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P R E F A C E 

Ear ly 1990 a proposal for a I U T A M Sympos ium wi th t he t i t l e " O p t i m a l Design wi th 
Advanced Mate r i a l s " was submi t t ed , and approved by t h e Bureau of I U T A M to t ake 
place in Lyngby, D e n m a r k dur ing the da tes 1 8 t h t o 2 0 t h of Augus t 1992. Th i s t i m e 
schedule m a d e it possible also to m a r k the 7 0 t h b i r t h d a y of Professor Fr i th iof Niordson. 

T h e scientific c o m m i t t e e pointed out t he impor t ance of joining scient is ts wi th a 
p r imary background in mechanics , mate r ia l s and m a t h e m a t i c s , respect ively. T o fur ther 
improve t h e cooperat ion be tween these groups is of vi ta l impor t ance , and not an easy 
task. T h e cooperat ion wi th t h e scientific c o m m i t t e e is highly apprec ia ted . 

Op t ima l design wi th advanced mate r ia l s is a very ac t ive and chal lenging domain wi thin 
applied mechanics . Several research groups conduct basic research in t h e a rea and the re 
is a need to coord ina te these act ivi t ies and to discuss t h e mechanica l as well as t he 
computa t iona l aspects in an in te rna t iona l forum. T h e increasing use of advanced 
mate r ia l s , such as anisot ropic fiber composi tes and ceramics , necess i ta tes new 
development to be m a d e wi th in cons t i tu t ive model l ing and t h e c o m p u t a t i o n a l me thods 
of analysis , sensi t ivi ty analysis and op t imiza t ion . A new dimension of op t ima l design is 
opened by the direct taylor ing and design of new mate r ia l s . T h e research area is 
increasingly ac t ive and t h e resul ts of t he research will find rap id appl ica t ion in the high 
technology indus t r ies . T h e two i m p o r t a n t research areas , homogeniza t ion a n d s m a r t 
m a t e r i a l s / s t r u c t u r e s , a re wi th in t he scope of t h e Sympos ium. T h e sympos ium brought 
together 60 scientis ts from 18 countr ies working in mechanics and m a t h e m a t i c s re la ted 
to op t ima l design and mate r i a l s . T h e 31 cont r ibu t ions s t imu la t ed t h e exchange of ideas 
and m a n y went home wi th ideas for further research. 

Financia l suppor t for t h e Sympos ium was generously provided by t h e In t e rna t iona l 
Union of Theore t ica l and Applied Mechanics ( I U T A M ) . F u r t h e r , t h e Sympos ium was 
sponsored by the Danish Cen te r for Appl ied M a t h e m a t i c s and Mechanics ( D C A M M ) , 
Technical Univers i ty of Denmark , Danfoss A / S , Grundfos A / S , O t t o M0nsted 
Founda t ion and Danish Technical Research Council ( S T V F P r o g r a m m e on C o m p u t e r 
Aided Design) . Th i s financial suppor t is grea t ly apprec ia ted . 

T h e order ing of t h e publ ished papers agrees wi th t h e order of p resen ta t ion a t t he 
Sympos ium. T h e division in to sections and the headings of the sect ions should not be 
too deeply in te rpre ted , because these decisions were t aken on an ear ly s tage wi thou t 
detai led informat ion. 

It is m y hope t h a t t h e proceedings will prove useful for our fur ther research wi th these 
in teres t ing problems . No doubt a n u m b e r of i m p o r t a n t resul ts are still t o be ob ta ined . 
T h e clear tendencies towards closer coopera t ion be tween scient is ts wi th basis 
background in mechanics , ma te r i a l s , and m a t h e m a t i c s will undoub ted ly prove fruitful. 

Final ly I would like to t h a n k t h e local organizing c o m m i t t e e and t h e technical staff of 
t he D e p a r t m e n t of Solid Mechanics , p r imar i ly Ms. Ben t e Brask Andersen and Mr. 
Rober t Ze t t e r lund for valuable help. 

Lyngby, december 1992 

Paul i Pedersen 
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F R I T H I O F N I O R D S O N A N N I V E R S A R Y 

Fri thiof Igor Niord Niordson was born on August 1, 1922 in Johannesburg , South 
Africa, wi th a Russian mo the r and a Swedish father . It is likely t h a t th is in te rna t iona l 
background of his has con t r ibu ted t o his la ter genuinely cosmopol i tan o r ien ta t ion . 

He received his basic engineering educa t ion and ob ta ined his Bachelor and Masters 
Degrees a t t h e Royal In s t i t u t e of Technology in S tockholm in t h e years 1946 and 1947 
respect ively, a s tuden t of Folke K .G. Odqvis t . As such he was one of t h e group of 
Odqv i s t ' s s tuden t s t h a t should la ter prove ex t remely successful as Professors of 
Technology in the Nordic Countr ies . 

Following his Swedish educa t ion he cont inued his s tudies a t Brown Univers i ty , 
Prov idence where he ob ta ined t h e degree of P h . D . in Appl ied M a t h e m a t i c s in 1952 as a 
s tuden t of Wi l l i am Prager . 

He began his professional career as an engineer, founding his own consul t ing bureau in 
1952 in Sweden. Emphas i s was on wha t should la te r become his m a i n subject : analysis 
of s t r eng th and v ibra t ion of s t ruc tu res , in this case par t icu la r ly gas tu rb ines . 

In 1958 he was appoin ted Full Professor at t h e Technica l Univers i ty of D e n m a r k where 
a group of older, bu t foresighted, professors an t i c ipa ted t h e need for mechanica l 
engineers proficient in s t r eng th of mater ia l s and v ibra t ion , fields t h a t h a d h i t he r to been 
given a r a t h e r low pr ior i ty in t h e cur r icu lum. In 1965 he founded t h e D e p a r t m e n t of 
Solid Mechanics . 

T o us, his ear ly s tuden t s , it was a shock - and a revela t ion - t o be in t roduced to , e.g., 
t he theory of shells given in a form modelled over t h e general theory of re la t iv i ty . T h e 
use of t he more theoret ical models was emphas ized , and " T h e m a t h e m a t i c a l toolbox" of 
t he engineer was a cent ra l concept in t he educat ion . 

Ano the r i m p o r t a n t aspect of his act ivi t ies was his endeavour to connect t h e people 
a round h im to t he sur rounding world. His first conspicuous success in th is respect was 
his organizat ion of t h e I U T A M Sympos ium on T h i n Shells held a t t h e Technica l 
Univers i ty of Denmark in 1967. Ever since then , extens ive con tac t on t h e professional — 
and personal - level wi th foreign scientists has been crea ted and ma in t a ined . 

His cosmopol i tan or ien ta t ion is reflected in t h e m a n y in te rna t iona l t asks wi th which he 
has been t rus t ed : Danish delegate in I U T A M 1960-1984. Secre tary Genera l of t h e 
Union 1968-1976, Pres ident 1976-1980, Vice Pres iden t 1980-1984. Elec ted m e m b e r of 
i ts Genera l Assembly since 1984. Member of Advisory G r o u p for Aeronau t ica l Research 
and Development , A G A R D . Foreign m e m b e r of T h e Royal Swedish Academy of 
Sciences. Member of t h e Pol ish Society of Theore t ica l and Appl ied M a t h e m a t i c s . 
Centennia l Year Honorary Membersh ip of t h e A S M E . 

He also has been most ac t ive in Danish groupings concerned wi th t he technical 
sciences: Member of t h e Danish Academy of t he Technica l Sciences since 1962. 
Or ig ina tor of t he Danish Cente r of Applied M a t h e m a t i c s and Mechanics and served as 
its secre tary general since its beginning in 1969. D C A M M is a forum for coopera t ion 
between eight d e p a r t m e n t s of t he Technical Univers i ty of D e n m a r k and is very helpful 
in placing Denmark on t h e scientific world m a p . Member of t h e board of directors of 
t he Nor the rn Europe Univers i ty C o m p u t i n g Cente r 1970-1984, and deservedly so, since 
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he was one of t h e first in Scandinavia to apply a u t o m a t i c c o m p u t i n g in t h e technical 
sciences. Dean of t h e F a c u l t y of Mechanical Engineer ing of t he Technica l Univers i ty of 
D e n m a r k in 1975-1991 . 

His scientific in teres t lies p r imar i ly wi th in t h e theory of v ibra t ion , t h e theo ry of p la tes 
and shells, and - to a large degree combining t h e t w o - wi th in t h e newer subject of 
s t ruc tu ra l op t imiza t ion . His r epu ta t ion as a scientist relies also on his fundamenta l 
work on op t imiza t ion and problems re la ted t o th i s , e.g. inverse e igenvalue p rob lems , 
and on basic resul ts concerning thick shells and p la tes . In 1985 he finished t h e excellent 
monograph on "Shell Theo ry" , a book of high r epu t a t i on . He has also worked on 
complex p rob lems of exper imenta l mechanics re la t ing t o high—rate p las t ic 
deformat ions . 

T h e above is a brief descr ipt ion of Fri thiof Niordson 's scientific career. Impress ive as it 
is, it hinges on only one — be it i m p o r t a n t — facet of his personal i ty . Few have more 
facets t h a n he. Few are be t t e r company . His s t rong, b u t well founded, views on poli t ics, 
be it i n t e rna t iona l , domest ic , or univers i ty , a re apprec ia ted by anyone who endeavours 
to t ake up t h e discussion. O n occasions where t h e subject has been sailing, horseback 
riding, or skiing (his favori te sports) one is given t h e o p p o r t u n i t y t o pa r t i c i pa t e in a no 
less hea ted discussion. Again, it is educat ional and never dull . W h en ev e r he is cheerful 
and he is most of t h e t i m e - he m a y t ake pleasure in en te r t a in ing himself and present 
company wi th some of his childrens toys . He migh t have chosen a posi t ion as a ma rke t 
place en te r t a ine r (e.g. the sorcerer) . Ins tead he chose a br i l l iant scientific career, 
br inging up T h e D e p a r t m e n t of Solid Mechanics to an in t e rna t iona l s t a n d a r d . For th is 
we, his colleagues, a re grateful t o him. 
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Scientific P a p e r s 
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Transactions of the Royal Institute of Technology, Sweden, N o . 10 (1947) 
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Proc . of the 8th Int. Congress on Theoretical and Applied Mechanics , Istanbul, 1952 

Transmission of Shock Waves in Thinwalled Cylindrical Tubes 
Transactions of the Royal Inst, of Techn . , Stockholm, N o . 57 (1952) 

Vibrations of a Cylindrical Tube Containing Flowing Fluid 
Acta Polytechnica, Vol . 3 , N o . 2 (1954) 
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Vibration of Turbine Blades with Loose Hinge Support 
Acta Polytechnica Vol. 3 , N o . 3 (1954) 
(Also published as Tekniska Skrifter N o . 154) 
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(in Swedish) 
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In "Recent Progress in Applied Mechanics" 
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Strength and Design of Pipe Systems 
(in Swedish) 
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Proc. 13th Int. Congr. Theor . Appl . Mech . , Moscow 1972. 
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Designing Vibrating Membranes (with J .W. Hutchinson) 
In "Cont inuum Mechanics and Related Problems of Analysis" 
The N . I . Muskhelishvili Anniversary Volume, pp . 581-590, 
USSR Academy of Sciences, Moscow 1972 

Optimal Design of Vibrating Cantilevers (with B .L . Karihaloo) 
J. of Optimization Theory and Applications, Vol . 11 , N o . 6 (1973) 

Optimal Design of a Circular Shaft in Forward Precession (with B .L . Karihaloo) 
In "Optimization in Structural Design" , Proc . of the I U T A M Symposium, Warsaw 
1973 
Springer-Verlag 1975 

Improvment of the Stodola Method at Close Eigenvalues (with J. J. Simmonds) 
(In Russian) 
In "Progress in the Mechanics of Deformable Bodies" 
The Galerkin 100 year Anniversary Volume 
USSR Academy of Sciences, Moscow 1975 

Symbolic and Algebraic Manipulation Languages and their Application in Mechanics 
(with Jarl Jensen) 
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A Consistent Refined Shell Theory 
In "Complex Analysis and its Applications" 
The Ilya Nestorovich Vekua Anniversary Volume 
USSR Academy of Sciences, Moscow 1978 
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Olhofl) 
Main Lecture , GAMM-Tagung 1979, Z A M M Vol . 59 , pp . 16-26 
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Int. J. Solids Structures Vol . 15, pp . 167-181. 

Variational Methods in Optimization of Structures 
In "Trends in Solid Mechanics" (Eds. J . F . Besseling and A. van der Heijden). 
Proc. Symp. dedicated to the 65 birthday of W . T . Koiter. 
Delft University Press , 1980. 

Optimal Design of Elastic Plates with a Constaint on the Slope of the Thickness 
Function 
Int. J. Solids Structures Vol . 19, N o . 2 , pp . 141-151 (1983) 

Some New Results Regarding Optimal Design of Elastic Plates 
In "Optimization Methods in Structural Design" (Eds. H . Eschenauer and N . Olhoff). 
Proc. Euromech Colloquium N o . 164, Univ . of Siegen, F R Germany 1982, pp . 
380-386. 

Free Vibrations of Thin Elastic Spherical Shells 
Int. J. Solids Structures Vol . 20 , N o . 7 , pp 667-687 (1984) 

The Spectrum of F ree Vibrations of a Thin Elastic Spherical Shell 
Int. J. Solids Structures Vol . 24 , N o . 9, pp . 947-961 (1988) 
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Theory of Thin Shells 
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Topology des ign us ing a mater ia l w i t h se l f -opt imiz ing 

m i c r o s t r u c t u r e 

C. S. Jog and R.B. H a b e r a 

M.R B e n d s 0 e b 

a Depar tment of Theoretical and Applied Mechanics 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 
U.S.A 

b Matemat i sk Institut 
Danmarks Tekniske H0jskole 
Lyngby 
Denmark 

1. I N T R O D U C T I O N 

The earliest literature on topology optimization involves layout problems. For example, 
Prager, Rozvany and others have studied layout optimization of truss structures, a problem 
which results in optimal designs with many thin, ' t russ-like' members [1], [2]. The first at
tempts to optimize continua over variable topologies were based on macroscopic partitions of 
the candidate structure domain into solid and void regions [3]. However, it was found that this 
formulation of the topology optimization problem is not well-posed [4]. Kohn and Strang ob
tained a well-posed, relaxed formulation by quasiconvexification and, alternatively, by ho-
mogenization of a microstructural model [4]. The relaxed problem can be approximated using 
a finite element grid on a fixed domain [5]. Bendsoe and Kikuchi explored this approach using 
a microstructure that approximates the optimal configuration [6]. 

In this study we are concerned with topology optimization procedures based on the exact 
optimal microstructure. In the following sections, we develop displacement based formula
tions of the relaxed topology optimization problem and carry out analytical optimization of 
the distributed microstructural design parameters. We obtain a reduced problem in the form of 
a two-field, inf-sup problem that generates a mixed finite element method. 

2. S T A T E M E N T O F T H E T O P O L O G Y O P T I M I Z A T I O N P R O B L E M 

We consider the problem of finding the stiffest structure that can be obtained by distributing 

a given volume of material V within a domain Ω cz R . We assume a homogeneous, linear 
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elastic, isotropic material, small deformations, plane stress conditions, a single static loading 
case and that all interior boundaries are traction free. 

We present the strong forms of the governing equations and the boundary conditions and 
the corresponding variational problems. The section closes with the formulation of the topolo
gy optimization problem. 

2 .1 . STRONG F O R M OF T H E B O U N D A R Y VALUE P R O B L E M 

Let Ω be an open domain with boundary Γ . The boundary is composed of two open, dis

joint regions, Γ = υ The following governing equations and boundary conditions ap

ply. 

V -τ + b = 0 in Ω (1) 

i(u) = ^ ( V w + (Vu)T) in C (2) 

τ = C : e in Ω (3) 

ί(τ,η) - τ η on Γ (4) 

u - u on Γ (5) 

t = ï  on  T t (6 ) 

τ is the stress tensor, u is the displacement vector, ε is the strain tensor, b is the body force 
vector, / is the traction vector, η is the unit normal vector to the surface Γ , M is a vector of 

prescribed displacements, M s a vector of prescribed tractions and C is the material stiffness 
tensor. 

2.2. VARIATIONAL F O R M O F THE G O V E R N I N G EQUATIONS 

We replace the strong form of the problem using the principle of minimum potential energy. 

Find the displacement field u that solves min Π (ν) such that equations (2)-(4) are sat-

isfied, where 

Π ( ν ) = jW(E(v))dQ.- J (h v)dT-J (b v)dQ (7) 
Ω r f Ω 

and Vu = {VG Η1 ( Ω ) : ν = M on . 

W is the strain energy density function which, for a linear elastic material, is given by, 

W(e) = \zTCz (8) 

If we base the formulation on the principle of minimum complementary energy we obtain, 
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Find τ which solves min Π ( σ ) such that equations (3) and (4) are satisfied, where 

Π ( σ ) = \Wc(a)da- J (t'U)dT (9) 
Ω ru 

and V T = { σ e £ 2 ( Ω ) : (V · σ ) + Ζ> = 0 in Ω , / ( σ , π ) = / on Γ , } . 

Wc is the complementary energy density for a linear elastic material given by, 

Wc(x) = ^τΤΌτ ; D = C - 1 

2.3. STATEMENT O F THE T O P O L O G Y OPTIMIZATION P R O B L E M 

(10) 

We are interested in finding a configuration of solid and void regions within the domain Ω 
that maximizes the stiffness of the resulting structure, such that the total volume of material 
equals a specified value V. No restriction is placed on the topology of the configuration of the 
solid part of Ω . One way to formulate this problem is to introduce the indicator function 
X (x) given by, 

1 if x G Ω . 
x(χ) = ί Λ . f η ( H ) 

0 if χ G Ω 2 

where Ω 1 and Ω 2 are the solid and void regions in Ω , respectively. The volume of the struc

ture is given by JX (x) dQ and the elasticity tensor at each point is C = X (x) C s o l i d where 

Ω 

Csolid ^ s m e elasticity tensor of the solid material. 

The following compliance functional measures the flexibility of the structure. 

/ = $ (tu)dr- J (t -û)dT+ $  (b-u)(ia  (12 ) 
rt r u Ω 

Maximizing the stiffness of a structure corresponds to minimizing the compliance / . For a lin
ear elastic material, Clapeyron's work theorem [7] gives the following relations. 

Π = -ί (13) 

Π , = [ (14) 

Therefore, maximizing the stiffness is equivalent to minimizing the complementary energy or 
maximizing the potential energy. Alternative forms of the maximum stiffness problem are 
stated as: 
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• Displacement formulation: 

X(x) e Vx 

sup inf 

u 

jW(e)dQ- J {hu)dT- \{b-u)d£l 
Ω r ( Ω (15) 

subject to equations (2)- (4) and C = X (x) C solid 

Stress formulation 

inf jWc(x)dQ- J (tu)dT 
Ω ΓΜ 

(16) 

subject to equations (3), (4) and D = X (x) Dsoiid-

The set of admissable designs for the above problems is defined as, 

Several researchers have studied this problem. Early approaches considered only macro
scopic patterns of solid and void [3]. However, the macroscopic problem is not well-posed [4]. 
As a result, attempts to optimize finite element models based on the macroscopic approach fail 
to converge to a macroscopic pattern of solid and void regions in the limit of mesh refinement. 
Kohn and Strang showed that a tractable, relaxed form of the problem can be obtained either 
by quasiconvexification of the macroscopic optimization problem or, equivalently, by intro
ducing microstructure to the design space [4]. The process of relaxation leads to a well-posed 
problem and tends to eliminate artificial local minima that arise in the macroscopic optimiza
tion problem [5]. The introduction of microstructure transforms the optimization task from the 
determination of the indicator function X (x) to the determination of distributions of micro-
structural parameters, as explained below. 

3 . O P T I M U M M A T E R I A L D I S T R I B U T I O N A N D E F F E C T I V E M A T E R I A L 
P R O P E R T I E S 

Studies of the bounds on the effective properties of composite mixtures of two materials 
show that for plane elasticity, the stiffest composite material for a fixed ratio of the two con
stituent materials can be obtained by a rank-2 layering, as shown in Fig. 1 ([8], [9], [10]). The 
rank-2 composite is constructed as follows. First, a rank-1 composite is constructed of alter
nating layers of the suffer and the more flexible materials. The averaged densities of the stiff 
and flexible layers are designated γ and 1 - γ , respectively. The rank-2 composite is then con
structed of alternating layers of the stiff material and the rank-1 composite with average densi
ties δ and l - δ , respectively. The characteristic length scales of the rank-1 and rank-2 
layerings must be of different orders of magnitude. Furthermore, the rank-1 layering direction 
is perpendicular to the rank-2 direction. The bulk density of the stiff material is [11], 

ρ = δ + γ - γ δ (17) 

Vx= {Y:Y(x) = 0 o r l Vx e Ω, J Y (x) dQ = V } . 
Ω 
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rank-2 layering rank-1 layering 

Fig. 1 Construction of a rank-2 composite 

In the context of shape optimization of a homogeneous material with voids, we assign void 
properties (X = 0 ) to the flexible material in the rank-2 composite. Then ρ in equation (17) 
gives the bulk density of the rank-2 material and the volume constraint is expressed as, 

jpdQ = V (18) 
Ω 

The effective material properties of the rank-2 composite can be derived using the formulas 
of homogenization [11]. Assuming that the primary layering of density δ is aligned along the 
direction 1 (as shown in Fig. 1), the effective properties are: 

yE 
1111 

Ί 1 2 2 

δ γ ( 1 - ν 2 ) + ( 1 - δ ) 

ν δ γ £ 

C 2 2 2 2 = δ £ + δ 2 ν 2 ^ ι η 

(19) 

C 1 2 1 2 ~ 0 

δ γ ( 1 - ν 2 ) + ( 1 - δ ) 

where Ε is the Young's modulus and ν is the Poisson 's ratio of the solid isotropic material. 
The tensor components in (19) correspond to the effective properties of the homogenized ma
terial in a material coordinate system that is inclined at an angle θ to the global reference 
frame (Fig. 1). The effective properties in the global reference frame can be found using the 
standard coordinate transformation formulas for the elasticity tensor. 

The process of relaxation expands the macroscopic design space and the outer subproblems 
in (15) and (16) are transformed accordingly. Now we seek the supremum of the potential en
ergy (or the infimum of the complementary potential energy) over θ (χ), δ (JC) and γ (χ) in
stead of Χ (χ). The analytical optimization of these functions is discussed in the following 
section. 

4. A N A L Y T I C A L O P T I M I Z A T I O N O F T H E M I C R O S C O P I C D E S I G N 
F U N C T I O N S 

We now express the volume constraint in the displacement formulation (equation (15)) us
ing a Lagrange multiplier technique. 
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• Displacement problem DPO: 

sup inf 
θ, δ, γ u s V 

Lu(6, δ , γ , ι ι , λ ) 
(20a) 

u 

jpdQ-v) (20b) 

In the case of the sup-inf problem given by equation (20a), it is not obvious that the ' sup ' 
and ' i n f operators can be interchanged. However, it has recently been demonstrated that find
ing the supremum of Lu with respect to θ and the ratio of δ to γ under fixed ρ can be carried 
out before taking the infimum of Lu over the kinematically admissible displacement fields 
without changing the results [12]. In the following, we interchange the sup and inf operators 
to arrive at subproblems that can be solved analytically. Diagrams of the optimization prob
lems that are obtained by successive interchanges of the sup and inf operators in problem 
DPO, each followed by analytical optimization of one of the microstructure design variables, 
are shown in Fig. 2. Each analytical solution of a subproblem leads to a reduced optimization 
problem with fewer unknowns. Apparently, it is not possible to interchange the order of maxi
mization over ρ and minimization over u in the second reduced problem DP2 . Therefore, we 
cannot obtain a third reduced optimization problem in terms of the displacements only. The 
following sections present the detailed development of the reduced optimization problems for 
the displacement formulation. 

4 .1 . F IRST R E D U C E D P R O B L E M : ANALYTICAL OPTIMIZATION O F T H E 
DIRECTION O F ORTHOTROPY (Θ) 

Equation (20a) in problem DPO is equivalent to [12], 

sup inf sup δ, γ, w, λ ) 
δ, γ u θ (21) 

The angle of orthotropy, θ , is the angle between the material axes (1-2) and the coordinate 
axes of the global reference frame, while the principal angle ψ is the angle between the direc
tion of the first principal strain ( ε 7 ) and the coordinate axes. Pedersen ([13], [14]) has shown 

that the stiffest microstructure is obtained by aligning the material axes with the principal 
strain axes (for maximizing the potential energy) or the principal stress axes (for minimizing 
the complementary potential energy). That is, if we assume that C l l n > ^ 2 2 2 2 a n ( * c n o o s e 

εf and efI such that | ε 7 | > | ε / 7 | the stiffest structure is obtained for θ = ψ . This result is valid 
for composites having low shear stiffness, that is materials which satisfy 
^ 1 1 1 1 + ^ 2 2 2 2 " " 2 ^ 1 1 2 2 ~ ^ ^ 1 2 1 2 > ^ ' w ^ i c h is the case for our rank-2 composite. Also, it is 
easy to see that the axes of principal stress, the axes of principal strain and the axes of orthot-
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DPO: sup infLu(e,5,Y,uA) 
θ,δ,γ u 

c Ϊ 
Interchange sup inf 

θ u 

f Optimize θ analytically Λ 

DPI: sup inf L i (δ,γ,ιι,λ) 
δ,γ u 

Γ Rewrite L^in terms of ρ,δ,ιι,λ J 

c ι 
Interchange sup inf 

δ u 3 
^ Optimize^ analytically ^ 

i . 
DP2: sup inf L 'ù (ρ,ιι,λ) 

Ρ u 

Fig. 2 Generation of reduced optimization problems 
in the displacement formulation 

ropy are aligned in the stiffest microstructure. Next, we use this result to eliminate θ as a de
sign variable. 

Noting the alignment of the principal axes and the optimal axes of orthotropy and combin
ing equations (3) and (8), we find that the strain energy density of a material with an optimal 
material angle θ is given by, 

W'(E) = 2 ( ^ l l l l 6 / + ^ 2 2 2 2 ε / / + 2 ^ 1 1 2 2 ε / ε / / ) ( 2 2 ) 

where C2222' a n c * C 1 1 2 2

 a r e f u n c t i ° n s of the layer densities δ and γ (equation (19)). 

The principal strains, εΙ and ε / 7 , can be expressed in terms of the Cartesian strain components 

to get the following expressions for the strain energy density. 

(204 {ê x +  e 2

yy)+SC1 m e x x e y y +  β ^ + 2 « 2 κ (εχχ + Eyy) ) 

< 2 α ι < 4 + Φ + 8 C 1 ΐ 2 2 ε Λ + β Κ ~ 2 a 2 K ^xx
 + «W> xx y y 

(23) 
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where α ι - α 2 ~ ^ 1 1 1 1 ^ 2 2 2 2 ' ^ 1 ~ ^ 1 1 1 1 + ^ 2 2 2 2 2 ^ 1 1 2 2 a n c i 

κ = tl(£xx-£yy)2 + y^y - Note that α 2 > 0 due to the convention that C m i > ^ 2 2 2 2 -

The strain energy density function described by equation (23) is that of a fictitious "adap
t ive" rank-2 material whose material axes rotate so as to always remain coincident with the in
stantaneous principal strain axes. Even though our rank-2 composite is constructed from a 
linear elastic material, the response of the rotating adaptive material is nonlinear elastic, as 
can be seen in equation (23). An effective tangent material stiffness matrix for the adaptive 
material can be derived based on the energy density function in equation (23). The tangent 

stiffness matrices for the two cases, ε + ε < 0 and ε + ε > 0 are distinct and positive 
xx yy xx yy r 

definite. However, the tangent stiffness matrix and the stresses are discontinuous for 
ε + ε = 0 (ε = - ε „ ) and some of the terms in the tangent stiffness matrix are unbound-

xx yy v / Ir to 

ed for κ = 0 ( ε 7 = ε / 7 ) . These problems are eliminated if δ and γ are continuously opti

mized as in section 4.2. 
After carrying out the maximization over θ in equation (21), we get the following dis

placement formulation. 

• Displacement problem D P I : 

sup inf ^ ( δ , γ , Μ , λ ) 

δ, γ ueVu (24a) 
subject ί ο 0 < δ < 1 , 0 < γ < 1 , ^ = 0 and equations (2)-(4); where 

Ζ / Μ ( δ , γ , ι ι , λ ) = j Ψ\ε)άΩ- j (ïu )dr- j  (b'U)dQ-XÎjpda-νλ (24b) 
Ω Γ, Ω \Ω J 

4.2. SECOND R E D U C E D PROBLEM: ANALYTICAL OPTIMIZATION O F T H E LAYER 
DENSITY δ 

We can interchange the order of the maximization over δ and minimization over u in equa
tion (24a) without changing the results [12]. Problem D P I is restated as, 

sup inf sup £' , ,(δ, ρ, w, λ ) 
ρ M e Vu δ (25a) 

subject ί ο 0 < δ < ρ < 1 , ^ - = 0 and equations (2)-(4); where 

^ ( δ , ρ , Μ , λ ) = \W{z)dil-\{tu)dT-\(b>u)dQ.-x(\pdQ.-v\ (25b) 
Ω Γ, Ω \Ω J 
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is the same as W'(E) in equation (22), except that the elastic moduli are expressed as 
functions of δ and ρ (using equation (17)), rather than δ and γ . 

For the displacement formulation, the Kuhn-Tucker optimality condition for the design 
variable δ leads to, 

^ ' ( ε ) = 0 (26) 

if neither the upper nor the lower-bound constraints on δ are active. 
Solving equation (26) gives two roots for the optimal layer density δ . We derived expres

sions for the two roots using lengthy hand-calculations and confirmed them using a symbolic 
computation package. The corresponding optimal layer densities γ can be derived from equa
tion (17) as a function of ρ and the principal strains. The expressions for the optimal layer 
densities according to equation (26) are given by equation (27). In the following, we use the 
term ' m o d e ' to describe which expression for the optimal value of δ governs. For example, 
mode-I and mode-II materials are rank-2 composites where δ assumes the values of the alter
native roots of equation (26). Mode-I l l and mode-IV materials represent rank-2 composites 
where the lower-bound and upper-bound constraints on δ , respectively, are active. 

ε 7 ( 1 + v p - ρ ) + Ε εΙ ( v p + ρ - 1) + ε / 7 

mode-I: δ = — ^ : ; mode-II: δ = 
ν ε 7 + (2 - ρ - ν + v p ) ε / 7 * ν ε 7 + (2 - ρ + ν - ρ ν ) ε / 7 

_ ε 7 + ε / 7 ( 1 + ν ρ - ρ ) _ ε 7 + ε / 7 ( ν ρ + ρ - 1 ) 
γ " ( 1 - ν ) ( ε 7 - ε 7 / ) γ " ( 1 + ν ) ( ε 7 + ε / 7 ) 

mode-I l l : δ = 0 mode-IV: δ = 1 

γ = ρ ρ = 1 

Substitution of the above expressions for the layer densities in equation (19) verifies our start

ing assumption that C n u > C 2 2 2 2 f ° r m o d e - I , mode-II , mode-I l l and mode-IV materials. In 

the special cases of ε 7 = - ε / 7 and ε 7 = ε / 7 , it can be verified that C n n = C 2 2 2 2 . Thus the 

problems which arise in the first reduced problem do not occur here. 
The ranges of validity for mode-I , mode-II, mode-I l l and mode-IV materials as functions of 

ρ and the principal strain ratio, are given next. By convention, we choose ε 7 and ε / 7 such 

that | ε 7 | > | ε / 7 | and define the principal strain ratio as, k = ε / 7 / ε 7 . Since | ε 7 | > | ε / 7 | , we have 

- 1 < k < 1. The criterion that 0 < δ < 1 in the mode-I and mode-II regions in equation (27) 
gives 

1 + k \-k 
mode-I: < ρ < 1 mode-II: < ρ < 1 (28) 

1 - ν K 1 + v K 

We obtain the following ranges for the four modes using equation (28) (see Fig. 3). 
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PA 

r 

mode-IV 

mode-I / ^ . mode-II 

/ mode-Il l 

/ -. : - • 

Fig. 3 . Ranges of validity of the various modes 

Λ Τ 1 

mode-I: < ρ < 1 
1 - ν y 

mode-III: 0 < ρ < ~ ^ and 0 < ρ < 
r 1 - ν r 1 + v 

mode-II: \ — - < ρ < 1 
1 + v K 

mode-IV: ρ = 1 
(29) 

The lower shaded zone in Fig. 3 represents the mode-III region where the constraint δ > 0 is 
active and we have a rank-1 material. Accordingly, the material can only sustain a uniaxial 
stress state in mode-III. 

Combining the expressions for the optimal layer densities (equation (27)), the effective ma
terial properties (equation (19)) and the strain energy density (equation (22)), we get the fol
lowing expressions for the strain energy density of the optimized rank-2 material. 

mode-I: W"(p,u) = 

mode-II: W"(p , u) = 

Ε ( ε 2 + 2 ε 7 ε / 7 ( 1 - ρ + v p ) + ε 2

7 ) 

2 ( 1 - ν ) ( 2 - ρ + ν ρ ) 

£ ( ε 2 - 2 ε 7 ε / 7 ( 1 - ρ - ν ρ ) + ε 2

7 ) 
: 2 ( 1 + ν ) ( 2 - ρ - ν ρ ) 

£ ( ε 2 + 2 ν ε 7 ε / 7 + ε 2

7 ) 

2 ( 1 - ν 2 ) 
mode-III: W"{p,u) = ^ρΕε* mode-IV: W\\,u) = 

± y χ - ν j 
(30) 

The expression for W" for a mode-IV material coincides with W"(l9 u) for the mode-I and 
mode-II materials. Hence, from here on we treat the mode-IV material as a special case of the 
mode-I and mode-II materials with ρ = 1. The expressions in equation (30) can be written 
directly in terms of the Cartesian strain components as 

£ ( ε 2 + ε 2 + γ 2 / 2 + 2 ( l - p + v p ) ( ε ε -y1/Λ)) Λ τ τι/··/ \ v ÏÏ  Ί ) Ν ν ν ' Ν xx yy lxy mode-I: W ( ρ , u) = — J-7-Tz —r r — 
ν μ ' 2 ( l - v ) ( 2 - p + v p ) 

^ xx Eyy + i y / 2 " 2 ( 1 " Ρ " v p ) ( ε ε - ) 
mode-II: W"(p,u) = ^ ^ V T I ^ r ^ - ^ ^ 

' μ ' 2 ( l + v ) ( 2 - p - v p ) 

(31) 
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W"(p, u) for a mode-I l l material is given by equation (23) with oCj = oc 2 = = p £ and 

C 1 1 2 2 = 0 (since δ = 0 ) . 

Equation (31) corresponds to the strain energy density function of a fictitious hyperelastic 
material, composed of an adaptive rank-2 composite with fixed bulk density ρ , whose materi
al axes rotate so as to remain aligned with the instantaneous principal strain axes and in which 
the layer densities are continuously adjusted (according to equation (27)) to remain optimal 

dW" 
under the current strain state. Surprisingly, the resulting stress-strain relations ( τ . . = ^ — ), 

υ 
for both the mode-I and the mode-II materials, are linear. 

mode-I: τ 

τ = 
yy 

£ ( e x x + ( l - p + v p ) e y y ) 

( 1 - v ) ( 2 - p + v p ) 
E(Eyy+ ( 1 " Ρ + ν ρ ) ε ^ ) 

( 1 - v ) ( 2 - p + v p ) 

mode-II: τ = 
XX 

• p - v p ) e y y ) 

yy 

( 1 + v ) ( 2 - p - v p ) 

£ ( ε ^ - ( 1 - ρ - ν ρ ) ε ^ ) 

( 1 + v ) ( 2 - p - v p ) 

£ ρ ( 1 - ν ) γ . 
xy xy 

xy 2 ( 1 - v ) ( 2 - p + v p ) ^ 2 ( 1 + v ) 
(32) 

The layering of the rank-1 material corresponding to mode-I l l is colinear with the numeri
cally larger (ερ principal strain direction. This also generates a constitutive model equivalent 

to that of an adaptive hyperelastic material. However, in this case the effective stress-strain re
lation is nonlinear and the tangent stiffness matrix is singular. Nonetheless, one can derive a 
positive-definite secant material stiffness matrix for the mode-I l l region which is continuous 
at the mode-I/mode-III and mode-II/mode-III boundaries (see Fig. 3) and which generates 
stresses that are consistent with the rank-1 microstructure. 

Equation (32) is rearranged to obtain the mode-I and mode-II material stiffness matrices. 
mode-I material: 

C= C " ( p , £ , v ) = Ε 

1 1 - p + v p 0 
1 - p + v p 1 0 

( l - v ) p 
0 0 (33) 

Ε = 
( 1 - v ) ( 2 - p + v p ) 
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mode-II material: 

C = C " ( p , £ , v ) = Ε 

1 - ( 1 - p - v p ) 0 
( 1 - p - v p ) 1 0 

( 2 - p - v p ) 
0 0 (34) 

( 1 + v ) ( 2 - p - v p ) 

For ρ = 1, both the mode-I and the mode-II material stiffness matrices coincide with the 
stiffness matrix of a solid isotropic material without microstructure. 

C " ( l , £ , v ) = Csolid(E,v) (35) 

After carrying out the optimization over the layer density δ in equation (25a), the second 
reduced form of the displacement problem is obtained. 

• Displacement problem DP2: 

sup inf L" ( ρ , Μ , λ ) 
Ρ H 6 V „ (36a) 

subject to equation (28), = 0 and equations (2)-(4); where 

Ζ / ; ( ρ , Μ , λ ) = } r ( p , « ) i / Q - \ ( h u ) d T - J (b'U)dQ-XnpdQ-v) (36b) 
Ω rt Ω [p. J 

In our experience, it is not permissible to interchange the order of the inf and sup operators 
on u and p . Hence, we cannot find a third reduced displacement problem. 

5. P R O B L E M DP2 AS A M I X E D V A R I A T I O N A L S T A T E M E N T 

The second reduced displacement problem DP2 is an inf-sup problem, corresponding to a 
two-field, mixed variational formulation. The stationary condition of ( p , u, λ ) with re
spect to u yields the usual weak form of the equilibrium equation, and the stationary condition 
with respect to the bulk density ρ yields a weak form of the optimality criterion, 

^ " ( ρ , ι ι ) - λ = 0 (37) 

which is valid provided that the constraint 0 < ρ < 1 is not active. These two equations (sup
plemented by the constraint equations) determine the two fields, u and ρ . As with any mixed 
variational problem, care must be taken in choosing the function spaces for u and p . Finite el
ement formulations based on the problem DP2 must satisfy the Babuska-Brezzi stability con
ditions [15]. We discuss this matter in greater detail in sections 6 and 8. 
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6. F I N I T E E L E M E N T M O D E L 

Among th e thre e displacement-base d problems , DP 2 involve s th e leas t numbe r o f desig n 
variables an d guarantee s a n analyticall y optima l microstructure . W e construc t a  mixe d finite 
element metho d fo r D P 2 i n whic h th e densit y an d th e displacemen t fields  ar e parameterize d 
as, 

Nu an d ar e matrice s containin g th e displacemen t an d densit y basi s function s an d ù  an d ρ 

are unknown parameter vectors. The choice of the basis functions for the displacement and 
density fields is critical to achieving a stable solution. When the domain is discretized using 
quadrilateral elements with an 8-node displacement model and a bilinear density field (possi
bly discontinuous across element boundaries), the solution is unstable in regions where the 
upper and lower bound constraints on the density are not active. Similarly, a discretization us
ing a 4-node displacement model and a constant density distribution within each element and 
a discretization using a 9-node displacement model and a discontinuous bilinear density field 
generate unstable solutions. However, a mesh using an 8-node displacement model with a 
piecewise constant density distribution gives a stable solution. We attribute the problems of 
the unsuccessful models to Babuska-Brezzi type instabilities. 

7. S O L U T I O N M E T H O D 

We employ an iterative procedure to solve the mixed variational problem. We alternately 
solve the equilibrium problem for the displacement field, subject to a fixed distribution of bulk 
density, and optimize the bulk density distribution, subject to a fixed displacement field. An 
analytically optimal microstructure (for the current bulk density and displacement estimates) 
is maintained at all times. Although the stiffness analysis is nonlinear due to the rank-1 
(mode-III) material, we carry out only one equilibrium iteration before updating the design. 
This serves to spread the cost of the nonlinear equilibrium iterations over a number of design 
cycles. 

The redesign step is an iterative procedure.We seek a density distribution that satisfies 
equation (37) in a weak sense in the perforated region Ω π where the bounds on ρ are inactive. 

(38) 

p 

Ω 
(39) 

Ρ 

This leads to the following heuristic update formula for the density parameters. 
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80 in. 

50 in 

Ε = 2.1 χ 10 7 psi 
ν = 0.25 
thickness = 1 in. 

P=480000.01b 

Fig.4 Deep beam loaded along its bottom edge 

We next calculate the current volume of the structure (jpdQ). Since our estimate of the 
Ω 

Lagrange multiplier is not likely to be exact, we get a volume residual R - V- jpdQ. We 
Ω 

use a Newton-Raphson procedure (using an approximate expression for the sensitivity of the 
residual R with respect to λ derived using equation (40)) to improve the estimate of λ . This in 
turn gives new values of the bulk density ρ via equation (40). Iterations on λ and ρ are re
peated until the volume constraint is satisfied within a specified tolerance. Then a new equilib
rium iteration is begun. 

8. N U M E R I C A L E X A M P L E 

A deep beam rests on two supports and carries a point load at the center of its bottom edge 
(see Fig. 4). Plane stress conditions are assumed. Two optimization problems with prescribed 
volume fractions 60% and 2 0 % respectively, are considered. We use a 40 χ 32 mesh of square 
elements with 8-node displacement functions and constant density to model half the structure. 
For the 60% volume fraction case, we obtain the stable solution shown in Fig. 5a, yielding 
/ = 71733 lb-in. after 40 iterations. For the 20% volume fraction case we obtain the stable 
solution shown in Fig. 5b with J - 159580 lb-in. after 60 iterations. 

9. C O N C L U S I O N S 

Analytical optimization of the microstructural parameters in the homogenized topology de
sign problem leads to a series of reduced problems which form the basis for a family of com
putational solution procedures. The second reduced displacement problem D P 2 appears to be 
an attractive choice for use with stiffness solution procedures. The interpretation of this for
mulation as a mixed variational problem has significant consequences with respect to the 
Babuska-Brezzi stability criterion in the construction of finite element models . 

Although we have been able to get near-optimal designs with the current update strategy, 
terminal convergence is slow, and we would like to find a more effective redesign strategy. 
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Another computational problem is associated with the non-uniqueness of the displacement so
lution for the rank-1 material in mode-III regions. This slows the convergence of the equilibri-
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um iterations and introduces nonlinear character to what is otherwise a linear stiffness 
problem. 

Currently, we carry out the optimization using a fixed finite element mesh. We plan to 
explore adaptive strategies to control error in both the displacement solution and the satis
faction of the optimality criterion for design. Thus, a unified method for adapting the mod
els for u and ρ is needed. This will ensure accurate resolution of the optimal geometry 
and the corresponding displacement solution. 

All of our current effort has been directed towards finding the exact solution to the re
laxed form of the topology optimization problem. The relaxed problem can generate opti
mal designs in which parts of the structure have intermediate densities between zero and 
one. However, in many practical situations we would like the final design to be comprised 
solely of macroscopic solid and void regions. Hence, we plan to penalize intermediate 
densities to force all points to either a solid or void condition. Extensions to three dimen
sions, multiple load cases, nonlinear materials and alternative objectives are also of inter
est. 
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Simulation of Natural Adaptation of Bone Material 
and Application in Optimum Composite Design 

T.J. Reiter and F.G. Rammerstorfer 

Institute of Lightweight Structures and Aerospace Engineering, Vienna Technical Uni
versity, Austria 

A b s t r a c t 
An algorithm for the simulation of the stress induced remodeling of bone material is 
presented. The applicability of this method in the field of biomechanics as well as to 
the design improvement of technical structures is shown in several examples. 

1 . N O M E N C L A T U R E 

Strain energy density 
Effective strain energy density 
Homeostatic strain energy density 
Number of load cycles in load case i 
Apparent density 
(Maximum) density of cortical bone 
Growth increment perpendicular to the surface 
Change of apparent density 
Strain tensor 
Stress tensor 
Model parameters 
Remodeling parameters 
Young's modulus 
Shear modulus 
Poisson's ratio 
Bulk modulus 
Particle volume fraction 
Material parameter in Paris-law 
Model parameters 
Fracture growth rate per load cycle 

Pa 
Pc 
AX 
Ap 

β, 7, S, UnQ 

Cxi,2, Cpl,2 
Ε 
G 
ν 

: 1 

2 . I N T R O D U C T I O N 

Unlike normal technical materials such as steel or concrete, bone material as a living 
tissue has the ability to react to environmental influences by changing its shape and 
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internal architecture with respect to its functional requirements. Special classes of bone 
cells are capable of maintaining a steady process of bone resorption and deposition, 
leading - on a macroscopic observation level - to a quasistatic equilibrium state, which 
reflects the mechanical loading environment a given bone is exposed to. Changes in 
the actual stress/strain pattern within the bone will tend to stimulate pronounced cell 
activity resulting in a resorption of bone material in regions of low loading levels and 
vice versa a deposition of new material in highly stressed zones, giving rise to a new 
equilibrium state. This functional adaptation can be considered as a 'natural imple
mentation' of some minimum weight optimization procedure, even though the resulting 
configuration does not necessarily constitute an optimum in a rigorious mathematical 
sense. However, massive alterations of loading conditions following the implantation of 
prostheses or implants as used in orthopaedic or dental surgery may lead to detrimen
tal remodeling reactions. While the physical and biomechanical processes which are 
responsible for transmitting mechanical stimuli into actual bone cell activity are still 
not fully understood, several at tempts have been made to obtain phenomenologically 
based mathematical formulations, relating local bone growth rates to common mechan
ical parameters like stress- or strain tensors, v'Mises equivalent stresses etc. via simple 
mathematical equations [Frost 1964; Cowin et al 1985,1987; Carter et al. 1987, 1989, 
1990; Huiskes et al. 1987]. 

The remodeling algorithm formulated here to simulate stress induced functional adap
tation of bone can be introduced to advantage in the improvement of the design of 
technical structures as will be shown later. 

3 . R E M O D E L I N G M O D E L 

In the present study the difference between an actual effective strain energy density 
(SED), Ueff, and an homeostatic SED, ί / η , serves as an appropriate mechanical stim
ulus to predict bone remodeling processes. Due to the multiple loading conditions and 
individual loading time histories experienced by a bone in the course of a typical time 
period, Ueff is calculated by an appropiate superposition of the SED-values derived 
from a number of discrete load cases, weighted according to the corresponding number 
of load cycles [Carter et al. 1987]: 

U ' " = ( Σ ^ ί ) , ) (1), 

where for load case i is given by 

U = -z°ii*ij (2) 

or by the 'bulk' SED 

Ub = PfU (3) , 
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which better reflects the strain energy actually stored in the mineralized tissue. In 
eqn.(l) k acts as a weighting parameter of the degree of influence of load magnitude 
and the number of loading cycles, respectively. 

The homeostatic SED, i / n , which represents the site specific balanced state of no bone 
remodeling is given by 

Un = Un0 + aipa (4) , 

approximating the influence of the apparent density pa. The deviations between Ueff 
and Un must exceed a certain threshold level to cause any remodeling activity, so that 
a 'lazy zone' around Un is assumed. 

+w 

+dW, max! 

- d W 

Ueff 

U m a x 

Fig.(l) Qualitative relationship between Ueff, and the bone remodeling reaction W. 

Fig.(l) shows the principal relationship between Ueff and the bone material deposi-
tion/resorption. Any SED level exceeding i / m a x causes actual bone cell damage, leading 
to overstrain necrosis. Due to biological cell activity limits, certain growth rate bounds 
have to be taken into consideration ( + / — AWmax)- Applying this model to the simu
lation of surface remodeling (i.e. AX as surface growth perpendicular to the surface) 
we derive: 

Cxi[Ueff-Un(l-s)] 
AX = I 0 

Cx2[Ueff-Un{l+8)] 

AX < AXmm 

Ueff < Un{l-S) 
Un(l-s) < Ueff < Un{l + s) 

Ueff > Un(l + S) 
AX > AX 

max 

(5) 
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Under the assumption of isotropic bone material behaviour the changes due to internal 
remodeling can be expressed by the change in apparent density Ap, thus giving: 

Apmin 

Cpi[Ueff-Ua{l-s)] 
Ap= I 0 

CP2[Ueff-Un(l+s)] 
Ap 

max 

Ap < Ap 
min 

Ueff < Un(l-S) 
Un(l -s) < Ueff < Un(l+s) 

Ueff > Un{l+S) 
Ap > Ap 

max 

(6) . 

From experimental investigations [Carter and Hayes 1977], in which cortical bone was 
treated simply as densified trabecular bone (i.e. the two tissues are assumed to consist 
of the same material, differing only in porosity), the Young's modulus of bone material 
(the Poisson ratio ν is assumed to be constant) can be approximated by 

Ε=βχρΙ (7) 
It should be noted that theoretical investigations [Gibson and Ashby 1988] for the 
relation between Ε and pa taking into account the foam-like microstructure of bone 
material, predict 7-values between 2 and 3. As shown later materials with different 
microstructures (e.g. particle reinforced materials) can be handled in an analogous way. 

3 . 1 B i o m e c h a n i c a l E x a m p l e - B o n e R e m o d e l i n g a r o u n d a D e n t a l I m p l a n t 

Combining the above formulated remodeling scheme with a linear Finite Flement code, 
an iterative computer procedure is implemented to allow quantitative predictions of 
adaptive bone remodeling processes. In each timestep a FE-Analysis has to be per
formed and the FE-representation of the model has to be adapted according to the 
current distribution of Uejf. 

Using this procedure for the simulation of internal bone remodeling, the formation of 
bone mass around a natural tooth and a tooth-shaped implant (both modeled by 2-D 
plane-stress finite elements) under normal masticatory loads is predicted, starting from 
a configuration of constant bone density. The natural tooth is supported in the jaw 
bone by an encapsulating periodontal membrane of small stiffness, while the implant is 
assumed to be directly attached to the surrounding bone. 
As shown in Fig.(2), the model of the natural tooth with a periodontal membrane gives 
rise to a concentration of bone mass all around the alveolus, whereas the tooth-shaped 
implant without a periodontal membrane causes not only a significantly different density 
distribution lacking this encapsulating cortical pocket, but also results in a funnel-
shaped resorption zone due to overstrain necrosis in the upper part of the bone tissue 
in the immediate vicinity of the implant. 
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Fig. (2) Distribution of apparent bone density around a) A natural tooth sourrounded by 
a periodontal membrane and b) An implant without a periodontal membrane, 
resulting in a funnel-shaped resorption zone. 

4. T O P O L O G Y O P T I M I Z A T I O N B Y F U N C T I O N A L A D A P 
T A T I O N 

During the last decades there have been major advances in the field of structural opti
mization, taking advantage of new developments based either on Optimality Criterion 
or Mathematical Programming Methods, particularly as far as shape optimization and 
sizing problems are concerned. A relatively new branch in this expanding research field 
is refered to as topology optimization, its aim being the developing of methods for 
finding an optimal structure for a mechanical configuration which is only defined by 
its loading environment and its boundary conditions [eg. Bends0e and Kikuchi 1988, 
Suzuki and Kikuchi 1990]. 

The above remodeling algorithm can be considered as a simple and natural (and in 
some sense nature's) approach to this class of problems, and it is closely related to the 
approach of Bends0e and Kikuchi. Starting from a possible design domain which is 
discretized by finite elements of homogeneous density (and stiffness) an internal remod
eling simulation is started (using U instead of Ub as stimulus), which generates a clear 
structural design within a few iterations (the convergence rate depends on the chosen 
growth-rate-parameters and on the problem under consideration). As mentioned in the 
introduction, there is no proof of uniqueness or optimality for these solutions. How
ever, it will be shown that for certain problems this method yields the actual optimum 
structures. It turns out that the objective function of this approach is the minimum 
overall compliance which in most cases also leads to optimized structures in respect to 
stress criteria. In [Pedersen 1991] it is shown that for elastic structures the minimization 
of the overall compliance is equivalent to the local criterion of constant strain energy 
density throughout the structure, which exactly corresponds to the assumption of some 
optimal homeostatic i/^-value in the 'natural ' approach presented here. 
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4 . 1 . T o p o l o g y - F i n d i n g E x a m p l e s 

Starting with a rectangular design domain of homogeneous density which has pinned 
boundary nodes at the left side the topologies shown in Fig.(3) are obtained, depending 
on the loading conditions. The derived topology in the case of a single vertical load 
(Fig.(3b)) shows the well known optimum solution with two 45°-bars, whereas a single 
horizontal force yields a single horizontal strut. Fig.(3d) gives the result for a single 
load under 45° which differs essentially from Fig.(3c), illustrating the solution under 
combination of two loadcases according to case (a) and case (b) using eqn.(l) 

b e d 

Fig.(3) 'Cantilever Beam': a) Single horizontal load, b) Single vertical load, c) Com
bination of a) and b), d) Single load under 45°. 

The result for the 'aircraft support beam' problem [eg. Bends0e , Rasmussen and Ro-
drigues 1991] obtained by functional adaptation is shown in Fig.(4). Again a rectangular 
design domain is used. The left-hand boundary nodes are pinned and a single vertical 
force is applied to the lower right-hand corner. 

5. F U N C T I O N A L A D A P T A T I O N O F P A R T I C L E R E I N F O R 
C E D C O M P O S I T E S 

Since bone material can be considered as a highly sophisticated natural composite (col
lagen fibers reinforced by hydroxyapatite crystals building the material for the struts 
(trabiculae) of the complex foam-like structure of spongy bone), the extension of the 
present functional adaptation algorithm to structural optimization (or rather structural 
design improvement) in connection with artificial composite materials suggests itself. 
In the following, linear elastic materials, reinforced by spherical particles (in particular 
the SiC/Al metal matrix composite system) are considered, where the particle volume 
fraction £ replaces the apparent density pa as the variable material parameter. Due to 
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Fig.(4) 'Aircraft  support  beam'  -  Problem. 

the difFeren t materia l behaviou r a s compare d t o bon e tissu e severa l change s hav e t o b e 
introduced int o th e remodelin g procedure . 

7 . 1 . M a t e r i a l D e s c r i p t i o n 

Although eqn.(7 ) give s a  goo d approximatio n fo r foam-lik e microstructures , i t doe s 
not hol d i n an y wa y fo r particl e reinforce d materials . Followin g [Benvenist e 1987] , a 
Mori-Tanaka mean-fiel d approac h i s utilize d t o obtai n analytica l formula s fo r th e linea r 
elastic materia l parameter s o f th e composit e dependin g o n th e particl e volum e fractio n 
£. Sinc e matri x (Al) , reinforcin g particle s (SiC) , an d th e resultin g composit e sho w 
isotropic materia l behaviour , th e Young' s Modulu s Ε and the Poisson's ratio ν can be 
calculated by: 

Ε 
9KG 

' 3K + G 

3K/2 - G 
3K + G 

where the effective bulk and shear moduli of the composite are given by 

(8) 

(9) 

ξ{ΚΜ - l f ( m > ) ( 3 i f ( T O ) + AG{rn)) 
3ϋΓ("0 + 4G("0 + 3(1 - ξ)(ΚΜ - K(™)) 

(10) 

G = G ( m ) + 
£ (£ (? ) _ G ( m ) ) [ 5 G ( m ) ( 3 i < : ( m ) + 4G<T O>)] 

5<3(™)(3Κ(™) + 4G(™)) + 6(1 - £ ) ( # ( m ) + 2G( m ) ) (G(*> - G < m ) ) 
(11). 
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The index (m) stands for matrix and (p) stands for particles (SiC). As can be seen 
in Fig.(5), which shows the functions Ε = Ε(ξ) and ν = for particle reinforced 
Aluminum SiC/A199, the dependency of these parameters on ξ differs essentially from 
a simple rule of mixture prediction, which gives just straight lines. 

Particle Volume Fraction Xi Particle Volume Fraction Xi 

Fig.(5) Young's modulus, Ε — Ε(ζ) and Poisson's ratio ν — ν(ξ) for particle reinforced 
aluminum calculated by Mori-Tanaka mean-field approach. 

In conjunction with fracture mechanics, the classical formulation of the Palmgreen-
Miner fatigue concept for cyclic loading under consideration of different loadcases may 
written as 

with m standing for the exponent in the classical Paris-law 

(12), 

da 
dN 

C ΔΚ71 (13). 

Equation.(1) can be interpreted as an alternative formulation of eqn.(12) setting k — 2m. 
For SiC particle reinforced Aluminum experimental investigations [eg. Davidson 1989; 
Botstein et al. 1990; Kumai et al. 1992] show a dependency between the particle 
volume fraction ξ and the parameters of the Paris-law πι(ξ) and C(£) (AKth(C)). This 
is introduced into the remodeling scheme by using polynomial approximations: 

Un = UnQ + α 1 (£ + α 2 £ 2 (14) 

k = k0 + ki£. (15). 
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7 . 2 . E x a m p l e : D e s i g n o f a C o m p o s i t e H i n g e 
To show the applicability of the remodeling algorithm for the design improvement of 
structures using particle reinforcement, a hinge problem as illustrated in Fig.(6a) is 
investigated. Two different loadcases (a single load, acting at an angle of 10° to the 
horizontal and a single vertical load, both loads being cosine distributed around the 
corresponding half of the load bearing circle) are considered. To find a proper topology 
for this problem a rectangular design domain with a circular hole is discretised by 
finite elements (2/D plane stress) and subjected to the two loadcases. Fig.(7a) shows 
the FE-mesh and the Ueff distribution at the starting configuration of a homogeneous 
particle volume fraction of ζ — 0.2. To enable the system to find a suitable topology 
it is given the capability of Removing' material by introducing a foam-like material 
microstructure following eqn.(7) once the minimum £-value of 0.0 has been reached. 
The topology derived by internal remodeling (see Fig.(8a)) is used as a basis for a 
new FE-discretization as shown in Fig.(8b). In the next step a combined surface and 
internal remodeling simulation is performed, allowing the particle volume fraction to 
vary between 0.0 and 0.6. Fig.(6b) shows the final £-distribution at the end of the 
simulation. Fig.(8a) and Fig.(8b) give the Ueff-distribution at the beginning and the 
end of the remodeling process. 

6 0 

5 . 4 0 0 0 E - 0 1 

4 . 2 0 0 0 E - 0 1 

3 . 0 0 0 0 B - 0 1 

1 . 8 0 0 0 E - 0 1 

6 . 0 0 0 0 B - 0 2 

Fig.(6) 'Hinge-Problem1, a) Principal problem illustration, (F\ — F2 = 250 Ν per unit 
thickness - cosine distributed, Un = 8.0e — A); b) Final solution of shape and 
particle volume fraction distribution obtained by remodeling simulation. 

6. C O N C L U S I O N S 

A biologically based remodeling algorithm has been presented, which is capable of giv
ing good results in simulating stress induced functional adaptation reactions of bone 
material in a quantitative way. It also can serve as an efficient tool for finding proper 
topologies for technical structures as well as for design improvements of structures, es
pecially in cases where continuous changes in the material parameters are fabricable 
(i.e. functionally gradient materials). 



F*9-(8) 'Hinge-Problem7, a) Topology (density distribution) obtained by remodeling 
simulation, b) FE-Mesh for second remodeling step (at the start of step 2) 
and final shape (outlined). 
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Fig.(9) 'Hinge-Problem', a) Ueff distribution at the start (a) and at the end (b) of the 
second remodeling step. 
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OPTIMAL DESIGN OF ANISOTROPIC STRUCTURAL ELEMENTS 
N.V.BANICHUK 
Academy oî Sciences, Moscow 
Abstract 

Rational distribution of material in plate - like 
structures are studied. Emphasis is placed on the 
fundamental eigenfrequencies maximization for unrestrained 
plates subjected to planar harmonic vibrations. The problem 
of finding the optimal orientation of orthotropic 
properties for an elastic plates is investigated with the 
help of variational formulation of the problem and 
necessary optimality conditions. The successive 
optimization method based on redesign and sensitivity 
analysis is applied. Computed optimum designs are compared 
with conventional layouts. 

In recent years, a number of new design coucepts have 
emerged. One of them is concerned with optimal positioning 
of elastic symmetry planes in an orthotropic body. This 
concept is very fruitfull for structures made of composite 
materials, for complex effectively orthotropic structures 
and especially for large space structures. Because of the 
high cost of lifting mass to orbit there is a great 
incentive in making large space structures light and 
therefore flexible. The natural frequency spectrum of such 
structures Is typically quite dense and the fundamental 
elgenfrequency is very low. On the other hand, many of 
these structures, especially antenna structures, have very 
stringent requirement on their dynamical stiffness and 
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shape accuracy. Therefore, these structures have to be 
optimally designed to achlve the required performance 
without Increasing In structural mass. In some cases this 
goal can be succesfully solved with the help of 
orientations! design, which does not require the additional 
structural mass. 

The basic idea of designing of structures with the 
best orientation of the principal axes of orthotropy was 
realized in the past decade in a series of the papers. 
Necessary coditlons for the optimal positioning of elastic 
symmetry planes In an orthotropic body were derived by 
Banichuk (1979), Seregin and Troltski (1981). The problem 
of maximization of integral stiffness has been considered 
by these authors. Some of the obtained analytical and 
numerical results were described by Banichuk (1983). 
Restricting ourselves to plane problems for 2-D locally 
orthotropic structures we shall note recent papers by 
Landrlani and Rovatl (1991) Pedersen (1989, 1990), Tomsen 
(1991). Note also the paper by Pedersen (1991) devoted to 
combined thickness and orientâtlonal design of locally 
orthotropic structures. 

In this paper the internal structure of the plate are 
seen as two dimensional locally orthotropic solids. This 
approximation can be assumed acceptable as for some complex 
built In effectively orhotropic structures as for the 
structures made of composite materials. The variational 
problem governing the amplitude displacement function 
behavior and the optimization problem of finding the best 
orientation of the principal axes of orthotropy are 
formulated. Optimality conditions are derived and analysed. 
These conditions allows for a nonunique orientation of 
orthotropy axes. As for statical cases dynamical optimality 
conditions show that the stress and strain principal axes 
are collinear. Necessary optimality conditions and design 
sensitivity analysis formulas are Implemented in successive 
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optimization algorithm and optimal designs for square, 
rectangular and hexagan plates are calculated. 
1.BASIC ASSUMPTION AND OPTIMIZATION PROBLEM. 

Let us consider the planar harmonic vibrations of 
unrestrained plate defined by the formulas. 

u = u(x,y) e l v t, υ = v(x,y) e t v t (1 .1) 
where x-y-z- Cartesian coordinate system (z axis is 
perpendicular to the plate); ω - the smallest 
eigenfrequency of free vibrations; a , ν planar 
displacement of median surface of the plate in the 
directions opf the χ and y coordinates, respectively; u = 
u(x,y), ν =• v(x,y) - amplitude displacements; I Imaginary 
unit, t - time. Fundamental eigenfrequency of planar 
vibrations can be evaluated with the help of Raylelgh 
variational principle. 

ω2 = mîn u v (ν/τ) (1.2) 
Amplitude expressions of potential energy V and kinetic 
energy ω2 y are given in the following form. 
V = Ι s (A u 2 + 2A uv + Av2 f 2Au (u + υ ) + 

<~ d * 12 x y 22 y 1<S x y χ ' 

+ 2Αυ (u -h υ ) f Afu ν- ν ) } do (1.3) 
2<S y v y x ' <S<SV y χ Λ ' 

ω2Τ = l ρω2 s (u2 -h υ2) do ( 1 . 4 ) 
D Ω 

Partial derivatives of u and υ with respect to χ and are 
denoted u , u , ν , ν , while ω (χ,υ)^ Ω denotes the 

κ * y * x * y 7 \ *σ s 

domain in x-y plane occupied by the material. 
We adopt that the material properties do not change In 

the direction of the z-axis. Assume also that the plate is 
locally orthotropic and that the values of the orthotropic 
constants A° . 4° . 4°, are known for the axes of 

i l * 12 * 22 7 <3kS 

crthotropy ξ and v. The direction of the κ-ν axes of 
orthotropy, relative to the x-y axes is given by the angle 
a(x,y), where α-is the angle between the χ and ξ 
axes.(Flg.1). 
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Fig.1 Coordinate systems. 

in the fixed x-y coordinate system, the orthotropic elastic 
moduli A , . . . , 4 are related to the assigned orthotrooic 
constants , 4 ^ , . . . , / ^ in the ξ-ν system by means of next 
equation. 
A fa> G Cos* a + G S in* a f G (1.5) 
A (a)= G Cos*a + G S in*a + C 

22 v ' 2 1 3 

4 fa;= (C -f C ) Cos2a Siifa + £ 
12 ' 1 2 12 

.4 Γα;= (O + G J Gos2a Slrfa + A° 
<S<S 1 2 of) 

A^Ca;= Cos a Sin a (G Cos2a - C„Sir?a) 

42<sfaj= Cos a Sin a (G±Sinza - CzCosza) 

C,= £ - G . G= A°- G. C= A° + 2A° 
i 11 3 ' 2 22 3 * 3 12 <5<5 

The spectrum of free planar vibrations of unrestrained 
plate has three zero eigenfrequencies, corresponding rigid 
body displacements in χ and y directions and rigid body 
rotation with respect to z-axis. There fore we use the next 
orthogonality conditions for elastic modes and rigid body 
modes to determine the non zero eigenfrequencies by means 

( 1 . 6 ) 

S U 0£l 
Ω 

C, s ν clo =-- Ο 
Ω 

s (χν -h yu) do = C 
Ω 

of Rayleigh quotient V/T minimization. The 
conditions for free edges of plate are a 

boundary 
"natural" 
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conditions for the Raylelgh quotient, so there is no need 
to satisfy these conditions a priory. The problem of 
optimization consists in determining the best orientation 
of the axes of orthotropy from the condition of maximum 
behavior of the fundamental eigenfrequency. 

2.OPTIMALITY CRITERIA. 
First variation of the optimized functional with 

respect to design variable α has the form. 
ψ 6 Y J / g 6a dd C2.1 ) 

f-~- k Afa)u + A(a)u υ + i> A(a)v + AAJa)u (u + υ ) 
* £ 11 x 12 v x y il 2 2 ^ y 1<5 v ' χ y x 
+ Afa)v (u + υ ) + l A Ja)fu + υ*) (2.2) 

2<5 y y y ' £ <5o y κ 

For the sake of ease in obtaining the conditions for 
stationary behavior of ω 2as we vary a, and to cut short our 
exposition, we introduce at each point (x,y) a system of 
principal X-Y axes of deformation and denote the components 
of the strain tensor in this coordinate system by *χ9*γ and 

(with £χγ= 0). Let w and x denote the angle between the 
x and X axes, respectively, so that ψ = α - * (see Fig.1). 
The quantities * y, ̂ x y and *γ, are related to 
each other by the wellknown formulas. 

ejCosFx i *ySirfx + y x v Sin x Cos x (2.3) 
£ Sirf'x + £ Gos*x + γ Sin x Cos x 

1 x y xy 

* Y V = * - « )Sin 2x + l γ Cos ?.x = Ο 

Λ Γ c y * d xy 

Equation (2.2) for / may now be rewritten as 
Ρ Α1±(ν)*£χ + \Λ(ν) *χ *γ + 2 A*J^} £Y= (Μοι?ψ + 

+ 0Ρθ3ζψ)(εχ - £γ) + R (2.4) 
l (c -/ c )(s - * ; 
C. " 1 2 x y ' 
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wrere *χ and £γ are given by Eq (2.3). Thus, the functional 
ω 2 is expressed as a function of the angles w and *, by 
means of Eqs.(1.5),(2.3),(2.4). These angles satisfy the 
constraint Ψ + x = a. To derive necessary conditions for an 
extremum, we require the first variation of the functional 
ω 2 , which depends on the variations sa, su and sv, to be 
zero. As we vary ω 2 by varglng u, υ, and α the quantities 
a, u, and υ are regarded as independent of each other. 
Therefore, the angle x may also be regarded as independent 
of a, where χ enters into Eqs. (2.3) and (2.4). The same 
assumption can be made concerning χ in the third relation 
of Eq .(2.3); i.e.., in this formula χ depends only on the 
components of the strain tensor tan 2x = r x y

 £

y ) -
Therefore, in finding the first variation we can substitute 
df/da = àf/άψ. As we vary α the conditions of stationary 
behavior of ω 2 becomes 
όαω*= Ψ f îa ό α * = Ψ 1 Ϊί 6 ψ * = 0 <2·5> 

Ω Ω 
f j s (εχ - £Y)Stn2 Ψ(2Ν0Ο32Ψ -h Q)= Ο (2.6) 

This condition contains four different ways of orienting 
the axes. 
1) ν - Ο (2.7) 
2) Ψ = J 
3) Cos%> = - §y ,0 < - § f < 1 
4) ^ = £ 

' x y 

If we adopt the third way of orienting the axes of 
orthotropy, we find that this is possible only if the 
inequality of (2.7) is satisfied. Let us explain this by 
representing / by quadratic formula with tharee terms 
/= Nt2+ Qt + R where the variable t is t = Cos\. Since t 
varies on the interval 0 < t < 1, the extremum of /, as a 
function of t may occur either at the boundary points t=0 



43 

or t=1, which corresponds to 1) and 2), or it can occur at 
an interior point. The inequality of Eq.(2.7) simply states 
that t must be chosen in the Interval [0,11. 

Let us discuss the mechanical interpretation of the 
necessary optimality conditions (2.7). To this purpose 
write the stress strain relations in principal strain axes 
x - r (£χγ= o). 

σ χ τ \ « ( ψ ) * χ f Α

2*(ψ)£γ 
Consider the ways 1) and 2) of orienting the orthotropy 
axes. Using (1.5) and (2.8) with Ψ = Ο, π/2 we obtain 
Α^(Ψ) = Α2#(Ψ) = Ο, &χγ= 0. Consequently the principle 
strain axes coincide with the principle stress axes for 
these ways. 

If the third way of orienting the axes of anisotropy 
is considered with 

Q £ γ ~ @i £ v 
Cos ψ = - ™ - — 

we arrive at the following result using (1.5) and (2.8). 

Hence the coincidence of the principle strain axes and the 
principle stress axes is realized. 

Consider the way 4) from (2.7). If £χ = ̂ «then strain 
tensor is spherical. Consequently arbitrary axes and 
particularly the principal stress axes can be taken as 
principal strain axes. 

Thus the strain tensor and stress tensor are coaxial 
for optimal plate. 
3.NUMERICAL RESULTS. 

The optimization problem (1.7) was solved numerically 
for square, rectangular and hexagonal plates with the help 
of successive optimization method described by Banichuk 
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( 1 9 8 3 ) . Th e  computationa l  algorith m  i s  base d  o n  desig n 
sensitivit y  analysi s  formula s  an d  finit e  elemen t  technique . 
I f  th e  optimize d  eigenfrequenc y  becom e  multiple ,  the n  i t 
take s  int o  accoun t  th e  additiona l  condition s  o f  coincidenc e 
o f  th e  eigenfrequencles .  Fo r  al l  case s  w e  assume d  A° ±±=1.02, 
j?= 0.34,  jÇ 9* 0 . 0 8 , i £ = = 0.16. 

2 2 1 2 '  <S o 

Optima l  distributio n  o f  orthotrop y  axe s  orientationa l 
I s  show n  i n  Fig. 2 fo r  squar e  plate .  Thi s  distributio n 

\ _x __x s  n  y  /  ^  /  \^ 

/ - v -« s N ^  Ο V V ' 
s' Ο χ' χ' Ο >, V ν ν \ . 
\ \ \ \ ' , Λ , 
' \ *> Ί '/ V χ' χ ^ " ^ 
' \ ' / "ι χ / ν" Γ ^ \" /Ν/Ν 

Fig.2 Optimal design of square plate for planar vibrations, 
corresponds to the smallest eigenfrequency J = ω^= 2.001. 
The multiplicity of the eigenfrequency ω± is equal to 4 . To 
compare the optimal distribution of orthotropy axes with 
conventional layouts we computed the frequency spectrams 
for the plates of unit area shown In Figs.3-5, and 

' / ' / / χ \ \ \ 

< < « > > > > 
\ \ \ \ w / / / / 

\ \ \ ^ / / /, 
\ \ \ Sy / / / 

Fig.3 Conventional design for square plate. 
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Fig.4 Conventional design for square plate. 

\ \ V / / / 1 ' / /λ 

l / / / / \ \ \ \ n i 

' / / / ^ \ \ \ S 

χ 

Fig. 5 Conventional design for square plate. 
displayed them In Table 1. First column of the Table 1 
corresponds to the optimal plate shown In Fig.2. 

Table 1. Eigenfrequencies of planar vibrations for 
square plates with optimal and conventional designs. 

Flg.2 Flg3 Fig. 4 Fig. 5 
ω, 2.001 1 .796 1 .522 1 .639 

(4) (1 ) (1 ) (2) 
2.516 1.312 1 .575 1 .787 
(1 ) (1 ) (1 ) (1 ) 

ω„ 2.692 1 .813 1 .782 1 .989 
(1 ) (2) (1 ) I t \ 

V ' ' 

ω 3.075 
-ft 

2.078 2.097 2.021 
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( 2 ) ( 1 ) ( 1 ) ( 1 ) 
ω 

5 
3 . 9 5 7 2 . 2 0 4 2 . 3 5 9 2 . 3 5 0 

( 1 ) (ι ) ( 1 ) ( 1 ) 
ω 

(S 
3 . 9 8 2 2 . 6 7 9 2 . 6 1 1 2 . 8 3 8 

( 2 ) ( 2 ) (1 ) ( 2 ) 

Second, third and fourth columns correspond tot he plates 
presented respectively in Pigs.3-5. The numbers In round 
brackets indicate the multiplicity of the eigenfrequencies. 
The result of the solving of optimization problem for the 
rectangular plate (- 0.25 < χ < 0.25, -1 < y < 1 ) of unit 
area is illustrated in Pig.6. The optimized functional = 
<*± = 1.426 is simple for the optimal distribution of 
orthotropy axes orientation. The first eigenfrequency and 
the highest eigenfrequencies of the optimal plate planar 

Pig.6 Optimal design of rectangnlar plate for planar 
vibrations. 

Pig.7 Conventional design of rectangular plate. 
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Fig.8 Conventional design of rectangular plate. 

vibrations are displayed in the first column of the Table 2 
For comparison the frequency spectrums were computed also 
for the plates with nonoptimal orthotropy axes orientations 
show in Fig.7,8. The computed values are represented 
respectively in the second and third columns of the Table2. 

Table.2 Eigenfrequencies of planar vibrations for 
rectangular plates with optimal and conventional designs. 

Fig.6 Fig.7 Fig.8 
ω 

ι 
1 .426 0.857 1.259 ω 

ι (1) (1 ) (1) 
ω 

2 
1.772 1.264 1 .690 ω 

2 

(1) α ) (1) 
ω 

9 
1 .896 1 .515 2.159 
(1) (1) (1) 

CO 
Λ 

2.540 2.239 2.406 
(1 ) (1 ) (1 ) 

2.581 2.243 2.481 
(1) (1) (1) 

ω 
<s 

2.656 2.528 2.520 
(1) (1) (1) 
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ω 7 2 . 8 0 9 3 . 1 3 9 2 . 5 9 9 

( 1 ) ( 1 ) ( 1 ) 
ω β 2 . 8 2 7 3 . 1 9 1 2 . 7 2 8 

( 1 ) ( 1 ) ( 1 ) 

The optimal solution of the first nonzoro 
eigenfrequency maximization problem for the hexagan plate 
with unit area is illustrated in Pig.9. 

Pig. 9 optimal design of hexagan plate for planar 
vibrations. 

Pig. 1 0 Conventional design of hexagan plate. 
The multiplicity of the maximized functional J#= 1.988 is 
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equals to 4. The frequency spectrum of the plate with 
optimal distribution of orthotropy axes orientation is 
displayed in the first column of the Table.3. Next columns 
correspond to the plates with nonoptlmal layouts shown 
respectively in Pigs.10,11. 

Pig.11 Conventional design of hexagan plate. 
Note that In practical applications, questions 

concerning optimization of anisotropic properties arise not 
only In this pure form. We usually consider problems of 
finding the best shape of structural parts, usig materials 
with given anisotropic properties, so we need optimize 
simultaneously the shape and orientation of the axes of 
anisotropy for the elastic structures (Banichuk (1983)). 

Note also that for layed composite plates and 
structures the combined optimization of thickness and 
anisotropic properties distributions is very perspectlvi as 
was shawn by Pedersen (1991). 

Table 3. Eigenfrequencies of planar vibrations for 
hexagan plates with optimal and conventional designs. 

χ 

Pig.9 Pig. 10 
1.788 
(2) 

Pig. 11 
1.734 
(2) 

ω ι 1 .988 
(4) 
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2 2.632 
(1) 

2.417 
(2) 

2.541 
(1) 

2.743 
(1) 

3.021 
(1) 

3.436 
(2) 

3.787 
(1) 

1.859 
(2) 

2.342 
(1) 

2.528 
(1) 

2.629 
(1) 

ω a 
2.929 

ω 

ω 

ω 

ω 

? 

<5 

•4 

(2) 
2.982 
(1) 

3.049 
(1) 

3.696 
(1) 

3.973 
(2) 

3.181 
(1) 

3.330 
(1) 
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Optimal design based on power-law non-linear elasticity1 

Paul i P e d e r s e n a and J o h n E. T a y l o r b 
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Abstract 
M a n y op t ima l design prob lems based on anisot ropic e las t ic i ty have been solved in 

the recent years . However , like mos t of t h e resul ts based on isot ropic e las t ic i ty , 
l inear i ty is a ssumed in these solut ions. In t h e present paper we also t r ea t t h e 
aniso t ropic models and fu r the rmore ex tend t o t h e non - l i nea r i t i e s which can be 
model led by t h e well—known power law. 

P r i m a r i l y we shall see, t h a t these models r e t u r n p ropor t iona l i ty be tween s t ra in 
energy dens i ty and stress energy dens i ty . Th i s implies localized sens i t iv i ty analysis for 
t he t o t a l s t r a in energy and t hus for a n u m b e r of p rac t ica l op t imiza t ion object ives. 

W i t h localized sens i t iv i ty analysis we can ex tend t h e va l id i ty of t h e op t imiza t ion 
cr i ter ion, known as uniform energy dens i ty . T h e op t ima l design will for these problems 
be a design wi th t h e s a m e cons t i tu t ive m a t r i x a t all po in t s , a n d t h u s easy t o analyze. 
T h e proven op t ima l i t y cr i ter ion for t h e p o w e r - l a w n o n - l i n e a r e las t ic i ty "br idges" t he 
now classical known solut ions for l inear e las t ic i ty and ideal p las t ic i ty . T h e result 
s imply is , t h a t t h e op t ima l design for this class of p rob lems is independen t of t h e power 
of n o n - l i n e a r e las t ic i ty . 

1. I N T R O D U C T I O N 

In con t ras t to the s i tua t ion wi th linear sys tems , ou t of t h e var ious areas of in teres t 
in s t r uc tu r a l op t imiza t ion re la t ively l i t t le is avai lable in t h e form of genera l resul ts for 
cons t i tu t ive ly nonl inear sys tems . A mos t no tab le except ion to th is is t h e extens ive set 
of classical work done in t h e a rea of op t ima l design re la t ive to p las t ic collapse, da ted 
mos t ly from t h e decade s t a r t i ng in t h e m i d - 1 9 5 0 s ( the names P rage r , Shield, and 
Drucker figure p rominen t ly in th is subject; Mar t in (1975) provides an extens ive l is t ing 
for t h e e r a ) . Deve lopments from th is per iod were based on t h e specific model of a 
perfectly plas t ic solid ma te r i a l working in an isot ropic and homogeneous sys tem. 
(Modell ing for s t ruc tu ra l op t imiza t ion in fact reflects design for m a x i m u m collapse 
load) . A t t h e s ame t ime , clearly on prac t ica l g rounds it would be useful t o have a 
be t t e r unde r s t and ing of analysis and design for more general an i so t rop ic and nonl inear 

Dedica ted to Professor Fr i th iof Niordson a t his Sevent ie th ann iversa ry . 
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mate r ia l s . This is justified mos t s imply on t h e basis t h a t t h e behaviour of most 
ord inary engineering mate r ia l s is d is t inct ly nonl inear . Clear ly knowledge of t h e means 
to predict op t ima l s t ruc tu ra l design in t h e face of ma te r i a l degrada t ion nonl inear i ty 
would have i m m e d i a t e technical appl icat ion as well. 

As a s tep in t h e di rect ion towards development of effective means for t h e t r e a t m e n t 
of cons t i tu t ive ly nonl inear problems, we present resul ts from a s t u d y of analysis and 
design re la ted to a more rud imen ta ry form of nonl inear ma te r i a l , namely mater ia l s 
wi th a 'power law' stress s t ra in relat ion. Bell (1973) provides m u c h informat ion on t h e 
use since an t iqu i ty of th is still common mate r i a l model (identified the re as 
'Exponent ia l Law ' ) ; his earliest c i ta t ion is to work of J a m e s Bernoull i done in 1694! 
Relat ively more con tempora ry appl icat ions of power law type models are given in 
R a m b e r g & Osgood (1943), T v e r g a a r d (1983), and J u and Kyr iak ides (1991), for 
example . T h e re la t ion be tween this sort of modell ing and rea l i ty is empir ical , i.e., 
someth ing realized essential ly th rough cu rve - f i t t i ng , and it is a convenient form for 
such appl ica t ion . T h e work repor ted here is centered on t h e power law model for no 
be t t e r reason, i.e., it is used because t h e s implici ty in i ts form provides convenient ly for 
the kind of deve lopment unde r t aken in our s tudy . 

A n u m b e r of independen t , general resul ts are ob ta ined in connect ion wi th t he 
modell ing for op t ima l design of s t ruc tures m a d e of power law mate r i a l s . In Section 2 
t he expressions for energy densit ies associated wi th th is ma te r i a l a r e discussed, and a 
useful re la t ion be tween s t ra in energy densi ty and complemen ta ry s t ra in energy densi ty 
is observed ( this re lates t o earlier work on l inear mater ia l s done by t h e first a u t h o r (see 
e.g., Pedersen (1989), (1990), (1991)) . T h e development of Section 3 provides for t h e 
eva lua t ion of t he design der iva t ive of to ta l s t ra in energy in t e rms of local der ivat ives 
(sensi t ivi t ies) . These resul ts are in te rpre ted in t h e next sect ion to express op t ima l i ty 
condit ions for cer ta in s ing le -purpose s t ruc tu ra l op t imiza t ion problems . A recent ly 
developed e x t r e m u m prob lem s t a t e m e n t for t h e equ i l ib r ium analysis and design of 
cons t i tu t ive ly nonl inear sys tems is ex tended to cover power law mate r ia l ; th is is 
described in Section 5 and t h e resul ts provide an independen t confirmat ion of t he 
op t ima l i ty condi t ion given earlier. Final ly , resul ts for several compu ta t i ona l examples 
are given in Section 6. 

2. C O N S T I T U T I V E M A T R I C E S M O D E L L E D B Y P O W E R L A W N O N -
L I N E A R I T Y 

T h e class of non—linear elast ic problems t h a t we shall t r ea t is described by a power 
law stress—strain re la t ion. In t w o a n d t h r e e dimensional p rob lems we also need a scalar 
measure of t h e s t ra in (or stress) s t a t e , t e rmed t h e effective s t ra in . T o be specific let us 
first show t h e formulat ion in t e rms of s t ra ins . 

W i t h [c] being a symmet r i c , posi t ive definite and dimensionless m a t r i x , t he 
effective s t ra in 6 E corresponding to t h e s t ra in s t a t e {e} ( s t ra in vector) is by 
definition 

Φ = Μ Τ Μ Μ (2.1) 
T h e cons t i tu t ive m a t r i x t h a t provides for t he eva lua t ion of t h e stress vector {σ} is 
t hen 
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{*} (2.2) 

where eo , Eo a re s t ra in and modulus for a reference s tate and to simplify t h e formulas 

we have defined Ε : = E 0 / e g _ 1 . T h e cons t i tu t ive secant matrix t h a t resul ts thus is 

C ' E [ c ] · 

T h e cons t i tu t ive tangent matrix is ob ta ined by differentials 

{da} = (p-l)£r2E[c]{e}<ke + e^E[c]{de} (2.3) 

and direct ly from (2.1) 

f e d i e = { e } T [ c ] { d e } (2.4) 

wi th [c] being symmet r i c . In t roduc ing (2.4) in (2.3) we have t h e differential re la t ion 

{άσ} = e ^ E M f e { £ } { f } T [ c ] + [ I ] l{de} (2.5) 
L c e J 

Now our p r i m a r y interes t is to de t e rmine t h e strain energy density u defined by its 
differential 

du : = MVe} 
which by (2.2) and (2.4) is 

d u = e r E { e } T [ c ] { d e } = e P E d 6 e 

This is easily in teg ra ted in t e r m s of effective s t ra in t o find 

u = -A- 6 P + 1 

p+1 e 

T h e stress energy density u is also defined by its differential 

d u C : = {e}T{da} 

and t h u s from (2.6) and (2.9) t h e to ta l energy densi ty is expressed as 

u + uC=MT{e} 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Th i s is wr i t t en for our specific cons t i tu t ive m a t r i x (2.2) wi th (2.1) in t h e form 

u + u C = e P - 1 E { f } T [ c ] { f } = e P + 1 E (2.11) 

which together wi th (2.8) leads to 
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C = eE_ P + 1 
U p + 1 f « 

(2.12) 

For t h e purpose of localized sensi t iv i ty analysis and for t h e i n t e rp re t a t i on la ter of an 
op t ima l i ty cr i ter ion, the important consequence of t h e cons t i tu t ive m a t r i x is as read 
from (2.8) and (2.12), name ly 

C 
u = pu (2.13) 

i.e. t h e ratio be tween stress and s t ra in energy densi t ies is constant ( independent of the 
energy level). 

T o comple te t h e descr ipt ion for t h e present cons t i tu t ive m a t r i x , let us show the 
formulat ion in t e rms of effective s tress . T h e power law is 

wi th t he effective stress defined by 

(2.14) 

(2.15) 

and t hus t h e differential re la t ion follows 

a e d a e = { a } T [ c ] - ' { d a } (2.16) 

T h e differential of s tress energy densi ty by definition (2.9) is ob ta ined using (2.14) 
and (2.16) 

and by in tegra t ion t h e expression for complemen ta ry s t ra in energy dens i ty is 

Given t h a t 

u - Ξ + Γ σ · W 

n = 1 /p 

(2.17) 

(2.18) 

(2.19) 

t he stress energy densi t ies (2.12) and (2.18) agree, wi th t h e re la t ion be tween effective 
stress and effective s t ra in 

(2.20) 

T h e reference stress in t h e formulat ion (2.14) is t he modulus Ε . Assume t h a t a t a 
given stress level σ β = σ 0 t h e cons t i tu t ive secant m a t r i x is given by 
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{ e ] ^ o = k [ c ] ' 1 { a ] ( 2 · 2 1 ) 

T h e n according t o (2.14) 

< W = EÔ = > E = E ° a / n = E o < P ( 2 · 2 2 ) 

which toge ther wi th t h e definition in (2.2) of Ε = E 0eJ" p leads t o t h e re la t ions 

σ 0 = E 0 6 0 (2.23) 

3. L O C A L I Z E D S E N S I T I V I T Y A N A L Y S I S 

O u r goal is t o de t e rmine d U / d h , where U is t h e total strain energy and h is 
some design p a r a m e t e r . Even when t h e design p a r a m e t e r h e is a local design 
parameter, re la ted t o design domain e , s t ra in energy ou ts ide th is d o m a i n is changing 
and t h u s one would expect an accumula t ive de t e rmina t i on of d U / d h e t o be necessary. 
However , for t h e class of cons t i tu t ive models described in sect ion t w o we can p rove 
t h a t a localized calcula t ion is possible. 

Using t h e result (2.13) of cons tan t r a t io ρ be tween s t ra in and s t ress energy 
densi t ies t h e to t a l s t r a in energy U and complemen ta ry s t ra in energy U c satisfy 

U + UC = ( l + p ) U (3.1) 

Also, for a dead load sys tem where t h e ex terna l po ten t i a l is —W we have 

W = ( l + p ) U (3.2) 

N o t e t h a t t h e a r g u m e n t is m a d e wi thou t reference t o a specific mode l and is t hus 
valid for o n e - , t w o - and t h r e e - d i m e n s i o n a l models , for ana ly t ica l ca lcula t ion. For 
numer ica l model l ing it is valid independent of t he numer ica l m e t h o d chosen, say finite 
difference, finite e lement , or global (Galerkin) approaches . 

Now, as (3.2) is val id also for t h e changed design it follows t h a t 

which can be wr i t t en wi th the "d i rec t" and " indi rec t" t e r m s sepa ra t ed as 

a\V , aw de <9U , <9Ude 
#1Γ + 3 Τ 3 Κ - ( 1 + Ρ ) [ M + ^ ? 3 K j ( 3 · 4 ) 

T h e s t ra in symbol t in (3.4) represents t h e strain field in total. T h e n using from 
the v i r tua l work pr inciple 

τ τ - J7 (3·5) 
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and assuming design independent loads dW/dh = 0 , we can ob ta in from (3.4) 

dV de = - ( 1 + p ) 3U 
~5Ί d ï ï ρ c?F (3.6) 

Using this resul t to e l imina te t h e " indi rec t" effect, t h e der iva t ive d U / d h is 
expressed as 

dU 1 r<9u] 
3 F - ' Ρ f ixed 

s t ra ins 

(3.7) 

which for l inear e las t ic i ty (i .e. , ρ = 1) reduces t o t h e well—known result 
d U / d h = - ( d U / a h ) f i x e d , s e e [ 6 ] . 

s t r a i n s 
T h e result (3.7) is t o be appl ied to the case of a local design var iab le h e . T h e to t a l 

s t ra in energy is wr i t t en as t h e s u m of t he domain s t ra in energies Ui , i.e. 

U = E U i 
i 

(3.8) 

and so t he der iva t ive wi th respect to local change is s t a t e d 

+ Σ dU _ d U e _ l ν d U i 
cfiïl 3 ï ï 7 air: (3.9) 

Also, (3.7 ) provide s 

dU 
3 Έ Τ fixed 

s t r a i n s 

(3.10) 

It is important to note t h a t t h e last pa r t of (3.9) is not zero so t h e local physical 
change in s t ra in energy is not easily de te rmined 

d U e , _ I fSUe 
d h e ' ρ [IWe fixed 

s t r a i n s 

(3.11) 

even though t h e change in t o t a l s t ra in energy is avai lable via (3.10). 
T h e i m p o r t a n t result (3.10) is not in tu i t ive unde r s t andab le , and therefore some 

e labora t ing on its use m a y be justified. Often the s t ra in energy will be expressed in 
t e rms of t h e s t ra in energy densi ty u e and its corresponding vo lume V e , i.e. 

U e = u e V e 
(3.12) 

It is prac t ica l to t r ea t t w o groups of design p a r a m e t e r s , i.e. t he ones wi thou t 
influence on V e , say cons t i tu t ive pa rame te r s , and t h e ones w i thou t explici t influence 
on u e , say thickness or dens i ty pa ramete r s . Tak ing 0e as r ep resen ta t ive of t h e first 
g roup , from (3.10) wi th (3.12) t h e der ivat ives wi th respect to local change is given by 
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dU 
Ρ 

due 
M. f ixed 

s t r a i n s 

(3.13) 

For t h e second, wi th t e as a represen ta t ive design p a r a m e t e r t h e der iva t ive is 
expressed as 

dte ρ [dte 

(3.14) 

wi th t he last t e r m often being equal to V e / t e (eventual ly wi th an in teger cons t an t ) . 

4. S I M P L E O P T I M A L I T Y C O N D I T I O N S 

T w o classes of op t ima l design prob lems will result in s imple op t ima l i t y cr i ter ia . T h e 
first class is t h e uncons t ra ined problems and t h e second class only involve a single 
cons t ra in t . Combin ing th is wi th our local sensi t ivi ty analysis we o b t a i n resul ts t h a t can 
serve direct ly as basis for an op t imiza t ion procedure . 

T h e uncons t r a ined problems can be exemplified by t h e ma te r i a l o r i en t a t ion as design 
var iable , say in domain e t h e p a r a m e t e r 9e . T h e necessary condi t ion for a s t a t iona ry 
(opt imal ) t o t a l s t ra in energy is t hen 

d U / d # e = 0 for all t h e domains e (4.1) 

Apply ing t h e localized resul t (3.13) this is t r ans formed to t h e m u c h s impler local 
cr i ter ion 

due/dee = 0 for all t h e domains e (4.2) 

and a i t e ra t ive procedure can now be set up t o find solut ions t h a t satisfy th is condi t ion. 
Detai ls and discussion abou t local /g lobal m i n i m u m / m a x i m u m a re given in [ 7 ] . 

T h e single cons t ra in t p rob lems , which is the ma in in teres t for th is paper , are 
exemplified by thickness d i s t r ibu t ion as design var iable , and ma te r i a l re la t ive densi ty 
can be t r e a t e d similar ly. T h e specific p rob lem s t a t e m e n t is to min imize t h e t o t a l s t ra in 

energy for given s t ruc tu ra l vo lume V : 

Minimize U = U ( t e ) for V = Σ V e ( t e ) = V (4.3) 

T h e well—known op t ima l i t y cr i ter ion wi th a single cons t ra in t is a cons t an t r a t i o of 
t h e g rad ien t s for all t h e design pa rame te r s t e , i.e. wi th cons tan t A 

) | U ^ = A f o r a l l e (4.4) 

Using our localized resul t (3.14) th is can be s t a t e d 

- I ue(dVe/dte) 
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and therefor e t h e resul t (we l l -know n fro m l inea r e las t ic i t y an d fro m idea l p las t ic i ty ) o f 

constant energ y densit y equa l t o t h e m e a n energ y dens i t y û 

u e =  û  fo r al l e  (4.6 ) 

For l inea r e last ici t y w e refe r th i s resul t bac k t o Was iu tynsk i (1960 ) an d fo r idea l 
p las t ic i ty t o P r age r an d Shiel d (1967 ) (se e t h e discussio n i n M a r t i n (1975) ) . 

W i t h unifor m energ y densi t y (4.6) , w e ge t unifor m effectiv e s t ra i n a s i t follow s fro m 
(2.8), an d t he n b y (2.2 ) unifor m cons t i tu t iv e secan t m a t r i x . T h u s th e optima l thicknes s 
distribution i s independen t o f th e powe r ρ of the constitutive matrix. T o s t a t e it in 
o ther t e rms : the op t ima l s t r uc tu r e is equally loaded (in t e r m s of s t ra in energy densi ty) 
at all poin ts . T h e proven op t ima l i ty cri terion (4.6) "br idges" t h e classical solut ions for 
l inear e las t ic i ty and ideal p las t ic i ty . 

Solut ions which satisfy (4.6) m a y correspond to m a x i m u m or m i n i m u m or jus t to 
s t a t iona r i ty . F u r t h e r m o r e , t h e e x t r e m u m m a y be local or global . Last ly , t h e existence 
of a design satisfying (4.6) is not proven, and a procedure for ob ta in ing such a possible 
solut ion still has to be described. T h e procedure used normal ly is iteratively to redesign 
independent ly bu t s imul taneous ly 

( t e ) n e x t = t* + A t e (4.7) 

T h e unknown op t ima l mean energy densi ty u is a p p r o x i m a t e d by t h e present mean 

energy densi ty û  .  F u r t h e r m o r e w e assum e t h e domai n t o t a l energ y U e t o b e cons tan t 
t h rough t h e redesig n an d the n de te rmin e A t e f ro m 

V e ( l+A?e / t e ) =  Û  ° Γ Δ * β = t e ( U e ~ Ù ) / Ù 0 Γ ^ n e x t = ( 4 ' 8 ) 

A re laxat ion power, say 0.8 , is normal ly in t roduced in t he procedure ; t h a t is 
i m p o r t a n t and works effectively especially in t he first i t e ra t ions . 

5. O P T I M A L I T Y C O N D I T I O N S V I A A N A L T E R N A T I V E A P P R O A C H 

As indica ted in the in t roduc t ion , we seek th rough t h e deve lopments described in this 
section to s u b s t a n t i a t e via an independent approach t h e form of t h e op t ima l i ty 
condit ions associated wi th t h e ' m i n i m u m compliance design' of s t ruc tu res m a d e u p of 
power law mate r i a l . T o faci l i tate t h e descript ion of t he design prob lem, t h e s t ruc tu ra l 
mechanics analysis is first cast in an unconvent ional way as an e x t r e m u m prob lem 
expressed in t e r m s of mixed stress and deformation var iables . This s t a t e m e n t of t he 
analysis pa r t of t h e problem comprises an extension of earlier works ( T a y l o r (1992a), 
or for t h e c o n t i n u u m Tay lo r (1992b)) covering analysis of s t ruc tu res wnere a softening 
local or ma te r i a l cons t i tu t ive charac te r is represented to be a r b i t r a r y polygonal . Also, 
t he analysis in t h e form given here is sl ightly more general t h a n wha t is required for 
the s imple power law mate r i a l in t h a t it accommoda tes degrada t ion in to an uns tab le 
s t a t e . T h e deve lopment is presented as a formalism; however , an in t e rp re t a t ion within 
t h e context of resul ts in t he m a t h e m a t i c s of nonl inear p r o g r a m m i n g problems provides 
means to apprec ia te t h a t t he modell ing is au then t i c according to familiar r equ i rements 
for equi l ibr ium analysis . This confirmation is covered pa r t ly in wha t follows. 
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For t h e sake of s implic i ty in t h e p resen ta t ion , t h e deve lopment is descr ibed here as 
it applies t o t h e analysis of a rb i t r a ry t russed s t ruc tu res ( the coun te rpa r t model l ing for 
analysis of con t inua is direct ly avai lable in s imilar form). To t a l s t ress r\ of t h e i th 
t russ m e m b e r is represented in t e r m s of cons t i tuen t s e\ and σ\ in a way t h a t can be 
described in t h e form: 

r i = - E i e i + <7i (i = 1,2,...M) (5.1) 

where 

r C | € i | p fo r σ\ < σ\ ; ρ < 1 

[σ{ o t h e r w i s e 

and cons tan t s Ej , ρ , c , and σ\ represent ma te r i a l p a r a m e t e r s . Given t h a t these 
p a r a m e t e r s a re identified m e m b e r by m e m b e r , t h e model covers a rb i t ra r i ly 
inhomogeneous s t ruc tu ra l sys tems. (In order t h a t t h e cons t ruc t ion (5.1) is admissible 
on physical g rounds , cer ta in res t r ic t ions apply , e.g., t h a t for e\ > 0 and σ\ > 0 , 
τ\ > 0) . T h e possibil i ty of cons t i tu t ive ins tab i l i ty in th is model is identified wi th t he 
negat ive t e r m in (5.1) . Also, it is by v i r tue of t h e presence of th i s t e r m t h a t a 'mixed 
form' r ep resen ta t ion of t h e mechanics resul ts . T h e qua l i t a t i ve cha rac t e r of t h e 
cons t i tuen t s tress σ\ is as shown in F igure 5.1a, and the typica l form for t o t a l s tress 
Π of (5.1) is given in F igure 5.1b. Reference is m a d e la ter to t h e qua l i ty t h a t in t h e 

case E j = 0 and σ\ > oo for all i , (5.1) reduces t o t h e form of a s imple power law. 

T h e issue of a lgebraic sign in t he expression for cons t i tuen t σ\ , left open in t h e 
s t a t e m e n t of (5.1) , is resolved by use of t h e not ion of t h e posi t ive p a r t , say Si , of t h e 
stress s igma defined as: 

Si : = m a x { a i , 0} (5.2a) 

W i t h th is t e r m defined, t he negat ive p a r t , say t j , of s igma is given by: 

t i : = - ( * i - S i ) (5.2b) 
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and no te t h a t Si > 0 ; t i > 0 ; Sjti = 0 and σ\ = Si — t i . In o the r words , t he original 
stress cons t i tuen ts σ\ is now represented by t h e two semi—definite componen t s Si 
and t i , and this represen ta t ion is par t icu la r ly convenient for t h e expression of t h e 
e x t r e m u m prob lem to be given below. T h e expression of complemen ta ry s t ra in energy 
densi ty associated wi th σ\ is needed for t h a t purpose as well; it is from (2.18) 

uÇ = C Ji+i/p) + t.0+i/p) where C = - 2 -
^ 1 + P 

1/P 

T h e m e t h o d given in t h e references cited at t h e beginning of th is section for t he 
m a t h e m a t i c a l model l ing of equi l ibr ium problems for cons t i tu t ive ly nonl inear sys tems is 
to be applied in t h e present case, i.e., for sys tems wi th t h e local cons t i tu t ive proper t ies 
associated wi th (5.1) . Th i s equi l ibr ium analysis is covered by t h e nonl inear 
p rog ramming problem: 

subject to : 

m a x a 
a, Si , t i , 6i 

[ P ] 

M 
• Σ Β ι Α / ι ( -
i = l 

Ejf; + Si — t j ) + ÎKU = 0 ( 7 = 1 , 2 , - . . N ) 

Ai/j(si - < 0 

A A(ti - *i) < 0 

Ai4(-Si)<0 

A i A ( - t i ) <o 

(i = 1,2,...M) 

Σ A/A-Ejij/2 + C S i ( l + l / p ) + t i ( 1 + 1 / p ) - U < 0 

- Σ A ^ J - E ^ / 2 + c [ S i

( 1 + 1 / p ) + t i ( 1 + 1 / p > ] } < 0 

Load s t a t e is measured via t he single load factor a, i.e., t h e equi l ibr ium equa t ion 

reflects p ropor t iona l loading. Quan t i t i e s , Aj , E{ , q^ , σϊ , C , ρ , and 0 in [ P ] 

are da t a . Note t h a t t h e first cons t ra in t equat ions correct ly reflect equi l ibr ium 
requ i rements so long as σ{ = si - t ï a n d s o o n pe r (5.2) . I n fac t i t i s a  nove l aspec t o f 

t he p resen t t y p e o f formulat io n t h a t t h e character is t ic s b y whic h s a , t i a r e define d i n 

(5.2) a r e implici t i n t h e e x t r e m u m proble m s t a t emen t [ P ] ;  t h i s i s verifie d below . 
In t h e i n t e rp re t a t i o n o f t h e Kurash—Κuhn—Tucker condi t ions t h a t follows, vectors 
, μ{ , v{ , 7?j and ( j represent Lagrange mul t ip l iers associated wi th t h e first five 

cons t ra in t s respect ively of [ P ] ; t he mul t ip l ier on the next t o last cons t ra in t is t aken 
to have va lue un i ty , w i thou t loss of general i ty , and t h e one for t h e last cons t ra in t 
generally has va lue zero. T h e condit ions for s t a t ionar i ty wi th respect to ei , si , and t{ 
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are in order: 

(5.3) 

- E B ^ + / i j - r ç j + ( s j / C ) 1 / p = 0 (5.4) 
7 

S B ^ + I / j-Cj + (tj/c) 1 / p = o (5.5) 
7 

(j = 1,2,...M) 

Using (5.3) t o e l imina te from (5.4) and (5.5) produces 

#*, - 1j + (8 j /C)^ P = €j (5.6) 

"j-Cj + (tj/C) (5.7) 

Consider ing the reduc t ion from (5.6) and (5.7) for t h e case (s i , t i < σ\) -» 
(μι^Ί = 0) , suppose t h a t Sj > 0 which implies η-} = 0 . T h e n from (5.6) 

which is a con t rad ic t ion . T h u s Sj > 0 tj = 0 . Of course t h e converse resul t follows 
by similar a r g u m e n t , i.e., tj > 0 -> Sj = 0 , so t h a t t he o r thogona l i ty Sjtj = 0 is 
es tabl ished. It follows as well once t h e o r thogona l i ty is avai lable t h a t 
(SJ > 0) -> (CJ > 0) and (tj > 0) -* (ej < 0) . T o comple te th is p a r t of t h e 

in t e rp re ta t ion , no te t h a t (μ-} > 0) -> (SJ = <η) -> (η·} = 0) whence from (5.6) 

Th i s s imply provides for the eva lua t ion of mul t ip l ie r μ·} ; t h e expression for w} 

follows from (5.7) in t h e s ame way, for t h e case (z/j > 0) -> (tj = <η) . Before t u rn ing to 
t r ea t t h e s t ruc tu ra l op t imiza t ion prob lem, as an observa t ion on t h e analysis 

represented via [ P ] no te t h a t for value σ\ specified sufficiently large while all o ther 
d a t a a re fixed, t h e stress bound cons t ra in t s a re not ac t ive . In th is case t h e net 
cons t i tu t ive charac te r corresponds to a smooth curve such as t h e one shown in F igure 

5.2. T h e charac te r i s t ic va lue ê  a t whic h t h e stress—strai n cu rv e t u r n s downwar d i s 
eva lua ted fro m t h e condi t io n 

( * i / C ) 
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Figure 5.2. To ta l stress τ\ vs . s t r a i n / σ\ large. 

Arg dr 
3?: θ] = 1 whereby (for 6 > 0) ei = ( E i / p C ) 1 / ( p _ 1 ) . 

T h e design problem, which models t h e op t ima l ma te r i a l d i s t r ibu t ion for t he 
single—purpose design of a t russ of given layout , is expressed as a direct extension of 
the analysis p rob lem [ P ] . T h e goal is to max imize load factor a w i th respect t o t he 
vector Aj of m e m b e r section a reas , wi th in t h e (usual) design cons t ra in t s t h a t reflect a 
bound on t o t a l vo lume of s t ruc tu ra l mate r ia l and a lower l imit on section areas . T h e 
problem is s ta ted : 

m a x ( m a x a) 
A ; [D] 

< cons t ra in t s as in [ P ] > 

/ i ( A - A i ) < 0 (i = 1,2,„.) 

M 
Σ A i / i - R < 0 

i = l 

Values A and R are added to t he list of da t a . S t a t i ona r i t y wi th respect to design 
requires 

• Σ Β ^ ( - Ε ^ + 8 ί - ^ ) λ Ί 

7 

+ { - E j e f / 2 + c [ s / ^ 

(5.8) 

•Γ + 7ί 

C o m p l e m e n t a r i t y condi t ions associated wi th t he four stress cons t ra in t s a re a l ready 
t aken in to account . T h e op t ima l i t y condit ion is s imply t h e reduced form of (5.8) for t h e 
subset , say J D , of all member s identified wi th (Aj > A) -* (7j = 0) . W i t h the further 
in t e rp re t a t ion of th is set in to subsets J+ and J - of J D , identified wi th tension and 
compression m e m b e r s respect ively, after simplification using (5.3)—(5.5) t h e op t ima l i ty 
condit ions have the form: 
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E j e f / 2 + 

Ι / Ρ 

1/P 

1 . ( I + I / P ) 
1 + p s i Γ (j e J + ) 

T i p t / 1 + 1 / r t = r ( j e j . ) 

(5.9) 

(5.10) 

For t h e special case E j = 0 for all i , (5.9) and (5.10) in effect confirm the earlier 
op t ima l i t y condi t ion (4.6), namely t h a t for t h e op t ima l design energy dens i ty has 
cons tan t va lue over m e m b e r s (e lements) in t h e design set . As no ted in Section 4, it is 
s t r ik ing t o find t h a t th is s imple result applies over t h e full r ange of mechanical 
behaviour . 

A p a r t of t h e cons t ruc t ion of t h e nonl inear p r o g r a m m i n g p rob lem [ Ρ ] , namely t h e 
superposi t ion of cons t i tuen t s per (2.1) to form to ta l s tress , has appea red before in 
connect ion w i th different appl ica t ions in t h e mechanics of nonl inear m e d i a (see e.g. t h e 
discussion by Besseling (1984) ) . It appears t h a t t he re is significant po t en t i a l for further 
deve lopment along t h e lines of t he e x t r e m u m prob lem formula t ion exemplified by the 
ma te r i a l of th is sect ion, wi th in which use is m a d e of th is device. Also, t h e r e a re several 
open quest ions remain ing even in t h e context of t h e formula t ion given here. T h e 
challenging issue re la ted t o exis tence of a solut ion to (5.9)—(5.10) has not been 
considered, for example . No te also t h a t w i th t h e in t roduc t ion of local (i .e. ma te r i a l ) 
ins tabi l i ty as represented in t he present model for analysis , issues of global s tab i l i ty of 
the s t ruc tu ra l sys tem m u s t be addressed. I t is sufficient for t h e purposes of t h e above 
p resen ta t ion t o suppose t h a t a t t en t i on is l imi ted to globally s t ab le p rob lems ( this 
would be t he case wi th values Ej sufficiently small , for example ) . 

6. T W O - D I M E N S I O N A L E X A M P L E S 

Resul ts from i t e ra t ive analysis based on t h e cons t i tu t ive re la t ion (2.2) of section 2, 
and op t imiza t ion based on t h e op t ima l i t y cr i ter ion (4.6) of section 4 a re p resen ted for 
t he t h r ee cases shown in F igure 6 .1 . 

t t t t m t t t m r 

1 

a) b) c) 

F igure 6 .1 : T h e th ree example cases: a) uniformly loaded cant i lever of isotropic 
mate r ia l , b) circular hole loaded biaxial ly 2:1 , i sotropic ma te r i a l , c) op t ima l (see [8]) 
hole loaded biaxially 3:2 , o r tho t rop ic ma te r i a l . 
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T h e ma in result of section 4, is t h a t t he op t ima l th ickness d i s t r ibu t ion is 
independent of t h e power ρ . T h u s the resul ts for the problems of F igure 6.1 main ly 
i l lus t ra tes t h e influence from t h e power ρ on two given designs, i.e. t h e uniform 
thickness design and t h e op t ima l thickness design as ob ta ined from l inear e last ic i ty , see 
[7] for a discussion of t h e op t imiza t ion procedure , which is a s imple recursive i te ra t ion 
procedure . 

In t e r m s of re la t ive values tab le 6.1 gives t h e s t ra in energy densi t ies . Min . , mean 
and m a x . values are re la ted t o t h e e lements of t h e finite e lement models . T h e tab le 
clearly shows the different resul ts from uniform and op t ima l th ickness d i s t r ibu t ion . I t is 
well known from op t imiza t ion based on l inear e las t ic i ty t h a t cer ta in areas in a model 
cannot be fully stresses ( too l i t t le energy dens i ty) . T h u s t h e min . values are of minor 
in teres t , and t h e agreements of t h e max . values wi th t h e mean values be t t e r show the 
fulfillment of t h e op t ima l i ty cr i ter ion (4.6). 

T h e values of t h e object ive function (work = compl iance = ( 1 + p ) * s t ra in energy) 
are also given by t h e re la t ive mean values in t ab le 6 .1 , and shown in F igure 6.2. T h e 
factor be tween energy in uniform design and energy in op t ima l design is a lmost 
cons tan t for t h e th ree cases, wi th a weak tendency t o be more and m o r e i m p o r t a n t wi th 
increasing 

Strain energy densities in % of reference energy density 

cantilever, 
isotropic 

circ. hole, 
isotropic 

opt. hole, 
orthotropic 

min mean max min mean max min mean max 

Ul-0 0.5 100 577 4 100 677 47 100 387 

Oi.o 14 50 50 81 87 89 59 90 92 

Uo-9 0.7 163 935 4 140 951 60 138 528 

O 0-9 23 75 76 112 120 122 63 123 138 

Uo-8 0.9 280 1599 3 202 1391 79 196 737 

Oo-8 39 120 121 159 170 173 69 173 221 

Uo-7 1 512 2916 2 304 2127 108 288 1060 

O 0 -7 68 201 202 236 251 256 80 253 369 

U 0 -6 2 1005 5730 0.3 482 3430 153 445 1581 

Οθ·6 126 357 359 365 387 394 90 385 641 

Uo-5 2 2151 12310 0.1 808 5891 227 722 2464 

Οθ·5 251 683 686 595 630 640 107 618 1169 

Tab le 6 .1 : T a b l e of re la t ive resul ts wi th uniform thickness U and wi th op t ima l 
thickness d i s t r ibu t ion Ο for l inear elast ici ty (p = 1) and for five models of 
non- l inea r e las t ic i ty model led by t h e power ρ < 1 . T h e th ree independent 
cases a re shown in F igure 6 .1 . 
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n o n - l i n e a r i t y (decreasing ρ) . T h e s t ronger effect for t h e cant i lever p rob lem reflects 
t he in i t ia l less uniform s t r e s s / s t r a in d i s t r ibu t ion . Also t h e ac tua l s t r e s s / s t r a i n level 
(higher for t he cant i lever p rob lem) will have an influence, and thus t h e th ree cases 
should be read as individual cases. More detai led informat ion a re ob ta inab le in 
s t r e s s / d i s p l a c e m e n t / s t r a i n g raphs , o m i t t e d in this short paper . 

W e no te t h a t t he small difference be tween m e a n and m a x i m u m dens i ty (90 and 92) 
for t h e o r tho t rop i c case has a s t rong influence for t h e n o n - l i n e a r solut ions (a t ρ = 0.5 
the values are 618 and 1169). 

relative Strain energy U 
1000 r— 

Isotropic, circular hole, 
biaxially stressed 2:1 

relative Strain energy U 

Orthotropic, "optimized" hole, 
• biaxially stressed 3:2 

Figure 6.2: Resul t ing objectives wi th uniform thickness and wi th op t ima l thickness 
d i s t r ibu t ion for t h e th ree cases. 
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OPTIMA L  DESIG N  WIT H  HIGHL Y  DEFORMABL E  MATERI A L S 

Micha l  Êyczkowski,  Krzyszto f  Szuwalsk i 
Cracow University  of  Technology  -  Poland 

1.INTRODUCTION 

Optima l  des i g n  o f  struct u r e s  i s  alway s  a  desi g n  o n  th e  edg e  o f  safet y 
domain .  Therefore ,  whe n  larg e  deformation s  ma y  b e  expected ,  the y  mus t  b e 
take n  int o  account .  I f  not ,  i t  ma y  tur n  ou t  tha t  con s t r u c t i o n  designe d  a s 
a n  optima l  one ,  doe s  no t  satisf y  streng t h  condit i o n s  afte r  defor m a t i o n s .  I n 
suc h  problems ,  w e  mus t  resi g n  o f  th e  rigi d i f i c a t i o n  princ i p l e  (geometr y 
chang e s  mus t  b e  allowe d  f o r ) ,  an d  finit e  stra i n  theor y  mus t  b e  applied . 

Suc h  a n  appr o a c h  beco m e s  necessary ,  whe n  proble m  o f  ductil e  ruptur e  i n 
cree p  condi t i o n s  i s  investigated .  Discussin g  th e  optima l  des i g n  o f  struc t u 
re s  wit h  respec t  t o  ductil e  cree p  ruptur e  time ,  w e  mus t  fol l o w  th e  whol e 
cree p  proc e s s  fro m  it s  beginnin g  til l  th e  rupture ,  understood ,  accordi n g  t o 
th e  Hoff' s  approach ,  a s  diminishin g  o f  transversa l  dime n s i o n s  t o  zero . 

Th e  solu t i o n  i s  muc h  simpler ,  whe n  a s  a n  objective ,  th e  tim e  t o  brit t 
l e  ruptur e  i s  treated .  The n  th e  smal l  str a i n  theor y  i s  sufficient ,  an d 
optima l  shape s  ofte n  coincid e  wit h  shape s  o f  unifor m  str e n g t h  [4 ] .  Th e  re 
v i e w  o f  variou s  possibl e  criter i a  i n  optim i z a t i o n  o f  struc t u r e s  unde r  cree p 
condit i o n s  wa s  give n  b y  2yczkowsk i [3] . 

Hoff' s  theor y  o f  ductil e  cree p  ruptur e  desc r i b e s  fair l y  wel l  th e  los s 
o f  carryin g  capacit y  fo r  structura l  element s  subjec t  t o  uniaxia l  o r  biaxia l 
tension ,  lik e  bars ,  disk s  o r  shell s  i n  membran e  state .  So ,  thes e  elemen t s 
ma y  b e  optimize d  fo r  maxima l  ductil e  cree p  ruptur e  time .  I n  th e  presen t  pa 
pe r  w e  sho w  th e  problem ,  namel y  basi c  definitions ,  theore m s  an d  particula r 
solutions ,  o n  th e  exampl e  o f  rotatin g  disks . 

Th e  ai m  o f  presen t  pape r  i s  t o  investigat e  whethe r  shape s  o f  unifor m 
streng t h  fo r  rotatin g  disk s  ar e  optima l  wit h  respec t  t o  ductil e  cree p  rup 
tur e  time .  Th e  resu l t s  fo r  bar s  unde r  nonuni f o r m  tens i o n  [ 2 ] show ,  tha t 
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only in case of body forces depending on the material coordinate such a co
incidence exists. For body forces depending on the spatial coordinate (e.g. 
in rotating bars), the shape of uniform strength may be improved in order 
to obtain longer life-time to ductile rupture. 

2. DISKS OF UNIFORM STRENGTH AND UNIFORM DEFORMABILITY 

Discussing problem of uniform strength for disks made of material 
allowing for large deformations, we must distinguish several types of such 
disks. The definitions given below are formulated for full disks made of 
homogeneous material. 

In these definitions, as in the whole paper, by capital letters are 
denoted parameters of undeformed disk (for t=0) and material (Lagrangean) 
coordinate, while all quantities connected with current configuration of 
already deformed disk and spatial (Eulerian) coordinate are denoted by 
small letters. 

Def.l.The disks of uniform initial strength in a broader sense are the 

disks in which at the beginning of the creep process (t=0), the redu

ced stress calculated according to the chosen failure hypothesis, is 

the same for all radii. 

ARc<0,R> Σ (R) = const. (1) 
ο r e d 

Def.2.The disks of uniform initial strength in a narrower sense are the 

disks in which at the beginning of the creep process, both: radial 

and circumferential stresses are equal, the same and independent of 

radius. 

Λ ft=<0,R > Σ = Σ = const(R) (2) 
ο r W 

Def.3.The disks of uniform strength with respect to the ductile rupture 

time, are the disks in which the stage of ductile rupture (according 

to the Hoff s approach, i.e. diminishing of thickness to zero), is 

reached simultaneously in the whole disk. 
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Λ R €<0,R > h(R,t)-*0 (3) 
ο 

Def.4.The disks of uniform de for inability are the disks in which all strains 

are independent of radius, but changing in time. 

AR €<0,R> € (R,t)=f(t) . Q ( 4 ) 
ο i 1 = Γ , xrt Ζ 

F/g. Ί 
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Def.5.The optimal disk with respect to ductile rupture is the disk, which 

for given volume of material V ensures the longest life-time to the 

ductile creep rupture in Hoff*s sense. 

tm — » max (5) 
V = c o n s t 

The relations among defined above disks are shown in Fig.1. The set of 
disks optimal with respect to ductile creep rupture time may partially con
tain all others above mentioned types of disks. 

3.UNIFORM DEFORMABILITY OF DISKS OF UNIFORM STRENGTH 

We shall closely investigate disks of uniform deformability, as they 
are always disks of uniform strength with respect to the ductile rupture. 
Therefore, they will not much differ from the optimal disks, and even some
times may b e optimal. We shall specify conditions, under which homogeneous, 
isotropic, full disk will show the property of uniform deformability. 

Thesis l.The full disk of uniform initial strength in the narrower sense, 

under assumptions: 

(1) material is incompressible; 

(2) body force in the disk is a homogeneous function of any degree 

m of spatial coordinate r (and/or any function of material 

coordinate R); 

(3) total radial force at the outer edge of disk is also a homoge

neous function of the same degree m, of Eulerian outer radius; 

(4) material is homogeneous and isotropic; 

is the disk of uniform deformability. 

We shall prove this thesis, showing that assumption of uniform defoi— 
inability: 

r » R ^(t) , ( 6 ) 

does not lead to any contradictions and fulfills all basic equations. 
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From the assumption (1): 

H R dR = h r dr (7) 

where Η stands for the initial and h for current thickness of the disk, ta
king into account ( 6 ) we find: 

h(R,t) = H ( R ) (8) 

Relationship between the current and the initial radial body force, 
according to the assumption (2), can be written: 

b (r.R) = ψ* Β (R,R) . (9) 
Γ Γ 

In the most frequent case of body forces - for the rotating disk, m = 1. 
To the similar relation between current and initial values of total 

radial force at the outer edge leads the assumption (3): 

n (r) s φΛ N (R) . (10) 
Γ Γ 

For the homogeneous material (assumption (4)) in the disk of uniform 
initial strength in the narrower sense, radial and circumferential 
stresses are for t=0 the same in the whole disk 

Σ =* Σ = Σ = const (R) , (11) 
Γ # 

The third stress, perpendicular to the middle surface of disk, is 
assumed to vanish thoughout the creep process. 

From the condition of internal equilibrium for undeformed disk: 

i £ = r (Η Σ ) + r
 p * + B (R, R) = 0 , (12) 

after substitution of (11), we can determine the shape of disk of uniform 
initial strength: 
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H(R) = C exp [ " I J B(R,R) dR J . (13) 

The integration constant C results from the boundary condition: 

H (R ) = Η , (14) 
ο ο 

where Η denotes the thickness of the disk at the outer radius R , depend-
ο ο 

ing on the value of the radial force at the outer edge: 

Ν (R ) 
H o = T T F f ( 1 5 ) 

ο 

Finally we obtain the formula for the initial profile of the disk: 

H(R) = H Q exp £ - i ĵ B(p,p) dp j , (16) 

where ρ is the formal integration variable. 
Now we shall check up the behaviour of so shaped disk, during the 

creep process. The condition of internal equilibrium for already deformed 
disk: 

i £- (h <r ) + *Γ ^ °* + b (r,R) = 0 , (17) η or r r r 

may be rewritten, making use of the assumption (1) of incompressibi1ity: 

r n k ^ V * - ^ A * b r ( r . R ) = 0 . (18) 

where <r and σ Λ are true stresses, and b denotes the current radial body 
Γ ν Γ 

force. 
Making use of the assumption of uniform deformability (6) and of (8) 

and taking into account assumption (2) we obtain: 

Ψ m [^] * Hbrrr + *"(t) B (R'R) - 0 · ( 1 9 ) 
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Putting into this equation the shape of the disk of uniform initial 
strength (10), we can calculate the function 0(t): 

<r (R,t) (r'(R,t) <r (R,t) - cr (R,t) 
, • • 1 / , χ Γ Γ Γ V , η Λ χ 

* ( T ) Σ ~ "BTRTRT ÏÏ TrTr) ·  ( 2 0 ) 

Becaus e  o n  th e  left-han d  sid e  w e  hav e  onl y  th e  fun c t i o n  o f  time ,  t o 
satis f y  thi s  equation ,  o n  th e  right-han d  sid e  th e  func t i o n  o f  materia l  co 
ordinat e  R  mus t  vanish .  Thi s  i s  possibl e  onl y  i f 

c r  (R,t )  =  σ* ( R, t ) = Σ <pit) , (21) 
r tr 

what means, that the disk must show the property of uniform strength in the 
narrower sense during the whole creep process, and from (20) results: 

<pit) = ^ e + 1(t) . (22) 

The boundary condition at the external radius for the deformed disk, 
takes the form: 

η (r ) 
M r ) = — , (23) 

2 π r Σ φ**1 

ο 

where r denotes the current external radius, η (r ) - current value of to-
o ο ο 

tal radial force on the outer edge. Comparing it with the boundary condi
tion at the beginning of creep (-15) and taking into account (6) and (8), we 
come to the conclusion that the only way to avoid contradictions is to 
satisfy assumption (3) and resulting from it (10). In case of different be
haviour of the external loadings, streses in disk of uniform initial 
strength will differ during the creep process. 

We can state that, that disk of uniform initial strength in the narro
wer sense, satisfying assumptions (l)+(4)> will preserve this property till 
the end of the creep process. For homogeneous and isotropic disks it will 
be the disk of uniform deformabi 1 ity, and therefore the disk of uniform 
strength with respect to ductile rupture. These results are independent 
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from the physical law. 
The physical law will decide on the form of the function ^(t) and in 

this way on the time of ductile rupture. Consider this law in general form: 

F ( < r j» *̂ j» *̂ j» ^ . » t ) = 0 (24) 
r e d r e d r e d r e d 

as a relation of the reduced true stress and its rate, and reduced loga
rithmic strain and its rate, calculated according to chosen failure hypo
thesis. 

Logarithmic strains are defined: 

ι dr Λ / 

and their rates: 

r' 
c = —r 

r Γ 

* d - F ( 2 6 ) 

h 
c z " h 

Applying the Huber-Mises-Hencky (HMH) hypothesis, we can replace the 
reduced quantities in (24) by: the effective stress: 

<r = <r = cr = Σ ^ + 1 ( t ) (27) 
β Γ t r 

and effective logarithmic strain 

€ = 2c = 2c. = 2 ln[^(t)] . (28) 
β r t r 

Finally we can rewrite (24) in form: 

F jl^U), (m+l)Z^"(t)ir(t), 21n[^(t)], 2^[||, tj = 0 (29) 
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This equation, for the condition of ductile rupture: 

ψϋ,) -> » (30) 

enables calculation of the time of ductile rupture t#. 

4.DISK SUBJECT TO LOADING IN AXIAL DIRECTION 

In this paragraph we shall discuss more general problem, resigning of 
the assumption of the plane stress in the disk. Besides the radial tension 
(in presence of radial body force) disk is subject to uniform compression 
in the axial direction (Fig.2). 

Fty. 2 

In this disk we shall have the third, different from zero, stress: 

<rz = - q , (31) 

independent of the radius. 
In the problem under consideration we shall obtain identical results 

for fairly broad class of failure hypotheses, namely for hypotheses repre
sented in the principal stress space by cylindrical limit states surfaces. 
All such hypotheses will be further called "cylindrical hypotheses" [53. 

The above mentioned broad class of failure hypotheses containes e.g. 
Tresca-Guest hypothesis, the hypothesis of maximal deviatoric stress pro
posed by Schmidt-Ishlinski-Hill, "power" hypothesis by Hershey -Davis, 
and Huber-Mises-Hencky hypothesis. All of them assume independence of the 
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reduced stress from the mean stress <r . For any hypothesis, the reduced 
m 

stress may be written as a function: 

<r = f(σ- , ω ), (32) 
r e d β <r 

of effective stress, and angular invariant ω^, defined as: 

ο* - <r 
ω = arc sin j= . (33) 
<r v3 c 

In our case of the disk of uniform initial strength (3.15): 

1er - <r Ι; ω = 0, (34) 
r ζ (Γ 

and for all cylindrical hypotheses we obtain 

or <r + q. (35) 
r e d r 

Thesis 2.The full disk of uniform initial strength in the narrower sense, 

under assumptions (l)+(4) from thesis 1, and additional : 

(5) pressure q acting normally to the middle surface of the disk, 

is equal on the whole surface of the disk, but changing in 

time, 

is the disk of uniform deformability. 

From the assumption (5) in the disk for t=0: 

Σ = Σ + Q = const(R) , (36) 
r e d r 

where Q denotes the initial value of normal pressure. The profile of the 
disk of uniform initial strength (in the broader sense) is described by 
(16), where Σ should be substituted by Σ determined from (35): 

H(R) = H q exp Γ - ^ ~^~Q f B ( P » P ) dP ] ' 
° L r e d R J J 

(37) 
r e d R 
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and thickness at the outer radius H must be equal 
ο 

H o = 2 π R ( Σ - Q ) ( 3 8 ) 

o red 

Putting the initial profile of uniform strength (37) into equilibrium 
equation for the deformed disk (17), and assuming uniform deformability 
(6), we come to the equation: 

o*(R,t) (r'(R,t) σ (R,t) - <ra(R,t) 
Ψ I t J - χ ZQ ^OCti) R B ( R . R ) ' t 3 9 J 

r e d 

which may be satisfied, if 

(Γ (R,t) = <r iR,t) = Σ (R) ^ ( t ) . (40) 
r V r 

From (36) results, that at the assumption (3), the initial radial 
stress Σ is independent of R, i.e. the stresses in the plane of disk will 

r 

be all the time equal. 
Also the reduced stress (35) will be at any moment the same in the 

whole disk, regardless whether the pressure q is related to the unit spa
tial area, when: 

<r = (Σ -Q) 0 M + 1(t) + Q g(t) , (41) 
red red 

or it is related to the unit material area, then: 

(Γ = (Σ - Q ) y,*+1(t) - — ^ — g ( t ) , (42) 
red red # 2 ( t ) 

In both cases the function g(t) may be taken arbitrarily. 
Thus, assumption of uniform deformability (6) makes it possible, to 

satisfy all eqilibrium equations and boundary condition (22). Such a disk 
will be the disk of uniform strength in the narrower and in the broader 
sense, and consequently the disk of uniform deformability what means that 
also the disk of uniform strength with respect to the ductile rupture. 
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5. DISK OF UNIFORM DEFORMABILITY VS. OPTIMAL DISK 

As it was proved in [1], for bars under nonuniform tension, only in 
case of body forces depending on the material coordinate the bar of uniform 
deformability is simultaneously the optimal one with respect to ductile 
creep rupture. Then the problem is a statically determine one, and distri
bution of stresses in deformed bar can be found regardless to the physical 
law, only from the statical equations. 

For disks such a possibility does not exist. In order of determining 
of the true streses distribution, each time the set of equations must be 
solved: internal equilibrium condition and equation resulting from the com
patibility condition for logarithmic strains [5] 

% -c* + ln (1 + R w- ] (43) 

in which strains must be replaced by true stresses, with help of the creep 
law combined with the law of similarity of deviators of true stresses and 
logarithmic strains rates. Moreover, the current geometry of deformed disk 
must be known, and it results also from the physical law. 

Thus, we cannot say about the the statically determine disks, and con
sequently the time of ductile rupture cannot be written in form of infimum 
of certain expression, depending only on the thickness of the disk at given 
radius, as it was possible for bars [23. For all these reasons, we come to 
the conclusion, that disks of uniform strength with respect to the ductile 
creep rupture, are generally not optimal with respect to the time to ducti
le rupture. This conclusion is independent of the type of body force in the 
disk, though only the case of rotating disk is the realistic one. 

The shape of the rotating disk of uniform initial strength could be 
slightly changed (improved) in order to obtain longer life-time to the duc
tile rupture. The results of such improvements will be presented separate
ly, here we shall quote only an example of corrected initial shape of opti
mal disk, compared with the shape of uniform initial strength (Fig. 3). 
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./ .5 1.0 

Fig. 3 

The differences are not very large and are, first of all, of qualita
tive importance. The shape of uniform initial strength may be treated as 
fairly good approximation, but only approximation of optimal solution with 
respect to ductile rupture time. 
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Abstract 
Methods of spatial statistics have been used to analyze the pattern of fibers ' distribution in 

unidirectional composite materials. Several parameters and functions that characterize the 
spatial distribution of fibers are investigated with special emphasis on their ability to 
distinguish between different fibers' pattern. The analysis is performed for three different 
materials as well as for simulated distributions. A short discussion is devoted to charac
terization of the fracture profiles for investigated materials. 

1. I N T R O D U C T I O N 

It is recognized in all branches of materials science that there is a close relationship between 
global properties of materials and their microstructure. Although microstructures of materials 
usually display some typical feature by which they are recognized, an enormous variety in 
shape, size and arrangement of the parts within any one specimen is also obvious. This fact 
presents an obstacle to correlation with properties. There have been many attempts to trace 
a direct link between the macroscopic properties of materials and the microstructure. These 
attempts have generally rested upon the assumption of "unit cell" models where the 
microstructure is envisioned by some kind of repetitious structure composed of units of 
regular shape, size and spacing. In this sense few real microstructures are regular and 
moreover , seldom is a microstructure completely random either. In order to perceive the 
structure of materials as they really exist, rather than as described by some assumed model 
it is necessary to recognize that we have to deal with nonregular, nonrandom microstructures. 
It is t rue, however , that the geometric properties of the microstructure are capable of 
statistical repetition throughout the material provided that the following aspects in the 
quantitative evaluation of microstructures are considered: 
- T h e microstructure of a material is, in general, an inhomogeneous, anisotropic union of 
isolated as well as multiconnected components. A descriptive framework that suitably 
characterizes such a multicomponent, spatially distributed aggregate has to be established. 
- Fo r most materials the investigation of an internal structure is only possible either on the 
internal surfaces generated by taking sections or on layers cut from the material that are 
sufficiently thin to be transparent. Thus the spatial characteristics of components must be 
evaluated from their planar sections and projections. 
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- Only a small part of the material can be thoroughly examined. Therefore the selection of 
samples for detailed investigation and a critical statistical assessment of the results obtained 
is of pr imary importance [1] . 

In the present analysis, an attempt has been made to address the problem encountered in the 
quantitative description of the arrangement of fibers in a unidirectionally reinforced composite 
material . The emphasis is placed on the selection of functions and parameters that sufficiently 
well describe and discriminate the microstructural features under study. The sampling 
techniques and statistical assessment of the results are left to further studies. 

A multiphase material is by definition heterogeneous. Its local properties vary spatially. If 
the material is statistically homogeneous, which means that the local material properties are 
constant when averaged over a representative volume element, then it is possible to replace 
the real disordered material by a homogeneous one, where the local material properties are 
the averages over the representative volume elements in the original material . Several 
approximate micromechanical analyses of effective medium methods were proposed to 
calculate those averages [2-4]. It is necessary to note that effective medium methods are valid 
for dilute or at most moderate concentrations of the second phase since they do not depend 
on the geometrical configuration of a composite microstructure. 

Thus the only statistical information involved in those methods is related solely to the 
volume concentration of each phase which is merely a statement of the overall composition 
of the material rather than of its dispersion characteristics. The geometrical arrangement of 
fibers is known to influence the overall properties [5 ,6] . Moreover , the interaction between 
fibers can not be neglected for higher volume concentrations and the dispersion pattern of 
fibers becomes a crucial issue. The relative positions of fibers in given configuration are 
described by the η-point correlation function where the symbol η denotes the correlation 
between η fibers. Field quantities are calculated as an ensemble averages rather than volume 
averages where the η-point correlation function plays a central role [7-9] . Distribution of 
fibers is very important in studying the fracture phenomenon due to the heterogeneity of the 
stress field that results from the complex geometrical arrangement of fibers and microcracks 
[10-12] . Both analytical and experimental evaluation of η-point correlation function is by no 
means a simple task even for lower order correlations [13]. However , recent developments 
in evaluation of correlation functions for nontrivial model microstructures [14,15] and the 
progress in experimental techniques [16] have made it possible to estimate the correlation 
functions with the reasonable effort. 

In what follows several parameters that discriminate the dispersion of fibers are 
investigated. The discussion is based upon the statistical analysis of spatial point patterns and 
the construction of Dirichlet tessellations. The first-order properties of a spatial point pattern 
are described by an intensity function i .e. number of fiber centres in an observation area 
which corresponds to fibers' volume fraction. The second-order properties are characterized 
by the function that is directly related to the 2-point correlation function of fibers ' pattern. 
Utilization of the modern image analysis technique is illustrated throughout the paper. 

2 . T H E O R E T I C A L B A C K G R O U N D 

Let us first assume that the centres of finite-sized fibers can be regarded in the same light 
as the infinitesimal points. 
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It is rudimentary to conclude that the distribution of fibers is random if it is not regular. 
However such a description is not precise as the spectrum of all possible arrangements of 
fibers lies between two extremes: regular and completely random. 

The completely random point set (Poisson process) represents the simplest possible 
stochastic mechanism for the generation of point patterns and serves as an idealized standard 
of examination how far the observed pattern of points depart from the complete randomness 
in their distribution. The point set is Poisson if Ν points are placed in a region where each 
possible location for a point is equally likely to be chosen and the location of each point is 
independent of the location of any other point. Although strictly unattainable in a physical 
world the Poisson process of points is theoretically one of the best understood and sometimes 
provides a useful approximate description of an observed pattern [17] . 

Interaction between a pair of fibers depends upon their distance thus the distribution of 
nearest neighbour distances is of particular interest. Naturally the distribution of fibers ' 
positions in the matrix governs the distribution of nearest neighbours . Under the Poisson 
hypothesis the frequency distribution function for the nearest neighbour distance is 

FID) = 2rdNA exp(-TRD2NA) (1) 

where d is the radial distance from a point to its nearest neighbour, and N A is the estimator 
for a point pattern intensity i .e. a number of points Ν within an observation area A. The 
expected average mean distance E(d) is found by substituting Eq. (1) to the following integral 

E(d) = \rf{r)dr = 0.5NA (2) 

It is easy to conclude that the nearest neighbour distance for a quadratic pattern is equal to 

d_ = N, 
ι (3) 

A 

and for a hexagonal pattern of points. 

_2_ 
N a 1 (4) 

There is of course no frequency function of the nearest neighbour distances for those 
patterns. T h e expected variance of nearest neighbour distances for the Poisson point set E ( s 2 ) 
is calculated using the second moment of the distance distribution function f(d) yielding 

4ir ΝΛ 

(5) 

In order to be able to use above formulas in micromechanical modelling the complete 
randomness of the observed pattern must be confirmed. F rom the multi tude of possible test 
methods and parameters that discriminate "non-randomness" [18 ,19] , the most simple 
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parameters are the ratio of observed and expected mean of nearest neighbour distances, Q, 
and the ratio of observed and expected variance of nearest neighbour distances, R, i .e. 

s2 

Q = -2— , R = * (6) 
E(d) E(s2) 

where 

Ν Ν Ν 

d = - ï > i ond  s 2 =  1  Tdf  -  ( 1 W  ) 2 

n tt  ι
 n t\ n tr 1 

Deviations from unity indicate deviations from randomness and the discrimination between 
patterns is set up in the following way: Q « 1, R « 1 for the Poisson pattern, 
Q > 1, R < 1 for short range ordered sets, Q < 1, R < 1 for clustered sets. 

An alternative characterization of different classes of point sets is provided by the function 
K(r) , one definition of which is, [20] 

K(r) = ' ( number of further points within the distance r ç/^ 
of an arbitrary point ) 

T h e practical way of estimation of the function K(r) is shown in [21] . T h e function K(r) 
discriminates different point patterns and more importantly it may be related directly to the 
2-point correlation function in micromechanical modelling [22]. The K(r) function attached 
to the Poisson point set has value τη2. 

T h e assumption that the centres of finite-sized fibers may be regarded as points introduces 
an error into the calculation of nearest neighbour distances. This situation can be still 
simulated by the point set in which the points are forbidden to lie closer together than a 
certain minimum "hard-core" distance. It will be shown that the K(r) function is able to detect 
this type of pattern as well . 

Determination of nearest neighbour distribution is significantly enhanced by the construction 
of the Dirichlet tessellation based upon the point pattern under consideration. The Dirichlet 
network is a set of polygons, each of which contains one of the set 's points as nucleus. The 
sides of the enclosing polygon are created by the perpendicular bisectors of the line segments 
that join the nucleus with neighbouring points of the set. This procedure assignes a unique 
area to each point of the set and determines the "zone of influence" for each point. Moreover , 
the near neighbour points are determined by the sides of the polygon and the distribution of 
near neighbour distances may be calculated as well. 

The coefficient of variation of the Dirichlet cells V A is a useful counterpart to tests based 
on nearest neighbour distances. The coefficient of variation V A is defined as the ratio of 
standard deviation of cell areas to the mean cell area 

1 N 1 N 1 

V = M M (8) 

- Σ Α 

where Aj is the area of the i-th cell. 
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The values larger than V A for the Poisson point pattern suggest clustering of points and 
existence of cell areas significantly greater than mean area whereas the value smaller than V A 

for the Poisson set indicates tendency for regularity in the point pattern. T h e construction of 
the Dirichlet tessellation provides more useful information that is discussed elsewhere [21] . 

3 . E X P E R I M E N T A L P R O C E D U R E 

Figure 1. Microstructures of three materials at χ 410 magnification. Above: material 1 with 
zero pressure and material 2 with half pressure. Below: material 3 with maximum pressure. 
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The material analyzed in this study was glass fiber-epoxy composite with continuous fibers. 
The specimens were manufactured from prepregs of thickness 0 .125 mm that were layered 
in the sequence of 8 unidirectional layers and processed in the autoclave. In order to obtain 
different arrangement of reinforcing fibers processing scheme was carried out along three 
different routes. Whi le keeping the curing temperature constant during the manufacture the 
pressure applied to three batches of specimens was set to zero, half maximum and the 
maximum recommended by the supplier. 

The microstructures obtained by these processing techniques are shown in Fig . 1. The 
diversity of fiber arrangements is apparent. Material 1 clearly exhibits clustering areas with 
large, matrix rich zones. These zones diminish with increasing pressure for materials 2 and 
3 , resulting in more regular distribution of fibers. 

F igure 2 . Detected fibers and their zone of influence for the material 1. Below: the Dirichlet 
tessellation for the material 1. 
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Position of fibers was detected by the image analysis system Q U A N T I M E T 570 . After 
several grey-tone morphological transformations performed on the original image of 
microstructure, the image analysis system created the zones of influence of fibers. F igure 2 
illustrates the position of detected fibers and corresponding zones of influence for the image 
of the material 1 together with the Dirichlet tessellation constructed upon the actual 
distribution of fibers. 

T h e Dirichlet tessellation and the zone of influence differ slightly due to the fact that the 
image analysis system creates the zone of influence based upon the grey tone morphology of 
the image rather than spacing distances between cells ' nuclei. A statistical analysis of cells 
areas, size, shape and perimeters is built in the system. However , an automatic measurement 
of interpoint distances might be obtained only indirectly by the construction of the Dirichlet 
tessellation. The Dirichlet tessellations were computed by the Green-Sibson algori thm [23] . 
The position of fibers and corresponding Dirichlet tessellations for the material 2 and the 
material 3 are shown in Fig. 3 . 

F igure 3 . Detected fibers and tessellations for the materials 2 and 3 . 

T h e measurements of distances were performed within the inner, measure frame in order 
to minimize the edge effect. The side of a quadratic measure frame corresponds to 385 μηι 
on the microscale. 

4 . R E S U L T S A N D D I S C U S S I O N 

Table 1 summarizes the data for the discrimination parameters of three materials 
investigated. 

Fo r each material the simulation of the Poisson distribution and the simulation of the hard
core model were performed with exactly the same number of fibers as measured on images. 
The results are also shown in Table 1. 
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Table 1 

Q R Fracture stress 

Material 1 1.481 0.386 0 .510 15.8 [MPa] 
Poisson set 1 1.097 0.991 0.489 

15.8 [MPa] 

Hard-core 1 1.579 0.104 0 .199 
Material 2 1.443 0.231 0 .360 33.2 [MPa] 
Poisson set 2 1.108 1.096 0 .510 
Hard core 2 1.639 0.128 0 .173 
Material 3 1.496 0.154 0.251 52 .8 [MPa] 
Poisson set 3 1.085 1.156 0 .487 

52 .8 [MPa] 

Hard-core 3 1.686 0.072 0 .147 

According to the classification, Q ' s and R ' s for all three materials take values that 
correspond to short range ordered sets, yet we would expect the value of Q to be smaller than 
one for the material 1. It would indicate apparent clustering. Nevertheless the remaining 
values of R and Q parameters show correct tendencies. Coefficient of variation V A clearly 
indicates clustering for the material 1 and the strong ordering for the material 3 . 

Spacing parameters that can be measured from the Dirichlet tessellation are shown in Fig. 
4. 

Both the nearest- and near neighbour spacing histograms become taller and narrower as the 
pattern of points tends to more regular distribution. This tendency is seen in F ig . 4 where the 
structure of material 3 is closest to the ordered distribution. Material 1 inclines to the random 
distribution with clustering as indicated by certain number of points with near neighbour 
distances 3 times as large as the mean near neighbour distance. 

Similar conclusions may be drawn from Fig. 5 where the distribution of cell areas is shown. 
The distribution of cell areas for the material 1 exhibits characteristic tail towards larger areas 
indicating the existence of matrix rich regions, which is the sign of clustering in other areas. 
On the contrary, the distribution of cell areas for the material 3 is approximately symmetric 
around the mean resulting in a certain order and uniformity of cell areas. 

The simulations ' results for the Poisson point pattern and the hard-core model with the same 
number of fibers as detected for the material 2 are shown in Fig. 6. 

Simulations with the hard-core model were performed with the inhibition distance 9 μπι 
which corresponded to the mean radius of fibers. The hard-core model seems to reproduce 
the distances of the material 2 reasonably well, at least as far as the nearest neighbour 
distances are concerned. Distribution of distances from the Poisson simulation does not match 
the distances for the material 2 , at all. This is because the Poisson point process is related to 
a set of mathematical points instead of fibers that have a finite dimension. The situation could 
be improved by recording the position of fibers at magnification that al lows to treat fibers as 
points. In such a case, matching of the Poisson and material 's distances al lows to use the 
equation 1 in the micromechanical modelling. Unfortunately, this may be achieved only with 
a significant decrease in accuracy of distances' measurements due to a fractal character of 



89 

distances. On the other hand the hard-core model provides more realistic description of fibers' 
distribution, however , the theoretical distribution of distances for this model is not known. 
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Figure 4. Histograms of nearest- and near neighbour distances. 
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Figure 5 . Histograms of cell areas. 

Figures 7 , 8 and 9 illustrate the distinction of point patterns based upon the behaviour of 
the K(r) function. The function K(r) for any random hard-core model lies always below the 
K(r) function of the Poisson distribution with the same intensity. Values of the function K(r) 
that lie above the Poisson curve suggest the distribution with clustering tendency. All tested 
materials exhibit a hard-core behaviour for small distances which is of course a physical 
necessity. 

Material 1 shows both short-range and long-range clustering as the K(r) function remains 
above the Poisson curve for larger r as well. Material 2 is characterized by random 
distribution for longer distances where both curves almost coincide. The function K(r) for 
material 3 exits the random hard-core curve at r = 3 0 μηι which, means more ordered 
distribution at these particular distances. For increasing r the fibers' distribution is less 
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regular than the hard-core model. Calculations performed for very long distances, 
approximately 3 times as large as shown in the Fig. 9, allow to detect slight clustering at 
r = 1 5 0 μπι . The analysis of the K(r) function indicates that its discrimination ability is in 
accordance with other descriptors, particulary the coefficient of variation V A . Moreover , the 
use of the K(r) leads to a more informative classification of patterns and as mentioned 
previously permits the calculation of the 2-point correlation function for further micromechan-
ical modelling [22] . 
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Figure 6. Distances for the material 2 , the Poisson pattern and the hard-core model . 
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Figure 7. The K(r) function for the material 1. 

Figure 8. The K(r) function for the material 2 . 
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Figure 9. The K(r) function for the material 3 . 

T h e study of descriptors that quantify a distribution of fibers as presented herein, is far from 
exhaustive. Fur ther simulations for model distributions are necessary in order to provide , for 
comparat ive studies, a broad spectrum of patterns ranging from completely random to 
regular. Fo r example , simulation of the Poisson set with varied intensity, pattern of points 
clumped in bands of different width, anisotropic distribution of points are of particular 
interest. Simulations to quantify these patterns are currently under way. 

It is worth to mention that discriminators of the fiber 's pattern presented in this contribution 
are also related to fracture surfaces and cracks ' morphology in unidirectional composi tes . 
Significant differences in mean fracture stresses for three materials, listed in Table 1, result 
from the distribution of fibers. Observation of the fracture surfaces and their profiles revealed 
considerably longer fracture profiles for the material 3 as compared to materials 1 and 2 , 
which consequently demanded a higher amount of accessible energy to be spent in creating 
the fracture surfaces. Figure 10 shows the fracture profiles for investigated materials at the 
same magnification as in Fig. 1. The fracture profile for the material 1 is much shorter than 
the fracture profile for the material 3 . The fracture front of material 1 propagates along the 
boundary between fibers and matrix rich areas and does not need to kink around the fibers 
as it is the case for the material 3 . 

The length of the fracture profiles was measured by the image analysis system. The fracture 
profile detected and prepared for a measurement is shown in Fig . 11 . 



Figure 11 . Detected fracture profile for the material 2 at x410 magnification (left) and at 
x2350 magnification (right). 
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For each material the fracture profile length was evaluated at different magnifications in 
order to take into account a fractal character of the fracture surface. The length of the 
fracture profile grows with increasing magnification and levels off at the magnification x410. 
The lengths of profiles from Fig. 11 are almost the same. Thus there exists a critical 
magnification beyond which the length measurements do not change. This critical 
magnification happens to be the same as the one used for the detection of fibers ' distribution. 
It significantly enhances the correlation analysis between the pattern of fibers and the fracture 
profile. An influence of the fibers' distribution on the fracture surface is discussed elsewhere 
[24] . 
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A b s t r a c t 

I n S iC whisker reinforced a l u m i n u m t h e m a t r i x g ra in size is typica l ly c o m p a r a b l e 
t o t h e whisker d imens ions . P l a n a r c rys ta l p las t ic i ty wi th t h r e e slip s y s t e m s is used in 
numer i ca l cel l -model ana lyses t o s t u d y t h e effect of different gra in-s izes , a n d different 
m i so r i en t a t i ons be tween c rys ta l axes in ne ighbor ing gra ins . T h e p l a n e s t r a i n ana lyses 
focus o n m a t e r i a l s con ta in ing a per iod ic a r ray of a l igned whiskers w i t h a fiber v o l u m e 
fract ion of 3 0 % . C o m p a r i s o n is m a d e w i th p red ic t ions ba sed on a s ingle c rys t a l m a t r i x 
a n d w i t h a co r r e spond ing flow theo ry of p las t ic i ty w i t h i so t ropic h a r d e n i n g . I t is found 
t h a t t h e mu l t i -g ra in mode l gives rise to shear local izat ion induced by t h e h igh s t r a in 
c o n c e n t r a t i o n s a t t h e s h a r p whisker edges. 

1. I n t r o d u c t i o n 

Significantly improved mechanica l p roper t i e s of meta l l ic ma t e r i a l s c a n b e o b t a i n e d 
by re inforcement w i t h b r i t t l e fibers, whiskers or pa r t i cu l a t e s . B o t h t h e overal l stiffness 
a n d t h e s t r e n g t h of t h e compos i t e a re subs tan t i a l ly increased by t h e re in forcements , a n d 
m e t a l s reinforced by shor t fibers or pa r t i cu la t e s still have t h e a d v a n t a g e of b e i n g mach in 
able a n d workab le us ing convent iona l process ing techniques . However , t h e re inforcement 
also r e su l t s in p o o r duc t i l i ty and low f rac ture toughness d u e t o ear ly d e b o n d i n g of t h e 
fiber-matrix interface or fiber b reakage (Divecha et α/., 1981; McDane l s , 1985; N u t t and 
N e e d l e m a n , 1987; Zok et al, 1988). Micromechanica l s tud ies a re an i m p o r t a n t too l for 
o b t a i n i n g a p a r a m e t r i c u n d e r s t a n d i n g of t h e effects of ma te r i a l var iables such as t h e 
vo lume fract ion, t h e s h a p e a n d t h e d i s t r ibu t ion of p a r t i c u l a t e s or fibers. 

A n u m b e r of numer ica l micromechanica l s tud ies have b e e n car r ied ou t for m e t a l s 
reinforced w i t h perfect ly b o n d e d shor t fibers. T h u s , C h r i s t m a n et al. (1989) a n d Tver -
g a a r d (1990) have used ax i symmet r i c cell-model analyses , r ep re sen t ing pe r iod ic a r r ays 
of a l igned whiskers , to inves t iga te t h e uniaxia l tensi le s t ress - s t ra in b e h a v i o r of a 2124 
Al-SiC whisker compos i t e , a n d Levy and P a p a z i a n (1990) have s tud ied s imi lar ma t e r i a l s 

* D e d i c a t e d t o Professor Pr i thof Niordson on t h e occasion of his 70 th b i r t hday . 
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by a full 3D numer ica l analysis . Also Bao et al (1991) have used full 3D numer i ca l 
ana lyses t o s t u d y m e t a l s reinforced by per iodic a r rays of pa r t i cu l a t e s , sho r t fibers or 
p la t e l e t s . P l a n a r mode l s have b e e n used by C h r i s t m a n et al (1989) t o s t u d y t h e ef
fect of whisker c lus te r ing on t h e overall p roper t i e s . F u r t h e r m o r e , some s tud ie s have 
focused on t h e effect of matr ix-f iber debond ing ( N u t t a n d N e e d l e m a n , 1987; Povi rk et 
α/., 1991; T v e r g a a r d , 1991). A c o m m o n fea ture of all t hese s tud ies is t h a t t h e e las t ic-
p las t ic m a t r i x m a t e r i a l behav io r has been descr ibed by a phenomeno log ica l flow t h e o r y 
of plast ic i ty . 

T h e use of s imple phenomenologica l p las t ic i ty theor ies is just if ied as long as t h e 
re inforcement s i ze / spac ing is large compared t o t h e charac te r i s t i c m i c r o s t r u c t u r a l size 
scale, such as g r a in size or d is locat ion cell size. Otherwise , m o r e de ta i l ed cons t i t u t i ve 
mode l s m a y b e needed , accoun t ing for aniso t ropic c rys ta l p las t ic i ty or even for specific 
rules of d i s loca t ion mot ion . T h e d i ame te r of SiC whiskers is a b o u t 0.5 μηι , a n d t h e 
a l u m i n u m m a t r i x g ra in size in t h e powder comp ac t ed whisker compos i t e s is typica l ly 2-
3 μηι , so he re t h e deta i l s of c rys ta l lographic slip could p lay a significant role. Such effects 
have b e e n s tud i ed b y Need l eman and T v e r g a a r d (1991) for a pe r iod ic a r r ay of a l igned 
whiskers in a single c rys ta l m a t r i x , and it has been found t h a t t h e mos t p r o n o u n c e d 
effect of t h e c rys ta l cons t i tu t ive descr ip t ion is associa ted w i t h s t rong ly local ized flow 
induced b y t h e h igh s t r a i n concen t ra t ions at t h e s h a r p whisker edge. N e e d l e m a n , Suresh 
a n d T v e r g a a r d (1992) have used t h e s a m e t y p e of app roach t o s t u d y t h e effect of whisker 
c lus te r ing in a single c rys ta l ma t r ix . 

I n t h e p resen t p a p e r t h e c rys ta l size scale is i nco rpo ra t ed by ana lyz ing compos i t e s 
w i t h a few gra ins adjacent t o each whisker, t h u s accoun t ing for t h e effect of different 
c rys ta l l a t t i ce o r i en t a t i ons in t h e different gra ins . Some insight h a s b e e n ga ined by 
t h e s tud ie s of M c H u g h et al (1989, 1990), who considered a r igid hexagona l pa r t i c l e 
i n t e r ac t i ng w i t h a n u m b e r of ne ighbor ing crysta l l ine gra ins , b u t fiber a spec t r a t i o a n d 
s h a p e p lay a significant role , and t h e focus here is on me ta l s reinforced b y a l igned shor t 
fibers. 

2 . P r o b l e m F o r m u l a t i o n 

2.1 Field Equations 

T h e fo rmula t ion of t h e b o u n d a r y value p rob lem and t h e numer ica l p r o c e d u r e follow 
t h a t in N e e d l e m a n a n d T v e r g a a r d (1991) and Need leman , Suresh a n d T v e r g a a r d (1992), 
whe re fur ther de ta i l s a n d references can b e found. A L a g r a n g i a n fo rmula t ion of t h e 
field e q u a t i o n s is used w i th all field quan t i t i e s considered t o b e funct ions of convec ted 
coo rd ina t e s , yl> a n d t i m e , t. T h e r a t e form of t h e pr inciple of v i r t ua l work is w r i t t e n as 

At $6uktj]dV = &t [ 
Js 

T6uidS- \ / τ 1 •%3SEadV-
Js Jv 

w h e r e V a n d S a r e t h e vo lume and surface, respectively, of t h e b o d y in t h e reference 
conf igura t ion a n d (*) = dQ/dt a t fixed y%. T h e quan t i t i e s r l J f a r e t h e con t r ava r i an t 
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c o m p o n e n t s of t h e Kirchhoff s t ress ( r = 7 σ , where σ is t h e C a u c h y s t ress a n d J is t h e 
r a t i o of c u r r e n t to reference vo lume of a ma te r i a l e lement ) o n t h e deformed convec ted 
c o o r d i n a t e ne t . T h e second t e r m on t h e r ight h a n d side is an equ i l ib r ium cor rec t ion 
t e r m t h a t is used in t h e numer ica l p r o c e d u r e to r educe drift from t h e equ i l i b r ium p a t h 
d u e t o t h e d i sc re te t i m e s t ep . 

T h e n o m i n a l t r a c t i o n c o m p o n e n t s , Tl, a n d t h e L a g r a n g i a n s t r a in c o m p o n e n t s , 
a re given b y 

Τ ι = ( τ Η Α > ; (2) 

Ε Ϋ = \ (UI,J + U3,I + U^IUK,J) (3) 

where UJ a re t h e c o m p o n e n t s of t h e d i sp lacement vec tor on b a s e vec tors in t h e reference 
conf igura t ion, ( ) ^ deno te s covar iant differentiat ion in t h e reference frame a n d ν is t h e 
surface n o r m a l in t h e reference configurat ion. 

A d o u b l y pe r iod ic a r r ay of ident ical cells is sub jec t to p l ane s t r a i n t ens ion , w i t h 
y2 b e i n g t h e tensi le axis. Each cell con ta ins a single rigid whisker, perfec t ly b o n d e d t o 
t h e m a t r i x a n d al igned w i t h t h e tensi le axis. T h e cell d imens ions a r e 2WQ a long t h e y1 

di rec t ion a n d 2Lo a long t h e y2 d i rec t ion. Cons ide ra t ion is r e s t r i c t ed t o de fo rma t ions 
for which t h e s t r a igh t lines b o u n d i n g each cell r e m a i n s t r a igh t after de fo rma t ion a n d 
t o de fo rma t ions t h a t p reserve t h e mi r ro r s y m m e t r y of t h e a r r ay so t h a t s t r a i g h t lines 
connec t i ng t h e cen te r s of t h e cells r e m a i n s t ra igh t . W i t h these s y m m e t r i e s , t h e b o u n d a r y 
cond i t ions for t h e q u a d r a n t ana lyzed numerica l ly a re 

Û2 =  0  f 1 =  0  o n y 2 =  0  (4 ) 

ù2 =  Ù 2 =  t ave(L0 +  U 2) t 1 =  0  o n y 2 =  L 0 (5 ) 

ùl =  Ùi  f 2=0 o n y l =  w 0 (6 ) 

Here , è a v e i s a  p r e sc r ibe d cons t an t whil e U\  i s d e t e r m i n e d from  t h e cond i t i o n t h a t 
t h e averag e l a t e ra l t r a c t i o n r a t e vanishes , i.e. , 

Jo 
fldy2 =0  o n y l =  w 0 (7 ) 

Since t h e m a t r i x m a t e r i a l r ema in s perfectl y b o n d e d t o t h e r igi d whisker , u\  =  u 2 = 
0 a lon g t h e wh i ske r -ma t r i x interface . 

2.2 Constitutive  Relations 

T h e cons t i t u t i v e formula t io n her e follow s t h a t i n Pe i rc e et  al  ( 1983) , a n d fall s 
w i t h in t h e genera l f ramewor k descr ibe d i n Ric e (1971) , Hil l a n d R ic e (1972 ) a n d H a v n e r 
(1982). T h e numer ica l ca lcula t ion s a r e base d o n t h e p l a n a r c rys ta l m o d e l o f Asa r o 
(1979) , b u t w i t h t h r e e sli p sys tems , a s use d fo r compos i t e ma t e r i a l s i n M c H u g h et  al. 
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(1989, 1991), Need l eman a n d T v e r g a a r d (1991) and Need leman , Suresh a n d T v e r g a a r d 
(1992). As in Lee (1969), t h e deformat ion grad ien t is w r i t t e n as 

F = F*FP (8) 

T h e de fo rma t ion Fp consis ts solely of c rys ta l lographic s l ipping a long specific slip 
s y s t e m s (s^a\ m ( a ) ) , whe re is t h e slip d i rec t ion a n d m^ a^ is t h e slip p l a n e n o r m a l 
for slip s y s t e m a ( a = l , 2, 3) , and t h e elast ic deformat ion a n d any r igid b o d y r o t a t i o n 
a re inc luded in F*. T h e vectors s^a^ and m ( a ) s t r e t ch and r o t a t e accord ing t o 

s ( " ) * = F* · s<a> m ( a > = m ( a ) · F * " 1 (9) 

Different ia t ing (8) w i t h respec t t o t i m e and g roup ing t e r m s gives 

D * + Ω* = F* F * " 1 W + Ωρ = F* · Fp · F p _ 1 · F * " 1 (10) 

T h e p l a s t i c p a r t of t h e r a t e of deformat ion tensor , D p , a n d t h e p las t i c p a r t of t h e 
sp in t ensor , a re given by 

Όρ = Σ 7 ( °0ρ(« ) Ω ? = Σ 7 ( α ) W ( a ) (11) 
α α 

w i t h 

ρ ( " ) = i ( s W * m ( a ) * + m ( o : ) * s ( a ) * ) W ( a ) = i ( s ( a ) * m ( a ) * - m ( a ) * s ( a ) * ) (12) 

a n d is t h e r a t e of shear ing on slip sys tem a. 

T h e l a t t i ce J a u m a n n r a t e of Kirchhoff s t ress , τ*, a n d D * a r e r e l a t ed by 

τ* = r + r Ω* - Ω* τ = L : D * (13) 

where L is t h e t enso r of e las t ic modul i . 

For use in (1) , express ing (13) in t e r m s of t h e ma te r i a l convected r a t e of Kirchhoff 
s t ress , r c , a n d t h e r a t e of de format ion tensor , D , gives 

r c = L : D - ^ 7 < a > R < a > - Ό τ - τ Ό (14) 
a 

w i t h 
R ( a ) = L : P ( a > + W ( a ) · τ - r · W ( a ) (15) 
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Slip s y s t e m h a r d e n i n g is descr ibed by t h e power law re la t ion , so t h a t 

7 ( a ) = à 
r ( « ) ( a ) ( l / m ) - l 

(16) 

Here , ά is a reference s t r a in r a t e , m is t h e s t r a in r a t e h a r d e n i n g e x p o n e n t , is 
t h e slip s y s t e m ha rdness , a n d t h e slip sys t em resolved shear s t ress , r^a\ is g iven by 

r ( a ) = s ( a ) . . r . m ( o ) . ( 1 7 ) 

T h e evo lu t ion law for t h e ha rdnes s is specified by 

g(aH'r) = T , h * M w \ 9{aHo)=4a) (18) 
β 

Κβ = qh(y) + (1 - ς)ίι(Ί)δαβ 7 = Σ Ι^(α) I ( 1 9) 
α 

w i t h 

Λ(7) = ^ ο ( 7 / 7 ο + Ι ) " " 1 (20) 

whe re ho is t h e in i t ia l slip sy s t em ha rden ing r a t e , 70 is a reference s t r a in , Ν is t h e s t r a i n 
h a r d e n i n g e x p o n e n t a n d to is a reference s t r e n g t h . For t h e near ly r a t e i n d e p e n d e n t 
behav io r cons idered here , To effectively ac ts as t h e ini t ia l slip s y s t e m flow s t r e n g t h . 

2.3 Numerical Modelling 

T h e finite e lement d i scre t iza t ion of (1) is based on l inear d i sp l acemen t t r i ang les 
a r r a n g e d in to "crossed" t r i ang le quadr i l a te ra l s . T h e u n i t cell q u a d r a n t s ana lyzed nu
mer ica l ly a re shown in Fig. 1, where t h e s a m e 304 quadr i l a t e r a l finite e l ement m e s h is 
used in all t h r e e cases a n d each quadr i l a t e ra l consis ts of four t r i a n g u l a r finite e l emen t s . 
In F ig . l a , t h e fiber is e m b e d d e d in a single c rys ta l , as in N e e d l e m a n a n d T v e r g a a r d 
(1991). I n F ig . l b t h e q u a d r a n t is d ivided into two gra ins , while in Fig . l c it is d iv ided 
in to five g ra ins . Subsequent ly , these will b e referred to as t h e large g r a in a n d t h e smal l 
g ra in cases, respect ively. Since no ma te r i a l l eng th scale is p resen t in t h e b o u n d a r y value 
p r o b l e m formula t ion , geomet r i c lengths en te r t h e formula t ion t h r o u g h the i r r a t i o s , e.g. 
t h e fiber a spec t r a t i o a n d t h e r a t io of fiber spac ing t o size. T h u s , g r a in size re la t ive t o 
t h e fiber size is w h a t en t e r s t h e analyses here. T h e effect of va ry ing t h e g r a in size is 
t o c h a n g e t h e d i s t r i bu t ion of slip sys t em or ien ta t ions . T h e slip s y s t e m o r i e n t a t i o n s a re 
un i form wi th in a g ra in a n d differ from gra in to gra in . 

W i t h t h e o r i en t a t i on of t h e th ree slip sys t ems specified by s(a) = ( c o s # ( a ) , s i n # ( a ) ) , 
whe re is m e a s u r e d from t h e yl axis, t h e slip sys t ems in a g ra in a re o r i en ted a t 

= 60 deg + Δ 0 , = 120 deg +ΑΘ and = 180 deg + Δ 0 . F i g u r e 2 shows 
t h e t h r e e o r i en t a t i on d i s t r ibu t ions ana lyzed in t h e large g ra in ca lcu la t ions , whi le Fig. 
3 shows those used for t h e smal l g ra in ca lcula t ions . In b o t h figures t h e o r i e n t a t i o n of 
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W (b) (c) 

Figu re 1. G r a i n d i s t r ibu t ions in t h e uni t cell q u a d r a n t ana lyzed numer ica l ly shown on 
t h e finite e lement mesh . Each quadr i l a t e ra l consists of four "crossed" t r i a n g u l a r l inear 
d i sp lacement e lements , (a) a single grain; (b) two gra ins ( large g ra ins ) ; (c) five g ra ins 
(smal l g ra ins ) . In all cases, t h e fiber vo lume fraction is 3 0 % a n d t h e fiber a n d cell a spec t 
r a t ios a re 4. 

slip d i rec t ion 1 is shown and one slip p l ane di rect ion is p l o t t e d p e r quad r i l a t e r a l . For 
a quad r i l a t e r a l in t h e inter ior of a gra in , t h e slip p l ane o r i en ta t ions a r e iden t ica l in all 
four t r i angles w i th in t h e quadr i l a t e ra l . However, when t h e b o u n d a r y b e t w e e n g ra ins is 
a long a quad r i l a t e r a l d iagonal , only one of t h e two o r i en ta t ions w i th in t h e q u a d r i l a t e r a l 
is shown. 

In Fig . 2a, Α Θ = 0 deg in t h e uppe r gra in and Α Θ = 30 deg in t h e lower c rys ta l . 
B o t h t he se o r i en ta t ions cor respond to symmet r i c double slip for a homogeneous crys ta l ; 
w i t h Α Θ = 0 deg t h e two slip sys tems wi th non-zero resolved shear s t ress a re ± 3 0 deg 
from t h e tens i le axis, whi le w i t h Δ 0 = 30 deg t h e two slip sys t ems w i t h non-zero resolved 
shear s t ress a re ± 6 0 deg from t h e tensi le axis. In Fig. 2b t h e o r i en ta t ions of t h e u p p e r 
a n d lower g ra ins a re reversed, while in Fig. 2c Α Θ = 15 deg in t h e u p p e r g ra in and 
Α Θ = —15 deg in t h e lower gra in . T h u s , in all t h ree cases in Fig. 2 t h e m a g n i t u d e of t h e 
miso r i en ta t ion across t h e g ra in b o u n d a r y is 30 deg. Because of t h e 60 deg s y m m e t r y of 
t h e slip sy s t ems , th i s is t h e m a x i m u m misor ienta t ion . For t h e smal l g ra in cases in Fig. 
3 , values of Α Θ a re a rb i t ra r i ly assigned t h a t give rise to miso r i en ta t ions across g ra in 
b o u n d a r i e s r ang ing from 5 deg to 30 deg. 
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Figure 2. T h e direction of one slip plane showing the orientation distributions analyzed 
in the large grain calculations. 
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Figure 3 . T h e direction of one slip plane showing the orientation distributions analyzed 
in the small grain calculations. 
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T h e m a t e r i a l p rope r t i e s a re t aken to b e uniform t h r o u g h o u t t h e m a t r i x a n d , unless 
s t a t e d o the rwise , t h e geomet r i c a n d mate r i a l p a r a m e t e r s have t h e following values . T h e 
fiber a r ea fract ion is 30%, t h e fiber and cell aspect ra t ios a re 4, t h e m a t r i x elast ic
i ty is i so t ropic w i t h ν = 1/3, Ν = 0 .1 , m = 0.005, 70 = 0 .01 , τ™ = = τ<3> = τ 0 , 
Ε/το = 496.67 and ho / το = 10. T h e incrementa l b o u n d a r y value p r o b l e m is solved us ing 
a combined finite e lement -Gale rk in m e t h o d , which is t h e finite e l emen t -Ray le igh -Ri t z 
m e t h o d of T v e r g a a r d (1976) for c i rcumstances where t h e stiffness m a t r i x is u n s y m -
met r i c . A n imposed s t r a i n r a t e è ave =  à  i s p rescr ibe d a n d t h e de fo rma t io n h i s to r y i s 
c a l cu la ted i n a  l inea r i nc rementa l m a n n e r . I n orde r t o increas e t h e s t a b l e t i m e s t e p , a 
r a t e t a n g e n t m o d u l u s m e t h o d , a s descr ibe d i n Peirc e et  al.  (1983) , i s used . 

3 . R e s u l t s 

T h e overal l s t ress -s t ra i n r espons e fo r tw o differentl y o r ien te d whiske r re inforce d 
s ingle c rys ta l s i s show n i n Fig . 4 . Here , an d subsequent ly , e ave =  l n ( l 4 - U2/L0)  a n d 

For t h e homogeneou s m a t r i x ma te r i a l i n p l an e s t r a i n t ens ion , t h e r e spons e i n t hes e 
two o r i en t a t ion s coincide s b ecaus e t h e r a t i o o f tensi l e s t res s t o sli p p l a n e resolve d shea r 
s t ress , 2 / s i n 2 # ( a \ o n t h e tw o act iv e sys tem s ( τ ^ = 0 for one of t h e t h r e e slip sys tems) 
is t h e s a m e for Α Θ = 0 deg a n d Δ 0 = 30 deg. Since t h e elast ic i ty is isot ropic , t h e m e t a l 
m a t r i x compos i t e response in t h e elast ic r ange is independen t of c rys ta l o r i en ta t ion . 
E v e n in t h e ini t ial s t ages of loading t h e overall s t ress -s t ra in curves for t h e two fiber 
reinforced c rys ta l s in Fig . 4 essential ly coincide. However, once la t t i ce r o t a t i o n effects 
b e c o m e significant, t h e r e sponse of these two or ien ta t ions differs s o m e w h a t , so t h a t t h e 
m a x i m u m s t ress po in t a n d t h e onset of local izat ion d e p e n d o n ini t ia l o r i en t a t i on . For 
example , w i t h Δ 0 = 0 deg t h e s h a r p s t ress d rop in Fig. 4 is a t taVe = 0 .0107, while 
w i t h Δ 0 = 30 deg it is a t t a v e = 0.0103. T h e s t ress d r o p is a consequence of t h e s t r a in 
concen t r a t i on a t t h e fiber corner p r o m o t i n g very localized de format ions . 

F igu re 5 shows t h e overall s t ress-s t ra in response for t h e t h r e e large g ra in o r i en t a t i on 
d i s t r ibu t ions . T h e r e is very l i t t le difference be tween t h e curves in Fig. 5 a n d t h e single 
c rys ta l s t r e s s - s t r a in curves in Fig. 4. T h e s h a r p s tress d rops for t h e t h r e e large g ra in 
cases occu r be tween e a v e = 0.0103 and t a v e = 0.0105. For t h e ca lcu la t ion based on t h e 
o r i en t a t i on d i s t r i bu t ion in Fig. 2b, a plot of t h e cur ren t l a t t i ce o r i en t a t i on a n d con tou r s 
of a c c u m u l a t e d slip, 7 , a n d normal ized hydros ta t i c tension, τ : Ι / 3 τ ο , a re shown in Fig. 
6 a t a s t age following t h e s t ress d rop . F igure 6a shows t h e o r i en ta t ion , in t h e cu r ren t 
conf igurat ion, of t h e slip p lanes in Fig. 2b. T h e large ro t a t i ons t o w a r d t h e tensi le axis 
in t h e vicini ty of t h e fiber corner a re evident in th is figure. T h e r e a re also significant 
l a t t i ce r o t a t i o n s in th i s d i rect ion above t h e fiber. F igures 6b and 6c show t h e s t r a in 
c o n c e n t r a t i o n a t t h e fiber corner and t h e high tensile hyd ros t a t i c s t resses t h a t develop 
above t h e fiber. T h e d i s t r ibu t ions in Figs. 6b and 6c are very s imi lar to those for a 
single c rys ta l , Need leman and T v e r g a a r d (1991). 

(21) 
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6 

D i s t r i b u t i o n 2 a 
D i s t r i b u t i o n 2 b 
D i s t r i b u t i o n 2 c 

0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0 

£ a v e 
Figu re 5. S t ress versus s t r a in in p l ane s t r a in tens ion for t h e t h r e e large g r a in calcula
t ions . D i s t r i b u t i o n s 2a, 2b and 2c cor respond to Figs . 2a, 2b a n d 2c, respect ively. 
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F i g u r e 6 . C u r r e n t sli p p l an e o r i en ta t io n (a ) a n d con tour s o f c ons t an t (b ) a c c u m u l a t e d 
shea r s t r a in , 7 , a n d (c ) normal ize d hyd ros t a t i c tension , τ : Ι / 3 τ ο , for t h e large g ra in 
d i s t r i bu t ion of Fig . 2b a t t a v e = 0.0105. 

T h e overal l s t ress - s t ra in response for t h e t h r e e smal l g ra in o r i en t a t i on d i s t r i bu t ions 
are shown in Fig. 7. For compar i son purposes , t h e cor respond ing curve for a c o m p o s i t e 
w i th an isotropical ly h a r d e n i n g Mises m a t r i x is also p lo t t ed . T h e resu l t s for t h e Mises 
a n d c rys t a l m a t r i c e s a re essential ly t h e s ame in t h e ear ly s tages of de fo rmat ion . However, 
as in N e e d l e m a n a n d T v e r g a a r d (1991) a n d Need leman , Suresh a n d T v e r g a a r d (1992), 
t h e s t r e ss - s t r a in curves for t h e crys ta l ma t r i ces eventual ly soften, b e c a u s e of local iza t ion, 
re la t ive to t h a t for t h e compos i t e w i th t h e Mises m a t r i x . T h e s t ress d rops in F ig . 7 
occur b e t w e e n taVe = 0.0103 a n d t a v e = 0.0106. F igures 4, 5 and 7 show t h a t t h e overall 
s t r ess - s t ra in behav ior , inc luding t h e onset of local izat ion, is re la t ively insensi t ive to t h e 
d i s t r i bu t i on of ini t ia l o r i en ta t ions . 

F igu re 8 shows t h e cur ren t la t t ice o r ien ta t ion a n d con tours of a c c u m u l a t e d slip, 7 , 
a n d normal ized h y d r o s t a t i c tens ion, τ : Ι / 3 τ ο , for t h e smal l g ra in o r i en t a t i on d i s t r i bu t i on 
in Fig . 3c a t a s t age of deformat ion after t h e s t ress d rop . T h e qua l i t a t i ve fea tures a re 
as seen for t h e large gra in case in Fig. 6. T h e r e is even general ly good q u a n t i t a t i v e 
ag reemen t be tween t h e con tour p lo t s in Figs. 8b a n d 8c a n d t h e co r r e spond ing p lo t s in 
Figs . 6b a n d 6c. O n e fea ture in Fig. 8c t h a t is not presen t in Fig. 6c is t h e e levat ion 
in h y d r o s t a t i c s t ress in t h e u p p e r r ight h a n d corner of t h e un i t cell. T h i s arises because 
t h e l a t t i ce t h e r e is no t or ien ted for s y m m e t r i c doub le slip. 
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£ a v e 
Figu re 7. S t ress versus s t r a i n in p l ane s t r a in tens ion for t h e t h r e e smal l g ra in calcula
t ions . D i s t r i b u t i o n s 3a, 3b a n d 3c cor respond to Figs. 3a, 3b and 3c, respect ively . For 
compa r i son p u r p o s e s , t h e cor responding s t ress -s t ra in curve for a Mises solid is shown. 

A l t h o u g h in all t h e ca lcula t ions t h e value of e a v e r ema ins smal l , F igs . 6 a n d 8 show 
t h a t t h e local s t r a in s a n d la t t i ce ro t a t i ons are large. Never the less , it is found t h a t t h e 
overall s t r e s s - s t r a in response , including t h e onset of local izat ion, is r a t h e r insensi t ive t o 
t h e change in o r i en t a t i on d i s t r ibu t ion t h a t occurs when t h e g ra in size is var ied. T h e 
overall s t r e s s - s t r a in r e sponse and t h e onset of local izat ion do d e p e n d on fiber vo lume 
fract ion a n d fiber d i s t r i bu t i on (Needleman and T v e r g a a r d , 1991; N e e d l e m a n , Suresh 
a n d T v e r g a a r d , 1992), which have b e e n kept fixed in t h e p resen t inves t iga t ion . T h e 
r e sponse also d e p e n d s on fiber and cell aspect r a t io . A ca lcula t ion , no t s h o w n here , was 
car r ied o u t for a single c rys ta l hav ing ΑΘ = 0 deg and w i th a fiber a n d cell a spec t r a t i o 
of 2. T h e m a x i m u m value of a a v e is r educed by a b o u t 2 0 % a n d t a v e a t loca l iza t ion is 
increased t o « 0.02. 

I n t h e ca lcu la t ions so far it has been p r e s u m e d t h a t t h e m a t e r i a l p r o p e r t i e s a re 
i n d e p e n d e n t of g ra in size. However, t h e single c rys ta l flow s t r e n g t h c a n va ry w i t h g ra in 
size t h r o u g h a Ha l l -Pe tch t y p e re la t ion and changes in g ra in size can affect t h e whole 
s t r e s s - s t r a in curve , see e.g. Honeycombe (1968). W h i l e t h e c rys t a l m o d e l he re does 
n o t i n c o r p o r a t e any size effect, t h i s effect can b e explored by va ry ing t h e slip s y s t e m 
response . In o rder to i l lus t ra te t h e consequences of a va r ia t ion in το, w i t h all o the r 
p a r a m e t e r s fixed, F ig . 9 shows t h e resul t s of two calcula t ions ; one is r e p e a t e d from 
Fig. 7, whi le t h e o the r uses t h e s a m e m a t r i x charac te r i za t ion except t h a t t h e reference 
s t r e n g t h of each of t h e t h r ee slip sys tems is t aken to b e 1.5ro r a t h e r t h a n T Q . T h e change 
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Figu re 8. C u r r e n t slip p l ane o r i en ta t ion (a) a n d con tours of c o n s t a n t (b) a c c u m u l a t e d 
shear s t r a in , 7 , a n d (c) normal ized hydros t a t i c tens ion, τ : Ι / 3 τ ο , for t h e smal l g ra in 
d i s t r i bu t i on of Fig . 3c a t eaVe = 0.0106. 

9 .0 ι 

£ a v e 
Figu re 9. St ress versus s t r a in in p lane s t r a in tens ion for t h e smal l g r a i n d i s t r i bu t i on in 
Fig . 3c. T h e curve cor respond ing to r 0 is r e p e a t e d from Fig. 7, while t h e curve hav ing 
1.5TO i l lus t ra tes t h e effect of an increased flow s t r eng th w i th all o t h e r p a r a m e t e r s fixed. 
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in t h e c o m p o s i t e s t r ess - s t ra in curve seen in Fig. 9 reflects t h e change in TO. Because 
t h e va lue of ho is fixed at ΙΟτο in b o t h ca lcula t ions in Fig. 9, t h e s t r a i n h a r d e n i n g r a t e 
does no t increase in p r o p o r t i o n to t h e increase in s t r e n g t h and th i s s o m e w h a t delays 
t h e s t ress d r o p assoc ia ted w i t h local izat ion. T h e resu l t s in F ig . 9 i nd i ca t e t h a t a g ra in 
size d e p e n d e n t r e s p o n s e m a y ar ise from gra in size var ia t ions in s l ip s y s t e m h a r d e n i n g . 

All t h e resu l t s in th i s inves t iga t ion have b e e n o b t a i n e d us ing t h e 304 q u a d r i l a t e r a l 
finite e l emen t m e s h in Fig. 1. T h e s t r a in concen t ra t ion a t t h e fiber corner p l ays an 
i m p o r t a n t role in p r ec ipa t i ng local izat ion and , a t least in p a r t for t h i s r eason , t h e onse t 
of t h e s t ress d r o p a c c o m p a n y i n g local izat ion can b e sensi t ive t o t h e degree of m e s h 
ref inement . M e s h sensi t iv i ty analyses in Need leman a n d T v e r g a a r d (1991) show t h a t 
t h e va lue of e a v e a t which t h e s t ress m a x i m u m is a t t a i n e d decreases w i t h increas ing 
m e s h ref inement , b u t t h a t p r ior to t h e local izat ion induced s t ress decrease , t h e overall 
behav io r o b t a i n e d from m o r e refined meshes essential ly coincides w i t h t h e p red ic t ions 
b a s e d o n a m e s h s imilar t o t h e one used here . 

4. D i s c u s s i o n 

T h e p rev ious inves t iga t ions for al igned whiskers e m b e d d e d in a single c rys t a l m a t r i x 
( N e e d l e m a n a n d T v e r g a a r d , 1991; Need leman , Suresh a n d T v e r g a a r d , 1992) h a v e shown 
t h a t s t rong ly localized flow induced by t h e high s t r a i n concen t r a t i ons a t s h a r p whisker 
edges is t h e m a i n effect of c rys ta l plast ici ty. In those s tud ies t h e loca l iza t ion s t r a i n was 
found to d e p e n d on t h e whisker vo lume fraction and o n t h e whisker d i s t r i bu t i on . In 
a n agg rega t e of g ra ins w i t h r a n d o m or ien ta t ions of t h e c rys ta l axes ( H a r r e n , Deve a n d 
Asaro ; 1988) t h e t e n d e n c y t o w a r d s local izat ion is less clear, and t h i s could affect t h e 
p red ic t i ons for a g ra in size of t h e order of m a g n i t u d e of t h e fiber d imens ions , w h e r e a 
shea r b a n d would have t o cross a n u m b e r of gra ins . However, t h e p resen t c o m p u t a t i o n s 
show t h a t t h e local iza t ion behav io r p red ic ted for shor t fibers s u r r o u n d e d b y a n u m b e r 
of g ra ins is very s imilar t o t h a t p red ic t ed for a single c rys ta l m a t r i x , in sp i t e of t h e 
c rys ta l axis mi so r i en t a t ion be tween ne ighbor ing gra ins . In fact, t h e loca l iza t ion s t r a i n s 
p r ed i c t ed for a n u m b e r of different mul t i -gra in d i s t r ibu t ions a n d o r i en t a t i ons a r e all 
b o u n d e d b y t h e local iza t ion s t r a ins p red ic t ed for t h e two e x t r e m e c rys t a l o r i e n t a t i o n s 
in a single c rys ta l m a t r i x . T h e c o m p u t a t i o n s were t e r m i n a t e d w i t h t h e load d r o p p i n g 
a n d loca l iza t ion cont inu ing . O n e possibi l i ty for t h e subsequen t behav io r is t h e con t inued 
a c c u m u l a t i o n of localized s t ra in ing . A n o t h e r possibi l i ty is t h a t t h e localized s t r a i n i n g 
even tua l ly s a t u r a t e s , d u e t o ma te r i a l s t r a in h a r d e n i n g a n d l imi ts o n t e x t u r a l sof tening, 
as seen in T v e r g a a r d and Need leman (1992). 

C o m p a r i s o n has b e e n m a d e wi th a Mises solid (Fig. 7) , for which t h e r e s p o n s e in 
h o m o g e n e o u s p l a n e s t r a in t ens ion is essential ly ident ica l t o t h a t of a h o m o g e n e o u s single 
c ry ta l o r i en t ed for s y m m e t r i c doub le slip. F igure 7 shows t h a t t h e c o m p o s i t e w i t h t h e 
p l a n a r mul t i -g ra in c rys ta l m a t r i x progressively softens re la t ive t o t h e c o m p o s i t e w i t h 
t h e Mises m a t r i x , in ag reemen t wi th t h e resul t s of Need l eman a n d T v e r g a a r d (1991) for 
a single c rys ta l m a t r i x . Also, for t h e Mises m a t r i x no load d r o p is p r ed i c t ed , assoc ia ted 
w i th localized s t r a in ing a t t h e sha rp whisker edges. It is n o t ed t h a t t h e a s s u m p t i o n s of a 
phenomenolog ica l t h e o r y of p las t ic i ty should b e c o m e a b e t t e r a p p r o x i m a t i o n t h e smal le r 
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t h e g ra in size re la t ive t o t h e fiber d imensions . However, it is also k n o w n (Hu tch inson , 
1970) t h a t an aggrega te of m a n y grains shows t h e deve lopment of a ve r t ex o n t h e 
overall yield surface. T h u s , in t h e limit of m a n y smal l g ra ins t h e p red ic t i ons of c rys ta l 
p las t ic i ty would no t converge towards those of a solid w i th a s m o o t h Mises yield surface, 
pa r t i cu l a r ly in cases involving p las t ic flow local izat ion, whe re t h e onse t of loca l iza t ion 
is h ighly sensi t ive to deta i l s of t h e cons t i tu t ive descr ip t ion. 

T h e smal l difference found here be tween compos i tes wi th a single g ra in m a t r i x o r a 
mul t i -g ra in m a t r i x has focussed on t h e effect of misor ien ta t ion , w i t h all o t h e r m a t e r i a l 
p r o p e r t i e s ident ica l in t h e gra ins . However, in cases where t h e c ry t a l flow s t r e n g t h varies 
wi th t h e g r a i n size t h r o u g h a Ha l l -Pe tch t y p e re la t ion t h e whole s t r e s s - s t r a in curve is 
changed for t h e g ra in aggrega te , a n d th i s can also affect t h e onse t of loca l iza t ion (Fig. 
9). 

T h e p l a n a r mode l s used for t h e present s tudies do no t allow for a rea l is t ic r epre 
s en t a t i on of t h e whisker geometry . Ax iymmet r i c cell-model ana lyses have b e e n used 
in a n u m b e r of s tud ies w i t h a Mises ma te r i a l m a t r i x , b u t in t h e case of c rys ta l s t h e 
slip s y s t e m s do no t have ax i symmet r i c p roper t i es , so th i s would r equ i re a full t h r e e -
d imens iona l numer ica l analysis . For a th ree-d imens iona l m a t e r i a l sub jec t t o average 
p l a n e s t r a in cond i t ions , t h e effect of local izat ion is expec t ed to b e m u c h like t h a t found 
in t h e p resen t s tud ies , p r e s u m i n g t h a t t h e p l ana r mode l gives a r e sponse r e p r e s e n t a t i v e 
of t h e a c t u a l 3D crys ta l , b u t u n d e r ax i symmet r i c - type condi t ions th i s effect would b e 
less d o m i n a n t , s ince ma te r i a l s a re general ly m o r e res i s tan t to local iza t ion u n d e r such 
c i r cums tances (Need l eman a n d Rice, 1978). Addi t ional ly , for a c t u a l 3 D crys ta l s t h e r e 
a re o r i en t a t i ons t h a t a re expec ted t o b e more res i s tan t t o local izat ion t h a n t hose r ep 
resen ted by t h e t h r e e s l ip-sys tem p l ana r c rys ta l mode l . 
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Summary 
An identification technique is presented which allows to obtain phenomenological coeffi

cients of constitutive models describing nonlinear mechanical behaviour of engineering mate
rials. The identification problem is considered as the following optimization problem: to obtain 
the set of material parameters by minimizing the difference between the experimental data and 
the computed response of the specimen under consideration. The focus is on so-called nontrivial 
experiments, i.e. experiments where inhomogeneous and multiaxial strain/stress fields within 
the specimen may be observed, which require numerical simulation of the same experiment by 
means of a nonlinear F E procedure incorporating the constitutive model to be identified. 

Special attention is paid to reduce the number of calls for highly computationally expensive 
objective function evaluations needed to solve the optimization problem. The implemented 
optimization technique is based on an iterative approximation of the original objective function 
by computationally less expensive expressions, obtained by a weighted least-squares method. 

The procedure is illustrated by the determination of parameters of large deformation plastic
ity models from solid bar torsion tests. 

1. I N T R O D U C T I O N 

There seems to be an irreversible tendency for the application of more and more complex 
materials under more and more severe external conditions, while subjected to increasing relia
bility requirements. Much work is and will be devoted in the future to developing constitutive 
models for the description of the nonlinear mechanical behaviour of modern materials. Ulti
mately, all such models contain a number of material parameters (phenomenological coeffi
cients) which are to be determined from laboratory experiments. Traditionally, relatively simple 
tests are used where the stress and strain fields inside the specimen are to a high degree uniform 
(e.g. the tensile test). The material parameters for a chosen material model can be derived then 
from the test data immediately and, in many cases, analytically. However , when looking into 
more complex features of nonlinear material behaviour, one sooner or later runs into the limita-
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tions of such tests in the sense that the actual stress/strain fields are no longer uniform in the 
range under consideration, leading to e.g. premature failure at inherent stress concentrations, 
strain localization in necks etc. The traditional attempts of minimizing the inhomogeneity face 
serious difficulties especially in the case of advanced materials (polymers, composites etc.). 

Thus , it seems inevitable to carry out nontrivial experiments, i.e. experiments where the 
specimen to be used for model parameter assessment will involve inhomogeneous and multiax-
ial stress and strain fields. There are some more reasons in carrying out of nontrivial experi
ments , such as insensitivity to strain localization (e.g. the torsion test of solid bars), ease of 
manufacturing (e.g. in the case of composites), or the possibility to use structural elements from 
direct engineering practice as specimens. The price to be paid for this, however, is that the val
ues of pertinent quantities cannot be derived from the experiment immediately. In contrast, a 
nonlinear FE analysis will usually be necessary to numerically simulate the actual experiment; 
however, this requires that the values of the material parameters are known. Thus, an iterative 
procedure is necessary (see, e.g., [ l ] - [5 ] ) . Here, the identification problem is formulated as an 
optimization problem where the function to be minimized is some error function that expresses 
the difference between numerical simulation results and experimental data. Analogous formu
lations have been considered in [6], [7] for the identification of linear orthotropic material 
parameters and in [8], [9] for viscoelastic material parameters. 

2. F O R M U L A T I O N O F O P T I M I Z A T I O N P R O B L E M 

Let us consider the material parameters to be identified as components of the vector x e 
Then the optimization problem can be formulated as follows: 

Find the vector χ that minimizes the objective function 

M 
F(x) = X 0 a F a ( x ) (1) 

a = 1 

subject to 

AJ<XJ<BJ (j=l,...,N)9 (2) 

where: 

M is the total number of individual specific response quantities (denoted by a Greek 
index a ) which can be measured in the course of experiments and then obtained as 
a result of the FE simulation; 

F a ( x ) is the dimensionless function 

^ α ( χ ) = ( Σ [*"-*νφ]21/ίΣ [< ] 2]' (3> 
\ y = 1 ' \ y = 1 ' 

which measures the deviation between the computed oc-th individual response and 
the observed one from the experiment; 
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τ α is a parameter which defines the history of the process in the course of the experi
ment (e.g. the loading parameter), and the value τ " ( a = 1 , . . . , M , s = 1 , . . . , Sa) 
define the discrete set of Sa experimental data points; 
( a = l , . . . , M , j = l , . . . , Sa) is the value of the oc-th measured response quantity 
corresponding to the value of the experiment history parameter τ " ; 

Ra(x, τ " ) is the value of the same response quantity obtained from the numerical simulation; 
Θ α is the weight coefficient which determines the relative contribution of information 

yielded by the α-th set of experimental data, 
Bj axe. side constraints, stipulated by some additional physical considerations, which 

define a search region in the space of optimization parameters. 
Figure 1 shows an illustration of the idea of experimental and simulated response quantities Ra 

corresponding to various values of the experiment history parameter τ " (s = 1, . . . , 5 α ) . 

A 

Figure 1. A response quantity Ra at various values of the history parameter ( j = 1 , . . . , Sa) 
as obtained from experiments ( · ) and from numerical simulations ( ο ) . 

3. M U L T I P O I N T A P P R O X I M A T I O N T E C H N I Q U E 

The optimization problem (1), (2) has the following characteristic features: 
• an objective function is an implicit function of parameters x; 
• to calculate values of this function for the specific set of parameters χ means to use a non

linear numerical (i.e. finite element) simulation of the process under consideration, which 
usually involves a large amount of computer t ime; 

• function values present some noise, i.e. can only be estimated with a finite accuracy. 
The direct implementation of any usual nonlinear mathematical programming technique would 
involve too large amount of computer time and, moreover, the convergence of a method cannot 
be guaranteed. To solve the problem, the iterative multipoint approximation concept [10], [11] 
was therefore borrowed from the field of structural optimization. 
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The technique is based upon the iterative approximation of computationally expensive func
tions F a ( x ) by simplified functions. The initial optimization problem (1), (2) is replaced then 
with the succession of simpler subproblems as follows: 

Find the vector x£ that minimizes the objective function 

M 

Fk(x) = £ © a F * ( x ) (4) 
a= 1 

subject to constraints 

Α)<Χ}<Β]; A)>ArBk

j<Bj {j=\,...9N) (5) 

where k is the current iteration number. The current move limits Aj and Bj define a subregion 
of the original search region where simplified functions Fk (x) are considered as current approx
imations of the initial implicit functions Fa(x). To estimate their accuracy, the error parameter 

rk = |W)-^(XM / F(XI)| (6) 
is evaluated. 

~ α 
To construct analytical expressions for the F^(x) in (4), we shall implement methods of 

regression analysis. They are intended for obtaining analytical expressions that reflect the 
behaviour of an object considered as a function of its parameters, based on a set of experimental 
results. Note that here and in the remainder of this section, an experiment means a computational 
experiment using the FE model of the process under consideration. Also, it is essential to note 
that we do not intend to construct simplified expressions that are adequate in the whole of the 
search region (2) because it takes too large number of numerical experiments in case of real-life 
multiparameter problems. Therefore we construct such expressions iteratively only for separate 
search subregions; i.e. functions F^x) a = 1 , . . . , M give the piece-wise approximation of the 
actual functions Fa(x). 

Let us now consider the problem of formulating the functions Fk (x) . Assume that the func
tion (3) is expressed in the following general form: 

Fk = F * ( x , a a ) . (7) 

The vector a a = (af,a£) in expression (7) consists of so-called tuning parameters; that 
is, free parameters the value of which is determined on the basis of numerical experiments at 
points located in the design variable space RN in accordance with some design (plan) of exper
iments. Then the weighted least-squares method leads to the following problem: 

Find the vector a a that minimizes the function 

G ? ( a a ) = X H £ [ F a ( x p ) - F a

k ( x p , a a ) ] * (8) 
p = l 
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where 
Ρ is the total number of points in the plan of experiments; 
xp _ is the vector of design variables that defines the current point; 
Fa(xp), Fk (xp, a a ) are the values at the point xp of the original function in (3) and of the approx

imate function in (7), respectively; 
wp is the weight coefficient that characterizes the relative contribution of the p-th exper

iment ' s information. 
The solution of the optimization problem (8) is the vector a which makes up the simplified func
tion (7). The weight coefficients wpi (p = 1 , . . . , P) in (8) reflect the inequality of data obtained 
in different design points. The correct choice of these weights can substantially improve the 
properties of the functions Fk(x). In our optimization problem (1), (2) where no behavioural 
constraints are imposed, weights can reflect the difference in the contribution of data given by 
different numerical experiments depending on the objective function value at individual points 
in . Then the max imum value of the weight coefficients corresponds to the optimization space 
point with the min imum value of the objective function. 

After formulation of the simplified functions (7), the current mathematical programming 
problem (4), (5) is solved and the error parameter rk in (6) for the point x£ is estimated. Next, 
the task is to identify the size and location of the next search region (i.e. to determine the move 
limits Aj and Bj for the next iteration). First the condition 

rk<ek (9) 

is checked, where ek is a small positive number which defines the feasible accuracy of approx
imation of the function Fa(x) by function Fk(x). If it is not satisfied (i.e. approximations are 
inaccurate), then the size of the search subregion of the (k + l ) - th step must be reduced. When 
the condition (9) is satisfied, we must decide upon the movement of the search subregion. If the 
point obtained, x î , is located inside the k-th search subregion (none of the move limits is ac-
tive), then the point x^ can be considered as the current approximation of the solution χ . In 
that case, the next search subregion should be reduced and the other conditions of the search 
termination should be checked. Otherwise, if some of the conditions (5) are satisfied as equali
ties, the search must be continued. This means that the search subregion must be moved in the 
direction x£ -x£_ l without changing its size. Depending on the accuracy of the approximations 
(i.e. values of the error parameters rk), either a new plan of experiments in the next search sub-
region should be chosen or the approximations can be used once again in the new search subre
gion. The search process is terminated when (/) the condition (9) is satisfied, (ii) none of move 
limits is active and (Hi) the subregion has reached a required small size. 

Let us now consider the problem of formulating the simplified functions Fk (x, a a ) . Appar
ently, the efficiency of the optimization technique depends greatly on the accuracy of such 
expressions. Note that properly chosen expressions in our case of the optimization problem (1), 
(2) with no behavioural constraints imposed, must allow for an internal min imum point inside 
the search region defined by side constraints (2), for otherwise the convergency of the method 
can be slow; i.e., the number of steps of the algorithm and, correspondingly, the number of calls 
for the evaluation of the functions Fa(x) would be very large. Therefore, the simplest possible 
choice of a linear expression in χ for all of the functions Fk(x9 a a ) ( a = 1, . . . , M) will be inap-
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propriate. 
The simplest form of an expression which does satisfy the above requirement, is a full quad

ratic polynomial . If there are no other considerations available, then it can be considered as a 
reasonable choice. However, it requires at least N(N+l)/2 + N+l calls for the evaluation of 
the functions Fa(x) in (3), which can be a very large number in the case of a multiparameter 
identification problem where Ν can easily be of the order of 10. 

There is an alternative approach based on so-called mechanistic models, which finds increas
ing application in empirical model-building [12]. The parameter estimation of such models 
requires the implementation of the most general (nonlinear) form of the least-squares method. 
These models are constructed on the basis of physical considerations, which can sometimes pro
vide clues to the nature of a phenomena under consideration. The designer of such a mechanistic 
model can typically use a priori information, such as analytical solutions for simplified geomet
rical shape, loading or boundary conditions of the specimen under consideration. Clearly, in this 
approach, the researcher 's experience and engineering judgement is essential to create high-
quality approximations. Typically, the available information presents the description of the 
process under consideration as a function of the experiment history parameter τ α . Such infor
mation can be used for the formulation of a simplified model in the following form: 

s s 
(̂x,aa) = i f [<-^(x,aa,x«)]2Uf [<]21 , (10) 

\ s = 1 ' \ s = 1 ' 

where /?*(x, a a , τ α ) is a simplified model of the process under consideration. 
It should be noted that the simplified functions Fk (x, a ) need not necessarily be explicit. 

There can be some numerical procedures involved in their formulation, such as numerical inte
gration or even finite element modelling of the simplified process. But, the basic requirements 
to such models are: 

• its description of the simplified process must depend on the same parameters χ as the ini
tial numerical model , presented by functions # " ( x ) in (3); 

• they have to contain some tuning parameters a a which are to be obtained by solving the 
optimization problem (8); 

• they have to be simple enough to be used in numerous repeating calculations; 
• in order to achieve fast convergency of the identification procedure, they have to be accu

rate enough in comparison with original functions (3). 
• they have to be noiseless or, at least, the level of noise must not cause problems with con

vergence of an algorithm used to solve the optimization problems (4), (5) and (8). 

4. A P P L I C A T I O N T O L A R G E S T R A I N E L A S T O P L A S T I C T O R S I O N 

As a first relatively simple example of the above procedure, we shall discuss the identifica
tion of material parameters in a class of constitutive models for large elastoplastic deformations. 
In particular, we will focus on phenomenological models that include deformation-induced ani-
sotropy, as it occurs in engineering metals under large strains. Such models find potential appli
cation in for instance the simulation of industrial forming processes, so as to be able to optimize 
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the process control. The inherent physical nonlinearity of such models is further complicated by 
the complex history dependence of the deformation-induced anisotropy. The simplest possible 
experiment — t h e uniaxial tensile test— poses two major difficulties for the parameter identifi
cation in large deformation plasticity models: (i) for models that include deformation-induced 
anisotropy, the uniaxial response need not depend on all material parameters, and (ii) at large 
strains, necking intervenes and leads to a complicated three-dimensional stress and strain state. 
A large strain torsion test does not lead to such instabilities, and does provide a means to identify 
all pertinent parameters for the class of models considered here. The parameter identification 
from the torsion test, however, is rather involved because of the inherent radially inhomogene-
ous and path dependent stress and strain state, thus requiring a numerical approach as suggested 
here. After discussing the typical experimental results of a large strain torsion test, we present 
the class of constitutive models that we are going to consider, the finite element approach to sim
ulating the test and, finally, a highly approximate model to be used in the multipoint approxima
tion technique. 

4.1. E x p e r i m e n t a l Resu l t s 
The torsion tests to be considered here employ solid circular bars with a cylindrical section of 
150 m m length and an initial radius of Rq — 7.5 mm. The angle of twist φ is measured over a 
gauge section of initial length L 0 = 100 m m which is believed to be sufficiently far away from 
the ends to exclude any end effects, so that it can be assumed with high accuracy that plane 
cross-sections remain plane (see Fig. 2). In addition to that, the axial displacement U = L-L0 

Figure 2. Torsion of a circular cylindrical solid bar 

over the same gauge section is monitored by means of a special axial-torsional extensometer. 
The reason for doing that is that for large torsional strains, the specimen will tend to elongate 
when it is left free in the axial direction. This was first discovered by Swift [13] in 1947, and 
has been conclusively attributed to deformation-induced anisotropy due to texture (see, e.g., 
[14], [15]). Thus, the quantitative experimental determination of this Swift effect is an important 
source of information for the identification of material parameters in the constitutive description 
of the evolving anisotropy; but it should be realized that it is a second-order effect. Figure 3 
shows typical results of such a torsion test on 304 stainless steel in terms of the torque Τ and the 

L 
in 

R 
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Figure 3. Torque response (a) and axial strain development (b) during free-end torsion of solid 
SS 304 bars. 

(engineering) axial strain ε ζ = L/L0 - 1 as a function of twist φ L16J. The particular tests were 
carried out at room temperature and at a twist rate of φ = 1.1 x l 0 ~ 3 r a d / s . 

4.2. Constitutive Equations 
Several phenomenological constitutive equations for large strain elastoplasticity may be found 
in the literature that have been used to study large strain torsion, or rather the significantly sim
pler problem of simple shear (see, e.g., [15], [17]—[19]). The referenced constitutive equations 
are of a kinematic hardening type, possibly coupled with isotropic hardening, incorporating the 
notion of plastic spin. Here, we will consider only one of them, which is a combined kinematic-
isotropic hardening model —referred to as the DL model in [19])— with the plastic spin consti
tutive equation based on propositions of Dafalias [17] and Loret [18]. This particular model fea
tures the gradual fading of kinematic hardening at large strains, based on the experimental 
observation that typically at strains larger than several ten percents no Bauschinger effect is ob
served; evidence for that in large strain torsion may be found in [13], [16]. 

A summary of the constitutive equations is given in Table 1. Here , D and W are generic for 
strain-rate tensors and spin tensors, respectively, tr denotes the trace and : is the double dot prod
uct ( ( L : D) ~ = £ ^ ^ 0 ^ ) . Further, σ and s are the Cauchy stress tensor and its deviator, a is 
the back stress tensor which specifies the translation of the yield surface's centre in σ-space and 
H specifies its isotropic expansion. The relative contributions of kinematic and isotropic hard
ening to strain hardening are governed by the parameter b. Purely isotropic behaviour is 
obtained for b = 1 while pure kinematic hardening corresponds to b = 0. Without going into fur
ther details, we note that this model incorporates the following material parameters: 
Ε, ν Young's modulus and Poisson 's ratio; 

the initial von Mises yield stress; 
Δ σ ^ , parameters in the expression 
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Κ 

°e = V Σ Δ σ , ( ° [1 - e x p i - ε / ε ^ ) ] (11) 

/= ι 
for the description of the uniaxial response in terms of the effective von Mises stress 
oe and the accumulated effective plastic strain ε^; 

eb the evolution parameter in the evolution of b (the initial value b0 is taken to be 0); 
ρ the (constant) plastic spin parameter. 
With only one exponential term in (11), i.e. Κ = 1, a reasonable fit can be obtained to either the 
small strain or the large strain response; but in order to describe both ranges well, at least two 
terms will be necessary (see [19]). 

Table 1 

kinematics: D = Oe + , W = W * + W 

(hypo-) elasticity: 
V 

σ = σ - W * a + o W e = L : Oe , 

Lijkl - 2 ν δ Λ / ] 

yield condition: 9 ( S ) : 
1 - 2 1 2 

- 2 « - 5 V S = - ( S - a ) 

hardening evolution: Hay = (1-b) = j 3 t r s 2 / 2 , 

b = (l-b)é/tb, % = httOP 

flow rule: 
OS 

W = X ^ p ( a s -- s a ) 

back stress evolution: 
V 

a ξ à i - W ^ a + a W e = μΌρ 

4.3. Finite Element Simulations 
Since cross-sections of the bar can be considered to remain plane and the behaviour during large 
strain torsion remains axisymmetric, the state of stress and strain inside the bar are uniform in 
the axial and circumferential directions; but, there remains an inherent dependency on the radial 
coordinate. It has been demonstrated ([15], [19]) that this problem of free-end torsion can be 
efficiently solved by means the special purpose finite elements presented in [20]. Each element 
effectively is a circular cylindrical tube, but computationally it is considered to be one-dimen
sional along the r -ax i s , with two nodes ALR = R1 and R = r 2 , respectively, and with two material 
sampling points. The degrees of freedom of the entire finite element model of the bar consisting 
of, say, Η elements then comprise Η + 1 radial nodal displacements along with the axial displace-
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V̂ ëë 
(b) 

Figure 4. Approximate model based on a tube with mean radius ax and wall thickness a2 (a). An 
element out of the tube, showing the skewsymmetric state of stress and rate of deformation such 
t h a t Z ) e e = -Dzz (b). 

ment U and the angle of twist φ. It was found that highly accurate results are obtained for the 
solid bar problem by using only η = 5 elements. 

4.4. A p p r o x i m a t e Mode l 
Let us now consider now the formulation of a much simpler mechanistic model of this free-end 
torsion problem to be used in the multipoint approximation technique. Since the torque response 
and the elongation response are the two response quantities of interest here, we will need ap
proximate expressions for these quantities in function of the angle of twist. We recall that the 
approximate model needs only to inherit a functional dependence on the material parameters 
similar to the actual one, while suitable tuning parameters should allow for a numerically accu
rate representation of the response functions locally, i.e. within a relatively small neighbour
hood of chosen material constants. 

A possible approximate model that satisfies the requirements put forward earlier is based on 
a tubular specimen instead of a solid bar with a mean radius ax and a wall thickness a2 (see Fig. 
4a). If it is assumed that the shear stress τ is uniform in the radial direction and neglecting any 
geometric changes, the torque can be written as Τ = 2πα\α2ι. On the other hand, if all stress 
components but the shear stress and the associated back stress are neglected, so that oQz = τ , 
σ^. Ξ 0 otherwise in a cylindrical (r,9, z) coordinate system, we simply find from the yield con
dition that τ = aQz + cf/j3 once plastic deformation has started. The current value of the flow 
stress is determined through Η by the current values of oe and b, both depending on the accu
mulated plastic strain zp. Neglecting elastic deformations, D = D p , the accumulated plastic 
strain ερ in the expression (11) for ae can be approximated as ep = y/JÏ  wher e γ = (ax/L) φ 
is the mean shear strain in the tube. Furthermore, the evolution equation for b in Table 1 can be 
integrated at once to give 
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Combining these expressions and presupposing that we can give the shear back stress aQz as a 
function of the γ = (ax/L) φ , we find the following approximate torque- twist expression in 
the plastic regime: 

Τ(φ) = ^πα\α2 ^ /3β θ ι (τ) + oy + b £ Δ σ ' 1 - « Φ ( - ] · (12) 

A similar relationship in the elastic regime is readily obtained from elementary considerations. 
Let us now consider the spécification of the back stress aQz. According to the constitutive 

equations listed in Table 1, this back stress is determined by a rate equation that is coupled 
strongly with the plastic flow rule. To the authors ' knowledge, there is no exact solution avail
able; therefore we reside here in a 'phenomenological ' approach, where we approximate the 
actual evolution of aQz as a function of γ by means of a functional expression based on the 
numerical results obtained in [19] and on known simple shear solutions [17], [18]. First, we note 
that the numerical results in [19] for a constitutive model that has a rapidly disappearing contri
bution of kinematic hardening, b ~ 1, can be approximated rather well by a function of the type 
aQz(y) = a3yaAexp(-a5y) with coefficients a3 > 0 , a4 > 1, a5 > 0 . Secondly, we recall that if 
we use a purely kinematic hardening model, b = 0, the shear back stress exhibits an oscillatory 
siny response to simple shear if there is no plastic spin, ρ = 0, while with increasing value of ρ 
the response becomes more and more of the type 1 - e x p ( - a g y ) . We combine these responses 
for b = 0 into the expression aQz(y) = a 6 e x p ( - p a ^ ) s i n y + α 7 ρ σ ^ [ 1 - e x p ( - a 8 y ) ] , where we 
have nondimensionalized ρ by and where the coefficients a ( a = 6, 7, 8) are positive. 
Finally, we obtain the desired functional expression to be substituted into (12) by a linear com
bination of the above expressions for b ~ 1 and b = 0, respectively: 

%XY) = ba3ya*exp(-a5y)+ (l-b) {a6txp(-poy)siny^a7poy [1 - e x p ( - a 8 y ) ] } . (13) 

The simplified torque model thus obtained contains 8 tuning parameters a^l - 1 , 8 . 
An approximate expression for the axial strain response can be obtained in the following 

way. It follows from the skewsymmetric nature of the state of stress and deformation (see Fig. 
4 b ) t h a t D e 0 = -Dzz, so that from plastic incompressibility D r r = 0 . Since Dzz = t z for small 
axial deformations, it is concluded from the flow rule listed in Table 1 that έ ζ / γ = Szz/2SQZ, 
while srr = 0 and £ θ θ = —szz. Using then the yield condition — w h e r e all stress components 
are taken into consideration n o w — to eliminate ί , we obtain 

(14) 

where we have introduced the parameter a9 as a tuning parameter to compensate for the approx
imations involved, especially to correct for the fact that the Swift effect in the actual solid bar 
will be less prominent than in a thin-walled tube because of constraints imposed by the core ma
terial. The stress dependent term in (14) can be written as oy/sQz = op/ ( τ - aQz) which we 
shall further approximate by 
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with ce being given by (11). Finally, eq. (14) can be rewritten as an ordinary differential equa
tion for ε ζ (φ ) which has to be solved numerically. Just like the approximate torque model , this 
simplified model for the axial strain response also contains 8 tuning parameters at, 
I = 1, 3 , . . . , 9 ; but it should be noted that the two models will be considered as separate mod
els, each with their own set of tuning parameters. 

5. ILLUSTRATIVE E X A M P L E 

To illustrate the implementation of the presented approach, let us consider in some detail the 
identification problem of the material parameters in the isotropic hardening model , B = 1 with 
Κ = 1, based on the comparison of measured and simulated values of the torque in the free-end 
solid bar torsion test. In this case, the angle of twist φ is considered as the experiment history 
parameter. The response quantity for α = 1 presents now the torque values (S = 1, . . . , 127) 
obtained in the course of the experiment [16]; the simulated response Ra(x, (p) describes the 
torque as a function of the three parameters to be identified: 

*i = V X2 = A V χ ι = Ε 0 ' 

and the twist angle φ. The imposed side constraints are given in Table 2 In order to eliminate 
the effect of the large difference in values of the search region sizes, the optimization variables 
have been scaled by the linear transformation to new dimensionless values χλ, x2, Jc3, which 
correspond to the following scaled values of the side constraints: Aj = 1.0, B} = 11.0 
0' = 1 ,2 ,3 ) . . 

Table 2 
Side constraints on material parameters for isotropic model 

χχ = (MPa) x2 = Aoy (MPa) x3 = ε 0 

Aj 1. 1. 0.001 

Bj 1000. 4000. 2.0 

To give some insight into the problem formulation, the search region has been scanned by 
repeated calls for the nonlinear FE simulation procedure. Every call required about 4.5 minutes 
of CPU time on a Sun SPARCstation 1. Figures 2,3 and 4 present two-dimensional slices of the 
dependence of the function F(x) on the material parameters at the point x\ = 3 .5 , x2 = 6.0, 
Î 3 = 6.0, which corresponds to the minimum value of the objective function 
F(x°) = 0 . 1 1 4 6 x l 0 ~ 3 , as obtained by a straightforward scanning procedure. 

To solve the optimization problem, the simplified model was constructed in the form (10) by 
the procedure described in the previous section. For the purely isotropic model , where B - 1 and 



125 

the back stress must vanish identically, there remain only two tuning parameters in the simpli
fied model (12), namely the radius ax and the wall thickness a2 of the tube specimen, which are 
introduced artificially in order to construct the simplified expression. 

Let us consider in detail the first step of the optimization procedure. The plan of numerical 
experiments corresponds to the starting point x \ , which is located in the centre of the search 
region, and points xp (p = 2, 3, 4 ) , which are obtained by the steps in each ^ -coord ina te direc
tion. As the initial step length the value 0.25 (Aj - Bj) has been chosen. It makes the plan of 
experiments as follows: xx = (6.0, 6.0, 6 . 0 ) , x \ = (3 .5 , 6.0, 6 . 0 ) , x \ = (6 .0 , 3.5, 6 . 0 ) , 
x\ = ( 6 . 0 , 6 . 0 , 3 . 5 ) . The value of the objective function at the starting point is 
F(xx) = 0 .2131 . The first search subregion is determined then by the move limits Aj = 2 .0 , 
Bj = 7.5 (/ = 1, 2, 3 ) . The location of the plan points and the search subregion is shown in 
Figures 5 a through c by numbered circles and rectangles, respectively. Figures 5 d t h r o u g h / 
present the behaviour of the simplified function F(k), using the following values of the tuning 
parameters ax = 5 .493mm, a2 = 4 .609mm, as obtained from the optimization problem (8). 
Their comparison shows that with properly tuned parameters a v a2 the simplified model 
presents a very good approximation of the actual function F(x). 

The solution of the first step optimization problem (4), (5) gives the following values of the 
optimization variables: xx = 3 .729, x2 = 4 . 7 1 1 , x3 = 4 .844, which corresponds to the 
material parameters listed in Table 3 The obtained point x \ is internal for the first search sub-
region; therefore the size of the second search subregion has been reduced by halve and the 
search process was continued from the obtained point. The process was stopped after the third 
iteration when the search subregion was reduced to 15% of its initial size. The obtained point 
xx = 3 .763 , x2 = 4 .633 , x3 = 4.897 corresponds to the final value of material parameters 
listed in Table 3. Figure 6 presents the comparison of the simulated torque function using the 
identified material parameters with the measured values from the experiment [16]. 

Table 3 
Material parameters for isotropic model from optimization problem (4), (5). 

χλ = (MPa) x2 = Acy (MPa) X3 ~ ε ο F(5) 
first iteration 273.7 1485.0 0.7693 0 . 3 0 5 7 x l 0 " 3 

last iteration 277.0 1454.0 0.780 0 . 1 5 1 3 x l 0 " 3 

6. T H E M A T E R I A L P A R A M E T E R S I D E N T I F I C A T I O N 

Let us consider the identification problem of material parameters in the full mixed isotropic-
kinematic hardening model shown in Table 1 with the two-term exponential fit in (11), Κ = 2, 
based on the comparison of measured and simulated values of both torque and axial strain in the 
solid bar torsion test described above. Again, the twist angle φ is considered as the experiment 
history parameter. The response quantity Rl

s presents the torque values (s = 1 , . . . , 158) and R2

S 

corresponds to the axial strain values (s = 1, . . . , 24) obtained in the course of the experiment 
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(c) — * » x 2 (f) — * - * 2 

Figure 5. Contour plots of the objective function F(x) (left-hand side, figures a, b , c) and the 
simplified function F(i) (right-hand side, figures d, e, f) for the three-parameter problem. All 
nondimensional parameters xt are in the range ίΑρΒβ = [1.0,11.0]. Numbered points indicate 
plan points and dashed boxes indicate the search subregion of the first iteration. 
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Figure 6. Comparison of experimental and simulated torque- twist curves according to the 
isotropic hardening model with the material parameters from Table 3. 

[16]. The simulated response quantities fla(x, τ " ) describe the torque ( a = 1) and the axial 
strain ( a = 2) as functions of seven material parameters to be identified, 

xi = h* x2 = V *3 = Δ σ ) 1 } > x4 = ε ο υ > x5 = Δ σ ) 2 ) , x6 = ε 0

( 2 ) , χΊ = ρ , 

and the twist angle φ. Both response quantities are considered as being equally important for the 
material parameters identification, which means that the weight coefficients Θ α are equal: 
0 1 = 0 2 = l .The imposed side constraints are given in the Table 4. 

Table 4 
Side constraints on material parameters 

Η °y 
(MPa) (MPa) 

ε ( 1 ) Δσ<*> 

(MPa) 
fco Ρ 

0.001 1.0 1.0 0.001 1.0 0.001 0.0 

BJ 0.5 500 4000 2.0 400 0.01 0.01 

As in the previous example, the optimization variables have been scaled to dimensionless 
values Xj, which correspond to the scaled values of the side constraints: Aj = 1.0, Bj = 11.0 
0" = 1 , . . . , 7 ). The simplified models , used in the optimization procedure, have been construct
ed in the form (10) where the function ^ ^ ( x , a a , τ " ) corresponds to the simplified torque func
tion Τ given by the expression (12) when a = 1, and to the function ε ζ derived from the 
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numerical solution of the differential equation (14) when α = 2. 
As the starting point for the optimization procedure, the set of material parameters suggested 

in [19] has been chosen, as listed in Table 5. The values of the individual response functions at 
the starting point, Fl(xl) = O . K B x l O " 1 , F 2 ( X j ) = 0 . 8 6 0 x l 0 " 3 indicate that the discrepancy 
between the simulated and measured values of torque is much greater than the one of axial 
strain, as is clearly seen in Figures 4 and 5 in [19]. The total value of the objective function at 
the starting point is F(xx) = 0 . 1 1 2 x l 0 _ 1 . 

Table 5 
Material parameters for mixed isotropic-kinematic hardening model . 

*1 x2 x3 * 4 x5 x6 χΊ 

h °y 
(MPa) (MPa) 

ε ( 1 ) 
fco 

A a f ) 

(MPa) 
ε ( 1 ) 
fco Ρ 

initial set 0.185 175.0 3200 1.5 100.0 0.003 0.0036 

final set 0.185 175.1 2810 1.576 102.1 0.0027 0.00288 

After two iterations of the optimization algorithm, the size of the search subregion was 
reduced to 5% of the initial search region size. The set of obtained material parameters is also 
presented in Table 5. The values of the individual response functions at the obtained point are 
as follows: Fl(x*) = 0 . 3 0 2 x l 0 ~ 3 , F 2 ( x * ) = 0 .659χ 1 0 " 3 , and the total value of the objective 
function is F ( x * ) = 0.961 x l 0 ~ 3 . The figures 7a and b show the comparison of the measured 
values of torque and axial strain, respectively, and the simulated ones obtained with the obtained 
set of material parameters. 

7. C O N C L U D I N G R E M A R K S 

• The approach presented in this paper allows for the determination of the phenomenolog
ical coefficients in nonlinear constitutive models for engineering materials by minimizing 
the difference between certain response quantities measured by means of laboratory 
experiments and obtained by numerical simulation. 

• The error functions (3) are shown to be able to quantify correctly the difference between 
simulated and measured response. 

• The implementation of the approach shows that there is a direct relationship between the 
quality of the (physically based) simplified functions, which are used in the optimization 
process instead of the actual ones, and the rate of convergence of the algorithm. 

• Special attention must be paid to avoid numerical problems which may arise during the 
solution of the optimization problem (8), by for instance proper scaling, elimination of 
low sensitivity to some tuning parameters and high sensitivity to others, etc. 
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Figure 7. Comparison of experimental and simulated torque- twis t curves (a) and axial strain 
development (b) during free-end torsion of a solid S S 304 bar. 

• In principle, the present approach is applicable to any nonlinear constitutive model and is 
capable of handling an almost unlimited variety of (nontrivial) experiments , allowing for 
inhomogeneous material response, the use of structural components as specimens, etc. 
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Abstract 
The first part of the paper presents a Ritz model which is applicable to the investigation of 
natural vibrations of thick laminated plates with all edges free. The model is based on a 
higher-order shear deformation theory, which accounts for parabolic distribution of the 
transverse shear strains through the thickness of the plate. A special family of functions 
related to the free/free beam mode shapes is used in the Ritz series, which provides very 
accurate results with a small number of degrees of freedom. Results obtained by a 
commercial 3-D finite element program are compared with the results obtained by the Ritz 
model. 
In the second part the Ritz model is combined with optimization techniques with the goal of 
identifying material constants on the basis of experimentally determined natural frequencies 
for a thick plate. The unknown material constants are determined as those resulting in 
minimum error between model and experiment. The technique allows identification of six 
material constants: the two transverse shear moduli and the four in-plane constants (two 
Young's moduli, the shear modulus and Poisson's ratio). 
The method has been implemented in a PC based integrated set-up providing fast and reliable 
determination of the material constants on the basis of a non-destructive and simple test. In 
practical experiments excellent agreement between measured and calculated natural 
frequencies have been obtained. Results for a rolled aluminium plate and a carbon/epoxy 
plate are shown. 

1. I N T R O D U C T I O N 

The constantly increasing use of advanced composite materials and the possibilities of 
designing these materials with optimized performances requires reliable knowledge of the 
material parameters. Determination of such parameters by traditional testing is destructive, 
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cumbersome and time-consuming. The present paper deals with the determination of elastic 
material constants by a combined numerical/experimental method, often known as 
"identification method". In the present approach natural frequencies of plates are measured 
and computer calculations are used to determine the unknown parameters in order to obtain 
optimum agreement between model and experiment. As structural frequencies are integrated 
quantities we obtain material parameters valid in the mean for the entire structure. 
Some work has been done in the framework of the classical laminated plate theory. See e.g. 
Fàlstrôm and Jonsson [1], Deobald and Gibson [2] , Sol [3] and Frederiksen [4] , who used 
various techniques based on plate vibrations to determine elastic constants in thin plates. 
Apparently, the identification of transverse properties of plates has been neglected. 
Transverse properties of laminates are probably the most restrictive structural parameter in 
practice and transverse shear properties of laminated plates have to be assessed. 
The object of the present paper is twofold. Firstly, to develop an accurate numerical model of 
natural vibrations of fully free thick plates. The model should be suitable for implementation 
on a PC due to integration with modal software and hardware and to assure later development 
of a portable technique. Secondly, to integrate the model with optimization techniques with 
the goal of determining material constants, including the two transverse shear moduli, on the 
basis of measured natural frequencies of thick plates. 
The fully free plate was chosen because other boundary conditions such as the clamped or 
simply supported boundary condition are very difficult to realize experimentally. 

A highly accurate modelling of the dynamic behaviour of a rectangular thick plate which 
accounts for transverse shear deformation is crucial for the reliability of the identification 
results. Finite element analysis was rejected because sufficiently accurate FEM solutions 
usually require a large number of degrees of freedom in the model. This would lead to 
considerable consumption of memory and computer time. Instead, a Ritz model based on a 
higher-order plate theory has been developed. 
Several theories incorporating shear deformation have been proposed over the years. The first 
such theory for laminated anisotropic plates was advanced by Yang et al. [5] , who extended 
Mindlin's theory for isotropic plates, Mindlin [6]. In this type of theory it is necessary to 
introduce a shear correction factor into the shear stress resultant to account for the fact that 
the theory predicts a uniform shear stress through the thickness of the plate, which is 
obviously not correct. 
Several theories have been proposed which are more advanced than the Mindlin type theory. 
These theories are often known as higher-order theories. An n'th-order theory is one in which 
the displacements (often, the in-plane displacements) are expanded in terms of the thickness 
coordinate up to the n'th power. See Lo et al. [7] for a review. 
The basis for this work is a refined third-order shear deformation theory proposed by Reddy 
[8]. A similar theory has been presented by Levinson [9]. The theory uses a displacement 
approach. The displacement field allows for distortion of third order of normals to the 
midplane of the undeformed plate, while the transverse deflection is assumed to be constant 
through the thickness. The displacement field chosen is of a special form satisfying the 
condition of stress-free plate surfaces. The theory involves the same number of dependent 
unknowns as the first-order Mindlin type shear deformation theory, but there is no need for 
shear correction coefficients because the theory accounts for parabolic variation of the 
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transverse shear stresses. Thus, the theory is an advanced two-dimensional theory which 
accurately describes the global behaviour of the plate. 
For the fully free plate problem, exact closed-form solutions do not exist and a numerical 
discretization is necessary. A Ritz model based on the displacement field given in [8] and [9] 
is developed for this purpose. By proper choice of the functions, approximating the 
displacement field, very accurate results can be obtained with relatively few terms in the 
series, i.e. a small number of degrees of freedom. Thus, the model is suitable for 
implementation on a PC and yet a fast analysis is assured. 

The general technique for identification of material parameters involving sensitivity analysis 
and optimization has previously been reported in [4] with the technique based on thin test 
plates and classical plate theory, whereby only the four in-plane material constants (two 
Young's moduli, the shear modulus and Poisson's ratio) have been determined. The present 
work thus forms a natural extension of the technique reported in [4] with the additional 
identification of the two transverse shear moduli. In the work [4] the number of frequencies 
involved in the identification was 7 to 10, but to asses the transverse shear properties it is 
necessary to increase the number of frequencies and/or the thickness of the test plate. The 
number of frequencies is typically 10 to 15. 

2. D I S P L A C E M E N T F I E L D 

Consider a rectangular plate of constant thickness h , length a and width b . A Cartesian 
coordinate system x-y-z is located at the middle plane with the ζ axis normal to this plane. 
The shear deformation theory proposed in [8] is based on a displacement field in which the 
displacements in the χ and y directions are expanded as cubic functions of the thickness 
coordinate, and the transverse deflection is assumed to be constant over the thickness. The 
present analysis is limited to symmetric laminates, in which case the in-plane displacements 
of the midplane are zero due to the absence of in-plane loads. The applied simplified 
displacement field thus has the form 

u(x, y, ζ) = ζ ψ χ ( χ , y) + ζ 2 φ χ (χ , y) + ζ 3 ζ χ ( χ , y) 

ν(χ, y, z) = ζ \ | / y(x, y) + ζ 2 (py(x, y) + ζ 3 Cy(x, y) (1) 

w(x, y, z) = w(x, y) 

u, ν and w are the displacement components in the x, y and z directions and ψ χ , \|/ y , <px 

, (py , ζ χ and ζγ are unknown expansion functions. The Mindlin theory, (i.e. a first-order 
theory) is obtained for φ χ = (py = ζ χ = ζγ = 0 and is parallel to the Timoshenko beam theory. 
For the present higher-order theory, the functions φ χ , (|>y , ζ χ and ζ γ can be determined 
using the condition that the transverse shear stresses σ 1 3 and σ 2 3 vanish on the top and 
bottom surfaces of the plate. The displacement field in (1) then becomes 
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u(x ,y , ζ) = ζ 4 fzV 
V * - 3 l h ] 

3w 
3χ" + Ψ* 

v(x, y, ζ) = ζ 

w(x, y, ζ) = w(x, y) 

4 
~ 3 

3w 

lay 
+ Ψν (2) 

Although distortion of third order of the in-plane displacements is taken into account, the 
displacement field (2) contains the same number of dependent unknowns as in the first-order 
Mindlin theory. 

3 . CONSTITUTIVE RELATIONS 

It is assumed that a number of orthotropic plane sheets (plies) are stacked to form a plate. An 
orthotropic material has three mutually orthogonal planes of elastic symmetry. The three 
principal material directions will be denoted by a 1-2-3 coordinate system with the 3 axis 
normal to the plane of the ply (coincident with the ζ axis). In agreement with PEDERSEN 
[10] we choose the larger modulus direction of the two in-plane orthogonal directions as a 
reference axis. This axis is chosen as the 1 axis. For plies consisting of a unidirectional 
fibre-reinforced composite material, the direction notation thus has the specific meaning of 1 
being the axis parallel to the fibres and 2 and 3 being the axes normal to the fibre direction, 
in-plane and out-of-plane, respectively. 

If the analysis is limited to plates of moderate thickness, the orders of magnitude for the 
stresses, see Reddy [11], justify an assumption of a plane state with 

σ33 = 0 (3) 

and the general constitutive stress-strain relations for the ply reduce to, see e.g. Whitney [12] 

'<*ιΓ 
h. 

1 V 1 2 E 2 / E , 

« σ22 

• _ V 1 2 E 2 / E , E 2 / E ! 

1 2 0 0 

0 

o C o G ^ / E ! J 

£ 2 2 

U E 1 2 . 

(a) 

1 2 

J23) 

a0Gl3/El 0 

0 a0G23/El 

2ε , 

1 2 Ue23 

(4) 

(b) 
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where 

Oq = l - V i 2 E 2 / E 1 
(5) 

and (4 b) is written in consistency with (4 a). 

The engineering constants are 

V 12 

: Young's modulus in the 1 and 2 directions, respectively 

: Shear modulus in the 1 - 2 , 1 - 3 and 2-3 planes, respectively 

: Poisson's ratio as determined from contraction in 2 direction under 

uniaxial tension in 1 direction 

With the assumption of (3), the influence of E 3 , V 1 3 and V 2 3 is eliminated and a total of 6 
independent engineering constants remains for the analysis. 

The ply properties have to be added in a common (global) reference system which is 
geometrically natural to the solution of the problem, say the x-y-z coordinate system, so 
rotational transformations are of vital importance. These transformations can be found in 
most textbooks on composite material, e.g. Vinson and Sierakowski [13]. 
According to Pedersen [14] it is convenient to define practical non-dimensional material 
parameters based on the relative quantities of the orthotropic constitutive matrix from (4). 

Upon transformation, the ply constitutive relations in the x-y-z coordinate system can be 
expressed as 

02 = 4 - 4 E 2 / E 1 

0C3 = 1 + ( 1 - 2 V 1 2 ) E 2 / E 1 

a 4 = 1 + (1 + 6 V 1 2 ) E 2 / E 1 

a 8 = 4 ( G 1 3 + G 2 3 ) a 0 / E 1 

« 9 = 4 ( ° i 3 " G 2 3 ) a 0 / E j 

4 a 0 G 1 2 / E 1 

4 c x 0 G 1 2 / E 1 

(6) 

c x 0 = l - v ' 2 E 2 / E 1 = 1 - ( a 4 - a 3 ) V ( l 6 ( 4 - a 2 ) ) 
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(7) 

where the components c^ of the non-dimensional constitutive matrix depend on the 
parameters 0C2 , α 3 , α 4 , α 8 , and the angle γ relating the material coordinate system 1-2-
3 and the reference coordinate system x-y-z . 

4. T H E RITZ M O D E L 

The displacement field (2) contains the three unknown functions w, ψ χ and \|/ y . Following 
the Ritz procedure, we assume the solution for the three functions to be in the form of finite 
series with undetermined coefficients. Each series is composed of multiplications of 
admissible functions 

Ν 2 2 
w(x,y) = Σ Z m n w m ( - x ) wn(ry) 

m,n 

Ψ,(χ,Υ) = Σ X ^ m ê x ) « V „ ( § y ) (8 ) 
m, η 

Ψ / χ , Υ ) = Σ Y m „ w m ( 2 x ^ n ( § y ) 
m, η 

Ν ρ-1 ρ-1 

with the notation Σ = Σ Σ , Ν = ρ 2 

m, η m=0 η=0 

i.e. we choose to deal with the same number of functions in the χ and y directions and w m 

and *¥ m are functions of the non-dimensional variable ξ varying between ±1 . 

The arbitrary coefficients in the series are determined by minimizing an energy functional, 
thereby obtaining a best approximation to satisfy the equation of motion for the plate. The 
time variable is eliminated by assuming the harmonic time dependence e i ( 0 t , considering w , 
u and ν as the time-independent displacement amplitudes. 
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With a constant specific mass ρ , the maximum kinetic energy is 

ι f fh/2 

T = 2-(o 2pJ J ( u 2 + v 2 + w 2 ) dzdxdy (9) 

where Ω denote the middle plane of the plate. 
By substituting the displacement field (2) into (9) and performing the integration with respect 
to ζ , the maximum kinetic energy can be expressed in terms of the displacement and slope 
functions. 

3 w 
3x 

3w 

3w 2 3w 2' 

l 3 x j + dxdy (10) 

The total strain energy is given by 

• h/2 U h/2 

σ ΰ ε , dzdxdy ( Π ) 

The stresses can be eliminated from the strain energy using the constitutive relations (4), 
remembering the plane state condition, σ 3 3 = 0 . The maximum strain energy can be 
expressed in terms of the displacement and slope functions and the laminate stiffnesses by 
substituting the strains which can be derived from the displacement field (2) into (11) and 
performing the integration with respect to ζ . 

Now, let Τ be the specific kinetic energy amplitude such that Τ = ω 2 Τ is the kinetic 
energy amplitude. For a conservative system, the total energy is constant, i.e. 

U - û ) 2 T = 0 (12 ) 

Stationarity o f th e energ y differenc e wit h respec t t o th e constant s ,  X k l an d Y k i result s i n 

au ι i l 
λ ί ^ 

au 

au 

(13) 

= 0 for k, 1 = 0, 1 , . . . , p - l 
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U and Τ are always quadratic in the undetermined coefficients Z m n , Xmn and Y m n ; (13) 

thus represents a set of 3xpxp linear homogeneous equations, i.e. a classical eigenvalue 

problem with the eigenvalue λ{ related to eigenfrequency ω{ by X{ = . 

The partial derivatives of the strain energy are involved and extensive and will not be given 
in this presentation. However, it turns out that the derivatives involve 15 distinct integrals 
which are characteristic non-dimensional integrals of the assumed functions. These are listed 
below in an abbreviated form. 

GM = f d̂ mdX 
mn Jj d̂  d̂  

r = 
τηη 

d-ψ. 

[ 

m 

άξ for r, s = 0, 1 ,2 

άξ for r, s = 0, 1 

for r = 0, 1 and s = 0 , 1 ,2 

(14) 

(15) 

(16) 

where m, n = 0, 1 , . . . , p - l 

The partial derivatives for the specific kinetic energy Τ which are obtained from equation 
(10) are more tractable. The three expressions are given below using the above notation for 
the integrals. 

K 1 m. η 

i a K L r t 7 R ( 0 , 0 ) ( 0 , 0 ) 

4 a b h p Z m n G k m G l n + 252 p h 3 Z m n 

b ^ 0 , 1 ) ^(o,o) 
a 

n K l t l , a (i,i) (o,o) 
G k m G l n + b C j l n G k m 

3 1 5 p h J b X m l J m k G , n + a Y k n J n l G k m 

( 0 , 0 ) 
km (17) 

3 X k l " 315 2J 
K l m, n 

I I . l y r (o ,o) (o.o) (o.i) (o.o) 
4 a b ^Snn G l n 1km " 2b Z m n J k m G l n 

(18) 

3 Y t l ~ 315 ^ 4 a D Y mn 
k l m, n 

^ ( 0 , 0 ) T ( 0 , 0 ) 
Gkm lin - 2b T ( 0 , 1 ) ^ ( 0 , 0 ) 

Jln G k m 
(19) 
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Now, we may choose to write the eigenvalue problem (13) in the form 

[VUKAJ = X, [VT]{Aa for i = 1,2,...,3N = 3 p 2 (20) 

where {Δ^ denotes the eigenvector corresponding to the eigenvalue λ { , i.e. {Δ^ is a 
vector which contains the 3 p 2 coefficients Z m n , X m n and Y M N 

{ Δ } τ = {ZQQ , Z 0 1 , . . . , Zp^p.!, XQQ , X 0 1 , . . . , Xp.ip.j , YQO , Yoi » ··· » Yp-ip-i) (21) 

[VT] is the coefficient matrix for the partial derivatives of the maximum specific kinetic 
energy and [VU] is the coefficient matrix for the partial derivatives of the maximum strain 
energy. 

Once the assumed functions have been chosen, the integrals (14) to (16) are evaluated. The 
evaluations are performed only once as the integrals are dimensionless. The number of 
evaluations is Ν = p 2 for each of the 15 distinct integrals. The integrations were performed 
numerically. 
A variety of numerical methods exists for solution of an eigenvalue problem. For this 
research, the subspace iteration was chosen. The technique is described in detail by Bathe and 
Wilson [15]. 

5. C H O I C E OF A S S U M E D F U N C T I O N S 

In applying the Ritz procedure to plate problems involving free edges, numerous researchers 
have used series of multiplications of free/free beam vibration mode shapes (ordinary beam 
functions) to approximate the deflection form, e.g. Ritz [16] and Leissa [17]. 
In the paper by Bassily and Dickinson [18] the inadequacy of the ordinary beam functions 
when used in the Ritz method for plate problems involving free edges was demonstrated. A 
new set of functions, related to the beam mode shapes, was postulated which allows 
considerably more accurate treatment of such plates. This family of functions known as 
"degenerated beam functions" is used in the present thick plate formulation. The function set 
for the free/free plate is 
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«*Ό(ξ) = 1 

*1<ξ) = ξ 

= C O S ( k ( m + 2 ) / 2 0 for m = 2, 6, 10, 

= c o s h ( k ( m + i ) / 2 ^ for m = 3, 7, 11, 

= s i n ( k ( m + 2 ) / 2 ^ ) for m = 4, 8 , 1 2 , 

= s i n h ( V l ) / 2 ^ for m = 5 , 9 , 13, 

where 1^ is determined by 

t a n l ^ + ( - l ) m t a n n i c = 0 for m = 2, 3 , 4 , . . . (23) 

The hyperbolic functions mainly assure an accurate deflection form near the edges, while the 
circular functions determine the overall deflection form. 

It remains to choose the functions *¥ m which are part of the series approximating the 

rotations ψ χ and ψ γ . With the special relations for the case of classical plate theory in 

mind, the following choice is made 

Ψ π . - ι ( ξ ) = - ^ Γ for m = 1 , 2 , 3 , . . . (24) 

Consistency with the classical plate theory in the limit of thin plates is thereby assured. 

6. N U M E R I C A L RESULTS 

When the degenerated beam functions are employed, a very rapid convergence is achieved, 
so highly accurate solutions can be obtained using relatively few terms in the series. 
Convergence tests have shown that a number of 10x10 equal 100 terms in each of the three 
series provides sufficiently accurate results for the first 15 natural frequencies for different 
plate configurations. Thus, the Ritz model with a total of 300 degrees of freedom is used. The 
computational time for the calculation of 10 natural frequencies with this model varies 
(depending on the starting vectors) from 1 to 2 minutes on a standard 486 33MHz PC. 

The present Ritz model based on the higher-order shear deformation theory (HSDT) is 
verified by comparison with 3-D finite element results. Table 1 contains the first 8 natural 
frequencies of a thick isotropic plate calculated by the HSDT Ritz model and a 3-D finite 
element model. The finite element mesh consisted of 4 layers of 12x8 elements. A 20-node 
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brick element providing a parabolic displacement field was used. This element had three 
translational degrees of freedom assigned to each node, resulting in a total of 6339 degrees of 
freedom in the model. The finite element calculations were performed at Ris0 National 
Laboratory with the Solvia package. 
When comparing the results it should be emphasized that the Ritz model is a two-dimensional 
model, which do not take transverse normal stress/strain into account. Despite this 
simplification the agreement with the 3-D finite element solution is very good and indicates 
that the Ritz model yields highly accurate results. 

Table 1 

Comparison of non-dimensional natural frequencies ω = œ a ^ p / C E h 2 ) fo r a  full y fre e 
isotropic plate , wit h ν = 0.3 . Aspect ratio a/b = 1.5 . Length-to-thickness rat io a/h = 10 . 

Freq. 
no. 

Present 

H S D T 

Ritz 
Solution 

3-D 

F E M 

S O L V I A 

Difference 
relative to 

H S D T 

(%) 

1 5.630 5.637 0.12 
2 6.247 6.253 0.10 
3 12.542 12.566 0.19 
4 13.977 14.006 0.21 
5 15.699 15.741 0.27 
6 18.065 18.126 0.34 
7 22.153 22.231 0.35 
8 24.944 25.035 0.36 

7. T H E I D E N T I F I C A T I O N P R O B L E M 

Assuming the plate dimensions, the plate mass and the stacking sequence to be known, we 
seek values for the five non-dimensional material parameters a m that will provide 
agreement between the eigenfrequencies obtained through the numerical model and by 
experimental measurements. 

With I being the number of eigenvalues involved in the identification, the experimentally 
obtained eigenvalues are 

λ ί , , , . . . , λτ (25) 

The numerically calculated eigenvalues obtained by solving the matrix eigenvalue problem 
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(20) for a given plate with assumed material data ocm are 

(26) 

where the scaling factor C is defined by the mean value 

c = j Σ λΛ (27) 
i = l 

The influence of quantities which just scale the eigenvalue spectrum is thereby eliminated. 
From (25) to (27) we can define the error functional Φ . We choose the frequently used sum 
of squares function but alternatives are possible 

The identification problem can now be formulated as an optimization problem, i.e. identifi
cation of the set of non-dimensional material parameters ocm that minimizes the error 
functional Φ : 

From the optimal solution (o^, 0C3, a 4 , a 8 , 0 9 ) , the relative material moduli and a 0 are 
evaluated through the inverse relations of (6). As will be seen from (4), the constitutive 
matrix [C] is proportional to E t , from which it follows that the system eigenvalues are 
proportional to El as well. Thus, the eigenvalue scaling factor C is a direct measure of El 

and provides the conversion from relative to absolute material parameters. 

The identification/optimization technique, including the analytical sensitivity analysis which 
is fundamental for the speed of the method, is in principle as described in [4] and Pedersen 
and Frederiksen [19], although the references only treat the case of classical plate theory 
involving three parameters. 

Experimentally, the plate natural frequencies are determined by the impulse technique, see 
Halvorsen and Brown [20]. Some details regarding application of the technique to free plates 
and the test set-up are given in [4]. 

(28) 
i = l 

Minimize Φ ( α 2 , α 3 , α 4 , a 8 , 0̂ ) > 0 (29) 
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8. R E S U L T S 

An aluminium plate and a laminated carbon/epoxy plate are investigated. The identified 
parameters are the four in-plane engineering constants, Ελ , E 2 , G 1 2 and v 1 2 plus the two 
transverse shear moduli G 1 3 and G 2 3 . 
The first example is a rolled aluminium plate. The mass was 841.6 g and the plate dimensions 
were as follows 

length = 220.0 mm , width = 140.0 mm , thickness = 10.17 mm 

11 natural frequencies were accurately measured (in Hz) : 

1 0 3 7 . 3 , 1 1 0 8 . 3 , 2 3 6 3 . 2 , 2 8 0 8 . 4 , 2 9 5 5 . 0 , 3 5 7 9 . 3 , 4 3 1 2 . 1 , 5 0 5 2 . 7 , 6 0 3 3 . 6 , 6 9 3 5 . 8 , 
7366.3 
The identified engineering constants were 

Ej = 7 1 . 2 G P a , E 2 = 70.8 GPa , G 1 2 = 25.9 GPa , v 1 2 = 0.334 , 

G 1 3 = 26.9 GPa , G 2 3 = 24.5 GPa 

The resulting relative differences between measured and calculated frequencies were (in %) : 

0.08 , 0.09 , -0.14 , 0.02 , -0.08 , -0.04 , -0.01 , 0.01 , 0 .00 , 0.01 , 0 .06 

Note that the frequency residuals are extremely small. Only for frequency number three does 
the difference exceed 0.1% . This confirms that both the experimental technique and the 
numerical model provide very accurate values for the plate natural frequencies. 
The values for the material constants obtained by the identification method are in good 
agreement with values commonly known for aluminium and the material is observed to be 
nearly isotropic. For comparison, the in-plane isotropic Young's modulus is Ε = 2 G 1 2 ( l + v 1 2 ) 
= 69.1 GPa . The rolling process seems to have a more significant effect on the transverse 
shear moduli than on the two Young's moduli. 

The iteration history in terms of the non-dimensional material parameters defined by (6) as 
encountered during the optimization is shown in figure 1. The initial guess is (0.5, 0.5, 2, 1, 
0) and the optimum solution is ( 0 . 0 2 , 0 . 0 4 , 2 . 7 0 , 2 . 5 7 , 0 . 1 2 ) . 
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Figure 1. Iteration history for non-dimensional material parameters (left) and the corre
sponding error functional and its gradient 2-norm defined by ΙΚθΦ/θο̂  , 3Φ/3α3 , 3Φ/3α4 , 
3Φ/3α8, 3Φ/3α9}||2 fright). 

The second example is a carbon fibre reinforced epoxy plate. 
The plate was stacked by eight plies with fibres interwoven at right angles. The layout was 
[ (0° ,90° ) 8 ] . The following parameters were measured 

length = 170.6 mm , width = 147.0 mm , thickness = 2.63 mm , mass = 99.9 g 

10 frequencies were measured (in Hz) : 

176 .16 , 5 1 6 . 9 0 , 6 2 8 . 9 5 , 7 7 5 . 7 1 , 8 5 1 . 5 9 , 1 1 8 0 . 3 , 1 4 1 4 . 5 , 1 5 1 1 . 0 , 1 9 4 3 . 4 , 2113.8 

The identified engineering constants were 

Ej = 56.6 GPa , E 2 = 52.1 GPa , G 1 2 = 3.82 GPa , v 1 2 = 0.074 , 

G 1 3 = 3.04 GPa , G 2 3 = 2.68 GPa 

with the resulting relative differences between measured and calculated frequencies (in %) : 

- 0 . 0 7 , -0.03 , 0 . 1 4 , -0.03 , 0 . 0 8 , - 0 . 0 5 , -0.22 , 0.16 , 0.05 , 0.03 

Again the agreement between measured and calculated frequencies is very good. 
With respect to the identified quantities it is observed that the transverse shear moduli are 
significantly smaller than the in-plane shear modulus. 
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In the following some consideration will be given to the number of natural frequencies 
involved in the identification. 
A large number of frequencies reduces, or even eliminates, the possibility of multiple optimal 
solutions, or a non-physical solution in combination with good agreement between calculated 
and measured frequencies. Furthermore, identification based on many frequencies presum
ably results in better averaged values than identification based on a few frequencies. How
ever, the numerical work increases with the number of frequencies and the numerical model 
predicts the higher frequencies less accurately. In addition, the experimental determination of 
higher frequencies tends to become more complicated. For instance, higher modes are 
generally more closely spaced and care must be taken not to overlook resonance peaks in the 
frequency spectrum. 
From a theoretical point of view, where perfect agreement between model and experiment 
exists, the identification result does not depend on the number of frequencies. However , in a 
practical experiment some variations may occur. T o illustrate this effect table 2 shows the 
engineering constants for the carbon/epoxy plate identified on the basis of a varying number 
of frequencies. As many as 15 natural frequencies have been determined experimentally. 
Very stable values of the in-plane engineering constants are found. Even the shear modulus 
G 2 3 is only slightly affected by the number of frequencies. On the other hand, the estimated 
value of G 1 3 is useless when the identification is based on 8 and 9 frequencies. When 
frequency number 10 is introduced, a reasonable estimate is obtained and the value is stable 
as more frequencies are added. The reason for this is that the effect of transverse shear may 
be significant only for higher modes of vibration. In addition the thickness of the plate and 
the ratio of elastic modulus to shear modulus has a strong impact on the transverse shear 
effect. In this respect the investigation of the frequency sensitivities with respect to the two 
transverse shear moduli plays an important role. Figure 2 shows the frequency sensitivities 
with respect to G 1 3 and G 2 3 for the carbon/epoxy plate. Frequency number 10 is seen to be 
the first frequency which provides a sufficiently high sensitivity with respect to G 1 3 and its 
importance to the identification of G 1 3 is obvious. Fairly high sensitivities with respect to 
G 2 3 are provided by frequency numbers 7, 8 and 9, and this is the reason why G 2 3 behaves 
well over the investigated range of frequencies. The overall stable values obtained when the 
number of frequency ranges from 10 to 15 confirms the reliability of the test. 

Table 2 
Identification results for various numbers of frequencies. Carbon/epoxy plate with woven 
fibres. 

No. of 
freq. 

Ex (GPa) E 2 (GPa) G 1 2 (GPa) Vi2 G 1 3 (GPa) G 2 3 (GPa) 

8 56.33 52.09 3.80 0.056 35.28 2.71 
9 56.29 52.07 3.80 0.059 56.98 2.75 
10 56.63 52.09 3.82 0.074 3.04 2.68 
11 56.62 52.09 3.82 0.074 3.09 2.68 
12 56.60 52.09 3.82 0.074 3.13 2.67 
13 56.58 52.16 3.82 0.078 3.14 2.37 
14 56.58 52.12 3.82 0.077 3.13 2.52 

15 56.59 52.12 3.82 0.077 3.12 2.52 
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Figure 2. Sensitivities for non-dimensional natural frequency with respect to the two 
transverse shear moduli for a carbon/epoxy plate with woven fibres. 

9. C O N C L U S I O N 

A method for determination of elastic material parameters (engineering constants) of 
anisotropic plates with attention focused on the transverse shear moduli has been presented. 
The method takes advantage of the identification approach, which is an experimental strategy 
in which the experiment is designed to give results with a high level of reliability without 
forcing the desired quantities to be among the directly measured quantities. The quantities 
wanted can then be identified by computer calculations. As many as six elastic constants are 
determined simultaneously on the basis of experimental data from a single experiment. 
The method is in contrast to the traditional testing idea and offers new possibilities for 
investigation of the material constants because it is non-destructive and very fast. 
The technique provides outstanding possibilities for investigating the influence of different 
environmental conditions on the material constants. As an example , temperature dependence 
for in-plane constants for different materials obtained by the present approach can be found 
in [4]. 
The advantages of the method are obvious, but the approach inevitably raises new problems. 
Interpretation of the experiment is complicated because the desired quantities appear in a 
most indirect way. The analysis of the experiment is involved and can only be done in a 
numerical way with a computer . The close cooperation between experimental work and 
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numerical work implies a possibility of an additional error source compared with traditional 
testing, i.e. errors in the form of an inaccurate or erroneous numerical model . The importance 
of an accurate model to the reliability of the test must be emphasized. With this demand 
fulfilled, successful and reliable identification depends on the quality of the test plate, which 
is assumed to be flat and with uniform properties. In general, extremely good agreement 
between calculated and measured plate natural frequencies have been found. 
The speed of the test is an important feature. With up-to-date high performance PC 
equipment (486 processor) the calculation time required for the identification is about 10 
minutes. 
The potential time savings and versatility of the technique combined with the promising 
results indicates that the method deserves further consideration. With further development, it 
is believed that the present technique for determination of elastic constants will become a 
valuable non-destructive test. 
Although computer time and memory requirements limit the complexity of the numerical 
model, future developments in computer technology with constantly increasing capabilities 
will undoubtedly considerably increase the possibilities for more complex applications in the 
field of identification. 
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Abstract 
T h e p r o g r a m systems to design composi te ma te r i a l s wi th p red ic t ed p rope r t i e s a r e 

p re sen ted . F o r this pu rpose t he re a r e t h r ee m a i n p r o g r a m s : p r o g r a m for eva lua t i on 
of p l a n s of exper iments , app rox ima t ion p r o g r a m a n d p r o g r a m for n o n l i n e a r p ro 
g r a m m i n g p rob lems . A p p r o x i m a t i o n p r o g r a m gives regression m o d e l s f r o m d a t a of 
expe r imen t . T h e s e a p p r o x m a t e funct ions a r e used as cont ro l func t ions for op t imi
za t ion p rob l ems . N u m e r i c a l examples of op t ima l design of compos i t e m a t e r i a l s 
wi th glass, c a r b o n a n d a r a m i d fibre fabrics a r e p resen ted . 

1. INTRODUCTION 
T h e a i m of invest igat ion is to develop m e t h o d s a n d p r o g r a m systems to design 

compos i t e m a t e r i a l s wi th p red ic ted proper t ies . Such proper t i es a r e weight , pr ice , 
m o d u l u s of elasticity, s t rength, d a m p i n g proper t ies etc. It is necessary to satisfy si
m u l t a n e o u s l y several qual i ty indeces , which, as a rule , a r e mu tua l l y con t rad ic to ry : 
i m p r o v e m e n t of o n e index is a t t a i n e d only by impa i r ing a n o t h e r . 

F o r compos i t e ma te r i a l s such p rob lems a r e m u l t i p a r a m e t e r a n d mu l t i ex t r ema l , 
s ince t h e r e a r e m a n y input or control p a r a m e t e r s : Y o u n g ' s m o d u l u s of f ibre a n d 
mat r ix , f ibre v o l u m e fract ion, f ibre or ien ta t ion , layers s tacking s e q u e n c e etc . T h e 
solut ion of this p r o b l e m is deviced in to t he following six s tages: choice of cont ro l 
p a r a m e t e r s a n d es tab l i shment of t he d o m a i n of search, e l abo ra t i on of i n fo rma t ive 
p l a n of t h e expe r imen t for t he chosen n u m b e r of r e f e rence poin ts , execut ion of 
t h e expe r imen t s (physical exper imen t or c o m p u t e r s imula t ion , for e x a m p l e , F E M 
analysis) , d e t e r m i n a t i o n of m a t h e m a t i c a l mode l s for each qual i ty index f r o m the 
e x p e r i m e n t a l d a t a , op t imiza t ion on the basis of discovered m a t h e m a t i c a l m o d e l s 
a n d a t t h e e n d ver i f ica t ion exper iments a t t h e po in t of op t ima l solut ions . 

In e a c h of these stages it is possible to solve a p r o b l e m by va r ious m e t h o d s . 
So, t h e r e a r e m a n y ways to get the p lans of expe r imen t (see, for e x a m p l e , h a n d 
book Réf. I) . In t he p resen t invest igat ion w e use a new a p p r o a c h for p l a n i n g out 
of expe r imen t s (see Ref. 2). T h e detai ls of this a p p r o a c h shall b e discussed la ter . 

T h e m a t h e m a t i c a l mode l s using d a t a of mul t i fac tor ia l e x p e r i m e n t c a n also b e 
o b t a i n e d by var ious me thods . In this case a widely used m e t h o d is p o l y n o m i n a l 
app rox ima t ion . In t h e presen t invest igat ion w e use a n o t h e r m e t h o d to f ind out t he 
e q u a t i o n of regression with p r o g r a m R E S I N T (see Ref. 3). 
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Also , t he r e a r e var ious m e t h o d s for opt imiza t ion (see, for example , Ref s . 4, 5). 
In t h e p resen t invest igat ion w e use the pena l ty funct ion m e t h o d wi th r a n d o m 
search a n d self t r a in ing (see Ref. 6). T h e cor responding p r o g r a m S U P E X o n the 
basis of this efficient m e t h o d is widely used to solve var ious n o n l i n e a r p r o g r a m 
m i n g p rob lems . 

A l l t h e m e t h o d s m e n t i o n e d above a r e used to design compos i t e m a t e r i a l s wi th 
p red ic ted proper t ies . S o m e numer i ca l examples for glass, c a r b o n a n d a r a m i d f ibre 
fabrics re inforced composi tes a r e discussed. 

2 . E L A B O R A T I O N O F I N F O R M A T I V E P L A N S O F E X P E R I M E N T 
Most of cr i ter ia for op t ima l p lans of exper iments a r e c o n n e c t e d wi th t h e p re 

dic ted m a t h e m a t i c a l m o d e l of designing object or process. Mos t of m a t h e m a t i c a l 
m o d e l s a r e po l i nomina l mode l s a n d the cor responding p lans of e x p e r i m e n t a r e op
t ima l only for these po l inomina l models . However , in most cases w e don ' t k n o w 
w h a t is t h e best m a t h e m a t i c a l mode l . 

L e t us cons ider a cr i ter ion for e labora t ion of p lans of expe r imen t which is in
d e p e n d e n t on m a t h e m a t i c a l mode l of the designing object or process . Such app ro 
ach w a s a t first suggested by P . A u d z e a n d V. Egla is (see Ref. 2). T h e ini t ial 
i n f o r m a t i o n for e l abora t ion of p l an is n u m b e r of factors η a n d n u m b e r of experi
m e n t s k. T h e m a i n principles in this new app roach a r e as follows: 

1) t h e n u m b e r of levels for each factor is e q u a l t o t h e n u m b e r of experi 
m e n t s a n d for each level is only o n e exper iment ; 

2) t he poin ts of exper iments in the d o m a i n of va r iab les ( factors) a r e distri
b u t e d as r egu la r as possible. T o rea l ize t he second pr inc ip le it is suggested t o use 
a cr i te r ion 

w h e r e l y is t h e d i s tance be tween the points hav ing n u m b e r s i a n d j (i^j). Mini 
m u m of this cr i ter ion a r e be ing def ined. Physically it is e q u a l to m i n i m u m of po
ten t ia l energy of repulsive forces for the points with uni ty mass , if t h e m a g n i t u d e 
of these repulse forces is inversely p ropor t iona l to the d i s tance b e t w e e n t h e points . 
T h e p r o b l e m to m i n i m i z e t he cr i ter ion (1) together wi th t he first p r inc ip le l eads to 
t h e solving a n o n l i n e a r in teger p r o g r a m m i n g p rob lem. Th i s p r o b l e m is solved by 
p r o g r a m P L A N E X . Fo r each n u m b e r of factors η a n d n u m b e r of expe r imen t s k it 
is possible to e l a b o r a t e a p l an of exper iment . But it n eeds m u c h c o m p u t e r t ime , 
t he r fo re e ach p l a n of exper imen t is e l abora ted only once a n d it c a n b e used for 
va r ious des igning cases. T h e p l an of exper iment is cha rac te r i zed by t h e ma t r ix of 
p l a n Bij. Such ma t r i ces w e r e calcula ted by p r o g r a m P L A N E X for n u m b e r of fac
tors ( space d imens ion ) η = 2 + 15 a n d for the n u m b e r of expe r imen t s Κ = 2 ... 
25. F o r example , w e represen t 9 point p l an of exper imen t (K = 9) for two (n = 
2) a n d t h r e e (n = 3) factors 

(1) 
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Fig. 1 P l a n of expe r imen t for 2 
fac tors (n=2) a n d 9 experi
m e n t s (k=9) 

BT = 

BT = 
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7 9 4 1 5 3 6 8 2 

(2) 

T h e points of expe r imen t for t h e first ma t r ix 
of p l a n (n = 2) a r e r ep re sen t ed in Fig . 1. 

W e d e t e r m i n e t he d o m a i n of va r i ab l e s (fac
tors) as Xj Ε [jc/mOT pc/"**} So, in this d o m a i n 
t he points of expe r imen t s a r e ca l cu la t ed by 
the expression 

1 AO mm , ^ / max _ 
~XJ ^ -fc\xJ xJnin )Bij 

i = 1,2,...,*: ; j = i,2,. . . ,n (3) 
Since t h e ma t r i ce s of p l a n By a r e universal , these m a y b e used for va r ious de

sign a n d op t imiza t ion p rob lems . 

3 . A P P R O X I M A T I O N O F T A B L E D A T A B Y E Q U A T I O N O F R E G 
R E S S I O N 

Physical e x p e r i m e n t or c o m p u t e r s imula t ion gives a n i n f o r m a t i o n a b o u t t h e ob
ject or process . Th i s i n fo rma t ion m a y b e respresen ted as t ab l e of d a t a . S o m e of 
these d a t a a r e p a r a m e t e r s of t he object xit X2 Xn, which a r e in c o n n e c t i o n wi th 
t h e p a r a m e t e r of response or control funct ion y . O u r a i m is t o express this re la
t ion in m a t h e m a t i c a l f rom as t h e e q u a t i o n of regression. T h e existing m e t h o d s of 
regress ion analysis a r e based on the pr inciple , t ha t t he f o r m of t h e e q u a t i o n is 
k n o w n a n d t h e p r o b l e m is to f ind t he coefficients of t h e e q u a t i o n . H o w e v e r , in 
mos t cases t h e f o r m of t he e q u a t i o n is also u n k n o w n . 

L e t us cons ider a m e t h o d which was suggested by V . Egla i s (see Ref. 3), a n d 
in which t h e f o r m of t h e e q u a t i o n of regression previously is u n k n o w n . T h e r e a r e 
two r e q u i r e m e n t s for t h e e q u a t i o n of regression: accuracy a n d reliabil i ty. A c c u r a c y 
is cha rac t e r i zed as m i n i m u m of s t a n d a r d devia t ion of t ab le d a t a f r o m t h e va lues 
given by t h e e q u a t i o n of regression. Increas ing the n u m b e r of t e r m s in t h e e q u a 
t ion of regression it is possible to ob ta in a comple te a g r e e m e n t b e t w e e n t h e t ab l e 
d a t a a n d t h e va lues given by the e q u a t i o n of regression. Moreove r , in this case it 
m a y b e any f o r m of e q u a t i o n of regression a n d a t t he in tervals b e t w e e n t h e t ab le 
po in ts p red ic t ion is no t good. Reliabil i ty of t he e q u a t i o n of regress ion m a y b e 
cha rac t e r i zed by m e a n i n g t ha t s t a n d a r d devia t ions for t he t ab l e po in t s a n d for any 
o the r po in t a r e approx imate ly the s a m e . Obviously t ha t for t h e sma l l e r n u m b e r of 
t e r m s of t h e e q u a t i o n of regression the reliability is g rea te r . 

L e t us cons ider t he e q u a t i o n of regression in t he fo rm 
m 

y = JiAlfi(xJ) (4) 
1 = 1 
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w h e r e Ai a r e coefficients of t he equa t ion of regression, fi(xj) a r e t h e funct ions 
f rom t h e b a n k of s imple funct ions φι, φι,..·, φη. T h e s e funct ions a r e a s s u m e d to b e 
in t h e f o r m 

η 
<pk(xj) = Y]xjaki (5) 

1=1 

w h e r e π is a n u m b e r of p a r a m e t e r of the object, - posit ive or nega t ive in teger 
inc luding zero . 

Synthesis of t h e e q u a t i o n f rom the b a n k of s imple funct ions is ca r r i ed ou t in 
two stages: select ion f rom the b a n k the perspect ive funct ions a n d t h e n s tep by s tep 
e l imina t ion of t he selected funct ions. 

Select ion of t h e perspect ive funct ions is car r ied out in t he fol lowing m a n n e r . 
F o r all funct ions f rom the b a n k wi th the least squa re m e t h o d t h e coeff icients Ai 
u n d Bi of s imple e q u a t i o n s of regression a r e d e t e r m i n e d 

yt « At + Bi φΐ (xj) (6) 

T h e s u m of devia t ions also is ca lcula ted 
k 

Si = 2 [Ai + Bi <p< (xj) - y j ]2 (7) 

w h e r e k is a n u m b e r of points . Simple funct ions wi th m i n i m u m Si a r e selected as 
perspect ive . Af t e r t ha t w e find out the most perspect ive funct ion for t h e dif feren
ces 

ρ 

Aj = A0 + J Aift (Xj) - y j ; j = 1,2,...Λ (8) 

w h e r e ρ is a n u m b e r of the selected perspect ive funt ions, fi (XJ) a r e t h e selected 
perspect ive funct ions, AQ a n d Ai a r e t he coefficients found by t h e least s q u a r e m e 
thod . Af t e r select ion of t he predic ted n u m b e r of t he perspect ive func t ions t h e eli
m i n a t i o n is ca r r ied out . 

L e t us a s s u m e tha t t he n u m b e r of t he selected perspect ive func t ions is p . So, 
t h e n u m b e r of va r i an t s for t he e l imina t ion of o n e funct ion is p . A l l v a r i a n t s a r e 
checked out wi th t h e least squa re m e t h o d a n d the funct ion, which l eads to t he 
m i n i m u m Si (7), is e l imina ted . T h e s t anda rd devia t ion is d e t e r m i n e d by t h e fo rmu
la 

In t h e s a m e m a n n e r t he next selected funct ions a r e e l imina ted . T h e last selec
t ion is f rom e l imina t ion d i a g r a m σ = σ (ρ) (see Fig. 2a) . If f rom t h e e q u a t i o n of 
regression insignif icant funct ions a r e e l imina ted t he increas ing of t h e s t a n d a r d de
v ia t ion is negligible. If in the equa t ion of regression only signif icant funct ions a r e 
p resen ted , t h e n the e l imina t ion of t h e m leads to i m p o r t a n t increas ing of t he s tan-
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d a r d dev ia t ion . T h e r e is a character is t ic k n e e on the d i a g r a m of e l im ina t i on (see 
Fig. 2a) . 

0 1 P* Pm„ 0 1 P* Pn 

Fig. 2 D i a g r a m of e l imina t ion : a - for s t a n d a r d dev ia t ion σ; 
b - for coefficient of cor re la t ion c 

It is conven ien t to charac te r i ze accuracy of t he e q u a t i o n of regress ion by the 
coefficient of cor re la t ion c 

c = ( ! - £ ) . 1 0 0 % (10) 

w h e r e σο is t h e s t a n d a r d devia t ion f rom the m e a n va lue of r esponse 

In this case t h e e l imina t ion d i a g r a m c = c (p) ha s m o r e un iversa l scale . 
T h e m e t h o d of appox ima t ion of t he t ab le d a t a , e x a m i n e d above , h a s b e e n as 

b a s e to c r e a t e t he p r o g r a m R E S I N T . This p r o g r a m w a s widely used for e l abora 
t ion of m a t h e m a t i c a l mode l s in different field: b iotechnology, robot ics , compos i t e 
m a t e r i a l design a n d th in wal led s t ructure opt imiza t ion . 

4 . N E W V E R S I O N O F R A N D O M S E A R C H M E T H O D 

T h e r e a r e m a n y vers ions of the r a n d o m search m e t h o d . L e t us cons ider a versi
on, suggested by V . Egla is (see Ref. 6). W e h a v e cons t ra ined n o n l i n e a r p r o g r a m 
m i n g p r o b l e m 

m i n F(x); Hi (x) > 0, Gj (χ) = 0 
i - 1,2,.„,I; j = 1,2,...,J (12) 

w h e r e / is a n u m b e r of inequal i ty constrains , / is a n u m b e r of equa l i ty cons t ra ins . 
W e u s e pena l ty funct ions a n d special p r o c e d u r e to m i n i m i z e t h e u n c o n s t r a i n e d 
funct ion . T h e ini t ial d a t a for a lgor i thm is only the s tar t po in t of sea rch (see t he 
flow cha r t in Fig. 3). 

T h e cons t r a ined min imiza t ion p rob lem (12) is r ep laced to t he u n c o n s t r a i n e d mi 
n imiza t i on p r o b l e m in which const ra ins a r e t a k e n in to accoun t wi th t h e pena l ty 
funct ions 
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F,(χ) = F(x) + J SNi(x) + J M*) 

w h e r e F 5 is t h e funct ion wi th penal ty , S Μ (Χ) is t he pena l ty func t ion for t h e ine
qual i ty cons t ra in i, SVj (x) is the penal ty funct ion for t he equal i ty cons t r a in j . Pe 
nal ty func t ion for t h e inequal i ty const ra ins ha s t he fo rm 

SNi(x) = cc [Hi(x) - Ei ] 
Sm(x) = 0 , 

ifHi(x) < Ei 
ifHi(x) > Ei 

(14) 

Fig. 3 F low cha r t of a lgor i thm 

w h e r e Hi(x) is the inequal i ty cons t r a in i, a is 
t he coefficient of pena l ty power , EY is t h e ba 
lancing p a r a m e t e r wi th t h e abili ty t o a d a p t for 
the cons t ra in i. T h e pena l ty func t ion for t h e 
equal i ty const ra ins ha s t he fo rm 

Syj(x) = a [Gj(x) - Ejf (15) 

w h e r e Gj(x) is the equal i ty cons t ra in j . T h e 
two types of the cons t ra ins in e a c h s tage of 
search has t he s a m e v a l u e of t h e coeff icient 
a. T h e init ial va lue of t h e coefficient is a = 
1. This coefficient is c h a n g e d only in conclusi
on s tage of search «penal ty s t r eng then ing» 
(see Fig. 3). 

E a c h cons t ra in has dif ferent ba lanc ing p a r a m e t e r s ε, . T h e a i m of these p a r a 
m e t e r s wi th t h e ability to a d a p t is to d e t e r m i n e a m i n i m u m of t h e pena l ty func
t ion a t t h e act ive cons t ra ins wi th m a x i m u m accuracy. Fo r all cons t ra ins t h e ini t ial 
v a l u e of t h e b a l a n c i n g p a r a m e t e r ε,· = 0. Correc t ion of these p a r a m e t e r s is a t t he 
s tage «ba lanc ing of constra ins» (see Fig. 3). 

A t t h e first s tage «search of descent direct ion» w e search for t h e poin t , w h e r e 
t h e v a l u e of pena l ty funct ion is smal ler t h a n a t the ini t ial po in t . F o r this in t he 
sea rch d o m a i n (12) w e cut out a mul t id imens ion para l l e lep iped wi th c e n t r e a t t he 
ini t ia l po in t a n d wi th t h e length of edges di. T h e ini t ial va lues for all di a r e e q u a l 
(di = 1). F o r t he un i fo rm distr ibut ion of r a n d o m n u m b e r s a t e ach edge of pa ra l 
le lepiped w e d e t e r m i n e a r a n d o m point a n d a va lue of pena l ty func t ion (13) a t 
this poin t . If a t this test po in t the va lue is smal ler t h a n ini t ial o n e t h e n w e t rans i t 
to t h e s tage «descent» (see Fig. 3). In contrary, a new test po in t w e select in t he 
opposi te d i rec t ion a t a d is tance , which w e d e t e r m i n e f rom t h e v a l u e of previous 
unsuccesful s tep mul t ip l ied by the coefficient Ki 

Si - Si-i Ki (16) 

w h e r e Si is t h e length of s tep for test i. 
Also , if a t t he n e w test poin t the va lue of pena l ty funct ion is g r e a t e r t h a n the 

ini t ia l va lue , t h e n w e dec rease the step. Fo r this w e diminish t he length of edges 
of t he para l le lep iped . T h e length of edges is mul t ip l ied by the coefficient K2 a n d 
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w e c o n t i n u e search in decreas ing para l le lep iped . It con t inues whi le w e f ind a po in t 
wi th smal le r v a l u e of pena l ty funct ion or t he va lue of pena l ty func t ion is t he 
s a m e as ini t ia l o n e . I n t h e first case w e t rans i t t o t h e s tage «descent» , in t h e se
c o n d case - t o t h e s tage «penal ty s t rengthening» (see Fig. 3). It is possible t h a t af
te r s tep t h e test po in t is t h e s a m e as the init ial . In this case w e suppose t h a t t he 
c o m p u t e r accuracy is ach ieved a n d fur ther search is useless. L e t us cons ider t he 
s tage «descent» . In t he di rect ion which has b e e n found ab o v e w e m a k e a s tep. 
T h e s tep length w e ob ta in mult iplying the previous s tep length by t h e coeff icient 
K3. If this s tep is successful t h e n the step length is mul t ip l ied by t h e coeff icient K4 
a n d a t t h e next s tep - by t he coefficient K5. 

If t h e s tep is unsuccessful t h e n w e t ransi t to t he s tage " sea rch of descen t cont i 
n u a t i o n " (see Fig. 3). 

L e t us cons ider t he s tage "search of descent con t inua t ion" . T h i s is t h e mos t 
complex s tage. T h e re la t ions for search consist of 13 coefficients a n d t h e i n f o r m a 
t ion a b o u t t h e previous search. A t this s tage w e also use r a n d o m n u m b e r s wi th 
u n i f o r m dis t r ibut ion. If t he s tep is successful t h e n w e t rans i t to t h e s tage «de
scent" . In cont ra ry , w e t rans i t to the stages «correct ion of sea rch d o m a i n » a n d 
" b a l a n c i n g of cons t ra ins» . It should b e no t ed t ha t t he re la t ions a t t h e s tage «cor
rec t ion of search d o m a i n » consist of 2 heuris t ical coefficients. 

T h e a i m of b a l a n c i n g is d e t e r m i n a t i o n of the p a r a m e t e r s ε, for pena l ty func t ion 
(14) a n d (15) to p rov ide t he best a g r e e m e n t of m i n i m u m of pena l ty func t ion (13) 
wi th solut ion of t h e p r o b l e m (12). A t t he s tage «ba lanc ing of cons t ra ins» n e w va
lues of t h e p a r a m e t e r s ε, a r e ca lcula ted . F o r this w e use t h e p rev ious va lues , t h e 
e s t ima ted va lues of cons t ra ins a t the ac tua l s tep a n d p a r a m e t e r s wi th t h e ability 
t o a d a p t T h e s e p a r a m e t e r s t a k e in to accoun t chang ing in signs for cons t ra ins 
a t t h e prev ious b a l a n c i n g steps. Ba lanc ing of cons t ra ins is cont ro l led by 6 coeffi
cients . 

W h e n t h e ac tua l po in t is in t he vicinity of the solut ion of t h e p r o b l e m , t h e im
p roved v a l u e is found ou t a t t he s tage «penal ty s t rengthening» , a l t e r ing t h e coeffi
c ient of t h e pena l ty power a. A t the s a m e t i m e the p a r a m e t e r s of t h e pena l ty 
funct ions a lso a r e changed . Af t e r penal ty s t reng then ing t h e f ina l s tage of sea rch 
begins , w i thou t r e tu rn ing to the s tage «ba lanc ing of cons t ra ins» . W i t h r e p e a t e d pe 
na l ty s t r eng then ing it is possible to ob ta in solut ion wi th g rea t accuracy . Th i s a lgo
r i t h m provides only po ten t i a l efficiency. T h e rea l efficiency of t h e m e t h o d d e p e n d s 
on va lues of coefficients. W e chose some difficult p rob l ems of n o n l i n e a r p r o g r a m 
m i n g (see Refs . 4 a n d 5) to find the op t ima l va lues of coefficients . F o r example , 
w e solve Rosenbrock ' s a n d o ther p rob lems to a d a p t t he best coefficients . Moreove r , 
i n fo rma t ive p l ans of exper iment , considered above , a r e used for op t imiza t ion of 
coefficients. T h e mos t difficult was the s tage «ba lanc ing of cons t ra ins» . T h e n u m 
ber of coefficients for contro l of a lgor i thm is abou t 30. 

W i t h this p r o g r a m of op t imiza t ion S U P E X m a n y difficult test p r o b l e m s (see 
Refs . 4 a n d 5) w e r e successfully solved. O n e of these solut ions see la ter . S o m e 
example s of op t imiza t ion a r e represen ted in Refs . 6 a n d 7. I n t h e inves t iga t ion 
(Ref. 7) t h e p r o g r a m S U P E X w a s used together with t h e i n fo rma t ive p l ans of ex
p e r i m e n t ( p r o g r a m P L A N E X ) a n d the p r o g r a m of a p p r o x i m a t i o n R E S I N T . T h e 
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o p t i m a l design p rob l ems of complex s tructures f rom compos i te m a t e r i a l s w e r e sol
ved. Th i s shows efficiency of the new app roach in op t imiza t ion of s t ruc ture . Fur 
the r w e shall i l lustrate some examples of composi te ma t e r i a l s des ign us ing t he 
p r o g r a m s R E S I N T a n d S U P E X a n d s t anda rd example of n o n l i n e a r p r o g r a m m i n g 
p rob l em. 

5. NUMERICAL EXAMPLES 
Example 1. F o r test ing t he p r o g r a m S U P E X let us consider a s t a n d a r d p rob 

l e m of n o n l i n e a r p r o g r a m m i n g (see example 16 in Ref. 5) 

m i n F(x) = - 0,5 (x{X4 - X2X3 + X3X9 - X5X9 + XSXS - X&7) (17) 

u n d e r cons t ra ins 

So, w e h a v e t he p r o b l e m with 9 var iables , o n e l inear a n d 13 n o n l i n e a r inequa l i 
ty cons t ra ins . A s t he ini t ial w e select t he poin t χ,· = 1 (i = 1,2,...,9), w h e r e F(x) 
= 0. W e f ind out t ha t this p rob l em has m a n y op t imal solutions, w h e r e a t t h e opti
m u m po in t f rom 6 to 9 const ra ins a r e active. In the p r o g r a m S U P E X a b o u t 5000 
ca lcu la t ions of funct ion wi th doub le precision a r e n e e d e d . F o r all o p t i m a l solut ions 
t h e v a l u e of funct ion is t he s a m e : F(x) = - 0,866025403784438. T h e ac t ive con
s t ra ins a r e satisfied wi th t he accuracy 10" 1 5 . Also , t he local solut ion wi th F(x) = 
- 0,6749 w a s found out . C o m p a r i s o n study of var ious n o n l i n e a r p r o g r a m m i n g co
des shows (see Ref. 5), t ha t only wi th one p r o g r a m f rom seven it is possible to 
solve t h e above p rob lem. 

Example 2. F u r t h e r w e consider the op t imal design of expand ing epoxy l a m i n a 
t ing systems. T h e s e special types of composi te ma te r i a l s a n d process ing technology 
w e r e descr ibed in Ref. 8. A n expanding agen t is a d d e d to epoxy resin in o rde r to 
get m o r e light weight m a t e r i a l of microcel lular s t ruc ture (voids) of ma t r ix . Exper i 
m e n t a l invest igat ion o n these composi te ma te r i a l s with var ious k inds of glass a n d 
c a r b o n fiber r e in fo rcemen t w e r e car r ied out . T a b l e 1 shows t h e resul ts of experi
m e n t s of glass f ibre fabrics composi te in static bend ing . E a c h resul t is a m e a n of 
5 exper iments . F o r this m a t e r i a l t he m e a n glass fiber v o l u m e f rac t ion is μι = 

T h e cont ro l (design) p a r a m e t e r is con ten t of special expand ing a g e n t (wp in % ) . 
T h e last row shows t h e exper imen ta l results of s t anda r t compos i te m a t e r i a l wi thou t 
e x p a n d i n g agen t (wp = 0). T h e v o l u m e conten t of voids is //voids* 100%. Th i s pa 
r a m e t e r m a y b e t he funct ion y$ of wp -> x; . Also , μνο\± m a y b e t h e a r g u m e n t X2 
of funct ion . T h e control funct ions a re : modu lus of elasticity of compos i t e m a t e r i a l 

1 -Χ32 - x4

2 ^ 0 
1 -x9

2 > 0 
1 - x 5

2 - x / > 0 
1 - x 2 - (x2 - x9)2 > 0 

1 - (XL - X5)2 - X2 - ΧΌ)2 ^ 0 

1 - (x3 - x7)2 - (χ4 - χ / > 0 
1 - x?2 - (x8 - x9)2 > 0 

χ/ x4 - x2 X3 ^ 0 
x3 x9 ^ 0 

- x5 x9 > 0 
X5 XS - X6X7 ^ 0 

x9 > 0 

(18) 

42 ,5%. 
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Ε -* yu b e n d i n g s t rength a m a x -* y2, m a x i m u m of b e n d i n g d e f o r m a t i o n ε -* y3 
a n d a lso m a t e r i a l densi ty ρ -* y Φ 

T A B L E 1. 
E x p e r i m e n t a l resul ts for glass f ibre fabrics compos i te in s tat ic b e n d i n g 

yi ys Υ4 X l X 2 or y 5 

N o Ε G max ε Ρ , wp ft voids 
N / m m 2 N / m m 2 % g / c m [weight p a r t } % 

1 13993 216 1,96 1,4231 2,0 27,4 

2 14801 215 1,90 1,4356 1,5 25,4 

3 16488 254 1,92 1,4996 1,0 20,7 
4 15855 283 2,11 1,5497 0,5 16,8 

5 16803 312 2,16 1,6156 0,2 11,4 

6 17306 426 2,84 1,7185 0,0 0,0 

In this e x a m p l e w e h a v e only o n e control p a r a m e t e r wp. T h e r e f o r e , w e f ind out 
t h e e q u a t i o n s of regression ytfa) (i = 1,2,3,4). In this case of a p p r o x i m a t i o n for 
o n e d i m e n s i o n w e use a vers ion of t h e p r o g r a m m R E S I N T , w h e r e t h e b a n k of 
s imple func t ions con ta ins also t r igonomet r ic funct ions . A s cont ro l func t ions for op
t ima l design w e select m o d u l u s of elasticity of compos i te m a t e r i a l Ε -* yu t h e 
b e n d i n g s t reng th omax -* y2 a n d t h e m a t e r i a l density ρ y4. T h e vers ion of t h e 
p r o g r a m R E S I N T gives t h e following equa t i ons of regression 

yi fa) - 18280 + 4302 sin 6 fa) - 1295 cos 6 (zt) - 2216 cos 12 fa); 
y2 fa) - 336 - 232 z2 + 109 z2

2 + 0,0092 z 2

2 (19) 
y4 fa) = 1,613 - 0,2915 z3 + 0,09125 z3

2 + 0,006354 z3

2 

w h e r e for each func t ion w e h a v e different coefficients of n o r m a l i z a t i o n 

zi = 0,52 + 0,24 xh-
z2 = 0,01 + 0,495 xh' (20) 
z3 = 0,2 + 0,4 x1 

It should b e not iced , t h a t t h e equa t ions of regression (19) could b e used only for 
t h e d o m a i n , w h e r e w e h a v e in format ion , i.e. 

0 > wp > 2 ; 200 > Omax > 450 
14000 > Ε > 17300 ; 1,42 > ρ > 1,72 (21) 

L e t us consider op t ima l desgin p rob lem: find out t he v o l u m e c o n t e n t of t h e ex
p a n d i n g a g e n t Xi = wp to min imize t h e composi te m a t e r i a l weight ρ for t h e fixed 
va lues of m o d u l u s of elasticity of composi te m a t e r i a l Ε * a n d b e n d i n g s t rength 

^max 

m i n y4 fa) (22) 
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u n d e r cons t ra ins 

yi(xO = E* ; y2(xi) = omax ; 0 < x1 < 2 (23) 

T a b l e 2 con ta ins t he results of opt imiza t ion with p r o g r a m S U P E X for va r ious va
lues of t h e p red ic ted m o d u l u s of elasticity E * (in N / m m 2 ) a n d t h e b e n d i n g 
s t renght a m a x * (in N / m m 2 ) . In n u m e r a t o r w e have t he op t ima l p a r t of weight of 
e x p a n d i n g a g e n t (wp), whi le in d e n o m i n a t o r t he weight ζ for o p t i m a l compos i t e . 

T A B L E 2. 
Resu l t s of o p t i m a l design of glass f ibre fabrics compos i te wi th voids 

Omax * 

E * 
200 250 300 350 450 

14000 2,009 1,546 0 3 9 2 0,226 0 
1,416 1,445 1,570 1,611 1.718 

15000 2 r 055 122Û 0-377 0.145 0 
1,416 1,469 1,575 1,636 1,718 

16000 2.110 0.961 0-335 0.031 0 
1,413 1,492 1,580 1,690 1,718 

17000 2.180 0.938 0.281 0.025 0 
1,410 1,495 1,595 1,700 1,718 

F r o m T a b l e 2  i t i s possibl e t o selec t a  m a t e r i a l w i t h p red ic t e d p roper t i e s . F o r 
example , i f w e n e e d a  composi t e ma t e r i a l wi t h m o d u l u s o f elasticit y E*  =  16000 
N / m m 2 a n d b e n d i n g s t rengt h no t les s t h a n a m a x * =  25 0 N / m m 2 , t h e n fo r m in i 
m u m weigh t compos i t e (  ρ = 1,49 g / c m 3 ) t he con ten t of special e x p a n d i n g agen t 
is: wp = 0,96 %. 

Example 3. T h e next example is op t imal design for pr ice cr i te r ion of compos i te 
m a t e r i a l wi th glass, c a rbon a n d a r a m i d f ibre fabrics r e in fo rcemen t . T a b l e 3 con
t a ins t h e resul ts of exper imen t (see Ref. 9) for glass, c a r b o n a n d a r a m i d f ibre 
compos i t e m a t e r i a l s wi th va r ious f ibre v o l u m e fract ion μ/ -» xs, m a t r i x m o d u l u s 
of elasticity Em -* x j a n d Poisson's r a t ion vm x4t n u m b e r of pl ies Κ -» x$ f ibre 
m o d u l u s of elasticity Ef -» Χγ a n d m a x i m u m angle (in r ad i ans ) of d i f fe rences f rom 
t h e s t ra ight l ine for woven fabrics in w a r p direct ion xj a n d in fill d i rec t ion x2. T a 
b l e 3 con ta in s a lso contro l funct ion: pr ice of composi te m a t e r i a l yi a n d m o d u l u s 
of elasticity of compos i te ma te r i a l Ε -» y2> w h e r e Ε = 0,5 (Ex + Ey) (Ex is m o d u 
lus of elasticity of composi te m a t e r i a l in w a r p direct ion, Ey is t h e s a m e in fill di
rec t ion) . A l l these quant i t i es w e r e m e a s u r e d in t he exper iment . Only t h e pr ice of 
compos i t e m a t e r i a l yi is d e t e r m i n e d as re la t ive quan t i ty a n d is a p p r o x i m a t e . W e 
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(24) 

(25) 

get it f r o m t h e pr ice of glass f ibre fabrics (approximate ly 20 D M / k g ) , c a r b o n f ibre 
fabr ics (214 D M / k g ) a n d a r a m i d f ibre fabrics (173 D M / k g ) - these va lues mul t ip 
lied by f ibre v o l u m e f rac t ion μ/ 

T h e p r o g r a m R E S I N T gives the following expressions for con t ro l func t ions : re la
t ive p r ice of compos i te m a t e r i a l yi(x0 a n d m o d u l u s of elasticity of compos i t e m a 
ter ia l y2(x0 

yifa) = 68,91 - 35,6 z 3 + 11,578 z7 + 15,27 z 5 + 7,042 z4 -
- 20,43 z3

2 - 14,65 z3 z5 + 4,96 z4 z5 ; 

y2(x0 - 25,89 + 8,21 z7 + 5,596 z5 - 2,262 z3 z5 - 2,257 z5

2 -
- 1,776 Z2 zs - 2,577 z6

2 - 0,974 z3 

w h e r e t h e coefficients of no rma l i za t i on for i n d e p e n d e n t va r i ab les x, a r e 

z3 = -2,79 + 0,94 x3 ; 
z4 = 27,66 + 66,66 x 4 ; 
zs - -3,07 + 0,074 x 5 ; (26) 
z 6 = -128 + 0,28 x6 ; 
z? - -1,91 + 0,012 x7 

Fig. 4 shows t h e d i a g r a m of e l imina t ion for t he cont ro l func t ion yi (pr ice) . W e 
c 0 / o see, t ha t t he best app rox ima t ion is for t h e func t ion (24) 

\ wi th 8 t e rms . T h e cor responding v a l u e of coeff ic ient of 
cor re la t ion is C = 93,1% a n d s t a n d a r d dev ia t ion is σ 
= 1,96. L e t us consider t he op t ima l des ign p r o b l e m : 
m i n i m i z e the pr ice of compos i te m a t e r i a l 

min yi(xi) 

u n d e r cons t ra ins 

y2 (Xi) = E. ; 
0,044 < Xi < 0,309 
0,14 < x2 < 0,22 ; 
1,905 < x 3 < 4,032 ; 

0,4 < x4 < 0,43 
27,96 < x 5 < 54,9 

1 < x6 < 8 
73,5 < X7 < 234 

(27) 

(28) 

Fig. 4 D i a g r a m of e l imi-
m i n a t i o n for con w h e r e the funct ions yi(x0 a n d y2(x0 a r e g iven by t h e 
t rol func t ion y ; expressions (24), (25) a n d E* is t h e des igning m o d u l u s 

of elasticity of compos i te ma te r i a l .Wi th t he p r o g r a m S U P E X w e f ind ou t s o m e lo
cal m i n i m u m . F o r t h e designing modu lus of elasticity of compos i t e m a t e r i a l E* = 
30 k N / m m 2 t h e best local solut ion yi* a n d t h e co respond ing o p i m a l p a r a m e t e r s 
a r e 

= 0,131; Q2 = 0,139; Em = 3,35 kN/mm2' ; 
ν = 0,4; μ ί = 47,2%; Κ = 4,55; 

-2- yf = 50,8 
(29) 

Ef = 1,71 kN/mm1; 
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It should b e not iced, t ha t t he m e a n va lne of fibres m o d u l u s of elasticity Ef = 
171 k N / m m 2 

T A B L E 3. 
Resu l t s of expe r imen t for composi te ma te r i a l s wi th glass, c a r b o n a n d a r a m i d f ibre 
fabrics r e i n f o r c e m e n t 

Xi X2 X3 X4 Xs X6 X7 yi y2 
N o . Ω 2 Em vm Κ Ε 

r a d r a d k N / m m 2 *100% k N / m m 2 Pr ice k N / m m : 

Glass f ibre fabrics 
1 0,137 0,159 4,032 0,43 32,27 1 73,5 7,04 11,0 
2 0,137 0,159 4,032 0,43 33,48 2 7,30 12,2 
3 0,196 0,196 4,032 0,43 4 0 3 6 1 7,78 14,3 
4 0,196 0,196 4,032 0,43 48,15 2 9,51 17,4 
5 0,309 0,199 4,032 0,43 40,52 1 8,19 14,25 
6 0,087 0,157 3,794 0,4 4 4 3 2 1 8,86 14,13 
7 0,087 0,157 3,794 0,4 47,52 2 9,50 16,7 
8 0,044 0,176 3,794 0,4 3 6 3 8 1 7,28 11,1 
9 0,044 0,176 3,794 0,4 39,56 2 7,91 16,15 

10 0,148 0,148 3,797 0,4 54,90 1 10,98 16,5 
11 0,148 0,148 3,797 0,4 53,57 2 10,71 19,93 

C a r b o n f ibre fabrics 
12 0,14 0,14 2,900 0,4 32,90 3 234 70,4 28,8 
13 0,163 0,163 2,900 0,4 32,50 3 69,6 28,65 
14 0,14 0,14 1,905 0,4 33,66 3 72,03 24,46 
15 0,14 0,14 1,905 0,4 46,29 6 99,06 36,47 
16 0,14 0,14 3,005 0,4 27,96 2 59,83 23,68 
17 0,14 0,14 1,905 0,4 41,02 4 87,78 33,53 
18 0,14 0,14 1,905 0,4 39,49 3 84,51 3 0 3 6 

A r a m i d f ibre fabrics 
19 0,22 0,22 2,902 0,43 28,5 2 120 49,31 14,19 
20 2,902 0,43 53,8 4 93,07 24,53 
21 1,905 0,4 28,94 3 50,06 12,57 
22 1,905 0,4 48,74 6 84,32 22,15 
23 3,005 0,4 29,90 2 51,73 16,30 
24 1,905 0,4 29,90 2 51,73 14,43 
25 1,905 0,4 36,15 8 62,54 17,37 
26 1,905 0,4 35,50 4 61,42 18,15 

could b e o b t a i n e d only by combina t ion of 6 0 % ca rbon fibres a n d 4 0 % glass fibres 
(234 x 0,6 + 73,5 x 0,4 = 171). So, in this case w e h a v e a hybr id compos i te 
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m a t e r i a l wi th c a r b o n f ibre v o l u m e fract ion / / / a r b o n = 47,2 x 0,6 = 28,3% a n d 
glass f ibre v o l u m e f rac t ion / * / l a s s = 47,2 x 0,4 - i £ 9 %. ( μ , = / * / a r b o n + / / / l a s s ) . 
Ac tua l ly t h e pr ice of this hybrid composi te m a t e r i a l is yi = 0,472 (214 x 0,6 + 
2 0 X 0,4) = 64,4. T h e pr ice (y; = 64,4) of op t ima l hybr id compos i t e m a t e r i a l 
wi th t h e s a m e m o d u l u s of elasticity is 2 4 % less t h a n the pr ice (y; = 84,5) of 
c a r b o n f ibre compos i te (see m a t e r i a l No . 18 in the T a b l e 3). 

S imi la r o p t i m a l design could b e ob ta ined also for t he weight c r i te r ion u n d e r 
cons t ra ins for pr ice a n d m o d u l u s of elasticity. 

6. C O N C L U S I O N 
It is possible to solve var ious op t imal design p rob lems of compos i t e ma te r i a l s , 

us ing t h e p r o g r a m of app rox ima t ion R E S I N T a n d the p r o g r a m of n o n l i n e a r p ro 
g r a m m i n g S U P E X . T h e contro l funct ions m a y b e stiffness, s t rength , d a m p i n g a n d 
t h e r m a l p roper t i e s of compos i te ma te r i a l . T h e cr i ter ion m a y b e t h e we igh t or pr ice 
of t h e m a t e r i a l . T h e cont ro l p a r a m e t e r s m a y b e f ibre v o l u m e f rac t ion , void con
ten t , f ibre a n d ma t r ix m o d u l u s of elasticity, n u m b e r of pl ies a n d o the r va r i ab les . It 
should b e no ted , t h a t for app rox ima t ion of cont ro l funct ions wi th t h e p r o g r a m 
R E S I N T it is possible to use as i n fo rma t ion no t only t he results of physical expe
r imen t s , bu t a lso t he results f rom theore t ica l mode l s or c o m p u t e r s imula t ion . 
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Abstract 
S e l e c t i n g m a t e r i a l s is d i s c u s s e d b a s e d o n n o n d e s t r u c t i v e i n s p e c t i o n ( N D I ) of 

d e l a m i n a t i o n b y u l t r a s o n i c t e s t i n g . A s i m p l e e x a m p l e of l a m i n a t e d m a t e r i a l s 
w h i c h is c o m p o s e d of t w o l a y e r s of d i f ferent m a t e r i a l s is c o n s i d e r e d . T w o s u r f a c e s 
h a p p e n e d b y d e l a m i n a t i o n a t t h e i n t e r f a c e m a y c o n t a c t e a c h o t h e r . A l s o p r e s s u r e 
for t h e c o n t a c t m a y e x i s t i n s o m e c a s e s . B y c o n s i d e r i n g t h e s e c i r c u m s t a n c e s i t 
is c o n c l u d e d t h a t t h e s e l e c t i n g m a t e r i a l s , i n w h i c h Z\ > Z^ a n d Z\ a n d Z<i a r e 
n o t m u c h d i f fe ren t , is fit for e a s y N D I of t h e d e l a m i n a t i o n , w h e r e Z\ is a c o u s t i c 
i m p e d a n c e of t h e m a t e r i a l f r o m w h o s e s ide u l t r a s o n i c w a v e is i n c i d e n t a n d Z<i 
is i m p e d a n c e of a n o t h e r m a t e r i a l . A l s o i n o r d e r t o i den t i f y t h e w a v e i n a t i m e 
d o m a i n , i t is e a s i l y f o u n d t h a t o n e s h o u l d d e s i g n t h e t h i c k n e s s of t h e l a y e r b e i n g 
g r e a t e r t h a n c i / 2 / , w h e r e c\ is t h e w a v e v e l o c i t y i n t h e l a y e r a n d / is t h e u l t r a s o n i c 
f r e q u e n c y . 

1. INTRODUCTION 

L a m i n a t e d m a t e r i a l s a r e r e c e n t l y i n t e r e s t e d b y m a n y r e s e a r c h e r s a n d b e c o m i n g 
t o b e u s e d i n c r e a s i n g l y i n i n d u s t r i e s . I n t e r f a c e i n t h e m a t e r i a l s p l a y s a k e y r o l e of 
d e t e r m i n i n g p r o p e r t i e s of t h e m a t e r i a l s . M a n y i n v e s t i g a t i o n s h a v e b e e n d o n e for 
e v a l u a t i n g s t r e n g t h a n d f r a c t u r e of t h e i n t e r f a c e , see Re f s . [1] a n d [2] for e x a m p l e s . 

I n t e g r i t y a s s e s s m e n t of m a t e r i a l s r e q u i r e s d e t e c t i o n a n d s i z i n g of t h e d e l a m i n a 
t i o n o c c u r r i n g a t t h e i n t e r f a c e . If t h e m a t e r i a l s a r e s e l e c t e d o p t i m a l l y i n d e s i g n i n g 
n o t o n l y for i n c r e a s i n g s t r e n g t h b u t a l so for e a s y N D I of d e l a m i n a t i o n , r e l i a b i l i t y 
of t h e i n t e g r i t y a s s e s s m e n t is h i g h l y e x p e c t e d t o i n c r e a s e . F r o m t h e p o i n t of v i e w 
s t a t e d , f u n d a m e n t a l a s p e c t s a r e d i s c u s s e d for s e l e c t i n g m a t e r i a l s b a s e d o n N D I of 
d e l a m i n a t i o n b y t r e a t i n g u l t r a s o n i c t e s t i n g a s a n e x a m p l e of N D I m e t h o d s . 

2. ULTRASONIC N D I FOR DELAMINATION 

W e l l - k n o w n i d e a for d e t e c t i n g t h e d e l a m i n a t i o n b y u s i n g u l t r a s o n i c s h a s b e e n 
t o c o m p a r e i n t e n s i t y of s o u n d w a v e s r e f l ec ted f r o m b o n d e d a r e a a n d d e l a m i n a t e d 
o n e w h i c h is m o d e l e d b y a l aye r of a i r . T o d e m o n s t r a t e t h e u s u a l m e t h o d F i g 
u r e 1 s h o w s a s i m p l e e x a m p l e w h i c h t r e a t s s i n u s o i d a l u l t r a s o n i c w a v e s . W a t e r 
is u s u a l l y u s e d a s m e d i u m t o t r a n s m i t t h e w a v e f r o m a p r o b e t o t h e s u r f a c e of 
m a t e r i a l i n s p e c t e d . T h e u l t r a s o n i c w a v e is i n c i d e n t p e r p e n d i c u l a r l y f r o m t h e s i d e 
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Bonded Delaminated [Air (ZA)] 

F i g u r e 1. W e l l - k n o w n m o d e l of d e l a m i n a t e d a r e a . 

of m a t e r i a l 1 w h i c h h a s a c o u s t i c i m p e d a n c e Z\. F r o m t h e o r e t i c a l a n a l y s i s a s s u m 
i n g p l a n e h a r m o n i c w a v e [3], t h e i n t e n s i t y of t h e w a v e r e f l e c t ed f r o m t h e b o n d e d 
a r e a , P # , a n d t h e i n t e n s i t y of t h e w a v e re f lec ted f r o m t h e d e l a m i n a t e d o n e , Pc», 
a r e r e l a t e d w i t h t h e i n t e n s i t y of t h e i n c i d e n t w a v e , P 4 , a s 

±ZwZi \Z2-Zi\ m 

(Zw + Ztf Ζλ + Ζ2 

a n d 

_ 4ZwZi \ZA - Z\\ , ν 
P c - ( z w + ztf-z^Tz7PA [ 2 ) 

w h e r e Zpy, Ζ A a n d Z2 a r e a c o u s t i c i m p e d a n c e of w a t e r , a i r a n d m a t e r i a l 2 , r e 
s p e c t i v e l y . G e n e r a l l y Ζ A is r e g a r d e d as z e r o . H e n c e w e o b t a i n f r o m E q . ( 2 ) 

AZwZi 
P C = (ZW + Z ^ P A W 

E q u a t i o n s (1) a n d (3) s h o w t h a t P ç is g r e a t e r t h a n Ρ β . 
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T h e m o d e l i n g of t h e d e l a m i n a t i o n b y t h e l aye r of a i r is n o t a l w a y s r i g h t . T w o 
s u r f a c e s h a p p e n e d b y t h e d e l a m i n a t i o n m a y c o n t a c t e a c h o t h e r . A l s o p r e s s u r e 
for t h e c o n t a c t m a y e x i s t i n s o m e ca se s . B e c a u s e of t h e s e r e a s o n s , t h e m e t h o d 
s t a t e d a b o v e l e a d s t o m i s j u d g e m e n t i n s o m e c a s e s . 

I t is n e e d e d t o d e v e l o p a m e t h o d w h i c h c o n s i d e r s n o t o n l y p e r f e c t l y d e l a m i n a t e d 
a r e a m o d e l e d b y t h e l a y e r of a i r b u t a l so i m p e r f e c t l y b o n d e d o n e a s d e l a m i n a t i o n . 
A l s o e a s y i n s p e c t i o n is f a v o r a b l e for N D I of t h e d e l a m i n a t i o n . E a s y N D I m e t h o d 
is t h a t u s e s o n l y i n t e n s i t y t o j u d g e p e r f e c t l y b o n d e d a r e a c o r r e c t l y w i t h o u t u s i n g 
a d d i t i o n a l i n f o r m a t i o n of t h e w a v e . B y c o n s i d e r i n g i m p e r f e c t l y b o n d e d a r e a , l e t 
u s i n v e s t i g a t e t h e c o n d i t i o n s for s e l e c t i n g o p t i m a l l y m a t e r i a l s t o u s e t h e m e t h o d . 

3 . S E L E C T I N G M A T E R I A L S 

3 . 1 . O n m a t e r i a l s charac ter 
C o n s i d e r a l a m i n a t e d m a t e r i a l a s s h o w n in F i g u r e 2 . T h e i n t e r f a c e c o n t a i n s 

b o n d e d a n d d e l a m i n a t e d a r e a s w h e r e i n a p a r t of t h e d e l a m i n a t e d a r e a t w o s u r f a c e s 
a r e c o n t a c t i n g ( i m p e r f e c t l y b o n d e d ) . T h e c o n t a c t of t w o s u r f a c e s is m o d e l e d b y 
i n t r o d u c i n g a n i m a g i n a r y m a t e r i a l of w h i c h a c o u s t i c i m p e d a n c e is Z * , s ee F i g u r e 3 . 
T h e i m p e d a n c e Z * is e x p r e s s e d a s 

Z * = aZ2 (4) 

Ultrasonic wave 

Bonded 
Water (ZW) 

Material 1 (ZX) 

/ / / 
^Material 2 (Z 2 ) 

Contact ing delaminated 
surfaces 

(Imperfectly bonded) 

Delaminated 

F i g u r e 2. S i m p l e e x a m p l e of l a m i n a t e d m a t e r i a l s c o m p o s e d of t w o l a y e r s . 
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\ \ \ \ \ \ \ \ \ \ 
Material 1 (Ζι)\ 

Modeling 

Material 2 (Z 2 ) 
' / / / / / / / / / 

F i g u r e 3 . M o d e l i n g of t h e c o n t a c t i n g d e l a m i n a t e d a r e a a t t h e i n t e r f a c e . 

w h e r e coefficient a t a k e s t h e v a l u e in t h e r a n g e of 0 < a < 1. T h e i m p e d a n c e Z * 
is c o n s i d e r e d t o t a k e h i g h e r v a l u e for s t r o n g c o n t a c t . T h e c a s e of a = 1 r e p r e s e n t s 
p e r f e c t l y b o n d e d i n t e r f a c e . 

T h e i n t e n s i t y of t h e w a v e re f lec ted f r o m t h e d e l a m i n a t e d i n t e r f a c e is o b t a i n e d 
a s 

P d ~ zl + z* P c (5) 

w h e r e Pc is g i v e n b y E q . ( 3 ) . F r o m E q s . ( l ) a n d ( 3 ) , o n t h e o t h e r h a n d , t h e 
i n t e n s i t y of t h e w a v e re f l ec ted f r o m t h e p e r f e c t l y b o n d e d i n t e r f a c e is g i v e n b y 

j z ^ z ^ 
B zx + z2

 c (6) 

W h e t h e r is s m a l l e r t h a n Ρβ o r n o t d e p e n d s o n t h e r e l a t i o n a m o n g Ζχ, Z 2 

a n d Z * . W h e n Pp is e q u a l t o P g , w e o b t a i n f r o m E q s . ( 4 ) t o (6) 

\α-β\ _ \ \ - β \ 

β + α 

w h e r e 

β + l 
(7) 

β = ^ (8) 

a n d β t a k e s t h e v a l u e in t h e r a n g e of β > 0. O n e c a n g e t f r o m E q . ( 7 ) 

α = β2 (9) 
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I n a s i m i l a r way , w h e n Pp is s m a l l e r t h a n P g w e o b t a i n 

a > β 2 (10 ) 

W h e n Pp is g r e a t e r t h a n P g , o n t h e o t h e r h a n d , w e o b t a i n 

α < β 2 

( Π ) 

T h e r e l a t i o n b e t w e e n a a n d β g i v e n b y E q s . ( 9 ) , (10) a n d (11) is s h o w n in F i g u r e 4 . 
G e n e r a l l y w e c a n n o t k n o w t h e v a l u e of a . I t is f o u n d f r o m F i g u r e 4 t h a t if w e 
se l ec t m a t e r i a l s of w h i c h β is g r e a t e r t h a n o r e q u a l t o 1, t h e d e l a m i n a t e d a r e a c a n 
b e d e t e c t e d i n d e p e n d e n t l y of a b y u s i n g o n l y i n t e n s i t y of t h e w a v e . W h i l e if w e 
se l ec t m a t e r i a l s of w h i c h β is s m a l l e r t h a n 1, t h e d e t e c t i o n of t h e d e l a m i n a t i o n b y 
u s i n g o n l y i n t e n s i t y is i m p o s s i b l e in t h e c a s e t h a t a t a k e s t h e v a l u e b e i n g e q u a l 
t o β * . I n o t h e r w o r d s , in t h i s s e l ec t i on , p e r f e c t l y b o n d e d a r e a c a n n o t b e j u d g e d 
c o r r e c t l y b y u s i n g o n l y i n t e n s i t y . 

F i g u r e 4 . I n t e n s i t y of t h e w a v e i n t h e r e l a t i o n w i t h a a n d β . 

B y t h e way , le t u s c o n s i d e r t h e p h a s e of t h e w a v e r e f l ec t ed f r o m t h e i n t e r f a c e . 
D e n o t e t h e q u a n t i t y , w h i c h is o b t a i n e d b y r e m o v i n g t h e s y m b o l (| |) fo r a b s o l u t e 
v a l u e o n t h e r i g h t h a n d s i d e of Eq . (5 ) , b y P'D a s 

0 1 

β 

Ζι + Ζ* 
(12) 

S i m i l a r l y de f ine t h e q u a n t i t y P'B b a s e d o n E q . ( 6 ) a s 
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"»=1ΐΐ^ ,13) 

C o m p a r e t h e s igns of P'D/Pc a n d Ρ'β/Pc· If t n e s ^ n ° f ^D/^C d o e s n o t e q u a l 
t o t h a t of Ρβ/Pci t h e p h a s e of t h e w a v e re f l ec ted f r o m t h e d e l a m i n a t e d a r e a is 
d i f ferent f r o m o n e of t h e w a v e re f lec ted f r o m t h e b o n d e d a r e a . B y u s i n g E q s . ( 4 ) , 
( 8 ) , (12) a n d (13) o n e c a n g e t F i g u r e 5, w h i c h s h o w s p h a s e i n f o r m a t i o n in t h e 
r e l a t i o n w i t h a a n d β . B y c o m b i n i n g F i g u r e s 4 a n d 5 , w e g e t F i g u r e 6. I t is 
f o u n d for t h e c a s e of 0 < β < 1 t h a t t h e d e l a m i n a t e d a r e a c a n b e d e t e c t e d b y u s i n g 
b o t h t h e i n t e n s i t y a n d t h e p h a s e of t h e w a v e . 

Phase of the wave reflected from the delam
inated area is the same as one of the wave 
reflected from the bonded area. 

Phase of the wave reflected from the delam
inated area is different from one of the wave 
reflected from the bonded area. 

F i g u r e 5. P h a s e i n f o r m a t i o n i n t h e r e l a t i o n w i t h a a n d β . 

T a b l e 1 s u m m a r i z e s h o w t o d e t e c t d e l a m i n a t i o n , w h e r e Ρ β is a s s u m e d t o b e 
k n o w n in a d v a n c e a s a r e f e r e n c e . I t is n o t e d t h a t Ρβ c a n b e o b t a i n e d b y d o i n g 
t h e m e a s u r e m e n t for t h e p e r f e c t l y b o n d e d s p e c i m e n or i t c a n a l so b e e v a l u a t e d 
t h r o u g h E q . ( 6 ) b y k n o w i n g t h e v a l u e of Pc f r o m t h e m e a s u r e m e n t for m a t e r i a l 
1. I n t h e c a s e of 0 < β < 1, a d d i t i o n a l i n f o r m a t i o n s u c h a s p h a s e of t h e w a v e 
is n e c e s s a r y t o j u d g e p e r f e c t b o n d i n g , b e c a u s e t h e s a m e i n t e n s i t y a s t h a t for t h e 
p e r f e c t b o n d i n g c a n b e o b s e r v e d for i m p e r f e c t b o n d i n g of a = / ? 2 . S i n c e e a s y N D I 
is t h a t j u d g e s p e r f e c t b o n d i n g c o r r e c t l y b y u s i n g o n l y i n t e n s i t y , i t is l e d t h a t w e 
s h o u l d se lec t m a t e r i a l s of w h i c h β is g r e a t e r t h a n or e q u a l t o 1. 
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® 

Case Intens i ty P h a s e Interface 

ω PB (Standard) Standard Perfect b o n d i n g 

© PD>PB Same* 

© PD>PB(= 0) 

© PD >PB Different** Perfect de laminat ion 

© PD=PB Different > & 

© PD<PB Different Imperfec t b o n d i n g 

© PD(= 0) < PB 

© PD<PB S a m e J 

*) S a m e : P h a s e of the wave reflected from t h e 
d e l a m i n a t e d area is t h e same as one of t h e wave re
flected from t h e perfect ly b o n d e d area. 
**) Different : P h a s e of t h e wave reflected from t h e 
d e l a m i n a t e d area is different from one of t h e wave 
ref lected from t h e perfect ly b o n d e d area. 

F i g u r e 6. I n t e n s i t y a n d p h a s e i n f o r m a t i o n i n t h e r e l a t i o n w i t h a a n d β . 

N e x t , l e t u s c o n s i d e r a d i f ference i n t h e i n t e n s i t y of t h e w a v e s r e f l e c t e d f r o m t h e 
b o n d e d i n t e r f a c e a n d t h e d e l a m i n a t e d o n e . Def ine t h e d i f fe rence , Δ Ρ , a s 

AP = P D - P B (14) 

F i g u r e 7 s h o w s t h e r e l a t i o n of AP w i t h β for s o m e v a l u e s of a . I n t h e c a s e t h a t 
β > 1, t h e d i f fe rence AP t a k e s i t s m a x i m u m v a l u e a t β = 1. F r o m t h e v i e w p o i n t 
of i n s p e c t i o n , t h e d i f ference AP is f a v o r a b l e t o b e a s l a r g e a s p o s s i b l e . 
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T a b l e 1 
H o w t o d e t e c t d e l a m i n a t i o n 

β 

P e r f e c t d e l a m i n a t i o n 
&: I m p e r f e c t b o n d i n g 

(P = PD) 

P e r f e c t b o n d i n g 

ΡφΡΒ(αφ β2) 
Ρ = PB (a = 1) 

A d d i t i o n a l i n f o r m a t i o n 
( s u c h a s p h a s e o f t h e 
w a v e ) i s n e c e s s a r y . 

0<β<1 Ρ = PB (α — β2) 
A d d i t i o n a l i n f o r m a t i o n 
( s u c h a s p h a s e o f t h e 
w a v e ) i s n e c e s s a r y . 

Ρ = PB (a = 1) 

A d d i t i o n a l i n f o r m a t i o n 
( s u c h a s p h a s e o f t h e 
w a v e ) i s n e c e s s a r y . 

β>1 P>PB(a< β2) ρ = PB (a = 1) 

Ρ : M e a s u r i n g i n t e n s i t y of t h e w a v e r e f l e c t e d f r o m t h e i n t e r f a c e 

Figure 7. Difference in t h e in tens i ty of t h e waves ref lected f rom t h e b o n d e d area 
a n d t h e d e l a m i n a t e d one . 
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H e n c e o n e c a n c o n c l u d e t h a t t h e s e l e c t i n g m a t e r i a l s , of w h i c h Z\ a n d Z2 a r e 
i n t h e r e l a t i o n Z\ > Z2 a n d a r e n o t m u c h d i f fe ren t , is fit for t h e e a s y N D I of 
d e l a m i n a t i o n . T a b l e 2 s u m m a r i z e s a p p l i c a b i l i t y of e a s y N D I i n t e r m s of β. 

T a b l e 2 
A p p l i c a b i l i t y of e a s y N D I in t e r m s of β 

β A p p l i c a b i l i t y o f e a s y N D I 

0 < / ? < l 

N o t g o o d 

( A p p l i c a b i l i t y d e p e n d s o n a . P h a s e o f 
t h e w a v e i s n e e d e d t o b e c o n s i d e r e d 
i n a d d i t i o n t o t h e w a v e i n t e n s i t y . ) 

β e q u a l s t o 1 o r 
i s n o t v e r y l a r g e G o o d 

β i s v e r y l a r g e N o t g o o d ( Δ Ρ i s s m a l l . ) 

3.2. On thickness of materials 
I t is i m p o r t a n t t h a t t h e w a v e t o b e m e a s u r e d c a n b e i d e n t i f i e d i n a t i m e d o 

m a i n . A s i m p l e i l l u s t r a t i o n t o e x p l a i n h o w t o d e a l w i t h t h i s p r o b l e m is s h o w n 
in F i g u r e 8. T h e t h i c k n e s s a n d t h e w a v e ve loc i t y of t h e l aye r f r o m t h e s i d e of w h i c h 

T i m e 

F i g u r e 8. W a v e s i n a t i m e d o m a i n . 
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t h e u l t r a s o n i c p u l s e w a v e is i n c i d e n t a r e g i v e n b y t\ a n d c j , r e s p e c t i v e l y . A l so 
t h e u l t r a s o n i c f r e q u e n c y is d e n o t e d b y / . If t h e w a v e s w h i c h a r e r e f l e c t ed f r o m 
t h e s u r f a c e of m a t e r i a l 1 a n d re f l ec ted f r o m t h e i n t e r f a c e b e t w e e n m a t e r i a l 1 a n d 
m a t e r i a l 2 o v e r l a p , i t is difficult t o d e t e c t t h e d e l a m i n a t i o n . I n o r d e r t o i den t i fy 
t h e w a v e r e f l ec t ed f r o m t h e i n t e r f a c e w e n e e d t o d e s i g n t h e t h i c k n e s s of t h e l a y e r 
a s 

4. CONCLUSION 

A m e t h o d for s e l e c t i n g m a t e r i a l s h a s b e e n d i s c u s s e d b a s e d o n e a s y N D I of 
d e l a m i n a t i o n b y u l t r a s o n i c t e s t i n g . T h e u l t r a s o n i c t e c h n i q u e t r e a t e d u s e s o n l y t h e 
i n t e n s i t y of t h e w a v e t o j u d g e p e r f e c t l y b o n d e d a r e a c o r r e c t l y . B y c o n s i d e r i n g a 
s i m p l e e x a m p l e of l a m i n a t e d m a t e r i a l s w h i c h is c o m p o s e d of t w o l a y e r s of d i f ferent 
m a t e r i a l s t h e fo l lowing r e s u l t s h a v e b e e n o b t a i n e d : 
1. T h e s e l e c t i n g m a t e r i a l s , i n w h i c h Z\ > Z 2 a n d Z\ a n d Z 2 a r e n o t m u c h d i f fe ren t , 

is fit for t h e e a s y N D I of t h e d e l a m i n a t i o n , w h e r e Z\ a n d Z 2 a r e a c o u s t i c 
i m p e d a n c e of u p p e r a n d lower m a t e r i a l s , r e s p e c t i v e l y . 

2 . I t is s h o w n t h a t for m a t e r i a l s in w h i c h Z\ < Z 2 , t h e p h a s e i n f o r m a t i o n of t h e 
w a v e r e f l ec t ed f r o m t h e i n t e r f a c e is n e c e s s a r y for d e t e c t i o n of t h e d e l a m i n a t i o n . 

3 . I n o r d e r t o i den t i fy t h e w a v e i n a t i m e d o m a i n , o n e s h o u l d d e s i g n t h e t h i c k n e s s 
of t h e l a y e r b e i n g g r e a t e r t h a n c i / 2 / , w h e r e c\ is t h e w a v e v e l o c i t y i n t h e l a y e r 
a n d / is t h e u l t r a s o n i c f r equency . 
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Abs t r ac t 

T h e op t ima l design of a l amina t ed panel under in—plane loads is ob ta ined subject to 

uncer ta in t ies in the m a g n i t u d e of t h e loads. Lamina te s are t o be designed for m i n i m u m 

thickness t ak ing t h e fibre or ien ta t ions as t h e design var iables . A su i tab le s t r eng th 

cr i ter ion is imposed to identify t h e failure condi t ion. T h e uncer ta in t i es in t h e loading 

pa rame te r s a re model led using non—probabilistic theories of convex analysis and t h e 

fuzzy sets . In t h e convex model l ing, t h e loads are allowed to va ry a rb i t ra r i ly a round 

their average values subject to a bound on t h e sum of t h e squares of t h e var ia t ions 

which are assumed to be small . T h e m i n i m u m thickness of l a m i n a t e is de t e rmined under 

the least favourable loading configuration. 

In t he fuzzy model l ing, member sh ip functions are in t roduced w i t h t h e m a g n i t u d e of 

the loads de te rmined by the i r degree of m e m b e r s h i p which indica tes t h e level of 

unce r t a in ty . M i n i m u m thickness is de te rmined as a funct ion of t h e degree of 

membersh ip of t h e loads. In par t icu lar , t he ve r t ex m e t h o d is used to ca lcula te t h e least 

favourable loading condi t ion under fuzzy load da t a . B o t h models lead t o m i n m a x 

problems and give comparab le numer ica l resul ts . 

1. I N T R O D U C T I O N 

In a s t ruc tu ra l design p rob lem, it is often t h e case t h a t the loads on t h e s t ruc tu r e 

are not known in a precise manne r . This leaves t h e designer wi th t h e t a sk of designing 

the s t ruc tu r e for t h e worst case of loading, i.e., t he s t r u c t u r e needs t o be designed for t h e 
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least favourable loading condit ion. In t he present s tudy , two approaches are given to 

op t imal ly designing a l amina t ed s t ruc tu re under uncer ta in loading condi t ions . T h e first 

approach involves the convex model of unce r t a in ty presented in [1]. In this approach , 

t he loading pa rame te r s are allowed to have small and a rb i t r a ry b u t bounded var ia t ions 

a round thei r average values. T h e m e t h o d of Lagrange mul t ip l ie rs combined wi th Taylor 

series approx imat ion is used to de te rmine t he least favourable loading condi t ion. T h e 

second approach involves t he fuzzy set theory in which the loading p a r a m e t e r s are 

assigned membersh ip functions [2]. T h e degree of member sh ip of a loading p a r a m e t e r 

reflects t h e level of unce r t a in ty associated wi th t h a t load. T h e op t ima l design is 

ob ta ined by comput ing the worst case of loading by t h e ver tex m e t h o d [3]. 

T h e above techniques of dealing wi th the uncer ta in t ies involve non—probabilistic 

approaches to t he modell ing of imprecise load da t a . Convex model l ing has been 

previously appl ied to shell imperfect ions [4], vehicle response [5], diagnosis of blockage in 

fluid flow [6], s tress concent ra t ion at an i r regular hole [7], sca t te r in ma te r i a l proper t ies 

[8] and v ibra t ing beams under uncer ta in exci ta t ions [9]. T h e present s t udy seems to be 

employing t h e convex modell ing for t h e first t i m e in an op t ima l design problem. 

T h e use of t he fuzzy logic to model uncer ta in behaviour of s t ruc tu re s is described in 

[10]. T h e reader is referred to references [2,11-13] for examples of t he appl ica t ion of t h e 

fuzzy set theory to op t ima l design problems. 

T h e specific p rob lem t r ea t ed in t he present s tudy involves t h e m i n i m u m thickness 

design of a l amina t ed panel under uncer ta in in—plane loads . T h e design var iables of t he 

problem are t h e fibre or ien ta t ions . T h e least favourable loading condi t ion refers to t he 

set of loading pa rame te r s which produces t h e th ickest op t ima l l a m i n a t e . Hence the 

m i n i m u m thickness design under unce r t a in loading involves t h e solut ion of a m i n m a x 

problem in which t h e l a m i n a t e thickness is maximized over loading p a r a m e t e r s and 

minimized over fibre or ien ta t ions . Convex analysis and fuzzy set theory are employed in 

de termining the least favourable loading condit ions. De te rmin is t i c approaches to t he 

op t ima l design of l amina t ed panels under in—plane loads have been given in references 

[14-18] . 

2. L A M I N A T E D P A N E L U N D E R I N - P L A N E L O A D S 

W e consider a symmetr ica l ly l amina t ed panel of thickness H under in—plane loads 

N p N 2 and as shown in Figure 1. T h e l amina t e consists of an even n u m b e r of 

o r tho t rop ic layers of thickness H^, k = l , 2 , . . . , n where H ^ = Η η ^ _ ^ due to s y m m e t r y 
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and η is t h e to ta l n u m b e r of layers . T h e fibre or ien ta t ions w i th = ^ η + ^ _ ^ are 

defined as t h e angle be tween t h e fibre direct ion and t h e χ axis (F igure 1). 

F igure 1. T h e geomet ry of t h e l a m i n a t e d panel and t h e loading 

For symmet r i c l amina tes , t h e force resu l t an t s are given by 

[N] = [A] [e] 

where 

N l " A l l A 1 2 A 1 6 

[N] = N 2 . [A] = A 1 2 A 2 2 A 2 6 , M = e y 

. N 1 2 A 1 6 A 2 6 A 6 6 . 7 
x y . 

w i th A-j denot ing t he extens ional stiffnesses given by 

n / 2 _ 
A , = 2 H Σ h , Q . ( f t ) 

k = l J 

(1) 

(2) 

(3) 

where h, = Η, / Η . In equa t ion ( 1 ) , e , e and 7 deno te t h e no rma l and shear ic κ. x y x y 
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s t ra ins in t h e xy plane . T h e stress—strain relat ions for t h e k—th layer are given by 

[ s ( k ) ] = [ Q ( k ) ] [e] (4) 

where [ s ^ ) ] = [ a ( k ) r ( k ) j t r . g ^ β t r anspose of the vector of stress components 
χ y xy 

in t h e xy plane and [ Q ^ ] denotes t h e m a t r i x wi th componen ts Q - - (0 i J -

T h e stress components in t he mate r i a l coordina te sys tem, denoted by 

= [ τ $ ] t r , are ob ta ined from 

[ σ « ] = [ T ( k ) ] [ δ « ] (5) 

where [ T ^ ) ] denotes t he t ransformat ion m a t r i x for t h e A:—th layer. F r o m equat ions (1) , 

(4) and (5), it follows t h a t 

[,(k)] = [ T (k ) j [g(k)j [ A ] - 1 [ N ] ( 6 ) 

Noting t h a t [ T ^ ] [ Q ^ ] = [Q] [ [ T ( k ) ] _ 1 ] t r (see reference [19]), [ σ ^ ] is given by 

[ σ « ] = [Q] [[τ(*)ΓΥΓ [ A ] " 1 [N] (7) 

where 

(8) 

with Q n = E n / ( l - u u u2l), Q 1 2 = vu E 2 2 / ( l - υχ2 ι / ^ ) , Q 2 2 = E 2 2 / ( l - νχ2 

u2l) and Q 6 6 = G 1 2 . 

Design against failure is ob ta ined by employing a su i tab le failure cr i ter ion. In this 

s tudy , Tsai—Hill theory of failure, expressed by the inequal i ty 

Ql2 0 
[Q] = Q12 %2 0 

0 0 %6 

{ ( σ « ) 2 - Jf) 4 k ) ) Χ " 2 + ( σ « ) 2 Y " 2 + ( r ( k ) ) 2 S " 2 } < 1 (9) 
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is used t o de t e rmine t h e ma te r i a l failure. In equa t ion (9), X and Y are t h e ma te r i a l 

s t reng ths in t h e fibre and t ransverse direct ions and S is t h e in—plane shear s t reng th . 

3. M I N I M U M T H I C K N E S S D E S I G N 

T h e l a m i n a t e is to be designed for m i n i m u m thickness subject t o t h e failure 

cr i ter ion (9) by de te rmining the fibre or ien ta t ions op t imal ly . W e define 

A j . = H a y , [a] = H " 1 [A] (10) 

n / 2 _ 
where a-, is ob ta ined from equa t ion (3) as a- = 2 Σ h, Q . ) . F r o m equa t ion (7) 

J J k = l ^ 

it follows t h a t 

= Η " 1 (11) 

where 

k£k)] = [Q] [ [ Τ ^ γ Υ ^ Γ 1 M (12) 

Subs t i tu t ing t he stresses from equa t ion (11) i n to t h e failure cr i ter ion (9) , we ob t a in 

H 2 > F ( ^ k ; N p N 2 , N 1 2 ) (13) 

for non—failure where 

F ( „ K I N L , N 2 , N 1 2 ) . (,g>)» - + φ > + s-2 

(14) 

For t he l a m i n a t e not t o fail, t h e inequal i ty (13) needs to be satisfied for all layers , i.e., 

for k = 1,2, ... , n / 2 . 

T h e de te rmin is t ic design problem can be s t a t ed in t h e following form: 

H m i n ™ Η ( ^ ; Ν ρ Ν 2 , Ν 1 2 ) (15) 

\ 
subject to t he cons t ra in t (13) for given values of h^ , N p N 2 and N^-
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4. C O N V E X M O D E L L I N G 

T h e m i n i m u m l amina t e thickness H m - n depends on t h e loading p a r a m e t e r s Ν ρ 

Ng, and N ^ appl ied on t h e panel and satisfies t h e failure cr i ter ion. T h u s we have 

H m i n > F ( 0 k ; xj) (16) 

where = Ν ρ = ^ and , x^ = Ν ^ · T h e effect of uncer ta in t i es in χ. on t h e 

m i n i m u m thickness can be inves t iga ted by means of convex or fuzzy model l ing. 

In t he case of convex modell ing, the values of t h e unce r t a in p a r a m e t e r s a re allowed 

to vary a rb i t ra r i ly a round the i r average values x Q - such t h a t χ. = χ . + χ.. These 

var ia t ions , denoted by x^, are assumed to be small and bounded such t h a t 

x 2 4- x\ + X 3 < R 2 (17) 

where R denotes t h e specified measure of m a x i m u m allowable unce r t a in ty . T h e convex 

modell ing p rob lem involves t h e de te rmina t ion of t h e least favourable response of t h e 

sys tem under t he condi t ion (17) on a rb i t r a ry and small var ia t ions of χ. a round χ .. In 

the present problem, t h e least favourable response corresponds to t h e m i n i m u m 

thickness H j for non—failure wi th t h e uncer ta in t ies in t h e loading p a r a m e t e r s 

producing the least favourable loading configuration subject to t he inequa l i ty (17). F r o m 

condit ion (17) , it follows t h a t in t h e present p rob lem t h e region of unce r t a in ty is a 3 

dimensional sphere, and R denotes t h e radius of t h e unce r t a in ty region. 

T h e unce r t a in ty problem consists of de te rmin ing t h e m i n i m u m l a m i n a t e thickness 

R'min needed for non—failure as t h e uncer ta in loading pa rame te r s va ry a rb i t ra r i ly in t h e 

spherical region defined by inequal i ty (17). T h u s t he convex model of t h e op t imiza t ion 

problem involves solving t h e following m i n m a x problem 

H ^ i n = m i n m a x F ^ x . ) (18) 
θ \ x . 1 

subject to (17) to de te rmine the least favourable response of t h e sys tem. In t h e present 

p rob lem the least favourable response corresponds to t h e loading p a r a m e t e r var ia t ions 
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which produce t h e thickest l a m i n a t e . 

T h e var ia t ions of uncer ta in p a r a m e t e r s a round the i r average values are assumed to 

be small . As such, t h e va lue of H · needs to be eva lua ted only in a small 5 m m J 

neighbourhood of t h e average p a r a m e t e r s . This observa t ion allows us t o a p p r o x i m a t e 

r lmin wi th a l inear funct ion by expanding H m j n = F ( ^ ; x^) in a Tay lo r series a round 

t h e average values x Q ^ and re ta in ing t h e first order t e r m s only. T h e Tay lo r series 

expansion of H m j n a t x Q j is given by 

H min(*k) = F ^ *i) = ^ x o i ) + ^ - o i ) ] ' 1 Ν ( 1 9 ) 

where [δχ] denotes t h e difference vector 

[&] = [ x r \ i χ 2 ~ χ ο 2 x 3 " x o 3 Î t r = I x l x 2 x 3 ^ ( 2 0 ) 

Since t h e domain of unce r t a in ty is a convex region by v i r tue of t h e va r ia t ions lying 

in a spherical region and ^ m ^ n can be a p p r o x i m a t e d by a l inear funct ion in th is region, 

t h e m a x i m u m value of ^ m ^ n lies on t h e bounda ry of t h e spherical domain defined by 

inequal i ty (17). This resul t follows from t h e theory of convex sets [1, 4, 8]. T h e 

b o u n d a r y can be represen ted as 

C(R) = { xv x 2 , x 3 I x 2 + x\ + x 2 = R 2 } (21) 

T h e problem of finding t h e m a x i m u m value of H m j R on t h e spherical b o u n d a r y is an 

equal i ty cons t ra ined op t imiza t ion problem and can be solved by the m e t h o d of Lagrange 

mul t ip l ie rs . T h e Lagrangean of t h e problem is given by 

1 = χ ο ί ) + [ 7 Ρ ( ^ x o i ) l t r ί ί χ 1 + λ ( χ ? + x 2 + x 3 - R 2 ) ( 2 2 ) 

where λ is t h e unknown Lagrange mult ipl ier . T h e op t ima l i t y condi t ion gives 

dL x o i ) 
cbo dx^ 

• + 2 λ xj = 0 (23) 
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F r o m equa t ion (23), we ob ta in t he maximiz ing values of χ., viz. 

χ ί = - ( 2 λ ) , - l ^ k ; x o i (24) 

T h e va lue of λ is compu ted from (21) as 

λ = + (2 R ) - 1 ( [ V F ] t r [ V F ] ) 1 / 2 (25) 

T h e var ia t ions producing t h e least favourable response are ob ta ined from equa t ions (24) 

and (25) as 

where t h e plus and t h e minus signs are associated wi th t h e m a x i m u m and t h e m i n i m u m 

of t h e thickness function F ( ^ ; χ . ) . T h e n o n - d e t e r m i n i s t i c design p rob lem in t h e convex 

model can be s t a t ed as 

subject to t h e cons t ra in t (13) wi th t h e values of N p N 2 and given by equa t ion 

(26). 

5. F U Z Z Y M O D E L L I N G 

In the fuzzy model of uncer ta in ty , t h e p rob lem p a r a m e t e r s x. a re assigned 

membersh ip functions. T h e degree of membersh ip of a given p a r a m e t e r reflects t h e level 

of unce r t a in ty in the informat ion avai lable for t h a t p a r a m e t e r . Let t h e membersh ip 

function for x. be given by μ· (χ · ) as shown in Figure 2, viz. 

x. = + R ( [ V F ] i r [VF])' 
. t r ^ - 1 / 2 ^ * o i ) 

(26) 

(27) 



1 8 1 

Ο f o r x j < x i a a n d X i > X i d 

Ψ υ f o r x i a ^ X i b 

gjixj) for x k < < x i d 

1 for x i b < x j < x i c 

( 2 8 ) 

where 0 < £(x^) < 1 and 0 < g.(x^) < 1 are functions represent ing t h e boundar ies of t h e 

member sh ip function. T h u s , t h e membersh ip function μ-(χ^) can be considered as a 

mapp ing from t h e real n u m b e r set IR to t h e closed in te rva l [0, 1]. 

F igure 2. Membersh ip function μ(χ^) for t h e loading p a r a m e t e r x^ 

T h e degree of member sh ip μ(χ) of t he p a r a m e t e r vector χ is defined as 

μ(χ) = min { ^ ( χ . ) } , i = 1, 2, 3 (29) 
i 

A n u m b e r of me thods is avai lable to c o m p u t e t h e response of a fuzzy sys tem. 

Among these , the ve r t ex m e t h o d presented in [3] provides a convenient m e t h o d of 

obta in ing the numer ica l answers . As t h e ver tex m e t h o d is expla ined in deta i l in [3], only 

an out l ine of t he m e t h o d is given here. 

Let η G [0, 1] denote t h e degree of member sh ip of t he solut ion. Define t h e set 

S- = { χ. · . χ- Ι μ. fx. · ) = μ· (χ. ) = η } ι 1 i ,mm 5 i ,max 1 r i v i ,m in ' *V i , m a x ; ' J (30) 
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where χ. and χ. are computed by de te rmin ing t h e ex t r eme points of t h e i ,min i ,max 

expression μ·(χ · ) satisfying μ · (χ | ) = η. These values are shown in F igure 2. W i t h each 

η and the fuzzy var iable x-, an in te rva l 1 ^ given by 

I . = [x. . , x. ] 771 L i , m m ' i ,max J (31) 

is associated. A function Y of t h e in te rva l var iab le I . associated wi th t h e thickness 
η ψ 

function F ( ^ ; χ . ) is defined as 

Y„ = Y ( y = { F ( 0 k ; X i ) | x j e i ^ j , 1 = 1 , 2 , 3 } (32) 

whose value will be an in te rva l number . W h e n F ( ^ ; χ . ) is cont inuous and monoton ie 

on x. G lφ , Y ^ is compu ted from 

\ = t m i n x i , m i n ) . x i , m a x » > m a x x i , m i n ) > x i , m a x » ] ( 3 3 ) 

3 

T h e in te rva l variables form a 3 dimensional rec tangula r x^ χ x 2 * Xg wi th 2 vert ices . 

T h e coordinates c- of t he vert ices are given by a combina t ion of t he end poin ts of this 

cube, viz. 

c l = ( x l , m i n ' x 2 , m i n ' x 3 , m i J ' c 2 = ( x l , m i n } x 2 , m i n ' x 3 , m a x ^ 

c 3 ~ ( x l , m i n 5 x 2 , m a x ' x 3 , m i n ) ' c 4 " ( x l , m i n ' x 2 , m a x ' x 3 , m a x ^ 

c 5 = ^ x l , m a x ' x 2 , m i n ' x 3 , m i n ) ' c 6 = ( x l , m a x ' x 2 , m i n ' x 3 , m a x ^ 

(34) 

c 7 = ( x l , m a x 5 x 2 , m a x ' x 3 , m i n ) ' c 8 ~ ( x l , m a x ' x 2 , m a x ' x 3 , m a x ) 

Υ , for a given ft , is computed from 
77 κ 

Y = ί Y Y 1 77 L 77,min 5 7 / ,max 1 (35) 
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where 

\ m i n =
 m f F ^ c j ) ' \ m a x =

 mf F ( f c c j ) ( 3 6 ) 

wi th j = 1, 2. ... , 8. Y . and Y correspond to t h e mos t and least favourable 

loading condit ions and produce t he smallest and t h e largest thicknesses of t h e l a m i n a t e 
* * * * 

subject to t h e failure cr i ter ion (13). Let c = ( N p N 2 , N ^ 2 ) denote t h e coordinates of 

the ve r t ex corresponding to Y ^ m a x , i-e., t h e least favourable load configuration 

computed from equa t ion (36). T h e non—determinist ic design p rob lem in t h e fuzzy model 

can be s t a t e d as 

H . = m i n H(A ; c ) (37) min η v k' ' v 1 

\ 
* 

subject to t h e cons t ra in t (13) wi th c de te rmined from equa t ion (36) . 

6. N U M E R I C A L E X A M P L E 

T h e op t imiza t ion techniques for l amina te s subject to unce r t a in loading d a t a are 

i l lus t ra ted by considering a numer ica l example . In par t i cu la r , t h e op t imiza t ion of a 

single layer panel under no rmal and shear loads N p N 2 and N ^ 2 is s tudied . 

T h e stresses for an o r tho t rop ic l amina in t h e ma te r i a l coordinates are ob ta ined from 

equat ion (12) by not ing t h a t for a single layer panel 

[ a ] _ 1 = [ Q ] " 1 = [S] = [ T ] t r [S] [T] (38) 

where [ S ] is t h e p lane stress t ransformed compliance m a t r i x and [S] = [ Q ] _ * defined in 

equa t ion (8) . T h e index k denot ing t h e layer number s is o m i t t e d from t h e equa t ions as 

k = l for a single layer s t ruc tu re . Subs t i tu t ing [ a ] - * from equa t ion (38) in to (12), we 

ob ta in 

[%} - [Τ] [N] (39) 

T h u s t h e failure cr i ter ion (13) becomes 
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H 2 > F(0 ; N p N 2 , N 1 2 ) = ( σ 2

χ ) X " + %2 Y 2 + r h l 2 S " (40) 

By carrying out t he convex analysis out l ined in equat ions (18)—(26), t h e least favourable 

loading condi t ion is de te rmined and subs t i tu t ed in to (40) to express t h e uncer ta in 

thickness function H in t e rms of 0. T h e results of t h e op t imiza t ion for N-^ = 3 M N / m , 

N 2 = 2 M N / m , N 1 2 = 2 M N / m and R = 0 . 5 M N / m are shown in F igure 3 where t h e 

curves correspond to t he least favourable, de te rminis t ic and t h e most favourable loading 

condit ions. T h e corresponding op t ima l values are = 26.2 m m at θ ^ = 37.16° , 

Η . = 11.3 m m at 0 , = 37.98° and Η . = 5.3 m m at 0 + = 38.84° . m m opt n u n opt 

80 
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S 50 
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Figure 3. Curves of t he m i n i m u m thickness versus the fibre or ien ta t ions under t h e least 

favourable, average and the most favourable loading condit ions 
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T h u s t h e m i n i m u m thickness of t h e l a m i n a t e for t h e least favourable case of loading 

wi th t h e unce r t a in ty radius R = 0 . 5 is 26.2 m m a t t h e op t ima l fibre o r i en ta t ion of 37.16° . 

T h e corresponding loading configurat ion is given by = 3.14 M N / m , N 2 = 2.28 

M N / m , N 1 2 = 1.61 M N / m . 

Next we consider t h e fuzzy model l ing of t h e op t imiza t ion prob lem. T h e member sh ip 

functions for t h e loading p a r a m e t e r s are chosen in t he following way: 

0 for 2 < Ν χ and Ν χ > 3.6 

Ν χ - 2 for 2 < Ν χ < 3 

6 - 6 N 1 / 3 for 3 < Ν χ < 3.6 

(41) 

μ 2 ( Ν 2 ) 
N 2 - l 

6 - 5 Ν 2 / 2 

for 1 < Ν 2 and Ν 2 > 2.4 

for 1 < Ν 2 < 2 

for 2 < Ν 2 < 2.4 

(42) 

μ 3 ( Ν 1 2 ) = 

0 for 1 < Ν 1 2 and Ν χ 2 > 3 

N 1 2 - l for 1 < Ν 1 2 < 2 

3 - Ν 

(43) 

12 f o r 2 <- Ν 1 2 <- 3 

All uni t s are in M N / m . T h e average values of t h e load p a r a m e t e r s are as in t h e 

previous case. Choosing t h e level of unce r t a in ty η = 0.5, t h e e x t r e m e poin ts of t h e 

expressions μ^(Ν·) = 0.5 are de te rmined as I ^ = [2.5, 3.3], I ^ 2 = [1.5, 2.2], 1 ^ = 

[1.5, 2.5]. T h e coordinates of t he ve r tex points a re de t e rmined from equa t ions (34). T h e 

thickness is minimized for each ve r tex point to de te rmine t h e least favourable loading 

condit ion. T h e resul ts of th is c o m p u t a t i o n are given in Tab le 1. 

T h e last row of Tab le 1 shows the resul ts for t h e average loading p a r a m e t e r s for 

which μ(χ) = 1.0. T h e least favourable loading is given by N^ = 3.3 M N / m , N 2 = 2.2 

M N / m , N ^ 2 = 1-5 M N / m wi th t h e corresponding m i n i m u m thickness being H m - n = 

28.9 m m at t he op t ima l angle of = 34.93°. A compar i son of t h e resul ts for t h e 

convex and t h e fuzzy models indicates t h a t the least favourable loading condi t ion occurs 

at (Ν.,, N 2 , N 1 2 ) = (0.14, 0.28, —0.39) M N / m in t h e convex model l ing corresponding 
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to an unce r t a in ty radius of R = 0.5 M N / m wi th H m - n = 26.2 m m . T h e corresponding 

figures in t h e fuzzy modell ing are ( N p N 2 , Ν χ 2 ) = (0.30, 0.20, - 0 . 5 0 ) M N / m , R = 

0.62 M N / m and Η . = 28.9 m m . ' min 

Tab le 1 

T h e values of t he loading pa rame te r s ( M N / m ) , m i n i m u m thickness and t h e op t ima l 

fibre or ien ta t ion 

N l N 2 N 1 2 Η . ( m m ) m i n v ' % t 

2.5 1.5 2.5 14.1 39.78° 

2.5 2.2 1.5 21.2 42.14° 

2.5 2.2 2.5 5.1 43.28° 

3.3 1.5 1.5 16.5 29.52° 

3.3 1.5 2.5 7.3 35.10° 

3.3 2.2 1.5 28.9 34.93° 

3.3 2.2 2.5 5.9 38.80° 

3.0 2.0 2.0 11.3 37.98° 

7. C O N C L U S I O N S 

T h e problem of finding t h e m i n i m u m thickness of a l amina t ed panel w i th imprecise 

informat ion on t h e loading is s tudied. T h e m i n i m u m thickness is c o m p u t e d subject to 

Tsai—Hill failure cr i ter ion tak ing t h e fibre or ien ta t ions as t h e design var iables . T w o 

approaches are employed in de te rmining the least favourable loading configuration. In 

the first approach , called t h e convex modell ing of unce r t a in ty , t h e values of t h e loading 

pa rame te r s are allowed to vary a round thei r average values subject to a bound on the 

sum of the i r squares . T h e m e t h o d of Lagrange mul t ip l ie rs is used t o c o m p u t e t h e least 

favourable loading condi t ion. In t h e second approach, t h e fuzzy set theory is used in 

modell ing t h e uncer ta in t ies . This approach involves assigning member sh ip functions t o 

each loading p a r a m e t e r wi th the degree of membersh ip reflecting t h e level of u n c e r t a i n t y 
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in t h e da t a . T h e ver tex m e t h o d is used in identifying t h e least favourable loading 

condi t ion. 

B o t h approaches lead t o a m i n m a x design prob lem in compu t ing t h e m i n i m u m 

thickness . C o m p a r a t i v e numer ica l resul ts a re given for a single layer compos i te panel t h e 

m i n i m u m thickness of which is de te rmined under unce r t a in load d a t a . I t is observed 

t h a t b o t h m e t h o d s yield similar resul ts for t h e least and mos t favourable load 

condi t ions. T h e choice of a sui table m e t h o d depends on t h e n a t u r e of avai lable load 

da t a . If var ia t ions a round average load values can be e s t ima ted , t h e convex model can 

be employed for design. If t h e membersh ip functions can be e s t ima ted , t h e fuzzy model 

provides a su i tab le framework for design. 
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Topology optimization of bi-material s tructures 1 

Niels Olhoff, Jan Thomsen and John Rasmussen 

Institute of Mechanical Engineering, Aalborg University, DK-9220 Aalborg East , Denmark 

A b s t r a c t 

This paper deals with the problem of determining opt imum topologies of linearly elastic 
structures composed of two different materials with given moduli of elasticity. Within a 
given admissible design domain, the structural topology is determined from the condition 
of max imum integral stiffness (minimum compliance) subject to given amounts of the two 
available materials. It is assumed that the structures are in plane stress and that geometr ic 
boundary conditions and static edge loading are specified. 

The structures of opt imum topologies obtained within the initial formulation are mainly 
composites . As this may be undesirable in certain cases, a formulation is also presented that 
penalizes formation of composite and yields structures which entirely consist of the isotropic 
base materials without small-scale mixing. Numerical examples pertaining to generat ion of 
opt imum topologies of joints and assemblies of sandwich panels and beams , and opt imum 
reinforcement against concentrated loads, are presented. 

1 . I N T R O D U C T I O N 

Topology optimization of structures as introduced by Bendsee and Kikuchi (1988) , is 
performed as an opt imum material distribution problem where the material is modelled as 
a porous , periodic microstructure of variable density (concentration) and orientation. This 
problem may be conceived a direct extension of the problem of optimizing mutually 
orthogonal fiber fields of variable concentration and orientation in composi tes , which was 
originally posed by Niordson and solved by Rasmussen (1979) in a P h D thesis in Danish (an 
account in English is available in Niordson and Olhoff 1979). The connection becomes 
obvious if w e consider the fiber and matrix materials of the composite to represent the solid 
material and void, respectively, that ultimately define the structural topology. 

The present paper deals with topology optimization of plane structures composed of two 
different elastic materials. By generalization of a technique available for single material 
structures, the mathematical formulation of the current bi-material topology optimization 
problem is based on derivation of the effective constitutive matrix of a layered second-rank 
porous , periodic microstructure by a homogenization (or smear-out) procedure . Each cell 
of the periodic microstructure is constructed from layers of the two materials and void, and 

Dedicated to Frithiof Niordson at his Seventieth anniversary 
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admits each of the relative densities of the two materials and void to cover the complete 
range from zero to unity. The constitutive matrix of the microstructure is expressed in terms 
of these densities and the cell orientation, which play the role as continuous functions of 
design variables over the admissible design domain for the structure. 

The purpose of adopting a layered second rank microstructure is not only to work with 
a convenient, continuous material model which admits us to obtain analytical expressions for 
the elastic moduli . Thus , if the problem had been stated as an integer optimization problem 
such that only either "solid material 1", "solid material 2" or "no material" could be 
generated at any given point of the design domain, then the formulation would, in general , 
have been ill-posed and the existence of a solution (an opt imum design) would not be 
obvious, see Olhoff et al (1981); Lurie and Cherkaev (1984); and Strang and Kohn (1986). 
The key would then be to regularize the formulation of the optimization problem by 
introducing a family of composites constructed from the base materials. This process is 
termed relaxation and has been studied in various connections by, e .g . , Lur ie et al (1982); 
Cheng and Olhoff (1982); Gibianski and Cherkaev (1984); Murat and Tatar (1985); Lurie 
and Cherkaev (1986); Kohn and Strang (1986); Thomsen and Olhoff (1990); and Thomsen 
(1991). Relaxation implies enlarging of the design space and tends to remove local optima 
(Kohn 1990). Traditionally, it was thought that one must consider the totality of all possible 
composites assembled from the set of originally given materials, an approach called full 
relaxation. However , recent investigations have shown that only the set of finite rank 
laminate composites need to be considered for many optimization problems (Avellaneda 
1987; Kohn 1988a; Kohn and Lipton 1988b). This technique is termed partial relaxation and 
is performed by introducing some convenient, finite-parameter micro structure. 

The micro structure adopted in this study is of the latter type. The solution of our bi-
material structural topology optimization problem is based on a finite element discretization 
of the admissible design domain, and the optimum values of the design variables, which 
determine the opt imum topology of the structure, are determined iteratively by a two-level 
procedure consisting of a global optimality criterion approach for the cell orientation as 
developed by Pedersen (1989, 1990), and a usual mathematical p rogramming technique for 
the densities. 

2 . M A T E R I A L M O D E L 

W e now develop the microstructural material model to be used for topology optimization 
of plane bi-material structures. In the literature dealing with topology optimization of 
structures consisting of only one relatively stiff material several numerical and analytical 
material models have been used. In all models integer optimization is avoided by using a 
continuous parameter material model, which is also defined for intermediate values between 
the limits of "material" and "no material" and implies that essentially the optimization can 
be performed as a sizing problem. Bendsoe and Kikuchi (1988); Suzuki and Kikuchi (1989); 
and Diaz and Bendsoe (1992) are using a numerically determined material model based on 
a micro structure consisting of an isotropic material with rectangular holes, and they use the 
orientation and the size of the holes as design variables of the optimization problem. 

In this paper we adopt an analytical material model consisting of a layered, second rank 
composi te material made up of two isotropic materials of different, relatively large 
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stiffnesses, and a very soft material which represents void. The composite is constructed in 
three micro levels. In the first level we model a layered composite consisting of "material 
1" and "material 2", see Figure l a . The densities (concentrations) of the two materials are 
given in terms of the dimensions dY and 1 - δ 1 shown in Figure l a . 

Figure 1. Construction of composite materials, (a) First level, (b) Second level, (c) Third 
level 

In the second level we construct a layered composite from the material jus t obtained 
(Figure la ) and the "very soft material", where the densities are defined through the 
dimensions δ 2 and 1 -b2, see Figure l b . Finally, in the third level w e construct a composite 
consisting of layers of "material 1" and the composite in Figure l b , with the concentrations 
given by the dimensions y and 1 - γ , see Figure l c . The three base materials used in the 
resulting material model in Figure l c are isotropic and have the the stiffness matrices: 

Q& : Material 1 

Q% : Material 2 

Qkl : Very soft material 

If all the design variables of the material model in Figure l c are allowed to vary between 
0 and 1, the model covers pure "material 1", pure "material 2", "no material" and 
composi te combinations thereof when the full range of admissible values of 7, δχ and d2 

are considered. W e shall assume that the relatively simple material model in F igure l c is 
general enough for our bi-material topology optimization problem. In any point of the design 
domain, in addition to y(x), bx(x) and ô2(x), we shall also apply the material orientation θ(χ) 
as a design variable. Notice that the material model admits creation of structures solely 
composed of the isotropic materials, but that it is possible as well that parts of the structure 
may become anisotropic as mixtures of the materials may be formed. 

3 . O P T I M I Z A T I O N P R O B L E M 

W e consider maximization the integral stiffness of linearly elastic bi-material structures 
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in plane stress. The structures are analyzed by means of orthotropic finite elements in a 
fixed mesh, and the boundary conditions and in-plane loading are assumed to be given. 
Maximization of the integral stiffness is equivalent to minimization of the total elastic strain 
energy U of the structure which is given by 

u = E { { ^ I I [ ( € / + C / ^ 

+ ^ 1 2 [ ( « / + « / / ) ^ 

(1) 

for a fine finite element discretization. In (1), e 7 and en denote the principal strains, [yl] the 
matrix of in-plane stiffnesses, φ the angle from the direction corresponding to the 
numerically largest principal strain e 7 to the direction associated with the largest stiffness 
An, and S is the finite element area. The design variables of the optimization problem are 
the densities and the orientation of "material" within each finite element. Thus , in topology 
optimization of structures with two materials of large stiffnesses, w e apply 7 , dl9 b2 (see 
Figure l c ) and 0 as design variables for the minimization of U, and w e specify that the total 
amounts C1 of "material 1" and C2 of "material 2 " must be less than o r equal to given 
values W[ and W2, respectively, 

Minimize U 

7 i *2i»*i 
(2a) 

0 < 7 , < 1 ; 0 < o h . < l ; 0 < δ 2 / < 1 ; M , . . . , n (2b) 

Ci = E ^ + d - T W i i p / * «Γ ; C 2 = Σρ^ ίΧ ΐ -β ι^Ρί * (2C) 
i=1 i'=l 

4, STIFFNESS M A T R I X IN TERMS O F D E S I G N VARIABLES 

The stiffness matrix of the material shown in Figure l c can be determined by a smear-out 
technique, see, e .g . , Thomsen (1992), or we can use the homogenization technique in three 
steps. Bendsoe (1989) presents the formulas in (3) for determining the components Qkl of 
the constitutive matrix of an orthotropic composite by homogenization. In (3), Μ φ denotes 
the average value of a function f(y) in the interval 7 as defined by (4), and Qki a re the so-
called reduced stiffnesses, which for an isotropic material with the Young ' s modulus E , 
Poisson 's ratio ν and plane stress conditions are given by (5). 
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β ί ί - M .Η Q22 = M(Q22)-M On 
Qn 

+ M Qn 
2 

M 1 

Qn O n 

Qn - M Qn M 1 

Qn Qn 

-1 

M 
Q66 

(3) 

\Y\[f 
(4) 

Qn = 0 2 2 = Qn = 
v E 

β 6 6 2 ( 1 + 0 
(5) 

W e first consider the composite material composed of the two isotropic materials with 
the stiffnesses and , see Figure la . To simplify the calculations the materials are 
presumed to have the same Poisson's ratio. From (3)-(5) the elasticity constants Qkl of this 
composite are found to be 

Q22 ~ ^3 
nH1 j 
Q\2 = v J \ QS 

1-P, (6) 

HI HI 
where Q n and Q22 are the stiffnesses corresponding to the orientation o f the 1- and 2 -
axes shown in Figure 1, and 

•A = 
Qfn Qn 

, J2 = bxQn+V-h)Qn - h = hQ-JWJi (7) 

H3 
The constitutive matrix Qkl of our second rank composite in Figure l c can now be 
determined by repeating t w j c e the use of (3) and (4), and we obtain the result given in (8), 
where Jl9 J3, Q n and Q22 are given by (7) and (9). Finally, w e determine by (10) the 
components A w of the stiffness matrix of our plane orthotropic bi-material structure that has 
variable micro structure of the type shown in Figure l c , and a constant thickness denoted 
by h. 
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H3 
UN 

^H3 

7 +  1 - 7 

\l22 

-1 

QÏI =  7GÎiHl -7 ) < 2 Î i 
~F UH2\1  1  -Y  ~H3 

QLL 

(8) 

Q?i 
~M 1  -Y 

0H3 0 H3 1 -v 

UN >  U66  —Γ Qfu Qu 

UN 

QS 

δ2 1 -à2 

J L QN 

Ô2J3+(1 - ô 2 ) Q n - v 2 [ b 2 J x + ( 1 - δ 2 ) β π ] ^ 2 β η 2 

(9) 

Λ/2 

hll 

(10) 

5. O P T I M I Z A T I O N T E C H N I Q U E 

The optimization problem is solved iteratively by a two-level procedure of redesign. In 
each loop of redesign, the stress-strain field is initially determined by finite element analysis 
whereupon in the first level improved orientations θ{ (i = l , . . . , n ) of the axes of anisotropy 
of the composite are determined by means of an analytic optimality criterion approach. In 
the second level of redesign the material densities dlv d2i and are improved by a method 
of mathematical programming and analytic sensitivity analysis. 

A notable feature of the present problem is that a usual gradient method may fail in 
determining the optimal orientation of the composite because local opt ima normally exist. 
T o circumvent this inherent difficulty, we use the results obtained by Pedersen (1989, 1990), 
who performed an analytical investigation of the first and second derivative of the total 
strain energy with respect to the orientation of the composite. The results of the investigation 
are summarized in a table in Pedersen (1990). In an optimization problem where the 
stiffness of a structure is maximized using the material orthotropy directions as design 
variables, w e may either orient the composite material relative to the principal stress or 
strain directions (Pedersen et al. 1991). However , numerical examples have shown that the 
best convergence properties are obtained for the optimization problem if the axes of 
orthotropy are rotated relative to the principal stress directions. Coincidence between the 
largest principal stress and strain directions is always found to be a result of the orientation 
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optimization, and normally these directions will coincide with the material direction 
associated with the largest stiffness (unless the material has a relatively high shear stiffness, 
see Pedersen 1990). 

T h e second stage of the loop of redesign consists in determining an improved distribution 
of the amounts of material, i . e . , to obtain improved values of the design variables δ Η , δ2[ 
and 7 j , ( i = l , . . . , n ) governing the material densities. W e apply a dual method of mathema
tical p rogramming using mixed variables as developed by Svanberg (1987) and implemented 
in the computer code M M A (Method of Moving Asymptotes) . T o this end w e need the 
sensitivities of the total elastic energy and the constraints with respect to the above 
mentioned design variables. 

T h e total elastic energy of a linear elastic material is given by the finite element form 

U = ±{d}T[K\{d} (ID 

where {d} is the nodal displacement vector, and [K\ is the global stiffness matr ix. 
T h e change in the total elastic energy U due to a change in a design variable at consists 

of two par ts , 

dU = W+dUjk_ ( 1 2 ) 

dat ddj de dat 

where the first part is the change in U due to the change in the stiffness matrix in the 
domain related to the design variable ai9 and the second part is the change in U due to the 
change in the displacement field of the whole structure, i . e . , 

da, 2 da. 
dUjk_ 
de da. 

d { d ] TlK]{d}Hd}T[K]d{d] 

da, 
(13) 

Let us now consider the global finite element equilibrium equation = ip} where 
{p} is the vector of external loads. Differentiation of this equation gives, if w e assume 
design independent loads, 

did} 
da. da. 

{d} (14) 

If (14) and its transposed form is substituted into second of Eqs . (13) w e get the following 
expression for the change in U due to the change in the displacement field: 
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"L* m -{d}TWQ{d} (15) 
de dat OUI 

This implies in view of (13) that the two parts of the sensitivity in (12) a re related by the 
simple equation 

dU de = _2dU ( 1 6 ) 

de dat dat 

that leads to the important result 

ψ - -ψ. - -hdvmd} (Π) 
da{ da( 2 da{ 

which implies that, if the external loads are design independent, then the sensitivity of the 
total elastic energy with respect to a design variable a{ can be simply determined without a 
computation of the change in the displacement field due to the change of the design variable. 
This result was originally etablished by Pedersen (1990) by using Clayperon ' s theorem and 
the principle of virtual displacements. 

N o w , for a finite element discretized structure the total elastic energy U is equal to the 
sum of the element energies Uif where the index / refers to the ί-th element, 

ν - Σ υ ι (18) 

Denoting by a{ a design variable referring to the ί-th element, and assuming a fine 
discretization, it follows from (18) and (19) that the sensitivity of the total elastic energy can 
be simply obtained from the sensitivity of the specific strain energy u{ of the i ' th element 
according to the formula 

ψ-'-'-τ-' (19) 

αα( da{ dat 

H e r e a{ denotes any of the design variables b l v δ 2 ί or y{ ( i = l , . . . , n ) . Thus , the sensitivities 
of the total strain energy U with respect to δ Η , δ 2 ί and y{ can be simply determined by 
means of (1) and (19), assuming the strain field to be fixed, and restricting variation to the 
stiffness matrix [A] . Hence , for the z-th element of the discretized geometry w e obtain the 
following expression for sensitivities with respect to the design variables ax\ 
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υ, 
(20) 

Here A y

kl is a shorthand notation for the derivatives dAkl/dai of the components of the 
stiffness matrix [A] . These sensitivities are derived analytically by Thomsen (1992) , and 
results are available therein. Sensitivities of the constraints in (2) a re readily derived 
analytically, and we thus have all the necessary sensitivity information for the optimization 
at the second level of redesign. 

5 .1 E x a m p l e : P r o b l e m of force i n t roduc t i on solved via t h e or ig ina l f o r m u l a t i o n 
W e now consider an optimization problem, where void and material is modeled by a 

composi te composed of one very soft material (representing void) and two materials of large 
stiffnesses. A plane design domain which is subjected to concentrated forces and supported 
as shown in F igure 2 is considered. The available amounts of "material 1" and "material 2" 
are taken to be 3 0 % and 60% of the design domain volume, respectively, and the stiffness 
ratio between these materials (Qjf / / (?# ) is set to be 10. W e discretize the design domain 
in F igure 2 into 22x66 orthotropic four-node rectangular elements. 

Figure 2. Design domain, load and boundary conditions. 

Figure 3a shows the optimized structure which mainly consists of orthotropic material . 
The densities of the hatching shown in two perpendicular directions are proport ional to the 
elastic moduli A n and A 2 2 , and the orientation of the hatching indicates the corresponding 
principal directions of the material. The material is distributed in such a way that the larger 
normal stresses are carried by relatively stiff material, while the shear stresses are carried 
by softer orthotropic material, the stiffnesses of which are almost equal in the two principal 
material directions. N o material is distributed in sub-domains which have small strain energy 
density due to the applied load and boundary conditions. 

2 P 

2 P 

150 
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(b) 

Figure 3. (a) Optimum topology. Structure is mainly composite. Hatching density is 
proportional to stiffness. White sub-domains represent void, (b) Optimum topology obtained 
by penalization of composite material. Here, black and hatched sub-domains represent 
purely isotropic "material 1 " and "material 2", respectively. The compliance of the solution 
is only 5% higher than that of the anisotropic solution in Figure 3a. 

6 . P E N A L I Z A T I O N T E C H N I Q U E FOR R E M O V A L O F S U B - D O M A I N S W I T H 
C O M P O S I T E M A T E R I A L S 

From a manufacturing point of view it would be preferable if a bi-material structure is 
only composed of the isotropic base materials. W e now demonstrate how the optimization 
problem can be reformulated such that anisotropic characteristics of a solution to the original 
problem formulation are removed. 

Let us construct the following non-negative function G that depends on the total amount 
of anisotropic material in the discretized structure: 

G = £ (7 ,d - 7 , ) + M l - δ , , ^ Ο - δ ^ , · ( 2 D 
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Clearly, G only will be equal to zero, if yv 6n and blx attain their limiting values 0 or 1 
everywhere . W e now formulate the optimization problem with a view to minimize the total 
elastic energy U and simultaneously penalize presence of anisotropic material: 

Minimize F = U + RG 

7ι> δΐιΛ*Λ· 

(22) 
Side constraints (2b) 

Constraints (2c) on amounts of materials 

Here F is the original objective function augmented with the penalty term RG where 
7 ? = 0 , 1 , 1 0 , . . . is a penalty parameter, the value of which we gradually increase during the 
optimization procedure . 

By this formulation G is rendered equal to zero and structural topologies a re obtained 
which are only composed of isotropic "material 1", isotropic "material 2 " and "void". 

6.1 Example: Removal of anisotropic sub-domains in previous example problem 
If w e apply the above penalization technique for the topology optimization problem in 

Section 5 . 1 , and use the topology in Figure 3a as an initial design, w e obtain the new 
topology solution in Figure 3b where the distribution of isotropic pure "material 1" and pure 
"material 2 " is illustrated by black and hatched domains, respectively, and white domains 
represent void. The compliance of the isotropic bi-material topology in F igure 3b is 5 % 
higher than for the anisotropic topology in Figure 3a. 

7. A D D I T I O N A L E X A M P L E S O F T O P O L O G Y O P T I M I Z A T I O N O F B I - M A T E R I A L 
S T R U C T U R E S 

In both of the previous examples, it is noticed that a domain without material has been 
generated along the left, fully clamped boundary of the structures, see Figures 3a and 3b . 
Thus , at this boundary the two stiff "skin" materials will both transfer the bending and the 
shear stresses caused by the loading, which is not typical for a sandwich-like structure. 

Consider now the example in Figure 4 , where we shall perform an adaption for 
"sandwich beam" characteristics at the left boundary. Thus , w e let the middle par t of the 
left boundary offer full fixation against displacements, whereas w e take the upper and lover 
parts to be simply supported only in those sub-regions where "skin" material is created. 
Thus the shear forces can be only transferred by the middle part of the boundary. 
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i > 
2 9 0 

Figure 4. Design domain, load and boundary conditions. 

The available amounts of "material 1" and "material 2" are taken to be 25% and 65% of 
the design domain volume, and using the symmetry conditions w e only analyze the upper 
half of the structure. Minimizing total elastic energy U and the augmented objective function 
F , respectively, w e obtain the optimal topologies in Figures 5a and b. Again the structure 
is composed of anisotropic material if U is minimized, whereas we obtain an isotropic bi-
material structure when F is minimized. The compliance of the solution in Figure 5b is 5% 
higher than for that in Figure 5a. In these examples the shear forces along the left boundary 
are carried by lower stiffness "core" material and the relatively stiff "skin" materials only 
transfer the bending normal stresses, as is the case for sandwich beams. Notice also that the 
thickness of the stiff "skin" material decreases nearly linearly from the left to the right end 
of the structure in accordance with the load situation. 

Figure 5. (a) Optimum topology. Structure is mainly composite. Hatching density is 
proportional to stiffness. White sub-domains represent void, (b) Optimum topology of 
isotropic bi-material structure. Here black and hatched sub-domains represent purely 
isotropic "material 1" and "material 2", respectively. 

(a) 



2 0 3 

In the next example we investigate how the joining of two sandwich beams can be 
reinforced. The sandwich beams are mutually connected via a "T-joint", and the vertical 
beam is loaded in tension while the horizontal beam is subjected to combined bending and 
shear, see Figure 6. 

46 

Figure 6. Design domain, load and boundary conditions. 

By the optimization given amounts of the relatively stiff materials are distributed in the 
design domains. The available amounts of "material 1" and "material 2" are set to be 10% 
and 40% of the total design domain volume, respectively, and using the symmetry w e only 
analyze the left part of the structure. The structure is optimized using the penalty 
formulation (22), and the result is seen in Figure 7. The stiffest "material 1" principally 
forms a straight "tension beam" which connects the sandwich beams, and the tension beam 
is reinforced by the softer "material 2". 

Figure 7. Optimized topology of isotropic bi-material joint. 

As a final example we consider the structures in Figure 8. These are symbolizing two 
different joinings of "beams", which are assumed to be build up as sandwich structures. The 
available amounts of "material 1" and "material 2" are taken to be 35% and 50% of the total 
design domain volume in Figure 8a, respectively, and 30% and 50% of the design domain 
volume in Figure 8b. 
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Figure 8. Design domain, load and boundary conditions. 

By minimizing F with arbitrarily large penalty factor R the topologies in F igure 9 are 
obtained. T h e vertical beams are mainly subjected to bending, and have no material 
distributed near the neutral axis. The horizontal beams are loaded by combined bending and 
shear, and in these beams the available amount of the relatively soft "material 2 " is used to 
carry the shear forces. 

Figure 9. Optimum topologies of isotropic bi-material joinings. 
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A b s t r a c t 

In [±#° /90 0 / =f Θ0] fibre-reinforced composites, the outer 0° plies are known to act 
as crack arrestors, i.e. to reduce the stress intensity factors at the tips of a crack in 
the central 90° ply in all three modes of loading. The degree of reduction depends on 
the stiffness of the plies, the ply angle θ and the thickness of the outer plies. How
ever, whilst the stress intensity factor decreases, the crack-induced interfacial von Mises 
stress increases. The situation is particularly severe under transverse mode II loading, 
inevitably resulting in interfacial delamination. 

The aim of this paper is to choose the design variables of the laminate, viz. the 
ply angle Θ, relative ply stiffness and thickness, in such a way as to minimize the stress 
intensity factor at a crack tip in the 90° ply without exceeding the interfacial von 
Mises bond strength. A constraint is also placed on the minimum flexural stiffness of 
the laminate. An alternative optimization problem in which the von Mises stress is 
minimized subject to a limit on the stress intensity factor is also formulated and solved. 

1. I N T R O D U C T I O N 

Most of the fibre-reinforced composite materials are used in the form of laminates 
composed of plies with different fibre directions. The most common and fatal form of 
failure in laminates resulting in loss of both their strength and stiffness is delamination 
between constituent laminae. Under compression, the delaminated sublaminates may 
buckle leading to overall failure of the laminate. The mechanism of delamination has 
been widely investigated both theoretically and experimentally (Chatterjee et al, 1984; 
Crossman and Wang, 1982; Fish and Lee, 1990). The delamination often occurs at the 
free-edges of laminates and at the interface in front of a transverse lamina crack. On the 
other hand, it is known (Bailey et al, 1979; Fan et al, 1989) that crack propagation in 
the 90° ply in angle-ply laminates is constrained by the adjacent plies. This constraint 
effect results in the observed higher in situ strength of laminae in laminates (Fan et al, 
1989). Since this kind of lamination effect varies with the configuration of laminates, it 
may be expected that the risk of interfacial delamination can be reduced to a certain 
extent by varying the configuration of laminates. 

It is the aim of this paper to explore this possibility. To this end, we will calculate 
the stress intensity factor for a transverse crack in the 90° ply of a [±0°/9O 0 / =j= Θ0] 
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antisymmetric laminate and also the crack-induced interfacial stresses between the 90° 
and Θ0 plies under transverse shear loading. These fracture mechanics results will then 
be used to optimize the configuration, so as to minimize the tendency of crack growth in 
the 90° ply and therefore of delamination between 90° and Θ0 plies under flexural loading. 
The optimization problem is posed as a non-linear programming problem whose solution 
is sought by several techniques. The results confirm the possibility of minimizing the 
crack driving force in the 90° ply and of avoiding the risk of delamination by a judicious 
choice of ply angle θ and relative ply thickness. 

2 . M O D E L A N D M A T H E M A T I C A L S O L U T I O N 

The model being studied in this paper is shown in Fig 1. It consists of a central 
ply in which the fibres are oriented normal to the plane of the paper (90° ply) and two 
outer plies which are composed of an equal number of +Θ0 and — Θ0 angle plies. The 90° 
ply of thickness 2c? is transversely isotropic (in xy plane) and is assumed to contain a 
flaw in the form of a central transverse crack of length 2a. Each outer ply of thickness 
b is treated as being homogeneous orthotropic with average elastic properties of [±0°] 5 

laminate, consistent with the classical lamination theory. 
It is assumed that the composite laminate is subjected remotely to self-equilibrating 

shear stress rxy = r , so that from a mathematical point of view one needs only to solve 
the problem of cancellation of this stress over the crack faces. Because of symmetry, it 
is enough to consider a quarter of the laminate, say χ > 0, y > 0. 

Since the 90° ply is isotropic in xy plane, the Airy stress function ip(x,y) satisfies 
the biharmonic equation 

On the other hand, the Θ0 ply is orthotropic, so the equilibrium equations in the xy 
plane problem are 

in which c tj = 1,2,6) are the stiffness coefficients under plane strain which can be 
calculated following the procedures of lamination theory (Tsai and Hahn, 1980; Vinson 
and Chow, 1975); u and υ are the displacement components in χ and y directions, 
respectively. 

The solutions of eqns ( l ) - (3) must satisfy the following boundary and continuity 
conditions: 

V 4 φ(χ,ν) = 0 (1) 

CllU,xx + £ 6 6 ^ , 2 / 2 / + {C\2 + C66)V}Xy = 0 
C66V,XX + C22Vfyy + ( c 1 2 + C6e)uiXy — 0 

(2) 
(3) 

τ £ ( χ , 0 ) = - τ ; 0 < 

u90(x,0) = 0; x>a 
0 < χ < a (4) 

(5) 



(a) 

2d 2α 

(b) 

Fig 1. The composite laminate and co-ordinate axes 

For 0 < y < -foo 

r%(d,y) = Tt

xv(d,y) (6) 

°™(d,y) = σΐ(ά,ν) (7) 

u90(d,y) = u9(d,y) (8) 

vM(d,y) = v'(d,y) (9) 

ae

xx(d + b,y) = 0 (10) 

T°xy(d + b,y) = 0 (11) 

The solutions of (1), and (2)-(3) obtained using Fourier transforms will not be repro
duced here. Satisfaction of the boundary conditions by the solution to (1) gives 

r o o l π f°° 
/ E(s) cos(sx)ds = - \ ~ r - {[A(s) + B(s)]cosh{sx) + 

Jo i- 2 JO 

+s A(s)x sinh(sx)} ds\ ; 0 < χ < a (12) 
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ί°° 1 
/ -E(s)œa(sx)ds  =  0 ; χ > a (13) 

Jo s 

*·(-) = ( £ ) * < ) (14) 

Denoting r = x/a and 

and noting 

c o s ( 5 x ) = J _ l ( 5 l ) , (15) 

where J _ i / 2 is the Bessel function of the first kind, the dual integral eqns (12)-(13) can 
be written in a form that has been studied by Copson (1961) 

/ s F (s) J_i(sr) ds = -=\—τ— I {^4(-)[cosh(sr) -f s r sinh(.sr)] + 
Jo 2 y/r L 2 Jo a 

+B(-) cosh(sr)}ds ; 0 < r < l (16) 
a J 

ΓΟΟ 

/ F(s)J_i(sr)ds = 0; r > l (17) 

The functions A(s/a) and B(s/a) are determined from eqns (6)—(11). 
Following the procedure of Copson (1961), Sih and Chen (1981) for solving dual 

integral equations, it can be shown that 

Ε(») = -γτ{φ(1)Ι1(3α)- £ ξ J^saÇ) ±[%&]άξ}, (18) 

where Φ (ξ) is the solution of the following Fredholm integral equation 

Φ(ξ) + £ Κ(ξ,η)Φ(η)άη = ^ϊ (19) 

The kernel Κ (ξ, η) in eqn (19) is 

-s-

m , V) = -y/ξη jH ^ J - { [ ( * i i + K*)Ei + (K12 + K22)E2 + 

+{K13 + K23)E3 + {KX4 + Κ24)Ε4}Ι0(8ξ) + 
+[ΚηΕχ + Kl2E2 + K13E3 + K14E4] βξ I^sO } ds, (20) 

where 

Ei = \(an + a12) - (au - 0 1 1 ) 3 - / 0 ( 6 7 7 ) + (a12 - an) δη Ι^η) 
•- a J 

E2 = 2au + (a12 - a n ) θ - Ιο(*η) - (al2 - a n ) 377 Ιι(δη) 
L a J 

E3 = 3 - / 0 ( 5 7 7 ) - 5 7 7 / 1 ( ^ 7 7 ) 
a 

d 
EA = ( 1 - 3 - ) / 0 ( s 7 7 ) - f 3 7 7 / 1 ( 3 7 7 ) 
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io() and Ιι() are the modified Bessel functions of the first kind. a t J (i, j = 1,2) are the 
plane strain compliance coefficients of 90° ply, and K n , K12,..., Κ 2 4 a r e functions of s 

related to a t J and c tj (i, j — 1,2). 
The stress and displacement components can be obtained after solving for E(s) from 

eqns (18), (19) and (20). 
The relevant shear stress component around the crack tip is 

2 f°° 

0) = -jQ E(s)cos(sx)ds-

J {[A(s) + B(s)]wsh(sx) + A(s)sxsmh(sx)}ds (21) 

Substituting eqn (18) into eqn (21) gives 

r~(s ,0) = - α τ jf°° {φ(1) J ^ a ) - j f ' ί Λ ( 5 α ί ) ^ ] } cos(^) ώ -

~ π iT +
 B ^ cosh(sx"> + 5

 A (sï
 s m h 0*)} ̂ 5 ( 22) 

The mod e I I stres s intensit y facto r a t th e crac k ti p i s 

Ku =  li m ^ 2 ( ζ - α ) τ » ( * , 0) = Φ(1) r ^ (23) 
χ—>·α+ γ 

If the 0° plies on the two sides are absent then the stress intensity factor is 

Kn = F(*i)Ty/Z (24) 

Table 1 
Material properties 

Propert ies GTT yLT pTT P l y 

&: Material (GPa) (GPa) (GPa) (GPa) t h i c k n e s s ( m m ) 

T 3 0 0 / 9 3 4 138 11.7 4.56 4.18 0.29 0.40 0 .132 

For the graphite/epoxy material properties (in the notation of Tsai and Hahn, 1980) 
listed in Table 1 (Tan and Nuismer, 1989), the variation of Φ(1) with a / d is shown in 
Fig 2. Also shown is the value of F(a/d). Φ(1) is equal to F[a/(b + d)] when θ = 90°. 

It is seen that the magnitude of Φ(1) and its variation with a / d are different from 
those of F - the geometry factor for an isotropic material. Φ(1) is not only related to 
the geometry a / d and b / d , but is also influenced by the stiffness of the 90° and Θ0 plies. 
Obviously, Φ(1) < F, otherwise there would be no point in using composite materials. 
It is also for this reason that the Θ0 plies are regarded as constraints for central ply. It 
is noted that the degree of this constraint can be expressed solely in terms of Φ(1). 
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Fig 2. Values of Φ(1) and F( j ) 

The non-dimensional normal and the shear stresses at the interface between the 90° 
and 0° plies are 

τ Jo A(sj *· a a 

+[KnGi + K22G2 + K23G3 + K24G4] s i n h ( s - ) } sin(s^) ds -
a J a 

<7yy(d,y) 

- Γ e-ÏK sGsds 
Jo 

/ ( _ 1 ) " 7 Τ Τ Ι l * " G i + ^ ' i 2 < ? 2 + K13G3 + Jo ^(s) y-

+A" 1 4 G 4 ][2sinh(>-) + s - c o s h ( s - ] + 
a a a 

+[Κ21βΎ 4- K22G2 + ^ 2 3 ^ 3 + K24G4] s i n h ( s - ) } sm(s-) ds -
a J a 

- ΓVs* K6Geds 
Jo 

/ " I T T 1 A ' n G i + A « G 2 + K13G3 + Jo ^ 

-j-A' 1 4G ?4][cosh(5 —) + θ— s i n h ( 5 - ) ] + 
a a a 

+[K2iGi + K22G2 + K23G3 + K24G4] c o s h ( s - ) } c o s ( ^ ) ds -
a J a 

- Π e~s° K7G7ds 
Jo 

(25) 

(26) 

(27) 
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F i g 3 . Crack- induced interfacial von Mises stress normal ized by r 

At the interfacial point right in front of the crack tip, where y = 0, χ = d, the 
non-vanishing stress is 

T x v ( d . 0) f°° se~sa Γ 
= / A T t { ^ 1 I G I + ^ 1 2 G 2 + ^ 1 3 G 3 + τ Jo Δ 5 K 
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0.0 0.2 0.4 0.6 0.8 1.0 
a d 

Fig 4. Largest interfacial von Mises stress normalized by τ 

The variation of crack-induced von Mises stress with y/d and a/d for θ = 0° and 
0 = 45° is shown in Fig 3. It is seen that the largest von Mises stress (normalized 
by r ) occurs at y/d = 0 for different 0° and a/d. This largest stress is depicted in 
Fig 4, for θ = 0°, 0 = 90° and 0 = 45°. As the crack tip approaches the interface 

-f A ' i 4 G ? 4 ] [cosh (3- ) -f s -s inh( .s - ) ] -Ι
α α a 

+[t f 2 iGi -f K22G2 + A 2 3 G 3 -f K24G4] c o s h ( s - ) } ds + 
a J 

+ £φ(ξ)0*(ξ)<1ξ (28) 

In eqns (25) - (28) 

Gi = f' ^ηΦ(η)Ε,(3,η)άη (» = 1, . . ,4) 
Jo 

G 5 = G6 = G7= f' ^ηΦ(η) Μβη) άη 
Jo 

A"5 = s(2 — s—) sin(s — ) 
α α 

Κ β = s — s i n ( s - ) 
a a 

y d 
K7 = s ( l — s-) cos(s-) 

a a 
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(a/d increases), the interfacial von Mises stress increases rapidly for all Θ. For small 
cracks, the interfacial von Mises stress is fairly insensitive to changes in 0, but as a/d 
increases so also does its sensitivity to outer ply angle Θ. An examination of Figs 2 and 
4 shows that for all a/d, the crack driving force takes on its minimum value, but the 
largest interfacial von Mises stress (at y/d — 0) its maximum value when θ = 0°. There 
is thus a need for a compromise design which would ensure minimization of the crack 
driving force in the central ply without exceeding the von Mises interfacial strength of 
the laminate. 

3 . O P T I M I Z A T I O N P R O B L E M A N D S O L U T I O N 

To obtain the compromise design, we formulate the following minimization problem 

(29) °t j > d ' 

subject to 

σ < σ 0 = (1 + a)y/3 (30) 

D> ( 1 - 7 ) A > (31) 

b<2<h (32) 

0° < θ < I (33) 

Here, σ is the largest interfacial von Mises stress, normalized by r 

* = \Ι\[(σχ* ~ σνν)2 + (σνν ~ σ ζ ζ ) 2 + ( σ ζ ζ - σ χ χ ) 2 -f 6 τIy] (34) 

σ is equal to y/3 in the absence of a crack. D is the normalized laminate modulus. For 
the transverse loading case, D is the normalized flexural modulus 

D = L V d ) . J 2 2 2 2 (35) 

σ 0 is the specified interfacial von Mises strength and D 0 is the value of D when 0 = 0°. 
a and 7 are tolerance factors on the stress gain and stiffness loss, respectively. 

Since the expressions relating Φ(1) and the interfacial von Mises stress to the ge
ometry and stiffness properties of the plies are quite complicated, sensitivity of the 
objective with respect to design variables is calculated by a mixed analytical/numerical 
procedure. The integral equation (19) is discretized into a set of linear equations 

[Α][Φ] = [Β], (36) 

where [A] = [ α 0 ] , [Φ] = [Φ(ξ;)] τ , [Β] = [ V £ ] T , {i,j = Ι,.,.,η). η = 10 resulted in 
sufficient accuracy. Then the sensitivity with respect to the design variables s, is given 
by 
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Table 2 
Functional (FE) and gradient (GE) evaluations 

Method 
Min Φ(1) Min σ 

Method FE GE FE GE 
SLP 7 7 10 10 
SQP 12 3 26 6 
SCP 7 7 8 8 

4 . N U M E R I C A L R E S U L T S A N D C O N C L U S I O N S 

The results of the optimization design problem for the laminate properties of Table 1 
are shown in Fig 5. 

It was found that for small α/α7, the active constraints were the lower limit on θ 
and the upper limit on b/d. When θ = 0°, the outer plies have the strongest effect 
on the arrest of central ply crack. The minimum of Φ(1) always occurs at θ = 0°, 
no matter what initial θ is chosen. This agrees with the in-plane tensile experimental 
results (Flaggs and Kural, 1982) which show that when θ = 0°, the in situ transverse 
tensile strength of the 90° plies in [±0°/9O°] 5 laminates has the largest value. 

The relative thickness of the outer plies also plays an important role in arresting the 
crack growth. The relatively thicker the constraint plies, the smaller the crack driving 
force and hence the stronger the 90° ply. 

where, x± stands for cf- = 1,2), θ and δ/α\ 
The sensitivity of the constraint (30) is calculated numerically, whereas that of (31) 

is calculated analytically. 
The above minimization problem is solved by non-linear mathematical programming 

techniques, viz. sequential linear programming with move-limits (Pedersen, 1981), se
quential quadratic programming (Powell, 1977) and sequential convex programming 
(Fleury and Braibant, 1986) which are available in the general purpose structural opti
mization package ADS (Vanderplaats, 1987). The numbers of functional and gradient 
evaluations for the above problem, and an alternative formulation to be considered 
below, are given in Table 2. It was found that among the three strategies, SLP and 
SCP terminated with fewer functional evaluations but more gradient calculations than 
SQP. However, when the objective function was somewhat flat near the optimum point, 
the SLP and SQP could sometimes terminate prematurely. It seems therefore for the 
present problem SQP produces the most precise results with fewer gradient calculations, 
but more functional evaluations. 
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Φ(1) min 

1.0 

0.0 0.1 
a 
d 

Fig 5. Minimization of Φ(1): {~j)opt=b 

ryopt 

0.9 1.0 

When a/d is large, the interfacial stress constraint becomes critical to the design. 
For the satisfaction of this constraint the design angle Θ takes a non-zero value. It was 
found that for a = 0.5, 7 = 0.15 and b = 4.0, when a/d is greater than 0.73, no optimum 
design is possible because of the violation of the constraint on interfacial strength. For 
this reason an alternative formulation of the optimization problem was considered in 
which the interfacial von Mises stress was minimized subject to the constraint that 
Φ(1) not exceed 1.0 and that the flexural stiffness be adequate. The corresponding 
minimization problem is as follows: 

Min —, 
d 

subjec t t o 

Φ(1) < 1.0 

D> ( 1 - 7 ) A > 

b_<b

2<b 

0°<θ<-

(38) 

(39) 

(40) 

(41) 

(42) 

The results of the above minimization problem are shown in Fig 6. In this case, 
σ reaches its minimum when θ = 50° and b/d — b. The reason that the laminate has 
sufficient flexural stiffness at such large θ is the high value of the transverse in-plane 
Poisson's ratio of the ±θ° plies and the use of plane strain stiffness parameters. 
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Besides the intralamina crack problem under out-of-plane (with respect to laminate, 
but in-plane with respect to crack) shear loading, analyses for in-plane (with respect to 
laminate) tensile and shear loadings are needed for a more comprehensive understanding 
of laminate strength and delamination characteristics. Likewise, the lamination effect on 
the stress singularity when the crack tip touches the interface needs to be investigated. 
These problems are currently being studied. 

a 
d 

Fig 6. Minimization of σ: (j)op<—& 
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O P T I M U M DESIGN O F L A M I N A T E D PLATES W I T H R E S P E C T T O 
EIGENVALUES 

Gengdong Cheng and Jun Tang 
Dalian University of Technology, Dalian, China,P.R. 

Abstract 
The paper summarizes studies on features of opt imum design of laminated plates with 

respect to eigenvalues under various specific conditions. For bidirectional reinforced laminated 
plates under shear load and/or biaxial compression load it is shown that the coupling effect 
between extension and bending reduces buckling load, the opt imum laminate with max imum 
value of buckling load must be a symmetric one. For laminated plates under biaxial 
compression load we further studied single buckling mode optimization, bimodal buckling 
mode optimization and the related optimality condition. It is shown that the bimodal optimal 
solution is possibly missed if one applies the normal numerical optimization algorithms 
without careful consideration. By making use of the optimality criterion, the number of 
possible optimal angles is determined for rectangular plate and more general cases. All these 
features of opt imum designs of laminated plates provide the guideline for numerical 
optimization of laminate plates with respect to eigenvalues. 

1. INTRODUCTION 

Laminated composite plates are finding a wide range of applications in structural design 
because they have superior mechanical properties such as high in-plane stiffness to weight 
ratio and high in-plane strength to weight ratio. If the size of the plate is large its out-plane 
performance such as lateral deformation under pressure, vibration frequency and buckling load 
needs special consideration for its proper usage. Research on optimization and analysis of 
vibration and buckling of laminated composite plates has been one of the interesting areas in 
composite structural mechanics. Research topics include numerical method for opt imum 
design, sensitivity analysis and a number of important issues related to the characters of 
opt imum design of laminated plates, i.e., effect of coupling between extension and bending 
on buckling load, symmetricity of laminate, number of design variables and bimodality of 
opt imum design. 

As early as in 1973, Schmit,L.A. and F a r s h i , B . m studied opt imum laminate design and 
included the elastic stability constraints in the problem formulation. The thicknesses of 
individual layers in a laminate are the design variables. 
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Bert,C.W. (1977,1978) [ 2 3 ] pioneered study on opt imum design of rectangular plate to 
maximize its fundamental frequency with the ply angles of individual layers being design 
variables, but a priori knowledge of the eigenfrequency in terms of the laminate stiffness was 
assumed. 

S.Adali(1983) [ 4 ] studied multi-objective opt imum design of antisymmetric angle-ply laminate 
plate. The objectives of optimization are to minimize the max imum dynamic deflection and 
to maximize the eigenfrequency of a given mode. For a simply supported rectangular plate the 
first order sensitivity to the fiber orientation of individual layers is derived. Nonlinear 
programming technique is applied to determine the opt imum design. The study has been 
further extended to design sensitivity analysis of an antisymmetric angle-ply laminate [ 5 ] . 

J .Tang(1984) [ 6 } studied the effect of coupling between extension and bending on the buckling 
load of a rectangular plate, which is simply supported along all the four edges, made of bi
directional laminates and under the axial compression. It is proved in the paper that the 
optimum design is a symmetric laminate and the number of design variables is thus reduced 
to one half. And the single and bimodal opt imum design is also discussed. In case of single 
modal optimum design the derivation further shows that the number of design variables is 
actually one. 

Based on a special functional which is derived from harmonic displacement distributions and 
is valid for the vibration frequency, buckling load and bending deflection of simply supported 
plates, Pedersen(1987) m optimized the lamination parameters and reached the interesting 
conclusions for harmonic displacement distributions, that is, the optimal fiber orientation is 
less dependent on the actual material but strongly dependent on the displacement mode, The 
optimal orientation is the same, independent of the position of the layer in the laminate, and 
thus the same for all layers. By numerical computation, Pedersen further shows that the three 
angles correspond to local maximum and local minimum, respectively and presents the 
corresponding conditions. 

Miki(1986) [ 8 ] and Grenestedt(1989) [ 9 1 used the lamination parameters to derive their results 
concerning buckling and vibration optimization, respectively, and they reached the conclusion 
from a large number of numerical test that only one relevant parameter for the optimization 
problems is necessary. 

J .Tang(1987) [ 1 0 ] studied the conditions of single mode and bimodal opt imum design for a 
rectangular plate under bidirectional axial compression to maximize buckling load. Bimodality 
of buckling modes in two directions is studied. 

M u c ( 1 9 8 8 ) [ l l ] studied optimal fiber orientation for rectangular simply-supported angle-ply 
plate to maximize buckling load under the biaxial compression. With the series solution of 
buckling modes the effect of coupling between the bending and extension is studied. Bimodal 
opt imum design under uniaxial compression was studied in the paper. 

J .Tang(1989) [ 1 2 ] presented study on opt imum design for a rectangular plate under shear. It 
was proved that the coupling between extension and bending reduces the buckling load of the 
plate for shear load. The paper also pointed out that for the type of plate the maximum 
buckling load design has an identical angle for all the layers as long as they are made of the 
same material. The direct consequence of the study is that the number of the design variables, 
i.e. the number of ply angles of individual layers in an opt imum laminate reduces to one and 
only the one-dimensional search is necessary to determine the optimal angle. 

Most of the above mentioned work limited their study to simply supported rectangular plate 
because a series solution of the governing plate equation is available. In case of general 
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shaped laminate composite p l a t e s 1 1 3 , 1 4 , 1 5 1 , numerical methods such as mathematical 
programming technique are dominate. In addition to the ply thickness, the ply angles are the 
design variables to be optimized. Due to lack of deep understanding of characters of opt imum 
design the number of design variables as many as the number of plys were introduced in 
literatures. Since the computational cost increases with the number of design variables rapidly, 
examples with no more than 6 layers were given in literatures. 

Cheng (1986) [ 1 6 ] derived expressions for design derivatives for min imum compliance with 
respect to the ply angles and come to the conclusion that for any orthotopic plate with 
min imum compliance under rather general condition there are never more than four layup 
angles necessary. The results are applicable to the max imum frequency design or max imum 
buckling load design too. 

2. EFFECT O F COUPLING B E T W E E N E X T E N S I O N A N D BENDING, S Y M M E T R I C I T Y 
OF O P T I M U M PLATE 

Let us consider the optimization problem of bidirectional reinforced laminate plates. It is 
assumed that the laminate is composed of L layers and each layer of the plate has an equal 
number of the same fibers in the 0 k and - 0 k direction with respect to the x-axis. The subscript 
k denotes the k-th layer. Taking R=a/b which represents the length-to-width ratio of the 
rectangular plate simply supported along the four edges, the plate deflections are assumed as 

U = Σ Σ U m n cos ( rmcx/a)s in (nKy /b ) 
V = Σ Σ V m n s i n ( m K x / a ) c o s ( m r y / b ) (m=l ,2 . . ,M; n=l ,2 , . .N;) 
W = Σ Σ W m n s i n ( n m x / a ) s i n ( n K y / b ) 

Let us consider a plate under biaxial compressive load N x , N y and denote a = N y / N x By 
applying the plate governing equation, the buckling load for plate under biaxial compressive 
load can be written as 

Φ = -
\2Nxb2 

φ = -
12 

t3R2Q22(m2+an2R2) 

Λ rp rp rp rj~i rp 2 _ΓΓ Π"1 

Z i 1 2 J 1 3 / 2 3 _ i 2 2 J 1 3 1 U 1 23 

(D 

IU122~l 12 

where 
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Tn = Anm2+A^n2R\ T^A^Ajt2R\ Tl2=(Ai2+A^)mnR, (2) 
Γ 3 3 = Dnm*+ 2(Du+2DJm2n2R2

 + D22n*R\ 

Tn =Bnm3+ {Bn+2BJmn2R\ T23 = (Bl2+2BJm2nR+B22nW 

and Aij5Bij, D y are extensional, coupling and bending stiffnesses of laminated plate, 
respectively, t is thickness of plate and Qj is stiffness of laminate. It is known from theory 
of composite laminate plate that for bidirectional reinforced laminate plates all the coupling 
terms A 1 6 , A^, D 1 6 , D 2 6 vanish. 
By introducing T n , T d , T c , 

l n ~ M l ' 2 3 + i 2 2 7 » 3 ~ ' i i 121 13*23 (3) 

Eq. l can be rewritten as 

Φ = 1 2 (Τ +Γ) ( 4 ) 

t3R2Q22(m2+an2R2) 33 c 

It can be shown that T d > 0, T n > 0, which leads to negative T c or implies the fact that the 
effect of coupling between bending and extension lows the buckling load. 

For plate under shear load, explicit formula for buckling load is not available. By making 
use of Galerkin method and the governing equation for buckling, the coefficients W m n satisfy 

[T^TW-λΣΣ r!^l W =0 
c M mn{m2-p2){n2-q2) m (5) 

(p=l,2,. . . ,M, <7=1,2,...,N, m+p and n+q are odd) 

where ρ and q are the number of half waves in the χ and y directions, respectively, and 

,__32abR2

K7 

λ = — ( 6 ) 

The Eq.(5) can be rewritten using matrix notation 
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[Κ - C]{W} - λ[ϋ]{\ν} = ο (7) 

where the elements of the diagonal matrix [K] and [C] are 

Κ = T C = - Τ (8) 
Α 3 3 ' ^ i i L r 

the elements of matrix [G] are 

G H = 0, 

G u = 0, when m+p or n+q is even 

G n = mnpq/( (m 2 -p 2 ) (n 2 -q 2 ) ) , when m+p and n+q are odd ( 9 ) 
and 

l = (m- l )N+n , i= (p - l )N+q 

The minimum eigenvalue λ1 of Eq.(7) is given by the well-known Rayleigh Quotient 

λ, = do) 

Let 

a . {WV[K]{W) . {W)T[C]{W) ( I D 
p. = min — , μ, = min — 

1 {WF[G]M {WF[G]M 

both [K] and [C] are positive definite, so we have 

β, > λ, + μ, W 

which represents the fact that the matrix [C], i.e., the effect of coupling between bending and 
extension lows the buckling load of the laminated plate under shear. For plate under combined 
axial compression N x , N y = a N x and shear load Ν Χ ) = β Ν χ , the coefficients W m n satisfy 
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[T33 +T]W -λ{ Τ Τ Τ^Ε1 W +-^—(ρ 2+aq 2R 2)W }= Ο, 
c Ν ( m 2 _ p 2 ) i n 2 _ q 2 ) « 3 2 ^ ^ > ™ (13) 

(ρ=\,2,...Μ, <7=l,2,...,iV, m+p and n+q are odd) 

which can also be rewritten into the form of Eq.(7) with 

Gu = -aL-(p2+aq2R2), 
" 32Λβ 

Git = — mnpq when m+p and n+q are odd, ( \ Λ \ 
(m2-p2)(n2-q2) V ( 1 4 ) 

Gu = 0, when m+p or n+q is even, 
I = (m-l)N+n, i=(p-l)N+q 

By means of similar derivation, one can prove the fact that the effect of coupling between 
bending and extension lows the buckling load for combined shear and biaxial compression 
load too. So the opt imum laminate must be symmetric one and the Eqs.(4) and (7) can be 
simplified as 

t3R2Q22(m2+an2R2) 33 

[K]{W) - X[G]iW) = 0 

For square plate simply supported along its four edges by defining 

Φ= ω 2 ^ 4 p 

ô 2 2 ' 3 

where ω is the natural vibration frequency of laminated plate, ρ is the density of plate, then 
the expression of the objective function can be written as 
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By applying the same argument as before, we can reach the same conclusion for the opt imum 
design of the natural frequency of laminated plate, the opt imum laminate must be symmetric 
one. 

3. B I M O D A L B U C K L I N G U N D E R C O M P R E S S I O N 

For a laminate plate under bidirectional compression, the bimodal buckling modes are not 
limited in one direction. Bimodal buckling may happen in any of the two directions. If the two 
buckling modes (m+l ,n ) and (m,n) associate with the same buckling load w e have bimodal 
buckling in x-direction and the condition for bimodal buckling is 

m2(m+l)2+an2R2[(m+l)2+m2] = D22-2a(Du+2DJ ( 1 6 ) 

nARA Dn 

In the case that the buckling modes (m ,n+ l ) and (m,n) have the same buckling load, we have 
bimodal buckling in y-direction and the condition for bimodality in y-direction is given by 

m 2R 2[(n+l)2+n 2] +an 2 (n+ l ) 2 / ? 4

 = <*£>n-2(Dn+2DJ (17) 

m 4 " D22 

If the compression is only uniaxial, for example in the x-direction, the η equals to 1 and the 
Eq.(16) can be simplified as 

^iR4 = m\m+\f <18> 

For opt imum design problem of maximization of buckling load, the single buckling mode 
optimization and the bimodal mode optimization must be distiguished. The former can be 
calculated from the stationary values of objective function Φ, but the latter, the buckling mode 
conditions eqs.(16),(17),(18) must be considered in its optimization. 

4. THE N U M B E R OF O P T I M U M PLY O R I E N T A T I O N 

Let us consider the single mode optimization for max imum buckling load design of 
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laminated plates under bidirectional compression. The optimality condition for maximum 
buckling load is given by 

^Φ Λ 

By substituting Eqs.(15) and (2) into Eq.(19), we obtain a system of equations each of which 
has the same form and is independent of the layer number k, 

sin2ek(4Fcos2S.-J) = 0 (20) 

where 

F = U3(6m2n2R2-m4-nAR4), J = U2(m4-n4R4) (21) 

and Uj are linear combinations of the plate stiffness 

υ = QirQ22 υ = β „ + β 2 3 - 2 β 1 2 - 4 α 
2 2 ' 3 8 

(22) 

The solutions of Eq.(20) are the ply angles for extremum of the objective fuction Φ. It can 
be proved that for maximum of Φ the opt imum ply angle is 

0 k = 90° when — < [ V y 3 ] 1 C ( 2 3 ) 

the opt imum ply angle is 

6 , -0 ° . * » J ! ! * ! 3 £ M , « <«) 

the opt imum ply angle is 

*****(J/4F) when [ Uujwj ^ l ^ W ~ ( } 
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The Eqs. (23),(24) and (25) are all independent of k, so, for the laminate under bidirectional 
compression, if the opt imum buckling mode is single one, the opt imum ply angles of each 
layer are all equal to each other. However , it is noted that the objective function is a family 
of curved surfaces corresponding to the different values of m and η in the space of 0 k - O . The 
result of Eq.(20) is only the result of ext remum <3>mn of one specific curved surface associated 
with given η and m, i.e., 

Λ . _ (26) 
Φ m / i = max Φ 

The opt imum Φ ο ρ of the objective function Φ under bidirectional compression is 

(27) 
Φ = min Φ* = min π ^ χ Φ 

op m,n m,n 
m,n m,n Θ. 

To obtain the min imum of ΦΗ^ with respect to m and n, we substitute m + l , m and m-1 
together with given η into Eq.(15) and obtain ΦΛΛ#ΦΗΆ and Φ ^ ι * , the condition 

Φ* > Φ* < Φ* ^ 2 ^ 
m-l,η m,n m+1/ι 

leads to the discriminate 

m\m+\)2+an2R 2 [ ( m + l ) 2 + m 2 ] > ^ V 2 ^ ^ 2 ^ ) 
n4R4 ~ £> n (29) 

> m \m-\)2+an 2R 2[(m-\)2+m 2] 
nAR4 

Similarly, by substituting n - l , n ,n+ l together with given m into Eq.(15) and compare the Φ ^ ι , 
Φ and ΦΛΜ.Ι, we obtain another discriminate 
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m 2R 2 [ (κ+1) 2 +κ 2 ] +an 2(n+l)2R \<*Dn - 2 ( D 1 2 + 2 D 6 6 ) 

m * D22 (30) 
> m 2R 2[(n-l)2+n2] +an \n-\)2R4 

If the two discriminates (29) and (30) are all satisfied by the opt imum angle 0 k , the opt imum 
design is obtained. 

For the bimodal buckling, the condition of bimodal buckling must be taken into 
consideration. For example, if the laminate is under unidirectional compressive load along the 
χ direction, by sustituting Eq.(18) into Eq.(2), we get 

Γ33 = Dn[m4+m2(m+l)2]+2(Dl2+WJm2R2 (31) 

By substituting Eq.(31) into Eq.(19), a system of equations independent of k is obtained as 
follows 

5 i n 2 0 , { [ m 2 H w + l ) 2 ] ^ 2 - [ 6 / ? 2 - w 2 - ( , n + l ) 2 ] 4 ^ c o 5 2 0 J = 0 (32) 

the extreme points are the solutions of the equation, i.e., 0 k =O°, 0 k =9O° or 

0 , = lm*-H m2<rn+\)2 U2 ( 3 3 ) 

2 6R2-m2-(m+l)2 W3 

It can be shown that the three different values of ply angle are the opt imum design under 
different aspect ratio of plate and different buckling modes. The opt imum ply angles of each 
layer are still all equal to each other, i.e., the number of design variables is only one. 

For the laminate under shear load the gradient of objective function λ with respect to design 
variable 0 k are 

{ W } T < m { w } 

dX = d®k (34) 

3 0 , W[G\W 

By setting the Eq.(34) equal to zero, we obtain the optimality condition, 
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WPÏMLM =  ο (35) 
3 β . 

where the elements of the diagonal matrix 
d[K\ 

are 

- ) 2 ] s i n 2 0 , ( 4 F c o s 2 0 r 7 ) (36) 

By substituting Eq.(36) into Eq.(35) we obtain the ext remum value of λ at ply angles θ ,=0° , 
0 k =9O° or another one, which satisfies 

Furthermore, it can be proved that the optimization of laminated plate under shear can be 
simplified to a single variable optimization, i.e., the opt imum ply angles of each layer are still 
equal to each other too. 

5. G E N E R A L CASE 

For buckling and vibration of laminated plate under rather general condition, the eigenvalue, 
i.e., the buckling load or the vibration frequency can be given by the Rayleigh Quotient 

where the C ( W , 0 k ) is proportional to the elastic strain energy of the laminate plate, F (W) is 
proportional to the work done by the external load for buckling or the kinematic energy for 
vibration. Because the functional F(W) is not explicitly dependent of the ply angles, the 
condition of opt imum ply angle can be obtained from 

iW)T[4F c o s 2 0 , - / ]{W) = 0 (37) 

λ = min. 
. c(w,ek) (38) 

w F(W) 

5C = 0 (39) 

Let us consider the symmetric laminate plates under rather general condition and assume that 
no work is done by external moment or shear force along the plate boundaries, the functional 
C is given by 
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C=J"j[°„W V W 4 W 2 * W V 4 Ζ ) Λ ^ Ω (40) 
Ω 

By substituting Eq.(40) into Eq.(39) and introducing the transformation 

%k = tan©, (41) 

it is not difficult to find the optimality condition for new variables X k 

(*= 1, 2,..., N/2 ) 
(42) 

where the coefficients a k , \ \ , c k , d k and e k are independent of k. When the laminate is made 
of the same material, i.e., the Eq.(42) is a system of equation independent of k and have the 
same form for all layers, the solutions of Eq.42 is no more than 4. In this way we come to 
the conclusion that for symmetric laminate under rather general plate configuration, loading 
and boundary conditions, the number of different opt imum ply angles in the laminate is no 
more than 4. The above conclusion can be further specilized for specific problem. And the 
conclusion is very useful for numerical optimization. 
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Abstract 
In this p a p e r t h e p r o b l e m of op t ima l design of uncons t ra ined d a m p i n g l aye r 

d is t r ibut ion on th in wa l l ed s t ruc tures subject to b r o a d b a n d exc i ta t ion is cons idered . 
T h e object ive is to min imize s t ruc tura l r esonance responses in a g iven frequency 
band with a fixed a m o u n t of d a m p i n g ma te r i a l . T h e m i n - m a x - p r o b l e m resul t ing 
f rom this task can be f o r m u l a t e d as a p a r a m e t e r op t imiza t ion p r o b l e m which is 
t r ea ted using an a p p r o x i m a t i o n m e t h o d based o n d a m p e d single deg ree of f r e e d o m -
responses . T h e m e t h o d will be appl ied to coated b e a m s , circular p la t e s and sha l low 
spherical shel l s . 

I . I N T R O D U C T I O N 

Damping layers a re ex tens ive ly used to reduce bending v ibra t ions of th in wa l l ed 
s t ruc tures . The i r m a i n field of appl icat ion is noise reduct ion ( a u t o m o t i v e par t s , 
mach ine coverings etc.), bu t they a re a lso appl ied for serv ice- l i fe e n h a n c e m e n t (e .g . 
aircraft pane ls ) . T h e d a m p i n g layers a re basical ly m a d e of a m o r p h o u s ma te r i a l s 
exhibi t ing a high degree of in te rna l losses, such as b i t umen , p o l y m e r s or v i t r eous 
e n a m e l s . Caused by v ibra t ions of the base s t ruc tu re these ma te r i a l s a r e subject to 
a l t e rna t ing s t rains , and subsequen t ly they diss ipate s o m e a m o u n t of the v ib ra t iona l 
energy. 

Surface d a m p i n g t r e a t m e n t s a r e usua l ly appl ied to one side of t h e s t ruc tu re . 
T h e r e a re t w o different c o m m o n layer d a m p i n g types , n a m e l y t he s o - c a l l e d con
s t ra ined layer , w h e r e the d a m p i n g ma te r i a l is forced into shear d e f o r m a t i o n b e t w e e n 
two m e t a l sheets , and the single or uncons t ra ined d a m p i n g l aye r which is subject 
to t ens ion and compres s ion [8] (Fig. 1). T h e la t t e r can b e easi ly shaped and is for 
tha t r ea son used he r e for op t imiza t ion . However , t he m e t h o d p r e s e n t e d in this pa
per can a lso be appl ied to cons t ra ined d a m p i n g t r e a t m e n t s . 

T h e p e r f o r m a n c e of d a m p i n g layers n o t on ly depends on the i r m a t e r i a l p rope r 
ties (Youngs m o d u l u s , loss factor) which a r e s t rong ly inf luenced by t e m p e r a t u r e 
and frequency [9] , bu t a l so on thei r d is t r ibut ion wi th respect to t h e v ib ra t ion m o d e s 
and the loading. It can be i m p r o v e d firstly by increasing t h e thickness of t he visco-
elastic l aye r and secondly by concentrat ing the d a m p i n g m a t e r i a l a t such places 
whe re the v ibra t ion m o d e of the base s t ruc ture shows its m a x i m u m curva tu res [7 ] . 
In genera l , t h e a r r a n g e m e n t of the damping l aye r cons iderab ly influences t h e mass 
d is t r ibut ion and in case of m o d e r n damping ma te r i a l s (Youngs m o d u l u s in t he o r d e r 
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of magn i tude of 1000 N / m m 2 ) also the stiffness d is t r ibut ion of the s t ruc ture and 
subsequent ly its v ibra t ion shapes . Since these cor re la t ions a r e quite compl ica ted the 
op t ima l design of l ayer damping t r e a t m e n t s requires the numer i ca l m e t h o d s of 
s t ruc tura l op t imiza t ion . 

d a m p i n g 
ma te r i a l cover ing l ayer (me ta l ) 

y 

base s t ruc ture 
-—"\— 
base s t ruc tu re 

Fig. 1: Single (left) and const ra ined (right) damping l ayer (de fo rmed) 

In pr inciple t he r e a re two different approaches for t he op t imiza t ion of damping 
dis t r ibut ion. One m e t h o d is to m a x i m i z e the loss factors of selected m o d e s of the 
s t ruc ture [11] which has the advan tage tha t the objective function is easi ly fo rmu
lated. T h e essential d rawbacks of this approach arise f rom the necessary e igenvalue 
ana lyses and f rom the fact tha t ne i ther the s t ruc tura l stiffness no r the k ind of loa
ding has any influence on the objective function. 

These d isadvantages can be avoided by direct ly min imiz ing the v ibra t ion re
sponse of the s y s t e m or by establishing it as a constra int . If the exc i ta t ion frequen
cies a r e prescr ibed [ 3 , 4 ] then first of al l t he shift of s y s t e m eigenfrequencies caused 
by changes of m a s s - and stiffness d is t r ibut ion is r espons ib le for t h e decrease in 
response . There fore , in o rde r to exp lo i t the damping in r e sponse min imiza t ion it is 
necessary to consider t he resonances whe re damping takes full effect. Fo l lowing 
this, t he o p t i m u m solu t ion is defined as t he one which min imizes the resonance 
responses in a given frequency in terva l [ 5 ,6 ] . By using this fo rmula t ion , however , 
one obta ins a m i n - m a x - p r o b l e m , the t r e a t m e n t of which is m u c h m o r e difficult 
than solving a p u r e min imiza t ion p r o b l e m . Never the less , this app roach will b e used 
h e r e to find op t ima l damping layer dis t r ibut ions on b e a m s , p la tes and s h e l l s . Con
sidering the m i n - m a x - p r o b l e m as a p a r a m e t e r op t imiza t ion p r o b l e m [2] , we 
a t t e m p t to p e r f o r m the expens ive resonance tracking as effective as poss ib le by 
m e a n s of an a p p r o x i m a t i o n m e t h o d . 

2. S T R U C T U R A L A N A L Y S I S 

For the op t imiza t ion of damping layer dis t r ibut ions with the a i m of m i n i m u m 
resonance responses a s t ruc tura l analysis m e t h o d is required which p e rmi t s the 
calculat ion of v ib ra t ion responses of n o n - h o m o g e n e o u s , viscoelast ic c o m p o n e n t s 
having a rb i t r a ry geomet r i e s . Because of its universa l i ty t he finite e l e m e n t m e t h o d 
is e m p l o y e d he re . T h e b e a m s a re m o d e l e d by m e a n s of two layer s t ruc tura l ele
m e n t s including s h e a r - c o m p l i a n c e of the damping layer . Fo r the circular p la tes and 
spherical shel ls we use an a x i s y m m e t r i c 4 - n o d e solid e l e m e n t wi th addi t ional 
incompa t ib le shape functions. According to the co r respondence pr inciple of l inear 
viscoelasticity, d a m p i n g is in t roduced into the equat ions of m o t i o n t h r o u g h a com-
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p l e x and f r e q u e n c y - d e p e n d e n t stiffness m a t r i x : 

[Κ(ω) - ω2Μ]ΰ = f (1) 

where ύ c o m p l e x vector of noda l d i sp lacement s , 
/ c o m p l e x vec to r of exci ta t ion forces, 
Κ(ω) = KRe(u) + ιΚΙγη(ω) c o m p l e x , f r e q u e n c y - d e p e n d e n t stiffness m a t r i x , 
M mass m a t r i x , 
ω angu la r frequency of exci ta t ion. 

T h e imag ina ry pa r t of the stiffness m a t r i x is ob ta ined by in tegra t ion over the 
v o l u m e of t h e viscoleast ic ma te r i a l on ly . W h i l e the base s t ruc tures a r e m a d e of 
s teel , which is a s s u m e d to be p u r e elastic, (Es = 210000 N / m m 2 , ρ5 = 7.85 k g / d m 3 , 
vs = 0.3, η5 = 0), we t ake e x p e r i m e n t a l da t a for Youngs m o d u l u s and loss factor 
f rom [10] for the d a m p i n g ma te r i a l (Fig. 2), and set Po issons ra t io to vD = 0.45. 

Vd 

10 2 

10 100 / (Hz) 1000 
-ίο-

5000 

Fig. 2: Youngs m o d u l u s and loss factor of t he d a m p i n g ma te r i a l m e a s u r e d a t 20 °C 

T h o s e pa r t s of the stiffness m a t r i x which a r e on ly g e o m e t r y - d e p e n d e n t a re 
kep t in t h e c o m p u t e r m e m o r y separa te ly for each m a t e r i a l in o r d e r to avoid r e 
in tegra t ion of e l e m e n t mat r ices (solid e l e m e n t ) if just t he frequency is changed. 
Regard less of this fact the equat ion sys t em (1) m u s t be so lved for eve ry given 
exci ta t ion frequency. In o rde r to main ta in the band shape of the equat ion sys tem, 
this is p e r f o r m e d by m e a n s of a G a u s s - a l g o r i t h m with c o m p l e x a r i thmet ic . 

T h e p resen ted s t ruc tura l m o d e l has been p r o v e n to give v e r y good resu l t s by 
compar ing the theore t ica l da ta with e x p e r i m e n t a l l y d e t e r m i n e d v ib ra t ion shapes and 
frequency response curves of par t ia l ly covered b e a m s , circular p la t e s and spherical 
caps [10]. 
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3. O P T I M I Z A T I O N P R O B L E M 

As m e n t i o n e d before , the min imiza t ion of resonance responses leads to a s o -
cal led m i n - m a x - p r o b l e m , which shal l be clarified wi th an e x a m p l e . In Fig. 3 the 
r e sponse (magn i tude of compl iance) of a par t ia l ly d a m p e d circular p l a t e a r o u n d its 
first resonance is given for varying a r r a n g e m e n t s of t he d a m p i n g ma te r i a l . T h e r e is 
on ly one design var iab le in this p r o b l e m n a m e l y the thickness of the d a m p i n g layer . 
T h e v o l u m e of t he d a m p i n g ma te r i a l is kep t cons tan t by changing t h e d i a m e t e r of 
the d a m p e d region. 

Fig. 3: Vibra t ion r e sponse of a circular p la te for varying d a m p i n g l aye r d is t r ibut ion 

F r o m Fig. 3 it can be seen tha t a certain damping l ayer thickness exis ts which 
min imizes t he resonance response . This is the wan ted o p t i m u m which co r responds 
to the sadd le point of the 3D-sur face . Due to the var ia t ion of the l ayer thickness 
no t on ly the magn i tude of the resonance changes bu t a lso its frequency. Fo r tha t 
reason the resonance frequency m u s t be cont inuous ly upda ted dur ing the op t imi 
zat ion. This is cal led t he inner problem which is so lved by m a x i m i z i n g t h e v ibra t ion 
response with respect to the exci ta t ion frequency. T h e inner p r o b l e m causes the 
ma in difficulties of the op t imiza t ion task. 

Mathemat ica l ly , t he inner p r o b l e m can be fo rmu la t ed as a search of an aux i l i a ry 
objective function / * : 

/ * ( * ) : = m a x {ffau) | w c [ w M w J ( , (2 ) 

where / is a va lua t ion function based on the v ibra t ion re sponse (e.g. m e a n square 
veloci ty) and χ the vector of design var iables . If t he r e a re severa l resonances in the 
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frequency band of interest , one m a y fo rm a preference function ou t of t h e m a x i 
m u m va lues f* [1] . 

Using (2), t h e c o m p l e t e op t imiza t ion p r o b l e m reads as fo l lows : 

Min m a x f(x,u>) (3 ) ζ ω 

u n d e r t he condi t ions : g(x) ζ 0 , ω € [ωη uu]. W r i t t e n in such a hierarchical f o r m it 
is cal led a p a r a m e t e r op t imiza t ion p r o b l e m [2] w h e r e t h e exc i ta t ion frequency ω is 
the p a r a m e t e r he re . 

In Fig. 4 a f loat char t of the w h o l e op t imiza t ion p r o c e d u r e is g iven. F r o m this 
figure it becomes par t i cu la r ly evident tha t the to ta l c o m p u t a t i o n a l effort of t h e op
t imiza t ion s t rongly depends on how effective the inner p r o b l e m can be so lved , i .e . 
h o w few s t ruc tura l eva lua t ions a re required to d e t e r m i n e t h e r e sonance response . 

M I N - ALGORITHM 

Min / * ( * ) χ 

I N N E R PROBLEM 

M a x / ( x , w ) ω 
=> / * ( * ) 

f,9 χ,ω 

OPTIMIZATION MODEL 

r(x) r(x) 

/(«), 9(r) u 

I r s t ruc tu ra l va r iab les 
u d i sp lacement s 

\^ ρ e x t e r n a l p a r a m e t e r s j 

Fig. 4: Opt imiza t ion l o o p with inner p r o b l e m 

T h e easiest way of solving the inner p r o b l e m is to subdiv ide t he frequency 
in te rva l and to pick ou t the m a x i m u m of say η d iscrete r e sponse va lues . Obvious ly 
a lo t of unnecessary s t ruc tura l analyses m u s t be p e r f o r m e d in this m e t h o d , especial
ly in case of sha rp resonance peaks ( low damping) w h e r e a fine discret izat ion is 
needed . A m u c h m o r e effective way of finding the resonances can b e achieved by 
m e a n s of i te ra t ive search a lgor i thms . This m e t h o d was p r o p o s e d by M c M u n n and 
P l u n k e t t [6] who e m p l o y e d a N e w t o n - R a p h s o n - p r o c e d u r e for t he op t imiza t ion of 
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m u l t i - b o d y - s y s t e m s , b u t it is a lso poss ib le to use any o n e - d i m e n s i o n a l m a x i m i 
zat ion a lgo r i t hm (line search). T h e m a i n d rawback of using an a lgor i thmic search 
m e t h o d is tha t the convergence behav io r of the p rocedu re s t rongly d e p e n d s on 
whe the r the search p a r a m e t e r s (e .g. initial va lues , s tep size factors, b r eak -o f f cri
ter ia) a re wel l chosen. There fo re , ano the r m e t h o d for solving the inner p r o b l e m has 
been deve loped and is p resen ted in the n e x t section. 

4. A P P R O X I M A T I O N M E T H O D 

This m e t h o d is based on the fact tha t the r e sponse of l inear v ibra t ion sys tems 
can be wr i t ten as a s u m of m o d a l cont r ibut ions . T h e basic idea s t ems f r o m the 
t heo ry of m o d a l testing w h e r e s o m e curve fitting m e t h o d s a re used for ext rac t ing 
m o d a l p a r a m e t e r s f rom a set of m e a s u r e d response va lues . T h e s imples t approach 
of this t heo ry is to a p p r o x i m a t e each resonance by taking the frequency response 
function of a single degree of f r eedom (SDOF) sys t em. In [12] u n d a m p e d SD O F 
responses a r e a s s u m e d to e s t ima te resonance frequencies, whereas , if d a m p i n g is 
included into the SDOF response- func t ion , no t only the frequencies b u t a lso the 
ampl i t udes of the resonances can be es t imated f rom just two c o m p l e x response 
va lues which m a y be a r ranged a t a rb i t r a ry posi t ions c lose to the resonance . 

Start ing poin t of the m e t h o d is the m o d a l r ep resen ta t ion of t h e s t ruc tura l re
sponse wr i t t en in c o m p l e x fo rm: 

Y 1 - (ω/Ω;)2+ ιη. 

where Ω., ηί j-th. na tu ra l frequency and cor responding loss factor, 

(pj j-th. e igenvector (mode) , 

α ;· = a- + %β- par t ic ipat ion factor of the j - t h m o d e . 

P rov ided tha t the vicinity of a resonance is considered and the d a m p i n g is "weak 
enough", one m a y combine al l par t s which do no t be long to this resonance to a 
cons tan t va lue . As a fur ther simplification this cons tant pa r t is a lso neglected. Thus , 
we have : 

fiM * Ψί -—r~^2—— : = ί » ( 5) 
1 - (ω/Ω·)2 + 277 ;. 

Since t he m o d e shapes ψ- change on ly ve ry l i t t le nea r resonance , t h e r e a r e just four 
u n k n o w n s remain ing in this express ion , n a m e l y the m o d a l p a r a m e t e r s a5 ( real and 
imaginary par t ) , Ω- and r\-. In o rde r to d e t e r m i n e these p a r a m e t e r s , we need four 
pieces of in format ion which can be obtained f rom the c o m p l e x r e sponse of the 
s t ruc tura l m o d e l t aken at two different frequencies (o; f c,tt f c), k = 1,2 close to the 
resonance . Fo r that , it is sufficient to consider a single deg ree of f r eedom uk which 
is su i tably selected (e .g. the one with the largest amp l i t ude ) . Setting the a p p r o x i 
m a t i o n equal to the t rue response and spli t t ing the resul t ing equat ions into real and 
imaginary pa r t y ie lds : 
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ω* 

Of + η, I m ( û t ) +  j±  R e ( û J =  R e ( 2 4 ) ,  (6a ) 

β} - η, R e ( 5 4 ) + ^ I m f o ) = I m f o ) . (6b) 

In (6) t he e igenvector φ- has been scaled in such a way tha t t h e p a r t be longing to 
the chosen degree of f r eedom uk equals the rea l va lue one . T h e so lu t ion of (6) can 
be easi ly exp re s sed in a closed fo rm. W h e n the so lu t ion is k n o w n , t he resonance 
r e sponse is calcula ted f rom (5) by sett ing ωά = It shou ld be m e n t i o n e d tha t it 
is a lso poss ib le to p e r f o r m the a p p r o x i m a t i o n in a ve ry s imi la r way, based on 
both , the s t ruc tura l r e sponse and its frequency der iva t ive a t a single frequency, o r 
based on th ree magn i tude va lues [10]. 

Fig. 5 shows the a p p r o x i m a t i o n s of t he first two resonances of a pa r t i a l ly 
d a m p e d circular p l a t e . I t can be seen tha t t h e peak a m p l i t u d e s a r e we l l es t imated , 
even if the suppor t ing frequencies a re chosen re la t ive ly far f rom the resonances . 
Addi t ional ly , it has to be r e m a r k e d tha t in this e x a m p l e the m a t e r i a l p rope r t i e s of 
the d a m p i n g l aye r a re f r equency-dependen t (cf. Fig. 2 ) . 

In o rde r to set up a c o m p l e t e op t imiza t ion p rocedure , the m e t h o d descr ibed 
above and a lso the discrete and the i te ra t ive m e t h o d have b e e n in tegra ted into the 
p r o g r a m s y s t e m S A P O P [1]. A tes t of the m e t h o d s wi th a s i m p l e e x a m p l e ( s imply 
suppor t ed b e a m , one design var iab le ) has shown that , by using the a p p r o x i m a t i o n 
m e t h o d , cons iderab le savings of comput ing t i m e can be achieved (50 - 70%, even in 
compar i son with t he i te ra t ive resonance search) [10]. T h e a p p r o x i m a t i o n m e t h o d is 
the re fore e m p l o y e d for the fol lowing e x a m p l e s . 
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5. A P P L I C A T I O N E X A M P L E S 

T h e op t imiza t ion of t he damping layer d is t r ibut ion will b e appl ied to th ree 
different e x a m p l e s , n a m e l y a b e a m , a circular p l a t e and a sha l low spher ical shel l 
which al l have c l amped boundar ies . T h e min imiza t ion is carr ied ou t for t h e first 
( lowest ) resonance . Al l t h r ee base s t ruc tures consist of s teel and h a v e even ly appl ied 
d a m p i n g layers in the initial design. An uppe r b o u n d for t h e v o l u m e VD of the 
d a m p i n g ma te r i a l is in t roduced by m e a n s of the cons t ra in t : 

whe re VD is the m a x i m u m a l l owed damping l ayer v o l u m e . 

a) Clamped B e a m 
T h e d imens ions of the b e a m are : length 300 m m , thickness 1 m m . T h e b r o a d b a n d 

force exci ta t ion is appl ied to the m i d d l e of the b e a m and t h e dr iv ing poin t com
pliance is chosen to be t he objective function: 

/ := \w/F \ - N m r n " 1 . (8 ) 

T h e b e a m is subdivided into 40 finite e l emen t s assigning the thickness of t h e d a m 
ping layer of each e l e m e n t to a design var iab le . 

Fig. 6 shows the o p t i m u m damping ma te r i a l d is t r ibut ions for t w o different l ayer 
v o l u m e s . In Fig. 7 the frequency response curves of the initial design and t h e opti
m u m design a re given for t h e case of the s m a l l e r l ayer v o l u m e . 

Fig. 6: O p t i m u m designs for a c l amped b e a m with two different l aye r v o l u m e s 
(VB b e a m v o l u m e ; fini1 fopi initial, o p t i m u m values ; fref re ference va lue ) 

Fig. 6 shows tha t the damping mate r ia l concentra tes at those poin ts , w h e r e the 
first m o d e has its s t ronges t curva tures . T h e tendency t owards local concent ra t ion 
decreases , if m o r e d a m p i n g mate r ia l is appl ied. T h e s a m e counts for the i m p r o v e 
m e n t s which can b e gained by opt imizat ion. F r o m the quas i -s ta t ic responses in 
Fig. 7 it is obvious tha t t he reduct ion of the resonance a m p l i t u d e s does no t on ly 
resu l t f rom t h e increase of damping bu t also f rom an increased stiffness. I t is 
f u r t h e r m o r e r e m a r k a b l e that , a l though on ly t he first resonance is min imized , t he 



243 

ΙΟ"1 

1 0 ' 3 

| n o a rrm Œ Œ | 

τ— 

Ξ i " Τ * 

100 u; ( r a d / s ) 10000 

Fig. 7: Frequency response curves of initial and o p t i m u m design (VD = VB) 

higher resonances a re a lso subs tan t ia l ly reduced in t he op t imiza t ion . This , howeve r , 
does no t app ly to al l cases (cf. e x a m p l e c). T h e s i tua t ion , for ins tance, m a y change 
if u n s y m m e t r i c a l m o d e s a re exci ted a t the s a m e t ime . 

b) C l a m p e d Circular P l a t e 
T h e d i a m e t e r of t he circular p l a t e is 300 m m , the thickness is 1 m m as before . 

T h e exci ta t ion force is appl ied to the cent re of the p la te . T h e objective function 

/ := -J— ω2 f\w\2dA · NVrnrn" 4 (9 ) 
\F\2 ί 

is chosen as a m e a s u r e of the radia ted sound p o w e r (above coincidence). In this 
express ion , w deno tes t h e c o m p l e x d i sp l acemen t a m p l i t u d e pe rpend icu la r to t he 
surface A of the s t ruc ture (one side). T h e layer v o l u m e is l imi ted to t he v o l u m e of 
t he p la te . 

T w o different design m o d e l s will be e m p l o y e d . T h e first is charac ter ized by a 
single design va r i ab le which defines the thickness of the r ec tangu la r ly shaped l ayer 
d is t r ibut ion. T h e second m o d e l contains a piecewise l inear descr ip t ion of t h e thick
ness d is t r ibut ion with 5 design var iables which a re assigned to t h e th icknesses a t 
the corner points of the po lygon . 40 finite e l e m e n t s a re used for t he p l a t e and for 
the d a m p i n g layer as wel l . Fo r numer ica l reasons , a m i n i m u m thickness ( 1 % of the 
p la te thickness) is in t roduced for the e l emen t s of the d a m p i n g layer . 

In Fig. 8 t he op t ima l so lu t ions and t h e cor responding f requeny r e sponse curves 
a re shown. It can be seen tha t the response curves of b o t h o p t i m a l so lu t ions differ 
on ly ve ry sl ightly. In b o t h cases, the reduct ion of the sound p o w e r in the first reso
nance is abou t 14 to 15 dB . Fo r the practical appl icat ion of d a m p i n g layers this 
s m a l l difference is ve ry advan tageous , since layers of cons tan t th ickness can b e re
al ized m u c h m o r e easily. I t m u s t be t aken into account, howeve r , t ha t j u m p - s h a p e d 
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boundar ies m a y cause high de lamina t ion s t resses . T h e s e shou ld be avo ided by tape
ring the edges of the damping layer . Like in the first e x a m p l e , the higher reso
nances a r e d iminished so s t rongly tha t they do no t h a v e to be included into the 
objective function. In cont ras t to the c l amped b e a m , t he d a m p i n g m a t e r i a l is con
centra ted at the cent re of the p la te only . This is due to the quadrat ic dependence 
of the layer v o l u m e on the radial coordinate . 

Fig. 8: Damping ma te r i a l d is t r ibut ions and frequency response curves of a c l amped 
circular p la te ; initial and o p t i m u m design of two different design m o d e l s 

c) Clamped Spherical Cap 
T h e cap is chosen to have a spherical radius of 300 m m and a base d i a m e t e r of 

300 m m too (opening angle 60°). In this e x a m p l e , t h e n u m b e r of design var iab les 
for t h e piecewise l inear design m o d e l is 10. Both, the shel l and t h e d a m p i n g l ayer 
a re r ep resen ted by 50 finite e l emen t s . All o the r specifications r e m a i n the s a m e as 
before. 

Fig. 9 shows the initial design and the op t ima l so lu t ions as wel l as the frequency 
response curves . Al though , in this e x a m p l e , the op t ima l l ayer d is t r ibut ions and the 
cor responding response curves of the two design m o d e l s differ subs tan t ia l ly , the 
i m p r o v e m e n t s achieved a re of about the s a m e degree . It shou ld be noticed tha t in 
case of t h e piecewise l inear design m o d e l the reduct ion of t he objective function is 
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s o m e w h a t higher t h a n in the p la t e e x a m p l e . This is a resu l t of t h e fact tha t the 
var ia t ion of the d a m p i n g layer d is t r ibut ion no t on ly decreases t he a m p l i t u d e s of 
the d i sp lacements , bu t a lso cons iderab ly changes t he v ib ra t ion shape in a posi t ive 
manner . T h r o u g h the la t ter , firstly the po r t i on of bending energy is increased and 
secondly the shel l is m a d e a weak radia tor . 

Fig. 9: Damping ma te r i a l d is t r ibut ions and frequency response curves of a c l amped 
spherical shel l ; initial and o p t i m u m design of t w o different design m o d e l s 

6. C O N C L U S I O N S 

T h e a i m of t h e p re sen t pape r was to find o p t i m a l d is t r ibut ions of uncons t ra ined 
damping layers in such a way tha t t he resonance a m p l i t u d e s of thin wa l l ed struc
tures u n d e r b r o a d b a n d exci ta t ion a re min imized . D a m p e d b e a m s , circular p la tes , 
and sha l low spherical shel ls a re considered as e x a m p l e s . T h e dr iv ing po in t com
pliance or the radia ted sound p o w e r ( m e a n square veloci ty) of the s t ruc tu re have 
been t aken as objective functions. For s t ruc tura l analys is , t he finite e l e m e n t m e t h o d 
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has been used w h e r e damping was in t roduced via a c o m p l e x , f r equency -dependen t 
stiffness m a t r i x . 

T h e min imiza t ion of resonance responses leads to a p a r a m e t e r op t imiza t ion p r o b 
l e m the major difficulty of which is caused by the task of finding and fol lowing 
the resonances dur ing opt imiza t ion . An a p p r o x i m a t i o n m e t h o d has been p resen ted 
which is based u p o n m o d a l identification and which pe rmi t s a ve ry effective solu
t ion of this p r o b l e m . T h e given e x a m p l e s have shown tha t the op t imiza t ion of 
damping l ayer dis t r ibut ions is wor thwhi l e even if ve ry s i m p l e design m o d e l s a re 
used. Especia l ly in case of curved s t ruc tures this is no t on ly a r e su l t of damping 
i m p r o v e m e n t bu t a lso of changing the shapes of v ibra t ion . 
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A B S T R A C T 
A topology and shape optimizat ion technique using the homogeniza t ion me thod is 

presented for structural dynamic problems. A new objective function using multi-eigenvalues 
is introduced for improving solvability of the eigenvalue optimization problem. An improved 
optimization algorithm is then applied to solve the problems, which is derived using a new 
convex generalized-linearization approach and the dual method. Finally, applicat ions are 
presented to substantiate feasibility of the present approach. 

1. I N T R O D U C T I O N 

A most actively studied subject in structural optimization in recent years is related to 
topology optimization. Even though the use of existing techniques which have developed for 
the sizing and shape optimization problems has made it possible to obtain the optimal size and 
shape of a structure, significant improvement of design could not be achieved without 
including topology optimization. In many cases, if a structure has been well designed through 
an exper ienced design practice, then jus t about 5% weight reduct ion can be obtained by 
changing the sizes, while about 15% reduction can be obtain by changing the shape of a 
structure for min imum weight design. In order to obtain further weight reduction, we have to 
modify the topology and make a brand-new structure. 

Optimization of the topology of a continuum structure was hardly solved before Bends0e 
and Kikuchi [1] presented their method that is based on a simple idea of transforming the 
problem to find the O D M (Optimal Distribution of Material) within a specified design 
domain. It is assumed that the material is not homogeneous, but instead has a variable solid-
cavi ty micros t ruc ture . By using the homogeniza t ion method (to def ine the effective 
homogenized elasticity constants) and mathematical tools of optimization, a mathematical 
formulation of O D M can be obtained for a given set of loads and boundary conditions . That 
gives the optimum layout of a structure involving topology, shape and size at the same time. 

This idea has been successfully applied to the problems of maximizing the stiffness of a 
static structure (e.g., Bends0e and Kikuchi [1], Suzuki and Kikuchi [2,3], Olhoff et al.[4]). 
In structural dynamic problems, a solution for the eigenvalue optimization has been obtained 
by Diaz and Kikuchi [5] using a direct application of the method for the stiffness problem. 
Recent ly , M a et al. [6] have extended this method for solving the frequency response 
optimization problem. However , a dynamic problem is quite different from the static one. It 
was shown in Ma et al. [6] that even though the original optimization algorithm, which uses a 
scaling based resizing technique in Bends0e and Kikuchi [1], is well-convergent in the static 
problem, it does not work well in the dynamic case, especially when excit ing frequency 



2 4 8 

becomes high. Therefore, an improved algorithm had to be developed (see M a et al. [6]) in 
order to overcome the difficulty mentioned above. The basic idea in the modification is to 
make a convex generalized linearization using a shift parameter which corresponds to the 
Lagrange multiplier, and employs the dual method to separate a multi-variables minimization 
p rob lem to several one-dimensional problems. Then an improved resizing rule can be 
obtained, which has much better convergence property and can be reduced to the previous one 
if choosing a zero value as the shift parameter. The concept of the convex linearization with 
the use of duality is also the basis of widely used optimization methods C O N L I N (Fleury and 
Braibant [7] , Fleury [8]) and M M A (Svanberg [9]), but the new algori thm can be more 
efficient and suitable for the present problem. It has been shown that the new algorithm has 
the simplicity as the scaling based resizing technique, and it has good convergence property in 
the frequency response problem. Since several examples for the frequency response problem, 
have been solved in Ma et al. [10] we shall further develop a new additional technique to 
improve the solution of eigenvalue optimization problem, which has been first discussed by 
Diaz and Kikuchi [5]. 

As shown in this paper, in the eigenvalue optimization problem, if one fol lows a 
specified mode of the structure to optimize (usually maximize) its corresponding eigenvalue, 
then the number of this mode may be changed during the optimization process. For example, 
if k is the original number of order of the mode, then it may change to k+p finally, where 
p > 0 . In contrast, if we follow the number of modal order, e. g., to optimize k-ih e igenvalue, 
then the mode being the object of optimization process may be changed to another one. In this 
case, the sensitivities of the objective function become discontinuous, and oscillation may be 
caused in the objective function within optimization process. In order to avoid this problem, a 
new objective function is suggested in this paper, which is correspond to a specified multi-
eigenvalue optimization problem. It will be shown that the use of this objective function and 
the improved optimization algorithm mentioned in above can greatly improve the solution, and 
to optimize not only a single eigenvalue but also multi-eigenvalues by choosing the weighting 
functions and shift parameter properly. 

First, the structural optimization problem is transformed to an O D M problem using a 
specified 2-D microstructure. Then, a new objective function is proposed for improving the 
solution of the eigenvalue optimization problem. Based on the sensitivity analyses given in 
M a and Hagiwara [11,12], an improved optimization algorithm is presented for solving the 
problem. Finally, examples are described to substantiate the feasibility of the present 
approach. 

2 . O P T I M U M M A T E R I A L D I S T R I B U T I O N P R O B L E M 

A minimum weight problem which is subject to the constraint on the specified stiffness 
can be transformed to a dual problem that maximizes the stiffness subject to the constraint on 
the specified amount of the material. In general, a structural optimization problem can be 
conceived as an O D M problem within a prescribed admissible structural domain assuming the 
loading and boundary conditions to be given (Bends0e and Kikuchi [1]). As shown in F ig . l , 
it is considered that the structural domain is filled by a nonhomogeneous material that has 
variable microstructures. Despite of arbitrary choice of microstructure for perforation of a 
structure that defines the so-called relaxed design problem, we assume the microstructure is 
formed by microscale rectangular holes inside a structure in plane elasticity problem that is 
characterized by the unit cell shown in Fig. 1. Where, the distributed functions a, b (define 
the relative size of a rectangular hole in the unit cell, and then the density of microscale holes ) 
and θ (angle of rotation of a rectangular hole) are regarded as the design variables in the 
O D M formulation. Inside cavity of the micro structure is variable along with the design 
variables, a and b, while the micro structure becomes a complete void when a=b=0 and a 
complete solid when a-b-\. 
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Figure. 1 Microstructure in a Structural Domain 

In the optimization process, the microstructures are changed from empty to solid or from 
solid to empty. Therefore, if assuming the total amount of the material of the structure is 
constant, then the pieces of the material are moved from a part of the structure to another part 
while the optimization process is progressed. By moving the material for the a im of reducing 
the objective function, finally we can obtain an O D M that gives the optimal structure. 

The linearly elastic coefficients E-y and mass densi ty ρ can be also ut i l ized to 

characterize the problem. Here, in general, E-y and ρ are functions of the spatial coordinate. 
It is assumed: 

E -\EIH in solid _ f p 0 in solid 

' J k l I 0 in cavity ' ^ [ 0 in cavity 

where, E^ and p 0 are elasticity tensor and mass density of the solid portion in the structural 
domain, respectively. 

Since we have assumed the existence of microstructure, a homogen ized effective 
macroscoptic elasticity constants must be obtained to define the equil ibrium of a structure 

using , for example , the homogenization method. The homogenized elastic constants E^kl 

and mass density ρ Λ , which are corresponding to an un-rotated cell, can be obtained as 
follows : 

where, Y is the domain of the cell, and is the solution of the microstructural problem, that 
characterized micromechanical behavior of the microstructure (Bens0e and Kikuchi [1]). 

Finite-element discretization can also be employed to solve the problem. Assuming the 
system is damped with the viscous damping, the fundamental finite-element equation can be 
written as 
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M u +  C ù +  K u =  f  (1 ) 

where u  ,  M , C , K  an d f  stan d fo r th e noda l d isplacemen t vector , mas s matrix , dampin g 
matrix, stiffnes s matri x an d forc e vector , respectively . Her e w e assum e C  =  oc K +  β Μ for 
given parameters α and β. 

nel nel 

K= Akp , M = A mp 

e=l e=\ 
nel 

where, A stands for the finite element assembly operator, and, and are the element 
e-\ 

stiffness and mass matrices obtained by 

ke = [ β ^ Β ^ Ω and me = [pe NT

eNedQ. 

where B e and Ne stand for the strain shape function and chape function, respect ively. 
O e = T j O h T e and pe=ph are the rotated homogenized stiffness and mass density, where 
T e = T e ( 6 ) is the transformation matrix for the e-th element. In the plane elasticity problem 
using the microstructure shown in F ig . l , we have (Ma et al.[10]) 

~Eh 

M m 
Eh 

^ 1 1 2 2 
0 

^ 1 1 2 2 Eh 

^ 2 2 2 2 
0 

0 0 Eh 

^ 1 2 1 2 

Assuming the design variables with respect to an arbitrary finite element Q.e are ae1 be 

and Qe , then the element stiffness matrix ke and mass matrix are the functions of ae, be 

and Qe> i.e., 

ke=ke(ae,be,de), mc=me(ae,be) 

3 . E I G E N V A L U E O P T I M I Z A T I O N P R O B L E M 

In the eigenvalue problem, the state equation is written by 

( Κ - λ „ Μ ) φ „ = 0 (2) 

where , λ η stands for the n-th eigenvalue of the structure (/ι=1,2,...), φ η the corresponding 
eigenvector. 

Maximiz ing a chosen eigenvalue of the system is usually used as the object in an 
eigenvalue optimization problem. However, in the eigenvalue optimization problem, when 
one maximizes a lower eigenvalue, higher eigenvalus may fall down to the lower values. It 
means that if the optimization process is to follow a specified mode of the structure, then the 
order number of this mode may be changed within the optimization process. For example, at 
beginning, we consider to optimize the k-th eigenvalue, finally the optimal solution obtained 
may correspond to the k+p th mode, where p > 0 . Thus the prob lem is changed to an 
unexpected one. In constrast, if one follows the number of modal order, e. g., to optimize the 
k-th eigenvalue, then the mode being optimized may change to another one. In this case, the 
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sensitivities of the objective function become discontinuous, and it probably cause oscillation 
and divergence in the iterative process for optimization. In order to overcome this problem, a 
specified mult i-eigenvalue optimization problem is suggested. To do this, let us define a 
mean eigenvalue λ* by 

W: 

m 

Σ"ιΐηΙλ«.· - λ ο , 
λ 0 + exp 

ι'=1 

ι = 1 

Π*0 

(3) 

η = 0 

where λ η . are chosen eigenvalues defining the eigenvalue optimization problem, λ 0 . are 
specified desired eigenvalues, λ 0 is a constant shift parameter, are the weights , m is the 
number of e igenvalues to define a mutiple eigenvalue optimization problem, and η is an 
appropriately chosen parameter to specify objective of optimization. The mean eigenvalue is 
introduced to define the optimization problem not only for maximizing a chosen eigenvalue 
but also for maximizing the distance of two prescribed neighboring eigenvalues as well as for 
de termining a structure that possesses the desired eigenvalues. By choos ing parameters 
appropriately, the mean eigenvalue defined in above can yield various optimization problems. 
It is also noted that this quantity is introduced as an analogy to the multi-purpose optimization 
problem with a weighted sum of objectives. 

a) Maximize the chosen eigenvalues of a structure 

Minimize fx = -λ* (4) 

where η = 0 ,±1 ,±2 ,±3 , and λ 0 = λ 0 ι = λ θ 2 = λ θ 3 = = λ 0 ^ = 0 . 

b) Maximize the gap of any arbitrary given two eigenvalues of a structure 

Minimize / = -λ* (5) 

where Λ = 0 ,±1 ,±2 ,±3 , and λ 0 . = λη.(i Φ j). 

c) Opt imum design to impose the desired eigenvalues 

Minimize / = -λ* (6a) 

where η = 0 ,±1,±3,±5, , λ 0 is a given constant, and λ 0 . are the desired eigenvalues. If 

η = 0 ,±2 ,±4 ,±6 , are assumed, we must change the objective function as 
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In 

Minimize / = λ (6b) 

m 

general, we assume wt: = 1 . If m = 1 and η Φ 0, the mean eigenvalue in (4) is 

*=i 

reduced to λ* = λ 0 + (ληι - λ 0 ι ) , and then the optimization problem becomes so as to 

maximize the nrth eigenvalue λ Λ ι . if n Φ 0 and w, = l / w , the mean e igenvalue in (4) 

becomes λ = λ η -ι- «, 

1 
.{m/ ^ ( λ , ι . ) . Thus , if η > 0 is assumed, cont r ibu t ion of the 

I=l 

maximum eigenvalue of the set { λ η / J of eigenvalues considered to the objective function 

becomes considerably small, and then the structure would be designed so as to possess larger 

values of the smaller eigenvalues of the set ^kn. j . Converse ly , if η < 0 , then the 

optimization problem yields increase of the larger eigenvalues of the set | λ^ . J, while the 

smaller ones might not be changed much. If η Φ 0, = 1/m, and λ 0 . = λη (i = 2 , . . . ,m), 

m l ^ ( λ η . - λ^.^ ) . Thus the distance the mean eigenvalue in (5) becomes λ = λ 0 + η\ι 
ι 

i=2 

of the second and the first eigenvalues will be maximized when η > 0, while the difference 
between two largest eigenvalues will be maximized for η < 0. 

4. O P T I M I Z A T I O N A L G O R I T H M 

In the general case , the optimizat ion problem, which is cor responding to ei ther 
eigenvalue problem and frequency response problem, can be written as 

Minimize / (7) 
χ, Θ 

Subject to state equation (2) , (8a) 
Λ ( Χ ) < 0 , (8b) 
Xi<Xi<Xi , (/ = 1,2,···,Λ0 ( 8 c ) 

where X = CO1{JC,} (x, e A u £ ) , Θ = col {θ,} are vectors of the design variables, A and Β 
stand for the sets of the design variables at and bt, respectively; and are the minimum 
and max imum values of the design variables x,, respectively; and Ν = 2net. The objective 
function / can be any one of that we defined previously. 

The Lagrangian function of the optimization problem is defined as 

Ν 

L=f+Xh + ^[a_i ^ - x^ + a+i(Xi - 1 , ) ] ( 9 ) 

I=l 
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where, λ , α_, and α + ί are the Lagrange multipliers. If assuming (8b) to be active, then we 

have λ > 0 · Mak ing a new objective function / * = / - μ Λ , whe re μ is a given shift 
parameter, (9) can be rewritten as 

Ν 

L = f* + λ* h + ]Γ [α_, (Xi - + a+i(Xi - Je,-)] (10) 

I=l 

where λ* = λ + μ. N o w we have a new optimization problem, this problem is completely 
equivalent to the original one (Ma et al. [10]). 

The Kuhn-Tucker conditions of the problem become 

df Λ* dh ,. Λ _ _„ 
~ - + λ — = a _ f . - a + / 0 = 1,2,.··, Ν) 
dXi dXi 

^ - = 0, (/ = U , - , r V ) 

(λ* - μ)Λ = 0 ; a_i ( ^ - *,·) = 0 , a + / ( x , - 1 , ) = 0 , 

λ* > μ , a_, > 0 , a+ , > 0 (/ = l , 2 , - , r V ) 

and it is assumed that the state equation , i.e., (2) is always satisfied. 
Using a generalized reciprocal approximation, we assume intermediate l inearization 

variables as y, = ( l / * / ) ^ ' , where ξ, are parameters, which can be determined by the known 

property of the objective function. For example, iff is an almost linear function of 1 / 

ξ,· = 1 is a proper choose . Here we assume ξι = ξ 2 =··"= = ξ. Then / * c a n be linearly 
Ν 

approximated in the space of y,- at y, = yf = (xf )~ ξ as / * = / 0 * + ^ t f f * , ~ ^ , where jef are 
I=l 

the k-th approximat ions of the design variables obtained in last i teration step of the 

optimization process, and / 0 * is a constant, 

J x. =x 

If we choose the shift parameter μ in the k-th iteration step as μ* > [ — / — ] \x.=xt then, we 
dXi dXi 1 1 

have a\ > 0 , and the approximation of objective function / * is convex as ξ > 0 and x\ > 0 . 

In this problem, the constraint function h is a linear function with respect to an individual 
Ν 

design variable *, · , therefore it can be linearly approximated as hk =h$ + Z?**; where 
I=l 

k k 
h£ < 0 is a constant, and bf = — L =x

k>0 . Assuming L and h are the sets of number of 
dXi ' ' 
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the design variables which arrive the minimum and maximum values, respectively, and /* is 

the set of number of the other design variables, i. e., /* = {/1 Jt, = x , } , / + = {/1 = Xi}, and 

Ik = { / < X i < J C / } . Then the Lagrangian function in the k-t\v i terat ion, (10) can be 
approximated as 

Z*(X, λ, A) = /< + Yfi + + (11) 

IE/* IE/ί i e / ί 

where, A stands for the vector of the Lagrange multipliers a_ f-( i e / * ) and α + ί (/ e / ^ ) 

= / Ο * + Λ ^ + ^ Α _ , · Ί , · - (12a) = / Ο * + Λ ^ + ^ Α _ , · Ί , · -

/< = afxJ*'+Xblxi , (FOR / E / * ) (12b) 

= A*JCF ̂  + Λ - A_,VT, (FOR I E / Î ) (12c) 

= ÛFJCF ^ +  Λ bfx, + ct+iXi (FOR T E / Ί ) (12d) 

and for simplicity, the index "*" on λ is omitted. 
Since the approximated Lagrangian function L*(X, λ ,A) is convex, we can use the dual 

method to solve the problem (Haftka and Gurdal [13]). The dual problem is defined by 

max Lk

m(k, A) 
λ, a 

subject to λ > 0, A > 0 
where 

Lk

m(k, A) = min L*(X, λ, A) (13) 

Because the minimization problem (13) is separable, it can be replaced with Ν one-
dimensional minimization problems as follows. 

a) For design variable JC, ( i e Ik): 

M I N if (xi ) = α·χ~[ξ + λ afc (14a) 

b) For design variable JC, ( i e / * ) : 

M I N /_,· (χι ) = α-χ;ξ + λ ϋ·χ{ - Α. ,*, · (14b) 
*/(IE/Î) 

c) For design variable x{ ( i e /*): 

M I N /+/ (xi ) = *Γ ξ + λ + <*+/*,· ( 1 4 " c ) 
^•(LE/*) 
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where af > 0, bf > 0 and % < xt < I,· (/ = 1 ,2 , · · · ,# ) . 

Solving (14a), we can obtain its solution as 

* ; = λ - ν , ( fo r %<x-y <*,.) 

where η = — i — , and ef - f ^ 
s + 1 I 

To solve (14b), we have 

3 x 

Since = when / e /* , then from (16) we can obtain 

(15) 

(16) 

(17) 

(18) 

α.,· = - ξ ^ χ 7 ( ξ + 1 ) + λ bf = bf[X - (ef/x^] for λ"V < xt 

Same way, solving (14c), we can obtain 

α + ι · = bf[(ef / J f ) ^ - λ ] , ( for λ" V > J f ) 

Substituting {(15), (17),(18)} into {(12),(11)} yields 

^=/ 0 Ηλ^+λ 1 - τ ΐ(1-η)- 1 2^ 
ielk 

where / 0 * = Jo + *Γ ξ + and = + ^ f t * * / + */· To solve the 

iell 

maximization problem (13), we have —— = HQ + λ ^^bfef = 0 , then the Lagrange 

multiplier can be obtained as 

λ = 
V ^ 0 /€/* 

(19) 

It should be noted that because the sets /* , /* and /* are dependent on the solution of 

Lagrange multiplier λ*, an iterative calculation is required for obtaining λ*. 
In summary, the improved optimization algorithm can be described by 

a) Give the initial value of the design variables, xf and Θ* for k - 0 . 

b) Find the solution of state equation (2) with respect to x{ - xf, Θ, = 0f 
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c) Calculate df/dxi and dh/dxi with respect to xt = jtf, θ, = θ*. 

d) Calculate μ* using 

e) Calculate 

y \(df/dxj] μ = max 1 ' 
1 < / < N lyoh/dXi 

xi = x i 

(20) 

where 
e f = D * x f , (i = l , 2 , - , / / ) 

k .dfldx:., 
u - ( — — - ) _ v * 

(21) 

(22) 

f) Determine the Lagrange multiplier by a inner iteration loop using 

where λ* = ( λ * ) η , î%  =  h£  +  £ i > f χ,· + £ f o f x „ / * = { i I ef / λ* < χ , } , 

/ * = { / ! χ,· < ef /λ* < x,} ,and / * = { i I ef / λ* > χ,} 

g) Modify the design variables as follows: 

4 + l = < 

x_i if i e / _ 
ek/Xk if / e / * 

I , If ι e /* 

( Ϊ = 1 , 2 , . · · , Ν ) (24) 

h) Determine θ * + 1 using (34) or its equivalent form (Suzuki and Kikuchi [2]). 

i) Let £ = & + l , a n d repeat b) to h) until I fk+l -fk\<h, where δ is a 
given error limit. 

Obviously, this algorithm can also be extended to deal with the optimization problem 
with multi-constraints instead of (8b), but the discussions about this development will be left 
to a saparate report. 

5. E X A M P L E 1 : Layout opt imizat ion of a s imple supported c o l u m n 

In the optimal layout problem, only a design domain and boundary conditions are given. 
As shown in Fig.2, the design domain is specified as a rectangle, 14.0cm in horizontal length 
and 2.0cm in vertical height with two simple supported boundaries at the left and right ends. 
This problem is similar to the shape optimization problem of a simple supported column (see 
Olhoff [14]). Here, the finite-element model is made by 700 (70 x 10) finite e lements with 
781 nodes. This yields 1,582 D.O.F. for the structural domain and 2,100 design variables for 
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the op t imiza t ion p roces s in this p rob lem. As shown in F ig . 2, the lowes t - f ive 
eigenfrequencies of the initial structure (that is the uniformly perforated thin elastic plate with 
the vo lume 1 7 c m 2 for a solid material) were 19.8 Hz, 60.8 Hz, 94.1 Hz, 106.0 Hz and 
151.4 Hz. 

Two cases were considered for the constraint of the total mass being V0 = 17.0 χ p 0 (the 
area of whole domain is 28.0)» a n d the shift parameter λ 0 is assumed to be zero. Figures 3 
and 4 show the optimal layouts obtained by using the technique presented in this paper to 
maximize the first and second eigenvalues by choosing the parameter n=2 in the mean 
eigenvalue. Figure 3 shows the result corresponding to the first e igenvalue optimizat ion, 
where Fig.3 (a), (b) and (c) are obtained by using (a)the first mode only, (b)modes 1 and 2, 
and (c)modes 1, 2, 3 and 4, respectively. As shown in Fig.3, the all of three cases have the 
same layout of the outside, but the interior topology is different. It is shown that when higher 
modes are used in the optimization process, the final structures seemed to be stiffer (Fig.3 (b) 
and (c)) because the higher e igenvalues are also enlarged. Therefore , us ing the mult i -
eigenvalue optimization technique makes it possible to obtain a better structure. 

Figure 4 shows the result corresponding to the second eigenvalue maximizat ion, where 
Fig.4 (a), (b) and (c) are obtained by using (a)the second mode only, (b)modes 2 and 3, and 
(c )modes 2, 3 , 4 and 5, respectively. Same tendency can be observed as for the first 
eigenvalue. 

In order to show the improvement in convergence of the optimization process, Figs.5 (a) 
and (b) are given with the history of change in four lower eigenvalues by tracing their modes 
within first 20 iterations. Figure 5 (a) shows the history corresponding to Fig.4 (a), which 
used only second mode for optimizing second eigenvalue. Thus it is a single e igenvalue 
optimization (SEO) problem. Figure 5 (b) gives the convergence history corresponding to 
Fig.4 (c), which used second, third, fourth, and fifth modes . Thus , it is a mult i-eigenvalue 
optimization (MEO) problem. It is clear that monotone convergence can be obtained by using 
multiple eigenmodes, while the single eigenvalue problem attains a slightly better result than 
the case of multiple eigenvalues with non-monotone convergence. It is also noted that the 
single eigenvalue case may yield significant decrease of the adjacent larger eigenvalues, but 
controlling multiple eigenvalues always implies increase of the values by design optimization. 
In this sense, the multiple eigenvalue optimization might provide far more realist design than 
the case of single eigenvalue optimization. 

6. E X A M P L E 2 : Layout opt imizat ion of a c lumped plate (in plane mot ion) 

W e shall now solve the opt imum layout problem in a rectangular domain, both left and 
right sides of which are clumped. A non-structured concentrated mass ( mo = 5 χ 10~ 6 ) is 
also attached at the center of the domain. The structure is formed with solid material whose 
mass density is p = l χ 10" 6 kg with Young's modulus E=100MPa and Poisson's ratio v = 0 . 3 . 
The size of the rectangular domain in which we shall layout a structure is 14cm χ 2cm as in 
the first example. Using 700 (70 x 10) finite elements, the domain is discretized, the single 
e igenvalue opt imizat ion that maximizes the lowest frequency is solved for the vo lume 
constraint 9 c m 2 to form a structure. If a solid material is uniformly distributed to form a 
h o m o g e n e o u s perforated thin elastic plate, the lowest three frequencies are 16.31 Hz , 
51.56Hz, and 63.80Hz, respectively. Application of the O D M algorithm yields the opt imum 
layout shown in Fig.6(a) that does not have any perforation, but forms more or less framed 
structure whose lowest three frequencies are 62.95Hz, 75.13Hz, and 106.59Hz, respectively 
by using the single lowest frequency for optimization. About 286% improvement is achieved 
by the layout optimization. In order to make comparison to the usual sizing problem, we 
shall solve a similar problem by determining the optimum height of a solid beam spanned on 
the interval (0, 14cm). Restricting the maximum and min imum height of the beam into 
0.1cm < h < 2.0cm, the configuration of the shape is defined by a linear function in each 
finite element, and its opt imum is determined by maximizing the lowest frequency derived 
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Fig. 2. Initial Structure 

(a) One Mode Utilized(l) 

u u 
η π 

(b) Two Modes Utilized(l-2) 

(c) Four Modes Utilized(l- 4) 

Fig 3. Optimization for the 1st 
Eigenvalue 

(a) One Mode Utilized(2) 

(b) Two Modes Utilized(2-3) 

(c) Four Modes Utilized(2-5) 

f l f2 f i f4 f 5 
19.8 60.8 94.1 106.0 151.4 

wi w i w3 w 4 w 5 
1.0 -- -- - --
f l f2 t i f4 f 5 

54.6 59.1 135.8 186.2 240.5 

wi w 2 w 3 w 4 w 5 
1.0 1.0 - -- --
f l f2 f3 f4 f$ 

52.2 141.9 235.1 262.4 262.8 

wi w 2 w i w 4 w 5 
1.0 1.0 1.0 1.0 --
f l f2 f3 f4 f 5 

52.4 145.9 248.4 279.7 317.7 

wi w2 w i w4 wS 

- 1.0 - -- -f l f2 f3 f4 f5 
35.6 179.5 191.5 200.4 207.5 

wi w2 w3 w4 w 5 
-- 1.0 1.0 -- --
f l f2 f3 f4 f5 

29.7 185.1 254.2 257.2 294.2 

wl w2 w3 w4 w5 
-- 1.0 1.0 1.0 1.0 
f l f2 f i f 4 f5 

27.S 175.0 274.0 279.9 409.8 

Fig 4. Optimization for the 2nd 
Eigenvalue 
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50 H • 1 · 1 • , • 1 
0 5 1 0 1 5 2 0 

I t e r a t i on N u m b e r s 

(a) Using Single Eigenvalue as Objective Function(SEO) 

I t e r a t i on N u m b e r s 

(b) Using Multi-Eigenvalue as Objective Function(MEO) 

Fig.5 The Changes of Eigenfrequencies by Using SEO and MEO 
(by Tracing the Modes) 
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from the Euler beam theory using 224 finite elements. Constraining the volume of the beam 
to be the same for the layout optimization, the opt imum shape is obtained as shown in 
Fig .6(b) with improvemen t of the lowest three frequencies , 28 .27Hz , 96 .02Hz , and 
171.52Hz, respect ively, from the initial constant height beam, 21 .59Hz, 92.81 Hz , and 
149.37Hz, respectively. Improvement is only about 3 1 % for this shape (sizing) optimization. 
It is clear that the layout design provides much larger improvement. 

(a) Homogenization Method (Volume = 9) 

- H • 1 
0 225 

(b) Sizing Optimization of a Beam 

Fig.6 The Optimal Structures by the Homogenization Method and the Sizing (height 
of the beam) Optimization 

7. C O N C L U S I O N 

A new objective function corresponding to the mul t i -e igenvalue is in t roduced for 
improving the solution of the eigenvalue optimization problem defined by the homogenization 
method. An improved optimization algorithm is then applied to solve the problem. It is shown 
that the use of the multi-eigenvalue optimization technique and the new updating algorithm 
can greatly improve the solution, and they optimize not only a single eigenvalue but also 
mult i-eigenvalues by choosing the weighting functions and shift parameters appropriately. 
The feasibility of the present approache is demonstrated by an example. 

An extended description of the present approach shall be published in [10], 1992 A S M E 
Win te r Annua l Meet ing , Recent Advances in Structural Mechanics , with many other 
numerical examples which show the effectiveness of the present method. 
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A b s t r a c t 
In this paper we describe a knowledge-based system for the design of composite structural 

components for aerospace applications. The general approach is of initial approximate design 
followed by successive enhancements until a satisfactory design is obtained. Design 
enhancement is made by the user on the basis of suggestions generated by a a set of heuristic 
redesign rules which use the results of extensive analysis programs. The method is applied to 
the design of a single component in the form of a laminated plate and then to the integrated 
design of a configuration of two struts and a floorbeam. 

1. N O T A T I O N 

t. thickness of θ° plies 

x, y, ζ plate axes 
Lg, L s , Lp, L Q , L F , L R geometry of floorbeam/struts configuration (Figure 3) 
Μ. ϋ moments and loads per unit length applied to plate 
P, Q vertical loads applied to beam 
θ ply fibre orientation 

ψ strut orientation 

2. I N T R O D U C T I O N 

Despite their great potential, advanced composite materials have not been as fully 
exploited in the aerospace industry as their many advantages would imply. This is because 
the nature of such orthotropic materials entails limitations to the kinds of design that can be 
practicably put together, so that the design process is more tied up with the manufacturing 
process and non-structural operational aspects than for isotropic materials. Component 
development therefore becomes a problematic and expensive activity: this provides the 
incentive for a composites design expert system. 

The complexity of the design process itself arises from the theory of orthotropic materials ' 
behaviour: a relatively straightforward analysis to find the amount of material required to 
withstand a given loading case is not possible as in the case of isotropic materials. In addition 
there are complications such as free edge effects, delamination and thermal residual stresses. 

There are several ways in which manufacture considerations influence the design 
procedure. Adequate transfer of the loads to and from other components requires suitable end 
fittings. Putting bolts or holes in the material produces stress concentrations leading to 
unpredictable effects. Thermal stresses are present since a laminated component has to be 
laid up and then cured at a high temperature until the material is set. In addition, qualitative 
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aspects apart from manufacturability, such as reparability and other operational factors, have 
to be considered during the design process. 

Thus any computer-based expert system that would be of use to a designer using 
composite materials will firstly have to efficiently access and apply analysis programs 
implementing the mathematical theories as and when required; and secondly perform a 
systematic assessment of designs taking into account both quantitative and qualitative 
desiderata. Beyond that, in order to fulfil the role of adviser to the designer, a user-friendly 
and flexible man-machine interface is essential; particular features should include menus, 
dialogue boxes, an explanation facility, and graphics displays. 

Various examples of this kind of system have been developed as aids to aerospace 
designers. Zumsteg and Flaggs [1] discuss the implementation of an expert system shell 
providing a versatile interface between a rule-based expert system and existing analysis 
programs for aerospace structures. Chehayeb et al. [2] discuss the knowledge and tools 
necessary to a knowledge-based design expert system. Zumsteg et al. [3] and Pecora et al. [4] 
describe an expert system using P R O L O G for specific application to the design of sandwich 
panels using composites. Webber [5] presents some design optimisations for composite 
laminates using an interactive program written in BASIC. That work was developed by 
Burden and Lipton [6] to incorporate different failure criteria and ply degradation due to non-
catastrophic ply failure. The predecessor of the work presented in this paper was an expert 
system called C O D E X which is discussed in the next section, and details of which can be 
found in previous papers [7; 8; 9; 10; 11]. 

The approach discussed in this paper combines the methodologies of expert systems with 
theories from structural mechanics. Heuristics, or "rules of thumb", derived from human 
expert knowledge are linked up with extensive analysis programs in an iterative design-test-
redesign strategy. Thus not only do we have the common-sense, high-level knowledge of the 
designer, but we also have the facilities to do complicated analysis very efficiently. Linking 
these together enables us to obtain a reasonable design in a short number of cycles. However 
this approach must be tempered by ensuring that the user has absolute control over the design 
procedure; therefore the inferences derived from the applications of the heuristics are not 
automatically implemented in the updated design (as in CODEX) , but are instead presented 
as suggestions to the user, upon which he can act or not. 

In the next section we expound the general approach of C O D E X 2 and in sections 4 and 5 
we show how it is applied in modules for plate design and integrated struts and floorbeam 
configuration design respectively. Results are presented for the plate and compared to those 
obtained using an approach comprising an exhaustive search of the design variable space. 
The module for the integrated design is not fully implemented so few details and no results 
are presented. 

3. G E N E R A L A P P R O A C H 

In this section we describe in broad terms an expert system for the design of composite 
structural components called CODEX2. C O D E X (COmposi tes Design EXpert) is the name 
of the original version of the program; its successor, still under development, is intended as a 
revised version with much greater potential. Firstly though we describe CODEX. 

Essentially C O D E X is divided into three subsystems: laminated plate design, laminated 
strut design and design assessment. Plates are designed with a cyclic design-test-redesign 
procedure using heuristic redesign rules in the successive updating of intermediate designs to 
a quasi-optimal solution. The final design is termed "quasi-opt imal" since there is no 
guarantee that it will in fact be optimal, as there would be if w e were employing a 
mathematical programming/structural optimisation approach; however in the great majority 
of cases it has been found that the set of rules used leads to a design comparable to the true 
opt imum [8; 10; 11]. 

Struts were designed initially by an analytical method that used simultaneous occurrence 
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of local and global buckling to derive a set of optimal dimensions for any of seven different 
cross-sectional shapes. These ideal designs were then modified so that the thicknesses were 
multiples of the available prepreg thickness, usually 0.125 m m [9; 12]. 

Assessment was performed on competing solutions to the same plate or strut design 
problem, i.e. solutions using different materials, ply lay-ups, cross-sectional shapes, etc. The 
assessment incorporated uncertainty using the formal methodology of support logic as 
implemented in the language FRIL [13]. A measure of how good designs were with respect to 
a number of design desiderata was obtained in the form of a support pair. 

The new version of the system incorporates the facilities of C O D E X , but has greater 
capability, flexibility and user-friendliness. Apart from plate and strut design, modules are 
incorporated for beam design, tapered plate design and an integrated struts and floorbeam 
design that utilises finite element analysis. As mentioned above the user has more control 
over the system, enabling him at each stage to be more flexible in his choice of operations. 
This is facilitated by the extensive use of menus and dialogue boxes in the user interface. 
Moreover the assessment module will have an extensive explanation and "what - i f ' facility. 

The approach of C O D E X 2 is similar to that of the plate design module of C O D E X in that 
we have an initial design procedure followed by a cyclic test-redesign-test methodology that 
uses heuristic rules. However it differs in that the inferences made by the rules are not 
automatically enacted in updating the design; instead they are given back to the user as 
suggestions, which he can either implement or not. He can also call on other options during 
the design process to perform analysis, display graphics etc. Thus the system is much more 
flexible, enabling the user to have greater control over its operation. The general scheme is as 
shown in Figure 1 and described below. 

parameters 

other options 

interface 

initial 
design 

design 1 design A 

analysis 

2 , . . . , η 

suggestions 
(performance) 

rules 
invocation 

performance 

Figure 1. Operation of a C O D E X 2 design module. 

1. The user defines design parameters which are used as input for an initial design module 
deriving an initial d e s i g n (i = 1). 
2. Failure analysis, etc., is carried out by an analysis module , giving a number of factors 
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defining the des ign 's performance. 
2. There is no direct link between redesign rules and design definition: the user iteratively 
updates d e s i g n on the basis (or not) of suggestions arising from the firing of the rules until 
he is satisfied (i = 2 , n ) . 
3. Other options include storing the design, evaluating design properties, sensitivity analyses, 
graphical display, etc. 

In the next two main sections we show how this methodology has been applied to 
laminated plate design and how it is being adapted to the integrated design of a floorbeam 
with two struts respectively. 

4. L A M I N A T E D P L A T E D E S I G N 

The nature of fibre-reinforced composite materials is such that they are extremely strong 
in the fibre direction but relatively weak in directions transverse to the fibre direction. The 
usual solution to this problem when designing a plate from such materials is to construct the 
plate as a laminate comprising layers of material with the fibres oriented at different angles. 
Thus , while each layer is weak in the transverse fibre direction, the laminate as a whole has 
all-round strength. Given a configuration of fibre orientations, i.e. the layers and their 
orientations, of a putative laminate, the design problem becomes that of finding the set of 
layer thicknesses that gives the laminate the strengths required for a particular set of multi
directional in-plane loads and moments . In addition the designer must select the most suitable 
material and also consider other lay-up configurations on the basis of weight, cost, plate 
stiffnesses, failure load factors and various qualitative criteria. 

The complexity of the theory means that there is no practical analytical method, and so we 
take the rule-driven approach as outlined in section 3. W e thus employ a netting analysis for 
initial design (section 4.1) followed by an heuristic design-test-redesign strategy. The main 
analysis (section 4.2) includes first ply failure analysis, free edge and interlaminar failure 
analysis, and ultimate failure analysis; it takes thermal effects into account throughout. The 
rules (section 4.3) consist of condition-action pairs relating a ply failure mode to the 
thickening of particular plies. Although an optimal design is not guaranteed using this 
method, as for instance in a structural optimisation approach, the rule-based approach is 
much more efficient and gives comparable results in most cases (section 4.4). 

The plate design module was initially based on the work of Webber [5] and Burden and 
Lipton [61. The plate design and analysis procedures of C O D E X 2 to be discussed are an 
extension of those described by Webber and Morton [8]. Throughout this section we assume 

that the only ply fibre orientations considered are 0° , 90° and ±45° , and that the plate is 
always balanced. The materials available to the system are :-

CFRPHS914 carbon fibres in 914 resin 
CFRPHS913 carbon fibres in 913 resin 
CFRPEEK carbon fibres in PEEK resin 
GFRPE913 Ε-glass fibres in 913 resin 
KFRP49913 Kevlar 49 fibres in 913 resin 
S C R A L silicon carbide fibres in an aluminium matrix 
AAL168 aluminium alloy. 

The assumed values for the mechanical properties of these are given by Webber and Morton 
[8]. 

4.1. Ini t ia l design 
The netting analysis is an approximate method which enables us to derive an initial design 
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in terms of a set of layer thicknesses, from which it is hoped a satisfactory design will be 
efficiently derived using the redesign rules of the design cycle. Although the netting analysis 
for in-plane loads is straightforward, that for applied moments is more complex due to the 
effect on the bending strains of a p ly ' s distance from the neutral plane. W e now present a 
brief summary of the method outlined by Morton and Webber [4]. 

4.1.1. In-plane loads 
A netting analysis is a simplification of laminated plate theory where the individual plies 

are assumed to withstand the applied loads independently in their respective fibre directions. 
Thus the plies with fibres at 0° orientation withstand the load along the plate axis, and the 

plies with fibres at 90° orientation withstand the load transverse to the plate axis. 

Additionally since a pure shear load resolves into direct loads in the ±45° directions, the ±45° 
plies are deemed to withstand such a load. The thicknesses obtained from the analysis for 
each fibre orientation are such that the strain in the fibre direction at the given load equals the 
relevant (tensile or compressive) failure strain. In such an approach we are simplifying by 
ignoring the transverse and shear stiffness and strength of the material, and the mechanical 
dependence between the layers. 

4.1.2. Moments 
The situation with applied moments is somewhat more complicated than with applied 

loads, since the strain in any ply depends on its distance from the neutral plane of the 
laminate as well as on the magnitude of the moment(s) . If w e are given a prescribed 
configuration of ply orientations, the moment netting analysis can be performed in two 
stages. Firstly an initial thickness can be obtained for each of the 0° , 90° and ±45° plies by 
considering a single ply of that fibre orientation, assuming it is aligned with the neutral plane 
of the plate, and finding the thickness required for the relevant moment . Thus , in a manner 
similar to the load netting analysis, the 0° and 90° layers relate to the bending moments 

parallel and perpendicular to the plate axis respectively, and the ±45° layers to the twisting 
moment . 

In general the thickness values derived from this procedure will, when assigned to the 
plies in the prescribed lay-up configuration, be too great; in other words the plate will have 
been over-designed. This is because the overall bending stiffness of the resulting lay-up is 
increased when the plies are further away from the neutral plane, rather than being aligned 
with it. Therefore we need to reduce the thicknesses so that taken together in the given lay-
up, each of the applied moments will be resisted by the plies with fibre orientations in the 
corresponding direction. Since the thickness of one sort of ply determines the distance from 
the neutral plane of another sort of ply, an iterative procedure must be followed to derive the 
final moment netting analysis thicknesses. 

The thicknesses for the 0° , 90° and ±45° layers derived in the first procedure are used as 
the initial values of this iteration. At each stage we use a simplification of the theory to derive 
three equations of the form P( t 0 ) = 0, for θ = 0° , 90° or ±45° , where Ρ is a cubic operator and 

t_ is the corresponding thickness variable; the equation for one of 0° , 90° or ±45° is solved to 

give t Q which is then substituted into the equations for the other two fibre orientations; these 

are solved in turn, and so on. When the iteration has converged the resulting total ply 
thicknesses for the respective fibre orientations are such that they will withstand the 
corresponding moments independently, i.e. in the fibre direction. 

In order to achieve reasonable values the three equations are solved in the same order as 
the first ply of each fibre orientation in the lay-up, going from the outside to the inside. This 
is because the solution to the equation for the inner plies tends to be negative unless the outer 
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pl ies ' thicknesses have been reduced first, i.e. the stiffness provided by the outer plies is 

sufficient. Thus for a [ 0 7 + 4 5 % 4 5 7 9 0 7 9 0 % 4 5 7 + 4 5 7 0 ° ] lay-up the equations at each stage 

are solved for the thicknesses of 0° , ±45°, and 90° plies in that order. 

4.2. Analys is 
4.2.1. First ply failure 

When analysing an initial or intermediate design we must use the same prescribed failure 
criterion on each cycle. There are many such described in the literature: for example [14] 
provides a summary of the most plausible criteria for failure in a single ply of fibre-
reinforced composite material. The criterion chosen would depend on the user ' s opinion on 
its relative validity, and also on which empirical strength constants are available. 

The failure criteria currently available for first ply failure in C O D E X 2 are maximum 
strain, max imum stress, Tsai-Hill and Tsai-Wu. The first two assume that the failure modes 
are independent, i.e. failure occurs when the failure strains or stresses are exceeded in any 
direction. Thus , although five different tests must be made on the stresses for each ply, it is 
clear which mode has failed in both the maximum strain and max imum stress criteria. This is 
important for the purposes of the redesign heuristics since we need to know the failure mode 
in order to decide which layers to thicken (see section 4.3). 

The Tsai-Hill and Tsai-Wu criteria (also referred to as quadratic criteria) assume that the 
strengths in the different modes are interdependent. An expression involving the ply stresses 
and failure stresses is evaluated and when this is greater than or equal to 1 failure is 
predicted, although the mode of failure is not. In order to find the failure mode for the 
purposes of the redesign heuristics we therefore make an assumption about the layer stresses, 
namely that the mode in which the proportion of the stress value to the failure stress is 
greatest is the failure mode. 

The Tsai-Hill and Tsai-Wu criteria have the advantages that they are single-valued 
functions and are thus easy to use, and they produce a smooth failure surface, whereas the 
max imum strain and stress criteria produce parallelepiped surfaces in stress space. Moreover 
the max imum strain and stress criteria lead to cusps in the variation of uniaxial strength with 
fibre orientation due to changes in the failure mode. 

4.2.2. Ultimate failure and plate stiffnesses 
Having designed to first ply failure, the user may wish to find the pla te ' s ultimate or 

catastrophic failure load; that is, when one of its plies fails in the fibre direction. 
Alternatively he may wish to design to ultimate failure in the first place. Material failure 
prior to ultimate failure will be in the matrix only and so it is necessary to have some idea of 
how the mechanical properties of the failing layers are degraded. It is usually assumed that 
the transverse Young ' s modulus and shear modulus in these layers are reduced by a certain 
factor, usually about 50%. Testing for ply failure subsequent to first ply failure can then take 
place on this basis. This process can be repeated, finding intermediate ply failures, until a set 
of layers fails in the fibre direction. W e then have a value for the ultimate load factor. 

The pla te ' s apparent stiffnesses in the plate directions can be found by carrying out failure 
analyses for simple loads. Thus the direct moduli of the plate can be found by applying 
unidirectional loads parallel and transverse to the plate axis respectively, and the plate shear 
modulus by applying a pure shear load. 

4.2.3. Free edge effects 
Although the laminate analysis discussed so far assumes no out-of-plane stresses, it is well 

known that delamination sometimes occurs at a free edge due to interlaminar normal and 
shear stresses arising from a mismatch of elastic properties between plies. T o predict the 
values of these stresses and hence the delamination initiation load, a finite element approach 
such as that of Herakovich [15] will supply detailed information about the stress distributions 
at and near the free edge. However this is a very t ime-consuming method, and in order to 
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provide a designer with a simple and efficient way of estimating these stresses, analytic 
approximations to the stress distributions have been devised. 

A free edge analysis module has been implemented based on the model of Kassapoglou 
and Lagace [16]. This is a general solution which can cope with any number of plies 
efficiently to give estimates of the interlaminar stresses. The principal assumptions are that 
the functional dependences of the stresses on the y and ζ values can be separated, and that 
they can be written in a form involving two exponential parameters. Furthermore these 
functions are chosen so that they satisfy the overall equilibrium equations, the stress-free 
conditions at the free edge, and also stress continuity between adjacent plies. The parameters 
of these functions are then determined by minimising the plate complementary energy. 

Having established the stress state in the boundary layer near the free edge the next task is 
to predict the applied load at which delamination initiation occurs. At the free edge itself the 
analytic approach predicts very high stresses which do not, in practice, occur. Instead average 
stresses, taken over an "averaging distance", measured from the free edge, are compared with 
certain empirical strength parameters using some failure criterion. In the C O D E X 2 free edge 
analysis module the averaging value is taken to be the same as the mater ial ' s nominal 
thickness. The failure criterion used in the system is the quadratic stress criterion as proposed 
by Brewer and Lagace [17], for which it is necessary to use empirically-derived values for the 
interlaminar failure stresses. An alternative approach is that promulgated by O'Brien [18] 
where a simple formula involving the strain energy release rate is applied. This is used for 
delamination prediction at ply drop-offs in the tapered plate analysis module soon to be 
incorporated into C O D E X 2 . 

The user interface to the free edge analysis module allows the user to select the ply 
ordering on which to perform the analysis. This is useful since, for a given set of fibre 
orientations and corresponding ply thicknesses, the predicted delamination initiation load 
generally varies considerably with the order of the plies. On the other hand, the first ply 
failure, ultimate failure and plate stiffness analyses are unaffected by the swapping around of 
fibre orientations (as long as there are no applied moments) . 

4.3. Redesign rules 
4.3.1. Thickening rules 

In practice a design engineer will choose a material and a ply fibre orientation 
configuration and then use trial and error and stress analysis techniques to improve the design 
to the required load specification. Similarly, at each stage of the design-and-test procedure 
before a satisfactory design is obtained, the intermediate plate designs must be improved by a 
selective thickening of plies. The complexity of laminated plate theory does not allow for an 
analytic approach in the general case. Instead a number of rules derived from the subjective 
observations of human composite design "exper ts" are employed to decide on the layers to be 
thickened given a certain mode of failure, as shown in Table 1. 

Each rule consists of an action and one or two conditions. In the " A C T I O N " column is 
shown the fibre orientation of the plies to be thickened if the corresponding conditions are 
met. In the " C O N D I T I O N S " column are shown the condition relating to the fibre orientation 
and mode of failure of the failing plies, and the condition relating to the presence or absence 
in the laminate of certain other fibre orientations. For any combination of in-plane loads and 
bending moments that we have used a set of satisfactory ply thicknesses can be derived by 
the iterative application of these rules in under 11 cycles. The plate material can be any of the 
seven materials mentioned above, or any hybrid configuration, as long as the layers are 
balanced about the plate mid-plane. 

As an example consider rule number 1 A: here the failure condition is transverse failure in 

a 90° layer, and the subsidiary condition is existence of 0° plies; the action is to thicken those 

same 0° plies. Similarly rule IB deals with the same failure situation when there are no 0° 

plies, when we instead thicken the 90° plies. Rules 2A and 2B deal with transverse failure in 

the 0° plies in an analogous manner. In rules 3A and 4A shear failure in the 0° and 90° plies 
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is dealt with by thickening the ±45° plies, if they are present. In rule 5 transverse failure in 

the ±45° plies is remedied by thickening the ±45° plies, so that in effect this kind of failure in 

the +45° is dealt with by thickening the -45° plies and vice versa. In rule 6A shear failure in 

the ±45° is handled by thickening both the 0° and 90° plies in a manner analogous to the 

thickening of the ±45° plies in rules 3A and 4A. Rules 7A, 7B and 7C are straightforward 
thickening of the same layers as fail in the fibre direction. 

Table 1 
Redesign heuristics 

R U L E # ACTION CONDITIONS R U L E # 

thicken ply failing ply and mode other plies present 

1A 0° 90° transverse 0° l aye r s 

I B 90° 90° transverse no 0° layers 

2A 90° 0° transverse 90° layers 

2B 0° 0° transverse no 90° layers 

3A ±45° 90° shear ±45° layers 

3B 0° 90° shear no ±45° layers 

4A ±45° 0° shear ±45° layers 

4B 0° 0° shear no ±45° layers 

5 ±45° ±45° transverse 

6A 0°, 90° ±45° shear 0° & 90° layers 

6B ±45° ±45° shear no 0° or 90° layers 

7A 0° 0° fibre 

7B 90° 90° fibre 

7C ±45° ±45° fibre 

The question remains as to how the thickening is carried out. After the netting analysis the 
resultant total thickness for each fibre orientation has two components : one from the in-plane 
load netting analysis and one from the moment netting analysis. These are treated differently 
in the redesign thickening. From the load netting analysis equations, the thickness obtained is 
proportional to the corresponding load. Therefore, for the redesign thickening, we can 
plausibly increase the load component of the thickness in the same proportion as the failure 
load is to the prescribed load, i.e. by one over the load factor. On the other hand from the 
initial moment netting analysis equations [10] the thickness obtained is proportional to the 
square root of each of the corresponding bending moments . Therefore we equally plausibly 



2 7 1 

increase the moment component of the thickness by a factor equal to the square root of one 
over the load factor in the redesign thickening. 

The results obtained by successive application of these thickening heuristics generally 
justify this approach. For instance thickening the moment components of the thicknesses by 
one over the load factor rather than the square root thereof leads to plates which are too thick. 

4.3.2. Rectifying over-thickening 
In some load cases the ply thicknesses resulting from the netting analysis and the 

subsequent application of the above thickening heuristics may result in a plate that is over-
designed, i.e. the failure loads are much higher than the prescribed loads. For example this 

occurs when w e do the netting analysis for a [ 0 7 + 4 5 % 4 5 7 9 0 ° ] s y m lay-up subjected to a load 
and moment acting in the fibre direction with zero transverse load and moment . This is 
because the thicknesses derived for the 0° plies are more than adequate to withstand the 
principal load and moment , and since there is no transverse load or moment there is no 
possibility of transverse failure in the top and bottom plies. Also the bending strain on the 

90° plies is small since they are at the centre of the lay-up. Typically the ratio of first ply 
failure load factor for this kind of case is about 1.4 - 1.6 which is clearly not satisfactory; a 
load factor value after the netting analysis of less than 1.1 is deemed to be satisfactory. In 
such a situation the initial thicknesses are reduced by the value of the load factor, and the 
failure analysis is redone. This will generally result in a more reasonable initial design from 
which to begin the design-and-test procedure. The same remedy is suggested to the user if the 
application of the redesign rules leads to over-design. 

4.4. Results 
In Figure 2 are graphs showing the total plate thicknesses of designs obtained using 

C O D E X for a wide range of complex loads (reproduced from [10]). In each case the material 

used is CFRPHS914 , the lay-up is [ 0 7 + 4 5 7 - 4 5 7 9 0 ° ] s y m , and failure is predicted using the 
max imum strain criterion. Figures 2(a) and 2(b) show the effects of loading cases excluding 
applied moments : Figure 2(a) shows the effect of varying Ν while keeping Ν fixed and 

y χ 

Figure 2(b) shows the effect of varying Ν for different values of Ν while keeping Ν 
xy y χ 

fixed. The approximately linear relationship between laminate thickness and applied load is 
evident from these graphs, as it is to a lesser extent when an Μ χ moment is added as shown 
in Figure 2(c) where Ν χ and N x y are fixed and Μ χ and N y are varied. 

With more complex loads the situation is less straightforward as shown in Figure 2(d) 
where M y and N y are varied. The design thickness drops off as M y is increased from 250 
N m m / m m to 500 N m m / m m for a given value of N y . This can be explained by the bending 
effect cancelling out the stretching effect at the bottom of the plate. In Figure 2(e) the effect 
of adding a twisting moment Ivl as well is shown for different values of Ν while keeping 

xy y 
the other loads fixed. The variation in the thickness here has no apparent trend, except a 
convergence to a value of 5.3-5.4 m m when M x y becomes large with respect to Μ χ . In Figure 
2(f) the in-plane loads are set to zero and the unusual and unpredictable effect of varying the 
twisting moments for different values of M y here is even more pronounced. 

In Table 2 we show some results for the rule-based method compared with those obtained 
using a particular optimisation algorithm known as the C O M P L E X algorithm of Box [19]. 
This algorithm performs a fairly exhaustive search of the design variable space, but usually 
takes about 200 iterations. As can be seen the total plate thicknesses obtained using the 
heuristic method compare very well, although they are slightly too high for the cross-ply 
plates. The number of iterations taken however is in each case less than 11 . 



2 7 2 

t /mm 

) 1 2 3 
Ny/1000 

(a) Ν = [1000,Ny,0] N/mm; 
Μ = 0 Nmrn/mm. 

t /mm 

Ny = 2000 N /mm 
Ny = 1000 N / m m 
Ny = 0 N / m m 

1 2 
Nxy/1000 
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(e) Ν = [1000,Ny,250] N/mm; 
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Figure 2. Thickness of laminated plate designs derived using the heuristic method. 
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Table 2 
CFRPHS914 laminates obtained using the C O D E X and C O M P L E X methods with the Tsai-
Hill failure criterion 

load/1000 lay-up thickness (mm) 

u ( N / m m ) M (Nmm/mm) 

lay-up 

C O D E X COMPLEX 

[ 2 , - 1 , 0 . 5 ] [ 0 , 0 , 0 ] [ 0 ° / 9 0 ° ] s y m 8.95 6.7 

[ 2 , - 1 , 0 . 5 ] [ 0 , 0 , 0 ] [ 4 5 % 4 5 ° ] s y m 18.8 18.9 

[ 2 , - 1 , 0 . 5 ] [ 0 , 0 , 0 ] [ 0 7 4 5 % 4 5 7 9 0 ° ] s y m 3.7 3.65 

[ 2 , - 1 , 0 . 5 ] [ 0 , 0 , 0 ] [ 0 7 4 5 7 - 4 5 7 0 7 9 0 ° ] s y m 3.7 3.65 

[ 2 , - 1 , 0 . 5 ] [ 0 , 0 , 0 ] [ { 0 7 4 5 7 - 4 5 7 0 7 9 0 ° ^ , i= 3.8 3.9 

[ 0 , 0 , 0 ] [ 2 , - 1 , 0 . 5 ] [ 0 7 9 0 ° ] s y m 7.35 6.35 

[ 0 , 0 , 0 ] [ 2 , - 1 , 0 . 5 ] [45%45°] 
L J sym 10.7 10.7 

[ 0 , 0 , 0 ] [ 2 , - 1 , 0 . 5 ] [ 0 ° / 4 5 % 4 5 7 9 0 ° ] s y m 4.8 4.7 

[ 0 , 0 , 0 ] [ 2 , - 1 , 0 . 5 ] [ 0 7 4 5 7 - 4 5 7 0 7 9 0 ° ] s y m 5.4 4.7 

[ 0 , 0 , 0 ] [ 2 , - 1 , 0 . 5 ] [ { 0 7 4 5 7 - 4 5 7 0 7 9 0 ° } ^ i= 4.7 4.9 

[ 1 , 1 , 0 . 2 5 ] [ 1 , 2 , 0 ] [0790° ! L ' J s y m 6.7 6.5 

[ 1 , 1 , 0 . 2 5 ] [ 1 , 2 , 0 ] [457-45°] 
J s y m 

8.4 8.1 

[ 1 , 1 , 0 . 2 5 ] [ 1 , 2 , 0 ] [ 0 7 4 5 7 - 4 5 7 9 0 ° ] s y m 6.2 6.15 

[ 1 , 1 , 0 . 2 5 ] [ 1 , 2 , 0 ] [ 0 7 4 5 7 - 4 5 7 0 7 9 0 ° ] s y m 6.15 6.2 

[ 1 , 1 , 0 . 2 5 ] [ 1 , 2 , 0 ] [ { 0 7 4 5 7 - 4 5 7 0 7 9 0 ° } ; , i= : 1> 2 ] s y m 5.8 6.0 

5. I N T E G R A T E D D E S I G N O F S T R U T S A N D F L O O R B E A M 

The C O D E X 2 approach is also used when we are dealing with a configuration of 
components and for which we need to do finite element analysis (FEA). In Figure 3 is shown 
a configuration of floorbeam and struts. Figure 4 shows a dataflow diagram for the integrated 
design of this based on the C O D E X 2 approach. The hatched areas correspond to the boxes in 
Figure 1, with the beam and strut design modules constituting the initial design procedure, 
and the FEA and failure analysis modules constituting the analysis. 

The configuration parameters define the geometry of the structure as a whole, the points of 
application of the external loads and the max imum allowable deflection. F rom these can be 
derived the strut length and orientation, while the beam and strut end conditions, material and 
shape must be selected by the user. The beam shear load and bending moment and the strut 
compressive load are initially estimated from the external forces and the overall geometry. 

The beam and strut parameters are then used in separate initial design programs to derive 
the respective approximate designs, leading to an initial design for the overall configuration. 
This is then formulated as a finite element problem and analysed giving the forces and 
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displacements at each node. F rom these we obtain the forces in the beam and struts and carry 
out stress analyses allowing us to calculate their respective failure and buckling factors; also 
for the beam we can derive a deflection factor, by comparing the max imum deflection with 
the prescribed maximum allowable deflection. 

(a) beam and struts configuration (b) variation of strut position 

Figure 3. Geometry of floorbeam and struts. 

These factors and the predicted modes of failure then become inputs to a set of redesign 
rules which infer the most effective design modifications. The user then updates the beam 
and strut geometries on the basis of these suggestions (or not) and a new finite element 
analysis is performed. The output from the new FEA is then used as the input to a further 
invocation of the redesign rules and the process continues cyclically until the failure factors 
reach some values satisfactory to the user. 

5.1. Initial strut design 
The initial design of the strut is based on the procedures developed by W u and Webber 

[12] for the optimisation of the dimensions of any of the seven cross-sectional shapes shown 
in Table 3. The parameters for strut design are: the end conditions, i.e. simply supported at 
both ends, fixed at both ends, or one end fixed and the other simply supported; the material, 
which must be one of those used in the plate design module; the shape; the compressive end-
load; and the length across which the strut is to span. 

These are all specified directly by the user with the exception of the load and the length. 
The load is approximated from the magnitudes of the external loads applied to the beam: for 

example if the total vertical beam load were 4000 
N, then the load in each strut (for the purposes of 
the initial design) would be assumed to be 2000 N. 
The strut spanning length is derived from the 
geometry of the overall configuration as specified 
by the user. 

The criterion used for the optimisation is that of 
simultaneous occurrence of local and global 
buckling. For example in the I-section there are 
two possible modes of global buckling 
corresponding to the two axes perpendicular to the 
principal strut axis, and two modes of local 
buckling corresponding to the web and any of the 
half flanges. The global buckling equations relate 
the buckling load to the second moment of area 

Table 3 
Strut cross-sectional shapes 

I-section I 
C/channel section c 
Modified I-section X 
Square section • 
T-section τ 
Circular tube section Ο 
Modified T-section τ 



2 7 5 

configuration parameters 

I beam parameters 
end conditions 

material 
shape 

bending moment 
shear load 

shape 
length 

orientation 

beam geometry 

strut parameters 
end conditions 

material 
shape 

compressive load 

F E A data 

strut geometry 

I N V O K E 
R E D E S I G N 

R U L E S 
|gg<&*yy*yyyy 

Figure 4. Dataflow graph for the design of a configuration of floorbeam and struts. 
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about the relevant axis and involve a buckling constant that depends on the end conditions. 
The web is considered as a long flat plate simply supported on both sides: values for the 

buckling load for a composite plate of this type are obtained from [20]. The half flanges on 
the other hand have one side simply supported and the other side free: we must therefore 
employ the iterative method of [21] to evaluate the required buckling load. 

Equating the buckling loads leads to four equations from which we can solve for the four 
unknowns denoting the widths and thicknesses of the web and flanges. The procedure is 
similar for the other shapes, although for the modified T-section there are six equations with 
seven unknowns for which we have to minimise the area using Lagrangian multipliers and 
solve using Newton-Raphson iteration. 

The strut dimensions obtained using this method are then analysed for first ply failure 
using one of the four failure criteria available in the plate analysis module. If failure does 
occur then the strut cross-section is resized appropriately; generally however the buckling 
load is much lower than the first ply failure load. 

The strut design procedure also allows the design of end fittings in the case of the I-section 
and tubular strut; however these are not yet considered in the overall design strategy. 

5.2. In i t ia l b e a m design 
Initial design of the beam is based on the approximate method of Morton and Webber [22], 

which is similar to the approach used in the strut design above. Up to now it has only been 
fully developed for the I-beam, although the procedure would be very similar for any beam 
of constant cross-section. The method is summarised below. 

The approximate beam design procedure results in a set of values for the six dimensions of 
an I-beam cross-section which will approximately minimise the cross-sectional area subject 
to certain design constraints. This procedure is iterative since we must begin with an initial 
set of flange dimensions in order to calculate a half-flange buckling coefficient using the 
method of [21]. 

To simplify the analysis we make a number of assumptions. W e are concerned with a 
simply supported I-beam loaded at the midpoint. A maximum deflection is prescribed for the 
beam, and shear deformation is neglected. The bending moment is assumed to be taken by 

the flanges, so that the flanges' lay-up is [ 0 7 9 0 7 0 ° ] with t 9 0 about 10% of t Q . The shear 

force is assumed to be taken by the web, so that the web ' s lay-up is [ 4 5 7 - 4 5 7 - 4 5 7 4 5 ° ] , 
with all plies of equal thickness. 

W e equate the expressions for local buckling loads in the web and flanges to the internal 
loads derived for the given max imum beam deflection. In order to algebraically equate the 
internal shear load in the web to the pure shear buckling load, this latter quantity is 
formulated by a linear approximation to the graphs in Figure 5 of [20]. For this purpose the 
plate length is taken to be equal to its width by assuming that internal stiffeners are built in at 
intervals along the web. W e also assume for this initial design stage that the pure bending 
load along the beam axis can be ignored, since it varies from negative to positive across the 
depth of the web, and also varies along the length of the web, as it depends on the bending 
moment . W e equate the local half-flange buckling loads to the internal loads when the 
deflection equals the prescribed maximum allowable. 

The force and moment equilibrium equations are then formulated for given maximum 
allowable deflection. W e assume that the two flanges are of equal size so that the force 
equilibrium equation simplifies to stating that the neutral axis is in the centre of the web. W e 
are thus left with three equations for the four unknowns corresponding to the thickness and 
width of the flanges and the thickness and depth of the web. A minimisation of the cross-
sectional area subject to these equations gives us the new cross-sectional dimensions. The 
flange dimensions are then updated and the above procedure is repeated until the flange 
dimensions converge. This usually requires about 40 iterations, but the evaluation at each 
iteration is straightforward. 
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5.3. Analys is 
The analysis module has three main components: finite element analysis, strut analysis and 
beam analysis. 

53.1. Finite element analysis 
Parameters for the F E A are derived from the beam and strut geometries and mechanical 

properties. A simple FEA module has been implemented for the analysis of frames consisting 
of connected one-dimensional beam elements based on the the formulations of Ross [23] and 
Rao [24]. The elements may be either simply supported or fixed. For our analysis we assume 
that the beam ends are fixed and the strut ends are simply supported. 

There are three different topologies that arise, depending on the relative values of LQ and 
Lp and on where the struts join the beam. If the struts meet at the midpoint of the beam, then 
only 7 nodes and 6 elements are required. If the point of application of the Q-load is outside 
or inside the strut attachment, i.e. L Q is less or greater than ( L F + L R / t a n ψ ) , respectively, 
then 9 nodes and 8 elements are required. 

The analysis consists of evaluating the element stiffness matrices and global stiffness 
matrix, solving for the unknown displacements and forces and transforming them into local 
element co-ordinates. From these we obtain the loads important to the component analysis, 
namely the loads in the strut and the maximum shear force and bending moment in the beam. 

53.2. Strut analysis 
Even though there will usually be a bending moment and shear load in the strut, analytical 

tools are not currently available to determine the buckling loads in a composi te strut under a 
multi-axial load, and so we have to assume a purely compressive load. W e therefore apply 
the formulas for the buckling load used in section 5.1 for the strut initial design. W e also 
perform a first ply failure analysis on the strut. W e end up with a number of failure factors 
relating to the different failure modes. For example for the I-section we have two global 
buckling failure factors, two local buckling failure factors and two first ply failure factors. 

53.3. Beam analysis 
The compressive loads in the I-beam flanges and web are found from the shear force and 

bending moment using the analysis of [22]. Classical plate theory is then employed to derive 
the stresses and strains in the material directions of each ply. Since the axial load varies 
across the web from positive to negative, the ply stresses in the material directions will vary 
across the w e b accordingly. The maximum value of the first ply failure factor is found to 
occur at either the top or bottom of the web: these are therefore the only locations at which it 
is evaluated. 

The internal compressive load in the upper (or lower) flange is compared with the 
theoretical buckling load to derive a flange buckling factor. The buckling load for the half 
flanges is found using the method of [21] and the formulas employed in the beam initial 
design procedure. 

For the web we have a pure bending load and a shear load. Since the flanges may be 
asymmetric, the situation is not exactly one of pure bending; however if the flanges are of a 
similar size we can make the approximation of assuming a pure bending load equal to the 
average of the loads in the top and bottom of the web. The internal loads in the web are 
compared with the theoretical pure bending and shear buckling loads using a quadratic 
failure criterion for combined loads to derive a web buckling factor. The isotropic 
approximation used in the estimation of the buckling load due to pure bending is examined in 
[22]. 

The max imum deflection is calculated from the FEA results and compared with the 
prescribed max imum allowable deflection to derive a deflection factor. 
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5.4. Redes ign ru les 
The analysis results in a number of failure factors relating to the different possible modes 

of failure in the strut and beam (including exceeding the max imum allowable deflection 
which is henceforth referred to as "deflection failure"). In the case of a first ply failure factor 
exceeding 1 in any of the component plates in the strut or beam similar redesign rules to 
those employed in the plate module can be applied. However in general failure is most likely 
to occur due to buckling or deflection failure. 

For global buckling of the strut the buckling load depends on the second moment of area 
about the relevant axis. With the I-section, for example, global buckling parallel to the web 
will therefore depend on the square of the web width, while global buckling parallel to the 
flanges will similarly depend on the square of the flange width. Thus the appropriate resizing 
heuristics will be 

IF strut buckles parallel to web 

T H E N widen web by (buckling f a c t o r ) 1 / 2 

IF strut buckles parallel to flanges 

T H E N widen flanges by (buckling factor) 1 ^ 2 

For local flange and web buckling in the strut or beam, the buckling load is proportional to 
the cube of the plate thickness (see [22]). Therefore the rules thicken the plate by the cube 
root of the buckling load factor, viz 

IF flange buckles 

T H E N thicken all plies in flange by (buckling factor) ^ 3 

IF web buckles 
T H E N thicken web by (buckling factor) ^ 

The deflection of the beam is proportional to the square of the web depth since it depends 
on the second moment of area of the cross-section. Therefore the rule for deflection failure 
deepens the web by the square root of the deflection factor, viz 

IF max imum deflection of beam exceeded 

T H E N deepen beam web by (deflection f a c t o r ) 1 ^ 

The result of the application of these rules will be a set of modifications of the cross-
sectional dimensions for the strut and the beam which the the user will be invited to 
implement. 

6. C O N C L U S I O N S 

The rule-based technique has been seen to be effective for the design of composite 
laminated plates. Extending the technique to the integrated design of a floorbeam and struts 
configuration has been shown to be feasible, although it has not been fully implemented. 
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Abstrac t 
An original method, combining Artificial Intelligence type of algorithms with finite 

element analysis and optimization is proposed for the preliminary design of laminated 
composite structures. Design requirements taken into account are allowable stresses and 
displacements, lowest natural frequency and buckling load. The methodology proposed is 
based upon heuristic searches through families of solutions obtained by defining the total 
laminate as a repetition of sublaminates. 

1. I N T R O D U C T I O N 

One of the main drawbacks for the application of Artificial Intelligence to structural 
design of composite structures is the satisfaction of mechanical requirements.Indeed if 
part of the designer's knowledge can be described as logical rules in a knowledge base, it 
is difficult to model in such an easy way the process of determining the fibre angles, layer 
thicknesses and stacking sequence of a laminated structure to insure its mechanical 
integrity.In this study we propose a methodology, combining design rules written in 
P R O L O G with Finite Element and Optimization procedures written in F O R T R A N to 
determine the optimal laminate satisfying the following mechanical requirements : 

Stiffness Requirement - bounds on deflections at different points of the structure 
Strength Requirement - allowable stresses at each point 
Stability Requirement - critical buckling load below the applied loading 
Frequency Requirement - lowest natural frequency above a specified value 

The type of structures involved are laminated thin shells under coupled in plane and 
bending loadings. Using a material database, families of solutions are constructed and 
explored by means of heuristic algorithms. For each composit ion one has to solve a 
simple unidimensional optimization problem. 

Mak ing use of these simple solutions the system can then genera te "complex 
solut ions" by solving more comprehensive optimization problems depending on the 
particular application. A solution to the preliminary design problem is thus found step by 
step and intermediate results are stored in an output database and used to control and 
accelerate ulterior optimization phases. In this basic structure could subsequently be 
integrated logical rules aimed at the satisfaction of non-mechanical requirements. 
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2. D E T E R M I N A T I O N O F S I M P L E S O L U T I O N S 

The problem is to find the minimum weight laminate to satisfy the different mechanical 
requirements under the following assumptions : 
Assumption A l . The thin shell thickness is a constant over the structure. 
Assumption A2. The laminate layers are all made of the same unidirectional. 
Restricting fibre orientations to the dicrete set θ] , θ 2 , . . . , 9 d , this problem can be written: 

Min L Σ n e i J Problem P 0 

( n e i , . . . , n 0 d ) e i N d 

subject to : g j C ( fl(nei,...,ned) ) > 0 generated by the mechanical requirements 

β e <S set of allowable stacking sequences 

η θ 1 e ffi number of plies with orientation 
Problem P o i s an integer non convex problem where the constraints gj(s) are implicit functions 
of the design variables nei. 
Here rather then solving P q directly we make the following additional assumption : 
Assumption A 3 . The laminate is the repetition of η (unknown) times the same sublaminate 
(of unknown but simple composition). 

Designing with sublaminates 

This method of design was first introduced by Tsa ï [1 ] a s a n alternativ e t o conventiona l 
optimization fo r laminate s unde r in-plan e loadings . Th e laminat e i s define d a s th e repetitio n o f η 
times (n being called the repeat index) a laminate of fixed composition called a "sublaminate". A 
sublaminate family 3- is defined by : 

- a number ρ of plies constant for all the family sublaminates 
- a number d of orientations constant (we will take d=4 in what follows) 
- the value of these orientations 

A sublaminate s e 3- is coded : s=( c e 4 . c e 3 . c e 2 c e i ) with c ^ + c ^ + c ^ + c ^ =c 

W e can generalize this approach to the case of 
bend ing load ing , by fixing the s tacking 
sequence at a sublaminate level. Furthermore, 
as a first order approximation, the effect of the 
core can be neglected, allowing to represent 
sandwich type of structures as shown on 
Figure 1 Configuration 2. 

Decomposition of the initial optimization problem 
Problem P o i s decomposed into the following two subproblems : 
- An i nner s u b p r o b l e m PN solved numerical ly to find the repeat index of a given 
sublaminate e.g. the lowest number of times one has to repeat the sublaminate to satisfy the 
mechanical requirement: _ 

Find r c ( s ) = Min ( n s tel q u e g ; ( n s . s ) > 0 ) Problem P n 
nse[N 1 J J 

s a given sublaminate 
gj constraints generated by mechanical requirement C 

- An outer subproblem P î [ l Î c ï ï v e ^ algorith m t o fin d th e sublaminat e 
of lowes t repea t inde x i n famil y 3-\ 

Find s * suc h tha t r c ( s * ) =  Mi n {  r c ( s ) }  Proble m P i 
se & 

(cei numbe r o f plie s wit h orientatio n 0j ) 
Configuration 2 

Figure 1 
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Ranking of  the  sublaminate  family  -  Resolution  of  problem  Pf 

In s impl e case s wher e ther e i s n o nee d fo r finit e e lemen t analyses , Tsa ï resort s t o a n 
exhaustive searc h throug h famil y 3-  t o solv e P l . Thi s metho d present s th e advantag e t o yiel d 
not onl y th e optimu m bu t als o a  "ranking " o f famil y &  b y increasin g repea t index . 

Such a  rankin g o f solution s give s u s th e flexibilit y neede d t o includ e th e opt imizat io n 
procedures withi n a  conventiona l exper t syste m t o insur e th e satisfactio n o f no n mechanica l 
r equi rements ; th e op t imu m o f P l ca n b e a  poo r solutio n o f th e globa l p re l iminar y desig n 
p roblem, i f particularl y difficul t t o proces s i n practic e fo r example . I n thi s case , usin g th e 
ranking method , alternat e solution s ar e available . Furthermor e w e benefi t o f a  grea t flexibilit y 
with regard s t o mult ipl e loa d case s an d th e satisfactio n o f eac h mechanica l r equi remen t 
regardless o f th e others , th e fina l rankin g bein g determine d b y simpl e compariso n o f elementar y 
rankings obtaine d fo r eac h requiremen t unde r eac h loa d case . 

The ai m i s her e t o fin d a  "goo d solution " o f proble m P l an d avoi d a n exhaustiv e search . 
(O.o.o.C) A  t ree- l ik e r epresen ta t io n i s u se d t o 

represen t th e s ub l amina t e f ami l y b y 
defining a  particula r directio n a s "descen t 

r (0.oA.c-i)> ^ direction" . T o eac h nod e o f th e tre e ar e 
(O.i.o.c-i) y  (l.o.q.c-i ) associate d thre e son s b y permutin g a  pl y 

1 v  "  '  1  '  fro m th e descen t directio n t o on e o f th e 
other thre e directions.Th e to p o f th e tre e 

I I I I  /  \  \  i s th e sublaminat e fo r whic h al l plie s ar e 
oriented i n th e descen t direction . 

(O.O.C.O) (0.1 .C-1.0)(1.0.C-1.0) (C -1.0.1.0)(C-1.1.0.0) (C .0.0.0) 
Figure 2 

The algorith m propose d simpl y amount s t o choos e a  descen t direction , t o comput e th e repea t 
index o f th e sublaminat e a t th e to p o f th e tre e an d th e one s o f hi s thre e sons , t o defin e th e so n 
with lowes t repea t inde x a s th e ne w fathe r an d s o on , unti l th e bes t son' s repea t inde x i s greate r 
then hi s father' s one , i n whic h cas e w e sto p th e descen t (Figur e 3 ) . 

Initialization s * (O .00.0 Descen t a lgor i th m 

: ?  Le t S, 1 b e th e bes t so n a t ste p i : 
S t e p i Sl  (cc.oI .cii.ca) f .°Pl 

P P  ' ^ f r ( S f V =  Mi n (  KSJ, ) .  K S y ,  r(S^ ) ) 
if r ( S f - o p t ) <  r (S; ) t h e n =  S / o 

F opt ' J  1 V V " " " " w  ρ - " fopt 
s h slf2 e lse e n d 

(cg+i.cy.cp.cot-i) (<ΐδθγ+ι.θβ.(^·ΐ) (cg.cycjj+i.c^-i) optimal solution = S ' 
«sh> Γ Φ 

Figure 3 

The quality of the solution given by this algorithm strongly depends on the initialization, that is 
the descent direction. In practice we will use the following heuris t ic : compute all four 
unidirect ional sublaminates (O.O.O.C), (O.O.C.O), (O.C.O.O), (C.0.0.0) and take as descent 
direction the direction giving the lowest repeat index. 

T o rank the family up to an order higher than one, we must modify the descent algorithm above 
to account for the case where one of the sons at step i has already been ranked. Denoting by Sp 
the solution at step i, we will carry on the descent from: 

- sons of Sp ranked before step i, by setting ^ ( S ^ ^ ^ ) = r ( S p 

- the best son of S^ un-ranked at step i. 

http://cc.oI.cii.ca
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Finite Element Techniques 

Let us consider the case of thin laminated shells under coupled in-plane and bending loading, 
extension of the classic Love Kirchhoff hypothesis where: 

- each ply of the laminate is thin and transversely istropic or orthotropic, 
- the ply is under a state of plane stress (no transverse shear effect). 

The behavior law relating generalized stress and strain can be written as: 

Q -
Α Β Π ΊΕΐ where : Ay = Z(Qij) k (h k -h k . i) Dy = f ZiQijWh^-hk^) 

B t D - " U B i j = i l ( Q i j ) k ( h K 2 - h k - i 2 ) 
k with (Qij) k stiffness of ply k and hk distance of ply k to the middle plane. 

W e limit ourselves to the case of symmetric laminates for which Bjj =0. The laminate stiffness 
is then completely defined by 12 stiffness parameters , the coefficients of (3,3) symmetric 
matrices [A] and [D] ( p ^ i = l , 6 for in plane behavior, p i f i= l , 6 for bending). 

T h e s t ructure is discret ized into thin shell D K T or D K Q e lemen t s [2] . T o a l low a 
straightforward calculat ion of the global stiffness matrix [ K g ] for different sublaminate 
compositions and repeat indexes n s , we proceed to the assembly of 12 global stiffness matrices 
([KjJJ et [Kj],i=l,6) obtained by setting all stiffness parameters but one to zero so as to have 
the following simple linear relation: 

[K g (n s , s ) ] = £ ( p i m ( n s , s ) [K j + p i f (n s , s ) [KJ] ) (1) 

W e will need the first derivatives of behavorial quantities (displacements, stresses, ...) with 
respect to the repeat index n s . Such sensitivity analysis can easily be performed using the first 
derivative of the global stiffness matrix obtained explicitely by: 

d [ K g ( n s )] « rdPin>s) r m i , gPif( ns) [ K u 
3 n e ~ 3 * s [ K i ] k + ~ 3 n 7 ~ [ K i ] ] 

Expression of the different mechanical constraints 
For a given sublaminate, the constraints generated by the mechanical requirements are implicit 
functions of the repeat index. 

Stiffness requirement. The corresponding constraints can be expressed as: 

U j 2 ( n s ) 

g j (n s ) = l - - L - 5 - > 0 for j=l , . . . ,nb g j (n s ) = l 
u j b 

(2) 
u j b 

with : nb number of displacement bounds, Uj b bound on displacement j 

Strength requirement. W e will use the Tsaï-W u criterio n whic h i s writte n fo r eac h pl y k  o f 
the sublaminate : C ( { a k } ) =  F- . o k o k +  F - a k <  1 , wit h { a k } th e s tresse s i n th e materia l 

1J 1  J  1  1  '  1  1 

orthotropy axes.Th e relation s t o b e verifie d a t eac h integratio n poin t fo r eac h orientatio n o f th e 
last sublaminat e i n th e stackin g sequenc e (fo r eac h "ipo" ) ca n b e expresse d as : 

[ g p g o ( n s ) =  1  - ^ ^ J ) T ^ ^ ^ l b 7 7 a ^ ^ 
1 (3 ) 
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Frequency requirement. The associated constraint is of the form: 
ω 2 

where ω 2 is the square of the forcing frequency , z(n s ) the lowest eigenvalue of : 
[ K g ( n s ) ] (U(n s )} = z(n s ) [ M g ( n s ) ] (U(n s )} (5) 

with [ m ( n s ) ] the global mass matrix, (U(n s )} the eigenvector associated to z(n s ) . 

Stabi l i ty requ irement . 

Let f(n s) be the smallest positive eigenvalue of equation: 

[ K g ( n s ) ] {U(n s )} = f(n s) [ K g e o ( n s ) ] (U(n s )} (6) 

where [ K g e o ( n s ) ] is the so-called geometrical stiffness matrix 
The constraint to be satisfi el as ti c i π s ta bi 1 i ty is of the form ; 

Resolution of P /y - Constraint approximation 

The problem to be dealt with can be stated as: 

M i n { n s , g ( n s ) > 0 for j = l , . . . , n c } P roblèm e P m 
n selN J 

nc =  numbe r o f constraint s generate d b y th e mechanica l requiremen t C 

An iterativ e procedur e i s use d t o solv e thi s non-linea r proble m (n * stand s fo r th e valu e o f n s a t 
i teration i) . Becaus e o f th e constraint s implici t dependenc e upo n n s , i t i s interestin g t o us e 
explicit approximat io n form s propose d b y Prasa d ([3],[4] ) a s a n extensio n o f th e mixe d 
linearization method s introduce d b y Fleur y ([5],[6] ) an d Schmi t [7] : 

gj(n s) approximate d b y g](n s) =  g.(n l

s) +  (  γ - γ ) 9 g ^ s ) (8) 

w i th : Y = ^ J n s 1 P f o r p ^ l 

y = - l n ( n s ) for ρ = 1 , 
a first order Taylor series expansion at point n̂  in terms of the intermediate variable γ, where the 
tuning parameter ρ is chosen to best represent the dependence of a part icular behavorial 
constraint upon the repeat index. Depending on the type of loading and the behavorial constraint 
we use the following values for exponent ρ (Table 1). 

L o a d i n g 
R e q u i r e m e n t I n - p l a n e B e n d i n g B o t h 

S t i f f n e s s 
S t r e n g t h 

F r e q u e n c y 
S t a b i l i t y 

p = 3 
p=2 

p=7 
p=4 
p=3 

Laminate 
3<p<7 
2 < p < 4 
l < p < 3 
3 < p < 5 

Sandwich 
p = 3 
p = 2 

p = 3 
Table 1 
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(8) can be written : g](n s) = g.(ns) - ^ I W | ( n s i - P . P * l (9) 

W e then replace the resolution of P N by the resolution of a sequence of approximate problems 

PN written at step i: 

M i n { n s ; g | (n s ) > 0 for j= l , . . . , n c } 
n s € H J 

Problem PN 

Always taking ρ > 1 in equation (8) according to Table 1, the solution n 1 + 1 of P N is: 

n i + 1 = M a x ^ 
S J 

ι 
p- l 

, fo r j = l , . . . , n c (10) 

System architecture 
Γ P R O L O G I 

E x t e r n a l S u b p r o b l e m P L 

[ F O R T R A N ] 

fC 
Material database 

Mechanical 
properties 

of unidirectional 
resin / fiber systems 

Sublaminate 
database 

Composition 
of family 

sublaminates 

Search algorithm 
Exploration of 

the sublaminate 
family 

Τ — Η 

Output database 
Repeat index values] 

Ranking for 

each requirement 

In t e rna l s u b p r o b l e m P N 

Solved for each sublaminate given by the 
search algorithm 

i=i+l 
Repeat index 

n s = 4 
^ i n o 

Determination of the global 
stiffness matrix 

[ K g ( n , s ) ] = I p i ( n , s ) Ki 

Convergence test 
verified 

Iteration i 
I 

Finite element 
resolution 

yéi> 
Calculation of η ς 

Final 
ranking 

Finite element 
model 

Loading 
Boundary conditions 

Calculation 
of constraints gj(n,s) 

and their first 
derivatives 

Calculation of Κ Κ 
global stiffness matrices 

1 3 

Figure 4 

3 . DETERMINATION OF COMPLEX SOLUTIONS 

W e intend here to remove previous assumptions A l and A2. Retaining a sublaminate type of 
decomposition, we are led to define the following problem obtained by removing A l : 
Find the sublaminate giving the least weight thickness distribution over different regions of the 
Structure jmd Satisfying thç mechanical requirements 

M i n ( C ( s ) = I R I ( S ) . A I ) 
S E * I = 1 

SUBJECT TO : 
gj( S , R 1 ( S ) , . . . , R N R ( S ) . ) > 0 

Problem P r 

with : n r total number of regions 
^ region i area 

rj(s) sublaminate s repeat index over region i 
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As in the case of simple solutions we decompose problem Pc\ into two subproblems: 
inner subproblem: Given a sublaminate s, find the optimal repeat index distribution r^s) 

Find (r i (s) , . . . , r n z (s)) e (R n z such that: Problem P r N 

C(s) = Σ r i ( s ) . a i = M i n ( £ n S i . a i ) 

1= 1 j _ -j 
( n s l , . . . , n S n r ) e G S n r 

subject to: g|( n s i . s i ) > 0 

outer subproblem : Find the optimal sublaminate composit ion in family & 

Find s* e $ such that: 
Problem P r L 

C(s*) = Min ( C(s) = 
n z 
Σ ri(s).ai ) 

s e # i=l 

Outer subproblem PrL 

W e look for a "good" solution of problem P c L by making use of the simple solution S o p t s 

obtained previously under the assumptions A1 and A2. To do this we need to define an ascent 
algorithm to allow a backtracking up the tree from solution S o p l s . 

Denoting by α the descent direction which gave solution S o p l s = (ρ δ .ργ .ρβ.ρ α ) , we calculate the 
cost (by solving P c N ) of the S o p l s fathers obtained by permutat ion of a ply from directions 

β,γ,δ to a . If the best father has a lower cpst than S o p t s we carry on the ascent, else the best 
father is given as a result of the backtracking (Figure 5). 

s p l s £ 2

 s p3 Ascent a lgor i thm 
H'hcr%-°d!~l) ^ • c r 1 -% ' c a + 1 ) (^cy.cp-l.ca+l) 

e ( s ^ ^ ^ «sfc) ^ ^ j ^ 3 ) L e t ^ A e ^ f a t h e r a t s t e p . . 

E ^ e T l r ^ Ç Î ^ ^ ^ S f V = Μ ί η ( r ( ^ } } 

e(sh 

initialisation À  i f r ( S f

l

o p l ) <  r(Sj ) the n S 7 = S f

l

o p l 

C(S f) e l s e e n d 
Figure 5  b a c t r a c k i n g po in t S a = i 

opt 

The descen t an d ascen t algorithm s ar e the n combine d i n th e followin g wa y t o avoi d a  complet e 
search from  th e to p o f th e tree : 

In i t ia l i za t ion s ° =  (  c § .  c!J . cj | .  c £ )  =  s * simpl e optima l solutio n 

Step i  Le t s 1 =  (  c § .  c ^ .  C p .  c ^ )  b e th e sublaminat e a t ste p i 

Apply ascen t algorith m o n s 1 t o ge t s l

a 

Apply descen t algorith m o n s j t o ge t s ^ 
if sj j Φ s 1 then 

i = i+l 
go back to step i 

else 
end 
result s c = s^ 
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Inner subproblem - Determination of the optimal repeat index distribution for a 
SIVEN sublaminate 

Consider problem P c N : 

M i n ( β (ηχ n r ) ) Problème P q 
OH n r ) G K r 

subject t o : with :  C(ni,...,n r) linea r cos t functio n 

g.( n i , . . . , n r ) > 0 of repea t indexe s n { 

F r o m a  desig n n 0 = ( n l o , . . . , n r o )  w e defin e a n approximat e subproble m P c N ° y us in g th e 
previous approximatio n form s (9 ) i n th e cas e o f n r variables : 

g/η,,...,η,) = g j ( n 0 ) + £ ^ (Jf ^ ( η ί ο ^ - n > ^ ) P j i * 1 (11) 

The approximate subproblem P c N is an explicit separable optimization problem with respect to 
design variables nj. It is also a convex problem providing the following rule is verified when 

choosing the exponents p H depending on the sign of the derivative ( Ύ ^ ) : 

If Vj,i S i g n ( P j i ) = S i g n ( ^ | ^ ) t h e n P C n is convex 

In general we obtain positive values of the first derivative of the mechanical constraint gj with 
respect to the repeat indexes and exponents can be chosen according to the values given in 

Table 1. For negative values of ^ ^ " ^ it is more tricky to guess an appropriate value for 

exponent p^ . However one can show that we get a more conservat ive approximat ion for 
decreas ing values of p^ [3]. In that case we generally take ρ^=-1 (a more conservat ive 
approximation than a linear approximation obtained for ρ^=0). 

P c N is solved by means of an interior point penalty method [8] which consis ts in the 

transformation of the initial problem into an unconstrained minimization of a function ^ ( n , r ) 
such that: 

ί Μ = δ (η ι n J + r J O f g / n ) ) 
j 

The interior penalty functions Φ are extended in the infeasible space by: 

Φ( gj ) = ~ for gj > g 0 , interior part of the penalty function 

Φ ( g: ) = — + A i 1 - - 1 for g. < g exterior part of the penalty function 
J &o ν ^ 0 J J 

For a given value of the penalty parameter r (which tends to zero) the min imum of function $ 
is found by application of Newton's method. This implies the calculation of the Hessian of 
function 5^, which is straightforward because constraints gj are known explicitely. 
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Remark - W e can use similar procedures to solve the following problem: 
Find the minimum weight laminate made of two different materials with thickness lower than a 
given value and satisfying the mechanical requirements 

M i n ( C ( s i , s 2 ) = r ( s i ) . p i + r ( s 2 ) . p 2 ) P r o b l e m P r 2 

S i , S 2 G # 2 

I subject to : with : pvp2

 c o s t of material 1 et 2 

gj( r ( s i ) . s i+ r ( s 2 ) . s 2 )> 0 r(s) sublaminate s repeat index 

r ( s i ) . e i+ r ( s2 ) . e2 ^ e m a x e i thickness of a sublaminate in material i 

In this case, sublaminate the composit ion of both materials must vary simultaneously when 
solving the outer subproblem. W e are thus led to define two levels in the tree structure: 
- a main level where the only varying composition is the one for the sublaminate in the material 
determined from simple solutions as providing the major part of the laminate thickness. 
- a secondary level where, the main level sublaminate composition being fixed, we look for the 
optimal sublaminate composition in secondary material. 

S I M P L E S O L U T I O N S E X A M P L E 

Consider the structure represented on figure 6 with pressure loading of 0.1 M P a and nodal 
forces F of 0 .05MN. 

Mechan ica l r e q u i r e m e n t s . 

l .St i f fness: Deflection bounds of 
1 m m in directions y et ζ on line L 

2 .Strength cr i ter ion: C m a x ( a ) < l 

3 . F r e q u e n c y : ω 2 > 1 0 5 

N J MIN 
4.Stability: Critical load f > 1 
We use a family with 8 plies and 4 
fibre angles ( -45 ο ,45° ,90 ο ,0° ) of 165 
sublaminates. (coded (c_45.C45.C90.C0) 
in the following tables). 

Ranking of this sublaminate family with respect to the different mechanical requirements up to 
an order of 5 is given in Table 2 and 3 for two different materials. 

G l a s s - E p o x y s o l u t i o n s 
R a n k i n g S t i f f n e s s S t r e n g t h F r e q u e n c y S t a b i l i t y A l i 

s n s 
s n s 

s n s s n s 
s n s 

1 1.2.4.1 16.6 2.0.6.0 17.0 1.1.6.0 7.60 0.2.6.0 8.24 3.0.5.0 17.7 
2 1.3.3.1 16.6 1.0.7.0 17.6 0.1.6.1 7.60 0.3.5.0 8.25 2.0.6.0 18.1 
3 0.2.4.2 16.7 3.0.5.0 17.7 1.0.6.1 7.62 1.2.5.0 8.28 4.0.4.0 18.9 
4 1.4.2.1 16.8 1.1.6.0 18.2 1.1.5.1 7.62 0.4.4.0 8.30 1.0.7.0 19.0 
5 3.3.2.0 16.8 2.1.5.0 18.5 1.0.7.0 7.63 1.3.4.0 8.32 3.1.4.0 19.2 

C a r b o n - E p o x y so lu t ions 
R a n k i n g S t i f f n e s s S t e n g t h F r e q u e n c y S t a b l i t y A i l 

s n s 
s n s 

s n s 
s n s 

s n s 

1 1.2.4.1 12.2 2.1.5.0 3.48 1.0.6.1 3.12 0.4.4.0 6.02 1.2.4.1 12.2 
2 0.2.4.2 12.3 0.1.5.2 3.50 1.1.5.1 3.12 0.3.5.0 6.12 0.2.4.2 12.3 
3 1.3.3.1 12.3 0.2.4.2 3.58 0.1.6.1 3.12 0.1.6.1 6.13 1.3.3.1 12.3 
4 1.1.5.1 12.3 1.0.6.1 3.61 1.1.6.0 3.12 1.2.5.0 6.19 1.1.5.1 12.3 
5 2.4.2.0 12.3 1.1.5.1 3.61 1.0.7.0 3.17 0.2.5.1 6.19 2.4.2.0 12.3 

http://c_45.C45.C90.C0
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E X A M P L E W I T H T H I C K N E S S 
D I S T R I B U T I O N 

Glass-Epoxy solutions tree search 
(2.0.6.0) 

3.11 /17.1 /2 .85 /7 .38 / 
19.6/23.2/12.2/9.33 

105.95 

(3.0.5.0) 
3 .32/16.2/2 .56/8 .18/ 
20.1 /26.2/4.89/10.2 

104.45 
Initial solution 

(2.1.5.0) 
2 .95/16.0/2 .78/7 .54/ 
19.1 /26.5/4.70/9.14 

100.55 

ι 
(3.1.4.0) 

3 .10/16.6/2 .82/7.79/ 
19.5/26.8/4.61 /9.88 

103.30 

(2.2.4.0) 
2.90/16.2/2.71 /7 .40 / 
19.0/27.7/5.30/8.79 

100.93 

Legend 
(sublaminate) 

Rep. Ind. area i 
cost 

(2.0.5.1) 
3 .28 /17 .2 /2 .84 /7 .81 / 
19.5/32.7/4.72/10.1 

107.75 

(2.1.4.1) 
3 .11 /17 .0 /2 .68 /7 .61 / 
19.4/36.0/5.75/9.51 

108.63 

After using the ascent and descent algorithms from the initial solution (3.0.5.0) : 

Opt imal so lut ion 
(2 .1 .5 .0) 

Region 1 2 
n s 2.95 16.0 
Cost = 100.55 

3 
2.78 

4 
7.54 

5 
19.1 

6 
26.5 

7 
4.7 9.14 

C a r b o n - E p o x y so lu t ions 

ι 

(2.3.3.0) 
0 .64/15.3/2 .43/5 .69/ 
12.5/7.62/5.50/7.13 

2843.5 

(3.2.3.0) 
0 .76/13.3/2 .55/6 .43/ 
14.9/9.26/6.32/7.63 

3013.2 

(2.2.4.0) 
0 .64/11.4/2 .70/6 .33/ 
14.9/8.52/5.60/6.83 

2840.8 

(3.1.4.0) 
0.78/ 12.4/2.63/6.65/ 
15.5/9.77/6.14/7.56 

3028.1 
I 

(2.2.3.1) 
0 .77/16.0/2 .43/5 .95/ 
13.5/8.17/6.16/8.23 

3043.2 

(2.1.4.1) 
0 .73/12 .0 /2 .72/6 .89/ 
16.2/8.86/5.93/8.03 

3057.2 

(1.3.4.0) 
0.60/10.6 / 2.64 / 5.94/ 
14.3/6.99/4.92/6.07 

2646.6 
Optimal solution 

(0.4.4.0) 
1.36/10.6/2.48/4.66/ 
13.3/19.0/22.5/15.3 

3469.3 

(1.2.5.0) 
0 .59/11.2/2 .49/5.70/ 
13.8/7.67/5.36/6.11 

2654.3 

(0.3.5.0) 
1.35/ 10.6/2.39/4.69/ 
13.0/18.3/22.8/15.1 

3431.9 

(1.2.4.1) 
0 .65/12.8/2 .89/6 .45/ 
14.6/7.38/5.18/7.31 

2909.0 
Initial solution 

(0.3.4.1) 
0 .63/10.6/2 .89/6 .13/ 
14.6/5.77/4.19/6.37 

2659.8 

Hence the Carbon-Epoxy optimal solution: 
Opt imal so lut ion Region 1 2 

(1.3.4.0) n s 0.6 io.6 
C o s t = 100.55 

3 
2.64 

4 
5.94 

5 
14. 

6 
6.99 

7 
4.92 6.07 
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A b s t r a c t 
Var ious m a t h e m a t i c i a n s have shown t h a t for two-ma te r i a l compos i t e p l a t e s in p la in 

s t ress or b e n d i n g t h e o p t i m a l m i c r o - s t r u c t u r e consis ts of a so-cal led r a n k 2 l a m i n a t e , 
hav ing r ibs of first a n d second o rde r infini tesimal w i d t h in t h e two pr inc ipa l d i rec t ions . 
T h e first a u t h o r , Olhoff, Bends0e a n d o the r s o b t a i n e d s o m e ana ly t i ca l so lu t ions for t h e 
above class of p r o b l e m s . T h e y have also found t h a t if (i) t h e stiffness a n d specific cost 
of t h e second m a t e r i a l t e n d s t o zero (i.e. we consider a pe r fo ra t ed p la t e ) a n d (ii) t h e 
p resc r ibed compl iance va lue t e n d s t o infinity (i.e. t h e vo lume f ract ion t e n d s t o zero) t h e n 
t h e o p t i m a l so lu t ion becomes ident ica l t o t h a t for Michel l t ru s ses or least we igh t gri l lages 
for p la in s t ress a n d b e n d i n g , respect ively. T h i s conclusion was conf i rmed recen t ly by 
K o h n a n d Alla i re . T h e o p t i m a l gri l lage theory , developed by t h e first a u t h o r a n d P r a g e r 
in t h e sevent ies , is also valid for p las t ica l ly des igned fibre-reinforced p l a t e s of m i n i m u m 
fibre vo lume . 

En t i r e ly new classes of o p t i m a l topologies for t h e fibre-reinforced p la t e s ( = gril lage) 
p r o b l e m will be d iscussed on t h e basis of (i) ana ly t i ca l so lu t ions o b t a i n e d by t h e first 
a u t h o r a n d (ii) d iscre t ized so lu t ions developed by t h e second a u t h o r , wh ich show a 
comple t e ag reemen t w i t h each o t h e r . 

Moreover , genera l ized s h a p e o p t i m i z a t i o n m e t h o d s for pe r fo ra t ed p l a t e s , r e su l t ing in 
s i m u l t a n e o u s o p t i m i z a t i o n of t h e b o u n d a r y s h a p e a n d b o u n d a r y topology, a re d iscussed 
a n d m e t h o d s for s o l i d / e m p t y (SE) t y p e topologies p re sen ted . 

1. I N T R O D U C T I O N 

T h e a i m of th i s p a p e r is t o review briefly earl ier research , a n d t o r e p o r t a n u m b e r of 
recent deve lopmen t s , in t h e field of leas t -weight des ign of compos i t e p l a t e s a n d re la ted 
sub jec t s . In m u c h of t h e l i t e r a tu r e , a n d also in th i s p a p e r , t h e inves t iga t ion is r e s t r i c t ed 
t o composite plates cons is t ing of two m a t e r i a l s , hav ing e i ther one or t h e o t h e r m a t e r i a l 
a long t h e en t i re l eng th of any line segmen t n o r m a l t o t h e p l a t e surface (Fig . l a ) . O n e 
m a t e r i a l is usua l ly stiffer, s t ronge r , heavier (or dea re r ) a n d t h e o t h e r one less stiff, 
weaker , l ighter (or c h e a p e r ) . T h e d i s t r i bu t ion of t h e two m a t e r i a l s is t o be chosen in 
such a way t h a t (i) t o t a l weight ( to ta l cost) of t h e p l a t e is min imized , (ii) sub jec t t o 
b e h a v i o u r a l cons t r a in t s (e.g. on d i sp l acemen t s , s t r e s ses , n a t u r a l f requencies , e t c . ) . A 
special case of compos i t e p la t e s is a perforated plate, in which one m a t e r i a l ha s zero 
stiffness, zero s t r e n g t h a n d zero weight (zero cos t ) . 

Cons ider ing elast ic pe r fo ra ted p la tes subjec t t o a c o n s t r a i n t on t h e compliance (i.e. 
t o t a l ex te rna l w o r k ) , it h a s been found t h a t t h e so lu t ion in genera l cons is t s of t h r e e 
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types of regions , n a m e l y 
• solid regions (filled w i t h m a t e r i a l ) , 
• empty regions (w i thou t m a t e r i a l ) , a n d 
• porous regions ( some m a t e r i a l , w i t h cavit ies of infini tesimal s ize) . 

Moreover , it was shown by var ious m a t h e m a t i c i a n s [1-3, 34] t h a t one possible o p t i m a l 
m i c r o s t r u c t u r e in t h e po rous regions consi ts of rank-2 laminates, w i t h r ibs of first a n d 
second o rde r infinitesimal w i d t h , m a d e ou t of t h e stiffer m a t e r i a l , in t h e two pr inc ipa l 
d i rec t ions (Fig. l b ) . Using t h e above m i c r o s t r u c t u r e , analytical solutions we re o b t a i n e d 
by Rozvany, Olhoff, Bends0e et al. [4, 5] for a x i s y m m e t r i c p la t e s in b e n d i n g . T h e s e 
ind ica ted t h a t in exac t so lu t ions a high proportion of t h e o p t i m a l des ign consis ts of 
porous regions. T h e s a m e a u t h o r s found t h a t for low volume fractions (i.e. low r a t i o of 
m a t e r i a l vo lume /ava i l ab l e vo lume) , t h e o p t i m a l so lu t ions for pe r fo ra t ed p l a t e s r educe t o 
those for least-weight trusses or Michell-frames [6] (in t h e case of p l a n e s t ress) or t o those 
for least-weight grillages [7] (in t h e case of f lexure). T h e s a m e conclus ion w a s confi rmed 
us ing a r igorous proof by K o h n a n d Allaire [8], w h o also m e n t i o n e d a n alternative 
optimal microstructure by Vigdergauz [33], hav ing t h e p rope r t i e s as follows. A t very 
low vo lume f rac t ions , t h e so lu t ion t e n d s t o a Michell f rame (Fig . l c , b u t theore t ica l ly 
infinite n u m b e r of m e m b e r s ) . As t h e vo lume fract ion increases , t h e m i c r o s t r u c t u r e 
develops round ings a t t h e corners (Fig. I d ) . Final ly, a t very h igh vo lume f rac t ions , t h e 
m i c r o s t r u c t u r e consis ts of ell iptic holes , w i t h axes in t h e pr inc ipa l d i rec t ions (F ig . l e ) . 

I t h a s b e e n shown [9, 10] t h a t , for a single load cond i t ion , leas t -weight so lu t ions for 
t russes a n d gri l lages a r e equal ly valid for p las t ic design a n d for elas t ic des ign w i t h a 
s t ress , a compl iance or a n a t u r a l f requency cons t r a in t . T h e o p t i m a l layout of gril lages 
is also valid for plas t ica l ly des igned fibre-reinforced p la tes w i t h a m i n i m u m fibre-volume 
[9]. 

In Sect ion 2, ana ly t ica l so lu t ions for per fora ted a n d compos i t e p l a t e s a re reviewed. 
New classes of ana ly t ica l so lu t ions for gril lages a n d fibre-reinforced p la t e s a re discussed 
in Sect ion 3 . Discre t ized, numer ica l so lu t ions for t h e s a m e class of p r o b l e m s a re p re 
sen ted in Sect ion 4. Final ly , d iscret ized m e t h o d s for leas t -weight pe r fo ra t ed a n d compos 
ite p la t e s a re ou t l ined in Sect ion 5 a n d some concluding r e m a r k s a re offered in Sect ion 
6. 

2. R E V I E W O F A N A L Y T I C A L S O L U T I O N S : L E A S T - W E I G H T P E R F O 
R A T E D A N D C O M P O S I T E P L A T E S 

Using t h e o p t i m a l m i c r o s t r u c t u r e der ived by o the r s [1-3], Rozvany, Olhoff, Bends0e 
et ai [4] a n d O n g , Rozvany a n d Szeto [5] ar r ived a t t h e following conclus ions . 
• For r ank -2 l amina te s (Fig. l b ) , t h e normal i zed specific cost (weight) function φ in 

t e r m s of t h e normal ized p r inc ipa l stiffnesses («1 ,52) c an be s t a t e d for zero Poisson's 
ratio [y = 0) as 

^ = « . - 2 « . « 2 + * 2 > 

1 - S1S2 

w h e r e t h e re la t ion be tween normal ized pr inc ipa l stiffnesses a n d r ib dens i t ies (d\, d2) 
is given by 

1 1 2 1 — d\ •+- d\d2 ' (2) 
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material 

F ig . 1 P r o b l e m formula t ion a n d o p t i m a l m i c r o s t r u c t u r e s for c o m p o s i t e a n d pe r fo ra ted 
p l a t e s . 

a n d t h e specific compl iance (c) for p la te s u n d e r b e n d i n g is furnished by 

c = M^/si + M$/s2 . (3) 

For p l a n e s t ress p rob lems t h e pr inc ipa l m o m e n t s M\ a n d M2 a r e r ep laced by t h e 
pr inc ipa l forces N\ a n d N2. 
Using op t ima l i t y c r i t e r ia b a s e d on ( l ) a n d a va r i a t i ona l de r iva t ion , it c a n b e shown 
t h a t for axial ly s y m m e t r i c p la t e s only t h e following t w o t y p e s of n o n - e m p t y optimal 
regions m a y occur in leas t -weight so lu t ions : 
(i) u n p e r f o r a t e d (solid) regions ; 
(ii) regions cons is t ing of r ad i a l r ibs only. 
O p t i m a l so lu t ions for var ious a x i s y m m e t r i c s u p p o r t a n d load ing cond i t i ons were con
firmed by i n d e p e n d e n t numer i ca l so lu t ions us ing sequent ia l q u a d r a t i c p r o g r a m m i n g 
a n d by a comparison with intuitively selected designs. In F ig . 2, for e x a m p l e , t h e 
s t r u c t u r a l vo lume of var ious pa r t i a l ly op t imized in tu i t ive designs (A, B, C , E) for 
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l o t -

ρ , 
ρ 

W' 

T . 

Ο 
Ο 

1_ 
c 

400 

16.0 
60 

54.85714285 29.47225199 
Fig . 2 A compar i son of t h e s t r u c t u r a l F ig . 3 Var ia t ion of rad i i of o p t i m a l r e -

vo lume of o p t i m a l a n d n o n - o p t i m a l ' gion b o u n d a r i e s a n d of lines of 
so lu t ions for uni formly loaded s im- contraf lexure for uni formly loaded 
ply s u p p o r t e d elast ic pe r fo ra ted c l a m p e d pe r fo ra ted p l a t e s [y = 
pla tes w i t h a compl iance cons t r a in t 0.2) . 
(" = o). 

uniformly loaded s imply s u p p o r t e d c i rcular p la t e s is c o m p a r e d w i t h t h a t of t h e op t i 
m a l design (D), in dependence of t h e rec iprocal compl iance ( 1 / C ) va lue . Designs C 
a n d Ε a r e s imi lar , except t h a t t h e l a t t e r p e r m i t s a different s t i f fness /moment r a t i o in 
t h e inner a n d ou te r regions . T h e rad ius gR of t h e region b o u n d a r y was op t imized in 
all designs consis t ing of two regions. As p red ic t ed by t h e op t ima l i t y c r i t e r i a m e t h o d , 
design D was found t o have t h e lowest weight a t all l / C va lues . 
For non-zero Poisson's ratio (ν φ 0 ) , t h e specific cost funct ion in ( l ) c an b e used [5] 
if θ ι a n d $2 have t h e m e a n i n g defined in (2) , whe re θι a n d 52 do n o t r ep resen t t h e 
pr inc ipa l stiffnesses any m o r e b u t t h e specific compl iance is given by 

c = M f / θ ι + Μ | / θ 2 - VM\M<I (4) 

for p la t e s u n d e r b e n d i n g , or t h e equivalent express ion w i t h N\ a n d N2 for p la tes 
u n d e r p l ane s t ress . 
Using t h e above fo rmula t ion , so lu t ions have been d e t e r m i n e d for var ious a x i s y m m e t -
ric s u p p o r t a n d loading condi t ions . F igu re 3 , for e x a m p l e , shows t h a t t h e so lu t ion 
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for c l a m p e d , uniformly loaded p la tes w i t h ν — 0.2 m a y t a k e on two topologies , w i t h 
e i ther one or two solid regions a n d one region w i t h r ad ia l r ib s . T h e o p t i m a l rad i i 
(<7,i) of t h e region b o u n d a r i e s a n d those (h,v) of t h e lines of cont ra f lexure a re also 
shown in F ig . 3 . I t is in te res t ing t h a t for so lu t ions cons is t ing a lmos t en t i re ly of solid 
reg ions , t w o lines of cont raf lexure a p p e a r in t h e o p t i m a l des ign . 

• F u r t h e r ex tens ions of t h e above a p p r o a c h [11] dea l t w i t h composite plates w i t h zero 
Poisson's ratio [y — 0) hav ing stiffness a n d cost r a t ios of a a n d /?, respect ively . T h e 
specific cost φ a n d p r inc ipa l stiffnesses ( s i a n d 5 2 ) for th i s class of p r o b l e m s a re given 
by 

φ = ( * 1 + * 2 ) ( 1 + « ) - 2 ( * ι « 2 + β ) . _______ + β > ( 5 ) 

1 — SLs2 Ι + β ' 

d^l - α){1 - d2) + a d2 + a(l - d2) . . 
1 l - d 2 ( l - a ) ' 5 2 \-{\-a){dx-dxdi)- W 

• A va r i a t iona l fo rmula t ion b a s e d on t h e re la t ions (5) a n d (6) h a s shown t h a t only 
t h e following regions m a y occur in t h e o p t i m a l so lu t ion for a x i s y m m e t r i c compos i t e 
p l a t e s u n d e r flexure: 

(i) regions filled w i t h t h e stiffer m a t e r i a l (c ross -ha tched in F ig . 4 ) , 
(ii) regions filled w i t h t h e less stiff m a t e r i a l (one-way h a t c h i n g in F ig . 4 ) , a n d 

(iii) r ad i a l r ibs of t h e stiffer m a t e r i a l , t h e gaps filled w i t h t h e less stiff m a t e r i a l 
( u n h a t c h e d a reas in F ig . 4 ) . 

O p t i m a l so lu t ions for uni formly loaded s imply s u p p o r t e d c i rcu la r p l a t e s have two 
poss ible topologies , one cons is t ing of all t h r e e t ypes of o p t i m a l regions a n d t h e o the r 
one of t h e first two regions l is ted above . In F ig . 4 , w h e r e o p t i m a l r ad i i of t h e region a re 
shown , t h e b r o k e n line ind ica tes t h e rad i i a t which t h e single region b o u n d a r y bi furcates 
in to two b o u n d a r i e s for a given a va lue , as we va ry t h e rec iproca l compl i ance l / C . 
• T h e fo rmula t ion h a s also been general ized to composite plates with non-zero Poisson's 

ratio [y φ 0) [12]. In t h a t case t h e re la t ions (5) a n d (6) c an sti l l b e app l i ed , b u t s\ 
a n d S2 do n o t r ep resen t a c t u a l stiffnesses a n d t h e specific compl iance is given aga in 
by (4) . Solut ions b a s e d on a va r i a t iona l fo rmula t ion a n d o p t i m a l i t y c r i t e r i a a re given 
in F ig . 5 for a s imply s u p p o r t e d p l a t e w i t h a cen t r a l p o i n t load a n d a stiffness r a t i o 
of a = 0.3 for t h e two m a t e r i a l s . 

3. N E W C L A S S E S O F A N A L Y T I C A L S O L U T I O N S F O R G R I L L A G E S 
A N D F I B R E - R E I N F O R C E D P L A T E S 

It was a l r eady m e n t i o n e d in t h e I n t r o d u c t i o n t h a t t h e o p t i m a l l ayout of gri l lages is 
i m p o r t a n t in t h e presen t con t ex t , because t h e y represen t a limiting case for least-weight 
perforated plates w i t h low vo lume fract ions [4, 8]. 

Leas t -weight gri l lages (e.g. [7]) r epresen t a ve ry successful app l i ca t i on of t h e opti
mal layout theory [13-17] developed in t h e sevent ies b y P r a g e r a n d t h e first a u t h o r , 
a n d e x t e n d e d in t h e eighties by t h e l a t t e r . T h e o p t i m a l layout t h e o r y is b a s e d on two 
under ly ing pr inc ip les , n a m e l y t h e structural universe (un ion of all p o t e n t i a l m e m b e r s ) 
a n d continuum-based optimality criteria ( C O C ) expressed in t e r m s of a fictitious s y s t e m 
t e r m e d adjoint structure. For elast ic gri l lages w i t h a compl i ance c o n s t r a i n t , t h e adjoint 
s t r u c t u r e is ident ical w i t h t h e real s t r u c t u r e for t h e basic des ign p r o b l e m (i.e. w i t h o u t 
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= 0.3 

54.85714285 

Fig . 4 Var ia t ion of t h e o p t i m a l rad i i of 
region b o u n d a r i e s for uniformly 
loaded s imply s u p p o r t e d compos 
ite p la t e s w i t h zero Po isson ' s r a 
t io in dependence of t h e rec ipro
cal compl iance ( 1 / C ) a n d stiff
ness r a t i o (a) for t h e two m a t e 
r ia ls . 

F ig . 5 Var ia t ion of t h e o p t i m a l rad i i of 
region b o u n d a r i e s for s imply s u p 
p o r t e d compos i t e p l a t e s w i t h a 
cen t ra l p o i n t load: two different 
Poisson 's r a t ios a n d a stiffness r a 
t io of a = 0 .3 . 

al lowance for cost of s u p p o r t s , selfweight e tc . ) . Because we have adjoint s t r a i n requi re
m e n t s also for vanish ing m e m b e r s , a n d since t h e gri l lage p r o b l e m is convex, fulfilment of 
t h e op t ima l i ty c r i te r ia for t h e ent i re s t r u c t u r a l universe ensures op t ima l i t y of t h e layout 
and of t h e cross-sect ions for non-van ish ing m e m b e r s . 

Deta i l s of t h e gri l lage t heo ry a re given elsewhere [7, 9, 13-17] a n d therefore only t h e 
m o s t i m p o r t a n t aspec ts a re reviewed he re briefly. T h e adjoint displacement field for 
grillages m u s t be k inemat ica l ly admiss ib le , such t h a t (i) a t least one pr inc ipa l c u r v a t u r e 
t akes on a cons t an t abso lu te va lue (say k) a n d t h e o the r one h a s an abso lu t e va lue which 
is smal ler t h a n or equal t o k\ (ii) t h e d i rec t ion of all nonvan i sh ing b e a m s m u s t m a t c h 
pr inc ipa l d i rec t ions w i t h a n abso lu te c u r v a t u r e A;, a n d (iii) all ( s ta t ica l ly admiss ible) 
b e a m m o m e n t s m u s t m a t c h t h e sign of t h e co r re spond ing pr inc ipa l c u r v a t u r e s . T h i s 
can be expressed m a t h e m a t i c a l l y as 

( f o r M f / 0 ) Tcf = * sgn A f / , (for M? = 0) \K?\<k, (7) 

in which t h e supe r sc r ip t s S a n d Κ d eno te s t a t i c a n d k i n e m a t i c admiss ib i l i ty a n d 
/Cj = d 2u /d£? t h e adjoint (small deflection) c u r v a t u r e , w h e r e ΰ is t h e adjoint deflection 
a n d £t- is t h e spa t i a l coo rd ina t e in t h e considered p r inc ipa l d i rec t ion . T h e above op t i 
ma l i ty c r i t e r ia a d m i t five types of optimal regions. In iZ-type regions only one p r inc ipa l 
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C 3 € = 3 > Θ Θ 

R+ R- τ s + s-

Fig . 6 Symbols r epresen t ing var ious types of o p t i m a l regions in gr i l lages . 

c u r v a t u r e h a s t h e abso lu t e va lue k a n d b e m a s m a y r u n only in t h a t d i r ec t ion , whi l s t in 
S- a n d T - t y p e regions b o t h p r inc ipa l c u r v a t u r e s have t h e abso lu te va lue k, b o t h hav ing 
t h e s a m e sign in S-regions a n d different s igns in T- reg ions . I t follows t h a t t h e o p t i m a l 
regions for gri l lages a re R~, 5"*", S~ a n d T , w h e r e supe r sc r i p t s d e n o t e t h e s ign of 
t h e p r inc ipa l c u r v a t u r e s hav ing a n abso lu t e va lue k ( and t h e s ign of t h e co r r e spond ing 
b e a m m o m e n t ) . Symbols r ep resen t ing t h e above o p t i m a l regions in gri l lage l ayou ts a re 
shown in F ig . 6. 

T h e above op t ima l i t y c r i t e r ia m e a n t h a t we have now rep laced a r a t h e r c o m p l e x non -
s m o o t h va r i a t i ona l p r o b l e m w i t h t h e following geomet r i ca l p r o b l e m s . T h e s t r u c t u r a l 
d o m a i n (avai lable space for gri l lage b e a m s ) m u s t b e covered w i t h t h e above o p t i m a l 
reg ions , such t h a t 
• t h e adjoint d i sp lacements fulfil all k inema t i c b o u n d a r y cond i t ions , 
• con t inu i ty a n d slope con t inu i ty of d i sp lacement s is satisfied a long region b o u n d a r i e s ; 

• s ta t ica l ly admiss ib le b e a m m o m e n t s m a t c h t h e d i rec t ion a n d sign of t h e co r re spond
ing adjoint c u r v a t u r e s . 
A u n i q u e fea ture of t h e o p t i m a l gri l lage t heo ry is t h a t closed form analytical solutions 

are avialable for most boundary and loading conditions. T h e few r e m a i n i n g gaps in th i s 
t h e o r y a re be ing filled u n d e r a cu r r en t p ro jec t , wh ich will b e rev iewed in t h e r e m a i n d e r 
of th i s sec t ion . 

3.1 Combinations of Free Edges, Simple Supports and Clamped Edges 
In genera l , a long free edges t h e o p t i m a l gri l lage con ta ins a so-cal led "beam-weave" 

[7], cons is t ing of b e a m s of infini tesimal l eng th in nega t ive b e n d i n g a n d long b e a m s in 
pos i t ive b e n d i n g (Fig . 7a ) . Cons ider ing a c o m b i n a t i o n of a straight free edge and a 
straight simple support [18], t h e genera l e q u a t i o n for t h e re l a t ion b e t w e e n t h e d i s t ance 
t a long t h e edge a n d t h e angle enclosed by a long b e a m a n d t h e free edge is (F ig . 7b) 

a n d t h e adjoint deflection u a t a po in t A (Fig. 7c) of t h e free edge is given by 

a n d 

(8) 

a 

UA = 
s i n 7 s i n ( 2 a o + 1 ) 

2 s i n 2 ( a + η) 
( a - t A ) - j c o s ( 2 a ) ( i - tA)dt, 

tA 

(9) 

T h e above equa t ions r educe t o k n o w n ana ly t i ca l resu l t s [14] for α = 0 ° , 4 5 ° a n d 90° . 
For a straight free edge t h a t is parallel to a straight clamped edge [18], we have t h e 

following governing equa t ions (Fig . 8) : 
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Fig . 9  Gr i l lag e layou t fo r t h r e e s impl y s u p p o r t e d edge s a n d a  fre e edge . 

y =  L  -  s i n a\J(L 2 -  2 û ) / ( l +  s i n 2 a)  ,  t a n e  =  d y / d x .  (10 ) 

To d e m o n s t r a t e t h e complex i t y o f o p t i m a l gri l lag e l ayout s fo r eve n re la t ivel y s impl e 
b o u n d a r y cond i t ions , a  l eas t -weigh t so lu t io n fo r t h r e e s impl y s u p p o r t e d edge s a n d on e 
free edg e i s s how n i n F ig . 9 . B e a m s a r e i nd ica te d b y th icke r l ine s on l y i n t h e free-edg e 
region. 

3 . 2 . P a r t i a l l y U p w a r d a n d P a r t i a l l y D o w n w a r d L o a d s 
Figure 10 a show s a  c l a m p e d edg e w i t h t h r e e u p w a r d a n d on e d o w n w a r d load . T h e 

adjoint fiel d fo r suc h p rob l em s c a n b e c o n s t r u c t e d b y a s sumin g a  f ict i t iou s s u p p o r t i n g 
l ine (HG  i n F ig . 10b ) w i t h a  non -ze r o deflectio n a n d u s in g t h e c o n s t r u c t i o n desc r ibe d 
in Sect io n 3. 3 fo r a l lowanc e fo r cos t o f s u p p o r t s . T h e o p t i m a l b e a m layout , w i t h b e a m s 
in n ega t iv e b e n d i n g show n i n b roke n l ine , i s give n i n F ig . 10c . 

3 . 3 . A l l o w a n c e f o r t h e C o s t o f S u p p o r t s 
Surpr is ingly s imple , ye t qu i t e genera l c ons t ruc t i on s fo r o p t i m a l gr i l lag e l ayout s w i t h 

a l lowance fo r t h e cos t o f s u p p o r t s wer e der ive d recent l y [19] . T h e s e a r e s how n i n F ig . 
11a fo r tw o c l a m p e d s u p p o r t s a n d i n F ig . l i b fo r a  c l a m p e d a n d a  s impl e s u p p o r t , i n 
which , respect ively , 

a +  ky 2 -  c 2/2k =  b  +  kx 2 -  d 2/2k ,  (11 ) 

a +  ky 2 -  c 2/2k =  b  +  A;x 2 /2 .  (12 ) 

T h e abov e cons t ruc t i on s t a k e ca r e o f b o t h cos t o f c l a m p i n g m o m e n t s (MQ)  a n d cos t 
of ver t ica l r eac t ion s (R).  W i t h a  =  b  =  c  =  d  =  0,  t h e c o n s t r u c t i o n s i n F ig . 1 1 r educ e 
t o t hos e fo r gri l lage s w i t h zer o s u p p o r t cos t [9] . 

A n in te res t in g f ea tur e o f t hes e so lu t ion s i s t h a t t h e rea l a n d adjoin t d i sp lacemen t 
fields diffe r d u e t o differen t k i nema t i c b o u n d a r y cond i t i ons . 
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4. D I S C R E T I Z E D S O L U T I O N S F O R L E A S T - W E I G H T G R I L L A G E S U S 
I N G O P T I M A L I T Y C R I T E R I A 

Toplogical op t imiza t i on of g r id - type sys t ems usua l ly involves a very large n u m b e r of 
var iables because for a r easonab le accuracy one requi res a s t r u c t u r a l un iverse (g round 
s t r u c t u r e ) w i t h several t h o u s a n d m e m b e r s . Moreover , for a real is t ic des ign , it is nec
essary t o impose cons t r a in t s a t least on t h e s t resses a n d d i sp l acemen t s , resu l t ing in a 
cons iderable n u m b e r of ac t ive cons t r a in t s . T h i s m e a n s t h a t usua l o p t i m i z a t i o n m e t h 
ods do n o t have a sufficient capabi l i ty for hand l ing such p r o b l e m s because so-called 
p r ima l p r o g r a m m i n g m e t h o d s a re res t r i c ted t o a b o u t 1 0 2 var iables a n d d u a l ( and con
vent iona l d iscre t ized op t ima l i ty cr i te r ia , D O C ) m e t h o d s t o a b o u t 1 0 2 ac t ive cons t r a in t s . 
T h i s difficulty ha s been overcome by t h e i n t r o d u c t i o n of new i t e ra t ive c o n t i n u u m - t y p e 
op t ima l i ty c r i te r ia ( C O C ) m e t h o d s [20] a n d the i r discret ized equivalent ( D C O C ) for 
finite e l ement sy s t ems [21]. T h e s e m e t h o d s a re based on a genera l fo rmula t ion of t h e 
ana ly t ica l school for s t r u c t u r a l op t imiza t i on (e.g. [22, 23]). T h e bas ic a d v a n t a g e of 
C O C / D C O C m e t h o d s is t h a t the i r op t im iza t i on capabi l i ty is l imi ted only in t e r m s of 
t h e n u m b e r of ac t ive global cons t r a in t s because act ive s t ress cons t r a in t s a re h a n d l e d by 
explici t equa t ions a t t h e e lement level, which requires only a lmos t negligible c o m p u t e r 
t i m e . Since t h e n u m b e r of ac t ive global cons t ra in t s is smal l for even ve ry large s t r uc 
t u r a l s y s t e m s , C O C / D C O C have a several o rders of m a g n i t u d e g rea t e r o p t i m i z a t i o n 
capabi l i ty t h a n t r a d i t i o n a l m e t h o d s if s t r u c t u r e s w i t h s t ress a n d d i sp l acemen t a re t o 
be op t imized . A n o t h e r a d v a n t a g e of C O C / D C O C is t h e fact t h a t sens i t iv i ty analys is 
is r ep laced by t h e analys is of t h e adjoint structure, involving t h e d e c o m p o s e d stiffness 
m a t r i x which is a l ready available from t h e analysis of t h e real s y s t e m . I t is t o be n o t e d 
t h a t var ious m a t h e m a t i c i a n s (e.g. [24, 25]) have op t imized t russes w i t h a large n u m b e r 
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F ig . 11 O p t i m a l gri l lage layouts w i t h al lowance for cost of s u p p o r t s . 

of p o t e n t i a l m e m b e r s b u t only for a compl icance cons t r a in t w i t h a s ingle load cond i t ion , 
for which t h e d u a l p r o b l e m h a s on ly one var iab le , m a k i n g c o m p l i a n c e des ign r a t h e r in
expens ive even by convent iona l dua l m e t h o d s . Moreover , for compl i ance p r o b l e m s t h e 
real a n d adjoint s t r u c t u r e s a re ident ica l , wh ich m e a n s a fu r the r s impli f icat ion of t h e 
genera l p r o b l e m discussed here in . 

T h e cons iderable a t t r a c t i venes s of C O C / D C O C for layout o p t i m i z a t i o n will be 
d e m o n s t r a t e d in th is lec ture on tes t examples involving gri l lages, a n inves t iga t ion car
r ied o u t by S igmund , w h o used some of t h e a lgo r i t hms developed b y Zhou a n d Rozvany. 

T h e first t e s t e x a m p l e concerns a clamped square grillage for wh ich t h e ana ly t i ca l 
so lu t ion is shown in F ig . 12a, t h e s t r u c t u r a l un iverse w i t h 624 b e a m e lements in F ig . 
12b, a n d t h e co r r e spond ing discre t ized C O C so lu t ion for n ine p o i n t loads in Figs . 12c 
a n d d. For th i s class of p r o b l e m s , S i g m u n d e x t e n d e d t h e C O C m e t h o d t o l inearly 
va ry ing b e a m e lemen t s . T h e ana ly t i ca l a n d discre t ized so lu t ion gave a l m o s t t h e s a m e 
nond imens iona l i zed weight (0.234619 vs . 0 .234620). 

F igu re 13a shows t h e s t r u c t u r a l universe a n d load ing (solid circles u p w a r d load, 
e m p t y circles d o w n w a r d load) for t h e second tes t e x a m p l e a n d F ig . 13b t h e discre t ized 
o p t i m a l so lu t ion by C O C , which was used for verifying t h e recent ly deve loped t h eo ry 
for pa r t i a l ly u p w a r d a n d pa r t i a l l y downward load ing (see Sect ion 3.2). 

F igures 14a a n d b show discret ized C O C solu t ions w i t h 466 a n d 1892 e lements for a 
gri l lage w i t h one c l a m p e d edge , one s imple s u p p o r t a n d a free edge . T h e topo logy shown 
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Fig . 12 F i r s t t es t example . 

fa) (b) 

F ig . 13 Second tes t e x a m p l e . 

by th i s numer ica l so lu t ion has lead to t h e exac t ana ly t i ca l so lu t ion [(10) in Sect ion 3.1], 
which is p l o t t e d in F ig . 14c. 

F igure 15a shows t h e s t r u c t u r a l universe w i th 9312 b e a m e lements a n d load ing for 
a gri l lage w i th two c l a m p e d a n d two free edges , for which t h e ana ly t i ca l so lu t ion is n o t 
know to d a t e . T h e discret ized C O C solu t ion is shown in fig. 15b. T h i s so lu t ion h a s a 
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F ig . 15 Discre t ized so lu t ion for a p r o b l e m for which t h e ana ly t i ca l so lu t ion is no t ye t 
known . 

nond imens iona l weight of 0.1819, whereas a s imple so lu t ion w i t h two cant i levers a long 
t h e free edge wou ld have a weight of 0 .25, which is over 37 % heavier t h a n t h e n u m e r i c a l 
o p t i m a l so lu t ion . 

Final ly, F ig . 16 shows a series of so lu t ions for a q u a r t e r of a c l a m p e d s q u a r e p l a t e 
w i t h va r ious values of t h e permiss ib le shea r s t r e s s . 

I t is t o be r e m a r k e d t h a t t h e s a m e m e t h o d has been used for severa l load ing con
d i t ions , a n d c o m b i n a t i o n s of s t ress , deflection a n d n a t u r a l f requency c o n s t r a i n t s , also 
w i t h a l lowance for s t r u c t u r a l m a s s a n d selfweight. 

5. L E A S T - W E I G H T P E R F O R A T E D P L A T E S C O N S I S T I N G O F S O L I D 
A N D E M P T Y R E G I O N S O N L Y 

It was m e n t i o n e d in t h e I n t r o d u c t i o n t h a t exac t ana ly t i ca l so lu t ions [4, 5] for per
fora ted p la te s consist of solid, e m p t y a n d po rous reg ions . Following t h e above de
ve lopmen t , n e a r - o p t i m a l so lu t ions were derived numerically u s ing b o t h t h e o p t i m a l 
m i c r o s t r u c t u r e ( rank-2 l amina tes ) a n d " s u b o p t i m a l " m i c r o s t r u c t u r e ( square a n d rect-
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Tmax = 10.6 (unconstrained) 
Cost = 0.44580 

r_ = 5.0 
Cost = 0.45667 

τα = 3.0 
Cost = 0.50301 

ra = 2.0 
Cost = 0.64017 

F i g . 16 D i s c r e t i z e d s o l u t i o n s for a g r i l l a g e w i t h d e f l e c t i o n a n d s h e a r s t r e s s c o n s t r a i n t s 

a n g u l a r h o l e s ) b y B e n d s 0 e a n d h i s r e s e a r c h a s s o c i a t e s [ 2 6 - 3 0 ] . T h i s is a n i m p o r t a n 
d e v e l o p m e n t , b e c a u s e t h e y r e p r e s e n t u s e f u l r e s u l t s in g e n e r a l i z e d s h a p e o p t i m i z a t i o : 
( i . e . in t h e s i m u l a t i o n s o p t i m i z a t i o n of b o u n d a r y t o p o l o g y a n d s h a p e ) . H o w e v e r , s o l u 
t i o n s w i t h r a n k - 2 a n d s i m i l a r m i c r o s t r u c t u r e s are s o m e w h a t u n p r a c t i c a l for t h e f o l l o w i n 
r e a s o n s : 
• a h i g h p r o p o r t i o n of t h e e x a c t o p t i m a l d e s i g n c o n s i s t s o f p o r o u s r e g i o n s w i t h a d e n s 

s y s t e m of h o l e s . E v e n a n a p p r o x i m a t e d v e r s i o n of t h e s e r e g i o n s w o u l d r e q u i r e h i g 
m a n u f a c t u r i n g c o s t s ; 

• r a n k - 2 l a m i n a t e s for p e r f o r a t e d p l a t e s in p l a n e s t r e s s h a v e z e r o s h e a r s t i f f n e s s in t h 
d i r e c t i o n n o r m a l t o t h e r ibs w i t h s e c o n d o r d e r w i d t h , w h i c h r e n d e r s t h i s s o l u t i o 
u n s t a b l e if w e c h a n g e t h e l o a d i n g ; a n d 

• s o l u t i o n s of t h i s t y p e a r e o n l y a v a i l a b l e for a c o m p l i a n c e c o n s t r a i n t w h i c h d o e s nc 
r e p r e s e n t a r e a l - w o r l d d e s i g n c o n d i t i o n in e n g i n e e r i n g . M o r e o v e r , i t w a s s h o w n b 
H a f t k a et al. [31] t h a t e v e n t h e o p t i m a l t o p o l o g y for c o m p l i a n c e is n o t n e c e s s a r i l 
v a l i d for o t h e r d e s i g n c o n s t r a i n t s . 

For t h e s e r e a s o n s , it is d e s i r a b l e t o find l e a s t - w e i g h t s o l u t i o n s for p e r f o r a t e d p la te 
w h i c h c o n s i s t of solid and empty regions only. T h i s c a n b e d o n e b y p e n a l i z i n g a n 
t h e r e b y s u p p r e s s i n g p o r o u s r e g i o n s in t h e s o l u t i o n . In o r d e r t o a c h i e v e s u c h s o l u t i o n ; 
w e c a n u s e any m i c r o s t r u c t u r e w i t h a n a p p r o p r i a t e p e n a l t y for p o r o u s r e g i o n s (or ir 
t e r m e d i a t e d e n s i t i e s ) . In s e l e c t i n g t h e m i c r o s t r u c t u r e , t h e f o l l o w i n g o b j e c t i v e s s h o u l 
b e k e p t i n m i n d : 
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F ig . 17 Ana ly t i ca l so lu t ion a n d so lu t ion w i t h s u b o p t i m a l m i c r o s t r u c t u r e for a can
t i lever t r u s s . 

• s impl ic i ty of ana lys is a n d o p t i m i z a t i o n , 
• selective suppress ion of po rous regions by ad jus t ab l e pena l t y ; a n d 
• capabi l i ty of h a n d l i n g a var ie ty of design cond i t ions . 

I t was shown b y Rozvany a n d Zhou ([20], P a r t II) t h a t a "solid" m i c r o s t r u c t u r e (filled 
w i t h an isot ropic ma te r i a l ) w i t h a concave cost funct ion for pena l iz ing i n t e r m e d i a t e 
densi t ies is very efficient in loca t ing least-weight so l id -empty t y p e topologies . A s imi la r 
a p p r o a c h was m e n t i o n e d ear l ier b y Bends0e [26]. Because of l eng th l im i t a t i ons , only 
one t e s t e x a m p l e is given in th i s p a p e r which is d u e t o T . Bi rker in t h e first a u t h o r ' s 
d e p a r t m e n t . T h e exac t so lu t ion for a t y p e of cant i lever b e a m [32] is shown in F ig . 17a 
a n d a so lu t ion w i t h a " s u b o p t i m a l " m i c r o s t r u c t u r e by Kikuch i [30] in F ig . 17b . F igure 
18a shows a series of so lu t ions b y Birker after va r ious i t e r a t ion n u m b e r s ( n ) , s t a r t i n g 
w i t h a p l a t e of uniform thickness. In F ig . 18b, a s t a r t i n g des ign is u sed wh ich was 
o b t a i n e d without penalty for intermediate densities. T h i s l a t t e r m e t h o d , sugges ted t o 
t h e first a u t h o r by R. K o h n , gave a b e t t e r topology a n d a lower weight . 

6. C O N C L U D I N G R E M A R K S 

It will be seen t h a t new c o n t i n u u m - t y p e op t ima l i t y c r i t e r i a ( C O C ) m e t h o d s a re 
h ighly su i t ab l e for der iv ing b o t h exac t ana ly t i ca l so lu t ions a n d d iscre t ized numer i ca l 
so lu t ions for compos i t e p la tes a n d re la ted s t r u c t u r e s , such as pe r fo ra t ed p l a t e s a n d 
gri l lages. So lu t ions in w h i c h po rous regions a re suppres sed (Sect ion 5) a r e cu r r en t ly 
be ing e x t e n d e d from per fora ted to compos i t e p l a t e s . 
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Abstract 
Layup optimization of laminated composite structures is considered. Lamination parameters 

rather than layup angles and ply thicknesses are used as design parameters, thus any physically 
possible layup is included and the number of design variables is kept small; twelve for the most 
general layup. These twelve parameters are functions of the in-plane coordinates if the layup 
changes from point to point in the structure. It is shown that the feasible region of the 
parameters is convex , and the object functions to be max imized (stiffnesses, vibrat ion 
frequencies, or buckling loads) are concave functions; local optima are therefore avoided and the 
optimization is accordingly significantly simplified. In order to use these parameters for 
optimization, their feasible region has to be known. The current knowledge is summarized, and 
some new results concerning the feasible region of the parameters of an orthotropic laminate are 
presented. When the feasible region of the lamination parameters is known, optimization of 
general composi te material s tructures can efficiently be performed. A number of s imple 
examples are included, such as flat in-plane homogeneous (same layup and thickness in every 
point) plates concerning deflections under uniform loads, vibration frequencies, and buckling 
under uni-axial or shearing loads. 

1. I N T R O D U C T I O N 

Tsai and Pagano [1] derived transformation properties of an orthotropic material - typically a 
lamina in a layered composite - during rotation in terms of multiple angles instead of the classical 
relations using powers of sines and cosines. The in-plane (Αφ, coupl ing (Βφ, and bending 
(Ώφ stiffnesses could then be expressed as l inear combina t ions of so-called laminat ion 
parameters, with the coefficients being material constants, see eqs. (7) - (13) below. Simply 
stated, the lamination parameters are integrals through the thickness of the sines and cosines of 
the layup angles of the different plies constituting the laminate. Twelve lamination parameters 
suffice in describing the A^, By, and Dy stiffnesses of a general laminated composi te . The 
lamination parameters are attractive for layup optimization of composite material structures for 
many reasons, e.g. there are few parameters and all physically possible layups of the considered 
material can be included. This is generally not the fact when layup angles and/or thicknesses of 
discrete plies are used as design variables. Lamination parameters have been used successfully in 
a number of design and optimization studies. In these studies, subsets of the twelve lamination 
parameters were used, mainly since the feasible region of all twelve parameters currently is not 
known. The feasible region is a purely mathematical limitation of the values of the lamination 
parameters. When one lamination parameter, e.g. the integral of sinus of the layup angles, is 
specified, other lamination parameters, e.g. the integral of cosinus of the layup angles, cannot 
take arbitrary values. Miki [2] determined the feasible region of the two lamination parameters 
needed to describe the in-plane stiffnesses of orthotropic laminates and, successively, Miki [3] 
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determined the allowable region of the two lamination parameters needed to describe the bending 
stiffnesses of orthotropic laminates, and performed some optimization. For symmetric laminates, 
Fukunaga [4] determined the feasible region of the four parameters needed to describe the in-
plane stiffnesses and, separately, the feasible region of the four parameters for bending 
stiffnesses. Further, Fukunaga [5] made an effort to derive the feasible region of the four 
lamination parameters needed to describe both in-plane and bending stiffnesses of orthotropic 
laminates but, as will be shown below, only an "inner boundary" was obtained. In the present 
study the true feasible region of these parameters is derived. It is further shown that the feasible 
region of all twelve parameters is convex. The facts that the stiffnesses are linear in the 
lamination parameters and the feasible region is convex result in the desirable property that no 
local opt ima exist for e.g. maximizat ion of potential energy (which is a sort of stiffness 
maximization), maximization of the lowest eigenfrequency, or maximization of buckling load. 
This result descends from Svanberg [6], who showed that stiffness optimization of a structure 
whose finite element structural stiffness matrix is linear in the design variables can be made 
convex. This is proved slightly differently below. Layup opt imizat ion using laminat ion 
parameters is a significant improvement over optimization using thicknesses and layup angles of 
discrete ply laminates as design variables, since in the latter case object functions such as 
buckling loads often show very complicated behaviour with many local optima. 

2. C O N S T I T U T I V E P A R A M E T E R S 

In the following, Einstein's summation convention is used and repeated indices α, )3, γ, δ 

range from 1 to 2. The constitutive equation for a ply under plane stress (cpP) conditions is 

σαβ=<2αβγδεγδ (1) 

where QaP^(xa^z) is the stiffness tensor and £γδ(χα>ζ) a r e m e m b r a n e s t ra ins . xa are 
coordinates in the middle surface of the structure, and ζ is the through-the-thickness coordinate. 
The Kirchhoff kinematics for a shell with small thickness-to-curvature ratio are 

ε16 = ε°16 + ζκι* ( 2 ) 

where ε°γδ = ε°γδ{χα) are middle surface strains and κγδ = κγδ(χα) is change of curvature . 
ufaa) are in-plane and w(xa) is out-of-plane deformation. Different kinematic expressions 
relating deformations «χ and w to strain measures ε°γδ and κγδ for shells exist. For flat plates 

e°rs=\(ur\s + u5\r) (3) 

and 

*>=-H,* · (4) 

The strain energy per unit area, W (neglecting through-the-thickness stresses and strains) 

1 Λ/2 

W = i \σαβεαβάζ (5) 
Z - Λ / 2 
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where h is the local thickness of the shell, becomes 

W = \(Αα^ε"αβε;Β + 2B°™ + ϋ ^ κ α β Κ γ Β ) (6) 

with the stiffnesses 

Λ/2 

( A * * , Βαβγδ , Dal3rS} = J { l , ζ , z 2 } Q a ™ dz . (7) 
- Λ / 2 

The strain energy is linear in the stiffnesses ΑαβΎδ, ΒαβΎδ, Όαβγδ if the deformation is fixed. 
Using the expressions derived by Tsai and Pagano [1] for rotational transformation of 

stiffnesses of a ply from one orthogonal coordinate system to another 

Qn = Ul + U2 c o s 2 0 + £ / 3 c o s 4 0 , 

Q22 = "ι " U2 c o s 2 0 + U3 c o s 4 0 , β 1 1 1 1 = Qn, β 1 2 1 2 = & 6 , 

β 1 2 = U4 - U3 c o s 4 0 , β 1 1 1 2 = β 1 6 , β 1 2 2 2 = β 2 6 , 

ft6 = - U4) - U3 c o s 4 0 , β 1 1 2 2 = Ql2, β 2 2 2 2 = β 2 2 , 

β 1 6 = iU2 s i n 2 0 + î / 3 s i n 4 0 , Qm = Qilk = Qklij, 

β 2 6 = | t / 2 s i n 2 0 - 1 / 3 s i n 4 0 , 

where 0 is the off-axis angle and t/,- are elastic stiffnesses of the ply, see e.g. Table 1, the 
normalized stiffnesses can be expressed as 

κ = u1+u& + u&, 
= ul-u& + u&, = Λ ι . 

A* = u4-u&, A1112 
= Λό ' A1222 =A26 

=m-u4)-u&, A1122 
= A 2 » 

^ 2 2 2 2 _ ^ 

A; = A** = AM\ 

tf, = υ2ξ? + υ3ξ2°, 
B22 = -υ2ξ? + υ,ξΒ

2, B u u = 4.. B12N=B66, 

BL2 
B m i BM2=B26, 

B;6 

BU22 
= ^ 1 2 ' 

D2222 _ η 
£> — X > 2 2 , 

Bm z = β* = Bklij 

B26 

(9) 

(10) 
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D'n=U1 + U&D + U&, 

66 ' 

A*6 = i ν2ξξ + υ3ξ?, D''u = Dm = DHii. 

in an orthogonal curvilinear coordinate system. In eqs. (8) to (11), ζ)αβΎδ ,ΑαβΎδ, ΒαβΥδ, 
and DaP7s are the physical components of the corresponding tensors. The normalization is 

Aij* = Aij1 h ' 

B{j* = 4 Bij I h2 , (12) 

Dif = 12 Dij/tf. 

ζίΑ > ζίΒ , ζΡ are the lamination parameters 

[̂1.2.3,4] - [ c o s 2 0 , c o s 4 0 , s i n 2 0 , s i n 4 0 ] d z * , 

l[?.2,3,4]= j\ [ c o s 2 0 , c o s 4 0 , s i n 2 0 , s i n 4 0 ] z * dz*, (13) 

§[u,3,4] =^"J 1 [ c o s 2 0 , c o s 4 0 , s i n 2 é ^ s i n 4 0 ] z*2 d z \ 

where z* = 2 ζ / h is the normalized through-the-thickness coordinate. The material in all plies 
must be the same (inter-laminar hybrids are not allowed, but intra-laminar are OK). 

In this paper the lamination parameters ξιΑ , ξιΒ , ξΡ are used as design variables for the 
layups of the structures. The stiffnesses are thus expressed as linear combinations of the twelve 
lamination parameters ξιχ (X=A,B,D, z=l,2,3,4) according to eqs. ( 9 ) - ( l l ) , and consequently 
also the strain energy is a linear function of the lamination parameters (keeping the deformation 
fixed). This will later be used to show that the object functions are concave. 

Tab l e 1. Typical material constants [7] 

Material Vι (GPa) V2 (GPa) U3 (GPa) V4 (GPa) 
graphite/epoxy 

T300-5208 
76.4 85.7 19.7 22 .6 

3. P R O B L E M F O R M U L A T I O N 

The lamination parameters are chosen as design variables for the layup optimization. A 
major benefit of this approach is that all physically possible layups are included using a 
minimum number of design variables. This choice also leads to significant simplifications 
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during the optimization which are due to the fact that local optima are avoided. Below, the object 
functions are stated. 

3.1. Static Deformation 
The solution of a linear elastic static problem is obtained as the minimum of a functional of 

the deformation, the potential energy U. For plates, 

U[uaM = \w(ua,w)aS-jpwaS- J V w d r / + J Μξξ^άη-\τβ Ηβάη-^Rw (14) 
s s dsv dsM dST »'=i 

where S is the plate surface, dS is the boundary of the plate, dSv is the part of the boundary 
where Vis specified, etc. (ξ,η) is a local coordinate system with η along the boundary of the 
plate and ξ along its outward normal. The loads are design independent and dead (deformation 
independent), ρ is load per unit area on the plate surface and it is defined positive in the positive 
ζ direction. Vis the equivalent boundary shear force 

ν = <2ανα+^-(Μαβναββ) , (15) 

Μξξ is the moment parallel to the plate boundary 

Μξξ=Μαβνανβ , (16) 

Τβ is the membrane traction 

Τβ=Ναβνα (17) 

and R is the equivalent comer force 

R = [Ma\ep]^ (18) 

where r\c is the η coordinate of the corner. Above, the transverse shear loads Qa are 

Λ/2 

Qa= \σζα dz , (19) 
-Λ / 2 

the bending moments Μαβ are 

A/2 

Μαβ= \σαβ zdz , (20) 
-Λ / 2 

and the in-plane loads N°fi are 

Λ/2 

Ν α β = j ^ d z (21) 
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and ν a and ββ are the components of the normal and tangent vectors, respectively, on the 
boundary of the plate. Observe that dSv, dSM, and dST may overlap. The strain energy W is 
expressed in displacements using some kinematic relations between displacements and strains 
and changes of curvatures. In the case there are springs, extensional or rotational, attached to the 
structure, their deformation energies should be added to the integral of the strain energy. 

The object function to be maximized is 

UBda=mmU[ua,w] (22) 
U<X'W 

which is a measure of the stiffness of the structure, see below. £ / m m is a function of the layup, 
i.e. the lamination parameters. Because of the minimum of the potential energy for the true 
deformations ua, w, 

U[ua,w']>U^ (23) 

for any test deformations ua, w* fulfilling the kinematic boundary condit ions. Eq. (23) thus 
constitutes an upper bound for the object function. Observe that U is linear in the lamination 
parameters if the deformation is fixed. 

Cases of practical interest are e.g. 

(/) Prescribed concentrated load Ρ (or moment). The object function is then 

U^=~Puf (24) 
where up is the displacement corresponding to the concentrated load. Maximization of £ / m m is 
equivalent to minimization of the displacement up. 

(ii) Pressure load on S, when 

U^=~jpwàS. (25 ) 
S 

Maximizing Umm  equal s minimizin g th e weighte d averag e displacemen t 

jpwdS. (26 ) 

3.2. V i b r a t i o n 
The squar e o f th e lowes t e igenfrequency , ofi,  i s chose n a s th e objec t functio n fo r th e 

vibration optimizatio n task . Th e Rayleig h quotien t fo r th e vibratio n proble m i s 

jW(ua,w*)dS 

s 

which i s a n uppe r boun d fo r th e objec t function , cfi,  fo r an y tes t function s u* œ w * fulfillin g th e 
kinematic boundar y conditions . I n cas e spring s ar e present , thei r deformatio n energie s shoul d 
be adde d t o th e numerato r o f eq . (27) . Th e Rayleig h quotien t R vn,r ma y b e considere d a s a 
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"potential" to be minimized for the vibration problem. R^R is linear in the lamination parameters 
if the deformation is fixed. 

3.3. B u c k l i n g 
For the buckling optimization, proportional loading independent of the layup is assumed 

Ν α β = γ Ν , α β ( 2 8 ) 

where Ν*<Φ are initial membrane loads for a reference state. The load factor / w h e n instability 
occurs is taken as the object function. 

The Rayleigh quotient gives an upper bound for the object function. For plates, 

$W[w*]dS 

#w*k1 = 2 - r J · (29) 
J w > , ; ds 

s 
when the denominator is positive definite and w>* fulfils the kinematic boundary condit ions. 
RBUCK may D e considered as a "potential" to be minimized for the buckling problem. As for the 
vibration task, if springs are attached to the structure their deformation energies should be added 
to the numerator of eq. (29) and, further, R^UCK * s linear in the lamination parameters if the 
deformation is fixed.. 

4. C O N V E X I T Y O F T H E F E A S I B L E R E G I O N 

Let the bold symbol ξ[θ\ represent a vector consisting of the twelve lamination parameters 
obtained with the layup 0(z*). This vector might either be constant all over the structure, or it 
might be an arbitrary function of xa, the coordinates in the middle surface of the structure, i.e. 
the layup is either the same in all points of the structure, or it changes. The feasible region of the 

lamination parameters is convex, i.e. there exists a vector αξ in the region between any two 

vectors ι ξ and 2 ξ in the region: 

αξ=ΐξα+ 2 δ ( 1 - α ) (30) 

for any a e R [ 0 , l ] , see Fig. 1. This is seen by dividing the z* interval [ -1, 1] into Ν 
infinitesimal intervals 

such that both of the layup functions \θ(ζ*) and 2#(z*) (corresponding to \ξ and 2ξ» 

respectively) are continuos within each Azi* . Within each Azi* the layup a 0 is chosen as a 

mixture of both 1 θ and 2O : 

\fi(z) for z G ( ζ*, ζ* + α Αζ* ) 
αθ(ζ) = { β _ (32) 

[2θ(ζ*) for ζ* G ( ζ* + α Αζ*, ) 
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see Fig. 2. When the length of the largest Δζ* approaches zero, ξ[αθ] approaches α ξ . Only 

the first component of ξία^Ι will be studied to show this : 

ι j , ι Ν-I z-+aA^ 

Κ [ * θ ] = τ J cos(2 αθ(ζ)) dz = -X J cos(2 ,θ(ζ)) dz* 
2 -ι 2 ί=ο z ; 

+ ~Σ Jcos(2
 2^(z)) dz = α-Χ Az*cos(2 ^ ( ζ ' + ^ α Δ ζ * ) ) 

2 <=0 ϊ+οΑζ* 2 ΐ=0 (33) 

ι Ν-I 

+ ( 1 - α ) r Σ Az*cos(2 2 0(ζ* + α Δ ζ ; + 2 £ ( 1 - α ) Δ ζ ; ) ) 
2 ΐ=0 

^ ι Λ [ ι ^ ] + ( 1 - « ) ^ [ 2 ^ ] w h e n m a x A z * - > 0 

where £ m d 2ζ e R [0 ,1] .The first equali ty is obtained using eq. (32), the second 

equality is due to continuity within each interval Azi*. The remaining components of ξ [ α 0 ] 
follow the same pattern, and the proof is thus considered completed. 

Fig . 1. The region of the lamination parameters is convex. 
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Fig. 2. Construct ion of 

5. C O N C A V I T Y O F T H E O B J E C T F U N C T I O N S 

Using the result that the strain energy is a linear function of the lamination parameters for a 
fixed deformation, it will be shown that the object functions to maximize (the potential energy 
for the static problem, the square of the eigenfrequency for the vibration problem, the load factor 
for buckling) are concave functions of the lamination parameters. This result is descending from 
Svanberg [6], who showed that "convex" optimization problems can be obtained when the 
structural stiffness matrix of a finite element discretization of a structure is linear in the design 
parameters . Concavi ty of the object functions is independent of whether the laminat ion 
parameters are constant or change from region to region in the structure. "Potentials" fulfilling 
minimum properties for the true deflection functions are used. These are U for the static 
problem, and the Rayleigh quotients /?v;z?r for the vibration and Rbuck for the buckling problems; 
jointly they will be called R below. For simplicity, the in-plane and out-of-plane deformations 
are collectively denoted w. The object functions are thus min R. 

w 

Now consider the object function min R with the solution aw for the layup 
w 

« ξ = ΐ ξ α + 2 ξ ( 1 - < Χ ) (34) 

for any a € R [ 0 , l ] . The object function min R is a concave function, Fig. 3, of the lamination 

parameters since 

m j n = R{J, aw) = aR(£, aw) + (1 -a)R{£ , aw) 

>amir\R(£) + (l-a)minR(^) 
(35) 
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where the second equality is obtained because of the linear dependence of the strain energy on 
ξ. Observe that the result is valid independent of whether the layup is constant in the whole 
structure (in-plane homogeneous) , or if it is different in a finite number of regions, each with a 
constant layup. It is thus valid for both cases schematically shown in Fig. 4. 

min R 
w 

Fig. 3. R is a concave function of the lamination parameters. 

F ig . 4. P la te with in -p lane h o m o g e n e o u s layup (left) and plate wi th in -p lane non-
homogeneous layup (right). The layup of the right plate is different in a finite number of 
regions, each with a constant layup. The line pattern symbolizes e.g. fiber directions. 

The fact that the feasible region is convex and the object functions that should be maximized 
are concave considerably simplifies the optimization. Such optimization problems have no local 
optima but jus t one global opt imum, e.g. [8]. Fig. 5 shows an example of problems arising 
when layup angles are used as design variables - lots of local optima [9]. 

If, for some reason, one would be interested in finding the layups that minimizes potential 
energies, minimizes eigenfrequencies or minimizes buckling loads, the optimal designs will be 
extreme points of the boundary of the feasible region [8]. 
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Fig. 5. Buckling load of a uni-axially compressed cylinder versus Θ\ and 02 in a (+/ -01, +/-
02) layup, from Zimmermann [9]. 

6. F E A S I B L E R E G I O N , S O M E S P E C I A L C A S E S 

The major problem with optimization using lamination parameters to describe the layup is 
that the feasible region of the twelve lamination parameters still is not fully known. Because of 
the normalization, all lamination parameters satisfy 

Î f e R [ - l , l ] . (36) 

6.1. I n - p l a n e P r o b l e m s 
Some structures are completely determined by the in-plane stiffnesses Ay, e.g. structures 

subject to in-plane stresses only and with no coupling between in-plane stresses and out-of-
plane deformations, By = 0. For the optimization of such structures only the four in-plane 

lamination parameters are needed. If the structure further is orthotropic, only two parameters 

are needed, ξ\Α and . The feasible region of these two parameters was determined by Miki 
[2]. It is simply derived using Schwarz inequality 

1 1 fl 

\F2AZ jg2dz* -\JFGAZ* 
-Ι -L V-I 

> 0 (37) 

with 

/ = l , S = cos(20(z*)) (38) 

and thus 

1 + ξΐ-2Ξ?2Ζ0 . (39) 

This, together with eq. (36), gives an "outer boundary" of the feasible region, but since it can be 
realized using a discrete layup where the layup angle 0 is independent of its position through the 

file://-/jfgaz*


322 

thickness ζ , this is together with eq. (36) the true feasible region of ξ\Α and , see Fig. 6. 
The curved boundary of the feasible region is described by an off-axis uni-directional laminate 
(+0i) or, equivalently, by an angle-ply laminate (+Ι-Θ\). 

Fukunaga [4] derived the feasible region of the four in-plane lamination parameters, and the 
result is, besides eqs. (36) and (39), 

Any combination of these four lamination parameters can be realized with a small number of 
discrete plies [4]. 

F ig . 6. Feasible region of ξ\Α and or, alternatively, of ξ\° and %2D-

6.2 . O u t - o f - p l a n e P r o b l e m s 
It is quite common that the in-plane and out-of-plane equations for plates can be uncoupled. 

Examples are bending, vibration, and buckling of plates lacking coupling stiffnesses, By = 0 
(and statically determined in-plane loads in the case of buckling). To optimize for example 
deflections, vibration frequencies and/or buckling loads of such structures, only the four out-of-
plane lamination parameters ξΡ are needed. If the structure further is orthotropic, only two 

parameters are needed, ξ\Ό and ξτΡ . The feasible region of these two parameters was 
determined by Miki [3]. It is besides eq. (36) 

which is illustrated in Fig. 6. The boundary of the feasible region is described by an off-axis 
uni-directional laminate (+Θ\) or, equivalently, by an angle-ply laminate (+/-0i) . Fukunaga [4] 
derived the feasible region of the four out-of-plane lamination parameters which, besides eqs. 

2(1 + # )ξ? - 4ξ?ξ1ξΪ + | ί 2 < (ξ* - 2ξ? + l)( l - | 2

Λ ) . (40) 

1 + | 2

ο - 2 | , ° 2 > 0 (41) 

(36) and (41), is 

2(1 + ξ?)ξ» - 4ξ?ξ?ξ? + g 1 < (ξ? - 2ξ? +1)(1 - ξ?) . (42) 

Again, any combination of these four lamination parameters can be realized with a small number 
of discrete plies [4]. 
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6 .3 . Orthotrop ic L a m i n a t e , Coupled P r o b l e m s 
The behaviour of for example shallow orthotropic shells generally depends on both in-plane, 

Aij , and out-of-plane, Dij , stiffnesses. ξ\Α , , ξ\° , and fyP describe the stiffnesses of a 
general orthotropic laminate; the other lamination parameters are zero. For optimization of 
orthotropic laminates, the feasible region of the four lamination parameters ξ\Α , , ξ\° , and 

ξ2° is therefore needed. The region is obtained by determining the layup function which 
maximizes the functional 

F[d(z)] = Κξΐ[θ(ζΊ] + k&[d(z)] + k£?[e(z)} + Κξϊ[θ(ζ)} 

= ^ { f ê +  ) eo s (2^U*) ) +  ^  +  ] eo s (4^U*) )}c i ^ (43 ) 

s i! 1
 G {KZ))& 

where th e ki  ar e give n number s an d G  i s define d b y th e las t equality . Geometr ical l y thi s i s 
i l lustrated i n Fig . 7 . F  i s constan t o n a  hyperplan e whos e norma l i s (k\,  &2 > &4) · B y 
increasing F , th e hyperplan e i s translate d i n th e norma l direction . Th e maximu m o f F  fo r give n 
ki i s obtaine d whe n th e hyperplan e i s tangen t t o th e feasibl e regio n o f th e laminatio n parameters . 
Thus, th e layu p obtaine d b y extremizin g F  yield s laminatio n parameter s o n th e boundar y o f th e 
feasible region . B y determinin g th e layup s fo r al l directions , i.e . fo r al l ki  wit h ft, 2 =  1 , th e 
feasible regio n i s obtained . 

Fig. 7 . Th e principl e fo r determinin g extrem e point s o f th e feasibl e region . 

Another interpretatio n o f eq . (43 ) i s tha t k^\ A i s extremize d whe n th e othe r laminatio n 

parameters , ξιΑ, E,\D, &D, are constrained to certain values, i.e. a constrained optimization 
where ki, £ 3 , and £ 4 are Lagrange multipliers. 

The functional F could be extremized using variational calculus, which results in the Euler 
equation 
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H = 0 «=> s i n 2 0 [ ( ^ + 3 ^ z * 2 ) + 2 ( 2 ^ 2 + 6 ^ 4 z * 2 ) c o s 2 0 ] = O 

thus either 

s in20 = 0, i.e. cos20 = 

or 

(k, + 3k3z*2 ) + 2(2k2 + 6k4z*2 ) c o s 2 0 = 0 . 

(44) 

(45) 

(46) 

These conditions are necessary but not sufficient since they do not determine the layup uniquely, 
i.e. where eq. (45) and where eq. (46) should be fulfilled. The Euler equation is not expected to 
yield a sufficient condition since 0 not necessarily has to be a continuos function of z*. A 
stronger requirement can though be obtained by requiring that 

F[e(z*)]- Ρ[θ(ζ*) + ΰ(ζ*)]ϊ0 (47) 

for, in the present case, any piece wise cont inuos test function ϋ(ζ ) . û(z  )  i s chose n a s a 
*  . narrow "peak " a t ZQ  i n orde r t o ge t a  requiremen t o n 0  locall y : 

û(z) =  A[H(z  -  z* ) -  H(z  -  z 0* -  ε)] (48) 

where Η is the Heaviside step function, and ε and Δ are the width and height of the peak, see 

Fig. 8. ε is infinitesimal and positive, whereas Δ is arbitrary. 

θ ' β 
Γ "i i :δ 
I ι 
I ι 

Ζ* ζ* 

Fig. 8. θ(ζ*) and the test function ϋ(ζ*). 

Eq. (48) in eq. (47) gives 

F[d(zj\ ~ F[e(z) + 0 (z*)] = £ {G(0(z*» - G(0(z*) + 0(z*))} dz* 

= J?+ £{G(0(z*))- G(0(z*) + A)}dz* - > ε{Ο(θ(ζ'0))-Ο(θ(ζ"ο) + Δ)} (49) 
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where R is defined by the last equality. R should be non-negative for arbitrary Δ, i.e. 

R = 2 ^ | + ψζ*2 ){cos(20(z o*)) - cos(20(z o*) + 2Δ)} 

+ 2 ( y + ψζο2
 ){cos(40(z o*)) - cos(40(z o*) + 4Δ)} (50) 

= (c-cA){bl+b2(c + cA)}>0 

where 

c = cos(20(z o *)), 

c A = c o s ( 2 0 ( z o * ) + 2 A ) , 
( 5 1 ) 

bx = ki + 3fc3z0 , 
*2 

b2 = 2k2 + 6k4z0 . 

Eq. (50) should be fulfilled for all cA € R [ - l , 1] and, successively, for all z^ € R ( - l , 1) save for 

intervals of zero measure. This gives a layup function θ(ζ*) which yields lamination parameters 
for a point on the boundary of the feasible region. Since eq. (50) should be fulfilled for any 
z*0 e R ( - l , 1), the subscript 0 on zo* is from now on omitted. Eq. (50) is independent of the sign 
of z* so the layup on the boundary will be symmetric. It is accordingly sufficient to study the 
interval z* G R(0,1) . How 0 is determined is schematically explained in the algoritm in Fig. 9, 
and also explained below. 
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If b 2 < 0 t h e n 
If 1 c c > l t h e n 

c = l 
elseif -1 < cc < 1 then 

c = cc 
elseif cc < -1 t h e n 

c = - l 
e n d i f 

elseif b2 > 0 t h e n 
if cc > 0 then 

c = - l 
elseif cc < 0 t h e n 

c = l 
elseif cc = 0 t h e n 

e = +/-1 (see the text) 
e n d i f 

elseif b2 = 0 t h e n 
if b l > 0 then 

c = l 
elseif b l < 0 t h e n 

c = - l 
elseif b l = 0 t h e n 

! This will occur only on intervals of measure zero 
e n d i f 

e n d i f 

Fig. 9. Pseudo code for determination of cos20. 

To find the layup angle θ at a certain z* for given ku c should be selected such that R > 0 for 

any cA e R [ - l , 1]. All k( are not allowed to be zero simultaneously since F then is identically 

zero, eq. (43). At a certain z*, values of bj and b2 are calculated according to eq. (51). First, 
assume that 1)2 is non-zero at this point; that case will be dealt with later. In the c-CA-plane, R is 
then zero only on the two crossing lines c - c& = 0 and b\ + £?2(c + c&) = 0, Fig. 10. The value 
of c at the crossing is called c c , and 
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C 7 C A =0 

-1.0 

1.0 fci+fc2(c + c A ) = 0 
Fig. 10. The c - CA - plane and its regions. 

R is positive either in regions 1 and 3, or in regions 2 and 4. When b2 < 0 then R is positive in 

regions 2 and 4 , and the only value of c for which R > 0 for all c A G R [ - l , l] is c = cc when 

c c G [ -1 ,1] . If c c £ [ - 1 , 1 ] , then c - 1 for c c > 1, and c = -1 for cc < - 1 . 
When R is positive in regions 1 and 3, i.e. when hi > 0, then c = -1 if cc > 0, and c = 1 if cc 

< 0, as seen in Fig. 10. When cc = 0, then c = +/-1 i.e. the layup is not uniquely determined. If 
both kj and ks are zero, i.e. b\ is identically zero (b\ = 0 for all z*), then the layup cannot be 
determined solely by the requirement that R > 0. If b\ not is identically zero then there is no 
problem since the layup is indeterminate only in a point and thus the integrals for the lamination 
parameters are not affected. The case when b\ is identically zero and b2 > 0 will be dealt with 
later. 

W h e n b2 is ident ical ly zero, b\ is not identically zero s ince all £,· canno t vanish 
simultaneously. b\ may vanish for certain ζ but the layups in these points are immaterial since 
these intervals are of measure zero. If b\ > 0 then c = 1 is required for R to be positive for all 
cA G R [ - l , 1], and if b\ < 0 then c = -1 is required, see Fig. 10. 

The remaining case, b2 > 0 and b\ identically zero, will be dealt with now. b\ is identically 
zero only when ^1=^:3 = 0, i.e. the feasible region of only two of the lamination parameters , 

ξ2

Α and is determined. ξ^Α and ξ 2

Β depend only on cos40. Above it was shown that c -
and since cos40 = 2 c o s 2 2 0 - 1 = 2 c 2 - 1, these lamination parameters are independent of 

the sign of c. Since b\ = 0, cc = 0 and the layup will be c o s 4 0 = 1 when bz>0 and c o s 4 0 = -1 

when b2 < 0. b2 is symmetr ic in z* and changes sign at most once is the interval ζ* ^ 0. 

Integrating and ^p, their feasible region is readilly determined to 

7 — + 1. (53) 
4 4 

ξ\Α and ξ\° are still undetermined. They cannot be determined from the requirement that R > 0 
because the feasible region is locally non-strictly convex or, geometrically, it is "flat" locally, 
and thus uniqueness of the lay up is lost. However , c = l o r c = - l i s required. The remaining 
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problem is to determine where c = 1 and where c = - 1 . depends only on the fraction, μ, of 

the z* interval where c = 1 and c = - 1 , not the position through the thickness, whereas ξ\° does 
depend on the position through the'thickness; see the definitions of the lamination parameters in 
eq. (13). Consider the following example where k2 = 4/5 and £4 = -3/5 apart from k\ = £3 = 0. 
Since the layup will be symmetric , only the region -z* > 0 is analysed. b2>0 for z* < 2 /3, and 
otherwise hi < 0. c = 0 for hi < 0, i.e. c = 0 for z* > 2/3. For z* < 2/3, c = 1 or c = - 1 . Fixing 
£ l A , the fraction μ is determined : 

1 μ2/3 LIS i ry 

#=J c o s 2 0 d z * = J l d z * + J ( - l ) d z * + J Odz* = - ( 2 μ - 1 ) (54) 
μ2/3 

thus, in this example, 

| l D then varies between 

1 /i2/3 2/3 1 fl\3 

£ D = 3 J c o s 2 0 d z * = 3 J z* 2 dz*+3 J - z * 2 dz* + 3 J 0dz* = - J ( 2 μ 3 - 1 ) 
π 0 μ2/3 on v 3 / 

which is obtained by placing all fraction of c = 1 closest to the middle of the laminate, and 

1 (1-102/3 2/3 1 / λ χ 3 

£ D = 3 j c o s 2 0 d z * = 3 J - z * 2 d z * + 3 J z*2 dz*+3J Odz* = ( | ( 1 - 2 ( 1 - / / ) 3 ) 
0 0 (1-μ)2/3 on 

(56) 

(57) 

which is obtained by placing all fraction of c = 1 as close to the surface of the laminate as 
possible. Any value of ξ\& between the values of eq. (56) and eq. (57) can be obtained. With 
this, the layup on the boundary of the feasible region of the four lamination parameters needed 
for an orthotropic composite is completely determined. 

Now that the layup is known on the boundary of the feasible region, the feasible region is 
simply determined by integrating the lamination parameters. The four-dimensional region is 
naturally difficult to display visually, but fixing the two in-plane lamination parameters ξ\Α and 

ξ2Α , the feasible region of ξι& and fyP can be displayed. An example is provided in Fig. 11 
where ξ\Α = = 0. In this figure, the boundary according to Fukunaga [5] is also shown as 
well as an outer boundary which is derived in the Appendix. As clearly seen, the region of 
Fukunaga is too small, and it is thus not - contrary to what was stated in the paper [5] - the true 
boundary of the feasible region of those four lamination parameters. 

For optimization it is easier and sometimes appropriate is to use either an outer boundary of 
the feasible region, obtained e.g. by Schwarz inequality in the Appendix, or the inner boundary 
obtained by Fukunaga [5]. 
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-1.0 I 
Fig. 11. The true feasible region of ξ\° and ξ^Ρ (inner continuos line) when ξ\Α = ξ2Α = 0. 
Also, the inner boundary according to Fukunaga [5] ( inner dashed curve) , and an outer 
boundary derived in the Appendix (outer dashed curve). 

7. S O M E A P P L I C A T I O N S A N D R E S U L T S O F O P T I M I Z A T I O N 

7 . 1 . In -p lane H o m o g e n e o u s Rec tangu lar Plates 
For in-plane homogeneous plates (thicknesses and stiffnesses independent of in-plane 

Cartesian coordinates) without bending-extension coupling stiffnesses , the equations for 
bending, vibration, and buckling are, respectively, 

'Malh6=P> 

Da^w\aM=pœ\ (58 ) 

»αβγδΜαβγδ = ("1}Μί)1· 

Design independent loads are assumed. The expression 
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where a and b are the in-plane dimensions of the plate, and m and η are integers, plays an 
important role for orthotropic simply supported plates concerning deflection, vibration, and 
buckling. This expression is linear in the bending stiffnesses D\\, D\% D22, and and these 
stiffnesses are linear in the lamination parameters. Accordingly, the maximum and minimum of 
φ will be found on the boundary of the feasible region, eq. (41). It is clear that the optimal 
fundamental eigenfrequency (m=n=l ) of simply supported plates always will be located on this 
boundary, s ince û ) 2 =  π 4 0 / p ; see also Fig. 12. The boundary of the feasible region is 

described by an angle-ply laminate , θ = (+ / -# i ) , i.e. there is only one remaining design 

variable, e.g. the layup angle θ\. Analytical and numerical studies of rectangular orthotropic 
plates show that the optimum usually is located on the boundary of the feasible region, see Fig. 
12 and e.g. Grenestedt [10,11]. 

When the deflection is symmetric for an orthotropic laminate, it can be shown that non-zero 
Z>16 and Z>26 terms never improve the performance of the laminate, e.g. Grenestedt [10,12,13]. 

Numerical studies of shear buckling of a rectangular non-orthotropic plate indicate that the 
opt imum again is determined by a single parameter, this t ime the off-axis angle of a uni
directional laminate, Grenestedt [11]. 

9 I? 
Fig . 12. Examples of object functions versus the lamination parameters ξ\° and ξ2Ε> for 
simply supported orthotropic rectangular plates. From left to right and up to down: potential 
energy for static deformation ( £ / m i n ) for a/b=l.3 and uniformly distr ibuted surface load, 
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vibration frequency ( ω 2 ) fora/fc=1.3, buckling load during uniaxial compress ion (TV1 1) for 
a/£=1.3, and buckling load during shearing (TV12) for alb=\.l. The maximum and minimum are 
found on the boundary of the feasible region. 

7.2. In -p lane H o m o g e n e o u s Orthotrop ic El l ipt ical P lates 
For a uniformly distributed load p0 on an elliptical clamped plate with in-plane dimension a 

and b, the deflection is 

Since the inverse of the deflection is linear in the lamination parameters, the optimal layup will 
apparently be an angle-ply (+/-0i) , independent of whether the layup for maximum or minimum 
stiffness is sought. Interest ing to note is that for a round plate (a=b), the deflection is 
independent of the lamination parameters, i.e. all layups are equivalent (even laminates with 
non-zero D\6 and I>26 stiffnesses). 

8. S T R E N G T H O F M A T E R I A L 

The strength of composi te material plies strongly depend on the orientation of the plies 
relative the stress field. The longitudinal failure stress can be in the order of twenty t imes the 
transverse or shear failure stresses. The longitudinal failure strain is though usually in the same 
order as e.g. the transverse failure strain. A failure criteria based on strains is far less dependent 
on orientation of the plies than a failure criteria based on stresses. An approximate failure criteria 
can be based on the invariants of the strain tensor, thus the composite 's strength would be 
independent of the rotation of the strain field. Tsai and Hahn [7] dwelled upon such a criteria 
which can be used as a conservative first-ply-failure approximation. For a failure criteria based 
on the invariants of the strain tensor, lamination parameters can be used. 

9. C O N C L U S I O N S 

It has been shown how layup optimization can be cast in a fully "convex" form, thus 
avoiding all t roublesome local optima. All physically possible layups were included using a 
minimum of design variables. The feasible region of the four lamination parameters needed for 
an orthotropic laminate was determined. A number of simple examples of optimization were 
provided. 
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A P P E N D I X 

A l . S o m e S i m p l e C o n s t r a i n t s 
The feasible region of pairs of lamination parameters can easilly be obtained with the 

approach of Section 6.3 above. The layup on the feasible region of e.g. ξ\Α and ξ\Ώ is found 
using eq. (50) with &2 = ^4 = 0. Below, some scattered results are expressed : 

+ 1 (A.1) 
4 4 

+ 1 (A.2) 
4 4 

ΙΙ,Ί-ι + ^ ο (A.3) 

| # | - i + #2 <o (A.4) 

|^|-ι+|^|3'2<ο (A.5) 

|£>|-i + ||2f2<o (A.6) 
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A 2 . O u t e r B o u n d a r y of t h e F e a s i b l e R e g i o n 
An outer boundary of the feasible region of the lamination parameters can be found using 

e.g. Schwarz inequality 

J f2dz J g2dz-(j fgdz)2>0 . (A.7) 

Table A l lists a number of constraints obtained in this way. The constants e, e\ , and e2 are 
selected so that the left side of eq. (A.7) is minimized. In order to find a better boundary for the 
feasible region of ξ\Α, ξ2

Α, ξι°, ξ2° the results of eq. (45) and (46) must probably be 
incorporated. 

T a b l e A l . 

/ constraint 
1 cos 2 0 -1 - ξ2

Α + 2ξιΑΐ <= 0 
1 z* cos 2 0 3 ξ ι * 2 - 2 ( 1 + ξ 2

/ ) ) < = 0 
1 (z*+e) cos 2 0 6ξ1Β2(1+ξ2

Α) + 3(ξ2

Β2-4ξι

ΑξιΒξ2Β) 

- 4 ( 1 + & D ) ( 1 + ξ2

Α - 2ξ\Αΐ) <= 0 
* 

ζ 
cos 2 0 3 £ ι * 2 - 2 ( 1 + ξ 2

Λ ) < = 0 
* 

ζ 
z* cos 2 0 Λ-ξ2

Ό+ 2ξΡ2<=0 
* 

ζ 
(z*+e) cos 2 0 - 2( 1 + 2 ξ ι ^ 2 )( - 3 ξ ι * 2 + 2 ( 1 + & Α ) ) 

+ 3 ( & * - 2 ξ ι * ξ ΐ * > ) 2 < = 0 
*. 

z +e cos 2 0 3 ξ ι * 2 - 2(1 + ^ - 2 ^ 2 ) < = 0 
ζ +e z* cos 2 0 3 ξ ι 5 2 - 2 ( 1 + ξ 2

/ ) - 2 ξ ι Ζ ) 2 ) < = 0 
ζ +e\ ( z*+e 2 ) cos20 see below 

cos 0 z* cos 0 3 | ι « 2 - 4 ( 1 + ^ ) ( 1 + ^ ) < = 0 

cos 2 0 z* cos 2 0 4 3 | 2

β 2 - 4α+&Α)(1+&°) <= 0 
z^+e cos 2 0 5 ( ξ ι Α - ξ ι ° ) 2 

- 2(1 + 1 ^ - 2 | Ι α 2 ) < = 0 
z*2+e\z*+e2 cos 2 0 3 | ι β 2 + 5 ( | ^ - | Λ 2 

- 2 ( 1 + | 2

α - 2 | Ι λ 2 ) < = 0 
z*2+e\ (z*2+e2) co s20 see below 

Α 2 . 2 f = z*+eh g = ( z * + * 2 ) c o s 2 0 
With 

/= z*+e\9 g = (z*+^ 2 )cos 2 0 (A.8) 

another constraint is obtained: 
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ex2 [e2

2(2 + 2ξ^ - 4ξ^2 ) + e2 ( 2 ξ 2 * - Αξ^ξχΒ ) + ( -ξιβ2 + 2 / 3 ( l + £ 2

D ) ) ] 

+ ei[e2

2(- ΑξχΛξι*) + e 2 ( - 2 ξ ι * 2 - 8 / 3 ^ ^ ) + ( - 4/3ξι*ξι*> ) ] 

+ [ * 2 2 ( -ξΐΒΐ + 2 / 3 ( 1 + ^ ) ) + e2 ( - 4 / 3 ξ ι * # > + 2 / 3 & β ) 

+ ( - 4 / 9 ^ 2 + 2 / 9 ( 1 + ^ ) ) ] 

= ^ ι 2 toi + e i f r l ] + M >= Z2 - Z I 2 / (4^0) >= 0 (A.9) 

where the functions χο - χι are defined by the first equality as the quantities within the square 
brackets. The first inequality is obtained by minimizing the expression versus e\. The last 
expression is a function of e% and it is numerically minimized versus this variable. 

A 2 . 3 f = z*2+eh g = ( z * 2 + < ? 2 ) c o s 2 0 

This constraint is appealing since it is zero when the layup angle 0 fulfills eq. (46) which 
was derived using variational methods. It does though not incorporate the result of eq. (45) and 
the resulting constraint can thus not be expected to correspond to the true constraint in more than 
certain areas, whereas for most areas it will just constitute another outer boundary. 

/ = z*2+<?i, g = (z*2+e2)cos 2Θ (A. 10) 

makes the constraint, called C below, 

C(e\,e2) = gl(e\,e2'4) + g2(e\) ti~t\- £3(^1^2) '3 >= 0 (A. l 1) 

where 

gliehei'iï =  (m+mex+2e\2)(2K ei(&^ 

g2(e\) =  2l5  +  4l?>e\  +  2e\ 2 

g3(ei,e2) =  4l?>(e\+e2^\ D +  4 e ^ l A 

( \  V 
JV 4cos20dz* 

1 

t2 =  jY 4 cos 2 20dz* 

h ~  JV 4cos20dz* 

C(e\,ej) i s minimize d vs . e\  an d e 2. Th e thre e integral s t\,  t 2, an d ca n no t b e expresse d wit h 
the laminatio n parameters , s o bound s o n the m ar e used . A n expressio n C*(e\,e 2) whic h i s 
always large r tha n o r equa l t o C(e\,ei)  i s thu s constructed , 

C*(ehe2) =  gl(ehe 2& +  gi(e\)t 2

b -  t\ b -  g^(e\,e 2)t^ > = 0  (A . 12 ) 
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where tfi is the bound for the integral r;, i= 1,2,3. 
g2(e\) is positive for all e\, and thus an upper bound for t2 must be used. gi(e\,e2) c a n be 

either positive or negative. When #3(21,^2) is positive a lower bound on Γ3 must be used, and 
vice versa. t\ is positive since it is a square of a real quantity. t\ is preceeded by a minus sign 
and therefore a lower bound has to be used. Bounds on t\ - £3 were obtained using the method of 
Section 6.3 and Schwarz inequality. The bounds are as follows : 

t\ : The lower bound of t\ will be derived after the bound of £3 is obtained, see below. 
t2 : Extremizing t2 and fixing ξ2Α leads to a layup with c o s 4 0 = + / - 1 , e.g. 0=0 and 0=45 

deg. An upper bounds on t2 is obtained by using a ( 0 ( ΐ _ α ) , 4 5 a ) s layup, where α is varied 
from 0 to 1, thus 

(A. 13) 

The same procedure but keeping ξ\Ώ fixed leads to the bound 

The smallest of the two upper bounds is used. 
Γ3 : Schwarz inequality with 

f = z * c o s 2 0 a n d g = z * 3 (A. 15) 

gives the bound 

2 ( ^ + 4 ^ + 3 ) 2 
*3 -\l K ' Z - 7 (A.16) 

21 5 

and with 

f = z * c o s 2 0 a n d g = z * 3 (A. 17) 

the bound 

Ι Φ ^ ( # + 1) - (A. 18) 

Extremizing Î3 using the method of Section 6.3 and constraining ξ\Α shows that upper and 
lower bounds on £3 are obtained by using ( 9 0 ( ΐ _ α ) , 0 a ) s and ( 0 ( ΐ _ α ) , 9 0 a ) s l ayups , 
respectively, where a is varied from 0 to 1 : 

+ U . (A.19) 
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The same procedure but keeping ξ\Ώ fixed leads to the bounds 

5 2 
- 1 \<u<-_ -2i + 1 (A.20) 

When gi(e\,e2) is positive a lower bound on (3 must be used, and the largest of the three lower 
bounds is used. When 5 3 ( ^ 1 , 6 2 ) is negative an upper bound on £3 must be used, and the smallest 
of the four upper bounds is used. 
t\ : Using the results above leads to the following bounds, 

h -
f i l l * 

2 
- l j , when | | , Λ | > 2 4 / 5 - l 

0 , otherwise 

(A.21) 

and 

h - 2 
- l j , when %D\ > 2 2 / 5 - l 

0 , otherwise 

(A.22) 

C*(e\ye2) shall be minimized versus e\ and e2. One variable, e.g. e\, is easilly reduced in the 
same way as in the last line of eq. (A9), thus resulting in a function C*(ei). The minimum of 
C*(e2) is then sought by numerical means. The minimization is carried out in three steps. First 
^ 3 ( ^ 1 ^ 2 ) is guessed to be positive, and C* is minimized. If this min imum results in a negative 
^3(^1»^2) then the minimum is neglected. The same is then performed for a negative g3(e i ,e 2 ) . In 
the third step g^(e\,e2) is set to zero, which yields an equation for e\ and e2. C*(e\,e2) is then 
minimized on the curve £3(ei,£2)=0. The smallest of the non-neglected minimum values is the 
one used for the constraint. 
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Abstract 
In this paper we present a solution to the layout and shape optimization 

problem of plate structures using the Mindlin plate theory. The problem is stated as 
the determination of the optimum distribution of ribs symmetrically located above and 
below a central ply made by an isotropic material. We use a method based on 
homogenization techniques where the optimum shape problem is posed a s a 
problem of optimization of material distribution. Numerical examples are presented 
to show the influence of different parameters on the optimum layout and shape of 
plates. 

1 . INTRODUCTION 

Homogenization techniques in layout and shape optimization problems have been 
successfully applied in two-dimensional elasticity ([BEN88, DIA92]) and three-
dimensional elasticity [SUZ91]. This motivates the present study on shape 
optimization of plate structures. Bendsoe [BEN82] used homogenization techniques 
in plates with ribs in one direction and applied a "smear" out procedure to compute 
the homogenized properties of plates with ribs in two orthogonal directions. Suzuki 
and Kikuchi [SUZ92] introduced an approach to compute homogenized plate 
stiffness properties using the homogenized properties derived from two-dimensional 
elasticity. Their procedure was based on the assembly of three plies, two of them 
made using a homogenized material, to build a laminate that models ribbed plates. 
Our interest is in the application of homogenization techniques directly to the plate 
equation to obtain homogenized properties without using the smear out technique of 
Bendsoe or homogenized properties from two-dimensional elasticity. We present 
results following this line of inquiry here. 

In this paper we use homogenized properties derived from the Mindlin plate 
equation, which enab le s us to consider transverse shear deformations. 

GRADUATE STUDENT, 2ASSOCIATE PROFESSOR. 
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Homogenization techniques call for the use of microscopically pseudo-periodic 
materials. In this study we use layered material cells (Fig. 1) to describe the 
microstructure of the material. The advantage of using these cells is that they allow 
one to compute analytically the homogenized properties of plates. In this work we 
use a rank-2 cell (Fig. 1(b)) that can model ribs in two orthogonal directions with 
thickness *a' and 'b\ respectively. These two design variables will describe the 
shape of the plate cross section at each point of the domain. When 'a' or 'b' are 
unity, the plate has thickness 2h2i when 'a' and *b' are both zero, the plate has 
thickness 2hi ; and when 'a' and 'b' are between zero and one the plate has a very 
rapidly varying thickness between 2hi and 2h2- There is a third design variable in 
this problem, the orientation of the principal axes of the material with respect to the 
global coordinate system. 

The idea of assembling plies used in [SUZ92] is also valid when the homogenization 
procedure is performed directly on the plate equation . This is achieved also by 
assembling three plies, but this time the assembly is performed before the 
homogenization procedure is carried out on the plate equation. 

Fig. 1. Layered material plate cells: (a) rank-1, and (b) rank-2. 

Figure 2 shows how the assembly of plies is done before the homogenization is 
performed. To simplify the exposition we use a rank-1 material to build a plate with 
ribs along only one direction. We start with two different isotropic materials, a strong 
one, E+, and a weak one, E", which are used to build two plates made by three plies. 
We label the strong plate one built using the strong material in the three plies, as 
shown in Fig. 2 (a). Similarly, we label the weak plate, a plate built using weak 
material in the lower and upper plies and strong material in the central ply (Fig. 2 
(b)). The stiffness properties of these two plates are computed using classical 
lamination theory [JON75], which yields the reduced stiffness matrix of each plate as 
a function of h i , h2, E + and E". 

A small scale cell is built by cutting a very thin slice (of order ε ) from the strong and 
weak plates and placing the slices next to each other, a s illustrated in Fig. 2 (c). 
The result is a basic cell whose thickness is large (2h2) in comparison with the 
other two dimensions. The strong plate slice represents the ribs and the weak 
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plate slice models the gap between the ribs. This cell is repeated in a domain 
Ω 0 cSR2 to build a large scale plate of dimensions L x x L y x 2 h 2 , as shown in Fig. 2 
(d). The stiffness properties of this plate change rapidly in a small scale. 

In order to build a plate made of a rank-2 material one combines a thin slice of the 
strong plate (Fig. 2 (a)) with a thin slice of the plate made of rank-1 material. This 
stacking process is made in a second direction, e.g., X2- The resulting plate has two 
families of ribs, one running in the xi direction and the other in the X2 direction. 

A similar procedure may be followed to build plates with different cross section 
geometries. Depending on the type of material used in each ply of the weak plate it 
is possible to build plates with internal ribs (honeycomb) or perforated plates 
[SOT92]. 

The optimization algorithm used to solve the problem is based on the optimality 
criteria approach and the equations are derived in section 2. It is found that the 
optimality conditions of the orientations of the local material axes with respect to the 
global coordinate system reduces to the solution of a fourth order polynomial 
equation. The solution of the plate equation at each iteration step of the algorithm is 
based on the finite element method with a four noded isoparametric plate element. 

In section 3 we review the homogenized plate model derived using Mindlin plate 
equations for cells made of layered materials (Fig. 1). Several examples of optimum 
shape of plates are presented in section 4 using the homogenized models shown in 
section 3. Results show that the homogenization technique used in plate problems 
is a powerful tool to obtain optimum layouts and shapes. 

2 . O P T I M I Z A T I O N P R O B L E M S T A T E M E N T 

The objective function in the optimization problem is the mean compliance of the 
plate. This is minimized finding the best distribution of ribs symmetrically located 
above and below the central ply of the plate. 

2.1 T h e D iscre t i zed Opt imiza t ion P r o b l e m 

The design domain Ω is discretized using Ν finite elements. We assume that the 
material properties are constant within each element but vary from element to 
element. Formally, the optimization problem to be solved is: 

Given a prescribed amount of material V< | Ω |, find the rib widths and angle 
orientations a = { a i , a 2 , - - - , a N } , b = {b 1 l b 2 , - - - ,b N } and Θ = {Θ 1,Θ 2,···,ΘΝ} that 
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Fig. 2 Assembly of plies. 

minimize 

3 
C = I i\ UJ όΩ (1.1) 

i=1 Ω 

subject to 

2 J(p(h2 - Π 1 ) + Π ι ) dΩ = 2 I ( ( a e + b e - a e b e ) ( h 2 - + ^ ) Α Θ < V (1.2) 
Ω e=1 

0 < a e < 1 , 0 < b e < 1 , - | < θ θ < | (1.3) 

and equilibrium equations with appropriate boundary conditions. In (1) 
u = {w,0 x ,0y} t is the vector of transverse displacements and angles, Ae the area of 
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each element, 2hi and 2h2 are the heights of the core and ribs, respectively (Fig. 1) 

and ί = {ΊΓΝ,ΊΘ ,1Θ Ϋ «s the generalized force vector. 

2 . 2 Opt imal i ty C o n d i t i o n s 

Here we derive necessary conditions for optimality of a, b and θ in problem (1). 
Introducing multipliers λ > 0, μ, r+, r , s + , s~, the Lagrangian function L associated 
with (1) is: 

L = | l\ u, dΩ + λ [ 2 Σ ( ( a e + b e - a e b e ) ( h 2 - h 1 ) + h 1 ) A e - V | + 
i=1 Ω V e=1 J 

μ*(!-Κϋ) + Σ ( Β β - ΐ ) Γ Β - + l ( b e - 1 ) s J - b e s ë (2.1) 
e=1 e=1 

where Κ is the stiffness matrix of the whole structure. 

2.2.1. Optimality Conditions for a £ and b £ 

Stationarity of L with respect to a and b requires that 

u ^ l ^ - U e = 2 X ( 1 - b e ) ( h 2 - ^ ) Α β + ( £ -r e " ) (2.2) 
d a e 

u ^ U e = 2 λ ( 1 - 3 β ) ^ 2 - ^ ) Α Θ + ( s j - s j ) (2.3) 

for e=1 ,2 , . . . ,N . Ke is the stiffness matrix for the finite e lement e. Also, 
complementarity conditions require that 

S e ( a e - 1 ) = ° and s e a e = 0 

and 

r e ( b e - 1 ) = 0 a n d r e b e = 0 

with s + > 0, s > 0, r + > 0, r > 0 and 
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2.2.2. Optimality Conditions for fl£ 

Differentiation of L with respect to θβ yields to 

3 ^ ( ϋ > θ ) = 0 β = 1 · 2 N < 2 4 > 

Using the strain-displacement relations, equation (2.4) can be expressed in terms of 
plate deformations in each element: 

a ^ K ^ ^ . - 0 N <3) 

where H 2 and Η§ are the homogenized stiffness matrices of the plate in bending and 
shear deformation, respectively. K e and γ θ are the curvature and the shear 
deformation vectors associated with the element e. 

Equation (3) holds for any rotated system of coordinates since the energy term 
(u^Ku e) is invariant with respect to rotations. Therefore, using the standard formulas 
for properties in arbitrary orientation [JON75] it is possible to rewrite (3) as 

< ^ ^ - ° ~>* n
 < 4 » 

where the bar in l-fe and r% indicates that the rotated system of coordinates is used. 
Each one of the Ν equations in (4) becomes a 4 t h order polynomial equation in 
Sin(20e). If membrane-type deformations are considered, equation (4) has an extra 

term of the form ε ! τ ^ " ε β ' where ε β is the vector of membrane deformations and Hfo 

the corresponding rotated homogenized stiffness matrix. This extra term also 
produces a fourth order polynomial in Sin(20e). Therefore, the computation of the 
optimum angle always reduces to the solution of a polynomial equation. 

Equation (4) gives slightly different angles to those computed in two-dimensional 
elasticity, where the optimum angle often coincides with the direction of principal 
strains (see Pedersen [PED89]). This also differs from the method used in [SUZ92] 
where the angle is computed using principal stress directions and, if in-plane 
s tresses are present, contributions from the top and bottom plies are weighted 
differently. Since the fourth order polynomial can be solved exactly, the computation 
of the optimum angles in each step of the algorithm to find the solution is very fast 
and accurate. 
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3. H O M O G E N I Z E D P L A T E M O D E L 

The following is a brief description of the homogenized plate model used here. 
Detailed derivations are found in [SOT92]. Formulas will be given in terms of the 
arithmetic average (Â) and the harmonic average (A), whose definitions are given 
below. 

Arithmetic average. For all x e [ 0 , 1 ] , the arithmetic average Â of two real numbers 
mi and ΓΤ12 is defined here as the function 

A ^ , m 2 £ ) = ξητί! + (1 - ξ)ΓΤΊ2 (5.1 ) 

Harmonic average. For all x e [ 0 , 1 ] , the harmonic average A of two positive real 
numbers mi and rri2 is defined here as the function 

Α ^ , ξ ) = [ « m , ) - + (1 - ξ)(Γη2)Υ = (5.2) 

For positive m-) and m 2 , Â > A and Â = A if and only if mi = m2. 

The average properties of the plate are obtained applying the homogenization 
procedure to the Mindlin plate equations [LEW91, SOT92]. The homogenized 
formulas in bending (H2) and shear (Hs) for a plate made of rank-1 material (Fig. 
1 (a)) with rib thickness 'a' are 

H^1(1,1) = | A ( E t 1 1 1 h 3 , E i m h f + E T m i h l - h ? ) , a) 

H^(1,2) = H^1(2,1) = | A ( E Î - 1 2 2 h | , E ^ h ? + E f 1 2 2 ( h | - h ? ) . a) 

H^1(2,2) = | ( ( 1 -x> 2)Â(E$ 2 2 2hl, E ^ 2 2 2 h 3 + E i 2 2 2 ( h 3 -h? ) , a) + 

v 2 A ( E ^ 2 2 2 h 3 , E ^ 2 2 2 h 3 + E i222 ( h 2 - h ? ) , a)) 

H^1(3,3) = | A ( E Î 2 1 2 h 3 , E t 2 1 2 h 3 + E 7 2 1 2 ( h | - h 3 ) , a) 

H§1(1,1) = 2A(EÎ3 1 3 h 2 , E i a i ^ + ̂ a i h g - r H ) , a) 

H§ 1(2,2) = 2 Â ( E ^ 2 3 h 2 , Ej323hi + E i 3 2 3 ( h 2 - a ) (6) 
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The Ejjkis are the entries of the fourth order tensor for isotropic elastic materials. The 
'+' and '-' superscripts denote the strong and weak material used in the layering 
construction. The superscript R1 denotes that the material is rank-1, i.e., the plate 
cross section has ribs along only one direction. The homogenized formulas for a 
Mindlin plate made of rank-2 material (Fig. 1 (b)) are 

2 2 .3,-+ H§ 1(1,2) 2 . ^ H^(1 > 1)=Agh3EÎ 1 1 1 ,H^ 1 (1 ,1) ,b]-A 

Â 2 ^H | .b]A( |h3E^ 2 2 ,H^(2,2) ,b) 

^ 2 ( 1 , 2 ) = H^2(2,1) = A^|h|E^ 2 2 2,H^(2,2),bJÂ 

H52(2,2) = AÎ|h3E^ 2 2 2 ,H^ 1 (2,2),b 

H5'(2,2) 
+ 

l H^(2,2)'DJ 

H^2(3,3) = A^|h|Ei212,H^1(3,3),b 

Hg2(1,1) = Â(2h2Et313,Hg1(2,2),b) 

Hi2(2,2) = A(2h2E$323,H§1(1,1),b) (7) 

All other entries of H2 and Hs that do not appear in (6) and (7) are zero. This plate 
may have ribs along perpendicular directions. 

When the thickness of the plate is relatively small in comparison with the in-plane 
dimensions of the plate it is possible to neglect the transverse shear deformation of 
the plate. A typical approach followed in practice is to view the transverse shear 
strain energy as a penalty contribution in the total strain energy that enforces 
Kirchhoff's assumptions (γ=0), that is, 

1 0" 

0 1 
0 < ε « 1 (8) 

A variation of the homogenized Mindlin plate model to be used in thin plates may be 
made using this idea. 
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4. E X A M P L E S 

These examples are designed to show the influence of some of the parameters 
involved in the shape optimization problem of plate structures. The amount of 
material available to build the ribs, the thickness ratio h2 /h i , and the total plate 
thickness (2h 2 ) are studied here. 

4 . 1 . E x a m p l e 1 . Effect Of The Ava i l ab le Material 

In this example we study the variation of the optimum shape as the volume fraction V 
(see eq. 1.2) used to build the reinforcing ribs is increased. We solved the shape 
optimization problem for a clamped thin rectangular plate subject to a uniform 
transverse load for four different amounts of material. The plate has external ribs 
(Fig. 3(a)) with thickness ratio h 2 /hi = 5. The results are presented in a plan view 
where ribs (of thickness 2h2=0.25) are represented by dark areas, and the central 
ply (of thickness 2h-|=0.05) by white areas. The value of the normalized mean 
compliance for the optimum shape, C*/C 0, is also reported. These values are the 
ratio between the mean compliance of the optimum plate and the compliance of a 
uniform thickness plate made with the same amount of material used in the 
optimization problem. The results are given in Figs. 3(b)-3(e) for area fractions 5%, 
10%, 20% and 40% of the plate area (5x8), respectively. Gray areas in the results 
indicate the presence of microscopic ribs where the plate has rapidly varying 
thickness. When the available material increases, the optimum shape of the plate 
presents areas of 'full thickness' (indicated by black color) where the plate has a 
uniform thickness of 2 h 2 . The reinforcing ribs appear where the strains or the 
stresses are high in order to minimize the compliance, in this case , on the sides and 
around the center of the plate. The normalized mean compliance for the optimum 
shape is lower for small amount of available material V, (C*/C o =0.18 in Fig. 3(b)) 
than for large values of V (C*/C o=0.28 in Fig. 3(e)). This is consistent with the limit 
case when the area fraction is 100% that corresponds to C*/C 0=1. 

4.2. E x a m p l e 2. Effect Of The T h i c k n e s s Rat io h 2 / h 1 

In this example a simply supported rectangular thin plate is considered to study the 
effect of the thickness ratio on the optimum shape of the plate. The total thickness is 
fixed at 2h 2 =0.25 and the central ply thickness is varied such that four values of the 
thickness ratio can be studied, h 2 /hi=1.5 , 3, 5, and 6 (Fig. 4(b)-4(e)). Fora given 
amount of material, tall rib plates are stiffer than small rib plates. Therefore, plates 
with high thickness ratio usually have more areas with microscopic ribs (gray areas). 
This can be confirmed comparing Fig. 4(b) and 4(e). Concerning the compliance, 
notice that the higher the thickness ratio, the smaller is the normalized compliance. 
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uniform load 

Clamped All Sides 

(a) Geometry 

(b)C /C o =0.18 

TTTTf 

2 h i t = | π A 
U 4 -

Cross 
section 
in each 

direction 

( c ) C / C o = 0 . 1 8 

(d) C*/Co=0.19 (e) C /C o =0 .28 

Fig. 3 (a) Geometry of the plate. Area fraction: (b)5%, (c) 10%, (d) 20%, (e) 40%. 

4.3. E x a m p l e 3 . Effect Of The Total T h i c k n e s s 

This example shows how the thickness of the plate affects the optimum shape. Two 
c a s e s are considered, a simply supported and a clamped rectangular plate under 
uniform transverse load. For each one of these c a s e s the optimum shape is 
determined for a thick plate (U(2h2)=5) and for a thin plate (L/(2h2)=20), where L 
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denotes the smallest dimension of the plate, L=5 (Fig. 3(a)). The amount of material 
used to build ribs is fixed at 10%, and the thickness ratio h 2 /hi at 5. The results are 
given in Figs. 5(a)-5(d). The effect of the transverse shear deformation in thick 
plates results in different optimum shapes and compliance. 

uniform load 

L E :·:·:::·:::$ ?ί:ί ii 
4- 8 1 Simply Supported All Sides 

l=2h2 -I 
Cross 

section 
in each 

direction 

(d) C*/Co=0.26 (e) C*/Co=0.17 

Fig. 4 (a) Geometry of the plate. Thickness ratio h 2 /h i : (b) 1.5, (c) 3.0, (d) 5.0, (e) 
6.0. 
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(c) C*/Co=0.18 (d) C*/C o =0.23 

Fig. 5 (a) Simply supported and thin, (b) simply supported and thick, (c) clamped 
and thin, and (d) clamped and thick. 

4.4 E x a m p l e 4. N o n S y m m e t r i c P r o b l e m 

In this example the boundary conditions of the plate are not symmetric (Fig. 6(a)). 
Two sides of the plate are clamped (CL) and the other two simply supported (SS). 
The amount of material used to build the ribs varies from 5% to 40 %, and the 
thickness ratio h 2 /hi is fixed at 6. The system of loads consists of three point loads 
as indicated in Fig. 5(a). The results show that there is a concentration of ribs below 
each point load in order to minimized the compliance. The behavior of the 
normalized compliance is similar to the example 1. The reduction of compliance 
(compared to uniform thickness plate) is more pronounced when only a small 
amount of material is used to build the ribs. 

5. C O N C L U S I O N S 

It has been shown that homogenization techniques are a powerful tool to solve the 
optimum layout and shape in plate structures subject to transverse loads. The use 
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S S section 
|- CL=clamped in each 

SS=simply supported direction 

(b) C*/Co=0.17 (c) C*/Co=0.25 

Fig. 6 (a) Geometry of the plate. Area fraction: (b)5%, (c) 10%, (d) 20%, (e) 40%. 

of the Mindlin plate theory in shape optimization allows us to consider transverse 
shear deformations present in thick plates. The examples presented show that for 
low amounts of available material the optimum shapes present ribs in a microscopic 
scale (rapidly varying thickness plates). High values of thickness ratio give better 
reduction of the compliance of the plate. Different optimum shapes may be found for 
thick and thin plates under the same loads and displacement boundary conditions. 
For the examples studied, the reduction of the compliance (compared to plates of 
uniform thickness), was more pronounced for thin than for the thick plates. 
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O P T I M A L D E S I G N OF A D V A N C E D M A T E R I A L S 

D a n i e l A . Tortorel l i , M i c h a e l M. Ti l l er a n d J o n a t h a n A. D a n t z i g 

D e p a r t m e n t of M e c h a n i c a l a n d I n d u s t r i a l E n g i n e e r i n g , 
U n i v e r s i t y of I l l ino i s , U r b a n a , I l l ino i s 6 1 8 0 1 U S A 

A B S T R A C T 
A g e n e r a l framework is p r e s e n t e d for t h e op t imal des ign of n o n l i n e a r parabol ic sys

t e m s wh ich govern t h e m a n u f a c t u r e of a d v a n c e d m a t e r i a l s . T h e methodology combines 
t h e finite e l e m e n t m e t h o d , des ign sens i t iv i ty ana lys i s , a n d n u m e r i c a l op t imiza t ion . The 
genera l methodology is t h e n special ized to t r e a t n o n l i n e a r t r a n s i e n t conduct ion sys t ems 
and t h e n exemplified for t h e op t ima l m a n u f a c t u r e of c rys ta l s . 

1. I N T R O D U C T I O N 

H e r e i n w e a r e concerned w i t h t h e des ign of a d v a n c e d m a t e r i a l s r a t h e r t h a n t h e de
sign w i t h a d v a n c e d m a t e r i a l s . I n p a r t i c u l a r , we focus o u r a t t e n t i o n on t h e op t imiza t ion 
of c rys ta l solidification processes for t h e electronic componen t s i n d u s t r y . T h e major 
con t r ibu t ion of t h i s w o r k is t h e deve lopmen t a n d c o m p u t a t i o n of t h e des ign sens i t iv i ty 
express ions wh ich dr ive t h e n u m e r i c a l op t imiza t ion a lgo r i t hm. The* objective of a sen
si t ivi ty a n a l y s i s is to quan t i fy t h e effects wh ich des ign p a r a m e t e r v a r i a t i o n s h a v e on 
t h e r e sponse . Fo r e x a m p l e , in t h e for thcoming discuss ion of t h e c rys ta l g r o w t h process
ing p rob lem, c h a n g e s in t h e c rys ta l t e m p e r a t u r e field a r e d e t e r m i n e d w i t h r e spec t to 
changes i n t h e process p a r a m e t e r s . Once t h e s e sens i t iv i t ies a r e computed , t h e y a r e com
b ined w i t h n u m e r i c a l op t imiza t ion s t r a t e g i e s to sys temat i ca l ly s e a r c h t h e des ign space 
for a n op t ima l des ign [1]. Aga in , r e fe r r ing to t h e crys ta l g r o w t h p rob lem, one d e t e r m i n e s 
a n op t ima l s e t of process p a r a m e t e r s to give a des i red t e m p e r a t u r e d i s t r ibu t ion which 
max imizes t h e p roduc t qua l i ty . 

Ib r to re l l i , et al[2] descr ibe a L a g r a n g e mul t ip l i e r m e t h o d for fo rmu la t i ng t h e adjoint 
des ign sens i t iv i t ies of n o n l i n e a r t r a n s i e n t t h e r m a l s y s t e m s . D e m s [3] u s e s b o t h t h e direct 
a n d adjoint app roaches tor der ive sens i t iv i t ies for t h e r m a l s y s t e m s . A n adjoint app roach 
is also u t i l i zed by Mer ic [4] a n d Haf tka [5] to compute ana ly t i ca l des ign sens i t iv i t ies . I n 
al l cases , t h e va r i a t i on of a gene ra l r e sponse funct ional is exp res sed in explici t form w i t h 
respec t to v a r i a t i o n s in t h e des ign p a r a m e t e r s . 

I n t h e following sec t ions , a gene ra l a p p r o a c h for de r iv ing b o t h d i rec t a n d adjoint 
sens i t iv i t ies for n o n l i n e a r parabol ic s y s t e m s is p r e sen t ed . T h e n , t h e g e n e r a l methodology 
is special ized for n o n l i n e a r t r a n s i e n t t h e r m a l sys t ems . T h e l a s t sect ion d iscusses a n 
example p rob lem in wh ich t h e solidification process for G a A s c rys ta l s i n B r i d g m a n 
furnaces is s tud ied . A n op t ima l furnace wal l t e m p e r a t u r e d i s t r ibu t ion is d e t e r m i n e d 
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to obtain the desired temperature profile in the crystal. Obtaining the desired crystal 
temperature field reduces radial segregation, and thus produces a more desirable product. 
A similar problem is investigated by Dantz ig and Chao [6], however their approach does 
not util ize efficient numerical optimization techniques. 

2. GENERAL SENSITIVITY APPROACH 

We commence to describe a general approach for the design sensit ivity analysis of 
nonlinear parabolic systems. First, the parabolic problem is described, then the concept 
of a cost/constraint function is introduced and the sensitivity problem is defined. Finally, 
the direct and adjoint approaches for design sensitivity analysis are presented. 

2.1· Nonlinear Parabolic Problem Statement 
Consider the general form of the nonlinear parabolic differential equation [7] 

L(u(x,t),x,t) = ut(x,t) for (x,i)£BxI (1) 

which is subject to a set of prescribed initial conditions and boundary conditions. In the 
above, L is a nonlinear differential operator (in space), u is the response, t denotes t ime 
in the t ime domain J = [0,fy] wi th terminal t ime tf, χ denotes a point in the spatial 
domain B, and subscripts denote partial differentiation wi th respect to the indicated 
argument. A specific example of this equation is the nonlinear transient conduction 
system discussed in the following section in which u becomes the temperature field. 

The above equation m a y be solved for the response u, v ia the Newton-Raphson 
process. In this procedure a residual is defined as 

R(u(x,t),x,t) = 0 = L(u(x,t),x,t)-ut(x,t) for (x>t) £ 3 3 x 1 <2) 

If a given guess of the solution u, satisfies the above equation then w e have a solution. 
On the other hand, if u does not satisfy this equation, the solution u, is updated via the 
Taylor series expansion about the current iterate u, 

R(u(x,t) + Au(x,t),x,t) = 0 = R(u(x,t),xj) + i ^ ( u ( x , i ) , z , t ) A u ( x , < ) for (x , t ) € Bxl (3) 

where 

J ^ ( u ( x , t ) , : M ) A u O M ) = Lu(u(x,t),x,t)Au(x,t) - Aut(x,t) for (x,t) e B x l (4) 

The above m a y be used to evaluate the incremental response Au, through 

Au(x,t) = -[Λ,.ΚΧ,Ο ,Λ,ΟΓ^ΚΛ,Ο ,Χ,Ο for (xj) EBxI (5) 

Once Au is determined, the solution is updated according to = u1 + Au where the 
superscript J, denotes the iteration number. This procedure of evaluating the residual Rt 

determining the incremental response Au, and updating the solution u I + l , is repeated 
until the system converges. 
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I n t h e finite e l e m e n t m e t h o d , t h e above equa t ions a r e discre t ized in b o t h t i m e a n d 
space w h e r e i l ( u ( x , t ) , x , i ) forms t h e r e s i d u a l vector; Ru(u(x,t),x,t) forms t h e t a n g e n t 
stiffness m a t r i x ; Au forms t h e i n c r e m e n t a l r e sponse ; a n d t h e t i m e de r iva t ive ut is a p 
p rox ima ted e.g. by impl ic i t t i m e i n t eg ra t i on Ut(x,t) = (u(x,t) - u(x,t- At))/At w h e r e 
At is t h e t i m e s tep . T h e above i t e ra t ive process is r e p e a t e d a t each t i m e s t e p un t i l con
vergence i s ob ta ined , wh ich is d e t e r m i n e d w h e n t h e n o r m of t h e r e s i d u a l vec tor is suffi
cient ly s m a l l . A l though t h e N e w t o n - R a p h s o n p rocedure exh ib i t s q u a d r a t i c convergence 
a s i t a p p r o a c h e s t h e solut ion, i t st i l l r e q u i r e s n u m e r o u s i t e r a t i o n s , each of wh ich r equ i r e s 
compu ta t iona l ly expens ive t a n g e n t stiffness m a t r i x fo rmat ions a n d decomposi t ions . 

2.2. Sensitivity Problem 
T h e above parabol ic s y s t e m governs m a n y m a n u f a c t u r i n g des ign p rob lems . Fo r 

example , i n t h e n e x t sect ion we discuss t h e des ign of a t h e r m a l p rocess ing sys tem. 
Ul t ima te ly , t h e des ign is defined by some se t of des ign p a r a m e t e r s b 6 9£n which a r e 
used to descr ibe t h e m a t e r i a l r e sponse , b o u n d a r y condi t ions , a n d in i t ia l condi t ions . 
Addi t ional ly , t h e des ign p a r a m e t e r s could descr ibe t h e geome t ry of t h e doma in , i.e. B(b). 
However , to simplify t h e e n s u i n g ana lys i s , t h e doma in is a s s u m e d to be i n d e p e n d e n t of 
t h e des ign . I n l ight of t h i s des ign dependency , t h e above p rob lem, E q u a t i o n 2, is re -
expressed a s 

b ) , χ , t , b ) = 0 = L(u(x,t,b),x,t,b)-ut(x,t,b) for ( x , * , b ) € Β χ / χ ftn (6) 

Consequen t ly , c h a n g e s i n t h e des ign b , obviously affect t h e r e s p o n s e u. 
l b gage t h e pe r fo rmance of t h e des ign , a genera l ized cos t / cons t ra in t funct ional is 

defined a s 

A l though G is expressed in i n t eg ra l form, i t m a y r e p r e s e n t localized q u a n t i t i e s by in
corpora t ing t h e a p p r o p r i a t e we igh t ing funct ions in g. F o r example , to e x a m i n e t h e 
r e sponse a t a d is t inc t t i m e f a n d locat ion χ' w e define g a s ^ ( w ( x , i , b ) , x , t , b ) = 
u(x,t,b)6(x - x')6(t -1*) w h e r e 6 is t h e D i r ac de l ta function. 

After t h e sys tem is ana lyzed for t h e given des ign b , funct ions of t h e above form a r e 
e v a l u a t e d to d e t e r m i n e w h e t h e r a proposed des ign is defective, in wh ich case r edes ign 
is neces sa ry , or acceptab le , i n wh ich case p ro to typ ing m a y beg in . We a r e concerned 
w i th t h e former , i.e. t h e r edes ign p rob lem. Specifically, w e m u s t select t h e necessa ry 
des ign v a r i a t i o n 6b> to r educe t h e cost a n d satisfy t h e c o n s t r a i n t s . 1 l b t h i s end , we 
e v a l u a t e t h e va r i a t i on of G, i.e. 6G(b\ 6b) for all possible des ign v a r i a t i o n s 6b, so a s 
to select t h e bes t possible des ign modification. A s s u m i n g sufficient s m o o t h n e s s , t h e 
v a r i a t i o n for a n y des ign p e r t u r b a t i o n m a y b e e v a l u a t e d t h r o u g h t h e g r a d i e n t , indeed 
6G(b\6b) = VG(b) · 6b. T h u s , t h e objective of t h e sens i t iv i ty ana lys i s is to e v a l u a t e t h e 
g r a d i e n t V G ( b ) 

(7) 

/ Β 

(8) 
/ Β 

1 P r o b l e m s of t h i s t ype a r e genera l ly il l-posed. H en ce t h e ex i s tence of t h e solut ion is 
no t i n g e n e r a l g u a r a n t e e d . Likewise , u n i q u e n e s s of t h e so lu t ion is n o t g u a r a n t e e d . 
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where the arguments have been suppressed for conciseness. The difficulty of evaluating 
the above is due the presence of the derivative as this term is implicitly denned on 
the design through the system equation, cf . Equation 6. 

Several means for evaluating the sensit ivit ies have been proposed, namely the finite 
difference, the direct differentiation, and the adjoint methods cited earlier. The finite 
difference method is the eas iest to implement, however it is computationally prohibitive 
for large problems and may suffer from round-off or truncation errors. For this reason, 
we restrict the present discussion to the direct and adjoint approaches. 

2.3. Direct Differentiation 
In the direct differentiation method, the system equation (Equation 6) is differenti

ated with respect to each of the design parameters 6 α , α = l , n to give 

RK(u(x,t,b),x,t,b) + Ruiuix^t^iXit^Ub^xJib) = 0 for ( x , t , b ) Ε Β χ I x $ n (9) 

where, in l ight of Equation 6 

# 6 e ( u ( x , * , b ) , x , t , b ) = Z 6 t t ( u ( x , * , b ) , x , t , b ) for (x ,* ,b) G Β χ I χ &n (10) 

t*6.0M,b) = - [ - R t l ( w ( x , t , b ) ) x , / , b ) ] " 1 J ? 6 c r ( w ( x , i , b ) , x , t , b ) for ( χ , ί , b ) 6 BxIxW1 (11) 

where we note that we mus t solve this system η t imes, once for each design parameter 
α and that each of the problems has the initial conditions uia | i = o which is the explicit 
derivative of the initial conditions. 

Note that the above pseudo problem (Equation 11) resembles the incremental problem 
of Equation 3. Thus, in regard to finite e lement implementation, the pseudo response 
may be efficiently solved at each t ime step. Indeed, for each of the design parameters 
w e merely form the pseudo load vector and perform a back substitution into the 
decomposed tangent stiffness matrix. Further note that if the convergence tolerance is 
sufficiently small, then the tangent stiffness that corresponds to the converged solution 
differs only slightly from the tangent stiffness matrix from the previous (next to last) 
iterate. Hence, the decomposed tangent stiffness matrix from the primal analysis (cf. 
Equation 5) may be used to evaluate the pseudo response; so that in regard to Equation 
11 the additional computationally expensive tangent stiffness matrix assembly and 
decomposition is avoided. 

2.4. Adjoint Method 
In the adjoint method, the response derivative u\>, is eHminated from the sensitivity 

equation (cf. Equation 8) via the Lagrange multiplier method. Following the usual La
grange multiplier formulation, we define the augmented functional G through Equations 
7 and 6 as 

This problem may be solved for the pseudo response uia through 

£(b)=/ 9(u(x,t,b),x,t,b)dvdt+ / / Λ ( χ , T , b ) A ( V ( A ; 9 b ) , A ? , b ) D R Λ 

/ Β I Β (12) 
g(u(x,ί,b),χ,ί,b)dvdt+ / / λ (χ , t ,b)[L(u (x , t ,b ) ,x , t , b ) - U t ( x , t , b ) ] d v d t 

ι B I B 



355 

where λ denotes the Lagrange multiplier field and we note the equality G = G since the 
augmented term is identically zero because R = 0. Differentiation of the above yields 

VG 
I Β 

uh + gb]dvdt + ub + Lh - uth]dvdt (13) 

I Β 

and we again note the equality VG = VG since the design derivative of the augmented 
term (cf. Equation 9) is identically zero. The contribution in the above equation due to 
the derivative Ab is omitted, as this term gives a zero contribution because i ts coefficient 
(L - ut) equals zero. Integration by parts over t ime of Xuth hi Equation 13 is used to 
transform VG to, after some rearrangement 

V G = J J [XLh + gh]dvdt J J uh + Xt + gu]dvdt - J Xuhdv 
I Β I Β 

(14) 

where the superscript Τ denotes the transpose operator. In regard to the right most 
quantity of Equation 14 note that at t ime t = 0 the response derivative u^t is known, 
as this is merely the design derivative of the initial conditions. The above is rearranged 
as the s u m VG = Gb + Gu of an explicit term G b and an implicit term G u , respectively 
where 

lh 
I Β 

b +\Lh]dvdt + / u^Xdv 
LB 

and 

Gu = j j uh[LÎX + Xt +gu]dvdt - J uhXdv 

ι Β 

(15) 

(16) 

Note that once the Lagrange multiplier field λ, is determined, Gb m & y 0 6 readily 
evaluated. On the other hand, Gu contains response derivatives which are implicit 
quantit ies as discussed in the previous subsection. 

l b e l iminate the implicit response derivatives in Gu, w e define the Lagrange multi
plier to annihilate the implicit quantity, i.e. w e define λ to obtain G u = 0. l b this end, 
we introduce the t ime mapping and its inverse 

S(T) = TF - τ = T 

s-\T) = TF-T = T 

and then the composite Lagrange multiplier field 

7 ( x , r , b ) = A(x . s (r ) ,b ) 

Next , w e apply the chain-rule to the above, i.e. 

7 T ( x , r , b ) = A((» ,«(r ) ,b)5 T (r ) = -A t (a?,$(r) ,b) 

where w e used 

(17) 

(18) 

(19) 

*T(T) = - 1 (20) 
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Now, u s i n g t h e above E q u a t i o n s a n d jp = ^ = - 1 , w e app ly t h e change of va r iab le 
t h e o r e m to t r an s fo rm E q u a t i o n 16 to 

Gu = j J u b ( x , ^ - ) , b ) [ i ^ ( x , s ( r ) , b ) 7 ^ 
I

[

B (21) 

Β 

Note t h a t t h e above t i m e m a p p i n g s m a y be avoided v ia t h e in t roduc t ion of t h e convolut ion 
opera to r [8]. 

l b a n n i h i l a t e Gu we define t h e following adjoint p rob lem, 
0 = Ll(x, S { T ) , b ) 7 ( x , r , b) - 7 τ ( χ , r , b) + gu(x, s ( r ) , b) for ( x , t , b ) 6 5 x / X & n 

= # u ^ ( r ) , b ) 7 ( x , r , b ) + gu(x,s(r),b) for ( i , i , b ) 6 Β X / x & n 

w i t h t h e homogeneous in i t i a l condi t ions 7 ( 2 , 0 , b ) = 0. T h e composi te L a g r a n g e mul t ip l i e r 
m a y t h e n be ob ta ined from 

7 ( x , r , b ) = -lRu(xAr)M~TSu(x,s(T),b) for ( x , t , b ) G Β χ / χ ftn (23) 
which is s i m i l a r to t h e i n c r e m e n t a l p rob lem of E q u a t i o n 5 w h e r e we replace t h e incre
m e n t a l r e s p o n s e Au a n d r e s i d u a l R w i t h t h e composi te L a g r a n g e mul t ip l i e r (or adjoint) 
r e sponse 7 a n d funct ional der iva t ive (or adjoint load) -gUf respect ively. S u b s t i t u t i n g t h e 
solut ion for 7 in to E q u a t i o n 15 yields 

£ b ( b ) = J J [ ^ b M a : ^ , b ) , x ) i , b ) 4 - 7 ( ^ ^ " 1 ( 0 ^ ) X b K ^ , ^ b ) , x , i , b ) ] i i i ; ^ 

/ Β (24) 
+ J u b ( x , 0 , b ) 7 ( x , t / , b ) < i v 

Β 

which is t h e des i red expl ici t sens i t iv i ty express ion . 
T h e r e a r e some add i t iona l differences, however , b e t w e e n t h e adjoint a n d i n c r e m e n t a l 

p rob lems t h a t m u s t b e add res sed . N o t e t h a t we u s e t h e t r a n s p o s e d ope ra to r t h a t 
cor responds to t h e t a n g e n t stiffness m a t r i x . F o r t u n a t e l y , t h i s poses no computa t iona l 
l imi t a t ions , a s l i nea r e q u a t i o n solvers c a n efficiently solve t h e above t r a n s p o s e d problem 
from t h e one adjoint load vector a s sembly cor responding to -gu(u(x, t, b ) , x, t, b) followed 
by a n inexpens ive b a c k subs t i t u t i on in to t h e ex i s t ing decomposed stiffness m a t r i x . The 
i s sue wh ich l eads to c u m b e r s o m e c o m p u t a t i o n s is t h e fact t h a t t h e form of t h e adjoint load 
-gu, will no t , in gene ra l , b e k n o w n u n t i l t h e p r i m a l so lu t ion u, is e v a l u a t e d t h r o u g h o u t 
t h e t i m e h i s to ry ; a n d even if t h e adjoint load is k n o w n (which r e su l t s if g is l i nea r in 
u), t h e fact t h a t we a r e solving for adjoint r e sponse 7 , a t t i m e r , a n d u s i n g t h e t a n g e n t 
ope ra to r i ^ , co r respond ing to t i m e S(T) = Γ - r , neces s i t a t e s t h e complet ion of t h e en t i r e 
p r i m a l a n a l y s i s before t h e adjoint s y s t e m m a y be eva lua t ed . Th i s r equ i r e s t h a t e i t he r 
t h e decomposed t a n g e n t stiffness for e a c h t i m e s t e p b e s to red a n d l a t e r r e t r i eved or 
t h a t t h e y b e comple te ly r e -assembled a n d decomposed to solve t h e adjoint p rob lem. Still 
f u r the r compl ica t ions a r i s e if va r i ab le t i m e s t epp ing a l g o r i t h m s a r e i m p l e m e n t e d in to t h e 
ana lys i s . F o r a m o r e de ta i l ed discuss ion on t h e c o m p u t a t i o n a l a spec t s of t r a n s i e n t adjoint 
sens i t iv i ty a n a l y s e s see [9] a n d [10]. T h e l a t t e r ar t ic le [10] d iscusses t h e special cases 
of a l i n e a r ana ly s i s w i t h c o n s t a n t t i m e s t eps in wh ich t h e compu ta t i ona l complexit ies 
involving t h e s to rage or r e -computa t ion of t h e stiffness m a t r i c e s a r e avoided as t h e 
t a n g e n t o p e r a t o r is c o n s t a n t . 
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3. DESIGN SENSITIVITY ANALYSIS FOR THERMAL SYSTEMS 

In the following w e specialize the results from the preceding analysis to the case of 
nonlinear transient thermal systems. We recall that to simplify the sensit ivity analyses , 
parameters which describe the geometry of the physical domain are excluded, i.e. shape 
sensitivit ies are not discussed. 

3.1. Nonlinear Transient Conduction Problem Statement 
The residual of Equat ion 6 is formulated from the following initial-boundary value 

problem 

dh . „ 
V - q + r = — mBxIxft71 

at 
q = q in £ X J X ftn 

g = V r in Β χ I χ ftn 

T = TP ο η Λ τ χ / χ Γ ( 2 5 ) 

q3 = qp onAqxIx Un 

h\t=0 = h° in £ X & n 

where V is the spatial gradient operator; Γ (χ , f, b) is the temperature; q(x , b) is the 
heat flux vector; g (x , f, b) is the temperature gradient; and q'(x, t, b) = q(x , t, b)-n(x, <, b) 
defines the surface heat flux. / j ( T ( x , i , b ) , x , b ) is the enthalpy which may be mod
eled as a nonlinear function of the temperature to s imulate phase changes. Likewise 
r(r (x ,< ,b) ,g(x , t ,b) ,x ,* ,b) represents the internal heat generation which is expressed 
in a generalized form to enable the modeling of convective transport terms w h e n fluid flow 
is present and phase changes . The constitutive relation q(T(x , t, b) , g (x , t, b ) , x , b) is also 
expressed as a general function and capable of modeling nonlinear material response; 
a common form of this relation is q ( T ( x , t , b ) , g ( x , t , b ) , x , b ) = K ( T ( x , t , b ) , x , b ) g ( x , i , b ) 
where K ( T ( x , t , b ) , x , b ) is the temperature dependent conductivity tensor. The initial 
enthalpy is g iven by ft0(r°(x,b),x,b) and is an explicit function of the initial tempera
ture field T ° ( x , b ) and the design b. AT and Aq are complementary subsurfaces of dB 
and correspond to surfaces wi th prescribed temperature Γ ρ ( χ , t, b) and prescribed flux 
qp(T(x, t, b) , x , t, b), respectively; the latter quantity is represented by a generalized func
tion of the temperature to allow for the modeling of convection and nonlinear conditions 
such as radiation. 

The above equation i s in the form of Equation 1. Indeed, the response field 
it(x,f,b) consists of the temperature T ( x , i , b ) , temperature gradient g ( x , t , b ) , heat 
flux vector q ( x , f , b ) , and surface flux g s ( x , i , b ) . And w e express ^ ( T ( x , i , b ) , x , b ) = 
Ar(r (x , t ,b ) ,x ,b )T t (x , i ,b ) and then divide Equation 2 5 i by hT(T(x, t , b ) , x , b ) to attain 
the form of Equation 1. 

l b solve the above boundary-value problem we make use of the usual displacement 
based formulation (commonly employed in the finite e lement method) in which we solve 
Equation 25 by determining the square integrable temperature field Τ which satisfies 
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Equations 2 5 2 - e and zeroes the following residual 

R = - J | ν λ · q - λ r - }dv + J Xqpda = 0 (26) 
Β A q 

for all square integrable λ which equal zero on Αχ. Here, λ plays the role of the weighting 
function. B y resorting to the displacement based approach, the response field is reduced 
to the temperature field Γ (χ , t, b). Once this field is determined, the other response fields 
may be determined via Equations 2 5 2 - 3 and the surface flux definition. Solving the above 
with the Newton-Raphson process we evaluate the tangent stiffness operator, which is 
the l inear function RT 

RT(AT)= -JI^X'qT(AT)+VX^{AT)-X^rT(AT)i-rgV{AT)- -^{hTAT)^dv 
Β 

J X(fT(AT)da 
(27) 

+ 
A q 

that operates on the increment Δ Γ in the above equation. Upon securing the tangent 
operator, the response m a y be evaluated via the Newton-Raphson as seen through 
Equation 5 and the surrounding discussion. 

For the thermal problem, the cost/constraint functional of Equation 7 takes the form 

G ( b ) = / { / / ( Γ ( Χ ' * ' b ) ' g ( X ' * ' b ) ' q ( x ' * ' b ) ' X ' * ' b ) ^ 

^ ( T ( x , t, b), qa(x, t, b), x , t, b)do]dt 
I Β 

(28) 

dB 

An application of the chain rule to Equation 28 yields the sensit ivity 

V G = / ι / [ / r T b + / g g b + / q q b + f h ] d v + / l 9 T T h + S q t q i + 9 h ] d a ι d t ( 2 9 ) 

I KB dB ) 
where again we note the complications which arise due to the presence of the response 
derivatives in the above, namely r b , g b , q b and ς£. l b evaluate the explicit sensitivities 
we rely on the direct and adjoint methods as discussed in the following. 

3.2. Direct Differentiation Method 
Recall that in the direct approach the response derivatives are evaluated and that in 

the displacement based method, the response field consists of only the temperature field, 
l b evaluate the sensit ivit ies of the other response fields w e merely apply the chain rule 
to Equations 2 5 2 - 3 and the surface flux definition, 

g b = V T b in Β χ I x ftn 

q b = qgVJb + q rr b + q b in Β X I X ftn (30) 
<& = q b · η on dBxIxW1 
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Following the approach of section 2.3 w e differentiate Equation 26 wi th respect to 
each of the η design parameters ba. Thus, in regard to the pseudo problem of Equation 9, 
RuUba is evaluate from Equation 27, where w e replace Δ Γ with Tba and Rba is evaluated 
from Equation 26 after an application of the chain rule, 

RK = ~ j { Ν Λ · qba - A rha - jt(hh)^ }dv + J X<gmda (31) 

Β Aq 

where w e l iken qba to an initial stress, rba — hTboTt to a heat source, and (ft to a prescribed 
flux on the surface AQ. Essent ia l boundary conditions of TB

P are subjected to the surface 
A T and the initial conditions are If . Note that in this problem, A still plays the role 
of a weight ing function. 

3.3. Adjoint Method 
In the adjoint approach, recall that w e use the Lagrange multiplier method to 

el iminate the temperature derivatives Tb from Equation 29. U s i n g equations 28 and 26 
we define the augmented functional G*. Integrating A ^ - by parts, differentiating with 
respect to the design, isolat ing the implicit and explicit derivatives, and incorporating 
the t ime mappings (cf. Equations 17, 18, 19, and 20) gives 

Gh = J {J [/qltqbl* + /bit - V 7 | t / _ t q b | t + 7|t,-tn>|t - 7 l * / - * ^ ( ^ B | * ) ] dv 
I Β 

+ J9*\tda+ J (ft.|T + 7 l * / - T ) £ l t < k + J9T\tlZ\tda}dt + J^h^dv 
(32) 

and 

Gu=/({ / lfT\tj-r{Th\t,-r) + fg\tj-TV{Th\tj-T) + / , | , , _ T | t / _ T ( V T b \tj-r ) + 
I Β 

q r l v - r (Th\if-T)]]dv +J[gq.\t,-T<&\t,-T + 9τ\υ-τ] {Th\tj.r)da +^.(£|*,- τ )<*α} 

Aq AT 

- { / [ V 7 | R · q r k - R ( ÎBLT.-R) + V 7 | R ' qg| t /-TV(r b| t /- T) - 7 | R M j - r ( 2 \ > | 4 / - Τ ) (33) 
Β 

+ ^ l o - r V i r b l t . - r ) ] + 7τ|τΛχ|< /-τ ( T b l ^ - r ) ] ^ 

+ J lWT\ts-r(Th\t,-T)da})dT- j 7\ohT\t,Th\tjdv 
Aq Β 

where the notation | a denotes that the respective quantity is evaluated at t ime a. The 
above adjoint problem Gu = 0, is identified by the adjoint load which is contained in 
the first set of braces and the incremental tangent operator of Equation 27 which is 
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We are concerned wi th the specification of the furnace wall temperature distribution 
in a Bridgman furnace to control the position and shape of the liquid-solid interface 
during crystal growth process. Additional details of this problem appear in [11]. 

Fig. 1: Schematic view of the model for experimental apparatus to grow GaAs crystals, along 
with corresponding finite element mesh containing 1216 nodes and 1230 elements. 

It is desired to grow a GaAs crystal in a Bridgman furnace under microgravity 
conditions. As shown in Fig. 1, heat is transferred from the furnace wall to the ampoule 
by radiation. When a constant temperature gradient boundary condition is imposed on 
the furnace wall , the result ing solid-liquid interface is nonplanar because of the difference 
between thermal conductivities of solid and liquid G a A s . [ l l ] Non-planarity of this 
interface leads to buoyancy-driven convection, even under microgravity conditions, which 
results in radial segregation of the wafers sliced from the crystal. Any electronic chips 
produced from these wafers would then possess undesirable nonhomogeneous material 
properties. The objective of the optimization problem, then, is to generate a planar 
interface. 

We quantify this objective in the function G by specifying a set of desired temperature 
distributions to be achieved over t ime within the crystal 

G ( b ) = (ihi Σ Σ [T<*»*iM - f (x*.<i)]2j (34) 

where T ( x j t , t j , b ) are the computed (finite element) temperatures at location x*, t ime tj, 
and design b and the f ( x * , tj) are the desired temperatures (to produce the flat interface) 

contained in the second set of braces. For the adjoint problem, w e of course determine 
7 and now treat 2\> as the weighting function. The adjoint load is defined through a 
source term of / r + / q q r > an initial stress type term of / g , an initial strain type term 
of / q , an essential boundary conditions of gq. on Αχ, a natural boundary conditions of 
-9τ\ί,-τ + Çr\tf-T (7IT - 9q'\tj-r) on Aqy and subject to the homogeneous initial conditions 
7lr=o = 0. 

4. Results and Discussion 

file:///tj-r
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at corresponding locations and t imes. Thus , our cost function is the rms error between 
the desired Γ, and computed Γ, temperature fields. 

The selection of the objective temperature distribution R(xjt,ij) w a s based on the 
following crystal growth considerations. A crystal grower would ideally enforce some 
prescribed temperature gradient in the crystal ahead of the liquid-solid interface, V T L , 
as well as the speed at which the interface is to move, V. l b this end, w e examine the 
Stefan condition at the interface, 

ksVTs · η - kLVTL · η = pLfV · η (35) 

In the above, ks and ki, are the isotropic thermal conductivities of the solid and liquid 
phases , respectively; Ts and Τχ, refer to the temperature in the solid and liquid at the 
interface, respectively; η is the normal vector to the interface; ρ is the density and is 
assumed to be equal in the two phases; and Lf is the latent heat of fusion. Since the 
desired interface profile is flat, w e align η wi th the axial direction and subsequently 
determine the ratio of the gradients at the l iquid-solid interface 

|VTs| _ k L PLf\V\ 
+ M ( S 6 ) 

It is also desirable to bound the temperatures within the crystal to reduce thermostress 
and the temperature range of the furnace. U s i n g these criteria as a guideline, the axial 
temperature profile w as generated as i l lustrated in Fig. 2 and translated along the axis 
to generate the desired velocity of the interface. Selected locations and t imes from this 
graph w e used to form G (cf. Equation 34) 

Diat&nce (cm) 

Fig. 2: Temperature distributions to be achieved in the crystal at a series of times. Note that the 
initial temperature distribution is compatible with Eq. (36) when IVI =0, i.e. at steady state. 

The goal of the optimization is to determine the furnace wall temperature profile 
which yields the desired temperature field f . The furnace wall temperatures were 
parameterized by a set of distinct control points in space and time; these parameters 
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t h e n se rved a s t h e des ign va r i ab l e s b . T h e t e m p e r a t u r e a t a n y o t h e r po in t i s l inear ly 
in t e rpo la t ed b e t w e e n t h e a p p r o p r i a t e control po in ts i n space a n d t i m e . We divide t h e 
furnace wal l spa t ia l ly in to t e n zones, equa l ly spaced b e t w e e n e leven control po in t s on 
t h e furnace wal l , a n d we define a se t of e igh t t i m e po in t s s p a n n i n g t h e solidification t i m e 
of t h e c rys ta l . T h u s , a to t a l of 88 des ign p a r a m e t e r s a r e u sed . T h e des i red t e m p e r a t u r e s 
in t h e c rys t a l T, were u s e d to define t h e in i t i a l design p a r a m e t e r s for t h e opt imizat ion . 

Rad ia t i on b e t w e e n t h e furnace wal l a n d t h e ampou le w a s mode led a s a n effective 
h e a t t r a n s f e r coefficient: 

qp = σε(Τ2 + Θ2)(Τ + θ) (Τ - θ) (37) 

heff 

where qp is t h e r ad i a t i ve h e a t flux, σ is t h e S te fan -Bol t zmann cons t an t , e is t h e emissivi ty , 
Τ is t h e local c rys ta l t e m p e r a t u r e a n d 0 ( x , t , b ) is t h e des ign d e p e n d e n t furnace wal l 
t e m p e r a t u r e a t t h e cor respond ing point . T h e va lue of 0 ( x , i , b ) is d e t e r m i n e d t h r o u g h 
in te rpo la t ion a s descr ibed above. Rad ia t i ve exchange w a s a s s u m e d to ex i s t only be tween 
opposing po in t s , i.e. no v iew factors were ca lcula ted . All of t h e m a t e r i a l p rope r t i e s were 
modeled a s t e m p e r a t u r e d e p e n d e n t a n d a x i s y m m e t r y is a s s u m e d . 

Sens i t iv i t ies w e r e c o m p u t e d u s i n g t h e d i rec t different iat ion m e t h o d descr ibed ear l ier . 
I n t h i s case , t h e pseudo load w a s a flux on t h e furnace wal l surface defined t h r o u g h 

(fha = Ασεθζθκ (38) 
w h e r e θ\>α (χ , ί, b) r e p r e s e n t s t h e explicit des ign der ivat ive of t h e furnace wal l t e m p e r a t u r e 
which is d e t e r m i n e d t h r o u g h t h e in te rpo la t ion re la t ions . 

o p t i m a l a m p o u l e t e m p e r a t u r e p r o f i l e s 

V = 1 x 1 0 " * cm/t ~ G = 1 0 K / c m - C e n t e r l i n e o f C r y » U I 
1640.0 , , i , 1 ί 

1 4 ^ 0 . 0 I ' ' ' ' 1 

0 . 0 5 . 0 1 0 . 0 1 5 . 0 
D U t & n c e ( c m ) 

Fig. 3: Ampoule temperature profiles along centerline of the crystal 
under optimal processing conditions, compared with objectives. 

T h e finite e l e m e n t ana lys i s w a s per formed u s i n g t h e commerc ia l p r o g r a m F I D A P , 
w i t h a n u m b e r of e n h a n c e m e n t s to compu te bo th t h e sens i t iv i ty a n d t h e full Newton-
R a p h s o n t a n g e n t st iffness mat r ix . [12] T h e Quas i -Newton (BFGS) s ch eme w i t h a pa ra 
bolic in t e rpo la t ion one-d imens iona l s e a r c h s t r a t egy w a s employed to per form t h e opti-
miza t i on . [ l ] O p t i m a l so lu t ions w e r e ob ta ined after 10 to 12 l ine s ea r ches , cor responding 
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to a to t a l of 35 to 45 funct ion eva lua t i ons , depend ing on t h e in i t i a l des ign a n d opti
miza t ion convergence to l e r ances . T e m p e r a t u r e d i s t r ibu t ions a long t h e cen te r l ine of t h e 
ampou le for a typica l case (V = 1 μτη/s a n d | V T | = 1 K / m m ) a r e shown in F ig . 3 for t h e 
opt imized des ign , a long w i t h t h e co r re spond ing objective t e m p e r a t u r e s T. Correspond
ing r e s u l t s for t h e p e r i p h e r y of t h e c rys ta l a r e qu i t e s imi la r , b u t h a v e b e e n omi t t ed for 
brevi ty . T h e opt imized t e m p e r a t u r e con tou r s conform closely to t h e des i r ed profiles. I n 
fact, t h e op t imized r m s e r r o r is j u s t 0.77 K. (This a m o u n t s to a to t a l e r r o r of 720 for 152 
t e m p e r a t u r e s a t e igh t t i m e s teps . ) 

PROGRESS OF OBJECTIVE AND SENSITIVITY 
V = 1 χ 10~* cm/a - G = 10 K / c n 

» * Objectire Function 
• -· Senaitnritjr Vector 

Lin« Search Number 

Fig. 4: Progress of the objective function and sensitivities during the optimization. 

POSSIBLE FURNACE PROFILES FOR G = 1 K/mm V = 1 um/s TEMPERATURE 
CONTOUR PLOT 

LEGEND 
- 0.1511E+04 

t — 

CONTOUR PLOT 
LEGEND 

- 0.1511E+04 

Unoptimized Furnace Profile 

CONTOUR PLOT 
LEGEND 

- 0.1511E+04 

CONTOUR PLOT 
LEGEND 

- 0.1511E+04 

Optimal Furnace Profile 

CONTOUR PLOT 
LEGEND 

- 0.1511E+04 

CONTOUR PLOT 
LEGEND 

- 0.1511E+04 

Constant Gradient on Furnace Wall 

Fig. 5: Successive interface positions for initial, optimal, and constant gradient furnace profiles. 
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The progress of the objective function and the sensit ivit ies during the simulation is 
shown in Fig. 4. We see that the optimization quickly converges, and that the sensitivities 
are reduced by. nearly two orders of magnitude. Recall that a zero sensitivity value 
corresponds to the presence of a local extrema. In this case, the nine l ine searches 
corresponded to 45 function evaluations. The total clock t ime for the entire optimization 
process w a s about six hours on a Sun SPARCstation 2 wi th sufficient memory to solve 
in core. 

Further insight of the results appear in Fig. 5, where a t ime series of computed 
Hquid-Hsolid interface locations is shown for three designs: the initial guess , the optimal 
solution, and a fixed gradient furnace, the latter shown for reference. We can see that the 
interfaces are somewhat flatter in the optimal case, but the differences are not significant. 
The need for optimization becomes more apparent when the crystal solidification velocity 
V, is increased. Figs. 6 and 7 il lustrate the results of the optimization for a growth rate of 
5 μτη/s. Upon comparison to Figs . 3 and 6 we note that the primary difference between 
the two problems is the value of temperature gradient is much larger for the second 
problem (cf. Equation 36). Upon observing Fig. 7 the benefits of the optimization 
become apparent. The optimal furnace wall temperature distributions for the latter case 
(V = 5 μπι/s) are shown in Fig. 8, where one can see that the optimal solution is quite 
practical, giving a max imum temperature gradient of less than 100 K/cm throughout the 
cooling cycle. 

OPTIMAL AMPOULE TEMPERATURE PROFILES 
Y = 6x10~* c m / i - C = 10 K/cm - Crystal Centerline 

1350.0 1 • 1 • « 1 * 

0.0 6.0 10.0 16.0 
Distance (cm) 

Fig. 6: Ampoule temperature profiles along centerline of the crystal under optimal processing 
conditions, compared with objectives for crystal growth at 1 μτη/s at several times. 
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POSSIBLE FURNACE PROFILES FOR G = 1 K/mm V = 5 um/s TEMPERATURE 
CON 1 vJUK run I 

LEGEND 
- 0.1511E+04 

( ΤΤΤΤΓ π — 

CON 1 vJUK run I 
LEGEND 

- 0.1511E+04 

Unoptimized Furnace Profile 

CON 1 vJUK run I 
LEGEND 

- 0.1511E+04 

] 1 — J — 

CON 1 vJUK run I 
LEGEND 

- 0.1511E+04 

Optimal Furnace Profile 

CON 1 vJUK run I 
LEGEND 

- 0.1511E+04 

YYYYYYM 

CON 1 vJUK run I 
LEGEND 

- 0.1511E+04 

YYYYYYM 
Constant Gradient on Furnace Wall 

Fig. 7: Successive interface positions for initial, optimal, and constant gradient furnace profiles. 
Irregularities in the position of the interface are characteristic of enthalpy methods.[13] 

OPTIMAL FURNACE TEMPERATURE PROFILES 
• = SxlO- 1 c m / i - G = 10 K / cm 

1500 ι . , U ^ . 1 

0.0 5.0 10.0 15.0 

Distance (cm) 

Fig. 8: Optimal temperature distributions to be applied to the furnace wall to achieve 
the objective temperatures for the case where crystal growth proceeds at 5 / i m / s . 

5. Conclusions 

An algorithm for the design of advanced materials has been presented. The scheme 
combines finite element analysis, explicit design sensitivity analysis, and numerical op
timization to design the manufacturing process for the advanced material. The method
ology was exemplified for the optimal process parameter selection in a furnace that is 
used to grow crystals. 



366 

6. Acknowledgment 

The authors wish to express their appreciation for the financial support provided by 
NASA Lewis Research Center under Grant NAG 3 - 1 2 8 6 and for the software develop
ment tools provided by the Free Software Foundation. 

7. R E F E R E N C E S 

[1] G. N . Vanderplaats. Numerical Optimization Techniques for Engineering Design: 
with Applications. McGraw-Hill, N e w York, 1984. 

[2] D. A. Tortorelli, R. B. Haber, and S. C.-Y. Lu. Des ign Sensit ivity Analysis for 
Nonlinear Transient Thermal Systems. Computer Methods in Applied Mechanics 
and Engineering, 75:61-78 , 1990. 

[3] K. Dems . Sensitivity in thermal problems i: Variation of material parameters within 
a fixed domain. J. Therm. Stresses, 9 :303-324, 1986. 

[4] R. Meric. Shape design sensitivity analysis for nonlinear anisotropic heat conducting 
solids and shape optimization using the bem. Internat. J. Numer. Methods Engrg, 
26:109-120 , 1988. 

[5] R. Haftka. Techniques for thermal sensitivity analysis . Internat J. Numer. Methods 
Engrg, 17:71-80, 1981. 

[6] J. A. Dantzig and L. S. Chao. Interface shape control in bridgman crystal growth. 
In M. Rappaz and M. Ozgu, editors, Modeling of Casting, Welding and Advanced 
Solidification Processes, page in press, Warrendale, PA, 1991. TMS-AIME. 

[7] E. Haug and K. Choi. Methods of Engineering Mathematics. University of Iowa, 1991. 
[8] D. Tortorelli, S. C.-Y. Lu, and R. Haber. Design sensit ivity analysis for elastodynamic 

systems. Mechanics of Structures and Machines, 18:1:77-105, 1990. 
[9] E. Haug. Design Sensitivity Analysis of Dynamic SystemsfNATO ASI Series, Vol 

F27, Computer-Aided Optimal Design: Structural and Mechanical Systems. Editied 
by CA. Mota Soares. Springer-Verlag, Heildelberg, 1987. 

[10]D. Tortorelli and R. Haber. First order design sensit ivit ies for transient conduction 
problems by an adjoint method. International Journal for Numerical Methods in 
Engineering, 28:4:61-78, 1989. 

[11]J. A. Dantzig and D. A. Tortorelli. Optimal design for solidification processes. In G. S. 
Dulikravich, editor, Third International Conference on Inverse Design Concepts and 
Optimization in Engineering Design, pages 2 1 3 - 2 2 6 , 1991. 

[12]M. S. Engelman. FIDAP Theoretical Manual. Fluid Dynamics International, 
Evanston, IL, 1987. 

[13]J. A. Dantzig. Modeling l iquid-Sol id Phase Changes wi th Melt Convection. Interna
tional Journal of Numerical Methods in Engineering, 28:1769-1785 , 1989. 



Optimal Design with Advanced Materials 
P. Pedersen (Editor) 
© 1993 Elsevier Science Publishers B.V. All rights reserved. 367 
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L i v e r p o o l , L69 3BX, U n i t e d K i n g d o m 

A b s t r a c t 
S h a p e a n d v a r i a b l e w a l l s t i ffness a r e u s e d a s s i m u l t a n e o u s d e s i g n v a r i a b l e s 

i n e x t e r n a l l y p r e s s u r i s e d c a r b o n f ibre r e in fo rced p las t i c d o m e s . T h e cos t f u n c t i o n 
is r e l a t e d t o t h e T s a i - W u fa i lu re i n d e x (Fl). T h e m i n i m u m of t h e i n t e g r a t e d fa i lu re 
i n d e x a n d m i n - m a x of t h e Fl a r e s o u g h t for she l l s m a d e f r o m e p o x y r e s i n w o v e n 
p r e - p r e g . M e r i d i o n a l l y v a r i a b l e st iffness is i n t r o d u c e d t h r o u g h a n u m b e r of 
d i f fe ren t ly s t a c k e d s e g m e n t s i n e a c h p l y . T h e s e bu t t - j o in t ed s e g m e n t s c a n a l so b e 
of d i f fe ren t l e n g t h s . M e r i d i o n a l s h a p e is c o n f i n e d to g e n e r a l i z e d e l l i p ses a n d o n l y 
g e o m e t r i c a l l y pe r fec t m o d e l s a r e c o n s i d e r e d . T h e n u m e r i c a l r e s u l t s a r e b a s e d o n t h e 
C o m p l e x M e t h o d of Box [15]. 

1. I N T R O D U C T I O N 

U s e of f ibre r e i n f o r c e d p l a s t i c (FRP) she l l s h a s w i d e l y d ive r s i f i ed d u r i n g t h e 
las t d e c a d e s . T h e p a p e r a d d r e s s e s o n e of t h e n e w a p p l i c a t i o n a r e a s r e l e v a n t t o d e e p 
sea e x p l o r a t i o n . T h i s ac t iv i ty h a s b e e n h i n d e r e d b y t h e lack of a n efficient p r e s s u r e 
h u l l , s ince t r a d i t i o n a l m a t e r i a l s c a n n o t p r o v i d e suff icient b u o y a n c y . T h e d e p t h of 
6500 m is w i t h i n r e a c h w h e n t i t a n i u m a l loys a r e u s e d for t h e p r e s s u r e h u l l [1]. 
S e v e r a l r e s e a r c h t a s k s h a v e b e e n c a r r i e d o u t t o e v a l u a t e t h e pos s ib i l i t y of u t i l i z i n g 
e p o x y r e s i n F R P a s a p o t e n t i a l n e w m a t e r i a l t o s u b s t i t u t e for t i t a n i u m a l l o y s a n d to 
s e c u r e f u r t h e r i nc r ea se s i n o p e r a t i o n a l d e p t h , p a y l o a d a n d m i s s i o n t i m e [2-5]. 

W e wi l l c o n s i d e r r e l a t i ve ly th ick d o m e d e n d c l o s u r e s w h e r e a n u m b e r of 
e x p e r i m e n t a l a n d n u m e r i c a l feasibi l i ty s t u d i e s h a v e r ecen t l y b e e n c a r r i e d o u t in 
L i v e r p o o l . T h e y h a v e s h o w n t h a t co l l apse of t h e s e c o m p o s i t e she l l s is c a u s e d b y 
br i t t l e m a t e r i a l f a i lu re r a t h e r t h a n b y b u c k l i n g . H e m i s p h e r i c a l , t o r i s p h e r i c a l a n d 
e l l i p so ida l s h a p e s h a v e b e e n s t u d i e d [6-9]. T h e c lass ical l a m i n a t e t h e o r y h a s b e e n 
u s e d to c o r r e l a t e e x p e r i m e n t a l d a t a . T h e t h r o u g h t h i c k n e s s t r a n s v e r s e s h e a r w a s 
i n c l u d e d in a c a se s t u d y a n d th i s h a d n o effect o n t h e c o l l a p s e s t r e n g t h [8]. 
M a n u f a c t u r i n g r o u t e s i n c l u d e d v a c u u m b a g g i n g of p e t a l l e d a n d u n p e t a l l e d w o v e n 
p r e - p r e g C F R P a n d f i l a m e n t w i n d i n g of c a r b o n p r e - p r e g t o w s [6, 9 ] . M o s t of t h e 
t e s t e d m o d e l s h a d d i a m e t e r 0.8 m a n d s o m e of t h e c o l l a p s e p r e s s u r e s w e r e 
e q u i v a l e n t to a b o u t 1500 m d i v i n g d e p t h . P r o b l e m s , r e l a t e d t o b i fu r ca t i on b u c k l i n g 
of t h i n c l o s u r e s , w e r e a n a l y z e d n u m e r i c a l l y in Ref. [10]. 
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While s o m e experimental a n d theoretical i s sues are be ing further invest igated, 
at tempts h a v e also b e e n m a d e to i m p r o v e performance of the c o m p o s i t e d o m e d 
e n d s via opt imisat ion [8, 11 , 12] . A n u p to date r e v i e w of recent activities in 
opt imisat ion of shel ls in general can be found in [13]. 

Influence of mer id ional shap ing o n the co l lapse s trength of FRP d o m e s has 
b e e n e x a m i n e d in Ref. [11]. Parabolic a n d cubic sp l ines , circular arcs a n d 
genera l ized e l l ipses w e r e u s e d to approximate the meridional shape . Bifurcation 
buckl ing, ax i symmetr ic co l lapse a n d first p ly failure (FPF) w e r e cons idered as 
poss ib le m e c h a n i s m s of a d o m e col lapse. The objective w a s to m a x i m i s e the l o w e s t 
co l lapse pressure for constant wa l l thickness , g i v e n the material a n d laminat ion 
sequence . Strong d e p e n d e n c e of the cost funct ion o n the mer id ional s h a p e has 
e m e r g e d . In Ref. [12] opt imal meridional s h a p e (general ized e l l ipses) a n d the 
thickness distr ibution in a f i lament w o u n d d o m e c losure w e r e invest igated in order 
to increase the buckl ing strength. The variable thickness profile w a s obta ined 
through the appropriate stacking sequence of cont inuous ly w o u n d pre-preg carbon 
t o w s in polar m o d e . Large increases in the co l lapse s trength w e r e obta ined for s o m e 
configurations. The co l lapse strength of opt imal ly w o u n d d o m e s w a s then 
c o m p a r e d w i t h quasi - isotropic lay -up of w o v e n and v a c u u m b a g g e d c losures h a v i n g 
the s a m e m a s s a n d merid ional shape . The latter m o d e l s w e r e , in m a n y cases , 
stronger than their w o u n d counterparts. 

The opt imal conf igurat ions of v a c u u m b a g g e d , [11], a n d w o u n d shel ls , [12], 
lose their s trength through the FPF mechan i sm. Experiments , [6, 9 ] , s h o w that 
d a m a g e in the FPF fai led shel ls is very local ised. A large port ion of the shel l wa l l 
is unaffected at the FPF load level . 

The a i m of this paper is to redistribute that local over-stress ing, m e a s u r e d b y 
the quadratic failure index (H) , through the meridional s h a p i n g a n d variable 
anisotropy. S o m e references are a lso m a d e to exper imental data in order to p r o v i d e 
checks of adequacy of the analys is a n d h ighl ight the ex is t ing s c o p e for opt imisat ion. 

2. P O S T - M O R T E M A N A L Y S I S OF FPF-COLLAPSED T O R I S P H E R E 

Let u s cons ider a torisphere m a d e from 30 p l ies of w o v e n , 4x4 twil l , 3k e p o x y 
resin pre-preg carbon fibre under static external pressure (see Fig. 1). The best-fit 
geometry for the external surface and the m e a s u r e d wal l th ickness are g i v e n in 
Table 1. The stacking s e q u e n c e w a s [ 0 / 0 / 1 5 / 3 0 / 4 5 / 4 5 / 6 0 / 7 5 / 9 0 / 1 0 5 / 1 2 0 / 1 3 5 / 1 5 0 
/ 1 6 5 / 1 8 0 ] ° s . The torisphere w a s l oaded u p to the failure t h r o u g h quasi-static 
incremental load ing . The catastrophic failure w a s a c c o m p a n i e d by a de tonat ion type 
l o u d bang. The v i e w of the failed torisphere is depic ted in Fig. 2 (from [9]). The 
through thickness crack vis ible in Fig. 2, ex tends circumferential ly by about 210 deg . 
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Table 1 

D o m e 
[9] 

τ/Ό L / D 
D t̂or tcyl 

D o m e 
[9] 

τ/Ό L / D 
(mm) 

TVB30B 0.599 0.241 0.063 799.7 8.42 9.05 10.08 8.85 

A narrow strip pass ing through the apex w a s then cut from the tested d o m e 
(Fig. 3). The wal l of the shel l w a s e x a m i n e d under the microscope at a n u m b e r of 
points . All po in t s w h i c h w e r e then e x a m i n e d d i d not s h o w a n y vis ible de laminat ion 
or matrix cracking. The cracked area is conf ined to about 20 m m a long the 
meridian. Fig. 4b depicts the wa l l in vicinity of the crack, i.e. near the po in t '6'. Fig. 
4a s h o w s a magni f i ed cross-sect ion at the oppos i t e s ide and at the s a m e lat i tude, Le. 
near the po int '2' . 

Fig. 1 G e o m e t r y of torispherical shell 

The FPF pressure is de termined numerical ly u s i n g the Tsa i -Wu interactive 
failure criterion wri t ten in stress space: 

x.x iJx X Y Y 
Y c t c t 

Y.Y 

1 1 
ÎT 4-

f 
1 1 

x" x~ 
t c \ / 

σ ι + 

X' ' Y 
c 

σ 2 = FI . (1) 

Direct a n d in-plane shear stresses (στ, σ 2 , σ 5 ) are e v a l u a t e d at the t o p a n d 
b o t t o m of e a c h p l y in the material coordinates . The c o m p r e s s i v e s trength constants 
(X c, Y c) correspond to the material axis 1 a n d 2, respect ive ly . The s a m e c o n v e n t i o n 
appl ies to the tensi le s trengths (Xj, Y t). Finally, S d e n o t e s the in-plane shear 
strength. 



Fig. 3 Sec t ion t h r o u g h t h e t e s t e d d o m e 
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(a) 
Fig. 4 Magni f ied v i e w of the through thickness sect ion 

(b) 

For each merid ional n o d e in the η-ply c o m p o s i t e wa l l the FI index , g i v e n by 
Eq. (1), has η + 1 c o m p o n e n t s c h o s e n from 2n va lues (see Fig. 5): 

FI Ξ {FI (zo), sup[FI ( z j , F T ^ ) ] , sup[FI ( z j , F I + ( z 2 ) ] , . . . . (2) 

n-i 

FlXk /ΡΓ(ζη.Ί) 

ΛΓ 
mid-surface 

P iyno i Ρ Γ ( ζ / \ p r 

- F I " ( Z L ) 

(bonded) 
(a) 

(unbonded) 
(b) 

Fig. 5 Laminat ion c o n v e n t i o n a n d ass ignment of the FI indices 

w h e r e '-' a n d correspond to the bo t tom a n d top of the p ly , respect ive ly . A n 
incremental t echn ique is u s e d to f ind s u c h load ing at w h i c h the failure index FI 
b e c o m e s unity , i.e. FI - 1 (see Ref. [7] for m o r e details) . In our case this l o a d i n g is 
cal led the First P ly Failure (FPF) pressure. The f o l l o w i n g material propert ies are 
u s e d in all calculations: E : = E2 = 70 k N / m m 2 ; G 1 2 = 5 k N / m m 2 ; v 1 2 * 0.1; X c ~ Y c -
570 N / m m 2 ; \ = Y t - 600 N / m m 2 a n d S - 90 N / m m 2 . T h e wa l l th ickness of the 
TVB30B d o m e w a s m e a s u r e d a long 18 equ i spaced m e r i d i a n s a n d at 20 m m 
merid ional intervals. The thickness distr ibution w a s reasonably ax i symmetr ic but 
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its m a g n i t u d e var ied a long the meridional direct ion by about 25%. The numerical 
analysis w a s based o n axisymmetr ic mode l l ing . The mer id ional ly variable thickness 
profile w a s generated from m e a s u r e d data u s i n g the cubic sp l ines approximat ion . 
Appropriate adjustments w e r e m a d e in BOSOR 4 c o d e [14], to a l l o w for the variable 
meridional stiffness. Table 2 contains the experimental co l lapse pressure , the FPF 
pressure a n d bifurcation buckl ing pressure corresponding to 6 circumferential 
w a v e s . 

Table 2 

D o m e 
Exper iment FPF Bifurcation fi 

f rom Eq. (6) D o m e 
( N / m m 2 ) 

fi 
f rom Eq. (6) 

TVB30B 8.83 8.70 16.01(6) 0.228 

By e x a m i n i n g Fig. 2 and results in Table 2 it b e c o m e s clear that FPF is the 
control l ing m e c h a n i s m of the d o m e ' s failure. The local ised character of the FPF 
m e c h a n i s m is i l lustrated in Fig. 6. It is an isometric v i e w of the c o m p u t e d FI at 31 
stat ions through the wa l l th ickness a long the full merid ional l ength . There is sharp 
increase of the FI index o n the ins ide s ide of the shel l near the spherical c a p / k n u c k l e 
junction. This m a x i m u m corresponds to the locat ion of the crack s e e n after the test -

see Fig. 2. It is a l so s e e n that the Π index s tays at about the 0.2 leve l in the larger 
port ion of the spherical cap. It is w o r t h not ing here that there w a s n o vis ible 
d a m a g e to the wal l near the po in t '2 ' in Fig. 3 , a l t h o u g h it is l ikely that the area 
around that po int w a s heav i ly stressed. This s u g g e s t s that the shel l is able to 
susta in l o a d i n g s l ead ing to the FI b e c o m i n g c lose to un i ty a n d at the s a m e t ime 
l eav ing the wa l l w i t h o u t traces of d e b o n d i n g or cracking. The a b o v e case s h o w s 
h o w the FI surface c o u l d be u s e d to inf luence the d o m e ' s level of stress ing or 
m a g n i t u d e of the co l lapse pressure. 

The d o m e TVB30B w a s manufactured from 30 s ing le p i eces of w o v e n cloth. 
These ind iv idua l p l ies w e r e cont inuous and not cut. There h a v e a l so b e e n tests o n 
d o m e s manufactured from peta l led pl ies [6, 9 ] . Each p l y w a s butt-jointed from a 
n u m b e r of p ieces cut to s i ze a n d shape . N o deterioration of performance w a s n o t e d 
in these shel ls . The abil ity of c o m p o s i n g the shel l 's wal l f rom differently cut w o v e n 
p ieces wi l l be exp lored in the next paragraphs a n d the effects o n the shel l 's 
performance wi l l be invest igated. 

3. P R O B L E M F O R M U L A T I O N 

Let u s cons ider an axisymmetric , η-ply c o m p o s i t e shel l of d iameter D and 
variable mer id ional profile g i v e n by 
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-10 
apex. 

clamped edge 

Fig. 6 N u m e r i c a l l y s i m u l a t e d su r face of t h e FI i n d e x a t t h e first p l y f a i lu re l o a d i n g 

~2x~ + y 
_~D_ W = 1 (3) 

Let u s a l so a s s u m e t h a t t h e she l l is u n d e r g i v e n s ta t ic e x t e r n a l p r e s s u r e p , a n d it is 
ful ly c l a m p e d a t t h e e q u a t o r (Fig. 7a) . E a c h p l y is d i v i d e d i n t o Ν s e g m e n t s of 
d i f ferent l e n g t h Ljj, w h e r e i β 1 , . . . , η a n d j - 1 , . . . , Ν . E a c h s e g m e n t c a n i n t u r n b e 
i n d e p e n d e n t l y o r i e n t a t e d w i t h r e s p e c t t o t h e m e r i d i o n a l d i r ec t i on . Le t u s d e n o t e 
th i s o r i e n t a t i o n b y t h e a n g l e θ^, w h e r e s u b s c r i p t ' i ' r e fe rs t o t h e l a y e r n u m b e r ' i ' a n d 
t h e s u b s c r i p t ' j ' d e n o t e s j A m a t e r i a l s e g m e n t in t h e i t h p l y (see Fig . 7b) . T h e d e s i g n 
vec to r R is d e f i n e d a s fo l lows : 

R ^ {kir ^ ky L( j} 

a n d it c o n t a i n s t h e f o l l o w i n g 2 n N + 3 c o m p o n e n t s : 

t h r e e s h a p e v a r i a b l e s ku k 2 , a n d 
n N a n i s o t r o p y v a r i a b l e s θ^. 
n N expl ic i t v a r i a b l e s L^ d e s c r i b i n g t h e l e n g t h of i n d i v i d u a l s e g m e n t s . 

(4) 

L e n g t h s L^ (kv k 2 , k 3 ) h a v e t o sat isfy t h e f o l l o w i n g c o n d i t i o n s : 
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Σ L

i ( = L , c i = 1 ' n 

w h e r e L t o t is t h e impl ic i t , to ta l m e r i d i o n a l , l e n g t h of e a c h p ly : 

L l o t (lv k2, ig = Jo

D/2
 • (y')2

 dx . 

(5) 

(6) 

p - s t a t i c external 
pressure 

(a) 

t ̂  apex clamped edge 

t _ t _ 

|θ η -1Ν^η-1,Ν 

t _ t _ t _ 

θ 2 1 Λ2ΐ \Q22X22 |02n;L 2n 

t _ 

© 1 , | Θ 1 Ν 

Lu 

mid -surface 

(b) 

Fig. 7 De ta i l s of m e r i d i o n a l s h a p e a n d a s s i g n m e n t of d e s i g n v a r i a b l e s 

P e r f o r m a n c e of t h e c o n s i d e r e d d o m e wi l l b e a s s e s s e d u s i n g t w o di f ferent cos t 
func t ions , i.e. o n e local a n d o n e g loba l . B o t h objec t ive func t ions refer t o m a g n i t u d e 
of t h e FI i n d e x for a f ixed leve l of l o a d i n g a n d shel l m a s s . 

3.1 G l o b a l Performance 

Let u s i n t r o d u c e t h e f o l l o w i n g i n t e g r a t e d a n d d i m e n s i o n l e s s cos t func t ion 
fi(R) r e l a t e d to t h e fa i lu re i n d e x FI g i v e n b y Eq. (2): 

[ F I ( R ; z , s ) 

J d z d s 

a n d seek i ts m i n i m u m 

f i o p l = m i n fi(R) 
R 

fi(R) 
d z d s 

(7) 

(8) 

subject to t h e fo l l owing i m p o s e d expl ic i t a n d impl ic i t c o n d i t i o n s : 
expl ic i t c o n s t r a i n t s 

file:///Q22X22
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1.3 < kt < 2.5 (9) 

1.3 < k 2 < 2.5 (10) 

0.1D < k 3 < D (11) 

0.05D < L.. < L 
ij tot 

(12) 

-90° < θ < +90° 
Ι 

(13) 

w h e r e i = 1, , η a n d j = 1, , N . 
implic i t constraints 

Ν 

Σ l U = L

t o t (Κ<Κ>Κ) 1 = * n 

FI(R;z,s) < S M 

m = const 
Condi t ions (9-13) are s imple b o u n d s o n c o m p o n e n t s of the d e s i g n vector R. 

There are further η implic i t equal i ty condi t ions i m p o s e d o n the total l e n g t h of all 
s e g m e n t s w i t h i n e a c h p l y (Eq. 14). The condi t ion (15) prescribes the leve l of the 
safety m a r g i n in the structure. The first p ly failure w o u l d correspond to S M * 1 at 
any s ing le po in t in the shell . In the p r o p o s e d approach w e can a d o p t a required 
local safety m a r g i n a n d seek the m i n i m u m of a global quanti ty , i.e. the integrated 
failure index fi over the w h o l e shell cross-section. H o w e v e r , w i t h i n the cons idered 
c lass of the appl icat ion, it is not clear at the m o m e n t w h a t the l eve l of the S M 
parameter s h o u l d be u s e d for d e s i g n purposes . 

(14) 

(15) 

(16) 

3.2 Local Per formance 

This approach is based o n min imisa t ion of the m a x i m a l FI index e n c o u n t e r e d 
in the shel l cross-sect ion: 

F I o p t = m i n m a x FI(R;z,s) ( 1 7 \ 
R V ' 

subject to constraints (9-14) a n d (16). 
The n e e d for this approach s t ems from observat ions m a d e in paragraph 2, 

w h e r e local p e a k s in the FI v a l u e s led to shell brittle col lapse . In the e x a m p l e s 
w h i c h f o l l o w w e inc lude both shape o n l y and s h a p e a n d an i so tropy c o m p o n e n t s 
into the vector R. 
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4. O U T L I N E O F T H E S O L U T I O N M E T H O D 

The opt imisat ion a lgor i thm a d o p t e d in this paper is based o n a sequential 
search technique d e v e l o p e d in Ref. [15] a n d k n o w n as the C o m p l e x M e t h o d of Box. 
W e start w i t h an initial, feasible, vertex. The remain ing c o m p l e x e s are r a n d o m l y 
scattered throughout the feasible d o m a i n a n d therefore increasing the chances of the 
global rather than local m i n i m u m be ing reached. If a constraint is v io la ted the po int 
is m o v e d ins ide the feasible reg ion in a prescribed manner . The se lected po ints 
mus t , at a n y t ime, satisfy both the explicit a n d implicit constraints. The objective 
funct ion is formed ut i l iz ing the reference surface quanti t ies output ted from the 
BOSOR 4 c o d e [14]. Ref. [2] g i v e s detai ls h o w it i s d o n e . 

Different starting p o i n t s h a v e b e e n u s e d to check for the global o p t i m u m . In 
m o s t cases the o p t i m u m w a s reached at the s a m e po int regardless of the initial 
vertex. 

5. N U M E R I C A L S T U D I E S 

5.1 G l o b a l Per formance 

This paragraph p r o v i d e s numerical results for the integrated failure index fi, 
as out l ined in paragraph 3.1. Let u s fix the n u m b e r of layers to η - 6, a s s u m e a 
symmetr ic l ay -up [ 0 / 6 0 / - 6 0 ] ° s a n d u s e non-peta l l ed s e g m e n t s . This r e d u c e s variable 
c o m p o n e n t s of the d e s i g n vector R to k l 7 k 2 and k 3 . The opt imisat ion p r o b l e m g i v e n 
by Eq. (8) is subjected to constraints (9-11), (15) and (16). The a s s u m e d , constant 
m a s s , 'm' equa l s the m a s s of a hemisphere w i t h the diameter-to-thickness ratio D / t H 

= 100. The wal l th ickness in the o p t i m i s e d d o m e d o n o t vary a l o n g the mer id ian 
a n d its v a l u e is obta ined from Eq. (16) for e v e r y cons idered s h a p e in the 
opt imisat ion process . Calculat ions w e r e performed for the safety marg in parameter 
S M = 1. Table 3 conta ins opt imal so lut ions for 5 pressure va lues , Le. ρ - 5 , 1 0 , 1 2 . 5 , 
15 a n d 17.5 N / m m 2 . It a l so g i v e s th icknesses a n d m a x i m u m v a l u e s of the FI index 
at the opt ima. The last c o l u m n in Table 3 p r o v i d e s d i m e n s i o n l e s s va lues of the 
performance ratio γ de f ined as: γ = pressure * v o l u m e e n c l o s e d by s h e l l / w e i g h t of 
shell . In our case the ratio γ ο ρ 1 / γ Η reduces to the ratio of enc lo sed v o l u m e at the 
o p t i m u m to the v o l u m e of h e m i s p h e r e d u e to Eq. (16). For all ana lysed pressures 
the opt imal so lut ions result in 15% - 43% thicker shel ls than the m a s s equiva lent 
hemisphere . A l s o , the result ing d o m e s enc lose from 52% to 78% v o l u m e of the m a s s 
equiva lent hemisphere . 

Ref. [11] e x a m i n e d the max imisa t ion of the FPF pressures under constraints 
(9-11) and (16). It f o l l ows from Ref. [11] that the m a x i m u m FPF pressure for the 
a b o v e case is 18.44 N / m m 2 and it is attained at kr - 1.351, k 2 - 1.932 a n d k 3 / D -
0.491. The integrated failure index fi - 0.657 a n d the wa l l th ickness t / t H - 1.091 are 
obta ined for the m a x i m u m . Change of the R o p t as a funct ion of external pressure 
is s h o w n in Fig. 8 and the corresponding meridional profi les are s h o w n in Fig. 9. 
T h e FI surfaces at the o p t i m u m are p r o v i d e d in Fig. 10 for the l o a d i n g l eve l s ρ « 5, 
10 a n d 15 N / m m 2 . Sharp increase in the FI appears o n the inner surface, near the 
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c l a m p e d e d g e , for all t h r e e p r e s s u r e levels . I n g e n e r a l , t h e s h a p e of t h e FI sur face 
r e s e m b l e s t ha t in Fig. 6 for t h e TVB30B t o r i s p h e r e . U s e of t h e i n t e g r a t e d fa i lure 
i ndex , fi, d o e s n o t r e m o v e local ly c o n c e n t r a t e d s t r e s s ing . 

T a b l e 3 

Ρ 
( N / m m 2 ) f i o p t 

R o p t 

t / t H 
m a x FI y>pt 

ΎΗ 

Ρ 
( N / m m 2 ) f i o p t 

Κ k 2 k 3 / D 
t / t H 

m a x FI y>pt 

ΎΗ 

5.0 0.046 1.853 1.300 0.314 1.428 0.113 0.52 
10.0 0.154 1.871 1.301 0.314 1.427 0.417 0.52 
12.5 0.232 1.898 1.301 0.317 1.426 0.643 0.53 
15.0 0.327 1.903 1.301 0.317 1.408 0.937 0.53 
17.5 0.524 1.852 1.759 0.416 1.153 1.000 0.78 

i.nL L A — 1 1 1 1 1 1 1 *> 

Ϊ0 Î5 20 p(N/mm2) 

Fig. 8 B e h a v i o u r of d e s i g n v a r i a b l e s a t o p t i m u m 

5.2 Loca l P e r f o r m a n c e 

I n t h i s p a r a g r a p h w e e x a m i n e t w o cases . T h e first o n e i l l u s t r a t e s t h e effect 
of m e r i d i o n a l s h a p i n g o n l y o n t h e FI i n d e x for a p r e s c r i b e d l o a d i n g . T h e p r o b l e m 
itself is f o r m u l a t e d in p a r a g r a p h 3.2. T h e n u m b e r of p l i e s , d e s i g n v a r i a b l e s a n d 
s t a c k i n g s e q u e n c e a r e t h e s a m e a s in t h e p r e v i o u s p a r a g r a p h , Le. 5 .1 . T h e r e s u l t s 
a r e s u m m a r i s e d in T a b l e 4. T h e sur faces of FI (R o p t ; z , s ) for s o m e l eve l s of l o a d i n g a r e 
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d e p i c t e d in Fig. 1 1 . V a r i a t i o n of t h e FI sur faces is m u c h s m o o t h e r for t h e m i n - m a x 
a p p r o a c h . C o m p a r i s o n of r e s u l t s in Tab le s 3 a n d 4 i nd i ca t e s t h a t t h e m i n - m a x 
a p p r o a c h offers t h e be t t e r cho ice for d e s i g n p u r p o s e s . 

t| D/tH = KX) 

Fig. 9 M e r i d i o n a l p rof i les of s o m e o p t i m a l s o l u t i o n s 

T a b l e 4 

Ρ 
( N / m m 2 ) p j o p t 

R o p t 

t / t H 
fi γ°Ρ* 

ΎΗ 

Ρ 
( N / m m 2 ) p j o p t 

k 2 k 3 / D 
t / t H 

fi γ°Ρ* 

ΎΗ 

5.0 0.097 2.173 1.303 0.272 1.468 0.055 0.48 
10.0 0.258 1.817 1.977 0.412 1.133 0.204 0.80 
15.0 0.560 1.854 1.975 0.410 1.132 0.445 0.80 
17.5 0.768 1.727 1.984 0.424 1.123 0.574 0.81 

I n t h e s e c o n d e x a m p l e w e c o n s i d e r s h a p e , a n i s o t r o p y a n d v a r i a b l e l e n g t h , 
s i m u l t a n e o u s l y a s d e s i g n v a r i a b l e s . I n a d d i t i o n t o c o n s t r a i n t s (9-11) a n d (16) w e a d d 
c o n s t r a i n t s (12-14) a n d w e a s s u m e N = 3 s e g m e n t s of v a r i a b l e l e n g t h w i t h i n e a c h p l y . 
T h e s t a c k i n g s e q u e n c e is k e p t , a s i n p r e v i o u s cases , s y m m e t r i c . T a b l e 5 s u m m a r i s e s 
r e s u l t s o b t a i n e d for d i f fe ren t p r e s s u r e s . S o m e fu r the r i m p r o v e m e n t s i n l o w e r i n g t h e 
p e a k v a l u e s of t h e FI h a v e b e e n o b t a i n e d . 

F ina l ly , T a b l e 6 p r o v i d e s v a l u e s of t h e i n t e g r a t e d fa i lu re i n d e x fi a n d local , 
m a x i m a l v a l u e s of t h e FI for h e m i s p h e r e s w i t h D / t H = 100. O p t i m a l s o l u t i o n s g i v e n 
in T a b l e s 3 , 4 a n d 5 s h o w h o w m u c h b o t h local a n d g l o b a l m e a s u r e s of s t r e s s c a n 
b e r e d u c e d . 
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Κ)·10 

Fig. 10 V i e w of t h e FI su r f ace a t o p t i m u m for s o m e p r e s c r i b e d l eve l s of l o a d i n g 
[min(fi) case] 

T a b l e 5 

p*> pppt 
β, (deg) V D 

p*> pppt 
1 2 3 1 2 3 

k 2 

1 -76.9 -57.4 -71.8 0.264 0.061 0.370 
5 0.062 2 -1.9 -19.8 3.5 0.432 0.091 0.172 1.94 1.74 0.40 

3 83.8 57.3 73.5 0.303 0.140 0.252 

1 -65.8 66.3 3.55 0.090 0.265 0.310 
10 0.231 2 -12.2 78.6 81.8 0.528 0.055 0.082 1.94 1.74 0.35 

3 39.8 -70.1 89.9 0.286 0.061 0.318 

p r e s s u r e ( N / m m 2 ) 



380 

10 

Fig. 11 T h e FI su r f aces a t o p t i m u m for f ixed p r e s s u r e s [ m i n - m a x (FI) case] 

T a b l e 6 

Ρ 
( N / m m 2 ) 

2.5 5.0 7.5 9.08 

fi 0.022 0.068 0.138 0.199 

FI 0.087 0.317 0.690 1.000 

6. C O N C L U S I O N S 

T w o w a y s of l o w e r i n g t h e level of t h e i n t e r ac t ive fa i lu re i n d e x h a v e b e e n 
i n v e s t i g a t e d n u m e r i c a l l y . T h e m i n - m a x a p p r o a c h r e s u l t e d i n m o r e a c c e p t a b l e 
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s o l u t i o n s f r o m a p rac t i ca l p o i n t of v i e w . I n t h i s a p p r o a c h e a c h p l y w a s m a d e f r o m 
a n u m b e r of s e g m e n t s . L e n g t h of e a c h s e g m e n t a n d i ts o r i e n t a t i o n w e r e t h e d e s i g n 
v a r i a b l e s . E v e r y t w o ad jacen t s e g m e n t s w e r e bu t t - jo in t ed . T h i s offers n o m i n a l l y 
c o n s t a n t w a l l t h i c k n e s s . V a r i a b l e s t a c k i n g s e q u e n c e a s s u r e s t h a t m a t e r i a l s t r e n g t h 
is fully u t i l i s ed . 

T h e a b o v e i d e a r e m o v e s e d g e effects u s u a l l y a s s o c i a t e d w i t h p l y d rop -o f f in 
a v a r i a b l e w a l l t h i c k n e s s . T h i s is p a r t i c u l a r l y s u i t a b l e for t h e w o v e n fabr ic w h e r e 
s o m e success fu l e x p e r i m e n t s h a v e b e e n c a r r i e d o u t o n p e t a l l e d a n d b u t t - j o i n t e d 
c lo su re s . 

I n s o m e w i n d i n g t e c h n i q u e s w e c a n n o t a c h i e v e t h e r e q u i r e d s t r e n g t h of 
u n i d i r e c t i o n a l f ibres d u e t o l i m i t a t i o n s o n t h e s t a c k i n g s e q u e n c e . Bas ica l ly , t h e i d e a 
p r e s e n t e d i n th i s p a p e r s h o u l d a l so b e a p p l i c a b l e t o v a c u u m b a g g e d d o m e s m a d e 
f r o m u n i d i r e c t i o n a l t a p e s . B u t t h e r e h a v e b e e n n o e x p e r i m e n t a l t r i a l s t o a s s e s s b u t t -
jo in t s p e r f o r m a n c e i n d o m e s m a d e f r o m u n i d i r e c t i o n a l s e g m e n t s . 
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Abstract 
The materials are usually reinforced by inclusions, fibers or 

constitute more types of multi laminate composites. The present 
paper discusses optimality conditions for the case of inclusion 
reinforcement, introduction of reinforcing curvilinear fibers, 
membranes or beam stiffeners, finally by softening interfaces 
representing displacement discontinuity and aimed at reducing 
maximal stress concentrations. 

1 . INTRODUCTION 

In order to increase material stiffness, the reinforcement is 
usually introduced in a form of rigid or stiff particulates, 
whiskers or fibers. The resulting increase of stiffness depends 
much on shape and distribution of inclusions. Similarly, for 
fiber reinforcement, the orientation and density of rectilinear 
fibers are to be specified in order to maximize the element 
stiffness. For a curvilinear fiber layout, a more complex prob
lem arises to specify the density and layout in particular ma
terial layers. Let us note that a curvilinear fiber layout in
troduces the traction discontinuity in the matrix material. A 
similar concept can be investigated for membrane-like reinfor
cing layers with a curvilinear fiber layout within the layer. 

The stiffening action is usually considered for the case of 
specified loading conditions. However, for thermally induced 
initial strain action or under displacement control, the stif
fest material structure will generate very high stresses and 
therefore is not optimal from the engineering point of view. 
For an elastic material, both stiffness and stress constraints 
should be introduced. When both loading and thermal gradients 
occur, then stiffness and stress constraints provide conflict
ing design requirements and an optimal solution corresponds to 
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a compromise design, cf. Garstecki and Mroz [ 1 ] . 
For an inelastic material response, the inclusion or fiber 

reinforcement is aimed at reducing the creep rate or increasing 
the limit load of a perfectly plastic matrix. 

Some studies of the effect of inclusion shape on stiffness of 
linear and nonlinear power law materials indicate large sensi
tivity of stiffness with respect to shape parameters of ellip
soidal inclusions, cf. Lee and Mear [2], Duva [3]. A numerical 
study of the effect of rigid spherical inclusions on limit load 
of a ductile plastic matrix indicates a significant reinforce
ment effect for large volume concentrations, cf. Home and McMe-
eking [4]. 

In this paper, we shall discuss the relevant optimality con
ditions for three cases of interfaces, expressed in terms of 
local stress, strain or their discontinuities. Our analysis 
will follow previous derivations of optimality conditions for 
composite, reinforcing and softening interfaces, cf. Dems and 
Mroz [5,6,7]. For a periodic array of inclusions or dense dis
tribution of reinforcing fibers, the representative element 
concept can be used and the effective material moduli are then 
optimized with respect to density and orientation of reinforc
ing inclusions. The optimality criteria for such case are con
sidered and some illustrative examples are presented. 

2. FORMULATION OF INTERFACE PROBLEMS 

Numerous problems in material science are related to moving 
interphases, for instance, in grain boundary evolution, auste-
nite - martensite transformation, etc. In the study of design 
modification, such interphase is varied in order to achieve an 
improved or optimal design. The interface can be regarded as 
surface on which some static or kinematic fields undergo dis
continuities. Let us first discuss briefly three fundamental 
types of interfaces. 

2.1. Inclusion interface S^ 
Consider an inclusion of different (usually higher) elastic 

moduli from those of matrix material, Fig. 1 . On the external 
boundary S^ of the inclusion, the displacement and surface tra
ction are continuous, thus 

[ u ] = 0 , [ ΐ ] = [ σ η ] on.S. ( 1 ) 

where u, £, σ denote displacement, strain and stress fields. 
([ J denotes the discontinuity of the enclosed quantity at the 
interface, thus [ u ] = - u^ on S^, where u^, ε^, and , 
- 2 ' -2 denote state fields within the matrix and the inclusion, 
respectively. The displacement gradients, strain and stress 
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fields, however, undergo discontinuities satisfying ( 1 ) , so 
that 

Figure 1 . (a) Internal inclusion with closed interface; 
(b) Interface penetraiting into external boundary. 

[ u i t J i a. η . 
ι J 

a <3> η 

ô ( a . η . + a .η . ) 2 ι J J ι 
, [ ω.. ] = | ( & . η . - a.n.) (2) 

Here a denotes the discontinuity vector and η is the unit nor
mal vector to the interface S., directed into the exterior of 

ι 
the inclusion domain. The form of discontinuity (2) assures the 
continuity of deformation of material elements within the in
terface. Assume the inclusion and the matrix to satisfy the li
near elasticity relations 

2i = " -i 2 2 
(3) 

where C, and a r e "the elasticity matrices of inclusion and 
matrix, ε*, ε^ denote the initial strains. To preserve suffi
cient generality, we assume that the initial strains may exist 
in both portions, for instance, 
strains. In view of (3), we have 

thermal and transformation 

I 2 1 - M i " £ 2 £ 2
 + M Î =  fi 2ï £  1 1 s. 

( 4 ) 

F r o m  t h e  c o n d i t i o n  f  σ Jn = 0, (2) and (4), we obtain 
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(n Ç 2 n)a + n[ Ç ] ε χ + n C ^ * - η C ^ * = 0 (5) 

Denote by A the acoustic (or Christoffel) tensor 

Δ = η £ β , A j k = n . C i j k i n i (6) 

and by b the interface "force vector" 

b = - n[ Ç ] ε χ - n + n (7) 

Equation (5) now takes the form 

A 2 a = b or A ( 2 ) j R a k = b. (8) 

Let us note that the acoustic tensor is familiar from plane wa
ve propagation problems, and the vector b does not vanish when 
the stiffness moduli of inclusion and matrix are different or 
the initial stresses on both sides of the interface are diffe
rent. In particular, when = = Ç, then b = n ç[[ ε 1 J , This 
is a typical case of a phase transformation process when the 
developing phase is associated with the specified transforma
tion strain at the interface. Note that solution of (8) requi-

^2 j thus a = A gb. 

2.2. Reinforcing interface S r 

Assume now that the interface S constitutes an internal 
r 

shell carrying forces and bending moments, thus inducing dis
continuity in surface tractions on S . Such interface can be 

J r 
thought of as a thin reinforcing shell inclusion (or a beam in 
plane case) of different stiffness from the matrix material, or 
a thin layer of concentrated initial strains. This case can al
so correspond to a grain boundary with account for grain boun
dary energy or to an austenite - martensite interface. 

The traction discontinuity is now related to interface gene
ralized forces Ν through local equilibrium equations of the in
terface element, thus 

[ 2 f l ] = [ l ] » L ( N , a ) O ) 

where L is in general a differential operator involving deriva
tives within the interface and q denotes the geometric variable 
of the interface (metric and curvature tensors). The displace
ment gradient discontinuity is expressed by (2) with b speci
fied by (8), where now 

b = L(N,q) - n[ Ç ] ε χ - n + n (10) 
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In particular, when = , ε* = ε* , then only the first term 
of (10) constitutes the interface force. Thus, introduction of 
reinforcing fiber or shell involves strain and traction discon
tinuities on S , cf. Dems and Mroz [6]. 

r 

2.3. Softening interface S^ 
Assume now that at the interface S, the traction vector is 

α 
continuous but the displacement vector may suffer discontinui
ty, so that 
[ Î 1 = 0 , [ u ] = ν = Β Τ or [ u ] = ν = Β Τ (11) 

A ·*- U J 

Here the discontinuity vector ν is assumed to be explicitly re
lated to the traction vector Τ by the constitutive relation 
with a symmetric compliance matrix Ê  =  Β . The displacement 
discontinuity does not involve any new terms in the interface 
force vector so that (7) and (8) still apply. In particular, 
when [ Ç J = 0 and [ ε 1 J = 0 , then [ a ] = 0 and the displa
cement gradient discontinuity vanishes on S^. Here, the gra
dient discontinuity is calculated on both sides of S^ excluding 
the interface field. The interface S, can now be conceived as a 

α 
thin surface layer undergoing localized shear and normal str
aining induced by the displacement discontinuity. It may repre
sent a soft surface layer introduced at the inclusion boundary 
in order to reduce local stress concentrations, or a delamina
ted area in the composite material. 

3. VARYING INTERFACE: RATE EQUATIONS AND SENSITIVITY ANALYSIS 

The variation of interface shape will now be considered as an 
evolution process specified by the transformation velocity 
field jp(x,t), such that each material element undergoes the 
transformation 

χ = χ + i>dt (12) ~~o — 

When the inclusion interface S^ moves, the first equation of 
(1) provides 

du. du. 
I i ± 1 « [ s r 1 • u i ' / j = I έγ 1 + V » = 0 ( 1 3 ) 

and then 
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I û . ]  .  [  £ i j  . a..φ i n (14) 

where φ = φ.η. denotes the normal transformation velocity com-n ι ι 
ponent, denotes the total time derivative on the transformed 
element and [ u. ] is the local time derivative. The second 
equation of (1) now provides 

do. 

I - I S j ^ l n j • [ ^ ] η . + [ â ^ f l n / k « 0 (15) 

The time derivative of the unit normal vector is, cf. [5] 
. Τ 

n j = ( n j n i - 6 j i ) n k V i 
where L. . = φ. , ., ij ι J 

r η = (η • L η)η - L η 

In view of (15) and (16), we obtain 

da. 

(16) 

I i 1 - I « i j l n j - [ g ^ l n j « - [ - i j l ( n . n 1 - V > W l -
do. . 

I a s ^ n À = I " n K V i " I ' i j -k lVk ( 1 7 ) 

Consider the local coordinate system (η,τ), τ=1,2, at the in
terface and assume that for a closed inclusion it is sufficient 
to consider = φ , φχ = 0. Equation (17) now provides 

do 

nn-" I L 

da 

I S T * . 
J - 1 

dt •" "· d n - " ' n 
θσ da^ 

- [ ϋ » Β , - 1 τ η ' τη-· "· 3t J " "τα^η'α «• 3n - n 

Equations (18) can also be expressed in the matrix form 

1 nn-° " I σ η η · J 0 
(19) 

- V « -

(18) 

where α =1,2. When the transformation rule is known and the 
equilibrium solution at instant t is specified, then the local 
stress rate discontinuities are specified by (17) or (19). On 
the other hand, the local displacement rate discontinuity is 
specified by (14). Thus (14) and (17) provide the boundary con
ditions for the rate transformation problem. 

Denote by <J^, ε^, and σ^, ε^, Ug t h e s t a t e s w i t h i n t w o b o 

dy portions. Assume that the initial strain fields and the 
elasticity matrices do not vary. However, the interface motion 
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specified by the transformation rate <Pn(x_,t) is assumed to oc
cur. The rate fields therefore satisfy the field equations 

σ. . ., . = 0 , σ. = C. ε , ε 1 . . = ^ ( ΰ 1 . , . + ΰ 1 . , . ) , lij j -1 ""1-1 l!J 2 li J lj ι 
σ. . .η . = 0 on S m , û . =  0  o n  S  ( 2 0 ) l i j  j  Τ ι u 

and similar equations in the domain · Moreover, the disconti
nuity conditions (14) and (17) are satisfied on S^. The virtual 
work equation can now be written as follows 

J ê r Ê i d V j +  J V s 2 d v 2 =  J ( T 2 - G 2 -  T 1-Û1)dsi =  J ( f 2 . [ û  ]  + 

[ f  ] - G 1 ) d s i =  J d j - I û  ]  -  [  τ ] - û 2 ) d s . ( 2 1 ) 

W e  h a v e  t h u s  a  n o n - t y p i c a l  b o u n d a r y - v a l u e  p r o b l e m  w h e n  d i s 
c o n t i n u i t i e s  i n  b o t h  d i s p l a c e m e n t  a n d  t r a c t i o n  r a t e s  a r e  s p e c i 
f i e d  o n  t h e  i n t e r f a c e .  T o  h a v e  a  c l e a r  i n s i g h t  i n t o  t h i s  p r o b 
l e m ,  w e  c a n  c o n s i d e r  i t  a s  a  s u p e r p o s i t i o n  o f  t w o  p r o b l e m s . 
F i r s t ,  a s s u m e  t h a t  t h e r e  i s  a  t r a c t i o n  r a t e  d i s c o n t i n u i t y  o n 
a n d  d e n o t e  t h e  r e s p e c t i v e  s o l u t i o n  b y  o 9 e 9 u ' . T h e  f i e l d  u * 

* " " * 
i s  c o n t i n u o u s  o n  S .  b u t  t h e  s t r e s s  r a t e  f i e l d  o 9 s a t i s f i e s  t h e ι 
condition £ tf'Jn = I f ] on S^. We can conceive a distributed 
traction on surface inducing the equilibrium states within 

and Vg · The rate potential and complementary energies are 
now of the form 

n u(u') = Ju(£')dV - J[ f J-u'dS. 

ησ(σ9 ) = J w ( â » ) d V ( 2 2 ) 

where U (ε) and W(a) are the specific strain and stress rate 
energies. The stationarity conditions provide weak formulations 
of the boundary value problem, namely 

6UU = |σ'·δε' dV - J [ T J ^ Û ' d S .  =  0 

δΠ σ = |ε'·δσ' dV = 0 ( 2 3 ) 

Consider now the second problem, when the displacement rate 
discontinuity is induced on S^. The corresponding state fields 
are denoted by σ", ε", u M . Now the stress rate is continuous on 

but the displacement rate satisfies the condition |[ u" J = 
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[  u  ]  o n  S ^ . W e  c a n  c o n c e i v e  a  t h i n  l a y e r  o n  a l o n g  w h i c h  b o t h 
t a n g e n t i a l  a n d  n o r m a l  c o m p o n e n t s  o f  u "  u n d e r g o  d i s c o n t i n u i t i e s 
( s l i p  a n d  d i l a t a n c y  l a y e r ) .  T h e  p o t e n t i a l  a n d  c o m p l e m e n t a r y 
e n e r g i e s  n o w  a r e 

n u ( û " )  *  J \ j ( £ " ) d V 

Π σ(σ") = Jw(cr")dV - J ( ç r " n ) - [  û  ]  d S .  ( 2 4 ) 

a n d  t h e  s t a t i o n a r i t y  c o n d i t i o n s  p r o v i d e  t h e  r e l a t i o n s 

ÔUU =  Jâ "·δέ" dV = 0 

6ïl° =  |ε"·δσ" dV - |(δσ"η)·|[ û  ]  d S i  =  0  ( 2 5 ) 

T h e  s o l u t i o n  o f  t h e  r a t e  p r o b l e m  a s s o c i a t e d  w i t h  m o v i n g  i n t e r 
f a c e  i s  n o w  o b t a i n e d  b y  s u p e r p o s i n g  t w o  s t a t e s  o f  t r a c t i o n  a n d 
d i s p l a c e m e n t  r a t e  d i s c o n t i n u i t y  p r o b l e m s ,  t h u s 

σ = σ' + σ" , £ = £ ' + £ " , ΰ = u' + ΰ" (26) 

The potential and complementary energies of the states u., ε, a 

now are 

n u ( û ) =  Ju ( £ ) d V  -  J [ f  ] - i 1 d S i 

Π σ(σ) = Jw ( â ) d V  -  J ( 5 i n ) - | [ û  ]  d S i  ( 2 7 ) 

T h e  p r e s e n t  f o r m u l a t i o n  p r o v i d e s  a  d i r e c t  a p p r o a c h  t o  s e n s i t i 
v i t y  a n a l y s i s  b y  s o l v i n g  a  r a t e  o r  i n c r e m e n t a l  p r o b l e m  a s s o c i a 
t e d  w i t h  t h e  m o v i n g  i n t e r f a c e .  I n  m a n y  c a s e s ,  h o w e v e r ,  w e  a r e 
i n t e r e s t e d  i n  a s s e s s i n g  t h e  v a r i a t i o n  o f  a n  i n t e g r a l  f u n c t i o n a l 
r e p r e s e n t i n g  a  g l o b a l  s t a t e  p r o p e r t y .  A s  t h e  p o t e n t i a l  e n e r g y 
r e p r e s e n t s  t h e  g l o b a l  s t i f f n e s s  a n d  t h e  c o m p l e m e n t a r y  e n e r g y  i s 
a  m e a s u r e  o f  g l o b a l  c o m p l i a n c e ,  t h e i r  v a r i a t i o n s  a r e  o f  f u n d a 
m e n t a l  i n t e r e s t . 

T h e  r a t e  o f  v a r i a t i o n  o f  t h e  p o t e n t i a l  e n e r g y  c a n  b e  e x p r e s 
s e d  a s  f o l l o w s 

n u ( u , S . )  =  0 ê d V  +  J [ U  ] ï > n d S .  ( 2 8 ) 

H o w e v e r ,  i n  v i e w  o f  t h e  v i r t u a l  w o r k  p r i n c i p l e  a n d  ( 1 4 ) ,  t h e r e 
i s 

JVë d V  =  | τ · l û  ] d S i  =  -  JV a < P n d S i  ( 2 9 ) 

a n d  ( 2 8 )  c a n  b e  r e w r i t t e n  i n  t h e  f o r m 
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flu = Γη φ dS. (30) J η ι 

where Η = [[ U ] - T-a is the generalized force associated with 
the interface motion. This force can also be expressed interms 
of the Eshelby energy momentum tensor, namely, cf. [11] 

Σ = υ δ . . - σ. .u. ,, (31) jk jk ij i'k 

so that 

ή" - J f e j J » j n k V » i = IH % d S i ( 3 2 ) 

and H = η·[ Σ ]n . 
Let us now pass to a discussion of the reinforcing interface 

S . The surface tractions are now discontinuous on S and are r r 
related to interface stresses by equilibrium conditions, so we 
have 

[ 2 ] = L(N,q) * 0 , [ £ ] = 0 , [ u ] = 0 (33) 

The plane case of such an interface was treated by Dems and 
M r o z [6] who discussed the optimal interaction of beam stiffe-
ners within disks and plates. Consider, for example, a curvili
near plane stiffener introduced into a disk, Fig. 2a. Denote by 

Figure 2. (a) Curvilinear stiffener in a disk; 
(b) Displacement discontinuity line in a disk 



392 

v(v g,v ), β ( ε , κ ) and φ(Ν,Μ) the displacement vector, strain and 
generalized stress within the stiffener, where ε , κ are the ax
ial elongation and curvature of the stiffener, Ν and M denote 
the cross sectional axial force and the bending moment. We have 

ε = ν , - Kv , κ = -θ, = -(ν , + Κν ), (34) s*s η ' 's y η* s s''s v 

where K denotes the stiffener curvature, θ = ν , + Κν is the 
η s s 

angle of rotation of the stiffener cross section and s denote 
the stiffener parameter. The equilibrium equations of the stif
fener are 
N ' s - M , s K - I Nns2 = 0 ' N K + M ' s s " t N J = 0 ( 3 5 ) 

The potential energy now has the form 

n U ( u , S r ) = J u ( € ) dV - Jt°-U d S T + J u ( £ ) d S r (36) 

where the last term corresponds to stiffener elastic energy. 
The variation of Ilu due to stiffener variation is now expressed 
in the form, cf. [6] 

U K + [ u ] - [ N ε ] - [ Ν ε 1 - Νβ, + 
Λ "· ns ns-" η n J 's 

(M, ε ) , \φ dS - f[u (T - Τ , φ ) + u (T - Τ , φ )]dS- (37) s si n r J s ns ns s s ' η η n s s' T 

where the second term corresponds to the interaction of stiffe
ner with the loaded boundary. For a closed stiffener, only the 
integral along interface represents the potential energy 
variation. 

Assume now that the displacement vector u undergoes the dis
continuity along the softening interface S, (which will be cal-

α 
led the discontinuity line). We have 
ν = u 2 ( x ) - u x ( x ) = [ u(x)] (38) 

It is further assumed that the discontinuity vector is related 
to continuous internal tractions on through the relations 

a u d(v) 
Ν = = L ν , ν = L Ν = Β Ν (39) 

where 1± and Β are the interface stiffness and compliance matri
ces. The potential energy of the body now is 

n U ( u , S d ) = J u ( £ ) dV - J T ° - u d S T + J u d ( v ) d S d (40 ) 
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The variation of Ilu due to interface motion equals, cf. [ 7 ] 

Π " = J [ - [ U 1 - U d K + N n a v a , s - e 3 a p ( N n a v p ) , s ] ^ d S d -

K ( t n « - V ' S V ^ T + K « ( U « - W S > d S u ( 4 1 ) 

where ^^οίβ denotes the permutation symbol. 
Consider now a more general functional which could represent 

global or local stress or displacement constraints, namely 

G = JV(a,u) dV + J h ( u , T ) dS ( 4 2 ) 

and introduce an adjoint structure of the same shape and inter
face but subjected to initial strains, body forces and boundary 
conditions 
ai ΘΨ ,a ΘΨ ... . 

^ = δα · £ = d£ within V 

m a o a dh „ ao dh 0 , . 0 x Τ = σ η = gjj on S T , u = - o n s
u ( 4 3 ) 

Following the previous derivation, the variation of G can be 
expressed in terms of primary and adjoint fields and their dis
continuities. For a closed interface S., we obtain 

ι ' 

à = | { [ Ψ ] - [ a - e a ] + Τ a a + Ta-a}i>ndS.= J h ( U,u a ) i> ndS. ( 4 4 ) 

where a a is the interface discontinuity vector of the adjoint 
displacement field, |[ u a J = aa<8> η . The respective generalized 
mutual energy momentum tensor can be specified as follows 

Σ .. = (Ψ - σ·ε*)δ.Λ + σ. , u
a + a a . u . M ( 4 5 ) jk - - j k ι j j k ι j j k 

so that ( 4 4 ) takes the form 
0 = JPJL>JVN D S I = j H i u . u ^ V S . ( 4 6 ) 

For the case of a closed beam stiffener within a disk struc
ture, the functional G is now of the form 

G = JV(?,u) dV + J h ( u , T ) dS + J<&(£,£)dS r ( 4 7 ) 

and its first variation with respect to shape of moving stif
fening interface is expressed as 

à -  U-KK  +  KsC i +  K £J +  N6 »s+ Ν * θ · 3 -
( M , e a ) - ( M ? ε ) - ( N a e + M a x ) K + [ψ] - 4 > K } idS,, ( 4 8 ) 
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Similarly, for a closed softening interface, we obtain 

G = J{ M - *K - [σ·ε*]| + Τ η α ν * Κ - T ^ v ^ - + 

ε3«β ( Τη« ν? + C V 0 » ' s ' V S d ( 4 9 ) 

where now Φ = Φ(Τ ,ν ), α=τ,η, occurring in (45) depends on noc oc 
traction and displacement discontinuity on S^. More general ex
pressions are derived in [6] and [7] where the interaction with 
boundary surfaces was account for. 

4. OPTIMAL REINFORCEMENT CONDITIONS 

The sensitivity analysis associated with moving interfaces 
provides now a useful tool in generating the optimality crite
ria and also in determining proper reinforcement evolution ru
les which could be applied in numerical procedures. 

Consider first a single reinforcing inclusion within the lo
aded body. A typical optimization problem could be formulated 
by requiring an extremum of a behaviour functional with cons
traint set on the inclusion volume. The design parameters would 
then specify position, orientation, size and shape of the in
clusion. Let us note that translation or rotation of the inclu
sion does not affect its volume and there is no need for addi
tional constraint. 

Let us discuss the relevant optimality criteria for most ty
pical cases of inclusion variations. When a rigid-body transla
tion of inclusion specified by the vector φ = b occurs, the po
tential energy variation follows from (30) and (31), namely 

ftU = JH w s i = K[!E+D< - K d s k ] = B A <50> 
where H + = [ϋ] + - [ T-a ] + , H ~ = [ u ] " * - [ T-a ] " , dS f c= d S n k , and 

, "-" denote values at respective interface portions with 
the translation vector directed outside or inside the inclu
sion, Fig. 3a. 

When an arbitrary state functional G is considered, its vari
ation follows from (44), that is 

0 = \ [ f " + d < - J"~dsk ] = 5 A ( 5 1 ) 

where H + = ( [ * ] - [ çr-ea] + T-a a- T a - a ) + and H ~ = ( [ * ] - [ 

+ T a a - T a-a ) " . 
The optimal position of the inclusion corresponding to an ex

tremum of the potential energy is now specified by the condi
tion ft!* = 0, thus 
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or J n +dS k = | H ~ d S k on S ± , k=l,2,3 (52) 

and when the stationary value of G is required, G^ = 0, then 

= 0 or j H + d S k = Jh d S k on S i , k=l,2,; (53) 

These optimality conditions are expressed in terms of interface 
integrals. Alternative but similar conditions can be derived by 
using the concept of path-independent integrals discussed pre
viously by Dems and M r o z [10], Instead of inclusion translation 
with respect to a body , one can consider the body translation 
specified by the vector -b^ with respect to inclusion, Fig. 3b. 

U =U 

a) ( b 

Figure 3. (a) Inclusion translation with respect to structure; 
(b) Structure translation with respect to inclusion 

Consider any closed surface S enclosing the inclusion. The va
riation of Π 1 1 and G can now be expressed as follows 

fiU= \ [ ί ( υ \ ο - « W k ^ H = 

*>k[Ju d sk- K u i ' k d s ] = »l\ 

and 

G = b k i J I ( * " °--e- , 6 k j + V i ' k + * I j u i ' k l V ^ " 

(54; 

(55) 
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For a homogeneous body the surface integrals (54) and (55) va
nish. However, when the surface encloses the inclusion, then 
(54) and (55) provide sensitivities of Π υ and G with respect to 
inclusion translation. In particular, the boundary surface can 
be used and the sensitivity can explicitly be expressed in 
terms of surface tractions and displacements. The relevant op
timality conditions now follow from (54) and (55) by requiring 
B £ = 0 or B £ = 0 . 

Consider now the case of inclusion rotation, that is 

x k = xk + * k d t · *k = ^ Ρ ι χ Λ > ( 5 6 ) 

when ω denotes the rotation rate vector and e, , is the permu-Ρ kpl u
 F 

tation symbol. Following [ 1 0 ] , the sensitivities of Π and G 
can be expressed as follows in terms of surface integrals on an 
enclosed arbitrary surface S 

n U = ώ e, ι M U X n d S . - [(T.u. + T . U . . . X , ) d S = Β Γ ώ (57) ρ kpl [ J l k J ' l k l i k l ' J p p 

and 

ά = V k P i { j ( , p " ?-£ a > x i d s k + i ( T i u k + T Î V d s + 

J ( T . « a , k + T a u i ( k ) x l d s } - Bj « 0 p (58) 

The integrals can be calculated for any surface enclosing the 
inclusion, in particular, the boundary surface or the inter
face S ^ . When (57) and (58) are expressed as integrals over the 
interface, we obtain 

fiU - V k p l [ i < M ' î ^ > x l d S k ] = Βρώρ < 5 9 ) 

and 

G = ω e _ P kpl [J(W - I * · £ * ] + X-a a + I a - a ) X l d s £ ] = Β^ώρ ( 6 0 ) 

The optimality conditions corresponding to stationarity values 
of n u or G are now directly deduced from ( 57 ), (58) or (59), 
( 6 0 ) , namely B ^ = 0 or B ^ = 0 , ρ = 1 , 2 , 3 . 

Considering the expansion of inclusion, that is the transfor
mation 

= χ ι , + Hx,,dt ( 6 1 ) 
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the sensitivity of Π υ and G can be expressed as follows 

nU » n [ j ( M - ï - a ) x k d S i  = n [ j ( U x k n k  -  T . u . , ^  -

IViH Β β Π (62) 

and 

G = π [ [ ( Μ - l ° i * J + T-a a + T a - a ) x k d S ^ = Β θ η (63) 

When the integrand of (42) are Ψ = Ψ ( σ ) , h = 0 and Ψ is a ho
mogeneous function of stress of order p, then (63) can be ex
pressed in terms of the surface integral on the arbitrary sur
face S enclosing the inclusion, namely 

G = ΓΚΓΠΨ, - <7*ea )x.n. +(T au.,, + Τ. u a )x. + Τ. u a + M l - - k k i l k l i k k ρ i i 

T a u . ]dsl (64) ρ ι i J J 

Finally, considering the parameter dependent shape variation, 
that is 

dip θφ 
Ψ = Ç t x , ^ ) , φ = β^^λ , φη = ( gjj- η ^ α ^ , 1 = 1,2..m (65) 

the sensitivities of Π υ and G are expressed by 

^ - d ^ J d u l - l a ) ^ n kdS.] . B*dl 

G = d [ | ( | [ Ψ ] - l ç e & J +  T u a  +  ï a u ) g ^  n k d S . J =  b J ^ ( 6 6 ) 

S i m i l a r  s e n s i t i v i t y  e x p r e s s i o n s  a n d  o p t i m a l i t y  c o n d i t i o n s  c a n 
b e  d e r i v e d  f o r  r e i n f o r c i n g  a n d  s o f t e n i n g  i n t e r f a c e s  S  a n d  S , . 

r  α 
Note that the path independent integrals (55),(60) and (64) can 
be applied for the case of translation, rotation and expansion 
of any interface, without using interface data. 

5. REPRESENTATIVE ELEMENT OPTIMIZATION 

The analysis of the previous Section can now be applied to a 
case of a representative material element subjected to homoge-
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neous stress and strain. Consider the surface tractions T b = 
u b u 1 

o. .n . or displacements u. = v. .χ. applied to the representative U J u ι ij j 
element, where o. . denotes the uniform stress tensor and v. . is 
a constant displacement gradient. The mean stress and strain 
tensors can now be expressed as follows, cf. Hill [12] 

V r 5 . . = if(T bx . + T b x . )dS i j 2J ι j J ι 

V r ê .  .  =  i f ( u b x .  +  u b x . ) d S  ( 6 7 ) 
IJ ÎC. J 1  J  J  ι 

and it can easily be shown that σ. .= ., ê .  . =  \(ι>^ . + i>u. . ) . 

For the representative element volume there is 

ν Γ σ · ε |σ-ε d V r (68) 

Introduce the elastic stress and strain concentration matrices 
Δ(χ) » B(x), so that 

σ(χ) = Α(χ)σ , ε(χ) = Β(χ)ε (69) 

Denoting by Ç and D the local stiffness and compliance matri
ces, we have 

V r a = \ç εdV Γ = IÇ Β ε d V r = Ç ε , Ç = — | ç B d V r σ = J ç £ d V r  =  J ç Β ε d V r = Ç ε , ç = - ^ J ç B 

ë = Jd adV r = Jd A ô d V r = D σ , D = Δ d V r (70) 

The effective moduli Ç and D now depend on the internal struc
ture of the element, thus A = A( s_) , Β = B(^) , where s denotes 
collectively design parameters. Similarly to the previous ana
lysis, the sensitivity of representative element behaviour with 
respect to variation of s_ can be studied. 

Consider in this Section the case of rotation of an anisotro
pic element microstructure with respect to axes of mean stress 
or strain. Equations (57) and (58) when applied to homogeneous 
stress and strain fields at the boundary provide the optimality 
conditions 

ekpJ T l uk d S = 0 ( 7 1 ) 

and 

e k p J ( V k + T * V d s - 0 ( 7 2 ) 

Condition (71) requires coaxiality of surface traction and dis
placement. Similarly, (71) requires coaxiality of primary and 
adjoint tractions and displacements. 
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Considering the representative element, the optimality condi
tions can be derived by considering rotation of mean stress and 
strain tensors with respect to anisotropic microstructure. Let 

* Τ * Τ φ denotes the rotation matrix, so that σ = Qa Q and ε - Q£Q 
and the stress or strain components in the rotating frame do 
not vary. The corotational derivatives of stress or strain va
nish, thus 

ο = Q ( Q T a Q ) Q T = σ - ω σ + σ ώ = 0 , σ = ω σ - σ ω 

_ Τ- τ - _ _ _ _ _ _ _ 
e = Q ( Q e Q ) Q = ε - ω ε + ε ω = 0 , ε = ω ε - ε ω ( 7 3 ) 

where ω Q denotes the spin of principal axes. 
Consider now the variation of complementary energy under mean 

stress control 

V r W ( 5 ) = v r — a = ν Γ ε·σ = ν Γε·(ω σ - σ ω) 
do 

V r ( ε σ - σ ε ) ·ω ( 7 4 ) 

The variation of potential energy for mean strain control is 

ν Γύ ( ε ) = ν Γ ^ · ε = ν Γ σ · ε - ν Γ σ · ( ω ε - ε ω ) = 
de 

V r ( σ ε - ε σ ) · ω ( 7 5 ) 

The stationarity condition now_ requires coa.xia.lity of mean 
stress and strain tensors, thus ε σ = σ ε. 

Consider now the stress functional G(<7) = ν Γ Ψ(σ) representing 
the element response. To derive sensitivity of G, introduce an 
adjoint element subjected to the mean strain 

6Ψ 

do 
( 7 6 ) 

The sensitivity of G now equals 

V r è  =  V r  ~ d =  v r  ê a-ô =  V r (  â a  ο - α ε &)·ω 
do ~ ~ 

( 7 7 ) 

and the stationarity condition requires coaxiality of mean 
stress and adjoint mean strain, ε ασ = σ £ a . Note that coaxiali
ty property does not depend on particular type of anisotropy. 
Such coaxiality condition was studied in detail for orthotropic 

http://coa.xia.lity
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composites by Pedersen [8] and for orthotropic plastic texture 
anisotropy by Hill [9]. 

6 . ILLUSTRATIVE EXAMPLES 

In this Section three simple examples will be presented in 
which three types of interfaces discussed in previous Sections 
will be introduced and their optimal location will be consi
dered . 

Example I Let be given a circular sandwich plate with con
stant sheet thickness, simply supported at the outer edge and 
uniformly loaded by a lateral pressure p. The plate sheets are 
made of two linear elastic materials with Young's moduli ΕΛ and 

so that Eg> Jl' Fig. 

Figure 4. Circular sandwich plate with annular inclusion 

The domain of higher Young's modulus, bounded by interfaces 
and Sg of radii r^ and respectively, can be treated as in
clusion in matrix material of modulus E^. 

Assuming the complementary energy of the plate as the measure 
of mean plate compliance, the optimization problem is reduced 
to determining the radii r^ and r^ within the class of plate 
with constant inclusion volume. The complementary energy of 
plate equals 

3, r k 
G = Π σ = - A T ) f (M 2 - 2m M. + M 2)rdr (78) 

t h 2 k£l Ek J r k - 1
 r Γ t t 
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where M^, are the radial and circumferential bending moments 
and 2h is the core thickness. The constraint on the inclusion 
volume is expressed in the form 

c < 1 = const, ο (79) 

Introducing the Lagrange functional G = G - X(c - C Q ) , the op
timality conditions follows from stationarity of G*, namely 

G = λ c λ(c - c = 0 (80) 

where G is defined by (44) and variation of constraint (79) 
equals 

- 2 r i s . ZA i i Ii) 
(R R R R J (81) 

The solution of optimality conditions (80) for the case ν = 0 
and C q = 0.1 is illustrated in Fig.5 which shows the dependence 
of the optimal values of r ^ R and r^/R on the ratio of elastic 

Ε 2, 
eu mo 

:/EI 

Figure 5. Optimal location of inclusion versus the ratio of 
elastic moduli 

moduli E^/E^ for the inclusion and matrix materials, Figure 6 
shows the variation of the plate compliance as the function of 
radius r„ for c_ = 0.1 and Ε 2 / Ε χ = 4 . It is easy to see that 1 ο 
the values of r 

= 0.1 
and r, . ^ χ 2 satisfying the optimality conditions 

(80) correspond to a global minimum of the mean plate compli
ance . 



402 

Ex amp1e II Consider a rotating circular disk of radius R 
with a central hole of radius r . The disk is stiffened with 

ο 
circular fibers of radii r^ and cross-sectional longitudinal 
rigidity D. constituting the reinforcing interphases S , Fig. 7. ι r 
The disk is made of linear elastic material with elastic con
stant Ε and i>. Assume the radii r^ and fiber longitudinal rigi
dity as the design parameters and consider the complementary 
energy of a disk given in the form 

n*l r i r N 2 

G = N° • Iëe ! li»l.~2u»T»t.* N l ) r d r < 8 2 ) 

1=1 ri-l 1 i l l ι=1 ι 

Figure 6. Plate compliance versus position of inclusion 

where η denotes the number of reinforcing fibers. 
The optimization problem can now be stated as follows 

σ f" D i min. G = Π for c = ) r. — = c = const. (83) .Zji ι Eh ο i = l 

The optimality conditions follow from the stationarity require
ment of Lagrange functional and have the form 

Π σ = λ c , X(c - c ) = 0 (84) 

where now tl° follows from (46). The results of calculations are 
shown in Table 1, where the initial and optimal values of fiber 
radii and their longitudinal rigidities are given for prescri-
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bed values of Ρ = 0.35, pu = 1, c = 5, r = 0 . 1 and R =1.1. 
ο ο 

As the result of optimization procedure the value of complement 

Figure 7. Rotating circular disk with reinforcing fibers 

tary energy for optimal design is reduced aboutl9.25% in com
parison to initial design. 

Table 1 
Fiber location and rigidities 

Initial Optimal 
Fiber No. r. 

1 
D. /Eh 

1 
r. 

1 
D i/Eh 

1 
2 
3 
4 
5 

0.26667 
0.43333 
0.60000 
0.76667 
0.93333 

3.75000 
2.30769 
1.66667 
1.30435 
1.07143 

0.46785 
0.69719 
0.84901 
0.96098 
1.04867 

1.29476 
1.26836 
1.24543 
1.22480 
1.20614 

Example III As the last example consider a circular plate of 
external radius a with the softening interface in the form 
of hinge line of radius R, Fig. 8. The plate is made of linear 
elastic material and its bending rigidity is denoted by D, 
while the hinge line has a constant stiffness c. The outer edge 
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Figure 8 . Circular plate with softening interface 

of plate is rigidly supported and the uniform lateral pressure 
ρ as well as an imposed field of constant initial distortion κ 1 

is applied to the plate. These initial distortion can be caus
ed, for instance, by a difference in temperature between lower 
and upper plate surfaces. 

We can now formulate the following optimization problem: for 
various combinations of lateral pressure and initial curvature 
find the optimal radius of softening interface, which minimizes 
the maximum effective moment within plate domain 

min. G = G 1 / n = ( f * M n r d r V ^ i f * ( M 2 + M 2 - M M ) n / 2 r d r ) 1 / r \ 8 5 ) 
0<R<a l J 0 e / Vo r s r s J 
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tion of the problem (85) follows from stationarity requirements 
and takes the form 

G = 1 G(l-n)/n ά = 0 ( g 6 ) 

η 

where G follows from general expression (47). The results of 
the numerical solution of optimality condition (86) are shown 
in Fig. 9, where the plot of the optimal radius of the hinge 
line versus the ratio of initial curvature to lateral pressure 
is given for different values of hinge stiffness. It follows 
also from the calculations that on introducing he optimal hinge 
line within plate domain, them maximal effective moment is re
duced about 35% in comparison with the plate without any soft
ening interface. 
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A b s t r a c t 
The aim of the present paper is to present various types of the optimality conditions 

encountered in the analysis of laminated shell structures and their dépendance on the kine-
matical and physical assumptions. Theoretical considerations are illustrated by various 
numerical examples dealing with buckling behaviour of doubly-curved composite shells. 

1. I N T R O D U C T I O N 

Optimization of laminated structures is a complex task, the one which requires the in
tegration of various factors related to composite mechanics, structural analysis, numerical 
programming and manufacturing. In general, most of the investigations in this area have 
been directed at two aspects: 1) design of a composite topology (layout), 2) optimization 
of a geometry (size and (or) shape of structures). In the optimization process the above 
two aspects may be considered separately or commonly. In the second case the optimiza
tion of a structural layout gives a full information for the design of structures. The proper 
design of laminated composite plated or shell structures subjected to various constraints 
has been one of a major topic of research in recent years. For thinwalled composite struc
tures the examples of various formulations and solutions are discussed in Refs [1-7]. 

In general, optimization of the structural layout under buckling constraints can be di
vided into two groups: 
A Buckling loads of laminated structures are studied by means of analytical methods 

and simple mathematical representations. 
Β Numerical methods are applied to discretised models of practical design problems. 
The fundamental difference in the both mentioned above approaches depends on the pos
sibility (or not) of solving of geometrically nonlinear problems. 

In the first case (A) buckling loads are derived in the closed analytical form with the use 
of geometrically linear buckling theories (the Rayleigh-Ritz method, the Bubnov-Gallerkin 
method etc.). Thus, the optimality conditions under buckling constraints may be sought 
analytically. However,the solutions in the closed form have been found for axially com
pressed plates only (see Refs [8,9]). Therefore, in the case (A) the structural design is 
usually represented by a number of uknown parameters subjected to various constraints 
and the goal is to find their optimal values numerically. It is known that the stiffness 
characteristics of laminated thinwalled composites based upon the classical lamination 
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theory are governed by 12 lamination parameters and 4 independent stiffness invariants.In 
the orthotropic laminates, eliminating the coupling effects, the number of independent 
lamination parameters is reduced to four. The design method for tailoring the mechan
ical properties of the laminated thinwalled composite structures has been developed by 
Miki [10] and often used by many authors for solving of the optimization problems for 
plates [11] or cylindrical shells [12,13]. 

As the geometrically nonlinear theory is employed in the considerations (the case (B)) 
the problem of the laminate design for maximum buckling loads is much more difficult. 
We do not know in advance the continuous relations between buckling loads,composite 
topology and shell geometry, so that they have to be sought in a numerical way for each 
laminate configurations separately. 

In both approaches,i.e. geometrically linear (A) and nonlinear (B), various optimiza
tion numerical procedures may be used, including integer, discrete or probabilistic search 
techniques, but we shall not dwell on it here. Some of them are presented and discussed 
in the references cited above. 

The objective of the present paper is to discuss general results dealing with the opti
mization of laminated composite structures under buckling constraints and then to present 
numerical examples of the research in this area. Furthermore, in the interest of focusing 
the discussion, most of the presentation is limited to the design of laminated doubly-
curved shells under buckling and first-ply failure constraints. 

2. G O V E R N I N G E Q U A T I O N S 

In our considerations we employ the global approach to the description of laminated 
composite shell deformations. The fundamental geometrical relations are formulated with 
the use of geometrically nonlinear Sander's equations [14] (large deflect ions,moderate ro
tations and small strains),extended for the case of first-order shear deformations theory -
three displacements v t,w and two angles of rotation of the normal to the shell midsurface 
7,. They take the following form: 

Cij = eij + \diuj + | # j * 2 , Φ = \tijVj,i, Kij = KT.j + 7m) + U t i k C k J + tjkCki)^, 

Zi3 = 7t + tft, e U = \(l>ij + Vj,i) ~ CijWi #t = W,i + Cfjfeufc, t , j , fc = 1, 2 ( l ) 

where gij and e t J mean metric and antymetric tensors, respectively. Derivatives with 
respect to surface coordinates are denoted by comma after subscripts. 

Three-parametrical shell theory (the displacements v t , w only) based on the Love-
Kirchhoff hypothesis can be easily obtained by the following simplification: 

7i = - i > . d3 = 0 (2) 
The assumed form of the displacement field affects directly the number of terms in the 

stiffness matrix, i.e. the form of physical relations for composite thinwalled structures. It 
is obvious that the inclusion of transverse shear stresses σ& or transverse normal stresses 
033 expands the stiffness matrix in the comparison with the case as the Kirchhoff shell 
theory is applied in the analysis.On the other hand according to the laminated structures 
theory the number of nonzero terms in the stiffness matrix depends also on the laminate 

file:///diuj
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configuration. As far as the author is concerned the most general form of the stiffness 
matrix is introduced in Ref. [15]. 

In the considered case of nve-parametrical shell theory stress resultants and stress cou
ples, N,j,QT-3 and M t J (rsp.) are related to direct ε^,ε^ and bending « tj strains in the 
following fashion (see,for instance,Ref. [15]): 

' A 0 

Qi3 = 0 k'As 

Β 0 

Β 

D 
(3) 

With the help of the shear correction factor k' one can express easily three types of 
various formulations analysed herein: 
-1° k' = 0 corresponds to the Kirchhoff shell theory (the constraint of type (2)) 
-2° k' = § - transverse shear deformation theory of the first order 
-3° k' variable and depends on the laminate configuration; it is determined by evalua

tions of average shear stresses with the use of the method suggested in Ref. [16]. 
It is worth to mention that k' is constant as G13 is equal to G23 and both ply thick

nesses and orthotropic material properties are identical for each individual layers in the 
laminate. In that case the terms A 5 - D in eqn (3) are uncoupled and independent on fibres 
orientations in plies. If G13 is not equal to G23 the shear coefficients are unequal even for 
symmetric laminates. 

The numerical analysis bases on the functional formulation utilizing the functional of 
total potential energy J in the Lagrange form: 

J = Ji + J2 + Js (4) 

where 

Λ = i / {P}T[3]dn, J2 = -ξ j [(2 + eu)w - u^dÙ,  J 3 =  X' ara +  X'Jr».  (5 ) 

Ji expresse s th e tota l strai n energy , J 2 describe s th e wor k o f th e externa l unifor m pressur e 
ρ and has the form entirely consistent with the assumed kinematical relations (1) (see the 
results of the analysis in Ref. [17]). The last term in eqn ( 4 ) J 3 takes into account the 
possible types of kinematical boundary conditions with the help of the uknown Lagrange 
multipliers A a ,at each shell boundaries I and II.In eqn (5) [P] represents the matrix of the 
stress resultants and stress couples, whereas [3] the matrix of the direct, transverse shear 
and bending strains, rsp. 

In the prebuckling analysis, substitution of the kinematical variables by the interpola
tion functions in eqn ( 4 ) , and then application of the principle of the virtual works to all 
nodal variables and Lagrange's multipliers lead finally to the basic system of nonlinear 
equations for which a solution is sought.Solution of the nonlinear equations is achieved 
by the modified Newton-Raphson method with a variable arc-length procedure. 

If buckling analysis is carried out,for axisymmetric loading, each of the kinematical 
variables and in this way stress resultants components is expanded in a Fourier series in 
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the circumferential coordinate. Buckling equations are derived by employing perturba
tion technique to the functional (4). Then, by retaining linear and quadratic terms of the 
perturberation in the functional finally,one can obtain the following system of equations: 

[K1(Po) + vK2(Ap)}[qb} = 0 (6) 

where the first term in eqn (6) is the stiffness matrix including the effects at the fixed 
load pG,and the second is the load-geometric matrix and is proportional to the stress 
resultants increments due to known load increment Δ ρ . [qb] means the vector of nodal 
displacements components at each nodal point on the shell meridian. The critical load 
can be calculated by means of a sequence of the eigenvalue problems (6). 

3. D E S I G N V A R I A B L E S A N D O P T I M A L I T Y C O N D I T I O N S 

Thinwalled structures are commonly treated as two dimensional approximations of three 
dimensional bodies. Thus,the form of kinematical hypothesis and then of kinematical re
lations (large or small deflections, rotations etc. are taken into account or not) are the 
fundamental points in the whole analysis. The variety of used models and approaches 
(global or local) in the modelling of thinwalled structures is especially visible for com
posite or generally anisotropic plates and shells. Therefore the number of independent 
parameters describing composite material (by the physical relations) depends only on 
the kinematical assumptions. Generally, the applied shell theory should fulfill the basic 
requirement: the consistency of theoretical results with experimental ones. Thus, it is 
obvious that in geometrically nonlinear analysis the optimal design of laminated struc
tures under buckling constraints as well as the proper choice of optimization algorithms 
are also strongly dependent on the assumed form of kinematical relations. 

Let s q (q=l,2,...) denote design variables for composite structures. Their number is 
directly connected with the applied kinematical hypothesis in integer (continuous) opti
mization only, and s q are commonly equivalent to lamination parameters £/. 

With the regard to buckling problems it is wellknown that the first order shear de
formation theory has to be used in the analysis due to the low Kirchhoff's modulus -
to - Young's modulus ( G 1 3 / E 1 ) ratio. However, in this case the number of lamination 
parameters ξι increases from 1=12 (Kirchhoff's shell theory) to 15 (as the transverse shear 
coefficient k'is constant - 2° or variable - 3°). The number of independent terms in the 
stiffness matrix may even be higher as more refined shell theories are taken into account. 

For more general constraints that involve more complex combination of terms in the 
stiffness matrix the use of normalized integrals as design variables s q is less atractive. 
Still, the integrals can be calculated for the purpose of characterizing the laminate and 
the illustration of the results. However, for the practical design each individual ply should 
be analyzed separately. Thus, the most logical design variables are ply-identity variables 
that define entirely mechanical and geometrical characteristics of each individual ply. In 
this way the number and the definition of design variables are not separated from kine
matical relations and, as it will be shown below, the optimum conditions depend entirely 
on the form of an assumed kinematical hypothesis. 

In our considerations we use the first variant of transverse shear deformation theory 
(2°) with the constant shear correction factor k'. In addition, we assume that Kirch-
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hofFs modulus G i 3 is equal to G23. As it was mentioned previously it causes that the 
terms A S ~ D in the stiffness matrix (3) are uncoupled and independent on laminate con
figurations. Thus,even for nve-parametrical shell theories the number of independent 
lamination parameters ξι can be equal to 12. This number can be reduced by additional 
assumptions. First of all let us notice that the coupling terms A î 6 , B î 6 , D;6 ( i=l ,2) in the 
stiffness matrix (3) have to be identically equal to zero (e.g. orthotropic materials and 
other models of laminate configurations). The above-mentioned terms couple sine and 
cosine coefficients of the Fourier expansion in the circumferential direction and we are 
not able to solve buckling problem without any additional expansions in Fourier series. 
Furthermore, from the point of view of the optimal design, it was proved by Onoda [13] 
(see also Refs [18,19]) that the nonzero terms A l 6 , B; 6 , D T 6 reduce values of buckling loads. 
It can be easily verified by the analysis of the Rayleigh quotient that buckling loads usu
ally decrease when the values A t 6 , B t 6 , D T6 become nonnegligible. Now, since only cos2a g 

and cos4ojg appear in the stiffness expressions the orientational dependence is determined 
entirely by the interval 0° < aq < 90°. Under the above assumptions one can find simply 
the global conditions of optimal configurations under buckling constraints. For the fixed 
wavenumber in buckling m the dimensionless buckling load <E>m(p) can be written as the 
uknown in advance function F of the geometrical parameters gj and of the coefficients 
Cpp of the stiffness matrix: 

*m(p) = FnfaCtf) (7) 

In geometrically linear approach to buckling problems the relation (7) is equivalent to the 
Rayleigh quotient, whereas for nonlinear problems is the other form of eqn (6). 

The differentials of eqn (7) with respect to the design variables s q leads to the following 
relation: 

θΦη{ρ) = dFm δθρβ = 0^ β = 1 6 ( 8 ) 

dsq dCpp dsq 

The derivative ^§f^- can be always expressed in the explicit form and for instance if the 
fibre orientations aq are treated as the design variables s g , it takes the following form: 

dCp0 

daq 

— —(2αρβ -f Sbppcos2aq)sin2aq (9) 

It gives immediately one of the optimality conditions, i.e.: 

aq = 0° or 90° (10) 

Let us notice also that if in the laminate Ei = E 2 (e.g. woven roving materials) Άρβ is 
identically equal to zero and the condition (9) can be reduced to the following form: 

sin(4aq) = 0 < ^ aq = 0° or 45° ( H ) 
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&Ρβ , bpp are known functions of the coefficients in the stiffness matrix (3). The above 
global optimality conditions explain completely the reason of the use for designing lam
inated thinwalled composite structures with the predetermined ply orientation angles in 
sublaminates, i.e. 0°,±45° or 90° (see e.g. Refs [11,12]). In this approach the optimization 
process is reduced to the determination of stacking sequences and optimal thicknesses of 
sublaminates having prescribed fibre orientations. 

It is worth to emphasize that the conditions (10) and (11) are general and derived with
out a reference to a special shell models as k' is constant and G13 = G23. If G13 φ G23 
and k' = k ' ( a g ) then one cannot obtain the stationarity conditions analogous to (10) or 
(11) because: 

dCpP _ dk[_ 
daq daq 

Cpfii&q) + k'dpp(aq) - (2αρβ + Sbppcos2aq)sin2aq (12) 

This example is a very good illustration of problems encountered in the optimization of 
composite structures and highlights the role of modelling. 

Thus, it is obvious that the relation (8) may give one global optimum condition in the 
form written symbolically by eqn (8) or after simplified assumptions two, one given by 
eqs (10) (or (11)) and the second in the following form: 

dFm 

~βο~^(αρβ + 46,0cos2a g) = 0 (13) 

Under the above-mentioned assumptions (dealing with the form of k', G13, G23) our op
timization problem can be reduced to the analysis of eqn (13) only. However, in the 
futher analysis eqn (13) will be slightly modified for the generality of considerations and 
numerical purposes. 

The conditions (10) and (13) are subjected to one additional constraint, the wavenum-
ber in buckling m is fixed and constant during the analysis. On the other hand it is 
obvious that the fixed value of m corresponding to the minimum of buckling loads ρ (with 
respect to m) is not always the best with the regard to the optimization problem. This 
is illustrated in Fig.l where the fibre orientation aq is chosen as the design (control) pa
rameter sq. Among all plotted possible cases one can notice the situation (Fig. lc) where 
for optimally oriented structures the global minimum corresponds neither to m nor to 
m + 1 . The maximum buckling load is reached at Β which is the point of the intersection 
of curves for m and m + 1 . The value of sq corresponding to the point Β can be determined 
from the equation: 

Φη(ρ) = Φη+1{ρ) (14) 

Such a problem is often encountered for optimization of laminated structures under buck
ling constraints and in this case eqn (14) defines the location of so-called local minima. 

Now,let us come back to the definition of lamination parameters. We consider the 
generalized symmetric balanced laminate of [ (±a i ) / (±a 2 ) / . . . / (±a ;v ) ] s - In this laminate, 
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(α) (b) le) (d) 

Figure 1: Possible variations of buckling loads with fibre orientations 

eliminating coupling effects, the number of independent lamination parameters ξι is re
duced to 4. They may be defined in the following fashion: 

1 ft/2 1 r*/2 

ξι = - cos2a(z)dz, ξ2 — - I cos22a(z)dz, 
t J-t/2 t J-t/2 

1 ΐΦ 

/2 

12 f1!2 12 y*/2 

£9 = — / cos2a(z)z2dz, ξιο = — / cos2a(z)z2dz 
t3 J-t/2 t3 J-t/2 t3 J-t/2 t3 J-t/2 

(15) 

where 

a(z) = ±cti for ti < ζ < U+i (16) 

The feasible regions of in-plane and out-of-plane lamination parameters are, respectively, 
expressed as follows: 

- i < 6 < i , i î < Î 2 < i , 
-1 < 6 < 1, (I < 60 < 1 ( Π ) 

and for the in-plane lamination parameters ( £ 1 , ^ 2 ) they form parabolas, whereas for out-
of-plane parameters (£ 9, ξχ0) are restricted by the values of £ 1 , ξ2. A point on the parabola 
£2 = ξ2 corresponds to an angle-ply laminate ± a . For example the point (0,0) corresponds 
to ± 4 5 ° laminate and (0, | ) to a quasi-isotropic laminate. 
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The stiffness components Α^,Αββ,Ο^,ϋββ (i j = 172) of laminated composites are ex
pressed as a linear function with respect to lamination parameters, whereas in our ap
proach the coefficients k ' A 5 - D are constant. However, to the author's knowledge, there 
is no information about the influence of B,j terms on the optimization design, especially 
in geometrically nonlinear analysis. The results obtained with the aid of linear buckling 
theory for plates [9] or axially compressed cylinders [13] show evidently that the symmet
ric balanced laminate is the optimal configuration for composite structures. 

Although we introduce herein lamination parameters, the optimization problems have 
been solved with the use of discrete (not continuous) design variables describing the prop
erties of each individual ply. With the aid of eqn (16) the parameters ξι will be the 
illustrations of solutions though for symmetric 8-layered laminates four variables defined 
by eqs (15),(16) determine completely e.g. ply orientations a t in the laminate. 

4 . O P T I M A L P R O B L E M F O R M U L A T I O N 

We consider the buckling optimization problem of axisymmetric orthotropic doubly-
curved shells under uniform external pressure p. One kind of laminate is analyzed herein, 
i.e. symmetric balanced laminate. 

The optimization problem is stated as follows: 

Objective function : Rl = max(minp c r ) (18) 

Design variables : sq = {α,·,ί,·} (19) 

The search of the local minima described by eqn (14) is carried out independently on the 
optimization procedures. 

In our case the determinant (6) is the relation that gives the values of buckling pressures 
p c r . In terms of the functional analysis it represents the second functional derivative (in 
the Frechet sense) of the functional of total potential energy (4). It is wellknown that 
in the pre-buckling state the above-mentioned derivative (and the determinant (6)) is 
positevely definite, whereas in the post-buckling range it changes its sign. It is worth to 
note also that the second term in eqn (6) is a linear function of the coefficients Cpp, so 
that its derivatives with respect to the design variables sq - eqn (19) can be calculated 
analytically. In addition, for shells that fail in the axisymmetric mode (m=0) buckling 
pressures are always lower than those corresponding to bifurcation buckling mode (m^O). 
Since the appearance of the axisymmetric mode of bifurcation is detected by the lack of 
the convergence, the directions of searching for the optimum corresponding to such a case 
can be easily eliminated;it significantly simplifies and accelerates calculations. 

5. N U M E R I C A L R E S U L T S A N D D I S C U S S I O N S 

As numerical examples two composite are considered (glass/ and boron/epoxy) where 
the elastic properties are shown in Table 1. The problems solved are for shells having the 
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Figure 2: Optimal fibre orientations for angle-ply spherical shells made of GFRP 

thickness-to-radius ratio t / R equal to 0.01. 

Table 1 
Material mechanical properties 

Material Ex E 2 G12 1/12 X< Xc Yt Y c 
S Material 

[GPa] 
1/12 

[MPa] 

Unidirectional GFRP 38.6 8.27 4.14 0.26 1062 610 31 118 72 
Unidirectional BFRP 207. 20.7 7 0.3 

Steel 207. 207. 0.3 

The values of critical pressures p c r are are presented in the dimensionless form, i.e. they 
are related to the following parameter: 

λ = , 2 ^ 2

 λ φ 2
 (20) 

>/3(l - V12V2l) R 

5 .1 . A n g l e - p l y s p h e r i c a l s h e l l s 
As it is presented in Ref. [21] for spherical shells buckling pressures and modes are 

a function not only of fibre orientations ± a but also of the shallowness parameter λ. 
Figure 2 is a plot of the optimal fibre orientations ± a versus the shallowness parameter 
λ. The value λ = 18.54 corresponds to hemispherical shells. The calculations have been 
carried out for shells made of GFRP with the use of the transverse shear deformation 



4 1 6 

theory 2°. As it may be seen the optimal value a = 0° (parallely to a shell meridian) 
can be reached only for shallow spheres (A < 5) where the axisymmetric collapse (m=0) 
is a governing buckling mode - the optimality condition (10). As spherical shells fail in 
the antysymmetric mode (m φ 0) the optimal orientation rapidly changes - the condition 
(13) is now active. However, the skew direction of fibres with respect to an arbitrary 
shell meridian is very sensitive to the mode parameter m. In this case, one can obtain 
numerically the optimal orientations corresponding to the local minima (see eqn (14) and 
Fig.lc). The dashed parts of the plotted curves show the optimal orientations of spherical 
shells as the optimality condition (14) is not taken into account. Hence, it is obvious that 
the constraint condition (14) can change significantly the picture of the optimal fibres 
orientations and the values of the maximal buckling pressures in the comparison with the 
case as it is inactive. The influence of the local minima is particularly visible for angle-ply 
structures. The drawn distributions in Fig.2 resemble entirely those for angle-ply plates -
Muc[9]. The obtained results show evidently that for shallow shells the optimal direction 
is equal to 0°, whereas for deeper shells corresponds to the isotropic state, i.e. aopt = 45°. 

5.2 M u l t i l a y e r e d h e m i s p h e r i c a l s h e l l s 
As the next example let us consider a hemispherical shell composed of Ν - identical layers 

made of GFRP, having the equal thicknesses t /N but arbitrarily oriented in the balanced 
symmetric laminate of [(±ai)/(±a 2 )/ . . . / (±o:;v)]s.Figure 3 shows the variations of the 
optimal (maximal) buckling pressures with the number of layers N. N=2 corresponds to 

1 . 0 0 

0 . 8 0 

0 . 6 0 

0 . 4 0 Η 

0 . 2 0 Η 

0 . 0 0 

_ q u α s i — i s o t r o p y 

3 — p a r a m e t r i c a l s h e l l t h e o r y 

5 — p a r a m e t r i c a l s h e l l t h e o r y 

Ν n o . o f p l i e s 
I I I I I I I I I I I I I I I 1 I I I 

1 0 1 5 2 0 2 5 

Figure 3: Maximal buckling pressures for optimally oriented GFRP shells ( t /R = 0.01) 

angle-ply hemispherical shells where the optimal fibre orientation is ±45° (isotropy). In 
general, buckling loads increase with the increasing number value of N. However, there is 
a small amount of improvement in the buckling resistance, up to 17.2%, between the best 
and the worst cases. This is associated with the fact that the highest buckling load in Fig. 
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3 is obtained for the fibre orientation resembling quasi-isotropy, whereas the lowest value 
of p c r corresponds to the isotropic state also (N=2, a = ±45°). The comparison of the 
optimal (maximal) buckling loads may lead to such results. However, for the determined 
number of layers Ν the improvement in the load carrying capability is a very significant 
and reaches even 90% between the worst and the best (with the regard to values of buck
ling loads) fibres orientations. 

Figure 3 gives also the qualitative picture of the transverse shear effects on the values 
of buckling loads as well as on the optimal fibre orientation. As it may be seen the use 
of the transverse shear deformation theory (2°) results in the reduction of buckling loads 
in the comparison with the classical three-parametrical Kirchhoff shell theory (1°) , and 
rather do not affect optimal fibre orientations. However, this effect is rather small here 
due to the low values of t / R (0.01) and of G13/E1 (0.055) ratios. 

The plot of the buckling pressure contours on the lamination (̂ 1,̂ 2) plane (Fig.4) is 
treated as the illustration of the results and as the comparison of the buckling pressures 

-1J» HL75 -O50 -025 O00 025 050 075 u» -U» -475 -0.50 -025 000 025 050 075 1JJ0 

Figure 4: Contours of buckling pressures on the lamination in-plane parameter 
plane:a)N=3, b)N=8 

for various fibre orientations. It is worth to resemble again that in the numerical analysis 
we use discrete not continuous optimization procedures. It is interesting to note that 
in the both cases plotted in Fig.4 the maximal buckling loads are always located in the 
surrounding of the point (0, | ) - the quasi-isotropic state. However, this can be achieved 
for various fibre orientations dependly on the number of layers Ν in the laminate only. 
The angle-ply oriented hemispheres (N=2) have the other location of the optimum at the 
point (0,0) and in this case the mechanical properties of the shell are worse than those 
for the quasi-isotropic state. 

The simplicity of finding fibre configurations in axisymmetric and antisymmetric buck
ling mode is the other very important feature of the contour presentation of the results 
on the lamination plane. The composite hemispheres made of GFRP that fail in the 
axisymmetric mode of buckling have the configurations of the laminate located on the left 
side of the £ 2 axis (excluding the axis). 
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It is possible to express the engineering stiffnesses with the use of the in-plane lamina
tion parameters: 

E = AnA22 - A\2 

1 tA22 ' 
E2 

AnA22 - A\2 η ^ 6 6 J CTI2 = -y- and vi2 

A12 

A22 

(21) 

For the quasi-isotropic state all material properties in eqn (21) should be constant. From 
the mathematical point of view a laminated shell becomes quasi-isotropic as the number 
of layers Ν tends to the infinity, whereas ply thicknesses to zero. For composite shells 
having finite number of layers Ν one can achieve easily quasi-isotropic state for the in-
plane lamination parameters (£1,̂ 2)· However, the out-of-plane lamination parameters 
(f9, £10) - eqn (15) do not correspond to the quasi-isotropy. This fact indicates that as the 
number of layers Ν increases the mathematical conditions of the quasi-isotropy may be 
satisfied in a more rigorous way and it involves automatically that the maximal buckling 
loads increase - see Figs. 3 and 4. Such a result may be interpreted in one way only. 
The full symmetry of the shell geometrical properties, boundary conditions and external 
loadings imposes the requirement of the symmetry in the overall mechanical properties. 

5 . 3 O p t i m i z a t i o n o f h y b r i d t o r i s p h e r e s 
The aim of the present example is to see how fibre orientations can affect the values of 

Bifurcation buckling 

10° 30° 50° 70° 90° 
a) 

α ϊ 

0° _ 
ο 

30° Axisymmetric collapse 
45° 

R7Dl=0.6 
r7D1=0.24 

t;/Rl=o.oi 
N=2 

90° 
60° 

10° 30° 50° 70° 90° 
b) 

10° 30° 50° 70° 90° 
c) 

Figure 5: Influence of the thickness ratio on the variation of buckling pressures with fibre 
o r i en ta t ion :a ) t ? / t 5

a = | ,b ) t ? / t ^ l , c) t° / t s

a =3 

the critical pressures and the buckling modes of hybrid elastic torispheres made of a steel 
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layer and several composite layers (the number and thicknesses of the latter vary).The 
optimization has been carried out under the constraint that the total thickness of the 
members, i.e. steel and composite is always constant: 

tc + ts = t = const. (22) 

The results of numerical calculations are presented in Figures 5 and 6. Figure 5 is a plot 
of buckling pressures for varying thicknesses of composite layers. However, for all cases 

R 7 D ' = 0 . 6 
t j / R ^ O . O l 

Bifurcation buckling 
Axisymmetric collapse 

Initial unreinforced 
steel shell 

rVD'' 
0.05 0.1 0.15 0.2 0.25 

a) 

N = 5 

Ν = 3 
Ν = 4 
Ν = 2 

Ν = 1 

1.5 

0 . 5 ^ 

1 

R7D'=1.0 
t; /R«"=o.oi 

Bifurcation buckling 
Axisymmetric collapse 

* Initial unreinforced steel shell 

0.05 0.1 0.15 
b) 

0.2 0.25 

Figure 6: Optimal buckling pressures:a)R/D=0.6,b)R/D=1.0 

considered the optimal fibre orientation satisfying the condition (22) corresponds to the 
cross/ply laminate ,i.e. 0°/90°. Thus, the optimality condition is given by eqn (10). The 
optimal fibre orientaions for the torispheres considered herein are the combination of fibres 
oriented at 0° (the innermost surface) and 90° (near the shell mid-surface) independently 
on the shell geometry and number of the composite layers - see Fig.6. More detailed 
information about this problem can be found in Ref. [20]. In summary, it is worth to 
notice that the optimality conditions are always given by the relation (10). This is mainly 
caused by the fact that the chosen material properties of the steel and composite layers 
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are almost identical - see Table 1. 

5.4 B u c k l i n g v s . first-ply f a i l u r e 
It is wellknown that buckling is one of various possible failure modes that occur for 

laminated structures. Among others one can list here e.g.ra) buckling of individual fibres 
in the matrix, b)ply failure (in the sense of the first or the last ply failure, c)delamination 
(including delamination buckling) - so called unilateral boundary conditions and others. 
Of course, in order to describe the mentioned above phenomena various failure criteria 
exist but we do not intend to dwell on them. On the other hand it is obvious that 
the optimization of the composite topology can be carried out in order to maximize 
loading carrying capability of composite structures. In the present analysis we focuse 
our attention on the one of possible failure modes of thinwalled structures made of FRP, 
i.e. the first-ply failure. Then, the obtained values of failure pressures will be compared 
with the optimal values of buckling pressures, in the sense of the optimization problem 
given by the conditions (18) and (19). The numerical analysis of the optimization problem 
with respect to the possible first-ply failure is carried out separately on the problem 
desribed by the set of eqs (18),(19). 
In the present case the optimization problem is stated as follows: 

Objective function : R2 = maxp/ (23) 

Design variables : sq = {a t } (24) 

Constraint condition : Fxau + F2a22 + ^ î i^ î i + ^22^22 + 2F12aua22 -f i^66^i2 ^ * (25) 

The constraint condition is the classical Tsai-Wu strength criterion. The bar over the 
symbols denotes the values of stresses determined in the local coordinate system associated 
with fibre directions in the each individual ply. The fullfilment of the constraint condition 
is checked independently on the top or bottom surfaces of plies in the laminate. 

In the case analyzed herein it is convenient to introduce the definition of the failure 
envelope as the minimal value of pressures being the solution of the optimization problems 
Rl and R2,i.e.: 

Pe = min(pcr,pf) (26) 

Figure 7 presents the distributions of the failure envelopes (i.e. failure p / or and buck
ling p c r pressures) versus fibre orientations a for angle-ply spherical shells made of the 
unidirectional GFRP (see Table 1). As it may be seen the character of the curves is inde
pendent on the value of the shallowness parameter λ and the maximum is always obtained 
for a equal to 45° - the isotropic state. In the sense of the Tsai-Wu criterion the first-ply 
failure occurs at the shell apex and is directly associated with the shell deformations -
see the results presented in Ref. [21]. The identical results to those shown in Fig.7 have 
been obtained for others values of material properties describing unidirectional FRP (for 
instance Β FRP - Table 1). It is worth to mention that the failure criterion is active for 
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Figure 7: Variations of ρ/ with fibre orientations for angle-ply shells ( t / R = 0.01) 

α < 45°. It turns out that the maxima on the failure envelopes (a = 45°) corresponds to 
the bifurcation buckling, and for a > 45° the axisymmetric collapse is a failure mode. 

With the regard to multilayered spherical shells one may observe almost the identical 
tendency as for angle-ply structures. The results of the calculations of failure envelopes 
conducted for shells made of 20 layers are plotted in Fig.8. The optimal fibre configura
tions for the optimization problems considered herein corresponds to the quasi-isotropic 
state, i.e. to the point (0, | ) on the plane of the laminate parameters £1,̂ 2- In addition, 
the dominating optimal failure mode (in the sense of the criterion (26)) corresponds to 
the bifurcation buckling. However, the optimal values of p e do not always coincide with 
the values p c r calculated with the aid of eqn (18). For shallow shells (λ < 5) the optimal 
laminate configuration with the respect to buckling loads (the problem Rl ) corresponds 
to a = 0°, whereas with the respect to the FPF (the problem R2) the fibre orientations 
along meridians leads to the minimal values of p / . However, for deeper shells (λ > 5) p c r 

is equal to p e . 

6. C O N C L U D I N G R E M A R K S 

The present paper has shown an approach to stiffness (layout) optimization of or
thotropic laminated doubly-curved shells using the discrete optimization methods. How-
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Figure 8: Failure pressures for 20-ply spherical shells made of GFRP ( t /R = 0.01) 

ever, the feasible regions of lamination have been also presented in order to demonstrate 
easily the results of optimization procedures. 

The optimality conditions (global and local) have been formulated in a closed analyt
ical form and then applied to numerical procedures solving buckling and first-ply failure 
problems for hemispherical and torispherical shells. The results have been demonstrated 
for two kinds of shell kinematical relations, i.e. three- and five-parametrical shell theories. 

It is found that for hemispheres under buckling and first-ply failure constraints buck
ling is always the controlling failure mode. In addition, for shallow and deep laminated 
hemispheres the optimal laminate configurations correspond to the quasi-isotropic state 
on the in-plane lamination parameter plane with the one exception of two-layered (angle-
ply N=2) shells. 
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1 
DIRECT RELAXATION OF OPTIMAL LAYOUT PROBLEMS FOR PLATES 

K. A. L u r i e 2 

D e p a r t m e n t of M a t h e m a t i c a l Sciences, Worces te r Po ly technic I n s t i t u t e , Worces te r , 
M A 01609-2280 

This paper is dedica ted to Professor Fr i thiof I. Niordson on the occasion of his 70th 
b i r t hday . T h e research has been suppor ted by A F O S R G r a n t No. 9 0 - 0 2 6 8 . T h e 
au thor acknowledges fruitful discussions wi th Rober t P . Lipton. 

2 
Professor, D e p a r t m e n t of M a t h e m a t i c a l Sciences, Worces te r Po ly techn ic I n s t i t u t e , 

Worces te r , Massachuse t t s . 

T h e paper suggests an appl ica t ion of a direct p rocedure in i t i a t ed in Réf. 1 t o 
problems of op t ima l layout for p la tes . O p t i m a l mic ros t ruc tu res are explici t ly ind ica ted 
for a n u m b e r of special cases, par t icu lar ly , for t h e case when t h e original and conjugate 
s t ra in tensors are coaxial . 

Key Words. Direct re laxat ion , op t ima l mic ros t ruc tu res , necessary condi t ions . 

INTRODUCTION 

In th is paper we consider nonselfadjoint op t imiza t ion problems for t h i n anisot ropic 
pla tes subjected to t ransverse load. T h e s t a t e of equi l ibr ium of such a p l a t e is 
described by the equa t ion 

where w denotes t h e no rma l d isplacement , 3— t h e tensor of stiffness, and q t h e 
t ransverse load densi ty . T h e bounda ry d% of a p l a t e will be assumed c lamped, th is 
p roper ty expressed by t h e bounda ry condit ions 

Abstract. 

V - V · 3 - VVw = q, (x,y)eE (1) 

w = dw/da = 0. 
<9Σ as 

(2) 
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It will be assumed t h a t 3= 3(xj) plays t h e role of .control and m a y t ake one of 
two admissible values or 3^ a t each point of t h e p la te . T h e mater ia l s 1 and 

2 wi th tensors 3^ and 3^ of stiffness will bo th be assumed isotropic , i.e. 

3^ = k^a1a1 + / ^ ( a ^ + a ^ ) , i = 1,2. (3) 

Here and below, a^, a 2 , a^ represent an o r thonorma l basis in t h e space of 2nd r ank 

symmet r i c tensors in t h e plane, i.e. 

a x = ( l / v 5 ) ( i i + j j ) , a 2 = ( l /V2 ) ( i i - j j ) , a 3 = ( l /V2 ) ( i j+i j ) . (4) 

In t roduce t h e charac ter i s t ic function x^{xj) of domain occupied by ma te r i a l 1 

wi th tensor 3^ of stiffness, and a similar function ^ 2 ( x , y ) for ma te r i a l 2; 

obviously, -f χ 2 = 1. I t is required to find t he d i s t r ibu t ion 

^(* .y ) = *i(x>y) ̂ ! + x2(x'y) ^ 2 ( 5 ) 

of t he stiffness tensor th roughou t Σ which maximizes some weakly cont inuous 
functional I (w) of solut ion to the bounda ry value problem (1) , (2) . W e a k cont inu i ty 

ο 
is supposed to be wi th respect to W 2 ( E ) , this space na tu ra l ly associated wi th (1) , (2) . 

Specifically, as a typica l example , we will consider t h e functional 

I (w) = - [ [w(x,y) - w Q ( x , y ) ] 2 d x d y 

where w Q ( x , y ) e L 2 ( E ) . 

This and similar op t imiza t ion problems are known to be ill—posed and therefore 
requir ing re laxat ion , i.e., t h e const ruct ion of an appropr i a t e min ima l extension of t h e 
ini t ia l set U = {3^ 3^\ of admissible controls . Such an extens ion is cur ren t ly 

offered on t h e basis of a precise knowledge of t h e G—closure of U, i.e. t h e set G U of 
invar ian t s of t h e effective stiffness tensors 3^ of all composi tes assembled from the 

elements of U (Ref. 2 ) . However, t he G—closures are known only for a few par t icu la r 
examples (Ref. 3) , and the p la te problem is not among t h e m . Yet for these selected 
examples , t h e cons t ruc t ion of GU represents difficulties, and for t h e p l a t e p rob lem 
these difficulties are still not overcome. 

At t h e same t ime , for m a n y applicat ions we do not need to know t h e GU—set in 
full. Ins tead , it is often enough to specify some l inear combina t ion of componen ts of 
3^\ for our problem, this is t h e combina t ion 3q · - W w which only m a t t e r s in view 

of t h e Hooke's law. T o de te rmine this combinat ion , we apply a direct approach, free 
from any reference to t h e G—closure. 

This approach has originally been suggested for t h e 2nd order equa t ion V · 3 · Vw 
= f in Réf. 1 and received a further development in Refs. 9, 10. Here, we apply i t to 
t h e 4 th order equa t ion (1) arising in t he p la te theory . 
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2. R E D U C T I O N T O A S U P I N F P R O B L E M 

W e first reduce t h e problem to a convenient sup inf form. In t roduce t h e Lagrange 
mul t ip l ier λ and consider t he augmen ted functional 

J = j ( W j A) = I (w) + j A(V · V • 3 · • VVw - q )dxdy , (6) 

Σ 

t he second m e m b e r at t h e right—hand side t ak ing in to account t h e equa t ion (1) . 
E q u a t i n g t o zero t h e first var ia t ion of (6) w i th respect t o w and bear ing (2) in 

mind , we arr ive at t h e conjugate equat ion 

ν·ν.^··ννλ = 2 ( w - w Q ) (7) 

and bounda ry condi t ions 

λ Ι = 5 λ / 5 η | = 0 . (8) 
' $Σ ' 5Σ 

After in tegra t ion by pa r t s wi th t he bounda ry condit ions (8) , t h e functional (6) takes 
on t h e form 

J = I + (VVA · · 3 · · ? ?w - Aq)dxdy (9) 

Σ 

convenient for a subsequent use. 
T h e problem 

s u p I 
3, w 

subjected t o (1) , (2) is equivalent to 

s u p inf J (10) 
3VÎ X 

subjected t o (2) , (8) . This is since by (6), 

inf J = I + in f j A(V - V · 3 · • VVw-q)dxdy = 

1 + 

λ ^ Σ 

0 if V-V- 3 · - VVw = q, 

V-GD o t h e r w i s e . 

W e observe t h a t Eq. (1) appears as a necessary condi t ion for a m i n i m u m in A. 
Bear ing (8) in mind , we m a y assume t h a t J in (10) has t h e form (9). W e have 
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finally for (10) 

s u p i n f { I + 
3,w λ 

( V V A . . ^ - - V V w - A q ) d x d y } ( H ) 

where 3£ U = {3^ ^ 2 - ^ a n ( * w a n c * ^ satisfy, respect ively, equat ions (2) and (8) . 

In t h e sequel, we will es tabl ish t he upper and lower bounds for t h e funct ional (11). 
An upper bound will be cons t ruc ted analyt ical ly th rough an app rop r i a t e m a t h e m a t i c a l 
cons t ruct ion , and t h e lower bound will be genera ted by a specially chosen composi te 
assembled from t h e original cons t i tuen ts . Bo th bounds will be shown t o coincide, and 
desired re laxa t ion will t hus be achieved. 

3. U P P E R B O U N D F O R S U P I N F J 
3, π X 

This functional possesses t he following upper bound: 

s u p inf J = s u p s u p inf J < s u p inf s u p J = 
J0,w λ w 3 X w λ 3 

= s u p inf[— (w—Wq) dxdy 
w λ \ 

Aqdxdy + G(VVw,VVA)dxdy] 

where 

\ ξ · · 3 > ν · η , ξ ' - α ^ - η ΐ ξ · · 3>2·- η, 

(12) 

(13) 

T h e no ta t ion ξ = VVw, η = VVA will be used below. T h e function G ( £ , t ? ) is convex 
wi th respect t o any of i ts a rgumen t s bu t non—convex wi th respect t o the i r un ion . 
T h e problem 

u p i n f [ - [ ( w - w Q ) 2 d x d y - Àqdxd y +  G(VVw , VVA)dxdy ] (14) 

is stil l ill—posed . I t woul d b e we l l -pose d i f t h e i n t eg ran d G(£,?7 ) wer e a  saddl e 
function, i .e . concav e i n ξ for fixed η and convex in η for fixed ξ. T h e solution 
would t h e n exist and operat ions sup and inf c o m m u t e . For our p rob lem i t is 
obviously not t he case. However, t he requi rement t h a t t h e function G ( £ , 7 / ) be saddle 
is too res t r ic t ive now t h a t £ and η are gradients ; t o ensure t h e exis tence of sup inf 
for th is case, it is enough to require t h a t th is function be only quas isaddle (Réf . 1) . 

** 
T h e quasisaddl e envelop e G  (£,77 ) o f G (£,77) wil l b e cons t ruc te d applyin g t h e s o 
called polysaddlif icatio n t ransfor m in t roduce d i n Réf . 1 . Th i s t r ansfor m play s t h e 
s ame rol e fo r su p in f p roblem s a s t h e polyconvexificatio n t ransfor m (Refs . 4 - 6 ) play s 
for t h e m i n i m u m problems . Fo r t h e four t h orde r p rob le m considered , t h e 
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polysaddlif icat ion t ransform is given by t h e formula 

G ( £ , 7 7 ) = s u p sup inf{a- - £ + b - ·η+ω- - ( £ * r 7 ) + d £ - · Τ · -η 
ω,à b a 

- inf sup[a- · f f -b - · 77+a;- · {ξ*η)+άξ· · Τ - - η-β{ξ,η)]} 

Here we in t roduced t h e no ta t ion Τ for a tensor 

Τ —— a^a^ a 2 a 2 ^'3^'3' 

(15) 

(16) 

the t e r m s ω- - ξ χ η and άξ- · Τ · - η represent t h e null—Lagrangians ξ χ η and ξ · · 
Τ " η (Refs. 3—6) t aken in to account wi th t h e aid of Lagrange mul t ip l ie rs ω and d. 

** 
T h e t ransform G (£,77) defined by (15) satisfies t h e inequal i ty 

G ( £ , 7 7 ) > G ( £ , 7 7 ) 

for any Ο(ξ,η) convex in 77 and a rb i t r a ry in £ (Réf . 1) . 

Applying G  ( £ , 7 7 ) i n s tea d o f G ( £ , 7 7 ) w e a r r iv e a t t h e uppe r boun d 

2 s u p inf[— I (w— WQ) dxd y — 
w λ JE 

Aqdxdy + G U ,7 / )dxdy] 

Σ Σ 

for (14) , and, consequent ly , for t h e original functional (10) . 

(17) 

(18) 

4. C O M P U T A T I O N O F G (ξ,η) 

W e first compu te K(£,b) = s u p [ b - · η — Η(£,τ?)] wi th Ε(ξ,η) 

\>-.η-Ε(ξ,η) = 
οΧ··η if η£ ξ··{01-02)··η>Ο, 

/ • • η if τ/6 ξ · · ( 9 ι - 9 $ · · η < 0. 

T h e tensors c ^ c 2 a re defined as (dev£ = £ 2 a 2 + £ 3 a 3 ) 

c 1 = b + ( d - k 1 ) ^ 1 a 1 - (d + μ^άβνξ + ω χ ξ, 

c = b + ( d - k 2 ) ^ 1 a 1 - (d + M 2 )dev£ + ω * ξ. (19) 
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By a rgumen t s imila r t o t h a t describe d i n Réf . 1  w e a r r iv e a t t h e formul a 

[ 0 i f b  =  < S > - . £ 

V 
(20) 

+ O D o t h e r w i s e . 

In (20) , t h e m a t r i x (S ) i s define d a s t h e conve x hul l 

(S) =  t 1 S 1 +  t 2 S 2 , t v t 2 >  0 , t x +  t 2 =  1  (21 ) 

of mat r ice s 

S. =  A . + *;••£ , Δ ^ ^ - d T , i = 1,2, (22) 

where t h e m a t r i x 

6 = - Ε χ Ε (23) 

defines the Levi—Civita tensor of t he 6th rank act ing in the l inear space of 2 χ 2 
symmet r i c tensors . T h e uni t tensor Ε in this space can be defined as 

Ε = + a 2 a 2 + a^a^ (24) 

in t h e basis (4) , and by a similar formula in any o ther o r thonorma l basis. 
W e m a k e no te of t he formulas (Ref. 7) 

e = - Ε χ Ε = - a g a s χ a f c a k = - a g a t a k e s k t = a s a t a k e s t k (25) 

where 

e 8 k t = a s -- ( a k * a t ) (26) 

* Λ τ Λ · Γ · · ·* ι , ι ( 1 2 3 2 3 1 3 1 2 ι 1 3 2 2 1 3 3 2 1 ι Stk 
are Levi—Ci vit a symbols (e = e = e = 1, 6 = e = e = — 1, e — 
otherwise) ; also 
ω· · e = —ω· · Ε χ Ε = — ω * Ε = — Ε * ω = e- - ω. (27) 

Geometr ical ly , t h e function h ( £ , b ) of ξ for fixed b is equal t o posi t ive infinity 
everywhere except for points of t he set 

b = < S > . - f , t 1 5 t 2 e ( 2 l ) . (28) 

Equa t ion (28) can be inver ted to express ξ in t e rms of b . T o th is end we in t roduce 
symmet r i c tensors of the 4 th rank (see (22)) 
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Δ 1 = α ΐ " d T ' Δ 2 = ^ 2 " d T ' <Δ> = Η Δ 1 + 1 2 Δ 2 ( 2 9 ) 

and c o m p u t e t h e inverse m a t r i x (S)~~* = [ ( Δ ) + ω- - e ] - * = [ ( Δ ) — ω χ Ε]~~*. W e 
ob ta in by direct calculat ion 

( S ) ~ 1 = [ l / ( d e t ( A ) + ω · - <Δ> • • ^ { ( d e t ^ ) ) ^ ) " 1 * ωω+(ω- · <Δ) )χΕ}=<5+ΩχΕ (30) 

where 

δ = [ l / ( d e t < A > + o ; - - < Δ > - - ̂ { ( d e t ^ ) ) ^ ) - 1 * ^ } (31) 

denotes t h e symmet r i c pa r t of ( S ) — 1 and 

Ω = [ 1 / ( ά β ί < Δ > + ω - · < Δ > - - α ; ) ] ( ί « ; · · < Δ » (32) 

denotes t h e 2χ2 tensor associated wi th i ts skew—symmetric p a r t . 
T h e set (28) is a segment of the curve in £-^pace t r aced as t^ varies be tween 0 

and 1. Th i s segment connects points /f^ and (f^ corresponding, respect ively, t o 
t^ = 1 and t^ = 0: 

f ^ S " 1 - - b , ^ 2 ) = S - 1 - - b . (33) 

W e now c o m p u t e t h e result of the opera t ion 

i n f { a . - H n f [ a - - Î - ( - h ( e , b ) ) ] } (34) 
a ξ 

which comes second in t h e sequence (15). Th i s one is known to pu t i n to 

correspondence wi th any given function — h ( £ , b ) i t s concave ξ—envelope, i.e. t h e 

least concave function of ξ g rea ter t h a n or equal to — h ( £ , b ) . Pa r t i cu la r ly , if 

—h(£,b) is itself concave in ξ, t hen t h e opera t ion (34) leaves th is function i n t ac t . 
In our special c i rcumstances , th is is obviously not t he case. T h e concave envelope of 

—h(£,b) appears t o be t h e function defined as nega t ive infinity everywhere except for 
points of t h e convex hull Ξ of the curvil inear segment (28) where th is envelope is 
equal to zero: 

i n i { a - - £ - i n f [ a - . £ - ( - K ( £ , b ) ) ] } = 
a ξ 

0 , ξ e Ξ 
(35) 

τ*, Ξ. 

T h e hull Ξ is a convex body in t he ξ—space. W e will a ssume t h a t t he curvi l inear 
segment (28) and a l ine segment 
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«répmtfU^ = (i2-42))/(41L42)) = (ί3-42))/(41}-42)) (36) 

connect ing t h e endpoin ts and (see (33)) bo th belong t o t h e bounda ry 3Ξ 
of Ξ. 

For our future purposes we need to know the left—hand side of (35) as t h e function 
of b for fixed £. This function can be defined as equal t o nega t ive infinity 
everywhere in t h e b—space except for t he body 3 which appears as t h e "b—image" of 
Ξ, specifically, t h e bounda ry 33 of 3 is described by t h e same equa t ion as t h a t of 
5Ξ, th is t ime , however, £ should be kept fixed whereas b should be considered 
var iable . Obviously, t h e set (28) which is perceived as a curvilinear segment in t he 
£-Hspace appears as a line segment in t he b—space, and in th is capac i ty belongs to 33 
Also, t h e set (36) which represents a line segment in t h e £—space appears as a 
curvilinear segment in the b—space, and this segment also belongs t o 33 
Summar iz ing these resul ts , we arr ive at the following: t h e t rans form (15) reduces to a 
single opera t ion 

sup [b - · 77 4 - ω·-{ξ*η) + άξ'·Ύ··η] (37) 
M , b 

subjected to t he const ra in t b e 3 Note t h a t t he set 3 itself depends on ω and d. 
T h e curvi l inear segment (36) in t h e b - s p a c e obviously represents a r ib on 33 T h e 

calculat ion (37) of t h e s u p r e m u m wi th respect to b will include among o thers t h e 
possibil i ty t h a t t h e s u p r e m u m is a t t a ined at points belonging t o th is segment . In t h e 
sequel, we inves t iga te th is possibili ty in major detai l . Equa t i on (36) can be 
represented in t h e equivalent form (see (33)) 

£ = ( n ^ S " 1 + n ^ S " 1 ) · · b = ( S _ 1 ) · - b . (38) 

Here, m^, > 0, m^ + n ^ = 1. 

This re la t ionship will be t aken in to account wi th t h e aid of t h e Lagrange mult ipl ier 
Λ in t he course of t h e maximiza t ion opera t ion (37). W e will examine s t a t iona ry 
points of t h e function 

φ = b-^+Lu->(t*V) + d£- · Τ · -η + A · · (ξ — ( S - 1 ) . -b) (39) 

viewed as t h e function of b,o;,d and m^. 

A rou t ine calculat ion shows t h a t 

* B = 7 / - A · · ( S - 1 ) = 0 

which means t h a t 

A = 7 , · · ( S - 1 ) " 1 . (40) 

W i t h equat ions (38) and (40) in mind, t he function φ becomes 
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φ = ψ· ( S - 1 ) - 1 - · ξ + ω..{ξ«η) + άξ- · Τ · -rç. (41) 

It can be shown (cf. Ref. 7) that 

φω = - (A· · ( S " 1 ) . . b ) w + ί « , = m i ( A · · S J 1 ) χ ( S " 1 · -b) 

+ m 2(A · · S" 1 ) χ ( S ^ - b ) + f χ η. 

This expression can be rewritten in either of two forms: 

φω = m x(A · · S'1) χ (S'1 • • b) + m 2(A · · S^ 1) χ ( S " 1 · · b) 

+ ( ( m 1 S ~ 1 + m 2 S 2

1 ) - -b) χ (Α· • ( m 1 S ~ 1 + m 2 S 2

1 ) ) = (42) 

= - η γ η 2 ( Δ 8 - 1 · -b)«(A- - A S - 1 ) ; A S - 1 = S" 1 - S" 1 , 

or 

* u = r / - - ( S - 1 r 1 . - [ m 1 S - 1 x S 7 1 + m 2 S 2

1 x S 2

1 ] . . ( S - 1 ) - 1 - ^ + f x 7 ? . (43) 

The stationarity condition φω = 0 can now be written as 

A S " 1 - -b = ( A S " 1 ) - - ( S " 1 ) " 1 - ·ξ = κΛ- - A S " 1 = (44) 

= /c?;- - ( S " 1 ) " 1 - - ^ " 1 ) 

where κ is a scalar multiplier. An equivalent representation is associated with 
equation (43): 

τ/·· ( S - ^ - ^ - I m ^ x S ^ + m ^ x S ^ l - ^ S " 1 ) " 1 . . ^ ξ*η = 0 (45) 

Condition φ^ = 0 reduces to 

^ - n ^ m ^ A S " 1 · · b) - · Τ · · ( Λ · - A S " 1 ) 

= - m 1 m 2 / c ~ 1 ( A S ~ 1 . -b)- · Τ · - ( A S " 1 - -b)=0. (46) 

or, equivalently, 
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+ r r ^ S " 1 - · Τ · - S " 1 ] - · ( S - 1 ) " 1 - ·ξ+ξ· -Ί·-η=0. (47) 

Note t h a t t he s t a t ionar i ty condit ion (46) applies as t h e necessary condi t ion for a 
m a x i m u m if t h e corresponding root d is such t h a t t h e function φ defined by (41) is 
concave in d for all ω. T o guaran tee th is , we mus t require t h a t det S. > 0(i = 1,2), 

These inequali t ies should be considered as addi t ional cons t ra in t s influencing t h e 
d—maximization. 

Compu t ing t h e expression (41) for φ at t he s t a t iona ry values of ω and d we have 
t o max imize i t w i th regard t o n i p Before we do so we inves t iga te th is expression in 

t e rms of i ts a t t a inab i l i ty wi th t h e aid of special mic ros t ruc tu res . Th i s is a r ight t ime 
for such inves t iga t ion since t h e aforementioned cons t ruc t ion explici t ly depends on n i p 

this dependence being very special for a n u m b e r of popula r mic ros t ruc tu res . 
After max imiza t ion in n i p t h e expression (41) should p roduce a final cons t ruc t ion 

** 
(37) for G ( £ , 7 / ) · Th is p rogram is e labora te in i ts en t i re ty , and we will begin wi th 
t he analysis of several special cases. 

5. C A S E W H E N T E N S O R S ξ A N D η A R E P R O P O R T I O N A L 

In this case, t he assumpt ion ω = Ω = 0 obviously satisfies equa t ion (45) since t he 

matr ices S p S 2 , (S) and ( S — a r e then symmet r i c . E q u a t i o n (46) is reduced to 

i.e. t h a t 

(48) 

( Δ ί . . ( ί > - 1 . . 0 · · Τ · . ( Δ ί · . < ί > - 1 . . 0 = 0 (49) 

where (cf . Eq. (31)) 

Αδ = 62-6λ = A 2

l - Δ / , < ί ) _ 1 = ( m j A ^ + m g A " 1 ) - 1 . 

T h e tensors Δ ^ ί = 1,2) are defined by Eqs. (29), (3) and (16) as 

Δ ί = K i a i a i + M ^ a j a j + a g a g ) , Kj = L - d , Mj = μ. + d. (50) 

W e therefore ob ta in 
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[ΔΚ 1 a 1 a 1 + A M ^ a ^ + a ^ ) ] - - [ ( Κ l ) ^ ^ χ + ( Μ X ) ^ a ^ + a ^ ) ] - · £ 

= ( A K - 1 ) ( K - 1 ) " 1 £ 1 a 1 + ( ά ΐ Γ 1 ) ( ΐ τ Υ \ ξ 2 ^ ^ ) (51) 

where 

Δ Κ - 1 = Κ " 1 - Κ " 1 , Δ Μ - 1 = Μ " 1 - Μ " 1 , 

( Κ " 1 ) " 1 = ( m 1 K ^ 1 + m 2 K 2

1 ) ~ 1 , ( Μ - 1 ) - 1 = ( m ^ + m ^ " 1 ) " 1 . (52) 

Equa t ion (49) shows t h a t t h e second invar ian t of (51) equals zero, i.e. 

( Δ Κ - 1 ) 2 ^ - 1 ) - 2 ^ = ( Δ Μ - 1 ) 2 ( Μ - 1 ) - 2 ( ξ 2 + ξ 2 ) . 

In t roduc ing t h e ra t io 

ζ=\άβγξ\/ξι = \{ξ+φηι (53) 

of devia tor ic and spherical p a r t s of tensor ξ, we arr ive a t t h e equa t ion 

,2 

c 2 = 
( k 2 - k 1 ) ( d + m 1 ^ 2 + m 2/i 1) 
(μ^-μ^ά—m1k2-m2k1) 

defining t h e Lagrange mul t ip l ie r d 

d = ( ζ κ Δ μ - μ Δ κ ) / ( ( Δ μ + Δ ^ , (54) 

k = m 1 k 2 + m 2 k 1 , μ - + τη^μ^ 

Ak — kg—kp Α μ = μ 2 — μ^. (55) 

Equa t i on (54) has been ob ta ined earlier bv Gibianskii and Cherkaev in Ref. 8. W e use 
(54) to e l imina te d from the expression (39), t h e resul t ing cons t ruc t ion is a t t a i n a b l e 
by a l amina r composi te of t h e 1st rank (Ref. 8). 

6. C A S E W H E N T E N S O R S ξ A N D η A R E C O A X I A L 

This case generalizes the previous one bu t is re la ted to a new s i tua t ion when we 
cannot apply t h e G - d o s u r e technique (Ref. 3) to cons t ruc t t he required re laxat ion; on 
the con t ra ry , t h e case of Section 5 is self—adjoint and therefore can be hand led wi th t he 
aid of such technique . In t he new ci rcumstances , no G—closure is known, and t h e 
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Direct calculat ion of t h e m a t r i x ( S — 1 ) ~ ~ 1 shows t h a t 

( 5 8 ) 

(S *) * = Z V Q + O ^ R 2 ) 1 ( Q Z a 1 a 1 + P Z a 2 a 2 + P Q a 3 a 3 + o ; 2 R 2 a 3 a 3 - a ; 3 R Z a 3 x E ) ( 5 9 ) 

where 

Ρ = ^ Μ / ( Κ Μ + ^ , Q = ^ K / ( K M + C J 2 ) ^ , R = ^ 1 / ( K M + ^ ) ^ Ζ = ( 1 / M ) , ( 6 0 ) 

and symbol ( · ) denotes averaging, i.e., for example , 

( 1 / M ) = m 1 / M 1 + m 2 / M 2 = n ^ / ^ + d ) + m 2 / ( ^ 2 + d ) , ( 6 1 ) 

etc . 
T h e tensor b computed as b = ( S - 1 ) " 1 · · ξ (cf . ( 3 8 ) ) t u r n s out to be coaxial 

wi th ξ because of ( 5 6 ) and ( 5 9 ) : 

b = ( S " 1 ) " 1 - ·ξ = [ l / Î P Q + o ^ R ^ l J i Q ^ + ^ R ^ + ( P ^ R ^ a J . ( 6 2 ) 

T h e m a t r i x A S - 1 can easily be computed , too; th is one equals 

A S - 1 = p a 1 a 1 + q a 2 a 2 4- z a 3 a 3 + o ; 3 r a 3 x E ( 6 3 ) 

where 

ρ = Δ ( Μ / ( Κ Μ + ω 2 ) ) , q = Δ ( Κ / ( Κ Μ + ω 2 ) ) , r = Δ ( 1 / ( Κ Μ + ω 2 ) ) , ζ = Δ ( 1 / Μ ) , ( 6 4 ) 

and symbol Δ ( · ) denotes t he difference, i.e. for example , 

Δ ( 1 / Μ ) = 1 / M 2 - 1 / M p ( 6 5 ) 

e t c 

direct m e t h o d demons t ra t e s here i ts genuine power. 
Because t he tensors ξ and η are coaxial, we can choose t h e basis a p a 2 , a 3 (see 

( 4 ) ) so t h a t 

ξ = ^ a x + £ 2

a

2 > ( 5 6 ) 

η = r / 1 a 1 + 7 7 ^ ; ( 5 7 ) 

t he tensor ω will be assumed having only a^—component, namely 
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T h e tensor AS 1 - - b = AS 1 - - ( S X ) 1 · · ξ is now c o m p u t e d as 

A S - 1 · · b = [ 1 / ( P Q + u§ f t 2 ) ]{ [ (pQ + t^rR)^ + ^ ( p R - r P ) ^ + 

[(qP + u 2 rRK 2 - w

3 ( q R " r Q ) f i ) a 2 } -

A similar formula for Λ · · A S - 1 = η· · (S~*)— · A S - 1 is given by 

Λ- - A S - 1 = [ l / t P Q + ^ R ^ K K p Q + u ^ r R ) ^ - ^ ( p R - r P ) ^ 

+ [ ( q P + W g r R ) ^ + ^ ( q R - r O j r / ^ } . 

2 2 Direct calculat ion shows t h a t (Β . = K-M. i = 1,2) 
1 1 1 0 

- ( A S - 1 - • b ) ( P Q + ^ R 2 ) B 1 B 2 = ( Μ Δ ^ - α ^ Δ / ^ ^ + ( Κ Δ μ £ 2 + c ^ A k ^ a ^ (66) 

- (Λ · • A S ~ 1 ) ( P Q + 6 J 3 R 2 ) B 1 B 2 = ( M A k ^ + i ^ A / ^ ^ + (ΚΔμη2 - a ^ A k r / ^ , (67) 

Κ = + m 2 K 1 , M = m 1 M 2 + n ^ M ^ (68) 

W e are now ready to apply t h e necessary condi t ions (44) and (46) . T h e first of t h e m is 
reduced to 

( ^ - H K J i ^ ^ i i j ) + 2ω3(Κξ2η2 + M ^ ) = 0, (69) 

Κ = Κ Δ μ / A k , M = M A k / Δ μ , K M = K M . 

In view of (44) , Eq. (46) can be rewr i t t en as 

( A S - ^ - b î - ' T - i A S - ^ - b ) = 0. (70) 

Combin ing this w i th (66) we get 

f 2 / * i = [(Μ + ωζ)Κωζ± K ) ] ( A V A M ) . (71) 

Equa t ions (69) and (71) comprise a sys tem t h a t can be solved to de t e rmine and 

d; we ob ta in (ζ = ξ2/ξν σ = η2/η1) 
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ω3 = ((κ+μ)/2)ΑκΑμ(σ-ζ)/[{σΑμ*Αζ)(ζΑμ*Δκ^ ( 7 2 ) 

and 

d=[l/2(aA^*Ak)(CA/i±Ak)] 

[ 2 a C k ( A / x ) 2 ± A ^ A k ( a + C ) ( k - M ) - 2 ^ ( A k ) 2 ] . ( 7 3 ) 

Equa t ions ( 7 2 ) , ( 7 3 ) provide a basis for the subsequent final calculat ions . W e 
compu te t h e bil inear form ( 4 1 ) making use of ( 7 2 ) , ( 7 3 ) . Direct calculat ion shows t h a t 

Φ = Φ1+ = i ? - - < ^ - - f - [ m 1 m 2 / ^ ( 7 4 ) 

where 

(3) = m 1 ^ 1 + m 2 ^ . 

T h e values ( 7 4 ) of is a t t a ined by the rank 1 l amina t e wi th layers paral lel to 

t h e m a i n axes of tensor a 2 , i.e. t h e ma in axes of ξ and 77. 

This regime will be valid wi th in t he range of pa r ame te r s ζ = £ 2 / £ p σ = ^2^1 

defined by Ineqs. ( 4 8 ) toge ther wi th ( 7 2 ) , ( 7 3 ) . W i t h o u t the range, r ank 2 l amina tes 
will be appl ied to s a t u r a t e t h e corresponding bounds . 

T o show this , consider for example , t h e case d e t A 2 + ω- · Δ 2 · · ω = 0 or, in view of 

( 5 8 ) , 

B 2 = K 2 M 2 + o^ = 0. ( 7 5 ) 

This is a manifold in t he space (o^ ,d ) , and the var ia t ions δω = a^&jg, δά are 

therefore l inked by the re la t ionship (see ( 5 0 ) ) 

2d<5d - ( k 2 - μ2)δά - 2ω^δω^ = 0 

as we move along this manifold. T h e l a t t e r re la t ion can be rewr i t t en as (see ( 5 0 ) ) 

δά = 2 < J 3 & J 3 / ( M 2 - K 2 ) , ( 7 6 ) 
-» 

and ins tead of two necessary condit ions φω = φ^ = 0 (see ( 4 4 ) and ( 4 6 ) ) , we arr ive at 

only one condi t ion 

( A S ~ 1 . . b ) x ( A . . A S ~ 1 ) . - a 3 ^ 3 + ( A S - 1 - - b ) - - Τ - - (A- - A S - 1 ) 2 C J 3 & J 3 / ( M 2 - K 2 ) = 0 

or, equivalent ly , 
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( A S - 1 - -b )x(A- - A S " 1 ) - - a 3 + [ 2 w 3 / ( M 2 - K 2 ) ] ( A S - b ) - - T - - (A - • A S " 1 ) = 0. (77) 

This condi t ion should hold along wi th (75). 
Equa t ion (77) can be t ransformed wi th t h e aid of equat ions (66) , (67) defining 

mat r ices A S - 1 - - b and A - - A S — 1 . W e arr ive at t h e re la t ionship 

M K - ω\ + 2 α ; 2 ( Μ - Κ ) / ( Μ 2 - Κ 2 ) 1 ( σ - 0 + 2 a ; 3 { [ ( M 2 - K 2 M 2 ) / ( M 2 - K 2 ) - M ] ( A k / A / x ) 

- [ ( K 2 - K 2 M 2 ) / ( M 2 - K 2 ) + K ] ( A / z / A k X } = 0. (78) 

2 
Expressions in t he square bracke ts can be t ransformed as we use (75) t o e l imina te ω^. 

After some a lgebra we arr ive at t h e re la t ionships 

Μ Κ - ω 2 + 2 α ; 2 ( Μ - Κ ) / ( Μ 2 - Κ 2 ) = [ m 2 / ( M 2 - K 2 ) ] ( / 3 d + 7 ) , 

[ ( M 2 - K 2 M 2 ) / ( M 2 - K 2 ) - M ] ( A k / A / i ) - [ ( K 2 - K 2 M 2 ) / ( M 2 - K 2 ) + K ] ( A / x / A k ) a C = 

- m 2 c / ( M 2 - K 2 ) . (79) 

Here, symbols /?, η and c are defined as 

/ 5 = - ( u + v ) , 
7 = k 2 v - /z 2 u, (80) 

c = u — ν σ ( , 

where 

u = ( k 2 + /i)Ak, ν = (k + μ 2 ) Δ μ . (81) 

Eq . (78) now shows t h a t 

a;3 = ( l / 2 c ) ( / M + 7 ) ( ^ - C ) . (82) 

W e now use this re la t ion to e l imina te from (75). T h e result will be q u a d r a t i c 

equa t ion for d: 

dV(* - O 2 - 4c 2] + 2[βΊ{σ-ζ)2 + 2 c 2 ( k 2 - μ2)]ά 

+ Ί2{σ-ζ)2 + 4ο\μ2 = 0. (83) 

The discriminant of this equation is equal to 
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4 c 2 { ( < 7 - C ) 2 ( 7 + ^ 2 ) ( r - ^ 2 ) + C 2 ( k 2 + μ 2 ) \ 

F r o m Eqs . (80) , (82) i t follows t h a t 

(7 + 0k 2 )(7 - βμ2) = - u v ( k 2 + μ2)2 

and t h e discr iminant t u r n s out t o be 

4 c 2 ( k 2 + A i 2 ) 2 [ - ( a 2 - 2σζ + < 2 ) u v + u 2 - 2uvaC + ν 2 σ 2 £ 2 ] 

= 4 v 2 c 2 ( k 2 + μ 2 ) 2 ( σ 2 - u/v)(C2 - u / v ) . 

Eq. (83) now shows t h a t 

d = - {l/[/?V-C)2 - ίο2}}[βΊ(σ-ζ)2 + 2 c 2 ( k 2 - / z 2 ) 

+ 2vc (k 2 + μ2)\{σ2- u/v)(C 2- u / v ) ] . (84) 

T h e corresponding values of will be 

<"3 = {(σ-0/ΙΙ?(σ-02^ά}{- Pc^-I^) - 27C+/Mk2+M2)J ( σ 2 - η / ν ) ( C 2 - u / v ) } 

or, in view of (80), 

ω3 = - { ( k 2 + μ2)(σ - ζ)/[β>(σ - ζ)2 - 4 c 2 ] } 

{c(v - u) + v (u + v)J(a 2 -u/v)(C 2 -u/v)}. (85) 

Now i t is easy t o compu te t h e bil inear form (41). After some algebra we ob ta in 

φ/ξιηι = [ ( K 2 M 2 - Κ 1 Μ 1 ) / ( Κ 2 Δ μ + M A k ) ] [ K 2 + Μ^σζ - ω£σ - ζ)] + 

+ ω3(σ-ζ) + ά(1-σζ). 

Making use of (50) and (68) , we reduce this to t h e form 

φ/ξ^ = k 2 + μ2σζ + {τη^ίΑμ/^Αμ + μΑί + d(Ak - Αμ)]} 

[ - k 2 + d + ω 3 ( σ - ζ) - (d + μ2)σζ}. (86) 



4 4 1 

W i t h t he aid of (84) and (85) one can show t h a t 

- k 2 + d + ω3(σ - ζ) - (d + μ2)σζ = { ( k 2 + μ2)/[(η + ν)2(σ - C)2 - 4 c 2 ] } Jf 

^ Δ μ + £ A k + d ( A k - Δ μ ) = { l / [ ( u + v ) 2 ( a - 0 2 - 4 c 2 ] } A 

where 

3= 2(1+σζ)[ο2-ην(σ-ζ)2}± ν[2ο(1-σζ)-{η+ν)(σ-ζ)2}\(σ2- η/ν)(ζ2- u/v), 

Μ= 2uv(u+v)(a-C)2-2c c+vj(a2- u/v)(C2- φ) pcu-(u-v) 

Now i t is easy t o check by direct inspect ion t h a t 

u/v + σζ+\(σ2- u/v)(C2- φ ) Jf/JC= -[(ί2+μ2)/η) 

and from (86) we ob ta in 

Φ/ξ^Ι = <t>2Jtlrll = k 2 + ~ [ m i A k M k

2 + ^ V 2 ! 

1/v + K/u) ± (l/u)i(a2-u/v)(C2-u/v) . 
T h e values (87) of φ2± are a t t a ined by t h e rank 2 l amina t ion wi th ma te r i a l 3^ being 

t h e core and layers being paral lel to t h e ma in axes of £ and η. T o show th i s , consider 
t he formula 

(87) 

- 1 (88) ^ 0 = ^ + m 1 [ ( ^ 1 - ^ ) 1 + [ 2 m 2 / ( k 2 + M 2 ) ] ( a 1 n n n n + a 2 t t t t ) ] 1 = ^ 2 + m 1 A 

for t h e effective tensor 3^ of such a composi te assembled from mate r ia l s 3^ and 3^ 

t aken wi th vo lume fractions m-^ and m 2 , respect ively. P a r a m e t e r s û^ , a 2>0 

(a^ +  c* 2 =  1 ) a r e l inke d w i t h t h e geometr i c p a r a m e t e r s f,/ ? o f m ic ros t ruc tu r e 

(see F igure ) b y t h e formula s 
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Τ 
Ρ 

- i - f - i 

R a n k 2 l a m i n a t e 

ttl = f ( l - p ) / m 2 , a 2 = p / m 2 . 

T h e m a t r i x A in (88) can be represented in t h e form 

A = π a ^ a ^ + # ( a ^ a 2 + a 2 a ^ ) + 0 a 2 a 2 + r a 3 a 3 

where 

7Γ = - ( k + ^ 2 ) / [ ( k 2 + M 2 ) A k ] = - v / [ ( k 2 + / i 2 ) A k A / i ] , 

0 = m 2 ( 2 a r l ) / ( k 2 + ^ ) , (89) 

ρ = - ( k 2 + / i ) / [ ( k 2 + / i 2 ) A / x ] = - u / [ ( k 2 + ^ 2 ) A k A / z ] , 

r = - 1/Δ/χ, 

and t h e basis a - p a g ^ is chosen as suggested in (4) and (56), (57) wi th t he uni t vectors 

i, j or iented along t he ma in axes of £ and η. 

T h e inverse m a t r i x A * is computed as 

A " 1 = (p/x )a 1 a 1 - ( ( 9/x ) ( a 1 a 2 + a 2 a 1 ) + {τ/χ)^2 + ( l / r ) a 3 a 3 
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where χ is defined by the formula 

X = πρ-θ2. 

The bilinear form £ .. η obviously depends on a^; the extremal values of this 
parameter can be found from the relationship 

or, equivalently, from 

ξ . . Α _ 1 . . Α . . A - 1 . . ? 7 = 0. 

This one is easily reduced to 

(A 2 + τ ρ Χ ^ + Î 2 r / 1 ) - 2 ^ ( p ^ 1 7 7 1 + π ^ ) = 0, 

and we obtain the extremal values of θ 

+ 0 1 (ρ/π) + σζ± \{σ2 - ρ/π)(ζ2 - ρ/τ) (90) 

(recall that ξ = £2/£ι a i m < σ ~ Ή^^' 
With these values for θ it is easy to arrive at the following expression for the 

bilinear form 

(II τ) + σζ/ρ 

± (1/Ρ)\(σ2 - ρ/π)(ζ2 - ζ/π) 

or, in view of (89) 

ξ··0ο·- η/ξ^ = k 2 + μ2σζ - [τη^Δμ^+μ^β] 

* (l/u)J<72-u/v)(C2-u/v) 

(1/v) + σζ/η 

This expression is the same as (87), and the attainability of the latter bound is thereby 
proved. A result similar to (87) can be established if the condition 

B1 = K^M^ ω\ = 0 (91) 
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holds ins t ead of (75). W e then arr ive a t t he formula 

Φ/ilVi = «W î = k i + β\σ< + [ m g A k A ^ k ^ M j ) / ^ 

( 1 / ? ) + σζβ±(1/?)\(σ2 - ÏÏ/7)(C 2 -  ïï/v ) 

with ΰ , ν defined as (cf. (81)) . 

ΰ = (k x + μ)Ai, ν = (Ε + μ-^Αμ. 

(92) 

(93) 

T h e values (92) a re a t t a ined for t h e 2nd rank l amina t ion wi th ma te r i a l being t h e 

core and layers paral lel to the ma in axes of £ and η. Now it is easy to specify t h e 
ranges of pa rame te r s £ p 7 7 p c r , ( t h a t maximize t h e function φ w i th respect to and 

d (see (37) and (39)) . Once this is done, t he final opera t ion of maximiz ing φ wi th 
respect to m^ can be applied to const ruct t h e desired ma te r i a l p a t t e r n . 

W e arr ive a t t h e final expression for s u p inf J : 

s u p inf J = s u p inf[I(w)— Aqdxdy + s u p max(^> 1 Φο^Φο^ίαχάγ.] 
α,π λ w Λ JE m1h 1 > 1 6 

T h e opera t ion 

m a x ( 0 1 ± ) 0 2 ± ' ^ 3 ± ) 

is carr ied out explicit ly at every point of the layout and thus provides wi th t h e 
required classification of ranges . In the context of a numer ica l imp lemen ta t i on , th is 
opera t ion comes ins tead of t he "inner loop" homogeniza t ion technique addressed by 
m a n y au thors (see, for example , Ref. 11) and generally providing subop t imal , r a the r 
t h a n s t r ic t ly op t ima l l ayouts . 
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Necessary Weierstrass conditions 
in problems of an optimal structural design 

L.V. P e t u k h o v 

D e p a r t m e n t of Applied M a t h e m a t i c s , St. Pe t e r sbu rg Technica l Univers i ty , Russ ia 

1 Introduction 
I n t h i s p a p e r p r o b l e m s of a n o p t i m a l s t r u c t u r a l des ign a r e c o n s i d e r e d , c o n t r o l 
b e i n g i nc lu s ions of h a r d e las tc ic m a t e r i a l i n t o t h e soft o n e . V o l u m e s of t h i s 
m a t e r i a l s a r e g iven . I t is n e c e s s a r y t o f ind s u c h s i t u a t i o n s of t h e i n c l u s i o n s t h a t 
a c o n t i n i o u s f u n c t i o n a l of s t r e s s t e n s o r o r s t r e i n t e n s o r is m i n i m i z e d . 

A c e n t r a l r e su l t of t h i s p a p e r is d e r i v a t i o n of t h e n e c e s s a r y W e i e r s t r a s s con
d i t i o n s for a n i nc lu s ion of h a r d e las t i c m a t e r i a l i n t o t h e soft o n e a n d vise ve r sa . 
T h e i n e q u a l i t y of t h e n e c e s s a r y W e i e r s t r a s s c o n d i t i o n s i n c l u d e s a d i s p l a c e m e n t 
v e c t o r w i t h a s o l u t i o n of t h e p r o b l e m of inf in i te t w o - o r t h r e e - d i m e n s i o n a l s p a c e 
w i t h i n c l u s i o n s . E l l ip se a n d e l l ipsoid i n c l u s i o n s a r e c o n s i d e r e d for t w o - a n d 
t h r e e - d i m e n s i o n a l cases . Fo r t h e p r o b l e m of m a x i m u m stiffness t h e n e c e s s a r y 
W e i e r s t r a s s c o n d i t i o n s a r e o b t a i n e d i n a f o r m of a n a l g e b r a i c a l e x p r e s s i o n s . 

T h e W e i e r s t r a s s c o n d i t i o n s a l low t o a n a l y s e t h e f u n c t i o n a l s e n s i t i v i t y a n d 
c a n b e u s e d for o p t i m a l des ign w i t h a d v a n c e d c o m p o s i t e m a t e r i a l s . 

2 The common optimization problem 
L e t RN b e t h e N-dimensional E u c l i d e a n s p a c e of v e c t o r s χ = X{e%, w h e r e (Γ,· a r e 
u n i t v e c t o r s of t h e C a r t e s i a n re ference s y s t e m (he re ina f t e r i n d e x e s i, j , k} I t a k e 
va lues f r o m 1 t o JV, s u m m a t i o n i n p r o d u c t s is a s s u m e d f r o m 1 t o AT t o o ) . 

Le t Ω C d e n o t e a r e g u l a r d o m a i n w i t h a b o u n d Γ [2] a n d a vec to r -
f u n c t i o n f(x) = fi(x)e{ is def ined in Ω, w h e r e fi(x) G £ 2 ( Ω ) a n d a vec to r -
f u n c t i o n Ρ($) = Fi(a)ei is def ined o n I > C Γ , w h e r e F{(y) G C2(TF) ( he re 
£ 2 ( Ω ) a n d C2(Tp) a r e t h e G i l b e r t s p a c e s ) . T h e d o m a i n Ω is o c c u p i e d b y t w o 
e l a s t i c m a t e r i a l s w i t h t h e s h e a r m o d u l u s e s μ ι , μ2 (μ2 > μ ι ) a n d t h e P o i s o n n ' s 
r a t i o s ι/χ, ι/2· Bes ides soft a n d h a r d m a t e r i a l s o c c u p y d o m a i n s Ω ι C Ω, Ω2 C Ω. 
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V o l u m e s of soft a n d h a r d m a t e r i a l s a r e a s s igned 

m e s Ω ι = λχ, m e s Ω 2 = À2 = m e s Ω — λχ. (1) 

D i s p l a c e m e n t s ΐί»(χ)β,· G ν ( Ω ) a r e d e t e r m i n e d b y t h e i n t e g r a l i d e n t i t y 

/ / A2(u)v)dx- f / · vdx - / F · vdT = 0, (2) 

Jill Jft2 Jil JrF 

W Ε ν ( Ω ) = {v = vi(x)ei I Vi(x) G W 1 ^ ) , t/e-(y) = 0, y G Γ υ C Γ } , 

w h e r e 7 ί 1 ( Ω ) is t h e S o b o l e v ' s s p a c e , An(u}v) = α [ ^ / £ ι ; ( ί ) ε & / ( υ ) , η = 1 ,2 , 

= X > 2 ** > c o m p o n e n t s of t h e f o u r t h r a n k t e n s o r α,·;·*/ a r e c a l c u l a t e d b y 
μ η , ι / η a n d t h e p o i n t d e n o t e s t h e i n n e r p r o d u c t of v e c t o r s . 

W e a r e seek ing t h e d o m a i n s Ω£, Ω$ of soft a n d h a r d m a t e r i a l l o c a t i o n s 
sa t is f ied 1 s u c h t h a t a f u n c t i o n a l 

J(u)= I <p(u)dx+ j ψ(ΰ)άΤ (3) 
Jrt JrF 

is m i n i m i z e d . I n t h e f u n c t i o n a l 3 t h e f u n c t i o n φ(ν) d e p e n d s o n t h e d i sp lace 
m e n t - v e c t o r c o m p o n e n t s Ui a n d s t r e s s - t e n s o r c o m p o n e n t s &ij(u)y t h e f u n c t i o n 
ip(u) d e p e n d s o n t h e d i s p l a c e m e n t - v e c t o r c o m p o n e n t s it,-. 

T h e l o c a t i o n s of soft a n d h a r d m a t e r i a l s m a y h a v e a ve ry c o m p l i c a t e d s t r u c 
t u r e . T h e a i m of t h i s p a p e r is a c o n s i d e r a t i o n of f u n c t i o n a l s e n s i t i v i t y w i t h 
re fe rence t o t h e inc lu s ions . 

3 Necessray optimal conditions 
L e t Ωχ, Ω£ a r e t h e o p t i m a l s o l u t i o n s (Ω£ is o c c u p i e d b y soft m a t e r i a l , Ω£ is 
o c c u p i e d b y h a r d one ) a n d Ω̂ , Ω£ h a v e t h e c o m m o n b o u n d a r y r̂ 2. A d d i n g t h e 
l e f t - h a n d s ide of t h e i n t e g r a l i d e n t i t y 1 t o t h e f u n c t i o n a l 3 , we c a n o b t a i n i t s 
first v a r i a t i o n : 

SJ dx + 
In 

+ [ d ^ f f ) -6udT+ f A1(6u,v)dx+ [ A2(6it,v)dx + 

+ f [Α1{ΰ*,ν)+φ1(α*)-Α2(ΰ*,ν)-<ρ2(ΰ*)]δΓάΤ + 

+ ί [Α1(ΰ*)ν) + φ1(η*)-Α2{ΰ*,ν}-φ2{ΐΤ)}δΓάΓ-
i m r ; 

- / [Α1(ΰ*,ν) + φ1(ΰ*)-Α2(ΰ*,ν)-φ2(ΰ*))δΓάΓ, 

(4) 
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w h e r e t w o p o i n t s d e n o t e t h e d o u b l e i n n e r p r o d u c t of t e n s o r s , u* is t h e o p t i m a l 
s o l u t i o n of t h e o p t i m a l p r o b l e m , 8u is t h e f ir ts v a r i a t i o n of uy 6r is t h e first 
v a r i a t i o n of t h e o p t i m a l b o u n d a r i e s T{2) Γ Π Γ ^ , Γ Π Τ2 sa t i s f ied c o n d i t i o n [3]: 

/ 6rdT+ [ 6rdY+ [ 6rdT = 0. (5) 

W e p u t ν e q u a l t o v* i n 4 , w h e r e v* sat isf ies t h e i n t e g r a l i d e n t i t y 

W e ν(Ω). 

Since 6u G ν ( Ω ) , we g e t f r o m 4 a n i n e q u a l i t y 

SJ = ί [Α2(η\ϊΤ)-φ2(ΰη-Α1(η\ν*) + φ1(ϊΐη]δΓάΓ+ (7) 
•Ή» 

-f- / [A2 (S*, tT ) - φ2 (tT ) - Ai ( δ * , tT ) + y>i (tT )] ί r -
i m r ; 

- / [ A 2 ( 5 * , t T ) - V 2 ( i T ) - A ! ( t T , tT ) + ^ ( 5 * ) ] (5rdr > 0, 
Jmri 

w h i c h m u s t sa t i s fy t h e c o n s t r a i n t 5. 
T h e i n e q u a l i t y 7 for s u c h or is a l w a y s sa t is f ied if 

Α2(ϊΤ,ΰ*)-φ2(ΐΤ)-Α1(ΐΤ,υ*) + φ1(ΐΤ) = C,*Gr*12, (8) 

Α 2 ( ^ , τ Γ ) - ^ 2 ( 5 * ) - ^ ι ( ^ , ^ ) + ^ (ΰ*) < c, f e r n r * , (9) 

^ ( ΰ * , ^ ) - ^ ^ ) - ^ ^ * , ^ ) ^ ^ ^ ) > c, £ e r n r ï , (ίο) 

w h e r e C is a c o n s t a n t . 

4 Necessary Weierstrass conditions 
W e s h a l l a n a l y s e t h e f u n c t i o n a l s e n s i t i v i t y w h e n t h e r e is a soft i n c l u s i o n i n t o 
h a r d m a t e r i a l o r a h a r d i nc lu s ion i n t o soft o n e . Le t XQ G Ω{ (xo G Ω^) a n d 
Ωο(η) is a c o n v e x d o m a i n w i t h a L ip sch i t z b o u n d a r y Γ ο ( ^ ) . P o i n t s of Γο(τ;) a r e 
d e t e r m i n e d b y v e c t o r s Xo + ηχ}. For η — 1 we h a v e a d o m a i n Ωη = Ω η ( 1 ) , for 
77 — 0 t h e d o m a i n Ωο(^ ) c o n t r a c t s t o t h e p o i n t XQ a n d 

ι η ε β Ω ο ^ ) = ηΝ mesQ,0. (H) 
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Let u s s u p p o s e a lso t h a t Ωο C Ω£ (Ωο C Ω^) a n d h a r d (soft) m a t e r i a l occup ie s 
t h e d o m a i n Ωο(η ) . I n o r d e r t h a t t h e c o n d i t i o n 1 is sa t is f ied i t is n e c e s s a r y t o 
c h a n g e t h e b o u n d a r y T*12 b y a q u a n t i t y r ( y , 7 7 ) , y G T{2 [2], r(y, η) > 0 ( r ( y , η) < 
0) for a h a r d (soft) i nc lu s ion i n t o soft ( h a r d ) m a t e r i a l . I n t h i s case f u n c t i o n a l 
J(u) wi l l h a v e a f o r m 

J(u) = / [A^u, ν) + <fi(u)] dx+ j [A2(u, v) + φ2(η)] dx + (12) 

+ y - F -v dY- J f-vdx± 

± / [v4i(u, ?) + v?i(w) - A2(uy ν) - φ2(ϋ)] dx, 

w h e r e t h e s ign -f(—) in t h e l a s t i n t e g r a l c o r r e s p o n d s t o t h e soft ( h a r d ) m a t e r i a l 
i nc lu s ion i n t o t h e soft ( h a r d ) o n e . 

S ince t h e c o n d i t i o n 11 m u s t b e sat isf ied, t h e f u n c t i o n r(y, η) m u s t b e p r o 
p o r t i o n a l t o ηη a n d h e n c e 6r = ... = 6N~1r = 0. S ince l o a d i n g s i n t h e i n t e g r a l 
i d e n t i t y a r e p r o p o r t i o n a l t o <$ r , . . . , SrN"1

) v a r i a t i o n s 6u = . . . = 6N"lu = 0 
c o r r e s p o n d i n g l y [2]. 

P u t t i n g ν = — £>* in 12 a n d u s i n g t h e i n t e g r a l i d e n i t y 6 for ν = <^ ί? , we 
o b t a i n 

= / [Α2(Γ,Γ)-φ2(ΐΤ)-Α1(υΤ,Γ) + φ1(ΐΤ)]δΝΓ<ΙΓ± (13) 

. d* ί y 

r;=0 

U s i n g t h e n e c e s s a r y c o n d i t i o n s 6N J > 0, 8, t h e e q u a l i t y 11 a n d t h e s igns of 
v a r i a t i o n s SNr) we o b t a i n f r o m 13 : 

± Τ Τ η / [Λ2(ΰ^)^φ2(ΰ)-Α1(ΰ^) + φ1(ΰ))άχ\ > (14) 

> ϋ ν . ' ζ π ι ε β Ω ο . 

H e r e t h e s ign + ( — ) is t a k e n for p o i n t s £ 0 £ Ω ^ ( ί ο G Ω^) . 
T h e d i s p l a c e m e n t - v e c t o r u i n t h e l e f t - h a n d s ide of 14 m a y b e r e p l a a c e d w i t h 

a s o l u t i o n for t h e inf in i ty s p a c e WN w i t h t h e i nc lu s ion Ωο, w h e n t h e m a i n s t r e s ses 
&k(û*(xo)) o f t h e s t r e s s - t e n s o r _ ( 5 * ( i o ) ) a c t i n t h e inf in i t y [3] . W e s h a l l d e n o t e 
t h i s s o l u t i o n b y t ?°(x) . T h e s t r e s s - t e n s o r s _ ^ ( u ° ( Î ) ) a n d ^ 2\u°(x)) d o n o t 
d e p e n d o n x , t h e s t r a i n - t e n s o r ε(ν*(χ)) is a c o n t i n i o u s f u n c t i o n , t he r e fo r e t h e 
i n e q u a l i t y 14 t a k e s t h e final f o r m : 

Α2(ν0

>ν*)-φ2(ΰ°)-Α1(ΰ0,ν*) + φ1(ΰ0) > ζ, V x o G O ; , (15) 

Α2(ΰ0,ν*)-φ2(ΰ0)-Α1(υ0,ν*) + <ρι(ϊ°) < < : , ν £ 0 € Ω Ϊ , 
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w h e r e u° = ΰΡ(χ0)} ν* = ν*(χο). 
W e s h a l l cal l t h e i n e q u a l i t i e s 15 t h e n e c e s s a r y W e i e r s t r a s s c o n d i t i o n s . T h e y 

m u s t b e sa t i s f ied for al l p o i n t s XQ G Ω^ a n d XQ G Ω 2 . 

5 Elliptic and ellipsoidal inclusions 
T h e d i s p l a c e m e n t - v e c t o r ΰ? c a n n o t b e d e t e r m i n e d for t h e a r b i t r a r y f o r m s of in 
c lus ions . H o w e v e r , i t is k n o w n for t h e e l l ip t i c , h y p o t r o c h o i d a l i n c l u s i o n s i n t w o -
d i m e n s i o n a l case a n d for t h e e l l ipso ida l i nc lu s ions i n t h r e e - d i m e n s i o n a l case [1]. 

W e s h a l l cons ide r i n IR 2 t h e e l l ip t ic i nc lu i s ion ΩΩ of soft m a t e r i a l i n h a r d 
o n e . L e t 7 7 ( 1 -h ^ ) a n d η(1 — ξ) b e s e m i - m a j o r a n d s e m i - m i n o r a x e s of t h e e l l ipse . 
L e t ' s p u t a n o r ig in of c o o r d i n a t e s in p o i n t xo a n d t h e le t t h e u n i t v e c t o r s t\ 
a n d e2 b e c o m b i n e d w i t h t h e s e m i - m a j o r a n d s e m i - m i n o r a x e s . D e n o t i n g t h e 
a n g l e b e t w e e n t h e u n i t vec to r t\ a n d t h e first m a i n d i r e c t i o n of t h e s t r e s s - t e n s o r 
σ ( ΰ * ( ί ο ) ) b y /?, we h a v e t h e t e n s o r c o m p o n e n t s ε ° = s(u°) a n d σ ° = σ ( ι ? 0 ) in 
p o i n t s of t h e e l l ip t i c i nc lu s ion [1], T h e y a r e i n d e p e n d e n t o n p o i n t s x G Ωη a n d 
a re e q u a l t o c o n s t a n t s : 

( « 2 + 1) [ ( « 1 - l ) C i - 2 C 2 ] 

8 
( « 2 + l ) [ ( « i - l ) C i + 2 C 3 ] 

a . (16) 

ε 

22 — 

ο ( κ 3 + 1 ) C 3 

12 

'11 

r 2 2 

σ 1 2 = 

4 

Mi(«a + l ) ( C i - C a ) 
2 

M i ( * 2 + l ) ( C i -C7) 
2 

μ ι ( « 2 + 1 ) C 3 

(17) 

w h e r e /c* = 3 — 4i/k for t h e p l a n e s t r a i n e d s t a t e , /c* = for t h e p l a n e 
s t r e s s e d s t a t e a n d 

C i 

c2 

[(1 + (1)μ2 + ( t t 2 ~ ί2)μι]{σ\ + σ2) ~ 2ξ(μ2 - μι){σλ - σ 2 ) cos 2β 
(μ2 + κ2μι)[(κι - ΐ)μ2 + 2 μ χ ] - ξ2{μ2 - μ ι ) [ ( * ι - 1 ) μ 2 - 2 / ο 2 μ ι ] ' 

_ ~ 1)/J2 ~ ( * 2 ~ 1)μι ] (<τ 1 -f σ 2 ) 

( μ 2 + κ : 2 μ ι ) [ ( « ι - 1 ) μ 2 + 2 μ ι ] - £ 2 ( μ 2 - μ ι ) [ ( κ ι - 1 ) μ 2 - 2 / ο 2 μ ι ] 

[(/ci ~ 1 ) μ 2 4- 2 μ ! ) ( σ ! - σ2) cos Ίβ 

( μ 2 + κ2μ\)\{κγ - 1 ) μ 2 + 2μχ] - ξ2(μ2 - μ ι ) [ ( « ι - 1 ) μ 2 - 2 κ 2 μ ι ] ' 
( σ ι _ σ 2 ) s i n 2β 
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H e r e σγ a n d σ2 a r e σ ι ( 5 * ( ί ο ) ) a n d σ2{η*{χ§)) r e spec t ive ly . T h e t e n s o r c o m 
p o n e n t s e^j = Sij(u°) a n d σ^· = for t h e case of i nc lu s ion Ω 0 of h a r d 
m a t e r i a l i n t o soft o n e a r e o b t a i n e d f r o m t h e f o r m u l a s 1 6 - 1 8 if r e p l a c e μ ι , μ2 

a n d / C i , κ2 b y each o t h e r . 
W e sha l l cons ide r n o w in IR 3 t h e e l l ipso ida l i nc lu s ion Ω ο of soft m a t e r i a l i n t o 

h a r d o n e . L e t ηαχ > ηα2 > ηα3 b e s e m i a x e s of t h e e l l ipso id . T h e o r ig in of 
t h e c o o r d i n a t e s is p l a c e d i n t h e p o i n t ί ο a n d t h e u n i t v e c t o r s ê*i , e 2 a n d e 3 

a r e c o m b i n e d w i t h m a j o r , m i d d l e a n d m i n o r s e m i - a x e s o f t h e e l l ipso id . S t r e s s -
v e c t o r s ef c ·  &(u*(xo))  a c t i n t h e inf in i t y a t t h e o r t o g o n a l w i t h r e s p e c t t o 
p l a n e s . 

C o m p o n e n t s o f t h e s t r e s s - t e n s o r σ ° = σ ( ί ί 0 ( ί ) ) a r e i n d e p e n d e n t f r o m χ i n 
t h e p o i n t s of Ω η a n d a r e e q u a l t o [4] 

σ?· = 2 μ 1 Β ί ί σ ί ί , i φ j , (19) 

Β = ^ 
μ Δ ( / ϋ - μ 2 ) [ ( 1 - 2 ι / 2 ) ( ω 1 + ω 2 ) - ( ^ - ΐ ) ( ω ι - ω 2 ) ] + 2 μ 2 ( 1 - ι / 2 ) ' 

1 — 1/2 

ρΑ(μ1-μ2)[(1-2ι/2)(ω2+ω3)-(ϊ^-ΐ) (ω2-ω3)]+2μ2(1-ν2) 

1 - 1 / 2 

μ Δ ( μ 1 - μ 2 ) [ ( l - 2 I / 2 ) ( u ; l + c J 2 ) - ( 2 / ? 2 - e 2 ) ( ω 1 - ω 2 ) ] 4 - 2 μ 2 ( l - ^ 2 ) , 

( c o m p o n e n t s σ £ a r e g o v e r n e d b y t h e l i nea r a l g e b r a i c e q u a t i o n s . ) 

(E - i^P · Q - 1 · Α ι ) · σ ° = (jE? - Q " 1 · A 2 ) · σ, (20) 
μ ι 

w h e r e σ ι ; · = σ^ · ( τ ϊ* ( ίο ) ) , ^ - t h e u n i t m a t r i x , 

<r° = σ §2 , σ = * 2 2 , A n = — - i / n 1 - i / „ I , η = 1 ,2 , 

UV W 1 +
 \-Vn -V« 1 

m a t r i x c o m p o n e n t s Ρ a n d Q a r e d e t e r m i n e d b y r e l a t i o n s 

P m l = ( l - 2 i / 2 ) [ w m - ( / ) A ) - 1 ] , 

p m 2 = (1-2ν2)(ρ2-ξ„ι)-1ω„ι + - Ρ ^ -

# 2 3 — 

-031 = 

3 
1 / 1 - 2 i / 2 1 

P m 3 - (1 ~ 2 , 2 2 ) _ u ) ( c 2 _ U f m + »2 _ 6 ) ( c 2 _ 6 ) -

(1 - ^ ( d - C 2 ) ( p 2 - & n ) ( / > 2 - C l ) 2 ^ | (p2 ~ C2)\^ 

( C l - £ m ) ( c 2 ~ Î m ) p A C i -  im  C 2 -  £ m 
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q m i - ( l - 2 i / 2 ) o ; m , 

q m 2 = (1 — 2i/2)u;m + ( 2 ρ Δ ) _ 1 , 

<lm3 = ( 1 - 2 ^ 2 ) 7 Ί—T7 T - T ^ m Ί W 4 H U > 5 , 

m = 1 , 2 , 3 , 

w h e r e 6 = 0, & = e 2 , = 1, Δ = Δ ( ρ ) = v V - * 2 ) ( Ρ 2 - 1 ) , c 1 ) 2 = 

m = 1 ,2 . 

S o m e t i m e s i t is n e c e s s a r y t o h a v e t h e s t r a i n - t e n s o r c o m p o n e n t s ε°· = £ , j ( i ï 0 ) . 
T o d e t e r m i n e t h e m , we ' l l m a k e u s e o f r e l a t i o n s 19 , 2 0 a n d o b t a i n 

4 =  | - ^ > ( 2 1 ) 

( 2 / i 1 J E - 2 ^ 2 A i - i 3 - Q - 1 ) - £ ° =  A 1-(E-P-Q~1-A2)-a, (22 ) 

w h e r e 

4—i(A ε ° = ( | ) ' Λ Γ ΐ = Γ ^ ( 

1 — v\ v\ v\ 

v\ v\ 1 — v\ 

6 Maximum stiffness construction 
Fo r t h i s p r o b l e m φ(ΰ) = / · 5 , V>(^0 = F - u. F r o m 6, 8 a n d 15 i t fol lows t h a t 
v*(x) = {?*(£). 

A2(u*,u')-A1(U*,U*) = ζ , « e r j 3 , 

Λ 2 ( δ · , « · ) - Λ ι ( « * , « * ) > ζ, χ e r n r ; , 

i 4 3 ( t r , t r ) - i 4 i ( t r , t r ) < ( , x e m r ; , 

A a i t T . ^ - A i i t r . t ï 0 ) >  ç , £ 0en;, (23 ) 

Λ 2 ( ΰ * , ΰ 0 ) - Λ ι ( ΰ * , ΰ 0 ) < c , x o e n i (24) 

I n s e r t i n g ε ° f r o m 16 i n t o t h e l e f t - h a n d s ide of t h e i n e q u a l i t y 2 3 , we ge t for 
Ν = 2 

A2(u*,u°)-Ai(u*,u0) = χ(σι,σ2,μι,μ2,κ1,κ2,β,ξ) 

w h e r e = σ * ( ΰ * ( £ ° ) ) , 

v, - / · • , ι % ^ ( κ ι - 1 ) - μ ι ( « 2 - 1 ) , _ , _ ^ 
X " ( K 2 + 1 ) 8 M « i " 1) ^ 1 + c r 2 ) C l -

- { K 2 + ^ 2 " μ ΐ ) ( σ ι ~ <T2)(C2 cos / ? - C a s i n g . 
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T h e f u n c t i o n χ d e p e n d s o n β G [Ο,π] a n d ξ G [0 ,1 ] , t he re fo re t h e i n e q u a l 
i t y 23 wil l b e sat isf ied if 

X2(*i,<r2,/*i,A*2,*i,/c2) > C> (25) 

w h e r e 

X2 = ΐ ϊ ΐ ί η χ ( σ ι , σ 2 , μ ι , μ 2 , κ ι , *2,β,ξ), β G [Ο,π] , ξ G [ 0 , 1 ] . (26) 

T h e l e f t - h a n d s ide of t h e i n e q u a l i t y 24 wil l b e e q u a l t o 

A2(u\ S°) - tZ°) = χ ( σ ι , σ 2 , μ 2 , μ ι , κ 2 , * ι , / ? ,£ ) · 

T h e n e c e s s a r y W e i e r s t r a s s c o n d i t i o n wil l b e sat isf ied if 

Χ ι ( σ ι , σ 2 , μ 2 , μ ι , Κ 2 , « ι ) < C, (27) 

w h e r e 

Χ! = Γ Π 3 χ χ ( σ ι , σ 2 ι μ 2 , μ ι , « 2 , Λ ι , / ΐ , 0 ) /? G [Ο,π] , ξ G [ 0 , 1 ] . (28) 

I n g e n e r a l case t h e p r o b l e m 26 , 27 m a y n o t b e e x a c t l y so lvab le , b u t , for i n s t a n c e , 
for μ ι = 0, μ2 = μ, « 2 = κ t h e p r o b l e m 26 h a v e t h e s o l u t i o n w h i c h is g o t for 
β - 0 a n d 

f ( (σι + σ2)(σ1-σ2)-\ - 1 < σλσ^ < 0, 
ζ 1 ( ^ - σ 2 ) ( σ ι + σ 2 ) " 1 , 0 < σ2σ^ < 1. 

H e r e ο\>_σ\. T h u s , t h e W e i e r s t r a s s c o n d i t i o n 25 t a k e s t h e f o r m 

A(U*;Û*) -4κσλσ2 > ζ, -1 < σχσ^ < 0, (29) 

Λ ( ί * , 5 * ) + 4 σ 1 σ 2 > C> 0 < σ2σ~χ < 1. 

I n s e r t i n g ε ° f r o m 2 1 , 22 i n t o t h e l e f t - h a n d s ide of t h e i n e q u a l i t y 2 3 , we ge t 
for Ν = 3 

j 4 2 (u ° , i r ) - Λ ι ( ί Ζ 0

> ί Γ ) = σ τ · ^ - ^ Α ι · Α ί 1 ) · (30) 

• (2μιΕ - 2μ2Α1 · Ρ · Q " 1 ) · Α ι · (Ε - Ρ · Q " 1 · Λ 2 ) · σ + 

4- 2 ( ΐ - ^ ( 5 1 2 σ 2

2 + 5 2 3 σ 2

3 + Β31σ2

31) > ζ. 

T h i s i n e q u a l i t y m u s t b e sat isf ied for a n y d i s p o s i t i o n of t h e e l l ipsoid a b o u t t h e 
m a i n axes of t h e s t r e s s - t e n s o r ÇT(Û*(XQ)).  D e n o t i n g t h e m a t r i x o f cos ine s b e t w e e n 
ejt a n d t h e m a i n axe s o f t h e s t r e s s - t e n s o r σ ({ /* ( ί ο ) ) b y y (jij is t h e cosine of 
a n g l e b e t w e e n a n d t h e d i r e c t i o n aj(u*(xo)) ) , we o b t a i n 
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L e t ' s i n t r o d u c e t h e E u l e r ' s ang le s ( t h e p r ece s s ion , n u t a t i o n a n d p u r e r o t a t i o n 
ang le s ) a n d e x p r e s s γ ι ; · b y t h e s e ang le s : 

T i l = cos β\ cos /?3 — s in βι cos β2 s in β$, 

T12 = — cos βι s in /?3 — s in βι cos β2 cos β% 

713 = s in βι s i n / ? 2 , 

721 = s in βι cos /?3 -f cos βι cos /?2 s in /?3, 

722 — s in βι s in β3 + cos /?i cos / ? 2 cos / ? 3 

723 = — cos βι s in /?2, 

7 3 1 = s i n / ? 2 s i n / ? 3 , 

732 sin/?2 c o s / ? 3 , 

733 = cos / ? 2 > 

t h e n t h e l e f t - h a n d s ide of 30 m a y b e d e n o t e d b y 

X{<ri, σ 2 , σ 3 , μ ι , ^ 2 , "ι, ι/ 2 , ρ, e , βι)β2)β3)> 

T h i s f u n c t i o n χ d e p e n d s o n G [0, π ] , e Ε [0 ,1] a n d /? G [1 , o o ) , t he r e fo re t h e 
i n e q u a l i t y 2 3 wil l b e sa t is f ied if 

Χ 2 ( σ ι , σ 2 , σ 3 , μ ι , Α « 2 , ι > ι , ϊ ' 2 ) > C, (31) 

w h e r e 

X2 = ι η ΐ η χ ( σ ι ι σ 2 , σ 3 , μ ι , μ 2 , ^ ι , ^ 2 , Ρ , β , ^ ι , / ? 2 , / Ϊ 3 ) , (32) 

& € [ 0 , π ] , e G [ 0 , l ] , p G [ l , o o ) . 

T h e l e f t - h a n d s ide of t h e i n e q u a l i t y 24 wil l b e e q u a l t o 

χ{σι)σ2)σ3,μ2)μι)ι/2)νι,ρ,β)βι)β2,β3). 

T h e n e c e s s a r y W e i e r s t r a s s c o n d i t i o n wil l b e sa t is f ied if 

X l ( ^ l , ^ 2 , C T 3 , / i 2 , / i l , ^ 2 , ^ l ) < C, (33) 

w h e r e 

Xi = m a x χ ( σ l , σ 2 , σ 3 , μ 2 , μ l , ^ 2 , ^ l , P , e , A , ^ 2 , ^ 3 ) , (34) 

& G [ 0 , T T ] , e G [ 0 , l ] , p G [ l , o o ) . 

T h e p r o b l e m s 32 , 3 4 m a y n o t b e e x a c t l y so lvab l e for a n y v a l u e s of μι, μ2) 

i/i , i/2) b u t for μι = 0, μ2 = μ, v2 — ν t h e i n e q u a l i t y t a k e s t h e f o r m 

w h e r e t h e f u n c t i o n ^ is s h o w n a t F i g u r e 1 ( i t is s u p p o s e d t h a t σ\ > σ\ > σ | ) , 

w h e r e α ϊ = α 2 = ^ - , μ = 2 · 1 0 6 k g / c m 2 , ι/ = 0 . 3 . 
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Abstract 
T h e par t i a l re laxat ion for op t ima l compliance design is independen t of whe the r t h e 

under ly ing elast ic p rob lem is formula ted in t e rms of d isp lacements or s t ra ins . For t he 
purposes of numer ica l exper imen ta t ion and compu ta t i on it m a y be advan tageous to 
formula te op t ima l design problems in t e rms of d isp lacements as is done in [8]. T h e 
relaxed prob lem delivered by t h e displacement based formula t ion is of min—min—max 
type . Because of th i s , efficient numer ica l imp lemen ta t i on is h a m p e r e d by t h e order of 
t he last two m i n - m a x opera t ions . W e show here t h a t t h e last two min—max 
opera t ions m a y be exchanged faci l i tat ing an efficient numer ica l a lgor i thm. W e r emark 
t h a t t h e r igorous resul ts given here cor robora te t h e numer ica l m e t h o d s and 
exper iments given in [8]. 

1. I N T R O D U C T I O N 

It is now well known t h a t op t ima l design of s t ruc tu res m a d e from two dissimilar 
elast ic mate r ia l s m a y involve zones of composi te formed from the two cons t i tuen t 
mate r ia l s , see [4,9,13,15]. This observat ion mot iva te s extension of t h e design space to 
incorpora te t h e effective elast ic proper t ies of composi tes (see [13,15]). For m a n y 
problems t h e design space need only be ex tended to include elast ic composi tes wi th 
cer ta in preferred ex t r ema l stiffness proper t ies . This selective extension of t h e design 
space is commonly known as pa r t i a l re laxat ion , (cf . [11] ). 

In th is paper we shall consider pa r t i a l re laxa t ion for problems of compl iance 
op t imiza t ion for 3 d imensional s t ruc tures m a d e from two isotropic ma te r i a l s w i th 
elast ici t ies specified by shear and bulk modul i μ-, /c- i = 1,2' given by 

C. = 2 M i P s + 3 * j P h (1.1) 

such t h a t μ 2 > M p > Here, P g and P ^ are t h e project ions on to devia tor ic 

and hydros t a t i c s t ra ins respect ively. T h e resul ts here apply equal ly well t o t h e two 
dimensional design problems. 

W e suppose t h a t t he relat ively stiff ma te r i a l charac ter ized by C2 is more costly. 

Therefore, our goal is to min imize t h e compliance over all ma te r i a l l ayouts subject to a 
cons t ra in t on t he a m o u n t of expensive ma te r i a l . T h e under ly ing elast ic p rob lem can 
be formula ted var ia t iona l ly ei ther in t e rms of stresses or elast ic d i sp lacements . 
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It is easily seen (see section 2) t h a t the par t i a l re laxat ion for th is problem is given 
by t h e well known ex t remal class of effective elastic tensors corresponding t o finite 
r ank l amina r micros t ruc tures see, [2], [10], [11], and [14]. T h e re laxa t ion is 
independen t of t h e formulat ion of t h e under lying elast ic p roblem. 

For purposes of numerica l exper imen ta t ion and compu ta t i on it m a y be 
advan tageous to formulate the op t imiza t ion problem in t e rms of d isp lacements . T h e 
relaxed var ia t ional problem delivered by t h e displacement based approach is of 
min—min—max type , see (2.15). Because of th is , an efficient numer ica l scheme is 
hampered by the order of t he last two min—max opera t ions . In this paper we provide a 
saddle point theorem justifying t h e exchange, see T h e o r e m 3.2. T h e saddle point 
theorem is establ ished wi th t he aid of a convexi ty p rope r ty enjoyed by t h e effective 
tensors of finite rank l amina tes (see T h e o r e m 3.1) and t h e use of a tensor va lued family 
of Young measures , see [16]. 

Once t h e exchange is m a d e the compliance problem is of min—max—min t y p e and 
the r ight most min imiza t ion reduces to the min imiza t ion of a local energy densi ty at 
each point in t h e s t ruc tu ra l domain . Th i s feature is computa t iona l ly a t t r ac t i ve , since 
t he min imiza t ion of t h e local energy dens i ty can be done analyt ica l ly , see T h e o r e m 2 .1 . 
This saddle point theorem and max—min exchange has been incorpora ted in t he 
recent ly developed numer ica l me thods given in J8]. 

W e i l lus t ra te t h e re la t ionship be tween t h e relaxed Lagrangian for t he d isplacement 
problem and i ts counter pa r t for the stress based problem. T h e relaxed in tegrands 
appear ing in bo th Lagrangians are nonl inear functions of the i r a r g u m e n t s , nevertheless 
the re exists a dual i ty re laxa t ion be tween t h e two Lagrangians , see Section 4. W e 
remark t h a t the min—max in te rchange theo rem easily generalizes t o multi—load 
problems. T h e associated saddle theo rem and relat ions between par t ia l ly relaxed 
Lagrangians are given in Section 5. 

2. M A T H E M A T I C A L F O R M U L A T I O N O F T H E P R O B L E M 

T h e compliance or work done in t h e s t ruc tu ra l domain against body forces and 
boundary t rac t ions by the resul t ing elast ic d isplacement "u" is given by 

4 ( u ) = f -udx + J g - u d S , (2.1) 

Ω dtt 

—1 3 
where f is t h e d is t r ibu ted force densi ty in Η (Ω) and g is t h e prescr ibed 

1 / 9 \ 3 
bounda ry t rac t ion in Η ' (dQ). T h e displacement u is an e lement of Η (Ω) and 
satisfies t h e equi l ibr ium equat ions 

- d i v £ = f in Ω, (2.2) 

σ · η = g on #Ω, (2.3) 

a = C ( x ) e ( u ) , (2.4) 

where e(u) is t h e s t ra in tensor given by 

e(u) = JO^ + u . , ) . (2.5) 
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Here t h e s t ruc tu ra l layout is prescribed by piecewise cons tan t e las t ic i ty tensor C(x) 
given by 

C(x) = x 1 C 1 + x 2 C 2 , (2.6) 

where is t h e indica tor function of material—1 and X 2 = * ~~ * T 

T h e choices of body force and boundary t rac t ions are consis tent wi th t h e solvabil i ty 
requi rement 

j f -vdx — j g -vds = 0 

Ω cXt 

for all V E C , where 

C = {v : e(v) = 0 } . 

(2.7) 

(2.8) 

W e consider t he p rob lem of minimizing t h e compliance over all l ayouts of materials—1 
and 2 subject t o a vo lume cons t ra in t on t h e stiffer and more expensive ma te r i a l 2. W e 
no te t h a t a pa r t i cu la r layout is specified by C(x) and t h e volume cons t ra in t on 
material—2 is given by 

v 2 = (2.9) 

Ω 

(2.10) 

T h e m i n i m u m compliance problem takes t h e form 

m i n l(u) 
C ( x ) 

subject to : u satisfying t h e equi l ibr ium 

condit ions (2.2)—(2.5), and volume cons t ra in t , 

v 2 = j f i x 2 d x . 

Here we m a y view t h e above problem as one of d i s t r ibu ted p a r a m e t e r o p t i m a l control , 
where t h e control is C(x ) . P rob lem (2.10) can be wr i t t en var ia t iona l ly over t h e space 

1 3 
Η (Ω) of admiss ible displacement fields as 

m a x {2^(u) - J C(x)e (u) :e (u )dx + λ ν 2 } . 

Ω 

(2.11) 

Here λ denotes t h e lagrange mul t ip l ier associated wi th t h e vo lume fraction 
cons t ra in t . Al te rna t ive ly problem (2.10) m a y be wr i t t en var ia t iona l ly over t h e space 
" K " of admiss ible stress fields r as 
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m i n 
C ( x ) 

m i η 
τεΚ 

Here Κ is given by 

j C 1(x)r : r d x + A v 2 (2.12) 

K-
r in L (Ω , Sg) such t h a t —div τ = f in Ω 

[and τ · η = g on dCl. 

It is well known from the work of (see, [4,13,15]), t h a t problems of t h e t y p e given by 
(2.10)—(2.12) are ill posed and require re laxat ion . This re laxat ion is accomplished 
th rough t h e ex t remal class of composites known as finite r ank stiff l amina te s . T h e set 

of associated effective tensors is denoted by G L fl and t h e par t ia l ly re laxed problem 

becomes 

R = m i η 
0 2 € ΐ / ° ( Ω , [ Ο , 1 ] ) rjK Ω 

[H(r .x) + A0 2 (x) ]dx . (2.13) 

where 

H ( r , x ) = m i n {C l r : r } . 

OJx) 

(2.14) 

Applying dual i ty in (2.13) one m a y also argue t h a t finite r ank stiff l amina te s provide 
the pa r t i a l re laxat ion for t he compliance op t imiza t ion problem given in displacement 
formulat ion. W e find for this case t h a t the par t ia l ly relaxed p rob lem is given by 

m i η m m m a x 
0 2 e L œ ^ , [ O , l ] ) C e G L 0 ( χ ) u e H 1 ^ ) ' 

2^(u)+j [ A 0 2 ( x ) - C ( x ) e ( u ) : e ( u ) ] a x 

Ω 

. (2.15) 

For the purposes of numer ica l imp lemen ta t ion it is advan tageous to switch t h e 
orders of min imiza t ion and maximiza t ion . Indeed if t h e last two opera t ions are 
in te rchanged the subsequent min imiza t ion m a y be done analyt ical ly , see [8]. In wha t 
follows we see t h a t it is possible to exchange the two r ight most opera t ions of 
m i n - m a x , see Theorem 3.2. In this way we arr ive (see Section 3) at t h e resul t . 
Theo rem 2 .1 . T h e par t ia l re laxat ion for t he displacement based op t ima l compliance 
design problem (2.11) is given by 

m i η ( D / r ι\ m a x ^ + [A^ 2 (x) + F ( e ( u ) , x ) ] d X } , 

VL ( W D U £HV) 3 ω 

(2.16) 
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where for any cons tan t s t ra in ζ we have 

F ( £ x ) = - m a x C£ : £. (2.17) 

θ2(χ) 

W e observe t h a t F( ( ,x) is a nonl inear function of t h e s t ra in var iab le £. Here 
F(£ ,x) can be compu ted analyt ical ly or numerica l ly using formula (3.1). W e r emark 
t h a t F (£ ,x ) has been calcula ted explicit ly for t h e two dimensional case in [8]. Similar 
s t ra in energy functions have been computed earlier in t h e context of t h r ee d imensional 
incompressible e las t ic i ty and t w o dimensional e las t ic i ty , see [1], [7], and [10]. 

3. C O N V E X I T Y P R O P E R T I E S OF FINITE R A N K LAMINATES A N D A SADDLE 
P O I N T T H E O R E M . 

T h e necessary new tool for deducing t h e saddle point t heo rem is a convexi ty 
p roper ty enjoyed by t h e effective elast ic tensors for finite r ank l amina r 
mic ros t ruc tu res . Before s t a t ing t he convexi ty p rope r ty we in t roduce t h e formulas for 
t he effective tensors of finite r ank l aminar composi tes . T h e y are given by 

C = C 2 - ( ΐ - ^ Κ Ο ^ Γ 1 - fcj-1 (3.1) 

and 

* n - 1 
c = c1 + e2 ( C ^ ) 1 + (1-Θ2)Ί1 (3.2) 

for stiff and compl iant composites respectively. Here the tensors T . , i = 1,2 are of 

the form 

* J 
T i = ι W ' 1

 * J < *> t3-3) 
r = l 

where 
J 

ρτ > 0 and I p r = 1 (3.4) 
r = l 

2 
and Γ-(ν) a re tensor valued functions of vectors "v" defined on t h e uni t sphere S 

given by 
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Γ. (ν) = ν δ + ν ν δ | ν ν ί + y ν ί ) ικ ' m n o p 4μΛ m ο qs m ρ m n η ο m p η ρ m o y 

+ ( 3 ^ - ^ ) W o V i = 1 ' 2 - ( 3 5 ) 

These formulas were derived in [6] and have been rewr i t t en in no ta t ion convenient for 
this exposi t ion. 

W e in t roduce t he convex sets of tensors Δ ρ Δ 2 formed by considering all convex 
* * 

combinat ions T^ and T 2 delivered by formula (3.3) . T o u n d e r s t a n d t h e geomet ry of 

the sets Δ ^ and Δ 2 we regard Γ^(ν) and Γ 2 ( ν ) given by (3.5) as tensor valued 

maps m a p p i n g the surface of t h e uni t sphere to surfaces in t h e space F of four th order 
tensors . I t is now evident from (3.3) t h a t Δ ^ and Δ 2 correspond to t h e closed, 

bounded convex hulls of these surfaces. 

W e indica te the dependence of t he effective tensors C and C on T p T 2 and # 2 

by wri t ing 

* 
C = C ( T 2 , 0 2 ) (3.6) 

C = C ( T p 0 2 ) (3.7) 

1 2 A 

For any finite set of 3*3 symmet r i c mat r ices ( , ( , . . . ,ς , ^ < o o we form 

7 ( T 2 ) = I (C(T 2,0 2 KJ : ( j ) (3-8) 

and 

* I * 

ί ( Τ χ ) = l ÇCTp^KJ : Cj · (3-9) 
W e now s t a t e t he following convexity p roper ty for l amina te s . 

T h e o r e m 3.1. Convexi ty P r o p e r t y ^ ^ 

For fixed # 2 and for Τ - ^ Δ ^ and Τ 2 € Δ 2 t he sum of energies f ( T 2 ) is concave 
* * * * * 

in T 2 and t h e sum f(T^) is convex in Τ ρ i.e. for T 2 and T 2 in Δ 2 and t in 
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[0,1] we have 

T ( t T 2 + ( ( i - t ) T 2 ) > t T ( T 2 ) + ( l - t ) T ( T 2 ) (3.10) 

* * 
/ 

and for and in and t in [0,1] we have 

* * * * 
f ( t T 1 + ( l - t ) T ^ ) < tîpj + ( l - t ) f ( T ; ) . (3.11) 

Applying t h e convexi ty p rope r ty and arguing as in [16] we ob ta in t h e following saddle 
point t heo rem. 

T h e o r e m 3.2 

For fixed local vo lume fraction # 2 in Ε°°(Ω,[0,1]) and t h e Lagrangian L(C,u) 

defined by 

L(C,u) Ξ 2^(u) + J [A0 2 (x) - C(x)e (u) : e(u)]dx (3.12) 

Ω 

we have 

m i n m a x L(C,u) = m a x m i n L (C ,u ) . (3.13) 

CeGL~0 φ u e H V ) 3
 u e H 1 ^ ) 3 C e G L ^ ^ 

W e r emark t h a t T h e o r e m 2.1 follows immedia te ly from T h e o r e m 3.2. Indeed we m a y 
wr i te 

m i n L(C,u ) = 2^(u) + [ λ # 2 ( χ ) - m a x {C(x)e(u) :e (u)}]dx 

θ2{χ) 0 2 ( x ) 

and Theo rem 2.1 follows. 

4. R E L A X E D L A G R A N G I A N S A N D D U A L I T Y 

T h e saddle point T h e o r e m 3.2 is used t o provide a dua l i ty re la t ion be tween par t ia l ly 
relaxed Lagrangians appear ing in t h e stress and d isplacement based o p t i m a l 
compliance design problems (2.13) and (2.16). 

Indeed we have 

T h e o r e m 4.1 

For prescr ibed vo lume fraction 9Jx) in L 0 0 ^ , ^ , ! ] ) 
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m m 
τ εκ 

H ( r , x ) d x = m a x {2^(u) + j + j F ( e (u ) , x )dx} 

Ω u e H 1 ^ ) 3 Ω Ω 

(4.1) 

where Η ( τ , χ ) and F(£ ,x ) a re nonl inear functions of τ and ζ and are given by 
formulas (2.14) and (2.17) respectively. 

Explici t formulas for H ( r , x ) and F(£ ,x) have been worked out for t h e two 
dimensional design problem, and are given in [1], [7], and [8]. 

Proof. T h e proof of Propos i t ion 4.1 follows from the following s t r ing of equali t ies 

m i n H ( r , x ) d x = m i η m i n 
τ ε Κ ^ Ω r e K η 7 τ τ . - ^ c x v C e G L *9M 

C V : τ dx 

Ω 

= m i n m i n C * r : τ dx 

C e G L ; J-' 
h 

CeGL 
i 9 W 

u e H 1 ^ ) 3 

m a x {2^(u) - Ce(u) : e (u )dx} 

Ω 

= m a x 

u e H 1 ^ ) 3 C e G L 

m i n {2^(u) - Ce(u) : e (u )dx} 

Ω 

m a x { 2 φ ι ) + j F ( e ( u ) , x ) d x } . (4.2) 

U 6 H 1 ( Ω ) 3 Ω 

T h e second to last equal i ty in (4.2) is an appl ica t ion of T h e o r e m 3.2. 
W e no te t h a t t h e in tegrands H ( r , x ) and F(£ ,x ) have been po r t r ayed in t h e 

l i t e ra tu re as nonlinear cons t i tu t ive laws for smart elast ic ma te r i a l s , (see [8,11]). These 
mater ia l s are smart in t h e sense t h a t they provide t h e op t ima l local elast ic response for 
prescribed stress or d isplacement fields. W e point out t h a t P ropos i t ion 4.1 provides 
dual var ia t iona l principles for such mate r ia l s . 

5. M U L T I - L O A D P R O B L E M S 

Theo rem 2.1 and Theorem 4.1 can be easily ex tended t o multi—load op t ima l 
compliance design problems. Since t he extension is s t ra igh t forward and uses t h e 
techniques developed in earlier sections we shall only s t a t e t h e resul ts . 

W e consider Ν load cases prescribed by the body force densit ies f1 and bounda ry 

t rac t ions g 1 , i = 1,2,...,N. Associated wi th each load case ( i , g 2 ) is a d isplacement 
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field u 1 satisfying equi l ibr ium equat ions of t h e k ind given by (2.2)—(2.6). 
W e consider minimiz ing a weighted sum of t h e compliances 

/ ( i i ) = J Î V d x + J g 

given by 

Ν 

i=l 

g V d S (5.1) 

(5.2) 

Ν 

where w- > 0 i = 1,...,N and ^ w- = 1. T h e goal here is t o min imize L subject to 

i = l 

a volume cons t ra in t on t h e stiff elast ic ma te r i a l character ized by elas t ic i ty tensor C^. 

Ν Ν 1 3 
Defining U = ® Η (Ω) t he const ra ined op t imiza t ion p rob lem wr i t t en in t e rms of 
d isplacements has t h e var ia t iona l formulat ion 

Ν 

m i n m a x [ y w .{2^ (u 1 ) - f C f x W u 1 ) : e i u ^ d x } + A v J ; (5.3) 
C ( x ) , „ 1 „ 2 _ Ν λ , τ τ Ν / 1 1 2 

( u > V . . , η χ > ΐ Γ i = l Ω 

where * s t n e vo lume of stiff ma te r i a l in t he design and λ is t h e Lagrange 

mul t ip l ier associated wi th the volume cons t ra in t . For Ν independen t ly chosen 

cons tant s t ra ins £ i = Ι , . , . ,Ν we define t he function J ( ^ , ^ , . . . , ^ , x ) by 

Ν 

(5.4) 

C e G L η ( \ i = l θ2{χ) 

T h e n the pa r t i a l re laxa t ion is given by 

T h e o r e m 5.1. 
T h e par t i a l re laxa t ion for t he multi—load cons t ra ined compl iance op t imiza t ion 

problem (6.3) is 
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m i η m a x 

$2(x)eL*(n,[0,l])(u\u2,. . . , u N ) £ U N 

Ν 

i = l 

+ J [ J ^ u 1 ) , e(u2),...,e(uN),x) + A02(x)]dx 
Ω 

(5.5) 

Ν 
Theorem 5.1 is the extension of Theo rem 2.1 to t h e multi—load case. Defining Κ = 

Ν 
® Κ the const ra ined op t imiza t ion problem wr i t t en in t e rms of stresses has t h e 
var ia t ional formulat ion 

m i n m m 
C ( x ) , 1 2 N N V N ^ } ( r , r , . . . , r )eK 

Ν 

J w. C 1 ( χ ) τ ί : rMx + λ Υ 2 

i = l Ω 

(5.6) 

Arguing as in [11] or as in Section 2 t h e par t i a l re laxat ion of t he compliance problem 
given in t h e stress based var ia t iona l formulat ion is 

m i η m m 

ff2(x)£L»(n,[0,l]) (τ\τ2,...,τ%ΚΝ\ 

R ( T V 2 , - , r N , x ) + A02(x)dx (5.7) 

1 Ν 
where for any set of cons tan t s t ra ins r , . . . , r 

Ν 

R ( r , r , . . . , r ,x) = m i n ^ r : T , - 1 i i (5.8) 

C e G L a , , i = l 
0 2 ( x ) 

One also has a dual i ty re la t ion be tween t he relaxed Lagrangians for b o t h formulat ions . 

T h e o r e m 5.2. 

For prescribed volume fraction # 2 (x ) in Lm(n,[0,l]) 

, 1 2 Nx 
( l >I > · · · > ! )*K . 

nf 1 2 N ^ R ( r , r , . . . , r ,x)dx = 

Ω 

m a x 

( u V , . . . , u V N 

Ν 

J 2Wj^(u 1) + j J ^ u 1 ) , e(u2),...,e(uN),x)dx 

i = l Ω 

(5.9) 
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6. C O N C L U S I O N 

W e remark t h a t in general it is not possible to exchange min imiza t ion over volume 
fraction ^ ( x ) and max imiza t ion over d isplacement fields in (2.16) or (5.5) . Th i s is 

due to t h e fact t h a t t he function resul t ing in t eg rand is not quasiconcave for all values 
of t h e Lagrange mul t ip l ie r " λ " . This observat ion is seen in t h e numer ica l work of Jog , 
Haber , and Bendsoe [8]. 
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A b s t r a c t 
T h e use of advanced ma te r i a l s will increasingly gain i m p o r t a n c e in fu ture develop

m e n t s of cons t ruc t ions in different disciplines. For this reason, t h e m a t e r i a l behav iour in 
pa r t i cu la r has to be considered when finding op t ima l layouts for componen t s . Here , t h e 
different failure mechan i sms of t h e appl ied mate r ia l s m u s t b e t aken in to considerat ion. 
Th i s p a p e r presents a compar ison be tween convent ional , duct i le ma te r i a l s a n d b r i t t l e 
ceramics as an example of an advanced ma te r i a l . In order to find a failure cr i ter ion 
which is charac te r i s t ic for t h e ma te r i a l , s tochas t ic mode ls of t h e defects de t e rmin ing t h e 
failure of ceramic ma te r i a l s have been included. T w o different approaches a re compared . 
Because of t h e s tochas t ic n a t u r e of t h e ma te r i a l p a r a m e t e r s t h e classical de te rmin i s t i c 
op t imiza t ion mode l is not sufficient. For this reason an a u g m e n t e d op t imiza t ion proce
du re is in t roduced and tes ted for an example . 

1. I N T R O D U C T I O N 

T h e o p t i m a l layout of s t ruc tu res using advanced ma te r i a l s (e.g. ceramics , fibre-
reinforced mate r ia l s ) calls for t h e a u g m e n t a t i o n of exis t ing op t imiza t ion procedures as 
well as for an mul t id isc ip l inary coopera t ion of mechan ics , ma te r i a l sciences a n d design. 
A p a r t from considering t h e somet imes subs tan t ia l ly diverging m a t e r i a l character is t ics , 
it becomes necessary to precisely descr ibe t he failure mechan i sms of t h e different ma
ter ials . An increased range of appl icat ion is charac ter i s t ic of one advanced ma te r i a l , 
n a m e l y ceramics which belong to t h e group of b r i t t l e ma te r i a l s . So far, resul ts have 
been ob ta ined in t he field of s t ruc tu ra l op t imiza t ion p r e d o m i n a n t l y for t h e use of duct i le 
ma te r i a l s . Th i s pape r presents first t h e op t ima l layout of a cant i lever disc using t h e 
e x a m p l e of a specific ce ramic (AI2O3). A compar ison is m a d e be tween t h e resul ts for 
this b r i t t l e ma te r i a l and duct i le mate r ia l s (steel , a l u m i n i u m ) . T h e goal is to find some 
basic effects of b r i t t l e ma te r i a l s on t h e op t ima l shape and c o m p a r e these t o t h e effects 
of duct i le ma te r i a l s . In t h e following pa r t t he definition of t h e s tochas t ic op t imiza t ion 
p rob lem is given and one possible m e t h o d for solving this is in t roduced . 

Shape op t imiza t ion of s t ruc tu res is a well known p rob lem which L A G R A N G E (1736-
1813) and C L A U S E N (1801-1885) a l ready appl ied t o bend ing b e a m s using var ia t ional 
pr inciples . B u t only t h e in t roduc t ion of efficient a n d flexible analysis p rocedures like 
t h e F in i t e -E lement ( F E ) Analysis allowed t he appl ica t ion of t h e shape op t imiza t ion to 
a wide range of p rob lems . 

F R E U D E N T H A L first deal t in his pape r [10] wi th a probabi l i s t ic p rocedure for der iving 
a failure cr i ter ion for b r i t t l e mate r ia l s . Here, t he t e r m failure probability is in t roduced , 
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and basic physical phenomenona of brittle materials are described mathematically. A 
large number of papers based upon this paper, i.g. EVANS [9] and B A T D O R F , CROSE 
[1], describe ways of calculating failure criteria for ceramic materials. K O S K I , S lLVEN-
NOINEN [12] show the result of a shape optimization using brittle materials. 

2. F A I L U R E O F B R I T T L E M A T E R I A L S 

2 .1 . C o m p a r i s o n o f D u c t i l e a n d B r i t t l e M a t e r i a l s 
In order to classify ductile and brittle materials, the value of the critical stress intensity 

factor Kic which is a real material parameter proved useful. For a Griffith-crack in the 
one-dimensional stress state and the so-called crack opening mode I the stress intensity 
factor is given by the equation 

Kic = Vc\fxx (1) 

with ac as the critical stress value and χ as the half length of the Griffith-crack. For 
brittle materials a range of Kic < 10MN/m 3 / 2 and for ductile materials a range of 
Kic > 25MN/m3/2 is assumed. Correspondingly, the material behaviour lies between 
brittle and ductile for lOMN/m3/2 < KIC < 25MAT/ m

3 / 2 . 
C o n v e n t i o n a l F a i l u r e C r i t e r i a 

For the conventional layout of components failure criteria are established by means of 
strength hypotheses which transform a multi-axial stress state into an equivalent one-
axial stress state. With the obtained equivalent stress a statement concerning failure 
can be made by comparison with characteristic values generally determined under a one-
axial stress. The type of hypothesis to be used depends on the failure mechanism which 
ultimately depends on the material. 

a) D u c t i l e m a t e r i a l s 
In the case of yielding before failure of a component the maximum strain energy the
ory according to L E V Y , H U B E R , VON MISES leads to the following expression for the 
equivalent stress: 

b ) B r i t t l e m a t e r i a l s 
In the case of material failure caused by rupture perpendicular to the direction of the 
principal stress (e.g. cast materials), the normal stress hypothesis according to Rancine 
and Lame is valid. Here, the highest principal normal stress determines the failure: 

This hypothesis can be applied only in parts to ceramics as it does not consider the 
stochastic distribution of defects which determine the failure. 

2.2. F a i l u r e C r i t e r i a for B r i t t l e M a t e r i a l s 
As mentioned above, there is only a limited applicability of the stress hypotheses to 

ceramic materials. In the following the stochastic failure criterion used here shall be 
briefly introduced and derived. 

S i m p l e A p p r o a c h 
The derivation is based upon the following assumptions: 

1 
(2) 

σι , σι = πίΣίχσ,·. (3) 
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Assumption 1 
The material behaviour is isotropic and all flaws are oriented perpendicular to the exter
nal load so it is the so-called crack opening mode I. Each component under consideration 
contains defects of different size. There is no mutual influence between the stress fields 
of the single defects. This means that the component can be subdivided in such a way 
that each volume element contains only one defect. Each defect therefore determines the 
strength of its surrounding volume element. 

Assumption 2 
The yield stress of a volume element is determined by means of the Griffith-theory ( 1 9 2 1 ) 
according to ( 1 ) : 

acx 1/2 _ const. ( 4 ) 

Assumption 3 
The strenght of the whole component is determined by the weakest volume element. 
This corresponds to the Weakest-Link-Theory [10] . 

With the given distribution of the stochastic half crack length χ given, the distribu
tion of the failure stresses ac can be calculated from equation (4). As only the maximum 
defects determine the failure, the initial distribution is not drawn upon for the distribu
tion of the crack length, but an extreme value distribution is used instead. Because of 
its favourable correspondence to reality the extreme value distribution of the polynomial 
type is used: 

D(x) = exp (5) 

where μ is the expected value of the crack length and a the form parameter of the 
distribution. By means of the stated assumptions and using the calculation of probability 
for the one-dimensional stress-state, the following expression for the reliability P r = 
1 — Pf of a volume element i can be derived [3] 

Pri = exp (6) 

w h e r e m is t h e s o - c a l l e d W E I B U L L - m o d u l u s . T h e s u r v i v a l p r o b a b i l i t y o f t h e c o m p o n e n t 
c a n t h e n b e c a l c u l a t e d as t h e p r o d u c t of t h e e l e m e n t r e l i a b i l i t i e s 

PT=YlPri=exp • ς ( - ) 
For AVi 0 f o l l o w s 

Pr = e x p 
'V0J ia0) 

dV 

G e n e r a l i z i n g t o t h e t h r e e - d i m e n s i o n a l s t r e s s s t a t e y i e l d s a f ter r e f o r m u l a t i o n 

Pf = 1 - exp(-X) 

(7) 

(8) 

( 9 ) 

with 
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^ = & Γ ( έ Γ έ / ( σ Γ + ^ + σ ^ ( 1 0 ) 

and t h e ma te r i a l p a r a m e t e r s σ0 and Vc. Th i s failure mode l does no t consider t h e m u t u a l 
influence of t h e pr incipal stresses on the failure probabi l i ty . T h u s , for higher accuracy 
in prac t ica l appl ica t ions , an extension of t he theory presented here is necessary. 

E x t e n d e d A p p r o a c h 
For improving t h e foregoing derivat ion addi t ional a s sumpt ions are necessary: 

Assumption 4 
T h e ma te r i a l conta ins flaws wi th different or ien ta t ions . 

Assumption 5 
T h e influence of t he shape and size of t h e flaws to t h e failure is descr ibed wi th stress 
in tens i ty factors. So it is possible to use different failure models . 

For t h e descr ipt ion of t he failure probabi l i ty first one vo lume e lement conta in ing only 
one flaw is considered. T h e flaw is cri t ical if t h e stress value σ / 6 9 is g rea te r t h a n a cri t ical 
value σ /c . T h e value of ajeq is ca lcula ted from t h e stress vector σ ou t of a failure cr i ter ia . 
A flaw is cri t ical if i ts or ienta t ion lies be tween t h e solid angle Ω. T h e probabi l i ty for t h e 
flaw lying in this angle is given wi th t he equat ion 

P } { A V i ) = 9ί*ρ). 
For a vo lume e lement wi th a n u m b e r of flaws grea te r t h a n one t h e n u m b e r of crit ical 
flaws is given wi th t h e equa t ion 

N c = MAV^^à, (12) 
Ζ7Γ 

with M as t h e flaw densi ty describing the m e a n n u m b e r of flaws in t h e un i t vo lume. For 
general izing to t h e case of different sizes of t he flaws t h e in t roduc t ion of t h e function 
N(aic) is necessary giving t h e m e a n n u m b e r of flaws wi th a s t r eng th lower t h a n ajc 

respect ively t h e n u m b e r of flaws grea ter t h e crit ical size a in t h e un i t vo lume. W i t h t he 
densi ty function d(a) t h e following defintion is valid 

oo 

Nc(aIc) = M j d{a)da = M ( l - D{a)). (13) 
α 

T h e correlat ion be tween a\c and a is descr ibed wi th Kjc as t h e stress in tens i ty factor. 
So it follows for t h e n u m b e r of critical flaws in t he range of σ / 0 < σ < σχ0 -f dajc 

NMic < a < alc + daIc) = AV™}^ (14) 

and for t h e to ta l n u m b e r of cri t ical flaws in AV{ 

N,(AV0 = Δ ν ^ ^ n ^-U f e . (15) 

0 0 

W i t h t h e a s sumpt ion of a P o i S S O N - d i s t r i b u t i o n of t h e n u m b e r k of flaws in t h e volume 

Δν; 
A ? e x p ( - J V Q 

P k = jfe! ( 1 6 ) 
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for the reliability the equation 

Pr(AVi) = Pk=o=exp(-Ni) 

is valid. For the complete volume the following expression follows: 

Pr=U P r W ) = Π « Φ (-Ni) = β Χ ρ ( - Σ N')-

(17) 

(18) 

After using equation (15), integration 

Pr = exp 
CO 

V 0 

dN(aic)il(a,aIc) da lc 

and some further steps according to [1] 

Pr(V) = exp -JJ J N{aieq = σΙο)ύηφάφάφ dV 

(19) 

(20) 

For the function N(aieq = σ/ 0) there are different approaches. In many cases the as
sumption of a WEIBULL-distribution of the critical flaws is valid and leads to 

\ σ / ο / 
(21) 

In the following only the simple approach is used because the aim of this paper is to 
show only some basic effects of ceramics in comparison to ductile materials. 

3. D E F I N I T I O N A N D S O L U T I O N O F O P T I M I Z A T I O N P R O B L E M S 

3.1. G e n e r a l S t o c h a s t i c O p t i m i z a t i o n P r o b l e m 
Because of the stochastic nature of the material parameters and the design variables 

it is necessary to define the task as a stochastic optimization problem 

Mm ί / Λ ζ ) } , zT = (x,p), 
x € D 

(22) 

fM = kiE{fi) + WW, (23) 

D = {x£ Rn, Pji = Ρ \gi{z) < 0] < Pimax V» = 1, mst; xa < < xiu Vi = 1, η } , (24) 

with 

ÎAi 
ζ 

Ρ 
E{f) 
VU) 
ki,k2 

D 

: augmented objective, 
: vector of stochastic variables, 
: vector of stochastic design variables, 
: vector of stochastic parameters, 
: expected value of the stochastic objective, 
: variance of the stochastic objective, 
: weighting factors, 
: feasible domain, 
: failure probability of the ith constraint, 
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1 xmax maximum feasible value for the failure probability, 
mst : number of stochastic constraints, 
χ,/, X{U : lower and upper bounds for the design variables. 

The failure probability is defined as 

Pn = P\gi(z)<0], (25) 

Pji = Jd(z)dz, Di = {z\gi(z)<0}. (26) 
Di 

For solving the stochastic optimization problem different methods are possible. A survey 
to these is presented in [7]. Here the stochastic nature of the objectives is neglected. 
So the stochastic optimization problem is reduced to a problem with probabilistic con
straints. These are calculated using an AFOSM-method which is shortly described in 
one of the following chapters. 

For the calculation of the failure probabilities according to equations (25,26) an Ad
vanced First Order Second Moment Method (AFOSM) is used. The necessary fundamen
tals, the used semi-anylytical sensitivity analysis and the augmentation using a special 
kind of transformation are described in [6]. For calculation of failure probabilities with 
high accuracy the transformation described by Wu [14] to standard-normally distributed 
variables is used in this paper. For low values of the standard deviation of the stochastic 
variables the simpler and easier to handle Normal-Tail-Transformation is sufficient. For 
the special example of a ceramic mirror this is shown in the following. In the AFOSM-
procedure the actual failure surface is approximated by means of a linearization and only 
the first two moments of the failure conditions are used for the calculation. Here, the 
works by Hasofer and Lind [11] shall be mentioned as an example for a number of papers 
in this field. In this paper only the basic idea of this method is presented. 

The transformation of the stochastic variables to independent, standard normally 
distributed variables y = Τ (ζ) yields 

P/i = J d(z)dz = J n>(w)«*W> (27) 

Δ, = {»|A(y) < 0}, (28) 

where D, —> Δ, is the transformation of the failure range and φ the density function 
of the standard normal distribution. The linear approximation of the boundary state 
function h(y) in the point of maximum likelihood y* yields 

Φ(-/?) I A(o)>0 { m 

Φ{β) I h(o)<0 ' y ' 

= {y\l(y) < 0}, β: Mm {/*(») = {yTyfl2\h{y) = θ} (30) 

with the linearized boundary state function l(y) in the point y* and the standard normal 
distribution Φ. The optimization problem can be solved with the transformed variables 
y as well as with the original variables z. The latter case is characterized by the simpler 
description of the failure domain. The used transformation to independent, standard 
normal distributed variables determines the numerical effort for solving the optimization 
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problem and the accuracy of the failure probability. 

3.2. S h a p e O p t i m i z a t i o n P r o b l e m 
The shape optimization problem with muliple criteria can be formulated as follows 

[8]: 

F*[RKUA)] = M i n { f [ Λ * ( Γ ) ] I € GR) Vfc = 1 , „ Λ ι 

R 

GR = {RK(T°)eB?\ Hi[RK(T°)] = 0 V i = l , n / r , 

(31) 

GARK(T*)] > ο vj 
RKL <RK <R 

n t h 

F 

RK 

(a 

RK',RKU 

GR 

objective functional vector, 
vector of equality and inequality constraint functional, 
shape functions, 
GAUSSians surface parameters, 
lower and upper bounds of the shape functions, 
set of feasible shape functions 

and the assumption 

RK(Ç") «  R K(£A,XK). 

The optima l shap e functio n i s t o b e foun d s o tha t th e objectiv e functiona l become s 
minimal, considerin g th e constrain t functionals . Thi s proble m ca n b e solve d b y mean s 
of direc t an d indirec t solutio n procedures . Th e indirec t procedure s deriv e condition s 
for th e optima l shap e function s wit h th e hel p o f variationa l principles . Th e resultin g 
differential equation s hav e t o b e solve d then . I n th e direc t solutio n procedure s th e op 
timization proble m i s firs t o f al l transforme d int o a  multicriteri a optimizatio n proble m 
and the n int o a  scala r optimizatio n proble m usin g preferenc e strategies . Th e so-calle d 
SOP i s solve d b y mathematica l programmin g algorithms . Th e transformatio n i s carrie d 
out b y approac h function s whic h describ e a  potentiall y larg e variet y o f shape s usin g fre e 
parameters. Obviously , th e choic e o f shap e function s limit s th e variet y o f solution s s o 
that onl y a n approac h toward s th e optima l shap e ca n b e achieved . Especiall y variou s 
types o f splin e function s an d th e highl y flexible  Bezie r function s hav e gaine d grea t im 
portance a s approac h funtions . 

4. A U G M E N A T I O N S O F A N E X I S T I N G O P T I M I Z A T I O N L O O P 

Here tw o differen t augmentation s o f th e optimizatio n procedur e SAPO P [2 ] ar e in 
troduced. Firstl y th e procedur e fo r stochasti c optimizatio n wit h th e calculatio n o f th e 
reliability indice s /?, · an d secondl y th e procedur e fo r shap e optimization . 

4.1. O p t i m i z a t i o n p r o c e d u r e fo r s t o c h a s t i c o p t i m i z a t i o n 
The progra m syste m SAPO P i s base d upo n th e so-calle d "Three-Columns-Concept " 

consisting o f structura l model , optimizatio n mode l an d optimizatio n algorithms . Fig . 1 
shows th e flow  char t o f th e optimizatio n procedur e augmente d b y a n AFOSM-method . 
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T h e figure presents t h a t t h e in tegra t ion of t he A F O S M - m e t h o d in to an op t imiza t ion pro
cedure enta i ls the in ter locking of two op t imiza t ion loops. T h e ou t e r loop conta ins t h e 
a c t u a l op t imiza t ion whereas t h e inner loop covers t he ca lcula t ion of t h e rel iabil i ty indices 
a n d the i r sensi t ivi t ies . T h e inner op t imiza t i on p r o b l e m is solved by using a modified, 
genera l ized reduced grad ien t a lgor i thm which in th is case works pa r t i cu la r ly effectively. 
By t h a t , t h e only exis t ing cons t ra in t , an equal i ty cons t ra in t , is e l imina ted . In t h e opt i 
m a l po in t t h e rel iabi l i ty index β and t h e Lagrange-mul t ip l ie r μ occur as solut ion. T h e 
Lagrange-mul t ip l ie r can be used for ca lcu la t ing t h e sensi t ivi ty . 

Decision 
Maker 

Data Preparation 

Optimal 
Design 

Γ 
I Optimization 

Algorithm 

Pf 8 
ap ar_ ag 
dx dx dx 

L _ 

Initial Design 
yo—»»*o Structural 

Parameters 

y(*) 
Design Model 

no 

convergence ^Modified Grega 

yes 

Optimization 
Strategies 

Sensitivity 
Analysis 

Τ 

O] g[Kx)] 
Evaluation 

Model 

ι — 

dx I 

y = const 

Structural Model 

State Variables r 

Figu re 1: D i a g r a m of t h e o p t i m i z a t i o n p rocedure S A P O P for s tochas t i c op t imiza t ion . 

4 . 2 . O p t i m i z a t i o n p r o c e d u r e for s h a p e o p t i m i z a t i o n 
In Fig. 2 t h e op t imiza t i on loop inc luding s h a p e op t imiza t i on a n d t h e calculat ion of 

t h e failure probabi l i t ies for ce ramic m a t e r i a l is p resen ted . Here different k inds of ap
proach funct ions a re i m p l e m e n t e d . T h e F in i t e -E lement p r o g r a m A N S Y S [13] is used for 
s t r uc tu r a l analys is . 

5. N U M E R I C A L R E S U L T S 

5 . 1 . C a l c u l a t i o n o f f a i lure p r o b a b i l i t i e s for a c e r a m i c m i r r o r p l a t e 
T h e following resul ts refer to t he ce ramic mi r ro r p l a t e p resen ted in [6]. T h e mi r ro r 

p l a t e wi th t h e design var iables is shown in Fig. 3 . T h e following s tochas t ic mode l is 
a s sumed : 
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Figure 2: D iag ram of t h e o p t i m i z a t i o n p rocedure S A P O P for s h a p e op t imiza t i on . 

design var iables x\, · · · x 6 n o r m a l d i s t r i bu t ed , 
Young ' s m o d u l u s Ε W E I B U L L d i s t r i bu t ed , 
p ressure load ρ e x t r e m value d i s t r i b u t e d . 

Fig . 4 shows a compar i son be tween t h e rel iabi l i ty indices β or respect ively, calcu
l a t ed by t h e s imple A F O S M - p r o c e d u r e wi th t h e t r ans fo rma t ion accord ing to Rosenb la t t 
a n d t h e p rocedu re us ing t h e m o r e complex W u - W i r s h i n g t r ans fo rma t ion . T h e index β 
correc t ly p resen ts t h e t endency of t h e resul ts , t h e rel iabi l i ty index , however , is a lways 
o v e r e s t i m a t e d and t h e failure p robab i l i ty the reby u n d e r e s t i m a t e d . However , in t h e range 
of t h e s t a n d a r d devia t ion up to 10%, t h e devia t ions in t h e ca lcu la t ed indices are min 
ima l . Since t h e a u g m e n t e d p r o c e d u r e is charac te r ized by a h igh numer i ca l effort, and 
s ince a semi-ana ly t ica l sensi t ivi ty analysis is no t possible , in t h e o p t i m i z a t i o n p resen ted 
in t h e following t h e s impler Rosenb la t t - t r ans fo rma t ion is used, a n d , addi t ional ly , t h e 
var iance r ange of 10% is not exceeded in t he o p t i m i z a t i o n . In t h e o p t i m a l design t h e 
failure probabi l i ty which is m o r e precise in each case has t o b e ca lcu la ted a n d t e s t ed 
w i t h regard to t he a u g m e n t e d p rocedu re . 
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Figure 3: Mode l of t h e ce ramic mi r ro r . 

4.ο 
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s t a n d a r d d e v i a t i o n in % 

Figure 4: Compar i son of t h e ca lcula ted rel iabi l i ty indices β,βε-
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5 . 2 . C o m p a r i s o n of d e t e r m i n i s t i c a n d s t o c h a s t i c o p t i m i z a t i o n 
Fig. 5 shows the results of the optimization of the ceramic mirror for the determin

istic and the stochastic optimization problem. The results are presented in the form of 
functional-efficient boundaries. Each point on the functional-efficient boundary corre
sponds to an optimal design. By maintaining the reliability constraint the functional-
efficient boundary of the stochastic optimization problem has been calculated as 99.86% 
which means a safety index of β = 3. A comparison between both boundaries shows 
that the deterministic optimization would lead to an obvious under-dimensioning of the 
structure. 

1 . 6 

J? 1 . 2 

I—J 
CO 
CO 
03 
£ o . a 
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0 . 0 

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 

r m s - v a l u e C n m ] 

Figure 5: Functional-efficient boundaries for the point-supported mirror. 

5 . 3 . S h a p e o p t i m i z a t i o n of a c a n t i l e v e r d i s c 
Fig. 6 shows the initial design for a cantilever disc. The constant thickness of the 

disc is t = 10 mm. The initial design is a rectangular disc. The lower contours are 
described by cubic splines and the coordinates of the control points are chosen as the 
design variables of the optimization model. The optimization model is used in accordance 
with the Three-Columns-Concept due to [4], 

a) C o l u m n 1: S t r u c t u r a l M o d e l 
The FE-program system ANSYS is used for structural analysis. The 8-nodes 
isoparametric shell element is used. 

b) C o l u m n 2: O p t i m i z a t i o n M o d e l 
Fig. 6 shows the definition of the design variables as control points of the spline 
function. The following items are used as objective functions: mass of the disc, 
failure probability (in the case of brittle material) or the maximum equivalent stress 
ae (in the case of ductile material). 
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F igure 6: Ini t ial design, control po in t s and design var iables of t h e cant i lever disc. 

c) C o l u m n 3: O p t i m i z a t i o n A l g o r i t h m s 
T w o different op t imiza t i on a lgor i thms are used. F i r s t a Genera l ized Reduced Gra
dient A lgor i thm wi th an efficient s t ra tegy for finding feasible design poin ts and 
second a Sequent ia l Linear iza t ion St ra tegy. 

T h e formula t ion of t h e objec t ive functions reads as follows: 

/ . W = i'E^) (32) 
t 

for t h e weight of t h e disc wi th ρ as t h e densi ty of t h e m a t e r i a l a n d t t h e th ickness of t h e 
disc. 

f ( \ ± j Pf I b r i t t l e m a t e r i a l ( 

h [ X ) l σ β I duc t i le m a t e r i a l [ ό ό ) 

as t h e failure cr i ter ia for t h e specified mate r i a l according to eq. (2) or (9) . B o t h ob
jec t ive functions c rea te a mul t i c r i t e r i a op t imiza t ion p r o b l e m which in t h e present case 
is t r ans formed into a scalar op t imiza t i on p rob lem by app ly ing a cons t ra ined or iented 
t r ans fo rmat ion . For t h a t pu rpose , one object ive funct ion is t r ans fo rmed into a con
s t r a in t by de t e rmin ing a d e m a n d level. So it is necessary to define m a x i m u m feasible 
values Pf jeas^efeas- Figs. 7 a n d 8 show the op t imiza t i on ca lcula t ions in t h e form of 
functional-efficient boundar ies and t h e op t ima l design of one po in t . Each point on t he 
b o u n d a r y corresponds to a bes t compromise design. For t h e feasible failure probabi l i t ies 
in Fig . 8 a logar i thmic scale is used. For t he b r i t t l e m a t e r i a l t he o p t i m a l b o u n d a r y shape 
of t h e disc is concave in con t ras t to t h e op t ima l shape us ing t h e duc t i l e ma te r i a l . Th i s 
resu l t s from the vo lume effect wi th ceramics following equa t ions (9,10) . According to 
th i s effect t h e failure p robabi l i ty increases wi th cons tan t s t ress a n d growing vo lume. It 
p r e -domina t e s t he s t ress reduc ing effect b o u n d a r y for t h e duc t i l e m a t e r i a l . In Fig. 8 t he 
influence of different W E I B U L L - m o d u l s m according to equa t ion (10) is shown. 
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Figure 8: Functional-efficient boundaries of the ceramic disc and one optimal design. 
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6. C O N C L U S I O N 

The use of optimization procedures for the optimal layout of structures increasingly 
gains importance. The use of advanced materials call for a precise description and 
mathematical modeling of the failure criteria characterizing the material. Ceramics 
as an example of such advanced materials differ from the conventional, mostly ductile 
materials expecially by their property of brittleness and large scattering of the material 
parameters. 

This paper presents the augmentation of an existing optimization procedure for 
stochastic optimization for including the scattering of the material parameters and the 
use of special failure criteria within the shape optimization. The results show on the one 
hand the fundamental difference in the shape of an optimal design made out of ductile 
and brittle materials. On the other hand the necessity of the stochastic optimization is 
shown. 

In further studies the here presented two different methods will be used together 
for examples. For practical results the use of the extended failure criterion here also 
presented is necessary. 
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A b s t r a c t 
Fiber pull-out is one of the fracture features of fiber reinforced brittle matrix composites. 

The onset of this mechanism is predicted by using Cont inuum D a m a g e Mechanics , and 
corresponds to a localization of the deformations. After deriving a damage model from a 
uniaxial approach, different configurations are analyzed through analytical and numerical 
(F.E. calculat ions) methods . An extension to fibers in two perpendicular direct ions is 
proposed and a structure is analyzed. An optimal fiber distribution is discussed. 

1. I N T R O D U C T I O N 

The aim of this paper is to study the failure by fracture of fiber reinforced brittle matrix 
composites and to analyze an optimal fiber distribution. One of the features of the behavior of 
these composites is fiber pull-out due to fiber breakage. The occurrence of this mechanism is 
assumed to be described by the appearance of a macro-crack and will be described by a 
localization of the deformations. The initiation of macro-cracks in a structure during service 
often constitutes the early stage of the final failure of the structure. Starting from a material 
that is assumed free from any macro initial defect, the initiation of macro-cracks can be 
predicted using Continuum Damage Mechanics. The initiation stage is considered as the onset 
of a surface across which the velocity gradient is discontinuous. Under small deformations 
assumption, this phenomenon is mainly driven by the damage mechanism that causes strain-
softening. For ceramic matrix composites, the damage mechanism is related to the percentage 
of broken fibers. 

Although localization can be studied at the scale of fibers bonded to a matrix through an 
interface [1], i.e. at a micro-level, localization can also be analyzed at a meso-level, where the 
material behavior is homogenized. Continuum Damage Mechanics, which represents a local 
approach to fracture, const i tutes an efficient tool for this purpose . T h e progress ive 
deterioration of the material is modeled by an internal variable defined at the meso-level. This 
variable is called damage. The damage state and the evolution of this variable is obtained 
through a uniaxial study based on fiber breakage [2]. A 2-D plane stress analysis is 
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performed based on an extended model . The loss of uniqueness and the localization are 
studied for shear free states. A criterion referring to a critical value of the damage can describe 
the localization, which constitutes an objective criterion, from a design point of view. An 
extension to the case of fibers in two directions is proposed, based on a law of mixture in 
terms of the specific Helmholtz free energy. 

This approach is also used to study a spinning disc made of a fiber reinforced ceramic 
matrix composi te . The same criterion is implemented and studied through Finite Element 
computat ions. An extension to fibers in two perpendicular directions is proposed and an 
optimal fiber distribution is discussed in the case of the spinning structure. 

2. L O C A L I Z A T I O N A N D L O S S O F U N I Q U E N E S S 

The failure at a meso-level, i.e. initiation of a macro-crack, is defined as the bifurcation 
of the rate problem in certain modes , viz. the appearance of a surface across which the 
velocity gradient is discont inuous. This phenomenon is referred to as localization, and 
corresponds to the failure of the ellipticity condition [1]. The condition of localization also can 
be compared to the loss of uniqueness of the rate problem. 

Under small strain assumption and in elasticity coupled with damage, the behavior of a 
material is assumed to be described by the following piece-wise linear rate constitutive law 

Ε : έ i f D = 0 

Η : έ i f D Φ 0 

where 0 and £ respect ively denote the stress and strain rates, Ε and Η are fourth rank 
tensors, Ε is assumed to be positive definite, and D is either a single damage variable or a set 
of damage variables. Localization occurs inside the body, if and only / / [1 ,3] 

Det (n.H.n) = 0 for any vector n*0 and at any point inside a structure Ω (2) 

This criterion corresponds to the failure of the ellipticity condition of the rate equilibrium 
equation; it also can be used as an indicator of the local failure of the material, i.e. at a meso-
scale [4-5]. Any loss of uniqueness, considered as bifurcation of the rate boundary value 
problem, is excluded as long as the operator 

e s = \ ( e + e T ) (3) 

is strictly positive definite everywhere within the structure. This condition is equivalent to the 
condition of hardening 

h : k > 0 (4) 
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In this study, the quantity that defines loss of uniqueness and localization is the linear 
tangent modulus H . In the following, we analyze loss of uniqueness and loss of ellipticity 
(i.e. localization) for states when 

E n = α £22 w i t h α e 
ε ΐ 2 = 0 

(5.1) 

These particular states only are considered, since we will deal with axisymmetric calculations, 
which are shear free. Consequent ly , only H i m , Η1122» H 2 2 i i , H 2 2 2 2 and H 1 2 1 2 are 
different from zero. These states lead to a tangent modulus that takes the form 

ΓΗ1111 H1122 0 

H2211 H2222 0 

L 0 0 H1212 

(5.2) 

For problems under hypothesis (5.1), the non-vanishing components of the vector η are n i 

and n2, and the matrix A = n . H . n reduces to [6] 

A = 

η ^ Η ι ι π + η 2 Η ΐ 2 ΐ 2 nin2(Hi2i2+Hn22) 

n i n 2 ( H i 2 i 2 + H 2 2 1 l ) η 2

1 Ηΐ2ΐ2+Π2Η2222 

(5.3) 

X l 

Figure 1. Localization mode. 



488 

If we rewrite (ni,n2) = (cos0,sin0), X = t a n 2 0 , then the localization condition is to find real 
positive roots of the following equation 

a X 2 + b X + c = 0 (5.4) 

with 

a = Hi2l2H2222 (5.5) 

b = H1111H2222 - H1122H22H - H1122H1212 - H2211H1212 (5.6) 
c = H i 2 i 2 H i i n (5.7) 

If real positive roots are found, then the localization direction is perpendicular to the vector 

(ni,n2,0) = (cos0,sin9,O), characterized by the angle θ (Fig. 1 ) . 

3. U N I A X I A L S T U D Y 

This section is concerned with the development of a single damage variable model for 
tensile behavior of unidirectional fiber reinforced ceramic matrix composites. A schematic 
stress-strain d iagram is shown in Fig. 2 for such a specimen. The micro-s t ructural 
phenomena responsible for the features of curve OABC are now discussed. On initial loading 
from point 0 to A of Fig. 2 the composite behaves as a virgin, i.e. undamaged, elastic material 
with modulus E. Further loading from point A to Β causes cracking of the matrix. The 
cracks traverse the entire load bearing section within the homogeneously stressed region. 
Further loading along BC involves further development of matrix cracks, which involves two 
processes. First the process of fiber debond, both at the front of the crack and in its wake, 
which is necessary to cause the stresses to redistribute. The second process is fiber failure, 
which precedes the process of fiber pull-out. 

Figure 2. Schematic uniaxial stress-strain curve of a fiber reinforced brittle matrix composite. 



489 

The characteristics of fiber failure are determined by a statistical distribution of fiber 
strength [2] . This single mechan ism is the only one cons idered in this study. Future 
development can be carried out by modeling the matrix cracking process and the fiber pull-out 
mechanism. 

The model is based upon the assumption that the nominal stress applied to a bundle of 
fibers in parallel can be expressed in terms of a damage variable, denoted by D = r/n, where r 
is the number of failed fibers and η is the total number contained within the load bearing 
cross-section. This type of approach has been applied to perfectly brittle fiber systems [7-8]. 
It is shown that the nominal applied stress σ is related to the uniaxial strain ε by 

where Ε is the Young ' s modulus of each unbroken fiber and E,~ the Young ' s modulus of the 
damaged bundle. If the nominal stress is the total current load divided by the total initial fiber 
area, then the average stress in the unbroken fibers is 

This later expression refers to the concept of effective stress [9-10]. Although the nominal 
stress does not always increase with the applied strain ε, the stress in the unbroken fibers, Ô, 
does increase whatever the applied strain, ε. Two regimes can be exhibited depending on the 
fiber length [11], and we are going to study both of them. W e assume that the fiber failure 

probability, P F ( O ) , at a stress Ô is given by a Weibull distribution [12] 

where σο is the scale parameter of the in-situ fibers, m is the shape parameter, L is the fiber 
length, and Lo is a gauge length for which m and Oo were identified. This first expression 
corresponds to the behavior of a fiber bundle, and will be referred to as model #0 . On the 
other hand, due to interfacial sliding characterized by a shear stress τ , the fiber failure 
probability can be written as 

where σ ι is the characteristic strength multiplied by the fiber volume fraction [13]. This 
second expression takes consideration of the interfacial properties between fibers and matrix, 
and will be referred to as model # l .The ratio r/n characterized by damage variable D is 

σ = Ε ( ΐ - Ό ) ε = Ε ε (6) 

(8.1) 

(8.2) 

r/n = D = Ρρ(σ) (9) 
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This definition is consistent with the bounded values of D for which D = 0 for no failed fiber 
and D = l for complete failure of all fibers. The damage is thus related to the nominal stress by 

D = 1 - exp 

D = 1 - exp 

—I i fe>0ande>0 

(1-DXJoJ J 

ί σ l"1"* 

" l(l-D)OiJ 

i f £ > 0 a n d £ > 0 

(model #0) 

(model #1) 

The peak in the stress-strain plane (σ,ε) coincides with a critical value of damage 

D = D C = 1 - e x p ( - l / m ) 

D = D c = 1 - e x p ( - l / ( m + l ) ) 

(model #0) 

(model #1) 

(10.1) 

(10.2) 

(11.1) 

(11.2) 

It can be noticed that the critical value of the damage is always independent o / the fiber length, 
L. Conversely, the maximal nominal stress OOM may depend upon the length L for small 
volumes 

<*OM = Lo_y/m 
<3θΜ 

Γ 1 ll/(m+l) 
= aa^nTî)J 

(model #0) 

(model #1) 

(12.1) 

(12.2) 

The critical value of damage, D c , is only related to the shape parameter m by Equ. (11) and is 
therefore a material dependent parameter. Conversely, OOM may depend upon the length of 
the fibers, so that it is not a material parameter. 

Finally, as it has been underlined above, this model does not consider fiber pull-out. 
Thus this model constitutes a lower bound estimate up to the maximal nominal stress is 
reached, for a strain-controlled test. If the test is stress-controlled, then the point for which σ 
= ŒO M constitute s th e ultimat e stabl e point . 

4. 2 -D S T U D Y W I T H F I B E R S I N O N E D I R E C T I O N 

This sectio n deal s wit h th e stud y o f a  2- D mode l extendin g th e idea s o f th e previou s 
section. Th e fiber s ar e assume d t o b e paralle l t o th e 2-direction . A n analytica l an d numerica l 
approach i s studied . 

4.1. A n a l y t i c a l s t u d y 
In elasticity , unde r th e plan e stres s hypothesis , wit h th e smal l strai n assumption , th e 

relationship betwee n stresse s an d strain s i s give n b y 
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"ειι' 1/Ει -Vi2/Ei 0 "σιΓ 
= -V21/E2 1/Ε2 0 °22 (13) 

_εΐ2. 0 0 I/2G12. Ο η. 

W h e n fiber breaking in the 2-direction is considered, the damage state is described by 

damaged elastic constants Ei, Ë 2 , V 1 2 , V 2 1 , G 1 2 ins tead of Ει, E 2 , V 1 2 , V 2 1 , G 1 2 
respect ive ly . T h e Y o u n g ' s modulus E2 is no longer constant but depends upon the 

degradation of the fibers characterized by D2 to become Ë2 = E 2 G - D 2 ) : it is a straightforward 
extension of Equ. (6). Since pulling in the 1-direction has no effect on the strains in the 2-

direction, V 1 2 is constant and equals V 1 2 . Finally w e assume that Ε ι = E i (no effect of the 

damage D2 in the 1-direction) and that G 1 2 = G 1 2 (the shear properties are slightly altered by 
fiber failure). W e suppose also that the material is hyperelastic so that 

V21_Vl2 
Ë2 Ei 

(14) 

It can therefore be noticed that V,~2l = V2i(l-D2), and if D2 = 0 then the behavior is purely 
elastic and is described by Equ. (13). if there is a damage evolution then the relationships 
between strains and stresses are given by 

σιι=- E2 

θ22 = 

kfl-v^l-D^k] 

E2(l-D2) 

•[en+Vi2(l-D2)kE22] 

l-V^l-D^k (Vi26i 1+822) 

Oi2 = 2Gi28i2 

(15.1) 

(15.2) 

(15.3) 

where k = E2/E1 is referred to as the Young ' s moduli ratio. As mentioned in section 2, the 
damage state of fibers in the 2-direction, D2, can be related to the stress state through an 
implicit relationship 

D2 = 1 - exp 

D2 = 1 - exp 

M ( I - D W 
.m+r 

_θ22__1 
(l-D2)OiJ 

i f 8 2 2 > 0 a n d 8 2 2 > 0 (model #0) (15.4.1) 

i f 8 2 2 > 0 a n d 8 2 2 > 0 (model #1) (15.4.2) 

It can be noticed that if D 2 = Dc then Hi 122, H2211 and H2222 vanish simultaneously 
and Hun, H1212 are strictly posit ive. Therefore, this point corresponds to the loss of 
uniqueness and to a localization with θ = π/2 (i.e. perpendicular to the fiber direction). It can 
be proven that D2 = Dc (viz. H2222 = 0 and Hi 122 = H2211 = 0) constitutes a necessary and 
sufficient condit ion for loss of uniqueness and localization. An initiation criterion can 
therefore be given by 



492 

D2 = D C (16.1) 

Since Equ. (16.1) implies that Ο22 (see relations (15.4)) is constant and equals O o m , another 
criterion may be 

O22 = tf0M ( 1 6 * 2 ) 

It also can be shown that criterion (16.2) can be expressed in terms of the strain energy release 
rate density Y [10], reaching a critical value Y c 

1 ΌΜ 

where Y = » Ρψ2(^Χ^2) is the specific strain energy, which is a function of the Cauchy 

stress tensor 0 , and the damage variable D 2 , ρ denotes the material density, here assumed to 

be constant. Moreover, criterion (16.2) can be rewritten in terms of the strain £22 by using 
Equ. (15.2) and yields 

£22( l+0CVi2) = £0 (16.4) 

where £n corresponds to the localization strain when the load ratio α is equal to zero. The 

localization angle, as expected, is equal to π /2 (viz. a localization mode perpendicular to the 

fiber direction) whatever the strain ratio a . 

It is worth noting that if the failure of the matrix is considered, then localization cannot 
always occur: it exists another limit given by, for instance, the criterion σ π = G m , where CM 
is the strength of the matrix in the transverse direction. 

Knowing the analytical results, it is interesting to study the numerical sensitivity of the 
detection of the localization point (and therefore the loss of uniqueness as well). T o get an 
accurate information in terms of the damage at localization, direction of localization and stress 
at localization, it is necessary to be as close as possible to the actual localization state [14]. 
This trend has also been observed when using a E E . code to compute some more complicated 
situations. 

In summary, this model leads to some very simple results. First, loss of uniqueness 
and localization occur simultaneously. Second, some very simple criteria (16) can be derived 
from criteria (2) and (3), and show that the relevant parameters are Weibull parameter m and 
Po i s son ' s rat io V 1 2 . Third, the results are independent of the Y o u n g ' s modulus ratio 
k = E 2 / E 1 . Fourth, whatever the strain ratio a , the direction of localization is constant and 
perpendicular to the fiber direction. This model gives the same results as those found in a 
uniaxial approach and constitutes a straightforward generalization to 2-D cases. From a 
numerical standpoint, it is important to be as close as possible to the localization point to get 
accurate informations. 
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4.2. F.E.M. analysis: spinning disc 
A problem that is given special attention is the case of a circular disc made of a fiber 

composite material. The analysis of this problem is performed not only due to its significant 
practical impor tance in, for example , turbines, but also due to the presence of a non-
homogeneous stress state, a feature that dist inguishes this problem from the 2-D study 
performed above. 

ι 
Figure 3. The geometry of the circular disc (a = .3 m, h = .01 m) . 

The geometry of the problem is shown in Fig. 3. Here ω represents the angular rotation 
speed, with dimension rad/s. The outer boundary of the disc, r = a, is assumed to be free 
from kinematic constraints and accordingly here the loading can be considered as stress 
controlled. In the present setting, the stress state is axisymmetric , at least up to the point 
where localization occurs, and hence a cylindrical coordinate system is introduced in Fig. 3. 
It is assumed that the fibers are oriented in the circumferential direction and coordinates x i and 
Χ 2 in the previous section are replaced with r and φ, respect ively , 
relationship becomes 

T h e s tress-strain 

k [ 1 " V 1- D9) k] 
Εφ(Ι-Ρφ) 

[ε Γ+ν Γ φ(ΐ-τ>φ^εφ] 

1 - V l - D , ) k 
(ν Γ φε Γ+ε φ) 

(17.1) 

(17.2) 

in obvious notations. It should be remembered that no shear stress σ Γ φ is present due to 
axisymmetry. The expression for the damage parameter , D<p, is in this problem either r-
dependent (model #0) 

D<po = 1 - exp r o 1 ( ΐ - ϋ φ ) σ α 

if 8 W > 0 and ε<ρφ > 0 (18.1) 
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or r-independent (model #1) 

m+ 1 

D(pi = 1 - exp - if Εφφ > 0 and Εφφ > 0 (18.2) 

In relation (18.1), ro is a material constant representing the length dependence of the problem, 
while all the other parameters are defined earlier. 

T o descr ibe comple te ly the axisymmetr ic boundary value problem, small strains 
kinematics and equilibrium equations have also to be introduced. At this stage, it proved 
impossible to derive a closed-form solution for the stress state and for the damage variable. 
Instead the problem was solved using the finite element method. Constitutive relations (17) 
and (18) were implemented into a standard finite element code A B A Q U S [15], and a solution 
was sought for by discretizing the problem using 2-node axisymmetric shell elements. Since 
the linear tangent modulus Η also had to be implemented into the finite element code, the load, 
or angular rota t ion speed, requi red for loss of uniqueness and local izat ion could be 
conveniently calculated using ABAQUS through a U M A T routine. 

It should be noted that due to the non-explicit expression for the damage parameter given 
in (18) an iterative procedure had to be outlined to determine the damage state characterized by 
D<p at every t ime the calculated strain field did change at a certain Gauss point [14]. Before 
focusing the attention on explicit results, one should first mention that the non-homogeneity of 
the stress field in this axisymmetric problem did not in any way change the important features 
of the mechanical (damage) behavior. All the conclusions drawn in the 2-D study are 
essentially confirmed. Therefore, it seems appropriate merely to comment on some numerical 
results derived from the finite element computations. 

The material analyzed herein is a ceramic matrix composite with E r = 20 GPa, Εφ = 140 
GPa, G r ( p = 13 GPa, ν Γ φ = .0214, m = 4, σ ρ = 1450 MPa, m = 3, σ ι = 1293 MPa, r 0 = .002 
m, and the geometry of the disc is chosen with practical applications in mind, namely a = .3 m 
and h = .01 m. 

In Fig . 4, the stress field is p lot ted as a function of the radial coordinate r at 
ρ ω 2 = .55 1 0 ï 0 k g / m 3 / s 2 , tha t i s jus t befor e localization . A  compariso n i s mad e wit h a n 
elastic solutio n wher e th e effec t o f damag e i s ignored . A s coul d b e expected , th e introductio n 
of damag e reduce s th e maximu m stres s actin g withi n th e dis c an d cause s a  redistributio n o f 
the whol e stres s field. 

Localization an d los s o f uniquenes s occu r a t th e sam e valu e o f ω and where r has the 
approximate value .248 m for model #0 , and .234 m for model #1 . Other critical values on 
important parameters are 

PG)q = .58598 1 0 1 0 k g / m 3 / s 2 

pcûj =  1.707 6 1 0 l ° k g / m 3 / s 2 

Οφ0 = Ο φ ι = .221199 

(19.1) 

(19.2) 

(19.3) 
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where especially the two values of Ώφ give further confidence in the numerical procedure 
since the critical value on the damage was previously proven (see Equ. (11) and (16.1) when 
m =4, or m + l = 4 ) to be l - e x p ( - l / 4 ) = .2211992.. . 

250 

200 

150 

a<p(MPa) 

100 

50 

0 

0.0 0.1 0.2 0.3 
r(m) 

Figure 4. Hoop stress, σφ, as a function of the radial coordinate r, ρ ω 2 = .55 1 0 1 0 k g / m 3 / s 2 , 
( • ) damage model #0 , and ( o-.-. ) linear elastic model when Dq> = 0. 

The direction of localization coincides with the direction perpendicular to the fiber 
direction, as already shown analytically. To find the actual value of the localization direction, 
the point at localization has to be determined with high accuracy [14]. 

5 . 2-D S T U D Y W I T H F I B E R S IN T W O P E R P E N D I C U L A R D I R E C T I O N S 

In this section the composite is constituted by a brittle matrix reinforced by fibers in two 
perpendicular directions. A local and a global analysis are performed to determine criteria to 
design such structures. Some optimization conclusions can be drawn from this section. 
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5.1. L o c a l s t u d y 
If the fibers are only in the 2-direction, the constitutive equations are given by relations 

(15.1-3). These relations can be derived from the specific Helmholtz free energy ψ2, which is 

a scalar function of the state variables £ n , 822,812, and D 2 

ΡΨ2 = ρψ(ειι,ε22,εΐ2,Ε>2) 

with 

(20.1) 

E F 
p\|/(x,y,z,d) = - γ 

x 2 + 2 v M F ( l - < i ) x y + k ( l - d ) y 2 ' 

k j l - v ^ ( l - d ) 
+ z 2 G MF (20.2) 

and 

σιι = ρ 5ψ2 
θ22 = ρ 

3ψ 2 

&22 
σΐ2 = Ρ 

3ψ 2 

3εΐ2 
(20.3) 

It is worth noting that if the fibers are only in the 1-direction (perpendicular to the 2-direction), 
the breakage mechanism is defined by a damage variable denoted by D i and the corresponding 

specific Helmholtz free energy ψ ι is given by 

ρψι = ρψ(ε22,εΐ2,εΐ2,Βι) (21) 

If the fibers are in both 1- and 2-directions, then we assume a state coupling [16] given 

by a law of mixture in terms of the total specific Helmholtz free energy ρψ ΐ2 

ΡΨ12 = ( 1 - 0 Ρ Ψ 1 +fp¥2 (22) 

where f is the percentage of fibers in the 2-direction. It is worth noting that equation (22) 
corresponds to a Lin-Taylor hypothesis. The elastic law is then given by 

a„ = p ^ = ( l - 0 p ^ + f p M 
<teii den θεπ 

a 2 2 = P ^ = ( l - f ) p | ^ + f P ^ 
OZ22 ÔE22 dE22 

a 1 2 = p t e = ( l - 0 p M + f p M 
σε ΐ2 den den 

(23.1) 

(23.2) 

(23.3) 

The evolution of the damage variables D i and D2 is assumed to be driven by the normal 
stresses in the corresponding direction, viz. σ η and 022, respectively. It can be noticed that 
when the volume fraction ratio is either equal to zero or to one, the results of section 4.1 
apply. In particular the localization direction is always perpendicular to the fiber direction. 
On the other hand, when the volume fraction ratio is not equal to zero or to one, a numerical 
method has to be used. The computations show that a loss of uniqueness and a localization 
criteria can both accurately be described by the two following criteria 
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σ ι ι = σ 0 Μ (25.1.1) 
σ 2 2 = σ 0 Μ (25.1.2) 

M a x ( D i , D 2 ) = D c (25.2) 

The approximation is less than ± 1%. Criteria (25.1) are thus the actual criteria as far as the 
computat ions could spot any difference. Criteria (25) show that the max imum damage at 
localizat ion or the max imum stress at localization cannot const i tute parameters for an 
optimization process since they are insensitive to any change of the volume fraction ratio f and 
of the strain ratio a . On the other hand, the localization angle varies with the volume fraction 
ratio f and with the strain ratio a . 

This first part of the study shows that from a local point of view, an optimizat ion 
process is not interesting. The process has therefore to be addressed from a structural point of 
view at which the external load leads to a redistribution of the stress field when the volume 
fraction ratio f and the strain ratio α are altered. Thus different volume fractions, f, and 
different strain ratios, a , may lead to different maximum loads at localization. 

5.2. F . E . M . A n a l y s i s : S p i n n i n g Di sc 
The same structure and material as in section 4.2 are analyzed (EM = 20 GPa, Ep = 140. 

GPa, G M F = 13 GPa, v M F = .0214, m = 4, σ 0 = 1450 MPa, m = 3, Οι = 1293 MPa , r 0 = 
.002 m, a = .3 m, and h = .01 m) . In the present setting, the stress state is axisymmetric, at 
least up to the point where localization occurs, and hence a cylindrical coordinate system is 
introduced. It is assumed that the fibers are or iented in the radial and circumferential 
direct ions, and coordinates x i and x 2 in the previous section are replaced with r and φ 
respectively. It should be remembered that no shear stress (T r ( p is present due to axisymmetry. 
In this first analysis, we assume that there is an r-dependence in the hoop direction, which 
corresponds to the length of the fiber. The expression for the damage variables D r and ΌΦ are 
given by (model #0) 

Dro = 1 - exp 

D(po = 1 - exp 

σ Γ 

( ΐ - ο Γ ) σ α 

Γο 1(ΐ-ϋφ)σο] J 

if En- > 0 and £r r > 0 

if Βφφ > 0 and έφφ > 0 

(26.1) 

(26.2) 

T o descr ibe comple te ly the axisymmetr ic boundary value prob lem, small strains 
kinematics and equilibrium equations have also to be introduced. Again, it proved impossible 
to derive a closed-form solution for the stress state and for the damage variable. Instead the 
problem was solved using the finite e lement code A B A Q U S [15] . The results of the 
computat ions are given in table 1. It can be noticed that the calculations can be performed 
only above f = .5 . If the volume fraction ratio is less than .5 then a stress singularity arises at 
the center of the disc. 



498 

Table 1 
Computations for the circular disc with different volume fraction ratios (model # 0 ) 

Volume fraction ratio f 1 . . 9 . 8 . 7 . 6 . 5 5 

pa>Q at localization ( 1 0 1 0 k g / m 3 / s 2 ) . 5 8 6 . 6 7 2 . 7 4 7 . 8 1 7 . 8 8 3 . 9 1 4 

Localization angle (°) 8 9 . 0 8 6 . 4 8 5 . 6 8 5 . 3 8 5 . 1 8 5 . 0 

f ρ ω 2 a 2 / OOMOIOC) 2 . 2 2 . 2 2 . 2 2 . 0 1 . 8 1 . 7 

When analyzing table 1 results, several conclusions can be drawn. First, at localization, 
an optimization process can be undertaken when the optimization parameter is the product of 
the density by the square of the angular velocity. The higher the volume fraction ratio, the 
lower the product. Second, the localization angle, as expected varies with the volume fraction 

ratio f. Third, a dimensionless parameter, f ρ ω 0 a 2 / (TOM(Hoc)» where OOMO*1OC) denotes the 

stress level at the localization radius, η ^ , is constant over a large range of volume fraction. 

In this part, we assume an r-independence in the hoop direction. The damage evolution 
is given by (model # 1 ) 

D r i = 1 - exp 

ϋ φ ΐ = 1 - exp 

(l-Dr)Oij 

. Ισ-Οφ: - f 

if 8rr > 0 and 6 ^ > 0 

if Εφφ > 0 and 8 φ φ > 0 

( 2 7 . 1 ) 

( 2 7 . 2 ) 

The results of the computations are given in table 2 . 

Table 2 . 
Computations for the circular disc with different volume fraction ratios (model # 1 ) 

Volume fraction ratio f 1 . . 9 . 8 . 7 . 6 . 5 5 

pcûj a t localizatio n ( 1 0 1 0 k g / m 3 / s 2 ) 1 . 7 0 8 1 . 9 1 8 2 . 0 8 0 2 . 1 9 4 2 . 2 3 4 2 . 2 0 2 

Localization angl e (° ) 8 9 . 0 8 6 . 4 8 5 . 6 8 5 . 3 8 5 . 1 8 5 . 1 

f pœ ja 2 /OoM ( r i oc ) 2 . 2 2 . 2 2 . 1 1 . 9 1 . 7 1 . 5 

The sam e kin d o f conclusion s a s wit h mode l # 0 ca n b e draw n fo r mode l # 1 . I t ca n als o 
be notice d tha t a n optimizatio n proces s ca n b e undertake n i n term s o f th e angula r velocit y a t 
localization. 
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6. C O N C L U S I O N S 

Using a one-dimensional study of fiber breaking modeled by a single damage variable, a 
one-dimensional model is derived. This model is then generalized to a 2-D plane stress 
analysis with fibers in one direction. This generalized model gives rise to criteria identical to 
the one-dimensional model. Indeed, loss of uniqueness and localization can be described by 
some very simple criteria referring to Continuum Damage Mechanics. The conclusions drawn 
from the 2-D study are essentially confirmed by the finite element analysis of a spinning disc. 
This result is in itself interesting since it shows that the important features regarding loss of 
uniqueness and localization in fiber reinforced composites are independent of whether or not a 
homogeneous shear free stress field is present. 

A model taking into account fibers in two perpendicular directions is studied. The same 
type of criteria as in the case of fibers in one direction can be derived. They refer to a maximal 
normal stress and to a maximal damage variable equal to a critical value. A finite element 
analysis confirms again these results in the case of more complicated stress fields. 

Finally, since the criteria from a local stage are independent of the characteristics of the 
stress field, an optimization process can only be undertaken at a global stage. 
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