
the pons. These lesions are clinically silent but are often inciden-
tally discovered as areas of enhancement on MRI (in otherwise 
normal brain) or at autopsy ( Figure 8.1 ).   Capillary telangiec-
tasias may be clinically significant because these lesions are 
thought by some to represent earlier versions of cavernous malfor-
mations; multiple lesions (including cavernous malformations), 
capillary telangiectasias, and intermediate forms of both have 
been identified.   

 Cavernous malformations 
 Cavernous malformations are composed of cystic vascular spaces 
lined by a single layer of endothelium. These sinusoidal vessels 
form a compact mass with no direct arterial in-flow. Cavernous 
malformations do not have any intervening neural tissue, and this 
is the major histological feature that differentiates them from 
capillary telangectasias. On gross examination these lesions are 
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well-circumscribed areas of reddish-purple discoloration up to 
a few centimeters in size; they possess a rim of hemosiderin, 
reactive gliosis, focal areas of calcification, and pockets of blood 
products in various stages of decay. The paramagnetic and 
susceptibility effects of these blood breakdown products give 
these lesions a characteristic appearance on MRI ( Figure 8.2 ). 

     Clinically these lesions may be asymptomatic, or they may 
produce headache, a local mass effect, seizures, and occasionally 
hemorrhage. This last presentation is believed by some to be related 
to venous drainage. Given that these are ‘slow-flow’ lesions, the 
hemorrhage associated with cavernous malformations is usually 
not catastrophic (unlike that associated with high flow AVMs or 
intracranial aneurysms). However, location is an important pre-
dictor of prognosis. Some patients present with cavernous mal-
formations within the brainstem and deep structures; hemorrhage 
in these locations, can cause significant clinical problems. 

 The treatment for cavernous malformations is observational 
or surgical resection. There is no role for endovascular emboliza-
tion of these lesions.  

 Developmental venous anomalies 
 Developmental venous anomalies (DVAs) are the most common-
est vascular anomaly of the brain. They are composed of low-flow 
anomalous veins separated by normal brain. Typically there are a 
number of smaller veins, which are described as a  caput medusae  
that coalesce into a prominent single draining vessel. This con-
figuration often produces a characteristic appearance on MRI 
( Figure 8.3 ). The clinical significance of DVAs arises because they 
can be associated with cavernous malformations. In the absence 
of an associated cavernous malformation, these anomalies are 
asymptomatic and are viewed by some as incidental, anatomic 
variants of normal venous drainage. 

     Arteriovenous malformations 
 AVMs comprise a spectrum developmental anomalies, with a 
unique, but poorly understood vascular pathophysiology. 2    –  5  The 
 sine qua non  of AVM pathology is arterial shunting to draining 
veins in the absence of capillaries. The pathologic hallmarks of 
arterioles feeding directly to nidal vessels have a distinctive cor-
relate of angiographic shunting ( Figure 8.4 ). 6  –  8  Variability of lesions, 
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 Figure 8.1 
  (a, b) Sagittal, (c, d) axial, and 
(e,f) coronal pre- and 
post-contrast T1-weighted MR 
scans of a typical capillary 
hemangioma. (f) Coronal 
gradient echo scan 
demonstrating susceptibility 
artifact consistent with blood 
breakdown products.  

(a)

(c)

(e) (f)

(d)

(b)

which can be quite dramatic, can be appreciated as a spectrum, 
ranging from a compact, tight nidus without significant intervening 
brain parenchyma to diffuse, reticulated anastamotic channels 
with a lobar or even hemispheric distribution. Regardless of 
where an AVM falls on this spectrum, the propensity for it to 
bleed has histologic and pathologic correlates in microscopic 
areas of hemosiderin and gliosis (even in the absence of an apo-
plectic event) as well as macroscopic features such as arterial 
aneurysms and central venous drainage. 7  ,  9  ,  10  

     Historical perspective 
 From Rokitansky and Virchow’s first descriptions of AVMs in the 
1800s, their management has continually challenged physicians. 11  
While reports exist of surgical excision of intracranial AVMs as 
early as the turn of the last century, 11  ,  12  Cushing and Dandy both 
commented on the frequency of poor surgical outcomes. 13  ,  14  
Nevertheless, Cushing and Bailey presciently recognized, even in 
the 1920s, that the complexity of such lesions would require a 
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(a) (b) (c)

(d) (e)

 Figure 8.2 
  (a, b) Sagittal and coronal unenhanced 
T1-weighted scans demonstrating a 
multi-lobulated, heterogeneous mass of the 
anterior third ventricle. (c) Post-contrast coro-
nal study demonstrating subtle enhancement 
primarily at the margins. (d, e) Axial 
fluid-attenuated inversion recovery (FLAIR) 
and T2-weighted scans of the same lesion. 
Notice the rim of susceptibility artifact 
consistent with chronic blood breakdown 
products. This is a typical MR appearance of a 
cavernous malformation.  

better understanding of their natural history as well as the 
thoughtful application of multiple treatment modalities. 15  Since 
that time, remarkable advances in technology have given cerebro-
vascular specialists surgical, endovascular, and radiosurgical tools 
that allow for safer and more efficacious treatment for many 
intracranial AVMs. And yet, in many ways, pial AVMs remain 
among the most formidable cerebrovascular lesions to manage. 
Optimal management continues to demand an experienced mul-
tidisciplinary team approach, as well as an honest assessment of 
the natural history of a given lesion.   

 Epidemiology 
 Pial vascular malformations are considered developmental 
anomalies whose clinical evolution is influenced by vascular 
anatomy, hemodynamics and, growth factors. 2  ,  4  Although occa-
sional cases are associated with other abnormalities (e.g. Osler–
Weber–Rendu disease, Wyburn-Mason and the Sturge–Weber 
syndrome) 16  –  18  ( Figure 8.5 ), AVMs are not regarded as familial, 
and the overwhelming majority of cases are sporadic. The 

prevalence of AVMs is estimated at approximately 0.01 %  of the 
general population, but reported rates range from 0.001 %  to 
0.52 % . 1  ,  19    –  22  There is a slight male preponderance, with a reported 
male to female ratio ranging from 1:1 to 2:1. 20  

  AVMs can occur throughout the brain and have three mor-
phologic components: 1  

■   the feeding artery or arteries;  
■   the draining vein(s); and  
■   the dysplastic nidus or abnormal connection between arter-

ies and veins, which without an intervening capillary bed 
results in a precipitous pressure sump serving to reinforce 
the lesion.    

 AVMs are commonly classified using the Spetzler–Martin classi-
fication system ( Table 8.1 ), which is based on three radiologic 
characteristics: 23  

■   the size of the AVM;  
■   the location and therefore the eloquence of the surrounding 

brain; and  
■   the pattern of venous drainage, either deep or superficial.    
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 Figure 8.3 
  (a) Axial T2-weighted, (b) axial 
FLAIR and (c) axial gradient echo studies at 
3.0T demonstrating a typical  caput medusa  
and prominent anterior draining vein 
(arrowhead) connecting to the superior 
sagittal sinus. The prominence of the venous 
structures on the gradient echo studies is a 
function of deoxyhemaglobin and the high 
field strength (not hemorrhage or chronic 
blood breakdown products.)  

(a)

(b)

(c)

   Upon initial presentation, 30 %  of AVMs are  <  3 cm in size, 
60 %  are between 3–6 cm, and the remainder are  >  6 cm in size. 24  
In approximately 15–20 %  of AVMs, an associated intracranial 
aneurysm will be found. 24    

 Clinical presentation and 
natural history 
 AVMs are relatively uncommon lesions. 25  As such, the literature 
describing the natural history of AVMs is limited and is com-
posed predominantly of retrospective analyses of selected popula-
tions (e.g. people not undergoing surgery, patients with symptoms 
other than hemorrhage at presentation), yielding biased and rela-
tively variable estimates of the rate of hemorrhage and its associ-
ated consequences. 26  Typically, AVMs may present as hemorrhage, 

seizure disorder, or migraine-like headache; in addition, they may 
be discovered incidentally during imaging. Rarely, progressive 
neurologic deficits are thought to arise from a ‘steal phenomenon’ 
with diversion of blood away from viable brain tissue, or from 
venous stasis and hypertension, both leading to chronic ischemia. 27  

 AVMs of the brain are the third most common cause of intra-
cranial hemorrhage and a common cause of parenchymal hemor-
rhage in young adults. 28  A first hemorrhage most commonly 
occurs in patients between 20 and 40 years of age. 19  ,  20  ,  27  ,  29  ,  30  The 
initial presenting symptom is a hemorrhage in 42–72 %  of patients, 
a seizure in 33–46 % , a headache in 14–34 % , and a progressive 
neurologic deficit in 21–23 % . 27  ,  29  –  31  Large AVMs, those  >  7cm 3 , 
are more likely to present with a seizure (72 % ) than with a 
hemorrhage (28 % ), whereas smaller AVMs, those  <  7 cm 3 , are 
more likely to present with a hemorrhage (75 % ) than a seizure 
(25 % ). 32  In those cases where the initial presentation is a hemor-
rhage, larger AVMs tend to have a higher risk of re-bleeding. 20  ,  27  
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patients whose seizures were the same or worse compared with 
their pre-operative state. It also appears that seizures may improve 
after radiosurgery. 39  

 The relationship of pregnancy and the risk of hemorrhage 
from an AVM is a controversial one. Horton et al. 40  in their ret-
rospective analysis of 451 women who had 540 pregnancies, 
reported 17 intracranial hemorrhages. For patients harboring 
unruptured AVMs, they calculated an annual hemorrhage rate of 
3.5 %  for pregnant women and 3.1 %  rate for non-pregnant 
women of childbearing age. The conclusion was that pregnancy 
was not a significant risk factor for hemorrhage in women with 
unruptured AVMs. However, there are numerous reports that 
suggest that once an AVM has hemorrhaged during pregnancy, 
the risk of recurrent hemorrhage is significantly increased. 41  
While there are reports of mothers having undergone successful 
surgical removal of their AVMs during pregnancy, higher-grade 
lesions at eloquent locations are best managed conservatively, 
with special precautions taken at the time of delivery. 40    

 Most estimates approximate a 2–4 %  per year risk of 
hemorrhage. 30  ,  33  In the year immediately after a symptomatic 
hemorrhage, the risk of re-bleeding is generally thought to be con-
siderably higher, of the order of 6–18 %  per year, gradually returning 
toward the 2–4 %  baseline with time. 33    –  36  The annual mortality risk 
of AVM hemorrhage is 0.9–1 % , but it decreases after 15 years from 
the last hemorrhage. 27  With each episode of hemorrhage, there is a 
20 %  risk of a major neurologic deficit and a 10 %  risk of 
mortality. 20  ,  24  ,  27  ,  31  The risk of a neurologic deficit is decreased if the 
hemorrhage has a subarachnoid component. 27  

 The location of the AVM correlates with the risk of epilepsy. 
The risk of seizures is highest in those patients with AVMs located 
in the frontal lobes (75 % ), lowest in the occipital lobes (0 % ), and 
intermediate in the parietal (57 % ) and temporal lobes (29 % ). 37  In 
one study of 545 patients, 44 %  of initial seizures were non-focal. 20  
Seizures can in general be controlled with medical therapy alone. 
Piepgras et al. 38  in a series of 102 patients, reported that 83 %  were 
seizure-free 2 years post-operatively. There were only four 

 Figure 8.3 (Continued ) 
  (d, e) Pre- and post-contrast T1-weighted 
studies as well as (f) axial post-contrast scans 
demonstrating a typical pattern of a 
developmental venous anomaly.  

(d)

(e)

(f)
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 Figure 8.4 
  (a) A series of axial CT scans 
demonstrating acute blood in 
the third ventricle and Sylvian 
fissures, and along the leaves of 
the tentorium (arrowheads). 
Note the subtle vessels seen 
end-on in the pre-pontine 
cistern. Note too the absence of 
parenchymal hemorrhage and 
lack of mass effect on the 
brainstem. (b) Axial 
fluid-attenuated inversion 
recovery (FLAIR) images through 
the posterior fossa demonstrat-
ing serpiginous flow voids in the 
cerebellum consistent with a 
high flow lesion. Subarachnoid 
blood or protein can been seen 
as subtle areas of high signal in 
the cerebrospinal fluid spaces 
on FLAIR. (c) Lateral view from a 
diagnostic angiogram; ipsilateral 
vertebral artery injection 
demonstrating a markedly 
enlarged posterior inferior 
cerebellar artery (PICA) with 
several aneurysms along the 
major feeder. Given the lack of 
parenchymal hemorrhage this 
was the suspected source of 
bleeding. (d) Contralateral PICA 
demonstrating steal from the 
inferior and superior vermian 
branches.  

(a)

(b)

(d)(c)

 Diagnosis  

 Computed tomography 
 As with aneurysmal subarachnoid hemorrhage, the mainstay for 
the correct diagnosis of an AVM at the time of presention is often 
a CT scan with and without contrast. CT readily detects hemor-
rhage and it is also very sensitive for calcification that is frequently 
associated with AVMs ( Figure 8.6 ). 24  ,  27  ,  42  On a non-contrast 
enhanced CT scan, areas of acute hemorrhage or calcification 
will appear as hyperdense regions with or without surrounding 

hypodensity representing edema. In cases without acute hemor-
rhage or calcification, the lesion may appear as isodense, but with 
contrast enhancement the AVM will enhance intensely, typically 
in a ‘serpentine’ pattern as the abnormal and dilated vessels fill 
with contrast material. 24  

     Magnetic resonance imaging 
 Cranial MRI is more sensitive for detecting unruptured 
AVMs than CT. 42  On MRI, hemorrhages will have varying signal 
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 Figure 8.5 
  (a) Anterior–posterior (AP) and lateral left 
internal carotid artery injection in a patient 
with Osler–Weber–Rendu syndrome. The 
patient has multiple intracranial aneurysms 
(see registration artifact from prior surgical 
clipping) and has evolved multiple pial 
arterial–venous malformations (AVMs) over 
time. Two small AVMs are seen in these 
views in the left temporal lobe (red arrow) 
and near the midline of the frontal lobe 
(black arrow). (b) AP and lateral left 
vertebral artery injections demonstrating 
malformations in the right occipital lobe 
and the superior cerebellum bilaterally 
(arrows).  

(a)

(b)

intensities depending on the age of the hematoma and the oxida-
tion state of the hemoglobin within the lesion. Vessels within the 
AVM will appear as hypointense ‘flow voids’ on spin-echo scans 
and are not typical of the normal vascular anatomy of the affected 
region of the brain (see figure  8.4 ). 24  In addition, MRI allows for 
the accurate localization of associated normal and abnormal 
brain tissue, including white matter tracts (using diffusion tensor 
tractography or DTI), which is crucial for the adequate determi-
nation of eloquence as defined in the Spetzler–Martin scale and 
which is often able to assess the dominant venous drainage. 23    

 Functional imaging 
 Functional studies, such as xenon CT, single-photon computed 
tomography (SPECT), and positron emission tomography (PET) 
have also been used to study the risk of AVM hemorrhage, 
infarction, or normal perfusion pressure breakthrough. 24  ,  43  Func-
tional imaging has also helped to document the variability and 

Table 8.1 Features of pial vs dural arterial-venous 
malformations (AVM)

Pial Dural

Congenital Acquired

Hemorrhage risk Venous infarction risk

Primary RX surgery/radiosurgery Primary RX endovascular

■  Aggressive embolization of 
venous drainage

■  Secondary attack of arterial 
pedicle

Endovascular  RX as adjuvant

■  Primarily attack of arterial 
pedicles

■  Strictly avoid venous 
embolization

Surgery/radiosurgery as 
secondary RX

Table 8.2 The Spetzler–Martin scale for evaluating risk 
of neurologic deterioration following surgery for 
arterial–venous resection

Characteristic Points assigned

Size of lesion

 Small (<3 cm) 1

 Medium (3–6 cm) 2

 Large (>6 cm) 3

Location

 Non-eloquent site 0

  Eloquent site (sensorimotor, language, visual 
cortex, hypothalamus, thalamus, brainstem, 
cerebellar nuclei, or regions directly adjacent to 
these structures)

1

Direction of venous drainage

 Superficial 0

 Deep (any) 1

From Spetzler and Martin.54
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(fMRI), magnetoencephalography (MEG, or magnetic source 
imaging), PET scanning superimposed on MRI images, and 
superselective Wada testing. 44      –  48    

 Catheter angiography 
 Conventional four-vessel cerebral angiography remains the gold 
standard for the assessment AVMs. Angiography is able to define 

plasticity of the motor and language cortex in patients with an 
AVM. As a result, estimating the location of functional cortex by 
anatomic landmarks alone is inadequate. Previously, the only 
method of defining the exact location of functional tissue was by 
intraoperative stimulation; however, recent developments of 
functional imaging modalities can now offer a pre-operative 
assessment of the proximity of an AVM to eloquent cortex and 
fiber tracts. The most common techniques are functional MRI 

 Figure 8.6 
  (a) Unenhanced and enhanced CT 
scans in a young patient with acute 
hemorrhage. A wide window 
demonstrates central enhancement 
of the compressed nidus AVM. 
(b) AP and lateral views of a right 
internal carotid angiogram 
demonstrating downward mass 
effect on the Sylvian triangle 
(red arrow) and midline shift of the 
anterior cerebral artery vessels 
from the hematoma (black arrow). 
A small focal nidus corresponds to 
the area of enhancement on the CT 
scan with cortical venous drainage 
(thick black arrows), Spetzler–Martin 
grade II AVM. (c) Oblique internal 
carotid artery (ICA) and 
microcatheter views of the nidus. 
There is the suggestion of small 
nidal aneurysms.  

(b)

(a)

(c)
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 Figure 8.6 (Continued ) 
  (d) From left to right, ‘Start–stop’ 
serial microcatheter shots during 
‘plug–push’ Onyx injection. Lower 
view is from corresponding 
ipsilateral ICA injection. (e) Post 
embolization lateral angiogram 
and corresponding radiograph of 
the Onyx cast. Note the lack of visi-
ble shunting. (f) Oblique radio-
graph of Onyx cast and 
corresponding ICA angiogram pre-
embolization.  

(d)

(e)

(f)

AVM features that relate to natural history as well as treatment 
planning. It is important to emphasize that MRA is not an 
adequate substitute for conventional angiography. 24  The cere-
bral angiogram clearly delineates the three morphologic sub-
strates of an AVM: the feeding arteries, the nidus, and the draining 
veins. 

 The feeding arteries for cortical AVMs can arise from: 

■   the superficial pial arterial system (i.e. the anterior cerebral 
artery, the middle cerebral artery, or the posterior cerebral 
artery);  

■   the deep perforating vessels, such as the lenticulostriates, the 
anterior or posterior choroidal arteries, or the thalamo-
perforators; and  

■   high-flow lesions parasitizing supply from the normal 
meningeal arteries.    

 The relationship of the feeding arteries to the AVM is crucial for 
clinical decision-making. The feeding arteries may have proximal 
branches that supply normal parenchyma before supplying the 
nidus, or they may be en-passage vessels that provide branches to 
the nidus before continuing to supply normal brain. 
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hemorrhage. Small low-grade hemorrhagic lesions in non-elo-
quent regions are less desirable for radiosurgery because of the 
risk of hemorrhage while waiting for the AVM nidus to obliterate 
(usually 2–3 years). 

 Grade III AVMs represent a complex and heterogeneous 
group, each requiring an individualized assessment. The hetero-
geneity of this category led Lawton 60  to stratify these lesions fur-
ther into three additional angioarchitectural subcategories, 
with low (2.9 % ), intermediate (7.1 % ), and high (14.8 % ) risk of 
post-surgical death or new deficit. Most of these lesions are 
treated with either radiosurgery or pre-operative embolization 
followed by surgical resection. When these lesions are approached 
surgically, pre-operative embolization frequently plays an impor-
tant role. 

 The surgical resection of grade IV and V AVMs is generally 
associated with a risk of operative morbidity and mortality that 
exceeds the risks associated with the natural history of the lesion. 
Han et al. 61  analyzed outcomes in a series of 73 consecutive 
patients with grade IV and V AVMs. These authors recommended 
no treatment for most patients in this group (55 out of 73) and 
reported a relatively low risk of hemorrhage in these patients 
(1 %  per year). Conversely, accumulating data suggest that partial 
AVM resection does not reduce, but rather increases, the risk of 
future hemorrhage. Han et al. 61  observed a hemorrhage rate of 
10.4 %  in patients with grade IV and grade V AVMs after partial 
treatment, compared with a 1 %  risk in patients with no previous 
treatment. Miyamota et al. 62  found an annual risk of hemorrhage 
of 14.6 %  in patients who underwent palliative treatment of cere-
bral AVMs. Wikholm et al. 63  observed an increased rate of hem-
orrhage and death in patients undergoing partial treatment that 
resulted in less than 90 %  nidal obliteration. In accordance with 
these observations, treatment for grades IV and V AVMs is rec-
ommended only in patients with progressive neurological defi-
cits attributable to repeated hemorrhage or disabling symptoms, 
such as intractable seizures. If treatment is undertaken, the goal 
should be to achieve cure and not simply to reduce the AVM size. 
The use of multimodality treatment in patients with grades IV and 
V AVMs can improve eventual cure rates and patient outcomes.   

 Role of endovascular therapy 
 The role of neuroendovascular therapy in the management of 
brain AVMs depends ultimately on the overall treatment plan. In 
general, five scenarios make up the vast majority of rational man-
agement strategies (listed here from most to least common): 

  1.   Pre-operative embolization: embolization as a precursor to 
complete curative surgical resection  

  2.   Targeted therapy: embolization to eradicate a specific bleed-
ing source  

  3.   Pre-radiosurgery embolization: embolization as a precursor 
to radiation therapy  

  4.   Curative embolization: embolization for attempted cure  
  5.   Palliative embolization: embolization to palliate symptoms 

attributed to shunting.     

 Pre-operative embolization 
 AVM embolization is most frequently performed as a precursor to 
curative surgical resection. Before initiating the neuroendovascular 

 Approximately 15–20 %  of patients with an AVM harbor 
underlying aneurysms (see figure  8.4 ). 49  –  51  The majority of these 
lesions are ‘flow related’ and form secondary to the hemodynamic 
stress placed on the feeding vessels, but they may also be seen at 
or within the nidus. The former may regress with removal of the 
offending malformation. 9  ,  22  ,  52  These later aneurysms are often 
implicated as a source of hemorrhage. 10  ,  49  

 Only angiography is able to delineate the true nidus of an 
AVM. The nidus is a network of dysplastic vessels and is in gen-
eral the source of hemorrhage. The nidus itself can be compact 
and may contain components that are more fistulous in nature, 
while lesions may present as a diffuse nidus, with poorly delin-
eated margins and intervening gliotic parenchyma. 

 The high-flow state of AVMs lead to dilated and arterialized 
draining veins. The draining veins can be superficial or deep and 
may demonstrate stenoses or varices. The presence of stenoses is 
associated with an increased risk of hemorrhage 10  ,  53  as is exclu-
sively deep drainage (where the rigid straight sinus effectively 
limits venous capacity). 54  

 The development of micro-catheter technology and digital 
subtraction angiography has made navigation into nearly all 
intracerebral vessels possible. Superselective angiography not only 
provides greater anatomic detail, but also provides a route for 
embolization and functional testing with sodium amytal.    

 Classification, grade and 
treatment strategy 
 Numerous grading systems have been devised to characterize 
lesions and stratify surgical risk. 54  –  56  The risk of surgical interven-
tion has been directly related to the angiographic architecture of 
the particular lesion: the size of the AVM, the location and there-
fore the eloquence of the surrounding brain, and the pattern of 
venous drainage, either deep or superficial. 23  This relationship is 
best characterized with the Spetzler–Martin grading system (see 
 Table 8.1 ). 

 In prospective studies, the Spetzler–Martin grade demon-
strated a reliable correlation with surgical outcome. Hamilton 
and Spetzler 57  reported operative morbidity and mortality rates 
for the resection of grade I and II AVMs ( <  1 % ) and grade III 
AVMs ( <  3 % ) to be very low. However, much higher morbidity 
rates were observed for grade IV and V AVMs, reaching 31 %  and 
50 % , respectively, in the early post-operative period, and subse-
quently improving to 22 %  and 17 % , respectively, at the time of 
the follow-up examination. Heros et al. 58  reported a similar rela-
tionship between Spetzler–Martin grade and outcome. These 
data form the foundation for most management decisions regard-
ing AVM therapy. Therapeutic options for AVMs include obser-
vation, embolization, stereotactic radiosurgery, microsurgery, or 
various combinations of these. 59  

 In general, for grade I and II AVMs, the risk of hemorrhage 
far outweighs the risk of surgical resection. As such, these lesions 
are generally treated with surgical resection. For grade I lesions, 
because of the low operative morbidity and mortality, pre-
operative embolization is not frequently pursued, given that the 
risk of the embolization procedure may approach or even surpass 
the risk of surgery. In some instances, stereotactic radiosurgery, 
rather than surgical resection, is used for treatment of a grade II 
lesion. The most common example would be a small grade II 
AVM in a highly eloquent region. Stereotactic radiosurgery is 
also utlilzed in lesions that have not presented with previous 
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studies. Jafar et al. 64  demonstrated that pre-operative emboliza-
tion reduced the operative morbidity of large AVMs to a level 
similar to that of smaller AVMs that were not embolized before 
surgery. DeMerritt et al. 65  reported similar results, with pre-
operative embolization of large AVMs improving post-surgical 
outcomes in comparison with a control group of smaller AVMs 
that were not embolized.   

 Targeted therapy 
 With few exceptions, all treatment strategies for AVM management 
should ultimately be directed toward the complete eradication of 
the lesion. However, in some patients with grades IV and V AVMs 
that are not amenable to surgical resection, partial treatment tar-
geted to eliminate an identified bleeding source is undertaken. 

 Aneurysms are identified in association with AVMs in 7–20 %  of 
cases. 10  ,  52  ,  66  ,  67  Aneurysms may be located on vessels that are remote 
from the nidus, on a feeding vessel (flow-related aneurysms), or 
within the nidus itself. In addition, intranidal pseudoaneurysms – 
composed of an organized hematoma that communicates with the 
intravascular space – may form after AVM hemorrhage. The pres-
ence of an aneurysm represents a risk factor for intracranial hemor-
rhage in patients with AVMs. 10  ,  49  Although both intra- and 
extranidal aneurysms are risk factors for intracranial hemorrhage 
in patients with AVMs, the increased risk of hemorrhage in the 
setting of an extranidal aneurysm may be attributed to aneurysm 
rupture rather than hemorrhage from the AVM nidus itself. 66  

portion of AVM therapy, it is critical that the interven tionists 
have a complete understanding of the overall plan for, as well as 
the goals of, the embolization. This understanding is 
predicated on maintaining open lines of communication with 
the vascular neurosurgeon who will be performing the resection 
(or the radiosurgical treatment). The risks of microsurgical resec-
tion, as defined by the Spetzler–Martin category of the lesion, 
should be clear before the procedure. It is important to weigh these 
risks against those involved with each catheterization and each 
embolization. 

 In general, the primary goal of the embolization is to decrease 
the blood supply to the malformation, thereby decreasing the 
level of technical difficulty and associated morbidity of surgical 
resection. A successful embolization is effective in reducing the 
size of the AVM nidus, occluding deep feeding vessels that are 
difficult to access and control surgically, reducing intraoperative 
hemorrhage, and providing better delineation of a surgical resec-
tion plane ( Figure 8.7 ). 

  The neuroendovascular operator must always be cognizant of 
the surgical approach and the complication rate associated with 
the resection of any particular lesion and must make every attempt 
to ensure that the risks of the embolization do not exceed those 
of the surgical resection (e.g. pre-operative embolization of a 
grade II AVM that is associated with a very low operative morbid-
ity). The goal of the vascular neurosurgeon must be to achieve a 
complete, curative resection of the AVM. 

 The efficacy of modern AVM embolization using n-butyl-
cyanoacrylate (NBCA) has been demonstrated in several clinical 

 Figure 8.7 
  (a) Anterior–posterior and lateral left 
internal carotid artery injections 
demonstrating a larger parietal 
arteriovenous malformation in the 
dominant hemisphere. Based on the 
size and location this would be a 
high-risk surgical lesion (Spetzler–
Martin grade IV). However, venous 
drainage is cortical (arrows), the 
number of feeding pedicles is 
relatively limited, and the nidus is 
relatively ‘tightly packed’, features 
that make this lesion more amenable 
to endovascular treatment. 
(b) Post-embolization radiographs 
demonstrating Onyx cast.  

(a)

(b)
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 Figure 8.8 
  (a) Sagittal, axial, and coronal 
post-contrast three-dimensional 
magnetization prepared 
rapid-gradient echo 
T1-weighted scans used for 
stereotactic radiosurgical 
planning demonstrate an 
AVM nidus at the floor of the 
fourth ventricle (red arrows). 
Feeding vessels arise deep 
from the basilar artery; 
black arrow designates the 
central draining vein. 
(b) Anterior–posterior and 
lateral left vertebral artery 
angiogram performed with 
Leksell fiducial head frame 
(red arrows demonstrate 
examples of fiducials; there 
should be nine in each field 
of view) prior to radiosurgery. 
The size, shape, and location 
of this lesion make it a 
prototypical example of 
radiosurgery indications.   

(a)

(b)

nidus into a target size that is more amenable to radiosurgical 
ablation. In this setting, the use of a more permanent embolisate, 
such as NBCA (see below), is mandatory to avoid recanalization 
of portions of the AVM that have been embolized but not included 
in the radiation field. Additional goals of pre-radiosurgical embo-
lization would include targeted therapy for components predis-
posed to hemorrhage (i.e. nidal or feeding vessel aneurysms) and 
the ablation of large arteriovenous fistulae that are typically more 
refractory to the effects of radiotherapy. 

  Despite the straightforward rationale for pre-radiosurgical 
embolization, very little data exist to support this approach. This 
is related in part to the extended latency period (2–3 years) 
required for radiotherapy to have a definitive effect. Of the 
available case series, many were conducted in the late 1980s and 
early 1990s, and many used particulate embolysates (e.g., polyvi-
nyl alcohol). The use of a temporary embolisate for the perma-
nent eradication of a component of AVM is contraindicated at 
this time, given the availability of more durable agents. In this 
category, the largest series was reported by Gobin et al., 72  who 
described their experience with 125 patients undergoing embo-
lization (predominantly with NBCA) as a precursor to radiosur-
gery. These authors were able to achieve total occlusion in 11.2 %  
of AVMs after embolization alone, with an additional 76 %  of 
lesions reduced sufficiently in size to undergo radiotherapy. 
A 65 %  rate of total occlusion was observed after radiotherapy 
in patients undergoing combined treatment. More recently, 
Henkes et al. 73  reported a series of 30 patients undergoing 
combined embolization and radiotherapy, observing a less 
impressive 47 %  obliteration rate in a series of 30 patients. How-
ever, in this study, most of the treated AVMs were of very high 
grade. From the existing data, no compelling evidence exists to 
justify or refute the usefulness of preradiosurgical embolization.   

 Remote and feeding vessel aneurysms can usually be identified 
by conventional angiography. Nidal aneurysms may occasionally 
be visualized on conventional angiographic views. Often, how-
ever, only superselective angiography performed using high frame 
rates can demonstrate these lesions. Nidal aneurysms are fre-
quently obscured by overlying vessels and varices or other por-
tions of the AVM nidus on conventional angiographic views. As 
such, when an unresectable AVM hemorrhages one or more 
times, endovascular exploration for a nidal aneurysm represents 
a reasonable strategy. In these cases, if the AVM is not to be 
resected, a targeted embolization may be undertaken to eradicate 
the aneurysm either with a liquid embolic agent (in the case of a 
nidal aneurysm) or coils (in the case of a proximal, flow-related 
aneurysm or remote aneurysm).   

 Pre-radiosurgery embolization 
 Stereotactic radiosurgery is often used for focal AVMs (i.e. with 
a tight nidus) located deep within eloquent areas of the brain 
( Figure 8.8 ). The success of radiotherapy is inversely proportional 
to the size of the AVM nidus to be treated. 68  AVMs with nidal 
volumes less than 10 ml (diameter  <  3 cm)  69  are frequently curable 
by radiosurgery, with rates of cure at 2 years estimated at between 
80 %  and 88 % . 70  ,  71  Often the characteristics that make a lesion 
difficult to treat surgically may limit endovascular treatment 
(see figure  8.8 ). Nevertheless, despite the eloquent location there 
may be circumstances in which the size of the nidus is unfavor-
ably large for radiosurgery and portions of the lesion may be 
accessible by endovascular means. The theoretical goal of embo-
lization in this setting would be to reduce the size of the AVM 
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 Endovascular techniques 
 The success of endovascular therapy of AVMs depends on the 
equipment utilized, the embolic agents employed, the quality of 
the angiographic equipment, and the experience and clinical 
judgment of the endovascular surgeon. 

 The embolization is performed in a neuroradiologic suite or 
operating room that is equipped with biplanar fluoroscopy. Ide-
ally the patient is awake, facilitating neurologic assessment during 
the procedure, although in practice the long procedure times, the 
requirement for precise roadmap, and the discomfort of intracra-
nial catheterization preclude this. A transfemoral route is used, 
and a 5–8 guiding catheter is positioned in the internal carotid or 
vertebral artery, depending on the vascular supply of the AVM. 
A micro-catheter is used for superselective catheterization of the 
feeding arterial pedicles.  

 Microcatheters 
 Small size is a requisite for access of these potentially diminutive 
arteries. Catheters capable of reaching the distal cerebral arteries 
range in size from 2.3F to 3.0F. Two general types are available: 
an over-the-wire system and a flow-directed system. Both of these 
catheter types have a hydrophilic coating that improves their 
performance and the ease with which they can be advanced up a 
vessel. Over-the-wire catheters require vessels to be accessed with 
a steerable micro-guidewire and then the catheter to be advanced 
over the wire until the desired location is reached. Because AVMs 
usually have high-flow feeding pedicles, the preferential blood 
flow to these vessels may be used to the operator’s advantage by 
using a catheter that has an extremely floppy, low-mass, bulb-
shaped tip. Such flow-directed catheters move like a sail in the wind 
and are drawn to the nidus by the flow of blood. Flow-directed 
techniques work best for accessing the nidus during the early 
stages of embolization while there is still a high-flow state through 
the AVM and its feeders. As the embolization proceeds and the 
shunt decreases, the ease with which these catheters ‘sail’ to the 
nidus diminishes.   

 Guidewires 
 Like microcatheters, microguidewires also need to be small 
(0.010–0.014 inches; 0.25–0.36 mm) and flexible. Generally, a 
balance must be struck between the stiffness of the wire (which 
supports forward pushing or ‘stripping’ of the catheter) and the 
softness of the tip to reduce the risk of vessel perforation. Usually 
manufactured from stainless steel or nitinol, the wire provides 
torque-ability to steer the wire into the desired vessels despite 
having to navigate several bends through tortuous vessel loops. 
Movements of guidewire-supported microcatheters are flow-
independent and consequently these systems are best suited for 
accessing small feeders arising from a more proximal, main vessel 
trunk.   

 Embolic agents 
 Before delivering embolic material to an AVM, the operator needs 
to assess the risk of causing a permanent neurologic deficit. Angiog-
raphy through the microcatheter after it has achieved its final 
position will reveal whether any normal brain is being perfused 

Embolization for cure
Embolization for cure of pial arteriovenous malformations is the 
exception rather than the rule of endovascular therapy.  Several 
key variables determine which cases are amenable to complete 
endovascular obliteration: 1) the experience of the operator, 2) 
the type of embolic agent, and 3) the angiographic architecture of 
the target.

Given the uncommon nature of such lesions (0.01% of the 
general population)74 and the variability in performance of 
different embolic agents, it is no surprise that the experience of 
the operator is a key determinant in the declaration of ‘cure.’  
This is perhaps most evident in the use of NBCA where operator 
selectable parameters of sequencing of target pedicles, proximity 
of catheter placement, local hemodynamics under anesthesia, 
ratio of the mixture of acrylic monomer with radiographic 
contrast, and speed of injection provide tremendous variability 
in the success of filling the malformation nidus with embolic 
material (while at the same time minimizing venous or proximal 
arterial occlusion.)75

It is generally accepted that liquid embolic agents (NBCA or 
ethylene vinyl alcohol) provide the best opportunity of ‘casting’ 
or completely filling the AVM nidus while creating a durable 
seal of the arterial feeding vessels.76,77  Choice of agent in any 
given case is often dependent on experience of the operator, 
local anatomy, and hemodynamics. As noted by Wikholm et al 
NBCA has a steep learning curve with embolic injections occur-
ring over seconds to minutes.78,79 Alternatively ethylene vinyl 
alcohol injections may be more controlled, occasionally pro-
tracted (hours), which may prove problematic for extremely 
large lesions.77,80–82

Finally, the architecture of the nidus itself is a key determinant 
of success. The accessibility of the arterial pedicle to catheteriza-
tion has obvious implications for the injection of embolic agent; 
however the degree of arteriovenous shunting and proximity of 
eloquent brain will also affect the aggressiveness of the injection.  
Finally, much like treatment with stereotactic radiosurgery, the 
compactness or density of the nidus in relation to the endovascu-
lar access of feeding pedicles will greatly affect the degree of 
obliteration of the malformation.

Small series with lengthy follow-up estimate the rate of 
complete obliteration of pial arteriovenous malformations at 
16-49%.77,82,83

 Palliative embolization 
 Palliative embolization is controversial, but some investigators 
theorize that large AVMs may cause progressive neurological 
deficits, intellectual deterioration, or debilitating headaches as 
sequelae of the shunting of blood away from physiologically 
normal brain (i.e. a steal phenomenon). 69  ,  74  Given that the 
lesions responsible for this type of phenomenon are large and 
typically unresectable, some investigators have advocated partial 
embolization in an attempt to reduce the severity of arterial–
venous shunting and to improve perfusion pressure in the sur-
rounding functional brain parenchyma. 61  Although no large 
clinical series exist to support this strategy, several case reports 
have described success in small numbers of patients. 75  ,  76  Fox et al. 77  
reported improvement in limb weakness in three patients 
after subtotal embolization of large AVMs located near the motor 
cortex, attributing the improvement to a reduction in cerebro-
vascular steal.    
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the brain. Onyx is an ethylene vinyl alcohol copolymer that is dis-
solved in dimethylsulfoxide (DMSO) and precipitates as the 
DMSO diffuses away. This agent lacks the adhesive quality of 
cyanoacrylates, and has more predictable set-up, making it safer 
to use. The procedure of Onyx embolization requires that a stable 
‘plug’ of Onyx be established at the catheter tip to prevent refux. 
The process of establishing the plug is critical. Multiple small 
injections followed by waiting between 30 and 120 seconds are 
necessary to allow precipitation to occur. Once the plug is stable, 
the material will penetrate into the AVM nidus, often with excel-
lent results (see figure  8.7 ). As with NBCA, care must be taken to 
ensure that the venous outflow of the nidus is not occluded.   

 Staging treatment 
 The number of embolizations that can be performed during a 
single session varies with the preference of the operator, the anat-
omy of the lesion, and the strategy for additional treatment. One 
potential risk of over-embolization of a large lesion is hemorrhage 
related to normal perfusion pressure breakthrough – the sequelae 
of an abrupt reduction in arterial–venous shunting and a sudden 
increase in the perfusion pressure of the adjacent normal brain 
parenchyma with impaired autoregulatory capacity. 32  ,  83  

 In a patient with a large AVM scheduled for surgical resection 
on the next morning, one might perform between five and seven 
NBCA injections during a single session. Given the much larger 
volume of Onyx that can be injected from a single catheter posi-
tion, the number of pedicles catheterized and the volume of embo-
lic agent injected is much more variable and is assessed on a 
case-by-case basis. If multiple vascular distributions provide sup-
ply to the lesion (e.g. the right internal carotid and vertebrobasilar 
arteries) and multiple sessions are to be performed, it is our pref-
erence to embolize within only one vascular distribution during 
any given session. In general, for AVMs larger than 3cm, it is pref-
erable to have at least two sessions of embolization scheduled.     

 Dural arteriovenous 
malformations and fistulae 
 Dural arterial–venous malformations or dural arterial–venous 
fistulae (DAVFs) are acquired lesions consisting of one or more 
fistulous connections within the leaflets of the dura mater. They 
account for 10–15 %  of cranial arteriovenous malformations. 84  ,  85  
Here these lesions will be referred to as DAVFs because the term 
‘malformation’ is a misnomer: malformation implies a congenital 
etiology when, in fact, the majority, if not all of these lesions, are 
acquired.  

 Etiology and pathogenesis 
 Given the variable locations and complexity of DAVFs, there may 
be multiple etiologic factors responsible for fistula formation. 
Most lesions appear in the middle-aged or the elderly, far later in 
life than typical pial AVMs. Specific factors are known to predis-
pose to fistula formation, including sinus thrombosis, trauma, 
and surgery. There are several cases of documented sinus throm-
bosis with subsequent fistula formation associated with the 
involved sinus. 86    –  89  In such cases, the primary cause of sinus 

distal to the tip of the microcatheter. If there is any question as to 
whether functional brain will be embolized, some advocate that 
provocative neurologic challenge can be performed by injecting 
amobarbital through the microcatheter. 47  Careful examination of 
the patient’s neurologic function subserved by the portion of the 
brain in question is then performed. If there are no deficits, embo-
lization will very likely not lead to a significant neurologic deficit, 
although in the setting of high-flow lesions some would question 
the validity of the test (shunting producing false negative results). 

 Embolic agents (see Chapter 4) can be categorized into two 
main groups: liquids and particles. The cyanoacrylates (‘glues’) 
are the prototypical liquid embolic agents, and they are the only 
agents that currently can lead to a permanent endovascular cure. 
The most widely used cyanoacrylate, cyanoacrylate NBCA, exists 
as a liquid that polymerizes immediately upon contact with an 
ionic solution containing free hydrogen ions. Because of its 
low viscosity, it can be injected through the smallest of micro-
catheters (i.e. flow-directed catheters), a limitation in delivering 
the larger particulates. 

 The technique of glue embolization requires a careful knowl-
edge of the polymerization characteristics of the agent, the rate of 
blood flow through the nidus, the degree of pedicle occlusion by 
the microcatheter, and the rate of material delivery through any 
given microcatheter. 78  –  80  Endovascular cure demands that the 
entire AVM nidus be occluded, including the components near-
est the venous side, or else the nidus will recruit a new arterial 
supply. Because NBCA polymerizes so rapidly, an agent must be 
added that will retard its polymerization rate. The oily contrast 
medium lipiodol is used for this purpose, and it has the added 
advantage of opacifying the otherwise radiotransparent NBCA, 
allowing for visualization under fluoroscopy. By varying the ratios 
of the components, an experienced physician can mix a cocktail 
that will penetrate the entire nidus before polymerizing without 
reaching the draining vein. Should the draining vein be occluded, 
the blood pressure head within the nidus may rise to high levels 
that cannot be supported by the fragile walls of the dysplastic 
AVM vessels, resulting in rupture and hemorrhage. In addition, 
great care must be taken to avoid gluing the microcatheter to the 
nidus, usually an irretrievable situation (although limited experi-
ence would suggest that this complication is much less 
catastrophic). 8  

 Despite their complexities and potentially serious complica-
tions, cyanoacrylates have been useful in reducing the size of 
selected AVMs before stereotactic radiosurgery because of their 
adhesive properties. Other non-permanent embolic agents (i.e., 
particulates) cannot fulfill this role, since the AVM nidus will re-
cannulate within a few weeks after their delivery. In contrast, par-
ticulates are somewhat safer and easier to use and are particularly 
helpful as an adjunct to open surgical therapy. 

 Particulates are manufactured from a variety of materials and 
come in a range of sizes. The smallest are polyvinyl alcohol (PVA) 
particles that are engineered in sizes ranging from 50  µ m to 
1500 µ m and are injected as a suspension in radiographic contrast 
media. The exact size used depends on the rate of flow through 
the nidus and the presence of intranidal shunts and fistulae. If too 
much polyvinyl traverses the nidus without lodging in it, an 
inflammatory pulmonary reaction can develop, with transient 
pulmonary failure. 82  To minimize this complication, intranidal 
shunts can be partially occluded by mixing the polyvinyl alcohol 
with fibrillary collagen or by using platinum coils. When deliv-
ered to small feeding pedicles, they will lead to thrombosis and 
occlusion of the vessel. 

 More recently a novel polymer, Onyx (eV3, Irvine, California) 
has been approved for the pre-surgical embolization of AVMs of 
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has significant implications for the endovascular options for treat-
ment. If the vein of Labb é  flows in a retrograde fashion, its origin 
in the sinus can be occluded from a transvenous approach. If 
the flow is antegrade, occlusion of its origin can exacerbate the 
venous hypertension, leading to a worsening of symptoms and 
possible hemorrhage. 

 Lesions involving the cavernous sinus frequently manifest 
themselves with ocular pathology (see  Figures 8.10 ,  8.11 ). The 
classic signs of orbital venous hypertension include pulsatile 
exophthalmos, chemosis, conjunctival injection, and glaucoma 
resulting in vision loss. A progressive cavernous sinus syndrome 
can also cause extraocular muscle paresis (especially involving cra-
nial nerves III and VI), a decline in visual acuity, optic neuropathy, 
and proptosis. These are all indications for treatment. Tinnitus 
and ocular bruits are also relative indications. The arterial supply 
for a cavernous sinus lesion can include branches from the infero-
lateral or meningohypophyseal trunk, branches of the middle or 
accessory meningeal artery, the artery of the foramen rotundum, 
and the ascending pharyngeal artery, among others. A large drain-
ing superior ophthalmic vein can be easily identified on MRI, and 
surgical access into this vein provides a route for potential therapy. 
Access into the cavernous sinus via the inferior petrosal sinus pro-
vides yet another, more convenient route for endovascular therapy 
(see figure  8.10 ). Again, particular attention should be paid to the 
venous phase of the diagnostic angiogram, including intracranial 
cortical venous drainage from the cavernous sinus into the super-
ficial and deep Sylvian systems (see figure  8.11 ). 

  Rarely, patients may present with lesions of the marginal sinus. 
Symptoms depend on the pattern of venous drainage. Those with 
jugular venous drainage typically present with large fistulae and 
symptoms of pulsatile tinnitus and other posterior circulation 
phenomena. 100  Those with retrograde venous drainage via the 
inferior petrosal sinus may present in the same fashion as those 
with cavernous sinus fistulae, with variable degrees of ophthal-
mologic symptoms. 104  In either case, direct treatment of the nidus 
may involve a risk to lower cranial nerves and may cause poten-
tially significant morbidity. 104  

 Ethmoidal DAVFs typically derive supply from the anterior 
and posterior ethmoidal branches of the ophthalmic artery and 
may recruit supply from the distal branches of the internal maxil-
lary artery. The drainage is almost always into pial veins along the 
floor of the anterior cranial fossa and, ultimately, into the supe-
rior sagittal sinus. As a result, the most common presentation of 
an ethmoidal DAVF is a frontal lobe hemorrhage. Occasionally, 
drainage can occur into the cavernous sinus, which leads to 
chemosis, proptosis, and elevated intraocular pressures. These are 
one of the few types of DAVF that have a male preponderance 
and for which surgical coagulation of the vein is the preferred 
method of treatment because of the associated low morbidity and 
high cure rate. 105  

 Superior sagittal sinus DAVFs are rare and are varied in their 
presentation. Because of the distant location between the superior 
sagittal sinus and the auditory apparatus, early detection second-
ary to a pulsatile tinnitus is rare. The presentation, therefore, is 
predominantly secondary to hemorrhage (subarachnoid, sub-
dural, or intraparenchymal), headache, or symptoms resulting 
from venous hypertension. The arterial supply is generally derived 
from branches of the middle meningeal artery, the anterior falcine 
artery off the ophthalmic artery, or the posterior meningeal artery. 
Frequently, the arterial supply will be bilateral. Should endovascu-
lar therapy fail to achieve complete obliteration, surgical excision 
should be considered. If surgical excision is performed, care must 
be taken to identify the patterns of cerebral venous drainage to 
prevent exacerbation of the venous hypertension. 

thrombosis may be a generalized hypercoagulable state or an 
infection of a major sinus such as the mastoid or sphenoid sinus. 
It is thought that the fistula occurs during the phase of attempted 
re-canalization and neovascularization within the sinus. Given 
these circumstances, it is reasonable to test for a nascent hyper-
coaguable state in these patients. 

 Conversely, not all DAVFs are associated with thrombosis or 
stenosis of a major dural sinus. Venous hypertension within a 
sinus may lead to the development of a DAVF. 90  –  92  In a recent 
histopathologic study of DAVFs, the presence of 30  µ m ‘crack-
like’ vessels within the dural sinus wall was described, and it was 
postulated that steno-occlusive disease of the venous sinuses trig-
gers the development of these vessels. In this scenario, subsequent 
sinus thrombosis is then an epiphenomenon that occurs as a 
result of turbulent flow and sinus wall thickening. 93  Additionally, 
conditions associated with vascular frailty, such as fibromuscular 
dysplasia, neurofibromatosis type I, and Ehlers–Danlos syn-
drome, have been associated with DAVFs. 94      –  98    

 Clinical presentation and 
anatomic considerations 
 The clinical presentation of DAVFs is highly varied and is primar-
ily determined by the location of the fistula and the subsequent 
pattern of venous drainage. Other factors include the degree of 
AV shunting, the presence of venous hypertension, and the pres-
ence of venous stenoses or ectasias ( Figure 8.9 ). The two most 
common locations are the transverse sigmoid sinus and the cav-
ernous sinus ( Figures 8.9, 8.10 ,  8.11 ), 99  ,  100  followed by the deep 
venous system, the superior sagittal sinus, the superior petrosal 
sinus, the ethmoidal sinus, the marginal sinus, and the inferior 
petrosal sinus. The reason for this discordant distribution has not 
been clearly established. A delay in the development of the exter-
nal carotid territory and the presence of numerous emissary veins 
near the skull base have been proposed as two possible causative 
mechanisms. 101  Theoretically, any site along the dura mater is a 
potential source for fistula formation. The primary factor in 
determining the aggressive, morbid behavior of a DAVF, how-
ever, is the presence of leptomeningeal venous drainage, which 
can engender venous hypertension, progressive neurologic defi-
cit, infarction, and hemorrhage. 102  

  Lesions involving the transverse sigmoid sinus are the most 
common (occurring in 38 %  of cases of DAVF). 100  The clinical 
picture can range from an asymptomatic lesion to overt hemor-
rhage. Common symptoms may include a simple pulsatile bruit 
or a headache. If there has been longstanding venous hypertension 
and swelling, the presentation can mimic transient ischemic attacks 
or ischemic infarctions of the adjacent brain parenchyma. 103  The 
arterial supply typically occurs through transmastoid branches of 
the occipital, posterior auricular and middle meningeal branches 
of the external carotid artery, neuromeningeal branches of the 
ascending pharyngeal artery, branches of the vertebral artery 
(including the posterior meningeal artery, and the artery of the 
falx cerebelli), and the meningeal branches of the carotid siphon 
(see figure  8.12 ). A complete evaluation of the venous drainage 
system should include the identification of any downstream steno-
sis or any occlusion of the ipsilateral transverse sigmoid sinus, the 
presence of flow across the torcula, and the presence of cortical 
venous drainage. Particular attention should paid to the direction 
of flow in the vein of Labb é  and its point of insertion, since it 
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ization of the fistula on post-procedure axial imaging and it can 
minimize the amount of blood loss during surgical resection. 106  

 In summary, the location and pattern of venous drainage 
are the key components in determining the clinical presentation 
of a DAVF. The arterial supply is largely determined by the 
location of the fistula, and the venous drainage and degree of 
venous hypertension indicate the potential for a malignant cli-
nical course. The overall angiographic anatomy aids in determi-
ning whether endovascular therapy by transarterial, transvenous, 

 Patients with lesions involving the superior petrosal sinus, 
also referred to as tentorial DAVFs, generally present with 
hemorrhage or mass effect from dilated veins. The arterial supply 
typically arises from the artery of Bernasconi and Cassinari off 
the meningohypophyseal trunk, the inferolateral trunk, and the 
petrosal and petrosquamosal branches of the middle meningeal 
artery. The venous drainage usually involves the superior petrosal 
sinus and the pontine and perimesencephalic veins. Even if endovas-
cular treatment fails to obliterate the fistula, it can aid in its local-

 Figure 8.9 
  (a) Axial CT scans of a 
59-year-old man with a new, 
gradual-onset headache and 
hemianopsia demonstrate 
vasogenic edema and mass 
effect in the right occipital 
lobe. Dystrophic calcification is 
seen centrally. (b) Lateral 
angiographic views of the right 
common carotid and right 
vertebral arteries demonstrate 
dural AVM fed by the 
posterior auricular artery 
(red arrow), the occipital artery 
(open arrow), and the dural 
vertebral artery (red arrowhead) 
with intracranial cortical 
venous drainage (black arrows). 
(c) Delayed view of the right 
common carotid artery 
injection demonstrating 
cortical venous stasis and slow 
flow (black arrow). Following 
successful transarterial 
embolization, the veins 
collapsed and the vasogenic 
edema as well as the 
symptoms completely resolved.  

(a)

(b)

(c)
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or a combined treatment can obliterate the fistula, and endovas-
cular therapy is generally the first line of therapy for the major-
ity of these lesions. Should the endovascular approach fail to 
cure the lesion, it can aid in localization of the fistula on axial 
CT imaging and minimize the amount of blood loss during 
surgical resection.   

 Diagnostic Imaging 
 The preliminary diagnosis of a DAVF is based on its clinical pre-
sentation. CT, CT angiography, MRI, and magnetic resonance 
angiography often support the clinical diagnosis by revealing 
engorged cortical veins, sinus stenosis or occlusion, hemorrhage, 
osseous changes from hypertrophied and ectactic vessels, or 
vasogenic edema from venous hypertension. All patients with 
clinical and radiographic evidence suggestive of a DAVF should 
undergo cerebral angiography. If a DAVF is revealed, a thorough 
angiographic evaluation should be obtained to delineate the fis-
tula location, the arterial feeders, the sinus drainage, the cortical 
venous drainage, any occlusions, stenoses or ectasias, and the 
blood flow dynamics. A complete angiographic evaluation may 
require evaluation and careful analysis of both internal and 
external carotid arteries both vertebral arteries and possibly the 
ascending and deep cervical systems.   

 Classification 
 There are numerous classification schemes for DAVFs, the most 
useful and modern are the revised Djindjian classification scheme 
proposed by Cognard 107  ( Table 8.3 ) and the Borden classification 
scheme 108  ( Table 8.4 ), which are both based on that initial scheme. 
No matter the classification system, they all focus on the patterns 
of venous drainage and the clinical implications of presentation, 
treatment, and prognosis associated with them. 

    Treatment strategies 
 The decision to treat a DAVF depends primarily on the clinical 
presentation of the patient and the angiographic characteristics 
of the fistula, especially on the venous side (see  Figures 8.10 , 
 8.11 ,  8.12 ). A simple fistula draining into a sinus in a patient 
with a mild bruit or one who is asymptomatic is best served 

with conservative or compression therapy. 109  It is important to 
continue to follow the clinical course of these patients since 
DAVFs can progress to a more malignant state. If a pulsatile 
bruit resolves, it is an indication for repeat angiography, because 
the sinus may have thrombosed and the venous drainage may 
be redirected into the leptomeningeal or deep venous system, 
a finding that portends a more aggressive course of therapy. 

  There is a subset of patients who are symptomatic (commonly 
with a bruit) and whose activities of daily living are affected, 
but who do not harbor aggressive angiographic features. In these 
cases, a subtotal obliteration or a subtotal angiographic occlusion 
of the DAVF can palliate the symptoms. An aggressive angio-
graphic cure may not be required and may even impose unneces-
sary risks. 110  

 The treatment goal for any patient presenting with hemor-
rhage, symptoms of cortical venous hypertension or significant 
ocular pathology or vision loss should be to achieve complete 
obliteration of the lesion. Even the asymptomatic patient whose 
fistula demonstrates significant cortical venous pathology should 
be considered for aggressive treatment. In this high-risk popu-
lation, there is little evidence to support the notion that 
incomplete obliteration reduces the risk of hemorrhage, venous 
infarction, or visual loss.  

 Compression therapy 
 A small percentage of DAVFs involving the transverse sigmoid 
sinus or the cavernous sinus can be treated with compression 
therapy. This involves compression of the involved occipital 
artery or the carotid artery (carotid atherosclerosis must first be 
excluded) with the contralateral hand for 30 minutes several 
times a day. For small fistulas, this may promote thrombosis in 
up to 30 %  of cases. 109    

 Endovascular treatment 
 Transvenous embolization of fistulae was popularized by 
Halbach et al. and it has been used with good success and is 
especially effective in the treatment of transverse and cavernous 
sinus DAVFs. 103  ,  110  –  112  Venous access into the transverse sinus is 
generally not an issue; and, even if the sinus is occluded at the 
level of the sigmoid sinus or jugular bulb, access into the involved 
sinus can be obtained by crossing the torcula. Consideration of 
the venous drainage of the fistula itself as well as the drainage 
of normal cerebral tissue is paramount in minimizing risk 

 Table 8.3    Revised Djindjian classification of dural 
arterial–venous fistulae  

Type I Antegrade drainage into a sinus

Type IIa Reflux into the sinus (retrograde flow)

Type IIb Reflux into cortical veins

Type IIa+b Reflux into both sinus and cortical veins

Type III Direct cortical venous drainage without venous ectasia

Type IV Direct cortical venous drainage with venous ectasias

Type V Spinal venous drainage

 From Cognard et al. 107  

Table 8.4 Borden classification of dural arterial–
venous fistulae

Type I Drainage into the dural venous sinus

Type II Drainage into the dural venous sinus with 
retrograde drainage into subarachnoid veins

Type III Drainage into subarachnoid veins

Subtype a Simple fistula

Subtype b Multiple fistulas
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which will decrease the degree of shunting, occasionally 
augmented by transarterial embolization of select pedicles. 

 The initial results of transarterial treatment of DAVFs were 
suboptimal, owing to the low rates of cure and the subsequent 
recruitment of collaterals. 103  ,  110  ,  111  ,  114  The difficulty in curing 
DAVFs transarterially probably resulted from the use of poly-
vinyl alcohol particles and proximal occlusion of feeding 
pedicles during NBCA injections. 115  Embolization with polyvinyl 
alcohol may result in re-canalization, while transarterial emboliza-
tion with liquid agents may not traverse the fistulous connection 
into the venous side and may permit the re-appearance of smaller 
collaterals, which may be more difficult to catheterize selectively. 
An additional consideration is the potential for dangerous overt or 
occult anastomoses between the external carotid artery and the 
internal carotid or vertebral arteries; or ischemic cranial nerve 
palsies could also preclude a safe and effective embolization. In a 
recent series of 21 patients treated transarterially under flow-arrest 
conditions, cures were demonstrated in all fistulae without com-
plications. 116  Although the definite curative embolization occurred 
under flow-arrest conditions, a significant portion of these 
patients underwent adjunctive embolization with polyvinyl alco-
hol or NBCA or previous transvenous coiling of the recipient 
venous structure. This served to devascularize the collateral inflow 
to minimize NBCA fragmentation, prevent systemic venous embo-
lization, and increase the probability of polymerization within the 
pathologic shunt itself. This illustrates the complex angioarchitec-
tural spectrum of DAVFs and the expertise in multimodality 
treatments required to engender treatment safe and effective. 

(see  Figures 8.11 ,  8.12 ). Care must be taken not to re-route the 
pattern of venous drainage into the cortical veins, which can 
exacerbate venous hypertension (see figure  8.9 ). For transverse 
sinus fistulae, particular attention must be paid to the vein 
of Labb é . If flow in this vein is antegrade, embolization cannot 
proceed across the origin of the vein without compromising 
normal venous drainage. However, if it is retrograde, occlusion 
across the vein of Labb é  is ultimately tolerated and indeed may 
be required to provide a definitive cure. 

 There are many methods of occluding the sinus with balloons 
or coils. Advocates of balloon occlusion 113  espouse the advantage 
of possible balloon test occlusion of the sinus. Unlike arterial 
infarction, however, venous infarction generally does not occur 
for hours, and occasionally days, after the permanent occlusion. 
A short temporary period of balloon occlusion therefore does not 
suggest that the patient will tolerate long-term occlusion. Indeed, 
clinical symptoms (especially with cavernous sinus lesions) may 
transiently worsen following transvenous embolization, requiring 
frequent monitoring and adjunctive pharmacologic treatment 
(e.g. corticosteroids). Furthermore, placement of a detachable 
balloon against the blood flow into a sinus may not be technically 
feasible in every case and certainly will not be possible for Borden 
Type III DAVFs, in which the drainage occurs directly into suba-
rachnoid veins (see figure  8.9 ). 

 The alternative to balloons is coil occlusion. Unfortunately, 
even dense packing with coils may not permanently occlude the 
fistula and further thrombosis within the coil mass itself may be 
required. Currently, we favor coil embolization of the sinus, 

 Figure 8.10 
  (a) Early and delayed right common 
carotid artery injection 
demonstrating early arterial–venous 
shunting to the cavernous sinus 
(red arrow) due to a dural fistula fed 
by small branches of the internal 
maxillary artery and dural branches 
of the carotid siphon. Of particular 
note is the large inferior petrosal 
sinus, which connects to the internal 
jugular vein well below the foramen 
magnum (black arrow). (b) Lateral 
right common carotid angiogram 
following inferior petrosal venous 
access and coil embolization of the 
ophthalmic veins and cavernous 
sinus. In the absence of venous 
outflow to perpetuate the shunt, the 
lesion is no longer present. 
Misregistration artifact denotes the 
presence of the venous coils 
(red arrows)   

(a)

(b)
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Figure 8.11
(a) Anterior–posterior (AP) and 
lateral left carotid artery 
injection in an elderly woman 
demonstrating early filling of 
the cavernous sinus and 
superior ophthalmic veins 
consistent with a dural carotid 
cavernous fistula. The AP view 
hints at a patent inferior 
petrosal sinus (white arrow), this 
is actually the angular vein, 
which is extracranial and lies 
over the maxilla. The lateral 
view demonstrates the inferior 
petrosal sinus to be occluded. 
(b) While orbital catheterization 
via the angular vein has been 
reported, the angulation 
at the trochlea typically 
makes this an arduous task. 
An accommodating and skilled 
ophthalmologic surgeon can 
obtain direct access to the orbit 
via the superior ophthalmic 
vein (red arrow) cut-down, as 
shown here in the AP and lateral 
radiographs. As is often the case 
with these lesions, the arterial 
supply as well as the venous 
drainage may be bilateral, and 
it may require bilateral coiling. 
Note the micro-catheter 
accessing the side opposite the 
cut-down via the circular sinus 
(white arrow). (c) AP radiograph 
(left) and lateral left common 
carotid artery angiogram (right) 
demonstrating bilateral coil 
mass as well as cessation of 
shunting.

(a)

(b)

(c)

 Recently, reports have appeared using Onyx for transarterial 
embolization of dural AVFs. 117      –  121  Accessibility of the feeding 
pedicles in conjunction with a higher threshold for reflux (of 
less concern outside the pial circulation) probably accounts for 
the excellent penetration of the fistula and the good clinical 
results. 118  Nevertheless, one must remain vigilant in the event of 
cortical venous reflux, a since this may pose a risk of intracranial 
hemorrhage. 119    

 Surgical treatment 
 Unlike pial AVMs of the brain or spinal cord, the venous drainage 
of a DAVF can frequently be safely ligated, excised, or occluded 
prior to occlusion of all the arterial pedicles. 122  However, profuse 
bleeding can occur during the exposure and bone flap elevation, 
owing to the arterialized dura, the pedicles, and drainage into 
the intradiploic vascular channels. Sinus skeletonization or 
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 Radiosurgery 
 The role of stereotactic radiosurgery in the treatment of DAVFs is 
continuing to develop, and the experience with this modality is 
growing. 123          –  129  Owing to the complex nature of DAVFs and the 
relatively small number of patients in each series, the rate of 
angiographic obliteration is still uncertain. It does appear, how-
ever, that the complication rates of the initial treatment are rela-
tively low. However, there is the possibility of hemorrhage or 
symptomatic clinical events that could occur from the time of 
treatment until obliteration is obtained. This may be untenable 
for patients who present with hemorrhage, significant venous 
hypertension, or high-risk angiographic profiles. 

 Owing to the relative efficacy of endovascular and surgical 
treatment of these lesions, we view stereotactic radiosurgery as 
the third-line treatment modality. There will be, however, a rela-
tively small patient population in whom endovascular or surgical 
treatment may be extremely difficult or risky, including the 
elderly population with significant comorbidities, and in such 
patients stereotactic radiosurgery may play a role.    

 Conclusions 
 DAVFs comprise a highly complex series of lesions, both clini-
cally and angiographically. The clinical presentation can range 

excision of DAVFs should be reserved for those cases in which 
endovascular therapy has failed to effect a cure but has at least 
decreased the flow to reduce blood loss. Surgical access of 
a recipient venous structure, such as the superior ophthalmic 
vein for cavernous DAVFs, to deliver endovascular materials 
continues to play a significant role. As previously mentioned, 
for ethmoidal DAVFS 105  and some petrosal sinus DAVFS, 
surgical excision of the draining vein is the primary treatment 
modality. 

 In a recent series, 34 patients with primarily transverse 
sigmoid, superior sagittal, or superior petrosal sinus DAVFs 
were cured by surgical treatment. 122  The authors separated their 
patient population into two groups depending on whether the 
fistulous drainage occurred purely through leptomeningeal veins 
(non-sinus fistulae) or whether the fistula drained into a sinus 
with retrograde flow into the leptomeningeal circulation (sinus 
fistulae). In the former scenario, the surgical treatment required 
a disconnection of the draining veins at the point where 
they exited the dural wall of the sinus. In the latter, a surgical 
excision of the involved sinus segment after preoperative embo-
lization represented a safe and definitive treatment because 
this segment did not serve to drain the normal cerebrovascula-
ture. Their cure rate was 100 % , and there were no instances 
of mortality or permanent morbidity. Again, the treatment 
goals were determined by a careful evaluation of the venous 
anatomy, and the importance of pre-operative embolization was 
emphasized.   

 Figure 8.12 
  (a) Lateral carotid angiograms 
demonstrating a tentorial 
dural arterial–venous 
malformation fed from the 
tentorial branch of the internal 
carotid artery (red arrow), a 
solitary draining varix (black 
arrows), with ultimate 
communication to the sigmoid 
sinus (open arrow). 
(b) Unsubtracted carotid 
angiogram post-coiling of the 
varix (arrow) 
demonstrating occlusion 
of the shunt.  

(a)

(b)



Vascular malformations     153

   16.      Kikuchi     K   ,    Kowada     M   ,    Sasajima     H   .  Vascular malformations of the 
brain in hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber 
disease).   Surg Neurol   1994 ;  41 :  374 – 80 .  

   17.      Laufer     L   ,    Cohen     A   .  Sturge-Weber syndrome associated with a large 
left hemispheric arteriovenous malformation.   Pediatr Radiol   1994 ; 
 24 :  272 – 3 .  

   18.      Luo     CB   ,    Lasjaunias     P   ,    Bhattacharya     J   .  Craniofacial vascular malfor-
mations in Wyburn-Mason syndrome.   J Chin Med Assoc   2006 ;  69 : 
 575 – 80 .  

   19.      ApSimon     HT   ,    Reef     H   ,    Phadke     RV   ,    Popovic     EA   .  A population-based 
study of brain arteriovenous malformation: long-term treatment 
outcomes.   Stroke   2002 ;  33 :  2794 – 800 .  

   20.      Perret     G   ,    Nishioka     H   .  Report on the cooperative study of intracra-
nial aneurysms and subarachnoid hemorrhage. Section VI. Arterio-
venous malformations. An analysis of 545 cases of cranio-cerebral 
arteriovenous malformations and fistulae reported to the coopera-
tive study.   J Neurosurg   1966 ;  25 :  467 – 90 .  

   21.      Brown     RD Jr   ,    Wiebers     DO   ,    Torner     JC   ,    O ’ Fallon     WM   .  Incidence and 
prevalence of intracranial vascular malformations in Olmsted County, 
Minnesota, 1965 to 1992.   Neurology   1996 ;  46 :  949 – 52 .  

   22.      Al-Shahi     R   ,    Fang     JS   ,    Lewis     SC   ,    Warlow     CP   .  Prevalence of adults 
with brain arteriovenous malformations: a community based study 
in Scotland using capture-recapture analysis.   J Neurol Neurosurg 
Psychiatry   2002 ;  73 :  547 – 51 .  

   23.      Spetzler     RF   ,    Martin     NA   .  A proposed grading system for arterio-
venous malformations.   J Neurosurg   1986 ;  65 :  476 – 83 .  

   24.      Misra     M   ,    Aletich     VI   ,    Charbel     FT    et al.    Multidisciplinary approach to 
arteriovenous malformations .  In:    Kaye     AH BP , editor.   Operative 
Neurosurgery .  London :  Churchill Livingstone ,  2000 ,  1138 – 51 .  

   25.      Berman     MF   ,    Sciacca     RR   ,    Pile-Spellman     J    et al.    The epidemiology 
of brain arteriovenous malformations.   Neurosurgery   2000 ;  47 : 
 389 – 96 .  

   26.      Al-Shahi     R   ,    Warlow     CP   .  Quality of evidence for management of arte-
riovenous malformations of the brain.   Lancet   2002 ;  360 :  1022 – 3 .  

   27.      Wilkins     RH   .  Natural history of intracranial vascular malformations: 
a review.   Neurosurgery   1985 ;  16 :  421 – 30 .  

   28.      Chicoine     MR   ,    Darcy     RG   .  Clinical aspects of subarachnoid hemor-
rhage.   In:    Weilch     KMA CLWBSB , ed.   Primer on cerebrovascular 
diseases .  San Diego :  Academic Press ,  1997 :  425 – 32 .  

   29.      Brown     RD Jr   ,    Wiebers     DO   ,    Torner     JC   ,    O  Fallon     WM   .  Frequency of 
intracranial hemorrhage as a presenting symptom and subtype anal-
ysis: a population-based study of intracranial vascular malformations 
in Olmsted Country, Minnesota.   J Neurosurg   1996 ;  85 :  29 – 32 .  

   30.      Crawford     PM   ,    West     CR   ,    Chadwick     DW   ,    Shaw     MD   .  Arteriovenous 
malformations of the brain: natural history in unoperated patients.  
 J Neurol Neurosurg Psychiatry   1986 ;  49 :  1 – 10 .  

   31.      Ondra     SL   ,    Troupp     H   ,    George     ED   ,    Schwab     K   .  The natural history of 
symptomatic arteriovenous malformations of the brain: a 24-year 
follow-up assessment.   J Neurosurg   1990 ;  73 :  387 – 91   

   32.      Spetzler     RF   ,    Hargraves     RW   ,    McCormick     PW    et al.    Relationship of 
perfusion pressure and size to risk of hemorrhage from arteriovenous 
malformations.   J Neurosurg   1992 ;  76 :  918 – 23 .  

   33.      Mast     H   ,    Young     WL   ,    Koennecke     HC    et al.    Risk of spontaneous hae-
morrhage after diagnosis of cerebral arteriovenous malformation.  
 Lancet   1997 ;  350 :  1065 – 8 .  

   34.      Graf     CJ   ,    Perret     GE   ,    Torner     JC   .  Bleeding from cerebral arteriovenous 
malformations as part of their natural history.   J Neurosurg   1983 ;  58 : 
 331 – 7 .  

   35.      Itoyama     Y   ,    Uemura     S   ,    Ushio     Y    et al.    Natural course of unoperated 
intracranial arteriovenous malformations: study of 50 cases.   J 
Neurosurg   1989 ;  71 :  805 – 9 .  

   36.      Jane     JA   ,    Kassell     NF   ,    Torner     JC   ,    Winn     HR   .  The natural history of 
aneurysms and arteriovenous malformations.   J Neurosurg   1985 ;  62 : 
 321 – 3 .  

   37.      Waltimo     O   .  The relationship of size, density and localization of 
intracranial arteriovenous malformations to the type of initial symp-
tom.   J Neurol Sci   1973 ;  19 :  13 – 9 .  

   38.      Piepgras     DG   ,    Sundt     TM Jr   ,    Ragoowansi     AT   ,    Stevens     L   .  Seizure 
outcome in patients with surgically treated cerebral arteriovenous 
malformations.   J Neurosurg   1993 ;  78 :  5 – 11 .  

from being asymptomatic to causing devastating intracranial 
hemorrhage. The location of the fistula is a primary factor in 
determining the method of presentation. Angiographically, the 
pattern of venous drainage is the main factor in determining the 
ultimate prognosis. The goal of therapy for any DAVF that exhib-
its or displays cortical venous drainage or cause ocular compro-
mise should be angiographic obliteration and cure. The method 
of treatment will be highly individualized to the angiographic 
architecture of each DAVF, and can consist of endovascular ther-
apy, surgery, or a combination of methods to achieve the appro-
priate treatment goal and to minimize risk. 

 In general, we feel that the endovascular approach is the pri-
mary mode of therapy for transverse sinus, cavernous, superior 
sagittal, and petrosal sinus fistulas and that surgery is the primary 
mode of therapy for ethmoidal DAVFs. Stereotactic radiosurgery 
should be reserved for lesions where endovascular or surgical 
options have failed or would subject the patient to inordinate 
risk. The importance of a multidisciplinary approach to these 
highly complex lesions cannot be over-emphasized, and such an 
approach yields the safest and most effective outcomes.      
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 Intracranial venous anatomy  

 Normal anatomy 
 Intracranial venous anatomy is functionally complex, with 
significant variations in size, drainage patterns, and anastomoses. 
Stenosis and occlusion of intracranial veins may be asympto-
matic or may result in significant neurological deficit, diffuse 
parenchymal edema with coma, and even death. This chapter 
approaches the intracranial venous system as several inter-related 
components: 

■   the central or deep venous drainage of the hemispheres and 
posterior fossa;  

■   the cortical venous drainage, systems; and
■ the dural sinuses.    

 The deep venous system of the cerebral hemispheres is 
concerned with craniopetal venous drainage of deep cerebral 
white matter and basal ganglia and can be divided at two separate 
levels: 

■   the internal cerebral vein, the basal vein (of Rosenthal), and 
the vein of Galen, and  

■   the transcerebral (medullary) venous system (Figures 9.1 
and 9.2).    

 The internal cerebral vein originates at the interventricular 
foramen of Monro, where it is formed by the confluence of the 
septal, anterior caudate, ventricular, choroidal, and terminal 
(thalamostriate) subependymal veins, although anatomical varia-
tion in this region is common. 2  The internal cerebral veins run 
posteriorly to become united in the rostral quadrigeminal cistern 
to form the great cerebral vein of Galen. 

 The basal vein of Rosenthal originates deep within the Sylvian 
fissure, near the medial part of the anterior temporal lobe, and of 
can receive drainage from the insula, the cerebral peduncles, and 
multiple cortical (temporal) tributaries. The basal vein courses 
posteriorly, curving around the cerebral peduncles to its junction 
with the vein of Galen or the internal cerebral vein. The basal vein 
has important anastamoses, with its openings into the deep 
middle cerebral vein anteriorly, the vein of Galen posteriorly, and 
the petrosal veins inferiorly. 

9
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 Paired with the basal vein is the posterior mesencephalic vein. 
The anterior pontomesencephalic vein runs along the anterior 
surface of the pons and commonly drains superiorly via the 
peduncular vein into the posterior mesencephalic vein, which 
in turn runs around the upper midbrain to drain into the great 
cerebral vein of Galen. 

 The vein of Galen is a short, unpaired, midline structure that 
curves posteriorly beneath the splenium of the corpus callosum. 
It unites with the inferior sagittal sinus at the tentorial apex to 
form the straight sinus. Deep venous drainage of the posterior 
fossa includes the precentral cerebellar vein and the superior 
vermian vein, which typically drain to the vein of Galen. 

 Despite a highly variable appearance, several large cortical 
veins can often be identified individually and include: 

■   the superficial middle cerebral vein  
■   the superior anastomotic vein of Trolard  
■   the inferior anastomotic vein of Labbé.    

 These last two anastomotic veins are often in a reciprocal 
relationship such that if one is dominant, the other is usually 
hypoplastic or absent. 

 The superficial middle cerebral vein runs anteriorly along 
the lateral (Sylvian) fissure and receives smaller veins draining 
the lateral surface of the hemisphere. This large vein curves 
around the anterior temporal pole and either drains medially 
into the cavernous sinus or inferiorly into the pterygoid plexus. 
Anastomotic channels allow the superficial middle cerebral vein 
to drain in other directions. These include the superior anasto-
motic vein of Trolard, which opens into the superior sagittal 
sinus, and the inferior anastomotic vein of Labbé, which opens 
into the transverse sinus. 

 Dural venous sinuses are enclosed between the periosteal 
and meningeal layers of dura, and they lack valves. The superior 
sagittal sinus lies along the attached border of the falx cerebri 
and extends from the foramen cecum to the torcula herophili. 
As it extends posteriorly, the superior sagittal sinus increases in 
caliber as it collects the superficial cerebral veins draining the 
cerebral convexities. Arachnoid granulations, contained within 
venous lacunae, are found protruding into the superior sagittal 
sinus along its course and may produce normal filling defects 
on imaging studies. The inferior sagittal sinus lies along the 
inferior free margin of the falx cerebri and drains the falx, the 
anterior part of the corpus callosum, and medial aspects of 
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the cerebral hemispheres. The inferior sagittal sinus extends 
posteriorly and is joined by the great cerebral vein of Galen to 
form the straight sinus. 

 The transverse sinuses lie along the attached margin of the 
tentorium cerebelli within a groove on the inner table of the 
occipital bone. Each transverse sinus courses anterolaterally and, 
on reaching the base of the petrous portion of the temporal bone, 
turns inferomedially to form the sigmoid sinus that lies in the 
sigmoid sulcus of the temporal bone. 

 The transverse sinuses are commonly asymmetric, with the 
right transverse sinus being dominant in the majority of cases 
(Figure 9.3). Other common variations include a unilateral atretic 
segment 3  ,  4  and normal intraluminal filling defects resulting from 
arachnoid granulations, similar to those seen in the superior 
sagittal sinus. 4     – 7  In addition to receiving drainage from the 
straight and superior sagittal sinuses, the inferior vermian veins 
(paramedian veins that course posterosuperiorly along the inferior 
vermis) drain into the transverse sinuses. 

 The cavernous sinuses are situated on each side of the sphe-
noid body. Each cavernous sinus is a multi-compartmental 
extradural space that extends from the superior orbital fissure to 
the petrous portion of the temporal bone (Figure 9.4). This sinus 
encloses the cavernous segment of the internal carotid artery 
and the abducens nerve, whereas the lateral wall of the sinus 
contains the oculomotor, trochlear, and ophthalmic divisions of 

Figure 9.1
a) Lateral carotid angiogram. 
b) AP Carotid Angiogram.  Venous 
phase: SSs= Superior sagittal sinus, 
Tro= Trolard, TSV = Thalamostriate 
vein, ICV = Internal cerebral vein, 
BVR = Basal vein of Rosenthal, 
Ss = Straight sinus, 
Tras = Transverse sinus, 
Lab = Labbe, SMCV = Superficial 
middle cerebral Vein, SPS = Superior 
petrosal sinus, IPS = Inferior petrosal 
sinus, CS = Cavernous sinus, 
IPS = Inferior petrosal sinus.  
IJ = Internal jugular. 
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Figure 9.2
a) Lateral and b) AP vertebral artery 
injections, venous phase. 
SSs= Superior sagittal sinus, 
Ss = Straight sinus TraS = Transverse 
sinus, ICV = Internal cerebral vein, 
BVR = Basal vein of Rosenthal, 
PMV = Posterior mesencephalic vein, 
Ss = Straight sinus, Tras = Transverse 
sinus, SPS = Superior petrosal sinus, 
IPS = Inferior petrosal sinus. 
IJ = Internal jugular. 
Arrow head = Superior vermian 
veins, Long arrow = Precentral 
cerebellar veins, 
Open arrow = Interpeduncular veins, 
Block white arrow = Anterior 
pontomesencephalic vein.
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Normal variant.  Hypoplasia of the right transverse sinus.
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the trigeminal nerves (cranial nerve V) between its dural leaves. 
The inferior petrosal sinus extends from the posterior aspect of 
the cavernous sinus, which it drains, and runs posterolaterally in 
a groove along the petro-occipital fissure, where it terminates, 
usually, by joining the jugular bulb. 

 The superior petrosal sinus extends from the posterior aspect 
of the cavernous sinus to the transverse sinus, running along the 
attachment of the tentorium cerebelli to the petrous part of the 
temporal bone. The petrosal vein lies in the cerebellopontine 
angle cistern and received drainage from the anterior cerebellar 
veins, in addition to other venous tributaries from the pons and 
medulla, before emptying into the middle portion of the superior 
petrosal sinus. 

 The sphenoparietal sinus lies along the lesser wing of sphenoid 
and drains usually to the superficial middle cerebral (Sylvian) 
vein into the cavernous sinus. Less common variations include 
the sphenoparietal sinus bypassing the cavernous sinus to drain 
into the pterygoid plexus or the inferior petrosal or transverse 
sinus (Figure 9.5).   

 Anatomic variants 
 Variations in venous anatomy are not uncommon, with some 
important variations relating to transverse sinus dominance, 
superior sagittal sinus variants, and great vein of Galen bulbous 
prominence (Figures 9.6–9.10). As noted above, there is frequently 
dominance of one of the transverse sinuses, with the right trans-
verse sinus more commonly being larger, it is believed to be 
responsible for the majority of drainage from the superior sagittal 
sinus. The left transverse sinus is smaller and it is more often 
responsible for deep venous drainage from the straight sinus. 
Hypoplasia and aplasia of the transverse sinus is common, with 
asymmetry found in 31% of patients. 8  The superior sagittal sinus 
may be hypoplastic, particularly the anterior third, and non-
fusion of the superior sagittal sinus posteriorly has also been 
reported (Figure 9.6). 9  The accessory straight sinus (the Falcine 
sinus), which connects the great vein of Galen to the superior 
sagittal sinus, normally regresses by the fifth gestational month; 
however it may persist and form a bulbous prominence of the 
vein of Galen. 9  These variations, along with the common varia-
tions in anastomoses and drainage patterns, make predicting the 
consequences of venous occlusion, particularly in the elective 
setting such as during surgery, difficult.   

 Venous anomolies 
 Calvarial venous malformations are rarely isolated; most are 
associated with diffuse adjacent venous malformations. Involve-
ment of the cranial vault is particularly common in large venous 
malformations that are located in the temporal–parietal regions. 
The thickness of the involved calvarium may be increased calva-
rially, usually caused by the extension of the venous malforma-
tion within the diploic space potentially separating the inner 
and outer tables. If the calvarium is involved, palpation of the 
area may reveal a bony defect or irregularity. Involvement of 
the calvarial diploic space in extensive cervical facial venous 
malformations is frequently associated with sinus pericranii and 
intracranial developmental venous anomalies. 10  

 Sinus pericranii represents a communication between the 
intracranial and extracranial venous circulations, often associated 
with an extracranial vascular malformation. 1  ,  10       – 14  The classic 
presentation of this condition has been described as a round, 

Figure 9.4
Cavernous sinus venogram.  ICA = Filling defects from internal 
carotid arteries.  Arrows = Circular sinus,  CS= Cavernous sinus, 
IPS = Inferior petrosal sinus.
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Figure 9.5
a) Lateral and b) AP view of normal 
variant venous drainage.  Enlarged 
Trolard and superficial middle 
cerebral vein drain temporal and 
parietal lobes with corresponding 
hypoplasia of the ipsilateral vein of 
Labbé and transverse sinus. 
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Figure 9.6
Normal variant.  Duplicate superior sagittal sinus.
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Figure 9.7
a) Lateral and Townes view. 
b) Normal variant. Posterior fossa 
venogram demonstrating an 
occipital sinus (OS). Ss = Straight 
sinus, Long arrow = Precentral 
cerebellar vein, 
Arrowhead = Superior vermian vein. 
SPS = Superior petrosal sinus, 
IPS = Inferior petrosal sinus.

Figure 9.8
a) Lateral and b) AP carotid 
Injection, venous phase.  Normal 
variant occipital sinus.

flocculent, non-pulsatile and compressible soft tissue mass, which 
becomes more prominent with crying or coughing. Sinus peri-
cranii has also been described in patients with craniosynostosis 
and other skull base anomalies. 15  ,  16  Sinus pericranii has been clas-
sified as being either ‘closed’ or ‘draining’; most sinus pericranii 
associated with a venous malformations are draining, in which 
the intracranial circulation can drain to extracranial veins. 
Diagnosis of sinus pericranii is usually made clinically; imaging is 
performed to confirm the diagnosis and to investigate the extent 
of the venous malformation.    

 Venous physiology 
 It is important to remember the relationship between develop-
mental venous anatomy, cerebrospinal fluid (CSF) production 
and resorption, and the complex relationship between intracra-
nial venous pressure, brain water, and CSF. Arachnoid granula-
tions are involved in the reabsorption of CSF. Arachnoid 
granulations bulge into the dural sinuses; the villi open in 
conditions of raised CSF pressure, and close in conditions of 
raised venous pressure. 17  They may represent only one route 
of CSF drainage. Alternative pathways may exist, including 
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 Risk factors 
 Any process that triggers a pro-thrombotic state can increase 
the risk of developing CVST. Risk factors for hypercoagulability 
can be found in nearly 85% of patients. 24  Head injury or obstet-
rical delivery can precipitate CVST in patients with genetic 
risk factors, such as antithrombin deficiency, protein C and 
protein S deficiency, factor V Leiden mutation, or prothrombin 
mutation. 21  ,  25         – 30  Pregnancy, particularly the peri-partum and 
post-partum period, is associated with the development of CVST 
in about 12 cases per 100,000 deliveries. 31  ,  32  

 The use of oral contraceptives requires a special mention. 
Before their introduction, CVST affected men and women 
equally. 33  However since that time, there has been a noticeable 
shift in the incidence to young woman, with recent studies 
finding women of childbearing age accounting for up to 70–80% 
of the newly diagnosed cases. 27  ,  34  In addition, there is good 
evidence to support the pro-thrombotic side effects of oral 
contraceptives. 35  

 Lumbar punctures and the subsequent drainage of spinal fluid 
may also trigger CVST. 36  The exact mechanism is unclear, but it 
is suspected that the lowered intracranial pressure causes down-
ward herniation, which deforms the venous system and triggers 
thrombosis. 

 Infections also precipitate a pro-thrombotic state, and thus 
any severe infection systemically increases the risk of CVST. 27  
More specifically, intracranial infections such as cerebritis, 
subdural empyema, and sinus infections have a predilection for 
triggering thrombosis, owing to proximity of the site of infection 
to the cerebral veins. Although less common in the era of modern 
antibiotic treatment, this mechanism is still occasionally seen 
involving the transverse sinus or middle fossa in children with 
otitis media or mastoiditis. The overall frequency of sinus infec-
tions triggering thrombosis has been on the decline, with recent 
studies placing it at 6–12%. 26  ,  37  

 Inflammatory disease such as systemic lupus erythematosus, 
Wegener’s granulomatosis, sarcoidosis, inflammatory bowel 
disease, and Behçet’s disease all have the potential to increase 
acute phase reactants and increase the risk of thrombosis. 38     – 41  
Hematological conditions, such as polycythemia, thrombo-
cythemia, leukemia, and anemia can be associated with 
CVST. 21  ,  31  ,  32  ,  42   – 44  Acquired prothombotic conditions include neph-
rotic syndrome, antiphospholipid syndrome, homocysteinemia, 
and pregnancy. 30  ,  45  Dehydration also has the ability to trigger 
CVST by increasing hematocrit and blood viscosity. 27  Lastly, 
neoplasms of all types have been linked to an increased risk of 
thrombosis (Figure 9.12). 27    

drainage through perineural sheaths, transcranial routes (e.g. the 
emissary veins and in the cribriform plate), and by way of the 
lymphatics in the nasal mucosa. Hence there is a complex in 
relationship between the veins, the routes of venous drainage, 
venous hemodynamics, and drainage of brain water and CSF. 
Arachnoid granulations are poorly formed a birth, being visible 
by the 35th week of life. They develop in infancy and continue to 
develop throughout life. Povlishok and Levine have postulated 
that the cerebral venous system is probably important for CSF 
absorption at birth (Figure 9.11). 18    

 Dural sinus thrombosis 
 Cerebral venous sinus thrombosis (CVST) accounts for 1–2% 
of strokes in adults, although the exact incidence is unknown. 19  
It most often affects young adults and children, with a particular 
predilection for females since the introduction of oral contracep-
tion, particularly third generation contraceptives containing 
gestodene or desogestrel. 20  ,  21  The superior, transverse, and sigmoid 
sinuses are most often involved, and there is a wide variability in 
the presentation. Efficient and accurate diagnosis is critical to 
beginning treatment; however, despite aggressive management, 
mortality rates range from 5 to 30%. 22  ,  23   

(a) (b)

DVA DVA

Figure 9.9
a) Lateral and b) AP venous phase 
of a frontal venous angioma (VA).

Figure 9.10
Holo-hemispheric venous angioma.
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Figure 9.11
a) Contrast CT of a 2 year old with a dural fistula enlarging the straight sinus and vein of Galen (VoG).  Notice CSF spaces over 
convexity. b,c) AP and lateral carotid injection demonstrating dural arterial supply with shunting. d,e) Lateral and AP vertebral 
injection demonstrating dural supply from left vertebral artery as well as dural supply from the left posterior cerebral arteries 
(of Davidoff and Schecter). Retrograde filling of sagittal sinus suggests venous hypertension. f, g) Post-onyx embolization plain film. 
h, i) Post-embolization CT and FLAIR MRI demonstrate markedly decreased size of the torcula/ VoG as well as increased CSF spaces 
likely due to the reduced flow/ pressure on the venous side with corresponding changes in CSF reabsoprtion.

Torc
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 Pathophysiology 
 Occlusion of cerebral veins impedes arterial outflow and causes 
venous hypertension, leading to edema and venous infarcts and 
hemorrhages. Venous hypertension is related to the inability to 
balance the outflow of venous blood with the inflow of arterial 
blood. This imbalance can trigger edema and intracranial hyper-
tension. The edema associated with CVST can be either cytotoxic 
or vasogenic. 46  ,  47  Cytotoxic edema is irreversible and is caused by 

ischemia related to to poor oxygen delivery from the arterial side. 
Vasogenic edema is caused by a reversible disruption in the 
blood–brain barrier, with extravasation of blood plasma into 
the interstitial space. Communicating hydrocephalus and intrac-
ranial hypertension can also develop from the inability to main-
tain the normal CSF absorption in the setting of dural sinus 
thrombosis. 26  

 Venous hypertension can decrease the normal transit of blood 
through the intracranial circulation; if impaired significantly, this 
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sinus thrombosis. Patients who have intracranial hypertension 
alone may present only with headaches and papillema on fundo-
scopic examination.   

 Diagnosis 
 Owing to the wide-ranging and often vague symptoms associ-
ated with CVST, diagnosis can be difficult and time-consuming. 34  
A detailed history to identify risk factors is crucial. Patients who 
present with unusual headaches with or without neurological 
manifestions, particularly when associated with risk factors, 
warrant detailed investigation. Young people without vascular 
risk factors but with stroke-like symptoms and patients, with 
intracranial hypertension should also have CVST considered in 
the differential diagnosis. Patients with unusual hemorrhages 
both in appearance and location on CT imaging may have an 
associated cerebral venous thrombosis. 

 Imaging is crucial to the diagnosis of CVST. 26  Non-contrasted 
CT imaging may or may not reveal hyperdensity of the occluded 
vein. The classic description is the ‘cord sign’ on non-contrasted 
imaging; however, beam-hardening artifact from the temporal 
bone may obscure the transverse and sigmoid sinuses. Contrasted 
CT imaging may or may not reveal the ‘empty delta’ sign, which 
results from a void of contrast as a result of the presence of 
a thrombus surrounded by the enhancing dura of the dural 
sinus. CT venography will also show an absence in opacification 
of the sinus. 50  Other non-specific imaging characteristics include 
generalized or focal brain edema, hypodensity secondary to 
venous infarction, hemorrhage (intracerebral and/or subarach-
noid), and dural enhancement secondary to venous congestion. 22  ,  51  
The use of multi-row detector CT angiography has increased 
the sensitivity and specificity of identifying CVST in one recent 
study to 100%. 52  

 MRI is currently the diagnostic study of choice in children 
because of its capacity to visualize flow, thrombus, infarction, and 
any underlying abnormality without ionizing radiation. 22  ,  53       – 57  
MRI will reveal a hyperdensity of T1- and T2-weighted scans 
at the location of the thrombus. However, depending on the age 
of the clot, the thrombus may be isointense on T1-weighted 
imaging during the first few days after its formation or ever after 
1 month. 54  ,  58  Additionally, MRI has the advantage of extremely 
high sensitivity to the parenchymal changes seen in CVST. Cortical 
and subcortical high-signal intensity lesions on fluid attenuation 
inversion-recovery sequences and T2-weighted imaging may be 
highly suggestive of CVST when the lesions do not correspond to 

can lead to venous infarction. These infarcts can develop any-
where upstream from the occlusion, and in association with the 
venous hypertension, they can also lead to venous hemorrhages 
(Figure 9.13). Since the superior sagittal sinus and transverse 
sinuses are most often affected, these infarctions and hemor-
rhages are typically paramedian or temporal in location and are 
often multiple or bilateral.   

 Clinical manifestations 
 Severe headache is the most common symptom associated with 
CVST, affecting almost 90% of the patients. It is often slow in 
onset, increasing over days; however, abrupt onset has been not-
ed. 48  Patients may also present with a seizure or stroke-like symp-
toms, such as hemiparesis or aphasia. Seizures are focal in 50% of 
the cases. Deep sinus thrombosis of the straight sinus can cause 
thalamic disturbances such as mutism, amnesia, and delirium. 49  
Patients may present in or progress to a moribund state if intrac-
ranial pressures are high. Focal disturbances such as ocular pare-
sis, proptosis, and chemosis have been described with cavernous 
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Figure 9.12
Lateral a) arterial and b) venous 
phase of a RICA angiogram arising 
at the tentorial apex at the midline, 
posteriorly.  Arterial phase 
demonstrates a large feeding trunk 
from the artery of Berasconi-
Casanari (red arrows) secondary to a 
meningioma. The lesion has 
occluded the ICV and VOG.

Figure 9.13
Typical paramedian, bilateral hemorrhage post-SSs thrombosis.
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 Conventional catheter angiography remains the gold standard 
for diagnosing cerebrovascular lesions, however, it is rarely 
needed to diagnose CVST with current MR and CT capabilities. 26  ,  54  
Absence in opacification and delayed transit time are both seen. 
However, absent or hypoplastic transverse sinus may be a normal 
variant and indistinguishable from transverse sinus thrombosis. 22  
Angiography is reserved for those patients whose diagnosis is in 
doubt after non-invasive imaging, or in those who warrant endo-
vascular intervention.   

 Treatment 
 Since the presenting symptoms of CVST can range from a mild 
headache to a comatose state with herniation or intracerebral 
hemorrhage, the first intervention should be to stabilize the 
patient. This may require giving hydration and analgesics, 
treating increased intracranial pressure, or performing a decom-
pressive craniectomy. 69  Once the patient has been stabilized, 
investigating the underlying cause of the CVST (e.g. infection, 
oral contraceptive medications) should be addressed and 
treatment initiated. Presentations with an altered level of 

an arterial territory. 59  Restricted diffusion on diffusion-weighted 
imaging with a decreased apparent diffusion coefficient (ADC) 
value is often associated with arterial infarction and a permanent 
neurological deficit. Diffusion techniques have been used in 
CVT to differentiate reversible ischemic tissue from irreversible 
ischemia; ADC is normal or increased) (Figure 9.14). 60       – 64  

 The major advantage of two-dimensional time of flight MR 
angiography is that it does not require contrast administration 
and is sensitive to slow flow with relatively short acquisition 
times. The orientation of the acquisition plane is selected to 
be perpendicular to the main direction of flow and is typically 
coronal when imaging the intracranial venous system. 65  ,  66  Spatial 
pre-saturation pulses are commonly applied either above or 
below each slice to reduce signal from overlapping arteries or 
veins and thereby select for flow in one direction or the other. 
Its main disadvantages include an insensitivity to in-plane 
flow, patient motion causing vessel misregistration among the 
slices, and high signal from substances with short T1 values 
(e.g. thrombus). 66  ,  67  Advances using gadolinium-enhanced MR 
venography techniques have improved conspicuity and observer 
agreement, primarily by eliminating the variables of flow direc-
tion and mis-registration of two-dimensional slices. 68  MR 
venography in combination with MRI increases the sensitivity of 
the diagnosis. 65  

(a) (b)

(c) (d)

Figure 9.14
a) Diffusion tensor and b) ADC map 
demonstrating injury to the left 
temporal lobe (arrows). 
c,d) T2 weighted scan confirms left 
temporal edema, with a small focal 
dark area  (hemorrhage, arrowhead) 
above middle ear and mastoid 
infection. 2D TOF MRA demonstrates 
ipsilateral transverse- signmoid 
occlusion.
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Figure 9.15
a) Axial T2 image demonstrating 
high signal in the thalamus. 
b) Lateral angiogram in a patient 
with straight sinus thrombosis. 
Catheter in place in the sinus 
(arrow) for local thrombolytic 
infusion.
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fibrinogen degradation products, 84  which may reduce the risk of 
hemorrhagic complications. 

 Despite the use of thrombolytic therapy in adults, there is 
conflicting literature in expanding to the application of these 
results to children. There are several case reports highlighting 
successful thrombolytic therapy in neonates and children. 75  ,  85       – 89  
One study in a small number of patients compared throm-
bolytic therapy with the of use of heparin. 90  In this study neuro-
logic function at discharge was found to be better in the 
thrombolytic group. Major hemorrhagic complications have 
also been reported. 76  A consecutive cohort of seven children 
with symptomatic venous thrombosis reported successful lysis 
in only one child, as well as major complications. 89  Of note, a 
large population of children with deep venous thrombosis 
reported a failure of thrombolytic therapy to revascularize 
the sinuses in a significant percentage of the patients, 87  empha-
sizing the difference in the coagulation system of children and 
adults. 87  

 Various mechanical revascularization techniques have been 
used in the dural sinuses: clot disruption using guidewires, 
rheolytic thrombectomy catheters, 91  balloon thrombectomy 
with thrombolysis, transluminal balloon angioplasty with or 
without stenting, and surgical thrombectomy. There are no 
trials comparing endovascular treatment of CVST with heparin 
(Figure 9.16). 92     

 Dural sinus stenoses and 
non-thrombotic occlusion 
 Dural sinus stenosis may occur as a result of high-flow angio-
pathy, such as that seen with arterial–venous malformations 
and fistulae. Alternatively, venous stenosis and, ultimately, occlu-
sion can be caused by extravenous compression secondary to 
primary and metastatic tumors (in the parenchyma, dura, or 
cranial vault), epidural hematoma, infection, or abscess. The 
clinical presentation of dural sinus stenosis and occlusion 
may be asymptomatic and found during diagnostic work-up 
for another primary disease process. Alternatively, symptomatic 
stenosis and extravenous occlusion may present with a gradual 
onset of non-specific symptoms such as headache. However, in 

consciousness and intracerebral hemorrhage have been associ-
ated with a worse prognosis. 34  ,  70  

 Anticoagulation is the basis of treatment of cerebral sinus 
thrombosis. Heparin intravenously is considered first drug of 
choice because it provides adequate anticoagulation, halts the 
thrombotic cascade, prevents pulmonary embolism, allows for 
quick titration to therapeutic levels, and gives the option of 
stopping anticoagulation quickly if emergency hematoma evacua-
tion needs to be performed. 71   – 73  Trials that have not shown a 
significant benefit of heparin therapy versus placebo in the 
treatment of sinus thrombosis have been highly criticized for 
their designs and heterogeneity in the population studies. 24  ,  72  ,  73  
However, none of these studies found new or increased size 
of intracerebral hemorrhages in the setting of heparin. Thus, in 
the setting of an acutely ill patient with sinus thrombosis and 
hemorrhage, heparin is still generally considered a first-line agent, 
even in the presence of hemorrhage. 34  No studies to date have 
compared fractionated heparin with unfractionated heparin in 
this patient population. 

 Warfarin provides a good alternative to heparin for non-
hospitalized patients, and is often instituted concomitantly in 
those who are hospitalized. The optimal length of anticoagula-
tion is unknown, and the risk of thrombosis recurrence is 
about 2%. 34  It is not unreasonable to base the length of treat-
ment by following the patients with MRI until the thrombus 
resolves or stabilizes. 

 There have been no studies investigating the role of aspirin or 
clopidogrel for the treatment of cerebral sinus thrombosis. In 
patients who cannot tolerate warfarin, one can theorize that these 
medications may be an alternative to preventing further platelet 
aggregation; however, the true benefit is unknown. 

 Patients with rapidly progressive thrombosis and diffuse brain 
swelling (with or without multiple hemorrhage) should be con-
sidered for endovascular therapy. If, after institution of heparin 
therapy there is clinical worsening, direct-infusion thrombolytic 
therapy should be considered. There are several reports demon-
strating the feasibility of direct infusion of thrombolytic agents 
into an occludded dural sinus. 74       – 78  With improved catheter 
technology, access to the intracranial cerebral circulation (even 
the deep venous system) can be achieved via the common femoral 
vein (Figure 9.15), 79   – 81  although direct access via a burr hole of the 
straight sinus has also been found successful when no other access 
is possible. 82  Alteplase (rT-PA) has pharmacologic advantages 
over urokinase, including a short half-life 83  and the lowest level of 



166     Endovascular Techniques in the Management of Cerebrovascular Disease

however, their long term efficacy has not been systematically 
studied or reported. 94   – 96    

 Conclusion 
 Cerebral venous sinus thrombosis, although rare, has a varying 
symptomatic presentation from minor headaches to a moribund 
state requiring emergency intervention. Stable patients may be 
treated with anticoagulation and monitored with serial imaging. 

rare instances, patients may present with symptoms similar to 
the acute thrombotic occlusion as described above. In most 
instances, venous stenosis and occlusion is diagnosed during the 
work-up of a related disease, such as pseudotumor cerebri or 
tumor. 

 CT venography and MR venography may suggest the presence 
of a stenosis or occlusion, however, the gold standard in such 
cases continues to be catheter angiography. 26  ,  54  In cases of steno-
sis or asymmetry of the transverse sinus, venous pressure moni-
toring can be performed to determine the presence or absence 
of increased venous pressure. 93  The intravascular treatment of 
venous stenosis may include venous angioplasty or stenting; 

Figure 9.16
a) Parasagittal T1 MR demonstrates thrombus in the transverse sinus. b,c) Axial T2 and T1 post-contrast demonstrating thrombus in 
the dural sinuses. d,e) Lateral carotid injections, venous phase demonstrates lack of filling of major dural sinuses. 
f,g) Catheterization of superior sagittal sinus demonstrates multiple large filling defects consistent with thrombus. 
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However, patients with a declining neurological status may 
benefit from endovascular intervention in addition to medical 
management. In some cases, surgical decompression is warranted 
because of increased intracranial pressure.     
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h,i) Catheter position immediately prior to thrombectomy with Angiojet. j,k) Straight sinus receiving thrombolytics (unable to 
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 Introduction 
 The decision-making process for the treatment of patients with 
cerebrovascular disease can be thought of as an algorithm. As 
with any complex decision-making process, two approaches 
can be used. One strategy is to start by determining what the 
desired end result is for the patient. Then, a clinician may think 
backwards from the end result through each of the steps that 
are required to achieve the final goal, eventually arriving at the 
initial presenting clinical scenario. In the other approach, the 
physician may start by thinking through the larger and more 
general issues first and then move through the smaller and more 
technical issues, finally arriving at a plan. My personal strategy 
is the latter, where I begin by asking several broad questions that 
which narrow down the options tremendously in a rapid fashion, 
allowing me to crystallize my thoughts on the treatment para-
digm to be offered to the patient. 

 A typical example occurs in the outpatient clinic when trainees 
present their patients with aneurysms to me, and invariably one 
of their questions is ‘should we clip or coil?’ Equally invariably, 
I must always first ask ‘should we treat at all?’ Indeed, this is the 
central and most important question that needs to be answered 
first. The question ‘should we treat?’ is often the most difficult 
and the most personal decision a clinician must ask. This state-
ment distills down to an equation that balances benefit of treat-
ment against risk of treatment. If the perceived benefit of 
treatment is greater than the risk it poses to the patient (i.e. the 
natural history), generally speaking, treatment with one modality 
or another should proceed. 

 When a physician asks that question, he or she needs to have a 
clear endpoint in mind. For the patient with the asymptomatic 
aneurysm or arterial–venous information (AVM), I can accept 
nothing less as an outcome than returning the patient back to 
his or her previous living arrangement and vocation without a 
neurological deficit. If the patient has a ruptured aneurysm or 
AVM, my goal is to create no additional neurological injury 
with the proposed treatment. 

 Physicians and patients are truly fortunate in the early part of 
the 21st century to have more than one treatment technique. 
Imagine, if you will, practicing neurosurgery in the 1970s, when 
every hemorrhagic cerebrovascular problem encountered could 
only be addressed by microsurgery. Although this readily reduces 
the decision-making to a binary process (surgery or no surgery,) 
more recent experience has suggested that microsurgery is not 
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always the best option for the patient. Today, we have at our 
disposal three broad categories of treatment for identified causes 
of hemorrhagic stroke: surgery, endovascular embolization, 
and stereotactic radiosurgery. For contemporary treatment of 
ischemic stroke there is now a broader range of medical therapy 
as well as surgery and endovascular techniques.   

 Aneurysms 
 Long regarded as the gold standard, microsurgery has been 
challenged by endovascular techniques such that they have 
become, if not the dominant treatment strategy for the 
management of cerebral aneurysms, at least a very strong rival. 
Indeed, in Europe the vast majority of cerebral aneurysms, both 
ruptured and unruptured, are treated by endovascular coiling. 
Although the debate over which technique is superior will 
not end yet, microsurgeons would be remiss if they did not at 
least think about an endovascular treatment opinion or option. 

 The most compelling data for the equivalence, if not 
superiority of, endovascular coiling techniques in the manage-
ment of cerebral aneurysms come from the International 
Subarachnoid Aneurysm Trial (ISAT). 1  This large, randomized, 
multi-center, international trial explored a policy of endovascular 
treatment compared with microsurgical clipping for the manage-
ment of ruptured intracranial aneurysms. The conclusion of this 
study was that patients with ruptured aneurysms whose lesions 
were amenable to treatment by either technique had a signifi-
cantly better chance of disability-free survival at 1 year if treated 
by an endovascular strategy. This study provided, for the first 
time, nearly overwhelming evidence for the superiority of 
endovascular techniques. Several points of contention were 
immediately noted by neurosurgeons worldwide (the overwhelm-
ing preponderance of small anterior circulation aneurysms in the 
trials, the durability of coiling techniques, and the paucity of 
posterior circulation aneurysms randomized). More candidly, 
however, the low number of posterior circulation aneurysms is 
related to the fact that most clinicians recognize that these lesions 
are generally treated with much greater ease and better outcomes 
via the endovascular route. 2  Such aneurysms were not random-
ized and were almost universally treated by coiling. With regard 
to the large number of small aneurysms randomized, these 
aneurysms are precisely the lesions amenable to surgical treatment. 
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Durability issues have been addressed by the Cerebral Aneurysm 
Rerupture After Treatment (CARAT) study, which was an ambi-
directional cohort study of patients with ruptured intracranial 
aneurysms treated with coil embolization at nine high-volume 
US centers in the late 1990s. 3  In this study of over 1000 patients, 
a slightly higher rate of re-rupture was noted in patients treated 
with endovascular occlusion; however, this difference did not 
persist after adjustment for potential confounding variables. 
Mean time to re-rupture was 3 days and almost no patient 
re-ruptured after 1 year. 

 This brings me to the first question that I ask myself during 
my therapeutic decision-making process: Is the aneurysm rup-
tured or unruptured? Clearly, based on the above discussion, 
if the aneurysm has ruptured, strong consideration must be given 
to treating the aneurysm by endovascular techniques. If the 
aneurysm is unruptured, ISAT does not give guidance on what 
technique should be used and other factors in the equation must 
be factored into the decision.  

 Location 
 Location of the aneurysm plays a role in the decision-making 
process regardless of the treatment technique being contem-
plated. From the microsurgical viewpoint, location has different 
implications from those of the endovascular viewpoint. To a 
surgeon, location dictates the approach, and some surgical 
approaches are technically easier and are performed more 
frequently than others. For example, the surgical exposure to 
mid-basilar trunk aneurysm is performed infrequently and 
carries with it high morbidity and technical demands. Conversely, 
the standard pterional approach to an anterior circulation 
aneurysm is performed routinely and with very low morbidity. 
However, that does not mean that all anterior circulation 
aneurysms are best approached microsurgically. Some common 
locations of anterior circulation aneurysms are extremely diffi-
cult for the neurosurgeon to approach (e.g. a superior hypophy-
seal aneurysm arising from the supraclinoid carotid.) Furthermore, 
a superiorly pointing anterior communicating artery aneurysm 
can be surgically approached, but its intimate association with the 
central perforating arteries places the patient at increased risk of 
neurological morbidity.  

 From an endovascular standpoint, location does not reflect 
the approach (since it is nearly always the same – trans femoral); 
rather, location may have implications in regards to the mor-
phology of the aneurysm. Considering location alone, an 
endovascular strategy for tackling a mid-basilar trunk aneurysm 
would be preferable over a microsurgical approach. Conversely, 
middle cerebral artery (MCA) aneurysms are often dysplastic by 
their nature, and often extending into the MCA bifurcation itself. 
The dysplastic component often portends a wide neck, and the 
branching pattern of the MCA can make obtaining an angio-
graphic working angle difficult. Thus MCA bifurcation aneu-
rysms are generally more suitably treated with microsurgical 
clipping where open exposure allows direct visualization and 
reconstruction of the parent vessel. 

 However, I do not believe that a surgically accessible location, 
such as the posterior communicating segment of the internal 
carotid artery (ICA) should cause a surgeon to make a blind 
recommendation for clipping. Rather, other factors such as 
the morphology of the aneurysm, the presence of calcification in 

the dome, the size, and patient co-morbidities should carry 
more weight.    

 Age 
 The age of the patient should play a role in the decision-making 
process. Treatment morbidity and mortality is clearly higher in 
patients over the age of 50 years with unruptured aneurysms 
larger than 12 mm treated by microsurgical techniques than those 
treated by endovascular techniques. For those patients over the 
age of 70 years with unruptured aneurysms, a poor outcome is 
seen 35 %  of the time regardless of the size of the aneurysm, poor 
outcome being defined at 1 year as death, a Rankin score of 3–5, 
or impaired cognitive status. 2  However, a similar impact of age 
on outcome was not observed in the ISAT trial, leaving unclear 
the answer to the question of the impact of age on treatment 
technique for patients harboring ruptured aneurysms. 1  Most 
likely the influence of the neurological devastation incurred 
by the patient secondary to the rupture of the aneurysm is 
at least as powerful as the influence of age and the treatment 
technique. 

 Frequently, neurosurgeons are concerned that endovascular 
coiling may not provide a young patient with durable aneurysm 
occlusion for the remainder of his or her life. Personally, I have 
not found this to be a concern with the exception of aneurysms 
that occur at the ICA terminus. In my opinion, aneurysms at this 
location have a higher rate of re-canalization than aneurysms at 
other locations. Therefore, I generally recommend microsurgical 
clipping for patients under the age of 60 with aneurysms at the 
ICA terminus. In other locations I have not found this to be of 
concern, and I would refer the reader to the durability data sup-
plied by the CARAT study of ruptured aneurysms. 3  Empirically, 
the durability of endovascular coiling of unruptured aneurysms is 
superior to that of the ruptured aneurysms followed in the 
CARAT study; therefore, durability should not be of concern in 
unruptured aneurysms.   

 Morphology 
 During the infancy of endovascular devices and techniques, a 
relative contraindication to coil embolization was wide-necked 
aneurysm morphology. Because retention of the coils in the aneu-
rysm sac depends upon a friction fit between the loops of the coil 
and the wall of the aneurysm, a wide-necked aneurysm posed 
substantial technical challenges to the endovascular neurosur-
geon. Indeed, a dome-to-neck ratio of less than 2 was thought to 
be the limit of the technique. 4  However, with technological 
advances in both device and technique, nearly all aneurysm 
morphologies and dome-to-neck ratios are treatable with coil 
embolization ( Figure 10.1 ). 

   Stent-assisted and balloon-assisted techniques have now been 
developed that allow for embolization of nearly all cerebral 
aneurysms. These devices have been designed and manufactured 
to clinician specifications to allow for low-risk treatment of 
wide-necked side-wall and terminus aneurysms. The first of these 
technologies and techniques, balloon-assisted coiling (or balloon 
remodeling technique), was originally designed for the treatment 
of wide-necked side-wall aneurysms such as in the dorsal carotid 
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wall. As interventionalists’ confidence and skills with this tech-
nique have increased, larger and bifurcation aneurysms are now 
tackled routinely (see  Figure 10.1 ). In my opinion, the use of a 
balloon does not add substantially to peri-procedural morbidity 
or mortality. 

 It was long thought that the use of a stent intracranially to 
prevent prolapse of the coils into the parent vessel would be the 
ultimate solution to the wide-neck aneurysm problem. The main 
technical challenge in the past was due to the fact that stents 
of sufficient flexibility were not available to navigate the tortuo-
sity of the cerebral arteries. With the development of the highly 
flexible nitinol Neuroform (Boston Scientific, Natick, Massa-
chusetts) and Enterprise (Cordis Neurovascular, Miami Lakes, 
Florida) stents, a larger repertoire of aneurysms have been 
treatable by endovascular techniques. Although designed for 
treatment of side-wall aneurysms, these devices can be used for 
the treatment of bifurcation aneurysms as well. 5    

 Thrombus and calcification 
 From a microsurgical standpoint the presence of thrombus in the 
dome and of calcium in the aneurysm wall adds to the technical 
difficulty of the procedure. During aneurysm manipulation and 
microsurgical clipping, thrombus inside the dome can embolize 
to the distal circulation, leading to infarction. Similarly, presence 
of calcium in the aneurysm wall can make clipping difficult and 
accurate reconstruction of the parent vessel impossible. From 
an endovascular standpoint, calcification in the aneurysm wall 

is of no importance and adds nothing to the technical difficulty 
of the procedure, in fact this ‘armor coating’ may reduce the risk 
of iatrogenic hemorrhage. The presence of thrombus, however, 
is an entirely different matter. 

 Prior to the introduction of intracranial stents for the treatment, 
a partially thrombosed aneurysm dome had been a relative 
contraindication to endovascular management. Although the 
initial angiographic result can be perfect, over time there may be 
substantial aneurysm recanalization due to a migration of coils 
into the thrombus mass, leading to a major recanalization of the 
aneurysm. With the addition of stents, aneurysms appear to 
re-canalize less frequently. Although the presence of thrombus 
still represents a relatively mild contraindication to coil therapy, 
large or giant partially thrombosed aneurysms can be managed 
with coiling provided the treatment is assisted with a stent in the 
parent vessel. At present, this is the preferred method of handling 
partially thrombosed giant aneurysms because it carries with it 
a lower risk of morbidity for the patient.   

 Co-morbidities 
 Generally speaking there is minimal debate in the neurological 
community that patients with significant medical co-morbidities 
are better served by endovascular management – shorter proce-
dure times, absence of brain retraction, minimal blood loss, and 
minimal cranial invasion intuitively should be less stressful on a 
compromised organism. What is debatable is what constitutes 
significant medical co-morbidity. 

(a) (c)(b)

 Figure 10.1 

  (a) Left inferior oblique digital subtraction angiogram showing a wide-necked anterior communicating artery aneurysm in 
a 74-year-old woman with a strong family history of subarachnoid hemorrhage and death. Given her age, we favored endovascular 
management of this lesion. This view shows two compliant balloons, one in each A branch, ready to be inflated for parent vessel 
protection. Prior to the development of compliant balloon technology and the confidence and experience with balloon remodeling 
technique it is likely this aneurysm would have been deemed ‘un-coilable’. (b) Left inferior oblique radiograph showing a 
micro-catheter in the dome of the aneurysm, poised to begin coiling of the aneurysm, and the two compliant balloons in their 
inflated configuration offering parent vessel protection. (c) Left inferior oblique unsubtracted angiogram showing the final 
configuration of the coils and end result of the balloon-assisted coiling procedure.  
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placed at the end of the procedure after the coils have been placed 
to protect the parent vessel. Since these tasks are done serially 
and not in parallel, in my opinion this technique may carry a 
slightly lower risk of peri-procedural morbidity. However, the 
use of an intracranial stent is essentially limited to patients har-
boring unruptured aneurysms and requires the use of antiplatelet 
agents, which increases the risk of morbidity should the aneurysm 
or other vessel be perforated. Regardless of which technique is 
employed, the interventionalist needs to factor in this slightly 
higher risk of morbidity in the decision-making process.   

 Family and social history 
 For those patients who harbor ruptured aneurysms, family and 
social history have little role in the decision-making process, 
because these patients require definitive aneurysm treatment. 
For those patients with unruptured aneurysms, family and social 
history frequently plays a large role in counseling on whether to 
proceed with treatment or not. 

 A family history of a first-degree relative with a ruptured 
aneurysm will frequently lead me to recommend or offer treatment 
to those patients whose aneurysm is 4–6 mm in size. Generally, 
if an aneurysm is 7 mm or greater in size, I recommend that the 
patient be treated, and if the aneurysm is 3 mm or smaller I would 
recommend conservative management. 2  If there is a strong family 
history of several first-degree relatives with subarachnoid hemor-
rhage or one family member with subarachnoid hemorrhage and 
death, I would strongly recommend treatment of aneurysms even 
as small as 3 mm. 

 Similarly, those patients who are active cigarette smokers or 
users of cocaine, especially crack cocaine, are at increased risk of 
subarachnoid hemorrhage as well. I am more likely to recom-
mend active treatment of unruptured aneurysms in these patients, 
with similar reasoning to that given above for a positive family 
history.    

 Arterial–venous malformations 
 In contrast to cerebral aneurysms, the decision to treat AVMs is 
more complex, and for the most part falls under the realm of the 
art of medicine. Even when the AVM has ruptured, the decision 
to move forward with surgical or endovascular therapy is not 
always clear. Compared with cerebral aneurysm treatment, 
morbidity from a surgical standpoint is often substantially 
higher. In addition, stereotactic radiosurgery is another treat-
ment modality that needs to be considered. 

 The factors to consider in the decision-making process include 
age and expectation of the patient, the location of the lesion, the 
presence or absence of medical co-morbidities, the symptomatic 
or asymptomatic nature of the lesion, the modality of treatment 
being considered, and angiographic determinants of hemorrhage 
risk such as central venous drainage, the presence of nidal aneu-
rysms, or a peri-ventricular location. 9  

 Before a decision can be made to recommend active treatment 
over conservative management and one treatment modality 
over another, a full evaluation of the patient must take place. 
This includes an accurate seizure history, a description and a 
classification of headache, and a history of possible cognitive or 

 Unlike patients with cervical carotid atherosclerotic disease, 
in whom multiple trials have delineated what constitutes high 
medical risk for carotid endarterectomy, no such scientific data 
are available for the operative management of cerebral aneu-
rysms. Co-morbid conditions can roughly be defined as advanced 
age, recent myocardial infarction ( <  6 weeks), chronic obstructive 
pulmonary disease and other pulmonary disorders, disorders of 
coagulation, and chronic renal insufficiency. Some authorities 
feel that subarachnoid hemorrhage itself is a medical co-morbidity 
and the recommendation should lean toward endovascular 
therapy in this setting. Clearly those patients suffering acute 
cardiomyopathy secondary to subarachnoid hemorrhage are 
better served by endovascular therapy. The presence of one of 
these conditions may suggest that one technique may be 
preferred to another for a given patient. Chronic renal insuffi-
ciency may lead to a recommendation of micro surgery 
in order to avoid the renal toxicity of contrast agents. The 
most rational strategy for approaching the patient with medical 
co-morbidities may be to seek the opinion of an anesthesiolo-
gist familiar with both techniques regarding the relative risk 
that an individual patient will be exposed to from an anesthetic 
standpoint.   

 Adjunctive devices 
 Adjunctive devices such as highly flexible stents and highly 
compliant balloons have greatly expanded the spectrum of aneu-
rysms amenable to endovascular techniques. Unfortunately, their 
use adds an extra dimension to the complexity of the treatment. 
This is clearly in violation of the KISS principle (‘keep it simple, 
stupid’) and consequently the risk of a complication is increased 
and must be factored into the decision algorithm. Nevertheless 
both devices enable an interventionalist greater flexibility in 
treatment strategies for a given patient. 

 Balloon-assisted embolization techniques require the use of 
intermittent balloon inflations to protect the parent vessel from 
coil prolapse and compromise. This can lead to ischemic compli-
cations from both thromboembolic and hemodynamic etiologies. 
Although it is not accurately known how long these balloons 
can be inflated during aneurysm treatment, some knowledge can 
be gleaned from the experience of vascular neurosurgeons and 
their utilization of temporary clipping for proximal control. 6  ,  7  
It can be argued that balloon inflations may be tolerated longer in 
the endovascular laboratory than in the operating room, because 
collateral vessels in the brain may be partially compromised 
by the brain retraction. 8  Alternatively, thromboembolic compli-
cations can occur, especially if the patient is not heparinized 
during the procedure. 

 As opposed to stent-supported coiling, balloon-assisted tech-
niques require an operator to perform two relatively complex 
tasks simultaneously: accurate inflation of the balloon and coil 
insertion into the aneurysm. These maneuvers require a high 
degree of concentration, and given the only minor differences 
in radio-opacity of the catheters, some confusion can arise as 
to when the coil has reached the detachment point. This combi-
nation of events raises the risk of morbidity ever so slightly during 
this procedure. 

 Stent-supported coiling, on the other hand, does not require 
simultaneous performance of complex tasks. The stent can 
be introduced initially at the start of the procedure or it can be 
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of treatment to be offered plays a vital role in deciding on 
whether or not to treat the patient. For instance, a 2.5 cm lesion 
located in the thalamus may carry an exceptionally high surgical 
morbidity; however, the risk of radiosurgery is exceedingly low 
and will probably afford the patient the same likelihood of cure. 
So, if such a patient had an asymptomatic thalamic AVM and 
the only modality available was microsurgery, the decision would 
likely be not to treat; however, if radiosurgery is available the 
decision would be likely to treat.   

 Age 
 As mentioned above, patients who present with hemorrhages 
tend to be in the 20–40-year age group. Consequently when 
evaluating patients much younger or older than this, caution 
must be exercised as to how strongly one recommends treatment. 
Moreover, patients less than 18 years of age tend to be prone to 
AVM recurrences or the development of new AVMs after their 
initial treatment. 11  

 Generally speaking, I am reluctant to recommend active 
treatment of an asymptomatic AVM for a child during his or 
her high school years for several reasons. First, the risk of 
hemorrhage in this age group is very low. Second, if treatment 
is undertaken there’s a strong likelihood that the AVM will 
either recur or re-grow in the same location, necessitating 
further treatment. Third, if the child develops neurological 
and cognitive deficits in response to the treatment and this 
leads to loss of IQ and stigmatization, this will make it very 
difficult for the child to receive a high school diploma, and 
his or her social development will be greatly retarded. I much 
prefer to wait for the child to graduate from high school so that 
he or she is fully socially developed and has received a high school 
diploma before exposing the child to the risk of treatment. I feel 
this is safe as the risk of hemorrhage during adolescence is 
quite low. 

 Similarly, if the patient is aged over 45 years, the risks of 
microsurgery are increased. In my experience, even with the 
performance of pre-operative embolization, the chance of post-
operative hemorrhage secondary to normal perfusion pressure 
breakthrough is quite high. This needs to be factored into the 

neurological decline. Furthermore, the age of the patient, social 
history, employment history, and patient expectation must be 
factored into the decision-making process. If the clinician is 
entertaining the thought of offering the patient treatment, a full 
imaging evaluation must follow, which includes MRI scanning (I 
find T2-weighted sequences the most helpful) and high-quality, 
high-resolution, fast filming (4 frames per second) four vessel 
cerebral angiography. In my opinion, treatment recommenda-
tions cannot be made without both angiography and MRI. 

 A clear understanding of the natural history of cerebral AVMs 
is required when counseling patients. Unfortunately, there is a 
shortage of scientific data available to guide us on the hemorrhage 
risk of the asymptomatic AVM. Most of the data that are available 
are based on symptomatic AVMs, and these data are often 
subjected to institutional referral bias. There also is a strong 
correlation between the age of the patient and the hemorrhage 
risk. Most hemorrhages occur in the 20–40-year age group. 
Consequently, the age of the patient is very important when 
counseling on their risk of hemorrhage. 

 In addition, when quoting to patients the microsurgical risks 
of post-operative neurological deficits, some guidance can gleaned 
from the literature ( Tables 10.1 ,  10.2 ). 10  –  12  Keep in mind, though 
that  your  surgical morbidity and mortality may not be as good as 
Spetzler and Martin’s. When entertaining the thought of micro-
surgical treatment of a cerebral AVM, the surgeon must be 
brutally honest about his or her surgical skill set as to what is the 
expected neurological havoc that will be brought to the patient 
during the operation. 

    To treat or not to treat 
 AVMs are formidable lesions to tackle both from a microsur-
gical and an endovascular technical standpoint. Conversely, 
stereotactic radiosurgery from an operator standpoint is rela-
tively easy. Each of these treatment modalities carries with it 
different and distinct morbidities. Morbidity associated with 
microsurgical and endovascular treatment of an AVM may be 
as high as 30–50 %  depending on the size and complexity of 
the lesion. The same lesion may have a morbidity associated 
with radiosurgery in the low single digits. Therefore, the modality 

 Table 10.2    Correlation of grade of arterial–venous 
malformation with surgical morbidity and mortality  

 Deficit 

 Grade  Minor  Major 

1  0  0

2  5  0

3 12  4

4 20  7

5 19 12

 Table 10.1    Determination of arterial–venous 
malformation grade  

 Graded feature  Points assigned 

 Size 

 <  3 cm 1

3–6 cm 2

 >  6 cm 3

 Eloquence of adjacent brain 

Non-eloquent 0

Eloquent 1

 Venous drainage 

Superficial only 0

Deep 1
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 Imaging and angiographic 
determinants 
 As mentioned above, full evaluation with MRI and catheter 
angiography is required prior to making definitive treatment 
recommendations to the patient. These imaging studies should 
be reviewed to ascertain the location and size of the lesion, 
its relationship to eloquent structures, the surgical corridors 
available, the presence of aneurysms both on the feeding pedicles 
and in the AVM nidus, and the adequacy of venous outflow. 
The size of the lesion can have direct impact on the utility of 
radiosurgery. Generally speaking, lesions larger than 3–3.5 cm 
are not amen able to radiosurgical treatment. Lesions smaller 
than this are readily treatable by radiosurgery with a cure rate 
approaching 80 % . 13  

 Recently we, and other centers, have begun treating AVMs 
larger that 3–3.5 cm with radiosurgery. This can be accomplished 
by treating a half or a portion of the AVM at one session, then 
having the patient return in the future for a second radiosurgical 
session that treats the balance of the AVM. 14  Chance of cure in 
what would be an otherwise untreatable lesion has been reported 
to be as high as 50 % . In addition, AVM symptoms such as 
seizures can often be stabilized with this technique.   

 Timing of treatment 
 For patients with asymptomatic or unruptured AVMs, timing of 
treatment can proceed at the mutual convenience of the physician 
and the patient. For patients with AVMs who present with recent 
hemorrhage, timing of treatment and modality can be somewhat 
more complicated. 

 Although there has been a trend among some practitioners 
to move towards early surgical and endovascular treatment of 
ruptured AVMs, my personal preference is to wait 4–8 weeks 
after the ictus before proceeding with surgical resection or 
radiosurgery. During this interval, the hematoma will resorb, 
reactive cerebral edema can resolve, and the hematoma cavity 
has a chance to mature. Operating on a ruptured AVM prior 
to resolution of the hematoma and edema can be technically 
challenging and may increase operative morbidity through 
increased brain swelling, errors in differentiating nidus from 
‘angry’ adjacent brain, and difficulty with retraction. Even 
proceeding with radiosurgery can be problematic because the 
edema and hematoma may make accurate targeting of the lesion 
difficult. Since there is often a 1–2-year latent period before 
resolution of the AVM, a 4–8 week delay in initiating radiosurgi-
cal treatment will have no deleterious effects in terms of 
subsequent hemorrhage risk. 

 There are some circumstances when urgent therapy is 
warranted in the acute setting. After presentation with intra-
cerebral hemorrhage, if an AVM is suspected the patient should 
undergo diagnostic angiography. If this demonstrates an AVM, 
the images should be searched for the presence of angiographic 
features that may increase the patient’s risk of early re-bleeding. 
Angiographic determinants of risk of sub sequent hemorrhage, 
such as intranidal aneurysms, peri-ventricular location, and a 
venous stenosis, put the patient at higher risk of re-bleeding. 9  In 
this setting, I favor early elective embolization to decrease the 
shunt and reduce the risk of subsequent re-bleeding. Nidal 
aneurysms should be assumed to be the source of the hemor-
rhage and these should be obliterated. In addition, if the patient 

treatment decision-making process. Frequently, patients in this 
age group are asymptomatic or minimally symptomatic and 
therefore are at low risk of hemorrhage. I feel that very young 
patients and older patients need a low-risk treatment alternative 
given their favorable natural history. Usually this treatment 
option includes radiosurgery because of its low treatment 
morbidity.   

 Role of embolization 
 Using a groin puncture, floating a microcatheter to an AVM 
nidus, and injecting an embolic agent resulting in a cure is every 
interventionalist’s dream, and it is the holy grail of endovascular 
therapy. Although there is some reported success in curing an 
AVM 12  with embolization alone, by no means can this be guaran-
teed  a priori.  Personal experience suggests that even angiographic 
obliteration following embolization does not necessarily mean 
that the patient is cured. It is possible that the radio-opacity of the 
embolic agent cast does not allow for adequate visualization of 
residual nidus, which can leave the patient susceptible to hemor-
rhage. Moreover, embolization therapy is not a benign procedure 
and carries with it morbidity as high as 30 %  per embolization 
session. 

 Because of the low rate of cure following embolization 
and the risk of leaving unprotected nidus, I view embolization 
as a pre-surgical adjunct or a palliative treatment for those 
patients with so-called Spetzler–Martin grade VI (‘surgically 
incurable’) AVMs who are having progressive neurological 
decline secondary to steal phenomenon. In addition, pre-radio-
surgical embolization has been associated with a decreased 
rate of cure. Embolization prior to radiosurgery makes visualiza-
tion of the nidus during treatment planning difficult. It is 
often thought that embolization can shrink the size of a large 
AVM down to one that is more conducive to radiosurgery. In 
reality, it is difficult to actually reduce the volume of the nidus in 
a manner that will facilitate radiosurgical planning; therefore, 
generally speaking, I do not routinely offer patients embolization 
prior to radiosurgical treatment.   

 Location 
 No other factor portends the risk of post-operative (surgical) 
neurological morbidity than the location of the lesion. Whether 
the lesion is in so-called eloquent brain or in a deep location, 
surgical approaches to these regions and potential iatrogenic 
injury to the surrounding area frequently makes surgical resec-
tion hazardous. High surgical risk locations can be defined as 
eloquent regions as outlined by Spetzler and Martin, 10  who 
described the sensorimotor, language, and visual cortex, the 
hypothalamus and thalamus, the internal capsule, the brainstem, 
the cerebellar peduncles, and the deep cerebellar nuclei as being 
eloquent regions. 

 When treating AVMs with radiosurgery in and near these 
locations, the fact that these territories are thought to be eloquent 
is less important. Generally speaking, a radiation dose will be 
chosen that is very unlikely to lead to tissue destruction of the 
adjacent regions, and therefore the risk is lower. For this reason, 
lesions in eloquent locations are, in my opinion, are generally 
best treated by radiosurgery.   
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offer brain imaging, and is thus less desirable in sympto matic 
patients.    

 Timing of treatment 
 Also important is the relationship of symptom onset and 
severity to the risk of stroke, and hence the benefit of earlier 
revascularization. The risk of stroke is greatest in the initial 
weeks and months after the first symptoms. 22  Patients with 
contralateral occlusion or poor collateral flow are also at addi-
tional risk. The risk of stroke is also noted to be greater in those 
with hemispheric symptoms than in those presenting with retinal 
ischemia. 23  

 The risk and the reward for carotid endarterectomy are well 
established, while endovascular treatment of carotid disease 
is indicated and approved for a relative minority of patients 
( Table 10.3 ). Alternatively the EC–IC bypass trial failed to 
demonstrate benefit of surgery for intracranial occlusive disease, 24  
while preliminary experience with specifically designed stent 
systems has demonstrated early technical success as well as symp-
tomatic relief in selected patients with intracranial stensoes. 25  
Demographic and angjographic considerations may play a role in 
selecting those patients least likely to suffer re-stenosis. 26       

 Acute ischemic stroke 
 Clinical decision-making in cases of acute stroke is often difficult, 
owing to the urgency presented by time constraints: high stakes 
‘beat the clock’. Under such circumstances, efficiency of com-
munication is of paramount importance: the time of onset, the 
age of the patient and his or her baseline functional status, the 
blood pressure, the heart rate and rhythm, National Institutes of 

needs urgent craniotomy for hematoma evacuation to alleviate 
elevated intracranial pressure and mass effect, pre-operative 
embolization may add a margin of safety and reduce intra-
operative blood loss. Of course, pre-surgical embolization 
should be sought only if the patient is neurologically stable and 
can tolerate the procedure prior to craniotomy.     

 Atherosclerotic stenoses 
 Surgery of atherosclerotic cerebrovascular disease, particularly 
at the carotid bifurcations, is one of the commonest surgical 
procedures performed. 15  The body of medical literature devoted 
to the subject since the time of Fisher’s first account is not only 
staggering in volume, but also impressive in its evolutionary 
sophistication. Publication of the North American Symptomatic 
Endarterectomy Study and the Asymptomatic Carotid Artery 
Surgery trial extended the concepts of Kaplan–Meier survival 
curves and odds ratios beyond the realm of public health and 
biostatistics and into the greater community of surgeons and 
neurologists. The demonstration of benefit in the reduction of 
long-term ( >  30 days) stroke morbidity and mortality is unique 
to surgery; this type of data for stenting must await completion of 
the Carotid Revascularization Endarterectomy versus Stent Trial 
(CREST). 16  In North America, much credit also goes to the 
American Heart Association for the inclusion of cerebrovascular 
disease in its domain, aiding in the recognition and management 
of risk factors. 17   

 Symptomatic versus asymptomatic 
 Beyond age and co-morbidities that may have an impact on long 
term survival, there are two key data points in clinical decision 
making for ischemic disease: 

■   Is the stenosis symptomatic?  
■   How severe is the stenosis?    

 Symptoms in the vascular distribution of a stenosis may 
be clinically crystalline or obtuse. Certainly, the aid of a neuro-
logical expert is invaluable in establishing causation. 18  In the 
unusual case in which uncertainty persists (especially for cortical 
symptoms), diffusion-weighting imaging may be a highly sensi-
tive adjunct in establishing parenchymal injury even when symp-
toms are transient. 19  ,  20  Alternatively, the case for revascularization 
of asymptomatic lesions rests almost exclusively with the severity 
of the stenosis in the context of the individual patient’s overall 
health and the risk of intervention.   

 Severity of Disease 
 While measured in a specific fashion, 21  severity of stenosis 
can be established a number of ways: CT, MRI, duplex ultra-
sound, or conventional angiogaphy. CT and MRI have the 
added benefit of establishing the integrity of the brain paren-
chyma and the presence of hemorrhage and of providing a 
potentially qualitative assessment of cerebral perfusion. Duplex 
ultrasound, while inexpensive, is an indirect measure of stenosis 
severity, moreover, it is highly operator-dependent and does not 

 Table 10.3    High-risk conditions for carotid 
endarterectomy  

Previous radiation therapy to the neck

Previous carotid endarterectomy with recurrent re-stenosis

High cervical internal carotid or below-the-clavicle common carotid 
artery stenoses

Severe tandem lesions

Contralateral carotid artery occlusion

Contralateral laryngeal nerve palsy

Age  > 80 years;

Severe pulmonary disease

Significant cardiac co-morbidity

 ■   Congestive heart failure (New York Heart Association class III 
or IV) and/or known severe left ventricular dysfunction

■   Open heart surgery needed within 6 weeks

 ■  Recent myocardial infarction ( > 24 hours and  < 4 weeks)

■    Unstable angina (Canadian Cardiovascular Society Class III 
or IV)
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In such cases, particularly those transferred from other facilities, 
it is always tempting to obtain additional imaging prior to 
proceeding, potentially at the risk of additional delays. This is 
particularly true at off-hours when personnel must be summoned 
from home. Clearly older patients temporally removed from the 
3-hour window and with even subtle changes on CT will not do 
well. Conversely, younger patients seen and treated early with an 
essentially normal presenting CT scan should be given every 
benefit of the doubt; the team should be dispatched as soon as 
possible, with little or no time spent admiring additional imaging 
studies. It is to be hoped that with the ever-expanding use 
of faster and safer mechanical thrombectomy devices, the pool 
of eligible patients for these treatments will expand as well. 28  

 Finally, it is easy to succumb to the temptation of treating 
patients emergently referred for acute stroke when expectations 
of family and even referring physicians are unrealistically high, 
even in the presence of significant time delays, contraindication 
to thrombolysis or anticoagulation, or imaging evidence of early 
completed infarction.  Figure 10.2  is an illustrative case of a 
17-year-old with unrecognized vertebral artery dissection and 
delayed appreciation of basilar ischemia. By the time appropriate 
diagnostic imaging was obtained 24 hours after the onset of 
symptoms, the patient was ‘locked-in.’ Despite diffusion-imaging 
evidence of an early infarction and the long time delay, there 
was every expectation that something  must  be done. Remarkably, 
in consultation with the parents and the interventionalist, the 
attending neurologist indicated that he had seen patients 
recover from such severe deficits. Relieved from the responsi-
bility of attempting too much too late, the patient was managed 
medically. Six months later the young woman stopped to 
acknowledge the cerebrovascular team at the breakfast table 
following morning rounds, to thank them for their efforts. 
Presently she is attending college, studying to be a physical 
therapist. 

     Conclusions 
 Complex cerebrovascular lesions are difficult to manage and 
require thoughtfulness and a high level of technical skill to 
effect successful cure. Along the way, there are many pitfalls and 
opportunities for complications leading to an untoward result. 
This can take an emotional toll on the physician, and he or she 
should be constantly on guard for the emotional pain that results 
from a substantial complication. It is wise in my opinion when 
facing a challenging lesion to share the decision-making process 
with a colleague. Enlisting a partner in the care of these patients 
allows for sharing of the emotional burden if the patient 
does poorly and prevents second-guessing of a unilateral or 
solo treatment decision. The corollary to this is that open 
surgery and endovascular treatments are less competitive than 
complementary. 

 It is also important to remember that although these are 
challenging lesions, their treatment is not about this being a 
challenge to the physician: it is about their successful treatment 
for the patient. Each of these is not a test of an individual’s skill 
and surgical or endovascular prowess. Instead, these lesions are 
a serious problem for the patient, and it is selecting the best 
treatment with the greatest chance of cure and lowest chance of 
morbidity that is what matters. Remember, it is not about the 
surgeon, it is about the patient.     

Health Stroke Scale (NIHSS), medications and anticoagulation 
status, serum glucose level, imaging results (if available), and 
contact information for informed consent must be noted imme-
diately ( Table 10.4 ). While obtaining this information, there is 
a constant mental calibration of the availability of intravenous 
thrombolytics and their odds of success, the shortest route to 
an angiography suite, the availability of nurses and technologists, 
and the time to prepare and access the cerebral circulation 
via endovascular means. There can be no wasted motion, the 
corollary of which is that such a high level of coordinated care 
requires significant pre-planning and education. 

 In virtually every instance, treatment should be initiated at 
the earliest possible moment and without delay, (e.g. intravenous 
thrombolytic therapy if within the 3-hour window from symp-
tom onset). This is the inherent appeal of the so-called ‘bridging 
protocols’, in which intravenous lytic therapy is begun at the 
earliest possible moment, even while mobilizing additional 
resources for intra-arterial treatment. 27   

 Nevertheless, with larger vessel occlusions we know that it is 
unlikely that intravenous treatment alone will be sufficient. 

  Table 10.4 Acute stroke checklist   

Time of onset

Age of patient

■ Able to consent

■ Pregnancy status

Right/ left handed

■ NIHSS

■ Able to consent

Vital signs

■ BP 

■ Heart rate and rhythm

■ Anti-coagulation status

Contra-indications to thrombolysis:

■ Recent surgery

■ Systolic BP > 180 mm Hg

■ Coagulopathy

■ > 3 hrs post ictus

■ Known intra-parenchymal CNS neoplasm

Imaging available:

■ Blood?

■ Parenchymal changes in over 1/3 vascular territory

■ Vascular occlusion*

■ Perfusion mismatch*

Contact information:

■ Parent/ spouse/ medical power of attorney

  ❍ Cell phone

■ Living will

■  Immediate activation of emergency endovascular technologist, 
nurse, physician

*Desirable but not essential.
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(a)

(b)

(c)

(d)

LAO/RAO -174
CRAN/CAUD  74

 Figure 10.2 

  (a) Diffusion-weighted image 24 hours after the onset of symptoms in a 17-year-old female with unrecognized vertebral artery 
dissection, now ‘locked in’. (b) Corresponding fluid-attenuated inversion recovery image. (c) MRA angiography demonstrating embolic 
occlusion of the basilar artery and confirmatory angiogram demonstrating basilar occlusion and collateral flow via the vermian artery 
arcade. (d) Follow-up diffusion image demonstrating the full extent of infarction and six-month follow-up T1-weighted scan 
post-contrast showing chronic infarct. The patient had recovered significant neurological function, with only mild residual dysarthria.  
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